--- license: mit datasets: - garage-bAInd/Open-Platypus - databricks/databricks-dolly-15k - timdettmers/openassistant-guanaco language: - en pipeline_tag: text-generation --- # GPT2_platypus-dolly-guanaco **gpt2_platypus-dolly-guanaco** is an instruction fine-tuned model based on the GPT-2 transformer architecture. ### Benchmark Metrics | Metric | gpt2_platypus-dolly-guanaco | GPT-2 (base) | |-----------------------|-------|-------| | Avg. | - | 29.9 | | ARC (25-shot) | - | 21.84 | | HellaSwag (10-shot) | - | 31.6 | | MMLU (5-shot) | - | 25.86 | | TruthfulQA (0-shot) | - | 40.67 | We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results. ### Model Details * **Trained by**: Luiz G A Alves * **Model type:** **gpt2_platypus-dolly-guanaco** is an auto-regressive language model based on the GPT-2 transformer architecture. * **Language(s)**: English ### How to use: ```python # Use a pipeline as a high-level helper >>> from transformers import pipeline >>> pipe = pipeline("text-generation", model="lgaalves/gpt2_platypus-dolly-guanaco") >>> question = "What is a large language model?" >>> answer = pipe(question) >>> print(answer[0]['generated_text']) ``` or, you can load the model direclty using: ```python # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2_open-platypus") model = AutoModelForCausalLM.from_pretrained("lgaalves/gpt2_open-platypus") ``` ### Training Dataset `lgaalves/gpt2_platypus-dolly-guanaco` trained using 3 datasets: - [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) - [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) - [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) ### Training Procedure `lgaalves/gpt2_platypus-dolly-guanaco` was instruction fine-tuned using LoRA on 1 T4 GPU on Google Colab. It took about 1 hour to train it. # Intended uses, limitations & biases You can use the raw model for text generation or fine-tune it to a downstream task. The model was not extensively tested and may produce false information. It contains a lot of unfiltered content from the internet, which is far from neutral.