--- tags: - optimum datasets: - banking77 metrics: - accuracy model-index: - name: quantized-distilbert-banking77 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 metrics: - name: Accuracy type: accuracy value: 0.9244 --- # Quantized-distilbert-banking77 This model is a dynamically quantized version of [optimum/distilbert-base-uncased-finetuned-banking77](https://huggingface.co/optimum/distilbert-base-uncased-finetuned-banking77) on the `banking77` dataset. The model was created using the [dynamic-quantization](https://github.com/huggingface/workshops/tree/main/mlops-world) notebook from a workshop presented at MLOps World 2022. It achieves the following results on the evaluation set: **Accuracy** - Vanilla model: 92.5% - Quantized model: 92.44% > The quantized model achieves 99.93% accuracy of the FP32 model **Latency** Payload sequence length: 128 Instance type: AWS c6i.xlarge | latency | vanilla transformers | quantized optimum model | improvement | |---------|----------------------|-------------------------|-------------| | p95 | 63.24ms | 37.06ms | 1.71x | | avg | 62.87ms | 37.93ms | 1.66x | ## How to use ```python from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import pipeline, AutoTokenizer model = ORTModelForSequenceClassification.from_pretrained("lewtun/quantized-distilbert-banking77") tokenizer = AutoTokenizer.from_pretrained("lewtun/quantized-distilbert-banking77") classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) classifier("What is the exchange rate like on this app?") ```