--- library_name: peft base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B tags: - axolotl - generated_from_trainer model-index: - name: 21e6f667-1b4f-43b3-9117-44b455ed8d1b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e4907ed61d75280e_train_data.json ds_type: json format: custom path: /workspace/input_data/e4907ed61d75280e_train_data.json type: field_input: evidence field_instruction: question field_output: SQL format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso11/21e6f667-1b4f-43b3-9117-44b455ed8d1b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000211 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/e4907ed61d75280e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 110 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 44729f2d-08fe-4adb-b03b-065116691d72 wandb_project: 11a wandb_run: your_name wandb_runid: 44729f2d-08fe-4adb-b03b-065116691d72 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 21e6f667-1b4f-43b3-9117-44b455ed8d1b This model is a fine-tuned version of [Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v3.0-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000211 - train_batch_size: 4 - eval_batch_size: 4 - seed: 110 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 1.6972 | | 0.6301 | 0.0307 | 50 | 0.7841 | | 0.5207 | 0.0613 | 100 | 0.7849 | | 0.4508 | 0.0920 | 150 | 0.5248 | | 0.3927 | 0.1226 | 200 | 0.5356 | | 0.3716 | 0.1533 | 250 | 0.3826 | | 0.3506 | 0.1839 | 300 | 0.3516 | | 0.326 | 0.2146 | 350 | 0.2691 | | 0.2517 | 0.2452 | 400 | 0.2358 | | 0.2535 | 0.2759 | 450 | 0.2240 | | 0.3353 | 0.3066 | 500 | 0.2209 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1