--- license: mit library_name: peft tags: - generated_from_trainer base_model: openai-community/gpt2 datasets: - emotion metrics: - accuracy - f1 - precision - recall model-index: - name: emotion-gpt2-lora results: [] --- # emotion-gpt2-lora This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1521 - Accuracy: 0.933 - F1: 0.9334 - Precision: 0.9347 - Recall: 0.933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 250 | 0.3191 | 0.8895 | 0.8902 | 0.8933 | 0.8895 | | 0.6939 | 2.0 | 500 | 0.1939 | 0.935 | 0.9349 | 0.9352 | 0.935 | | 0.6939 | 3.0 | 750 | 0.1689 | 0.931 | 0.9315 | 0.9329 | 0.931 | | 0.1897 | 4.0 | 1000 | 0.1521 | 0.933 | 0.9334 | 0.9347 | 0.933 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1