--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: None args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6435 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.11 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0583 | 1.0 | 113 | 1.8988 | 0.38 | | 1.3639 | 2.0 | 226 | 1.3228 | 0.63 | | 0.9073 | 3.0 | 339 | 1.0764 | 0.68 | | 0.6992 | 4.0 | 452 | 0.8383 | 0.76 | | 0.5049 | 5.0 | 565 | 0.6777 | 0.79 | | 0.415 | 6.0 | 678 | 0.5827 | 0.81 | | 0.3091 | 7.0 | 791 | 0.5524 | 0.86 | | 0.1871 | 8.0 | 904 | 0.6074 | 0.85 | | 0.1265 | 9.0 | 1017 | 0.6024 | 0.87 | | 0.0883 | 10.0 | 1130 | 0.6710 | 0.85 | | 0.0557 | 11.0 | 1243 | 0.6686 | 0.84 | | 0.0677 | 12.0 | 1356 | 0.6435 | 0.85 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2