import torch from torch import nn, Tensor from typing import Iterable, Dict from ..SentenceTransformer import SentenceTransformer class CosineSimilarityLoss(nn.Module): """ CosineSimilarityLoss expects, that the InputExamples consists of two texts and a float label. It computes the vectors u = model(input_text[0]) and v = model(input_text[1]) and measures the cosine-similarity between the two. By default, it minimizes the following loss: ||input_label - cos_score_transformation(cosine_sim(u,v))||_2. :param model: SentenceTransformer model :param loss_fct: Which pytorch loss function should be used to compare the cosine_similartiy(u,v) with the input_label? By default, MSE: ||input_label - cosine_sim(u,v)||_2 :param cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). Example:: from sentence_transformers import SentenceTransformer, SentencesDataset, InputExample, losses model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [InputExample(texts=['My first sentence', 'My second sentence'], label=0.8), InputExample(texts=['Another pair', 'Unrelated sentence'], label=0.3)] train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) """ def __init__(self, model: SentenceTransformer, loss_fct = nn.MSELoss(), cos_score_transformation=nn.Identity()): super(CosineSimilarityLoss, self).__init__() self.model = model self.loss_fct = loss_fct self.cos_score_transformation = cos_score_transformation def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): embeddings = [self.model(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features] output = self.cos_score_transformation(torch.cosine_similarity(embeddings[0], embeddings[1])) return self.loss_fct(output, labels.view(-1))