import torch from torch import nn, Tensor from typing import Union, Tuple, List, Iterable, Dict from .BatchHardTripletLoss import BatchHardTripletLoss, BatchHardTripletLossDistanceFunction from sentence_transformers.SentenceTransformer import SentenceTransformer class BatchHardSoftMarginTripletLoss(BatchHardTripletLoss): """ BatchHardSoftMarginTripletLoss takes a batch with (label, sentence) pairs and computes the loss for all possible, valid triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. The labels must be integers, with same label indicating sentences from the same class. You train dataset must contain at least 2 examples per label class. The margin is computed automatically. Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737 Blog post: https://omoindrot.github.io/triplet-loss :param model: SentenceTransformer model :param distance_metric: Function that returns a distance between two emeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used Example:: from sentence_transformers import SentenceTransformer, SentencesDataset, LoggingHandler, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [InputExample(texts=['Sentence from class 0'], label=0), InputExample(texts=['Another sentence from class 0'], label=0), InputExample(texts=['Sentence from class 1'], label=1), InputExample(texts=['Sentence from class 2'], label=2)] train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.BatchHardSoftMarginTripletLoss(model=model) """ def __init__(self, model: SentenceTransformer, distance_metric=BatchHardTripletLossDistanceFunction.eucledian_distance): super(BatchHardSoftMarginTripletLoss, self).__init__(model) self.sentence_embedder = model self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): rep = self.sentence_embedder(sentence_features[0])['sentence_embedding'] return self.batch_hard_triplet_soft_margin_loss(labels, rep) # Hard Triplet Loss with Soft Margin # Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737 def batch_hard_triplet_soft_margin_loss(self, labels: Tensor, embeddings: Tensor) -> Tensor: """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: Label_Sentence_Triplet: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = self.distance_metric(embeddings) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = BatchHardTripletLoss.get_anchor_positive_triplet_mask(labels).float() # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = mask_anchor_positive * pairwise_dist # shape (batch_size, 1) hardest_positive_dist, _ = anchor_positive_dist.max(1, keepdim=True) # For each anchor, get the hardest negative # First, we need to get a mask for every valid negative (they should have different labels) mask_anchor_negative = BatchHardTripletLoss.get_anchor_negative_triplet_mask(labels).float() # We add the maximum value in each row to the invalid negatives (label(a) == label(n)) max_anchor_negative_dist, _ = pairwise_dist.max(1, keepdim=True) anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative) # shape (batch_size,) hardest_negative_dist, _ = anchor_negative_dist.min(1, keepdim=True) # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss with soft margin #tl = hardest_positive_dist - hardest_negative_dist + margin #tl[tl < 0] = 0 tl = torch.log1p(torch.exp(hardest_positive_dist - hardest_negative_dist)) triplet_loss = tl.mean() return triplet_loss