--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine_tuned_copa_bert results: [] --- # fine_tuned_copa_bert This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0295 - Accuracy: 0.54 - F1: 0.5407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7066 | 1.0 | 50 | 0.6907 | 0.54 | 0.5411 | | 0.6897 | 2.0 | 100 | 0.6880 | 0.57 | 0.5709 | | 0.6001 | 3.0 | 150 | 0.7025 | 0.55 | 0.5511 | | 0.4629 | 4.0 | 200 | 0.7810 | 0.53 | 0.5310 | | 0.3402 | 5.0 | 250 | 1.0003 | 0.55 | 0.5511 | | 0.2299 | 6.0 | 300 | 1.0220 | 0.55 | 0.5511 | | 0.1874 | 7.0 | 350 | 0.9956 | 0.56 | 0.5611 | | 0.1133 | 8.0 | 400 | 1.0295 | 0.54 | 0.5407 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1