--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: ff810066-31fd-4436-a2c4-296c7f507694 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9a795b17b199f7fe_train_data.json ds_type: json format: custom path: /workspace/input_data/9a795b17b199f7fe_train_data.json type: field_instruction: text field_output: label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: leixa/ff810066-31fd-4436-a2c4-296c7f507694 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/9a795b17b199f7fe_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: ff810066-31fd-4436-a2c4-296c7f507694 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ff810066-31fd-4436-a2c4-296c7f507694 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# ff810066-31fd-4436-a2c4-296c7f507694 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 393 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0076 | 1 | 16.8733 | | 0.2599 | 0.2519 | 33 | 0.1527 | | 0.0761 | 0.5038 | 66 | 0.1225 | | 0.1768 | 0.7557 | 99 | 0.1619 | | 0.0645 | 1.0076 | 132 | 0.1234 | | 0.0688 | 1.2595 | 165 | 0.1283 | | 0.0478 | 1.5115 | 198 | 0.1044 | | 0.0468 | 1.7634 | 231 | 0.0829 | | 0.0539 | 2.0153 | 264 | 0.0769 | | 0.0326 | 2.2672 | 297 | 0.0764 | | 0.0971 | 2.5191 | 330 | 0.0781 | | 0.0526 | 2.7710 | 363 | 0.0775 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1