llama_model_loader: loaded meta data with 31 key-value pairs and 435 tensors from Yi-Coder-9B-Chat-IMat-GGUF/Yi-Coder-9B-Chat.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Yi Coder 9B Chat
llama_model_loader: - kv   3:                           general.finetune str              = Chat
llama_model_loader: - kv   4:                           general.basename str              = Yi-Coder
llama_model_loader: - kv   5:                         general.size_label str              = 9B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                          llama.block_count u32              = 48
llama_model_loader: - kv   8:                       llama.context_length u32              = 131072
llama_model_loader: - kv   9:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  10:                  llama.feed_forward_length u32              = 11008
llama_model_loader: - kv  11:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  12:              llama.attention.head_count_kv u32              = 4
llama_model_loader: - kv  13:                       llama.rope.freq_base f32              = 10000000.000000
llama_model_loader: - kv  14:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  15:                          general.file_type u32              = 7
llama_model_loader: - kv  16:                           llama.vocab_size u32              = 64000
llama_model_loader: - kv  17:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  18:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  19:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  20:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  21:                      tokenizer.ggml.tokens arr[str,64000]   = ["<unk>", "<|startoftext|>", "<|endof...
llama_model_loader: - kv  22:                      tokenizer.ggml.scores arr[f32,64000]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  23:                  tokenizer.ggml.token_type arr[i32,64000]   = [3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, ...
llama_model_loader: - kv  24:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  25:                tokenizer.ggml.eos_token_id u32              = 7
llama_model_loader: - kv  26:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  27:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  28:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  29:                    tokenizer.chat_template str              = {% if messages[0]['role'] == 'system'...
llama_model_loader: - kv  30:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   97 tensors
llama_model_loader: - type q8_0:  338 tensors
llm_load_vocab: special tokens cache size = 13
llm_load_vocab: token to piece cache size = 0.3834 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 64000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 48
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 4
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 8
llm_load_print_meta: n_embd_k_gqa     = 512
llm_load_print_meta: n_embd_v_gqa     = 512
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 34B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 8.83 B
llm_load_print_meta: model size       = 8.74 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Yi Coder 9B Chat
llm_load_print_meta: BOS token        = 1 '<|startoftext|>'
llm_load_print_meta: EOS token        = 7 '<|im_end|>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: PAD token        = 0 '<unk>'
llm_load_print_meta: LF token         = 315 '<0x0A>'
llm_load_print_meta: EOT token        = 2 '<|endoftext|>'
llm_load_print_meta: max token length = 48
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.41 MiB
llm_load_tensors: offloading 48 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 49/49 layers to GPU
llm_load_tensors:        CPU buffer size =   265.62 MiB
llm_load_tensors:      CUDA0 buffer size =  8682.16 MiB
.................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =    48.00 MiB
llama_new_context_with_model: KV self size  =   48.00 MiB, K (f16):   24.00 MiB, V (f16):   24.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.24 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   133.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.01 MiB
llama_new_context_with_model: graph nodes  = 1542
llama_new_context_with_model: graph splits = 2

system_info: n_threads = 25 (n_threads_batch = 25) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 99.249 ms
compute_imatrix: computing over 146 chunks with batch_size 512
compute_imatrix: 0.88 seconds per pass - ETA 2.13 minutes
[1]9.8198,[2]6.5604,[3]6.5762,[4]7.0806,[5]6.9953,[6]7.1565,[7]5.9481,[8]6.7761,[9]6.6810,
save_imatrix: stored collected data after 10 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[10]7.2665,[11]7.3542,[12]6.7100,[13]7.1440,[14]7.8428,[15]8.1226,[16]8.6544,[17]9.1495,[18]9.2832,[19]9.4664,
save_imatrix: stored collected data after 20 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[20]9.8392,[21]9.3568,[22]9.2338,[23]9.3600,[24]9.3835,[25]9.3889,[26]9.1261,[27]9.4375,[28]9.6221,[29]9.9584,
save_imatrix: stored collected data after 30 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[30]10.0395,[31]10.2920,[32]10.5665,[33]10.5537,[34]10.3409,[35]9.9756,[36]9.4164,[37]8.9196,[38]8.8557,[39]8.7853,
save_imatrix: stored collected data after 40 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[40]8.7371,[41]8.4383,[42]8.1871,[43]8.0015,[44]7.7722,[45]7.5820,[46]7.5505,[47]7.6632,[48]7.8130,[49]7.9891,
save_imatrix: stored collected data after 50 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[50]8.1707,[51]8.5257,[52]8.8144,[53]9.0342,[54]9.1952,[55]9.2209,[56]9.1161,[57]9.2642,[58]9.3533,[59]9.4595,
save_imatrix: stored collected data after 60 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[60]9.3627,[61]9.2811,[62]9.3249,[63]9.5089,[64]9.6632,[65]9.7850,[66]9.8601,[67]9.9305,[68]10.0022,[69]10.0562,
save_imatrix: stored collected data after 70 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[70]9.9152,[71]9.8122,[72]9.7318,[73]9.6664,[74]9.7231,[75]9.7928,[76]9.7848,[77]9.8168,[78]9.8241,[79]9.7773,
save_imatrix: stored collected data after 80 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[80]9.7172,[81]9.6326,[82]9.6526,[83]9.6156,[84]9.5799,[85]9.5961,[86]9.5612,[87]9.4946,[88]9.4473,[89]9.4639,
save_imatrix: stored collected data after 90 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[90]9.4329,[91]9.4060,[92]9.3100,[93]9.2929,[94]9.3700,[95]9.3770,[96]9.3207,[97]9.3439,[98]9.3690,[99]9.3938,
save_imatrix: stored collected data after 100 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[100]9.2644,[101]9.3233,[102]9.3417,[103]9.3820,[104]9.4176,[105]9.4469,[106]9.3712,[107]9.3010,[108]9.2315,[109]9.1467,
save_imatrix: stored collected data after 110 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[110]9.0751,[111]9.0000,[112]8.9344,[113]8.8693,[114]8.8142,[115]8.8457,[116]8.9097,[117]9.0049,[118]9.0946,[119]9.1784,
save_imatrix: stored collected data after 120 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[120]9.3380,[121]9.4386,[122]9.4729,[123]9.4955,[124]9.4380,[125]9.4421,[126]9.4011,[127]9.3066,[128]9.2026,[129]9.1276,
save_imatrix: stored collected data after 130 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[130]9.1887,[131]9.1931,[132]9.2312,[133]9.2682,[134]9.3254,[135]9.3580,[136]9.3817,[137]9.3953,[138]9.3918,[139]9.3793,
save_imatrix: stored collected data after 140 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat
[140]9.4587,[141]9.5294,[142]9.5985,[143]9.6776,[144]9.7522,[145]9.8222,[146]9.8724,
save_imatrix: stored collected data after 146 chunks in Yi-Coder-9B-Chat-IMat-GGUF/imatrix.dat

llama_print_timings:        load time =    2483.50 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time =  110783.96 ms / 74752 tokens (    1.48 ms per token,   674.75 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =  112968.42 ms / 74753 tokens

Final estimate: PPL = 9.8724 +/- 0.15747