File size: 6,390 Bytes
f666bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
base_model: Bin12345/AutoCoder_S_6.7B
inference: false
library_name: gguf
license: apache-2.0
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- quantized
- GGUF
- imatrix
- quantization
- imat
- imatrix
- static
---

# AutoCoder_S_6.7B-IMat-GGUF
_Llama.cpp imatrix quantization of Bin12345/AutoCoder_S_6.7B_

Original Model: [Bin12345/AutoCoder_S_6.7B](https://huggingface.co/Bin12345/AutoCoder_S_6.7B)  
Original dtype: `BF16` (`bfloat16`)  
Quantized by: llama.cpp [b3010](https://github.com/ggerganov/llama.cpp/releases/tag/b3010)  
IMatrix dataset: [here](https://gist.githubusercontent.com/legraphista/d6d93f1a254bcfc58e0af3777eaec41e/raw/d380e7002cea4a51c33fffd47db851942754e7cc/imatrix.calibration.medium.raw)  

- [AutoCoder_S_6.7B-IMat-GGUF](#autocoder-s-6-7b-imat-gguf)
    - [Files](#files)
        - [IMatrix](#imatrix)
        - [Common Quants](#common-quants)
        - [All Quants](#all-quants)
    - [Downloading using huggingface-cli](#downloading-using-huggingface-cli)
    - [Inference](#inference)
        - [Simple chat template](#simple-chat-template)
        - [Chat template with system prompt](#chat-template-with-system-prompt)
        - [Llama.cpp](#llama-cpp)
    - [FAQ](#faq)
        - [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere)
        - [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf)

---

## Files

### IMatrix
Status: ⏳ Processing  
Link: [here](https://huggingface.co/legraphista/AutoCoder_S_6.7B-IMat-GGUF/blob/main/imatrix.dat) 

### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| AutoCoder_S_6.7B.Q8_0 | Q8_0 | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.Q6_K | Q6_K | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.Q4_K | Q4_K | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.Q3_K | Q3_K | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.Q2_K | Q2_K | - | ⏳ Processing | 🟢 IMatrix | -


### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| AutoCoder_S_6.7B.BF16 | BF16 | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.FP16 | F16 | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.Q5_K | Q5_K | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.Q5_K_S | Q5_K_S | - | ⏳ Processing | ⚪ Static | -
| AutoCoder_S_6.7B.Q4_K_S | Q4_K_S | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.Q3_K_L | Q3_K_L | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.Q3_K_S | Q3_K_S | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.Q2_K_S | Q2_K_S | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ4_NL | IQ4_NL | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ4_XS | IQ4_XS | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ3_M | IQ3_M | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ3_S | IQ3_S | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ3_XS | IQ3_XS | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ3_XXS | IQ3_XXS | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ2_M | IQ2_M | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ2_S | IQ2_S | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ2_XS | IQ2_XS | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ2_XXS | IQ2_XXS | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ1_M | IQ1_M | - | ⏳ Processing | 🟢 IMatrix | -
| AutoCoder_S_6.7B.IQ1_S | IQ1_S | - | ⏳ Processing | 🟢 IMatrix | -


## Downloading using huggingface-cli
If you do not have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Download the specific file you want:
```
huggingface-cli download legraphista/AutoCoder_S_6.7B-IMat-GGUF --include "AutoCoder_S_6.7B.Q8_0.gguf" --local-dir ./
```
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/AutoCoder_S_6.7B-IMat-GGUF --include "AutoCoder_S_6.7B.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's
```

---

## Inference

### Simple chat template
```
Human: Can you provide ways to eat combinations of bananas and dragonfruits?
Assistant: Sure! Here are some ways to eat bananas and dragonfruits together:
 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey.
 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey.<|end▁of▁sentence|>
Human: What about solving an 2x + 3 = 7 equation?
Assistant: 
```

### Chat template with system prompt
```
You are a helpful AI.
Human: Can you provide ways to eat combinations of bananas and dragonfruits?
Assistant: Sure! Here are some ways to eat bananas and dragonfruits together:
 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey.
 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey.<|end▁of▁sentence|>
Human: What about solving an 2x + 3 = 7 equation?
Assistant: 
```

### Llama.cpp
```
llama.cpp/main -m AutoCoder_S_6.7B.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"
```

---

## FAQ

### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results). 

### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
    - To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
    - Download the appropriate zip for your system from the latest release
    - Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `AutoCoder_S_6.7B.Q8_0`)
3. Run `gguf-split --merge AutoCoder_S_6.7B.Q8_0/AutoCoder_S_6.7B.Q8_0-00001-of-XXXXX.gguf AutoCoder_S_6.7B.Q8_0.gguf`
    - Make sure to point `gguf-split` to the first chunk of the split.

---

Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)!