---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5005
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: especialista de risco e prevenção a fraudes
sentences:
- risk & compliance
- internal communication
- accounting
- source_sentence: coord integracao do cliente ii
sentences:
- strategic planning
- customer experience
- não encontrado (adicione nas observações)
- source_sentence: gerente sr. marketing e performance
sentences:
- business operations
- d&i
- performance marketing
- source_sentence: gerente executivo de operacoes
sentences:
- business operations
- sdr
- product management
- source_sentence: sr designer
sentences:
- product design
- talent acquisition
- lawyer
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6245583038869258
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8206713780918727
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8754416961130742
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.926678445229682
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6245583038869258
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2735571260306242
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17508833922261482
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0926678445229682
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6245583038869258
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8206713780918727
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8754416961130742
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.926678445229682
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7790196193570564
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7312496494475299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7347864977321262
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6245583038869258
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8206713780918727
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8754416961130742
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.926678445229682
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6245583038869258
name: Dot Precision@1
- type: dot_precision@3
value: 0.2735571260306242
name: Dot Precision@3
- type: dot_precision@5
value: 0.17508833922261482
name: Dot Precision@5
- type: dot_precision@10
value: 0.0926678445229682
name: Dot Precision@10
- type: dot_recall@1
value: 0.6245583038869258
name: Dot Recall@1
- type: dot_recall@3
value: 0.8206713780918727
name: Dot Recall@3
- type: dot_recall@5
value: 0.8754416961130742
name: Dot Recall@5
- type: dot_recall@10
value: 0.926678445229682
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7790196193570564
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7312496494475299
name: Dot Mrr@10
- type: dot_map@100
value: 0.7347864977321262
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'sr designer',
'product design',
'talent acquisition',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6246 |
| cosine_accuracy@3 | 0.8207 |
| cosine_accuracy@5 | 0.8754 |
| cosine_accuracy@10 | 0.9267 |
| cosine_precision@1 | 0.6246 |
| cosine_precision@3 | 0.2736 |
| cosine_precision@5 | 0.1751 |
| cosine_precision@10 | 0.0927 |
| cosine_recall@1 | 0.6246 |
| cosine_recall@3 | 0.8207 |
| cosine_recall@5 | 0.8754 |
| cosine_recall@10 | 0.9267 |
| cosine_ndcg@10 | 0.779 |
| cosine_mrr@10 | 0.7312 |
| **cosine_map@100** | **0.7348** |
| dot_accuracy@1 | 0.6246 |
| dot_accuracy@3 | 0.8207 |
| dot_accuracy@5 | 0.8754 |
| dot_accuracy@10 | 0.9267 |
| dot_precision@1 | 0.6246 |
| dot_precision@3 | 0.2736 |
| dot_precision@5 | 0.1751 |
| dot_precision@10 | 0.0927 |
| dot_recall@1 | 0.6246 |
| dot_recall@3 | 0.8207 |
| dot_recall@5 | 0.8754 |
| dot_recall@10 | 0.9267 |
| dot_ndcg@10 | 0.779 |
| dot_mrr@10 | 0.7312 |
| dot_map@100 | 0.7348 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,005 training samples
* Columns: input
and output
* Approximate statistics based on the first 1000 samples:
| | input | output |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
fresador mecanico ii
| não encontrado (adicione nas observações)
|
| analista de sistemas ui ux iii
| product design
|
| devops
| devops engineering
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,132 evaluation samples
* Columns: input
and output
* Approximate statistics based on the first 1000 samples:
| | input | output |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | produtor (a) de video pleno
| não encontrado (adicione nas observações)
|
| ai staff software engineer
| software engineering
|
| montador digital i
| não encontrado (adicione nas observações)
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `warmup_ratio`: 0.1
#### All Hyperparameters