--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9465478841870824 - name: Recall type: recall value: 0.9543413173652695 - name: F1 type: f1 value: 0.9504286246738725 - name: Accuracy type: accuracy value: 0.9584040747028862 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2090 - Precision: 0.9465 - Recall: 0.9543 - F1: 0.9504 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 1.0347 | 0.6965 | 0.7695 | 0.7312 | 0.7861 | | 1.4031 | 3.12 | 500 | 0.5641 | 0.8491 | 0.8720 | 0.8604 | 0.8744 | | 1.4031 | 4.69 | 750 | 0.3899 | 0.8810 | 0.9087 | 0.8946 | 0.9138 | | 0.4005 | 6.25 | 1000 | 0.3025 | 0.9202 | 0.9319 | 0.9260 | 0.9355 | | 0.4005 | 7.81 | 1250 | 0.2641 | 0.9211 | 0.9349 | 0.9279 | 0.9402 | | 0.2161 | 9.38 | 1500 | 0.2406 | 0.9277 | 0.9416 | 0.9346 | 0.9474 | | 0.2161 | 10.94 | 1750 | 0.2250 | 0.9343 | 0.9469 | 0.9405 | 0.9516 | | 0.1474 | 12.5 | 2000 | 0.2238 | 0.9415 | 0.9513 | 0.9464 | 0.9542 | | 0.1474 | 14.06 | 2250 | 0.2128 | 0.9451 | 0.9536 | 0.9493 | 0.9571 | | 0.1128 | 15.62 | 2500 | 0.2090 | 0.9465 | 0.9543 | 0.9504 | 0.9584 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3