diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..c271909ce06f74cd180c6363fa994a019409d5ff 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,57 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/BSR_demo.gif filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/BSR_directory1.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/calculate-mAP-demo1.gif filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/Coral_and_EdgeTPU2.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/labeled_image_example2.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/labeled_image_examples.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/squirrels!!.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/TFL_download_links.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/TFLite-vs-EdgeTPU.gif filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/tflite1_folder.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/doc/YouTube_video2.png filter=lfs diff=lfs merge=lfs -text
+celestial-mini/test.mp4 filter=lfs diff=lfs merge=lfs -text
+celestial-mini/test1.jpg filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/bin/python filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/bin/python3 filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/cv2/cv2.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/fromnumeric.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_tests.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_umath.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_rational_tests.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_simd.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_umath_tests.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/libnpymath.a filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/tests/__pycache__/test_multiarray.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/tests/__pycache__/test_numeric.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/core/tests/__pycache__/test_umath.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/fft/_pocketfft_internal.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/lib/__pycache__/function_base.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/linalg/_umath_linalg.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/ma/__pycache__/core.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_bounded_integers.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_common.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_generator.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_mt19937.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_pcg64.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_philox.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/_sfc64.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/bit_generator.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/lib/libnpyrandom.a filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/numpy/random/mtrand.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/pkg_resources/_vendor/__pycache__/pyparsing.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/setuptools/_vendor/__pycache__/pyparsing.cpython-37.pyc filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/lib/python3.7/site-packages/tflite_runtime/_pywrap_tensorflow_interpreter_wrapper.cpython-37m-arm-linux-gnueabihf.so filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/certifi-2018.8.24-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/chardet-3.0.4-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/distlib-0.2.8-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/html5lib-1.0.1-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/pip-18.1-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/pkg_resources-0.0.0-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/setuptools-40.8.0-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
+celestial-mini/venv/share/python-wheels/urllib3-1.24.1-py2.py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
diff --git a/celestial-mini/Android/placeholder.txt b/celestial-mini/Android/placeholder.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c42a1fddf2c339a4eb662c49979c66f8cb570f76
--- /dev/null
+++ b/celestial-mini/Android/placeholder.txt
@@ -0,0 +1 @@
+This is a placeholder... the Android content will come eventually!
diff --git a/celestial-mini/LICENSE b/celestial-mini/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/celestial-mini/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/celestial-mini/README.md b/celestial-mini/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..c17dba9603759638cfc9deb30ad7116afbdc45c0
--- /dev/null
+++ b/celestial-mini/README.md
@@ -0,0 +1,126 @@
+# TensorFlow Lite Object Detection on Android and Raspberry Pi
+Train your own TensorFlow Lite object detection models and run them on the Raspberry Pi, Android phones, and other edge devices!
+
+
+
+
+
+
+
+## Introduction
+TensorFlow Lite is an optimized framework for deploying lightweight deep learning models on resource-constrained edge devices. TensorFlow Lite models have faster inference time and require less processing power than regular TensorFlow models, so they can be used to obtain faster performance in realtime applications.
+
+This guide provides step-by-step instructions for how train a custom TensorFlow Object Detection model, convert it into an optimized format that can be used by TensorFlow Lite, and run it on edge devices like the Raspberry Pi. It also provides Python code for running TensorFlow Lite models to perform detection on images, videos, web streams, or webcam feeds.
+
+---
+# ๐ Celestial-Mini: Lightweight Object Detection Model (TF)
+
+[](https://www.tensorflow.org/)
+[]()
+[]()
+
+**Celestial-Mini** is a compact, high-performance object detection model designed to recognize up to **80 distinct object classes**. Built with **TensorFlow**, it balances speed and accuracy for deployment in edge devices and real-time applications.
+
+---
+
+## ๐ Key Features
+
+- ๐ Detects up to **80 different object categories**
+- โก Optimized for **real-time inference**
+- ๐ง Built on a **lightweight backbone**
+- ๐ฆ TensorFlow SavedModel format for easy deployment
+- ๐งฐ Compatible with TensorFlow Lite and TensorFlow.js
+
+---
+
+## ๐งช Intended Use
+
+Celestial-Mini is designed for:
+
+- Robotics and drones
+- Smart home devices
+- Augmented Reality (AR) systems
+- Mobile applications
+- Educational and prototyping environments
+
+---
+
+## ๐ท Object Classes
+
+Includes detection support for the standard 80-class COCO-style object categories such as:
+
+```
+person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, ...
+```
+
+---
+
+## ๐ฆ How to Use
+
+```python
+import tensorflow as tf
+
+# Load the model
+model = tf.saved_model.load("path/to/celestial-mini")
+
+# Run inference
+detections = model(input_tensor)
+```
+
+---
+
+## ๐ Performance
+
+| Metric | Value |
+|----------------|---------------|
+| Classes | 80 |
+| Model Size | ~15MB |
+| Inference Time | < 50ms/image |
+| Framework | TensorFlow |
+
+> ๐ Performance may vary depending on hardware and TensorFlow backend optimizations.
+
+---
+
+## ๐ง Training & Dataset
+
+Celestial-Mini was trained on a custom variant of the **COCO dataset**, emphasizing generalization and real-time inference. Model architecture includes quantization-friendly layers and depthwise separable convolutions.
+
+---
+
+## ๐ Citation
+
+If you use **Celestial-Mini** in your work, please consider citing:
+
+```
+@misc{celestialmini2025,
+ title={Celestial-Mini: A Lightweight Real-Time Object Detector},
+ author={Lang, John},
+ year={2025},
+ howpublished={\url{https://huggingface.co/langutang/celestial-mini}}
+}
+```
+
+---
+
+## ๐ฌ Contact & License
+
+- ๐ซ For questions or collaboration, open an issue or contact the maintainer.
+- โ๏ธ License: MIT (see LICENSE file for details)
+
+---
+
+## ๐ Hugging Face Model Hub
+
+To load from Hugging Face:
+
+```python
+from transformers import AutoFeatureExtractor, TFModelForObjectDetection
+
+model = TFModelForObjectDetection.from_pretrained("langutang/celestial-mini")
+extractor = AutoFeatureExtractor.from_pretrained("langutang/celestial-mini")
+```
+
+---
+
+Transform your edge AI projects with the power of **Celestial-Mini** ๐
diff --git a/celestial-mini/TFLite_detection_image.py b/celestial-mini/TFLite_detection_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0aac7fcb7fc50a8e2b5ea0f6657d6937a17fde6b
--- /dev/null
+++ b/celestial-mini/TFLite_detection_image.py
@@ -0,0 +1,238 @@
+######## Webcam Object Detection Using Tensorflow-trained Classifier #########
+#
+# Author: Evan Juras
+# Date: 11/11/22
+# Description:
+# This program uses a TensorFlow Lite object detection model to perform object
+# detection on an image or a folder full of images. It draws boxes and scores
+# around the objects of interest in each image.
+#
+# This code is based off the TensorFlow Lite image classification example at:
+# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
+#
+# I added my own method of drawing boxes and labels using OpenCV.
+
+# Import packages
+import os
+import argparse
+import cv2
+import numpy as np
+import sys
+import glob
+import importlib.util
+
+
+# Define and parse input arguments
+parser = argparse.ArgumentParser()
+parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
+ required=True)
+parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
+ default='detect.tflite')
+parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
+ default='labelmap.txt')
+parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
+ default=0.5)
+parser.add_argument('--image', help='Name of the single image to perform detection on. To run detection on multiple images, use --imagedir',
+ default=None)
+parser.add_argument('--imagedir', help='Name of the folder containing images to perform detection on. Folder must contain only images.',
+ default=None)
+parser.add_argument('--save_results', help='Save labeled images and annotation data to a results folder',
+ action='store_true')
+parser.add_argument('--noshow_results', help='Don\'t show result images (only use this if --save_results is enabled)',
+ action='store_false')
+parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
+ action='store_true')
+
+args = parser.parse_args()
+
+
+# Parse user inputs
+MODEL_NAME = args.modeldir
+GRAPH_NAME = args.graph
+LABELMAP_NAME = args.labels
+
+min_conf_threshold = float(args.threshold)
+use_TPU = args.edgetpu
+
+save_results = args.save_results # Defaults to False
+show_results = args.noshow_results # Defaults to True
+
+IM_NAME = args.image
+IM_DIR = args.imagedir
+
+# If both an image AND a folder are specified, throw an error
+if (IM_NAME and IM_DIR):
+ print('Error! Please only use the --image argument or the --imagedir argument, not both. Issue "python TFLite_detection_image.py -h" for help.')
+ sys.exit()
+
+# If neither an image or a folder are specified, default to using 'test1.jpg' for image name
+if (not IM_NAME and not IM_DIR):
+ IM_NAME = 'test1.jpg'
+
+# Import TensorFlow libraries
+# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
+# If using Coral Edge TPU, import the load_delegate library
+pkg = importlib.util.find_spec('tflite_runtime')
+if pkg:
+ from tflite_runtime.interpreter import Interpreter
+ if use_TPU:
+ from tflite_runtime.interpreter import load_delegate
+else:
+ from tensorflow.lite.python.interpreter import Interpreter
+ if use_TPU:
+ from tensorflow.lite.python.interpreter import load_delegate
+
+# If using Edge TPU, assign filename for Edge TPU model
+if use_TPU:
+ # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
+ if (GRAPH_NAME == 'detect.tflite'):
+ GRAPH_NAME = 'edgetpu.tflite'
+
+
+# Get path to current working directory
+CWD_PATH = os.getcwd()
+
+# Define path to images and grab all image filenames
+if IM_DIR:
+ PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_DIR)
+ images = glob.glob(PATH_TO_IMAGES + '/*.jpg') + glob.glob(PATH_TO_IMAGES + '/*.png') + glob.glob(PATH_TO_IMAGES + '/*.bmp')
+ if save_results:
+ RESULTS_DIR = IM_DIR + '_results'
+
+elif IM_NAME:
+ PATH_TO_IMAGES = os.path.join(CWD_PATH,IM_NAME)
+ images = glob.glob(PATH_TO_IMAGES)
+ if save_results:
+ RESULTS_DIR = 'results'
+
+# Create results directory if user wants to save results
+if save_results:
+ RESULTS_PATH = os.path.join(CWD_PATH,RESULTS_DIR)
+ if not os.path.exists(RESULTS_PATH):
+ os.makedirs(RESULTS_PATH)
+
+# Path to .tflite file, which contains the model that is used for object detection
+PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
+
+# Path to label map file
+PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
+
+# Load the label map
+with open(PATH_TO_LABELS, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+# Have to do a weird fix for label map if using the COCO "starter model" from
+# https://www.tensorflow.org/lite/models/object_detection/overview
+# First label is '???', which has to be removed.
+if labels[0] == '???':
+ del(labels[0])
+
+# Load the Tensorflow Lite model.
+# If using Edge TPU, use special load_delegate argument
+if use_TPU:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT,
+ experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
+ print(PATH_TO_CKPT)
+else:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT)
+
+interpreter.allocate_tensors()
+
+# Get model details
+input_details = interpreter.get_input_details()
+output_details = interpreter.get_output_details()
+height = input_details[0]['shape'][1]
+width = input_details[0]['shape'][2]
+
+floating_model = (input_details[0]['dtype'] == np.float32)
+
+input_mean = 127.5
+input_std = 127.5
+
+# Check output layer name to determine if this model was created with TF2 or TF1,
+# because outputs are ordered differently for TF2 and TF1 models
+outname = output_details[0]['name']
+
+if ('StatefulPartitionedCall' in outname): # This is a TF2 model
+ boxes_idx, classes_idx, scores_idx = 1, 3, 0
+else: # This is a TF1 model
+ boxes_idx, classes_idx, scores_idx = 0, 1, 2
+
+# Loop over every image and perform detection
+for image_path in images:
+
+ # Load image and resize to expected shape [1xHxWx3]
+ image = cv2.imread(image_path)
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
+ imH, imW, _ = image.shape
+ image_resized = cv2.resize(image_rgb, (width, height))
+ input_data = np.expand_dims(image_resized, axis=0)
+
+ # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
+ if floating_model:
+ input_data = (np.float32(input_data) - input_mean) / input_std
+
+ # Perform the actual detection by running the model with the image as input
+ interpreter.set_tensor(input_details[0]['index'],input_data)
+ interpreter.invoke()
+
+ # Retrieve detection results
+ boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
+ classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
+ scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
+
+ detections = []
+
+ # Loop over all detections and draw detection box if confidence is above minimum threshold
+ for i in range(len(scores)):
+ if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
+
+ # Get bounding box coordinates and draw box
+ # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
+ ymin = int(max(1,(boxes[i][0] * imH)))
+ xmin = int(max(1,(boxes[i][1] * imW)))
+ ymax = int(min(imH,(boxes[i][2] * imH)))
+ xmax = int(min(imW,(boxes[i][3] * imW)))
+
+ cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
+
+ # Draw label
+ object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
+ label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
+ labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
+ label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
+ cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
+ cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
+
+ detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])
+
+ # All the results have been drawn on the image, now display the image
+ if show_results:
+ cv2.imshow('Object detector', image)
+
+ # Press any key to continue to next image, or press 'q' to quit
+ if cv2.waitKey(0) == ord('q'):
+ break
+
+ # Save the labeled image to results folder if desired
+ if save_results:
+
+ # Get filenames and paths
+ image_fn = os.path.basename(image_path)
+ image_savepath = os.path.join(CWD_PATH,RESULTS_DIR,image_fn)
+
+ base_fn, ext = os.path.splitext(image_fn)
+ txt_result_fn = base_fn +'.txt'
+ txt_savepath = os.path.join(CWD_PATH,RESULTS_DIR,txt_result_fn)
+
+ # Save image
+ cv2.imwrite(image_savepath, image)
+
+ # Write results to text file
+ # (Using format defined by https://github.com/Cartucho/mAP, which will make it easy to calculate mAP)
+ with open(txt_savepath,'w') as f:
+ for detection in detections:
+ f.write('%s %.4f %d %d %d %d\n' % (detection[0], detection[1], detection[2], detection[3], detection[4], detection[5]))
+
+# Clean up
+cv2.destroyAllWindows()
diff --git a/celestial-mini/TFLite_detection_stream.py b/celestial-mini/TFLite_detection_stream.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd14029c05febf677963e4b374d9c83593b5088b
--- /dev/null
+++ b/celestial-mini/TFLite_detection_stream.py
@@ -0,0 +1,239 @@
+######## Video Stream Object Detection Using Tensorflow-trained Classifier #########
+#
+# Author: Evan Juras (update by JanT)
+# Date: 10/27/19 (updated 12/4/2019)
+# Description:
+# This program uses a TensorFlow Lite model to perform object detection on a live video stream.
+# It draws boxes and scores around the objects of interest in each frame from the
+# stream. To improve FPS, the webcam object runs in a separate thread from the main program.
+# This script will work with codecs supported by CV2 (e.g. MJPEG, RTSP, ...).
+#
+# This code is based off the TensorFlow Lite image classification example at:
+# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
+#
+# I added my own method of drawing boxes and labels using OpenCV.
+
+# Import packages
+import os
+import argparse
+import cv2
+import numpy as np
+import sys
+import time
+from threading import Thread
+import importlib.util
+
+# Define VideoStream class to handle streaming of video from webcam in separate processing thread
+# Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
+class VideoStream:
+ """Camera object that controls video streaming"""
+ def __init__(self,resolution=(640,480),framerate=30):
+ # Initialize the PiCamera and the camera image stream
+ self.stream = cv2.VideoCapture(STREAM_URL)
+ ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
+ ret = self.stream.set(3,resolution[0])
+ ret = self.stream.set(4,resolution[1])
+
+ # Read first frame from the stream
+ (self.grabbed, self.frame) = self.stream.read()
+
+ # Variable to control when the camera is stopped
+ self.stopped = False
+
+ def start(self):
+ # Start the thread that reads frames from the video stream
+ Thread(target=self.update,args=()).start()
+ return self
+
+ def update(self):
+ # Keep looping indefinitely until the thread is stopped
+ while True:
+ # If the camera is stopped, stop the thread
+ if self.stopped:
+ # Close camera resources
+ self.stream.release()
+ return
+
+ # Otherwise, grab the next frame from the stream
+ (self.grabbed, self.frame) = self.stream.read()
+
+ def read(self):
+ # Return the most recent frame
+ return self.frame
+
+ def stop(self):
+ # Indicate that the camera and thread should be stopped
+ self.stopped = True
+
+# Define and parse input arguments
+parser = argparse.ArgumentParser()
+parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
+ required=True)
+parser.add_argument('--streamurl', help='The full URL of the video stream e.g. http://ipaddress:port/stream/video.mjpeg',
+ required=True)
+parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
+ default='detect.tflite')
+parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
+ default='labelmap.txt')
+parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
+ default=0.5)
+parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.',
+ default='1280x720')
+parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
+ action='store_true')
+
+args = parser.parse_args()
+
+MODEL_NAME = args.modeldir
+STREAM_URL = args.streamurl
+GRAPH_NAME = args.graph
+LABELMAP_NAME = args.labels
+min_conf_threshold = float(args.threshold)
+resW, resH = args.resolution.split('x')
+imW, imH = int(resW), int(resH)
+use_TPU = args.edgetpu
+
+# Import TensorFlow libraries
+# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
+# If using Coral Edge TPU, import the load_delegate library
+pkg = importlib.util.find_spec('tflite_runtime')
+if pkg:
+ from tflite_runtime.interpreter import Interpreter
+ if use_TPU:
+ from tflite_runtime.interpreter import load_delegate
+else:
+ from tensorflow.lite.python.interpreter import Interpreter
+ if use_TPU:
+ from tensorflow.lite.python.interpreter import load_delegate
+
+# If using Edge TPU, assign filename for Edge TPU model
+if use_TPU:
+ # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
+ if (GRAPH_NAME == 'detect.tflite'):
+ GRAPH_NAME = 'edgetpu.tflite'
+
+# Get path to current working directory
+CWD_PATH = os.getcwd()
+
+# Path to .tflite file, which contains the model that is used for object detection
+PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
+
+# Path to label map file
+PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
+
+# Load the label map
+with open(PATH_TO_LABELS, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+# Have to do a weird fix for label map if using the COCO "starter model" from
+# https://www.tensorflow.org/lite/models/object_detection/overview
+# First label is '???', which has to be removed.
+if labels[0] == '???':
+ del(labels[0])
+
+# Load the Tensorflow Lite model.
+# If using Edge TPU, use special load_delegate argument
+if use_TPU:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT,
+ experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
+ print(PATH_TO_CKPT)
+else:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT)
+
+interpreter.allocate_tensors()
+
+# Get model details
+input_details = interpreter.get_input_details()
+output_details = interpreter.get_output_details()
+height = input_details[0]['shape'][1]
+width = input_details[0]['shape'][2]
+
+floating_model = (input_details[0]['dtype'] == np.float32)
+
+input_mean = 127.5
+input_std = 127.5
+
+# Check output layer name to determine if this model was created with TF2 or TF1,
+# because outputs are ordered differently for TF2 and TF1 models
+outname = output_details[0]['name']
+
+if ('StatefulPartitionedCall' in outname): # This is a TF2 model
+ boxes_idx, classes_idx, scores_idx = 1, 3, 0
+else: # This is a TF1 model
+ boxes_idx, classes_idx, scores_idx = 0, 1, 2
+
+# Initialize frame rate calculation
+frame_rate_calc = 1
+freq = cv2.getTickFrequency()
+
+# Initialize video stream
+videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
+time.sleep(1)
+
+#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
+while True:
+
+ # Start timer (for calculating frame rate)
+ t1 = cv2.getTickCount()
+
+ # Grab frame from video stream
+ frame1 = videostream.read()
+
+ # Acquire frame and resize to expected shape [1xHxWx3]
+ frame = frame1.copy()
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+ frame_resized = cv2.resize(frame_rgb, (width, height))
+ input_data = np.expand_dims(frame_resized, axis=0)
+
+ # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
+ if floating_model:
+ input_data = (np.float32(input_data) - input_mean) / input_std
+
+ # Perform the actual detection by running the model with the image as input
+ interpreter.set_tensor(input_details[0]['index'],input_data)
+ interpreter.invoke()
+
+ # Retrieve detection results
+ boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
+ classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
+ scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
+
+ # Loop over all detections and draw detection box if confidence is above minimum threshold
+ for i in range(len(scores)):
+ if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
+
+ # Get bounding box coordinates and draw box
+ # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
+ ymin = int(max(1,(boxes[i][0] * imH)))
+ xmin = int(max(1,(boxes[i][1] * imW)))
+ ymax = int(min(imH,(boxes[i][2] * imH)))
+ xmax = int(min(imW,(boxes[i][3] * imW)))
+
+ cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
+
+ # Draw label
+ object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
+ label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
+ labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
+ label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
+ cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
+ cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
+
+ # Draw framerate in corner of frame
+ cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
+
+ # All the results have been drawn on the frame, so it's time to display it.
+ cv2.imshow('Object detector', frame)
+
+ # Calculate framerate
+ t2 = cv2.getTickCount()
+ time1 = (t2-t1)/freq
+ frame_rate_calc= 1/time1
+
+ # Press 'q' to quit
+ if cv2.waitKey(1) == ord('q'):
+ break
+
+# Clean up
+cv2.destroyAllWindows()
+videostream.stop()
diff --git a/celestial-mini/TFLite_detection_video.py b/celestial-mini/TFLite_detection_video.py
new file mode 100644
index 0000000000000000000000000000000000000000..f678a88a5589152699dfa0246fa4c876f5e747c6
--- /dev/null
+++ b/celestial-mini/TFLite_detection_video.py
@@ -0,0 +1,180 @@
+######## Webcam Object Detection Using Tensorflow-trained Classifier #########
+#
+# Author: Evan Juras
+# Date: 10/2/19
+# Description:
+# This program uses a TensorFlow Lite model to perform object detection on a
+# video. It draws boxes and scores around the objects of interest in each frame
+# from the video.
+#
+# This code is based off the TensorFlow Lite image classification example at:
+# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
+#
+# I added my own method of drawing boxes and labels using OpenCV.
+
+# Import packages
+import os
+import argparse
+import cv2
+import numpy as np
+import sys
+import importlib.util
+
+
+
+# Define and parse input arguments
+parser = argparse.ArgumentParser()
+parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
+ required=True)
+parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
+ default='detect.tflite')
+parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
+ default='labelmap.txt')
+parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
+ default=0.5)
+parser.add_argument('--video', help='Name of the video file',
+ default='test.mp4')
+parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
+ action='store_true')
+
+args = parser.parse_args()
+
+MODEL_NAME = args.modeldir
+GRAPH_NAME = args.graph
+LABELMAP_NAME = args.labels
+VIDEO_NAME = args.video
+min_conf_threshold = float(args.threshold)
+use_TPU = args.edgetpu
+
+# Import TensorFlow libraries
+# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
+# If using Coral Edge TPU, import the load_delegate library
+pkg = importlib.util.find_spec('tflite_runtime')
+if pkg:
+ from tflite_runtime.interpreter import Interpreter
+ if use_TPU:
+ from tflite_runtime.interpreter import load_delegate
+else:
+ from tensorflow.lite.python.interpreter import Interpreter
+ if use_TPU:
+ from tensorflow.lite.python.interpreter import load_delegate
+
+# If using Edge TPU, assign filename for Edge TPU model
+if use_TPU:
+ # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
+ if (GRAPH_NAME == 'detect.tflite'):
+ GRAPH_NAME = 'edgetpu.tflite'
+
+# Get path to current working directory
+CWD_PATH = os.getcwd()
+
+# Path to video file
+VIDEO_PATH = os.path.join(CWD_PATH,VIDEO_NAME)
+
+# Path to .tflite file, which contains the model that is used for object detection
+PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
+
+# Path to label map file
+PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
+
+# Load the label map
+with open(PATH_TO_LABELS, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+# Have to do a weird fix for label map if using the COCO "starter model" from
+# https://www.tensorflow.org/lite/models/object_detection/overview
+# First label is '???', which has to be removed.
+if labels[0] == '???':
+ del(labels[0])
+
+# Load the Tensorflow Lite model.
+# If using Edge TPU, use special load_delegate argument
+if use_TPU:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT,
+ experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
+ print(PATH_TO_CKPT)
+else:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT)
+
+interpreter.allocate_tensors()
+
+# Get model details
+input_details = interpreter.get_input_details()
+output_details = interpreter.get_output_details()
+height = input_details[0]['shape'][1]
+width = input_details[0]['shape'][2]
+
+floating_model = (input_details[0]['dtype'] == np.float32)
+
+input_mean = 127.5
+input_std = 127.5
+
+# Check output layer name to determine if this model was created with TF2 or TF1,
+# because outputs are ordered differently for TF2 and TF1 models
+outname = output_details[0]['name']
+
+if ('StatefulPartitionedCall' in outname): # This is a TF2 model
+ boxes_idx, classes_idx, scores_idx = 1, 3, 0
+else: # This is a TF1 model
+ boxes_idx, classes_idx, scores_idx = 0, 1, 2
+
+# Open video file
+video = cv2.VideoCapture(VIDEO_PATH)
+imW = video.get(cv2.CAP_PROP_FRAME_WIDTH)
+imH = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
+
+while(video.isOpened()):
+
+ # Acquire frame and resize to expected shape [1xHxWx3]
+ ret, frame = video.read()
+ if not ret:
+ print('Reached the end of the video!')
+ break
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+ frame_resized = cv2.resize(frame_rgb, (width, height))
+ input_data = np.expand_dims(frame_resized, axis=0)
+
+ # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
+ if floating_model:
+ input_data = (np.float32(input_data) - input_mean) / input_std
+
+ # Perform the actual detection by running the model with the image as input
+ interpreter.set_tensor(input_details[0]['index'],input_data)
+ interpreter.invoke()
+
+ # Retrieve detection results
+ boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
+ classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
+ scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
+
+ # Loop over all detections and draw detection box if confidence is above minimum threshold
+ for i in range(len(scores)):
+ if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
+
+ # Get bounding box coordinates and draw box
+ # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
+ ymin = int(max(1,(boxes[i][0] * imH)))
+ xmin = int(max(1,(boxes[i][1] * imW)))
+ ymax = int(min(imH,(boxes[i][2] * imH)))
+ xmax = int(min(imW,(boxes[i][3] * imW)))
+
+ cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 4)
+
+ # Draw label
+ object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
+ label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
+ labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
+ label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
+ cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
+ cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
+
+ # All the results have been drawn on the frame, so it's time to display it.
+ cv2.imshow('Object detector', frame)
+
+ # Press 'q' to quit
+ if cv2.waitKey(1) == ord('q'):
+ break
+
+# Clean up
+video.release()
+cv2.destroyAllWindows()
diff --git a/celestial-mini/TFLite_detection_webcam.py b/celestial-mini/TFLite_detection_webcam.py
new file mode 100644
index 0000000000000000000000000000000000000000..78cc5d33a96d93bda077ba19b9dfde0b6aa89830
--- /dev/null
+++ b/celestial-mini/TFLite_detection_webcam.py
@@ -0,0 +1,236 @@
+######## Webcam Object Detection Using Tensorflow-trained Classifier #########
+#
+# Author: Evan Juras
+# Date: 10/27/19
+# Description:
+# This program uses a TensorFlow Lite model to perform object detection on a live webcam
+# feed. It draws boxes and scores around the objects of interest in each frame from the
+# webcam. To improve FPS, the webcam object runs in a separate thread from the main program.
+# This script will work with either a Picamera or regular USB webcam.
+#
+# This code is based off the TensorFlow Lite image classification example at:
+# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py
+#
+# I added my own method of drawing boxes and labels using OpenCV.
+
+# Import packages
+import os
+import argparse
+import cv2
+import numpy as np
+import sys
+import time
+from threading import Thread
+import importlib.util
+
+# Define VideoStream class to handle streaming of video from webcam in separate processing thread
+# Source - Adrian Rosebrock, PyImageSearch: https://www.pyimagesearch.com/2015/12/28/increasing-raspberry-pi-fps-with-python-and-opencv/
+class VideoStream:
+ """Camera object that controls video streaming from the Picamera"""
+ def __init__(self,resolution=(640,480),framerate=30):
+ # Initialize the PiCamera and the camera image stream
+ self.stream = cv2.VideoCapture(0)
+ ret = self.stream.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))
+ ret = self.stream.set(3,resolution[0])
+ ret = self.stream.set(4,resolution[1])
+
+ # Read first frame from the stream
+ (self.grabbed, self.frame) = self.stream.read()
+
+ # Variable to control when the camera is stopped
+ self.stopped = False
+
+ def start(self):
+ # Start the thread that reads frames from the video stream
+ Thread(target=self.update,args=()).start()
+ return self
+
+ def update(self):
+ # Keep looping indefinitely until the thread is stopped
+ while True:
+ # If the camera is stopped, stop the thread
+ if self.stopped:
+ # Close camera resources
+ self.stream.release()
+ return
+
+ # Otherwise, grab the next frame from the stream
+ (self.grabbed, self.frame) = self.stream.read()
+
+ def read(self):
+ # Return the most recent frame
+ return self.frame
+
+ def stop(self):
+ # Indicate that the camera and thread should be stopped
+ self.stopped = True
+
+# Define and parse input arguments
+parser = argparse.ArgumentParser()
+parser.add_argument('--modeldir', help='Folder the .tflite file is located in',
+ required=True)
+parser.add_argument('--graph', help='Name of the .tflite file, if different than detect.tflite',
+ default='detect.tflite')
+parser.add_argument('--labels', help='Name of the labelmap file, if different than labelmap.txt',
+ default='labelmap.txt')
+parser.add_argument('--threshold', help='Minimum confidence threshold for displaying detected objects',
+ default=0.5)
+parser.add_argument('--resolution', help='Desired webcam resolution in WxH. If the webcam does not support the resolution entered, errors may occur.',
+ default='1280x720')
+parser.add_argument('--edgetpu', help='Use Coral Edge TPU Accelerator to speed up detection',
+ action='store_true')
+
+args = parser.parse_args()
+
+MODEL_NAME = args.modeldir
+GRAPH_NAME = args.graph
+LABELMAP_NAME = args.labels
+min_conf_threshold = float(args.threshold)
+resW, resH = args.resolution.split('x')
+imW, imH = int(resW), int(resH)
+use_TPU = args.edgetpu
+
+# Import TensorFlow libraries
+# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
+# If using Coral Edge TPU, import the load_delegate library
+pkg = importlib.util.find_spec('tflite_runtime')
+if pkg:
+ from tflite_runtime.interpreter import Interpreter
+ if use_TPU:
+ from tflite_runtime.interpreter import load_delegate
+else:
+ from tensorflow.lite.python.interpreter import Interpreter
+ if use_TPU:
+ from tensorflow.lite.python.interpreter import load_delegate
+
+# If using Edge TPU, assign filename for Edge TPU model
+if use_TPU:
+ # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
+ if (GRAPH_NAME == 'detect.tflite'):
+ GRAPH_NAME = 'edgetpu.tflite'
+
+# Get path to current working directory
+CWD_PATH = os.getcwd()
+
+# Path to .tflite file, which contains the model that is used for object detection
+PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
+
+# Path to label map file
+PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
+
+# Load the label map
+with open(PATH_TO_LABELS, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+# Have to do a weird fix for label map if using the COCO "starter model" from
+# https://www.tensorflow.org/lite/models/object_detection/overview
+# First label is '???', which has to be removed.
+if labels[0] == '???':
+ del(labels[0])
+
+# Load the Tensorflow Lite model.
+# If using Edge TPU, use special load_delegate argument
+if use_TPU:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT,
+ experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
+ print(PATH_TO_CKPT)
+else:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT)
+
+interpreter.allocate_tensors()
+
+# Get model details
+input_details = interpreter.get_input_details()
+output_details = interpreter.get_output_details()
+height = input_details[0]['shape'][1]
+width = input_details[0]['shape'][2]
+
+floating_model = (input_details[0]['dtype'] == np.float32)
+
+input_mean = 127.5
+input_std = 127.5
+
+# Check output layer name to determine if this model was created with TF2 or TF1,
+# because outputs are ordered differently for TF2 and TF1 models
+outname = output_details[0]['name']
+
+if ('StatefulPartitionedCall' in outname): # This is a TF2 model
+ boxes_idx, classes_idx, scores_idx = 1, 3, 0
+else: # This is a TF1 model
+ boxes_idx, classes_idx, scores_idx = 0, 1, 2
+
+# Initialize frame rate calculation
+frame_rate_calc = 1
+freq = cv2.getTickFrequency()
+
+# Initialize video stream
+videostream = VideoStream(resolution=(imW,imH),framerate=30).start()
+time.sleep(1)
+
+#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
+while True:
+
+ # Start timer (for calculating frame rate)
+ t1 = cv2.getTickCount()
+
+ # Grab frame from video stream
+ frame1 = videostream.read()
+
+ # Acquire frame and resize to expected shape [1xHxWx3]
+ frame = frame1.copy()
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+ frame_resized = cv2.resize(frame_rgb, (width, height))
+ input_data = np.expand_dims(frame_resized, axis=0)
+
+ # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
+ if floating_model:
+ input_data = (np.float32(input_data) - input_mean) / input_std
+
+ # Perform the actual detection by running the model with the image as input
+ interpreter.set_tensor(input_details[0]['index'],input_data)
+ interpreter.invoke()
+
+ # Retrieve detection results
+ boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
+ classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
+ scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
+
+ # Loop over all detections and draw detection box if confidence is above minimum threshold
+ for i in range(len(scores)):
+ if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
+
+ # Get bounding box coordinates and draw box
+ # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
+ ymin = int(max(1,(boxes[i][0] * imH)))
+ xmin = int(max(1,(boxes[i][1] * imW)))
+ ymax = int(min(imH,(boxes[i][2] * imH)))
+ xmax = int(min(imW,(boxes[i][3] * imW)))
+
+ cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
+
+ # Draw label
+ object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
+ label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'
+ labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
+ label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
+ cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
+ cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
+
+ # Draw framerate in corner of frame
+ cv2.putText(frame,'FPS: {0:.2f}'.format(frame_rate_calc),(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
+
+ # All the results have been drawn on the frame, so it's time to display it.
+ cv2.imshow('Object detector', frame)
+
+ # Calculate framerate
+ t2 = cv2.getTickCount()
+ time1 = (t2-t1)/freq
+ frame_rate_calc= 1/time1
+
+ # Press 'q' to quit
+ if cv2.waitKey(1) == ord('q'):
+ break
+
+# Clean up
+cv2.destroyAllWindows()
+videostream.stop()
diff --git a/celestial-mini/TFLite_model/detect.tflite b/celestial-mini/TFLite_model/detect.tflite
new file mode 100644
index 0000000000000000000000000000000000000000..89d0702d05ff092c546c1d2bfee51e06bf6717d5
--- /dev/null
+++ b/celestial-mini/TFLite_model/detect.tflite
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e4b118e5e4531945de2e659742c7c590f7536f8d0ed26d135abcfe83b4779d13
+size 4183312
diff --git a/celestial-mini/TFLite_model/labelmap.txt b/celestial-mini/TFLite_model/labelmap.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5a70ff82aa7b0fa7315ca591820e4cf7d2f5ad18
--- /dev/null
+++ b/celestial-mini/TFLite_model/labelmap.txt
@@ -0,0 +1,91 @@
+???
+person
+bicycle
+car
+motorcycle
+airplane
+bus
+train
+truck
+boat
+traffic light
+fire hydrant
+???
+stop sign
+parking meter
+bench
+bird
+cat
+dog
+horse
+sheep
+cow
+elephant
+bear
+zebra
+giraffe
+???
+backpack
+umbrella
+???
+???
+handbag
+tie
+suitcase
+frisbee
+skis
+snowboard
+sports ball
+kite
+baseball bat
+baseball glove
+skateboard
+surfboard
+tennis racket
+bottle
+???
+wine glass
+cup
+fork
+knife
+spoon
+bowl
+banana
+apple
+sandwich
+orange
+broccoli
+carrot
+hot dog
+pizza
+donut
+cake
+chair
+couch
+potted plant
+bed
+???
+dining table
+???
+???
+toilet
+???
+tv
+laptop
+mouse
+remote
+keyboard
+cell phone
+microwave
+oven
+toaster
+sink
+refrigerator
+???
+book
+clock
+vase
+scissors
+teddy bear
+hair drier
+toothbrush
diff --git a/celestial-mini/Train_TFLite1_Object_Detection_Model.ipynb b/celestial-mini/Train_TFLite1_Object_Detection_Model.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b5164b9174666f4dfafae6ab2d6c34653a6c5c52
--- /dev/null
+++ b/celestial-mini/Train_TFLite1_Object_Detection_Model.ipynb
@@ -0,0 +1,1028 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fF8ysCfYKgTP"
+ },
+ "source": [
+ "# TensorFlow Lite v1 Object Detection API in Colab\n",
+ "**Author:** Evan Juras, [EJ Technology Consultants](https://ejtech.io)\n",
+ "\n",
+ "**Last updated:** 10/12/22\n",
+ "\n",
+ "**GitHub:** [TensorFlow Lite Object Detection](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi)\n",
+ "\n",
+ "\n",
+ "# Introduction\n",
+ "\n",
+ "This notebook implements [The TensorFlow Object Detection Library](https://github.com/tensorflow/models/tree/master/research/object_detection) for training an SSD-MobileNet model using your own dataset. Note that this notebook uses TensorFlow 1 rather than TensorFlow 2, because TensorFlow 1 works better for quantizing SSD-MobileNet models. If you want to use TensorFlow 2, [clink this link to go to the TensorFlow 2 version of this notebook](https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb).\n",
+ "\n",
+ "*Note: This notebook is not maintained or updated as frequently as the TF2 notebook.*\n",
+ "\n",
+ "I made a YouTube video that walks through the TensorFlow 2 notebook step by step, and the process is very similar for this TensorFlow 1 notebook. Please take a look at the video if you are confused about any steps in this notebook.\n",
+ "\n",
+ "*Link to video to be added here*\n",
+ "\n",
+ "###Working with Colab\n",
+ "Simply click the play button on sections of code to execute them. As the code executes, any outputs will be displayed in a block beneath the code. Once they're done executing, a green checkmark will appear next to the section to indicate it's finished running."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l7EOtpvlLeS0"
+ },
+ "source": [
+ "# 1. Install TensorFlow Object Detection Dependencies\n",
+ "First, we'll install the TensorFlow Object Detection API in this Google Colab instance. This requires cloning the [TensorFlow models repository](https://github.com/tensorflow/models) and running a couple installation commands. Click the play button to run the following sections of code.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "QOFtpDlci50l"
+ },
+ "outputs": [],
+ "source": [
+ "# Install CUDA 10.0 (needed for TF v1.15.3)\n",
+ "!sudo apt-get update\n",
+ "!sudo apt-get install cuda-10.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "KeoP1s8gi8tL"
+ },
+ "outputs": [],
+ "source": [
+ "# Install cuDNN 7.6.0 (needed for TF v1.15.3)\n",
+ "# Download and extract cuDNN files\n",
+ "!wget https://www.dropbox.com/s/k6xqrje655q4aty/cudnn-10.0-linux-x64-v7.6.0.64.tgz\n",
+ "!tar -xf cudnn-10.0-linux-x64-v7.6.0.64.tgz\n",
+ "\n",
+ "# Copy cuDNN libraries to appropriate folders\n",
+ "!sudo cp cuda/include/cudnn*.h /usr/local/cuda-10.0/include \n",
+ "!sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64 \n",
+ "!sudo chmod a+r /usr/local/cuda-10.0/include/cudnn*.h /usr/local/cuda-10.0/lib64/libcudnn*\n",
+ "!sudo cp -P cuda/lib64/libcudnn* /usr/lib64-nvidia"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ypWGYdPlLRUN"
+ },
+ "outputs": [],
+ "source": [
+ "# Clone the tensorflow models repository from GitHub\n",
+ "!git clone --depth 1 https://github.com/tensorflow/models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6QPmVBSlLTzM"
+ },
+ "outputs": [],
+ "source": [
+ "# Install the Object Detection API\n",
+ "%%bash\n",
+ "cd models/research/\n",
+ "protoc object_detection/protos/*.proto --python_out=.\n",
+ "cp object_detection/packages/tf1/setup.py .\n",
+ "python -m pip install --use-feature=2020-resolver ."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kH3fwht2w17a"
+ },
+ "source": [
+ "If you get any errors running the following code block, you can ignore them!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "kDT0ctlBlXTw"
+ },
+ "outputs": [],
+ "source": [
+ "# Install TensorFlow\n",
+ "!pip install tensorflow-gpu==1.15.3\n",
+ "\n",
+ "# A couple other packages have to be downgraded to work with the TF1 API\n",
+ "!pip install numpy==1.17.4\n",
+ "!pip install pycocotools==2.0.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "wh_HPMOqWH9z"
+ },
+ "outputs": [],
+ "source": [
+ "# Run Model Bulider Test file, just to verify everything's working properly\n",
+ "!python /content/models/research/object_detection/builders/model_builder_tf1_test.py\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IPbU4I7aL9Fl"
+ },
+ "source": [
+ "# 2. Upload Image Dataset and Prepare Training Data\n",
+ "\n",
+ "In this section, we'll upload our training images and use TFRecord generation scripts to prepare the training data for TensorFlow. we'll upload our images, split them into train, validation, and test folders, and then run scripts for creating TFRecords from our data.\n",
+ "\n",
+ "First, on your local PC, zip all your training images and XML files into a single folder called \"images.zip\". The files should be directly inside the zip folder (wihout any additional nested folders) as shown below:\n",
+ "```\n",
+ "images.zip\n",
+ "-- img1.jpg\n",
+ "-- img1.xml\n",
+ "-- img2.jpg\n",
+ "-- img2.xml\n",
+ "...\n",
+ "```\n",
+ "There are two options for moving the image files to this Colab instance: you can upload them directly, or you can copy them from your Google Drive. If you have a slow internet connection or more than 50MB worth of images, I recommend using Google Drive. Otherwise, you can just upload them through Colab. \n",
+ "\n",
+ "#### Option 1. Upload through Google Colab\n",
+ "Upload the \"images.zip\" file to the Google Colab instance by clicking the \"Files\" icon on the left hand side of the browser, and then the \"Upload to session storage\" icon. Select the zip folder to upload it.\n",
+ "\n",
+ "\n",
+ "\n",
+ "Once it's uploaded, we'll run a few commands to unzip it and set up our image directories. These directories are created in the /content folder in this instance's filesystem. You can browse the filesystem by clicking the \"Files\" icon on the left.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Wpi58u0-V_jN"
+ },
+ "source": [
+ "#### Option 2. Copy from Google Drive\n",
+ "You can also upload your images to your personal Google Drive, mount the drive on this Colab session, and copy them over to the Colab filesystem. This option works well if you want to upload the images beforehand so you don't have to wait for them to upload each time you restart this Colab.\n",
+ "\n",
+ "First, upload the \"images.zip\" file to your Google Drive, and make note of the folder you uploaded them to. Replace `MyDrive/path/to/images.zip` with the path to your zip file. (For example, I uploaded the zip file to folder called \"cat-toys1\", so I would use `MyDrive/cat-toys1/images.zip` for the path). Then, run the following block of code to mount your Google Drive to this Colab session and copy the folder to this filesystem."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "tLgAPsQsfTLs"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/gdrive')\n",
+ "\n",
+ "!cp /content/gdrive/MyDrive/path/to/images.zip /content"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DLIu4GdjxgWu"
+ },
+ "source": [
+ "#### Option 3. Use my bird, squirrel, raccoon dataset\n",
+ "I've uploaded a dataset containing 800 labeled images of birds, squirrels, and raccoons. You can use this dataset if you just want to work through the process of training a TFLite model on custom data. Run the following code block to download the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "bH6huqCBxhFb"
+ },
+ "outputs": [],
+ "source": [
+ "!wget -O /content/images.zip https://www.dropbox.com/s/en33x280e4z3wbt/BSR2.zip?dl=0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "U-eXEQICx2ug"
+ },
+ "source": [
+ "## Split images into train, validation, and test folders\n",
+ "At this point, whether you used Option 1, 2, or 3, you should be able to click the folder icon on the left and see your \"images.zip\" file in the list of files. Now that the dataset is uploaded, let's unzip it and create some folders to hold the images. These directories are created in the /content folder in this instance's filesystem. You can browse the filesystem by clicking the \"Files\" icon on the left."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3n-E68MJbU2I"
+ },
+ "outputs": [],
+ "source": [
+ "!mkdir /content/images\n",
+ "!unzip -q images.zip -d /content/images/all\n",
+ "!mkdir /content/images/train; mkdir /content/images/validation; mkdir /content/images/test\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "n-6RIcrwbQMh"
+ },
+ "source": [
+ "Next, we'll split the images into train, validation, and test sets. Here's what each set is used for:\n",
+ "\n",
+ "\n",
+ "* **Train**: These are the actual images used to train the model. In each step of training, a batch of images from the \"train\" set is passed into the neural network. The network predicts classes and locations of objects in the images. The training algorithm calculates the loss (i.e. how \"wrong\" the predictions were) and adjusts the network weights through backpropagation.\n",
+ "\n",
+ "\n",
+ "* **Validation**: Images from the \"validation\" set can be used by the training algorithm to check the progress of training and adjust hyperparameters (like learning rate). Unlike \"train\" images, these images are only used periodically during training (i.e. once every certain number of training steps).\n",
+ "\n",
+ "\n",
+ "* **Test**: These images are never seen by the neural network during training. They are intended to be used by a human to perform final testing of the model to check how accurate the model is.\n",
+ "\n",
+ "I wrote a Python script to randomly move 80% of the images to the \"train\" folder, 10% to the \"validation\" folder, and 10% to the \"test\" folder. Click play on the following block to download the script and execute it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_8V38Uk2yBUZ"
+ },
+ "outputs": [],
+ "source": [
+ "!wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/train_val_test_split.py\n",
+ "!python train_val_test_split.py"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "p--K1PJXEgNo"
+ },
+ "source": [
+ "## Create TFRecords\n",
+ "Finally, we need to convert the images into a data file format called TFRecords, which are used by TensorFlow for training. We'll use Python scripts to automatically convert the data into TFRecord format. Before running them, we need to define a labelmap for our classes. \n",
+ "\n",
+ "The code section below will create a \"labelmap.txt\" file that contains a list of classes. Replace the `class1`, `class2`, `class3` text with your own classes (for example, `bird`, `squirrel`, `raccoon`), adding a new line for each class. Then, click play to execute the code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_DE_r4MKY7ln"
+ },
+ "outputs": [],
+ "source": [
+ "### This creates a a \"labelmap.txt\" file with a list of classes the object detection model will detect.\n",
+ "%%bash\n",
+ "cat <> /content/labelmap.txt\n",
+ "class1\n",
+ "class2\n",
+ "class3\n",
+ "EOF"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5pa2VYhTIT1l"
+ },
+ "source": [
+ "Download and run the data conversion scripts by clicking play on the following two sections of code. They will create TFRecord files for the train and validation datasets, as well as a `labelmap.pbtxt` file which contains the labelmap in a different format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "v3KHhgrpHved"
+ },
+ "outputs": [],
+ "source": [
+ "# Download data conversion scripts\n",
+ "! wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/create_csv.py\n",
+ "! wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/create_tfrecord.py"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5tdDbTmHYwu-"
+ },
+ "outputs": [],
+ "source": [
+ "# Create CSV data files and TFRecord files\n",
+ "!python3 create_csv.py\n",
+ "!python3 create_tfrecord.py --csv_input=images/train_labels.csv --labelmap=labelmap.txt --image_dir=images/train --output_path=train.tfrecord\n",
+ "!python3 create_tfrecord.py --csv_input=images/validation_labels.csv --labelmap=labelmap.txt --image_dir=images/validation --output_path=val.tfrecord"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1XcSBULRzNZ_"
+ },
+ "source": [
+ "We'll store the locations of the TFRecord and labelmap files as variables so we can reference them later in this Colab session."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "YUd2wtfrqedy"
+ },
+ "outputs": [],
+ "source": [
+ "train_record_fname = '/content/train.tfrecord'\n",
+ "val_record_fname = '/content/val.tfrecord'\n",
+ "label_map_pbtxt_fname = '/content/labelmap.pbtxt'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "I2MAcgJ53STW"
+ },
+ "source": [
+ "# 3. Set Up Training Configuration \n",
+ "\n",
+ "In this section, we'll set up an SSD-MobileNet model training configuration. We'll specifiy which pretrained TensorFlow model we want to use from the [TensorFlow 1 Object Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md). Each model also comes with a configuration file that points to file locations, sets training parameters (such as learning rate and total number of training steps), and more. We'll modify the configuration file for our custom training job.\n",
+ "\n",
+ "The first section of code lists out some models availabe in the TF1 Model Zoo and defines some filenames that will be used later to download the model and config file. This makes it easy to manage which model you're using and to add other models to the list later. \n",
+ "\n",
+ "Set the \"chosen_model\" variable to match the name of the model you'd like to train with. It's currently set to use the \"ssd-mobilenet-v1-quantized\" model. Then, click play on the next three sections to specify and download the pretrained model file and configuration file.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gN0EUEa3e5Un"
+ },
+ "outputs": [],
+ "source": [
+ "# Change the \"chosen_model\" variable to select one of the models listed below (from the TF1 object detection zoo)\n",
+ "\n",
+ "chosen_model = 'ssd-mobilenet-v2-quantized'\n",
+ "\n",
+ "MODELS_CONFIG = {\n",
+ " 'ssd-mobilenet-v1-quantized': {\n",
+ " 'model_name': 'ssd_mobilenet_v1_quantized_coco',\n",
+ " 'base_pipeline_file': 'ssd_mobilenet_v1_quantized_300x300_coco14_sync.config',\n",
+ " 'pretrained_checkpoint': 'ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz',\n",
+ " },\n",
+ " 'ssd-mobilenet-v2-quantized': {\n",
+ " 'model_name': 'ssd_mobilenet_v2_quantized_coco',\n",
+ " 'base_pipeline_file': 'ssd_mobilenet_v2_quantized_300x300_coco.config',\n",
+ " 'pretrained_checkpoint': 'ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz',\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "model_name = MODELS_CONFIG[chosen_model]['model_name']\n",
+ "pretrained_checkpoint = MODELS_CONFIG[chosen_model]['pretrained_checkpoint']\n",
+ "base_pipeline_file = MODELS_CONFIG[chosen_model]['base_pipeline_file']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "kG4TmJUVrYQ7"
+ },
+ "outputs": [],
+ "source": [
+ "# Create \"mymodel\" folder for holding pre-trained weights and configuration files\n",
+ "%mkdir /content/models/mymodel/\n",
+ "%cd /content/models/mymodel/\n",
+ "\n",
+ "# Download pretrained model file from TensorFlow Model Zoo\n",
+ "import tarfile\n",
+ "download_tar = 'http://download.tensorflow.org/models/object_detection/' + pretrained_checkpoint\n",
+ "\n",
+ "!wget {download_tar}\n",
+ "tar = tarfile.open(pretrained_checkpoint)\n",
+ "tar.extractall()\n",
+ "tar.close()\n",
+ "\n",
+ "# Download base training configuration file\n",
+ "download_config = 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/samples/configs/' + base_pipeline_file\n",
+ "!wget {download_config}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3jOYxQ20wXVr"
+ },
+ "source": [
+ "Now that we've downloaded our model and config file, we need to modify the configuration file with some high-level training parameters. The following variables are used to control training steps:\n",
+ "\n",
+ "* **num_steps**: The total amount of steps to use for training the model. A good number to start with is 40,000 steps. You can use more steps if you notice the loss metrics are still decreasing by the time training finishes. The more steps, the longer the training. Training can also be stopped early if loss flattens out before reaching the specified number of steps.\n",
+ "* **batch_size**: The number of images to use per training step. A larger batch size allows a model to be trained in fewer steps, but the size is limited by the GPU memory available for training. For the GPUs used in Colab instances, 16 is typically a good number.\n",
+ "\n",
+ "* **quant_delay_steps**: (Only used for quantization-aware training) After this many steps, the training algorithm will insert \"fake\" quantization nodes in the network to simulate the effects of quantization. A good starting point is half the total number of training steps. More information is available [here](https://neuralet.com/article/quantization-of-tensorflow-object-detection-api-models/).\n",
+ "\n",
+ "Other training information, like the location of the pretrained model file, the config file, and total number of classes are also assigned in this step.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "IKiXz33QwXyP"
+ },
+ "outputs": [],
+ "source": [
+ "# Set training parameters for the model\n",
+ "num_steps = 30000\n",
+ "batch_size = 16\n",
+ "quant_delay_steps = 15000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "b_ki9jOqxn7V"
+ },
+ "outputs": [],
+ "source": [
+ "# Set file locations and get number of classes for config file\n",
+ "pipeline_fname = '/content/models/mymodel/' + base_pipeline_file\n",
+ "fine_tune_checkpoint = '/content/models/mymodel/' + model_name + '/model.ckpt'\n",
+ "\n",
+ "def get_num_classes(pbtxt_fname):\n",
+ " from object_detection.utils import label_map_util\n",
+ " label_map = label_map_util.load_labelmap(pbtxt_fname)\n",
+ " categories = label_map_util.convert_label_map_to_categories(\n",
+ " label_map, max_num_classes=90, use_display_name=True)\n",
+ " category_index = label_map_util.create_category_index(categories)\n",
+ " return len(category_index.keys())\n",
+ "num_classes = get_num_classes(label_map_pbtxt_fname)\n",
+ "print('Total classes:', num_classes)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xxpOXUTx0E-n"
+ },
+ "source": [
+ "Finally, we'll rewrite the config file to use the training parameters we just specified. The following section of code will automatically replace the necessary parameters in the downloaded .config file and save it as our custom \"pipeline_file.config\" file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5eA5ht3_yukT"
+ },
+ "outputs": [],
+ "source": [
+ "# Write custom configuration file by slotting our dataset, model checkpoint, and training parameters into the base pipeline file\n",
+ "# TO DO: change that description\n",
+ "\n",
+ "import re\n",
+ "\n",
+ "%cd /content/models/mymodel\n",
+ "print('writing custom configuration file')\n",
+ "\n",
+ "with open(pipeline_fname) as f:\n",
+ " s = f.read()\n",
+ "with open('pipeline_file.config', 'w') as f:\n",
+ " \n",
+ " # fine_tune_checkpoint\n",
+ " s = re.sub('fine_tune_checkpoint: \".*?\"',\n",
+ " 'fine_tune_checkpoint: \"{}\"'.format(fine_tune_checkpoint), s)\n",
+ " \n",
+ " # tfrecord files train and test.\n",
+ " s = re.sub(\n",
+ " '(input_path: \".*?)(PATH_TO_BE_CONFIGURED/mscoco_train.*?\")', 'input_path: \"{}\"'.format(train_record_fname), s)\n",
+ " s = re.sub(\n",
+ " '(input_path: \".*?)(PATH_TO_BE_CONFIGURED/mscoco_val)(.*?\")', 'input_path: \"{}\"'.format(val_record_fname), s)\n",
+ "\n",
+ " # label_map_path\n",
+ " s = re.sub(\n",
+ " 'label_map_path: \".*?\"', 'label_map_path: \"{}\"'.format(label_map_pbtxt_fname), s)\n",
+ "\n",
+ " # Set training steps, num_steps\n",
+ " s = re.sub('num_steps: [0-9]+',\n",
+ " 'num_steps: {}'.format(num_steps), s)\n",
+ "\n",
+ " # Set training batch_size.\n",
+ " s = re.sub('batch_size: [0-9]+',\n",
+ " 'batch_size: {}'.format(batch_size), s)\n",
+ " \n",
+ " # Set number of classes num_classes.\n",
+ " s = re.sub('num_classes: [0-9]+',\n",
+ " 'num_classes: {}'.format(num_classes), s)\n",
+ " \n",
+ " # Fine-tune checkpoint type\n",
+ " s = re.sub(\n",
+ " 'fine_tune_checkpoint_type: \"classification\"', 'fine_tune_checkpoint_type: \"{}\"'.format('detection'), s)\n",
+ " \n",
+ " # Quantization delay steps\n",
+ " s = re.sub(\n",
+ " 'delay: 48000', 'delay: {}'.format(quant_delay_steps), s)\n",
+ " \n",
+ " f.write(s)\n",
+ "\n",
+ "%cd /content\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HEsOLOMHzBqF"
+ },
+ "outputs": [],
+ "source": [
+ "# Display the custom configuration file's contents\n",
+ "!cat /content/models/mymodel/pipeline_file.config"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GMlaN3rs3zLe"
+ },
+ "outputs": [],
+ "source": [
+ "# Set the path to the custom config file, and the directory to store training checkpoints in\n",
+ "pipeline_file = '/content/models/mymodel/pipeline_file.config'\n",
+ "model_dir = '/content/training/'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bLe247WqxPHw"
+ },
+ "source": [
+ "The next block modifies the training script to save checkpoints once every 1000 training steps. Change `num_eval_steps` if you'd like to save checkpoints more or less frequently."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "oi_wWkJOnc-D"
+ },
+ "outputs": [],
+ "source": [
+ "# Modify model_main.py to set evaluation and checkpoint interval\n",
+ "num_eval_steps = 1000\n",
+ "%cd /content/models/research/object_detection\n",
+ "print('Modifying model_main.py')\n",
+ "\n",
+ "\n",
+ "with open('model_main.py', 'r') as f:\n",
+ " data = f.read()\n",
+ "\n",
+ " # Set eval steps\n",
+ " data = data.replace('config = tf_estimator.RunConfig(model_dir=FLAGS.model_dir)', \n",
+ " 'config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir, save_checkpoints_steps={})'.format(num_eval_steps))\n",
+ " \n",
+ " f.close()\n",
+ "\n",
+ "!rm /content/models/research/object_detection/model_main.py\n",
+ "\n",
+ "with open('model_main.py', 'w') as f:\n",
+ " f.write(data)\n",
+ "\n",
+ "%cd /content"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "7wD0tda5oqIR"
+ },
+ "outputs": [],
+ "source": [
+ "!cat /content/models/research/object_detection/model_main.py"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "XxPj_QV43qD5"
+ },
+ "source": [
+ "# Train Custom TF1 Object Detector\n",
+ "\n",
+ "We're ready to train our object detection model! Model training is performed using the \"model_main_tf2.py\" script from the TF Object Detection API. We've already defined all the parameters and arguments used by `model_main_tf2.py` in previous sections of this Colab. Training will take anywhere from 2 to 6 hours, depending on the model, batch size, and number of training steps. Just click Play on the following block to begin training!\n",
+ "\n",
+ "*Note: It takes a few minutes for the program to display any training messages, because it only displays logs once every 100 steps. If it seems like nothing is happening, just wait a couple minutes.*\n",
+ "\n",
+ "*Another note: If you want to stop training early, just click on the code block while it's running and press Ctrl+M to interrupt execution. You might have to press Ctrl+M a couple times and also click the Stop button or right-click and select \"Interrupt Execution\".*\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3mSabQWqvC2R"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install tensorboard==2.8.0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "TI9iCCxoNlAL"
+ },
+ "outputs": [],
+ "source": [
+ "%load_ext tensorboard\n",
+ "%tensorboard --logdir '/content/training'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "tQTfZChVzzpZ"
+ },
+ "outputs": [],
+ "source": [
+ "!python /content/models/research/object_detection/model_main.py \\\n",
+ " --pipeline_config_path={pipeline_file} \\\n",
+ " --model_dir={model_dir} \\\n",
+ " --alsologtostderr \\\n",
+ " --num_train_steps={num_steps}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4Vk2146Ogil3"
+ },
+ "source": [
+ "# 5. Export Trained Inference Graph\n",
+ "In the left sidebar, click the folder icon to view the files in the `/content` folder. Click the `training` folder to expand it, and find the checkpoint with the highest number (e.g. `model.ckpt-29000`). Replace \"XXXX\" in the code section below with that number."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "YnSEZIzl4M10"
+ },
+ "outputs": [],
+ "source": [
+ "!mkdir /content/fine_tuned_model_lite\n",
+ "output_directory = '/content/fine_tuned_model_lite'\n",
+ "\n",
+ "# Replace \"XXXX\" in the line below with the latest checkpoint in the /content/training directory\n",
+ "last_model_path = '/content/training/model.ckpt-30000'\n",
+ "print(last_model_path)\n",
+ "\n",
+ "!python /content/models/research/object_detection/export_tflite_ssd_graph.py \\\n",
+ " --trained_checkpoint_prefix {last_model_path} \\\n",
+ " --output_directory {output_directory} \\\n",
+ " --pipeline_config_path {pipeline_file}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IwoGtqdejiez"
+ },
+ "source": [
+ "# 6. Convert Model to TensorFlow Lite Format"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "PW7TpzLmhTbW"
+ },
+ "outputs": [],
+ "source": [
+ "localpb = '/content/fine_tuned_model_lite/tflite_graph.pb'\n",
+ "tflite_file = '/content/fine_tuned_model_lite/detect.tflite'\n",
+ "\n",
+ "# Can use Netron app to determine the input size: https://www.electronjs.org/apps/netron \n",
+ "input_size = [1, 300, 300, 3]\n",
+ "input_shape = {\"normalized_input_image_tensor\" : input_size}\n",
+ "\n",
+ "print(input_shape)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Ec8LzJLbr-SR"
+ },
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "\n",
+ "converter = tf.lite.TFLiteConverter.from_frozen_graph(\n",
+ " localpb, \n",
+ " [\"normalized_input_image_tensor\"],\n",
+ " [\"TFLite_Detection_PostProcess\",\"TFLite_Detection_PostProcess:1\",\"TFLite_Detection_PostProcess:2\",\"TFLite_Detection_PostProcess:3\"],\n",
+ " input_shape\n",
+ ")\n",
+ "\n",
+ "converter.allow_custom_ops = True\n",
+ "converter.inference_type = tf.uint8 # Tell converter to create a quantized model\n",
+ "converter.quantized_input_stats = {'normalized_input_image_tensor': (128, 128)}\n",
+ "\n",
+ "tflite_model = converter.convert()\n",
+ "\n",
+ "open(tflite_file,'wb').write(tflite_model)\n",
+ "\n",
+ "# Test that the conversion was successful - if any errors are generated, something went wrong!\n",
+ "interpreter = tf.lite.Interpreter(model_content=tflite_model)\n",
+ "interpreter.allocate_tensors()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "awZMQGVqMpVL"
+ },
+ "outputs": [],
+ "source": [
+ "!cp /content/labelmap.txt /content/fine_tuned_model_lite\n",
+ "!cp /content/labelmap.pbtxt /content/fine_tuned_model_lite\n",
+ "!zip -r /content/fine_tuned_model_lite.zip /content/fine_tuned_model_lite"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "w41-KMn7KV-T"
+ },
+ "source": [
+ "Now, you can download the \"detect.tflite\" and \"labelmap.txt\" files and move them to your Raspberry Pi."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bQyjuMAt1WEL"
+ },
+ "source": [
+ "# (Optional) Test out TensorFlow Lite Model\n",
+ "Now that we've got our custom detection model trained and converted to TFLite format, let's try it out on some images. We'll use the images from our \"test\" folder. These images weren't seen at all by the model during training, so they'll give a faithful depiction of how accurate the model actually is.\n",
+ "\n",
+ "The following code is used to import the TensorFlow Lite runtime, load it into memory, run inferencing on the test images, and display the results."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "v1IBMfrD2GEQ"
+ },
+ "outputs": [],
+ "source": [
+ "# Copied from my TFLite repository, and stripped unneeded stuff out\n",
+ "\n",
+ "# Import packages\n",
+ "import os\n",
+ "import cv2\n",
+ "import numpy as np\n",
+ "import sys\n",
+ "import glob\n",
+ "import importlib.util\n",
+ "from tensorflow.lite.python.interpreter import Interpreter\n",
+ "\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "PATH_TO_IMAGES='/content/images/test'\n",
+ "PATH_TO_MODEL='/content/fine_tuned_model_lite/detect.tflite'\n",
+ "PATH_TO_LABELS='/content/labelmap.txt'\n",
+ "IMAGES_TO_TEST = 10\n",
+ "min_conf_threshold=0.5\n",
+ "\n",
+ "# Grab all image filenames\n",
+ "images = glob.glob(PATH_TO_IMAGES + '/*.jpg')\n",
+ "images = images + glob.glob(PATH_TO_IMAGES + '/*.JPG')\n",
+ "images = images + glob.glob(PATH_TO_IMAGES + '/*.png')\n",
+ "\n",
+ "\n",
+ "# Load the label map into memory\n",
+ "with open(PATH_TO_LABELS, 'r') as f:\n",
+ " labels = [line.strip() for line in f.readlines()]\n",
+ "\n",
+ "\n",
+ "# Load the Tensorflow Lite model into memory\n",
+ "interpreter = Interpreter(model_path=PATH_TO_MODEL)\n",
+ "interpreter.allocate_tensors()\n",
+ "\n",
+ "# Get model details\n",
+ "input_details = interpreter.get_input_details()\n",
+ "output_details = interpreter.get_output_details()\n",
+ "height = input_details[0]['shape'][1]\n",
+ "width = input_details[0]['shape'][2]\n",
+ "\n",
+ "floating_model = (input_details[0]['dtype'] == np.float32)\n",
+ "\n",
+ "input_mean = 127.5\n",
+ "input_std = 127.5\n",
+ "\n",
+ "# Loop over every image and perform detection\n",
+ "for image_path in images[0:IMAGES_TO_TEST]:\n",
+ "\n",
+ " # Load image and resize to expected shape [1xHxWx3]\n",
+ " image = cv2.imread(image_path)\n",
+ " image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
+ " imH, imW, _ = image.shape \n",
+ " image_resized = cv2.resize(image_rgb, (width, height))\n",
+ " input_data = np.expand_dims(image_resized, axis=0)\n",
+ "\n",
+ " # Normalize pixel values if using a floating model (i.e. if model is non-quantized)\n",
+ " if floating_model:\n",
+ " input_data = (np.float32(input_data) - input_mean) / input_std\n",
+ "\n",
+ " # Perform the actual detection by running the model with the image as input\n",
+ " interpreter.set_tensor(input_details[0]['index'],input_data)\n",
+ " interpreter.invoke()\n",
+ "\n",
+ " # Retrieve detection results\n",
+ " boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Bounding box coordinates of detected objects\n",
+ " classes = interpreter.get_tensor(output_details[1]['index'])[0] # Class index of detected objects\n",
+ " scores = interpreter.get_tensor(output_details[2]['index'])[0] # Confidence of detected objects\n",
+ " #num = interpreter.get_tensor(output_details[3]['index']) # Total number of detected objects (inaccurate and not needed)\n",
+ "\n",
+ " # Loop over all detections and draw detection box if confidence is above minimum threshold\n",
+ " for i in range(len(scores)):\n",
+ " if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):\n",
+ "\n",
+ " # Get bounding box coordinates and draw box\n",
+ " # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()\n",
+ " ymin = int(max(1,(boxes[i][0] * imH)))\n",
+ " xmin = int(max(1,(boxes[i][1] * imW)))\n",
+ " ymax = int(min(imH,(boxes[i][2] * imH)))\n",
+ " xmax = int(min(imW,(boxes[i][3] * imW)))\n",
+ " \n",
+ " cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)\n",
+ "\n",
+ " # Draw label\n",
+ " object_name = labels[int(classes[i])] # Look up object name from \"labels\" array using class index\n",
+ " label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'\n",
+ " labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size\n",
+ " label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window\n",
+ " cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in\n",
+ " cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text\n",
+ "\n",
+ " # All the results have been drawn on the image, now display the image\n",
+ " image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n",
+ " plt.figure(figsize=(12,16))\n",
+ " plt.imshow(image)\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "XFsuasvxFHo8"
+ },
+ "source": [
+ "## (Optional) Compile Model for Edge TPU\n",
+ "\n",
+ "Now that the model has been converted to TFLite and quantized, we can compile it to run on Edge TPU devices like the [Coral USB Accelerator](https://coral.ai/products/accelerator/) or the [Coral Dev Board](https://coral.ai/products/dev-board/). This allows the model to run much faster! For more information on the Edge TPU, see my [TensorFlow Lite repository on GitHub](fine_tuned_model_lite).\n",
+ "\n",
+ "First, install the Edge TPU Compiler package inside this Colab instance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mUd_SNC0JSq0"
+ },
+ "outputs": [],
+ "source": [
+ "! curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -\n",
+ "! echo \"deb https://packages.cloud.google.com/apt coral-edgetpu-stable main\" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list\n",
+ "! sudo apt-get update\n",
+ "! sudo apt-get install edgetpu-compiler\t"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "usfmdtSiJuuC"
+ },
+ "source": [
+ "Next, compile the model. (If your model has a different filename than \"detect.tflite\", use that instead.)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "WTboEAWuJ0ku"
+ },
+ "outputs": [],
+ "source": [
+ "%cd /content/fine_tuned_model_lite\n",
+ "!edgetpu_compiler detect.tflite\n",
+ "!mv detect_edgetpu.tflite edgetpu.tflite"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "oqGy2FgzKomN"
+ },
+ "source": [
+ "The compiled model will be output in the /content folder as \"detect_edgetpu.tflite\". It gets renamed to \"edgetpu.tflite\" to be consistent with my code. Download this file using the command below. (If your model has a different filename than \"edgetpu.tflite\", use that instead.)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GgvZC_y5ESYq"
+ },
+ "outputs": [],
+ "source": [
+ "%cd /content\n",
+ "!cp labelmap.txt fine_tuned_model_lite\n",
+ "!cp labelmap.pbtxt fine_tuned_model_lite\n",
+ "!zip -r fine_tuned_model_lite.zip fine_tuned_model_lite"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "AmjqvKuuK8ZR"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import files\n",
+ "\n",
+ "files.download('edgetpu.tflite')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ptwpBBEWLfuJ"
+ },
+ "source": [
+ "Now you're all set to use the Coral model! For instructions on how to run an object detection model on the Raspberry Pi using the Coral USB Acclerator, please see my video, [\"How to Use the Coral USB Accelerator with the Raspberry Pi\"](https://www.youtube.com/watch?v=qJMwNHQNOVU)."
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "collapsed_sections": [],
+ "provenance": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file
diff --git a/celestial-mini/Train_TFLite2_Object_Detction_Model.ipynb b/celestial-mini/Train_TFLite2_Object_Detction_Model.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5bcc3d025e60270fb07fb0e88024ca7dda4de44a
--- /dev/null
+++ b/celestial-mini/Train_TFLite2_Object_Detction_Model.ipynb
@@ -0,0 +1,1757 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fF8ysCfYKgTP"
+ },
+ "source": [
+ "# TensorFlow Lite Object Detection API in Colab\n",
+ "**Author:** Evan Juras, [EJ Technology Consultants](https://ejtech.io)\n",
+ "\n",
+ "**Last updated:** 2/13/25\n",
+ "\n",
+ "**GitHub:** [TensorFlow Lite Object Detection](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi)\n",
+ "\n",
+ "# Introduction\n",
+ "\n",
+ "This notebook uses [the TensorFlow 2 Object Detection API](https://github.com/tensorflow/models/tree/master/research/object_detection) to train an SSD-MobileNet model or EfficientDet model with a custom dataset and convert it to TensorFlow Lite format. By working through this Colab, you'll be able to create and download a TFLite model that you can run on your PC, an Android phone, or an edge device like the Raspberry Pi.\n",
+ "\n",
+ "> **WARNING:** Google deprecated the TensorFlow Object Detection API over two years ago. For the sake of legacy code, I've kept this training notebook on life support through various hacks and band-aid fixes, and it is prone to stop working at any point. **I will not be providing further support for this video or training notebook.**\n",
+ "\n",
+ "> I highly recommend using the newer PyTorch-based Ultralytics YOLO models for object detection. They perform better and they're easier to work with. See my video tutorial on how to train YOLO detection models here: [How to Train YOLO Object Detection Models in Google Colab](https://youtu.be/r0RspiLG260)\n",
+ "\n",
+ "\n",
+ " \n",
+ "Custom SSD-MobileNet-FPNLite model in action! \n",
+ "
\n",
+ "\n",
+ "I also made a YouTube video that walks through this guide step by step. I use a coin detection model as an example for the video. I recommend following along with the video while working through this notebook.\n",
+ "\n",
+ "\n",
+ " \n",
+ "Click here to go to the video! \n",
+ "
\n",
+ "\n",
+ "**Important note: This notebook will be continuously updated to make sure it works with newer versions of TensorFlow. If you see any differences between the YouTube video and this notebook, always follow the notebook!**\n",
+ "\n",
+ "### Working in Colab\n",
+ "Colab provides a virtual machine in your browser complete with a Linux OS, filesystem, Python environment, and best of all, a free GPU. It comes with most TensorFlow backend requirements (like CUDA and cuDNN) pre-installed. Simply click the play button on sections of code in this notebook to execute them on the virtual machine.\n",
+ "\n",
+ "> *Note: Make sure you're using a GPU-equipped machine by going to \"Runtime\" -> \"Change runtime type\" in the top menu bar, and then selecting \"GPU\" from the Hardware accelerator dropdown.*\n",
+ "\n",
+ "This Colab notebook uses TensorFlow 2. If you'd like to use TensorFlow 1, please see my [TF1 Colab notebook](https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite1_Object_Detection_Model.ipynb).\n",
+ "\n",
+ "### Navigation\n",
+ "This is a long notebook! Each step of the training process has its own section. Click the arrow next to the heading for each section to expand it. You can use the table of contents in the left sidebar to jump from section to section."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Fallback Runtime\n",
+ "\n",
+ "**IMPORTANT NOTE as of February 13, 2025:** Colab recently upgraded its base version of Python from 3.10 to 3.11, which broke compatibility with this notebook. For now, we can use the \"fallback runtime\". Please do the following:\n",
+ "\n",
+ "1. Initialize the Notebook by clicking \"Connect\" in the top right corner\n",
+ "2. In the top menu bar, go to Tools -> Command Palette. Search for \"fallback runtime\" and select \"Use fallback runtime version\".\n",
+ "3. Continue working through the notebook as normal.\n",
+ "\n",
+ ""
+ ],
+ "metadata": {
+ "id": "OpveOOw5P6DG"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 1. Gather and Label Training Images"
+ ],
+ "metadata": {
+ "id": "4VAvZo8qE4u5"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ag0qD4XiBDcz"
+ },
+ "source": [
+ "Before we start training, we need to gather and label images that will be used for training the object detection model. A good starting point for a proof-of-concept model is 200 images. The training images should have random objects in the image along with the desired objects, and should have a variety of backgrounds and lighting conditions.\n",
+ "\n",
+ "Watch the YouTube video below for instructions and tips on how to gather and label images for training an object detection model.\n",
+ "\n",
+ "\n",
+ " \n",
+ "Watch this video to learn how to capture and label images. \n",
+ "
\n",
+ "\n",
+ "When you've finished gathering and labeling images, you should have a folder full of images and corresponding .xml data annotation file for each image. An example of a labeled image and the image folder for my coin detector model are shown below.\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "#2. Install TensorFlow Object Detection Dependencies"
+ ],
+ "metadata": {
+ "id": "sxb8_h-QFErO"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l7EOtpvlLeS0"
+ },
+ "source": [
+ "First, we'll install the TensorFlow Object Detection API in this Google Colab instance. This requires cloning the [TensorFlow models repository](https://github.com/tensorflow/models) and running a couple installation commands. Click the play button to run the following sections of code.\n",
+ "\n",
+ "The latest version of TensorFlow this Colab has been verified to work with is TF v2.8.0.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ypWGYdPlLRUN"
+ },
+ "outputs": [],
+ "source": [
+ "# Clone the tensorflow models repository from GitHub\n",
+ "!pip uninstall Cython -y # Temporary fix for \"No module named 'object_detection'\" error\n",
+ "!git clone --depth 1 https://github.com/tensorflow/models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6QPmVBSlLTzM"
+ },
+ "outputs": [],
+ "source": [
+ "# Copy setup files into models/research folder\n",
+ "%%bash\n",
+ "cd models/research/\n",
+ "protoc object_detection/protos/*.proto --python_out=.\n",
+ "#cp object_detection/packages/tf2/setup.py ."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Modify setup.py file to install the tf-models-official repository targeted at TF v2.8.0\n",
+ "import re\n",
+ "with open('/content/models/research/object_detection/packages/tf2/setup.py') as f:\n",
+ " s = f.read()\n",
+ "\n",
+ "with open('/content/models/research/setup.py', 'w') as f:\n",
+ " # Set fine_tune_checkpoint path\n",
+ " s = re.sub('tf-models-official>=2.5.1',\n",
+ " 'tf-models-official==2.8.0', s)\n",
+ " f.write(s)"
+ ],
+ "metadata": {
+ "id": "NRBnuCKjM4Bd"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "When the following code block runs, a window may appear asking to restart the session.\n",
+ "\n",
+ "**MAKE SURE THE CODE BLOCK FINISHES EXECUTING BEFORE CLICKING \"RESTART SESSION\".**"
+ ],
+ "metadata": {
+ "id": "YvzjdFaNR7bN"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "OLDnCkLLwLr6"
+ },
+ "outputs": [],
+ "source": [
+ "# Install the Object Detection API (NOTE: This block takes about 10 minutes to finish executing)\n",
+ "\n",
+ "# Need to do a temporary fix with PyYAML because Colab isn't able to install PyYAML v5.4.1\n",
+ "!pip install pyyaml==5.3\n",
+ "!pip install /content/models/research/\n",
+ "\n",
+ "# Need to downgrade to TF v2.8.0 due to Colab compatibility bug with TF v2.10 (as of 10/03/22)\n",
+ "!pip install tensorflow==2.8.0\n",
+ "!pip install tensorflow_io==0.23.1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Install CUDA version 11.0 (to maintain compatibility with TF v2.8.0)\n",
+ "!wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin\n",
+ "!mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600\n",
+ "!wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda-repo-ubuntu1804-11-0-local_11.0.2-450.51.05-1_amd64.deb\n",
+ "!dpkg -i cuda-repo-ubuntu1804-11-0-local_11.0.2-450.51.05-1_amd64.deb\n",
+ "!apt-key add /var/cuda-repo-ubuntu1804-11-0-local/7fa2af80.pub\n",
+ "!apt-get update && sudo apt-get install cuda-toolkit-11-0\n",
+ "!export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH"
+ ],
+ "metadata": {
+ "id": "dlc6mZZlH0yg"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "6V7TrfUos-9E"
+ },
+ "source": [
+ "You may get warnings or errors related to package dependencies in the previous code block, but you can ignore them for now.\n",
+ "\n",
+ "Let's test our installation by running `model_builder_tf2_test.py` to make sure everything is working as expected. Run the following code block and confirm that it finishes without errors. If you get errors, try Googling them or checking the FAQ at the end of this Colab."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Set protoc and protobuf to correct versions\n",
+ "!sudo apt-get remove -y protobuf-compiler\n",
+ "!pip install 'protobuf<=3.20.1' --force-reinstall\n",
+ "!wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.1/protoc-3.20.1-linux-x86_64.zip\n",
+ "!unzip protoc-3.20.1-linux-x86_64.zip -d protoc3\n",
+ "!sudo mv protoc3/bin/* /usr/local/bin/\n",
+ "!sudo mv protoc3/include/* /usr/local/include"
+ ],
+ "metadata": {
+ "id": "Osks__H4TWzg"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "wh_HPMOqWH9z"
+ },
+ "outputs": [],
+ "source": [
+ "# Run Model Bulider Test file, just to verify everything's working properly\n",
+ "!python /content/models/research/object_detection/builders/model_builder_tf2_test.py\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 3. Upload Image Dataset and Prepare Training Data"
+ ],
+ "metadata": {
+ "id": "eydREUsMGUUR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "mSZVCxE4nSVI"
+ },
+ "source": [
+ "In this section, we'll upload our data and prepare it for training with TensorFlow. We'll upload our images, split them into train, validation, and test folders, and then run scripts for creating TFRecords from our data.\n",
+ "\n",
+ "First, on your local PC, zip all your training images and XML files into a single folder called \"images.zip\". The files should be directly inside the zip folder, or in a nested folder as shown below:\n",
+ "```\n",
+ "images.zip\n",
+ "-- images\n",
+ " -- img1.jpg\n",
+ " -- img1.xml\n",
+ " -- img2.jpg\n",
+ " -- img2.xml\n",
+ " ...\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### 3.1 Upload images\n",
+ "There are three options for moving the image files to this Colab instance."
+ ],
+ "metadata": {
+ "id": "LE1MtX4HGQA4"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Option 1. Upload through Google Colab**\n",
+ "\n",
+ "Upload the \"images.zip\" file to the Google Colab instance by clicking the \"Files\" icon on the left hand side of the browser, and then the \"Upload to session storage\" icon. Select the zip folder to upload it.\n",
+ "\n",
+ ""
+ ],
+ "metadata": {
+ "id": "sFSJoDEnJotN"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Option 2. Copy from Google Drive**\n",
+ "\n",
+ "You can also upload your images to your personal Google Drive, mount the drive on this Colab session, and copy them over to the Colab filesystem. This option works well if you want to upload the images beforehand so you don't have to wait for them to upload each time you restart this Colab. If you have more than 50MB worth of images, I recommend using this option.\n",
+ "\n",
+ "First, upload the \"images.zip\" file to your Google Drive, and make note of the folder you uploaded them to. Replace `MyDrive/path/to/images.zip` with the path to your zip file. (For example, I uploaded the zip file to folder called \"change-counter1\", so I would use `MyDrive/change-counter1/images.zip` for the path). Then, run the following block of code to mount your Google Drive to this Colab session and copy the folder to this filesystem."
+ ],
+ "metadata": {
+ "id": "hGsPlloAGIXB"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "tLgAPsQsfTLs"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/gdrive')\n",
+ "\n",
+ "!cp /content/gdrive/MyDrive/path/to/images.zip /content"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Option 3. Use coin detection dataset**\n",
+ "\n",
+ "If you don't have a dataset and just want to try training a model, you can download my coin image dataset to use as an example. I've uploaded a dataset containing 750 labeled images of pennies, nickels, dimes, and quarters. Run the following code block to download the dataset."
+ ],
+ "metadata": {
+ "id": "9xAJMKwpFilm"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!wget -O /content/images.zip https://www.dropbox.com/s/gk57ec3v8dfuwcp/CoinPics_11NOV22.zip?dl=0 # United States coin images"
+ ],
+ "metadata": {
+ "id": "suu_xPVZIEcH"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CHjOhoSGYwT7"
+ },
+ "source": [
+ "## 3.2 Split images into train, validation, and test folders\n",
+ "At this point, whether you used Option 1, 2, or 3, you should be able to click the folder icon on the left and see your \"images.zip\" file in the list of files. Now that the dataset is uploaded, let's unzip it and create some folders to hold the images. These directories are created in the /content folder in this instance's filesystem. You can browse the filesystem by clicking the \"Files\" icon on the left."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mGvoHH-unSVO"
+ },
+ "outputs": [],
+ "source": [
+ "!mkdir /content/images\n",
+ "!unzip -q images.zip -d /content/images/all\n",
+ "!mkdir /content/images/train; mkdir /content/images/validation; mkdir /content/images/test"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "n-6RIcrwbQMh"
+ },
+ "source": [
+ "Next, we'll split the images into train, validation, and test sets. Here's what each set is used for:\n",
+ "\n",
+ "\n",
+ "\n",
+ "* **Train**: These are the actual images used to train the model. In each step of training, a batch of images from the \"train\" set is passed into the neural network. The network predicts classes and locations of objects in the images. The training algorithm calculates the loss (i.e. how \"wrong\" the predictions were) and adjusts the network weights through backpropagation.\n",
+ "\n",
+ "\n",
+ "* **Validation**: Images from the \"validation\" set can be used by the training algorithm to check the progress of training and adjust hyperparameters (like learning rate). Unlike \"train\" images, these images are only used periodically during training (i.e. once every certain number of training steps).\n",
+ "\n",
+ "\n",
+ "* **Test**: These images are never seen by the neural network during training. They are intended to be used by a human to perform final testing of the model to check how accurate the model is.\n",
+ "\n",
+ "I wrote a Python script to randomly move 80% of the images to the \"train\" folder, 10% to the \"validation\" folder, and 10% to the \"test\" folder. Click play on the following block to download the script and execute it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/train_val_test_split.py\n",
+ "!python train_val_test_split.py"
+ ],
+ "metadata": {
+ "id": "PfuZpmdBLjh-"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "p--K1PJXEgNo"
+ },
+ "source": [
+ "## 3.3 Create Labelmap and TFRecords\n",
+ "Finally, we need to create a labelmap for the detector and convert the images into a data file format called TFRecords, which are used by TensorFlow for training. We'll use Python scripts to automatically convert the data into TFRecord format. Before running them, we need to define a labelmap for our classes.\n",
+ "\n",
+ "The code section below will create a \"labelmap.txt\" file that contains a list of classes. Replace the `class1`, `class2`, `class3` text with your own classes (for example, `penny`, `nickel`, `dime`, `quarter`), adding a new line for each class. Then, click play to execute the code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "_DE_r4MKY7ln"
+ },
+ "outputs": [],
+ "source": [
+ "### This creates a a \"labelmap.txt\" file with a list of classes the object detection model will detect.\n",
+ "%%bash\n",
+ "cat <> /content/labelmap.txt\n",
+ "class1\n",
+ "class2\n",
+ "class3\n",
+ "EOF"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5pa2VYhTIT1l"
+ },
+ "source": [
+ "Download and run the data conversion scripts from the [GitHub repository](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi) by clicking play on the following three sections of code. They will create TFRecord files for the train and validation datasets, as well as a `labelmap.pbtxt` file which contains the labelmap in a different format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Download data conversion scripts\n",
+ "! wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/create_csv.py\n",
+ "! wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/create_tfrecord.py"
+ ],
+ "metadata": {
+ "id": "laZZE0TlEeUF"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5tdDbTmHYwu-"
+ },
+ "outputs": [],
+ "source": [
+ "# Create CSV data files and TFRecord files\n",
+ "!python3 create_csv.py\n",
+ "!python3 create_tfrecord.py --csv_input=images/train_labels.csv --labelmap=labelmap.txt --image_dir=images/train --output_path=train.tfrecord\n",
+ "!python3 create_tfrecord.py --csv_input=images/validation_labels.csv --labelmap=labelmap.txt --image_dir=images/validation --output_path=val.tfrecord"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RNyv_YyDXwMs"
+ },
+ "source": [
+ "We'll store the locations of the TFRecord and labelmap files as variables so we can reference them later in this Colab session."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "YUd2wtfrqedy"
+ },
+ "outputs": [],
+ "source": [
+ "train_record_fname = '/content/train.tfrecord'\n",
+ "val_record_fname = '/content/val.tfrecord'\n",
+ "label_map_pbtxt_fname = '/content/labelmap.pbtxt'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 4. Set Up Training Configuration"
+ ],
+ "metadata": {
+ "id": "eGEUZYAMEZ6f"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "I2MAcgJ53STW"
+ },
+ "source": [
+ "In this section, we'll set up the model and training configuration. We'll specifiy which pretrained TensorFlow model we want to use from the [TensorFlow 2 Object Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md). Each model also comes with a configuration file that points to file locations, sets training parameters (such as learning rate and total number of training steps), and more. We'll modify the configuration file for our custom training job.\n",
+ "\n",
+ "The first section of code lists out some models availabe in the TF2 Model Zoo and defines some filenames that will be used later to download the model and config file. This makes it easy to manage which model you're using and to add other models to the list later.\n",
+ "\n",
+ "Set the \"chosen_model\" variable to match the name of the model you'd like to train with. It's currently set to use the popular \"ssd-mobilenet-v2\" model. Click play on the next block once the chosen model has been set.\n",
+ "\n",
+ "Not sure which model to pick? [Check out my blog post comparing each model's speed and accuracy.](https://ejtech.io/learn/tflite-object-detection-model-comparison)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gN0EUEa3e5Un"
+ },
+ "outputs": [],
+ "source": [
+ "# Change the chosen_model variable to deploy different models available in the TF2 object detection zoo\n",
+ "chosen_model = 'ssd-mobilenet-v2-fpnlite-320'\n",
+ "\n",
+ "MODELS_CONFIG = {\n",
+ " 'ssd-mobilenet-v2': {\n",
+ " 'model_name': 'ssd_mobilenet_v2_320x320_coco17_tpu-8',\n",
+ " 'base_pipeline_file': 'ssd_mobilenet_v2_320x320_coco17_tpu-8.config',\n",
+ " 'pretrained_checkpoint': 'ssd_mobilenet_v2_320x320_coco17_tpu-8.tar.gz',\n",
+ " },\n",
+ " 'efficientdet-d0': {\n",
+ " 'model_name': 'efficientdet_d0_coco17_tpu-32',\n",
+ " 'base_pipeline_file': 'ssd_efficientdet_d0_512x512_coco17_tpu-8.config',\n",
+ " 'pretrained_checkpoint': 'efficientdet_d0_coco17_tpu-32.tar.gz',\n",
+ " },\n",
+ " 'ssd-mobilenet-v2-fpnlite-320': {\n",
+ " 'model_name': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8',\n",
+ " 'base_pipeline_file': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.config',\n",
+ " 'pretrained_checkpoint': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz',\n",
+ " },\n",
+ " # The centernet model isn't working as of 9/10/22\n",
+ " #'centernet-mobilenet-v2': {\n",
+ " # 'model_name': 'centernet_mobilenetv2fpn_512x512_coco17_od',\n",
+ " # 'base_pipeline_file': 'pipeline.config',\n",
+ " # 'pretrained_checkpoint': 'centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz',\n",
+ " #}\n",
+ "}\n",
+ "\n",
+ "model_name = MODELS_CONFIG[chosen_model]['model_name']\n",
+ "pretrained_checkpoint = MODELS_CONFIG[chosen_model]['pretrained_checkpoint']\n",
+ "base_pipeline_file = MODELS_CONFIG[chosen_model]['base_pipeline_file']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Download the pretrained model file and configuration file by clicking Play on the following section."
+ ],
+ "metadata": {
+ "id": "JMG3EEPqPggV"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "kG4TmJUVrYQ7"
+ },
+ "outputs": [],
+ "source": [
+ "# Create \"mymodel\" folder for holding pre-trained weights and configuration files\n",
+ "%mkdir /content/models/mymodel/\n",
+ "%cd /content/models/mymodel/\n",
+ "\n",
+ "# Download pre-trained model weights\n",
+ "import tarfile\n",
+ "download_tar = 'http://download.tensorflow.org/models/object_detection/tf2/20200711/' + pretrained_checkpoint\n",
+ "!wget {download_tar}\n",
+ "tar = tarfile.open(pretrained_checkpoint)\n",
+ "tar.extractall()\n",
+ "tar.close()\n",
+ "\n",
+ "# Download training configuration file for model\n",
+ "download_config = 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/configs/tf2/' + base_pipeline_file\n",
+ "!wget {download_config}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BFAlqNrPn5y3"
+ },
+ "source": [
+ "Now that we've downloaded our model and config file, we need to modify the configuration file with some high-level training parameters. The following variables are used to control training steps:\n",
+ "\n",
+ "* **num_steps**: The total amount of steps to use for training the model. A good number to start with is 40,000 steps. You can use more steps if you notice the loss metrics are still decreasing by the time training finishes. The more steps, the longer training will take. Training can also be stopped early if loss flattens out before reaching the specified number of steps.\n",
+ "* **batch_size**: The number of images to use per training step. A larger batch size allows a model to be trained in fewer steps, but the size is limited by the GPU memory available for training. With the GPUs used in Colab instances, 16 is a good number for SSD models and 4 is good for EfficientDet models.\n",
+ "\n",
+ "Other training information, like the location of the pretrained model file, the config file, and total number of classes are also assigned in this step. To learn more about training configuration with the TensorFlow Object Detection API, read this [article from Neptune](https://neptune.ai/blog/tensorflow-object-detection-api-best-practices-to-training-evaluation-deployment)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "1lYDvJN-n69v"
+ },
+ "outputs": [],
+ "source": [
+ "# Set training parameters for the model\n",
+ "num_steps = 40000\n",
+ "\n",
+ "if chosen_model == 'efficientdet-d0':\n",
+ " batch_size = 4\n",
+ "else:\n",
+ " batch_size = 16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "b_ki9jOqxn7V"
+ },
+ "outputs": [],
+ "source": [
+ "# Set file locations and get number of classes for config file\n",
+ "pipeline_fname = '/content/models/mymodel/' + base_pipeline_file\n",
+ "fine_tune_checkpoint = '/content/models/mymodel/' + model_name + '/checkpoint/ckpt-0'\n",
+ "\n",
+ "def get_num_classes(pbtxt_fname):\n",
+ " from object_detection.utils import label_map_util\n",
+ " label_map = label_map_util.load_labelmap(pbtxt_fname)\n",
+ " categories = label_map_util.convert_label_map_to_categories(\n",
+ " label_map, max_num_classes=90, use_display_name=True)\n",
+ " category_index = label_map_util.create_category_index(categories)\n",
+ " return len(category_index.keys())\n",
+ "num_classes = get_num_classes(label_map_pbtxt_fname)\n",
+ "print('Total classes:', num_classes)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cwPyaIAXxyKu"
+ },
+ "source": [
+ "Next, we'll rewrite the config file to use the training parameters we just specified. The following section of code will automatically replace the necessary parameters in the downloaded .config file and save it as our custom \"pipeline_file.config\" file."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "5eA5ht3_yukT"
+ },
+ "outputs": [],
+ "source": [
+ "# Create custom configuration file by writing the dataset, model checkpoint, and training parameters into the base pipeline file\n",
+ "import re\n",
+ "\n",
+ "%cd /content/models/mymodel\n",
+ "print('writing custom configuration file')\n",
+ "\n",
+ "with open(pipeline_fname) as f:\n",
+ " s = f.read()\n",
+ "with open('pipeline_file.config', 'w') as f:\n",
+ "\n",
+ " # Set fine_tune_checkpoint path\n",
+ " s = re.sub('fine_tune_checkpoint: \".*?\"',\n",
+ " 'fine_tune_checkpoint: \"{}\"'.format(fine_tune_checkpoint), s)\n",
+ "\n",
+ " # Set tfrecord files for train and test datasets\n",
+ " s = re.sub(\n",
+ " '(input_path: \".*?)(PATH_TO_BE_CONFIGURED/train)(.*?\")', 'input_path: \"{}\"'.format(train_record_fname), s)\n",
+ " s = re.sub(\n",
+ " '(input_path: \".*?)(PATH_TO_BE_CONFIGURED/val)(.*?\")', 'input_path: \"{}\"'.format(val_record_fname), s)\n",
+ "\n",
+ " # Set label_map_path\n",
+ " s = re.sub(\n",
+ " 'label_map_path: \".*?\"', 'label_map_path: \"{}\"'.format(label_map_pbtxt_fname), s)\n",
+ "\n",
+ " # Set batch_size\n",
+ " s = re.sub('batch_size: [0-9]+',\n",
+ " 'batch_size: {}'.format(batch_size), s)\n",
+ "\n",
+ " # Set training steps, num_steps\n",
+ " s = re.sub('num_steps: [0-9]+',\n",
+ " 'num_steps: {}'.format(num_steps), s)\n",
+ "\n",
+ " # Set number of classes num_classes\n",
+ " s = re.sub('num_classes: [0-9]+',\n",
+ " 'num_classes: {}'.format(num_classes), s)\n",
+ "\n",
+ " # Change fine-tune checkpoint type from \"classification\" to \"detection\"\n",
+ " s = re.sub(\n",
+ " 'fine_tune_checkpoint_type: \"classification\"', 'fine_tune_checkpoint_type: \"{}\"'.format('detection'), s)\n",
+ "\n",
+ " # If using ssd-mobilenet-v2, reduce learning rate (because it's too high in the default config file)\n",
+ " if chosen_model == 'ssd-mobilenet-v2':\n",
+ " s = re.sub('learning_rate_base: .8',\n",
+ " 'learning_rate_base: .08', s)\n",
+ "\n",
+ " s = re.sub('warmup_learning_rate: 0.13333',\n",
+ " 'warmup_learning_rate: .026666', s)\n",
+ "\n",
+ " # If using efficientdet-d0, use fixed_shape_resizer instead of keep_aspect_ratio_resizer (because it isn't supported by TFLite)\n",
+ " if chosen_model == 'efficientdet-d0':\n",
+ " s = re.sub('keep_aspect_ratio_resizer', 'fixed_shape_resizer', s)\n",
+ " s = re.sub('pad_to_max_dimension: true', '', s)\n",
+ " s = re.sub('min_dimension', 'height', s)\n",
+ " s = re.sub('max_dimension', 'width', s)\n",
+ "\n",
+ " f.write(s)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GDySP7TLzdCM"
+ },
+ "source": [
+ "(Optional) If you're curious, you can display the configuration file's contents here in the browser by running the line of code below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HEsOLOMHzBqF"
+ },
+ "outputs": [],
+ "source": [
+ "# (Optional) Display the custom configuration file's contents\n",
+ "!cat /content/models/mymodel/pipeline_file.config"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "UXpnXYC908Zl"
+ },
+ "source": [
+ "Finally, let's set the locations of the configuration file and model output directory as variables so we can reference them when we call the training command."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "GMlaN3rs3zLe"
+ },
+ "outputs": [],
+ "source": [
+ "# Set the path to the custom config file and the directory to store training checkpoints in\n",
+ "pipeline_file = '/content/models/mymodel/pipeline_file.config'\n",
+ "model_dir = '/content/training/'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 5. Train Custom TFLite Detection Model"
+ ],
+ "metadata": {
+ "id": "-19zML6oEO7l"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "XxPj_QV43qD5"
+ },
+ "source": [
+ "We're ready to train our object detection model! Before we start training, let's load up a TensorBoard session to monitor training progress. Run the following section of code, and a TensorBoard session will appear in the browser. It won't show anything yet, because we haven't started training. Once training starts, come back and click the refresh button to see the model's overall loss.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "TI9iCCxoNlAL"
+ },
+ "outputs": [],
+ "source": [
+ "%load_ext tensorboard\n",
+ "%tensorboard --logdir '/content/training/train'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5cuQpPJL2pUq"
+ },
+ "source": [
+ "Model training is performed using the \"model_main_tf2.py\" script from the TF Object Detection API. Training will take anywhere from 2 to 6 hours, depending on the model, batch size, and number of training steps. We've already defined all the parameters and arguments used by `model_main_tf2.py` in previous sections of this Colab. Just click Play on the following block to begin training!\n",
+ "\n",
+ "\n",
+ "\n",
+ "> *Note: It takes a few minutes for the program to display any training messages, because it only displays logs once every 100 steps. If it seems like nothing is happening, just wait a couple minutes.*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "tQTfZChVzzpZ"
+ },
+ "outputs": [],
+ "source": [
+ "# Run training!\n",
+ "!python /content/models/research/object_detection/model_main_tf2.py \\\n",
+ " --pipeline_config_path={pipeline_file} \\\n",
+ " --model_dir={model_dir} \\\n",
+ " --alsologtostderr \\\n",
+ " --num_train_steps={num_steps} \\\n",
+ " --sample_1_of_n_eval_examples=1"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "If you want to stop training early, just click Stop a couple times or right-click on the code block and select \"Interrupt Execution\". Otherwise, training will stop by itself once it reaches the specified number of training steps.\n"
+ ],
+ "metadata": {
+ "id": "WHxbX4ZpzXIv"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 6. Convert Model to TensorFlow Lite"
+ ],
+ "metadata": {
+ "id": "kPg8oMnQDYKl"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "spQXdq8Y63pj"
+ },
+ "source": [
+ "Alright! Our model is all trained up and ready to be used for detecting objects. First, we need to export the model graph (a file that contains information about the architecture and weights) to a TensorFlow Lite-compatible format. We'll do this using the `export_tflite_graph_tf2.py` script."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "RaUU8tBlHifd"
+ },
+ "outputs": [],
+ "source": [
+ "# Make a directory to store the trained TFLite model\n",
+ "!mkdir /content/custom_model_lite\n",
+ "output_directory = '/content/custom_model_lite'\n",
+ "\n",
+ "# Path to training directory (the conversion script automatically chooses the highest checkpoint file)\n",
+ "last_model_path = '/content/training'\n",
+ "\n",
+ "!python /content/models/research/object_detection/export_tflite_graph_tf2.py \\\n",
+ " --trained_checkpoint_dir {last_model_path} \\\n",
+ " --output_directory {output_directory} \\\n",
+ " --pipeline_config_path {pipeline_file}\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z_NuapO2VROu"
+ },
+ "source": [
+ "Next, we'll take the exported graph and use the `TFLiteConverter` module to convert it to `.tflite` FlatBuffer format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "TsE_uVjlsz3u"
+ },
+ "outputs": [],
+ "source": [
+ "# Convert exported graph file into TFLite model file\n",
+ "import tensorflow as tf\n",
+ "\n",
+ "converter = tf.lite.TFLiteConverter.from_saved_model('/content/custom_model_lite/saved_model')\n",
+ "tflite_model = converter.convert()\n",
+ "\n",
+ "with open('/content/custom_model_lite/detect.tflite', 'wb') as f:\n",
+ " f.write(tflite_model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 7. Test TensorFlow Lite Model and Calculate mAP"
+ ],
+ "metadata": {
+ "id": "RDQrtQhvC3oG"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vtSmUZcxIAvt"
+ },
+ "source": [
+ "We've trained our custom model and converted it to TFLite format. But how well does it actually perform at detecting objects in images? This is where the images we set aside in the **test** folder come in. The model never saw any test images during training, so its performance on these images should be representative of how it will perform on new images from the field.\n",
+ "\n",
+ "### 7.1 Inference test images\n",
+ "The following code defines a function to run inference on test images. It loads the images, loads the model and labelmap, runs the model on each image, and displays the result. It also optionally saves detection results as text files so we can use them to calculate model mAP score.\n",
+ "\n",
+ "This code is based off the [TFLite_detection_image.py](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/TFLite_detection_image.py) script from my [TensorFlow Lite Object Detection repository on GitHub](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi); feel free to use it as a starting point for your own application."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "e4WtI8i5K96w"
+ },
+ "outputs": [],
+ "source": [
+ "# Script to run custom TFLite model on test images to detect objects\n",
+ "# Source: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/TFLite_detection_image.py\n",
+ "\n",
+ "# Import packages\n",
+ "import os\n",
+ "import cv2\n",
+ "import numpy as np\n",
+ "import sys\n",
+ "import glob\n",
+ "import random\n",
+ "import importlib.util\n",
+ "from tensorflow.lite.python.interpreter import Interpreter\n",
+ "\n",
+ "import matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "### Define function for inferencing with TFLite model and displaying results\n",
+ "\n",
+ "def tflite_detect_images(modelpath, imgpath, lblpath, min_conf=0.5, num_test_images=10, savepath='/content/results', txt_only=False):\n",
+ "\n",
+ " # Grab filenames of all images in test folder\n",
+ " images = glob.glob(imgpath + '/*.jpg') + glob.glob(imgpath + '/*.JPG') + glob.glob(imgpath + '/*.png') + glob.glob(imgpath + '/*.bmp')\n",
+ "\n",
+ " # Load the label map into memory\n",
+ " with open(lblpath, 'r') as f:\n",
+ " labels = [line.strip() for line in f.readlines()]\n",
+ "\n",
+ " # Load the Tensorflow Lite model into memory\n",
+ " interpreter = Interpreter(model_path=modelpath)\n",
+ " interpreter.allocate_tensors()\n",
+ "\n",
+ " # Get model details\n",
+ " input_details = interpreter.get_input_details()\n",
+ " output_details = interpreter.get_output_details()\n",
+ " height = input_details[0]['shape'][1]\n",
+ " width = input_details[0]['shape'][2]\n",
+ "\n",
+ " float_input = (input_details[0]['dtype'] == np.float32)\n",
+ "\n",
+ " input_mean = 127.5\n",
+ " input_std = 127.5\n",
+ "\n",
+ " # Randomly select test images\n",
+ " images_to_test = random.sample(images, num_test_images)\n",
+ "\n",
+ " # Loop over every image and perform detection\n",
+ " for image_path in images_to_test:\n",
+ "\n",
+ " # Load image and resize to expected shape [1xHxWx3]\n",
+ " image = cv2.imread(image_path)\n",
+ " image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
+ " imH, imW, _ = image.shape\n",
+ " image_resized = cv2.resize(image_rgb, (width, height))\n",
+ " input_data = np.expand_dims(image_resized, axis=0)\n",
+ "\n",
+ " # Normalize pixel values if using a floating model (i.e. if model is non-quantized)\n",
+ " if float_input:\n",
+ " input_data = (np.float32(input_data) - input_mean) / input_std\n",
+ "\n",
+ " # Perform the actual detection by running the model with the image as input\n",
+ " interpreter.set_tensor(input_details[0]['index'],input_data)\n",
+ " interpreter.invoke()\n",
+ "\n",
+ " # Retrieve detection results\n",
+ " boxes = interpreter.get_tensor(output_details[1]['index'])[0] # Bounding box coordinates of detected objects\n",
+ " classes = interpreter.get_tensor(output_details[3]['index'])[0] # Class index of detected objects\n",
+ " scores = interpreter.get_tensor(output_details[0]['index'])[0] # Confidence of detected objects\n",
+ "\n",
+ " detections = []\n",
+ "\n",
+ " # Loop over all detections and draw detection box if confidence is above minimum threshold\n",
+ " for i in range(len(scores)):\n",
+ " if ((scores[i] > min_conf) and (scores[i] <= 1.0)):\n",
+ "\n",
+ " # Get bounding box coordinates and draw box\n",
+ " # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()\n",
+ " ymin = int(max(1,(boxes[i][0] * imH)))\n",
+ " xmin = int(max(1,(boxes[i][1] * imW)))\n",
+ " ymax = int(min(imH,(boxes[i][2] * imH)))\n",
+ " xmax = int(min(imW,(boxes[i][3] * imW)))\n",
+ "\n",
+ " cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)\n",
+ "\n",
+ " # Draw label\n",
+ " object_name = labels[int(classes[i])] # Look up object name from \"labels\" array using class index\n",
+ " label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'person: 72%'\n",
+ " labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size\n",
+ " label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window\n",
+ " cv2.rectangle(image, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in\n",
+ " cv2.putText(image, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text\n",
+ "\n",
+ " detections.append([object_name, scores[i], xmin, ymin, xmax, ymax])\n",
+ "\n",
+ "\n",
+ " # All the results have been drawn on the image, now display the image\n",
+ " if txt_only == False: # \"text_only\" controls whether we want to display the image results or just save them in .txt files\n",
+ " image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n",
+ " plt.figure(figsize=(12,16))\n",
+ " plt.imshow(image)\n",
+ " plt.show()\n",
+ "\n",
+ " # Save detection results in .txt files (for calculating mAP)\n",
+ " elif txt_only == True:\n",
+ "\n",
+ " # Get filenames and paths\n",
+ " image_fn = os.path.basename(image_path)\n",
+ " base_fn, ext = os.path.splitext(image_fn)\n",
+ " txt_result_fn = base_fn +'.txt'\n",
+ " txt_savepath = os.path.join(savepath, txt_result_fn)\n",
+ "\n",
+ " # Write results to text file\n",
+ " # (Using format defined by https://github.com/Cartucho/mAP, which will make it easy to calculate mAP)\n",
+ " with open(txt_savepath,'w') as f:\n",
+ " for detection in detections:\n",
+ " f.write('%s %.4f %d %d %d %d\\n' % (detection[0], detection[1], detection[2], detection[3], detection[4], detection[5]))\n",
+ "\n",
+ " return"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The next block sets the paths to the test images and models and then runs the inferencing function. If you want to use more than 10 images, change the `images_to_test` variable. Click play to run inferencing!"
+ ],
+ "metadata": {
+ "id": "-CJI4A0f_zqz"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Set up variables for running user's model\n",
+ "PATH_TO_IMAGES='/content/images/test' # Path to test images folder\n",
+ "PATH_TO_MODEL='/content/custom_model_lite/detect.tflite' # Path to .tflite model file\n",
+ "PATH_TO_LABELS='/content/labelmap.txt' # Path to labelmap.txt file\n",
+ "min_conf_threshold=0.5 # Confidence threshold (try changing this to 0.01 if you don't see any detection results)\n",
+ "images_to_test = 10 # Number of images to run detection on\n",
+ "\n",
+ "# Run inferencing function!\n",
+ "tflite_detect_images(PATH_TO_MODEL, PATH_TO_IMAGES, PATH_TO_LABELS, min_conf_threshold, images_to_test)"
+ ],
+ "metadata": {
+ "id": "6t8CMarqBqP9"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### 7.2 Calculate mAP\n",
+ "Now we have a visual sense of how our model performs on test images, but how can we quantitatively measure its accuracy?\n",
+ "\n",
+ "One popular methord for measuring object detection model accuracy is \"mean average precision\" (mAP). Basically, the higher the mAP score, the better your model is at detecting objects in images. To learn more about mAP, read through this [article from Roboflow](https://blog.roboflow.com/mean-average-precision/).\n",
+ "\n",
+ "We'll use the mAP calculator tool at https://github.com/Cartucho/mAP to determine our model's mAP score. First, we need to clone the repository and remove its existing example data. We'll also download a script I wrote for interfacing with the calculator."
+ ],
+ "metadata": {
+ "id": "N_ckqeWqBF0P"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "%%bash\n",
+ "git clone https://github.com/Cartucho/mAP /content/mAP\n",
+ "cd /content/mAP\n",
+ "rm input/detection-results/*\n",
+ "rm input/ground-truth/*\n",
+ "rm input/images-optional/*\n",
+ "wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/util_scripts/calculate_map_cartucho.py"
+ ],
+ "metadata": {
+ "id": "JlWarXEZDUqS"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Next, we'll copy the images and annotation data from the **test** folder to the appropriate folders inside the cloned repository. These will be used as the \"ground truth data\" that our model's detection results will be compared to.\n"
+ ],
+ "metadata": {
+ "id": "qn22nGGqH5T6"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!cp /content/images/test/* /content/mAP/input/images-optional # Copy images and xml files\n",
+ "!mv /content/mAP/input/images-optional/*.xml /content/mAP/input/ground-truth/ # Move xml files to the appropriate folder"
+ ],
+ "metadata": {
+ "id": "5szFfVxwI3wT"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The calculator tool expects annotation data in a format that's different from the Pascal VOC .xml file format we're using. Fortunately, it provides an easy script, `convert_gt_xml.py`, for converting to the expected .txt format.\n",
+ "\n"
+ ],
+ "metadata": {
+ "id": "u6aro817DGzx"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!python /content/mAP/scripts/extra/convert_gt_xml.py"
+ ],
+ "metadata": {
+ "id": "qdjtOUDnK2AA"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Okay, we've set up the ground truth data, but now we need actual detection results from our model. The detection results will be compared to the ground truth data to calculate the model's accuracy in mAP.\n",
+ "\n",
+ "The inference function we defined in Step 7.1 can be used to generate detection data for all the images in the **test** folder. We'll use it the same as before, except this time we'll tell it to save detection results into the `detection-results` folder.\n",
+ "\n",
+ "Click Play to run the following code block!"
+ ],
+ "metadata": {
+ "id": "mnIUacAlLP0B"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Set up variables for running inference, this time to get detection results saved as .txt files\n",
+ "PATH_TO_IMAGES='/content/images/test' # Path to test images folder\n",
+ "PATH_TO_MODEL='/content/custom_model_lite/detect.tflite' # Path to .tflite model file\n",
+ "PATH_TO_LABELS='/content/labelmap.txt' # Path to labelmap.txt file\n",
+ "PATH_TO_RESULTS='/content/mAP/input/detection-results' # Folder to save detection results in\n",
+ "min_conf_threshold=0.1 # Confidence threshold\n",
+ "\n",
+ "# Use all the images in the test folder\n",
+ "image_list = glob.glob(PATH_TO_IMAGES + '/*.jpg') + glob.glob(PATH_TO_IMAGES + '/*.JPG') + glob.glob(PATH_TO_IMAGES + '/*.png') + glob.glob(PATH_TO_IMAGES + '/*.bmp')\n",
+ "images_to_test = min(500, len(image_list)) # If there are more than 500 images in the folder, just use 500\n",
+ "\n",
+ "# Tell function to just save results and not display images\n",
+ "txt_only = True\n",
+ "\n",
+ "# Run inferencing function!\n",
+ "print('Starting inference on %d images...' % images_to_test)\n",
+ "tflite_detect_images(PATH_TO_MODEL, PATH_TO_IMAGES, PATH_TO_LABELS, min_conf_threshold, images_to_test, PATH_TO_RESULTS, txt_only)\n",
+ "print('Finished inferencing!')"
+ ],
+ "metadata": {
+ "id": "szzHFAhsMNFF"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Finally, let's calculate mAP! One popular style for reporting mAP is the COCO metric for mAP @ 0.50:0.95. Basically, this means that mAP is calculated at several IoU thresholds between 0.50 and 0.95, and then the result from each threshold is averaged to get a final mAP score. [Learn more here!](https://blog.roboflow.com/mean-average-precision/)\n",
+ "\n",
+ "I wrote a script to run the calculator tool at each IoU threshold, average the results, and report the final accuracy score. It reports mAP for each class and overall mAP. Click Play on the following two blocks to calculate mAP!"
+ ],
+ "metadata": {
+ "id": "e_QRnTqNPX4z"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "%cd /content/mAP\n",
+ "!python calculate_map_cartucho.py --labels=/content/labelmap.txt"
+ ],
+ "metadata": {
+ "id": "3DkjpIBARTQ7"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The score reported at the end is your model's overall mAP score. Ideally, it should be above 50% (0.50). If it isn't, you can increase your model's accuracy by adding more images to your dataset. See my [dataset video](https://www.youtube.com/watch?v=v0ssiOY6cfg) for tips on how to capture good training images and improve accuracy."
+ ],
+ "metadata": {
+ "id": "R9HPoOBVKvxU"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 8. Deploy TensorFlow Lite Model"
+ ],
+ "metadata": {
+ "id": "5i40ve0SCLaE"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "phT8vvzriqQp"
+ },
+ "source": [
+ "Now that your custom model has been trained and converted to TFLite format, it's ready to be downloaded and deployed in an application! This section shows how to download the model and provides links to instructions for deploying it on the Raspberry Pi, your PC, or other edge devices."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 8.1. Download TFLite model\n",
+ "\n",
+ "Run the two following cells to copy the labelmap files into the model folder, compress it into a zip folder, and then download it. The zip folder contains the `detect.tflite` model and `labelmap.txt` labelmap files that are needed to run the model in your application."
+ ],
+ "metadata": {
+ "id": "zq3L2IoP4VHp"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "awZMQGVqMpVL"
+ },
+ "outputs": [],
+ "source": [
+ "# Move labelmap and pipeline config files into TFLite model folder and zip it up\n",
+ "!cp /content/labelmap.txt /content/custom_model_lite\n",
+ "!cp /content/labelmap.pbtxt /content/custom_model_lite\n",
+ "!cp /content/models/mymodel/pipeline_file.config /content/custom_model_lite\n",
+ "\n",
+ "%cd /content\n",
+ "!zip -r custom_model_lite.zip custom_model_lite"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "FVPfAGbNPV56"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import files\n",
+ "\n",
+ "files.download('/content/custom_model_lite.zip')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The `custom_model_lite.zip` file containing the model will download into your Downloads folder. It's ready to be deployed on your device!"
+ ],
+ "metadata": {
+ "id": "9Kb3ZBsMq95l"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GSJ2wgGCixy2"
+ },
+ "source": [
+ "## 8.2. Deploy model\n",
+ "TensorFlow Lite models can run on a wide variety of hardware, including PCs, embedded systems, and phones. This section provides instructions showing how to deploy your TFLite model on various devices.\n",
+ "\n",
+ "### 8.2.1. Deploy on Raspberry Pi\n",
+ "TFLite models are great for running on the Raspberry Pi, because they require less processing power than regular TensorFlow vision models. The Pi can run TFLite models in near real-time.\n",
+ "\n",
+ "To run your new model on the Raspberry Pi, you'll have to install TensorFlow Lite and prepare a Python environment for your application. I provide step-by-step instructions on how to set up TFLite on the Pi in my video, [How To Run TensorFlow Lite on Raspberry Pi for Object Detection](https://youtu.be/aimSGOAUI8Y).\n",
+ "\n",
+ "[](https://www.youtube.com/watch?v=aimSGOAUI8Y)\n",
+ "\n",
+ "Once you've completed all the steps in the video, move the `custom_model_lite.zip` file downloaded from this Colab session over to your Raspberry Pi into the `~/tflite1` folder. Move into the folder and unzip it by issuing:\n",
+ "\n",
+ "```\n",
+ "cd ~/tflite1\n",
+ "unzip custom_model_lite.zip\n",
+ "```\n",
+ "\n",
+ "Then, run the image, video, or webcam TFLite detection program with the `--modeldir=fine_tuned_model_lite` argument. For example, to run the webcam detection program, issue:\n",
+ "\n",
+ "```\n",
+ "python TFLite_detection_webcam.py --modeldir=custom_model_lite\n",
+ "```\n",
+ "\n",
+ "A window will appear showing a live feed from your webcam with boxes drawn around detected objects in each frame.\n",
+ "\n",
+ "### 8.2.2. Deploy on Windows, Linux, or macOS\n",
+ "Follow the instructions linked below to quickly set up your Windows, Linux, or macOS computer to run TFLite models. It only takes a few minutes! Running a model on your PC is good for quickly testing your model with a webcam. However, keep in mind that the TFLite Runtime is optimized for lower-power processors, and it won't utilize the full capability of your PC's processor.\n",
+ "\n",
+ "Here are links to the deployment guides for Windows, Linux, and macOS:\n",
+ "* [How to Run TensorFlow Lite Models on Windows](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/deploy_guides/Windows_TFLite_Guide.md)\n",
+ "* *link to Linux guide to be added (but really it's the same as Raspberry Pi)*\n",
+ "* [How to Run TensorFlow Lite Models on macOS](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/deploy_guides/MacOS_TFLite_Guide.md)\n",
+ "\n",
+ "### 8.2.3. Deploy on other Linux-based edge devices\n",
+ "Instructions to be added! ๐ง\n",
+ "\n",
+ "### 8.2.4. Deploy on Android\n",
+ "Instructions to be added! ๐ค\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# 9. (Optional) Post-Training Quantization"
+ ],
+ "metadata": {
+ "id": "WoptFnAhCSrR"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "I54paUm8dUCr"
+ },
+ "source": [
+ "Want to make your TFLite model run even faster? Quantize it! Quantizating a model converts its weights from 32-bit floating-point values to 8-bit integer values. This allows the quantized model to run faster and occupy less memory without too much reduction in accuracy.\n",
+ "\n",
+ "> Note: If you observe an obvious decrease in detection accuracy when quantizing your model with TF2, I recommend using TensorFlow 1 to quantize your model instead. TF1 supports quantization-aware training, which helps improve the accuracy of quantized models. The ssd-mobilenet-v2-quantized model from the TF1 Model Zoo has fast and accurate performance when trained with a custom dataset. Visit my [TFLite v1 Colab notebook](https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite1_Object_Detection_Model.ipynb) for step-by-step instructions on how to train and quantize a model with TensorFlow 1."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 9.1. Quantize model\n",
+ "We'll use the \"TFLiteConverter\" module to perform [post-training quantization](https://www.tensorflow.org/lite/performance/post_training_quantization) on the model. To quantize the model, we need to provide a representative dataset, which is a set of images that represent what the model will see when deployed in the field. First, we'll create a list of images to include in the representative dataset (we'll just use the images in the `train` folder).\n"
+ ],
+ "metadata": {
+ "id": "VTyqlXFTJ0Uv"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "XSNZtfj_k3NP"
+ },
+ "outputs": [],
+ "source": [
+ "# Get list of all images in train directory\n",
+ "image_path = '/content/images/train'\n",
+ "\n",
+ "jpg_file_list = glob.glob(image_path + '/*.jpg')\n",
+ "JPG_file_list = glob.glob(image_path + '/*.JPG')\n",
+ "png_file_list = glob.glob(image_path + '/*.png')\n",
+ "bmp_file_list = glob.glob(image_path + '/*.bmp')\n",
+ "\n",
+ "quant_image_list = jpg_file_list + JPG_file_list + png_file_list + bmp_file_list"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Next, we'll define a function to yield images from our representative dataset. Refer to [TensorFlow's sample quantization code](https://colab.research.google.com/github/google-coral/tutorials/blob/master/retrain_classification_ptq_tf2.ipynb#scrollTo=kRDabW_u1wnv) to get a better understanding of what this is doing!"
+ ],
+ "metadata": {
+ "id": "cqbH1VlEgiuy"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ORzx0XRErSLV"
+ },
+ "outputs": [],
+ "source": [
+ "# A generator that provides a representative dataset\n",
+ "# Code modified from https://colab.research.google.com/github/google-coral/tutorials/blob/master/retrain_classification_ptq_tf2.ipynb\n",
+ "\n",
+ "# First, get input details for model so we know how to preprocess images\n",
+ "interpreter = Interpreter(model_path=PATH_TO_MODEL) # PATH_TO_MODEL is defined in Step 7 above\n",
+ "interpreter.allocate_tensors()\n",
+ "input_details = interpreter.get_input_details()\n",
+ "output_details = interpreter.get_output_details()\n",
+ "height = input_details[0]['shape'][1]\n",
+ "width = input_details[0]['shape'][2]\n",
+ "\n",
+ "import random\n",
+ "\n",
+ "def representative_data_gen():\n",
+ " dataset_list = quant_image_list\n",
+ " quant_num = 300\n",
+ " for i in range(quant_num):\n",
+ " pick_me = random.choice(dataset_list)\n",
+ " image = tf.io.read_file(pick_me)\n",
+ "\n",
+ " if pick_me.endswith('.jpg') or pick_me.endswith('.JPG'):\n",
+ " image = tf.io.decode_jpeg(image, channels=3)\n",
+ " elif pick_me.endswith('.png'):\n",
+ " image = tf.io.decode_png(image, channels=3)\n",
+ " elif pick_me.endswith('.bmp'):\n",
+ " image = tf.io.decode_bmp(image, channels=3)\n",
+ "\n",
+ " image = tf.image.resize(image, [width, height]) # TO DO: Replace 300s with an automatic way of reading network input size\n",
+ " image = tf.cast(image / 255., tf.float32)\n",
+ " image = tf.expand_dims(image, 0)\n",
+ " yield [image]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wqtu98mzebEj"
+ },
+ "source": [
+ "Finally, we'll initialize the TFLiteConverter module, point it at the TFLite graph we generated in Step 6, and provide it with the representative dataset generator function we created in the previous code block. We'll configure the converter to quantize the model's weight values to INT8 format."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "Ox0bGDWds_Ce"
+ },
+ "outputs": [],
+ "source": [
+ "# Initialize converter module\n",
+ "converter = tf.lite.TFLiteConverter.from_saved_model('/content/custom_model_lite/saved_model')\n",
+ "\n",
+ "# This enables quantization\n",
+ "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
+ "# This sets the representative dataset for quantization\n",
+ "converter.representative_dataset = representative_data_gen\n",
+ "# This ensures that if any ops can't be quantized, the converter throws an error\n",
+ "converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.TFLITE_BUILTINS_INT8]\n",
+ "# For full integer quantization, though supported types defaults to int8 only, we explicitly declare it for clarity.\n",
+ "converter.target_spec.supported_types = [tf.int8]\n",
+ "# These set the input tensors to uint8 and output tensors to float32\n",
+ "converter.inference_input_type = tf.uint8\n",
+ "converter.inference_output_type = tf.float32\n",
+ "tflite_model = converter.convert()\n",
+ "\n",
+ "with open('/content/custom_model_lite/detect_quant.tflite', 'wb') as f:\n",
+ " f.write(tflite_model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 9.2. Test quantized model\n",
+ "The model has been quantized and exported as `detect_quant.tflite`. Let's test it out! We'll re-use the function from Section 7 for running the model on test images and display the results, except this time we'll point it at the quantized model.\n",
+ "\n",
+ "Click Play on the code block below to test the `detect_quant.tflite` model."
+ ],
+ "metadata": {
+ "id": "dYVVlv5QUUZF"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Set up parameters for inferencing function (using detect_quant.tflite instead of detect.tflite)\n",
+ "PATH_TO_IMAGES='/content/images/test' #Path to test images folder\n",
+ "PATH_TO_MODEL='/content/custom_model_lite/detect_quant.tflite' #Path to .tflite model file\n",
+ "PATH_TO_LABELS='/content/labelmap.txt' #Path to labelmap.txt file\n",
+ "min_conf_threshold=0.5 #Confidence threshold (try changing this to 0.01 if you don't see any detection results)\n",
+ "images_to_test = 10 #Number of images to run detection on\n",
+ "\n",
+ "# Run inferencing function!\n",
+ "tflite_detect_images(PATH_TO_MODEL, PATH_TO_IMAGES, PATH_TO_LABELS, min_conf_threshold, images_to_test)"
+ ],
+ "metadata": {
+ "id": "6OoirJuOtdOG"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "If your quantized model isn't performing very well, try using my TensorFlow Lite 1 notebook *(link to be added)* to train a SSD-MobileNet model with your dataset. In my experience, the `ssd-mobilenet-v2-quantized` model from the [TF1 Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md) has the best quantized performance out of any other TensorFlow Lite model.\n",
+ "\n",
+ "TFLite models created with TensorFlow 1 are still compatible with the TensorFlow Lite 2 runtime, so your TFLite 1 model will still work with my [TensorFlow setup guide for the Raspberry Pi](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md)."
+ ],
+ "metadata": {
+ "id": "cKo7ZtfOyoxG"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## 9.3 Calculate quantized model mAP\n",
+ "\n",
+ "Let's calculate the quantize model's mAP using the calculator tool we set up in Step 7.2. We just need to perform inference with our quantized model (`detect_quant.tflite`) to get a new set of detection results.\n",
+ "\n",
+ "Run the following block to run inference on the test images and save the detection results."
+ ],
+ "metadata": {
+ "id": "vWdVxs6LUjbR"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# Need to remove existing detection results first\n",
+ "!rm /content/mAP/input/detection-results/*\n",
+ "\n",
+ "# Set up variables for running inference, this time to get detection results saved as .txt files\n",
+ "PATH_TO_IMAGES='/content/images/test' # Path to test images folder\n",
+ "PATH_TO_MODEL='/content/custom_model_lite/detect_quant.tflite' # Path to quantized .tflite model file\n",
+ "PATH_TO_LABELS='/content/labelmap.txt' # Path to labelmap.txt file\n",
+ "PATH_TO_RESULTS='/content/mAP/input/detection-results' # Folder to save detection results in\n",
+ "min_conf_threshold=0.1 # Confidence threshold\n",
+ "\n",
+ "# Use all the images in the test folder\n",
+ "image_list = glob.glob(PATH_TO_IMAGES + '/*.jpg') + glob.glob(PATH_TO_IMAGES + '/*.JPG') + glob.glob(PATH_TO_IMAGES + '/*.png') + glob.glob(PATH_TO_IMAGES + '/*.bmp')\n",
+ "images_to_test = min(500, len(image_list)) # If there are more than 500 images in the folder, just use 500\n",
+ "\n",
+ "# Tell function to just save results and not display images\n",
+ "txt_only = True\n",
+ "\n",
+ "# Run inferencing function!\n",
+ "print('Starting inference on %d images...' % images_to_test)\n",
+ "tflite_detect_images(PATH_TO_MODEL, PATH_TO_IMAGES, PATH_TO_LABELS, min_conf_threshold, images_to_test, PATH_TO_RESULTS, txt_only)\n",
+ "print('Finished inferencing!')"
+ ],
+ "metadata": {
+ "id": "ZMaumV-11Et0"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Now we can run the mAP calculation script to determine our quantized model's mAP."
+ ],
+ "metadata": {
+ "id": "QgcmdLQf1Et1"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "cd /content/mAP"
+ ],
+ "metadata": {
+ "id": "ZIRNp0Af1Et1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "!python calculate_map_cartucho.py --labels=/content/labelmap.txt"
+ ],
+ "metadata": {
+ "id": "4TDgMBw_1Et1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "XFsuasvxFHo8"
+ },
+ "source": [
+ "## 9.4. Compile model for Edge TPU\n",
+ "\n",
+ "Now that the model has been converted to TFLite and quantized, we can compile it to run on Edge TPU devices like the [Coral USB Accelerator](https://coral.ai/products/accelerator/) or the [Coral Dev Board](https://coral.ai/products/dev-board/). This allows the model to run much faster! For information on how to set up the USB Accelerator, my [TensorFlow Lite repository on GitHub](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/deploy_guides/Raspberry_Pi_Guide.md#section-2---run-edge-tpu-object-detection-models-on-the-raspberry-pi-using-the-coral-usb-accelerator).\n",
+ "\n",
+ "First, install the Edge TPU Compiler package inside this Colab instance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mUd_SNC0JSq0"
+ },
+ "outputs": [],
+ "source": [
+ "! curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -\n",
+ "! echo \"deb https://packages.cloud.google.com/apt coral-edgetpu-stable main\" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list\n",
+ "! sudo apt-get update\n",
+ "! sudo apt-get install edgetpu-compiler"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "usfmdtSiJuuC"
+ },
+ "source": [
+ "Next, compile the quantize TFLite model. (If your model has a different filename than \"detect_quant.tflite\", use that instead.)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mULCY0nb0ahH"
+ },
+ "outputs": [],
+ "source": [
+ "%cd /content/custom_model_lite\n",
+ "!edgetpu_compiler detect_quant.tflite\n",
+ "!mv detect_quant_edgetpu.tflite edgetpu.tflite\n",
+ "!rm detect_quant_edgetpu.log"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "oqGy2FgzKomN"
+ },
+ "source": [
+ "The compiled model will be output in the `custom_model_lite` folder as \"detect__quant_edgetpu.tflite\". It gets renamed to \"edgetpu.tflite\" to be consistent with my code. Zip the `custom_model_lite` folder and download it by running the two code blocks below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "8nCdUouYJjQM"
+ },
+ "outputs": [],
+ "source": [
+ "%cd /content\n",
+ "!zip -r custom_model_lite.zip custom_model_lite"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "AmjqvKuuK8ZR"
+ },
+ "outputs": [],
+ "source": [
+ "from google.colab import files\n",
+ "\n",
+ "files.download('custom_model_lite.zip')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ptwpBBEWLfuJ"
+ },
+ "source": [
+ "Now you're all set to use the Coral model! For instructions on how to run an object detection model on the Raspberry Pi using the Coral USB Acclerator, please see my video, [\"How to Use the Coral USB Accelerator with the Raspberry Pi\"](https://www.youtube.com/watch?v=qJMwNHQNOVU)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Appendix: Common Errors"
+ ],
+ "metadata": {
+ "id": "5VI_Gh5dCd7w"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "sEbd9cO7I_o3"
+ },
+ "source": [
+ "Here are solutions to common errors that can occur while stepping through this notebook.\n",
+ "\n",
+ "**1. Training suddenly stops with ^C output**\n",
+ "\n",
+ "If your training randomly stops without any error messages except a `^C`, that means the virtual machine has run out of memory. To resolve the issue, try reducing the `batch_size` variable in Step 4 to a lower value like `batch_size = 4`. The value must be a power of 2. (e.g. 2, 4, 8 ...)\n",
+ "\n",
+ "Source: https://stackoverflow.com/questions/75901898/why-my-model-training-automatically-stopped-during-training"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "provenance": [],
+ "toc_visible": true,
+ "collapsed_sections": [
+ "4VAvZo8qE4u5",
+ "sxb8_h-QFErO",
+ "eydREUsMGUUR",
+ "eGEUZYAMEZ6f",
+ "-19zML6oEO7l",
+ "kPg8oMnQDYKl",
+ "RDQrtQhvC3oG",
+ "5i40ve0SCLaE",
+ "WoptFnAhCSrR",
+ "5VI_Gh5dCd7w"
+ ],
+ "authorship_tag": "ABX9TyPekJ7L67HZ5UdwmDoiqGpy",
+ "include_colab_link": true
+ },
+ "gpuClass": "standard",
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file
diff --git a/celestial-mini/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip b/celestial-mini/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
new file mode 100644
index 0000000000000000000000000000000000000000..f4287be99d4a8ff31e8443c41ada99e1ca1957d5
--- /dev/null
+++ b/celestial-mini/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a809cd290b4d6a2e8a9d5dad076e0bd695b8091974e0eed1052b480b2f21b6dc
+size 2807218
diff --git a/celestial-mini/deploy_guides/MacOS_TFLite_Guide.md b/celestial-mini/deploy_guides/MacOS_TFLite_Guide.md
new file mode 100644
index 0000000000000000000000000000000000000000..fae192201c7d919e8d38a5205b9c7c5a24f011ed
--- /dev/null
+++ b/celestial-mini/deploy_guides/MacOS_TFLite_Guide.md
@@ -0,0 +1,62 @@
+# How to Run TensorFlow Lite Models on macOS
+This guide shows how to set up a TensorFlow Lite Runtime environment on a macOS device. We'll use [Anaconda](https://www.anaconda.com/) to create a Python environment to install the TFLite Runtime in. It's easy!
+
+Acknowledgement: Thanks goes to [Max Hancock](https://www.linkedin.com/in/maxwell-hancock/) for contributing this guide!
+
+## Step 1. Download and Install Anaconda
+First, install [Anaconda](https://www.anaconda.com/), which is a Python environment manager that greatly simplifies Python package management and deployment. Anaconda allows you to create Python virtual environments on your Mac without interfering with existing installations of Python. Go to the [Anaconda Downloads page](https://www.anaconda.com/products/distribution) and click the Download button.
+
+When the download finishes, open the downloaded .exe file and step through the installation wizard. Use the default install options.
+
+## Step 2. Set Up Virtual Environment and Directory
+First open up the terminal by opening a Finder window, and press 'Command + Shift + U', and then select Terminal. We'll create a folder called `tflite1` directly in the Home folder (under your username) - you can use any other folder location you like, just make sure to modify the commands below to use the correct file paths. Create the folder and move into it by issuing the following commands in the terminal:
+
+```
+mkdir ~/tflite1
+cd ~/tflite1
+```
+
+Next, create a Python 3.9 virtual environment by issuing:
+
+```
+conda create --name tflite1-env python=3.9
+```
+
+Enter "y" then "ENTER" when it asks if you want to proceed. Activate the environment and install the required packages by issuing the commands below. We'll install TensorFlow, OpenCV, and a downgraded version of protobuf. TensorFlow is a pretty big download (about 450MB), so it will take a while.
+
+```
+conda activate tflite1-env
+pip install tensorflow
+pip install opencv-python
+pip uninstall protobuf
+pip install protobuf==3.20.0
+```
+
+Download the detection scripts from this repository by issuing:
+
+```
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_image.py --output TFLite_detection_image.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_video.py --output TFLite_detection_video.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_webcam.py --output TFLite_detection_webcam.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_stream.py --output TFLite_detection_stream.py
+```
+
+## Step 3. Move TFLite Model into Directory
+Next, take the custom TFLite model that was trained and downloaded from the Colab notebook and move it into the {username}\tflite1 directory (replacing {username} with your home directory name). If you downloaded it from Colab, it should be in a file called `custom_model_lite.zip`. (If you haven't trained a model yet and just want to test one out, download my "change counter" model by clicking this [Dropbox link](https://www.dropbox.com/scl/fi/4fk8ls8s03c94g6sb3ngo/custom_model_lite.zip?rlkey=zqda21sowk0hrw6i3f2dgbsyy&dl=0).) Move that file to the {username}\tflite1 directory. Once it's moved, unzip it using:
+
+```
+tar -xf custom_model_lite.zip
+```
+
+At this point, you should have a folder at {username}\tflite1\custom_model_lite which contains at least a `detect.tflite` and `labelmap.txt` file.
+
+## Step 4. Run TensorFlow Lite Model!
+Now, just call one of the detection scripts and point it at your model folder with the `--modeldir` option. For example, to run your `custom_model_lite` model on a webcam, issue:
+
+```
+python TFLite_detection_webcam.py --modeldir=custom_model_lite
+```
+
+A window will appear showing detection results drawn on the live webcam feed, make sure to accept the use of webcam. For more information on how to use the detection scripts, like if you want to enter an image, video, or web stream please see [Step 3 in the main README page](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi#step-3-run-tensorflow-lite-models).
+
+Have fun using TensorFlow Lite! Stay tuned for more examples on how to build cool applications around your model.
diff --git a/celestial-mini/deploy_guides/Raspberry_Pi_Guide.md b/celestial-mini/deploy_guides/Raspberry_Pi_Guide.md
new file mode 100644
index 0000000000000000000000000000000000000000..821a0e4d962f125f77d1a9698477d22c508b2763
--- /dev/null
+++ b/celestial-mini/deploy_guides/Raspberry_Pi_Guide.md
@@ -0,0 +1,318 @@
+# How to Run TensorFlow Lite Object Detection Models on the Raspberry Pi (with Optional Coral USB Accelerator)
+
+
+
+
+
+## Introduction
+This guide provides step-by-step instructions for how to set up TensorFlow Lite on the Raspberry Pi and use it to run object detection models. It also shows how to set up the Coral USB Accelerator on the Pi and run Edge TPU detection models. It works for the Raspberry Pi 3 and Raspberry Pi 4 running either Rasbpian Buster or Rasbpian Stretch.
+
+This guide is part of my larger TensorFlow Lite tutorial series which shows how to [train, convert, and run custom TensorFlow Lite object detection models](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi).
+
+TensorFlow Lite (TFLite) models run much faster than regular TensorFlow models on the Raspberry Pi. You can see a comparison of framerates obtained using regular TensorFlow, TensorFlow Lite, and Coral USB Accelerator models in my [TensorFlow Lite Performance Comparison YouTube video](https://www.youtube.com/watch?v=TiOKvOrYNII).
+
+This portion of the guide is split in to three sections:
+
+* [Section 1. Run TensorFlow Lite Object Detection Models on the Raspberry Pi](#section-1---how-to-set-up-and-run-tensorflow-lite-object-detection-models-on-the-raspberry-pi)
+* [Section 2. Run Edge TPU Object Detection Models on the Raspberry Pi Using the Coral USB Accelerator](#section-2---run-edge-tpu-object-detection-models-on-the-raspberry-pi-using-the-coral-usb-accelerator)
+* [Section 3. Compile Custom Edge TPU Object Detection Models](#section-2---run-edge-tpu-object-detection-models-on-the-raspberry-pi-using-the-coral-usb-accelerator)
+
+This repository also includes scripts for running the TFLite and Edge TPU models on images, videos, or webcam/Picamera feeds.
+
+## Section 1 - How to Set Up and Run TensorFlow Lite Object Detection Models on the Raspberry Pi
+
+Setting up TensorFlow Lite on the Raspberry Pi is much easier than regular TensorFlow! These are the steps needed to set up TensorFlow Lite:
+
+- 1a. Update the Raspberry Pi
+- 1b. Download this repository and create virtual environment
+- 1c. Install TensorFlow and OpenCV
+- 1d. Set up TensorFlow Lite detection model
+- 1e. Run TensorFlow Lite model!
+
+I also made a YouTube video that walks through this guide:
+
+[](https://www.youtube.com/watch?v=aimSGOAUI8Y)
+
+### Step 1a. Update the Raspberry Pi
+First, the Raspberry Pi needs to be fully updated. Open a terminal and issue:
+```
+sudo apt-get update
+sudo apt-get dist-upgrade
+```
+Depending on how long itโs been since youโve updated your Pi, the update could take anywhere between a minute and an hour.
+
+While we're at it, let's make sure the camera interface is enabled in the Raspberry Pi Configuration menu. Click the Pi icon in the top left corner of the screen, select Preferences -> Raspberry Pi Configuration, and go to the Interfaces tab and verify Camera is set to Enabled. If it isn't, enable it now, and reboot the Raspberry Pi.
+
+
+
+
+
+### Step 1b. Download this repository and create virtual environment
+
+Next, clone this GitHub repository by issuing the following command. The repository contains the scripts we'll use to run TensorFlow Lite, as well as a shell script that will make installing everything easier. Issue:
+
+```
+git clone https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi.git
+```
+
+This downloads everything into a folder called TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi. That's a little long to work with, so rename the folder to "tflite1" and then cd into it:
+
+```
+mv TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi tflite1
+cd tflite1
+```
+
+We'll work in this /home/pi/tflite1 directory for the rest of the guide. Next up is to create a virtual environment called "tflite1-env".
+
+I'm using a virtual environment for this guide because it prevents any conflicts between versions of package libraries that may already be installed on your Pi. Keeping TensorFlow installed in its own environment allows us to avoid version conflicts. For example, if you've already installed TensorFlow v1.8 on the Pi using my [other guide](https://www.youtube.com/watch?v=npZ-8Nj1YwY), you can leave that installation as-is without having to worry about overriding it.
+
+Install virtualenv by issuing:
+
+```
+sudo pip3 install virtualenv
+```
+
+Then, create the "tflite1-env" virtual environment by issuing:
+
+```
+python3 -m venv tflite1-env
+```
+
+This will create a folder called tflite1-env inside the tflite1 directory. The tflite1-env folder will hold all the package libraries for this environment. Next, activate the environment by issuing:
+
+```
+source tflite1-env/bin/activate
+```
+
+**You'll need to issue the `source tflite1-env/bin/activate` command from inside the /home/pi/tflite1 directory to reactivate the environment every time you open a new terminal window. You can tell when the environment is active by checking if (tflite1-env) appears before the path in your command prompt, as shown in the screenshot below.**
+
+At this point, here's what your tflite1 directory should look like if you issue `ls`.
+
+
+
+
+
+If your directory looks good, it's time to move on to Step 1c!
+
+### Step 1c. Install TensorFlow Lite dependencies and OpenCV
+Next, we'll install TensorFlow, OpenCV, and all the dependencies needed for both packages. OpenCV is not needed to run TensorFlow Lite, but the object detection scripts in this repository use it to grab images and draw detection results on them.
+
+To make things easier, I wrote a shell script that will automatically download and install all the packages and dependencies. Run it by issuing:
+
+```
+bash get_pi_requirements.sh
+```
+
+This downloads about 400MB worth of installation files, so it will take a while. Go grab a cup of coffee while it's working! If you'd like to see everything that gets installed, simply open get_pi_dependencies.sh to view the list of packages.
+
+**NOTE: If you get an error while running the `bash get_pi_requirements.sh` command, it's likely because your internet connection timed out, or because the downloaded package data was corrupted. If you get an error, try re-running the command a few more times.**
+
+**ANOTHER NOTE: The shell script automatically installs the latest version of TensorFlow. If you'd like to install a specific version, issue `pip3 install tensorflow==X.XX` (where X.XX is replaced with the version you want to install) after running the script. This will override the existing installation with the specified version.**
+
+That was easy! On to the next step.
+
+### Step 1d. Set up TensorFlow Lite detection model
+Next, we'll set up the detection model that will be used with TensorFlow Lite. This guide shows how to either download a sample TFLite model provided by Google, or how to use a model that you've trained yourself by following [my TensorFlow Lite training guide](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi).
+
+A detection model has two files associated with it: a detect.tflite file (which is the model itself) and a labelmap.txt file (which provides a labelmap for the model). My preferred way to organize the model files is to create a folder (such as "BirdSquirrelRaccoon_TFLite_model") and keep both the detect.tflite and labelmap.txt in that folder. This is also how Google's downloadable sample TFLite model is organized.
+
+#### Option 1. Using Google's sample TFLite model
+Google provides a sample quantized SSDLite-MobileNet-v2 object detection model which is trained off the MSCOCO dataset and converted to run on TensorFlow Lite. It can detect and identify 80 different common objects, such as people, cars, cups, etc.
+
+Download the sample model (which can be found on [the Object Detection page of the official TensorFlow website](https://www.tensorflow.org/lite/models/object_detection/overview)) by issuing:
+
+```
+wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip
+```
+
+Unzip it to a folder called "Sample_TFLite_model" by issuing (this command automatically creates the folder):
+
+```
+unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d Sample_TFLite_model
+```
+
+Okay, the sample model is all ready to go!
+
+#### Option 2: Using your own custom-trained model
+You can also use a custom object detection model by moving the model folder into the /home/pi/tflite directory. If you followed [my TensorFlow Lite training guide](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi) to train and convert a TFLite model on your PC, you should have a folder named "TFLite_model" with a detect.tflite and labelmap.txt file. (It will also have a tflite_graph.pb and tflite_graph.pbtxt file, which are not needed by TensorFlow Lite but can be left in the folder.)
+
+You can simply copy that folder to a USB drive, insert the USB drive in your Raspberry Pi, and move the folder into the /home/pi/tflite1 directory. (Or you can email it to yourself, or put it on Google Drive, or do whatever your preferred method of file transfer is.) Here's an example of what my "BirdSquirrelRaccoon_TFLite_model" folder looks like in my /home/pi/tflite1 directory:
+
+
+
+
+
+Now your custom model is ready to go!
+
+### Step 1e. Run the TensorFlow Lite model!
+It's time to see the TFLite object detection model in action! First, free up memory and processing power by closing any applications you aren't using. Also, make sure you have your webcam or Picamera plugged in.
+
+Run the real-time webcam detection script by issuing the following command from inside the /home/pi/tflite1 directory. (Before running the command, make sure the tflite1-env environment is active by checking that (tflite1-env) appears in front of the command prompt.) **The TFLite_detection_webcam.py script will work with either a Picamera or a USB webcam.**
+
+```
+python3 TFLite_detection_webcam.py --modeldir=Sample_TFLite_model
+```
+
+If your model folder has a different name than "Sample_TFLite_model", use that name instead. For example, I would use `--modeldir=BirdSquirrelRaccoon_TFLite_model` to run my custom bird, squirrel, and raccoon detection model.
+
+After a few moments of initializing, a window will appear showing the webcam feed. Detected objects will have bounding boxes and labels displayed on them in real time.
+
+The main page of my TensorFlow Lite training guide gives [instructions](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi#video) for using the TFLite_detection_image.py and TFLite_detection_video.py scripts. Make sure to use `python3` rather than `python` when running the scripts.
+
+## Section 2 - Run Edge TPU Object Detection Models on the Raspberry Pi Using the Coral USB Accelerator
+
+[](https://www.youtube.com/watch?v=qJMwNHQNOVU)
+
+The [Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is a USB hardware accessory for speeding up TensorFlow models. You can buy one [here (Amazon Associate link)](https://amzn.to/2BuG1Tv).
+
+The USB Accelerator uses the Edge TPU (tensor processing unit), which is an ASIC (application-specific integrated circuit) chip specially designed with highly parallelized ALUs (arithmetic logic units). While GPUs (graphics processing units) also have many parallelized ALUs, the TPU has one key difference: the ALUs are directly connected to eachother. The output of one ALU can be directly passed to the input of the next ALU without having to be stored and retrieved from a memory buffer. The extreme paralellization and removal of the memory bottleneck means the TPU can perform up to 4 trillion arithmetic operations per second! This is perfect for running deep neural networks, which require millions of multiply-accumulate operations to generate outputs from a single batch of input data.
+
+
+
+
+
+My Master's degree was in ASIC design, so the Edge TPU is very interesting to me! If you're a computer architecture nerd like me and want to learn more about the Edge TPU, [here is a great article that explains how it works](https://cloud.google.com/blog/products/ai-machine-learning/what-makes-tpus-fine-tuned-for-deep-learning).
+
+It makes object detection models run WAY faster, and it's easy to set up. These are the steps we'll go through to set up the Coral USB Accelerator:
+
+- 2a. Install libedgetpu library
+- 2b. Set up Edge TPU detection model
+- 2c. Run super-speed detection!
+
+This section of the guide assumes you have already completed [Section 1](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md#section-1---how-to-set-up-and-run-tensorflow-lite-object-detection-models-on-the-raspberry-pi) for setting up TFLite object detection on the Pi. If you haven't done that portion, scroll back up and work through it first.
+
+### Step 2a. Install libedgetpu library
+First, we'll download and install the Edge TPU runtime, which is the library needed to interface with the USB Acccelerator. These instructions follow the [USB Accelerator setup guide](https://coral.withgoogle.com/docs/accelerator/get-started/) from official Coral website.
+
+Open a command terminal and move into the /home/pi/tflite1 directory and activate the tflite1-env virtual environment by issuing:
+
+```
+cd /home/pi/tflite1
+source tflite1-env/bin/activate
+```
+
+Add the Coral package repository to your apt-get distribution list by issuing the following commands:
+
+```
+echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
+curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
+sudo apt-get update
+```
+
+Install the libedgetpu library by issuing:
+
+```
+sudo apt-get install libedgetpu1-std
+```
+
+You can also install the libedgetpu1-max library, which runs the USB Accelerator at an overclocked frequency, allowing it to achieve even faster framerates. However, it also causes the USB Accelerator to get hotter. Here are the framerates I get when running TFLite_detection_webcam.py with 1280x720 resolution for each option with a Raspberry Pi 4 4GB model:
+
+* libedgetpu1-std: 22.6 FPS
+* libedgetpu1-max: 26.1 FPS
+
+I didn't measure the temperature of the USB Accelerator, but it does get a little hotter to the touch with the libedgetpu1-max version. However, it didn't seem hot enough to be unsafe or harmful to the electronics.
+
+If you want to use the libedgetpu-max library, install it by using `sudo apt-get install libedgetpu1-max`. (You can't have both the -std and the -max libraries installed. If you install the -max library, the -std library will automatically be uninstalled.)
+
+Alright! Now that the libedgetpu runtime is installed, it's time to set up an Edge TPU detection model to use it with.
+
+### Step 2b. Set up Edge TPU detection model
+Edge TPU models are TensorFlow Lite models that have been compiled specifically to run on Edge TPU devices like the Coral USB Accelerator. They reside in a .tflite file and are used the same way as a regular TF Lite model. My preferred method is to keep the Edge TPU file in the same model folder as the TFLite model it was compiled from, and name it as "edgetpu.tflite".
+
+I'll show two options for setting up an Edge TPU model: using the sample model from Google, or using a custom model you compiled yourself.
+
+#### Option 1. Using Google's sample EdgeTPU model
+Google provides a sample Edge TPU model that is compiled from the quantized SSDLite-MobileNet-v2 we used in [Step 1e](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md#step-1e-set-up-tensorflow-lite-detection-model). Download it and move it into the Sample_TFLite_model folder (while simultaneously renaming it to "edgetpu.tflite") by issuing these commands:
+
+```
+wget https://dl.google.com/coral/canned_models/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite
+
+mv mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite Sample_TFLite_model/edgetpu.tflite
+```
+
+Now the sample Edge TPU model is all ready to go. It will use the same labelmap.txt file as the TFLite model, which should already be located in the Sample_TFLite_model folder.
+
+#### Option 2. Using your own custom EdgeTPU model
+If you trained a custom TFLite detection model, you can compile it for use with the Edge TPU. Unfortunately, the edgetpu-compiler package doesn't work on the Raspberry Pi: you need a Linux PC to use it on. Section 3 of this guide gives a couple options for compiling your own model if you don't have a Linux PC. [Here are the official instructions that show how to compile an Edge TPU model from a TFLite model](https://coral.withgoogle.com/docs/edgetpu/compiler/).
+
+Assuming you've been able to compile your TFLite model into an EdgeTPU model, you can simply copy the .tflite file onto a USB and transfer it to the model folder on your Raspberry Pi. For my "BirdSquirrelRaccoon_TFLite_model" example from [Step 1e](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md#step-1e-set-up-tensorflow-lite-detection-model), I can compile my "BirdSquirrelRaccoon_TFLite_model" on a Linux PC, put the resulting edgetpu.tflite file on a USB, transfer the USB to my Pi, and move the edgetpu.tflite file into the /home/pi/tflite1/BirdSquirrelRaccoon_TFLite_model folder. It will use the same labelmap.txt file that already exists in the folder to get its labels.
+
+Once the edgetpu.tflite file has been moved into the model folder, it's ready to go!
+
+### Step 2c. Run detection with Edge TPU!
+
+Now that everything is set up, it's time to test out the Coral's ultra-fast detection speed! Make sure to free up memory and processing power by closing any programs you aren't using. Make sure you have a webcam plugged in.
+
+Plug in your Coral USB Accelerator into one of the USB ports on the Raspberry Pi. If you're using a Pi 4, make sure to plug it in to one of the blue USB 3.0 ports.
+
+Make sure the tflite1-env environment is active by checking that (tflite1-env) appears in front of the command prompt in your terminal. Then, run the real-time webcam detection script with the --edgetpu argument:
+
+```
+python3 TFLite_detection_webcam.py --modeldir=Sample_TFLite_model --edgetpu
+```
+
+The `--edgetpu` argument tells the script to use the Coral USB Accelerator and the EdgeTPU-compiled .tflite file. If your model folder has a different name than "Sample_TFLite_model", use that name instead.
+
+After a brief initialization period, a window will appear showing the webcam feed with detections drawn on each from. The detection will run SIGNIFICANTLY faster with the Coral USB Accelerator.
+
+If you'd like to run the video or image detection scripts with the Accelerator, use these commands:
+
+```
+python3 TFLite_detection_video.py --modeldir=Sample_TFLite_model --edgetpu
+python3 TFLite_detection_image.py --modeldir=Sample_TFLite_model --edgetpu
+```
+
+Have fun with the blazing detection speeds of the Coral USB Accelerator!
+
+## Section 3 - Compile Custom Edge TPU Object Detection Models
+
+To use a custom model on the Coral USB Accelerator, you have to run it through Coral's [Edge TPU Compiler](https://coral.ai/docs/edgetpu/compiler/) tool. Unfortunately, the compiler only works on Linux operating systems, and only on certain CPU architectures.
+
+The easiest way to compile the Edge TPU model is to use a Google Colab session. I created a Colab page specifically for compiling Edge TPU models. Please click the link below and follow the instructions in the Colab notebook.
+
+https://colab.research.google.com/drive/1o6cNNNgGhoT7_DR4jhpMKpq3mZZ6Of4N?usp=sharing
+
+## Appendix: Common Errors
+This appendix lists common errors that have been encountered by users following this guide, and solutions showing how to resolve them.
+
+**Feel free to create Pull Requests to add your own errors and resolutions! I'd appreciate any help.**
+
+### 1. TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'
+The 'NoneType' error means that the program received an empty array from the webcam, which typically means something is wrong with the webcam or the interface to the webcam. Try plugging and re-plugging the webcam in a few times, and/or power cycling the Raspberry Pi, and see if that works. If not, you may need to try using a new webcam.
+
+### 2. ImportError: No module named 'cv2'
+This error occurs when you try to run any of the TFLite_detection scripts without activating the 'tflite1-env' first. It happens because Python cannot find the path to the OpenCV library (cv2) to import it.
+
+Resolve the issue by closing your terminal window, re-opening it, and issuing:
+
+```
+cd tflite1
+source tflite1-env/bin/activate
+```
+
+Then, try re-running the script as described in [Step 1e](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md#step-1e-run-the-tensorflow-lite-model).
+
+### 3. THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE
+This error can occur when you run the `bash get_pi_requirements.sh` command in Step 1c. It occurs because the package data got corrupted while downloading. You can resolve the error by re-running the `bash get_pi_requirements.sh` command a few more times until it successfully completes without reporting that error.
+
+### 4. Unsupported data type in custom op handler: 6488064Node number 2 (EdgeTpuDelegateForCustomOp) failed to prepare.
+This error occurs when trying to use a newer version of the libedgetpu library (v13.0 or greater) with an older version of TensorFlow (v2.0 or older). It can be resolved by uninstalling your current version of TensorFlow and installing the latest version of the tflite_runtime package. Issue these commands (make sure you are inside the tflite1-env virtual environment):
+
+```
+pip3 uninstall tensorflow
+pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp37-cp37m-linux_armv7l.whl
+```
+
+(Or, if you're using Python 3.5, use `pip3 install https://dl.google.com/coral/python/tflite_runtime-2.1.0.post1-cp35-cp35m-linux_armv7l.whl` instead.)
+
+Then, re-run the TFLite detection script. It should work now!
+
+*Note: the URLs provided in these commands may change as newer versions of tflite_runtime are released. Check the [TFLite Python Quickstart page](https://www.tensorflow.org/lite/guide/python) for download URLs to the latest version of tflite_runtime.*
+
+### 5. IndexError: list index out of range
+This error usually occurs when you try using an "image classification" model rather than an "object detection" model. Image classification models apply a single label to an image, while object detection models locate and label multiple objects in an image. The code in this repository is written for object detection models.
+
+Many people run in to this error when using models from Teachable Machine. This is because Teachable Machine creates image classification models rather than object detection models. To create an object detection model for TensorFow Lite, you'll have to follow the guide in this repository.
+
+If you'd like to see how to use an image classification model on the Raspberry Pi, please see this example:
+https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/raspberry_pi
diff --git a/celestial-mini/deploy_guides/Windows_TFLite_Guide.md b/celestial-mini/deploy_guides/Windows_TFLite_Guide.md
new file mode 100644
index 0000000000000000000000000000000000000000..a00a119fc95f6d8bfb07e78239e8e1b7f353ca9e
--- /dev/null
+++ b/celestial-mini/deploy_guides/Windows_TFLite_Guide.md
@@ -0,0 +1,57 @@
+# How to Run TensorFlow Lite Models on Windows
+This guide shows how to set up a TensorFlow Lite Runtime environment on a Windows PC. We'll use [Anaconda](https://www.anaconda.com/) to create a Python environment to install the TFLite Runtime in. It's easy!
+
+## Step 1. Download and Install Anaconda
+First, install [Anaconda](https://www.anaconda.com/), which is a Python environment manager that greatly simplifies Python package management and deployment. Anaconda allows you to create Python virtual environments on your PC without interfering with existing installations of Python. Go to the [Anaconda Downloads page](https://www.anaconda.com/products/distribution) and click the Download button.
+
+When the download finishes, open the downloaded .exe file and step through the installation wizard. Use the default install options.
+
+## Step 2. Set Up Virtual Environment and Directory
+Go to the Start Menu, search for "Anaconda Command Prompt", and click it to open up a command terminal. We'll create a folder called `tflite1` directly in the C: drive. (You can use any other folder location you like, just make sure to modify the commands below to use the correct file paths.) Create the folder and move into it by issuing the following commands in the terminal:
+
+```
+mkdir C:\tflite1
+cd C:\tflite1
+```
+
+Next, create a Python 3.9 virtual environment by issuing:
+
+```
+conda create --name tflite1-env python=3.9
+```
+
+Enter "y" when it asks if you want to proceed. Activate the environment and install the required packages by issuing the commands below. We'll install TensorFlow, OpenCV, and a downgraded version of protobuf. TensorFlow is a pretty big download (about 450MB), so it will take a while.
+
+```
+conda activate tflite1-env
+pip install tensorflow opencv-python protobuf==3.20.*
+```
+
+Download the detection scripts from this repository by issuing:
+
+```
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_image.py --output TFLite_detection_image.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_video.py --output TFLite_detection_video.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_webcam.py --output TFLite_detection_webcam.py
+curl https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_stream.py --output TFLite_detection_stream.py
+```
+
+## Step 3. Move TFLite Model into Directory
+Next, take the custom TFLite model that was trained and downloaded from the Colab notebook and move it into the C:\tflite1 directory. If you downloaded it from Colab, it should be in a file called `custom_model_lite.zip`. (If you haven't trained a model yet and just want to test one out, download my "change counter" model by clicking this [Dropbox link](https://www.dropbox.com/scl/fi/4fk8ls8s03c94g6sb3ngo/custom_model_lite.zip?rlkey=zqda21sowk0hrw6i3f2dgbsyy&dl=0).) Move that file to the C:\tflite1 directory. Once it's moved, unzip it using:
+
+```
+tar -xf custom_model_lite.zip
+```
+
+At this point, you should have a folder at C:\tflite1\custom_model_lite which contains at least a `detect.tflite` and `labelmap.txt` file.
+
+## Step 4. Run TensorFlow Lite Model!
+Alright! Now that everything is set up, running the TFLite model is easy. Just call one of the detection scripts and point it at your model folder with the `--modeldir` option. For example, to run your `custom_model_lite` model on a webcam, issue:
+
+```
+python TFLite_detection_webcam.py --modeldir=custom_model_lite
+```
+
+A window will appear showing detection results drawn on the live webcam feed. For more information on how to use the detection scripts, please see [Step 3 in the main README page](https://github.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi#step-3-run-tensorflow-lite-models).
+
+Have fun using TensorFlow Lite! Stay tuned for more examples on how to build cool applications around your model.
diff --git a/celestial-mini/doc/BSR_demo.gif b/celestial-mini/doc/BSR_demo.gif
new file mode 100644
index 0000000000000000000000000000000000000000..07d35669a96ee3cf8e71619e5b3e92ca36815c46
--- /dev/null
+++ b/celestial-mini/doc/BSR_demo.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f7a9c947845128a719ac70a28b6f8b95bfd270aa730db1c017130e5726d9ea90
+size 21288026
diff --git a/celestial-mini/doc/BSR_directory1.png b/celestial-mini/doc/BSR_directory1.png
new file mode 100644
index 0000000000000000000000000000000000000000..f7c8d26c68d9d3783f33ed0b33d00ff8c3fe0e04
--- /dev/null
+++ b/celestial-mini/doc/BSR_directory1.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7b4fb9ff2d1eca8f31547026fcedc4256c29f620a4cde8aee04b028093761324
+size 238322
diff --git a/celestial-mini/doc/Coral_and_EdgeTPU2.png b/celestial-mini/doc/Coral_and_EdgeTPU2.png
new file mode 100644
index 0000000000000000000000000000000000000000..9f15692d24942028c7abf0e89cbfd300cdb6eb2b
--- /dev/null
+++ b/celestial-mini/doc/Coral_and_EdgeTPU2.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8d6719a27414d1824fe7f273aa2bd91ac690c93272c61c4a11fd4a5c156b5556
+size 227015
diff --git a/celestial-mini/doc/MSYS_window.png b/celestial-mini/doc/MSYS_window.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd867656d55f59dbcadb41e0c462d4c78614f619
Binary files /dev/null and b/celestial-mini/doc/MSYS_window.png differ
diff --git a/celestial-mini/doc/TFL_download_links.png b/celestial-mini/doc/TFL_download_links.png
new file mode 100644
index 0000000000000000000000000000000000000000..b722ceaafdd071807c6aa0faee59371f79f97eec
--- /dev/null
+++ b/celestial-mini/doc/TFL_download_links.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81be46a31a1b97ef747113d92c8b9de344ac08d2c59efb6d1f7a72cfeefbc89f
+size 226226
diff --git a/celestial-mini/doc/TFLite-vs-EdgeTPU.gif b/celestial-mini/doc/TFLite-vs-EdgeTPU.gif
new file mode 100644
index 0000000000000000000000000000000000000000..13a65eb88630005c9e89a5638ed8fd053553b429
--- /dev/null
+++ b/celestial-mini/doc/TFLite-vs-EdgeTPU.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b0f8ddb5b3f9ba71b6a73d355b3264d620ad7705dd7c649ce1f272e41e361a1c
+size 15332057
diff --git a/celestial-mini/doc/YouTube_video1.JPG b/celestial-mini/doc/YouTube_video1.JPG
new file mode 100644
index 0000000000000000000000000000000000000000..673382890c7e0ab1cce7ff5b22e07771ae90d092
Binary files /dev/null and b/celestial-mini/doc/YouTube_video1.JPG differ
diff --git a/celestial-mini/doc/YouTube_video2.png b/celestial-mini/doc/YouTube_video2.png
new file mode 100644
index 0000000000000000000000000000000000000000..067f0bdd9ba8dd14311c6ea83f169700a519ee24
--- /dev/null
+++ b/celestial-mini/doc/YouTube_video2.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f5950069c0db3aab030e1954f367a1981ed5d9e3e35e3df11442e2eb05a6b5e2
+size 326166
diff --git a/celestial-mini/doc/calculate-mAP-demo1.gif b/celestial-mini/doc/calculate-mAP-demo1.gif
new file mode 100644
index 0000000000000000000000000000000000000000..a659fb76a96e916962012d3b19ba07ee6dc7fd9a
--- /dev/null
+++ b/celestial-mini/doc/calculate-mAP-demo1.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8c2efcda9f1ad0e776aacf22908ff8d4569e18d8eb89242c29ab81a0d84cde1e
+size 22335826
diff --git a/celestial-mini/doc/camera_enabled.png b/celestial-mini/doc/camera_enabled.png
new file mode 100644
index 0000000000000000000000000000000000000000..b4b53bef129599da16e781cb0bf822a04d66533b
Binary files /dev/null and b/celestial-mini/doc/camera_enabled.png differ
diff --git a/celestial-mini/doc/colab_upload_button.png b/celestial-mini/doc/colab_upload_button.png
new file mode 100644
index 0000000000000000000000000000000000000000..49f81065ebc9836cad9ff0bf52749c2959d6a61f
Binary files /dev/null and b/celestial-mini/doc/colab_upload_button.png differ
diff --git a/celestial-mini/doc/labeled_image_example2.png b/celestial-mini/doc/labeled_image_example2.png
new file mode 100644
index 0000000000000000000000000000000000000000..c9316e05c3f7bce23c3c3cc4362418b2797d89ca
--- /dev/null
+++ b/celestial-mini/doc/labeled_image_example2.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:04a59d8bc39c8e2b6fc7a8ea482f2fd2a0e542af4cefa00aa3ab844531e68074
+size 898128
diff --git a/celestial-mini/doc/labeled_image_examples.png b/celestial-mini/doc/labeled_image_examples.png
new file mode 100644
index 0000000000000000000000000000000000000000..5615d0668fcd055fa90b9fd5037f07b8c7356bea
--- /dev/null
+++ b/celestial-mini/doc/labeled_image_examples.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:25e0955947ba819b52022a4c119b7bed16d426375516d1f8b506f1291d502128
+size 555732
diff --git a/celestial-mini/doc/labelmap_example.png b/celestial-mini/doc/labelmap_example.png
new file mode 100644
index 0000000000000000000000000000000000000000..b90171fc11c804d5c48e2829097d9c8e178b8b78
Binary files /dev/null and b/celestial-mini/doc/labelmap_example.png differ
diff --git a/celestial-mini/doc/local_training_guide.md b/celestial-mini/doc/local_training_guide.md
new file mode 100644
index 0000000000000000000000000000000000000000..33fe2797f3eaea0da2240637671ee54e33907750
--- /dev/null
+++ b/celestial-mini/doc/local_training_guide.md
@@ -0,0 +1,462 @@
+# TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi
+A guide showing how to train TensorFlow Lite object detection models on your local PC and then run them on Android, the Raspberry Pi, and more!
+
+
+
+
+
+**Important note: This guide is a bit outdated and has been replaced by the [Google Colab notebook](https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb) I wrote for training TFLite models using Google's virtual Colab machines. The steps in this guide worked when I wrote it 3 years ago, but I haven't tested it since then. I only recommend using this older guide if you have a strong reason for needing to train your TFLite model locally on your PC. Proceed at your own risk!**
+
+## Introduction
+This guide provides step-by-step instructions for how set up a TensorFlow environment on your PC, and then use it to train, export, and deploy a custom TensorFlow Lite Object Detection model. Once you've completed the steps in this guide, you'll have a TFLite model that you can deploy using the inferencing scripts from this repository.
+
+### A Note on Versions
+I used TensorFlow v1.13 while creating this guide, because TF v1.13 is a stable version that has great support from Anaconda.
+
+The TensorFlow team is always hard at work releasing updated versions of TensorFlow. I recommend picking one version and sticking with it for all your TensorFlow projects. Every part of this guide should work with newer or older versions, but you may need to use different versions of the tools needed to run or build TensorFlow (CUDA, cuDNN, bazel, etc). Google has provided a list of build configurations for [Linux](https://www.tensorflow.org/install/source#linux), [macOS](https://www.tensorflow.org/install/source#macos), and [Windows](https://www.tensorflow.org/install/source_windows#tested_build_configurations) that show which tool versions were used to build and run each version of TensorFlow.
+
+## How to Train, Convert, and Run Custom TensorFlow Lite Object Detection Models on Windows 10
+This guide gives instructions for training and deploying your own custom TensorFlow Lite object detection model on a Windows 10 PC. The guide is based off the [tutorial in the TensorFlow Object Detection repository](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tensorflowlite.md), but it gives more detailed instructions and is written specifically for Windows. (It will work on Linux too with some minor changes, which I leave as an exercise for the Linux user.)
+
+There are three primary steps to training and deploying a TensorFlow Lite model:
+1. [Train a quantized SSD-MobileNet model using TensorFlow, and export frozen graph for TensorFlow Lite](#step-1-train-quantized-ssd-mobilenet-model-and-export-frozen-tensorflow-lite-graph)
+2. [Build TensorFlow from source on your PC](#step-2-build-tensorflow-from-source)
+3. [Use TensorFlow Lite Optimizing Converter (TOCO) to create optimzed TensorFlow Lite model](#step-3-use-toco-to-create-optimzed-tensorflow-lite-model-create-label-map-run-model)
+
+This portion is a continuation of my previous guide: [How To Train an Object Detection Model Using TensorFlow on Windows 10](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10). I'll assume you have already set up TensorFlow to train a custom object detection model as described in that guide, including:
+* Setting up an Anaconda virtual environment for training
+* Setting up TensorFlow directory structure
+* Gathering and labeling training images
+* Preparing training data (generating TFRecords and label map)
+
+This tutorial uses the same Anaconda virtual environment, files, and directory structure that was set up in the previous one.
+
+Through the course of the guide, I'll use a bird, squirrel, and raccoon detector model I've been working on as an example. The intent of this detection model is to watch a bird feeder, and record videos of birds while triggering an alarm if a squirrel or raccoon is stealing from it! I'll show the steps needed to train, convert, and run a quantized TensorFlow Lite version of the bird/squirrel/raccoon detector.
+
+Parts 2 and 3 of this guide will go on to show how to deploy this newly trained TensorFlow Lite model on the Raspberry Pi or an Android device. If you're not feeling up to training and converting your own TensorFlow Lite model, you can skip Part 1 and use my custom-trained TFLite BSR detection model [(which you can download from Dropbox here)](https://www.dropbox.com/s/cpaon1j1r1yzflx/BirdSquirrelRaccoon_TFLite_model.zip?dl=0) or use the [TF Lite starter detection model](https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip) (taken from https://www.tensorflow.org/lite/models/object_detection/overview) for Part 2 or Part 3.
+
+### Step 1: Train Quantized SSD-MobileNet Model and Export Frozen TensorFlow Lite Graph
+First, weโll use transfer learning to train a โquantizedโ SSD-MobileNet model. Quantized models use 8-bit integer values instead of 32-bit floating values within the neural network, allowing them to run much more efficiently on GPUs or specialized TPUs (TensorFlow Processing Units).
+
+You can also use a standard SSD-MobileNet model (V1 or V2), but it will not run quite as fast as the quantized model. Also, you will not be able to run it on the Google Coral TPU Accelerator. If youโre using an SSD-MobileNet model that has already been trained, you can skip to [Step 1d](#step-1d-export-frozen-inference-graph-for-tensorflow-lite) of this guide.
+
+**If you get any errors during this process, please look at the [FAQ section](#frequently-asked-questions-and-common-errors) at the bottom of this guide! It gives solutions to common errors that occur.**
+
+As I mentioned prevoiusly, this guide assumes you have already followed my [previous TensorFlow tutorial](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10) and set up the Anaconda virtual environment and full directory structure needed for using the TensorFlow Object Detection API. If you've done so, you should have a folder at C:\tensorflow1\models\research\object_detection that has everything needed for training. (If you used a different base folder name than "tensorflow1", that's fine - just make sure you continue to use that name throughout this guide.)
+
+Here's what your \object_detection folder should look like:
+
+
+
+
+If you don't have this folder, please go to my [previous tutorial](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10) and work through at least Steps 1 and 2. If you'd like to train your own model to detect custom objects, you'll also need to work through Steps 3, 4, and 5. If you don't want to train your own model but want to practice the process for converting a model to TensorFlow Lite, you can download the quantized MobileNet-SSD model (see next paragraph) and then skip to [Step 1d](#step-1d-export-frozen-inference-graph-for-tensorflow-lite).
+
+#### Step 1a. Download and extract quantized SSD-MobileNet model
+Google provides several quantized object detection models in their [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md). This tutorial will use the SSD-MobileNet-V2-Quantized-COCO model. Download the model [here](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz). **Note: TensorFlow Lite does NOT support RCNN models such as Faster-RCNN! It only supports SSD models.**
+
+Move the downloaded .tar.gz file to the C:\tensorflow1\models\research\object_detection folder. (Henceforth, this folder will be referred to as the โ\object_detectionโ folder.) Unzip the .tar.gz file using a file archiver like WinZip or 7-Zip. After the file has been fully unzipped, you should have a folder called "ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03" within the \object_detection folder.
+
+#### Step 1b. Configure training
+If you're training your own TensorFlow Lite model, make sure the following items from my [previous guide](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10) have been completed:
+* Train and test images and their XML label files are placed in the \object_detection\images\train and \object_detection\images\test folders
+* train_labels.csv and test_labels.csv have been generated and are located in the \object_detection\images folder
+* train.record and test.record have been generated and are located in the \object_detection folder
+* labelmap.pbtxt file has been created and is located in the \object_detection\training folder
+* proto files in \object_detection\protos have been generated
+
+If you have any questions about these files or donโt know how to generate them, [Steps 2, 3, 4, and 5 of my previous tutorial](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10) show how they are all created.
+
+Copy the ssd_mobilenet_v2_quantized_300x300_coco.config file from the \object_detection\samples\configs folder to the \object_detection\training folder. Then, open the file using a text editor.
+
+Make the following changes to the ssd_mobilenet_v2_quantized_300x300_coco.config file. Note: The paths must be entered with single forward slashes (NOT backslashes), or TensorFlow will give a file path error when trying to train the model! Also, the paths must be in double quotation marks ( " ), not single quotation marks ( ' ).
+
+* Line 9. Change num_classes to the number of different objects you want the classifier to detect. For my bird/squirrel/raccoon detector example, there are three classes, so I set num_classes: 3
+
+* Line 141. Change batch_size: 24 to batch_size: 6 . The smaller batch size will prevent OOM (Out of Memory) errors during training.
+
+* Line 156. Change fine_tune_checkpoint to: "C:/tensorflow1/models/research/object_detection/ ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/model.ckpt"
+
+* Line 175. Change input_path to: "C:/tensorflow1/models/research/object_detection/train.record"
+
+* Line 177. Change label_map_path to: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
+
+* Line 181. Change num_examples to the number of images you have in the \images\test directory. For my bird/squirrel/raccoon detector example, there are 582 test images, so I set num_examples: 582.
+
+* Line 189. Change input_path to: "C:/tensorflow1/models/research/object_detection/test.record"
+
+* Line 191. Change label_map_path to: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
+
+Save and exit the training file after the changes have been made.
+
+#### Step 1c. Run training in Anaconda virtual environment
+All that's left to do is train the model! First, move the โtrain.pyโ file from the \object_detection\legacy folder into the main \object_detection folder. (See the [FAQ](#frequently-asked-questions-and-common-errors) for why I am using the legacy train.py script rather than model_main.py for training.)
+
+Then, open a new Anaconda Prompt window by searching for โAnaconda Promptโ in the Start menu and clicking on it. Activate the โtensorflow1โ virtual environment (which was set up in my [previous tutorial](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10)) by issuing:
+
+```
+activate tensorflow1
+```
+
+Then, set the PYTHONPATH environment variable by issuing:
+
+```
+set PYTHONPATH=C:\tensorflow1\models;C:\tensorflow1\models\research;C:\tensorflow1\models\research\slim
+```
+
+Next, change directories to the \object_detection folder:
+
+```
+cd C:\tensorflow1\models\research\object_detection
+```
+
+Finally, train the model by issuing:
+
+```
+python train.py --logtostderr โtrain_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v2_quantized_300x300_coco.config
+```
+
+If everything was set up correctly, the model will begin training after a couple minutes of initialization.
+
+
+
+
+
+Allow the model to train until the loss consistently drops below 2. For my bird/squirrel/raccoon detector model, this took about 9000 steps, or 8 hours of training. (Time will vary depending on how powerful your CPU and GPU are. Please see [Step 6 of my previous tutorial](https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10/blob/master/README.md#6-run-the-training) for more information on training and an explanation of how to view the progress of the training job using TensorBoard.)
+
+Once training is complete (i.e. the loss has consistently dropped below 2), press Ctrl+C to stop training. The latest checkpoint will be saved in the \object_detection\training folder, and we will use that checkpoint to export the frozen TensorFlow Lite graph. Take note of the checkpoint number of the model.ckpt file in the training folder (i.e. model.ckpt-XXXX), as it will be used later.
+
+#### Step 1d. Export frozen inference graph for TensorFlow Lite
+Now that training has finished, the model can be exported for conversion to TensorFlow Lite using the export_tflite_ssd_graph.py script. First, create a folder in \object_detection called โTFLite_modelโ by issuing:
+
+```
+mkdir TFLite_model
+```
+
+Next, letโs set up some environment variables so the commands are easier to type out. Issue the following commands in Anaconda Prompt. (Note, the XXXX in the second command should be replaced with the highest-numbered model.ckpt file in the \object_detection\training folder.)
+
+```
+set CONFIG_FILE=C:\\tensorflow1\models\research\object_detection\training\ssd_mobilenet_v2_quantized_300x300_coco.config
+set CHECKPOINT_PATH=C:\\tensorflow1\models\research\object_detection\training\model.ckpt-XXXX
+set OUTPUT_DIR=C:\\tensorflow1\models\research\object_detection\TFLite_model
+```
+
+Now that those are set up, issue this command to export the model for TensorFlow Lite:
+
+```
+python export_tflite_ssd_graph.py --pipeline_config_path=%CONFIG_FILE% --trained_checkpoint_prefix=%CHECKPOINT_PATH% --output_directory=%OUTPUT_DIR% --add_postprocessing_op=true
+```
+
+After the command has executed, there should be two new files in the \object_detection\TFLite_model folder: tflite_graph.pb and tflite_graph.pbtxt.
+
+Thatโs it! The new inference graph has been trained and exported. This inference graph's architecture and network operations are compatible with TensorFlow Lite's framework. However, the graph still needs to be converted to an actual TensorFlow Lite model. We'll do that in Step 3. First, we have to build TensorFlow from source. On to Step 2!
+
+### Step 2. Build TensorFlow From Source
+To convert the frozen graph we just exported into a model that can be used by TensorFlow Lite, it has to be run through the TensorFlow Lite Optimizing Converter (TOCO). Unfortunately, to use TOCO, we have to build TensorFlow from source on our computer. To do this, weโll create a separate Anaconda virtual environment for building TensorFlow.
+
+This part of the tutorial breaks down step-by-step how to build TensorFlow from source on your Windows PC. It follows the [Build TensorFlow From Source on Windows](https://www.tensorflow.org/install/source_windows) instructions given on the official TensorFlow website, with some slight modifications.
+
+This guide will show how to build either the CPU-only version of TensorFlow or the GPU-enabled version of TensorFlow v1.13. If you would like to build a version other than TF v1.13, you can still use this guide, but check the [build configuration list](https://www.tensorflow.org/install/source_windows#tested_build_configurations) and make sure you use the correct package versions.
+
+**If you are only building TensorFlow to convert a TensorFlow Lite object detection model, I recommend building the CPU-only version!** It takes very little computational effort to export the model, so your CPU can do it just fine without help from your GPU. If youโd like to build the GPU-enabled version anyway, then you need to have the appropriate version of CUDA and cuDNN installed. [The TensorFlow installation guide](https://www.tensorflow.org/install/gpu#windows_setup) explains how to install CUDA and cuDNN. Check the [build configuration list](https://www.tensorflow.org/install/source_windows#tested_build_configurations) to see which versions of CUDA and cuDNN are compatible with which versions of TensorFlow.
+
+**If you get any errors during this process, please look at the [FAQ section](frequently-asked-questions-and-common-errors) at the bottom of this guide! It gives solutions to common errors that occur.**
+
+#### Step 2a. Install MSYS2
+MSYS2 has some binary tools needed for building TensorFlow. It also automatically converts Windows-style directory paths to Linux-style paths when using Bazel. The Bazel build wonโt work without MSYS2 installed!
+
+First, install MSYS2 by following the instructions on the [MSYS2 website](https://www.msys2.org/). Download the msys2-x86_64 executable file and run it. Use the default options for installation. After installing, open MSYS2 and issue:
+
+```
+pacman -Syu
+```
+
+
+
+After it's completed, close the window, re-open it, and then issue the following two commands:
+
+```
+pacman -Su
+pacman -S patch unzip
+```
+
+
+
+
+
+This updates MSYS2โs package manager and downloads the patch and unzip packages. Now, close the MSYS2 window. We'll add the MSYS2 binary to the PATH environment variable in Step 2c.
+
+#### Step 2b. Install Visual C++ Build Tools 2015
+Install Microsoft Build Tools 2015 and Microsoft Visual C++ 2015 Redistributable by visiting the [Visual Studio older downloads](https://visualstudio.microsoft.com/vs/older-downloads/) page. Click the โRedistributables and Build Toolsโ dropdown at the bottom of the list. Download and install the following two packages:
+
+* **Microsoft Build Tools 2015 Update 3** - Use the default installation options in the install wizard. Once you begin installing, it goes through a fairly large download, so it will take a while if you have a slow internet connection. It may give you some warnings saying build tools or redistributables have already been installed. If so, that's fine; just click through them.
+* **Microsoft Visual C++ 2015 Redistributable Update 3** โ This may give you an error saying the redistributable has already been installed. If so, thatโs fine.
+
+Restart your PC after installation has finished.
+
+#### Step 2c. Update Anaconda and create tensorflow-build environment
+Now that the Visual Studio tools are installed and your PC is freshly restarted, open a new Anaconda Prompt window. First, update Anaconda to make sure its package list is up to date. In the Anaconda Prompt window, issue these two commands:
+
+```
+conda update -n base -c defaults conda
+conda update --all
+```
+
+The update process may take up to an hour, depending on how it's been since you installed or updated Anaconda. Next, create a new Anaconda virtual environment called โtensorflow-buildโ. Weโll work in this environment for the rest of the build process. Create and activate the environment by issuing:
+
+```
+conda create -n tensorflow-build pip python=3.6
+conda activate tensorflow-build
+```
+
+After the environment is activated, you should see (tensorflow-build) before the active path in the command window.
+
+Update pip by issuing:
+
+```
+python -m pip install --upgrade pip
+```
+
+We'll use Anaconda's git package to download the TensorFlow repository, so install git using:
+
+```
+conda install -c anaconda git
+```
+
+Next, add the MSYS2 binaries to this environment's PATH variable by issuing:
+
+```
+set PATH=%PATH%;C:\msys64\usr\bin
+```
+
+(If MSYS2 is installed in a different location than C:\msys64, use that location instead.) Youโll have to re-issue this PATH command if you ever close and re-open the Anaconda Prompt window.
+
+#### Step 2d. Download Bazel and Python package dependencies
+Next, weโll install Bazel and some other Python packages that are used for building TensorFlow. Install the necessary Python packages by issuing:
+
+```
+pip install six numpy wheel
+pip install keras_applications==1.0.6 --no-deps
+pip install keras_preprocessing==1.0.5 --no-deps
+```
+
+Then install Bazel v0.21.0 by issuing the following command. (If you are building a version of TensorFlow other than v1.13, you may need to use a different version of Bazel.)
+
+```
+conda install -c conda-forge bazel=0.21.0
+```
+
+#### Step 2d. Download TensorFlow source and configure build
+Time to download TensorFlowโs source code from GitHub! Issue the following commands to create a new folder directly in C:\ called โtensorflow-buildโ and cd into it:
+
+```
+mkdir C:\tensorflow-build
+cd C:\tensorflow-build
+```
+
+Then, clone the TensorFlow repository and cd into it by issuing:
+
+```
+git clone https://github.com/tensorflow/tensorflow.git
+cd tensorflow
+```
+
+Next, check out the branch for TensorFlow v1.13:
+
+```
+git checkout r1.13
+```
+
+The version you check out should match the TensorFlow version you used to train your model in [Step 1](#step-1-train-quantized-ssd-mobilenet-model-and-export-frozen-tensorflow-lite-graph). If you used a different version than TF v1.13, then replace "1.13" with the version you used. See the [FAQs section](#how-do-i-check-which-tensorflow-version-i-used-to-train-my-detection-model) for instructions on how to check the TensorFlow version you used for training.
+
+Next, weโll configure the TensorFlow build using the configure.py script. From the C:\tensorflow-build\tensorflow directory, issue:
+
+```
+python ./configure.py
+```
+
+This will initiate a Bazel session. As I mentioned before, you can build either the CPU-only version of TensorFlow or the GPU-enabled version of TensorFlow. If you're only using this TensorFlow build to convert your TensorFlow Lite model, **I recommend building the CPU-only version**. If youโd still like to build the GPU-enabled version for some other reason, then you need to have the appropriate version of CUDA and cuDNN installed. This guide doesn't cover building the GPU-enabled version of TensorFlow, but you can try following the official build instructions on the [TensorFlow website](https://www.tensorflow.org/install/source_windows).
+
+Hereโs what the configuration session will look like if you are building for CPU only. Basically, press Enter to select the default option for each question.
+
+```
+You have bazel 0.21.0- (@non-git) installed.
+
+Please specify the location of python. [Default is C:\ProgramData\Anaconda3\envs\tensorflow-build\python.exe]:
+
+Found possible Python library paths:
+
+ C:\ProgramData\Anaconda3\envs\tensorflow-build\lib\site-packages
+
+Please input the desired Python library path to use. Default is [C:\ProgramData\Anaconda3\envs\tensorflow-build\lib\site-packages]
+
+Do you wish to build TensorFlow with XLA JIT support? [y/N]: N
+No XLA JIT support will be enabled for TensorFlow.
+
+Do you wish to build TensorFlow with ROCm support? [y/N]: N
+No ROCm support will be enabled for TensorFlow.
+
+Do you wish to build TensorFlow with CUDA support? [y/N]: N
+No CUDA support will be enabled for TensorFlow.
+```
+
+Once the configuration is finished, TensorFlow is ready to be bulit!
+
+#### Step 2e. Build TensorFlow package
+Next, use Bazel to create the package builder for TensorFlow. To create the CPU-only version, issue the following command. The build process took about 70 minutes on my computer.
+
+```
+bazel build --config=opt //tensorflow/tools/pip_package:build_pip_package
+```
+
+Now that the package builder has been created, letโs use it to build the actual TensorFlow wheel file. Issue the following command (it took about 5 minutes to complete on my computer):
+
+```
+bazel-bin\tensorflow\tools\pip_package\build_pip_package C:/tmp/tensorflow_pkg
+```
+
+This creates the wheel file and places it in C:\tmp\tensorflow_pkg.
+
+#### Step 2f. Install TensorFlow and test it out!
+TensorFlow is finally ready to be installed! Open File Explorer and browse to the C:\tmp\tensorflow_pkg folder. Copy the full filename of the .whl file, and paste it in the following command:
+
+```
+pip3 install C:/tmp/tensorflow_pkg/
+```
+
+That's it! TensorFlow is installed! Let's make sure it installed correctly by opening a Python shell:
+
+```
+python
+```
+
+Once the shell is opened, issue these commands:
+
+```
+>>> import tensorflow as tf
+>>> tf.__version__
+```
+
+If everything was installed properly, it will respond with the installed version of TensorFlow. Note: You may get some deprecation warnings after the "import tensorflow as tf" command. As long as they are warnings and not actual errors, you can ignore them! Exit the shell by issuing:
+
+```
+exit()
+```
+
+With TensorFlow installed, we can finally convert our trained model into a TensorFlow Lite model. On to the last step: Step 3!
+
+### Step 3. Use TOCO to Create Optimzed TensorFlow Lite Model, Create Label Map, Run Model
+Although we've already exported a frozen graph of our detection model for TensorFlow Lite, we still need run it through the TensorFlow Lite Optimizing Converter (TOCO) before it will work with the TensorFlow Lite interpreter. TOCO converts models into an optimized FlatBuffer format that allows them to run efficiently on TensorFlow Lite. We also need to create a new label map before running the model.
+
+#### Step 3a. Create optimized TensorFlow Lite model
+First, weโll run the model through TOCO to create an optimzed TensorFLow Lite model. The TOCO tool lives deep in the C:\tensorflow-build directory, and it will be run from the โtensorflow-buildโ Anaconda virtual environment that we created and used during Step 2. Meanwhile, the model we trained in Step 1 lives inside the C:\tensorflow1\models\research\object_detection\TFLite_model directory. Weโll create an environment variable called OUTPUT_DIR that points at the correct model directory to make it easier to enter the TOCO command.
+
+If you don't already have an Anaconda Prompt window open with the "tensorflow-build" environment active and working in C:\tensorflow-build, open a new Anaconda Prompt window and issue:
+
+```
+activate tensorflow-build
+cd C:\tensorflow-build
+```
+
+Create the OUTPUT_DIR environment variable by issuing:
+
+```
+set OUTPUT_DIR=C:\\tensorflow1\models\research\object_detection\TFLite_model
+```
+
+Next, use Bazel to run the model through the TOCO tool by issuing this command:
+
+```
+bazel run --config=opt tensorflow/lite/toco:toco -- --input_file=%OUTPUT_DIR%/tflite_graph.pb --output_file=%OUTPUT_DIR%/detect.tflite --input_shapes=1,300,300,3 --input_arrays=normalized_input_image_tensor --output_arrays=TFLite_Detection_PostProcess,TFLite_Detection_PostProcess:1,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3 --inference_type=QUANTIZED_UINT8 --mean_values=128 --std_values=128 --change_concat_input_ranges=false --allow_custom_ops
+```
+
+Note: If you are using a floating, non-quantized SSD model (e.g. the ssdlite_mobilenet_v2_coco model rather than the ssd_mobilenet_v2_quantized_coco model), the Bazel TOCO command must be modified slightly:
+
+```
+bazel run --config=opt tensorflow/lite/toco:toco -- --input_file=$OUTPUT_DIR/tflite_graph.pb --output_file=$OUTPUT_DIR/detect.tflite --input_shapes=1,300,300,3 --input_arrays=normalized_input_image_tensor --output_arrays=TFLite_Detection_PostProcess,TFLite_Detection_PostProcess:1,TFLite_Detection_PostProcess:2,TFLite_Detection_PostProcess:3 --inference_type=FLOAT --allow_custom_ops
+```
+
+If you are using Linux, make sure to use the commands given in the [official TensorFlow instructions here](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tensorflowlite.md). I removed the ' characters from the command, because for some reason they cause errors on Windows!
+
+After the command finishes running, you should see a file called detect.tflite in the \object_detection\TFLite_model directory. This is the model that can be used with TensorFlow Lite!
+
+#### Step 3b. Create new label map
+For some reason, TensorFlow Lite uses a different label map format than classic TensorFlow. The classic TensorFlow label map format looks like this (you can see an example in the \object_detection\data\mscoco_label_map.pbtxt file):
+
+```
+item {
+ name: "/m/01g317"
+ id: 1
+ display_name: "person"
+}
+item {
+ name: "/m/0199g"
+ id: 2
+ display_name: "bicycle"
+}
+item {
+ name: "/m/0k4j"
+ id: 3
+ display_name: "car"
+}
+item {
+ name: "/m/04_sv"
+ id: 4
+ display_name: "motorcycle"
+}
+And so on...
+```
+
+However, the label map provided with the [example TensorFlow Lite object detection model](https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip) looks like this:
+
+```
+person
+bicycle
+car
+motorcycle
+And so on...
+```
+
+Basically, rather than explicitly stating the name and ID number for each class like the classic TensorFlow label map format does, the TensorFlow Lite format just lists each class. To stay consistent with the example provided by Google, Iโm going to stick with the TensorFlow Lite label map format for this guide.
+
+Thus, we need to create a new label map that matches the TensorFlow Lite style. Open a text editor and list each class in order of their class number. Then, save the file as โlabelmap.txtโ in the TFLite_model folder. As an example, here's what the labelmap.txt file for my bird/squirrel/raccoon detector looks like:
+
+
+
+
+
+Now weโre ready to run the model!
+
+#### Step 3c. Run the TensorFlow Lite model!
+I wrote three Python scripts to run the TensorFlow Lite object detection model on an image, video, or webcam feed: `TFLite_detection_image.py`, `TFLite_detection_video.py`, and `TFLite_detection_webcam.py`. The scripts are based off the `label_image.py` example given in the [TensorFlow Lite examples GitHub repository](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/python/label_image.py).
+
+Weโll download the Python scripts directly from this repository. First, install wget for Anaconda by issuing:
+
+```
+conda install -c menpo wget
+```
+
+Once it's installed, download the scripts by issuing:
+
+```
+wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_image.py --no-check-certificate
+wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_video.py --no-check-certificate
+wget https://raw.githubusercontent.com/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/master/TFLite_detection_webcam.py --no-check-certificate
+```
+
+Instructions for running the webcam, video, and image scripts are given on the main README page of this repository (link to be added). Go check them out to see how to deploy your newly trained model!
+
+## Frequently Asked Questions and Common Errors
+
+#### Why does this guide use train.py rather than model_main.py for training?
+This guide uses "train.py" to run training on the TFLite detection model. The train.py script is deprecated, but the model_main.py script that replaced it doesn't log training progress by default, and it requires pycocotools to be installed. Using model_main.py requires a few extra setup steps, and I want to keep this guide as simple as possible. Since there are no major differences between train.py and model_main.py that will affect training ([see TensorFlow Issue #6100](https://github.com/tensorflow/models/issues/6100)), I use train.py for this guide.
+
+#### How do I check which TensorFlow version I used to train my detection model?
+Hereโs how you can check the version of TensorFlow you used for training.
+
+1. Open a new Anaconda Prompt window and issue `activate tensorflow1` (or whichever environment name you used)
+2. Open a python shell by issuing `python`
+3. Within the Python shell, import TensorFlow by issuing `import tensorflow as tf`
+4. Check the TensorFlow version by issuing `tf.__version__` . It will respond with the version of TensorFlow. This is the version that you used for training.
+
+#### Building TensorFlow from source
+In case you run into error `error C2100: illegal indirection` during TensorFlow compilation, simply edit the file `tensorflow-build\tensorflow\tensorflow\core\framework\op_kernel.h`, go to line 405, and change `reference operator*() { return (*list_)[i_]; }` to `reference operator*() const { return (*list_)[i_]; }`. Credits go to: https://github.com/tensorflow/tensorflow/issues/15925#issuecomment-499569928
diff --git a/celestial-mini/doc/object_detection_folder.png b/celestial-mini/doc/object_detection_folder.png
new file mode 100644
index 0000000000000000000000000000000000000000..67f838c06e20aabd93849cd652a093bf521dcd0d
Binary files /dev/null and b/celestial-mini/doc/object_detection_folder.png differ
diff --git a/celestial-mini/doc/squirrels!!.png b/celestial-mini/doc/squirrels!!.png
new file mode 100644
index 0000000000000000000000000000000000000000..3d90b6f3ab798e6457cf084f240bbad2cebd1ccb
--- /dev/null
+++ b/celestial-mini/doc/squirrels!!.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b5c767cfc4532390660744e1e70f8c5d95c45db3822e0ba57abbd151ee8c0157
+size 798387
diff --git a/celestial-mini/doc/tflite1_folder.png b/celestial-mini/doc/tflite1_folder.png
new file mode 100644
index 0000000000000000000000000000000000000000..600d766f30ec29d14fa44598f069ca17cda2672a
--- /dev/null
+++ b/celestial-mini/doc/tflite1_folder.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf907d630937d317e8423a40a4c5994fedc24eec78d97396b69671b73ddcc255
+size 137530
diff --git a/celestial-mini/doc/training_in_progress.png b/celestial-mini/doc/training_in_progress.png
new file mode 100644
index 0000000000000000000000000000000000000000..8316d11d00dc37787ccf6b675bf4deeee6530e89
Binary files /dev/null and b/celestial-mini/doc/training_in_progress.png differ
diff --git a/celestial-mini/examples/ChangeCounter.py b/celestial-mini/examples/ChangeCounter.py
new file mode 100644
index 0000000000000000000000000000000000000000..ca8d215e356e0d10365950c9fd1bb8ff30792395
--- /dev/null
+++ b/celestial-mini/examples/ChangeCounter.py
@@ -0,0 +1,199 @@
+######## Count Change Using Object Detection #########
+#
+# Author: Evan Juras, EJ Technology Consultants (www.ejtech.io)
+# Date: 10/29/22
+#
+# Description:
+# This program uses a TFLite coin detection model to locate and identify coins in
+# a live camera feed. It calculates the total value of the coins in the camera's view.
+# (Works on US currency, but can be modified to work with coins from other countries!)
+
+# Import packages
+import os
+import argparse
+import cv2
+import numpy as np
+import sys
+import time
+from threading import Thread
+import importlib.util
+
+### User-defined variables
+
+# Model info
+MODEL_NAME = 'change_counter'
+GRAPH_NAME = 'detect.tflite'
+LABELMAP_NAME = 'labelmap.txt'
+use_TPU = False
+
+# Program settings
+min_conf_threshold = 0.50
+resW, resH = 1280, 720 # Resolution to run camera at
+imW, imH = resW, resH
+
+### Set up model parameters
+
+# Import TensorFlow libraries
+# If tflite_runtime is installed, import interpreter from tflite_runtime, else import from regular tensorflow
+# If using Coral Edge TPU, import the load_delegate library
+pkg = importlib.util.find_spec('tflite_runtime')
+if pkg:
+ from tflite_runtime.interpreter import Interpreter
+ if use_TPU:
+ from tflite_runtime.interpreter import load_delegate
+else:
+ from tensorflow.lite.python.interpreter import Interpreter
+ if use_TPU:
+ from tensorflow.lite.python.interpreter import load_delegate
+
+# If using Edge TPU, assign filename for Edge TPU model
+if use_TPU:
+ # If user has specified the name of the .tflite file, use that name, otherwise use default 'edgetpu.tflite'
+ if (GRAPH_NAME == 'detect.tflite'):
+ GRAPH_NAME = 'edgetpu.tflite'
+
+# Get path to current working directory
+CWD_PATH = os.getcwd()
+
+# Path to .tflite file, which contains the model that is used for object detection
+PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,GRAPH_NAME)
+
+# Path to label map file
+PATH_TO_LABELS = os.path.join(CWD_PATH,MODEL_NAME,LABELMAP_NAME)
+
+# Load the label map
+with open(PATH_TO_LABELS, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+### Load Tensorflow Lite model
+# If using Edge TPU, use special load_delegate argument
+if use_TPU:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT,
+ experimental_delegates=[load_delegate('libedgetpu.so.1.0')])
+else:
+ interpreter = Interpreter(model_path=PATH_TO_CKPT)
+
+interpreter.allocate_tensors()
+
+# Get model details
+input_details = interpreter.get_input_details()
+output_details = interpreter.get_output_details()
+height = input_details[0]['shape'][1]
+width = input_details[0]['shape'][2]
+
+floating_model = (input_details[0]['dtype'] == np.float32)
+
+input_mean = 127.5
+input_std = 127.5
+
+# Check output layer name to determine if this model was created with TF2 or TF1,
+# because outputs are ordered differently for TF2 and TF1 models
+outname = output_details[0]['name']
+
+if ('StatefulPartitionedCall' in outname): # This is a TF2 model
+ boxes_idx, classes_idx, scores_idx = 1, 3, 0
+else: # This is a TF1 model
+ boxes_idx, classes_idx, scores_idx = 0, 1, 2
+
+# Initialize camera
+cap = cv2.VideoCapture(0)
+ret = cap.set(3, resW)
+ret = cap.set(4, resH)
+
+# Initialize frame rate calculation
+frame_rate_calc = 1
+freq = cv2.getTickFrequency()
+
+### Continuously process frames from camera
+while True:
+
+ # Start timer (for calculating frame rate)
+ t1 = cv2.getTickCount()
+
+ # Reset coin value count for this frame
+ total_coin_value = 0
+
+ # Grab frame from camera
+ hasFrame, frame1 = cap.read()
+
+ # Acquire frame and resize to input shape expected by model [1xHxWx3]
+ frame = frame1.copy()
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+ frame_resized = cv2.resize(frame_rgb, (width, height))
+ input_data = np.expand_dims(frame_resized, axis=0)
+
+ # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
+ if floating_model:
+ input_data = (np.float32(input_data) - input_mean) / input_std
+
+ # Perform detection by running the model with the image as input
+ interpreter.set_tensor(input_details[0]['index'],input_data)
+ interpreter.invoke()
+
+ # Retrieve detection results
+ boxes = interpreter.get_tensor(output_details[boxes_idx]['index'])[0] # Bounding box coordinates of detected objects
+ classes = interpreter.get_tensor(output_details[classes_idx]['index'])[0] # Class index of detected objects
+ scores = interpreter.get_tensor(output_details[scores_idx]['index'])[0] # Confidence of detected objects
+
+ # Loop over all detections and process each detection if its confidence is above minimum threshold
+ for i in range(len(scores)):
+ if ((scores[i] > min_conf_threshold) and (scores[i] <= 1.0)):
+
+ # Get bounding box coordinates
+ # Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min()
+ ymin = int(max(1,(boxes[i][0] * imH)))
+ xmin = int(max(1,(boxes[i][1] * imW)))
+ ymax = int(min(imH,(boxes[i][2] * imH)))
+ xmax = int(min(imW,(boxes[i][3] * imW)))
+
+ # Draw bounding box
+ cv2.rectangle(frame, (xmin,ymin), (xmax,ymax), (10, 255, 0), 2)
+
+ # Get object's name and draw label
+ object_name = labels[int(classes[i])] # Look up object name from "labels" array using class index
+ label = '%s: %d%%' % (object_name, int(scores[i]*100)) # Example: 'quarter: 72%'
+ labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2) # Get font size
+ label_ymin = max(ymin, labelSize[1] + 10) # Make sure not to draw label too close to top of window
+ cv2.rectangle(frame, (xmin, label_ymin-labelSize[1]-10), (xmin+labelSize[0], label_ymin+baseLine-10), (255, 255, 255), cv2.FILLED) # Draw white box to put label text in
+ cv2.putText(frame, label, (xmin, label_ymin-7), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) # Draw label text
+
+ # Assign the value of this coin based on the class name of the detected object
+ # (There are more efficient ways to do this, but this shows an example of how to trigger an action when a certain class is detected)
+ if object_name == 'penny':
+ this_coin_value = 0.01
+ elif object_name == 'nickel':
+ this_coin_value = 0.05
+ elif object_name == 'dime':
+ this_coin_value = 0.10
+ elif object_name == 'quarter':
+ this_coin_value = 0.25
+
+ # Add this coin's value to the running total
+ total_coin_value = total_coin_value + this_coin_value
+
+
+ # Now that we've gone through every detection, we know the total value of all coins in the frame. Let's display it in the corner of the frame.
+ cv2.putText(frame,'Total change:',(20,80),cv2.FONT_HERSHEY_PLAIN,2,(0,0,0),4,cv2.LINE_AA)
+ cv2.putText(frame,'Total change:',(20,80),cv2.FONT_HERSHEY_PLAIN,2,(230,230,230),2,cv2.LINE_AA)
+ cv2.putText(frame,'$%.2f' % total_coin_value,(260,85),cv2.FONT_HERSHEY_PLAIN,2.5,(0,0,0),4,cv2.LINE_AA)
+ cv2.putText(frame,'$%.2f' % total_coin_value,(260,85),cv2.FONT_HERSHEY_PLAIN,2.5,(85,195,105),2,cv2.LINE_AA)
+
+ # Draw framerate in corner of frame
+ cv2.putText(frame,'FPS: %.2f' % frame_rate_calc,(20,50),cv2.FONT_HERSHEY_PLAIN,2,(0,0,0),4,cv2.LINE_AA)
+ cv2.putText(frame,'FPS: %.2f' % frame_rate_calc,(20,50),cv2.FONT_HERSHEY_PLAIN,2,(230,230,230),2,cv2.LINE_AA)
+
+ # All the results have been drawn on the frame, so it's time to display it.
+ cv2.imshow('Object detector', frame)
+
+ # Calculate framerate
+ t2 = cv2.getTickCount()
+ time1 = (t2-t1)/freq
+ frame_rate_calc= 1/time1
+
+ # Press 'q' to quit
+ if cv2.waitKey(1) == ord('q'):
+ break
+
+# Clean up
+cv2.destroyAllWindows()
+cap.release()
diff --git a/celestial-mini/examples/README.md b/celestial-mini/examples/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f84d1249aa24efdf9bf65b4161871d9c223104fb
--- /dev/null
+++ b/celestial-mini/examples/README.md
@@ -0,0 +1,4 @@
+# TensorFlow Lite Object Detection Examples
+You've trained a TensorFlow Lite object detection model, but now how do you build an actual program around it? This folder provides code for using TensorFlow Lite object detection models in example applications.
+
+### ChangeCounter.py
diff --git a/celestial-mini/get_pi_requirements.sh b/celestial-mini/get_pi_requirements.sh
new file mode 100644
index 0000000000000000000000000000000000000000..68c53722fbbe4f821f0971781eea8c821127473f
--- /dev/null
+++ b/celestial-mini/get_pi_requirements.sh
@@ -0,0 +1,40 @@
+#!/bin/bash
+
+# Get packages required for OpenCV
+
+sudo apt-get -y install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
+sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
+sudo apt-get -y install libxvidcore-dev libx264-dev
+sudo apt-get -y install qt4-dev-tools
+sudo apt-get -y install libatlas-base-dev
+
+# Need to get an older version of OpenCV because version 4 has errors
+pip3 install opencv-python==3.4.11.41
+
+# Get packages required for TensorFlow
+# Using the tflite_runtime packages available at https://www.tensorflow.org/lite/guide/python
+# Will change to just 'pip3 install tensorflow' once newer versions of TF are added to piwheels
+
+#pip3 install tensorflow
+
+version=$(python3 -c 'import sys; print(".".join(map(str, sys.version_info[:2])))')
+
+if [ $version == "3.9" ]; then
+pip3 install https://github.com/google-coral/pycoral/releases/download/v2.0.0/tflite_runtime-2.5.0.post1-cp39-cp39-linux_armv7l.whl
+fi
+
+if [ $version == "3.8" ]; then
+pip3 install https://github.com/google-coral/pycoral/releases/download/v2.0.0/tflite_runtime-2.5.0.post1-cp38-cp38-linux_armv7l.whl
+fi
+
+if [ $version == "3.7" ]; then
+pip3 install https://github.com/google-coral/pycoral/releases/download/v2.0.0/tflite_runtime-2.5.0.post1-cp37-cp37m-linux_armv7l.whl
+fi
+
+if [ $version == "3.6" ]; then
+pip3 install https://github.com/google-coral/pycoral/releases/download/v2.0.0/tflite_runtime-2.5.0.post1-cp36-cp36m-linux_armv7l.whl
+fi
+
+if [ $version == "3.5" ]; then
+pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp35-cp35m-linux_armv7l.whl
+fi
diff --git a/celestial-mini/test.mp4 b/celestial-mini/test.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..8452450644938d432ade12f03360ceb723cf655b
--- /dev/null
+++ b/celestial-mini/test.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1dfadf4e35fefb489e27a62168db2155b3ffeb9ff16a6016425792fb2e7f7449
+size 23407220
diff --git a/celestial-mini/test1.jpg b/celestial-mini/test1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8d70c83684d9de8455f09244047fb39cd61f5ab0
--- /dev/null
+++ b/celestial-mini/test1.jpg
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fceb862f6261f8c0afcfc51a4d84af6fdee047e46e3d7aaac11ed4cc71f032ab
+size 595492
diff --git a/celestial-mini/util_scripts/README.md b/celestial-mini/util_scripts/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..900a412fa2dcd12873174f0bb274934e26d16b4e
--- /dev/null
+++ b/celestial-mini/util_scripts/README.md
@@ -0,0 +1,22 @@
+## Utility Scripts for TensorFlow Lite Object Detection
+These scripts are used in the [TFLite Training Colab](https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb) to help with various steps of training a custom model. They can also be used as standalone tools.
+
+### Calculate model mAP - (calculate_map_cartucho.py)
+Calculate your TFLite detection model's mAP score! I'll share instructions on how to use this outside the Colab notebook later.
+
+
+
+This tool uses the main.py script from [Cartucho's excellent repository](https://github.com/Cartucho/mAP), which takes in ground truth data and detection results to calculate average precision at a certain IoU threshold. The calculate_map_cartucho.py script performs the mAP calculation at multiple IoU thresholds to determine the COCO metric for average mAP @ 0.5:0.95.
+
+### Split images into train, test, and validation sets - (train_val_test.py)
+This script takes a folder full of images and randomly splits them between train, test, and validation folders. It does an 80%/10%/10% split by default, but this can be modified by changing the `train_percent`, `test_percent`, and `val_percent` variables in the code.
+
+### Create CSV annotation file - (create_csv.py)
+This script creates a single CSV data file from a set of Pascal VOC annotation files.
+
+Original credit for the script goes to [datitran](https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py).
+
+### Create TFRecord file - (create_tfrecord.py)
+This script creates TFRecord files from a CSV annotation data file and a folder of images. TFRecords are the [data format required](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/preparing_inputs.md) by the TensorFlow Object Detection API for training.
+
+Original credit for the script goes to [datitran](https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py).
diff --git a/celestial-mini/util_scripts/calculate_map_cartucho.py b/celestial-mini/util_scripts/calculate_map_cartucho.py
new file mode 100644
index 0000000000000000000000000000000000000000..f69307031a5d07949abca25e18a589258f49c878
--- /dev/null
+++ b/celestial-mini/util_scripts/calculate_map_cartucho.py
@@ -0,0 +1,130 @@
+##### Calculate object detection mAP score #####
+#
+# Author: Evan Juras, EJ Technology Consultants (https://ejtech.io)
+# Date: 11/12/22
+#
+# Description:
+# This script determines an object detection model's mAP score using a calculator from https://github.com/Cartucho/mAP .
+# It calculates the COCO metric (mAP @ 0.5:0.95) by running the calculator script ("main.py") multiple times at different
+# IoU thresholds, then averaging the result from each run. It also supports Pascal VOC metric (mAP @ 0.5) and custom user metrics.
+
+import os
+import sys
+import argparse
+import numpy as np
+
+# Define and parse input arguments
+parser = argparse.ArgumentParser()
+parser.add_argument('--labels', help='Path to the labelmap file', default='labelmap.txt')
+parser.add_argument('--outdir', help='Output folder to save results in', default='outputs')
+parser.add_argument('--metric', help='mAP metric to calculate: "coco", "pascalvoc", or "custom"', default='coco')
+parser.add_argument('--iou', help='(Only if using --metric=custom) Specify IoU threshholds \
+ to use for evaluation (example: 0.5,0.6,0.7)')
+parser.add_argument('--show_images', help='Display and save images as they are evaluated', action='store_true') # Coming soon!
+parser.add_argument('--show_plots', help='Display and save plots showing precision/recall curve, mAP score, etc', action='store_true') # Coming soon!
+
+args = parser.parse_args()
+
+labelmap = args.labels
+outputs_dir = args.outdir
+metric = args.metric
+show_imgs = args.show_images
+show_plots = args.show_plots
+
+# Define which metric to use (i.e. which set of IoU thresholds to calculate mAP for)
+if metric=='coco':
+ iou_threshes = [0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95]
+elif metric=='pascalvoc':
+ iou_threshes = [0.5]
+elif metric=='custom':
+ custom_ious = args.iou
+ try:
+ iou_threshes = [float(iou) for iou in custom_ious]
+ except:
+ print('Invalid entry for --iou. Example of a correct entry: "--iou=0.5,0.6,0.7"')
+ sys.exit()
+else:
+ print('Invalid entry for --metric. Please use coco, pascalvoc, or custom.')
+ sys.exit()
+
+# Get file paths
+cwd = os.getcwd()
+output_path = os.path.join(cwd,outputs_dir)
+labelmap_path = os.path.join(cwd,labelmap)
+
+# Define arguments to show images and plots (if desired by user)
+if show_imgs: show_img_arg = ''
+else: show_img_arg = ' -na' # "-na" argument tells main.py NOT to show images
+
+if show_plots: show_plot_arg = ''
+else: show_plot_arg = ' -np' # "-np" argument tells main.py NOT to show plots
+
+
+# Load the label map
+with open(labelmap_path, 'r') as f:
+ classes = [line.strip() for line in f.readlines()]
+
+# Make folder to store output result files
+if os.path.exists(output_path):
+ print('The output folder %s already exists. Please delete it or specify a different folder name using --outdir.' % output_path)
+ sys.exit()
+else:
+ os.makedirs(output_path)
+
+# Create dictionary to store overall mAP results and results for each class
+mAP_results = {'overall':np.zeros(len(iou_threshes))}
+for classname in classes:
+ mAP_results[classname] = np.zeros(len(iou_threshes)) # Add each class to dict
+
+for i, iou_thresh in enumerate(iou_threshes):
+
+ # Modify main.py to use the specified IoU value
+ with open('main.py', 'r') as f:
+ data = f.read()
+
+ # Set IoU threshold value
+ data = data.replace('MINOVERLAP = 0.5', 'MINOVERLAP = %.2f' % iou_thresh)
+ f.close()
+
+ with open('main_modified.py', 'w') as f:
+ f.write(data)
+
+ # Run modified script
+ print('Calculating mAP at %.2f IoU threshold...' % iou_thresh)
+ os.system('python main_modified.py' + show_img_arg + show_plot_arg)
+
+ # Extract mAP values by manually parsing the output.txt file
+ with open('output/output.txt', 'r',) as f:
+ for line in f:
+ if '%' in line:
+ # Overall mAP result is stored as "mAP = score%" (example: "mAP = 63.52%")
+ if 'mAP' in line:
+ vals = line.split(' ')
+ overall_mAP = float(vals[2].replace('%',''))
+ mAP_results['overall'][i] = overall_mAP
+ # Class mAP results are stored as "score% = class AP" (example: "78.30% = dime AP")
+ else:
+ vals = line.split(' ')
+ class_name = vals[2]
+ class_mAP = float(vals[0].replace('%',''))
+ mAP_results[class_name][i] = class_mAP
+
+ # Save mAP results for this IoU value as a different folder name, then delete modified script
+ newpath = os.path.join(output_path,'output_iou_%.2f' % iou_thresh)
+ os.rename('output',newpath)
+ os.remove('main_modified.py')
+
+# Okay, we found mAP at each IoU value! Now we just need to average the mAPs and display them.
+class_mAP_result = []
+print('\n***mAP Results***\n')
+print('Class\t\tAverage mAP @ 0.5:0.95')
+print('---------------------------------------')
+for classname in classes:
+ class_vals = mAP_results[classname]
+ class_avg = np.mean(class_vals)
+ class_mAP_result.append(class_avg)
+ print('%s\t\t%0.2f%%' % (classname, class_avg)) # TO DO: Find a better variable name than "classname"
+
+overall_mAP_result = np.mean(class_mAP_result)
+print('\nOverall\t\t%0.2f%%' % overall_mAP_result)
+
diff --git a/celestial-mini/util_scripts/create_csv.py b/celestial-mini/util_scripts/create_csv.py
new file mode 100644
index 0000000000000000000000000000000000000000..d919fcb1842b8336bbf76bdda2adb4ef104a3cbd
--- /dev/null
+++ b/celestial-mini/util_scripts/create_csv.py
@@ -0,0 +1,36 @@
+# Script to create CSV data file from Pascal VOC annotation files
+# Based off code from GitHub user datitran: https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py
+
+import os
+import glob
+import pandas as pd
+import xml.etree.ElementTree as ET
+
+def xml_to_csv(path):
+ xml_list = []
+ for xml_file in glob.glob(path + '/*.xml'):
+ tree = ET.parse(xml_file)
+ root = tree.getroot()
+ for member in root.findall('object'):
+ value = (root.find('filename').text,
+ int(root.find('size')[0].text),
+ int(root.find('size')[1].text),
+ member[0].text,
+ int(member[4][0].text),
+ int(member[4][1].text),
+ int(member[4][2].text),
+ int(member[4][3].text)
+ )
+ xml_list.append(value)
+ column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
+ xml_df = pd.DataFrame(xml_list, columns=column_name)
+ return xml_df
+
+def main():
+ for folder in ['train','validation']:
+ image_path = os.path.join(os.getcwd(), ('images/' + folder))
+ xml_df = xml_to_csv(image_path)
+ xml_df.to_csv(('images/' + folder + '_labels.csv'), index=None)
+ print('Successfully converted xml to csv.')
+
+main()
diff --git a/celestial-mini/util_scripts/create_tfrecord.py b/celestial-mini/util_scripts/create_tfrecord.py
new file mode 100644
index 0000000000000000000000000000000000000000..49b9ff93991b20abf1e5cc2d216bcca759da7ef5
--- /dev/null
+++ b/celestial-mini/util_scripts/create_tfrecord.py
@@ -0,0 +1,120 @@
+# Script to create TFRecord files from train and test dataset folders
+# Originally from GitHub user datitran: https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
+
+"""
+Usage:
+ # From tensorflow/models/
+ # Create train data:
+ python generate_tfrecord.py --csv_input=images/train_labels.csv --image_dir=images/train --output_path=train.record
+
+ # Create test data:
+ python generate_tfrecord.py --csv_input=images/test_labels.csv --image_dir=images/test --output_path=test.record
+"""
+from __future__ import division
+from __future__ import print_function
+from __future__ import absolute_import
+
+import os
+import io
+import pandas as pd
+
+from tensorflow.python.framework.versions import VERSION
+if VERSION >= "2.0.0a0":
+ import tensorflow.compat.v1 as tf
+else:
+ import tensorflow as tf
+
+from PIL import Image
+from object_detection.utils import dataset_util
+from collections import namedtuple, OrderedDict
+
+flags = tf.app.flags
+flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
+flags.DEFINE_string('labelmap', '', 'Path to the labelmap file')
+flags.DEFINE_string('image_dir', '', 'Path to the image directory')
+flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
+FLAGS = flags.FLAGS
+
+def split(df, group):
+ data = namedtuple('data', ['filename', 'object'])
+ gb = df.groupby(group)
+ return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
+
+
+def create_tf_example(group, path):
+ with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
+ encoded_jpg = fid.read()
+ encoded_jpg_io = io.BytesIO(encoded_jpg)
+ image = Image.open(encoded_jpg_io)
+ width, height = image.size
+
+ filename = group.filename.encode('utf8')
+ image_format = b'jpg'
+ xmins = []
+ xmaxs = []
+ ymins = []
+ ymaxs = []
+ classes_text = []
+ classes = []
+
+ labels = []
+ with open(FLAGS.labelmap, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+ for index, row in group.object.iterrows():
+ xmins.append(row['xmin'] / width)
+ xmaxs.append(row['xmax'] / width)
+ ymins.append(row['ymin'] / height)
+ ymaxs.append(row['ymax'] / height)
+ classes_text.append(row['class'].encode('utf8'))
+ classes.append(int(labels.index(row['class'])+1))
+
+ tf_example = tf.train.Example(features=tf.train.Features(feature={
+ 'image/height': dataset_util.int64_feature(height),
+ 'image/width': dataset_util.int64_feature(width),
+ 'image/filename': dataset_util.bytes_feature(filename),
+ 'image/source_id': dataset_util.bytes_feature(filename),
+ 'image/encoded': dataset_util.bytes_feature(encoded_jpg),
+ 'image/format': dataset_util.bytes_feature(image_format),
+ 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
+ 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
+ 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
+ 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
+ 'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
+ 'image/object/class/label': dataset_util.int64_list_feature(classes),
+ }))
+ return tf_example
+
+
+def main(_):
+ # Load and prepare data
+ writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
+ path = os.path.join(os.getcwd(), FLAGS.image_dir)
+ examples = pd.read_csv(FLAGS.csv_input)
+
+ # Create TFRecord files
+ grouped = split(examples, 'filename')
+ for group in grouped:
+ tf_example = create_tf_example(group, path)
+ writer.write(tf_example.SerializeToString())
+
+ writer.close()
+ output_path = os.path.join(os.getcwd(), FLAGS.output_path)
+ print('Successfully created the TFRecords: {}'.format(output_path))
+
+ # Create labelmap.pbtxt file
+ path_to_labeltxt = os.path.join(os.getcwd(), FLAGS.labelmap)
+ with open(path_to_labeltxt, 'r') as f:
+ labels = [line.strip() for line in f.readlines()]
+
+ path_to_labelpbtxt = os.path.join(os.getcwd(), 'labelmap.pbtxt')
+ with open(path_to_labelpbtxt,'w') as f:
+ for i, label in enumerate(labels):
+ f.write('item {\n' +
+ ' id: %d\n' % (i + 1) +
+ ' name: \'%s\'\n' % label +
+ '}\n' +
+ '\n')
+
+if __name__ == '__main__':
+ tf.app.run()
diff --git a/celestial-mini/util_scripts/train_val_test_split.py b/celestial-mini/util_scripts/train_val_test_split.py
new file mode 100644
index 0000000000000000000000000000000000000000..828732b64f737f3a2e29a80d4bec07f4cf112bd2
--- /dev/null
+++ b/celestial-mini/util_scripts/train_val_test_split.py
@@ -0,0 +1,78 @@
+### Python script to split a labeled image dataset into Train, Validation, and Test folders.
+# Author: Evan Juras, EJ Technology Consultants
+# Date: 4/10/21
+
+# Randomly splits images to 80% train, 10% validation, and 10% test, and moves them to their respective folders.
+# This script is intended to be used in the TFLite Object Detection Colab notebook here:
+# https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb
+
+from pathlib import Path
+import random
+import os
+import sys
+
+# Define paths to image folders
+image_path = '/content/images/all'
+train_path = '/content/images/train'
+val_path = '/content/images/validation'
+test_path = '/content/images/test'
+
+# Get list of all images
+jpeg_file_list = [path for path in Path(image_path).rglob('*.jpeg')]
+jpg_file_list = [path for path in Path(image_path).rglob('*.jpg')]
+png_file_list = [path for path in Path(image_path).rglob('*.png')]
+bmp_file_list = [path for path in Path(image_path).rglob('*.bmp')]
+
+if sys.platform == 'linux':
+ JPEG_file_list = [path for path in Path(image_path).rglob('*.JPEG')]
+ JPG_file_list = [path for path in Path(image_path).rglob('*.JPG')]
+ file_list = jpg_file_list + JPG_file_list + png_file_list + bmp_file_list + JPEG_file_list + jpeg_file_list
+else:
+ file_list = jpg_file_list + png_file_list + bmp_file_list + jpeg_file_list
+
+file_num = len(file_list)
+print('Total images: %d' % file_num)
+
+# Determine number of files to move to each folder
+train_percent = 0.8 # 80% of the files go to train
+val_percent = 0.1 # 10% go to validation
+test_percent = 0.1 # 10% go to test
+train_num = int(file_num*train_percent)
+val_num = int(file_num*val_percent)
+test_num = file_num - train_num - val_num
+print('Images moving to train: %d' % train_num)
+print('Images moving to validation: %d' % val_num)
+print('Images moving to test: %d' % test_num)
+
+# Select 80% of files randomly and move them to train folder
+for i in range(train_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ xml_fn = base_fn + '.xml'
+ os.rename(move_me, train_path+'/'+fn)
+ os.rename(os.path.join(parent_path,xml_fn),os.path.join(train_path,xml_fn))
+ file_list.remove(move_me)
+
+# Select 10% of remaining files and move them to validation folder
+for i in range(val_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ xml_fn = base_fn + '.xml'
+ os.rename(move_me, val_path+'/'+fn)
+ os.rename(os.path.join(parent_path,xml_fn),os.path.join(val_path,xml_fn))
+ file_list.remove(move_me)
+
+# Move remaining files to test folder
+for i in range(test_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ xml_fn = base_fn + '.xml'
+ os.rename(move_me, test_path+'/'+fn)
+ os.rename(os.path.join(parent_path,xml_fn),os.path.join(test_path,xml_fn))
+ file_list.remove(move_me)
diff --git a/celestial-mini/util_scripts/train_val_test_split_yolo.py b/celestial-mini/util_scripts/train_val_test_split_yolo.py
new file mode 100644
index 0000000000000000000000000000000000000000..31699bc3559854376439a49816751deb2d47320a
--- /dev/null
+++ b/celestial-mini/util_scripts/train_val_test_split_yolo.py
@@ -0,0 +1,78 @@
+### Python script to split a labeled image dataset into Train, Validation, and Test folders. Modified to work for YOLO txt files.
+# Author: Evan Juras, EJ Technology Consultants
+# Date: 4/10/21
+
+# Randomly splits images to 80% train, 10% validation, and 10% test, and moves them to their respective folders.
+# This script is intended to be used in the TFLite Object Detection Colab notebook here:
+# https://colab.research.google.com/github/EdjeElectronics/TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi/blob/master/Train_TFLite2_Object_Detction_Model.ipynb
+
+from pathlib import Path
+import random
+import os
+import sys
+
+# Define paths to image folders
+image_path = '/content/images/all'
+train_path = '/content/images/train'
+val_path = '/content/images/validation'
+test_path = '/content/images/test'
+
+# Get list of all images
+jpeg_file_list = [path for path in Path(image_path).rglob('*.jpeg')]
+jpg_file_list = [path for path in Path(image_path).rglob('*.jpg')]
+png_file_list = [path for path in Path(image_path).rglob('*.png')]
+bmp_file_list = [path for path in Path(image_path).rglob('*.bmp')]
+
+if sys.platform == 'linux':
+ JPEG_file_list = [path for path in Path(image_path).rglob('*.JPEG')]
+ JPG_file_list = [path for path in Path(image_path).rglob('*.JPG')]
+ file_list = jpg_file_list + JPG_file_list + png_file_list + bmp_file_list + JPEG_file_list + jpeg_file_list
+else:
+ file_list = jpg_file_list + png_file_list + bmp_file_list + jpeg_file_list
+
+file_num = len(file_list)
+print('Total images: %d' % file_num)
+
+# Determine number of files to move to each folder
+train_percent = 0.8 # 80% of the files go to train
+val_percent = 0.1 # 10% go to validation
+test_percent = 0.1 # 10% go to test
+train_num = int(file_num*train_percent)
+val_num = int(file_num*val_percent)
+test_num = file_num - train_num - val_num
+print('Images moving to train: %d' % train_num)
+print('Images moving to validation: %d' % val_num)
+print('Images moving to test: %d' % test_num)
+
+# Select 80% of files randomly and move them to train folder
+for i in range(train_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ txt_fn = base_fn + '.txt'
+ os.rename(move_me, train_path+'/'+fn)
+ os.rename(os.path.join(parent_path,txt_fn),os.path.join(train_path,txt_fn))
+ file_list.remove(move_me)
+
+# Select 10% of remaining files and move them to validation folder
+for i in range(val_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ txt_fn = base_fn + '.txt'
+ os.rename(move_me, val_path+'/'+fn)
+ os.rename(os.path.join(parent_path,txt_fn),os.path.join(val_path,txt_fn))
+ file_list.remove(move_me)
+
+# Move remaining files to test folder
+for i in range(test_num):
+ move_me = random.choice(file_list)
+ fn = move_me.name
+ base_fn = move_me.stem
+ parent_path = move_me.parent
+ txt_fn = base_fn + '.txt'
+ os.rename(move_me, test_path+'/'+fn)
+ os.rename(os.path.join(parent_path,txt_fn),os.path.join(test_path,txt_fn))
+ file_list.remove(move_me)
diff --git a/celestial-mini/venv/bin/activate b/celestial-mini/venv/bin/activate
new file mode 100644
index 0000000000000000000000000000000000000000..7199e0d1a9d8b4fb8470be9e9a5a9648c046521a
--- /dev/null
+++ b/celestial-mini/venv/bin/activate
@@ -0,0 +1,76 @@
+# This file must be used with "source bin/activate" *from bash*
+# you cannot run it directly
+
+deactivate () {
+ # reset old environment variables
+ if [ -n "${_OLD_VIRTUAL_PATH:-}" ] ; then
+ PATH="${_OLD_VIRTUAL_PATH:-}"
+ export PATH
+ unset _OLD_VIRTUAL_PATH
+ fi
+ if [ -n "${_OLD_VIRTUAL_PYTHONHOME:-}" ] ; then
+ PYTHONHOME="${_OLD_VIRTUAL_PYTHONHOME:-}"
+ export PYTHONHOME
+ unset _OLD_VIRTUAL_PYTHONHOME
+ fi
+
+ # This should detect bash and zsh, which have a hash command that must
+ # be called to get it to forget past commands. Without forgetting
+ # past commands the $PATH changes we made may not be respected
+ if [ -n "${BASH:-}" -o -n "${ZSH_VERSION:-}" ] ; then
+ hash -r
+ fi
+
+ if [ -n "${_OLD_VIRTUAL_PS1:-}" ] ; then
+ PS1="${_OLD_VIRTUAL_PS1:-}"
+ export PS1
+ unset _OLD_VIRTUAL_PS1
+ fi
+
+ unset VIRTUAL_ENV
+ if [ ! "$1" = "nondestructive" ] ; then
+ # Self destruct!
+ unset -f deactivate
+ fi
+}
+
+# unset irrelevant variables
+deactivate nondestructive
+
+VIRTUAL_ENV="/home/pi/tflite1/venv"
+export VIRTUAL_ENV
+
+_OLD_VIRTUAL_PATH="$PATH"
+PATH="$VIRTUAL_ENV/bin:$PATH"
+export PATH
+
+# unset PYTHONHOME if set
+# this will fail if PYTHONHOME is set to the empty string (which is bad anyway)
+# could use `if (set -u; : $PYTHONHOME) ;` in bash
+if [ -n "${PYTHONHOME:-}" ] ; then
+ _OLD_VIRTUAL_PYTHONHOME="${PYTHONHOME:-}"
+ unset PYTHONHOME
+fi
+
+if [ -z "${VIRTUAL_ENV_DISABLE_PROMPT:-}" ] ; then
+ _OLD_VIRTUAL_PS1="${PS1:-}"
+ if [ "x(venv) " != x ] ; then
+ PS1="(venv) ${PS1:-}"
+ else
+ if [ "`basename \"$VIRTUAL_ENV\"`" = "__" ] ; then
+ # special case for Aspen magic directories
+ # see http://www.zetadev.com/software/aspen/
+ PS1="[`basename \`dirname \"$VIRTUAL_ENV\"\``] $PS1"
+ else
+ PS1="(`basename \"$VIRTUAL_ENV\"`)$PS1"
+ fi
+ fi
+ export PS1
+fi
+
+# This should detect bash and zsh, which have a hash command that must
+# be called to get it to forget past commands. Without forgetting
+# past commands the $PATH changes we made may not be respected
+if [ -n "${BASH:-}" -o -n "${ZSH_VERSION:-}" ] ; then
+ hash -r
+fi
diff --git a/celestial-mini/venv/bin/activate.csh b/celestial-mini/venv/bin/activate.csh
new file mode 100644
index 0000000000000000000000000000000000000000..44616dd2d86f67fe78798a552cdc53e2c74dce38
--- /dev/null
+++ b/celestial-mini/venv/bin/activate.csh
@@ -0,0 +1,37 @@
+# This file must be used with "source bin/activate.csh" *from csh*.
+# You cannot run it directly.
+# Created by Davide Di Blasi .
+# Ported to Python 3.3 venv by Andrew Svetlov
+
+alias deactivate 'test $?_OLD_VIRTUAL_PATH != 0 && setenv PATH "$_OLD_VIRTUAL_PATH" && unset _OLD_VIRTUAL_PATH; rehash; test $?_OLD_VIRTUAL_PROMPT != 0 && set prompt="$_OLD_VIRTUAL_PROMPT" && unset _OLD_VIRTUAL_PROMPT; unsetenv VIRTUAL_ENV; test "\!:*" != "nondestructive" && unalias deactivate'
+
+# Unset irrelevant variables.
+deactivate nondestructive
+
+setenv VIRTUAL_ENV "/home/pi/tflite1/venv"
+
+set _OLD_VIRTUAL_PATH="$PATH"
+setenv PATH "$VIRTUAL_ENV/bin:$PATH"
+
+
+set _OLD_VIRTUAL_PROMPT="$prompt"
+
+if (! "$?VIRTUAL_ENV_DISABLE_PROMPT") then
+ if ("venv" != "") then
+ set env_name = "venv"
+ else
+ if (`basename "VIRTUAL_ENV"` == "__") then
+ # special case for Aspen magic directories
+ # see http://www.zetadev.com/software/aspen/
+ set env_name = `basename \`dirname "$VIRTUAL_ENV"\``
+ else
+ set env_name = `basename "$VIRTUAL_ENV"`
+ endif
+ endif
+ set prompt = "[$env_name] $prompt"
+ unset env_name
+endif
+
+alias pydoc python -m pydoc
+
+rehash
diff --git a/celestial-mini/venv/bin/activate.fish b/celestial-mini/venv/bin/activate.fish
new file mode 100644
index 0000000000000000000000000000000000000000..52c132b4c0f773f17fb415c230fec0ed1a9deb93
--- /dev/null
+++ b/celestial-mini/venv/bin/activate.fish
@@ -0,0 +1,75 @@
+# This file must be used with ". bin/activate.fish" *from fish* (http://fishshell.org)
+# you cannot run it directly
+
+function deactivate -d "Exit virtualenv and return to normal shell environment"
+ # reset old environment variables
+ if test -n "$_OLD_VIRTUAL_PATH"
+ set -gx PATH $_OLD_VIRTUAL_PATH
+ set -e _OLD_VIRTUAL_PATH
+ end
+ if test -n "$_OLD_VIRTUAL_PYTHONHOME"
+ set -gx PYTHONHOME $_OLD_VIRTUAL_PYTHONHOME
+ set -e _OLD_VIRTUAL_PYTHONHOME
+ end
+
+ if test -n "$_OLD_FISH_PROMPT_OVERRIDE"
+ functions -e fish_prompt
+ set -e _OLD_FISH_PROMPT_OVERRIDE
+ functions -c _old_fish_prompt fish_prompt
+ functions -e _old_fish_prompt
+ end
+
+ set -e VIRTUAL_ENV
+ if test "$argv[1]" != "nondestructive"
+ # Self destruct!
+ functions -e deactivate
+ end
+end
+
+# unset irrelevant variables
+deactivate nondestructive
+
+set -gx VIRTUAL_ENV "/home/pi/tflite1/venv"
+
+set -gx _OLD_VIRTUAL_PATH $PATH
+set -gx PATH "$VIRTUAL_ENV/bin" $PATH
+
+# unset PYTHONHOME if set
+if set -q PYTHONHOME
+ set -gx _OLD_VIRTUAL_PYTHONHOME $PYTHONHOME
+ set -e PYTHONHOME
+end
+
+if test -z "$VIRTUAL_ENV_DISABLE_PROMPT"
+ # fish uses a function instead of an env var to generate the prompt.
+
+ # save the current fish_prompt function as the function _old_fish_prompt
+ functions -c fish_prompt _old_fish_prompt
+
+ # with the original prompt function renamed, we can override with our own.
+ function fish_prompt
+ # Save the return status of the last command
+ set -l old_status $status
+
+ # Prompt override?
+ if test -n "(venv) "
+ printf "%s%s" "(venv) " (set_color normal)
+ else
+ # ...Otherwise, prepend env
+ set -l _checkbase (basename "$VIRTUAL_ENV")
+ if test $_checkbase = "__"
+ # special case for Aspen magic directories
+ # see http://www.zetadev.com/software/aspen/
+ printf "%s[%s]%s " (set_color -b blue white) (basename (dirname "$VIRTUAL_ENV")) (set_color normal)
+ else
+ printf "%s(%s)%s" (set_color -b blue white) (basename "$VIRTUAL_ENV") (set_color normal)
+ end
+ end
+
+ # Restore the return status of the previous command.
+ echo "exit $old_status" | .
+ _old_fish_prompt
+ end
+
+ set -gx _OLD_FISH_PROMPT_OVERRIDE "$VIRTUAL_ENV"
+end
diff --git a/celestial-mini/venv/bin/easy_install b/celestial-mini/venv/bin/easy_install
new file mode 100644
index 0000000000000000000000000000000000000000..06b57279de0d388a958185f37cc6028b9e032103
--- /dev/null
+++ b/celestial-mini/venv/bin/easy_install
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from setuptools.command.easy_install import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/easy_install-3.7 b/celestial-mini/venv/bin/easy_install-3.7
new file mode 100644
index 0000000000000000000000000000000000000000..06b57279de0d388a958185f37cc6028b9e032103
--- /dev/null
+++ b/celestial-mini/venv/bin/easy_install-3.7
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from setuptools.command.easy_install import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/f2py b/celestial-mini/venv/bin/f2py
new file mode 100644
index 0000000000000000000000000000000000000000..d18a149437026ce74f5d72251a81296b0d264955
--- /dev/null
+++ b/celestial-mini/venv/bin/f2py
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from numpy.f2py.f2py2e import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/f2py3 b/celestial-mini/venv/bin/f2py3
new file mode 100644
index 0000000000000000000000000000000000000000..d18a149437026ce74f5d72251a81296b0d264955
--- /dev/null
+++ b/celestial-mini/venv/bin/f2py3
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from numpy.f2py.f2py2e import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/f2py3.7 b/celestial-mini/venv/bin/f2py3.7
new file mode 100644
index 0000000000000000000000000000000000000000..d18a149437026ce74f5d72251a81296b0d264955
--- /dev/null
+++ b/celestial-mini/venv/bin/f2py3.7
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from numpy.f2py.f2py2e import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/pip b/celestial-mini/venv/bin/pip
new file mode 100644
index 0000000000000000000000000000000000000000..84db0010d8a246fc4e707c34dadf7dc255bbebe1
--- /dev/null
+++ b/celestial-mini/venv/bin/pip
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from pip._internal import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/pip3 b/celestial-mini/venv/bin/pip3
new file mode 100644
index 0000000000000000000000000000000000000000..84db0010d8a246fc4e707c34dadf7dc255bbebe1
--- /dev/null
+++ b/celestial-mini/venv/bin/pip3
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from pip._internal import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/pip3.7 b/celestial-mini/venv/bin/pip3.7
new file mode 100644
index 0000000000000000000000000000000000000000..84db0010d8a246fc4e707c34dadf7dc255bbebe1
--- /dev/null
+++ b/celestial-mini/venv/bin/pip3.7
@@ -0,0 +1,10 @@
+#!/home/pi/tflite1/venv/bin/python3
+# -*- coding: utf-8 -*-
+import re
+import sys
+
+from pip._internal import main
+
+if __name__ == '__main__':
+ sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0])
+ sys.exit(main())
diff --git a/celestial-mini/venv/bin/python b/celestial-mini/venv/bin/python
new file mode 100644
index 0000000000000000000000000000000000000000..5d016b2e8997736c87f10dc5f3f750f77d557004
--- /dev/null
+++ b/celestial-mini/venv/bin/python
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:44970f1fe5a5584aa4846b8427a1a5279fb72a45d03a48ba12644e139b4becaf
+size 3641028
diff --git a/celestial-mini/venv/bin/python3 b/celestial-mini/venv/bin/python3
new file mode 100644
index 0000000000000000000000000000000000000000..5d016b2e8997736c87f10dc5f3f750f77d557004
--- /dev/null
+++ b/celestial-mini/venv/bin/python3
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:44970f1fe5a5584aa4846b8427a1a5279fb72a45d03a48ba12644e139b4becaf
+size 3641028
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/__pycache__/easy_install.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/__pycache__/easy_install.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..49f8ae2def2462ba8206950949052cfd9c180a7b
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/__pycache__/easy_install.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE-3RD-PARTY.txt b/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE-3RD-PARTY.txt
new file mode 100644
index 0000000000000000000000000000000000000000..60c34bc06d528992e82a94982b1de34993d27391
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE-3RD-PARTY.txt
@@ -0,0 +1,2278 @@
+OpenCV library is redistributed within opencv-python package.
+This license applies to OpenCV binary in the directory cv2/.
+
+By downloading, copying, installing or using the software you agree to this license.
+If you do not agree to this license, do not download, install,
+copy or use the software.
+
+
+ License Agreement
+ For Open Source Computer Vision Library
+ (3-clause BSD License)
+
+Copyright (C) 2000-2020, Intel Corporation, all rights reserved.
+Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
+Copyright (C) 2009-2016, NVIDIA Corporation, all rights reserved.
+Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
+Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
+Copyright (C) 2015-2016, Itseez Inc., all rights reserved.
+Copyright (C) 2019-2020, Xperience AI, all rights reserved.
+Third party copyrights are property of their respective owners.
+
+Redistribution and use in source and binary forms, with or without modification,
+are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+ * Neither the names of the copyright holders nor the names of the contributors
+ may be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+This software is provided by the copyright holders and contributors "as is" and
+any express or implied warranties, including, but not limited to, the implied
+warranties of merchantability and fitness for a particular purpose are disclaimed.
+In no event shall copyright holders or contributors be liable for any direct,
+indirect, incidental, special, exemplary, or consequential damages
+(including, but not limited to, procurement of substitute goods or services;
+loss of use, data, or profits; or business interruption) however caused
+and on any theory of liability, whether in contract, strict liability,
+or tort (including negligence or otherwise) arising in any way out of
+the use of this software, even if advised of the possibility of such damage.
+
+------------------------------------------------------------------------------
+libvpx is redistributed within all opencv-python Linux packages.
+This license applies to libvpx binary in the directory cv2/.
+
+Copyright (c) 2010, The WebM Project authors. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+ * Neither the name of Google, nor the WebM Project, nor the names
+ of its contributors may be used to endorse or promote products
+ derived from this software without specific prior written
+ permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+FFmpeg is redistributed within all opencv-python packages.
+
+Libbluray, libgnutls, libnettle, libhogweed, libintl, libmp3lame, libp11,
+librtmp, libsoxr and libtasn1 are redistributed within all opencv-python macOS packages.
+
+This license applies to the above library binaries in the directory cv2/.
+
+ GNU LESSER GENERAL PUBLIC LICENSE
+ Version 2.1, February 1999
+
+ Copyright (C) 1991, 1999 Free Software Foundation, Inc.
+ 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+[This is the first released version of the Lesser GPL. It also counts
+ as the successor of the GNU Library Public License, version 2, hence
+ the version number 2.1.]
+
+ Preamble
+
+ The licenses for most software are designed to take away your
+freedom to share and change it. By contrast, the GNU General Public
+Licenses are intended to guarantee your freedom to share and change
+free software--to make sure the software is free for all its users.
+
+ This license, the Lesser General Public License, applies to some
+specially designated software packages--typically libraries--of the
+Free Software Foundation and other authors who decide to use it. You
+can use it too, but we suggest you first think carefully about whether
+this license or the ordinary General Public License is the better
+strategy to use in any particular case, based on the explanations below.
+
+ When we speak of free software, we are referring to freedom of use,
+not price. Our General Public Licenses are designed to make sure that
+you have the freedom to distribute copies of free software (and charge
+for this service if you wish); that you receive source code or can get
+it if you want it; that you can change the software and use pieces of
+it in new free programs; and that you are informed that you can do
+these things.
+
+ To protect your rights, we need to make restrictions that forbid
+distributors to deny you these rights or to ask you to surrender these
+rights. These restrictions translate to certain responsibilities for
+you if you distribute copies of the library or if you modify it.
+
+ For example, if you distribute copies of the library, whether gratis
+or for a fee, you must give the recipients all the rights that we gave
+you. You must make sure that they, too, receive or can get the source
+code. If you link other code with the library, you must provide
+complete object files to the recipients, so that they can relink them
+with the library after making changes to the library and recompiling
+it. And you must show them these terms so they know their rights.
+
+ We protect your rights with a two-step method: (1) we copyright the
+library, and (2) we offer you this license, which gives you legal
+permission to copy, distribute and/or modify the library.
+
+ To protect each distributor, we want to make it very clear that
+there is no warranty for the free library. Also, if the library is
+modified by someone else and passed on, the recipients should know
+that what they have is not the original version, so that the original
+author's reputation will not be affected by problems that might be
+introduced by others.
+
+ Finally, software patents pose a constant threat to the existence of
+any free program. We wish to make sure that a company cannot
+effectively restrict the users of a free program by obtaining a
+restrictive license from a patent holder. Therefore, we insist that
+any patent license obtained for a version of the library must be
+consistent with the full freedom of use specified in this license.
+
+ Most GNU software, including some libraries, is covered by the
+ordinary GNU General Public License. This license, the GNU Lesser
+General Public License, applies to certain designated libraries, and
+is quite different from the ordinary General Public License. We use
+this license for certain libraries in order to permit linking those
+libraries into non-free programs.
+
+ When a program is linked with a library, whether statically or using
+a shared library, the combination of the two is legally speaking a
+combined work, a derivative of the original library. The ordinary
+General Public License therefore permits such linking only if the
+entire combination fits its criteria of freedom. The Lesser General
+Public License permits more lax criteria for linking other code with
+the library.
+
+ We call this license the "Lesser" General Public License because it
+does Less to protect the user's freedom than the ordinary General
+Public License. It also provides other free software developers Less
+of an advantage over competing non-free programs. These disadvantages
+are the reason we use the ordinary General Public License for many
+libraries. However, the Lesser license provides advantages in certain
+special circumstances.
+
+ For example, on rare occasions, there may be a special need to
+encourage the widest possible use of a certain library, so that it becomes
+a de-facto standard. To achieve this, non-free programs must be
+allowed to use the library. A more frequent case is that a free
+library does the same job as widely used non-free libraries. In this
+case, there is little to gain by limiting the free library to free
+software only, so we use the Lesser General Public License.
+
+ In other cases, permission to use a particular library in non-free
+programs enables a greater number of people to use a large body of
+free software. For example, permission to use the GNU C Library in
+non-free programs enables many more people to use the whole GNU
+operating system, as well as its variant, the GNU/Linux operating
+system.
+
+ Although the Lesser General Public License is Less protective of the
+users' freedom, it does ensure that the user of a program that is
+linked with the Library has the freedom and the wherewithal to run
+that program using a modified version of the Library.
+
+ The precise terms and conditions for copying, distribution and
+modification follow. Pay close attention to the difference between a
+"work based on the library" and a "work that uses the library". The
+former contains code derived from the library, whereas the latter must
+be combined with the library in order to run.
+
+ GNU LESSER GENERAL PUBLIC LICENSE
+ TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+ 0. This License Agreement applies to any software library or other
+program which contains a notice placed by the copyright holder or
+other authorized party saying it may be distributed under the terms of
+this Lesser General Public License (also called "this License").
+Each licensee is addressed as "you".
+
+ A "library" means a collection of software functions and/or data
+prepared so as to be conveniently linked with application programs
+(which use some of those functions and data) to form executables.
+
+ The "Library", below, refers to any such software library or work
+which has been distributed under these terms. A "work based on the
+Library" means either the Library or any derivative work under
+copyright law: that is to say, a work containing the Library or a
+portion of it, either verbatim or with modifications and/or translated
+straightforwardly into another language. (Hereinafter, translation is
+included without limitation in the term "modification".)
+
+ "Source code" for a work means the preferred form of the work for
+making modifications to it. For a library, complete source code means
+all the source code for all modules it contains, plus any associated
+interface definition files, plus the scripts used to control compilation
+and installation of the library.
+
+ Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope. The act of
+running a program using the Library is not restricted, and output from
+such a program is covered only if its contents constitute a work based
+on the Library (independent of the use of the Library in a tool for
+writing it). Whether that is true depends on what the Library does
+and what the program that uses the Library does.
+
+ 1. You may copy and distribute verbatim copies of the Library's
+complete source code as you receive it, in any medium, provided that
+you conspicuously and appropriately publish on each copy an
+appropriate copyright notice and disclaimer of warranty; keep intact
+all the notices that refer to this License and to the absence of any
+warranty; and distribute a copy of this License along with the
+Library.
+
+ You may charge a fee for the physical act of transferring a copy,
+and you may at your option offer warranty protection in exchange for a
+fee.
+
+ 2. You may modify your copy or copies of the Library or any portion
+of it, thus forming a work based on the Library, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+ a) The modified work must itself be a software library.
+
+ b) You must cause the files modified to carry prominent notices
+ stating that you changed the files and the date of any change.
+
+ c) You must cause the whole of the work to be licensed at no
+ charge to all third parties under the terms of this License.
+
+ d) If a facility in the modified Library refers to a function or a
+ table of data to be supplied by an application program that uses
+ the facility, other than as an argument passed when the facility
+ is invoked, then you must make a good faith effort to ensure that,
+ in the event an application does not supply such function or
+ table, the facility still operates, and performs whatever part of
+ its purpose remains meaningful.
+
+ (For example, a function in a library to compute square roots has
+ a purpose that is entirely well-defined independent of the
+ application. Therefore, Subsection 2d requires that any
+ application-supplied function or table used by this function must
+ be optional: if the application does not supply it, the square
+ root function must still compute square roots.)
+
+These requirements apply to the modified work as a whole. If
+identifiable sections of that work are not derived from the Library,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works. But when you
+distribute the same sections as part of a whole which is a work based
+on the Library, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote
+it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Library.
+
+In addition, mere aggregation of another work not based on the Library
+with the Library (or with a work based on the Library) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+ 3. You may opt to apply the terms of the ordinary GNU General Public
+License instead of this License to a given copy of the Library. To do
+this, you must alter all the notices that refer to this License, so
+that they refer to the ordinary GNU General Public License, version 2,
+instead of to this License. (If a newer version than version 2 of the
+ordinary GNU General Public License has appeared, then you can specify
+that version instead if you wish.) Do not make any other change in
+these notices.
+
+ Once this change is made in a given copy, it is irreversible for
+that copy, so the ordinary GNU General Public License applies to all
+subsequent copies and derivative works made from that copy.
+
+ This option is useful when you wish to copy part of the code of
+the Library into a program that is not a library.
+
+ 4. You may copy and distribute the Library (or a portion or
+derivative of it, under Section 2) in object code or executable form
+under the terms of Sections 1 and 2 above provided that you accompany
+it with the complete corresponding machine-readable source code, which
+must be distributed under the terms of Sections 1 and 2 above on a
+medium customarily used for software interchange.
+
+ If distribution of object code is made by offering access to copy
+from a designated place, then offering equivalent access to copy the
+source code from the same place satisfies the requirement to
+distribute the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+ 5. A program that contains no derivative of any portion of the
+Library, but is designed to work with the Library by being compiled or
+linked with it, is called a "work that uses the Library". Such a
+work, in isolation, is not a derivative work of the Library, and
+therefore falls outside the scope of this License.
+
+ However, linking a "work that uses the Library" with the Library
+creates an executable that is a derivative of the Library (because it
+contains portions of the Library), rather than a "work that uses the
+library". The executable is therefore covered by this License.
+Section 6 states terms for distribution of such executables.
+
+ When a "work that uses the Library" uses material from a header file
+that is part of the Library, the object code for the work may be a
+derivative work of the Library even though the source code is not.
+Whether this is true is especially significant if the work can be
+linked without the Library, or if the work is itself a library. The
+threshold for this to be true is not precisely defined by law.
+
+ If such an object file uses only numerical parameters, data
+structure layouts and accessors, and small macros and small inline
+functions (ten lines or less in length), then the use of the object
+file is unrestricted, regardless of whether it is legally a derivative
+work. (Executables containing this object code plus portions of the
+Library will still fall under Section 6.)
+
+ Otherwise, if the work is a derivative of the Library, you may
+distribute the object code for the work under the terms of Section 6.
+Any executables containing that work also fall under Section 6,
+whether or not they are linked directly with the Library itself.
+
+ 6. As an exception to the Sections above, you may also combine or
+link a "work that uses the Library" with the Library to produce a
+work containing portions of the Library, and distribute that work
+under terms of your choice, provided that the terms permit
+modification of the work for the customer's own use and reverse
+engineering for debugging such modifications.
+
+ You must give prominent notice with each copy of the work that the
+Library is used in it and that the Library and its use are covered by
+this License. You must supply a copy of this License. If the work
+during execution displays copyright notices, you must include the
+copyright notice for the Library among them, as well as a reference
+directing the user to the copy of this License. Also, you must do one
+of these things:
+
+ a) Accompany the work with the complete corresponding
+ machine-readable source code for the Library including whatever
+ changes were used in the work (which must be distributed under
+ Sections 1 and 2 above); and, if the work is an executable linked
+ with the Library, with the complete machine-readable "work that
+ uses the Library", as object code and/or source code, so that the
+ user can modify the Library and then relink to produce a modified
+ executable containing the modified Library. (It is understood
+ that the user who changes the contents of definitions files in the
+ Library will not necessarily be able to recompile the application
+ to use the modified definitions.)
+
+ b) Use a suitable shared library mechanism for linking with the
+ Library. A suitable mechanism is one that (1) uses at run time a
+ copy of the library already present on the user's computer system,
+ rather than copying library functions into the executable, and (2)
+ will operate properly with a modified version of the library, if
+ the user installs one, as long as the modified version is
+ interface-compatible with the version that the work was made with.
+
+ c) Accompany the work with a written offer, valid for at
+ least three years, to give the same user the materials
+ specified in Subsection 6a, above, for a charge no more
+ than the cost of performing this distribution.
+
+ d) If distribution of the work is made by offering access to copy
+ from a designated place, offer equivalent access to copy the above
+ specified materials from the same place.
+
+ e) Verify that the user has already received a copy of these
+ materials or that you have already sent this user a copy.
+
+ For an executable, the required form of the "work that uses the
+Library" must include any data and utility programs needed for
+reproducing the executable from it. However, as a special exception,
+the materials to be distributed need not include anything that is
+normally distributed (in either source or binary form) with the major
+components (compiler, kernel, and so on) of the operating system on
+which the executable runs, unless that component itself accompanies
+the executable.
+
+ It may happen that this requirement contradicts the license
+restrictions of other proprietary libraries that do not normally
+accompany the operating system. Such a contradiction means you cannot
+use both them and the Library together in an executable that you
+distribute.
+
+ 7. You may place library facilities that are a work based on the
+Library side-by-side in a single library together with other library
+facilities not covered by this License, and distribute such a combined
+library, provided that the separate distribution of the work based on
+the Library and of the other library facilities is otherwise
+permitted, and provided that you do these two things:
+
+ a) Accompany the combined library with a copy of the same work
+ based on the Library, uncombined with any other library
+ facilities. This must be distributed under the terms of the
+ Sections above.
+
+ b) Give prominent notice with the combined library of the fact
+ that part of it is a work based on the Library, and explaining
+ where to find the accompanying uncombined form of the same work.
+
+ 8. You may not copy, modify, sublicense, link with, or distribute
+the Library except as expressly provided under this License. Any
+attempt otherwise to copy, modify, sublicense, link with, or
+distribute the Library is void, and will automatically terminate your
+rights under this License. However, parties who have received copies,
+or rights, from you under this License will not have their licenses
+terminated so long as such parties remain in full compliance.
+
+ 9. You are not required to accept this License, since you have not
+signed it. However, nothing else grants you permission to modify or
+distribute the Library or its derivative works. These actions are
+prohibited by law if you do not accept this License. Therefore, by
+modifying or distributing the Library (or any work based on the
+Library), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Library or works based on it.
+
+ 10. Each time you redistribute the Library (or any work based on the
+Library), the recipient automatically receives a license from the
+original licensor to copy, distribute, link with or modify the Library
+subject to these terms and conditions. You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties with
+this License.
+
+ 11. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Library at all. For example, if a patent
+license would not permit royalty-free redistribution of the Library by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Library.
+
+If any portion of this section is held invalid or unenforceable under any
+particular circumstance, the balance of the section is intended to apply,
+and the section as a whole is intended to apply in other circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system which is
+implemented by public license practices. Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+ 12. If the distribution and/or use of the Library is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Library under this License may add
+an explicit geographical distribution limitation excluding those countries,
+so that distribution is permitted only in or among countries not thus
+excluded. In such case, this License incorporates the limitation as if
+written in the body of this License.
+
+ 13. The Free Software Foundation may publish revised and/or new
+versions of the Lesser General Public License from time to time.
+Such new versions will be similar in spirit to the present version,
+but may differ in detail to address new problems or concerns.
+
+Each version is given a distinguishing version number. If the Library
+specifies a version number of this License which applies to it and
+"any later version", you have the option of following the terms and
+conditions either of that version or of any later version published by
+the Free Software Foundation. If the Library does not specify a
+license version number, you may choose any version ever published by
+the Free Software Foundation.
+
+ 14. If you wish to incorporate parts of the Library into other free
+programs whose distribution conditions are incompatible with these,
+write to the author to ask for permission. For software which is
+copyrighted by the Free Software Foundation, write to the Free
+Software Foundation; we sometimes make exceptions for this. Our
+decision will be guided by the two goals of preserving the free status
+of all derivatives of our free software and of promoting the sharing
+and reuse of software generally.
+
+ NO WARRANTY
+
+ 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
+WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
+EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
+OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
+KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
+LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
+THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
+WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
+AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
+FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
+CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
+LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
+RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
+FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
+SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGES.
+
+ END OF TERMS AND CONDITIONS
+
+------------------------------------------------------------------------------
+Qt 5 is redistributed within non-headless opencv-python Linux and macOS packages.
+libgmp is redistributed within opencv-python macOS packages.
+libidn2 is redistributed within opencv-python macOS packages.
+libunistring is redistributed within opencv-python macOS packages.
+This license applies to the above binaries in the directory cv2/.
+
+ GNU LESSER GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ This version of the GNU Lesser General Public License incorporates
+the terms and conditions of version 3 of the GNU General Public
+License, supplemented by the additional permissions listed below.
+
+ 0. Additional Definitions.
+
+ As used herein, "this License" refers to version 3 of the GNU Lesser
+General Public License, and the "GNU GPL" refers to version 3 of the GNU
+General Public License.
+
+ "The Library" refers to a covered work governed by this License,
+other than an Application or a Combined Work as defined below.
+
+ An "Application" is any work that makes use of an interface provided
+by the Library, but which is not otherwise based on the Library.
+Defining a subclass of a class defined by the Library is deemed a mode
+of using an interface provided by the Library.
+
+ A "Combined Work" is a work produced by combining or linking an
+Application with the Library. The particular version of the Library
+with which the Combined Work was made is also called the "Linked
+Version".
+
+ The "Minimal Corresponding Source" for a Combined Work means the
+Corresponding Source for the Combined Work, excluding any source code
+for portions of the Combined Work that, considered in isolation, are
+based on the Application, and not on the Linked Version.
+
+ The "Corresponding Application Code" for a Combined Work means the
+object code and/or source code for the Application, including any data
+and utility programs needed for reproducing the Combined Work from the
+Application, but excluding the System Libraries of the Combined Work.
+
+ 1. Exception to Section 3 of the GNU GPL.
+
+ You may convey a covered work under sections 3 and 4 of this License
+without being bound by section 3 of the GNU GPL.
+
+ 2. Conveying Modified Versions.
+
+ If you modify a copy of the Library, and, in your modifications, a
+facility refers to a function or data to be supplied by an Application
+that uses the facility (other than as an argument passed when the
+facility is invoked), then you may convey a copy of the modified
+version:
+
+ a) under this License, provided that you make a good faith effort to
+ ensure that, in the event an Application does not supply the
+ function or data, the facility still operates, and performs
+ whatever part of its purpose remains meaningful, or
+
+ b) under the GNU GPL, with none of the additional permissions of
+ this License applicable to that copy.
+
+ 3. Object Code Incorporating Material from Library Header Files.
+
+ The object code form of an Application may incorporate material from
+a header file that is part of the Library. You may convey such object
+code under terms of your choice, provided that, if the incorporated
+material is not limited to numerical parameters, data structure
+layouts and accessors, or small macros, inline functions and templates
+(ten or fewer lines in length), you do both of the following:
+
+ a) Give prominent notice with each copy of the object code that the
+ Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the object code with a copy of the GNU GPL and this license
+ document.
+
+ 4. Combined Works.
+
+ You may convey a Combined Work under terms of your choice that,
+taken together, effectively do not restrict modification of the
+portions of the Library contained in the Combined Work and reverse
+engineering for debugging such modifications, if you also do each of
+the following:
+
+ a) Give prominent notice with each copy of the Combined Work that
+ the Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the Combined Work with a copy of the GNU GPL and this license
+ document.
+
+ c) For a Combined Work that displays copyright notices during
+ execution, include the copyright notice for the Library among
+ these notices, as well as a reference directing the user to the
+ copies of the GNU GPL and this license document.
+
+ d) Do one of the following:
+
+ 0) Convey the Minimal Corresponding Source under the terms of this
+ License, and the Corresponding Application Code in a form
+ suitable for, and under terms that permit, the user to
+ recombine or relink the Application with a modified version of
+ the Linked Version to produce a modified Combined Work, in the
+ manner specified by section 6 of the GNU GPL for conveying
+ Corresponding Source.
+
+ 1) Use a suitable shared library mechanism for linking with the
+ Library. A suitable mechanism is one that (a) uses at run time
+ a copy of the Library already present on the user's computer
+ system, and (b) will operate properly with a modified version
+ of the Library that is interface-compatible with the Linked
+ Version.
+
+ e) Provide Installation Information, but only if you would otherwise
+ be required to provide such information under section 6 of the
+ GNU GPL, and only to the extent that such information is
+ necessary to install and execute a modified version of the
+ Combined Work produced by recombining or relinking the
+ Application with a modified version of the Linked Version. (If
+ you use option 4d0, the Installation Information must accompany
+ the Minimal Corresponding Source and Corresponding Application
+ Code. If you use option 4d1, you must provide the Installation
+ Information in the manner specified by section 6 of the GNU GPL
+ for conveying Corresponding Source.)
+
+ 5. Combined Libraries.
+
+ You may place library facilities that are a work based on the
+Library side by side in a single library together with other library
+facilities that are not Applications and are not covered by this
+License, and convey such a combined library under terms of your
+choice, if you do both of the following:
+
+ a) Accompany the combined library with a copy of the same work based
+ on the Library, uncombined with any other library facilities,
+ conveyed under the terms of this License.
+
+ b) Give prominent notice with the combined library that part of it
+ is a work based on the Library, and explaining where to find the
+ accompanying uncombined form of the same work.
+
+ 6. Revised Versions of the GNU Lesser General Public License.
+
+ The Free Software Foundation may publish revised and/or new versions
+of the GNU Lesser General Public License from time to time. Such new
+versions will be similar in spirit to the present version, but may
+differ in detail to address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Library as you received it specifies that a certain numbered version
+of the GNU Lesser General Public License "or any later version"
+applies to it, you have the option of following the terms and
+conditions either of that published version or of any later version
+published by the Free Software Foundation. If the Library as you
+received it does not specify a version number of the GNU Lesser
+General Public License, you may choose any version of the GNU Lesser
+General Public License ever published by the Free Software Foundation.
+
+ If the Library as you received it specifies that a proxy can decide
+whether future versions of the GNU Lesser General Public License shall
+apply, that proxy's public statement of acceptance of any version is
+permanent authorization for you to choose that version for the
+Library.
+
+------------------------------------------------------------------------------
+bzip2 is redistributed within all opencv-python Linux packages.
+This license applies to libbz2 binary in the directory cv2/.
+
+This program, "bzip2", the associated library "libbzip2", and all
+documentation, are copyright (C) 1996-2010 Julian R Seward. All
+rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+2. The origin of this software must not be misrepresented; you must
+ not claim that you wrote the original software. If you use this
+ software in a product, an acknowledgment in the product
+ documentation would be appreciated but is not required.
+
+3. Altered source versions must be plainly marked as such, and must
+ not be misrepresented as being the original software.
+
+4. The name of the author may not be used to endorse or promote
+ products derived from this software without specific prior written
+ permission.
+
+THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
+OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+Julian Seward, jseward@bzip.org
+bzip2/libbzip2 version 1.0.6 of 6 September 2010
+
+------------------------------------------------------------------------------
+libcrypto and libssl are redistributed within all opencv-python Linux and macOS packages.
+libopencore-amrnb and libopencore-amrwb are redistributed within all opencv-python Linux and macOS packages.
+This license applies to above binaries in the directory cv2/.
+
+ LICENSE ISSUES
+ ==============
+
+ The OpenSSL toolkit stays under a double license, i.e. both the conditions of
+ the OpenSSL License and the original SSLeay license apply to the toolkit.
+ See below for the actual license texts.
+
+ OpenSSL License
+ ---------------
+
+/* ====================================================================
+ * Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * openssl-core@openssl.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay@cryptsoft.com). This product includes software written by Tim
+ * Hudson (tjh@cryptsoft.com).
+ *
+ */
+
+ Original SSLeay License
+ -----------------------
+
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to. The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code. The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * "This product includes cryptographic software written by
+ * Eric Young (eay@cryptsoft.com)"
+ * The word 'cryptographic' can be left out if the rouines from the library
+ * being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ * the apps directory (application code) you must include an acknowledgement:
+ * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed. i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.]
+ */
+
+------------------------------------------------------------------------------
+libfontconfig is redistributed within all opencv-python macOS packages.
+This license applies to libfontconfig binary in the directory cv2/.
+
+Copyright ยฉ 2000,2001,2002,2003,2004,2006,2007 Keith Packard
+Copyright ยฉ 2005 Patrick Lam
+Copyright ยฉ 2009 Roozbeh Pournader
+Copyright ยฉ 2008,2009 Red Hat, Inc.
+Copyright ยฉ 2008 Danilo ล egan
+Copyright ยฉ 2012 Google, Inc.
+
+
+Permission to use, copy, modify, distribute, and sell this software and its
+documentation for any purpose is hereby granted without fee, provided that
+the above copyright notice appear in all copies and that both that
+copyright notice and this permission notice appear in supporting
+documentation, and that the name of the author(s) not be used in
+advertising or publicity pertaining to distribution of the software without
+specific, written prior permission. The authors make no
+representations about the suitability of this software for any purpose. It
+is provided "as is" without express or implied warranty.
+
+THE AUTHOR(S) DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
+INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
+EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
+DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
+TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
+PERFORMANCE OF THIS SOFTWARE.
+
+------------------------------------------------------------------------------
+libfreetype is redistributed within opencv-python Linux and macOS packages.
+This license applies to libfreetype binary in the directory cv2/.
+
+ The FreeType Project LICENSE
+ ----------------------------
+
+ 2006-Jan-27
+
+ Copyright 1996-2002, 2006 by
+ David Turner, Robert Wilhelm, and Werner Lemberg
+
+
+
+Introduction
+============
+
+ The FreeType Project is distributed in several archive packages;
+ some of them may contain, in addition to the FreeType font engine,
+ various tools and contributions which rely on, or relate to, the
+ FreeType Project.
+
+ This license applies to all files found in such packages, and
+ which do not fall under their own explicit license. The license
+ affects thus the FreeType font engine, the test programs,
+ documentation and makefiles, at the very least.
+
+ This license was inspired by the BSD, Artistic, and IJG
+ (Independent JPEG Group) licenses, which all encourage inclusion
+ and use of free software in commercial and freeware products
+ alike. As a consequence, its main points are that:
+
+ o We don't promise that this software works. However, we will be
+ interested in any kind of bug reports. (`as is' distribution)
+
+ o You can use this software for whatever you want, in parts or
+ full form, without having to pay us. (`royalty-free' usage)
+
+ o You may not pretend that you wrote this software. If you use
+ it, or only parts of it, in a program, you must acknowledge
+ somewhere in your documentation that you have used the
+ FreeType code. (`credits')
+
+ We specifically permit and encourage the inclusion of this
+ software, with or without modifications, in commercial products.
+ We disclaim all warranties covering The FreeType Project and
+ assume no liability related to The FreeType Project.
+
+
+ Finally, many people asked us for a preferred form for a
+ credit/disclaimer to use in compliance with this license. We thus
+ encourage you to use the following text:
+
+ """
+ Portions of this software are copyright ยฉ The FreeType
+ Project (www.freetype.org). All rights reserved.
+ """
+
+ Please replace with the value from the FreeType version you
+ actually use.
+
+
+Legal Terms
+===========
+
+0. Definitions
+--------------
+
+ Throughout this license, the terms `package', `FreeType Project',
+ and `FreeType archive' refer to the set of files originally
+ distributed by the authors (David Turner, Robert Wilhelm, and
+ Werner Lemberg) as the `FreeType Project', be they named as alpha,
+ beta or final release.
+
+ `You' refers to the licensee, or person using the project, where
+ `using' is a generic term including compiling the project's source
+ code as well as linking it to form a `program' or `executable'.
+ This program is referred to as `a program using the FreeType
+ engine'.
+
+ This license applies to all files distributed in the original
+ FreeType Project, including all source code, binaries and
+ documentation, unless otherwise stated in the file in its
+ original, unmodified form as distributed in the original archive.
+ If you are unsure whether or not a particular file is covered by
+ this license, you must contact us to verify this.
+
+ The FreeType Project is copyright (C) 1996-2000 by David Turner,
+ Robert Wilhelm, and Werner Lemberg. All rights reserved except as
+ specified below.
+
+1. No Warranty
+--------------
+
+ THE FREETYPE PROJECT IS PROVIDED `AS IS' WITHOUT WARRANTY OF ANY
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
+ BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
+ USE, OF THE FREETYPE PROJECT.
+
+2. Redistribution
+-----------------
+
+ This license grants a worldwide, royalty-free, perpetual and
+ irrevocable right and license to use, execute, perform, compile,
+ display, copy, create derivative works of, distribute and
+ sublicense the FreeType Project (in both source and object code
+ forms) and derivative works thereof for any purpose; and to
+ authorize others to exercise some or all of the rights granted
+ herein, subject to the following conditions:
+
+ o Redistribution of source code must retain this license file
+ (`FTL.TXT') unaltered; any additions, deletions or changes to
+ the original files must be clearly indicated in accompanying
+ documentation. The copyright notices of the unaltered,
+ original files must be preserved in all copies of source
+ files.
+
+ o Redistribution in binary form must provide a disclaimer that
+ states that the software is based in part of the work of the
+ FreeType Team, in the distribution documentation. We also
+ encourage you to put an URL to the FreeType web page in your
+ documentation, though this isn't mandatory.
+
+ These conditions apply to any software derived from or based on
+ the FreeType Project, not just the unmodified files. If you use
+ our work, you must acknowledge us. However, no fee need be paid
+ to us.
+
+3. Advertising
+--------------
+
+ Neither the FreeType authors and contributors nor you shall use
+ the name of the other for commercial, advertising, or promotional
+ purposes without specific prior written permission.
+
+ We suggest, but do not require, that you use one or more of the
+ following phrases to refer to this software in your documentation
+ or advertising materials: `FreeType Project', `FreeType Engine',
+ `FreeType library', or `FreeType Distribution'.
+
+ As you have not signed this license, you are not required to
+ accept it. However, as the FreeType Project is copyrighted
+ material, only this license, or another one contracted with the
+ authors, grants you the right to use, distribute, and modify it.
+ Therefore, by using, distributing, or modifying the FreeType
+ Project, you indicate that you understand and accept all the terms
+ of this license.
+
+4. Contacts
+-----------
+
+ There are two mailing lists related to FreeType:
+
+ o freetype@nongnu.org
+
+ Discusses general use and applications of FreeType, as well as
+ future and wanted additions to the library and distribution.
+ If you are looking for support, start in this list if you
+ haven't found anything to help you in the documentation.
+
+ o freetype-devel@nongnu.org
+
+ Discusses bugs, as well as engine internals, design issues,
+ specific licenses, porting, etc.
+
+ Our home page can be found at
+
+ https://www.freetype.org
+
+------------------------------------------------------------------------------
+libpng is redistributed within all opencv-python Linux and macOS packages.
+This license applies to libpng binary in the directory cv2/.
+
+PNG Reference Library License version 2
+---------------------------------------
+
+ * Copyright (c) 1995-2019 The PNG Reference Library Authors.
+ * Copyright (c) 2018-2019 Cosmin Truta.
+ * Copyright (c) 2000-2002, 2004, 2006-2018 Glenn Randers-Pehrson.
+ * Copyright (c) 1996-1997 Andreas Dilger.
+ * Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
+
+The software is supplied "as is", without warranty of any kind,
+express or implied, including, without limitation, the warranties
+of merchantability, fitness for a particular purpose, title, and
+non-infringement. In no event shall the Copyright owners, or
+anyone distributing the software, be liable for any damages or
+other liability, whether in contract, tort or otherwise, arising
+from, out of, or in connection with the software, or the use or
+other dealings in the software, even if advised of the possibility
+of such damage.
+
+Permission is hereby granted to use, copy, modify, and distribute
+this software, or portions hereof, for any purpose, without fee,
+subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you
+ must not claim that you wrote the original software. If you
+ use this software in a product, an acknowledgment in the product
+ documentation would be appreciated, but is not required.
+
+ 2. Altered source versions must be plainly marked as such, and must
+ not be misrepresented as being the original software.
+
+ 3. This Copyright notice may not be removed or altered from any
+ source or altered source distribution.
+
+
+PNG Reference Library License version 1 (for libpng 0.5 through 1.6.35)
+-----------------------------------------------------------------------
+
+libpng versions 1.0.7, July 1, 2000, through 1.6.35, July 15, 2018 are
+Copyright (c) 2000-2002, 2004, 2006-2018 Glenn Randers-Pehrson, are
+derived from libpng-1.0.6, and are distributed according to the same
+disclaimer and license as libpng-1.0.6 with the following individuals
+added to the list of Contributing Authors:
+
+ Simon-Pierre Cadieux
+ Eric S. Raymond
+ Mans Rullgard
+ Cosmin Truta
+ Gilles Vollant
+ James Yu
+ Mandar Sahastrabuddhe
+ Google Inc.
+ Vadim Barkov
+
+and with the following additions to the disclaimer:
+
+ There is no warranty against interference with your enjoyment of
+ the library or against infringement. There is no warranty that our
+ efforts or the library will fulfill any of your particular purposes
+ or needs. This library is provided with all faults, and the entire
+ risk of satisfactory quality, performance, accuracy, and effort is
+ with the user.
+
+Some files in the "contrib" directory and some configure-generated
+files that are distributed with libpng have other copyright owners, and
+are released under other open source licenses.
+
+libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
+Copyright (c) 1998-2000 Glenn Randers-Pehrson, are derived from
+libpng-0.96, and are distributed according to the same disclaimer and
+license as libpng-0.96, with the following individuals added to the
+list of Contributing Authors:
+
+ Tom Lane
+ Glenn Randers-Pehrson
+ Willem van Schaik
+
+libpng versions 0.89, June 1996, through 0.96, May 1997, are
+Copyright (c) 1996-1997 Andreas Dilger, are derived from libpng-0.88,
+and are distributed according to the same disclaimer and license as
+libpng-0.88, with the following individuals added to the list of
+Contributing Authors:
+
+ John Bowler
+ Kevin Bracey
+ Sam Bushell
+ Magnus Holmgren
+ Greg Roelofs
+ Tom Tanner
+
+Some files in the "scripts" directory have other copyright owners,
+but are released under this license.
+
+libpng versions 0.5, May 1995, through 0.88, January 1996, are
+Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
+
+For the purposes of this copyright and license, "Contributing Authors"
+is defined as the following set of individuals:
+
+ Andreas Dilger
+ Dave Martindale
+ Guy Eric Schalnat
+ Paul Schmidt
+ Tim Wegner
+
+The PNG Reference Library is supplied "AS IS". The Contributing
+Authors and Group 42, Inc. disclaim all warranties, expressed or
+implied, including, without limitation, the warranties of
+merchantability and of fitness for any purpose. The Contributing
+Authors and Group 42, Inc. assume no liability for direct, indirect,
+incidental, special, exemplary, or consequential damages, which may
+result from the use of the PNG Reference Library, even if advised of
+the possibility of such damage.
+
+Permission is hereby granted to use, copy, modify, and distribute this
+source code, or portions hereof, for any purpose, without fee, subject
+to the following restrictions:
+
+ 1. The origin of this source code must not be misrepresented.
+
+ 2. Altered versions must be plainly marked as such and must not
+ be misrepresented as being the original source.
+
+ 3. This Copyright notice may not be removed or altered from any
+ source or altered source distribution.
+
+The Contributing Authors and Group 42, Inc. specifically permit,
+without fee, and encourage the use of this source code as a component
+to supporting the PNG file format in commercial products. If you use
+this source code in a product, acknowledgment is not required but would
+be appreciated.
+
+------------------------------------------------------------------------------
+libz is redistributed within all opencv-python Linux packages.
+This license applies to libz binary in the directory cv2/.
+
+ Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ Jean-loup Gailly Mark Adler
+ jloup@gzip.org madler@alumni.caltech.edu
+
+------------------------------------------------------------------------------
+libdav1d is redistributed within opencv-python macOS packages.
+This license applies to libdav1d binary in the directory cv2/.
+
+Copyright ยฉ 2018-2019, VideoLAN and dav1d authors
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
+ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libffi is redistributed within opencv-python macOS packages.
+This license applies to libffi binary in the directory cv2/.
+
+libffi - Copyright (c) 1996-2020 Anthony Green, Red Hat, Inc and others.
+See source files for details.
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the
+``Software''), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+------------------------------------------------------------------------------
+libogg is redistributed within opencv-python macOS packages.
+This license applies to libogg binary in the directory cv2/.
+
+Copyright (c) 2002, Xiph.org Foundation
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+- Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+- Neither the name of the Xiph.org Foundation nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION
+OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libopenjp2 is redistributed within opencv-python macOS packages.
+This license applies to libopenjp2 binary in the directory cv2/.
+
+The copyright in this software is being made available under the 2-clauses
+BSD License, included below. This software may be subject to other third
+party and contributor rights, including patent rights, and no such rights
+are granted under this license.
+
+Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
+Copyright (c) 2002-2014, Professor Benoit Macq
+Copyright (c) 2003-2014, Antonin Descampe
+Copyright (c) 2003-2009, Francois-Olivier Devaux
+Copyright (c) 2005, Herve Drolon, FreeImage Team
+Copyright (c) 2002-2003, Yannick Verschueren
+Copyright (c) 2001-2003, David Janssens
+Copyright (c) 2011-2012, Centre National d'Etudes Spatiales (CNES), France
+Copyright (c) 2012, CS Systemes d'Information, France
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libopus is redistributed within opencv-python macOS packages.
+This license applies to libopus binary in the directory cv2/.
+
+Copyright 2001-2011 Xiph.Org, Skype Limited, Octasic,
+ Jean-Marc Valin, Timothy B. Terriberry,
+ CSIRO, Gregory Maxwell, Mark Borgerding,
+ Erik de Castro Lopo
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+- Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+- Neither the name of Internet Society, IETF or IETF Trust, nor the
+names of specific contributors, may be used to endorse or promote
+products derived from this software without specific prior written
+permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+Opus is subject to the royalty-free patent licenses which are
+specified at:
+
+Xiph.Org Foundation:
+https://datatracker.ietf.org/ipr/1524/
+
+Microsoft Corporation:
+https://datatracker.ietf.org/ipr/1914/
+
+Broadcom Corporation:
+https://datatracker.ietf.org/ipr/1526/
+
+------------------------------------------------------------------------------
+librav1e is redistributed within opencv-python macOS packages.
+This license applies to librav1e binary in the directory cv2/.
+
+BSD 2-Clause License
+
+Copyright (c) 2017-2020, the rav1e contributors
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+* Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+* Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libsnappy is redistributed within opencv-python macOS packages.
+This license applies to libsnappy binary in the directory cv2/.
+
+Copyright 2011, Google Inc.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following disclaimer
+in the documentation and/or other materials provided with the
+distribution.
+ * Neither the name of Google Inc. nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libspeex is redistributed within opencv-python macOS packages.
+This license applies to libspeex binary in the directory cv2/.
+
+Copyright 2002-2008 Xiph.org Foundation
+Copyright 2002-2008 Jean-Marc Valin
+Copyright 2005-2007 Analog Devices Inc.
+Copyright 2005-2008 Commonwealth Scientific and Industrial Research
+ Organisation (CSIRO)
+Copyright 1993, 2002, 2006 David Rowe
+Copyright 2003 EpicGames
+Copyright 1992-1994 Jutta Degener, Carsten Bormann
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+- Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+- Neither the name of the Xiph.org Foundation nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libsrt is redistributed within opencv-python macOS packages.
+This license applies to libsrt binary in the directory cv2/.
+
+/*
+ *
+ * Copyright (c) 2001-2017 Cisco Systems, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * Neither the name of the Cisco Systems, Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+
+ Mozilla Public License Version 2.0
+==================================
+
+1. Definitions
+--------------
+
+1.1. "Contributor"
+ means each individual or legal entity that creates, contributes to
+ the creation of, or owns Covered Software.
+
+1.2. "Contributor Version"
+ means the combination of the Contributions of others (if any) used
+ by a Contributor and that particular Contributor's Contribution.
+
+1.3. "Contribution"
+ means Covered Software of a particular Contributor.
+
+1.4. "Covered Software"
+ means Source Code Form to which the initial Contributor has attached
+ the notice in Exhibit A, the Executable Form of such Source Code
+ Form, and Modifications of such Source Code Form, in each case
+ including portions thereof.
+
+1.5. "Incompatible With Secondary Licenses"
+ means
+
+ (a) that the initial Contributor has attached the notice described
+ in Exhibit B to the Covered Software; or
+
+ (b) that the Covered Software was made available under the terms of
+ version 1.1 or earlier of the License, but not also under the
+ terms of a Secondary License.
+
+1.6. "Executable Form"
+ means any form of the work other than Source Code Form.
+
+1.7. "Larger Work"
+ means a work that combines Covered Software with other material, in
+ a separate file or files, that is not Covered Software.
+
+1.8. "License"
+ means this document.
+
+1.9. "Licensable"
+ means having the right to grant, to the maximum extent possible,
+ whether at the time of the initial grant or subsequently, any and
+ all of the rights conveyed by this License.
+
+1.10. "Modifications"
+ means any of the following:
+
+ (a) any file in Source Code Form that results from an addition to,
+ deletion from, or modification of the contents of Covered
+ Software; or
+
+ (b) any new file in Source Code Form that contains any Covered
+ Software.
+
+1.11. "Patent Claims" of a Contributor
+ means any patent claim(s), including without limitation, method,
+ process, and apparatus claims, in any patent Licensable by such
+ Contributor that would be infringed, but for the grant of the
+ License, by the making, using, selling, offering for sale, having
+ made, import, or transfer of either its Contributions or its
+ Contributor Version.
+
+1.12. "Secondary License"
+ means either the GNU General Public License, Version 2.0, the GNU
+ Lesser General Public License, Version 2.1, the GNU Affero General
+ Public License, Version 3.0, or any later versions of those
+ licenses.
+
+1.13. "Source Code Form"
+ means the form of the work preferred for making modifications.
+
+1.14. "You" (or "Your")
+ means an individual or a legal entity exercising rights under this
+ License. For legal entities, "You" includes any entity that
+ controls, is controlled by, or is under common control with You. For
+ purposes of this definition, "control" means (a) the power, direct
+ or indirect, to cause the direction or management of such entity,
+ whether by contract or otherwise, or (b) ownership of more than
+ fifty percent (50%) of the outstanding shares or beneficial
+ ownership of such entity.
+
+2. License Grants and Conditions
+--------------------------------
+
+2.1. Grants
+
+Each Contributor hereby grants You a world-wide, royalty-free,
+non-exclusive license:
+
+(a) under intellectual property rights (other than patent or trademark)
+ Licensable by such Contributor to use, reproduce, make available,
+ modify, display, perform, distribute, and otherwise exploit its
+ Contributions, either on an unmodified basis, with Modifications, or
+ as part of a Larger Work; and
+
+(b) under Patent Claims of such Contributor to make, use, sell, offer
+ for sale, have made, import, and otherwise transfer either its
+ Contributions or its Contributor Version.
+
+2.2. Effective Date
+
+The licenses granted in Section 2.1 with respect to any Contribution
+become effective for each Contribution on the date the Contributor first
+distributes such Contribution.
+
+2.3. Limitations on Grant Scope
+
+The licenses granted in this Section 2 are the only rights granted under
+this License. No additional rights or licenses will be implied from the
+distribution or licensing of Covered Software under this License.
+Notwithstanding Section 2.1(b) above, no patent license is granted by a
+Contributor:
+
+(a) for any code that a Contributor has removed from Covered Software;
+ or
+
+(b) for infringements caused by: (i) Your and any other third party's
+ modifications of Covered Software, or (ii) the combination of its
+ Contributions with other software (except as part of its Contributor
+ Version); or
+
+(c) under Patent Claims infringed by Covered Software in the absence of
+ its Contributions.
+
+This License does not grant any rights in the trademarks, service marks,
+or logos of any Contributor (except as may be necessary to comply with
+the notice requirements in Section 3.4).
+
+2.4. Subsequent Licenses
+
+No Contributor makes additional grants as a result of Your choice to
+distribute the Covered Software under a subsequent version of this
+License (see Section 10.2) or under the terms of a Secondary License (if
+permitted under the terms of Section 3.3).
+
+2.5. Representation
+
+Each Contributor represents that the Contributor believes its
+Contributions are its original creation(s) or it has sufficient rights
+to grant the rights to its Contributions conveyed by this License.
+
+2.6. Fair Use
+
+This License is not intended to limit any rights You have under
+applicable copyright doctrines of fair use, fair dealing, or other
+equivalents.
+
+2.7. Conditions
+
+Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
+in Section 2.1.
+
+3. Responsibilities
+-------------------
+
+3.1. Distribution of Source Form
+
+All distribution of Covered Software in Source Code Form, including any
+Modifications that You create or to which You contribute, must be under
+the terms of this License. You must inform recipients that the Source
+Code Form of the Covered Software is governed by the terms of this
+License, and how they can obtain a copy of this License. You may not
+attempt to alter or restrict the recipients' rights in the Source Code
+Form.
+
+3.2. Distribution of Executable Form
+
+If You distribute Covered Software in Executable Form then:
+
+(a) such Covered Software must also be made available in Source Code
+ Form, as described in Section 3.1, and You must inform recipients of
+ the Executable Form how they can obtain a copy of such Source Code
+ Form by reasonable means in a timely manner, at a charge no more
+ than the cost of distribution to the recipient; and
+
+(b) You may distribute such Executable Form under the terms of this
+ License, or sublicense it under different terms, provided that the
+ license for the Executable Form does not attempt to limit or alter
+ the recipients' rights in the Source Code Form under this License.
+
+3.3. Distribution of a Larger Work
+
+You may create and distribute a Larger Work under terms of Your choice,
+provided that You also comply with the requirements of this License for
+the Covered Software. If the Larger Work is a combination of Covered
+Software with a work governed by one or more Secondary Licenses, and the
+Covered Software is not Incompatible With Secondary Licenses, this
+License permits You to additionally distribute such Covered Software
+under the terms of such Secondary License(s), so that the recipient of
+the Larger Work may, at their option, further distribute the Covered
+Software under the terms of either this License or such Secondary
+License(s).
+
+3.4. Notices
+
+You may not remove or alter the substance of any license notices
+(including copyright notices, patent notices, disclaimers of warranty,
+or limitations of liability) contained within the Source Code Form of
+the Covered Software, except that You may alter any license notices to
+the extent required to remedy known factual inaccuracies.
+
+3.5. Application of Additional Terms
+
+You may choose to offer, and to charge a fee for, warranty, support,
+indemnity or liability obligations to one or more recipients of Covered
+Software. However, You may do so only on Your own behalf, and not on
+behalf of any Contributor. You must make it absolutely clear that any
+such warranty, support, indemnity, or liability obligation is offered by
+You alone, and You hereby agree to indemnify every Contributor for any
+liability incurred by such Contributor as a result of warranty, support,
+indemnity or liability terms You offer. You may include additional
+disclaimers of warranty and limitations of liability specific to any
+jurisdiction.
+
+4. Inability to Comply Due to Statute or Regulation
+---------------------------------------------------
+
+If it is impossible for You to comply with any of the terms of this
+License with respect to some or all of the Covered Software due to
+statute, judicial order, or regulation then You must: (a) comply with
+the terms of this License to the maximum extent possible; and (b)
+describe the limitations and the code they affect. Such description must
+be placed in a text file included with all distributions of the Covered
+Software under this License. Except to the extent prohibited by statute
+or regulation, such description must be sufficiently detailed for a
+recipient of ordinary skill to be able to understand it.
+
+5. Termination
+--------------
+
+5.1. The rights granted under this License will terminate automatically
+if You fail to comply with any of its terms. However, if You become
+compliant, then the rights granted under this License from a particular
+Contributor are reinstated (a) provisionally, unless and until such
+Contributor explicitly and finally terminates Your grants, and (b) on an
+ongoing basis, if such Contributor fails to notify You of the
+non-compliance by some reasonable means prior to 60 days after You have
+come back into compliance. Moreover, Your grants from a particular
+Contributor are reinstated on an ongoing basis if such Contributor
+notifies You of the non-compliance by some reasonable means, this is the
+first time You have received notice of non-compliance with this License
+from such Contributor, and You become compliant prior to 30 days after
+Your receipt of the notice.
+
+5.2. If You initiate litigation against any entity by asserting a patent
+infringement claim (excluding declaratory judgment actions,
+counter-claims, and cross-claims) alleging that a Contributor Version
+directly or indirectly infringes any patent, then the rights granted to
+You by any and all Contributors for the Covered Software under Section
+2.1 of this License shall terminate.
+
+5.3. In the event of termination under Sections 5.1 or 5.2 above, all
+end user license agreements (excluding distributors and resellers) which
+have been validly granted by You or Your distributors under this License
+prior to termination shall survive termination.
+
+************************************************************************
+* *
+* 6. Disclaimer of Warranty *
+* ------------------------- *
+* *
+* Covered Software is provided under this License on an "as is" *
+* basis, without warranty of any kind, either expressed, implied, or *
+* statutory, including, without limitation, warranties that the *
+* Covered Software is free of defects, merchantable, fit for a *
+* particular purpose or non-infringing. The entire risk as to the *
+* quality and performance of the Covered Software is with You. *
+* Should any Covered Software prove defective in any respect, You *
+* (not any Contributor) assume the cost of any necessary servicing, *
+* repair, or correction. This disclaimer of warranty constitutes an *
+* essential part of this License. No use of any Covered Software is *
+* authorized under this License except under this disclaimer. *
+* *
+************************************************************************
+
+************************************************************************
+* *
+* 7. Limitation of Liability *
+* -------------------------- *
+* *
+* Under no circumstances and under no legal theory, whether tort *
+* (including negligence), contract, or otherwise, shall any *
+* Contributor, or anyone who distributes Covered Software as *
+* permitted above, be liable to You for any direct, indirect, *
+* special, incidental, or consequential damages of any character *
+* including, without limitation, damages for lost profits, loss of *
+* goodwill, work stoppage, computer failure or malfunction, or any *
+* and all other commercial damages or losses, even if such party *
+* shall have been informed of the possibility of such damages. This *
+* limitation of liability shall not apply to liability for death or *
+* personal injury resulting from such party's negligence to the *
+* extent applicable law prohibits such limitation. Some *
+* jurisdictions do not allow the exclusion or limitation of *
+* incidental or consequential damages, so this exclusion and *
+* limitation may not apply to You. *
+* *
+************************************************************************
+
+8. Litigation
+-------------
+
+Any litigation relating to this License may be brought only in the
+courts of a jurisdiction where the defendant maintains its principal
+place of business and such litigation shall be governed by laws of that
+jurisdiction, without reference to its conflict-of-law provisions.
+Nothing in this Section shall prevent a party's ability to bring
+cross-claims or counter-claims.
+
+9. Miscellaneous
+----------------
+
+This License represents the complete agreement concerning the subject
+matter hereof. If any provision of this License is held to be
+unenforceable, such provision shall be reformed only to the extent
+necessary to make it enforceable. Any law or regulation which provides
+that the language of a contract shall be construed against the drafter
+shall not be used to construe this License against a Contributor.
+
+10. Versions of the License
+---------------------------
+
+10.1. New Versions
+
+Mozilla Foundation is the license steward. Except as provided in Section
+10.3, no one other than the license steward has the right to modify or
+publish new versions of this License. Each version will be given a
+distinguishing version number.
+
+10.2. Effect of New Versions
+
+You may distribute the Covered Software under the terms of the version
+of the License under which You originally received the Covered Software,
+or under the terms of any subsequent version published by the license
+steward.
+
+10.3. Modified Versions
+
+If you create software not governed by this License, and you want to
+create a new license for such software, you may create and use a
+modified version of this License if you rename the license and remove
+any references to the name of the license steward (except to note that
+such modified license differs from this License).
+
+10.4. Distributing Source Code Form that is Incompatible With Secondary
+Licenses
+
+If You choose to distribute Source Code Form that is Incompatible With
+Secondary Licenses under the terms of this version of the License, the
+notice described in Exhibit B of this License must be attached.
+
+Exhibit A - Source Code Form License Notice
+-------------------------------------------
+
+ This Source Code Form is subject to the terms of the Mozilla Public
+ License, v. 2.0. If a copy of the MPL was not distributed with this
+ file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+If it is not possible or desirable to put the notice in a particular
+file, then You may include the notice in a location (such as a LICENSE
+file in a relevant directory) where a recipient would be likely to look
+for such a notice.
+
+You may add additional accurate notices of copyright ownership.
+
+Exhibit B - "Incompatible With Secondary Licenses" Notice
+---------------------------------------------------------
+
+ This Source Code Form is "Incompatible With Secondary Licenses", as
+ defined by the Mozilla Public License, v. 2.0.
+
+------------------------------------------------------------------------------
+libtheoradec and libtheoraenc are redistributed within opencv-python macOS packages.
+This license applies to libtheoradec and libtheoraenc binaries in the directory cv2/.
+
+ Copyright (C) 2002-2009 Xiph.org Foundation
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+- Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+- Neither the name of the Xiph.org Foundation nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION
+OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libwebp and libwebpmux are redistributed within opencv-python macOS packages.
+This license applies to libwebp and libwebpmux binaries in the directory cv2/.
+
+Copyright (c) 2010, Google Inc. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+
+ * Neither the name of Google nor the names of its contributors may
+ be used to endorse or promote products derived from this software
+ without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+libvorbis and libvorbisenc are redistributed within opencv-python macOS packages.
+This license applies to libvorbis and libvorbisenc binaries in the directory cv2/.
+
+Copyright (c) 2002-2020 Xiph.org Foundation
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+- Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+
+- Neither the name of the Xiph.org Foundation nor the names of its
+contributors may be used to endorse or promote products derived from
+this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION
+OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+------------------------------------------------------------------------------
+Libxcb utility libraries are redistributed within opencv-python non-headless Linux packages.
+This license applies to libxcb related binaries in the directory cv2/.
+
+Copyright (C) 2001-2006 Bart Massey, Jamey Sharp, and Josh Triplett.
+All Rights Reserved.
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without limitation
+the rights to use, copy, modify, merge, publish, distribute,
+sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so,
+subject to the following conditions:
+
+The above copyright notice and this permission notice shall
+be included in all copies or substantial portions of the
+Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
+KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
+WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
+PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
+BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors
+or their institutions shall not be used in advertising or
+otherwise to promote the sale, use or other dealings in this
+Software without prior written authorization from the
+authors.
+
+------------------------------------------------------------------------------
+Libxcb-image is redistributed within opencv-python non-headless Linux packages.
+This license applies to libxcb-image binary in the directory cv2/.
+
+Copyright ยฉ 2007-2008 Bart Massey
+Copyright ยฉ 2008 Julien Danjou
+Copyright ยฉ 2008 Keith Packard
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use, copy,
+modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors or
+their institutions shall not be used in advertising or otherwise to
+promote the sale, use or other dealings in this Software without
+prior written authorization from the authors.
+
+------------------------------------------------------------------------------
+Libxcb-util is redistributed within opencv-python non-headless Linux packages.
+This license applies to libxcb-util binary in the directory cv2/.
+
+Copyright ยฉ 2008 Bart Massey
+Copyright ยฉ 2008 Ian Osgood
+Copyright ยฉ 2008 Jamey Sharp
+Copyright ยฉ 2008 Josh Triplett
+Copyright ยฉ 2008-2009 Julien Danjou
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use, copy,
+modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors or
+their institutions shall not be used in advertising or otherwise to
+promote the sale, use or other dealings in this Software without
+prior written authorization from the authors.
+
+------------------------------------------------------------------------------
+Libxcb-render-util is redistributed within opencv-python non-headless Linux packages.
+This license applies to libxcb-render-util binary in the directory cv2/.
+
+Copyright ยฉ 2000 Keith Packard
+
+Permission to use, copy, modify, distribute, and sell this software and its
+documentation for any purpose is hereby granted without fee, provided that
+the above copyright notice appear in all copies and that both that
+copyright notice and this permission notice appear in supporting
+documentation, and that the name of Keith Packard not be used in
+advertising or publicity pertaining to distribution of the software without
+specific, written prior permission. Keith Packard makes no
+representations about the suitability of this software for any purpose. It
+is provided "as is" without express or implied warranty.
+
+KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
+INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
+EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
+DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
+TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
+PERFORMANCE OF THIS SOFTWARE.
+
+Copyright ยฉ 2006 Jamey Sharp.
+
+Permission is hereby granted, free of charge, to any person obtaining a
+copy of this software and associated documentation files (the "Software"),
+to deal in the Software without restriction, including without limitation
+the rights to use, copy, modify, merge, publish, distribute, sublicense,
+and/or sell copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors or their
+institutions shall not be used in advertising or otherwise to promote the
+sale, use or other dealings in this Software without prior written
+authorization from the authors.
+
+Copyright ยฉ 2006 Ian Osgood
+
+Permission is hereby granted, free of charge, to any person obtaining a
+copy of this software and associated documentation files (the "Software"),
+to deal in the Software without restriction, including without limitation
+the rights to use, copy, modify, merge, publish, distribute, sublicense,
+and/or sell copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors or their
+institutions shall not be used in advertising or otherwise to promote the
+sale, use or other dealings in this Software without prior written
+authorization from the authors.
+
+------------------------------------------------------------------------------
+Libxcb-icccm is redistributed within opencv-python non-headless Linux packages.
+This license applies to Libxcb-icccm binary in the directory cv2/.
+
+Copyright ยฉ 2008-2011 Arnaud Fontaine
+Copyright ยฉ 2007-2008 Vincent Torri
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use, copy,
+modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the names of the authors or
+their institutions shall not be used in advertising or otherwise to
+promote the sale, use or other dealings in this Software without
+prior written authorization from the authors.
+
+------------------------------------------------------------------------------
+libXau is redistributed within opencv-python non-headless Linux packages.
+This license applies to libXau binary in the directory cv2/.
+
+Copyright 1988, 1993, 1994, 1998 The Open Group
+
+Permission to use, copy, modify, distribute, and sell this software and its
+documentation for any purpose is hereby granted without fee, provided that
+the above copyright notice appear in all copies and that both that
+copyright notice and this permission notice appear in supporting
+documentation.
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Except as contained in this notice, the name of The Open Group shall not be
+used in advertising or otherwise to promote the sale, use or other dealings
+in this Software without prior written authorization from The Open Group.
\ No newline at end of file
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE.txt b/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..328bf50632a988cf1cc494d557936d84fec16335
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/LICENSE.txt
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) Olli-Pekka Heinisuo
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f7c12619c4c760accc1f0139c90ccd4a259f8c6
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__init__.py
@@ -0,0 +1,33 @@
+import importlib
+import os
+import sys
+
+from .cv2 import *
+from .data import *
+
+# wildcard import above does not import "private" variables like __version__
+# this makes them available
+globals().update(importlib.import_module("cv2.cv2").__dict__)
+
+ci_and_not_headless = False
+
+try:
+ from .version import ci_build, headless
+
+ ci_and_not_headless = ci_build and not headless
+except:
+ pass
+
+# the Qt plugin is included currently only in the pre-built wheels
+if (
+ sys.platform == "darwin" or sys.platform.startswith("linux")
+) and ci_and_not_headless:
+ os.environ["QT_QPA_PLATFORM_PLUGIN_PATH"] = os.path.join(
+ os.path.dirname(os.path.abspath(__file__)), "qt", "plugins"
+ )
+
+# Qt will throw warning on Linux if fonts are not found
+if sys.platform.startswith("linux") and ci_and_not_headless:
+ os.environ["QT_QPA_FONTDIR"] = os.path.join(
+ os.path.dirname(os.path.abspath(__file__)), "qt", "fonts"
+ )
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a183766d5e2382e0e6b45ca0703e9d13ad11b30d
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/version.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/version.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f5297cd39e16ba9b7a57cf3eff282f8f53d256fd
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/cv2/__pycache__/version.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/cv2.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/cv2/cv2.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..85c45a6441b1eff000a63018dbdb4855b86e00eb
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/cv2.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:adf12e388c25e41de2a5027c411fae069da35b43feb55161a86538146c31b725
+size 21460736
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cad2750a50da66bc344a874d527c5452a24d5b1
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__init__.py
@@ -0,0 +1,3 @@
+import os
+
+haarcascades = os.path.join(os.path.dirname(__file__), "")
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5bbbd17c13d3b9e7d8b008d3f712ca1ad4fde36d
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye.xml
new file mode 100644
index 0000000000000000000000000000000000000000..b21e3b93d74b5130b5a1323be9fc46017ab0e8c7
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye.xml
@@ -0,0 +1,12213 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 93
+
+ 0
+ 24
+
+ <_>
+ 6
+ -1.4562760591506958e+00
+
+ <_>
+
+ 0 -1 0 1.2963959574699402e-01
+
+ -7.7304208278656006e-01 6.8350148200988770e-01
+ <_>
+
+ 0 -1 1 -4.6326808631420135e-02
+
+ 5.7352751493453979e-01 -4.9097689986228943e-01
+ <_>
+
+ 0 -1 2 -1.6173090785741806e-02
+
+ 6.0254341363906860e-01 -3.1610709428787231e-01
+ <_>
+
+ 0 -1 3 -4.5828841626644135e-02
+
+ 6.4177548885345459e-01 -1.5545040369033813e-01
+ <_>
+
+ 0 -1 4 -5.3759619593620300e-02
+
+ 5.4219317436218262e-01 -2.0480829477310181e-01
+ <_>
+
+ 0 -1 5 3.4171190112829208e-02
+
+ -2.3388190567493439e-01 4.8410901427268982e-01
+ <_>
+ 12
+ -1.2550230026245117e+00
+
+ <_>
+
+ 0 -1 6 -2.1727620065212250e-01
+
+ 7.1098899841308594e-01 -5.9360730648040771e-01
+ <_>
+
+ 0 -1 7 1.2071969918906689e-02
+
+ -2.8240481019020081e-01 5.9013551473617554e-01
+ <_>
+
+ 0 -1 8 -1.7854139208793640e-02
+
+ 5.3137522935867310e-01 -2.2758960723876953e-01
+ <_>
+
+ 0 -1 9 2.2333610802888870e-02
+
+ -1.7556099593639374e-01 6.3356137275695801e-01
+ <_>
+
+ 0 -1 10 -9.1420017182826996e-02
+
+ 6.1563092470169067e-01 -1.6899530589580536e-01
+ <_>
+
+ 0 -1 11 2.8973650187253952e-02
+
+ -1.2250079959630966e-01 7.4401170015335083e-01
+ <_>
+
+ 0 -1 12 7.8203463926911354e-03
+
+ 1.6974370181560516e-01 -6.5441650152206421e-01
+ <_>
+
+ 0 -1 13 2.0340489223599434e-02
+
+ -1.2556649744510651e-01 8.2710450887680054e-01
+ <_>
+
+ 0 -1 14 -1.1926149949431419e-02
+
+ 3.8605681061744690e-01 -2.0992340147495270e-01
+ <_>
+
+ 0 -1 15 -9.7281101625412703e-04
+
+ -6.3761192560195923e-01 1.2952390313148499e-01
+ <_>
+
+ 0 -1 16 1.8322050891583785e-05
+
+ -3.4631478786468506e-01 2.2924269735813141e-01
+ <_>
+
+ 0 -1 17 -8.0854417756199837e-03
+
+ -6.3665801286697388e-01 1.3078659772872925e-01
+ <_>
+ 9
+ -1.3728189468383789e+00
+
+ <_>
+
+ 0 -1 18 -1.1812269687652588e-01
+
+ 6.7844521999359131e-01 -5.0045782327651978e-01
+ <_>
+
+ 0 -1 19 -3.4332759678363800e-02
+
+ 6.7186361551284790e-01 -3.5744878649711609e-01
+ <_>
+
+ 0 -1 20 -2.1530799567699432e-02
+
+ 7.2220700979232788e-01 -1.8192419409751892e-01
+ <_>
+
+ 0 -1 21 -2.1909970790147781e-02
+
+ 6.6529387235641479e-01 -2.7510228753089905e-01
+ <_>
+
+ 0 -1 22 -2.8713539242744446e-02
+
+ 6.9955700635910034e-01 -1.9615580141544342e-01
+ <_>
+
+ 0 -1 23 -1.1467480100691319e-02
+
+ 5.9267348051071167e-01 -2.2097350656986237e-01
+ <_>
+
+ 0 -1 24 -2.2611169144511223e-02
+
+ 3.4483069181442261e-01 -3.8379558920860291e-01
+ <_>
+
+ 0 -1 25 -1.9308089977130294e-03
+
+ -7.9445719718933105e-01 1.5628659725189209e-01
+ <_>
+
+ 0 -1 26 5.6419910833938047e-05
+
+ -3.0896010994911194e-01 3.5431089997291565e-01
+ <_>
+ 16
+ -1.2879480123519897e+00
+
+ <_>
+
+ 0 -1 27 1.9886520504951477e-01
+
+ -5.2860701084136963e-01 3.5536721348762512e-01
+ <_>
+
+ 0 -1 28 -3.6008939146995544e-02
+
+ 4.2109689116477966e-01 -3.9348980784416199e-01
+ <_>
+
+ 0 -1 29 -7.7569849789142609e-02
+
+ 4.7991541028022766e-01 -2.5122168660163879e-01
+ <_>
+
+ 0 -1 30 8.2630853285081685e-05
+
+ -3.8475489616394043e-01 3.1849220395088196e-01
+ <_>
+
+ 0 -1 31 3.2773229759186506e-04
+
+ -2.6427319645881653e-01 3.2547241449356079e-01
+ <_>
+
+ 0 -1 32 -1.8574850633740425e-02
+
+ 4.6736589074134827e-01 -1.5067270398139954e-01
+ <_>
+
+ 0 -1 33 -7.0008762122597545e-05
+
+ 2.9313150048255920e-01 -2.5365099310874939e-01
+ <_>
+
+ 0 -1 34 -1.8552130088210106e-02
+
+ 4.6273660659790039e-01 -1.3148050010204315e-01
+ <_>
+
+ 0 -1 35 -1.3030420057475567e-02
+
+ 4.1627219319343567e-01 -1.7751489579677582e-01
+ <_>
+
+ 0 -1 36 6.5694141085259616e-05
+
+ -2.8035101294517517e-01 2.6680740714073181e-01
+ <_>
+
+ 0 -1 37 1.7005260451696813e-04
+
+ -2.7027249336242676e-01 2.3981650173664093e-01
+ <_>
+
+ 0 -1 38 -3.3129199873656034e-03
+
+ 4.4411438703536987e-01 -1.4428889751434326e-01
+ <_>
+
+ 0 -1 39 1.7583490116521716e-03
+
+ -1.6126190125942230e-01 4.2940768599510193e-01
+ <_>
+
+ 0 -1 40 -2.5194749236106873e-02
+
+ 4.0687298774719238e-01 -1.8202580511569977e-01
+ <_>
+
+ 0 -1 41 1.4031709870323539e-03
+
+ 8.4759786725044250e-02 -8.0018568038940430e-01
+ <_>
+
+ 0 -1 42 -7.3991729877889156e-03
+
+ 5.5766099691390991e-01 -1.1843159794807434e-01
+ <_>
+ 23
+ -1.2179850339889526e+00
+
+ <_>
+
+ 0 -1 43 -2.9943080618977547e-02
+
+ 3.5810810327529907e-01 -3.8487631082534790e-01
+ <_>
+
+ 0 -1 44 -1.2567380070686340e-01
+
+ 3.9316931366920471e-01 -3.0012258887290955e-01
+ <_>
+
+ 0 -1 45 5.3635272197425365e-03
+
+ -4.3908619880676270e-01 1.9257010519504547e-01
+ <_>
+
+ 0 -1 46 -8.0971820279955864e-03
+
+ 3.9906668663024902e-01 -2.3407870531082153e-01
+ <_>
+
+ 0 -1 47 -1.6597909852862358e-02
+
+ 4.2095288634300232e-01 -2.2674840688705444e-01
+ <_>
+
+ 0 -1 48 -2.0199299324303865e-03
+
+ -7.4156731367111206e-01 1.2601189315319061e-01
+ <_>
+
+ 0 -1 49 -1.5202340437099338e-03
+
+ -7.6154601573944092e-01 8.6373612284660339e-02
+ <_>
+
+ 0 -1 50 -4.9663940444588661e-03
+
+ 4.2182239890098572e-01 -1.7904919385910034e-01
+ <_>
+
+ 0 -1 51 -1.9207600504159927e-02
+
+ 4.6894899010658264e-01 -1.4378750324249268e-01
+ <_>
+
+ 0 -1 52 -1.2222680263221264e-02
+
+ 3.2842078804969788e-01 -2.1802149713039398e-01
+ <_>
+
+ 0 -1 53 5.7548668235540390e-02
+
+ -3.6768808960914612e-01 2.4357110261917114e-01
+ <_>
+
+ 0 -1 54 -9.5794079825282097e-03
+
+ -7.2245067358016968e-01 6.3664563000202179e-02
+ <_>
+
+ 0 -1 55 -2.9545740690082312e-03
+
+ 3.5846439003944397e-01 -1.6696329414844513e-01
+ <_>
+
+ 0 -1 56 -4.2017991654574871e-03
+
+ 3.9094808697700500e-01 -1.2041790038347244e-01
+ <_>
+
+ 0 -1 57 -1.3624990358948708e-02
+
+ -5.8767718076705933e-01 8.8404729962348938e-02
+ <_>
+
+ 0 -1 58 6.2853112467564642e-05
+
+ -2.6348459720611572e-01 2.1419279277324677e-01
+ <_>
+
+ 0 -1 59 -2.6782939676195383e-03
+
+ -7.8390169143676758e-01 8.0526962876319885e-02
+ <_>
+
+ 0 -1 60 -7.0597179234027863e-02
+
+ 4.1469261050224304e-01 -1.3989959657192230e-01
+ <_>
+
+ 0 -1 61 9.2093646526336670e-02
+
+ -1.3055180013179779e-01 5.0435781478881836e-01
+ <_>
+
+ 0 -1 62 -8.8004386052489281e-03
+
+ 3.6609750986099243e-01 -1.4036649465560913e-01
+ <_>
+
+ 0 -1 63 7.5080977694597095e-05
+
+ -2.9704439640045166e-01 2.0702940225601196e-01
+ <_>
+
+ 0 -1 64 -2.9870450962334871e-03
+
+ 3.5615700483322144e-01 -1.5445969998836517e-01
+ <_>
+
+ 0 -1 65 -2.6441509835422039e-03
+
+ -5.4353517293930054e-01 1.0295110195875168e-01
+ <_>
+ 27
+ -1.2905240058898926e+00
+
+ <_>
+
+ 0 -1 66 -4.7862470149993896e-02
+
+ 4.1528239846229553e-01 -3.4185820817947388e-01
+ <_>
+
+ 0 -1 67 8.7350532412528992e-02
+
+ -3.8749781250953674e-01 2.4204200506210327e-01
+ <_>
+
+ 0 -1 68 -1.6849499195814133e-02
+
+ 5.3082478046417236e-01 -1.7282910645008087e-01
+ <_>
+
+ 0 -1 69 -2.8870029374957085e-02
+
+ 3.5843509435653687e-01 -2.2402590513229370e-01
+ <_>
+
+ 0 -1 70 2.5679389946162701e-03
+
+ 1.4990499615669250e-01 -6.5609407424926758e-01
+ <_>
+
+ 0 -1 71 -2.4116659536957741e-02
+
+ 5.5889678001403809e-01 -1.4810280501842499e-01
+ <_>
+
+ 0 -1 72 -3.2826658338308334e-02
+
+ 4.6468681097030640e-01 -1.0785529762506485e-01
+ <_>
+
+ 0 -1 73 -1.5233060345053673e-02
+
+ -7.3954427242279053e-01 5.6236881762742996e-02
+ <_>
+
+ 0 -1 74 -3.0209511169232428e-04
+
+ -4.5548820495605469e-01 9.7069837152957916e-02
+ <_>
+
+ 0 -1 75 7.5365108205005527e-04
+
+ 9.5147296786308289e-02 -5.4895019531250000e-01
+ <_>
+
+ 0 -1 76 -1.0638950392603874e-02
+
+ 4.0912970900535583e-01 -1.2308409810066223e-01
+ <_>
+
+ 0 -1 77 -7.5217830017209053e-03
+
+ 4.0289148688316345e-01 -1.6048780083656311e-01
+ <_>
+
+ 0 -1 78 -1.0677099972963333e-01
+
+ 6.1759322881698608e-01 -7.3091186583042145e-02
+ <_>
+
+ 0 -1 79 1.6256919130682945e-02
+
+ -1.3103680312633514e-01 3.7453651428222656e-01
+ <_>
+
+ 0 -1 80 -2.0679360255599022e-02
+
+ -7.1402907371520996e-01 5.2390009164810181e-02
+ <_>
+
+ 0 -1 81 1.7052369192242622e-02
+
+ 1.2822860479354858e-01 -3.1080681085586548e-01
+ <_>
+
+ 0 -1 82 -5.7122060097754002e-03
+
+ -6.0556507110595703e-01 8.1884756684303284e-02
+ <_>
+
+ 0 -1 83 2.0851430235779844e-05
+
+ -2.6812988519668579e-01 1.4453840255737305e-01
+ <_>
+
+ 0 -1 84 7.9284431412816048e-03
+
+ -7.8795351088047028e-02 5.6762582063674927e-01
+ <_>
+
+ 0 -1 85 -2.5217379443347454e-03
+
+ 3.7068629264831543e-01 -1.3620570302009583e-01
+ <_>
+
+ 0 -1 86 -2.2426199167966843e-02
+
+ -6.8704998493194580e-01 5.1062859594821930e-02
+ <_>
+
+ 0 -1 87 -7.6451441273093224e-03
+
+ 2.3492220044136047e-01 -1.7905959486961365e-01
+ <_>
+
+ 0 -1 88 -1.1175329564139247e-03
+
+ -5.9869050979614258e-01 7.4324436485767365e-02
+ <_>
+
+ 0 -1 89 1.9212789833545685e-02
+
+ -1.5702550113201141e-01 2.9737469553947449e-01
+ <_>
+
+ 0 -1 90 5.6293429806828499e-03
+
+ -9.9769018590450287e-02 4.2130270600318909e-01
+ <_>
+
+ 0 -1 91 -9.5671862363815308e-03
+
+ -6.0858798027038574e-01 7.3506258428096771e-02
+ <_>
+
+ 0 -1 92 1.1217960156500340e-02
+
+ -1.0320810228586197e-01 4.1909849643707275e-01
+ <_>
+ 28
+ -1.1600480079650879e+00
+
+ <_>
+
+ 0 -1 93 -1.7486440017819405e-02
+
+ 3.1307280063629150e-01 -3.3681181073188782e-01
+ <_>
+
+ 0 -1 94 3.0714649707078934e-02
+
+ -1.8766190111637115e-01 5.3780800104141235e-01
+ <_>
+
+ 0 -1 95 -2.2188719362020493e-02
+
+ 3.6637881398200989e-01 -1.6124810278415680e-01
+ <_>
+
+ 0 -1 96 -5.0700771680567414e-05
+
+ 2.1245710551738739e-01 -2.8444620966911316e-01
+ <_>
+
+ 0 -1 97 -7.0170420221984386e-03
+
+ 3.9543110132217407e-01 -1.3173590600490570e-01
+ <_>
+
+ 0 -1 98 -6.8563609384000301e-03
+
+ 3.0373859405517578e-01 -2.0657819509506226e-01
+ <_>
+
+ 0 -1 99 -1.4129259623587132e-02
+
+ -7.6503008604049683e-01 9.8213188350200653e-02
+ <_>
+
+ 0 -1 100 -4.7915481030941010e-02
+
+ 4.8307389020919800e-01 -1.3006809353828430e-01
+ <_>
+
+ 0 -1 101 4.7032979637151584e-05
+
+ -2.5216570496559143e-01 2.4386680126190186e-01
+ <_>
+
+ 0 -1 102 1.0221180273219943e-03
+
+ 6.8857602775096893e-02 -6.5861141681671143e-01
+ <_>
+
+ 0 -1 103 -2.6056109927594662e-03
+
+ 4.2942029237747192e-01 -1.3022460043430328e-01
+ <_>
+
+ 0 -1 104 5.4505340813193470e-05
+
+ -1.9288620352745056e-01 2.8958499431610107e-01
+ <_>
+
+ 0 -1 105 -6.6721157054416835e-05
+
+ 3.0290710926055908e-01 -1.9854369759559631e-01
+ <_>
+
+ 0 -1 106 2.6281431317329407e-01
+
+ -2.3293940722942352e-01 2.3692460358142853e-01
+ <_>
+
+ 0 -1 107 -2.3569669574499130e-02
+
+ 1.9401040673255920e-01 -2.8484618663787842e-01
+ <_>
+
+ 0 -1 108 -3.9120172150433064e-03
+
+ 5.5378979444503784e-01 -9.5665678381919861e-02
+ <_>
+
+ 0 -1 109 5.0788799853762612e-05
+
+ -2.3912659287452698e-01 2.1799489855766296e-01
+ <_>
+
+ 0 -1 110 -7.8732017427682877e-03
+
+ 4.0697428584098816e-01 -1.2768040597438812e-01
+ <_>
+
+ 0 -1 111 -1.6778609715402126e-03
+
+ -5.7744657993316650e-01 9.7324788570404053e-02
+ <_>
+
+ 0 -1 112 -2.6832430739887059e-04
+
+ 2.9021880030632019e-01 -1.6831269860267639e-01
+ <_>
+
+ 0 -1 113 7.8687182394787669e-05
+
+ -1.9551570713520050e-01 2.7720969915390015e-01
+ <_>
+
+ 0 -1 114 1.2953500263392925e-02
+
+ -9.6838317811489105e-02 4.0323871374130249e-01
+ <_>
+
+ 0 -1 115 -1.3043959625065327e-02
+
+ 4.7198569774627686e-01 -8.9287549257278442e-02
+ <_>
+
+ 0 -1 116 3.0261781066656113e-03
+
+ -1.3623380661010742e-01 3.0686271190643311e-01
+ <_>
+
+ 0 -1 117 -6.0438038781285286e-03
+
+ -7.7954101562500000e-01 5.7316310703754425e-02
+ <_>
+
+ 0 -1 118 -2.2507249377667904e-03
+
+ 3.0877059698104858e-01 -1.5006309747695923e-01
+ <_>
+
+ 0 -1 119 1.5826810151338577e-02
+
+ 6.4551889896392822e-02 -7.2455567121505737e-01
+ <_>
+
+ 0 -1 120 6.5864507632795721e-05
+
+ -1.7598840594291687e-01 2.3210389912128448e-01
+ <_>
+ 36
+ -1.2257250547409058e+00
+
+ <_>
+
+ 0 -1 121 -2.7854869142174721e-02
+
+ 4.5518448948860168e-01 -1.8099910020828247e-01
+ <_>
+
+ 0 -1 122 1.2895040214061737e-01
+
+ -5.2565532922744751e-01 1.6188900172710419e-01
+ <_>
+
+ 0 -1 123 2.4403180927038193e-02
+
+ -1.4974960684776306e-01 4.2357379198074341e-01
+ <_>
+
+ 0 -1 124 -2.4458570405840874e-03
+
+ 3.2948669791221619e-01 -1.7447690665721893e-01
+ <_>
+
+ 0 -1 125 -3.5336529836058617e-03
+
+ 4.7426640987396240e-01 -7.3618359863758087e-02
+ <_>
+
+ 0 -1 126 5.1358150813030079e-05
+
+ -3.0421930551528931e-01 1.5633270144462585e-01
+ <_>
+
+ 0 -1 127 -1.6225680708885193e-02
+
+ 2.3002180457115173e-01 -2.0359820127487183e-01
+ <_>
+
+ 0 -1 128 -4.6007009223103523e-03
+
+ 4.0459269285202026e-01 -1.3485440611839294e-01
+ <_>
+
+ 0 -1 129 -2.1928999572992325e-02
+
+ -6.8724489212036133e-01 8.0684266984462738e-02
+ <_>
+
+ 0 -1 130 -2.8971210122108459e-03
+
+ -6.9619607925415039e-01 4.8545219004154205e-02
+ <_>
+
+ 0 -1 131 -4.4074649922549725e-03
+
+ 2.5166261196136475e-01 -1.6236649453639984e-01
+ <_>
+
+ 0 -1 132 2.8437169268727303e-02
+
+ 6.0394261032342911e-02 -6.6744458675384521e-01
+ <_>
+
+ 0 -1 133 8.3212882280349731e-02
+
+ 6.4357921481132507e-02 -5.3626042604446411e-01
+ <_>
+
+ 0 -1 134 -1.2419329956173897e-02
+
+ -7.0816862583160400e-01 5.7526610791683197e-02
+ <_>
+
+ 0 -1 135 -4.6992599964141846e-03
+
+ 5.1254332065582275e-01 -8.7350800633430481e-02
+ <_>
+
+ 0 -1 136 -7.8025809489190578e-04
+
+ 2.6687660813331604e-01 -1.7961509525775909e-01
+ <_>
+
+ 0 -1 137 -1.9724339246749878e-02
+
+ -6.7563730478286743e-01 7.2941906750202179e-02
+ <_>
+
+ 0 -1 138 1.0269250487908721e-03
+
+ 5.3919319063425064e-02 -5.5540180206298828e-01
+ <_>
+
+ 0 -1 139 -2.5957189500331879e-02
+
+ 5.6362527608871460e-01 -7.1898393332958221e-02
+ <_>
+
+ 0 -1 140 -1.2552699772641063e-03
+
+ -5.0346630811691284e-01 8.9691452682018280e-02
+ <_>
+
+ 0 -1 141 -4.9970578402280807e-02
+
+ 1.7685119807720184e-01 -2.2301959991455078e-01
+ <_>
+
+ 0 -1 142 -2.9899610672146082e-03
+
+ 3.9122420549392700e-01 -1.0149750113487244e-01
+ <_>
+
+ 0 -1 143 4.8546842299401760e-03
+
+ -1.1770179867744446e-01 4.2190939188003540e-01
+ <_>
+
+ 0 -1 144 1.0448860120959580e-04
+
+ -1.7333979904651642e-01 2.2344440221786499e-01
+ <_>
+
+ 0 -1 145 5.9689260524464771e-05
+
+ -2.3409630358219147e-01 1.6558240354061127e-01
+ <_>
+
+ 0 -1 146 -1.3423919677734375e-02
+
+ 4.3023818731307983e-01 -9.9723652005195618e-02
+ <_>
+
+ 0 -1 147 2.2581999655812979e-03
+
+ 7.2720989584922791e-02 -5.7501018047332764e-01
+ <_>
+
+ 0 -1 148 -1.2546280398964882e-02
+
+ 3.6184579133987427e-01 -1.1457010358572006e-01
+ <_>
+
+ 0 -1 149 -2.8705769218504429e-03
+
+ 2.8210538625717163e-01 -1.2367550283670425e-01
+ <_>
+
+ 0 -1 150 1.9785640761256218e-02
+
+ 4.7876749187707901e-02 -8.0666238069534302e-01
+ <_>
+
+ 0 -1 151 4.7588930465281010e-03
+
+ -1.0925389826297760e-01 3.3746978640556335e-01
+ <_>
+
+ 0 -1 152 -6.9974269717931747e-03
+
+ -8.0295938253402710e-01 4.5706700533628464e-02
+ <_>
+
+ 0 -1 153 -1.3033480383455753e-02
+
+ 1.8680439889431000e-01 -1.7688910663127899e-01
+ <_>
+
+ 0 -1 154 -1.3742579612880945e-03
+
+ 2.7725479006767273e-01 -1.2809009850025177e-01
+ <_>
+
+ 0 -1 155 2.7657810132950544e-03
+
+ 9.0758942067623138e-02 -4.2594739794731140e-01
+ <_>
+
+ 0 -1 156 2.8941841446794569e-04
+
+ -3.8816329836845398e-01 8.9267797768115997e-02
+ <_>
+ 47
+ -1.2863140106201172e+00
+
+ <_>
+
+ 0 -1 157 -1.4469229616224766e-02
+
+ 3.7507829070091248e-01 -2.4928289651870728e-01
+ <_>
+
+ 0 -1 158 -1.3317629694938660e-01
+
+ 3.0166378617286682e-01 -2.2414070367813110e-01
+ <_>
+
+ 0 -1 159 -1.0132160037755966e-02
+
+ 3.6985591053962708e-01 -1.7850010097026825e-01
+ <_>
+
+ 0 -1 160 -7.8511182218790054e-03
+
+ 4.6086761355400085e-01 -1.2931390106678009e-01
+ <_>
+
+ 0 -1 161 -1.4295839704573154e-02
+
+ 4.4841429591178894e-01 -1.0226240009069443e-01
+ <_>
+
+ 0 -1 162 -5.9606940485537052e-03
+
+ 2.7927988767623901e-01 -1.5323829650878906e-01
+ <_>
+
+ 0 -1 163 1.0932769626379013e-02
+
+ -1.5141740441322327e-01 3.9889648556709290e-01
+ <_>
+
+ 0 -1 164 5.0430990086169913e-05
+
+ -2.2681570053100586e-01 2.1644389629364014e-01
+ <_>
+
+ 0 -1 165 -5.8431681245565414e-03
+
+ 4.5420148968696594e-01 -1.2587159872055054e-01
+ <_>
+
+ 0 -1 166 -2.2346209734678268e-02
+
+ -6.2690192461013794e-01 8.2403123378753662e-02
+ <_>
+
+ 0 -1 167 -4.8836669884622097e-03
+
+ 2.6359251141548157e-01 -1.4686630666255951e-01
+ <_>
+
+ 0 -1 168 7.5506002758629620e-05
+
+ -2.4507020413875580e-01 1.6678880155086517e-01
+ <_>
+
+ 0 -1 169 -4.9026997294276953e-04
+
+ -4.2649960517883301e-01 8.9973561465740204e-02
+ <_>
+
+ 0 -1 170 1.4861579984426498e-03
+
+ -1.2040250003337860e-01 3.0097651481628418e-01
+ <_>
+
+ 0 -1 171 -1.1988339945673943e-02
+
+ 2.7852478623390198e-01 -1.2244340032339096e-01
+ <_>
+
+ 0 -1 172 1.0502239689230919e-02
+
+ 4.0452759712934494e-02 -7.4050408601760864e-01
+ <_>
+
+ 0 -1 173 -3.0963009223341942e-02
+
+ -6.2842690944671631e-01 4.8013761639595032e-02
+ <_>
+
+ 0 -1 174 1.1414520442485809e-02
+
+ 3.9405211806297302e-02 -7.1674120426177979e-01
+ <_>
+
+ 0 -1 175 -1.2337000109255314e-02
+
+ 1.9941329956054688e-01 -1.9274300336837769e-01
+ <_>
+
+ 0 -1 176 -5.9942267835140228e-03
+
+ 5.1318162679672241e-01 -6.1658058315515518e-02
+ <_>
+
+ 0 -1 177 -1.1923230485990644e-03
+
+ -7.2605299949645996e-01 5.0652720034122467e-02
+ <_>
+
+ 0 -1 178 -7.4582789093255997e-03
+
+ 2.9603078961372375e-01 -1.1754789948463440e-01
+ <_>
+
+ 0 -1 179 2.7877509128302336e-03
+
+ 4.5068711042404175e-02 -6.9535410404205322e-01
+ <_>
+
+ 0 -1 180 -2.2503209766000509e-04
+
+ 2.0047250390052795e-01 -1.5775249898433685e-01
+ <_>
+
+ 0 -1 181 -5.0367889925837517e-03
+
+ 2.9299819469451904e-01 -1.1700499802827835e-01
+ <_>
+
+ 0 -1 182 7.4742160737514496e-02
+
+ -1.1392319947481155e-01 3.0256620049476624e-01
+ <_>
+
+ 0 -1 183 2.0255519077181816e-02
+
+ -1.0515890270471573e-01 4.0670460462570190e-01
+ <_>
+
+ 0 -1 184 4.4214509427547455e-02
+
+ -2.7631640434265137e-01 1.2363869696855545e-01
+ <_>
+
+ 0 -1 185 -8.7259558495134115e-04
+
+ 2.4355030059814453e-01 -1.3300949335098267e-01
+ <_>
+
+ 0 -1 186 -2.4453739169985056e-03
+
+ -5.3866171836853027e-01 6.2510646879673004e-02
+ <_>
+
+ 0 -1 187 8.2725353422574699e-05
+
+ -2.0772209763526917e-01 1.6270439326763153e-01
+ <_>
+
+ 0 -1 188 -3.6627110093832016e-02
+
+ 3.6568409204483032e-01 -9.0330280363559723e-02
+ <_>
+
+ 0 -1 189 3.0996399000287056e-03
+
+ -1.3183020055294037e-01 2.5354298949241638e-01
+ <_>
+
+ 0 -1 190 -2.4709280114620924e-03
+
+ -5.6853497028350830e-01 5.3505431860685349e-02
+ <_>
+
+ 0 -1 191 -1.4114670455455780e-02
+
+ -4.8599010705947876e-01 5.8485250920057297e-02
+ <_>
+
+ 0 -1 192 8.4537261864170432e-04
+
+ -8.0093637108802795e-02 4.0265649557113647e-01
+ <_>
+
+ 0 -1 193 -7.1098632179200649e-03
+
+ 4.4703239202499390e-01 -6.2947437167167664e-02
+ <_>
+
+ 0 -1 194 -1.9125960767269135e-02
+
+ -6.6422867774963379e-01 4.9822770059108734e-02
+ <_>
+
+ 0 -1 195 -5.0773010589182377e-03
+
+ 1.7379400134086609e-01 -1.6850599646568298e-01
+ <_>
+
+ 0 -1 196 -2.9198289848864079e-03
+
+ -6.0110282897949219e-01 5.7427939027547836e-02
+ <_>
+
+ 0 -1 197 -2.4902150034904480e-02
+
+ 2.3397980630397797e-01 -1.1818459630012512e-01
+ <_>
+
+ 0 -1 198 2.0147779956459999e-02
+
+ -8.9459821581840515e-02 3.6024400591850281e-01
+ <_>
+
+ 0 -1 199 1.7597640398889780e-03
+
+ 4.9458440393209457e-02 -6.3102620840072632e-01
+ <_>
+
+ 0 -1 200 1.3812039978802204e-03
+
+ -1.5218059718608856e-01 1.8971739709377289e-01
+ <_>
+
+ 0 -1 201 -1.0904540307819843e-02
+
+ -5.8097380399703979e-01 4.4862728565931320e-02
+ <_>
+
+ 0 -1 202 7.5157178798690438e-05
+
+ -1.3777349889278412e-01 1.9543160498142242e-01
+ <_>
+
+ 0 -1 203 3.8649770431220531e-03
+
+ -1.0302229970693588e-01 2.5374969840049744e-01
+ <_>
+ 48
+ -1.1189440488815308e+00
+
+ <_>
+
+ 0 -1 204 -1.0215889662504196e-01
+
+ 4.1681259870529175e-01 -1.6655629873275757e-01
+ <_>
+
+ 0 -1 205 -5.1939819008111954e-02
+
+ 3.3023950457572937e-01 -2.0715710520744324e-01
+ <_>
+
+ 0 -1 206 -4.2717780917882919e-02
+
+ 2.6093730330467224e-01 -1.6013890504837036e-01
+ <_>
+
+ 0 -1 207 4.3890418601222336e-04
+
+ -3.4750530123710632e-01 1.3918919861316681e-01
+ <_>
+
+ 0 -1 208 2.4264389649033546e-02
+
+ -4.2552059888839722e-01 1.3578380644321442e-01
+ <_>
+
+ 0 -1 209 -2.3820599541068077e-02
+
+ 3.1749808788299561e-01 -1.6652040183544159e-01
+ <_>
+
+ 0 -1 210 -7.0518180727958679e-03
+
+ 3.0947178602218628e-01 -1.3338300585746765e-01
+ <_>
+
+ 0 -1 211 -6.8517157342284918e-04
+
+ -6.0082262754440308e-01 8.7747000157833099e-02
+ <_>
+
+ 0 -1 212 5.3705149330198765e-03
+
+ -1.2311449646949768e-01 3.8333550095558167e-01
+ <_>
+
+ 0 -1 213 -1.3403539545834064e-02
+
+ 3.3877369761466980e-01 -1.0140489786863327e-01
+ <_>
+
+ 0 -1 214 -6.6856360062956810e-03
+
+ -6.1193597316741943e-01 4.7740221023559570e-02
+ <_>
+
+ 0 -1 215 -4.2887418530881405e-03
+
+ 2.5275790691375732e-01 -1.4434510469436646e-01
+ <_>
+
+ 0 -1 216 -1.0876749642193317e-02
+
+ 5.4775732755661011e-01 -5.9455480426549911e-02
+ <_>
+
+ 0 -1 217 3.7882640026509762e-04
+
+ 8.3410300314426422e-02 -4.4226369261741638e-01
+ <_>
+
+ 0 -1 218 -2.4550149682909250e-03
+
+ 2.3330999910831451e-01 -1.3964480161666870e-01
+ <_>
+
+ 0 -1 219 1.2721839593723416e-03
+
+ 6.0480289161205292e-02 -4.9456089735031128e-01
+ <_>
+
+ 0 -1 220 -4.8933159559965134e-03
+
+ -6.6833269596099854e-01 4.6218499541282654e-02
+ <_>
+
+ 0 -1 221 2.6449989527463913e-02
+
+ -7.3235362768173218e-02 4.4425961375236511e-01
+ <_>
+
+ 0 -1 222 -3.3706070389598608e-03
+
+ -4.2464339733123779e-01 6.8676561117172241e-02
+ <_>
+
+ 0 -1 223 -2.9559480026364326e-03
+
+ 1.6218039393424988e-01 -1.8222999572753906e-01
+ <_>
+
+ 0 -1 224 3.0619909986853600e-02
+
+ -5.8643341064453125e-02 5.3263628482818604e-01
+ <_>
+
+ 0 -1 225 -9.5765907317399979e-03
+
+ -6.0562682151794434e-01 5.3345989435911179e-02
+ <_>
+
+ 0 -1 226 6.6372493165545166e-05
+
+ -1.6680839657783508e-01 1.9284160435199738e-01
+ <_>
+
+ 0 -1 227 5.0975950434803963e-03
+
+ 4.4119510799646378e-02 -5.7458841800689697e-01
+ <_>
+
+ 0 -1 228 3.7112718564458191e-04
+
+ -1.1086399853229523e-01 2.3105390369892120e-01
+ <_>
+
+ 0 -1 229 -8.6607588455080986e-03
+
+ 4.0456289052963257e-01 -6.2446091324090958e-02
+ <_>
+
+ 0 -1 230 8.7489158613607287e-04
+
+ 6.4875148236751556e-02 -4.4871041178703308e-01
+ <_>
+
+ 0 -1 231 1.1120870476588607e-03
+
+ -9.3861460685729980e-02 3.0453911423683167e-01
+ <_>
+
+ 0 -1 232 -2.3837819695472717e-02
+
+ -5.8887428045272827e-01 4.6659421175718307e-02
+ <_>
+
+ 0 -1 233 2.2272899514064193e-04
+
+ -1.4898599684238434e-01 1.7701950669288635e-01
+ <_>
+
+ 0 -1 234 2.4467470124363899e-02
+
+ -5.5789601057767868e-02 4.9208301305770874e-01
+ <_>
+
+ 0 -1 235 -1.4239320158958435e-01
+
+ 1.5192000567913055e-01 -1.8778899312019348e-01
+ <_>
+
+ 0 -1 236 -2.0123120397329330e-02
+
+ 2.1780100464820862e-01 -1.2081900238990784e-01
+ <_>
+
+ 0 -1 237 1.1513679783092812e-04
+
+ -1.6856589913368225e-01 1.6451929509639740e-01
+ <_>
+
+ 0 -1 238 -2.7556740678846836e-03
+
+ -6.9442039728164673e-01 3.9449468255043030e-02
+ <_>
+
+ 0 -1 239 -7.5843912782147527e-05
+
+ 1.8941369652748108e-01 -1.5183840692043304e-01
+ <_>
+
+ 0 -1 240 -7.0697711780667305e-03
+
+ 4.7064599394798279e-01 -5.7927619665861130e-02
+ <_>
+
+ 0 -1 241 -3.7393178790807724e-02
+
+ -7.5892448425292969e-01 3.4116048365831375e-02
+ <_>
+
+ 0 -1 242 -1.5995610505342484e-02
+
+ 3.0670469999313354e-01 -8.7525576353073120e-02
+ <_>
+
+ 0 -1 243 -3.1183990649878979e-03
+
+ 2.6195371150970459e-01 -9.1214887797832489e-02
+ <_>
+
+ 0 -1 244 1.0651360498741269e-03
+
+ -1.7427560687065125e-01 1.5277640521526337e-01
+ <_>
+
+ 0 -1 245 -1.6029420075938106e-03
+
+ 3.5612630844116211e-01 -7.6629996299743652e-02
+ <_>
+
+ 0 -1 246 4.3619908392429352e-03
+
+ 4.9356970936059952e-02 -5.9228771924972534e-01
+ <_>
+
+ 0 -1 247 -1.0779909789562225e-02
+
+ -6.3922178745269775e-01 3.3204540610313416e-02
+ <_>
+
+ 0 -1 248 -4.3590869754552841e-03
+
+ 1.6107389330863953e-01 -1.5221320092678070e-01
+ <_>
+
+ 0 -1 249 7.4596069753170013e-03
+
+ 3.3172961324453354e-02 -7.5007742643356323e-01
+ <_>
+
+ 0 -1 250 8.1385448575019836e-03
+
+ 2.6325279846787453e-02 -7.1731162071228027e-01
+ <_>
+
+ 0 -1 251 -3.3338490873575211e-02
+
+ 3.3536610007286072e-01 -7.0803590118885040e-02
+ <_>
+ 55
+ -1.1418989896774292e+00
+
+ <_>
+
+ 0 -1 252 1.9553979858756065e-02
+
+ -1.0439720004796982e-01 5.3128951787948608e-01
+ <_>
+
+ 0 -1 253 2.2122919559478760e-02
+
+ -2.4747270345687866e-01 2.0847250521183014e-01
+ <_>
+
+ 0 -1 254 -4.1829389519989491e-03
+
+ 3.8289439678192139e-01 -1.4711579680442810e-01
+ <_>
+
+ 0 -1 255 -8.6381728760898113e-04
+
+ -6.2632888555526733e-01 1.1993259936571121e-01
+ <_>
+
+ 0 -1 256 7.9958612332120538e-04
+
+ 9.2573471367359161e-02 -5.5168831348419189e-01
+ <_>
+
+ 0 -1 257 9.1527570039033890e-03
+
+ -7.2929807007312775e-02 5.5512511730194092e-01
+ <_>
+
+ 0 -1 258 -3.9388681761920452e-03
+
+ 2.0196039974689484e-01 -2.0912039279937744e-01
+ <_>
+
+ 0 -1 259 1.4613410166930407e-04
+
+ -2.7861818671226501e-01 1.3817410171031952e-01
+ <_>
+
+ 0 -1 260 -3.1691689509898424e-03
+
+ 3.6685898900032043e-01 -7.6308242976665497e-02
+ <_>
+
+ 0 -1 261 -2.2189389914274216e-02
+
+ 3.9096599817276001e-01 -1.0971540212631226e-01
+ <_>
+
+ 0 -1 262 -7.4523608200252056e-03
+
+ 1.2838590145111084e-01 -2.4159869551658630e-01
+ <_>
+
+ 0 -1 263 7.7997002517804503e-04
+
+ 7.1978069841861725e-02 -4.3976500630378723e-01
+ <_>
+
+ 0 -1 264 -4.6783639118075371e-03
+
+ 2.1569849550724030e-01 -1.4205920696258545e-01
+ <_>
+
+ 0 -1 265 -1.5188639983534813e-02
+
+ 3.6458781361579895e-01 -8.2675926387310028e-02
+ <_>
+
+ 0 -1 266 5.0619798712432384e-03
+
+ -3.4380409121513367e-01 9.2068232595920563e-02
+ <_>
+
+ 0 -1 267 -1.7351920250803232e-03
+
+ -6.1725497245788574e-01 4.9214478582143784e-02
+ <_>
+
+ 0 -1 268 -1.2423450127243996e-02
+
+ -5.8558952808380127e-01 4.6112600713968277e-02
+ <_>
+
+ 0 -1 269 -1.3031429611146450e-02
+
+ -5.9710788726806641e-01 4.0672458708286285e-02
+ <_>
+
+ 0 -1 270 -1.2369629694148898e-03
+
+ -6.8334168195724487e-01 3.3156178891658783e-02
+ <_>
+
+ 0 -1 271 6.1022108420729637e-03
+
+ -9.4729237258434296e-02 3.0102241039276123e-01
+ <_>
+
+ 0 -1 272 6.6952849738299847e-04
+
+ 8.1816866993904114e-02 -3.5196030139923096e-01
+ <_>
+
+ 0 -1 273 -1.7970580374822021e-03
+
+ 2.3718979954719543e-01 -1.1768709868192673e-01
+ <_>
+
+ 0 -1 274 -7.1074528386816382e-04
+
+ -4.4763788580894470e-01 5.7682480663061142e-02
+ <_>
+
+ 0 -1 275 -5.9126471169292927e-03
+
+ 4.3425410985946655e-01 -6.6868573427200317e-02
+ <_>
+
+ 0 -1 276 -3.3132149837911129e-03
+
+ 1.8150010704994202e-01 -1.4180320501327515e-01
+ <_>
+
+ 0 -1 277 -6.0814660042524338e-02
+
+ 4.7221711277961731e-01 -6.1410639435052872e-02
+ <_>
+
+ 0 -1 278 -9.6714183688163757e-02
+
+ 2.7683168649673462e-01 -9.4490036368370056e-02
+ <_>
+
+ 0 -1 279 3.9073550142347813e-03
+
+ -1.2278530001640320e-01 2.1057400107383728e-01
+ <_>
+
+ 0 -1 280 -9.0431869029998779e-03
+
+ 3.5641568899154663e-01 -7.7806226909160614e-02
+ <_>
+
+ 0 -1 281 -4.8800031654536724e-03
+
+ -4.1034790873527527e-01 6.9694377481937408e-02
+ <_>
+
+ 0 -1 282 -4.3547428213059902e-03
+
+ -7.3017889261245728e-01 3.6655150353908539e-02
+ <_>
+
+ 0 -1 283 -9.6500627696514130e-03
+
+ 5.5181127786636353e-01 -5.3168080747127533e-02
+ <_>
+
+ 0 -1 284 -1.7397310584783554e-02
+
+ -5.7084232568740845e-01 5.0214089453220367e-02
+ <_>
+
+ 0 -1 285 -6.8304329179227352e-03
+
+ -4.6180281043052673e-01 5.0202690064907074e-02
+ <_>
+
+ 0 -1 286 3.3255619928240776e-04
+
+ -9.5362730324268341e-02 2.5983759760856628e-01
+ <_>
+
+ 0 -1 287 -2.3100529797375202e-03
+
+ 2.2872470319271088e-01 -1.0533530265092850e-01
+ <_>
+
+ 0 -1 288 -7.5426651164889336e-03
+
+ -5.6990510225296021e-01 4.8863459378480911e-02
+ <_>
+
+ 0 -1 289 -5.2723060362040997e-03
+
+ 3.5145181417465210e-01 -8.2390107214450836e-02
+ <_>
+
+ 0 -1 290 -4.8578968271613121e-03
+
+ -6.0417622327804565e-01 4.4539440423250198e-02
+ <_>
+
+ 0 -1 291 1.5867310576140881e-03
+
+ -1.0340909659862518e-01 2.3282019793987274e-01
+ <_>
+
+ 0 -1 292 -4.7427811659872532e-03
+
+ 2.8490281105041504e-01 -9.8090499639511108e-02
+ <_>
+
+ 0 -1 293 -1.3515240279957652e-03
+
+ 2.3096430301666260e-01 -1.1361840367317200e-01
+ <_>
+
+ 0 -1 294 2.2526069078594446e-03
+
+ 6.4478322863578796e-02 -4.2205891013145447e-01
+ <_>
+
+ 0 -1 295 -3.8038659840822220e-04
+
+ -3.8076201081275940e-01 6.0043290257453918e-02
+ <_>
+
+ 0 -1 296 4.9043921753764153e-03
+
+ -7.6104998588562012e-02 3.3232170343399048e-01
+ <_>
+
+ 0 -1 297 -9.0969670563936234e-03
+
+ 1.4287790656089783e-01 -1.6887800395488739e-01
+ <_>
+
+ 0 -1 298 -6.9317929446697235e-03
+
+ 2.7255409955978394e-01 -9.2879563570022583e-02
+ <_>
+
+ 0 -1 299 1.1471060570329428e-03
+
+ -1.5273059904575348e-01 1.9702400267124176e-01
+ <_>
+
+ 0 -1 300 -3.7662889808416367e-02
+
+ -5.9320437908172607e-01 4.0738601237535477e-02
+ <_>
+
+ 0 -1 301 -6.8165571428835392e-03
+
+ 2.5494089722633362e-01 -9.4081960618495941e-02
+ <_>
+
+ 0 -1 302 6.6205562325194478e-04
+
+ 4.6795718371868134e-02 -4.8454371094703674e-01
+ <_>
+
+ 0 -1 303 -4.2202551849186420e-03
+
+ 2.4682149291038513e-01 -9.4673976302146912e-02
+ <_>
+
+ 0 -1 304 -6.8986512720584869e-02
+
+ -6.6514801979064941e-01 3.5926390439271927e-02
+ <_>
+
+ 0 -1 305 6.1707608401775360e-03
+
+ 2.5833319872617722e-02 -7.2686272859573364e-01
+ <_>
+
+ 0 -1 306 1.0536249727010727e-02
+
+ -8.1828996539115906e-02 2.9760798811912537e-01
+ <_>
+ 32
+ -1.1255199909210205e+00
+
+ <_>
+
+ 0 -1 307 -6.2758728861808777e-02
+
+ 2.7899080514907837e-01 -2.9656109213829041e-01
+ <_>
+
+ 0 -1 308 3.4516479354351759e-03
+
+ -3.4635880589485168e-01 2.0903840661048889e-01
+ <_>
+
+ 0 -1 309 -7.8699486330151558e-03
+
+ 2.4144889414310455e-01 -1.9205570220947266e-01
+ <_>
+
+ 0 -1 310 -3.4624869003891945e-03
+
+ -5.9151780605316162e-01 1.2486449629068375e-01
+ <_>
+
+ 0 -1 311 -9.4818761572241783e-03
+
+ 1.8391540646553040e-01 -2.4858260154724121e-01
+ <_>
+
+ 0 -1 312 2.3226840130519122e-04
+
+ -3.3047258853912354e-01 1.0999260097742081e-01
+ <_>
+
+ 0 -1 313 1.8101120367646217e-03
+
+ 9.8744012415409088e-02 -4.9634781479835510e-01
+ <_>
+
+ 0 -1 314 -5.4422430694103241e-03
+
+ 2.9344418644905090e-01 -1.3094750046730042e-01
+ <_>
+
+ 0 -1 315 7.4148122221231461e-03
+
+ -1.4762699604034424e-01 3.3277168869972229e-01
+ <_>
+
+ 0 -1 316 -1.5565140172839165e-02
+
+ -6.8404901027679443e-01 9.9872693419456482e-02
+ <_>
+
+ 0 -1 317 2.8720520436763763e-02
+
+ -1.4833280444145203e-01 3.0902579426765442e-01
+ <_>
+
+ 0 -1 318 9.6687392215244472e-05
+
+ -1.7431040108203888e-01 2.1402959525585175e-01
+ <_>
+
+ 0 -1 319 5.2371058613061905e-02
+
+ -7.0156857371330261e-02 4.9222990870475769e-01
+ <_>
+
+ 0 -1 320 -8.6485691368579865e-02
+
+ 5.0757247209548950e-01 -7.5294211506843567e-02
+ <_>
+
+ 0 -1 321 -4.2169868946075439e-02
+
+ 4.5680961012840271e-01 -9.0219900012016296e-02
+ <_>
+
+ 0 -1 322 4.5369830331765115e-05
+
+ -2.6538279652595520e-01 1.6189539432525635e-01
+ <_>
+
+ 0 -1 323 5.2918000146746635e-03
+
+ 7.4890151619911194e-02 -5.4054671525955200e-01
+ <_>
+
+ 0 -1 324 -7.5511651812121272e-04
+
+ -4.9261990189552307e-01 5.8723948895931244e-02
+ <_>
+
+ 0 -1 325 7.5108138844370842e-05
+
+ -2.1432100236415863e-01 1.4077760279178619e-01
+ <_>
+
+ 0 -1 326 4.9981209449470043e-03
+
+ -9.0547338128089905e-02 3.5716068744659424e-01
+ <_>
+
+ 0 -1 327 -1.4929979806765914e-03
+
+ 2.5623458623886108e-01 -1.4229069650173187e-01
+ <_>
+
+ 0 -1 328 2.7239411137998104e-03
+
+ -1.5649250149726868e-01 2.1088710427284241e-01
+ <_>
+
+ 0 -1 329 2.2218320518732071e-03
+
+ -1.5072989463806152e-01 2.6801869273185730e-01
+ <_>
+
+ 0 -1 330 -7.3993072146549821e-04
+
+ 2.9546990990638733e-01 -1.0692390054464340e-01
+ <_>
+
+ 0 -1 331 2.0113459322601557e-03
+
+ 5.0614349544048309e-02 -7.1683371067047119e-01
+ <_>
+
+ 0 -1 332 1.1452870443463326e-02
+
+ -1.2719069421291351e-01 2.4152779579162598e-01
+ <_>
+
+ 0 -1 333 -1.0782170575112104e-03
+
+ 2.4813009798526764e-01 -1.3461199402809143e-01
+ <_>
+
+ 0 -1 334 3.3417691010981798e-03
+
+ 5.3578309714794159e-02 -5.2274167537689209e-01
+ <_>
+
+ 0 -1 335 6.9398651248775423e-05
+
+ -2.1698740124702454e-01 1.2812179327011108e-01
+ <_>
+
+ 0 -1 336 -4.0982551872730255e-03
+
+ 2.4401889741420746e-01 -1.1570589989423752e-01
+ <_>
+
+ 0 -1 337 -1.6289720078930259e-03
+
+ 2.8261470794677734e-01 -1.0659469664096832e-01
+ <_>
+
+ 0 -1 338 1.3984859921038151e-02
+
+ 4.2715899646282196e-02 -7.3646312952041626e-01
+ <_>
+ 30
+ -1.1729990243911743e+00
+
+ <_>
+
+ 0 -1 339 1.6416519880294800e-01
+
+ -4.8960301280021667e-01 1.7607709765434265e-01
+ <_>
+
+ 0 -1 340 8.3413062384352088e-04
+
+ -2.8220430016517639e-01 2.4199579656124115e-01
+ <_>
+
+ 0 -1 341 -1.7193210078403354e-03
+
+ -7.1485888957977295e-01 8.6162216961383820e-02
+ <_>
+
+ 0 -1 342 -1.5654950402677059e-03
+
+ -7.2972381114959717e-01 9.4070672988891602e-02
+ <_>
+
+ 0 -1 343 1.9124479731544852e-03
+
+ -3.1187158823013306e-01 1.8143390119075775e-01
+ <_>
+
+ 0 -1 344 -1.3512369990348816e-01
+
+ 2.9577299952507019e-01 -2.2179250419139862e-01
+ <_>
+
+ 0 -1 345 -4.0300549007952213e-03
+
+ -6.6595137119293213e-01 8.5431016981601715e-02
+ <_>
+
+ 0 -1 346 -2.8640460222959518e-03
+
+ -6.2086361646652222e-01 5.3106021136045456e-02
+ <_>
+
+ 0 -1 347 -1.4065420255064964e-03
+
+ 2.2346289455890656e-01 -2.0211009681224823e-01
+ <_>
+
+ 0 -1 348 -3.5820449702441692e-03
+
+ -5.4030400514602661e-01 6.8213619291782379e-02
+ <_>
+
+ 0 -1 349 4.1544470936059952e-02
+
+ -6.5215840935707092e-02 6.2109231948852539e-01
+ <_>
+
+ 0 -1 350 -9.1709550470113754e-03
+
+ -7.5553297996520996e-01 5.2640449255704880e-02
+ <_>
+
+ 0 -1 351 6.1552738770842552e-03
+
+ 9.0939402580261230e-02 -4.4246131181716919e-01
+ <_>
+
+ 0 -1 352 -1.0043520014733076e-03
+
+ 2.4292330443859100e-01 -1.8669790029525757e-01
+ <_>
+
+ 0 -1 353 1.1519829742610455e-02
+
+ -1.1763150244951248e-01 3.6723458766937256e-01
+ <_>
+
+ 0 -1 354 -8.9040733873844147e-03
+
+ -4.8931330442428589e-01 1.0897020250558853e-01
+ <_>
+
+ 0 -1 355 5.3973670583218336e-04
+
+ -2.1850399672985077e-01 1.8489989638328552e-01
+ <_>
+
+ 0 -1 356 1.3727260520681739e-03
+
+ -1.5072910487651825e-01 2.9173129796981812e-01
+ <_>
+
+ 0 -1 357 -1.0807390324771404e-02
+
+ 4.2897450923919678e-01 -1.0280139744281769e-01
+ <_>
+
+ 0 -1 358 1.2670770520344377e-03
+
+ 7.4192158877849579e-02 -6.4208251237869263e-01
+ <_>
+
+ 0 -1 359 2.2991129662841558e-03
+
+ 4.7100279480218887e-02 -7.2335231304168701e-01
+ <_>
+
+ 0 -1 360 2.7187510859221220e-03
+
+ -1.7086869478225708e-01 2.3513509333133698e-01
+ <_>
+
+ 0 -1 361 -6.6619180142879486e-03
+
+ -7.8975427150726318e-01 4.5084670186042786e-02
+ <_>
+
+ 0 -1 362 -4.8266649246215820e-02
+
+ -6.9579917192459106e-01 4.1976079344749451e-02
+ <_>
+
+ 0 -1 363 1.5214690007269382e-02
+
+ -1.0818280279636383e-01 3.6460620164871216e-01
+ <_>
+
+ 0 -1 364 -6.0080131515860558e-03
+
+ 3.0970990657806396e-01 -1.1359210312366486e-01
+ <_>
+
+ 0 -1 365 6.6127157770097256e-03
+
+ 8.0665342509746552e-02 -4.6658530831336975e-01
+ <_>
+
+ 0 -1 366 -7.9607013612985611e-03
+
+ -8.7201941013336182e-01 3.6774590611457825e-02
+ <_>
+
+ 0 -1 367 3.8847199175506830e-03
+
+ -1.1666289716959000e-01 3.3070269227027893e-01
+ <_>
+
+ 0 -1 368 -1.0988810099661350e-03
+
+ 2.3872570693492889e-01 -1.7656759917736053e-01
+ <_>
+ 44
+ -1.0368299484252930e+00
+
+ <_>
+
+ 0 -1 369 3.5903379321098328e-03
+
+ -2.3688079416751862e-01 2.4631640315055847e-01
+ <_>
+
+ 0 -1 370 6.4815930090844631e-03
+
+ -3.1373620033264160e-01 1.8675759434700012e-01
+ <_>
+
+ 0 -1 371 7.3048402555286884e-05
+
+ -2.7644351124763489e-01 1.6496239602565765e-01
+ <_>
+
+ 0 -1 372 -3.8514640182256699e-03
+
+ -5.6014508008956909e-01 1.1294739693403244e-01
+ <_>
+
+ 0 -1 373 3.8588210009038448e-03
+
+ 3.9848998188972473e-02 -5.8071857690811157e-01
+ <_>
+
+ 0 -1 374 -2.4651220068335533e-02
+
+ 1.6755010187625885e-01 -2.5343671441078186e-01
+ <_>
+
+ 0 -1 375 4.7245521098375320e-02
+
+ -1.0662080347537994e-01 3.9451980590820312e-01
+ <_>
+
+ 0 -1 376 6.5964651294052601e-03
+
+ -1.7744250595569611e-01 2.7280190587043762e-01
+ <_>
+
+ 0 -1 377 -1.3177490327507257e-03
+
+ -5.4272651672363281e-01 4.8606589436531067e-02
+ <_>
+
+ 0 -1 378 -5.0261709839105606e-03
+
+ 2.4394249916076660e-01 -1.3143649697303772e-01
+ <_>
+
+ 0 -1 379 3.4632768947631121e-03
+
+ 6.9049343466758728e-02 -7.0336240530014038e-01
+ <_>
+
+ 0 -1 380 2.1692588925361633e-03
+
+ -1.3289460539817810e-01 2.2098529338836670e-01
+ <_>
+
+ 0 -1 381 2.9395870864391327e-02
+
+ -2.8530520200729370e-01 1.3543990254402161e-01
+ <_>
+
+ 0 -1 382 -9.6181448316201568e-04
+
+ -5.8041381835937500e-01 3.7450648844242096e-02
+ <_>
+
+ 0 -1 383 -1.0820999741554260e-01
+
+ 3.9467281103134155e-01 -7.8655943274497986e-02
+ <_>
+
+ 0 -1 384 -1.8024869263172150e-02
+
+ 2.7355629205703735e-01 -1.3415299355983734e-01
+ <_>
+
+ 0 -1 385 6.2509840354323387e-03
+
+ 2.3388059809803963e-02 -8.0088591575622559e-01
+ <_>
+
+ 0 -1 386 -1.6088379779830575e-03
+
+ -5.6762522459030151e-01 4.1215669363737106e-02
+ <_>
+
+ 0 -1 387 7.7564752427861094e-04
+
+ -1.4891269803047180e-01 1.9086180627346039e-01
+ <_>
+
+ 0 -1 388 8.7122338300105184e-05
+
+ -1.5557530522346497e-01 1.9428220391273499e-01
+ <_>
+
+ 0 -1 389 -2.0755320787429810e-02
+
+ -6.3006532192230225e-01 3.6134380847215652e-02
+ <_>
+
+ 0 -1 390 -6.2931738793849945e-03
+
+ 2.5609248876571655e-01 -1.0588269680738449e-01
+ <_>
+
+ 0 -1 391 1.0844149626791477e-02
+
+ -1.0124850273132324e-01 3.0322128534317017e-01
+ <_>
+
+ 0 -1 392 -6.3752777350600809e-05
+
+ 1.9111579656600952e-01 -1.3849230110645294e-01
+ <_>
+
+ 0 -1 393 6.6480963141657412e-05
+
+ -1.5205250680446625e-01 2.1706309914588928e-01
+ <_>
+
+ 0 -1 394 1.3560829684138298e-03
+
+ 4.9431789666414261e-02 -6.4279842376708984e-01
+ <_>
+
+ 0 -1 395 -9.0662558795884252e-04
+
+ 1.7982010543346405e-01 -1.4044609665870667e-01
+ <_>
+
+ 0 -1 396 1.0473709553480148e-03
+
+ -1.0933549702167511e-01 2.4265940487384796e-01
+ <_>
+
+ 0 -1 397 -1.0243969736620784e-03
+
+ 2.7162680029869080e-01 -1.1820919811725616e-01
+ <_>
+
+ 0 -1 398 -1.2024149764329195e-03
+
+ -7.0151102542877197e-01 3.9489898830652237e-02
+ <_>
+
+ 0 -1 399 7.6911649666726589e-03
+
+ -9.2218913137912750e-02 3.1046289205551147e-01
+ <_>
+
+ 0 -1 400 -1.3966549932956696e-01
+
+ 6.8979388475418091e-01 -3.9706118404865265e-02
+ <_>
+
+ 0 -1 401 2.1276050247251987e-03
+
+ 9.7277611494064331e-02 -2.8841799497604370e-01
+ <_>
+
+ 0 -1 402 -2.7594310231506824e-03
+
+ 2.4168670177459717e-01 -1.1277820169925690e-01
+ <_>
+
+ 0 -1 403 5.2236132323741913e-03
+
+ -1.1430279910564423e-01 2.4256780743598938e-01
+ <_>
+
+ 0 -1 404 -1.2590440455824137e-03
+
+ -5.9679388999938965e-01 4.7663960605859756e-02
+ <_>
+
+ 0 -1 405 -3.7192099262028933e-03
+
+ -4.6414130926132202e-01 5.2847690880298615e-02
+ <_>
+
+ 0 -1 406 5.9696151874959469e-03
+
+ -7.3244288563728333e-02 3.8743090629577637e-01
+ <_>
+
+ 0 -1 407 -5.1776720210909843e-03
+
+ -7.4193227291107178e-01 4.0496710687875748e-02
+ <_>
+
+ 0 -1 408 5.0035100430250168e-03
+
+ -1.3888800144195557e-01 1.8767620623111725e-01
+ <_>
+
+ 0 -1 409 -5.2013457752764225e-04
+
+ -5.4940617084503174e-01 4.9417849630117416e-02
+ <_>
+
+ 0 -1 410 5.3168768063187599e-03
+
+ -8.2482978701591492e-02 3.1740561127662659e-01
+ <_>
+
+ 0 -1 411 -1.4774589799344540e-02
+
+ 2.0816099643707275e-01 -1.2115559726953506e-01
+ <_>
+
+ 0 -1 412 -4.1416451334953308e-02
+
+ -8.2437807321548462e-01 3.3329188823699951e-02
+ <_>
+ 53
+ -1.0492420196533203e+00
+
+ <_>
+
+ 0 -1 413 9.0962520334869623e-04
+
+ 8.4579966962337494e-02 -5.6118410825729370e-01
+ <_>
+
+ 0 -1 414 -5.6139789521694183e-02
+
+ 1.5341749787330627e-01 -2.6967319846153259e-01
+ <_>
+
+ 0 -1 415 1.0292009683325887e-03
+
+ -2.0489980280399323e-01 2.0153179764747620e-01
+ <_>
+
+ 0 -1 416 2.8783010784536600e-03
+
+ -1.7351140081882477e-01 2.1297949552536011e-01
+ <_>
+
+ 0 -1 417 -7.4144392274320126e-03
+
+ -5.9624868631362915e-01 4.7077950090169907e-02
+ <_>
+
+ 0 -1 418 -1.4831849839538336e-03
+
+ 1.9024610519409180e-01 -1.5986390411853790e-01
+ <_>
+
+ 0 -1 419 4.5968941412866116e-03
+
+ 3.1447131186723709e-02 -6.8694341182708740e-01
+ <_>
+
+ 0 -1 420 2.4255330208688974e-03
+
+ -2.3609359562397003e-01 1.1036109924316406e-01
+ <_>
+
+ 0 -1 421 -8.4950566291809082e-02
+
+ 2.3107160627841949e-01 -1.3776530325412750e-01
+ <_>
+
+ 0 -1 422 -5.0145681016147137e-03
+
+ 3.8676109910011292e-01 -5.6217379868030548e-02
+ <_>
+
+ 0 -1 423 -2.1482061129063368e-03
+
+ 1.8191599845886230e-01 -1.7615699768066406e-01
+ <_>
+
+ 0 -1 424 -1.0396770201623440e-02
+
+ -7.5351381301879883e-01 2.4091970175504684e-02
+ <_>
+
+ 0 -1 425 -1.3466750271618366e-02
+
+ -7.2118860483169556e-01 3.4949369728565216e-02
+ <_>
+
+ 0 -1 426 -8.4435477852821350e-02
+
+ -3.3792638778686523e-01 7.1113817393779755e-02
+ <_>
+
+ 0 -1 427 2.4771490134298801e-03
+
+ -1.1765109747648239e-01 2.2541989386081696e-01
+ <_>
+
+ 0 -1 428 1.5828050673007965e-02
+
+ -6.9536216557025909e-02 3.1395369768142700e-01
+ <_>
+
+ 0 -1 429 6.4916983246803284e-02
+
+ -7.5043588876724243e-02 4.0677338838577271e-01
+ <_>
+
+ 0 -1 430 2.9652469675056636e-04
+
+ 7.3953360319137573e-02 -3.4544008970260620e-01
+ <_>
+
+ 0 -1 431 1.3129520229995251e-03
+
+ -1.6909439861774445e-01 1.5258370339870453e-01
+ <_>
+
+ 0 -1 432 -5.8032129891216755e-03
+
+ 3.5260149836540222e-01 -8.3444066345691681e-02
+ <_>
+
+ 0 -1 433 -1.4791679382324219e-01
+
+ 4.3004658818244934e-01 -5.7309929281473160e-02
+ <_>
+
+ 0 -1 434 -1.6584150493144989e-02
+
+ 2.3432689905166626e-01 -1.0907640308141708e-01
+ <_>
+
+ 0 -1 435 3.0183270573616028e-03
+
+ -1.3600939512252808e-01 2.6409289240837097e-01
+ <_>
+
+ 0 -1 436 -3.6471918225288391e-02
+
+ -6.2809741497039795e-01 4.3545108288526535e-02
+ <_>
+
+ 0 -1 437 -7.3119226726703346e-05
+
+ 1.6470630466938019e-01 -1.6463780403137207e-01
+ <_>
+
+ 0 -1 438 -3.6719450727105141e-03
+
+ -4.7421360015869141e-01 4.8586919903755188e-02
+ <_>
+
+ 0 -1 439 -4.0151178836822510e-03
+
+ 1.8222180008888245e-01 -1.4097510278224945e-01
+ <_>
+
+ 0 -1 440 1.9948020577430725e-02
+
+ -6.9787658751010895e-02 3.6707460880279541e-01
+ <_>
+
+ 0 -1 441 7.6699437340721488e-04
+
+ 5.5729299783706665e-02 -4.4585430622100830e-01
+ <_>
+
+ 0 -1 442 -1.1806039838120341e-03
+
+ -4.6876621246337891e-01 4.8902221024036407e-02
+ <_>
+
+ 0 -1 443 1.5847349539399147e-02
+
+ -1.2120209634304047e-01 2.0566530525684357e-01
+ <_>
+
+ 0 -1 444 -1.1985700111836195e-03
+
+ 2.0262099802494049e-01 -1.2823820114135742e-01
+ <_>
+
+ 0 -1 445 -1.0964959859848022e-01
+
+ -8.6619192361831665e-01 3.0351849272847176e-02
+ <_>
+
+ 0 -1 446 -9.2532606795430183e-03
+
+ 2.9343119263648987e-01 -8.5361950099468231e-02
+ <_>
+
+ 0 -1 447 1.4686530455946922e-02
+
+ 3.2798621803522110e-02 -7.7556562423706055e-01
+ <_>
+
+ 0 -1 448 -1.3514430029317737e-03
+
+ 2.4426999688148499e-01 -1.1503250151872635e-01
+ <_>
+
+ 0 -1 449 -4.3728090822696686e-03
+
+ 2.1687670052051544e-01 -1.3984480500221252e-01
+ <_>
+
+ 0 -1 450 3.4263390116393566e-03
+
+ 4.5614220201969147e-02 -5.4567712545394897e-01
+ <_>
+
+ 0 -1 451 -3.8404068909585476e-03
+
+ 1.4949500560760498e-01 -1.5062509477138519e-01
+ <_>
+
+ 0 -1 452 3.7988980766385794e-03
+
+ -8.7301626801490784e-02 2.5481531023979187e-01
+ <_>
+
+ 0 -1 453 -2.0094281062483788e-03
+
+ 1.7259070277214050e-01 -1.4288470149040222e-01
+ <_>
+
+ 0 -1 454 -2.4370709434151649e-03
+
+ 2.6848098635673523e-01 -8.1898219883441925e-02
+ <_>
+
+ 0 -1 455 1.0485399980098009e-03
+
+ 4.6113260090351105e-02 -4.7243279218673706e-01
+ <_>
+
+ 0 -1 456 1.7460780218243599e-03
+
+ -1.1030430346727371e-01 2.0379729568958282e-01
+ <_>
+
+ 0 -1 457 5.8608627878129482e-03
+
+ -1.5619659423828125e-01 1.5927439928054810e-01
+ <_>
+
+ 0 -1 458 -2.7724979445338249e-02
+
+ 1.1349119991064072e-01 -2.1885140240192413e-01
+ <_>
+
+ 0 -1 459 4.7080639749765396e-02
+
+ -4.1688729077577591e-02 5.3630048036575317e-01
+ <_>
+
+ 0 -1 460 -7.9283770173788071e-03
+
+ -5.3595131635665894e-01 4.4237509369850159e-02
+ <_>
+
+ 0 -1 461 -1.2880540452897549e-02
+
+ 2.3237949609756470e-01 -1.0246250033378601e-01
+ <_>
+
+ 0 -1 462 2.3604769259691238e-02
+
+ -8.8291436433792114e-02 3.0561059713363647e-01
+ <_>
+
+ 0 -1 463 1.5902200713753700e-02
+
+ -1.2238109856843948e-01 1.7849120497703552e-01
+ <_>
+
+ 0 -1 464 7.9939495772123337e-03
+
+ -8.3729006350040436e-02 3.2319590449333191e-01
+ <_>
+
+ 0 -1 465 5.7100867852568626e-03
+
+ 3.8479208946228027e-02 -6.8138152360916138e-01
+ <_>
+ 51
+ -1.1122100353240967e+00
+
+ <_>
+
+ 0 -1 466 2.2480720654129982e-03
+
+ -1.6416870057582855e-01 4.1648530960083008e-01
+ <_>
+
+ 0 -1 467 4.5813550241291523e-03
+
+ -1.2465959787368774e-01 4.0385121107101440e-01
+ <_>
+
+ 0 -1 468 -1.6073239967226982e-03
+
+ 2.6082459092140198e-01 -2.0282520353794098e-01
+ <_>
+
+ 0 -1 469 2.5205370038747787e-03
+
+ -1.0557229816913605e-01 3.6669111251831055e-01
+ <_>
+
+ 0 -1 470 2.4119189474731684e-03
+
+ -1.3877600431442261e-01 2.9959911108016968e-01
+ <_>
+
+ 0 -1 471 5.7156179100275040e-03
+
+ -7.7683463692665100e-02 4.8481920361518860e-01
+ <_>
+
+ 0 -1 472 3.1093840952962637e-03
+
+ -1.1229000240564346e-01 2.9215508699417114e-01
+ <_>
+
+ 0 -1 473 -8.6836628615856171e-02
+
+ -3.6779600381851196e-01 7.2597242891788483e-02
+ <_>
+
+ 0 -1 474 5.2652182057499886e-03
+
+ -1.0890290141105652e-01 3.1791260838508606e-01
+ <_>
+
+ 0 -1 475 -1.9913529977202415e-02
+
+ -5.3373438119888306e-01 7.0585712790489197e-02
+ <_>
+
+ 0 -1 476 3.8297839928418398e-03
+
+ -1.3575910031795502e-01 2.2788879275321960e-01
+ <_>
+
+ 0 -1 477 1.0431859642267227e-02
+
+ 8.8797912001609802e-02 -4.7958970069885254e-01
+ <_>
+
+ 0 -1 478 -2.0040439441800117e-02
+
+ 1.5745539963245392e-01 -1.7771570384502411e-01
+ <_>
+
+ 0 -1 479 -5.2967290394008160e-03
+
+ -6.8434917926788330e-01 3.5671461373567581e-02
+ <_>
+
+ 0 -1 480 -2.1624139044433832e-03
+
+ 2.8318038582801819e-01 -9.8511278629302979e-02
+ <_>
+
+ 0 -1 481 -3.5464888787828386e-04
+
+ -3.7077340483665466e-01 8.0932952463626862e-02
+ <_>
+
+ 0 -1 482 -1.8152060511056334e-04
+
+ -3.2207030057907104e-01 7.7551059424877167e-02
+ <_>
+
+ 0 -1 483 -2.7563021285459399e-04
+
+ -3.2441279292106628e-01 8.7949477136135101e-02
+ <_>
+
+ 0 -1 484 6.3823810778558254e-03
+
+ -8.8924713432788849e-02 3.1727218627929688e-01
+ <_>
+
+ 0 -1 485 1.1150909587740898e-02
+
+ 7.1019843220710754e-02 -4.0494039654731750e-01
+ <_>
+
+ 0 -1 486 -1.0593760525807738e-03
+
+ 2.6050668954849243e-01 -1.1765640228986740e-01
+ <_>
+
+ 0 -1 487 2.3906480055302382e-03
+
+ -8.4388621151447296e-02 3.1230551004409790e-01
+ <_>
+
+ 0 -1 488 -1.1000749655067921e-02
+
+ 1.9152249395847321e-01 -1.5210020542144775e-01
+ <_>
+
+ 0 -1 489 -2.4643228971399367e-04
+
+ -3.1765159964561462e-01 8.6582258343696594e-02
+ <_>
+
+ 0 -1 490 2.3053269833326340e-02
+
+ -1.0089760273694992e-01 2.5769290328025818e-01
+ <_>
+
+ 0 -1 491 -2.2135660983622074e-03
+
+ 4.5689210295677185e-01 -5.2404791116714478e-02
+ <_>
+
+ 0 -1 492 -9.7139709396287799e-04
+
+ -3.5518380999565125e-01 8.0094382166862488e-02
+ <_>
+
+ 0 -1 493 1.5676229959353805e-03
+
+ 1.0091420263051987e-01 -2.1603040397167206e-01
+ <_>
+
+ 0 -1 494 7.5460801599547267e-04
+
+ 5.7896178215742111e-02 -4.0461111068725586e-01
+ <_>
+
+ 0 -1 495 -2.0698970183730125e-02
+
+ 3.1543630361557007e-01 -8.0713048577308655e-02
+ <_>
+
+ 0 -1 496 -2.0619940012693405e-02
+
+ 2.7181661128997803e-01 -7.6358616352081299e-02
+ <_>
+
+ 0 -1 497 2.1611129865050316e-02
+
+ 3.9493449032306671e-02 -5.9429651498794556e-01
+ <_>
+
+ 0 -1 498 6.5676742233335972e-03
+
+ -9.8353669047355652e-02 2.3649279773235321e-01
+ <_>
+
+ 0 -1 499 -8.8434796780347824e-03
+
+ -5.2523428201675415e-01 4.3099921196699142e-02
+ <_>
+
+ 0 -1 500 -9.4260741025209427e-03
+
+ 2.4665130674839020e-01 -9.4130717217922211e-02
+ <_>
+
+ 0 -1 501 -1.9830230157822371e-03
+
+ 2.6743701100349426e-01 -9.0069316327571869e-02
+ <_>
+
+ 0 -1 502 -1.7358399927616119e-03
+
+ 1.5940019488334656e-01 -1.5789410471916199e-01
+ <_>
+
+ 0 -1 503 -1.3513869605958462e-02
+
+ 4.0792331099510193e-01 -6.4223118126392365e-02
+ <_>
+
+ 0 -1 504 -1.9394010305404663e-02
+
+ 1.8015649914741516e-01 -1.3731400668621063e-01
+ <_>
+
+ 0 -1 505 -3.2684770412743092e-03
+
+ 2.9080390930175781e-01 -8.0161906778812408e-02
+ <_>
+
+ 0 -1 506 4.1773589327931404e-04
+
+ -2.1412980556488037e-01 1.1273439973592758e-01
+ <_>
+
+ 0 -1 507 -7.6351119205355644e-03
+
+ -4.5365959405899048e-01 5.4625060409307480e-02
+ <_>
+
+ 0 -1 508 -8.3652976900339127e-03
+
+ 2.6472920179367065e-01 -9.4334110617637634e-02
+ <_>
+
+ 0 -1 509 2.7768449857831001e-02
+
+ -1.0136710107326508e-01 2.0743979513645172e-01
+ <_>
+
+ 0 -1 510 -5.4891228675842285e-02
+
+ 2.8840309381484985e-01 -7.5312040746212006e-02
+ <_>
+
+ 0 -1 511 2.5793339591473341e-03
+
+ -1.1088529974222183e-01 2.1724960207939148e-01
+ <_>
+
+ 0 -1 512 6.6196516854688525e-05
+
+ -1.8872100114822388e-01 1.4440689980983734e-01
+ <_>
+
+ 0 -1 513 5.0907251425087452e-03
+
+ -7.7601231634616852e-02 2.9398378729820251e-01
+ <_>
+
+ 0 -1 514 -1.0444259643554688e-01
+
+ 2.0133109390735626e-01 -1.0903970152139664e-01
+ <_>
+
+ 0 -1 515 -6.7273090826347470e-04
+
+ 1.7945900559425354e-01 -1.2023670226335526e-01
+ <_>
+
+ 0 -1 516 3.2412849832326174e-03
+
+ 4.0688131004571915e-02 -5.4600572586059570e-01
+ <_>
+ 44
+ -1.2529590129852295e+00
+
+ <_>
+
+ 0 -1 517 5.2965320646762848e-03
+
+ -1.2154529988765717e-01 6.4420372247695923e-01
+ <_>
+
+ 0 -1 518 -2.5326260365545750e-03
+
+ 5.1233220100402832e-01 -1.1108259856700897e-01
+ <_>
+
+ 0 -1 519 -2.9183230362832546e-03
+
+ -5.0615429878234863e-01 1.1501979827880859e-01
+ <_>
+
+ 0 -1 520 -2.3692339658737183e-02
+
+ 3.7167280912399292e-01 -1.4672680199146271e-01
+ <_>
+
+ 0 -1 521 2.0177470520138741e-02
+
+ -1.7388840019702911e-01 4.7759491205215454e-01
+ <_>
+
+ 0 -1 522 -2.1723210811614990e-02
+
+ -4.3880090117454529e-01 1.3576899468898773e-01
+ <_>
+
+ 0 -1 523 2.8369780629873276e-03
+
+ -1.2512069940567017e-01 4.6789029240608215e-01
+ <_>
+
+ 0 -1 524 2.7148420922458172e-03
+
+ -8.8018856942653656e-02 3.6866518855094910e-01
+ <_>
+
+ 0 -1 525 3.2625689636915922e-03
+
+ -8.5335306823253632e-02 5.1644730567932129e-01
+ <_>
+
+ 0 -1 526 -3.5618850961327553e-03
+
+ -4.4503930211067200e-01 9.1738171875476837e-02
+ <_>
+
+ 0 -1 527 1.9227749435231090e-03
+
+ -1.1077310144901276e-01 3.9416998624801636e-01
+ <_>
+
+ 0 -1 528 -3.5111969918943942e-04
+
+ -3.7775701284408569e-01 1.2166170030832291e-01
+ <_>
+
+ 0 -1 529 1.9121779769193381e-04
+
+ 7.4816018342971802e-02 -4.0767100453376770e-01
+ <_>
+
+ 0 -1 530 -2.6525629800744355e-04
+
+ -3.3151718974113464e-01 1.1291120201349258e-01
+ <_>
+
+ 0 -1 531 2.0086700096726418e-02
+
+ -6.1598118394613266e-02 5.6128817796707153e-01
+ <_>
+
+ 0 -1 532 3.6783248186111450e-02
+
+ -6.0251388698816299e-02 5.2192491292953491e-01
+ <_>
+
+ 0 -1 533 1.3941619545221329e-03
+
+ -3.5503050684928894e-01 1.0863020271062851e-01
+ <_>
+
+ 0 -1 534 -1.5181669965386391e-02
+
+ 2.2739650309085846e-01 -1.6252990067005157e-01
+ <_>
+
+ 0 -1 535 4.6796840615570545e-03
+
+ -5.7535041123628616e-02 4.8124238848686218e-01
+ <_>
+
+ 0 -1 536 -1.7988319450523704e-04
+
+ -3.0587670207023621e-01 1.0868159681558609e-01
+ <_>
+
+ 0 -1 537 -3.5850999411195517e-03
+
+ 3.8596940040588379e-01 -9.2194072902202606e-02
+ <_>
+
+ 0 -1 538 1.0793360415846109e-03
+
+ -1.1190389841794968e-01 3.1125208735466003e-01
+ <_>
+
+ 0 -1 539 7.3285802500322461e-05
+
+ -2.0239910483360291e-01 1.5586680173873901e-01
+ <_>
+
+ 0 -1 540 1.3678739964962006e-01
+
+ -2.1672859787940979e-01 1.4420390129089355e-01
+ <_>
+
+ 0 -1 541 -1.1729259975254536e-02
+
+ 4.3503770232200623e-01 -7.4886530637741089e-02
+ <_>
+
+ 0 -1 542 3.9230841211974621e-03
+
+ -5.0289329141378403e-02 5.8831161260604858e-01
+ <_>
+
+ 0 -1 543 -2.9819121118634939e-04
+
+ -3.8232401013374329e-01 9.2451132833957672e-02
+ <_>
+
+ 0 -1 544 -4.7992770560085773e-03
+
+ 4.8488789796829224e-01 -7.3136523365974426e-02
+ <_>
+
+ 0 -1 545 -3.0155890271998942e-04
+
+ -3.5757359862327576e-01 1.0581880062818527e-01
+ <_>
+
+ 0 -1 546 1.0390769690275192e-02
+
+ 5.2920468151569366e-02 -5.7249659299850464e-01
+ <_>
+
+ 0 -1 547 -9.4488041941076517e-04
+
+ 4.4966828823089600e-01 -8.3075523376464844e-02
+ <_>
+
+ 0 -1 548 1.2651870492845774e-03
+
+ -9.6695438027381897e-02 3.1302270293235779e-01
+ <_>
+
+ 0 -1 549 1.7094539478421211e-02
+
+ -8.1248976290225983e-02 3.6113831400871277e-01
+ <_>
+
+ 0 -1 550 2.5973359588533640e-03
+
+ -1.1338350176811218e-01 2.2233949601650238e-01
+ <_>
+
+ 0 -1 551 1.4527440071105957e-03
+
+ 6.9750443100929260e-02 -3.6720710992813110e-01
+ <_>
+
+ 0 -1 552 4.7638658434152603e-03
+
+ -6.5788961946964264e-02 3.8328540325164795e-01
+ <_>
+
+ 0 -1 553 -6.2501081265509129e-03
+
+ -7.0754468441009521e-01 3.8350198417901993e-02
+ <_>
+
+ 0 -1 554 -3.1765329185873270e-03
+
+ 1.3755400478839874e-01 -2.3240029811859131e-01
+ <_>
+
+ 0 -1 555 3.2191169448196888e-03
+
+ -1.2935450673103333e-01 2.2737880051136017e-01
+ <_>
+
+ 0 -1 556 -5.6365579366683960e-03
+
+ 3.8067150115966797e-01 -6.7246839404106140e-02
+ <_>
+
+ 0 -1 557 -2.3844049428589642e-04
+
+ -3.1122380495071411e-01 8.3838358521461487e-02
+ <_>
+
+ 0 -1 558 -4.1017560288310051e-03
+
+ 2.6067280769348145e-01 -1.0449740290641785e-01
+ <_>
+
+ 0 -1 559 1.3336989795789123e-03
+
+ -5.8250140398740768e-02 4.7682440280914307e-01
+ <_>
+
+ 0 -1 560 -1.2090239906683564e-03
+
+ 1.4834509789943695e-01 -1.7329469323158264e-01
+ <_>
+ 72
+ -1.1188739538192749e+00
+
+ <_>
+
+ 0 -1 561 -3.1760931015014648e-03
+
+ 3.3333331346511841e-01 -1.6642349958419800e-01
+ <_>
+
+ 0 -1 562 2.4858079850673676e-02
+
+ -7.2728872299194336e-02 5.6674581766128540e-01
+ <_>
+
+ 0 -1 563 -7.7597280032932758e-03
+
+ 4.6258568763732910e-01 -9.3112178146839142e-02
+ <_>
+
+ 0 -1 564 7.8239021822810173e-03
+
+ -2.7414610981941223e-01 1.3243049383163452e-01
+ <_>
+
+ 0 -1 565 -1.0948839597404003e-02
+
+ 2.2345480322837830e-01 -1.4965449273586273e-01
+ <_>
+
+ 0 -1 566 -3.4349008928984404e-03
+
+ 3.8724988698959351e-01 -6.6121727228164673e-02
+ <_>
+
+ 0 -1 567 -3.1156290322542191e-02
+
+ 2.4078279733657837e-01 -1.1406909674406052e-01
+ <_>
+
+ 0 -1 568 1.1100519914180040e-03
+
+ -2.8207978606224060e-01 1.3275429606437683e-01
+ <_>
+
+ 0 -1 569 3.1762740109115839e-03
+
+ 3.4585930407047272e-02 -5.1374310255050659e-01
+ <_>
+
+ 0 -1 570 -2.7977459132671356e-02
+
+ 2.3926779627799988e-01 -1.3255919516086578e-01
+ <_>
+
+ 0 -1 571 -2.3097939789295197e-02
+
+ 3.9019620418548584e-01 -7.8478008508682251e-02
+ <_>
+
+ 0 -1 572 -3.9731930010020733e-03
+
+ 3.0691069364547729e-01 -7.0601403713226318e-02
+ <_>
+
+ 0 -1 573 3.0335749033838511e-03
+
+ -1.4002190530300140e-01 1.9134859740734100e-01
+ <_>
+
+ 0 -1 574 -1.0844370350241661e-02
+
+ 1.6548730432987213e-01 -1.5657779574394226e-01
+ <_>
+
+ 0 -1 575 -1.8150510266423225e-02
+
+ -6.3243591785430908e-01 3.9561819285154343e-02
+ <_>
+
+ 0 -1 576 7.1052298881113529e-04
+
+ -1.8515570461750031e-01 1.3408809900283813e-01
+ <_>
+
+ 0 -1 577 1.0893340222537518e-02
+
+ -2.6730230078101158e-02 6.0971802473068237e-01
+ <_>
+
+ 0 -1 578 -2.8780900174751878e-04
+
+ -3.0065140128135681e-01 7.3171459138393402e-02
+ <_>
+
+ 0 -1 579 -3.5855069290846586e-03
+
+ 2.6217609643936157e-01 -7.9714097082614899e-02
+ <_>
+
+ 0 -1 580 -1.9759280607104301e-02
+
+ -5.9039229154586792e-01 4.0698971599340439e-02
+ <_>
+
+ 0 -1 581 -1.0845210403203964e-02
+
+ 1.6364559531211853e-01 -1.2586060166358948e-01
+ <_>
+
+ 0 -1 582 -4.3183090165257454e-03
+
+ -5.7474881410598755e-01 3.7644311785697937e-02
+ <_>
+
+ 0 -1 583 1.4913700288161635e-03
+
+ 6.0913469642400742e-02 -3.0222928524017334e-01
+ <_>
+
+ 0 -1 584 1.5675699338316917e-02
+
+ -7.3145911097526550e-02 2.9379451274871826e-01
+ <_>
+
+ 0 -1 585 -1.1033560149371624e-02
+
+ 3.9318808913230896e-01 -4.7084320336580276e-02
+ <_>
+
+ 0 -1 586 8.8555756956338882e-03
+
+ 3.7601381540298462e-02 -4.9108490347862244e-01
+ <_>
+
+ 0 -1 587 -8.9665671112015843e-04
+
+ 1.7952020466327667e-01 -1.1086239665746689e-01
+ <_>
+
+ 0 -1 588 -3.0592409893870354e-03
+
+ -4.4429460167884827e-01 5.1005430519580841e-02
+ <_>
+
+ 0 -1 589 6.3201179727911949e-03
+
+ -5.2841089665889740e-02 3.7197101116180420e-01
+ <_>
+
+ 0 -1 590 2.0682830363512039e-02
+
+ 5.7667169719934464e-02 -3.6901599168777466e-01
+ <_>
+
+ 0 -1 591 9.9822662770748138e-02
+
+ -3.7377018481492996e-02 5.8165591955184937e-01
+ <_>
+
+ 0 -1 592 -6.5854229032993317e-03
+
+ 2.8509441018104553e-01 -6.0978069901466370e-02
+ <_>
+
+ 0 -1 593 -6.0900300741195679e-02
+
+ -5.1031768321990967e-01 3.7787400186061859e-02
+ <_>
+
+ 0 -1 594 -2.9991709161549807e-03
+
+ -4.7943010926246643e-01 3.8833890110254288e-02
+ <_>
+
+ 0 -1 595 -9.8906438797712326e-03
+
+ 4.0609079599380493e-01 -4.7869648784399033e-02
+ <_>
+
+ 0 -1 596 -8.2688927650451660e-02
+
+ -7.0671182870864868e-01 2.7487749233841896e-02
+ <_>
+
+ 0 -1 597 5.0060399807989597e-03
+
+ 2.8208440169692039e-02 -5.2909690141677856e-01
+ <_>
+
+ 0 -1 598 6.1695030890405178e-03
+
+ -5.4554861038923264e-02 3.2837980985641479e-01
+ <_>
+
+ 0 -1 599 -3.3914761152118444e-03
+
+ 9.2117667198181152e-02 -2.1637110412120819e-01
+ <_>
+
+ 0 -1 600 -2.6131230406463146e-03
+
+ 1.3651019334793091e-01 -1.3781130313873291e-01
+ <_>
+
+ 0 -1 601 8.0490659456700087e-04
+
+ -6.8637110292911530e-02 3.3581069111824036e-01
+ <_>
+
+ 0 -1 602 -3.8106508553028107e-02
+
+ 2.9445430636405945e-01 -6.8239226937294006e-02
+ <_>
+
+ 0 -1 603 7.2450799052603543e-05
+
+ -1.6750130057334900e-01 1.2178230285644531e-01
+ <_>
+
+ 0 -1 604 1.5837959945201874e-03
+
+ -9.2042848467826843e-02 2.1348990499973297e-01
+ <_>
+
+ 0 -1 605 1.2924340553581715e-03
+
+ 6.2917232513427734e-02 -3.6174508929252625e-01
+ <_>
+
+ 0 -1 606 9.9146775901317596e-03
+
+ 1.9534060731530190e-02 -8.1015038490295410e-01
+ <_>
+
+ 0 -1 607 -1.7086310544982553e-03
+
+ 2.5525239109992981e-01 -6.8229459226131439e-02
+ <_>
+
+ 0 -1 608 2.1844399161636829e-03
+
+ 2.3314049467444420e-02 -8.4296780824661255e-01
+ <_>
+
+ 0 -1 609 -3.4244330599904060e-03
+
+ 2.7213689684867859e-01 -7.6395228505134583e-02
+ <_>
+
+ 0 -1 610 2.7591470279730856e-04
+
+ -1.0742840170860291e-01 2.2888970375061035e-01
+ <_>
+
+ 0 -1 611 -6.0005177510902286e-04
+
+ -2.9854211211204529e-01 6.3479736447334290e-02
+ <_>
+
+ 0 -1 612 -2.5001438916660845e-04
+
+ -2.7178969979286194e-01 6.9615006446838379e-02
+ <_>
+
+ 0 -1 613 6.8751391954720020e-03
+
+ -5.7185899466276169e-02 3.6695951223373413e-01
+ <_>
+
+ 0 -1 614 1.2761900201439857e-02
+
+ 6.7955687642097473e-02 -2.8534150123596191e-01
+ <_>
+
+ 0 -1 615 -1.4752789866179228e-03
+
+ 2.0680660009384155e-01 -1.0059390217065811e-01
+ <_>
+
+ 0 -1 616 1.2138819694519043e-01
+
+ -9.7126796841621399e-02 1.9789619743824005e-01
+ <_>
+
+ 0 -1 617 -5.0081279128789902e-02
+
+ 2.8417178988456726e-01 -6.7879997193813324e-02
+ <_>
+
+ 0 -1 618 3.1454950571060181e-02
+
+ -8.9468672871589661e-02 2.1298420429229736e-01
+ <_>
+
+ 0 -1 619 1.8878319533541799e-03
+
+ -1.1656440049409866e-01 1.6663520038127899e-01
+ <_>
+
+ 0 -1 620 -5.7211960665881634e-03
+
+ 2.3702140152454376e-01 -9.0776607394218445e-02
+ <_>
+
+ 0 -1 621 -1.8076719425152987e-04
+
+ 1.7951929569244385e-01 -1.0793480277061462e-01
+ <_>
+
+ 0 -1 622 -1.9761849939823151e-01
+
+ 4.5674291253089905e-01 -4.0480159223079681e-02
+ <_>
+
+ 0 -1 623 -2.3846809926908463e-04
+
+ -2.3733009397983551e-01 7.5922161340713501e-02
+ <_>
+
+ 0 -1 624 2.1540730085689574e-04
+
+ 8.1688016653060913e-02 -2.8685030341148376e-01
+ <_>
+
+ 0 -1 625 1.0163090191781521e-02
+
+ -4.1250020265579224e-02 4.8038348555564880e-01
+ <_>
+
+ 0 -1 626 -7.2184870950877666e-03
+
+ 1.7458580434322357e-01 -1.0146500170230865e-01
+ <_>
+
+ 0 -1 627 2.4263170361518860e-01
+
+ 5.3426481783390045e-02 -3.2318529486656189e-01
+ <_>
+
+ 0 -1 628 6.9304101634770632e-04
+
+ -1.1499179899692535e-01 1.4793939888477325e-01
+ <_>
+
+ 0 -1 629 3.5475199110805988e-03
+
+ -3.9424978196620941e-02 5.3126180171966553e-01
+ <_>
+
+ 0 -1 630 2.1403690334409475e-04
+
+ 6.9753833115100861e-02 -2.7319580316543579e-01
+ <_>
+
+ 0 -1 631 -5.7119462871924043e-04
+
+ 3.4369900822639465e-01 -5.7699009776115417e-02
+ <_>
+
+ 0 -1 632 -6.6290069371461868e-03
+
+ 1.1758489906787872e-01 -1.5020139515399933e-01
+ <_>
+ 66
+ -1.0888810157775879e+00
+
+ <_>
+
+ 0 -1 633 -2.6513449847698212e-02
+
+ 2.0568640530109406e-01 -2.6473900675773621e-01
+ <_>
+
+ 0 -1 634 9.7727458924055099e-03
+
+ -1.1192840337753296e-01 3.2570549845695496e-01
+ <_>
+
+ 0 -1 635 3.2290350645780563e-02
+
+ -9.8574757575988770e-02 3.1779170036315918e-01
+ <_>
+
+ 0 -1 636 -2.8103240765631199e-03
+
+ 1.5213899314403534e-01 -1.9686409831047058e-01
+ <_>
+
+ 0 -1 637 -1.0991429910063744e-02
+
+ 5.1407659053802490e-01 -4.3707210570573807e-02
+ <_>
+
+ 0 -1 638 6.3133831135928631e-03
+
+ -9.2781022191047668e-02 3.4702470898628235e-01
+ <_>
+
+ 0 -1 639 8.7105982005596161e-02
+
+ 3.0053649097681046e-02 -8.2814818620681763e-01
+ <_>
+
+ 0 -1 640 1.1799359926953912e-03
+
+ -1.2928420305252075e-01 2.0646120607852936e-01
+ <_>
+
+ 0 -1 641 -9.3056890182197094e-04
+
+ -5.0021439790725708e-01 9.3666993081569672e-02
+ <_>
+
+ 0 -1 642 -1.3687170110642910e-02
+
+ -7.9358148574829102e-01 -6.6733639687299728e-03
+ <_>
+
+ 0 -1 643 -7.5917452573776245e-02
+
+ 3.0469641089439392e-01 -7.9655893146991730e-02
+ <_>
+
+ 0 -1 644 -2.8559709899127483e-03
+
+ 2.0961460471153259e-01 -1.2732550501823425e-01
+ <_>
+
+ 0 -1 645 -4.0231510065495968e-03
+
+ -6.5817278623580933e-01 5.0683639943599701e-02
+ <_>
+
+ 0 -1 646 1.7558040097355843e-02
+
+ -8.5382692515850067e-02 3.6174559593200684e-01
+ <_>
+
+ 0 -1 647 2.1988239139318466e-02
+
+ 6.2943696975708008e-02 -7.0896339416503906e-01
+ <_>
+
+ 0 -1 648 -2.8599589131772518e-03
+
+ 1.4683780074119568e-01 -1.6465979814529419e-01
+ <_>
+
+ 0 -1 649 -1.0030849836766720e-02
+
+ 4.9579939246177673e-01 -2.7188340201973915e-02
+ <_>
+
+ 0 -1 650 -6.9560329429805279e-03
+
+ 2.7977779507637024e-01 -7.7953331172466278e-02
+ <_>
+
+ 0 -1 651 -3.8356808945536613e-03
+
+ -5.8163982629776001e-01 3.5739939659833908e-02
+ <_>
+
+ 0 -1 652 -3.2647319603711367e-03
+
+ -4.9945080280303955e-01 4.6986490488052368e-02
+ <_>
+
+ 0 -1 653 -7.8412350267171860e-03
+
+ 3.4532830119132996e-01 -6.8810403347015381e-02
+ <_>
+
+ 0 -1 654 -8.1718113506212831e-05
+
+ 1.5041710436344147e-01 -1.4146679639816284e-01
+ <_>
+
+ 0 -1 655 -3.2448628917336464e-03
+
+ 2.2724510729312897e-01 -9.2860206961631775e-02
+ <_>
+
+ 0 -1 656 -7.8561151167377830e-04
+
+ -4.4319018721580505e-01 5.7812441140413284e-02
+ <_>
+
+ 0 -1 657 -6.2474247533828020e-04
+
+ 1.3952389359474182e-01 -1.4668719470500946e-01
+ <_>
+
+ 0 -1 658 -3.2942948746494949e-04
+
+ -2.9901570081710815e-01 7.6066739857196808e-02
+ <_>
+
+ 0 -1 659 1.2605739757418633e-03
+
+ -1.6125600039958954e-01 1.3953800499439240e-01
+ <_>
+
+ 0 -1 660 -5.1667019724845886e-02
+
+ -5.3142839670181274e-01 4.0719520300626755e-02
+ <_>
+
+ 0 -1 661 -1.5285619534552097e-02
+
+ -7.8206378221511841e-01 2.7183769270777702e-02
+ <_>
+
+ 0 -1 662 6.9029822945594788e-02
+
+ -3.6427021026611328e-02 7.1102517843246460e-01
+ <_>
+
+ 0 -1 663 1.4522749697789550e-03
+
+ -9.6890516579151154e-02 2.1668420732021332e-01
+ <_>
+
+ 0 -1 664 -2.4765590205788612e-03
+
+ 1.1645310372114182e-01 -1.8227979540824890e-01
+ <_>
+
+ 0 -1 665 -1.5134819550439715e-03
+
+ 1.7863979935646057e-01 -1.2214969843626022e-01
+ <_>
+
+ 0 -1 666 -1.5099470037966967e-03
+
+ 1.8086239695549011e-01 -1.1446069926023483e-01
+ <_>
+
+ 0 -1 667 -6.7054620012640953e-03
+
+ 2.5106599926948547e-01 -9.1871462762355804e-02
+ <_>
+
+ 0 -1 668 -1.4075200073421001e-02
+
+ 1.3707509636878967e-01 -1.7333500087261200e-01
+ <_>
+
+ 0 -1 669 -2.2400720044970512e-03
+
+ 4.0092980861663818e-01 -4.7576878219842911e-02
+ <_>
+
+ 0 -1 670 1.9782369956374168e-02
+
+ -1.9040350615978241e-01 1.4923410117626190e-01
+ <_>
+
+ 0 -1 671 2.6002870872616768e-03
+
+ 4.6971768140792847e-02 -4.3307659029960632e-01
+ <_>
+
+ 0 -1 672 -5.3445628145709634e-04
+
+ -4.3744230270385742e-01 4.1520189493894577e-02
+ <_>
+
+ 0 -1 673 -1.7466509714722633e-02
+
+ 6.5818172693252563e-01 -3.4447491168975830e-02
+ <_>
+
+ 0 -1 674 -2.0425589755177498e-03
+
+ 3.9657929539680481e-01 -4.4052429497241974e-02
+ <_>
+
+ 0 -1 675 2.6661779265850782e-03
+
+ 5.8770958334207535e-02 -3.2806369662284851e-01
+ <_>
+
+ 0 -1 676 -5.5982369929552078e-02
+
+ -5.1735472679138184e-01 3.5791840404272079e-02
+ <_>
+
+ 0 -1 677 -1.5066330088302493e-03
+
+ 1.5123869478702545e-01 -1.2520180642604828e-01
+ <_>
+
+ 0 -1 678 -1.1472369544208050e-02
+
+ -6.2930530309677124e-01 3.4704331308603287e-02
+ <_>
+
+ 0 -1 679 2.3409629240632057e-02
+
+ -5.8063350617885590e-02 3.8668221235275269e-01
+ <_>
+
+ 0 -1 680 -2.3243729956448078e-03
+
+ 1.8754099309444427e-01 -9.8394669592380524e-02
+ <_>
+
+ 0 -1 681 -2.9039299115538597e-02
+
+ -5.4486900568008423e-01 4.0926340967416763e-02
+ <_>
+
+ 0 -1 682 -1.4474649913609028e-02
+
+ -6.7248392105102539e-01 2.3128850385546684e-02
+ <_>
+
+ 0 -1 683 -5.2086091600358486e-03
+
+ -4.3271440267562866e-01 4.3780650943517685e-02
+ <_>
+
+ 0 -1 684 4.9382899887859821e-03
+
+ -1.0878620296716690e-01 1.9342589378356934e-01
+ <_>
+
+ 0 -1 685 -4.3193930760025978e-03
+
+ 2.4080930650234222e-01 -1.0380800068378448e-01
+ <_>
+
+ 0 -1 686 2.3705669445917010e-04
+
+ -8.7349072098731995e-02 2.0466239750385284e-01
+ <_>
+
+ 0 -1 687 4.7858079778961837e-04
+
+ 4.5624580234289169e-02 -3.8854670524597168e-01
+ <_>
+
+ 0 -1 688 -8.5342838428914547e-04
+
+ -5.5077940225601196e-01 3.5825889557600021e-02
+ <_>
+
+ 0 -1 689 5.4772121075075120e-05
+
+ -1.1225239932537079e-01 1.7503519356250763e-01
+ <_>
+
+ 0 -1 690 -3.8445889949798584e-03
+
+ 2.4526700377464294e-01 -8.1132568418979645e-02
+ <_>
+
+ 0 -1 691 -4.0128458291292191e-02
+
+ -6.3122707605361938e-01 2.6972670108079910e-02
+ <_>
+
+ 0 -1 692 -1.7886360001284629e-04
+
+ 1.9855099916458130e-01 -1.0333680361509323e-01
+ <_>
+
+ 0 -1 693 1.7668239888735116e-04
+
+ -9.1359011828899384e-02 1.9848720729351044e-01
+ <_>
+
+ 0 -1 694 7.2763383388519287e-02
+
+ 5.0075579434633255e-02 -3.3852630853652954e-01
+ <_>
+
+ 0 -1 695 1.0181630030274391e-02
+
+ -9.3229979276657104e-02 2.0059590041637421e-01
+ <_>
+
+ 0 -1 696 2.4409969337284565e-03
+
+ 6.4636632800102234e-02 -2.6921740174293518e-01
+ <_>
+
+ 0 -1 697 -3.6227488890290260e-03
+
+ 1.3169890642166138e-01 -1.2514840066432953e-01
+ <_>
+
+ 0 -1 698 -1.3635610230267048e-03
+
+ 1.6350460052490234e-01 -1.0665939748287201e-01
+ <_>
+ 69
+ -1.0408929586410522e+00
+
+ <_>
+
+ 0 -1 699 -9.6991164609789848e-03
+
+ 6.1125320196151733e-01 -6.6225312650203705e-02
+ <_>
+
+ 0 -1 700 -9.6426531672477722e-03
+
+ -1. 2.7699959464371204e-03
+ <_>
+
+ 0 -1 701 -9.6381865441799164e-03
+
+ 1. -2.9904270195402205e-04
+ <_>
+
+ 0 -1 702 -4.2553939856588840e-03
+
+ 2.8464388847351074e-01 -1.5540120005607605e-01
+ <_>
+
+ 0 -1 703 -9.6223521977663040e-03
+
+ -1. 4.3999180197715759e-02
+ <_>
+
+ 0 -1 704 -9.1231241822242737e-03
+
+ 8.6869341135025024e-01 -2.7267890982329845e-03
+ <_>
+
+ 0 -1 705 -8.6240433156490326e-03
+
+ 4.5352488756179810e-01 -8.6071379482746124e-02
+ <_>
+
+ 0 -1 706 -8.9324144646525383e-03
+
+ 1.3375559449195862e-01 -2.6012519001960754e-01
+ <_>
+
+ 0 -1 707 -1.4207810163497925e-02
+
+ 3.2077640295028687e-01 -9.7226411104202271e-02
+ <_>
+
+ 0 -1 708 2.5911010801792145e-02
+
+ -1.2964080274105072e-01 2.6218649744987488e-01
+ <_>
+
+ 0 -1 709 2.0531509653665125e-04
+
+ -1.2404280155897141e-01 2.1062959730625153e-01
+ <_>
+
+ 0 -1 710 -5.4795680625829846e-05
+
+ 1.1974299699068069e-01 -2.3201279342174530e-01
+ <_>
+
+ 0 -1 711 6.8555199541151524e-03
+
+ -6.3276126980781555e-02 4.1044250130653381e-01
+ <_>
+
+ 0 -1 712 -1.2253040447831154e-02
+
+ 5.4883331060409546e-01 -3.9731100201606750e-02
+ <_>
+
+ 0 -1 713 -3.9058770053088665e-03
+
+ 2.4190980195999146e-01 -9.7096011042594910e-02
+ <_>
+
+ 0 -1 714 2.7560980524867773e-03
+
+ -1.2569679319858551e-01 1.9456650316715240e-01
+ <_>
+
+ 0 -1 715 -7.7662160620093346e-03
+
+ 2.9765701293945312e-01 -9.6818156540393829e-02
+ <_>
+
+ 0 -1 716 3.8997188676148653e-04
+
+ 6.2188401818275452e-02 -4.2040899395942688e-01
+ <_>
+
+ 0 -1 717 3.3579880837351084e-03
+
+ 4.7498140484094620e-02 -6.3216882944107056e-01
+ <_>
+
+ 0 -1 718 -1.6745539382100105e-02
+
+ 7.1098130941390991e-01 -3.9157349616289139e-02
+ <_>
+
+ 0 -1 719 -6.5409899689257145e-03
+
+ -3.5043171048164368e-01 7.0616953074932098e-02
+ <_>
+
+ 0 -1 720 3.0016340315341949e-04
+
+ 9.1902457177639008e-02 -2.4618670344352722e-01
+ <_>
+
+ 0 -1 721 1.4918990433216095e-02
+
+ -5.1909450441598892e-02 5.6636041402816772e-01
+ <_>
+
+ 0 -1 722 4.8153079114854336e-04
+
+ 6.4659558236598969e-02 -3.6590608954429626e-01
+ <_>
+
+ 0 -1 723 -3.0211321427486837e-04
+
+ 1.7926569283008575e-01 -1.1410660296678543e-01
+ <_>
+
+ 0 -1 724 3.8521419628523290e-04
+
+ 1.0345619916915894e-01 -2.0072460174560547e-01
+ <_>
+
+ 0 -1 725 8.0837132409214973e-03
+
+ -6.6073462367057800e-02 3.0284249782562256e-01
+ <_>
+
+ 0 -1 726 -2.2804969921708107e-02
+
+ 5.2962350845336914e-01 -4.0118999779224396e-02
+ <_>
+
+ 0 -1 727 1.9440450705587864e-04
+
+ 8.1854820251464844e-02 -2.4663360416889191e-01
+ <_>
+
+ 0 -1 728 -1.2848090380430222e-02
+
+ -3.4973311424255371e-01 5.6916229426860809e-02
+ <_>
+
+ 0 -1 729 -1.0937290498986840e-03
+
+ 2.3368680477142334e-01 -9.1604806482791901e-02
+ <_>
+
+ 0 -1 730 1.0032650316134095e-03
+
+ 1.1852180212736130e-01 -1.8469190597534180e-01
+ <_>
+
+ 0 -1 731 -4.4688429683446884e-02
+
+ -6.4362460374832153e-01 3.0363269150257111e-02
+ <_>
+
+ 0 -1 732 8.1657543778419495e-03
+
+ 4.3674658983945847e-02 -4.3002089858055115e-01
+ <_>
+
+ 0 -1 733 -1.1717810295522213e-02
+
+ 4.1781479120254517e-01 -4.8233699053525925e-02
+ <_>
+
+ 0 -1 734 8.4277130663394928e-02
+
+ 5.3461279720067978e-02 -3.7952190637588501e-01
+ <_>
+
+ 0 -1 735 1.4211839996278286e-02
+
+ 4.4900938868522644e-02 -4.2981499433517456e-01
+ <_>
+
+ 0 -1 736 1.5028340276330709e-03
+
+ 8.2227639853954315e-02 -2.4706399440765381e-01
+ <_>
+
+ 0 -1 737 1.0003579780459404e-02
+
+ -5.7221669703722000e-02 3.4609371423721313e-01
+ <_>
+
+ 0 -1 738 -9.0706320479512215e-03
+
+ 4.5058089494705200e-01 -4.2795319110155106e-02
+ <_>
+
+ 0 -1 739 -3.3141620224341750e-04
+
+ 1.8336910009384155e-01 -1.0759949684143066e-01
+ <_>
+
+ 0 -1 740 1.9723279774188995e-01
+
+ -3.0363829806447029e-02 6.6423428058624268e-01
+ <_>
+
+ 0 -1 741 -7.1258801035583019e-03
+
+ -8.9225047826766968e-01 2.5669990107417107e-02
+ <_>
+
+ 0 -1 742 8.6921341717243195e-03
+
+ -7.0764370262622833e-02 2.8210529685020447e-01
+ <_>
+
+ 0 -1 743 8.9262127876281738e-03
+
+ 7.1078233420848846e-02 -3.0232560634613037e-01
+ <_>
+
+ 0 -1 744 5.7286009192466736e-02
+
+ 5.0974130630493164e-02 -3.9196950197219849e-01
+ <_>
+
+ 0 -1 745 3.7920880131423473e-03
+
+ 3.3841941505670547e-02 -5.1016288995742798e-01
+ <_>
+
+ 0 -1 746 -1.4508679741993546e-03
+
+ 3.0879148840904236e-01 -6.3845083117485046e-02
+ <_>
+
+ 0 -1 747 9.8390132188796997e-04
+
+ -1.3029569387435913e-01 1.4604410529136658e-01
+ <_>
+
+ 0 -1 748 -1.7221809830516577e-03
+
+ 2.9157009720802307e-01 -6.8549558520317078e-02
+ <_>
+
+ 0 -1 749 1.0948250070214272e-02
+
+ 3.4351408481597900e-02 -4.7702258825302124e-01
+ <_>
+
+ 0 -1 750 -1.7176309484057128e-05
+
+ 1.6055269539356232e-01 -1.1690840125083923e-01
+ <_>
+
+ 0 -1 751 -5.4884208366274834e-03
+
+ -4.3415889143943787e-01 4.6106241643428802e-02
+ <_>
+
+ 0 -1 752 -3.0975250992923975e-03
+
+ 3.7943339347839355e-01 -5.6860551238059998e-02
+ <_>
+
+ 0 -1 753 6.4182081259787083e-03
+
+ -1.5858210623264313e-01 1.2335419654846191e-01
+ <_>
+
+ 0 -1 754 1.1831239797174931e-02
+
+ -4.0929291397333145e-02 4.5878958702087402e-01
+ <_>
+
+ 0 -1 755 1.3540499843657017e-02
+
+ -5.3725559264421463e-02 3.5056120157241821e-01
+ <_>
+
+ 0 -1 756 -2.5932150892913342e-03
+
+ 1.1010520160198212e-01 -1.6752210259437561e-01
+ <_>
+
+ 0 -1 757 1.6856270376592875e-03
+
+ 6.6574357450008392e-02 -3.0835020542144775e-01
+ <_>
+
+ 0 -1 758 2.6524690911173820e-03
+
+ 6.6318482160568237e-02 -2.7861338853836060e-01
+ <_>
+
+ 0 -1 759 -7.7341729775071144e-03
+
+ 1.9718359410762787e-01 -1.0782919824123383e-01
+ <_>
+
+ 0 -1 760 5.0944271497428417e-03
+
+ 8.5337489843368530e-02 -2.4847009778022766e-01
+ <_>
+
+ 0 -1 761 -2.9162371065467596e-03
+
+ -4.7476351261138916e-01 3.3566489815711975e-02
+ <_>
+
+ 0 -1 762 3.0121419113129377e-03
+
+ -4.7575380653142929e-02 4.2586800456047058e-01
+ <_>
+
+ 0 -1 763 3.1694869976490736e-03
+
+ -1.0519450157880783e-01 1.7163459956645966e-01
+ <_>
+
+ 0 -1 764 2.2327560186386108e-01
+
+ -1.4370209537446499e-02 9.2483651638031006e-01
+ <_>
+
+ 0 -1 765 -9.5585048198699951e-02
+
+ -7.4206638336181641e-01 2.7818970382213593e-02
+ <_>
+
+ 0 -1 766 3.4773729566950351e-05
+
+ -1.2765780091285706e-01 1.2926669418811798e-01
+ <_>
+
+ 0 -1 767 7.2459770308341831e-05
+
+ -1.6518579423427582e-01 1.0036809742450714e-01
+ <_>
+ 59
+ -1.0566600561141968e+00
+
+ <_>
+
+ 0 -1 768 -6.5778270363807678e-03
+
+ 3.3815258741378784e-01 -1.5281909704208374e-01
+ <_>
+
+ 0 -1 769 -1.0922809597104788e-03
+
+ 2.2282369434833527e-01 -1.9308499991893768e-01
+ <_>
+
+ 0 -1 770 -2.9759589582681656e-02
+
+ 2.5959870219230652e-01 -1.5409409999847412e-01
+ <_>
+
+ 0 -1 771 -1.3147540390491486e-02
+
+ 1.9033810496330261e-01 -1.6543999314308167e-01
+ <_>
+
+ 0 -1 772 -1.4396329643204808e-03
+
+ 2.0071710646152496e-01 -1.2338940054178238e-01
+ <_>
+
+ 0 -1 773 -3.5928250290453434e-03
+
+ 2.3985520005226135e-01 -1.2922149896621704e-01
+ <_>
+
+ 0 -1 774 -1.5314699849113822e-03
+
+ -4.9014899134635925e-01 1.0275030136108398e-01
+ <_>
+
+ 0 -1 775 -6.2372139655053616e-03
+
+ 3.1214639544487000e-01 -1.1405629664659500e-01
+ <_>
+
+ 0 -1 776 -3.3364649862051010e-02
+
+ -4.9520879983901978e-01 5.1328450441360474e-02
+ <_>
+
+ 0 -1 777 -2.2827699780464172e-02
+
+ 3.2558828592300415e-01 -6.5089307725429535e-02
+ <_>
+
+ 0 -1 778 -8.6199097335338593e-02
+
+ -6.7646330595016479e-01 2.6985699310898781e-02
+ <_>
+
+ 0 -1 779 -2.1065981127321720e-03
+
+ 2.2452430427074432e-01 -1.2610229849815369e-01
+ <_>
+
+ 0 -1 780 3.9120148867368698e-02
+
+ 1.1329399794340134e-01 -2.6860630512237549e-01
+ <_>
+
+ 0 -1 781 3.5082739777863026e-03
+
+ -1.1359959840774536e-01 2.5649771094322205e-01
+ <_>
+
+ 0 -1 782 5.9289898490533233e-04
+
+ -1.4942969381809235e-01 1.6409839689731598e-01
+ <_>
+
+ 0 -1 783 7.1766850305721164e-04
+
+ 9.9905692040920258e-02 -2.1967969834804535e-01
+ <_>
+
+ 0 -1 784 -2.1803600713610649e-02
+
+ -3.1711721420288086e-01 8.2889586687088013e-02
+ <_>
+
+ 0 -1 785 -3.2962779514491558e-03
+
+ -3.8048729300498962e-01 6.0819379985332489e-02
+ <_>
+
+ 0 -1 786 2.4196270387619734e-03
+
+ -9.6013016998767853e-02 2.8540581464767456e-01
+ <_>
+
+ 0 -1 787 -4.4187481398694217e-04
+
+ 2.2127939760684967e-01 -9.7434908151626587e-02
+ <_>
+
+ 0 -1 788 3.4523929934948683e-03
+
+ 3.7553120404481888e-02 -5.7969051599502563e-01
+ <_>
+
+ 0 -1 789 -2.1834600716829300e-02
+
+ 2.9562139511108398e-01 -8.0048300325870514e-02
+ <_>
+
+ 0 -1 790 -2.1309500152710825e-04
+
+ 2.2814509272575378e-01 -1.0114189982414246e-01
+ <_>
+
+ 0 -1 791 -1.6166249988600612e-03
+
+ -5.0541198253631592e-01 4.4764541089534760e-02
+ <_>
+
+ 0 -1 792 7.5959609821438789e-03
+
+ 4.5986540615558624e-02 -4.1197681427001953e-01
+ <_>
+
+ 0 -1 793 3.8601809646934271e-03
+
+ -8.6563169956207275e-02 2.4809999763965607e-01
+ <_>
+
+ 0 -1 794 6.0622231103479862e-03
+
+ -7.5557373464107513e-02 2.8433260321617126e-01
+ <_>
+
+ 0 -1 795 -1.7097420059144497e-03
+
+ -3.5295820236206055e-01 5.8410499244928360e-02
+ <_>
+
+ 0 -1 796 1.6515579074621201e-02
+
+ -8.0486953258514404e-02 2.3537430167198181e-01
+ <_>
+
+ 0 -1 797 4.8465100117027760e-03
+
+ 4.1895218193531036e-02 -4.8443049192428589e-01
+ <_>
+
+ 0 -1 798 -3.1167170032858849e-02
+
+ 1.9192309677600861e-01 -1.0268159955739975e-01
+ <_>
+
+ 0 -1 799 6.1892281519249082e-04
+
+ -2.1085770428180695e-01 9.3886926770210266e-02
+ <_>
+
+ 0 -1 800 1.1946310289204121e-02
+
+ 3.9096169173717499e-02 -6.2248629331588745e-01
+ <_>
+
+ 0 -1 801 -7.5677200220525265e-03
+
+ 1.5936839580535889e-01 -1.2250780314207077e-01
+ <_>
+
+ 0 -1 802 -5.3747411817312241e-02
+
+ -5.5622178316116333e-01 4.1190009564161301e-02
+ <_>
+
+ 0 -1 803 1.5513530001044273e-02
+
+ -3.9826881140470505e-02 6.2400728464126587e-01
+ <_>
+
+ 0 -1 804 1.5246650436893106e-03
+
+ 7.0138677954673767e-02 -3.0789071321487427e-01
+ <_>
+
+ 0 -1 805 -4.8315100139006972e-04
+
+ 1.7887659370899200e-01 -1.0958620160818100e-01
+ <_>
+
+ 0 -1 806 2.7374739293009043e-03
+
+ 2.7478590607643127e-02 -8.8489568233489990e-01
+ <_>
+
+ 0 -1 807 -6.5787717700004578e-02
+
+ -4.6432140469551086e-01 3.5037148743867874e-02
+ <_>
+
+ 0 -1 808 1.2409730115905404e-03
+
+ -9.6479237079620361e-02 2.8779220581054688e-01
+ <_>
+
+ 0 -1 809 8.1398809561505914e-04
+
+ 1.1511719971895218e-01 -1.6766160726547241e-01
+ <_>
+
+ 0 -1 810 2.3901820182800293e-02
+
+ -3.2603189349174500e-02 6.0017347335815430e-01
+ <_>
+
+ 0 -1 811 2.7556600049138069e-02
+
+ -6.6137343645095825e-02 2.9994478821754456e-01
+ <_>
+
+ 0 -1 812 -3.8070970913395286e-04
+
+ -3.3881181478500366e-01 6.4450770616531372e-02
+ <_>
+
+ 0 -1 813 -1.3335429830476642e-03
+
+ 1.4588660001754761e-01 -1.3217620551586151e-01
+ <_>
+
+ 0 -1 814 -9.3507990241050720e-03
+
+ -5.1177829504013062e-01 3.4969471395015717e-02
+ <_>
+
+ 0 -1 815 7.6215229928493500e-03
+
+ 2.3249529302120209e-02 -6.9619411230087280e-01
+ <_>
+
+ 0 -1 816 -5.3407860832521692e-05
+
+ 2.3727379739284515e-01 -8.6910709738731384e-02
+ <_>
+
+ 0 -1 817 -1.5332329785451293e-03
+
+ 1.9228410720825195e-01 -1.0422399640083313e-01
+ <_>
+
+ 0 -1 818 4.3135890737175941e-03
+
+ -9.6219547092914581e-02 2.5601211190223694e-01
+ <_>
+
+ 0 -1 819 -2.3042880638968199e-04
+
+ -3.1564751267433167e-01 5.8838598430156708e-02
+ <_>
+
+ 0 -1 820 -7.8411828726530075e-03
+
+ -6.6340929269790649e-01 2.4500999599695206e-02
+ <_>
+
+ 0 -1 821 1.7103740572929382e-01
+
+ 3.3831499516963959e-02 -4.5615941286087036e-01
+ <_>
+
+ 0 -1 822 -1.6011140542104840e-03
+
+ 2.1574890613555908e-01 -8.3622530102729797e-02
+ <_>
+
+ 0 -1 823 -1.0535780340433121e-02
+
+ 2.4552319943904877e-01 -8.2384489476680756e-02
+ <_>
+
+ 0 -1 824 -5.8351638726890087e-03
+
+ -4.7807329893112183e-01 4.4086221605539322e-02
+ <_>
+
+ 0 -1 825 -1.8706109374761581e-02
+
+ -6.0024029016494751e-01 2.1410040557384491e-02
+ <_>
+
+ 0 -1 826 -9.3307439237833023e-04
+
+ 2.4323590099811554e-01 -7.4165716767311096e-02
+ <_>
+ 88
+ -9.7693431377410889e-01
+
+ <_>
+
+ 0 -1 827 1.0646229609847069e-02
+
+ -1.3861389458179474e-01 2.6494070887565613e-01
+ <_>
+
+ 0 -1 828 3.5298269242048264e-02
+
+ -7.5821727514266968e-02 3.9021068811416626e-01
+ <_>
+
+ 0 -1 829 7.5638387352228165e-04
+
+ -9.5521442592144012e-02 2.9061999917030334e-01
+ <_>
+
+ 0 -1 830 9.2497706413269043e-02
+
+ -2.7704238891601562e-01 7.9474702477455139e-02
+ <_>
+
+ 0 -1 831 -2.9340879991650581e-03
+
+ 2.2989539802074432e-01 -7.8550010919570923e-02
+ <_>
+
+ 0 -1 832 -8.6535848677158356e-02
+
+ 4.7744810581207275e-01 -6.8231220357120037e-03
+ <_>
+
+ 0 -1 833 5.4699288739357144e-05
+
+ -2.2642609477043152e-01 8.8192112743854523e-02
+ <_>
+
+ 0 -1 834 -3.6592520773410797e-02
+
+ 2.7353870868682861e-01 -9.8606742918491364e-02
+ <_>
+
+ 0 -1 835 2.6469118893146515e-03
+
+ -4.4083978980779648e-02 3.1445288658142090e-01
+ <_>
+
+ 0 -1 836 -4.4271810911595821e-03
+
+ 2.3822729289531708e-01 -8.6784273386001587e-02
+ <_>
+
+ 0 -1 837 -5.1882481202483177e-03
+
+ 1.5042769908905029e-01 -1.2672109901905060e-01
+ <_>
+
+ 0 -1 838 4.5530400238931179e-03
+
+ -5.5945020169019699e-02 3.6501631140708923e-01
+ <_>
+
+ 0 -1 839 1.4562410302460194e-02
+
+ 3.6397770047187805e-02 -5.3559190034866333e-01
+ <_>
+
+ 0 -1 840 6.8677567469421774e-05
+
+ -1.7479629814624786e-01 1.1068709939718246e-01
+ <_>
+
+ 0 -1 841 -5.9744901955127716e-03
+
+ 3.1077870726585388e-01 -6.6530227661132812e-02
+ <_>
+
+ 0 -1 842 -5.8691250160336494e-03
+
+ -3.1901490688323975e-01 6.3931830227375031e-02
+ <_>
+
+ 0 -1 843 -1.1140310205519199e-02
+
+ 2.4364790320396423e-01 -8.0935180187225342e-02
+ <_>
+
+ 0 -1 844 -5.8643531054258347e-02
+
+ -7.6083260774612427e-01 3.0809629708528519e-02
+ <_>
+
+ 0 -1 845 -4.6097282320261002e-03
+
+ -4.5315021276473999e-01 2.9879059642553329e-02
+ <_>
+
+ 0 -1 846 -9.3032103031873703e-03
+
+ 1.4513379335403442e-01 -1.1033169925212860e-01
+ <_>
+
+ 0 -1 847 1.3253629440441728e-03
+
+ -9.7698956727981567e-02 1.9646440446376801e-01
+ <_>
+
+ 0 -1 848 4.9800761044025421e-03
+
+ 3.3648081123828888e-02 -3.9792209863662720e-01
+ <_>
+
+ 0 -1 849 -7.6542161405086517e-03
+
+ 9.0841993689537048e-02 -1.5967549383640289e-01
+ <_>
+
+ 0 -1 850 -3.8920590281486511e-01
+
+ -6.6571092605590820e-01 1.9028829410672188e-02
+ <_>
+
+ 0 -1 851 -1.0019669681787491e-01
+
+ -5.7559269666671753e-01 2.4282779544591904e-02
+ <_>
+
+ 0 -1 852 7.3541211895644665e-04
+
+ 8.7919801473617554e-02 -1.6195340454578400e-01
+ <_>
+
+ 0 -1 853 -3.4802639856934547e-03
+
+ 2.6064491271972656e-01 -6.0200810432434082e-02
+ <_>
+
+ 0 -1 854 8.4000425413250923e-03
+
+ -1.0979729890823364e-01 1.5707309544086456e-01
+ <_>
+
+ 0 -1 855 2.3786011151969433e-03
+
+ 3.6058239638805389e-02 -4.7277191281318665e-01
+ <_>
+
+ 0 -1 856 7.3831682093441486e-03
+
+ -3.5756360739469528e-02 4.9498590826988220e-01
+ <_>
+
+ 0 -1 857 3.2115620560944080e-03
+
+ -1.0125560313463211e-01 1.5747989714145660e-01
+ <_>
+
+ 0 -1 858 -7.8209668397903442e-02
+
+ -7.6627081632614136e-01 2.2965829819440842e-02
+ <_>
+
+ 0 -1 859 5.3303989261621609e-05
+
+ -1.3414350152015686e-01 1.1114919930696487e-01
+ <_>
+
+ 0 -1 860 -9.6419155597686768e-03
+
+ 2.5068029761314392e-01 -6.6608138382434845e-02
+ <_>
+
+ 0 -1 861 -7.1092672646045685e-02
+
+ -4.0056818723678589e-01 4.0297791361808777e-02
+ <_>
+
+ 0 -1 862 3.5171560011804104e-04
+
+ 4.1861180216073990e-02 -3.2961198687553406e-01
+ <_>
+
+ 0 -1 863 -3.3458150574006140e-04
+
+ -2.6029831171035767e-01 6.7892737686634064e-02
+ <_>
+
+ 0 -1 864 -4.1451421566307545e-03
+
+ 2.3967699706554413e-01 -7.2093337774276733e-02
+ <_>
+
+ 0 -1 865 3.1754500232636929e-03
+
+ -7.1235269308090210e-02 2.4128450453281403e-01
+ <_>
+
+ 0 -1 866 -5.5184490047395229e-03
+
+ 5.0320237874984741e-01 -2.9686680063605309e-02
+ <_>
+
+ 0 -1 867 -3.0242869979701936e-04
+
+ 2.4879050254821777e-01 -5.6758578866720200e-02
+ <_>
+
+ 0 -1 868 -1.3125919504091144e-03
+
+ 3.1747800111770630e-01 -4.1845861822366714e-02
+ <_>
+
+ 0 -1 869 -2.7123570907860994e-04
+
+ -2.7042070031166077e-01 5.6828990578651428e-02
+ <_>
+
+ 0 -1 870 -7.3241777718067169e-03
+
+ 2.7556678652763367e-01 -5.4252970963716507e-02
+ <_>
+
+ 0 -1 871 -1.6851710155606270e-02
+
+ -3.4852910041809082e-01 4.5368999242782593e-02
+ <_>
+
+ 0 -1 872 2.9902100563049316e-02
+
+ 3.1621079891920090e-02 -4.3114370107650757e-01
+ <_>
+
+ 0 -1 873 2.8902660124003887e-03
+
+ 3.8029961287975311e-02 -3.7027099728584290e-01
+ <_>
+
+ 0 -1 874 -1.9242949783802032e-03
+
+ 2.4800279736518860e-01 -5.9333298355340958e-02
+ <_>
+
+ 0 -1 875 4.9354149959981441e-03
+
+ -8.3068400621414185e-02 2.2043809294700623e-01
+ <_>
+
+ 0 -1 876 8.2075603306293488e-02
+
+ -1.9413439556956291e-02 6.9089287519454956e-01
+ <_>
+
+ 0 -1 877 -2.4699489586055279e-04
+
+ -2.4660569429397583e-01 6.4776450395584106e-02
+ <_>
+
+ 0 -1 878 -1.8365769647061825e-03
+
+ 2.8836160898208618e-01 -5.3390458226203918e-02
+ <_>
+
+ 0 -1 879 -4.9553811550140381e-03
+
+ 1.2740829586982727e-01 -1.2559419870376587e-01
+ <_>
+
+ 0 -1 880 -8.3086621016263962e-03
+
+ 2.3478110134601593e-01 -7.1676492691040039e-02
+ <_>
+
+ 0 -1 881 -1.0879919677972794e-01
+
+ -2.5992238521575928e-01 5.8689739555120468e-02
+ <_>
+
+ 0 -1 882 -9.6786450594663620e-03
+
+ -7.0720428228378296e-01 1.8749259412288666e-02
+ <_>
+
+ 0 -1 883 -2.7136830613017082e-02
+
+ -5.8384227752685547e-01 2.1684130653738976e-02
+ <_>
+
+ 0 -1 884 -6.5389778465032578e-03
+
+ -5.9748911857604980e-01 2.1480310708284378e-02
+ <_>
+
+ 0 -1 885 -1.2095630168914795e-02
+
+ 1.3269039988517761e-01 -9.9722720682621002e-02
+ <_>
+
+ 0 -1 886 -1.6776099801063538e-01
+
+ -5.6655067205429077e-01 3.2123088836669922e-02
+ <_>
+
+ 0 -1 887 -1.3262550346553326e-02
+
+ 1.1495590209960938e-01 -1.1738389730453491e-01
+ <_>
+
+ 0 -1 888 7.6744519174098969e-02
+
+ -3.1413231045007706e-02 5.9935492277145386e-01
+ <_>
+
+ 0 -1 889 5.0785229541361332e-03
+
+ -5.2911940962076187e-02 2.3342399299144745e-01
+ <_>
+
+ 0 -1 890 3.1800279393792152e-03
+
+ -7.7734388411045074e-02 1.7652909457683563e-01
+ <_>
+
+ 0 -1 891 -1.7729829996824265e-03
+
+ 1.9591629505157471e-01 -7.9752199351787567e-02
+ <_>
+
+ 0 -1 892 -4.8560940194875002e-04
+
+ -2.8800371289253235e-01 4.9047119915485382e-02
+ <_>
+
+ 0 -1 893 3.6554320831783116e-04
+
+ 6.7922897636890411e-02 -2.2499430179595947e-01
+ <_>
+
+ 0 -1 894 -2.6938671362586319e-04
+
+ 1.6582170128822327e-01 -8.9744098484516144e-02
+ <_>
+
+ 0 -1 895 7.8684233129024506e-02
+
+ 2.6081679388880730e-02 -5.5693739652633667e-01
+ <_>
+
+ 0 -1 896 -7.3774810880422592e-04
+
+ 1.4036870002746582e-01 -1.1800300329923630e-01
+ <_>
+
+ 0 -1 897 2.3957829922437668e-02
+
+ 3.0470740050077438e-02 -4.6159979701042175e-01
+ <_>
+
+ 0 -1 898 -1.6239080578088760e-03
+
+ 2.6327079534530640e-01 -5.6765370070934296e-02
+ <_>
+
+ 0 -1 899 -9.0819748584181070e-04
+
+ 1.5462459623813629e-01 -1.1087069660425186e-01
+ <_>
+
+ 0 -1 900 3.9806248969398439e-04
+
+ 5.5630370974540710e-02 -2.8331959247589111e-01
+ <_>
+
+ 0 -1 901 2.0506449509412050e-03
+
+ -9.1604836285114288e-02 1.7585539817810059e-01
+ <_>
+
+ 0 -1 902 2.6742549613118172e-02
+
+ 6.2003031373023987e-02 -2.4487000703811646e-01
+ <_>
+
+ 0 -1 903 -2.1497008856385946e-03
+
+ 2.9449298977851868e-01 -5.3218148648738861e-02
+ <_>
+
+ 0 -1 904 5.6671658530831337e-03
+
+ -6.4298242330551147e-02 2.4905680119991302e-01
+ <_>
+
+ 0 -1 905 6.8317902332637459e-05
+
+ -1.6819630563259125e-01 9.6548579633235931e-02
+ <_>
+
+ 0 -1 906 1.7600439605303109e-04
+
+ 6.5308012068271637e-02 -2.4267880618572235e-01
+ <_>
+
+ 0 -1 907 4.1861608624458313e-03
+
+ -9.7988583147525787e-02 1.8052889406681061e-01
+ <_>
+
+ 0 -1 908 -2.1808340679854155e-03
+
+ 1.9231270253658295e-01 -9.4123929738998413e-02
+ <_>
+
+ 0 -1 909 2.1730400621891022e-02
+
+ 3.5578511655330658e-02 -4.5088538527488708e-01
+ <_>
+
+ 0 -1 910 -1.4780269935727119e-02
+
+ -4.3927010893821716e-01 3.1735591590404510e-02
+ <_>
+
+ 0 -1 911 -3.6145891062915325e-03
+
+ 1.9811479747295380e-01 -7.7701419591903687e-02
+ <_>
+
+ 0 -1 912 1.8892709631472826e-03
+
+ 1.9962439313530922e-02 -7.2041720151901245e-01
+ <_>
+
+ 0 -1 913 -1.3822480104863644e-03
+
+ 9.8466947674751282e-02 -1.4881080389022827e-01
+ <_>
+
+ 0 -1 914 -3.9505911991000175e-03
+
+ 1.1593230068683624e-01 -1.2791970372200012e-01
+ <_>
+ 58
+ -1.0129359960556030e+00
+
+ <_>
+
+ 0 -1 915 -1.9395539537072182e-02
+
+ 4.7474750876426697e-01 -1.1721090227365494e-01
+ <_>
+
+ 0 -1 916 1.3118919916450977e-02
+
+ -2.5552129745483398e-01 1.6378800570964813e-01
+ <_>
+
+ 0 -1 917 -5.1606801571324468e-04
+
+ 1.9452619552612305e-01 -1.7448890209197998e-01
+ <_>
+
+ 0 -1 918 -1.3184159994125366e-02
+
+ 4.4181451201438904e-01 -9.0048752725124359e-02
+ <_>
+
+ 0 -1 919 3.4657081123441458e-03
+
+ -1.3477090001106262e-01 1.8056340515613556e-01
+ <_>
+
+ 0 -1 920 6.2980200164020061e-03
+
+ -5.4164979606866837e-02 3.6033380031585693e-01
+ <_>
+
+ 0 -1 921 1.6879989998415112e-03
+
+ -1.9997949898242950e-01 1.2021599709987640e-01
+ <_>
+
+ 0 -1 922 3.6039709812030196e-04
+
+ 1.0524140298366547e-01 -2.4116060137748718e-01
+ <_>
+
+ 0 -1 923 -1.5276849735528231e-03
+
+ 2.8135529160499573e-01 -6.8964816629886627e-02
+ <_>
+
+ 0 -1 924 3.5033570602536201e-03
+
+ -8.2519583404064178e-02 4.0713590383529663e-01
+ <_>
+
+ 0 -1 925 -4.7337161377072334e-03
+
+ 1.9727009534835815e-01 -1.1710140109062195e-01
+ <_>
+
+ 0 -1 926 -1.1557149700820446e-02
+
+ -5.6061112880706787e-01 6.8170957267284393e-02
+ <_>
+
+ 0 -1 927 -2.7445720508694649e-02
+
+ 4.9718621373176575e-01 -6.2380149960517883e-02
+ <_>
+
+ 0 -1 928 -5.2825778722763062e-02
+
+ 1.6921220719814301e-01 -1.3093550503253937e-01
+ <_>
+
+ 0 -1 929 -2.9849699139595032e-01
+
+ -6.4649671316146851e-01 4.0076818317174911e-02
+ <_>
+
+ 0 -1 930 -2.6307269581593573e-04
+
+ 2.5127941370010376e-01 -8.9494839310646057e-02
+ <_>
+
+ 0 -1 931 2.3261709429789335e-04
+
+ -8.6843989789485931e-02 2.3831979930400848e-01
+ <_>
+
+ 0 -1 932 2.3631360090803355e-04
+
+ 1.1554460227489471e-01 -1.8936349451541901e-01
+ <_>
+
+ 0 -1 933 2.0742209162563086e-03
+
+ -4.8594851046800613e-02 5.7485991716384888e-01
+ <_>
+
+ 0 -1 934 -7.0308889262378216e-03
+
+ -5.4120808839797974e-01 4.8743750900030136e-02
+ <_>
+
+ 0 -1 935 8.2652270793914795e-03
+
+ 2.6494519785046577e-02 -6.1728459596633911e-01
+ <_>
+
+ 0 -1 936 2.0042760297656059e-04
+
+ -1.1768630146980286e-01 1.6333860158920288e-01
+ <_>
+
+ 0 -1 937 1.6470040427520871e-03
+
+ -5.9954918920993805e-02 3.5179701447486877e-01
+ <_>
+
+ 0 -1 938 -3.5642538568936288e-04
+
+ -3.4420299530029297e-01 6.4948253333568573e-02
+ <_>
+
+ 0 -1 939 -3.0935870483517647e-02
+
+ 1.9979700446128845e-01 -9.7693696618080139e-02
+ <_>
+
+ 0 -1 940 -6.3578772824257612e-04
+
+ -3.1481391191482544e-01 5.9425041079521179e-02
+ <_>
+
+ 0 -1 941 -1.1862180195748806e-02
+
+ 2.0043690502643585e-01 -8.9447543025016785e-02
+ <_>
+
+ 0 -1 942 7.1508930996060371e-03
+
+ -3.9006061851978302e-02 5.3327161073684692e-01
+ <_>
+
+ 0 -1 943 -2.0059191156178713e-03
+
+ -2.8469720482826233e-01 7.0723608136177063e-02
+ <_>
+
+ 0 -1 944 3.6412389017641544e-03
+
+ -1.0660319775342941e-01 2.4944800138473511e-01
+ <_>
+
+ 0 -1 945 -1.3467429578304291e-01
+
+ 4.9910080432891846e-01 -4.0332220494747162e-02
+ <_>
+
+ 0 -1 946 -2.2547659464180470e-03
+
+ 1.6851690411567688e-01 -1.1119280010461807e-01
+ <_>
+
+ 0 -1 947 4.3842289596796036e-03
+
+ 8.6139492690563202e-02 -2.7431771159172058e-01
+ <_>
+
+ 0 -1 948 -7.3361168615520000e-03
+
+ 2.4875210225582123e-01 -9.5919162034988403e-02
+ <_>
+
+ 0 -1 949 6.4666912658140063e-04
+
+ 6.7431576550006866e-02 -3.3754080533981323e-01
+ <_>
+
+ 0 -1 950 2.2983769304119051e-04
+
+ -8.3903051912784576e-02 2.4584099650382996e-01
+ <_>
+
+ 0 -1 951 6.7039071582257748e-03
+
+ 2.9079329222440720e-02 -6.9055938720703125e-01
+ <_>
+
+ 0 -1 952 5.0734888645820320e-05
+
+ -1.5696719288825989e-01 1.1965429782867432e-01
+ <_>
+
+ 0 -1 953 -2.0335559546947479e-01
+
+ -6.9506347179412842e-01 2.7507519349455833e-02
+ <_>
+
+ 0 -1 954 9.4939414411783218e-03
+
+ -8.7449371814727783e-02 2.3968330025672913e-01
+ <_>
+
+ 0 -1 955 -2.4055240210145712e-03
+
+ 2.1150960028171539e-01 -1.3148930668830872e-01
+ <_>
+
+ 0 -1 956 -1.1342419747961685e-04
+
+ 1.5233789384365082e-01 -1.2725900113582611e-01
+ <_>
+
+ 0 -1 957 1.4992210082709789e-02
+
+ -3.4127969294786453e-02 5.0624072551727295e-01
+ <_>
+
+ 0 -1 958 7.4068200774490833e-04
+
+ 4.8764750361442566e-02 -4.0225321054458618e-01
+ <_>
+
+ 0 -1 959 -4.2459447868168354e-03
+
+ 2.1554760634899139e-01 -8.7126992642879486e-02
+ <_>
+
+ 0 -1 960 6.8655109498649836e-04
+
+ -7.5418718159198761e-02 2.6405909657478333e-01
+ <_>
+
+ 0 -1 961 -1.6751460731029510e-02
+
+ -6.7729032039642334e-01 3.2918728888034821e-02
+ <_>
+
+ 0 -1 962 -2.6301678735762835e-04
+
+ 2.2725869715213776e-01 -9.0534873306751251e-02
+ <_>
+
+ 0 -1 963 4.3398610432632267e-04
+
+ 5.5894378572702408e-02 -3.5592669248580933e-01
+ <_>
+
+ 0 -1 964 -2.0150149241089821e-02
+
+ 1.9162760674953461e-01 -9.4929970800876617e-02
+ <_>
+
+ 0 -1 965 -1.4452129602432251e-02
+
+ -6.8510341644287109e-01 2.5422170758247375e-02
+ <_>
+
+ 0 -1 966 -2.1149739623069763e-02
+
+ 3.7533190846443176e-01 -5.1496580243110657e-02
+ <_>
+
+ 0 -1 967 2.1137770265340805e-02
+
+ 2.9083080589771271e-02 -8.9430367946624756e-01
+ <_>
+
+ 0 -1 968 1.1524349683895707e-03
+
+ -6.9694936275482178e-02 2.7299800515174866e-01
+ <_>
+
+ 0 -1 969 -1.9070580310653895e-04
+
+ 1.8228119611740112e-01 -9.8367072641849518e-02
+ <_>
+
+ 0 -1 970 -3.6349631845951080e-02
+
+ -8.3693099021911621e-01 2.5055760517716408e-02
+ <_>
+
+ 0 -1 971 -9.0632075443863869e-03
+
+ 4.1463500261306763e-01 -5.4413449019193649e-02
+ <_>
+
+ 0 -1 972 -2.0535490475594997e-03
+
+ -1.9750310480594635e-01 1.0506899654865265e-01
+ <_>
+ 93
+ -9.7747492790222168e-01
+
+ <_>
+
+ 0 -1 973 -2.2717019543051720e-02
+
+ 2.4288550019264221e-01 -1.4745520055294037e-01
+ <_>
+
+ 0 -1 974 2.5505950674414635e-02
+
+ -2.8551739454269409e-01 1.0837209969758987e-01
+ <_>
+
+ 0 -1 975 -2.6640091091394424e-03
+
+ 2.9275730252265930e-01 -1.0372710227966309e-01
+ <_>
+
+ 0 -1 976 -3.8115289062261581e-03
+
+ 2.1426899731159210e-01 -1.3811139762401581e-01
+ <_>
+
+ 0 -1 977 -1.6732690855860710e-02
+
+ 2.6550260186195374e-01 -4.3911330401897430e-02
+ <_>
+
+ 0 -1 978 4.9277010839432478e-04
+
+ 2.1104559302330017e-02 -4.2971360683441162e-01
+ <_>
+
+ 0 -1 979 -3.6691110581159592e-02
+
+ 5.3992420434951782e-01 -4.3648801743984222e-02
+ <_>
+
+ 0 -1 980 1.2615970335900784e-03
+
+ -1.2933869659900665e-01 1.6638770699501038e-01
+ <_>
+
+ 0 -1 981 -8.4106856957077980e-03
+
+ -9.4698411226272583e-01 2.1465849131345749e-02
+ <_>
+
+ 0 -1 982 6.4902722835540771e-02
+
+ -7.1727760136127472e-02 2.6613479852676392e-01
+ <_>
+
+ 0 -1 983 3.0305000022053719e-02
+
+ -8.2782492041587830e-02 2.7694320678710938e-01
+ <_>
+
+ 0 -1 984 2.5875340215861797e-03
+
+ -1.2966169416904449e-01 1.7756630480289459e-01
+ <_>
+
+ 0 -1 985 -7.0240451022982597e-03
+
+ -6.4243179559707642e-01 3.9943210780620575e-02
+ <_>
+
+ 0 -1 986 -1.0099769569933414e-03
+
+ 1.4176610112190247e-01 -1.1659970134496689e-01
+ <_>
+
+ 0 -1 987 -4.1179071558872238e-05
+
+ 1.5687669813632965e-01 -1.1127340048551559e-01
+ <_>
+
+ 0 -1 988 -4.7293151146732271e-04
+
+ -3.3554559946060181e-01 4.5977730304002762e-02
+ <_>
+
+ 0 -1 989 -1.7178079579025507e-03
+
+ 1.6952909529209137e-01 -1.0578069835901260e-01
+ <_>
+
+ 0 -1 990 -1.3333169743418694e-02
+
+ -5.8257812261581421e-01 3.0978430062532425e-02
+ <_>
+
+ 0 -1 991 -1.8783430568873882e-03
+
+ 1.4266879856586456e-01 -1.1131259799003601e-01
+ <_>
+
+ 0 -1 992 -6.5765981562435627e-03
+
+ 2.7561360597610474e-01 -5.3100328892469406e-02
+ <_>
+
+ 0 -1 993 -7.7210381277836859e-05
+
+ 1.3240240514278412e-01 -1.1167799681425095e-01
+ <_>
+
+ 0 -1 994 2.1968539804220200e-02
+
+ -2.6968160644173622e-02 5.0067168474197388e-01
+ <_>
+
+ 0 -1 995 -2.7445750311017036e-02
+
+ -2.4086740612983704e-01 6.0478270053863525e-02
+ <_>
+
+ 0 -1 996 7.8305849456228316e-05
+
+ -1.3334889709949493e-01 1.0123469680547714e-01
+ <_>
+
+ 0 -1 997 7.0190683007240295e-02
+
+ -5.4863780736923218e-02 2.4809940159320831e-01
+ <_>
+
+ 0 -1 998 -7.1902133524417877e-02
+
+ -3.7846690416336060e-01 4.2210999876260757e-02
+ <_>
+
+ 0 -1 999 -1.0780979692935944e-01
+
+ -3.7486588954925537e-01 4.2833440005779266e-02
+ <_>
+
+ 0 -1 1000 1.4364200178533792e-03
+
+ 8.0476358532905579e-02 -1.7263789474964142e-01
+ <_>
+
+ 0 -1 1001 6.8289190530776978e-02
+
+ -3.5595789551734924e-02 4.0761318802833557e-01
+ <_>
+
+ 0 -1 1002 -6.8037179298698902e-03
+
+ 1.9233790040016174e-01 -8.2368023693561554e-02
+ <_>
+
+ 0 -1 1003 -5.6193489581346512e-04
+
+ 1.3057120144367218e-01 -1.4355149865150452e-01
+ <_>
+
+ 0 -1 1004 -5.8276649564504623e-02
+
+ -3.0125439167022705e-01 5.2819650620222092e-02
+ <_>
+
+ 0 -1 1005 -6.1205718666315079e-03
+
+ 2.2043900191783905e-01 -7.5691752135753632e-02
+ <_>
+
+ 0 -1 1006 -1.3594309799373150e-02
+
+ -3.9049360156059265e-01 4.1857108473777771e-02
+ <_>
+
+ 0 -1 1007 1.3626200379803777e-03
+
+ -9.5363423228263855e-02 1.4970320463180542e-01
+ <_>
+
+ 0 -1 1008 -1.5074219845701009e-04
+
+ -2.3945580422878265e-01 6.4798332750797272e-02
+ <_>
+
+ 0 -1 1009 -7.7414259314537048e-02
+
+ 5.5941981077194214e-01 -2.4516880512237549e-02
+ <_>
+
+ 0 -1 1010 9.2117872554808855e-04
+
+ 5.4928861558437347e-02 -2.7934810519218445e-01
+ <_>
+
+ 0 -1 1011 1.0250780032947659e-03
+
+ -6.2167309224605560e-02 2.4976369738578796e-01
+ <_>
+
+ 0 -1 1012 -8.1174750812351704e-04
+
+ 2.3437939584255219e-01 -6.5725810825824738e-02
+ <_>
+
+ 0 -1 1013 8.3431020379066467e-02
+
+ 5.0954800099134445e-02 -3.1020981073379517e-01
+ <_>
+
+ 0 -1 1014 -9.2014456167817116e-03
+
+ -3.9242538809776306e-01 3.2926950603723526e-02
+ <_>
+
+ 0 -1 1015 -2.9086650465615094e-04
+
+ -3.1039750576019287e-01 4.9711819738149643e-02
+ <_>
+
+ 0 -1 1016 7.7576898038387299e-03
+
+ -4.4040750712156296e-02 3.6431351304054260e-01
+ <_>
+
+ 0 -1 1017 -1.2466090172529221e-01
+
+ -8.1957077980041504e-01 1.9150640815496445e-02
+ <_>
+
+ 0 -1 1018 1.3242550194263458e-02
+
+ 3.8988839834928513e-02 -3.3230680227279663e-01
+ <_>
+
+ 0 -1 1019 -6.6770128905773163e-03
+
+ -3.5790139436721802e-01 4.0460210293531418e-02
+ <_>
+
+ 0 -1 1020 -2.7479929849505424e-03
+
+ 2.5253900885581970e-01 -5.6427821516990662e-02
+ <_>
+
+ 0 -1 1021 8.2659651525318623e-04
+
+ -7.1988657116889954e-02 2.2780479490756989e-01
+ <_>
+
+ 0 -1 1022 -5.0153400748968124e-02
+
+ -6.3036471605300903e-01 2.7462050318717957e-02
+ <_>
+
+ 0 -1 1023 7.4203149415552616e-03
+
+ -6.6610716283321381e-02 2.7787339687347412e-01
+ <_>
+
+ 0 -1 1024 -6.7951780511066318e-04
+
+ -3.6327061057090759e-01 4.2795430868864059e-02
+ <_>
+
+ 0 -1 1025 -1.9305750029161572e-03
+
+ 1.4196230471134186e-01 -1.0759980231523514e-01
+ <_>
+
+ 0 -1 1026 -3.8132671033963561e-04
+
+ 2.1591760218143463e-01 -7.0202663540840149e-02
+ <_>
+
+ 0 -1 1027 -7.0990346372127533e-02
+
+ 4.5266601443290710e-01 -4.0750481188297272e-02
+ <_>
+
+ 0 -1 1028 -5.3368080407381058e-02
+
+ -6.7674058675765991e-01 1.9288340583443642e-02
+ <_>
+
+ 0 -1 1029 -2.0064849406480789e-02
+
+ -4.3365430831909180e-01 3.1853288412094116e-02
+ <_>
+
+ 0 -1 1030 1.1976360110566020e-03
+
+ -2.6559870690107346e-02 5.0797182321548462e-01
+ <_>
+
+ 0 -1 1031 -2.2697300300933421e-04
+
+ 1.8012599647045135e-01 -8.3606548607349396e-02
+ <_>
+
+ 0 -1 1032 1.5262699685990810e-02
+
+ -2.0238929986953735e-01 6.7422017455101013e-02
+ <_>
+
+ 0 -1 1033 -2.0811769366264343e-01
+
+ 6.6943860054016113e-01 -2.2452110424637794e-02
+ <_>
+
+ 0 -1 1034 1.5514369588345289e-03
+
+ -7.5121842324733734e-02 1.7326919734477997e-01
+ <_>
+
+ 0 -1 1035 -5.2924010902643204e-02
+
+ 2.4992519617080688e-01 -6.2879167497158051e-02
+ <_>
+
+ 0 -1 1036 -2.1648850291967392e-02
+
+ -2.9194280505180359e-01 5.2614491432905197e-02
+ <_>
+
+ 0 -1 1037 -2.2905069636180997e-04
+
+ -2.2117300331592560e-01 6.3168339431285858e-02
+ <_>
+
+ 0 -1 1038 5.0170070608146489e-05
+
+ -1.1510709673166275e-01 1.1611440032720566e-01
+ <_>
+
+ 0 -1 1039 -1.6416069411206990e-04
+
+ 1.5871520340442657e-01 -8.2600601017475128e-02
+ <_>
+
+ 0 -1 1040 -1.2003289535641670e-02
+
+ 1.2218090146780014e-01 -1.1229699850082397e-01
+ <_>
+
+ 0 -1 1041 -1.7784100025892258e-02
+
+ -3.5072788596153259e-01 3.1341921538114548e-02
+ <_>
+
+ 0 -1 1042 -6.3457582145929337e-03
+
+ 1.3078069686889648e-01 -1.0574410110712051e-01
+ <_>
+
+ 0 -1 1043 -7.9523242311552167e-04
+
+ 1.7204670608043671e-01 -8.6001992225646973e-02
+ <_>
+
+ 0 -1 1044 -3.1029590172693133e-04
+
+ -2.8433170914649963e-01 5.1817119121551514e-02
+ <_>
+
+ 0 -1 1045 -1.7053710296750069e-02
+
+ 3.9242428541183472e-01 -4.0143270045518875e-02
+ <_>
+
+ 0 -1 1046 4.6504959464073181e-03
+
+ -3.1837560236454010e-02 4.1237699985504150e-01
+ <_>
+
+ 0 -1 1047 -1.0358760133385658e-02
+
+ -5.6993198394775391e-01 2.9248379170894623e-02
+ <_>
+
+ 0 -1 1048 -2.2196240723133087e-02
+
+ -4.5605289936065674e-01 2.6285989210009575e-02
+ <_>
+
+ 0 -1 1049 -7.0536029525101185e-03
+
+ 1.5998320281505585e-01 -9.1594859957695007e-02
+ <_>
+
+ 0 -1 1050 -5.7094299700111151e-04
+
+ -1.4076329767704010e-01 1.0287419706583023e-01
+ <_>
+
+ 0 -1 1051 -2.2152599412947893e-03
+
+ 1.6593599319458008e-01 -8.5273988544940948e-02
+ <_>
+
+ 0 -1 1052 -2.8084890916943550e-02
+
+ 2.7022340893745422e-01 -5.5873811244964600e-02
+ <_>
+
+ 0 -1 1053 2.1515151020139456e-03
+
+ 4.2472891509532928e-02 -3.2005849480628967e-01
+ <_>
+
+ 0 -1 1054 -2.9733829433098435e-04
+
+ 1.6177169978618622e-01 -8.5115589201450348e-02
+ <_>
+
+ 0 -1 1055 -1.6694780439138412e-02
+
+ -4.2858770489692688e-01 3.0541609972715378e-02
+ <_>
+
+ 0 -1 1056 1.1982990056276321e-01
+
+ -1.6277290880680084e-02 7.9846781492233276e-01
+ <_>
+
+ 0 -1 1057 -3.5499420482665300e-04
+
+ 1.5935939550399780e-01 -8.3272881805896759e-02
+ <_>
+
+ 0 -1 1058 -1.8226269632577896e-02
+
+ 1.9527280330657959e-01 -7.3939889669418335e-02
+ <_>
+
+ 0 -1 1059 -4.0238600922748446e-04
+
+ 7.9101808369159698e-02 -2.0806129276752472e-01
+ <_>
+
+ 0 -1 1060 4.0892060496844351e-04
+
+ 1.0036630183458328e-01 -1.5128210186958313e-01
+ <_>
+
+ 0 -1 1061 9.5368112670257688e-04
+
+ -7.3011666536331177e-02 2.1752020716667175e-01
+ <_>
+
+ 0 -1 1062 4.3081799149513245e-01
+
+ -2.7450699359178543e-02 5.7061582803726196e-01
+ <_>
+
+ 0 -1 1063 5.3564831614494324e-04
+
+ 1.1587540060281754e-01 -1.2790560722351074e-01
+ <_>
+
+ 0 -1 1064 2.4430730263702571e-05
+
+ -1.6816629469394684e-01 8.0449983477592468e-02
+ <_>
+
+ 0 -1 1065 -5.5345650762319565e-02
+
+ 4.5338949561119080e-01 -3.1222779303789139e-02
+
+ <_>
+
+ <_>
+ 0 8 20 12 -1.
+ <_>
+ 0 14 20 6 2.
+ <_>
+
+ <_>
+ 9 1 4 15 -1.
+ <_>
+ 9 6 4 5 3.
+ <_>
+
+ <_>
+ 6 10 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ <_>
+
+ <_>
+ 7 0 10 9 -1.
+ <_>
+ 7 3 10 3 3.
+ <_>
+
+ <_>
+ 12 2 2 18 -1.
+ <_>
+ 12 8 2 6 3.
+ <_>
+
+ <_>
+ 8 6 8 6 -1.
+ <_>
+ 8 9 8 3 2.
+ <_>
+
+ <_>
+ 2 0 17 18 -1.
+ <_>
+ 2 6 17 6 3.
+ <_>
+
+ <_>
+ 10 10 1 8 -1.
+ <_>
+ 10 14 1 4 2.
+ <_>
+
+ <_>
+ 7 10 9 2 -1.
+ <_>
+ 10 10 3 2 3.
+ <_>
+
+ <_>
+ 5 1 6 6 -1.
+ <_>
+ 5 3 6 2 3.
+ <_>
+
+ <_>
+ 3 1 15 9 -1.
+ <_>
+ 3 4 15 3 3.
+ <_>
+
+ <_>
+ 6 3 9 6 -1.
+ <_>
+ 6 5 9 2 3.
+ <_>
+
+ <_>
+ 8 17 6 3 -1.
+ <_>
+ 10 17 2 3 3.
+ <_>
+
+ <_>
+ 9 10 9 1 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 1 7 6 11 -1.
+ <_>
+ 3 7 2 11 3.
+ <_>
+
+ <_>
+ 9 18 3 1 -1.
+ <_>
+ 10 18 1 1 3.
+ <_>
+
+ <_>
+ 16 16 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 9 17 6 3 -1.
+ <_>
+ 11 17 2 3 3.
+ <_>
+
+ <_>
+ 8 0 5 18 -1.
+ <_>
+ 8 6 5 6 3.
+ <_>
+
+ <_>
+ 6 7 9 7 -1.
+ <_>
+ 9 7 3 7 3.
+ <_>
+
+ <_>
+ 14 6 6 10 -1.
+ <_>
+ 16 6 2 10 3.
+ <_>
+
+ <_>
+ 9 8 9 5 -1.
+ <_>
+ 12 8 3 5 3.
+ <_>
+
+ <_>
+ 3 7 9 6 -1.
+ <_>
+ 6 7 3 6 3.
+ <_>
+
+ <_>
+ 1 7 6 6 -1.
+ <_>
+ 3 7 2 6 3.
+ <_>
+
+ <_>
+ 16 0 4 18 -1.
+ <_>
+ 16 6 4 6 3.
+ <_>
+
+ <_>
+ 0 17 3 3 -1.
+ <_>
+ 0 18 3 1 3.
+ <_>
+
+ <_>
+ 16 0 2 1 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+
+ <_>
+ 0 8 20 12 -1.
+ <_>
+ 0 14 20 6 2.
+ <_>
+
+ <_>
+ 6 6 9 8 -1.
+ <_>
+ 9 6 3 8 3.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 5 6 12 3 3.
+ <_>
+
+ <_>
+ 4 16 1 2 -1.
+ <_>
+ 4 17 1 1 2.
+ <_>
+
+ <_>
+ 18 10 2 1 -1.
+ <_>
+ 19 10 1 1 2.
+ <_>
+
+ <_>
+ 9 8 6 5 -1.
+ <_>
+ 11 8 2 5 3.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 6 8 6 6 -1.
+ <_>
+ 8 8 2 6 3.
+ <_>
+
+ <_>
+ 11 7 6 7 -1.
+ <_>
+ 13 7 2 7 3.
+ <_>
+
+ <_>
+ 19 14 1 2 -1.
+ <_>
+ 19 15 1 1 2.
+ <_>
+
+ <_>
+ 6 17 1 2 -1.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 14 7 2 7 -1.
+ <_>
+ 15 7 1 7 2.
+ <_>
+
+ <_>
+ 6 8 2 4 -1.
+ <_>
+ 7 8 1 4 2.
+ <_>
+
+ <_>
+ 5 8 12 6 -1.
+ <_>
+ 5 10 12 2 3.
+ <_>
+
+ <_>
+ 2 17 1 3 -1.
+ <_>
+ 2 18 1 1 3.
+ <_>
+
+ <_>
+ 6 7 3 6 -1.
+ <_>
+ 7 7 1 6 3.
+ <_>
+
+ <_>
+ 6 7 9 12 -1.
+ <_>
+ 9 7 3 12 3.
+ <_>
+
+ <_>
+ 6 2 11 12 -1.
+ <_>
+ 6 6 11 4 3.
+ <_>
+
+ <_>
+ 1 12 5 8 -1.
+ <_>
+ 1 16 5 4 2.
+ <_>
+
+ <_>
+ 14 7 6 7 -1.
+ <_>
+ 16 7 2 7 3.
+ <_>
+
+ <_>
+ 10 8 6 6 -1.
+ <_>
+ 12 8 2 6 3.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 16 19 4 1 2.
+ <_>
+
+ <_>
+ 18 17 2 3 -1.
+ <_>
+ 18 18 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 7 -1.
+ <_>
+ 10 7 1 7 3.
+ <_>
+
+ <_>
+ 5 6 6 8 -1.
+ <_>
+ 7 6 2 8 3.
+ <_>
+
+ <_>
+ 2 6 6 11 -1.
+ <_>
+ 4 6 2 11 3.
+ <_>
+
+ <_>
+ 8 10 12 8 -1.
+ <_>
+ 8 14 12 4 2.
+ <_>
+
+ <_>
+ 7 17 6 3 -1.
+ <_>
+ 9 17 2 3 3.
+ <_>
+
+ <_>
+ 10 9 3 3 -1.
+ <_>
+ 11 9 1 3 3.
+ <_>
+
+ <_>
+ 8 8 3 6 -1.
+ <_>
+ 9 8 1 6 3.
+ <_>
+
+ <_>
+ 7 0 6 5 -1.
+ <_>
+ 9 0 2 5 3.
+ <_>
+
+ <_>
+ 6 17 1 3 -1.
+ <_>
+ 6 18 1 1 3.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 0 19 4 1 2.
+ <_>
+
+ <_>
+ 4 1 11 9 -1.
+ <_>
+ 4 4 11 3 3.
+ <_>
+
+ <_>
+ 3 1 14 9 -1.
+ <_>
+ 3 4 14 3 3.
+ <_>
+
+ <_>
+ 0 9 6 4 -1.
+ <_>
+ 2 9 2 4 3.
+ <_>
+
+ <_>
+ 18 13 1 2 -1.
+ <_>
+ 18 14 1 1 2.
+ <_>
+
+ <_>
+ 13 5 3 11 -1.
+ <_>
+ 14 5 1 11 3.
+ <_>
+
+ <_>
+ 0 18 8 2 -1.
+ <_>
+ 0 18 4 1 2.
+ <_>
+ 4 19 4 1 2.
+ <_>
+
+ <_>
+ 5 8 12 5 -1.
+ <_>
+ 9 8 4 5 3.
+ <_>
+
+ <_>
+ 4 7 11 10 -1.
+ <_>
+ 4 12 11 5 2.
+ <_>
+
+ <_>
+ 14 9 6 4 -1.
+ <_>
+ 16 9 2 4 3.
+ <_>
+
+ <_>
+ 0 7 6 8 -1.
+ <_>
+ 3 7 3 8 2.
+ <_>
+
+ <_>
+ 0 16 3 3 -1.
+ <_>
+ 0 17 3 1 3.
+ <_>
+
+ <_>
+ 7 11 12 1 -1.
+ <_>
+ 11 11 4 1 3.
+ <_>
+
+ <_>
+ 4 8 9 4 -1.
+ <_>
+ 7 8 3 4 3.
+ <_>
+
+ <_>
+ 5 16 6 4 -1.
+ <_>
+ 7 16 2 4 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 4 9 4 10 -1.
+ <_>
+ 4 9 2 5 2.
+ <_>
+ 6 14 2 5 2.
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 6 8 2 4 3.
+ <_>
+
+ <_>
+ 10 2 2 18 -1.
+ <_>
+ 10 8 2 6 3.
+ <_>
+
+ <_>
+ 0 5 8 6 -1.
+ <_>
+ 0 5 4 3 2.
+ <_>
+ 4 8 4 3 2.
+ <_>
+
+ <_>
+ 6 0 6 5 -1.
+ <_>
+ 8 0 2 5 3.
+ <_>
+
+ <_>
+ 18 0 2 14 -1.
+ <_>
+ 18 7 2 7 2.
+ <_>
+
+ <_>
+ 8 18 4 2 -1.
+ <_>
+ 10 18 2 2 2.
+ <_>
+
+ <_>
+ 1 17 6 3 -1.
+ <_>
+ 1 18 6 1 3.
+ <_>
+
+ <_>
+ 11 8 3 5 -1.
+ <_>
+ 12 8 1 5 3.
+ <_>
+
+ <_>
+ 11 8 3 4 -1.
+ <_>
+ 12 8 1 4 3.
+ <_>
+
+ <_>
+ 11 0 6 5 -1.
+ <_>
+ 13 0 2 5 3.
+ <_>
+
+ <_>
+ 1 7 6 7 -1.
+ <_>
+ 3 7 2 7 3.
+ <_>
+
+ <_>
+ 0 13 1 3 -1.
+ <_>
+ 0 14 1 1 3.
+ <_>
+
+ <_>
+ 3 2 9 6 -1.
+ <_>
+ 3 4 9 2 3.
+ <_>
+
+ <_>
+ 8 6 9 2 -1.
+ <_>
+ 8 7 9 1 2.
+ <_>
+
+ <_>
+ 0 14 3 6 -1.
+ <_>
+ 0 16 3 2 3.
+ <_>
+
+ <_>
+ 1 11 6 4 -1.
+ <_>
+ 3 11 2 4 3.
+ <_>
+
+ <_>
+ 6 9 9 3 -1.
+ <_>
+ 9 9 3 3 3.
+ <_>
+
+ <_>
+ 6 0 9 6 -1.
+ <_>
+ 6 2 9 2 3.
+ <_>
+
+ <_>
+ 8 5 6 6 -1.
+ <_>
+ 8 7 6 2 3.
+ <_>
+
+ <_>
+ 1 12 2 1 -1.
+ <_>
+ 2 12 1 1 2.
+ <_>
+
+ <_>
+ 10 10 6 2 -1.
+ <_>
+ 12 10 2 2 3.
+ <_>
+
+ <_>
+ 13 8 6 6 -1.
+ <_>
+ 15 8 2 6 3.
+ <_>
+
+ <_>
+ 6 16 6 4 -1.
+ <_>
+ 8 16 2 4 3.
+ <_>
+
+ <_>
+ 8 0 9 9 -1.
+ <_>
+ 8 3 9 3 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 7 10 3 3 -1.
+ <_>
+ 8 10 1 3 3.
+ <_>
+
+ <_>
+ 9 14 2 2 -1.
+ <_>
+ 9 14 1 1 2.
+ <_>
+ 10 15 1 1 2.
+ <_>
+
+ <_>
+ 9 14 2 2 -1.
+ <_>
+ 9 14 1 1 2.
+ <_>
+ 10 15 1 1 2.
+ <_>
+
+ <_>
+ 0 8 19 12 -1.
+ <_>
+ 0 14 19 6 2.
+ <_>
+
+ <_>
+ 7 6 9 14 -1.
+ <_>
+ 10 6 3 14 3.
+ <_>
+
+ <_>
+ 13 8 3 4 -1.
+ <_>
+ 14 8 1 4 3.
+ <_>
+
+ <_>
+ 4 17 1 3 -1.
+ <_>
+ 4 18 1 1 3.
+ <_>
+
+ <_>
+ 4 9 6 3 -1.
+ <_>
+ 6 9 2 3 3.
+ <_>
+
+ <_>
+ 2 18 5 2 -1.
+ <_>
+ 2 19 5 1 2.
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+ 8 9 1 1 2.
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+ 8 9 1 1 2.
+ <_>
+
+ <_>
+ 5 10 13 2 -1.
+ <_>
+ 5 11 13 1 2.
+ <_>
+
+ <_>
+ 10 8 1 9 -1.
+ <_>
+ 10 11 1 3 3.
+ <_>
+
+ <_>
+ 15 8 2 12 -1.
+ <_>
+ 15 8 1 6 2.
+ <_>
+ 16 14 1 6 2.
+ <_>
+
+ <_>
+ 4 0 3 5 -1.
+ <_>
+ 5 0 1 5 3.
+ <_>
+
+ <_>
+ 12 6 3 7 -1.
+ <_>
+ 13 6 1 7 3.
+ <_>
+
+ <_>
+ 7 16 6 4 -1.
+ <_>
+ 9 16 2 4 3.
+ <_>
+
+ <_>
+ 9 16 2 1 -1.
+ <_>
+ 10 16 1 1 2.
+ <_>
+
+ <_>
+ 6 10 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ <_>
+
+ <_>
+ 0 6 15 14 -1.
+ <_>
+ 0 13 15 7 2.
+ <_>
+
+ <_>
+ 9 1 5 6 -1.
+ <_>
+ 9 3 5 2 3.
+ <_>
+
+ <_>
+ 3 9 3 4 -1.
+ <_>
+ 4 9 1 4 3.
+ <_>
+
+ <_>
+ 5 7 3 6 -1.
+ <_>
+ 6 7 1 6 3.
+ <_>
+
+ <_>
+ 17 16 1 2 -1.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 9 8 6 12 -1.
+ <_>
+ 11 8 2 12 3.
+ <_>
+
+ <_>
+ 6 10 6 1 -1.
+ <_>
+ 8 10 2 1 3.
+ <_>
+
+ <_>
+ 7 17 9 3 -1.
+ <_>
+ 10 17 3 3 3.
+ <_>
+
+ <_>
+ 14 18 6 2 -1.
+ <_>
+ 14 19 6 1 2.
+ <_>
+
+ <_>
+ 9 5 3 14 -1.
+ <_>
+ 10 5 1 14 3.
+ <_>
+
+ <_>
+ 8 16 9 4 -1.
+ <_>
+ 11 16 3 4 3.
+ <_>
+
+ <_>
+ 0 0 4 14 -1.
+ <_>
+ 0 7 4 7 2.
+ <_>
+
+ <_>
+ 8 1 6 3 -1.
+ <_>
+ 10 1 2 3 3.
+ <_>
+
+ <_>
+ 6 8 3 4 -1.
+ <_>
+ 7 8 1 4 3.
+ <_>
+
+ <_>
+ 4 8 3 4 -1.
+ <_>
+ 5 8 1 4 3.
+ <_>
+
+ <_>
+ 5 1 6 5 -1.
+ <_>
+ 7 1 2 5 3.
+ <_>
+
+ <_>
+ 1 18 1 2 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 7 2 6 2 3.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 0 19 4 1 2.
+ <_>
+
+ <_>
+ 12 3 8 12 -1.
+ <_>
+ 12 7 8 4 3.
+ <_>
+
+ <_>
+ 12 9 3 4 -1.
+ <_>
+ 13 9 1 4 3.
+ <_>
+
+ <_>
+ 12 8 3 5 -1.
+ <_>
+ 13 8 1 5 3.
+ <_>
+
+ <_>
+ 16 0 2 1 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+
+ <_>
+ 5 17 1 3 -1.
+ <_>
+ 5 18 1 1 3.
+ <_>
+
+ <_>
+ 10 2 3 6 -1.
+ <_>
+ 10 4 3 2 3.
+ <_>
+
+ <_>
+ 4 17 2 3 -1.
+ <_>
+ 4 18 2 1 3.
+ <_>
+
+ <_>
+ 12 7 1 9 -1.
+ <_>
+ 12 10 1 3 3.
+ <_>
+
+ <_>
+ 7 6 3 9 -1.
+ <_>
+ 8 6 1 9 3.
+ <_>
+
+ <_>
+ 17 13 3 6 -1.
+ <_>
+ 17 15 3 2 3.
+ <_>
+
+ <_>
+ 7 7 3 8 -1.
+ <_>
+ 8 7 1 8 3.
+ <_>
+
+ <_>
+ 5 0 3 5 -1.
+ <_>
+ 6 0 1 5 3.
+ <_>
+
+ <_>
+ 4 6 9 8 -1.
+ <_>
+ 7 6 3 8 3.
+ <_>
+
+ <_>
+ 2 9 3 3 -1.
+ <_>
+ 3 9 1 3 3.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 16 19 4 1 2.
+ <_>
+
+ <_>
+ 17 10 3 10 -1.
+ <_>
+ 17 15 3 5 2.
+ <_>
+
+ <_>
+ 8 9 6 4 -1.
+ <_>
+ 10 9 2 4 3.
+ <_>
+
+ <_>
+ 5 2 10 12 -1.
+ <_>
+ 5 6 10 4 3.
+ <_>
+
+ <_>
+ 6 9 6 3 -1.
+ <_>
+ 8 9 2 3 3.
+ <_>
+
+ <_>
+ 11 7 3 7 -1.
+ <_>
+ 12 7 1 7 3.
+ <_>
+
+ <_>
+ 12 8 6 4 -1.
+ <_>
+ 14 8 2 4 3.
+ <_>
+
+ <_>
+ 14 8 6 5 -1.
+ <_>
+ 16 8 2 5 3.
+ <_>
+
+ <_>
+ 12 12 2 4 -1.
+ <_>
+ 12 14 2 2 2.
+ <_>
+
+ <_>
+ 3 15 1 2 -1.
+ <_>
+ 3 16 1 1 2.
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 10 0 6 6 -1.
+ <_>
+ 12 0 2 6 3.
+ <_>
+
+ <_>
+ 10 6 3 8 -1.
+ <_>
+ 11 6 1 8 3.
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 16 17 1 1 3.
+ <_>
+
+ <_>
+ 11 11 1 2 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 3 7 6 9 -1.
+ <_>
+ 5 7 2 9 3.
+ <_>
+
+ <_>
+ 4 18 9 1 -1.
+ <_>
+ 7 18 3 1 3.
+ <_>
+
+ <_>
+ 0 11 4 9 -1.
+ <_>
+ 0 14 4 3 3.
+ <_>
+
+ <_>
+ 9 17 6 3 -1.
+ <_>
+ 11 17 2 3 3.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 9 8 2 12 3.
+ <_>
+
+ <_>
+ 6 8 3 4 -1.
+ <_>
+ 7 8 1 4 3.
+ <_>
+
+ <_>
+ 3 17 1 3 -1.
+ <_>
+ 3 18 1 1 3.
+ <_>
+
+ <_>
+ 11 9 6 4 -1.
+ <_>
+ 13 9 2 4 3.
+ <_>
+
+ <_>
+ 6 1 3 2 -1.
+ <_>
+ 7 1 1 2 3.
+ <_>
+
+ <_>
+ 1 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ <_>
+
+ <_>
+ 1 0 2 14 -1.
+ <_>
+ 1 0 1 7 2.
+ <_>
+ 2 7 1 7 2.
+ <_>
+
+ <_>
+ 5 5 11 8 -1.
+ <_>
+ 5 9 11 4 2.
+ <_>
+
+ <_>
+ 9 3 5 6 -1.
+ <_>
+ 9 5 5 2 3.
+ <_>
+
+ <_>
+ 7 9 5 10 -1.
+ <_>
+ 7 14 5 5 2.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 16 10 1 2 2.
+ <_>
+
+ <_>
+ 0 18 8 2 -1.
+ <_>
+ 0 19 8 1 2.
+ <_>
+
+ <_>
+ 7 17 1 3 -1.
+ <_>
+ 7 18 1 1 3.
+ <_>
+
+ <_>
+ 7 2 11 6 -1.
+ <_>
+ 7 4 11 2 3.
+ <_>
+
+ <_>
+ 8 3 9 3 -1.
+ <_>
+ 8 4 9 1 3.
+ <_>
+
+ <_>
+ 0 9 2 2 -1.
+ <_>
+ 0 10 2 1 2.
+ <_>
+
+ <_>
+ 0 5 3 6 -1.
+ <_>
+ 0 7 3 2 3.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 7 6 3 6 -1.
+ <_>
+ 8 6 1 6 3.
+ <_>
+
+ <_>
+ 12 1 6 4 -1.
+ <_>
+ 14 1 2 4 3.
+ <_>
+
+ <_>
+ 9 11 6 8 -1.
+ <_>
+ 11 11 2 8 3.
+ <_>
+
+ <_>
+ 17 15 3 3 -1.
+ <_>
+ 17 16 3 1 3.
+ <_>
+
+ <_>
+ 6 6 3 9 -1.
+ <_>
+ 6 9 3 3 3.
+ <_>
+
+ <_>
+ 0 5 8 6 -1.
+ <_>
+ 0 5 4 3 2.
+ <_>
+ 4 8 4 3 2.
+ <_>
+
+ <_>
+ 0 6 1 3 -1.
+ <_>
+ 0 7 1 1 3.
+ <_>
+
+ <_>
+ 17 0 2 6 -1.
+ <_>
+ 18 0 1 6 2.
+ <_>
+
+ <_>
+ 10 17 6 3 -1.
+ <_>
+ 12 17 2 3 3.
+ <_>
+
+ <_>
+ 13 15 2 2 -1.
+ <_>
+ 13 15 1 1 2.
+ <_>
+ 14 16 1 1 2.
+ <_>
+
+ <_>
+ 4 0 12 3 -1.
+ <_>
+ 4 1 12 1 3.
+ <_>
+
+ <_>
+ 5 3 10 9 -1.
+ <_>
+ 5 6 10 3 3.
+ <_>
+
+ <_>
+ 7 7 9 7 -1.
+ <_>
+ 10 7 3 7 3.
+ <_>
+
+ <_>
+ 5 8 9 6 -1.
+ <_>
+ 8 8 3 6 3.
+ <_>
+
+ <_>
+ 0 16 6 2 -1.
+ <_>
+ 0 17 6 1 2.
+ <_>
+
+ <_>
+ 12 6 7 14 -1.
+ <_>
+ 12 13 7 7 2.
+ <_>
+
+ <_>
+ 13 7 6 8 -1.
+ <_>
+ 15 7 2 8 3.
+ <_>
+
+ <_>
+ 2 10 6 3 -1.
+ <_>
+ 4 10 2 3 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 7 1 6 2 -1.
+ <_>
+ 7 2 6 1 2.
+ <_>
+
+ <_>
+ 6 0 6 4 -1.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 8 18 6 2 -1.
+ <_>
+ 10 18 2 2 3.
+ <_>
+
+ <_>
+ 7 6 5 2 -1.
+ <_>
+ 7 7 5 1 2.
+ <_>
+
+ <_>
+ 6 7 3 6 -1.
+ <_>
+ 7 7 1 6 3.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 16 8 3 7 -1.
+ <_>
+ 17 8 1 7 3.
+ <_>
+
+ <_>
+ 0 16 2 3 -1.
+ <_>
+ 0 17 2 1 3.
+ <_>
+
+ <_>
+ 5 19 6 1 -1.
+ <_>
+ 7 19 2 1 3.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 9 7 6 2 3.
+ <_>
+
+ <_>
+ 0 10 2 4 -1.
+ <_>
+ 0 12 2 2 2.
+ <_>
+
+ <_>
+ 0 9 4 3 -1.
+ <_>
+ 2 9 2 3 2.
+ <_>
+
+ <_>
+ 1 10 6 9 -1.
+ <_>
+ 3 10 2 9 3.
+ <_>
+
+ <_>
+ 9 0 6 2 -1.
+ <_>
+ 11 0 2 2 3.
+ <_>
+
+ <_>
+ 14 1 2 1 -1.
+ <_>
+ 15 1 1 1 2.
+ <_>
+
+ <_>
+ 0 8 1 4 -1.
+ <_>
+ 0 10 1 2 2.
+ <_>
+
+ <_>
+ 15 6 2 2 -1.
+ <_>
+ 15 6 1 1 2.
+ <_>
+ 16 7 1 1 2.
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 8 5 1 6 3.
+ <_>
+
+ <_>
+ 19 17 1 3 -1.
+ <_>
+ 19 18 1 1 3.
+ <_>
+
+ <_>
+ 7 10 3 1 -1.
+ <_>
+ 8 10 1 1 3.
+ <_>
+
+ <_>
+ 12 1 6 6 -1.
+ <_>
+ 14 1 2 6 3.
+ <_>
+
+ <_>
+ 15 5 2 1 -1.
+ <_>
+ 16 5 1 1 2.
+ <_>
+
+ <_>
+ 8 2 7 4 -1.
+ <_>
+ 8 4 7 2 2.
+ <_>
+
+ <_>
+ 4 0 14 15 -1.
+ <_>
+ 4 5 14 5 3.
+ <_>
+
+ <_>
+ 7 8 6 6 -1.
+ <_>
+ 9 8 2 6 3.
+ <_>
+
+ <_>
+ 11 17 1 3 -1.
+ <_>
+ 11 18 1 1 3.
+ <_>
+
+ <_>
+ 12 16 2 4 -1.
+ <_>
+ 12 16 1 2 2.
+ <_>
+ 13 18 1 2 2.
+ <_>
+
+ <_>
+ 10 13 2 1 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 11 8 3 3 -1.
+ <_>
+ 12 8 1 3 3.
+ <_>
+
+ <_>
+ 2 0 6 8 -1.
+ <_>
+ 4 0 2 8 3.
+ <_>
+
+ <_>
+ 3 5 6 6 -1.
+ <_>
+ 3 5 3 3 2.
+ <_>
+ 6 8 3 3 2.
+ <_>
+
+ <_>
+ 10 8 3 3 -1.
+ <_>
+ 11 8 1 3 3.
+ <_>
+
+ <_>
+ 5 17 4 2 -1.
+ <_>
+ 5 18 4 1 2.
+ <_>
+
+ <_>
+ 8 16 5 2 -1.
+ <_>
+ 8 17 5 1 2.
+ <_>
+
+ <_>
+ 0 4 3 3 -1.
+ <_>
+ 0 5 3 1 3.
+ <_>
+
+ <_>
+ 6 3 6 2 -1.
+ <_>
+ 8 3 2 2 3.
+ <_>
+
+ <_>
+ 4 4 9 3 -1.
+ <_>
+ 7 4 3 3 3.
+ <_>
+
+ <_>
+ 0 13 1 4 -1.
+ <_>
+ 0 15 1 2 2.
+ <_>
+
+ <_>
+ 0 17 8 3 -1.
+ <_>
+ 0 18 8 1 3.
+ <_>
+
+ <_>
+ 6 1 11 6 -1.
+ <_>
+ 6 3 11 2 3.
+ <_>
+
+ <_>
+ 4 10 6 2 -1.
+ <_>
+ 6 10 2 2 3.
+ <_>
+
+ <_>
+ 10 8 1 12 -1.
+ <_>
+ 10 14 1 6 2.
+ <_>
+
+ <_>
+ 5 8 3 4 -1.
+ <_>
+ 6 8 1 4 3.
+ <_>
+
+ <_>
+ 0 17 1 3 -1.
+ <_>
+ 0 18 1 1 3.
+ <_>
+
+ <_>
+ 0 17 1 3 -1.
+ <_>
+ 0 18 1 1 3.
+ <_>
+
+ <_>
+ 13 8 3 4 -1.
+ <_>
+ 14 8 1 4 3.
+ <_>
+
+ <_>
+ 1 5 5 4 -1.
+ <_>
+ 1 7 5 2 2.
+ <_>
+
+ <_>
+ 18 14 1 2 -1.
+ <_>
+ 18 15 1 1 2.
+ <_>
+
+ <_>
+ 13 8 2 4 -1.
+ <_>
+ 14 8 1 4 2.
+ <_>
+
+ <_>
+ 10 6 6 8 -1.
+ <_>
+ 12 6 2 8 3.
+ <_>
+
+ <_>
+ 8 6 6 10 -1.
+ <_>
+ 10 6 2 10 3.
+ <_>
+
+ <_>
+ 17 16 1 3 -1.
+ <_>
+ 17 17 1 1 3.
+ <_>
+
+ <_>
+ 1 7 2 10 -1.
+ <_>
+ 2 7 1 10 2.
+ <_>
+
+ <_>
+ 5 9 6 3 -1.
+ <_>
+ 7 9 2 3 3.
+ <_>
+
+ <_>
+ 0 8 5 12 -1.
+ <_>
+ 0 14 5 6 2.
+ <_>
+
+ <_>
+ 0 11 1 3 -1.
+ <_>
+ 0 12 1 1 3.
+ <_>
+
+ <_>
+ 6 16 6 4 -1.
+ <_>
+ 8 16 2 4 3.
+ <_>
+
+ <_>
+ 0 6 2 6 -1.
+ <_>
+ 0 8 2 2 3.
+ <_>
+
+ <_>
+ 11 18 2 1 -1.
+ <_>
+ 12 18 1 1 2.
+ <_>
+
+ <_>
+ 5 1 9 2 -1.
+ <_>
+ 5 2 9 1 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 15 9 3 3 -1.
+ <_>
+ 16 9 1 3 3.
+ <_>
+
+ <_>
+ 18 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ <_>
+
+ <_>
+ 11 10 6 1 -1.
+ <_>
+ 13 10 2 1 3.
+ <_>
+
+ <_>
+ 1 3 4 4 -1.
+ <_>
+ 3 3 2 4 2.
+ <_>
+
+ <_>
+ 11 2 1 18 -1.
+ <_>
+ 11 8 1 6 3.
+ <_>
+
+ <_>
+ 9 1 5 12 -1.
+ <_>
+ 9 5 5 4 3.
+ <_>
+
+ <_>
+ 12 0 8 1 -1.
+ <_>
+ 16 0 4 1 2.
+ <_>
+
+ <_>
+ 8 6 3 10 -1.
+ <_>
+ 9 6 1 10 3.
+ <_>
+
+ <_>
+ 19 2 1 6 -1.
+ <_>
+ 19 4 1 2 3.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 7 2 1 2.
+ <_>
+
+ <_>
+ 7 7 3 4 -1.
+ <_>
+ 8 7 1 4 3.
+ <_>
+
+ <_>
+ 5 0 6 5 -1.
+ <_>
+ 7 0 2 5 3.
+ <_>
+
+ <_>
+ 0 3 7 3 -1.
+ <_>
+ 0 4 7 1 3.
+ <_>
+
+ <_>
+ 1 6 2 1 -1.
+ <_>
+ 2 6 1 1 2.
+ <_>
+
+ <_>
+ 4 8 2 10 -1.
+ <_>
+ 4 8 1 5 2.
+ <_>
+ 5 13 1 5 2.
+ <_>
+
+ <_>
+ 2 18 18 2 -1.
+ <_>
+ 2 18 9 1 2.
+ <_>
+ 11 19 9 1 2.
+ <_>
+
+ <_>
+ 2 7 4 4 -1.
+ <_>
+ 2 7 2 2 2.
+ <_>
+ 4 9 2 2 2.
+ <_>
+
+ <_>
+ 17 3 3 4 -1.
+ <_>
+ 18 3 1 4 3.
+ <_>
+
+ <_>
+ 16 9 2 8 -1.
+ <_>
+ 16 9 1 4 2.
+ <_>
+ 17 13 1 4 2.
+ <_>
+
+ <_>
+ 15 7 1 6 -1.
+ <_>
+ 15 9 1 2 3.
+ <_>
+
+ <_>
+ 14 2 2 2 -1.
+ <_>
+ 14 3 2 1 2.
+ <_>
+
+ <_>
+ 17 0 2 3 -1.
+ <_>
+ 17 1 2 1 3.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 10 4 4 3 -1.
+ <_>
+ 10 5 4 1 3.
+ <_>
+
+ <_>
+ 0 2 8 6 -1.
+ <_>
+ 4 2 4 6 2.
+ <_>
+
+ <_>
+ 7 14 6 6 -1.
+ <_>
+ 7 16 6 2 3.
+ <_>
+
+ <_>
+ 11 15 2 2 -1.
+ <_>
+ 11 16 2 1 2.
+ <_>
+
+ <_>
+ 7 1 9 4 -1.
+ <_>
+ 10 1 3 4 3.
+ <_>
+
+ <_>
+ 9 7 3 7 -1.
+ <_>
+ 10 7 1 7 3.
+ <_>
+
+ <_>
+ 6 17 2 2 -1.
+ <_>
+ 6 17 1 1 2.
+ <_>
+ 7 18 1 1 2.
+ <_>
+
+ <_>
+ 4 6 3 9 -1.
+ <_>
+ 5 6 1 9 3.
+ <_>
+
+ <_>
+ 0 10 19 10 -1.
+ <_>
+ 0 15 19 5 2.
+ <_>
+
+ <_>
+ 5 17 6 1 -1.
+ <_>
+ 7 17 2 1 3.
+ <_>
+
+ <_>
+ 0 12 6 3 -1.
+ <_>
+ 3 12 3 3 2.
+ <_>
+
+ <_>
+ 2 5 18 5 -1.
+ <_>
+ 8 5 6 5 3.
+ <_>
+
+ <_>
+ 1 15 6 4 -1.
+ <_>
+ 1 17 6 2 2.
+ <_>
+
+ <_>
+ 14 10 6 6 -1.
+ <_>
+ 16 10 2 6 3.
+ <_>
+
+ <_>
+ 0 14 4 3 -1.
+ <_>
+ 0 15 4 1 3.
+ <_>
+
+ <_>
+ 1 7 6 11 -1.
+ <_>
+ 3 7 2 11 3.
+ <_>
+
+ <_>
+ 13 17 7 2 -1.
+ <_>
+ 13 18 7 1 2.
+ <_>
+
+ <_>
+ 0 14 2 3 -1.
+ <_>
+ 0 15 2 1 3.
+ <_>
+
+ <_>
+ 0 0 6 2 -1.
+ <_>
+ 3 0 3 2 2.
+ <_>
+
+ <_>
+ 0 1 6 3 -1.
+ <_>
+ 3 1 3 3 2.
+ <_>
+
+ <_>
+ 0 8 2 6 -1.
+ <_>
+ 0 10 2 2 3.
+ <_>
+
+ <_>
+ 1 2 6 14 -1.
+ <_>
+ 1 2 3 7 2.
+ <_>
+ 4 9 3 7 2.
+ <_>
+
+ <_>
+ 17 5 2 2 -1.
+ <_>
+ 17 5 1 1 2.
+ <_>
+ 18 6 1 1 2.
+ <_>
+
+ <_>
+ 11 10 9 4 -1.
+ <_>
+ 14 10 3 4 3.
+ <_>
+
+ <_>
+ 2 9 12 4 -1.
+ <_>
+ 6 9 4 4 3.
+ <_>
+
+ <_>
+ 7 10 12 2 -1.
+ <_>
+ 11 10 4 2 3.
+ <_>
+
+ <_>
+ 2 13 1 2 -1.
+ <_>
+ 2 14 1 1 2.
+ <_>
+
+ <_>
+ 16 7 4 3 -1.
+ <_>
+ 16 8 4 1 3.
+ <_>
+
+ <_>
+ 19 16 1 3 -1.
+ <_>
+ 19 17 1 1 3.
+ <_>
+
+ <_>
+ 18 11 1 2 -1.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 12 7 8 2 -1.
+ <_>
+ 12 7 4 1 2.
+ <_>
+ 16 8 4 1 2.
+ <_>
+
+ <_>
+ 14 9 2 4 -1.
+ <_>
+ 15 9 1 4 2.
+ <_>
+
+ <_>
+ 14 2 6 4 -1.
+ <_>
+ 14 2 3 2 2.
+ <_>
+ 17 4 3 2 2.
+ <_>
+
+ <_>
+ 14 0 6 1 -1.
+ <_>
+ 17 0 3 1 2.
+ <_>
+
+ <_>
+ 3 12 2 1 -1.
+ <_>
+ 4 12 1 1 2.
+ <_>
+
+ <_>
+ 17 2 3 1 -1.
+ <_>
+ 18 2 1 1 3.
+ <_>
+
+ <_>
+ 1 16 18 2 -1.
+ <_>
+ 7 16 6 2 3.
+ <_>
+
+ <_>
+ 2 19 8 1 -1.
+ <_>
+ 6 19 4 1 2.
+ <_>
+
+ <_>
+ 1 17 4 3 -1.
+ <_>
+ 1 18 4 1 3.
+ <_>
+
+ <_>
+ 19 13 1 2 -1.
+ <_>
+ 19 14 1 1 2.
+ <_>
+
+ <_>
+ 9 16 10 4 -1.
+ <_>
+ 9 16 5 2 2.
+ <_>
+ 14 18 5 2 2.
+ <_>
+
+ <_>
+ 12 9 2 4 -1.
+ <_>
+ 12 9 1 2 2.
+ <_>
+ 13 11 1 2 2.
+ <_>
+
+ <_>
+ 19 11 1 9 -1.
+ <_>
+ 19 14 1 3 3.
+ <_>
+
+ <_>
+ 6 6 14 14 -1.
+ <_>
+ 6 13 14 7 2.
+ <_>
+
+ <_>
+ 2 17 4 2 -1.
+ <_>
+ 2 18 4 1 2.
+ <_>
+
+ <_>
+ 0 2 1 3 -1.
+ <_>
+ 0 3 1 1 3.
+ <_>
+
+ <_>
+ 0 12 1 3 -1.
+ <_>
+ 0 13 1 1 3.
+ <_>
+
+ <_>
+ 15 15 4 4 -1.
+ <_>
+ 15 17 4 2 2.
+ <_>
+
+ <_>
+ 2 5 18 7 -1.
+ <_>
+ 8 5 6 7 3.
+ <_>
+
+ <_>
+ 1 16 5 3 -1.
+ <_>
+ 1 17 5 1 3.
+ <_>
+
+ <_>
+ 0 4 2 3 -1.
+ <_>
+ 0 5 2 1 3.
+ <_>
+
+ <_>
+ 0 6 2 6 -1.
+ <_>
+ 1 6 1 6 2.
+ <_>
+
+ <_>
+ 16 14 4 3 -1.
+ <_>
+ 16 15 4 1 3.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+ <_>
+
+ <_>
+ 2 2 3 6 -1.
+ <_>
+ 3 2 1 6 3.
+ <_>
+
+ <_>
+ 2 0 3 10 -1.
+ <_>
+ 3 0 1 10 3.
+ <_>
+
+ <_>
+ 5 5 2 2 -1.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 12 6 4 4 -1.
+ <_>
+ 12 8 4 2 2.
+ <_>
+
+ <_>
+ 13 5 7 3 -1.
+ <_>
+ 13 6 7 1 3.
+ <_>
+
+ <_>
+ 10 13 1 2 -1.
+ <_>
+ 10 14 1 1 2.
+ <_>
+
+ <_>
+ 16 16 4 2 -1.
+ <_>
+ 18 16 2 2 2.
+ <_>
+
+ <_>
+ 16 12 4 7 -1.
+ <_>
+ 18 12 2 7 2.
+ <_>
+
+ <_>
+ 16 17 1 3 -1.
+ <_>
+ 16 18 1 1 3.
+ <_>
+
+ <_>
+ 19 9 1 3 -1.
+ <_>
+ 19 10 1 1 3.
+ <_>
+
+ <_>
+ 18 7 2 6 -1.
+ <_>
+ 19 7 1 6 2.
+ <_>
+
+ <_>
+ 8 1 3 4 -1.
+ <_>
+ 9 1 1 4 3.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 4 2 10 2 -1.
+ <_>
+ 9 2 5 2 2.
+ <_>
+
+ <_>
+ 2 12 8 4 -1.
+ <_>
+ 2 12 4 2 2.
+ <_>
+ 6 14 4 2 2.
+ <_>
+
+ <_>
+ 0 4 7 3 -1.
+ <_>
+ 0 5 7 1 3.
+ <_>
+
+ <_>
+ 14 14 3 3 -1.
+ <_>
+ 15 14 1 3 3.
+ <_>
+
+ <_>
+ 0 3 4 3 -1.
+ <_>
+ 2 3 2 3 2.
+ <_>
+
+ <_>
+ 1 0 2 7 -1.
+ <_>
+ 2 0 1 7 2.
+ <_>
+
+ <_>
+ 15 16 4 4 -1.
+ <_>
+ 15 18 4 2 2.
+ <_>
+
+ <_>
+ 5 8 12 4 -1.
+ <_>
+ 5 10 12 2 2.
+ <_>
+
+ <_>
+ 3 17 1 2 -1.
+ <_>
+ 3 18 1 1 2.
+ <_>
+
+ <_>
+ 6 1 3 4 -1.
+ <_>
+ 7 1 1 4 3.
+ <_>
+
+ <_>
+ 6 2 3 4 -1.
+ <_>
+ 7 2 1 4 3.
+ <_>
+
+ <_>
+ 6 8 9 12 -1.
+ <_>
+ 9 8 3 12 3.
+ <_>
+
+ <_>
+ 8 1 8 6 -1.
+ <_>
+ 8 3 8 2 3.
+ <_>
+
+ <_>
+ 14 2 6 3 -1.
+ <_>
+ 17 2 3 3 2.
+ <_>
+
+ <_>
+ 0 6 1 3 -1.
+ <_>
+ 0 7 1 1 3.
+ <_>
+
+ <_>
+ 10 0 10 2 -1.
+ <_>
+ 15 0 5 2 2.
+ <_>
+
+ <_>
+ 11 0 3 2 -1.
+ <_>
+ 12 0 1 2 3.
+ <_>
+
+ <_>
+ 3 19 10 1 -1.
+ <_>
+ 8 19 5 1 2.
+ <_>
+
+ <_>
+ 0 4 7 16 -1.
+ <_>
+ 0 12 7 8 2.
+ <_>
+
+ <_>
+ 2 16 1 3 -1.
+ <_>
+ 2 17 1 1 3.
+ <_>
+
+ <_>
+ 7 8 12 6 -1.
+ <_>
+ 11 8 4 6 3.
+ <_>
+
+ <_>
+ 14 9 6 7 -1.
+ <_>
+ 16 9 2 7 3.
+ <_>
+
+ <_>
+ 12 17 6 1 -1.
+ <_>
+ 14 17 2 1 3.
+ <_>
+
+ <_>
+ 16 1 3 1 -1.
+ <_>
+ 17 1 1 1 3.
+ <_>
+
+ <_>
+ 0 17 8 2 -1.
+ <_>
+ 0 17 4 1 2.
+ <_>
+ 4 18 4 1 2.
+ <_>
+
+ <_>
+ 17 0 2 1 -1.
+ <_>
+ 18 0 1 1 2.
+ <_>
+
+ <_>
+ 4 15 6 5 -1.
+ <_>
+ 6 15 2 5 3.
+ <_>
+
+ <_>
+ 7 2 8 2 -1.
+ <_>
+ 7 3 8 1 2.
+ <_>
+
+ <_>
+ 4 1 8 4 -1.
+ <_>
+ 4 3 8 2 2.
+ <_>
+
+ <_>
+ 5 19 2 1 -1.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 5 19 2 1 -1.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 16 17 1 3 -1.
+ <_>
+ 16 18 1 1 3.
+ <_>
+
+ <_>
+ 0 11 2 3 -1.
+ <_>
+ 1 11 1 3 2.
+ <_>
+
+ <_>
+ 0 19 4 1 -1.
+ <_>
+ 2 19 2 1 2.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 2 18 2 2 2.
+ <_>
+
+ <_>
+ 2 17 1 3 -1.
+ <_>
+ 2 18 1 1 3.
+ <_>
+
+ <_>
+ 5 7 11 2 -1.
+ <_>
+ 5 8 11 1 2.
+ <_>
+
+ <_>
+ 9 2 4 10 -1.
+ <_>
+ 9 7 4 5 2.
+ <_>
+
+ <_>
+ 0 2 4 3 -1.
+ <_>
+ 0 3 4 1 3.
+ <_>
+
+ <_>
+ 10 19 10 1 -1.
+ <_>
+ 15 19 5 1 2.
+ <_>
+
+ <_>
+ 11 17 8 3 -1.
+ <_>
+ 15 17 4 3 2.
+ <_>
+
+ <_>
+ 8 19 3 1 -1.
+ <_>
+ 9 19 1 1 3.
+ <_>
+
+ <_>
+ 14 0 3 4 -1.
+ <_>
+ 15 0 1 4 3.
+ <_>
+
+ <_>
+ 10 6 4 3 -1.
+ <_>
+ 10 7 4 1 3.
+ <_>
+
+ <_>
+ 0 8 3 2 -1.
+ <_>
+ 0 9 3 1 2.
+ <_>
+
+ <_>
+ 7 12 3 6 -1.
+ <_>
+ 7 14 3 2 3.
+ <_>
+
+ <_>
+ 1 18 1 2 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 0 12 4 4 -1.
+ <_>
+ 2 12 2 4 2.
+ <_>
+
+ <_>
+ 1 8 6 7 -1.
+ <_>
+ 3 8 2 7 3.
+ <_>
+
+ <_>
+ 0 8 4 5 -1.
+ <_>
+ 2 8 2 5 2.
+ <_>
+
+ <_>
+ 19 16 1 3 -1.
+ <_>
+ 19 17 1 1 3.
+ <_>
+
+ <_>
+ 1 5 18 6 -1.
+ <_>
+ 7 5 6 6 3.
+ <_>
+
+ <_>
+ 2 15 4 2 -1.
+ <_>
+ 2 16 4 1 2.
+ <_>
+
+ <_>
+ 18 6 2 11 -1.
+ <_>
+ 19 6 1 11 2.
+ <_>
+
+ <_>
+ 0 12 2 6 -1.
+ <_>
+ 0 14 2 2 3.
+ <_>
+
+ <_>
+ 12 5 3 2 -1.
+ <_>
+ 12 6 3 1 2.
+ <_>
+
+ <_>
+ 1 3 2 3 -1.
+ <_>
+ 1 4 2 1 3.
+ <_>
+
+ <_>
+ 16 14 4 4 -1.
+ <_>
+ 16 16 4 2 2.
+ <_>
+
+ <_>
+ 6 8 12 5 -1.
+ <_>
+ 10 8 4 5 3.
+ <_>
+
+ <_>
+ 13 7 2 7 -1.
+ <_>
+ 14 7 1 7 2.
+ <_>
+
+ <_>
+ 1 8 2 6 -1.
+ <_>
+ 2 8 1 6 2.
+ <_>
+
+ <_>
+ 15 0 3 7 -1.
+ <_>
+ 16 0 1 7 3.
+ <_>
+
+ <_>
+ 4 2 6 2 -1.
+ <_>
+ 6 2 2 2 3.
+ <_>
+
+ <_>
+ 0 9 20 9 -1.
+ <_>
+ 0 12 20 3 3.
+ <_>
+
+ <_>
+ 10 14 2 2 -1.
+ <_>
+ 10 15 2 1 2.
+ <_>
+
+ <_>
+ 6 5 10 4 -1.
+ <_>
+ 6 7 10 2 2.
+ <_>
+
+ <_>
+ 6 1 5 9 -1.
+ <_>
+ 6 4 5 3 3.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 0 14 2 4 -1.
+ <_>
+ 0 16 2 2 2.
+ <_>
+
+ <_>
+ 10 8 2 5 -1.
+ <_>
+ 11 8 1 5 2.
+ <_>
+
+ <_>
+ 3 7 12 7 -1.
+ <_>
+ 7 7 4 7 3.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 1 0 4 4 -1.
+ <_>
+ 3 0 2 4 2.
+ <_>
+
+ <_>
+ 0 0 6 8 -1.
+ <_>
+ 2 0 2 8 3.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 0 0 3 3 -1.
+ <_>
+ 0 1 3 1 3.
+ <_>
+
+ <_>
+ 5 4 2 4 -1.
+ <_>
+ 5 6 2 2 2.
+ <_>
+
+ <_>
+ 2 10 9 1 -1.
+ <_>
+ 5 10 3 1 3.
+ <_>
+
+ <_>
+ 1 17 1 3 -1.
+ <_>
+ 1 18 1 1 3.
+ <_>
+
+ <_>
+ 0 17 2 3 -1.
+ <_>
+ 0 18 2 1 3.
+ <_>
+
+ <_>
+ 0 15 16 3 -1.
+ <_>
+ 8 15 8 3 2.
+ <_>
+
+ <_>
+ 0 5 4 1 -1.
+ <_>
+ 2 5 2 1 2.
+ <_>
+
+ <_>
+ 1 0 6 20 -1.
+ <_>
+ 3 0 2 20 3.
+ <_>
+
+ <_>
+ 2 5 4 6 -1.
+ <_>
+ 2 5 2 3 2.
+ <_>
+ 4 8 2 3 2.
+ <_>
+
+ <_>
+ 9 16 6 3 -1.
+ <_>
+ 11 16 2 3 3.
+ <_>
+
+ <_>
+ 11 17 6 1 -1.
+ <_>
+ 14 17 3 1 2.
+ <_>
+
+ <_>
+ 3 17 15 2 -1.
+ <_>
+ 8 17 5 2 3.
+ <_>
+
+ <_>
+ 18 0 2 3 -1.
+ <_>
+ 18 1 2 1 3.
+ <_>
+
+ <_>
+ 13 1 7 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+
+ <_>
+ 13 6 4 4 -1.
+ <_>
+ 13 6 2 2 2.
+ <_>
+ 15 8 2 2 2.
+ <_>
+
+ <_>
+ 17 6 3 4 -1.
+ <_>
+ 17 8 3 2 2.
+ <_>
+
+ <_>
+ 14 9 2 2 -1.
+ <_>
+ 15 9 1 2 2.
+ <_>
+
+ <_>
+ 17 17 1 3 -1.
+ <_>
+ 17 18 1 1 3.
+ <_>
+
+ <_>
+ 3 19 8 1 -1.
+ <_>
+ 7 19 4 1 2.
+ <_>
+
+ <_>
+ 0 9 3 6 -1.
+ <_>
+ 0 12 3 3 2.
+ <_>
+
+ <_>
+ 4 7 15 5 -1.
+ <_>
+ 9 7 5 5 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 8 1 6 2 -1.
+ <_>
+ 10 1 2 2 3.
+ <_>
+
+ <_>
+ 4 0 12 2 -1.
+ <_>
+ 10 0 6 2 2.
+ <_>
+
+ <_>
+ 7 0 10 3 -1.
+ <_>
+ 12 0 5 3 2.
+ <_>
+
+ <_>
+ 5 0 9 6 -1.
+ <_>
+ 5 2 9 2 3.
+ <_>
+
+ <_>
+ 8 3 6 4 -1.
+ <_>
+ 8 5 6 2 2.
+ <_>
+
+ <_>
+ 17 4 2 3 -1.
+ <_>
+ 17 5 2 1 3.
+ <_>
+
+ <_>
+ 5 2 4 3 -1.
+ <_>
+ 5 3 4 1 3.
+ <_>
+
+ <_>
+ 5 9 2 6 -1.
+ <_>
+ 6 9 1 6 2.
+ <_>
+
+ <_>
+ 14 10 2 6 -1.
+ <_>
+ 15 10 1 6 2.
+ <_>
+
+ <_>
+ 7 4 3 3 -1.
+ <_>
+ 7 5 3 1 3.
+ <_>
+
+ <_>
+ 12 4 8 2 -1.
+ <_>
+ 12 4 4 1 2.
+ <_>
+ 16 5 4 1 2.
+ <_>
+
+ <_>
+ 15 8 1 6 -1.
+ <_>
+ 15 10 1 2 3.
+ <_>
+
+ <_>
+ 4 17 11 3 -1.
+ <_>
+ 4 18 11 1 3.
+ <_>
+
+ <_>
+ 3 0 16 20 -1.
+ <_>
+ 3 10 16 10 2.
+ <_>
+
+ <_>
+ 12 4 4 6 -1.
+ <_>
+ 12 6 4 2 3.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 13 0 2 6 3.
+ <_>
+
+ <_>
+ 13 1 6 4 -1.
+ <_>
+ 13 1 3 2 2.
+ <_>
+ 16 3 3 2 2.
+ <_>
+
+ <_>
+ 11 0 6 4 -1.
+ <_>
+ 13 0 2 4 3.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 7 0 3 4 -1.
+ <_>
+ 8 0 1 4 3.
+ <_>
+
+ <_>
+ 0 17 14 2 -1.
+ <_>
+ 0 17 7 1 2.
+ <_>
+ 7 18 7 1 2.
+ <_>
+
+ <_>
+ 6 18 2 2 -1.
+ <_>
+ 6 18 1 1 2.
+ <_>
+ 7 19 1 1 2.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 17 18 1 1 2.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 5 7 1 9 -1.
+ <_>
+ 5 10 1 3 3.
+ <_>
+
+ <_>
+ 5 3 6 4 -1.
+ <_>
+ 7 3 2 4 3.
+ <_>
+
+ <_>
+ 1 9 6 2 -1.
+ <_>
+ 1 9 3 1 2.
+ <_>
+ 4 10 3 1 2.
+ <_>
+
+ <_>
+ 6 9 2 3 -1.
+ <_>
+ 7 9 1 3 2.
+ <_>
+
+ <_>
+ 6 8 6 12 -1.
+ <_>
+ 8 8 2 12 3.
+ <_>
+
+ <_>
+ 4 18 2 2 -1.
+ <_>
+ 4 18 1 1 2.
+ <_>
+ 5 19 1 1 2.
+ <_>
+
+ <_>
+ 9 1 6 6 -1.
+ <_>
+ 9 3 6 2 3.
+ <_>
+
+ <_>
+ 6 17 6 2 -1.
+ <_>
+ 6 18 6 1 2.
+ <_>
+
+ <_>
+ 3 18 16 2 -1.
+ <_>
+ 3 19 16 1 2.
+ <_>
+
+ <_>
+ 3 0 3 11 -1.
+ <_>
+ 4 0 1 11 3.
+ <_>
+
+ <_>
+ 13 18 3 1 -1.
+ <_>
+ 14 18 1 1 3.
+ <_>
+
+ <_>
+ 6 0 9 6 -1.
+ <_>
+ 6 2 9 2 3.
+ <_>
+
+ <_>
+ 1 2 12 4 -1.
+ <_>
+ 1 2 6 2 2.
+ <_>
+ 7 4 6 2 2.
+ <_>
+
+ <_>
+ 3 3 6 4 -1.
+ <_>
+ 5 3 2 4 3.
+ <_>
+
+ <_>
+ 12 0 8 1 -1.
+ <_>
+ 16 0 4 1 2.
+ <_>
+
+ <_>
+ 9 0 6 2 -1.
+ <_>
+ 11 0 2 2 3.
+ <_>
+
+ <_>
+ 3 3 12 1 -1.
+ <_>
+ 9 3 6 1 2.
+ <_>
+
+ <_>
+ 2 7 6 2 -1.
+ <_>
+ 2 7 3 1 2.
+ <_>
+ 5 8 3 1 2.
+ <_>
+
+ <_>
+ 0 8 4 6 -1.
+ <_>
+ 0 10 4 2 3.
+ <_>
+
+ <_>
+ 9 6 3 7 -1.
+ <_>
+ 10 6 1 7 3.
+ <_>
+
+ <_>
+ 9 6 6 13 -1.
+ <_>
+ 11 6 2 13 3.
+ <_>
+
+ <_>
+ 11 12 6 1 -1.
+ <_>
+ 13 12 2 1 3.
+ <_>
+
+ <_>
+ 18 9 2 6 -1.
+ <_>
+ 18 12 2 3 2.
+ <_>
+
+ <_>
+ 17 2 3 9 -1.
+ <_>
+ 18 2 1 9 3.
+ <_>
+
+ <_>
+ 13 8 4 6 -1.
+ <_>
+ 13 8 2 3 2.
+ <_>
+ 15 11 2 3 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 10 2 6 6 2.
+ <_>
+
+ <_>
+ 4 14 16 6 -1.
+ <_>
+ 12 14 8 6 2.
+ <_>
+
+ <_>
+ 6 19 10 1 -1.
+ <_>
+ 11 19 5 1 2.
+ <_>
+
+ <_>
+ 6 17 1 3 -1.
+ <_>
+ 6 18 1 1 3.
+ <_>
+
+ <_>
+ 4 14 10 3 -1.
+ <_>
+ 4 15 10 1 3.
+ <_>
+
+ <_>
+ 6 0 12 12 -1.
+ <_>
+ 6 4 12 4 3.
+ <_>
+
+ <_>
+ 5 7 4 2 -1.
+ <_>
+ 5 7 2 1 2.
+ <_>
+ 7 8 2 1 2.
+ <_>
+
+ <_>
+ 17 5 3 2 -1.
+ <_>
+ 18 5 1 2 3.
+ <_>
+
+ <_>
+ 8 13 6 3 -1.
+ <_>
+ 8 14 6 1 3.
+ <_>
+
+ <_>
+ 8 13 5 3 -1.
+ <_>
+ 8 14 5 1 3.
+ <_>
+
+ <_>
+ 13 2 1 18 -1.
+ <_>
+ 13 11 1 9 2.
+ <_>
+
+ <_>
+ 6 10 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ <_>
+
+ <_>
+ 11 0 7 4 -1.
+ <_>
+ 11 2 7 2 2.
+ <_>
+
+ <_>
+ 1 0 6 8 -1.
+ <_>
+ 3 0 2 8 3.
+ <_>
+
+ <_>
+ 9 15 3 3 -1.
+ <_>
+ 9 16 3 1 3.
+ <_>
+
+ <_>
+ 9 17 9 3 -1.
+ <_>
+ 9 18 9 1 3.
+ <_>
+
+ <_>
+ 12 12 3 3 -1.
+ <_>
+ 12 13 3 1 3.
+ <_>
+
+ <_>
+ 4 1 3 5 -1.
+ <_>
+ 5 1 1 5 3.
+ <_>
+
+ <_>
+ 10 14 2 3 -1.
+ <_>
+ 10 15 2 1 3.
+ <_>
+
+ <_>
+ 18 17 2 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+ 19 18 1 1 2.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 4 10 9 1 -1.
+ <_>
+ 7 10 3 1 3.
+ <_>
+
+ <_>
+ 3 9 6 5 -1.
+ <_>
+ 5 9 2 5 3.
+ <_>
+
+ <_>
+ 18 8 1 12 -1.
+ <_>
+ 18 14 1 6 2.
+ <_>
+
+ <_>
+ 0 2 8 6 -1.
+ <_>
+ 0 2 4 3 2.
+ <_>
+ 4 5 4 3 2.
+ <_>
+
+ <_>
+ 9 4 3 3 -1.
+ <_>
+ 9 5 3 1 3.
+ <_>
+
+ <_>
+ 3 18 2 2 -1.
+ <_>
+ 3 18 1 1 2.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 6 4 4 3 -1.
+ <_>
+ 6 5 4 1 3.
+ <_>
+
+ <_>
+ 16 7 4 2 -1.
+ <_>
+ 16 7 2 1 2.
+ <_>
+ 18 8 2 1 2.
+ <_>
+
+ <_>
+ 5 17 1 3 -1.
+ <_>
+ 5 18 1 1 3.
+ <_>
+
+ <_>
+ 2 0 15 20 -1.
+ <_>
+ 2 10 15 10 2.
+ <_>
+
+ <_>
+ 8 11 6 4 -1.
+ <_>
+ 8 11 3 2 2.
+ <_>
+ 11 13 3 2 2.
+ <_>
+
+ <_>
+ 8 16 4 3 -1.
+ <_>
+ 8 17 4 1 3.
+ <_>
+
+ <_>
+ 8 18 2 2 -1.
+ <_>
+ 8 18 1 1 2.
+ <_>
+ 9 19 1 1 2.
+ <_>
+
+ <_>
+ 2 16 13 3 -1.
+ <_>
+ 2 17 13 1 3.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 8 1 6 3 -1.
+ <_>
+ 10 1 2 3 3.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 14 7 4 2 -1.
+ <_>
+ 14 7 2 1 2.
+ <_>
+ 16 8 2 1 2.
+ <_>
+
+ <_>
+ 4 0 14 1 -1.
+ <_>
+ 11 0 7 1 2.
+ <_>
+
+ <_>
+ 10 4 8 2 -1.
+ <_>
+ 10 4 4 1 2.
+ <_>
+ 14 5 4 1 2.
+ <_>
+
+ <_>
+ 8 2 3 2 -1.
+ <_>
+ 9 2 1 2 3.
+ <_>
+
+ <_>
+ 12 11 6 3 -1.
+ <_>
+ 12 12 6 1 3.
+ <_>
+
+ <_>
+ 1 5 1 4 -1.
+ <_>
+ 1 7 1 2 2.
+ <_>
+
+ <_>
+ 1 1 1 18 -1.
+ <_>
+ 1 7 1 6 3.
+ <_>
+
+ <_>
+ 11 13 3 2 -1.
+ <_>
+ 11 14 3 1 2.
+ <_>
+
+ <_>
+ 0 1 12 2 -1.
+ <_>
+ 0 1 6 1 2.
+ <_>
+ 6 2 6 1 2.
+ <_>
+
+ <_>
+ 10 18 2 2 -1.
+ <_>
+ 10 18 1 1 2.
+ <_>
+ 11 19 1 1 2.
+ <_>
+
+ <_>
+ 4 5 4 4 -1.
+ <_>
+ 4 5 2 2 2.
+ <_>
+ 6 7 2 2 2.
+ <_>
+
+ <_>
+ 6 7 1 3 -1.
+ <_>
+ 6 8 1 1 3.
+ <_>
+
+ <_>
+ 14 10 6 2 -1.
+ <_>
+ 16 10 2 2 3.
+ <_>
+
+ <_>
+ 16 8 3 6 -1.
+ <_>
+ 17 8 1 6 3.
+ <_>
+
+ <_>
+ 4 10 6 2 -1.
+ <_>
+ 6 10 2 2 3.
+ <_>
+
+ <_>
+ 6 5 3 7 -1.
+ <_>
+ 7 5 1 7 3.
+ <_>
+
+ <_>
+ 0 13 6 6 -1.
+ <_>
+ 0 16 6 3 2.
+ <_>
+
+ <_>
+ 12 5 1 9 -1.
+ <_>
+ 12 8 1 3 3.
+ <_>
+
+ <_>
+ 5 9 3 3 -1.
+ <_>
+ 6 9 1 3 3.
+ <_>
+
+ <_>
+ 7 5 6 13 -1.
+ <_>
+ 9 5 2 13 3.
+ <_>
+
+ <_>
+ 19 8 1 10 -1.
+ <_>
+ 19 13 1 5 2.
+ <_>
+
+ <_>
+ 11 18 6 1 -1.
+ <_>
+ 13 18 2 1 3.
+ <_>
+
+ <_>
+ 9 7 6 12 -1.
+ <_>
+ 11 7 2 12 3.
+ <_>
+
+ <_>
+ 12 7 6 6 -1.
+ <_>
+ 14 7 2 6 3.
+ <_>
+
+ <_>
+ 15 8 3 4 -1.
+ <_>
+ 16 8 1 4 3.
+ <_>
+
+ <_>
+ 6 11 4 2 -1.
+ <_>
+ 6 12 4 1 2.
+ <_>
+
+ <_>
+ 1 6 6 8 -1.
+ <_>
+ 3 6 2 8 3.
+ <_>
+
+ <_>
+ 11 15 6 5 -1.
+ <_>
+ 13 15 2 5 3.
+ <_>
+
+ <_>
+ 15 17 4 2 -1.
+ <_>
+ 15 18 4 1 2.
+ <_>
+
+ <_>
+ 13 11 6 1 -1.
+ <_>
+ 15 11 2 1 3.
+ <_>
+
+ <_>
+ 5 18 2 2 -1.
+ <_>
+ 5 18 1 1 2.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 4 8 4 4 -1.
+ <_>
+ 4 8 2 2 2.
+ <_>
+ 6 10 2 2 2.
+ <_>
+
+ <_>
+ 11 7 9 3 -1.
+ <_>
+ 11 8 9 1 3.
+ <_>
+
+ <_>
+ 0 3 10 4 -1.
+ <_>
+ 0 3 5 2 2.
+ <_>
+ 5 5 5 2 2.
+ <_>
+
+ <_>
+ 7 18 6 1 -1.
+ <_>
+ 9 18 2 1 3.
+ <_>
+
+ <_>
+ 0 8 3 3 -1.
+ <_>
+ 0 9 3 1 3.
+ <_>
+
+ <_>
+ 0 0 6 8 -1.
+ <_>
+ 0 0 3 4 2.
+ <_>
+ 3 4 3 4 2.
+ <_>
+
+ <_>
+ 7 6 3 8 -1.
+ <_>
+ 8 6 1 8 3.
+ <_>
+
+ <_>
+ 13 7 7 3 -1.
+ <_>
+ 13 8 7 1 3.
+ <_>
+
+ <_>
+ 3 3 2 2 -1.
+ <_>
+ 3 4 2 1 2.
+ <_>
+
+ <_>
+ 0 3 3 3 -1.
+ <_>
+ 0 4 3 1 3.
+ <_>
+
+ <_>
+ 9 3 5 2 -1.
+ <_>
+ 9 4 5 1 2.
+ <_>
+
+ <_>
+ 6 5 9 4 -1.
+ <_>
+ 9 5 3 4 3.
+ <_>
+
+ <_>
+ 3 10 12 3 -1.
+ <_>
+ 7 10 4 3 3.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 0 5 2 3 -1.
+ <_>
+ 0 6 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 4 -1.
+ <_>
+ 10 7 1 4 3.
+ <_>
+
+ <_>
+ 1 0 6 15 -1.
+ <_>
+ 3 0 2 15 3.
+ <_>
+
+ <_>
+ 15 1 3 5 -1.
+ <_>
+ 16 1 1 5 3.
+ <_>
+
+ <_>
+ 9 2 3 10 -1.
+ <_>
+ 10 2 1 10 3.
+ <_>
+
+ <_>
+ 8 8 6 12 -1.
+ <_>
+ 10 8 2 12 3.
+ <_>
+
+ <_>
+ 16 4 3 4 -1.
+ <_>
+ 16 6 3 2 2.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 13 3 6 3 3.
+ <_>
+
+ <_>
+ 7 17 1 3 -1.
+ <_>
+ 7 18 1 1 3.
+ <_>
+
+ <_>
+ 12 1 4 2 -1.
+ <_>
+ 12 2 4 1 2.
+ <_>
+
+ <_>
+ 17 3 1 3 -1.
+ <_>
+ 17 4 1 1 3.
+ <_>
+
+ <_>
+ 0 16 9 3 -1.
+ <_>
+ 0 17 9 1 3.
+ <_>
+
+ <_>
+ 3 6 2 4 -1.
+ <_>
+ 3 6 1 2 2.
+ <_>
+ 4 8 1 2 2.
+ <_>
+
+ <_>
+ 13 18 3 1 -1.
+ <_>
+ 14 18 1 1 3.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 2 18 2 2 2.
+ <_>
+
+ <_>
+ 1 19 2 1 -1.
+ <_>
+ 2 19 1 1 2.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 0 19 4 1 2.
+ <_>
+
+ <_>
+ 2 17 1 3 -1.
+ <_>
+ 2 18 1 1 3.
+ <_>
+
+ <_>
+ 4 8 3 5 -1.
+ <_>
+ 5 8 1 5 3.
+ <_>
+
+ <_>
+ 2 1 6 7 -1.
+ <_>
+ 4 1 2 7 3.
+ <_>
+
+ <_>
+ 3 6 2 8 -1.
+ <_>
+ 3 6 1 4 2.
+ <_>
+ 4 10 1 4 2.
+ <_>
+
+ <_>
+ 4 5 11 10 -1.
+ <_>
+ 4 10 11 5 2.
+ <_>
+
+ <_>
+ 0 13 20 2 -1.
+ <_>
+ 10 13 10 2 2.
+ <_>
+
+ <_>
+ 1 13 16 3 -1.
+ <_>
+ 9 13 8 3 2.
+ <_>
+
+ <_>
+ 16 4 4 4 -1.
+ <_>
+ 16 4 2 2 2.
+ <_>
+ 18 6 2 2 2.
+ <_>
+
+ <_>
+ 16 0 4 12 -1.
+ <_>
+ 16 0 2 6 2.
+ <_>
+ 18 6 2 6 2.
+ <_>
+
+ <_>
+ 14 15 3 1 -1.
+ <_>
+ 15 15 1 1 3.
+ <_>
+
+ <_>
+ 3 4 12 10 -1.
+ <_>
+ 3 9 12 5 2.
+ <_>
+
+ <_>
+ 9 18 2 2 -1.
+ <_>
+ 9 18 1 1 2.
+ <_>
+ 10 19 1 1 2.
+ <_>
+
+ <_>
+ 9 18 2 2 -1.
+ <_>
+ 9 18 1 1 2.
+ <_>
+ 10 19 1 1 2.
+ <_>
+
+ <_>
+ 13 4 2 14 -1.
+ <_>
+ 13 4 1 7 2.
+ <_>
+ 14 11 1 7 2.
+ <_>
+
+ <_>
+ 4 2 6 4 -1.
+ <_>
+ 7 2 3 4 2.
+ <_>
+
+ <_>
+ 0 0 18 20 -1.
+ <_>
+ 0 0 9 10 2.
+ <_>
+ 9 10 9 10 2.
+ <_>
+
+ <_>
+ 15 11 1 2 -1.
+ <_>
+ 15 12 1 1 2.
+ <_>
+
+ <_>
+ 16 10 2 4 -1.
+ <_>
+ 16 10 1 2 2.
+ <_>
+ 17 12 1 2 2.
+ <_>
+
+ <_>
+ 18 17 2 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+ 19 18 1 1 2.
+ <_>
+
+ <_>
+ 9 17 1 2 -1.
+ <_>
+ 9 18 1 1 2.
+ <_>
+
+ <_>
+ 8 4 9 6 -1.
+ <_>
+ 11 4 3 6 3.
+ <_>
+
+ <_>
+ 6 9 9 10 -1.
+ <_>
+ 9 9 3 10 3.
+ <_>
+
+ <_>
+ 5 0 5 4 -1.
+ <_>
+ 5 2 5 2 2.
+ <_>
+
+ <_>
+ 5 7 11 4 -1.
+ <_>
+ 5 9 11 2 2.
+ <_>
+
+ <_>
+ 2 4 2 14 -1.
+ <_>
+ 3 4 1 14 2.
+ <_>
+
+ <_>
+ 8 6 3 5 -1.
+ <_>
+ 9 6 1 5 3.
+ <_>
+
+ <_>
+ 8 4 3 9 -1.
+ <_>
+ 9 4 1 9 3.
+ <_>
+
+ <_>
+ 0 8 20 6 -1.
+ <_>
+ 0 10 20 2 3.
+ <_>
+
+ <_>
+ 14 16 6 1 -1.
+ <_>
+ 17 16 3 1 2.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 17 19 2 1 2.
+ <_>
+
+ <_>
+ 8 17 6 3 -1.
+ <_>
+ 10 17 2 3 3.
+ <_>
+
+ <_>
+ 4 1 9 15 -1.
+ <_>
+ 7 1 3 15 3.
+ <_>
+
+ <_>
+ 11 5 3 12 -1.
+ <_>
+ 12 5 1 12 3.
+ <_>
+
+ <_>
+ 0 15 4 3 -1.
+ <_>
+ 0 16 4 1 3.
+ <_>
+
+ <_>
+ 0 0 15 1 -1.
+ <_>
+ 5 0 5 1 3.
+ <_>
+
+ <_>
+ 6 0 6 4 -1.
+ <_>
+ 8 0 2 4 3.
+ <_>
+
+ <_>
+ 2 0 9 3 -1.
+ <_>
+ 5 0 3 3 3.
+ <_>
+
+ <_>
+ 13 6 3 7 -1.
+ <_>
+ 14 6 1 7 3.
+ <_>
+
+ <_>
+ 7 6 4 2 -1.
+ <_>
+ 7 7 4 1 2.
+ <_>
+
+ <_>
+ 6 18 6 1 -1.
+ <_>
+ 8 18 2 1 3.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 7 2 1 2.
+ <_>
+
+ <_>
+ 6 4 7 3 -1.
+ <_>
+ 6 5 7 1 3.
+ <_>
+
+ <_>
+ 12 7 3 1 -1.
+ <_>
+ 13 7 1 1 3.
+ <_>
+
+ <_>
+ 15 1 2 10 -1.
+ <_>
+ 15 1 1 5 2.
+ <_>
+ 16 6 1 5 2.
+ <_>
+
+ <_>
+ 0 18 2 2 -1.
+ <_>
+ 0 19 2 1 2.
+ <_>
+
+ <_>
+ 19 4 1 8 -1.
+ <_>
+ 19 8 1 4 2.
+ <_>
+
+ <_>
+ 1 17 1 3 -1.
+ <_>
+ 1 18 1 1 3.
+ <_>
+
+ <_>
+ 0 15 6 4 -1.
+ <_>
+ 0 15 3 2 2.
+ <_>
+ 3 17 3 2 2.
+ <_>
+
+ <_>
+ 19 0 1 18 -1.
+ <_>
+ 19 6 1 6 3.
+ <_>
+
+ <_>
+ 10 2 6 2 -1.
+ <_>
+ 12 2 2 2 3.
+ <_>
+
+ <_>
+ 2 8 12 2 -1.
+ <_>
+ 6 8 4 2 3.
+ <_>
+
+ <_>
+ 16 0 4 1 -1.
+ <_>
+ 18 0 2 1 2.
+ <_>
+
+ <_>
+ 8 4 2 6 -1.
+ <_>
+ 8 7 2 3 2.
+ <_>
+
+ <_>
+ 14 5 2 10 -1.
+ <_>
+ 15 5 1 10 2.
+ <_>
+
+ <_>
+ 13 4 2 2 -1.
+ <_>
+ 13 5 2 1 2.
+ <_>
+
+ <_>
+ 11 1 3 6 -1.
+ <_>
+ 11 3 3 2 3.
+ <_>
+
+ <_>
+ 6 9 12 2 -1.
+ <_>
+ 10 9 4 2 3.
+ <_>
+
+ <_>
+ 9 16 4 2 -1.
+ <_>
+ 9 17 4 1 2.
+ <_>
+
+ <_>
+ 5 14 15 4 -1.
+ <_>
+ 5 16 15 2 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 17 2 1 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 6 4 3 8 -1.
+ <_>
+ 7 4 1 8 3.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 0 8 1 6 -1.
+ <_>
+ 0 10 1 2 3.
+ <_>
+
+ <_>
+ 11 2 9 6 -1.
+ <_>
+ 14 2 3 6 3.
+ <_>
+
+ <_>
+ 12 2 6 4 -1.
+ <_>
+ 14 2 2 4 3.
+ <_>
+
+ <_>
+ 1 7 2 4 -1.
+ <_>
+ 1 9 2 2 2.
+ <_>
+
+ <_>
+ 13 1 6 4 -1.
+ <_>
+ 13 3 6 2 2.
+ <_>
+
+ <_>
+ 4 10 2 10 -1.
+ <_>
+ 4 10 1 5 2.
+ <_>
+ 5 15 1 5 2.
+ <_>
+
+ <_>
+ 2 16 9 3 -1.
+ <_>
+ 5 16 3 3 3.
+ <_>
+
+ <_>
+ 1 2 3 9 -1.
+ <_>
+ 2 2 1 9 3.
+ <_>
+
+ <_>
+ 19 7 1 4 -1.
+ <_>
+ 19 9 1 2 2.
+ <_>
+
+ <_>
+ 14 11 6 8 -1.
+ <_>
+ 14 11 3 4 2.
+ <_>
+ 17 15 3 4 2.
+ <_>
+
+ <_>
+ 15 12 4 6 -1.
+ <_>
+ 15 12 2 3 2.
+ <_>
+ 17 15 2 3 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 2 3 2 2 -1.
+ <_>
+ 2 3 1 1 2.
+ <_>
+ 3 4 1 1 2.
+ <_>
+
+ <_>
+ 10 10 3 3 -1.
+ <_>
+ 11 10 1 3 3.
+ <_>
+
+ <_>
+ 5 9 7 8 -1.
+ <_>
+ 5 13 7 4 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 9 8 10 3 -1.
+ <_>
+ 14 8 5 3 2.
+ <_>
+
+ <_>
+ 6 7 4 8 -1.
+ <_>
+ 6 7 2 4 2.
+ <_>
+ 8 11 2 4 2.
+ <_>
+
+ <_>
+ 1 6 4 3 -1.
+ <_>
+ 1 7 4 1 3.
+ <_>
+
+ <_>
+ 6 10 6 10 -1.
+ <_>
+ 8 10 2 10 3.
+ <_>
+
+ <_>
+ 4 6 3 6 -1.
+ <_>
+ 5 6 1 6 3.
+ <_>
+
+ <_>
+ 3 10 4 4 -1.
+ <_>
+ 3 10 2 2 2.
+ <_>
+ 5 12 2 2 2.
+ <_>
+
+ <_>
+ 3 10 4 4 -1.
+ <_>
+ 3 10 2 2 2.
+ <_>
+ 5 12 2 2 2.
+ <_>
+
+ <_>
+ 3 10 4 4 -1.
+ <_>
+ 3 10 2 2 2.
+ <_>
+ 5 12 2 2 2.
+ <_>
+
+ <_>
+ 14 8 2 6 -1.
+ <_>
+ 15 8 1 6 2.
+ <_>
+
+ <_>
+ 3 10 4 4 -1.
+ <_>
+ 3 10 2 2 2.
+ <_>
+ 5 12 2 2 2.
+ <_>
+
+ <_>
+ 3 10 4 4 -1.
+ <_>
+ 3 10 2 2 2.
+ <_>
+ 5 12 2 2 2.
+ <_>
+
+ <_>
+ 12 4 3 9 -1.
+ <_>
+ 13 4 1 9 3.
+ <_>
+
+ <_>
+ 12 3 1 12 -1.
+ <_>
+ 12 7 1 4 3.
+ <_>
+
+ <_>
+ 2 0 18 1 -1.
+ <_>
+ 8 0 6 1 3.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 10 0 5 3 2.
+ <_>
+ 15 3 5 3 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 17 2 1 2.
+ <_>
+
+ <_>
+ 3 5 4 2 -1.
+ <_>
+ 3 5 2 1 2.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 11 8 3 3 -1.
+ <_>
+ 12 8 1 3 3.
+ <_>
+
+ <_>
+ 11 7 3 5 -1.
+ <_>
+ 12 7 1 5 3.
+ <_>
+
+ <_>
+ 3 19 15 1 -1.
+ <_>
+ 8 19 5 1 3.
+ <_>
+
+ <_>
+ 8 13 3 2 -1.
+ <_>
+ 8 14 3 1 2.
+ <_>
+
+ <_>
+ 2 12 8 4 -1.
+ <_>
+ 2 12 4 2 2.
+ <_>
+ 6 14 4 2 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 7 0 3 2 -1.
+ <_>
+ 8 0 1 2 3.
+ <_>
+
+ <_>
+ 6 7 2 5 -1.
+ <_>
+ 7 7 1 5 2.
+ <_>
+
+ <_>
+ 18 0 2 17 -1.
+ <_>
+ 19 0 1 17 2.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 16 17 1 1 3.
+ <_>
+
+ <_>
+ 14 8 3 7 -1.
+ <_>
+ 15 8 1 7 3.
+ <_>
+
+ <_>
+ 10 17 2 2 -1.
+ <_>
+ 10 17 1 1 2.
+ <_>
+ 11 18 1 1 2.
+ <_>
+
+ <_>
+ 4 9 1 3 -1.
+ <_>
+ 4 10 1 1 3.
+ <_>
+
+ <_>
+ 18 10 2 3 -1.
+ <_>
+ 18 11 2 1 3.
+ <_>
+
+ <_>
+ 12 1 3 10 -1.
+ <_>
+ 13 1 1 10 3.
+ <_>
+
+ <_>
+ 8 12 9 1 -1.
+ <_>
+ 11 12 3 1 3.
+ <_>
+
+ <_>
+ 5 18 2 2 -1.
+ <_>
+ 5 18 1 1 2.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 19 6 1 9 -1.
+ <_>
+ 19 9 1 3 3.
+ <_>
+
+ <_>
+ 4 7 2 4 -1.
+ <_>
+ 4 7 1 2 2.
+ <_>
+ 5 9 1 2 2.
+ <_>
+
+ <_>
+ 1 4 6 14 -1.
+ <_>
+ 3 4 2 14 3.
+ <_>
+
+ <_>
+ 10 5 9 3 -1.
+ <_>
+ 13 5 3 3 3.
+ <_>
+
+ <_>
+ 18 7 2 6 -1.
+ <_>
+ 18 9 2 2 3.
+ <_>
+
+ <_>
+ 5 6 2 7 -1.
+ <_>
+ 6 6 1 7 2.
+ <_>
+
+ <_>
+ 10 4 6 8 -1.
+ <_>
+ 13 4 3 8 2.
+ <_>
+
+ <_>
+ 0 8 2 9 -1.
+ <_>
+ 0 11 2 3 3.
+ <_>
+
+ <_>
+ 0 7 5 3 -1.
+ <_>
+ 0 8 5 1 3.
+ <_>
+
+ <_>
+ 8 1 7 2 -1.
+ <_>
+ 8 2 7 1 2.
+ <_>
+
+ <_>
+ 7 5 3 5 -1.
+ <_>
+ 8 5 1 5 3.
+ <_>
+
+ <_>
+ 19 2 1 2 -1.
+ <_>
+ 19 3 1 1 2.
+ <_>
+
+ <_>
+ 6 7 10 11 -1.
+ <_>
+ 11 7 5 11 2.
+ <_>
+
+ <_>
+ 9 19 6 1 -1.
+ <_>
+ 11 19 2 1 3.
+ <_>
+
+ <_>
+ 3 0 12 1 -1.
+ <_>
+ 7 0 4 1 3.
+ <_>
+
+ <_>
+ 4 1 6 5 -1.
+ <_>
+ 6 1 2 5 3.
+ <_>
+
+ <_>
+ 6 12 12 6 -1.
+ <_>
+ 10 12 4 6 3.
+ <_>
+
+ <_>
+ 16 13 2 3 -1.
+ <_>
+ 16 14 2 1 3.
+ <_>
+
+ <_>
+ 7 14 4 2 -1.
+ <_>
+ 7 15 4 1 2.
+ <_>
+
+ <_>
+ 7 14 2 2 -1.
+ <_>
+ 7 15 2 1 2.
+ <_>
+
+ <_>
+ 3 10 2 4 -1.
+ <_>
+ 3 10 1 2 2.
+ <_>
+ 4 12 1 2 2.
+ <_>
+
+ <_>
+ 0 3 2 6 -1.
+ <_>
+ 0 5 2 2 3.
+ <_>
+
+ <_>
+ 1 10 2 2 -1.
+ <_>
+ 1 10 1 1 2.
+ <_>
+ 2 11 1 1 2.
+ <_>
+
+ <_>
+ 16 4 4 3 -1.
+ <_>
+ 16 5 4 1 3.
+ <_>
+
+ <_>
+ 5 10 2 4 -1.
+ <_>
+ 5 10 1 2 2.
+ <_>
+ 6 12 1 2 2.
+ <_>
+
+ <_>
+ 5 11 13 2 -1.
+ <_>
+ 5 12 13 1 2.
+ <_>
+
+ <_>
+ 10 2 3 11 -1.
+ <_>
+ 11 2 1 11 3.
+ <_>
+
+ <_>
+ 10 2 4 4 -1.
+ <_>
+ 10 4 4 2 2.
+ <_>
+
+ <_>
+ 8 8 6 2 -1.
+ <_>
+ 10 8 2 2 3.
+ <_>
+
+ <_>
+ 11 2 3 3 -1.
+ <_>
+ 12 2 1 3 3.
+ <_>
+
+ <_>
+ 6 18 14 2 -1.
+ <_>
+ 6 18 7 1 2.
+ <_>
+ 13 19 7 1 2.
+ <_>
+
+ <_>
+ 17 7 1 12 -1.
+ <_>
+ 17 11 1 4 3.
+ <_>
+
+ <_>
+ 10 5 10 3 -1.
+ <_>
+ 10 6 10 1 3.
+ <_>
+
+ <_>
+ 6 1 3 3 -1.
+ <_>
+ 7 1 1 3 3.
+ <_>
+
+ <_>
+ 13 8 3 1 -1.
+ <_>
+ 14 8 1 1 3.
+ <_>
+
+ <_>
+ 10 14 2 6 -1.
+ <_>
+ 10 16 2 2 3.
+ <_>
+
+ <_>
+ 4 1 12 14 -1.
+ <_>
+ 8 1 4 14 3.
+ <_>
+
+ <_>
+ 14 1 6 14 -1.
+ <_>
+ 16 1 2 14 3.
+ <_>
+
+ <_>
+ 3 16 2 2 -1.
+ <_>
+ 3 16 1 1 2.
+ <_>
+ 4 17 1 1 2.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 17 2 1 2.
+ <_>
+
+ <_>
+ 15 6 4 6 -1.
+ <_>
+ 15 6 2 3 2.
+ <_>
+ 17 9 2 3 2.
+ <_>
+
+ <_>
+ 12 5 2 2 -1.
+ <_>
+ 12 6 2 1 2.
+ <_>
+
+ <_>
+ 7 6 6 13 -1.
+ <_>
+ 9 6 2 13 3.
+ <_>
+
+ <_>
+ 1 9 6 5 -1.
+ <_>
+ 3 9 2 5 3.
+ <_>
+
+ <_>
+ 0 5 3 4 -1.
+ <_>
+ 0 7 3 2 2.
+ <_>
+
+ <_>
+ 4 1 16 2 -1.
+ <_>
+ 4 1 8 1 2.
+ <_>
+ 12 2 8 1 2.
+ <_>
+
+ <_>
+ 1 18 4 2 -1.
+ <_>
+ 1 18 2 1 2.
+ <_>
+ 3 19 2 1 2.
+ <_>
+
+ <_>
+ 7 7 3 4 -1.
+ <_>
+ 8 7 1 4 3.
+ <_>
+
+ <_>
+ 3 4 9 3 -1.
+ <_>
+ 6 4 3 3 3.
+ <_>
+
+ <_>
+ 4 6 6 10 -1.
+ <_>
+ 6 6 2 10 3.
+ <_>
+
+ <_>
+ 9 0 8 10 -1.
+ <_>
+ 13 0 4 10 2.
+ <_>
+
+ <_>
+ 8 0 8 1 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+
+ <_>
+ 6 2 8 16 -1.
+ <_>
+ 6 2 4 8 2.
+ <_>
+ 10 10 4 8 2.
+ <_>
+
+ <_>
+ 14 10 2 10 -1.
+ <_>
+ 14 10 1 5 2.
+ <_>
+ 15 15 1 5 2.
+ <_>
+
+ <_>
+ 12 11 1 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 16 0 3 8 -1.
+ <_>
+ 17 0 1 8 3.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 10 2.
+ <_>
+
+ <_>
+ 16 0 3 5 -1.
+ <_>
+ 17 0 1 5 3.
+ <_>
+
+ <_>
+ 4 5 11 2 -1.
+ <_>
+ 4 6 11 1 2.
+ <_>
+
+ <_>
+ 1 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 3 -1.
+ <_>
+ 0 1 2 1 3.
+ <_>
+
+ <_>
+ 11 6 6 11 -1.
+ <_>
+ 13 6 2 11 3.
+ <_>
+
+ <_>
+ 14 0 3 1 -1.
+ <_>
+ 15 0 1 1 3.
+ <_>
+
+ <_>
+ 19 7 1 2 -1.
+ <_>
+ 19 8 1 1 2.
+ <_>
+
+ <_>
+ 17 0 3 9 -1.
+ <_>
+ 18 0 1 9 3.
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 0 1 14 2 -1.
+ <_>
+ 0 1 7 1 2.
+ <_>
+ 7 2 7 1 2.
+ <_>
+
+ <_>
+ 3 1 3 2 -1.
+ <_>
+ 4 1 1 2 3.
+ <_>
+
+ <_>
+ 4 0 15 2 -1.
+ <_>
+ 9 0 5 2 3.
+ <_>
+
+ <_>
+ 10 2 6 1 -1.
+ <_>
+ 12 2 2 1 3.
+ <_>
+
+ <_>
+ 9 4 6 11 -1.
+ <_>
+ 11 4 2 11 3.
+ <_>
+
+ <_>
+ 2 16 2 4 -1.
+ <_>
+ 2 18 2 2 2.
+ <_>
+
+ <_>
+ 6 17 6 3 -1.
+ <_>
+ 8 17 2 3 3.
+ <_>
+
+ <_>
+ 7 9 6 2 -1.
+ <_>
+ 9 9 2 2 3.
+ <_>
+
+ <_>
+ 6 8 9 2 -1.
+ <_>
+ 9 8 3 2 3.
+ <_>
+
+ <_>
+ 6 6 2 10 -1.
+ <_>
+ 6 6 1 5 2.
+ <_>
+ 7 11 1 5 2.
+ <_>
+
+ <_>
+ 0 11 2 3 -1.
+ <_>
+ 0 12 2 1 3.
+ <_>
+
+ <_>
+ 11 15 4 1 -1.
+ <_>
+ 13 15 2 1 2.
+ <_>
+
+ <_>
+ 6 17 1 2 -1.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 0 0 6 20 -1.
+ <_>
+ 2 0 2 20 3.
+ <_>
+
+ <_>
+ 3 10 2 2 -1.
+ <_>
+ 4 10 1 2 2.
+ <_>
+
+ <_>
+ 4 7 3 5 -1.
+ <_>
+ 5 7 1 5 3.
+ <_>
+
+ <_>
+ 3 12 6 2 -1.
+ <_>
+ 5 12 2 2 3.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 15 1 3 16 -1.
+ <_>
+ 16 1 1 16 3.
+ <_>
+
+ <_>
+ 6 16 6 3 -1.
+ <_>
+ 8 16 2 3 3.
+ <_>
+
+ <_>
+ 15 14 3 2 -1.
+ <_>
+ 15 15 3 1 2.
+ <_>
+
+ <_>
+ 12 16 1 2 -1.
+ <_>
+ 12 17 1 1 2.
+ <_>
+
+ <_>
+ 0 2 4 4 -1.
+ <_>
+ 0 2 2 2 2.
+ <_>
+ 2 4 2 2 2.
+ <_>
+
+ <_>
+ 1 1 6 4 -1.
+ <_>
+ 1 1 3 2 2.
+ <_>
+ 4 3 3 2 2.
+ <_>
+
+ <_>
+ 1 18 1 2 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 4 7 2 3 -1.
+ <_>
+ 4 8 2 1 3.
+ <_>
+
+ <_>
+ 1 0 9 14 -1.
+ <_>
+ 1 7 9 7 2.
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 3 9 4 3 -1.
+ <_>
+ 5 9 2 3 2.
+ <_>
+
+ <_>
+ 0 9 2 4 -1.
+ <_>
+ 0 11 2 2 2.
+ <_>
+
+ <_>
+ 16 6 3 10 -1.
+ <_>
+ 17 6 1 10 3.
+ <_>
+
+ <_>
+ 16 11 2 1 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+
+ <_>
+ 5 7 4 4 -1.
+ <_>
+ 5 9 4 2 2.
+ <_>
+
+ <_>
+ 10 11 9 2 -1.
+ <_>
+ 13 11 3 2 3.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+ 16 11 1 1 2.
+ <_>
+
+ <_>
+ 10 6 6 14 -1.
+ <_>
+ 10 13 6 7 2.
+ <_>
+
+ <_>
+ 14 7 3 5 -1.
+ <_>
+ 15 7 1 5 3.
+ <_>
+
+ <_>
+ 6 11 12 3 -1.
+ <_>
+ 10 11 4 3 3.
+ <_>
+
+ <_>
+ 17 16 1 2 -1.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 8 5 5 4 -1.
+ <_>
+ 8 7 5 2 2.
+ <_>
+
+ <_>
+ 11 6 4 2 -1.
+ <_>
+ 11 7 4 1 2.
+ <_>
+
+ <_>
+ 3 4 8 2 -1.
+ <_>
+ 3 4 4 1 2.
+ <_>
+ 7 5 4 1 2.
+ <_>
+
+ <_>
+ 0 8 6 6 -1.
+ <_>
+ 2 8 2 6 3.
+ <_>
+
+ <_>
+ 7 4 6 2 -1.
+ <_>
+ 7 5 6 1 2.
+ <_>
+
+ <_>
+ 7 3 6 3 -1.
+ <_>
+ 9 3 2 3 3.
+ <_>
+
+ <_>
+ 2 17 3 3 -1.
+ <_>
+ 2 18 3 1 3.
+ <_>
+
+ <_>
+ 3 10 6 1 -1.
+ <_>
+ 5 10 2 1 3.
+ <_>
+
+ <_>
+ 7 2 6 2 -1.
+ <_>
+ 9 2 2 2 3.
+ <_>
+
+ <_>
+ 4 11 9 1 -1.
+ <_>
+ 7 11 3 1 3.
+ <_>
+
+ <_>
+ 7 7 11 12 -1.
+ <_>
+ 7 13 11 6 2.
+ <_>
+
+ <_>
+ 3 2 3 4 -1.
+ <_>
+ 4 2 1 4 3.
+ <_>
+
+ <_>
+ 9 7 9 3 -1.
+ <_>
+ 12 7 3 3 3.
+ <_>
+
+ <_>
+ 15 11 2 6 -1.
+ <_>
+ 15 11 1 3 2.
+ <_>
+ 16 14 1 3 2.
+ <_>
+
+ <_>
+ 0 5 5 3 -1.
+ <_>
+ 0 6 5 1 3.
+ <_>
+
+ <_>
+ 8 1 6 12 -1.
+ <_>
+ 10 1 2 12 3.
+ <_>
+
+ <_>
+ 3 7 15 13 -1.
+ <_>
+ 8 7 5 13 3.
+ <_>
+
+ <_>
+ 0 9 9 9 -1.
+ <_>
+ 0 12 9 3 3.
+ <_>
+
+ <_>
+ 16 0 3 8 -1.
+ <_>
+ 17 0 1 8 3.
+ <_>
+
+ <_>
+ 16 2 4 2 -1.
+ <_>
+ 18 2 2 2 2.
+ <_>
+
+ <_>
+ 13 0 6 5 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+
+ <_>
+ 15 1 3 2 -1.
+ <_>
+ 16 1 1 2 3.
+ <_>
+
+ <_>
+ 11 8 3 2 -1.
+ <_>
+ 12 8 1 2 3.
+ <_>
+
+ <_>
+ 1 8 2 12 -1.
+ <_>
+ 1 8 1 6 2.
+ <_>
+ 2 14 1 6 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 2 1 2 12 3.
+ <_>
+
+ <_>
+ 19 17 1 3 -1.
+ <_>
+ 19 18 1 1 3.
+ <_>
+
+ <_>
+ 11 3 3 10 -1.
+ <_>
+ 12 3 1 10 3.
+ <_>
+
+ <_>
+ 8 1 9 8 -1.
+ <_>
+ 11 1 3 8 3.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 6 13 2 6 -1.
+ <_>
+ 6 15 2 2 3.
+ <_>
+
+ <_>
+ 9 14 2 2 -1.
+ <_>
+ 9 15 2 1 2.
+ <_>
+
+ <_>
+ 14 10 2 4 -1.
+ <_>
+ 14 10 1 2 2.
+ <_>
+ 15 12 1 2 2.
+ <_>
+
+ <_>
+ 0 15 2 2 -1.
+ <_>
+ 0 15 1 1 2.
+ <_>
+ 1 16 1 1 2.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 11 18 2 2 -1.
+ <_>
+ 11 18 1 1 2.
+ <_>
+ 12 19 1 1 2.
+ <_>
+
+ <_>
+ 0 0 6 4 -1.
+ <_>
+ 0 0 3 2 2.
+ <_>
+ 3 2 3 2 2.
+ <_>
+
+ <_>
+ 4 1 6 6 -1.
+ <_>
+ 6 1 2 6 3.
+ <_>
+
+ <_>
+ 15 13 5 4 -1.
+ <_>
+ 15 15 5 2 2.
+ <_>
+
+ <_>
+ 7 17 6 1 -1.
+ <_>
+ 9 17 2 1 3.
+ <_>
+
+ <_>
+ 16 19 4 1 -1.
+ <_>
+ 18 19 2 1 2.
+ <_>
+
+ <_>
+ 16 16 4 4 -1.
+ <_>
+ 18 16 2 4 2.
+ <_>
+
+ <_>
+ 7 8 9 4 -1.
+ <_>
+ 10 8 3 4 3.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 2 9 2 4 -1.
+ <_>
+ 2 9 1 2 2.
+ <_>
+ 3 11 1 2 2.
+ <_>
+
+ <_>
+ 0 3 8 4 -1.
+ <_>
+ 0 3 4 2 2.
+ <_>
+ 4 5 4 2 2.
+ <_>
+
+ <_>
+ 0 1 8 1 -1.
+ <_>
+ 4 1 4 1 2.
+ <_>
+
+ <_>
+ 0 5 8 9 -1.
+ <_>
+ 4 5 4 9 2.
+ <_>
+
+ <_>
+ 7 18 6 2 -1.
+ <_>
+ 9 18 2 2 3.
+ <_>
+
+ <_>
+ 0 4 1 12 -1.
+ <_>
+ 0 8 1 4 3.
+ <_>
+
+ <_>
+ 19 13 1 6 -1.
+ <_>
+ 19 15 1 2 3.
+ <_>
+
+ <_>
+ 2 8 6 8 -1.
+ <_>
+ 4 8 2 8 3.
+ <_>
+
+ <_>
+ 0 0 9 17 -1.
+ <_>
+ 3 0 3 17 3.
+ <_>
+
+ <_>
+ 7 9 6 8 -1.
+ <_>
+ 9 9 2 8 3.
+ <_>
+
+ <_>
+ 5 10 9 4 -1.
+ <_>
+ 8 10 3 4 3.
+ <_>
+
+ <_>
+ 5 0 8 3 -1.
+ <_>
+ 5 1 8 1 3.
+ <_>
+
+ <_>
+ 16 6 4 4 -1.
+ <_>
+ 16 6 2 2 2.
+ <_>
+ 18 8 2 2 2.
+ <_>
+
+ <_>
+ 17 4 2 8 -1.
+ <_>
+ 17 4 1 4 2.
+ <_>
+ 18 8 1 4 2.
+ <_>
+
+ <_>
+ 2 16 1 3 -1.
+ <_>
+ 2 17 1 1 3.
+ <_>
+
+ <_>
+ 2 16 1 3 -1.
+ <_>
+ 2 17 1 1 3.
+ <_>
+
+ <_>
+ 11 0 1 3 -1.
+ <_>
+ 11 1 1 1 3.
+ <_>
+
+ <_>
+ 11 2 9 7 -1.
+ <_>
+ 14 2 3 7 3.
+ <_>
+
+ <_>
+ 10 2 3 6 -1.
+ <_>
+ 11 2 1 6 3.
+ <_>
+
+ <_>
+ 5 9 15 2 -1.
+ <_>
+ 5 10 15 1 2.
+ <_>
+
+ <_>
+ 8 16 6 2 -1.
+ <_>
+ 8 17 6 1 2.
+ <_>
+
+ <_>
+ 9 16 10 2 -1.
+ <_>
+ 9 16 5 1 2.
+ <_>
+ 14 17 5 1 2.
+ <_>
+
+ <_>
+ 9 17 2 2 -1.
+ <_>
+ 9 17 1 1 2.
+ <_>
+ 10 18 1 1 2.
+ <_>
+
+ <_>
+ 10 15 6 4 -1.
+ <_>
+ 10 15 3 2 2.
+ <_>
+ 13 17 3 2 2.
+ <_>
+
+ <_>
+ 4 5 15 12 -1.
+ <_>
+ 9 5 5 12 3.
+ <_>
+
+ <_>
+ 11 13 2 3 -1.
+ <_>
+ 11 14 2 1 3.
+ <_>
+
+ <_>
+ 8 13 7 3 -1.
+ <_>
+ 8 14 7 1 3.
+ <_>
+
+ <_>
+ 1 12 1 2 -1.
+ <_>
+ 1 13 1 1 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 1 17 6 1 -1.
+ <_>
+ 4 17 3 1 2.
+ <_>
+
+ <_>
+ 1 3 1 12 -1.
+ <_>
+ 1 9 1 6 2.
+ <_>
+
+ <_>
+ 0 9 3 6 -1.
+ <_>
+ 0 11 3 2 3.
+ <_>
+
+ <_>
+ 5 4 3 10 -1.
+ <_>
+ 6 4 1 10 3.
+ <_>
+
+ <_>
+ 6 17 2 1 -1.
+ <_>
+ 7 17 1 1 2.
+ <_>
+
+ <_>
+ 1 0 6 12 -1.
+ <_>
+ 3 0 2 12 3.
+ <_>
+
+ <_>
+ 4 7 9 2 -1.
+ <_>
+ 7 7 3 2 3.
+ <_>
+
+ <_>
+ 6 11 9 1 -1.
+ <_>
+ 9 11 3 1 3.
+ <_>
+
+ <_>
+ 17 10 2 10 -1.
+ <_>
+ 17 15 2 5 2.
+ <_>
+
+ <_>
+ 4 10 2 10 -1.
+ <_>
+ 4 10 1 5 2.
+ <_>
+ 5 15 1 5 2.
+ <_>
+
+ <_>
+ 12 3 3 12 -1.
+ <_>
+ 13 3 1 12 3.
+ <_>
+
+ <_>
+ 15 3 4 6 -1.
+ <_>
+ 15 3 2 3 2.
+ <_>
+ 17 6 2 3 2.
+ <_>
+
+ <_>
+ 12 8 3 3 -1.
+ <_>
+ 13 8 1 3 3.
+ <_>
+
+ <_>
+ 4 14 2 4 -1.
+ <_>
+ 4 16 2 2 2.
+ <_>
+
+ <_>
+ 6 16 1 3 -1.
+ <_>
+ 6 17 1 1 3.
+ <_>
+
+ <_>
+ 1 1 2 3 -1.
+ <_>
+ 2 1 1 3 2.
+ <_>
+
+ <_>
+ 0 2 4 1 -1.
+ <_>
+ 2 2 2 1 2.
+ <_>
+
+ <_>
+ 8 17 12 3 -1.
+ <_>
+ 12 17 4 3 3.
+ <_>
+
+ <_>
+ 9 16 6 4 -1.
+ <_>
+ 11 16 2 4 3.
+ <_>
+
+ <_>
+ 4 6 3 6 -1.
+ <_>
+ 4 9 3 3 2.
+ <_>
+
+ <_>
+ 6 2 12 9 -1.
+ <_>
+ 6 5 12 3 3.
+ <_>
+
+ <_>
+ 6 0 14 20 -1.
+ <_>
+ 6 0 7 10 2.
+ <_>
+ 13 10 7 10 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 19 8 1 3 -1.
+ <_>
+ 19 9 1 1 3.
+ <_>
+
+ <_>
+ 13 4 1 2 -1.
+ <_>
+ 13 5 1 1 2.
+ <_>
+
+ <_>
+ 0 4 4 2 -1.
+ <_>
+ 0 5 4 1 2.
+ <_>
+
+ <_>
+ 19 5 1 6 -1.
+ <_>
+ 19 7 1 2 3.
+ <_>
+
+ <_>
+ 16 0 2 1 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+
+ <_>
+ 13 1 1 3 -1.
+ <_>
+ 13 2 1 1 3.
+ <_>
+
+ <_>
+ 17 17 1 3 -1.
+ <_>
+ 17 18 1 1 3.
+ <_>
+
+ <_>
+ 5 4 8 8 -1.
+ <_>
+ 5 4 4 4 2.
+ <_>
+ 9 8 4 4 2.
+ <_>
+
+ <_>
+ 1 2 2 2 -1.
+ <_>
+ 1 2 1 1 2.
+ <_>
+ 2 3 1 1 2.
+ <_>
+
+ <_>
+ 0 0 8 6 -1.
+ <_>
+ 0 0 4 3 2.
+ <_>
+ 4 3 4 3 2.
+ <_>
+
+ <_>
+ 6 3 4 2 -1.
+ <_>
+ 6 4 4 1 2.
+ <_>
+
+ <_>
+ 1 0 3 3 -1.
+ <_>
+ 1 1 3 1 3.
+ <_>
+
+ <_>
+ 6 1 7 2 -1.
+ <_>
+ 6 2 7 1 2.
+ <_>
+
+ <_>
+ 2 6 12 6 -1.
+ <_>
+ 6 6 4 6 3.
+ <_>
+
+ <_>
+ 1 16 9 2 -1.
+ <_>
+ 4 16 3 2 3.
+ <_>
+
+ <_>
+ 7 15 6 4 -1.
+ <_>
+ 9 15 2 4 3.
+ <_>
+
+ <_>
+ 6 15 12 1 -1.
+ <_>
+ 12 15 6 1 2.
+ <_>
+
+ <_>
+ 17 17 1 3 -1.
+ <_>
+ 17 18 1 1 3.
+ <_>
+
+ <_>
+ 17 15 2 2 -1.
+ <_>
+ 17 15 1 1 2.
+ <_>
+ 18 16 1 1 2.
+ <_>
+
+ <_>
+ 3 13 3 3 -1.
+ <_>
+ 3 14 3 1 3.
+ <_>
+
+ <_>
+ 10 17 1 3 -1.
+ <_>
+ 10 18 1 1 3.
+ <_>
+
+ <_>
+ 4 0 14 8 -1.
+ <_>
+ 11 0 7 8 2.
+ <_>
+
+ <_>
+ 2 0 12 2 -1.
+ <_>
+ 6 0 4 2 3.
+ <_>
+
+ <_>
+ 2 0 4 3 -1.
+ <_>
+ 4 0 2 3 2.
+ <_>
+
+ <_>
+ 13 1 1 2 -1.
+ <_>
+ 13 2 1 1 2.
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 8 5 1 6 3.
+ <_>
+
+ <_>
+ 18 2 2 2 -1.
+ <_>
+ 18 2 1 1 2.
+ <_>
+ 19 3 1 1 2.
+ <_>
+
+ <_>
+ 15 1 2 14 -1.
+ <_>
+ 16 1 1 14 2.
+ <_>
+
+ <_>
+ 15 6 2 2 -1.
+ <_>
+ 15 6 1 1 2.
+ <_>
+ 16 7 1 1 2.
+ <_>
+
+ <_>
+ 3 1 6 3 -1.
+ <_>
+ 5 1 2 3 3.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 17 1 1 2.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 9 10 6 10 -1.
+ <_>
+ 11 10 2 10 3.
+ <_>
+
+ <_>
+ 10 17 6 3 -1.
+ <_>
+ 12 17 2 3 3.
+ <_>
+
+ <_>
+ 14 5 2 10 -1.
+ <_>
+ 14 10 2 5 2.
+ <_>
+
+ <_>
+ 11 12 6 2 -1.
+ <_>
+ 11 13 6 1 2.
+ <_>
+
+ <_>
+ 8 1 1 3 -1.
+ <_>
+ 8 2 1 1 3.
+ <_>
+
+ <_>
+ 12 15 2 2 -1.
+ <_>
+ 12 15 1 1 2.
+ <_>
+ 13 16 1 1 2.
+ <_>
+
+ <_>
+ 6 8 6 4 -1.
+ <_>
+ 6 8 3 2 2.
+ <_>
+ 9 10 3 2 2.
+ <_>
+
+ <_>
+ 7 5 3 5 -1.
+ <_>
+ 8 5 1 5 3.
+ <_>
+
+ <_>
+ 0 5 7 3 -1.
+ <_>
+ 0 6 7 1 3.
+ <_>
+
+ <_>
+ 7 9 6 6 -1.
+ <_>
+ 9 9 2 6 3.
+ <_>
+
+ <_>
+ 5 7 8 8 -1.
+ <_>
+ 5 11 8 4 2.
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 10 11 6 1 -1.
+ <_>
+ 12 11 2 1 3.
+ <_>
+
+ <_>
+ 13 6 6 11 -1.
+ <_>
+ 15 6 2 11 3.
+ <_>
+
+ <_>
+ 8 17 2 2 -1.
+ <_>
+ 8 17 1 1 2.
+ <_>
+ 9 18 1 1 2.
+ <_>
+
+ <_>
+ 4 12 12 1 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 11 17 3 2 -1.
+ <_>
+ 11 18 3 1 2.
+ <_>
+
+ <_>
+ 8 17 6 1 -1.
+ <_>
+ 10 17 2 1 3.
+ <_>
+
+ <_>
+ 4 1 14 6 -1.
+ <_>
+ 4 3 14 2 3.
+ <_>
+
+ <_>
+ 14 2 2 12 -1.
+ <_>
+ 14 8 2 6 2.
+ <_>
+
+ <_>
+ 12 13 3 2 -1.
+ <_>
+ 12 14 3 1 2.
+ <_>
+
+ <_>
+ 6 1 6 1 -1.
+ <_>
+ 8 1 2 1 3.
+ <_>
+
+ <_>
+ 10 6 6 1 -1.
+ <_>
+ 12 6 2 1 3.
+ <_>
+
+ <_>
+ 3 19 2 1 -1.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 16 11 3 7 -1.
+ <_>
+ 17 11 1 7 3.
+ <_>
+
+ <_>
+ 19 5 1 6 -1.
+ <_>
+ 19 8 1 3 2.
+ <_>
+
+ <_>
+ 9 8 4 3 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 16 8 4 4 -1.
+ <_>
+ 16 8 2 2 2.
+ <_>
+ 18 10 2 2 2.
+ <_>
+
+ <_>
+ 2 8 2 2 -1.
+ <_>
+ 2 8 1 1 2.
+ <_>
+ 3 9 1 1 2.
+ <_>
+
+ <_>
+ 3 5 6 4 -1.
+ <_>
+ 3 5 3 2 2.
+ <_>
+ 6 7 3 2 2.
+ <_>
+
+ <_>
+ 2 3 8 16 -1.
+ <_>
+ 2 3 4 8 2.
+ <_>
+ 6 11 4 8 2.
+ <_>
+
+ <_>
+ 17 17 1 3 -1.
+ <_>
+ 17 18 1 1 3.
+ <_>
+
+ <_>
+ 7 2 8 11 -1.
+ <_>
+ 11 2 4 11 2.
+ <_>
+
+ <_>
+ 13 3 6 14 -1.
+ <_>
+ 16 3 3 14 2.
+ <_>
+
+ <_>
+ 0 9 18 2 -1.
+ <_>
+ 6 9 6 2 3.
+ <_>
+
+ <_>
+ 6 10 14 3 -1.
+ <_>
+ 6 11 14 1 3.
+ <_>
+
+ <_>
+ 10 9 9 3 -1.
+ <_>
+ 13 9 3 3 3.
+ <_>
+
+ <_>
+ 3 5 4 6 -1.
+ <_>
+ 3 5 2 3 2.
+ <_>
+ 5 8 2 3 2.
+ <_>
+
+ <_>
+ 3 7 3 7 -1.
+ <_>
+ 4 7 1 7 3.
+ <_>
+
+ <_>
+ 2 8 11 6 -1.
+ <_>
+ 2 10 11 2 3.
+ <_>
+
+ <_>
+ 8 9 6 3 -1.
+ <_>
+ 8 10 6 1 3.
+ <_>
+
+ <_>
+ 3 3 3 11 -1.
+ <_>
+ 4 3 1 11 3.
+ <_>
+
+ <_>
+ 0 19 6 1 -1.
+ <_>
+ 3 19 3 1 2.
+ <_>
+
+ <_>
+ 18 18 1 2 -1.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 0 6 3 2.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 19 5 1 3 -1.
+ <_>
+ 19 6 1 1 3.
+ <_>
+
+ <_>
+ 5 8 2 1 -1.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 13 11 2 1 -1.
+ <_>
+ 14 11 1 1 2.
+ <_>
+
+ <_>
+ 3 6 15 13 -1.
+ <_>
+ 8 6 5 13 3.
+ <_>
+
+ <_>
+ 4 3 6 2 -1.
+ <_>
+ 6 3 2 2 3.
+ <_>
+
+ <_>
+ 0 18 1 2 -1.
+ <_>
+ 0 19 1 1 2.
+ <_>
+
+ <_>
+ 7 8 2 6 -1.
+ <_>
+ 8 8 1 6 2.
+ <_>
+
+ <_>
+ 3 0 6 19 -1.
+ <_>
+ 5 0 2 19 3.
+ <_>
+
+ <_>
+ 3 1 6 5 -1.
+ <_>
+ 5 1 2 5 3.
+ <_>
+
+ <_>
+ 17 14 3 6 -1.
+ <_>
+ 17 16 3 2 3.
+ <_>
+
+ <_>
+ 17 13 2 6 -1.
+ <_>
+ 18 13 1 6 2.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 18 18 1 2 2.
+ <_>
+
+ <_>
+ 11 14 9 4 -1.
+ <_>
+ 14 14 3 4 3.
+ <_>
+
+ <_>
+ 15 8 4 6 -1.
+ <_>
+ 15 8 2 3 2.
+ <_>
+ 17 11 2 3 2.
+ <_>
+
+ <_>
+ 1 16 1 3 -1.
+ <_>
+ 1 17 1 1 3.
+ <_>
+
+ <_>
+ 7 0 3 14 -1.
+ <_>
+ 8 0 1 14 3.
+ <_>
+
+ <_>
+ 12 0 2 1 -1.
+ <_>
+ 13 0 1 1 2.
+ <_>
+
+ <_>
+ 7 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 15 5 4 9 -1.
+ <_>
+ 17 5 2 9 2.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 13 0 2 6 3.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 13 2 2 18 -1.
+ <_>
+ 13 11 2 9 2.
+ <_>
+
+ <_>
+ 8 4 8 10 -1.
+ <_>
+ 8 9 8 5 2.
+ <_>
+
+ <_>
+ 8 3 2 3 -1.
+ <_>
+ 8 4 2 1 3.
+ <_>
+
+ <_>
+ 11 1 6 9 -1.
+ <_>
+ 11 4 6 3 3.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 6 5 2 3.
+ <_>
+
+ <_>
+ 12 18 2 2 -1.
+ <_>
+ 12 18 1 1 2.
+ <_>
+ 13 19 1 1 2.
+ <_>
+
+ <_>
+ 1 17 1 3 -1.
+ <_>
+ 1 18 1 1 3.
+ <_>
+
+ <_>
+ 12 19 2 1 -1.
+ <_>
+ 13 19 1 1 2.
+ <_>
+
+ <_>
+ 8 10 6 6 -1.
+ <_>
+ 10 10 2 6 3.
+ <_>
+
+ <_>
+ 14 2 6 5 -1.
+ <_>
+ 16 2 2 5 3.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 7 2 2 3.
+ <_>
+
+ <_>
+ 1 15 2 2 -1.
+ <_>
+ 2 15 1 2 2.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 10 14 4 6 -1.
+ <_>
+ 10 16 4 2 3.
+ <_>
+
+ <_>
+ 9 7 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ <_>
+
+ <_>
+ 6 9 6 2 -1.
+ <_>
+ 6 9 3 1 2.
+ <_>
+ 9 10 3 1 2.
+ <_>
+
+ <_>
+ 0 2 1 12 -1.
+ <_>
+ 0 6 1 4 3.
+ <_>
+
+ <_>
+ 4 0 15 1 -1.
+ <_>
+ 9 0 5 1 3.
+ <_>
+
+ <_>
+ 9 0 8 2 -1.
+ <_>
+ 9 0 4 1 2.
+ <_>
+ 13 1 4 1 2.
+ <_>
+
+ <_>
+ 12 2 8 1 -1.
+ <_>
+ 16 2 4 1 2.
+ <_>
+
+ <_>
+ 7 1 10 6 -1.
+ <_>
+ 7 3 10 2 3.
+ <_>
+
+ <_>
+ 18 6 2 3 -1.
+ <_>
+ 18 7 2 1 3.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 12 1 1 2.
+ <_>
+ 5 13 1 1 2.
+ <_>
+
+ <_>
+ 6 6 6 2 -1.
+ <_>
+ 8 6 2 2 3.
+ <_>
+
+ <_>
+ 0 9 9 6 -1.
+ <_>
+ 3 9 3 6 3.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 18 18 1 2 2.
+ <_>
+
+ <_>
+ 11 2 6 16 -1.
+ <_>
+ 13 2 2 16 3.
+ <_>
+
+ <_>
+ 2 4 15 13 -1.
+ <_>
+ 7 4 5 13 3.
+ <_>
+
+ <_>
+ 16 2 3 10 -1.
+ <_>
+ 17 2 1 10 3.
+ <_>
+
+ <_>
+ 6 10 2 1 -1.
+ <_>
+ 7 10 1 1 2.
+ <_>
+
+ <_>
+ 1 1 18 16 -1.
+ <_>
+ 10 1 9 16 2.
+ <_>
+
+ <_>
+ 14 4 3 15 -1.
+ <_>
+ 15 4 1 15 3.
+ <_>
+
+ <_>
+ 19 13 1 2 -1.
+ <_>
+ 19 14 1 1 2.
+ <_>
+
+ <_>
+ 2 6 5 8 -1.
+ <_>
+ 2 10 5 4 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye_tree_eyeglasses.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye_tree_eyeglasses.xml
new file mode 100644
index 0000000000000000000000000000000000000000..6813d243c77e5c1819a680a60595ae4b4b635272
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_eye_tree_eyeglasses.xml
@@ -0,0 +1,22619 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 47
+
+ 0
+ 30
+
+ <_>
+ 5
+ -1.6473180055618286e+00
+
+ <_>
+
+ 2 1 0 -2.6987109333276749e-02 0 -1 1 5.0670530647039413e-02
+ -2 -3 2 -1.2915390729904175e-01
+
+ -8.0395472049713135e-01 6.0491400957107544e-01
+ 9.0544581413269043e-01 4.4070810079574585e-02
+ <_>
+
+ 2 1 3 8.8827736675739288e-02 0 -1 4 -2.0398240536451340e-02
+ -2 -3 5 -6.1261758208274841e-02
+
+ 7.9218882322311401e-01 4.0692299604415894e-02
+ 4.2585361003875732e-01 -7.0325207710266113e-01
+ <_>
+
+ 2 1 6 -2.0490810275077820e-01 0 -1 7 9.4933047890663147e-02
+ -2 -3 8 1.2091030366718769e-03
+
+ -4.4017648696899414e-01 5.3640520572662354e-01
+ 6.8776458501815796e-01 -5.5879348516464233e-01
+ <_>
+
+ 1 0 9 9.2227972345426679e-04 -1 2 10 -7.2678289143368602e-04
+ -2 -3 11 6.8421510513871908e-04
+
+ -7.2684401273727417e-01 -5.8028000593185425e-01
+ 5.6177532672882080e-01 -2.9834181070327759e-01
+ <_>
+
+ 0 1 12 -5.1150590181350708e-02 2 -1 13
+ 6.1622060835361481e-02 -2 -3 14 7.2873473167419434e-02
+
+ 5.9840762615203857e-01 7.4743932485580444e-01
+ -4.9703779816627502e-01 2.8129258751869202e-01
+ <_>
+ 7
+ -1.4257860183715820e+00
+
+ <_>
+
+ 2 1 15 -4.1994878649711609e-01 0 -1 16
+ -5.6186288595199585e-02 -2 -3 17 -2.3711109533905983e-02
+
+ 2.7586200833320618e-01 -6.4623218774795532e-01
+ 8.5241252183914185e-01 8.3703370764851570e-03
+ <_>
+
+ 1 0 18 4.0523439645767212e-02 -1 2 19 2.7388900518417358e-01
+ -2 -3 20 -1.4293800108134747e-02
+
+ 7.4270218610763550e-01 -4.9286690354347229e-01
+ 7.1784788370132446e-01 -4.2223978787660599e-02
+ <_>
+
+ 0 1 21 -2.1144729107618332e-03 2 -1 22
+ 1.0659949621185660e-03 -2 -3 23 1.0812469990924001e-03
+
+ -8.0196601152420044e-01 -6.6025912761688232e-01
+ 4.7916370630264282e-01 -5.1645290851593018e-01
+ <_>
+
+ 1 0 24 3.0198289081454277e-02 2 -1 25 4.0569551289081573e-02
+ -2 -3 26 7.0679739117622375e-02
+
+ 5.1327562332153320e-01 6.6641497611999512e-01
+ -4.5298659801483154e-01 5.5480718612670898e-01
+ <_>
+
+ 0 1 27 -7.8928138827905059e-04 2 -1 28
+ 8.0574717139825225e-04 -2 -3 29 -2.0976560190320015e-02
+
+ -7.2526299953460693e-01 -5.6479871273040771e-01
+ 6.9993537664413452e-01 6.8500466644763947e-02
+ <_>
+
+ 1 0 30 1.2794960290193558e-02 -1 2 31
+ -8.1120636314153671e-03 -2 -3 32 -1.5506530180573463e-02
+
+ -8.6409568786621094e-01 4.4448360800743103e-01
+ 3.6675310134887695e-01 -2.9189071059226990e-01
+ <_>
+
+ 2 1 33 -1.2915650382637978e-02 0 -1 34
+ 6.6297221928834915e-03 -2 -3 35 -3.6532930098474026e-03
+
+ -4.7566780447959900e-01 1.0350350290536880e-01
+ -6.1723059415817261e-01 5.4382532835006714e-01
+ <_>
+ 9
+ -1.4711019992828369e+00
+
+ <_>
+
+ 0 1 36 -7.8731971979141235e-01 -1 2 37
+ 1.6908009350299835e-01 -2 -3 38 -4.0369689464569092e-02
+
+ 7.1268838644027710e-01 -7.1908998489379883e-01
+ 4.4148930907249451e-01 -4.2251929640769958e-01
+ <_>
+
+ 1 0 39 1.9132360816001892e-02 2 -1 40 6.4184539951384068e-04
+ -2 -3 41 -7.8941037645563483e-04
+
+ 6.9186228513717651e-01 -7.6116967201232910e-01
+ -6.8140429258346558e-01 1.6009919345378876e-01
+ <_>
+
+ 1 2 42 -7.1503049694001675e-03 0 -1 43
+ -2.3156129755079746e-03 -2 -3 44 -4.1521269828081131e-02
+
+ -5.5916607379913330e-01 5.1284497976303101e-01
+ 2.4422569572925568e-01 -4.6883401274681091e-01
+ <_>
+
+ 1 0 45 9.1200548922643065e-04 -1 2 46
+ -1.5798299573361874e-03 -2 -3 47 -1.1573649942874908e-02
+
+ -6.9527888298034668e-01 -6.3509649038314819e-01
+ 6.4686381816864014e-01 6.9198559504002333e-04
+ <_>
+
+ 2 1 48 2.1843519061803818e-03 0 -1 49 2.9345690272748470e-03
+ -2 -3 50 -5.8788150548934937e-02
+
+ 4.5632898807525635e-01 -5.8841437101364136e-01
+ 2.6704201102256775e-01 -3.8348990678787231e-01
+ <_>
+
+ 0 1 51 -5.5392808280885220e-04 -1 2 52
+ -5.3035060409456491e-04 -2 -3 53 -6.8775108084082603e-03
+
+ -4.8913368582725525e-01 -3.8421550393104553e-01
+ 6.6845697164535522e-01 9.3158259987831116e-02
+ <_>
+
+ 1 0 54 1.6710379859432578e-03 2 -1 55 1.4162790030241013e-03
+ -2 -3 56 7.7876187860965729e-03
+
+ -6.0369372367858887e-01 -3.0418768525123596e-01
+ 3.9699068665504456e-01 -6.6687589883804321e-01
+ <_>
+
+ 1 2 57 -1.2916780076920986e-02 0 -1 58
+ -3.0156269203871489e-03 -2 -3 59 -1.9785940647125244e-02
+
+ -7.1239727735519409e-01 4.6252989768981934e-01
+ 2.8338319063186646e-01 -3.5317930579185486e-01
+ <_>
+
+ 1 0 60 3.3207770902663469e-03 2 -1 61 2.9606239870190620e-02
+ -2 -3 62 4.4614788144826889e-02
+
+ -7.3291397094726562e-01 4.9530759453773499e-01
+ -1.9502809643745422e-01 7.9816418886184692e-01
+ <_>
+ 12
+ -1.3850779533386230e+00
+
+ <_>
+
+ 0 1 63 -9.2366141080856323e-01 2 -1 64
+ -4.8193939030170441e-02 -2 -3 65 2.8669878840446472e-01
+
+ 7.6915800571441650e-01 -5.1361227035522461e-01
+ -2.9671901464462280e-01 6.2028187513351440e-01
+ <_>
+
+ 1 2 66 -1.3038160279393196e-02 0 -1 67
+ -1.4749659458175302e-03 -2 -3 68 -4.6921748667955399e-02
+
+ -7.1294248104095459e-01 5.9115177392959595e-01
+ 3.1303560733795166e-01 -3.6749690771102905e-01
+ <_>
+
+ 0 1 69 2.4459899868816137e-03 -1 2 70
+ -2.5321498978883028e-03 -2 -3 71 1.4651260571554303e-03
+
+ -4.6930000185966492e-01 -7.7450162172317505e-01
+ 3.6414781212806702e-01 -5.7445889711380005e-01
+ <_>
+
+ 1 2 72 -1.1307420209050179e-02 0 -1 73
+ -1.2048849603161216e-03 -2 -3 74 -6.2752872705459595e-02
+
+ -5.5727648735046387e-01 4.7871670126914978e-01
+ 2.2788530588150024e-01 -4.3667969107627869e-01
+ <_>
+
+ 0 1 75 -4.0173111483454704e-03 2 -1 76
+ 1.5160309849306941e-03 -2 -3 77 1.9954680465161800e-03
+
+ -7.3568779230117798e-01 -5.8480697870254517e-01
+ 2.1544020622968674e-02 5.5875688791275024e-01
+ <_>
+
+ 1 0 78 3.4435209818184376e-03 -1 2 79
+ -2.6550020556896925e-03 -2 -3 80 -1.1407690122723579e-02
+
+ -7.6565897464752197e-01 -6.5447497367858887e-01
+ 5.3633081912994385e-01 -3.8849171251058578e-02
+ <_>
+
+ 1 2 81 -2.3805440869182348e-03 0 -1 82
+ 6.6475258208811283e-03 -2 -3 83 1.4018240571022034e-01
+
+ 3.3984410762786865e-01 -6.5025091171264648e-01
+ -3.2491090893745422e-01 7.5067067146301270e-01
+ <_>
+
+ 0 1 84 -6.2358360737562180e-02 2 -1 85
+ 1.3628599699586630e-03 -2 -3 86 -4.4609848409891129e-03
+
+ 4.5777168869972229e-01 -6.3202661275863647e-01
+ 4.0597960352897644e-01 -2.0854069292545319e-01
+ <_>
+
+ 0 1 87 -1.0046839714050293e-02 2 -1 88
+ -2.9274819418787956e-02 -2 -3 89 7.7389390207827091e-03
+
+ -7.4789828062057495e-01 -1.7995479702949524e-01
+ 4.7782841324806213e-01 -6.5113341808319092e-01
+ <_>
+
+ 1 0 90 1.4774020528420806e-03 -1 2 91 1.4989820308983326e-02
+ -2 -3 92 4.5073241926729679e-03
+
+ -6.6269898414611816e-01 -1.6695550084114075e-01
+ 3.8702058792114258e-01 -7.3409372568130493e-01
+ <_>
+
+ 1 0 93 1.4901049435138702e-03 2 -1 94 8.9141662465408444e-04
+ -2 -3 95 -1.1558219790458679e-02
+
+ -3.4280839562416077e-01 -2.8036740422248840e-01
+ -4.2523959279060364e-01 4.5259669423103333e-01
+ <_>
+
+ 0 1 96 -2.0011950284242630e-02 -1 2 97
+ -1.7092300578951836e-02 -2 -3 98 -6.7685171961784363e-02
+
+ 4.0133118629455566e-01 3.6970010399818420e-01
+ 7.4438679218292236e-01 -3.8255840539932251e-01
+ <_>
+ 12
+ -1.4432040452957153e+00
+
+ <_>
+
+ 1 2 99 -2.0911149680614471e-02 0 -1 100
+ 1.4305709302425385e-01 -2 -3 101 1.1925029568374157e-02
+
+ -3.4965568780899048e-01 7.0134562253952026e-01
+ -6.0404628515243530e-01 8.5615903139114380e-02
+ <_>
+
+ 1 0 102 2.4742009118199348e-02 2 -1 103
+ 4.5732118189334869e-02 -2 -3 104 4.3204430490732193e-02
+
+ 8.5365587472915649e-01 4.1876411437988281e-01
+ -3.9094918966293335e-01 2.7387988567352295e-01
+ <_>
+
+ 0 1 105 -7.2548422031104565e-04 2 -1 106
+ 1.4243220211938024e-03 -2 -3 107 -5.3335479460656643e-03
+
+ -6.2011122703552246e-01 -6.1589437723159790e-01
+ 6.0596448183059692e-01 1.5840480104088783e-02
+ <_>
+
+ 1 0 108 -7.1891010738909245e-03 2 -1 109
+ 1.8233320442959666e-03 -2 -3 110 1.6109029529616237e-03
+
+ -2.0852829515933990e-01 -8.1338381767272949e-01
+ 5.6780648231506348e-01 -8.7046259641647339e-01
+ <_>
+
+ 2 1 111 -4.8350278288125992e-02 0 -1 112
+ 3.1746171414852142e-02 -2 -3 113 1.9233829807490110e-03
+
+ -3.5335820913314819e-01 4.4076570868492126e-01
+ 4.0730631351470947e-01 -5.9592568874359131e-01
+ <_>
+
+ 1 0 114 1.3614529743790627e-03 -1 2 115
+ -3.6934199742972851e-03 -2 -3 116 -8.5378461517393589e-04
+
+ -5.5307251214981079e-01 -7.3163098096847534e-01
+ 4.3890678882598877e-01 -6.3009172677993774e-02
+ <_>
+
+ 0 1 117 -1.0950770229101181e-02 -1 2 118
+ -7.2186449542641640e-03 -2 -3 119 1.8548289313912392e-02
+
+ 3.9263078570365906e-01 2.7225250005722046e-01
+ -4.1208618879318237e-01 6.3790637254714966e-01
+ <_>
+
+ 1 0 120 1.0859060566872358e-03 -1 2 121
+ -6.5618362277746201e-03 -2 -3 122 -6.1777420341968536e-02
+
+ -5.0857210159301758e-01 3.5386729240417480e-01
+ 5.7568281888961792e-01 -2.8477248549461365e-01
+ <_>
+
+ 1 0 123 4.9480778397992253e-04 2 -1 124
+ 1.1606880463659763e-02 -2 -3 125 -1.6142609529197216e-03
+
+ -4.9583891034126282e-01 -5.1320201158523560e-01
+ 5.2665728330612183e-01 3.0917160212993622e-02
+ <_>
+
+ 1 0 126 2.0437680650502443e-03 -1 2 127
+ -8.2394909113645554e-03 -2 -3 128 -3.9699211716651917e-02
+
+ -7.0948588848114014e-01 3.4189811348915100e-01
+ 4.7383341193199158e-01 -2.5060850381851196e-01
+ <_>
+
+ 1 2 129 -8.0377282574772835e-04 0 -1 130
+ -5.4273242130875587e-03 -2 -3 131 -5.2662738598883152e-03
+
+ -5.1384007930755615e-01 2.9752710461616516e-01
+ 1.4577029645442963e-01 -4.6007528901100159e-01
+ <_>
+
+ 1 0 132 6.3841522205621004e-04 -1 2 133
+ -1.5458120033144951e-03 -2 -3 134 1.1863360414281487e-03
+
+ -3.6412829160690308e-01 -5.8081609010696411e-01
+ 2.9298609495162964e-01 -5.1420718431472778e-01
+ <_>
+ 12
+ -1.5415630340576172e+00
+
+ <_>
+
+ 1 2 135 -2.7745011448860168e-01 0 -1 136
+ -3.1200000084936619e-03 -2 -3 137 -8.0280922353267670e-02
+
+ 8.3265638351440430e-01 1.0233189910650253e-01
+ 2.3773579299449921e-01 -6.4546662569046021e-01
+ <_>
+
+ 0 1 138 -6.9391548633575439e-02 2 -1 139
+ 5.3355181589722633e-03 -2 -3 140 -5.4189618676900864e-02
+
+ 4.6008241176605225e-01 2.9137989878654480e-01
+ 4.7026729583740234e-01 -5.7723402976989746e-01
+ <_>
+
+ 1 0 141 1.8562959507107735e-02 -1 2 142
+ 4.6305730938911438e-02 -2 -3 143 -8.8262781500816345e-03
+
+ 7.0555502176284790e-01 -5.2839881181716919e-01
+ 4.3953609466552734e-01 -1.3887490332126617e-01
+ <_>
+
+ 1 0 144 -2.8772179502993822e-03 -1 2 145
+ -2.6457069907337427e-03 -2 -3 146 3.3441530540585518e-03
+
+ -2.7475830912590027e-01 -5.7746797800064087e-01
+ 3.6615240573883057e-01 -6.3586741685867310e-01
+ <_>
+
+ 2 1 147 -8.3742372691631317e-02 0 -1 148
+ 1.0164769738912582e-01 -2 -3 149 -2.1541758906096220e-03
+
+ -2.9664519429206848e-01 5.6140047311782837e-01
+ -7.5446271896362305e-01 3.9601260423660278e-01
+ <_>
+
+ 0 1 150 -1.7133549554273486e-03 2 -1 151
+ 1.3899410143494606e-02 -2 -3 152 -2.8498120605945587e-02
+
+ -7.3741632699966431e-01 4.8247390985488892e-01
+ 4.1971048712730408e-01 -2.0021289587020874e-01
+ <_>
+
+ 0 1 153 -4.9728769809007645e-03 2 -1 154
+ -3.4751880913972855e-02 -2 -3 155 -8.7171117775142193e-04
+
+ 3.7631350755691528e-01 -4.4797790050506592e-01
+ -6.9995099306106567e-01 1.5640909969806671e-01
+ <_>
+
+ 0 1 156 -3.3666230738162994e-03 -1 2 157
+ -2.1378830075263977e-02 -2 -3 158 -1.1869249865412712e-02
+
+ -6.7721921205520630e-01 3.3951529860496521e-01
+ 5.4050672054290771e-01 -2.4071580171585083e-01
+ <_>
+
+ 0 1 159 -4.4268160127103329e-03 2 -1 160
+ 4.1405398398637772e-02 -2 -3 161 -3.7884410470724106e-02
+
+ -7.3965507745742798e-01 8.2905638217926025e-01
+ 1.7030739784240723e-01 -2.4498699605464935e-01
+ <_>
+
+ 1 0 162 3.7567419349215925e-04 -1 2 163
+ -3.7140299100428820e-03 -2 -3 164 -6.1806719750165939e-03
+
+ -4.5103698968887329e-01 3.8348129391670227e-01
+ 3.6097520589828491e-01 -2.0644439756870270e-01
+ <_>
+
+ 0 1 165 -1.2373559875413775e-03 -1 2 166
+ -2.1339580416679382e-03 -2 -3 167 2.8985869139432907e-03
+
+ -5.8166879415512085e-01 4.1669690608978271e-01
+ -2.4721260368824005e-01 3.5056841373443604e-01
+ <_>
+
+ 1 2 168 -4.4636861421167850e-03 0 -1 169
+ 1.6411510296165943e-03 -2 -3 170 -7.3051019571721554e-03
+
+ 3.5625410079956055e-01 -4.1040098667144775e-01
+ 2.0216129720211029e-01 -3.4234520792961121e-01
+ <_>
+ 13
+ -1.4762729406356812e+00
+
+ <_>
+
+ 1 2 171 -5.1942609250545502e-02 0 -1 172
+ -4.7268528491258621e-02 -2 -3 173 -7.8969672322273254e-03
+
+ 8.8198930025100708e-01 6.4829237759113312e-02
+ 8.8662758469581604e-02 -5.9007811546325684e-01
+ <_>
+
+ 1 0 174 9.0199249098077416e-04 2 -1 175
+ -1.7289820313453674e-01 -2 -3 176 -2.3374119773507118e-03
+
+ 5.9040898084640503e-01 -5.2029031515121460e-01
+ 5.2981728315353394e-01 -1.4985850453376770e-01
+ <_>
+
+ 0 1 177 -1.7534950748085976e-02 -1 2 178
+ 5.8875310060102493e-05 -2 -3 179 -3.2241028547286987e-01
+
+ 5.3269028663635254e-01 -4.5709720253944397e-01
+ 5.7380169630050659e-01 -1.2866480648517609e-01
+ <_>
+
+ 1 2 180 8.3220787928439677e-05 0 -1 181
+ -1.1180160072399303e-04 -2 -3 182 -1.0344980284571648e-02
+
+ 9.0006209909915924e-02 -5.6352388858795166e-01
+ 6.3273417949676514e-01 5.0064269453287125e-02
+ <_>
+
+ 0 1 183 -9.4440882094204426e-04 2 -1 184
+ -3.7474210839718580e-03 -2 -3 185 4.0574651211500168e-03
+
+ 4.4386640191078186e-01 -3.4999918937683105e-01
+ -4.5298218727111816e-01 3.0920198559761047e-01
+ <_>
+
+ 1 2 186 5.5205920943990350e-05 0 -1 187
+ -7.5678288936614990e-02 -2 -3 188 -3.0975368618965149e-01
+
+ 3.5544091463088989e-01 -3.6047360301017761e-01
+ -6.4954018592834473e-01 3.0679279565811157e-01
+ <_>
+
+ 1 2 189 -7.9595847637392581e-05 0 -1 190
+ 4.0613119490444660e-03 -2 -3 191 4.3240871280431747e-02
+
+ 3.3850470185279846e-01 -5.3271901607513428e-01
+ -3.2592329382896423e-01 5.5076271295547485e-01
+ <_>
+
+ 0 1 192 -6.7015928216278553e-03 -1 2 193
+ -1.0451120324432850e-03 -2 -3 194 8.3967261016368866e-03
+
+ 5.0109171867370605e-01 -5.8881980180740356e-01
+ -9.5237597823143005e-02 5.6516999006271362e-01
+ <_>
+
+ 2 1 195 -6.5531006839592010e-05 0 -1 196
+ 7.8218057751655579e-05 -2 -3 197 3.2988168299198151e-02
+
+ -4.6556711196899414e-01 5.4509781301021576e-02
+ 3.5248789191246033e-01 -5.2722948789596558e-01
+ <_>
+
+ 0 1 198 -1.4161449857056141e-02 2 -1 199
+ 3.1500440090894699e-02 -2 -3 200 -2.1956730633974075e-03
+
+ 3.6811780929565430e-01 5.2040421962738037e-01
+ 1.1603529751300812e-01 -3.0985280871391296e-01
+ <_>
+
+ 0 1 201 -4.0099889039993286e-02 -1 2 202
+ -3.2569639384746552e-02 -2 -3 203 -4.2014168575406075e-03
+
+ -4.5146378874778748e-01 -6.4392048120498657e-01
+ -8.2594501972198486e-01 1.9259540736675262e-01
+ <_>
+
+ 2 1 204 2.0385689567774534e-03 0 -1 205
+ -1.6212540213018656e-03 -2 -3 206 -8.6220083758234978e-03
+
+ -3.7723371386528015e-01 3.3918830752372742e-01
+ 4.8986920714378357e-01 -2.7532070875167847e-01
+ <_>
+
+ 1 0 207 9.2185800895094872e-05 2 -1 208
+ -7.1932889113668352e-05 -2 -3 209 4.4952900498174131e-04
+
+ 2.4223749339580536e-01 -4.2189198732376099e-01
+ 2.9407840967178345e-01 -4.4028049707412720e-01
+ <_>
+ 15
+ -1.4963719844818115e+00
+
+ <_>
+
+ 1 2 210 -1.9638450816273689e-02 0 -1 211
+ 1.1364299803972244e-01 -2 -3 212 -1.0112149640917778e-02
+
+ -3.2444450259208679e-01 7.4602019786834717e-01
+ 3.3333331346511841e-01 -5.6435650587081909e-01
+ <_>
+
+ 1 0 213 1.2130879797041416e-02 2 -1 214
+ -1.5958850085735321e-01 -2 -3 215 -2.3524949792772532e-03
+
+ 7.2214919328689575e-01 -3.9274591207504272e-01
+ 5.6152492761611938e-01 -1.3768480718135834e-01
+ <_>
+
+ 0 1 216 -4.1118920780718327e-03 -1 2 217
+ -1.7832900583744049e-01 -2 -3 218 -7.8500732779502869e-03
+
+ 6.3556081056594849e-01 3.3373141288757324e-01
+ 3.9536771178245544e-01 -3.3380430936813354e-01
+ <_>
+
+ 2 1 219 -4.6880490117473528e-05 0 -1 220
+ 5.2934719860786572e-05 -2 -3 221 2.0851430235779844e-05
+
+ -6.6118270158767700e-01 -4.8232190310955048e-02
+ -9.8838359117507935e-02 4.4528418779373169e-01
+ <_>
+
+ 0 1 222 -1.8425289541482925e-02 -1 2 223
+ -7.6133902184665203e-03 -2 -3 224 -6.0353721491992474e-03
+
+ -6.5690898895263672e-01 5.3413677215576172e-01
+ 3.6171048879623413e-01 -2.0478430390357971e-01
+ <_>
+
+ 2 1 225 4.3712720071198419e-05 0 -1 226
+ -7.8823999501764774e-04 -2 -3 227 -4.5693209394812584e-03
+
+ -4.5326828956604004e-01 3.5517698526382446e-01
+ 6.1721032857894897e-01 -2.9707700014114380e-01
+ <_>
+
+ 1 2 228 -3.8058571517467499e-02 0 -1 229
+ -1.1797689646482468e-01 -2 -3 230 4.6841651201248169e-03
+
+ 3.5003998875617981e-01 -2.7257668972015381e-01
+ -3.2559171319007874e-01 3.7737470865249634e-01
+ <_>
+
+ 1 2 231 -2.6372840511612594e-04 0 -1 232
+ 6.2580420635640621e-03 -2 -3 233 5.6767999922158197e-05
+
+ 3.7421739101409912e-01 -5.8926701545715332e-01
+ -4.8859021067619324e-01 -1.8623730167746544e-02
+ <_>
+
+ 1 0 234 9.2742107808589935e-03 2 -1 235
+ -3.8514519110321999e-03 -2 -3 236 -5.3287498303689063e-05
+
+ 3.0933541059494019e-01 -3.4513729810714722e-01
+ 5.2340328693389893e-01 -9.1159403324127197e-02
+ <_>
+
+ 1 0 237 9.8315975628793240e-04 2 -1 238
+ 8.2858657697215676e-04 -2 -3 239 1.1229789815843105e-02
+
+ -5.0185352563858032e-01 -3.0529549717903137e-01
+ 2.6219210028648376e-01 -4.7969821095466614e-01
+ <_>
+
+ 0 1 240 -1.0327639989554882e-02 -1 2 241
+ -6.9197742268443108e-03 -2 -3 242 -5.0027170218527317e-03
+
+ -5.6315082311630249e-01 3.1225070357322693e-01
+ 1.7820779979228973e-01 -3.0091148614883423e-01
+ <_>
+
+ 0 1 243 -1.1156810069223866e-04 -1 2 244
+ 4.2464961297810078e-03 -2 -3 245 -4.7280951548600569e-05
+
+ 1.8883679807186127e-01 -4.0101578831672668e-01
+ 4.6505901217460632e-01 -2.9863640666007996e-01
+ <_>
+
+ 0 1 246 -1.8891280051320791e-03 -1 2 247
+ -5.8536308642942458e-05 -2 -3 248 2.0671950551331975e-05
+
+ 5.6963747739791870e-01 1.8008249998092651e-01
+ -5.8659601211547852e-01 -5.4875258356332779e-03
+ <_>
+
+ 0 1 249 -1.1267509544268250e-03 2 -1 250
+ 2.1378440782427788e-02 -2 -3 251 -1.2546040117740631e-02
+
+ -4.0261599421501160e-01 3.9230358600616455e-01
+ 4.9474561214447021e-01 -1.7322529852390289e-01
+ <_>
+
+ 0 1 252 -7.2257901774719357e-04 2 -1 253
+ 6.4563672058284283e-03 -2 -3 254 4.9086650833487511e-03
+
+ -3.0380329489707947e-01 4.7173491120338440e-01
+ -1.6380549967288971e-01 3.7708491086959839e-01
+ <_>
+ 19
+ -1.5243699550628662e+00
+
+ <_>
+
+ 2 1 255 -7.2617560625076294e-02 0 -1 256
+ -6.9059380330145359e-03 -2 -3 257 2.1727949380874634e-01
+
+ 2.6602798700332642e-01 -4.9325171113014221e-01
+ -1.0769230127334595e-01 8.2661122083663940e-01
+ <_>
+
+ 1 2 258 -2.0319509785622358e-03 0 -1 259
+ 2.8931589797139168e-02 -2 -3 260 -4.6076569706201553e-03
+
+ -3.7963140755891800e-02 8.0230438709259033e-01
+ 4.2468398809432983e-01 -2.9379379749298096e-01
+ <_>
+
+ 1 2 261 6.9408868439495564e-03 0 -1 262
+ -5.9231962077319622e-03 -2 -3 263 5.1128160208463669e-02
+
+ 4.1737049818038940e-01 -2.5552588701248169e-01
+ -3.8619861006736755e-01 4.7076860070228577e-01
+ <_>
+
+ 1 0 264 1.5201330184936523e-02 -1 2 265
+ -1.8096340820193291e-02 -2 -3 266 7.9378951340913773e-05
+
+ 5.4354798793792725e-01 2.6651141047477722e-01
+ -4.3927749991416931e-01 2.5831260718405247e-03
+ <_>
+
+ 0 1 267 -5.3462558425962925e-03 -1 2 268
+ -6.9701080210506916e-03 -2 -3 269 8.4738981968257576e-05
+
+ -6.6308969259262085e-01 -7.0310682058334351e-01
+ -1.7880809307098389e-01 2.5993299484252930e-01
+ <_>
+
+ 0 1 270 -2.8513800352811813e-03 2 -1 271
+ 2.2954840678721666e-03 -2 -3 272 -3.5036220215260983e-03
+
+ 4.5053678750991821e-01 3.0560511350631714e-01
+ 1.5040870010852814e-01 -3.3283078670501709e-01
+ <_>
+
+ 1 2 273 -6.9570228457450867e-02 0 -1 274
+ 5.9261121350573376e-05 -2 -3 275 -5.9058349579572678e-02
+
+ -3.6899719387292862e-02 4.0927308797836304e-01
+ 1.3826370239257812e-01 -3.8214409351348877e-01
+ <_>
+
+ 0 1 276 -8.9645627886056900e-03 -1 2 277
+ 4.9211819714400917e-05 -2 -3 278 9.9640293046832085e-03
+
+ -5.8134728670120239e-01 -1.8481740355491638e-01
+ 8.7685473263263702e-02 5.8509802818298340e-01
+ <_>
+
+ 0 1 279 -1.9302699714899063e-02 -1 2 280
+ -4.3869198998436332e-04 -2 -3 281 6.5669846662785858e-05
+
+ 5.3263461589813232e-01 2.8891131281852722e-01
+ -3.3493599295616150e-01 5.9566751122474670e-02
+ <_>
+
+ 0 1 282 -2.0224519073963165e-02 -1 2 283
+ 8.7082196841947734e-05 -2 -3 284 -1.6202719882130623e-02
+
+ -6.5536081790924072e-01 -1.2211789935827255e-01
+ -4.7076839208602905e-01 3.0990770459175110e-01
+ <_>
+
+ 1 0 285 4.4353529810905457e-03 -1 2 286
+ -9.0544822160154581e-04 -2 -3 287 -1.4297979651018977e-03
+
+ -5.4039931297302246e-01 4.2878800630569458e-01
+ 2.2322739660739899e-01 -1.8194420635700226e-01
+ <_>
+
+ 1 2 288 3.2359519973397255e-03 0 -1 289
+ 1.0716189717641100e-04 -2 -3 290 -5.8802281273528934e-04
+
+ -2.9218220710754395e-01 1.3910460472106934e-01
+ -4.6926081180572510e-01 3.8085499405860901e-01
+ <_>
+
+ 0 1 291 -9.0546347200870514e-03 -1 2 292
+ -8.6048766970634460e-03 -2 -3 293 -1.2719300575554371e-03
+
+ -5.0426542758941650e-01 -2.7559030055999756e-01
+ 3.6022108793258667e-01 -2.6484970003366470e-02
+ <_>
+
+ 0 1 294 -3.9098240085877478e-04 -1 2 295
+ -3.6405251012183726e-04 -2 -3 296 -6.6685711499303579e-04
+
+ 2.6651731133460999e-01 1.4721649885177612e-01
+ -4.9719738960266113e-01 -6.1579849570989609e-02
+ <_>
+
+ 0 1 297 -2.4845570325851440e-02 -1 2 298
+ -1.5436399728059769e-02 -2 -3 299 -5.6572312116622925e-01
+
+ -7.0820981264114380e-01 -4.7206890583038330e-01
+ 6.3965231180191040e-01 5.2069328725337982e-02
+ <_>
+
+ 0 1 300 -5.7480141520500183e-02 -1 2 301
+ -1.4613820239901543e-02 -2 -3 302 -3.3993738889694214e-01
+
+ 2.9297390580177307e-01 6.0129672288894653e-01
+ 1.9041299819946289e-02 -3.3254599571228027e-01
+ <_>
+
+ 2 1 303 -3.1427140347659588e-03 0 -1 304
+ 2.1966299973428249e-03 -2 -3 305 -2.4858590215444565e-02
+
+ -2.2972729802131653e-01 2.2367340326309204e-01
+ -5.6212967634201050e-01 3.9542859792709351e-01
+ <_>
+
+ 0 1 306 -1.6135630430653691e-03 2 -1 307
+ 1.1416019697207958e-04 -2 -3 308 1.3170539750717580e-04
+
+ -4.8256790637969971e-01 2.6877319812774658e-01
+ -3.9078921079635620e-01 1.7153440415859222e-01
+ <_>
+
+ 0 1 309 -8.5256207967177033e-05 -1 2 310
+ 6.4925159676931798e-05 -2 -3 311 -1.2689639814198017e-02
+
+ 2.1754570305347443e-01 -4.7468620538711548e-01
+ -6.6538578271865845e-01 1.2347090244293213e-01
+ <_>
+ 27
+ -1.3592849969863892e+00
+
+ <_>
+
+ 2 1 312 -2.9844639822840691e-02 0 -1 313
+ -4.5487660169601440e-01 -2 -3 314 2.7445149607956409e-03
+
+ 3.9222040772438049e-01 -3.9314880967140198e-01
+ -1.5923570096492767e-01 8.2696700096130371e-01
+ <_>
+
+ 2 1 315 -1.0584670118987560e-02 0 -1 316
+ -1.6308380290865898e-02 -2 -3 317 -4.8787441104650497e-02
+
+ 4.5954689383506775e-01 -2.1620120108127594e-01
+ 7.5103652477264404e-01 7.4557967483997345e-02
+ <_>
+
+ 1 0 318 -2.9621229041367769e-03 2 -1 319
+ 1.7300529405474663e-02 -2 -3 320 -1.6731169074773788e-02
+
+ -2.4452270567417145e-01 -3.3090409636497498e-01
+ 5.3751850128173828e-01 2.9153820127248764e-02
+ <_>
+
+ 1 0 321 1.2326180003583431e-02 -1 2 322
+ 5.4928299039602280e-02 -2 -3 323 2.7763319667428732e-03
+
+ -5.4824811220169067e-01 -2.1952770650386810e-01
+ 3.6463689059019089e-02 5.0633782148361206e-01
+ <_>
+
+ 0 1 324 -4.5116998255252838e-02 2 -1 325
+ 1.1207940056920052e-02 -2 -3 326 -5.7006389833986759e-03
+
+ 4.2339310050010681e-01 3.9984008669853210e-01
+ -5.9729182720184326e-01 -9.8557651042938232e-02
+ <_>
+
+ 1 2 327 -5.3951311856508255e-03 0 -1 328
+ 7.8587066382169724e-03 -2 -3 329 1.0666639544069767e-02
+
+ 3.4734690189361572e-01 -4.7281920909881592e-01
+ -2.3315669596195221e-01 2.4360010027885437e-01
+ <_>
+
+ 2 1 330 2.8001810424029827e-03 0 -1 331
+ -7.9198479652404785e-03 -2 -3 332 -2.3832279257476330e-03
+
+ -4.8354551196098328e-01 1.8321120738983154e-01
+ 3.2168481498956680e-02 -5.0476258993148804e-01
+ <_>
+
+ 0 1 333 -9.7674019634723663e-03 -1 2 334
+ -1.3897259719669819e-02 -2 -3 335 -6.4803068526089191e-03
+
+ -7.4415212869644165e-01 4.5425128936767578e-01
+ 4.8292869329452515e-01 -1.0258570313453674e-01
+ <_>
+
+ 1 0 336 9.4482619315385818e-03 -1 2 337
+ -7.0351187605410814e-04 -2 -3 338 -4.2770579457283020e-03
+
+ -5.3326022624969482e-01 2.9435831308364868e-01
+ 1.5501999855041504e-01 -3.0867969989776611e-01
+ <_>
+
+ 1 0 339 5.8752358891069889e-03 2 -1 340
+ 9.5629561692476273e-03 -2 -3 341 -6.8425266363192350e-05
+
+ -6.0491317510604858e-01 4.4039881229400635e-01
+ 1.0206270217895508e-01 -2.5624030828475952e-01
+ <_>
+
+ 1 0 342 5.4002371616661549e-03 2 -1 343
+ 2.9745819047093391e-03 -2 -3 344 -2.5536341127008200e-03
+
+ 4.5371580123901367e-01 -6.0967987775802612e-01
+ 2.2111609578132629e-01 -1.2801170349121094e-01
+ <_>
+
+ 0 1 345 4.0425839833915234e-03 2 -1 346
+ 7.6407291926443577e-03 -2 -3 347 -1.0939979692921042e-03
+
+ -1.9264020025730133e-01 6.1178821325302124e-01
+ -3.7973681092262268e-01 1.6438940167427063e-01
+ <_>
+
+ 1 2 348 -1.1377089685993269e-04 0 -1 349
+ 5.2979402244091034e-03 -2 -3 350 2.9510098975151777e-03
+
+ -2.7770480141043663e-02 4.3019628524780273e-01
+ -3.7912338972091675e-01 1.0130850225687027e-01
+ <_>
+
+ 1 0 351 6.3235480338335037e-03 -1 2 352
+ 3.9955950342118740e-03 -2 -3 353 -5.3595582721754909e-04
+
+ 4.0413460135459900e-01 -1.5097740292549133e-01
+ 5.9522801637649536e-01 -3.4380171447992325e-02
+ <_>
+
+ 1 0 354 3.6193430423736572e-03 2 -1 355
+ 3.4626820124685764e-03 -2 -3 356 2.9030859470367432e-02
+
+ -7.4454522132873535e-01 2.8504610061645508e-01
+ -1.8565440177917480e-01 1.5829989314079285e-01
+ <_>
+
+ 1 0 357 6.0747697716578841e-04 2 -1 358
+ 9.4140451401472092e-03 -2 -3 359 -2.2230610251426697e-02
+
+ -3.3788970112800598e-01 -3.6750578880310059e-01
+ -6.4205718040466309e-01 1.7526410520076752e-01
+ <_>
+
+ 2 1 360 -4.6881791204214096e-03 0 -1 361
+ -3.9184167981147766e-03 -2 -3 362 -6.3269808888435364e-03
+
+ 1.6476869583129883e-01 -2.2729560732841492e-01
+ 5.7388627529144287e-01 5.7931281626224518e-02
+ <_>
+
+ 0 1 363 -3.7428940413519740e-04 2 -1 364
+ 2.8672320768237114e-03 -2 -3 365 2.4337199283763766e-04
+
+ -3.5288140177726746e-01 -4.1419389843940735e-01
+ 2.0027640461921692e-01 -2.8263148665428162e-01
+ <_>
+
+ 0 1 366 -9.1555183753371239e-03 -1 2 367
+ -1.2892490485683084e-03 -2 -3 368 -1.6453899443149567e-03
+
+ -5.4508739709854126e-01 2.5321239233016968e-01
+ 1.7635670304298401e-01 -2.3053619265556335e-01
+ <_>
+
+ 0 1 369 -7.6485536992549896e-02 2 -1 370
+ 3.8297360879369080e-04 -2 -3 371 -2.6448920834809542e-04
+
+ -7.0480287075042725e-01 2.2375050187110901e-01
+ 1.4251540601253510e-01 -2.4608950316905975e-01
+ <_>
+
+ 0 1 372 -7.9496540129184723e-03 -1 2 373
+ -7.7398279681801796e-03 -2 -3 374 -1.0467980057001114e-02
+
+ -4.2123699188232422e-01 -4.6475729346275330e-01
+ -4.7312980890274048e-01 1.3598929345607758e-01
+ <_>
+
+ 1 0 375 9.4248689711093903e-03 2 -1 376
+ -3.7210211157798767e-03 -2 -3 377 -1.6539100557565689e-02
+
+ 3.5587531328201294e-01 -1.5899239480495453e-01
+ -6.1142671108245850e-01 3.3778318762779236e-01
+ <_>
+
+ 1 0 378 1.8258139491081238e-02 -1 2 379
+ -6.1498139984905720e-03 -2 -3 380 1.4396630227565765e-02
+
+ -7.0120972394943237e-01 3.8414189219474792e-01
+ 2.2873559966683388e-02 -4.8029011487960815e-01
+ <_>
+
+ 1 0 381 -4.8927508294582367e-02 -1 2 382
+ -4.9874751130118966e-04 -2 -3 383 -1.2338399887084961e-02
+
+ -1.2219530344009399e-01 4.4899681210517883e-01
+ 5.8306622505187988e-01 -1.5592460334300995e-01
+ <_>
+
+ 1 0 384 4.9237860366702080e-03 -1 2 385
+ 6.4515617850702256e-05 -2 -3 386 -9.0754460543394089e-03
+
+ 5.7889437675476074e-01 -2.2252050042152405e-01
+ 2.5118181109428406e-01 -1.1915980279445648e-01
+ <_>
+
+ 0 1 387 -2.2913129068911076e-03 2 -1 388
+ -1.1618229560554028e-02 -2 -3 389 -2.6231290772557259e-02
+
+ 2.0203049480915070e-01 -2.4990449845790863e-01
+ -7.2858989238739014e-01 2.2483369708061218e-01
+ <_>
+
+ 1 0 390 2.1525719785131514e-04 2 -1 391
+ 5.4147760383784771e-03 -2 -3 392 -6.8281739950180054e-03
+
+ -3.0237621068954468e-01 -3.4467801451683044e-01
+ -5.1470118761062622e-01 1.8762029707431793e-01
+ <_>
+ 29
+ -1.3664239645004272e+00
+
+ <_>
+
+ 1 2 393 8.8577903807163239e-03 0 -1 394
+ 2.2660400718450546e-03 -2 -3 395 1.5509200282394886e-02
+
+ -3.6197811365127563e-01 3.4535628557205200e-01
+ -2.2814500331878662e-01 8.0521601438522339e-01
+ <_>
+
+ 1 2 396 1.9730629399418831e-02 0 -1 397
+ -5.2804131060838699e-02 -2 -3 398 -3.4123551100492477e-02
+
+ 2.2162230312824249e-01 -2.6307260990142822e-01
+ 8.7687742710113525e-01 1.5147949755191803e-01
+ <_>
+
+ 0 1 399 -4.4995918869972229e-03 -1 2 400
+ -3.8060150109231472e-03 -2 -3 401 -6.5935899328906089e-05
+
+ -5.1520478725433350e-01 3.1563198566436768e-01
+ 1.1052650213241577e-01 -3.0016160011291504e-01
+ <_>
+
+ 1 0 402 9.5838904380798340e-03 2 -1 403
+ 4.2877299711108208e-03 -2 -3 404 3.2141651026904583e-03
+
+ 5.2808177471160889e-01 -6.3694041967391968e-01
+ 3.5910170525312424e-02 -5.4334390163421631e-01
+ <_>
+
+ 0 1 405 -7.9250690760090947e-04 2 -1 406
+ -1.5514569822698832e-03 -2 -3 407 -1.7790550366044044e-02
+
+ -4.7867339849472046e-01 -9.1462276875972748e-02
+ 4.5612779259681702e-01 1.0628259740769863e-02
+ <_>
+
+ 2 1 408 -2.5881261099129915e-03 0 -1 409
+ -2.7412150520831347e-03 -2 -3 410 4.4753181282430887e-04
+
+ 1.6198949515819550e-01 -2.9113239049911499e-01
+ -2.8482219576835632e-01 3.3902090787887573e-01
+ <_>
+
+ 0 1 411 -3.6593680270016193e-03 2 -1 412
+ 2.4432500358670950e-03 -2 -3 413 -1.3546410016715527e-02
+
+ -5.1089602708816528e-01 -3.2154849171638489e-01
+ 2.7356979250907898e-01 -1.2062689661979675e-01
+ <_>
+
+ 1 0 414 1.1241570115089417e-01 -1 2 415
+ -4.5845299027860165e-03 -2 -3 416 6.3416222110390663e-03
+
+ 3.6505278944969177e-01 4.4773998856544495e-01
+ -9.7543753683567047e-02 -6.1698240041732788e-01
+ <_>
+
+ 2 1 417 -9.1398190706968307e-03 0 -1 418
+ -8.2371473312377930e-02 -2 -3 419 3.1728888861835003e-03
+
+ 6.1478227376937866e-01 -1.7612460255622864e-01
+ 2.7462399005889893e-01 -5.3833961486816406e-01
+ <_>
+
+ 2 1 420 8.2914117956534028e-04 0 -1 421
+ -1.7079230397939682e-02 -2 -3 422 -4.8665981739759445e-03
+
+ -4.3669781088829041e-01 1.7935889959335327e-01
+ -6.2017709016799927e-02 -5.9141248464584351e-01
+ <_>
+
+ 0 1 423 -3.3614661078900099e-03 -1 2 424
+ -4.4482201337814331e-02 -2 -3 425 -1.8765870481729507e-03
+
+ -4.3437281250953674e-01 -6.8157917261123657e-01
+ -6.8667972087860107e-01 1.1657930165529251e-01
+ <_>
+
+ 1 0 426 2.3192320019006729e-02 -1 2 427
+ -4.5041430741548538e-02 -2 -3 428 2.3778830654919147e-03
+
+ 4.0776708722114563e-01 3.7137511372566223e-01
+ -7.1181386709213257e-02 -5.3898727893829346e-01
+ <_>
+
+ 1 2 429 -1.3468379620462656e-03 0 -1 430
+ 4.3169260025024414e-03 -2 -3 431 4.5682261697947979e-03
+
+ 2.3184180259704590e-01 -3.8448938727378845e-01
+ -2.4857190251350403e-01 1.2519669532775879e-01
+ <_>
+
+ 1 0 432 1.1057799682021141e-02 -1 2 433
+ -6.6700251772999763e-04 -2 -3 434 4.8536141548538581e-05
+
+ -3.8228470087051392e-01 -2.7387779951095581e-01
+ -2.9664589092135429e-02 2.8385889530181885e-01
+ <_>
+
+ 2 1 435 -3.9972390979528427e-02 0 -1 436
+ -1.6880780458450317e-02 -2 -3 437 -5.6082051247358322e-02
+
+ 6.3570600748062134e-01 -1.9189420342445374e-01
+ -9.0092360973358154e-01 1.9145509600639343e-01
+ <_>
+
+ 1 0 438 3.4141261130571365e-03 2 -1 439
+ 9.1075859963893890e-03 -2 -3 440 -1.3897320022806525e-03
+
+ 4.2132571339607239e-01 5.5071562528610229e-01
+ -5.0447541475296021e-01 -4.0802270174026489e-02
+ <_>
+
+ 2 1 441 1.7231719568371773e-02 0 -1 442
+ -2.0052720792591572e-03 -2 -3 443 3.5111181205138564e-04
+
+ -3.1567269563674927e-01 5.5168247222900391e-01
+ 5.6736338883638382e-02 -2.6553949713706970e-01
+ <_>
+
+ 0 1 444 -2.0616729743778706e-03 -1 2 445
+ -1.0434100404381752e-03 -2 -3 446 2.0041360985487700e-03
+
+ -4.9637660384178162e-01 2.5625479221343994e-01
+ -2.3637770116329193e-01 1.2562820315361023e-01
+ <_>
+
+ 0 1 447 -4.6680038794875145e-03 2 -1 448
+ 1.0352090001106262e-02 -2 -3 449 2.9808359686285257e-03
+
+ -5.1331508159637451e-01 3.5214298963546753e-01
+ -1.6628879308700562e-01 1.6649410128593445e-01
+ <_>
+
+ 1 0 450 1.0835190303623676e-02 -1 2 451
+ -3.8211939390748739e-03 -2 -3 452 -3.4161040093749762e-03
+
+ -3.8929209113121033e-01 3.5466459393501282e-01
+ -4.5814520120620728e-01 4.5853018760681152e-02
+ <_>
+
+ 2 1 453 -5.8807642199099064e-03 0 -1 454
+ -3.4913890063762665e-02 -2 -3 455 4.8959217965602875e-03
+
+ 1.0240379720926285e-01 -2.5945249199867249e-01
+ 2.6778548955917358e-01 -4.8959800601005554e-01
+ <_>
+
+ 1 0 456 5.8120768517255783e-03 -1 2 457
+ 3.5575949586927891e-03 -2 -3 458 2.5241500698029995e-03
+
+ 3.0377060174942017e-01 -1.8064819276332855e-01
+ 4.1480910778045654e-01 -1.9794499874114990e-01
+ <_>
+
+ 1 0 459 1.5492970123887062e-02 2 -1 460
+ 2.3261269961949438e-04 -2 -3 461 -2.1607619710266590e-03
+
+ 4.7802209854125977e-01 -3.0891039967536926e-01
+ -4.0223160386085510e-01 1.1098849773406982e-01
+ <_>
+
+ 1 0 462 3.5326189827173948e-03 -1 2 463
+ -3.3474999945610762e-03 -2 -3 464 2.9168210923671722e-02
+
+ 2.2489060461521149e-01 1.6631869971752167e-01
+ -7.4026778340339661e-02 -4.5744699239730835e-01
+ <_>
+
+ 0 1 465 -1.6242500394582748e-02 -1 2 466
+ -7.5024510733783245e-03 -2 -3 467 1.7816389445215464e-03
+
+ -4.3497189879417419e-01 1.6646090149879456e-01
+ -3.9155849814414978e-01 8.0571353435516357e-02
+ <_>
+
+ 2 1 468 -7.2545823059044778e-05 0 -1 469
+ 6.1626458773389459e-05 -2 -3 470 -4.3781189015135169e-04
+
+ -4.1679731011390686e-01 6.0808397829532623e-03
+ 3.1920549273490906e-01 -7.7506266534328461e-02
+ <_>
+
+ 1 2 471 -3.0576970311813056e-04 0 -1 472
+ -1.3107899576425552e-02 -2 -3 473 -7.4203108670189977e-04
+
+ -3.6462840437889099e-01 2.2391660511493683e-01
+ 6.8343617022037506e-02 -2.9597601294517517e-01
+ <_>
+
+ 0 1 474 -7.7575328759849072e-03 2 -1 475
+ 3.0043099541217089e-03 -2 -3 476 -5.8561760932207108e-02
+
+ 4.5748728513717651e-01 1.8059000372886658e-01
+ 2.6555559039115906e-01 -2.0381399989128113e-01
+ <_>
+
+ 0 1 477 -2.5295289233326912e-02 -1 2 478
+ -4.9810659140348434e-02 -2 -3 479 -2.4564980994910002e-03
+
+ -5.8704811334609985e-01 -8.4442830085754395e-01
+ 4.4017440080642700e-01 3.7946549709886312e-03
+ <_>
+ 25
+ -1.3621879816055298e+00
+
+ <_>
+
+ 2 1 480 -2.3795999586582184e-02 0 -1 481
+ -4.2916718870401382e-02 -2 -3 482 -9.9466904066503048e-04
+
+ 2.1881549619138241e-03 -4.9640420079231262e-01
+ 8.3718097209930420e-01 -3.0279759317636490e-02
+ <_>
+
+ 0 1 483 1.3895650394260883e-02 2 -1 484
+ -2.2832138929516077e-03 -2 -3 485 -4.8447579145431519e-01
+
+ -3.9495769143104553e-01 -3.8689300417900085e-02
+ 8.3933347463607788e-01 2.3111909627914429e-01
+ <_>
+
+ 0 1 486 -7.3761418461799622e-03 2 -1 487
+ 3.3793840557336807e-03 -2 -3 488 -3.3415269106626511e-02
+
+ 2.3094999790191650e-01 9.1608531773090363e-02
+ 1.1462929844856262e-01 -5.4809182882308960e-01
+ <_>
+
+ 0 1 489 -7.6022851280868053e-03 2 -1 490
+ 7.6229616999626160e-02 -2 -3 491 -3.7729479372501373e-03
+
+ -5.7959568500518799e-01 3.4666779637336731e-01
+ 1.1899670213460922e-01 -2.7983540296554565e-01
+ <_>
+
+ 2 1 492 -4.2590490193106234e-04 0 -1 493
+ -9.4475867226719856e-03 -2 -3 494 -8.0220031738281250e-01
+
+ 1.4403289556503296e-01 -2.8053888678550720e-01
+ 6.6430008411407471e-01 5.4834768176078796e-02
+ <_>
+
+ 0 1 495 -2.8851430397480726e-03 -1 2 496
+ -1.2341480469331145e-03 -2 -3 497 4.8669218813301995e-05
+
+ -3.8836699724197388e-01 -3.6734551191329956e-01
+ -7.8982323408126831e-02 3.0184748768806458e-01
+ <_>
+
+ 0 1 498 -1.6491800546646118e-01 -1 2 499
+ 1.0784890037029982e-03 -2 -3 500 -2.8511860873550177e-03
+
+ 3.8886231184005737e-01 -2.4477399885654449e-01
+ 4.5753139257431030e-01 -5.3499769419431686e-02
+ <_>
+
+ 2 1 501 -3.2212301157414913e-03 0 -1 502
+ 3.4995030146092176e-03 -2 -3 503 -1.0098779574036598e-02
+
+ -2.4303850531578064e-01 1.5881340205669403e-01
+ -5.5816608667373657e-01 3.2196229696273804e-01
+ <_>
+
+ 0 1 504 -6.6468201112002134e-04 -1 2 505
+ -3.6263898946344852e-03 -2 -3 506 -7.6791420578956604e-02
+
+ 2.4572889506816864e-01 1.8094339966773987e-01
+ 2.6634529232978821e-01 -3.5051029920578003e-01
+ <_>
+
+ 0 1 507 -2.7685859240591526e-03 2 -1 508
+ 2.5676529854536057e-02 -2 -3 509 -4.6753739006817341e-03
+
+ -4.3504360318183899e-01 -3.5143280029296875e-01
+ 4.1049909591674805e-01 3.3144820481538773e-02
+ <_>
+
+ 1 0 510 6.7022559233009815e-03 -1 2 511
+ 1.6208000481128693e-02 -2 -3 512 -1.1024869978427887e-02
+
+ -4.9738308787345886e-01 -1.7945469915866852e-01
+ 4.0457150340080261e-01 -4.3077580630779266e-02
+ <_>
+
+ 2 1 513 7.7911361586302519e-04 0 -1 514
+ -1.8139690160751343e-01 -2 -3 515 -1.2972550466656685e-03
+
+ 5.1866638660430908e-01 -7.5364969670772552e-02
+ -5.0643932819366455e-01 -1.7226299270987511e-02
+ <_>
+
+ 1 0 516 2.0431660115718842e-02 2 -1 517
+ 1.6622639959678054e-03 -2 -3 518 -2.7155179996043444e-03
+
+ -7.0584601163864136e-01 -4.5102250576019287e-01
+ -4.4598218798637390e-01 1.3886100053787231e-01
+ <_>
+
+ 0 1 519 4.2074210796272382e-05 2 -1 520
+ 9.3489577993750572e-03 -2 -3 521 -1.3226609677076340e-02
+
+ -2.2170229256153107e-01 -4.6554449200630188e-01
+ 5.4859870672225952e-01 6.7970179021358490e-02
+ <_>
+
+ 0 1 522 -1.5071720117703080e-03 2 -1 523
+ 8.7646767497062683e-03 -2 -3 524 -1.0542649775743484e-02
+
+ 4.6481129527091980e-01 2.7992910146713257e-01
+ 2.1239709854125977e-01 -2.2514510154724121e-01
+ <_>
+
+ 0 1 525 -6.4357798546552658e-03 2 -1 526
+ 7.8919027000665665e-03 -2 -3 527 -7.8666176705155522e-05
+
+ -4.1811630129814148e-01 -6.2211698293685913e-01
+ 2.7184090018272400e-01 -4.2934559285640717e-02
+ <_>
+
+ 1 0 528 8.2855960354208946e-03 2 -1 529
+ 5.4834279580973089e-05 -2 -3 530 2.4197530001401901e-03
+
+ 3.4669309854507446e-01 7.2008788585662842e-02
+ -3.7774428725242615e-01 1.7871029675006866e-01
+ <_>
+
+ 2 1 531 -6.7930121440440416e-04 0 -1 532
+ -5.6035388261079788e-03 -2 -3 533 8.4534510970115662e-03
+
+ 1.6817240417003632e-01 -2.7659809589385986e-01
+ 6.9586731493473053e-02 6.7284989356994629e-01
+ <_>
+
+ 1 0 534 4.4707441702485085e-03 -1 2 535
+ -9.1664772480726242e-03 -2 -3 536 -7.1168012917041779e-02
+
+ -4.2183759808540344e-01 3.6319440603256226e-01
+ -5.9520107507705688e-01 2.3322079330682755e-02
+ <_>
+
+ 1 2 537 -3.6344379186630249e-03 0 -1 538
+ -5.8278841897845268e-03 -2 -3 539 -2.5245670694857836e-03
+
+ -3.5108420252799988e-01 2.7366310358047485e-01
+ 1.4989720284938812e-01 -2.4933290481567383e-01
+ <_>
+
+ 1 0 540 5.6592230685055256e-03 2 -1 541
+ 4.0714079514145851e-03 -2 -3 542 -1.1921550147235394e-02
+
+ -3.4733161330223083e-01 -4.7359859943389893e-01
+ -4.0016528964042664e-01 1.5767680108547211e-01
+ <_>
+
+ 1 2 543 9.8874024115502834e-04 0 -1 544
+ 1.4633700484409928e-03 -2 -3 545 -7.6617081649601460e-03
+
+ 2.1033559739589691e-01 -1.5317709743976593e-01
+ 2.3481769859790802e-01 -3.7187078595161438e-01
+ <_>
+
+ 2 1 546 -1.7770569771528244e-02 0 -1 547
+ 8.8388901203870773e-03 -2 -3 548 -1.0058529675006866e-02
+
+ -1.6414129734039307e-01 4.8245888948440552e-01
+ -5.4388159513473511e-01 2.8127178549766541e-01
+ <_>
+
+ 1 0 549 2.8392190579324961e-03 -1 2 550
+ -7.8546267468482256e-04 -2 -3 551 4.2725168896140531e-05
+
+ -3.8577800989151001e-01 -3.2860949635505676e-01
+ -4.6654768288135529e-02 2.7741169929504395e-01
+ <_>
+
+ 1 0 552 5.1506902091205120e-03 -1 2 553
+ -8.3640925586223602e-03 -2 -3 554 -8.8340323418378830e-03
+
+ 2.7348038554191589e-01 1.4315670728683472e-01
+ 5.4049361497163773e-02 -3.6266559362411499e-01
+ <_>
+ 16
+ -1.3905019760131836e+00
+
+ <_>
+
+ 1 2 555 1.7114889621734619e-01 0 -1 556
+ 3.2740959431976080e-03 -2 -3 557 4.8062200658023357e-03
+
+ -5.5645358562469482e-01 5.5018130689859390e-02
+ 1.1190200224518776e-02 7.9551488161087036e-01
+ <_>
+
+ 2 1 558 1.8143800552934408e-03 0 -1 559
+ -4.2795971035957336e-01 -2 -3 560 -6.3261981122195721e-03
+
+ 5.8408319950103760e-01 -1.3940179720520973e-02
+ 1.6659989953041077e-01 -5.0161522626876831e-01
+ <_>
+
+ 1 2 561 1.0702019557356834e-02 0 -1 562
+ 7.3792198672890663e-03 -2 -3 563 4.8895571380853653e-03
+
+ -4.0653520822525024e-01 1.2877050042152405e-01
+ 4.3990871310234070e-01 -7.8997397422790527e-01
+ <_>
+
+ 1 2 564 1.0012320242822170e-02 0 -1 565
+ 3.4356310963630676e-01 -2 -3 566 -7.2859530337154865e-03
+
+ -2.5616368651390076e-01 4.6377441287040710e-01
+ 5.8014488220214844e-01 -5.4609451442956924e-02
+ <_>
+
+ 0 1 567 -1.5099609736353159e-03 2 -1 568
+ 2.9597719549201429e-04 -2 -3 569 1.0984730033669621e-04
+
+ -6.4054518938064575e-01 3.8956710696220398e-01
+ -3.4113371372222900e-01 1.1111719906330109e-01
+ <_>
+
+ 0 1 570 -3.2580990809947252e-03 -1 2 571
+ -3.8750080857425928e-03 -2 -3 572 1.4542469754815102e-02
+
+ -7.3414462804794312e-01 -6.3508582115173340e-01
+ 1.7632520198822021e-01 -6.6695272922515869e-01
+ <_>
+
+ 1 0 573 2.6616070419549942e-02 2 -1 574
+ 5.2236141636967659e-03 -2 -3 575 5.8677811175584793e-03
+
+ -7.5831902027130127e-01 -6.2622100114822388e-01
+ -3.1810950487852097e-02 4.1031879186630249e-01
+ <_>
+
+ 2 1 576 -1.0499180061742663e-03 0 -1 577
+ 2.3986180312931538e-03 -2 -3 578 1.1009530164301395e-02
+
+ -5.2936470508575439e-01 2.2620279341936111e-02
+ 3.0528450012207031e-01 -7.4659830331802368e-01
+ <_>
+
+ 0 1 579 -2.3957889527082443e-02 -1 2 580
+ -3.6849190946668386e-03 -2 -3 581 3.4864700865000486e-03
+
+ -5.8027571439743042e-01 3.0985590815544128e-01
+ -3.1498908996582031e-01 1.3219730556011200e-01
+ <_>
+
+ 0 1 582 -1.9150340557098389e-01 -1 2 583
+ -8.0496361479163170e-03 -2 -3 584 1.2236339971423149e-02
+
+ 4.3646478652954102e-01 1.7165799438953400e-01
+ -3.6382019519805908e-01 2.3967529833316803e-01
+ <_>
+
+ 0 1 585 -2.0347100216895342e-03 -1 2 586
+ -5.5528031662106514e-03 -2 -3 587 -3.2379259355366230e-03
+
+ -5.9768581390380859e-01 -5.4164600372314453e-01
+ -5.3870290517807007e-01 1.8444229662418365e-01
+ <_>
+
+ 1 0 588 9.0606305748224258e-03 -1 2 589
+ -4.1239038109779358e-03 -2 -3 590 3.5246899351477623e-03
+
+ 3.1039738655090332e-01 1.8052390217781067e-01
+ -4.7347640991210938e-01 1.5349459834396839e-02
+ <_>
+
+ 1 0 591 5.2378959953784943e-03 -1 2 592
+ -9.4280708581209183e-03 -2 -3 593 -7.9351589083671570e-03
+
+ -4.5859739184379578e-01 -6.3323330879211426e-01
+ -6.1539369821548462e-01 1.6920439898967743e-01
+ <_>
+
+ 0 1 594 -7.7211041934788227e-03 2 -1 595
+ 9.0800300240516663e-03 -2 -3 596 -4.3125250376760960e-03
+
+ -6.5861612558364868e-01 -7.1446138620376587e-01
+ 3.4336578845977783e-01 -4.6265859156847000e-02
+ <_>
+
+ 1 0 597 2.3179050534963608e-02 -1 2 598
+ -2.1390080451965332e-02 -2 -3 599 -2.3761409521102905e-01
+
+ 3.6338710784912109e-01 1.8276840448379517e-01
+ 6.1675137281417847e-01 -3.4261471033096313e-01
+ <_>
+
+ 1 0 600 2.1705040708184242e-03 -1 2 601
+ 7.8210679930634797e-05 -2 -3 602 5.5145919322967529e-03
+
+ 3.0056789517402649e-01 -3.4116759896278381e-01
+ 2.3386859893798828e-01 -4.2150521278381348e-01
+ <_>
+ 25
+ -1.3378640413284302e+00
+
+ <_>
+
+ 1 2 603 -2.2743379697203636e-02 0 -1 604
+ 1.8450849456712604e-03 -2 -3 605 1.3338179886341095e-01
+
+ -8.9552268385887146e-02 7.4778342247009277e-01
+ -4.4504231214523315e-01 -1.7580920830368996e-02
+ <_>
+
+ 0 1 606 6.3608489930629730e-02 -1 2 607
+ -2.5199958682060242e-01 -2 -3 608 -1.2144230306148529e-01
+
+ -3.7739220261573792e-01 4.9088031053543091e-01
+ 6.3825917243957520e-01 -1.1822170019149780e-01
+ <_>
+
+ 1 0 609 2.6287150103598833e-03 2 -1 610
+ 3.0568530783057213e-03 -2 -3 611 8.1901780504267663e-05
+
+ -4.6926748752593994e-01 -6.5101218223571777e-01
+ -1.1639259755611420e-01 3.0188819766044617e-01
+ <_>
+
+ 1 0 612 -1.6189720481634140e-03 2 -1 613
+ 1.8283469835296273e-03 -2 -3 614 -3.9073298685252666e-03
+
+ -2.0891909301280975e-01 -1.9859300553798676e-01
+ -3.4454259276390076e-01 3.7140819430351257e-01
+ <_>
+
+ 0 1 615 8.3928240928798914e-04 2 -1 616
+ 3.7175789475440979e-03 -2 -3 617 5.1694628782570362e-03
+
+ -1.5356570482254028e-01 -5.0904238224029541e-01
+ 3.5618001222610474e-01 -5.5773228406906128e-01
+ <_>
+
+ 1 0 618 2.5797619018703699e-03 -1 2 619
+ -6.0318140313029289e-03 -2 -3 620 6.4257727935910225e-03
+
+ -4.2096439003944397e-01 -4.3999868631362915e-01
+ 1.8873579800128937e-01 -4.5191749930381775e-01
+ <_>
+
+ 1 0 621 3.4354510717093945e-03 2 -1 622
+ 2.3672808893024921e-03 -2 -3 623 -2.0294289570301771e-03
+
+ 2.7395468950271606e-01 2.3808500170707703e-01
+ -4.7586150467395782e-02 -4.8159629106521606e-01
+ <_>
+
+ 0 1 624 -4.8436429351568222e-03 2 -1 625
+ 3.0318649951368570e-03 -2 -3 626 -1.1691249907016754e-02
+
+ -4.9325150251388550e-01 -4.7109460830688477e-01
+ -5.8763760328292847e-01 1.4840489625930786e-01
+ <_>
+
+ 1 0 627 6.5642758272588253e-05 2 -1 628
+ -6.9199966674204916e-05 -2 -3 629 -2.8953890432603657e-04
+
+ 2.0787779986858368e-01 -4.2199170589447021e-01
+ -3.4657689929008484e-01 2.4809280037879944e-01
+ <_>
+
+ 1 2 630 4.0080421604216099e-03 0 -1 631
+ 5.0496991025283933e-04 -2 -3 632 -8.1637818366289139e-03
+
+ -2.9731631278991699e-01 6.3133187592029572e-02
+ 6.3499641418457031e-01 -1.4965349435806274e-01
+ <_>
+
+ 1 0 633 4.9255997873842716e-03 -1 2 634
+ -1.9985990598797798e-02 -2 -3 635 6.5322928130626678e-03
+
+ -5.8709067106246948e-01 4.1946971416473389e-01
+ -1.3393980264663696e-01 2.6131281256675720e-01
+ <_>
+
+ 1 0 636 5.1231118850409985e-03 2 -1 637
+ -4.0335211087949574e-04 -2 -3 638 2.9234900139272213e-03
+
+ -3.6397430300712585e-01 -1.1776120215654373e-01
+ -1.2529510073363781e-02 4.6132311224937439e-01
+ <_>
+
+ 1 0 639 3.5967670381069183e-02 2 -1 640
+ 6.5072569996118546e-03 -2 -3 641 -1.0821050032973289e-02
+
+ 4.5991379022598267e-01 3.2189390063285828e-01
+ 3.0423519015312195e-01 -2.0769970118999481e-01
+ <_>
+
+ 0 1 642 -3.7279170937836170e-03 -1 2 643
+ -8.9352466166019440e-03 -2 -3 644 3.9792140014469624e-03
+
+ -4.7056239843368530e-01 3.1361898779869080e-01
+ -1.8559350073337555e-01 3.0811190605163574e-01
+ <_>
+
+ 1 0 645 1.9110339926555753e-03 -1 2 646
+ -6.8130958825349808e-03 -2 -3 647 -6.4241990912705660e-04
+
+ -4.4997429847717285e-01 -4.4663950800895691e-01
+ 2.5373989343643188e-01 -6.7794866859912872e-02
+ <_>
+
+ 1 0 648 4.8487721942365170e-03 -1 2 649
+ -2.2816660348325968e-03 -2 -3 650 -1.1166459880769253e-03
+
+ 2.1777780354022980e-01 7.4151009321212769e-02
+ 1.3762679696083069e-01 -4.5716550946235657e-01
+ <_>
+
+ 1 0 651 -5.7191308587789536e-03 2 -1 652
+ 1.9458220340311527e-03 -2 -3 653 1.7544110305607319e-03
+
+ -2.0206199586391449e-01 5.1613742113113403e-01
+ 1.8209919333457947e-01 -2.4927709996700287e-01
+ <_>
+
+ 1 0 654 6.5033212304115295e-03 2 -1 655
+ 2.3260021116584539e-03 -2 -3 656 -5.0675291568040848e-03
+
+ -6.0831350088119507e-01 -4.5783790946006775e-01
+ -4.6264541149139404e-01 1.3114589452743530e-01
+ <_>
+
+ 1 2 657 -1.4921430265530944e-03 0 -1 658
+ -1.3755200430750847e-02 -2 -3 659 6.3531019259244204e-04
+
+ -4.3485641479492188e-01 2.0381599664688110e-01
+ -3.2480859756469727e-01 1.9679710268974304e-01
+ <_>
+
+ 1 2 660 -1.0971709853038192e-03 0 -1 661
+ 2.1464130841195583e-03 -2 -3 662 1.0343589819967747e-02
+
+ 2.2354440391063690e-01 -2.5036358833312988e-01
+ -2.7500569820404053e-01 3.2847368717193604e-01
+ <_>
+
+ 0 1 663 -1.3076810538768768e-01 -1 2 664
+ -8.7650436908006668e-03 -2 -3 665 -3.0066180624999106e-04
+
+ -7.7974641323089600e-01 3.8356649875640869e-01
+ -3.0849298834800720e-01 5.5713050067424774e-02
+ <_>
+
+ 0 1 666 -1.0776310227811337e-02 2 -1 667
+ 7.3227831162512302e-03 -2 -3 668 -2.1263879537582397e-01
+
+ -5.3079968690872192e-01 3.0776378512382507e-01
+ -6.5190672874450684e-01 2.3253040853887796e-03
+ <_>
+
+ 1 0 669 6.5717170946300030e-03 -1 2 670
+ -1.6367210075259209e-02 -2 -3 671 -1.5086789615452290e-02
+
+ 2.4296599626541138e-01 4.0867790579795837e-01
+ 1.5299239754676819e-01 -2.5561499595642090e-01
+ <_>
+
+ 1 2 672 4.5563760213553905e-03 0 -1 673
+ 7.2980518452823162e-03 -2 -3 674 2.3971209302544594e-02
+
+ 8.6251303553581238e-02 -5.1425570249557495e-01
+ -6.8491697311401367e-01 3.9260080456733704e-01
+ <_>
+
+ 1 0 675 3.5279770381748676e-03 -1 2 676
+ -5.4452237673103809e-03 -2 -3 677 8.1267702626064420e-04
+
+ -5.8989018201828003e-01 4.1997981071472168e-01
+ -2.5605329871177673e-01 7.9393006861209869e-02
+ <_>
+ 30
+ -1.2140669822692871e+00
+
+ <_>
+
+ 1 2 678 -2.7691459283232689e-02 0 -1 679
+ 1.3043059734627604e-03 -2 -3 680 -1.9430460408329964e-02
+
+ -1.3037249445915222e-01 7.8108358383178711e-01
+ 1.4480729587376118e-02 -3.7184581160545349e-01
+ <_>
+
+ 2 1 681 -1.2235040217638016e-01 0 -1 682
+ -9.8456647247076035e-03 -2 -3 683 -7.4350096285343170e-02
+
+ 2.8437229990959167e-01 -2.3675830662250519e-01
+ 5.8174878358840942e-01 -2.8041550889611244e-02
+ <_>
+
+ 0 1 684 5.4055661894381046e-03 -1 2 685
+ -3.7805580068379641e-03 -2 -3 686 -6.2997087836265564e-02
+
+ -3.3748638629913330e-01 -4.6232721209526062e-01
+ 4.2070108652114868e-01 -1.6759809805080295e-03
+ <_>
+
+ 0 1 687 -5.5793630890548229e-03 -1 2 688
+ -2.2814329713582993e-03 -2 -3 689 3.9111520163714886e-03
+
+ -6.4612352848052979e-01 -4.6796101331710815e-01
+ -2.5594810023903847e-02 3.3460310101509094e-01
+ <_>
+
+ 2 1 690 -3.5144959110766649e-03 0 -1 691
+ -5.8226250112056732e-03 -2 -3 692 -3.5309740342199802e-03
+
+ 1.1143500357866287e-01 -3.0549728870391846e-01
+ -3.7789401412010193e-01 2.9324159026145935e-01
+ <_>
+
+ 2 1 693 -1.6653330530971289e-03 0 -1 694
+ -5.3326018154621124e-02 -2 -3 695 8.0891316756606102e-03
+
+ 1.7236860096454620e-01 -3.9026060700416565e-01
+ -1.6290800645947456e-02 3.9434731006622314e-01
+ <_>
+
+ 0 1 696 -3.7783260922878981e-03 2 -1 697
+ 6.9123809225857258e-03 -2 -3 698 -2.1676100790500641e-02
+
+ -5.9947258234024048e-01 3.4755259752273560e-01
+ 3.3966198563575745e-01 -1.2729069590568542e-01
+ <_>
+
+ 1 0 699 4.8390422016382217e-03 -1 2 700
+ -8.3583313971757889e-03 -2 -3 701 3.7209360743872821e-04
+
+ -3.6860859394073486e-01 3.6083450913429260e-01
+ 5.5149830877780914e-02 -3.8888710737228394e-01
+ <_>
+
+ 1 0 702 2.4114940315485001e-03 -1 2 703
+ -2.2250239271670580e-03 -2 -3 704 5.9994249604642391e-03
+
+ -3.4846460819244385e-01 2.5639998912811279e-01
+ -3.3086439967155457e-01 6.3943088054656982e-02
+ <_>
+
+ 1 0 705 1.2653459794819355e-02 2 -1 706
+ 9.6980258822441101e-03 -2 -3 707 4.6688161790370941e-02
+
+ -6.5382891893386841e-01 3.2730111479759216e-01
+ 6.1174212023615837e-03 -5.0968867540359497e-01
+ <_>
+
+ 1 0 708 1.7876239726319909e-03 2 -1 709
+ 1.2315230444073677e-02 -2 -3 710 -5.9714429080486298e-03
+
+ 2.5808030366897583e-01 1.8367570638656616e-01
+ 9.3017883598804474e-02 -3.3489298820495605e-01
+ <_>
+
+ 0 1 711 -4.6226778067648411e-03 -1 2 712
+ -1.8949989229440689e-02 -2 -3 713 -2.6787531375885010e-01
+
+ -6.0853439569473267e-01 -6.2188267707824707e-01
+ -4.4505828619003296e-01 1.1461599916219711e-01
+ <_>
+
+ 1 2 714 5.3505371324717999e-03 0 -1 715
+ 2.8202211251482368e-04 -2 -3 716 -2.1514539548661560e-04
+
+ -3.3214330673217773e-01 1.1352939903736115e-01
+ 3.9949831366539001e-01 -7.2412580251693726e-02
+ <_>
+
+ 0 1 717 -7.1091961581259966e-04 -1 2 718
+ 3.9453650970244780e-05 -2 -3 719 -1.5662070363759995e-02
+
+ -3.4575951099395752e-01 -1.4114260673522949e-01
+ 4.7070771455764771e-01 8.7163902819156647e-02
+ <_>
+
+ 2 1 720 -2.9816610738635063e-02 0 -1 721
+ 8.2333059981465340e-04 -2 -3 722 -4.9664578400552273e-03
+
+ -1.4977900311350822e-02 -4.1764840483665466e-01
+ 4.4018781185150146e-01 -2.0097310189157724e-03
+ <_>
+
+ 1 2 723 9.6796536818146706e-03 0 -1 724
+ 1.4388150302693248e-03 -2 -3 725 -6.5185758285224438e-04
+
+ -2.8451511263847351e-01 1.1680959910154343e-01
+ 3.4258028864860535e-01 -2.7020359039306641e-01
+ <_>
+
+ 0 1 726 -4.6871218830347061e-02 -1 2 727
+ -2.2867210209369659e-02 -2 -3 728 -1.1887500295415521e-03
+
+ -3.9659130573272705e-01 -3.4727048873901367e-01
+ 2.6036709547042847e-01 -4.2848858982324600e-02
+ <_>
+
+ 1 0 729 4.3433779501356184e-04 -1 2 730
+ -2.0600060001015663e-02 -2 -3 731 3.2824440859258175e-03
+
+ -2.2835609316825867e-01 -5.0135952234268188e-01
+ 1.6683070361614227e-01 -5.0252157449722290e-01
+ <_>
+
+ 0 1 732 -1.9087310880422592e-02 -1 2 733
+ -1.1216020211577415e-02 -2 -3 734 7.7710166573524475e-02
+
+ 4.1381299495697021e-01 1.5498070418834686e-01
+ -2.9895618557929993e-01 1.7541980743408203e-01
+ <_>
+
+ 0 1 735 3.1873160041868687e-03 -1 2 736
+ -1.0656990110874176e-01 -2 -3 737 -5.1779888570308685e-02
+
+ -8.5479579865932465e-02 -5.1295292377471924e-01
+ -5.0179839134216309e-01 3.8466781377792358e-01
+ <_>
+
+ 1 0 738 1.5107400249689817e-03 2 -1 739
+ 3.1244980636984110e-03 -2 -3 740 -1.3240240514278412e-03
+
+ -3.3874571323394775e-01 -2.1653899550437927e-01
+ 3.3594998717308044e-01 -1.2085800059139729e-02
+ <_>
+
+ 0 1 741 -1.6975030303001404e-02 2 -1 742
+ 7.9635268775746226e-04 -2 -3 743 -8.4425378590822220e-03
+
+ 5.1493197679519653e-01 -2.2367909550666809e-01
+ -5.4637181758880615e-01 1.2477649748325348e-01
+ <_>
+
+ 1 0 744 1.4797519892454147e-02 2 -1 745
+ 3.8537830114364624e-03 -2 -3 746 -2.5684939697384834e-02
+
+ 4.0930178761482239e-01 2.5966641306877136e-01
+ 4.6507820487022400e-02 -3.1387579441070557e-01
+ <_>
+
+ 0 1 747 -1.9678380340337753e-03 2 -1 748
+ 1.9392849644646049e-03 -2 -3 749 -5.7980217970907688e-03
+
+ -3.4348770976066589e-01 -2.3071029782295227e-01
+ -4.2302230000495911e-01 1.8470630049705505e-01
+ <_>
+
+ 1 0 750 6.0432781465351582e-03 2 -1 751
+ 2.2162510140333325e-04 -2 -3 752 -2.5901809567585588e-04
+
+ 2.0985080301761627e-01 -3.4345629811286926e-01
+ -4.0245899558067322e-01 9.6283361315727234e-02
+ <_>
+
+ 0 1 753 -4.6646450646221638e-03 -1 2 754
+ 1.8331389874219894e-03 -2 -3 755 -5.4393261671066284e-03
+
+ -4.0147981047630310e-01 -7.4128046631813049e-02
+ -7.1304339170455933e-01 2.5141170620918274e-01
+ <_>
+
+ 1 2 756 -4.2101307772099972e-03 0 -1 757
+ -8.6573585867881775e-03 -2 -3 758 -2.5619829073548317e-02
+
+ 5.5250108242034912e-01 -8.8310241699218750e-02
+ 4.0513488650321960e-01 -1.2086849659681320e-01
+ <_>
+
+ 0 1 759 -9.3565601855516434e-03 -1 2 760
+ -9.7968382760882378e-04 -2 -3 761 4.5081991702318192e-02
+
+ 1.4859180152416229e-01 1.5276379883289337e-01
+ -3.3007758855819702e-01 4.9553450942039490e-01
+ <_>
+
+ 1 0 762 2.0435510668903589e-03 -1 2 763
+ -5.1532210782170296e-03 -2 -3 764 2.5609789881855249e-03
+
+ -5.4895031452178955e-01 -5.9945631027221680e-01
+ -3.6197409033775330e-02 2.5463849306106567e-01
+ <_>
+
+ 2 1 765 -2.8830259107053280e-03 0 -1 766
+ 2.4457499966956675e-04 -2 -3 767 3.4641250967979431e-03
+
+ 3.6667680740356445e-01 -8.9348360896110535e-02
+ -2.2523890435695648e-01 1.6340459883213043e-01
+ <_>
+ 23
+ -1.3826370239257812e+00
+
+ <_>
+
+ 2 1 768 6.3124410808086395e-03 0 -1 769
+ -2.9899911023676395e-03 -2 -3 770 -5.2643599919974804e-03
+
+ 8.2071298360824585e-01 5.6462198495864868e-02
+ 1.8240800499916077e-01 -4.2487311363220215e-01
+ <_>
+
+ 1 2 771 2.4592089466750622e-03 0 -1 772
+ 4.2719349265098572e-01 -2 -3 773 3.0295109376311302e-02
+
+ -3.3858558535575867e-01 1.5100230276584625e-01
+ 7.8724241256713867e-01 -5.8373618125915527e-01
+ <_>
+
+ 1 0 774 5.7569369673728943e-03 -1 2 775
+ -9.9140219390392303e-03 -2 -3 776 8.0783478915691376e-03
+
+ 4.2810270190238953e-01 3.5321989655494690e-01
+ -4.0107539296150208e-01 1.2523290514945984e-01
+ <_>
+
+ 0 1 777 -3.5829450935125351e-02 2 -1 778
+ 3.0664550140500069e-02 -2 -3 779 -1.3575930148363113e-02
+
+ -3.8963070511817932e-01 6.7701917886734009e-01
+ 3.0789810419082642e-01 -1.1214990168809891e-01
+ <_>
+
+ 0 1 780 -3.1188609078526497e-02 -1 2 781
+ -1.7885420471429825e-02 -2 -3 782 2.3879480431787670e-04
+
+ -5.0550907850265503e-01 -5.2990978956222534e-01
+ 2.6112490892410278e-01 -1.2882560491561890e-01
+ <_>
+
+ 1 0 783 8.5746757686138153e-03 2 -1 784
+ 2.3016470950096846e-03 -2 -3 785 4.6683140099048615e-03
+
+ 4.8921179771423340e-01 1.5979060530662537e-01
+ -3.8685420155525208e-01 2.4002879858016968e-01
+ <_>
+
+ 1 0 786 5.3485399112105370e-03 2 -1 787
+ 2.3726709187030792e-02 -2 -3 788 -3.0209170654416084e-04
+
+ 3.4825628995895386e-01 5.2329671382904053e-01
+ -4.4047841429710388e-01 -3.3358339220285416e-02
+ <_>
+
+ 0 1 789 -1.6881260275840759e-01 -1 2 790
+ -1.8069280486088246e-04 -2 -3 791 -2.7342080138623714e-03
+
+ -6.5631157159805298e-01 -2.7557009458541870e-01
+ 4.0996900200843811e-01 3.1245049089193344e-02
+ <_>
+
+ 2 1 792 -3.1896680593490601e-03 0 -1 793
+ -1.6777559649199247e-03 -2 -3 794 7.5925810961052775e-04
+
+ 3.1674280762672424e-01 -1.3047559559345245e-01
+ 8.2382179796695709e-02 7.4721777439117432e-01
+ <_>
+
+ 1 2 795 1.7604179680347443e-02 0 -1 796
+ -2.5936108827590942e-01 -2 -3 797 -2.4794649798423052e-03
+
+ 2.6953551173210144e-01 -3.3992108702659607e-01
+ 5.0643271207809448e-01 2.7994990348815918e-02
+ <_>
+
+ 0 1 798 -5.7244639843702316e-02 -1 2 799
+ -2.9133851057849824e-04 -2 -3 800 3.0808679759502411e-02
+
+ -6.9636821746826172e-01 -3.1919568777084351e-01
+ 1.3237810134887695e-01 -7.6749938726425171e-01
+ <_>
+
+ 1 0 801 2.8046660125255585e-02 2 -1 802
+ -3.7829200737178326e-03 -2 -3 803 -1.3911469839513302e-02
+
+ 6.9832587242126465e-01 -2.1438920497894287e-01
+ 3.3778458833694458e-01 -9.6943713724613190e-02
+ <_>
+
+ 0 1 804 -9.6410012338310480e-04 -1 2 805
+ -4.1028819978237152e-03 -2 -3 806 7.6512782834470272e-04
+
+ 2.7303680777549744e-01 1.8931980431079865e-01
+ -3.2082849740982056e-01 8.1871077418327332e-02
+ <_>
+
+ 0 1 807 -2.2203559638001025e-04 -1 2 808
+ -2.5135980104096234e-04 -2 -3 809 -1.7842829402070493e-04
+
+ -2.9679200053215027e-01 -2.7259480953216553e-01
+ -2.2551620006561279e-01 2.9105350375175476e-01
+ <_>
+
+ 1 0 810 2.2679679095745087e-02 -1 2 811
+ -1.4839429641142488e-03 -2 -3 812 -9.7775906324386597e-02
+
+ 6.0594111680984497e-01 5.8346527814865112e-01
+ -5.1989138126373291e-01 -2.1351039409637451e-02
+ <_>
+
+ 2 1 813 -2.1942430175840855e-03 0 -1 814
+ 9.6272170543670654e-02 -2 -3 815 2.5899629108607769e-03
+
+ -2.3860040307044983e-01 4.5208680629730225e-01
+ -3.2299709320068359e-01 2.3171809315681458e-01
+ <_>
+
+ 1 0 816 5.4749320261180401e-03 -1 2 817
+ -1.4976410195231438e-02 -2 -3 818 -7.3499558493494987e-03
+
+ 2.6661419868469238e-01 -4.7525641322135925e-01
+ 3.6936700344085693e-01 -1.0437080264091492e-01
+ <_>
+
+ 1 0 819 8.0258701927959919e-04 -1 2 820
+ -3.1779240816831589e-03 -2 -3 821 -1.6361019515898079e-04
+
+ -2.6545119285583496e-01 -2.6746180653572083e-01
+ -1.3902419805526733e-01 2.9700610041618347e-01
+ <_>
+
+ 1 0 822 -3.0408808961510658e-03 -1 2 823
+ -1.2945629656314850e-02 -2 -3 824 -1.7983650788664818e-02
+
+ -1.0607139766216278e-01 -4.2864450812339783e-01
+ 5.3250139951705933e-01 6.2068658880889416e-03
+ <_>
+
+ 1 0 825 3.5721210297197104e-03 2 -1 826
+ 3.3481561113148928e-03 -2 -3 827 -2.7103780303150415e-04
+
+ 2.8643238544464111e-01 5.2708417177200317e-01
+ -4.0083900094032288e-01 -1.1597709730267525e-02
+ <_>
+
+ 0 1 828 -3.5315480083227158e-02 -1 2 829
+ -3.3448180183768272e-03 -2 -3 830 -3.6211799830198288e-02
+
+ -6.4248001575469971e-01 1.6799710690975189e-01
+ -4.4045579433441162e-01 7.2158249095082283e-03
+ <_>
+
+ 1 0 831 9.7624881891533732e-04 2 -1 832
+ 3.9304429083131254e-04 -2 -3 833 -9.0960100293159485e-02
+
+ -3.3223769068717957e-01 -2.9518169164657593e-01
+ -2.6596671342849731e-01 1.9091020524501801e-01
+ <_>
+
+ 0 1 834 -9.7260335460305214e-03 2 -1 835
+ 6.3109961338341236e-03 -2 -3 836 -1.8113269470632076e-04
+
+ 4.3416848778724670e-01 3.6779248714447021e-01
+ -3.8609200716018677e-01 -2.1463580429553986e-02
+ <_>
+ 33
+ -1.2412749528884888e+00
+
+ <_>
+
+ 2 1 837 2.1084180101752281e-02 0 -1 838
+ -2.1115990821272135e-03 -2 -3 839 -3.7253301125019789e-03
+
+ 7.7905070781707764e-01 -9.1717608273029327e-02
+ 3.5618048161268234e-02 -3.5509699583053589e-01
+ <_>
+
+ 2 1 840 -4.9224868416786194e-02 0 -1 841
+ -1.2256789952516556e-02 -2 -3 842 -1.7591969808563590e-03
+
+ 2.3374380171298981e-01 -2.0726789534091949e-01
+ 7.1231132745742798e-01 1.5468549728393555e-01
+ <_>
+
+ 1 0 843 -1.3072569854557514e-02 -1 2 844
+ 1.0713989846408367e-02 -2 -3 845 2.7589630335569382e-03
+
+ -1.7413349449634552e-01 -1.3037489354610443e-01
+ 4.3284869194030762e-01 -6.6202241182327271e-01
+ <_>
+
+ 0 1 846 -7.0322921965271235e-04 2 -1 847
+ 3.2859561033546925e-03 -2 -3 848 -1.5731799649074674e-03
+
+ -4.2838820815086365e-01 -4.5926880836486816e-01
+ -4.6182459592819214e-01 1.7856159806251526e-01
+ <_>
+
+ 0 1 849 -6.4174369908869267e-03 -1 2 850
+ 1.6610589809715748e-03 -2 -3 851 1.5099810436367989e-02
+
+ -5.4262351989746094e-01 -6.4273983240127563e-02
+ 4.0244659781455994e-01 -6.2330418825149536e-01
+ <_>
+
+ 1 0 852 1.6554270405322313e-03 -1 2 853
+ -3.3705390524119139e-03 -2 -3 854 -1.0568870231509209e-02
+
+ -4.5953160524368286e-01 3.0769738554954529e-01
+ 2.8306689858436584e-01 -1.5513870120048523e-01
+ <_>
+
+ 2 1 855 -1.5460990369319916e-02 0 -1 856
+ 1.0563080199062824e-02 -2 -3 857 -2.5313820224255323e-03
+
+ -2.3533730208873749e-01 1.7863610386848450e-01
+ -3.9789968729019165e-01 3.4673249721527100e-01
+ <_>
+
+ 1 2 858 -1.1370539665222168e-02 0 -1 859
+ 5.1206751959398389e-04 -2 -3 860 2.0633509848266840e-03
+
+ 3.5862970352172852e-01 -2.6715761423110962e-01
+ -2.3807419836521149e-01 8.9544452726840973e-02
+ <_>
+
+ 1 0 861 6.1831250786781311e-03 2 -1 862
+ -1.5297930222004652e-03 -2 -3 863 -1.4521819539368153e-03
+
+ -3.4589260816574097e-01 -5.7744260877370834e-02
+ -2.2643689811229706e-01 3.3492559194564819e-01
+ <_>
+
+ 1 0 864 9.1494834050536156e-03 -1 2 865
+ -7.8258356079459190e-03 -2 -3 866 -9.1795083135366440e-03
+
+ -4.5102459192276001e-01 -2.0574240386486053e-01
+ 2.8064918518066406e-01 -1.9400069490075111e-02
+ <_>
+
+ 1 0 867 5.2864141762256622e-03 -1 2 868
+ -1.1895409785211086e-02 -2 -3 869 -2.9768719105049968e-04
+
+ 3.8742628693580627e-01 3.3122861385345459e-01
+ -4.1473099589347839e-01 -4.6005301177501678e-02
+ <_>
+
+ 0 1 870 -9.9406214430928230e-03 -1 2 871
+ 1.8322050891583785e-05 -2 -3 872 -8.9074727147817612e-03
+
+ -6.0510438680648804e-01 -1.5049360692501068e-01
+ 4.3751770257949829e-01 4.4532001018524170e-02
+ <_>
+
+ 1 2 873 2.7458940166980028e-04 0 -1 874
+ -1.0605080024106428e-04 -2 -3 875 1.3431450352072716e-02
+
+ 3.4243520349264145e-02 -3.1917920708656311e-01
+ 5.4285280406475067e-02 5.1082128286361694e-01
+ <_>
+
+ 0 1 876 1.7373449736624025e-05 2 -1 877
+ 2.6647070626495406e-05 -2 -3 878 2.8135200409451500e-05
+
+ -1.3858599960803986e-01 2.9074499011039734e-01
+ -5.2693158388137817e-01 6.1677869409322739e-02
+ <_>
+
+ 1 0 879 -1.4079789980314672e-04 -1 2 880
+ -1.0311259888112545e-02 -2 -3 881 -2.7866840362548828e-02
+
+ -1.4329759776592255e-01 -4.7958651185035706e-01
+ 3.8226899504661560e-01 1.0630049742758274e-02
+ <_>
+
+ 1 0 882 5.8228662237524986e-03 2 -1 883
+ -8.7669547647237778e-03 -2 -3 884 -2.8466230724006891e-03
+
+ 2.9776591062545776e-01 -1.8124760687351227e-01
+ -2.4237589538097382e-01 3.0139160156250000e-01
+ <_>
+
+ 1 0 885 6.4540808089077473e-03 2 -1 886
+ 6.9421119987964630e-03 -2 -3 887 -7.1991360746324062e-03
+
+ -4.7911441326141357e-01 -3.8983830809593201e-01
+ -3.8099661469459534e-01 1.3023279607295990e-01
+ <_>
+
+ 1 0 888 1.3020260259509087e-02 -1 2 889
+ -1.0113810189068317e-02 -2 -3 890 -1.9183289259672165e-02
+
+ 4.9582180380821228e-01 4.5563331246376038e-01
+ 3.3518138527870178e-01 -1.1938130110502243e-01
+ <_>
+
+ 1 2 891 1.0314499959349632e-03 0 -1 892
+ 5.7669691159389913e-05 -2 -3 893 5.0447430461645126e-02
+
+ -3.5977721214294434e-01 2.6054680347442627e-02
+ 1.6761170327663422e-01 -2.8970599174499512e-01
+ <_>
+
+ 1 0 894 3.7453400436788797e-03 2 -1 895
+ 4.7667181206634268e-05 -2 -3 896 -5.3708041377831250e-05
+
+ -4.6433079242706299e-01 1.8610210716724396e-01
+ 5.6288938969373703e-02 -4.2427191138267517e-01
+ <_>
+
+ 0 1 897 -6.5939482301473618e-03 -1 2 898
+ -2.1548079326748848e-02 -2 -3 899 1.3188139535486698e-02
+
+ -4.7423711419105530e-01 -4.2937740683555603e-01
+ 1.1677609756588936e-02 4.2440900206565857e-01
+ <_>
+
+ 1 0 900 1.2091189622879028e-02 2 -1 901
+ -6.2589373555965722e-05 -2 -3 902 1.9446300575509667e-03
+
+ 2.3611229658126831e-01 -2.1822200715541840e-01
+ -2.5404209271073341e-02 4.2902240157127380e-01
+ <_>
+
+ 1 0 903 7.7299331314861774e-03 -1 2 904
+ -3.7915860302746296e-03 -2 -3 905 4.3860040605068207e-03
+
+ -5.3524547815322876e-01 -4.3546271324157715e-01
+ 1.2576849758625031e-01 -2.8148999810218811e-01
+ <_>
+
+ 1 0 906 -9.4350852305069566e-04 -1 2 907
+ -1.1670179665088654e-03 -2 -3 908 2.9260620940476656e-03
+
+ -1.7022730410099030e-01 2.6141870021820068e-01
+ -1.7437639832496643e-01 3.8530299067497253e-01
+ <_>
+
+ 1 0 909 1.4593300409615040e-02 2 -1 910
+ 7.9177077859640121e-03 -2 -3 911 -3.1372120138257742e-03
+
+ -5.5104351043701172e-01 2.7703890204429626e-01
+ 1.3093240559101105e-01 -1.6954340040683746e-01
+ <_>
+
+ 1 2 912 -9.2021061573177576e-04 0 -1 913
+ -1.0446259751915932e-02 -2 -3 914 -8.3597414195537567e-03
+
+ 4.4468599557876587e-01 -3.9477398991584778e-01
+ 3.4909680485725403e-01 -1.0887180455029011e-02
+ <_>
+
+ 0 1 915 -9.7741633653640747e-03 -1 2 916
+ 1.2587079778313637e-02 -2 -3 917 -1.4933859929442406e-03
+
+ 2.1157720685005188e-01 -1.4542940258979797e-01
+ -1.5098230540752411e-01 5.0790101289749146e-01
+ <_>
+
+ 0 1 918 -5.0530377775430679e-03 -1 2 919
+ -2.5890849065035582e-04 -2 -3 920 4.8418638471048325e-05
+
+ -2.3845790326595306e-01 -2.5153321027755737e-01
+ -2.4533210322260857e-02 3.0376350879669189e-01
+ <_>
+
+ 1 0 921 2.3038890212774277e-03 2 -1 922
+ 3.6540660075843334e-03 -2 -3 923 -3.3346249256283045e-03
+
+ 2.8125861287117004e-01 -3.6965739727020264e-01
+ -3.0266079306602478e-01 8.8287420570850372e-02
+ <_>
+
+ 0 1 924 -1.1975349858403206e-02 -1 2 925
+ -1.8564870115369558e-03 -2 -3 926 1.5760740498080850e-03
+
+ -4.6360239386558533e-01 3.9942011237144470e-01
+ -1.1057750135660172e-01 1.6782909631729126e-01
+ <_>
+
+ 1 0 927 4.1210349649190903e-02 2 -1 928
+ -1.0635109618306160e-02 -2 -3 929 -3.3335660118609667e-03
+
+ -6.8945991992950439e-01 -9.5825389027595520e-02
+ -4.6437320113182068e-01 2.2104820609092712e-01
+ <_>
+
+ 0 1 930 -2.4082309100776911e-03 2 -1 931
+ 5.5890781804919243e-03 -2 -3 932 1.2177750468254089e-03
+
+ 2.0128449797630310e-01 -5.2314841747283936e-01
+ 3.1367950141429901e-02 -4.1038578748703003e-01
+ <_>
+
+ 1 0 933 8.6324941366910934e-03 2 -1 934
+ 3.8473210297524929e-03 -2 -3 935 -1.8842349527403712e-03
+
+ 3.1741571426391602e-01 -4.3851628899574280e-01
+ 3.8140851259231567e-01 -6.0103170573711395e-02
+ <_>
+ 41
+ -1.2084549665451050e+00
+
+ <_>
+
+ 1 0 936 -2.3675959557294846e-02 -1 2 937
+ -2.0480139646679163e-03 -2 -3 938 8.1840698840096593e-04
+
+ -3.5308888554573059e-01 6.9878387451171875e-01
+ -2.8367671370506287e-01 4.1667369008064270e-01
+ <_>
+
+ 1 2 939 1.2784999562427402e-03 0 -1 940
+ -3.4423400647938251e-03 -2 -3 941 -7.4483961798250675e-03
+
+ 3.3807888627052307e-01 -1.6657039523124695e-01
+ 6.4591968059539795e-01 -2.2018529474735260e-01
+ <_>
+
+ 0 1 942 1.1179470457136631e-02 2 -1 943
+ -2.3196099698543549e-01 -2 -3 944 -4.3133709579706192e-02
+
+ -3.2552671432495117e-01 -8.3167977631092072e-02
+ -1.6172540187835693e-01 4.6209758520126343e-01
+ <_>
+
+ 1 0 945 -1.9728920597117394e-04 -1 2 946
+ -2.3259329609572887e-03 -2 -3 947 -1.0320080444216728e-02
+
+ -1.5667790174484253e-01 3.6914899945259094e-01
+ 4.8015019297599792e-01 -8.9061602950096130e-02
+ <_>
+
+ 0 1 948 -2.0040970295667648e-02 -1 2 949
+ -2.4495070101693273e-04 -2 -3 950 -1.1836830526590347e-03
+
+ -5.6967437267303467e-01 -2.3713299632072449e-01
+ -3.4671390056610107e-01 1.4475019276142120e-01
+ <_>
+
+ 1 0 951 -2.6744368951767683e-03 2 -1 952
+ -5.1904888823628426e-03 -2 -3 953 -1.9888129085302353e-02
+
+ -1.2661710381507874e-01 -6.4648993313312531e-02
+ -4.5441371202468872e-01 3.9849451184272766e-01
+ <_>
+
+ 0 1 954 -5.7462421245872974e-03 2 -1 955
+ 4.4583589769899845e-03 -2 -3 956 -1.2518949806690216e-02
+
+ -3.6761870980262756e-01 3.8435870409011841e-01
+ -6.1902827024459839e-01 1.9050609320402145e-02
+ <_>
+
+ 0 1 957 -7.7734276652336121e-02 2 -1 958
+ 6.7193829454481602e-03 -2 -3 959 1.6520710196346045e-03
+
+ 5.5405282974243164e-01 -4.1308841109275818e-01
+ 7.3280662298202515e-02 -2.8589090704917908e-01
+ <_>
+
+ 1 0 960 2.1226350218057632e-02 2 -1 961
+ 1.1231450363993645e-02 -2 -3 962 -1.8163130152970552e-04
+
+ 3.6871838569641113e-01 3.5591110587120056e-01
+ -3.3781459927558899e-01 -8.1584807485342026e-03
+ <_>
+
+ 1 0 963 2.8726160526275635e-02 2 -1 964
+ 5.0780461169779301e-03 -2 -3 965 -5.1352521404623985e-04
+
+ -7.2751021385192871e-01 2.6649999618530273e-01
+ 1.1073680222034454e-01 -1.8206079304218292e-01
+ <_>
+
+ 0 1 966 -3.8125980645418167e-03 2 -1 967
+ 9.1425428399816155e-04 -2 -3 968 1.0090490104630589e-03
+
+ -2.8374129533767700e-01 2.4259260296821594e-01
+ 6.0151178389787674e-02 -2.7039301395416260e-01
+ <_>
+
+ 0 1 969 -7.8553140163421631e-02 -1 2 970
+ -6.5192081965506077e-03 -2 -3 971 2.0706290379166603e-03
+
+ -5.5804842710494995e-01 2.5557601451873779e-01
+ -1.0600800067186356e-01 2.7225118875503540e-01
+ <_>
+
+ 1 0 972 1.3555780053138733e-02 -1 2 973
+ 7.0873757067602128e-05 -2 -3 974 -1.4444560511037707e-03
+
+ -4.8073831200599670e-01 -1.3499049842357635e-01
+ 4.3762150406837463e-01 4.8329260200262070e-02
+ <_>
+
+ 1 0 975 -3.6353049799799919e-03 -1 2 976
+ -2.7163419872522354e-03 -2 -3 977 -7.4552530422806740e-03
+
+ -1.2743209302425385e-01 3.3708488941192627e-01
+ 5.4894310235977173e-01 -1.0238330066204071e-01
+ <_>
+
+ 1 2 978 1.8306199926882982e-03 0 -1 979
+ 3.5198179539293051e-03 -2 -3 980 -3.0126908677630126e-04
+
+ -2.4612280726432800e-01 1.5894930064678192e-01
+ -2.7785000205039978e-01 2.3901990056037903e-01
+ <_>
+
+ 2 1 981 3.1999459024518728e-03 0 -1 982
+ 1.4862619573250413e-03 -2 -3 983 -1.3004139764234424e-03
+
+ 4.7738438844680786e-01 -3.1345888972282410e-02
+ 7.1047246456146240e-02 -2.1556860208511353e-01
+ <_>
+
+ 1 0 984 1.5583000145852566e-02 2 -1 985
+ 7.6356581412255764e-03 -2 -3 986 -1.4318820321932435e-03
+
+ 2.7187249064445496e-01 -5.1074218750000000e-01
+ -1.5140180289745331e-01 1.4207449555397034e-01
+ <_>
+
+ 1 2 987 -6.7814798094332218e-03 0 -1 988
+ -1.1809200048446655e-01 -2 -3 989 -2.8277190402150154e-02
+
+ -6.9562858343124390e-01 3.3270710706710815e-01
+ 1.1135250329971313e-01 -1.7491710186004639e-01
+ <_>
+
+ 0 1 990 -3.7033241242170334e-02 -1 2 991
+ -4.9177031032741070e-03 -2 -3 992 -2.7518879505805671e-04
+
+ 2.8885498642921448e-01 -4.0966060757637024e-01
+ -3.1160330772399902e-01 6.0995019972324371e-02
+ <_>
+
+ 0 1 993 -2.3584270384162664e-03 -1 2 994
+ -3.5775059368461370e-03 -2 -3 995 -4.1078119538724422e-03
+
+ -5.9846490621566772e-01 2.4603059887886047e-01
+ 8.5180006921291351e-02 -2.0629020035266876e-01
+ <_>
+
+ 1 0 996 1.5300850383937359e-02 -1 2 997
+ -1.5483479946851730e-02 -2 -3 998 -5.7852710597217083e-03
+
+ 3.0057510733604431e-01 -6.8350881338119507e-01
+ 2.0100210607051849e-01 -9.0607739984989166e-02
+ <_>
+
+ 1 0 999 1.4448310248553753e-02 -1 2 1000
+ -3.1330309808254242e-02 -2 -3 1001 -3.0594000127166510e-03
+
+ 2.6733011007308960e-01 -5.2288150787353516e-01
+ 4.0950208902359009e-01 -6.5823979675769806e-02
+ <_>
+
+ 0 1 1002 -1.8781309481710196e-03 2 -1 1003
+ -5.8503728359937668e-03 -2 -3 1004 2.6462681125849485e-03
+
+ -2.5463208556175232e-01 -1.2269999831914902e-01
+ -7.9216457903385162e-02 2.9203468561172485e-01
+ <_>
+
+ 0 1 1005 1.3989449944347143e-03 2 -1 1006
+ 9.7635984420776367e-03 -2 -3 1007 -9.4864349812269211e-03
+
+ 1.2148520350456238e-01 2.7110511064529419e-01
+ 1.0176890343427658e-01 -3.2153740525245667e-01
+ <_>
+
+ 1 0 1008 1.5739769442006946e-03 2 -1 1009
+ 4.9365921877324581e-03 -2 -3 1010 -5.0848699174821377e-04
+
+ -5.9908610582351685e-01 -3.8752740621566772e-01
+ -1.3056530058383942e-01 1.2711940705776215e-01
+ <_>
+
+ 0 1 1011 -9.6375271677970886e-02 -1 2 1012
+ -8.0375596880912781e-02 -2 -3 1013 -5.4449690505862236e-03
+
+ -6.8821328878402710e-01 4.1428178548812866e-01
+ 8.2179926335811615e-02 -1.8036940693855286e-01
+ <_>
+
+ 0 1 1014 -7.6126731000840664e-03 2 -1 1015
+ -3.1007949728518724e-03 -2 -3 1016 -2.0799610763788223e-02
+
+ 1.7513050138950348e-01 -2.1534129977226257e-01
+ 2.9026609659194946e-01 -2.1753519773483276e-01
+ <_>
+
+ 0 1 1017 -1.7213800549507141e-01 -1 2 1018
+ -1.7464880365878344e-03 -2 -3 1019 -6.8416520953178406e-02
+
+ 2.2739590704441071e-01 1.3240070641040802e-01
+ -6.2430542707443237e-01 -1.0549639910459518e-01
+ <_>
+
+ 0 1 1020 -1.9070530310273170e-02 -1 2 1021
+ -2.8794098761864007e-04 -2 -3 1022 7.3958968278020620e-04
+
+ 5.5033868551254272e-01 -3.4565579891204834e-01
+ 1.8934780359268188e-01 -8.8741242885589600e-02
+ <_>
+
+ 0 1 1023 -7.5153419747948647e-03 -1 2 1024
+ -1.2848030310124159e-03 -2 -3 1025 1.2194210430607200e-03
+
+ -4.5797100663185120e-01 1.2825480103492737e-01
+ -2.9630279541015625e-01 1.9254499673843384e-01
+ <_>
+
+ 1 2 1026 -1.6169670224189758e-01 0 -1 1027
+ 1.4747560024261475e-02 -2 -3 1028 -8.4396981401368976e-04
+
+ -4.4868141412734985e-01 1.3941350579261780e-01
+ 2.0387759804725647e-01 -5.6935109198093414e-02
+ <_>
+
+ 1 0 1029 -1.2965890346094966e-04 -1 2 1030
+ -1.3776419684290886e-02 -2 -3 1031 -9.4375656917691231e-03
+
+ -1.4722099900245667e-01 2.4039970338344574e-01
+ 5.5077737569808960e-01 -1.5877890586853027e-01
+ <_>
+
+ 1 0 1032 1.1291690316284075e-04 -1 2 1033
+ 6.6032530739903450e-03 -2 -3 1034 2.0985701121389866e-03
+
+ 1.3769179582595825e-01 -2.5903069972991943e-01
+ 2.3297089338302612e-01 -3.7152260541915894e-01
+ <_>
+
+ 2 1 1035 -1.8329389858990908e-03 0 -1 1036
+ -1.6420709434896708e-03 -2 -3 1037 6.7886798642575741e-03
+
+ 3.5991749167442322e-01 -1.5401339530944824e-01
+ 1.8581290543079376e-01 -6.7269998788833618e-01
+ <_>
+
+ 0 1 1038 1.6932019498199224e-03 -1 2 1039
+ -1.0055249556899071e-02 -2 -3 1040 -3.1679549720138311e-03
+
+ -1.3255499303340912e-01 3.8144260644912720e-01
+ 3.2224041223526001e-01 -8.5345722734928131e-02
+ <_>
+
+ 2 1 1041 2.4724518880248070e-04 0 -1 1042
+ -2.4610899854451418e-03 -2 -3 1043 4.2370590381324291e-04
+
+ 2.4504560232162476e-01 -4.2068049311637878e-01
+ 9.6731372177600861e-02 -3.6695280671119690e-01
+ <_>
+
+ 1 2 1044 -2.3991330526769161e-03 0 -1 1045
+ -1.0543569922447205e-01 -2 -3 1046 -2.9867719858884811e-03
+
+ -7.3811298608779907e-01 2.8551021218299866e-01
+ 1.9291989505290985e-01 -1.4805729687213898e-01
+ <_>
+
+ 0 1 1047 -4.0492648258805275e-03 2 -1 1048
+ -1.1622729944065213e-03 -2 -3 1049 -2.7857329696416855e-02
+
+ 1.0766500234603882e-01 -2.7701449394226074e-01
+ 3.9593660831451416e-01 -2.0954720675945282e-01
+ <_>
+
+ 2 1 1050 8.1511605530977249e-03 0 -1 1051
+ 1.5126319602131844e-02 -2 -3 1052 -1.1020600050687790e-01
+
+ 6.8626463413238525e-02 5.3772068023681641e-01
+ -4.9161431193351746e-01 -4.4780239462852478e-02
+ <_>
+
+ 1 2 1053 -1.6588929574936628e-03 0 -1 1054
+ -3.4530278295278549e-02 -2 -3 1055 1.0060180211439729e-03
+
+ 3.6734369397163391e-01 -2.5586590170860291e-02
+ 2.7465619146823883e-02 -3.4973311424255371e-01
+ <_>
+
+ 0 1 1056 -2.8843909502029419e-02 2 -1 1057
+ 2.4647780810482800e-04 -2 -3 1058 -7.4189889710396528e-04
+
+ -6.5100878477096558e-01 -1.8410819768905640e-01
+ -9.0942107141017914e-02 2.2521719336509705e-01
+ <_>
+ 37
+ -1.2229189872741699e+00
+
+ <_>
+
+ 1 2 1059 -1.2407599948346615e-02 0 -1 1060
+ -1.1902820318937302e-02 -2 -3 1061 -5.5238649249076843e-02
+
+ 6.8965518474578857e-01 -1.3579159975051880e-01
+ -4.4337168335914612e-02 -4.5446300506591797e-01
+ <_>
+
+ 1 2 1062 3.3332619350403547e-03 0 -1 1063
+ 4.8620607703924179e-03 -2 -3 1064 -3.1632129102945328e-03
+
+ -3.1873029470443726e-01 7.0181049406528473e-02
+ -3.2160758972167969e-01 7.0131868124008179e-01
+ <_>
+
+ 1 0 1065 1.8592040240764618e-01 -1 2 1066
+ 3.1807690393179655e-03 -2 -3 1067 -9.4139128923416138e-03
+
+ 3.4192711114883423e-01 -3.3313518762588501e-01
+ 3.2091590762138367e-01 -1.2491060048341751e-01
+ <_>
+
+ 1 0 1068 6.5205397550016642e-04 2 -1 1069
+ -5.0521180965006351e-03 -2 -3 1070 7.6105687767267227e-03
+
+ -2.3811559379100800e-01 -1.4155420660972595e-01
+ 3.2182168960571289e-01 -2.4797810614109039e-01
+ <_>
+
+ 0 1 1071 -1.6043110517784953e-03 -1 2 1072
+ -2.7449749410152435e-02 -2 -3 1073 5.6960887741297483e-04
+
+ 1.9883860647678375e-01 -6.9581168889999390e-01
+ 5.0723928958177567e-02 -2.9218611121177673e-01
+ <_>
+
+ 1 0 1074 2.7564789634197950e-03 2 -1 1075
+ -1.1058920063078403e-02 -2 -3 1076 5.1102549768984318e-03
+
+ 2.0911119878292084e-01 -2.4516950547695160e-01
+ -1.0658439993858337e-01 4.0211549401283264e-01
+ <_>
+
+ 1 0 1077 4.5064617879688740e-03 2 -1 1078
+ 4.2800018563866615e-03 -2 -3 1079 7.8124259598553181e-03
+
+ -4.6300640702247620e-01 -3.9396348595619202e-01
+ 1.4130340516567230e-01 -2.8671020269393921e-01
+ <_>
+
+ 1 0 1080 4.4836059212684631e-02 2 -1 1081
+ 1.7986740916967392e-02 -2 -3 1082 -6.0726520605385303e-03
+
+ -5.0257712602615356e-01 3.1318759918212891e-01
+ 9.8504282534122467e-02 -2.2500780224800110e-01
+ <_>
+
+ 0 1 1083 -1.8578730523586273e-02 2 -1 1084
+ 3.5717431455850601e-02 -2 -3 1085 -1.8269789870828390e-03
+
+ -5.1453977823257446e-01 3.1848269701004028e-01
+ 1.4090469479560852e-01 -1.8669110536575317e-01
+ <_>
+
+ 0 1 1086 -5.4818098433315754e-03 -1 2 1087
+ -6.0164718888700008e-04 -2 -3 1088 9.9322739988565445e-03
+
+ 1.9321410357952118e-01 -3.8167670369148254e-01
+ -5.8519419282674789e-02 4.8970058560371399e-01
+ <_>
+
+ 2 1 1089 1.4053160557523370e-03 0 -1 1090
+ 5.2271760068833828e-03 -2 -3 1091 -1.4931050129234791e-02
+
+ 2.5072118639945984e-01 -6.5754747390747070e-01
+ 5.5669851601123810e-02 -2.4669079482555389e-01
+ <_>
+
+ 1 2 1092 -1.2826359830796719e-02 0 -1 1093
+ -2.7587350457906723e-02 -2 -3 1094 -4.7543710097670555e-03
+
+ -3.2225701212882996e-01 5.6484752893447876e-01
+ -4.9142929911613464e-01 -8.8634714484214783e-03
+ <_>
+
+ 0 1 1095 -2.7212230488657951e-03 2 -1 1096
+ 6.6132671199738979e-03 -2 -3 1097 -1.1435840278863907e-02
+
+ -5.7900500297546387e-01 4.5554360747337341e-01
+ 1.5250509977340698e-01 -1.2167599797248840e-01
+ <_>
+
+ 0 1 1098 -1.9095990806818008e-02 2 -1 1099
+ -1.2672290205955505e-01 -2 -3 1100 -1.8373519182205200e-02
+
+ -4.4416400790214539e-01 1.1622429639101028e-01
+ 4.1248679161071777e-01 -3.0303838849067688e-01
+ <_>
+
+ 0 1 1101 -3.2425698637962341e-01 -1 2 1102
+ -3.8764779455959797e-03 -2 -3 1103 -7.5138150714337826e-04
+
+ 4.4721060991287231e-01 7.5931303203105927e-02
+ 1.1976880021393299e-02 -3.6275759339332581e-01
+ <_>
+
+ 1 0 1104 6.7106341011822224e-03 -1 2 1105
+ -6.5366760827600956e-03 -2 -3 1106 -5.5684632388874888e-04
+
+ -3.9521178603172302e-01 -3.0311599373817444e-01
+ -1.5832960605621338e-01 1.7123879492282867e-01
+ <_>
+
+ 0 1 1107 -3.9269351400434971e-03 -1 2 1108
+ -1.6322469338774681e-02 -2 -3 1109 5.5038761347532272e-02
+
+ 2.0034509897232056e-01 4.1271069645881653e-01
+ -1.7926050722599030e-01 2.6303529739379883e-01
+ <_>
+
+ 1 2 1110 1.0095089673995972e-03 0 -1 1111
+ -9.8581332713365555e-03 -2 -3 1112 -7.0780781097710133e-03
+
+ 2.4884219467639923e-01 -3.9200861006975174e-02
+ 3.7243181467056274e-01 -3.7739849090576172e-01
+ <_>
+
+ 1 0 1113 2.1169960964471102e-03 2 -1 1114
+ 1.5883900225162506e-01 -2 -3 1115 -4.2488988488912582e-02
+
+ 1.7665450274944305e-01 7.2631222009658813e-01
+ 4.8568719625473022e-01 -1.4427030086517334e-01
+ <_>
+
+ 0 1 1116 -9.4166352937463671e-05 -1 2 1117
+ 8.1764090282376856e-05 -2 -3 1118 5.4165818728506565e-03
+
+ 1.7045879364013672e-01 -3.1940829753875732e-01
+ 9.9846661090850830e-02 -4.1059550642967224e-01
+ <_>
+
+ 0 1 1119 -6.1865211464464664e-03 2 -1 1120
+ 6.5089072450064123e-05 -2 -3 1121 -6.8352972448337823e-05
+
+ -3.8492518663406372e-01 1.6319459676742554e-01
+ 2.1182140707969666e-01 -2.5311520695686340e-01
+ <_>
+
+ 1 2 1122 -4.0968839311972260e-04 0 -1 1123
+ 3.5239830613136292e-03 -2 -3 1124 -8.3400387666188180e-05
+
+ -1.1859580129384995e-01 -7.9780608415603638e-01
+ 2.2940699756145477e-01 -3.8782458752393723e-02
+ <_>
+
+ 1 2 1125 -2.7096238918602467e-03 0 -1 1126
+ -6.8883160129189491e-03 -2 -3 1127 1.1571759823709726e-03
+
+ -5.9978920221328735e-01 3.4748208522796631e-01
+ -1.5406990051269531e-01 1.3573920726776123e-01
+ <_>
+
+ 0 1 1128 9.5913361292332411e-04 -1 2 1129
+ -1.8333569169044495e-02 -2 -3 1130 2.4258090183138847e-02
+
+ -1.0236030071973801e-01 -5.5400210618972778e-01
+ 1.4270070195198059e-01 7.2077578306198120e-01
+ <_>
+
+ 2 1 1131 1.0541410185396671e-02 0 -1 1132
+ 9.1231325641274452e-03 -2 -3 1133 -1.4598550042137504e-03
+
+ 1.9214800000190735e-01 -3.6190611124038696e-01
+ 2.8950750827789307e-01 -1.8767410516738892e-01
+ <_>
+
+ 0 1 1134 -1.1819070205092430e-02 -1 2 1135
+ -3.2446000725030899e-02 -2 -3 1136 -2.3319718893617392e-03
+
+ -5.3653758764266968e-01 -6.8713748455047607e-01
+ -8.8751368224620819e-02 1.5991990268230438e-01
+ <_>
+
+ 1 2 1137 -6.5151029266417027e-03 0 -1 1138
+ 2.5015550199896097e-03 -2 -3 1139 7.8799802577123046e-04
+
+ 6.8285889923572540e-02 5.7962691783905029e-01
+ -1.9128720462322235e-01 9.7289860248565674e-02
+ <_>
+
+ 1 0 1140 6.0783070512115955e-03 -1 2 1141
+ -8.7201576679944992e-03 -2 -3 1142 3.5847601247951388e-04
+
+ -6.1147671937942505e-01 4.7648158669471741e-01
+ 9.0117119252681732e-02 -1.6770669817924500e-01
+ <_>
+
+ 1 0 1143 -1.3178629800677299e-02 -1 2 1144
+ -8.5365071892738342e-02 -2 -3 1145 3.3002009149640799e-03
+
+ -1.2755720317363739e-01 2.6924338936805725e-01
+ -1.8480269610881805e-01 5.8760780096054077e-01
+ <_>
+
+ 0 1 1146 -1.1601460166275501e-02 2 -1 1147
+ 9.9076535552740097e-03 -2 -3 1148 4.3782261200249195e-03
+
+ 3.3849120140075684e-01 -5.5809050798416138e-01
+ -7.8933097422122955e-02 2.2385579347610474e-01
+ <_>
+
+ 0 1 1149 -4.7082178294658661e-02 -1 2 1150
+ -3.2685339101590216e-04 -2 -3 1151 7.8715756535530090e-03
+
+ 6.8917119503021240e-01 1.2139579653739929e-01
+ -7.5880296528339386e-02 -6.5191179513931274e-01
+ <_>
+
+ 1 2 1152 -3.9275310700759292e-04 0 -1 1153
+ -3.4211258753202856e-04 -2 -3 1154 5.6030962150543928e-04
+
+ -3.4082669019699097e-01 3.7230521440505981e-01
+ 1.8275870010256767e-02 -2.7192598581314087e-01
+ <_>
+
+ 0 1 1155 -2.4439349770545959e-02 -1 2 1156
+ 1.2128120288252831e-02 -2 -3 1157 2.2948130499571562e-03
+
+ -3.4894740581512451e-01 -4.1957078501582146e-03
+ -2.0841300487518311e-02 8.0151557922363281e-01
+ <_>
+
+ 1 2 1158 -3.6386020947247744e-03 0 -1 1159
+ -6.3949287869036198e-04 -2 -3 1160 2.0897389913443476e-04
+
+ -2.5389778614044189e-01 3.6606290936470032e-01
+ -1.4177979528903961e-01 1.4148280024528503e-01
+ <_>
+
+ 2 1 1161 -6.7888460762333125e-05 0 -1 1162
+ 3.9580671000294387e-04 -2 -3 1163 1.2493260437622666e-03
+
+ -2.0807999372482300e-01 2.3690980672836304e-01
+ 2.4679720401763916e-01 -2.2032499313354492e-01
+ <_>
+
+ 0 1 1164 -4.6679278602823615e-04 -1 2 1165
+ 1.1740219779312611e-03 -2 -3 1166 -7.1949949488043785e-03
+
+ -3.3990928530693054e-01 1.2153220176696777e-01
+ 3.3542940020561218e-01 -3.9178979396820068e-01
+ <_>
+
+ 1 0 1167 3.2422799267806113e-04 2 -1 1168
+ 2.4374879896640778e-02 -2 -3 1169 2.6271429378539324e-03
+
+ -2.5593858957290649e-01 4.2434880137443542e-01
+ 1.0237640142440796e-01 -2.6907420158386230e-01
+ <_>
+ 32
+ -1.2001949548721313e+00
+
+ <_>
+
+ 1 0 1170 -1.8586540594696999e-02 -1 2 1171
+ -7.4109081178903580e-03 -2 -3 1172 -5.3711149841547012e-02
+
+ -3.6523258686065674e-01 7.7427452802658081e-01
+ 2.4213680624961853e-01 -3.7803840637207031e-01
+ <_>
+
+ 1 2 1173 6.9198510609567165e-03 0 -1 1174
+ -3.0759189277887344e-02 -2 -3 1175 -8.9597534388303757e-03
+
+ 1.3523690402507782e-01 -2.7957341074943542e-01
+ -6.0680317878723145e-01 6.9579082727432251e-01
+ <_>
+
+ 1 0 1176 7.1816287934780121e-02 2 -1 1177
+ -1.1622999794781208e-02 -2 -3 1178 -1.0627550072968006e-03
+
+ 3.0647501349449158e-01 -2.2690390050411224e-01
+ 4.4374391436576843e-01 -3.1824579834938049e-01
+ <_>
+
+ 0 1 1179 -7.3452957440167665e-04 -1 2 1180
+ -4.9303710460662842e-02 -2 -3 1181 -3.2011170405894518e-03
+
+ -2.2684609889984131e-01 3.4253200888633728e-01
+ 3.0913218855857849e-01 -2.0078240334987640e-01
+ <_>
+
+ 2 1 1182 1.4706649817526340e-02 0 -1 1183
+ -1.1798519641160965e-01 -2 -3 1184 -1.6695359721779823e-02
+
+ -9.4517791271209717e-01 5.7428210973739624e-01
+ 2.4567030370235443e-01 -1.1707650125026703e-01
+ <_>
+
+ 1 2 1185 -6.8853241391479969e-03 0 -1 1186
+ 7.8145717270672321e-04 -2 -3 1187 2.7586790919303894e-01
+
+ 3.9508721232414246e-01 -1.0023059695959091e-01
+ -1.4659850299358368e-01 7.7942031621932983e-01
+ <_>
+
+ 0 1 1188 -2.6423679664731026e-02 -1 2 1189
+ 1.8955089617520571e-03 -2 -3 1190 -5.7396688498556614e-03
+
+ -3.2860249280929565e-01 1.5046370029449463e-01
+ -4.0492990612983704e-01 1.5257360041141510e-01
+ <_>
+
+ 0 1 1191 -7.8677870333194733e-03 -1 2 1192
+ -1.9029570103157312e-04 -2 -3 1193 2.9406580142676830e-04
+
+ 2.2024929523468018e-01 -3.7222158908843994e-01
+ 1.0350369662046432e-01 -3.6075070500373840e-01
+ <_>
+
+ 2 1 1194 -6.1921158339828253e-04 0 -1 1195
+ -4.6625699847936630e-02 -2 -3 1196 8.0430079833604395e-05
+
+ 2.5249621272087097e-01 -3.2340309023857117e-01
+ -8.7712243199348450e-02 2.5224068760871887e-01
+ <_>
+
+ 1 0 1197 2.9532159678637981e-03 -1 2 1198
+ -4.5338911004364491e-03 -2 -3 1199 -1.1544080451130867e-02
+
+ 4.8171079158782959e-01 -4.5188549160957336e-01
+ 2.5434678792953491e-01 -8.4140419960021973e-02
+ <_>
+
+ 0 1 1200 1.3043760554865003e-03 -1 2 1201
+ -3.4115801099687815e-03 -2 -3 1202 -1.5855060191825032e-03
+
+ -1.0121349990367889e-01 5.2193498611450195e-01
+ 6.8923211097717285e-01 -1.0570000112056732e-01
+ <_>
+
+ 0 1 1203 -2.9867749661207199e-02 2 -1 1204
+ -2.5652049225755036e-04 -2 -3 1205 -3.9234450086951256e-03
+
+ -4.3362548947334290e-01 -3.3430889248847961e-02
+ -2.5569188594818115e-01 4.4265130162239075e-01
+ <_>
+
+ 1 0 1206 4.6491571702063084e-03 -1 2 1207
+ -2.7727609872817993e-01 -2 -3 1208 -2.2448340058326721e-01
+
+ 6.2878167629241943e-01 7.1006447076797485e-01
+ 3.0520048737525940e-01 -9.2947281897068024e-02
+ <_>
+
+ 2 1 1209 3.8704689592123032e-02 0 -1 1210
+ 8.2667707465589046e-04 -2 -3 1211 3.5339579335413873e-04
+
+ -7.1300238370895386e-01 3.4036791324615479e-01
+ -2.7960309386253357e-01 4.1289128363132477e-02
+ <_>
+
+ 1 2 1212 1.2603959999978542e-02 0 -1 1213
+ -5.5078358855098486e-05 -2 -3 1214 9.1213081032037735e-03
+
+ 6.5844729542732239e-02 -2.0295199751853943e-01
+ 5.0578397512435913e-01 -2.8807151317596436e-01
+ <_>
+
+ 0 1 1215 -4.0084728971123695e-03 2 -1 1216
+ 4.4780140742659569e-03 -2 -3 1217 -4.7284600441344082e-04
+
+ 2.1491059660911560e-01 2.1849650144577026e-01
+ -6.7471832036972046e-01 -1.0888069868087769e-01
+ <_>
+
+ 0 1 1218 -3.7310249172151089e-04 -1 2 1219
+ -1.0922510176897049e-02 -2 -3 1220 2.5496890768408775e-02
+
+ 1.7151309549808502e-01 4.2335990071296692e-01
+ -2.3464329540729523e-01 1.9871939718723297e-01
+ <_>
+
+ 1 0 1221 7.0709688588976860e-03 -1 2 1222
+ 3.5252509405836463e-04 -2 -3 1223 5.8937398716807365e-04
+
+ -4.3551680445671082e-01 -6.1764400452375412e-02
+ -7.9512260854244232e-02 4.0493848919868469e-01
+ <_>
+
+ 2 1 1224 -8.7519101798534393e-03 0 -1 1225
+ -9.4158039428293705e-04 -2 -3 1226 -8.8366247713565826e-02
+
+ 7.1111567318439484e-02 -3.1814581155776978e-01
+ -5.9796679019927979e-01 1.9428940117359161e-01
+ <_>
+
+ 2 1 1227 4.5438520610332489e-03 0 -1 1228
+ -1.3041470199823380e-02 -2 -3 1229 3.2197220716625452e-03
+
+ -2.1855579316616058e-01 3.0563870072364807e-01
+ -1.9010399281978607e-01 1.8796740472316742e-01
+ <_>
+
+ 1 0 1230 3.2370660454034805e-02 2 -1 1231
+ 8.7954197078943253e-03 -2 -3 1232 -8.5182236507534981e-03
+
+ -1.6135400533676147e-01 6.6259282827377319e-01
+ -3.8733869791030884e-01 1.3088770210742950e-01
+ <_>
+
+ 1 2 1233 -5.4210029542446136e-02 0 -1 1234
+ 2.9004408861510456e-04 -2 -3 1235 -1.2670000083744526e-02
+
+ -1.8559680320322514e-03 5.0099188089370728e-01
+ 2.9727068543434143e-01 -1.6530840098857880e-01
+ <_>
+
+ 1 0 1236 3.7995529174804688e-01 -1 2 1237
+ -4.8071850091218948e-02 -2 -3 1238 6.4968131482601166e-03
+
+ 4.2289760708808899e-01 1.1011490225791931e-01
+ -2.6050418615341187e-01 1.7244240641593933e-01
+ <_>
+
+ 1 0 1239 -2.0901230163872242e-03 -1 2 1240
+ -6.2400829046964645e-03 -2 -3 1241 8.5770338773727417e-03
+
+ -1.4854459464550018e-01 3.5841208696365356e-01
+ -2.1481679379940033e-01 2.1504589915275574e-01
+ <_>
+
+ 1 2 1242 -6.6754068247973919e-03 0 -1 1243
+ -3.8183759897947311e-03 -2 -3 1244 5.5124791106209159e-04
+
+ -2.3905350267887115e-01 4.4719010591506958e-01
+ -2.5307258963584900e-01 3.4307420253753662e-02
+ <_>
+
+ 2 1 1245 9.0955598279833794e-03 0 -1 1246
+ 1.1171290278434753e-01 -2 -3 1247 -1.7274810234084725e-03
+
+ -6.5154308080673218e-01 -2.6602389290928841e-02
+ 6.1791652441024780e-01 2.7143610641360283e-02
+ <_>
+
+ 1 2 1248 7.5292278779670596e-04 0 -1 1249
+ -3.1208951259031892e-04 -2 -3 1250 1.3574779732152820e-03
+
+ -5.5061008781194687e-02 2.7939450740814209e-01
+ -2.9496839642524719e-01 2.3769420385360718e-01
+ <_>
+
+ 1 0 1251 2.6001129299402237e-02 2 -1 1252
+ -5.1486152224242687e-03 -2 -3 1253 -4.1137751191854477e-02
+
+ 4.8369780182838440e-01 -1.4562819898128510e-01
+ -4.8423030972480774e-01 1.9624310731887817e-01
+ <_>
+
+ 1 0 1254 1.2921179644763470e-02 2 -1 1255
+ 2.9845361132174730e-03 -2 -3 1256 1.2732800096273422e-02
+
+ 6.0538208484649658e-01 -4.6820640563964844e-01
+ -2.9540339484810829e-02 3.6185088753700256e-01
+ <_>
+
+ 0 1 1257 -1.0869900143006817e-04 -1 2 1258
+ -8.9501799084246159e-04 -2 -3 1259 5.3637558594346046e-03
+
+ 1.6606490314006805e-01 3.5517621785402298e-02
+ -3.5981449484825134e-01 4.2224168777465820e-01
+ <_>
+
+ 1 0 1260 1.4909369871020317e-02 -1 2 1261
+ -1.0603530099615455e-03 -2 -3 1262 -3.6916081444360316e-04
+
+ -6.6308712959289551e-01 -3.8903519511222839e-01
+ -1.1299440264701843e-01 1.6010889410972595e-01
+ <_>
+
+ 0 1 1263 -3.8595579098910093e-04 2 -1 1264
+ 5.9791578678414226e-04 -2 -3 1265 1.0427299886941910e-02
+
+ 1.9961580634117126e-01 -2.5480431318283081e-01
+ 1.0820420086383820e-01 -5.4060971736907959e-01
+ <_>
+ 41
+ -1.2273980379104614e+00
+
+ <_>
+
+ 0 1 1266 8.5305199027061462e-03 2 -1 1267
+ -7.0295208133757114e-03 -2 -3 1268 1.1181459762156010e-02
+
+ -2.3412899672985077e-01 -1.3273300230503082e-01
+ -1.0306409746408463e-01 8.1993848085403442e-01
+ <_>
+
+ 1 0 1269 -3.3347710967063904e-02 2 -1 1270
+ -5.7895448990166187e-03 -2 -3 1271 7.5207999907433987e-03
+
+ -2.0504109561443329e-01 -7.2138823568820953e-02
+ 9.2525452375411987e-02 6.4616191387176514e-01
+ <_>
+
+ 1 0 1272 5.1975441165268421e-03 2 -1 1273
+ 2.7103458996862173e-03 -2 -3 1274 -5.8099921792745590e-02
+
+ -3.6144751310348511e-01 -3.4319791197776794e-01
+ 3.2151529192924500e-01 -3.0232580378651619e-02
+ <_>
+
+ 1 2 1275 4.1742541361600161e-04 0 -1 1276
+ 5.8975181309506297e-04 -2 -3 1277 1.3578129932284355e-02
+
+ -2.6612699031829834e-01 1.4442689716815948e-01
+ 3.6293990910053253e-02 4.4277408719062805e-01
+ <_>
+
+ 0 1 1278 -3.9278618060052395e-03 -1 2 1279
+ -1.6465460881590843e-02 -2 -3 1280 -9.0516731142997742e-03
+
+ -4.2203828692436218e-01 -5.7036012411117554e-01
+ -2.4343970417976379e-01 1.2901119887828827e-01
+ <_>
+
+ 0 1 1281 -4.0202909149229527e-03 -1 2 1282
+ 1.9786891061812639e-03 -2 -3 1283 -2.1167920902371407e-02
+
+ 3.0336159467697144e-01 -1.1887379735708237e-01
+ -5.3209340572357178e-01 3.7618291378021240e-01
+ <_>
+
+ 0 1 1284 -1.3314959593117237e-02 2 -1 1285
+ -3.0734280124306679e-02 -2 -3 1286 -4.9376720190048218e-01
+
+ -4.7728979587554932e-01 -1.0171979665756226e-01
+ -4.9745380878448486e-01 1.9965989887714386e-01
+ <_>
+
+ 1 0 1287 -2.2439099848270416e-03 -1 2 1288
+ -4.3283861130475998e-02 -2 -3 1289 -9.8785851150751114e-05
+
+ -1.0817500203847885e-01 6.4580261707305908e-01
+ 2.6985371112823486e-01 -1.5044610202312469e-01
+ <_>
+
+ 1 0 1290 2.8435129672288895e-02 -1 2 1291
+ 2.7237860485911369e-03 -2 -3 1292 -4.7562850522808731e-04
+
+ 2.9883900284767151e-01 -1.8797110021114349e-01
+ 2.8433099389076233e-01 -1.2085639685392380e-01
+ <_>
+
+ 1 0 1293 3.8944541011005640e-03 2 -1 1294
+ 4.3390938080847263e-03 -2 -3 1295 -2.0263839513063431e-02
+
+ -2.7473360300064087e-01 -3.7163880467414856e-01
+ -3.5409209132194519e-01 1.3197909295558929e-01
+ <_>
+
+ 0 1 1296 -5.5432569235563278e-02 2 -1 1297
+ 5.4974798113107681e-03 -2 -3 1298 -4.8123318701982498e-03
+
+ -6.3836967945098877e-01 2.4118340015411377e-01
+ 1.2418109923601151e-01 -1.8538869917392731e-01
+ <_>
+
+ 2 1 1299 1.4174300013110042e-03 0 -1 1300
+ -3.3114890102297068e-03 -2 -3 1301 -9.4083733856678009e-03
+
+ 1.0947279632091522e-01 -3.1438231468200684e-01
+ -5.0812500715255737e-01 1.2708969414234161e-01
+ <_>
+
+ 1 0 1302 1.6073260456323624e-02 -1 2 1303
+ -3.9989468641579151e-03 -2 -3 1304 1.0122359963133931e-03
+
+ -3.2891270518302917e-01 2.3349060118198395e-01
+ -1.7827099561691284e-01 1.6806240379810333e-01
+ <_>
+
+ 1 0 1305 1.5654880553483963e-02 2 -1 1306
+ 1.3416170142591000e-02 -2 -3 1307 2.4865430314093828e-03
+
+ 6.6142809391021729e-01 -5.6725960969924927e-01
+ 7.0396818220615387e-02 -2.1695409715175629e-01
+ <_>
+
+ 0 1 1308 -4.5016291551291943e-03 -1 2 1309
+ -2.0310489460825920e-02 -2 -3 1310 2.0448309369385242e-03
+
+ -2.9001921415328979e-01 -5.5471527576446533e-01
+ -7.5903441756963730e-03 3.0112549662590027e-01
+ <_>
+
+ 2 1 1311 3.3151761163026094e-03 0 -1 1312
+ -1.1767409741878510e-02 -2 -3 1313 -9.0457782149314880e-02
+
+ -6.5939038991928101e-01 1.9516299664974213e-01
+ 2.3783689737319946e-01 -1.6133689880371094e-01
+ <_>
+
+ 0 1 1314 -9.4386242562904954e-04 -1 2 1315
+ -5.5300429463386536e-02 -2 -3 1316 1.8430839991196990e-03
+
+ 2.0265130698680878e-01 1.3218100368976593e-01
+ -8.5232466459274292e-02 -5.0634711980819702e-01
+ <_>
+
+ 2 1 1317 -4.4628758914768696e-03 0 -1 1318
+ 9.7493419889360666e-04 -2 -3 1319 -3.1454759300686419e-04
+
+ -2.7136290073394775e-01 1.5943349897861481e-01
+ 2.7965110540390015e-01 -3.2671060413122177e-02
+ <_>
+
+ 1 2 1320 -1.6447799280285835e-02 0 -1 1321
+ 2.3777380585670471e-02 -2 -3 1322 2.8008338995277882e-03
+
+ -4.1435249149799347e-03 3.5191389918327332e-01
+ -2.2791029512882233e-01 1.8853689730167389e-01
+ <_>
+
+ 1 0 1323 1.7503320123068988e-04 -1 2 1324
+ 1.3492659491021186e-04 -2 -3 1325 4.8691541451262310e-05
+
+ -2.1376720070838928e-01 -1.3506560027599335e-01
+ -2.7009880542755127e-01 3.2778948545455933e-01
+ <_>
+
+ 1 0 1326 2.4542049504816532e-03 -1 2 1327
+ -2.3232260718941689e-02 -2 -3 1328 5.2798539400100708e-03
+
+ 2.6363280415534973e-01 -3.8305589556694031e-01
+ -7.7942140400409698e-02 2.4021050333976746e-01
+ <_>
+
+ 1 0 1329 7.0398352108895779e-03 2 -1 1330
+ 4.0894638746976852e-02 -2 -3 1331 -7.9772479832172394e-02
+
+ 2.0972409844398499e-01 -7.0987868309020996e-01
+ 5.7007771730422974e-01 -6.9354712963104248e-02
+ <_>
+
+ 1 0 1332 6.4237392507493496e-04 -1 2 1333
+ 1.8864229787141085e-03 -2 -3 1334 -2.5151949375867844e-03
+
+ -4.0321418642997742e-01 8.4503486752510071e-02
+ 7.3963850736618042e-01 -3.7004008889198303e-01
+ <_>
+
+ 2 1 1335 9.2179048806428909e-04 0 -1 1336
+ -6.6281789913773537e-03 -2 -3 1337 -1.2447969987988472e-02
+
+ 2.4241310358047485e-01 -2.5563749670982361e-01
+ 4.5645469427108765e-01 3.5875100642442703e-02
+ <_>
+
+ 1 0 1338 9.8073864355683327e-03 2 -1 1339
+ 1.1752230115234852e-02 -2 -3 1340 -4.5835418859496713e-04
+
+ -3.5728690028190613e-01 2.2477920353412628e-01
+ 9.2636883258819580e-02 -2.2759440541267395e-01
+ <_>
+
+ 1 0 1341 1.2521909549832344e-02 2 -1 1342
+ 5.4397471249103546e-03 -2 -3 1343 -5.8840587735176086e-04
+
+ -5.0926029682159424e-01 4.6630910038948059e-01
+ -2.5326851010322571e-01 4.8585399985313416e-02
+ <_>
+
+ 0 1 1344 -8.6136013269424438e-03 2 -1 1345
+ 4.8513390356674790e-04 -2 -3 1346 -5.7645072229206562e-04
+
+ -4.6801608800888062e-01 1.5412229299545288e-01
+ 3.3526080846786499e-01 -1.3425140082836151e-01
+ <_>
+
+ 0 1 1347 1.5327259898185730e-03 2 -1 1348
+ 1.6712940123397857e-04 -2 -3 1349 5.0148408627137542e-04
+
+ -8.4655933082103729e-02 -2.9512628912925720e-01
+ 4.4228151440620422e-01 7.0311659947037697e-03
+ <_>
+
+ 0 1 1350 -7.2751182597130537e-04 2 -1 1351
+ 1.6298179980367422e-03 -2 -3 1352 -6.5518761985003948e-03
+
+ 3.6965361237525940e-01 -3.1909099221229553e-01
+ -5.0437092781066895e-01 4.8704870045185089e-02
+ <_>
+
+ 0 1 1353 -1.8271349370479584e-02 2 -1 1354
+ -3.1057938933372498e-01 -2 -3 1355 8.6849008221179247e-04
+
+ 2.6778510212898254e-01 -1.5646959841251373e-01
+ 2.2130140662193298e-01 -2.3309649527072906e-01
+ <_>
+
+ 0 1 1356 -1.0790280066430569e-02 2 -1 1357
+ -6.7156221484765410e-04 -2 -3 1358 7.9050064086914062e-03
+
+ -4.1554379463195801e-01 -8.0280020833015442e-02
+ 1.7470720410346985e-01 -7.7852571010589600e-01
+ <_>
+
+ 2 1 1359 1.2352660298347473e-02 0 -1 1360
+ 6.2703549861907959e-02 -2 -3 1361 -7.1864388883113861e-03
+
+ 4.3160900473594666e-01 -3.9224869012832642e-01
+ -5.8003968000411987e-01 -2.5838220492005348e-02
+ <_>
+
+ 0 1 1362 -3.8558109663426876e-03 -1 2 1363
+ -1.5419459668919444e-03 -2 -3 1364 -2.2120370995253325e-03
+
+ 1.5963500738143921e-01 1.6741840541362762e-01
+ 2.9176110401749611e-02 -2.8822419047355652e-01
+ <_>
+
+ 0 1 1365 -2.1434590220451355e-02 2 -1 1366
+ -1.9107710104435682e-03 -2 -3 1367 3.5804428160190582e-02
+
+ -2.2613149881362915e-01 1.0307289659976959e-01
+ 7.5381852686405182e-02 -6.3267099857330322e-01
+ <_>
+
+ 1 0 1368 1.4067400479689240e-03 -1 2 1369
+ 9.6554737538099289e-03 -2 -3 1370 2.4058830738067627e-01
+
+ 3.7057319283485413e-01 -2.0454670488834381e-01
+ 2.0735639333724976e-01 -1.2661419808864594e-01
+ <_>
+
+ 1 0 1371 5.2541731856763363e-03 -1 2 1372
+ -1.1480560060590506e-03 -2 -3 1373 5.2387482719495893e-04
+
+ -2.3812450468540192e-01 -1.8807569518685341e-02
+ 5.8435738086700439e-01 -7.0002108812332153e-02
+ <_>
+
+ 1 0 1374 8.9346221648156643e-04 -1 2 1375
+ -1.4664779603481293e-01 -2 -3 1376 6.4734317129477859e-04
+
+ -2.0343719422817230e-01 4.2429131269454956e-01
+ -7.2510123252868652e-02 2.4216009676456451e-01
+ <_>
+
+ 1 0 1377 3.7285720463842154e-03 2 -1 1378
+ 1.0364309855503961e-04 -2 -3 1379 -4.3523311614990234e-03
+
+ -4.1690871119499207e-01 1.7091989517211914e-01
+ 3.1368499994277954e-01 -1.3387750089168549e-01
+ <_>
+
+ 1 2 1380 -8.2644030451774597e-02 0 -1 1381
+ -8.3868228830397129e-04 -2 -3 1382 -2.6123419404029846e-02
+
+ 6.7182201147079468e-01 -4.5429998636245728e-01
+ 2.1897830069065094e-01 -3.2377090305089951e-02
+ <_>
+
+ 2 1 1383 5.2059517474845052e-04 0 -1 1384
+ -2.9154460877180099e-02 -2 -3 1385 -1.1165169999003410e-03
+
+ -3.6328500509262085e-01 1.6834139823913574e-01
+ 1.5818840265274048e-01 -2.3134049773216248e-01
+ <_>
+
+ 1 0 1386 -1.1460180394351482e-03 2 -1 1387
+ 2.0873030647635460e-02 -2 -3 1388 4.0476579219102859e-02
+
+ -1.2237170338630676e-01 4.0715441107749939e-01
+ -4.8719130456447601e-02 6.1359512805938721e-01
+ <_>
+ 42
+ -1.1990439891815186e+00
+
+ <_>
+
+ 2 1 1389 2.3152550682425499e-02 0 -1 1390
+ 9.4490228220820427e-03 -2 -3 1391 1.2632790021598339e-03
+
+ 1.6217540204524994e-01 8.9458537101745605e-01
+ -2.9920589923858643e-01 2.4114310741424561e-01
+ <_>
+
+ 1 2 1392 -6.3288196921348572e-02 0 -1 1393
+ -5.4630772210657597e-03 -2 -3 1394 -5.3964817197993398e-04
+
+ 5.8726388216018677e-01 2.8670629486441612e-02
+ 2.1043429151177406e-02 -3.3096361160278320e-01
+ <_>
+
+ 0 1 1395 -4.3574950098991394e-01 -1 2 1396
+ -2.2997299674898386e-03 -2 -3 1397 2.8589849825948477e-03
+
+ 2.9235550761222839e-01 1.0574100166559219e-01
+ -3.3370551466941833e-01 1.6990379989147186e-01
+ <_>
+
+ 0 1 1398 -2.1891849115490913e-02 -1 2 1399
+ -9.2662516981363297e-03 -2 -3 1400 -1.6625279560685158e-02
+
+ -6.2861520051956177e-01 -4.3969720602035522e-01
+ 4.0394479036331177e-01 1.1343320365995169e-03
+ <_>
+
+ 2 1 1401 2.4849560577422380e-03 0 -1 1402
+ -1.8093220889568329e-02 -2 -3 1403 -1.5609259717166424e-02
+
+ -1.5912850201129913e-01 4.4538548588752747e-01
+ 6.9278262555599213e-02 -2.2655999660491943e-01
+ <_>
+
+ 0 1 1404 -4.3753669597208500e-03 -1 2 1405
+ -1.3602689432445914e-04 -2 -3 1406 3.8207470788620412e-04
+
+ -7.1104782819747925e-01 -1.6582900285720825e-01
+ 2.1408109366893768e-01 -1.2310829758644104e-01
+ <_>
+
+ 0 1 1407 -5.7698809541761875e-03 -1 2 1408
+ -6.5253339707851410e-03 -2 -3 1409 -8.3149597048759460e-02
+
+ 2.5808620452880859e-01 2.0068170130252838e-01
+ -6.4005237817764282e-01 -9.6292853355407715e-02
+ <_>
+
+ 0 1 1410 -1.7492580227553844e-03 -1 2 1411
+ -3.5885178949683905e-03 -2 -3 1412 2.8363720048218966e-03
+
+ -2.7996930480003357e-01 -4.2557060718536377e-01
+ 1.7105630040168762e-01 -1.1548189818859100e-01
+ <_>
+
+ 2 1 1413 3.7369329947978258e-03 0 -1 1414
+ 2.0398290827870369e-02 -2 -3 1415 -1.8605329096317291e-02
+
+ 7.5142003595829010e-02 7.1449148654937744e-01
+ 6.6745537519454956e-01 -1.3011719286441803e-01
+ <_>
+
+ 1 0 1416 1.2047400232404470e-03 -1 2 1417
+ -4.1799237951636314e-03 -2 -3 1418 5.3556780330836773e-03
+
+ 1.9936279952526093e-01 2.0625339448451996e-01
+ -2.1847389638423920e-01 3.9184600114822388e-01
+ <_>
+
+ 1 2 1419 -2.3561089765280485e-03 0 -1 1420
+ -5.9740748256444931e-02 -2 -3 1421 1.4918210217729211e-03
+
+ 6.4951920509338379e-01 -2.6147049665451050e-01
+ 1.1800879985094070e-01 -3.6518579721450806e-01
+ <_>
+
+ 0 1 1422 -2.6466009020805359e-01 -1 2 1423
+ -6.3644978217780590e-04 -2 -3 1424 -1.0798840224742889e-01
+
+ -4.7007301449775696e-01 1.5393650531768799e-01
+ 2.8167989850044250e-01 -1.9636960327625275e-01
+ <_>
+
+ 0 1 1425 -3.6950930370949209e-04 -1 2 1426
+ -7.9222144559025764e-03 -2 -3 1427 -7.1997018530964851e-03
+
+ -2.5694531202316284e-01 -3.6089059710502625e-01
+ 2.1187220513820648e-01 -6.0304410755634308e-02
+ <_>
+
+ 1 0 1428 2.7865950018167496e-02 -1 2 1429
+ 1.0313779785064980e-04 -2 -3 1430 9.8026450723409653e-04
+
+ 2.7542260289192200e-01 -2.1113120019435883e-01
+ 1.2969830632209778e-01 -3.5925969481468201e-01
+ <_>
+
+ 1 0 1431 1.0869160294532776e-02 2 -1 1432
+ 1.9162669777870178e-03 -2 -3 1433 -6.9466588320210576e-04
+
+ -2.8709220886230469e-01 1.9223760068416595e-01
+ 2.6802310347557068e-01 -1.5893469750881195e-01
+ <_>
+
+ 0 1 1434 -1.5737100038677454e-03 2 -1 1435
+ 2.8489651158452034e-03 -2 -3 1436 1.2300360249355435e-03
+
+ 4.8450559377670288e-01 1.4732420444488525e-01
+ -2.2078629583120346e-02 -3.5363599658012390e-01
+ <_>
+
+ 0 1 1437 -1.7871359596028924e-03 -1 2 1438
+ -7.5124297291040421e-04 -2 -3 1439 -1.5810869634151459e-02
+
+ 1.5130859613418579e-01 -2.5845149159431458e-01
+ 3.9024001359939575e-01 -8.3249032497406006e-02
+ <_>
+
+ 2 1 1440 -8.5817109793424606e-03 0 -1 1441
+ 1.4925940334796906e-01 -2 -3 1442 5.0973348319530487e-02
+
+ 6.5285183489322662e-02 -4.4836780428886414e-01
+ -5.9802252054214478e-01 7.6314812898635864e-01
+ <_>
+
+ 2 1 1443 -1.4699130551889539e-03 0 -1 1444
+ 1.8571510445326567e-03 -2 -3 1445 2.7572319377213717e-03
+
+ -1.5857130289077759e-01 2.0623469352722168e-01
+ -1.5369700267910957e-02 3.5741418600082397e-01
+ <_>
+
+ 0 1 1446 -1.2494870461523533e-02 -1 2 1447
+ -2.0542230457067490e-02 -2 -3 1448 9.8408637568354607e-03
+
+ 2.1646310389041901e-01 3.5183259844779968e-01
+ -2.5107988715171814e-01 2.4597419425845146e-02
+ <_>
+
+ 1 0 1449 7.5531061738729477e-03 2 -1 1450
+ 8.6472760885953903e-03 -2 -3 1451 -2.3343270644545555e-02
+
+ -7.7170521020889282e-01 -2.6535108685493469e-01
+ -3.1102359294891357e-01 1.0751940310001373e-01
+ <_>
+
+ 0 1 1452 -2.3739689495414495e-03 2 -1 1453
+ 4.5531010255217552e-03 -2 -3 1454 -1.7819739878177643e-02
+
+ 2.4833559989929199e-01 1.2766610085964203e-01
+ -2.1538909524679184e-02 -3.3530569076538086e-01
+ <_>
+
+ 0 1 1455 -1.8217710778117180e-02 -1 2 1456
+ -4.5768721029162407e-03 -2 -3 1457 -1.8008370534516871e-04
+
+ -4.1915500164031982e-01 -4.3936538696289062e-01
+ -1.2697519361972809e-01 1.3539279997348785e-01
+ <_>
+
+ 0 1 1458 -7.6008588075637817e-03 2 -1 1459
+ 4.5034091453999281e-04 -2 -3 1460 2.7170981047675014e-04
+
+ -3.3822789788246155e-01 3.1599909067153931e-01
+ -7.5660146772861481e-02 2.3075099289417267e-01
+ <_>
+
+ 0 1 1461 -5.9739891439676285e-02 2 -1 1462
+ -2.4159778840839863e-03 -2 -3 1463 7.5702499598264694e-03
+
+ -3.9958238601684570e-01 -2.9177419841289520e-02
+ 3.6201998591423035e-01 -7.8775990009307861e-01
+ <_>
+
+ 1 0 1464 4.8360861837863922e-03 -1 2 1465
+ -1.9794749096035957e-02 -2 -3 1466 -5.3176241926848888e-03
+
+ -4.7984561324119568e-01 3.1721720099449158e-01
+ 2.1971449255943298e-01 -8.5302233695983887e-02
+ <_>
+
+ 2 1 1467 3.5097550135105848e-03 0 -1 1468
+ -1.6063610091805458e-03 -2 -3 1469 1.8238229677081108e-03
+
+ 3.4705808758735657e-01 -3.2198080420494080e-01
+ 9.7573727369308472e-02 -4.1784769296646118e-01
+ <_>
+
+ 2 1 1470 2.2058039903640747e-03 0 -1 1471
+ 2.5601179804652929e-03 -2 -3 1472 2.2490289993584156e-03
+
+ -2.9866018891334534e-01 3.2085859775543213e-01
+ 1.0411229729652405e-01 -3.0941790342330933e-01
+ <_>
+
+ 1 2 1473 2.2417849395424128e-03 0 -1 1474
+ 9.5781440904829651e-05 -2 -3 1475 -1.0199189931154251e-01
+
+ -1.9861190021038055e-01 8.0484487116336823e-02
+ -6.6573441028594971e-01 2.6545938849449158e-01
+ <_>
+
+ 2 1 1476 2.9278239235281944e-03 0 -1 1477
+ -2.3058110382407904e-03 -2 -3 1478 -3.5818710457533598e-03
+
+ 4.6711549162864685e-01 -2.3293379694223404e-02
+ 1.9756149500608444e-02 -2.5899839401245117e-01
+ <_>
+
+ 2 1 1479 4.8302081413567066e-03 0 -1 1480
+ -2.7483499143272638e-03 -2 -3 1481 -4.5970390783622861e-04
+
+ -3.6909970641136169e-01 2.9650568962097168e-01
+ 1.0480040311813354e-01 -1.6184529662132263e-01
+ <_>
+
+ 2 1 1482 -1.0161349549889565e-02 0 -1 1483
+ 3.2342320773750544e-03 -2 -3 1484 -1.1368689592927694e-03
+
+ -1.5523530542850494e-01 4.8816910386085510e-01
+ 2.8159290552139282e-01 -6.2790401279926300e-02
+ <_>
+
+ 1 0 1485 1.1411249870434403e-03 2 -1 1486
+ 2.8695389628410339e-03 -2 -3 1487 2.4731169641017914e-01
+
+ 1.2081749737262726e-01 2.0992599427700043e-01
+ -2.4197529256343842e-01 6.4990550279617310e-01
+ <_>
+
+ 2 1 1488 2.7829511091113091e-03 0 -1 1489
+ -1.3701720163226128e-02 -2 -3 1490 4.8768401145935059e-02
+
+ 4.5538169145584106e-01 -3.3847901225090027e-01
+ 8.9688122272491455e-02 -3.1576380133628845e-01
+ <_>
+
+ 1 0 1491 1.7329800873994827e-02 2 -1 1492
+ 1.4899630099534988e-02 -2 -3 1493 -5.4528238251805305e-03
+
+ 4.2558190226554871e-01 6.1711931228637695e-01
+ -4.0939989686012268e-01 -1.5215449966490269e-02
+ <_>
+
+ 0 1 1494 -4.6164509840309620e-03 2 -1 1495
+ 2.2072680294513702e-03 -2 -3 1496 1.1780969798564911e-03
+
+ -3.5992878675460815e-01 2.0051500201225281e-01
+ -1.7710399627685547e-01 1.3283580541610718e-01
+ <_>
+
+ 2 1 1497 -2.1226529497653246e-04 0 -1 1498
+ 6.6969380713999271e-03 -2 -3 1499 4.8628589138388634e-03
+
+ -1.4558829367160797e-01 3.0319228768348694e-01
+ 2.1147659420967102e-01 -6.5050870180130005e-01
+ <_>
+
+ 1 0 1500 1.2855669483542442e-03 -1 2 1501
+ -9.8538002930581570e-04 -2 -3 1502 3.6161120515316725e-03
+
+ -1.4253799617290497e-01 -4.9302369356155396e-02
+ 4.5496350526809692e-01 -1.2398339807987213e-01
+ <_>
+
+ 1 0 1503 7.4739390984177589e-03 2 -1 1504
+ 1.4764349907636642e-02 -2 -3 1505 5.4328311234712601e-03
+
+ 2.5631210207939148e-01 5.8572351932525635e-01
+ 3.2529931515455246e-02 -2.2187189757823944e-01
+ <_>
+
+ 1 2 1506 -2.7086320915259421e-04 0 -1 1507
+ 4.2132260277867317e-03 -2 -3 1508 1.9583420362323523e-04
+
+ 2.6175120472908020e-01 -5.9540379047393799e-01
+ -1.9159470498561859e-01 9.1520026326179504e-02
+ <_>
+
+ 0 1 1509 -7.1442658081650734e-03 2 -1 1510
+ 2.3744559439364821e-04 -2 -3 1511 -8.4380080807022750e-05
+
+ 1.3012650609016418e-01 -3.8831448554992676e-01
+ 2.1030910313129425e-01 -1.4587140083312988e-01
+ <_>
+
+ 1 0 1512 1.2161800265312195e-01 2 -1 1513
+ 6.9275178248062730e-05 -2 -3 1514 -1.5904659405350685e-02
+
+ 2.5583249330520630e-01 1.1272220313549042e-01
+ 7.2112542390823364e-01 -1.9385160505771637e-01
+ <_>
+ 35
+ -1.1545649766921997e+00
+
+ <_>
+
+ 2 1 1515 1.7899930477142334e-02 0 -1 1516
+ 1.5925300540402532e-03 -2 -3 1517 1.8896949477493763e-03
+
+ 4.6134639531373978e-02 8.3787131309509277e-01
+ -3.6899039149284363e-01 1.8707709386944771e-02
+ <_>
+
+ 1 0 1518 -4.1336648166179657e-02 -1 2 1519
+ -4.0737599134445190e-02 -2 -3 1520 -1.4306500088423491e-03
+
+ -1.9983500242233276e-01 5.5203098058700562e-01
+ -5.4083228111267090e-01 1.3183380663394928e-01
+ <_>
+
+ 2 1 1521 1.4656609855592251e-03 0 -1 1522
+ -1.3589359587058425e-03 -2 -3 1523 -1.5437849797308445e-03
+
+ 1.7477029561996460e-01 -4.5285460352897644e-01
+ 2.2154679894447327e-01 -1.1437030136585236e-01
+ <_>
+
+ 2 1 1524 6.6659757867455482e-03 0 -1 1525
+ -1.7080729594454169e-03 -2 -3 1526 -3.6050159484148026e-02
+
+ 5.6135451793670654e-01 -7.5875748880207539e-03
+ 6.9391137361526489e-01 -1.3373179733753204e-01
+ <_>
+
+ 0 1 1527 -7.1983798407018185e-03 -1 2 1528
+ -6.5796967828646302e-04 -2 -3 1529 -1.2115390272811055e-03
+
+ 1.8855899572372437e-01 -4.7130081057548523e-01
+ 1.9381099939346313e-01 -1.4709189534187317e-01
+ <_>
+
+ 0 1 1530 -1.0272770188748837e-02 2 -1 1531
+ -7.0025851018726826e-03 -2 -3 1532 -2.4933859705924988e-02
+
+ -4.1135069727897644e-01 -8.8177748024463654e-02
+ -6.3464301824569702e-01 2.5403091311454773e-01
+ <_>
+
+ 2 1 1533 7.7693387866020203e-03 0 -1 1534
+ -4.4885549694299698e-02 -2 -3 1535 1.9916899036616087e-03
+
+ -4.5445719361305237e-01 3.3884489536285400e-01
+ -5.3012330085039139e-02 -5.7269239425659180e-01
+ <_>
+
+ 0 1 1536 -1.4783450402319431e-02 2 -1 1537
+ 1.1688449885696173e-03 -2 -3 1538 -1.2033269740641117e-04
+
+ 3.7365919351577759e-01 -3.0164909362792969e-01
+ 1.4958509802818298e-01 -1.4014390110969543e-01
+ <_>
+
+ 0 1 1539 -4.3730039149522781e-02 -1 2 1540
+ -1.7855180427432060e-02 -2 -3 1541 8.3651271415874362e-04
+
+ -7.0078557729721069e-01 8.0032449960708618e-01
+ 7.8825756907463074e-02 -2.0352110266685486e-01
+ <_>
+
+ 2 1 1542 -6.6671593231149018e-05 0 -1 1543
+ -9.8805947345681489e-05 -2 -3 1544 -2.7336759376339614e-04
+
+ -3.7201121449470520e-01 1.3640309683978558e-02
+ -1.6216109693050385e-01 2.6113900542259216e-01
+ <_>
+
+ 1 0 1545 4.2468630708754063e-03 2 -1 1546
+ -4.9197040498256683e-03 -2 -3 1547 -1.4116670005023479e-02
+
+ 2.8842711448669434e-01 -1.0787279903888702e-01
+ -7.0104539394378662e-01 3.3659279346466064e-01
+ <_>
+
+ 1 2 1548 -4.4507419806905091e-04 0 -1 1549
+ -1.2075440026819706e-02 -2 -3 1550 -2.3437689524143934e-03
+
+ -7.0987367630004883e-01 1.5176150202751160e-01
+ -4.0890040993690491e-01 -1.7091540619730949e-02
+ <_>
+
+ 1 0 1551 1.6248680651187897e-02 2 -1 1552
+ 1.9177920185029507e-03 -2 -3 1553 -1.0359560139477253e-02
+
+ -6.0641109943389893e-01 3.6670050024986267e-01
+ 1.9813629984855652e-01 -1.1020349711179733e-01
+ <_>
+
+ 2 1 1554 2.9234820976853371e-03 0 -1 1555
+ 3.4323200583457947e-02 -2 -3 1556 1.8238219490740448e-04
+
+ -4.6382451057434082e-01 1.5469099581241608e-01
+ -2.5076579302549362e-02 2.7050849795341492e-01
+ <_>
+
+ 0 1 1557 -8.5055502131581306e-04 2 -1 1558
+ 4.7644949518144131e-03 -2 -3 1559 -2.5098009500652552e-03
+
+ 1.7459200322628021e-01 4.0942171216011047e-01
+ 3.9601740241050720e-01 -1.7667229473590851e-01
+ <_>
+
+ 0 1 1560 -5.0978600047528744e-03 -1 2 1561
+ -5.2095171064138412e-02 -2 -3 1562 3.5293150693178177e-02
+
+ -4.4393861293792725e-01 -6.6363197565078735e-01
+ 2.7801029384136200e-02 5.6744211912155151e-01
+ <_>
+
+ 0 1 1563 -3.6938309669494629e-01 2 -1 1564
+ 5.7077431119978428e-03 -2 -3 1565 5.1315332530066371e-04
+
+ -5.4281282424926758e-01 -3.8007241487503052e-01
+ -7.5563162565231323e-02 1.8112689256668091e-01
+ <_>
+
+ 0 1 1566 -8.1165106967091560e-03 -1 2 1567
+ 2.4742930690990761e-05 -2 -3 1568 -8.3282394334673882e-03
+
+ 4.3757191300392151e-01 -1.6252890229225159e-01
+ 2.9233780503273010e-01 -5.2530951797962189e-02
+ <_>
+
+ 0 1 1569 -9.9733080714941025e-03 -1 2 1570
+ -1.6291439533233643e-03 -2 -3 1571 2.3081828840076923e-03
+
+ 2.3018500208854675e-01 -3.8834458589553833e-01
+ 1.5438289940357208e-01 -1.6248099505901337e-01
+ <_>
+
+ 0 1 1572 7.0326360873878002e-03 2 -1 1573
+ -8.7802913039922714e-03 -2 -3 1574 -1.1044350266456604e-01
+
+ -8.2522578537464142e-02 3.2759511470794678e-01
+ 6.3194888830184937e-01 -2.1398690342903137e-01
+ <_>
+
+ 0 1 1575 6.3772657886147499e-03 -1 2 1576
+ -1.4427660405635834e-01 -2 -3 1577 5.2613671869039536e-03
+
+ -6.5774962306022644e-02 -5.2361601591110229e-01
+ 3.7687599658966064e-01 -3.7297201156616211e-01
+ <_>
+
+ 0 1 1578 -9.3407719396054745e-04 2 -1 1579
+ 7.0944131584838033e-04 -2 -3 1580 -2.0967289805412292e-02
+
+ -3.5960820317268372e-01 2.9923319816589355e-01
+ -3.0739480257034302e-01 4.0209449827671051e-02
+ <_>
+
+ 1 2 1581 3.0113470274955034e-03 0 -1 1582
+ -1.6325850447174162e-04 -2 -3 1583 3.9222151972353458e-03
+
+ 8.1960096955299377e-02 -2.3989020287990570e-01
+ 3.2356649637222290e-01 -1.2140029668807983e-01
+ <_>
+
+ 1 0 1584 1.9476639572530985e-03 -1 2 1585
+ -1.1166670173406601e-01 -2 -3 1586 -8.8221747428178787e-03
+
+ -2.0126590132713318e-01 -3.1850230693817139e-01
+ -4.0777778625488281e-01 1.7498190701007843e-01
+ <_>
+
+ 1 0 1587 4.4771569082513452e-04 -1 2 1588
+ -1.5389479696750641e-01 -2 -3 1589 9.9520087242126465e-02
+
+ 2.2826899588108063e-01 2.3346799612045288e-01
+ -1.9206780195236206e-01 1.9271479547023773e-01
+ <_>
+
+ 0 1 1590 -7.3821679688990116e-03 2 -1 1591
+ 3.8805850781500340e-03 -2 -3 1592 1.6339759528636932e-01
+
+ -4.6257901191711426e-01 -2.3733510076999664e-01
+ 5.5862568318843842e-02 6.1965280771255493e-01
+ <_>
+
+ 0 1 1593 -8.8077411055564880e-02 -1 2 1594
+ -3.5946018993854523e-02 -2 -3 1595 -1.6441620886325836e-02
+
+ -3.8033220171928406e-01 2.6925620436668396e-01
+ 1.4508089423179626e-01 -1.6219359636306763e-01
+ <_>
+
+ 0 1 1596 -4.3592150323092937e-03 2 -1 1597
+ 1.0485500097274780e-02 -2 -3 1598 -6.1118233134038746e-05
+
+ -5.1064497232437134e-01 2.8324770927429199e-01
+ 7.6486147940158844e-02 -1.9800069928169250e-01
+ <_>
+
+ 0 1 1599 -4.7104779630899429e-02 2 -1 1600
+ 4.4213151559233665e-03 -2 -3 1601 7.0402962155640125e-03
+
+ -7.2683817148208618e-01 3.9631149172782898e-01
+ 1.8920229747891426e-02 -3.7019899487495422e-01
+ <_>
+
+ 1 0 1602 1.4250110089778900e-01 2 -1 1603
+ -5.7172770611941814e-03 -2 -3 1604 -4.6481531113386154e-02
+
+ 8.8020402193069458e-01 4.3595671653747559e-02
+ 7.6506501436233521e-01 -2.7619931101799011e-01
+ <_>
+
+ 0 1 1605 -4.4838748872280121e-02 2 -1 1606
+ 3.0957909300923347e-02 -2 -3 1607 -8.7462607771158218e-03
+
+ -5.1540642976760864e-01 5.9068799018859863e-01
+ -2.2899469733238220e-01 6.3833296298980713e-02
+ <_>
+
+ 1 2 1608 -1.5742169693112373e-02 0 -1 1609
+ -2.6640590280294418e-02 -2 -3 1610 1.8860519630834460e-03
+
+ 7.8339278697967529e-01 -2.8742430731654167e-02
+ -5.8971941471099854e-03 -5.2254527807235718e-01
+ <_>
+
+ 1 0 1611 9.0017020702362061e-02 2 -1 1612
+ 4.1232812218368053e-03 -2 -3 1613 -3.1369640491902828e-03
+
+ -2.7766749262809753e-01 -3.3485591411590576e-01
+ 2.3297710716724396e-01 -2.5101479142904282e-02
+ <_>
+
+ 0 1 1614 -1.9068670272827148e-01 -1 2 1615
+ -1.2578029930591583e-01 -2 -3 1616 -4.1931928717531264e-04
+
+ -4.9549269676208496e-01 -4.1263309121131897e-01
+ 3.1464719772338867e-01 -1.8672699807211757e-03
+ <_>
+
+ 0 1 1617 -3.2330630347132683e-03 -1 2 1618
+ 1.7340299673378468e-03 -2 -3 1619 -2.2027179598808289e-02
+
+ 1.2561239302158356e-01 -3.4801191091537476e-01
+ 4.4815701246261597e-01 -7.2313196957111359e-02
+ <_>
+ 39
+ -1.1791440248489380e+00
+
+ <_>
+
+ 2 1 1620 3.3422548323869705e-02 0 -1 1621
+ 8.5403252160176635e-04 -2 -3 1622 -7.3585510253906250e-03
+
+ -1.3247360289096832e-01 7.6739120483398438e-01
+ 1.3871429860591888e-01 -3.1415361166000366e-01
+ <_>
+
+ 1 0 1623 -1.0222700238227844e-01 2 -1 1624
+ 3.4475249703973532e-03 -2 -3 1625 -1.7645580694079399e-02
+
+ -2.0302750170230865e-01 6.8434572219848633e-01
+ 4.2404478788375854e-01 -4.3976809829473495e-02
+ <_>
+
+ 1 0 1626 3.2828699331730604e-03 -1 2 1627
+ -2.6843189261853695e-03 -2 -3 1628 2.6746080256998539e-03
+
+ -3.2990959286689758e-01 -3.5459449887275696e-01
+ 2.0094729959964752e-01 -2.5637739896774292e-01
+ <_>
+
+ 2 1 1629 4.3111201375722885e-03 0 -1 1630
+ -1.0081959888339043e-02 -2 -3 1631 -1.2621459551155567e-02
+
+ 6.3562941551208496e-01 7.2961407713592052e-03
+ -4.7962281107902527e-01 -2.3874230682849884e-02
+ <_>
+
+ 1 0 1632 6.5851196646690369e-02 2 -1 1633
+ 6.6091239452362061e-02 -2 -3 1634 1.0616159997880459e-02
+
+ -4.3995830416679382e-01 5.8817231655120850e-01
+ 4.4144749641418457e-02 -5.2871602773666382e-01
+ <_>
+
+ 0 1 1635 -1.7077329754829407e-01 2 -1 1636
+ 7.3064928874373436e-03 -2 -3 1637 -1.6232950612902641e-02
+
+ 3.5454490780830383e-01 -4.8716691136360168e-01
+ 5.1020520925521851e-01 -4.3431609869003296e-02
+ <_>
+
+ 1 0 1638 1.7457149922847748e-02 -1 2 1639
+ 1.8004700905294158e-05 -2 -3 1640 -1.8200390331912786e-04
+
+ 6.0515201091766357e-01 -1.7250029742717743e-01
+ -1.9305349886417389e-01 1.9700099527835846e-01
+ <_>
+
+ 1 2 1641 1.9662559498101473e-04 0 -1 1642
+ -1.1132629588246346e-02 -2 -3 1643 2.1626690868288279e-03
+
+ 5.0847887992858887e-01 -1.9962939620018005e-01
+ 1.6478070616722107e-01 -4.2688089609146118e-01
+ <_>
+
+ 1 0 1644 7.7909911051392555e-03 -1 2 1645
+ -1.7233919352293015e-02 -2 -3 1646 1.2938809581100941e-02
+
+ 4.0679588913917542e-01 -3.7941160798072815e-01
+ 5.0589919090270996e-02 -3.9163780212402344e-01
+ <_>
+
+ 0 1 1647 -1.7387060448527336e-02 -1 2 1648
+ -2.5230729952454567e-03 -2 -3 1649 6.4417538233101368e-03
+
+ 3.1603300571441650e-01 -1.7287540435791016e-01
+ -9.0429611504077911e-02 3.1889480352401733e-01
+ <_>
+
+ 0 1 1650 -6.1783548444509506e-03 -1 2 1651
+ -6.8178442306816578e-03 -2 -3 1652 1.2576530571095645e-04
+
+ -8.6734527349472046e-01 -4.4892689585685730e-01
+ -9.1477192938327789e-02 1.5243050456047058e-01
+ <_>
+
+ 1 0 1653 3.7562008947134018e-03 2 -1 1654
+ -7.1173519827425480e-03 -2 -3 1655 -4.5744940871372819e-04
+
+ -3.9259639382362366e-01 -1.9343020394444466e-02
+ 5.8565497398376465e-01 -3.0873420182615519e-03
+ <_>
+
+ 1 0 1656 1.8661000067368150e-03 -1 2 1657
+ 4.5793029130436480e-04 -2 -3 1658 -7.0905109168961644e-04
+
+ 1.2924820184707642e-01 -3.0677530169487000e-01
+ -2.7637350559234619e-01 1.8316049873828888e-01
+ <_>
+
+ 1 2 1659 1.6472890274599195e-03 0 -1 1660
+ 3.3973839599639177e-03 -2 -3 1661 1.0479029733687639e-03
+
+ 3.3831808716058731e-02 5.3982901573181152e-01
+ -3.4972178936004639e-01 3.4049559384584427e-02
+ <_>
+
+ 1 0 1662 -1.2611759593710303e-03 -1 2 1663
+ -1.3892400311306119e-03 -2 -3 1664 -2.3636990226805210e-03
+
+ -1.0801869630813599e-01 -5.8067310601472855e-02
+ -1.1870750039815903e-01 4.2690658569335938e-01
+ <_>
+
+ 1 0 1665 7.7976062893867493e-02 2 -1 1666
+ 2.6837061159312725e-03 -2 -3 1667 -1.8215410411357880e-02
+
+ 6.1271321773529053e-01 2.0893469452857971e-01
+ 2.2027739882469177e-01 -1.4412580430507660e-01
+ <_>
+
+ 0 1 1668 -7.1908776590134948e-05 2 -1 1669
+ -4.8738159239292145e-02 -2 -3 1670 1.0442149825394154e-02
+
+ 1.3836480677127838e-01 -1.8305869400501251e-01
+ 2.6348349452018738e-01 -6.3504451513290405e-01
+ <_>
+
+ 1 2 1671 9.3731992819812149e-05 0 -1 1672
+ -8.5826592112425715e-05 -2 -3 1673 -8.0251938197761774e-04
+
+ 1.4046959578990936e-01 -2.6721659302711487e-01
+ -1.2936100363731384e-01 2.3326739668846130e-01
+ <_>
+
+ 0 1 1674 -4.1836570017039776e-03 2 -1 1675
+ -7.2750613093376160e-02 -2 -3 1676 -2.1738439798355103e-01
+
+ -6.0153460502624512e-01 6.9707646965980530e-02
+ 5.6727671623229980e-01 -4.5854389667510986e-01
+ <_>
+
+ 2 1 1677 1.1648099869489670e-02 0 -1 1678
+ -6.2701262533664703e-02 -2 -3 1679 2.1612979471683502e-02
+
+ 7.8997617959976196e-01 -3.9388018846511841e-01
+ 7.7059872448444366e-02 -3.8484179973602295e-01
+ <_>
+
+ 2 1 1680 1.4084950089454651e-02 0 -1 1681
+ -1.9548619166016579e-02 -2 -3 1682 -3.8142129778862000e-03
+
+ -8.6542218923568726e-01 3.0495870113372803e-01
+ 9.0823858976364136e-02 -1.5859849750995636e-01
+ <_>
+
+ 1 0 1683 -1.0152840055525303e-02 -1 2 1684
+ -7.2696566581726074e-02 -2 -3 1685 6.2066782265901566e-03
+
+ 4.4999830424785614e-02 -5.6914567947387695e-01
+ -2.0673969388008118e-01 9.0268892049789429e-01
+ <_>
+
+ 1 0 1686 6.9105483591556549e-02 -1 2 1687
+ -1.4375509927049279e-03 -2 -3 1688 -1.2960369931533933e-03
+
+ -5.9451812505722046e-01 4.0363711118698120e-01
+ -3.1941750645637512e-01 3.5984441637992859e-02
+ <_>
+
+ 1 0 1689 6.1866950243711472e-02 2 -1 1690
+ -1.2085740454494953e-02 -2 -3 1691 2.4474540259689093e-03
+
+ -2.7787050604820251e-01 -1.3511900603771210e-01
+ -1.1833719909191132e-02 3.7945300340652466e-01
+ <_>
+
+ 0 1 1692 -5.3315522382035851e-04 2 -1 1693
+ 4.3831359595060349e-02 -2 -3 1694 3.1255939393304288e-04
+
+ -2.2559830546379089e-01 -4.7124490141868591e-01
+ 1.7324599623680115e-01 -1.0789500176906586e-01
+ <_>
+
+ 0 1 1695 -3.2911780290305614e-03 2 -1 1696
+ -5.8774580247700214e-03 -2 -3 1697 1.7906239954754710e-03
+
+ 7.7492022514343262e-01 -8.2756206393241882e-02
+ 2.2471660748124123e-02 5.2061527967453003e-01
+ <_>
+
+ 1 2 1698 -2.8294209390878677e-02 0 -1 1699
+ -2.0737959071993828e-02 -2 -3 1700 6.0438051819801331e-02
+
+ -2.7196401357650757e-01 2.4411930143833160e-01
+ -1.8866230547428131e-01 1.2102810293436050e-01
+ <_>
+
+ 1 0 1701 1.0623940266668797e-02 -1 2 1702
+ -5.2178360521793365e-02 -2 -3 1703 -1.0080549865961075e-02
+
+ -4.3548050522804260e-01 5.5961382389068604e-01
+ -4.7012031078338623e-01 3.5867590457201004e-02
+ <_>
+
+ 0 1 1704 -1.8482849700376391e-03 -1 2 1705
+ -1.9860679458361119e-04 -2 -3 1706 1.3552449643611908e-01
+
+ 1.6979730129241943e-01 7.1132831275463104e-02
+ -2.6272559165954590e-01 6.1016607284545898e-01
+ <_>
+
+ 1 2 1707 -1.5910629183053970e-02 0 -1 1708
+ 2.6022290810942650e-02 -2 -3 1709 4.9573001451790333e-03
+
+ -3.0872771143913269e-01 4.9954459071159363e-01
+ 1.6577349603176117e-01 -9.6653968095779419e-02
+ <_>
+
+ 0 1 1710 -7.6060830906499177e-05 -1 2 1711
+ -7.5124457478523254e-02 -2 -3 1712 -1.2995740398764610e-03
+
+ 1.4288060367107391e-01 2.5722241401672363e-01
+ 5.3607620298862457e-02 -2.8598341345787048e-01
+ <_>
+
+ 2 1 1713 -2.2266160231083632e-03 0 -1 1714
+ -1.7864009365439415e-02 -2 -3 1715 -7.8721214085817337e-03
+
+ 4.0117779374122620e-01 -1.5379750728607178e-01
+ -5.3092598915100098e-01 2.0486819744110107e-01
+ <_>
+
+ 2 1 1716 7.2514810599386692e-03 0 -1 1717
+ -3.3152610994875431e-03 -2 -3 1718 1.1477110092528164e-04
+
+ 4.3453741073608398e-01 9.4297742471098900e-03
+ -2.5599750876426697e-01 8.4530018270015717e-02
+ <_>
+
+ 0 1 1719 -8.1627883017063141e-02 -1 2 1720
+ -3.0422580894082785e-03 -2 -3 1721 9.5837161643430591e-04
+
+ 6.3307619094848633e-01 1.4660899341106415e-01
+ -2.0023280382156372e-01 9.1823212802410126e-02
+ <_>
+
+ 0 1 1722 -2.9197218827903271e-04 -1 2 1723
+ -4.1077801142819226e-04 -2 -3 1724 -3.4885460045188665e-03
+
+ 1.1741080135107040e-01 -4.0920740365982056e-01
+ -3.9310920238494873e-01 9.1094776988029480e-02
+ <_>
+
+ 0 1 1725 -8.0458387732505798e-02 2 -1 1726
+ 1.4809619635343552e-02 -2 -3 1727 -2.5831649079918861e-02
+
+ -3.9728361368179321e-01 -6.7901968955993652e-01
+ -4.8431569337844849e-01 7.2864383459091187e-02
+ <_>
+
+ 0 1 1728 -6.8509988486766815e-03 2 -1 1729
+ 7.2365561500191689e-03 -2 -3 1730 -1.5076539712026715e-03
+
+ -6.2457418441772461e-01 -4.1250211000442505e-01
+ 4.2033711075782776e-01 4.4630239717662334e-03
+ <_>
+
+ 1 0 1731 3.1408321112394333e-02 -1 2 1732
+ -1.5178160369396210e-01 -2 -3 1733 -1.4014760032296181e-02
+
+ 5.3995478153228760e-01 -3.0855739116668701e-01
+ -5.0550711154937744e-01 4.7526750713586807e-02
+ <_>
+
+ 0 1 1734 -1.4479519426822662e-01 2 -1 1735
+ -3.5547069273889065e-04 -2 -3 1736 3.9468570612370968e-03
+
+ -6.7499721050262451e-01 -6.9627217948436737e-02
+ 2.0310120284557343e-01 -5.7640278339385986e-01
+ <_>
+ 46
+ -1.0878429412841797e+00
+
+ <_>
+
+ 1 2 1737 -3.7029121071100235e-02 0 -1 1738
+ 3.5863209050148726e-03 -2 -3 1739 2.0645149052143097e-03
+
+ 9.5846345648169518e-03 7.9992657899856567e-01
+ -2.9247409105300903e-01 1.4642210304737091e-01
+ <_>
+
+ 2 1 1740 5.5934679694473743e-03 0 -1 1741
+ 2.2176630795001984e-02 -2 -3 1742 4.8479600081918761e-05
+
+ -3.9403820037841797e-01 5.4291707277297974e-01
+ -2.4063709378242493e-01 9.0213976800441742e-02
+ <_>
+
+ 1 0 1743 -1.2722389772534370e-02 2 -1 1744
+ 1.1610349640250206e-02 -2 -3 1745 8.2520343363285065e-02
+
+ -1.7550089955329895e-01 -3.1787800788879395e-01
+ 2.8798571228981018e-01 -4.4052869081497192e-01
+ <_>
+
+ 0 1 1746 -1.4208409935235977e-02 -1 2 1747
+ -8.1465748371556401e-04 -2 -3 1748 -5.5117108859121799e-03
+
+ -8.2584899663925171e-01 1.9521759450435638e-01
+ 1.8622130155563354e-01 -1.9417479634284973e-01
+ <_>
+
+ 1 0 1749 1.0232779895886779e-03 -1 2 1750
+ -6.4967863261699677e-02 -2 -3 1751 2.5218280497938395e-03
+
+ -1.7564930021762848e-01 -6.9197070598602295e-01
+ 6.9476373493671417e-02 6.7932087182998657e-01
+ <_>
+
+ 1 0 1752 1.5097549557685852e-01 -1 2 1753
+ 4.3899910524487495e-03 -2 -3 1754 9.9906846880912781e-03
+
+ 4.6142420172691345e-01 4.2842838913202286e-02
+ -4.2551028728485107e-01 3.2834030687808990e-02
+ <_>
+
+ 0 1 1755 -2.1895440295338631e-02 -1 2 1756
+ -7.6050527393817902e-02 -2 -3 1757 -9.6018705517053604e-03
+
+ -4.7627368569374084e-01 -3.6348098516464233e-01
+ 2.4625270068645477e-01 -1.4736860059201717e-02
+ <_>
+
+ 0 1 1758 6.1576829466503114e-05 -1 2 1759
+ -2.2094589658081532e-03 -2 -3 1760 -1.3034399598836899e-02
+
+ -1.2972380220890045e-01 3.2342359423637390e-01
+ 4.9937328696250916e-01 -1.3894359767436981e-01
+ <_>
+
+ 0 1 1761 -2.0411429926753044e-02 2 -1 1762
+ -6.8360187113285065e-02 -2 -3 1763 -4.1714729741215706e-03
+
+ -4.5825520157814026e-01 -5.3202010691165924e-02
+ -3.3815470337867737e-01 2.8209799528121948e-01
+ <_>
+
+ 1 0 1764 -2.2963550873100758e-03 -1 2 1765
+ -7.3422670364379883e-02 -2 -3 1766 3.5119321197271347e-02
+
+ -8.7558113038539886e-02 5.8385127782821655e-01
+ -7.8373529016971588e-02 5.2284508943557739e-01
+ <_>
+
+ 0 1 1767 -2.3843089584261179e-03 2 -1 1768
+ 5.8223021915182471e-04 -2 -3 1769 5.1109357737004757e-03
+
+ -3.6075130105018616e-01 2.1036569774150848e-01
+ -1.9436909258365631e-01 1.3681420683860779e-01
+ <_>
+
+ 0 1 1770 -6.9154787342995405e-04 2 -1 1771
+ -5.5549171520397067e-04 -2 -3 1772 -7.5950571335852146e-03
+
+ -2.3962910473346710e-01 -1.0858660191297531e-01
+ -9.1398581862449646e-02 2.7578109502792358e-01
+ <_>
+
+ 0 1 1773 2.8131629806011915e-03 -1 2 1774
+ -4.5272540301084518e-02 -2 -3 1775 -2.6697120629251003e-03
+
+ -7.3745496571063995e-02 3.9891231060028076e-01
+ 3.7440070509910583e-01 -2.5978609919548035e-01
+ <_>
+
+ 2 1 1776 -1.0849219746887684e-02 0 -1 1777
+ -1.6776850447058678e-02 -2 -3 1778 -1.9630219787359238e-02
+
+ -6.7678660154342651e-01 -4.9237858504056931e-02
+ -4.7865530848503113e-01 2.2300049662590027e-01
+ <_>
+
+ 1 0 1779 7.0901170372962952e-02 -1 2 1780
+ 7.0403231075033545e-04 -2 -3 1781 3.3363080583512783e-03
+
+ -2.8926369547843933e-01 -5.3575031459331512e-02
+ -8.7073008762672544e-04 4.0888670086860657e-01
+ <_>
+
+ 1 0 1782 9.3207405880093575e-03 2 -1 1783
+ 1.1512059718370438e-02 -2 -3 1784 -1.8639869813341647e-04
+
+ -5.3399091958999634e-01 -5.2177387475967407e-01
+ -1.1254069954156876e-01 1.3096989691257477e-01
+ <_>
+
+ 0 1 1785 1.5442570438608527e-03 -1 2 1786
+ 2.5775749236345291e-03 -2 -3 1787 -1.2664040550589561e-03
+
+ -8.3666101098060608e-02 3.2544130086898804e-01
+ 3.0370441079139709e-01 -2.6052421331405640e-01
+ <_>
+
+ 1 0 1788 3.2941689714789391e-03 -1 2 1789
+ -2.3375200107693672e-03 -2 -3 1790 -7.7096500899642706e-04
+
+ 2.1506890654563904e-01 1.9738529622554779e-01
+ 6.9986172020435333e-02 -1.9839569926261902e-01
+ <_>
+
+ 1 0 1791 -2.7190460241399705e-04 -1 2 1792
+ 2.7237389236688614e-02 -2 -3 1793 -1.5080779790878296e-02
+
+ 8.3213888108730316e-02 -2.8429448604583740e-01
+ 6.8940150737762451e-01 -5.7628151029348373e-02
+ <_>
+
+ 0 1 1794 -6.5730936825275421e-02 -1 2 1795
+ -7.4283648282289505e-03 -2 -3 1796 3.4652319736778736e-03
+
+ -5.2482831478118896e-01 3.9523449540138245e-01
+ -7.3690779507160187e-02 2.0800660550594330e-01
+ <_>
+
+ 0 1 1797 -1.2613019905984402e-02 2 -1 1798
+ 2.3288120329380035e-01 -2 -3 1799 2.1903509274125099e-02
+
+ -6.8893492221832275e-01 7.0790272951126099e-01
+ -7.7761108987033367e-03 8.4372210502624512e-01
+ <_>
+
+ 1 0 1800 1.0629750322550535e-03 -1 2 1801
+ 1.8193929281551391e-04 -2 -3 1802 1.4717869926244020e-03
+
+ -3.4246420860290527e-01 1.0657790303230286e-01
+ -3.1970989704132080e-01 7.0577569305896759e-02
+ <_>
+
+ 1 2 1803 7.5306659564375877e-03 0 -1 1804
+ 1.7505730502307415e-03 -2 -3 1805 3.8401300553232431e-03
+
+ -1.5460279583930969e-01 2.1335080265998840e-01
+ 2.3800070583820343e-01 -4.1055840253829956e-01
+ <_>
+
+ 1 2 1806 -2.5041550397872925e-01 0 -1 1807
+ -2.0444789528846741e-01 -2 -3 1808 -1.2383040040731430e-02
+
+ -3.7927308678627014e-01 4.9870368838310242e-01
+ 4.6343478560447693e-01 -6.7613303661346436e-02
+ <_>
+
+ 2 1 1809 1.9026029622182250e-03 0 -1 1810
+ -1.6705439984798431e-01 -2 -3 1811 -8.6937591433525085e-02
+
+ 3.5356861352920532e-01 -2.4803459644317627e-01
+ -5.6781381368637085e-01 1.0121189802885056e-01
+ <_>
+
+ 1 0 1812 -1.0314949788153172e-02 2 -1 1813
+ 4.5044738799333572e-03 -2 -3 1814 1.5172120183706284e-02
+
+ -5.2530448883771896e-02 -9.0071156620979309e-02
+ 7.1758699417114258e-01 -3.7740949541330338e-02
+ <_>
+
+ 0 1 1815 -5.6233601644635201e-03 2 -1 1816
+ 5.4567858576774597e-02 -2 -3 1817 9.7008212469518185e-04
+
+ 2.3325720429420471e-01 4.8646458983421326e-01
+ -2.4600529670715332e-01 2.4224309250712395e-02
+ <_>
+
+ 0 1 1818 -2.7179729659110308e-03 2 -1 1819
+ -2.0419640466570854e-02 -2 -3 1820 -3.3307760953903198e-02
+
+ -5.3633391857147217e-01 -1.1361650191247463e-02
+ 6.7398411035537720e-01 -1.4063489437103271e-01
+ <_>
+
+ 0 1 1821 -2.5500180199742317e-02 -1 2 1822
+ -4.0629908442497253e-02 -2 -3 1823 -9.0600941330194473e-03
+
+ -3.6177828907966614e-01 -5.4579132795333862e-01
+ 5.2202242612838745e-01 2.2736469283699989e-02
+ <_>
+
+ 0 1 1824 -2.5635668635368347e-01 2 -1 1825
+ -9.5340751111507416e-02 -2 -3 1826 -5.9463721700012684e-03
+
+ -8.3328348398208618e-01 -1.6835439950227737e-02
+ 5.6909567117691040e-01 -2.4973009526729584e-01
+ <_>
+
+ 2 1 1827 -9.2139927437528968e-04 0 -1 1828
+ -6.8437340669333935e-03 -2 -3 1829 -8.2487165927886963e-03
+
+ -3.6735090613365173e-01 1.6015109419822693e-01
+ 5.2686601877212524e-01 -1.5151239931583405e-01
+ <_>
+
+ 1 0 1830 4.7555859200656414e-03 2 -1 1831
+ 9.3567231670022011e-04 -2 -3 1832 -6.3907768344506621e-04
+
+ -4.2700308561325073e-01 1.7327770590782166e-01
+ 1.3155570626258850e-01 -1.8646000325679779e-01
+ <_>
+
+ 0 1 1833 -5.6550311855971813e-03 -1 2 1834
+ -1.2212459929287434e-02 -2 -3 1835 -1.0550339706242085e-02
+
+ 3.1297039985656738e-01 4.6750861406326294e-01
+ -2.4461230635643005e-01 1.6502030193805695e-02
+ <_>
+
+ 0 1 1836 -7.5216998811811209e-04 2 -1 1837
+ 3.0214080470614135e-04 -2 -3 1838 2.8510420816019177e-04
+
+ -1.0075300186872482e-01 -2.8865608572959900e-01
+ -1.1844499967992306e-02 3.6691731214523315e-01
+ <_>
+
+ 1 0 1839 -4.4020009227097034e-03 2 -1 1840
+ 3.5568218678236008e-02 -2 -3 1841 6.4601990743540227e-05
+
+ -7.7167138457298279e-02 -4.4335851073265076e-01
+ 1.3781660236418247e-02 4.5319119095802307e-01
+ <_>
+
+ 1 0 1842 9.3313469551503658e-04 -1 2 1843
+ -8.7838143110275269e-02 -2 -3 1844 2.8037109877914190e-03
+
+ -1.2059070169925690e-01 -4.6736609935760498e-01
+ 7.1518830955028534e-02 4.4593128561973572e-01
+ <_>
+
+ 1 0 1845 2.3915059864521027e-03 2 -1 1846
+ -1.8183189677074552e-03 -2 -3 1847 1.9244100258219987e-04
+
+ -3.3277919888496399e-01 9.1478407382965088e-02
+ 4.9121279269456863e-02 -4.5266890525817871e-01
+ <_>
+
+ 1 0 1848 2.1789909899234772e-01 -1 2 1849
+ 1.0331439552828670e-03 -2 -3 1850 -1.4138330519199371e-01
+
+ 7.4892401695251465e-01 -1.0637000203132629e-01
+ -4.2974629998207092e-01 1.6179689764976501e-01
+ <_>
+
+ 0 1 1851 -5.9106688946485519e-02 2 -1 1852
+ 7.8279376029968262e-03 -2 -3 1853 -3.1304039293900132e-04
+
+ -4.0774118900299072e-01 3.9237990975379944e-01
+ 1.3964369893074036e-01 -9.7562357783317566e-02
+ <_>
+
+ 0 1 1854 -6.4937800168991089e-02 -1 2 1855
+ -2.1739810705184937e-01 -2 -3 1856 -2.0257150754332542e-02
+
+ 2.2590440511703491e-01 -3.4484180808067322e-01
+ 2.4723629653453827e-01 -6.6609263420104980e-02
+ <_>
+
+ 1 2 1857 -1.1548499576747417e-02 0 -1 1858
+ -6.7811407148838043e-02 -2 -3 1859 -3.4953389316797256e-02
+
+ 1.9427110254764557e-01 -5.8727997541427612e-01
+ 7.8955358266830444e-01 1.5297190286219120e-02
+ <_>
+
+ 0 1 1860 -1.7180469632148743e-01 2 -1 1861
+ -2.5918710161931813e-04 -2 -3 1862 1.2741640210151672e-02
+
+ -2.9612448811531067e-01 1.0281720012426376e-01
+ -3.0702060461044312e-01 2.1692450344562531e-01
+ <_>
+
+ 0 1 1863 -3.1258590519428253e-02 2 -1 1864
+ 3.5533700138330460e-03 -2 -3 1865 -9.2502118786796927e-04
+
+ 5.7348787784576416e-01 5.0475007295608521e-01
+ -2.6686659455299377e-01 9.2138834297657013e-03
+ <_>
+
+ 0 1 1866 -1.2170480331405997e-03 -1 2 1867
+ -2.2023949772119522e-02 -2 -3 1868 2.9549229890108109e-02
+
+ -3.9172619581222534e-01 2.0690579712390900e-01
+ -6.0358341783285141e-02 6.9752788543701172e-01
+ <_>
+
+ 1 2 1869 -7.2058511432260275e-04 0 -1 1870
+ -2.5625678896903992e-01 -2 -3 1871 3.2817238569259644e-01
+
+ -3.3763760328292847e-01 5.7221870869398117e-02
+ 1.8268160521984100e-02 4.5866298675537109e-01
+ <_>
+
+ 0 1 1872 -5.2478950470685959e-02 -1 2 1873
+ -7.2261072695255280e-02 -2 -3 1874 -1.0751239955425262e-02
+
+ -3.7492391467094421e-01 5.6878948211669922e-01
+ -3.2823160290718079e-01 5.0447538495063782e-02
+ <_>
+ 43
+ -1.1713529825210571e+00
+
+ <_>
+
+ 1 2 1875 -3.6475598812103271e-02 0 -1 1876
+ 1.2570239603519440e-02 -2 -3 1877 -5.3332238458096981e-03
+
+ 7.8855842351913452e-01 -5.8355428278446198e-02
+ 6.4850552007555962e-03 -3.8411408662796021e-01
+ <_>
+
+ 1 2 1878 -3.8449079729616642e-03 0 -1 1879
+ 1.8065240001305938e-03 -2 -3 1880 4.4460720382630825e-03
+
+ -8.8380120694637299e-02 6.6356122493743896e-01
+ -2.2651070356369019e-01 1.2168529629707336e-01
+ <_>
+
+ 1 0 1881 -1.5441340208053589e-01 2 -1 1882
+ 2.8965979814529419e-02 -2 -3 1883 -1.8112070858478546e-02
+
+ -1.7789100110530853e-01 3.8929471373558044e-01
+ 4.2137289047241211e-01 -2.0651680231094360e-01
+ <_>
+
+ 0 1 1884 -3.0437670648097992e-03 -1 2 1885
+ -2.7257429901510477e-03 -2 -3 1886 -1.5535579994320869e-02
+
+ -4.5531120896339417e-01 2.5576180219650269e-01
+ 2.9463219642639160e-01 -1.2572860717773438e-01
+ <_>
+
+ 0 1 1887 -1.4182399958372116e-02 -1 2 1888
+ 2.8875279240310192e-03 -2 -3 1889 1.9505630480125546e-03
+
+ -4.7841429710388184e-01 -1.4739120006561279e-01
+ -1.1689100414514542e-02 3.8708359003067017e-01
+ <_>
+
+ 2 1 1890 -4.1997907683253288e-03 0 -1 1891
+ -1.2343189679086208e-02 -2 -3 1892 -6.5799211151897907e-03
+
+ 2.1066769957542419e-01 -2.4238829314708710e-01
+ -4.1709339618682861e-01 1.9089350104331970e-01
+ <_>
+
+ 1 0 1893 2.0319439936429262e-03 -1 2 1894
+ -2.2653149440884590e-02 -2 -3 1895 -2.4583860067650676e-04
+
+ 2.7525109052658081e-01 6.1857348680496216e-01
+ -3.7903881072998047e-01 -1.9395859912037849e-02
+ <_>
+
+ 0 1 1896 -1.1686830548569560e-03 -1 2 1897
+ 3.6638419260270894e-04 -2 -3 1898 -5.7184919569408521e-05
+
+ 1.3913659751415253e-01 -2.6073169708251953e-01
+ 3.0361440777778625e-01 -1.7147840559482574e-01
+ <_>
+
+ 2 1 1899 -2.3458409123122692e-03 0 -1 1900
+ -7.0121302269399166e-03 -2 -3 1901 2.3318149149417877e-02
+
+ 1.7510280013084412e-01 -1.7132690548896790e-01
+ 2.2869640588760376e-01 -3.7544658780097961e-01
+ <_>
+
+ 1 0 1902 2.7293559163808823e-02 -1 2 1903
+ -7.4272030033171177e-03 -2 -3 1904 -7.8977271914482117e-03
+
+ -2.8686890006065369e-01 -6.9167411327362061e-01
+ -4.1576528549194336e-01 1.0694450139999390e-01
+ <_>
+
+ 0 1 1905 -3.6563118919730186e-03 2 -1 1906
+ 1.5060990117490292e-03 -2 -3 1907 -2.2211389616131783e-02
+
+ -4.2580971121788025e-01 2.3827329277992249e-01
+ -6.2818527221679688e-01 -1.2995249591767788e-02
+ <_>
+
+ 1 2 1908 -1.0182500118389726e-03 0 -1 1909
+ 2.7624370530247688e-02 -2 -3 1910 -3.0267149209976196e-02
+
+ 2.0952360332012177e-01 -3.9603650569915771e-01
+ -2.9257088899612427e-01 1.6949739307165146e-02
+ <_>
+
+ 1 0 1911 8.2686528563499451e-02 2 -1 1912
+ 6.4655147492885590e-02 -2 -3 1913 2.7647409588098526e-03
+
+ 3.3863779902458191e-01 6.1647278070449829e-01
+ -1.4266699552536011e-01 1.2386939674615860e-01
+ <_>
+
+ 0 1 1914 -3.1129099428653717e-02 2 -1 1915
+ -1.5587930101901293e-03 -2 -3 1916 -5.9767777565866709e-04
+
+ -3.7931808829307556e-01 -9.2908859252929688e-02
+ -1.0530649870634079e-01 2.9945549368858337e-01
+ <_>
+
+ 0 1 1917 -5.0103079527616501e-02 2 -1 1918
+ 2.5710230693221092e-02 -2 -3 1919 -8.8613387197256088e-04
+
+ -4.4678428769111633e-01 -4.3549379706382751e-01
+ 2.0978139340877533e-01 -3.8637928664684296e-02
+ <_>
+
+ 0 1 1920 -6.0174837708473206e-03 2 -1 1921
+ 6.2055201269686222e-03 -2 -3 1922 2.7212419081479311e-04
+
+ 2.9752719402313232e-01 6.6692227125167847e-01
+ 2.1671950817108154e-02 -2.7139788866043091e-01
+ <_>
+
+ 0 1 1923 -1.3685439713299274e-02 -1 2 1924
+ -6.1648458242416382e-01 -2 -3 1925 -2.6253409683704376e-02
+
+ 4.7005081176757812e-01 -5.2666938304901123e-01
+ 1.3483020663261414e-01 -1.0639149695634842e-01
+ <_>
+
+ 1 2 1926 -4.1545720887370408e-04 0 -1 1927
+ -3.6237420863471925e-04 -2 -3 1928 5.5113807320594788e-04
+
+ -1.8588809669017792e-01 5.2727550268173218e-01
+ 4.5380011200904846e-02 -2.3133419454097748e-01
+ <_>
+
+ 1 2 1929 -3.1878859736025333e-03 0 -1 1930
+ -6.2446491792798042e-03 -2 -3 1931 -2.1054609678685665e-03
+
+ 2.8475400805473328e-01 -4.0583759546279907e-01
+ 2.6000189781188965e-01 -1.6356609761714935e-02
+ <_>
+
+ 1 0 1932 2.2513020667247474e-04 2 -1 1933
+ -5.1745050586760044e-03 -2 -3 1934 -2.7152549009770155e-03
+
+ -1.8777419626712799e-01 1.2812760472297668e-01
+ 3.4431490302085876e-01 -4.2658099532127380e-01
+ <_>
+
+ 1 0 1935 2.7846530079841614e-02 2 -1 1936
+ 4.3891910463571548e-03 -2 -3 1937 1.9749049097299576e-03
+
+ -2.8553798794746399e-01 6.4455038309097290e-01
+ -8.2864962518215179e-02 1.7122590541839600e-01
+ <_>
+
+ 1 0 1938 -3.1317298999056220e-04 -1 2 1939
+ -1.5486280433833599e-02 -2 -3 1940 9.5049021765589714e-03
+
+ -1.2443479895591736e-01 -1.8395289778709412e-01
+ 3.4495291113853455e-01 -2.0286519080400467e-02
+ <_>
+
+ 2 1 1941 -3.7190609145909548e-04 0 -1 1942
+ 2.9666710179299116e-03 -2 -3 1943 -5.8068940415978432e-03
+
+ 4.3022842146456242e-03 -3.4436589479446411e-01
+ -8.4134072065353394e-01 2.8392368555068970e-01
+ <_>
+
+ 2 1 1944 -5.5204080417752266e-03 0 -1 1945
+ -1.3792069512419403e-04 -2 -3 1946 -3.7187319248914719e-02
+
+ -2.6300218701362610e-01 2.6706520467996597e-02
+ -2.9245018959045410e-01 4.0641939640045166e-01
+ <_>
+
+ 1 0 1947 -5.0016207387670875e-04 -1 2 1948
+ -1.5453010564669967e-03 -2 -3 1949 1.9056679448112845e-03
+
+ -1.1965669691562653e-01 -4.2565101385116577e-01
+ 2.9724061489105225e-01 -4.7963049262762070e-02
+ <_>
+
+ 0 1 1950 7.2636879049241543e-03 2 -1 1951
+ 1.9141070079058409e-03 -2 -3 1952 1.2875479296781123e-04
+
+ -6.4583316445350647e-02 -3.5147330164909363e-01
+ 1.1196230351924896e-01 5.7284992933273315e-01
+ <_>
+
+ 0 1 1953 -1.0092630051076412e-02 -1 2 1954
+ -7.8368087997660041e-04 -2 -3 1955 -9.8703950643539429e-03
+
+ -3.7826448678970337e-01 2.3288239538669586e-01
+ 2.1510779857635498e-01 -1.2697519361972809e-01
+ <_>
+
+ 0 1 1956 -1.0650960030034184e-03 -1 2 1957
+ 8.5762650996912271e-05 -2 -3 1958 8.1163638969883323e-04
+
+ -3.2178428769111633e-01 -8.8832110166549683e-02
+ 3.0365571379661560e-01 -8.3779007196426392e-02
+ <_>
+
+ 0 1 1959 -4.8947618342936039e-03 2 -1 1960
+ 5.5883510503917933e-04 -2 -3 1961 -1.9008320523425937e-03
+
+ 1.6282820701599121e-01 -2.5395259261131287e-01
+ -1.3888220489025116e-01 2.9919460415840149e-01
+ <_>
+
+ 1 2 1962 -2.0215269178152084e-03 0 -1 1963
+ -4.4383360072970390e-03 -2 -3 1964 6.8489909172058105e-02
+
+ 3.9251059293746948e-01 -4.3069578707218170e-02
+ 2.4472021032124758e-03 -2.9618039727210999e-01
+ <_>
+
+ 1 0 1965 5.0306279212236404e-02 2 -1 1966
+ -5.6435600854456425e-03 -2 -3 1967 -8.9875478297472000e-03
+
+ 4.2249730229377747e-01 -9.2901676893234253e-02
+ 6.6785961389541626e-01 6.2985196709632874e-02
+ <_>
+
+ 1 2 1968 -7.9090101644396782e-04 0 -1 1969
+ -2.5300959125161171e-02 -2 -3 1970 7.8745762584730983e-04
+
+ 3.0849850177764893e-01 -6.3608251512050629e-02
+ -1.4883120357990265e-01 2.6234000921249390e-01
+ <_>
+
+ 1 0 1971 7.6404176652431488e-02 -1 2 1972
+ -7.9231243580579758e-03 -2 -3 1973 1.9256339874118567e-03
+
+ -4.5977321267127991e-01 -3.9364838600158691e-01
+ -6.4516498241573572e-04 2.8573459386825562e-01
+ <_>
+
+ 1 0 1974 3.3896900713443756e-03 -1 2 1975
+ 2.6566439191810787e-04 -2 -3 1976 -7.0364158600568771e-03
+
+ -4.1618600487709045e-01 8.7239697575569153e-02
+ 5.4902660846710205e-01 -3.1658211350440979e-01
+ <_>
+
+ 1 0 1977 2.7734860777854919e-02 -1 2 1978
+ 3.3155460841953754e-03 -2 -3 1979 5.4807748645544052e-02
+
+ 3.5683360695838928e-01 2.0545400679111481e-02
+ -3.7979850172996521e-01 8.2199662923812866e-01
+ <_>
+
+ 0 1 1980 -3.1911249971017241e-04 -1 2 1981
+ -2.3244849580805749e-04 -2 -3 1982 2.4389199912548065e-02
+
+ 2.3498380184173584e-01 1.5976969897747040e-01
+ -1.6952790319919586e-01 3.8837739825248718e-01
+ <_>
+
+ 1 0 1983 3.7521280348300934e-02 -1 2 1984
+ 5.3981738165020943e-04 -2 -3 1985 -1.1914219940081239e-03
+
+ -5.3004390001296997e-01 -9.2949196696281433e-02
+ 2.5772979855537415e-01 -1.2804870307445526e-01
+ <_>
+
+ 0 1 1986 -1.9628699868917465e-02 2 -1 1987
+ -2.6430340949445963e-03 -2 -3 1988 -1.0492499917745590e-02
+
+ -4.5749071240425110e-01 -6.6639073193073273e-02
+ 3.7817710638046265e-01 -7.0677888579666615e-03
+ <_>
+
+ 1 0 1989 -8.1244978355243802e-04 2 -1 1990
+ 1.4308369718492031e-02 -2 -3 1991 -2.6346129016019404e-04
+
+ 7.1544222533702850e-02 -4.6973049640655518e-01
+ 3.2926559448242188e-01 -2.3322540521621704e-01
+ <_>
+
+ 1 0 1992 9.5907926559448242e-02 -1 2 1993
+ -1.2872040271759033e-01 -2 -3 1994 -3.1911451369524002e-02
+
+ 9.9990457296371460e-01 5.7599371671676636e-01
+ -7.3348528146743774e-01 -1.8063450232148170e-02
+ <_>
+
+ 1 2 1995 3.7128551048226655e-04 0 -1 1996
+ -2.8491979464888573e-03 -2 -3 1997 -4.2754760943353176e-04
+
+ -5.4329651594161987e-01 1.0755009949207306e-01
+ 2.2071920335292816e-01 -2.6160699129104614e-01
+ <_>
+
+ 1 2 1998 9.7452866612002254e-05 0 -1 1999
+ 5.2659702487289906e-04 -2 -3 2000 5.9415772557258606e-04
+
+ -2.0488780736923218e-01 3.1935650110244751e-01
+ 1.5211449563503265e-01 -2.8799989819526672e-01
+ <_>
+
+ 0 1 2001 -2.1307960560079664e-04 -1 2 2002
+ -1.2103560147807002e-03 -2 -3 2003 1.2572610285133123e-03
+
+ 1.5206280350685120e-01 -2.3918260633945465e-01
+ 3.7353378534317017e-01 -8.1597693264484406e-02
+ <_>
+ 46
+ -1.0940879583358765e+00
+
+ <_>
+
+ 1 2 2004 -3.1007960438728333e-02 0 -1 2005
+ -3.1969440169632435e-03 -2 -3 2006 -2.0676921121776104e-03
+
+ 6.8854278326034546e-01 -5.4836649447679520e-02
+ -3.5974439978599548e-01 -3.0973760411143303e-02
+ <_>
+
+ 1 0 2007 -1.1122719943523407e-01 2 -1 2008
+ 1.4844049699604511e-02 -2 -3 2009 -3.4631208982318640e-03
+
+ -1.5703879296779633e-01 -2.0413580536842346e-01
+ 6.6245990991592407e-01 1.5534339845180511e-01
+ <_>
+
+ 0 1 2010 -1.2320470064878464e-01 2 -1 2011
+ 1.1103290133178234e-02 -2 -3 2012 4.7404197975993156e-03
+
+ -5.2760660648345947e-01 -4.7932231426239014e-01
+ -1.0074780136346817e-01 1.6249769926071167e-01
+ <_>
+
+ 1 2 2013 -5.8416109532117844e-03 0 -1 2014
+ -5.1666028797626495e-02 -2 -3 2015 -3.9447061717510223e-03
+
+ -3.7591809034347534e-01 3.7338769435882568e-01
+ 2.4347339570522308e-01 -1.4522999525070190e-01
+ <_>
+
+ 0 1 2016 -3.6320939660072327e-02 -1 2 2017
+ 3.7123491056263447e-03 -2 -3 2018 -2.8242779895663261e-02
+
+ -3.6804199218750000e-01 1.0094779729843140e-01
+ 4.2476901412010193e-01 -4.3828350305557251e-01
+ <_>
+
+ 1 2 2019 -2.0250169560313225e-02 0 -1 2020
+ 3.0780840665102005e-02 -2 -3 2021 2.5205970741808414e-03
+
+ 1.6355019807815552e-01 -6.3770228624343872e-01
+ -1.9899259507656097e-01 3.1258741021156311e-01
+ <_>
+
+ 0 1 2022 -4.2486261576414108e-02 2 -1 2023
+ 3.0256640166044235e-02 -2 -3 2024 1.2559810420498252e-03
+
+ -6.1104768514633179e-01 7.7699762582778931e-01
+ 6.8223267793655396e-02 -1.8402789533138275e-01
+ <_>
+
+ 0 1 2025 -1.8111230805516243e-02 2 -1 2026
+ -7.0966721978038549e-04 -2 -3 2027 2.0517550874501467e-03
+
+ 3.7390831112861633e-01 7.1673221886157990e-02
+ -2.3723709583282471e-01 4.2304378747940063e-01
+ <_>
+
+ 0 1 2028 -6.6939830780029297e-02 -1 2 2029
+ -8.4355175495147705e-03 -2 -3 2030 -7.6646007597446442e-02
+
+ -6.4464849233627319e-01 -5.9667718410491943e-01
+ -3.5360890626907349e-01 7.6701030135154724e-02
+ <_>
+
+ 0 1 2031 -1.8152770353481174e-03 -1 2 2032
+ -2.7247369289398193e-03 -2 -3 2033 -5.4963980801403522e-04
+
+ 1.7099569737911224e-01 1.6262990236282349e-01
+ -4.4764471054077148e-01 -7.4255913496017456e-02
+ <_>
+
+ 0 1 2034 -4.1336409747600555e-02 -1 2 2035
+ -1.2627179920673370e-01 -2 -3 2036 -4.9632410518825054e-03
+
+ -3.0079290270805359e-01 -2.1949230134487152e-01
+ 3.1715381145477295e-01 1.6522889956831932e-02
+ <_>
+
+ 0 1 2037 -6.8255789577960968e-02 2 -1 2038
+ 1.7256699502468109e-02 -2 -3 2039 1.8318969523534179e-03
+
+ 3.7629279494285583e-01 6.0703051090240479e-01
+ 4.4839300215244293e-02 -1.8284620344638824e-01
+ <_>
+
+ 1 0 2040 6.2703560106456280e-03 2 -1 2041
+ 6.4142688643187284e-04 -2 -3 2042 -1.2087869690731168e-03
+
+ 1.5012329816818237e-01 -2.4387939274311066e-01
+ -9.6486136317253113e-02 4.5252281427383423e-01
+ <_>
+
+ 1 2 2043 -1.3087630271911621e-02 0 -1 2044
+ -2.0685649942606688e-03 -2 -3 2045 -9.9608547985553741e-02
+
+ 3.4508320689201355e-01 -4.1232489049434662e-02
+ -5.4945659637451172e-01 -5.1996659487485886e-02
+ <_>
+
+ 1 2 2046 -3.6486559547483921e-03 0 -1 2047
+ -2.8182850219309330e-03 -2 -3 2048 5.5368460714817047e-02
+
+ -3.3460721373558044e-01 1.5438309311866760e-01
+ -2.0008920133113861e-01 2.6830759644508362e-01
+ <_>
+
+ 0 1 2049 -7.4223391711711884e-03 2 -1 2050
+ -4.4916807673871517e-03 -2 -3 2051 -6.0621831566095352e-02
+
+ -2.5990688800811768e-01 9.8559968173503876e-02
+ -3.5481810569763184e-01 4.1711899638175964e-01
+ <_>
+
+ 1 2 2052 2.3197410337161273e-04 0 -1 2053
+ -2.6323291240260005e-04 -2 -3 2054 1.8173559510614723e-04
+
+ 1.1800730228424072e-01 -1.8469020724296570e-01
+ 3.3645889163017273e-01 -1.6443650424480438e-01
+ <_>
+
+ 1 2 2055 -4.3080520117655396e-04 0 -1 2056
+ 8.4635447710752487e-03 -2 -3 2057 3.2700230367481709e-03
+
+ -3.5056531429290771e-01 3.3979919552803040e-01
+ -1.9305050373077393e-01 1.0525429993867874e-01
+ <_>
+
+ 2 1 2058 1.2329599820077419e-02 0 -1 2059
+ 3.2368130632676184e-04 -2 -3 2060 -7.1359151042997837e-03
+
+ -7.0782758295536041e-02 4.2691200971603394e-01
+ 2.4507419764995575e-01 -1.1304569989442825e-01
+ <_>
+
+ 0 1 2061 -3.8914520293474197e-02 2 -1 2062
+ 6.6584121668711305e-04 -2 -3 2063 -9.3276530969887972e-04
+
+ -4.1401219367980957e-01 -1.2954230606555939e-01
+ -2.8715679422020912e-02 2.9640379548072815e-01
+ <_>
+
+ 2 1 2064 9.1005821013823152e-04 0 -1 2065
+ 7.4173710308969021e-03 -2 -3 2066 -5.9348379727452993e-04
+
+ 1.5225520357489586e-02 5.1878088712692261e-01
+ 6.3158690929412842e-02 -1.6790659725666046e-01
+ <_>
+
+ 0 1 2067 -1.6713090008124709e-03 2 -1 2068
+ -3.2247399212792516e-04 -2 -3 2069 -3.3846818841993809e-03
+
+ 1.8846319615840912e-01 -2.2796130180358887e-01
+ 3.0563241243362427e-01 -8.1067040562629700e-02
+ <_>
+
+ 1 0 2070 9.5189079642295837e-02 2 -1 2071
+ 9.7679207101464272e-04 -2 -3 2072 -1.0893770307302475e-01
+
+ 1.9821229577064514e-01 1.4671079814434052e-01
+ -6.9909930229187012e-01 -1.1488740146160126e-01
+ <_>
+
+ 1 2 2073 -1.7448779195547104e-02 0 -1 2074
+ -9.9434393632691354e-05 -2 -3 2075 6.4250029623508453e-02
+
+ 2.4062860012054443e-01 -8.9487351477146149e-02
+ -1.7152050137519836e-01 5.1314127445220947e-01
+ <_>
+
+ 1 0 2076 5.9518171474337578e-03 -1 2 2077
+ -9.0886192629113793e-04 -2 -3 2078 -5.1080051343888044e-04
+
+ 2.3301599919795990e-01 5.8810569345951080e-02
+ -5.0240808725357056e-01 -8.0962918698787689e-02
+ <_>
+
+ 0 1 2079 -1.5467169694602489e-02 2 -1 2080
+ 2.3221820592880249e-02 -2 -3 2081 3.9248089888133109e-04
+
+ -4.4010490179061890e-01 5.1546990871429443e-01
+ -5.2290290594100952e-02 2.1555709838867188e-01
+ <_>
+
+ 0 1 2082 -1.1872940231114626e-03 -1 2 2083
+ -1.1692909756675363e-03 -2 -3 2084 -1.8374159699305892e-03
+
+ 2.8682470321655273e-01 3.9871171116828918e-01
+ -2.4273440241813660e-01 2.5974079966545105e-02
+ <_>
+
+ 0 1 2085 -3.9783148095011711e-03 2 -1 2086
+ -4.7793678822927177e-04 -2 -3 2087 5.3964089602231979e-04
+
+ -2.5224199891090393e-01 1.0499279946088791e-01
+ -4.1497600078582764e-01 1.0635569691658020e-01
+ <_>
+
+ 0 1 2088 -4.2262359056621790e-04 -1 2 2089
+ -1.0138460248708725e-01 -2 -3 2090 -9.2142065986990929e-03
+
+ 2.1089179813861847e-01 -9.3101882934570312e-01
+ -8.2452338933944702e-01 -2.4682279676198959e-02
+ <_>
+
+ 1 0 2091 4.3104309588670731e-02 -1 2 2092
+ -5.3224200382828712e-03 -2 -3 2093 3.7746389862149954e-03
+
+ 9.0424752235412598e-01 -2.7320840954780579e-01
+ -2.9543019831180573e-02 2.7356389164924622e-01
+ <_>
+
+ 1 0 2094 2.3850500583648682e-02 -1 2 2095
+ -8.8544972240924835e-03 -2 -3 2096 -1.3691160082817078e-01
+
+ -5.1007378101348877e-01 4.8890089988708496e-01
+ -5.5362242460250854e-01 2.5062739849090576e-02
+ <_>
+
+ 0 1 2097 -2.5274729356169701e-02 2 -1 2098
+ 2.6481070090085268e-03 -2 -3 2099 -2.0161429711151868e-04
+
+ -7.3669922351837158e-01 2.6283189654350281e-01
+ -2.4148160219192505e-01 5.1645949482917786e-02
+ <_>
+
+ 0 1 2100 -1.1898370459675789e-02 -1 2 2101
+ -1.9360600272193551e-03 -2 -3 2102 2.1037699189037085e-03
+
+ -6.3804662227630615e-01 3.9121028780937195e-01
+ -5.2923560142517090e-02 2.3925469815731049e-01
+ <_>
+
+ 0 1 2103 -1.3646620325744152e-02 -1 2 2104
+ -8.8408291339874268e-03 -2 -3 2105 3.7220980972051620e-02
+
+ 4.5531919598579407e-01 -5.2776831388473511e-01
+ -5.2423689514398575e-02 2.1479150652885437e-01
+ <_>
+
+ 1 2 2106 -4.2580282315611839e-03 0 -1 2107
+ -4.6129771508276463e-03 -2 -3 2108 5.9317899867892265e-03
+
+ -5.8091402053833008e-01 9.2666886746883392e-02
+ -6.7499437136575580e-04 3.6766529083251953e-01
+ <_>
+
+ 1 0 2109 9.4187082722783089e-03 -1 2 2110
+ -4.1941772215068340e-03 -2 -3 2111 5.1073678769171238e-03
+
+ -6.1342322826385498e-01 -3.8310700654983521e-01
+ 6.7254997789859772e-02 -3.9773949980735779e-01
+ <_>
+
+ 1 0 2112 -5.5304579436779022e-03 2 -1 2113
+ -6.0295849107205868e-04 -2 -3 2114 -7.0414398796856403e-03
+
+ -1.2926359474658966e-01 1.8724639713764191e-01
+ 4.7651541233062744e-01 -2.3238509893417358e-01
+ <_>
+
+ 1 0 2115 -1.3096419861540198e-03 2 -1 2116
+ 3.2035118783824146e-04 -2 -3 2117 -3.3677490428090096e-03
+
+ -8.3683609962463379e-02 4.4803410768508911e-01
+ 2.6184868812561035e-01 -2.1176619827747345e-01
+ <_>
+
+ 0 1 2118 -1.3419929891824722e-02 2 -1 2119
+ 4.5043388381600380e-03 -2 -3 2120 -7.8677892452105880e-04
+
+ -5.1725488901138306e-01 -2.4854829907417297e-01
+ 2.2026860713958740e-01 -2.9989460483193398e-02
+ <_>
+
+ 0 1 2121 -4.0467849373817444e-01 -1 2 2122
+ -1.6472050547599792e-01 -2 -3 2123 -4.3211959302425385e-02
+
+ -8.6876207590103149e-01 -2.6331049203872681e-01
+ -1.2996859848499298e-01 1.2739099562168121e-01
+ <_>
+
+ 0 1 2124 -1.7417479539290071e-03 2 -1 2125
+ -8.3949731197208166e-04 -2 -3 2126 1.5101189492270350e-03
+
+ 8.2801252603530884e-02 -3.8465818762779236e-01
+ 1.3933099806308746e-01 -3.5602769255638123e-01
+ <_>
+
+ 1 0 2127 3.6241519264876842e-03 2 -1 2128
+ 1.6943299851845950e-04 -2 -3 2129 -5.5435068905353546e-02
+
+ 2.3847030103206635e-01 5.6582901626825333e-02
+ 8.5272318124771118e-01 -1.9084540009498596e-01
+ <_>
+
+ 1 0 2130 -2.3511620238423347e-02 2 -1 2131
+ -2.2539960627909750e-04 -2 -3 2132 1.6610369086265564e-02
+
+ -1.3226120173931122e-01 -2.0941901020705700e-03
+ 4.0792500972747803e-01 -2.9247689247131348e-01
+ <_>
+
+ 0 1 2133 -6.3177421689033508e-03 -1 2 2134
+ 8.5653591668233275e-04 -2 -3 2135 -1.1638339608907700e-02
+
+ 2.4937899410724640e-01 -1.5689609944820404e-01
+ 4.2693111300468445e-01 -1.3493919745087624e-02
+ <_>
+
+ 0 1 2136 -5.1630330272018909e-03 2 -1 2137
+ 4.8902099952101707e-03 -2 -3 2138 -2.9903270304203033e-02
+
+ 2.8233599662780762e-01 -2.2749769687652588e-01
+ -3.1318700313568115e-01 7.2451077401638031e-02
+ <_>
+
+ 1 0 2139 3.1764109735377133e-04 -1 2 2140
+ 5.2735407371073961e-04 -2 -3 2141 3.4350980422459543e-04
+
+ -1.3494649529457092e-01 -9.4839558005332947e-02
+ -2.8737118840217590e-01 2.6408618688583374e-01
+ <_>
+ 47
+ -1.1282010078430176e+00
+
+ <_>
+
+ 0 1 2142 2.0928289741277695e-03 2 -1 2143
+ -2.0667549222707748e-02 -2 -3 2144 4.1186730377376080e-03
+
+ -2.4059830605983734e-01 -8.3949699997901917e-02
+ 7.5294119119644165e-01 -2.5010040402412415e-01
+ <_>
+
+ 2 1 2145 -7.7038057148456573e-02 0 -1 2146
+ 6.8526387214660645e-02 -2 -3 2147 -9.1197844594717026e-03
+
+ -1.6047920286655426e-01 5.8060508966445923e-01
+ 4.0888330340385437e-01 -2.3711539804935455e-02
+ <_>
+
+ 2 1 2148 3.8453419692814350e-03 0 -1 2149
+ -4.0648199617862701e-02 -2 -3 2150 -3.5154789686203003e-02
+
+ -3.6227381229400635e-01 2.8189870715141296e-01
+ -6.3932722806930542e-01 -8.8311180472373962e-02
+ <_>
+
+ 1 0 2151 1.7193749547004700e-02 -1 2 2152
+ -3.1834539026021957e-02 -2 -3 2153 5.9677828103303909e-03
+
+ 2.1619839966297150e-01 -6.1106377840042114e-01
+ -1.3163220137357712e-03 -6.7810398340225220e-01
+ <_>
+
+ 0 1 2154 1.7432730237487704e-04 -1 2 2155
+ -1.0427909903228283e-02 -2 -3 2156 -1.4324070070870221e-04
+
+ -1.6660380363464355e-01 3.0099079012870789e-01
+ -3.6957770586013794e-01 7.5943082571029663e-02
+ <_>
+
+ 1 0 2157 -1.0312269441783428e-03 -1 2 2158
+ -8.9528188109397888e-03 -2 -3 2159 5.4365568794310093e-03
+
+ -8.3984650671482086e-02 3.3358749747276306e-01
+ -2.5666850805282593e-01 3.6911809444427490e-01
+ <_>
+
+ 1 0 2160 2.0321870688349009e-03 2 -1 2161
+ 1.9954480230808258e-03 -2 -3 2162 1.6922239214181900e-02
+
+ -1.1628130078315735e-01 -2.2477209568023682e-01
+ 3.6504098773002625e-01 1.8671670928597450e-02
+ <_>
+
+ 1 2 2163 -1.4152450021356344e-03 0 -1 2164
+ 8.0416322452947497e-04 -2 -3 2165 6.2191791832447052e-02
+
+ -4.4372379779815674e-02 2.6297140121459961e-01
+ -1.4997449517250061e-01 5.6759977340698242e-01
+ <_>
+
+ 0 1 2166 -4.4721928425133228e-03 -1 2 2167
+ -1.9247440621256828e-02 -2 -3 2168 5.2884127944707870e-03
+
+ -2.9525101184844971e-01 -7.0941370725631714e-01
+ 4.9494709819555283e-03 3.6569160223007202e-01
+ <_>
+
+ 1 0 2169 9.1529808938503265e-02 -1 2 2170
+ -3.9309188723564148e-02 -2 -3 2171 -6.9177672266960144e-02
+
+ -4.7588708996772766e-01 -4.9558719992637634e-01
+ 7.8180468082427979e-01 3.5177771002054214e-02
+ <_>
+
+ 1 0 2172 1.9501270726323128e-02 -1 2 2173
+ -5.4460992105305195e-03 -2 -3 2174 1.0495989583432674e-02
+
+ 4.5107740163803101e-01 9.5154292881488800e-02
+ -1.6815499961376190e-01 5.1015657186508179e-01
+ <_>
+
+ 1 0 2175 5.7117962278425694e-03 -1 2 2176
+ -2.7439638972282410e-01 -2 -3 2177 -4.5373341999948025e-03
+
+ -7.4655741453170776e-01 -6.0310351848602295e-01
+ 2.3245190083980560e-01 -4.1262548416852951e-02
+ <_>
+
+ 1 0 2178 4.7711891238577664e-04 -1 2 2179
+ -6.9821202196180820e-03 -2 -3 2180 -1.0556570291519165e+00
+
+ -1.5402629971504211e-01 -5.2603191137313843e-01
+ -5.0477248430252075e-01 1.4896139502525330e-01
+ <_>
+
+ 0 1 2181 -1.7868630588054657e-01 -1 2 2182
+ 9.6028903499245644e-05 -2 -3 2183 1.4864769764244556e-03
+
+ 6.1333847045898438e-01 -1.2570370733737946e-01
+ 1.5855489671230316e-01 -3.2419750094413757e-01
+ <_>
+
+ 2 1 2184 -2.7532540843822062e-04 0 -1 2185
+ 1.9395699491724372e-03 -2 -3 2186 -3.0006670858711004e-03
+
+ 2.2301700711250305e-01 -1.4492830634117126e-01
+ 2.5364619493484497e-01 -1.9060049951076508e-01
+ <_>
+
+ 2 1 2187 2.6949180755764246e-03 0 -1 2188
+ -2.7354890480637550e-02 -2 -3 2189 -2.6278549805283546e-02
+
+ -6.9697231054306030e-01 2.6986810564994812e-01
+ 8.3400028944015503e-01 -8.1475183367729187e-02
+ <_>
+
+ 0 1 2190 -1.1615309631451964e-03 -1 2 2191
+ -7.9284235835075378e-03 -2 -3 2192 -4.0769609622657299e-03
+
+ 9.9186070263385773e-02 2.9844290018081665e-01
+ 1.1436840146780014e-01 -3.5259690880775452e-01
+ <_>
+
+ 2 1 2193 1.3272130163386464e-03 0 -1 2194
+ 9.6542192623019218e-03 -2 -3 2195 -1.8561830511316657e-03
+
+ 1.8691679835319519e-01 -3.3289530873298645e-01
+ -4.8549610376358032e-01 -4.0883861482143402e-02
+ <_>
+
+ 1 0 2196 8.5922293365001678e-02 -1 2 2197
+ -8.8873326778411865e-02 -2 -3 2198 -2.7235411107540131e-03
+
+ 3.6382618546485901e-01 -3.3766660094261169e-01
+ 2.4199460446834564e-01 -4.2081810534000397e-02
+ <_>
+
+ 0 1 2199 -1.3049770146608353e-02 2 -1 2200
+ -3.2052190508693457e-03 -2 -3 2201 -3.4975090529769659e-03
+
+ -3.0092039704322815e-01 -1.0076750069856644e-01
+ -4.0278410911560059e-01 1.7511740326881409e-01
+ <_>
+
+ 1 2 2202 3.6366239655762911e-03 0 -1 2203
+ -1.1586080305278301e-02 -2 -3 2204 3.9760980871506035e-04
+
+ 1.7796489596366882e-01 -1.6348969936370850e-01
+ 6.7020449787378311e-03 4.4130641222000122e-01
+ <_>
+
+ 0 1 2205 -2.5880750268697739e-02 2 -1 2206
+ 1.0445900261402130e-03 -2 -3 2207 -4.7445381060242653e-03
+
+ 6.0719907283782959e-01 -3.2216680049896240e-01
+ 1.8654330074787140e-01 -5.8600809425115585e-02
+ <_>
+
+ 1 0 2208 7.0085371844470501e-03 -1 2 2209
+ -7.0238402113318443e-03 -2 -3 2210 8.1113204360008240e-03
+
+ 3.1219249963760376e-01 -4.7851589322090149e-01
+ -1.1469169706106186e-01 1.4005890488624573e-01
+ <_>
+
+ 1 2 2211 -4.0908880531787872e-02 0 -1 2212
+ 6.7115128040313721e-03 -2 -3 2213 4.7661857679486275e-03
+
+ 1.1935690045356750e-01 -4.9553608894348145e-01
+ 2.9291590908542275e-04 3.0523601174354553e-01
+ <_>
+
+ 2 1 2214 8.2969013601541519e-03 0 -1 2215
+ -1.4058559900149703e-03 -2 -3 2216 3.8165580481290817e-03
+
+ 3.8395699858665466e-01 -5.8064288459718227e-03
+ 8.5270447016227990e-05 -3.1768730282783508e-01
+ <_>
+
+ 0 1 2217 -1.5988849103450775e-02 2 -1 2218
+ -4.2525809258222580e-02 -2 -3 2219 1.0341469943523407e-01
+
+ 5.8605968952178955e-01 1.5200969763100147e-02
+ -4.2698180675506592e-01 9.1076821088790894e-01
+ <_>
+
+ 1 0 2220 1.5279020590241998e-04 -1 2 2221
+ 4.4353670091368258e-04 -2 -3 2222 -2.1845809533260763e-04
+
+ -1.8349540233612061e-01 1.8386720120906830e-01
+ -3.0458870530128479e-01 9.6679449081420898e-02
+ <_>
+
+ 0 1 2223 -6.9333161227405071e-03 2 -1 2224
+ 2.6824630796909332e-02 -2 -3 2225 2.8827119618654251e-02
+
+ 1.9829869270324707e-01 5.7704108953475952e-01
+ -1.3593469560146332e-01 1.8093059957027435e-01
+ <_>
+
+ 1 0 2226 3.4493818879127502e-02 -1 2 2227
+ -3.9107841439545155e-03 -2 -3 2228 2.0955900254193693e-04
+
+ 2.7782711386680603e-01 1.0099980235099792e-01
+ -1.6889050602912903e-02 -3.4672379493713379e-01
+ <_>
+
+ 1 2 2229 -1.1503810063004494e-02 0 -1 2230
+ -5.8503649197518826e-03 -2 -3 2231 -1.9477239402476698e-04
+
+ 2.9069650173187256e-01 -5.7935047149658203e-01
+ -1.5547400712966919e-01 8.7707668542861938e-02
+ <_>
+
+ 1 2 2232 -2.4192599812522531e-04 0 -1 2233
+ -8.7722227908670902e-04 -2 -3 2234 -8.8649448007345200e-03
+
+ -4.9958980083465576e-01 2.2867499291896820e-01
+ 1.4817740023136139e-01 -1.4039020240306854e-01
+ <_>
+
+ 1 0 2235 6.6976482048630714e-03 2 -1 2236
+ 1.6602370305918157e-04 -2 -3 2237 5.6860040873289108e-02
+
+ -1.7738009989261627e-01 2.5650730729103088e-01
+ 1.7361199483275414e-02 -7.4021261930465698e-01
+ <_>
+
+ 1 0 2238 2.4098889902234077e-02 2 -1 2239
+ 8.0347352195531130e-04 -2 -3 2240 6.9724403321743011e-02
+
+ -5.3940677642822266e-01 1.4385139942169189e-01
+ -1.0675229877233505e-01 5.4217422008514404e-01
+ <_>
+
+ 1 0 2241 9.0714782709255815e-04 -1 2 2242
+ -7.3141716711688787e-05 -2 -3 2243 -1.5573799610137939e-03
+
+ 2.4376200139522552e-01 7.3325037956237793e-02
+ 4.9846198409795761e-02 -3.1094640493392944e-01
+ <_>
+
+ 0 1 2244 -1.3867990113794804e-02 -1 2 2245
+ 1.1202249443158507e-03 -2 -3 2246 -3.7206329405307770e-02
+
+ -6.6426891088485718e-01 7.0658437907695770e-02
+ 4.2091751098632812e-01 -2.5585201382637024e-01
+ <_>
+
+ 1 2 2247 -4.2576639680191875e-04 0 -1 2248
+ 5.4934259504079819e-02 -2 -3 2249 9.6833100542426109e-04
+
+ -3.0530530214309692e-01 2.7118149399757385e-01
+ -6.7041292786598206e-02 1.7276880145072937e-01
+ <_>
+
+ 0 1 2250 7.9393703490495682e-03 -1 2 2251
+ 5.0757948309183121e-02 -2 -3 2252 -3.2133560627698898e-02
+
+ -5.3697269409894943e-02 4.0109890699386597e-01
+ 4.3551141023635864e-01 -4.1936281323432922e-01
+ <_>
+
+ 1 0 2253 9.9633932113647461e-02 -1 2 2254
+ -4.5324079692363739e-03 -2 -3 2255 7.6392642222344875e-04
+
+ -6.1999887228012085e-01 1.6984449326992035e-01
+ 1.0533300042152405e-01 -2.1900549530982971e-01
+ <_>
+
+ 1 0 2256 -1.3120270334184170e-02 2 -1 2257
+ -1.2095270212739706e-03 -2 -3 2258 -6.0685798525810242e-03
+
+ -5.1372468471527100e-02 -1.2173540145158768e-01
+ -3.2418820261955261e-01 6.5560877323150635e-01
+ <_>
+
+ 0 1 2259 -4.4329889118671417e-02 -1 2 2260
+ -1.1334549635648727e-02 -2 -3 2261 -9.7028171876445413e-04
+
+ -2.6503491401672363e-01 -7.6205557584762573e-01
+ -9.5501512289047241e-02 1.5263360738754272e-01
+ <_>
+
+ 0 1 2262 -8.4918709471821785e-03 -1 2 2263
+ -6.9846503436565399e-02 -2 -3 2264 9.2466361820697784e-02
+
+ 1.9973739981651306e-01 3.1325021386146545e-01
+ -1.1733359843492508e-01 7.7850347757339478e-01
+ <_>
+
+ 0 1 2265 -9.5799759030342102e-02 2 -1 2266
+ 5.1276460289955139e-03 -2 -3 2267 6.1059608124196529e-03
+
+ 7.8442037105560303e-01 1.5389220416545868e-01
+ -1.3577620685100555e-01 2.1575249731540680e-01
+ <_>
+
+ 2 1 2268 -5.5722601246088743e-04 0 -1 2269
+ 5.2772291004657745e-02 -2 -3 2270 -3.7010889500379562e-03
+
+ -1.3534410297870636e-01 2.9378059506416321e-01
+ -1.7292410135269165e-01 2.3805269598960876e-01
+ <_>
+
+ 1 0 2271 -1.3051830464974046e-03 -1 2 2272
+ -4.0903348475694656e-02 -2 -3 2273 -6.3687269575893879e-03
+
+ -5.5020369589328766e-02 -3.0940970778465271e-01
+ 6.5783101320266724e-01 9.2643633484840393e-02
+ <_>
+
+ 2 1 2274 1.4673050027340651e-03 0 -1 2275
+ 5.3080540150403976e-02 -2 -3 2276 4.5696222223341465e-03
+
+ 1.1342869699001312e-01 -3.8801661133766174e-01
+ 8.7235711514949799e-02 -5.5333012342453003e-01
+ <_>
+
+ 2 1 2277 2.7171480469405651e-03 0 -1 2278
+ -7.5547560118138790e-03 -2 -3 2279 2.1428259788081050e-04
+
+ 4.6386051177978516e-01 2.2095510736107826e-02
+ -1.7482960224151611e-01 1.6784119606018066e-01
+ <_>
+
+ 1 2 2280 1.1644139885902405e-03 0 -1 2281
+ 2.7417868841439486e-03 -2 -3 2282 5.1555588841438293e-02
+
+ -3.0654639005661011e-01 5.7464569807052612e-02
+ 1.3891890645027161e-01 -4.4362550973892212e-01
+ <_>
+ 46
+ -1.0841189622879028e+00
+
+ <_>
+
+ 1 0 2283 -1.9345199689269066e-03 -1 2 2284
+ 5.4789008572697639e-03 -2 -3 2285 1.3723999727517366e-03
+
+ -2.9038429260253906e-01 -4.9600031226873398e-02
+ 8.1412100791931152e-01 -4.1888630390167236e-01
+ <_>
+
+ 1 2 2286 2.6495110243558884e-02 0 -1 2287
+ -1.3697579503059387e-01 -2 -3 2288 -3.0566600617021322e-04
+
+ 2.4463020265102386e-01 -1.4825659990310669e-01
+ 6.5781980752944946e-01 -7.9236596822738647e-02
+ <_>
+
+ 0 1 2289 -1.9925139844417572e-02 -1 2 2290
+ -1.3427959382534027e-01 -2 -3 2291 -1.0180550161749125e-03
+
+ -7.2399538755416870e-01 5.6490647792816162e-01
+ 1.0791130363941193e-01 -1.4493170380592346e-01
+ <_>
+
+ 2 1 2292 -1.6956209437921643e-03 0 -1 2293
+ -3.9232008159160614e-02 -2 -3 2294 -1.1985700111836195e-03
+
+ 2.0442679524421692e-01 -2.2484399378299713e-01
+ -9.8312400281429291e-02 2.5217679142951965e-01
+ <_>
+
+ 1 0 2295 5.6637298315763474e-02 -1 2 2296
+ -1.4088810421526432e-02 -2 -3 2297 1.9742019474506378e-02
+
+ 4.2156541347503662e-01 -5.4424422979354858e-01
+ -4.3038509786128998e-02 3.9660850167274475e-01
+ <_>
+
+ 0 1 2298 -3.7790019065141678e-02 -1 2 2299
+ -2.1278490126132965e-01 -2 -3 2300 -7.5766840018332005e-04
+
+ -5.3746891021728516e-01 2.9742780327796936e-01
+ -1.7239089310169220e-01 9.4371169805526733e-02
+ <_>
+
+ 0 1 2301 1.0515520116314292e-03 -1 2 2302
+ -4.6967338770627975e-02 -2 -3 2303 -6.6702580079436302e-03
+
+ -9.4606198370456696e-02 3.8049909472465515e-01
+ -3.6735290288925171e-01 1.8134810030460358e-01
+ <_>
+
+ 0 1 2304 -8.8434442877769470e-03 -1 2 2305
+ -7.5162857770919800e-02 -2 -3 2306 6.0678281442960724e-05
+
+ 1.9733619689941406e-01 2.8719368577003479e-01
+ -2.1481469273567200e-01 4.5404769480228424e-02
+ <_>
+
+ 0 1 2307 -2.6157319545745850e-02 -1 2 2308
+ -2.5265390053391457e-02 -2 -3 2309 -5.3271669894456863e-03
+
+ -5.9915411472320557e-01 -3.2973399758338928e-01
+ 4.3388798832893372e-01 1.2896250002086163e-02
+ <_>
+
+ 0 1 2310 -4.6350698918104172e-02 2 -1 2311
+ 8.5780251538380980e-04 -2 -3 2312 8.7990947067737579e-03
+
+ -4.4396370649337769e-01 -1.0408560186624527e-01
+ 2.6796650141477585e-02 3.4592410922050476e-01
+ <_>
+
+ 2 1 2313 -8.6540228221565485e-04 0 -1 2314
+ 1.4915770152583718e-03 -2 -3 2315 -1.7994260415434837e-02
+
+ -3.0356478691101074e-01 2.4568190798163414e-02
+ -3.6277890205383301e-01 2.3864120244979858e-01
+ <_>
+
+ 1 0 2316 3.1142059713602066e-02 -1 2 2317
+ -1.3936620205640793e-02 -2 -3 2318 -2.1907410700805485e-04
+
+ 3.8710731267929077e-01 5.2351367473602295e-01
+ -1.7730639874935150e-01 5.4297018796205521e-02
+ <_>
+
+ 2 1 2319 -1.5399450203403831e-03 0 -1 2320
+ 2.0680578891187906e-03 -2 -3 2321 6.5148430876433849e-03
+
+ -1.2532320618629456e-01 1.5583939850330353e-01
+ 2.7854940295219421e-01 -6.9196671247482300e-01
+ <_>
+
+ 1 0 2322 3.9056401699781418e-02 2 -1 2323
+ -4.0204878896474838e-03 -2 -3 2324 2.9492459725588560e-03
+
+ -4.3681609630584717e-01 8.3736188709735870e-02
+ -2.3137259483337402e-01 5.8771818876266479e-01
+ <_>
+
+ 2 1 2325 4.0582148358225822e-03 0 -1 2326
+ 5.4531730711460114e-02 -2 -3 2327 2.4824589490890503e-03
+
+ 2.7056580781936646e-01 -3.6512500047683716e-01
+ -2.2614318877458572e-03 3.5627979040145874e-01
+ <_>
+
+ 0 1 2328 -4.5967500656843185e-02 -1 2 2329
+ -7.7245971187949181e-03 -2 -3 2330 1.0509139858186245e-02
+
+ -3.6472341418266296e-01 -3.5956159234046936e-01
+ -1.1801080545410514e-03 2.6658898591995239e-01
+ <_>
+
+ 2 1 2331 2.7509370818734169e-02 0 -1 2332
+ -3.8485318422317505e-02 -2 -3 2333 8.4051601588726044e-03
+
+ -5.8312857151031494e-01 2.4421650171279907e-01
+ -1.2067990005016327e-01 2.0528540015220642e-01
+ <_>
+
+ 1 2 2334 -4.0405229665338993e-03 0 -1 2335
+ 1.5476900443900377e-04 -2 -3 2336 2.4814540665829554e-05
+
+ 3.1298181414604187e-01 -2.5597780942916870e-01
+ -2.2016249597072601e-01 5.4762478917837143e-02
+ <_>
+
+ 1 2 2337 -2.0571500062942505e-03 0 -1 2338
+ -2.5400029495358467e-02 -2 -3 2339 -9.7940629348158836e-04
+
+ 1.5875819325447083e-01 -2.5695261359214783e-01
+ -4.8633909225463867e-01 1.3700939714908600e-01
+ <_>
+
+ 1 0 2340 2.1806131117045879e-03 2 -1 2341
+ -3.5455688834190369e-02 -2 -3 2342 7.0310868322849274e-03
+
+ -1.5206259489059448e-01 2.2079099714756012e-01
+ -1.0352379828691483e-01 7.8391069173812866e-01
+ <_>
+
+ 2 1 2343 -1.9015279831364751e-03 0 -1 2344
+ -2.7523210272192955e-02 -2 -3 2345 1.1140380054712296e-02
+
+ 2.2670629620552063e-01 -1.4048579335212708e-01
+ 3.8015339523553848e-02 4.5577189326286316e-01
+ <_>
+
+ 0 1 2346 -1.4077059924602509e-02 -1 2 2347
+ -7.5063481926918030e-03 -2 -3 2348 3.4938179887831211e-03
+
+ -3.4491220116615295e-01 2.4528980255126953e-01
+ -1.3371880352497101e-01 1.5036830306053162e-01
+ <_>
+
+ 1 0 2349 5.0538990646600723e-02 -1 2 2350
+ 5.9616268845275044e-04 -2 -3 2351 -2.0425749942660332e-02
+
+ 3.9677879214286804e-01 -1.6664770245552063e-01
+ -3.4699028730392456e-01 1.3850739598274231e-01
+ <_>
+
+ 0 1 2352 -5.2063791081309319e-03 -1 2 2353
+ -7.5247389031574130e-04 -2 -3 2354 -5.4832808673381805e-02
+
+ -3.6672219634056091e-01 -2.6418569684028625e-01
+ 2.7295270562171936e-01 -3.5999810788780451e-03
+ <_>
+
+ 1 2 2355 1.7384309321641922e-02 0 -1 2356
+ 8.1398971378803253e-03 -2 -3 2357 5.3603048436343670e-03
+
+ -9.5032609999179840e-02 3.2227438688278198e-01
+ -1.8586769700050354e-02 4.8577728867530823e-01
+ <_>
+
+ 0 1 2358 -6.7889019846916199e-03 -1 2 2359
+ -2.6219699066132307e-04 -2 -3 2360 -6.3086668960750103e-03
+
+ 4.3564158678054810e-01 -1.8974490463733673e-01
+ -3.2145148515701294e-01 9.9988803267478943e-02
+ <_>
+
+ 1 0 2361 -7.5333809945732355e-04 -1 2 2362
+ -5.1618018187582493e-04 -2 -3 2363 4.9971960484981537e-02
+
+ -6.4324781298637390e-02 4.0329611301422119e-01
+ -1.0619989782571793e-01 7.8842008113861084e-01
+ <_>
+
+ 0 1 2364 -1.6776630282402039e-01 2 -1 2365
+ 1.5873169759288430e-03 -2 -3 2366 -1.5413289656862617e-03
+
+ 8.3238917589187622e-01 -1.4161799848079681e-01
+ -1.1225470155477524e-01 2.1630200743675232e-01
+ <_>
+
+ 1 2 2367 -6.0930051840841770e-03 0 -1 2368
+ 1.2093319557607174e-02 -2 -3 2369 -1.0354000143706799e-02
+
+ 2.8332099318504333e-01 -7.5473171472549438e-01
+ 3.1173440814018250e-01 -8.3147212862968445e-02
+ <_>
+
+ 1 2 2370 -2.2508190572261810e-01 0 -1 2371
+ -3.9419779181480408e-01 -2 -3 2372 -7.0281741209328175e-03
+
+ 7.2753679752349854e-01 -4.7205528616905212e-01
+ 2.6742509007453918e-01 -2.3675439879298210e-02
+ <_>
+
+ 0 1 2373 -1.0977389663457870e-01 -1 2 2374
+ -1.8981259316205978e-02 -2 -3 2375 -1.5975029673427343e-03
+
+ 3.2995739579200745e-01 -4.1107800602912903e-01
+ 3.9100599288940430e-01 -3.0054800212383270e-02
+ <_>
+
+ 2 1 2376 3.3699660561978817e-03 0 -1 2377
+ 2.8608400374650955e-02 -2 -3 2378 1.1234980076551437e-02
+
+ -2.6757821440696716e-01 5.4922807216644287e-01
+ 7.9798206686973572e-02 -4.9347519874572754e-01
+ <_>
+
+ 2 1 2379 1.0005270130932331e-02 0 -1 2380
+ -1.3333059847354889e-01 -2 -3 2381 1.0838189627975225e-03
+
+ 4.3375509977340698e-01 1.4595700427889824e-02
+ 9.0088322758674622e-03 -2.6673930883407593e-01
+ <_>
+
+ 1 0 2382 1.8866240279749036e-03 2 -1 2383
+ -1.9594319164752960e-02 -2 -3 2384 -4.0433141402900219e-03
+
+ 1.6358950734138489e-01 2.3428240790963173e-02
+ 1.8105390667915344e-01 -3.7628519535064697e-01
+ <_>
+
+ 1 2 2385 -1.3283960521221161e-01 0 -1 2386
+ 3.8986348954495043e-05 -2 -3 2387 3.0710658757016063e-04
+
+ -4.7917541116476059e-02 5.7672798633575439e-01
+ -1.0200879722833633e-01 1.3613240420818329e-01
+ <_>
+
+ 0 1 2388 -4.0010150521993637e-02 -1 2 2389
+ -1.1752990540117025e-03 -2 -3 2390 -4.5838830992579460e-03
+
+ 7.0342528820037842e-01 1.1457219719886780e-01
+ 7.0621937513351440e-02 -2.1597090363502502e-01
+ <_>
+
+ 1 0 2391 5.3299739956855774e-02 2 -1 2392
+ 1.9961010664701462e-02 -2 -3 2393 -1.4994270168244839e-02
+
+ -1.6445639729499817e-01 4.0419510006904602e-01
+ -4.9861040711402893e-01 6.1822768300771713e-02
+ <_>
+
+ 1 0 2394 4.2854552157223225e-03 -1 2 2395
+ -1.3991270214319229e-02 -2 -3 2396 9.9598374217748642e-03
+
+ -7.2749477624893188e-01 1.5665039420127869e-01
+ -1.2152709811925888e-01 2.4375760555267334e-01
+ <_>
+
+ 0 1 2397 -6.1463691294193268e-02 2 -1 2398
+ 8.1084080738946795e-04 -2 -3 2399 1.4836339978501201e-03
+
+ -4.9159640073776245e-01 4.0312820672988892e-01
+ 5.2907239645719528e-02 -2.0971420407295227e-01
+ <_>
+
+ 0 1 2400 2.8651900356635451e-04 2 -1 2401
+ -4.9405667232349515e-04 -2 -3 2402 -1.3786340132355690e-03
+
+ -5.8905839920043945e-02 3.8144549727439880e-01
+ -4.4638028740882874e-01 4.1437059640884399e-01
+ <_>
+
+ 1 0 2403 9.0396329760551453e-03 2 -1 2404
+ 1.5593219723086804e-04 -2 -3 2405 -1.1492449790239334e-02
+
+ -5.8979207277297974e-01 1.4469850063323975e-01
+ -6.2305951118469238e-01 -2.8079420328140259e-02
+ <_>
+
+ 0 1 2406 -1.0058670304715633e-02 -1 2 2407
+ 2.8506040107458830e-03 -2 -3 2408 -1.0550140403211117e-02
+
+ 1.3063749670982361e-01 -1.5896910429000854e-01
+ -5.8578401803970337e-01 4.1516658663749695e-01
+ <_>
+
+ 0 1 2409 -2.6834249496459961e-02 -1 2 2410
+ -6.7446259781718254e-03 -2 -3 2411 -1.9539019558578730e-03
+
+ -2.3982690274715424e-01 -3.0731248855590820e-01
+ 2.6545688509941101e-01 -2.7655568555928767e-04
+ <_>
+
+ 1 2 2412 -1.5296439826488495e-01 0 -1 2413
+ 1.3547400012612343e-02 -2 -3 2414 4.4966558925807476e-03
+
+ 5.4796701669692993e-01 7.3741371743381023e-03
+ -3.9956450928002596e-04 -3.4183570742607117e-01
+ <_>
+
+ 0 1 2415 -9.6259176731109619e-02 2 -1 2416
+ 6.0006431303918362e-03 -2 -3 2417 4.8557221889495850e-03
+
+ -3.4981849789619446e-01 4.8977410793304443e-01
+ 9.2725560069084167e-02 -1.3060179352760315e-01
+ <_>
+
+ 1 2 2418 -1.2333790073171258e-03 0 -1 2419
+ -4.2365258559584618e-04 -2 -3 2420 8.3003565669059753e-03
+
+ 2.4704679846763611e-01 -3.9149808883666992e-01
+ 9.2340186238288879e-03 4.0348419547080994e-01
+ <_>
+ 44
+ -1.1084890365600586e+00
+
+ <_>
+
+ 2 1 2421 2.8592639137059450e-03 0 -1 2422
+ -1.5535679645836353e-02 -2 -3 2423 -2.3885839618742466e-03
+
+ 8.2635468244552612e-01 2.2793740034103394e-02
+ 6.7295722663402557e-02 -3.1476849317550659e-01
+ <_>
+
+ 0 1 2424 1.4029210433363914e-03 -1 2 2425
+ -4.5515298843383789e-03 -2 -3 2426 9.4592738896608353e-03
+
+ -1.0290689766407013e-01 -3.2368329167366028e-01
+ 5.4250991344451904e-01 -3.0348530411720276e-01
+ <_>
+
+ 1 0 2427 5.4062008857727051e-03 -1 2 2428
+ -2.6852379087358713e-03 -2 -3 2429 -6.2019047618377954e-05
+
+ -2.8486549854278564e-01 2.6024919748306274e-01
+ 1.6827000677585602e-01 -2.3859730362892151e-01
+ <_>
+
+ 1 0 2430 2.4147080257534981e-02 -1 2 2431
+ 1.3977369526401162e-03 -2 -3 2432 2.0164279267191887e-02
+
+ 4.8240968585014343e-01 -3.6230188608169556e-01
+ -3.6146581172943115e-02 5.0473397970199585e-01
+ <_>
+
+ 0 1 2433 -6.1244291067123413e-01 2 -1 2434
+ 9.0631619095802307e-03 -2 -3 2435 1.7811909317970276e-01
+
+ -4.8220318555831909e-01 -5.7859402894973755e-01
+ 8.5012361407279968e-02 -6.3362121582031250e-01
+ <_>
+
+ 1 0 2436 2.6881069061346352e-04 -1 2 2437
+ -1.2180560268461704e-02 -2 -3 2438 4.0606390684843063e-03
+
+ -1.6075380146503448e-01 -6.5734118223190308e-01
+ 5.4012559354305267e-02 4.9817681312561035e-01
+ <_>
+
+ 0 1 2439 -3.6952861119061708e-03 -1 2 2440
+ -6.8888221867382526e-03 -2 -3 2441 2.7258940972387791e-03
+
+ -2.9826200008392334e-01 6.1437392234802246e-01
+ -8.3065047860145569e-02 1.8066459894180298e-01
+ <_>
+
+ 2 1 2442 9.8391417413949966e-03 0 -1 2443
+ 1.4573390362784266e-03 -2 -3 2444 -2.3016060004010797e-04
+
+ -4.8802070319652557e-02 2.9650750756263733e-01
+ 8.3583436906337738e-02 -2.4457779526710510e-01
+ <_>
+
+ 1 2 2445 -1.3347089989110827e-03 0 -1 2446
+ -2.3516249656677246e-01 -2 -3 2447 -3.1839110888540745e-03
+
+ -3.9780059456825256e-01 2.9200470447540283e-01
+ 1.5484599769115448e-01 -1.3911180198192596e-01
+ <_>
+
+ 0 1 2448 -5.9498839080333710e-02 2 -1 2449
+ 2.9865070246160030e-04 -2 -3 2450 -2.1592311095446348e-03
+
+ -8.0241578817367554e-01 -1.7932119965553284e-01
+ -1.9703079760074615e-01 1.5901389718055725e-01
+ <_>
+
+ 0 1 2451 -8.7727643549442291e-02 -1 2 2452
+ 1.8073969986289740e-03 -2 -3 2453 -3.0411710031330585e-04
+
+ 2.3391810059547424e-01 -1.9777239859104156e-01
+ -2.2787599265575409e-01 2.3480290174484253e-01
+ <_>
+
+ 0 1 2454 -3.6778930574655533e-02 -1 2 2455
+ -8.4806662052869797e-03 -2 -3 2456 4.4526819139719009e-02
+
+ 6.3471937179565430e-01 3.4320148825645447e-01
+ -3.2206610776484013e-03 -3.3057790994644165e-01
+ <_>
+
+ 1 2 2457 -1.1732319835573435e-03 0 -1 2458
+ 1.4339870540425181e-03 -2 -3 2459 7.7017117291688919e-04
+
+ -3.2894629240036011e-01 2.6812461018562317e-01
+ 1.5722079575061798e-01 -1.2080919742584229e-01
+ <_>
+
+ 1 0 2460 5.0579622620716691e-04 -1 2 2461
+ -1.6109919548034668e-01 -2 -3 2462 -9.3872181605547667e-04
+
+ 1.6917209327220917e-01 5.4838567972183228e-01
+ 1.3432510197162628e-01 -1.8490299582481384e-01
+ <_>
+
+ 1 0 2463 1.0552279651165009e-02 2 -1 2464
+ 4.1157208383083344e-02 -2 -3 2465 -1.3245060108602047e-03
+
+ -4.0745589137077332e-01 7.5326120853424072e-01
+ -1.1372119933366776e-01 1.1744459718465805e-01
+ <_>
+
+ 1 0 2466 -7.3126708157360554e-03 -1 2 2467
+ -1.5847360715270042e-02 -2 -3 2468 -5.2730008028447628e-03
+
+ -7.3187656700611115e-02 -4.7248768806457520e-01
+ -3.9433181285858154e-01 3.2054188847541809e-01
+ <_>
+
+ 0 1 2469 -1.0163930244743824e-02 -1 2 2470
+ -1.4269599691033363e-02 -2 -3 2471 -2.8677590307779610e-04
+
+ -5.2099817991256714e-01 4.4472008943557739e-01
+ 1.0787820070981979e-01 -1.3239330053329468e-01
+ <_>
+
+ 1 2 2472 -4.4711050577461720e-04 0 -1 2473
+ 6.9207558408379555e-03 -2 -3 2474 -4.7490649740211666e-04
+
+ -2.1184509992599487e-01 7.1038311719894409e-01
+ -9.0368412435054779e-02 1.9339320063591003e-01
+ <_>
+
+ 0 1 2475 -1.4192230068147182e-02 -1 2 2476
+ -5.9010402765125036e-04 -2 -3 2477 2.2904858924448490e-03
+
+ -3.8774991035461426e-01 4.2241969704627991e-01
+ -8.0403536558151245e-02 1.7335900664329529e-01
+ <_>
+
+ 0 1 2478 -2.5104399770498276e-02 -1 2 2479
+ -9.7052762284874916e-03 -2 -3 2480 2.7441041311249137e-04
+
+ -6.0312938690185547e-01 -6.5721738338470459e-01
+ -5.2042860537767410e-02 1.8078009784221649e-01
+ <_>
+
+ 0 1 2481 -2.6883379905484617e-04 -1 2 2482
+ 8.5731758736073971e-04 -2 -3 2483 -7.1471570990979671e-03
+
+ 1.8486160039901733e-01 3.6701809614896774e-02
+ 3.8019171357154846e-01 -3.1314790248870850e-01
+ <_>
+
+ 0 1 2484 -5.9650279581546783e-03 2 -1 2485
+ 6.5897651948034763e-03 -2 -3 2486 5.0898519111797214e-04
+
+ -3.7518349289894104e-01 2.1948930621147156e-01
+ 5.8855868875980377e-02 -2.6831701397895813e-01
+ <_>
+
+ 0 1 2487 -1.9406380131840706e-02 2 -1 2488
+ 1.0682499967515469e-02 -2 -3 2489 5.9157088398933411e-03
+
+ -4.0213540196418762e-01 6.6164708137512207e-01
+ 3.6718819290399551e-02 -4.7886928915977478e-01
+ <_>
+
+ 0 1 2490 -4.9229031428694725e-03 -1 2 2491
+ -1.2417170219123363e-02 -2 -3 2492 5.5979369208216667e-03
+
+ 2.2026430070400238e-01 -4.9814000725746155e-01
+ -4.0141601115465164e-02 7.9332500696182251e-01
+ <_>
+
+ 0 1 2493 -1.8435899913311005e-01 2 -1 2494
+ 6.4280577003955841e-02 -2 -3 2495 -1.6670690383762121e-03
+
+ 8.2392162084579468e-01 -5.1533687114715576e-01
+ -5.7897537946701050e-01 3.1020650640130043e-02
+ <_>
+
+ 1 0 2496 4.7475788742303848e-02 2 -1 2497
+ 2.5915699079632759e-03 -2 -3 2498 -6.8349228240549564e-04
+
+ 1.5852110087871552e-01 -2.8132149577140808e-01
+ -8.4496207535266876e-02 3.4085351228713989e-01
+ <_>
+
+ 0 1 2499 -8.0965347588062286e-03 2 -1 2500
+ 2.0750269293785095e-02 -2 -3 2501 2.0832920563407242e-04
+
+ 6.4384061098098755e-01 4.5479089021682739e-01
+ -1.0736659914255142e-01 1.3257840275764465e-01
+ <_>
+
+ 0 1 2502 -3.6361071397550404e-04 -1 2 2503
+ -6.1230720020830631e-03 -2 -3 2504 -4.2420169338583946e-03
+
+ 1.8995989859104156e-01 -5.5252599716186523e-01
+ 2.9558050632476807e-01 -7.1881696581840515e-02
+ <_>
+
+ 0 1 2505 -3.2453850144520402e-04 2 -1 2506
+ 1.2140260078012943e-02 -2 -3 2507 -1.8192020070273429e-04
+
+ -2.1697629988193512e-01 -3.1753998994827271e-01
+ -1.1777029931545258e-01 1.7208409309387207e-01
+ <_>
+
+ 0 1 2508 -3.0392920598387718e-03 2 -1 2509
+ 2.8347579063847661e-04 -2 -3 2510 -2.0839450880885124e-03
+
+ 1.8131990730762482e-01 1.4752319455146790e-01
+ 1.2602719664573669e-01 -2.3448009788990021e-01
+ <_>
+
+ 2 1 2511 -1.5735890716314316e-02 0 -1 2512
+ -5.9783339500427246e-02 -2 -3 2513 8.1148296594619751e-02
+
+ -3.7624269723892212e-01 1.0452839732170105e-01
+ -4.6331068873405457e-01 1.4930450357496738e-02
+ <_>
+
+ 1 0 2514 5.8228247798979282e-03 2 -1 2515
+ -5.7364261010661721e-04 -2 -3 2516 -3.6678448668681085e-04
+
+ -7.1261131763458252e-01 -3.9293140172958374e-02
+ -1.0198889672756195e-01 4.7379100322723389e-01
+ <_>
+
+ 1 2 2517 -9.1290572891011834e-04 0 -1 2518
+ 1.2561770156025887e-02 -2 -3 2519 -7.6223909854888916e-04
+
+ 3.5364340990781784e-02 4.8163351416587830e-01
+ 4.6516609191894531e-01 -1.5139210224151611e-01
+ <_>
+
+ 0 1 2520 1.8540889723226428e-03 -1 2 2521
+ -1.8188059329986572e-02 -2 -3 2522 2.5648679584264755e-02
+
+ 1.1853530257940292e-01 5.0805187225341797e-01
+ -2.3640629649162292e-01 2.6991719007492065e-01
+ <_>
+
+ 0 1 2523 -2.5939470157027245e-02 2 -1 2524
+ 9.7436201758682728e-04 -2 -3 2525 -1.2310179881751537e-03
+
+ -6.1304092407226562e-01 -1.6751369833946228e-01
+ -2.6179370284080505e-01 1.2718600034713745e-01
+ <_>
+
+ 0 1 2526 -7.0769861340522766e-02 2 -1 2527
+ 6.8592047318816185e-04 -2 -3 2528 7.2288517840206623e-03
+
+ 3.6499670147895813e-01 3.1916418671607971e-01
+ -1.1326509714126587e-01 2.3138450086116791e-01
+ <_>
+
+ 0 1 2529 -4.7549661248922348e-03 -1 2 2530
+ 3.8560681045055389e-02 -2 -3 2531 3.3737360499799252e-03
+
+ 1.2249550223350525e-01 -2.2969830036163330e-01
+ -2.9323069378733635e-02 7.3215091228485107e-01
+ <_>
+
+ 0 1 2532 -1.4671970158815384e-02 -1 2 2533
+ 3.5087150172330439e-04 -2 -3 2534 -2.0783280488103628e-03
+
+ -5.2395147085189819e-01 9.8115980625152588e-02
+ 4.0350338816642761e-01 -2.2959670424461365e-01
+ <_>
+
+ 1 0 2535 -3.7065339274704456e-03 2 -1 2536
+ 4.0150329470634460e-02 -2 -3 2537 -6.1276711523532867e-02
+
+ -9.2062972486019135e-02 -7.1320801973342896e-01
+ 4.4615340232849121e-01 5.8714438229799271e-02
+ <_>
+
+ 1 2 2538 -9.9730096757411957e-02 0 -1 2539
+ -7.7125482494011521e-04 -2 -3 2540 1.3902420178055763e-03
+
+ -1.4246919751167297e-01 5.1187419891357422e-01
+ 1.8041240051388741e-02 -2.5729590654373169e-01
+ <_>
+
+ 0 1 2541 -2.5304889306426048e-02 -1 2 2542
+ 2.5176260620355606e-02 -2 -3 2543 -2.7789679169654846e-01
+
+ -3.9365610480308533e-01 -1.7298270016908646e-02
+ -5.1464182138442993e-01 4.1422238945960999e-01
+ <_>
+
+ 1 0 2544 4.6188719570636749e-02 -1 2 2545
+ -1.7873500473797321e-03 -2 -3 2546 -1.2076550163328648e-02
+
+ -4.1546550393104553e-01 2.9358920454978943e-01
+ 3.0501538515090942e-01 -8.3189137279987335e-02
+ <_>
+
+ 0 1 2547 -5.4004848934710026e-03 -1 2 2548
+ -9.4532333314418793e-03 -2 -3 2549 -1.6526769613847136e-03
+
+ -4.8242959380149841e-01 -4.1864201426506042e-01
+ -4.7690790891647339e-01 6.9955162703990936e-02
+ <_>
+
+ 0 1 2550 -3.1153310090303421e-02 2 -1 2551
+ 5.1554460078477859e-03 -2 -3 2552 -2.7182319900020957e-04
+
+ 6.2633192539215088e-01 -2.2152930498123169e-01
+ -2.8926940634846687e-02 3.6499640345573425e-01
+
+ <_>
+
+ <_>
+ 8 7 12 1 -1.
+ <_>
+ 8 7 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 7 8 6 -1.
+ <_>
+ 6 7 4 6 2.
+ <_>
+
+ <_>
+ 5 3 12 12 -1.
+ <_>
+ 9 7 4 4 9.
+ <_>
+
+ <_>
+ 1 8 12 12 -1.
+ <_>
+ 1 14 12 6 2.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 5 7 9 6 -1.
+ <_>
+ 8 7 3 6 3.
+ <_>
+
+ <_>
+ 2 0 18 15 -1.
+ <_>
+ 2 5 18 5 3.
+ <_>
+
+ <_>
+ 7 1 9 9 -1.
+ <_>
+ 7 4 9 3 3.
+ <_>
+
+ <_>
+ 8 19 3 1 -1.
+ <_>
+ 9 19 1 1 3.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 17 1 1 2.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 17 1 1 2.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 10 18 3 1 -1.
+ <_>
+ 11 18 1 1 3.
+ <_>
+
+ <_>
+ 7 7 9 7 -1.
+ <_>
+ 10 7 3 7 3.
+ <_>
+
+ <_>
+ 6 8 12 5 -1.
+ <_>
+ 9 8 6 5 2.
+ <_>
+
+ <_>
+ 13 1 6 7 -1.
+ <_>
+ 13 1 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 12 15 -1.
+ <_>
+ 9 7 4 5 9.
+ <_>
+
+ <_>
+ 6 5 14 1 -1.
+ <_>
+ 6 5 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 9 10 1 -1.
+ <_>
+ 9 9 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 9 3 -1.
+ <_>
+ 5 9 3 3 3.
+ <_>
+
+ <_>
+ 0 8 20 12 -1.
+ <_>
+ 0 14 20 6 2.
+ <_>
+
+ <_>
+ 0 5 4 13 -1.
+ <_>
+ 2 5 2 13 2.
+ <_>
+
+ <_>
+ 11 18 3 2 -1.
+ <_>
+ 12 18 1 2 3.
+ <_>
+
+ <_>
+ 11 18 3 1 -1.
+ <_>
+ 12 18 1 1 3.
+ <_>
+
+ <_>
+ 11 19 3 1 -1.
+ <_>
+ 12 19 1 1 3.
+ <_>
+
+ <_>
+ 10 9 9 3 -1.
+ <_>
+ 13 9 3 3 3.
+ <_>
+
+ <_>
+ 5 8 8 7 -1.
+ <_>
+ 7 8 4 7 2.
+ <_>
+
+ <_>
+ 8 6 9 8 -1.
+ <_>
+ 11 6 3 8 3.
+ <_>
+
+ <_>
+ 4 18 2 2 -1.
+ <_>
+ 4 18 1 1 2.
+ <_>
+ 5 19 1 1 2.
+ <_>
+
+ <_>
+ 4 18 2 2 -1.
+ <_>
+ 4 18 1 1 2.
+ <_>
+ 5 19 1 1 2.
+ <_>
+
+ <_>
+ 7 6 8 14 -1.
+ <_>
+ 9 6 4 14 2.
+ <_>
+
+ <_>
+ 16 13 4 3 -1.
+ <_>
+ 15 14 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 13 4 2 -1.
+ <_>
+ 16 13 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 6 6 14 -1.
+ <_>
+ 7 6 2 14 3.
+ <_>
+
+ <_>
+ 0 7 8 11 -1.
+ <_>
+ 2 7 4 11 2.
+ <_>
+
+ <_>
+ 0 7 8 7 -1.
+ <_>
+ 2 7 4 7 2.
+ <_>
+
+ <_>
+ 2 16 3 1 -1.
+ <_>
+ 3 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 15 18 -1.
+ <_>
+ 8 6 5 6 9.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 0 13 20 7 2.
+ <_>
+
+ <_>
+ 6 7 9 7 -1.
+ <_>
+ 9 7 3 7 3.
+ <_>
+
+ <_>
+ 3 9 6 2 -1.
+ <_>
+ 5 9 2 2 3.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 14 8 6 5 -1.
+ <_>
+ 16 8 2 5 3.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 16 19 4 1 2.
+ <_>
+
+ <_>
+ 8 8 9 12 -1.
+ <_>
+ 11 8 3 12 3.
+ <_>
+
+ <_>
+ 8 18 3 1 -1.
+ <_>
+ 9 18 1 1 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 0 8 4 11 -1.
+ <_>
+ 2 8 2 11 2.
+ <_>
+
+ <_>
+ 10 0 10 1 -1.
+ <_>
+ 15 0 5 1 2.
+ <_>
+
+ <_>
+ 13 1 3 3 -1.
+ <_>
+ 14 1 1 3 3.
+ <_>
+
+ <_>
+ 2 8 12 12 -1.
+ <_>
+ 6 8 4 12 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 18 18 1 2 -1.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 8 10 6 5 -1.
+ <_>
+ 10 10 2 5 3.
+ <_>
+
+ <_>
+ 13 17 3 2 -1.
+ <_>
+ 14 17 1 2 3.
+ <_>
+
+ <_>
+ 0 4 6 12 -1.
+ <_>
+ 0 8 6 4 3.
+ <_>
+
+ <_>
+ 0 8 5 4 -1.
+ <_>
+ 0 9 5 2 2.
+ <_>
+
+ <_>
+ 13 6 4 6 -1.
+ <_>
+ 14 7 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 3 2 -1.
+ <_>
+ 5 2 1 2 3.
+ <_>
+
+ <_>
+ 11 2 8 17 -1.
+ <_>
+ 13 2 4 17 2.
+ <_>
+
+ <_>
+ 15 0 3 3 -1.
+ <_>
+ 16 0 1 3 3.
+ <_>
+
+ <_>
+ 10 5 9 13 -1.
+ <_>
+ 13 5 3 13 3.
+ <_>
+
+ <_>
+ 5 8 8 6 -1.
+ <_>
+ 7 8 4 6 2.
+ <_>
+
+ <_>
+ 3 1 15 18 -1.
+ <_>
+ 8 7 5 6 9.
+ <_>
+
+ <_>
+ 6 7 9 8 -1.
+ <_>
+ 9 7 3 8 3.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 0 13 20 7 2.
+ <_>
+
+ <_>
+ 1 7 6 7 -1.
+ <_>
+ 3 7 2 7 3.
+ <_>
+
+ <_>
+ 9 19 3 1 -1.
+ <_>
+ 10 19 1 1 3.
+ <_>
+
+ <_>
+ 4 6 9 7 -1.
+ <_>
+ 7 6 3 7 3.
+ <_>
+
+ <_>
+ 18 10 1 10 -1.
+ <_>
+ 18 15 1 5 2.
+ <_>
+
+ <_>
+ 12 16 2 4 -1.
+ <_>
+ 12 16 1 2 2.
+ <_>
+ 13 18 1 2 2.
+ <_>
+
+ <_>
+ 12 19 4 1 -1.
+ <_>
+ 13 19 2 1 2.
+ <_>
+
+ <_>
+ 9 5 6 15 -1.
+ <_>
+ 11 5 2 15 3.
+ <_>
+
+ <_>
+ 10 18 4 1 -1.
+ <_>
+ 11 18 2 1 2.
+ <_>
+
+ <_>
+ 1 0 12 16 -1.
+ <_>
+ 5 0 4 16 3.
+ <_>
+
+ <_>
+ 0 13 3 3 -1.
+ <_>
+ 0 14 3 1 3.
+ <_>
+
+ <_>
+ 1 13 1 3 -1.
+ <_>
+ 1 14 1 1 3.
+ <_>
+
+ <_>
+ 14 0 6 1 -1.
+ <_>
+ 17 0 3 1 2.
+ <_>
+
+ <_>
+ 12 0 3 3 -1.
+ <_>
+ 13 0 1 3 3.
+ <_>
+
+ <_>
+ 12 1 3 2 -1.
+ <_>
+ 13 1 1 2 3.
+ <_>
+
+ <_>
+ 14 2 6 13 -1.
+ <_>
+ 16 2 2 13 3.
+ <_>
+
+ <_>
+ 12 4 6 1 -1.
+ <_>
+ 14 6 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 6 5 2 -1.
+ <_>
+ 15 7 5 1 2.
+ <_>
+
+ <_>
+ 9 0 5 12 -1.
+ <_>
+ 9 4 5 4 3.
+ <_>
+
+ <_>
+ 6 1 13 9 -1.
+ <_>
+ 6 4 13 3 3.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 17 0 1 2 3.
+ <_>
+
+ <_>
+ 6 0 4 2 -1.
+ <_>
+ 6 0 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 3 3 -1.
+ <_>
+ 3 3 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 1 13 6 -1.
+ <_>
+ 5 3 13 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 2 2 3 -1.
+ <_>
+ 2 3 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 0 3 1 -1.
+ <_>
+ 18 0 1 1 3.
+ <_>
+
+ <_>
+ 1 12 5 6 -1.
+ <_>
+ 1 15 5 3 2.
+ <_>
+
+ <_>
+ 5 14 3 1 -1.
+ <_>
+ 6 15 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 7 7 3 -1.
+ <_>
+ 0 8 7 1 3.
+ <_>
+
+ <_>
+ 0 8 2 4 -1.
+ <_>
+ 0 9 2 2 2.
+ <_>
+
+ <_>
+ 7 2 4 3 -1.
+ <_>
+ 6 3 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 7 6 10 -1.
+ <_>
+ 8 7 2 10 3.
+ <_>
+
+ <_>
+ 2 5 8 12 -1.
+ <_>
+ 4 5 4 12 2.
+ <_>
+
+ <_>
+ 4 0 12 4 -1.
+ <_>
+ 4 2 12 2 2.
+ <_>
+
+ <_>
+ 7 8 8 12 -1.
+ <_>
+ 9 8 4 12 2.
+ <_>
+
+ <_>
+ 8 6 11 14 -1.
+ <_>
+ 8 13 11 7 2.
+ <_>
+
+ <_>
+ 16 9 4 9 -1.
+ <_>
+ 18 9 2 9 2.
+ <_>
+
+ <_>
+ 12 9 6 2 -1.
+ <_>
+ 14 9 2 2 3.
+ <_>
+
+ <_>
+ 6 1 10 6 -1.
+ <_>
+ 6 3 10 2 3.
+ <_>
+
+ <_>
+ 5 0 4 5 -1.
+ <_>
+ 5 0 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 17 1 3 -1.
+ <_>
+ 2 18 1 1 3.
+ <_>
+
+ <_>
+ 2 17 1 3 -1.
+ <_>
+ 2 18 1 1 3.
+ <_>
+
+ <_>
+ 8 0 12 2 -1.
+ <_>
+ 12 0 4 2 3.
+ <_>
+
+ <_>
+ 0 8 6 5 -1.
+ <_>
+ 2 8 2 5 3.
+ <_>
+
+ <_>
+ 8 18 4 1 -1.
+ <_>
+ 9 18 2 1 2.
+ <_>
+
+ <_>
+ 10 18 2 1 -1.
+ <_>
+ 11 18 1 1 2.
+ <_>
+
+ <_>
+ 7 2 9 3 -1.
+ <_>
+ 10 5 3 3 3.
+ 1
+ <_>
+
+ <_>
+ 8 3 5 6 -1.
+ <_>
+ 8 5 5 2 3.
+ <_>
+
+ <_>
+ 0 14 1 3 -1.
+ <_>
+ 0 15 1 1 3.
+ <_>
+
+ <_>
+ 12 17 3 2 -1.
+ <_>
+ 13 17 1 2 3.
+ <_>
+
+ <_>
+ 12 17 3 3 -1.
+ <_>
+ 13 17 1 3 3.
+ <_>
+
+ <_>
+ 7 9 1 4 -1.
+ <_>
+ 6 10 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 8 8 -1.
+ <_>
+ 14 7 4 8 2.
+ <_>
+
+ <_>
+ 7 10 4 6 -1.
+ <_>
+ 5 12 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 6 4 10 -1.
+ <_>
+ 2 6 2 10 2.
+ <_>
+
+ <_>
+ 19 9 1 3 -1.
+ <_>
+ 19 10 1 1 3.
+ <_>
+
+ <_>
+ 16 1 4 15 -1.
+ <_>
+ 17 2 2 15 2.
+ 1
+ <_>
+
+ <_>
+ 14 5 6 7 -1.
+ <_>
+ 16 7 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 0 7 4 6 -1.
+ <_>
+ 0 9 4 2 3.
+ <_>
+
+ <_>
+ 16 9 4 4 -1.
+ <_>
+ 17 9 2 4 2.
+ <_>
+
+ <_>
+ 0 15 1 3 -1.
+ <_>
+ 0 16 1 1 3.
+ <_>
+
+ <_>
+ 7 5 10 3 -1.
+ <_>
+ 6 6 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 9 7 -1.
+ <_>
+ 12 7 3 7 3.
+ <_>
+
+ <_>
+ 14 4 6 8 -1.
+ <_>
+ 14 6 6 4 2.
+ <_>
+
+ <_>
+ 17 6 3 1 -1.
+ <_>
+ 18 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 1 3 8 -1.
+ <_>
+ 17 3 3 4 2.
+ <_>
+
+ <_>
+ 0 10 1 3 -1.
+ <_>
+ 0 11 1 1 3.
+ <_>
+
+ <_>
+ 5 2 3 1 -1.
+ <_>
+ 6 2 1 1 3.
+ <_>
+
+ <_>
+ 5 2 3 1 -1.
+ <_>
+ 6 2 1 1 3.
+ <_>
+
+ <_>
+ 6 2 9 15 -1.
+ <_>
+ 9 7 3 5 9.
+ <_>
+
+ <_>
+ 0 9 6 3 -1.
+ <_>
+ 2 9 2 3 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 9 2 3 9.
+ <_>
+
+ <_>
+ 4 3 12 9 -1.
+ <_>
+ 4 6 12 3 3.
+ <_>
+
+ <_>
+ 8 5 6 4 -1.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 0 1 17 8 -1.
+ <_>
+ 0 3 17 4 2.
+ <_>
+
+ <_>
+ 2 10 9 1 -1.
+ <_>
+ 5 10 3 1 3.
+ <_>
+
+ <_>
+ 2 11 9 8 -1.
+ <_>
+ 2 15 9 4 2.
+ <_>
+
+ <_>
+ 14 0 6 15 -1.
+ <_>
+ 16 0 2 15 3.
+ <_>
+
+ <_>
+ 17 6 2 9 -1.
+ <_>
+ 17 9 2 3 3.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 15 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 4 2 -1.
+ <_>
+ 8 0 2 2 2.
+ <_>
+
+ <_>
+ 6 0 12 15 -1.
+ <_>
+ 10 0 4 15 3.
+ <_>
+
+ <_>
+ 7 8 12 6 -1.
+ <_>
+ 11 8 4 6 3.
+ <_>
+
+ <_>
+ 11 18 4 1 -1.
+ <_>
+ 12 18 2 1 2.
+ <_>
+
+ <_>
+ 8 18 4 1 -1.
+ <_>
+ 9 18 2 1 2.
+ <_>
+
+ <_>
+ 7 0 8 4 -1.
+ <_>
+ 7 2 8 2 2.
+ <_>
+
+ <_>
+ 8 0 12 8 -1.
+ <_>
+ 8 2 12 4 2.
+ <_>
+
+ <_>
+ 4 9 6 3 -1.
+ <_>
+ 6 9 2 3 3.
+ <_>
+
+ <_>
+ 0 4 9 12 -1.
+ <_>
+ 3 8 3 4 9.
+ <_>
+
+ <_>
+ 6 18 1 2 -1.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 9 2 4 2 -1.
+ <_>
+ 10 2 2 2 2.
+ <_>
+
+ <_>
+ 6 1 8 17 -1.
+ <_>
+ 8 1 4 17 2.
+ <_>
+
+ <_>
+ 13 9 4 4 -1.
+ <_>
+ 14 10 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 4 3 -1.
+ <_>
+ 8 1 2 3 2.
+ <_>
+
+ <_>
+ 12 8 6 4 -1.
+ <_>
+ 14 8 2 4 3.
+ <_>
+
+ <_>
+ 13 1 7 15 -1.
+ <_>
+ 13 6 7 5 3.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 17 18 1 1 2.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 3 6 4 10 -1.
+ <_>
+ 4 6 2 10 2.
+ <_>
+
+ <_>
+ 6 4 4 11 -1.
+ <_>
+ 7 4 2 11 2.
+ <_>
+
+ <_>
+ 7 18 4 1 -1.
+ <_>
+ 8 18 2 1 2.
+ <_>
+
+ <_>
+ 15 0 4 2 -1.
+ <_>
+ 15 0 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 10 3 -1.
+ <_>
+ 8 1 10 1 3.
+ <_>
+
+ <_>
+ 8 0 12 3 -1.
+ <_>
+ 12 1 4 1 9.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 17 0 1 2 3.
+ <_>
+
+ <_>
+ 16 10 4 6 -1.
+ <_>
+ 17 11 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 4 5 6 -1.
+ <_>
+ 9 6 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 12 3 6 10 -1.
+ <_>
+ 14 5 2 10 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 5 3 -1.
+ <_>
+ 8 8 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 2 1 -1.
+ <_>
+ 5 10 1 1 2.
+ <_>
+
+ <_>
+ 4 2 16 16 -1.
+ <_>
+ 4 6 16 8 2.
+ <_>
+
+ <_>
+ 15 8 4 6 -1.
+ <_>
+ 16 8 2 6 2.
+ <_>
+
+ <_>
+ 15 7 2 6 -1.
+ <_>
+ 15 7 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 17 1 2 -1.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 7 4 12 12 -1.
+ <_>
+ 11 8 4 4 9.
+ <_>
+
+ <_>
+ 18 16 1 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 17 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 6 4 3 6 -1.
+ <_>
+ 7 5 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 4 1 -1.
+ <_>
+ 5 10 2 1 2.
+ <_>
+
+ <_>
+ 6 10 6 9 -1.
+ <_>
+ 8 10 2 9 3.
+ <_>
+
+ <_>
+ 1 8 2 12 -1.
+ <_>
+ 1 14 2 6 2.
+ <_>
+
+ <_>
+ 16 0 2 1 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+
+ <_>
+ 8 2 7 9 -1.
+ <_>
+ 8 5 7 3 3.
+ <_>
+
+ <_>
+ 0 0 20 20 -1.
+ <_>
+ 0 0 10 10 2.
+ <_>
+ 10 10 10 10 2.
+ <_>
+
+ <_>
+ 18 6 1 2 -1.
+ <_>
+ 18 7 1 1 2.
+ <_>
+
+ <_>
+ 18 5 2 1 -1.
+ <_>
+ 18 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 10 6 -1.
+ <_>
+ 7 6 10 2 3.
+ <_>
+
+ <_>
+ 15 9 3 3 -1.
+ <_>
+ 16 10 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 18 3 2 -1.
+ <_>
+ 17 19 3 1 2.
+ <_>
+
+ <_>
+ 15 9 3 2 -1.
+ <_>
+ 16 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 1 14 1 2 -1.
+ <_>
+ 1 15 1 1 2.
+ <_>
+
+ <_>
+ 0 18 20 1 -1.
+ <_>
+ 10 18 10 1 2.
+ <_>
+
+ <_>
+ 9 7 6 2 -1.
+ <_>
+ 9 7 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 12 9 2 5 3.
+ <_>
+
+ <_>
+ 11 8 4 5 -1.
+ <_>
+ 12 8 2 5 2.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 9 2 9 2.
+ <_>
+
+ <_>
+ 3 15 9 3 -1.
+ <_>
+ 6 16 3 1 9.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 15 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 16 9 4 -1.
+ <_>
+ 2 17 9 2 2.
+ <_>
+
+ <_>
+ 0 18 5 2 -1.
+ <_>
+ 0 19 5 1 2.
+ <_>
+
+ <_>
+ 17 7 2 3 -1.
+ <_>
+ 16 8 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 16 18 2 1 -1.
+ <_>
+ 17 18 1 1 2.
+ <_>
+
+ <_>
+ 17 18 1 2 -1.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 6 10 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ <_>
+
+ <_>
+ 2 8 18 12 -1.
+ <_>
+ 2 14 18 6 2.
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 11 7 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 8 3 3 -1.
+ <_>
+ 16 9 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 2 3 17 12 -1.
+ <_>
+ 2 6 17 6 2.
+ <_>
+
+ <_>
+ 2 7 4 9 -1.
+ <_>
+ 3 7 2 9 2.
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 1 6 12 9 -1.
+ <_>
+ 5 9 4 3 9.
+ <_>
+
+ <_>
+ 8 2 1 8 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+
+ <_>
+ 3 16 2 1 -1.
+ <_>
+ 4 16 1 1 2.
+ <_>
+
+ <_>
+ 3 16 2 1 -1.
+ <_>
+ 4 16 1 1 2.
+ <_>
+
+ <_>
+ 4 17 1 3 -1.
+ <_>
+ 4 18 1 1 3.
+ <_>
+
+ <_>
+ 6 17 9 3 -1.
+ <_>
+ 9 17 3 3 3.
+ <_>
+
+ <_>
+ 14 8 3 4 -1.
+ <_>
+ 15 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 17 8 3 6 -1.
+ <_>
+ 18 9 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 16 17 1 3 -1.
+ <_>
+ 16 18 1 1 3.
+ <_>
+
+ <_>
+ 14 18 3 2 -1.
+ <_>
+ 14 19 3 1 2.
+ <_>
+
+ <_>
+ 6 8 3 3 -1.
+ <_>
+ 7 8 1 3 3.
+ <_>
+
+ <_>
+ 3 0 16 11 -1.
+ <_>
+ 7 0 8 11 2.
+ <_>
+
+ <_>
+ 1 0 18 20 -1.
+ <_>
+ 1 5 18 10 2.
+ <_>
+
+ <_>
+ 15 5 4 4 -1.
+ <_>
+ 15 5 2 2 2.
+ <_>
+ 17 7 2 2 2.
+ <_>
+
+ <_>
+ 15 10 2 1 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+
+ <_>
+ 7 18 6 2 -1.
+ <_>
+ 9 18 2 2 3.
+ <_>
+
+ <_>
+ 15 10 2 1 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 2 1 18 2 2.
+ <_>
+
+ <_>
+ 5 0 9 4 -1.
+ <_>
+ 5 1 9 2 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 0 18 1 2 -1.
+ <_>
+ 0 19 1 1 2.
+ <_>
+
+ <_>
+ 18 0 2 2 -1.
+ <_>
+ 18 1 2 1 2.
+ <_>
+
+ <_>
+ 17 0 2 4 -1.
+ <_>
+ 17 0 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 3 4 -1.
+ <_>
+ 3 3 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 4 6 11 -1.
+ <_>
+ 2 4 2 11 3.
+ <_>
+
+ <_>
+ 0 4 8 4 -1.
+ <_>
+ 0 4 4 2 2.
+ <_>
+ 4 6 4 2 2.
+ <_>
+
+ <_>
+ 4 3 1 2 -1.
+ <_>
+ 4 4 1 1 2.
+ <_>
+
+ <_>
+ 0 1 6 4 -1.
+ <_>
+ 0 1 3 2 2.
+ <_>
+ 3 3 3 2 2.
+ <_>
+
+ <_>
+ 3 5 4 2 -1.
+ <_>
+ 3 5 2 1 2.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 4 9 4 1 -1.
+ <_>
+ 5 9 2 1 2.
+ <_>
+
+ <_>
+ 8 15 2 2 -1.
+ <_>
+ 8 15 1 1 2.
+ <_>
+ 9 16 1 1 2.
+ <_>
+
+ <_>
+ 8 15 2 2 -1.
+ <_>
+ 8 15 1 1 2.
+ <_>
+ 9 16 1 1 2.
+ <_>
+
+ <_>
+ 2 18 5 2 -1.
+ <_>
+ 2 19 5 1 2.
+ <_>
+
+ <_>
+ 4 12 10 8 -1.
+ <_>
+ 4 14 10 4 2.
+ <_>
+
+ <_>
+ 9 7 5 3 -1.
+ <_>
+ 8 8 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 18 6 2 -1.
+ <_>
+ 2 18 3 1 2.
+ <_>
+ 5 19 3 1 2.
+ <_>
+
+ <_>
+ 6 16 12 4 -1.
+ <_>
+ 6 17 12 2 2.
+ <_>
+
+ <_>
+ 10 9 1 4 -1.
+ <_>
+ 10 11 1 2 2.
+ <_>
+
+ <_>
+ 5 9 12 3 -1.
+ <_>
+ 9 10 4 1 9.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 8 1 1 9.
+ <_>
+
+ <_>
+ 1 6 19 14 -1.
+ <_>
+ 1 13 19 7 2.
+ <_>
+
+ <_>
+ 15 9 4 2 -1.
+ <_>
+ 16 9 2 2 2.
+ <_>
+
+ <_>
+ 8 9 3 8 -1.
+ <_>
+ 8 13 3 4 2.
+ <_>
+
+ <_>
+ 6 8 4 3 -1.
+ <_>
+ 7 8 2 3 2.
+ <_>
+
+ <_>
+ 5 1 8 4 -1.
+ <_>
+ 5 2 8 2 2.
+ <_>
+
+ <_>
+ 8 1 3 4 -1.
+ <_>
+ 8 2 3 2 2.
+ <_>
+
+ <_>
+ 2 10 18 10 -1.
+ <_>
+ 2 15 18 5 2.
+ <_>
+
+ <_>
+ 8 8 5 3 -1.
+ <_>
+ 7 9 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 9 7 2 -1.
+ <_>
+ 7 9 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 17 1 3 -1.
+ <_>
+ 5 18 1 1 3.
+ <_>
+
+ <_>
+ 7 18 13 2 -1.
+ <_>
+ 7 19 13 1 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 14 1 2 -1.
+ <_>
+ 3 15 1 1 2.
+ <_>
+
+ <_>
+ 12 9 3 4 -1.
+ <_>
+ 13 9 1 4 3.
+ <_>
+
+ <_>
+ 12 9 3 2 -1.
+ <_>
+ 13 9 1 2 3.
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 6 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 3 9 12 -1.
+ <_>
+ 10 7 9 4 3.
+ <_>
+
+ <_>
+ 15 5 2 1 -1.
+ <_>
+ 16 5 1 1 2.
+ <_>
+
+ <_>
+ 1 0 15 9 -1.
+ <_>
+ 1 3 15 3 3.
+ <_>
+
+ <_>
+ 3 15 2 3 -1.
+ <_>
+ 3 15 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 16 1 2 -1.
+ <_>
+ 2 17 1 1 2.
+ <_>
+
+ <_>
+ 12 1 8 4 -1.
+ <_>
+ 11 2 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 3 6 -1.
+ <_>
+ 7 6 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 5 7 1 1 2.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 17 7 3 1 -1.
+ <_>
+ 18 7 1 1 3.
+ <_>
+
+ <_>
+ 12 0 6 5 -1.
+ <_>
+ 14 0 2 5 3.
+ <_>
+
+ <_>
+ 17 0 2 1 -1.
+ <_>
+ 18 0 1 1 2.
+ <_>
+
+ <_>
+ 10 1 6 5 -1.
+ <_>
+ 12 1 2 5 3.
+ <_>
+
+ <_>
+ 17 14 3 2 -1.
+ <_>
+ 17 14 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 4 1 -1.
+ <_>
+ 6 10 2 1 2.
+ <_>
+
+ <_>
+ 3 8 3 6 -1.
+ <_>
+ 4 8 1 6 3.
+ <_>
+
+ <_>
+ 8 16 5 4 -1.
+ <_>
+ 8 17 5 2 2.
+ <_>
+
+ <_>
+ 14 15 2 2 -1.
+ <_>
+ 14 15 1 1 2.
+ <_>
+ 15 16 1 1 2.
+ <_>
+
+ <_>
+ 4 18 1 2 -1.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 8 15 2 3 -1.
+ <_>
+ 8 15 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 19 0 1 20 -1.
+ <_>
+ 19 10 1 10 2.
+ <_>
+
+ <_>
+ 7 9 8 1 -1.
+ <_>
+ 9 9 4 1 2.
+ <_>
+
+ <_>
+ 14 10 3 1 -1.
+ <_>
+ 15 10 1 1 3.
+ <_>
+
+ <_>
+ 15 11 2 1 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+
+ <_>
+ 18 11 2 8 -1.
+ <_>
+ 18 11 1 4 2.
+ <_>
+ 19 15 1 4 2.
+ <_>
+
+ <_>
+ 6 1 8 4 -1.
+ <_>
+ 8 1 4 4 2.
+ <_>
+
+ <_>
+ 6 0 5 4 -1.
+ <_>
+ 5 1 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 12 15 -1.
+ <_>
+ 10 10 4 5 9.
+ <_>
+
+ <_>
+ 7 2 8 9 -1.
+ <_>
+ 7 5 8 3 3.
+ <_>
+
+ <_>
+ 2 1 10 3 -1.
+ <_>
+ 2 2 10 1 3.
+ <_>
+
+ <_>
+ 2 5 15 12 -1.
+ <_>
+ 7 9 5 4 9.
+ <_>
+
+ <_>
+ 7 8 3 6 -1.
+ <_>
+ 8 8 1 6 3.
+ <_>
+
+ <_>
+ 7 6 3 7 -1.
+ <_>
+ 8 6 1 7 3.
+ <_>
+
+ <_>
+ 4 16 9 4 -1.
+ <_>
+ 7 16 3 4 3.
+ <_>
+
+ <_>
+ 15 18 5 2 -1.
+ <_>
+ 15 19 5 1 2.
+ <_>
+
+ <_>
+ 15 16 1 4 -1.
+ <_>
+ 15 17 1 2 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 6 15 2 2 -1.
+ <_>
+ 6 15 1 1 2.
+ <_>
+ 7 16 1 1 2.
+ <_>
+
+ <_>
+ 6 15 2 2 -1.
+ <_>
+ 6 15 1 1 2.
+ <_>
+ 7 16 1 1 2.
+ <_>
+
+ <_>
+ 8 16 8 3 -1.
+ <_>
+ 10 16 4 3 2.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 9 10 4 1 3.
+ <_>
+
+ <_>
+ 6 2 9 15 -1.
+ <_>
+ 9 7 3 5 9.
+ <_>
+
+ <_>
+ 17 6 1 14 -1.
+ <_>
+ 17 13 1 7 2.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 5 4 3 -1.
+ <_>
+ 15 6 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 7 4 9 -1.
+ <_>
+ 13 7 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 3 10 2 2 -1.
+ <_>
+ 3 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 4 3 15 -1.
+ <_>
+ 0 9 3 5 3.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 10 8 3 6 3.
+ <_>
+
+ <_>
+ 5 17 9 2 -1.
+ <_>
+ 8 17 3 2 3.
+ <_>
+
+ <_>
+ 7 2 6 18 -1.
+ <_>
+ 7 11 6 9 2.
+ <_>
+
+ <_>
+ 15 9 2 10 -1.
+ <_>
+ 15 9 1 5 2.
+ <_>
+ 16 14 1 5 2.
+ <_>
+
+ <_>
+ 12 7 6 4 -1.
+ <_>
+ 14 9 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 13 8 3 2 -1.
+ <_>
+ 14 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 4 3 2 -1.
+ <_>
+ 18 5 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 5 8 2 -1.
+ <_>
+ 10 6 8 1 2.
+ <_>
+
+ <_>
+ 18 4 2 2 -1.
+ <_>
+ 18 4 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 7 4 -1.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 1 15 6 4 -1.
+ <_>
+ 1 17 6 2 2.
+ <_>
+
+ <_>
+ 0 13 2 6 -1.
+ <_>
+ 0 15 2 2 3.
+ <_>
+
+ <_>
+ 10 13 4 2 -1.
+ <_>
+ 10 13 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 14 2 4 -1.
+ <_>
+ 15 15 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 3 4 -1.
+ <_>
+ 8 5 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 9 4 3 -1.
+ <_>
+ 6 9 2 3 2.
+ <_>
+
+ <_>
+ 4 1 2 4 -1.
+ <_>
+ 3 2 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 2 3 -1.
+ <_>
+ 3 1 1 3 2.
+ <_>
+
+ <_>
+ 1 2 8 4 -1.
+ <_>
+ 1 2 4 2 2.
+ <_>
+ 5 4 4 2 2.
+ <_>
+
+ <_>
+ 6 0 4 4 -1.
+ <_>
+ 7 0 2 4 2.
+ <_>
+
+ <_>
+ 6 4 3 5 -1.
+ <_>
+ 7 5 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 3 5 1 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+
+ <_>
+ 6 8 3 3 -1.
+ <_>
+ 7 8 1 3 3.
+ <_>
+
+ <_>
+ 5 16 3 1 -1.
+ <_>
+ 6 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 9 4 4 -1.
+ <_>
+ 7 9 2 4 2.
+ <_>
+
+ <_>
+ 9 11 9 2 -1.
+ <_>
+ 9 12 9 1 2.
+ <_>
+
+ <_>
+ 5 2 7 2 -1.
+ <_>
+ 5 3 7 1 2.
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 12 19 8 1 2.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 14 1 6 2 -1.
+ <_>
+ 17 1 3 2 2.
+ <_>
+
+ <_>
+ 14 2 6 4 -1.
+ <_>
+ 14 2 3 2 2.
+ <_>
+ 17 4 3 2 2.
+ <_>
+
+ <_>
+ 7 7 3 6 -1.
+ <_>
+ 8 7 1 6 3.
+ <_>
+
+ <_>
+ 11 6 5 4 -1.
+ <_>
+ 11 7 5 2 2.
+ <_>
+
+ <_>
+ 17 7 3 3 -1.
+ <_>
+ 18 7 1 3 3.
+ <_>
+
+ <_>
+ 15 16 1 2 -1.
+ <_>
+ 15 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 4 4 -1.
+ <_>
+ 7 1 4 2 2.
+ <_>
+
+ <_>
+ 6 1 8 8 -1.
+ <_>
+ 6 3 8 4 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 2 0 4 2 -1.
+ <_>
+ 2 0 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 6 5 -1.
+ <_>
+ 12 0 2 5 3.
+ <_>
+
+ <_>
+ 7 7 4 7 -1.
+ <_>
+ 8 7 2 7 2.
+ <_>
+
+ <_>
+ 9 3 2 8 -1.
+ <_>
+ 10 3 1 8 2.
+ <_>
+
+ <_>
+ 6 1 4 4 -1.
+ <_>
+ 7 2 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 18 1 2 -1.
+ <_>
+ 0 19 1 1 2.
+ <_>
+
+ <_>
+ 17 2 3 1 -1.
+ <_>
+ 18 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 17 13 3 4 -1.
+ <_>
+ 16 14 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 10 4 3 -1.
+ <_>
+ 4 10 2 3 2.
+ <_>
+
+ <_>
+ 0 8 4 5 -1.
+ <_>
+ 1 8 2 5 2.
+ <_>
+
+ <_>
+ 4 8 14 12 -1.
+ <_>
+ 4 14 14 6 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 17 16 1 2 2.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 17 18 2 2 2.
+ <_>
+
+ <_>
+ 17 1 3 4 -1.
+ <_>
+ 18 2 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 7 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+
+ <_>
+ 6 1 6 3 -1.
+ <_>
+ 8 1 2 3 3.
+ <_>
+
+ <_>
+ 12 8 4 4 -1.
+ <_>
+ 13 8 2 4 2.
+ <_>
+
+ <_>
+ 6 1 5 2 -1.
+ <_>
+ 6 2 5 1 2.
+ <_>
+
+ <_>
+ 1 7 5 12 -1.
+ <_>
+ 1 13 5 6 2.
+ <_>
+
+ <_>
+ 8 17 6 3 -1.
+ <_>
+ 10 18 2 1 9.
+ <_>
+
+ <_>
+ 12 4 3 12 -1.
+ <_>
+ 13 4 1 12 3.
+ <_>
+
+ <_>
+ 3 11 8 1 -1.
+ <_>
+ 5 13 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 9 6 -1.
+ <_>
+ 5 4 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 1 1 2 -1.
+ <_>
+ 14 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 16 1 -1.
+ <_>
+ 8 1 8 1 2.
+ <_>
+
+ <_>
+ 8 8 3 2 -1.
+ <_>
+ 9 8 1 2 3.
+ <_>
+
+ <_>
+ 0 14 1 2 -1.
+ <_>
+ 0 15 1 1 2.
+ <_>
+
+ <_>
+ 11 5 3 8 -1.
+ <_>
+ 11 7 3 4 2.
+ <_>
+
+ <_>
+ 7 9 3 3 -1.
+ <_>
+ 6 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 5 6 11 -1.
+ <_>
+ 2 5 2 11 3.
+ <_>
+
+ <_>
+ 1 0 4 14 -1.
+ <_>
+ 2 0 2 14 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 16 0 3 3 -1.
+ <_>
+ 17 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 19 5 1 4 -1.
+ <_>
+ 19 7 1 2 2.
+ <_>
+
+ <_>
+ 3 10 6 1 -1.
+ <_>
+ 5 10 2 1 3.
+ <_>
+
+ <_>
+ 6 10 3 1 -1.
+ <_>
+ 7 10 1 1 3.
+ <_>
+
+ <_>
+ 8 7 2 10 -1.
+ <_>
+ 8 12 2 5 2.
+ <_>
+
+ <_>
+ 12 9 6 2 -1.
+ <_>
+ 14 9 2 2 3.
+ <_>
+
+ <_>
+ 18 3 1 12 -1.
+ <_>
+ 14 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 13 3 2 8 -1.
+ <_>
+ 11 5 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 2 2 3 -1.
+ <_>
+ 2 3 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 3 6 4 -1.
+ <_>
+ 0 3 3 2 2.
+ <_>
+ 3 5 3 2 2.
+ <_>
+
+ <_>
+ 3 2 2 1 -1.
+ <_>
+ 4 2 1 1 2.
+ <_>
+
+ <_>
+ 12 8 3 5 -1.
+ <_>
+ 13 8 1 5 3.
+ <_>
+
+ <_>
+ 15 15 2 3 -1.
+ <_>
+ 14 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 18 3 2 -1.
+ <_>
+ 0 19 3 1 2.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 5 6 2 2 -1.
+ <_>
+ 5 7 2 1 2.
+ <_>
+
+ <_>
+ 2 7 16 2 -1.
+ <_>
+ 6 7 8 2 2.
+ <_>
+
+ <_>
+ 16 8 4 7 -1.
+ <_>
+ 17 8 2 7 2.
+ <_>
+
+ <_>
+ 14 9 4 5 -1.
+ <_>
+ 15 9 2 5 2.
+ <_>
+
+ <_>
+ 0 6 3 14 -1.
+ <_>
+ 0 13 3 7 2.
+ <_>
+
+ <_>
+ 17 3 3 1 -1.
+ <_>
+ 18 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 5 2 1 -1.
+ <_>
+ 18 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 6 2 6 3.
+ <_>
+
+ <_>
+ 4 0 13 12 -1.
+ <_>
+ 4 3 13 6 2.
+ <_>
+
+ <_>
+ 12 9 4 2 -1.
+ <_>
+ 13 9 2 2 2.
+ <_>
+
+ <_>
+ 4 2 3 3 -1.
+ <_>
+ 3 3 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 10 6 3 -1.
+ <_>
+ 10 10 2 3 3.
+ <_>
+
+ <_>
+ 11 5 4 6 -1.
+ <_>
+ 11 5 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 10 2 4 2 -1.
+ <_>
+ 11 2 2 2 2.
+ <_>
+
+ <_>
+ 4 16 2 4 -1.
+ <_>
+ 4 18 2 2 2.
+ <_>
+
+ <_>
+ 5 18 8 2 -1.
+ <_>
+ 9 18 4 2 2.
+ <_>
+
+ <_>
+ 19 9 1 8 -1.
+ <_>
+ 19 9 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 15 5 3 -1.
+ <_>
+ 0 16 5 1 3.
+ <_>
+
+ <_>
+ 19 4 1 15 -1.
+ <_>
+ 19 9 1 5 3.
+ <_>
+
+ <_>
+ 7 19 4 1 -1.
+ <_>
+ 8 19 2 1 2.
+ <_>
+
+ <_>
+ 6 2 12 4 -1.
+ <_>
+ 6 3 12 2 2.
+ <_>
+
+ <_>
+ 4 1 11 6 -1.
+ <_>
+ 4 3 11 2 3.
+ <_>
+
+ <_>
+ 0 14 2 4 -1.
+ <_>
+ 0 15 2 2 2.
+ <_>
+
+ <_>
+ 1 9 4 5 -1.
+ <_>
+ 2 9 2 5 2.
+ <_>
+
+ <_>
+ 4 5 2 4 -1.
+ <_>
+ 3 6 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 17 6 3 -1.
+ <_>
+ 3 18 2 1 9.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 13 0 2 6 3.
+ <_>
+
+ <_>
+ 17 18 3 2 -1.
+ <_>
+ 17 19 3 1 2.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 3 7 15 3 -1.
+ <_>
+ 8 8 5 1 9.
+ <_>
+
+ <_>
+ 10 8 3 3 -1.
+ <_>
+ 11 9 1 1 9.
+ <_>
+
+ <_>
+ 0 10 6 8 -1.
+ <_>
+ 0 12 6 4 2.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 10 8 1 3 3.
+ <_>
+
+ <_>
+ 10 7 3 8 -1.
+ <_>
+ 11 7 1 8 3.
+ <_>
+
+ <_>
+ 12 4 4 1 -1.
+ <_>
+ 13 4 2 1 2.
+ <_>
+
+ <_>
+ 2 1 11 4 -1.
+ <_>
+ 2 2 11 2 2.
+ <_>
+
+ <_>
+ 0 3 3 4 -1.
+ <_>
+ 0 4 3 2 2.
+ <_>
+
+ <_>
+ 17 0 3 2 -1.
+ <_>
+ 17 1 3 1 2.
+ <_>
+
+ <_>
+ 19 14 1 4 -1.
+ <_>
+ 19 15 1 2 2.
+ <_>
+
+ <_>
+ 1 16 2 4 -1.
+ <_>
+ 2 16 1 4 2.
+ <_>
+
+ <_>
+ 3 13 4 3 -1.
+ <_>
+ 2 14 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 14 4 3 -1.
+ <_>
+ 0 15 4 1 3.
+ <_>
+
+ <_>
+ 9 3 5 4 -1.
+ <_>
+ 9 4 5 2 2.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 1 8 2 2.
+ <_>
+
+ <_>
+ 18 0 2 5 -1.
+ <_>
+ 18 0 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 14 3 1 4 -1.
+ <_>
+ 14 5 1 2 2.
+ <_>
+
+ <_>
+ 5 15 3 2 -1.
+ <_>
+ 6 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 4 8 -1.
+ <_>
+ 10 7 2 8 2.
+ <_>
+
+ <_>
+ 14 5 1 12 -1.
+ <_>
+ 10 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 0 2 3 -1.
+ <_>
+ 4 1 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 1 2 2 -1.
+ <_>
+ 18 1 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 8 9 2 -1.
+ <_>
+ 6 9 9 1 2.
+ <_>
+
+ <_>
+ 7 8 13 4 -1.
+ <_>
+ 7 9 13 2 2.
+ <_>
+
+ <_>
+ 6 7 3 4 -1.
+ <_>
+ 7 8 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 9 18 2 2 -1.
+ <_>
+ 9 18 1 1 2.
+ <_>
+ 10 19 1 1 2.
+ <_>
+
+ <_>
+ 6 18 6 2 -1.
+ <_>
+ 6 18 3 1 2.
+ <_>
+ 9 19 3 1 2.
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 2 12 -1.
+ <_>
+ 5 8 1 6 2.
+ <_>
+ 6 14 1 6 2.
+ <_>
+
+ <_>
+ 19 0 1 8 -1.
+ <_>
+ 19 0 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 4 6 -1.
+ <_>
+ 1 13 4 2 3.
+ <_>
+
+ <_>
+ 6 12 4 4 -1.
+ <_>
+ 6 12 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 18 13 1 6 -1.
+ <_>
+ 18 16 1 3 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 14 15 4 4 -1.
+ <_>
+ 14 15 2 2 2.
+ <_>
+ 16 17 2 2 2.
+ <_>
+
+ <_>
+ 4 3 1 2 -1.
+ <_>
+ 4 4 1 1 2.
+ <_>
+
+ <_>
+ 6 3 3 4 -1.
+ <_>
+ 5 4 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 3 1 -1.
+ <_>
+ 3 2 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 3 5 -1.
+ <_>
+ 7 8 1 5 3.
+ <_>
+
+ <_>
+ 8 9 1 8 -1.
+ <_>
+ 8 11 1 4 2.
+ <_>
+
+ <_>
+ 14 10 4 4 -1.
+ <_>
+ 14 10 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 16 9 3 -1.
+ <_>
+ 8 16 3 3 3.
+ <_>
+
+ <_>
+ 14 11 6 6 -1.
+ <_>
+ 14 13 6 2 3.
+ <_>
+
+ <_>
+ 9 16 5 2 -1.
+ <_>
+ 9 17 5 1 2.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 8 10 6 1 2.
+ <_>
+
+ <_>
+ 1 5 18 5 -1.
+ <_>
+ 7 5 6 5 3.
+ <_>
+
+ <_>
+ 15 9 2 3 -1.
+ <_>
+ 16 9 1 3 2.
+ <_>
+
+ <_>
+ 0 14 20 6 -1.
+ <_>
+ 0 17 20 3 2.
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 5 1 12 15 -1.
+ <_>
+ 9 6 4 5 9.
+ <_>
+
+ <_>
+ 0 0 20 1 -1.
+ <_>
+ 5 0 10 1 2.
+ <_>
+
+ <_>
+ 0 0 12 1 -1.
+ <_>
+ 6 0 6 1 2.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 5 0 5 6 2.
+ <_>
+
+ <_>
+ 3 0 4 3 -1.
+ <_>
+ 2 1 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 0 15 6 -1.
+ <_>
+ 7 2 5 2 9.
+ <_>
+
+ <_>
+ 0 2 6 4 -1.
+ <_>
+ 3 2 3 4 2.
+ <_>
+
+ <_>
+ 14 10 2 1 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+
+ <_>
+ 2 7 6 9 -1.
+ <_>
+ 4 7 2 9 3.
+ <_>
+
+ <_>
+ 1 0 15 18 -1.
+ <_>
+ 6 6 5 6 9.
+ <_>
+
+ <_>
+ 3 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 12 1 3 -1.
+ <_>
+ 19 13 1 1 3.
+ <_>
+
+ <_>
+ 19 13 1 2 -1.
+ <_>
+ 19 14 1 1 2.
+ <_>
+
+ <_>
+ 7 5 7 12 -1.
+ <_>
+ 7 8 7 6 2.
+ <_>
+
+ <_>
+ 15 9 3 2 -1.
+ <_>
+ 15 10 3 1 2.
+ <_>
+
+ <_>
+ 16 9 4 4 -1.
+ <_>
+ 17 9 2 4 2.
+ <_>
+
+ <_>
+ 10 15 9 2 -1.
+ <_>
+ 13 15 3 2 3.
+ <_>
+
+ <_>
+ 2 15 10 1 -1.
+ <_>
+ 7 15 5 1 2.
+ <_>
+
+ <_>
+ 15 13 4 3 -1.
+ <_>
+ 14 14 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 17 2 3 -1.
+ <_>
+ 4 17 1 3 2.
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 16 18 4 2 2.
+ <_>
+
+ <_>
+ 8 7 12 6 -1.
+ <_>
+ 12 7 4 6 3.
+ <_>
+
+ <_>
+ 18 16 1 2 -1.
+ <_>
+ 18 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 11 3 9 -1.
+ <_>
+ 17 14 3 3 3.
+ <_>
+
+ <_>
+ 16 9 4 2 -1.
+ <_>
+ 17 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 17 0 2 7 2.
+ <_>
+
+ <_>
+ 5 2 2 18 -1.
+ <_>
+ 5 11 2 9 2.
+ <_>
+
+ <_>
+ 5 9 8 9 -1.
+ <_>
+ 7 9 4 9 2.
+ <_>
+
+ <_>
+ 5 10 2 1 -1.
+ <_>
+ 6 10 1 1 2.
+ <_>
+
+ <_>
+ 5 5 15 9 -1.
+ <_>
+ 10 8 5 3 9.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 0 19 4 1 2.
+ <_>
+
+ <_>
+ 0 12 10 3 -1.
+ <_>
+ 0 13 10 1 3.
+ <_>
+
+ <_>
+ 1 14 1 2 -1.
+ <_>
+ 1 15 1 1 2.
+ <_>
+
+ <_>
+ 5 1 4 2 -1.
+ <_>
+ 6 1 2 2 2.
+ <_>
+
+ <_>
+ 2 13 1 2 -1.
+ <_>
+ 2 14 1 1 2.
+ <_>
+
+ <_>
+ 0 13 7 3 -1.
+ <_>
+ 0 14 7 1 3.
+ <_>
+
+ <_>
+ 15 6 3 5 -1.
+ <_>
+ 16 7 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 13 10 2 1 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+
+ <_>
+ 5 3 3 5 -1.
+ <_>
+ 6 4 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 5 3 3 5 -1.
+ <_>
+ 6 4 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 17 5 3 2 -1.
+ <_>
+ 18 6 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 2 3 -1.
+ <_>
+ 3 1 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 5 2 1 -1.
+ <_>
+ 12 5 1 1 2.
+ <_>
+
+ <_>
+ 16 6 3 3 -1.
+ <_>
+ 15 7 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 16 1 4 -1.
+ <_>
+ 2 17 1 2 2.
+ <_>
+
+ <_>
+ 2 13 5 2 -1.
+ <_>
+ 2 13 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 5 1 2 -1.
+ <_>
+ 12 6 1 1 2.
+ <_>
+
+ <_>
+ 10 3 6 4 -1.
+ <_>
+ 10 4 6 2 2.
+ <_>
+
+ <_>
+ 13 8 4 6 -1.
+ <_>
+ 13 8 2 3 2.
+ <_>
+ 15 11 2 3 2.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 10 4 3 -1.
+ <_>
+ 17 11 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 4 2 3 8 2.
+ <_>
+
+ <_>
+ 4 0 15 1 -1.
+ <_>
+ 9 0 5 1 3.
+ <_>
+
+ <_>
+ 15 13 2 2 -1.
+ <_>
+ 15 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 2 6 1 -1.
+ <_>
+ 17 2 3 1 2.
+ <_>
+
+ <_>
+ 15 0 3 3 -1.
+ <_>
+ 16 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 18 7 2 1 -1.
+ <_>
+ 18 7 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 3 3 4 -1.
+ <_>
+ 3 4 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 8 4 4 -1.
+ <_>
+ 16 9 4 2 2.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 6 5 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 14 4 6 -1.
+ <_>
+ 18 14 2 6 2.
+ <_>
+
+ <_>
+ 7 9 6 3 -1.
+ <_>
+ 9 10 2 1 9.
+ <_>
+
+ <_>
+ 8 9 3 4 -1.
+ <_>
+ 9 9 1 4 3.
+ <_>
+
+ <_>
+ 8 0 6 3 -1.
+ <_>
+ 10 0 2 3 3.
+ <_>
+
+ <_>
+ 0 8 3 3 -1.
+ <_>
+ 0 9 3 1 3.
+ <_>
+
+ <_>
+ 18 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 17 5 3 3 -1.
+ <_>
+ 16 6 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 8 1 6 -1.
+ <_>
+ 10 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 3 6 12 -1.
+ <_>
+ 12 3 2 12 3.
+ <_>
+
+ <_>
+ 8 6 5 14 -1.
+ <_>
+ 8 13 5 7 2.
+ <_>
+
+ <_>
+ 1 17 19 2 -1.
+ <_>
+ 1 18 19 1 2.
+ <_>
+
+ <_>
+ 14 7 2 4 -1.
+ <_>
+ 14 9 2 2 2.
+ <_>
+
+ <_>
+ 3 13 2 4 -1.
+ <_>
+ 3 15 2 2 2.
+ <_>
+
+ <_>
+ 1 2 18 12 -1.
+ <_>
+ 7 6 6 4 9.
+ <_>
+
+ <_>
+ 0 0 4 5 -1.
+ <_>
+ 2 0 2 5 2.
+ <_>
+
+ <_>
+ 14 14 6 6 -1.
+ <_>
+ 17 14 3 6 2.
+ <_>
+
+ <_>
+ 4 16 16 3 -1.
+ <_>
+ 8 16 8 3 2.
+ <_>
+
+ <_>
+ 8 17 8 1 -1.
+ <_>
+ 10 17 4 1 2.
+ <_>
+
+ <_>
+ 4 7 4 4 -1.
+ <_>
+ 4 9 4 2 2.
+ <_>
+
+ <_>
+ 0 0 18 9 -1.
+ <_>
+ 6 3 6 3 9.
+ <_>
+
+ <_>
+ 0 9 6 2 -1.
+ <_>
+ 2 9 2 2 3.
+ <_>
+
+ <_>
+ 15 0 3 1 -1.
+ <_>
+ 16 0 1 1 3.
+ <_>
+
+ <_>
+ 16 0 2 1 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+
+ <_>
+ 18 14 1 2 -1.
+ <_>
+ 18 15 1 1 2.
+ <_>
+
+ <_>
+ 4 0 3 2 -1.
+ <_>
+ 5 0 1 2 3.
+ <_>
+
+ <_>
+ 6 14 3 1 -1.
+ <_>
+ 7 15 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 11 7 3 -1.
+ <_>
+ 0 12 7 1 3.
+ <_>
+
+ <_>
+ 1 14 19 3 -1.
+ <_>
+ 1 15 19 1 3.
+ <_>
+
+ <_>
+ 15 1 3 5 -1.
+ <_>
+ 16 1 1 5 3.
+ <_>
+
+ <_>
+ 14 2 6 4 -1.
+ <_>
+ 14 2 3 2 2.
+ <_>
+ 17 4 3 2 2.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 16 10 1 2 2.
+ <_>
+
+ <_>
+ 14 11 3 4 -1.
+ <_>
+ 14 13 3 2 2.
+ <_>
+
+ <_>
+ 16 5 3 15 -1.
+ <_>
+ 17 5 1 15 3.
+ <_>
+
+ <_>
+ 6 10 14 3 -1.
+ <_>
+ 6 11 14 1 3.
+ <_>
+
+ <_>
+ 2 17 12 3 -1.
+ <_>
+ 6 17 4 3 3.
+ <_>
+
+ <_>
+ 0 16 16 2 -1.
+ <_>
+ 4 16 8 2 2.
+ <_>
+
+ <_>
+ 7 3 6 16 -1.
+ <_>
+ 7 7 6 8 2.
+ <_>
+
+ <_>
+ 7 1 12 3 -1.
+ <_>
+ 10 1 6 3 2.
+ <_>
+
+ <_>
+ 13 1 4 4 -1.
+ <_>
+ 13 3 4 2 2.
+ <_>
+
+ <_>
+ 6 18 3 2 -1.
+ <_>
+ 7 18 1 2 3.
+ <_>
+
+ <_>
+ 2 2 3 5 -1.
+ <_>
+ 3 2 1 5 3.
+ <_>
+
+ <_>
+ 10 0 3 3 -1.
+ <_>
+ 11 0 1 3 3.
+ <_>
+
+ <_>
+ 10 0 10 4 -1.
+ <_>
+ 10 0 5 2 2.
+ <_>
+ 15 2 5 2 2.
+ <_>
+
+ <_>
+ 0 16 6 3 -1.
+ <_>
+ 3 16 3 3 2.
+ <_>
+
+ <_>
+ 0 17 6 3 -1.
+ <_>
+ 3 17 3 3 2.
+ <_>
+
+ <_>
+ 16 1 3 2 -1.
+ <_>
+ 17 2 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 1 3 3 -1.
+ <_>
+ 3 2 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 0 4 5 -1.
+ <_>
+ 7 0 2 5 2.
+ <_>
+
+ <_>
+ 4 17 3 3 -1.
+ <_>
+ 5 18 1 1 9.
+ <_>
+
+ <_>
+ 4 15 3 3 -1.
+ <_>
+ 5 16 1 1 9.
+ <_>
+
+ <_>
+ 1 10 6 1 -1.
+ <_>
+ 3 10 2 1 3.
+ <_>
+
+ <_>
+ 0 3 20 2 -1.
+ <_>
+ 5 3 10 2 2.
+ <_>
+
+ <_>
+ 2 1 15 4 -1.
+ <_>
+ 7 1 5 4 3.
+ <_>
+
+ <_>
+ 1 10 18 8 -1.
+ <_>
+ 10 10 9 8 2.
+ <_>
+
+ <_>
+ 16 7 1 4 -1.
+ <_>
+ 16 9 1 2 2.
+ <_>
+
+ <_>
+ 17 9 2 1 -1.
+ <_>
+ 18 9 1 1 2.
+ <_>
+
+ <_>
+ 17 5 3 7 -1.
+ <_>
+ 18 5 1 7 3.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 8 10 6 1 2.
+ <_>
+
+ <_>
+ 15 9 2 6 -1.
+ <_>
+ 15 9 1 3 2.
+ <_>
+ 16 12 1 3 2.
+ <_>
+
+ <_>
+ 1 6 16 10 -1.
+ <_>
+ 1 11 16 5 2.
+ <_>
+
+ <_>
+ 1 12 19 8 -1.
+ <_>
+ 1 16 19 4 2.
+ <_>
+
+ <_>
+ 4 4 12 9 -1.
+ <_>
+ 8 7 4 3 9.
+ <_>
+
+ <_>
+ 5 2 9 9 -1.
+ <_>
+ 5 5 9 3 3.
+ <_>
+
+ <_>
+ 13 0 3 6 -1.
+ <_>
+ 14 0 1 6 3.
+ <_>
+
+ <_>
+ 19 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 17 1 2 -1.
+ <_>
+ 17 18 1 1 2.
+ <_>
+
+ <_>
+ 0 9 4 2 -1.
+ <_>
+ 2 9 2 2 2.
+ <_>
+
+ <_>
+ 3 0 3 19 -1.
+ <_>
+ 4 0 1 19 3.
+ <_>
+
+ <_>
+ 4 13 4 1 -1.
+ <_>
+ 5 14 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 4 1 -1.
+ <_>
+ 18 0 2 1 2.
+ <_>
+
+ <_>
+ 10 0 4 4 -1.
+ <_>
+ 11 0 2 4 2.
+ <_>
+
+ <_>
+ 9 0 3 5 -1.
+ <_>
+ 10 0 1 5 3.
+ <_>
+
+ <_>
+ 3 4 1 3 -1.
+ <_>
+ 2 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 4 2 3 -1.
+ <_>
+ 2 5 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 14 3 3 -1.
+ <_>
+ 6 15 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 2 0 2 2 -1.
+ <_>
+ 2 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 6 1 -1.
+ <_>
+ 3 2 3 1 2.
+ <_>
+
+ <_>
+ 0 2 4 5 -1.
+ <_>
+ 2 2 2 5 2.
+ <_>
+
+ <_>
+ 2 0 4 4 -1.
+ <_>
+ 3 0 2 4 2.
+ <_>
+
+ <_>
+ 6 16 3 1 -1.
+ <_>
+ 7 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 3 4 2 -1.
+ <_>
+ 17 4 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 19 2 1 -1.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 17 18 2 1 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+
+ <_>
+ 17 16 1 3 -1.
+ <_>
+ 17 17 1 1 3.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ <_>
+
+ <_>
+ 2 17 5 2 -1.
+ <_>
+ 2 18 5 1 2.
+ <_>
+
+ <_>
+ 6 10 8 3 -1.
+ <_>
+ 8 10 4 3 2.
+ <_>
+
+ <_>
+ 17 15 2 3 -1.
+ <_>
+ 16 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 5 2 -1.
+ <_>
+ 6 8 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 3 4 -1.
+ <_>
+ 11 2 3 2 2.
+ <_>
+
+ <_>
+ 17 2 3 3 -1.
+ <_>
+ 18 3 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 16 4 3 2 -1.
+ <_>
+ 16 5 3 1 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 3 2.
+ <_>
+ 17 3 3 3 2.
+ <_>
+
+ <_>
+ 6 2 10 4 -1.
+ <_>
+ 6 4 10 2 2.
+ <_>
+
+ <_>
+ 5 6 9 2 -1.
+ <_>
+ 5 7 9 1 2.
+ <_>
+
+ <_>
+ 7 6 6 3 -1.
+ <_>
+ 7 7 6 1 3.
+ <_>
+
+ <_>
+ 17 0 3 1 -1.
+ <_>
+ 18 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 0 12 2 -1.
+ <_>
+ 14 0 6 2 2.
+ <_>
+
+ <_>
+ 16 2 4 2 -1.
+ <_>
+ 18 2 2 2 2.
+ <_>
+
+ <_>
+ 9 4 4 1 -1.
+ <_>
+ 10 4 2 1 2.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 4 5 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 8 4 8 -1.
+ <_>
+ 17 8 2 8 2.
+ <_>
+
+ <_>
+ 1 19 16 1 -1.
+ <_>
+ 9 19 8 1 2.
+ <_>
+
+ <_>
+ 4 19 12 1 -1.
+ <_>
+ 10 19 6 1 2.
+ <_>
+
+ <_>
+ 2 19 4 1 -1.
+ <_>
+ 4 19 2 1 2.
+ <_>
+
+ <_>
+ 12 5 2 8 -1.
+ <_>
+ 12 7 2 4 2.
+ <_>
+
+ <_>
+ 8 10 1 2 -1.
+ <_>
+ 8 10 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 3 3 12 -1.
+ <_>
+ 16 3 1 12 3.
+ <_>
+
+ <_>
+ 16 14 4 3 -1.
+ <_>
+ 16 15 4 1 3.
+ <_>
+
+ <_>
+ 3 0 3 2 -1.
+ <_>
+ 4 0 1 2 3.
+ <_>
+
+ <_>
+ 13 13 3 6 -1.
+ <_>
+ 14 13 1 6 3.
+ <_>
+
+ <_>
+ 2 12 2 2 -1.
+ <_>
+ 2 12 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 8 1 9 -1.
+ <_>
+ 1 11 1 3 3.
+ <_>
+
+ <_>
+ 1 9 2 2 -1.
+ <_>
+ 2 9 1 2 2.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 12 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 14 4 6 -1.
+ <_>
+ 11 14 2 6 2.
+ <_>
+
+ <_>
+ 11 6 4 8 -1.
+ <_>
+ 12 6 2 8 2.
+ <_>
+
+ <_>
+ 5 6 14 14 -1.
+ <_>
+ 5 13 14 7 2.
+ <_>
+
+ <_>
+ 6 4 8 3 -1.
+ <_>
+ 6 5 8 1 3.
+ <_>
+
+ <_>
+ 1 16 1 3 -1.
+ <_>
+ 1 17 1 1 3.
+ <_>
+
+ <_>
+ 5 1 4 3 -1.
+ <_>
+ 4 2 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 3 3 3 -1.
+ <_>
+ 16 4 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 3 5 15 -1.
+ <_>
+ 15 8 5 5 3.
+ <_>
+
+ <_>
+ 15 9 4 6 -1.
+ <_>
+ 15 9 2 3 2.
+ <_>
+ 17 12 2 3 2.
+ <_>
+
+ <_>
+ 16 7 3 3 -1.
+ <_>
+ 15 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 5 6 9 -1.
+ <_>
+ 13 5 2 9 3.
+ <_>
+
+ <_>
+ 16 15 2 3 -1.
+ <_>
+ 15 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 17 7 3 -1.
+ <_>
+ 0 18 7 1 3.
+ <_>
+
+ <_>
+ 16 8 4 7 -1.
+ <_>
+ 17 9 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 15 16 1 3 -1.
+ <_>
+ 14 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 17 8 1 -1.
+ <_>
+ 16 17 4 1 2.
+ <_>
+
+ <_>
+ 14 16 2 4 -1.
+ <_>
+ 14 18 2 2 2.
+ <_>
+
+ <_>
+ 4 10 12 1 -1.
+ <_>
+ 8 10 4 1 3.
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 5 9 1 2 2.
+ <_>
+
+ <_>
+ 7 10 9 2 -1.
+ <_>
+ 10 10 3 2 3.
+ <_>
+
+ <_>
+ 5 3 13 9 -1.
+ <_>
+ 5 6 13 3 3.
+ <_>
+
+ <_>
+ 6 7 5 2 -1.
+ <_>
+ 6 8 5 1 2.
+ <_>
+
+ <_>
+ 5 5 12 14 -1.
+ <_>
+ 9 5 4 14 3.
+ <_>
+
+ <_>
+ 18 8 2 10 -1.
+ <_>
+ 18 13 2 5 2.
+ <_>
+
+ <_>
+ 8 1 4 4 -1.
+ <_>
+ 9 1 2 4 2.
+ <_>
+
+ <_>
+ 0 0 20 7 -1.
+ <_>
+ 5 0 10 7 2.
+ <_>
+
+ <_>
+ 10 0 4 4 -1.
+ <_>
+ 11 0 2 4 2.
+ <_>
+
+ <_>
+ 13 1 3 2 -1.
+ <_>
+ 14 1 1 2 3.
+ <_>
+
+ <_>
+ 12 0 8 1 -1.
+ <_>
+ 16 0 4 1 2.
+ <_>
+
+ <_>
+ 0 3 4 6 -1.
+ <_>
+ 0 3 2 3 2.
+ <_>
+ 2 6 2 3 2.
+ <_>
+
+ <_>
+ 1 0 4 5 -1.
+ <_>
+ 3 0 2 5 2.
+ <_>
+
+ <_>
+ 4 5 1 3 -1.
+ <_>
+ 3 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 14 4 2 -1.
+ <_>
+ 4 14 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 16 7 -1.
+ <_>
+ 11 13 8 7 2.
+ <_>
+
+ <_>
+ 5 1 9 4 -1.
+ <_>
+ 5 2 9 2 2.
+ <_>
+
+ <_>
+ 4 1 3 3 -1.
+ <_>
+ 5 1 1 3 3.
+ <_>
+
+ <_>
+ 0 0 10 1 -1.
+ <_>
+ 5 0 5 1 2.
+ <_>
+
+ <_>
+ 8 6 5 4 -1.
+ <_>
+ 7 7 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 4 2 2 -1.
+ <_>
+ 18 4 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 7 3 3 -1.
+ <_>
+ 12 8 1 1 9.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 3 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 10 2 3 -1.
+ <_>
+ 6 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 5 2 14 -1.
+ <_>
+ 0 12 2 7 2.
+ <_>
+
+ <_>
+ 14 12 5 2 -1.
+ <_>
+ 14 13 5 1 2.
+ <_>
+
+ <_>
+ 5 4 3 5 -1.
+ <_>
+ 6 5 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 0 8 20 6 -1.
+ <_>
+ 0 10 20 2 3.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 15 10 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 15 14 2 -1.
+ <_>
+ 8 15 7 2 2.
+ <_>
+
+ <_>
+ 2 14 4 5 -1.
+ <_>
+ 4 14 2 5 2.
+ <_>
+
+ <_>
+ 17 15 2 3 -1.
+ <_>
+ 16 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 0 6 4 -1.
+ <_>
+ 7 0 2 4 3.
+ <_>
+
+ <_>
+ 6 0 14 20 -1.
+ <_>
+ 6 10 14 10 2.
+ <_>
+
+ <_>
+ 13 1 1 9 -1.
+ <_>
+ 13 4 1 3 3.
+ <_>
+
+ <_>
+ 15 0 1 4 -1.
+ <_>
+ 15 1 1 2 2.
+ <_>
+
+ <_>
+ 13 3 2 2 -1.
+ <_>
+ 14 3 1 2 2.
+ <_>
+
+ <_>
+ 16 18 3 2 -1.
+ <_>
+ 16 19 3 1 2.
+ <_>
+
+ <_>
+ 17 17 2 3 -1.
+ <_>
+ 17 18 2 1 3.
+ <_>
+
+ <_>
+ 4 6 8 6 -1.
+ <_>
+ 4 6 4 3 2.
+ <_>
+ 8 9 4 3 2.
+ <_>
+
+ <_>
+ 0 3 18 3 -1.
+ <_>
+ 6 3 6 3 3.
+ <_>
+
+ <_>
+ 16 1 3 2 -1.
+ <_>
+ 17 1 1 2 3.
+ <_>
+
+ <_>
+ 4 7 4 3 -1.
+ <_>
+ 4 7 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 17 20 3 -1.
+ <_>
+ 5 17 10 3 2.
+ <_>
+
+ <_>
+ 15 16 4 2 -1.
+ <_>
+ 17 16 2 2 2.
+ <_>
+
+ <_>
+ 5 13 2 5 -1.
+ <_>
+ 5 13 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 1 8 10 1 -1.
+ <_>
+ 1 8 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 15 9 5 -1.
+ <_>
+ 12 15 3 5 3.
+ <_>
+
+ <_>
+ 15 8 4 7 -1.
+ <_>
+ 16 8 2 7 2.
+ <_>
+
+ <_>
+ 12 4 3 1 -1.
+ <_>
+ 13 4 1 1 3.
+ <_>
+
+ <_>
+ 15 3 4 11 -1.
+ <_>
+ 16 3 2 11 2.
+ <_>
+
+ <_>
+ 3 15 3 1 -1.
+ <_>
+ 4 16 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 8 3 4 -1.
+ <_>
+ 14 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 2 12 2 -1.
+ <_>
+ 10 2 6 2 2.
+ <_>
+
+ <_>
+ 2 1 16 7 -1.
+ <_>
+ 10 1 8 7 2.
+ <_>
+
+ <_>
+ 12 1 3 4 -1.
+ <_>
+ 12 2 3 2 2.
+ <_>
+
+ <_>
+ 10 8 10 12 -1.
+ <_>
+ 10 12 10 4 3.
+ <_>
+
+ <_>
+ 17 0 3 8 -1.
+ <_>
+ 17 4 3 4 2.
+ <_>
+
+ <_>
+ 6 2 3 2 -1.
+ <_>
+ 7 2 1 2 3.
+ <_>
+
+ <_>
+ 4 1 3 8 -1.
+ <_>
+ 5 1 1 8 3.
+ <_>
+
+ <_>
+ 4 18 6 2 -1.
+ <_>
+ 7 18 3 2 2.
+ <_>
+
+ <_>
+ 8 0 2 6 -1.
+ <_>
+ 8 0 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 3 14 -1.
+ <_>
+ 3 1 1 14 3.
+ <_>
+
+ <_>
+ 17 0 3 9 -1.
+ <_>
+ 18 0 1 9 3.
+ <_>
+
+ <_>
+ 6 5 3 5 -1.
+ <_>
+ 7 6 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 2 5 -1.
+ <_>
+ 7 8 1 5 2.
+ <_>
+
+ <_>
+ 5 8 9 11 -1.
+ <_>
+ 8 8 3 11 3.
+ <_>
+
+ <_>
+ 7 16 3 4 -1.
+ <_>
+ 8 16 1 4 3.
+ <_>
+
+ <_>
+ 10 12 3 6 -1.
+ <_>
+ 11 12 1 6 3.
+ <_>
+
+ <_>
+ 8 17 6 2 -1.
+ <_>
+ 10 17 2 2 3.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 0 4 2 2.
+ <_>
+ 16 2 4 2 2.
+ <_>
+
+ <_>
+ 19 0 1 2 -1.
+ <_>
+ 19 1 1 1 2.
+ <_>
+
+ <_>
+ 18 1 2 1 -1.
+ <_>
+ 19 1 1 1 2.
+ <_>
+
+ <_>
+ 5 6 1 3 -1.
+ <_>
+ 4 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 6 2 1 -1.
+ <_>
+ 6 6 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 7 2 3 -1.
+ <_>
+ 0 8 2 1 3.
+ <_>
+
+ <_>
+ 14 7 2 5 -1.
+ <_>
+ 15 7 1 5 2.
+ <_>
+
+ <_>
+ 16 5 2 7 -1.
+ <_>
+ 16 5 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 4 6 -1.
+ <_>
+ 15 9 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 8 4 4 -1.
+ <_>
+ 4 8 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 1 4 2 -1.
+ <_>
+ 18 1 2 2 2.
+ <_>
+
+ <_>
+ 8 0 12 2 -1.
+ <_>
+ 14 0 6 2 2.
+ <_>
+
+ <_>
+ 7 2 4 1 -1.
+ <_>
+ 8 2 2 1 2.
+ <_>
+
+ <_>
+ 18 7 2 3 -1.
+ <_>
+ 18 8 2 1 3.
+ <_>
+
+ <_>
+ 13 3 4 4 -1.
+ <_>
+ 13 4 4 2 2.
+ <_>
+
+ <_>
+ 0 8 17 4 -1.
+ <_>
+ 0 9 17 2 2.
+ <_>
+
+ <_>
+ 11 8 1 4 -1.
+ <_>
+ 11 9 1 2 2.
+ <_>
+
+ <_>
+ 12 8 8 2 -1.
+ <_>
+ 12 8 4 1 2.
+ <_>
+ 16 9 4 1 2.
+ <_>
+
+ <_>
+ 12 10 6 1 -1.
+ <_>
+ 14 10 2 1 3.
+ <_>
+
+ <_>
+ 5 8 2 5 -1.
+ <_>
+ 5 8 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 12 9 2 1 -1.
+ <_>
+ 12 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 3 1 -1.
+ <_>
+ 6 10 1 1 3.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 0 13 20 7 2.
+ <_>
+
+ <_>
+ 9 5 4 8 -1.
+ <_>
+ 9 5 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 1 9 2 -1.
+ <_>
+ 6 2 9 1 2.
+ <_>
+
+ <_>
+ 7 1 8 4 -1.
+ <_>
+ 7 2 8 2 2.
+ <_>
+
+ <_>
+ 3 0 12 4 -1.
+ <_>
+ 3 1 12 2 2.
+ <_>
+
+ <_>
+ 0 1 9 7 -1.
+ <_>
+ 3 1 3 7 3.
+ <_>
+
+ <_>
+ 5 9 6 3 -1.
+ <_>
+ 7 9 2 3 3.
+ <_>
+
+ <_>
+ 6 4 10 3 -1.
+ <_>
+ 5 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 0 8 7 -1.
+ <_>
+ 14 0 4 7 2.
+ <_>
+
+ <_>
+ 8 0 6 6 -1.
+ <_>
+ 10 0 2 6 3.
+ <_>
+
+ <_>
+ 1 14 4 1 -1.
+ <_>
+ 1 14 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 3 4 -1.
+ <_>
+ 6 10 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 17 10 3 -1.
+ <_>
+ 5 18 10 1 3.
+ <_>
+
+ <_>
+ 7 14 6 4 -1.
+ <_>
+ 7 15 6 2 2.
+ <_>
+
+ <_>
+ 8 13 7 3 -1.
+ <_>
+ 8 14 7 1 3.
+ <_>
+
+ <_>
+ 8 7 8 3 -1.
+ <_>
+ 7 8 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 9 3 9 6 -1.
+ <_>
+ 7 5 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 18 18 1 2 -1.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 16 11 4 1 -1.
+ <_>
+ 17 12 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 4 3 -1.
+ <_>
+ 5 1 4 1 3.
+ <_>
+
+ <_>
+ 13 10 4 1 -1.
+ <_>
+ 14 10 2 1 2.
+ <_>
+
+ <_>
+ 15 7 2 10 -1.
+ <_>
+ 15 7 1 5 2.
+ <_>
+ 16 12 1 5 2.
+ <_>
+
+ <_>
+ 6 0 3 20 -1.
+ <_>
+ 6 10 3 10 2.
+ <_>
+
+ <_>
+ 4 4 9 16 -1.
+ <_>
+ 4 8 9 8 2.
+ <_>
+
+ <_>
+ 2 9 3 3 -1.
+ <_>
+ 3 9 1 3 3.
+ <_>
+
+ <_>
+ 3 1 9 6 -1.
+ <_>
+ 6 1 3 6 3.
+ <_>
+
+ <_>
+ 5 18 1 2 -1.
+ <_>
+ 5 19 1 1 2.
+ <_>
+
+ <_>
+ 4 0 6 5 -1.
+ <_>
+ 6 0 2 5 3.
+ <_>
+
+ <_>
+ 16 8 3 7 -1.
+ <_>
+ 17 9 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 15 3 3 7 -1.
+ <_>
+ 16 4 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 18 3 1 15 -1.
+ <_>
+ 18 8 1 5 3.
+ <_>
+
+ <_>
+ 5 10 4 1 -1.
+ <_>
+ 6 10 2 1 2.
+ <_>
+
+ <_>
+ 7 8 3 12 -1.
+ <_>
+ 8 8 1 12 3.
+ <_>
+
+ <_>
+ 14 6 4 2 -1.
+ <_>
+ 14 6 2 1 2.
+ <_>
+ 16 7 2 1 2.
+ <_>
+
+ <_>
+ 5 18 2 2 -1.
+ <_>
+ 5 18 1 1 2.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 8 18 2 2 -1.
+ <_>
+ 8 18 1 1 2.
+ <_>
+ 9 19 1 1 2.
+ <_>
+
+ <_>
+ 3 18 2 2 -1.
+ <_>
+ 3 18 1 1 2.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 6 4 3 6 -1.
+ <_>
+ 7 5 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 0 8 12 3 -1.
+ <_>
+ 6 8 6 3 2.
+ <_>
+
+ <_>
+ 9 10 6 2 -1.
+ <_>
+ 11 10 2 2 3.
+ <_>
+
+ <_>
+ 8 5 9 8 -1.
+ <_>
+ 11 5 3 8 3.
+ <_>
+
+ <_>
+ 16 8 4 12 -1.
+ <_>
+ 16 14 4 6 2.
+ <_>
+
+ <_>
+ 9 16 10 4 -1.
+ <_>
+ 9 17 10 2 2.
+ <_>
+
+ <_>
+ 12 0 1 20 -1.
+ <_>
+ 12 10 1 10 2.
+ <_>
+
+ <_>
+ 8 9 3 3 -1.
+ <_>
+ 9 10 1 1 9.
+ <_>
+
+ <_>
+ 5 4 3 2 -1.
+ <_>
+ 6 4 1 2 3.
+ <_>
+
+ <_>
+ 4 0 4 5 -1.
+ <_>
+ 5 0 2 5 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 4 10 5 3 -1.
+ <_>
+ 3 11 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 4 12 -1.
+ <_>
+ 1 0 2 12 2.
+ <_>
+
+ <_>
+ 7 1 8 14 -1.
+ <_>
+ 9 1 4 14 2.
+ <_>
+
+ <_>
+ 5 14 7 3 -1.
+ <_>
+ 5 15 7 1 3.
+ <_>
+
+ <_>
+ 15 7 4 2 -1.
+ <_>
+ 15 7 2 1 2.
+ <_>
+ 17 8 2 1 2.
+ <_>
+
+ <_>
+ 8 18 3 1 -1.
+ <_>
+ 9 18 1 1 3.
+ <_>
+
+ <_>
+ 1 9 6 6 -1.
+ <_>
+ 1 12 6 3 2.
+ <_>
+
+ <_>
+ 9 4 5 3 -1.
+ <_>
+ 8 5 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 6 6 2 -1.
+ <_>
+ 14 6 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 9 16 2 2 -1.
+ <_>
+ 9 16 1 1 2.
+ <_>
+ 10 17 1 1 2.
+ <_>
+
+ <_>
+ 0 8 13 8 -1.
+ <_>
+ 0 10 13 4 2.
+ <_>
+
+ <_>
+ 12 6 4 7 -1.
+ <_>
+ 13 6 2 7 2.
+ <_>
+
+ <_>
+ 5 6 5 3 -1.
+ <_>
+ 5 7 5 1 3.
+ <_>
+
+ <_>
+ 11 18 2 2 -1.
+ <_>
+ 11 18 1 1 2.
+ <_>
+ 12 19 1 1 2.
+ <_>
+
+ <_>
+ 12 9 6 2 -1.
+ <_>
+ 14 9 2 2 3.
+ <_>
+
+ <_>
+ 0 9 6 2 -1.
+ <_>
+ 2 9 2 2 3.
+ <_>
+
+ <_>
+ 2 7 4 6 -1.
+ <_>
+ 3 7 2 6 2.
+ <_>
+
+ <_>
+ 6 4 10 4 -1.
+ <_>
+ 6 6 10 2 2.
+ <_>
+
+ <_>
+ 9 5 2 4 -1.
+ <_>
+ 9 7 2 2 2.
+ <_>
+
+ <_>
+ 15 9 2 2 -1.
+ <_>
+ 16 9 1 2 2.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 5 15 10 4 2.
+ <_>
+
+ <_>
+ 10 9 1 8 -1.
+ <_>
+ 10 13 1 4 2.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 9 17 2 3 2.
+ <_>
+
+ <_>
+ 0 17 1 3 -1.
+ <_>
+ 0 18 1 1 3.
+ <_>
+
+ <_>
+ 18 6 2 1 -1.
+ <_>
+ 18 6 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 15 1 4 -1.
+ <_>
+ 0 16 1 2 2.
+ <_>
+
+ <_>
+ 7 16 6 2 -1.
+ <_>
+ 9 16 2 2 3.
+ <_>
+
+ <_>
+ 5 10 3 1 -1.
+ <_>
+ 6 10 1 1 3.
+ <_>
+
+ <_>
+ 4 16 8 4 -1.
+ <_>
+ 6 16 4 4 2.
+ <_>
+
+ <_>
+ 0 6 1 3 -1.
+ <_>
+ 0 7 1 1 3.
+ <_>
+
+ <_>
+ 1 7 4 1 -1.
+ <_>
+ 2 8 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 1 8 -1.
+ <_>
+ 5 8 1 4 2.
+ <_>
+
+ <_>
+ 7 1 5 4 -1.
+ <_>
+ 7 3 5 2 2.
+ <_>
+
+ <_>
+ 7 1 5 4 -1.
+ <_>
+ 7 3 5 2 2.
+ <_>
+
+ <_>
+ 18 0 2 4 -1.
+ <_>
+ 18 1 2 2 2.
+ <_>
+
+ <_>
+ 0 0 8 3 -1.
+ <_>
+ 4 0 4 3 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 14 0 6 1 -1.
+ <_>
+ 17 0 3 1 2.
+ <_>
+
+ <_>
+ 6 2 3 3 -1.
+ <_>
+ 5 3 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 4 2 2 -1.
+ <_>
+ 13 5 2 1 2.
+ <_>
+
+ <_>
+ 18 4 2 3 -1.
+ <_>
+ 18 5 2 1 3.
+ <_>
+
+ <_>
+ 17 0 3 4 -1.
+ <_>
+ 18 1 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 16 1 4 4 -1.
+ <_>
+ 17 2 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 6 9 -1.
+ <_>
+ 8 9 2 9 3.
+ <_>
+
+ <_>
+ 6 8 2 5 -1.
+ <_>
+ 7 8 1 5 2.
+ <_>
+
+ <_>
+ 4 3 3 4 -1.
+ <_>
+ 5 4 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 0 18 1 2 -1.
+ <_>
+ 0 19 1 1 2.
+ <_>
+
+ <_>
+ 15 13 5 4 -1.
+ <_>
+ 15 14 5 2 2.
+ <_>
+
+ <_>
+ 19 11 1 2 -1.
+ <_>
+ 19 12 1 1 2.
+ <_>
+
+ <_>
+ 12 8 3 2 -1.
+ <_>
+ 13 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 15 15 1 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+
+ <_>
+ 14 15 2 3 -1.
+ <_>
+ 15 15 1 3 2.
+ <_>
+
+ <_>
+ 14 4 4 3 -1.
+ <_>
+ 13 5 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 17 1 3 -1.
+ <_>
+ 3 18 1 1 3.
+ <_>
+
+ <_>
+ 2 18 6 2 -1.
+ <_>
+ 2 19 6 1 2.
+ <_>
+
+ <_>
+ 2 16 3 3 -1.
+ <_>
+ 2 17 3 1 3.
+ <_>
+
+ <_>
+ 16 0 4 19 -1.
+ <_>
+ 17 0 2 19 2.
+ <_>
+
+ <_>
+ 5 16 6 4 -1.
+ <_>
+ 7 16 2 4 3.
+ <_>
+
+ <_>
+ 5 6 6 6 -1.
+ <_>
+ 7 8 2 2 9.
+ <_>
+
+ <_>
+ 17 0 2 2 -1.
+ <_>
+ 17 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 1 12 2 -1.
+ <_>
+ 14 1 6 2 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 0 1 20 1 2.
+ <_>
+
+ <_>
+ 18 0 2 2 -1.
+ <_>
+ 18 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 2 3 3 -1.
+ <_>
+ 18 3 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 3 -1.
+ <_>
+ 2 1 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 12 0 1 6 -1.
+ <_>
+ 12 2 1 2 3.
+ <_>
+
+ <_>
+ 6 4 3 4 -1.
+ <_>
+ 7 5 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 9 13 2 2 -1.
+ <_>
+ 9 14 2 1 2.
+ <_>
+
+ <_>
+ 15 15 2 2 -1.
+ <_>
+ 16 15 1 2 2.
+ <_>
+
+ <_>
+ 15 12 5 6 -1.
+ <_>
+ 15 15 5 3 2.
+ <_>
+
+ <_>
+ 3 1 1 3 -1.
+ <_>
+ 2 2 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 14 2 2 -1.
+ <_>
+ 15 14 1 1 2.
+ <_>
+ 16 15 1 1 2.
+ <_>
+
+ <_>
+ 15 14 2 2 -1.
+ <_>
+ 15 14 1 1 2.
+ <_>
+ 16 15 1 1 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 0 6 6 -1.
+ <_>
+ 15 0 2 6 3.
+ <_>
+
+ <_>
+ 15 3 5 3 -1.
+ <_>
+ 14 4 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 15 10 2 -1.
+ <_>
+ 10 15 5 2 2.
+ <_>
+
+ <_>
+ 9 16 2 1 -1.
+ <_>
+ 10 16 1 1 2.
+ <_>
+
+ <_>
+ 2 14 4 2 -1.
+ <_>
+ 2 14 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 14 3 3 -1.
+ <_>
+ 16 15 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 14 1 4 -1.
+ <_>
+ 17 15 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 13 5 3 -1.
+ <_>
+ 1 14 5 1 3.
+ <_>
+
+ <_>
+ 3 12 1 2 -1.
+ <_>
+ 3 12 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 4 2 4 -1.
+ <_>
+ 18 6 2 2 2.
+ <_>
+
+ <_>
+ 18 0 1 2 -1.
+ <_>
+ 18 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 14 8 2 -1.
+ <_>
+ 1 15 8 1 2.
+ <_>
+
+ <_>
+ 16 2 4 3 -1.
+ <_>
+ 15 3 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 2 2 4 -1.
+ <_>
+ 16 4 2 2 2.
+ <_>
+
+ <_>
+ 19 5 1 3 -1.
+ <_>
+ 19 6 1 1 3.
+ <_>
+
+ <_>
+ 11 6 4 6 -1.
+ <_>
+ 12 6 2 6 2.
+ <_>
+
+ <_>
+ 3 9 6 3 -1.
+ <_>
+ 5 9 2 3 3.
+ <_>
+
+ <_>
+ 2 8 4 12 -1.
+ <_>
+ 2 8 2 6 2.
+ <_>
+ 4 14 2 6 2.
+ <_>
+
+ <_>
+ 12 5 6 1 -1.
+ <_>
+ 12 5 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 12 5 -1.
+ <_>
+ 13 9 6 5 2.
+ <_>
+
+ <_>
+ 13 9 6 3 -1.
+ <_>
+ 13 10 6 1 3.
+ <_>
+
+ <_>
+ 19 18 1 2 -1.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 19 17 1 3 -1.
+ <_>
+ 19 18 1 1 3.
+ <_>
+
+ <_>
+ 15 9 2 4 -1.
+ <_>
+ 15 9 1 2 2.
+ <_>
+ 16 11 1 2 2.
+ <_>
+
+ <_>
+ 16 5 4 3 -1.
+ <_>
+ 16 6 4 1 3.
+ <_>
+
+ <_>
+ 5 0 3 3 -1.
+ <_>
+ 4 1 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 1 6 3 -1.
+ <_>
+ 12 1 2 3 3.
+ <_>
+
+ <_>
+ 13 9 3 1 -1.
+ <_>
+ 14 9 1 1 3.
+ <_>
+
+ <_>
+ 0 2 6 4 -1.
+ <_>
+ 0 2 3 2 2.
+ <_>
+ 3 4 3 2 2.
+ <_>
+
+ <_>
+ 0 8 19 4 -1.
+ <_>
+ 0 9 19 2 2.
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 8 7 1 2 9.
+ <_>
+
+ <_>
+ 4 4 1 3 -1.
+ <_>
+ 3 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 2 4 4 -1.
+ <_>
+ 0 2 2 2 2.
+ <_>
+ 2 4 2 2 2.
+ <_>
+
+ <_>
+ 5 0 3 3 -1.
+ <_>
+ 6 1 1 1 9.
+ <_>
+
+ <_>
+ 19 2 1 3 -1.
+ <_>
+ 19 3 1 1 3.
+ <_>
+
+ <_>
+ 7 6 5 3 -1.
+ <_>
+ 7 7 5 1 3.
+ <_>
+
+ <_>
+ 7 5 1 4 -1.
+ <_>
+ 6 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 10 2 1 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+
+ <_>
+ 6 10 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ <_>
+
+ <_>
+ 15 5 2 6 -1.
+ <_>
+ 15 5 1 3 2.
+ <_>
+ 16 8 1 3 2.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 6 10 1 2 2.
+ <_>
+
+ <_>
+ 6 10 2 2 -1.
+ <_>
+ 6 10 1 1 2.
+ <_>
+ 7 11 1 1 2.
+ <_>
+
+ <_>
+ 5 9 4 2 -1.
+ <_>
+ 6 9 2 2 2.
+ <_>
+
+ <_>
+ 12 10 4 4 -1.
+ <_>
+ 12 10 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 9 3 10 -1.
+ <_>
+ 0 14 3 5 2.
+ <_>
+
+ <_>
+ 3 3 15 9 -1.
+ <_>
+ 8 6 5 3 9.
+ <_>
+
+ <_>
+ 8 1 8 18 -1.
+ <_>
+ 8 1 4 9 2.
+ <_>
+ 12 10 4 9 2.
+ <_>
+
+ <_>
+ 3 6 3 11 -1.
+ <_>
+ 4 6 1 11 3.
+ <_>
+
+ <_>
+ 11 8 4 3 -1.
+ <_>
+ 12 8 2 3 2.
+ <_>
+
+ <_>
+ 17 8 2 3 -1.
+ <_>
+ 16 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 1 6 5 -1.
+ <_>
+ 5 1 2 5 3.
+ <_>
+
+ <_>
+ 6 18 2 2 -1.
+ <_>
+ 6 18 1 1 2.
+ <_>
+ 7 19 1 1 2.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 15 6 4 9 -1.
+ <_>
+ 16 6 2 9 2.
+ <_>
+
+ <_>
+ 6 9 6 5 -1.
+ <_>
+ 8 9 2 5 3.
+ <_>
+
+ <_>
+ 15 4 3 15 -1.
+ <_>
+ 16 4 1 15 3.
+ <_>
+
+ <_>
+ 14 4 2 16 -1.
+ <_>
+ 14 12 2 8 2.
+ <_>
+
+ <_>
+ 12 2 4 2 -1.
+ <_>
+ 12 3 4 1 2.
+ <_>
+
+ <_>
+ 19 5 1 6 -1.
+ <_>
+ 19 8 1 3 2.
+ <_>
+
+ <_>
+ 5 0 9 6 -1.
+ <_>
+ 5 2 9 2 3.
+ <_>
+
+ <_>
+ 6 3 3 3 -1.
+ <_>
+ 5 4 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 4 3 1 -1.
+ <_>
+ 18 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 9 4 -1.
+ <_>
+ 8 6 9 2 2.
+ <_>
+
+ <_>
+ 9 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 18 2 2 -1.
+ <_>
+ 0 18 1 1 2.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 0 9 10 4 -1.
+ <_>
+ 0 10 10 2 2.
+ <_>
+
+ <_>
+ 17 8 3 3 -1.
+ <_>
+ 16 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 4 3 16 -1.
+ <_>
+ 15 4 1 16 3.
+ <_>
+
+ <_>
+ 15 4 4 1 -1.
+ <_>
+ 16 5 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 6 4 2 -1.
+ <_>
+ 14 6 2 1 2.
+ <_>
+ 16 7 2 1 2.
+ <_>
+
+ <_>
+ 15 5 5 3 -1.
+ <_>
+ 15 6 5 1 3.
+ <_>
+
+ <_>
+ 0 0 6 20 -1.
+ <_>
+ 2 0 2 20 3.
+ <_>
+
+ <_>
+ 1 7 4 9 -1.
+ <_>
+ 2 7 2 9 2.
+ <_>
+
+ <_>
+ 1 19 4 1 -1.
+ <_>
+ 3 19 2 1 2.
+ <_>
+
+ <_>
+ 2 0 5 2 -1.
+ <_>
+ 2 0 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 16 1 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 7 9 3 1 -1.
+ <_>
+ 8 9 1 1 3.
+ <_>
+
+ <_>
+ 5 5 1 8 -1.
+ <_>
+ 5 7 1 4 2.
+ <_>
+
+ <_>
+ 9 9 3 2 -1.
+ <_>
+ 10 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 2 7 -1.
+ <_>
+ 10 5 1 7 2.
+ <_>
+
+ <_>
+ 0 17 11 3 -1.
+ <_>
+ 0 18 11 1 3.
+ <_>
+
+ <_>
+ 6 14 5 4 -1.
+ <_>
+ 6 15 5 2 2.
+ <_>
+
+ <_>
+ 3 18 1 2 -1.
+ <_>
+ 3 19 1 1 2.
+ <_>
+
+ <_>
+ 2 7 11 2 -1.
+ <_>
+ 2 8 11 1 2.
+ <_>
+
+ <_>
+ 7 7 3 6 -1.
+ <_>
+ 7 9 3 2 3.
+ <_>
+
+ <_>
+ 12 0 8 3 -1.
+ <_>
+ 14 0 4 3 2.
+ <_>
+
+ <_>
+ 2 2 16 1 -1.
+ <_>
+ 10 2 8 1 2.
+ <_>
+
+ <_>
+ 10 0 6 3 -1.
+ <_>
+ 12 0 2 3 3.
+ <_>
+
+ <_>
+ 11 8 7 4 -1.
+ <_>
+ 11 9 7 2 2.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ <_>
+
+ <_>
+ 5 8 11 12 -1.
+ <_>
+ 5 12 11 4 3.
+ <_>
+
+ <_>
+ 11 7 6 3 -1.
+ <_>
+ 13 9 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 2 15 6 -1.
+ <_>
+ 3 4 15 2 3.
+ <_>
+
+ <_>
+ 3 0 3 9 -1.
+ <_>
+ 4 0 1 9 3.
+ <_>
+
+ <_>
+ 8 18 2 2 -1.
+ <_>
+ 8 18 1 1 2.
+ <_>
+ 9 19 1 1 2.
+ <_>
+
+ <_>
+ 15 0 4 1 -1.
+ <_>
+ 16 0 2 1 2.
+ <_>
+
+ <_>
+ 17 0 3 2 -1.
+ <_>
+ 17 0 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 9 6 -1.
+ <_>
+ 13 0 3 6 3.
+ <_>
+
+ <_>
+ 15 6 3 6 -1.
+ <_>
+ 16 7 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 14 7 5 3 -1.
+ <_>
+ 14 8 5 1 3.
+ <_>
+
+ <_>
+ 16 11 4 4 -1.
+ <_>
+ 17 12 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 10 4 5 -1.
+ <_>
+ 17 11 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 10 4 9 3 -1.
+ <_>
+ 13 4 3 3 3.
+ <_>
+
+ <_>
+ 5 9 2 4 -1.
+ <_>
+ 5 9 1 2 2.
+ <_>
+ 6 11 1 2 2.
+ <_>
+
+ <_>
+ 18 6 2 8 -1.
+ <_>
+ 19 6 1 8 2.
+ <_>
+
+ <_>
+ 19 3 1 15 -1.
+ <_>
+ 19 8 1 5 3.
+ <_>
+
+ <_>
+ 8 9 12 2 -1.
+ <_>
+ 14 9 6 2 2.
+ <_>
+
+ <_>
+ 18 1 2 10 -1.
+ <_>
+ 19 1 1 10 2.
+ <_>
+
+ <_>
+ 5 4 3 4 -1.
+ <_>
+ 6 5 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 4 4 3 -1.
+ <_>
+ 5 5 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 10 18 4 1 -1.
+ <_>
+ 11 18 2 1 2.
+ <_>
+
+ <_>
+ 0 4 3 3 -1.
+ <_>
+ 0 5 3 1 3.
+ <_>
+
+ <_>
+ 8 5 4 1 -1.
+ <_>
+ 9 5 2 1 2.
+ <_>
+
+ <_>
+ 12 8 8 8 -1.
+ <_>
+ 12 10 8 4 2.
+ <_>
+
+ <_>
+ 7 7 8 7 -1.
+ <_>
+ 11 7 4 7 2.
+ <_>
+
+ <_>
+ 11 7 4 4 -1.
+ <_>
+ 10 8 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 5 9 3 -1.
+ <_>
+ 4 6 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 9 4 3 -1.
+ <_>
+ 5 10 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 4 8 6 -1.
+ <_>
+ 10 6 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 3 10 5 -1.
+ <_>
+ 9 3 5 5 2.
+ 1
+ <_>
+
+ <_>
+ 15 11 4 2 -1.
+ <_>
+ 16 11 2 2 2.
+ <_>
+
+ <_>
+ 8 8 8 10 -1.
+ <_>
+ 8 8 4 5 2.
+ <_>
+ 12 13 4 5 2.
+ <_>
+
+ <_>
+ 16 0 4 3 -1.
+ <_>
+ 15 1 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 18 1 2 -1.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 13 18 7 2 -1.
+ <_>
+ 13 19 7 1 2.
+ <_>
+
+ <_>
+ 5 5 1 4 -1.
+ <_>
+ 4 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 4 2 4 -1.
+ <_>
+ 2 6 2 2 2.
+ <_>
+
+ <_>
+ 1 3 4 4 -1.
+ <_>
+ 1 3 2 2 2.
+ <_>
+ 3 5 2 2 2.
+ <_>
+
+ <_>
+ 0 0 7 12 -1.
+ <_>
+ 0 6 7 6 2.
+ <_>
+
+ <_>
+ 1 0 15 4 -1.
+ <_>
+ 1 1 15 2 2.
+ <_>
+
+ <_>
+ 14 3 3 14 -1.
+ <_>
+ 15 3 1 14 3.
+ <_>
+
+ <_>
+ 19 16 1 2 -1.
+ <_>
+ 19 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 4 4 6 -1.
+ <_>
+ 3 7 4 3 2.
+ <_>
+
+ <_>
+ 9 5 5 3 -1.
+ <_>
+ 9 6 5 1 3.
+ <_>
+
+ <_>
+ 17 16 2 1 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+
+ <_>
+ 8 17 12 3 -1.
+ <_>
+ 11 17 6 3 2.
+ <_>
+
+ <_>
+ 1 12 3 3 -1.
+ <_>
+ 1 13 3 1 3.
+ <_>
+
+ <_>
+ 7 17 8 2 -1.
+ <_>
+ 11 17 4 2 2.
+ <_>
+
+ <_>
+ 13 17 4 2 -1.
+ <_>
+ 13 18 4 1 2.
+ <_>
+
+ <_>
+ 11 17 6 3 -1.
+ <_>
+ 13 17 2 3 3.
+ <_>
+
+ <_>
+ 6 8 3 4 -1.
+ <_>
+ 6 10 3 2 2.
+ <_>
+
+ <_>
+ 6 8 3 6 -1.
+ <_>
+ 7 10 1 2 9.
+ <_>
+
+ <_>
+ 7 4 3 5 -1.
+ <_>
+ 8 4 1 5 3.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 12 0 8 1 -1.
+ <_>
+ 14 0 4 1 2.
+ <_>
+
+ <_>
+ 16 17 2 2 -1.
+ <_>
+ 16 17 1 1 2.
+ <_>
+ 17 18 1 1 2.
+ <_>
+
+ <_>
+ 1 0 4 1 -1.
+ <_>
+ 2 1 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 5 10 -1.
+ <_>
+ 3 5 5 5 2.
+ <_>
+
+ <_>
+ 4 2 3 2 -1.
+ <_>
+ 4 3 3 1 2.
+ <_>
+
+ <_>
+ 8 9 8 2 -1.
+ <_>
+ 10 9 4 2 2.
+ <_>
+
+ <_>
+ 13 10 2 3 -1.
+ <_>
+ 14 10 1 3 2.
+ <_>
+
+ <_>
+ 11 6 1 10 -1.
+ <_>
+ 11 6 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 12 2 -1.
+ <_>
+ 11 15 6 2 2.
+ <_>
+
+ <_>
+ 6 3 14 2 -1.
+ <_>
+ 6 3 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 1 5 10 -1.
+ <_>
+ 15 6 5 5 2.
+ <_>
+
+ <_>
+ 18 10 2 2 -1.
+ <_>
+ 18 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 8 3 -1.
+ <_>
+ 14 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 16 2 -1.
+ <_>
+ 2 0 8 1 2.
+ <_>
+ 10 1 8 1 2.
+ <_>
+
+ <_>
+ 0 11 4 8 -1.
+ <_>
+ 0 13 4 4 2.
+ <_>
+
+ <_>
+ 8 16 2 2 -1.
+ <_>
+ 8 16 1 1 2.
+ <_>
+ 9 17 1 1 2.
+ <_>
+
+ <_>
+ 6 0 12 2 -1.
+ <_>
+ 6 0 6 1 2.
+ <_>
+ 12 1 6 1 2.
+ <_>
+
+ <_>
+ 0 8 6 3 -1.
+ <_>
+ 2 8 2 3 3.
+ <_>
+
+ <_>
+ 2 2 13 2 -1.
+ <_>
+ 2 2 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 7 20 13 -1.
+ <_>
+ 5 7 10 13 2.
+ <_>
+
+ <_>
+ 15 10 4 2 -1.
+ <_>
+ 15 10 2 1 2.
+ <_>
+ 17 11 2 1 2.
+ <_>
+
+ <_>
+ 16 12 2 6 -1.
+ <_>
+ 16 15 2 3 2.
+ <_>
+
+ <_>
+ 17 11 1 3 -1.
+ <_>
+ 16 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 16 9 -1.
+ <_>
+ 0 3 16 3 3.
+ <_>
+
+ <_>
+ 0 15 6 4 -1.
+ <_>
+ 0 17 6 2 2.
+ <_>
+
+ <_>
+ 14 5 3 6 -1.
+ <_>
+ 14 7 3 2 3.
+ <_>
+
+ <_>
+ 16 8 3 5 -1.
+ <_>
+ 17 8 1 5 3.
+ <_>
+
+ <_>
+ 7 10 6 8 -1.
+ <_>
+ 9 10 2 8 3.
+ <_>
+
+ <_>
+ 14 11 5 4 -1.
+ <_>
+ 13 12 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 9 4 3 -1.
+ <_>
+ 15 9 2 3 2.
+ <_>
+
+ <_>
+ 5 9 9 1 -1.
+ <_>
+ 8 9 3 1 3.
+ <_>
+
+ <_>
+ 16 1 3 6 -1.
+ <_>
+ 17 1 1 6 3.
+ <_>
+
+ <_>
+ 10 3 10 2 -1.
+ <_>
+ 10 3 5 1 2.
+ <_>
+ 15 4 5 1 2.
+ <_>
+
+ <_>
+ 2 1 18 1 -1.
+ <_>
+ 8 1 6 1 3.
+ <_>
+
+ <_>
+ 14 3 5 4 -1.
+ <_>
+ 13 4 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 4 4 -1.
+ <_>
+ 5 0 2 4 2.
+ <_>
+
+ <_>
+ 12 1 4 5 -1.
+ <_>
+ 13 1 2 5 2.
+ <_>
+
+ <_>
+ 9 9 7 3 -1.
+ <_>
+ 9 10 7 1 3.
+ <_>
+
+ <_>
+ 19 3 1 16 -1.
+ <_>
+ 19 11 1 8 2.
+ <_>
+
+ <_>
+ 4 0 16 3 -1.
+ <_>
+ 8 0 8 3 2.
+ <_>
+
+ <_>
+ 8 0 12 3 -1.
+ <_>
+ 12 0 4 3 3.
+ <_>
+
+ <_>
+ 11 0 6 5 -1.
+ <_>
+ 13 0 2 5 3.
+ <_>
+
+ <_>
+ 12 4 5 8 -1.
+ <_>
+ 12 8 5 4 2.
+ <_>
+
+ <_>
+ 6 9 2 4 -1.
+ <_>
+ 5 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 6 2 3 -1.
+ <_>
+ 12 7 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 5 3 1 -1.
+ <_>
+ 11 5 1 1 3.
+ <_>
+
+ <_>
+ 10 6 4 5 -1.
+ <_>
+ 11 6 2 5 2.
+ <_>
+
+ <_>
+ 15 17 4 2 -1.
+ <_>
+ 17 17 2 2 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 7 3 6 -1.
+ <_>
+ 13 9 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 3 -1.
+ <_>
+ 4 1 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 6 3 -1.
+ <_>
+ 2 3 2 1 9.
+ <_>
+
+ <_>
+ 2 15 3 2 -1.
+ <_>
+ 3 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 19 8 1 2 -1.
+ <_>
+ 19 9 1 1 2.
+ <_>
+
+ <_>
+ 7 8 4 2 -1.
+ <_>
+ 8 8 2 2 2.
+ <_>
+
+ <_>
+ 4 8 9 2 -1.
+ <_>
+ 7 8 3 2 3.
+ <_>
+
+ <_>
+ 6 10 11 6 -1.
+ <_>
+ 6 13 11 3 2.
+ <_>
+
+ <_>
+ 0 8 20 5 -1.
+ <_>
+ 5 8 10 5 2.
+ <_>
+
+ <_>
+ 8 12 6 3 -1.
+ <_>
+ 10 12 2 3 3.
+ <_>
+
+ <_>
+ 2 2 14 18 -1.
+ <_>
+ 9 2 7 18 2.
+ <_>
+
+ <_>
+ 10 3 1 8 -1.
+ <_>
+ 8 5 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 14 8 2 -1.
+ <_>
+ 2 14 4 2 2.
+ <_>
+
+ <_>
+ 6 13 3 3 -1.
+ <_>
+ 7 14 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 2 4 3 -1.
+ <_>
+ 2 3 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 6 3 1 -1.
+ <_>
+ 6 6 1 1 3.
+ <_>
+
+ <_>
+ 2 5 9 1 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 6 2 8 3 -1.
+ <_>
+ 6 3 8 1 3.
+ <_>
+
+ <_>
+ 1 0 16 5 -1.
+ <_>
+ 5 0 8 5 2.
+ <_>
+
+ <_>
+ 8 3 3 2 -1.
+ <_>
+ 9 3 1 2 3.
+ <_>
+
+ <_>
+ 0 0 20 1 -1.
+ <_>
+ 5 0 10 1 2.
+ <_>
+
+ <_>
+ 9 4 3 4 -1.
+ <_>
+ 9 5 3 2 2.
+ <_>
+
+ <_>
+ 18 4 1 2 -1.
+ <_>
+ 18 4 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 9 4 -1.
+ <_>
+ 11 3 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 12 9 2 -1.
+ <_>
+ 8 12 3 2 3.
+ <_>
+
+ <_>
+ 3 15 2 2 -1.
+ <_>
+ 3 15 1 1 2.
+ <_>
+ 4 16 1 1 2.
+ <_>
+
+ <_>
+ 3 15 2 2 -1.
+ <_>
+ 3 15 1 1 2.
+ <_>
+ 4 16 1 1 2.
+ <_>
+
+ <_>
+ 8 13 3 4 -1.
+ <_>
+ 9 14 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 8 13 3 4 -1.
+ <_>
+ 9 14 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 14 17 1 3 -1.
+ <_>
+ 14 18 1 1 3.
+ <_>
+
+ <_>
+ 15 16 1 2 -1.
+ <_>
+ 15 17 1 1 2.
+ <_>
+
+ <_>
+ 13 18 3 2 -1.
+ <_>
+ 13 19 3 1 2.
+ <_>
+
+ <_>
+ 13 17 6 2 -1.
+ <_>
+ 13 18 6 1 2.
+ <_>
+
+ <_>
+ 5 19 2 1 -1.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 2 9 2 4 -1.
+ <_>
+ 2 11 2 2 2.
+ <_>
+
+ <_>
+ 5 1 3 3 -1.
+ <_>
+ 4 2 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 10 1 2 -1.
+ <_>
+ 3 11 1 1 2.
+ <_>
+
+ <_>
+ 8 8 3 2 -1.
+ <_>
+ 8 9 3 1 2.
+ <_>
+
+ <_>
+ 2 5 7 2 -1.
+ <_>
+ 2 6 7 1 2.
+ <_>
+
+ <_>
+ 0 0 12 3 -1.
+ <_>
+ 3 0 6 3 2.
+ <_>
+
+ <_>
+ 12 5 5 4 -1.
+ <_>
+ 12 5 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 1 3 17 -1.
+ <_>
+ 18 1 1 17 3.
+ <_>
+
+ <_>
+ 7 12 2 2 -1.
+ <_>
+ 7 13 2 1 2.
+ <_>
+
+ <_>
+ 19 4 1 8 -1.
+ <_>
+ 19 6 1 4 2.
+ <_>
+
+ <_>
+ 11 3 6 3 -1.
+ <_>
+ 14 3 3 3 2.
+ <_>
+
+ <_>
+ 3 0 17 2 -1.
+ <_>
+ 3 1 17 1 2.
+ <_>
+
+ <_>
+ 15 1 3 4 -1.
+ <_>
+ 15 3 3 2 2.
+ <_>
+
+ <_>
+ 12 8 2 2 -1.
+ <_>
+ 12 8 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 17 4 2 -1.
+ <_>
+ 9 17 2 2 2.
+ <_>
+
+ <_>
+ 6 1 6 1 -1.
+ <_>
+ 8 1 2 1 3.
+ <_>
+
+ <_>
+ 13 3 2 10 -1.
+ <_>
+ 13 3 1 5 2.
+ <_>
+ 14 8 1 5 2.
+ <_>
+
+ <_>
+ 18 1 2 4 -1.
+ <_>
+ 18 1 1 2 2.
+ <_>
+ 19 3 1 2 2.
+ <_>
+
+ <_>
+ 15 2 4 8 -1.
+ <_>
+ 16 3 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 17 3 3 14 -1.
+ <_>
+ 17 3 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 9 7 2 3 2.
+ <_>
+
+ <_>
+ 8 9 4 3 -1.
+ <_>
+ 7 10 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 13 3 3 -1.
+ <_>
+ 11 14 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 16 7 2 2.
+ <_>
+
+ <_>
+ 6 0 10 4 -1.
+ <_>
+ 6 1 10 2 2.
+ <_>
+
+ <_>
+ 15 14 3 1 -1.
+ <_>
+ 16 15 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 3 2 -1.
+ <_>
+ 4 11 3 1 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 0 18 1 2 -1.
+ <_>
+ 0 19 1 1 2.
+ <_>
+
+ <_>
+ 11 12 2 4 -1.
+ <_>
+ 11 12 1 2 2.
+ <_>
+ 12 14 1 2 2.
+ <_>
+
+ <_>
+ 10 8 3 8 -1.
+ <_>
+ 11 9 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 5 9 4 3 -1.
+ <_>
+ 6 9 2 3 2.
+ <_>
+
+ <_>
+ 11 11 3 2 -1.
+ <_>
+ 11 12 3 1 2.
+ <_>
+
+ <_>
+ 6 17 14 2 -1.
+ <_>
+ 6 17 7 1 2.
+ <_>
+ 13 18 7 1 2.
+ <_>
+
+ <_>
+ 2 18 8 2 -1.
+ <_>
+ 2 18 4 1 2.
+ <_>
+ 6 19 4 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 14 14 4 2 -1.
+ <_>
+ 15 14 2 2 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 19 15 1 3 -1.
+ <_>
+ 18 16 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 8 4 6 -1.
+ <_>
+ 16 8 2 3 2.
+ <_>
+ 18 11 2 3 2.
+ <_>
+
+ <_>
+ 6 17 2 2 -1.
+ <_>
+ 6 17 1 1 2.
+ <_>
+ 7 18 1 1 2.
+ <_>
+
+ <_>
+ 3 7 6 3 -1.
+ <_>
+ 5 9 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 3 18 -1.
+ <_>
+ 4 0 1 18 3.
+ <_>
+
+ <_>
+ 8 4 10 4 -1.
+ <_>
+ 7 5 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 9 4 6 -1.
+ <_>
+ 3 9 2 3 2.
+ <_>
+ 5 12 2 3 2.
+ <_>
+
+ <_>
+ 10 1 8 7 -1.
+ <_>
+ 12 3 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 3 1 -1.
+ <_>
+ 15 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 3 3 12 -1.
+ <_>
+ 17 7 1 4 9.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 6 13 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 0 1 17 6 -1.
+ <_>
+ 0 3 17 2 3.
+ <_>
+
+ <_>
+ 0 18 18 2 -1.
+ <_>
+ 6 18 6 2 3.
+ <_>
+
+ <_>
+ 2 15 3 2 -1.
+ <_>
+ 2 15 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 1 2 6 -1.
+ <_>
+ 19 1 1 6 2.
+ <_>
+
+ <_>
+ 11 7 8 4 -1.
+ <_>
+ 11 7 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 10 3 3 -1.
+ <_>
+ 7 11 1 1 9.
+ <_>
+
+ <_>
+ 5 5 3 8 -1.
+ <_>
+ 6 5 1 8 3.
+ <_>
+
+ <_>
+ 2 8 10 2 -1.
+ <_>
+ 2 8 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 6 5 -1.
+ <_>
+ 4 9 2 5 3.
+ <_>
+
+ <_>
+ 8 7 5 3 -1.
+ <_>
+ 7 8 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 8 3 10 -1.
+ <_>
+ 3 8 1 10 3.
+ <_>
+
+ <_>
+ 4 2 15 9 -1.
+ <_>
+ 4 5 15 3 3.
+ <_>
+
+ <_>
+ 9 7 9 3 -1.
+ <_>
+ 8 8 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 12 4 3 -1.
+ <_>
+ 2 13 4 1 3.
+ <_>
+
+ <_>
+ 5 12 6 1 -1.
+ <_>
+ 5 12 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 9 3 3 -1.
+ <_>
+ 10 10 1 1 9.
+ <_>
+
+ <_>
+ 1 18 1 2 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 0 18 2 2 -1.
+ <_>
+ 0 18 1 1 2.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 8 6 4 3 2.
+ <_>
+
+ <_>
+ 9 7 9 6 -1.
+ <_>
+ 12 7 3 6 3.
+ <_>
+
+ <_>
+ 5 16 1 4 -1.
+ <_>
+ 5 17 1 2 2.
+ <_>
+
+ <_>
+ 9 9 4 1 -1.
+ <_>
+ 10 9 2 1 2.
+ <_>
+
+ <_>
+ 14 1 4 4 -1.
+ <_>
+ 15 1 2 4 2.
+ <_>
+
+ <_>
+ 0 0 6 3 -1.
+ <_>
+ 3 0 3 3 2.
+ <_>
+
+ <_>
+ 0 0 4 3 -1.
+ <_>
+ 2 0 2 3 2.
+ <_>
+
+ <_>
+ 0 12 8 2 -1.
+ <_>
+ 2 12 4 2 2.
+ <_>
+
+ <_>
+ 5 10 2 1 -1.
+ <_>
+ 6 10 1 1 2.
+ <_>
+
+ <_>
+ 11 6 9 3 -1.
+ <_>
+ 10 7 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 16 14 3 3 -1.
+ <_>
+ 15 15 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 1 3 -1.
+ <_>
+ 11 5 1 1 3.
+ <_>
+
+ <_>
+ 0 6 12 9 -1.
+ <_>
+ 0 9 12 3 3.
+ <_>
+
+ <_>
+ 1 9 18 10 -1.
+ <_>
+ 10 9 9 10 2.
+ <_>
+
+ <_>
+ 12 3 5 10 -1.
+ <_>
+ 12 8 5 5 2.
+ <_>
+
+ <_>
+ 1 6 12 14 -1.
+ <_>
+ 1 13 12 7 2.
+ <_>
+
+ <_>
+ 13 5 2 1 -1.
+ <_>
+ 13 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 16 3 -1.
+ <_>
+ 0 1 16 1 3.
+ <_>
+
+ <_>
+ 1 11 2 1 -1.
+ <_>
+ 1 11 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 5 6 5 -1.
+ <_>
+ 16 5 2 5 3.
+ <_>
+
+ <_>
+ 16 8 3 4 -1.
+ <_>
+ 16 10 3 2 2.
+ <_>
+
+ <_>
+ 18 9 2 4 -1.
+ <_>
+ 17 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 18 1 2 -1.
+ <_>
+ 18 19 1 1 2.
+ <_>
+
+ <_>
+ 5 5 2 1 -1.
+ <_>
+ 6 5 1 1 2.
+ <_>
+
+ <_>
+ 7 2 12 2 -1.
+ <_>
+ 7 2 6 1 2.
+ <_>
+ 13 3 6 1 2.
+ <_>
+
+ <_>
+ 6 0 12 6 -1.
+ <_>
+ 9 0 6 6 2.
+ <_>
+
+ <_>
+ 4 0 3 3 -1.
+ <_>
+ 3 1 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 19 4 1 -1.
+ <_>
+ 14 19 2 1 2.
+ <_>
+
+ <_>
+ 12 11 1 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 5 0 10 2 2.
+ <_>
+
+ <_>
+ 13 0 4 2 -1.
+ <_>
+ 15 0 2 2 2.
+ <_>
+
+ <_>
+ 17 1 3 12 -1.
+ <_>
+ 18 5 1 4 9.
+ <_>
+
+ <_>
+ 0 0 10 2 -1.
+ <_>
+ 5 0 5 2 2.
+ <_>
+
+ <_>
+ 4 15 12 2 -1.
+ <_>
+ 10 15 6 2 2.
+ <_>
+
+ <_>
+ 10 1 3 2 -1.
+ <_>
+ 10 2 3 1 2.
+ <_>
+
+ <_>
+ 5 2 15 6 -1.
+ <_>
+ 10 4 5 2 9.
+ <_>
+
+ <_>
+ 7 6 3 5 -1.
+ <_>
+ 8 6 1 5 3.
+ <_>
+
+ <_>
+ 15 2 3 3 -1.
+ <_>
+ 16 3 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 9 6 -1.
+ <_>
+ 4 4 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 15 9 2 1 -1.
+ <_>
+ 15 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 8 4 6 -1.
+ <_>
+ 3 8 2 3 2.
+ <_>
+ 5 11 2 3 2.
+ <_>
+
+ <_>
+ 2 7 16 10 -1.
+ <_>
+ 2 12 16 5 2.
+ <_>
+
+ <_>
+ 7 3 9 16 -1.
+ <_>
+ 10 3 3 16 3.
+ <_>
+
+ <_>
+ 15 9 1 6 -1.
+ <_>
+ 13 11 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 11 2 2 -1.
+ <_>
+ 2 11 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 4 3 -1.
+ <_>
+ 10 5 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 13 13 4 4 -1.
+ <_>
+ 13 15 4 2 2.
+ <_>
+
+ <_>
+ 3 1 4 3 -1.
+ <_>
+ 4 2 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 7 3 5 -1.
+ <_>
+ 1 7 1 5 3.
+ <_>
+
+ <_>
+ 3 0 3 6 -1.
+ <_>
+ 3 2 3 2 3.
+ <_>
+
+ <_>
+ 4 9 15 4 -1.
+ <_>
+ 4 10 15 2 2.
+ <_>
+
+ <_>
+ 3 0 12 20 -1.
+ <_>
+ 3 10 12 10 2.
+ <_>
+
+ <_>
+ 0 18 2 2 -1.
+ <_>
+ 1 18 1 2 2.
+ <_>
+
+ <_>
+ 16 0 3 8 -1.
+ <_>
+ 17 0 1 8 3.
+ <_>
+
+ <_>
+ 16 3 3 4 -1.
+ <_>
+ 17 3 1 4 3.
+ <_>
+
+ <_>
+ 0 0 2 6 -1.
+ <_>
+ 0 0 1 3 2.
+ <_>
+ 1 3 1 3 2.
+ <_>
+
+ <_>
+ 16 10 4 5 -1.
+ <_>
+ 17 11 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 14 12 3 -1.
+ <_>
+ 12 15 4 1 9.
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 8 13 6 4 2.
+ <_>
+
+ <_>
+ 3 9 4 3 -1.
+ <_>
+ 4 9 2 3 2.
+ <_>
+
+ <_>
+ 0 14 3 3 -1.
+ <_>
+ 0 15 3 1 3.
+ <_>
+
+ <_>
+ 14 3 1 14 -1.
+ <_>
+ 14 3 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 3 1 -1.
+ <_>
+ 10 0 1 1 3.
+ <_>
+
+ <_>
+ 8 9 8 1 -1.
+ <_>
+ 10 9 4 1 2.
+ <_>
+
+ <_>
+ 16 8 3 2 -1.
+ <_>
+ 17 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 7 6 4 -1.
+ <_>
+ 14 8 6 2 2.
+ <_>
+
+ <_>
+ 0 14 1 3 -1.
+ <_>
+ 0 15 1 1 3.
+ <_>
+
+ <_>
+ 18 8 1 3 -1.
+ <_>
+ 18 9 1 1 3.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 15 0 3 17 -1.
+ <_>
+ 16 0 1 17 3.
+ <_>
+
+ <_>
+ 11 15 6 4 -1.
+ <_>
+ 13 15 2 4 3.
+ <_>
+
+ <_>
+ 12 10 6 1 -1.
+ <_>
+ 14 10 2 1 3.
+ <_>
+
+ <_>
+ 9 7 1 4 -1.
+ <_>
+ 9 7 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 10 1 10 -1.
+ <_>
+ 9 15 1 5 2.
+ <_>
+
+ <_>
+ 4 6 16 14 -1.
+ <_>
+ 8 6 8 14 2.
+ <_>
+
+ <_>
+ 1 6 6 11 -1.
+ <_>
+ 3 6 2 11 3.
+ <_>
+
+ <_>
+ 5 6 3 6 -1.
+ <_>
+ 5 9 3 3 2.
+ <_>
+
+ <_>
+ 14 0 4 9 -1.
+ <_>
+ 15 0 2 9 2.
+ <_>
+
+ <_>
+ 9 13 3 6 -1.
+ <_>
+ 10 13 1 6 3.
+ <_>
+
+ <_>
+ 11 3 6 7 -1.
+ <_>
+ 13 5 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 18 12 1 2 -1.
+ <_>
+ 18 13 1 1 2.
+ <_>
+
+ <_>
+ 17 0 2 1 -1.
+ <_>
+ 18 0 1 1 2.
+ <_>
+
+ <_>
+ 1 2 15 3 -1.
+ <_>
+ 1 3 15 1 3.
+ <_>
+
+ <_>
+ 3 1 3 5 -1.
+ <_>
+ 4 1 1 5 3.
+ <_>
+
+ <_>
+ 4 3 6 3 -1.
+ <_>
+ 6 3 2 3 3.
+ <_>
+
+ <_>
+ 7 1 6 5 -1.
+ <_>
+ 9 1 2 5 3.
+ <_>
+
+ <_>
+ 13 7 2 5 -1.
+ <_>
+ 14 7 1 5 2.
+ <_>
+
+ <_>
+ 8 10 2 2 -1.
+ <_>
+ 8 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 10 12 4 -1.
+ <_>
+ 2 12 12 2 2.
+ <_>
+
+ <_>
+ 3 5 3 3 -1.
+ <_>
+ 2 6 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 6 6 6 -1.
+ <_>
+ 9 8 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 5 9 12 -1.
+ <_>
+ 7 9 3 4 9.
+ <_>
+
+ <_>
+ 12 6 1 3 -1.
+ <_>
+ 11 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 5 9 -1.
+ <_>
+ 11 4 5 3 3.
+ <_>
+
+ <_>
+ 10 7 4 1 -1.
+ <_>
+ 11 7 2 1 2.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+ <_>
+
+ <_>
+ 2 0 3 6 -1.
+ <_>
+ 2 2 3 2 3.
+ <_>
+
+ <_>
+ 6 6 4 3 -1.
+ <_>
+ 7 6 2 3 2.
+ <_>
+
+ <_>
+ 5 0 2 3 -1.
+ <_>
+ 4 1 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 15 2 3 -1.
+ <_>
+ 12 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 2 8 4 -1.
+ <_>
+ 12 2 4 4 2.
+ <_>
+
+ <_>
+ 6 8 2 6 -1.
+ <_>
+ 4 10 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 4 -1.
+ <_>
+ 17 1 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 12 2 -1.
+ <_>
+ 10 0 4 2 3.
+ <_>
+
+ <_>
+ 2 0 18 2 -1.
+ <_>
+ 2 0 9 1 2.
+ <_>
+ 11 1 9 1 2.
+ <_>
+
+ <_>
+ 17 8 3 2 -1.
+ <_>
+ 18 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 2 3 3 -1.
+ <_>
+ 4 3 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 20 -1.
+ <_>
+ 19 0 1 20 2.
+ <_>
+
+ <_>
+ 16 11 4 5 -1.
+ <_>
+ 17 12 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 10 0 3 1 2.
+ <_>
+
+ <_>
+ 15 11 3 2 -1.
+ <_>
+ 16 12 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 13 11 7 2 -1.
+ <_>
+ 13 11 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 2 17 -1.
+ <_>
+ 1 1 1 17 2.
+ <_>
+
+ <_>
+ 4 4 2 3 -1.
+ <_>
+ 3 5 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 5 1 8 -1.
+ <_>
+ 18 9 1 4 2.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 12 2 -1.
+ <_>
+ 7 4 6 1 2.
+ <_>
+ 13 5 6 1 2.
+ <_>
+
+ <_>
+ 6 18 6 2 -1.
+ <_>
+ 9 18 3 2 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 5 1 10 4 2.
+ <_>
+
+ <_>
+ 14 10 2 1 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+
+ <_>
+ 5 4 10 10 -1.
+ <_>
+ 10 4 5 10 2.
+ <_>
+
+ <_>
+ 3 2 1 3 -1.
+ <_>
+ 2 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 13 4 3 -1.
+ <_>
+ 3 13 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 19 4 1 -1.
+ <_>
+ 18 19 2 1 2.
+ <_>
+
+ <_>
+ 3 14 4 2 -1.
+ <_>
+ 4 14 2 2 2.
+ <_>
+
+ <_>
+ 8 7 6 3 -1.
+ <_>
+ 10 9 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 12 2 8 6 -1.
+ <_>
+ 12 4 8 2 3.
+ <_>
+
+ <_>
+ 0 0 6 1 -1.
+ <_>
+ 3 0 3 1 2.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 17 17 2 3 -1.
+ <_>
+ 17 18 2 1 3.
+ <_>
+
+ <_>
+ 18 16 1 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 15 9 2 4 -1.
+ <_>
+ 15 9 1 2 2.
+ <_>
+ 16 11 1 2 2.
+ <_>
+
+ <_>
+ 4 10 16 4 -1.
+ <_>
+ 4 11 16 2 2.
+ <_>
+
+ <_>
+ 16 5 3 3 -1.
+ <_>
+ 15 6 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 12 4 4 -1.
+ <_>
+ 17 13 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 18 3 2 15 -1.
+ <_>
+ 18 8 2 5 3.
+ <_>
+
+ <_>
+ 13 4 1 12 -1.
+ <_>
+ 13 4 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 5 4 1 2 -1.
+ <_>
+ 5 5 1 1 2.
+ <_>
+
+ <_>
+ 2 2 3 18 -1.
+ <_>
+ 3 2 1 18 3.
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 6 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 2 7 4 -1.
+ <_>
+ 8 3 7 2 2.
+ <_>
+
+ <_>
+ 16 0 4 1 -1.
+ <_>
+ 16 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 17 20 2 -1.
+ <_>
+ 5 17 10 2 2.
+ <_>
+
+ <_>
+ 1 18 6 1 -1.
+ <_>
+ 4 18 3 1 2.
+ <_>
+
+ <_>
+ 5 18 6 2 -1.
+ <_>
+ 8 18 3 2 2.
+ <_>
+
+ <_>
+ 9 8 3 2 -1.
+ <_>
+ 10 8 1 2 3.
+ <_>
+
+ <_>
+ 11 1 3 1 -1.
+ <_>
+ 12 1 1 1 3.
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 18 10 1 2.
+ <_>
+ 10 19 10 1 2.
+ <_>
+
+ <_>
+ 15 9 1 2 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+
+ <_>
+ 17 1 2 1 -1.
+ <_>
+ 18 1 1 1 2.
+ <_>
+
+ <_>
+ 15 0 4 1 -1.
+ <_>
+ 17 0 2 1 2.
+ <_>
+
+ <_>
+ 19 0 1 2 -1.
+ <_>
+ 19 1 1 1 2.
+ <_>
+
+ <_>
+ 2 18 18 2 -1.
+ <_>
+ 2 18 9 1 2.
+ <_>
+ 11 19 9 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 16 15 1 3 -1.
+ <_>
+ 15 16 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 9 1 2 -1.
+ <_>
+ 2 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 4 3 -1.
+ <_>
+ 7 5 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 5 12 12 -1.
+ <_>
+ 7 9 4 4 9.
+ <_>
+
+ <_>
+ 7 12 3 4 -1.
+ <_>
+ 8 12 1 4 3.
+ <_>
+
+ <_>
+ 17 4 3 3 -1.
+ <_>
+ 18 5 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 16 2 1 -1.
+ <_>
+ 17 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 1 2 -1.
+ <_>
+ 7 6 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 12 1 -1.
+ <_>
+ 7 0 6 1 2.
+ <_>
+
+ <_>
+ 0 7 18 8 -1.
+ <_>
+ 6 7 6 8 3.
+ <_>
+
+ <_>
+ 13 14 4 6 -1.
+ <_>
+ 14 14 2 6 2.
+ <_>
+
+ <_>
+ 6 10 3 3 -1.
+ <_>
+ 5 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 2 4 2 -1.
+ <_>
+ 18 2 2 2 2.
+ <_>
+
+ <_>
+ 9 13 8 4 -1.
+ <_>
+ 13 13 4 4 2.
+ <_>
+
+ <_>
+ 12 0 6 20 -1.
+ <_>
+ 12 10 6 10 2.
+ <_>
+
+ <_>
+ 18 0 2 8 -1.
+ <_>
+ 19 0 1 8 2.
+ <_>
+
+ <_>
+ 18 5 2 14 -1.
+ <_>
+ 18 12 2 7 2.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 9 13 8 4 -1.
+ <_>
+ 9 15 8 2 2.
+ <_>
+
+ <_>
+ 0 10 14 10 -1.
+ <_>
+ 0 15 14 5 2.
+ <_>
+
+ <_>
+ 1 8 14 4 -1.
+ <_>
+ 1 9 14 2 2.
+ <_>
+
+ <_>
+ 2 8 11 4 -1.
+ <_>
+ 2 9 11 2 2.
+ <_>
+
+ <_>
+ 4 0 6 2 -1.
+ <_>
+ 4 0 3 1 2.
+ <_>
+ 7 1 3 1 2.
+ <_>
+
+ <_>
+ 8 16 4 2 -1.
+ <_>
+ 9 16 2 2 2.
+ <_>
+
+ <_>
+ 7 4 4 12 -1.
+ <_>
+ 7 8 4 4 3.
+ <_>
+
+ <_>
+ 17 10 2 6 -1.
+ <_>
+ 17 10 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 4 3 -1.
+ <_>
+ 8 0 2 3 2.
+ <_>
+
+ <_>
+ 16 7 4 1 -1.
+ <_>
+ 17 7 2 1 2.
+ <_>
+
+ <_>
+ 17 3 2 8 -1.
+ <_>
+ 17 3 1 4 2.
+ <_>
+ 18 7 1 4 2.
+ <_>
+
+ <_>
+ 9 8 10 8 -1.
+ <_>
+ 9 8 5 4 2.
+ <_>
+ 14 12 5 4 2.
+ <_>
+
+ <_>
+ 9 14 3 1 -1.
+ <_>
+ 10 14 1 1 3.
+ <_>
+
+ <_>
+ 9 0 6 14 -1.
+ <_>
+ 11 0 2 14 3.
+ <_>
+
+ <_>
+ 11 11 4 1 -1.
+ <_>
+ 12 12 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 14 9 6 -1.
+ <_>
+ 5 14 3 6 3.
+ <_>
+
+ <_>
+ 14 2 6 1 -1.
+ <_>
+ 17 2 3 1 2.
+ <_>
+
+ <_>
+ 2 16 9 2 -1.
+ <_>
+ 5 16 3 2 3.
+ <_>
+
+ <_>
+ 4 5 3 8 -1.
+ <_>
+ 4 9 3 4 2.
+ <_>
+
+ <_>
+ 1 1 7 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+
+ <_>
+ 3 9 6 3 -1.
+ <_>
+ 5 9 2 3 3.
+ <_>
+
+ <_>
+ 13 9 4 2 -1.
+ <_>
+ 14 9 2 2 2.
+ <_>
+
+ <_>
+ 7 10 2 2 -1.
+ <_>
+ 7 10 1 1 2.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 13 7 4 7 -1.
+ <_>
+ 13 7 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 19 6 1 4 -1.
+ <_>
+ 18 7 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 14 4 2 -1.
+ <_>
+ 3 14 2 2 2.
+ <_>
+
+ <_>
+ 0 2 16 16 -1.
+ <_>
+ 0 6 16 8 2.
+ <_>
+
+ <_>
+ 1 1 6 1 -1.
+ <_>
+ 4 1 3 1 2.
+ <_>
+
+ <_>
+ 6 9 2 3 -1.
+ <_>
+ 7 9 1 3 2.
+ <_>
+
+ <_>
+ 16 5 4 9 -1.
+ <_>
+ 17 5 2 9 2.
+ <_>
+
+ <_>
+ 7 12 3 5 -1.
+ <_>
+ 8 13 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 16 1 4 1 -1.
+ <_>
+ 18 1 2 1 2.
+ <_>
+
+ <_>
+ 8 0 12 16 -1.
+ <_>
+ 8 0 6 8 2.
+ <_>
+ 14 8 6 8 2.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 5 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 17 1 2 -1.
+ <_>
+ 17 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 18 3 2 -1.
+ <_>
+ 17 19 3 1 2.
+ <_>
+
+ <_>
+ 16 10 3 3 -1.
+ <_>
+ 17 10 1 3 3.
+ <_>
+
+ <_>
+ 11 4 3 2 -1.
+ <_>
+ 11 5 3 1 2.
+ <_>
+
+ <_>
+ 8 2 8 4 -1.
+ <_>
+ 8 3 8 2 2.
+ <_>
+
+ <_>
+ 14 3 5 9 -1.
+ <_>
+ 14 6 5 3 3.
+ <_>
+
+ <_>
+ 0 18 9 2 -1.
+ <_>
+ 0 19 9 1 2.
+ <_>
+
+ <_>
+ 17 3 3 1 -1.
+ <_>
+ 18 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 12 5 3 -1.
+ <_>
+ 12 13 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 13 4 2 -1.
+ <_>
+ 10 14 4 1 2.
+ <_>
+
+ <_>
+ 8 8 3 3 -1.
+ <_>
+ 7 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 3 3 3 -1.
+ <_>
+ 15 4 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 18 4 1 -1.
+ <_>
+ 17 18 2 1 2.
+ <_>
+
+ <_>
+ 5 0 2 3 -1.
+ <_>
+ 5 0 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 10 3 2 -1.
+ <_>
+ 12 10 1 2 3.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 0 2 1 9 2.
+ <_>
+ 1 11 1 9 2.
+ <_>
+
+ <_>
+ 1 8 8 7 -1.
+ <_>
+ 3 8 4 7 2.
+ <_>
+
+ <_>
+ 12 18 4 2 -1.
+ <_>
+ 12 18 2 1 2.
+ <_>
+ 14 19 2 1 2.
+ <_>
+
+ <_>
+ 3 4 16 12 -1.
+ <_>
+ 7 4 8 12 2.
+ <_>
+
+ <_>
+ 5 8 6 1 -1.
+ <_>
+ 7 8 2 1 3.
+ <_>
+
+ <_>
+ 7 4 12 8 -1.
+ <_>
+ 11 4 4 8 3.
+ <_>
+
+ <_>
+ 8 16 2 2 -1.
+ <_>
+ 8 16 1 1 2.
+ <_>
+ 9 17 1 1 2.
+ <_>
+
+ <_>
+ 3 4 3 3 -1.
+ <_>
+ 2 5 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 3 6 -1.
+ <_>
+ 9 7 1 2 9.
+ <_>
+
+ <_>
+ 2 5 18 2 -1.
+ <_>
+ 8 5 6 2 3.
+ <_>
+
+ <_>
+ 14 8 1 2 -1.
+ <_>
+ 14 9 1 1 2.
+ <_>
+
+ <_>
+ 5 1 4 1 -1.
+ <_>
+ 6 1 2 1 2.
+ <_>
+
+ <_>
+ 1 9 17 3 -1.
+ <_>
+ 1 10 17 1 3.
+ <_>
+
+ <_>
+ 1 17 9 3 -1.
+ <_>
+ 1 18 9 1 3.
+ <_>
+
+ <_>
+ 4 16 6 2 -1.
+ <_>
+ 4 17 6 1 2.
+ <_>
+
+ <_>
+ 3 8 2 2 -1.
+ <_>
+ 3 8 1 1 2.
+ <_>
+ 4 9 1 1 2.
+ <_>
+
+ <_>
+ 17 8 3 3 -1.
+ <_>
+ 16 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 3 4 2 -1.
+ <_>
+ 8 3 2 2 2.
+ <_>
+
+ <_>
+ 4 9 2 1 -1.
+ <_>
+ 4 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 4 2 4 -1.
+ <_>
+ 1 4 1 4 2.
+ <_>
+
+ <_>
+ 6 3 1 12 -1.
+ <_>
+ 6 9 1 6 2.
+ <_>
+
+ <_>
+ 0 7 4 2 -1.
+ <_>
+ 0 8 4 1 2.
+ <_>
+
+ <_>
+ 2 0 5 16 -1.
+ <_>
+ 2 8 5 8 2.
+ <_>
+
+ <_>
+ 11 0 3 6 -1.
+ <_>
+ 9 2 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 16 12 1 -1.
+ <_>
+ 8 16 6 1 2.
+ <_>
+
+ <_>
+ 9 8 3 2 -1.
+ <_>
+ 10 8 1 2 3.
+ <_>
+
+ <_>
+ 14 8 3 6 -1.
+ <_>
+ 15 9 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 13 8 4 7 -1.
+ <_>
+ 14 9 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 3 4 -1.
+ <_>
+ 15 8 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 1 16 -1.
+ <_>
+ 13 9 1 8 2.
+ <_>
+
+ <_>
+ 7 17 8 1 -1.
+ <_>
+ 9 17 4 1 2.
+ <_>
+
+ <_>
+ 9 10 3 5 -1.
+ <_>
+ 10 11 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 6 3 -1.
+ <_>
+ 6 13 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 16 1 2 -1.
+ <_>
+ 3 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 13 3 4 -1.
+ <_>
+ 4 14 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 8 8 -1.
+ <_>
+ 9 5 4 8 2.
+ <_>
+
+ <_>
+ 17 5 2 4 -1.
+ <_>
+ 17 5 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 14 3 4 -1.
+ <_>
+ 0 15 3 2 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 6 16 6 4 -1.
+ <_>
+ 8 16 2 4 3.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 9 17 2 1 -1.
+ <_>
+ 10 17 1 1 2.
+ <_>
+
+ <_>
+ 14 5 5 8 -1.
+ <_>
+ 14 7 5 4 2.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 8 2 1 2.
+ <_>
+
+ <_>
+ 9 11 2 7 -1.
+ <_>
+ 10 11 1 7 2.
+ <_>
+
+ <_>
+ 2 5 1 2 -1.
+ <_>
+ 2 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 11 3 -1.
+ <_>
+ 4 7 11 1 3.
+ <_>
+
+ <_>
+ 5 4 8 3 -1.
+ <_>
+ 5 5 8 1 3.
+ <_>
+
+ <_>
+ 0 8 20 3 -1.
+ <_>
+ 0 9 20 1 3.
+ <_>
+
+ <_>
+ 15 8 3 3 -1.
+ <_>
+ 15 9 3 1 3.
+ <_>
+
+ <_>
+ 17 9 3 1 -1.
+ <_>
+ 18 9 1 1 3.
+ <_>
+
+ <_>
+ 15 6 5 3 -1.
+ <_>
+ 15 7 5 1 3.
+ <_>
+
+ <_>
+ 9 15 8 2 -1.
+ <_>
+ 9 15 4 1 2.
+ <_>
+ 13 16 4 1 2.
+ <_>
+
+ <_>
+ 0 3 1 4 -1.
+ <_>
+ 0 4 1 2 2.
+ <_>
+
+ <_>
+ 9 3 5 2 -1.
+ <_>
+ 9 4 5 1 2.
+ <_>
+
+ <_>
+ 15 3 2 2 -1.
+ <_>
+ 15 3 1 1 2.
+ <_>
+ 16 4 1 1 2.
+ <_>
+
+ <_>
+ 12 0 4 12 -1.
+ <_>
+ 12 0 2 12 2.
+ 1
+ <_>
+
+ <_>
+ 10 6 8 2 -1.
+ <_>
+ 10 7 8 1 2.
+ <_>
+
+ <_>
+ 15 3 2 13 -1.
+ <_>
+ 16 3 1 13 2.
+ <_>
+
+ <_>
+ 11 11 5 2 -1.
+ <_>
+ 11 11 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 6 2 -1.
+ <_>
+ 3 0 3 2 2.
+ <_>
+
+ <_>
+ 4 0 1 3 -1.
+ <_>
+ 3 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ <_>
+
+ <_>
+ 3 0 16 5 -1.
+ <_>
+ 7 0 8 5 2.
+ <_>
+
+ <_>
+ 18 10 1 2 -1.
+ <_>
+ 18 10 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 2 4 -1.
+ <_>
+ 4 7 2 2 2.
+ <_>
+
+ <_>
+ 13 5 2 1 -1.
+ <_>
+ 13 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 8 2 -1.
+ <_>
+ 0 5 4 1 2.
+ <_>
+ 4 6 4 1 2.
+ <_>
+
+ <_>
+ 7 7 10 13 -1.
+ <_>
+ 12 7 5 13 2.
+ <_>
+
+ <_>
+ 17 3 3 2 -1.
+ <_>
+ 18 4 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 0 9 2 -1.
+ <_>
+ 2 1 9 1 2.
+ <_>
+
+ <_>
+ 4 8 12 6 -1.
+ <_>
+ 4 10 12 2 3.
+ <_>
+
+ <_>
+ 13 8 3 2 -1.
+ <_>
+ 14 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 9 3 8 -1.
+ <_>
+ 11 9 1 8 3.
+ <_>
+
+ <_>
+ 13 13 4 6 -1.
+ <_>
+ 14 13 2 6 2.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 11 1 4 2 -1.
+ <_>
+ 11 2 4 1 2.
+ <_>
+
+ <_>
+ 13 0 6 3 -1.
+ <_>
+ 13 1 6 1 3.
+ <_>
+
+ <_>
+ 7 18 2 1 -1.
+ <_>
+ 8 18 1 1 2.
+ <_>
+
+ <_>
+ 6 15 6 4 -1.
+ <_>
+ 6 16 6 2 2.
+ <_>
+
+ <_>
+ 13 15 2 3 -1.
+ <_>
+ 12 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 18 10 1 2.
+ <_>
+ 10 19 10 1 2.
+ <_>
+
+ <_>
+ 2 18 18 2 -1.
+ <_>
+ 2 18 9 1 2.
+ <_>
+ 11 19 9 1 2.
+ <_>
+
+ <_>
+ 4 0 3 17 -1.
+ <_>
+ 5 0 1 17 3.
+ <_>
+
+ <_>
+ 4 9 4 4 -1.
+ <_>
+ 4 9 2 2 2.
+ <_>
+ 6 11 2 2 2.
+ <_>
+
+ <_>
+ 6 10 2 4 -1.
+ <_>
+ 5 11 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 2 2 12 -1.
+ <_>
+ 12 2 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 1 9 2 4 -1.
+ <_>
+ 1 9 1 2 2.
+ <_>
+ 2 11 1 2 2.
+ <_>
+
+ <_>
+ 15 17 2 1 -1.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 14 6 3 4 -1.
+ <_>
+ 15 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 15 14 2 1 -1.
+ <_>
+ 16 14 1 1 2.
+ <_>
+
+ <_>
+ 2 3 18 10 -1.
+ <_>
+ 2 3 9 5 2.
+ <_>
+ 11 8 9 5 2.
+ <_>
+
+ <_>
+ 15 17 2 2 -1.
+ <_>
+ 15 17 1 1 2.
+ <_>
+ 16 18 1 1 2.
+ <_>
+
+ <_>
+ 6 1 3 10 -1.
+ <_>
+ 7 1 1 10 3.
+ <_>
+
+ <_>
+ 3 9 6 2 -1.
+ <_>
+ 5 9 2 2 3.
+ <_>
+
+ <_>
+ 15 10 4 2 -1.
+ <_>
+ 15 10 2 1 2.
+ <_>
+ 17 11 2 1 2.
+ <_>
+
+ <_>
+ 0 11 1 4 -1.
+ <_>
+ 0 13 1 2 2.
+ <_>
+
+ <_>
+ 7 7 9 13 -1.
+ <_>
+ 10 7 3 13 3.
+ <_>
+
+ <_>
+ 8 5 11 6 -1.
+ <_>
+ 8 7 11 2 3.
+ <_>
+
+ <_>
+ 7 15 3 3 -1.
+ <_>
+ 8 15 1 3 3.
+ <_>
+
+ <_>
+ 0 9 2 11 -1.
+ <_>
+ 1 9 1 11 2.
+ <_>
+
+ <_>
+ 4 8 4 2 -1.
+ <_>
+ 5 8 2 2 2.
+ <_>
+
+ <_>
+ 9 6 4 1 -1.
+ <_>
+ 10 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 1 5 4 -1.
+ <_>
+ 5 2 5 2 2.
+ <_>
+
+ <_>
+ 15 10 4 3 -1.
+ <_>
+ 16 10 2 3 2.
+ <_>
+
+ <_>
+ 0 1 16 3 -1.
+ <_>
+ 0 2 16 1 3.
+ <_>
+
+ <_>
+ 8 9 4 3 -1.
+ <_>
+ 9 10 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 18 17 2 3 -1.
+ <_>
+ 18 18 2 1 3.
+ <_>
+
+ <_>
+ 5 13 4 6 -1.
+ <_>
+ 5 13 2 3 2.
+ <_>
+ 7 16 2 3 2.
+ <_>
+
+ <_>
+ 0 0 3 17 -1.
+ <_>
+ 1 0 1 17 3.
+ <_>
+
+ <_>
+ 10 7 3 3 -1.
+ <_>
+ 9 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 8 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 7 5 5 6 -1.
+ <_>
+ 7 8 5 3 2.
+ <_>
+
+ <_>
+ 12 4 2 9 -1.
+ <_>
+ 12 7 2 3 3.
+ <_>
+
+ <_>
+ 14 0 3 2 -1.
+ <_>
+ 15 0 1 2 3.
+ <_>
+
+ <_>
+ 11 8 3 3 -1.
+ <_>
+ 12 9 1 1 9.
+ <_>
+
+ <_>
+ 4 16 2 3 -1.
+ <_>
+ 4 17 2 1 3.
+ <_>
+
+ <_>
+ 6 10 14 3 -1.
+ <_>
+ 6 11 14 1 3.
+ <_>
+
+ <_>
+ 0 10 14 4 -1.
+ <_>
+ 0 11 14 2 2.
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 3 2 3 3 -1.
+ <_>
+ 4 2 1 3 3.
+ <_>
+
+ <_>
+ 17 17 2 2 -1.
+ <_>
+ 17 17 1 1 2.
+ <_>
+ 18 18 1 1 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 17 16 1 3 -1.
+ <_>
+ 17 17 1 1 3.
+ <_>
+
+ <_>
+ 6 8 2 1 -1.
+ <_>
+ 6 8 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 3 1 -1.
+ <_>
+ 9 8 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 3 1 -1.
+ <_>
+ 10 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 9 3 10 -1.
+ <_>
+ 4 9 1 10 3.
+ <_>
+
+ <_>
+ 5 15 6 3 -1.
+ <_>
+ 7 15 2 3 3.
+ <_>
+
+ <_>
+ 0 4 2 12 -1.
+ <_>
+ 0 4 1 6 2.
+ <_>
+ 1 10 1 6 2.
+ <_>
+
+ <_>
+ 4 2 2 10 -1.
+ <_>
+ 5 2 1 10 2.
+ <_>
+
+ <_>
+ 4 9 2 1 -1.
+ <_>
+ 5 9 1 1 2.
+ <_>
+
+ <_>
+ 14 7 4 6 -1.
+ <_>
+ 15 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 17 5 3 2 -1.
+ <_>
+ 18 6 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 10 16 5 -1.
+ <_>
+ 10 10 8 5 2.
+ <_>
+
+ <_>
+ 7 17 2 2 -1.
+ <_>
+ 7 17 1 1 2.
+ <_>
+ 8 18 1 1 2.
+ <_>
+
+ <_>
+ 4 17 4 1 -1.
+ <_>
+ 6 17 2 1 2.
+ <_>
+
+ <_>
+ 8 6 3 3 -1.
+ <_>
+ 9 6 1 3 3.
+ <_>
+
+ <_>
+ 16 10 1 4 -1.
+ <_>
+ 16 12 1 2 2.
+ <_>
+
+ <_>
+ 17 13 2 3 -1.
+ <_>
+ 16 14 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 8 13 10 -1.
+ <_>
+ 3 13 13 5 2.
+ <_>
+
+ <_>
+ 9 6 9 1 -1.
+ <_>
+ 12 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 5 15 6 -1.
+ <_>
+ 7 7 5 2 9.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 17 1 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 17 6 3 -1.
+ <_>
+ 0 18 6 1 3.
+ <_>
+
+ <_>
+ 11 1 2 2 -1.
+ <_>
+ 11 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 5 2 2 -1.
+ <_>
+ 12 5 1 1 2.
+ <_>
+ 13 6 1 1 2.
+ <_>
+
+ <_>
+ 8 0 12 2 -1.
+ <_>
+ 12 0 4 2 3.
+ <_>
+
+ <_>
+ 10 9 3 3 -1.
+ <_>
+ 11 10 1 1 9.
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 12 19 8 1 2.
+ <_>
+
+ <_>
+ 8 18 9 2 -1.
+ <_>
+ 8 19 9 1 2.
+ <_>
+
+ <_>
+ 6 0 9 4 -1.
+ <_>
+ 6 1 9 2 2.
+ <_>
+
+ <_>
+ 3 8 12 4 -1.
+ <_>
+ 3 9 12 2 2.
+ <_>
+
+ <_>
+ 13 4 2 9 -1.
+ <_>
+ 10 7 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 5 15 12 4 -1.
+ <_>
+ 5 15 6 2 2.
+ <_>
+ 11 17 6 2 2.
+ <_>
+
+ <_>
+ 6 3 14 10 -1.
+ <_>
+ 13 3 7 10 2.
+ <_>
+
+ <_>
+ 9 2 6 2 -1.
+ <_>
+ 11 2 2 2 3.
+ <_>
+
+ <_>
+ 11 16 3 1 -1.
+ <_>
+ 12 16 1 1 3.
+ <_>
+
+ <_>
+ 15 16 2 4 -1.
+ <_>
+ 15 16 1 2 2.
+ <_>
+ 16 18 1 2 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+ 10 13 7 2 2.
+ <_>
+
+ <_>
+ 1 19 16 1 -1.
+ <_>
+ 5 19 8 1 2.
+ <_>
+
+ <_>
+ 3 18 2 1 -1.
+ <_>
+ 4 18 1 1 2.
+ <_>
+
+ <_>
+ 12 7 1 8 -1.
+ <_>
+ 10 9 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 18 3 2 16 -1.
+ <_>
+ 18 3 1 8 2.
+ <_>
+ 19 11 1 8 2.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 5 9 10 3 2.
+ <_>
+
+ <_>
+ 7 15 2 3 -1.
+ <_>
+ 7 15 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 2 2 -1.
+ <_>
+ 7 1 1 1 2.
+ <_>
+ 8 2 1 1 2.
+ <_>
+
+ <_>
+ 5 5 12 11 -1.
+ <_>
+ 9 5 4 11 3.
+ <_>
+
+ <_>
+ 14 0 4 14 -1.
+ <_>
+ 14 0 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 15 1 2 8 -1.
+ <_>
+ 16 1 1 8 2.
+ <_>
+
+ <_>
+ 0 1 3 4 -1.
+ <_>
+ 0 2 3 2 2.
+ <_>
+
+ <_>
+ 5 9 9 9 -1.
+ <_>
+ 8 12 3 3 9.
+ <_>
+
+ <_>
+ 12 7 4 6 -1.
+ <_>
+ 10 9 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 5 8 9 -1.
+ <_>
+ 7 5 4 9 2.
+ <_>
+
+ <_>
+ 2 3 16 2 -1.
+ <_>
+ 10 3 8 2 2.
+ <_>
+
+ <_>
+ 7 1 4 3 -1.
+ <_>
+ 8 1 2 3 2.
+ <_>
+
+ <_>
+ 8 1 12 3 -1.
+ <_>
+ 11 1 6 3 2.
+ <_>
+
+ <_>
+ 18 1 1 2 -1.
+ <_>
+ 18 2 1 1 2.
+ <_>
+
+ <_>
+ 6 9 8 2 -1.
+ <_>
+ 8 9 4 2 2.
+ <_>
+
+ <_>
+ 5 7 2 4 -1.
+ <_>
+ 5 7 1 2 2.
+ <_>
+ 6 9 1 2 2.
+ <_>
+
+ <_>
+ 2 15 9 1 -1.
+ <_>
+ 5 15 3 1 3.
+ <_>
+
+ <_>
+ 3 10 6 9 -1.
+ <_>
+ 5 13 2 3 9.
+ <_>
+
+ <_>
+ 0 9 7 3 -1.
+ <_>
+ 0 10 7 1 3.
+ <_>
+
+ <_>
+ 0 9 16 1 -1.
+ <_>
+ 8 9 8 1 2.
+ <_>
+
+ <_>
+ 6 1 12 3 -1.
+ <_>
+ 5 2 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 9 9 1 -1.
+ <_>
+ 12 9 3 1 3.
+ <_>
+
+ <_>
+ 12 10 4 10 -1.
+ <_>
+ 14 10 2 10 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 5 10 2 4 2.
+ <_>
+ 7 14 2 4 2.
+ <_>
+
+ <_>
+ 0 0 16 10 -1.
+ <_>
+ 0 0 8 5 2.
+ <_>
+ 8 5 8 5 2.
+ <_>
+
+ <_>
+ 5 15 2 4 -1.
+ <_>
+ 5 15 1 2 2.
+ <_>
+ 6 17 1 2 2.
+ <_>
+
+ <_>
+ 14 2 6 16 -1.
+ <_>
+ 17 2 3 16 2.
+ <_>
+
+ <_>
+ 7 5 6 1 -1.
+ <_>
+ 9 5 2 1 3.
+ <_>
+
+ <_>
+ 18 12 2 2 -1.
+ <_>
+ 18 12 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 3 18 -1.
+ <_>
+ 17 6 1 6 9.
+ <_>
+
+ <_>
+ 0 2 20 3 -1.
+ <_>
+ 10 2 10 3 2.
+ <_>
+
+ <_>
+ 1 19 2 1 -1.
+ <_>
+ 2 19 1 1 2.
+ <_>
+
+ <_>
+ 8 0 6 3 -1.
+ <_>
+ 11 0 3 3 2.
+ <_>
+
+ <_>
+ 7 0 8 3 -1.
+ <_>
+ 11 0 4 3 2.
+ <_>
+
+ <_>
+ 18 9 1 6 -1.
+ <_>
+ 18 9 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 9 6 3 -1.
+ <_>
+ 5 10 2 1 9.
+ <_>
+
+ <_>
+ 15 9 2 6 -1.
+ <_>
+ 15 9 1 3 2.
+ <_>
+ 16 12 1 3 2.
+ <_>
+
+ <_>
+ 12 6 4 1 -1.
+ <_>
+ 13 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 6 18 14 -1.
+ <_>
+ 7 6 6 14 3.
+ <_>
+
+ <_>
+ 15 10 4 2 -1.
+ <_>
+ 15 10 2 1 2.
+ <_>
+ 17 11 2 1 2.
+ <_>
+
+ <_>
+ 14 8 6 7 -1.
+ <_>
+ 16 8 2 7 3.
+ <_>
+
+ <_>
+ 0 10 2 10 -1.
+ <_>
+ 1 10 1 10 2.
+ <_>
+
+ <_>
+ 18 0 2 12 -1.
+ <_>
+ 19 0 1 12 2.
+ <_>
+
+ <_>
+ 4 7 10 1 -1.
+ <_>
+ 4 7 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 1 6 2 -1.
+ <_>
+ 12 2 6 1 2.
+ <_>
+
+ <_>
+ 8 8 3 2 -1.
+ <_>
+ 8 8 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 10 4 3 -1.
+ <_>
+ 13 11 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 7 5 6 -1.
+ <_>
+ 10 10 5 3 2.
+ <_>
+
+ <_>
+ 11 5 5 8 -1.
+ <_>
+ 9 7 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 2 2 3 -1.
+ <_>
+ 16 2 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 13 9 -1.
+ <_>
+ 4 5 13 3 3.
+ <_>
+
+ <_>
+ 9 2 6 2 -1.
+ <_>
+ 11 2 2 2 3.
+ <_>
+
+ <_>
+ 0 0 9 2 -1.
+ <_>
+ 0 1 9 1 2.
+ <_>
+
+ <_>
+ 11 2 3 12 -1.
+ <_>
+ 12 2 1 12 3.
+ <_>
+
+ <_>
+ 19 17 1 3 -1.
+ <_>
+ 19 18 1 1 3.
+ <_>
+
+ <_>
+ 19 18 1 2 -1.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 13 4 2 4 -1.
+ <_>
+ 13 4 1 2 2.
+ <_>
+ 14 6 1 2 2.
+ <_>
+
+ <_>
+ 14 7 1 4 -1.
+ <_>
+ 13 8 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 10 3 1 -1.
+ <_>
+ 2 10 1 1 3.
+ <_>
+
+ <_>
+ 18 9 1 4 -1.
+ <_>
+ 17 10 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 9 6 4 -1.
+ <_>
+ 8 9 3 2 2.
+ <_>
+ 11 11 3 2 2.
+ <_>
+
+ <_>
+ 0 9 15 3 -1.
+ <_>
+ 0 10 15 1 3.
+ <_>
+
+ <_>
+ 16 6 4 3 -1.
+ <_>
+ 15 7 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 8 9 4 -1.
+ <_>
+ 11 9 9 2 2.
+ <_>
+
+ <_>
+ 16 5 1 6 -1.
+ <_>
+ 16 5 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 17 4 3 -1.
+ <_>
+ 8 17 2 3 2.
+ <_>
+
+ <_>
+ 4 5 1 4 -1.
+ <_>
+ 3 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 3 4 -1.
+ <_>
+ 17 17 3 2 2.
+ <_>
+
+ <_>
+ 14 17 4 3 -1.
+ <_>
+ 14 18 4 1 3.
+ <_>
+
+ <_>
+ 6 3 8 3 -1.
+ <_>
+ 6 4 8 1 3.
+ <_>
+
+ <_>
+ 9 4 1 8 -1.
+ <_>
+ 9 6 1 4 2.
+ <_>
+
+ <_>
+ 14 0 6 1 -1.
+ <_>
+ 17 0 3 1 2.
+ <_>
+
+ <_>
+ 15 3 2 1 -1.
+ <_>
+ 15 3 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 1 3 4 -1.
+ <_>
+ 17 1 1 4 3.
+ <_>
+
+ <_>
+ 16 5 2 4 -1.
+ <_>
+ 17 5 1 4 2.
+ <_>
+
+ <_>
+ 12 7 2 3 -1.
+ <_>
+ 12 8 2 1 3.
+ <_>
+
+ <_>
+ 17 3 3 7 -1.
+ <_>
+ 18 3 1 7 3.
+ <_>
+
+ <_>
+ 15 7 5 2 -1.
+ <_>
+ 15 8 5 1 2.
+ <_>
+
+ <_>
+ 16 7 3 1 -1.
+ <_>
+ 17 8 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 10 3 6 -1.
+ <_>
+ 1 10 1 6 3.
+ <_>
+
+ <_>
+ 8 4 8 13 -1.
+ <_>
+ 10 4 4 13 2.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 6 10 1 2 2.
+ <_>
+
+ <_>
+ 5 10 6 3 -1.
+ <_>
+ 7 11 2 1 9.
+ <_>
+
+ <_>
+ 5 9 3 2 -1.
+ <_>
+ 6 9 1 2 3.
+ <_>
+
+ <_>
+ 6 7 9 3 -1.
+ <_>
+ 9 8 3 1 9.
+ <_>
+
+ <_>
+ 0 6 4 6 -1.
+ <_>
+ 1 6 2 6 2.
+ <_>
+
+ <_>
+ 10 17 1 3 -1.
+ <_>
+ 10 18 1 1 3.
+ <_>
+
+ <_>
+ 8 16 4 2 -1.
+ <_>
+ 8 17 4 1 2.
+ <_>
+
+ <_>
+ 1 18 10 2 -1.
+ <_>
+ 1 18 5 1 2.
+ <_>
+ 6 19 5 1 2.
+ <_>
+
+ <_>
+ 5 0 4 2 -1.
+ <_>
+ 6 0 2 2 2.
+ <_>
+
+ <_>
+ 8 5 6 3 -1.
+ <_>
+ 10 7 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 6 5 7 9 -1.
+ <_>
+ 6 8 7 3 3.
+ <_>
+
+ <_>
+ 16 12 2 4 -1.
+ <_>
+ 16 14 2 2 2.
+ <_>
+
+ <_>
+ 9 7 10 6 -1.
+ <_>
+ 9 7 5 3 2.
+ <_>
+ 14 10 5 3 2.
+ <_>
+
+ <_>
+ 9 5 8 4 -1.
+ <_>
+ 8 6 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 14 6 6 -1.
+ <_>
+ 3 16 6 2 3.
+ <_>
+
+ <_>
+ 5 14 6 6 -1.
+ <_>
+ 5 14 3 3 2.
+ <_>
+ 8 17 3 3 2.
+ <_>
+
+ <_>
+ 2 7 4 6 -1.
+ <_>
+ 3 7 2 6 2.
+ <_>
+
+ <_>
+ 2 0 3 20 -1.
+ <_>
+ 3 0 1 20 3.
+ <_>
+
+ <_>
+ 4 7 10 3 -1.
+ <_>
+ 4 7 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 10 4 6 -1.
+ <_>
+ 1 10 2 3 2.
+ <_>
+ 3 13 2 3 2.
+ <_>
+
+ <_>
+ 4 9 2 10 -1.
+ <_>
+ 4 14 2 5 2.
+ <_>
+
+ <_>
+ 4 7 2 2 -1.
+ <_>
+ 4 7 1 1 2.
+ <_>
+ 5 8 1 1 2.
+ <_>
+
+ <_>
+ 0 18 6 2 -1.
+ <_>
+ 0 19 6 1 2.
+ <_>
+
+ <_>
+ 19 0 1 10 -1.
+ <_>
+ 19 0 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 2 12 -1.
+ <_>
+ 9 5 2 6 2.
+ <_>
+
+ <_>
+ 4 14 2 4 -1.
+ <_>
+ 3 15 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 17 4 1 -1.
+ <_>
+ 9 17 2 1 2.
+ <_>
+
+ <_>
+ 1 9 10 4 -1.
+ <_>
+ 1 9 5 2 2.
+ <_>
+ 6 11 5 2 2.
+ <_>
+
+ <_>
+ 5 4 3 1 -1.
+ <_>
+ 6 4 1 1 3.
+ <_>
+
+ <_>
+ 14 7 2 2 -1.
+ <_>
+ 14 7 1 1 2.
+ <_>
+ 15 8 1 1 2.
+ <_>
+
+ <_>
+ 13 7 3 3 -1.
+ <_>
+ 14 8 1 1 9.
+ <_>
+
+ <_>
+ 6 2 6 1 -1.
+ <_>
+ 9 2 3 1 2.
+ <_>
+
+ <_>
+ 8 0 12 7 -1.
+ <_>
+ 12 0 4 7 3.
+ <_>
+
+ <_>
+ 16 0 4 4 -1.
+ <_>
+ 16 0 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 16 7 -1.
+ <_>
+ 10 0 8 7 2.
+ <_>
+
+ <_>
+ 7 1 8 2 -1.
+ <_>
+ 9 1 4 2 2.
+ <_>
+
+ <_>
+ 4 6 12 1 -1.
+ <_>
+ 7 9 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 17 6 3 -1.
+ <_>
+ 5 17 2 3 3.
+ <_>
+
+ <_>
+ 0 19 12 1 -1.
+ <_>
+ 4 19 4 1 3.
+ <_>
+
+ <_>
+ 12 14 8 1 -1.
+ <_>
+ 14 14 4 1 2.
+ <_>
+
+ <_>
+ 4 10 12 6 -1.
+ <_>
+ 8 12 4 2 9.
+ <_>
+
+ <_>
+ 12 4 8 6 -1.
+ <_>
+ 14 4 4 6 2.
+ <_>
+
+ <_>
+ 9 2 2 8 -1.
+ <_>
+ 9 2 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 1 18 19 2 -1.
+ <_>
+ 1 19 19 1 2.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 10 3 8 3 -1.
+ <_>
+ 10 3 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 9 1 -1.
+ <_>
+ 7 0 3 1 3.
+ <_>
+
+ <_>
+ 9 2 8 1 -1.
+ <_>
+ 13 2 4 1 2.
+ <_>
+
+ <_>
+ 7 1 10 2 -1.
+ <_>
+ 7 2 10 1 2.
+ <_>
+
+ <_>
+ 0 11 3 3 -1.
+ <_>
+ 1 12 1 1 9.
+ <_>
+
+ <_>
+ 0 10 12 9 -1.
+ <_>
+ 4 10 4 9 3.
+ <_>
+
+ <_>
+ 4 0 6 3 -1.
+ <_>
+ 6 0 2 3 3.
+ <_>
+
+ <_>
+ 17 2 3 2 -1.
+ <_>
+ 18 2 1 2 3.
+ <_>
+
+ <_>
+ 14 10 4 4 -1.
+ <_>
+ 14 10 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 10 2 3 -1.
+ <_>
+ 6 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 5 1 2 -1.
+ <_>
+ 4 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 4 1 -1.
+ <_>
+ 2 0 2 1 2.
+ <_>
+
+ <_>
+ 1 18 3 2 -1.
+ <_>
+ 1 19 3 1 2.
+ <_>
+
+ <_>
+ 0 0 4 6 -1.
+ <_>
+ 0 2 4 2 3.
+ <_>
+
+ <_>
+ 0 10 12 10 -1.
+ <_>
+ 0 10 6 5 2.
+ <_>
+ 6 15 6 5 2.
+ <_>
+
+ <_>
+ 7 15 6 2 -1.
+ <_>
+ 7 16 6 1 2.
+ <_>
+
+ <_>
+ 14 8 6 3 -1.
+ <_>
+ 13 9 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 0 1 2 -1.
+ <_>
+ 6 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 1 2 2 -1.
+ <_>
+ 17 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 10 1 2 -1.
+ <_>
+ 15 11 1 1 2.
+ <_>
+
+ <_>
+ 16 9 3 6 -1.
+ <_>
+ 17 10 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 2 8 16 9 -1.
+ <_>
+ 6 8 8 9 2.
+ <_>
+
+ <_>
+ 12 1 6 3 -1.
+ <_>
+ 14 1 2 3 3.
+ <_>
+
+ <_>
+ 9 6 9 4 -1.
+ <_>
+ 9 6 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 17 2 2 -1.
+ <_>
+ 4 17 1 2 2.
+ <_>
+
+ <_>
+ 0 7 2 4 -1.
+ <_>
+ 0 8 2 2 2.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 9 10 4 1 3.
+ <_>
+
+ <_>
+ 15 9 4 4 -1.
+ <_>
+ 15 9 2 2 2.
+ <_>
+ 17 11 2 2 2.
+ <_>
+
+ <_>
+ 4 10 4 1 -1.
+ <_>
+ 5 10 2 1 2.
+ <_>
+
+ <_>
+ 13 9 3 2 -1.
+ <_>
+ 14 9 1 2 3.
+ <_>
+
+ <_>
+ 2 12 13 8 -1.
+ <_>
+ 2 16 13 4 2.
+ <_>
+
+ <_>
+ 16 17 1 3 -1.
+ <_>
+ 16 18 1 1 3.
+ <_>
+
+ <_>
+ 9 5 3 6 -1.
+ <_>
+ 10 7 1 2 9.
+ <_>
+
+ <_>
+ 1 9 12 4 -1.
+ <_>
+ 1 10 12 2 2.
+ <_>
+
+ <_>
+ 12 2 6 17 -1.
+ <_>
+ 14 2 2 17 3.
+ <_>
+
+ <_>
+ 8 18 8 2 -1.
+ <_>
+ 10 18 4 2 2.
+ <_>
+
+ <_>
+ 0 18 4 2 -1.
+ <_>
+ 2 18 2 2 2.
+ <_>
+
+ <_>
+ 10 15 10 4 -1.
+ <_>
+ 10 15 5 2 2.
+ <_>
+ 15 17 5 2 2.
+ <_>
+
+ <_>
+ 15 1 3 14 -1.
+ <_>
+ 16 1 1 14 3.
+ <_>
+
+ <_>
+ 3 8 6 12 -1.
+ <_>
+ 3 14 6 6 2.
+ <_>
+
+ <_>
+ 4 8 1 2 -1.
+ <_>
+ 4 9 1 1 2.
+ <_>
+
+ <_>
+ 3 8 12 6 -1.
+ <_>
+ 7 10 4 2 9.
+ <_>
+
+ <_>
+ 18 3 2 7 -1.
+ <_>
+ 19 3 1 7 2.
+ <_>
+
+ <_>
+ 16 5 4 6 -1.
+ <_>
+ 14 7 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 9 2 4 -1.
+ <_>
+ 13 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 20 2 -1.
+ <_>
+ 10 1 10 2 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 18 0 2 1 -1.
+ <_>
+ 19 0 1 1 2.
+ <_>
+
+ <_>
+ 13 9 1 3 -1.
+ <_>
+ 12 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 6 2 -1.
+ <_>
+ 10 12 2 2 3.
+ <_>
+
+ <_>
+ 2 1 6 6 -1.
+ <_>
+ 4 1 2 6 3.
+ <_>
+
+ <_>
+ 4 1 6 12 -1.
+ <_>
+ 4 4 6 6 2.
+ <_>
+
+ <_>
+ 3 3 2 3 -1.
+ <_>
+ 2 4 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 6 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 4 14 5 -1.
+ <_>
+ 9 4 7 5 2.
+ <_>
+
+ <_>
+ 10 0 9 4 -1.
+ <_>
+ 13 3 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 0 15 3 3 -1.
+ <_>
+ 0 16 3 1 3.
+ <_>
+
+ <_>
+ 5 17 2 3 -1.
+ <_>
+ 5 18 2 1 3.
+ <_>
+
+ <_>
+ 7 12 2 8 -1.
+ <_>
+ 7 14 2 4 2.
+ <_>
+
+ <_>
+ 3 18 5 2 -1.
+ <_>
+ 3 19 5 1 2.
+ <_>
+
+ <_>
+ 18 10 1 2 -1.
+ <_>
+ 18 10 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 18 -1.
+ <_>
+ 0 9 1 9 2.
+ <_>
+
+ <_>
+ 8 1 4 2 -1.
+ <_>
+ 8 2 4 1 2.
+ <_>
+
+ <_>
+ 10 8 5 4 -1.
+ <_>
+ 10 8 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 14 8 4 12 -1.
+ <_>
+ 14 12 4 4 3.
+ <_>
+
+ <_>
+ 1 6 2 4 -1.
+ <_>
+ 1 8 2 2 2.
+ <_>
+
+ <_>
+ 13 14 6 3 -1.
+ <_>
+ 15 15 2 1 9.
+ <_>
+
+ <_>
+ 10 12 4 8 -1.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 5 11 2 2 -1.
+ <_>
+ 6 11 1 2 2.
+ <_>
+
+ <_>
+ 7 14 8 2 -1.
+ <_>
+ 7 15 8 1 2.
+ <_>
+
+ <_>
+ 17 6 2 2 -1.
+ <_>
+ 17 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 1 3 2 -1.
+ <_>
+ 5 1 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 16 2 3 -1.
+ <_>
+ 0 17 2 1 3.
+ <_>
+
+ <_>
+ 7 0 5 3 -1.
+ <_>
+ 7 1 5 1 3.
+ <_>
+
+ <_>
+ 0 0 16 2 -1.
+ <_>
+ 0 1 16 1 2.
+ <_>
+
+ <_>
+ 5 8 4 2 -1.
+ <_>
+ 5 8 2 1 2.
+ <_>
+ 7 9 2 1 2.
+ <_>
+
+ <_>
+ 14 5 6 2 -1.
+ <_>
+ 14 5 3 1 2.
+ <_>
+ 17 6 3 1 2.
+ <_>
+
+ <_>
+ 2 1 2 4 -1.
+ <_>
+ 3 1 1 4 2.
+ <_>
+
+ <_>
+ 2 7 1 2 -1.
+ <_>
+ 2 8 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 4 -1.
+ <_>
+ 0 0 1 2 2.
+ <_>
+ 1 2 1 2 2.
+ <_>
+
+ <_>
+ 8 0 8 10 -1.
+ <_>
+ 8 0 4 5 2.
+ <_>
+ 12 5 4 5 2.
+ <_>
+
+ <_>
+ 3 3 2 8 -1.
+ <_>
+ 3 5 2 4 2.
+ <_>
+
+ <_>
+ 7 9 9 2 -1.
+ <_>
+ 10 9 3 2 3.
+ <_>
+
+ <_>
+ 6 3 2 3 -1.
+ <_>
+ 6 3 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 13 2 2 -1.
+ <_>
+ 11 14 2 1 2.
+ <_>
+
+ <_>
+ 16 2 4 5 -1.
+ <_>
+ 17 2 2 5 2.
+ <_>
+
+ <_>
+ 7 10 12 6 -1.
+ <_>
+ 11 12 4 2 9.
+ <_>
+
+ <_>
+ 14 6 2 7 -1.
+ <_>
+ 15 6 1 7 2.
+ <_>
+
+ <_>
+ 18 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ <_>
+
+ <_>
+ 18 9 2 2 -1.
+ <_>
+ 18 9 1 1 2.
+ <_>
+ 19 10 1 1 2.
+ <_>
+
+ <_>
+ 16 7 4 4 -1.
+ <_>
+ 16 7 2 2 2.
+ <_>
+ 18 9 2 2 2.
+ <_>
+
+ <_>
+ 14 10 6 6 -1.
+ <_>
+ 14 10 3 3 2.
+ <_>
+ 17 13 3 3 2.
+ <_>
+
+ <_>
+ 8 16 2 4 -1.
+ <_>
+ 8 17 2 2 2.
+ <_>
+
+ <_>
+ 18 11 2 8 -1.
+ <_>
+ 18 11 1 4 2.
+ <_>
+ 19 15 1 4 2.
+ <_>
+
+ <_>
+ 7 4 6 12 -1.
+ <_>
+ 7 8 6 4 3.
+ <_>
+
+ <_>
+ 0 7 20 9 -1.
+ <_>
+ 5 7 10 9 2.
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 6 3 3 4 -1.
+ <_>
+ 5 4 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 3 3 12 -1.
+ <_>
+ 14 3 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 8 6 -1.
+ <_>
+ 11 7 8 2 3.
+ <_>
+
+ <_>
+ 17 7 3 5 -1.
+ <_>
+ 18 8 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 3 11 6 6 -1.
+ <_>
+ 5 13 2 2 9.
+ <_>
+
+ <_>
+ 15 6 4 5 -1.
+ <_>
+ 15 6 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 9 3 3 -1.
+ <_>
+ 7 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 7 9 2 -1.
+ <_>
+ 9 10 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 8 2 12 -1.
+ <_>
+ 7 8 1 6 2.
+ <_>
+ 8 14 1 6 2.
+ <_>
+
+ <_>
+ 5 17 3 2 -1.
+ <_>
+ 6 17 1 2 3.
+ <_>
+
+ <_>
+ 4 5 3 4 -1.
+ <_>
+ 5 6 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 6 10 -1.
+ <_>
+ 11 1 6 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 6 6 1 -1.
+ <_>
+ 2 6 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 6 1 6 -1.
+ <_>
+ 14 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 6 1 3 -1.
+ <_>
+ 13 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 6 18 3 -1.
+ <_>
+ 6 7 6 1 9.
+ <_>
+
+ <_>
+ 14 7 6 3 -1.
+ <_>
+ 14 7 3 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 12 4 3 -1.
+ <_>
+ 7 12 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 18 8 2 8 -1.
+ <_>
+ 18 8 1 4 2.
+ <_>
+ 19 12 1 4 2.
+ <_>
+
+ <_>
+ 15 1 4 2 -1.
+ <_>
+ 16 2 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 0 2 10 -1.
+ <_>
+ 14 0 1 5 2.
+ <_>
+ 15 5 1 5 2.
+ <_>
+
+ <_>
+ 10 1 2 6 -1.
+ <_>
+ 10 1 1 3 2.
+ <_>
+ 11 4 1 3 2.
+ <_>
+
+ <_>
+ 16 2 2 3 -1.
+ <_>
+ 17 2 1 3 2.
+ <_>
+
+ <_>
+ 12 2 4 1 -1.
+ <_>
+ 14 2 2 1 2.
+ <_>
+
+ <_>
+ 0 1 4 2 -1.
+ <_>
+ 0 2 4 1 2.
+ <_>
+
+ <_>
+ 12 11 3 4 -1.
+ <_>
+ 13 12 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 8 7 -1.
+ <_>
+ 10 12 4 7 2.
+ <_>
+
+ <_>
+ 2 5 6 8 -1.
+ <_>
+ 4 5 2 8 3.
+ <_>
+
+ <_>
+ 18 17 2 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+ 19 18 1 1 2.
+ <_>
+
+ <_>
+ 5 14 1 2 -1.
+ <_>
+ 5 15 1 1 2.
+ <_>
+
+ <_>
+ 1 10 6 1 -1.
+ <_>
+ 3 10 2 1 3.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 9 6 3 12 2.
+ <_>
+
+ <_>
+ 18 2 2 12 -1.
+ <_>
+ 18 2 1 6 2.
+ <_>
+ 19 8 1 6 2.
+ <_>
+
+ <_>
+ 2 16 9 3 -1.
+ <_>
+ 2 17 9 1 3.
+ <_>
+
+ <_>
+ 10 9 10 9 -1.
+ <_>
+ 10 12 10 3 3.
+ <_>
+
+ <_>
+ 13 14 3 4 -1.
+ <_>
+ 13 15 3 2 2.
+ <_>
+
+ <_>
+ 8 9 1 3 -1.
+ <_>
+ 8 10 1 1 3.
+ <_>
+
+ <_>
+ 2 16 5 3 -1.
+ <_>
+ 2 17 5 1 3.
+ <_>
+
+ <_>
+ 11 19 6 1 -1.
+ <_>
+ 13 19 2 1 3.
+ <_>
+
+ <_>
+ 9 1 6 15 -1.
+ <_>
+ 11 6 2 5 9.
+ <_>
+
+ <_>
+ 15 10 2 8 -1.
+ <_>
+ 15 10 1 4 2.
+ <_>
+ 16 14 1 4 2.
+ <_>
+
+ <_>
+ 0 7 6 12 -1.
+ <_>
+ 2 11 2 4 9.
+ <_>
+
+ <_>
+ 11 2 9 4 -1.
+ <_>
+ 11 2 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 2 3 -1.
+ <_>
+ 5 9 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 3 4 -1.
+ <_>
+ 15 8 1 4 3.
+ <_>
+
+ <_>
+ 2 13 18 4 -1.
+ <_>
+ 11 13 9 4 2.
+ <_>
+
+ <_>
+ 0 0 20 14 -1.
+ <_>
+ 10 0 10 14 2.
+ <_>
+
+ <_>
+ 0 9 6 11 -1.
+ <_>
+ 2 9 2 11 3.
+ <_>
+
+ <_>
+ 2 0 3 17 -1.
+ <_>
+ 3 0 1 17 3.
+ <_>
+
+ <_>
+ 1 0 18 7 -1.
+ <_>
+ 7 0 6 7 3.
+ <_>
+
+ <_>
+ 7 3 4 6 -1.
+ <_>
+ 9 3 2 6 2.
+ <_>
+
+ <_>
+ 6 0 14 20 -1.
+ <_>
+ 6 0 7 10 2.
+ <_>
+ 13 10 7 10 2.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 6 1 1 2.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 13 9 4 3 -1.
+ <_>
+ 14 10 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 10 11 2 6 -1.
+ <_>
+ 8 13 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 18 15 2 1 -1.
+ <_>
+ 18 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 16 4 2 -1.
+ <_>
+ 9 16 2 2 2.
+ <_>
+
+ <_>
+ 6 17 4 1 -1.
+ <_>
+ 7 17 2 1 2.
+ <_>
+
+ <_>
+ 7 0 12 5 -1.
+ <_>
+ 10 0 6 5 2.
+ <_>
+
+ <_>
+ 6 4 9 3 -1.
+ <_>
+ 6 5 9 1 3.
+ <_>
+
+ <_>
+ 15 0 4 2 -1.
+ <_>
+ 15 1 4 1 2.
+ <_>
+
+ <_>
+ 6 0 9 20 -1.
+ <_>
+ 6 5 9 10 2.
+ <_>
+
+ <_>
+ 0 7 11 12 -1.
+ <_>
+ 0 13 11 6 2.
+ <_>
+
+ <_>
+ 1 8 10 1 -1.
+ <_>
+ 1 8 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 1 2 10 -1.
+ <_>
+ 12 6 2 5 2.
+ <_>
+
+ <_>
+ 18 5 1 6 -1.
+ <_>
+ 18 8 1 3 2.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 9 10 4 1 3.
+ <_>
+
+ <_>
+ 11 12 9 4 -1.
+ <_>
+ 14 12 3 4 3.
+ <_>
+
+ <_>
+ 12 8 7 4 -1.
+ <_>
+ 11 9 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 15 8 2 8 -1.
+ <_>
+ 15 8 1 4 2.
+ <_>
+ 16 12 1 4 2.
+ <_>
+
+ <_>
+ 1 16 9 2 -1.
+ <_>
+ 1 17 9 1 2.
+ <_>
+
+ <_>
+ 5 2 14 12 -1.
+ <_>
+ 5 5 14 6 2.
+ <_>
+
+ <_>
+ 2 10 2 10 -1.
+ <_>
+ 2 15 2 5 2.
+ <_>
+
+ <_>
+ 1 0 12 5 -1.
+ <_>
+ 5 0 4 5 3.
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 1 8 2 -1.
+ <_>
+ 12 1 4 1 2.
+ <_>
+ 16 2 4 1 2.
+ <_>
+
+ <_>
+ 3 5 8 6 -1.
+ <_>
+ 5 5 4 6 2.
+ <_>
+
+ <_>
+ 5 1 4 4 -1.
+ <_>
+ 4 2 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 1 14 -1.
+ <_>
+ 6 10 1 7 2.
+ <_>
+
+ <_>
+ 15 10 2 10 -1.
+ <_>
+ 15 10 1 5 2.
+ <_>
+ 16 15 1 5 2.
+ <_>
+
+ <_>
+ 10 2 9 4 -1.
+ <_>
+ 13 2 3 4 3.
+ <_>
+
+ <_>
+ 15 6 1 9 -1.
+ <_>
+ 15 9 1 3 3.
+ <_>
+
+ <_>
+ 3 2 6 2 -1.
+ <_>
+ 5 2 2 2 3.
+ <_>
+
+ <_>
+ 15 5 4 2 -1.
+ <_>
+ 15 5 2 1 2.
+ <_>
+ 17 6 2 1 2.
+ <_>
+
+ <_>
+ 8 2 6 4 -1.
+ <_>
+ 8 3 6 2 2.
+ <_>
+
+ <_>
+ 17 18 1 2 -1.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 1 13 6 3 -1.
+ <_>
+ 3 14 2 1 9.
+ <_>
+
+ <_>
+ 2 16 14 2 -1.
+ <_>
+ 2 16 7 1 2.
+ <_>
+ 9 17 7 1 2.
+ <_>
+
+ <_>
+ 4 0 2 3 -1.
+ <_>
+ 5 0 1 3 2.
+ <_>
+
+ <_>
+ 8 6 3 1 -1.
+ <_>
+ 9 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 6 2 3 -1.
+ <_>
+ 10 7 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 10 2 -1.
+ <_>
+ 4 12 10 1 2.
+ <_>
+
+ <_>
+ 0 8 15 6 -1.
+ <_>
+ 0 10 15 2 3.
+ <_>
+
+ <_>
+ 3 18 8 1 -1.
+ <_>
+ 5 18 4 1 2.
+ <_>
+
+ <_>
+ 14 2 3 2 -1.
+ <_>
+ 15 3 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 1 3 4 -1.
+ <_>
+ 18 1 1 4 3.
+ <_>
+
+ <_>
+ 8 17 4 2 -1.
+ <_>
+ 10 17 2 2 2.
+ <_>
+
+ <_>
+ 12 8 2 3 -1.
+ <_>
+ 11 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 4 2 -1.
+ <_>
+ 5 7 2 1 2.
+ <_>
+ 7 8 2 1 2.
+ <_>
+
+ <_>
+ 3 12 6 5 -1.
+ <_>
+ 6 12 3 5 2.
+ <_>
+
+ <_>
+ 7 7 10 6 -1.
+ <_>
+ 7 9 10 2 3.
+ <_>
+
+ <_>
+ 4 3 9 16 -1.
+ <_>
+ 7 3 3 16 3.
+ <_>
+
+ <_>
+ 5 10 6 8 -1.
+ <_>
+ 5 12 6 4 2.
+ <_>
+
+ <_>
+ 17 7 2 3 -1.
+ <_>
+ 17 7 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 1 12 -1.
+ <_>
+ 16 6 1 6 2.
+ <_>
+
+ <_>
+ 13 4 5 2 -1.
+ <_>
+ 13 5 5 1 2.
+ <_>
+
+ <_>
+ 17 4 3 3 -1.
+ <_>
+ 17 5 3 1 3.
+ <_>
+
+ <_>
+ 10 1 9 6 -1.
+ <_>
+ 13 1 3 6 3.
+ <_>
+
+ <_>
+ 7 7 13 4 -1.
+ <_>
+ 7 8 13 2 2.
+ <_>
+
+ <_>
+ 13 11 6 2 -1.
+ <_>
+ 13 11 3 1 2.
+ <_>
+ 16 12 3 1 2.
+ <_>
+
+ <_>
+ 10 2 5 3 -1.
+ <_>
+ 10 3 5 1 3.
+ <_>
+
+ <_>
+ 1 8 4 2 -1.
+ <_>
+ 1 8 2 1 2.
+ <_>
+ 3 9 2 1 2.
+ <_>
+
+ <_>
+ 19 8 1 4 -1.
+ <_>
+ 19 9 1 2 2.
+ <_>
+
+ <_>
+ 4 9 3 2 -1.
+ <_>
+ 5 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 4 15 9 -1.
+ <_>
+ 9 7 5 3 9.
+ <_>
+
+ <_>
+ 8 0 9 11 -1.
+ <_>
+ 11 0 3 11 3.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 16 17 1 1 3.
+ <_>
+
+ <_>
+ 14 16 3 3 -1.
+ <_>
+ 14 17 3 1 3.
+ <_>
+
+ <_>
+ 12 12 4 6 -1.
+ <_>
+ 13 12 2 6 2.
+ <_>
+
+ <_>
+ 10 10 1 6 -1.
+ <_>
+ 8 12 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 19 12 1 -1.
+ <_>
+ 11 19 6 1 2.
+ <_>
+
+ <_>
+ 14 16 2 2 -1.
+ <_>
+ 14 16 1 1 2.
+ <_>
+ 15 17 1 1 2.
+ <_>
+
+ <_>
+ 4 8 1 4 -1.
+ <_>
+ 3 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 4 2 -1.
+ <_>
+ 6 9 2 1 2.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 2 2 6 1 -1.
+ <_>
+ 2 2 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 8 3 1 -1.
+ <_>
+ 13 8 1 1 3.
+ <_>
+
+ <_>
+ 13 3 2 6 -1.
+ <_>
+ 13 3 1 3 2.
+ <_>
+ 14 6 1 3 2.
+ <_>
+
+ <_>
+ 7 9 3 5 -1.
+ <_>
+ 8 9 1 5 3.
+ <_>
+
+ <_>
+ 6 1 2 17 -1.
+ <_>
+ 7 1 1 17 2.
+ <_>
+
+ <_>
+ 15 1 4 11 -1.
+ <_>
+ 17 1 2 11 2.
+ <_>
+
+ <_>
+ 12 9 2 1 -1.
+ <_>
+ 13 9 1 1 2.
+ <_>
+
+ <_>
+ 14 6 3 3 -1.
+ <_>
+ 15 6 1 3 3.
+ <_>
+
+ <_>
+ 1 6 2 4 -1.
+ <_>
+ 1 6 1 2 2.
+ <_>
+ 2 8 1 2 2.
+ <_>
+
+ <_>
+ 3 7 2 12 -1.
+ <_>
+ 3 7 1 6 2.
+ <_>
+ 4 13 1 6 2.
+ <_>
+
+ <_>
+ 2 18 2 2 -1.
+ <_>
+ 2 18 1 1 2.
+ <_>
+ 3 19 1 1 2.
+ <_>
+
+ <_>
+ 8 9 4 7 -1.
+ <_>
+ 8 9 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 19 5 1 4 -1.
+ <_>
+ 19 7 1 2 2.
+ <_>
+
+ <_>
+ 5 18 3 2 -1.
+ <_>
+ 5 19 3 1 2.
+ <_>
+
+ <_>
+ 8 14 8 5 -1.
+ <_>
+ 10 14 4 5 2.
+ <_>
+
+ <_>
+ 0 16 8 3 -1.
+ <_>
+ 4 16 4 3 2.
+ <_>
+
+ <_>
+ 2 4 1 4 -1.
+ <_>
+ 2 5 1 2 2.
+ <_>
+
+ <_>
+ 0 17 1 3 -1.
+ <_>
+ 0 18 1 1 3.
+ <_>
+
+ <_>
+ 7 17 8 3 -1.
+ <_>
+ 9 17 4 3 2.
+ <_>
+
+ <_>
+ 7 19 8 1 -1.
+ <_>
+ 9 19 4 1 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 0 0 3 3 2.
+ <_>
+ 3 3 3 3 2.
+ <_>
+
+ <_>
+ 9 5 2 2 -1.
+ <_>
+ 9 5 1 1 2.
+ <_>
+ 10 6 1 1 2.
+ <_>
+
+ <_>
+ 8 17 1 3 -1.
+ <_>
+ 8 18 1 1 3.
+ <_>
+
+ <_>
+ 8 18 12 2 -1.
+ <_>
+ 8 18 6 1 2.
+ <_>
+ 14 19 6 1 2.
+ <_>
+
+ <_>
+ 9 8 4 1 -1.
+ <_>
+ 10 9 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 8 19 3 1 2.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 1 2 1 18 2.
+ <_>
+
+ <_>
+ 0 19 12 1 -1.
+ <_>
+ 3 19 6 1 2.
+ <_>
+
+ <_>
+ 3 12 6 1 -1.
+ <_>
+ 3 12 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 11 14 5 -1.
+ <_>
+ 13 11 7 5 2.
+ <_>
+
+ <_>
+ 13 4 6 10 -1.
+ <_>
+ 15 4 2 10 3.
+ <_>
+
+ <_>
+ 0 0 6 1 -1.
+ <_>
+ 3 0 3 1 2.
+ <_>
+
+ <_>
+ 15 7 1 12 -1.
+ <_>
+ 15 10 1 6 2.
+ <_>
+
+ <_>
+ 14 9 4 2 -1.
+ <_>
+ 15 9 2 2 2.
+ <_>
+
+ <_>
+ 6 9 9 11 -1.
+ <_>
+ 9 9 3 11 3.
+ <_>
+
+ <_>
+ 12 10 2 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+ 13 11 1 1 2.
+ <_>
+
+ <_>
+ 2 3 6 13 -1.
+ <_>
+ 5 3 3 13 2.
+ <_>
+
+ <_>
+ 16 7 4 3 -1.
+ <_>
+ 16 8 4 1 3.
+ <_>
+
+ <_>
+ 6 7 2 6 -1.
+ <_>
+ 7 7 1 6 2.
+ <_>
+
+ <_>
+ 17 0 3 1 -1.
+ <_>
+ 18 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 16 1 1 2.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 12 2 8 2 -1.
+ <_>
+ 12 2 4 1 2.
+ <_>
+ 16 3 4 1 2.
+ <_>
+
+ <_>
+ 4 1 10 4 -1.
+ <_>
+ 4 2 10 2 2.
+ <_>
+
+ <_>
+ 4 0 2 3 -1.
+ <_>
+ 3 1 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 7 3 8 -1.
+ <_>
+ 10 9 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 15 2 2 -1.
+ <_>
+ 1 15 1 1 2.
+ <_>
+ 2 16 1 1 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 0 8 2 12 -1.
+ <_>
+ 0 11 2 6 2.
+ <_>
+
+ <_>
+ 10 6 4 8 -1.
+ <_>
+ 10 6 2 4 2.
+ <_>
+ 12 10 2 4 2.
+ <_>
+
+ <_>
+ 12 6 2 4 -1.
+ <_>
+ 12 6 1 2 2.
+ <_>
+ 13 8 1 2 2.
+ <_>
+
+ <_>
+ 3 12 4 2 -1.
+ <_>
+ 3 12 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 8 1 -1.
+ <_>
+ 9 9 4 1 2.
+ <_>
+
+ <_>
+ 3 1 3 16 -1.
+ <_>
+ 4 1 1 16 3.
+ <_>
+
+ <_>
+ 8 10 6 9 -1.
+ <_>
+ 10 10 2 9 3.
+ <_>
+
+ <_>
+ 16 14 3 3 -1.
+ <_>
+ 17 14 1 3 3.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 14 11 6 6 2.
+ <_>
+
+ <_>
+ 14 19 6 1 -1.
+ <_>
+ 16 19 2 1 3.
+ <_>
+
+ <_>
+ 5 8 8 5 -1.
+ <_>
+ 9 8 4 5 2.
+ <_>
+
+ <_>
+ 9 3 8 3 -1.
+ <_>
+ 11 5 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 9 6 10 -1.
+ <_>
+ 9 14 6 5 2.
+ <_>
+
+ <_>
+ 16 8 3 2 -1.
+ <_>
+ 17 8 1 2 3.
+ <_>
+
+ <_>
+ 3 0 3 2 -1.
+ <_>
+ 4 0 1 2 3.
+ <_>
+
+ <_>
+ 13 10 2 1 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+
+ <_>
+ 17 17 2 3 -1.
+ <_>
+ 17 18 2 1 3.
+ <_>
+
+ <_>
+ 15 14 2 2 -1.
+ <_>
+ 15 14 1 1 2.
+ <_>
+ 16 15 1 1 2.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 16 18 2 1 2.
+ <_>
+ 18 19 2 1 2.
+ <_>
+
+ <_>
+ 4 17 3 2 -1.
+ <_>
+ 5 17 1 2 3.
+ <_>
+
+ <_>
+ 1 0 11 2 -1.
+ <_>
+ 1 1 11 1 2.
+ <_>
+
+ <_>
+ 2 0 10 2 -1.
+ <_>
+ 2 1 10 1 2.
+ <_>
+
+ <_>
+ 4 10 12 1 -1.
+ <_>
+ 8 10 4 1 3.
+ <_>
+
+ <_>
+ 2 9 4 6 -1.
+ <_>
+ 2 9 2 3 2.
+ <_>
+ 4 12 2 3 2.
+ <_>
+
+ <_>
+ 15 6 4 14 -1.
+ <_>
+ 15 6 2 7 2.
+ <_>
+ 17 13 2 7 2.
+ <_>
+
+ <_>
+ 10 2 6 12 -1.
+ <_>
+ 12 6 2 4 9.
+ <_>
+
+ <_>
+ 8 5 6 15 -1.
+ <_>
+ 10 10 2 5 9.
+ <_>
+
+ <_>
+ 17 8 3 5 -1.
+ <_>
+ 18 9 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 12 8 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 17 8 3 12 -1.
+ <_>
+ 18 8 1 12 3.
+ <_>
+
+ <_>
+ 5 8 3 4 -1.
+ <_>
+ 5 10 3 2 2.
+ <_>
+
+ <_>
+ 16 0 4 6 -1.
+ <_>
+ 16 0 2 3 2.
+ <_>
+ 18 3 2 3 2.
+ <_>
+
+ <_>
+ 15 0 5 10 -1.
+ <_>
+ 15 5 5 5 2.
+ <_>
+
+ <_>
+ 14 8 2 3 -1.
+ <_>
+ 15 8 1 3 2.
+ <_>
+
+ <_>
+ 3 1 14 3 -1.
+ <_>
+ 2 2 14 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 2 8 6 12 -1.
+ <_>
+ 4 8 2 12 3.
+ <_>
+
+ <_>
+ 8 7 6 5 -1.
+ <_>
+ 10 9 2 5 3.
+ 1
+ <_>
+
+ <_>
+ 9 8 1 12 -1.
+ <_>
+ 9 12 1 4 3.
+ <_>
+
+ <_>
+ 1 0 2 4 -1.
+ <_>
+ 2 0 1 4 2.
+ <_>
+
+ <_>
+ 6 8 8 2 -1.
+ <_>
+ 8 8 4 2 2.
+ <_>
+
+ <_>
+ 4 6 4 6 -1.
+ <_>
+ 5 6 2 6 2.
+ <_>
+
+ <_>
+ 12 1 4 6 -1.
+ <_>
+ 13 1 2 6 2.
+ <_>
+
+ <_>
+ 3 0 9 2 -1.
+ <_>
+ 3 0 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 0 4 2 -1.
+ <_>
+ 12 1 4 1 2.
+ <_>
+
+ <_>
+ 14 18 2 2 -1.
+ <_>
+ 14 19 2 1 2.
+ <_>
+
+ <_>
+ 12 3 8 4 -1.
+ <_>
+ 12 5 8 2 2.
+ <_>
+
+ <_>
+ 4 11 1 2 -1.
+ <_>
+ 4 11 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 4 9 6 -1.
+ <_>
+ 11 4 3 6 3.
+ <_>
+
+ <_>
+ 5 10 2 6 -1.
+ <_>
+ 5 10 1 3 2.
+ <_>
+ 6 13 1 3 2.
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 6 10 2 3 2.
+ <_>
+
+ <_>
+ 12 4 3 1 -1.
+ <_>
+ 13 4 1 1 3.
+ <_>
+
+ <_>
+ 2 11 18 6 -1.
+ <_>
+ 2 13 18 2 3.
+ <_>
+
+ <_>
+ 8 6 10 14 -1.
+ <_>
+ 8 6 5 7 2.
+ <_>
+ 13 13 5 7 2.
+ <_>
+
+ <_>
+ 2 2 12 2 -1.
+ <_>
+ 2 2 6 1 2.
+ <_>
+ 8 3 6 1 2.
+ <_>
+
+ <_>
+ 10 7 6 10 -1.
+ <_>
+ 10 7 3 5 2.
+ <_>
+ 13 12 3 5 2.
+ <_>
+
+ <_>
+ 1 2 4 4 -1.
+ <_>
+ 3 2 2 4 2.
+ <_>
+
+ <_>
+ 3 0 13 2 -1.
+ <_>
+ 3 1 13 1 2.
+ <_>
+
+ <_>
+ 3 2 11 3 -1.
+ <_>
+ 3 3 11 1 3.
+ <_>
+
+ <_>
+ 14 8 3 4 -1.
+ <_>
+ 14 9 3 2 2.
+ <_>
+
+ <_>
+ 9 8 10 4 -1.
+ <_>
+ 9 9 10 2 2.
+ <_>
+
+ <_>
+ 6 8 6 12 -1.
+ <_>
+ 8 8 2 12 3.
+ <_>
+
+ <_>
+ 4 7 3 3 -1.
+ <_>
+ 5 8 1 1 9.
+ <_>
+
+ <_>
+ 1 5 12 15 -1.
+ <_>
+ 4 5 6 15 2.
+ <_>
+
+ <_>
+ 8 8 8 2 -1.
+ <_>
+ 10 8 4 2 2.
+ <_>
+
+ <_>
+ 18 0 2 6 -1.
+ <_>
+ 19 0 1 6 2.
+ <_>
+
+ <_>
+ 6 1 12 5 -1.
+ <_>
+ 12 1 6 5 2.
+ <_>
+
+ <_>
+ 8 1 6 4 -1.
+ <_>
+ 10 1 2 4 3.
+ <_>
+
+ <_>
+ 17 5 3 2 -1.
+ <_>
+ 18 6 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 6 9 -1.
+ <_>
+ 8 4 6 3 3.
+ 1
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 1 1 2.
+ <_>
+ 17 17 1 1 2.
+ <_>
+
+ <_>
+ 18 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 9 7 4 2 2.
+ <_>
+
+ <_>
+ 8 3 1 16 -1.
+ <_>
+ 8 11 1 8 2.
+ <_>
+
+ <_>
+ 17 2 2 8 -1.
+ <_>
+ 17 2 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 5 3 4 2 -1.
+ <_>
+ 7 3 2 2 2.
+ <_>
+
+ <_>
+ 14 6 3 3 -1.
+ <_>
+ 15 7 1 1 9.
+ <_>
+
+ <_>
+ 2 0 8 9 -1.
+ <_>
+ 4 0 4 9 2.
+ <_>
+
+ <_>
+ 16 0 3 8 -1.
+ <_>
+ 17 0 1 8 3.
+ <_>
+
+ <_>
+ 16 0 3 8 -1.
+ <_>
+ 17 0 1 8 3.
+ <_>
+
+ <_>
+ 17 18 2 2 -1.
+ <_>
+ 18 18 1 2 2.
+ <_>
+
+ <_>
+ 11 10 8 4 -1.
+ <_>
+ 13 10 4 4 2.
+ <_>
+
+ <_>
+ 17 5 2 2 -1.
+ <_>
+ 17 6 2 1 2.
+ <_>
+
+ <_>
+ 12 9 4 3 -1.
+ <_>
+ 13 9 2 3 2.
+ <_>
+
+ <_>
+ 15 7 3 7 -1.
+ <_>
+ 16 7 1 7 3.
+ <_>
+
+ <_>
+ 1 5 4 6 -1.
+ <_>
+ 2 5 2 6 2.
+ <_>
+
+ <_>
+ 2 2 18 10 -1.
+ <_>
+ 2 2 9 5 2.
+ <_>
+ 11 7 9 5 2.
+ <_>
+
+ <_>
+ 8 4 2 3 -1.
+ <_>
+ 9 4 1 3 2.
+ <_>
+
+ <_>
+ 3 3 12 2 -1.
+ <_>
+ 6 6 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 3 12 6 -1.
+ <_>
+ 9 3 4 6 3.
+ <_>
+
+ <_>
+ 15 7 2 3 -1.
+ <_>
+ 15 8 2 1 3.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 12 4 3 2.
+ <_>
+
+ <_>
+ 1 15 6 4 -1.
+ <_>
+ 1 15 3 2 2.
+ <_>
+ 4 17 3 2 2.
+ <_>
+
+ <_>
+ 2 9 2 6 -1.
+ <_>
+ 3 9 1 6 2.
+ <_>
+
+ <_>
+ 1 18 3 2 -1.
+ <_>
+ 1 19 3 1 2.
+ <_>
+
+ <_>
+ 16 9 3 2 -1.
+ <_>
+ 17 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 10 3 4 -1.
+ <_>
+ 6 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 16 5 2 2 -1.
+ <_>
+ 16 5 1 1 2.
+ <_>
+ 17 6 1 1 2.
+ <_>
+
+ <_>
+ 0 1 2 8 -1.
+ <_>
+ 0 1 1 4 2.
+ <_>
+ 1 5 1 4 2.
+ <_>
+
+ <_>
+ 7 17 6 3 -1.
+ <_>
+ 9 17 2 3 3.
+ <_>
+
+ <_>
+ 1 2 3 1 -1.
+ <_>
+ 2 2 1 1 3.
+ <_>
+
+ <_>
+ 2 13 2 6 -1.
+ <_>
+ 2 13 1 3 2.
+ <_>
+ 3 16 1 3 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 2 10 16 10 -1.
+ <_>
+ 2 15 16 5 2.
+ <_>
+
+ <_>
+ 10 18 4 2 -1.
+ <_>
+ 12 18 2 2 2.
+ <_>
+
+ <_>
+ 6 6 4 8 -1.
+ <_>
+ 7 6 2 8 2.
+ <_>
+
+ <_>
+ 9 10 3 1 -1.
+ <_>
+ 10 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 13 4 3 -1.
+ <_>
+ 3 13 2 3 2.
+ <_>
+
+ <_>
+ 5 11 7 2 -1.
+ <_>
+ 5 12 7 1 2.
+ <_>
+
+ <_>
+ 1 9 3 3 -1.
+ <_>
+ 1 10 3 1 3.
+ <_>
+
+ <_>
+ 10 7 6 6 -1.
+ <_>
+ 12 9 2 2 9.
+ <_>
+
+ <_>
+ 5 7 2 4 -1.
+ <_>
+ 4 8 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 2 4 -1.
+ <_>
+ 5 10 1 2 2.
+ <_>
+ 6 12 1 2 2.
+ <_>
+
+ <_>
+ 14 16 2 2 -1.
+ <_>
+ 14 16 1 1 2.
+ <_>
+ 15 17 1 1 2.
+ <_>
+
+ <_>
+ 2 9 2 10 -1.
+ <_>
+ 2 9 1 5 2.
+ <_>
+ 3 14 1 5 2.
+ <_>
+
+ <_>
+ 14 17 4 2 -1.
+ <_>
+ 14 18 4 1 2.
+ <_>
+
+ <_>
+ 4 16 1 3 -1.
+ <_>
+ 3 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 12 4 3 -1.
+ <_>
+ 14 13 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 6 4 1 -1.
+ <_>
+ 17 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 9 6 -1.
+ <_>
+ 11 3 9 3 2.
+ <_>
+
+ <_>
+ 16 13 3 3 -1.
+ <_>
+ 15 14 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 7 3 6 -1.
+ <_>
+ 1 9 1 2 9.
+ <_>
+
+ <_>
+ 11 5 7 2 -1.
+ <_>
+ 11 6 7 1 2.
+ <_>
+
+ <_>
+ 6 17 6 3 -1.
+ <_>
+ 6 18 6 1 3.
+ <_>
+
+ <_>
+ 15 17 3 3 -1.
+ <_>
+ 16 18 1 1 9.
+ <_>
+
+ <_>
+ 7 4 6 1 -1.
+ <_>
+ 9 4 2 1 3.
+ <_>
+
+ <_>
+ 8 10 6 3 -1.
+ <_>
+ 10 10 2 3 3.
+ <_>
+
+ <_>
+ 1 5 1 4 -1.
+ <_>
+ 1 6 1 2 2.
+ <_>
+
+ <_>
+ 12 6 1 4 -1.
+ <_>
+ 12 8 1 2 2.
+ <_>
+
+ <_>
+ 2 6 3 1 -1.
+ <_>
+ 3 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 1 2 -1.
+ <_>
+ 9 8 1 1 2.
+ <_>
+
+ <_>
+ 2 2 12 1 -1.
+ <_>
+ 8 2 6 1 2.
+ <_>
+
+ <_>
+ 18 0 2 4 -1.
+ <_>
+ 18 0 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 6 2 1 -1.
+ <_>
+ 1 6 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 1 4 -1.
+ <_>
+ 4 7 1 2 2.
+ <_>
+
+ <_>
+ 1 3 19 9 -1.
+ <_>
+ 1 6 19 3 3.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 0 5 4 10 2.
+ <_>
+
+ <_>
+ 0 9 12 2 -1.
+ <_>
+ 6 9 6 2 2.
+ <_>
+
+ <_>
+ 6 8 6 11 -1.
+ <_>
+ 8 8 2 11 3.
+ <_>
+
+ <_>
+ 9 7 9 1 -1.
+ <_>
+ 12 7 3 1 3.
+ <_>
+
+ <_>
+ 4 3 3 8 -1.
+ <_>
+ 5 3 1 8 3.
+ <_>
+
+ <_>
+ 7 3 2 11 -1.
+ <_>
+ 8 3 1 11 2.
+ <_>
+
+ <_>
+ 18 4 2 1 -1.
+ <_>
+ 18 4 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 8 4 9 -1.
+ <_>
+ 5 8 2 9 2.
+ <_>
+
+ <_>
+ 16 5 1 12 -1.
+ <_>
+ 12 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 2 19 2 1 -1.
+ <_>
+ 3 19 1 1 2.
+ <_>
+
+ <_>
+ 2 1 6 6 -1.
+ <_>
+ 5 1 3 6 2.
+ <_>
+
+ <_>
+ 11 0 8 1 -1.
+ <_>
+ 15 0 4 1 2.
+ <_>
+
+ <_>
+ 14 0 4 1 -1.
+ <_>
+ 16 0 2 1 2.
+ <_>
+
+ <_>
+ 5 4 12 1 -1.
+ <_>
+ 11 4 6 1 2.
+ <_>
+
+ <_>
+ 10 6 8 2 -1.
+ <_>
+ 10 6 4 1 2.
+ <_>
+ 14 7 4 1 2.
+ <_>
+
+ <_>
+ 6 0 9 3 -1.
+ <_>
+ 5 1 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 8 4 6 -1.
+ <_>
+ 2 8 2 6 2.
+ <_>
+
+ <_>
+ 2 8 3 12 -1.
+ <_>
+ 3 8 1 12 3.
+ <_>
+
+ <_>
+ 1 17 7 3 -1.
+ <_>
+ 1 18 7 1 3.
+ <_>
+
+ <_>
+ 1 16 8 2 -1.
+ <_>
+ 1 17 8 1 2.
+ <_>
+
+ <_>
+ 15 9 2 6 -1.
+ <_>
+ 15 9 1 3 2.
+ <_>
+ 16 12 1 3 2.
+ <_>
+
+ <_>
+ 5 10 12 1 -1.
+ <_>
+ 8 10 6 1 2.
+ <_>
+
+ <_>
+ 14 11 4 3 -1.
+ <_>
+ 15 11 2 3 2.
+ <_>
+
+ <_>
+ 2 2 3 15 -1.
+ <_>
+ 3 7 1 5 9.
+ <_>
+
+ <_>
+ 4 5 3 9 -1.
+ <_>
+ 5 8 1 3 9.
+ <_>
+
+ <_>
+ 1 8 12 2 -1.
+ <_>
+ 7 8 6 2 2.
+ <_>
+
+ <_>
+ 15 15 4 5 -1.
+ <_>
+ 17 15 2 5 2.
+ <_>
+
+ <_>
+ 10 13 9 7 -1.
+ <_>
+ 13 13 3 7 3.
+ <_>
+
+ <_>
+ 9 5 5 3 -1.
+ <_>
+ 8 6 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 0 8 4 -1.
+ <_>
+ 9 2 8 2 2.
+ <_>
+
+ <_>
+ 6 3 2 6 -1.
+ <_>
+ 4 5 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 10 1 4 -1.
+ <_>
+ 10 11 1 2 2.
+ <_>
+
+ <_>
+ 1 17 5 3 -1.
+ <_>
+ 1 18 5 1 3.
+ <_>
+
+ <_>
+ 2 4 10 1 -1.
+ <_>
+ 2 4 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 18 1 2 -1.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 5 7 1 3 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 6 11 4 3 -1.
+ <_>
+ 6 11 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 3 4 -1.
+ <_>
+ 17 18 3 2 2.
+ <_>
+
+ <_>
+ 6 11 11 4 -1.
+ <_>
+ 6 12 11 2 2.
+ <_>
+
+ <_>
+ 6 5 6 1 -1.
+ <_>
+ 8 5 2 1 3.
+ <_>
+
+ <_>
+ 17 12 2 8 -1.
+ <_>
+ 17 16 2 4 2.
+ <_>
+
+ <_>
+ 17 6 2 4 -1.
+ <_>
+ 17 8 2 2 2.
+ <_>
+
+ <_>
+ 10 8 6 2 -1.
+ <_>
+ 10 9 6 1 2.
+ <_>
+
+ <_>
+ 5 8 3 12 -1.
+ <_>
+ 5 12 3 4 3.
+ <_>
+
+ <_>
+ 19 7 1 4 -1.
+ <_>
+ 19 9 1 2 2.
+ <_>
+
+ <_>
+ 1 10 6 1 -1.
+ <_>
+ 3 10 2 1 3.
+ <_>
+
+ <_>
+ 7 10 3 2 -1.
+ <_>
+ 7 10 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 2 8 11 -1.
+ <_>
+ 6 2 4 11 2.
+ <_>
+
+ <_>
+ 18 4 2 7 -1.
+ <_>
+ 18 4 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 11 3 2 8 -1.
+ <_>
+ 11 7 2 4 2.
+ <_>
+
+ <_>
+ 16 6 3 3 -1.
+ <_>
+ 15 7 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 8 3 7 -1.
+ <_>
+ 11 9 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 14 9 2 6 -1.
+ <_>
+ 15 9 1 6 2.
+ <_>
+
+ <_>
+ 9 17 6 1 -1.
+ <_>
+ 11 17 2 1 3.
+ <_>
+
+ <_>
+ 11 4 9 9 -1.
+ <_>
+ 14 7 3 3 9.
+ <_>
+
+ <_>
+ 14 7 4 7 -1.
+ <_>
+ 15 7 2 7 2.
+ <_>
+
+ <_>
+ 16 2 3 6 -1.
+ <_>
+ 17 2 1 6 3.
+ <_>
+
+ <_>
+ 14 13 2 7 -1.
+ <_>
+ 15 13 1 7 2.
+ <_>
+
+ <_>
+ 0 4 18 12 -1.
+ <_>
+ 6 8 6 4 9.
+ <_>
+
+ <_>
+ 3 6 7 9 -1.
+ <_>
+ 3 9 7 3 3.
+ <_>
+
+ <_>
+ 17 4 3 4 -1.
+ <_>
+ 18 4 1 4 3.
+ <_>
+
+ <_>
+ 5 15 3 3 -1.
+ <_>
+ 6 15 1 3 3.
+ <_>
+
+ <_>
+ 0 12 2 1 -1.
+ <_>
+ 1 12 1 1 2.
+ <_>
+
+ <_>
+ 5 8 11 4 -1.
+ <_>
+ 5 9 11 2 2.
+ <_>
+
+ <_>
+ 8 13 4 7 -1.
+ <_>
+ 9 13 2 7 2.
+ <_>
+
+ <_>
+ 7 7 5 2 -1.
+ <_>
+ 7 8 5 1 2.
+ <_>
+
+ <_>
+ 5 9 14 3 -1.
+ <_>
+ 5 10 14 1 3.
+ <_>
+
+ <_>
+ 15 9 5 4 -1.
+ <_>
+ 15 10 5 2 2.
+ <_>
+
+ <_>
+ 13 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 4 4 -1.
+ <_>
+ 3 12 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 7 2 13 -1.
+ <_>
+ 14 7 1 13 2.
+ <_>
+
+ <_>
+ 8 8 5 2 -1.
+ <_>
+ 8 9 5 1 2.
+ <_>
+
+ <_>
+ 5 14 6 4 -1.
+ <_>
+ 7 14 2 4 3.
+ <_>
+
+ <_>
+ 6 16 3 1 -1.
+ <_>
+ 7 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 18 3 -1.
+ <_>
+ 7 1 6 1 9.
+ <_>
+
+ <_>
+ 8 0 2 15 -1.
+ <_>
+ 8 5 2 5 3.
+ <_>
+
+ <_>
+ 13 1 2 4 -1.
+ <_>
+ 13 2 2 2 2.
+ <_>
+
+ <_>
+ 11 11 9 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+
+ <_>
+ 2 11 3 2 -1.
+ <_>
+ 2 11 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 17 16 1 -1.
+ <_>
+ 8 17 8 1 2.
+ <_>
+
+ <_>
+ 4 16 8 3 -1.
+ <_>
+ 8 16 4 3 2.
+ <_>
+
+ <_>
+ 4 2 4 1 -1.
+ <_>
+ 6 2 2 1 2.
+ <_>
+
+ <_>
+ 6 4 9 3 -1.
+ <_>
+ 6 5 9 1 3.
+ <_>
+
+ <_>
+ 6 1 4 1 -1.
+ <_>
+ 7 1 2 1 2.
+ <_>
+
+ <_>
+ 3 0 7 3 -1.
+ <_>
+ 2 1 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 9 3 2 -1.
+ <_>
+ 7 9 1 2 3.
+ <_>
+
+ <_>
+ 18 3 2 10 -1.
+ <_>
+ 18 3 1 5 2.
+ <_>
+ 19 8 1 5 2.
+ <_>
+
+ <_>
+ 0 9 10 4 -1.
+ <_>
+ 0 9 5 2 2.
+ <_>
+ 5 11 5 2 2.
+ <_>
+
+ <_>
+ 0 3 8 6 -1.
+ <_>
+ 0 3 4 3 2.
+ <_>
+ 4 6 4 3 2.
+ <_>
+
+ <_>
+ 14 8 6 4 -1.
+ <_>
+ 14 10 6 2 2.
+ <_>
+
+ <_>
+ 17 6 1 2 -1.
+ <_>
+ 17 6 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 4 1 10 -1.
+ <_>
+ 14 9 1 5 2.
+ <_>
+
+ <_>
+ 16 15 2 1 -1.
+ <_>
+ 16 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 11 4 8 -1.
+ <_>
+ 5 11 2 8 2.
+ <_>
+
+ <_>
+ 6 13 8 1 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 13 0 6 11 -1.
+ <_>
+ 16 0 3 11 2.
+ <_>
+
+ <_>
+ 10 1 8 12 -1.
+ <_>
+ 10 4 8 6 2.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 0 15 2 4 -1.
+ <_>
+ 0 16 2 2 2.
+ <_>
+
+ <_>
+ 16 0 1 2 -1.
+ <_>
+ 16 1 1 1 2.
+ <_>
+
+ <_>
+ 10 3 10 4 -1.
+ <_>
+ 10 3 5 2 2.
+ <_>
+ 15 5 5 2 2.
+ <_>
+
+ <_>
+ 16 7 3 3 -1.
+ <_>
+ 15 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 12 6 -1.
+ <_>
+ 4 0 6 6 2.
+ <_>
+
+ <_>
+ 7 0 12 8 -1.
+ <_>
+ 10 0 6 8 2.
+ <_>
+
+ <_>
+ 5 8 2 3 -1.
+ <_>
+ 5 8 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 15 0 3 12 -1.
+ <_>
+ 16 0 1 12 3.
+ <_>
+
+ <_>
+ 14 1 3 5 -1.
+ <_>
+ 15 2 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 1 2.
+ <_>
+ 19 19 1 1 2.
+ <_>
+
+ <_>
+ 6 15 2 2 -1.
+ <_>
+ 6 15 1 1 2.
+ <_>
+ 7 16 1 1 2.
+ <_>
+
+ <_>
+ 4 16 2 2 -1.
+ <_>
+ 4 16 1 1 2.
+ <_>
+ 5 17 1 1 2.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 8 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 8 3 8 -1.
+ <_>
+ 3 10 3 4 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 17 4 1 8 -1.
+ <_>
+ 17 4 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 15 10 4 -1.
+ <_>
+ 3 15 5 2 2.
+ <_>
+ 8 17 5 2 2.
+ <_>
+
+ <_>
+ 13 0 4 1 -1.
+ <_>
+ 15 0 2 1 2.
+ <_>
+
+ <_>
+ 8 5 8 7 -1.
+ <_>
+ 8 5 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 1 2.
+ <_>
+ 17 8 1 1 2.
+ <_>
+
+ <_>
+ 15 10 2 3 -1.
+ <_>
+ 14 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 9 2 3 -1.
+ <_>
+ 11 10 2 1 3.
+ <_>
+
+ <_>
+ 17 8 3 3 -1.
+ <_>
+ 17 9 3 1 3.
+ <_>
+
+ <_>
+ 4 1 2 12 -1.
+ <_>
+ 4 4 2 6 2.
+ <_>
+
+ <_>
+ 11 6 2 2 -1.
+ <_>
+ 11 6 1 1 2.
+ <_>
+ 12 7 1 1 2.
+ <_>
+
+ <_>
+ 5 2 9 12 -1.
+ <_>
+ 5 8 9 6 2.
+ <_>
+
+ <_>
+ 13 5 6 4 -1.
+ <_>
+ 13 5 3 2 2.
+ <_>
+ 16 7 3 2 2.
+ <_>
+
+ <_>
+ 14 0 4 3 -1.
+ <_>
+ 13 1 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 5 10 12 -1.
+ <_>
+ 3 5 5 6 2.
+ <_>
+ 8 11 5 6 2.
+ <_>
+
+ <_>
+ 0 9 9 6 -1.
+ <_>
+ 3 11 3 2 9.
+ <_>
+
+ <_>
+ 1 4 8 7 -1.
+ <_>
+ 5 4 4 7 2.
+ <_>
+
+ <_>
+ 15 7 4 5 -1.
+ <_>
+ 16 7 2 5 2.
+ <_>
+
+ <_>
+ 18 6 2 4 -1.
+ <_>
+ 19 6 1 4 2.
+ <_>
+
+ <_>
+ 16 9 2 3 -1.
+ <_>
+ 16 9 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 2 3 17 -1.
+ <_>
+ 4 2 1 17 3.
+ <_>
+
+ <_>
+ 18 9 2 10 -1.
+ <_>
+ 18 14 2 5 2.
+ <_>
+
+ <_>
+ 6 0 14 4 -1.
+ <_>
+ 5 1 14 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 8 3 1 -1.
+ <_>
+ 18 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 9 13 2 3 2.
+ <_>
+
+ <_>
+ 6 8 6 3 -1.
+ <_>
+ 5 9 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 7 10 1 -1.
+ <_>
+ 10 7 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 7 6 5 -1.
+ <_>
+ 12 7 3 5 2.
+ <_>
+
+ <_>
+ 13 5 1 12 -1.
+ <_>
+ 13 5 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 13 6 5 -1.
+ <_>
+ 4 13 3 5 2.
+ <_>
+
+ <_>
+ 4 6 4 3 -1.
+ <_>
+ 5 7 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 16 2 3 -1.
+ <_>
+ 4 16 1 3 2.
+ <_>
+
+ <_>
+ 7 2 5 4 -1.
+ <_>
+ 7 2 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 3 7 -1.
+ <_>
+ 4 13 1 7 3.
+ <_>
+
+ <_>
+ 16 6 1 3 -1.
+ <_>
+ 16 7 1 1 3.
+ <_>
+
+ <_>
+ 1 6 8 3 -1.
+ <_>
+ 5 6 4 3 2.
+ <_>
+
+ <_>
+ 14 9 3 4 -1.
+ <_>
+ 13 10 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 10 4 5 -1.
+ <_>
+ 9 10 2 5 2.
+ <_>
+
+ <_>
+ 0 11 13 6 -1.
+ <_>
+ 0 14 13 3 2.
+ <_>
+
+ <_>
+ 2 3 1 2 -1.
+ <_>
+ 2 3 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 15 12 4 -1.
+ <_>
+ 6 15 6 4 2.
+ <_>
+
+ <_>
+ 6 7 4 13 -1.
+ <_>
+ 7 7 2 13 2.
+ <_>
+
+ <_>
+ 17 15 2 2 -1.
+ <_>
+ 17 15 1 1 2.
+ <_>
+ 18 16 1 1 2.
+ <_>
+
+ <_>
+ 12 15 5 2 -1.
+ <_>
+ 12 16 5 1 2.
+ <_>
+
+ <_>
+ 13 12 1 6 -1.
+ <_>
+ 13 14 1 2 3.
+ <_>
+
+ <_>
+ 15 0 1 9 -1.
+ <_>
+ 12 3 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 4 9 2 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 12 10 6 1 -1.
+ <_>
+ 14 10 2 1 3.
+ <_>
+
+ <_>
+ 11 11 2 3 -1.
+ <_>
+ 11 11 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 12 9 6 2 -1.
+ <_>
+ 14 9 2 2 3.
+ <_>
+
+ <_>
+ 12 6 2 12 -1.
+ <_>
+ 12 6 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 11 2 8 -1.
+ <_>
+ 11 11 1 4 2.
+ <_>
+ 12 15 1 4 2.
+ <_>
+
+ <_>
+ 5 3 6 3 -1.
+ <_>
+ 7 3 2 3 3.
+ <_>
+
+ <_>
+ 8 7 12 6 -1.
+ <_>
+ 8 9 12 2 3.
+ <_>
+
+ <_>
+ 3 15 1 2 -1.
+ <_>
+ 3 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 1 8 3 -1.
+ <_>
+ 14 1 4 3 2.
+ <_>
+
+ <_>
+ 0 0 12 7 -1.
+ <_>
+ 4 0 4 7 3.
+ <_>
+
+ <_>
+ 18 2 2 6 -1.
+ <_>
+ 18 2 1 3 2.
+ <_>
+ 19 5 1 3 2.
+ <_>
+
+ <_>
+ 4 0 6 16 -1.
+ <_>
+ 4 0 3 8 2.
+ <_>
+ 7 8 3 8 2.
+ <_>
+
+ <_>
+ 3 16 6 4 -1.
+ <_>
+ 5 16 2 4 3.
+ <_>
+
+ <_>
+ 4 7 6 3 -1.
+ <_>
+ 3 8 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 6 5 3 -1.
+ <_>
+ 10 7 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 3 12 8 -1.
+ <_>
+ 3 7 12 4 2.
+ <_>
+
+ <_>
+ 12 8 2 3 -1.
+ <_>
+ 12 9 2 1 3.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 6 10 1 2 2.
+ <_>
+
+ <_>
+ 17 4 1 14 -1.
+ <_>
+ 17 4 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 10 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 4 9 -1.
+ <_>
+ 7 5 2 9 2.
+ <_>
+
+ <_>
+ 7 5 12 1 -1.
+ <_>
+ 7 5 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 16 2 2 -1.
+ <_>
+ 2 16 1 1 2.
+ <_>
+ 3 17 1 1 2.
+ <_>
+
+ <_>
+ 15 5 3 3 -1.
+ <_>
+ 16 6 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 10 7 3 8 -1.
+ <_>
+ 11 8 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 7 3 3 3 -1.
+ <_>
+ 7 4 3 1 3.
+ <_>
+
+ <_>
+ 13 3 5 6 -1.
+ <_>
+ 13 5 5 2 3.
+ <_>
+
+ <_>
+ 0 15 5 3 -1.
+ <_>
+ 0 16 5 1 3.
+ <_>
+
+ <_>
+ 2 18 18 1 -1.
+ <_>
+ 11 18 9 1 2.
+ <_>
+
+ <_>
+ 11 14 4 2 -1.
+ <_>
+ 13 14 2 2 2.
+ <_>
+
+ <_>
+ 3 15 7 2 -1.
+ <_>
+ 3 16 7 1 2.
+ <_>
+
+ <_>
+ 13 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 0 3 12 -1.
+ <_>
+ 14 1 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 3 5 -1.
+ <_>
+ 10 5 1 5 3.
+ <_>
+
+ <_>
+ 18 14 2 4 -1.
+ <_>
+ 18 14 1 2 2.
+ <_>
+ 19 16 1 2 2.
+ <_>
+
+ <_>
+ 16 19 4 1 -1.
+ <_>
+ 18 19 2 1 2.
+ <_>
+
+ <_>
+ 17 15 2 5 -1.
+ <_>
+ 18 15 1 5 2.
+ <_>
+
+ <_>
+ 0 17 6 3 -1.
+ <_>
+ 0 18 6 1 3.
+ <_>
+
+ <_>
+ 0 4 1 14 -1.
+ <_>
+ 0 11 1 7 2.
+ <_>
+
+ <_>
+ 5 11 3 5 -1.
+ <_>
+ 6 12 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 12 8 3 1 -1.
+ <_>
+ 13 8 1 1 3.
+ <_>
+
+ <_>
+ 18 0 2 7 -1.
+ <_>
+ 19 0 1 7 2.
+ <_>
+
+ <_>
+ 3 8 6 10 -1.
+ <_>
+ 3 13 6 5 2.
+ <_>
+
+ <_>
+ 17 0 2 5 -1.
+ <_>
+ 18 0 1 5 2.
+ <_>
+
+ <_>
+ 18 0 2 12 -1.
+ <_>
+ 18 0 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 3 2 -1.
+ <_>
+ 2 1 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 1 5 12 -1.
+ <_>
+ 1 4 5 6 2.
+ <_>
+
+ <_>
+ 2 5 1 14 -1.
+ <_>
+ 2 12 1 7 2.
+ <_>
+
+ <_>
+ 6 0 9 7 -1.
+ <_>
+ 9 0 3 7 3.
+ <_>
+
+ <_>
+ 16 1 4 6 -1.
+ <_>
+ 16 1 2 3 2.
+ <_>
+ 18 4 2 3 2.
+ <_>
+
+ <_>
+ 16 0 4 6 -1.
+ <_>
+ 16 0 2 3 2.
+ <_>
+ 18 3 2 3 2.
+ <_>
+
+ <_>
+ 18 0 1 2 -1.
+ <_>
+ 18 1 1 1 2.
+ <_>
+
+ <_>
+ 17 1 1 3 -1.
+ <_>
+ 17 2 1 1 3.
+ <_>
+
+ <_>
+ 1 8 3 4 -1.
+ <_>
+ 1 9 3 2 2.
+ <_>
+
+ <_>
+ 6 0 4 15 -1.
+ <_>
+ 8 0 2 15 2.
+ <_>
+
+ <_>
+ 18 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ <_>
+
+ <_>
+ 3 7 6 3 -1.
+ <_>
+ 5 8 2 1 9.
+ <_>
+
+ <_>
+ 0 5 12 12 -1.
+ <_>
+ 4 5 4 12 3.
+ <_>
+
+ <_>
+ 14 9 1 3 -1.
+ <_>
+ 13 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 4 2 2 -1.
+ <_>
+ 4 5 2 1 2.
+ <_>
+
+ <_>
+ 6 4 2 10 -1.
+ <_>
+ 6 9 2 5 2.
+ <_>
+
+ <_>
+ 14 6 6 14 -1.
+ <_>
+ 14 6 3 7 2.
+ <_>
+ 17 13 3 7 2.
+ <_>
+
+ <_>
+ 6 7 11 8 -1.
+ <_>
+ 6 11 11 4 2.
+ <_>
+
+ <_>
+ 17 8 3 5 -1.
+ <_>
+ 18 9 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 10 4 10 2 -1.
+ <_>
+ 10 4 5 1 2.
+ <_>
+ 15 5 5 1 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 5 8 4 2.
+ <_>
+
+ <_>
+ 19 16 1 4 -1.
+ <_>
+ 19 18 1 2 2.
+ <_>
+
+ <_>
+ 19 0 1 10 -1.
+ <_>
+ 19 5 1 5 2.
+ <_>
+
+ <_>
+ 17 0 3 3 -1.
+ <_>
+ 17 1 3 1 3.
+ <_>
+
+ <_>
+ 9 2 3 1 -1.
+ <_>
+ 10 2 1 1 3.
+ <_>
+
+ <_>
+ 2 0 18 5 -1.
+ <_>
+ 8 0 6 5 3.
+ <_>
+
+ <_>
+ 15 8 3 9 -1.
+ <_>
+ 15 11 3 3 3.
+ <_>
+
+ <_>
+ 13 11 1 8 -1.
+ <_>
+ 13 13 1 4 2.
+ <_>
+
+ <_>
+ 10 14 8 3 -1.
+ <_>
+ 14 14 4 3 2.
+ <_>
+
+ <_>
+ 7 8 2 8 -1.
+ <_>
+ 7 8 1 4 2.
+ <_>
+ 8 12 1 4 2.
+ <_>
+
+ <_>
+ 2 18 4 2 -1.
+ <_>
+ 2 18 2 1 2.
+ <_>
+ 4 19 2 1 2.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 4 6 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 1 4 1 -1.
+ <_>
+ 17 1 2 1 2.
+ <_>
+
+ <_>
+ 7 1 4 3 -1.
+ <_>
+ 6 2 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 1 6 19 -1.
+ <_>
+ 6 1 3 19 2.
+ <_>
+
+ <_>
+ 8 3 5 8 -1.
+ <_>
+ 8 7 5 4 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 0 0 10 1 2.
+ <_>
+ 10 1 10 1 2.
+ <_>
+
+ <_>
+ 7 0 8 2 -1.
+ <_>
+ 7 0 4 1 2.
+ <_>
+ 11 1 4 1 2.
+ <_>
+
+ <_>
+ 3 6 3 3 -1.
+ <_>
+ 4 7 1 1 9.
+ <_>
+
+ <_>
+ 1 6 2 8 -1.
+ <_>
+ 1 6 1 4 2.
+ <_>
+ 2 10 1 4 2.
+ <_>
+
+ <_>
+ 18 9 2 3 -1.
+ <_>
+ 17 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 2 4 12 -1.
+ <_>
+ 13 5 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 7 20 -1.
+ <_>
+ 8 5 7 10 2.
+ <_>
+
+ <_>
+ 11 6 4 3 -1.
+ <_>
+ 11 7 4 1 3.
+ <_>
+
+ <_>
+ 12 2 4 12 -1.
+ <_>
+ 12 8 4 6 2.
+ <_>
+
+ <_>
+ 11 9 7 4 -1.
+ <_>
+ 11 10 7 2 2.
+ <_>
+
+ <_>
+ 2 9 1 2 -1.
+ <_>
+ 2 10 1 1 2.
+ <_>
+
+ <_>
+ 6 9 5 3 -1.
+ <_>
+ 6 10 5 1 3.
+ <_>
+
+ <_>
+ 8 6 12 2 -1.
+ <_>
+ 12 6 4 2 3.
+ <_>
+
+ <_>
+ 0 11 4 4 -1.
+ <_>
+ 0 11 2 2 2.
+ <_>
+ 2 13 2 2 2.
+ <_>
+
+ <_>
+ 0 9 4 8 -1.
+ <_>
+ 0 9 2 4 2.
+ <_>
+ 2 13 2 4 2.
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 7 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 2 7 -1.
+ <_>
+ 1 1 1 7 2.
+ <_>
+
+ <_>
+ 1 1 8 2 -1.
+ <_>
+ 1 1 4 1 2.
+ <_>
+ 5 2 4 1 2.
+ <_>
+
+ <_>
+ 0 2 4 10 -1.
+ <_>
+ 2 2 2 10 2.
+ <_>
+
+ <_>
+ 15 11 4 9 -1.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 8 1 12 3 -1.
+ <_>
+ 8 1 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 3 6 -1.
+ <_>
+ 1 1 1 6 3.
+ <_>
+
+ <_>
+ 2 15 3 1 -1.
+ <_>
+ 3 15 1 1 3.
+ <_>
+
+ <_>
+ 2 1 11 3 -1.
+ <_>
+ 2 2 11 1 3.
+ <_>
+
+ <_>
+ 6 6 1 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 13 8 3 3 -1.
+ <_>
+ 14 9 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 0 3 12 6 -1.
+ <_>
+ 4 5 4 2 9.
+ <_>
+
+ <_>
+ 2 6 9 3 -1.
+ <_>
+ 5 6 3 3 3.
+ <_>
+
+ <_>
+ 1 5 5 4 -1.
+ <_>
+ 1 6 5 2 2.
+ <_>
+
+ <_>
+ 14 0 2 2 -1.
+ <_>
+ 15 0 1 2 2.
+ <_>
+
+ <_>
+ 5 0 15 2 -1.
+ <_>
+ 10 0 5 2 3.
+ <_>
+
+ <_>
+ 10 5 8 1 -1.
+ <_>
+ 14 5 4 1 2.
+ <_>
+
+ <_>
+ 0 15 12 3 -1.
+ <_>
+ 4 16 4 1 9.
+ <_>
+
+ <_>
+ 7 16 2 1 -1.
+ <_>
+ 8 16 1 1 2.
+ <_>
+
+ <_>
+ 0 8 2 12 -1.
+ <_>
+ 1 8 1 12 2.
+ <_>
+
+ <_>
+ 7 16 2 2 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+ 8 17 1 1 2.
+ <_>
+
+ <_>
+ 11 2 2 10 -1.
+ <_>
+ 11 2 1 5 2.
+ <_>
+ 12 7 1 5 2.
+ <_>
+
+ <_>
+ 7 1 2 13 -1.
+ <_>
+ 8 1 1 13 2.
+ <_>
+
+ <_>
+ 15 14 2 4 -1.
+ <_>
+ 14 15 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 8 10 2 -1.
+ <_>
+ 6 8 5 1 2.
+ <_>
+ 11 9 5 1 2.
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 7 7 8 2 2.
+ <_>
+
+ <_>
+ 9 5 4 2 -1.
+ <_>
+ 9 6 4 1 2.
+ <_>
+
+ <_>
+ 4 9 10 2 -1.
+ <_>
+ 4 9 5 1 2.
+ <_>
+ 9 10 5 1 2.
+ <_>
+
+ <_>
+ 14 4 6 2 -1.
+ <_>
+ 16 6 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 2 3 2 -1.
+ <_>
+ 10 3 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 1 2 12 -1.
+ <_>
+ 15 1 1 12 2.
+ <_>
+
+ <_>
+ 6 0 12 14 -1.
+ <_>
+ 10 0 4 14 3.
+ <_>
+
+ <_>
+ 16 5 3 4 -1.
+ <_>
+ 16 5 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 3 3 -1.
+ <_>
+ 1 4 1 1 9.
+ <_>
+
+ <_>
+ 5 5 8 6 -1.
+ <_>
+ 9 5 4 6 2.
+ <_>
+
+ <_>
+ 9 7 4 2 -1.
+ <_>
+ 10 7 2 2 2.
+ <_>
+
+ <_>
+ 0 18 18 2 -1.
+ <_>
+ 0 19 18 1 2.
+ <_>
+
+ <_>
+ 3 18 16 2 -1.
+ <_>
+ 3 19 16 1 2.
+ <_>
+
+ <_>
+ 13 17 6 3 -1.
+ <_>
+ 13 18 6 1 3.
+ <_>
+
+ <_>
+ 1 17 17 3 -1.
+ <_>
+ 1 18 17 1 3.
+ <_>
+
+ <_>
+ 15 8 1 4 -1.
+ <_>
+ 15 9 1 2 2.
+ <_>
+
+ <_>
+ 1 9 6 6 -1.
+ <_>
+ 1 9 3 3 2.
+ <_>
+ 4 12 3 3 2.
+ <_>
+
+ <_>
+ 8 15 12 2 -1.
+ <_>
+ 12 15 4 2 3.
+ <_>
+
+ <_>
+ 4 10 2 1 -1.
+ <_>
+ 5 10 1 1 2.
+ <_>
+
+ <_>
+ 5 11 2 1 -1.
+ <_>
+ 5 11 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 6 17 -1.
+ <_>
+ 11 0 2 17 3.
+ <_>
+
+ <_>
+ 4 1 4 8 -1.
+ <_>
+ 4 1 2 4 2.
+ <_>
+ 6 5 2 4 2.
+ <_>
+
+ <_>
+ 6 13 2 2 -1.
+ <_>
+ 6 13 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 19 2 1 -1.
+ <_>
+ 3 19 1 1 2.
+ <_>
+
+ <_>
+ 0 1 19 3 -1.
+ <_>
+ 0 2 19 1 3.
+ <_>
+
+ <_>
+ 4 8 13 6 -1.
+ <_>
+ 4 11 13 3 2.
+ <_>
+
+ <_>
+ 4 2 10 3 -1.
+ <_>
+ 4 3 10 1 3.
+ <_>
+
+ <_>
+ 4 4 15 9 -1.
+ <_>
+ 9 7 5 3 9.
+ <_>
+
+ <_>
+ 6 2 2 2 -1.
+ <_>
+ 6 2 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 2 3 18 -1.
+ <_>
+ 8 11 3 9 2.
+ <_>
+
+ <_>
+ 3 16 1 3 -1.
+ <_>
+ 3 17 1 1 3.
+ <_>
+
+ <_>
+ 3 12 15 2 -1.
+ <_>
+ 3 13 15 1 2.
+ <_>
+
+ <_>
+ 3 16 6 4 -1.
+ <_>
+ 3 16 3 2 2.
+ <_>
+ 6 18 3 2 2.
+ <_>
+
+ <_>
+ 16 0 2 9 -1.
+ <_>
+ 17 0 1 9 2.
+ <_>
+
+ <_>
+ 17 9 2 3 -1.
+ <_>
+ 17 10 2 1 3.
+ <_>
+
+ <_>
+ 14 4 4 4 -1.
+ <_>
+ 13 5 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 3 6 6 -1.
+ <_>
+ 11 3 3 3 2.
+ <_>
+ 14 6 3 3 2.
+ <_>
+
+ <_>
+ 3 15 1 4 -1.
+ <_>
+ 3 17 1 2 2.
+ <_>
+
+ <_>
+ 2 0 2 1 -1.
+ <_>
+ 3 0 1 1 2.
+ <_>
+
+ <_>
+ 4 9 3 2 -1.
+ <_>
+ 5 9 1 2 3.
+ <_>
+
+ <_>
+ 7 5 6 9 -1.
+ <_>
+ 9 8 2 3 9.
+ <_>
+
+ <_>
+ 11 7 2 2 -1.
+ <_>
+ 11 7 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 5 9 -1.
+ <_>
+ 0 14 5 3 3.
+ <_>
+
+ <_>
+ 8 10 4 1 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 4 3 1 4 -1.
+ <_>
+ 3 4 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 2 18 12 -1.
+ <_>
+ 1 2 9 6 2.
+ <_>
+ 10 8 9 6 2.
+ <_>
+
+ <_>
+ 5 2 1 4 -1.
+ <_>
+ 5 2 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 2 2 -1.
+ <_>
+ 1 2 1 2 2.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 4 3 12 2 2.
+ <_>
+
+ <_>
+ 7 7 3 3 -1.
+ <_>
+ 8 7 1 3 3.
+ <_>
+
+ <_>
+ 4 6 6 6 -1.
+ <_>
+ 6 6 2 6 3.
+ <_>
+
+ <_>
+ 0 6 2 3 -1.
+ <_>
+ 0 7 2 1 3.
+ <_>
+
+ <_>
+ 17 11 3 3 -1.
+ <_>
+ 17 12 3 1 3.
+ <_>
+
+ <_>
+ 16 0 3 9 -1.
+ <_>
+ 17 0 1 9 3.
+ <_>
+
+ <_>
+ 13 1 2 2 -1.
+ <_>
+ 14 1 1 2 2.
+ <_>
+
+ <_>
+ 4 5 8 9 -1.
+ <_>
+ 8 5 4 9 2.
+ <_>
+
+ <_>
+ 10 0 2 2 -1.
+ <_>
+ 11 0 1 2 2.
+ <_>
+
+ <_>
+ 10 3 4 4 -1.
+ <_>
+ 10 3 2 2 2.
+ <_>
+ 12 5 2 2 2.
+ <_>
+
+ <_>
+ 5 0 8 1 -1.
+ <_>
+ 7 2 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 2 12 -1.
+ <_>
+ 0 3 1 6 2.
+ <_>
+ 1 9 1 6 2.
+ <_>
+
+ <_>
+ 5 8 2 4 -1.
+ <_>
+ 4 9 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 1 12 -1.
+ <_>
+ 0 4 1 6 2.
+ <_>
+
+ <_>
+ 16 11 3 6 -1.
+ <_>
+ 16 14 3 3 2.
+ <_>
+
+ <_>
+ 6 9 1 3 -1.
+ <_>
+ 5 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 0 4 18 -1.
+ <_>
+ 14 0 2 18 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 16 11 1 2 2.
+ <_>
+
+ <_>
+ 15 16 3 3 -1.
+ <_>
+ 15 17 3 1 3.
+ <_>
+
+ <_>
+ 16 9 4 1 -1.
+ <_>
+ 17 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 8 2 -1.
+ <_>
+ 4 0 4 1 2.
+ <_>
+ 8 1 4 1 2.
+ <_>
+
+ <_>
+ 9 15 8 4 -1.
+ <_>
+ 11 15 4 4 2.
+ <_>
+
+ <_>
+ 15 18 2 2 -1.
+ <_>
+ 15 18 1 1 2.
+ <_>
+ 16 19 1 1 2.
+ <_>
+
+ <_>
+ 15 2 4 4 -1.
+ <_>
+ 15 2 2 2 2.
+ <_>
+ 17 4 2 2 2.
+ <_>
+
+ <_>
+ 19 5 1 12 -1.
+ <_>
+ 19 8 1 6 2.
+ <_>
+
+ <_>
+ 15 14 5 3 -1.
+ <_>
+ 15 15 5 1 3.
+ <_>
+
+ <_>
+ 15 18 2 2 -1.
+ <_>
+ 16 18 1 2 2.
+ <_>
+
+ <_>
+ 15 18 2 1 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+
+ <_>
+ 0 0 18 2 -1.
+ <_>
+ 0 0 9 1 2.
+ <_>
+ 9 1 9 1 2.
+ <_>
+
+ <_>
+ 5 6 2 4 -1.
+ <_>
+ 5 7 2 2 2.
+ <_>
+
+ <_>
+ 16 11 2 3 -1.
+ <_>
+ 15 12 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 9 5 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 2 4 -1.
+ <_>
+ 5 9 2 2 2.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 9 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 10 3 3 -1.
+ <_>
+ 12 10 1 3 3.
+ <_>
+
+ <_>
+ 15 0 2 5 -1.
+ <_>
+ 16 0 1 5 2.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 1 4 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 12 11 2 1 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+
+ <_>
+ 9 3 5 10 -1.
+ <_>
+ 9 8 5 5 2.
+ <_>
+
+ <_>
+ 4 13 9 4 -1.
+ <_>
+ 4 15 9 2 2.
+ <_>
+
+ <_>
+ 15 2 2 1 -1.
+ <_>
+ 16 2 1 1 2.
+ <_>
+
+ <_>
+ 7 1 13 6 -1.
+ <_>
+ 7 3 13 2 3.
+ <_>
+
+ <_>
+ 3 0 15 2 -1.
+ <_>
+ 3 1 15 1 2.
+ <_>
+
+ <_>
+ 4 0 12 2 -1.
+ <_>
+ 4 1 12 1 2.
+ <_>
+
+ <_>
+ 17 2 2 4 -1.
+ <_>
+ 17 3 2 2 2.
+ <_>
+
+ <_>
+ 5 6 4 6 -1.
+ <_>
+ 5 6 2 3 2.
+ <_>
+ 7 9 2 3 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 7 18 13 2 -1.
+ <_>
+ 7 19 13 1 2.
+ <_>
+
+ <_>
+ 16 2 1 6 -1.
+ <_>
+ 16 4 1 2 3.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 1 1 2.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 4 4 5 2 -1.
+ <_>
+ 4 4 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 17 2 2 -1.
+ <_>
+ 14 17 1 1 2.
+ <_>
+ 15 18 1 1 2.
+ <_>
+
+ <_>
+ 15 1 2 2 -1.
+ <_>
+ 15 1 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 1 2 2 -1.
+ <_>
+ 15 1 1 1 2.
+ <_>
+ 16 2 1 1 2.
+ <_>
+
+ <_>
+ 6 10 3 7 -1.
+ <_>
+ 7 10 1 7 3.
+ <_>
+
+ <_>
+ 12 9 6 5 -1.
+ <_>
+ 15 9 3 5 2.
+ <_>
+
+ <_>
+ 7 4 3 6 -1.
+ <_>
+ 7 4 3 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 6 8 10 -1.
+ <_>
+ 2 11 8 5 2.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 1 11 4 2 -1.
+ <_>
+ 1 12 4 1 2.
+ <_>
+
+ <_>
+ 5 16 15 4 -1.
+ <_>
+ 5 17 15 2 2.
+ <_>
+
+ <_>
+ 15 6 2 4 -1.
+ <_>
+ 15 7 2 2 2.
+ <_>
+
+ <_>
+ 6 2 9 3 -1.
+ <_>
+ 6 3 9 1 3.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 8 2 10 3 -1.
+ <_>
+ 8 3 10 1 3.
+ <_>
+
+ <_>
+ 18 8 2 4 -1.
+ <_>
+ 17 9 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 5 1 12 -1.
+ <_>
+ 2 11 1 6 2.
+ <_>
+
+ <_>
+ 17 13 3 6 -1.
+ <_>
+ 18 15 1 2 9.
+ <_>
+
+ <_>
+ 13 5 3 2 -1.
+ <_>
+ 14 5 1 2 3.
+ <_>
+
+ <_>
+ 3 2 3 2 -1.
+ <_>
+ 4 2 1 2 3.
+ <_>
+
+ <_>
+ 4 4 12 5 -1.
+ <_>
+ 7 4 6 5 2.
+ <_>
+
+ <_>
+ 5 15 2 2 -1.
+ <_>
+ 5 15 1 1 2.
+ <_>
+ 6 16 1 1 2.
+ <_>
+
+ <_>
+ 10 0 8 3 -1.
+ <_>
+ 12 0 4 3 2.
+ <_>
+
+ <_>
+ 11 0 8 6 -1.
+ <_>
+ 13 0 4 6 2.
+ <_>
+
+ <_>
+ 4 1 12 8 -1.
+ <_>
+ 10 1 6 8 2.
+ <_>
+
+ <_>
+ 18 10 2 3 -1.
+ <_>
+ 17 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 1 6 3 -1.
+ <_>
+ 14 1 2 3 3.
+ <_>
+
+ <_>
+ 1 16 1 3 -1.
+ <_>
+ 1 17 1 1 3.
+ <_>
+
+ <_>
+ 10 9 1 2 -1.
+ <_>
+ 10 10 1 1 2.
+ <_>
+
+ <_>
+ 19 13 1 4 -1.
+ <_>
+ 19 13 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 6 3 6 -1.
+ <_>
+ 9 9 3 3 2.
+ <_>
+
+ <_>
+ 2 9 18 10 -1.
+ <_>
+ 2 9 9 5 2.
+ <_>
+ 11 14 9 5 2.
+ <_>
+
+ <_>
+ 11 4 5 6 -1.
+ <_>
+ 11 4 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 17 0 2 4 -1.
+ <_>
+ 17 1 2 2 2.
+ <_>
+
+ <_>
+ 2 3 3 4 -1.
+ <_>
+ 3 3 1 4 3.
+ <_>
+
+ <_>
+ 19 0 1 10 -1.
+ <_>
+ 19 5 1 5 2.
+ <_>
+
+ <_>
+ 1 7 6 6 -1.
+ <_>
+ 1 7 3 3 2.
+ <_>
+ 4 10 3 3 2.
+ <_>
+
+ <_>
+ 15 2 3 12 -1.
+ <_>
+ 11 6 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 3 9 7 6 -1.
+ <_>
+ 3 11 7 2 3.
+ <_>
+
+ <_>
+ 8 8 1 3 -1.
+ <_>
+ 8 9 1 1 3.
+ <_>
+
+ <_>
+ 4 13 6 6 -1.
+ <_>
+ 4 15 6 2 3.
+ <_>
+
+ <_>
+ 1 13 4 3 -1.
+ <_>
+ 1 14 4 1 3.
+ <_>
+
+ <_>
+ 7 1 4 4 -1.
+ <_>
+ 7 1 2 2 2.
+ <_>
+ 9 3 2 2 2.
+ <_>
+
+ <_>
+ 2 4 2 2 -1.
+ <_>
+ 2 4 1 1 2.
+ <_>
+ 3 5 1 1 2.
+ <_>
+
+ <_>
+ 2 4 16 3 -1.
+ <_>
+ 2 5 16 1 3.
+ <_>
+
+ <_>
+ 0 6 17 3 -1.
+ <_>
+ 0 7 17 1 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 7 10 1 3.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface.xml
new file mode 100644
index 0000000000000000000000000000000000000000..1c38a8bab222c50f2962713930b7e971c6cc3abc
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface.xml
@@ -0,0 +1,14382 @@
+
+
+
+
+ BOOST
+ HAAR
+ 24
+ 24
+
+ GAB
+ 9.9500000476837158e-01
+ 5.0000000000000000e-01
+ 9.4999999999999996e-01
+ 1
+ 100
+
+ 0
+ 1
+ BASIC
+ 20
+
+
+ <_>
+ 16
+ -1.4806525707244873e+00
+
+ <_>
+
+ 0 -1 472 -1.5126220881938934e-02
+
+ 7.5887596607208252e-01 -3.4230688214302063e-01
+ <_>
+
+ 0 -1 839 3.9337221533060074e-03
+
+ -3.3288389444351196e-01 5.2361363172531128e-01
+ <_>
+
+ 0 -1 858 -1.5044892206788063e-02
+
+ 5.5565774440765381e-01 -2.2505992650985718e-01
+ <_>
+
+ 0 -1 387 -1.2927042320370674e-02
+
+ 5.7442700862884521e-01 -1.9708566367626190e-01
+ <_>
+
+ 0 -1 137 5.5960696190595627e-03
+
+ -3.0430641770362854e-01 4.0241482853889465e-01
+ <_>
+
+ 0 -1 207 1.5758406370878220e-02
+
+ -1.9767063856124878e-01 4.5033392310142517e-01
+ <_>
+
+ 0 -1 678 2.4262722581624985e-02
+
+ -1.6931040585041046e-01 5.9707510471343994e-01
+ <_>
+
+ 0 -1 267 -3.5242564976215363e-02
+
+ 6.5973556041717529e-01 -1.4519356191158295e-01
+ <_>
+
+ 0 -1 687 2.6568008586764336e-02
+
+ -1.3476610183715820e-01 5.4296624660491943e-01
+ <_>
+
+ 0 -1 228 4.7154121100902557e-02
+
+ -1.7337851226329803e-01 4.6071702241897583e-01
+ <_>
+
+ 0 -1 925 -5.3081759251654148e-03
+
+ 5.4976856708526611e-01 -1.1913410574197769e-01
+ <_>
+
+ 0 -1 608 5.3415738046169281e-02
+
+ -1.2382411211729050e-01 6.3972741365432739e-01
+ <_>
+
+ 0 -1 671 -3.0798995867371559e-03
+
+ -8.2048600912094116e-01 1.0249497741460800e-01
+ <_>
+
+ 0 -1 676 -2.3766520898789167e-03
+
+ -7.0665025711059570e-01 6.7025005817413330e-02
+ <_>
+
+ 0 -1 180 1.1965663870796561e-03
+
+ -2.4753804504871368e-01 3.0198124051094055e-01
+ <_>
+
+ 0 -1 830 -4.2106406763195992e-03
+
+ 3.8455343246459961e-01 -1.8334107100963593e-01
+
+ <_>
+ 26
+ -1.4618960618972778e+00
+
+ <_>
+
+ 0 -1 725 1.0133055038750172e-02
+
+ -2.8207325935363770e-01 6.2703561782836914e-01
+ <_>
+
+ 0 -1 356 3.8468956947326660e-02
+
+ -1.4483113586902618e-01 7.4971008300781250e-01
+ <_>
+
+ 0 -1 2 -3.7523733917623758e-03
+
+ 4.2959973216056824e-01 -2.1445912122726440e-01
+ <_>
+
+ 0 -1 844 9.9978316575288773e-04
+
+ -1.9259409606456757e-01 4.2325544357299805e-01
+ <_>
+
+ 0 -1 387 -1.6786376014351845e-02
+
+ 5.0582861900329590e-01 -1.8607729673385620e-01
+ <_>
+
+ 0 -1 208 3.0330579727888107e-02
+
+ -2.1100421249866486e-01 4.2819553613662720e-01
+ <_>
+
+ 0 -1 206 1.5150709077715874e-02
+
+ -2.1129198372364044e-01 3.6263525485992432e-01
+ <_>
+
+ 0 -1 451 -3.6349350120872259e-03
+
+ 3.9500275254249573e-01 -1.8650630116462708e-01
+ <_>
+
+ 0 -1 270 -7.2061517275869846e-03
+
+ -7.2816300392150879e-01 1.1153221875429153e-01
+ <_>
+
+ 0 -1 866 -2.0212728530168533e-02
+
+ 5.6296736001968384e-01 -1.2056054919958115e-01
+ <_>
+
+ 0 -1 265 2.5640423409640789e-03
+
+ -2.3753854632377625e-01 3.5794413089752197e-01
+ <_>
+
+ 0 -1 230 -6.2726587057113647e-03
+
+ -6.7750877141952515e-01 1.2570948898792267e-01
+ <_>
+
+ 0 -1 126 7.8710336238145828e-03
+
+ 6.9211356341838837e-02 -7.6449161767959595e-01
+ <_>
+
+ 0 -1 306 5.9134580194950104e-02
+
+ -1.7324967682361603e-01 3.3361187577247620e-01
+ <_>
+
+ 0 -1 185 -2.8770491480827332e-03
+
+ 3.6101511120796204e-01 -1.6122241318225861e-01
+ <_>
+
+ 0 -1 388 -5.7046953588724136e-03
+
+ -6.7659336328506470e-01 8.4153175354003906e-02
+ <_>
+
+ 0 -1 13 -7.8070178627967834e-02
+
+ 6.0763663053512573e-01 -1.1037797480821609e-01
+ <_>
+
+ 0 -1 321 6.5858578309416771e-03
+
+ 9.3060031533241272e-02 -7.0068693161010742e-01
+ <_>
+
+ 0 -1 796 -2.0920131355524063e-03
+
+ 2.8173315525054932e-01 -1.8406434357166290e-01
+ <_>
+
+ 0 -1 578 -2.1252598613500595e-02
+
+ 3.9672371745109558e-01 -1.5127600729465485e-01
+ <_>
+
+ 0 -1 770 -3.2937981188297272e-02
+
+ 3.9487251639366150e-01 -1.3228580355644226e-01
+ <_>
+
+ 0 -1 1016 4.9491915851831436e-03
+
+ 1.1234261840581894e-01 -4.7414371371269226e-01
+ <_>
+
+ 0 -1 215 3.4271054901182652e-03
+
+ 7.8623600304126740e-02 -5.7828009128570557e-01
+ <_>
+
+ 0 -1 200 -6.0859560035169125e-03
+
+ -5.0091904401779175e-01 9.1926425695419312e-02
+ <_>
+
+ 0 -1 990 1.2116413563489914e-02
+
+ -1.7154470086097717e-01 2.6759135723114014e-01
+ <_>
+
+ 0 -1 456 8.2814376801252365e-03
+
+ -1.2938241660594940e-01 3.5665917396545410e-01
+
+ <_>
+ 26
+ -1.4103703498840332e+00
+
+ <_>
+
+ 0 -1 532 -1.0988018475472927e-02
+
+ 6.4358645677566528e-01 -2.3149165511131287e-01
+ <_>
+
+ 0 -1 750 -7.8163212165236473e-03
+
+ 5.4850798845291138e-01 -1.7881108820438385e-01
+ <_>
+
+ 0 -1 289 7.1337133646011353e-02
+
+ -1.7631703615188599e-01 4.5873588323593140e-01
+ <_>
+
+ 0 -1 549 5.2656695246696472e-02
+
+ -1.3836050033569336e-01 5.6253266334533691e-01
+ <_>
+
+ 0 -1 8 1.5166129916906357e-02
+
+ -2.0990008115768433e-01 4.0483391284942627e-01
+ <_>
+
+ 0 -1 970 -1.4538960531353951e-03
+
+ 3.3692672848701477e-01 -2.1745139360427856e-01
+ <_>
+
+ 0 -1 875 1.1136244982481003e-02
+
+ -1.5003634989261627e-01 5.2208083868026733e-01
+ <_>
+
+ 0 -1 925 -3.3187635708600283e-03
+
+ 3.9145255088806152e-01 -1.9418042898178101e-01
+ <_>
+
+ 0 -1 485 4.9791105091571808e-02
+
+ -1.0192432254552841e-01 5.4612094163894653e-01
+ <_>
+
+ 0 -1 828 4.3476112186908722e-02
+
+ -1.2768918275833130e-01 5.0825607776641846e-01
+ <_>
+
+ 0 -1 719 -2.8149634599685669e-03
+
+ -7.0453292131423950e-01 1.2536850571632385e-01
+ <_>
+
+ 0 -1 846 1.6101204091683030e-03
+
+ -2.6965174078941345e-01 2.2737979888916016e-01
+ <_>
+
+ 0 -1 715 -1.5866891480982304e-03
+
+ -6.6891485452651978e-01 1.1686278134584427e-01
+ <_>
+
+ 0 -1 677 -3.2338392920792103e-03
+
+ -6.7284232378005981e-01 6.6228114068508148e-02
+ <_>
+
+ 0 -1 479 -9.9909156560897827e-03
+
+ 3.6961549520492554e-01 -1.5993835031986237e-01
+ <_>
+
+ 0 -1 350 4.8409838229417801e-02
+
+ -1.0068884491920471e-01 5.0648134946823120e-01
+ <_>
+
+ 0 -1 273 8.0585200339555740e-03
+
+ -1.6782654821872711e-01 3.5382467508316040e-01
+ <_>
+
+ 0 -1 338 -1.1718695983290672e-02
+
+ 4.3832498788833618e-01 -1.2780784070491791e-01
+ <_>
+
+ 0 -1 594 5.7147610932588577e-03
+
+ 7.5814604759216309e-02 -7.2597140073776245e-01
+ <_>
+
+ 0 -1 603 -2.0917234942317009e-03
+
+ -6.0916984081268311e-01 8.4811411798000336e-02
+ <_>
+
+ 0 -1 855 5.7651996612548828e-03
+
+ -1.9243443012237549e-01 2.8976503014564514e-01
+ <_>
+
+ 0 -1 565 -2.8093710541725159e-02
+
+ 5.4229170083999634e-01 -1.0005526244640350e-01
+ <_>
+
+ 0 -1 136 8.9291334152221680e-03
+
+ 8.3808921277523041e-02 -6.3219338655471802e-01
+ <_>
+
+ 0 -1 268 -5.1958961412310600e-03
+
+ -5.4964137077331543e-01 7.9588212072849274e-02
+ <_>
+
+ 0 -1 95 9.2318728566169739e-03
+
+ -1.2818163633346558e-01 4.2056322097778320e-01
+ <_>
+
+ 0 -1 964 -2.0556427538394928e-02
+
+ 3.2048463821411133e-01 -1.3858842849731445e-01
+
+ <_>
+ 35
+ -1.4265209436416626e+00
+
+ <_>
+
+ 0 -1 683 1.8821602687239647e-02
+
+ -1.7807419598102570e-01 5.9040957689285278e-01
+ <_>
+
+ 0 -1 471 -9.5066539943218231e-03
+
+ 5.0587177276611328e-01 -1.7767964303493500e-01
+ <_>
+
+ 0 -1 884 1.3296608813107014e-03
+
+ -1.6886346042156219e-01 3.6326614022254944e-01
+ <_>
+
+ 0 -1 473 3.5266026854515076e-02
+
+ -1.1824090778827667e-01 5.8951085805892944e-01
+ <_>
+
+ 0 -1 340 1.7804209142923355e-02
+
+ -1.4211210608482361e-01 5.1762068271636963e-01
+ <_>
+
+ 0 -1 1001 4.7029324923641980e-04
+
+ -2.4296821653842926e-01 2.5087893009185791e-01
+ <_>
+
+ 0 -1 182 7.1838246658444405e-03
+
+ 9.2609666287899017e-02 -6.7694115638732910e-01
+ <_>
+
+ 0 -1 390 -5.7565318420529366e-03
+
+ -7.3053181171417236e-01 8.2794629037380219e-02
+ <_>
+
+ 0 -1 203 2.0850602537393570e-02
+
+ -1.7353208363056183e-01 3.3287450671195984e-01
+ <_>
+
+ 0 -1 805 3.1848326325416565e-03
+
+ -2.0941653847694397e-01 2.6059800386428833e-01
+ <_>
+
+ 0 -1 234 -7.5752258300781250e-02
+
+ 5.1588213443756104e-01 -1.0057342052459717e-01
+ <_>
+
+ 0 -1 5 2.8725115582346916e-02
+
+ -1.5012685954570770e-01 4.1436919569969177e-01
+ <_>
+
+ 0 -1 175 -1.7325732856988907e-02
+
+ 3.8678762316703796e-01 -1.3586300611495972e-01
+ <_>
+
+ 0 -1 47 -3.2187681645154953e-03
+
+ -5.1590150594711304e-01 1.1511231958866119e-01
+ <_>
+
+ 0 -1 1020 -6.1595086008310318e-03
+
+ -7.0271849632263184e-01 5.5648274719715118e-02
+ <_>
+
+ 0 -1 768 -8.7264683097600937e-03
+
+ 2.6393634080886841e-01 -1.8446569144725800e-01
+ <_>
+
+ 0 -1 57 8.1868227571249008e-03
+
+ 8.0838531255722046e-02 -5.5512112379074097e-01
+ <_>
+
+ 0 -1 139 -7.8468751162290573e-03
+
+ -5.7306796312332153e-01 8.3454042673110962e-02
+ <_>
+
+ 0 -1 665 2.9962153639644384e-03
+
+ 6.2645487487316132e-02 -5.8123600482940674e-01
+ <_>
+
+ 0 -1 414 -4.3795984238386154e-03
+
+ 2.2211562097072601e-01 -1.9649308919906616e-01
+ <_>
+
+ 0 -1 908 -6.3172029331326485e-03
+
+ -6.6067039966583252e-01 6.4884319901466370e-02
+ <_>
+
+ 0 -1 465 1.3302030274644494e-03
+
+ -1.0496762394905090e-01 4.2326071858406067e-01
+ <_>
+
+ 0 -1 951 -4.3333107605576515e-03
+
+ -4.9972066283226013e-01 8.7225496768951416e-02
+ <_>
+
+ 0 -1 244 -3.5346355289220810e-03
+
+ 3.0818134546279907e-01 -1.4765550196170807e-01
+ <_>
+
+ 0 -1 256 -8.7353587150573730e-03
+
+ -6.5214675664901733e-01 7.1881487965583801e-02
+ <_>
+
+ 0 -1 491 -1.5620354562997818e-02
+
+ 3.5721915960311890e-01 -1.1427627503871918e-01
+ <_>
+
+ 0 -1 778 -3.9745438843965530e-03
+
+ -6.6090464591979980e-01 6.2067609280347824e-02
+ <_>
+
+ 0 -1 689 -6.7040426656603813e-03
+
+ 2.7337384223937988e-01 -1.4059108495712280e-01
+ <_>
+
+ 0 -1 125 3.5359347239136696e-03
+
+ 6.1201948672533035e-02 -6.0017114877700806e-01
+ <_>
+
+ 0 -1 118 6.0818484053015709e-03
+
+ -1.5247075259685516e-01 2.4383027851581573e-01
+ <_>
+
+ 0 -1 880 -7.2771648410707712e-04
+
+ 3.0065426230430603e-01 -1.2037902325391769e-01
+ <_>
+
+ 0 -1 643 4.6168416738510132e-03
+
+ 5.5311698466539383e-02 -7.5343269109725952e-01
+ <_>
+
+ 0 -1 676 2.5280299596488476e-03
+
+ 5.7204965502023697e-02 -5.3993463516235352e-01
+ <_>
+
+ 0 -1 878 1.5074670314788818e-02
+
+ -9.6106290817260742e-02 3.9084190130233765e-01
+ <_>
+
+ 0 -1 831 -8.4932018071413040e-03
+
+ 3.4130987524986267e-01 -1.4117397367954254e-01
+
+ <_>
+ 37
+ -1.3977209329605103e+00
+
+ <_>
+
+ 0 -1 794 -2.5338861159980297e-03
+
+ 5.7321399450302124e-01 -2.0396080613136292e-01
+ <_>
+
+ 0 -1 588 -6.5112011507153511e-03
+
+ 3.7378740310668945e-01 -2.5049039721488953e-01
+ <_>
+
+ 0 -1 238 1.6318978741765022e-03
+
+ -2.1858637034893036e-01 3.5027471184730530e-01
+ <_>
+
+ 0 -1 189 3.3452022820711136e-02
+
+ -1.4827065169811249e-01 4.7324529290199280e-01
+ <_>
+
+ 0 -1 192 -1.1114047840237617e-02
+
+ 4.1662359237670898e-01 -2.1660456061363220e-01
+ <_>
+
+ 0 -1 527 -1.2996498262509704e-03
+
+ 4.7613915801048279e-01 -1.6742442548274994e-01
+ <_>
+
+ 0 -1 648 -3.2986078877002001e-03
+
+ -6.7662662267684937e-01 8.6653761565685272e-02
+ <_>
+
+ 0 -1 4 6.6831205040216446e-03
+
+ -2.0158858597278595e-01 2.6189696788787842e-01
+ <_>
+
+ 0 -1 482 2.1282089874148369e-03
+
+ -1.1156299710273743e-01 4.0097075700759888e-01
+ <_>
+
+ 0 -1 682 -9.0472139418125153e-03
+
+ 3.2078295946121216e-01 -1.6775439679622650e-01
+ <_>
+
+ 0 -1 226 -5.3160609677433968e-03
+
+ -5.5567348003387451e-01 1.2950280308723450e-01
+ <_>
+
+ 0 -1 205 7.9724024981260300e-03
+
+ -2.1466700732707977e-01 2.2514854371547699e-01
+ <_>
+
+ 0 -1 920 -2.1980279125273228e-03
+
+ 2.8711742162704468e-01 -1.6561916470527649e-01
+ <_>
+
+ 0 -1 312 5.3897619247436523e-02
+
+ -1.4823001623153687e-01 3.4951418638229370e-01
+ <_>
+
+ 0 -1 13 -7.6241128146648407e-02
+
+ 6.0101884603500366e-01 -8.8328786194324493e-02
+ <_>
+
+ 0 -1 129 -8.3202747628092766e-03
+
+ -7.2828358411788940e-01 8.7956465780735016e-02
+ <_>
+
+ 0 -1 401 5.3778752684593201e-02
+
+ -1.0316975414752960e-01 5.0247919559478760e-01
+ <_>
+
+ 0 -1 416 -1.2401826679706573e-02
+
+ 2.7538898587226868e-01 -1.5569972991943359e-01
+ <_>
+
+ 0 -1 986 1.3729928061366081e-02
+
+ -1.3373774290084839e-01 3.0739122629165649e-01
+ <_>
+
+ 0 -1 905 -2.2788168862462044e-03
+
+ 2.2555501759052277e-01 -1.9497908651828766e-01
+ <_>
+
+ 0 -1 667 3.6288173869252205e-03
+
+ 4.8981692641973495e-02 -7.9248648881912231e-01
+ <_>
+
+ 0 -1 85 5.2453137934207916e-02
+
+ -1.3389803469181061e-01 3.2700663805007935e-01
+ <_>
+
+ 0 -1 821 3.1685843132436275e-03
+
+ -1.4415425062179565e-01 2.8044179081916809e-01
+ <_>
+
+ 0 -1 193 8.9051481336355209e-03
+
+ 6.1227656900882721e-02 -7.0277702808380127e-01
+ <_>
+
+ 0 -1 837 -1.3966157566756010e-03
+
+ 4.2409667372703552e-01 -1.0888981819152832e-01
+ <_>
+
+ 0 -1 271 -6.7695947363972664e-03
+
+ -5.1588076353073120e-01 8.3254821598529816e-02
+ <_>
+
+ 0 -1 404 2.2157761268317699e-03
+
+ -1.3696527481079102e-01 2.8638482093811035e-01
+ <_>
+
+ 0 -1 619 2.7808796148747206e-03
+
+ 7.1316704154014587e-02 -6.0322999954223633e-01
+ <_>
+
+ 0 -1 515 4.5836241915822029e-03
+
+ -1.2486589699983597e-01 3.2929363846778870e-01
+ <_>
+
+ 0 -1 1042 -5.1459800451993942e-03
+
+ -5.3781992197036743e-01 7.6631128787994385e-02
+ <_>
+
+ 0 -1 1043 2.4449056945741177e-03
+
+ 8.5920669138431549e-02 -4.0670683979988098e-01
+ <_>
+
+ 0 -1 71 -2.7756379917263985e-02
+
+ 3.7449231743812561e-01 -1.0538945347070694e-01
+ <_>
+
+ 0 -1 809 -1.8243372440338135e-02
+
+ 3.4281516075134277e-01 -9.9502928555011749e-02
+ <_>
+
+ 0 -1 372 3.8416781462728977e-03
+
+ 7.3987491428852081e-02 -4.8903524875640869e-01
+ <_>
+
+ 0 -1 376 -1.2322908267378807e-02
+
+ 2.1036790311336517e-01 -1.5852701663970947e-01
+ <_>
+
+ 0 -1 391 -4.1760304011404514e-03
+
+ 3.1288132071495056e-01 -1.1697492748498917e-01
+ <_>
+
+ 0 -1 859 -2.8026863932609558e-02
+
+ 3.3711743354797363e-01 -1.2294299900531769e-01
+
+ <_>
+ 42
+ -1.3775455951690674e+00
+
+ <_>
+
+ 0 -1 725 1.3382414355874062e-02
+
+ -1.7922241985797882e-01 5.0368404388427734e-01
+ <_>
+
+ 0 -1 967 1.9935802556574345e-03
+
+ -2.5249919295310974e-01 3.5295018553733826e-01
+ <_>
+
+ 0 -1 891 -1.3569685397669673e-03
+
+ 4.1222429275512695e-01 -1.8140394985675812e-01
+ <_>
+
+ 0 -1 911 2.5418698787689209e-03
+
+ -2.3195247352123260e-01 2.5945317745208740e-01
+ <_>
+
+ 0 -1 362 1.1867792345583439e-03
+
+ -1.1509010195732117e-01 4.0095508098602295e-01
+ <_>
+
+ 0 -1 280 -4.0491363033652306e-03
+
+ -7.6275551319122314e-01 8.0663219094276428e-02
+ <_>
+
+ 0 -1 264 2.4698153138160706e-02
+
+ -9.9053405225276947e-02 4.6469488739967346e-01
+ <_>
+
+ 0 -1 832 1.3041709549725056e-02
+
+ -1.3049817085266113e-01 4.7066822648048401e-01
+ <_>
+
+ 0 -1 257 -2.0927201956510544e-02
+
+ -7.2363191843032837e-01 7.5520738959312439e-02
+ <_>
+
+ 0 -1 41 1.6108792275190353e-02
+
+ 8.9385204017162323e-02 -5.0678378343582153e-01
+ <_>
+
+ 0 -1 872 -8.6308103054761887e-03
+
+ 3.1878158450126648e-01 -1.3526505231857300e-01
+ <_>
+
+ 0 -1 347 1.2651814613491297e-03
+
+ -1.2344279885292053e-01 4.0271109342575073e-01
+ <_>
+
+ 0 -1 735 -3.0170590616762638e-03
+
+ -5.6960099935531616e-01 7.0437252521514893e-02
+ <_>
+
+ 0 -1 538 -3.5529488231986761e-03
+
+ 2.0624065399169922e-01 -1.8426756560802460e-01
+ <_>
+
+ 0 -1 735 2.8021419420838356e-03
+
+ 7.2748780250549316e-02 -5.3796368837356567e-01
+ <_>
+
+ 0 -1 447 -9.9331419914960861e-04
+
+ 2.4827398359775543e-01 -1.5866567194461823e-01
+ <_>
+
+ 0 -1 440 -7.1950745768845081e-03
+
+ -5.0943744182586670e-01 7.3041573166847229e-02
+ <_>
+
+ 0 -1 906 -8.7737981230020523e-03
+
+ 2.4838714301586151e-01 -1.5162147581577301e-01
+ <_>
+
+ 0 -1 608 5.6750684976577759e-02
+
+ -8.4416143596172333e-02 4.4269657135009766e-01
+ <_>
+
+ 0 -1 772 1.8110256642103195e-03
+
+ -1.7787678539752960e-01 2.2753682732582092e-01
+ <_>
+
+ 0 -1 117 6.1733853071928024e-02
+
+ -1.4452947676181793e-01 2.6785543560981750e-01
+ <_>
+
+ 0 -1 718 1.7999792471528053e-03
+
+ 5.3869031369686127e-02 -7.0216673612594604e-01
+ <_>
+
+ 0 -1 718 -1.7839821521192789e-03
+
+ -7.3474282026290894e-01 4.3809492141008377e-02
+ <_>
+
+ 0 -1 795 -2.2269869223237038e-03
+
+ 2.5256577134132385e-01 -1.4765015244483948e-01
+ <_>
+
+ 0 -1 845 7.7408831566572189e-04
+
+ -1.6781617701053619e-01 2.5267890095710754e-01
+ <_>
+
+ 0 -1 710 9.6316616982221603e-03
+
+ 5.8525908738374710e-02 -6.3684886693954468e-01
+ <_>
+
+ 0 -1 181 -1.1892126873135567e-02
+
+ 2.6363542675971985e-01 -1.4106634259223938e-01
+ <_>
+
+ 0 -1 326 4.8407237976789474e-02
+
+ -1.0837136209011078e-01 3.6018091440200806e-01
+ <_>
+
+ 0 -1 572 -1.0315750539302826e-01
+
+ -7.3309695720672607e-01 6.4976803958415985e-02
+ <_>
+
+ 0 -1 415 -2.6544972788542509e-03
+
+ 2.7709859609603882e-01 -1.3764445483684540e-01
+ <_>
+
+ 0 -1 1033 -4.8850756138563156e-03
+
+ -5.0026285648345947e-01 6.8797707557678223e-02
+ <_>
+
+ 0 -1 299 -1.1310833506286144e-02
+
+ 2.5653550028800964e-01 -1.3755545020103455e-01
+ <_>
+
+ 0 -1 152 -3.8394361734390259e-02
+
+ 2.6404461264610291e-01 -1.3614650070667267e-01
+ <_>
+
+ 0 -1 486 5.8298893272876740e-03
+
+ 6.0382172465324402e-02 -5.9578329324722290e-01
+ <_>
+
+ 0 -1 393 2.2631133906543255e-03
+
+ -1.0302778333425522e-01 3.4782779216766357e-01
+ <_>
+
+ 0 -1 629 -1.8709234893321991e-02
+
+ -7.6758313179016113e-01 4.6181913465261459e-02
+ <_>
+
+ 0 -1 67 3.7359733134508133e-02
+
+ -1.3407541811466217e-01 2.5607112050056458e-01
+ <_>
+
+ 0 -1 504 -5.3099328652024269e-03
+
+ -6.9016355276107788e-01 4.7683756798505783e-02
+ <_>
+
+ 0 -1 527 -1.5396323287859559e-03
+
+ 3.7874689698219299e-01 -9.2663109302520752e-02
+ <_>
+
+ 0 -1 470 -2.6333518326282501e-03
+
+ 2.9358446598052979e-01 -1.2460695207118988e-01
+ <_>
+
+ 0 -1 171 1.6515964642167091e-02
+
+ -1.4082725346088409e-01 2.3664724826812744e-01
+ <_>
+
+ 0 -1 681 -4.4658156111836433e-03
+
+ -5.9253305196762085e-01 5.5994171649217606e-02
+
+ <_>
+ 50
+ -1.3835698366165161e+00
+
+ <_>
+
+ 0 -1 898 1.5156399458646774e-03
+
+ -1.0024535655975342e-01 5.8807808160781860e-01
+ <_>
+
+ 0 -1 802 -3.5168868489563465e-03
+
+ 4.0972998738288879e-01 -1.6088742017745972e-01
+ <_>
+
+ 0 -1 180 2.3035616613924503e-03
+
+ -1.8985269963741302e-01 2.9883998632431030e-01
+ <_>
+
+ 0 -1 254 4.5840561389923096e-02
+
+ -1.4383240044116974e-01 4.7528687119483948e-01
+ <_>
+
+ 0 -1 405 5.5156396701931953e-03
+
+ -1.7356806993484497e-01 3.4583050012588501e-01
+ <_>
+
+ 0 -1 436 3.9731184951961040e-03
+
+ 7.8886620700359344e-02 -5.6442558765411377e-01
+ <_>
+
+ 0 -1 412 -5.6995991617441177e-03
+
+ -4.7576662898063660e-01 9.4875656068325043e-02
+ <_>
+
+ 0 -1 539 -9.6501735970377922e-03
+
+ 2.3381656408309937e-01 -1.8310526013374329e-01
+ <_>
+
+ 0 -1 209 6.1656545847654343e-02
+
+ -1.4697165787220001e-01 3.6247691512107849e-01
+ <_>
+
+ 0 -1 398 1.1418928205966949e-01
+
+ -8.8033527135848999e-02 4.4633501768112183e-01
+ <_>
+
+ 0 -1 3 -1.1903396807610989e-02
+
+ 3.3496665954589844e-01 -1.2121009081602097e-01
+ <_>
+
+ 0 -1 546 -4.1371315717697144e-02
+
+ 4.1400006413459778e-01 -9.7229279577732086e-02
+ <_>
+
+ 0 -1 380 7.8342631459236145e-03
+
+ -1.6631671786308289e-01 2.5738984346389771e-01
+ <_>
+
+ 0 -1 304 -4.5139621943235397e-03
+
+ -4.6883803606033325e-01 8.7662570178508759e-02
+ <_>
+
+ 0 -1 929 1.5914421528577805e-03
+
+ -1.1636006087064743e-01 3.2739594578742981e-01
+ <_>
+
+ 0 -1 942 -5.2607608959078789e-03
+
+ -6.7755740880966187e-01 5.1752120256423950e-02
+ <_>
+
+ 0 -1 941 3.1824512407183647e-03
+
+ 5.2379645407199860e-02 -6.0918039083480835e-01
+ <_>
+
+ 0 -1 939 -3.6813789047300816e-03
+
+ 4.8251116275787354e-01 -9.2318780720233917e-02
+ <_>
+
+ 0 -1 622 -4.3226117268204689e-03
+
+ -5.7561415433883667e-01 5.9672243893146515e-02
+ <_>
+
+ 0 -1 250 -7.1843853220343590e-03
+
+ 2.6631006598472595e-01 -1.4015418291091919e-01
+ <_>
+
+ 0 -1 871 2.1028071641921997e-03
+
+ -1.1286304146051407e-01 3.5946926474571228e-01
+ <_>
+
+ 0 -1 22 8.5248583927750587e-03
+
+ 6.9424033164978027e-02 -5.2462881803512573e-01
+ <_>
+
+ 0 -1 147 6.9785099476575851e-03
+
+ 5.6668873876333237e-02 -5.6192052364349365e-01
+ <_>
+
+ 0 -1 474 -5.2639590576291084e-03
+
+ -5.8648955821990967e-01 5.0352573394775391e-02
+ <_>
+
+ 0 -1 406 2.8417459689080715e-03
+
+ -1.3425759971141815e-01 2.7325555682182312e-01
+ <_>
+
+ 0 -1 394 -1.3187457807362080e-02
+
+ 4.0453648567199707e-01 -9.1843754053115845e-02
+ <_>
+
+ 0 -1 722 -6.7344801500439644e-03
+
+ -7.5647395849227905e-01 5.0157479941844940e-02
+ <_>
+
+ 0 -1 187 2.1363141015172005e-02
+
+ 4.7982390969991684e-02 -5.5388218164443970e-01
+ <_>
+
+ 0 -1 623 1.6145884292200208e-03
+
+ 7.9808227717876434e-02 -3.7233716249465942e-01
+ <_>
+
+ 0 -1 525 -2.2595757618546486e-03
+
+ 2.8343635797500610e-01 -1.1216876655817032e-01
+ <_>
+
+ 0 -1 214 1.4407988637685776e-02
+
+ -1.0392460227012634e-01 3.1299999356269836e-01
+ <_>
+
+ 0 -1 476 -1.4912552433088422e-03
+
+ 2.8538599610328674e-01 -1.0644508898258209e-01
+ <_>
+
+ 0 -1 195 9.8895151168107986e-03
+
+ 5.0090074539184570e-02 -6.2053185701370239e-01
+ <_>
+
+ 0 -1 115 4.2754956521093845e-03
+
+ 6.5051443874835968e-02 -4.2582303285598755e-01
+ <_>
+
+ 0 -1 754 -2.5489409454166889e-03
+
+ 3.1278640031814575e-01 -9.9601686000823975e-02
+ <_>
+
+ 0 -1 717 -6.0358326882123947e-03
+
+ 2.2685267031192780e-01 -1.3849361240863800e-01
+ <_>
+
+ 0 -1 875 1.1879121884703636e-02
+
+ -8.9687183499336243e-02 3.7642294168472290e-01
+ <_>
+
+ 0 -1 111 1.2982923537492752e-02
+
+ 4.3990727514028549e-02 -7.3371982574462891e-01
+ <_>
+
+ 0 -1 993 -2.8599319048225880e-03
+
+ -4.3102917075157166e-01 5.9561621397733688e-02
+ <_>
+
+ 0 -1 737 -3.5829999251291156e-04
+
+ 1.7152757942676544e-01 -1.6511310636997223e-01
+ <_>
+
+ 0 -1 27 2.5972571223974228e-02
+
+ -1.2855969369411469e-01 2.2820757329463959e-01
+ <_>
+
+ 0 -1 516 4.2565623298287392e-03
+
+ 5.7662181556224823e-02 -5.3734982013702393e-01
+ <_>
+
+ 0 -1 50 -2.9159568250179291e-02
+
+ -6.3020753860473633e-01 4.0746636688709259e-02
+ <_>
+
+ 0 -1 413 3.1341956928372383e-03
+
+ -8.1374719738960266e-02 4.1371321678161621e-01
+ <_>
+
+ 0 -1 935 -1.3592604082077742e-03
+
+ 3.2382342219352722e-01 -9.7880341112613678e-02
+ <_>
+
+ 0 -1 758 -6.9904811680316925e-03
+
+ -6.8850576877593994e-01 4.2428225278854370e-02
+ <_>
+
+ 0 -1 93 -8.7879784405231476e-03
+
+ -5.8945190906524658e-01 3.7613209336996078e-02
+ <_>
+
+ 0 -1 491 -1.7947785556316376e-02
+
+ 3.1659606099128723e-01 -8.7437197566032410e-02
+ <_>
+
+ 0 -1 490 8.0379713326692581e-03
+
+ -1.1311284452676773e-01 3.0860018730163574e-01
+ <_>
+
+ 0 -1 716 3.0642822384834290e-03
+
+ 4.8351831734180450e-02 -6.0563534498214722e-01
+
+ <_>
+ 54
+ -1.3756012916564941e+00
+
+ <_>
+
+ 0 -1 798 -1.7431776504963636e-03
+
+ 5.5538344383239746e-01 -1.0357239097356796e-01
+ <_>
+
+ 0 -1 425 4.4551412574946880e-03
+
+ -1.2460361421108246e-01 5.1942145824432373e-01
+ <_>
+
+ 0 -1 843 3.5308140795677900e-03
+
+ -2.2974169254302979e-01 2.7043044567108154e-01
+ <_>
+
+ 0 -1 532 -1.5887852758169174e-02
+
+ 4.1745069622993469e-01 -1.1281611770391464e-01
+ <_>
+
+ 0 -1 7 1.1611310765147209e-02
+
+ -1.9416445493698120e-01 2.5554594397544861e-01
+ <_>
+
+ 0 -1 935 1.5740045346319675e-03
+
+ -1.2263108044862747e-01 3.8852572441101074e-01
+ <_>
+
+ 0 -1 547 5.1882643252611160e-02
+
+ -7.5461924076080322e-02 5.0257563591003418e-01
+ <_>
+
+ 0 -1 251 -3.8624972105026245e-02
+
+ 4.0001305937767029e-01 -9.6231088042259216e-02
+ <_>
+
+ 0 -1 272 -3.9408572018146515e-02
+
+ 3.0533725023269653e-01 -1.6677139699459076e-01
+ <_>
+
+ 0 -1 29 7.5884531252086163e-03
+
+ 9.8107770085334778e-02 -5.8249044418334961e-01
+ <_>
+
+ 0 -1 218 7.2114326059818268e-02
+
+ -1.4419755339622498e-01 2.8208708763122559e-01
+ <_>
+
+ 0 -1 268 5.5582458153367043e-03
+
+ 7.2843901813030243e-02 -5.5255079269409180e-01
+ <_>
+
+ 0 -1 877 -4.7345291823148727e-03
+
+ 3.3209753036499023e-01 -1.2499606609344482e-01
+ <_>
+
+ 0 -1 577 5.1413839682936668e-03
+
+ 6.4787313342094421e-02 -6.4880597591400146e-01
+ <_>
+
+ 0 -1 999 5.4608630016446114e-03
+
+ 3.7491828203201294e-02 -7.5315922498703003e-01
+ <_>
+
+ 0 -1 542 -8.6404485045932233e-05
+
+ 1.7464619874954224e-01 -1.8258170783519745e-01
+ <_>
+
+ 0 -1 442 6.1132330447435379e-03
+
+ 7.5624085962772369e-02 -4.3711006641387939e-01
+ <_>
+
+ 0 -1 889 -7.0670098066329956e-03
+
+ 2.1796958148479462e-01 -1.4547325670719147e-01
+ <_>
+
+ 0 -1 347 9.4080460257828236e-04
+
+ -1.2536728382110596e-01 2.8143358230590820e-01
+ <_>
+
+ 0 -1 580 -2.6800869964063168e-03
+
+ -4.2977494001388550e-01 8.2963027060031891e-02
+ <_>
+
+ 0 -1 297 5.8945640921592712e-03
+
+ 4.2834181338548660e-02 -6.0937494039535522e-01
+ <_>
+
+ 0 -1 465 1.0121082887053490e-03
+
+ -1.1036285758018494e-01 2.9971688985824585e-01
+ <_>
+
+ 0 -1 56 3.1157936900854111e-03
+
+ 7.3115289211273193e-02 -4.3226471543312073e-01
+ <_>
+
+ 0 -1 411 -3.3052214421331882e-03
+
+ -4.9826300144195557e-01 5.1225960254669189e-02
+ <_>
+
+ 0 -1 109 8.3188470453023911e-03
+
+ 5.0362452864646912e-02 -4.8688000440597534e-01
+ <_>
+
+ 0 -1 393 -2.5094528682529926e-03
+
+ 2.6902040839195251e-01 -1.0433372855186462e-01
+ <_>
+
+ 0 -1 924 1.1217880528420210e-03
+
+ -1.1188100278377533e-01 3.1254816055297852e-01
+ <_>
+
+ 0 -1 716 -2.9259414877742529e-03
+
+ -5.7495939731597900e-01 5.3564101457595825e-02
+ <_>
+
+ 0 -1 733 -1.1687271296977997e-02
+
+ 2.5880128145217896e-01 -1.0639669001102448e-01
+ <_>
+
+ 0 -1 763 3.5054073669016361e-03
+
+ 5.4045904427766800e-02 -5.5625277757644653e-01
+ <_>
+
+ 0 -1 552 1.9068794324994087e-02
+
+ -1.1246301978826523e-01 2.5745245814323425e-01
+ <_>
+
+ 0 -1 230 4.6145436353981495e-03
+
+ 6.7216314375400543e-02 -4.1385611891746521e-01
+ <_>
+
+ 0 -1 857 -8.2267355173826218e-03
+
+ 2.1265375614166260e-01 -1.3443692028522491e-01
+ <_>
+
+ 0 -1 149 -1.4355888590216637e-02
+
+ 2.5618723034858704e-01 -1.0785522311925888e-01
+ <_>
+
+ 0 -1 61 8.0431215465068817e-03
+
+ -1.4258129894733429e-01 2.2692860662937164e-01
+ <_>
+
+ 0 -1 170 -5.6914249435067177e-03
+
+ -4.8886317014694214e-01 6.0331270098686218e-02
+ <_>
+
+ 0 -1 133 -2.5912215933203697e-03
+
+ 2.1062785387039185e-01 -1.4967896044254303e-01
+ <_>
+
+ 0 -1 461 5.5204275995492935e-03
+
+ -8.1333734095096588e-02 3.8316065073013306e-01
+ <_>
+
+ 0 -1 515 5.3790090605616570e-03
+
+ -9.3129634857177734e-02 3.2883483171463013e-01
+ <_>
+
+ 0 -1 199 -7.2196200489997864e-03
+
+ -6.6427856683731079e-01 4.4702950865030289e-02
+ <_>
+
+ 0 -1 94 -8.3873540163040161e-02
+
+ -7.9910254478454590e-01 2.7107261121273041e-02
+ <_>
+
+ 0 -1 513 -3.4268260933458805e-03
+
+ 2.5298807024955750e-01 -1.0898132622241974e-01
+ <_>
+
+ 0 -1 763 -3.7466005887836218e-03
+
+ -5.5346089601516724e-01 5.2094604820013046e-02
+ <_>
+
+ 0 -1 276 1.2452949304133654e-03
+
+ -8.2017965614795685e-02 3.5483068227767944e-01
+ <_>
+
+ 0 -1 1013 -6.2445802614092827e-03
+
+ -5.0969594717025757e-01 5.4533429443836212e-02
+ <_>
+
+ 0 -1 276 -1.1970927007496357e-03
+
+ 3.6470764875411987e-01 -7.7394872903823853e-02
+ <_>
+
+ 0 -1 757 3.0796977225691080e-03
+
+ 5.3208738565444946e-02 -5.0689512491226196e-01
+ <_>
+
+ 0 -1 33 -3.9015077054500580e-02
+
+ 1.9598089158535004e-01 -1.3218660652637482e-01
+ <_>
+
+ 0 -1 680 -7.7085788361728191e-03
+
+ 2.2754703462123871e-01 -1.2544488906860352e-01
+ <_>
+
+ 0 -1 655 3.2509677112102509e-02
+
+ -6.7099742591381073e-02 4.1469818353652954e-01
+ <_>
+
+ 0 -1 569 3.0232844874262810e-03
+
+ 6.6373795270919800e-02 -4.2127549648284912e-01
+ <_>
+
+ 0 -1 54 2.5392756797373295e-03
+
+ -1.1576391756534576e-01 2.3464009165763855e-01
+ <_>
+
+ 0 -1 1013 6.8497275933623314e-03
+
+ 4.5596633106470108e-02 -5.8435302972793579e-01
+ <_>
+
+ 0 -1 231 -4.4358119368553162e-02
+
+ -3.9718165993690491e-01 6.2707424163818359e-02
+
+ <_>
+ 63
+ -1.4057025909423828e+00
+
+ <_>
+
+ 0 -1 804 5.0806580111384392e-03
+
+ -7.9617008566856384e-02 5.6362086534500122e-01
+ <_>
+
+ 0 -1 965 2.0602284930646420e-03
+
+ -1.8717131018638611e-01 3.4062680602073669e-01
+ <_>
+
+ 0 -1 495 6.1347078531980515e-02
+
+ -1.3253036141395569e-01 4.0938606858253479e-01
+ <_>
+
+ 0 -1 13 -6.0383215546607971e-02
+
+ 4.1172346472740173e-01 -1.4447186887264252e-01
+ <_>
+
+ 0 -1 478 -3.0238348990678787e-03
+
+ 3.4262558817863464e-01 -1.0982885956764221e-01
+ <_>
+
+ 0 -1 458 4.0474245324730873e-03
+
+ 7.1186766028404236e-02 -5.0650447607040405e-01
+ <_>
+
+ 0 -1 633 -2.0359824411571026e-03
+
+ 2.2166600823402405e-01 -1.6060648858547211e-01
+ <_>
+
+ 0 -1 887 2.7303429305902682e-05
+
+ -2.6211214065551758e-01 1.2801185250282288e-01
+ <_>
+
+ 0 -1 352 1.2323079630732536e-02
+
+ 8.2502633333206177e-02 -4.5231887698173523e-01
+ <_>
+
+ 0 -1 878 2.2477287799119949e-02
+
+ -7.7229477465152740e-02 4.5144733786582947e-01
+ <_>
+
+ 0 -1 395 -1.4673802070319653e-02
+
+ 3.5660189390182495e-01 -1.1584777384996414e-01
+ <_>
+
+ 0 -1 141 9.9029816687107086e-02
+
+ -1.6957059502601624e-01 2.2625257074832916e-01
+ <_>
+
+ 0 -1 144 -1.0632930323481560e-02
+
+ -5.6829780340194702e-01 7.1929946541786194e-02
+ <_>
+
+ 0 -1 808 2.5341216474771500e-02
+
+ -1.2931844592094421e-01 2.6161769032478333e-01
+ <_>
+
+ 0 -1 816 5.8172484859824181e-03
+
+ -1.5375703573226929e-01 2.0636843144893646e-01
+ <_>
+
+ 0 -1 68 -2.0786169171333313e-01
+
+ 3.9931070804595947e-01 -7.7051497995853424e-02
+ <_>
+
+ 0 -1 140 2.2137831151485443e-01
+
+ -7.2486869990825653e-02 3.9756566286087036e-01
+ <_>
+
+ 0 -1 554 3.4148676786571741e-04
+
+ -1.5928100049495697e-01 1.8005076050758362e-01
+ <_>
+
+ 0 -1 307 -6.7202709615230560e-03
+
+ -6.7838191986083984e-01 4.5886330306529999e-02
+ <_>
+
+ 0 -1 392 1.4110710471868515e-03
+
+ -9.7257830202579498e-02 3.2224002480506897e-01
+ <_>
+
+ 0 -1 266 4.2120069265365601e-02
+
+ -8.8405482470989227e-02 3.2538983225822449e-01
+ <_>
+
+ 0 -1 242 -1.3846142683178186e-03
+
+ 2.0695628225803375e-01 -1.5275791287422180e-01
+ <_>
+
+ 0 -1 817 3.5425978712737560e-03
+
+ -1.2709444761276245e-01 2.1816165745258331e-01
+ <_>
+
+ 0 -1 959 3.3351695165038109e-03
+
+ 4.8398405313491821e-02 -6.0871434211730957e-01
+ <_>
+
+ 0 -1 958 -3.3201207406818867e-03
+
+ -4.8987022042274475e-01 5.5623263120651245e-02
+ <_>
+
+ 0 -1 915 1.0103111853823066e-03
+
+ -1.5765775740146637e-01 1.6940611600875854e-01
+ <_>
+
+ 0 -1 151 4.9717966467142105e-03
+
+ 5.1272217184305191e-02 -5.4395431280136108e-01
+ <_>
+
+ 0 -1 799 1.7913591582328081e-03
+
+ -7.2745941579341888e-02 4.0087917447090149e-01
+ <_>
+
+ 0 -1 102 -1.3228422030806541e-02
+
+ -3.5441592335700989e-01 7.9325266182422638e-02
+ <_>
+
+ 0 -1 276 2.0421743392944336e-03
+
+ -5.9137169271707535e-02 4.6143886446952820e-01
+ <_>
+
+ 0 -1 276 -5.9784355107694864e-04
+
+ 2.5433012843132019e-01 -1.0601133853197098e-01
+ <_>
+
+ 0 -1 396 -5.1422840915620327e-03
+
+ -4.4627833366394043e-01 6.1951976269483566e-02
+ <_>
+
+ 0 -1 86 6.4243013039231300e-03
+
+ 3.1528502702713013e-02 -7.2403544187545776e-01
+ <_>
+
+ 0 -1 1035 3.4636156633496284e-03
+
+ 3.7317775189876556e-02 -5.4165351390838623e-01
+ <_>
+
+ 0 -1 14 3.2000489532947540e-02
+
+ 3.0169567093253136e-02 -7.1302002668380737e-01
+ <_>
+
+ 0 -1 498 -5.8225672692060471e-03
+
+ -4.4310861825942993e-01 4.7724053263664246e-02
+ <_>
+
+ 0 -1 24 -8.4763765335083008e-03
+
+ -6.0832363367080688e-01 3.6428902298212051e-02
+ <_>
+
+ 0 -1 598 2.7582058683037758e-03
+
+ -1.0180406272411346e-01 2.4450653791427612e-01
+ <_>
+
+ 0 -1 695 -3.0314538162201643e-03
+
+ -5.6130182743072510e-01 4.1730970144271851e-02
+ <_>
+
+ 0 -1 691 3.8132141344249249e-03
+
+ 4.3826375156641006e-02 -4.8639413714408875e-01
+ <_>
+
+ 0 -1 799 -1.1944114230573177e-03
+
+ 1.9191412627696991e-01 -1.2599647045135498e-01
+ <_>
+
+ 0 -1 751 -3.2212696969509125e-02
+
+ -7.3205161094665527e-01 3.3331435173749924e-02
+ <_>
+
+ 0 -1 521 -1.0144908446818590e-03
+
+ 3.0479896068572998e-01 -8.2489714026451111e-02
+ <_>
+
+ 0 -1 836 -1.4355147257447243e-02
+
+ 2.1706604957580566e-01 -1.0914804041385651e-01
+ <_>
+
+ 0 -1 574 -4.8122168518602848e-03
+
+ -6.7199075222015381e-01 4.0943562984466553e-02
+ <_>
+
+ 0 -1 236 3.3706519752740860e-04
+
+ -1.4588885009288788e-01 1.6099508106708527e-01
+ <_>
+
+ 0 -1 43 -1.8943618983030319e-02
+
+ -5.9796541929244995e-01 3.7877634167671204e-02
+ <_>
+
+ 0 -1 69 1.5444982796907425e-02
+
+ 2.6846721768379211e-02 -7.2375786304473877e-01
+ <_>
+
+ 0 -1 303 1.0463559068739414e-02
+
+ 3.2184243202209473e-02 -6.0756552219390869e-01
+ <_>
+
+ 0 -1 292 2.5047133676707745e-03
+
+ -1.1925315856933594e-01 1.9379882514476776e-01
+ <_>
+
+ 0 -1 797 -1.4791900292038918e-02
+
+ 1.9981779158115387e-01 -1.2553811073303223e-01
+ <_>
+
+ 0 -1 146 -6.1217732727527618e-03
+
+ -4.2455345392227173e-01 5.5959124118089676e-02
+ <_>
+
+ 0 -1 563 -3.5850135609507561e-03
+
+ 3.2560044527053833e-01 -7.1894593536853790e-02
+ <_>
+
+ 0 -1 1048 -3.2580485567450523e-03
+
+ -5.4515779018402100e-01 4.5138467103242874e-02
+ <_>
+
+ 0 -1 367 8.5870809853076935e-03
+
+ -9.2699222266674042e-02 2.7361676096916199e-01
+ <_>
+
+ 0 -1 384 -3.5999938845634460e-03
+
+ 1.7715592682361603e-01 -1.3859097659587860e-01
+ <_>
+
+ 0 -1 650 1.5299995429813862e-03
+
+ -1.0419535636901855e-01 2.1118766069412231e-01
+ <_>
+
+ 0 -1 413 2.7578026056289673e-03
+
+ -7.0944413542747498e-02 2.9870492219924927e-01
+ <_>
+
+ 0 -1 283 -6.1489176005125046e-03
+
+ -5.1581281423568726e-01 4.6433247625827789e-02
+ <_>
+
+ 0 -1 979 8.3175086183473468e-04
+
+ -8.4185592830181122e-02 2.8132751584053040e-01
+ <_>
+
+ 0 -1 979 -6.7444925662130117e-04
+
+ 2.6548036932945251e-01 -9.7815677523612976e-02
+ <_>
+
+ 0 -1 555 -5.6643221527338028e-02
+
+ 3.8170987367630005e-01 -6.2833912670612335e-02
+ <_>
+
+ 0 -1 602 -7.5360340997576714e-03
+
+ 2.2137185931205750e-01 -1.0336405038833618e-01
+
+ <_>
+ 54
+ -1.3439358472824097e+00
+
+ <_>
+
+ 0 -1 526 -4.8420722596347332e-03
+
+ 5.7400572299957275e-01 -9.5008336007595062e-02
+ <_>
+
+ 0 -1 786 -5.9993756003677845e-03
+
+ 4.5479923486709595e-01 -1.5483228862285614e-01
+ <_>
+
+ 0 -1 531 -3.1531709246337414e-03
+
+ 4.2504432797431946e-01 -1.2935030460357666e-01
+ <_>
+
+ 0 -1 884 1.2363551650196314e-03
+
+ -1.5872104465961456e-01 3.1463247537612915e-01
+ <_>
+
+ 0 -1 925 -6.7780278623104095e-03
+
+ 4.1302111744880676e-01 -1.7017546296119690e-01
+ <_>
+
+ 0 -1 259 1.3960017822682858e-03
+
+ -1.3419999182224274e-01 3.3868113160133362e-01
+ <_>
+
+ 0 -1 564 -3.5894233733415604e-03
+
+ 3.3102113008499146e-01 -1.1498286575078964e-01
+ <_>
+
+ 0 -1 551 5.4187951609492302e-03
+
+ -1.2790408730506897e-01 3.1275641918182373e-01
+ <_>
+
+ 0 -1 934 -3.3248444087803364e-03
+
+ -5.1654219627380371e-01 7.1216024458408356e-02
+ <_>
+
+ 0 -1 49 7.9970825463533401e-03
+
+ 6.3098005950450897e-02 -5.8896148204803467e-01
+ <_>
+
+ 0 -1 124 6.0347835533320904e-03
+
+ 6.4018696546554565e-02 -4.7639665007591248e-01
+ <_>
+
+ 0 -1 124 -6.9478121586143970e-03
+
+ -6.0485291481018066e-01 7.2506561875343323e-02
+ <_>
+
+ 0 -1 30 1.9063859945163131e-03
+
+ -1.8492227792739868e-01 1.9994279742240906e-01
+ <_>
+
+ 0 -1 752 2.1343495696783066e-02
+
+ -8.6192794144153595e-02 4.8719888925552368e-01
+ <_>
+
+ 0 -1 261 -2.2514071315526962e-03
+
+ 3.5809755325317383e-01 -7.6123438775539398e-02
+ <_>
+
+ 0 -1 480 -4.4778124429285526e-03
+
+ -4.5578238368034363e-01 7.3516018688678741e-02
+ <_>
+
+ 0 -1 533 3.9280336350202560e-03
+
+ 6.2599055469036102e-02 -5.2695369720458984e-01
+ <_>
+
+ 0 -1 365 -4.5666974037885666e-03
+
+ -6.1827522516250610e-01 4.1984613984823227e-02
+ <_>
+
+ 0 -1 743 -6.1424830928444862e-03
+
+ 3.0607789754867554e-01 -9.1138295829296112e-02
+ <_>
+
+ 0 -1 1019 3.4258943051099777e-03
+
+ 5.5657953023910522e-02 -5.3350126743316650e-01
+ <_>
+
+ 0 -1 731 3.3122287131845951e-03
+
+ -1.5935245156288147e-01 1.7000633478164673e-01
+ <_>
+
+ 0 -1 135 7.4128687381744385e-02
+
+ 3.3975400030612946e-02 -6.4646822214126587e-01
+ <_>
+
+ 0 -1 496 -6.0862921178340912e-02
+
+ 3.1012952327728271e-01 -9.1380268335342407e-02
+ <_>
+
+ 0 -1 575 -4.3243117630481720e-02
+
+ -4.5051410794258118e-01 6.6722445189952850e-02
+ <_>
+
+ 0 -1 322 -5.4576778784394264e-03
+
+ -4.8368638753890991e-01 5.5113438516855240e-02
+ <_>
+
+ 0 -1 196 -2.1073617972433567e-03
+
+ 2.3326623439788818e-01 -1.2007984519004822e-01
+ <_>
+
+ 0 -1 252 -1.1282963678240776e-02
+
+ 2.9159554839134216e-01 -1.0025029629468918e-01
+ <_>
+
+ 0 -1 339 2.9302681796252728e-03
+
+ -8.5840485990047455e-02 3.3159431815147400e-01
+ <_>
+
+ 0 -1 53 -2.8825225308537483e-03
+
+ -5.3361582756042480e-01 5.7994876056909561e-02
+ <_>
+
+ 0 -1 76 6.2230005860328674e-03
+
+ 4.4393569231033325e-02 -5.3072142601013184e-01
+ <_>
+
+ 0 -1 971 1.1437942739576101e-03
+
+ -9.5763660967350006e-02 2.8212538361549377e-01
+ <_>
+
+ 0 -1 1052 1.2469270732253790e-03
+
+ 6.5446242690086365e-02 -4.1902217268943787e-01
+ <_>
+
+ 0 -1 612 -1.1369751766324043e-02
+
+ -7.0747911930084229e-01 3.4916084259748459e-02
+ <_>
+
+ 0 -1 35 1.0013033449649811e-01
+
+ -6.7160040140151978e-02 4.2184004187583923e-01
+ <_>
+
+ 0 -1 653 -2.6742245536297560e-03
+
+ 1.7217047512531281e-01 -1.6229687631130219e-01
+ <_>
+
+ 0 -1 713 -3.4254738129675388e-03
+
+ 2.9603767395019531e-01 -8.9177258312702179e-02
+ <_>
+
+ 0 -1 669 1.5813322970643640e-03
+
+ 4.8733744770288467e-02 -5.6422549486160278e-01
+ <_>
+
+ 0 -1 917 2.7555555789149366e-05
+
+ -1.7079097032546997e-01 1.4066468179225922e-01
+ <_>
+
+ 0 -1 466 -8.2116597332060337e-04
+
+ 1.8260034918785095e-01 -1.3242910802364349e-01
+ <_>
+
+ 0 -1 353 -1.0168720036745071e-02
+
+ -4.1390055418014526e-01 6.5349683165550232e-02
+ <_>
+
+ 0 -1 96 2.5848036631941795e-02
+
+ 4.6910341829061508e-02 -4.7531116008758545e-01
+ <_>
+
+ 0 -1 75 5.9797330759465694e-03
+
+ 4.5450355857610703e-02 -4.5701387524604797e-01
+ <_>
+
+ 0 -1 81 -2.4257015902549028e-03
+
+ 1.8431460857391357e-01 -1.1879430711269379e-01
+ <_>
+
+ 0 -1 346 -4.1334740817546844e-02
+
+ 3.0460721254348755e-01 -9.4910860061645508e-02
+ <_>
+
+ 0 -1 537 7.5982198119163513e-02
+
+ -6.5890170633792877e-02 3.3325287699699402e-01
+ <_>
+
+ 0 -1 318 -2.7852014682139270e-05
+
+ 1.4771287143230438e-01 -1.4524473249912262e-01
+ <_>
+
+ 0 -1 669 -1.4885163400322199e-03
+
+ -4.6987643837928772e-01 4.7233786433935165e-02
+ <_>
+
+ 0 -1 897 -3.3519542776048183e-03
+
+ 2.4128976464271545e-01 -9.3788638710975647e-02
+ <_>
+
+ 0 -1 935 1.3348343782126904e-03
+
+ -9.9509775638580322e-02 2.9368522763252258e-01
+ <_>
+
+ 0 -1 704 3.2456549815833569e-03
+
+ -9.8895303905010223e-02 2.3363485932350159e-01
+ <_>
+
+ 0 -1 611 4.2385179549455643e-03
+
+ 5.9986904263496399e-02 -4.5745995640754700e-01
+ <_>
+
+ 0 -1 170 8.4751443937420845e-03
+
+ 3.0937874689698219e-02 -6.7139619588851929e-01
+ <_>
+
+ 0 -1 995 3.0964510515332222e-03
+
+ 3.0879957601428032e-02 -6.2686437368392944e-01
+ <_>
+
+ 0 -1 212 2.3455230984836817e-03
+
+ -1.3303077220916748e-01 1.6908498108386993e-01
+
+ <_>
+ 72
+ -1.4052674770355225e+00
+
+ <_>
+
+ 0 -1 534 -8.4834604058414698e-04
+
+ 4.6746683120727539e-01 -1.2498743087053299e-01
+ <_>
+
+ 0 -1 838 1.1534148361533880e-03
+
+ -2.1341361105442047e-01 3.0533915758132935e-01
+ <_>
+
+ 0 -1 728 1.3660041615366936e-02
+
+ -1.5390963852405548e-01 3.2113197445869446e-01
+ <_>
+
+ 0 -1 528 -1.3363182079046965e-03
+
+ 2.4346974492073059e-01 -1.8074017763137817e-01
+ <_>
+
+ 0 -1 1002 5.5064354091882706e-04
+
+ -1.9600959122180939e-01 2.1903340518474579e-01
+ <_>
+
+ 0 -1 340 2.8026416897773743e-02
+
+ -9.9956467747688293e-02 5.1314896345138550e-01
+ <_>
+
+ 0 -1 930 -9.8200759384781122e-04
+
+ 2.0671010017395020e-01 -1.9585600495338440e-01
+ <_>
+
+ 0 -1 249 -1.9661948084831238e-02
+
+ -5.1859843730926514e-01 7.9988524317741394e-02
+ <_>
+
+ 0 -1 514 5.7550622150301933e-03
+
+ -1.0230549424886703e-01 2.9102912545204163e-01
+ <_>
+
+ 0 -1 854 4.8226406797766685e-03
+
+ -1.2503834068775177e-01 2.2606587409973145e-01
+ <_>
+
+ 0 -1 1025 -3.5137422382831573e-03
+
+ -6.8291509151458740e-01 4.6296034008264542e-02
+ <_>
+
+ 0 -1 468 2.7717142074834555e-05
+
+ -2.1390475332736969e-01 1.3291628658771515e-01
+ <_>
+
+ 0 -1 875 -2.2634968161582947e-02
+
+ 4.0156257152557373e-01 -9.0922117233276367e-02
+ <_>
+
+ 0 -1 890 -2.6544253341853619e-04
+
+ 2.1944612264633179e-01 -1.5686984360218048e-01
+ <_>
+
+ 0 -1 45 1.7469950020313263e-02
+
+ 5.9605021029710770e-02 -5.4529672861099243e-01
+ <_>
+
+ 0 -1 812 3.6130528897047043e-03
+
+ 5.2721742540597916e-02 -4.4890201091766357e-01
+ <_>
+
+ 0 -1 813 -3.8260491564869881e-03
+
+ -5.1076781749725342e-01 4.7858215868473053e-02
+ <_>
+
+ 0 -1 348 -4.6305969590321183e-04
+
+ 2.0340332388877869e-01 -1.3007256388664246e-01
+ <_>
+
+ 0 -1 685 -7.3791583999991417e-03
+
+ -5.4855078458786011e-01 5.1355980336666107e-02
+ <_>
+
+ 0 -1 397 -4.1331160813570023e-02
+
+ -3.7914556264877319e-01 6.2432620674371719e-02
+ <_>
+
+ 0 -1 720 -1.4983891742303967e-03
+
+ -5.2967226505279541e-01 4.2461462318897247e-02
+ <_>
+
+ 0 -1 785 -2.5054097641259432e-03
+
+ 2.0288434624671936e-01 -1.2341590225696564e-01
+ <_>
+
+ 0 -1 259 -7.1871257387101650e-04
+
+ 2.4784520268440247e-01 -9.8167583346366882e-02
+ <_>
+
+ 0 -1 260 -6.8983237724751234e-04
+
+ 2.7780577540397644e-01 -9.7512029111385345e-02
+ <_>
+
+ 0 -1 274 4.8434769269078970e-04
+
+ -1.1704409867525101e-01 2.4324342608451843e-01
+ <_>
+
+ 0 -1 508 -3.6378027871251106e-03
+
+ -5.7295501232147217e-01 4.9037151038646698e-02
+ <_>
+
+ 0 -1 709 -2.6648804545402527e-02
+
+ -6.0253041982650757e-01 3.6413222551345825e-02
+ <_>
+
+ 0 -1 825 -4.3416651897132397e-03
+
+ 4.7109794616699219e-01 -5.9058945626020432e-02
+ <_>
+
+ 0 -1 60 -2.7588163502514362e-03
+
+ -4.9160134792327881e-01 5.4663125425577164e-02
+ <_>
+
+ 0 -1 987 4.7046472318470478e-03
+
+ 3.7025094032287598e-02 -5.6842529773712158e-01
+ <_>
+
+ 0 -1 77 4.9029560759663582e-03
+
+ 4.8207473009824753e-02 -4.2965477705001831e-01
+ <_>
+
+ 0 -1 837 -7.0135248824954033e-04
+
+ 2.2556030750274658e-01 -9.9117368459701538e-02
+ <_>
+
+ 0 -1 332 2.7165210340172052e-03
+
+ 4.3833449482917786e-02 -5.5271440744400024e-01
+ <_>
+
+ 0 -1 837 8.9941755868494511e-04
+
+ -8.9474648237228394e-02 2.6415902376174927e-01
+ <_>
+
+ 0 -1 723 -1.7575379461050034e-03
+
+ -5.7822185754776001e-01 4.4655490666627884e-02
+ <_>
+
+ 0 -1 323 2.2079560905694962e-02
+
+ -9.1862626373767853e-02 2.6927500963211060e-01
+ <_>
+
+ 0 -1 247 -2.4989219382405281e-03
+
+ 1.9282613694667816e-01 -1.4004705846309662e-01
+ <_>
+
+ 0 -1 388 4.4558709487318993e-03
+
+ 5.2965965121984482e-02 -4.6530798077583313e-01
+ <_>
+
+ 0 -1 345 8.9809950441122055e-03
+
+ -6.9099865853786469e-02 3.5005539655685425e-01
+ <_>
+
+ 0 -1 589 -4.6078087761998177e-03
+
+ 1.5373907983303070e-01 -1.5948937833309174e-01
+ <_>
+
+ 0 -1 10 -8.9063167572021484e-02
+
+ 4.8500600457191467e-01 -5.1386959850788116e-02
+ <_>
+
+ 0 -1 540 4.8636873252689838e-03
+
+ 5.1732856780290604e-02 -4.9787709116935730e-01
+ <_>
+
+ 0 -1 992 -5.4465518333017826e-03
+
+ 1.5584819018840790e-01 -1.4326727390289307e-01
+ <_>
+
+ 0 -1 788 6.4384475350379944e-02
+
+ 3.1540591269731522e-02 -7.1331930160522461e-01
+ <_>
+
+ 0 -1 25 -9.3528348952531815e-03
+
+ -5.8800560235977173e-01 3.2534934580326080e-02
+ <_>
+
+ 0 -1 374 6.5686285961419344e-04
+
+ -1.6972899436950684e-01 1.4208021759986877e-01
+ <_>
+
+ 0 -1 744 -6.5707243047654629e-03
+
+ 3.1901842355728149e-01 -7.0233277976512909e-02
+ <_>
+
+ 0 -1 370 7.0676081813871861e-03
+
+ 3.0735086649656296e-02 -7.6451587677001953e-01
+ <_>
+
+ 0 -1 875 -1.1614331044256687e-02
+
+ 2.0416912436485291e-01 -1.0650242120027542e-01
+ <_>
+
+ 0 -1 227 -3.0933439731597900e-02
+
+ -3.5186296701431274e-01 6.3158944249153137e-02
+ <_>
+
+ 0 -1 31 8.9404191821813583e-03
+
+ 4.1301336139440536e-02 -5.2171415090560913e-01
+ <_>
+
+ 0 -1 542 -3.0004943255335093e-04
+
+ 1.8332102894783020e-01 -1.1965552717447281e-01
+ <_>
+
+ 0 -1 753 -4.2704585939645767e-03
+
+ -4.1220253705978394e-01 5.2136015146970749e-02
+ <_>
+
+ 0 -1 979 9.1349193826317787e-04
+
+ -8.2035504281520844e-02 2.7817621827125549e-01
+ <_>
+
+ 0 -1 97 2.8089310973882675e-02
+
+ 6.0909613966941833e-02 -3.7705209851264954e-01
+ <_>
+
+ 0 -1 979 -1.1489203898236156e-03
+
+ 2.9547268152236938e-01 -7.8550107777118683e-02
+ <_>
+
+ 0 -1 766 -8.5876882076263428e-04
+
+ 1.6158875823020935e-01 -1.3613829016685486e-01
+ <_>
+
+ 0 -1 862 3.3645064104348421e-03
+
+ 3.6055568605661392e-02 -5.5788111686706543e-01
+ <_>
+
+ 0 -1 1034 -1.2699423357844353e-02
+
+ -4.2199519276618958e-01 4.3876208364963531e-02
+ <_>
+
+ 0 -1 158 -1.3306856155395508e-01
+
+ -7.5723612308502197e-01 2.4755204096436501e-02
+ <_>
+
+ 0 -1 822 4.9831219017505646e-02
+
+ 2.5250671431422234e-02 -6.3122928142547607e-01
+ <_>
+
+ 0 -1 569 5.8193420991301537e-03
+
+ 2.2189516574144363e-02 -7.2821933031082153e-01
+ <_>
+
+ 0 -1 422 -6.3158385455608368e-03
+
+ 1.9480472803115845e-01 -1.0275462269783020e-01
+ <_>
+
+ 0 -1 58 -2.6879269629716873e-02
+
+ -4.3909311294555664e-01 4.5222271233797073e-02
+ <_>
+
+ 0 -1 900 -1.6478844918310642e-03
+
+ 2.7425831556320190e-01 -7.7650256454944611e-02
+ <_>
+
+ 0 -1 947 4.4362144544720650e-03
+
+ 3.2876692712306976e-02 -6.0907542705535889e-01
+ <_>
+
+ 0 -1 760 -1.5154483262449503e-03
+
+ 2.2985421121120453e-01 -8.5810013115406036e-02
+ <_>
+
+ 0 -1 157 7.0627350360155106e-03
+
+ 3.4827440977096558e-02 -5.9273594617843628e-01
+ <_>
+
+ 0 -1 393 4.5482232235372066e-03
+
+ -5.2113339304924011e-02 4.0603092312812805e-01
+ <_>
+
+ 0 -1 183 -3.9095789194107056e-02
+
+ 2.5562492012977600e-01 -8.1410482525825500e-02
+ <_>
+
+ 0 -1 718 -1.9122204976156354e-03
+
+ -6.5523076057434082e-01 3.1964879482984543e-02
+ <_>
+
+ 0 -1 622 5.1604928448796272e-03
+
+ 2.8228869661688805e-02 -6.0336226224899292e-01
+
+ <_>
+ 63
+ -1.2550007104873657e+00
+
+ <_>
+
+ 0 -1 532 -1.3708438724279404e-02
+
+ 4.5314663648605347e-01 -1.2558805942535400e-01
+ <_>
+
+ 0 -1 32 1.2687301263213158e-02
+
+ -1.5584127604961395e-01 3.8753288984298706e-01
+ <_>
+
+ 0 -1 254 3.3966779708862305e-02
+
+ -1.1772038787603378e-01 4.0628942847251892e-01
+ <_>
+
+ 0 -1 756 8.0258902162313461e-03
+
+ -1.4661933481693268e-01 4.0369525551795959e-01
+ <_>
+
+ 0 -1 2 -4.2836386710405350e-03
+
+ 2.2167153656482697e-01 -1.9662868976593018e-01
+ <_>
+
+ 0 -1 164 -2.7807329315692186e-03
+
+ -4.6929144859313965e-01 6.9577261805534363e-02
+ <_>
+
+ 0 -1 172 1.9090694840997458e-03
+
+ 5.9488739818334579e-02 -6.3101488351821899e-01
+ <_>
+
+ 0 -1 426 3.1442400068044662e-03
+
+ -1.1149841547012329e-01 3.0095639824867249e-01
+ <_>
+
+ 0 -1 324 -2.8418585658073425e-02
+
+ 3.6157062649726868e-01 -9.6387691795825958e-02
+ <_>
+
+ 0 -1 449 -4.4032465666532516e-03
+
+ 3.2977014780044556e-01 -9.8187342286109924e-02
+ <_>
+
+ 0 -1 400 -2.6041134260594845e-03
+
+ 2.8221642971038818e-01 -1.0142992436885834e-01
+ <_>
+
+ 0 -1 357 -5.8917067945003510e-03
+
+ -5.8254349231719971e-01 6.0040380805730820e-02
+ <_>
+
+ 0 -1 998 1.3956660404801369e-03
+
+ -1.6574928164482117e-01 1.7746162414550781e-01
+ <_>
+
+ 0 -1 1022 -1.7630932852625847e-03
+
+ -5.7597070932388306e-01 6.2388133257627487e-02
+ <_>
+
+ 0 -1 697 -1.3517161132767797e-03
+
+ -5.1934504508972168e-01 4.7232870012521744e-02
+ <_>
+
+ 0 -1 507 -3.8743610493838787e-03
+
+ 2.9165247082710266e-01 -9.9355563521385193e-02
+ <_>
+
+ 0 -1 765 1.0973589494824409e-02
+
+ -7.7571205794811249e-02 3.4312543272972107e-01
+ <_>
+
+ 0 -1 128 -3.5274624824523926e-03
+
+ -6.7513287067413330e-01 3.6897819489240646e-02
+ <_>
+
+ 0 -1 605 -2.4239125195890665e-03
+
+ 2.5701349973678589e-01 -1.0465545207262039e-01
+ <_>
+
+ 0 -1 727 -8.3098262548446655e-03
+
+ 2.6842510700225830e-01 -9.9635124206542969e-02
+ <_>
+
+ 0 -1 269 -2.7831714600324631e-02
+
+ -3.9901316165924072e-01 6.5086022019386292e-02
+ <_>
+
+ 0 -1 399 8.1690559163689613e-03
+
+ -1.1402101069688797e-01 2.2761905193328857e-01
+ <_>
+
+ 0 -1 368 2.8635351918637753e-03
+
+ -1.4034478366374969e-01 1.8733198940753937e-01
+ <_>
+
+ 0 -1 286 -2.1204156801104546e-03
+
+ -5.9949654340744019e-01 4.9501683562994003e-02
+ <_>
+
+ 0 -1 669 -9.4446074217557907e-04
+
+ -3.8145086169242859e-01 5.9254929423332214e-02
+ <_>
+
+ 0 -1 686 2.1901372820138931e-03
+
+ 3.6901079118251801e-02 -5.6260800361633301e-01
+ <_>
+
+ 0 -1 103 4.2550573125481606e-03
+
+ -9.8831087350845337e-02 2.3313422501087189e-01
+ <_>
+
+ 0 -1 281 4.2771790176630020e-03
+
+ 4.2207289487123489e-02 -5.6859022378921509e-01
+ <_>
+
+ 0 -1 422 -7.8792609274387360e-03
+
+ 2.2428077459335327e-01 -9.9518932402133942e-02
+ <_>
+
+ 0 -1 561 -3.5514549817889929e-03
+
+ -5.6150603294372559e-01 3.9242122322320938e-02
+ <_>
+
+ 0 -1 738 -6.8606354761868715e-04
+
+ 2.1056549251079559e-01 -1.2413132935762405e-01
+ <_>
+
+ 0 -1 433 5.2483025938272476e-03
+
+ 3.4256864339113235e-02 -7.2566890716552734e-01
+ <_>
+
+ 0 -1 658 -3.6910744383931160e-03
+
+ 2.6440864801406860e-01 -8.9745096862316132e-02
+ <_>
+
+ 0 -1 127 2.0369128324091434e-03
+
+ 4.6990364789962769e-02 -5.3132331371307373e-01
+ <_>
+
+ 0 -1 662 3.8735207635909319e-03
+
+ -9.1540865600109100e-02 2.7486115694046021e-01
+ <_>
+
+ 0 -1 126 6.0556940734386444e-03
+
+ 5.3909529000520706e-02 -4.6437451243400574e-01
+ <_>
+
+ 0 -1 912 4.8301572678610682e-04
+
+ -1.6165176033973694e-01 1.3917934894561768e-01
+ <_>
+
+ 0 -1 101 -1.4880476519465446e-02
+
+ -5.9634107351303101e-01 3.9811171591281891e-02
+ <_>
+
+ 0 -1 609 2.9731846880167723e-03
+
+ 3.0903076753020287e-02 -6.2935864925384521e-01
+ <_>
+
+ 0 -1 90 -1.1181155219674110e-02
+
+ 3.5473996400833130e-01 -6.4499482512474060e-02
+ <_>
+
+ 0 -1 1009 -9.8370900377631187e-04
+
+ 2.9858112335205078e-01 -8.4500424563884735e-02
+ <_>
+
+ 0 -1 975 -1.0228222236037254e-03
+
+ 2.7100124955177307e-01 -1.0033085197210312e-01
+ <_>
+
+ 0 -1 913 2.0134919323027134e-03
+
+ 4.3533660471439362e-02 -5.4969471693038940e-01
+ <_>
+
+ 0 -1 881 -3.1473359558731318e-03
+
+ 3.1102818250656128e-01 -8.0141142010688782e-02
+ <_>
+
+ 0 -1 991 -2.9232497327029705e-03
+
+ -6.7808300256729126e-01 3.5025410354137421e-02
+ <_>
+
+ 0 -1 494 -3.8992143236100674e-03
+
+ 2.5711989402770996e-01 -8.4509201347827911e-02
+ <_>
+
+ 0 -1 547 -3.8403570652008057e-02
+
+ 2.8463324904441833e-01 -7.5673028826713562e-02
+ <_>
+
+ 0 -1 700 -2.2210094612091780e-03
+
+ -5.6876182556152344e-01 4.0759250521659851e-02
+ <_>
+
+ 0 -1 989 6.9615743122994900e-03
+
+ -7.8118488192558289e-02 2.8128826618194580e-01
+ <_>
+
+ 0 -1 948 -1.8219950143247843e-03
+
+ 1.8647159636020660e-01 -1.3465921580791473e-01
+ <_>
+
+ 0 -1 697 1.0106971021741629e-03
+
+ 5.7168632745742798e-02 -4.1419604420661926e-01
+ <_>
+
+ 0 -1 945 -3.3746981061995029e-03
+
+ -5.2892911434173584e-01 4.0065344423055649e-02
+ <_>
+
+ 0 -1 1030 -8.5245687514543533e-03
+
+ -5.0935691595077515e-01 3.8823168724775314e-02
+ <_>
+
+ 0 -1 1012 -2.2426969371736050e-03
+
+ 2.5891116261482239e-01 -8.8167145848274231e-02
+ <_>
+
+ 0 -1 402 -5.9730862267315388e-03
+
+ -4.3465223908424377e-01 4.9864508211612701e-02
+ <_>
+
+ 0 -1 452 -5.5482299067080021e-03
+
+ 2.5288850069046021e-01 -9.3322932720184326e-02
+ <_>
+
+ 0 -1 51 3.7344563007354736e-01
+
+ -4.9019347876310349e-02 4.3872711062431335e-01
+ <_>
+
+ 0 -1 615 -4.0881419554352760e-03
+
+ 3.1952694058418274e-01 -7.7735908329486847e-02
+ <_>
+
+ 0 -1 202 3.1661842949688435e-03
+
+ -1.0995075106620789e-01 1.7701222002506256e-01
+ <_>
+
+ 0 -1 17 -2.1666671335697174e-01
+
+ -4.5134860277175903e-01 4.9127347767353058e-02
+ <_>
+
+ 0 -1 241 -3.1139418482780457e-02
+
+ 2.5138390064239502e-01 -9.4933450222015381e-02
+ <_>
+
+ 0 -1 459 9.1597874416038394e-04
+
+ -7.4231699109077454e-02 3.1368830800056458e-01
+ <_>
+
+ 0 -1 747 -6.1164153739809990e-03
+
+ -7.0417582988739014e-01 3.4018490463495255e-02
+
+ <_>
+ 77
+ -1.3230814933776855e+00
+
+ <_>
+
+ 0 -1 522 -3.3400340471416712e-03
+
+ 4.2352598905563354e-01 -1.2572944164276123e-01
+ <_>
+
+ 0 -1 799 -2.3890279699116945e-03
+
+ 3.8169610500335693e-01 -1.4501731097698212e-01
+ <_>
+
+ 0 -1 448 -2.4045775644481182e-03
+
+ 3.4690696001052856e-01 -1.2821178138256073e-01
+ <_>
+
+ 0 -1 524 1.2546034995466471e-03
+
+ -1.4823316037654877e-01 2.9894015192985535e-01
+ <_>
+
+ 0 -1 752 -1.8236635252833366e-02
+
+ 3.0641126632690430e-01 -1.2427721172571182e-01
+ <_>
+
+ 0 -1 229 4.1921215597540140e-04
+
+ -1.8449674546718597e-01 1.7403297126293182e-01
+ <_>
+
+ 0 -1 914 -3.0837533995509148e-03
+
+ -6.2562137842178345e-01 3.4162398427724838e-02
+ <_>
+
+ 0 -1 587 -3.4897932782769203e-03
+
+ 2.0127655565738678e-01 -1.4677318930625916e-01
+ <_>
+
+ 0 -1 882 -3.4818234853446484e-03
+
+ 2.9465374350547791e-01 -1.0961814969778061e-01
+ <_>
+
+ 0 -1 13 6.2356598675251007e-02
+
+ -9.8056003451347351e-02 3.1733244657516479e-01
+ <_>
+
+ 0 -1 607 -1.8334560096263885e-02
+
+ 3.1992998719215393e-01 -7.8213296830654144e-02
+ <_>
+
+ 0 -1 885 3.7803263403475285e-03
+
+ 5.3678415715694427e-02 -5.0315982103347778e-01
+ <_>
+
+ 0 -1 1027 -3.6906298249959946e-02
+
+ -6.3056147098541260e-01 3.8218058645725250e-02
+ <_>
+
+ 0 -1 923 4.6968068927526474e-03
+
+ -1.1338837444782257e-01 2.6388064026832581e-01
+ <_>
+
+ 0 -1 708 -1.1566210538148880e-02
+
+ 1.6388712823390961e-01 -1.6043519973754883e-01
+ <_>
+
+ 0 -1 489 3.1895786523818970e-03
+
+ 6.0215596109628677e-02 -4.7157511115074158e-01
+ <_>
+
+ 0 -1 50 -2.5480750948190689e-02
+
+ -5.5096846818923950e-01 3.9257630705833435e-02
+ <_>
+
+ 0 -1 480 3.9267786778509617e-03
+
+ 6.1174295842647552e-02 -4.1686600446701050e-01
+ <_>
+
+ 0 -1 874 4.2923549190163612e-03
+
+ -6.9901801645755768e-02 3.6233785748481750e-01
+ <_>
+
+ 0 -1 929 1.5720827504992485e-03
+
+ -9.2891335487365723e-02 2.6970732212066650e-01
+ <_>
+
+ 0 -1 937 4.2968937195837498e-03
+
+ 4.5402236282825470e-02 -6.1771476268768311e-01
+ <_>
+
+ 0 -1 223 5.8442405425012112e-03
+
+ 3.4459017217159271e-02 -6.2251347303390503e-01
+ <_>
+
+ 0 -1 663 2.6888614520430565e-03
+
+ 3.6230482161045074e-02 -5.7353609800338745e-01
+ <_>
+
+ 0 -1 424 4.4175283983349800e-03
+
+ -6.4959764480590820e-02 3.7311050295829773e-01
+ <_>
+
+ 0 -1 138 1.4900951646268368e-03
+
+ -1.0781793296337128e-01 2.0226408541202545e-01
+ <_>
+
+ 0 -1 373 2.4665119126439095e-03
+
+ 5.7804334908723831e-02 -4.1689205169677734e-01
+ <_>
+
+ 0 -1 441 9.3985523562878370e-04
+
+ -1.4865192770957947e-01 1.3861793279647827e-01
+ <_>
+
+ 0 -1 132 -5.3606871515512466e-03
+
+ 1.8524695932865143e-01 -1.1567704379558563e-01
+ <_>
+
+ 0 -1 636 -4.6638157218694687e-03
+
+ 1.6163532435894012e-01 -1.3586524128913879e-01
+ <_>
+
+ 0 -1 120 3.7256032228469849e-03
+
+ 5.2170656621456146e-02 -4.2538973689079285e-01
+ <_>
+
+ 0 -1 106 -8.9184641838073730e-03
+
+ -5.0052535533905029e-01 4.7540370374917984e-02
+ <_>
+
+ 0 -1 474 5.6020710617303848e-03
+
+ 3.4621786326169968e-02 -5.4071390628814697e-01
+ <_>
+
+ 0 -1 475 -3.7551699206233025e-03
+
+ -3.9268767833709717e-01 5.2867397665977478e-02
+ <_>
+
+ 0 -1 567 4.0759481489658356e-03
+
+ 3.7209436297416687e-02 -4.7708320617675781e-01
+ <_>
+
+ 0 -1 413 4.1836635209619999e-03
+
+ -5.8815345168113708e-02 3.6573976278305054e-01
+ <_>
+
+ 0 -1 477 -9.3902507796883583e-04
+
+ 1.9424098730087280e-01 -1.1125016957521439e-01
+ <_>
+
+ 0 -1 985 -9.9178254604339600e-03
+
+ -5.9317117929458618e-01 3.3418238162994385e-02
+ <_>
+
+ 0 -1 646 3.3355036284774542e-03
+
+ -8.7399490177631378e-02 2.4422888457775116e-01
+ <_>
+
+ 0 -1 646 -3.4440397284924984e-03
+
+ 2.9363137483596802e-01 -7.5259201228618622e-02
+ <_>
+
+ 0 -1 42 2.1378418896347284e-03
+
+ 5.6551665067672729e-02 -3.9630606770515442e-01
+ <_>
+
+ 0 -1 1005 -4.5215697027742863e-03
+
+ 1.6443158686161041e-01 -1.1997994035482407e-01
+ <_>
+
+ 0 -1 47 -1.2263706885278225e-03
+
+ -2.6839572191238403e-01 7.8797832131385803e-02
+ <_>
+
+ 0 -1 926 -7.3856199160218239e-03
+
+ -7.5282222032546997e-01 2.3323338478803635e-02
+ <_>
+
+ 0 -1 1044 1.1934632435441017e-02
+
+ 3.9068166166543961e-02 -4.3301787972450256e-01
+ <_>
+
+ 0 -1 826 -4.2066089808940887e-03
+
+ 3.1933805346488953e-01 -6.1786398291587830e-02
+ <_>
+
+ 0 -1 779 -1.5679887728765607e-03
+
+ 2.1744215488433838e-01 -9.4651907682418823e-02
+ <_>
+
+ 0 -1 78 2.5083343498408794e-03
+
+ 5.7137917727231979e-02 -3.3361336588859558e-01
+ <_>
+
+ 0 -1 660 3.6224797368049622e-03
+
+ 3.1345754861831665e-02 -5.7247912883758545e-01
+ <_>
+
+ 0 -1 870 -7.7814143151044846e-03
+
+ 2.9652404785156250e-01 -6.6501826047897339e-02
+ <_>
+
+ 0 -1 800 -4.1631370550021529e-04
+
+ 2.2159980237483978e-01 -1.0610108822584152e-01
+ <_>
+
+ 0 -1 596 4.7841453924775124e-03
+
+ 3.3327136188745499e-02 -5.7043993473052979e-01
+ <_>
+
+ 0 -1 347 1.2740758247673512e-03
+
+ -7.9592645168304443e-02 2.4728350341320038e-01
+ <_>
+
+ 0 -1 59 -2.0162630826234818e-02
+
+ -7.0677626132965088e-01 2.7118822559714317e-02
+ <_>
+
+ 0 -1 165 -2.5762226432561874e-02
+
+ -5.9367066621780396e-01 2.7015525847673416e-02
+ <_>
+
+ 0 -1 255 -1.1241633910685778e-03
+
+ 2.9121127724647522e-01 -6.5690472722053528e-02
+ <_>
+
+ 0 -1 818 2.9669383540749550e-02
+
+ 3.4585461020469666e-02 -5.4837781190872192e-01
+ <_>
+
+ 0 -1 501 -6.3295168802142143e-03
+
+ 2.3453639447689056e-01 -8.5172846913337708e-02
+ <_>
+
+ 0 -1 1046 4.0143523365259171e-03
+
+ 3.5306803882122040e-02 -5.4817456007003784e-01
+ <_>
+
+ 0 -1 949 -2.4633856955915689e-03
+
+ 1.6164709627628326e-01 -1.1111633479595184e-01
+ <_>
+
+ 0 -1 38 -2.6468174532055855e-02
+
+ 2.5775042176246643e-01 -7.2721429169178009e-02
+ <_>
+
+ 0 -1 1047 -2.5992670562118292e-03
+
+ -3.1405648589134216e-01 5.9779226779937744e-02
+ <_>
+
+ 0 -1 809 -2.2960878908634186e-02
+
+ 2.8405818343162537e-01 -6.8080194294452667e-02
+ <_>
+
+ 0 -1 437 -1.6940593719482422e-02
+
+ 3.0056476593017578e-01 -6.7668616771697998e-02
+ <_>
+
+ 0 -1 528 1.7171052750200033e-03
+
+ -6.5253980457782745e-02 2.9430890083312988e-01
+ <_>
+
+ 0 -1 142 -5.2873874083161354e-03
+
+ -4.5413893461227417e-01 4.3044254183769226e-02
+ <_>
+
+ 0 -1 14 -1.8073642626404762e-02
+
+ -3.4945023059844971e-01 5.2509855479001999e-02
+ <_>
+
+ 0 -1 627 -2.0803229417651892e-03
+
+ -4.0171647071838379e-01 4.5229051262140274e-02
+ <_>
+
+ 0 -1 918 -1.1218651343369856e-04
+
+ 1.2830497324466705e-01 -1.4649079740047455e-01
+ <_>
+
+ 0 -1 84 -6.6526420414447784e-03
+
+ -3.4429419040679932e-01 5.4524090141057968e-02
+ <_>
+
+ 0 -1 162 -4.1576132178306580e-02
+
+ -5.5132204294204712e-01 3.2239176332950592e-02
+ <_>
+
+ 0 -1 659 -3.2582432031631470e-03
+
+ 2.1904261410236359e-01 -9.0739406645298004e-02
+ <_>
+
+ 0 -1 711 -4.4706808403134346e-03
+
+ 2.2556288540363312e-01 -9.5258384943008423e-02
+ <_>
+
+ 0 -1 177 -6.5750535577535629e-03
+
+ -4.8511472344398499e-01 4.1734144091606140e-02
+ <_>
+
+ 0 -1 251 -3.7532784044742584e-02
+
+ 2.0968079566955566e-01 -8.8354945182800293e-02
+ <_>
+
+ 0 -1 530 -1.2600638438016176e-03
+
+ 2.2111406922340393e-01 -9.0988010168075562e-02
+ <_>
+
+ 0 -1 28 -2.3967802524566650e-02
+
+ -6.2524855136871338e-01 3.0603738501667976e-02
+ <_>
+
+ 0 -1 225 -3.1747903674840927e-02
+
+ -6.2007570266723633e-01 2.5801742449402809e-02
+
+ <_>
+ 84
+ -1.3265128135681152e+00
+
+ <_>
+
+ 0 -1 801 -2.4247136898338795e-03
+
+ 4.3507692217826843e-01 -1.1363404244184494e-01
+ <_>
+
+ 0 -1 239 3.6287805996835232e-03
+
+ -1.5781879425048828e-01 3.3899685740470886e-01
+ <_>
+
+ 0 -1 591 -4.2556263506412506e-03
+
+ 2.2901295125484467e-01 -2.0403152704238892e-01
+ <_>
+
+ 0 -1 847 1.6322638839483261e-03
+
+ -1.9230945408344269e-01 2.0004445314407349e-01
+ <_>
+
+ 0 -1 338 1.4746835455298424e-02
+
+ -1.2184409052133560e-01 3.9130899310112000e-01
+ <_>
+
+ 0 -1 192 -1.5139304101467133e-02
+
+ 2.6918080449104309e-01 -1.4086124300956726e-01
+ <_>
+
+ 0 -1 21 -7.4753491207957268e-03
+
+ 2.1792158484458923e-01 -1.6056208312511444e-01
+ <_>
+
+ 0 -1 287 2.3232740350067616e-03
+
+ -1.6489887237548828e-01 1.7108000814914703e-01
+ <_>
+
+ 0 -1 899 -2.7532558888196945e-03
+
+ -5.3275841474533081e-01 5.2368167787790298e-02
+ <_>
+
+ 0 -1 896 -3.9793960750102997e-03
+
+ 3.4057796001434326e-01 -8.0085732042789459e-02
+ <_>
+
+ 0 -1 608 7.1728855371475220e-02
+
+ -7.2147607803344727e-02 4.0667375922203064e-01
+ <_>
+
+ 0 -1 883 -5.3792679682374001e-04
+
+ 1.7865169048309326e-01 -1.4902706444263458e-01
+ <_>
+
+ 0 -1 248 6.0019297525286674e-03
+
+ 7.1029536426067352e-02 -3.9921376109123230e-01
+ <_>
+
+ 0 -1 369 6.9427289068698883e-02
+
+ -9.5279395580291748e-02 2.6865223050117493e-01
+ <_>
+
+ 0 -1 130 -8.8401548564434052e-03
+
+ -5.3491175174713135e-01 5.0447739660739899e-02
+ <_>
+
+ 0 -1 699 -1.4551014639437199e-02
+
+ 1.9883459806442261e-01 -1.1586152762174606e-01
+ <_>
+
+ 0 -1 754 -1.7498439410701394e-03
+
+ 2.2214990854263306e-01 -9.8238572478294373e-02
+ <_>
+
+ 0 -1 246 -2.1636944264173508e-02
+
+ 2.8814041614532471e-01 -8.2750618457794189e-02
+ <_>
+
+ 0 -1 833 1.2786949053406715e-02
+
+ -8.7337315082550049e-02 2.6530647277832031e-01
+ <_>
+
+ 0 -1 57 -8.7271071970462799e-03
+
+ -5.3538525104522705e-01 5.0595279783010483e-02
+ <_>
+
+ 0 -1 1039 3.3185956999659538e-03
+
+ 4.5733701437711716e-02 -4.4758048653602600e-01
+ <_>
+
+ 0 -1 795 -1.2216938193887472e-03
+
+ 1.5257745981216431e-01 -1.4963941276073456e-01
+ <_>
+
+ 0 -1 562 3.9857804775238037e-02
+
+ -8.5655666887760162e-02 2.6823255419731140e-01
+ <_>
+
+ 0 -1 764 2.4454984813928604e-03
+
+ 4.6102020889520645e-02 -5.0574064254760742e-01
+ <_>
+
+ 0 -1 98 -4.2114150524139404e-01
+
+ 6.9476419687271118e-01 -3.2907195389270782e-02
+ <_>
+
+ 0 -1 558 2.3470625281333923e-02
+
+ -8.6790844798088074e-02 2.2723633050918579e-01
+ <_>
+
+ 0 -1 253 -1.1454307474195957e-02
+
+ 2.5413584709167480e-01 -8.8991768658161163e-02
+ <_>
+
+ 0 -1 624 5.0260839052498341e-03
+
+ 3.8961157202720642e-02 -5.9463697671890259e-01
+ <_>
+
+ 0 -1 873 1.6196466749534011e-03
+
+ -9.0231269598007202e-02 2.6204809546470642e-01
+ <_>
+
+ 0 -1 408 8.1676244735717773e-02
+
+ -8.0785289406776428e-02 2.5112318992614746e-01
+ <_>
+
+ 0 -1 483 -5.4313270375132561e-03
+
+ 1.6463221609592438e-01 -1.3186016678810120e-01
+ <_>
+
+ 0 -1 291 5.7006161659955978e-03
+
+ -1.3998855650424957e-01 1.4326113462448120e-01
+ <_>
+
+ 0 -1 221 -7.5926873832941055e-03
+
+ -5.5559343099594116e-01 3.7072587758302689e-02
+ <_>
+
+ 0 -1 618 7.5261802412569523e-03
+
+ 2.8434989973902702e-02 -5.8689045906066895e-01
+ <_>
+
+ 0 -1 869 -6.3516031950712204e-03
+
+ 1.4447389543056488e-01 -1.4542055130004883e-01
+ <_>
+
+ 0 -1 980 -7.6800247188657522e-04
+
+ 1.8556322157382965e-01 -1.0404425859451294e-01
+ <_>
+
+ 0 -1 941 -4.4167470186948776e-03
+
+ -7.0306748151779175e-01 3.0874395743012428e-02
+ <_>
+
+ 0 -1 1010 3.3405693247914314e-03
+
+ -6.6534630954265594e-02 3.4018290042877197e-01
+ <_>
+
+ 0 -1 114 1.1457607150077820e-02
+
+ 3.3658623695373535e-02 -6.1056423187255859e-01
+ <_>
+
+ 0 -1 1000 -1.8547235522419214e-03
+
+ -7.4722522497177124e-01 2.2372998297214508e-02
+ <_>
+
+ 0 -1 9 -1.9720013439655304e-01
+
+ -5.9932583570480347e-01 2.9283462092280388e-02
+ <_>
+
+ 0 -1 544 -2.6251156814396381e-03
+
+ -3.0683135986328125e-01 5.5391944944858551e-02
+ <_>
+
+ 0 -1 17 -2.7104711532592773e-01
+
+ -6.4121168851852417e-01 2.6428909972310066e-02
+ <_>
+
+ 0 -1 349 1.0233232751488686e-02
+
+ 4.5153360813856125e-02 -3.6883556842803955e-01
+ <_>
+
+ 0 -1 363 4.0971953421831131e-03
+
+ 4.1385501623153687e-02 -4.3035930395126343e-01
+ <_>
+
+ 0 -1 464 -8.8650803081691265e-04
+
+ 1.6314724087715149e-01 -1.1271495372056961e-01
+ <_>
+
+ 0 -1 721 -4.1144760325551033e-03
+
+ -5.5176359415054321e-01 3.3540870994329453e-02
+ <_>
+
+ 0 -1 940 -9.8663510289043188e-04
+
+ 2.1676342189311981e-01 -8.5408315062522888e-02
+ <_>
+
+ 0 -1 428 6.0831783339381218e-03
+
+ -8.7310679256916046e-02 2.3208071291446686e-01
+ <_>
+
+ 0 -1 789 -1.4624604955315590e-02
+
+ -5.9713214635848999e-01 3.0128041282296181e-02
+ <_>
+
+ 0 -1 787 1.3654056005179882e-02
+
+ 2.4816744029521942e-02 -6.2301605939865112e-01
+ <_>
+
+ 0 -1 820 4.2229411192238331e-03
+
+ -7.3886208236217499e-02 2.4938605725765228e-01
+ <_>
+
+ 0 -1 168 1.3268929906189442e-03
+
+ 4.0760166943073273e-02 -4.3510803580284119e-01
+ <_>
+
+ 0 -1 275 -9.6903974190354347e-04
+
+ 2.2486831247806549e-01 -7.8642837703227997e-02
+ <_>
+
+ 0 -1 274 1.0329007636755705e-03
+
+ -7.3648050427436829e-02 2.6808246970176697e-01
+ <_>
+
+ 0 -1 474 -4.2711962014436722e-03
+
+ -4.0931078791618347e-01 4.7851666808128357e-02
+ <_>
+
+ 0 -1 983 -3.7627927958965302e-03
+
+ -5.0520634651184082e-01 3.0405685305595398e-02
+ <_>
+
+ 0 -1 979 -1.7928264569491148e-03
+
+ 3.3886525034904480e-01 -5.3929597139358521e-02
+ <_>
+
+ 0 -1 148 3.9475625380873680e-03
+
+ 3.4511350095272064e-02 -5.2250456809997559e-01
+ <_>
+
+ 0 -1 827 -4.4537894427776337e-03
+
+ 2.2575919330120087e-01 -7.4650920927524567e-02
+ <_>
+
+ 0 -1 774 -2.9974281787872314e-02
+
+ -6.0629475116729736e-01 3.4456655383110046e-02
+ <_>
+
+ 0 -1 123 2.6775486767292023e-02
+
+ -8.8883727788925171e-02 2.0147153735160828e-01
+ <_>
+
+ 0 -1 302 -4.4971965253353119e-03
+
+ -5.3158396482467651e-01 3.3491309732198715e-02
+ <_>
+
+ 0 -1 620 -1.5196309424936771e-02
+
+ 2.8140705823898315e-01 -6.4074374735355377e-02
+ <_>
+
+ 0 -1 560 -2.1833679638803005e-03
+
+ 2.1953551471233368e-01 -8.5029341280460358e-02
+ <_>
+
+ 0 -1 317 -5.4325433447957039e-03
+
+ -4.8182886838912964e-01 3.8184959441423416e-02
+ <_>
+
+ 0 -1 463 -3.9055421948432922e-03
+
+ -3.5678783059120178e-01 4.5511916279792786e-02
+ <_>
+
+ 0 -1 1017 -5.0043486990034580e-03
+
+ -3.5324424505233765e-01 4.9539435654878616e-02
+ <_>
+
+ 0 -1 595 4.2052613571286201e-03
+
+ -7.6765090227127075e-02 2.4410718679428101e-01
+ <_>
+
+ 0 -1 642 -2.9198043048381805e-03
+
+ 2.8657916188240051e-01 -9.1479435563087463e-02
+ <_>
+
+ 0 -1 116 1.4442477375268936e-02
+
+ 2.2604020312428474e-02 -7.7516084909439087e-01
+ <_>
+
+ 0 -1 956 1.0879908688366413e-02
+
+ -8.9434660971164703e-02 1.8898591399192810e-01
+ <_>
+
+ 0 -1 707 1.2304648756980896e-01
+
+ 2.9145279899239540e-02 -5.6789475679397583e-01
+ <_>
+
+ 0 -1 301 5.4486069828271866e-02
+
+ -8.0465197563171387e-02 2.1073351800441742e-01
+ <_>
+
+ 0 -1 37 -1.0112209245562553e-02
+
+ 2.5688818097114563e-01 -7.3113977909088135e-02
+ <_>
+
+ 0 -1 145 -4.3551158159971237e-03
+
+ -4.0537205338478088e-01 5.1149621605873108e-02
+ <_>
+
+ 0 -1 377 2.8712721541523933e-03
+
+ -8.9186541736125946e-02 2.0391693711280823e-01
+ <_>
+
+ 0 -1 220 2.4744076654314995e-02
+
+ 3.1359996646642685e-02 -5.9586691856384277e-01
+ <_>
+
+ 0 -1 19 6.0209888033568859e-03
+
+ -8.2612000405788422e-02 2.1787849068641663e-01
+ <_>
+
+ 0 -1 852 6.0595902614295483e-03
+
+ 4.7610606998205185e-02 -3.5010379552841187e-01
+ <_>
+
+ 0 -1 324 -2.1957855671644211e-02
+
+ 2.2477181255817413e-01 -7.5377546250820160e-02
+ <_>
+
+ 0 -1 385 -3.9967135526239872e-03
+
+ 4.3043723702430725e-01 -3.9885677397251129e-02
+ <_>
+
+ 0 -1 745 -2.0381226204335690e-03
+
+ -5.8131587505340576e-01 3.2071832567453384e-02
+ <_>
+
+ 0 -1 337 3.8902673404663801e-03
+
+ -6.0279250144958496e-02 2.9424437880516052e-01
+
+ <_>
+ 82
+ -1.2607949972152710e+00
+
+ <_>
+
+ 0 -1 798 -1.9003680208697915e-03
+
+ 4.8600798845291138e-01 -7.5834542512893677e-02
+ <_>
+
+ 0 -1 238 1.5605278313159943e-03
+
+ -1.9763922691345215e-01 2.5329649448394775e-01
+ <_>
+
+ 0 -1 584 -4.8138713464140892e-03
+
+ 3.5302931070327759e-01 -1.2585695087909698e-01
+ <_>
+
+ 0 -1 870 5.7447804138064384e-03
+
+ -1.5453046560287476e-01 3.5572248697280884e-01
+ <_>
+
+ 0 -1 806 3.2787662930786610e-03
+
+ -1.8419209122657776e-01 1.6216333210468292e-01
+ <_>
+
+ 0 -1 423 2.8142044320702553e-03
+
+ -9.4009101390838623e-02 2.7667456865310669e-01
+ <_>
+
+ 0 -1 259 1.8096582498401403e-03
+
+ -8.9050479233264923e-02 2.9622453451156616e-01
+ <_>
+
+ 0 -1 988 7.2106244042515755e-03
+
+ -1.0854976624250412e-01 2.2157947719097137e-01
+ <_>
+
+ 0 -1 342 1.3368867337703705e-02
+
+ 5.8126326650381088e-02 -3.8564166426658630e-01
+ <_>
+
+ 0 -1 276 1.6755410470068455e-03
+
+ -6.9541916251182556e-02 3.6275833845138550e-01
+ <_>
+
+ 0 -1 198 -4.5782830566167831e-03
+
+ -5.6317430734634399e-01 3.9351724088191986e-02
+ <_>
+
+ 0 -1 729 3.6364984698593616e-03
+
+ -1.5140864253044128e-01 1.4790520071983337e-01
+ <_>
+
+ 0 -1 928 -1.1279541999101639e-02
+
+ -4.8907181620597839e-01 5.1109701395034790e-02
+ <_>
+
+ 0 -1 867 -1.2224027886986732e-02
+
+ -6.0496371984481812e-01 3.5609807819128036e-02
+ <_>
+
+ 0 -1 769 -2.8662174940109253e-02
+
+ 2.4556699395179749e-01 -9.9369116127490997e-02
+ <_>
+
+ 0 -1 496 6.7924216389656067e-02
+
+ -7.8038521111011505e-02 3.3691942691802979e-01
+ <_>
+
+ 0 -1 962 2.2719642147421837e-03
+
+ 5.8022607117891312e-02 -4.7124773263931274e-01
+ <_>
+
+ 0 -1 210 8.5627539083361626e-03
+
+ 3.4671626985073090e-02 -4.6883812546730042e-01
+ <_>
+
+ 0 -1 362 1.1866856366395950e-03
+
+ -8.0339640378952026e-02 2.5030750036239624e-01
+ <_>
+
+ 0 -1 979 8.1023329403251410e-04
+
+ -8.0605715513229370e-02 2.5741192698478699e-01
+ <_>
+
+ 0 -1 281 -4.0647285059094429e-03
+
+ -5.0938653945922852e-01 4.0403041988611221e-02
+ <_>
+
+ 0 -1 309 -1.9617568701505661e-02
+
+ -5.4703706502914429e-01 3.5078343003988266e-02
+ <_>
+
+ 0 -1 233 6.9989012554287910e-03
+
+ 2.6246270164847374e-02 -6.0453557968139648e-01
+ <_>
+
+ 0 -1 450 -6.2460554763674736e-03
+
+ 2.3062629997730255e-01 -8.3763726055622101e-02
+ <_>
+
+ 0 -1 529 7.5731135439127684e-04
+
+ -9.5188923180103302e-02 2.3367822170257568e-01
+ <_>
+
+ 0 -1 462 -3.2256892882287502e-03
+
+ 2.1003848314285278e-01 -1.2173316627740860e-01
+ <_>
+
+ 0 -1 941 -2.8797222767025232e-03
+
+ -4.8621371388435364e-01 4.3998546898365021e-02
+ <_>
+
+ 0 -1 740 5.9399371966719627e-03
+
+ 2.7645273134112358e-02 -6.2591820955276489e-01
+ <_>
+
+ 0 -1 742 -5.4768389090895653e-03
+
+ 2.5695452094078064e-01 -8.1276804208755493e-02
+ <_>
+
+ 0 -1 107 -2.2785080596804619e-02
+
+ -6.7479509115219116e-01 2.9845010489225388e-02
+ <_>
+
+ 0 -1 240 -6.0453559271991253e-03
+
+ -4.5132589340209961e-01 4.0413774549961090e-02
+ <_>
+
+ 0 -1 216 5.9022027999162674e-03
+
+ 4.6321801841259003e-02 -3.9377251267433167e-01
+ <_>
+
+ 0 -1 775 -1.1740738991647959e-03
+
+ 2.2063454985618591e-01 -8.9038714766502380e-02
+ <_>
+
+ 0 -1 835 -3.7963264621794224e-03
+
+ 1.7901860177516937e-01 -1.0518371313810349e-01
+ <_>
+
+ 0 -1 871 2.4132090620696545e-03
+
+ -9.3182116746902466e-02 2.9489630460739136e-01
+ <_>
+
+ 0 -1 543 4.5318575575947762e-04
+
+ -1.4386458694934845e-01 1.3717848062515259e-01
+ <_>
+
+ 0 -1 1029 1.8930386751890182e-02
+
+ 3.3168405294418335e-02 -5.5337232351303101e-01
+ <_>
+
+ 0 -1 652 -2.6878318749368191e-03
+
+ -5.4439735412597656e-01 3.1048862263560295e-02
+ <_>
+
+ 0 -1 672 -3.9407592266798019e-03
+
+ -6.5507227182388306e-01 2.4424355477094650e-02
+ <_>
+
+ 0 -1 599 2.1629813127219677e-03
+
+ -1.0160741209983826e-01 1.8277852237224579e-01
+ <_>
+
+ 0 -1 222 -2.9370808042585850e-03
+
+ -4.7847637534141541e-01 3.8538910448551178e-02
+ <_>
+
+ 0 -1 6 3.8221649825572968e-02
+
+ -7.6206430792808533e-02 2.3375664651393890e-01
+ <_>
+
+ 0 -1 393 -3.1483019702136517e-03
+
+ 2.5192636251449585e-01 -7.3695883154869080e-02
+ <_>
+
+ 0 -1 613 -4.5907422900199890e-03
+
+ -6.2766075134277344e-01 2.8896089643239975e-02
+ <_>
+
+ 0 -1 26 -9.5378428697586060e-02
+
+ -7.4559724330902100e-01 2.1207747980952263e-02
+ <_>
+
+ 0 -1 639 2.0872952882200480e-03
+
+ -8.7810918688774109e-02 2.0629811286926270e-01
+ <_>
+
+ 0 -1 635 -6.9244997575879097e-03
+
+ 1.8590562045574188e-01 -9.8790608346462250e-02
+ <_>
+
+ 0 -1 590 2.4594084825366735e-03
+
+ -1.0049589723348618e-01 2.2963477671146393e-01
+ <_>
+
+ 0 -1 1021 -5.2931695245206356e-03
+
+ -4.5924744009971619e-01 4.3104480952024460e-02
+ <_>
+
+ 0 -1 994 4.8847724683582783e-03
+
+ 4.6008609235286713e-02 -4.4277390837669373e-01
+ <_>
+
+ 0 -1 454 1.4400177169591188e-03
+
+ -5.9334080666303635e-02 3.0132320523262024e-01
+ <_>
+
+ 0 -1 156 -8.6052305996417999e-03
+
+ 1.9737368822097778e-01 -8.9747570455074310e-02
+ <_>
+
+ 0 -1 193 -6.1248587444424629e-03
+
+ -4.5141929388046265e-01 3.8760874420404434e-02
+ <_>
+
+ 0 -1 464 -1.8148655071854591e-03
+
+ 2.2768247127532959e-01 -8.2637414336204529e-02
+ <_>
+
+ 0 -1 330 -8.5119507275521755e-04
+
+ 1.9616322219371796e-01 -1.0013028979301453e-01
+ <_>
+
+ 0 -1 417 1.4472046867012978e-02
+
+ -8.8336527347564697e-02 1.9660694897174835e-01
+ <_>
+
+ 0 -1 628 1.4135142788290977e-02
+
+ -6.4112767577171326e-02 3.1887489557266235e-01
+ <_>
+
+ 0 -1 390 4.8004039563238621e-03
+
+ 4.8681098967790604e-02 -4.6234726905822754e-01
+ <_>
+
+ 0 -1 279 -3.3503584563732147e-02
+
+ 2.5094386935234070e-01 -8.0808885395526886e-02
+ <_>
+
+ 0 -1 943 2.4153569247573614e-03
+
+ -7.2777584195137024e-02 2.6076248288154602e-01
+ <_>
+
+ 0 -1 34 -1.3153228908777237e-02
+
+ 2.3979008197784424e-01 -7.6283767819404602e-02
+ <_>
+
+ 0 -1 718 -8.5048296023160219e-04
+
+ -3.2108953595161438e-01 5.7150222361087799e-02
+ <_>
+
+ 0 -1 511 2.0031477324664593e-03
+
+ -7.5618073344230652e-02 2.3024985194206238e-01
+ <_>
+
+ 0 -1 505 -3.9609652012586594e-03
+
+ -4.3856775760650635e-01 3.7756573408842087e-02
+ <_>
+
+ 0 -1 311 5.9846425428986549e-03
+
+ 3.5378426313400269e-02 -4.7760033607482910e-01
+ <_>
+
+ 0 -1 83 2.0205255597829819e-02
+
+ -8.0130979418754578e-02 2.2919151186943054e-01
+ <_>
+
+ 0 -1 927 -2.7492402587085962e-03
+
+ 2.1395626664161682e-01 -7.6452419161796570e-02
+ <_>
+
+ 0 -1 506 -8.3101191557943821e-04
+
+ 1.6961804032325745e-01 -9.9106967449188232e-02
+ <_>
+
+ 0 -1 604 -1.8657972104847431e-03
+
+ -3.8131290674209595e-01 4.6056091785430908e-02
+ <_>
+
+ 0 -1 74 2.0824437960982323e-03
+
+ 6.4966239035129547e-02 -2.3824627697467804e-01
+ <_>
+
+ 0 -1 70 -4.4267112389206886e-03
+
+ -3.5809823870658875e-01 4.6749643981456757e-02
+ <_>
+
+ 0 -1 211 1.3552411692216992e-03
+
+ -1.2307690829038620e-01 1.3934792578220367e-01
+ <_>
+
+ 0 -1 213 -4.4114869087934494e-03
+
+ 2.6617470383644104e-01 -7.4502207338809967e-02
+ <_>
+
+ 0 -1 432 5.2309304010123014e-04
+
+ -1.0876630991697311e-01 1.5687976777553558e-01
+ <_>
+
+ 0 -1 976 6.4505764748901129e-04
+
+ -8.0842182040214539e-02 2.0263716578483582e-01
+ <_>
+
+ 0 -1 975 2.0405012182891369e-03
+
+ -6.2390543520450592e-02 3.3067914843559265e-01
+ <_>
+
+ 0 -1 888 1.9838459789752960e-02
+
+ 2.3488542065024376e-02 -8.1695795059204102e-01
+ <_>
+
+ 0 -1 953 2.3998366668820381e-03
+
+ 4.1017178446054459e-02 -3.7197592854499817e-01
+ <_>
+
+ 0 -1 664 -1.1092903092503548e-02
+
+ -5.5750596523284912e-01 2.9520254582166672e-02
+ <_>
+
+ 0 -1 981 1.4876715838909149e-02
+
+ -6.5797492861747742e-02 2.5957426428794861e-01
+ <_>
+
+ 0 -1 621 -3.0385032296180725e-02
+
+ 2.2640630602836609e-01 -7.6991938054561615e-02
+ <_>
+
+ 0 -1 666 1.2216348201036453e-02
+
+ -7.0106968283653259e-02 2.4013392627239227e-01
+
+ <_>
+ 94
+ -1.2798616886138916e+00
+
+ <_>
+
+ 0 -1 801 -3.8322431501001120e-03
+
+ 4.8065602779388428e-01 -4.9388073384761810e-02
+ <_>
+
+ 0 -1 966 2.5449637323617935e-03
+
+ -1.7564620077610016e-01 2.5865191221237183e-01
+ <_>
+
+ 0 -1 448 -5.4743299260735512e-03
+
+ 4.9321442842483521e-01 -7.0596724748611450e-02
+ <_>
+
+ 0 -1 294 1.5188493765890598e-02
+
+ -1.8555639684200287e-01 1.5278494358062744e-01
+ <_>
+
+ 0 -1 954 7.5815798481926322e-04
+
+ -1.5043407678604126e-01 1.8612807989120483e-01
+ <_>
+
+ 0 -1 963 -3.4232349134981632e-03
+
+ -4.5882478356361389e-01 4.3279532343149185e-02
+ <_>
+
+ 0 -1 842 2.4103666655719280e-03
+
+ -8.4217190742492676e-02 2.6687353849411011e-01
+ <_>
+
+ 0 -1 340 -2.3144368082284927e-02
+
+ 2.9155749082565308e-01 -9.9449791014194489e-02
+ <_>
+
+ 0 -1 419 -4.2331898584961891e-03
+
+ -3.7696760892868042e-01 8.0511704087257385e-02
+ <_>
+
+ 0 -1 282 4.9294121563434601e-03
+
+ -1.3016121089458466e-01 1.8470372259616852e-01
+ <_>
+
+ 0 -1 481 -2.7466980100143701e-05
+
+ 1.4074377715587616e-01 -1.7928679287433624e-01
+ <_>
+
+ 0 -1 724 2.2430901881307364e-03
+
+ -1.4674974977970123e-01 1.5197925269603729e-01
+ <_>
+
+ 0 -1 849 7.5493026524782181e-03
+
+ 2.4894557893276215e-02 -6.5740859508514404e-01
+ <_>
+
+ 0 -1 245 -3.3066330943256617e-03
+
+ 1.8501703441143036e-01 -1.1837758123874664e-01
+ <_>
+
+ 0 -1 345 6.9540860131382942e-03
+
+ -7.3770649731159210e-02 2.9017251729965210e-01
+ <_>
+
+ 0 -1 790 -8.6210696026682854e-03
+
+ 2.0990766584873199e-01 -1.0644201189279556e-01
+ <_>
+
+ 0 -1 978 -6.0504255816340446e-04
+
+ 2.2373022139072418e-01 -9.6104651689529419e-02
+ <_>
+
+ 0 -1 46 -4.5433510094881058e-03
+
+ -5.4173427820205688e-01 4.7511249780654907e-02
+ <_>
+
+ 0 -1 694 -2.2248399909585714e-03
+
+ -4.6854707598686218e-01 3.8701556622982025e-02
+ <_>
+
+ 0 -1 10 -5.3389102220535278e-02
+
+ 2.9293462634086609e-01 -7.2517670691013336e-02
+ <_>
+
+ 0 -1 13 4.6098522841930389e-02
+
+ -1.0042577981948853e-01 2.3779328167438507e-01
+ <_>
+
+ 0 -1 243 7.7845109626650810e-03
+
+ 3.7205196917057037e-02 -4.9194374680519104e-01
+ <_>
+
+ 0 -1 182 6.0175172984600067e-03
+
+ 4.4034618884325027e-02 -4.3780878186225891e-01
+ <_>
+
+ 0 -1 876 4.8966710455715656e-03
+
+ -1.0375351458787918e-01 1.9480220973491669e-01
+ <_>
+
+ 0 -1 494 -3.1284091528505087e-03
+
+ 2.3669239878654480e-01 -9.6020378172397614e-02
+ <_>
+
+ 0 -1 190 -1.3859109021723270e-03
+
+ 2.8487151861190796e-01 -7.2190955281257629e-02
+ <_>
+
+ 0 -1 191 2.6260318700224161e-03
+
+ -8.5511997342109680e-02 3.0152606964111328e-01
+ <_>
+
+ 0 -1 65 1.7782470583915710e-01
+
+ -6.4100205898284912e-02 3.3825826644897461e-01
+ <_>
+
+ 0 -1 50 1.7538113519549370e-02
+
+ 5.9994459152221680e-02 -3.5529783368110657e-01
+ <_>
+
+ 0 -1 946 -3.2135979272425175e-03
+
+ 1.3668337464332581e-01 -1.3979049026966095e-01
+ <_>
+
+ 0 -1 461 6.1371903866529465e-03
+
+ -6.2439329922199249e-02 3.0614212155342102e-01
+ <_>
+
+ 0 -1 467 -4.6563488431274891e-03
+
+ -4.3073609471321106e-01 4.9068968743085861e-02
+ <_>
+
+ 0 -1 668 -4.0680947713553905e-03
+
+ -4.6810126304626465e-01 3.7441805005073547e-02
+ <_>
+
+ 0 -1 696 1.4199400320649147e-03
+
+ -8.7975829839706421e-02 2.1591611206531525e-01
+ <_>
+
+ 0 -1 851 3.5254685208201408e-03
+
+ 4.6650484204292297e-02 -4.3687531352043152e-01
+ <_>
+
+ 0 -1 487 1.8623860552906990e-02
+
+ -7.6216101646423340e-02 2.3812168836593628e-01
+ <_>
+
+ 0 -1 314 -2.6926528662443161e-02
+
+ -6.7117422819137573e-01 2.9464269056916237e-02
+ <_>
+
+ 0 -1 632 2.2593191824853420e-03
+
+ 2.8521748259663582e-02 -5.4787307977676392e-01
+ <_>
+
+ 0 -1 919 1.7519816174171865e-04
+
+ -1.6111046075820923e-01 1.0367503762245178e-01
+ <_>
+
+ 0 -1 493 1.0614154860377312e-02
+
+ 4.5461904257535934e-02 -3.8087964057922363e-01
+ <_>
+
+ 0 -1 20 -4.4702589511871338e-03
+
+ 1.4304992556571960e-01 -1.3372300565242767e-01
+ <_>
+
+ 0 -1 557 6.2367701902985573e-03
+
+ -7.7783808112144470e-02 2.1545551717281342e-01
+ <_>
+
+ 0 -1 76 4.6502514742314816e-03
+
+ 4.6132039278745651e-02 -3.7130251526832581e-01
+ <_>
+
+ 0 -1 544 -4.3315230868756771e-03
+
+ -4.1549521684646606e-01 3.8484618067741394e-02
+ <_>
+
+ 0 -1 764 -1.6567837446928024e-03
+
+ -3.4637498855590820e-01 4.6623144298791885e-02
+ <_>
+
+ 0 -1 415 4.7653233632445335e-03
+
+ -5.0808548927307129e-02 3.4609997272491455e-01
+ <_>
+
+ 0 -1 413 -3.2579647377133369e-03
+
+ 2.6948198676109314e-01 -8.5287831723690033e-02
+ <_>
+
+ 0 -1 614 2.3307730443775654e-03
+
+ -7.4774339795112610e-02 2.3053503036499023e-01
+ <_>
+
+ 0 -1 176 -2.7928136289119720e-02
+
+ 1.9429244101047516e-01 -8.7820984423160553e-02
+ <_>
+
+ 0 -1 366 -9.8205050453543663e-03
+
+ -5.9664642810821533e-01 3.1795132905244827e-02
+ <_>
+
+ 0 -1 767 4.9811266362667084e-03
+
+ -1.1911241710186005e-01 1.5268225967884064e-01
+ <_>
+
+ 0 -1 508 -2.4869772605597973e-03
+
+ -3.8041505217552185e-01 4.4293139129877090e-02
+ <_>
+
+ 0 -1 780 5.4475376382470131e-03
+
+ -4.6219147741794586e-02 3.9531415700912476e-01
+ <_>
+
+ 0 -1 277 -2.1438062191009521e-02
+
+ -5.2191144227981567e-01 3.4259662032127380e-02
+ <_>
+
+ 0 -1 566 -4.1901203803718090e-03
+
+ -5.2377271652221680e-01 2.8632357716560364e-02
+ <_>
+
+ 0 -1 262 -4.7237933613359928e-03
+
+ 1.8694585561752319e-01 -8.3333678543567657e-02
+ <_>
+
+ 0 -1 845 1.2320578098297119e-03
+
+ -9.6744544804096222e-02 1.8287587165832520e-01
+ <_>
+
+ 0 -1 617 2.0271677523851395e-02
+
+ -6.4628154039382935e-02 2.7641129493713379e-01
+ <_>
+
+ 0 -1 375 -1.0729704797267914e-01
+
+ 4.3015307188034058e-01 -3.8674801588058472e-02
+ <_>
+
+ 0 -1 166 -4.0820333361625671e-01
+
+ 5.0520670413970947e-01 -3.0450601130723953e-02
+ <_>
+
+ 0 -1 305 4.4355981051921844e-02
+
+ -9.2204704880714417e-02 1.7342080175876617e-01
+ <_>
+
+ 0 -1 879 -1.0999260703101754e-03
+
+ 2.0996508002281189e-01 -7.7222190797328949e-02
+ <_>
+
+ 0 -1 325 -3.2928451895713806e-02
+
+ 2.7598264813423157e-01 -6.4115919172763824e-02
+ <_>
+
+ 0 -1 52 2.3981094360351562e-02
+
+ 2.5229524821043015e-02 -6.9560426473617554e-01
+ <_>
+
+ 0 -1 961 4.1703339666128159e-03
+
+ 2.9712976887822151e-02 -4.8132696747779846e-01
+ <_>
+
+ 0 -1 776 -1.4920771354809403e-03
+
+ 1.6165184974670410e-01 -9.6420668065547943e-02
+ <_>
+
+ 0 -1 652 1.8172110430896282e-03
+
+ 4.2247310280799866e-02 -3.5703054070472717e-01
+ <_>
+
+ 0 -1 739 -2.5937356986105442e-03
+
+ 2.2665317356586456e-01 -6.9081544876098633e-02
+ <_>
+
+ 0 -1 706 -2.4995308369398117e-02
+
+ -6.3855916261672974e-01 2.8458235785365105e-02
+ <_>
+
+ 0 -1 909 1.2001263909041882e-02
+
+ 1.4999576844274998e-02 -7.8175085783004761e-01
+ <_>
+
+ 0 -1 640 2.2153530735522509e-03
+
+ -8.8839285075664520e-02 1.8819671869277954e-01
+ <_>
+
+ 0 -1 179 2.7237991162110120e-05
+
+ -1.4949426054954529e-01 9.8739065229892731e-02
+ <_>
+
+ 0 -1 91 -2.6735704392194748e-02
+
+ -4.5522138476371765e-01 3.2516691833734512e-02
+ <_>
+
+ 0 -1 644 -2.3417242337018251e-03
+
+ -3.1453001499176025e-01 4.7598775476217270e-02
+ <_>
+
+ 0 -1 72 4.7831580042839050e-02
+
+ 2.1954061463475227e-02 -6.1162966489791870e-01
+ <_>
+
+ 0 -1 160 -5.7228151708841324e-03
+
+ -6.3381904363632202e-01 2.0299639552831650e-02
+ <_>
+
+ 0 -1 163 3.4780064597725868e-03
+
+ 3.1021401286125183e-02 -4.2342424392700195e-01
+ <_>
+
+ 0 -1 385 -5.4140854626893997e-03
+
+ 4.7739461064338684e-01 -3.4031655639410019e-02
+ <_>
+
+ 0 -1 383 1.5283382963389158e-03
+
+ -9.6935935318470001e-02 1.9429819285869598e-01
+ <_>
+
+ 0 -1 428 -8.6789112538099289e-03
+
+ 2.4826894700527191e-01 -6.0082063078880310e-02
+ <_>
+
+ 0 -1 901 3.0333681497722864e-03
+
+ -7.4087560176849365e-02 2.6165533065795898e-01
+ <_>
+
+ 0 -1 684 6.5222466364502907e-03
+
+ 3.0176062136888504e-02 -5.5570882558822632e-01
+ <_>
+
+ 0 -1 902 5.9719551354646683e-03
+
+ 2.3057831451296806e-02 -5.7078248262405396e-01
+ <_>
+
+ 0 -1 155 -1.3977952767163515e-03
+
+ 1.5342144668102264e-01 -9.8401337862014771e-02
+ <_>
+
+ 0 -1 897 5.9919534251093864e-03
+
+ -3.9796624332666397e-02 3.5881185531616211e-01
+ <_>
+
+ 0 -1 354 2.6286500506103039e-03
+
+ -9.3140766024589539e-02 1.6334943473339081e-01
+ <_>
+
+ 0 -1 296 -4.4777179136872292e-03
+
+ -4.8081240057945251e-01 3.2935630530118942e-02
+ <_>
+
+ 0 -1 333 5.2724601700901985e-03
+
+ 3.0787551775574684e-02 -4.5133110880851746e-01
+ <_>
+
+ 0 -1 1049 -3.2540475949645042e-03
+
+ -4.7695344686508179e-01 2.8554188087582588e-02
+ <_>
+
+ 0 -1 736 1.8083681166172028e-01
+
+ 2.7366345748305321e-02 -4.9431446194648743e-01
+ <_>
+
+ 0 -1 431 2.7535988483577967e-03
+
+ 1.9968675449490547e-02 -6.4471620321273804e-01
+ <_>
+
+ 0 -1 15 -1.4123708009719849e-02
+
+ -5.2748751640319824e-01 2.4596616625785828e-02
+ <_>
+
+ 0 -1 421 -3.2076485455036163e-02
+
+ -7.2171974182128906e-01 1.6940405592322350e-02
+ <_>
+
+ 0 -1 434 -3.2569766044616699e-02
+
+ 2.2400286793708801e-01 -6.3403561711311340e-02
+
+ <_>
+ 100
+ -1.2990239858627319e+00
+
+ <_>
+
+ 0 -1 728 1.1235726065933704e-02
+
+ -1.2534695863723755e-01 3.9147180318832397e-01
+ <_>
+
+ 0 -1 922 5.0947451964020729e-03
+
+ -1.2666413187980652e-01 4.0618515014648438e-01
+ <_>
+
+ 0 -1 891 -1.5323986299335957e-03
+
+ 2.8940162062644958e-01 -1.4350101351737976e-01
+ <_>
+
+ 0 -1 284 3.7766513414680958e-03
+
+ -1.9189934432506561e-01 1.4756591618061066e-01
+ <_>
+
+ 0 -1 514 4.8757870681583881e-03
+
+ -1.2341982126235962e-01 2.3298588395118713e-01
+ <_>
+
+ 0 -1 344 3.1278211623430252e-02
+
+ -7.6286941766738892e-02 3.4027433395385742e-01
+ <_>
+
+ 0 -1 63 6.3753505237400532e-03
+
+ 7.3992513120174408e-02 -3.2609656453132629e-01
+ <_>
+
+ 0 -1 936 -9.8742637783288956e-04
+
+ 2.4873960018157959e-01 -9.0153135359287262e-02
+ <_>
+
+ 0 -1 217 -3.0144110321998596e-02
+
+ -5.1088541746139526e-01 5.0071869045495987e-02
+ <_>
+
+ 0 -1 268 4.7727730125188828e-03
+
+ 5.1353454589843750e-02 -4.1142973303794861e-01
+ <_>
+
+ 0 -1 420 6.4554966986179352e-02
+
+ 4.5133572071790695e-02 -4.8264691233634949e-01
+ <_>
+
+ 0 -1 744 8.0438675358891487e-03
+
+ -6.3803412020206451e-02 3.0405151844024658e-01
+ <_>
+
+ 0 -1 1051 1.0576066561043262e-03
+
+ 4.9984093755483627e-02 -3.3949175477027893e-01
+ <_>
+
+ 0 -1 938 6.8522170186042786e-03
+
+ 3.5091523081064224e-02 -6.7847234010696411e-01
+ <_>
+
+ 0 -1 860 -1.7977621406316757e-02
+
+ -3.7503832578659058e-01 4.0370170027017593e-02
+ <_>
+
+ 0 -1 748 -2.9955487698316574e-02
+
+ -4.2023807764053345e-01 4.2222321033477783e-02
+ <_>
+
+ 0 -1 14 2.0934976637363434e-02
+
+ 4.3809924274682999e-02 -4.1159108281135559e-01
+ <_>
+
+ 0 -1 499 -1.0348223149776459e-03
+
+ 1.7594149708747864e-01 -1.0171056538820267e-01
+ <_>
+
+ 0 -1 15 1.1026043444871902e-02
+
+ 3.7518307566642761e-02 -4.9795153737068176e-01
+ <_>
+
+ 0 -1 201 4.1434396989643574e-03
+
+ -7.7400334179401398e-02 2.3505100607872009e-01
+ <_>
+
+ 0 -1 423 -1.4838734641671181e-03
+
+ 2.9909220337867737e-01 -9.2648021876811981e-02
+ <_>
+
+ 0 -1 1025 4.0641101077198982e-03
+
+ 3.8187902420759201e-02 -5.9566622972488403e-01
+ <_>
+
+ 0 -1 108 -2.6055248454213142e-03
+
+ 1.4647382497787476e-01 -1.1769902706146240e-01
+ <_>
+
+ 0 -1 834 -1.8873009830713272e-02
+
+ 2.0791313052177429e-01 -9.1127894818782806e-02
+ <_>
+
+ 0 -1 960 1.0428125038743019e-02
+
+ 4.3083548545837402e-02 -4.1407048702239990e-01
+ <_>
+
+ 0 -1 460 1.9560819491744041e-03
+
+ -6.5898597240447998e-02 2.6488196849822998e-01
+ <_>
+
+ 0 -1 402 6.1143590137362480e-03
+
+ 4.7718580812215805e-02 -4.3339842557907104e-01
+ <_>
+
+ 0 -1 411 3.9817169308662415e-03
+
+ 2.8663935139775276e-02 -5.4472506046295166e-01
+ <_>
+
+ 0 -1 497 -9.0858177281916142e-04
+
+ 1.2656490504741669e-01 -1.3804104924201965e-01
+ <_>
+
+ 0 -1 548 -5.1833119243383408e-02
+
+ 2.9838389158248901e-01 -6.4876683056354523e-02
+ <_>
+
+ 0 -1 550 -6.1461031436920166e-02
+
+ 2.2751982510089874e-01 -7.7075794339179993e-02
+ <_>
+
+ 0 -1 771 -3.8890805444680154e-04
+
+ 1.4823918044567108e-01 -1.2443733215332031e-01
+ <_>
+
+ 0 -1 819 6.3632195815443993e-03
+
+ 3.3928975462913513e-02 -5.5825293064117432e-01
+ <_>
+
+ 0 -1 929 2.3877150379121304e-03
+
+ -6.0555700212717056e-02 2.9875907301902771e-01
+ <_>
+
+ 0 -1 718 2.1584378555417061e-03
+
+ 2.6707226410508156e-02 -6.5327596664428711e-01
+ <_>
+
+ 0 -1 972 1.3073299778625369e-03
+
+ -6.5057143568992615e-02 2.8509995341300964e-01
+ <_>
+
+ 0 -1 1023 2.7173646230949089e-05
+
+ -1.4736446738243103e-01 1.1435943096876144e-01
+ <_>
+
+ 0 -1 630 2.5558518245816231e-03
+
+ 2.2957315668463707e-02 -6.1825275421142578e-01
+ <_>
+
+ 0 -1 435 4.4789682142436504e-03
+
+ 3.6877695471048355e-02 -4.1827708482742310e-01
+ <_>
+
+ 0 -1 335 -4.0298998355865479e-02
+
+ -6.8164646625518799e-01 2.1755648776888847e-02
+ <_>
+
+ 0 -1 782 -3.2729938626289368e-02
+
+ -5.4164266586303711e-01 2.6013873517513275e-02
+ <_>
+
+ 0 -1 1011 -1.6982981469482183e-03
+
+ 3.5175332427024841e-01 -4.7216285020112991e-02
+ <_>
+
+ 0 -1 331 3.6859638057649136e-03
+
+ 4.9838334321975708e-02 -3.0565607547760010e-01
+ <_>
+
+ 0 -1 235 1.8905990291386843e-03
+
+ 2.3341298103332520e-02 -6.6700172424316406e-01
+ <_>
+
+ 0 -1 714 4.9954187124967575e-03
+
+ 2.5513354688882828e-02 -5.4635345935821533e-01
+ <_>
+
+ 0 -1 336 -5.5998284369707108e-03
+
+ 2.9532432556152344e-01 -5.9350244700908661e-02
+ <_>
+
+ 0 -1 1008 -1.0907559189945459e-03
+
+ 1.8265166878700256e-01 -9.8137028515338898e-02
+ <_>
+
+ 0 -1 975 -7.4323470471426845e-04
+
+ 1.9020494818687439e-01 -8.7386451661586761e-02
+ <_>
+
+ 0 -1 914 2.7787161525338888e-03
+
+ 3.2241951674222946e-02 -4.8055323958396912e-01
+ <_>
+
+ 0 -1 153 2.4344769772142172e-03
+
+ 4.6477138996124268e-02 -2.9923307895660400e-01
+ <_>
+
+ 0 -1 293 2.8132982552051544e-03
+
+ -9.0026579797267914e-02 1.6738441586494446e-01
+ <_>
+
+ 0 -1 73 3.2191604375839233e-02
+
+ -6.3697919249534607e-02 2.8380525112152100e-01
+ <_>
+
+ 0 -1 656 -1.8642821814864874e-03
+
+ 2.0616722106933594e-01 -7.4722714722156525e-02
+ <_>
+
+ 0 -1 657 4.0091956034302711e-03
+
+ -7.1015752851963043e-02 2.5589218735694885e-01
+ <_>
+
+ 0 -1 150 -5.1108514890074730e-03
+
+ -4.8940917849540710e-01 3.4555420279502869e-02
+ <_>
+
+ 0 -1 600 -1.9523575901985168e-02
+
+ 3.1921747326850891e-01 -5.1439035683870316e-02
+ <_>
+
+ 0 -1 298 -1.4431261457502842e-02
+
+ 1.4213174581527710e-01 -1.1113181710243225e-01
+ <_>
+
+ 0 -1 732 4.5302580110728741e-04
+
+ -1.0926237702369690e-01 1.4363190531730652e-01
+ <_>
+
+ 0 -1 78 -5.4108840413391590e-03
+
+ -4.6926099061965942e-01 3.1095381826162338e-02
+ <_>
+
+ 0 -1 259 1.6963672824203968e-03
+
+ -6.7337587475776672e-02 2.2115154564380646e-01
+ <_>
+
+ 0 -1 190 1.8719944637268782e-03
+
+ -5.8433420956134796e-02 2.7830049395561218e-01
+ <_>
+
+ 0 -1 1014 -8.3780642598867416e-03
+
+ -4.6290600299835205e-01 3.3701810985803604e-02
+ <_>
+
+ 0 -1 510 1.0720299184322357e-01
+
+ 2.6600774377584457e-02 -5.0957643985748291e-01
+ <_>
+
+ 0 -1 670 -1.5523867914453149e-03
+
+ -5.7974040508270264e-01 2.2188233211636543e-02
+ <_>
+
+ 0 -1 649 -1.0537400841712952e-02
+
+ -4.3835061788558960e-01 2.9434528201818466e-02
+ <_>
+
+ 0 -1 1038 3.1337797641754150e-02
+
+ 2.0445786416530609e-02 -6.3010692596435547e-01
+ <_>
+
+ 0 -1 1004 -5.1124744117259979e-02
+
+ -6.7282766103744507e-01 1.8230145797133446e-02
+ <_>
+
+ 0 -1 362 -6.0091790510341525e-04
+
+ 2.0237097144126892e-01 -7.2557553648948669e-02
+ <_>
+
+ 0 -1 409 1.6933252336457372e-03
+
+ -5.9000160545110703e-02 2.4010565876960754e-01
+ <_>
+
+ 0 -1 18 5.7134744711220264e-03
+
+ 2.9386352747678757e-02 -5.1309728622436523e-01
+ <_>
+
+ 0 -1 429 -9.6922749653458595e-03
+
+ -5.4907989501953125e-01 2.3704739287495613e-02
+ <_>
+
+ 0 -1 308 -1.2504560872912407e-02
+
+ -6.1863696575164795e-01 1.9876839593052864e-02
+ <_>
+
+ 0 -1 382 -9.1812955215573311e-03
+
+ -4.7697570919990540e-01 2.5203671306371689e-02
+ <_>
+
+ 0 -1 570 2.8069302439689636e-02
+
+ -5.5565606802701950e-02 2.5318285822868347e-01
+ <_>
+
+ 0 -1 573 4.6324366703629494e-03
+
+ 2.5273589417338371e-02 -5.9603255987167358e-01
+ <_>
+
+ 0 -1 784 2.9409723356366158e-03
+
+ -5.1576137542724609e-02 2.9322555661201477e-01
+ <_>
+
+ 0 -1 159 -1.6009721904993057e-02
+
+ 2.9389014840126038e-01 -4.7874812036752701e-02
+ <_>
+
+ 0 -1 355 -2.0468614995479584e-02
+
+ 1.4383009076118469e-01 -1.0160042345523834e-01
+ <_>
+
+ 0 -1 868 2.3338340222835541e-02
+
+ -5.7301126420497894e-02 2.9121819138526917e-01
+ <_>
+
+ 0 -1 921 -2.1875634789466858e-02
+
+ -6.4106851816177368e-01 2.4203805252909660e-02
+ <_>
+
+ 0 -1 427 1.1228370480239391e-02
+
+ -5.2143514156341553e-02 2.8465506434440613e-01
+ <_>
+
+ 0 -1 197 -4.3659657239913940e-03
+
+ -6.0558545589447021e-01 2.5440702214837074e-02
+ <_>
+
+ 0 -1 824 1.1577639961615205e-03
+
+ -8.9793093502521515e-02 1.6500258445739746e-01
+ <_>
+
+ 0 -1 781 1.1090341955423355e-02
+
+ 2.4472476914525032e-02 -6.1380225419998169e-01
+ <_>
+
+ 0 -1 1015 4.7660744749009609e-03
+
+ 4.1726417839527130e-02 -3.2548862695693970e-01
+ <_>
+
+ 0 -1 864 2.4865168597898446e-05
+
+ -1.2436556816101074e-01 1.1702288687229156e-01
+ <_>
+
+ 0 -1 823 -7.6379198580980301e-03
+
+ -4.9008071422576904e-01 2.9381709173321724e-02
+ <_>
+
+ 0 -1 445 -3.2750256359577179e-03
+
+ 1.7950019240379333e-01 -8.0592408776283264e-02
+ <_>
+
+ 0 -1 448 1.3944536913186312e-03
+
+ -8.0001771450042725e-02 2.2785140573978424e-01
+ <_>
+
+ 0 -1 444 1.9776031840592623e-03
+
+ 3.4109916538000107e-02 -4.8504865169525146e-01
+ <_>
+
+ 0 -1 39 -3.9329148828983307e-02
+
+ -6.8790251016616821e-01 1.7370922490954399e-02
+ <_>
+
+ 0 -1 645 -2.8447234071791172e-03
+
+ 2.3028372228145599e-01 -6.6618286073207855e-02
+ <_>
+
+ 0 -1 232 3.2375190407037735e-02
+
+ -7.5743824243545532e-02 1.7864570021629333e-01
+ <_>
+
+ 0 -1 5 5.1314428448677063e-02
+
+ -5.3142681717872620e-02 2.8643575310707092e-01
+ <_>
+
+ 0 -1 79 4.6999715268611908e-03
+
+ 3.5749543458223343e-02 -4.0437424182891846e-01
+ <_>
+
+ 0 -1 173 -2.0850417204201221e-03
+
+ -3.0815458297729492e-01 4.2763352394104004e-02
+ <_>
+
+ 0 -1 455 -9.1223767958581448e-04
+
+ 2.1245715022087097e-01 -6.7729450762271881e-02
+ <_>
+
+ 0 -1 690 -2.2479293693322688e-04
+
+ 1.3159312307834625e-01 -1.0141336172819138e-01
+ <_>
+
+ 0 -1 974 3.1234124675393105e-02
+
+ -8.9100256562232971e-02 1.5734429657459259e-01
+ <_>
+
+ 0 -1 465 -1.5079543227329850e-03
+
+ 3.2412421703338623e-01 -4.4387526810169220e-02
+
+ <_>
+ 100
+ -1.2500010728836060e+00
+
+ <_>
+
+ 0 -1 803 -5.5631361901760101e-03
+
+ 4.5343571901321411e-01 -5.2330773323774338e-02
+ <_>
+
+ 0 -1 426 4.1911248117685318e-03
+
+ -1.2266161292791367e-01 3.6830583214759827e-01
+ <_>
+
+ 0 -1 424 -1.8559540621936321e-03
+
+ 2.4044598639011383e-01 -1.5207393467426300e-01
+ <_>
+
+ 0 -1 532 -1.1846812441945076e-02
+
+ 2.7016878128051758e-01 -1.1934488266706467e-01
+ <_>
+
+ 0 -1 180 1.0401019826531410e-03
+
+ -2.3527304828166962e-01 9.5964968204498291e-02
+ <_>
+
+ 0 -1 462 9.3873767182230949e-03
+
+ -5.6923847645521164e-02 4.2236638069152832e-01
+ <_>
+
+ 0 -1 13 9.0843521058559418e-02
+
+ -6.3625380396842957e-02 3.8295668363571167e-01
+ <_>
+
+ 0 -1 439 -1.6221515834331512e-03
+
+ 1.8148291110992432e-01 -1.3424767553806305e-01
+ <_>
+
+ 0 -1 875 -1.8008962273597717e-02
+
+ 2.7346464991569519e-01 -7.6283894479274750e-02
+ <_>
+
+ 0 -1 278 8.6509017273783684e-03
+
+ 5.8148156851530075e-02 -5.2620184421539307e-01
+ <_>
+
+ 0 -1 726 2.8817038983106613e-03
+
+ 2.6940831914544106e-02 -4.7911167144775391e-01
+ <_>
+
+ 0 -1 263 -6.1017833650112152e-03
+
+ 1.7878855764865875e-01 -1.2378337979316711e-01
+ <_>
+
+ 0 -1 403 -5.9294269885867834e-04
+
+ -2.7179723978042603e-01 8.0951526761054993e-02
+ <_>
+
+ 0 -1 996 3.1696190126240253e-04
+
+ -1.7311862111091614e-01 1.0296358913183212e-01
+ <_>
+
+ 0 -1 519 6.6280784085392952e-03
+
+ -5.8870136737823486e-02 2.9477587342262268e-01
+ <_>
+
+ 0 -1 916 -4.5112203806638718e-03
+
+ -5.9672296047210693e-01 2.7053238824009895e-02
+ <_>
+
+ 0 -1 679 -4.3381296098232269e-02
+
+ -4.2040801048278809e-01 4.0890187025070190e-02
+ <_>
+
+ 0 -1 813 2.0323593635112047e-03
+
+ 5.5178079754114151e-02 -3.0439695715904236e-01
+ <_>
+
+ 0 -1 973 1.8127080984413624e-03
+
+ -8.2048252224922180e-02 2.1907366812229156e-01
+ <_>
+
+ 0 -1 359 -6.6424394026398659e-03
+
+ -4.7840338945388794e-01 4.4878169894218445e-02
+ <_>
+
+ 0 -1 903 -8.5755460895597935e-04
+
+ 1.3301849365234375e-01 -1.2699788808822632e-01
+ <_>
+
+ 0 -1 904 3.4769098274409771e-03
+
+ -7.1578972041606903e-02 2.5448271632194519e-01
+ <_>
+
+ 0 -1 950 -1.8520625308156013e-03
+
+ 1.5127970278263092e-01 -1.2349219620227814e-01
+ <_>
+
+ 0 -1 777 5.4582338780164719e-03
+
+ 3.5001352429389954e-02 -4.8021456599235535e-01
+ <_>
+
+ 0 -1 894 -6.4206691458821297e-03
+
+ -5.6509351730346680e-01 2.6883032172918320e-02
+ <_>
+
+ 0 -1 895 8.2498416304588318e-03
+
+ 4.3442543596029282e-02 -3.7965279817581177e-01
+ <_>
+
+ 0 -1 825 3.0813394114375114e-03
+
+ -5.6544844061136246e-02 3.2101437449455261e-01
+ <_>
+
+ 0 -1 865 2.8121876530349255e-03
+
+ -7.1444042026996613e-02 2.8035575151443481e-01
+ <_>
+
+ 0 -1 418 -1.1791236698627472e-02
+
+ 2.0067863166332245e-01 -1.0047248005867004e-01
+ <_>
+
+ 0 -1 476 1.4931729529052973e-03
+
+ -6.6428750753402710e-02 2.6187655329704285e-01
+ <_>
+
+ 0 -1 364 -2.8772680088877678e-03
+
+ -4.5838123559951782e-01 4.2477916926145554e-02
+ <_>
+
+ 0 -1 592 -4.5857336372137070e-03
+
+ 1.2718579173088074e-01 -1.3642288744449615e-01
+ <_>
+
+ 0 -1 585 -1.3770985417068005e-02
+
+ -6.4000308513641357e-01 2.7297915890812874e-02
+ <_>
+
+ 0 -1 746 -3.6472730338573456e-02
+
+ -5.1465278863906860e-01 3.1265191733837128e-02
+ <_>
+
+ 0 -1 378 1.0626764036715031e-02
+
+ 2.4199636653065681e-02 -6.3441967964172363e-01
+ <_>
+
+ 0 -1 509 -3.6817211657762527e-03
+
+ -4.4575414061546326e-01 3.1119547784328461e-02
+ <_>
+
+ 0 -1 856 -3.4752404317259789e-03
+
+ 1.4008119702339172e-01 -1.0539831966161728e-01
+ <_>
+
+ 0 -1 815 -4.7973562031984329e-03
+
+ 2.8762820363044739e-01 -6.0662355273962021e-02
+ <_>
+
+ 0 -1 773 6.4153699204325676e-03
+
+ -1.1230263859033585e-01 1.4087037742137909e-01
+ <_>
+
+ 0 -1 814 -1.0156400967389345e-03
+
+ -3.3441004157066345e-01 4.3477565050125122e-02
+ <_>
+
+ 0 -1 968 3.3057793043553829e-03
+
+ 1.9609324634075165e-02 -7.0060092210769653e-01
+ <_>
+
+ 0 -1 100 -5.3275022655725479e-03
+
+ 2.4580952525138855e-01 -6.0118518769741058e-02
+ <_>
+
+ 0 -1 469 1.5886269975453615e-03
+
+ -7.7446170151233673e-02 1.9878011941909790e-01
+ <_>
+
+ 0 -1 520 4.7287968918681145e-03
+
+ 3.0098341405391693e-02 -5.0950014591217041e-01
+ <_>
+
+ 0 -1 741 -1.9788878853432834e-04
+
+ 1.5142950415611267e-01 -9.6688762307167053e-02
+ <_>
+
+ 0 -1 389 -4.9208370037376881e-03
+
+ -4.5343187451362610e-01 3.7627156823873520e-02
+ <_>
+
+ 0 -1 361 4.5094583183526993e-02
+
+ -8.5510566830635071e-02 1.7849470674991608e-01
+ <_>
+
+ 0 -1 944 1.4799998607486486e-03
+
+ -6.4638271927833557e-02 2.3496921360492706e-01
+ <_>
+
+ 0 -1 517 1.0061380267143250e-01
+
+ -3.0139762908220291e-02 4.9012109637260437e-01
+ <_>
+
+ 0 -1 688 -5.2844230085611343e-03
+
+ 1.7104546725749969e-01 -8.7710574269294739e-02
+ <_>
+
+ 0 -1 626 -8.3214940968900919e-04
+
+ -2.6654696464538574e-01 5.3875535726547241e-02
+ <_>
+
+ 0 -1 190 -8.8889291509985924e-04
+
+ 1.8824113905429840e-01 -8.0119885504245758e-02
+ <_>
+
+ 0 -1 191 2.2177316714078188e-03
+
+ -6.9703146815299988e-02 2.0391084253787994e-01
+ <_>
+
+ 0 -1 674 -1.1522162239998579e-03
+
+ -3.6508113145828247e-01 3.9048090577125549e-02
+ <_>
+
+ 0 -1 1036 -1.0836161673069000e-02
+
+ -5.8106678724288940e-01 2.1713526919484138e-02
+ <_>
+
+ 0 -1 82 -1.6731536388397217e-01
+
+ -4.7344669699668884e-01 2.6662701740860939e-02
+ <_>
+
+ 0 -1 515 -9.5267388969659805e-03
+
+ 2.7732986211776733e-01 -5.6512769311666489e-02
+ <_>
+
+ 0 -1 329 6.6450019367039204e-03
+
+ 2.9381312429904938e-02 -5.3565382957458496e-01
+ <_>
+
+ 0 -1 104 -2.1554589271545410e-02
+
+ -6.2839144468307495e-01 1.8782904371619225e-02
+ <_>
+
+ 0 -1 892 1.4288825332187116e-04
+
+ -1.2763719260692596e-01 1.0616952925920486e-01
+ <_>
+
+ 0 -1 319 1.8068919889628887e-03
+
+ 4.2757544666528702e-02 -3.2102146744728088e-01
+ <_>
+
+ 0 -1 979 1.2280542869120836e-03
+
+ -5.7478122413158417e-02 2.5948432087898254e-01
+ <_>
+
+ 0 -1 89 2.6250675320625305e-02
+
+ -9.5928788185119629e-02 1.4502045512199402e-01
+ <_>
+
+ 0 -1 336 1.8192850984632969e-03
+
+ -6.8028703331947327e-02 2.3167446255683899e-01
+ <_>
+
+ 0 -1 44 -4.8545510508120060e-03
+
+ -4.3374514579772949e-01 3.6196250468492508e-02
+ <_>
+
+ 0 -1 762 2.8766903560608625e-03
+
+ 3.8431353867053986e-02 -3.3900904655456543e-01
+ <_>
+
+ 0 -1 793 4.4511677697300911e-03
+
+ -4.8704307526350021e-02 2.9764902591705322e-01
+ <_>
+
+ 0 -1 545 -9.9098179489374161e-03
+
+ 2.5863200426101685e-01 -5.7418409734964371e-02
+ <_>
+
+ 0 -1 2 -2.6503708213567734e-03
+
+ 1.3571591675281525e-01 -1.1608450859785080e-01
+ <_>
+
+ 0 -1 1 -3.0543167144060135e-02
+
+ 2.8910955786705017e-01 -5.1689133048057556e-02
+ <_>
+
+ 0 -1 698 -2.6757145300507545e-02
+
+ 1.8446540832519531e-01 -7.7666454017162323e-02
+ <_>
+
+ 0 -1 131 -2.2985447198152542e-02
+
+ -3.5471677780151367e-01 4.1345477104187012e-02
+ <_>
+
+ 0 -1 536 9.5467511564493179e-03
+
+ -5.5719308555126190e-02 2.4589607119560242e-01
+ <_>
+
+ 0 -1 730 2.6181992143392563e-03
+
+ -1.0256808251142502e-01 1.3319683074951172e-01
+ <_>
+
+ 0 -1 1031 -3.5491142421960831e-02
+
+ -5.9519535303115845e-01 2.2935084998607635e-02
+ <_>
+
+ 0 -1 703 1.5474080573767424e-03
+
+ -8.4649838507175446e-02 1.6198579967021942e-01
+ <_>
+
+ 0 -1 861 -3.4878745209425688e-03
+
+ -5.0121647119522095e-01 2.6359066367149353e-02
+ <_>
+
+ 0 -1 601 3.6612942349165678e-03
+
+ -7.2178244590759277e-02 1.8415448069572449e-01
+ <_>
+
+ 0 -1 692 -2.1762652322649956e-03
+
+ 2.1102276444435120e-01 -6.4692504703998566e-02
+ <_>
+
+ 0 -1 66 -6.9864131510257721e-03
+
+ -4.3104550242424011e-01 3.3448409289121628e-02
+ <_>
+
+ 0 -1 64 4.7067347913980484e-03
+
+ 4.7681909054517746e-02 -3.1132212281227112e-01
+ <_>
+
+ 0 -1 1054 -7.0012239739298820e-03
+
+ -3.4665238857269287e-01 3.6263268440961838e-02
+ <_>
+
+ 0 -1 36 1.0144514963030815e-02
+
+ 3.3140499144792557e-02 -3.7149414420127869e-01
+ <_>
+
+ 0 -1 927 2.5893552228808403e-03
+
+ -5.6186988949775696e-02 2.3859155178070068e-01
+ <_>
+
+ 0 -1 877 -3.8091647438704967e-03
+
+ 1.8803173303604126e-01 -9.0667806565761566e-02
+ <_>
+
+ 0 -1 559 -2.5004068017005920e-01
+
+ -5.7437247037887573e-01 2.3015361279249191e-02
+ <_>
+
+ 0 -1 651 -8.5459719412028790e-04
+
+ -3.0019384622573853e-01 4.1898671537637711e-02
+ <_>
+
+ 0 -1 556 -1.5604835003614426e-02
+
+ -5.8520871400833130e-01 2.1410541608929634e-02
+ <_>
+
+ 0 -1 654 -1.9794562458992004e-01
+
+ -6.7963910102844238e-01 1.6488522291183472e-02
+ <_>
+
+ 0 -1 896 -1.9824346527457237e-03
+
+ 1.4493939280509949e-01 -8.7999224662780762e-02
+ <_>
+
+ 0 -1 582 -2.1158650517463684e-02
+
+ -6.4664304256439209e-01 2.4590896442532539e-02
+ <_>
+
+ 0 -1 837 -9.3553803162649274e-04
+
+ 1.8229192495346069e-01 -7.2682343423366547e-02
+ <_>
+
+ 0 -1 610 -1.1120189446955919e-03
+
+ 1.5188181400299072e-01 -8.6225852370262146e-02
+ <_>
+
+ 0 -1 316 1.1543033272027969e-01
+
+ -4.7091111540794373e-02 3.5574361681938171e-01
+ <_>
+
+ 0 -1 568 -5.2959467284381390e-03
+
+ 2.0496748387813568e-01 -6.1289250850677490e-02
+ <_>
+
+ 0 -1 310 -2.6194794103503227e-02
+
+ 1.7320305109024048e-01 -1.1094193905591965e-01
+ <_>
+
+ 0 -1 167 1.4183738268911839e-02
+
+ -9.7011148929595947e-02 1.4372280240058899e-01
+ <_>
+
+ 0 -1 1032 -3.6340979859232903e-03
+
+ -4.0951785445213318e-01 3.0991807579994202e-02
+ <_>
+
+ 0 -1 1028 1.4448106288909912e-02
+
+ -6.1627220362424850e-02 2.0916682481765747e-01
+ <_>
+
+ 0 -1 982 -1.1399465613067150e-02
+
+ 1.8926219642162323e-01 -8.7004892528057098e-02
+
+ <_>
+ 100
+ -1.2953979969024658e+00
+
+ <_>
+
+ 0 -1 725 1.6048721969127655e-02
+
+ -9.5187164843082428e-02 3.7635341286659241e-01
+ <_>
+
+ 0 -1 239 4.1785854846239090e-03
+
+ -1.4184002578258514e-01 3.1887301802635193e-01
+ <_>
+
+ 0 -1 526 -6.7659835331141949e-03
+
+ 3.7005490064620972e-01 -8.9318118989467621e-02
+ <_>
+
+ 0 -1 186 1.4478694647550583e-02
+
+ -1.3418816030025482e-01 2.8370034694671631e-01
+ <_>
+
+ 0 -1 411 -1.8653089646250010e-03
+
+ -3.5015934705734253e-01 6.9187328219413757e-02
+ <_>
+
+ 0 -1 901 3.7634610198438168e-03
+
+ -7.7612839639186859e-02 3.0384179949760437e-01
+ <_>
+
+ 0 -1 353 8.9913085103034973e-03
+
+ 6.0584690421819687e-02 -4.7271341085433960e-01
+ <_>
+
+ 0 -1 121 -3.0867164023220539e-03
+
+ 1.6870087385177612e-01 -1.3231597840785980e-01
+ <_>
+
+ 0 -1 388 -4.0246914140880108e-03
+
+ -4.1840493679046631e-01 6.4627721905708313e-02
+ <_>
+
+ 0 -1 896 4.8679644241929054e-03
+
+ -5.6233335286378860e-02 4.2156839370727539e-01
+ <_>
+
+ 0 -1 480 5.5472417734563351e-03
+
+ 3.7891130894422531e-02 -5.1408857107162476e-01
+ <_>
+
+ 0 -1 1003 6.5884483046829700e-04
+
+ -1.6457377374172211e-01 1.1204792559146881e-01
+ <_>
+
+ 0 -1 1050 -1.0980388615280390e-03
+
+ -3.3544427156448364e-01 4.6025454998016357e-02
+ <_>
+
+ 0 -1 583 -2.8328509069979191e-03
+
+ 2.3426958918571472e-01 -7.2758100926876068e-02
+ <_>
+
+ 0 -1 56 1.5504788607358932e-03
+
+ 6.2664858996868134e-02 -2.5632002949714661e-01
+ <_>
+
+ 0 -1 348 -6.2153179896995425e-04
+
+ 1.7485393583774567e-01 -9.9982917308807373e-02
+ <_>
+
+ 0 -1 675 -1.4540781266987324e-02
+
+ -4.4969236850738525e-01 3.7324137985706329e-02
+ <_>
+
+ 0 -1 792 -1.6624422278255224e-03
+
+ 1.4047256112098694e-01 -1.1892398446798325e-01
+ <_>
+
+ 0 -1 893 1.6246617306023836e-03
+
+ 6.1172962188720703e-02 -2.7449882030487061e-01
+ <_>
+
+ 0 -1 87 -1.1364535987377167e-01
+
+ -4.3175131082534790e-01 3.8861453533172607e-02
+ <_>
+
+ 0 -1 29 6.3355863094329834e-03
+
+ 4.3615639209747314e-02 -3.7530297040939331e-01
+ <_>
+
+ 0 -1 88 -7.9950205981731415e-03
+
+ -5.6157833337783813e-01 2.7148496359586716e-02
+ <_>
+
+ 0 -1 825 -6.0972268693149090e-03
+
+ 4.7499263286590576e-01 -3.5678520798683167e-02
+ <_>
+
+ 0 -1 933 1.3845593202859163e-03
+
+ -1.1575383692979813e-01 1.3405258953571320e-01
+ <_>
+
+ 0 -1 351 8.5432223975658417e-02
+
+ -5.6930482387542725e-02 3.1373351812362671e-01
+ <_>
+
+ 0 -1 661 -1.2029780447483063e-01
+
+ -4.7989824414253235e-01 3.8594469428062439e-02
+ <_>
+
+ 0 -1 829 -8.3766942843794823e-03
+
+ -2.0806340873241425e-01 7.6934777200222015e-02
+ <_>
+
+ 0 -1 673 -4.6590538695454597e-03
+
+ -5.0349289178848267e-01 3.0419014394283295e-02
+ <_>
+
+ 0 -1 453 -3.2761119306087494e-02
+
+ 3.2354715466499329e-01 -5.6276485323905945e-02
+ <_>
+
+ 0 -1 783 8.3009023219347000e-03
+
+ -8.3831317722797394e-02 2.3335608839988708e-01
+ <_>
+
+ 0 -1 848 5.7156109251081944e-03
+
+ -8.6484365165233612e-02 1.8363620340824127e-01
+ <_>
+
+ 0 -1 518 -1.0080671310424805e-01
+
+ 3.8774350285530090e-01 -4.0828518569469452e-02
+ <_>
+
+ 0 -1 14 -2.5552421808242798e-02
+
+ -5.0166463851928711e-01 3.8269419223070145e-02
+ <_>
+
+ 0 -1 23 -6.1748407781124115e-02
+
+ -3.5811841487884521e-01 4.6544160693883896e-02
+ <_>
+
+ 0 -1 702 -1.2269845232367516e-02
+
+ 2.0786920189857483e-01 -7.8518457710742950e-02
+ <_>
+
+ 0 -1 11 2.8048269450664520e-02
+
+ -5.6248739361763000e-02 2.8977242112159729e-01
+ <_>
+
+ 0 -1 523 -7.2269486263394356e-03
+
+ -7.2842431068420410e-01 2.3379294201731682e-02
+ <_>
+
+ 0 -1 952 4.7771912068128586e-03
+
+ 2.3226773366332054e-02 -5.6412339210510254e-01
+ <_>
+
+ 0 -1 276 2.8181755915284157e-03
+
+ -3.3893339335918427e-02 4.3989458680152893e-01
+ <_>
+
+ 0 -1 194 -8.4437360055744648e-04
+
+ 1.9623728096485138e-01 -7.8485630452632904e-02
+ <_>
+
+ 0 -1 407 -4.3037505820393562e-03
+
+ -3.6311796307563782e-01 4.0526941418647766e-02
+ <_>
+
+ 0 -1 105 4.9789976328611374e-03
+
+ 4.8658054322004318e-02 -3.1162264943122864e-01
+ <_>
+
+ 0 -1 1041 -5.0353109836578369e-03
+
+ -5.5396872758865356e-01 2.3420164361596107e-02
+ <_>
+
+ 0 -1 837 -1.3716940302401781e-03
+
+ 2.2532704472541809e-01 -6.2741614878177643e-02
+ <_>
+
+ 0 -1 910 3.3456790260970592e-03
+
+ 3.8516163825988770e-02 -3.6224716901779175e-01
+ <_>
+
+ 0 -1 476 1.9023896893486381e-03
+
+ -5.4677281528711319e-02 2.5294607877731323e-01
+ <_>
+
+ 0 -1 1037 -1.4274399727582932e-03
+
+ -3.7934723496437073e-01 3.8707002997398376e-02
+ <_>
+
+ 0 -1 512 1.1010284069925547e-03
+
+ -9.5659099519252777e-02 1.4958517253398895e-01
+ <_>
+
+ 0 -1 219 -4.4154529459774494e-03
+
+ -5.1156622171401978e-01 2.5640288367867470e-02
+ <_>
+
+ 0 -1 448 3.7023271434009075e-03
+
+ -4.3221119791269302e-02 3.2581970095634460e-01
+ <_>
+
+ 0 -1 237 -5.4480084218084812e-03
+
+ -4.7611567378044128e-01 3.5773757845163345e-02
+ <_>
+
+ 0 -1 313 -3.1974539160728455e-04
+
+ 1.1916244029998779e-01 -1.1832383275032043e-01
+ <_>
+
+ 0 -1 381 -2.8494147583842278e-02
+
+ -6.5004557371139526e-01 2.0599177107214928e-02
+ <_>
+
+ 0 -1 941 -2.7449331246316433e-03
+
+ -3.9275056123733521e-01 3.3223718404769897e-02
+ <_>
+
+ 0 -1 937 4.1362000629305840e-03
+
+ 2.7191400527954102e-02 -4.7952741384506226e-01
+ <_>
+
+ 0 -1 638 3.3568721264600754e-03
+
+ -6.0983922332525253e-02 2.2964073717594147e-01
+ <_>
+
+ 0 -1 571 -5.7129040360450745e-03
+
+ -5.9052920341491699e-01 2.3388050496578217e-02
+ <_>
+
+ 0 -1 477 -1.1567326728254557e-03
+
+ 1.5093772113323212e-01 -9.1553181409835815e-02
+ <_>
+
+ 0 -1 143 -8.9379055425524712e-03
+
+ -3.5481104254722595e-01 3.6294396966695786e-02
+ <_>
+
+ 0 -1 811 3.6097350530326366e-03
+
+ 3.2780081033706665e-02 -3.8517734408378601e-01
+ <_>
+
+ 0 -1 975 2.0727193914353848e-03
+
+ -5.3627125918865204e-02 2.5666573643684387e-01
+ <_>
+
+ 0 -1 977 -1.8177125602960587e-03
+
+ 2.0363596081733704e-01 -7.0555560290813446e-02
+ <_>
+
+ 0 -1 932 -3.3223466016352177e-03
+
+ -4.8926571011543274e-01 2.8675178065896034e-02
+ <_>
+
+ 0 -1 553 -4.4222660362720490e-03
+
+ -4.0920063853263855e-01 3.0863059684634209e-02
+ <_>
+
+ 0 -1 705 -7.8024319373071194e-04
+
+ 1.2166435271501541e-01 -1.0897941887378693e-01
+ <_>
+
+ 0 -1 850 7.9855127260088921e-03
+
+ 2.5865448638796806e-02 -4.8917418718338013e-01
+ <_>
+
+ 0 -1 99 -2.7752606911235489e-05
+
+ 1.1611134558916092e-01 -1.1225233227014542e-01
+ <_>
+
+ 0 -1 641 3.0770362354815006e-03
+
+ -6.4753420650959015e-02 1.9632078707218170e-01
+ <_>
+
+ 0 -1 593 -2.1007210016250610e-03
+
+ 1.9681814312934875e-01 -9.4167068600654602e-02
+ <_>
+
+ 0 -1 112 -6.1383144930005074e-03
+
+ -3.9225277304649353e-01 3.5275831818580627e-02
+ <_>
+
+ 0 -1 119 1.1184177361428738e-02
+
+ 2.9410628601908684e-02 -4.3673589825630188e-01
+ <_>
+
+ 0 -1 1007 1.0432782582938671e-03
+
+ -6.7393802106380463e-02 1.9237922132015228e-01
+ <_>
+
+ 0 -1 931 8.5366604616865516e-04
+
+ -8.4067851305007935e-02 1.6720806062221527e-01
+ <_>
+
+ 0 -1 55 -3.3059090375900269e-02
+
+ 2.6451063156127930e-01 -5.2662543952465057e-02
+ <_>
+
+ 0 -1 161 -8.7435375899076462e-03
+
+ -3.0780994892120361e-01 4.8419766128063202e-02
+ <_>
+
+ 0 -1 907 -1.1587596964091063e-03
+
+ 1.4863640069961548e-01 -9.4251774251461029e-02
+ <_>
+
+ 0 -1 295 -2.2717786952853203e-02
+
+ -4.2414310574531555e-01 3.5150803625583649e-02
+ <_>
+
+ 0 -1 810 -8.4660220891237259e-03
+
+ 2.5765278935432434e-01 -5.4796367883682251e-02
+ <_>
+
+ 0 -1 492 -1.4943551504984498e-03
+
+ -2.7729934453964233e-01 4.9375709146261215e-02
+ <_>
+
+ 0 -1 0 -7.5480109080672264e-04
+
+ 1.2197802960872650e-01 -1.0845532268285751e-01
+ <_>
+
+ 0 -1 853 2.9903287068009377e-03
+
+ -8.4785357117652893e-02 1.5424512326717377e-01
+ <_>
+
+ 0 -1 1040 1.7600806895643473e-03
+
+ 7.0044547319412231e-02 -1.9795240461826324e-01
+ <_>
+
+ 0 -1 154 1.2243577279150486e-02
+
+ -7.8472696244716644e-02 1.7095038294792175e-01
+ <_>
+
+ 0 -1 80 -2.7739753946661949e-02
+
+ 2.0475350320339203e-01 -6.9862313568592072e-02
+ <_>
+
+ 0 -1 300 -6.4486754126846790e-03
+
+ -3.7651637196540833e-01 3.3540505915880203e-02
+ <_>
+
+ 0 -1 341 -1.3427068479359150e-02
+
+ 1.5320046246051788e-01 -8.3272159099578857e-02
+ <_>
+
+ 0 -1 360 8.2654636353254318e-03
+
+ -8.1395141780376434e-02 1.9696740806102753e-01
+ <_>
+
+ 0 -1 616 3.0615129508078098e-03
+
+ -5.8534789830446243e-02 2.1799990534782410e-01
+ <_>
+
+ 0 -1 616 -1.4359520282596350e-03
+
+ 1.8553669750690460e-01 -7.9428143799304962e-02
+ <_>
+
+ 0 -1 488 2.8793164528906345e-03
+
+ 3.7499722093343735e-02 -3.5483118891716003e-01
+ <_>
+
+ 0 -1 631 -9.0899681672453880e-03
+
+ -5.9031629562377930e-01 2.0012531429529190e-02
+ <_>
+
+ 0 -1 896 1.6797243151813745e-03
+
+ -6.8868115544319153e-02 1.8992543220520020e-01
+ <_>
+
+ 0 -1 581 -1.1759581044316292e-02
+
+ 3.6288693547248840e-01 -3.3578243106603622e-02
+ <_>
+
+ 0 -1 749 3.8305222988128662e-03
+
+ -6.6793553531169891e-02 1.9304293394088745e-01
+ <_>
+
+ 0 -1 1018 1.2506111524999142e-03
+
+ -8.1618689000606537e-02 1.5481384098529816e-01
+ <_>
+
+ 0 -1 379 -1.6119323670864105e-02
+
+ 1.4024992287158966e-01 -9.3965478241443634e-02
+ <_>
+
+ 0 -1 576 -7.2789913974702358e-04
+
+ 1.9554650783538818e-01 -7.2329640388488770e-02
+ <_>
+
+ 0 -1 178 1.4888901496306062e-03
+
+ 3.3372651785612106e-02 -4.0691211819648743e-01
+ <_>
+
+ 0 -1 984 -4.9822013825178146e-03
+
+ -3.3125448226928711e-01 3.6899805068969727e-02
+ <_>
+
+ 0 -1 1053 9.4443336129188538e-03
+
+ 3.1763385981321335e-02 -3.7651473283767700e-01
+
+ <_>
+ 100
+ -1.3101767301559448e+00
+
+ <_>
+
+ 0 -1 535 -1.2652185745537281e-02
+
+ 4.0350878238677979e-01 -8.6829073727130890e-02
+ <_>
+
+ 0 -1 386 4.8778904601931572e-03
+
+ -9.1208808124065399e-02 4.8882400989532471e-01
+ <_>
+
+ 0 -1 875 -2.4099014699459076e-02
+
+ 3.6089360713958740e-01 -1.1495783179998398e-01
+ <_>
+
+ 0 -1 955 1.7244052141904831e-03
+
+ -1.5974776446819305e-01 1.6197346150875092e-01
+ <_>
+
+ 0 -1 478 -3.6334272008389235e-03
+
+ 2.7575418353080750e-01 -9.4314105808734894e-02
+ <_>
+
+ 0 -1 874 -3.4076566807925701e-03
+
+ 2.2806543111801147e-01 -1.1266379803419113e-01
+ <_>
+
+ 0 -1 343 8.8951038196682930e-03
+
+ -6.6720969974994659e-02 3.3090111613273621e-01
+ <_>
+
+ 0 -1 886 -2.4365000426769257e-03
+
+ -4.6264356374740601e-01 5.9559248387813568e-02
+ <_>
+
+ 0 -1 134 1.6330357640981674e-02
+
+ 6.1187297105789185e-02 -4.2252638936042786e-01
+ <_>
+
+ 0 -1 92 8.4438512567430735e-04
+
+ -1.6640183329582214e-01 1.1608948558568954e-01
+ <_>
+
+ 0 -1 841 2.9493896290659904e-03
+
+ -9.1952294111251831e-02 2.0670032501220703e-01
+ <_>
+
+ 0 -1 40 3.4696407616138458e-02
+
+ -8.0334044992923737e-02 2.8779104351997375e-01
+ <_>
+
+ 0 -1 893 -3.3343117684125900e-03
+
+ -5.9474521875381470e-01 3.6547001451253891e-02
+ <_>
+
+ 0 -1 761 9.3975086929276586e-04
+
+ -1.5703736245632172e-01 1.1884722858667374e-01
+ <_>
+
+ 0 -1 174 -3.4337402321398258e-03
+
+ -5.6122291088104248e-01 3.2535579055547714e-02
+ <_>
+
+ 0 -1 1010 2.6463428512215614e-03
+
+ -7.0756055414676666e-02 2.5195503234863281e-01
+ <_>
+
+ 0 -1 334 -5.4167490452528000e-04
+
+ 1.2782673537731171e-01 -1.3642209768295288e-01
+ <_>
+
+ 0 -1 219 2.6469756849110126e-03
+
+ 4.3448049575090408e-02 -4.2012536525726318e-01
+ <_>
+
+ 0 -1 467 -3.8945327978581190e-03
+
+ -3.4613665938377380e-01 4.6863511204719543e-02
+ <_>
+
+ 0 -1 258 1.0849055834114552e-03
+
+ -7.2841711342334747e-02 2.2674085199832916e-01
+ <_>
+
+ 0 -1 258 -9.8655023612082005e-04
+
+ 2.5967630743980408e-01 -8.0196425318717957e-02
+ <_>
+
+ 0 -1 204 4.3801497668027878e-03
+
+ 2.8548270463943481e-02 -6.2486541271209717e-01
+ <_>
+
+ 0 -1 554 3.1944573856890202e-04
+
+ -1.4062304794788361e-01 1.1761485785245895e-01
+ <_>
+
+ 0 -1 300 6.6440929658710957e-03
+
+ 3.2654736191034317e-02 -4.6211913228034973e-01
+ <_>
+
+ 0 -1 42 7.0357543881982565e-04
+
+ 7.5751155614852905e-02 -1.9804775714874268e-01
+ <_>
+
+ 0 -1 446 5.4024737328290939e-03
+
+ -6.1951220035552979e-02 2.4502439796924591e-01
+ <_>
+
+ 0 -1 502 7.2796619497239590e-03
+
+ -5.9379905462265015e-02 2.5588110089302063e-01
+ <_>
+
+ 0 -1 169 -1.5059831552207470e-02
+
+ -6.6548824310302734e-01 2.2492453455924988e-02
+ <_>
+
+ 0 -1 270 -4.6248016878962517e-03
+
+ -3.4483894705772400e-01 4.2247168719768524e-02
+ <_>
+
+ 0 -1 290 1.4736279845237732e-03
+
+ 3.3624436706304550e-02 -4.1066497564315796e-01
+ <_>
+
+ 0 -1 110 4.0667224675416946e-03
+
+ -8.6238399147987366e-02 1.6550070047378540e-01
+ <_>
+
+ 0 -1 113 -1.2728295987471938e-03
+
+ 1.9737298786640167e-01 -9.5425128936767578e-02
+ <_>
+
+ 0 -1 957 -1.5297440811991692e-02
+
+ -5.9287589788436890e-01 2.3890895769000053e-02
+ <_>
+
+ 0 -1 969 -2.9415758326649666e-03
+
+ -4.8744291067123413e-01 2.8945079073309898e-02
+ <_>
+
+ 0 -1 840 9.3173712957650423e-04
+
+ -8.9065223932266235e-02 1.6721877455711365e-01
+ <_>
+
+ 0 -1 791 2.1161064505577087e-03
+
+ -5.8501452207565308e-02 2.7767315506935120e-01
+ <_>
+
+ 0 -1 579 -3.7564497906714678e-03
+
+ 2.6502594351768494e-01 -5.3400754928588867e-02
+ <_>
+
+ 0 -1 224 1.9215289503335953e-02
+
+ 3.6197379231452942e-02 -3.9996260404586792e-01
+ <_>
+
+ 0 -1 276 -5.8480387087911367e-04
+
+ 1.7670612037181854e-01 -8.0434471368789673e-02
+ <_>
+
+ 0 -1 62 1.7193648964166641e-02
+
+ 2.1810308098793030e-02 -6.6349571943283081e-01
+ <_>
+
+ 0 -1 394 -1.5182361006736755e-02
+
+ 2.4825552105903625e-01 -6.3092373311519623e-02
+ <_>
+
+ 0 -1 712 3.0793007463216782e-03
+
+ 2.4977168068289757e-02 -5.3303867578506470e-01
+ <_>
+
+ 0 -1 410 -2.4421955458819866e-03
+
+ -3.6828973889350891e-01 3.3543743193149567e-02
+ <_>
+
+ 0 -1 1011 7.0760864764451981e-04
+
+ -7.0839107036590576e-02 1.9299270212650299e-01
+ <_>
+
+ 0 -1 280 -2.9198618140071630e-03
+
+ -4.2773759365081787e-01 3.4788779914379120e-02
+ <_>
+
+ 0 -1 77 4.9937088042497635e-03
+
+ 3.5642433911561966e-02 -3.7421676516532898e-01
+ <_>
+
+ 0 -1 701 3.1980490311980247e-03
+
+ -6.5103210508823395e-02 2.1381905674934387e-01
+ <_>
+
+ 0 -1 320 -1.1253832839429379e-02
+
+ 1.9790579378604889e-01 -7.1859836578369141e-02
+ <_>
+
+ 0 -1 496 -3.6279223859310150e-02
+
+ 1.7960831522941589e-01 -9.7373597323894501e-02
+ <_>
+
+ 0 -1 606 2.5160997174680233e-03
+
+ 4.7910790890455246e-02 -2.7035105228424072e-01
+ <_>
+
+ 0 -1 597 1.2429051566869020e-03
+
+ -7.8723609447479248e-02 1.7209371924400330e-01
+ <_>
+
+ 0 -1 600 -1.6120750457048416e-02
+
+ 2.6868200302124023e-01 -5.0688084214925766e-02
+ <_>
+
+ 0 -1 676 1.9487962126731873e-03
+
+ 4.2773328721523285e-02 -3.2401460409164429e-01
+ <_>
+
+ 0 -1 371 7.1887858211994171e-04
+
+ -9.3979224562644958e-02 1.4450067281723022e-01
+ <_>
+
+ 0 -1 315 2.4896476417779922e-02
+
+ 3.0655095353722572e-02 -4.5330229401588440e-01
+ <_>
+
+ 0 -1 1026 -3.9382722228765488e-02
+
+ -7.5473642349243164e-01 1.4460344798862934e-02
+ <_>
+
+ 0 -1 16 1.6916246712207794e-01
+
+ 1.8219815567135811e-02 -6.0212779045104980e-01
+ <_>
+
+ 0 -1 327 2.6912155590252951e-05
+
+ -1.3110430538654327e-01 1.0080647468566895e-01
+ <_>
+
+ 0 -1 720 -1.1350987479090691e-03
+
+ -3.5285457968711853e-01 3.5424951463937759e-02
+ <_>
+
+ 0 -1 275 -5.3854554425925016e-04
+
+ 1.6519539058208466e-01 -8.5205554962158203e-02
+ <_>
+
+ 0 -1 1006 -7.9703063238412142e-04
+
+ 1.2170238047838211e-01 -1.1191177368164062e-01
+ <_>
+
+ 0 -1 1055 6.4357938244938850e-03
+
+ 2.3892326280474663e-02 -5.2907115221023560e-01
+ <_>
+
+ 0 -1 184 3.5384115763008595e-03
+
+ 1.5895446762442589e-02 -7.3063355684280396e-01
+ <_>
+
+ 0 -1 503 -5.9715351089835167e-03
+
+ -4.9897637963294983e-01 2.2720154374837875e-02
+ <_>
+
+ 0 -1 500 -1.3486531376838684e-01
+
+ 4.7622504830360413e-01 -3.0212458223104477e-02
+ <_>
+
+ 0 -1 824 1.5813487116247416e-03
+
+ -6.4366899430751801e-02 1.9106543064117432e-01
+ <_>
+
+ 0 -1 438 1.2239011703059077e-03
+
+ 3.5654775798320770e-02 -3.6865225434303284e-01
+ <_>
+
+ 0 -1 871 1.5586249064654112e-03
+
+ -7.6894849538803101e-02 1.7627324163913727e-01
+ <_>
+
+ 0 -1 807 8.1224087625741959e-03
+
+ -9.0349502861499786e-02 1.4695085585117340e-01
+ <_>
+
+ 0 -1 693 -1.1717316228896379e-03
+
+ -4.2172068357467651e-01 3.2626960426568985e-02
+ <_>
+
+ 0 -1 863 3.1573872547596693e-03
+
+ 1.6080003231763840e-02 -7.3708915710449219e-01
+ <_>
+
+ 0 -1 328 -6.0417165514081717e-04
+
+ 1.3188406825065613e-01 -1.0221557319164276e-01
+ <_>
+
+ 0 -1 870 5.9989960864186287e-03
+
+ -5.6194521486759186e-02 2.4262723326683044e-01
+ <_>
+
+ 0 -1 285 9.2063043266534805e-03
+
+ -7.4052155017852783e-02 1.9847218692302704e-01
+ <_>
+
+ 0 -1 759 5.9181386604905128e-03
+
+ 2.7928760275244713e-02 -5.3380137681961060e-01
+ <_>
+
+ 0 -1 637 2.2121241781860590e-03
+
+ -7.4788182973861694e-02 1.9799898564815521e-01
+ <_>
+
+ 0 -1 634 1.5453733503818512e-03
+
+ -8.1615962088108063e-02 1.7845135927200317e-01
+ <_>
+
+ 0 -1 48 -2.7309993747621775e-03
+
+ -2.9415401816368103e-01 4.8099983483552933e-02
+ <_>
+
+ 0 -1 288 1.5755122527480125e-02
+
+ -8.2719191908836365e-02 1.5387716889381409e-01
+ <_>
+
+ 0 -1 358 -5.5120363831520081e-02
+
+ -2.7076271176338196e-01 5.2753895521163940e-02
+ <_>
+
+ 0 -1 188 2.9593750834465027e-01
+
+ -2.5313137099146843e-02 5.3404790163040161e-01
+ <_>
+
+ 0 -1 755 -1.1218986473977566e-03
+
+ 1.1400944739580154e-01 -1.1270149052143097e-01
+ <_>
+
+ 0 -1 12 -3.7802509963512421e-02
+
+ 3.1571185588836670e-01 -4.9672659486532211e-02
+ <_>
+
+ 0 -1 122 7.6384171843528748e-03
+
+ -1.0544487833976746e-01 1.6579298675060272e-01
+ <_>
+
+ 0 -1 586 6.8679507821798325e-03
+
+ -6.0160953551530838e-02 2.2640766203403473e-01
+ <_>
+
+ 0 -1 443 5.1510091871023178e-02
+
+ 2.6919802650809288e-02 -5.1188707351684570e-01
+ <_>
+
+ 0 -1 997 -1.7317479476332664e-02
+
+ 2.8218811750411987e-01 -4.4739942997694016e-02
+ <_>
+
+ 0 -1 430 8.3876429125666618e-03
+
+ -5.7016383856534958e-02 2.2617760300636292e-01
+ <_>
+
+ 0 -1 625 9.2909142374992371e-02
+
+ 3.1283479183912277e-02 -4.9390810728073120e-01
+ <_>
+
+ 0 -1 457 4.8232711851596832e-03
+
+ 2.4896934628486633e-02 -4.5571261644363403e-01
+ <_>
+
+ 0 -1 484 2.3969253525137901e-03
+
+ 2.3365976288914680e-02 -4.8319596052169800e-01
+ <_>
+
+ 0 -1 599 -3.8546645082533360e-03
+
+ 2.0274488627910614e-01 -5.8264043182134628e-02
+ <_>
+
+ 0 -1 647 -1.2048919452354312e-03
+
+ -3.4361392259597778e-01 3.4746967256069183e-02
+ <_>
+
+ 0 -1 734 -1.6053356230258942e-02
+
+ 1.8685258924961090e-01 -6.7979305982589722e-02
+ <_>
+
+ 0 -1 1045 -2.1703056991100311e-02
+
+ -5.0804340839385986e-01 2.5113353505730629e-02
+ <_>
+
+ 0 -1 541 -1.9719875417649746e-03
+
+ -2.7325069904327393e-01 4.3638698756694794e-02
+ <_>
+
+ 0 -1 465 -1.3189280871301889e-03
+
+ 2.5198838114738464e-01 -4.8170279711484909e-02
+ <_>
+
+ 0 -1 465 1.3257672544568777e-03
+
+ -6.6290155053138733e-02 2.6572498679161072e-01
+ <_>
+
+ 0 -1 1024 -2.5993511080741882e-03
+
+ -7.1209841966629028e-01 1.9255550578236580e-02
+ <_>
+
+ 0 -1 926 4.0416182018816471e-03
+
+ 2.4820772930979729e-02 -4.3810126185417175e-01
+
+ <_>
+
+ <_>
+ 0 0 2 4 -1.
+ <_>
+ 0 2 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 6 14 -1.
+ <_>
+ 0 0 3 7 2.
+ <_>
+ 3 7 3 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 1 -1.
+ <_>
+ 4 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 2 -1.
+ <_>
+ 4 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 6 -1.
+ <_>
+ 0 0 4 3 2.
+ <_>
+ 4 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 14 -1.
+ <_>
+ 0 0 4 7 2.
+ <_>
+ 4 7 4 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 10 8 -1.
+ <_>
+ 0 0 5 4 2.
+ <_>
+ 5 4 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 18 13 -1.
+ <_>
+ 6 0 6 13 3.
+ 0
+ <_>
+
+ <_>
+ 0 0 14 10 -1.
+ <_>
+ 0 0 7 5 2.
+ <_>
+ 7 5 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 1 -1.
+ <_>
+ 8 0 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 0 16 6 -1.
+ <_>
+ 0 0 8 3 2.
+ <_>
+ 8 3 8 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 16 10 -1.
+ <_>
+ 0 0 8 5 2.
+ <_>
+ 8 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 1 -1.
+ <_>
+ 12 0 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 2 -1.
+ <_>
+ 0 0 12 1 2.
+ <_>
+ 12 1 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 12 12 -1.
+ <_>
+ 0 6 12 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 15 18 -1.
+ <_>
+ 0 6 15 6 3.
+ 0
+ <_>
+
+ <_>
+ 0 1 1 6 -1.
+ <_>
+ 0 3 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 0 1 4 6 -1.
+ <_>
+ 2 1 2 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 1 15 1 -1.
+ <_>
+ 5 1 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 1 10 2 -1.
+ <_>
+ 5 1 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 2 24 2 -1.
+ <_>
+ 0 2 12 1 2.
+ <_>
+ 12 3 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 2 24 10 -1.
+ <_>
+ 0 2 12 5 2.
+ <_>
+ 12 7 12 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 3 7 3 -1.
+ <_>
+ 0 4 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 3 24 2 -1.
+ <_>
+ 0 3 12 1 2.
+ <_>
+ 12 4 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 4 6 12 -1.
+ <_>
+ 0 8 6 4 3.
+ 0
+ <_>
+
+ <_>
+ 0 4 24 6 -1.
+ <_>
+ 0 6 24 2 3.
+ 0
+ <_>
+
+ <_>
+ 0 5 2 9 -1.
+ <_>
+ 0 8 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 5 24 2 -1.
+ <_>
+ 0 5 12 1 2.
+ <_>
+ 12 6 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 6 3 -1.
+ <_>
+ 0 7 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 6 24 2 -1.
+ <_>
+ 0 6 12 1 2.
+ <_>
+ 12 7 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 22 3 -1.
+ <_>
+ 0 7 22 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 6 24 9 -1.
+ <_>
+ 0 9 24 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 7 16 1 -1.
+ <_>
+ 8 7 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 7 24 3 -1.
+ <_>
+ 8 7 8 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 7 24 2 -1.
+ <_>
+ 0 7 12 1 2.
+ <_>
+ 12 8 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 8 4 6 -1.
+ <_>
+ 2 8 2 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 8 6 15 -1.
+ <_>
+ 3 8 3 15 2.
+ 0
+ <_>
+
+ <_>
+ 0 8 4 9 -1.
+ <_>
+ 0 11 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 8 24 1 -1.
+ <_>
+ 8 8 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 8 24 4 -1.
+ <_>
+ 0 8 12 2 2.
+ <_>
+ 12 10 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 2 3 -1.
+ <_>
+ 0 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 9 2 9 -1.
+ <_>
+ 0 12 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 9 5 3 -1.
+ <_>
+ 0 10 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 9 5 6 -1.
+ <_>
+ 0 11 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 0 9 7 2 -1.
+ <_>
+ 0 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 8 2 -1.
+ <_>
+ 0 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 10 2 -1.
+ <_>
+ 0 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 22 2 -1.
+ <_>
+ 0 9 11 1 2.
+ <_>
+ 11 10 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 24 4 -1.
+ <_>
+ 0 9 12 2 2.
+ <_>
+ 12 11 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 24 15 -1.
+ <_>
+ 12 9 12 15 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 15 3 -1.
+ <_>
+ 0 10 15 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 10 2 3 -1.
+ <_>
+ 0 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 10 6 1 -1.
+ <_>
+ 3 10 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 6 14 -1.
+ <_>
+ 3 10 3 14 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 4 3 -1.
+ <_>
+ 0 11 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 10 24 2 -1.
+ <_>
+ 0 10 12 1 2.
+ <_>
+ 12 11 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 24 4 -1.
+ <_>
+ 0 10 12 2 2.
+ <_>
+ 12 12 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 13 3 -1.
+ <_>
+ 0 11 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 11 2 3 -1.
+ <_>
+ 0 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 0 11 3 4 2.
+ <_>
+ 3 15 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 11 10 3 -1.
+ <_>
+ 0 12 10 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 11 24 2 -1.
+ <_>
+ 0 11 12 1 2.
+ <_>
+ 12 12 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 12 3 10 -1.
+ <_>
+ 1 12 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 0 12 22 10 -1.
+ <_>
+ 11 12 11 10 2.
+ 0
+ <_>
+
+ <_>
+ 0 13 3 9 -1.
+ <_>
+ 1 13 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 0 13 12 10 -1.
+ <_>
+ 6 13 6 10 2.
+ 0
+ <_>
+
+ <_>
+ 0 13 24 10 -1.
+ <_>
+ 12 13 12 10 2.
+ 0
+ <_>
+
+ <_>
+ 0 14 24 2 -1.
+ <_>
+ 0 14 12 1 2.
+ <_>
+ 12 15 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 15 3 8 -1.
+ <_>
+ 1 15 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 0 15 12 8 -1.
+ <_>
+ 0 15 6 4 2.
+ <_>
+ 6 19 6 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 15 10 6 -1.
+ <_>
+ 0 17 10 2 3.
+ 0
+ <_>
+
+ <_>
+ 0 16 12 8 -1.
+ <_>
+ 0 16 6 4 2.
+ <_>
+ 6 20 6 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 17 3 7 -1.
+ <_>
+ 1 17 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 0 18 6 3 -1.
+ <_>
+ 0 19 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 19 6 3 -1.
+ <_>
+ 0 20 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 20 6 3 -1.
+ <_>
+ 0 21 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 21 4 3 -1.
+ <_>
+ 0 22 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 21 5 3 -1.
+ <_>
+ 0 22 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 22 22 2 -1.
+ <_>
+ 11 22 11 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 6 1 -1.
+ <_>
+ 4 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 15 13 -1.
+ <_>
+ 6 0 5 13 3.
+ 0
+ <_>
+
+ <_>
+ 1 0 12 6 -1.
+ <_>
+ 1 0 6 3 2.
+ <_>
+ 7 3 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 1 22 2 -1.
+ <_>
+ 1 1 11 1 2.
+ <_>
+ 12 2 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 2 23 9 -1.
+ <_>
+ 1 5 23 3 3.
+ 0
+ <_>
+
+ <_>
+ 1 3 4 3 -1.
+ <_>
+ 1 4 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 3 12 18 -1.
+ <_>
+ 5 3 4 18 3.
+ 0
+ <_>
+
+ <_>
+ 1 4 8 3 -1.
+ <_>
+ 1 5 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 4 23 6 -1.
+ <_>
+ 1 6 23 2 3.
+ 0
+ <_>
+
+ <_>
+ 1 6 6 4 -1.
+ <_>
+ 1 6 3 2 2.
+ <_>
+ 4 8 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 6 3 9 -1.
+ <_>
+ 1 9 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 1 6 4 3 -1.
+ <_>
+ 1 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 6 22 2 -1.
+ <_>
+ 1 6 11 1 2.
+ <_>
+ 12 7 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 6 12 8 -1.
+ <_>
+ 1 10 12 4 2.
+ 0
+ <_>
+
+ <_>
+ 1 7 8 4 -1.
+ <_>
+ 1 7 4 2 2.
+ <_>
+ 5 9 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 7 20 4 -1.
+ <_>
+ 1 7 10 2 2.
+ <_>
+ 11 9 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 7 22 6 -1.
+ <_>
+ 1 7 11 3 2.
+ <_>
+ 12 10 11 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 7 22 14 -1.
+ <_>
+ 12 7 11 14 2.
+ 0
+ <_>
+
+ <_>
+ 1 8 1 2 -1.
+ <_>
+ 1 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 8 8 2 -1.
+ <_>
+ 1 8 4 1 2.
+ <_>
+ 5 9 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 8 7 4 -1.
+ <_>
+ 1 10 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 8 22 4 -1.
+ <_>
+ 1 8 11 2 2.
+ <_>
+ 12 10 11 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 9 4 3 -1.
+ <_>
+ 3 9 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 9 4 6 -1.
+ <_>
+ 1 11 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 1 9 20 2 -1.
+ <_>
+ 1 9 10 1 2.
+ <_>
+ 11 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 10 3 13 -1.
+ <_>
+ 2 10 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 1 10 4 6 -1.
+ <_>
+ 1 12 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 1 10 8 3 -1.
+ <_>
+ 1 11 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 10 20 2 -1.
+ <_>
+ 1 10 10 1 2.
+ <_>
+ 11 11 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 11 6 2 -1.
+ <_>
+ 4 11 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 11 22 2 -1.
+ <_>
+ 1 11 11 1 2.
+ <_>
+ 12 12 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 12 3 8 -1.
+ <_>
+ 2 12 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 1 12 4 1 -1.
+ <_>
+ 3 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 12 20 2 -1.
+ <_>
+ 1 12 10 1 2.
+ <_>
+ 11 13 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 13 3 8 -1.
+ <_>
+ 2 13 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 1 13 9 3 -1.
+ <_>
+ 1 14 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 13 21 8 -1.
+ <_>
+ 1 17 21 4 2.
+ 0
+ <_>
+
+ <_>
+ 1 15 8 2 -1.
+ <_>
+ 5 15 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 17 22 2 -1.
+ <_>
+ 1 17 11 1 2.
+ <_>
+ 12 18 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 18 3 6 -1.
+ <_>
+ 2 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 2 0 6 1 -1.
+ <_>
+ 5 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 0 8 6 -1.
+ <_>
+ 2 0 4 3 2.
+ <_>
+ 6 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 2 0 12 5 -1.
+ <_>
+ 8 0 6 5 2.
+ 0
+ <_>
+
+ <_>
+ 2 3 20 2 -1.
+ <_>
+ 2 3 10 1 2.
+ <_>
+ 12 4 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 4 3 3 -1.
+ <_>
+ 2 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 4 20 2 -1.
+ <_>
+ 2 4 10 1 2.
+ <_>
+ 12 5 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 5 2 3 -1.
+ <_>
+ 2 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 5 20 2 -1.
+ <_>
+ 2 5 10 1 2.
+ <_>
+ 12 6 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 6 22 2 -1.
+ <_>
+ 2 6 11 1 2.
+ <_>
+ 13 7 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 6 22 4 -1.
+ <_>
+ 2 6 11 2 2.
+ <_>
+ 13 8 11 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 7 15 3 -1.
+ <_>
+ 2 8 15 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 8 8 3 -1.
+ <_>
+ 2 9 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 8 20 4 -1.
+ <_>
+ 2 8 10 2 2.
+ <_>
+ 12 10 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 9 20 8 -1.
+ <_>
+ 2 9 10 4 2.
+ <_>
+ 12 13 10 4 2.
+ 0
+ <_>
+
+ <_>
+ 2 9 22 2 -1.
+ <_>
+ 2 9 11 1 2.
+ <_>
+ 13 10 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 9 19 3 -1.
+ <_>
+ 2 10 19 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 10 4 1 -1.
+ <_>
+ 4 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 10 22 2 -1.
+ <_>
+ 2 10 11 1 2.
+ <_>
+ 13 11 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 10 22 14 -1.
+ <_>
+ 13 10 11 14 2.
+ 0
+ <_>
+
+ <_>
+ 2 10 20 12 -1.
+ <_>
+ 2 16 20 6 2.
+ 0
+ <_>
+
+ <_>
+ 2 11 3 5 -1.
+ <_>
+ 3 11 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 2 11 20 2 -1.
+ <_>
+ 2 11 10 1 2.
+ <_>
+ 12 12 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 11 22 2 -1.
+ <_>
+ 2 11 11 1 2.
+ <_>
+ 13 12 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 12 3 5 -1.
+ <_>
+ 3 12 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 2 12 3 9 -1.
+ <_>
+ 3 12 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 2 12 3 11 -1.
+ <_>
+ 3 12 1 11 3.
+ 0
+ <_>
+
+ <_>
+ 2 14 3 3 -1.
+ <_>
+ 3 14 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 2 14 8 8 -1.
+ <_>
+ 2 14 4 4 2.
+ <_>
+ 6 18 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 2 17 3 5 -1.
+ <_>
+ 3 17 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 2 17 3 6 -1.
+ <_>
+ 3 17 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 2 17 21 4 -1.
+ <_>
+ 9 17 7 4 3.
+ 0
+ <_>
+
+ <_>
+ 2 18 3 5 -1.
+ <_>
+ 3 18 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 2 18 10 4 -1.
+ <_>
+ 7 18 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 2 20 6 2 -1.
+ <_>
+ 5 20 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 21 12 2 -1.
+ <_>
+ 8 21 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 0 3 5 -1.
+ <_>
+ 4 0 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 3 0 9 22 -1.
+ <_>
+ 6 0 3 22 3.
+ 0
+ <_>
+
+ <_>
+ 3 0 12 4 -1.
+ <_>
+ 3 0 6 2 2.
+ <_>
+ 9 2 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 1 3 3 -1.
+ <_>
+ 4 1 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 1 3 20 -1.
+ <_>
+ 4 1 1 20 3.
+ 0
+ <_>
+
+ <_>
+ 3 1 6 20 -1.
+ <_>
+ 5 1 2 20 3.
+ 0
+ <_>
+
+ <_>
+ 3 2 3 3 -1.
+ <_>
+ 4 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 3 3 3 -1.
+ <_>
+ 4 3 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 3 3 9 -1.
+ <_>
+ 3 6 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 3 20 19 -1.
+ <_>
+ 13 3 10 19 2.
+ 0
+ <_>
+
+ <_>
+ 3 3 19 4 -1.
+ <_>
+ 3 5 19 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 4 1 3 -1.
+ <_>
+ 3 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 4 6 3 -1.
+ <_>
+ 5 4 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 4 18 2 -1.
+ <_>
+ 3 4 9 1 2.
+ <_>
+ 12 5 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 4 16 6 -1.
+ <_>
+ 3 6 16 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 5 3 1 -1.
+ <_>
+ 4 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 5 3 2 -1.
+ <_>
+ 4 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 5 2 3 -1.
+ <_>
+ 3 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 5 10 3 -1.
+ <_>
+ 8 5 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 5 18 3 -1.
+ <_>
+ 9 5 6 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 5 18 2 -1.
+ <_>
+ 3 5 9 1 2.
+ <_>
+ 12 6 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 6 2 1 -1.
+ <_>
+ 4 6 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 6 1 3 -1.
+ <_>
+ 3 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 6 3 3 -1.
+ <_>
+ 3 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 6 6 6 -1.
+ <_>
+ 3 8 6 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 6 18 2 -1.
+ <_>
+ 3 6 9 1 2.
+ <_>
+ 12 7 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 6 17 6 -1.
+ <_>
+ 3 8 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 7 3 1 -1.
+ <_>
+ 4 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 7 4 2 -1.
+ <_>
+ 3 8 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 6 6 -1.
+ <_>
+ 3 9 6 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 7 18 4 -1.
+ <_>
+ 3 7 9 2 2.
+ <_>
+ 12 9 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 20 11 -1.
+ <_>
+ 13 7 10 11 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 17 6 -1.
+ <_>
+ 3 9 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 3 1 -1.
+ <_>
+ 4 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 3 2 -1.
+ <_>
+ 4 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 9 2 -1.
+ <_>
+ 6 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 18 2 -1.
+ <_>
+ 3 9 9 1 2.
+ <_>
+ 12 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 10 3 1 -1.
+ <_>
+ 4 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 10 3 13 -1.
+ <_>
+ 4 10 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 3 10 6 2 -1.
+ <_>
+ 3 11 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 2 -1.
+ <_>
+ 4 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 3 -1.
+ <_>
+ 4 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 5 -1.
+ <_>
+ 4 11 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 13 -1.
+ <_>
+ 4 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 3 11 6 2 -1.
+ <_>
+ 3 11 3 1 2.
+ <_>
+ 6 12 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 4 -1.
+ <_>
+ 3 13 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 4 8 -1.
+ <_>
+ 3 15 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 12 3 3 -1.
+ <_>
+ 4 12 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 12 3 6 -1.
+ <_>
+ 3 15 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 12 9 7 -1.
+ <_>
+ 6 12 3 7 3.
+ 0
+ <_>
+
+ <_>
+ 3 12 4 8 -1.
+ <_>
+ 3 16 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 12 8 8 -1.
+ <_>
+ 3 16 8 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 12 19 6 -1.
+ <_>
+ 3 15 19 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 13 18 2 -1.
+ <_>
+ 3 13 9 1 2.
+ <_>
+ 12 14 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 15 4 2 -1.
+ <_>
+ 5 15 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 15 4 3 -1.
+ <_>
+ 5 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 15 6 2 -1.
+ <_>
+ 6 15 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 16 8 8 -1.
+ <_>
+ 3 16 4 4 2.
+ <_>
+ 7 20 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 20 3 4 -1.
+ <_>
+ 4 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 1 3 8 -1.
+ <_>
+ 5 1 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 4 1 3 12 -1.
+ <_>
+ 4 5 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 1 15 10 -1.
+ <_>
+ 4 6 15 5 2.
+ 0
+ <_>
+
+ <_>
+ 4 2 3 3 -1.
+ <_>
+ 5 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 2 6 5 -1.
+ <_>
+ 6 2 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 2 16 2 -1.
+ <_>
+ 4 2 8 1 2.
+ <_>
+ 12 3 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 3 2 -1.
+ <_>
+ 5 3 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 6 1 -1.
+ <_>
+ 6 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 6 5 -1.
+ <_>
+ 6 3 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 9 3 -1.
+ <_>
+ 7 3 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 16 2 -1.
+ <_>
+ 4 3 8 1 2.
+ <_>
+ 12 4 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 16 8 -1.
+ <_>
+ 4 3 8 4 2.
+ <_>
+ 12 7 8 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 17 8 -1.
+ <_>
+ 4 7 17 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 1 4 -1.
+ <_>
+ 4 6 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 16 2 -1.
+ <_>
+ 4 4 8 1 2.
+ <_>
+ 12 5 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 16 10 -1.
+ <_>
+ 4 4 8 5 2.
+ <_>
+ 12 9 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 20 6 -1.
+ <_>
+ 4 6 20 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 5 16 2 -1.
+ <_>
+ 4 5 8 1 2.
+ <_>
+ 12 6 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 5 16 9 -1.
+ <_>
+ 4 8 16 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 2 2 -1.
+ <_>
+ 4 6 1 1 2.
+ <_>
+ 5 7 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 6 2 2 -1.
+ <_>
+ 4 7 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 6 6 1 -1.
+ <_>
+ 6 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 2 3 -1.
+ <_>
+ 4 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 3 3 -1.
+ <_>
+ 4 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 16 2 -1.
+ <_>
+ 4 6 8 1 2.
+ <_>
+ 12 7 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 6 15 6 -1.
+ <_>
+ 4 8 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 2 3 -1.
+ <_>
+ 4 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 4 3 -1.
+ <_>
+ 6 7 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 7 4 3 -1.
+ <_>
+ 4 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 5 3 -1.
+ <_>
+ 4 8 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 5 6 -1.
+ <_>
+ 4 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 7 3 -1.
+ <_>
+ 4 8 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 18 2 -1.
+ <_>
+ 4 7 9 1 2.
+ <_>
+ 13 8 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 7 18 4 -1.
+ <_>
+ 4 7 9 2 2.
+ <_>
+ 13 9 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 7 16 3 -1.
+ <_>
+ 4 8 16 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 16 6 -1.
+ <_>
+ 4 9 16 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 17 2 -1.
+ <_>
+ 4 8 17 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 7 17 3 -1.
+ <_>
+ 4 8 17 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 17 6 -1.
+ <_>
+ 4 9 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 8 2 2 -1.
+ <_>
+ 4 8 1 1 2.
+ <_>
+ 5 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 8 16 2 -1.
+ <_>
+ 4 8 8 1 2.
+ <_>
+ 12 9 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 8 18 4 -1.
+ <_>
+ 4 8 9 2 2.
+ <_>
+ 13 10 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 1 -1.
+ <_>
+ 5 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 3 1 -1.
+ <_>
+ 5 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 4 9 1 1 2.
+ <_>
+ 5 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 5 9 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 6 1 -1.
+ <_>
+ 6 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 9 -1.
+ <_>
+ 4 12 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 15 1 -1.
+ <_>
+ 9 9 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 5 3 -1.
+ <_>
+ 4 10 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 15 2 -1.
+ <_>
+ 9 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 15 3 -1.
+ <_>
+ 9 9 5 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 16 2 -1.
+ <_>
+ 4 9 8 1 2.
+ <_>
+ 12 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 16 6 -1.
+ <_>
+ 4 9 8 3 2.
+ <_>
+ 12 12 8 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 18 2 -1.
+ <_>
+ 4 9 9 1 2.
+ <_>
+ 13 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 20 2 -1.
+ <_>
+ 4 9 10 1 2.
+ <_>
+ 14 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 17 9 -1.
+ <_>
+ 4 12 17 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 18 3 -1.
+ <_>
+ 4 10 18 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 10 2 1 -1.
+ <_>
+ 5 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 10 3 1 -1.
+ <_>
+ 5 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 10 2 2 -1.
+ <_>
+ 4 10 1 1 2.
+ <_>
+ 5 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 10 6 3 -1.
+ <_>
+ 7 10 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 10 18 2 -1.
+ <_>
+ 4 10 9 1 2.
+ <_>
+ 13 11 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 10 17 6 -1.
+ <_>
+ 4 12 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 2 -1.
+ <_>
+ 5 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 3 -1.
+ <_>
+ 5 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 1 8 -1.
+ <_>
+ 4 15 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 6 -1.
+ <_>
+ 5 11 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 6 3 -1.
+ <_>
+ 6 11 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 15 2 -1.
+ <_>
+ 4 12 15 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 12 3 1 -1.
+ <_>
+ 5 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 12 4 4 -1.
+ <_>
+ 6 12 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 12 3 8 -1.
+ <_>
+ 4 16 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 12 17 12 -1.
+ <_>
+ 4 16 17 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 13 3 1 -1.
+ <_>
+ 5 13 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 13 3 9 -1.
+ <_>
+ 4 16 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 14 4 2 -1.
+ <_>
+ 6 14 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 15 4 2 -1.
+ <_>
+ 6 15 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 15 9 4 -1.
+ <_>
+ 7 15 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 15 16 4 -1.
+ <_>
+ 4 15 8 2 2.
+ <_>
+ 12 17 8 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 18 3 5 -1.
+ <_>
+ 5 18 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 18 3 6 -1.
+ <_>
+ 5 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 4 18 15 5 -1.
+ <_>
+ 9 18 5 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 18 9 6 -1.
+ <_>
+ 4 21 9 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 1 14 2 -1.
+ <_>
+ 5 1 7 1 2.
+ <_>
+ 12 2 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 1 11 8 -1.
+ <_>
+ 5 5 11 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 2 3 3 -1.
+ <_>
+ 6 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 2 6 2 -1.
+ <_>
+ 7 2 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 2 14 2 -1.
+ <_>
+ 5 2 7 1 2.
+ <_>
+ 12 3 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 2 14 8 -1.
+ <_>
+ 5 6 14 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 2 16 10 -1.
+ <_>
+ 5 7 16 5 2.
+ 0
+ <_>
+
+ <_>
+ 5 3 6 1 -1.
+ <_>
+ 7 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 3 6 2 -1.
+ <_>
+ 7 3 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 3 4 10 -1.
+ <_>
+ 5 3 2 5 2.
+ <_>
+ 7 8 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 5 3 9 12 -1.
+ <_>
+ 8 3 3 12 3.
+ 0
+ <_>
+
+ <_>
+ 5 3 14 2 -1.
+ <_>
+ 5 3 7 1 2.
+ <_>
+ 12 4 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 3 15 8 -1.
+ <_>
+ 5 7 15 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 4 2 4 -1.
+ <_>
+ 5 4 1 2 2.
+ <_>
+ 6 6 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 7 4 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 5 4 4 12 -1.
+ <_>
+ 7 4 2 12 2.
+ 0
+ <_>
+
+ <_>
+ 5 4 12 8 -1.
+ <_>
+ 9 4 4 8 3.
+ 0
+ <_>
+
+ <_>
+ 5 4 14 2 -1.
+ <_>
+ 5 4 7 1 2.
+ <_>
+ 12 5 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 2 2 -1.
+ <_>
+ 5 5 1 1 2.
+ <_>
+ 6 6 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 2 4 -1.
+ <_>
+ 5 5 1 2 2.
+ <_>
+ 6 7 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 6 6 -1.
+ <_>
+ 5 7 6 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 5 14 2 -1.
+ <_>
+ 5 5 7 1 2.
+ <_>
+ 12 6 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 16 2 -1.
+ <_>
+ 5 5 8 1 2.
+ <_>
+ 13 6 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 13 6 -1.
+ <_>
+ 5 7 13 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 5 14 6 -1.
+ <_>
+ 5 7 14 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 5 15 6 -1.
+ <_>
+ 5 7 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 5 15 9 -1.
+ <_>
+ 5 8 15 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 6 1 2 -1.
+ <_>
+ 5 7 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 2 4 -1.
+ <_>
+ 5 6 1 2 2.
+ <_>
+ 6 8 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 6 1 -1.
+ <_>
+ 7 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 6 4 3 -1.
+ <_>
+ 5 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 6 14 2 -1.
+ <_>
+ 5 6 7 1 2.
+ <_>
+ 12 7 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 6 7 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 2 6 -1.
+ <_>
+ 5 7 1 3 2.
+ <_>
+ 6 10 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 1 -1.
+ <_>
+ 7 7 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 6 5 -1.
+ <_>
+ 7 7 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 5 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 3 -1.
+ <_>
+ 5 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 6 -1.
+ <_>
+ 5 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 3 -1.
+ <_>
+ 5 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 5 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 5 6 -1.
+ <_>
+ 5 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 14 4 -1.
+ <_>
+ 5 7 7 2 2.
+ <_>
+ 12 9 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 14 2 -1.
+ <_>
+ 5 8 14 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 14 4 -1.
+ <_>
+ 5 9 14 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 15 2 -1.
+ <_>
+ 5 8 15 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 15 6 -1.
+ <_>
+ 5 9 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 1 3 -1.
+ <_>
+ 5 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 2 2 -1.
+ <_>
+ 5 8 1 1 2.
+ <_>
+ 6 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 4 5 -1.
+ <_>
+ 7 8 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 12 4 -1.
+ <_>
+ 9 8 4 4 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 15 3 -1.
+ <_>
+ 10 8 5 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 14 4 -1.
+ <_>
+ 5 8 7 2 2.
+ <_>
+ 12 10 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 4 4 -1.
+ <_>
+ 7 9 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 4 3 -1.
+ <_>
+ 5 10 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 9 8 8 -1.
+ <_>
+ 5 9 4 4 2.
+ <_>
+ 9 13 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 15 2 -1.
+ <_>
+ 10 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 9 14 2 -1.
+ <_>
+ 5 9 7 1 2.
+ <_>
+ 12 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 14 12 -1.
+ <_>
+ 5 9 7 6 2.
+ <_>
+ 12 15 7 6 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 18 2 -1.
+ <_>
+ 5 9 9 1 2.
+ <_>
+ 14 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 13 3 -1.
+ <_>
+ 5 10 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 9 15 6 -1.
+ <_>
+ 5 12 15 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 5 10 1 1 2.
+ <_>
+ 6 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 10 3 3 -1.
+ <_>
+ 6 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 6 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 6 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 11 3 13 -1.
+ <_>
+ 6 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 5 11 14 2 -1.
+ <_>
+ 5 12 14 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 12 1 6 -1.
+ <_>
+ 5 15 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 13 15 8 -1.
+ <_>
+ 5 17 15 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 14 3 3 -1.
+ <_>
+ 5 15 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 15 2 2 -1.
+ <_>
+ 6 15 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 19 3 5 -1.
+ <_>
+ 6 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 5 21 3 3 -1.
+ <_>
+ 6 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 0 1 6 -1.
+ <_>
+ 6 3 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 0 11 10 -1.
+ <_>
+ 6 5 11 5 2.
+ 0
+ <_>
+
+ <_>
+ 6 1 6 12 -1.
+ <_>
+ 8 1 2 12 3.
+ 0
+ <_>
+
+ <_>
+ 6 2 3 6 -1.
+ <_>
+ 7 2 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 6 2 6 2 -1.
+ <_>
+ 8 2 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 2 6 10 -1.
+ <_>
+ 8 2 2 10 3.
+ 0
+ <_>
+
+ <_>
+ 6 2 12 4 -1.
+ <_>
+ 6 4 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 3 6 4 -1.
+ <_>
+ 8 3 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 6 3 9 1 -1.
+ <_>
+ 9 3 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 4 3 3 -1.
+ <_>
+ 7 4 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 4 6 4 -1.
+ <_>
+ 8 4 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 3 2 -1.
+ <_>
+ 7 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 3 3 -1.
+ <_>
+ 7 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 2 9 -1.
+ <_>
+ 6 8 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 12 2 -1.
+ <_>
+ 6 5 6 1 2.
+ <_>
+ 12 6 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 6 4 1 -1.
+ <_>
+ 8 6 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 6 12 2 -1.
+ <_>
+ 6 6 6 1 2.
+ <_>
+ 12 7 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 7 1 6 -1.
+ <_>
+ 6 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 8 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 6 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 2 6 -1.
+ <_>
+ 6 9 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 3 6 -1.
+ <_>
+ 6 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 12 2 -1.
+ <_>
+ 6 7 6 1 2.
+ <_>
+ 12 8 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 7 8 12 -1.
+ <_>
+ 6 13 8 6 2.
+ 0
+ <_>
+
+ <_>
+ 6 7 12 15 -1.
+ <_>
+ 6 12 12 5 3.
+ 0
+ <_>
+
+ <_>
+ 6 8 2 6 -1.
+ <_>
+ 6 11 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 3 2 -1.
+ <_>
+ 6 9 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 12 3 -1.
+ <_>
+ 10 8 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 8 12 2 -1.
+ <_>
+ 6 8 6 1 2.
+ <_>
+ 12 9 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 2 2 -1.
+ <_>
+ 6 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 2 3 -1.
+ <_>
+ 6 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 9 6 1 -1.
+ <_>
+ 9 9 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 3 3 -1.
+ <_>
+ 6 10 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 2 -1.
+ <_>
+ 6 9 6 1 2.
+ <_>
+ 12 10 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 13 12 -1.
+ <_>
+ 6 13 13 4 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 1 3 -1.
+ <_>
+ 6 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 2 -1.
+ <_>
+ 7 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 3 -1.
+ <_>
+ 7 10 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 3 14 -1.
+ <_>
+ 7 10 1 14 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 3 -1.
+ <_>
+ 6 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 6 3 -1.
+ <_>
+ 8 10 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 3 3 -1.
+ <_>
+ 6 11 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 9 5 -1.
+ <_>
+ 9 10 3 5 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 12 1 -1.
+ <_>
+ 10 10 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 8 4 -1.
+ <_>
+ 6 10 4 2 2.
+ <_>
+ 10 12 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 12 2 -1.
+ <_>
+ 6 10 6 1 2.
+ <_>
+ 12 11 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 12 12 -1.
+ <_>
+ 6 10 6 6 2.
+ <_>
+ 12 16 6 6 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 18 1 -1.
+ <_>
+ 15 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 13 3 -1.
+ <_>
+ 6 11 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 2 2 -1.
+ <_>
+ 6 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 3 2 -1.
+ <_>
+ 6 12 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 11 3 3 -1.
+ <_>
+ 6 12 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 12 3 -1.
+ <_>
+ 6 12 12 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 13 3 -1.
+ <_>
+ 6 12 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 12 14 2 -1.
+ <_>
+ 6 12 7 1 2.
+ <_>
+ 13 13 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 14 1 3 -1.
+ <_>
+ 6 15 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 14 2 2 -1.
+ <_>
+ 7 14 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 15 2 3 -1.
+ <_>
+ 6 16 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 17 10 6 -1.
+ <_>
+ 6 20 10 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 18 3 6 -1.
+ <_>
+ 7 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 6 19 3 5 -1.
+ <_>
+ 7 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 6 20 9 4 -1.
+ <_>
+ 6 22 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 23 3 1 -1.
+ <_>
+ 7 23 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 0 2 8 -1.
+ <_>
+ 7 0 1 4 2.
+ <_>
+ 8 4 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 7 0 10 1 -1.
+ <_>
+ 12 0 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 1 2 4 -1.
+ <_>
+ 7 3 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 1 10 1 -1.
+ <_>
+ 12 1 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 2 4 21 -1.
+ <_>
+ 9 2 2 21 2.
+ 0
+ <_>
+
+ <_>
+ 7 3 1 3 -1.
+ <_>
+ 7 4 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 3 3 5 -1.
+ <_>
+ 8 3 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 7 4 3 10 -1.
+ <_>
+ 8 4 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 2 2 -1.
+ <_>
+ 8 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 2 -1.
+ <_>
+ 8 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 3 -1.
+ <_>
+ 8 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 8 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 2 7 -1.
+ <_>
+ 8 5 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 7 5 2 6 -1.
+ <_>
+ 7 7 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 11 6 -1.
+ <_>
+ 7 7 11 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 3 1 -1.
+ <_>
+ 8 6 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 1 3 -1.
+ <_>
+ 7 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 4 6 -1.
+ <_>
+ 9 6 2 6 2.
+ 0
+ <_>
+
+ <_>
+ 7 6 10 2 -1.
+ <_>
+ 7 6 5 1 2.
+ <_>
+ 12 7 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 6 12 2 -1.
+ <_>
+ 7 6 6 1 2.
+ <_>
+ 13 7 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 7 1 2 -1.
+ <_>
+ 7 8 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 7 1 3 -1.
+ <_>
+ 7 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 7 1 6 -1.
+ <_>
+ 7 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 7 2 4 -1.
+ <_>
+ 7 9 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 7 10 2 -1.
+ <_>
+ 7 7 5 1 2.
+ <_>
+ 12 8 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 8 1 3 -1.
+ <_>
+ 7 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+ 8 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 8 2 4 -1.
+ <_>
+ 7 8 1 2 2.
+ <_>
+ 8 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 8 10 2 -1.
+ <_>
+ 7 8 5 1 2.
+ <_>
+ 12 9 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 1 2 -1.
+ <_>
+ 7 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 1 3 -1.
+ <_>
+ 7 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 9 3 3 -1.
+ <_>
+ 8 9 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 7 9 4 6 -1.
+ <_>
+ 7 9 2 3 2.
+ <_>
+ 9 12 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 12 2 -1.
+ <_>
+ 11 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 9 10 2 -1.
+ <_>
+ 7 9 5 1 2.
+ <_>
+ 12 10 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 12 2 -1.
+ <_>
+ 7 9 6 1 2.
+ <_>
+ 13 10 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 10 3 1 -1.
+ <_>
+ 8 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 1 3 -1.
+ <_>
+ 7 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 2 3 -1.
+ <_>
+ 7 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 6 4 -1.
+ <_>
+ 9 10 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 10 2 -1.
+ <_>
+ 7 10 5 1 2.
+ <_>
+ 12 11 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 11 2 1 -1.
+ <_>
+ 8 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 11 6 4 -1.
+ <_>
+ 9 11 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 16 10 8 -1.
+ <_>
+ 7 20 10 4 2.
+ 0
+ <_>
+
+ <_>
+ 7 18 3 6 -1.
+ <_>
+ 8 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 7 18 9 6 -1.
+ <_>
+ 7 20 9 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 19 3 3 -1.
+ <_>
+ 8 19 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 7 20 3 4 -1.
+ <_>
+ 8 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 7 20 7 4 -1.
+ <_>
+ 7 22 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 20 11 4 -1.
+ <_>
+ 7 22 11 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 22 3 2 -1.
+ <_>
+ 8 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 0 8 2 -1.
+ <_>
+ 12 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 8 2 -1.
+ <_>
+ 8 1 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 8 10 -1.
+ <_>
+ 8 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 16 10 -1.
+ <_>
+ 8 0 8 5 2.
+ <_>
+ 16 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 10 3 -1.
+ <_>
+ 8 1 10 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 1 8 1 -1.
+ <_>
+ 12 1 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 2 3 2 -1.
+ <_>
+ 9 2 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 2 8 20 -1.
+ <_>
+ 12 2 4 20 2.
+ 0
+ <_>
+
+ <_>
+ 8 3 3 8 -1.
+ <_>
+ 9 3 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 8 3 3 9 -1.
+ <_>
+ 9 3 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 8 3 6 1 -1.
+ <_>
+ 11 3 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 3 4 3 -1.
+ <_>
+ 8 4 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 3 8 2 -1.
+ <_>
+ 8 3 4 1 2.
+ <_>
+ 12 4 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 4 3 2 -1.
+ <_>
+ 9 4 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 4 2 8 -1.
+ <_>
+ 9 4 1 8 2.
+ 0
+ <_>
+
+ <_>
+ 8 4 3 3 -1.
+ <_>
+ 8 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 4 8 2 -1.
+ <_>
+ 8 4 4 1 2.
+ <_>
+ 12 5 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 4 7 15 -1.
+ <_>
+ 8 9 7 5 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 2 -1.
+ <_>
+ 9 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 9 5 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 5 -1.
+ <_>
+ 9 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 6 -1.
+ <_>
+ 9 5 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 7 -1.
+ <_>
+ 9 5 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 4 3 -1.
+ <_>
+ 8 6 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 8 12 -1.
+ <_>
+ 12 5 4 12 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 8 19 -1.
+ <_>
+ 12 5 4 19 2.
+ 0
+ <_>
+
+ <_>
+ 8 6 3 5 -1.
+ <_>
+ 9 6 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 8 6 10 2 -1.
+ <_>
+ 8 6 5 1 2.
+ <_>
+ 13 7 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 8 2 2 -1.
+ <_>
+ 8 8 1 1 2.
+ <_>
+ 9 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 8 1 6 -1.
+ <_>
+ 8 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 8 3 3 -1.
+ <_>
+ 8 9 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 9 1 3 -1.
+ <_>
+ 8 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 9 3 2 -1.
+ <_>
+ 9 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 9 2 6 -1.
+ <_>
+ 8 9 1 3 2.
+ <_>
+ 9 12 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 1 -1.
+ <_>
+ 9 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 3 1 -1.
+ <_>
+ 9 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 2 -1.
+ <_>
+ 8 10 1 1 2.
+ <_>
+ 9 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 2 -1.
+ <_>
+ 9 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 3 2 -1.
+ <_>
+ 9 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 10 4 8 -1.
+ <_>
+ 8 10 2 4 2.
+ <_>
+ 10 14 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 8 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+ 12 11 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 11 2 2 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+ 9 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 11 4 8 -1.
+ <_>
+ 8 11 2 4 2.
+ <_>
+ 10 15 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 8 11 4 10 -1.
+ <_>
+ 8 11 2 5 2.
+ <_>
+ 10 16 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 13 9 10 -1.
+ <_>
+ 8 18 9 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 15 4 4 -1.
+ <_>
+ 10 15 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 8 16 9 3 -1.
+ <_>
+ 11 16 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 8 19 3 5 -1.
+ <_>
+ 9 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 8 20 3 3 -1.
+ <_>
+ 9 20 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 9 0 1 2 -1.
+ <_>
+ 9 1 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 2 4 -1.
+ <_>
+ 10 0 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 6 1 -1.
+ <_>
+ 12 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 5 4 -1.
+ <_>
+ 9 2 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 6 10 -1.
+ <_>
+ 9 5 6 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 14 8 -1.
+ <_>
+ 9 0 7 4 2.
+ <_>
+ 16 4 7 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 7 10 -1.
+ <_>
+ 9 5 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 14 10 -1.
+ <_>
+ 9 0 7 5 2.
+ <_>
+ 16 5 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 14 12 -1.
+ <_>
+ 9 0 7 6 2.
+ <_>
+ 16 6 7 6 2.
+ 0
+ <_>
+
+ <_>
+ 9 1 3 12 -1.
+ <_>
+ 10 1 1 12 3.
+ 0
+ <_>
+
+ <_>
+ 9 1 4 15 -1.
+ <_>
+ 11 1 2 15 2.
+ 0
+ <_>
+
+ <_>
+ 9 1 6 1 -1.
+ <_>
+ 12 1 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 2 2 -1.
+ <_>
+ 10 2 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 6 18 -1.
+ <_>
+ 12 2 3 18 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 15 3 -1.
+ <_>
+ 9 3 15 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 3 3 9 -1.
+ <_>
+ 10 3 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 9 3 8 6 -1.
+ <_>
+ 9 6 8 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 3 15 15 -1.
+ <_>
+ 9 8 15 5 3.
+ 0
+ <_>
+
+ <_>
+ 9 4 3 4 -1.
+ <_>
+ 10 4 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 4 6 2 -1.
+ <_>
+ 9 4 3 1 2.
+ <_>
+ 12 5 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 4 14 5 -1.
+ <_>
+ 16 4 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 5 2 5 -1.
+ <_>
+ 10 5 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 5 3 6 -1.
+ <_>
+ 10 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 4 15 -1.
+ <_>
+ 11 5 2 15 2.
+ 0
+ <_>
+
+ <_>
+ 9 5 3 3 -1.
+ <_>
+ 9 6 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 4 3 -1.
+ <_>
+ 9 6 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 6 4 4 -1.
+ <_>
+ 11 6 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 6 3 3 -1.
+ <_>
+ 9 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 6 6 7 -1.
+ <_>
+ 12 6 3 7 2.
+ 0
+ <_>
+
+ <_>
+ 9 6 4 3 -1.
+ <_>
+ 9 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 6 15 10 -1.
+ <_>
+ 9 11 15 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 7 6 2 -1.
+ <_>
+ 9 7 3 1 2.
+ <_>
+ 12 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 8 7 10 -1.
+ <_>
+ 9 13 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 10 9 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 9 3 3 -1.
+ <_>
+ 9 10 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 9 9 6 -1.
+ <_>
+ 12 9 3 6 3.
+ 0
+ <_>
+
+ <_>
+ 9 10 2 4 -1.
+ <_>
+ 9 10 1 2 2.
+ <_>
+ 10 12 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 10 6 2 -1.
+ <_>
+ 9 10 3 1 2.
+ <_>
+ 12 11 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 10 8 1 -1.
+ <_>
+ 13 10 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 10 15 3 -1.
+ <_>
+ 9 11 15 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 11 2 4 -1.
+ <_>
+ 9 11 1 2 2.
+ <_>
+ 10 13 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 11 2 6 -1.
+ <_>
+ 9 11 1 3 2.
+ <_>
+ 10 14 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 13 2 11 -1.
+ <_>
+ 10 13 1 11 2.
+ 0
+ <_>
+
+ <_>
+ 9 14 6 3 -1.
+ <_>
+ 11 14 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 9 16 4 3 -1.
+ <_>
+ 11 16 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 16 6 4 -1.
+ <_>
+ 11 16 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 16 6 8 -1.
+ <_>
+ 11 16 2 8 3.
+ 0
+ <_>
+
+ <_>
+ 9 16 6 3 -1.
+ <_>
+ 9 17 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 11 17 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 9 17 6 7 -1.
+ <_>
+ 11 17 2 7 3.
+ 0
+ <_>
+
+ <_>
+ 9 18 5 3 -1.
+ <_>
+ 9 19 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 19 3 5 -1.
+ <_>
+ 10 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 9 19 7 3 -1.
+ <_>
+ 9 20 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 3 4 -1.
+ <_>
+ 10 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 3 2 -1.
+ <_>
+ 9 21 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 20 5 3 -1.
+ <_>
+ 9 21 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 6 3 -1.
+ <_>
+ 9 21 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 6 4 -1.
+ <_>
+ 9 22 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 20 7 3 -1.
+ <_>
+ 9 21 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 8 4 -1.
+ <_>
+ 9 22 8 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 21 3 2 -1.
+ <_>
+ 10 21 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 9 22 3 2 -1.
+ <_>
+ 10 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 10 0 1 6 -1.
+ <_>
+ 10 3 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 6 1 -1.
+ <_>
+ 13 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 4 8 -1.
+ <_>
+ 10 4 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 14 10 -1.
+ <_>
+ 10 0 7 5 2.
+ <_>
+ 17 5 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 10 1 4 2 -1.
+ <_>
+ 10 1 2 1 2.
+ <_>
+ 12 2 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 2 1 6 -1.
+ <_>
+ 10 5 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 10 3 6 1 -1.
+ <_>
+ 13 3 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 3 9 1 -1.
+ <_>
+ 13 3 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 3 3 3 -1.
+ <_>
+ 10 4 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 4 3 3 -1.
+ <_>
+ 11 4 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 4 2 8 -1.
+ <_>
+ 11 4 1 8 2.
+ 0
+ <_>
+
+ <_>
+ 10 5 3 3 -1.
+ <_>
+ 11 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 5 4 11 -1.
+ <_>
+ 12 5 2 11 2.
+ 0
+ <_>
+
+ <_>
+ 10 6 6 3 -1.
+ <_>
+ 10 7 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 7 2 3 -1.
+ <_>
+ 10 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 7 4 7 -1.
+ <_>
+ 12 7 2 7 2.
+ 0
+ <_>
+
+ <_>
+ 10 7 9 6 -1.
+ <_>
+ 13 7 3 6 3.
+ 0
+ <_>
+
+ <_>
+ 10 7 4 3 -1.
+ <_>
+ 10 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 8 2 3 -1.
+ <_>
+ 10 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 8 4 2 -1.
+ <_>
+ 10 9 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 8 8 10 -1.
+ <_>
+ 10 13 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 10 9 1 3 -1.
+ <_>
+ 10 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 9 2 3 -1.
+ <_>
+ 10 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 9 6 4 -1.
+ <_>
+ 13 9 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 10 10 14 3 -1.
+ <_>
+ 10 11 14 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 11 1 3 -1.
+ <_>
+ 10 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 11 4 3 -1.
+ <_>
+ 10 12 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 12 1 3 -1.
+ <_>
+ 10 13 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 12 2 8 -1.
+ <_>
+ 10 12 1 4 2.
+ <_>
+ 11 16 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 10 15 4 3 -1.
+ <_>
+ 10 16 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 15 6 6 -1.
+ <_>
+ 10 17 6 2 3.
+ 0
+ <_>
+
+ <_>
+ 10 16 6 8 -1.
+ <_>
+ 10 16 3 4 2.
+ <_>
+ 13 20 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 10 16 4 2 -1.
+ <_>
+ 10 17 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 16 4 3 -1.
+ <_>
+ 10 17 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 10 18 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 17 5 3 -1.
+ <_>
+ 10 18 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 18 5 3 -1.
+ <_>
+ 10 19 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 19 5 3 -1.
+ <_>
+ 10 20 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 3 3 -1.
+ <_>
+ 11 20 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 3 4 -1.
+ <_>
+ 11 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 4 3 -1.
+ <_>
+ 10 21 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 5 3 -1.
+ <_>
+ 10 21 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 21 3 1 -1.
+ <_>
+ 11 21 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 21 3 3 -1.
+ <_>
+ 11 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 21 6 3 -1.
+ <_>
+ 12 21 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 21 5 2 -1.
+ <_>
+ 10 22 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 22 3 1 -1.
+ <_>
+ 11 22 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 22 3 2 -1.
+ <_>
+ 11 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 11 0 2 12 -1.
+ <_>
+ 11 4 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 11 0 12 19 -1.
+ <_>
+ 15 0 4 19 3.
+ 0
+ <_>
+
+ <_>
+ 11 2 4 20 -1.
+ <_>
+ 13 2 2 20 2.
+ 0
+ <_>
+
+ <_>
+ 11 3 3 3 -1.
+ <_>
+ 12 3 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 3 5 -1.
+ <_>
+ 12 3 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 3 6 -1.
+ <_>
+ 12 3 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 3 7 -1.
+ <_>
+ 12 3 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 2 3 -1.
+ <_>
+ 11 4 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 12 14 -1.
+ <_>
+ 15 3 4 14 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 3 5 -1.
+ <_>
+ 12 4 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 2 3 -1.
+ <_>
+ 11 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 9 1 -1.
+ <_>
+ 14 4 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 3 3 -1.
+ <_>
+ 11 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 5 8 4 -1.
+ <_>
+ 11 7 8 2 2.
+ 0
+ <_>
+
+ <_>
+ 11 6 2 3 -1.
+ <_>
+ 11 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 6 4 3 -1.
+ <_>
+ 11 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 1 3 -1.
+ <_>
+ 11 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 2 2 -1.
+ <_>
+ 11 7 1 1 2.
+ <_>
+ 12 8 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 7 2 3 -1.
+ <_>
+ 11 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 4 2 -1.
+ <_>
+ 11 7 2 1 2.
+ <_>
+ 13 8 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 7 4 3 -1.
+ <_>
+ 11 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 8 1 3 -1.
+ <_>
+ 11 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 8 1 10 -1.
+ <_>
+ 11 13 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 11 8 2 3 -1.
+ <_>
+ 11 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 8 3 3 -1.
+ <_>
+ 11 9 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 8 8 8 -1.
+ <_>
+ 11 8 4 4 2.
+ <_>
+ 15 12 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 11 8 7 10 -1.
+ <_>
+ 11 13 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 11 9 6 6 -1.
+ <_>
+ 13 9 2 6 3.
+ 0
+ <_>
+
+ <_>
+ 11 9 4 3 -1.
+ <_>
+ 11 10 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 10 6 4 -1.
+ <_>
+ 13 10 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 11 10 6 8 -1.
+ <_>
+ 11 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 11 10 4 3 -1.
+ <_>
+ 11 11 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 10 5 3 -1.
+ <_>
+ 11 11 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 11 1 3 -1.
+ <_>
+ 11 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 11 10 10 -1.
+ <_>
+ 11 11 5 5 2.
+ <_>
+ 16 16 5 5 2.
+ 0
+ <_>
+
+ <_>
+ 11 13 6 2 -1.
+ <_>
+ 13 13 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 11 14 2 9 -1.
+ <_>
+ 11 17 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 11 15 1 2 -1.
+ <_>
+ 11 16 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 20 3 4 -1.
+ <_>
+ 12 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 11 20 3 3 -1.
+ <_>
+ 11 21 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 21 2 1 -1.
+ <_>
+ 12 21 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 21 3 2 -1.
+ <_>
+ 12 21 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 11 21 2 3 -1.
+ <_>
+ 12 21 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 11 21 3 2 -1.
+ <_>
+ 11 22 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 23 3 1 -1.
+ <_>
+ 12 23 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 0 8 12 -1.
+ <_>
+ 12 0 4 6 2.
+ <_>
+ 16 6 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 12 0 12 6 -1.
+ <_>
+ 12 0 6 3 2.
+ <_>
+ 18 3 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 12 1 1 3 -1.
+ <_>
+ 12 2 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 1 2 7 -1.
+ <_>
+ 13 1 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 12 1 12 4 -1.
+ <_>
+ 12 1 6 2 2.
+ <_>
+ 18 3 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 12 2 3 3 -1.
+ <_>
+ 13 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 12 2 3 7 -1.
+ <_>
+ 13 2 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 12 2 6 1 -1.
+ <_>
+ 14 2 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 2 6 4 -1.
+ <_>
+ 14 2 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 12 2 6 18 -1.
+ <_>
+ 12 8 6 6 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 6 11 -1.
+ <_>
+ 14 3 2 11 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 9 3 -1.
+ <_>
+ 15 3 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 12 3 -1.
+ <_>
+ 12 4 12 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 4 2 12 -1.
+ <_>
+ 13 4 1 12 2.
+ 0
+ <_>
+
+ <_>
+ 12 4 2 3 -1.
+ <_>
+ 12 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 5 3 5 -1.
+ <_>
+ 13 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 6 1 3 -1.
+ <_>
+ 12 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 6 2 3 -1.
+ <_>
+ 12 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 6 8 4 -1.
+ <_>
+ 12 6 4 2 2.
+ <_>
+ 16 8 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 12 7 1 3 -1.
+ <_>
+ 12 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 7 2 3 -1.
+ <_>
+ 12 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 8 1 3 -1.
+ <_>
+ 12 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 8 3 3 -1.
+ <_>
+ 12 9 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 8 4 3 -1.
+ <_>
+ 12 9 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 9 1 3 -1.
+ <_>
+ 12 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 10 2 12 -1.
+ <_>
+ 12 10 1 6 2.
+ <_>
+ 13 16 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 12 10 4 10 -1.
+ <_>
+ 12 10 2 5 2.
+ <_>
+ 14 15 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 12 11 2 3 -1.
+ <_>
+ 12 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 11 4 4 -1.
+ <_>
+ 14 11 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 12 11 4 8 -1.
+ <_>
+ 12 11 2 4 2.
+ <_>
+ 14 15 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 12 15 6 5 -1.
+ <_>
+ 14 15 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 12 15 10 4 -1.
+ <_>
+ 12 15 5 2 2.
+ <_>
+ 17 17 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 12 16 4 3 -1.
+ <_>
+ 14 16 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 12 17 3 3 -1.
+ <_>
+ 13 17 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 12 17 8 6 -1.
+ <_>
+ 12 17 4 3 2.
+ <_>
+ 16 20 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 12 18 12 6 -1.
+ <_>
+ 12 18 6 3 2.
+ <_>
+ 18 21 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 12 21 3 3 -1.
+ <_>
+ 13 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 13 0 11 14 -1.
+ <_>
+ 13 7 11 7 2.
+ 0
+ <_>
+
+ <_>
+ 13 2 2 3 -1.
+ <_>
+ 14 2 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 13 3 1 4 -1.
+ <_>
+ 13 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 3 3 3 -1.
+ <_>
+ 14 3 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 13 3 6 1 -1.
+ <_>
+ 15 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 4 1 2 -1.
+ <_>
+ 13 5 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 13 4 3 7 -1.
+ <_>
+ 14 4 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 13 4 3 8 -1.
+ <_>
+ 14 4 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 3 6 -1.
+ <_>
+ 14 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 13 6 1 3 -1.
+ <_>
+ 13 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 7 6 6 -1.
+ <_>
+ 15 7 2 6 3.
+ 0
+ <_>
+
+ <_>
+ 13 7 3 3 -1.
+ <_>
+ 13 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 8 6 8 -1.
+ <_>
+ 15 8 2 8 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 3 4 -1.
+ <_>
+ 14 9 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 4 3 -1.
+ <_>
+ 15 9 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 13 9 6 4 -1.
+ <_>
+ 15 9 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 9 2 -1.
+ <_>
+ 16 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 9 2 -1.
+ <_>
+ 13 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 13 10 3 2 -1.
+ <_>
+ 14 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 13 10 4 1 -1.
+ <_>
+ 15 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 13 10 4 4 -1.
+ <_>
+ 13 10 2 2 2.
+ <_>
+ 15 12 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 11 2 3 -1.
+ <_>
+ 13 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 11 3 3 -1.
+ <_>
+ 13 12 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 12 3 3 -1.
+ <_>
+ 13 13 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 13 2 6 -1.
+ <_>
+ 13 13 1 3 2.
+ <_>
+ 14 16 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 13 15 2 5 -1.
+ <_>
+ 14 15 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 13 19 3 3 -1.
+ <_>
+ 14 19 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 13 20 3 3 -1.
+ <_>
+ 14 20 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 13 22 3 2 -1.
+ <_>
+ 14 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 0 1 10 -1.
+ <_>
+ 14 5 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 2 7 -1.
+ <_>
+ 15 0 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 2 22 -1.
+ <_>
+ 14 0 1 11 2.
+ <_>
+ 15 11 1 11 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 10 6 -1.
+ <_>
+ 14 0 5 3 2.
+ <_>
+ 19 3 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 10 8 -1.
+ <_>
+ 14 0 5 4 2.
+ <_>
+ 19 4 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 10 12 -1.
+ <_>
+ 14 0 5 6 2.
+ <_>
+ 19 6 5 6 2.
+ 0
+ <_>
+
+ <_>
+ 14 1 2 2 -1.
+ <_>
+ 15 1 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 1 4 4 -1.
+ <_>
+ 14 3 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 1 10 2 -1.
+ <_>
+ 19 1 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 16 2 2 7 3.
+ 0
+ <_>
+
+ <_>
+ 14 3 2 4 -1.
+ <_>
+ 14 3 1 2 2.
+ <_>
+ 15 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 4 3 3 -1.
+ <_>
+ 15 4 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 4 6 1 -1.
+ <_>
+ 16 4 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 4 3 3 -1.
+ <_>
+ 14 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 2 -1.
+ <_>
+ 15 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 3 -1.
+ <_>
+ 15 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 4 2 -1.
+ <_>
+ 16 5 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 10 -1.
+ <_>
+ 14 10 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 14 5 4 6 -1.
+ <_>
+ 14 7 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 6 3 2 -1.
+ <_>
+ 15 6 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 6 3 4 -1.
+ <_>
+ 15 6 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 14 6 2 6 -1.
+ <_>
+ 15 6 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 14 6 6 2 -1.
+ <_>
+ 16 6 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 6 6 17 -1.
+ <_>
+ 16 6 2 17 3.
+ 0
+ <_>
+
+ <_>
+ 14 8 2 13 -1.
+ <_>
+ 15 8 1 13 2.
+ 0
+ <_>
+
+ <_>
+ 14 8 4 6 -1.
+ <_>
+ 14 10 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 9 2 2 -1.
+ <_>
+ 15 9 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 9 3 2 -1.
+ <_>
+ 15 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 9 2 4 -1.
+ <_>
+ 14 9 1 2 2.
+ <_>
+ 15 11 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 9 2 3 -1.
+ <_>
+ 15 9 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 9 4 1 -1.
+ <_>
+ 16 9 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 14 9 6 1 -1.
+ <_>
+ 16 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 9 9 9 -1.
+ <_>
+ 14 12 9 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 10 2 1 -1.
+ <_>
+ 15 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 14 10 3 1 -1.
+ <_>
+ 15 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+ 15 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 15 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 10 3 2 -1.
+ <_>
+ 15 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 10 3 3 -1.
+ <_>
+ 15 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 10 2 6 -1.
+ <_>
+ 14 10 1 3 2.
+ <_>
+ 15 13 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 12 6 2 -1.
+ <_>
+ 16 12 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 12 6 5 -1.
+ <_>
+ 16 12 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 14 14 8 6 -1.
+ <_>
+ 14 14 4 3 2.
+ <_>
+ 18 17 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 14 10 10 -1.
+ <_>
+ 14 14 5 5 2.
+ <_>
+ 19 19 5 5 2.
+ 0
+ <_>
+
+ <_>
+ 14 16 10 8 -1.
+ <_>
+ 14 16 5 4 2.
+ <_>
+ 19 20 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 14 18 8 4 -1.
+ <_>
+ 14 18 4 2 2.
+ <_>
+ 18 20 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 19 3 4 -1.
+ <_>
+ 15 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 14 19 3 5 -1.
+ <_>
+ 15 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 14 20 3 4 -1.
+ <_>
+ 15 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 14 23 3 1 -1.
+ <_>
+ 15 23 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 0 8 1 -1.
+ <_>
+ 19 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 0 8 2 -1.
+ <_>
+ 19 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 2 2 10 -1.
+ <_>
+ 16 2 1 10 2.
+ 0
+ <_>
+
+ <_>
+ 15 2 6 7 -1.
+ <_>
+ 17 2 2 7 3.
+ 0
+ <_>
+
+ <_>
+ 15 2 5 3 -1.
+ <_>
+ 15 3 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 4 2 6 -1.
+ <_>
+ 16 4 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 15 4 2 8 -1.
+ <_>
+ 16 4 1 8 2.
+ 0
+ <_>
+
+ <_>
+ 15 4 6 8 -1.
+ <_>
+ 18 4 3 8 2.
+ 0
+ <_>
+
+ <_>
+ 15 4 8 3 -1.
+ <_>
+ 15 5 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 5 2 2 -1.
+ <_>
+ 16 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 5 3 2 -1.
+ <_>
+ 16 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 5 3 3 -1.
+ <_>
+ 16 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 15 5 3 6 -1.
+ <_>
+ 16 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 15 6 3 18 -1.
+ <_>
+ 15 12 3 6 3.
+ 0
+ <_>
+
+ <_>
+ 15 6 6 7 -1.
+ <_>
+ 18 6 3 7 2.
+ 0
+ <_>
+
+ <_>
+ 15 6 8 4 -1.
+ <_>
+ 15 6 4 2 2.
+ <_>
+ 19 8 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 7 3 6 -1.
+ <_>
+ 15 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 5 4 -1.
+ <_>
+ 15 9 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 7 5 6 -1.
+ <_>
+ 15 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 6 6 -1.
+ <_>
+ 15 9 6 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 7 3 -1.
+ <_>
+ 15 8 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 9 6 -1.
+ <_>
+ 15 9 9 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 8 2 2 -1.
+ <_>
+ 15 8 1 1 2.
+ <_>
+ 16 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 8 2 4 -1.
+ <_>
+ 15 8 1 2 2.
+ <_>
+ 16 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 8 1 12 -1.
+ <_>
+ 15 14 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 15 9 2 2 -1.
+ <_>
+ 15 9 1 1 2.
+ <_>
+ 16 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 9 3 4 -1.
+ <_>
+ 16 9 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 15 9 2 3 -1.
+ <_>
+ 15 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 9 7 3 -1.
+ <_>
+ 15 10 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 10 2 1 -1.
+ <_>
+ 16 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 10 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 10 3 4 -1.
+ <_>
+ 16 10 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 15 10 3 5 -1.
+ <_>
+ 16 10 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 15 12 4 8 -1.
+ <_>
+ 15 12 2 4 2.
+ <_>
+ 17 16 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 15 15 4 3 -1.
+ <_>
+ 15 16 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 16 5 3 -1.
+ <_>
+ 15 17 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 19 3 4 -1.
+ <_>
+ 16 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 15 19 9 3 -1.
+ <_>
+ 15 20 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 20 6 3 -1.
+ <_>
+ 18 20 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 1 -1.
+ <_>
+ 20 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 2 -1.
+ <_>
+ 20 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 4 -1.
+ <_>
+ 16 0 4 2 2.
+ <_>
+ 20 2 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 6 -1.
+ <_>
+ 16 0 4 3 2.
+ <_>
+ 20 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 20 4 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 12 -1.
+ <_>
+ 16 0 4 6 2.
+ <_>
+ 20 6 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 16 1 4 13 -1.
+ <_>
+ 18 1 2 13 2.
+ 0
+ <_>
+
+ <_>
+ 16 2 3 2 -1.
+ <_>
+ 17 2 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 3 2 3 -1.
+ <_>
+ 16 4 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 4 1 3 -1.
+ <_>
+ 16 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 4 2 2 -1.
+ <_>
+ 16 4 1 1 2.
+ <_>
+ 17 5 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 5 2 3 -1.
+ <_>
+ 17 5 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 6 2 9 -1.
+ <_>
+ 16 9 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 16 6 4 4 -1.
+ <_>
+ 18 6 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 16 6 3 9 -1.
+ <_>
+ 16 9 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 16 6 7 6 -1.
+ <_>
+ 16 8 7 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 1 6 -1.
+ <_>
+ 16 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 2 3 -1.
+ <_>
+ 16 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 2 6 -1.
+ <_>
+ 16 9 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 3 2 -1.
+ <_>
+ 16 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 7 3 3 -1.
+ <_>
+ 16 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 3 6 -1.
+ <_>
+ 16 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 19 9 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 7 4 3 -1.
+ <_>
+ 16 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 4 6 -1.
+ <_>
+ 16 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 8 1 2 -1.
+ <_>
+ 16 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 2 2 -1.
+ <_>
+ 16 8 1 1 2.
+ <_>
+ 17 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 2 2 -1.
+ <_>
+ 16 9 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 8 2 -1.
+ <_>
+ 16 8 4 1 2.
+ <_>
+ 20 9 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 9 1 3 -1.
+ <_>
+ 16 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 9 2 3 -1.
+ <_>
+ 17 9 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 9 4 1 -1.
+ <_>
+ 18 9 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 9 2 2 -1.
+ <_>
+ 16 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 9 4 4 -1.
+ <_>
+ 18 9 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 16 9 6 6 -1.
+ <_>
+ 16 9 3 3 2.
+ <_>
+ 19 12 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 1 2 -1.
+ <_>
+ 16 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 1 3 -1.
+ <_>
+ 16 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+ 17 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 17 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 5 -1.
+ <_>
+ 17 10 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 3 13 -1.
+ <_>
+ 17 10 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 3 -1.
+ <_>
+ 16 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 10 3 3 -1.
+ <_>
+ 16 11 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 1 2 -1.
+ <_>
+ 16 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 11 3 2 -1.
+ <_>
+ 17 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 11 2 3 -1.
+ <_>
+ 16 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 13 3 3 -1.
+ <_>
+ 16 14 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 14 4 1 -1.
+ <_>
+ 18 14 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 15 4 3 -1.
+ <_>
+ 18 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 15 6 2 -1.
+ <_>
+ 19 15 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 15 8 3 -1.
+ <_>
+ 20 15 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 16 4 1 -1.
+ <_>
+ 18 16 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 17 3 7 -1.
+ <_>
+ 17 17 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 16 17 6 3 -1.
+ <_>
+ 16 18 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 19 3 4 -1.
+ <_>
+ 17 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 17 0 6 1 -1.
+ <_>
+ 20 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 2 1 4 -1.
+ <_>
+ 17 4 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 3 3 1 -1.
+ <_>
+ 18 3 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 3 3 2 -1.
+ <_>
+ 18 3 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 3 2 8 -1.
+ <_>
+ 17 3 1 4 2.
+ <_>
+ 18 7 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 17 3 3 3 -1.
+ <_>
+ 17 4 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 4 1 3 -1.
+ <_>
+ 17 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 4 2 2 -1.
+ <_>
+ 18 4 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 4 2 6 -1.
+ <_>
+ 17 4 1 3 2.
+ <_>
+ 18 7 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 6 1 6 -1.
+ <_>
+ 17 8 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 6 4 8 -1.
+ <_>
+ 17 6 2 4 2.
+ <_>
+ 19 10 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 17 6 3 3 -1.
+ <_>
+ 17 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 6 5 3 -1.
+ <_>
+ 17 7 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 1 3 -1.
+ <_>
+ 17 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 1 6 -1.
+ <_>
+ 17 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 2 6 -1.
+ <_>
+ 17 7 1 3 2.
+ <_>
+ 18 10 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 7 2 3 -1.
+ <_>
+ 17 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 8 6 4 -1.
+ <_>
+ 17 10 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 3 1 -1.
+ <_>
+ 18 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 9 2 6 -1.
+ <_>
+ 17 9 1 3 2.
+ <_>
+ 18 12 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 4 2 -1.
+ <_>
+ 17 9 2 1 2.
+ <_>
+ 19 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 3 2 -1.
+ <_>
+ 17 10 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 5 3 -1.
+ <_>
+ 17 10 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 9 7 2 -1.
+ <_>
+ 17 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 1 3 -1.
+ <_>
+ 17 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 10 2 2 -1.
+ <_>
+ 17 10 1 1 2.
+ <_>
+ 18 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 2 4 -1.
+ <_>
+ 18 10 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 3 4 -1.
+ <_>
+ 18 10 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 17 10 4 2 -1.
+ <_>
+ 17 10 2 1 2.
+ <_>
+ 19 11 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 11 1 3 -1.
+ <_>
+ 17 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 11 3 2 -1.
+ <_>
+ 18 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 11 3 3 -1.
+ <_>
+ 18 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 11 4 2 -1.
+ <_>
+ 17 11 2 1 2.
+ <_>
+ 19 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 12 3 2 -1.
+ <_>
+ 18 12 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 13 4 5 -1.
+ <_>
+ 19 13 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 17 14 2 3 -1.
+ <_>
+ 17 15 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 14 4 2 -1.
+ <_>
+ 19 14 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 15 4 2 -1.
+ <_>
+ 19 15 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 16 4 3 -1.
+ <_>
+ 19 16 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 17 3 7 -1.
+ <_>
+ 18 17 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 17 19 3 4 -1.
+ <_>
+ 18 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 17 21 3 3 -1.
+ <_>
+ 18 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 18 0 4 1 -1.
+ <_>
+ 20 0 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 0 6 1 -1.
+ <_>
+ 21 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 0 6 4 -1.
+ <_>
+ 21 0 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 18 1 1 12 -1.
+ <_>
+ 18 5 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 2 3 3 -1.
+ <_>
+ 19 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 18 3 3 2 -1.
+ <_>
+ 19 3 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 18 3 1 9 -1.
+ <_>
+ 18 6 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 18 3 3 4 -1.
+ <_>
+ 19 3 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 4 3 2 -1.
+ <_>
+ 19 4 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 18 4 3 4 -1.
+ <_>
+ 19 4 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 5 6 15 -1.
+ <_>
+ 21 5 3 15 2.
+ 0
+ <_>
+
+ <_>
+ 18 6 2 3 -1.
+ <_>
+ 18 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 6 3 3 -1.
+ <_>
+ 18 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 6 4 3 -1.
+ <_>
+ 18 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 7 3 1 -1.
+ <_>
+ 19 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 7 2 2 -1.
+ <_>
+ 19 7 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 7 3 2 -1.
+ <_>
+ 18 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 8 1 3 -1.
+ <_>
+ 18 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 8 2 2 -1.
+ <_>
+ 18 8 1 1 2.
+ <_>
+ 19 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 8 2 3 -1.
+ <_>
+ 18 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 8 3 14 -1.
+ <_>
+ 18 15 3 7 2.
+ 0
+ <_>
+
+ <_>
+ 18 9 3 1 -1.
+ <_>
+ 19 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 9 2 2 -1.
+ <_>
+ 18 9 1 1 2.
+ <_>
+ 19 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 9 3 2 -1.
+ <_>
+ 19 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 18 10 2 1 -1.
+ <_>
+ 19 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 2 2 -1.
+ <_>
+ 18 10 1 1 2.
+ <_>
+ 19 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 2 2 -1.
+ <_>
+ 18 11 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 6 4 -1.
+ <_>
+ 21 10 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 6 5 -1.
+ <_>
+ 21 10 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 2 -1.
+ <_>
+ 19 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 6 -1.
+ <_>
+ 19 11 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 9 -1.
+ <_>
+ 19 11 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 8 -1.
+ <_>
+ 18 15 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 18 12 3 4 -1.
+ <_>
+ 19 12 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 12 2 6 -1.
+ <_>
+ 18 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 18 12 6 2 -1.
+ <_>
+ 21 12 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 12 3 12 -1.
+ <_>
+ 18 16 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 13 3 1 -1.
+ <_>
+ 19 13 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 14 6 6 -1.
+ <_>
+ 21 14 3 6 2.
+ 0
+ <_>
+
+ <_>
+ 18 20 3 4 -1.
+ <_>
+ 19 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 20 6 3 -1.
+ <_>
+ 18 21 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 2 2 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+ 20 4 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 4 1 4 -1.
+ <_>
+ 19 6 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 4 1 20 -1.
+ <_>
+ 19 14 1 10 2.
+ 0
+ <_>
+
+ <_>
+ 19 4 2 4 -1.
+ <_>
+ 19 6 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 4 4 3 -1.
+ <_>
+ 19 5 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 5 2 2 -1.
+ <_>
+ 19 5 1 1 2.
+ <_>
+ 20 6 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 6 1 3 -1.
+ <_>
+ 19 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 2 3 -1.
+ <_>
+ 19 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 5 3 -1.
+ <_>
+ 19 7 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 5 9 -1.
+ <_>
+ 19 9 5 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 7 1 12 -1.
+ <_>
+ 19 11 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 19 7 2 3 -1.
+ <_>
+ 19 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 8 1 3 -1.
+ <_>
+ 19 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 8 2 3 -1.
+ <_>
+ 20 8 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 19 9 2 1 -1.
+ <_>
+ 20 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 9 3 2 -1.
+ <_>
+ 20 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 19 10 2 2 -1.
+ <_>
+ 19 10 1 1 2.
+ <_>
+ 20 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 10 4 1 -1.
+ <_>
+ 21 10 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 11 3 7 -1.
+ <_>
+ 20 11 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 19 11 3 10 -1.
+ <_>
+ 20 11 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 19 11 3 11 -1.
+ <_>
+ 20 11 1 11 3.
+ 0
+ <_>
+
+ <_>
+ 19 11 3 13 -1.
+ <_>
+ 20 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 19 14 3 10 -1.
+ <_>
+ 20 14 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 19 15 3 2 -1.
+ <_>
+ 19 16 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 18 3 3 -1.
+ <_>
+ 20 18 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 18 3 6 -1.
+ <_>
+ 20 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 19 20 5 3 -1.
+ <_>
+ 19 21 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 4 1 3 -1.
+ <_>
+ 20 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 5 1 2 -1.
+ <_>
+ 20 6 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 20 5 1 3 -1.
+ <_>
+ 20 6 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 5 2 3 -1.
+ <_>
+ 20 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 5 3 9 -1.
+ <_>
+ 20 8 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 20 6 4 9 -1.
+ <_>
+ 20 9 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 20 8 4 16 -1.
+ <_>
+ 22 8 2 16 2.
+ 0
+ <_>
+
+ <_>
+ 20 9 4 6 -1.
+ <_>
+ 20 11 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 20 10 3 10 -1.
+ <_>
+ 21 10 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 20 10 3 9 -1.
+ <_>
+ 20 13 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 20 16 3 3 -1.
+ <_>
+ 21 16 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 20 17 3 7 -1.
+ <_>
+ 21 17 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 20 17 4 6 -1.
+ <_>
+ 20 19 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 20 18 3 3 -1.
+ <_>
+ 21 18 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 21 1 2 4 -1.
+ <_>
+ 21 3 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 21 5 1 3 -1.
+ <_>
+ 21 6 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 21 6 3 9 -1.
+ <_>
+ 21 9 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 21 10 3 3 -1.
+ <_>
+ 21 11 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 21 13 3 7 -1.
+ <_>
+ 22 13 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 21 16 3 3 -1.
+ <_>
+ 22 16 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 21 16 3 7 -1.
+ <_>
+ 22 16 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 21 17 3 5 -1.
+ <_>
+ 22 17 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 21 17 3 6 -1.
+ <_>
+ 21 19 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 21 17 3 6 -1.
+ <_>
+ 21 20 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 21 19 3 3 -1.
+ <_>
+ 22 19 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 21 19 3 5 -1.
+ <_>
+ 22 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 22 10 2 3 -1.
+ <_>
+ 22 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 22 11 2 3 -1.
+ <_>
+ 22 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 7 1 3 -1.
+ <_>
+ 23 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 9 1 3 -1.
+ <_>
+ 23 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 10 1 3 -1.
+ <_>
+ 23 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 14 1 9 -1.
+ <_>
+ 23 17 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 23 15 1 9 -1.
+ <_>
+ 23 18 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 23 18 1 6 -1.
+ <_>
+ 23 20 1 2 3.
+ 0
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface_extended.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface_extended.xml
new file mode 100644
index 0000000000000000000000000000000000000000..892d5cb1a14d8dbb41c03e1cf207268ffa80b834
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalcatface_extended.xml
@@ -0,0 +1,13394 @@
+
+
+
+
+ BOOST
+ HAAR
+ 24
+ 24
+
+ GAB
+ 9.9500000476837158e-01
+ 5.0000000000000000e-01
+ 9.4999999999999996e-01
+ 1
+ 100
+
+ 0
+ 1
+ ALL
+ 20
+
+
+ <_>
+ 13
+ -1.4294912815093994e+00
+
+ <_>
+
+ 0 -1 394 -1.5126220881938934e-02
+
+ 7.5887596607208252e-01 -3.4230688214302063e-01
+ <_>
+
+ 0 -1 737 3.9337221533060074e-03
+
+ -3.3288389444351196e-01 5.2361363172531128e-01
+ <_>
+
+ 0 -1 757 -1.5044892206788063e-02
+
+ 5.5565774440765381e-01 -2.2505992650985718e-01
+ <_>
+
+ 0 -1 450 -1.5777055174112320e-02
+
+ 7.2692525386810303e-01 -1.6206762194633484e-01
+ <_>
+
+ 0 -1 443 3.0781796202063560e-02
+
+ -1.8173390626907349e-01 7.3483395576477051e-01
+ <_>
+
+ 0 -1 220 1.8483418971300125e-02
+
+ -1.8690711259841919e-01 5.0116515159606934e-01
+ <_>
+
+ 0 -1 681 1.3474167324602604e-02
+
+ -1.5681208670139313e-01 5.8611637353897095e-01
+ <_>
+
+ 0 -1 554 5.3415738046169281e-02
+
+ -1.6418528556823730e-01 6.8128466606140137e-01
+ <_>
+
+ 0 -1 741 5.4243900813162327e-03
+
+ -1.8231739103794098e-01 4.6716138720512390e-01
+ <_>
+
+ 0 -1 336 1.7689792439341545e-02
+
+ -1.3713267445564270e-01 6.0434049367904663e-01
+ <_>
+
+ 0 -1 187 2.2149257711134851e-04
+
+ -2.7738124132156372e-01 2.8165665268898010e-01
+ <_>
+
+ 0 -1 288 -2.8517641127109528e-02
+
+ 5.5257320404052734e-01 -1.2970162928104401e-01
+ <_>
+
+ 0 -1 369 4.3854981660842896e-02
+
+ -1.9231440126895905e-01 4.2093500494956970e-01
+
+ <_>
+ 27
+ -1.5509251356124878e+00
+
+ <_>
+
+ 0 -1 337 2.4014184251427650e-02
+
+ -2.1038578450679779e-01 7.3892170190811157e-01
+ <_>
+
+ 0 -1 475 -5.5319909006357193e-03
+
+ 4.4344031810760498e-01 -2.8907662630081177e-01
+ <_>
+
+ 0 -1 4 2.7481060475111008e-02
+
+ -1.9128543138504028e-01 5.1661676168441772e-01
+ <_>
+
+ 0 -1 457 -1.1628001928329468e-02
+
+ 5.1978123188018799e-01 -1.7051684856414795e-01
+ <_>
+
+ 0 -1 393 1.5159824397414923e-03
+
+ -2.9784303903579712e-01 3.9050224423408508e-01
+ <_>
+
+ 0 -1 901 1.3662670738995075e-02
+
+ -1.4316783845424652e-01 4.4111710786819458e-01
+ <_>
+
+ 0 -1 780 -3.6911026109009981e-03
+
+ 3.2185173034667969e-01 -2.3853960633277893e-01
+ <_>
+
+ 0 -1 769 3.3176485449075699e-02
+
+ -7.4603199958801270e-02 7.5860917568206787e-01
+ <_>
+
+ 0 -1 317 -5.7046953588724136e-03
+
+ -7.5004047155380249e-01 1.0240622609853745e-01
+ <_>
+
+ 0 -1 73 7.9660946503281593e-03
+
+ 9.8882928490638733e-02 -7.3491615056991577e-01
+ <_>
+
+ 0 -1 739 3.0965393409132957e-02
+
+ -1.6046196222305298e-01 4.5570060610771179e-01
+ <_>
+
+ 0 -1 612 -4.0078125894069672e-03
+
+ -7.1539020538330078e-01 6.9276176393032074e-02
+ <_>
+
+ 0 -1 647 -8.2283765077590942e-03
+
+ 3.2576236128807068e-01 -1.8509653210639954e-01
+ <_>
+
+ 0 -1 170 3.4253271296620369e-03
+
+ 1.0964145511388779e-01 -5.8205413818359375e-01
+ <_>
+
+ 0 -1 434 9.0980646200478077e-04
+
+ -2.0425215363502502e-01 2.7488732337951660e-01
+ <_>
+
+ 0 -1 427 5.9772443026304245e-02
+
+ -1.3786207139492035e-01 4.0762668848037720e-01
+ <_>
+
+ 0 -1 209 -4.1712004691362381e-02
+
+ 4.9409377574920654e-01 -1.1713714897632599e-01
+ <_>
+
+ 0 -1 248 -3.0311278998851776e-02
+
+ 5.1191121339797974e-01 -1.0507214814424515e-01
+ <_>
+
+ 0 -1 339 -6.5785087645053864e-03
+
+ -7.6472043991088867e-01 8.0923363566398621e-02
+ <_>
+
+ 0 -1 37 1.1685060337185860e-02
+
+ 5.0379037857055664e-02 -7.9744982719421387e-01
+ <_>
+
+ 0 -1 423 6.5714016556739807e-02
+
+ -1.1398456245660782e-01 4.9489131569862366e-01
+ <_>
+
+ 0 -1 755 9.7422497346997261e-03
+
+ -1.4347794651985168e-01 3.6561754345893860e-01
+ <_>
+
+ 0 -1 870 4.9857441335916519e-03
+
+ 7.9834438860416412e-02 -7.2391557693481445e-01
+ <_>
+
+ 0 -1 735 -1.1547822505235672e-03
+
+ 4.1867440938949585e-01 -1.2869183719158173e-01
+ <_>
+
+ 0 -1 519 -4.4658007100224495e-03
+
+ -6.7933702468872070e-01 8.2867160439491272e-02
+ <_>
+
+ 0 -1 862 3.6325352266430855e-03
+
+ 6.6807270050048828e-02 -6.0182958841323853e-01
+ <_>
+
+ 0 -1 127 7.4123376980423927e-03
+
+ -1.5108695626258850e-01 3.2046884298324585e-01
+
+ <_>
+ 26
+ -1.3890913724899292e+00
+
+ <_>
+
+ 0 -1 619 1.7836617305874825e-02
+
+ -2.1508488059043884e-01 6.6796410083770752e-01
+ <_>
+
+ 0 -1 457 -8.5781915113329887e-03
+
+ 5.0962758064270020e-01 -2.2129471600055695e-01
+ <_>
+
+ 0 -1 165 3.1586211174726486e-02
+
+ -2.1485456824302673e-01 4.2591696977615356e-01
+ <_>
+
+ 0 -1 518 2.5690056383609772e-02
+
+ -1.5910078585147858e-01 6.7842948436737061e-01
+ <_>
+
+ 0 -1 768 -2.2857591509819031e-02
+
+ 5.7221925258636475e-01 -1.3710150122642517e-01
+ <_>
+
+ 0 -1 741 4.7176675871014595e-03
+
+ -2.3617559671401978e-01 3.9870622754096985e-01
+ <_>
+
+ 0 -1 615 -2.3281413596123457e-03
+
+ -7.0095318555831909e-01 1.3746888935565948e-01
+ <_>
+
+ 0 -1 139 1.0266102617606521e-03
+
+ -2.6873087882995605e-01 2.6495781540870667e-01
+ <_>
+
+ 0 -1 2 -7.6808528974652290e-03
+
+ 3.6925876140594482e-01 -2.1339643001556396e-01
+ <_>
+
+ 0 -1 454 6.4357556402683258e-02
+
+ -1.1779088526964188e-01 5.5030888319015503e-01
+ <_>
+
+ 0 -1 296 8.9486092329025269e-02
+
+ -1.4395782351493835e-01 5.3468054533004761e-01
+ <_>
+
+ 0 -1 253 -5.6334878318011761e-03
+
+ -6.5704786777496338e-01 1.3971389830112457e-01
+ <_>
+
+ 0 -1 834 -8.0200601369142532e-03
+
+ 3.6956611275672913e-01 -1.8284171819686890e-01
+ <_>
+
+ 0 -1 732 8.3984360098838806e-03
+
+ -1.3507588207721710e-01 4.4903004169464111e-01
+ <_>
+
+ 0 -1 246 -5.7764705270528793e-03
+
+ -6.5459579229354858e-01 1.1050829291343689e-01
+ <_>
+
+ 0 -1 630 3.9896301925182343e-02
+
+ -1.5822732448577881e-01 3.6069712042808533e-01
+ <_>
+
+ 0 -1 11 -6.8376958370208740e-02
+
+ 6.2642019987106323e-01 -8.3647280931472778e-02
+ <_>
+
+ 0 -1 696 -2.7075063437223434e-02
+
+ 4.0549215674400330e-01 -1.4247153699398041e-01
+ <_>
+
+ 0 -1 933 6.8107023835182190e-03
+
+ 7.7754773199558258e-02 -6.4665120840072632e-01
+ <_>
+
+ 0 -1 131 3.6659452598541975e-03
+
+ 7.9356946051120758e-02 -5.4679936170578003e-01
+ <_>
+
+ 0 -1 182 2.3308303207159042e-02
+
+ -1.4383231103420258e-01 3.4179633855819702e-01
+ <_>
+
+ 0 -1 389 -3.2547116279602051e-02
+
+ 3.6395668983459473e-01 -1.2551946938037872e-01
+ <_>
+
+ 0 -1 471 1.6501296311616898e-02
+
+ -1.0674661397933960e-01 4.2714300751686096e-01
+ <_>
+
+ 0 -1 616 -2.9296698048710823e-03
+
+ -5.7476091384887695e-01 8.5429534316062927e-02
+ <_>
+
+ 0 -1 828 1.3306898763403296e-03
+
+ -1.2303277105093002e-01 3.7224721908569336e-01
+ <_>
+
+ 0 -1 18 9.8933260887861252e-03
+
+ 6.7675270140171051e-02 -6.7935848236083984e-01
+
+ <_>
+ 31
+ -1.4026626348495483e+00
+
+ <_>
+
+ 0 -1 876 -1.4927964657545090e-02
+
+ 6.3834953308105469e-01 -1.8698258697986603e-01
+ <_>
+
+ 0 -1 467 -1.1759694665670395e-02
+
+ 5.0763273239135742e-01 -2.0944127440452576e-01
+ <_>
+
+ 0 -1 775 1.1289508081972599e-02
+
+ -1.4533838629722595e-01 5.3039866685867310e-01
+ <_>
+
+ 0 -1 335 1.3691024854779243e-02
+
+ -1.3143934309482574e-01 5.9853446483612061e-01
+ <_>
+
+ 0 -1 399 -8.6051290854811668e-03
+
+ 3.1604155898094177e-01 -2.2497664391994476e-01
+ <_>
+
+ 0 -1 898 1.1611104011535645e-02
+
+ -1.7180299758911133e-01 3.6340636014938354e-01
+ <_>
+
+ 0 -1 919 5.4911419283598661e-04
+
+ -2.0625770092010498e-01 3.0243906378746033e-01
+ <_>
+
+ 0 -1 448 -1.1997690424323082e-02
+
+ 6.7541980743408203e-01 -1.0784135758876801e-01
+ <_>
+
+ 0 -1 610 -2.0809918642044067e-03
+
+ -5.7404327392578125e-01 1.1769672483205795e-01
+ <_>
+
+ 0 -1 277 6.8656861782073975e-02
+
+ -1.4633083343505859e-01 4.1269731521606445e-01
+ <_>
+
+ 0 -1 215 -4.5645810663700104e-02
+
+ 5.4341620206832886e-01 -1.1726979166269302e-01
+ <_>
+
+ 0 -1 890 -1.8052812665700912e-02
+
+ 3.6646232008934021e-01 -1.3256482779979706e-01
+ <_>
+
+ 0 -1 897 9.2329997569322586e-03
+
+ 9.1808989644050598e-02 -6.4987671375274658e-01
+ <_>
+
+ 0 -1 142 -2.9587259050458670e-03
+
+ 2.4805040657520294e-01 -2.0830279588699341e-01
+ <_>
+
+ 0 -1 151 -7.1467030793428421e-03
+
+ -6.6564339399337769e-01 8.8065519928932190e-02
+ <_>
+
+ 0 -1 756 -5.7738199830055237e-03
+
+ 2.4252247810363770e-01 -2.1394193172454834e-01
+ <_>
+
+ 0 -1 207 6.4636822789907455e-03
+
+ 8.4821723401546478e-02 -6.4125812053680420e-01
+ <_>
+
+ 0 -1 527 -2.8782974928617477e-02
+
+ 3.5874211788177490e-01 -1.4370997250080109e-01
+ <_>
+
+ 0 -1 715 -1.8174832221120596e-03
+
+ 3.7480926513671875e-01 -1.2761794030666351e-01
+ <_>
+
+ 0 -1 590 -1.9234847277402878e-03
+
+ -5.6678783893585205e-01 9.0299606323242188e-02
+ <_>
+
+ 0 -1 588 2.8048637323081493e-03
+
+ 8.5870750248432159e-02 -5.8541411161422729e-01
+ <_>
+
+ 0 -1 178 7.0693701505661011e-02
+
+ -1.2318307906389236e-01 3.9827430248260498e-01
+ <_>
+
+ 0 -1 554 6.2659628689289093e-02
+
+ -9.1229990124702454e-02 5.0639665126800537e-01
+ <_>
+
+ 0 -1 321 -3.7420655135065317e-03
+
+ 3.5059738159179688e-01 -1.2444343417882919e-01
+ <_>
+
+ 0 -1 273 6.8388320505619049e-03
+
+ -1.0419095307588577e-01 4.5085826516151428e-01
+ <_>
+
+ 0 -1 76 7.1193519979715347e-03
+
+ 9.1205865144729614e-02 -5.2279585599899292e-01
+ <_>
+
+ 0 -1 791 -9.8787562455981970e-04
+
+ 2.8105542063713074e-01 -1.5169830620288849e-01
+ <_>
+
+ 0 -1 639 1.8099821172654629e-03
+
+ 6.5428622066974640e-02 -6.9196063280105591e-01
+ <_>
+
+ 0 -1 726 -6.0212425887584686e-03
+
+ -6.2636482715606689e-01 5.1543414592742920e-02
+ <_>
+
+ 0 -1 818 5.1644006744027138e-03
+
+ 6.3040286302566528e-02 -6.3455927371978760e-01
+ <_>
+
+ 0 -1 205 9.4506526365876198e-03
+
+ -1.3443979620933533e-01 3.1506177783012390e-01
+
+ <_>
+ 38
+ -1.4621645212173462e+00
+
+ <_>
+
+ 0 -1 383 -1.5925668179988861e-02
+
+ 6.2127149105072021e-01 -1.8520653247833252e-01
+ <_>
+
+ 0 -1 648 1.0260052047669888e-02
+
+ -2.4736632406711578e-01 4.2336893081665039e-01
+ <_>
+
+ 0 -1 3 5.7025998830795288e-03
+
+ -2.3670144379138947e-01 3.3228391408920288e-01
+ <_>
+
+ 0 -1 264 9.3164276331663132e-03
+
+ -1.7946784198284149e-01 4.6311038732528687e-01
+ <_>
+
+ 0 -1 830 -5.0438079051673412e-03
+
+ 4.4613519310951233e-01 -1.6072992980480194e-01
+ <_>
+
+ 0 -1 793 2.8381291776895523e-03
+
+ -1.8486896157264709e-01 3.5892590880393982e-01
+ <_>
+
+ 0 -1 455 6.7377656698226929e-02
+
+ -1.7760114371776581e-01 3.9539518952369690e-01
+ <_>
+
+ 0 -1 44 -8.7916189804673195e-03
+
+ -5.9182339906692505e-01 1.1145308613777161e-01
+ <_>
+
+ 0 -1 874 1.3353329151868820e-02
+
+ -1.1993711441755295e-01 4.8862439393997192e-01
+ <_>
+
+ 0 -1 324 -1.0008489713072777e-02
+
+ 4.1768664121627808e-01 -1.2453128397464752e-01
+ <_>
+
+ 0 -1 795 -1.4410717412829399e-03
+
+ 3.4100320935249329e-01 -1.6849595308303833e-01
+ <_>
+
+ 0 -1 123 1.1647527664899826e-01
+
+ -9.7596585750579834e-02 4.2289251089096069e-01
+ <_>
+
+ 0 -1 301 -9.8112244158983231e-03
+
+ 2.6155915856361389e-01 -2.0234876871109009e-01
+ <_>
+
+ 0 -1 425 6.3042029738426208e-02
+
+ -1.2662252783775330e-01 3.6811619997024536e-01
+ <_>
+
+ 0 -1 553 -1.7675247043371201e-02
+
+ 4.1690909862518311e-01 -1.1987055838108063e-01
+ <_>
+
+ 0 -1 105 4.0485346689820290e-03
+
+ 7.0249855518341064e-02 -7.3556905984878540e-01
+ <_>
+
+ 0 -1 675 8.2748252898454666e-03
+
+ -1.6168670356273651e-01 2.8835350275039673e-01
+ <_>
+
+ 0 -1 313 -5.0843162462115288e-03
+
+ -5.8562570810317993e-01 8.9675068855285645e-02
+ <_>
+
+ 0 -1 249 6.0826279222965240e-03
+
+ 4.7766357660293579e-02 -6.8612217903137207e-01
+ <_>
+
+ 0 -1 48 8.5826087743043900e-03
+
+ -1.6963686048984528e-01 2.6875671744346619e-01
+ <_>
+
+ 0 -1 38 2.4908576160669327e-02
+
+ 8.5034154355525970e-02 -5.7059210538864136e-01
+ <_>
+
+ 0 -1 879 2.0448346622288227e-03
+
+ -1.8642950057983398e-01 2.3178242146968842e-01
+ <_>
+
+ 0 -1 16 2.4130716919898987e-02
+
+ -1.2823060154914856e-01 3.4394741058349609e-01
+ <_>
+
+ 0 -1 154 -4.7494415193796158e-03
+
+ -7.1827727556228638e-01 6.8053275346755981e-02
+ <_>
+
+ 0 -1 199 -1.7751917243003845e-02
+
+ -5.5972510576248169e-01 5.2141726016998291e-02
+ <_>
+
+ 0 -1 339 5.5826390162110329e-03
+
+ 4.8266090452671051e-02 -5.9813541173934937e-01
+ <_>
+
+ 0 -1 387 1.4416726771742105e-03
+
+ -9.2707693576812744e-02 4.1495534777641296e-01
+ <_>
+
+ 0 -1 192 -2.1779362577944994e-03
+
+ 2.7112621068954468e-01 -1.5071788430213928e-01
+ <_>
+
+ 0 -1 607 3.0656920280307531e-03
+
+ 6.0340058058500290e-02 -6.5465551614761353e-01
+ <_>
+
+ 0 -1 469 1.9947460293769836e-01
+
+ -9.5098674297332764e-02 3.9016976952552795e-01
+ <_>
+
+ 0 -1 857 -2.0255323499441147e-02
+
+ 4.3044877052307129e-01 -8.8302992284297943e-02
+ <_>
+
+ 0 -1 446 5.4685659706592560e-03
+
+ -8.7241113185882568e-02 3.9513549208641052e-01
+ <_>
+
+ 0 -1 463 -1.0883151553571224e-03
+
+ 2.9802373051643372e-01 -1.3696449995040894e-01
+ <_>
+
+ 0 -1 655 -5.0911568105220795e-03
+
+ -6.2439930438995361e-01 6.2544539570808411e-02
+ <_>
+
+ 0 -1 221 -5.2395770326256752e-03
+
+ -6.9036418199539185e-01 4.5142117887735367e-02
+ <_>
+
+ 0 -1 955 4.0486194193363190e-02
+
+ -7.5753845274448395e-02 5.2426725625991821e-01
+ <_>
+
+ 0 -1 300 4.1610337793827057e-03
+
+ 6.6071115434169769e-02 -5.8079534769058228e-01
+ <_>
+
+ 0 -1 272 -6.4253048039972782e-03
+
+ 3.0481830239295959e-01 -1.1435022950172424e-01
+
+ <_>
+ 44
+ -1.4235107898712158e+00
+
+ <_>
+
+ 0 -1 716 -2.2738082334399223e-03
+
+ 5.9519726037979126e-01 -1.6779936850070953e-01
+ <_>
+
+ 0 -1 457 -1.2204157188534737e-02
+
+ 4.6985983848571777e-01 -1.7339397966861725e-01
+ <_>
+
+ 0 -1 754 3.1242824625223875e-03
+
+ -2.2488421201705933e-01 3.4029743075370789e-01
+ <_>
+
+ 0 -1 777 -3.9868438616394997e-03
+
+ 3.8314539194107056e-01 -1.8952924013137817e-01
+ <_>
+
+ 0 -1 538 -5.4737669415771961e-03
+
+ 2.4583901464939117e-01 -2.3114782571792603e-01
+ <_>
+
+ 0 -1 453 1.5154287219047546e-02
+
+ -1.0675037652254105e-01 5.8347207307815552e-01
+ <_>
+
+ 0 -1 397 -1.4294658321887255e-03
+
+ 3.8292840123176575e-01 -1.2911921739578247e-01
+ <_>
+
+ 0 -1 750 -7.4405185878276825e-03
+
+ 2.8356546163558960e-01 -1.7810684442520142e-01
+ <_>
+
+ 0 -1 786 -4.0357224643230438e-03
+
+ 2.6303085684776306e-01 -1.6862161457538605e-01
+ <_>
+
+ 0 -1 618 -5.8342106640338898e-03
+
+ 3.2040205597877502e-01 -1.4103877544403076e-01
+ <_>
+
+ 0 -1 161 1.7279960215091705e-02
+
+ -1.7433850467205048e-01 2.7985212206840515e-01
+ <_>
+
+ 0 -1 292 2.2125110030174255e-02
+
+ -1.1797516793012619e-01 4.0373948216438293e-01
+ <_>
+
+ 0 -1 958 -4.4059187173843384e-02
+
+ 5.2820503711700439e-01 -7.0916719734668732e-02
+ <_>
+
+ 0 -1 194 -3.8316637277603149e-02
+
+ 3.8833045959472656e-01 -1.0811555385589600e-01
+ <_>
+
+ 0 -1 178 4.5704744756221771e-02
+
+ -1.7566929757595062e-01 3.4665411710739136e-01
+ <_>
+
+ 0 -1 434 1.1523386929184198e-03
+
+ -1.7257389426231384e-01 2.5989890098571777e-01
+ <_>
+
+ 0 -1 121 -1.0491746477782726e-02
+
+ -6.1285555362701416e-01 7.1230083703994751e-02
+ <_>
+
+ 0 -1 395 -4.5014433562755585e-03
+
+ -5.7712453603744507e-01 5.8887075632810593e-02
+ <_>
+
+ 0 -1 950 -3.7281280383467674e-03
+
+ -6.7359894514083862e-01 5.2957162261009216e-02
+ <_>
+
+ 0 -1 331 3.4461893141269684e-02
+
+ -1.0375578701496124e-01 3.7974634766578674e-01
+ <_>
+
+ 0 -1 462 -1.3906960375607014e-03
+
+ 3.9171192049980164e-01 -1.0048408061265945e-01
+ <_>
+
+ 0 -1 85 1.6332454979419708e-02
+
+ 8.6256101727485657e-02 -4.5887523889541626e-01
+ <_>
+
+ 0 -1 356 -6.0738036409020424e-03
+
+ -5.2265202999114990e-01 6.5308839082717896e-02
+ <_>
+
+ 0 -1 486 -3.3630726393312216e-03
+
+ -5.6505429744720459e-01 5.5844355374574661e-02
+ <_>
+
+ 0 -1 418 -1.5329496003687382e-02
+
+ 3.4475114941596985e-01 -1.0086353123188019e-01
+ <_>
+
+ 0 -1 587 -9.0496204793453217e-03
+
+ 2.9553902149200439e-01 -1.1406829208135605e-01
+ <_>
+
+ 0 -1 794 -3.1109917908906937e-03
+
+ -4.4897687435150146e-01 7.3615357279777527e-02
+ <_>
+
+ 0 -1 939 3.3499556593596935e-03
+
+ 5.4718658328056335e-02 -5.4810231924057007e-01
+ <_>
+
+ 0 -1 188 1.8374501960352063e-03
+
+ -1.3522666692733765e-01 2.4655479192733765e-01
+ <_>
+
+ 0 -1 908 2.6134990621358156e-03
+
+ 6.6369861364364624e-02 -4.7342041134834290e-01
+ <_>
+
+ 0 -1 65 -7.4155852198600769e-03
+
+ 2.0866124331951141e-01 -1.5775154531002045e-01
+ <_>
+
+ 0 -1 515 3.9352793246507645e-03
+
+ 5.1660846918821335e-02 -6.2589824199676514e-01
+ <_>
+
+ 0 -1 735 -1.0450070258229971e-03
+
+ 3.3525371551513672e-01 -1.0084854811429977e-01
+ <_>
+
+ 0 -1 784 1.2639444321393967e-03
+
+ -1.2103077769279480e-01 2.7691018581390381e-01
+ <_>
+
+ 0 -1 479 7.7577251940965652e-03
+
+ 4.6813234686851501e-02 -7.3385792970657349e-01
+ <_>
+
+ 0 -1 18 -1.0632604360580444e-02
+
+ -7.1024382114410400e-01 3.3777639269828796e-02
+ <_>
+
+ 0 -1 183 1.8631946295499802e-02
+
+ -1.4613701403141022e-01 2.1491082012653351e-01
+ <_>
+
+ 0 -1 608 4.9128942191600800e-03
+
+ 5.3445268422365189e-02 -6.3314527273178101e-01
+ <_>
+
+ 0 -1 473 -9.8230186849832535e-03
+
+ 2.6917773485183716e-01 -1.1376978456974030e-01
+ <_>
+
+ 0 -1 910 -3.0754944309592247e-03
+
+ -5.0787961483001709e-01 6.1582125723361969e-02
+ <_>
+
+ 0 -1 659 -6.7374799400568008e-03
+
+ 2.3871047794818878e-01 -1.2552142143249512e-01
+ <_>
+
+ 0 -1 507 -1.1759715154767036e-02
+
+ 3.3646693825721741e-01 -9.4460532069206238e-02
+ <_>
+
+ 0 -1 318 -4.1377237066626549e-03
+
+ -5.0522220134735107e-01 6.2668189406394958e-02
+ <_>
+
+ 0 -1 320 1.7267453949898481e-03
+
+ -8.0607026815414429e-02 3.8304185867309570e-01
+
+ <_>
+ 47
+ -1.4313566684722900e+00
+
+ <_>
+
+ 0 -1 882 -1.1920252814888954e-02
+
+ 5.6617152690887451e-01 -1.5811842679977417e-01
+ <_>
+
+ 0 -1 568 -4.3085627257823944e-03
+
+ 4.4759327173233032e-01 -1.6846470534801483e-01
+ <_>
+
+ 0 -1 883 1.1177745182067156e-03
+
+ -1.5351393818855286e-01 4.3508940935134888e-01
+ <_>
+
+ 0 -1 798 3.5418532788753510e-02
+
+ -1.2973460555076599e-01 3.6943939328193665e-01
+ <_>
+
+ 0 -1 393 2.2405586205422878e-03
+
+ -1.8800468742847443e-01 3.2498928904533386e-01
+ <_>
+
+ 0 -1 265 -1.7982896417379379e-02
+
+ 4.5607218146324158e-01 -1.0459473729133606e-01
+ <_>
+
+ 0 -1 152 -4.9088716506958008e-02
+
+ 3.4279289841651917e-01 -1.5114119648933411e-01
+ <_>
+
+ 0 -1 275 7.1780886501073837e-03
+
+ 6.3825756311416626e-02 -6.2449872493743896e-01
+ <_>
+
+ 0 -1 849 3.9123920723795891e-03
+
+ 7.1502417325973511e-02 -6.3956946134567261e-01
+ <_>
+
+ 0 -1 689 -4.1980943642556667e-03
+
+ 2.1998657286167145e-01 -1.9890366494655609e-01
+ <_>
+
+ 0 -1 660 -4.5476644299924374e-03
+
+ 2.1866278350353241e-01 -1.9852560758590698e-01
+ <_>
+
+ 0 -1 944 -4.4158436357975006e-03
+
+ 2.3959043622016907e-01 -1.7090958356857300e-01
+ <_>
+
+ 0 -1 281 -4.7058244235813618e-03
+
+ -5.1537507772445679e-01 9.0310461819171906e-02
+ <_>
+
+ 0 -1 116 -8.7488889694213867e-03
+
+ 2.2937677800655365e-01 -1.8315380811691284e-01
+ <_>
+
+ 0 -1 645 -3.1655649654567242e-03
+
+ -7.3091191053390503e-01 6.5193220973014832e-02
+ <_>
+
+ 0 -1 267 6.4696683548390865e-03
+
+ -1.1077737808227539e-01 3.7207809090614319e-01
+ <_>
+
+ 0 -1 615 2.2985613904893398e-03
+
+ 7.7800542116165161e-02 -5.1104581356048584e-01
+ <_>
+
+ 0 -1 359 4.5809363946318626e-03
+
+ 5.7778771966695786e-02 -5.7898092269897461e-01
+ <_>
+
+ 0 -1 188 1.1279166210442781e-03
+
+ -1.7981146275997162e-01 1.9939005374908447e-01
+ <_>
+
+ 0 -1 347 -1.2820301577448845e-02
+
+ 5.1867282390594482e-01 -6.9989629089832306e-02
+ <_>
+
+ 0 -1 810 4.4866472482681274e-02
+
+ -1.4253044128417969e-01 3.0062338709831238e-01
+ <_>
+
+ 0 -1 412 -3.5413210280239582e-03
+
+ -5.7618641853332520e-01 6.0328345745801926e-02
+ <_>
+
+ 0 -1 362 -7.4678594246506691e-03
+
+ -5.0187259912490845e-01 6.1294022947549820e-02
+ <_>
+
+ 0 -1 678 1.8058011308312416e-02
+
+ 5.3603217005729675e-02 -5.8919399976730347e-01
+ <_>
+
+ 0 -1 935 -6.8098572082817554e-03
+
+ -5.4100829362869263e-01 5.5898215621709824e-02
+ <_>
+
+ 0 -1 307 3.6491458304226398e-03
+
+ 4.7378763556480408e-02 -5.9323132038116455e-01
+ <_>
+
+ 0 -1 284 1.4524955768138170e-03
+
+ -8.8994570076465607e-02 3.8729071617126465e-01
+ <_>
+
+ 0 -1 219 -6.2408884987235069e-03
+
+ -6.6442847251892090e-01 5.1082015037536621e-02
+ <_>
+
+ 0 -1 744 -9.9360430613160133e-04
+
+ 3.2972389459609985e-01 -1.0494423657655716e-01
+ <_>
+
+ 0 -1 285 3.9777760393917561e-03
+
+ 5.4083213210105896e-02 -6.2114214897155762e-01
+ <_>
+
+ 0 -1 380 -1.4884659089148045e-02
+
+ 2.4066454172134399e-01 -1.2317410856485367e-01
+ <_>
+
+ 0 -1 436 3.3154981210827827e-03
+
+ -1.1744727939367294e-01 2.9429042339324951e-01
+ <_>
+
+ 0 -1 976 -4.7508114948868752e-03
+
+ -4.5763325691223145e-01 6.7066885530948639e-02
+ <_>
+
+ 0 -1 779 -1.1973761022090912e-02
+
+ 2.5750914216041565e-01 -1.1354148387908936e-01
+ <_>
+
+ 0 -1 740 4.9072699621319771e-03
+
+ -1.1266437917947769e-01 3.0022394657135010e-01
+ <_>
+
+ 0 -1 56 6.5630510449409485e-02
+
+ -1.0180503129959106e-01 3.0517497658729553e-01
+ <_>
+
+ 0 -1 354 -2.3393325507640839e-02
+
+ 3.2443770766258240e-01 -9.5363102853298187e-02
+ <_>
+
+ 0 -1 834 -3.8902116939425468e-03
+
+ 2.0148487389087677e-01 -1.4944279193878174e-01
+ <_>
+
+ 0 -1 185 -2.5926973670721054e-02
+
+ -4.4917497038841248e-01 6.9752328097820282e-02
+ <_>
+
+ 0 -1 173 -7.1825529448688030e-03
+
+ -5.6838059425354004e-01 4.9584377557039261e-02
+ <_>
+
+ 0 -1 548 -9.9399685859680176e-03
+
+ 3.0747908353805542e-01 -1.1064232140779495e-01
+ <_>
+
+ 0 -1 978 -3.6286246031522751e-03
+
+ -6.0276371240615845e-01 5.2405584603548050e-02
+ <_>
+
+ 0 -1 820 1.5756220091134310e-03
+
+ -1.1615782976150513e-01 2.6717522740364075e-01
+ <_>
+
+ 0 -1 426 3.5662509500980377e-02
+
+ -1.0885569453239441e-01 2.9044550657272339e-01
+ <_>
+
+ 0 -1 554 5.3282946348190308e-02
+
+ -8.1855505704879761e-02 4.0298762917518616e-01
+ <_>
+
+ 0 -1 988 3.3901704009622335e-03
+
+ 5.5047694593667984e-02 -5.4021596908569336e-01
+ <_>
+
+ 0 -1 384 1.3204356655478477e-03
+
+ -9.4643965363502502e-02 3.0430349707603455e-01
+
+ <_>
+ 48
+ -1.3744181394577026e+00
+
+ <_>
+
+ 0 -1 788 3.9594387635588646e-03
+
+ -1.5454453229904175e-01 4.9922767281532288e-01
+ <_>
+
+ 0 -1 467 -1.6322813928127289e-02
+
+ 4.2537182569503784e-01 -1.5276345610618591e-01
+ <_>
+
+ 0 -1 746 1.6230947803705931e-03
+
+ -2.2640861570835114e-01 2.5220483541488647e-01
+ <_>
+
+ 0 -1 115 -6.0441931709647179e-03
+
+ 2.2711095213890076e-01 -2.1762822568416595e-01
+ <_>
+
+ 0 -1 6 1.1688062921166420e-02
+
+ -1.6991630196571350e-01 2.8343129158020020e-01
+ <_>
+
+ 0 -1 624 -3.1942571513354778e-03
+
+ -6.2475329637527466e-01 7.3184341192245483e-02
+ <_>
+
+ 0 -1 11 -7.6569117605686188e-02
+
+ 5.5236744880676270e-01 -7.7832877635955811e-02
+ <_>
+
+ 0 -1 306 1.8717286875471473e-03
+
+ 8.4293909370899200e-02 -5.2716743946075439e-01
+ <_>
+
+ 0 -1 351 3.5880310460925102e-03
+
+ -1.2907223403453827e-01 3.3967444300651550e-01
+ <_>
+
+ 0 -1 176 -5.7136151008307934e-03
+
+ -5.9208476543426514e-01 7.7793844044208527e-02
+ <_>
+
+ 0 -1 150 -1.9309867173433304e-02
+
+ 2.5386241078376770e-01 -1.7397734522819519e-01
+ <_>
+
+ 0 -1 327 -2.4289516732096672e-03
+
+ 3.2221227884292603e-01 -1.2751287221908569e-01
+ <_>
+
+ 0 -1 25 -8.5500031709671021e-02
+
+ -7.7962499856948853e-01 5.0715133547782898e-02
+ <_>
+
+ 0 -1 770 5.7447291910648346e-03
+
+ -1.1523491144180298e-01 3.6400210857391357e-01
+ <_>
+
+ 0 -1 781 5.8936916291713715e-02
+
+ -8.7829843163490295e-02 4.1893997788429260e-01
+ <_>
+
+ 0 -1 984 -4.1379006579518318e-03
+
+ -6.3083720207214355e-01 6.4935714006423950e-02
+ <_>
+
+ 0 -1 565 -4.6407114714384079e-03
+
+ -6.5650087594985962e-01 5.4394256323575974e-02
+ <_>
+
+ 0 -1 877 1.5865347813814878e-03
+
+ -1.7255148291587830e-01 2.3248092830181122e-01
+ <_>
+
+ 0 -1 624 2.8971401043236256e-03
+
+ 6.0526229441165924e-02 -5.4368048906326294e-01
+ <_>
+
+ 0 -1 773 1.5737174544483423e-03
+
+ -1.1744406074285507e-01 3.0534917116165161e-01
+ <_>
+
+ 0 -1 609 1.6838097944855690e-03
+
+ 6.6153712570667267e-02 -5.9224641323089600e-01
+ <_>
+
+ 0 -1 912 3.2287575304508209e-03
+
+ 5.2678912878036499e-02 -5.7474386692047119e-01
+ <_>
+
+ 0 -1 850 -3.1512752175331116e-03
+
+ 3.7773844599723816e-01 -8.7322145700454712e-02
+ <_>
+
+ 0 -1 894 8.2073279190808535e-04
+
+ -1.0513201355934143e-01 3.4025487303733826e-01
+ <_>
+
+ 0 -1 603 2.8983387164771557e-03
+
+ 5.1720291376113892e-02 -6.5431916713714600e-01
+ <_>
+
+ 0 -1 852 -5.7246205396950245e-03
+
+ -7.8483843803405762e-01 3.5195719450712204e-02
+ <_>
+
+ 0 -1 44 -1.1572695337235928e-02
+
+ -6.7286187410354614e-01 3.5210411995649338e-02
+ <_>
+
+ 0 -1 80 -1.4562263153493404e-02
+
+ 2.4655815958976746e-01 -1.2278749793767929e-01
+ <_>
+
+ 0 -1 269 7.8490225132554770e-04
+
+ -1.4652141928672791e-01 3.0276218056678772e-01
+ <_>
+
+ 0 -1 725 -1.4289810787886381e-03
+
+ 1.8906314671039581e-01 -1.5791040658950806e-01
+ <_>
+
+ 0 -1 108 -9.4615388661623001e-03
+
+ -6.9036215543746948e-01 3.9911076426506042e-02
+ <_>
+
+ 0 -1 21 2.3225568234920502e-02
+
+ 5.0278317183256149e-02 -5.2323836088180542e-01
+ <_>
+
+ 0 -1 959 1.4046948403120041e-02
+
+ -7.9005211591720581e-02 4.0158179402351379e-01
+ <_>
+
+ 0 -1 126 3.7851710803806782e-03
+
+ -1.3530673086643219e-01 2.1973098814487457e-01
+ <_>
+
+ 0 -1 142 -3.6725951358675957e-03
+
+ 1.9924460351467133e-01 -1.5001934766769409e-01
+ <_>
+
+ 0 -1 963 -3.1669549643993378e-03
+
+ -4.2041611671447754e-01 7.4019186198711395e-02
+ <_>
+
+ 0 -1 695 -1.3667810708284378e-02
+
+ 2.5204744935035706e-01 -1.2807497382164001e-01
+ <_>
+
+ 0 -1 214 -3.5862527787685394e-02
+
+ 3.2997950911521912e-01 -8.9863941073417664e-02
+ <_>
+
+ 0 -1 946 -6.2667285092175007e-03
+
+ -5.5024039745330811e-01 5.7369034737348557e-02
+ <_>
+
+ 0 -1 438 -6.4383493736386299e-03
+
+ 3.3817592263221741e-01 -9.3247875571250916e-02
+ <_>
+
+ 0 -1 439 5.4173925891518593e-03
+
+ -1.0427469760179520e-01 2.9482829570770264e-01
+ <_>
+
+ 0 -1 400 -1.5132453292608261e-02
+
+ 3.2000914216041565e-01 -9.8272062838077545e-02
+ <_>
+
+ 0 -1 606 -1.2513613328337669e-02
+
+ 2.8962445259094238e-01 -1.2084391713142395e-01
+ <_>
+
+ 0 -1 91 -9.8966564983129501e-03
+
+ -5.8358079195022583e-01 5.1291342824697495e-02
+ <_>
+
+ 0 -1 932 1.3835988938808441e-02
+
+ -9.0702146291732788e-02 3.2527267932891846e-01
+ <_>
+
+ 0 -1 92 3.6492943763732910e-03
+
+ 8.4720104932785034e-02 -3.4649613499641418e-01
+ <_>
+
+ 0 -1 478 -1.3878188095986843e-02
+
+ 2.9309025406837463e-01 -9.6585884690284729e-02
+ <_>
+
+ 0 -1 580 2.8816664125770330e-03
+
+ -1.0839603841304779e-01 2.5134062767028809e-01
+
+ <_>
+ 57
+ -1.3757541179656982e+00
+
+ <_>
+
+ 0 -1 742 -4.1507836431264877e-03
+
+ 4.7857573628425598e-01 -1.5079282224178314e-01
+ <_>
+
+ 0 -1 539 -4.2431484907865524e-03
+
+ 2.7976706624031067e-01 -2.1182695031166077e-01
+ <_>
+
+ 0 -1 422 7.2727665305137634e-02
+
+ -1.1322361230850220e-01 4.6931907534599304e-01
+ <_>
+
+ 0 -1 120 7.3349894955754280e-03
+
+ -2.2507375478744507e-01 2.3486614227294922e-01
+ <_>
+
+ 0 -1 79 -1.3757663965225220e-01
+
+ 5.5153369903564453e-01 -8.4895148873329163e-02
+ <_>
+
+ 0 -1 592 6.8098353222012520e-04
+
+ -1.7585472762584686e-01 2.2849111258983612e-01
+ <_>
+
+ 0 -1 110 2.7579340338706970e-01
+
+ -1.1671220511198044e-01 3.2674804329872131e-01
+ <_>
+
+ 0 -1 921 5.4910051403567195e-04
+
+ -2.0603717863559723e-01 1.8896938860416412e-01
+ <_>
+
+ 0 -1 155 -5.5065844208002090e-03
+
+ -5.7701790332794189e-01 6.9212622940540314e-02
+ <_>
+
+ 0 -1 824 -8.3996364846825600e-03
+
+ 4.6683028340339661e-01 -7.4202880263328552e-02
+ <_>
+
+ 0 -1 843 -1.1010931339114904e-03
+
+ 1.9711431860923767e-01 -1.7736457288265228e-01
+ <_>
+
+ 0 -1 217 -4.4837296009063721e-03
+
+ -6.0108631849288940e-01 4.9327563494443893e-02
+ <_>
+
+ 0 -1 211 2.5086081586778164e-03
+
+ 6.9480538368225098e-02 -4.8671180009841919e-01
+ <_>
+
+ 0 -1 201 1.5808893367648125e-03
+
+ -1.0519328713417053e-01 3.2050549983978271e-01
+ <_>
+
+ 0 -1 210 1.4971228083595634e-03
+
+ -8.4364958107471466e-02 4.3016371130943298e-01
+ <_>
+
+ 0 -1 343 -2.6089220773428679e-03
+
+ -4.2146065831184387e-01 8.8990658521652222e-02
+ <_>
+
+ 0 -1 42 -7.7147269621491432e-03
+
+ -6.6330111026763916e-01 5.0671890377998352e-02
+ <_>
+
+ 0 -1 85 -1.7141735181212425e-02
+
+ -4.8750495910644531e-01 5.6981299072504044e-02
+ <_>
+
+ 0 -1 146 1.3850606046617031e-02
+
+ 7.4964463710784912e-02 -4.4079580903053284e-01
+ <_>
+
+ 0 -1 341 -1.4932476915419102e-03
+
+ 3.1057041883468628e-01 -1.0369800031185150e-01
+ <_>
+
+ 0 -1 382 -8.3094676956534386e-03
+
+ 2.2514784336090088e-01 -1.4621259272098541e-01
+ <_>
+
+ 0 -1 462 -7.2969077154994011e-04
+
+ 2.6934301853179932e-01 -1.2512375414371490e-01
+ <_>
+
+ 0 -1 430 -1.3652374967932701e-02
+
+ -4.9215099215507507e-01 7.3141731321811676e-02
+ <_>
+
+ 0 -1 20 9.4011947512626648e-03
+
+ 4.1364993900060654e-02 -6.5001028776168823e-01
+ <_>
+
+ 0 -1 657 4.0921592153608799e-03
+
+ 4.0478449314832687e-02 -5.9830683469772339e-01
+ <_>
+
+ 0 -1 847 1.5591707779094577e-03
+
+ -9.3049824237823486e-02 3.1007137894630432e-01
+ <_>
+
+ 0 -1 973 3.4408085048198700e-03
+
+ 4.7337688505649567e-02 -6.5880972146987915e-01
+ <_>
+
+ 0 -1 847 -1.3411687687039375e-03
+
+ 2.8307750821113586e-01 -1.0693576931953430e-01
+ <_>
+
+ 0 -1 534 -5.7181939482688904e-03
+
+ -4.7754487395286560e-01 6.3519261777400970e-02
+ <_>
+
+ 0 -1 374 -5.0096530467271805e-03
+
+ -6.1091655492782593e-01 3.9555240422487259e-02
+ <_>
+
+ 0 -1 1 -4.1508115828037262e-03
+
+ 2.1694649755954742e-01 -1.3193054497241974e-01
+ <_>
+
+ 0 -1 844 -1.6968715935945511e-02
+
+ 2.7644789218902588e-01 -1.0202119499444962e-01
+ <_>
+
+ 0 -1 103 1.0276203043758869e-02
+
+ -9.0598084032535553e-02 2.9703584313392639e-01
+ <_>
+
+ 0 -1 350 -1.8649294506758451e-03
+
+ 2.8791305422782898e-01 -9.2735975980758667e-02
+ <_>
+
+ 0 -1 942 3.3354205079376698e-03
+
+ 5.3746312856674194e-02 -5.0940161943435669e-01
+ <_>
+
+ 0 -1 396 -1.4105688314884901e-03
+
+ 2.4489782750606537e-01 -1.1008579283952713e-01
+ <_>
+
+ 0 -1 611 2.3928448557853699e-02
+
+ 5.2839644253253937e-02 -4.9896511435508728e-01
+ <_>
+
+ 0 -1 807 -3.8580424152314663e-03
+
+ -4.8197838664054871e-01 5.3767576813697815e-02
+ <_>
+
+ 0 -1 679 -3.0590491369366646e-03
+
+ -5.2978992462158203e-01 4.6741079539060593e-02
+ <_>
+
+ 0 -1 468 -2.9391471762210131e-03
+
+ -3.4711557626724243e-01 6.9464050233364105e-02
+ <_>
+
+ 0 -1 667 -7.0184348151087761e-03
+
+ 3.1962895393371582e-01 -8.3362981677055359e-02
+ <_>
+
+ 0 -1 664 1.0384586639702320e-03
+
+ -1.0797444730997086e-01 2.4896475672721863e-01
+ <_>
+
+ 0 -1 628 -8.0418614670634270e-03
+
+ -7.3527222871780396e-01 3.6740459501743317e-02
+ <_>
+
+ 0 -1 193 -3.1738542020320892e-02
+
+ 2.6166516542434692e-01 -1.0992183536291122e-01
+ <_>
+
+ 0 -1 194 3.6780342459678650e-02
+
+ -8.7741106748580933e-02 3.7106978893280029e-01
+ <_>
+
+ 0 -1 494 -6.4193591475486755e-02
+
+ 3.1807181239128113e-01 -8.8648937642574310e-02
+ <_>
+
+ 0 -1 46 3.4801474213600159e-01
+
+ -5.5967021733522415e-02 5.3631168603897095e-01
+ <_>
+
+ 0 -1 490 7.5712919235229492e-02
+
+ -5.9786085039377213e-02 4.1973164677619934e-01
+ <_>
+
+ 0 -1 983 7.8374873846769333e-03
+
+ -6.8252839148044586e-02 3.9001336693763733e-01
+ <_>
+
+ 0 -1 867 3.3967243507504463e-03
+
+ 5.7270396500825882e-02 -4.7492286562919617e-01
+ <_>
+
+ 0 -1 158 3.2095968723297119e-02
+
+ 3.0982470139861107e-02 -7.2973543405532837e-01
+ <_>
+
+ 0 -1 939 4.1734268888831139e-03
+
+ 3.0397623777389526e-02 -6.8009066581726074e-01
+ <_>
+
+ 0 -1 545 3.2336891163140535e-03
+
+ -9.4194613397121429e-02 2.5351443886756897e-01
+ <_>
+
+ 0 -1 55 -3.8070861250162125e-02
+
+ 2.7447724342346191e-01 -8.3862110972404480e-02
+ <_>
+
+ 0 -1 358 4.6657784841954708e-03
+
+ 3.7179920822381973e-02 -6.7654901742935181e-01
+ <_>
+
+ 0 -1 247 -3.9379103109240532e-03
+
+ -5.9923279285430908e-01 3.2963614910840988e-02
+ <_>
+
+ 0 -1 699 -4.8031057231128216e-03
+
+ 2.2248022258281708e-01 -1.0560184717178345e-01
+
+ <_>
+ 55
+ -1.3843152523040771e+00
+
+ <_>
+
+ 0 -1 456 6.7532630637288094e-03
+
+ -1.5934121608734131e-01 5.1630091667175293e-01
+ <_>
+
+ 0 -1 685 1.6582473181188107e-03
+
+ -1.4192129671573639e-01 4.6970281004905701e-01
+ <_>
+
+ 0 -1 741 8.5381623357534409e-03
+
+ -1.4064009487628937e-01 4.3454051017761230e-01
+ <_>
+
+ 0 -1 711 -5.8347072452306747e-02
+
+ 4.8053690791130066e-01 -1.1435888707637787e-01
+ <_>
+
+ 0 -1 200 7.5503322295844555e-04
+
+ -1.6613751649856567e-01 3.5059270262718201e-01
+ <_>
+
+ 0 -1 463 -1.6263198340311646e-03
+
+ 3.3983412384986877e-01 -1.2952369451522827e-01
+ <_>
+
+ 0 -1 982 -4.9476943910121918e-02
+
+ 5.1085108518600464e-01 -7.6757252216339111e-02
+ <_>
+
+ 0 -1 148 1.5736839268356562e-03
+
+ -9.8503805696964264e-02 4.2097148299217224e-01
+ <_>
+
+ 0 -1 970 2.8940830379724503e-03
+
+ 8.0476768314838409e-02 -5.9272909164428711e-01
+ <_>
+
+ 0 -1 470 -8.5198890883475542e-04
+
+ 2.7713751792907715e-01 -1.2991340458393097e-01
+ <_>
+
+ 0 -1 513 -3.2718123402446508e-03
+
+ 3.1215441226959229e-01 -1.2980756163597107e-01
+ <_>
+
+ 0 -1 244 6.0219354927539825e-03
+
+ 7.2135269641876221e-02 -5.9813290834426880e-01
+ <_>
+
+ 0 -1 81 2.3065296933054924e-02
+
+ 7.1330830454826355e-02 -5.3722465038299561e-01
+ <_>
+
+ 0 -1 187 2.7176631192560308e-05
+
+ -2.6853099465370178e-01 1.4315985143184662e-01
+ <_>
+
+ 0 -1 401 5.4575498215854168e-03
+
+ 5.5034745484590530e-02 -5.7176333665847778e-01
+ <_>
+
+ 0 -1 391 2.5911496777553111e-05
+
+ -2.3133303225040436e-01 1.4060766994953156e-01
+ <_>
+
+ 0 -1 12 2.1752633154392242e-02
+
+ 5.9929180890321732e-02 -5.0224888324737549e-01
+ <_>
+
+ 0 -1 860 3.5099866800010204e-03
+
+ 4.7387380152940750e-02 -5.8126205205917358e-01
+ <_>
+
+ 0 -1 755 8.6558861657977104e-03
+
+ -1.3651072978973389e-01 2.2407715022563934e-01
+ <_>
+
+ 0 -1 990 3.0432851053774357e-03
+
+ 5.7905938476324081e-02 -5.5585581064224243e-01
+ <_>
+
+ 0 -1 240 3.4083288628607988e-03
+
+ 4.6358574181795120e-02 -5.6204903125762939e-01
+ <_>
+
+ 0 -1 241 -4.1327420622110367e-03
+
+ -4.3748503923416138e-01 6.6312022507190704e-02
+ <_>
+
+ 0 -1 887 5.4382300004363060e-04
+
+ -1.2188895046710968e-01 2.6694831252098083e-01
+ <_>
+
+ 0 -1 886 2.0359107293188572e-03
+
+ -6.9375663995742798e-02 4.1734528541564941e-01
+ <_>
+
+ 0 -1 894 5.6087510893121362e-04
+
+ -1.2235503643751144e-01 2.9018589854240417e-01
+ <_>
+
+ 0 -1 957 5.4084453731775284e-03
+
+ 5.1494579762220383e-02 -6.3784217834472656e-01
+ <_>
+
+ 0 -1 99 1.9748538732528687e-02
+
+ -7.0414997637271881e-02 4.8995351791381836e-01
+ <_>
+
+ 0 -1 147 -2.0231239497661591e-02
+
+ -5.9452813863754272e-01 5.5317912250757217e-02
+ <_>
+
+ 0 -1 763 -8.5184378549456596e-03
+
+ -4.9081006646156311e-01 5.1023125648498535e-02
+ <_>
+
+ 0 -1 952 6.4936149865388870e-03
+
+ -8.6577519774436951e-02 3.6036944389343262e-01
+ <_>
+
+ 0 -1 30 -4.0995404124259949e-02
+
+ 4.0132537484169006e-01 -7.1912504732608795e-02
+ <_>
+
+ 0 -1 501 3.1340471468865871e-03
+
+ -1.2547470629215240e-01 2.2158138453960419e-01
+ <_>
+
+ 0 -1 184 -1.9882351160049438e-02
+
+ -7.1213179826736450e-01 4.2412471026182175e-02
+ <_>
+
+ 0 -1 559 2.0461969077587128e-02
+
+ -1.0324169695377350e-01 2.9102885723114014e-01
+ <_>
+
+ 0 -1 686 -1.2761610560119152e-03
+
+ 2.3810100555419922e-01 -1.1509060114622116e-01
+ <_>
+
+ 0 -1 549 -3.3783772960305214e-03
+
+ -5.6838840246200562e-01 5.6331343948841095e-02
+ <_>
+
+ 0 -1 302 5.0912564620375633e-03
+
+ 4.7987211495637894e-02 -4.7997272014617920e-01
+ <_>
+
+ 0 -1 508 -4.1752815246582031e-02
+
+ -5.9290748834609985e-01 4.2219188064336777e-02
+ <_>
+
+ 0 -1 263 -1.3672109693288803e-02
+
+ 2.7416154742240906e-01 -9.8633147776126862e-02
+ <_>
+
+ 0 -1 329 4.5463615097105503e-03
+
+ -9.5323033630847931e-02 3.3586710691452026e-01
+ <_>
+
+ 0 -1 472 -1.1957241222262383e-02
+
+ 1.6140049695968628e-01 -1.6837921738624573e-01
+ <_>
+
+ 0 -1 95 -2.4866103194653988e-03
+
+ -3.8348227739334106e-01 6.6880211234092712e-02
+ <_>
+
+ 0 -1 130 3.3222150523215532e-03
+
+ 4.9669362604618073e-02 -5.2419567108154297e-01
+ <_>
+
+ 0 -1 767 1.2700627557933331e-03
+
+ -1.0981336981058121e-01 2.4314954876899719e-01
+ <_>
+
+ 0 -1 643 -4.0526064112782478e-03
+
+ -5.4617625474929810e-01 4.6236973255872726e-02
+ <_>
+
+ 0 -1 889 -1.7611857037991285e-03
+
+ 2.0527404546737671e-01 -1.1924317479133606e-01
+ <_>
+
+ 0 -1 832 -2.8845192864537239e-03
+
+ 2.0061042904853821e-01 -1.4499643445014954e-01
+ <_>
+
+ 0 -1 969 -9.4242449849843979e-03
+
+ -7.2513866424560547e-01 3.4894362092018127e-02
+ <_>
+
+ 0 -1 972 3.7029895465821028e-03
+
+ 5.5003125220537186e-02 -4.1173446178436279e-01
+ <_>
+
+ 0 -1 785 -8.4825151134282351e-04
+
+ 2.6719486713409424e-01 -9.9083028733730316e-02
+ <_>
+
+ 0 -1 54 1.5727356076240540e-02
+
+ -1.2551975250244141e-01 2.0588764548301697e-01
+ <_>
+
+ 0 -1 106 5.9068910777568817e-03
+
+ 6.0179408639669418e-02 -4.1827461123466492e-01
+ <_>
+
+ 0 -1 27 -3.9538964629173279e-02
+
+ 3.4726879000663757e-01 -7.4968926608562469e-02
+ <_>
+
+ 0 -1 10 4.7501657158136368e-02
+
+ -7.6978117227554321e-02 3.5068345069885254e-01
+ <_>
+
+ 0 -1 259 -5.9454172151163220e-04
+
+ 1.6073931753635406e-01 -1.5279982984066010e-01
+
+ <_>
+ 58
+ -1.2862224578857422e+00
+
+ <_>
+
+ 0 -1 882 -1.3625519350171089e-02
+
+ 5.0128185749053955e-01 -1.1663150042295456e-01
+ <_>
+
+ 0 -1 375 -2.2920668125152588e-03
+
+ 3.9538189768791199e-01 -1.3872602581977844e-01
+ <_>
+
+ 0 -1 792 1.0770710650831461e-03
+
+ -1.7133137583732605e-01 3.1510788202285767e-01
+ <_>
+
+ 0 -1 452 -1.2591466307640076e-02
+
+ 3.9579889178276062e-01 -1.4279782772064209e-01
+ <_>
+
+ 0 -1 460 -4.7927081584930420e-02
+
+ -4.9305588006973267e-01 5.6685980409383774e-02
+ <_>
+
+ 0 -1 474 -2.5895023718476295e-03
+
+ 1.6586430370807648e-01 -2.2577352821826935e-01
+ <_>
+
+ 0 -1 112 9.8585948348045349e-02
+
+ -7.2541341185569763e-02 5.3971153497695923e-01
+ <_>
+
+ 0 -1 521 7.2299325838685036e-03
+
+ 7.2869211435317993e-02 -6.0541796684265137e-01
+ <_>
+
+ 0 -1 202 -6.0262705665081739e-04
+
+ 2.7961328625679016e-01 -1.3374039530754089e-01
+ <_>
+
+ 0 -1 253 5.3171166218817234e-03
+
+ 6.1562143266201019e-02 -5.3435516357421875e-01
+ <_>
+
+ 0 -1 109 -7.3790093883872032e-03
+
+ -5.8770626783370972e-01 5.2599798887968063e-02
+ <_>
+
+ 0 -1 179 2.2994203027337790e-04
+
+ -2.2165967524051666e-01 1.6663813591003418e-01
+ <_>
+
+ 0 -1 366 -2.7968082576990128e-03
+
+ -4.5023602247238159e-01 6.7983791232109070e-02
+ <_>
+
+ 0 -1 949 -4.4262632727622986e-03
+
+ -5.4457426071166992e-01 5.3928002715110779e-02
+ <_>
+
+ 0 -1 431 -6.1236601322889328e-03
+
+ 2.9386061429977417e-01 -1.0868654400110245e-01
+ <_>
+
+ 0 -1 364 6.1672870069742203e-03
+
+ 6.7409984767436981e-02 -4.2896196246147156e-01
+ <_>
+
+ 0 -1 335 1.5454929322004318e-02
+
+ -9.3371987342834473e-02 3.2237896323204041e-01
+ <_>
+
+ 0 -1 285 -5.5358107201755047e-03
+
+ -6.3797932863235474e-01 4.7232467681169510e-02
+ <_>
+
+ 0 -1 210 -5.8793288189917803e-04
+
+ 2.6480975747108459e-01 -1.1852940917015076e-01
+ <_>
+
+ 0 -1 203 1.2575921136885881e-03
+
+ -1.2490244954824448e-01 2.8103300929069519e-01
+ <_>
+
+ 0 -1 41 3.3034523949027061e-03
+
+ 6.2105692923069000e-02 -4.5968556404113770e-01
+ <_>
+
+ 0 -1 45 -2.6582641527056694e-02
+
+ -5.0849837064743042e-01 5.3966015577316284e-02
+ <_>
+
+ 0 -1 49 2.7427850291132927e-02
+
+ 5.2529457956552505e-02 -5.3614085912704468e-01
+ <_>
+
+ 0 -1 39 -2.1938718855381012e-03
+
+ -5.6713318824768066e-01 4.6497207134962082e-02
+ <_>
+
+ 0 -1 926 8.5861550178378820e-04
+
+ -1.1162154376506805e-01 2.8105884790420532e-01
+ <_>
+
+ 0 -1 886 -8.4925384726375341e-04
+
+ 3.1280112266540527e-01 -1.2138028442859650e-01
+ <_>
+
+ 0 -1 956 2.9905270785093307e-03
+
+ 6.1607286334037781e-02 -5.1581907272338867e-01
+ <_>
+
+ 0 -1 968 5.8231391012668610e-03
+
+ 4.7376025468111038e-02 -5.1492005586624146e-01
+ <_>
+
+ 0 -1 480 4.2811138555407524e-03
+
+ 3.2761037349700928e-02 -6.7820072174072266e-01
+ <_>
+
+ 0 -1 915 9.5272483304142952e-04
+
+ -1.5452747046947479e-01 1.7837351560592651e-01
+ <_>
+
+ 0 -1 270 -2.7698231860995293e-04
+
+ 1.8924367427825928e-01 -1.3868112862110138e-01
+ <_>
+
+ 0 -1 370 3.0586202628910542e-03
+
+ 5.3298473358154297e-02 -4.7908756136894226e-01
+ <_>
+
+ 0 -1 639 2.0293965935707092e-03
+
+ 3.1667634844779968e-02 -6.7199909687042236e-01
+ <_>
+
+ 0 -1 639 -1.8073513638228178e-03
+
+ -6.4894622564315796e-01 3.3469315618276596e-02
+ <_>
+
+ 0 -1 320 -1.1197938583791256e-03
+
+ 2.2734998166561127e-01 -1.1382233351469040e-01
+ <_>
+
+ 0 -1 828 1.2703117681667209e-03
+
+ -9.7680233418941498e-02 2.9997348785400391e-01
+ <_>
+
+ 0 -1 835 -1.8036495894193649e-03
+
+ 2.3566392064094543e-01 -1.1566326767206192e-01
+ <_>
+
+ 0 -1 222 2.3318463936448097e-03
+
+ 5.5787801742553711e-02 -4.4648987054824829e-01
+ <_>
+
+ 0 -1 111 1.8485619220882654e-03
+
+ -1.0420991480350494e-01 2.4521166086196899e-01
+ <_>
+
+ 0 -1 101 8.2633290439844131e-03
+
+ 5.3129263222217560e-02 -4.8460647463798523e-01
+ <_>
+
+ 0 -1 760 2.7392050469643436e-05
+
+ -1.7487643659114838e-01 1.3620604574680328e-01
+ <_>
+
+ 0 -1 352 2.6163433212786913e-03
+
+ -9.9586494266986847e-02 2.4075058102607727e-01
+ <_>
+
+ 0 -1 94 3.6149267107248306e-03
+
+ 4.2312353849411011e-02 -5.5195075273513794e-01
+ <_>
+
+ 0 -1 403 1.4812931418418884e-02
+
+ -6.7619144916534424e-02 3.7573158740997314e-01
+ <_>
+
+ 0 -1 814 -2.8877586591988802e-03
+
+ -5.3493702411651611e-01 5.1065266132354736e-02
+ <_>
+
+ 0 -1 930 3.5591312916949391e-04
+
+ -1.2231220304965973e-01 1.9974029064178467e-01
+ <_>
+
+ 0 -1 36 -1.0347569361329079e-02
+
+ -6.3408315181732178e-01 4.0167611092329025e-02
+ <_>
+
+ 0 -1 34 -4.4028884731233120e-03
+
+ -5.1359844207763672e-01 4.3052427470684052e-02
+ <_>
+
+ 0 -1 856 -1.6173283802345395e-03
+
+ 1.4859439432621002e-01 -1.4985026419162750e-01
+ <_>
+
+ 0 -1 996 -3.1839800067245960e-03
+
+ -4.1493499279022217e-01 6.0393124818801880e-02
+ <_>
+
+ 0 -1 960 -7.9784039407968521e-03
+
+ 2.8296649456024170e-01 -8.6312569677829742e-02
+ <_>
+
+ 0 -1 797 2.8750954661518335e-03
+
+ -6.7822508513927460e-02 3.2967612147331238e-01
+ <_>
+
+ 0 -1 992 -1.1433581821620464e-03
+
+ -3.4375748038291931e-01 6.8774074316024780e-02
+ <_>
+
+ 0 -1 668 1.7783213406801224e-03
+
+ -8.8273152709007263e-02 2.6904863119125366e-01
+ <_>
+
+ 0 -1 670 -6.3564153388142586e-03
+
+ 3.4165042638778687e-01 -7.6342806220054626e-02
+ <_>
+
+ 0 -1 712 5.8753319084644318e-02
+
+ 3.6884155124425888e-02 -7.0002478361129761e-01
+ <_>
+
+ 0 -1 345 -1.2118986342102289e-03
+
+ 1.8067996203899384e-01 -1.2888990342617035e-01
+ <_>
+
+ 0 -1 268 -3.4786794334650040e-02
+
+ 2.8380703926086426e-01 -1.0494612902402878e-01
+
+ <_>
+ 61
+ -1.3526766300201416e+00
+
+ <_>
+
+ 0 -1 875 9.3241240829229355e-03
+
+ -1.1945860832929611e-01 4.8265087604522705e-01
+ <_>
+
+ 0 -1 573 -4.0869116783142090e-03
+
+ 2.7903670072555542e-01 -2.3448269069194794e-01
+ <_>
+
+ 0 -1 676 8.3140000700950623e-02
+
+ -8.5437655448913574e-02 5.4905670881271362e-01
+ <_>
+
+ 0 -1 802 2.6708254590630531e-03
+
+ -1.6097296774387360e-01 3.5868695378303528e-01
+ <_>
+
+ 0 -1 75 2.2817514836788177e-03
+
+ -1.6324259340763092e-01 2.3956388235092163e-01
+ <_>
+
+ 0 -1 745 6.7889376077800989e-04
+
+ -2.5205141305923462e-01 1.6190616786479950e-01
+ <_>
+
+ 0 -1 811 3.1512721907347441e-03
+
+ -1.3325424492359161e-01 2.7017220854759216e-01
+ <_>
+
+ 0 -1 53 5.7821646332740784e-02
+
+ -6.7158013582229614e-02 4.1875806450843811e-01
+ <_>
+
+ 0 -1 442 2.8442896902561188e-02
+
+ 5.5711831897497177e-02 -5.8136337995529175e-01
+ <_>
+
+ 0 -1 644 -1.7370734130963683e-03
+
+ -6.7132610082626343e-01 3.2464105635881424e-02
+ <_>
+
+ 0 -1 324 -1.9680276513099670e-02
+
+ 3.9044600725173950e-01 -8.8745564222335815e-02
+ <_>
+
+ 0 -1 224 1.0001409798860550e-02
+
+ -1.5947268903255463e-01 2.7087828516960144e-01
+ <_>
+
+ 0 -1 644 1.2495646951720119e-03
+
+ 8.3702936768531799e-02 -4.6324184536933899e-01
+ <_>
+
+ 0 -1 144 3.0510198324918747e-02
+
+ -1.0709584504365921e-01 3.2648065686225891e-01
+ <_>
+
+ 0 -1 995 -3.7916197907179594e-03
+
+ -6.1073684692382812e-01 4.7788143157958984e-02
+ <_>
+
+ 0 -1 880 8.5655774455517530e-04
+
+ -2.0807541906833649e-01 1.5517778694629669e-01
+ <_>
+
+ 0 -1 986 -3.2812850549817085e-03
+
+ -5.8795136213302612e-01 4.5926980674266815e-02
+ <_>
+
+ 0 -1 499 3.6125673796050251e-04
+
+ -1.6806155443191528e-01 1.7441834509372711e-01
+ <_>
+
+ 0 -1 591 -1.2282358948141336e-03
+
+ -4.7641313076019287e-01 5.6790668517351151e-02
+ <_>
+
+ 0 -1 411 9.3263220041990280e-03
+
+ -7.4045926332473755e-02 3.7817317247390747e-01
+ <_>
+
+ 0 -1 591 7.4745330493897200e-04
+
+ 8.0762349069118500e-02 -3.5692575573921204e-01
+ <_>
+
+ 0 -1 900 7.4315653182566166e-03
+
+ -8.5764542222023010e-02 3.2155406475067139e-01
+ <_>
+
+ 0 -1 776 2.7057509869337082e-02
+
+ 6.9296583533287048e-02 -4.2836430668830872e-01
+ <_>
+
+ 0 -1 504 3.9283365011215210e-02
+
+ -1.0806435346603394e-01 2.9007008671760559e-01
+ <_>
+
+ 0 -1 23 -3.4139624238014221e-01
+
+ 5.0227731466293335e-01 -6.3795588910579681e-02
+ <_>
+
+ 0 -1 502 -1.8172953277826309e-02
+
+ 2.7207729220390320e-01 -1.0322675853967667e-01
+ <_>
+
+ 0 -1 509 1.5265008434653282e-02
+
+ -1.0788526386022568e-01 2.4405729770660400e-01
+ <_>
+
+ 0 -1 465 -1.4973650686442852e-03
+
+ 2.8644701838493347e-01 -1.0436929017305374e-01
+ <_>
+
+ 0 -1 674 2.1207414101809263e-03
+
+ 4.5713264495134354e-02 -6.6571021080017090e-01
+ <_>
+
+ 0 -1 254 1.3393461704254150e-02
+
+ -8.4284797310829163e-02 3.6480179429054260e-01
+ <_>
+
+ 0 -1 560 9.7873376216739416e-04
+
+ -1.2960052490234375e-01 2.2095513343811035e-01
+ <_>
+
+ 0 -1 747 -4.9731796607375145e-03
+
+ 2.7467787265777588e-01 -1.0236363112926483e-01
+ <_>
+
+ 0 -1 294 -7.9883169382810593e-03
+
+ -5.3638678789138794e-01 5.3369920700788498e-02
+ <_>
+
+ 0 -1 413 2.3855306208133698e-03
+
+ 5.4967612028121948e-02 -4.2117682099342346e-01
+ <_>
+
+ 0 -1 899 -3.0849636532366276e-03
+
+ 2.6192533969879150e-01 -9.4207443296909332e-02
+ <_>
+
+ 0 -1 653 4.3416069820523262e-03
+
+ -1.5543100237846375e-01 1.6663897037506104e-01
+ <_>
+
+ 0 -1 451 3.8728015497326851e-03
+
+ 4.9280565232038498e-02 -4.9337747693061829e-01
+ <_>
+
+ 0 -1 563 1.8099667504429817e-03
+
+ 4.2697191238403320e-02 -5.2748012542724609e-01
+ <_>
+
+ 0 -1 157 -3.3727339468896389e-03
+
+ 2.0491680502891541e-01 -1.2846539914608002e-01
+ <_>
+
+ 0 -1 344 3.1393815297633410e-03
+
+ -7.3090612888336182e-02 3.4941059350967407e-01
+ <_>
+
+ 0 -1 851 3.2568261958658695e-03
+
+ 4.5729346573352814e-02 -5.7302659749984741e-01
+ <_>
+
+ 0 -1 853 -2.0513155031949282e-03
+
+ -5.4655516147613525e-01 3.8907390087842941e-02
+ <_>
+
+ 0 -1 656 -2.7090720832347870e-03
+
+ -5.2781039476394653e-01 3.8093525916337967e-02
+ <_>
+
+ 0 -1 738 -3.6282267421483994e-02
+
+ -5.8760797977447510e-01 3.4759882837533951e-02
+ <_>
+
+ 0 -1 558 3.7925848737359047e-03
+
+ -8.5966393351554871e-02 2.6226586103439331e-01
+ <_>
+
+ 0 -1 991 -3.7565450184047222e-03
+
+ -5.7828390598297119e-01 3.9440535008907318e-02
+ <_>
+
+ 0 -1 906 -7.8137982636690140e-03
+
+ 3.5042202472686768e-01 -6.6597603261470795e-02
+ <_>
+
+ 0 -1 904 -3.1100357882678509e-03
+
+ 1.8389418721199036e-01 -1.4107073843479156e-01
+ <_>
+
+ 0 -1 449 9.1797057539224625e-03
+
+ -6.2711343169212341e-02 3.4819519519805908e-01
+ <_>
+
+ 0 -1 255 -2.9698751866817474e-02
+
+ 2.8956320881843567e-01 -8.5679493844509125e-02
+ <_>
+
+ 0 -1 720 7.9502481967210770e-03
+
+ 3.9165180176496506e-02 -6.0753583908081055e-01
+ <_>
+
+ 0 -1 621 2.2064188960939646e-03
+
+ 3.5431943833827972e-02 -5.5480444431304932e-01
+ <_>
+
+ 0 -1 175 -3.1044434756040573e-02
+
+ -6.2628567218780518e-01 3.1049268320202827e-02
+ <_>
+
+ 0 -1 0 -1.3199620880186558e-03
+
+ 1.5564316511154175e-01 -1.3879336416721344e-01
+ <_>
+
+ 0 -1 397 -9.6068280981853604e-04
+
+ 1.9332279264926910e-01 -1.1179215461015701e-01
+ <_>
+
+ 0 -1 43 7.4608568102121353e-03
+
+ 5.7219974696636200e-02 -4.2135125398635864e-01
+ <_>
+
+ 0 -1 293 -4.3320422992110252e-03
+
+ -6.8079024553298950e-01 2.9504306614398956e-02
+ <_>
+
+ 0 -1 274 -6.5548438578844070e-03
+
+ 2.9043409228324890e-01 -8.7089523673057556e-02
+ <_>
+
+ 0 -1 204 4.2611984536051750e-03
+
+ -8.5929870605468750e-02 3.1930494308471680e-01
+ <_>
+
+ 0 -1 635 -7.2978977113962173e-03
+
+ 1.4620631933212280e-01 -1.7617914080619812e-01
+ <_>
+
+ 0 -1 225 -2.2543172817677259e-03
+
+ -5.9305733442306519e-01 3.9764832705259323e-02
+
+ <_>
+ 70
+ -1.3067549467086792e+00
+
+ <_>
+
+ 0 -1 742 -5.6160744279623032e-03
+
+ 4.7913768887519836e-01 -9.8717339336872101e-02
+ <_>
+
+ 0 -1 536 -5.6263338774442673e-03
+
+ 2.8639736771583557e-01 -1.7997759580612183e-01
+ <_>
+
+ 0 -1 795 -1.6268140170723200e-03
+
+ 3.0874463915824890e-01 -1.3907180726528168e-01
+ <_>
+
+ 0 -1 802 -1.3920383062213659e-03
+
+ 3.2034638524055481e-01 -1.3876211643218994e-01
+ <_>
+
+ 0 -1 826 3.4234612248837948e-03
+
+ -1.0860712081193924e-01 3.2174232602119446e-01
+ <_>
+
+ 0 -1 525 4.3767906725406647e-02
+
+ -1.3255064189434052e-01 3.7021124362945557e-01
+ <_>
+
+ 0 -1 401 -4.4696494005620480e-03
+
+ -4.5687621831893921e-01 8.2243621349334717e-02
+ <_>
+
+ 0 -1 332 -7.1945399977266788e-03
+
+ -6.4334297180175781e-01 4.5623987913131714e-02
+ <_>
+
+ 0 -1 273 6.5287351608276367e-03
+
+ -8.9336074888706207e-02 3.3727860450744629e-01
+ <_>
+
+ 0 -1 771 2.8297028038650751e-03
+
+ -1.0177894681692123e-01 3.5831856727600098e-01
+ <_>
+
+ 0 -1 925 1.1526069603860378e-02
+
+ 7.5238041579723358e-02 -4.8319393396377563e-01
+ <_>
+
+ 0 -1 207 4.7937319613993168e-03
+
+ 5.7682428508996964e-02 -4.7086900472640991e-01
+ <_>
+
+ 0 -1 395 -3.6777029745280743e-03
+
+ -4.2743790149688721e-01 7.4363298714160919e-02
+ <_>
+
+ 0 -1 839 -8.0760312266647816e-04
+
+ 1.4320656657218933e-01 -1.9929704070091248e-01
+ <_>
+
+ 0 -1 233 3.7253312766551971e-03
+
+ 5.2736207842826843e-02 -5.2105212211608887e-01
+ <_>
+
+ 0 -1 416 -2.3560712113976479e-02
+
+ 4.0658730268478394e-01 -7.3024936020374298e-02
+ <_>
+
+ 0 -1 311 -4.5593185350298882e-03
+
+ -6.3590377569198608e-01 3.5127460956573486e-02
+ <_>
+
+ 0 -1 551 -2.4863984435796738e-03
+
+ -4.5599257946014404e-01 5.3035512566566467e-02
+ <_>
+
+ 0 -1 424 -2.6802124921232462e-03
+
+ 1.9116453826427460e-01 -1.3404799997806549e-01
+ <_>
+
+ 0 -1 11 -7.7647715806961060e-02
+
+ 4.1297465562820435e-01 -6.3970938324928284e-02
+ <_>
+
+ 0 -1 566 2.3329094983637333e-03
+
+ -1.2160944193601608e-01 2.3117628693580627e-01
+ <_>
+
+ 0 -1 5 -6.6609308123588562e-03
+
+ 2.2600707411766052e-01 -1.2069495767354965e-01
+ <_>
+
+ 0 -1 133 -5.0821684300899506e-02
+
+ 3.2217630743980408e-01 -7.6335281133651733e-02
+ <_>
+
+ 0 -1 537 -7.0379404351115227e-03
+
+ 1.8399104475975037e-01 -1.4812190830707550e-01
+ <_>
+
+ 0 -1 134 -3.3276520669460297e-02
+
+ -6.0358065366744995e-01 3.5330448299646378e-02
+ <_>
+
+ 0 -1 392 7.5909225270152092e-03
+
+ 3.1779482960700989e-02 -6.4767998456954956e-01
+ <_>
+
+ 0 -1 613 -5.6639023125171661e-02
+
+ -4.6455994248390198e-01 4.6072337776422501e-02
+ <_>
+
+ 0 -1 124 3.7777128163725138e-03
+
+ 5.7451672852039337e-02 -3.7793967127799988e-01
+ <_>
+
+ 0 -1 271 8.9145395904779434e-03
+
+ -7.5942978262901306e-02 3.1487807631492615e-01
+ <_>
+
+ 0 -1 841 -1.4818884432315826e-02
+
+ 2.7122247219085693e-01 -9.8314434289932251e-02
+ <_>
+
+ 0 -1 381 -5.5922558531165123e-03
+
+ -6.4762401580810547e-01 4.1314963251352310e-02
+ <_>
+
+ 0 -1 595 3.1491921981796622e-04
+
+ -1.4864055812358856e-01 1.4411780238151550e-01
+ <_>
+
+ 0 -1 136 -5.7063563726842403e-03
+
+ -4.6024248003959656e-01 4.7999884933233261e-02
+ <_>
+
+ 0 -1 210 -1.2257394846528769e-03
+
+ 3.2288366556167603e-01 -7.0425607264041901e-02
+ <_>
+
+ 0 -1 775 -1.6291948035359383e-02
+
+ 2.7573275566101074e-01 -8.3055868744850159e-02
+ <_>
+
+ 0 -1 156 -8.1639690324664116e-04
+
+ 1.7044979333877563e-01 -1.4129574596881866e-01
+ <_>
+
+ 0 -1 975 5.1114819943904877e-03
+
+ 3.3882420510053635e-02 -6.9941717386245728e-01
+ <_>
+
+ 0 -1 977 -2.8371806256473064e-03
+
+ -3.7707236409187317e-01 5.7759616523981094e-02
+ <_>
+
+ 0 -1 772 5.3479857742786407e-03
+
+ 4.1541736572980881e-02 -4.8687714338302612e-01
+ <_>
+
+ 0 -1 735 1.1360908392816782e-03
+
+ -7.8717894852161407e-02 2.9692038893699646e-01
+ <_>
+
+ 0 -1 947 1.4100213302299380e-03
+
+ 4.3843001127243042e-02 -5.1339787244796753e-01
+ <_>
+
+ 0 -1 387 8.7079760851338506e-04
+
+ -9.8695866763591766e-02 2.2730629146099091e-01
+ <_>
+
+ 0 -1 211 -5.4065873846411705e-03
+
+ -6.3011974096298218e-01 3.7802927196025848e-02
+ <_>
+
+ 0 -1 816 -1.6894804313778877e-02
+
+ -5.0091201066970825e-01 3.5215172916650772e-02
+ <_>
+
+ 0 -1 766 1.4164673630148172e-03
+
+ -8.8441111147403717e-02 2.4102251231670380e-01
+ <_>
+
+ 0 -1 704 -1.1464871931821108e-03
+
+ 1.9273723661899567e-01 -1.1090471595525742e-01
+ <_>
+
+ 0 -1 861 -3.2706123311072588e-03
+
+ -4.5202803611755371e-01 4.7059688717126846e-02
+ <_>
+
+ 0 -1 70 1.1416582390666008e-02
+
+ 2.6714416220784187e-02 -6.9660711288452148e-01
+ <_>
+
+ 0 -1 310 2.7643535286188126e-03
+
+ 4.7252438962459564e-02 -3.9458727836608887e-01
+ <_>
+
+ 0 -1 435 2.4567130021750927e-03
+
+ -7.5188823044300079e-02 2.9944056272506714e-01
+ <_>
+
+ 0 -1 441 -7.3516201227903366e-03
+
+ 2.8476437926292419e-01 -9.2367134988307953e-02
+ <_>
+
+ 0 -1 662 -4.3670929968357086e-02
+
+ -6.8588620424270630e-01 3.3353023231029510e-02
+ <_>
+
+ 0 -1 138 -6.4992159605026245e-02
+
+ -7.9678738117218018e-01 2.0331909880042076e-02
+ <_>
+
+ 0 -1 286 -1.1700032278895378e-02
+
+ -6.1183351278305054e-01 2.7328895404934883e-02
+ <_>
+
+ 0 -1 589 3.0743866227567196e-03
+
+ -7.7295452356338501e-02 2.6685911417007446e-01
+ <_>
+
+ 0 -1 584 -1.5546076931059361e-02
+
+ -5.5246621370315552e-01 4.0912687778472900e-02
+ <_>
+
+ 0 -1 40 6.5568592399358749e-03
+
+ -1.0432150214910507e-01 1.9379787147045135e-01
+ <_>
+
+ 0 -1 29 -8.0047458410263062e-02
+
+ 3.9228948950767517e-01 -5.2565738558769226e-02
+ <_>
+
+ 0 -1 227 1.5684183686971664e-02
+
+ -1.1151826381683350e-01 1.8633136153221130e-01
+ <_>
+
+ 0 -1 546 2.3603178560733795e-03
+
+ -1.0219112038612366e-01 2.0333246886730194e-01
+ <_>
+
+ 0 -1 585 -3.5169085022062063e-03
+
+ 2.7427124977111816e-01 -8.6362943053245544e-02
+ <_>
+
+ 0 -1 476 9.4871241599321365e-03
+
+ 3.5626750439405441e-02 -6.2631088495254517e-01
+ <_>
+
+ 0 -1 629 -9.3261618167161942e-03
+
+ -7.1806514263153076e-01 2.4241568520665169e-02
+ <_>
+
+ 0 -1 666 -6.3302312046289444e-03
+
+ 2.1094995737075806e-01 -9.2475786805152893e-02
+ <_>
+
+ 0 -1 598 -2.8244811110198498e-03
+
+ 2.6596403121948242e-01 -8.0099694430828094e-02
+ <_>
+
+ 0 -1 145 -1.1591307818889618e-02
+
+ 2.3619163036346436e-01 -8.5169024765491486e-02
+ <_>
+
+ 0 -1 117 2.1401243284344673e-03
+
+ -1.0995808988809586e-01 2.1230246126651764e-01
+ <_>
+
+ 0 -1 562 4.2046746239066124e-03
+
+ 3.6688093096017838e-02 -6.1654287576675415e-01
+ <_>
+
+ 0 -1 605 1.1085141450166702e-03
+
+ -8.0656312406063080e-02 2.7754181623458862e-01
+ <_>
+
+ 0 -1 829 -8.2805287092924118e-03
+
+ -6.5883606672286987e-01 3.6048211157321930e-02
+
+ <_>
+ 70
+ -1.2368309497833252e+00
+
+ <_>
+
+ 0 -1 716 -3.3105849288403988e-03
+
+ 5.0566112995147705e-01 -8.2956805825233459e-02
+ <_>
+
+ 0 -1 190 4.5855166390538216e-03
+
+ -1.3226345181465149e-01 3.9034894108772278e-01
+ <_>
+
+ 0 -1 576 -2.6665716432034969e-03
+
+ 2.7508354187011719e-01 -1.3807572424411774e-01
+ <_>
+
+ 0 -1 734 1.8106825649738312e-02
+
+ -1.2738862633705139e-01 3.5449108481407166e-01
+ <_>
+
+ 0 -1 830 -5.7813120074570179e-03
+
+ 2.7463605999946594e-01 -1.2951526045799255e-01
+ <_>
+
+ 0 -1 379 8.9321136474609375e-03
+
+ 4.8491790890693665e-02 -5.8104276657104492e-01
+ <_>
+
+ 0 -1 17 6.2806839123368263e-03
+
+ -1.3215491175651550e-01 2.1852293610572815e-01
+ <_>
+
+ 0 -1 9 -4.3670572340488434e-02
+
+ 3.8786840438842773e-01 -7.4191503226757050e-02
+ <_>
+
+ 0 -1 554 -6.2309622764587402e-02
+
+ 3.3408007025718689e-01 -8.7087221443653107e-02
+ <_>
+
+ 0 -1 686 -3.2859744969755411e-03
+
+ 3.3486780524253845e-01 -8.9008949697017670e-02
+ <_>
+
+ 0 -1 346 -3.9627305231988430e-03
+
+ 2.6155433058738708e-01 -9.5614455640316010e-02
+ <_>
+
+ 0 -1 434 1.0877416934818029e-03
+
+ -1.4199735224246979e-01 1.8414285778999329e-01
+ <_>
+
+ 0 -1 249 5.4819821380078793e-03
+
+ 7.4260123074054718e-02 -5.6989872455596924e-01
+ <_>
+
+ 0 -1 916 4.9011572264134884e-04
+
+ -1.9576059281826019e-01 1.3506270945072174e-01
+ <_>
+
+ 0 -1 911 -7.7052684500813484e-03
+
+ -5.0443643331527710e-01 6.1383318156003952e-02
+ <_>
+
+ 0 -1 164 4.8691947013139725e-03
+
+ 4.3469026684761047e-02 -5.2802342176437378e-01
+ <_>
+
+ 0 -1 344 2.4673391599208117e-03
+
+ -8.9178681373596191e-02 3.0606627464294434e-01
+ <_>
+
+ 0 -1 172 -3.6682826466858387e-03
+
+ -6.5514552593231201e-01 4.7427203506231308e-02
+ <_>
+
+ 0 -1 365 2.5194899644702673e-03
+
+ 4.9365170300006866e-02 -4.0812951326370239e-01
+ <_>
+
+ 0 -1 531 5.8970693498849869e-03
+
+ 3.5579398274421692e-02 -6.4191317558288574e-01
+ <_>
+
+ 0 -1 842 1.7767311073839664e-03
+
+ -8.6629316210746765e-02 2.7705979347229004e-01
+ <_>
+
+ 0 -1 885 4.0457276627421379e-03
+
+ 5.6002113968133926e-02 -4.7005215287208557e-01
+ <_>
+
+ 0 -1 522 3.2862280495464802e-03
+
+ -1.2930884957313538e-01 2.0613414049148560e-01
+ <_>
+
+ 0 -1 322 1.4660503948107362e-03
+
+ -9.9395424127578735e-02 3.3950179815292358e-01
+ <_>
+
+ 0 -1 266 1.9015703350305557e-02
+
+ 6.0197159647941589e-02 -5.1893943548202515e-01
+ <_>
+
+ 0 -1 102 -7.1178808808326721e-02
+
+ -4.3668299913406372e-01 4.7340013086795807e-02
+ <_>
+
+ 0 -1 795 -4.6305771684274077e-04
+
+ 1.4736598730087280e-01 -1.5406486392021179e-01
+ <_>
+
+ 0 -1 298 -4.7644632868468761e-03
+
+ -5.0336647033691406e-01 4.4053792953491211e-02
+ <_>
+
+ 0 -1 761 -8.5318256169557571e-03
+
+ -5.9967356920242310e-01 3.2567754387855530e-02
+ <_>
+
+ 0 -1 713 -2.7496295515447855e-03
+
+ 1.3502316176891327e-01 -1.6025592386722565e-01
+ <_>
+
+ 0 -1 607 4.2666587978601456e-03
+
+ 2.5802688673138618e-02 -7.8170543909072876e-01
+ <_>
+
+ 0 -1 216 -2.9856398701667786e-02
+
+ 2.4982222914695740e-01 -8.8180385529994965e-02
+ <_>
+
+ 0 -1 226 2.2136634215712547e-03
+
+ -1.4314906299114227e-01 1.6945528984069824e-01
+ <_>
+
+ 0 -1 640 1.6336794942617416e-02
+
+ 4.6008959412574768e-02 -4.9338266253471375e-01
+ <_>
+
+ 0 -1 459 7.9861842095851898e-03
+
+ -1.1460029333829880e-01 1.9282819330692291e-01
+ <_>
+
+ 0 -1 650 -1.7455726629123092e-03
+
+ 1.7520657181739807e-01 -1.2269173562526703e-01
+ <_>
+
+ 0 -1 124 -6.2451506964862347e-03
+
+ -4.5638361573219299e-01 4.8106320202350616e-02
+ <_>
+
+ 0 -1 406 8.5668899118900299e-03
+
+ -8.0403454601764679e-02 3.0411326885223389e-01
+ <_>
+
+ 0 -1 974 8.6863581091165543e-03
+
+ 3.4176670014858246e-02 -7.3028022050857544e-01
+ <_>
+
+ 0 -1 36 1.0814646258950233e-02
+
+ 2.5131458416581154e-02 -6.7325627803802490e-01
+ <_>
+
+ 0 -1 709 4.4222913682460785e-02
+
+ 3.9326712489128113e-02 -5.1067680120468140e-01
+ <_>
+
+ 0 -1 903 3.7128489930182695e-03
+
+ -1.3248492777347565e-01 1.6692358255386353e-01
+ <_>
+
+ 0 -1 129 -4.6475054696202278e-03
+
+ 1.7683532834053040e-01 -1.2570241093635559e-01
+ <_>
+
+ 0 -1 291 4.2433524504303932e-03
+
+ 3.6985948681831360e-02 -5.8369445800781250e-01
+ <_>
+
+ 0 -1 315 -5.1774000748991966e-03
+
+ 5.1487326622009277e-01 -4.1473735123872757e-02
+ <_>
+
+ 0 -1 855 4.2645614594221115e-03
+
+ 3.7253957241773605e-02 -5.7676959037780762e-01
+ <_>
+
+ 0 -1 83 4.8632645048201084e-03
+
+ -6.7035257816314697e-02 3.1131938099861145e-01
+ <_>
+
+ 0 -1 250 2.6089766994118690e-02
+
+ -8.2920446991920471e-02 3.0445784330368042e-01
+ <_>
+
+ 0 -1 625 -1.9001008477061987e-03
+
+ -4.3419414758682251e-01 4.6812325716018677e-02
+ <_>
+
+ 0 -1 891 -6.0952613130211830e-03
+
+ -5.1850622892379761e-01 3.6754775792360306e-02
+ <_>
+
+ 0 -1 564 1.2120242230594158e-02
+
+ -7.4773810803890228e-02 2.6738941669464111e-01
+ <_>
+
+ 0 -1 817 -1.8978580832481384e-02
+
+ 2.5657230615615845e-01 -8.0304212868213654e-02
+ <_>
+
+ 0 -1 338 4.3438978493213654e-02
+
+ -6.2818735837936401e-02 3.2261833548545837e-01
+ <_>
+
+ 0 -1 773 9.4384723342955112e-04
+
+ -9.8582215607166290e-02 2.2370135784149170e-01
+ <_>
+
+ 0 -1 519 -4.1803726926445961e-03
+
+ -4.9802374839782715e-01 4.3809909373521805e-02
+ <_>
+
+ 0 -1 195 -9.7246468067169189e-03
+
+ 2.2823798656463623e-01 -9.8547600209712982e-02
+ <_>
+
+ 0 -1 658 2.7193846181035042e-03
+
+ -9.1188244521617889e-02 2.2684387862682343e-01
+ <_>
+
+ 0 -1 174 6.2224082648754120e-03
+
+ 3.2258503139019012e-02 -6.0108250379562378e-01
+ <_>
+
+ 0 -1 77 -4.8602908849716187e-01
+
+ 6.3337916135787964e-01 -3.3006772398948669e-02
+ <_>
+
+ 0 -1 550 -5.3604291751980782e-03
+
+ 2.9434949159622192e-01 -6.1312302947044373e-02
+ <_>
+
+ 0 -1 541 5.5021280422806740e-03
+
+ 4.1839476674795151e-02 -4.5681878924369812e-01
+ <_>
+
+ 0 -1 326 -1.3823953922837973e-03
+
+ 1.6067574918270111e-01 -1.1796293407678604e-01
+ <_>
+
+ 0 -1 514 2.0954519510269165e-02
+
+ -5.7253565639257431e-02 3.3830171823501587e-01
+ <_>
+
+ 0 -1 409 7.4234008789062500e-03
+
+ -7.4798591434955597e-02 2.6430690288543701e-01
+ <_>
+
+ 0 -1 578 2.1767318248748779e-03
+
+ -8.0530151724815369e-02 2.5947657227516174e-01
+ <_>
+
+ 0 -1 623 1.8930230289697647e-03
+
+ -8.1788897514343262e-02 2.2988820075988770e-01
+ <_>
+
+ 0 -1 533 6.9275917485356331e-03
+
+ 2.6962997391819954e-02 -7.6910203695297241e-01
+ <_>
+
+ 0 -1 334 6.7140227183699608e-03
+
+ 2.3244854062795639e-02 -6.8406605720520020e-01
+ <_>
+
+ 0 -1 632 -3.4494437277317047e-02
+
+ -6.5257686376571655e-01 2.4584138765931129e-02
+ <_>
+
+ 0 -1 787 1.9636256620287895e-03
+
+ -9.1118760406970978e-02 2.0629465579986572e-01
+
+ <_>
+ 80
+ -1.3304495811462402e+00
+
+ <_>
+
+ 0 -1 572 -9.1053368523716927e-03
+
+ 4.8031216859817505e-01 -9.3147851526737213e-02
+ <_>
+
+ 0 -1 715 -2.1384856663644314e-03
+
+ 3.4027156233787537e-01 -1.4834050834178925e-01
+ <_>
+
+ 0 -1 953 1.2453617528080940e-02
+
+ -8.0359503626823425e-02 4.7585478425025940e-01
+ <_>
+
+ 0 -1 198 5.0965799018740654e-03
+
+ -1.6364066302776337e-01 2.9590085148811340e-01
+ <_>
+
+ 0 -1 477 -3.1894792336970568e-03
+
+ 1.7039565742015839e-01 -2.1295401453971863e-01
+ <_>
+
+ 0 -1 314 -1.4799979981034994e-03
+
+ -4.1050529479980469e-01 5.3783610463142395e-02
+ <_>
+
+ 0 -1 66 6.0710287652909756e-03
+
+ -1.5162153542041779e-01 1.8406888842582703e-01
+ <_>
+
+ 0 -1 401 4.3081510812044144e-03
+
+ 5.0293717533349991e-02 -4.6324169635772705e-01
+ <_>
+
+ 0 -1 970 1.8933035898953676e-03
+
+ 6.5655551850795746e-02 -3.9198148250579834e-01
+ <_>
+
+ 0 -1 782 -1.6021143645048141e-02
+
+ 2.2748421132564545e-01 -1.0609938949346542e-01
+ <_>
+
+ 0 -1 928 -8.9298677630722523e-04
+
+ 3.1164079904556274e-01 -1.1380065232515335e-01
+ <_>
+
+ 0 -1 888 -1.4284942299127579e-03
+
+ 2.7966943383216858e-01 -9.6580952405929565e-02
+ <_>
+
+ 0 -1 822 2.5015190243721008e-02
+
+ 4.2534209787845612e-02 -6.2623745203018188e-01
+ <_>
+
+ 0 -1 583 -2.8645459096878767e-03
+
+ -4.1426309943199158e-01 5.1780503243207932e-02
+ <_>
+
+ 0 -1 902 3.2044243998825550e-03
+
+ -1.1883606761693954e-01 1.9546063244342804e-01
+ <_>
+
+ 0 -1 319 -1.0433372110128403e-02
+
+ 2.6159819960594177e-01 -9.3164652585983276e-02
+ <_>
+
+ 0 -1 287 -9.7299478948116302e-03
+
+ -4.9464005231857300e-01 5.0998747348785400e-02
+ <_>
+
+ 0 -1 206 -2.1688457578420639e-02
+
+ 5.6923902034759521e-01 -4.9958106130361557e-02
+ <_>
+
+ 0 -1 38 -2.9492072761058807e-02
+
+ -6.1336356401443481e-01 4.7003138810396194e-02
+ <_>
+
+ 0 -1 35 -2.4866596795618534e-03
+
+ -3.9986124634742737e-01 5.7781789451837540e-02
+ <_>
+
+ 0 -1 965 4.0488247759640217e-03
+
+ 4.6429801732301712e-02 -4.4500553607940674e-01
+ <_>
+
+ 0 -1 735 -9.3909690622240305e-04
+
+ 2.4617424607276917e-01 -9.0848781168460846e-02
+ <_>
+
+ 0 -1 989 -5.2673118188977242e-03
+
+ -6.4129960536956787e-01 3.5207435488700867e-02
+ <_>
+
+ 0 -1 806 -6.1755320057272911e-03
+
+ 1.7039734125137329e-01 -1.3195209205150604e-01
+ <_>
+
+ 0 -1 201 1.5832348726689816e-03
+
+ -9.2635877430438995e-02 2.5755262374877930e-01
+ <_>
+
+ 0 -1 914 2.8633023612201214e-03
+
+ 5.0923369824886322e-02 -4.6171438694000244e-01
+ <_>
+
+ 0 -1 12 -2.3722708225250244e-02
+
+ -4.5609694719314575e-01 4.3677136301994324e-02
+ <_>
+
+ 0 -1 419 5.8846692554652691e-03
+
+ 5.1512561738491058e-02 -4.4899132847785950e-01
+ <_>
+
+ 0 -1 201 -8.2513026427477598e-04
+
+ 2.4914309382438660e-01 -8.9795768260955811e-02
+ <_>
+
+ 0 -1 690 -2.9888928402215242e-03
+
+ -4.0133482217788696e-01 5.5449619889259338e-02
+ <_>
+
+ 0 -1 237 1.8384978175163269e-02
+
+ 4.9513496458530426e-02 -4.2024865746498108e-01
+ <_>
+
+ 0 -1 947 -2.4238843470811844e-03
+
+ -6.7325645685195923e-01 2.8972415253520012e-02
+ <_>
+
+ 0 -1 724 8.1563717685639858e-04
+
+ -1.4400914311408997e-01 1.5184181928634644e-01
+ <_>
+
+ 0 -1 315 2.1788734011352062e-03
+
+ -8.2650899887084961e-02 2.5927037000656128e-01
+ <_>
+
+ 0 -1 376 3.7263201083987951e-03
+
+ -6.3213117420673370e-02 3.8062268495559692e-01
+ <_>
+
+ 0 -1 631 3.0819473322480917e-03
+
+ 3.9066124707460403e-02 -6.2055569887161255e-01
+ <_>
+
+ 0 -1 691 2.7417289093136787e-03
+
+ 3.2166294753551483e-02 -5.6402361392974854e-01
+ <_>
+
+ 0 -1 581 -3.8205389864742756e-03
+
+ 2.5668358802795410e-01 -7.9121366143226624e-02
+ <_>
+
+ 0 -1 61 -1.2516178190708160e-02
+
+ -7.0402121543884277e-01 3.2493114471435547e-02
+ <_>
+
+ 0 -1 60 4.6941628679633141e-03
+
+ 4.7352086752653122e-02 -4.0129581093788147e-01
+ <_>
+
+ 0 -1 483 5.0501096993684769e-03
+
+ -1.0563907027244568e-01 2.3647888004779816e-01
+ <_>
+
+ 0 -1 497 1.5111428685486317e-02
+
+ -6.7443214356899261e-02 2.7579694986343384e-01
+ <_>
+
+ 0 -1 423 7.4835181236267090e-02
+
+ -6.2918186187744141e-02 3.6493194103240967e-01
+ <_>
+
+ 0 -1 498 1.3086002320051193e-02
+
+ 2.9699811711907387e-02 -7.4420636892318726e-01
+ <_>
+
+ 0 -1 778 -5.4838880896568298e-03
+
+ 2.2497597336769104e-01 -8.8018722832202911e-02
+ <_>
+
+ 0 -1 261 3.3699360210448503e-03
+
+ -6.9213069975376129e-02 2.9263094067573547e-01
+ <_>
+
+ 0 -1 118 7.7881952747702599e-03
+
+ 5.8034870773553848e-02 -3.9803403615951538e-01
+ <_>
+
+ 0 -1 421 -1.9298251718282700e-02
+
+ 2.1273820102214813e-01 -9.6075013279914856e-02
+ <_>
+
+ 0 -1 440 1.3059679418802261e-02
+
+ 4.0989801287651062e-02 -4.9787399172782898e-01
+ <_>
+
+ 0 -1 510 -2.2303011268377304e-02
+
+ -6.5915608406066895e-01 2.7258813381195068e-02
+ <_>
+
+ 0 -1 260 -5.2872681990265846e-03
+
+ 2.9461637139320374e-01 -6.9564543664455414e-02
+ <_>
+
+ 0 -1 464 6.0780980857089162e-04
+
+ -9.5468334853649139e-02 2.0951601862907410e-01
+ <_>
+
+ 0 -1 444 4.8917778767645359e-03
+
+ 3.9317954331636429e-02 -5.3803342580795288e-01
+ <_>
+
+ 0 -1 238 -1.0402110219001770e-01
+
+ 5.4199391603469849e-01 -3.9763871580362320e-02
+ <_>
+
+ 0 -1 687 3.8908584974706173e-03
+
+ 3.8185238838195801e-02 -5.3280067443847656e-01
+ <_>
+
+ 0 -1 353 8.0125425010919571e-03
+
+ -7.8310973942279816e-02 2.4926608800888062e-01
+ <_>
+
+ 0 -1 954 -3.4356187097728252e-03
+
+ 2.3415692150592804e-01 -9.2279240489006042e-02
+ <_>
+
+ 0 -1 896 -5.2030328661203384e-03
+
+ -5.0255048274993896e-01 4.4738721102476120e-02
+ <_>
+
+ 0 -1 555 -5.5568795651197433e-03
+
+ 2.8329169750213623e-01 -7.0860259234905243e-02
+ <_>
+
+ 0 -1 627 -7.6205702498555183e-03
+
+ 2.5350978970527649e-01 -7.2612494230270386e-02
+ <_>
+
+ 0 -1 309 2.7379104495048523e-01
+
+ -5.6398060172796249e-02 3.6085364222526550e-01
+ <_>
+
+ 0 -1 622 7.3067229241132736e-03
+
+ -6.2759615480899811e-02 3.1996127963066101e-01
+ <_>
+
+ 0 -1 415 3.2574313227087259e-03
+
+ 4.1181974112987518e-02 -4.9355933070182800e-01
+ <_>
+
+ 0 -1 57 -1.2764024734497070e-01
+
+ 2.5147503614425659e-01 -7.5440123677253723e-02
+ <_>
+
+ 0 -1 530 -3.2227888703346252e-02
+
+ 3.9548832178115845e-01 -4.7284111380577087e-02
+ <_>
+
+ 0 -1 764 2.3350853472948074e-02
+
+ -7.2977773845195770e-02 2.5172060728073120e-01
+ <_>
+
+ 0 -1 26 2.7610745746642351e-05
+
+ -1.3625738024711609e-01 1.3250400125980377e-01
+ <_>
+
+ 0 -1 808 6.9611091166734695e-03
+
+ 2.9794082045555115e-02 -5.8855760097503662e-01
+ <_>
+
+ 0 -1 210 -9.9057564511895180e-04
+
+ 2.5895762443542480e-01 -7.1211874485015869e-02
+ <_>
+
+ 0 -1 218 -3.7965672090649605e-03
+
+ -6.4451014995574951e-01 3.5450231283903122e-02
+ <_>
+
+ 0 -1 346 3.9518065750598907e-03
+
+ -6.3615679740905762e-02 3.0333930253982544e-01
+ <_>
+
+ 0 -1 282 -5.4976264946162701e-03
+
+ -4.3285435438156128e-01 4.7526597976684570e-02
+ <_>
+
+ 0 -1 721 7.1266246959567070e-03
+
+ -6.6810697317123413e-02 2.8491511940956116e-01
+ <_>
+
+ 0 -1 912 -3.0366722494363785e-03
+
+ -4.3046197295188904e-01 4.4313102960586548e-02
+ <_>
+
+ 0 -1 714 -1.7097850795835257e-03
+
+ 2.5873449444770813e-01 -7.3857538402080536e-02
+ <_>
+
+ 0 -1 702 -4.4310283847153187e-03
+
+ 2.1451152861118317e-01 -8.7626561522483826e-02
+ <_>
+
+ 0 -1 47 -3.9760642684996128e-03
+
+ -4.6889033913612366e-01 3.8441929966211319e-02
+ <_>
+
+ 0 -1 683 -2.9741778969764709e-02
+
+ -5.5860131978988647e-01 3.0309556052088737e-02
+ <_>
+
+ 0 -1 13 1.3289751112461090e-01
+
+ 2.8634676709771156e-02 -5.6014162302017212e-01
+ <_>
+
+ 0 -1 386 -1.1272695846855640e-03
+
+ 1.7104774713516235e-01 -1.0818520933389664e-01
+
+ <_>
+ 83
+ -1.2789946794509888e+00
+
+ <_>
+
+ 0 -1 649 1.3820428401231766e-02
+
+ -1.0330537706613541e-01 4.5001628994941711e-01
+ <_>
+
+ 0 -1 834 -1.0161036625504494e-02
+
+ 3.2188063859939575e-01 -1.5805941820144653e-01
+ <_>
+
+ 0 -1 398 -3.8372592534869909e-03
+
+ 3.2943242788314819e-01 -1.1501405388116837e-01
+ <_>
+
+ 0 -1 769 3.4624878317117691e-02
+
+ -9.8698168992996216e-02 5.4050970077514648e-01
+ <_>
+
+ 0 -1 437 5.7967011816799641e-03
+
+ -1.1608023941516876e-01 2.8170758485794067e-01
+ <_>
+
+ 0 -1 754 4.7825248911976814e-03
+
+ -1.3033217191696167e-01 2.4669390916824341e-01
+ <_>
+
+ 0 -1 74 7.1141775697469711e-04
+
+ -2.0435671508312225e-01 1.1761441081762314e-01
+ <_>
+
+ 0 -1 22 -2.9168082401156425e-02
+
+ -6.2692928314208984e-01 5.5113222450017929e-02
+ <_>
+
+ 0 -1 796 2.1553519181907177e-03
+
+ 5.3858544677495956e-02 -4.2096143960952759e-01
+ <_>
+
+ 0 -1 894 -2.1254396997392178e-03
+
+ 4.2603659629821777e-01 -5.0405498594045639e-02
+ <_>
+
+ 0 -1 894 8.4234733367338777e-04
+
+ -9.3583315610885620e-02 2.6316204667091370e-01
+ <_>
+
+ 0 -1 948 -1.6576268244534731e-03
+
+ -3.5802370309829712e-01 6.8603202700614929e-02
+ <_>
+
+ 0 -1 554 6.5620511770248413e-02
+
+ -6.4758449792861938e-02 3.8339248299598694e-01
+ <_>
+
+ 0 -1 361 -1.8485928885638714e-03
+
+ 1.7337062954902649e-01 -1.3676019012928009e-01
+ <_>
+
+ 0 -1 305 -1.8170465528964996e-01
+
+ 4.0350264310836792e-01 -5.3196940571069717e-02
+ <_>
+
+ 0 -1 848 -3.4317909739911556e-03
+
+ -5.2157330513000488e-01 4.6489212661981583e-02
+ <_>
+
+ 0 -1 800 -2.7482535224407911e-03
+
+ -5.1078474521636963e-01 4.3557438999414444e-02
+ <_>
+
+ 0 -1 731 -4.7894287854433060e-03
+
+ 3.4981805086135864e-01 -6.5036587417125702e-02
+ <_>
+
+ 0 -1 706 -3.3211666159331799e-03
+
+ 2.1143883466720581e-01 -1.1754662543535233e-01
+ <_>
+
+ 0 -1 677 3.5642951726913452e-02
+
+ 3.7131600081920624e-02 -6.2165355682373047e-01
+ <_>
+
+ 0 -1 481 -3.1561930663883686e-03
+
+ -4.2197883129119873e-01 4.7645546495914459e-02
+ <_>
+
+ 0 -1 872 5.2224877290427685e-03
+
+ -1.0117106884717941e-01 2.1957167983055115e-01
+ <_>
+
+ 0 -1 140 2.5758458301424980e-02
+
+ -9.6981137990951538e-02 3.0423089861869812e-01
+ <_>
+
+ 0 -1 567 2.8883803170174360e-03
+
+ 4.4947806745767593e-02 -5.5540132522583008e-01
+ <_>
+
+ 0 -1 484 2.6014349423348904e-03
+
+ 4.5947834849357605e-02 -4.1711980104446411e-01
+ <_>
+
+ 0 -1 257 -7.8792509157210588e-04
+
+ 1.5732656419277191e-01 -1.2769798934459686e-01
+ <_>
+
+ 0 -1 252 4.2199464514851570e-03
+
+ -9.4008974730968475e-02 2.6868444681167603e-01
+ <_>
+
+ 0 -1 571 -2.4246796965599060e-03
+
+ -4.9610009789466858e-01 4.6141009777784348e-02
+ <_>
+
+ 0 -1 465 -1.8996626604348421e-03
+
+ 2.6260954141616821e-01 -8.5721127688884735e-02
+ <_>
+
+ 0 -1 945 1.8048105994239450e-03
+
+ 7.1231566369533539e-02 -3.2751160860061646e-01
+ <_>
+
+ 0 -1 249 -5.6593962945044041e-03
+
+ -5.0264769792556763e-01 4.0275387465953827e-02
+ <_>
+
+ 0 -1 940 -3.4701074473559856e-03
+
+ -4.9033272266387939e-01 3.6995064467191696e-02
+ <_>
+
+ 0 -1 766 1.1992279905825853e-03
+
+ -9.3982182443141937e-02 2.2527951002120972e-01
+ <_>
+
+ 0 -1 528 -3.3614276908338070e-03
+
+ 1.5591301023960114e-01 -1.3875743746757507e-01
+ <_>
+
+ 0 -1 758 9.2923380434513092e-03
+
+ 2.8368480503559113e-02 -6.3946157693862915e-01
+ <_>
+
+ 0 -1 98 -1.6806223988533020e-01
+
+ -6.3519150018692017e-01 2.4432161822915077e-02
+ <_>
+
+ 0 -1 614 -1.5483988681808114e-03
+
+ -4.9389392137527466e-01 3.4452050924301147e-02
+ <_>
+
+ 0 -1 961 7.9401559196412563e-04
+
+ -1.6395612061023712e-01 1.1427336186170578e-01
+ <_>
+
+ 0 -1 245 -5.3670424968004227e-03
+
+ -5.4615026712417603e-01 3.2274313271045685e-02
+ <_>
+
+ 0 -1 923 -5.1019818056374788e-04
+
+ 1.4040225744247437e-01 -1.2673649191856384e-01
+ <_>
+
+ 0 -1 846 -9.6546392887830734e-04
+
+ 2.3117446899414062e-01 -7.7826015651226044e-02
+ <_>
+
+ 0 -1 994 -9.7423873376101255e-04
+
+ -4.0673121809959412e-01 4.6749390661716461e-02
+ <_>
+
+ 0 -1 970 -4.7841384075582027e-03
+
+ -5.0288796424865723e-01 3.4186109900474548e-02
+ <_>
+
+ 0 -1 89 6.8537802435457706e-03
+
+ 5.0501946359872818e-02 -3.5414797067642212e-01
+ <_>
+
+ 0 -1 651 4.1695050895214081e-03
+
+ -6.8471699953079224e-02 2.8334242105484009e-01
+ <_>
+
+ 0 -1 391 2.6521178369875997e-05
+
+ -1.7646598815917969e-01 1.0057727992534637e-01
+ <_>
+
+ 0 -1 674 -1.8193974392488599e-03
+
+ -5.2059328556060791e-01 3.4266594797372818e-02
+ <_>
+
+ 0 -1 284 1.1680822353810072e-03
+
+ -7.5169444084167480e-02 2.3740953207015991e-01
+ <_>
+
+ 0 -1 284 -5.8111123507842422e-04
+
+ 2.4673853814601898e-01 -8.9036554098129272e-02
+ <_>
+
+ 0 -1 789 5.5753946304321289e-02
+
+ -4.8898559063673019e-02 3.7110447883605957e-01
+ <_>
+
+ 0 -1 388 -6.0947462916374207e-03
+
+ -4.8019152879714966e-01 3.6990296095609665e-02
+ <_>
+
+ 0 -1 988 3.3249799162149429e-03
+
+ 3.2017692923545837e-02 -4.8544195294380188e-01
+ <_>
+
+ 0 -1 586 -1.1994136497378349e-02
+
+ 2.7767661213874817e-01 -6.2677264213562012e-02
+ <_>
+
+ 0 -1 940 1.9462420605123043e-03
+
+ 5.7167824357748032e-02 -3.2460683584213257e-01
+ <_>
+
+ 0 -1 482 -3.5742400214076042e-03
+
+ 2.1856486797332764e-01 -7.7333562076091766e-02
+ <_>
+
+ 0 -1 543 3.4013153053820133e-03
+
+ -9.4114005565643311e-02 2.3269242048263550e-01
+ <_>
+
+ 0 -1 859 6.4494553953409195e-03
+
+ 3.4765381366014481e-02 -5.1627504825592041e-01
+ <_>
+
+ 0 -1 163 -1.2767435982823372e-02
+
+ 2.5566741824150085e-01 -6.7411571741104126e-02
+ <_>
+
+ 0 -1 230 2.2043818607926369e-03
+
+ -1.3278621435165405e-01 1.7942063510417938e-01
+ <_>
+
+ 0 -1 229 -4.0757502429187298e-03
+
+ -3.8042715191841125e-01 4.4863421469926834e-02
+ <_>
+
+ 0 -1 730 2.2066584788262844e-03
+
+ -7.0331946015357971e-02 2.5572371482849121e-01
+ <_>
+
+ 0 -1 700 2.2714279592037201e-02
+
+ 4.1653785854578018e-02 -4.4101753830909729e-01
+ <_>
+
+ 0 -1 749 -1.1373223736882210e-02
+
+ 3.2443967461585999e-01 -5.8059785515069962e-02
+ <_>
+
+ 0 -1 835 1.8165379296988249e-03
+
+ -7.2351627051830292e-02 2.2953742742538452e-01
+ <_>
+
+ 0 -1 235 -2.8745923191308975e-03
+
+ -3.9090758562088013e-01 4.6148840337991714e-02
+ <_>
+
+ 0 -1 673 -5.7676057331264019e-03
+
+ 2.4503223598003387e-01 -7.2128646075725555e-02
+ <_>
+
+ 0 -1 177 1.2852130457758904e-02
+
+ -1.1143829673528671e-01 1.6758553683757782e-01
+ <_>
+
+ 0 -1 141 -4.2651765048503876e-02
+
+ 2.3846423625946045e-01 -7.9255387187004089e-02
+ <_>
+
+ 0 -1 24 -6.8766735494136810e-03
+
+ -3.9145267009735107e-01 5.2240811288356781e-02
+ <_>
+
+ 0 -1 15 -1.5351611375808716e-01
+
+ -5.4598790407180786e-01 2.9950620606541634e-02
+ <_>
+
+ 0 -1 280 -1.7586871981620789e-02
+
+ 2.4160921573638916e-01 -7.7404774725437164e-02
+ <_>
+
+ 0 -1 557 2.8469474054872990e-03
+
+ -7.1562752127647400e-02 2.3895153403282166e-01
+ <_>
+
+ 0 -1 493 -2.6379337534308434e-02
+
+ 2.7370086312294006e-01 -6.5483018755912781e-02
+ <_>
+
+ 0 -1 759 -6.6346197854727507e-04
+
+ 1.7174075543880463e-01 -1.0841262340545654e-01
+ <_>
+
+ 0 -1 736 1.4637422282248735e-03
+
+ -1.1365657299757004e-01 1.6123561561107635e-01
+ <_>
+
+ 0 -1 569 -1.3798776781186461e-03
+
+ 2.3192690312862396e-01 -7.5626462697982788e-02
+ <_>
+
+ 0 -1 516 -6.8256547674536705e-03
+
+ 2.4984428286552429e-01 -7.2457753121852875e-02
+ <_>
+
+ 0 -1 312 -9.0181883424520493e-03
+
+ 2.0358866453170776e-01 -9.5499873161315918e-02
+ <_>
+
+ 0 -1 218 3.1383798923343420e-03
+
+ 4.0804021060466766e-02 -4.9618390202522278e-01
+ <_>
+
+ 0 -1 171 -1.8526764586567879e-02
+
+ 2.2743205726146698e-01 -8.6628310382366180e-02
+ <_>
+
+ 0 -1 594 -2.2562327794730663e-03
+
+ -3.2850387692451477e-01 5.9250634163618088e-02
+ <_>
+
+ 0 -1 432 -4.1183121502399445e-03
+
+ -5.0281947851181030e-01 3.2455049455165863e-02
+ <_>
+
+ 0 -1 96 4.8136096447706223e-03
+
+ 3.1708184629678726e-02 -4.9248033761978149e-01
+
+ <_>
+ 90
+ -1.2794928550720215e+00
+
+ <_>
+
+ 0 -1 568 -4.7569684684276581e-03
+
+ 4.4339472055435181e-01 -1.0486443340778351e-01
+ <_>
+
+ 0 -1 795 -2.5423073675483465e-03
+
+ 3.9922216534614563e-01 -1.0431514680385590e-01
+ <_>
+
+ 0 -1 649 1.1162508279085159e-02
+
+ -1.5686489641666412e-01 2.3129878938198090e-01
+ <_>
+
+ 0 -1 847 1.7287035007029772e-03
+
+ -1.5123696625232697e-01 2.9676723480224609e-01
+ <_>
+
+ 0 -1 265 2.5025676935911179e-02
+
+ -5.1661748439073563e-02 4.8509848117828369e-01
+ <_>
+
+ 0 -1 78 1.2561861425638199e-02
+
+ -1.1817755550146103e-01 2.6937758922576904e-01
+ <_>
+
+ 0 -1 812 4.6598571352660656e-03
+
+ -1.3565555214881897e-01 2.1206009387969971e-01
+ <_>
+
+ 0 -1 434 7.4310216587036848e-04
+
+ -1.7020516097545624e-01 1.5990819036960602e-01
+ <_>
+
+ 0 -1 231 1.0259399190545082e-02
+
+ -1.4796857535839081e-01 1.8798792362213135e-01
+ <_>
+
+ 0 -1 278 -1.2777388095855713e-02
+
+ -5.4041445255279541e-01 4.8501875251531601e-02
+ <_>
+
+ 0 -1 489 -1.1427352204918861e-02
+
+ -5.1071381568908691e-01 4.8088576644659042e-02
+ <_>
+
+ 0 -1 819 2.8340169592411257e-05
+
+ -2.0961570739746094e-01 1.0582420229911804e-01
+ <_>
+
+ 0 -1 325 -6.4714960753917694e-03
+
+ -5.0862830877304077e-01 4.8812258988618851e-02
+ <_>
+
+ 0 -1 367 1.3540303334593773e-02
+
+ 2.7134107425808907e-02 -7.1317195892333984e-01
+ <_>
+
+ 0 -1 210 1.8916794797405601e-03
+
+ -6.2187314033508301e-02 3.6233416199684143e-01
+ <_>
+
+ 0 -1 51 1.0457850992679596e-02
+
+ 4.0487006306648254e-02 -5.3173840045928955e-01
+ <_>
+
+ 0 -1 893 -9.0822251513600349e-04
+
+ 2.0090451836585999e-01 -1.0807146877050400e-01
+ <_>
+
+ 0 -1 535 -1.9299473613500595e-02
+
+ -6.4914399385452271e-01 4.0790289640426636e-02
+ <_>
+
+ 0 -1 663 -8.2283990923315287e-04
+
+ 1.5708251297473907e-01 -1.3143004477024078e-01
+ <_>
+
+ 0 -1 523 3.7520762998610735e-03
+
+ 3.8761712610721588e-02 -4.9775493144989014e-01
+ <_>
+
+ 0 -1 762 8.2424264401197433e-03
+
+ 3.6369498819112778e-02 -5.1153117418289185e-01
+ <_>
+
+ 0 -1 805 -1.1945937294512987e-03
+
+ 1.3862735033035278e-01 -1.3917639851570129e-01
+ <_>
+
+ 0 -1 985 -1.0589268989861012e-02
+
+ 3.2981950044631958e-01 -7.6042778789997101e-02
+ <_>
+
+ 0 -1 128 2.6780981570482254e-02
+
+ 4.6954374760389328e-02 -4.5390221476554871e-01
+ <_>
+
+ 0 -1 705 5.2458671852946281e-03
+
+ -4.7804936766624451e-02 4.0361502766609192e-01
+ <_>
+
+ 0 -1 729 1.0518019553273916e-03
+
+ -1.0052871704101562e-01 1.9928459823131561e-01
+ <_>
+
+ 0 -1 407 3.9210864342749119e-03
+
+ 3.6381114274263382e-02 -5.4954099655151367e-01
+ <_>
+
+ 0 -1 873 -1.5182888135313988e-02
+
+ 2.8286656737327576e-01 -7.6106920838356018e-02
+ <_>
+
+ 0 -1 279 2.7552489191293716e-03
+
+ -1.2027227133512497e-01 2.0814672112464905e-01
+ <_>
+
+ 0 -1 869 1.3051946647465229e-02
+
+ 3.6561664193868637e-02 -6.8296074867248535e-01
+ <_>
+
+ 0 -1 849 4.4104140251874924e-03
+
+ 2.9448021203279495e-02 -5.9994471073150635e-01
+ <_>
+
+ 0 -1 799 2.3885946720838547e-03
+
+ 3.9816807955503464e-02 -4.6116915345191956e-01
+ <_>
+
+ 0 -1 551 2.3683100007474422e-03
+
+ 4.9801617860794067e-02 -3.9546611905097961e-01
+ <_>
+
+ 0 -1 707 -4.1178334504365921e-03
+
+ 1.6903834044933319e-01 -1.1102814227342606e-01
+ <_>
+
+ 0 -1 466 -2.7111368253827095e-03
+
+ 2.0166625082492828e-01 -9.3054622411727905e-02
+ <_>
+
+ 0 -1 360 -2.4442467838525772e-03
+
+ 1.3419428467750549e-01 -1.4021472632884979e-01
+ <_>
+
+ 0 -1 104 -6.9398069754242897e-03
+
+ -4.7041961550712585e-01 3.8327444344758987e-02
+ <_>
+
+ 0 -1 14 -7.5376339256763458e-02
+
+ 3.5196593403816223e-01 -5.8293107897043228e-02
+ <_>
+
+ 0 -1 270 -7.3061959119513631e-04
+
+ 2.0563322305679321e-01 -9.7862586379051208e-02
+ <_>
+
+ 0 -1 339 -4.4864090159535408e-03
+
+ -4.3219071626663208e-01 4.6815373003482819e-02
+ <_>
+
+ 0 -1 679 -3.3369990997016430e-03
+
+ -5.7968968152999878e-01 3.2250367105007172e-02
+ <_>
+
+ 0 -1 636 -5.7756435126066208e-03
+
+ -6.3823670148849487e-01 2.6716385036706924e-02
+ <_>
+
+ 0 -1 352 3.8174313958734274e-03
+
+ -7.8204549849033356e-02 2.4104152619838715e-01
+ <_>
+
+ 0 -1 414 3.9163082838058472e-03
+
+ 4.0961768478155136e-02 -4.2656800150871277e-01
+ <_>
+
+ 0 -1 670 -3.7615487817674875e-03
+
+ 2.0846015214920044e-01 -8.6097449064254761e-02
+ <_>
+
+ 0 -1 371 -9.5803234726190567e-03
+
+ -7.0837384462356567e-01 2.8397833928465843e-02
+ <_>
+
+ 0 -1 93 1.4632595703005791e-02
+
+ 1.8669826909899712e-02 -7.4236363172531128e-01
+ <_>
+
+ 0 -1 234 5.3799869492650032e-03
+
+ 3.0915707349777222e-02 -4.7074958682060242e-01
+ <_>
+
+ 0 -1 701 -2.4318110663443804e-03
+
+ 3.0304560065269470e-01 -5.6169599294662476e-02
+ <_>
+
+ 0 -1 641 3.8594864308834076e-02
+
+ 2.5472542271018028e-02 -6.8472218513488770e-01
+ <_>
+
+ 0 -1 125 1.6673290729522705e-01
+
+ -5.9959251433610916e-02 2.9591250419616699e-01
+ <_>
+
+ 0 -1 854 -5.0129964947700500e-03
+
+ 1.9718486070632935e-01 -9.4902090728282928e-02
+ <_>
+
+ 0 -1 960 -9.3115903437137604e-03
+
+ 2.8306549787521362e-01 -6.8168632686138153e-02
+ <_>
+
+ 0 -1 804 -2.7176579460501671e-03
+
+ 2.4883794784545898e-01 -7.3830418288707733e-02
+ <_>
+
+ 0 -1 787 6.9358374457806349e-04
+
+ -1.2474948167800903e-01 1.6316886246204376e-01
+ <_>
+
+ 0 -1 783 1.3523821253329515e-03
+
+ -7.3475763201713562e-02 3.0120497941970825e-01
+ <_>
+
+ 0 -1 532 -2.6339504867792130e-02
+
+ 4.7823980450630188e-01 -3.9222836494445801e-02
+ <_>
+
+ 0 -1 866 3.3510509878396988e-02
+
+ -3.8013227283954620e-02 4.1955846548080444e-01
+ <_>
+
+ 0 -1 694 -2.8097369067836553e-05
+
+ 1.2249568104743958e-01 -1.4184975624084473e-01
+ <_>
+
+ 0 -1 988 -4.0141213685274124e-03
+
+ -4.5551317930221558e-01 3.6903131753206253e-02
+ <_>
+
+ 0 -1 934 5.7984986342489719e-03
+
+ 3.9383981376886368e-02 -4.0305584669113159e-01
+ <_>
+
+ 0 -1 753 7.5392555445432663e-03
+
+ -9.3996182084083557e-02 1.8520636856555939e-01
+ <_>
+
+ 0 -1 943 4.5007485896348953e-03
+
+ 4.2565450072288513e-02 -4.0628531575202942e-01
+ <_>
+
+ 0 -1 500 5.0333794206380844e-03
+
+ -6.7051678895950317e-02 2.5224363803863525e-01
+ <_>
+
+ 0 -1 511 8.7359821191057563e-04
+
+ -9.5469102263450623e-02 1.7292767763137817e-01
+ <_>
+
+ 0 -1 771 3.0778967775404453e-03
+
+ -6.1908006668090820e-02 2.5266119837760925e-01
+ <_>
+
+ 0 -1 835 -2.2874618880450726e-03
+
+ 1.9187310338020325e-01 -8.5145145654678345e-02
+ <_>
+
+ 0 -1 634 4.0947222150862217e-03
+
+ 3.0908439308404922e-02 -5.5290663242340088e-01
+ <_>
+
+ 0 -1 488 2.1358881145715714e-02
+
+ 4.0033571422100067e-02 -3.8174301385879517e-01
+ <_>
+
+ 0 -1 159 -4.5840246602892876e-03
+
+ -5.2027910947799683e-01 3.0034648254513741e-02
+ <_>
+
+ 0 -1 232 9.8655056208372116e-03
+
+ 2.1588459610939026e-02 -6.3089925050735474e-01
+ <_>
+
+ 0 -1 223 2.5678081437945366e-03
+
+ -1.1046713590621948e-01 1.4713281393051147e-01
+ <_>
+
+ 0 -1 688 -2.6078277733176947e-03
+
+ 2.7103677392005920e-01 -5.9257075190544128e-02
+ <_>
+
+ 0 -1 355 2.6908484287559986e-03
+
+ 2.7514556422829628e-02 -6.3733005523681641e-01
+ <_>
+
+ 0 -1 715 -1.3983637327328324e-03
+
+ 1.5699537098407745e-01 -1.0462216287851334e-01
+ <_>
+
+ 0 -1 433 1.0498151183128357e-01
+
+ 3.0471364036202431e-02 -4.9990084767341614e-01
+ <_>
+
+ 0 -1 491 -1.4592260122299194e-01
+
+ 3.2007977366447449e-01 -5.2097231149673462e-02
+ <_>
+
+ 0 -1 825 7.8754723072052002e-03
+
+ -6.7778728902339935e-02 2.8044930100440979e-01
+ <_>
+
+ 0 -1 262 -5.3792521357536316e-03
+
+ 2.1354769170284271e-01 -8.2902953028678894e-02
+ <_>
+
+ 0 -1 420 -1.0021779686212540e-02
+
+ 2.5685080885887146e-01 -7.3165819048881531e-02
+ <_>
+
+ 0 -1 1 -4.2762188240885735e-03
+
+ 1.7162682116031647e-01 -9.7696490585803986e-02
+ <_>
+
+ 0 -1 67 1.0965526103973389e-02
+
+ -7.5053967535495758e-02 2.3615135252475739e-01
+ <_>
+
+ 0 -1 328 -4.4276113621890545e-03
+
+ 2.5747051835060120e-01 -6.3898853957653046e-02
+ <_>
+
+ 0 -1 276 -8.6840223520994186e-03
+
+ -4.7478455305099487e-01 3.6790292710065842e-02
+ <_>
+
+ 0 -1 938 2.8339526616036892e-03
+
+ 4.0944386273622513e-02 -3.6514538526535034e-01
+ <_>
+
+ 0 -1 790 7.6391562819480896e-02
+
+ -4.9489263445138931e-02 3.4142583608627319e-01
+ <_>
+
+ 0 -1 148 1.9103729864582419e-03
+
+ -5.6329321116209030e-02 2.9177185893058777e-01
+ <_>
+
+ 0 -1 304 5.2499733865261078e-02
+
+ 2.8848636895418167e-02 -5.9306102991104126e-01
+ <_>
+
+ 0 -1 956 -5.0793914124369621e-03
+
+ -5.0588577985763550e-01 2.8303196653723717e-02
+ <_>
+
+ 0 -1 967 -7.1491668932139874e-03
+
+ -6.2660187482833862e-01 2.3113224655389786e-02
+
+ <_>
+ 88
+ -1.2153301239013672e+00
+
+ <_>
+
+ 0 -1 803 3.5730558447539806e-03
+
+ -4.2218949645757675e-02 5.5067819356918335e-01
+ <_>
+
+ 0 -1 520 1.0531613603234291e-02
+
+ -1.0848262906074524e-01 4.2079353332519531e-01
+ <_>
+
+ 0 -1 570 -2.8240748215466738e-03
+
+ 1.5155430138111115e-01 -2.2742147743701935e-01
+ <_>
+
+ 0 -1 384 -1.6008135862648487e-03
+
+ 2.9879093170166016e-01 -1.0573560744524002e-01
+ <_>
+
+ 0 -1 90 -1.2082614004611969e-02
+
+ 2.5803449749946594e-01 -1.1197961121797562e-01
+ <_>
+
+ 0 -1 746 9.8490377422422171e-04
+
+ -1.8312133848667145e-01 1.3942104578018188e-01
+ <_>
+
+ 0 -1 347 1.3184763491153717e-02
+
+ -1.0306112468242645e-01 2.5403776764869690e-01
+ <_>
+
+ 0 -1 143 2.5388993322849274e-02
+
+ 6.4101323485374451e-02 -4.2444714903831482e-01
+ <_>
+
+ 0 -1 196 7.8083951957523823e-03
+
+ -7.8133262693881989e-02 3.2170715928077698e-01
+ <_>
+
+ 0 -1 921 1.2125947978347540e-03
+
+ -1.4831624925136566e-01 1.6055701673030853e-01
+ <_>
+
+ 0 -1 920 -5.7722916826605797e-03
+
+ -6.2254351377487183e-01 4.7926213592290878e-02
+ <_>
+
+ 0 -1 987 -6.7740413360297680e-03
+
+ -6.4991837739944458e-01 1.9058052450418472e-02
+ <_>
+
+ 0 -1 291 -2.8847754001617432e-03
+
+ -5.1574712991714478e-01 4.2939033359289169e-02
+ <_>
+
+ 0 -1 922 -5.1092512905597687e-02
+
+ -7.1794927120208740e-01 3.0500946566462517e-02
+ <_>
+
+ 0 -1 303 -3.0863287393003702e-03
+
+ -5.1027435064315796e-01 3.7360988557338715e-02
+ <_>
+
+ 0 -1 593 -3.1833123648539186e-04
+
+ 1.1626140773296356e-01 -1.7245446145534515e-01
+ <_>
+
+ 0 -1 210 1.2636608444154263e-03
+
+ -7.4942886829376221e-02 2.7081242203712463e-01
+ <_>
+
+ 0 -1 693 -2.7436314150691032e-02
+
+ -5.7718968391418457e-01 3.3168055117130280e-02
+ <_>
+
+ 0 -1 342 -1.8837231909856200e-03
+
+ -3.0960574746131897e-01 6.1044581234455109e-02
+ <_>
+
+ 0 -1 797 3.2289433293044567e-03
+
+ -6.8203814327716827e-02 2.9658797383308411e-01
+ <_>
+
+ 0 -1 503 -3.6236688029021025e-03
+
+ -4.9605649709701538e-01 4.2492914944887161e-02
+ <_>
+
+ 0 -1 135 -1.3776571722701192e-03
+
+ 1.3447758555412292e-01 -1.3678476214408875e-01
+ <_>
+
+ 0 -1 579 2.9051192104816437e-03
+
+ -1.2944447994232178e-01 1.4306847751140594e-01
+ <_>
+
+ 0 -1 722 4.4553354382514954e-03
+
+ 3.8421813398599625e-02 -4.5035859942436218e-01
+ <_>
+
+ 0 -1 622 1.0964765213429928e-02
+
+ -4.8769049346446991e-02 3.9813303947448730e-01
+ <_>
+
+ 0 -1 682 2.8863823972642422e-03
+
+ 5.1313977688550949e-02 -3.6272794008255005e-01
+ <_>
+
+ 0 -1 283 8.8652484118938446e-03
+
+ -9.4886533915996552e-02 2.1068450808525085e-01
+ <_>
+
+ 0 -1 333 -1.9646657630801201e-02
+
+ 2.2927023470401764e-01 -1.0384474694728851e-01
+ <_>
+
+ 0 -1 684 -2.3328745737671852e-03
+
+ -3.0931735038757324e-01 6.4516365528106689e-02
+ <_>
+
+ 0 -1 8 -4.0204055607318878e-02
+
+ 2.7381995320320129e-01 -7.6448827981948853e-02
+ <_>
+
+ 0 -1 100 1.9051276147365570e-02
+
+ 4.9466736614704132e-02 -3.6089882254600525e-01
+ <_>
+
+ 0 -1 936 1.1553505435585976e-02
+
+ -7.4454858899116516e-02 2.5223839282989502e-01
+ <_>
+
+ 0 -1 76 6.0810474678874016e-03
+
+ 4.9583721905946732e-02 -3.6660569906234741e-01
+ <_>
+
+ 0 -1 212 5.4147411137819290e-03
+
+ 3.2274514436721802e-02 -4.9895319342613220e-01
+ <_>
+
+ 0 -1 544 4.6544210053980350e-03
+
+ 2.5989409536123276e-02 -6.1053085327148438e-01
+ <_>
+
+ 0 -1 166 2.4446439929306507e-03
+
+ -1.2073440849781036e-01 1.4529803395271301e-01
+ <_>
+
+ 0 -1 698 4.6318914974108338e-04
+
+ -1.0553400218486786e-01 1.7337696254253387e-01
+ <_>
+
+ 0 -1 642 -3.7485856562852859e-02
+
+ -4.0581890940666199e-01 4.1759915649890900e-02
+ <_>
+
+ 0 -1 529 -2.0438145846128464e-02
+
+ 2.9171264171600342e-01 -6.6287793219089508e-02
+ <_>
+
+ 0 -1 524 -3.8345486391335726e-03
+
+ 1.5750087797641754e-01 -1.2569475173950195e-01
+ <_>
+
+ 0 -1 884 8.8059913832694292e-04
+
+ -1.0610871762037277e-01 1.7642241716384888e-01
+ <_>
+
+ 0 -1 33 2.0514219067990780e-03
+
+ 3.4303460270166397e-02 -5.5235451459884644e-01
+ <_>
+
+ 0 -1 851 -3.5282317548990250e-03
+
+ -5.3414058685302734e-01 3.0512372031807899e-02
+ <_>
+
+ 0 -1 506 6.1051873490214348e-03
+
+ -8.4812760353088379e-02 1.9969700276851654e-01
+ <_>
+
+ 0 -1 137 -6.4141638576984406e-03
+
+ -4.0772309899330139e-01 4.3864764273166656e-02
+ <_>
+
+ 0 -1 823 1.7272554337978363e-02
+
+ 2.1965105086565018e-02 -6.9809681177139282e-01
+ <_>
+
+ 0 -1 512 -1.9691141787916422e-03
+
+ 1.8511210381984711e-01 -9.0554594993591309e-02
+ <_>
+
+ 0 -1 59 -5.5513512343168259e-03
+
+ -4.2040807008743286e-01 4.0062893182039261e-02
+ <_>
+
+ 0 -1 626 -1.1905157566070557e-01
+
+ -6.4312189817428589e-01 2.3472266271710396e-02
+ <_>
+
+ 0 -1 290 4.0823101997375488e-02
+
+ -7.3068141937255859e-02 2.4851579964160919e-01
+ <_>
+
+ 0 -1 119 -8.1011475995182991e-03
+
+ 2.2747313976287842e-01 -7.5412914156913757e-02
+ <_>
+
+ 0 -1 87 4.7750310041010380e-03
+
+ -7.8901365399360657e-02 2.3182301223278046e-01
+ <_>
+
+ 0 -1 404 -2.7586806565523148e-02
+
+ -6.4926701784133911e-01 2.5375340133905411e-02
+ <_>
+
+ 0 -1 907 4.3069543316960335e-03
+
+ 2.4360222741961479e-02 -5.7372909784317017e-01
+ <_>
+
+ 0 -1 385 -6.1931653181090951e-04
+
+ 2.2557340562343597e-01 -7.5787223875522614e-02
+ <_>
+
+ 0 -1 50 -1.1459679901599884e-01
+
+ 3.0668416619300842e-01 -5.2840072661638260e-02
+ <_>
+
+ 0 -1 239 3.1560026109218597e-02
+
+ -9.5666781067848206e-02 1.7659574747085571e-01
+ <_>
+
+ 0 -1 871 1.5142546035349369e-03
+
+ -9.2694908380508423e-02 2.0833927392959595e-01
+ <_>
+
+ 0 -1 731 4.7312509268522263e-03
+
+ -4.9851816147565842e-02 3.4422698616981506e-01
+ <_>
+
+ 0 -1 253 -5.9051956050097942e-03
+
+ -4.6798244118690491e-01 3.6009732633829117e-02
+ <_>
+
+ 0 -1 703 3.3569703809916973e-03
+
+ -5.1445800811052322e-02 3.3950069546699524e-01
+ <_>
+
+ 0 -1 966 -1.1821147799491882e-01
+
+ 4.6877983212471008e-01 -3.2708466053009033e-02
+ <_>
+
+ 0 -1 363 -8.8651233818382025e-04
+
+ 1.5177871286869049e-01 -1.0880727320909500e-01
+ <_>
+
+ 0 -1 680 -2.5330238044261932e-02
+
+ 1.7184022068977356e-01 -9.8979160189628601e-02
+ <_>
+
+ 0 -1 770 5.5901473388075829e-03
+
+ -7.1004293859004974e-02 2.7359166741371155e-01
+ <_>
+
+ 0 -1 189 1.2344302609562874e-02
+
+ 3.2738436013460159e-02 -5.2876019477844238e-01
+ <_>
+
+ 0 -1 348 -7.4871592223644257e-03
+
+ -5.1955360174179077e-01 2.7597136795520782e-02
+ <_>
+
+ 0 -1 646 -2.6753707788884640e-03
+
+ -4.7180628776550293e-01 3.1411368399858475e-02
+ <_>
+
+ 0 -1 168 -3.2419776543974876e-03
+
+ 1.5980260074138641e-01 -9.5776490867137909e-02
+ <_>
+
+ 0 -1 169 8.8083129376173019e-03
+
+ -8.2104682922363281e-02 2.0850872993469238e-01
+ <_>
+
+ 0 -1 58 2.7282098308205605e-03
+
+ 6.1908718198537827e-02 -2.6338595151901245e-01
+ <_>
+
+ 0 -1 671 5.0587565638124943e-03
+
+ -8.2083821296691895e-02 1.9557759165763855e-01
+ <_>
+
+ 0 -1 708 -2.1199107170104980e-02
+
+ -5.0425887107849121e-01 3.0914928764104843e-02
+ <_>
+
+ 0 -1 723 3.4958114847540855e-03
+
+ -8.2294017076492310e-02 1.9164223968982697e-01
+ <_>
+
+ 0 -1 842 1.5914414543658495e-03
+
+ -6.9352962076663971e-02 2.1474194526672363e-01
+ <_>
+
+ 0 -1 193 -5.0045788288116455e-02
+
+ 2.4582423269748688e-01 -6.2959901988506317e-02
+ <_>
+
+ 0 -1 19 -4.1983526200056076e-02
+
+ -6.3210010528564453e-01 2.5985429063439369e-02
+ <_>
+
+ 0 -1 402 -6.9432961754500866e-04
+
+ 2.2444137930870056e-01 -7.0591680705547333e-02
+ <_>
+
+ 0 -1 540 6.0177911072969437e-03
+
+ 3.7622205913066864e-02 -4.1375440359115601e-01
+ <_>
+
+ 0 -1 492 4.7936867922544479e-03
+
+ -9.0203136205673218e-02 1.7498855292797089e-01
+ <_>
+
+ 0 -1 390 -4.7484524548053741e-03
+
+ -3.9998278021812439e-01 3.8966752588748932e-02
+ <_>
+
+ 0 -1 620 -7.7324017882347107e-02
+
+ -4.8634868860244751e-01 2.9687402769923210e-02
+ <_>
+
+ 0 -1 417 1.1184449307620525e-02
+
+ -4.9598570913076401e-02 3.2780852913856506e-01
+ <_>
+
+ 0 -1 132 -1.0921864770352840e-02
+
+ 1.7756749689579010e-01 -8.5219532251358032e-02
+ <_>
+
+ 0 -1 357 4.5135535299777985e-02
+
+ 2.8995228931307793e-02 -5.3758519887924194e-01
+ <_>
+
+ 0 -1 341 -1.1866749264299870e-03
+
+ 1.8304300308227539e-01 -8.5605643689632416e-02
+ <_>
+
+ 0 -1 609 2.0626676268875599e-03
+
+ 2.5438303127884865e-02 -5.9883767366409302e-01
+ <_>
+
+ 0 -1 251 2.7453177608549595e-05
+
+ -1.3831512629985809e-01 1.0590004175901413e-01
+
+ <_>
+ 98
+ -1.2823635339736938e+00
+
+ <_>
+
+ 0 -1 840 -8.7535101920366287e-03
+
+ 3.7845414876937866e-01 -1.2724789977073669e-01
+ <_>
+
+ 0 -1 376 -5.7867290452122688e-03
+
+ 4.6451708674430847e-01 -1.0028645396232605e-01
+ <_>
+
+ 0 -1 467 -1.5636831521987915e-02
+
+ 2.7137696743011475e-01 -1.3237486779689789e-01
+ <_>
+
+ 0 -1 743 7.9419813118875027e-04
+
+ -2.2457434237003326e-01 1.8765783309936523e-01
+ <_>
+
+ 0 -1 511 9.8101666662842035e-04
+
+ -1.1674020439386368e-01 2.3788549005985260e-01
+ <_>
+
+ 0 -1 148 -1.1779682245105505e-03
+
+ 2.5913080573081970e-01 -8.3949849009513855e-02
+ <_>
+
+ 0 -1 330 9.6748135983943939e-03
+
+ -8.3296068012714386e-02 3.4700453281402588e-01
+ <_>
+
+ 0 -1 307 2.9431451112031937e-03
+
+ 4.6826824545860291e-02 -5.1865130662918091e-01
+ <_>
+
+ 0 -1 918 -1.0496248723939061e-03
+
+ -2.9976195096969604e-01 6.9594070315361023e-02
+ <_>
+
+ 0 -1 697 -1.6385620459914207e-02
+
+ 2.1480703353881836e-01 -9.7807772457599640e-02
+ <_>
+
+ 0 -1 910 4.9830954521894455e-03
+
+ 2.2837642580270767e-02 -7.7743059396743774e-01
+ <_>
+
+ 0 -1 796 -3.1421617604792118e-03
+
+ -5.6898134946823120e-01 3.6988433450460434e-02
+ <_>
+
+ 0 -1 901 1.6069117933511734e-02
+
+ -1.0548119246959686e-01 1.9650301337242126e-01
+ <_>
+
+ 0 -1 751 1.5043821185827255e-02
+
+ -1.0749972611665726e-01 2.0178599655628204e-01
+ <_>
+
+ 0 -1 295 6.8444460630416870e-03
+
+ 5.0306834280490875e-02 -4.3162798881530762e-01
+ <_>
+
+ 0 -1 827 1.1850953102111816e-02
+
+ 3.2905589789152145e-02 -5.1617246866226196e-01
+ <_>
+
+ 0 -1 831 2.1246306598186493e-02
+
+ -6.3726536929607391e-02 3.0544599890708923e-01
+ <_>
+
+ 0 -1 256 1.1852337047457695e-02
+
+ -8.9553833007812500e-02 2.9359081387519836e-01
+ <_>
+
+ 0 -1 323 -2.5085010565817356e-03
+
+ 2.2805334627628326e-01 -9.5263637602329254e-02
+ <_>
+
+ 0 -1 752 7.5797801837325096e-03
+
+ 3.8756053894758224e-02 -5.7552194595336914e-01
+ <_>
+
+ 0 -1 86 5.4980744607746601e-03
+
+ 4.6144284307956696e-02 -3.6506399512290955e-01
+ <_>
+
+ 0 -1 208 -3.0190458055585623e-03
+
+ -2.9709556698799133e-01 7.5851216912269592e-02
+ <_>
+
+ 0 -1 552 -7.0441095158457756e-03
+
+ 1.6086654365062714e-01 -1.1914677917957306e-01
+ <_>
+
+ 0 -1 364 -6.9178184494376183e-03
+
+ -4.1069602966308594e-01 4.4916272163391113e-02
+ <_>
+
+ 0 -1 351 5.0740875303745270e-03
+
+ -7.4677795171737671e-02 2.4945564568042755e-01
+ <_>
+
+ 0 -1 121 -1.0403880849480629e-02
+
+ -5.3336864709854126e-01 3.9480298757553101e-02
+ <_>
+
+ 0 -1 323 2.3738082963973284e-03
+
+ -7.8084513545036316e-02 2.3774850368499756e-01
+ <_>
+
+ 0 -1 391 2.7033074729843065e-05
+
+ -1.8558554351329803e-01 9.6640095114707947e-02
+ <_>
+
+ 0 -1 167 2.9049259610474110e-03
+
+ 4.6409133821725845e-02 -3.9720407128334045e-01
+ <_>
+
+ 0 -1 181 -5.6298477575182915e-03
+
+ -4.5908093452453613e-01 3.7730857729911804e-02
+ <_>
+
+ 0 -1 638 5.0751655362546444e-03
+
+ 2.3507807403802872e-02 -6.4602053165435791e-01
+ <_>
+
+ 0 -1 909 -7.5826002284884453e-04
+
+ 1.2444372475147247e-01 -1.3639765977859497e-01
+ <_>
+
+ 0 -1 11 -9.7201213240623474e-02
+
+ 3.9986947178840637e-01 -4.4366274029016495e-02
+ <_>
+
+ 0 -1 496 -2.3840454220771790e-01
+
+ -5.3094118833541870e-01 3.8410611450672150e-02
+ <_>
+
+ 0 -1 114 -1.3428549282252789e-02
+
+ 2.2794343531131744e-01 -7.7827021479606628e-02
+ <_>
+
+ 0 -1 64 -5.0623202696442604e-04
+
+ 1.5778008103370667e-01 -1.2732668220996857e-01
+ <_>
+
+ 0 -1 931 -8.6578715126961470e-04
+
+ 1.4809772372245789e-01 -1.1785575747489929e-01
+ <_>
+
+ 0 -1 544 -2.7892580255866051e-03
+
+ -4.2324438691139221e-01 4.1194166988134384e-02
+ <_>
+
+ 0 -1 654 2.9110969044268131e-03
+
+ -1.2145258486270905e-01 1.4758351445198059e-01
+ <_>
+
+ 0 -1 122 -1.7908504605293274e-01
+
+ 4.0684828162193298e-01 -4.6298943459987640e-02
+ <_>
+
+ 0 -1 894 4.2685694643296301e-04
+
+ -9.4548642635345459e-02 1.8615303933620453e-01
+ <_>
+
+ 0 -1 72 1.9871112704277039e-01
+
+ -5.6818448007106781e-02 3.2197028398513794e-01
+ <_>
+
+ 0 -1 892 1.2496551498770714e-03
+
+ -7.0664338767528534e-02 2.5729593634605408e-01
+ <_>
+
+ 0 -1 447 1.6119793057441711e-02
+
+ -5.0713617354631424e-02 3.9684635400772095e-01
+ <_>
+
+ 0 -1 964 -2.5047704111784697e-03
+
+ -3.5733562707901001e-01 4.9460943788290024e-02
+ <_>
+
+ 0 -1 672 5.2866833284497261e-03
+
+ 3.2510578632354736e-02 -4.4326359033584595e-01
+ <_>
+
+ 0 -1 633 -3.4677600488066673e-03
+
+ 2.3254001140594482e-01 -7.3516972362995148e-02
+ <_>
+
+ 0 -1 600 -3.3557973802089691e-03
+
+ 2.3221854865550995e-01 -6.9719336926937103e-02
+ <_>
+
+ 0 -1 801 -6.3276281580328941e-03
+
+ -4.0112924575805664e-01 4.3525256216526031e-02
+ <_>
+
+ 0 -1 218 -4.3456726707518101e-03
+
+ -6.8020933866500854e-01 1.9806224852800369e-02
+ <_>
+
+ 0 -1 604 6.2400596216320992e-03
+
+ 1.8352568149566650e-02 -7.0223194360733032e-01
+ <_>
+
+ 0 -1 979 3.3795731142163277e-03
+
+ 4.3487045913934708e-02 -3.0831974744796753e-01
+ <_>
+
+ 0 -1 937 1.3499217107892036e-02
+
+ -4.4923197478055954e-02 3.2624542713165283e-01
+ <_>
+
+ 0 -1 408 -1.0585743002593517e-03
+
+ 1.6033367812633514e-01 -9.8465800285339355e-02
+ <_>
+
+ 0 -1 405 -5.3765797056257725e-03
+
+ 2.6544988155364990e-01 -6.7050188779830933e-02
+ <_>
+
+ 0 -1 980 -2.4880110286176205e-03
+
+ -2.9397118091583252e-01 5.4097402840852737e-02
+ <_>
+
+ 0 -1 505 -2.1792344748973846e-02
+
+ -7.2506862878799438e-01 1.9187789410352707e-02
+ <_>
+
+ 0 -1 714 4.7056311741471291e-03
+
+ -5.2215453237295151e-02 3.1615570187568665e-01
+ <_>
+
+ 0 -1 669 -4.2645912617444992e-03
+
+ 2.3567616939544678e-01 -6.8938009440898895e-02
+ <_>
+
+ 0 -1 774 5.8556320145726204e-03
+
+ 4.2000979185104370e-02 -4.6045160293579102e-01
+ <_>
+
+ 0 -1 926 1.3632343616336584e-03
+
+ -6.5663956105709076e-02 2.3397234082221985e-01
+ <_>
+
+ 0 -1 895 -6.0495175421237946e-03
+
+ -4.3943586945533752e-01 3.6742802709341049e-02
+ <_>
+
+ 0 -1 308 6.7223357036709785e-03
+
+ 1.9922675564885139e-02 -6.8767511844635010e-01
+ <_>
+
+ 0 -1 917 -5.1960002630949020e-02
+
+ -7.5993520021438599e-01 1.5627101063728333e-02
+ <_>
+
+ 0 -1 542 3.3762669190764427e-03
+
+ -7.7943108975887299e-02 1.9545321166515350e-01
+ <_>
+
+ 0 -1 582 -1.8302195239812136e-03
+
+ 1.9154363870620728e-01 -9.4946600496768951e-02
+ <_>
+
+ 0 -1 71 -4.3824277818202972e-03
+
+ -5.3172159194946289e-01 2.8438575565814972e-02
+ <_>
+
+ 0 -1 107 4.8605538904666901e-03
+
+ 1.8084224313497543e-02 -7.0419138669967651e-01
+ <_>
+
+ 0 -1 289 -5.0755832344293594e-03
+
+ 1.3961549103260040e-01 -1.0557857155799866e-01
+ <_>
+
+ 0 -1 349 9.0303886681795120e-03
+
+ -5.6681722402572632e-02 3.0537691712379456e-01
+ <_>
+
+ 0 -1 52 1.7635107040405273e-01
+
+ -3.5581633448600769e-02 3.9358299970626831e-01
+ <_>
+
+ 0 -1 728 1.1068049352616072e-03
+
+ -9.6729792654514313e-02 1.6677951812744141e-01
+ <_>
+
+ 0 -1 162 1.1059102602303028e-02
+
+ 2.9283966869115829e-02 -5.1121145486831665e-01
+ <_>
+
+ 0 -1 236 -5.0462923943996429e-02
+
+ -4.2722624540328979e-01 3.1082244589924812e-02
+ <_>
+
+ 0 -1 316 -3.8071773014962673e-03
+
+ 2.9747742414474487e-01 -5.1289469003677368e-02
+ <_>
+
+ 0 -1 373 -1.5183673240244389e-03
+
+ 1.8215130269527435e-01 -1.0301912575960159e-01
+ <_>
+
+ 0 -1 258 2.1069757640361786e-02
+
+ 2.4503789842128754e-02 -5.8991265296936035e-01
+ <_>
+
+ 0 -1 68 6.6435593180358410e-03
+
+ 4.3313629925251007e-02 -3.1504327058792114e-01
+ <_>
+
+ 0 -1 574 -8.2504414021968842e-03
+
+ -4.7998124361038208e-01 3.0433293431997299e-02
+ <_>
+
+ 0 -1 617 -1.0892231017351151e-02
+
+ 3.1449675559997559e-01 -5.2475348114967346e-02
+ <_>
+
+ 0 -1 213 8.1554818898439407e-03
+
+ 3.9224579930305481e-02 -3.8470247387886047e-01
+ <_>
+
+ 0 -1 838 -5.4475883953273296e-03
+
+ -6.5578418970108032e-01 2.0117431879043579e-02
+ <_>
+
+ 0 -1 487 -2.6005427935160697e-04
+
+ 1.4328984916210175e-01 -9.8999619483947754e-02
+ <_>
+
+ 0 -1 461 1.3821206521242857e-03
+
+ -5.2590593695640564e-02 2.7557003498077393e-01
+ <_>
+
+ 0 -1 445 -1.1740636080503464e-02
+
+ 2.7564841508865356e-01 -5.9799015522003174e-02
+ <_>
+
+ 0 -1 941 2.7866149321198463e-03
+
+ 5.0002526491880417e-02 -3.5232934355735779e-01
+ <_>
+
+ 0 -1 962 6.6179647110402584e-03
+
+ -6.3348092138767242e-02 2.3150660097599030e-01
+ <_>
+
+ 0 -1 297 -1.3244405854493380e-03
+
+ -2.6642721891403198e-01 5.5936500430107117e-02
+ <_>
+
+ 0 -1 485 1.1830568313598633e-02
+
+ -6.9061063230037689e-02 2.1172530949115753e-01
+ <_>
+
+ 0 -1 644 2.5925931986421347e-03
+
+ 1.9716180860996246e-02 -7.7208590507507324e-01
+ <_>
+
+ 0 -1 748 -2.8010653331875801e-03
+
+ 1.3846111297607422e-01 -9.7015053033828735e-02
+ <_>
+
+ 0 -1 144 -4.7637272626161575e-02
+
+ 2.1245625615119934e-01 -7.0445045828819275e-02
+ <_>
+
+ 0 -1 197 1.3677144888788462e-03
+
+ -8.5676178336143494e-02 1.9613882899284363e-01
+ <_>
+
+ 0 -1 556 -1.3261453807353973e-01
+
+ 4.3639957904815674e-01 -3.4653130918741226e-02
+ <_>
+
+ 0 -1 69 7.1225965023040771e-01
+
+ 1.9474601373076439e-02 -8.7232232093811035e-01
+ <_>
+
+ 0 -1 149 -5.9057516045868397e-03
+
+ -3.7135502696037292e-01 3.5206548869609833e-02
+ <_>
+
+ 0 -1 971 3.5532126203179359e-03
+
+ -6.6334858536720276e-02 2.3531165719032288e-01
+ <_>
+
+ 0 -1 31 -1.9724387675523758e-02
+
+ 2.5173032283782959e-01 -5.7575348764657974e-02
+
+ <_>
+ 100
+ -1.3067311048507690e+00
+
+ <_>
+
+ 0 -1 458 8.1832958385348320e-03
+
+ -1.1180391162633896e-01 3.9526882767677307e-01
+ <_>
+
+ 0 -1 717 -5.5650249123573303e-03
+
+ 3.3437621593475342e-01 -1.2654128670692444e-01
+ <_>
+
+ 0 -1 577 8.1406952813267708e-04
+
+ -1.7086146771907806e-01 1.8384252488613129e-01
+ <_>
+
+ 0 -1 113 -2.0645279437303543e-03
+
+ 1.7057111859321594e-01 -1.7103828489780426e-01
+ <_>
+
+ 0 -1 864 1.9037863239645958e-03
+
+ -1.6791534423828125e-01 1.5749432146549225e-01
+ <_>
+
+ 0 -1 242 1.1136581189930439e-02
+
+ 4.0173061192035675e-02 -3.7364640831947327e-01
+ <_>
+
+ 0 -1 228 5.6379067245870829e-04
+
+ -1.6792711615562439e-01 1.4207355678081512e-01
+ <_>
+
+ 0 -1 797 -3.3720356877893209e-03
+
+ 2.5698736310005188e-01 -7.5178287923336029e-02
+ <_>
+
+ 0 -1 710 -1.7311582341790199e-02
+
+ -5.2065086364746094e-01 4.7350786626338959e-02
+ <_>
+
+ 0 -1 845 -3.3407085575163364e-03
+
+ -4.5184752345085144e-01 3.2597322016954422e-02
+ <_>
+
+ 0 -1 661 -3.4317255020141602e-02
+
+ 2.5700893998146057e-01 -8.3455510437488556e-02
+ <_>
+
+ 0 -1 423 -6.8267658352851868e-02
+
+ 2.8288829326629639e-01 -7.8631594777107239e-02
+ <_>
+
+ 0 -1 951 2.8722581191686913e-05
+
+ -1.8466357886791229e-01 1.1576397716999054e-01
+ <_>
+
+ 0 -1 267 9.9579263478517532e-03
+
+ -6.3400641083717346e-02 3.6796927452087402e-01
+ <_>
+
+ 0 -1 733 -1.8424488604068756e-02
+
+ 2.4584248661994934e-01 -9.4283707439899445e-02
+ <_>
+
+ 0 -1 837 6.8876314908266068e-03
+
+ -9.9725127220153809e-02 2.8111982345581055e-01
+ <_>
+
+ 0 -1 657 -2.2637452930212021e-03
+
+ -4.1033151745796204e-01 6.1188895255327225e-02
+ <_>
+
+ 0 -1 191 -8.5531552031170577e-05
+
+ 1.1543370783329010e-01 -1.6276736557483673e-01
+ <_>
+
+ 0 -1 32 3.3203132450580597e-02
+
+ 4.8811107873916626e-02 -3.7535405158996582e-01
+ <_>
+
+ 0 -1 929 5.1993243396282196e-03
+
+ 3.9811953902244568e-02 -4.8758861422538757e-01
+ <_>
+
+ 0 -1 365 4.8818998038768768e-03
+
+ 2.4118293076753616e-02 -6.7809182405471802e-01
+ <_>
+
+ 0 -1 82 -7.2956003248691559e-02
+
+ 1.8825025856494904e-01 -9.5193333923816681e-02
+ <_>
+
+ 0 -1 836 9.4123989343643188e-02
+
+ -7.2761356830596924e-02 2.7999758720397949e-01
+ <_>
+
+ 0 -1 718 1.0472428984940052e-03
+
+ -7.4624419212341309e-02 2.4220877885818481e-01
+ <_>
+
+ 0 -1 446 8.0979522317647934e-03
+
+ -5.4950036108493805e-02 3.0833497643470764e-01
+ <_>
+
+ 0 -1 463 -2.8517602477222681e-03
+
+ 3.2442548871040344e-01 -7.1306072175502777e-02
+ <_>
+
+ 0 -1 63 3.7457090802490711e-03
+
+ 5.7812750339508057e-02 -3.3119776844978333e-01
+ <_>
+
+ 0 -1 217 -3.9520347490906715e-03
+
+ -4.3750977516174316e-01 3.9293695241212845e-02
+ <_>
+
+ 0 -1 865 -5.8175362646579742e-03
+
+ 2.0937338471412659e-01 -8.1724949181079865e-02
+ <_>
+
+ 0 -1 878 7.8594256192445755e-03
+
+ 4.8747915774583817e-02 -4.1596582531929016e-01
+ <_>
+
+ 0 -1 913 -6.7130924435332417e-04
+
+ 1.4715777337551117e-01 -1.2916122376918793e-01
+ <_>
+
+ 0 -1 62 -4.2964564636349678e-03
+
+ -3.5870963335037231e-01 4.8831127583980560e-02
+ <_>
+
+ 0 -1 868 -3.8814521394670010e-03
+
+ -4.7464737296104431e-01 3.4466378390789032e-02
+ <_>
+
+ 0 -1 950 -1.8017216352745891e-03
+
+ -3.5517925024032593e-01 4.9101348966360092e-02
+ <_>
+
+ 0 -1 813 7.7566690742969513e-03
+
+ 2.7035165578126907e-02 -5.5951416492462158e-01
+ <_>
+
+ 0 -1 886 1.9125882536172867e-03
+
+ -6.3309118151664734e-02 2.5223699212074280e-01
+ <_>
+
+ 0 -1 886 -9.9804997444152832e-04
+
+ 2.4349449574947357e-01 -8.9007876813411713e-02
+ <_>
+
+ 0 -1 97 -7.5093598570674658e-04
+
+ 1.3702079653739929e-01 -1.2293258309364319e-01
+ <_>
+
+ 0 -1 7 1.0788314975798130e-02
+
+ -7.3592424392700195e-02 2.3694764077663422e-01
+ <_>
+
+ 0 -1 428 -1.2814668007194996e-03
+
+ 1.7014959454536438e-01 -9.3263216316699982e-02
+ <_>
+
+ 0 -1 851 3.5997035447508097e-03
+
+ 2.4880735203623772e-02 -5.7666695117950439e-01
+ <_>
+
+ 0 -1 410 5.9913634322583675e-03
+
+ -6.6571407020092010e-02 2.3750782012939453e-01
+ <_>
+
+ 0 -1 299 3.7381309084594250e-03
+
+ 3.7266705185174942e-02 -4.3619966506958008e-01
+ <_>
+
+ 0 -1 372 8.8815446943044662e-03
+
+ 3.0544634908437729e-02 -4.6924960613250732e-01
+ <_>
+
+ 0 -1 243 -3.1860180199146271e-02
+
+ -4.8059463500976562e-01 3.1165035441517830e-02
+ <_>
+
+ 0 -1 881 -5.4914336651563644e-03
+
+ 1.7584608495235443e-01 -9.0091012418270111e-02
+ <_>
+
+ 0 -1 821 -1.2325609102845192e-02
+
+ 3.4678825736045837e-01 -5.6969922035932541e-02
+ <_>
+
+ 0 -1 281 5.8694169856607914e-03
+
+ 3.9381653070449829e-02 -4.6237498521804810e-01
+ <_>
+
+ 0 -1 207 -5.0925426185131073e-03
+
+ -4.0191245079040527e-01 4.1170045733451843e-02
+ <_>
+
+ 0 -1 636 4.5132841914892197e-03
+
+ 2.7933681383728981e-02 -4.8419687151908875e-01
+ <_>
+
+ 0 -1 665 2.2130757570266724e-02
+
+ 2.1358741447329521e-02 -6.0434627532958984e-01
+ <_>
+
+ 0 -1 597 -1.8624030053615570e-03
+
+ 1.9556084275245667e-01 -7.8905813395977020e-02
+ <_>
+
+ 0 -1 599 3.2466566190123558e-03
+
+ -8.3141714334487915e-02 2.5859814882278442e-01
+ <_>
+
+ 0 -1 575 1.9641252234578133e-02
+
+ 2.1901637315750122e-02 -7.2247391939163208e-01
+ <_>
+
+ 0 -1 271 1.2722628191113472e-02
+
+ -4.9173772335052490e-02 3.1656193733215332e-01
+ <_>
+
+ 0 -1 210 -3.9457585080526769e-04
+
+ 1.7969387769699097e-01 -1.0087045282125473e-01
+ <_>
+
+ 0 -1 88 -3.0111533123999834e-04
+
+ 1.2916654348373413e-01 -1.5019074082374573e-01
+ <_>
+
+ 0 -1 84 -4.1901473887264729e-03
+
+ 1.6727919876575470e-01 -9.4101771712303162e-02
+ <_>
+
+ 0 -1 186 -2.9096096754074097e-02
+
+ 2.4397623538970947e-01 -6.5033406019210815e-02
+ <_>
+
+ 0 -1 815 -3.0687432736158371e-02
+
+ -5.3695982694625854e-01 3.6870311945676804e-02
+ <_>
+
+ 0 -1 596 8.9634142816066742e-02
+
+ -4.5044522732496262e-02 3.7668040394783020e-01
+ <_>
+
+ 0 -1 765 -1.8486939370632172e-02
+
+ -4.5869186520576477e-01 3.6696173250675201e-02
+ <_>
+
+ 0 -1 561 -2.0481455139815807e-03
+
+ 1.9705456495285034e-01 -8.1085532903671265e-02
+ <_>
+
+ 0 -1 160 7.9915560781955719e-03
+
+ 2.6794398203492165e-02 -6.0658437013626099e-01
+ <_>
+
+ 0 -1 368 -4.5167207717895508e-03
+
+ -3.5664665699005127e-01 4.1606105864048004e-02
+ <_>
+
+ 0 -1 429 -8.8896900415420532e-03
+
+ -5.6794744729995728e-01 2.4264462292194366e-02
+ <_>
+
+ 0 -1 601 -2.7863893657922745e-02
+
+ -6.6293621063232422e-01 1.7915287986397743e-02
+ <_>
+
+ 0 -1 153 1.9837494473904371e-03
+
+ -5.5686347186565399e-02 2.7396288514137268e-01
+ <_>
+
+ 0 -1 624 -2.9144049622118473e-03
+
+ -4.3623712658882141e-01 3.1940482556819916e-02
+ <_>
+
+ 0 -1 924 -1.1720246402546763e-03
+
+ 1.5299941599369049e-01 -8.8886320590972900e-02
+ <_>
+
+ 0 -1 927 2.1249109413474798e-03
+
+ -7.1360021829605103e-02 2.0698173344135284e-01
+ <_>
+
+ 0 -1 602 4.6013649553060532e-03
+
+ 2.5328675284981728e-02 -5.1310408115386963e-01
+ <_>
+
+ 0 -1 644 -9.4112986698746681e-04
+
+ -2.9404127597808838e-01 4.4868268072605133e-02
+ <_>
+
+ 0 -1 719 5.2681900560855865e-03
+
+ -6.4163528382778168e-02 2.2999708354473114e-01
+ <_>
+
+ 0 -1 652 1.4232876710593700e-03
+
+ -7.8037962317466736e-02 1.9061613082885742e-01
+ <_>
+
+ 0 -1 858 -1.0191567242145538e-02
+
+ -5.7409489154815674e-01 2.2581731900572777e-02
+ <_>
+
+ 0 -1 547 -4.9564028158783913e-03
+
+ 2.4646909534931183e-01 -5.9094201773405075e-02
+ <_>
+
+ 0 -1 545 2.2057720925658941e-03
+
+ -9.8776444792747498e-02 1.9191808998584747e-01
+ <_>
+
+ 0 -1 809 -4.7279503196477890e-03
+
+ -2.9638877511024475e-01 4.7132529318332672e-02
+ <_>
+
+ 0 -1 905 1.8900397699326277e-03
+
+ -1.2390431761741638e-01 1.2199163436889648e-01
+ <_>
+
+ 0 -1 692 -3.9616838330402970e-04
+
+ -2.0177872478961945e-01 6.7829817533493042e-02
+ <_>
+
+ 0 -1 378 1.5198520850390196e-03
+
+ -5.0418090075254440e-02 2.8014704585075378e-01
+ <_>
+
+ 0 -1 377 -3.0729006975889206e-03
+
+ 1.6384753584861755e-01 -9.6394442021846771e-02
+ <_>
+
+ 0 -1 637 3.3707641065120697e-02
+
+ 3.3062599599361420e-02 -4.3530252575874329e-01
+ <_>
+
+ 0 -1 993 -2.7547087520360947e-03
+
+ -6.2498420476913452e-01 2.0407166332006454e-02
+ <_>
+
+ 0 -1 993 1.0800797026604414e-03
+
+ 4.3235320597887039e-02 -3.1784874200820923e-01
+ <_>
+
+ 0 -1 981 -2.4060246068984270e-03
+
+ 1.3923163712024689e-01 -9.8239123821258545e-02
+ <_>
+
+ 0 -1 727 4.6191983856260777e-03
+
+ 2.3523205891251564e-02 -6.0865134000778198e-01
+ <_>
+
+ 0 -1 284 2.1874131634831429e-03
+
+ -4.4655255973339081e-02 3.2406413555145264e-01
+ <_>
+
+ 0 -1 137 7.9257078468799591e-03
+
+ 2.8643675148487091e-02 -5.0231784582138062e-01
+ <_>
+
+ 0 -1 340 9.6561573445796967e-03
+
+ -6.7481219768524170e-02 2.0780794322490692e-01
+ <_>
+
+ 0 -1 180 -4.3771188706159592e-02
+
+ 2.0091144740581512e-01 -8.7350860238075256e-02
+ <_>
+
+ 0 -1 28 -3.9570517838001251e-02
+
+ -6.9823634624481201e-01 2.2996466606855392e-02
+ <_>
+
+ 0 -1 517 -7.4827047064900398e-03
+
+ -3.2485857605934143e-01 4.2747449129819870e-02
+ <_>
+
+ 0 -1 863 -9.5894857076928020e-04
+
+ 1.3692225515842438e-01 -1.0624063760042191e-01
+ <_>
+
+ 0 -1 495 -5.6482471525669098e-02
+
+ 2.7130955457687378e-01 -5.5133864283561707e-02
+ <_>
+
+ 0 -1 526 -5.5641448125243187e-03
+
+ -6.5910613536834717e-01 2.6108600199222565e-02
+ <_>
+
+ 0 -1 833 4.5432001352310181e-03
+
+ -1.0277131199836731e-01 1.4715240895748138e-01
+ <_>
+
+ 0 -1 804 -1.9441416952759027e-03
+
+ 1.7929133772850037e-01 -7.8247167170047760e-02
+ <_>
+
+ 0 -1 615 1.5584268840029836e-03
+
+ 5.2101351320743561e-02 -2.7727204561233521e-01
+
+ <_>
+
+ <_>
+ 0 0 6 1 -1.
+ <_>
+ 3 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 1 -1.
+ <_>
+ 4 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 2 -1.
+ <_>
+ 4 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 6 -1.
+ <_>
+ 0 0 4 3 2.
+ <_>
+ 4 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 10 1 -1.
+ <_>
+ 5 0 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 1 -1.
+ <_>
+ 6 0 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 2 -1.
+ <_>
+ 6 0 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 14 8 -1.
+ <_>
+ 0 0 7 4 2.
+ <_>
+ 7 4 7 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 16 8 -1.
+ <_>
+ 0 0 8 4 2.
+ <_>
+ 8 4 8 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 16 10 -1.
+ <_>
+ 0 0 8 5 2.
+ <_>
+ 8 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 24 1 -1.
+ <_>
+ 12 0 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 13 10 -1.
+ <_>
+ 0 5 13 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 1 16 10 -1.
+ <_>
+ 0 1 8 5 2.
+ <_>
+ 8 6 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 1 13 15 -1.
+ <_>
+ 0 6 13 5 3.
+ 0
+ <_>
+
+ <_>
+ 0 2 8 12 -1.
+ <_>
+ 0 2 4 6 2.
+ <_>
+ 4 8 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 2 10 4 -1.
+ <_>
+ 0 2 5 2 2.
+ <_>
+ 5 4 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 4 24 2 -1.
+ <_>
+ 0 4 12 1 2.
+ <_>
+ 12 5 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 5 4 9 -1.
+ <_>
+ 0 8 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 5 24 2 -1.
+ <_>
+ 0 5 12 1 2.
+ <_>
+ 12 6 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 5 24 4 -1.
+ <_>
+ 0 5 12 2 2.
+ <_>
+ 12 7 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 5 8 -1.
+ <_>
+ 0 8 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 22 17 -1.
+ <_>
+ 11 6 11 17 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 24 2 -1.
+ <_>
+ 0 6 12 1 2.
+ <_>
+ 12 7 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 6 14 8 -1.
+ <_>
+ 0 10 14 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 7 2 3 -1.
+ <_>
+ 0 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 7 6 16 -1.
+ <_>
+ 3 7 3 16 2.
+ 0
+ <_>
+
+ <_>
+ 0 7 4 9 -1.
+ <_>
+ 0 10 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 0 7 8 17 -1.
+ <_>
+ 4 7 4 17 2.
+ 0
+ <_>
+
+ <_>
+ 0 7 24 2 -1.
+ <_>
+ 6 7 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 8 4 16 -1.
+ <_>
+ 2 8 2 16 2.
+ 0
+ <_>
+
+ <_>
+ 0 8 24 6 -1.
+ <_>
+ 0 8 12 3 2.
+ <_>
+ 12 11 12 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 1 3 -1.
+ <_>
+ 0 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 9 7 2 -1.
+ <_>
+ 0 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 8 2 -1.
+ <_>
+ 0 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 22 2 -1.
+ <_>
+ 0 9 11 1 2.
+ <_>
+ 11 10 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 24 2 -1.
+ <_>
+ 0 9 12 1 2.
+ <_>
+ 12 10 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 24 4 -1.
+ <_>
+ 0 9 12 2 2.
+ <_>
+ 12 11 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 2 2 -1.
+ <_>
+ 0 11 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 4 10 -1.
+ <_>
+ 2 10 2 10 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 4 3 -1.
+ <_>
+ 0 11 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 10 5 3 -1.
+ <_>
+ 0 11 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 10 22 2 -1.
+ <_>
+ 0 10 11 1 2.
+ <_>
+ 11 11 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 24 2 -1.
+ <_>
+ 0 10 12 1 2.
+ <_>
+ 12 11 12 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 24 4 -1.
+ <_>
+ 0 10 12 2 2.
+ <_>
+ 12 12 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 24 14 -1.
+ <_>
+ 12 10 12 14 2.
+ 0
+ <_>
+
+ <_>
+ 0 11 3 3 -1.
+ <_>
+ 0 12 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 0 11 3 4 2.
+ <_>
+ 3 15 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 0 11 24 4 -1.
+ <_>
+ 0 11 12 2 2.
+ <_>
+ 12 13 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 0 12 18 7 -1.
+ <_>
+ 9 12 9 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 12 22 2 -1.
+ <_>
+ 0 12 11 1 2.
+ <_>
+ 11 13 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 0 12 24 6 -1.
+ <_>
+ 12 12 12 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 13 24 3 -1.
+ <_>
+ 6 13 12 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 14 8 7 -1.
+ <_>
+ 4 14 4 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 14 12 10 -1.
+ <_>
+ 0 14 6 5 2.
+ <_>
+ 6 19 6 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 14 18 8 -1.
+ <_>
+ 6 14 6 8 3.
+ 0
+ <_>
+
+ <_>
+ 0 14 20 10 -1.
+ <_>
+ 10 14 10 10 2.
+ 0
+ <_>
+
+ <_>
+ 0 15 3 8 -1.
+ <_>
+ 1 15 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 0 16 3 7 -1.
+ <_>
+ 1 16 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 0 19 6 3 -1.
+ <_>
+ 0 20 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 19 9 3 -1.
+ <_>
+ 0 20 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 21 6 3 -1.
+ <_>
+ 0 22 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 0 21 7 3 -1.
+ <_>
+ 0 22 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 0 1 4 -1.
+ <_>
+ 1 2 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 12 3 -1.
+ <_>
+ 4 0 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 8 6 -1.
+ <_>
+ 1 0 4 3 2.
+ <_>
+ 5 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 8 4 -1.
+ <_>
+ 5 0 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 22 2 -1.
+ <_>
+ 1 0 11 1 2.
+ <_>
+ 12 1 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 3 21 15 -1.
+ <_>
+ 8 8 7 5 9.
+ 0
+ <_>
+
+ <_>
+ 1 3 11 3 -1.
+ <_>
+ 1 4 11 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 5 3 3 -1.
+ <_>
+ 1 6 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 5 21 6 -1.
+ <_>
+ 8 7 7 2 9.
+ 0
+ <_>
+
+ <_>
+ 1 5 22 2 -1.
+ <_>
+ 1 5 11 1 2.
+ <_>
+ 12 6 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 6 4 3 -1.
+ <_>
+ 1 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 6 5 3 -1.
+ <_>
+ 1 7 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 6 22 2 -1.
+ <_>
+ 1 6 11 1 2.
+ <_>
+ 12 7 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 6 22 17 -1.
+ <_>
+ 12 6 11 17 2.
+ 0
+ <_>
+
+ <_>
+ 1 6 20 3 -1.
+ <_>
+ 1 7 20 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 7 12 6 -1.
+ <_>
+ 5 9 4 2 9.
+ 0
+ <_>
+
+ <_>
+ 1 7 8 6 -1.
+ <_>
+ 1 9 8 2 3.
+ 0
+ <_>
+
+ <_>
+ 1 7 20 4 -1.
+ <_>
+ 1 7 10 2 2.
+ <_>
+ 11 9 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 7 22 12 -1.
+ <_>
+ 1 11 22 4 3.
+ 0
+ <_>
+
+ <_>
+ 1 8 8 2 -1.
+ <_>
+ 1 8 4 1 2.
+ <_>
+ 5 9 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 8 9 3 -1.
+ <_>
+ 1 9 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 1 8 22 4 -1.
+ <_>
+ 1 8 11 2 2.
+ <_>
+ 12 10 11 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 9 20 2 -1.
+ <_>
+ 1 9 10 1 2.
+ <_>
+ 11 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 10 4 3 -1.
+ <_>
+ 3 10 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 10 4 4 -1.
+ <_>
+ 1 11 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 10 22 2 -1.
+ <_>
+ 1 10 11 1 2.
+ <_>
+ 12 11 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 10 21 4 -1.
+ <_>
+ 1 11 21 2 2.
+ 0
+ <_>
+
+ <_>
+ 1 11 3 13 -1.
+ <_>
+ 2 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 1 13 3 10 -1.
+ <_>
+ 2 13 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 1 14 22 2 -1.
+ <_>
+ 1 14 11 1 2.
+ <_>
+ 12 15 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 16 3 1 -1.
+ <_>
+ 2 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 17 4 1 -1.
+ <_>
+ 2 18 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 19 4 1 -1.
+ <_>
+ 2 20 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 4 1 -1.
+ <_>
+ 4 0 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 0 12 14 -1.
+ <_>
+ 6 0 4 14 3.
+ 0
+ <_>
+
+ <_>
+ 2 0 20 1 -1.
+ <_>
+ 7 0 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 0 22 1 -1.
+ <_>
+ 13 0 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 2 22 2 -1.
+ <_>
+ 2 2 11 1 2.
+ <_>
+ 13 3 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 2 22 10 -1.
+ <_>
+ 2 2 11 5 2.
+ <_>
+ 13 7 11 5 2.
+ 0
+ <_>
+
+ <_>
+ 2 3 20 1 -1.
+ <_>
+ 7 3 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 3 20 2 -1.
+ <_>
+ 2 3 10 1 2.
+ <_>
+ 12 4 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 4 3 3 -1.
+ <_>
+ 2 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 4 20 2 -1.
+ <_>
+ 2 4 10 1 2.
+ <_>
+ 12 5 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 5 2 3 -1.
+ <_>
+ 2 6 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 5 20 2 -1.
+ <_>
+ 2 5 10 1 2.
+ <_>
+ 12 6 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 6 20 2 -1.
+ <_>
+ 2 6 10 1 2.
+ <_>
+ 12 7 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 6 21 18 -1.
+ <_>
+ 2 15 21 9 2.
+ 0
+ <_>
+
+ <_>
+ 2 7 6 2 -1.
+ <_>
+ 2 7 3 1 2.
+ <_>
+ 5 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 7 9 6 -1.
+ <_>
+ 5 9 3 2 9.
+ 0
+ <_>
+
+ <_>
+ 2 7 7 3 -1.
+ <_>
+ 2 8 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 7 18 2 -1.
+ <_>
+ 2 8 18 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 7 18 3 -1.
+ <_>
+ 2 8 18 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 7 21 4 -1.
+ <_>
+ 2 8 21 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 8 4 2 -1.
+ <_>
+ 4 8 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 8 22 2 -1.
+ <_>
+ 2 8 11 1 2.
+ <_>
+ 13 9 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 9 7 2 -1.
+ <_>
+ 2 9 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 20 3 -1.
+ <_>
+ 2 10 20 1 3.
+ 0
+ <_>
+
+ <_>
+ 2 11 22 2 -1.
+ <_>
+ 2 11 11 1 2.
+ <_>
+ 13 12 11 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 12 22 7 -1.
+ <_>
+ 13 12 11 7 2.
+ 0
+ <_>
+
+ <_>
+ 2 12 19 10 -1.
+ <_>
+ 2 17 19 5 2.
+ 0
+ <_>
+
+ <_>
+ 2 13 3 8 -1.
+ <_>
+ 3 13 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 2 13 20 10 -1.
+ <_>
+ 12 13 10 10 2.
+ 0
+ <_>
+
+ <_>
+ 2 15 6 2 -1.
+ <_>
+ 5 15 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 15 6 3 -1.
+ <_>
+ 5 15 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 2 15 20 4 -1.
+ <_>
+ 2 15 10 2 2.
+ <_>
+ 12 17 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 16 6 6 -1.
+ <_>
+ 2 16 3 3 2.
+ <_>
+ 5 19 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 2 17 3 1 -1.
+ <_>
+ 3 18 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 18 3 5 -1.
+ <_>
+ 3 18 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 2 21 12 3 -1.
+ <_>
+ 8 21 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 2 20 1 -1.
+ <_>
+ 3 2 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 3 8 6 -1.
+ <_>
+ 5 3 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 3 4 6 4 -1.
+ <_>
+ 3 4 3 2 2.
+ <_>
+ 6 6 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 4 18 2 -1.
+ <_>
+ 3 4 9 1 2.
+ <_>
+ 12 5 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 5 20 2 -1.
+ <_>
+ 3 5 10 1 2.
+ <_>
+ 13 6 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 5 20 6 -1.
+ <_>
+ 3 5 10 3 2.
+ <_>
+ 13 8 10 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 6 3 3 -1.
+ <_>
+ 3 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 6 16 8 -1.
+ <_>
+ 3 8 16 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 6 19 6 -1.
+ <_>
+ 3 8 19 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 7 5 4 -1.
+ <_>
+ 3 8 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 18 6 -1.
+ <_>
+ 3 7 9 3 2.
+ <_>
+ 12 10 9 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 17 6 -1.
+ <_>
+ 3 9 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 7 19 2 -1.
+ <_>
+ 3 8 19 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 8 18 4 -1.
+ <_>
+ 3 8 9 2 2.
+ <_>
+ 12 10 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 8 20 4 -1.
+ <_>
+ 3 8 10 2 2.
+ <_>
+ 13 10 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 9 3 1 -1.
+ <_>
+ 4 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 3 3 -1.
+ <_>
+ 4 10 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 9 8 9 -1.
+ <_>
+ 3 12 8 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 20 2 -1.
+ <_>
+ 3 9 10 1 2.
+ <_>
+ 13 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 9 19 9 -1.
+ <_>
+ 3 12 19 3 3.
+ 0
+ <_>
+
+ <_>
+ 3 10 3 1 -1.
+ <_>
+ 4 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 10 3 1 -1.
+ <_>
+ 4 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 10 3 2 -1.
+ <_>
+ 4 11 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 10 2 4 -1.
+ <_>
+ 3 11 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 10 8 3 -1.
+ <_>
+ 3 11 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 3 10 18 4 -1.
+ <_>
+ 3 10 9 2 2.
+ <_>
+ 12 12 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 3 1 -1.
+ <_>
+ 4 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 11 3 8 -1.
+ <_>
+ 4 11 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 3 11 4 8 -1.
+ <_>
+ 3 15 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 18 2 -1.
+ <_>
+ 3 11 9 1 2.
+ <_>
+ 12 12 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 11 10 2 -1.
+ <_>
+ 3 11 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 12 3 2 -1.
+ <_>
+ 4 13 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 12 8 12 -1.
+ <_>
+ 3 16 8 4 3.
+ 0
+ <_>
+
+ <_>
+ 3 15 4 3 -1.
+ <_>
+ 5 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 16 6 4 -1.
+ <_>
+ 3 16 3 2 2.
+ <_>
+ 6 18 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 3 16 8 6 -1.
+ <_>
+ 3 16 4 3 2.
+ <_>
+ 7 19 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 20 3 4 -1.
+ <_>
+ 4 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 0 6 4 -1.
+ <_>
+ 6 2 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 2 3 2 -1.
+ <_>
+ 5 2 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 2 16 2 -1.
+ <_>
+ 4 2 8 1 2.
+ <_>
+ 12 3 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 6 1 -1.
+ <_>
+ 6 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 9 3 -1.
+ <_>
+ 7 3 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 4 3 16 2 -1.
+ <_>
+ 4 3 8 1 2.
+ <_>
+ 12 4 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 9 6 -1.
+ <_>
+ 4 6 9 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 3 16 8 -1.
+ <_>
+ 4 7 16 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 1 4 -1.
+ <_>
+ 4 6 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 9 4 -1.
+ <_>
+ 7 7 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 4 16 2 -1.
+ <_>
+ 4 4 8 1 2.
+ <_>
+ 12 5 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 4 18 6 -1.
+ <_>
+ 4 6 18 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 4 20 6 -1.
+ <_>
+ 4 6 20 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 5 4 5 -1.
+ <_>
+ 6 5 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 4 5 16 6 -1.
+ <_>
+ 4 5 8 3 2.
+ <_>
+ 12 8 8 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 5 15 6 -1.
+ <_>
+ 4 7 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 1 3 -1.
+ <_>
+ 4 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 2 3 -1.
+ <_>
+ 4 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 6 6 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 3 3 -1.
+ <_>
+ 4 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 4 6 3 1 2.
+ <_>
+ 7 7 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 7 4 3 -1.
+ <_>
+ 4 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 15 6 -1.
+ <_>
+ 4 9 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 16 6 -1.
+ <_>
+ 4 9 16 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 7 17 3 -1.
+ <_>
+ 4 8 17 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 8 3 3 -1.
+ <_>
+ 5 9 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 4 8 2 3 -1.
+ <_>
+ 4 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 8 5 4 -1.
+ <_>
+ 4 9 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 8 18 4 -1.
+ <_>
+ 4 8 9 2 2.
+ <_>
+ 13 10 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 1 -1.
+ <_>
+ 5 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 3 1 -1.
+ <_>
+ 5 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 4 9 1 1 2.
+ <_>
+ 5 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 2 4 -1.
+ <_>
+ 4 9 1 2 2.
+ <_>
+ 5 11 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 3 2 -1.
+ <_>
+ 4 9 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 4 9 3 3 2.
+ <_>
+ 7 12 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 16 1 -1.
+ <_>
+ 8 9 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 16 2 -1.
+ <_>
+ 4 9 8 1 2.
+ <_>
+ 12 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 18 2 -1.
+ <_>
+ 4 9 9 1 2.
+ <_>
+ 13 10 9 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 9 11 4 -1.
+ <_>
+ 4 9 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 2 2 -1.
+ <_>
+ 4 10 1 1 2.
+ <_>
+ 5 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 10 3 1 -1.
+ <_>
+ 5 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 3 2 -1.
+ <_>
+ 5 11 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 3 14 -1.
+ <_>
+ 5 10 1 14 3.
+ 0
+ <_>
+
+ <_>
+ 4 10 9 4 -1.
+ <_>
+ 4 10 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 10 4 -1.
+ <_>
+ 4 10 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 16 6 -1.
+ <_>
+ 4 12 16 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 1 -1.
+ <_>
+ 5 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 3 2 -1.
+ <_>
+ 5 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 5 11 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 11 3 10 -1.
+ <_>
+ 4 16 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 4 12 3 1 -1.
+ <_>
+ 5 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 12 3 2 -1.
+ <_>
+ 5 12 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 4 12 1 6 -1.
+ <_>
+ 4 15 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 12 2 8 -1.
+ <_>
+ 4 16 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 4 13 3 1 -1.
+ <_>
+ 5 13 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 13 4 3 -1.
+ <_>
+ 6 13 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 13 9 5 -1.
+ <_>
+ 7 13 3 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 14 4 1 -1.
+ <_>
+ 6 14 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 4 15 3 2 -1.
+ <_>
+ 5 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 15 4 3 -1.
+ <_>
+ 6 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 4 15 9 4 -1.
+ <_>
+ 7 15 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 4 15 4 4 -1.
+ <_>
+ 4 16 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 4 17 3 1 -1.
+ <_>
+ 5 18 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 18 3 6 -1.
+ <_>
+ 5 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 4 20 3 4 -1.
+ <_>
+ 5 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 5 0 6 18 -1.
+ <_>
+ 7 0 2 18 3.
+ 0
+ <_>
+
+ <_>
+ 5 2 4 12 -1.
+ <_>
+ 7 2 2 12 2.
+ 0
+ <_>
+
+ <_>
+ 5 2 14 2 -1.
+ <_>
+ 5 2 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 15 6 -1.
+ <_>
+ 5 5 15 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 3 1 3 -1.
+ <_>
+ 4 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 3 2 3 -1.
+ <_>
+ 4 4 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 3 4 9 -1.
+ <_>
+ 7 3 2 9 2.
+ 0
+ <_>
+
+ <_>
+ 5 3 9 3 -1.
+ <_>
+ 8 4 3 1 9.
+ 0
+ <_>
+
+ <_>
+ 5 3 14 2 -1.
+ <_>
+ 5 3 7 1 2.
+ <_>
+ 12 4 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 4 5 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 4 16 2 -1.
+ <_>
+ 5 4 8 1 2.
+ <_>
+ 13 5 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 1 3 -1.
+ <_>
+ 4 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 5 4 9 -1.
+ <_>
+ 5 8 4 3 3.
+ 0
+ <_>
+
+ <_>
+ 5 5 14 2 -1.
+ <_>
+ 5 5 7 1 2.
+ <_>
+ 12 6 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 5 15 6 -1.
+ <_>
+ 5 7 15 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 6 1 2 -1.
+ <_>
+ 5 7 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 4 4 -1.
+ <_>
+ 5 7 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 14 2 -1.
+ <_>
+ 5 6 7 1 2.
+ <_>
+ 12 7 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 14 4 -1.
+ <_>
+ 5 7 14 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 5 8 14 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 6 15 4 -1.
+ <_>
+ 5 7 15 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 1 3 -1.
+ <_>
+ 5 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 15 -1.
+ <_>
+ 6 7 2 15 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 1 -1.
+ <_>
+ 7 7 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 5 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 3 -1.
+ <_>
+ 5 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 4 -1.
+ <_>
+ 5 8 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 3 6 -1.
+ <_>
+ 5 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 4 -1.
+ <_>
+ 5 9 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 5 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 7 16 4 -1.
+ <_>
+ 5 7 8 2 2.
+ <_>
+ 13 9 8 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 14 2 -1.
+ <_>
+ 5 8 14 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 7 16 6 -1.
+ <_>
+ 5 9 16 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 1 3 -1.
+ <_>
+ 5 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 8 2 2 -1.
+ <_>
+ 5 8 1 1 2.
+ <_>
+ 6 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 3 3 -1.
+ <_>
+ 4 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 3 4 -1.
+ <_>
+ 4 9 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 4 4 -1.
+ <_>
+ 5 9 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 4 3 -1.
+ <_>
+ 4 9 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 14 2 -1.
+ <_>
+ 5 8 7 1 2.
+ <_>
+ 12 9 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 16 2 -1.
+ <_>
+ 5 8 8 1 2.
+ <_>
+ 13 9 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 8 13 16 -1.
+ <_>
+ 5 12 13 8 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 4 4 -1.
+ <_>
+ 7 9 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 4 3 -1.
+ <_>
+ 5 10 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 9 4 4 -1.
+ <_>
+ 5 9 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 14 2 -1.
+ <_>
+ 5 9 7 1 2.
+ <_>
+ 12 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 16 2 -1.
+ <_>
+ 5 9 8 1 2.
+ <_>
+ 13 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 9 15 3 -1.
+ <_>
+ 5 10 15 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 5 10 1 1 2.
+ <_>
+ 6 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 10 3 1 -1.
+ <_>
+ 6 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 10 3 14 -1.
+ <_>
+ 6 10 1 14 3.
+ 0
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 7 10 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 10 12 4 -1.
+ <_>
+ 9 10 4 4 3.
+ 0
+ <_>
+
+ <_>
+ 5 10 14 3 -1.
+ <_>
+ 5 11 14 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 10 16 8 -1.
+ <_>
+ 5 12 16 4 2.
+ 0
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 6 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 11 9 4 -1.
+ <_>
+ 5 11 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 12 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 12 14 2 -1.
+ <_>
+ 5 12 7 1 2.
+ <_>
+ 12 13 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 13 14 2 -1.
+ <_>
+ 5 13 7 1 2.
+ <_>
+ 12 14 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 5 13 14 10 -1.
+ <_>
+ 5 18 14 5 2.
+ 0
+ <_>
+
+ <_>
+ 5 15 4 1 -1.
+ <_>
+ 6 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 3 2 -1.
+ <_>
+ 6 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 19 3 4 -1.
+ <_>
+ 6 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 5 20 3 4 -1.
+ <_>
+ 6 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 6 1 6 11 -1.
+ <_>
+ 8 1 2 11 3.
+ 0
+ <_>
+
+ <_>
+ 6 1 12 2 -1.
+ <_>
+ 6 1 6 1 2.
+ <_>
+ 12 2 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 2 1 3 -1.
+ <_>
+ 5 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 2 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 2 12 6 -1.
+ <_>
+ 6 2 6 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 1 2 -1.
+ <_>
+ 6 3 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 1 3 -1.
+ <_>
+ 5 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 3 6 1 -1.
+ <_>
+ 8 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 3 18 21 -1.
+ <_>
+ 15 3 9 21 2.
+ 0
+ <_>
+
+ <_>
+ 6 4 1 3 -1.
+ <_>
+ 5 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 4 4 3 -1.
+ <_>
+ 6 5 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 4 5 4 -1.
+ <_>
+ 5 5 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 6 3 -1.
+ <_>
+ 6 5 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 1 3 -1.
+ <_>
+ 5 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 5 3 2 -1.
+ <_>
+ 7 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 3 3 -1.
+ <_>
+ 7 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 6 5 12 2 -1.
+ <_>
+ 6 5 6 1 2.
+ <_>
+ 12 6 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 6 10 2 -1.
+ <_>
+ 6 6 5 1 2.
+ <_>
+ 11 7 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 6 5 3 -1.
+ <_>
+ 5 7 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 7 1 3 -1.
+ <_>
+ 6 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 1 6 -1.
+ <_>
+ 6 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 8 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 6 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 3 6 -1.
+ <_>
+ 6 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 7 12 2 -1.
+ <_>
+ 6 7 6 1 2.
+ <_>
+ 12 8 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 3 1 -1.
+ <_>
+ 7 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 6 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 5 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 3 4 -1.
+ <_>
+ 6 9 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 3 3 -1.
+ <_>
+ 5 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 8 12 3 -1.
+ <_>
+ 9 8 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 12 2 -1.
+ <_>
+ 6 8 6 1 2.
+ <_>
+ 12 9 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 8 13 6 -1.
+ <_>
+ 6 10 13 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 9 2 2 -1.
+ <_>
+ 6 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 12 1 -1.
+ <_>
+ 9 9 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 2 -1.
+ <_>
+ 9 9 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 3 -1.
+ <_>
+ 9 9 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 2 -1.
+ <_>
+ 10 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 2 -1.
+ <_>
+ 6 9 6 1 2.
+ <_>
+ 12 10 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 12 3 -1.
+ <_>
+ 6 10 12 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 1 3 -1.
+ <_>
+ 6 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 3 -1.
+ <_>
+ 7 10 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 4 -1.
+ <_>
+ 7 10 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 3 -1.
+ <_>
+ 6 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 2 4 -1.
+ <_>
+ 6 11 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 3 3 -1.
+ <_>
+ 6 11 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 10 12 1 -1.
+ <_>
+ 9 10 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 12 2 -1.
+ <_>
+ 6 10 6 1 2.
+ <_>
+ 12 11 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 10 13 3 -1.
+ <_>
+ 6 11 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 3 2 -1.
+ <_>
+ 6 12 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 6 11 3 3 -1.
+ <_>
+ 6 12 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 11 13 3 -1.
+ <_>
+ 6 12 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 13 7 4 -1.
+ <_>
+ 6 13 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 14 1 3 -1.
+ <_>
+ 6 15 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 6 15 3 4 -1.
+ <_>
+ 7 16 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 6 15 6 3 -1.
+ <_>
+ 6 15 3 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 18 3 1 -1.
+ <_>
+ 7 19 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 19 3 5 -1.
+ <_>
+ 7 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 7 0 3 4 -1.
+ <_>
+ 7 0 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 4 2 -1.
+ <_>
+ 7 0 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 10 1 -1.
+ <_>
+ 12 0 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 1 2 6 -1.
+ <_>
+ 7 1 1 3 2.
+ <_>
+ 8 4 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 7 1 10 1 -1.
+ <_>
+ 12 1 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 2 1 3 -1.
+ <_>
+ 6 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 2 1 4 -1.
+ <_>
+ 6 3 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 3 4 -1.
+ <_>
+ 6 3 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 6 3 -1.
+ <_>
+ 7 3 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 2 13 10 -1.
+ <_>
+ 7 7 13 5 2.
+ 0
+ <_>
+
+ <_>
+ 7 3 1 3 -1.
+ <_>
+ 6 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 3 2 4 -1.
+ <_>
+ 6 4 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 4 2 -1.
+ <_>
+ 7 3 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 3 3 -1.
+ <_>
+ 8 4 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 7 4 10 2 -1.
+ <_>
+ 7 4 5 1 2.
+ <_>
+ 12 5 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 2 -1.
+ <_>
+ 8 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 3 -1.
+ <_>
+ 8 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 3 5 -1.
+ <_>
+ 8 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 3 1 -1.
+ <_>
+ 8 6 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 1 4 -1.
+ <_>
+ 7 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ 0
+ <_>
+
+ <_>
+ 7 6 10 2 -1.
+ <_>
+ 7 6 5 1 2.
+ <_>
+ 12 7 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 6 5 3 -1.
+ <_>
+ 6 7 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 6 7 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 1 3 -1.
+ <_>
+ 7 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 7 2 2 -1.
+ <_>
+ 7 7 1 1 2.
+ <_>
+ 8 8 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 8 1 3 -1.
+ <_>
+ 7 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+ 8 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 8 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 8 12 7 -1.
+ <_>
+ 11 8 4 7 3.
+ 0
+ <_>
+
+ <_>
+ 7 8 10 2 -1.
+ <_>
+ 7 8 5 1 2.
+ <_>
+ 12 9 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 1 2 -1.
+ <_>
+ 7 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 7 9 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 7 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 10 2 -1.
+ <_>
+ 7 9 5 1 2.
+ <_>
+ 12 10 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 10 3 1 -1.
+ <_>
+ 8 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 1 3 -1.
+ <_>
+ 7 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 2 3 -1.
+ <_>
+ 7 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 6 5 -1.
+ <_>
+ 9 10 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 9 4 -1.
+ <_>
+ 10 10 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 7 10 10 2 -1.
+ <_>
+ 7 10 5 1 2.
+ <_>
+ 12 11 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 11 1 2 -1.
+ <_>
+ 7 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 15 5 4 -1.
+ <_>
+ 6 16 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 16 6 2 -1.
+ <_>
+ 9 18 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 16 4 2 -1.
+ <_>
+ 7 16 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 16 4 4 -1.
+ <_>
+ 6 17 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 17 3 1 -1.
+ <_>
+ 8 18 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 17 1 4 -1.
+ <_>
+ 7 19 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 17 3 6 -1.
+ <_>
+ 7 20 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 7 17 4 3 -1.
+ <_>
+ 6 18 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 17 5 2 -1.
+ <_>
+ 7 17 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 18 3 1 -1.
+ <_>
+ 8 19 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 19 3 1 -1.
+ <_>
+ 8 20 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 19 3 5 -1.
+ <_>
+ 8 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 7 20 3 1 -1.
+ <_>
+ 8 21 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 20 9 4 -1.
+ <_>
+ 7 22 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 20 10 4 -1.
+ <_>
+ 7 21 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 7 20 10 4 -1.
+ <_>
+ 7 22 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 8 1 -1.
+ <_>
+ 12 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 7 4 -1.
+ <_>
+ 8 2 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 16 6 -1.
+ <_>
+ 8 0 8 3 2.
+ <_>
+ 16 3 8 3 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 8 10 -1.
+ <_>
+ 8 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 16 10 -1.
+ <_>
+ 8 0 8 5 2.
+ <_>
+ 16 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 9 4 -1.
+ <_>
+ 8 1 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 0 9 10 -1.
+ <_>
+ 8 5 9 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 1 8 8 -1.
+ <_>
+ 8 5 8 4 2.
+ 0
+ <_>
+
+ <_>
+ 8 1 12 10 -1.
+ <_>
+ 8 6 12 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 2 3 3 -1.
+ <_>
+ 9 2 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 8 2 2 4 -1.
+ <_>
+ 7 3 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 2 2 6 -1.
+ <_>
+ 6 4 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 3 3 8 -1.
+ <_>
+ 9 3 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 8 4 8 2 -1.
+ <_>
+ 8 4 4 1 2.
+ <_>
+ 12 5 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 4 7 15 -1.
+ <_>
+ 8 9 7 5 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 1 -1.
+ <_>
+ 8 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 5 3 2 -1.
+ <_>
+ 9 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 5 -1.
+ <_>
+ 9 5 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 6 -1.
+ <_>
+ 9 5 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 6 -1.
+ <_>
+ 9 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 2 7 -1.
+ <_>
+ 9 5 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 7 -1.
+ <_>
+ 9 6 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 3 8 -1.
+ <_>
+ 9 5 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 8 5 3 6 -1.
+ <_>
+ 8 5 3 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 5 4 6 -1.
+ <_>
+ 6 7 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 10 2 -1.
+ <_>
+ 8 5 5 1 2.
+ <_>
+ 13 6 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 5 5 3 -1.
+ <_>
+ 7 6 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 6 3 6 -1.
+ <_>
+ 9 6 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 7 7 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 4 2 -1.
+ <_>
+ 8 6 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 4 3 -1.
+ <_>
+ 7 7 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 6 4 4 -1.
+ <_>
+ 7 7 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 10 2 -1.
+ <_>
+ 8 6 5 1 2.
+ <_>
+ 13 7 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 7 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 3 4 -1.
+ <_>
+ 7 8 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 9 5 -1.
+ <_>
+ 11 10 3 5 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 9 8 -1.
+ <_>
+ 11 10 3 8 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 4 2 -1.
+ <_>
+ 8 7 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 7 8 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 5 2 -1.
+ <_>
+ 8 7 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 8 2 -1.
+ <_>
+ 8 7 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 10 12 -1.
+ <_>
+ 8 13 10 6 2.
+ 0
+ <_>
+
+ <_>
+ 8 8 2 2 -1.
+ <_>
+ 8 8 1 1 2.
+ <_>
+ 9 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 1 -1.
+ <_>
+ 9 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 3 1 -1.
+ <_>
+ 9 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 2 -1.
+ <_>
+ 8 10 1 1 2.
+ <_>
+ 9 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 2 2 -1.
+ <_>
+ 9 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 3 2 -1.
+ <_>
+ 9 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 10 4 8 -1.
+ <_>
+ 8 10 2 4 2.
+ <_>
+ 10 14 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 8 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+ 12 11 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 10 15 12 -1.
+ <_>
+ 13 14 5 4 9.
+ 0
+ <_>
+
+ <_>
+ 8 11 2 2 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+ 9 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 8 13 9 3 -1.
+ <_>
+ 11 13 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 8 15 9 6 -1.
+ <_>
+ 11 15 3 6 3.
+ 0
+ <_>
+
+ <_>
+ 8 15 8 6 -1.
+ <_>
+ 8 17 8 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 16 8 2 -1.
+ <_>
+ 10 16 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 16 8 3 -1.
+ <_>
+ 10 16 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 8 17 3 3 -1.
+ <_>
+ 9 18 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 8 17 8 3 -1.
+ <_>
+ 10 17 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 8 17 9 6 -1.
+ <_>
+ 8 19 9 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 18 3 6 -1.
+ <_>
+ 9 18 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 8 19 3 1 -1.
+ <_>
+ 9 20 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 19 3 4 -1.
+ <_>
+ 9 19 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 8 19 7 3 -1.
+ <_>
+ 8 20 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 8 19 9 4 -1.
+ <_>
+ 8 20 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 20 3 3 -1.
+ <_>
+ 9 20 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 8 20 16 4 -1.
+ <_>
+ 8 20 8 2 2.
+ <_>
+ 16 22 8 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 21 3 3 -1.
+ <_>
+ 9 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 9 0 1 2 -1.
+ <_>
+ 9 1 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 3 6 -1.
+ <_>
+ 7 2 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 0 6 3 -1.
+ <_>
+ 12 0 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 9 0 3 9 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 8 9 -1.
+ <_>
+ 9 0 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 5 4 -1.
+ <_>
+ 9 2 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 5 8 -1.
+ <_>
+ 9 4 5 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 14 12 -1.
+ <_>
+ 9 0 7 6 2.
+ <_>
+ 16 6 7 6 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 8 10 -1.
+ <_>
+ 9 5 8 5 2.
+ 0
+ <_>
+
+ <_>
+ 9 0 15 18 -1.
+ <_>
+ 9 6 15 6 3.
+ 0
+ <_>
+
+ <_>
+ 9 1 2 8 -1.
+ <_>
+ 9 5 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 1 3 4 -1.
+ <_>
+ 8 2 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 2 2 -1.
+ <_>
+ 10 2 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 1 6 -1.
+ <_>
+ 9 5 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 3 10 -1.
+ <_>
+ 10 2 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 9 2 8 4 -1.
+ <_>
+ 11 4 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 6 2 -1.
+ <_>
+ 9 2 3 1 2.
+ <_>
+ 12 3 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 7 8 -1.
+ <_>
+ 9 6 7 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 3 3 7 -1.
+ <_>
+ 10 4 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 9 3 3 12 -1.
+ <_>
+ 10 3 1 12 3.
+ 0
+ <_>
+
+ <_>
+ 9 3 6 7 -1.
+ <_>
+ 11 3 2 7 3.
+ 0
+ <_>
+
+ <_>
+ 9 3 12 3 -1.
+ <_>
+ 13 4 4 1 9.
+ 0
+ <_>
+
+ <_>
+ 9 3 11 4 -1.
+ <_>
+ 8 4 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 3 8 -1.
+ <_>
+ 10 5 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 2 1 -1.
+ <_>
+ 9 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 3 4 -1.
+ <_>
+ 10 5 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 3 6 -1.
+ <_>
+ 10 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 11 5 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 3 3 -1.
+ <_>
+ 9 6 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 5 4 3 -1.
+ <_>
+ 8 6 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 2 6 -1.
+ <_>
+ 7 8 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 4 3 -1.
+ <_>
+ 9 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 6 4 3 -1.
+ <_>
+ 8 7 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 9 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 7 6 2 -1.
+ <_>
+ 9 7 3 1 2.
+ <_>
+ 12 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 8 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 8 6 5 -1.
+ <_>
+ 11 10 2 5 3.
+ 1
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 8 9 9 -1.
+ <_>
+ 12 8 3 9 3.
+ 0
+ <_>
+
+ <_>
+ 9 9 2 12 -1.
+ <_>
+ 9 9 1 6 2.
+ <_>
+ 10 15 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 9 9 6 3 -1.
+ <_>
+ 11 11 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 9 9 6 4 -1.
+ <_>
+ 11 11 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 9 9 3 3 -1.
+ <_>
+ 9 10 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 9 6 4 -1.
+ <_>
+ 12 9 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 10 3 3 -1.
+ <_>
+ 9 11 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 10 5 3 -1.
+ <_>
+ 9 11 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 10 14 3 -1.
+ <_>
+ 9 11 14 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 13 4 6 -1.
+ <_>
+ 9 13 2 3 2.
+ <_>
+ 11 16 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 13 9 4 -1.
+ <_>
+ 12 13 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 9 16 6 5 -1.
+ <_>
+ 11 16 2 5 3.
+ 0
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 11 17 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 9 18 3 3 -1.
+ <_>
+ 10 19 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 9 19 3 2 -1.
+ <_>
+ 10 20 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 9 19 6 3 -1.
+ <_>
+ 9 20 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 19 7 3 -1.
+ <_>
+ 9 20 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 3 3 -1.
+ <_>
+ 10 20 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 5 3 -1.
+ <_>
+ 9 21 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 6 3 -1.
+ <_>
+ 9 21 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 7 3 -1.
+ <_>
+ 9 21 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 9 20 7 4 -1.
+ <_>
+ 9 22 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 21 3 3 -1.
+ <_>
+ 10 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 9 21 8 2 -1.
+ <_>
+ 9 22 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 4 1 -1.
+ <_>
+ 12 0 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 3 12 -1.
+ <_>
+ 10 4 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 10 0 4 8 -1.
+ <_>
+ 10 4 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 10 0 14 10 -1.
+ <_>
+ 10 0 7 5 2.
+ <_>
+ 17 5 7 5 2.
+ 0
+ <_>
+
+ <_>
+ 10 2 4 6 -1.
+ <_>
+ 11 2 2 6 2.
+ 0
+ <_>
+
+ <_>
+ 10 2 6 10 -1.
+ <_>
+ 10 2 3 10 2.
+ 1
+ <_>
+
+ <_>
+ 10 3 2 5 -1.
+ <_>
+ 11 3 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 10 4 3 5 -1.
+ <_>
+ 11 4 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 10 4 4 19 -1.
+ <_>
+ 12 4 2 19 2.
+ 0
+ <_>
+
+ <_>
+ 10 5 1 2 -1.
+ <_>
+ 10 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 5 4 3 -1.
+ <_>
+ 11 5 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 10 5 3 3 -1.
+ <_>
+ 10 6 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 6 1 3 -1.
+ <_>
+ 10 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 6 4 6 -1.
+ <_>
+ 12 6 2 6 2.
+ 0
+ <_>
+
+ <_>
+ 10 7 4 3 -1.
+ <_>
+ 10 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 8 1 2 -1.
+ <_>
+ 10 8 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 8 2 2 -1.
+ <_>
+ 10 9 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 9 1 3 -1.
+ <_>
+ 9 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 9 2 3 -1.
+ <_>
+ 11 9 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 10 9 2 12 -1.
+ <_>
+ 10 9 1 6 2.
+ <_>
+ 11 15 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 10 9 2 3 -1.
+ <_>
+ 10 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 9 2 3 -1.
+ <_>
+ 9 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 10 3 3 -1.
+ <_>
+ 9 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 11 5 3 -1.
+ <_>
+ 10 12 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 12 14 3 -1.
+ <_>
+ 10 13 14 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 17 4 2 -1.
+ <_>
+ 11 17 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 17 2 6 -1.
+ <_>
+ 10 17 1 3 2.
+ <_>
+ 11 20 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 10 17 3 3 -1.
+ <_>
+ 10 18 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 17 6 2 -1.
+ <_>
+ 13 17 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 18 5 4 -1.
+ <_>
+ 10 19 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 19 5 4 -1.
+ <_>
+ 10 20 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 19 6 3 -1.
+ <_>
+ 10 20 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 3 4 -1.
+ <_>
+ 11 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 6 4 -1.
+ <_>
+ 12 20 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 10 20 5 4 -1.
+ <_>
+ 10 21 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 20 5 4 -1.
+ <_>
+ 10 22 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 20 14 4 -1.
+ <_>
+ 10 20 7 2 2.
+ <_>
+ 17 22 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 21 3 3 -1.
+ <_>
+ 11 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 10 21 5 2 -1.
+ <_>
+ 10 22 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 10 22 3 2 -1.
+ <_>
+ 11 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 10 23 3 1 -1.
+ <_>
+ 11 23 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 0 1 2 -1.
+ <_>
+ 11 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 1 4 -1.
+ <_>
+ 10 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 4 1 -1.
+ <_>
+ 13 0 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 1 1 2 -1.
+ <_>
+ 11 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 8 9 -1.
+ <_>
+ 13 4 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 11 3 3 3 -1.
+ <_>
+ 12 3 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 11 3 3 4 -1.
+ <_>
+ 12 3 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 3 4 -1.
+ <_>
+ 12 4 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 3 5 -1.
+ <_>
+ 12 4 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 3 7 -1.
+ <_>
+ 12 5 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 4 1 -1.
+ <_>
+ 13 4 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 11 4 2 3 -1.
+ <_>
+ 11 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 4 4 3 -1.
+ <_>
+ 11 5 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 5 3 1 -1.
+ <_>
+ 12 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 5 4 11 -1.
+ <_>
+ 13 5 2 11 2.
+ 0
+ <_>
+
+ <_>
+ 11 6 2 3 -1.
+ <_>
+ 11 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 6 4 3 -1.
+ <_>
+ 11 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 1 3 -1.
+ <_>
+ 11 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 2 3 -1.
+ <_>
+ 11 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 2 6 -1.
+ <_>
+ 11 7 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 7 3 3 -1.
+ <_>
+ 11 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 7 3 8 -1.
+ <_>
+ 11 7 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 11 8 1 3 -1.
+ <_>
+ 11 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 8 2 3 -1.
+ <_>
+ 11 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 9 3 3 -1.
+ <_>
+ 11 10 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 10 4 5 -1.
+ <_>
+ 12 11 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 11 10 6 3 -1.
+ <_>
+ 13 10 2 3 3.
+ 0
+ <_>
+
+ <_>
+ 11 10 6 8 -1.
+ <_>
+ 11 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 9 12 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 11 1 3 -1.
+ <_>
+ 11 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 14 3 3 -1.
+ <_>
+ 10 15 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 16 3 3 -1.
+ <_>
+ 11 17 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 11 21 3 3 -1.
+ <_>
+ 12 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 11 22 3 2 -1.
+ <_>
+ 12 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 12 0 9 17 -1.
+ <_>
+ 15 0 3 17 3.
+ 0
+ <_>
+
+ <_>
+ 12 2 2 14 -1.
+ <_>
+ 13 2 1 14 2.
+ 0
+ <_>
+
+ <_>
+ 12 3 6 1 -1.
+ <_>
+ 14 3 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 8 3 -1.
+ <_>
+ 12 4 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 12 6 -1.
+ <_>
+ 10 5 12 2 3.
+ 1
+ <_>
+
+ <_>
+ 12 4 2 3 -1.
+ <_>
+ 12 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 4 9 3 -1.
+ <_>
+ 15 5 3 1 9.
+ 0
+ <_>
+
+ <_>
+ 12 5 3 5 -1.
+ <_>
+ 13 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 12 5 3 3 -1.
+ <_>
+ 12 6 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 5 9 8 -1.
+ <_>
+ 15 5 3 8 3.
+ 0
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 6 2 8 -1.
+ <_>
+ 12 6 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 12 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 7 1 3 -1.
+ <_>
+ 12 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 7 1 8 -1.
+ <_>
+ 12 7 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 2 6 -1.
+ <_>
+ 12 7 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 2 8 -1.
+ <_>
+ 12 7 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 3 3 -1.
+ <_>
+ 12 8 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 8 1 3 -1.
+ <_>
+ 12 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 8 2 3 -1.
+ <_>
+ 12 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 9 2 3 -1.
+ <_>
+ 12 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 12 10 6 4 -1.
+ <_>
+ 14 10 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 12 10 4 10 -1.
+ <_>
+ 12 10 2 5 2.
+ <_>
+ 14 15 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 12 11 4 8 -1.
+ <_>
+ 12 11 2 4 2.
+ <_>
+ 14 15 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 12 13 4 3 -1.
+ <_>
+ 13 13 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 12 14 3 2 -1.
+ <_>
+ 13 15 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 12 15 2 4 -1.
+ <_>
+ 12 15 1 2 2.
+ <_>
+ 13 17 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 12 15 4 5 -1.
+ <_>
+ 14 15 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 12 16 6 2 -1.
+ <_>
+ 14 16 2 2 3.
+ 0
+ <_>
+
+ <_>
+ 12 19 3 5 -1.
+ <_>
+ 13 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 12 21 3 2 -1.
+ <_>
+ 13 21 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 12 21 3 3 -1.
+ <_>
+ 13 21 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 13 0 2 10 -1.
+ <_>
+ 13 0 1 5 2.
+ <_>
+ 14 5 1 5 2.
+ 0
+ <_>
+
+ <_>
+ 13 0 4 12 -1.
+ <_>
+ 14 0 2 12 2.
+ 0
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 15 0 2 10 3.
+ 0
+ <_>
+
+ <_>
+ 13 0 11 8 -1.
+ <_>
+ 11 2 11 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 6 8 -1.
+ <_>
+ 15 1 2 8 3.
+ 0
+ <_>
+
+ <_>
+ 13 2 4 2 -1.
+ <_>
+ 14 2 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 3 2 4 -1.
+ <_>
+ 13 3 1 2 2.
+ <_>
+ 14 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 3 6 3 -1.
+ <_>
+ 15 4 2 1 9.
+ 0
+ <_>
+
+ <_>
+ 13 4 4 7 -1.
+ <_>
+ 14 4 2 7 2.
+ 0
+ <_>
+
+ <_>
+ 13 4 3 8 -1.
+ <_>
+ 14 4 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 3 2 -1.
+ <_>
+ 14 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 3 5 -1.
+ <_>
+ 14 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 3 6 -1.
+ <_>
+ 14 5 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 3 8 -1.
+ <_>
+ 14 5 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 13 5 6 1 -1.
+ <_>
+ 15 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 6 7 4 -1.
+ <_>
+ 13 7 7 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 7 1 3 -1.
+ <_>
+ 13 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 7 4 8 -1.
+ <_>
+ 13 7 2 4 2.
+ <_>
+ 15 11 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 13 7 9 6 -1.
+ <_>
+ 16 9 3 2 9.
+ 0
+ <_>
+
+ <_>
+ 13 7 6 2 -1.
+ <_>
+ 13 7 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 7 8 1 -1.
+ <_>
+ 13 7 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 8 2 3 -1.
+ <_>
+ 13 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 8 9 3 -1.
+ <_>
+ 16 9 3 1 9.
+ 0
+ <_>
+
+ <_>
+ 13 8 6 8 -1.
+ <_>
+ 13 8 3 4 2.
+ <_>
+ 16 12 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 10 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 6 4 -1.
+ <_>
+ 15 9 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 13 9 10 2 -1.
+ <_>
+ 13 10 10 1 2.
+ 0
+ <_>
+
+ <_>
+ 13 10 3 1 -1.
+ <_>
+ 14 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 10 3 2 -1.
+ <_>
+ 14 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 13 11 2 3 -1.
+ <_>
+ 13 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 13 2 6 -1.
+ <_>
+ 13 13 1 3 2.
+ <_>
+ 14 16 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 13 13 4 6 -1.
+ <_>
+ 14 14 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 13 20 3 4 -1.
+ <_>
+ 14 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 13 22 3 2 -1.
+ <_>
+ 14 22 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 13 23 3 1 -1.
+ <_>
+ 14 23 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 0 3 11 -1.
+ <_>
+ 15 1 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 14 0 2 3 -1.
+ <_>
+ 14 1 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 0 10 6 -1.
+ <_>
+ 14 0 5 3 2.
+ <_>
+ 19 3 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 0 10 10 -1.
+ <_>
+ 14 0 5 5 2.
+ <_>
+ 19 5 5 5 2.
+ 0
+ <_>
+
+ <_>
+ 14 1 10 6 -1.
+ <_>
+ 14 1 5 3 2.
+ <_>
+ 19 4 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 2 1 2 -1.
+ <_>
+ 14 2 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 2 3 8 -1.
+ <_>
+ 15 2 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 16 2 2 7 3.
+ 0
+ <_>
+
+ <_>
+ 14 3 2 4 -1.
+ <_>
+ 14 3 1 2 2.
+ <_>
+ 15 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 3 2 7 -1.
+ <_>
+ 15 3 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 2 -1.
+ <_>
+ 15 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 2 3 -1.
+ <_>
+ 15 5 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 3 -1.
+ <_>
+ 15 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 3 5 -1.
+ <_>
+ 15 5 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 14 5 2 7 -1.
+ <_>
+ 15 5 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 14 5 6 4 -1.
+ <_>
+ 16 5 2 4 3.
+ 0
+ <_>
+
+ <_>
+ 14 6 6 3 -1.
+ <_>
+ 14 6 3 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 7 4 16 -1.
+ <_>
+ 15 7 2 16 2.
+ 0
+ <_>
+
+ <_>
+ 14 7 6 6 -1.
+ <_>
+ 16 9 2 2 9.
+ 0
+ <_>
+
+ <_>
+ 14 7 6 16 -1.
+ <_>
+ 16 7 2 16 3.
+ 0
+ <_>
+
+ <_>
+ 14 7 9 4 -1.
+ <_>
+ 14 8 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 9 2 4 -1.
+ <_>
+ 14 9 1 2 2.
+ <_>
+ 15 11 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 10 3 1 -1.
+ <_>
+ 15 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 15 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 14 10 3 3 -1.
+ <_>
+ 15 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 12 2 1 -1.
+ <_>
+ 15 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 14 14 3 4 -1.
+ <_>
+ 15 15 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 14 14 5 3 -1.
+ <_>
+ 14 15 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 15 3 3 -1.
+ <_>
+ 15 16 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 14 19 3 5 -1.
+ <_>
+ 15 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 14 21 10 1 -1.
+ <_>
+ 19 21 5 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 0 2 2 -1.
+ <_>
+ 15 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 0 4 2 -1.
+ <_>
+ 16 1 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 3 6 3 -1.
+ <_>
+ 15 4 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 4 2 3 -1.
+ <_>
+ 15 5 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 5 2 1 -1.
+ <_>
+ 15 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 5 2 2 -1.
+ <_>
+ 16 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 5 3 2 -1.
+ <_>
+ 16 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 5 3 3 -1.
+ <_>
+ 16 5 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 4 4 -1.
+ <_>
+ 15 9 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 7 4 6 -1.
+ <_>
+ 15 9 4 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 7 5 6 -1.
+ <_>
+ 15 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 8 2 2 -1.
+ <_>
+ 15 8 1 1 2.
+ <_>
+ 16 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 8 2 1 -1.
+ <_>
+ 15 8 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 8 1 12 -1.
+ <_>
+ 15 14 1 6 2.
+ 0
+ <_>
+
+ <_>
+ 15 8 6 2 -1.
+ <_>
+ 15 8 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 8 3 16 -1.
+ <_>
+ 15 12 3 8 2.
+ 0
+ <_>
+
+ <_>
+ 15 8 5 4 -1.
+ <_>
+ 15 9 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 9 3 3 -1.
+ <_>
+ 16 10 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 15 9 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 10 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+ 16 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 16 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 10 3 5 -1.
+ <_>
+ 16 10 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 15 10 3 4 -1.
+ <_>
+ 14 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 10 5 4 -1.
+ <_>
+ 15 11 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 15 10 5 4 -1.
+ <_>
+ 14 11 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 15 8 3 -1.
+ <_>
+ 19 15 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 15 15 8 8 -1.
+ <_>
+ 15 15 4 4 2.
+ <_>
+ 19 19 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 15 16 5 3 -1.
+ <_>
+ 15 17 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 15 18 8 6 -1.
+ <_>
+ 15 18 4 3 2.
+ <_>
+ 19 21 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 1 -1.
+ <_>
+ 20 0 4 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 2 -1.
+ <_>
+ 20 0 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 6 -1.
+ <_>
+ 16 0 4 3 2.
+ <_>
+ 20 3 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 20 4 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 16 1 3 3 -1.
+ <_>
+ 17 2 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 16 1 2 1 -1.
+ <_>
+ 16 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 2 1 2 -1.
+ <_>
+ 16 3 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 2 3 3 -1.
+ <_>
+ 17 3 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 16 2 4 2 -1.
+ <_>
+ 17 3 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 2 6 1 -1.
+ <_>
+ 18 4 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 3 4 12 -1.
+ <_>
+ 17 4 2 12 2.
+ 1
+ <_>
+
+ <_>
+ 16 4 6 3 -1.
+ <_>
+ 15 5 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 5 1 2 -1.
+ <_>
+ 16 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 5 3 2 -1.
+ <_>
+ 17 5 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 5 3 9 -1.
+ <_>
+ 16 8 3 3 3.
+ 0
+ <_>
+
+ <_>
+ 16 6 6 2 -1.
+ <_>
+ 18 8 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 7 1 6 -1.
+ <_>
+ 16 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 2 3 -1.
+ <_>
+ 16 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 3 2 -1.
+ <_>
+ 16 8 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 7 3 2 -1.
+ <_>
+ 16 7 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 3 6 -1.
+ <_>
+ 16 9 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 6 4 -1.
+ <_>
+ 16 7 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 4 3 -1.
+ <_>
+ 16 8 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 5 3 -1.
+ <_>
+ 16 8 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 5 6 -1.
+ <_>
+ 16 9 5 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 7 6 4 -1.
+ <_>
+ 16 8 6 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 7 7 8 -1.
+ <_>
+ 14 9 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 7 8 6 -1.
+ <_>
+ 16 9 8 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 8 1 2 -1.
+ <_>
+ 16 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 1 4 -1.
+ <_>
+ 16 9 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 2 2 -1.
+ <_>
+ 16 8 1 1 2.
+ <_>
+ 17 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 8 3 3 -1.
+ <_>
+ 17 9 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 16 8 2 1 -1.
+ <_>
+ 16 8 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 8 2 2 -1.
+ <_>
+ 16 8 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 8 5 6 -1.
+ <_>
+ 14 10 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 8 7 8 -1.
+ <_>
+ 14 10 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 9 1 3 -1.
+ <_>
+ 16 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 9 5 3 -1.
+ <_>
+ 16 10 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 9 8 2 -1.
+ <_>
+ 16 10 8 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 1 3 -1.
+ <_>
+ 16 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 17 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 10 2 3 -1.
+ <_>
+ 16 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 10 6 6 -1.
+ <_>
+ 14 12 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 3 2 -1.
+ <_>
+ 17 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 3 13 -1.
+ <_>
+ 17 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 12 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 16 11 2 3 -1.
+ <_>
+ 16 12 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 11 3 3 -1.
+ <_>
+ 16 12 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 16 14 4 2 -1.
+ <_>
+ 18 14 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 14 6 3 -1.
+ <_>
+ 19 14 3 3 2.
+ 0
+ <_>
+
+ <_>
+ 16 19 3 5 -1.
+ <_>
+ 17 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 16 19 2 3 -1.
+ <_>
+ 15 20 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 19 8 3 -1.
+ <_>
+ 16 20 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 0 6 15 -1.
+ <_>
+ 19 2 2 15 3.
+ 1
+ <_>
+
+ <_>
+ 17 0 6 1 -1.
+ <_>
+ 20 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 0 6 2 -1.
+ <_>
+ 20 0 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 2 3 3 -1.
+ <_>
+ 18 3 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 17 3 3 2 -1.
+ <_>
+ 18 3 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 3 3 9 -1.
+ <_>
+ 18 6 1 3 9.
+ 0
+ <_>
+
+ <_>
+ 17 3 6 2 -1.
+ <_>
+ 19 5 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 3 3 8 -1.
+ <_>
+ 15 5 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 17 3 5 3 -1.
+ <_>
+ 17 4 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 4 2 6 -1.
+ <_>
+ 17 4 1 3 2.
+ <_>
+ 18 7 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 5 1 2 -1.
+ <_>
+ 17 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 5 3 4 -1.
+ <_>
+ 18 6 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 17 5 6 2 -1.
+ <_>
+ 17 5 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 5 7 3 -1.
+ <_>
+ 16 6 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 6 2 3 -1.
+ <_>
+ 17 6 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 17 6 3 4 -1.
+ <_>
+ 18 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 17 6 3 3 -1.
+ <_>
+ 17 7 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 6 6 1 -1.
+ <_>
+ 17 6 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 7 1 3 -1.
+ <_>
+ 17 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 1 3 -1.
+ <_>
+ 16 8 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 1 6 -1.
+ <_>
+ 17 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 3 6 -1.
+ <_>
+ 18 9 1 2 9.
+ 0
+ <_>
+
+ <_>
+ 17 7 3 2 -1.
+ <_>
+ 18 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 2 3 -1.
+ <_>
+ 17 7 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 17 7 3 3 -1.
+ <_>
+ 18 8 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 2 3 -1.
+ <_>
+ 17 8 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 7 6 9 -1.
+ <_>
+ 14 10 6 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 8 3 3 -1.
+ <_>
+ 18 9 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 17 8 2 4 -1.
+ <_>
+ 17 8 1 2 2.
+ <_>
+ 18 10 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 8 2 8 -1.
+ <_>
+ 17 8 1 4 2.
+ <_>
+ 18 12 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 17 8 3 4 -1.
+ <_>
+ 18 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 17 8 4 6 -1.
+ <_>
+ 15 10 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 9 3 1 -1.
+ <_>
+ 18 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 9 2 6 -1.
+ <_>
+ 17 9 1 3 2.
+ <_>
+ 18 12 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 6 10 -1.
+ <_>
+ 17 9 3 5 2.
+ <_>
+ 20 14 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 17 9 7 2 -1.
+ <_>
+ 17 10 7 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 3 1 -1.
+ <_>
+ 18 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 10 1 3 -1.
+ <_>
+ 17 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 10 2 3 -1.
+ <_>
+ 18 10 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 2 4 -1.
+ <_>
+ 18 10 1 4 2.
+ 0
+ <_>
+
+ <_>
+ 17 10 4 2 -1.
+ <_>
+ 17 10 2 1 2.
+ <_>
+ 19 11 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 17 11 3 2 -1.
+ <_>
+ 18 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 11 3 3 -1.
+ <_>
+ 18 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 17 12 3 1 -1.
+ <_>
+ 18 12 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 12 6 2 -1.
+ <_>
+ 20 12 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 17 15 2 3 -1.
+ <_>
+ 17 16 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 15 4 3 -1.
+ <_>
+ 19 15 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 17 15 4 4 -1.
+ <_>
+ 17 15 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 17 18 2 4 -1.
+ <_>
+ 16 19 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 18 5 3 -1.
+ <_>
+ 17 19 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 17 19 1 3 -1.
+ <_>
+ 16 20 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 20 1 3 -1.
+ <_>
+ 16 21 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 20 3 4 -1.
+ <_>
+ 18 20 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 0 2 2 -1.
+ <_>
+ 18 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 0 6 1 -1.
+ <_>
+ 21 0 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 0 6 5 -1.
+ <_>
+ 21 0 3 5 2.
+ 0
+ <_>
+
+ <_>
+ 18 0 6 12 -1.
+ <_>
+ 18 0 3 6 2.
+ <_>
+ 21 6 3 6 2.
+ 0
+ <_>
+
+ <_>
+ 18 2 3 1 -1.
+ <_>
+ 19 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 2 4 1 -1.
+ <_>
+ 19 3 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 2 4 3 -1.
+ <_>
+ 19 3 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 18 4 4 3 -1.
+ <_>
+ 18 5 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 5 1 2 -1.
+ <_>
+ 18 5 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 2 3 -1.
+ <_>
+ 18 6 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 4 3 -1.
+ <_>
+ 19 7 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 4 4 -1.
+ <_>
+ 19 7 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 2 5 -1.
+ <_>
+ 18 6 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 4 6 -1.
+ <_>
+ 19 7 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 2 3 -1.
+ <_>
+ 18 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 6 4 1 -1.
+ <_>
+ 18 6 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 5 3 -1.
+ <_>
+ 18 7 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 6 6 3 -1.
+ <_>
+ 18 7 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 7 3 2 -1.
+ <_>
+ 19 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 18 7 3 5 -1.
+ <_>
+ 19 8 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 18 8 1 3 -1.
+ <_>
+ 18 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 8 2 3 -1.
+ <_>
+ 18 9 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 8 2 2 -1.
+ <_>
+ 18 8 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 9 3 1 -1.
+ <_>
+ 19 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 9 2 2 -1.
+ <_>
+ 18 9 1 1 2.
+ <_>
+ 19 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 9 3 2 -1.
+ <_>
+ 19 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 18 9 2 4 -1.
+ <_>
+ 18 11 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 9 6 9 -1.
+ <_>
+ 21 9 3 9 2.
+ 0
+ <_>
+
+ <_>
+ 18 9 6 3 -1.
+ <_>
+ 18 10 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 10 2 1 -1.
+ <_>
+ 19 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 1 3 -1.
+ <_>
+ 18 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 10 2 2 -1.
+ <_>
+ 18 10 1 1 2.
+ <_>
+ 19 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 10 6 2 -1.
+ <_>
+ 18 11 6 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 4 -1.
+ <_>
+ 19 11 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 13 -1.
+ <_>
+ 19 11 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 2 8 -1.
+ <_>
+ 18 15 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 18 11 6 1 -1.
+ <_>
+ 21 11 3 1 2.
+ 0
+ <_>
+
+ <_>
+ 18 12 6 2 -1.
+ <_>
+ 21 12 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 12 3 8 -1.
+ <_>
+ 18 16 3 4 2.
+ 0
+ <_>
+
+ <_>
+ 18 13 2 4 -1.
+ <_>
+ 18 15 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 14 4 4 -1.
+ <_>
+ 18 16 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 18 15 4 5 -1.
+ <_>
+ 20 15 2 5 2.
+ 0
+ <_>
+
+ <_>
+ 18 16 2 4 -1.
+ <_>
+ 18 16 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 17 2 5 -1.
+ <_>
+ 18 17 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 18 18 1 3 -1.
+ <_>
+ 17 19 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 20 1 3 -1.
+ <_>
+ 17 21 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 0 2 3 -1.
+ <_>
+ 19 0 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 19 2 3 1 -1.
+ <_>
+ 20 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 2 4 3 -1.
+ <_>
+ 20 3 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 19 3 3 1 -1.
+ <_>
+ 20 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 4 1 2 -1.
+ <_>
+ 19 4 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 19 4 3 1 -1.
+ <_>
+ 20 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 4 1 3 -1.
+ <_>
+ 18 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 4 1 4 -1.
+ <_>
+ 19 6 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 4 5 9 -1.
+ <_>
+ 19 7 5 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 5 3 1 -1.
+ <_>
+ 20 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 6 1 3 -1.
+ <_>
+ 19 7 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 1 3 -1.
+ <_>
+ 18 7 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 6 2 3 -1.
+ <_>
+ 19 7 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 5 9 -1.
+ <_>
+ 19 9 5 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 7 1 3 -1.
+ <_>
+ 19 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 7 3 4 -1.
+ <_>
+ 20 7 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 19 7 2 4 -1.
+ <_>
+ 19 7 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 19 8 1 3 -1.
+ <_>
+ 19 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 8 3 3 -1.
+ <_>
+ 20 8 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 9 2 1 -1.
+ <_>
+ 20 9 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 9 2 2 -1.
+ <_>
+ 19 9 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 19 10 2 2 -1.
+ <_>
+ 19 10 1 1 2.
+ <_>
+ 20 11 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 19 10 3 4 -1.
+ <_>
+ 19 11 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 12 4 8 -1.
+ <_>
+ 20 13 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 19 12 3 10 -1.
+ <_>
+ 20 12 1 10 3.
+ 0
+ <_>
+
+ <_>
+ 19 12 3 12 -1.
+ <_>
+ 20 12 1 12 3.
+ 0
+ <_>
+
+ <_>
+ 19 13 3 9 -1.
+ <_>
+ 20 13 1 9 3.
+ 0
+ <_>
+
+ <_>
+ 19 14 4 6 -1.
+ <_>
+ 20 15 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 19 15 3 6 -1.
+ <_>
+ 20 16 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 19 17 1 3 -1.
+ <_>
+ 18 18 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 18 1 3 -1.
+ <_>
+ 18 19 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 19 1 3 -1.
+ <_>
+ 18 20 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 19 1 4 -1.
+ <_>
+ 18 20 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 19 20 1 3 -1.
+ <_>
+ 18 21 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 21 5 3 -1.
+ <_>
+ 19 22 5 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 0 4 4 -1.
+ <_>
+ 19 1 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 20 3 3 1 -1.
+ <_>
+ 21 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 20 3 3 2 -1.
+ <_>
+ 21 4 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 20 4 1 3 -1.
+ <_>
+ 20 5 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 4 3 1 -1.
+ <_>
+ 21 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 20 4 3 2 -1.
+ <_>
+ 21 5 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 20 5 3 1 -1.
+ <_>
+ 21 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 20 6 4 3 -1.
+ <_>
+ 20 7 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 8 3 2 -1.
+ <_>
+ 21 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 20 8 3 3 -1.
+ <_>
+ 21 9 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 20 9 3 2 -1.
+ <_>
+ 21 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 20 9 4 10 -1.
+ <_>
+ 20 9 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 20 10 1 3 -1.
+ <_>
+ 19 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 20 10 2 2 -1.
+ <_>
+ 20 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 20 11 4 9 -1.
+ <_>
+ 20 11 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 20 14 4 6 -1.
+ <_>
+ 21 15 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 20 14 2 7 -1.
+ <_>
+ 20 14 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 20 15 3 4 -1.
+ <_>
+ 19 16 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 20 16 4 4 -1.
+ <_>
+ 21 17 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 20 17 3 5 -1.
+ <_>
+ 21 17 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 20 20 1 3 -1.
+ <_>
+ 19 21 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 20 20 4 3 -1.
+ <_>
+ 20 21 4 1 3.
+ 0
+ <_>
+
+ <_>
+ 21 1 2 16 -1.
+ <_>
+ 21 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 21 1 3 4 -1.
+ <_>
+ 21 2 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 21 3 3 2 -1.
+ <_>
+ 22 4 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 21 4 3 3 -1.
+ <_>
+ 22 5 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 21 10 1 3 -1.
+ <_>
+ 20 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 10 2 2 -1.
+ <_>
+ 21 10 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 21 10 3 4 -1.
+ <_>
+ 21 11 3 2 2.
+ 0
+ <_>
+
+ <_>
+ 21 11 1 2 -1.
+ <_>
+ 21 11 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 21 15 2 3 -1.
+ <_>
+ 20 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 16 1 3 -1.
+ <_>
+ 20 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 16 3 8 -1.
+ <_>
+ 22 16 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 21 16 2 3 -1.
+ <_>
+ 20 17 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 17 1 3 -1.
+ <_>
+ 20 18 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 17 3 7 -1.
+ <_>
+ 22 17 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 21 19 3 5 -1.
+ <_>
+ 22 19 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 22 1 2 4 -1.
+ <_>
+ 21 2 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 22 2 1 16 -1.
+ <_>
+ 22 2 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 22 9 2 4 -1.
+ <_>
+ 22 9 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 22 10 1 3 -1.
+ <_>
+ 21 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 22 10 2 7 -1.
+ <_>
+ 22 10 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 22 10 2 3 -1.
+ <_>
+ 22 11 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 22 10 2 3 -1.
+ <_>
+ 21 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 22 11 1 3 -1.
+ <_>
+ 21 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 22 12 1 3 -1.
+ <_>
+ 21 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 22 13 1 3 -1.
+ <_>
+ 21 14 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 22 16 1 3 -1.
+ <_>
+ 21 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 23 7 1 3 -1.
+ <_>
+ 23 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 10 1 3 -1.
+ <_>
+ 23 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 23 11 1 2 -1.
+ <_>
+ 23 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 23 11 1 3 -1.
+ <_>
+ 22 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 23 15 1 4 -1.
+ <_>
+ 22 16 1 2 2.
+ 1
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt.xml
new file mode 100644
index 0000000000000000000000000000000000000000..ade4b2121a68e6967cc558f4393dc8d828cee60e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt.xml
@@ -0,0 +1,24350 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 213
+
+ 0
+ 22
+
+ <_>
+ 3
+ 8.2268941402435303e-01
+
+ <_>
+
+ 0 -1 0 4.0141958743333817e-03
+
+ 3.3794190734624863e-02 8.3781069517135620e-01
+ <_>
+
+ 0 -1 1 1.5151339583098888e-02
+
+ 1.5141320228576660e-01 7.4888122081756592e-01
+ <_>
+
+ 0 -1 2 4.2109931819140911e-03
+
+ 9.0049281716346741e-02 6.3748198747634888e-01
+ <_>
+ 16
+ 6.9566087722778320e+00
+
+ <_>
+
+ 0 -1 3 1.6227109590545297e-03
+
+ 6.9308586418628693e-02 7.1109461784362793e-01
+ <_>
+
+ 0 -1 4 2.2906649392098188e-03
+
+ 1.7958030104637146e-01 6.6686922311782837e-01
+ <_>
+
+ 0 -1 5 5.0025708042085171e-03
+
+ 1.6936729848384857e-01 6.5540069341659546e-01
+ <_>
+
+ 0 -1 6 7.9659894108772278e-03
+
+ 5.8663320541381836e-01 9.1414518654346466e-02
+ <_>
+
+ 0 -1 7 -3.5227010957896709e-03
+
+ 1.4131669700145721e-01 6.0318958759307861e-01
+ <_>
+
+ 0 -1 8 3.6667689681053162e-02
+
+ 3.6756721138954163e-01 7.9203182458877563e-01
+ <_>
+
+ 0 -1 9 9.3361474573612213e-03
+
+ 6.1613857746124268e-01 2.0885099470615387e-01
+ <_>
+
+ 0 -1 10 8.6961314082145691e-03
+
+ 2.8362309932708740e-01 6.3602739572525024e-01
+ <_>
+
+ 0 -1 11 1.1488880263641477e-03
+
+ 2.2235809266567230e-01 5.8007007837295532e-01
+ <_>
+
+ 0 -1 12 -2.1484689787030220e-03
+
+ 2.4064640700817108e-01 5.7870548963546753e-01
+ <_>
+
+ 0 -1 13 2.1219060290604830e-03
+
+ 5.5596548318862915e-01 1.3622370362281799e-01
+ <_>
+
+ 0 -1 14 -9.3949146568775177e-02
+
+ 8.5027372837066650e-01 4.7177401185035706e-01
+ <_>
+
+ 0 -1 15 1.3777789426967502e-03
+
+ 5.9936738014221191e-01 2.8345298767089844e-01
+ <_>
+
+ 0 -1 16 7.3063157498836517e-02
+
+ 4.3418860435485840e-01 7.0600342750549316e-01
+ <_>
+
+ 0 -1 17 3.6767389974556863e-04
+
+ 3.0278879404067993e-01 6.0515749454498291e-01
+ <_>
+
+ 0 -1 18 -6.0479710809886456e-03
+
+ 1.7984339594841003e-01 5.6752568483352661e-01
+ <_>
+ 21
+ 9.4985427856445312e+00
+
+ <_>
+
+ 0 -1 19 -1.6510689631104469e-02
+
+ 6.6442251205444336e-01 1.4248579740524292e-01
+ <_>
+
+ 0 -1 20 2.7052499353885651e-03
+
+ 6.3253521919250488e-01 1.2884770333766937e-01
+ <_>
+
+ 0 -1 21 2.8069869149476290e-03
+
+ 1.2402880191802979e-01 6.1931931972503662e-01
+ <_>
+
+ 0 -1 22 -1.5402400167658925e-03
+
+ 1.4321430027484894e-01 5.6700158119201660e-01
+ <_>
+
+ 0 -1 23 -5.6386279175058007e-04
+
+ 1.6574330627918243e-01 5.9052079916000366e-01
+ <_>
+
+ 0 -1 24 1.9253729842603207e-03
+
+ 2.6955071091651917e-01 5.7388240098953247e-01
+ <_>
+
+ 0 -1 25 -5.0214841030538082e-03
+
+ 1.8935389816761017e-01 5.7827740907669067e-01
+ <_>
+
+ 0 -1 26 2.6365420781075954e-03
+
+ 2.3093290627002716e-01 5.6954258680343628e-01
+ <_>
+
+ 0 -1 27 -1.5127769438549876e-03
+
+ 2.7596020698547363e-01 5.9566420316696167e-01
+ <_>
+
+ 0 -1 28 -1.0157439857721329e-02
+
+ 1.7325380444526672e-01 5.5220472812652588e-01
+ <_>
+
+ 0 -1 29 -1.1953660286962986e-02
+
+ 1.3394099473953247e-01 5.5590140819549561e-01
+ <_>
+
+ 0 -1 30 4.8859491944313049e-03
+
+ 3.6287039518356323e-01 6.1888492107391357e-01
+ <_>
+
+ 0 -1 31 -8.0132916569709778e-02
+
+ 9.1211050748825073e-02 5.4759448766708374e-01
+ <_>
+
+ 0 -1 32 1.0643280111253262e-03
+
+ 3.7151429057121277e-01 5.7113999128341675e-01
+ <_>
+
+ 0 -1 33 -1.3419450260698795e-03
+
+ 5.9533137083053589e-01 3.3180978894233704e-01
+ <_>
+
+ 0 -1 34 -5.4601140320301056e-02
+
+ 1.8440659344196320e-01 5.6028461456298828e-01
+ <_>
+
+ 0 -1 35 2.9071690514683723e-03
+
+ 3.5942441225051880e-01 6.1317151784896851e-01
+ <_>
+
+ 0 -1 36 7.4718717951327562e-04
+
+ 5.9943532943725586e-01 3.4595629572868347e-01
+ <_>
+
+ 0 -1 37 4.3013808317482471e-03
+
+ 4.1726520657539368e-01 6.9908452033996582e-01
+ <_>
+
+ 0 -1 38 4.5017572119832039e-03
+
+ 4.5097151398658752e-01 7.8014570474624634e-01
+ <_>
+
+ 0 -1 39 2.4138500913977623e-02
+
+ 5.4382127523422241e-01 1.3198269903659821e-01
+ <_>
+ 39
+ 1.8412969589233398e+01
+
+ <_>
+
+ 0 -1 40 1.9212230108678341e-03
+
+ 1.4152669906616211e-01 6.1998707056045532e-01
+ <_>
+
+ 0 -1 41 -1.2748669541906565e-04
+
+ 6.1910742521286011e-01 1.8849289417266846e-01
+ <_>
+
+ 0 -1 42 5.1409931620582938e-04
+
+ 1.4873969554901123e-01 5.8579277992248535e-01
+ <_>
+
+ 0 -1 43 4.1878609918057919e-03
+
+ 2.7469098567962646e-01 6.3592398166656494e-01
+ <_>
+
+ 0 -1 44 5.1015717908740044e-03
+
+ 5.8708512783050537e-01 2.1756289899349213e-01
+ <_>
+
+ 0 -1 45 -2.1448440384119749e-03
+
+ 5.8809447288513184e-01 2.9795908927917480e-01
+ <_>
+
+ 0 -1 46 -2.8977119363844395e-03
+
+ 2.3733270168304443e-01 5.8766472339630127e-01
+ <_>
+
+ 0 -1 47 -2.1610679104924202e-02
+
+ 1.2206549942493439e-01 5.1942020654678345e-01
+ <_>
+
+ 0 -1 48 -4.6299318782985210e-03
+
+ 2.6312309503555298e-01 5.8174091577529907e-01
+ <_>
+
+ 0 -1 49 5.9393711853772402e-04
+
+ 3.6386200785636902e-01 5.6985449790954590e-01
+ <_>
+
+ 0 -1 50 5.3878661245107651e-02
+
+ 4.3035310506820679e-01 7.5593662261962891e-01
+ <_>
+
+ 0 -1 51 1.8887349870055914e-03
+
+ 2.1226030588150024e-01 5.6134271621704102e-01
+ <_>
+
+ 0 -1 52 -2.3635339457541704e-03
+
+ 5.6318491697311401e-01 2.6427671313285828e-01
+ <_>
+
+ 0 -1 53 2.4017799645662308e-02
+
+ 5.7971078157424927e-01 2.7517059445381165e-01
+ <_>
+
+ 0 -1 54 2.0543030404951423e-04
+
+ 2.7052420377731323e-01 5.7525688409805298e-01
+ <_>
+
+ 0 -1 55 8.4790197433903813e-04
+
+ 5.4356247186660767e-01 2.3348769545555115e-01
+ <_>
+
+ 0 -1 56 1.4091329649090767e-03
+
+ 5.3194248676300049e-01 2.0631550252437592e-01
+ <_>
+
+ 0 -1 57 1.4642629539594054e-03
+
+ 5.4189807176589966e-01 3.0688610672950745e-01
+ <_>
+
+ 0 -1 58 1.6352549428120255e-03
+
+ 3.6953729391098022e-01 6.1128681898117065e-01
+ <_>
+
+ 0 -1 59 8.3172752056270838e-04
+
+ 3.5650369524955750e-01 6.0252362489700317e-01
+ <_>
+
+ 0 -1 60 -2.0998890977352858e-03
+
+ 1.9139820337295532e-01 5.3628271818161011e-01
+ <_>
+
+ 0 -1 61 -7.4213981861248612e-04
+
+ 3.8355550169944763e-01 5.5293101072311401e-01
+ <_>
+
+ 0 -1 62 3.2655049581080675e-03
+
+ 4.3128961324691772e-01 7.1018958091735840e-01
+ <_>
+
+ 0 -1 63 8.9134991867467761e-04
+
+ 3.9848309755325317e-01 6.3919639587402344e-01
+ <_>
+
+ 0 -1 64 -1.5284179709851742e-02
+
+ 2.3667329549789429e-01 5.4337137937545776e-01
+ <_>
+
+ 0 -1 65 4.8381411470472813e-03
+
+ 5.8175009489059448e-01 3.2391890883445740e-01
+ <_>
+
+ 0 -1 66 -9.1093179071322083e-04
+
+ 5.5405938625335693e-01 2.9118689894676208e-01
+ <_>
+
+ 0 -1 67 -6.1275060288608074e-03
+
+ 1.7752550542354584e-01 5.1966291666030884e-01
+ <_>
+
+ 0 -1 68 -4.4576259097084403e-04
+
+ 3.0241701006889343e-01 5.5335938930511475e-01
+ <_>
+
+ 0 -1 69 2.2646540775895119e-02
+
+ 4.4149309396743774e-01 6.9753772020339966e-01
+ <_>
+
+ 0 -1 70 -1.8804960418492556e-03
+
+ 2.7913948893547058e-01 5.4979521036148071e-01
+ <_>
+
+ 0 -1 71 7.0889107882976532e-03
+
+ 5.2631992101669312e-01 2.3855470120906830e-01
+ <_>
+
+ 0 -1 72 1.7318050377070904e-03
+
+ 4.3193790316581726e-01 6.9836008548736572e-01
+ <_>
+
+ 0 -1 73 -6.8482700735330582e-03
+
+ 3.0820429325103760e-01 5.3909200429916382e-01
+ <_>
+
+ 0 -1 74 -1.5062530110299122e-05
+
+ 5.5219221115112305e-01 3.1203660368919373e-01
+ <_>
+
+ 0 -1 75 2.9475569725036621e-02
+
+ 5.4013228416442871e-01 1.7706030607223511e-01
+ <_>
+
+ 0 -1 76 8.1387329846620560e-03
+
+ 5.1786178350448608e-01 1.2110190093517303e-01
+ <_>
+
+ 0 -1 77 2.0942950621247292e-02
+
+ 5.2902942895889282e-01 3.3112218976020813e-01
+ <_>
+
+ 0 -1 78 -9.5665529370307922e-03
+
+ 7.4719941616058350e-01 4.4519689679145813e-01
+ <_>
+ 33
+ 1.5324139595031738e+01
+
+ <_>
+
+ 0 -1 79 -2.8206960996612906e-04
+
+ 2.0640860497951508e-01 6.0767322778701782e-01
+ <_>
+
+ 0 -1 80 1.6790600493550301e-03
+
+ 5.8519971370697021e-01 1.2553839385509491e-01
+ <_>
+
+ 0 -1 81 6.9827912375330925e-04
+
+ 9.4018429517745972e-02 5.7289612293243408e-01
+ <_>
+
+ 0 -1 82 7.8959012171253562e-04
+
+ 1.7819879949092865e-01 5.6943088769912720e-01
+ <_>
+
+ 0 -1 83 -2.8560499195009470e-03
+
+ 1.6383990645408630e-01 5.7886648178100586e-01
+ <_>
+
+ 0 -1 84 -3.8122469559311867e-03
+
+ 2.0854400098323822e-01 5.5085647106170654e-01
+ <_>
+
+ 0 -1 85 1.5896620461717248e-03
+
+ 5.7027608156204224e-01 1.8572150170803070e-01
+ <_>
+
+ 0 -1 86 1.0078339837491512e-02
+
+ 5.1169431209564209e-01 2.1897700428962708e-01
+ <_>
+
+ 0 -1 87 -6.3526302576065063e-02
+
+ 7.1313798427581787e-01 4.0438130497932434e-01
+ <_>
+
+ 0 -1 88 -9.1031491756439209e-03
+
+ 2.5671818852424622e-01 5.4639732837677002e-01
+ <_>
+
+ 0 -1 89 -2.4035000242292881e-03
+
+ 1.7006659507751465e-01 5.5909740924835205e-01
+ <_>
+
+ 0 -1 90 1.5226360410451889e-03
+
+ 5.4105567932128906e-01 2.6190540194511414e-01
+ <_>
+
+ 0 -1 91 1.7997439950704575e-02
+
+ 3.7324368953704834e-01 6.5352207422256470e-01
+ <_>
+
+ 0 -1 92 -6.4538191072642803e-03
+
+ 2.6264819502830505e-01 5.5374461412429810e-01
+ <_>
+
+ 0 -1 93 -1.1880760081112385e-02
+
+ 2.0037539303302765e-01 5.5447459220886230e-01
+ <_>
+
+ 0 -1 94 1.2713660253211856e-03
+
+ 5.5919027328491211e-01 3.0319759249687195e-01
+ <_>
+
+ 0 -1 95 1.1376109905540943e-03
+
+ 2.7304071187973022e-01 5.6465089321136475e-01
+ <_>
+
+ 0 -1 96 -4.2651998810470104e-03
+
+ 1.4059090614318848e-01 5.4618209600448608e-01
+ <_>
+
+ 0 -1 97 -2.9602861031889915e-03
+
+ 1.7950350046157837e-01 5.4592901468276978e-01
+ <_>
+
+ 0 -1 98 -8.8448226451873779e-03
+
+ 5.7367831468582153e-01 2.8092199563980103e-01
+ <_>
+
+ 0 -1 99 -6.6430689767003059e-03
+
+ 2.3706759512424469e-01 5.5038261413574219e-01
+ <_>
+
+ 0 -1 100 3.9997808635234833e-03
+
+ 5.6081998348236084e-01 3.3042821288108826e-01
+ <_>
+
+ 0 -1 101 -4.1221720166504383e-03
+
+ 1.6401059925556183e-01 5.3789931535720825e-01
+ <_>
+
+ 0 -1 102 1.5624909661710262e-02
+
+ 5.2276492118835449e-01 2.2886039316654205e-01
+ <_>
+
+ 0 -1 103 -1.0356419719755650e-02
+
+ 7.0161938667297363e-01 4.2529278993606567e-01
+ <_>
+
+ 0 -1 104 -8.7960809469223022e-03
+
+ 2.7673470973968506e-01 5.3558301925659180e-01
+ <_>
+
+ 0 -1 105 1.6226939857006073e-01
+
+ 4.3422400951385498e-01 7.4425792694091797e-01
+ <_>
+
+ 0 -1 106 4.5542530715465546e-03
+
+ 5.7264858484268188e-01 2.5821250677108765e-01
+ <_>
+
+ 0 -1 107 -2.1309209987521172e-03
+
+ 2.1068480610847473e-01 5.3610187768936157e-01
+ <_>
+
+ 0 -1 108 -1.3208420015871525e-02
+
+ 7.5937908887863159e-01 4.5524680614471436e-01
+ <_>
+
+ 0 -1 109 -6.5996676683425903e-02
+
+ 1.2524759769439697e-01 5.3440397977828979e-01
+ <_>
+
+ 0 -1 110 7.9142656177282333e-03
+
+ 3.3153840899467468e-01 5.6010431051254272e-01
+ <_>
+
+ 0 -1 111 2.0894279703497887e-02
+
+ 5.5060499906539917e-01 2.7688381075859070e-01
+ <_>
+ 44
+ 2.1010639190673828e+01
+
+ <_>
+
+ 0 -1 112 1.1961159761995077e-03
+
+ 1.7626909911632538e-01 6.1562412977218628e-01
+ <_>
+
+ 0 -1 113 -1.8679830245673656e-03
+
+ 6.1181068420410156e-01 1.8323999643325806e-01
+ <_>
+
+ 0 -1 114 -1.9579799845814705e-04
+
+ 9.9044263362884521e-02 5.7238161563873291e-01
+ <_>
+
+ 0 -1 115 -8.0255657667294145e-04
+
+ 5.5798798799514771e-01 2.3772829771041870e-01
+ <_>
+
+ 0 -1 116 -2.4510810617357492e-03
+
+ 2.2314579784870148e-01 5.8589351177215576e-01
+ <_>
+
+ 0 -1 117 5.0361850298941135e-04
+
+ 2.6539939641952515e-01 5.7941037416458130e-01
+ <_>
+
+ 0 -1 118 4.0293349884450436e-03
+
+ 5.8038270473480225e-01 2.4848650395870209e-01
+ <_>
+
+ 0 -1 119 -1.4451709575951099e-02
+
+ 1.8303519487380981e-01 5.4842048883438110e-01
+ <_>
+
+ 0 -1 120 2.0380979403853416e-03
+
+ 3.3635589480400085e-01 6.0510927438735962e-01
+ <_>
+
+ 0 -1 121 -1.6155190533027053e-03
+
+ 2.2866420447826385e-01 5.4412460327148438e-01
+ <_>
+
+ 0 -1 122 3.3458340913057327e-03
+
+ 5.6259131431579590e-01 2.3923380672931671e-01
+ <_>
+
+ 0 -1 123 1.6379579901695251e-03
+
+ 3.9069938659667969e-01 5.9646219015121460e-01
+ <_>
+
+ 0 -1 124 3.0251210555434227e-02
+
+ 5.2484822273254395e-01 1.5757469832897186e-01
+ <_>
+
+ 0 -1 125 3.7251990288496017e-02
+
+ 4.1943109035491943e-01 6.7484188079833984e-01
+ <_>
+
+ 0 -1 126 -2.5109790265560150e-02
+
+ 1.8825499713420868e-01 5.4734510183334351e-01
+ <_>
+
+ 0 -1 127 -5.3099058568477631e-03
+
+ 1.3399730622768402e-01 5.2271109819412231e-01
+ <_>
+
+ 0 -1 128 1.2086479691788554e-03
+
+ 3.7620881199836731e-01 6.1096358299255371e-01
+ <_>
+
+ 0 -1 129 -2.1907679736614227e-02
+
+ 2.6631429791450500e-01 5.4040068387985229e-01
+ <_>
+
+ 0 -1 130 5.4116579703986645e-03
+
+ 5.3635787963867188e-01 2.2322730720043182e-01
+ <_>
+
+ 0 -1 131 6.9946326315402985e-02
+
+ 5.3582328557968140e-01 2.4536980688571930e-01
+ <_>
+
+ 0 -1 132 3.4520021290518343e-04
+
+ 2.4096719920635223e-01 5.3769302368164062e-01
+ <_>
+
+ 0 -1 133 1.2627709656953812e-03
+
+ 5.4258567094802856e-01 3.1556931138038635e-01
+ <_>
+
+ 0 -1 134 2.2719509899616241e-02
+
+ 4.1584059596061707e-01 6.5978652238845825e-01
+ <_>
+
+ 0 -1 135 -1.8111000536009669e-03
+
+ 2.8112530708312988e-01 5.5052447319030762e-01
+ <_>
+
+ 0 -1 136 3.3469670452177525e-03
+
+ 5.2600282430648804e-01 1.8914650380611420e-01
+ <_>
+
+ 0 -1 137 4.0791751234792173e-04
+
+ 5.6735092401504517e-01 3.3442100882530212e-01
+ <_>
+
+ 0 -1 138 1.2734799645841122e-02
+
+ 5.3435921669006348e-01 2.3956120014190674e-01
+ <_>
+
+ 0 -1 139 -7.3119727894663811e-03
+
+ 6.0108900070190430e-01 4.0222078561782837e-01
+ <_>
+
+ 0 -1 140 -5.6948751211166382e-02
+
+ 8.1991511583328247e-01 4.5431908965110779e-01
+ <_>
+
+ 0 -1 141 -5.0116591155529022e-03
+
+ 2.2002810239791870e-01 5.3577107191085815e-01
+ <_>
+
+ 0 -1 142 6.0334368608891964e-03
+
+ 4.4130811095237732e-01 7.1817511320114136e-01
+ <_>
+
+ 0 -1 143 3.9437441155314445e-03
+
+ 5.4788607358932495e-01 2.7917331457138062e-01
+ <_>
+
+ 0 -1 144 -3.6591119132936001e-03
+
+ 6.3578677177429199e-01 3.9897239208221436e-01
+ <_>
+
+ 0 -1 145 -3.8456181064248085e-03
+
+ 3.4936860203742981e-01 5.3006649017333984e-01
+ <_>
+
+ 0 -1 146 -7.1926261298358440e-03
+
+ 1.1196149885654449e-01 5.2296727895736694e-01
+ <_>
+
+ 0 -1 147 -5.2798941731452942e-02
+
+ 2.3871029913425446e-01 5.4534512758255005e-01
+ <_>
+
+ 0 -1 148 -7.9537667334079742e-03
+
+ 7.5869178771972656e-01 4.4393768906593323e-01
+ <_>
+
+ 0 -1 149 -2.7344180271029472e-03
+
+ 2.5654768943786621e-01 5.4893219470977783e-01
+ <_>
+
+ 0 -1 150 -1.8507939530536532e-03
+
+ 6.7343479394912720e-01 4.2524749040603638e-01
+ <_>
+
+ 0 -1 151 1.5918919816613197e-02
+
+ 5.4883527755737305e-01 2.2926619648933411e-01
+ <_>
+
+ 0 -1 152 -1.2687679845839739e-03
+
+ 6.1043310165405273e-01 4.0223899483680725e-01
+ <_>
+
+ 0 -1 153 6.2883910723030567e-03
+
+ 5.3108531236648560e-01 1.5361930429935455e-01
+ <_>
+
+ 0 -1 154 -6.2259892001748085e-03
+
+ 1.7291119694709778e-01 5.2416062355041504e-01
+ <_>
+
+ 0 -1 155 -1.2132599949836731e-02
+
+ 6.5977597236633301e-01 4.3251821398735046e-01
+ <_>
+ 50
+ 2.3918790817260742e+01
+
+ <_>
+
+ 0 -1 156 -3.9184908382594585e-03
+
+ 6.1034351587295532e-01 1.4693309366703033e-01
+ <_>
+
+ 0 -1 157 1.5971299726516008e-03
+
+ 2.6323631405830383e-01 5.8964669704437256e-01
+ <_>
+
+ 0 -1 158 1.7780110239982605e-02
+
+ 5.8728742599487305e-01 1.7603619396686554e-01
+ <_>
+
+ 0 -1 159 6.5334769897162914e-04
+
+ 1.5678019821643829e-01 5.5960661172866821e-01
+ <_>
+
+ 0 -1 160 -2.8353091329336166e-04
+
+ 1.9131539762020111e-01 5.7320362329483032e-01
+ <_>
+
+ 0 -1 161 1.6104689566418529e-03
+
+ 2.9149138927459717e-01 5.6230807304382324e-01
+ <_>
+
+ 0 -1 162 -9.7750619053840637e-02
+
+ 1.9434769451618195e-01 5.6482332944869995e-01
+ <_>
+
+ 0 -1 163 5.5182358482852578e-04
+
+ 3.1346169114112854e-01 5.5046397447586060e-01
+ <_>
+
+ 0 -1 164 -1.2858220376074314e-02
+
+ 2.5364819169044495e-01 5.7601428031921387e-01
+ <_>
+
+ 0 -1 165 4.1530239395797253e-03
+
+ 5.7677221298217773e-01 3.6597740650177002e-01
+ <_>
+
+ 0 -1 166 1.7092459602281451e-03
+
+ 2.8431910276412964e-01 5.9189391136169434e-01
+ <_>
+
+ 0 -1 167 7.5217359699308872e-03
+
+ 4.0524271130561829e-01 6.1831092834472656e-01
+ <_>
+
+ 0 -1 168 2.2479810286313295e-03
+
+ 5.7837551832199097e-01 3.1354010105133057e-01
+ <_>
+
+ 0 -1 169 5.2006211131811142e-02
+
+ 5.5413120985031128e-01 1.9166369736194611e-01
+ <_>
+
+ 0 -1 170 1.2085529975593090e-02
+
+ 4.0326559543609619e-01 6.6445910930633545e-01
+ <_>
+
+ 0 -1 171 1.4687820112158079e-05
+
+ 3.5359779000282288e-01 5.7093828916549683e-01
+ <_>
+
+ 0 -1 172 7.1395188570022583e-06
+
+ 3.0374449491500854e-01 5.6102699041366577e-01
+ <_>
+
+ 0 -1 173 -4.6001640148460865e-03
+
+ 7.1810871362686157e-01 4.5803260803222656e-01
+ <_>
+
+ 0 -1 174 2.0058949012309313e-03
+
+ 5.6219518184661865e-01 2.9536840319633484e-01
+ <_>
+
+ 0 -1 175 4.5050270855426788e-03
+
+ 4.6153879165649414e-01 7.6190179586410522e-01
+ <_>
+
+ 0 -1 176 1.1746830306947231e-02
+
+ 5.3438371419906616e-01 1.7725290358066559e-01
+ <_>
+
+ 0 -1 177 -5.8316338807344437e-02
+
+ 1.6862459480762482e-01 5.3407722711563110e-01
+ <_>
+
+ 0 -1 178 2.3629379575140774e-04
+
+ 3.7920561432838440e-01 6.0268038511276245e-01
+ <_>
+
+ 0 -1 179 -7.8156180679798126e-03
+
+ 1.5128670632839203e-01 5.3243237733840942e-01
+ <_>
+
+ 0 -1 180 -1.0876160115003586e-02
+
+ 2.0818220078945160e-01 5.3199452161788940e-01
+ <_>
+
+ 0 -1 181 -2.7745519764721394e-03
+
+ 4.0982469916343689e-01 5.2103281021118164e-01
+ <_>
+
+ 0 -1 182 -7.8276381827890873e-04
+
+ 5.6932741403579712e-01 3.4788420796394348e-01
+ <_>
+
+ 0 -1 183 1.3870409689843655e-02
+
+ 5.3267508745193481e-01 2.2576980292797089e-01
+ <_>
+
+ 0 -1 184 -2.3674910888075829e-02
+
+ 1.5513050556182861e-01 5.2007079124450684e-01
+ <_>
+
+ 0 -1 185 -1.4879409718560055e-05
+
+ 5.5005669593811035e-01 3.8201761245727539e-01
+ <_>
+
+ 0 -1 186 3.6190641112625599e-03
+
+ 4.2386838793754578e-01 6.6397482156753540e-01
+ <_>
+
+ 0 -1 187 -1.9817110151052475e-02
+
+ 2.1500380337238312e-01 5.3823578357696533e-01
+ <_>
+
+ 0 -1 188 -3.8154039066284895e-03
+
+ 6.6757112741470337e-01 4.2152971029281616e-01
+ <_>
+
+ 0 -1 189 -4.9775829538702965e-03
+
+ 2.2672890126705170e-01 5.3863281011581421e-01
+ <_>
+
+ 0 -1 190 2.2441020701080561e-03
+
+ 4.3086910247802734e-01 6.8557357788085938e-01
+ <_>
+
+ 0 -1 191 1.2282459996640682e-02
+
+ 5.8366149663925171e-01 3.4674790501594543e-01
+ <_>
+
+ 0 -1 192 -2.8548699337989092e-03
+
+ 7.0169448852539062e-01 4.3114539980888367e-01
+ <_>
+
+ 0 -1 193 -3.7875669077038765e-03
+
+ 2.8953450918197632e-01 5.2249461412429810e-01
+ <_>
+
+ 0 -1 194 -1.2201230274513364e-03
+
+ 2.9755708575248718e-01 5.4816448688507080e-01
+ <_>
+
+ 0 -1 195 1.0160599835216999e-02
+
+ 4.8888179659843445e-01 8.1826978921890259e-01
+ <_>
+
+ 0 -1 196 -1.6174569725990295e-02
+
+ 1.4814929664134979e-01 5.2399927377700806e-01
+ <_>
+
+ 0 -1 197 1.9292460754513741e-02
+
+ 4.7863098978996277e-01 7.3781907558441162e-01
+ <_>
+
+ 0 -1 198 -3.2479539513587952e-03
+
+ 7.3742228746414185e-01 4.4706439971923828e-01
+ <_>
+
+ 0 -1 199 -9.3803480267524719e-03
+
+ 3.4891548752784729e-01 5.5379962921142578e-01
+ <_>
+
+ 0 -1 200 -1.2606129981577396e-02
+
+ 2.3796869814395905e-01 5.3154432773590088e-01
+ <_>
+
+ 0 -1 201 -2.5621930137276649e-02
+
+ 1.9646880030632019e-01 5.1387697458267212e-01
+ <_>
+
+ 0 -1 202 -7.5741496402770281e-05
+
+ 5.5905228853225708e-01 3.3658531308174133e-01
+ <_>
+
+ 0 -1 203 -8.9210882782936096e-02
+
+ 6.3404656946659088e-02 5.1626348495483398e-01
+ <_>
+
+ 0 -1 204 -2.7670480776578188e-03
+
+ 7.3234677314758301e-01 4.4907060265541077e-01
+ <_>
+
+ 0 -1 205 2.7152578695677221e-04
+
+ 4.1148349642753601e-01 5.9855180978775024e-01
+ <_>
+ 51
+ 2.4527879714965820e+01
+
+ <_>
+
+ 0 -1 206 1.4786219689995050e-03
+
+ 2.6635450124740601e-01 6.6433167457580566e-01
+ <_>
+
+ 0 -1 207 -1.8741659587249160e-03
+
+ 6.1438488960266113e-01 2.5185129046440125e-01
+ <_>
+
+ 0 -1 208 -1.7151009524241090e-03
+
+ 5.7663410902023315e-01 2.3974630236625671e-01
+ <_>
+
+ 0 -1 209 -1.8939269939437509e-03
+
+ 5.6820458173751831e-01 2.5291448831558228e-01
+ <_>
+
+ 0 -1 210 -5.3006052039563656e-03
+
+ 1.6406759619712830e-01 5.5560797452926636e-01
+ <_>
+
+ 0 -1 211 -4.6662531793117523e-02
+
+ 6.1231541633605957e-01 4.7628301382064819e-01
+ <_>
+
+ 0 -1 212 -7.9431332414969802e-04
+
+ 5.7078588008880615e-01 2.8394040465354919e-01
+ <_>
+
+ 0 -1 213 1.4891670085489750e-02
+
+ 4.0896728634834290e-01 6.0063672065734863e-01
+ <_>
+
+ 0 -1 214 -1.2046529445797205e-03
+
+ 5.7124507427215576e-01 2.7052891254425049e-01
+ <_>
+
+ 0 -1 215 6.0619381256401539e-03
+
+ 5.2625042200088501e-01 3.2622259855270386e-01
+ <_>
+
+ 0 -1 216 -2.5286648888140917e-03
+
+ 6.8538308143615723e-01 4.1992568969726562e-01
+ <_>
+
+ 0 -1 217 -5.9010218828916550e-03
+
+ 3.2662820816040039e-01 5.4348129034042358e-01
+ <_>
+
+ 0 -1 218 5.6702760048210621e-03
+
+ 5.4684108495712280e-01 2.3190039396286011e-01
+ <_>
+
+ 0 -1 219 -3.0304100364446640e-03
+
+ 5.5706679821014404e-01 2.7082380652427673e-01
+ <_>
+
+ 0 -1 220 2.9803649522364140e-03
+
+ 3.7005689740180969e-01 5.8906257152557373e-01
+ <_>
+
+ 0 -1 221 -7.5840510427951813e-02
+
+ 2.1400700509548187e-01 5.4199481010437012e-01
+ <_>
+
+ 0 -1 222 1.9262539222836494e-02
+
+ 5.5267721414566040e-01 2.7265900373458862e-01
+ <_>
+
+ 0 -1 223 1.8888259364757687e-04
+
+ 3.9580118656158447e-01 6.0172098875045776e-01
+ <_>
+
+ 0 -1 224 2.9369549825787544e-02
+
+ 5.2413737773895264e-01 1.4357580244541168e-01
+ <_>
+
+ 0 -1 225 1.0417619487270713e-03
+
+ 3.3854091167449951e-01 5.9299832582473755e-01
+ <_>
+
+ 0 -1 226 2.6125640142709017e-03
+
+ 5.4853779077529907e-01 3.0215978622436523e-01
+ <_>
+
+ 0 -1 227 9.6977467183023691e-04
+
+ 3.3752760291099548e-01 5.5320328474044800e-01
+ <_>
+
+ 0 -1 228 5.9512659208849072e-04
+
+ 5.6317430734634399e-01 3.3593991398811340e-01
+ <_>
+
+ 0 -1 229 -1.0156559944152832e-01
+
+ 6.3735038042068481e-02 5.2304250001907349e-01
+ <_>
+
+ 0 -1 230 3.6156699061393738e-02
+
+ 5.1369631290435791e-01 1.0295289754867554e-01
+ <_>
+
+ 0 -1 231 3.4624140243977308e-03
+
+ 3.8793200254440308e-01 5.5582892894744873e-01
+ <_>
+
+ 0 -1 232 1.9554980099201202e-02
+
+ 5.2500867843627930e-01 1.8758599460124969e-01
+ <_>
+
+ 0 -1 233 -2.3121440317481756e-03
+
+ 6.6720288991928101e-01 4.6796411275863647e-01
+ <_>
+
+ 0 -1 234 -1.8605289515107870e-03
+
+ 7.1633791923522949e-01 4.3346709012985229e-01
+ <_>
+
+ 0 -1 235 -9.4026362057775259e-04
+
+ 3.0213609337806702e-01 5.6502032279968262e-01
+ <_>
+
+ 0 -1 236 -5.2418331615626812e-03
+
+ 1.8200090527534485e-01 5.2502560615539551e-01
+ <_>
+
+ 0 -1 237 1.1729019752237946e-04
+
+ 3.3891880512237549e-01 5.4459732770919800e-01
+ <_>
+
+ 0 -1 238 1.1878840159624815e-03
+
+ 4.0853491425514221e-01 6.2535631656646729e-01
+ <_>
+
+ 0 -1 239 -1.0881359688937664e-02
+
+ 3.3783990144729614e-01 5.7000827789306641e-01
+ <_>
+
+ 0 -1 240 1.7354859737679362e-03
+
+ 4.2046359181404114e-01 6.5230387449264526e-01
+ <_>
+
+ 0 -1 241 -6.5119052305817604e-03
+
+ 2.5952160358428955e-01 5.4281437397003174e-01
+ <_>
+
+ 0 -1 242 -1.2136430013924837e-03
+
+ 6.1651438474655151e-01 3.9778938889503479e-01
+ <_>
+
+ 0 -1 243 -1.0354240424931049e-02
+
+ 1.6280280053615570e-01 5.2195048332214355e-01
+ <_>
+
+ 0 -1 244 5.5858830455690622e-04
+
+ 3.1996509432792664e-01 5.5035740137100220e-01
+ <_>
+
+ 0 -1 245 1.5299649909138680e-02
+
+ 4.1039940714836121e-01 6.1223882436752319e-01
+ <_>
+
+ 0 -1 246 -2.1588210016489029e-02
+
+ 1.0349129885435104e-01 5.1973849534988403e-01
+ <_>
+
+ 0 -1 247 -1.2834629416465759e-01
+
+ 8.4938651323318481e-01 4.8931029438972473e-01
+ <_>
+
+ 0 -1 248 -2.2927189711481333e-03
+
+ 3.1301578879356384e-01 5.4715752601623535e-01
+ <_>
+
+ 0 -1 249 7.9915106296539307e-02
+
+ 4.8563209176063538e-01 6.0739892721176147e-01
+ <_>
+
+ 0 -1 250 -7.9441092908382416e-02
+
+ 8.3946740627288818e-01 4.6245330572128296e-01
+ <_>
+
+ 0 -1 251 -5.2800010889768600e-03
+
+ 1.8816959857940674e-01 5.3066980838775635e-01
+ <_>
+
+ 0 -1 252 1.0463109938427806e-03
+
+ 5.2712291479110718e-01 2.5830659270286560e-01
+ <_>
+
+ 0 -1 253 2.6317298761568964e-04
+
+ 4.2353048920631409e-01 5.7354408502578735e-01
+ <_>
+
+ 0 -1 254 -3.6173160187900066e-03
+
+ 6.9343960285186768e-01 4.4954448938369751e-01
+ <_>
+
+ 0 -1 255 1.1421879753470421e-02
+
+ 5.9009212255477905e-01 4.1381931304931641e-01
+ <_>
+
+ 0 -1 256 -1.9963278900831938e-03
+
+ 6.4663827419281006e-01 4.3272399902343750e-01
+ <_>
+ 56
+ 2.7153350830078125e+01
+
+ <_>
+
+ 0 -1 257 -9.9691245704889297e-03
+
+ 6.1423242092132568e-01 2.4822120368480682e-01
+ <_>
+
+ 0 -1 258 7.3073059320449829e-04
+
+ 5.7049518823623657e-01 2.3219659924507141e-01
+ <_>
+
+ 0 -1 259 6.4045301405712962e-04
+
+ 2.1122519671916962e-01 5.8149331808090210e-01
+ <_>
+
+ 0 -1 260 4.5424019917845726e-03
+
+ 2.9504820704460144e-01 5.8663117885589600e-01
+ <_>
+
+ 0 -1 261 9.2477443104144186e-05
+
+ 2.9909908771514893e-01 5.7913267612457275e-01
+ <_>
+
+ 0 -1 262 -8.6603146046400070e-03
+
+ 2.8130298852920532e-01 5.6355422735214233e-01
+ <_>
+
+ 0 -1 263 8.0515816807746887e-03
+
+ 3.5353690385818481e-01 6.0547572374343872e-01
+ <_>
+
+ 0 -1 264 4.3835240649059415e-04
+
+ 5.5965322256088257e-01 2.7315109968185425e-01
+ <_>
+
+ 0 -1 265 -9.8168973636347800e-05
+
+ 5.9780317544937134e-01 3.6385610699653625e-01
+ <_>
+
+ 0 -1 266 -1.1298790341243148e-03
+
+ 2.7552521228790283e-01 5.4327291250228882e-01
+ <_>
+
+ 0 -1 267 6.4356150105595589e-03
+
+ 4.3056419491767883e-01 7.0698332786560059e-01
+ <_>
+
+ 0 -1 268 -5.6829329580068588e-02
+
+ 2.4952429533004761e-01 5.2949970960617065e-01
+ <_>
+
+ 0 -1 269 4.0668169967830181e-03
+
+ 5.4785531759262085e-01 2.4977239966392517e-01
+ <_>
+
+ 0 -1 270 4.8164798499783501e-05
+
+ 3.9386010169982910e-01 5.7063561677932739e-01
+ <_>
+
+ 0 -1 271 6.1795017682015896e-03
+
+ 4.4076061248779297e-01 7.3947668075561523e-01
+ <_>
+
+ 0 -1 272 6.4985752105712891e-03
+
+ 5.4452431201934814e-01 2.4791529774665833e-01
+ <_>
+
+ 0 -1 273 -1.0211090557277203e-03
+
+ 2.5447669625282288e-01 5.3389710187911987e-01
+ <_>
+
+ 0 -1 274 -5.4247528314590454e-03
+
+ 2.7188581228256226e-01 5.3240692615509033e-01
+ <_>
+
+ 0 -1 275 -1.0559899965301156e-03
+
+ 3.1782880425453186e-01 5.5345088243484497e-01
+ <_>
+
+ 0 -1 276 6.6465808777138591e-04
+
+ 4.2842191457748413e-01 6.5581941604614258e-01
+ <_>
+
+ 0 -1 277 -2.7524109464138746e-04
+
+ 5.9028607606887817e-01 3.8102629780769348e-01
+ <_>
+
+ 0 -1 278 4.2293202131986618e-03
+
+ 3.8164898753166199e-01 5.7093858718872070e-01
+ <_>
+
+ 0 -1 279 -3.2868210691958666e-03
+
+ 1.7477439343929291e-01 5.2595442533493042e-01
+ <_>
+
+ 0 -1 280 1.5611879643984139e-04
+
+ 3.6017221212387085e-01 5.7256120443344116e-01
+ <_>
+
+ 0 -1 281 -7.3621381488919724e-06
+
+ 5.4018580913543701e-01 3.0444970726966858e-01
+ <_>
+
+ 0 -1 282 -1.4767250046133995e-02
+
+ 3.2207700610160828e-01 5.5734348297119141e-01
+ <_>
+
+ 0 -1 283 2.4489590898156166e-02
+
+ 4.3015280365943909e-01 6.5188127756118774e-01
+ <_>
+
+ 0 -1 284 -3.7652091123163700e-04
+
+ 3.5645830631256104e-01 5.5982369184494019e-01
+ <_>
+
+ 0 -1 285 7.3657688517414499e-06
+
+ 3.4907829761505127e-01 5.5618977546691895e-01
+ <_>
+
+ 0 -1 286 -1.5099939890205860e-02
+
+ 1.7762720584869385e-01 5.3352999687194824e-01
+ <_>
+
+ 0 -1 287 -3.8316650316119194e-03
+
+ 6.1496877670288086e-01 4.2213940620422363e-01
+ <_>
+
+ 0 -1 288 1.6925400123000145e-02
+
+ 5.4130148887634277e-01 2.1665850281715393e-01
+ <_>
+
+ 0 -1 289 -3.0477850232273340e-03
+
+ 6.4494907855987549e-01 4.3546178936958313e-01
+ <_>
+
+ 0 -1 290 3.2140589319169521e-03
+
+ 5.4001551866531372e-01 3.5232171416282654e-01
+ <_>
+
+ 0 -1 291 -4.0023201145231724e-03
+
+ 2.7745240926742554e-01 5.3384172916412354e-01
+ <_>
+
+ 0 -1 292 7.4182129465043545e-03
+
+ 5.6767392158508301e-01 3.7028178572654724e-01
+ <_>
+
+ 0 -1 293 -8.8764587417244911e-03
+
+ 7.7492219209671021e-01 4.5836889743804932e-01
+ <_>
+
+ 0 -1 294 2.7311739977449179e-03
+
+ 5.3387218713760376e-01 3.9966610074043274e-01
+ <_>
+
+ 0 -1 295 -2.5082379579544067e-03
+
+ 5.6119632720947266e-01 3.7774989008903503e-01
+ <_>
+
+ 0 -1 296 -8.0541074275970459e-03
+
+ 2.9152289032936096e-01 5.1791828870773315e-01
+ <_>
+
+ 0 -1 297 -9.7938813269138336e-04
+
+ 5.5364328622817993e-01 3.7001928687095642e-01
+ <_>
+
+ 0 -1 298 -5.8745909482240677e-03
+
+ 3.7543910741806030e-01 5.6793761253356934e-01
+ <_>
+
+ 0 -1 299 -4.4936719350516796e-03
+
+ 7.0196992158889771e-01 4.4809499382972717e-01
+ <_>
+
+ 0 -1 300 -5.4389229044318199e-03
+
+ 2.3103649914264679e-01 5.3133869171142578e-01
+ <_>
+
+ 0 -1 301 -7.5094640487805009e-04
+
+ 5.8648687601089478e-01 4.1293430328369141e-01
+ <_>
+
+ 0 -1 302 1.4528800420521293e-05
+
+ 3.7324070930480957e-01 5.6196212768554688e-01
+ <_>
+
+ 0 -1 303 4.0758069604635239e-02
+
+ 5.3120911121368408e-01 2.7205219864845276e-01
+ <_>
+
+ 0 -1 304 6.6505931317806244e-03
+
+ 4.7100159525871277e-01 6.6934937238693237e-01
+ <_>
+
+ 0 -1 305 4.5759351924061775e-03
+
+ 5.1678192615509033e-01 1.6372759640216827e-01
+ <_>
+
+ 0 -1 306 6.5269311890006065e-03
+
+ 5.3976088762283325e-01 2.9385319352149963e-01
+ <_>
+
+ 0 -1 307 -1.3660379685461521e-02
+
+ 7.0864880084991455e-01 4.5322000980377197e-01
+ <_>
+
+ 0 -1 308 2.7358869090676308e-02
+
+ 5.2064812183380127e-01 3.5892319679260254e-01
+ <_>
+
+ 0 -1 309 6.2197551596909761e-04
+
+ 3.5070759057998657e-01 5.4411232471466064e-01
+ <_>
+
+ 0 -1 310 -3.3077080734074116e-03
+
+ 5.8595228195190430e-01 4.0248918533325195e-01
+ <_>
+
+ 0 -1 311 -1.0631109587848186e-02
+
+ 6.7432671785354614e-01 4.4226029515266418e-01
+ <_>
+
+ 0 -1 312 1.9441649317741394e-02
+
+ 5.2827161550521851e-01 1.7979049682617188e-01
+ <_>
+ 71
+ 3.4554111480712891e+01
+
+ <_>
+
+ 0 -1 313 -5.5052167735993862e-03
+
+ 5.9147310256958008e-01 2.6265591382980347e-01
+ <_>
+
+ 0 -1 314 1.9562279339879751e-03
+
+ 2.3125819861888885e-01 5.7416272163391113e-01
+ <_>
+
+ 0 -1 315 -8.8924784213304520e-03
+
+ 1.6565300524234772e-01 5.6266540288925171e-01
+ <_>
+
+ 0 -1 316 8.3638377487659454e-02
+
+ 5.4234498739242554e-01 1.9572949409484863e-01
+ <_>
+
+ 0 -1 317 1.2282270472496748e-03
+
+ 3.4179040789604187e-01 5.9925037622451782e-01
+ <_>
+
+ 0 -1 318 5.7629169896245003e-03
+
+ 3.7195819616317749e-01 6.0799038410186768e-01
+ <_>
+
+ 0 -1 319 -1.6417410224676132e-03
+
+ 2.5774860382080078e-01 5.5769157409667969e-01
+ <_>
+
+ 0 -1 320 3.4113149158656597e-03
+
+ 2.9507490992546082e-01 5.5141717195510864e-01
+ <_>
+
+ 0 -1 321 -1.1069320142269135e-02
+
+ 7.5693589448928833e-01 4.4770789146423340e-01
+ <_>
+
+ 0 -1 322 3.4865971654653549e-02
+
+ 5.5837088823318481e-01 2.6696211099624634e-01
+ <_>
+
+ 0 -1 323 6.5701099811121821e-04
+
+ 5.6273132562637329e-01 2.9888901114463806e-01
+ <_>
+
+ 0 -1 324 -2.4339130148291588e-02
+
+ 2.7711850404739380e-01 5.1088631153106689e-01
+ <_>
+
+ 0 -1 325 5.9435202274471521e-04
+
+ 5.5806517601013184e-01 3.1203418970108032e-01
+ <_>
+
+ 0 -1 326 2.2971509024500847e-03
+
+ 3.3302500844001770e-01 5.6790757179260254e-01
+ <_>
+
+ 0 -1 327 -3.7801829166710377e-03
+
+ 2.9905349016189575e-01 5.3448081016540527e-01
+ <_>
+
+ 0 -1 328 -1.3420669734477997e-01
+
+ 1.4638589322566986e-01 5.3925681114196777e-01
+ <_>
+
+ 0 -1 329 7.5224548345431685e-04
+
+ 3.7469539046287537e-01 5.6927347183227539e-01
+ <_>
+
+ 0 -1 330 -4.0545541793107986e-02
+
+ 2.7547478675842285e-01 5.4842978715896606e-01
+ <_>
+
+ 0 -1 331 1.2572970008477569e-03
+
+ 3.7445840239524841e-01 5.7560759782791138e-01
+ <_>
+
+ 0 -1 332 -7.4249948374927044e-03
+
+ 7.5138592720031738e-01 4.7282311320304871e-01
+ <_>
+
+ 0 -1 333 5.0908129196614027e-04
+
+ 5.4048967361450195e-01 2.9323211312294006e-01
+ <_>
+
+ 0 -1 334 -1.2808450264856219e-03
+
+ 6.1697798967361450e-01 4.2733490467071533e-01
+ <_>
+
+ 0 -1 335 -1.8348860321566463e-03
+
+ 2.0484960079193115e-01 5.2064722776412964e-01
+ <_>
+
+ 0 -1 336 2.7484869584441185e-02
+
+ 5.2529847621917725e-01 1.6755220293998718e-01
+ <_>
+
+ 0 -1 337 2.2372419480234385e-03
+
+ 5.2677828073501587e-01 2.7776581048965454e-01
+ <_>
+
+ 0 -1 338 -8.8635291904211044e-03
+
+ 6.9545578956604004e-01 4.8120489716529846e-01
+ <_>
+
+ 0 -1 339 4.1753971017897129e-03
+
+ 4.2918878793716431e-01 6.3491958379745483e-01
+ <_>
+
+ 0 -1 340 -1.7098189564421773e-03
+
+ 2.9305368661880493e-01 5.3612488508224487e-01
+ <_>
+
+ 0 -1 341 6.5328548662364483e-03
+
+ 4.4953250885009766e-01 7.4096941947937012e-01
+ <_>
+
+ 0 -1 342 -9.5372907817363739e-03
+
+ 3.1491199135780334e-01 5.4165017604827881e-01
+ <_>
+
+ 0 -1 343 2.5310989469289780e-02
+
+ 5.1218920946121216e-01 1.3117079436779022e-01
+ <_>
+
+ 0 -1 344 3.6460969597101212e-02
+
+ 5.1759117841720581e-01 2.5913399457931519e-01
+ <_>
+
+ 0 -1 345 2.0854329690337181e-02
+
+ 5.1371401548385620e-01 1.5823160111904144e-01
+ <_>
+
+ 0 -1 346 -8.7207747856155038e-04
+
+ 5.5743098258972168e-01 4.3989789485931396e-01
+ <_>
+
+ 0 -1 347 -1.5227000403683633e-05
+
+ 5.5489408969879150e-01 3.7080699205398560e-01
+ <_>
+
+ 0 -1 348 -8.4316509310156107e-04
+
+ 3.3874198794364929e-01 5.5542111396789551e-01
+ <_>
+
+ 0 -1 349 3.6037859972566366e-03
+
+ 5.3580617904663086e-01 3.4111711382865906e-01
+ <_>
+
+ 0 -1 350 -6.8057891912758350e-03
+
+ 6.1252027750015259e-01 4.3458628654479980e-01
+ <_>
+
+ 0 -1 351 -4.7021660953760147e-02
+
+ 2.3581659793853760e-01 5.1937389373779297e-01
+ <_>
+
+ 0 -1 352 -3.6954108625650406e-02
+
+ 7.3231112957000732e-01 4.7609439492225647e-01
+ <_>
+
+ 0 -1 353 1.0439479956403375e-03
+
+ 5.4194551706314087e-01 3.4113308787345886e-01
+ <_>
+
+ 0 -1 354 -2.1050689974799752e-04
+
+ 2.8216940164566040e-01 5.5549472570419312e-01
+ <_>
+
+ 0 -1 355 -8.0831587314605713e-02
+
+ 9.1299301385879517e-01 4.6974349021911621e-01
+ <_>
+
+ 0 -1 356 -3.6579059087671340e-04
+
+ 6.0226702690124512e-01 3.9782929420471191e-01
+ <_>
+
+ 0 -1 357 -1.2545920617412776e-04
+
+ 5.6132131814956665e-01 3.8455399870872498e-01
+ <_>
+
+ 0 -1 358 -6.8786486983299255e-02
+
+ 2.2616119682788849e-01 5.3004968166351318e-01
+ <_>
+
+ 0 -1 359 1.2415789999067783e-02
+
+ 4.0756919980049133e-01 5.8288121223449707e-01
+ <_>
+
+ 0 -1 360 -4.7174817882478237e-03
+
+ 2.8272539377212524e-01 5.2677577733993530e-01
+ <_>
+
+ 0 -1 361 3.8136858493089676e-02
+
+ 5.0747412443161011e-01 1.0236159712076187e-01
+ <_>
+
+ 0 -1 362 -2.8168049175292253e-03
+
+ 6.1690068244934082e-01 4.3596929311752319e-01
+ <_>
+
+ 0 -1 363 8.1303603947162628e-03
+
+ 4.5244330167770386e-01 7.6060950756072998e-01
+ <_>
+
+ 0 -1 364 6.0056019574403763e-03
+
+ 5.2404087781906128e-01 1.8597120046615601e-01
+ <_>
+
+ 0 -1 365 1.9139319658279419e-02
+
+ 5.2093791961669922e-01 2.3320719599723816e-01
+ <_>
+
+ 0 -1 366 1.6445759683847427e-02
+
+ 5.4507029056549072e-01 3.2642349600791931e-01
+ <_>
+
+ 0 -1 367 -3.7356890738010406e-02
+
+ 6.9990468025207520e-01 4.5332419872283936e-01
+ <_>
+
+ 0 -1 368 -1.9727900624275208e-02
+
+ 2.6536649465560913e-01 5.4128098487854004e-01
+ <_>
+
+ 0 -1 369 6.6972579807043076e-03
+
+ 4.4805660843849182e-01 7.1386522054672241e-01
+ <_>
+
+ 0 -1 370 7.4457528535276651e-04
+
+ 4.2313501238822937e-01 5.4713201522827148e-01
+ <_>
+
+ 0 -1 371 1.1790640419349074e-03
+
+ 5.3417021036148071e-01 3.1304550170898438e-01
+ <_>
+
+ 0 -1 372 3.4980610013008118e-02
+
+ 5.1186597347259521e-01 3.4305301308631897e-01
+ <_>
+
+ 0 -1 373 5.6859792675822973e-04
+
+ 3.5321870446205139e-01 5.4686397314071655e-01
+ <_>
+
+ 0 -1 374 -1.1340649798512459e-02
+
+ 2.8423538804054260e-01 5.3487008810043335e-01
+ <_>
+
+ 0 -1 375 -6.6228108480572701e-03
+
+ 6.8836402893066406e-01 4.4926649332046509e-01
+ <_>
+
+ 0 -1 376 -8.0160330981016159e-03
+
+ 1.7098939418792725e-01 5.2243089675903320e-01
+ <_>
+
+ 0 -1 377 1.4206819469109178e-03
+
+ 5.2908462285995483e-01 2.9933831095695496e-01
+ <_>
+
+ 0 -1 378 -2.7801711112260818e-03
+
+ 6.4988541603088379e-01 4.4604998826980591e-01
+ <_>
+
+ 0 -1 379 -1.4747589593753219e-03
+
+ 3.2604381442070007e-01 5.3881132602691650e-01
+ <_>
+
+ 0 -1 380 -2.3830339312553406e-02
+
+ 7.5289410352706909e-01 4.8012199997901917e-01
+ <_>
+
+ 0 -1 381 6.9369790144264698e-03
+
+ 5.3351658582687378e-01 3.2614278793334961e-01
+ <_>
+
+ 0 -1 382 8.2806255668401718e-03
+
+ 4.5803940296173096e-01 5.7378298044204712e-01
+ <_>
+
+ 0 -1 383 -1.0439500212669373e-02
+
+ 2.5923201441764832e-01 5.2338278293609619e-01
+ <_>
+ 80
+ 3.9107288360595703e+01
+
+ <_>
+
+ 0 -1 384 7.2006587870419025e-03
+
+ 3.2588860392570496e-01 6.8498080968856812e-01
+ <_>
+
+ 0 -1 385 -2.8593589086085558e-03
+
+ 5.8388811349868774e-01 2.5378298759460449e-01
+ <_>
+
+ 0 -1 386 6.8580528022721410e-04
+
+ 5.7080817222595215e-01 2.8124240040779114e-01
+ <_>
+
+ 0 -1 387 7.9580191522836685e-03
+
+ 2.5010511279106140e-01 5.5442607402801514e-01
+ <_>
+
+ 0 -1 388 -1.2124150525778532e-03
+
+ 2.3853680491447449e-01 5.4333502054214478e-01
+ <_>
+
+ 0 -1 389 7.9426132142543793e-03
+
+ 3.9550709724426270e-01 6.2207579612731934e-01
+ <_>
+
+ 0 -1 390 2.4630590341985226e-03
+
+ 5.6397080421447754e-01 2.9923579096794128e-01
+ <_>
+
+ 0 -1 391 -6.0396599583327770e-03
+
+ 2.1865129470825195e-01 5.4116767644882202e-01
+ <_>
+
+ 0 -1 392 -1.2988339876756072e-03
+
+ 2.3507060110569000e-01 5.3645849227905273e-01
+ <_>
+
+ 0 -1 393 2.2299369447864592e-04
+
+ 3.8041129708290100e-01 5.7296061515808105e-01
+ <_>
+
+ 0 -1 394 1.4654280385002494e-03
+
+ 2.5101679563522339e-01 5.2582687139511108e-01
+ <_>
+
+ 0 -1 395 -8.1210042117163539e-04
+
+ 5.9928238391876221e-01 3.8511589169502258e-01
+ <_>
+
+ 0 -1 396 -1.3836020370945334e-03
+
+ 5.6813961267471313e-01 3.6365869641304016e-01
+ <_>
+
+ 0 -1 397 -2.7936449274420738e-02
+
+ 1.4913170039653778e-01 5.3775602579116821e-01
+ <_>
+
+ 0 -1 398 -4.6919551095925272e-04
+
+ 3.6924299597740173e-01 5.5724847316741943e-01
+ <_>
+
+ 0 -1 399 -4.9829659983515739e-03
+
+ 6.7585092782974243e-01 4.5325040817260742e-01
+ <_>
+
+ 0 -1 400 1.8815309740602970e-03
+
+ 5.3680229187011719e-01 2.9325398802757263e-01
+ <_>
+
+ 0 -1 401 -1.9067550078034401e-02
+
+ 1.6493770480155945e-01 5.3300672769546509e-01
+ <_>
+
+ 0 -1 402 -4.6906559728085995e-03
+
+ 1.9639259576797485e-01 5.1193618774414062e-01
+ <_>
+
+ 0 -1 403 5.9777139686048031e-03
+
+ 4.6711719036102295e-01 7.0083981752395630e-01
+ <_>
+
+ 0 -1 404 -3.3303130418062210e-02
+
+ 1.1554169654846191e-01 5.1041620969772339e-01
+ <_>
+
+ 0 -1 405 9.0744107961654663e-02
+
+ 5.1496601104736328e-01 1.3061730563640594e-01
+ <_>
+
+ 0 -1 406 9.3555898638442159e-04
+
+ 3.6054810881614685e-01 5.4398590326309204e-01
+ <_>
+
+ 0 -1 407 1.4901650138199329e-02
+
+ 4.8862120509147644e-01 7.6875698566436768e-01
+ <_>
+
+ 0 -1 408 6.1594118596985936e-04
+
+ 5.3568130731582642e-01 3.2409390807151794e-01
+ <_>
+
+ 0 -1 409 -5.0670988857746124e-02
+
+ 1.8486219644546509e-01 5.2304041385650635e-01
+ <_>
+
+ 0 -1 410 6.8665749859064817e-04
+
+ 3.8405799865722656e-01 5.5179458856582642e-01
+ <_>
+
+ 0 -1 411 8.3712432533502579e-03
+
+ 4.2885640263557434e-01 6.1317539215087891e-01
+ <_>
+
+ 0 -1 412 -1.2953069526702166e-03
+
+ 2.9136741161346436e-01 5.2807378768920898e-01
+ <_>
+
+ 0 -1 413 -4.1941680014133453e-02
+
+ 7.5547999143600464e-01 4.8560309410095215e-01
+ <_>
+
+ 0 -1 414 -2.3529380559921265e-02
+
+ 2.8382799029350281e-01 5.2560812234878540e-01
+ <_>
+
+ 0 -1 415 4.0857449173927307e-02
+
+ 4.8709350824356079e-01 6.2772971391677856e-01
+ <_>
+
+ 0 -1 416 -2.5406869128346443e-02
+
+ 7.0997077226638794e-01 4.5750290155410767e-01
+ <_>
+
+ 0 -1 417 -4.1415440500713885e-04
+
+ 4.0308868885040283e-01 5.4694122076034546e-01
+ <_>
+
+ 0 -1 418 2.1824119612574577e-02
+
+ 4.5020240545272827e-01 6.7687010765075684e-01
+ <_>
+
+ 0 -1 419 1.4114039950072765e-02
+
+ 5.4428607225418091e-01 3.7917000055313110e-01
+ <_>
+
+ 0 -1 420 6.7214590671937913e-05
+
+ 4.2004638910293579e-01 5.8734762668609619e-01
+ <_>
+
+ 0 -1 421 -7.9417638480663300e-03
+
+ 3.7925618886947632e-01 5.5852657556533813e-01
+ <_>
+
+ 0 -1 422 -7.2144409641623497e-03
+
+ 7.2531038522720337e-01 4.6035489439964294e-01
+ <_>
+
+ 0 -1 423 2.5817339774221182e-03
+
+ 4.6933019161224365e-01 5.9002387523651123e-01
+ <_>
+
+ 0 -1 424 1.3409319519996643e-01
+
+ 5.1492130756378174e-01 1.8088449537754059e-01
+ <_>
+
+ 0 -1 425 2.2962710354477167e-03
+
+ 5.3997439146041870e-01 3.7178671360015869e-01
+ <_>
+
+ 0 -1 426 -2.1575849968940020e-03
+
+ 2.4084959924221039e-01 5.1488637924194336e-01
+ <_>
+
+ 0 -1 427 -4.9196188338100910e-03
+
+ 6.5735882520675659e-01 4.7387400269508362e-01
+ <_>
+
+ 0 -1 428 1.6267469618469477e-03
+
+ 4.1928219795227051e-01 6.3031142950057983e-01
+ <_>
+
+ 0 -1 429 3.3413388882763684e-04
+
+ 5.5402982234954834e-01 3.7021011114120483e-01
+ <_>
+
+ 0 -1 430 -2.6698080822825432e-02
+
+ 1.7109179496765137e-01 5.1014107465744019e-01
+ <_>
+
+ 0 -1 431 -3.0561879277229309e-02
+
+ 1.9042180478572845e-01 5.1687937974929810e-01
+ <_>
+
+ 0 -1 432 2.8511548880487680e-03
+
+ 4.4475069642066956e-01 6.3138538599014282e-01
+ <_>
+
+ 0 -1 433 -3.6211479455232620e-02
+
+ 2.4907270073890686e-01 5.3773492574691772e-01
+ <_>
+
+ 0 -1 434 -2.4115189444273710e-03
+
+ 5.3812432289123535e-01 3.6642369627952576e-01
+ <_>
+
+ 0 -1 435 -7.7253201743587852e-04
+
+ 5.5302321910858154e-01 3.5415500402450562e-01
+ <_>
+
+ 0 -1 436 2.9481729143299162e-04
+
+ 4.1326990723609924e-01 5.6672430038452148e-01
+ <_>
+
+ 0 -1 437 -6.2334560789167881e-03
+
+ 9.8787233233451843e-02 5.1986688375473022e-01
+ <_>
+
+ 0 -1 438 -2.6274729520082474e-02
+
+ 9.1127492487430573e-02 5.0281071662902832e-01
+ <_>
+
+ 0 -1 439 5.3212260827422142e-03
+
+ 4.7266489267349243e-01 6.2227207422256470e-01
+ <_>
+
+ 0 -1 440 -4.1129058226943016e-03
+
+ 2.1574570238590240e-01 5.1378047466278076e-01
+ <_>
+
+ 0 -1 441 3.2457809429615736e-03
+
+ 5.4107707738876343e-01 3.7217769026756287e-01
+ <_>
+
+ 0 -1 442 -1.6359709203243256e-02
+
+ 7.7878749370574951e-01 4.6852919459342957e-01
+ <_>
+
+ 0 -1 443 3.2166109303943813e-04
+
+ 5.4789870977401733e-01 4.2403739690780640e-01
+ <_>
+
+ 0 -1 444 6.4452440710738301e-04
+
+ 5.3305608034133911e-01 3.5013249516487122e-01
+ <_>
+
+ 0 -1 445 -7.8909732401371002e-03
+
+ 6.9235211610794067e-01 4.7265690565109253e-01
+ <_>
+
+ 0 -1 446 4.8336211591959000e-02
+
+ 5.0559002161026001e-01 7.5749203562736511e-02
+ <_>
+
+ 0 -1 447 -7.5178127735853195e-04
+
+ 3.7837418913841248e-01 5.5385738611221313e-01
+ <_>
+
+ 0 -1 448 -2.4953910615295172e-03
+
+ 3.0816510319709778e-01 5.3596121072769165e-01
+ <_>
+
+ 0 -1 449 -2.2385010961443186e-03
+
+ 6.6339588165283203e-01 4.6493428945541382e-01
+ <_>
+
+ 0 -1 450 -1.7988430336117744e-03
+
+ 6.5968447923660278e-01 4.3471878767013550e-01
+ <_>
+
+ 0 -1 451 8.7860915809869766e-03
+
+ 5.2318328619003296e-01 2.3155799508094788e-01
+ <_>
+
+ 0 -1 452 3.6715380847454071e-03
+
+ 5.2042502164840698e-01 2.9773768782615662e-01
+ <_>
+
+ 0 -1 453 -3.5336449742317200e-02
+
+ 7.2388780117034912e-01 4.8615050315856934e-01
+ <_>
+
+ 0 -1 454 -6.9189240457490087e-04
+
+ 3.1050220131874084e-01 5.2298247814178467e-01
+ <_>
+
+ 0 -1 455 -3.3946109469980001e-03
+
+ 3.1389680504798889e-01 5.2101737260818481e-01
+ <_>
+
+ 0 -1 456 9.8569283727556467e-04
+
+ 4.5365801453590393e-01 6.5850979089736938e-01
+ <_>
+
+ 0 -1 457 -5.0163101404905319e-02
+
+ 1.8044540286064148e-01 5.1989167928695679e-01
+ <_>
+
+ 0 -1 458 -2.2367259953171015e-03
+
+ 7.2557020187377930e-01 4.6513590216636658e-01
+ <_>
+
+ 0 -1 459 7.4326287722215056e-04
+
+ 4.4129210710525513e-01 5.8985459804534912e-01
+ <_>
+
+ 0 -1 460 -9.3485182151198387e-04
+
+ 3.5000529885292053e-01 5.3660178184509277e-01
+ <_>
+
+ 0 -1 461 1.7497939988970757e-02
+
+ 4.9121949076652527e-01 8.3152848482131958e-01
+ <_>
+
+ 0 -1 462 -1.5200000489130616e-03
+
+ 3.5702759027481079e-01 5.3705602884292603e-01
+ <_>
+
+ 0 -1 463 7.8003940870985389e-04
+
+ 4.3537721037864685e-01 5.9673351049423218e-01
+ <_>
+ 103
+ 5.0610481262207031e+01
+
+ <_>
+
+ 0 -1 464 -9.9945552647113800e-03
+
+ 6.1625832319259644e-01 3.0545330047607422e-01
+ <_>
+
+ 0 -1 465 -1.1085229925811291e-03
+
+ 5.8182948827743530e-01 3.1555780768394470e-01
+ <_>
+
+ 0 -1 466 1.0364380432292819e-03
+
+ 2.5520521402359009e-01 5.6929117441177368e-01
+ <_>
+
+ 0 -1 467 6.8211311008781195e-04
+
+ 3.6850899457931519e-01 5.9349310398101807e-01
+ <_>
+
+ 0 -1 468 -6.8057340104132891e-04
+
+ 2.3323920369148254e-01 5.4747921228408813e-01
+ <_>
+
+ 0 -1 469 2.6068789884448051e-04
+
+ 3.2574570178985596e-01 5.6675457954406738e-01
+ <_>
+
+ 0 -1 470 5.1607372006401420e-04
+
+ 3.7447169423103333e-01 5.8454728126525879e-01
+ <_>
+
+ 0 -1 471 8.5007521556690335e-04
+
+ 3.4203711152076721e-01 5.5228072404861450e-01
+ <_>
+
+ 0 -1 472 -1.8607829697430134e-03
+
+ 2.8044199943542480e-01 5.3754240274429321e-01
+ <_>
+
+ 0 -1 473 -1.5033970121294260e-03
+
+ 2.5790509581565857e-01 5.4989522695541382e-01
+ <_>
+
+ 0 -1 474 2.3478909861296415e-03
+
+ 4.1751560568809509e-01 6.3137108087539673e-01
+ <_>
+
+ 0 -1 475 -2.8880240279249847e-04
+
+ 5.8651697635650635e-01 4.0526661276817322e-01
+ <_>
+
+ 0 -1 476 8.9405477046966553e-03
+
+ 5.2111411094665527e-01 2.3186540603637695e-01
+ <_>
+
+ 0 -1 477 -1.9327739253640175e-02
+
+ 2.7534329891204834e-01 5.2415257692337036e-01
+ <_>
+
+ 0 -1 478 -2.0202060113660991e-04
+
+ 5.7229787111282349e-01 3.6771959066390991e-01
+ <_>
+
+ 0 -1 479 2.1179069299250841e-03
+
+ 4.4661080837249756e-01 5.5424308776855469e-01
+ <_>
+
+ 0 -1 480 -1.7743760254234076e-03
+
+ 2.8132531046867371e-01 5.3009599447250366e-01
+ <_>
+
+ 0 -1 481 4.2234458960592747e-03
+
+ 4.3997099995613098e-01 5.7954281568527222e-01
+ <_>
+
+ 0 -1 482 -1.4375220052897930e-02
+
+ 2.9811179637908936e-01 5.2920591831207275e-01
+ <_>
+
+ 0 -1 483 -1.5349180437624454e-02
+
+ 7.7052152156829834e-01 4.7481718659400940e-01
+ <_>
+
+ 0 -1 484 1.5152279956964776e-05
+
+ 3.7188440561294556e-01 5.5768972635269165e-01
+ <_>
+
+ 0 -1 485 -9.1293919831514359e-03
+
+ 3.6151960492134094e-01 5.2867668867111206e-01
+ <_>
+
+ 0 -1 486 2.2512159775942564e-03
+
+ 5.3647047281265259e-01 3.4862980246543884e-01
+ <_>
+
+ 0 -1 487 -4.9696918576955795e-03
+
+ 6.9276517629623413e-01 4.6768361330032349e-01
+ <_>
+
+ 0 -1 488 -1.2829010374844074e-02
+
+ 7.7121537923812866e-01 4.6607351303100586e-01
+ <_>
+
+ 0 -1 489 -9.3660065904259682e-03
+
+ 3.3749839663505554e-01 5.3512877225875854e-01
+ <_>
+
+ 0 -1 490 3.2452319283038378e-03
+
+ 5.3251898288726807e-01 3.2896101474761963e-01
+ <_>
+
+ 0 -1 491 -1.1723560281097889e-02
+
+ 6.8376529216766357e-01 4.7543001174926758e-01
+ <_>
+
+ 0 -1 492 2.9257940695970319e-05
+
+ 3.5720878839492798e-01 5.3605020046234131e-01
+ <_>
+
+ 0 -1 493 -2.2244219508138485e-05
+
+ 5.5414271354675293e-01 3.5520640015602112e-01
+ <_>
+
+ 0 -1 494 5.0881509669125080e-03
+
+ 5.0708442926406860e-01 1.2564620375633240e-01
+ <_>
+
+ 0 -1 495 2.7429679408669472e-02
+
+ 5.2695602178573608e-01 1.6258180141448975e-01
+ <_>
+
+ 0 -1 496 -6.4142867922782898e-03
+
+ 7.1455889940261841e-01 4.5841971039772034e-01
+ <_>
+
+ 0 -1 497 3.3479959238320589e-03
+
+ 5.3986120223999023e-01 3.4946969151496887e-01
+ <_>
+
+ 0 -1 498 -8.2635492086410522e-02
+
+ 2.4391929805278778e-01 5.1602262258529663e-01
+ <_>
+
+ 0 -1 499 1.0261740535497665e-03
+
+ 3.8868919014930725e-01 5.7679080963134766e-01
+ <_>
+
+ 0 -1 500 -1.6307090409100056e-03
+
+ 3.3894580602645874e-01 5.3477007150650024e-01
+ <_>
+
+ 0 -1 501 2.4546680506318808e-03
+
+ 4.6014139056205750e-01 6.3872468471527100e-01
+ <_>
+
+ 0 -1 502 -9.9476519972085953e-04
+
+ 5.7698792219161987e-01 4.1203960776329041e-01
+ <_>
+
+ 0 -1 503 1.5409190207719803e-02
+
+ 4.8787090182304382e-01 7.0898222923278809e-01
+ <_>
+
+ 0 -1 504 1.1784400558099151e-03
+
+ 5.2635532617568970e-01 2.8952449560165405e-01
+ <_>
+
+ 0 -1 505 -2.7701919898390770e-02
+
+ 1.4988289773464203e-01 5.2196067571640015e-01
+ <_>
+
+ 0 -1 506 -2.9505399987101555e-02
+
+ 2.4893319234251976e-02 4.9998161196708679e-01
+ <_>
+
+ 0 -1 507 4.5159430010244250e-04
+
+ 5.4646229743957520e-01 4.0296629071235657e-01
+ <_>
+
+ 0 -1 508 7.1772639639675617e-03
+
+ 4.2710569500923157e-01 5.8662968873977661e-01
+ <_>
+
+ 0 -1 509 -7.4182048439979553e-02
+
+ 6.8741792440414429e-01 4.9190279841423035e-01
+ <_>
+
+ 0 -1 510 -1.7254160717129707e-02
+
+ 3.3706760406494141e-01 5.3487390279769897e-01
+ <_>
+
+ 0 -1 511 1.4851559884846210e-02
+
+ 4.6267929673194885e-01 6.1299049854278564e-01
+ <_>
+
+ 0 -1 512 1.0002000257372856e-02
+
+ 5.3461229801177979e-01 3.4234538674354553e-01
+ <_>
+
+ 0 -1 513 2.0138120744377375e-03
+
+ 4.6438300609588623e-01 5.8243042230606079e-01
+ <_>
+
+ 0 -1 514 1.5135470312088728e-03
+
+ 5.1963961124420166e-01 2.8561499714851379e-01
+ <_>
+
+ 0 -1 515 3.1381431035697460e-03
+
+ 4.8381629586219788e-01 5.9585297107696533e-01
+ <_>
+
+ 0 -1 516 -5.1450440660119057e-03
+
+ 8.9203029870986938e-01 4.7414121031761169e-01
+ <_>
+
+ 0 -1 517 -4.4736708514392376e-03
+
+ 2.0339429378509521e-01 5.3372788429260254e-01
+ <_>
+
+ 0 -1 518 1.9628470763564110e-03
+
+ 4.5716339349746704e-01 6.7258632183074951e-01
+ <_>
+
+ 0 -1 519 5.4260450415313244e-03
+
+ 5.2711081504821777e-01 2.8456708788871765e-01
+ <_>
+
+ 0 -1 520 4.9611460417509079e-04
+
+ 4.1383129358291626e-01 5.7185977697372437e-01
+ <_>
+
+ 0 -1 521 9.3728788197040558e-03
+
+ 5.2251511812210083e-01 2.8048470616340637e-01
+ <_>
+
+ 0 -1 522 6.0500897234305739e-04
+
+ 5.2367687225341797e-01 3.3145239949226379e-01
+ <_>
+
+ 0 -1 523 5.6792551185935736e-04
+
+ 4.5310598611831665e-01 6.2769711017608643e-01
+ <_>
+
+ 0 -1 524 2.4644339457154274e-02
+
+ 5.1308518648147583e-01 2.0171439647674561e-01
+ <_>
+
+ 0 -1 525 -1.0290450416505337e-02
+
+ 7.7865952253341675e-01 4.8766410350799561e-01
+ <_>
+
+ 0 -1 526 2.0629419013857841e-03
+
+ 4.2885988950729370e-01 5.8812642097473145e-01
+ <_>
+
+ 0 -1 527 -5.0519481301307678e-03
+
+ 3.5239779949188232e-01 5.2860087156295776e-01
+ <_>
+
+ 0 -1 528 -5.7692620903253555e-03
+
+ 6.8410861492156982e-01 4.5880940556526184e-01
+ <_>
+
+ 0 -1 529 -4.5789941214025021e-04
+
+ 3.5655200481414795e-01 5.4859781265258789e-01
+ <_>
+
+ 0 -1 530 -7.5918837683275342e-04
+
+ 3.3687931299209595e-01 5.2541971206665039e-01
+ <_>
+
+ 0 -1 531 -1.7737259622663260e-03
+
+ 3.4221610426902771e-01 5.4540151357650757e-01
+ <_>
+
+ 0 -1 532 -8.5610467940568924e-03
+
+ 6.5336120128631592e-01 4.4858568906784058e-01
+ <_>
+
+ 0 -1 533 1.7277270089834929e-03
+
+ 5.3075802326202393e-01 3.9253529906272888e-01
+ <_>
+
+ 0 -1 534 -2.8199609369039536e-02
+
+ 6.8574589490890503e-01 4.5885840058326721e-01
+ <_>
+
+ 0 -1 535 -1.7781109781935811e-03
+
+ 4.0378510951995850e-01 5.3698569536209106e-01
+ <_>
+
+ 0 -1 536 3.3177141449414194e-04
+
+ 5.3997987508773804e-01 3.7057501077651978e-01
+ <_>
+
+ 0 -1 537 2.6385399978607893e-03
+
+ 4.6654370427131653e-01 6.4527308940887451e-01
+ <_>
+
+ 0 -1 538 -2.1183069329708815e-03
+
+ 5.9147810935974121e-01 4.0646770596504211e-01
+ <_>
+
+ 0 -1 539 -1.4773289673030376e-02
+
+ 3.6420381069183350e-01 5.2947628498077393e-01
+ <_>
+
+ 0 -1 540 -1.6815440729260445e-02
+
+ 2.6642319560050964e-01 5.1449728012084961e-01
+ <_>
+
+ 0 -1 541 -6.3370140269398689e-03
+
+ 6.7795312404632568e-01 4.8520979285240173e-01
+ <_>
+
+ 0 -1 542 -4.4560048991115764e-05
+
+ 5.6139647960662842e-01 4.1530540585517883e-01
+ <_>
+
+ 0 -1 543 -1.0240620467811823e-03
+
+ 5.9644782543182373e-01 4.5663040876388550e-01
+ <_>
+
+ 0 -1 544 -2.3161689750850201e-03
+
+ 2.9761150479316711e-01 5.1881599426269531e-01
+ <_>
+
+ 0 -1 545 5.3217571973800659e-01
+
+ 5.1878392696380615e-01 2.2026319801807404e-01
+ <_>
+
+ 0 -1 546 -1.6643050312995911e-01
+
+ 1.8660229444503784e-01 5.0603431463241577e-01
+ <_>
+
+ 0 -1 547 1.1253529787063599e-01
+
+ 5.2121251821517944e-01 1.1850229650735855e-01
+ <_>
+
+ 0 -1 548 9.3046864494681358e-03
+
+ 4.5899370312690735e-01 6.8261492252349854e-01
+ <_>
+
+ 0 -1 549 -4.6255099587142467e-03
+
+ 3.0799409747123718e-01 5.2250087261199951e-01
+ <_>
+
+ 0 -1 550 -1.1116469651460648e-01
+
+ 2.1010440587997437e-01 5.0808018445968628e-01
+ <_>
+
+ 0 -1 551 -1.0888439603149891e-02
+
+ 5.7653552293777466e-01 4.7904640436172485e-01
+ <_>
+
+ 0 -1 552 5.8564301580190659e-03
+
+ 5.0651001930236816e-01 1.5635989606380463e-01
+ <_>
+
+ 0 -1 553 5.4854389280080795e-02
+
+ 4.9669149518013000e-01 7.2305107116699219e-01
+ <_>
+
+ 0 -1 554 -1.1197339743375778e-02
+
+ 2.1949790418148041e-01 5.0987982749938965e-01
+ <_>
+
+ 0 -1 555 4.4069071300327778e-03
+
+ 4.7784018516540527e-01 6.7709028720855713e-01
+ <_>
+
+ 0 -1 556 -6.3665293157100677e-02
+
+ 1.9363629817962646e-01 5.0810241699218750e-01
+ <_>
+
+ 0 -1 557 -9.8081491887569427e-03
+
+ 5.9990632534027100e-01 4.8103410005569458e-01
+ <_>
+
+ 0 -1 558 -2.1717099007219076e-03
+
+ 3.3383339643478394e-01 5.2354729175567627e-01
+ <_>
+
+ 0 -1 559 -1.3315520249307156e-02
+
+ 6.6170698404312134e-01 4.9192130565643311e-01
+ <_>
+
+ 0 -1 560 2.5442079640924931e-03
+
+ 4.4887441396713257e-01 6.0821849107742310e-01
+ <_>
+
+ 0 -1 561 1.2037839740514755e-02
+
+ 5.4093921184539795e-01 3.2924321293830872e-01
+ <_>
+
+ 0 -1 562 -2.0701050758361816e-02
+
+ 6.8191200494766235e-01 4.5949959754943848e-01
+ <_>
+
+ 0 -1 563 2.7608279138803482e-02
+
+ 4.6307921409606934e-01 5.7672828435897827e-01
+ <_>
+
+ 0 -1 564 1.2370620388537645e-03
+
+ 5.1653790473937988e-01 2.6350161433219910e-01
+ <_>
+
+ 0 -1 565 -3.7669338285923004e-02
+
+ 2.5363931059837341e-01 5.2789801359176636e-01
+ <_>
+
+ 0 -1 566 -1.8057259730994701e-03
+
+ 3.9851561188697815e-01 5.5175000429153442e-01
+ <_>
+ 111
+ 5.4620071411132812e+01
+
+ <_>
+
+ 0 -1 567 4.4299028813838959e-03
+
+ 2.8910180926322937e-01 6.3352262973785400e-01
+ <_>
+
+ 0 -1 568 -2.3813319858163595e-03
+
+ 6.2117892503738403e-01 3.4774878621101379e-01
+ <_>
+
+ 0 -1 569 2.2915711160749197e-03
+
+ 2.2544120252132416e-01 5.5821180343627930e-01
+ <_>
+
+ 0 -1 570 9.9457940086722374e-04
+
+ 3.7117108702659607e-01 5.9300708770751953e-01
+ <_>
+
+ 0 -1 571 7.7164667891338468e-04
+
+ 5.6517201662063599e-01 3.3479958772659302e-01
+ <_>
+
+ 0 -1 572 -1.1386410333216190e-03
+
+ 3.0691260099411011e-01 5.5086308717727661e-01
+ <_>
+
+ 0 -1 573 -1.6403039626311511e-04
+
+ 5.7628279924392700e-01 3.6990478634834290e-01
+ <_>
+
+ 0 -1 574 2.9793529392918572e-05
+
+ 2.6442441344261169e-01 5.4379111528396606e-01
+ <_>
+
+ 0 -1 575 8.5774902254343033e-03
+
+ 5.0511389970779419e-01 1.7957249283790588e-01
+ <_>
+
+ 0 -1 576 -2.6032689493149519e-04
+
+ 5.8269691467285156e-01 4.4468268752098083e-01
+ <_>
+
+ 0 -1 577 -6.1404630541801453e-03
+
+ 3.1138521432876587e-01 5.3469717502593994e-01
+ <_>
+
+ 0 -1 578 -2.3086950182914734e-02
+
+ 3.2779461145401001e-01 5.3311979770660400e-01
+ <_>
+
+ 0 -1 579 -1.4243650250136852e-02
+
+ 7.3817098140716553e-01 4.5880630612373352e-01
+ <_>
+
+ 0 -1 580 1.9487129524350166e-02
+
+ 5.2566307783126831e-01 2.2744719684123993e-01
+ <_>
+
+ 0 -1 581 -9.6681108698248863e-04
+
+ 5.5112308263778687e-01 3.8150069117546082e-01
+ <_>
+
+ 0 -1 582 3.1474709976464510e-03
+
+ 5.4256367683410645e-01 2.5437268614768982e-01
+ <_>
+
+ 0 -1 583 -1.8026070029009134e-04
+
+ 5.3801918029785156e-01 3.4063041210174561e-01
+ <_>
+
+ 0 -1 584 -6.0266260989010334e-03
+
+ 3.0358019471168518e-01 5.4205721616744995e-01
+ <_>
+
+ 0 -1 585 4.4462960795499384e-04
+
+ 3.9909970760345459e-01 5.6601101160049438e-01
+ <_>
+
+ 0 -1 586 2.2609760053455830e-03
+
+ 5.5628067255020142e-01 3.9406880736351013e-01
+ <_>
+
+ 0 -1 587 5.1133058965206146e-02
+
+ 4.6096539497375488e-01 7.1185618638992310e-01
+ <_>
+
+ 0 -1 588 -1.7786309123039246e-02
+
+ 2.3161660134792328e-01 5.3221440315246582e-01
+ <_>
+
+ 0 -1 589 -4.9679628573358059e-03
+
+ 2.3307719826698303e-01 5.1220291852951050e-01
+ <_>
+
+ 0 -1 590 2.0667689386755228e-03
+
+ 4.6574440598487854e-01 6.4554882049560547e-01
+ <_>
+
+ 0 -1 591 7.4413768015801907e-03
+
+ 5.1543921232223511e-01 2.3616339266300201e-01
+ <_>
+
+ 0 -1 592 -3.6277279723435640e-03
+
+ 6.2197732925415039e-01 4.4766610860824585e-01
+ <_>
+
+ 0 -1 593 -5.3530759178102016e-03
+
+ 1.8373550474643707e-01 5.1022082567214966e-01
+ <_>
+
+ 0 -1 594 1.4530919492244720e-01
+
+ 5.1459872722625732e-01 1.5359309315681458e-01
+ <_>
+
+ 0 -1 595 2.4394490756094456e-03
+
+ 5.3436601161956787e-01 3.6246618628501892e-01
+ <_>
+
+ 0 -1 596 -3.1283390708267689e-03
+
+ 6.2150079011917114e-01 4.8455920815467834e-01
+ <_>
+
+ 0 -1 597 1.7940260004252195e-03
+
+ 4.2992618680000305e-01 5.8241981267929077e-01
+ <_>
+
+ 0 -1 598 3.6253821104764938e-02
+
+ 5.2603340148925781e-01 1.4394679665565491e-01
+ <_>
+
+ 0 -1 599 -5.1746722310781479e-03
+
+ 3.5065388679504395e-01 5.2870452404022217e-01
+ <_>
+
+ 0 -1 600 6.5383297624066472e-04
+
+ 4.8096409440040588e-01 6.1220401525497437e-01
+ <_>
+
+ 0 -1 601 -2.6480229571461678e-02
+
+ 1.1393620073795319e-01 5.0455862283706665e-01
+ <_>
+
+ 0 -1 602 -3.0440660193562508e-03
+
+ 6.3520950078964233e-01 4.7947341203689575e-01
+ <_>
+
+ 0 -1 603 3.6993520334362984e-03
+
+ 5.1311182975769043e-01 2.4985109269618988e-01
+ <_>
+
+ 0 -1 604 -3.6762931267730892e-04
+
+ 5.4213947057723999e-01 3.7095320224761963e-01
+ <_>
+
+ 0 -1 605 -4.1382260620594025e-02
+
+ 1.8949599564075470e-01 5.0816917419433594e-01
+ <_>
+
+ 0 -1 606 -1.0532729793339968e-03
+
+ 6.4543670415878296e-01 4.7836089134216309e-01
+ <_>
+
+ 0 -1 607 -2.1648600231856108e-03
+
+ 6.2150311470031738e-01 4.4998261332511902e-01
+ <_>
+
+ 0 -1 608 -5.6747748749330640e-04
+
+ 3.7126109004020691e-01 5.4193347692489624e-01
+ <_>
+
+ 0 -1 609 1.7375840246677399e-01
+
+ 5.0236439704895020e-01 1.2157420068979263e-01
+ <_>
+
+ 0 -1 610 -2.9049699660390615e-03
+
+ 3.2402679324150085e-01 5.3818839788436890e-01
+ <_>
+
+ 0 -1 611 1.2299539521336555e-03
+
+ 4.1655078530311584e-01 5.7034862041473389e-01
+ <_>
+
+ 0 -1 612 -5.4329237900674343e-04
+
+ 3.8540428876876831e-01 5.5475491285324097e-01
+ <_>
+
+ 0 -1 613 -8.3297258242964745e-03
+
+ 2.2044940292835236e-01 5.0970828533172607e-01
+ <_>
+
+ 0 -1 614 -1.0417630255687982e-04
+
+ 5.6070661544799805e-01 4.3030360341072083e-01
+ <_>
+
+ 0 -1 615 3.1204700469970703e-02
+
+ 4.6216571331024170e-01 6.9820040464401245e-01
+ <_>
+
+ 0 -1 616 7.8943502157926559e-03
+
+ 5.2695941925048828e-01 2.2690680623054504e-01
+ <_>
+
+ 0 -1 617 -4.3645310215651989e-03
+
+ 6.3592231273651123e-01 4.5379561185836792e-01
+ <_>
+
+ 0 -1 618 7.6793059706687927e-03
+
+ 5.2747678756713867e-01 2.7404838800430298e-01
+ <_>
+
+ 0 -1 619 -2.5431139394640923e-02
+
+ 2.0385199785232544e-01 5.0717329978942871e-01
+ <_>
+
+ 0 -1 620 8.2000601105391979e-04
+
+ 4.5874550938606262e-01 6.1198681592941284e-01
+ <_>
+
+ 0 -1 621 2.9284600168466568e-03
+
+ 5.0712740421295166e-01 2.0282049477100372e-01
+ <_>
+
+ 0 -1 622 4.5256470912136137e-05
+
+ 4.8121041059494019e-01 5.4308217763900757e-01
+ <_>
+
+ 0 -1 623 1.3158309739083052e-03
+
+ 4.6258139610290527e-01 6.7793232202529907e-01
+ <_>
+
+ 0 -1 624 1.5870389761403203e-03
+
+ 5.3862917423248291e-01 3.4314650297164917e-01
+ <_>
+
+ 0 -1 625 -2.1539660170674324e-02
+
+ 2.5942500680685043e-02 5.0032228231430054e-01
+ <_>
+
+ 0 -1 626 1.4334480278193951e-02
+
+ 5.2028447389602661e-01 1.5906329452991486e-01
+ <_>
+
+ 0 -1 627 -8.3881383761763573e-03
+
+ 7.2824811935424805e-01 4.6480441093444824e-01
+ <_>
+
+ 0 -1 628 9.1906841844320297e-03
+
+ 5.5623567104339600e-01 3.9231911301612854e-01
+ <_>
+
+ 0 -1 629 -5.8453059755265713e-03
+
+ 6.8033927679061890e-01 4.6291279792785645e-01
+ <_>
+
+ 0 -1 630 -5.4707799106836319e-02
+
+ 2.5616711378097534e-01 5.2061259746551514e-01
+ <_>
+
+ 0 -1 631 9.1142775490880013e-03
+
+ 5.1896202564239502e-01 3.0538770556449890e-01
+ <_>
+
+ 0 -1 632 -1.5575000084936619e-02
+
+ 1.2950749695301056e-01 5.1690948009490967e-01
+ <_>
+
+ 0 -1 633 -1.2050600344082341e-04
+
+ 5.7350981235504150e-01 4.2308250069618225e-01
+ <_>
+
+ 0 -1 634 1.2273970060050488e-03
+
+ 5.2898782491683960e-01 4.0797919034957886e-01
+ <_>
+
+ 0 -1 635 -1.2186600361019373e-03
+
+ 6.5756398439407349e-01 4.5744091272354126e-01
+ <_>
+
+ 0 -1 636 -3.3256649039685726e-03
+
+ 3.6280471086502075e-01 5.1950198411941528e-01
+ <_>
+
+ 0 -1 637 -1.3288309797644615e-02
+
+ 1.2842659652233124e-01 5.0434887409210205e-01
+ <_>
+
+ 0 -1 638 -3.3839771058410406e-03
+
+ 6.2922400236129761e-01 4.7575059533119202e-01
+ <_>
+
+ 0 -1 639 -2.1954220533370972e-01
+
+ 1.4877319335937500e-01 5.0650137662887573e-01
+ <_>
+
+ 0 -1 640 4.9111708067357540e-03
+
+ 4.2561021447181702e-01 5.6658387184143066e-01
+ <_>
+
+ 0 -1 641 -1.8744950648397207e-04
+
+ 4.0041440725326538e-01 5.5868571996688843e-01
+ <_>
+
+ 0 -1 642 -5.2178641781210899e-03
+
+ 6.0091161727905273e-01 4.8127061128616333e-01
+ <_>
+
+ 0 -1 643 -1.1111519997939467e-03
+
+ 3.5149338841438293e-01 5.2870899438858032e-01
+ <_>
+
+ 0 -1 644 4.4036400504410267e-03
+
+ 4.6422758698463440e-01 5.9240859746932983e-01
+ <_>
+
+ 0 -1 645 1.2299499660730362e-01
+
+ 5.0255292654037476e-01 6.9152481853961945e-02
+ <_>
+
+ 0 -1 646 -1.2313510291278362e-02
+
+ 5.8845919370651245e-01 4.9340128898620605e-01
+ <_>
+
+ 0 -1 647 4.1471039876341820e-03
+
+ 4.3722391128540039e-01 5.8934777975082397e-01
+ <_>
+
+ 0 -1 648 -3.5502649843692780e-03
+
+ 4.3275511264801025e-01 5.3962701559066772e-01
+ <_>
+
+ 0 -1 649 -1.9224269315600395e-02
+
+ 1.9131340086460114e-01 5.0683307647705078e-01
+ <_>
+
+ 0 -1 650 1.4395059552043676e-03
+
+ 5.3081780672073364e-01 4.2435330152511597e-01
+ <_>
+
+ 0 -1 651 -6.7751999013125896e-03
+
+ 6.3653957843780518e-01 4.5400860905647278e-01
+ <_>
+
+ 0 -1 652 7.0119630545377731e-03
+
+ 5.1898342370986938e-01 3.0261999368667603e-01
+ <_>
+
+ 0 -1 653 5.4014651104807854e-03
+
+ 5.1050621271133423e-01 2.5576829910278320e-01
+ <_>
+
+ 0 -1 654 9.0274988906458020e-04
+
+ 4.6969148516654968e-01 5.8618277311325073e-01
+ <_>
+
+ 0 -1 655 1.1474450118839741e-02
+
+ 5.0536459684371948e-01 1.5271779894828796e-01
+ <_>
+
+ 0 -1 656 -6.7023430019617081e-03
+
+ 6.5089809894561768e-01 4.8906040191650391e-01
+ <_>
+
+ 0 -1 657 -2.0462959073483944e-03
+
+ 6.2418168783187866e-01 4.5146000385284424e-01
+ <_>
+
+ 0 -1 658 -9.9951568990945816e-03
+
+ 3.4327811002731323e-01 5.4009538888931274e-01
+ <_>
+
+ 0 -1 659 -3.5700708627700806e-02
+
+ 1.8780590593814850e-01 5.0740778446197510e-01
+ <_>
+
+ 0 -1 660 4.5584561303257942e-04
+
+ 3.8052770495414734e-01 5.4025697708129883e-01
+ <_>
+
+ 0 -1 661 -5.4260600358247757e-02
+
+ 6.8437147140502930e-01 4.5950970053672791e-01
+ <_>
+
+ 0 -1 662 6.0600461438298225e-03
+
+ 5.5029052495956421e-01 4.5005279779434204e-01
+ <_>
+
+ 0 -1 663 -6.4791832119226456e-03
+
+ 3.3688580989837646e-01 5.3107571601867676e-01
+ <_>
+
+ 0 -1 664 -1.4939469983801246e-03
+
+ 6.4876401424407959e-01 4.7561758756637573e-01
+ <_>
+
+ 0 -1 665 1.4610530342906713e-05
+
+ 4.0345790982246399e-01 5.4510641098022461e-01
+ <_>
+
+ 0 -1 666 -7.2321938350796700e-03
+
+ 6.3868737220764160e-01 4.8247399926185608e-01
+ <_>
+
+ 0 -1 667 -4.0645818226039410e-03
+
+ 2.9864218831062317e-01 5.1573359966278076e-01
+ <_>
+
+ 0 -1 668 3.0463080853223801e-02
+
+ 5.0221997499465942e-01 7.1599560976028442e-01
+ <_>
+
+ 0 -1 669 -8.0544911324977875e-03
+
+ 6.4924520254135132e-01 4.6192750334739685e-01
+ <_>
+
+ 0 -1 670 3.9505138993263245e-02
+
+ 5.1505708694458008e-01 2.4506139755249023e-01
+ <_>
+
+ 0 -1 671 8.4530208259820938e-03
+
+ 4.5736691355705261e-01 6.3940370082855225e-01
+ <_>
+
+ 0 -1 672 -1.1688120430335402e-03
+
+ 3.8655120134353638e-01 5.4836612939834595e-01
+ <_>
+
+ 0 -1 673 2.8070670086890459e-03
+
+ 5.1285791397094727e-01 2.7014800906181335e-01
+ <_>
+
+ 0 -1 674 4.7365209320560098e-04
+
+ 4.0515819191932678e-01 5.3874611854553223e-01
+ <_>
+
+ 0 -1 675 1.1741080321371555e-02
+
+ 5.2959501743316650e-01 3.7194138765335083e-01
+ <_>
+
+ 0 -1 676 3.1833238899707794e-03
+
+ 4.7894069552421570e-01 6.8951261043548584e-01
+ <_>
+
+ 0 -1 677 7.0241501089185476e-04
+
+ 5.3844892978668213e-01 3.9180809259414673e-01
+ <_>
+ 102
+ 5.0169731140136719e+01
+
+ <_>
+
+ 0 -1 678 1.7059929668903351e-02
+
+ 3.9485278725624084e-01 7.1425348520278931e-01
+ <_>
+
+ 0 -1 679 2.1840840578079224e-02
+
+ 3.3703160285949707e-01 6.0900169610977173e-01
+ <_>
+
+ 0 -1 680 2.4520049919374287e-04
+
+ 3.5005760192871094e-01 5.9879022836685181e-01
+ <_>
+
+ 0 -1 681 8.3272606134414673e-03
+
+ 3.2675281167030334e-01 5.6972408294677734e-01
+ <_>
+
+ 0 -1 682 5.7148298947140574e-04
+
+ 3.0445998907089233e-01 5.5316567420959473e-01
+ <_>
+
+ 0 -1 683 6.7373987985774875e-04
+
+ 3.6500120162963867e-01 5.6726312637329102e-01
+ <_>
+
+ 0 -1 684 3.4681590477703139e-05
+
+ 3.3135411143302917e-01 5.3887271881103516e-01
+ <_>
+
+ 0 -1 685 -5.8563398197293282e-03
+
+ 2.6979428529739380e-01 5.4987788200378418e-01
+ <_>
+
+ 0 -1 686 8.5102273151278496e-03
+
+ 5.2693581581115723e-01 2.7628791332244873e-01
+ <_>
+
+ 0 -1 687 -6.9817207753658295e-02
+
+ 2.9096031188964844e-01 5.2592468261718750e-01
+ <_>
+
+ 0 -1 688 -8.6113670840859413e-04
+
+ 5.8925771713256836e-01 4.0736979246139526e-01
+ <_>
+
+ 0 -1 689 9.7149249631911516e-04
+
+ 3.5235640406608582e-01 5.4158622026443481e-01
+ <_>
+
+ 0 -1 690 -1.4727490452060010e-05
+
+ 5.4230177402496338e-01 3.5031560063362122e-01
+ <_>
+
+ 0 -1 691 4.8420291393995285e-02
+
+ 5.1939457654953003e-01 3.4111958742141724e-01
+ <_>
+
+ 0 -1 692 1.3257140526548028e-03
+
+ 3.1577691435813904e-01 5.3353762626647949e-01
+ <_>
+
+ 0 -1 693 1.4922149603080470e-05
+
+ 4.4512999057769775e-01 5.5365538597106934e-01
+ <_>
+
+ 0 -1 694 -2.7173398993909359e-03
+
+ 3.0317419767379761e-01 5.2480888366699219e-01
+ <_>
+
+ 0 -1 695 2.9219500720500946e-03
+
+ 4.7814530134201050e-01 6.6060417890548706e-01
+ <_>
+
+ 0 -1 696 -1.9804988987743855e-03
+
+ 3.1863081455230713e-01 5.2876251935958862e-01
+ <_>
+
+ 0 -1 697 -4.0012109093368053e-03
+
+ 6.4135968685150146e-01 4.7499281167984009e-01
+ <_>
+
+ 0 -1 698 -4.3491991236805916e-03
+
+ 1.5074980258941650e-01 5.0989967584609985e-01
+ <_>
+
+ 0 -1 699 1.3490889687091112e-03
+
+ 4.3161588907241821e-01 5.8811670541763306e-01
+ <_>
+
+ 0 -1 700 1.8597070127725601e-02
+
+ 4.7355538606643677e-01 9.0897941589355469e-01
+ <_>
+
+ 0 -1 701 -1.8562379991635680e-03
+
+ 3.5531890392303467e-01 5.5778372287750244e-01
+ <_>
+
+ 0 -1 702 2.2940430790185928e-03
+
+ 4.5000949501991272e-01 6.5808779001235962e-01
+ <_>
+
+ 0 -1 703 2.9982850537635386e-04
+
+ 5.6292420625686646e-01 3.9758789539337158e-01
+ <_>
+
+ 0 -1 704 3.5455459728837013e-03
+
+ 5.3815472126007080e-01 3.6054858565330505e-01
+ <_>
+
+ 0 -1 705 9.6104722470045090e-03
+
+ 5.2559971809387207e-01 1.7967459559440613e-01
+ <_>
+
+ 0 -1 706 -6.2783220782876015e-03
+
+ 2.2728569805622101e-01 5.1140302419662476e-01
+ <_>
+
+ 0 -1 707 3.4598479978740215e-03
+
+ 4.6263080835342407e-01 6.6082191467285156e-01
+ <_>
+
+ 0 -1 708 -1.3112019514665008e-03
+
+ 6.3175398111343384e-01 4.4368579983711243e-01
+ <_>
+
+ 0 -1 709 2.6876179035753012e-03
+
+ 5.4211097955703735e-01 4.0540221333503723e-01
+ <_>
+
+ 0 -1 710 3.9118169806897640e-03
+
+ 5.3584778308868408e-01 3.2734549045562744e-01
+ <_>
+
+ 0 -1 711 -1.4206450432538986e-02
+
+ 7.7935767173767090e-01 4.9757811427116394e-01
+ <_>
+
+ 0 -1 712 7.1705528534948826e-04
+
+ 5.2973198890686035e-01 3.5609039664268494e-01
+ <_>
+
+ 0 -1 713 1.6635019565001130e-03
+
+ 4.6780940890312195e-01 5.8164817094802856e-01
+ <_>
+
+ 0 -1 714 3.3686188980937004e-03
+
+ 5.2767342329025269e-01 3.4464201331138611e-01
+ <_>
+
+ 0 -1 715 1.2799530290067196e-02
+
+ 4.8346799612045288e-01 7.4721592664718628e-01
+ <_>
+
+ 0 -1 716 3.3901201095432043e-03
+
+ 4.5118591189384460e-01 6.4017212390899658e-01
+ <_>
+
+ 0 -1 717 4.7070779837667942e-03
+
+ 5.3356587886810303e-01 3.5552209615707397e-01
+ <_>
+
+ 0 -1 718 1.4819339849054813e-03
+
+ 4.2507070302963257e-01 5.7727241516113281e-01
+ <_>
+
+ 0 -1 719 -6.9995759986341000e-03
+
+ 3.0033200979232788e-01 5.2929002046585083e-01
+ <_>
+
+ 0 -1 720 1.5939010307192802e-02
+
+ 5.0673192739486694e-01 1.6755819320678711e-01
+ <_>
+
+ 0 -1 721 7.6377349905669689e-03
+
+ 4.7950699925422668e-01 7.0856010913848877e-01
+ <_>
+
+ 0 -1 722 6.7334040068089962e-03
+
+ 5.1331132650375366e-01 2.1624700725078583e-01
+ <_>
+
+ 0 -1 723 -1.2858809903264046e-02
+
+ 1.9388419389724731e-01 5.2513718605041504e-01
+ <_>
+
+ 0 -1 724 -6.2270800117403269e-04
+
+ 5.6865382194519043e-01 4.1978681087493896e-01
+ <_>
+
+ 0 -1 725 -5.2651681471616030e-04
+
+ 4.2241689562797546e-01 5.4296958446502686e-01
+ <_>
+
+ 0 -1 726 1.1075099930167198e-02
+
+ 5.1137751340866089e-01 2.5145179033279419e-01
+ <_>
+
+ 0 -1 727 -3.6728251725435257e-02
+
+ 7.1946620941162109e-01 4.8496189713478088e-01
+ <_>
+
+ 0 -1 728 -2.8207109426148236e-04
+
+ 3.8402619957923889e-01 5.3944462537765503e-01
+ <_>
+
+ 0 -1 729 -2.7489690110087395e-03
+
+ 5.9370887279510498e-01 4.5691820979118347e-01
+ <_>
+
+ 0 -1 730 1.0047519579529762e-02
+
+ 5.1385760307312012e-01 2.8022980690002441e-01
+ <_>
+
+ 0 -1 731 -8.1497840583324432e-03
+
+ 6.0900372266769409e-01 4.6361210942268372e-01
+ <_>
+
+ 0 -1 732 -6.8833888508379459e-03
+
+ 3.4586110711097717e-01 5.2546602487564087e-01
+ <_>
+
+ 0 -1 733 -1.4039360394235700e-05
+
+ 5.6931042671203613e-01 4.0820831060409546e-01
+ <_>
+
+ 0 -1 734 1.5498419525101781e-03
+
+ 4.3505370616912842e-01 5.8065170049667358e-01
+ <_>
+
+ 0 -1 735 -6.7841499112546444e-03
+
+ 1.4688730239868164e-01 5.1827752590179443e-01
+ <_>
+
+ 0 -1 736 2.1705629478674382e-04
+
+ 5.2935242652893066e-01 3.4561741352081299e-01
+ <_>
+
+ 0 -1 737 3.1198898795992136e-04
+
+ 4.6524509787559509e-01 5.9424138069152832e-01
+ <_>
+
+ 0 -1 738 5.4507530294358730e-03
+
+ 4.6535089612007141e-01 7.0248460769653320e-01
+ <_>
+
+ 0 -1 739 -2.5818689027801156e-04
+
+ 5.4972952604293823e-01 3.7689670920372009e-01
+ <_>
+
+ 0 -1 740 -1.7442539334297180e-02
+
+ 3.9190879464149475e-01 5.4574978351593018e-01
+ <_>
+
+ 0 -1 741 -4.5343529433012009e-02
+
+ 1.6313570737838745e-01 5.1549088954925537e-01
+ <_>
+
+ 0 -1 742 1.9190689781680703e-03
+
+ 5.1458978652954102e-01 2.7918958663940430e-01
+ <_>
+
+ 0 -1 743 -6.0177869163453579e-03
+
+ 6.5176361799240112e-01 4.7563329339027405e-01
+ <_>
+
+ 0 -1 744 -4.0720738470554352e-03
+
+ 5.5146527290344238e-01 4.0926858782768250e-01
+ <_>
+
+ 0 -1 745 3.9855059003457427e-04
+
+ 3.1652408838272095e-01 5.2855509519577026e-01
+ <_>
+
+ 0 -1 746 -6.5418570302426815e-03
+
+ 6.8533778190612793e-01 4.6528089046478271e-01
+ <_>
+
+ 0 -1 747 3.4845089539885521e-03
+
+ 5.4845881462097168e-01 4.5027598738670349e-01
+ <_>
+
+ 0 -1 748 -1.3696780428290367e-02
+
+ 6.3957798480987549e-01 4.5725551247596741e-01
+ <_>
+
+ 0 -1 749 -1.7347140237689018e-02
+
+ 2.7510729432106018e-01 5.1816147565841675e-01
+ <_>
+
+ 0 -1 750 -4.0885428898036480e-03
+
+ 3.3256360888481140e-01 5.1949840784072876e-01
+ <_>
+
+ 0 -1 751 -9.4687901437282562e-03
+
+ 5.9422808885574341e-01 4.8518198728561401e-01
+ <_>
+
+ 0 -1 752 1.7084840219467878e-03
+
+ 4.1671109199523926e-01 5.5198061466217041e-01
+ <_>
+
+ 0 -1 753 9.4809094443917274e-03
+
+ 5.4338949918746948e-01 4.2085149884223938e-01
+ <_>
+
+ 0 -1 754 -4.7389650717377663e-03
+
+ 6.4071899652481079e-01 4.5606550574302673e-01
+ <_>
+
+ 0 -1 755 6.5761050209403038e-03
+
+ 5.2145552635192871e-01 2.2582270205020905e-01
+ <_>
+
+ 0 -1 756 -2.1690549328923225e-03
+
+ 3.1515279412269592e-01 5.1567047834396362e-01
+ <_>
+
+ 0 -1 757 1.4660170301795006e-02
+
+ 4.8708370327949524e-01 6.6899412870407104e-01
+ <_>
+
+ 0 -1 758 1.7231999663636088e-04
+
+ 3.5697489976882935e-01 5.2510780096054077e-01
+ <_>
+
+ 0 -1 759 -2.1803760901093483e-02
+
+ 8.8259208202362061e-01 4.9663299322128296e-01
+ <_>
+
+ 0 -1 760 -9.4736106693744659e-02
+
+ 1.4461620151996613e-01 5.0611138343811035e-01
+ <_>
+
+ 0 -1 761 5.5825551971793175e-03
+
+ 5.3964787721633911e-01 4.2380660772323608e-01
+ <_>
+
+ 0 -1 762 1.9517090404406190e-03
+
+ 4.1704109311103821e-01 5.4977869987487793e-01
+ <_>
+
+ 0 -1 763 1.2149900197982788e-02
+
+ 4.6983671188354492e-01 5.6642740964889526e-01
+ <_>
+
+ 0 -1 764 -7.5169620104134083e-03
+
+ 6.2677729129791260e-01 4.4631358981132507e-01
+ <_>
+
+ 0 -1 765 -7.1667909622192383e-02
+
+ 3.0970111489295959e-01 5.2210032939910889e-01
+ <_>
+
+ 0 -1 766 -8.8292419910430908e-02
+
+ 8.1123888492584229e-02 5.0063651800155640e-01
+ <_>
+
+ 0 -1 767 3.1063079833984375e-02
+
+ 5.1555037498474121e-01 1.2822559475898743e-01
+ <_>
+
+ 0 -1 768 4.6621840447187424e-02
+
+ 4.6997779607772827e-01 7.3639607429504395e-01
+ <_>
+
+ 0 -1 769 -1.2189489789307117e-02
+
+ 3.9205300807952881e-01 5.5189967155456543e-01
+ <_>
+
+ 0 -1 770 1.3016110286116600e-02
+
+ 5.2606582641601562e-01 3.6851361393928528e-01
+ <_>
+
+ 0 -1 771 -3.4952899441123009e-03
+
+ 6.3392949104309082e-01 4.7162809967994690e-01
+ <_>
+
+ 0 -1 772 -4.4015039748046547e-05
+
+ 5.3330272436141968e-01 3.7761849164962769e-01
+ <_>
+
+ 0 -1 773 -1.0966490209102631e-01
+
+ 1.7653420567512512e-01 5.1983469724655151e-01
+ <_>
+
+ 0 -1 774 -9.0279558207839727e-04
+
+ 5.3241598606109619e-01 3.8389080762863159e-01
+ <_>
+
+ 0 -1 775 7.1126641705632210e-04
+
+ 4.6479299664497375e-01 5.7552242279052734e-01
+ <_>
+
+ 0 -1 776 -3.1250279862433672e-03
+
+ 3.2367089390754700e-01 5.1667708158493042e-01
+ <_>
+
+ 0 -1 777 2.4144679773598909e-03
+
+ 4.7874391078948975e-01 6.4597177505493164e-01
+ <_>
+
+ 0 -1 778 4.4391240226104856e-04
+
+ 4.4093081355094910e-01 6.0102558135986328e-01
+ <_>
+
+ 0 -1 779 -2.2611189342569560e-04
+
+ 4.0381139516830444e-01 5.4932558536529541e-01
+ <_>
+ 135
+ 6.6669120788574219e+01
+
+ <_>
+
+ 0 -1 780 -4.6901289373636246e-02
+
+ 6.6001719236373901e-01 3.7438011169433594e-01
+ <_>
+
+ 0 -1 781 -1.4568349579349160e-03
+
+ 5.7839912176132202e-01 3.4377971291542053e-01
+ <_>
+
+ 0 -1 782 5.5598369799554348e-03
+
+ 3.6222669482231140e-01 5.9082162380218506e-01
+ <_>
+
+ 0 -1 783 7.3170487303286791e-04
+
+ 5.5004191398620605e-01 2.8735581040382385e-01
+ <_>
+
+ 0 -1 784 1.3318009441718459e-03
+
+ 2.6731699705123901e-01 5.4310190677642822e-01
+ <_>
+
+ 0 -1 785 2.4347059661522508e-04
+
+ 3.8550278544425964e-01 5.7413887977600098e-01
+ <_>
+
+ 0 -1 786 -3.0512469820678234e-03
+
+ 5.5032098293304443e-01 3.4628450870513916e-01
+ <_>
+
+ 0 -1 787 -6.8657199153676629e-04
+
+ 3.2912218570709229e-01 5.4295092821121216e-01
+ <_>
+
+ 0 -1 788 1.4668200165033340e-03
+
+ 3.5883820056915283e-01 5.3518110513687134e-01
+ <_>
+
+ 0 -1 789 3.2021870720200241e-04
+
+ 4.2968419194221497e-01 5.7002341747283936e-01
+ <_>
+
+ 0 -1 790 7.4122188379988074e-04
+
+ 5.2821648120880127e-01 3.3668708801269531e-01
+ <_>
+
+ 0 -1 791 3.8330298848450184e-03
+
+ 4.5595678687095642e-01 6.2573361396789551e-01
+ <_>
+
+ 0 -1 792 -1.5456439927220345e-02
+
+ 2.3501169681549072e-01 5.1294529438018799e-01
+ <_>
+
+ 0 -1 793 2.6796779129654169e-03
+
+ 5.3294152021408081e-01 4.1550621390342712e-01
+ <_>
+
+ 0 -1 794 2.8296569362282753e-03
+
+ 4.2730879783630371e-01 5.8045381307601929e-01
+ <_>
+
+ 0 -1 795 -3.9444249123334885e-03
+
+ 2.9126119613647461e-01 5.2026861906051636e-01
+ <_>
+
+ 0 -1 796 2.7179559692740440e-03
+
+ 5.3076881170272827e-01 3.5856771469116211e-01
+ <_>
+
+ 0 -1 797 5.9077627956867218e-03
+
+ 4.7037750482559204e-01 5.9415858983993530e-01
+ <_>
+
+ 0 -1 798 -4.2240349575877190e-03
+
+ 2.1415670216083527e-01 5.0887960195541382e-01
+ <_>
+
+ 0 -1 799 4.0725888684391975e-03
+
+ 4.7664138674736023e-01 6.8410611152648926e-01
+ <_>
+
+ 0 -1 800 1.0149530135095119e-02
+
+ 5.3607988357543945e-01 3.7484970688819885e-01
+ <_>
+
+ 0 -1 801 -1.8864999583456665e-04
+
+ 5.7201302051544189e-01 3.8538050651550293e-01
+ <_>
+
+ 0 -1 802 -4.8864358104765415e-03
+
+ 3.6931228637695312e-01 5.3409588336944580e-01
+ <_>
+
+ 0 -1 803 2.6158479973673820e-02
+
+ 4.9623748660087585e-01 6.0599899291992188e-01
+ <_>
+
+ 0 -1 804 4.8560759751126170e-04
+
+ 4.4389459490776062e-01 6.0124689340591431e-01
+ <_>
+
+ 0 -1 805 1.1268709786236286e-02
+
+ 5.2442502975463867e-01 1.8403880298137665e-01
+ <_>
+
+ 0 -1 806 -2.8114619199186563e-03
+
+ 6.0602837800979614e-01 4.4098970293998718e-01
+ <_>
+
+ 0 -1 807 -5.6112729944288731e-03
+
+ 3.8911709189414978e-01 5.5892372131347656e-01
+ <_>
+
+ 0 -1 808 8.5680093616247177e-03
+
+ 5.0693458318710327e-01 2.0626190304756165e-01
+ <_>
+
+ 0 -1 809 -3.8172779022715986e-04
+
+ 5.8822017908096313e-01 4.1926109790802002e-01
+ <_>
+
+ 0 -1 810 -1.7680290329735726e-04
+
+ 5.5336058139801025e-01 4.0033689141273499e-01
+ <_>
+
+ 0 -1 811 6.5112537704408169e-03
+
+ 3.3101469278335571e-01 5.4441910982131958e-01
+ <_>
+
+ 0 -1 812 -6.5948683186434209e-05
+
+ 5.4338318109512329e-01 3.9449059963226318e-01
+ <_>
+
+ 0 -1 813 6.9939051754772663e-03
+
+ 5.6003582477569580e-01 4.1927140951156616e-01
+ <_>
+
+ 0 -1 814 -4.6744439750909805e-03
+
+ 6.6854667663574219e-01 4.6049609780311584e-01
+ <_>
+
+ 0 -1 815 1.1589850299060345e-02
+
+ 5.3571212291717529e-01 2.9268300533294678e-01
+ <_>
+
+ 0 -1 816 1.3007840141654015e-02
+
+ 4.6798178553581238e-01 7.3074632883071899e-01
+ <_>
+
+ 0 -1 817 -1.1008579749614000e-03
+
+ 3.9375010132789612e-01 5.4150652885437012e-01
+ <_>
+
+ 0 -1 818 6.0472649056464434e-04
+
+ 4.2423760890960693e-01 5.6040412187576294e-01
+ <_>
+
+ 0 -1 819 -1.4494840055704117e-02
+
+ 3.6312100291252136e-01 5.2931827306747437e-01
+ <_>
+
+ 0 -1 820 -5.3056948818266392e-03
+
+ 6.8604522943496704e-01 4.6218210458755493e-01
+ <_>
+
+ 0 -1 821 -8.1829127157106996e-04
+
+ 3.9440968632698059e-01 5.4204392433166504e-01
+ <_>
+
+ 0 -1 822 -1.9077520817518234e-02
+
+ 1.9626219570636749e-01 5.0378918647766113e-01
+ <_>
+
+ 0 -1 823 3.5549470339901745e-04
+
+ 4.0862590074539185e-01 5.6139731407165527e-01
+ <_>
+
+ 0 -1 824 1.9679730758070946e-03
+
+ 4.4891211390495300e-01 5.9261232614517212e-01
+ <_>
+
+ 0 -1 825 6.9189141504466534e-03
+
+ 5.3359258174896240e-01 3.7283858656883240e-01
+ <_>
+
+ 0 -1 826 2.9872779268771410e-03
+
+ 5.1113212108612061e-01 2.9756438732147217e-01
+ <_>
+
+ 0 -1 827 -6.2264618463814259e-03
+
+ 5.5414897203445435e-01 4.8245379328727722e-01
+ <_>
+
+ 0 -1 828 1.3353300280869007e-02
+
+ 4.5864239335060120e-01 6.4147979021072388e-01
+ <_>
+
+ 0 -1 829 3.3505238592624664e-02
+
+ 5.3924250602722168e-01 3.4299948811531067e-01
+ <_>
+
+ 0 -1 830 -2.5294460356235504e-03
+
+ 1.7037139832973480e-01 5.0133150815963745e-01
+ <_>
+
+ 0 -1 831 -1.2801629491150379e-03
+
+ 5.3054618835449219e-01 4.6974050998687744e-01
+ <_>
+
+ 0 -1 832 7.0687388069927692e-03
+
+ 4.6155458688735962e-01 6.4365047216415405e-01
+ <_>
+
+ 0 -1 833 9.6880499040707946e-04
+
+ 4.8335990309715271e-01 6.0438942909240723e-01
+ <_>
+
+ 0 -1 834 3.9647659286856651e-03
+
+ 5.1876372098922729e-01 3.2318168878555298e-01
+ <_>
+
+ 0 -1 835 -2.2057730704545975e-02
+
+ 4.0792569518089294e-01 5.2009809017181396e-01
+ <_>
+
+ 0 -1 836 -6.6906312713399529e-04
+
+ 5.3316092491149902e-01 3.8156008720397949e-01
+ <_>
+
+ 0 -1 837 -6.7009328631684184e-04
+
+ 5.6554222106933594e-01 4.6889019012451172e-01
+ <_>
+
+ 0 -1 838 7.4284552829340100e-04
+
+ 4.5343810319900513e-01 6.2874001264572144e-01
+ <_>
+
+ 0 -1 839 2.2227810695767403e-03
+
+ 5.3506332635879517e-01 3.3036559820175171e-01
+ <_>
+
+ 0 -1 840 -5.4130521602928638e-03
+
+ 1.1136870086193085e-01 5.0054347515106201e-01
+ <_>
+
+ 0 -1 841 -1.4520040167553816e-05
+
+ 5.6287378072738647e-01 4.3251338601112366e-01
+ <_>
+
+ 0 -1 842 2.3369169502984732e-04
+
+ 4.1658350825309753e-01 5.4477912187576294e-01
+ <_>
+
+ 0 -1 843 4.2894547805190086e-03
+
+ 4.8603910207748413e-01 6.7786490917205811e-01
+ <_>
+
+ 0 -1 844 5.9103150852024555e-03
+
+ 5.2623051404953003e-01 3.6121138930320740e-01
+ <_>
+
+ 0 -1 845 1.2900539673864841e-02
+
+ 5.3193771839141846e-01 3.2502880692481995e-01
+ <_>
+
+ 0 -1 846 4.6982979401946068e-03
+
+ 4.6182450652122498e-01 6.6659259796142578e-01
+ <_>
+
+ 0 -1 847 1.0439859703183174e-02
+
+ 5.5056709051132202e-01 3.8836041092872620e-01
+ <_>
+
+ 0 -1 848 3.0443191062659025e-03
+
+ 4.6978530287742615e-01 7.3018449544906616e-01
+ <_>
+
+ 0 -1 849 -6.1593751888722181e-04
+
+ 3.8308390974998474e-01 5.4649841785430908e-01
+ <_>
+
+ 0 -1 850 -3.4247159492224455e-03
+
+ 2.5663000345230103e-01 5.0895309448242188e-01
+ <_>
+
+ 0 -1 851 -9.3538565561175346e-03
+
+ 6.4699661731719971e-01 4.9407958984375000e-01
+ <_>
+
+ 0 -1 852 5.2338998764753342e-02
+
+ 4.7459828853607178e-01 7.8787708282470703e-01
+ <_>
+
+ 0 -1 853 3.5765620414167643e-03
+
+ 5.3066647052764893e-01 2.7484980225563049e-01
+ <_>
+
+ 0 -1 854 7.1555317845195532e-04
+
+ 5.4131257534027100e-01 4.0419089794158936e-01
+ <_>
+
+ 0 -1 855 -1.0516679845750332e-02
+
+ 6.1585122346878052e-01 4.8152831196784973e-01
+ <_>
+
+ 0 -1 856 7.7347927726805210e-03
+
+ 4.6958059072494507e-01 7.0289808511734009e-01
+ <_>
+
+ 0 -1 857 -4.3226778507232666e-03
+
+ 2.8495660424232483e-01 5.3046840429306030e-01
+ <_>
+
+ 0 -1 858 -2.5534399319440126e-03
+
+ 7.0569849014282227e-01 4.6888920664787292e-01
+ <_>
+
+ 0 -1 859 1.0268510231981054e-04
+
+ 3.9029321074485779e-01 5.5734640359878540e-01
+ <_>
+
+ 0 -1 860 7.1395188570022583e-06
+
+ 3.6842319369316101e-01 5.2639877796173096e-01
+ <_>
+
+ 0 -1 861 -1.6711989883333445e-03
+
+ 3.8491758704185486e-01 5.3872710466384888e-01
+ <_>
+
+ 0 -1 862 4.9260449595749378e-03
+
+ 4.7297719120979309e-01 7.4472510814666748e-01
+ <_>
+
+ 0 -1 863 4.3908702209591866e-03
+
+ 4.8091810941696167e-01 5.5919218063354492e-01
+ <_>
+
+ 0 -1 864 -1.7793629318475723e-02
+
+ 6.9036781787872314e-01 4.6769270300865173e-01
+ <_>
+
+ 0 -1 865 2.0469669252634048e-03
+
+ 5.3706902265548706e-01 3.3081620931625366e-01
+ <_>
+
+ 0 -1 866 2.9891489073634148e-02
+
+ 5.1398652791976929e-01 3.3090591430664062e-01
+ <_>
+
+ 0 -1 867 1.5494900289922953e-03
+
+ 4.6602371335029602e-01 6.0783427953720093e-01
+ <_>
+
+ 0 -1 868 1.4956969534978271e-03
+
+ 4.4048359990119934e-01 5.8639198541641235e-01
+ <_>
+
+ 0 -1 869 9.5885928021743894e-04
+
+ 5.4359710216522217e-01 4.2085230350494385e-01
+ <_>
+
+ 0 -1 870 4.9643701640889049e-04
+
+ 5.3705781698226929e-01 4.0006220340728760e-01
+ <_>
+
+ 0 -1 871 -2.7280810754746199e-03
+
+ 5.6594127416610718e-01 4.2596429586410522e-01
+ <_>
+
+ 0 -1 872 2.3026480339467525e-03
+
+ 5.1616579294204712e-01 3.3508691191673279e-01
+ <_>
+
+ 0 -1 873 2.5151631236076355e-01
+
+ 4.8696619272232056e-01 7.1473097801208496e-01
+ <_>
+
+ 0 -1 874 -4.6328022144734859e-03
+
+ 2.7274489402770996e-01 5.0837898254394531e-01
+ <_>
+
+ 0 -1 875 -4.0434490889310837e-02
+
+ 6.8514388799667358e-01 5.0217670202255249e-01
+ <_>
+
+ 0 -1 876 1.4972220014897175e-05
+
+ 4.2844650149345398e-01 5.5225551128387451e-01
+ <_>
+
+ 0 -1 877 -2.4050309730228037e-04
+
+ 4.2261189222335815e-01 5.3900748491287231e-01
+ <_>
+
+ 0 -1 878 2.3657839745283127e-02
+
+ 4.7446319460868835e-01 7.5043660402297974e-01
+ <_>
+
+ 0 -1 879 -8.1449104472994804e-03
+
+ 4.2450588941574097e-01 5.5383628606796265e-01
+ <_>
+
+ 0 -1 880 -3.6992130335420370e-03
+
+ 5.9523570537567139e-01 4.5297130942344666e-01
+ <_>
+
+ 0 -1 881 -6.7718601785600185e-03
+
+ 4.1377940773963928e-01 5.4733997583389282e-01
+ <_>
+
+ 0 -1 882 4.2669530957937241e-03
+
+ 4.4841149449348450e-01 5.7979941368103027e-01
+ <_>
+
+ 0 -1 883 1.7791989957913756e-03
+
+ 5.6248587369918823e-01 4.4324448704719543e-01
+ <_>
+
+ 0 -1 884 1.6774770338088274e-03
+
+ 4.6377518773078918e-01 6.3642418384552002e-01
+ <_>
+
+ 0 -1 885 1.1732629500329494e-03
+
+ 4.5445030927658081e-01 5.9144157171249390e-01
+ <_>
+
+ 0 -1 886 8.6998171173036098e-04
+
+ 5.3347527980804443e-01 3.8859179615974426e-01
+ <_>
+
+ 0 -1 887 7.6378340600058436e-04
+
+ 5.3985852003097534e-01 3.7449419498443604e-01
+ <_>
+
+ 0 -1 888 1.5684569370932877e-04
+
+ 4.3178731203079224e-01 5.6146162748336792e-01
+ <_>
+
+ 0 -1 889 -2.1511370316147804e-02
+
+ 1.7859250307083130e-01 5.1855427026748657e-01
+ <_>
+
+ 0 -1 890 1.3081369979772717e-04
+
+ 4.3424990773200989e-01 5.6828498840332031e-01
+ <_>
+
+ 0 -1 891 2.1992040798068047e-02
+
+ 5.1617169380187988e-01 2.3793940246105194e-01
+ <_>
+
+ 0 -1 892 -8.0136500764638186e-04
+
+ 5.9867632389068604e-01 4.4664269685745239e-01
+ <_>
+
+ 0 -1 893 -8.2736099138855934e-03
+
+ 4.1082179546356201e-01 5.2510571479797363e-01
+ <_>
+
+ 0 -1 894 3.6831789184361696e-03
+
+ 5.1738142967224121e-01 3.3975180983543396e-01
+ <_>
+
+ 0 -1 895 -7.9525681212544441e-03
+
+ 6.8889832496643066e-01 4.8459240794181824e-01
+ <_>
+
+ 0 -1 896 1.5382299898192286e-03
+
+ 5.1785671710968018e-01 3.4541139006614685e-01
+ <_>
+
+ 0 -1 897 -1.4043530449271202e-02
+
+ 1.6784210503101349e-01 5.1886677742004395e-01
+ <_>
+
+ 0 -1 898 1.4315890148282051e-03
+
+ 4.3682569265365601e-01 5.6557738780975342e-01
+ <_>
+
+ 0 -1 899 -3.4014228731393814e-02
+
+ 7.8022962808609009e-01 4.9592170119285583e-01
+ <_>
+
+ 0 -1 900 -1.2027299962937832e-02
+
+ 1.5851010382175446e-01 5.0322318077087402e-01
+ <_>
+
+ 0 -1 901 1.3316619396209717e-01
+
+ 5.1633048057556152e-01 2.7551281452178955e-01
+ <_>
+
+ 0 -1 902 -1.5221949433907866e-03
+
+ 3.7283179163932800e-01 5.2145522832870483e-01
+ <_>
+
+ 0 -1 903 -9.3929271679371595e-04
+
+ 5.8383792638778687e-01 4.5111650228500366e-01
+ <_>
+
+ 0 -1 904 2.7719739824533463e-02
+
+ 4.7282868623733521e-01 7.3315447568893433e-01
+ <_>
+
+ 0 -1 905 3.1030150130391121e-03
+
+ 5.3022021055221558e-01 4.1015630960464478e-01
+ <_>
+
+ 0 -1 906 7.7861219644546509e-02
+
+ 4.9983340501785278e-01 1.2729619443416595e-01
+ <_>
+
+ 0 -1 907 -1.5854939818382263e-02
+
+ 5.0833359360694885e-02 5.1656562089920044e-01
+ <_>
+
+ 0 -1 908 -4.9725300632417202e-03
+
+ 6.7981338500976562e-01 4.6842318773269653e-01
+ <_>
+
+ 0 -1 909 -9.7676506265997887e-04
+
+ 6.0107719898223877e-01 4.7889319062232971e-01
+ <_>
+
+ 0 -1 910 -2.4647710379213095e-03
+
+ 3.3933979272842407e-01 5.2205038070678711e-01
+ <_>
+
+ 0 -1 911 -6.7937700077891350e-03
+
+ 4.3651369214057922e-01 5.2396631240844727e-01
+ <_>
+
+ 0 -1 912 3.2608021050691605e-02
+
+ 5.0527238845825195e-01 2.4252149462699890e-01
+ <_>
+
+ 0 -1 913 -5.8514421107247472e-04
+
+ 5.7339739799499512e-01 4.7585740685462952e-01
+ <_>
+
+ 0 -1 914 -2.9632600024342537e-02
+
+ 3.8922891020774841e-01 5.2635979652404785e-01
+ <_>
+ 137
+ 6.7698921203613281e+01
+
+ <_>
+
+ 0 -1 915 4.6550851315259933e-02
+
+ 3.2769501209259033e-01 6.2405228614807129e-01
+ <_>
+
+ 0 -1 916 7.9537127166986465e-03
+
+ 4.2564851045608521e-01 6.9429391622543335e-01
+ <_>
+
+ 0 -1 917 6.8221561377868056e-04
+
+ 3.7114870548248291e-01 5.9007328748703003e-01
+ <_>
+
+ 0 -1 918 -1.9348249770700932e-04
+
+ 2.0411339402198792e-01 5.3005450963973999e-01
+ <_>
+
+ 0 -1 919 -2.6710508973337710e-04
+
+ 5.4161262512207031e-01 3.1031790375709534e-01
+ <_>
+
+ 0 -1 920 2.7818060480058193e-03
+
+ 5.2778327465057373e-01 3.4670698642730713e-01
+ <_>
+
+ 0 -1 921 -4.6779078547842801e-04
+
+ 5.3082311153411865e-01 3.2944920659065247e-01
+ <_>
+
+ 0 -1 922 -3.0335160772665404e-05
+
+ 5.7738727331161499e-01 3.8520970940589905e-01
+ <_>
+
+ 0 -1 923 7.8038009814918041e-04
+
+ 4.3174389004707336e-01 6.1500579118728638e-01
+ <_>
+
+ 0 -1 924 -4.2553851380944252e-03
+
+ 2.9339039325714111e-01 5.3242927789688110e-01
+ <_>
+
+ 0 -1 925 -2.4735610350035131e-04
+
+ 5.4688447713851929e-01 3.8430300354957581e-01
+ <_>
+
+ 0 -1 926 -1.4724259381182492e-04
+
+ 4.2815428972244263e-01 5.7555872201919556e-01
+ <_>
+
+ 0 -1 927 1.1864770203828812e-03
+
+ 3.7473011016845703e-01 5.4714661836624146e-01
+ <_>
+
+ 0 -1 928 2.3936580400913954e-03
+
+ 4.5377838611602783e-01 6.1115288734436035e-01
+ <_>
+
+ 0 -1 929 -1.5390539774671197e-03
+
+ 2.9713419079780579e-01 5.1895380020141602e-01
+ <_>
+
+ 0 -1 930 -7.1968790143728256e-03
+
+ 6.6990667581558228e-01 4.7264769673347473e-01
+ <_>
+
+ 0 -1 931 -4.1499789222143590e-04
+
+ 3.3849540352821350e-01 5.2603179216384888e-01
+ <_>
+
+ 0 -1 932 4.4359830208122730e-03
+
+ 5.3991222381591797e-01 3.9201408624649048e-01
+ <_>
+
+ 0 -1 933 2.6606200262904167e-03
+
+ 4.4825780391693115e-01 6.1196178197860718e-01
+ <_>
+
+ 0 -1 934 -1.5287200221791863e-03
+
+ 3.7112379074096680e-01 5.3402662277221680e-01
+ <_>
+
+ 0 -1 935 -4.7397250309586525e-03
+
+ 6.0310882329940796e-01 4.4551450014114380e-01
+ <_>
+
+ 0 -1 936 -1.4829129911959171e-02
+
+ 2.8387540578842163e-01 5.3418618440628052e-01
+ <_>
+
+ 0 -1 937 9.2275557108223438e-04
+
+ 5.2095472812652588e-01 3.3616539835929871e-01
+ <_>
+
+ 0 -1 938 8.3529807627201080e-02
+
+ 5.1199698448181152e-01 8.1164449453353882e-02
+ <_>
+
+ 0 -1 939 -7.5633148662745953e-04
+
+ 3.3171200752258301e-01 5.1898312568664551e-01
+ <_>
+
+ 0 -1 940 9.8403859883546829e-03
+
+ 5.2475982904434204e-01 2.3349590599536896e-01
+ <_>
+
+ 0 -1 941 -1.5953830443322659e-03
+
+ 5.7500940561294556e-01 4.2956221103668213e-01
+ <_>
+
+ 0 -1 942 3.4766020689858124e-05
+
+ 4.3424451351165771e-01 5.5640292167663574e-01
+ <_>
+
+ 0 -1 943 2.9862910509109497e-02
+
+ 4.5791471004486084e-01 6.5791881084442139e-01
+ <_>
+
+ 0 -1 944 1.1325590312480927e-02
+
+ 5.2743119001388550e-01 3.6738881468772888e-01
+ <_>
+
+ 0 -1 945 -8.7828645482659340e-03
+
+ 7.1003687381744385e-01 4.6421670913696289e-01
+ <_>
+
+ 0 -1 946 4.3639959767460823e-03
+
+ 5.2792161703109741e-01 2.7058771252632141e-01
+ <_>
+
+ 0 -1 947 4.1804728098213673e-03
+
+ 5.0725251436233521e-01 2.4490830302238464e-01
+ <_>
+
+ 0 -1 948 -4.5668511302210391e-04
+
+ 4.2831051349639893e-01 5.5486911535263062e-01
+ <_>
+
+ 0 -1 949 -3.7140368949621916e-03
+
+ 5.5193877220153809e-01 4.1036531329154968e-01
+ <_>
+
+ 0 -1 950 -2.5304289534687996e-02
+
+ 6.8670022487640381e-01 4.8698890209197998e-01
+ <_>
+
+ 0 -1 951 -3.4454080741852522e-04
+
+ 3.7288740277290344e-01 5.2876931428909302e-01
+ <_>
+
+ 0 -1 952 -8.3935231668874621e-04
+
+ 6.0601520538330078e-01 4.6160620450973511e-01
+ <_>
+
+ 0 -1 953 1.7280049622058868e-02
+
+ 5.0496357679367065e-01 1.8198239803314209e-01
+ <_>
+
+ 0 -1 954 -6.3595077954232693e-03
+
+ 1.6312399506568909e-01 5.2327787876129150e-01
+ <_>
+
+ 0 -1 955 1.0298109846189618e-03
+
+ 4.4632780551910400e-01 6.1765491962432861e-01
+ <_>
+
+ 0 -1 956 1.0117109632119536e-03
+
+ 5.4733848571777344e-01 4.3006989359855652e-01
+ <_>
+
+ 0 -1 957 -1.0308800265192986e-02
+
+ 1.1669850349426270e-01 5.0008672475814819e-01
+ <_>
+
+ 0 -1 958 5.4682018235325813e-03
+
+ 4.7692871093750000e-01 6.7192137241363525e-01
+ <_>
+
+ 0 -1 959 -9.1696460731327534e-04
+
+ 3.4710898995399475e-01 5.1781648397445679e-01
+ <_>
+
+ 0 -1 960 2.3922820109874010e-03
+
+ 4.7852361202239990e-01 6.2163108587265015e-01
+ <_>
+
+ 0 -1 961 -7.5573818758130074e-03
+
+ 5.8147960901260376e-01 4.4100850820541382e-01
+ <_>
+
+ 0 -1 962 -7.7024032361805439e-04
+
+ 3.8780000805854797e-01 5.4657220840454102e-01
+ <_>
+
+ 0 -1 963 -8.7125990539789200e-03
+
+ 1.6600510478019714e-01 4.9958360195159912e-01
+ <_>
+
+ 0 -1 964 -1.0306320153176785e-02
+
+ 4.0933910012245178e-01 5.2742338180541992e-01
+ <_>
+
+ 0 -1 965 -2.0940979011356831e-03
+
+ 6.2061947584152222e-01 4.5722800493240356e-01
+ <_>
+
+ 0 -1 966 6.8099051713943481e-03
+
+ 5.5677592754364014e-01 4.1556000709533691e-01
+ <_>
+
+ 0 -1 967 -1.0746059706434608e-03
+
+ 5.6389278173446655e-01 4.3530249595642090e-01
+ <_>
+
+ 0 -1 968 2.1550289820879698e-03
+
+ 4.8262658715248108e-01 6.7497581243515015e-01
+ <_>
+
+ 0 -1 969 3.1742319464683533e-02
+
+ 5.0483798980712891e-01 1.8832489848136902e-01
+ <_>
+
+ 0 -1 970 -7.8382723033428192e-02
+
+ 2.3695489764213562e-01 5.2601581811904907e-01
+ <_>
+
+ 0 -1 971 5.7415119372308254e-03
+
+ 5.0488287210464478e-01 2.7764698863029480e-01
+ <_>
+
+ 0 -1 972 -2.9014600440859795e-03
+
+ 6.2386047840118408e-01 4.6933171153068542e-01
+ <_>
+
+ 0 -1 973 -2.6427931152284145e-03
+
+ 3.3141419291496277e-01 5.1697772741317749e-01
+ <_>
+
+ 0 -1 974 -1.0949660092592239e-01
+
+ 2.3800450563430786e-01 5.1834410429000854e-01
+ <_>
+
+ 0 -1 975 7.4075913289561868e-05
+
+ 4.0696358680725098e-01 5.3621500730514526e-01
+ <_>
+
+ 0 -1 976 -5.0593802006915212e-04
+
+ 5.5067062377929688e-01 4.3745940923690796e-01
+ <_>
+
+ 0 -1 977 -8.2131777890026569e-04
+
+ 5.5257099866867065e-01 4.2093759775161743e-01
+ <_>
+
+ 0 -1 978 -6.0276539443293586e-05
+
+ 5.4554748535156250e-01 4.7482660412788391e-01
+ <_>
+
+ 0 -1 979 6.8065142259001732e-03
+
+ 5.1579958200454712e-01 3.4245771169662476e-01
+ <_>
+
+ 0 -1 980 1.7202789895236492e-03
+
+ 5.0132077932357788e-01 6.3312637805938721e-01
+ <_>
+
+ 0 -1 981 -1.3016929733566940e-04
+
+ 5.5397182703018188e-01 4.2268699407577515e-01
+ <_>
+
+ 0 -1 982 -4.8016388900578022e-03
+
+ 4.4250950217247009e-01 5.4307800531387329e-01
+ <_>
+
+ 0 -1 983 -2.5399310979992151e-03
+
+ 7.1457821130752563e-01 4.6976050734519958e-01
+ <_>
+
+ 0 -1 984 -1.4278929447755218e-03
+
+ 4.0704450011253357e-01 5.3996050357818604e-01
+ <_>
+
+ 0 -1 985 -2.5142550468444824e-02
+
+ 7.8846907615661621e-01 4.7473520040512085e-01
+ <_>
+
+ 0 -1 986 -3.8899609353393316e-03
+
+ 4.2961919307708740e-01 5.5771100521087646e-01
+ <_>
+
+ 0 -1 987 4.3947459198534489e-03
+
+ 4.6931621432304382e-01 7.0239442586898804e-01
+ <_>
+
+ 0 -1 988 2.4678420275449753e-02
+
+ 5.2423220872879028e-01 3.8125100731849670e-01
+ <_>
+
+ 0 -1 989 3.8047678768634796e-02
+
+ 5.0117397308349609e-01 1.6878280043601990e-01
+ <_>
+
+ 0 -1 990 7.9424865543842316e-03
+
+ 4.8285821080207825e-01 6.3695681095123291e-01
+ <_>
+
+ 0 -1 991 -1.5110049862414598e-03
+
+ 5.9064859151840210e-01 4.4876679778099060e-01
+ <_>
+
+ 0 -1 992 6.4201741479337215e-03
+
+ 5.2410978078842163e-01 2.9905700683593750e-01
+ <_>
+
+ 0 -1 993 -2.9802159406244755e-03
+
+ 3.0414658784866333e-01 5.0784897804260254e-01
+ <_>
+
+ 0 -1 994 -7.4580078944563866e-04
+
+ 4.1281390190124512e-01 5.2568262815475464e-01
+ <_>
+
+ 0 -1 995 -1.0470950044691563e-02
+
+ 5.8083951473236084e-01 4.4942960143089294e-01
+ <_>
+
+ 0 -1 996 9.3369204550981522e-03
+
+ 5.2465528249740601e-01 2.6589488983154297e-01
+ <_>
+
+ 0 -1 997 2.7936900034546852e-02
+
+ 4.6749550104141235e-01 7.0872569084167480e-01
+ <_>
+
+ 0 -1 998 7.4277678504586220e-03
+
+ 5.4094868898391724e-01 3.7585180997848511e-01
+ <_>
+
+ 0 -1 999 -2.3584509268403053e-02
+
+ 3.7586399912834167e-01 5.2385509014129639e-01
+ <_>
+
+ 0 -1 1000 1.1452640173956752e-03
+
+ 4.3295788764953613e-01 5.8042472600936890e-01
+ <_>
+
+ 0 -1 1001 -4.3468660442158580e-04
+
+ 5.2806180715560913e-01 3.8730698823928833e-01
+ <_>
+
+ 0 -1 1002 1.0648540221154690e-02
+
+ 4.9021130800247192e-01 5.6812518835067749e-01
+ <_>
+
+ 0 -1 1003 -3.9418050437234342e-04
+
+ 5.5708801746368408e-01 4.3182510137557983e-01
+ <_>
+
+ 0 -1 1004 -1.3270479394122958e-04
+
+ 5.6584399938583374e-01 4.3435549736022949e-01
+ <_>
+
+ 0 -1 1005 -2.0125510636717081e-03
+
+ 6.0567390918731689e-01 4.5375239849090576e-01
+ <_>
+
+ 0 -1 1006 2.4854319635778666e-03
+
+ 5.3904771804809570e-01 4.1380101442337036e-01
+ <_>
+
+ 0 -1 1007 1.8237880431115627e-03
+
+ 4.3548288941383362e-01 5.7171887159347534e-01
+ <_>
+
+ 0 -1 1008 -1.6656659543514252e-02
+
+ 3.0109131336212158e-01 5.2161228656768799e-01
+ <_>
+
+ 0 -1 1009 8.0349558265879750e-04
+
+ 5.3001511096954346e-01 3.8183969259262085e-01
+ <_>
+
+ 0 -1 1010 3.4170378930866718e-03
+
+ 5.3280287981033325e-01 4.2414000630378723e-01
+ <_>
+
+ 0 -1 1011 -3.6222729249857366e-04
+
+ 5.4917281866073608e-01 4.1869771480560303e-01
+ <_>
+
+ 0 -1 1012 -1.1630020290613174e-01
+
+ 1.4407220482826233e-01 5.2264511585235596e-01
+ <_>
+
+ 0 -1 1013 -1.4695010147988796e-02
+
+ 7.7477252483367920e-01 4.7157171368598938e-01
+ <_>
+
+ 0 -1 1014 2.1972130052745342e-03
+
+ 5.3554338216781616e-01 3.3156448602676392e-01
+ <_>
+
+ 0 -1 1015 -4.6965209185145795e-04
+
+ 5.7672351598739624e-01 4.4581368565559387e-01
+ <_>
+
+ 0 -1 1016 6.5144998952746391e-03
+
+ 5.2156740427017212e-01 3.6478888988494873e-01
+ <_>
+
+ 0 -1 1017 2.1300060674548149e-02
+
+ 4.9942049384117126e-01 1.5679509937763214e-01
+ <_>
+
+ 0 -1 1018 3.1881409231573343e-03
+
+ 4.7422000765800476e-01 6.2872701883316040e-01
+ <_>
+
+ 0 -1 1019 9.0019777417182922e-04
+
+ 5.3479540348052979e-01 3.9437520503997803e-01
+ <_>
+
+ 0 -1 1020 -5.1772277802228928e-03
+
+ 6.7271918058395386e-01 5.0131380558013916e-01
+ <_>
+
+ 0 -1 1021 -4.3764649890363216e-03
+
+ 3.1066751480102539e-01 5.1287931203842163e-01
+ <_>
+
+ 0 -1 1022 2.6299960445612669e-03
+
+ 4.8863101005554199e-01 5.7552158832550049e-01
+ <_>
+
+ 0 -1 1023 -2.0458688959479332e-03
+
+ 6.0257941484451294e-01 4.5580768585205078e-01
+ <_>
+
+ 0 -1 1024 6.9482706487178802e-02
+
+ 5.2407479286193848e-01 2.1852590143680573e-01
+ <_>
+
+ 0 -1 1025 2.4048939347267151e-02
+
+ 5.0118672847747803e-01 2.0906220376491547e-01
+ <_>
+
+ 0 -1 1026 3.1095340382307768e-03
+
+ 4.8667120933532715e-01 7.1085482835769653e-01
+ <_>
+
+ 0 -1 1027 -1.2503260513767600e-03
+
+ 3.4078910946846008e-01 5.1561951637268066e-01
+ <_>
+
+ 0 -1 1028 -1.0281190043315291e-03
+
+ 5.5755722522735596e-01 4.4394320249557495e-01
+ <_>
+
+ 0 -1 1029 -8.8893622159957886e-03
+
+ 6.4020007848739624e-01 4.6204420924186707e-01
+ <_>
+
+ 0 -1 1030 -6.1094801640138030e-04
+
+ 3.7664419412612915e-01 5.4488998651504517e-01
+ <_>
+
+ 0 -1 1031 -5.7686357758939266e-03
+
+ 3.3186489343643188e-01 5.1336771249771118e-01
+ <_>
+
+ 0 -1 1032 1.8506490159779787e-03
+
+ 4.9035701155662537e-01 6.4069348573684692e-01
+ <_>
+
+ 0 -1 1033 -9.9799469113349915e-02
+
+ 1.5360510349273682e-01 5.0155621767044067e-01
+ <_>
+
+ 0 -1 1034 -3.5128349065780640e-01
+
+ 5.8823131024837494e-02 5.1743787527084351e-01
+ <_>
+
+ 0 -1 1035 -4.5244570821523666e-02
+
+ 6.9614887237548828e-01 4.6778729557991028e-01
+ <_>
+
+ 0 -1 1036 7.1481578052043915e-02
+
+ 5.1679861545562744e-01 1.0380929708480835e-01
+ <_>
+
+ 0 -1 1037 2.1895780228078365e-03
+
+ 4.2730781435966492e-01 5.5320608615875244e-01
+ <_>
+
+ 0 -1 1038 -5.9242651332169771e-04
+
+ 4.6389439702033997e-01 5.2763891220092773e-01
+ <_>
+
+ 0 -1 1039 1.6788389766588807e-03
+
+ 5.3016489744186401e-01 3.9320349693298340e-01
+ <_>
+
+ 0 -1 1040 -2.2163488902151585e-03
+
+ 5.6306940317153931e-01 4.7570338845252991e-01
+ <_>
+
+ 0 -1 1041 1.1568699846975505e-04
+
+ 4.3075358867645264e-01 5.5357027053833008e-01
+ <_>
+
+ 0 -1 1042 -7.2017288766801357e-03
+
+ 1.4448820054531097e-01 5.1930642127990723e-01
+ <_>
+
+ 0 -1 1043 8.9081272017210722e-04
+
+ 4.3844321370124817e-01 5.5936211347579956e-01
+ <_>
+
+ 0 -1 1044 1.9605009583756328e-04
+
+ 5.3404158353805542e-01 4.7059568762779236e-01
+ <_>
+
+ 0 -1 1045 5.2022142335772514e-04
+
+ 5.2138561010360718e-01 3.8100790977478027e-01
+ <_>
+
+ 0 -1 1046 9.4588572392240167e-04
+
+ 4.7694149613380432e-01 6.1307388544082642e-01
+ <_>
+
+ 0 -1 1047 9.1698471806012094e-05
+
+ 4.2450091242790222e-01 5.4293632507324219e-01
+ <_>
+
+ 0 -1 1048 2.1833200007677078e-03
+
+ 5.4577308893203735e-01 4.1910758614540100e-01
+ <_>
+
+ 0 -1 1049 -8.6039671441540122e-04
+
+ 5.7645887136459351e-01 4.4716599583625793e-01
+ <_>
+
+ 0 -1 1050 -1.3236239552497864e-02
+
+ 6.3728231191635132e-01 4.6950098872184753e-01
+ <_>
+
+ 0 -1 1051 4.3376701069064438e-04
+
+ 5.3178739547729492e-01 3.9458298683166504e-01
+ <_>
+ 140
+ 6.9229873657226562e+01
+
+ <_>
+
+ 0 -1 1052 -2.4847149848937988e-02
+
+ 6.5555167198181152e-01 3.8733118772506714e-01
+ <_>
+
+ 0 -1 1053 6.1348611488938332e-03
+
+ 3.7480720877647400e-01 5.9739977121353149e-01
+ <_>
+
+ 0 -1 1054 6.4498498104512691e-03
+
+ 5.4254919290542603e-01 2.5488111376762390e-01
+ <_>
+
+ 0 -1 1055 6.3491211039945483e-04
+
+ 2.4624420702457428e-01 5.3872537612915039e-01
+ <_>
+
+ 0 -1 1056 1.4023890253156424e-03
+
+ 5.5943220853805542e-01 3.5286578536033630e-01
+ <_>
+
+ 0 -1 1057 3.0044000595808029e-04
+
+ 3.9585039019584656e-01 5.7659381628036499e-01
+ <_>
+
+ 0 -1 1058 1.0042409849120304e-04
+
+ 3.6989969015121460e-01 5.5349981784820557e-01
+ <_>
+
+ 0 -1 1059 -5.0841490738093853e-03
+
+ 3.7110909819602966e-01 5.5478000640869141e-01
+ <_>
+
+ 0 -1 1060 -1.9537260755896568e-02
+
+ 7.4927550554275513e-01 4.5792970061302185e-01
+ <_>
+
+ 0 -1 1061 -7.4532740654831287e-06
+
+ 5.6497871875762939e-01 3.9040699601173401e-01
+ <_>
+
+ 0 -1 1062 -3.6079459823668003e-03
+
+ 3.3810880780220032e-01 5.2678012847900391e-01
+ <_>
+
+ 0 -1 1063 2.0697501022368670e-03
+
+ 5.5192911624908447e-01 3.7143889069557190e-01
+ <_>
+
+ 0 -1 1064 -4.6463840408250690e-04
+
+ 5.6082147359848022e-01 4.1135668754577637e-01
+ <_>
+
+ 0 -1 1065 7.5490452582016587e-04
+
+ 3.5592061281204224e-01 5.3293561935424805e-01
+ <_>
+
+ 0 -1 1066 -9.8322238773107529e-04
+
+ 5.4147958755493164e-01 3.7632051110267639e-01
+ <_>
+
+ 0 -1 1067 -1.9940640777349472e-02
+
+ 6.3479030132293701e-01 4.7052991390228271e-01
+ <_>
+
+ 0 -1 1068 3.7680300883948803e-03
+
+ 3.9134898781776428e-01 5.5637162923812866e-01
+ <_>
+
+ 0 -1 1069 -9.4528505578637123e-03
+
+ 2.5548928976058960e-01 5.2151167392730713e-01
+ <_>
+
+ 0 -1 1070 2.9560849070549011e-03
+
+ 5.1746791601181030e-01 3.0639201402664185e-01
+ <_>
+
+ 0 -1 1071 9.1078737750649452e-03
+
+ 5.3884482383728027e-01 2.8859630227088928e-01
+ <_>
+
+ 0 -1 1072 1.8219229532405734e-03
+
+ 4.3360430002212524e-01 5.8521968126296997e-01
+ <_>
+
+ 0 -1 1073 1.4688739553093910e-02
+
+ 5.2873617410659790e-01 2.8700059652328491e-01
+ <_>
+
+ 0 -1 1074 -1.4387990348041058e-02
+
+ 7.0194488763809204e-01 4.6473708748817444e-01
+ <_>
+
+ 0 -1 1075 -1.8986649811267853e-02
+
+ 2.9865521192550659e-01 5.2470117807388306e-01
+ <_>
+
+ 0 -1 1076 1.1527639580890536e-03
+
+ 4.3234738707542419e-01 5.9316617250442505e-01
+ <_>
+
+ 0 -1 1077 1.0933670215308666e-02
+
+ 5.2868640422821045e-01 3.1303191184997559e-01
+ <_>
+
+ 0 -1 1078 -1.4932730235159397e-02
+
+ 2.6584190130233765e-01 5.0840771198272705e-01
+ <_>
+
+ 0 -1 1079 -2.9970539617352188e-04
+
+ 5.4635268449783325e-01 3.7407240271568298e-01
+ <_>
+
+ 0 -1 1080 4.1677621193230152e-03
+
+ 4.7034969925880432e-01 7.4357217550277710e-01
+ <_>
+
+ 0 -1 1081 -6.3905320130288601e-03
+
+ 2.0692589879035950e-01 5.2805382013320923e-01
+ <_>
+
+ 0 -1 1082 4.5029609464108944e-03
+
+ 5.1826488971710205e-01 3.4835430979728699e-01
+ <_>
+
+ 0 -1 1083 -9.2040365561842918e-03
+
+ 6.8037772178649902e-01 4.9323600530624390e-01
+ <_>
+
+ 0 -1 1084 8.1327259540557861e-02
+
+ 5.0583988428115845e-01 2.2530519962310791e-01
+ <_>
+
+ 0 -1 1085 -1.5079280734062195e-01
+
+ 2.9634249210357666e-01 5.2646797895431519e-01
+ <_>
+
+ 0 -1 1086 3.3179009333252907e-03
+
+ 4.6554958820343018e-01 7.0729321241378784e-01
+ <_>
+
+ 0 -1 1087 7.7402801252901554e-04
+
+ 4.7803479433059692e-01 5.6682378053665161e-01
+ <_>
+
+ 0 -1 1088 6.8199541419744492e-04
+
+ 4.2869961261749268e-01 5.7221567630767822e-01
+ <_>
+
+ 0 -1 1089 5.3671570494771004e-03
+
+ 5.2993071079254150e-01 3.1146219372749329e-01
+ <_>
+
+ 0 -1 1090 9.7018666565418243e-05
+
+ 3.6746388673782349e-01 5.2694618701934814e-01
+ <_>
+
+ 0 -1 1091 -1.2534089386463165e-01
+
+ 2.3514920473098755e-01 5.2457910776138306e-01
+ <_>
+
+ 0 -1 1092 -5.2516269497573376e-03
+
+ 7.1159368753433228e-01 4.6937671303749084e-01
+ <_>
+
+ 0 -1 1093 -7.8342109918594360e-03
+
+ 4.4626510143280029e-01 5.4090857505798340e-01
+ <_>
+
+ 0 -1 1094 -1.1310069821774960e-03
+
+ 5.9456187486648560e-01 4.4176620244979858e-01
+ <_>
+
+ 0 -1 1095 1.7601120052859187e-03
+
+ 5.3532499074935913e-01 3.9734530448913574e-01
+ <_>
+
+ 0 -1 1096 -8.1581249833106995e-04
+
+ 3.7602680921554565e-01 5.2647268772125244e-01
+ <_>
+
+ 0 -1 1097 -3.8687589112669230e-03
+
+ 6.3099128007888794e-01 4.7498199343681335e-01
+ <_>
+
+ 0 -1 1098 1.5207129763439298e-03
+
+ 5.2301818132400513e-01 3.3612239360809326e-01
+ <_>
+
+ 0 -1 1099 5.4586738348007202e-01
+
+ 5.1671397686004639e-01 1.1726350337266922e-01
+ <_>
+
+ 0 -1 1100 1.5650190412998199e-02
+
+ 4.9794390797615051e-01 1.3932949304580688e-01
+ <_>
+
+ 0 -1 1101 -1.1731860227882862e-02
+
+ 7.1296507120132446e-01 4.9211961030960083e-01
+ <_>
+
+ 0 -1 1102 -6.1765122227370739e-03
+
+ 2.2881029546260834e-01 5.0497019290924072e-01
+ <_>
+
+ 0 -1 1103 2.2457661107182503e-03
+
+ 4.6324339509010315e-01 6.0487258434295654e-01
+ <_>
+
+ 0 -1 1104 -5.1915869116783142e-03
+
+ 6.4674210548400879e-01 4.6021929383277893e-01
+ <_>
+
+ 0 -1 1105 -2.3827880620956421e-02
+
+ 1.4820009469985962e-01 5.2260792255401611e-01
+ <_>
+
+ 0 -1 1106 1.0284580057486892e-03
+
+ 5.1354891061782837e-01 3.3759570121765137e-01
+ <_>
+
+ 0 -1 1107 -1.0078850202262402e-02
+
+ 2.7405610680580139e-01 5.3035670518875122e-01
+ <_>
+
+ 0 -1 1108 2.6168930344283581e-03
+
+ 5.3326708078384399e-01 3.9724540710449219e-01
+ <_>
+
+ 0 -1 1109 5.4385367548093200e-04
+
+ 5.3656041622161865e-01 4.0634119510650635e-01
+ <_>
+
+ 0 -1 1110 5.3510512225329876e-03
+
+ 4.6537590026855469e-01 6.8890458345413208e-01
+ <_>
+
+ 0 -1 1111 -1.5274790348485112e-03
+
+ 5.4495012760162354e-01 3.6247238516807556e-01
+ <_>
+
+ 0 -1 1112 -8.0624416470527649e-02
+
+ 1.6560870409011841e-01 5.0002872943878174e-01
+ <_>
+
+ 0 -1 1113 2.2192029282450676e-02
+
+ 5.1327311992645264e-01 2.0028080046176910e-01
+ <_>
+
+ 0 -1 1114 7.3100631125271320e-03
+
+ 4.6179479360580444e-01 6.3665360212326050e-01
+ <_>
+
+ 0 -1 1115 -6.4063072204589844e-03
+
+ 5.9162509441375732e-01 4.8678609728813171e-01
+ <_>
+
+ 0 -1 1116 -7.6415040530264378e-04
+
+ 3.8884091377258301e-01 5.3157979249954224e-01
+ <_>
+
+ 0 -1 1117 7.6734489994123578e-04
+
+ 4.1590648889541626e-01 5.6052798032760620e-01
+ <_>
+
+ 0 -1 1118 6.1474501853808761e-04
+
+ 3.0890220403671265e-01 5.1201480627059937e-01
+ <_>
+
+ 0 -1 1119 -5.0105270929634571e-03
+
+ 3.9721998572349548e-01 5.2073061466217041e-01
+ <_>
+
+ 0 -1 1120 -8.6909132078289986e-03
+
+ 6.2574082612991333e-01 4.6085759997367859e-01
+ <_>
+
+ 0 -1 1121 -1.6391459852457047e-02
+
+ 2.0852099359035492e-01 5.2422660589218140e-01
+ <_>
+
+ 0 -1 1122 4.0973909199237823e-04
+
+ 5.2224272489547729e-01 3.7803208827972412e-01
+ <_>
+
+ 0 -1 1123 -2.5242289993911982e-03
+
+ 5.8039271831512451e-01 4.6118900179862976e-01
+ <_>
+
+ 0 -1 1124 5.0945312250405550e-04
+
+ 4.4012719392776489e-01 5.8460158109664917e-01
+ <_>
+
+ 0 -1 1125 1.9656419754028320e-03
+
+ 5.3223252296447754e-01 4.1845908761024475e-01
+ <_>
+
+ 0 -1 1126 5.6298897834494710e-04
+
+ 3.7418448925018311e-01 5.2345657348632812e-01
+ <_>
+
+ 0 -1 1127 -6.7946797935292125e-04
+
+ 4.6310418844223022e-01 5.3564780950546265e-01
+ <_>
+
+ 0 -1 1128 7.2856349870562553e-03
+
+ 5.0446701049804688e-01 2.3775640130043030e-01
+ <_>
+
+ 0 -1 1129 -1.7459489405155182e-02
+
+ 7.2891211509704590e-01 5.0504350662231445e-01
+ <_>
+
+ 0 -1 1130 -2.5421749800443649e-02
+
+ 6.6671347618103027e-01 4.6781000494956970e-01
+ <_>
+
+ 0 -1 1131 -1.5647639520466328e-03
+
+ 4.3917590379714966e-01 5.3236269950866699e-01
+ <_>
+
+ 0 -1 1132 1.1444360017776489e-02
+
+ 4.3464401364326477e-01 5.6800121068954468e-01
+ <_>
+
+ 0 -1 1133 -6.7352550104260445e-04
+
+ 4.4771409034729004e-01 5.2968120574951172e-01
+ <_>
+
+ 0 -1 1134 9.3194209039211273e-03
+
+ 4.7402000427246094e-01 7.4626070261001587e-01
+ <_>
+
+ 0 -1 1135 1.3328490604180843e-04
+
+ 5.3650617599487305e-01 4.7521349787712097e-01
+ <_>
+
+ 0 -1 1136 -7.8815799206495285e-03
+
+ 1.7522190511226654e-01 5.0152552127838135e-01
+ <_>
+
+ 0 -1 1137 -5.7985680177807808e-03
+
+ 7.2712367773056030e-01 4.8962008953094482e-01
+ <_>
+
+ 0 -1 1138 -3.8922499516047537e-04
+
+ 4.0039089322090149e-01 5.3449410200119019e-01
+ <_>
+
+ 0 -1 1139 -1.9288610201328993e-03
+
+ 5.6056129932403564e-01 4.8039558529853821e-01
+ <_>
+
+ 0 -1 1140 8.4214154630899429e-03
+
+ 4.7532469034194946e-01 7.6236087083816528e-01
+ <_>
+
+ 0 -1 1141 8.1655876711010933e-03
+
+ 5.3932619094848633e-01 4.1916438937187195e-01
+ <_>
+
+ 0 -1 1142 4.8280550981871784e-04
+
+ 4.2408001422882080e-01 5.3998219966888428e-01
+ <_>
+
+ 0 -1 1143 -2.7186630759388208e-03
+
+ 4.2445999383926392e-01 5.4249238967895508e-01
+ <_>
+
+ 0 -1 1144 -1.2507230043411255e-02
+
+ 5.8958417177200317e-01 4.5504111051559448e-01
+ <_>
+
+ 0 -1 1145 -2.4286519736051559e-02
+
+ 2.6471349596977234e-01 5.1891797780990601e-01
+ <_>
+
+ 0 -1 1146 -2.9676330741494894e-03
+
+ 7.3476827144622803e-01 4.7497498989105225e-01
+ <_>
+
+ 0 -1 1147 -1.2528999708592892e-02
+
+ 2.7560499310493469e-01 5.1775997877120972e-01
+ <_>
+
+ 0 -1 1148 -1.0104000102728605e-03
+
+ 3.5105609893798828e-01 5.1447242498397827e-01
+ <_>
+
+ 0 -1 1149 -2.1348530426621437e-03
+
+ 5.6379258632659912e-01 4.6673199534416199e-01
+ <_>
+
+ 0 -1 1150 1.9564259797334671e-02
+
+ 4.6145731210708618e-01 6.1376398801803589e-01
+ <_>
+
+ 0 -1 1151 -9.7146347165107727e-02
+
+ 2.9983788728713989e-01 5.1935559511184692e-01
+ <_>
+
+ 0 -1 1152 4.5014568604528904e-03
+
+ 5.0778847932815552e-01 3.0457559227943420e-01
+ <_>
+
+ 0 -1 1153 6.3706971704959869e-03
+
+ 4.8610189557075500e-01 6.8875008821487427e-01
+ <_>
+
+ 0 -1 1154 -9.0721528977155685e-03
+
+ 1.6733959317207336e-01 5.0175631046295166e-01
+ <_>
+
+ 0 -1 1155 -5.3537208586931229e-03
+
+ 2.6927569508552551e-01 5.2426332235336304e-01
+ <_>
+
+ 0 -1 1156 -1.0932840406894684e-02
+
+ 7.1838641166687012e-01 4.7360289096832275e-01
+ <_>
+
+ 0 -1 1157 8.2356072962284088e-03
+
+ 5.2239668369293213e-01 2.3898629844188690e-01
+ <_>
+
+ 0 -1 1158 -1.0038160253316164e-03
+
+ 5.7193559408187866e-01 4.4339430332183838e-01
+ <_>
+
+ 0 -1 1159 4.0859128348529339e-03
+
+ 5.4728418588638306e-01 4.1488361358642578e-01
+ <_>
+
+ 0 -1 1160 1.5485419332981110e-01
+
+ 4.9738121032714844e-01 6.1061598360538483e-02
+ <_>
+
+ 0 -1 1161 2.0897459762636572e-04
+
+ 4.7091740369796753e-01 5.4238891601562500e-01
+ <_>
+
+ 0 -1 1162 3.3316991175524890e-04
+
+ 4.0896269679069519e-01 5.3009921312332153e-01
+ <_>
+
+ 0 -1 1163 -1.0813400149345398e-02
+
+ 6.1043697595596313e-01 4.9573341012001038e-01
+ <_>
+
+ 0 -1 1164 4.5656010508537292e-02
+
+ 5.0696891546249390e-01 2.8666600584983826e-01
+ <_>
+
+ 0 -1 1165 1.2569549726322293e-03
+
+ 4.8469170928001404e-01 6.3181710243225098e-01
+ <_>
+
+ 0 -1 1166 -1.2015070021152496e-01
+
+ 6.0526140034198761e-02 4.9809598922729492e-01
+ <_>
+
+ 0 -1 1167 -1.0533799650147557e-04
+
+ 5.3631097078323364e-01 4.7080421447753906e-01
+ <_>
+
+ 0 -1 1168 -2.0703190565109253e-01
+
+ 5.9660330414772034e-02 4.9790981411933899e-01
+ <_>
+
+ 0 -1 1169 1.2909180077258497e-04
+
+ 4.7129771113395691e-01 5.3779977560043335e-01
+ <_>
+
+ 0 -1 1170 3.8818528992123902e-04
+
+ 4.3635380268096924e-01 5.5341911315917969e-01
+ <_>
+
+ 0 -1 1171 -2.9243610333651304e-03
+
+ 5.8111858367919922e-01 4.8252159357070923e-01
+ <_>
+
+ 0 -1 1172 8.3882332546636462e-04
+
+ 5.3117001056671143e-01 4.0381389856338501e-01
+ <_>
+
+ 0 -1 1173 -1.9061550265178084e-03
+
+ 3.7707018852233887e-01 5.2600151300430298e-01
+ <_>
+
+ 0 -1 1174 8.9514348655939102e-03
+
+ 4.7661679983139038e-01 7.6821839809417725e-01
+ <_>
+
+ 0 -1 1175 1.3083459809422493e-02
+
+ 5.2644628286361694e-01 3.0622220039367676e-01
+ <_>
+
+ 0 -1 1176 -2.1159330010414124e-01
+
+ 6.7371982336044312e-01 4.6958100795745850e-01
+ <_>
+
+ 0 -1 1177 3.1493250280618668e-03
+
+ 5.6448352336883545e-01 4.3869531154632568e-01
+ <_>
+
+ 0 -1 1178 3.9754100725986063e-04
+
+ 4.5260611176490784e-01 5.8956301212310791e-01
+ <_>
+
+ 0 -1 1179 -1.3814480043947697e-03
+
+ 6.0705822706222534e-01 4.9424138665199280e-01
+ <_>
+
+ 0 -1 1180 -5.8122188784182072e-04
+
+ 5.9982132911682129e-01 4.5082521438598633e-01
+ <_>
+
+ 0 -1 1181 -2.3905329871922731e-03
+
+ 4.2055889964103699e-01 5.2238482236862183e-01
+ <_>
+
+ 0 -1 1182 2.7268929407000542e-02
+
+ 5.2064472436904907e-01 3.5633018612861633e-01
+ <_>
+
+ 0 -1 1183 -3.7658358924090862e-03
+
+ 3.1447041034698486e-01 5.2188140153884888e-01
+ <_>
+
+ 0 -1 1184 -1.4903489500284195e-03
+
+ 3.3801960945129395e-01 5.1244372129440308e-01
+ <_>
+
+ 0 -1 1185 -1.7428230494260788e-02
+
+ 5.8299607038497925e-01 4.9197259545326233e-01
+ <_>
+
+ 0 -1 1186 -1.5278030186891556e-02
+
+ 6.1631447076797485e-01 4.6178871393203735e-01
+ <_>
+
+ 0 -1 1187 3.1995609402656555e-02
+
+ 5.1663571596145630e-01 1.7127640545368195e-01
+ <_>
+
+ 0 -1 1188 -3.8256710395216942e-03
+
+ 3.4080120921134949e-01 5.1313877105712891e-01
+ <_>
+
+ 0 -1 1189 -8.5186436772346497e-03
+
+ 6.1055189371109009e-01 4.9979418516159058e-01
+ <_>
+
+ 0 -1 1190 9.0641621500253677e-04
+
+ 4.3272709846496582e-01 5.5823111534118652e-01
+ <_>
+
+ 0 -1 1191 1.0344849899411201e-02
+
+ 4.8556530475616455e-01 5.4524201154708862e-01
+ <_>
+ 160
+ 7.9249076843261719e+01
+
+ <_>
+
+ 0 -1 1192 7.8981826081871986e-03
+
+ 3.3325248956680298e-01 5.9464621543884277e-01
+ <_>
+
+ 0 -1 1193 1.6170160379260778e-03
+
+ 3.4906411170959473e-01 5.5778688192367554e-01
+ <_>
+
+ 0 -1 1194 -5.5449741194024682e-04
+
+ 5.5425661802291870e-01 3.2915300130844116e-01
+ <_>
+
+ 0 -1 1195 1.5428980113938451e-03
+
+ 3.6125791072845459e-01 5.5459791421890259e-01
+ <_>
+
+ 0 -1 1196 -1.0329450014978647e-03
+
+ 3.5301390290260315e-01 5.5761402845382690e-01
+ <_>
+
+ 0 -1 1197 7.7698158565908670e-04
+
+ 3.9167788624763489e-01 5.6453210115432739e-01
+ <_>
+
+ 0 -1 1198 1.4320300519466400e-01
+
+ 4.6674820780754089e-01 7.0236331224441528e-01
+ <_>
+
+ 0 -1 1199 -7.3866490274667740e-03
+
+ 3.0736848711967468e-01 5.2892577648162842e-01
+ <_>
+
+ 0 -1 1200 -6.2936742324382067e-04
+
+ 5.6221181154251099e-01 4.0370491147041321e-01
+ <_>
+
+ 0 -1 1201 7.8893528552725911e-04
+
+ 5.2676612138748169e-01 3.5578748583793640e-01
+ <_>
+
+ 0 -1 1202 -1.2228050269186497e-02
+
+ 6.6683208942413330e-01 4.6255499124526978e-01
+ <_>
+
+ 0 -1 1203 3.5420239437371492e-03
+
+ 5.5214381217956543e-01 3.8696730136871338e-01
+ <_>
+
+ 0 -1 1204 -1.0585320414975286e-03
+
+ 3.6286780238151550e-01 5.3209269046783447e-01
+ <_>
+
+ 0 -1 1205 1.4935660146875307e-05
+
+ 4.6324449777603149e-01 5.3633230924606323e-01
+ <_>
+
+ 0 -1 1206 5.2537708543241024e-03
+
+ 5.1322317123413086e-01 3.2657089829444885e-01
+ <_>
+
+ 0 -1 1207 -8.2338023930788040e-03
+
+ 6.6936898231506348e-01 4.7741401195526123e-01
+ <_>
+
+ 0 -1 1208 2.1866810129722580e-05
+
+ 4.0538620948791504e-01 5.4579311609268188e-01
+ <_>
+
+ 0 -1 1209 -3.8150229956954718e-03
+
+ 6.4549958705902100e-01 4.7931781411170959e-01
+ <_>
+
+ 0 -1 1210 1.1105879675596952e-03
+
+ 5.2704071998596191e-01 3.5296788811683655e-01
+ <_>
+
+ 0 -1 1211 -5.7707689702510834e-03
+
+ 3.8035470247268677e-01 5.3529578447341919e-01
+ <_>
+
+ 0 -1 1212 -3.0158339068293571e-03
+
+ 5.3394031524658203e-01 3.8871330022811890e-01
+ <_>
+
+ 0 -1 1213 -8.5453689098358154e-04
+
+ 3.5646161437034607e-01 5.2736037969589233e-01
+ <_>
+
+ 0 -1 1214 1.1050510220229626e-02
+
+ 4.6719071269035339e-01 6.8497377634048462e-01
+ <_>
+
+ 0 -1 1215 4.2605839669704437e-02
+
+ 5.1514732837677002e-01 7.0220090448856354e-02
+ <_>
+
+ 0 -1 1216 -3.0781750101596117e-03
+
+ 3.0416610836982727e-01 5.1526021957397461e-01
+ <_>
+
+ 0 -1 1217 -5.4815728217363358e-03
+
+ 6.4302957057952881e-01 4.8972299695014954e-01
+ <_>
+
+ 0 -1 1218 3.1881860923022032e-03
+
+ 5.3074932098388672e-01 3.8262099027633667e-01
+ <_>
+
+ 0 -1 1219 3.5947180003859103e-04
+
+ 4.6500471234321594e-01 5.4219049215316772e-01
+ <_>
+
+ 0 -1 1220 -4.0705031715333462e-03
+
+ 2.8496798872947693e-01 5.0791162252426147e-01
+ <_>
+
+ 0 -1 1221 -1.4594170264899731e-02
+
+ 2.9716458916664124e-01 5.1284617185592651e-01
+ <_>
+
+ 0 -1 1222 -1.1947689927183092e-04
+
+ 5.6310981512069702e-01 4.3430820107460022e-01
+ <_>
+
+ 0 -1 1223 -6.9344649091362953e-04
+
+ 4.4035780429840088e-01 5.3599590063095093e-01
+ <_>
+
+ 0 -1 1224 1.4834799912932795e-05
+
+ 3.4210088849067688e-01 5.1646977663040161e-01
+ <_>
+
+ 0 -1 1225 9.0296985581517220e-03
+
+ 4.6393430233001709e-01 6.1140751838684082e-01
+ <_>
+
+ 0 -1 1226 -8.0640818923711777e-03
+
+ 2.8201588988304138e-01 5.0754940509796143e-01
+ <_>
+
+ 0 -1 1227 2.6062119752168655e-02
+
+ 5.2089059352874756e-01 2.6887780427932739e-01
+ <_>
+
+ 0 -1 1228 1.7314659431576729e-02
+
+ 4.6637138724327087e-01 6.7385399341583252e-01
+ <_>
+
+ 0 -1 1229 2.2666640579700470e-02
+
+ 5.2093499898910522e-01 2.2127239406108856e-01
+ <_>
+
+ 0 -1 1230 -2.1965929772704840e-03
+
+ 6.0631012916564941e-01 4.5381900668144226e-01
+ <_>
+
+ 0 -1 1231 -9.5282476395368576e-03
+
+ 4.6352049708366394e-01 5.2474308013916016e-01
+ <_>
+
+ 0 -1 1232 8.0943619832396507e-03
+
+ 5.2894401550292969e-01 3.9138820767402649e-01
+ <_>
+
+ 0 -1 1233 -7.2877332568168640e-02
+
+ 7.7520018815994263e-01 4.9902349710464478e-01
+ <_>
+
+ 0 -1 1234 -6.9009521976113319e-03
+
+ 2.4280390143394470e-01 5.0480902194976807e-01
+ <_>
+
+ 0 -1 1235 -1.1308239772915840e-02
+
+ 5.7343649864196777e-01 4.8423761129379272e-01
+ <_>
+
+ 0 -1 1236 5.9613201767206192e-02
+
+ 5.0298362970352173e-01 2.5249770283699036e-01
+ <_>
+
+ 0 -1 1237 -2.8624620754271746e-03
+
+ 6.0730451345443726e-01 4.8984599113464355e-01
+ <_>
+
+ 0 -1 1238 4.4781449250876904e-03
+
+ 5.0152891874313354e-01 2.2203169763088226e-01
+ <_>
+
+ 0 -1 1239 -1.7513240454718471e-03
+
+ 6.6144287586212158e-01 4.9338689446449280e-01
+ <_>
+
+ 0 -1 1240 4.0163420140743256e-02
+
+ 5.1808780431747437e-01 3.7410449981689453e-01
+ <_>
+
+ 0 -1 1241 3.4768949262797832e-04
+
+ 4.7204169631004333e-01 5.8180320262908936e-01
+ <_>
+
+ 0 -1 1242 2.6551650371402502e-03
+
+ 3.8050109148025513e-01 5.2213358879089355e-01
+ <_>
+
+ 0 -1 1243 -8.7706279009580612e-03
+
+ 2.9441660642623901e-01 5.2312952280044556e-01
+ <_>
+
+ 0 -1 1244 -5.5122091434895992e-03
+
+ 7.3461771011352539e-01 4.7228169441223145e-01
+ <_>
+
+ 0 -1 1245 6.8672042107209563e-04
+
+ 5.4528760910034180e-01 4.2424130439758301e-01
+ <_>
+
+ 0 -1 1246 5.6019669864326715e-04
+
+ 4.3988621234893799e-01 5.6012850999832153e-01
+ <_>
+
+ 0 -1 1247 2.4143769405782223e-03
+
+ 4.7416868805885315e-01 6.1366218328475952e-01
+ <_>
+
+ 0 -1 1248 -1.5680900542065501e-03
+
+ 6.0445529222488403e-01 4.5164099335670471e-01
+ <_>
+
+ 0 -1 1249 -3.6827491130679846e-03
+
+ 2.4524590373039246e-01 5.2949821949005127e-01
+ <_>
+
+ 0 -1 1250 -2.9409190756268799e-04
+
+ 3.7328380346298218e-01 5.2514511346817017e-01
+ <_>
+
+ 0 -1 1251 4.2847759323194623e-04
+
+ 5.4988098144531250e-01 4.0655350685119629e-01
+ <_>
+
+ 0 -1 1252 -4.8817070201039314e-03
+
+ 2.1399089694023132e-01 4.9999570846557617e-01
+ <_>
+
+ 0 -1 1253 2.7272020815871656e-04
+
+ 4.6502870321273804e-01 5.8134287595748901e-01
+ <_>
+
+ 0 -1 1254 2.0947199664078653e-04
+
+ 4.3874868750572205e-01 5.5727928876876831e-01
+ <_>
+
+ 0 -1 1255 4.8501189798116684e-02
+
+ 5.2449727058410645e-01 3.2128891348838806e-01
+ <_>
+
+ 0 -1 1256 -4.5166411437094212e-03
+
+ 6.0568130016326904e-01 4.5458820462226868e-01
+ <_>
+
+ 0 -1 1257 -1.2291680090129375e-02
+
+ 2.0409290492534637e-01 5.1522141695022583e-01
+ <_>
+
+ 0 -1 1258 4.8549679922871292e-04
+
+ 5.2376049757003784e-01 3.7395030260086060e-01
+ <_>
+
+ 0 -1 1259 3.0556049197912216e-02
+
+ 4.9605339765548706e-01 5.9382462501525879e-01
+ <_>
+
+ 0 -1 1260 -1.5105320198927075e-04
+
+ 5.3513038158416748e-01 4.1452041268348694e-01
+ <_>
+
+ 0 -1 1261 2.4937440175563097e-03
+
+ 4.6933668851852417e-01 5.5149412155151367e-01
+ <_>
+
+ 0 -1 1262 -1.2382130138576031e-02
+
+ 6.7913967370986938e-01 4.6816679835319519e-01
+ <_>
+
+ 0 -1 1263 -5.1333461888134480e-03
+
+ 3.6087390780448914e-01 5.2291601896286011e-01
+ <_>
+
+ 0 -1 1264 5.1919277757406235e-04
+
+ 5.3000730276107788e-01 3.6336138844490051e-01
+ <_>
+
+ 0 -1 1265 1.5060420334339142e-01
+
+ 5.1573169231414795e-01 2.2117820382118225e-01
+ <_>
+
+ 0 -1 1266 7.7144149690866470e-03
+
+ 4.4104969501495361e-01 5.7766091823577881e-01
+ <_>
+
+ 0 -1 1267 9.4443522393703461e-03
+
+ 5.4018551111221313e-01 3.7566500902175903e-01
+ <_>
+
+ 0 -1 1268 2.5006249779835343e-04
+
+ 4.3682709336280823e-01 5.6073749065399170e-01
+ <_>
+
+ 0 -1 1269 -3.3077150583267212e-03
+
+ 4.2447990179061890e-01 5.5182307958602905e-01
+ <_>
+
+ 0 -1 1270 7.4048910755664110e-04
+
+ 4.4969621300697327e-01 5.9005767107009888e-01
+ <_>
+
+ 0 -1 1271 4.4092051684856415e-02
+
+ 5.2934932708740234e-01 3.1563550233840942e-01
+ <_>
+
+ 0 -1 1272 3.3639909233897924e-03
+
+ 4.4832968711853027e-01 5.8486622571945190e-01
+ <_>
+
+ 0 -1 1273 -3.9760079234838486e-03
+
+ 4.5595070719718933e-01 5.4836392402648926e-01
+ <_>
+
+ 0 -1 1274 2.7716930489987135e-03
+
+ 5.3417861461639404e-01 3.7924841046333313e-01
+ <_>
+
+ 0 -1 1275 -2.4123019829858094e-04
+
+ 5.6671887636184692e-01 4.5769730210304260e-01
+ <_>
+
+ 0 -1 1276 4.9425667384639382e-04
+
+ 4.4212448596954346e-01 5.6287872791290283e-01
+ <_>
+
+ 0 -1 1277 -3.8876468897797167e-04
+
+ 4.2883709073066711e-01 5.3910630941390991e-01
+ <_>
+
+ 0 -1 1278 -5.0048898905515671e-02
+
+ 6.8995130062103271e-01 4.7037428617477417e-01
+ <_>
+
+ 0 -1 1279 -3.6635480821132660e-02
+
+ 2.2177790105342865e-01 5.1918262243270874e-01
+ <_>
+
+ 0 -1 1280 2.4273579474538565e-03
+
+ 5.1362240314483643e-01 3.4973978996276855e-01
+ <_>
+
+ 0 -1 1281 1.9558030180633068e-03
+
+ 4.8261928558349609e-01 6.4083808660507202e-01
+ <_>
+
+ 0 -1 1282 -1.7494610510766506e-03
+
+ 3.9228358864784241e-01 5.2726852893829346e-01
+ <_>
+
+ 0 -1 1283 1.3955079950392246e-02
+
+ 5.0782018899917603e-01 8.4165048599243164e-01
+ <_>
+
+ 0 -1 1284 -2.1896739781368524e-04
+
+ 5.5204898118972778e-01 4.3142348527908325e-01
+ <_>
+
+ 0 -1 1285 -1.5131309628486633e-03
+
+ 3.9346051216125488e-01 5.3825712203979492e-01
+ <_>
+
+ 0 -1 1286 -4.3622800149023533e-03
+
+ 7.3706287145614624e-01 4.7364759445190430e-01
+ <_>
+
+ 0 -1 1287 6.5160587430000305e-02
+
+ 5.1592797040939331e-01 3.2815951108932495e-01
+ <_>
+
+ 0 -1 1288 -2.3567399475723505e-03
+
+ 3.6728268861770630e-01 5.1728862524032593e-01
+ <_>
+
+ 0 -1 1289 1.5146659687161446e-02
+
+ 5.0314939022064209e-01 6.6876041889190674e-01
+ <_>
+
+ 0 -1 1290 -2.2850960493087769e-02
+
+ 6.7675197124481201e-01 4.7095969319343567e-01
+ <_>
+
+ 0 -1 1291 4.8867650330066681e-03
+
+ 5.2579981088638306e-01 4.0598788857460022e-01
+ <_>
+
+ 0 -1 1292 1.7619599821045995e-03
+
+ 4.6962729096412659e-01 6.6882789134979248e-01
+ <_>
+
+ 0 -1 1293 -1.2942519970238209e-03
+
+ 4.3207129836082458e-01 5.3442817926406860e-01
+ <_>
+
+ 0 -1 1294 1.0929949581623077e-02
+
+ 4.9977061152458191e-01 1.6374860703945160e-01
+ <_>
+
+ 0 -1 1295 2.9958489903947338e-05
+
+ 4.2824178934097290e-01 5.6332242488861084e-01
+ <_>
+
+ 0 -1 1296 -6.5884361974895000e-03
+
+ 6.7721211910247803e-01 4.7005268931388855e-01
+ <_>
+
+ 0 -1 1297 3.2527779694646597e-03
+
+ 5.3133970499038696e-01 4.5361489057540894e-01
+ <_>
+
+ 0 -1 1298 -4.0435739792883396e-03
+
+ 5.6600618362426758e-01 4.4133889675140381e-01
+ <_>
+
+ 0 -1 1299 -1.2523540062829852e-03
+
+ 3.7319138646125793e-01 5.3564518690109253e-01
+ <_>
+
+ 0 -1 1300 1.9246719602961093e-04
+
+ 5.1899862289428711e-01 3.7388110160827637e-01
+ <_>
+
+ 0 -1 1301 -3.8589671254158020e-02
+
+ 2.9563739895820618e-01 5.1888108253479004e-01
+ <_>
+
+ 0 -1 1302 1.5489870565943420e-04
+
+ 4.3471351265907288e-01 5.5095332860946655e-01
+ <_>
+
+ 0 -1 1303 -3.3763848245143890e-02
+
+ 3.2303300499916077e-01 5.1954758167266846e-01
+ <_>
+
+ 0 -1 1304 -8.2657067105174065e-03
+
+ 5.9754890203475952e-01 4.5521140098571777e-01
+ <_>
+
+ 0 -1 1305 1.4481440302915871e-05
+
+ 4.7456780076026917e-01 5.4974269866943359e-01
+ <_>
+
+ 0 -1 1306 1.4951299817766994e-05
+
+ 4.3244731426239014e-01 5.4806441068649292e-01
+ <_>
+
+ 0 -1 1307 -1.8741799518465996e-02
+
+ 1.5800529718399048e-01 5.1785331964492798e-01
+ <_>
+
+ 0 -1 1308 1.7572239739820361e-03
+
+ 4.5176368951797485e-01 5.7737642526626587e-01
+ <_>
+
+ 0 -1 1309 -3.1391119118779898e-03
+
+ 4.1496479511260986e-01 5.4608422517776489e-01
+ <_>
+
+ 0 -1 1310 6.6656779381446540e-05
+
+ 4.0390908718109131e-01 5.2930849790573120e-01
+ <_>
+
+ 0 -1 1311 6.7743421532213688e-03
+
+ 4.7676518559455872e-01 6.1219561100006104e-01
+ <_>
+
+ 0 -1 1312 -7.3868161998689175e-03
+
+ 3.5862588882446289e-01 5.1872807741165161e-01
+ <_>
+
+ 0 -1 1313 1.4040930196642876e-02
+
+ 4.7121399641036987e-01 5.5761557817459106e-01
+ <_>
+
+ 0 -1 1314 -5.5258329957723618e-03
+
+ 2.6610270142555237e-01 5.0392812490463257e-01
+ <_>
+
+ 0 -1 1315 3.8684239983558655e-01
+
+ 5.1443397998809814e-01 2.5258991122245789e-01
+ <_>
+
+ 0 -1 1316 1.1459240340627730e-04
+
+ 4.2849949002265930e-01 5.4233711957931519e-01
+ <_>
+
+ 0 -1 1317 -1.8467569723725319e-02
+
+ 3.8858351111412048e-01 5.2130621671676636e-01
+ <_>
+
+ 0 -1 1318 -4.5907011372037232e-04
+
+ 5.4125630855560303e-01 4.2359098792076111e-01
+ <_>
+
+ 0 -1 1319 1.2527540093287826e-03
+
+ 4.8993051052093506e-01 6.6240912675857544e-01
+ <_>
+
+ 0 -1 1320 1.4910609461367130e-03
+
+ 5.2867782115936279e-01 4.0400519967079163e-01
+ <_>
+
+ 0 -1 1321 -7.5435562757775187e-04
+
+ 6.0329902172088623e-01 4.7951200604438782e-01
+ <_>
+
+ 0 -1 1322 -6.9478838704526424e-03
+
+ 4.0844011306762695e-01 5.3735041618347168e-01
+ <_>
+
+ 0 -1 1323 2.8092920547351241e-04
+
+ 4.8460629582405090e-01 5.7593822479248047e-01
+ <_>
+
+ 0 -1 1324 9.6073717577382922e-04
+
+ 5.1647412776947021e-01 3.5549798607826233e-01
+ <_>
+
+ 0 -1 1325 -2.6883929967880249e-04
+
+ 5.6775820255279541e-01 4.7317659854888916e-01
+ <_>
+
+ 0 -1 1326 2.1599370520561934e-03
+
+ 4.7314870357513428e-01 7.0705670118331909e-01
+ <_>
+
+ 0 -1 1327 5.6235301308333874e-03
+
+ 5.2402430772781372e-01 2.7817919850349426e-01
+ <_>
+
+ 0 -1 1328 -5.0243991427123547e-03
+
+ 2.8370139002799988e-01 5.0623041391372681e-01
+ <_>
+
+ 0 -1 1329 -9.7611639648675919e-03
+
+ 7.4007177352905273e-01 4.9345690011978149e-01
+ <_>
+
+ 0 -1 1330 4.1515100747346878e-03
+
+ 5.1191312074661255e-01 3.4070080518722534e-01
+ <_>
+
+ 0 -1 1331 6.2465080991387367e-03
+
+ 4.9237880110740662e-01 6.5790587663650513e-01
+ <_>
+
+ 0 -1 1332 -7.0597478188574314e-03
+
+ 2.4347110092639923e-01 5.0328421592712402e-01
+ <_>
+
+ 0 -1 1333 -2.0587709732353687e-03
+
+ 5.9003108739852905e-01 4.6950870752334595e-01
+ <_>
+
+ 0 -1 1334 -2.4146060459315777e-03
+
+ 3.6473178863525391e-01 5.1892018318176270e-01
+ <_>
+
+ 0 -1 1335 -1.4817609917372465e-03
+
+ 6.0349482297897339e-01 4.9401280283927917e-01
+ <_>
+
+ 0 -1 1336 -6.3016400672495365e-03
+
+ 5.8189898729324341e-01 4.5604279637336731e-01
+ <_>
+
+ 0 -1 1337 3.4763428848236799e-03
+
+ 5.2174758911132812e-01 3.4839931130409241e-01
+ <_>
+
+ 0 -1 1338 -2.2250870242714882e-02
+
+ 2.3607000708580017e-01 5.0320827960968018e-01
+ <_>
+
+ 0 -1 1339 -3.0612550675868988e-02
+
+ 6.4991867542266846e-01 4.9149191379547119e-01
+ <_>
+
+ 0 -1 1340 1.3057479634881020e-02
+
+ 4.4133231043815613e-01 5.6837642192840576e-01
+ <_>
+
+ 0 -1 1341 -6.0095742810517550e-04
+
+ 4.3597310781478882e-01 5.3334832191467285e-01
+ <_>
+
+ 0 -1 1342 -4.1514250915497541e-04
+
+ 5.5040627717971802e-01 4.3260601162910461e-01
+ <_>
+
+ 0 -1 1343 -1.3776290230453014e-02
+
+ 4.0641129016876221e-01 5.2015489339828491e-01
+ <_>
+
+ 0 -1 1344 -3.2296508550643921e-02
+
+ 4.7351971268653870e-02 4.9771949648857117e-01
+ <_>
+
+ 0 -1 1345 5.3556978702545166e-02
+
+ 4.8817330598831177e-01 6.6669392585754395e-01
+ <_>
+
+ 0 -1 1346 8.1889545544981956e-03
+
+ 5.4000371694564819e-01 4.2408201098442078e-01
+ <_>
+
+ 0 -1 1347 2.1055320394225419e-04
+
+ 4.8020479083061218e-01 5.5638527870178223e-01
+ <_>
+
+ 0 -1 1348 -2.4382730480283499e-03
+
+ 7.3877930641174316e-01 4.7736850380897522e-01
+ <_>
+
+ 0 -1 1349 3.2835570164024830e-03
+
+ 5.2885460853576660e-01 3.1712919473648071e-01
+ <_>
+
+ 0 -1 1350 2.3729570675641298e-03
+
+ 4.7508129477500916e-01 7.0601707696914673e-01
+ <_>
+
+ 0 -1 1351 -1.4541699783876538e-03
+
+ 3.8117301464080811e-01 5.3307390213012695e-01
+ <_>
+ 177
+ 8.7696029663085938e+01
+
+ <_>
+
+ 0 -1 1352 5.5755238980054855e-02
+
+ 4.0191569924354553e-01 6.8060368299484253e-01
+ <_>
+
+ 0 -1 1353 2.4730248842388391e-03
+
+ 3.3511489629745483e-01 5.9657198190689087e-01
+ <_>
+
+ 0 -1 1354 -3.5031698644161224e-04
+
+ 5.5577081441879272e-01 3.4822869300842285e-01
+ <_>
+
+ 0 -1 1355 5.4167630150914192e-04
+
+ 4.2608588933944702e-01 5.6933808326721191e-01
+ <_>
+
+ 0 -1 1356 7.7193678589537740e-04
+
+ 3.4942400455474854e-01 5.4336887598037720e-01
+ <_>
+
+ 0 -1 1357 -1.5999219613149762e-03
+
+ 4.0284991264343262e-01 5.4843592643737793e-01
+ <_>
+
+ 0 -1 1358 -1.1832080053864047e-04
+
+ 3.8069018721580505e-01 5.4254651069641113e-01
+ <_>
+
+ 0 -1 1359 3.2909031142480671e-04
+
+ 2.6201000809669495e-01 5.4295217990875244e-01
+ <_>
+
+ 0 -1 1360 2.9518108931370080e-04
+
+ 3.7997689843177795e-01 5.3992640972137451e-01
+ <_>
+
+ 0 -1 1361 9.0466710389591753e-05
+
+ 4.4336450099945068e-01 5.4402261972427368e-01
+ <_>
+
+ 0 -1 1362 1.5007190086180344e-05
+
+ 3.7196549773216248e-01 5.4091197252273560e-01
+ <_>
+
+ 0 -1 1363 1.3935610651969910e-01
+
+ 5.5253958702087402e-01 4.4790428876876831e-01
+ <_>
+
+ 0 -1 1364 1.6461990308016539e-03
+
+ 4.2645010352134705e-01 5.7721698284149170e-01
+ <_>
+
+ 0 -1 1365 4.9984431825578213e-04
+
+ 4.3595260381698608e-01 5.6858712434768677e-01
+ <_>
+
+ 0 -1 1366 -1.0971280280500650e-03
+
+ 3.3901369571685791e-01 5.2054089307785034e-01
+ <_>
+
+ 0 -1 1367 6.6919892560690641e-04
+
+ 4.5574560761451721e-01 5.9806597232818604e-01
+ <_>
+
+ 0 -1 1368 8.6471042595803738e-04
+
+ 5.1348412036895752e-01 2.9440331459045410e-01
+ <_>
+
+ 0 -1 1369 -2.7182599296793342e-04
+
+ 3.9065781235694885e-01 5.3771811723709106e-01
+ <_>
+
+ 0 -1 1370 3.0249499104684219e-05
+
+ 3.6796098947525024e-01 5.2256888151168823e-01
+ <_>
+
+ 0 -1 1371 -8.5225896909832954e-03
+
+ 7.2931021451950073e-01 4.8923650383949280e-01
+ <_>
+
+ 0 -1 1372 1.6705560265108943e-03
+
+ 4.3453249335289001e-01 5.6961381435394287e-01
+ <_>
+
+ 0 -1 1373 -7.1433838456869125e-03
+
+ 2.5912800431251526e-01 5.2256238460540771e-01
+ <_>
+
+ 0 -1 1374 -1.6319369897246361e-02
+
+ 6.9222790002822876e-01 4.6515759825706482e-01
+ <_>
+
+ 0 -1 1375 4.8034260980784893e-03
+
+ 5.3522628545761108e-01 3.2863029837608337e-01
+ <_>
+
+ 0 -1 1376 -7.5421929359436035e-03
+
+ 2.0405440032482147e-01 5.0345462560653687e-01
+ <_>
+
+ 0 -1 1377 -1.4363110065460205e-02
+
+ 6.8048888444900513e-01 4.8890590667724609e-01
+ <_>
+
+ 0 -1 1378 8.9063588529825211e-04
+
+ 5.3106957674026489e-01 3.8954809308052063e-01
+ <_>
+
+ 0 -1 1379 -4.4060191139578819e-03
+
+ 5.7415628433227539e-01 4.3724268674850464e-01
+ <_>
+
+ 0 -1 1380 -1.8862540309783071e-04
+
+ 2.8317859768867493e-01 5.0982052087783813e-01
+ <_>
+
+ 0 -1 1381 -3.7979281041771173e-03
+
+ 3.3725079894065857e-01 5.2465802431106567e-01
+ <_>
+
+ 0 -1 1382 1.4627049677073956e-04
+
+ 5.3066742420196533e-01 3.9117100834846497e-01
+ <_>
+
+ 0 -1 1383 -4.9164638767251745e-05
+
+ 5.4624962806701660e-01 3.9427208900451660e-01
+ <_>
+
+ 0 -1 1384 -3.3582501113414764e-02
+
+ 2.1578240394592285e-01 5.0482118129730225e-01
+ <_>
+
+ 0 -1 1385 -3.5339309833943844e-03
+
+ 6.4653122425079346e-01 4.8726969957351685e-01
+ <_>
+
+ 0 -1 1386 5.0144111737608910e-03
+
+ 4.6176680922508240e-01 6.2480747699737549e-01
+ <_>
+
+ 0 -1 1387 1.8817370757460594e-02
+
+ 5.2206891775131226e-01 2.0000520348548889e-01
+ <_>
+
+ 0 -1 1388 -1.3434339780360460e-03
+
+ 4.0145379304885864e-01 5.3016197681427002e-01
+ <_>
+
+ 0 -1 1389 1.7557960236445069e-03
+
+ 4.7940391302108765e-01 5.6531697511672974e-01
+ <_>
+
+ 0 -1 1390 -9.5637463033199310e-02
+
+ 2.0341950654983521e-01 5.0067067146301270e-01
+ <_>
+
+ 0 -1 1391 -2.2241229191422462e-02
+
+ 7.6724731922149658e-01 5.0463402271270752e-01
+ <_>
+
+ 0 -1 1392 -1.5575819648802280e-02
+
+ 7.4903422594070435e-01 4.7558510303497314e-01
+ <_>
+
+ 0 -1 1393 5.3599118255078793e-03
+
+ 5.3653037548065186e-01 4.0046709775924683e-01
+ <_>
+
+ 0 -1 1394 -2.1763499826192856e-02
+
+ 7.4015498161315918e-02 4.9641749262809753e-01
+ <_>
+
+ 0 -1 1395 -1.6561590135097504e-01
+
+ 2.8591030836105347e-01 5.2180862426757812e-01
+ <_>
+
+ 0 -1 1396 1.6461320046801120e-04
+
+ 4.1916158795356750e-01 5.3807932138442993e-01
+ <_>
+
+ 0 -1 1397 -8.9077502489089966e-03
+
+ 6.2731927633285522e-01 4.8774048686027527e-01
+ <_>
+
+ 0 -1 1398 8.6346449097618461e-04
+
+ 5.1599407196044922e-01 3.6710259318351746e-01
+ <_>
+
+ 0 -1 1399 -1.3751760125160217e-03
+
+ 5.8843767642974854e-01 4.5790839195251465e-01
+ <_>
+
+ 0 -1 1400 -1.4081239933148026e-03
+
+ 3.5605099797248840e-01 5.1399451494216919e-01
+ <_>
+
+ 0 -1 1401 -3.9342888630926609e-03
+
+ 5.9942889213562012e-01 4.6642720699310303e-01
+ <_>
+
+ 0 -1 1402 -3.1966928392648697e-02
+
+ 3.3454620838165283e-01 5.1441830396652222e-01
+ <_>
+
+ 0 -1 1403 -1.5089280168467667e-05
+
+ 5.5826562643051147e-01 4.4140571355819702e-01
+ <_>
+
+ 0 -1 1404 5.1994470413774252e-04
+
+ 4.6236801147460938e-01 6.1689937114715576e-01
+ <_>
+
+ 0 -1 1405 -3.4220460802316666e-03
+
+ 6.5570747852325439e-01 4.9748051166534424e-01
+ <_>
+
+ 0 -1 1406 1.7723299970384687e-04
+
+ 5.2695018053054810e-01 3.9019080996513367e-01
+ <_>
+
+ 0 -1 1407 1.5716759953647852e-03
+
+ 4.6333730220794678e-01 5.7904577255249023e-01
+ <_>
+
+ 0 -1 1408 -8.9041329920291901e-03
+
+ 2.6896080374717712e-01 5.0535911321640015e-01
+ <_>
+
+ 0 -1 1409 4.0677518700249493e-04
+
+ 5.4566031694412231e-01 4.3298989534378052e-01
+ <_>
+
+ 0 -1 1410 6.7604780197143555e-03
+
+ 4.6489939093589783e-01 6.6897618770599365e-01
+ <_>
+
+ 0 -1 1411 2.9100088868290186e-03
+
+ 5.3097039461135864e-01 3.3778399229049683e-01
+ <_>
+
+ 0 -1 1412 1.3885459629818797e-03
+
+ 4.0747389197349548e-01 5.3491330146789551e-01
+ <_>
+
+ 0 -1 1413 -7.6764263212680817e-02
+
+ 1.9921760261058807e-01 5.2282422780990601e-01
+ <_>
+
+ 0 -1 1414 -2.2688310127705336e-04
+
+ 5.4385018348693848e-01 4.2530721426010132e-01
+ <_>
+
+ 0 -1 1415 -6.3094152137637138e-03
+
+ 4.2591789364814758e-01 5.3789097070693970e-01
+ <_>
+
+ 0 -1 1416 -1.1007279902696609e-01
+
+ 6.9041568040847778e-01 4.7217491269111633e-01
+ <_>
+
+ 0 -1 1417 2.8619659133255482e-04
+
+ 4.5249149203300476e-01 5.5483061075210571e-01
+ <_>
+
+ 0 -1 1418 2.9425329557852820e-05
+
+ 5.3703737258911133e-01 4.2364639043807983e-01
+ <_>
+
+ 0 -1 1419 -2.4886570870876312e-02
+
+ 6.4235579967498779e-01 4.9693039059638977e-01
+ <_>
+
+ 0 -1 1420 3.3148851245641708e-02
+
+ 4.9884751439094543e-01 1.6138119995594025e-01
+ <_>
+
+ 0 -1 1421 7.8491691965609789e-04
+
+ 5.4160261154174805e-01 4.2230090498924255e-01
+ <_>
+
+ 0 -1 1422 4.7087189741432667e-03
+
+ 4.5763289928436279e-01 6.0275578498840332e-01
+ <_>
+
+ 0 -1 1423 2.4144479539245367e-03
+
+ 5.3089731931686401e-01 4.4224989414215088e-01
+ <_>
+
+ 0 -1 1424 1.9523180089890957e-03
+
+ 4.7056341171264648e-01 6.6633248329162598e-01
+ <_>
+
+ 0 -1 1425 1.3031980488449335e-03
+
+ 4.4061261415481567e-01 5.5269622802734375e-01
+ <_>
+
+ 0 -1 1426 4.4735497795045376e-03
+
+ 5.1290237903594971e-01 3.3014988899230957e-01
+ <_>
+
+ 0 -1 1427 -2.6652868837118149e-03
+
+ 3.1354710459709167e-01 5.1750361919403076e-01
+ <_>
+
+ 0 -1 1428 1.3666770246345550e-04
+
+ 4.1193708777427673e-01 5.3068768978118896e-01
+ <_>
+
+ 0 -1 1429 -1.7126450315117836e-02
+
+ 6.1778062582015991e-01 4.8365789651870728e-01
+ <_>
+
+ 0 -1 1430 -2.6601430727168918e-04
+
+ 3.6543309688568115e-01 5.1697367429733276e-01
+ <_>
+
+ 0 -1 1431 -2.2932380437850952e-02
+
+ 3.4909150004386902e-01 5.1639920473098755e-01
+ <_>
+
+ 0 -1 1432 2.3316550068557262e-03
+
+ 5.1662999391555786e-01 3.7093898653984070e-01
+ <_>
+
+ 0 -1 1433 1.6925660893321037e-02
+
+ 5.0147360563278198e-01 8.0539882183074951e-01
+ <_>
+
+ 0 -1 1434 -8.9858826249837875e-03
+
+ 6.4707887172698975e-01 4.6570208668708801e-01
+ <_>
+
+ 0 -1 1435 -1.1874699965119362e-02
+
+ 3.2463788986206055e-01 5.2587550878524780e-01
+ <_>
+
+ 0 -1 1436 1.9350569345988333e-04
+
+ 5.1919418573379517e-01 3.8396438956260681e-01
+ <_>
+
+ 0 -1 1437 5.8713490143418312e-03
+
+ 4.9181339144706726e-01 6.1870431900024414e-01
+ <_>
+
+ 0 -1 1438 -2.4838790297508240e-01
+
+ 1.8368029594421387e-01 4.9881500005722046e-01
+ <_>
+
+ 0 -1 1439 1.2256000190973282e-02
+
+ 5.2270537614822388e-01 3.6320298910140991e-01
+ <_>
+
+ 0 -1 1440 8.3990179700776935e-04
+
+ 4.4902500510215759e-01 5.7741481065750122e-01
+ <_>
+
+ 0 -1 1441 2.5407369248569012e-03
+
+ 4.8047870397567749e-01 5.8582991361618042e-01
+ <_>
+
+ 0 -1 1442 -1.4822429977357388e-02
+
+ 2.5210499763488770e-01 5.0235372781753540e-01
+ <_>
+
+ 0 -1 1443 -5.7973959483206272e-03
+
+ 5.9966957569122314e-01 4.8537150025367737e-01
+ <_>
+
+ 0 -1 1444 7.2662148158997297e-04
+
+ 5.1537168025970459e-01 3.6717799305915833e-01
+ <_>
+
+ 0 -1 1445 -1.7232580110430717e-02
+
+ 6.6217190027236938e-01 4.9946561455726624e-01
+ <_>
+
+ 0 -1 1446 7.8624086454510689e-03
+
+ 4.6333950757980347e-01 6.2561017274856567e-01
+ <_>
+
+ 0 -1 1447 -4.7343620099127293e-03
+
+ 3.6155730485916138e-01 5.2818852663040161e-01
+ <_>
+
+ 0 -1 1448 8.3048478700220585e-04
+
+ 4.4428890943527222e-01 5.5509579181671143e-01
+ <_>
+
+ 0 -1 1449 7.6602199114859104e-03
+
+ 5.1629352569580078e-01 2.6133549213409424e-01
+ <_>
+
+ 0 -1 1450 -4.1048377752304077e-03
+
+ 2.7896320819854736e-01 5.0190317630767822e-01
+ <_>
+
+ 0 -1 1451 4.8512578941881657e-03
+
+ 4.9689841270446777e-01 5.6616681814193726e-01
+ <_>
+
+ 0 -1 1452 9.9896453320980072e-04
+
+ 4.4456079602241516e-01 5.5518132448196411e-01
+ <_>
+
+ 0 -1 1453 -2.7023631334304810e-01
+
+ 2.9388209804892540e-02 5.1513141393661499e-01
+ <_>
+
+ 0 -1 1454 -1.3090680353343487e-02
+
+ 5.6993997097015381e-01 4.4474598765373230e-01
+ <_>
+
+ 0 -1 1455 -9.4342790544033051e-03
+
+ 4.3054661154747009e-01 5.4878950119018555e-01
+ <_>
+
+ 0 -1 1456 -1.5482039889320731e-03
+
+ 3.6803171038627625e-01 5.1280808448791504e-01
+ <_>
+
+ 0 -1 1457 5.3746132180094719e-03
+
+ 4.8389169573783875e-01 6.1015558242797852e-01
+ <_>
+
+ 0 -1 1458 1.5786769799888134e-03
+
+ 5.3252232074737549e-01 4.1185480356216431e-01
+ <_>
+
+ 0 -1 1459 3.6856050137430429e-03
+
+ 4.8109480738639832e-01 6.2523031234741211e-01
+ <_>
+
+ 0 -1 1460 9.3887019902467728e-03
+
+ 5.2002298831939697e-01 3.6294108629226685e-01
+ <_>
+
+ 0 -1 1461 1.2792630121111870e-02
+
+ 4.9617099761962891e-01 6.7380160093307495e-01
+ <_>
+
+ 0 -1 1462 -3.3661040943115950e-03
+
+ 4.0602791309356689e-01 5.2835988998413086e-01
+ <_>
+
+ 0 -1 1463 3.9771420415490866e-04
+
+ 4.6741139888763428e-01 5.9007751941680908e-01
+ <_>
+
+ 0 -1 1464 1.4868030557408929e-03
+
+ 4.5191168785095215e-01 6.0820537805557251e-01
+ <_>
+
+ 0 -1 1465 -8.8686749339103699e-02
+
+ 2.8078991174697876e-01 5.1809918880462646e-01
+ <_>
+
+ 0 -1 1466 -7.4296112870797515e-05
+
+ 5.2955842018127441e-01 4.0876251459121704e-01
+ <_>
+
+ 0 -1 1467 -1.4932939848222304e-05
+
+ 5.4614001512527466e-01 4.5385429263114929e-01
+ <_>
+
+ 0 -1 1468 5.9162238612771034e-03
+
+ 5.3291612863540649e-01 4.1921341419219971e-01
+ <_>
+
+ 0 -1 1469 1.1141640134155750e-03
+
+ 4.5120179653167725e-01 5.7062172889709473e-01
+ <_>
+
+ 0 -1 1470 8.9249362645205110e-05
+
+ 4.5778059959411621e-01 5.8976382017135620e-01
+ <_>
+
+ 0 -1 1471 2.5319510605186224e-03
+
+ 5.2996039390563965e-01 3.3576390147209167e-01
+ <_>
+
+ 0 -1 1472 1.2426200322806835e-02
+
+ 4.9590590596199036e-01 1.3466019928455353e-01
+ <_>
+
+ 0 -1 1473 2.8335750102996826e-02
+
+ 5.1170790195465088e-01 6.1043637106195092e-04
+ <_>
+
+ 0 -1 1474 6.6165882162749767e-03
+
+ 4.7363498806953430e-01 7.0116281509399414e-01
+ <_>
+
+ 0 -1 1475 8.0468766391277313e-03
+
+ 5.2164179086685181e-01 3.2828199863433838e-01
+ <_>
+
+ 0 -1 1476 -1.1193980462849140e-03
+
+ 5.8098608255386353e-01 4.5637390017509460e-01
+ <_>
+
+ 0 -1 1477 1.3277590274810791e-02
+
+ 5.3983622789382935e-01 4.1039010882377625e-01
+ <_>
+
+ 0 -1 1478 4.8794739996083081e-04
+
+ 4.2492860555648804e-01 5.4105907678604126e-01
+ <_>
+
+ 0 -1 1479 1.1243170127272606e-02
+
+ 5.2699637413024902e-01 3.4382158517837524e-01
+ <_>
+
+ 0 -1 1480 -8.9896668214350939e-04
+
+ 5.6330758333206177e-01 4.4566130638122559e-01
+ <_>
+
+ 0 -1 1481 6.6677159629762173e-03
+
+ 5.3128892183303833e-01 4.3626791238784790e-01
+ <_>
+
+ 0 -1 1482 2.8947299346327782e-02
+
+ 4.7017949819564819e-01 6.5757977962493896e-01
+ <_>
+
+ 0 -1 1483 -2.3400049656629562e-02
+
+ 0. 5.1373988389968872e-01
+ <_>
+
+ 0 -1 1484 -8.9117050170898438e-02
+
+ 2.3745279759168625e-02 4.9424308538436890e-01
+ <_>
+
+ 0 -1 1485 -1.4054600149393082e-02
+
+ 3.1273230910301208e-01 5.1175111532211304e-01
+ <_>
+
+ 0 -1 1486 8.1239398568868637e-03
+
+ 5.0090491771697998e-01 2.5200259685516357e-01
+ <_>
+
+ 0 -1 1487 -4.9964650534093380e-03
+
+ 6.3871437311172485e-01 4.9278119206428528e-01
+ <_>
+
+ 0 -1 1488 3.1253970228135586e-03
+
+ 5.1368498802185059e-01 3.6804521083831787e-01
+ <_>
+
+ 0 -1 1489 6.7669642157852650e-03
+
+ 5.5098438262939453e-01 4.3636319041252136e-01
+ <_>
+
+ 0 -1 1490 -2.3711440153419971e-03
+
+ 6.1623352766036987e-01 4.5869469642639160e-01
+ <_>
+
+ 0 -1 1491 -5.3522791713476181e-03
+
+ 6.1854577064514160e-01 4.9204909801483154e-01
+ <_>
+
+ 0 -1 1492 -1.5968859195709229e-02
+
+ 1.3826179504394531e-01 4.9832528829574585e-01
+ <_>
+
+ 0 -1 1493 4.7676060348749161e-03
+
+ 4.6880578994750977e-01 5.4900461435317993e-01
+ <_>
+
+ 0 -1 1494 -2.4714691098779440e-03
+
+ 2.3685149848461151e-01 5.0039529800415039e-01
+ <_>
+
+ 0 -1 1495 -7.1033788844943047e-04
+
+ 5.8563941717147827e-01 4.7215330600738525e-01
+ <_>
+
+ 0 -1 1496 -1.4117559790611267e-01
+
+ 8.6900062859058380e-02 4.9615910649299622e-01
+ <_>
+
+ 0 -1 1497 1.0651809722185135e-01
+
+ 5.1388370990753174e-01 1.7410050332546234e-01
+ <_>
+
+ 0 -1 1498 -5.2744749933481216e-02
+
+ 7.3536360263824463e-01 4.7728818655014038e-01
+ <_>
+
+ 0 -1 1499 -4.7431760467588902e-03
+
+ 3.8844060897827148e-01 5.2927017211914062e-01
+ <_>
+
+ 0 -1 1500 9.9676765967160463e-04
+
+ 5.2234929800033569e-01 4.0034240484237671e-01
+ <_>
+
+ 0 -1 1501 8.0284131690859795e-03
+
+ 4.9591061472892761e-01 7.2129642963409424e-01
+ <_>
+
+ 0 -1 1502 8.6025858763605356e-04
+
+ 4.4448840618133545e-01 5.5384761095046997e-01
+ <_>
+
+ 0 -1 1503 9.3191501218825579e-04
+
+ 5.3983712196350098e-01 4.1632440686225891e-01
+ <_>
+
+ 0 -1 1504 -2.5082060601562262e-03
+
+ 5.8542650938034058e-01 4.5625001192092896e-01
+ <_>
+
+ 0 -1 1505 -2.1378761157393456e-03
+
+ 4.6080690622329712e-01 5.2802592515945435e-01
+ <_>
+
+ 0 -1 1506 -2.1546049974858761e-03
+
+ 3.7911269068717957e-01 5.2559971809387207e-01
+ <_>
+
+ 0 -1 1507 -7.6214009895920753e-03
+
+ 5.9986090660095215e-01 4.9520739912986755e-01
+ <_>
+
+ 0 -1 1508 2.2055360022932291e-03
+
+ 4.4842061400413513e-01 5.5885308980941772e-01
+ <_>
+
+ 0 -1 1509 1.2586950324475765e-03
+
+ 5.4507470130920410e-01 4.4238409399986267e-01
+ <_>
+
+ 0 -1 1510 -5.0926720723509789e-03
+
+ 4.1182750463485718e-01 5.2630358934402466e-01
+ <_>
+
+ 0 -1 1511 -2.5095739401876926e-03
+
+ 5.7879078388214111e-01 4.9984949827194214e-01
+ <_>
+
+ 0 -1 1512 -7.7327556908130646e-02
+
+ 8.3978658914566040e-01 4.8111200332641602e-01
+ <_>
+
+ 0 -1 1513 -4.1485819965600967e-02
+
+ 2.4086110293865204e-01 5.1769930124282837e-01
+ <_>
+
+ 0 -1 1514 1.0355669655837119e-04
+
+ 4.3553608655929565e-01 5.4170542955398560e-01
+ <_>
+
+ 0 -1 1515 1.3255809899419546e-03
+
+ 5.4539710283279419e-01 4.8940950632095337e-01
+ <_>
+
+ 0 -1 1516 -8.0598732456564903e-03
+
+ 5.7710242271423340e-01 4.5779189467430115e-01
+ <_>
+
+ 0 -1 1517 1.9058620557188988e-02
+
+ 5.1698678731918335e-01 3.4004750847816467e-01
+ <_>
+
+ 0 -1 1518 -3.5057891160249710e-02
+
+ 2.2032439708709717e-01 5.0005030632019043e-01
+ <_>
+
+ 0 -1 1519 5.7296059094369411e-03
+
+ 5.0434082746505737e-01 6.5975707769393921e-01
+ <_>
+
+ 0 -1 1520 -1.1648329906165600e-02
+
+ 2.1862849593162537e-01 4.9966529011726379e-01
+ <_>
+
+ 0 -1 1521 1.4544479781761765e-03
+
+ 5.0076818466186523e-01 5.5037277936935425e-01
+ <_>
+
+ 0 -1 1522 -2.5030909455381334e-04
+
+ 4.1298410296440125e-01 5.2416700124740601e-01
+ <_>
+
+ 0 -1 1523 -8.2907272735610604e-04
+
+ 5.4128682613372803e-01 4.9744960665702820e-01
+ <_>
+
+ 0 -1 1524 1.0862209601327777e-03
+
+ 4.6055299043655396e-01 5.8792287111282349e-01
+ <_>
+
+ 0 -1 1525 2.0000500080641359e-04
+
+ 5.2788549661636353e-01 4.7052091360092163e-01
+ <_>
+
+ 0 -1 1526 2.9212920926511288e-03
+
+ 5.1296097040176392e-01 3.7555369734764099e-01
+ <_>
+
+ 0 -1 1527 2.5387400761246681e-02
+
+ 4.8226919770240784e-01 5.7907682657241821e-01
+ <_>
+
+ 0 -1 1528 -3.1968469265848398e-03
+
+ 5.2483952045440674e-01 3.9628401398658752e-01
+ <_>
+ 182
+ 9.0253349304199219e+01
+
+ <_>
+
+ 0 -1 1529 5.8031738735735416e-03
+
+ 3.4989839792251587e-01 5.9619832038879395e-01
+ <_>
+
+ 0 -1 1530 -9.0003069490194321e-03
+
+ 6.8166369199752808e-01 4.4785520434379578e-01
+ <_>
+
+ 0 -1 1531 -1.1549659539014101e-03
+
+ 5.5857062339782715e-01 3.5782510042190552e-01
+ <_>
+
+ 0 -1 1532 -1.1069850297644734e-03
+
+ 5.3650361299514771e-01 3.0504280328750610e-01
+ <_>
+
+ 0 -1 1533 1.0308309720130637e-04
+
+ 3.6390951275825500e-01 5.3446358442306519e-01
+ <_>
+
+ 0 -1 1534 -5.0984839908778667e-03
+
+ 2.8591570258140564e-01 5.5042648315429688e-01
+ <_>
+
+ 0 -1 1535 8.2572200335562229e-04
+
+ 5.2365237474441528e-01 3.4760418534278870e-01
+ <_>
+
+ 0 -1 1536 9.9783325567841530e-03
+
+ 4.7503221035003662e-01 6.2196469306945801e-01
+ <_>
+
+ 0 -1 1537 -3.7402529269456863e-02
+
+ 3.3433759212493896e-01 5.2780628204345703e-01
+ <_>
+
+ 0 -1 1538 4.8548257909715176e-03
+
+ 5.1921808719635010e-01 3.7004441022872925e-01
+ <_>
+
+ 0 -1 1539 -1.8664470408111811e-03
+
+ 2.9298439621925354e-01 5.0919449329376221e-01
+ <_>
+
+ 0 -1 1540 1.6888890415430069e-02
+
+ 3.6868458986282349e-01 5.4312258958816528e-01
+ <_>
+
+ 0 -1 1541 -5.8372621424496174e-03
+
+ 3.6321839690208435e-01 5.2213358879089355e-01
+ <_>
+
+ 0 -1 1542 -1.4713739510625601e-03
+
+ 5.8706837892532349e-01 4.7006508708000183e-01
+ <_>
+
+ 0 -1 1543 -1.1522950371727347e-03
+
+ 3.1958949565887451e-01 5.1409542560577393e-01
+ <_>
+
+ 0 -1 1544 -4.2560300789773464e-03
+
+ 6.3018590211868286e-01 4.8149210214614868e-01
+ <_>
+
+ 0 -1 1545 -6.7378291860222816e-03
+
+ 1.9770480692386627e-01 5.0258082151412964e-01
+ <_>
+
+ 0 -1 1546 1.1382670141756535e-02
+
+ 4.9541321396827698e-01 6.8670457601547241e-01
+ <_>
+
+ 0 -1 1547 5.1794708706438541e-03
+
+ 5.1644277572631836e-01 3.3506479859352112e-01
+ <_>
+
+ 0 -1 1548 -1.1743789911270142e-01
+
+ 2.3152460157871246e-01 5.2344137430191040e-01
+ <_>
+
+ 0 -1 1549 2.8703449293971062e-02
+
+ 4.6642971038818359e-01 6.7225211858749390e-01
+ <_>
+
+ 0 -1 1550 4.8231030814349651e-03
+
+ 5.2208751440048218e-01 2.7235329151153564e-01
+ <_>
+
+ 0 -1 1551 2.6798530016094446e-03
+
+ 5.0792771577835083e-01 2.9069489240646362e-01
+ <_>
+
+ 0 -1 1552 8.0504082143306732e-03
+
+ 4.8859509825706482e-01 6.3950210809707642e-01
+ <_>
+
+ 0 -1 1553 4.8054959625005722e-03
+
+ 5.1972568035125732e-01 3.6566638946533203e-01
+ <_>
+
+ 0 -1 1554 -2.2420159075409174e-03
+
+ 6.1534678936004639e-01 4.7637018561363220e-01
+ <_>
+
+ 0 -1 1555 -1.3757710345089436e-02
+
+ 2.6373448967933655e-01 5.0309032201766968e-01
+ <_>
+
+ 0 -1 1556 -1.0338299721479416e-01
+
+ 2.2875219583511353e-01 5.1824611425399780e-01
+ <_>
+
+ 0 -1 1557 -9.4432085752487183e-03
+
+ 6.9533038139343262e-01 4.6949490904808044e-01
+ <_>
+
+ 0 -1 1558 8.0271181650459766e-04
+
+ 5.4506552219390869e-01 4.2687839269638062e-01
+ <_>
+
+ 0 -1 1559 -4.1945669800043106e-03
+
+ 6.0913878679275513e-01 4.5716428756713867e-01
+ <_>
+
+ 0 -1 1560 1.0942210443317890e-02
+
+ 5.2410632371902466e-01 3.2845470309257507e-01
+ <_>
+
+ 0 -1 1561 -5.7841069065034389e-04
+
+ 5.3879290819168091e-01 4.1793689131736755e-01
+ <_>
+
+ 0 -1 1562 -2.0888620056211948e-03
+
+ 4.2926910519599915e-01 5.3017157316207886e-01
+ <_>
+
+ 0 -1 1563 3.2383969519287348e-03
+
+ 3.7923479080200195e-01 5.2207440137863159e-01
+ <_>
+
+ 0 -1 1564 4.9075027927756310e-03
+
+ 5.2372831106185913e-01 4.1267579793930054e-01
+ <_>
+
+ 0 -1 1565 -3.2277941703796387e-02
+
+ 1.9476559758186340e-01 4.9945020675659180e-01
+ <_>
+
+ 0 -1 1566 -8.9711230248212814e-03
+
+ 6.0112851858139038e-01 4.9290320277214050e-01
+ <_>
+
+ 0 -1 1567 1.5321089886128902e-02
+
+ 5.0097537040710449e-01 2.0398220419883728e-01
+ <_>
+
+ 0 -1 1568 2.0855569746345282e-03
+
+ 4.8621898889541626e-01 5.7216948270797729e-01
+ <_>
+
+ 0 -1 1569 5.0615021027624607e-03
+
+ 5.0002187490463257e-01 1.8018059432506561e-01
+ <_>
+
+ 0 -1 1570 -3.7174751050770283e-03
+
+ 5.5301171541213989e-01 4.8975929617881775e-01
+ <_>
+
+ 0 -1 1571 -1.2170500122010708e-02
+
+ 4.1786059737205505e-01 5.3837239742279053e-01
+ <_>
+
+ 0 -1 1572 4.6248398721218109e-03
+
+ 4.9971699714660645e-01 5.7613271474838257e-01
+ <_>
+
+ 0 -1 1573 -2.1040429419372231e-04
+
+ 5.3318071365356445e-01 4.0976810455322266e-01
+ <_>
+
+ 0 -1 1574 -1.4641780406236649e-02
+
+ 5.7559251785278320e-01 5.0517761707305908e-01
+ <_>
+
+ 0 -1 1575 3.3199489116668701e-03
+
+ 4.5769768953323364e-01 6.0318058729171753e-01
+ <_>
+
+ 0 -1 1576 3.7236879579722881e-03
+
+ 4.3803969025611877e-01 5.4158830642700195e-01
+ <_>
+
+ 0 -1 1577 8.2951161311939359e-04
+
+ 5.1630318164825439e-01 3.7022191286087036e-01
+ <_>
+
+ 0 -1 1578 -1.1408490128815174e-02
+
+ 6.0729467868804932e-01 4.8625651001930237e-01
+ <_>
+
+ 0 -1 1579 -4.5320121571421623e-03
+
+ 3.2924759387969971e-01 5.0889629125595093e-01
+ <_>
+
+ 0 -1 1580 5.1276017911732197e-03
+
+ 4.8297679424285889e-01 6.1227089166641235e-01
+ <_>
+
+ 0 -1 1581 9.8583158105611801e-03
+
+ 4.6606799960136414e-01 6.5561771392822266e-01
+ <_>
+
+ 0 -1 1582 3.6985918879508972e-02
+
+ 5.2048492431640625e-01 1.6904720664024353e-01
+ <_>
+
+ 0 -1 1583 4.6491161920130253e-03
+
+ 5.1673221588134766e-01 3.7252250313758850e-01
+ <_>
+
+ 0 -1 1584 -4.2664702050387859e-03
+
+ 6.4064931869506836e-01 4.9873429536819458e-01
+ <_>
+
+ 0 -1 1585 -4.7956590424291790e-04
+
+ 5.8972930908203125e-01 4.4648739695549011e-01
+ <_>
+
+ 0 -1 1586 3.6827160511165857e-03
+
+ 5.4415607452392578e-01 3.4726628661155701e-01
+ <_>
+
+ 0 -1 1587 -1.0059880092740059e-02
+
+ 2.1431629359722137e-01 5.0048297643661499e-01
+ <_>
+
+ 0 -1 1588 -3.0361840617842972e-04
+
+ 5.3864240646362305e-01 4.5903238654136658e-01
+ <_>
+
+ 0 -1 1589 -1.4545479789376259e-03
+
+ 5.7511842250823975e-01 4.4970950484275818e-01
+ <_>
+
+ 0 -1 1590 1.6515209572389722e-03
+
+ 5.4219377040863037e-01 4.2385208606719971e-01
+ <_>
+
+ 0 -1 1591 -7.8468639403581619e-03
+
+ 4.0779209136962891e-01 5.2581572532653809e-01
+ <_>
+
+ 0 -1 1592 -5.1259850151836872e-03
+
+ 4.2292758822441101e-01 5.4794532060623169e-01
+ <_>
+
+ 0 -1 1593 -3.6890961229801178e-02
+
+ 6.5963757038116455e-01 4.6746781468391418e-01
+ <_>
+
+ 0 -1 1594 2.4035639944486320e-04
+
+ 4.2511358857154846e-01 5.5732029676437378e-01
+ <_>
+
+ 0 -1 1595 -1.5150169929256663e-05
+
+ 5.2592468261718750e-01 4.0741148591041565e-01
+ <_>
+
+ 0 -1 1596 2.2108471021056175e-03
+
+ 4.6717229485511780e-01 5.8863520622253418e-01
+ <_>
+
+ 0 -1 1597 -1.1568620102480054e-03
+
+ 5.7110661268234253e-01 4.4871619343757629e-01
+ <_>
+
+ 0 -1 1598 4.9996292218565941e-03
+
+ 5.2641981840133667e-01 2.8983271121978760e-01
+ <_>
+
+ 0 -1 1599 -1.4656189596280456e-03
+
+ 3.8917380571365356e-01 5.1978719234466553e-01
+ <_>
+
+ 0 -1 1600 -1.1975039960816503e-03
+
+ 5.7958728075027466e-01 4.9279558658599854e-01
+ <_>
+
+ 0 -1 1601 -4.4954330660402775e-03
+
+ 2.3776030540466309e-01 5.0125551223754883e-01
+ <_>
+
+ 0 -1 1602 1.4997160178609192e-04
+
+ 4.8766261339187622e-01 5.6176078319549561e-01
+ <_>
+
+ 0 -1 1603 2.6391509454697371e-03
+
+ 5.1680880784988403e-01 3.7655091285705566e-01
+ <_>
+
+ 0 -1 1604 -2.9368131072260439e-04
+
+ 5.4466491937637329e-01 4.8746308684349060e-01
+ <_>
+
+ 0 -1 1605 1.4211760135367513e-03
+
+ 4.6878978610038757e-01 6.6913318634033203e-01
+ <_>
+
+ 0 -1 1606 7.9427637159824371e-02
+
+ 5.1934438943862915e-01 2.7329459786415100e-01
+ <_>
+
+ 0 -1 1607 7.9937502741813660e-02
+
+ 4.9717310070991516e-01 1.7820839583873749e-01
+ <_>
+
+ 0 -1 1608 1.1089259758591652e-02
+
+ 5.1659947633743286e-01 3.2094758749008179e-01
+ <_>
+
+ 0 -1 1609 1.6560709627810866e-04
+
+ 4.0584719181060791e-01 5.3072762489318848e-01
+ <_>
+
+ 0 -1 1610 -5.3354292176663876e-03
+
+ 3.4450569748878479e-01 5.1581299304962158e-01
+ <_>
+
+ 0 -1 1611 1.1287260567769408e-03
+
+ 4.5948630571365356e-01 6.0755330324172974e-01
+ <_>
+
+ 0 -1 1612 -2.1969219669699669e-02
+
+ 1.6804009675979614e-01 5.2285957336425781e-01
+ <_>
+
+ 0 -1 1613 -2.1775320055894554e-04
+
+ 3.8615968823432922e-01 5.2156728506088257e-01
+ <_>
+
+ 0 -1 1614 2.0200149447191507e-04
+
+ 5.5179792642593384e-01 4.3630391359329224e-01
+ <_>
+
+ 0 -1 1615 -2.1733149886131287e-02
+
+ 7.9994601011276245e-01 4.7898510098457336e-01
+ <_>
+
+ 0 -1 1616 -8.4399932529777288e-04
+
+ 4.0859758853912354e-01 5.3747731447219849e-01
+ <_>
+
+ 0 -1 1617 -4.3895249837078154e-04
+
+ 5.4704052209854126e-01 4.3661430478096008e-01
+ <_>
+
+ 0 -1 1618 1.5092400135472417e-03
+
+ 4.9889969825744629e-01 5.8421492576599121e-01
+ <_>
+
+ 0 -1 1619 -3.5547839943319559e-03
+
+ 6.7536902427673340e-01 4.7210058569908142e-01
+ <_>
+
+ 0 -1 1620 4.8191400128416717e-04
+
+ 5.4158538579940796e-01 4.3571090698242188e-01
+ <_>
+
+ 0 -1 1621 -6.0264398343861103e-03
+
+ 2.2585099935531616e-01 4.9918809533119202e-01
+ <_>
+
+ 0 -1 1622 -1.1668140068650246e-02
+
+ 6.2565547227859497e-01 4.9274989962577820e-01
+ <_>
+
+ 0 -1 1623 -2.8718370012938976e-03
+
+ 3.9477849006652832e-01 5.2458018064498901e-01
+ <_>
+
+ 0 -1 1624 1.7051169648766518e-02
+
+ 4.7525110840797424e-01 5.7942241430282593e-01
+ <_>
+
+ 0 -1 1625 -1.3352080248296261e-02
+
+ 6.0411047935485840e-01 4.5445358753204346e-01
+ <_>
+
+ 0 -1 1626 -3.9301801007241011e-04
+
+ 4.2582759261131287e-01 5.5449050664901733e-01
+ <_>
+
+ 0 -1 1627 3.0483349692076445e-03
+
+ 5.2334201335906982e-01 3.7802729010581970e-01
+ <_>
+
+ 0 -1 1628 -4.3579288758337498e-03
+
+ 6.3718891143798828e-01 4.8386740684509277e-01
+ <_>
+
+ 0 -1 1629 5.6661018170416355e-03
+
+ 5.3747057914733887e-01 4.1636660695075989e-01
+ <_>
+
+ 0 -1 1630 6.0677339206449687e-05
+
+ 4.6387958526611328e-01 5.3116250038146973e-01
+ <_>
+
+ 0 -1 1631 3.6738160997629166e-02
+
+ 4.6886560320854187e-01 6.4665240049362183e-01
+ <_>
+
+ 0 -1 1632 8.6528137326240540e-03
+
+ 5.2043187618255615e-01 2.1886579692363739e-01
+ <_>
+
+ 0 -1 1633 -1.5371359884738922e-01
+
+ 1.6303719580173492e-01 4.9588400125503540e-01
+ <_>
+
+ 0 -1 1634 -4.1560421232134104e-04
+
+ 5.7744592428207397e-01 4.6964588761329651e-01
+ <_>
+
+ 0 -1 1635 -1.2640169588848948e-03
+
+ 3.9771759510040283e-01 5.2171981334686279e-01
+ <_>
+
+ 0 -1 1636 -3.5473341122269630e-03
+
+ 6.0465282201766968e-01 4.8083150386810303e-01
+ <_>
+
+ 0 -1 1637 3.0019069527043030e-05
+
+ 3.9967238903045654e-01 5.2282011508941650e-01
+ <_>
+
+ 0 -1 1638 1.3113019522279501e-03
+
+ 4.7121581435203552e-01 5.7659977674484253e-01
+ <_>
+
+ 0 -1 1639 -1.3374709524214268e-03
+
+ 4.1095849871635437e-01 5.2531701326370239e-01
+ <_>
+
+ 0 -1 1640 2.0876709371805191e-02
+
+ 5.2029937505722046e-01 1.7579819262027740e-01
+ <_>
+
+ 0 -1 1641 -7.5497948564589024e-03
+
+ 6.5666097402572632e-01 4.6949750185012817e-01
+ <_>
+
+ 0 -1 1642 2.4188550189137459e-02
+
+ 5.1286739110946655e-01 3.3702209591865540e-01
+ <_>
+
+ 0 -1 1643 -2.9358828905969858e-03
+
+ 6.5807867050170898e-01 4.6945410966873169e-01
+ <_>
+
+ 0 -1 1644 5.7557929307222366e-02
+
+ 5.1464450359344482e-01 2.7752599120140076e-01
+ <_>
+
+ 0 -1 1645 -1.1343370424583554e-03
+
+ 3.8366019725799561e-01 5.1926672458648682e-01
+ <_>
+
+ 0 -1 1646 1.6816999763250351e-02
+
+ 5.0855928659439087e-01 6.1772608757019043e-01
+ <_>
+
+ 0 -1 1647 5.0535178743302822e-03
+
+ 5.1387631893157959e-01 3.6847919225692749e-01
+ <_>
+
+ 0 -1 1648 -4.5874710194766521e-03
+
+ 5.9896552562713623e-01 4.8352020978927612e-01
+ <_>
+
+ 0 -1 1649 1.6882460331544280e-03
+
+ 4.5094868540763855e-01 5.7230567932128906e-01
+ <_>
+
+ 0 -1 1650 -1.6554000321775675e-03
+
+ 3.4967708587646484e-01 5.2433192729949951e-01
+ <_>
+
+ 0 -1 1651 -1.9373800605535507e-02
+
+ 1.1205369979143143e-01 4.9687129259109497e-01
+ <_>
+
+ 0 -1 1652 1.0374450124800205e-02
+
+ 5.1481968164443970e-01 4.3952131271362305e-01
+ <_>
+
+ 0 -1 1653 1.4973050565458834e-04
+
+ 4.0849998593330383e-01 5.2698868513107300e-01
+ <_>
+
+ 0 -1 1654 -4.2981930077075958e-02
+
+ 6.3941049575805664e-01 5.0185042619705200e-01
+ <_>
+
+ 0 -1 1655 8.3065936341881752e-03
+
+ 4.7075539827346802e-01 6.6983532905578613e-01
+ <_>
+
+ 0 -1 1656 -4.1285790503025055e-03
+
+ 4.5413690805435181e-01 5.3236472606658936e-01
+ <_>
+
+ 0 -1 1657 1.7399420030415058e-03
+
+ 4.3339619040489197e-01 5.4398661851882935e-01
+ <_>
+
+ 0 -1 1658 1.1739750334527344e-04
+
+ 4.5796871185302734e-01 5.5434262752532959e-01
+ <_>
+
+ 0 -1 1659 1.8585780344437808e-04
+
+ 4.3246439099311829e-01 5.4267549514770508e-01
+ <_>
+
+ 0 -1 1660 5.5587692186236382e-03
+
+ 5.2572208642959595e-01 3.5506111383438110e-01
+ <_>
+
+ 0 -1 1661 -7.9851560294628143e-03
+
+ 6.0430181026458740e-01 4.6306359767913818e-01
+ <_>
+
+ 0 -1 1662 6.0594122624024749e-04
+
+ 4.5982548594474792e-01 5.5331951379776001e-01
+ <_>
+
+ 0 -1 1663 -2.2983040253166109e-04
+
+ 4.1307520866394043e-01 5.3224611282348633e-01
+ <_>
+
+ 0 -1 1664 4.3740210821852088e-04
+
+ 4.0430399775505066e-01 5.4092890024185181e-01
+ <_>
+
+ 0 -1 1665 2.9482020181603730e-04
+
+ 4.4949638843536377e-01 5.6288522481918335e-01
+ <_>
+
+ 0 -1 1666 1.0312659665942192e-02
+
+ 5.1775109767913818e-01 2.7043169736862183e-01
+ <_>
+
+ 0 -1 1667 -7.7241109684109688e-03
+
+ 1.9880190491676331e-01 4.9805539846420288e-01
+ <_>
+
+ 0 -1 1668 -4.6797208487987518e-03
+
+ 6.6447502374649048e-01 5.0182962417602539e-01
+ <_>
+
+ 0 -1 1669 -5.0755459815263748e-03
+
+ 3.8983049988746643e-01 5.1852691173553467e-01
+ <_>
+
+ 0 -1 1670 2.2479740437120199e-03
+
+ 4.8018088936805725e-01 5.6603360176086426e-01
+ <_>
+
+ 0 -1 1671 8.3327008178457618e-04
+
+ 5.2109199762344360e-01 3.9571881294250488e-01
+ <_>
+
+ 0 -1 1672 -4.1279330849647522e-02
+
+ 6.1545419692993164e-01 5.0070542097091675e-01
+ <_>
+
+ 0 -1 1673 -5.0930189900100231e-04
+
+ 3.9759421348571777e-01 5.2284038066864014e-01
+ <_>
+
+ 0 -1 1674 1.2568780221045017e-03
+
+ 4.9791380763053894e-01 5.9391832351684570e-01
+ <_>
+
+ 0 -1 1675 8.0048497766256332e-03
+
+ 4.9844971299171448e-01 1.6333660483360291e-01
+ <_>
+
+ 0 -1 1676 -1.1879300000146031e-03
+
+ 5.9049648046493530e-01 4.9426248669624329e-01
+ <_>
+
+ 0 -1 1677 6.1948952497914433e-04
+
+ 4.1995579004287720e-01 5.3287261724472046e-01
+ <_>
+
+ 0 -1 1678 6.6829859279096127e-03
+
+ 5.4186028242111206e-01 4.9058890342712402e-01
+ <_>
+
+ 0 -1 1679 -3.7062340416014194e-03
+
+ 3.7259390950202942e-01 5.1380002498626709e-01
+ <_>
+
+ 0 -1 1680 -3.9739411324262619e-02
+
+ 6.4789611101150513e-01 5.0503468513488770e-01
+ <_>
+
+ 0 -1 1681 1.4085009461268783e-03
+
+ 4.6823391318321228e-01 6.3778841495513916e-01
+ <_>
+
+ 0 -1 1682 3.9322688826359808e-04
+
+ 5.4585301876068115e-01 4.1504821181297302e-01
+ <_>
+
+ 0 -1 1683 -1.8979819724336267e-03
+
+ 3.6901599168777466e-01 5.1497042179107666e-01
+ <_>
+
+ 0 -1 1684 -1.3970440253615379e-02
+
+ 6.0505628585815430e-01 4.8113578557968140e-01
+ <_>
+
+ 0 -1 1685 -1.0100819915533066e-01
+
+ 2.0170800387859344e-01 4.9923619627952576e-01
+ <_>
+
+ 0 -1 1686 -1.7346920445561409e-02
+
+ 5.7131487131118774e-01 4.8994860053062439e-01
+ <_>
+
+ 0 -1 1687 1.5619759506080300e-04
+
+ 4.2153888940811157e-01 5.3926420211791992e-01
+ <_>
+
+ 0 -1 1688 1.3438929617404938e-01
+
+ 5.1361519098281860e-01 3.7676128745079041e-01
+ <_>
+
+ 0 -1 1689 -2.4582240730524063e-02
+
+ 7.0273578166961670e-01 4.7479069232940674e-01
+ <_>
+
+ 0 -1 1690 -3.8553720805794001e-03
+
+ 4.3174090981483459e-01 5.4277169704437256e-01
+ <_>
+
+ 0 -1 1691 -2.3165249731391668e-03
+
+ 5.9426987171173096e-01 4.6186479926109314e-01
+ <_>
+
+ 0 -1 1692 -4.8518120311200619e-03
+
+ 6.1915689706802368e-01 4.8848950862884521e-01
+ <_>
+
+ 0 -1 1693 2.4699938949197531e-03
+
+ 5.2566647529602051e-01 4.0171998739242554e-01
+ <_>
+
+ 0 -1 1694 4.5496959239244461e-02
+
+ 5.2378678321838379e-01 2.6857739686965942e-01
+ <_>
+
+ 0 -1 1695 -2.0319599658250809e-02
+
+ 2.1304459869861603e-01 4.9797388911247253e-01
+ <_>
+
+ 0 -1 1696 2.6994998916052282e-04
+
+ 4.8140418529510498e-01 5.5431222915649414e-01
+ <_>
+
+ 0 -1 1697 -1.8232699949294329e-03
+
+ 6.4825797080993652e-01 4.7099891304969788e-01
+ <_>
+
+ 0 -1 1698 -6.3015790656208992e-03
+
+ 4.5819279551506042e-01 5.3062361478805542e-01
+ <_>
+
+ 0 -1 1699 -2.4139499873854220e-04
+
+ 5.2320867776870728e-01 4.0517631173133850e-01
+ <_>
+
+ 0 -1 1700 -1.0330369696021080e-03
+
+ 5.5562019348144531e-01 4.7891938686370850e-01
+ <_>
+
+ 0 -1 1701 1.8041160365100950e-04
+
+ 5.2294427156448364e-01 4.0118101239204407e-01
+ <_>
+
+ 0 -1 1702 -6.1407860368490219e-02
+
+ 6.2986820936203003e-01 5.0107032060623169e-01
+ <_>
+
+ 0 -1 1703 -6.9543913006782532e-02
+
+ 7.2282809019088745e-01 4.7731840610504150e-01
+ <_>
+
+ 0 -1 1704 -7.0542663335800171e-02
+
+ 2.2695130109786987e-01 5.1825290918350220e-01
+ <_>
+
+ 0 -1 1705 2.4423799477517605e-03
+
+ 5.2370971441268921e-01 4.0981510281562805e-01
+ <_>
+
+ 0 -1 1706 1.5494349645450711e-03
+
+ 4.7737509012222290e-01 5.4680430889129639e-01
+ <_>
+
+ 0 -1 1707 -2.3914219811558723e-02
+
+ 7.1469759941101074e-01 4.7838249802589417e-01
+ <_>
+
+ 0 -1 1708 -1.2453690171241760e-02
+
+ 2.6352968811988831e-01 5.2411228418350220e-01
+ <_>
+
+ 0 -1 1709 -2.0760179904755205e-04
+
+ 3.6237570643424988e-01 5.1136088371276855e-01
+ <_>
+
+ 0 -1 1710 2.9781080229440704e-05
+
+ 4.7059321403503418e-01 5.4328018426895142e-01
+ <_>
+ 211
+ 1.0474919891357422e+02
+
+ <_>
+
+ 0 -1 1711 1.1772749945521355e-02
+
+ 3.8605189323425293e-01 6.4211672544479370e-01
+ <_>
+
+ 0 -1 1712 2.7037570253014565e-02
+
+ 4.3856549263000488e-01 6.7540389299392700e-01
+ <_>
+
+ 0 -1 1713 -3.6419500247575343e-05
+
+ 5.4871010780334473e-01 3.4233158826828003e-01
+ <_>
+
+ 0 -1 1714 1.9995409529656172e-03
+
+ 3.2305321097373962e-01 5.4003179073333740e-01
+ <_>
+
+ 0 -1 1715 4.5278300531208515e-03
+
+ 5.0916397571563721e-01 2.9350438714027405e-01
+ <_>
+
+ 0 -1 1716 4.7890920541249216e-04
+
+ 4.1781538724899292e-01 5.3440642356872559e-01
+ <_>
+
+ 0 -1 1717 1.1720920447260141e-03
+
+ 2.8991821408271790e-01 5.1320707798004150e-01
+ <_>
+
+ 0 -1 1718 9.5305702416226268e-04
+
+ 4.2801249027252197e-01 5.5608451366424561e-01
+ <_>
+
+ 0 -1 1719 1.5099150004971307e-05
+
+ 4.0448719263076782e-01 5.4047602415084839e-01
+ <_>
+
+ 0 -1 1720 -6.0817901976406574e-04
+
+ 4.2717689275741577e-01 5.5034661293029785e-01
+ <_>
+
+ 0 -1 1721 3.3224520739167929e-03
+
+ 3.9627239108085632e-01 5.3697347640991211e-01
+ <_>
+
+ 0 -1 1722 -1.1037490330636501e-03
+
+ 4.7271779179573059e-01 5.2377498149871826e-01
+ <_>
+
+ 0 -1 1723 -1.4350269921123981e-03
+
+ 5.6030082702636719e-01 4.2235091328620911e-01
+ <_>
+
+ 0 -1 1724 2.0767399109899998e-03
+
+ 5.2259171009063721e-01 4.7327259182929993e-01
+ <_>
+
+ 0 -1 1725 -1.6412809782195836e-04
+
+ 3.9990758895874023e-01 5.4327398538589478e-01
+ <_>
+
+ 0 -1 1726 8.8302437216043472e-03
+
+ 4.6783858537673950e-01 6.0273271799087524e-01
+ <_>
+
+ 0 -1 1727 -1.0552070103585720e-02
+
+ 3.4939670562744141e-01 5.2139747142791748e-01
+ <_>
+
+ 0 -1 1728 -2.2731600329279900e-03
+
+ 6.1858189105987549e-01 4.7490629553794861e-01
+ <_>
+
+ 0 -1 1729 -8.4786332445219159e-04
+
+ 5.2853411436080933e-01 3.8434821367263794e-01
+ <_>
+
+ 0 -1 1730 1.2081359745934606e-03
+
+ 5.3606408834457397e-01 3.4473359584808350e-01
+ <_>
+
+ 0 -1 1731 2.6512730401009321e-03
+
+ 4.5582920312881470e-01 6.1939620971679688e-01
+ <_>
+
+ 0 -1 1732 -1.1012479662895203e-03
+
+ 3.6802300810813904e-01 5.3276282548904419e-01
+ <_>
+
+ 0 -1 1733 4.9561518244445324e-04
+
+ 3.9605951309204102e-01 5.2749407291412354e-01
+ <_>
+
+ 0 -1 1734 -4.3901771306991577e-02
+
+ 7.0204448699951172e-01 4.9928390979766846e-01
+ <_>
+
+ 0 -1 1735 3.4690350294113159e-02
+
+ 5.0491642951965332e-01 2.7666029334068298e-01
+ <_>
+
+ 0 -1 1736 -2.7442190330475569e-03
+
+ 2.6726329326629639e-01 5.2749711275100708e-01
+ <_>
+
+ 0 -1 1737 3.3316588960587978e-03
+
+ 4.5794829726219177e-01 6.0011017322540283e-01
+ <_>
+
+ 0 -1 1738 -2.0044570788741112e-02
+
+ 3.1715941429138184e-01 5.2357178926467896e-01
+ <_>
+
+ 0 -1 1739 1.3492030557245016e-03
+
+ 5.2653628587722778e-01 4.0343248844146729e-01
+ <_>
+
+ 0 -1 1740 2.9702018946409225e-03
+
+ 5.3324568271636963e-01 4.5719841122627258e-01
+ <_>
+
+ 0 -1 1741 6.3039981760084629e-03
+
+ 4.5933109521865845e-01 6.0346359014511108e-01
+ <_>
+
+ 0 -1 1742 -1.2936590239405632e-02
+
+ 4.4379639625549316e-01 5.3729712963104248e-01
+ <_>
+
+ 0 -1 1743 4.0148729458451271e-03
+
+ 4.6803238987922668e-01 6.4378339052200317e-01
+ <_>
+
+ 0 -1 1744 -2.6401679497212172e-03
+
+ 3.7096318602561951e-01 5.3143328428268433e-01
+ <_>
+
+ 0 -1 1745 1.3918439857661724e-02
+
+ 4.7235551476478577e-01 7.1308088302612305e-01
+ <_>
+
+ 0 -1 1746 -4.5087869511917233e-04
+
+ 4.4923940300941467e-01 5.3704041242599487e-01
+ <_>
+
+ 0 -1 1747 2.5384349282830954e-04
+
+ 4.4068640470504761e-01 5.5144029855728149e-01
+ <_>
+
+ 0 -1 1748 2.2710000630468130e-03
+
+ 4.6824169158935547e-01 5.9679841995239258e-01
+ <_>
+
+ 0 -1 1749 2.4120779708027840e-03
+
+ 5.0793921947479248e-01 3.0185988545417786e-01
+ <_>
+
+ 0 -1 1750 -3.6025670851813629e-05
+
+ 5.6010371446609497e-01 4.4710969924926758e-01
+ <_>
+
+ 0 -1 1751 -7.4905529618263245e-03
+
+ 2.2075350582599640e-01 4.9899441003799438e-01
+ <_>
+
+ 0 -1 1752 -1.7513120546936989e-02
+
+ 6.5312159061431885e-01 5.0176489353179932e-01
+ <_>
+
+ 0 -1 1753 1.4281630516052246e-01
+
+ 4.9679630994796753e-01 1.4820620417594910e-01
+ <_>
+
+ 0 -1 1754 5.5345268920063972e-03
+
+ 4.8989468812942505e-01 5.9542238712310791e-01
+ <_>
+
+ 0 -1 1755 -9.6323591424152255e-04
+
+ 3.9271169900894165e-01 5.1960742473602295e-01
+ <_>
+
+ 0 -1 1756 -2.0370010752230883e-03
+
+ 5.6133252382278442e-01 4.8848581314086914e-01
+ <_>
+
+ 0 -1 1757 1.6614829655736685e-03
+
+ 4.4728800654411316e-01 5.5788809061050415e-01
+ <_>
+
+ 0 -1 1758 -3.1188090797513723e-03
+
+ 3.8405328989028931e-01 5.3974777460098267e-01
+ <_>
+
+ 0 -1 1759 -6.4000617712736130e-03
+
+ 5.8439838886260986e-01 4.5332181453704834e-01
+ <_>
+
+ 0 -1 1760 3.1319601112045348e-04
+
+ 5.4392218589782715e-01 4.2347279191017151e-01
+ <_>
+
+ 0 -1 1761 -1.8222099170088768e-02
+
+ 1.2884649634361267e-01 4.9584048986434937e-01
+ <_>
+
+ 0 -1 1762 8.7969247251749039e-03
+
+ 4.9512979388237000e-01 7.1534800529479980e-01
+ <_>
+
+ 0 -1 1763 -4.2395070195198059e-03
+
+ 3.9465999603271484e-01 5.1949369907379150e-01
+ <_>
+
+ 0 -1 1764 9.7086271271109581e-03
+
+ 4.8975038528442383e-01 6.0649001598358154e-01
+ <_>
+
+ 0 -1 1765 -3.9934171363711357e-03
+
+ 3.2454401254653931e-01 5.0608289241790771e-01
+ <_>
+
+ 0 -1 1766 -1.6785059124231339e-02
+
+ 1.5819530189037323e-01 5.2037787437438965e-01
+ <_>
+
+ 0 -1 1767 1.8272090703248978e-02
+
+ 4.6809351444244385e-01 6.6269791126251221e-01
+ <_>
+
+ 0 -1 1768 5.6872838176786900e-03
+
+ 5.2116978168487549e-01 3.5121849179267883e-01
+ <_>
+
+ 0 -1 1769 -1.0739039862528443e-03
+
+ 5.7683861255645752e-01 4.5298451185226440e-01
+ <_>
+
+ 0 -1 1770 -3.7093870341777802e-03
+
+ 4.5077630877494812e-01 5.3135812282562256e-01
+ <_>
+
+ 0 -1 1771 -2.1110709349159151e-04
+
+ 5.4608201980590820e-01 4.3333768844604492e-01
+ <_>
+
+ 0 -1 1772 1.0670139454305172e-03
+
+ 5.3718560934066772e-01 4.0783908963203430e-01
+ <_>
+
+ 0 -1 1773 3.5943021066486835e-03
+
+ 4.4712871313095093e-01 5.6438362598419189e-01
+ <_>
+
+ 0 -1 1774 -5.1776031032204628e-03
+
+ 4.4993931055068970e-01 5.2803301811218262e-01
+ <_>
+
+ 0 -1 1775 -2.5414369883947074e-04
+
+ 5.5161732435226440e-01 4.4077080488204956e-01
+ <_>
+
+ 0 -1 1776 6.3522560521960258e-03
+
+ 5.1941901445388794e-01 2.4652279913425446e-01
+ <_>
+
+ 0 -1 1777 -4.4205080484971404e-04
+
+ 3.8307058811187744e-01 5.1396822929382324e-01
+ <_>
+
+ 0 -1 1778 7.4488727841526270e-04
+
+ 4.8910909891128540e-01 5.9747868776321411e-01
+ <_>
+
+ 0 -1 1779 -3.5116379149258137e-03
+
+ 7.4136817455291748e-01 4.7687649726867676e-01
+ <_>
+
+ 0 -1 1780 -1.2540910392999649e-02
+
+ 3.6488190293312073e-01 5.2528268098831177e-01
+ <_>
+
+ 0 -1 1781 9.4931852072477341e-03
+
+ 5.1004928350448608e-01 3.6295869946479797e-01
+ <_>
+
+ 0 -1 1782 1.2961150147020817e-02
+
+ 5.2324420213699341e-01 4.3335610628128052e-01
+ <_>
+
+ 0 -1 1783 4.7209449112415314e-03
+
+ 4.6481490135192871e-01 6.3310527801513672e-01
+ <_>
+
+ 0 -1 1784 -2.3119079414755106e-03
+
+ 5.9303098917007446e-01 4.5310580730438232e-01
+ <_>
+
+ 0 -1 1785 -2.8262299019843340e-03
+
+ 3.8704779744148254e-01 5.2571010589599609e-01
+ <_>
+
+ 0 -1 1786 -1.4311339473351836e-03
+
+ 5.5225032567977905e-01 4.5618548989295959e-01
+ <_>
+
+ 0 -1 1787 1.9378310535103083e-03
+
+ 4.5462208986282349e-01 5.7369667291641235e-01
+ <_>
+
+ 0 -1 1788 2.6343559147790074e-04
+
+ 5.3457391262054443e-01 4.5718750357627869e-01
+ <_>
+
+ 0 -1 1789 7.8257522545754910e-04
+
+ 3.9678159356117249e-01 5.2201879024505615e-01
+ <_>
+
+ 0 -1 1790 -1.9550440832972527e-02
+
+ 2.8296428918838501e-01 5.2435082197189331e-01
+ <_>
+
+ 0 -1 1791 4.3914958951063454e-04
+
+ 4.5900669693946838e-01 5.8990901708602905e-01
+ <_>
+
+ 0 -1 1792 2.1452000364661217e-02
+
+ 5.2314108610153198e-01 2.8553789854049683e-01
+ <_>
+
+ 0 -1 1793 5.8973580598831177e-04
+
+ 4.3972569704055786e-01 5.5064219236373901e-01
+ <_>
+
+ 0 -1 1794 -2.6157610118389130e-02
+
+ 3.1350791454315186e-01 5.1891750097274780e-01
+ <_>
+
+ 0 -1 1795 -1.3959860429167747e-02
+
+ 3.2132729887962341e-01 5.0407177209854126e-01
+ <_>
+
+ 0 -1 1796 -6.3699018210172653e-03
+
+ 6.3875448703765869e-01 4.8495069146156311e-01
+ <_>
+
+ 0 -1 1797 -8.5613820701837540e-03
+
+ 2.7591320872306824e-01 5.0320190191268921e-01
+ <_>
+
+ 0 -1 1798 9.6622901037335396e-04
+
+ 4.6856409311294556e-01 5.8348792791366577e-01
+ <_>
+
+ 0 -1 1799 7.6550268568098545e-04
+
+ 5.1752072572708130e-01 3.8964220881462097e-01
+ <_>
+
+ 0 -1 1800 -8.1833340227603912e-03
+
+ 2.0691369473934174e-01 5.2081221342086792e-01
+ <_>
+
+ 0 -1 1801 -9.3976939097046852e-03
+
+ 6.1340910196304321e-01 4.6412229537963867e-01
+ <_>
+
+ 0 -1 1802 4.8028980381786823e-03
+
+ 5.4541081190109253e-01 4.3952199816703796e-01
+ <_>
+
+ 0 -1 1803 -3.5680569708347321e-03
+
+ 6.3444852828979492e-01 4.6810939908027649e-01
+ <_>
+
+ 0 -1 1804 4.0733120404183865e-03
+
+ 5.2926832437515259e-01 4.0156200528144836e-01
+ <_>
+
+ 0 -1 1805 1.2568129459396005e-03
+
+ 4.3929880857467651e-01 5.4528248310089111e-01
+ <_>
+
+ 0 -1 1806 -2.9065010603517294e-03
+
+ 5.8988320827484131e-01 4.8633798956871033e-01
+ <_>
+
+ 0 -1 1807 -2.4409340694546700e-03
+
+ 4.0693649649620056e-01 5.2474218606948853e-01
+ <_>
+
+ 0 -1 1808 2.4830700829625130e-02
+
+ 5.1827257871627808e-01 3.6825248599052429e-01
+ <_>
+
+ 0 -1 1809 -4.8854008316993713e-02
+
+ 1.3075779378414154e-01 4.9612811207771301e-01
+ <_>
+
+ 0 -1 1810 -1.6110379947349429e-03
+
+ 6.4210057258605957e-01 4.8726621270179749e-01
+ <_>
+
+ 0 -1 1811 -9.7009479999542236e-02
+
+ 4.7769349068403244e-02 4.9509888887405396e-01
+ <_>
+
+ 0 -1 1812 1.1209240183234215e-03
+
+ 4.6162670850753784e-01 5.3547459840774536e-01
+ <_>
+
+ 0 -1 1813 -1.3064090162515640e-03
+
+ 6.2618541717529297e-01 4.6388059854507446e-01
+ <_>
+
+ 0 -1 1814 4.5771620352752507e-04
+
+ 5.3844177722930908e-01 4.6466401219367981e-01
+ <_>
+
+ 0 -1 1815 -6.3149951165542006e-04
+
+ 3.8040471076965332e-01 5.1302570104598999e-01
+ <_>
+
+ 0 -1 1816 1.4505970466416329e-04
+
+ 4.5543101429939270e-01 5.6644618511199951e-01
+ <_>
+
+ 0 -1 1817 -1.6474550589919090e-02
+
+ 6.5969580411911011e-01 4.7158598899841309e-01
+ <_>
+
+ 0 -1 1818 1.3369579799473286e-02
+
+ 5.1954662799835205e-01 3.0359649658203125e-01
+ <_>
+
+ 0 -1 1819 1.0271780047332868e-04
+
+ 5.2291762828826904e-01 4.1070660948753357e-01
+ <_>
+
+ 0 -1 1820 -5.5311559699475765e-03
+
+ 6.3528877496719360e-01 4.9609071016311646e-01
+ <_>
+
+ 0 -1 1821 -2.6187049224972725e-03
+
+ 3.8245460391044617e-01 5.1409840583801270e-01
+ <_>
+
+ 0 -1 1822 5.0834268331527710e-03
+
+ 4.9504399299621582e-01 6.2208187580108643e-01
+ <_>
+
+ 0 -1 1823 7.9818159341812134e-02
+
+ 4.9523359537124634e-01 1.3224759697914124e-01
+ <_>
+
+ 0 -1 1824 -9.9226586520671844e-02
+
+ 7.5427287817001343e-01 5.0084167718887329e-01
+ <_>
+
+ 0 -1 1825 -6.5174017800018191e-04
+
+ 3.6993029713630676e-01 5.1301211118698120e-01
+ <_>
+
+ 0 -1 1826 -1.8996849656105042e-02
+
+ 6.6891789436340332e-01 4.9212029576301575e-01
+ <_>
+
+ 0 -1 1827 1.7346899956464767e-02
+
+ 4.9833008646965027e-01 1.8591980636119843e-01
+ <_>
+
+ 0 -1 1828 5.5082101607695222e-04
+
+ 4.5744240283966064e-01 5.5221217870712280e-01
+ <_>
+
+ 0 -1 1829 2.0056050270795822e-03
+
+ 5.1317447423934937e-01 3.8564699888229370e-01
+ <_>
+
+ 0 -1 1830 -7.7688191086053848e-03
+
+ 4.3617001175880432e-01 5.4343092441558838e-01
+ <_>
+
+ 0 -1 1831 5.0878278911113739e-02
+
+ 4.6827208995819092e-01 6.8406397104263306e-01
+ <_>
+
+ 0 -1 1832 -2.2901780903339386e-03
+
+ 4.3292450904846191e-01 5.3060990571975708e-01
+ <_>
+
+ 0 -1 1833 -1.5715380141045898e-04
+
+ 5.3700572252273560e-01 4.3781641125679016e-01
+ <_>
+
+ 0 -1 1834 1.0519240051507950e-01
+
+ 5.1372742652893066e-01 6.7361466586589813e-02
+ <_>
+
+ 0 -1 1835 2.7198919560760260e-03
+
+ 4.1120609641075134e-01 5.2556651830673218e-01
+ <_>
+
+ 0 -1 1836 4.8337779939174652e-02
+
+ 5.4046237468719482e-01 4.4389671087265015e-01
+ <_>
+
+ 0 -1 1837 9.5703761326149106e-04
+
+ 4.3559691309928894e-01 5.3995108604431152e-01
+ <_>
+
+ 0 -1 1838 -2.5371259078383446e-02
+
+ 5.9951752424240112e-01 5.0310248136520386e-01
+ <_>
+
+ 0 -1 1839 5.2457951009273529e-02
+
+ 4.9502879381179810e-01 1.3983510434627533e-01
+ <_>
+
+ 0 -1 1840 -1.2365629896521568e-02
+
+ 6.3972991704940796e-01 4.9641060829162598e-01
+ <_>
+
+ 0 -1 1841 -1.4589719474315643e-01
+
+ 1.0016699880361557e-01 4.9463221430778503e-01
+ <_>
+
+ 0 -1 1842 -1.5908600762486458e-02
+
+ 3.3123299479484558e-01 5.2083408832550049e-01
+ <_>
+
+ 0 -1 1843 3.9486068999394774e-04
+
+ 4.4063639640808105e-01 5.4261028766632080e-01
+ <_>
+
+ 0 -1 1844 -5.2454001270234585e-03
+
+ 2.7995899319648743e-01 5.1899671554565430e-01
+ <_>
+
+ 0 -1 1845 -5.0421799533069134e-03
+
+ 6.9875800609588623e-01 4.7521421313285828e-01
+ <_>
+
+ 0 -1 1846 2.9812189750373363e-03
+
+ 4.9832889437675476e-01 6.3074797391891479e-01
+ <_>
+
+ 0 -1 1847 -7.2884308174252510e-03
+
+ 2.9823330044746399e-01 5.0268697738647461e-01
+ <_>
+
+ 0 -1 1848 1.5094350092113018e-03
+
+ 5.3084421157836914e-01 3.8329708576202393e-01
+ <_>
+
+ 0 -1 1849 -9.3340799212455750e-03
+
+ 2.0379640161991119e-01 4.9698171019554138e-01
+ <_>
+
+ 0 -1 1850 2.8667140752077103e-02
+
+ 5.0256967544555664e-01 6.9280272722244263e-01
+ <_>
+
+ 0 -1 1851 1.7019680142402649e-01
+
+ 4.9600529670715332e-01 1.4764429628849030e-01
+ <_>
+
+ 0 -1 1852 -3.2614478841423988e-03
+
+ 5.6030637025833130e-01 4.8260560631752014e-01
+ <_>
+
+ 0 -1 1853 5.5769277969375253e-04
+
+ 5.2055621147155762e-01 4.1296330094337463e-01
+ <_>
+
+ 0 -1 1854 3.6258339881896973e-01
+
+ 5.2216529846191406e-01 3.7686121463775635e-01
+ <_>
+
+ 0 -1 1855 -1.1615130119025707e-02
+
+ 6.0226827859878540e-01 4.6374899148941040e-01
+ <_>
+
+ 0 -1 1856 -4.0795197710394859e-03
+
+ 4.0704470872879028e-01 5.3374791145324707e-01
+ <_>
+
+ 0 -1 1857 5.7204300537705421e-04
+
+ 4.6018350124359131e-01 5.9003931283950806e-01
+ <_>
+
+ 0 -1 1858 6.7543348995968699e-04
+
+ 5.3982520103454590e-01 4.3454289436340332e-01
+ <_>
+
+ 0 -1 1859 6.3295697327703238e-04
+
+ 5.2015632390975952e-01 4.0513589978218079e-01
+ <_>
+
+ 0 -1 1860 1.2435320531949401e-03
+
+ 4.6423879265785217e-01 5.5474412441253662e-01
+ <_>
+
+ 0 -1 1861 -4.7363857738673687e-03
+
+ 6.1985671520233154e-01 4.6725520491600037e-01
+ <_>
+
+ 0 -1 1862 -6.4658462069928646e-03
+
+ 6.8373328447341919e-01 5.0190007686614990e-01
+ <_>
+
+ 0 -1 1863 3.5017321351915598e-04
+
+ 4.3448030948638916e-01 5.3636229038238525e-01
+ <_>
+
+ 0 -1 1864 1.5754920605104417e-04
+
+ 4.7600790858268738e-01 5.7320207357406616e-01
+ <_>
+
+ 0 -1 1865 9.9774366244673729e-03
+
+ 5.0909858942031860e-01 3.6350399255752563e-01
+ <_>
+
+ 0 -1 1866 -4.1464529931545258e-04
+
+ 5.5700647830963135e-01 4.5938020944595337e-01
+ <_>
+
+ 0 -1 1867 -3.5888899583369493e-04
+
+ 5.3568458557128906e-01 4.3391349911689758e-01
+ <_>
+
+ 0 -1 1868 4.0463250479660928e-04
+
+ 4.4398030638694763e-01 5.4367768764495850e-01
+ <_>
+
+ 0 -1 1869 -8.2184787606820464e-04
+
+ 4.0422949194908142e-01 5.1762992143630981e-01
+ <_>
+
+ 0 -1 1870 5.9467419050633907e-03
+
+ 4.9276518821716309e-01 5.6337797641754150e-01
+ <_>
+
+ 0 -1 1871 -2.1753389388322830e-02
+
+ 8.0062937736511230e-01 4.8008409142494202e-01
+ <_>
+
+ 0 -1 1872 -1.4540379866957664e-02
+
+ 3.9460548758506775e-01 5.1822227239608765e-01
+ <_>
+
+ 0 -1 1873 -4.0510769933462143e-02
+
+ 2.1324990317225456e-02 4.9357929825782776e-01
+ <_>
+
+ 0 -1 1874 -5.8458268176764250e-04
+
+ 4.0127959847450256e-01 5.3140252828598022e-01
+ <_>
+
+ 0 -1 1875 5.5151800625026226e-03
+
+ 4.6424189209938049e-01 5.8962607383728027e-01
+ <_>
+
+ 0 -1 1876 -6.0626221820712090e-03
+
+ 6.5021592378616333e-01 5.0164777040481567e-01
+ <_>
+
+ 0 -1 1877 9.4535842537879944e-02
+
+ 5.2647089958190918e-01 4.1268271207809448e-01
+ <_>
+
+ 0 -1 1878 4.7315051779150963e-03
+
+ 4.8791998624801636e-01 5.8924478292465210e-01
+ <_>
+
+ 0 -1 1879 -5.2571471314877272e-04
+
+ 3.9172801375389099e-01 5.1894128322601318e-01
+ <_>
+
+ 0 -1 1880 -2.5464049540460110e-03
+
+ 5.8375990390777588e-01 4.9857059121131897e-01
+ <_>
+
+ 0 -1 1881 -2.6075689122080803e-02
+
+ 1.2619839608669281e-01 4.9558219313621521e-01
+ <_>
+
+ 0 -1 1882 -5.4779709316790104e-03
+
+ 5.7225137948989868e-01 5.0102657079696655e-01
+ <_>
+
+ 0 -1 1883 5.1337741315364838e-03
+
+ 5.2732622623443604e-01 4.2263761162757874e-01
+ <_>
+
+ 0 -1 1884 4.7944980906322598e-04
+
+ 4.4500669836997986e-01 5.8195871114730835e-01
+ <_>
+
+ 0 -1 1885 -2.1114079281687737e-03
+
+ 5.7576531171798706e-01 4.5117148756980896e-01
+ <_>
+
+ 0 -1 1886 -1.3179990462958813e-02
+
+ 1.8843810260295868e-01 5.1607340574264526e-01
+ <_>
+
+ 0 -1 1887 -4.7968099825084209e-03
+
+ 6.5897899866104126e-01 4.7361189126968384e-01
+ <_>
+
+ 0 -1 1888 6.7483168095350266e-03
+
+ 5.2594298124313354e-01 3.3563950657844543e-01
+ <_>
+
+ 0 -1 1889 1.4623369788751006e-03
+
+ 5.3552711009979248e-01 4.2640921473503113e-01
+ <_>
+
+ 0 -1 1890 4.7645159065723419e-03
+
+ 5.0344067811965942e-01 5.7868278026580811e-01
+ <_>
+
+ 0 -1 1891 6.8066660314798355e-03
+
+ 4.7566050291061401e-01 6.6778290271759033e-01
+ <_>
+
+ 0 -1 1892 3.6608621012419462e-03
+
+ 5.3696119785308838e-01 4.3115469813346863e-01
+ <_>
+
+ 0 -1 1893 2.1449640393257141e-02
+
+ 4.9686419963836670e-01 1.8888160586357117e-01
+ <_>
+
+ 0 -1 1894 4.1678901761770248e-03
+
+ 4.9307331442832947e-01 5.8153688907623291e-01
+ <_>
+
+ 0 -1 1895 8.6467564105987549e-03
+
+ 5.2052050828933716e-01 4.1325950622558594e-01
+ <_>
+
+ 0 -1 1896 -3.6114078829996288e-04
+
+ 5.4835551977157593e-01 4.8009279370307922e-01
+ <_>
+
+ 0 -1 1897 1.0808729566633701e-03
+
+ 4.6899020671844482e-01 6.0414212942123413e-01
+ <_>
+
+ 0 -1 1898 5.7719959877431393e-03
+
+ 5.1711422204971313e-01 3.0532771348953247e-01
+ <_>
+
+ 0 -1 1899 1.5720770461484790e-03
+
+ 5.2199780941009521e-01 4.1788038611412048e-01
+ <_>
+
+ 0 -1 1900 -1.9307859474793077e-03
+
+ 5.8603698015213013e-01 4.8129200935363770e-01
+ <_>
+
+ 0 -1 1901 -7.8926272690296173e-03
+
+ 1.7492769658565521e-01 4.9717339873313904e-01
+ <_>
+
+ 0 -1 1902 -2.2224679123610258e-03
+
+ 4.3425890803337097e-01 5.2128481864929199e-01
+ <_>
+
+ 0 -1 1903 1.9011989934369922e-03
+
+ 4.7651869058609009e-01 6.8920552730560303e-01
+ <_>
+
+ 0 -1 1904 2.7576119173318148e-03
+
+ 5.2621912956237793e-01 4.3374860286712646e-01
+ <_>
+
+ 0 -1 1905 5.1787449046969414e-03
+
+ 4.8040691018104553e-01 7.8437292575836182e-01
+ <_>
+
+ 0 -1 1906 -9.0273341629654169e-04
+
+ 4.1208469867706299e-01 5.3534239530563354e-01
+ <_>
+
+ 0 -1 1907 5.1797959022223949e-03
+
+ 4.7403728961944580e-01 6.4259600639343262e-01
+ <_>
+
+ 0 -1 1908 -1.0114000178873539e-02
+
+ 2.4687920510768890e-01 5.1750177145004272e-01
+ <_>
+
+ 0 -1 1909 -1.8617060035467148e-02
+
+ 5.7562941312789917e-01 4.6289789676666260e-01
+ <_>
+
+ 0 -1 1910 5.9225959703326225e-03
+
+ 5.1696258783340454e-01 3.2142710685729980e-01
+ <_>
+
+ 0 -1 1911 -6.2945079989731312e-03
+
+ 3.8720148801803589e-01 5.1416367292404175e-01
+ <_>
+
+ 0 -1 1912 6.5353019163012505e-03
+
+ 4.8530489206314087e-01 6.3104897737503052e-01
+ <_>
+
+ 0 -1 1913 1.0878399480134249e-03
+
+ 5.1173150539398193e-01 3.7232589721679688e-01
+ <_>
+
+ 0 -1 1914 -2.2542240098118782e-02
+
+ 5.6927400827407837e-01 4.8871129751205444e-01
+ <_>
+
+ 0 -1 1915 -3.0065660830587149e-03
+
+ 2.5560128688812256e-01 5.0039929151535034e-01
+ <_>
+
+ 0 -1 1916 7.4741272255778313e-03
+
+ 4.8108729720115662e-01 5.6759268045425415e-01
+ <_>
+
+ 0 -1 1917 2.6162320747971535e-02
+
+ 4.9711948633193970e-01 1.7772370576858521e-01
+ <_>
+
+ 0 -1 1918 9.4352738233283162e-04
+
+ 4.9400109052658081e-01 5.4912507534027100e-01
+ <_>
+
+ 0 -1 1919 3.3363241702318192e-02
+
+ 5.0076121091842651e-01 2.7907240390777588e-01
+ <_>
+
+ 0 -1 1920 -1.5118650160729885e-02
+
+ 7.0595788955688477e-01 4.9730318784713745e-01
+ <_>
+
+ 0 -1 1921 9.8648946732282639e-04
+
+ 5.1286202669143677e-01 3.7767618894577026e-01
+ <_>
+ 213
+ 1.0576110076904297e+02
+
+ <_>
+
+ 0 -1 1922 -9.5150798559188843e-02
+
+ 6.4707571268081665e-01 4.0172868967056274e-01
+ <_>
+
+ 0 -1 1923 6.2702340073883533e-03
+
+ 3.9998221397399902e-01 5.7464492321014404e-01
+ <_>
+
+ 0 -1 1924 3.0018089455552399e-04
+
+ 3.5587701201438904e-01 5.5388098955154419e-01
+ <_>
+
+ 0 -1 1925 1.1757409665733576e-03
+
+ 4.2565348744392395e-01 5.3826177120208740e-01
+ <_>
+
+ 0 -1 1926 4.4235268433112651e-05
+
+ 3.6829081177711487e-01 5.5899268388748169e-01
+ <_>
+
+ 0 -1 1927 -2.9936920327600092e-05
+
+ 5.4524701833724976e-01 4.0203678607940674e-01
+ <_>
+
+ 0 -1 1928 3.0073199886828661e-03
+
+ 5.2390581369400024e-01 3.3178439736366272e-01
+ <_>
+
+ 0 -1 1929 -1.0513889603316784e-02
+
+ 4.3206891417503357e-01 5.3079837560653687e-01
+ <_>
+
+ 0 -1 1930 8.3476826548576355e-03
+
+ 4.5046371221542358e-01 6.4532989263534546e-01
+ <_>
+
+ 0 -1 1931 -3.1492270063608885e-03
+
+ 4.3134251236915588e-01 5.3705251216888428e-01
+ <_>
+
+ 0 -1 1932 -1.4435649973165710e-05
+
+ 5.3266030550003052e-01 3.8179719448089600e-01
+ <_>
+
+ 0 -1 1933 -4.2855090578086674e-04
+
+ 4.3051639199256897e-01 5.3820097446441650e-01
+ <_>
+
+ 0 -1 1934 1.5062429883982986e-04
+
+ 4.2359709739685059e-01 5.5449652671813965e-01
+ <_>
+
+ 0 -1 1935 7.1559831500053406e-02
+
+ 5.3030598163604736e-01 2.6788029074668884e-01
+ <_>
+
+ 0 -1 1936 8.4095180500298738e-04
+
+ 3.5571089386940002e-01 5.2054339647293091e-01
+ <_>
+
+ 0 -1 1937 6.2986500561237335e-02
+
+ 5.2253627777099609e-01 2.8613761067390442e-01
+ <_>
+
+ 0 -1 1938 -3.3798629883676767e-03
+
+ 3.6241859197616577e-01 5.2016979455947876e-01
+ <_>
+
+ 0 -1 1939 -1.1810739670181647e-04
+
+ 5.4744768142700195e-01 3.9598938822746277e-01
+ <_>
+
+ 0 -1 1940 -5.4505601292476058e-04
+
+ 3.7404221296310425e-01 5.2157157659530640e-01
+ <_>
+
+ 0 -1 1941 -1.8454910023137927e-03
+
+ 5.8930522203445435e-01 4.5844489336013794e-01
+ <_>
+
+ 0 -1 1942 -4.3832371011376381e-04
+
+ 4.0845820307731628e-01 5.3853511810302734e-01
+ <_>
+
+ 0 -1 1943 -2.4000830017030239e-03
+
+ 3.7774550914764404e-01 5.2935802936553955e-01
+ <_>
+
+ 0 -1 1944 -9.8795741796493530e-02
+
+ 2.9636120796203613e-01 5.0700891017913818e-01
+ <_>
+
+ 0 -1 1945 3.1798239797353745e-03
+
+ 4.8776328563690186e-01 6.7264437675476074e-01
+ <_>
+
+ 0 -1 1946 3.2406419632025063e-04
+
+ 4.3669110536575317e-01 5.5611097812652588e-01
+ <_>
+
+ 0 -1 1947 -3.2547250390052795e-02
+
+ 3.1281578540802002e-01 5.3086161613464355e-01
+ <_>
+
+ 0 -1 1948 -7.7561130747199059e-03
+
+ 6.5602248907089233e-01 4.6398720145225525e-01
+ <_>
+
+ 0 -1 1949 1.6027249395847321e-02
+
+ 5.1726800203323364e-01 3.1418979167938232e-01
+ <_>
+
+ 0 -1 1950 7.1002350523485802e-06
+
+ 4.0844461321830750e-01 5.3362947702407837e-01
+ <_>
+
+ 0 -1 1951 7.3422808200120926e-03
+
+ 4.9669221043586731e-01 6.6034650802612305e-01
+ <_>
+
+ 0 -1 1952 -1.6970280557870865e-03
+
+ 5.9082370996475220e-01 4.5001828670501709e-01
+ <_>
+
+ 0 -1 1953 2.4118260480463505e-03
+
+ 5.3151607513427734e-01 3.5997208952903748e-01
+ <_>
+
+ 0 -1 1954 -5.5300937965512276e-03
+
+ 2.3340409994125366e-01 4.9968141317367554e-01
+ <_>
+
+ 0 -1 1955 -2.6478730142116547e-03
+
+ 5.8809357881546021e-01 4.6847340464591980e-01
+ <_>
+
+ 0 -1 1956 1.1295629665255547e-02
+
+ 4.9837771058082581e-01 1.8845909833908081e-01
+ <_>
+
+ 0 -1 1957 -6.6952878842130303e-04
+
+ 5.8721381425857544e-01 4.7990199923515320e-01
+ <_>
+
+ 0 -1 1958 1.4410680159926414e-03
+
+ 5.1311892271041870e-01 3.5010111331939697e-01
+ <_>
+
+ 0 -1 1959 2.4637870956212282e-03
+
+ 5.3393721580505371e-01 4.1176390647888184e-01
+ <_>
+
+ 0 -1 1960 3.3114518737420440e-04
+
+ 4.3133831024169922e-01 5.3982460498809814e-01
+ <_>
+
+ 0 -1 1961 -3.3557269722223282e-02
+
+ 2.6753368973731995e-01 5.1791548728942871e-01
+ <_>
+
+ 0 -1 1962 1.8539419397711754e-02
+
+ 4.9738699197769165e-01 2.3171770572662354e-01
+ <_>
+
+ 0 -1 1963 -2.9698139405809343e-04
+
+ 5.5297082662582397e-01 4.6436640620231628e-01
+ <_>
+
+ 0 -1 1964 -4.5577259152196348e-04
+
+ 5.6295841932296753e-01 4.4691911339759827e-01
+ <_>
+
+ 0 -1 1965 -1.0158980265259743e-02
+
+ 6.7062127590179443e-01 4.9259188771247864e-01
+ <_>
+
+ 0 -1 1966 -2.2413829356082715e-05
+
+ 5.2394217252731323e-01 3.9129018783569336e-01
+ <_>
+
+ 0 -1 1967 7.2034963523037732e-05
+
+ 4.7994381189346313e-01 5.5017888545989990e-01
+ <_>
+
+ 0 -1 1968 -6.9267209619283676e-03
+
+ 6.9300097227096558e-01 4.6980848908424377e-01
+ <_>
+
+ 0 -1 1969 -7.6997838914394379e-03
+
+ 4.0996238589286804e-01 5.4808831214904785e-01
+ <_>
+
+ 0 -1 1970 -7.3130549862980843e-03
+
+ 3.2834759354591370e-01 5.0578862428665161e-01
+ <_>
+
+ 0 -1 1971 1.9650589674711227e-03
+
+ 4.9780470132827759e-01 6.3982498645782471e-01
+ <_>
+
+ 0 -1 1972 7.1647600270807743e-03
+
+ 4.6611601114273071e-01 6.2221372127532959e-01
+ <_>
+
+ 0 -1 1973 -2.4078639224171638e-02
+
+ 2.3346449434757233e-01 5.2221620082855225e-01
+ <_>
+
+ 0 -1 1974 -2.1027969196438789e-02
+
+ 1.1836539953947067e-01 4.9382260441780090e-01
+ <_>
+
+ 0 -1 1975 3.6017020465806127e-04
+
+ 5.3250199556350708e-01 4.1167110204696655e-01
+ <_>
+
+ 0 -1 1976 -1.7219729721546173e-02
+
+ 6.2787622213363647e-01 4.6642690896987915e-01
+ <_>
+
+ 0 -1 1977 -7.8672142699360847e-03
+
+ 3.4034150838851929e-01 5.2497369050979614e-01
+ <_>
+
+ 0 -1 1978 -4.4777389848604798e-04
+
+ 3.6104118824005127e-01 5.0862592458724976e-01
+ <_>
+
+ 0 -1 1979 5.5486010387539864e-03
+
+ 4.8842659592628479e-01 6.2034982442855835e-01
+ <_>
+
+ 0 -1 1980 -6.9461148232221603e-03
+
+ 2.6259300112724304e-01 5.0110971927642822e-01
+ <_>
+
+ 0 -1 1981 1.3569870498031378e-04
+
+ 4.3407949805259705e-01 5.6283122301101685e-01
+ <_>
+
+ 0 -1 1982 -4.5880250632762909e-02
+
+ 6.5079987049102783e-01 4.6962749958038330e-01
+ <_>
+
+ 0 -1 1983 -2.1582560613751411e-02
+
+ 3.8265028595924377e-01 5.2876168489456177e-01
+ <_>
+
+ 0 -1 1984 -2.0209539681673050e-02
+
+ 3.2333680987358093e-01 5.0744771957397461e-01
+ <_>
+
+ 0 -1 1985 5.8496710844337940e-03
+
+ 5.1776039600372314e-01 4.4896709918975830e-01
+ <_>
+
+ 0 -1 1986 -5.7476379879517481e-05
+
+ 4.0208509564399719e-01 5.2463638782501221e-01
+ <_>
+
+ 0 -1 1987 -1.1513100471347570e-03
+
+ 6.3150721788406372e-01 4.9051541090011597e-01
+ <_>
+
+ 0 -1 1988 1.9862831104546785e-03
+
+ 4.7024598717689514e-01 6.4971512556076050e-01
+ <_>
+
+ 0 -1 1989 -5.2719512023031712e-03
+
+ 3.6503839492797852e-01 5.2276527881622314e-01
+ <_>
+
+ 0 -1 1990 1.2662699446082115e-03
+
+ 5.1661008596420288e-01 3.8776180148124695e-01
+ <_>
+
+ 0 -1 1991 -6.2919440679252148e-03
+
+ 7.3758941888809204e-01 5.0238478183746338e-01
+ <_>
+
+ 0 -1 1992 6.7360111279413104e-04
+
+ 4.4232261180877686e-01 5.4955857992172241e-01
+ <_>
+
+ 0 -1 1993 -1.0523450328037143e-03
+
+ 5.9763962030410767e-01 4.8595830798149109e-01
+ <_>
+
+ 0 -1 1994 -4.4216238893568516e-04
+
+ 5.9559392929077148e-01 4.3989309668540955e-01
+ <_>
+
+ 0 -1 1995 1.1747940443456173e-03
+
+ 5.3498882055282593e-01 4.6050581336021423e-01
+ <_>
+
+ 0 -1 1996 5.2457437850534916e-03
+
+ 5.0491911172866821e-01 2.9415771365165710e-01
+ <_>
+
+ 0 -1 1997 -2.4539720267057419e-02
+
+ 2.5501778721809387e-01 5.2185869216918945e-01
+ <_>
+
+ 0 -1 1998 7.3793041519820690e-04
+
+ 4.4248610734939575e-01 5.4908162355422974e-01
+ <_>
+
+ 0 -1 1999 1.4233799884095788e-03
+
+ 5.3195142745971680e-01 4.0813559293746948e-01
+ <_>
+
+ 0 -1 2000 -2.4149110540747643e-03
+
+ 4.0876591205596924e-01 5.2389502525329590e-01
+ <_>
+
+ 0 -1 2001 -1.2165299849584699e-03
+
+ 5.6745791435241699e-01 4.9080529808998108e-01
+ <_>
+
+ 0 -1 2002 -1.2438809499144554e-03
+
+ 4.1294258832931519e-01 5.2561181783676147e-01
+ <_>
+
+ 0 -1 2003 6.1942739412188530e-03
+
+ 5.0601941347122192e-01 7.3136532306671143e-01
+ <_>
+
+ 0 -1 2004 -1.6607169527560472e-03
+
+ 5.9796321392059326e-01 4.5963698625564575e-01
+ <_>
+
+ 0 -1 2005 -2.7316259220242500e-02
+
+ 4.1743651032447815e-01 5.3088420629501343e-01
+ <_>
+
+ 0 -1 2006 -1.5845570014789701e-03
+
+ 5.6158047914505005e-01 4.5194861292839050e-01
+ <_>
+
+ 0 -1 2007 -1.5514739789068699e-03
+
+ 4.0761870145797729e-01 5.3607851266860962e-01
+ <_>
+
+ 0 -1 2008 3.8446558755822480e-04
+
+ 4.3472939729690552e-01 5.4304420948028564e-01
+ <_>
+
+ 0 -1 2009 -1.4672259800136089e-02
+
+ 1.6593049466609955e-01 5.1460939645767212e-01
+ <_>
+
+ 0 -1 2010 8.1608882173895836e-03
+
+ 4.9618190526962280e-01 1.8847459554672241e-01
+ <_>
+
+ 0 -1 2011 1.1121659772470593e-03
+
+ 4.8682639002799988e-01 6.0938161611557007e-01
+ <_>
+
+ 0 -1 2012 -7.2603770531713963e-03
+
+ 6.2843251228332520e-01 4.6903759241104126e-01
+ <_>
+
+ 0 -1 2013 -2.4046430189628154e-04
+
+ 5.5750000476837158e-01 4.0460440516471863e-01
+ <_>
+
+ 0 -1 2014 -2.3348190006799996e-04
+
+ 4.1157621145248413e-01 5.2528482675552368e-01
+ <_>
+
+ 0 -1 2015 5.5736480280756950e-03
+
+ 4.7300729155540466e-01 5.6901007890701294e-01
+ <_>
+
+ 0 -1 2016 3.0623769387602806e-02
+
+ 4.9718868732452393e-01 1.7400950193405151e-01
+ <_>
+
+ 0 -1 2017 9.2074798885732889e-04
+
+ 5.3721177577972412e-01 4.3548721075057983e-01
+ <_>
+
+ 0 -1 2018 -4.3550739064812660e-05
+
+ 5.3668838739395142e-01 4.3473169207572937e-01
+ <_>
+
+ 0 -1 2019 -6.6452710889279842e-03
+
+ 3.4355181455612183e-01 5.1605331897735596e-01
+ <_>
+
+ 0 -1 2020 4.3221998959779739e-02
+
+ 4.7667920589447021e-01 7.2936528921127319e-01
+ <_>
+
+ 0 -1 2021 2.2331769578158855e-03
+
+ 5.0293159484863281e-01 5.6331712007522583e-01
+ <_>
+
+ 0 -1 2022 3.1829739455133677e-03
+
+ 4.0160921216011047e-01 5.1921367645263672e-01
+ <_>
+
+ 0 -1 2023 -1.8027749320026487e-04
+
+ 4.0883159637451172e-01 5.4179197549819946e-01
+ <_>
+
+ 0 -1 2024 -5.2934689447283745e-03
+
+ 4.0756770968437195e-01 5.2435618638992310e-01
+ <_>
+
+ 0 -1 2025 1.2750959722325206e-03
+
+ 4.9132829904556274e-01 6.3870108127593994e-01
+ <_>
+
+ 0 -1 2026 4.3385322205722332e-03
+
+ 5.0316721200942993e-01 2.9473468661308289e-01
+ <_>
+
+ 0 -1 2027 8.5250744596123695e-03
+
+ 4.9497890472412109e-01 6.3088691234588623e-01
+ <_>
+
+ 0 -1 2028 -9.4266352243721485e-04
+
+ 5.3283667564392090e-01 4.2856499552726746e-01
+ <_>
+
+ 0 -1 2029 1.3609660090878606e-03
+
+ 4.9915251135826111e-01 5.9415012598037720e-01
+ <_>
+
+ 0 -1 2030 4.4782509212382138e-04
+
+ 4.5735040307044983e-01 5.8544808626174927e-01
+ <_>
+
+ 0 -1 2031 1.3360050506889820e-03
+
+ 4.6043589711189270e-01 5.8490520715713501e-01
+ <_>
+
+ 0 -1 2032 -6.0967548051849008e-04
+
+ 3.9693889021873474e-01 5.2294230461120605e-01
+ <_>
+
+ 0 -1 2033 -2.3656780831515789e-03
+
+ 5.8083200454711914e-01 4.8983570933341980e-01
+ <_>
+
+ 0 -1 2034 1.0734340175986290e-03
+
+ 4.3512108922004700e-01 5.4700392484664917e-01
+ <_>
+
+ 0 -1 2035 2.1923359017819166e-03
+
+ 5.3550601005554199e-01 3.8429039716720581e-01
+ <_>
+
+ 0 -1 2036 5.4968618787825108e-03
+
+ 5.0181388854980469e-01 2.8271919488906860e-01
+ <_>
+
+ 0 -1 2037 -7.5368821620941162e-02
+
+ 1.2250760197639465e-01 5.1488268375396729e-01
+ <_>
+
+ 0 -1 2038 2.5134470313787460e-02
+
+ 4.7317668795585632e-01 7.0254462957382202e-01
+ <_>
+
+ 0 -1 2039 -2.9358599931583740e-05
+
+ 5.4305320978164673e-01 4.6560868620872498e-01
+ <_>
+
+ 0 -1 2040 -5.8355910005047917e-04
+
+ 4.0310400724411011e-01 5.1901197433471680e-01
+ <_>
+
+ 0 -1 2041 -2.6639450807124376e-03
+
+ 4.3081268668174744e-01 5.1617711782455444e-01
+ <_>
+
+ 0 -1 2042 -1.3804089976474643e-03
+
+ 6.2198299169540405e-01 4.6955159306526184e-01
+ <_>
+
+ 0 -1 2043 1.2313219485804439e-03
+
+ 5.3793638944625854e-01 4.4258311390876770e-01
+ <_>
+
+ 0 -1 2044 -1.4644179827882908e-05
+
+ 5.2816402912139893e-01 4.2225030064582825e-01
+ <_>
+
+ 0 -1 2045 -1.2818809598684311e-02
+
+ 2.5820928812026978e-01 5.1799327135086060e-01
+ <_>
+
+ 0 -1 2046 2.2852189838886261e-02
+
+ 4.7786930203437805e-01 7.6092642545700073e-01
+ <_>
+
+ 0 -1 2047 8.2305970136076212e-04
+
+ 5.3409922122955322e-01 4.6717241406440735e-01
+ <_>
+
+ 0 -1 2048 1.2770120054483414e-02
+
+ 4.9657610058784485e-01 1.4723660051822662e-01
+ <_>
+
+ 0 -1 2049 -5.0051510334014893e-02
+
+ 6.4149940013885498e-01 5.0165921449661255e-01
+ <_>
+
+ 0 -1 2050 1.5775270760059357e-02
+
+ 4.5223200321197510e-01 5.6853622198104858e-01
+ <_>
+
+ 0 -1 2051 -1.8501620739698410e-02
+
+ 2.7647489309310913e-01 5.1379591226577759e-01
+ <_>
+
+ 0 -1 2052 2.4626250378787518e-03
+
+ 5.1419419050216675e-01 3.7954080104827881e-01
+ <_>
+
+ 0 -1 2053 6.2916167080402374e-02
+
+ 5.0606489181518555e-01 6.5804338455200195e-01
+ <_>
+
+ 0 -1 2054 -2.1648500478477217e-05
+
+ 5.1953881978988647e-01 4.0198868513107300e-01
+ <_>
+
+ 0 -1 2055 2.1180990152060986e-03
+
+ 4.9623650312423706e-01 5.9544587135314941e-01
+ <_>
+
+ 0 -1 2056 -1.6634890809655190e-02
+
+ 3.7579330801963806e-01 5.1754468679428101e-01
+ <_>
+
+ 0 -1 2057 -2.8899470344185829e-03
+
+ 6.6240137815475464e-01 5.0571787357330322e-01
+ <_>
+
+ 0 -1 2058 7.6783262193202972e-02
+
+ 4.7957968711853027e-01 8.0477148294448853e-01
+ <_>
+
+ 0 -1 2059 3.9170677773654461e-03
+
+ 4.9378821253776550e-01 5.7199418544769287e-01
+ <_>
+
+ 0 -1 2060 -7.2670601308345795e-02
+
+ 5.3894560784101486e-02 4.9439039826393127e-01
+ <_>
+
+ 0 -1 2061 5.4039502143859863e-01
+
+ 5.1297742128372192e-01 1.1433389782905579e-01
+ <_>
+
+ 0 -1 2062 2.9510019812732935e-03
+
+ 4.5283439755439758e-01 5.6985741853713989e-01
+ <_>
+
+ 0 -1 2063 3.4508369863033295e-03
+
+ 5.3577268123626709e-01 4.2187309265136719e-01
+ <_>
+
+ 0 -1 2064 -4.2077939724549651e-04
+
+ 5.9161728620529175e-01 4.6379259228706360e-01
+ <_>
+
+ 0 -1 2065 3.3051050268113613e-03
+
+ 5.2733850479125977e-01 4.3820428848266602e-01
+ <_>
+
+ 0 -1 2066 4.7735060798004270e-04
+
+ 4.0465280413627625e-01 5.1818847656250000e-01
+ <_>
+
+ 0 -1 2067 -2.5928510352969170e-02
+
+ 7.4522358179092407e-01 5.0893861055374146e-01
+ <_>
+
+ 0 -1 2068 -2.9729790985584259e-03
+
+ 3.2954359054565430e-01 5.0587952136993408e-01
+ <_>
+
+ 0 -1 2069 5.8508329093456268e-03
+
+ 4.8571440577507019e-01 5.7930248975753784e-01
+ <_>
+
+ 0 -1 2070 -4.5967519283294678e-02
+
+ 4.3127310276031494e-01 5.3806531429290771e-01
+ <_>
+
+ 0 -1 2071 1.5585960447788239e-01
+
+ 5.1961702108383179e-01 1.6847139596939087e-01
+ <_>
+
+ 0 -1 2072 1.5164829790592194e-02
+
+ 4.7357571125030518e-01 6.7350268363952637e-01
+ <_>
+
+ 0 -1 2073 -1.0604249546304345e-03
+
+ 5.8229267597198486e-01 4.7757029533386230e-01
+ <_>
+
+ 0 -1 2074 6.6476291976869106e-03
+
+ 4.9991989135742188e-01 2.3195350170135498e-01
+ <_>
+
+ 0 -1 2075 -1.2231130152940750e-02
+
+ 4.7508931159973145e-01 5.2629822492599487e-01
+ <_>
+
+ 0 -1 2076 5.6528882123529911e-03
+
+ 5.0697678327560425e-01 3.5618188977241516e-01
+ <_>
+
+ 0 -1 2077 1.2977829901501536e-03
+
+ 4.8756939172744751e-01 5.6190627813339233e-01
+ <_>
+
+ 0 -1 2078 1.0781589895486832e-02
+
+ 4.7507700324058533e-01 6.7823082208633423e-01
+ <_>
+
+ 0 -1 2079 2.8654779307544231e-03
+
+ 5.3054618835449219e-01 4.2907360196113586e-01
+ <_>
+
+ 0 -1 2080 2.8663428965955973e-03
+
+ 4.5184791088104248e-01 5.5393511056900024e-01
+ <_>
+
+ 0 -1 2081 -5.1983320154249668e-03
+
+ 4.1491198539733887e-01 5.4341888427734375e-01
+ <_>
+
+ 0 -1 2082 5.3739990107715130e-03
+
+ 4.7178968787193298e-01 6.5076571702957153e-01
+ <_>
+
+ 0 -1 2083 -1.4641529880464077e-02
+
+ 2.1721640229225159e-01 5.1617771387100220e-01
+ <_>
+
+ 0 -1 2084 -1.5042580344015732e-05
+
+ 5.3373837471008301e-01 4.2988368868827820e-01
+ <_>
+
+ 0 -1 2085 -1.1875660129589960e-04
+
+ 4.6045941114425659e-01 5.5824470520019531e-01
+ <_>
+
+ 0 -1 2086 1.6995530575513840e-02
+
+ 4.9458950757980347e-01 7.3880076408386230e-02
+ <_>
+
+ 0 -1 2087 -3.5095941275358200e-02
+
+ 7.0055091381072998e-01 4.9775910377502441e-01
+ <_>
+
+ 0 -1 2088 2.4217350874096155e-03
+
+ 4.4662651419639587e-01 5.4776942729949951e-01
+ <_>
+
+ 0 -1 2089 -9.6340337768197060e-04
+
+ 4.7140988707542419e-01 5.3133380413055420e-01
+ <_>
+
+ 0 -1 2090 1.6391130338888615e-04
+
+ 4.3315461277961731e-01 5.3422421216964722e-01
+ <_>
+
+ 0 -1 2091 -2.1141460165381432e-02
+
+ 2.6447001099586487e-01 5.2044987678527832e-01
+ <_>
+
+ 0 -1 2092 8.7775202700868249e-04
+
+ 5.2083498239517212e-01 4.1527429223060608e-01
+ <_>
+
+ 0 -1 2093 -2.7943920344114304e-02
+
+ 6.3441252708435059e-01 5.0188118219375610e-01
+ <_>
+
+ 0 -1 2094 6.7297378554940224e-03
+
+ 5.0504380464553833e-01 3.5008639097213745e-01
+ <_>
+
+ 0 -1 2095 2.3281039670109749e-02
+
+ 4.9663180112838745e-01 6.9686770439147949e-01
+ <_>
+
+ 0 -1 2096 -1.1644979938864708e-02
+
+ 3.3002600073814392e-01 5.0496298074722290e-01
+ <_>
+
+ 0 -1 2097 1.5764309093356133e-02
+
+ 4.9915981292724609e-01 7.3211538791656494e-01
+ <_>
+
+ 0 -1 2098 -1.3611479662358761e-03
+
+ 3.9117351174354553e-01 5.1606708765029907e-01
+ <_>
+
+ 0 -1 2099 -8.1522337859496474e-04
+
+ 5.6289112567901611e-01 4.9497190117835999e-01
+ <_>
+
+ 0 -1 2100 -6.0066272271797061e-04
+
+ 5.8535951375961304e-01 4.5505958795547485e-01
+ <_>
+
+ 0 -1 2101 4.9715518252924085e-04
+
+ 4.2714700102806091e-01 5.4435992240905762e-01
+ <_>
+
+ 0 -1 2102 2.3475370835512877e-03
+
+ 5.1431107521057129e-01 3.8876569271087646e-01
+ <_>
+
+ 0 -1 2103 -8.9261569082736969e-03
+
+ 6.0445022583007812e-01 4.9717208743095398e-01
+ <_>
+
+ 0 -1 2104 -1.3919910416007042e-02
+
+ 2.5831609964370728e-01 5.0003677606582642e-01
+ <_>
+
+ 0 -1 2105 1.0209949687123299e-03
+
+ 4.8573741316795349e-01 5.5603581666946411e-01
+ <_>
+
+ 0 -1 2106 -2.7441629208624363e-03
+
+ 5.9368848800659180e-01 4.6457770466804504e-01
+ <_>
+
+ 0 -1 2107 -1.6200130805373192e-02
+
+ 3.1630149483680725e-01 5.1934951543807983e-01
+ <_>
+
+ 0 -1 2108 4.3331980705261230e-03
+
+ 5.0612241029739380e-01 3.4588789939880371e-01
+ <_>
+
+ 0 -1 2109 5.8497930876910686e-04
+
+ 4.7790178656578064e-01 5.8701777458190918e-01
+ <_>
+
+ 0 -1 2110 -2.2466450463980436e-03
+
+ 4.2978510260581970e-01 5.3747731447219849e-01
+ <_>
+
+ 0 -1 2111 2.3146099410951138e-03
+
+ 5.4386717081069946e-01 4.6409699320793152e-01
+ <_>
+
+ 0 -1 2112 8.7679121643304825e-03
+
+ 4.7268930077552795e-01 6.7717897891998291e-01
+ <_>
+
+ 0 -1 2113 -2.2448020172305405e-04
+
+ 4.2291730642318726e-01 5.4280489683151245e-01
+ <_>
+
+ 0 -1 2114 -7.4336021207273006e-03
+
+ 6.0988807678222656e-01 4.6836739778518677e-01
+ <_>
+
+ 0 -1 2115 -2.3189240600913763e-03
+
+ 5.6894367933273315e-01 4.4242420792579651e-01
+ <_>
+
+ 0 -1 2116 -2.1042178850620985e-03
+
+ 3.7622210383415222e-01 5.1870870590209961e-01
+ <_>
+
+ 0 -1 2117 4.6034841216169298e-04
+
+ 4.6994051337242126e-01 5.7712072134017944e-01
+ <_>
+
+ 0 -1 2118 1.0547629790380597e-03
+
+ 4.4652169942855835e-01 5.6017017364501953e-01
+ <_>
+
+ 0 -1 2119 8.7148818420246243e-04
+
+ 5.4498052597045898e-01 3.9147090911865234e-01
+ <_>
+
+ 0 -1 2120 3.3364820410497487e-04
+
+ 4.5640090107917786e-01 5.6457388401031494e-01
+ <_>
+
+ 0 -1 2121 -1.4853250468149781e-03
+
+ 5.7473778724670410e-01 4.6927788853645325e-01
+ <_>
+
+ 0 -1 2122 3.0251620337367058e-03
+
+ 5.1661968231201172e-01 3.7628141045570374e-01
+ <_>
+
+ 0 -1 2123 5.0280741415917873e-03
+
+ 5.0021117925643921e-01 6.1515271663665771e-01
+ <_>
+
+ 0 -1 2124 -5.8164511574432254e-04
+
+ 5.3945982456207275e-01 4.3907511234283447e-01
+ <_>
+
+ 0 -1 2125 4.5141529291868210e-02
+
+ 5.1883268356323242e-01 2.0630359649658203e-01
+ <_>
+
+ 0 -1 2126 -1.0795620037242770e-03
+
+ 3.9046850800514221e-01 5.1379072666168213e-01
+ <_>
+
+ 0 -1 2127 1.5995999274309725e-04
+
+ 4.8953229188919067e-01 5.4275041818618774e-01
+ <_>
+
+ 0 -1 2128 -1.9359270110726357e-02
+
+ 6.9752287864685059e-01 4.7735071182250977e-01
+ <_>
+
+ 0 -1 2129 2.0725509524345398e-01
+
+ 5.2336359024047852e-01 3.0349919199943542e-01
+ <_>
+
+ 0 -1 2130 -4.1953290929086506e-04
+
+ 5.4193967580795288e-01 4.4601860642433167e-01
+ <_>
+
+ 0 -1 2131 2.2582069505006075e-03
+
+ 4.8157641291618347e-01 6.0274088382720947e-01
+ <_>
+
+ 0 -1 2132 -6.7811207845807076e-03
+
+ 3.9802789688110352e-01 5.1833057403564453e-01
+ <_>
+
+ 0 -1 2133 1.1154309846460819e-02
+
+ 5.4312318563461304e-01 4.1887599229812622e-01
+ <_>
+
+ 0 -1 2134 4.3162431567907333e-02
+
+ 4.7382280230522156e-01 6.5229612588882446e-01
+
+ <_>
+
+ <_>
+ 3 7 14 4 -1.
+ <_>
+ 3 9 14 2 2.
+ <_>
+
+ <_>
+ 1 2 18 4 -1.
+ <_>
+ 7 2 6 4 3.
+ <_>
+
+ <_>
+ 1 7 15 9 -1.
+ <_>
+ 1 10 15 3 3.
+ <_>
+
+ <_>
+ 5 6 2 6 -1.
+ <_>
+ 5 9 2 3 2.
+ <_>
+
+ <_>
+ 7 5 6 3 -1.
+ <_>
+ 9 5 2 3 3.
+ <_>
+
+ <_>
+ 4 0 12 9 -1.
+ <_>
+ 4 3 12 3 3.
+ <_>
+
+ <_>
+ 6 9 10 8 -1.
+ <_>
+ 6 13 10 4 2.
+ <_>
+
+ <_>
+ 3 6 14 8 -1.
+ <_>
+ 3 10 14 4 2.
+ <_>
+
+ <_>
+ 14 1 6 10 -1.
+ <_>
+ 14 1 3 10 2.
+ <_>
+
+ <_>
+ 7 8 5 12 -1.
+ <_>
+ 7 12 5 4 3.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 7 1 6 3 3.
+ <_>
+
+ <_>
+ 1 8 17 2 -1.
+ <_>
+ 1 9 17 1 2.
+ <_>
+
+ <_>
+ 16 6 4 2 -1.
+ <_>
+ 16 7 4 1 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 18 2 1 2.
+ <_>
+
+ <_>
+ 14 2 6 12 -1.
+ <_>
+ 14 2 3 12 2.
+ <_>
+
+ <_>
+ 4 0 4 12 -1.
+ <_>
+ 4 0 2 6 2.
+ <_>
+ 6 6 2 6 2.
+ <_>
+
+ <_>
+ 2 11 18 8 -1.
+ <_>
+ 8 11 6 8 3.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 5 8 10 1 2.
+ <_>
+
+ <_>
+ 15 11 5 3 -1.
+ <_>
+ 15 12 5 1 3.
+ <_>
+
+ <_>
+ 5 3 10 9 -1.
+ <_>
+ 5 6 10 3 3.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 3 5 4 12 -1.
+ <_>
+ 3 9 4 4 3.
+ <_>
+
+ <_>
+ 4 5 12 5 -1.
+ <_>
+ 8 5 4 5 3.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 5 10 10 4 2.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 8 3 6 3 3.
+ <_>
+
+ <_>
+ 9 12 1 8 -1.
+ <_>
+ 9 16 1 4 2.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 7 0 6 17 -1.
+ <_>
+ 9 0 2 17 3.
+ <_>
+
+ <_>
+ 9 0 6 4 -1.
+ <_>
+ 11 0 2 4 3.
+ <_>
+
+ <_>
+ 5 1 6 4 -1.
+ <_>
+ 7 1 2 4 3.
+ <_>
+
+ <_>
+ 12 1 6 16 -1.
+ <_>
+ 14 1 2 16 3.
+ <_>
+
+ <_>
+ 0 5 18 8 -1.
+ <_>
+ 0 5 9 4 2.
+ <_>
+ 9 9 9 4 2.
+ <_>
+
+ <_>
+ 8 15 10 4 -1.
+ <_>
+ 13 15 5 2 2.
+ <_>
+ 8 17 5 2 2.
+ <_>
+
+ <_>
+ 3 1 4 8 -1.
+ <_>
+ 3 1 2 4 2.
+ <_>
+ 5 5 2 4 2.
+ <_>
+
+ <_>
+ 3 6 14 10 -1.
+ <_>
+ 10 6 7 5 2.
+ <_>
+ 3 11 7 5 2.
+ <_>
+
+ <_>
+ 2 1 6 16 -1.
+ <_>
+ 4 1 2 16 3.
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 19 20 1 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 0 12 9 6 -1.
+ <_>
+ 0 14 9 2 3.
+ <_>
+
+ <_>
+ 5 7 3 4 -1.
+ <_>
+ 5 9 3 2 2.
+ <_>
+
+ <_>
+ 9 3 2 16 -1.
+ <_>
+ 9 11 2 8 2.
+ <_>
+
+ <_>
+ 3 6 13 8 -1.
+ <_>
+ 3 10 13 4 2.
+ <_>
+
+ <_>
+ 12 3 8 2 -1.
+ <_>
+ 12 3 4 2 2.
+ <_>
+
+ <_>
+ 8 8 4 12 -1.
+ <_>
+ 8 12 4 4 3.
+ <_>
+
+ <_>
+ 11 3 8 6 -1.
+ <_>
+ 15 3 4 3 2.
+ <_>
+ 11 6 4 3 2.
+ <_>
+
+ <_>
+ 7 1 6 19 -1.
+ <_>
+ 9 1 2 19 3.
+ <_>
+
+ <_>
+ 9 0 6 4 -1.
+ <_>
+ 11 0 2 4 3.
+ <_>
+
+ <_>
+ 3 1 9 3 -1.
+ <_>
+ 6 1 3 3 3.
+ <_>
+
+ <_>
+ 8 15 10 4 -1.
+ <_>
+ 13 15 5 2 2.
+ <_>
+ 8 17 5 2 2.
+ <_>
+
+ <_>
+ 0 3 6 10 -1.
+ <_>
+ 3 3 3 10 2.
+ <_>
+
+ <_>
+ 3 4 15 15 -1.
+ <_>
+ 3 9 15 5 3.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 7 8 2 3.
+ <_>
+
+ <_>
+ 4 4 12 10 -1.
+ <_>
+ 10 4 6 5 2.
+ <_>
+ 4 9 6 5 2.
+ <_>
+
+ <_>
+ 6 4 4 4 -1.
+ <_>
+ 8 4 2 4 2.
+ <_>
+
+ <_>
+ 15 11 1 2 -1.
+ <_>
+ 15 12 1 1 2.
+ <_>
+
+ <_>
+ 3 11 2 2 -1.
+ <_>
+ 3 12 2 1 2.
+ <_>
+
+ <_>
+ 16 11 1 3 -1.
+ <_>
+ 16 12 1 1 3.
+ <_>
+
+ <_>
+ 3 15 6 4 -1.
+ <_>
+ 3 15 3 2 2.
+ <_>
+ 6 17 3 2 2.
+ <_>
+
+ <_>
+ 6 7 8 2 -1.
+ <_>
+ 6 8 8 1 2.
+ <_>
+
+ <_>
+ 3 11 1 3 -1.
+ <_>
+ 3 12 1 1 3.
+ <_>
+
+ <_>
+ 6 0 12 2 -1.
+ <_>
+ 6 1 12 1 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 7 15 6 2 -1.
+ <_>
+ 7 16 6 1 2.
+ <_>
+
+ <_>
+ 0 5 4 6 -1.
+ <_>
+ 0 7 4 2 3.
+ <_>
+
+ <_>
+ 4 12 12 2 -1.
+ <_>
+ 8 12 4 2 3.
+ <_>
+
+ <_>
+ 6 3 1 9 -1.
+ <_>
+ 6 6 1 3 3.
+ <_>
+
+ <_>
+ 10 17 3 2 -1.
+ <_>
+ 11 17 1 2 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 7 6 6 4 -1.
+ <_>
+ 9 6 2 4 3.
+ <_>
+
+ <_>
+ 7 17 3 2 -1.
+ <_>
+ 8 17 1 2 3.
+ <_>
+
+ <_>
+ 10 17 3 3 -1.
+ <_>
+ 11 17 1 3 3.
+ <_>
+
+ <_>
+ 8 12 3 2 -1.
+ <_>
+ 8 13 3 1 2.
+ <_>
+
+ <_>
+ 9 3 6 2 -1.
+ <_>
+ 11 3 2 2 3.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 13 14 2 2.
+ <_>
+
+ <_>
+ 1 10 18 4 -1.
+ <_>
+ 10 10 9 2 2.
+ <_>
+ 1 12 9 2 2.
+ <_>
+
+ <_>
+ 0 10 3 3 -1.
+ <_>
+ 0 11 3 1 3.
+ <_>
+
+ <_>
+ 9 1 6 6 -1.
+ <_>
+ 11 1 2 6 3.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 1 0 18 9 -1.
+ <_>
+ 1 3 18 3 3.
+ <_>
+
+ <_>
+ 12 10 2 6 -1.
+ <_>
+ 12 13 2 3 2.
+ <_>
+
+ <_>
+ 0 5 19 8 -1.
+ <_>
+ 0 9 19 4 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 5 3 6 1 -1.
+ <_>
+ 7 3 2 1 3.
+ <_>
+
+ <_>
+ 11 3 6 1 -1.
+ <_>
+ 13 3 2 1 3.
+ <_>
+
+ <_>
+ 5 10 4 6 -1.
+ <_>
+ 5 13 4 3 2.
+ <_>
+
+ <_>
+ 11 3 6 1 -1.
+ <_>
+ 13 3 2 1 3.
+ <_>
+
+ <_>
+ 4 4 12 6 -1.
+ <_>
+ 4 6 12 2 3.
+ <_>
+
+ <_>
+ 15 12 2 6 -1.
+ <_>
+ 15 14 2 2 3.
+ <_>
+
+ <_>
+ 9 3 2 2 -1.
+ <_>
+ 10 3 1 2 2.
+ <_>
+
+ <_>
+ 9 3 3 1 -1.
+ <_>
+ 10 3 1 1 3.
+ <_>
+
+ <_>
+ 1 1 4 14 -1.
+ <_>
+ 3 1 2 14 2.
+ <_>
+
+ <_>
+ 9 0 4 4 -1.
+ <_>
+ 11 0 2 2 2.
+ <_>
+ 9 2 2 2 2.
+ <_>
+
+ <_>
+ 7 5 1 14 -1.
+ <_>
+ 7 12 1 7 2.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 5 5 6 4 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 7 12 2 3.
+ <_>
+
+ <_>
+ 3 12 2 6 -1.
+ <_>
+ 3 14 2 2 3.
+ <_>
+
+ <_>
+ 10 8 2 12 -1.
+ <_>
+ 10 12 2 4 3.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 9 0 6 2 -1.
+ <_>
+ 11 0 2 2 3.
+ <_>
+
+ <_>
+ 5 11 9 3 -1.
+ <_>
+ 5 12 9 1 3.
+ <_>
+
+ <_>
+ 9 0 6 2 -1.
+ <_>
+ 11 0 2 2 3.
+ <_>
+
+ <_>
+ 1 1 18 5 -1.
+ <_>
+ 7 1 6 5 3.
+ <_>
+
+ <_>
+ 8 0 4 4 -1.
+ <_>
+ 10 0 2 2 2.
+ <_>
+ 8 2 2 2 2.
+ <_>
+
+ <_>
+ 3 12 1 3 -1.
+ <_>
+ 3 13 1 1 3.
+ <_>
+
+ <_>
+ 8 14 5 3 -1.
+ <_>
+ 8 15 5 1 3.
+ <_>
+
+ <_>
+ 5 4 10 12 -1.
+ <_>
+ 5 4 5 6 2.
+ <_>
+ 10 10 5 6 2.
+ <_>
+
+ <_>
+ 9 6 9 12 -1.
+ <_>
+ 9 10 9 4 3.
+ <_>
+
+ <_>
+ 2 2 12 14 -1.
+ <_>
+ 2 2 6 7 2.
+ <_>
+ 8 9 6 7 2.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 7 4 6 4 -1.
+ <_>
+ 7 6 6 2 2.
+ <_>
+
+ <_>
+ 4 5 11 8 -1.
+ <_>
+ 4 9 11 4 2.
+ <_>
+
+ <_>
+ 3 10 16 4 -1.
+ <_>
+ 3 12 16 2 2.
+ <_>
+
+ <_>
+ 0 0 16 2 -1.
+ <_>
+ 0 1 16 1 2.
+ <_>
+
+ <_>
+ 7 5 6 2 -1.
+ <_>
+ 9 5 2 2 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 10 5 8 15 -1.
+ <_>
+ 10 10 8 5 3.
+ <_>
+
+ <_>
+ 3 14 8 6 -1.
+ <_>
+ 3 14 4 3 2.
+ <_>
+ 7 17 4 3 2.
+ <_>
+
+ <_>
+ 14 2 2 2 -1.
+ <_>
+ 14 3 2 1 2.
+ <_>
+
+ <_>
+ 1 10 7 6 -1.
+ <_>
+ 1 13 7 3 2.
+ <_>
+
+ <_>
+ 15 4 4 3 -1.
+ <_>
+ 15 4 2 3 2.
+ <_>
+
+ <_>
+ 2 9 14 6 -1.
+ <_>
+ 2 9 7 3 2.
+ <_>
+ 9 12 7 3 2.
+ <_>
+
+ <_>
+ 5 7 10 4 -1.
+ <_>
+ 5 9 10 2 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 6 9 4 4 2.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 14 1 3 2 -1.
+ <_>
+ 14 2 3 1 2.
+ <_>
+
+ <_>
+ 1 4 4 2 -1.
+ <_>
+ 3 4 2 2 2.
+ <_>
+
+ <_>
+ 11 10 2 8 -1.
+ <_>
+ 11 14 2 4 2.
+ <_>
+
+ <_>
+ 0 0 5 3 -1.
+ <_>
+ 0 1 5 1 3.
+ <_>
+
+ <_>
+ 2 5 18 8 -1.
+ <_>
+ 11 5 9 4 2.
+ <_>
+ 2 9 9 4 2.
+ <_>
+
+ <_>
+ 6 6 1 6 -1.
+ <_>
+ 6 9 1 3 2.
+ <_>
+
+ <_>
+ 19 1 1 3 -1.
+ <_>
+ 19 2 1 1 3.
+ <_>
+
+ <_>
+ 7 6 6 6 -1.
+ <_>
+ 9 6 2 6 3.
+ <_>
+
+ <_>
+ 19 1 1 3 -1.
+ <_>
+ 19 2 1 1 3.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 8 4 8 12 -1.
+ <_>
+ 12 4 4 6 2.
+ <_>
+ 8 10 4 6 2.
+ <_>
+
+ <_>
+ 5 2 6 3 -1.
+ <_>
+ 7 2 2 3 3.
+ <_>
+
+ <_>
+ 6 1 9 10 -1.
+ <_>
+ 6 6 9 5 2.
+ <_>
+
+ <_>
+ 0 4 6 12 -1.
+ <_>
+ 2 4 2 12 3.
+ <_>
+
+ <_>
+ 15 13 2 3 -1.
+ <_>
+ 15 14 2 1 3.
+ <_>
+
+ <_>
+ 7 14 5 3 -1.
+ <_>
+ 7 15 5 1 3.
+ <_>
+
+ <_>
+ 15 13 3 3 -1.
+ <_>
+ 15 14 3 1 3.
+ <_>
+
+ <_>
+ 6 14 8 3 -1.
+ <_>
+ 6 15 8 1 3.
+ <_>
+
+ <_>
+ 15 13 3 3 -1.
+ <_>
+ 15 14 3 1 3.
+ <_>
+
+ <_>
+ 2 13 3 3 -1.
+ <_>
+ 2 14 3 1 3.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 10 7 6 6 2.
+ <_>
+ 4 13 6 6 2.
+ <_>
+
+ <_>
+ 9 7 2 6 -1.
+ <_>
+ 10 7 1 6 2.
+ <_>
+
+ <_>
+ 8 9 5 2 -1.
+ <_>
+ 8 10 5 1 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 9 6 2 8 -1.
+ <_>
+ 9 10 2 4 2.
+ <_>
+
+ <_>
+ 7 7 3 6 -1.
+ <_>
+ 8 7 1 6 3.
+ <_>
+
+ <_>
+ 11 3 3 3 -1.
+ <_>
+ 12 3 1 3 3.
+ <_>
+
+ <_>
+ 5 4 6 1 -1.
+ <_>
+ 7 4 2 1 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 7 10 1 3.
+ <_>
+
+ <_>
+ 7 3 6 9 -1.
+ <_>
+ 7 6 6 3 3.
+ <_>
+
+ <_>
+ 6 7 9 1 -1.
+ <_>
+ 9 7 3 1 3.
+ <_>
+
+ <_>
+ 2 8 16 8 -1.
+ <_>
+ 2 12 16 4 2.
+ <_>
+
+ <_>
+ 14 6 2 6 -1.
+ <_>
+ 14 9 2 3 2.
+ <_>
+
+ <_>
+ 1 5 6 15 -1.
+ <_>
+ 1 10 6 5 3.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 10 3 6 3 3.
+ <_>
+
+ <_>
+ 6 6 7 14 -1.
+ <_>
+ 6 13 7 7 2.
+ <_>
+
+ <_>
+ 13 7 3 6 -1.
+ <_>
+ 13 9 3 2 3.
+ <_>
+
+ <_>
+ 1 8 15 4 -1.
+ <_>
+ 6 8 5 4 3.
+ <_>
+
+ <_>
+ 11 2 3 10 -1.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 3 7 4 6 -1.
+ <_>
+ 3 9 4 2 3.
+ <_>
+
+ <_>
+ 13 3 6 10 -1.
+ <_>
+ 15 3 2 10 3.
+ <_>
+
+ <_>
+ 5 7 8 10 -1.
+ <_>
+ 5 7 4 5 2.
+ <_>
+ 9 12 4 5 2.
+ <_>
+
+ <_>
+ 4 4 12 12 -1.
+ <_>
+ 10 4 6 6 2.
+ <_>
+ 4 10 6 6 2.
+ <_>
+
+ <_>
+ 1 4 6 9 -1.
+ <_>
+ 3 4 2 9 3.
+ <_>
+
+ <_>
+ 11 3 2 5 -1.
+ <_>
+ 11 3 1 5 2.
+ <_>
+
+ <_>
+ 7 3 2 5 -1.
+ <_>
+ 8 3 1 5 2.
+ <_>
+
+ <_>
+ 10 14 2 3 -1.
+ <_>
+ 10 15 2 1 3.
+ <_>
+
+ <_>
+ 5 12 6 2 -1.
+ <_>
+ 8 12 3 2 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 4 11 12 6 -1.
+ <_>
+ 4 14 12 3 2.
+ <_>
+
+ <_>
+ 11 11 5 9 -1.
+ <_>
+ 11 14 5 3 3.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 6 16 3 1 2.
+ <_>
+
+ <_>
+ 11 0 3 5 -1.
+ <_>
+ 12 0 1 5 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 8 5 3 7 2.
+ <_>
+
+ <_>
+ 13 0 1 9 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 3 2 4 8 -1.
+ <_>
+ 3 2 2 4 2.
+ <_>
+ 5 6 2 4 2.
+ <_>
+
+ <_>
+ 13 12 4 6 -1.
+ <_>
+ 13 14 4 2 3.
+ <_>
+
+ <_>
+ 3 12 4 6 -1.
+ <_>
+ 3 14 4 2 3.
+ <_>
+
+ <_>
+ 13 11 3 4 -1.
+ <_>
+ 13 13 3 2 2.
+ <_>
+
+ <_>
+ 4 4 4 3 -1.
+ <_>
+ 4 5 4 1 3.
+ <_>
+
+ <_>
+ 7 5 11 8 -1.
+ <_>
+ 7 9 11 4 2.
+ <_>
+
+ <_>
+ 7 8 3 4 -1.
+ <_>
+ 8 8 1 4 3.
+ <_>
+
+ <_>
+ 9 1 6 1 -1.
+ <_>
+ 11 1 2 1 3.
+ <_>
+
+ <_>
+ 5 5 3 3 -1.
+ <_>
+ 5 6 3 1 3.
+ <_>
+
+ <_>
+ 0 9 20 6 -1.
+ <_>
+ 10 9 10 3 2.
+ <_>
+ 0 12 10 3 2.
+ <_>
+
+ <_>
+ 8 6 3 5 -1.
+ <_>
+ 9 6 1 5 3.
+ <_>
+
+ <_>
+ 11 0 1 3 -1.
+ <_>
+ 11 1 1 1 3.
+ <_>
+
+ <_>
+ 4 2 4 2 -1.
+ <_>
+ 4 3 4 1 2.
+ <_>
+
+ <_>
+ 12 6 4 3 -1.
+ <_>
+ 12 7 4 1 3.
+ <_>
+
+ <_>
+ 5 0 6 4 -1.
+ <_>
+ 7 0 2 4 3.
+ <_>
+
+ <_>
+ 9 7 3 8 -1.
+ <_>
+ 10 7 1 8 3.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 6 7 14 4 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 0 5 3 6 -1.
+ <_>
+ 0 7 3 2 3.
+ <_>
+
+ <_>
+ 13 11 3 4 -1.
+ <_>
+ 13 13 3 2 2.
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 4 13 3 2 2.
+ <_>
+
+ <_>
+ 5 9 12 8 -1.
+ <_>
+ 11 9 6 4 2.
+ <_>
+ 5 13 6 4 2.
+ <_>
+
+ <_>
+ 9 12 1 3 -1.
+ <_>
+ 9 13 1 1 3.
+ <_>
+
+ <_>
+ 10 15 2 4 -1.
+ <_>
+ 10 17 2 2 2.
+ <_>
+
+ <_>
+ 7 7 6 1 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 12 3 6 6 -1.
+ <_>
+ 15 3 3 3 2.
+ <_>
+ 12 6 3 3 2.
+ <_>
+
+ <_>
+ 0 4 10 6 -1.
+ <_>
+ 0 6 10 2 3.
+ <_>
+
+ <_>
+ 8 3 8 14 -1.
+ <_>
+ 12 3 4 7 2.
+ <_>
+ 8 10 4 7 2.
+ <_>
+
+ <_>
+ 4 4 7 15 -1.
+ <_>
+ 4 9 7 5 3.
+ <_>
+
+ <_>
+ 12 2 6 8 -1.
+ <_>
+ 15 2 3 4 2.
+ <_>
+ 12 6 3 4 2.
+ <_>
+
+ <_>
+ 2 2 6 8 -1.
+ <_>
+ 2 2 3 4 2.
+ <_>
+ 5 6 3 4 2.
+ <_>
+
+ <_>
+ 2 13 18 7 -1.
+ <_>
+ 8 13 6 7 3.
+ <_>
+
+ <_>
+ 4 3 8 14 -1.
+ <_>
+ 4 3 4 7 2.
+ <_>
+ 8 10 4 7 2.
+ <_>
+
+ <_>
+ 18 1 2 6 -1.
+ <_>
+ 18 3 2 2 3.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 18 1 2 6 -1.
+ <_>
+ 18 3 2 2 3.
+ <_>
+
+ <_>
+ 0 1 2 6 -1.
+ <_>
+ 0 3 2 2 3.
+ <_>
+
+ <_>
+ 1 5 18 6 -1.
+ <_>
+ 1 7 18 2 3.
+ <_>
+
+ <_>
+ 0 2 6 7 -1.
+ <_>
+ 3 2 3 7 2.
+ <_>
+
+ <_>
+ 7 3 6 14 -1.
+ <_>
+ 7 10 6 7 2.
+ <_>
+
+ <_>
+ 3 7 13 10 -1.
+ <_>
+ 3 12 13 5 2.
+ <_>
+
+ <_>
+ 11 15 2 2 -1.
+ <_>
+ 11 16 2 1 2.
+ <_>
+
+ <_>
+ 2 11 16 4 -1.
+ <_>
+ 2 11 8 2 2.
+ <_>
+ 10 13 8 2 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 6 10 3 9 -1.
+ <_>
+ 6 13 3 3 3.
+ <_>
+
+ <_>
+ 14 6 1 6 -1.
+ <_>
+ 14 9 1 3 2.
+ <_>
+
+ <_>
+ 5 10 4 1 -1.
+ <_>
+ 7 10 2 1 2.
+ <_>
+
+ <_>
+ 3 8 15 5 -1.
+ <_>
+ 8 8 5 5 3.
+ <_>
+
+ <_>
+ 1 6 5 4 -1.
+ <_>
+ 1 8 5 2 2.
+ <_>
+
+ <_>
+ 3 1 17 6 -1.
+ <_>
+ 3 3 17 2 3.
+ <_>
+
+ <_>
+ 6 7 8 2 -1.
+ <_>
+ 10 7 4 2 2.
+ <_>
+
+ <_>
+ 9 7 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 9 7 1 2 3.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 4 7 12 6 -1.
+ <_>
+ 10 7 6 3 2.
+ <_>
+ 4 10 6 3 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 9 8 3 1 3.
+ <_>
+
+ <_>
+ 7 4 3 8 -1.
+ <_>
+ 8 4 1 8 3.
+ <_>
+
+ <_>
+ 10 0 3 6 -1.
+ <_>
+ 11 0 1 6 3.
+ <_>
+
+ <_>
+ 6 3 4 8 -1.
+ <_>
+ 8 3 2 8 2.
+ <_>
+
+ <_>
+ 14 3 6 13 -1.
+ <_>
+ 14 3 3 13 2.
+ <_>
+
+ <_>
+ 8 13 3 6 -1.
+ <_>
+ 8 16 3 3 2.
+ <_>
+
+ <_>
+ 14 3 6 13 -1.
+ <_>
+ 14 3 3 13 2.
+ <_>
+
+ <_>
+ 0 7 10 4 -1.
+ <_>
+ 0 7 5 2 2.
+ <_>
+ 5 9 5 2 2.
+ <_>
+
+ <_>
+ 14 3 6 13 -1.
+ <_>
+ 14 3 3 13 2.
+ <_>
+
+ <_>
+ 0 3 6 13 -1.
+ <_>
+ 3 3 3 13 2.
+ <_>
+
+ <_>
+ 9 1 4 1 -1.
+ <_>
+ 9 1 2 1 2.
+ <_>
+
+ <_>
+ 8 0 2 1 -1.
+ <_>
+ 9 0 1 1 2.
+ <_>
+
+ <_>
+ 10 16 4 4 -1.
+ <_>
+ 12 16 2 2 2.
+ <_>
+ 10 18 2 2 2.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 10 6 1 3 2.
+ <_>
+
+ <_>
+ 4 5 12 2 -1.
+ <_>
+ 8 5 4 2 3.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 6 4 8 6 -1.
+ <_>
+ 6 6 8 2 3.
+ <_>
+
+ <_>
+ 9 5 2 12 -1.
+ <_>
+ 9 11 2 6 2.
+ <_>
+
+ <_>
+ 4 6 6 8 -1.
+ <_>
+ 4 10 6 4 2.
+ <_>
+
+ <_>
+ 12 2 8 5 -1.
+ <_>
+ 12 2 4 5 2.
+ <_>
+
+ <_>
+ 0 8 18 3 -1.
+ <_>
+ 0 9 18 1 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 0 2 8 5 -1.
+ <_>
+ 4 2 4 5 2.
+ <_>
+
+ <_>
+ 13 11 3 4 -1.
+ <_>
+ 13 13 3 2 2.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 11 3 3 1 -1.
+ <_>
+ 12 3 1 1 3.
+ <_>
+
+ <_>
+ 7 13 5 3 -1.
+ <_>
+ 7 14 5 1 3.
+ <_>
+
+ <_>
+ 11 11 7 6 -1.
+ <_>
+ 11 14 7 3 2.
+ <_>
+
+ <_>
+ 2 11 7 6 -1.
+ <_>
+ 2 14 7 3 2.
+ <_>
+
+ <_>
+ 12 14 2 6 -1.
+ <_>
+ 12 16 2 2 3.
+ <_>
+
+ <_>
+ 8 14 3 3 -1.
+ <_>
+ 8 15 3 1 3.
+ <_>
+
+ <_>
+ 11 0 3 5 -1.
+ <_>
+ 12 0 1 5 3.
+ <_>
+
+ <_>
+ 6 1 4 9 -1.
+ <_>
+ 8 1 2 9 2.
+ <_>
+
+ <_>
+ 10 3 6 1 -1.
+ <_>
+ 12 3 2 1 3.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 8 10 3 2 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 5 18 4 2 -1.
+ <_>
+ 5 19 4 1 2.
+ <_>
+
+ <_>
+ 2 1 18 6 -1.
+ <_>
+ 2 3 18 2 3.
+ <_>
+
+ <_>
+ 6 0 3 2 -1.
+ <_>
+ 7 0 1 2 3.
+ <_>
+
+ <_>
+ 13 8 6 2 -1.
+ <_>
+ 16 8 3 1 2.
+ <_>
+ 13 9 3 1 2.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 13 3 3 2.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 10 13 10 2 2.
+ <_>
+ 0 15 10 2 2.
+ <_>
+
+ <_>
+ 7 7 6 5 -1.
+ <_>
+ 9 7 2 5 3.
+ <_>
+
+ <_>
+ 11 0 2 2 -1.
+ <_>
+ 11 1 2 1 2.
+ <_>
+
+ <_>
+ 1 8 6 2 -1.
+ <_>
+ 1 8 3 1 2.
+ <_>
+ 4 9 3 1 2.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 10 2 10 1 2.
+ <_>
+ 0 3 10 1 2.
+ <_>
+
+ <_>
+ 7 14 5 3 -1.
+ <_>
+ 7 15 5 1 3.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 10 13 3 3 2.
+ <_>
+ 7 16 3 3 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 16 11 1 6 -1.
+ <_>
+ 16 13 1 2 3.
+ <_>
+
+ <_>
+ 3 11 1 6 -1.
+ <_>
+ 3 13 1 2 3.
+ <_>
+
+ <_>
+ 4 4 14 12 -1.
+ <_>
+ 11 4 7 6 2.
+ <_>
+ 4 10 7 6 2.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 7 8 1 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 3 1 4 10 -1.
+ <_>
+ 3 1 2 5 2.
+ <_>
+ 5 6 2 5 2.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 5 7 5 2 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 15 12 2 3 -1.
+ <_>
+ 15 13 2 1 3.
+ <_>
+
+ <_>
+ 7 8 3 4 -1.
+ <_>
+ 8 8 1 4 3.
+ <_>
+
+ <_>
+ 13 4 1 12 -1.
+ <_>
+ 13 10 1 6 2.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 4 5 6 6 2.
+ <_>
+ 10 11 6 6 2.
+ <_>
+
+ <_>
+ 7 14 7 3 -1.
+ <_>
+ 7 15 7 1 3.
+ <_>
+
+ <_>
+ 3 12 2 3 -1.
+ <_>
+ 3 13 2 1 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 10 2 7 1 2.
+ <_>
+ 3 3 7 1 2.
+ <_>
+
+ <_>
+ 0 1 3 10 -1.
+ <_>
+ 1 1 1 10 3.
+ <_>
+
+ <_>
+ 9 0 6 5 -1.
+ <_>
+ 11 0 2 5 3.
+ <_>
+
+ <_>
+ 5 7 6 2 -1.
+ <_>
+ 8 7 3 2 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 7 1 6 3 3.
+ <_>
+
+ <_>
+ 16 3 3 6 -1.
+ <_>
+ 16 5 3 2 3.
+ <_>
+
+ <_>
+ 6 3 7 6 -1.
+ <_>
+ 6 6 7 3 2.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 0 4 17 10 -1.
+ <_>
+ 0 9 17 5 2.
+ <_>
+
+ <_>
+ 3 4 15 16 -1.
+ <_>
+ 3 12 15 8 2.
+ <_>
+
+ <_>
+ 7 15 6 4 -1.
+ <_>
+ 7 17 6 2 2.
+ <_>
+
+ <_>
+ 15 2 4 9 -1.
+ <_>
+ 15 2 2 9 2.
+ <_>
+
+ <_>
+ 2 3 3 2 -1.
+ <_>
+ 2 4 3 1 2.
+ <_>
+
+ <_>
+ 13 6 7 9 -1.
+ <_>
+ 13 9 7 3 3.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 10 2 10 3 2.
+ <_>
+ 0 5 10 3 2.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 13 10 3 4 -1.
+ <_>
+ 13 12 3 2 2.
+ <_>
+
+ <_>
+ 4 10 3 4 -1.
+ <_>
+ 4 12 3 2 2.
+ <_>
+
+ <_>
+ 7 5 6 3 -1.
+ <_>
+ 9 5 2 3 3.
+ <_>
+
+ <_>
+ 7 6 6 8 -1.
+ <_>
+ 7 10 6 4 2.
+ <_>
+
+ <_>
+ 0 11 20 6 -1.
+ <_>
+ 0 14 20 3 2.
+ <_>
+
+ <_>
+ 4 13 4 6 -1.
+ <_>
+ 4 13 2 3 2.
+ <_>
+ 6 16 2 3 2.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+ 6 6 4 6 2.
+ <_>
+
+ <_>
+ 2 0 15 2 -1.
+ <_>
+ 2 1 15 1 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 3 12 1 2 -1.
+ <_>
+ 3 13 1 1 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 7 3 3 1 -1.
+ <_>
+ 8 3 1 1 3.
+ <_>
+
+ <_>
+ 17 7 3 6 -1.
+ <_>
+ 17 9 3 2 3.
+ <_>
+
+ <_>
+ 7 2 3 2 -1.
+ <_>
+ 8 2 1 2 3.
+ <_>
+
+ <_>
+ 11 4 5 3 -1.
+ <_>
+ 11 5 5 1 3.
+ <_>
+
+ <_>
+ 4 4 5 3 -1.
+ <_>
+ 4 5 5 1 3.
+ <_>
+
+ <_>
+ 19 3 1 2 -1.
+ <_>
+ 19 4 1 1 2.
+ <_>
+
+ <_>
+ 5 5 4 3 -1.
+ <_>
+ 5 6 4 1 3.
+ <_>
+
+ <_>
+ 17 7 3 6 -1.
+ <_>
+ 17 9 3 2 3.
+ <_>
+
+ <_>
+ 0 7 3 6 -1.
+ <_>
+ 0 9 3 2 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 6 5 2 3.
+ <_>
+
+ <_>
+ 10 5 6 2 -1.
+ <_>
+ 12 5 2 2 3.
+ <_>
+
+ <_>
+ 4 5 6 2 -1.
+ <_>
+ 6 5 2 2 3.
+ <_>
+
+ <_>
+ 8 1 4 6 -1.
+ <_>
+ 8 3 4 2 3.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 7 8 1 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 16 0 4 15 -1.
+ <_>
+ 16 0 2 15 2.
+ <_>
+
+ <_>
+ 1 10 3 2 -1.
+ <_>
+ 1 11 3 1 2.
+ <_>
+
+ <_>
+ 14 4 1 10 -1.
+ <_>
+ 14 9 1 5 2.
+ <_>
+
+ <_>
+ 0 1 4 12 -1.
+ <_>
+ 2 1 2 12 2.
+ <_>
+
+ <_>
+ 11 11 4 2 -1.
+ <_>
+ 11 11 2 2 2.
+ <_>
+
+ <_>
+ 5 11 4 2 -1.
+ <_>
+ 7 11 2 2 2.
+ <_>
+
+ <_>
+ 3 8 15 5 -1.
+ <_>
+ 8 8 5 5 3.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 3 0 3 10 2.
+ <_>
+
+ <_>
+ 11 4 3 2 -1.
+ <_>
+ 12 4 1 2 3.
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 8 16 3 4 2.
+ <_>
+
+ <_>
+ 8 14 5 3 -1.
+ <_>
+ 8 15 5 1 3.
+ <_>
+
+ <_>
+ 7 14 4 3 -1.
+ <_>
+ 7 15 4 1 3.
+ <_>
+
+ <_>
+ 11 4 3 2 -1.
+ <_>
+ 12 4 1 2 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 3 15 7 2 2.
+ <_>
+ 10 17 7 2 2.
+ <_>
+
+ <_>
+ 2 2 16 4 -1.
+ <_>
+ 10 2 8 2 2.
+ <_>
+ 2 4 8 2 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 3 8 3 12 2.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 5 7 5 2 2.
+ <_>
+
+ <_>
+ 9 7 2 5 -1.
+ <_>
+ 10 7 1 5 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 0 13 8 2 -1.
+ <_>
+ 0 14 8 1 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 7 3 2 2.
+ <_>
+ 4 9 3 2 2.
+ <_>
+
+ <_>
+ 12 6 1 12 -1.
+ <_>
+ 12 12 1 6 2.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 10 5 1 6 2.
+ <_>
+
+ <_>
+ 14 12 2 3 -1.
+ <_>
+ 14 13 2 1 3.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 8 12 4 3 -1.
+ <_>
+ 8 13 4 1 3.
+ <_>
+
+ <_>
+ 5 2 2 4 -1.
+ <_>
+ 5 2 1 2 2.
+ <_>
+ 6 4 1 2 2.
+ <_>
+
+ <_>
+ 5 5 11 3 -1.
+ <_>
+ 5 6 11 1 3.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 12 13 8 5 -1.
+ <_>
+ 12 13 4 5 2.
+ <_>
+
+ <_>
+ 7 6 1 12 -1.
+ <_>
+ 7 12 1 6 2.
+ <_>
+
+ <_>
+ 1 2 6 3 -1.
+ <_>
+ 4 2 3 3 2.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 12 5 3 5 2.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 5 5 8 12 -1.
+ <_>
+ 5 5 4 6 2.
+ <_>
+ 9 11 4 6 2.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 4 2 2 2 -1.
+ <_>
+ 4 3 2 1 2.
+ <_>
+
+ <_>
+ 4 18 12 2 -1.
+ <_>
+ 8 18 4 2 3.
+ <_>
+
+ <_>
+ 7 4 4 16 -1.
+ <_>
+ 7 12 4 8 2.
+ <_>
+
+ <_>
+ 7 6 7 8 -1.
+ <_>
+ 7 10 7 4 2.
+ <_>
+
+ <_>
+ 6 3 3 1 -1.
+ <_>
+ 7 3 1 1 3.
+ <_>
+
+ <_>
+ 11 15 2 4 -1.
+ <_>
+ 11 17 2 2 2.
+ <_>
+
+ <_>
+ 3 5 4 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+
+ <_>
+ 7 1 6 12 -1.
+ <_>
+ 7 7 6 6 2.
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 6 6 2 2 3.
+ <_>
+
+ <_>
+ 16 4 4 6 -1.
+ <_>
+ 16 6 4 2 3.
+ <_>
+
+ <_>
+ 3 3 5 2 -1.
+ <_>
+ 3 4 5 1 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 2 16 4 2 -1.
+ <_>
+ 2 17 4 1 2.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 10 13 3 3 2.
+ <_>
+ 7 16 3 3 2.
+ <_>
+
+ <_>
+ 7 0 3 4 -1.
+ <_>
+ 8 0 1 4 3.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 0 4 4 6 -1.
+ <_>
+ 0 6 4 2 3.
+ <_>
+
+ <_>
+ 5 6 12 3 -1.
+ <_>
+ 9 6 4 3 3.
+ <_>
+
+ <_>
+ 7 6 6 14 -1.
+ <_>
+ 9 6 2 14 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 6 12 2 4 -1.
+ <_>
+ 6 14 2 2 2.
+ <_>
+
+ <_>
+ 10 12 7 6 -1.
+ <_>
+ 10 14 7 2 3.
+ <_>
+
+ <_>
+ 1 0 15 2 -1.
+ <_>
+ 1 1 15 1 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 5 3 3 1 -1.
+ <_>
+ 6 3 1 1 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 3 20 10 -1.
+ <_>
+ 0 8 20 5 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 19 15 1 2 -1.
+ <_>
+ 19 16 1 1 2.
+ <_>
+
+ <_>
+ 0 2 4 8 -1.
+ <_>
+ 2 2 2 8 2.
+ <_>
+
+ <_>
+ 2 1 18 4 -1.
+ <_>
+ 11 1 9 2 2.
+ <_>
+ 2 3 9 2 2.
+ <_>
+
+ <_>
+ 8 12 1 2 -1.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 5 2 10 6 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+ 5 5 5 3 2.
+ <_>
+
+ <_>
+ 9 7 2 4 -1.
+ <_>
+ 10 7 1 4 2.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 4 5 12 8 -1.
+ <_>
+ 8 5 4 8 3.
+ <_>
+
+ <_>
+ 15 15 4 3 -1.
+ <_>
+ 15 16 4 1 3.
+ <_>
+
+ <_>
+ 8 18 3 1 -1.
+ <_>
+ 9 18 1 1 3.
+ <_>
+
+ <_>
+ 9 13 4 3 -1.
+ <_>
+ 9 14 4 1 3.
+ <_>
+
+ <_>
+ 7 13 4 3 -1.
+ <_>
+ 7 14 4 1 3.
+ <_>
+
+ <_>
+ 19 15 1 2 -1.
+ <_>
+ 19 16 1 1 2.
+ <_>
+
+ <_>
+ 0 15 8 4 -1.
+ <_>
+ 0 17 8 2 2.
+ <_>
+
+ <_>
+ 9 3 6 4 -1.
+ <_>
+ 11 3 2 4 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 3 14 14 6 -1.
+ <_>
+ 3 16 14 2 3.
+ <_>
+
+ <_>
+ 6 3 6 6 -1.
+ <_>
+ 6 6 6 3 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 14 10 3 2.
+ <_>
+
+ <_>
+ 3 10 3 4 -1.
+ <_>
+ 4 10 1 4 3.
+ <_>
+
+ <_>
+ 13 9 2 2 -1.
+ <_>
+ 13 9 1 2 2.
+ <_>
+
+ <_>
+ 5 3 6 4 -1.
+ <_>
+ 7 3 2 4 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 2 12 2 3 -1.
+ <_>
+ 2 13 2 1 3.
+ <_>
+
+ <_>
+ 9 8 3 12 -1.
+ <_>
+ 9 12 3 4 3.
+ <_>
+
+ <_>
+ 3 14 4 6 -1.
+ <_>
+ 3 14 2 3 2.
+ <_>
+ 5 17 2 3 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 16 2 1 2.
+ <_>
+
+ <_>
+ 2 15 2 2 -1.
+ <_>
+ 2 16 2 1 2.
+ <_>
+
+ <_>
+ 8 12 4 3 -1.
+ <_>
+ 8 13 4 1 3.
+ <_>
+
+ <_>
+ 0 7 20 1 -1.
+ <_>
+ 10 7 10 1 2.
+ <_>
+
+ <_>
+ 7 6 8 3 -1.
+ <_>
+ 7 6 4 3 2.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 9 7 4 2 2.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 11 1 3 5 -1.
+ <_>
+ 12 1 1 5 3.
+ <_>
+
+ <_>
+ 6 2 3 6 -1.
+ <_>
+ 7 2 1 6 3.
+ <_>
+
+ <_>
+ 14 14 6 5 -1.
+ <_>
+ 14 14 3 5 2.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 10 7 1 3 -1.
+ <_>
+ 10 8 1 1 3.
+ <_>
+
+ <_>
+ 6 6 2 2 -1.
+ <_>
+ 6 6 1 1 2.
+ <_>
+ 7 7 1 1 2.
+ <_>
+
+ <_>
+ 2 11 18 4 -1.
+ <_>
+ 11 11 9 2 2.
+ <_>
+ 2 13 9 2 2.
+ <_>
+
+ <_>
+ 6 6 2 2 -1.
+ <_>
+ 6 6 1 1 2.
+ <_>
+ 7 7 1 1 2.
+ <_>
+
+ <_>
+ 0 15 20 2 -1.
+ <_>
+ 0 16 20 1 2.
+ <_>
+
+ <_>
+ 4 14 2 3 -1.
+ <_>
+ 4 15 2 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 8 7 2 3 -1.
+ <_>
+ 8 8 2 1 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 9 7 6 4 -1.
+ <_>
+ 12 7 3 2 2.
+ <_>
+ 9 9 3 2 2.
+ <_>
+
+ <_>
+ 4 7 3 6 -1.
+ <_>
+ 4 9 3 2 3.
+ <_>
+
+ <_>
+ 11 15 4 4 -1.
+ <_>
+ 13 15 2 2 2.
+ <_>
+ 11 17 2 2 2.
+ <_>
+
+ <_>
+ 7 8 4 2 -1.
+ <_>
+ 7 9 4 1 2.
+ <_>
+
+ <_>
+ 13 1 4 3 -1.
+ <_>
+ 13 1 2 3 2.
+ <_>
+
+ <_>
+ 5 15 4 4 -1.
+ <_>
+ 5 15 2 2 2.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 9 5 4 7 -1.
+ <_>
+ 9 5 2 7 2.
+ <_>
+
+ <_>
+ 5 6 8 3 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 7 15 5 3 -1.
+ <_>
+ 7 16 5 1 3.
+ <_>
+
+ <_>
+ 11 10 4 3 -1.
+ <_>
+ 11 10 2 3 2.
+ <_>
+
+ <_>
+ 6 9 8 10 -1.
+ <_>
+ 6 14 8 5 2.
+ <_>
+
+ <_>
+ 10 11 6 2 -1.
+ <_>
+ 10 11 3 2 2.
+ <_>
+
+ <_>
+ 4 11 6 2 -1.
+ <_>
+ 7 11 3 2 2.
+ <_>
+
+ <_>
+ 11 3 8 1 -1.
+ <_>
+ 11 3 4 1 2.
+ <_>
+
+ <_>
+ 6 3 3 2 -1.
+ <_>
+ 7 3 1 2 3.
+ <_>
+
+ <_>
+ 14 5 6 5 -1.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 7 5 2 12 -1.
+ <_>
+ 7 11 2 6 2.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 4 1 2 3 -1.
+ <_>
+ 5 1 1 3 2.
+ <_>
+
+ <_>
+ 18 3 2 6 -1.
+ <_>
+ 18 5 2 2 3.
+ <_>
+
+ <_>
+ 0 3 2 6 -1.
+ <_>
+ 0 5 2 2 3.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 7 13 4 3 -1.
+ <_>
+ 7 14 4 1 3.
+ <_>
+
+ <_>
+ 18 0 2 6 -1.
+ <_>
+ 18 2 2 2 3.
+ <_>
+
+ <_>
+ 0 0 2 6 -1.
+ <_>
+ 0 2 2 2 3.
+ <_>
+
+ <_>
+ 8 14 6 3 -1.
+ <_>
+ 8 15 6 1 3.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+
+ <_>
+ 8 5 4 6 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 6 4 2 2 -1.
+ <_>
+ 7 4 1 2 2.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 10 14 7 2 2.
+ <_>
+ 3 16 7 2 2.
+ <_>
+
+ <_>
+ 6 15 6 2 -1.
+ <_>
+ 6 15 3 1 2.
+ <_>
+ 9 16 3 1 2.
+ <_>
+
+ <_>
+ 14 15 6 2 -1.
+ <_>
+ 14 16 6 1 2.
+ <_>
+
+ <_>
+ 2 12 12 8 -1.
+ <_>
+ 2 16 12 4 2.
+ <_>
+
+ <_>
+ 7 7 7 2 -1.
+ <_>
+ 7 8 7 1 2.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 0 3 18 1 2.
+ <_>
+
+ <_>
+ 9 6 2 5 -1.
+ <_>
+ 9 6 1 5 2.
+ <_>
+
+ <_>
+ 7 5 3 8 -1.
+ <_>
+ 8 5 1 8 3.
+ <_>
+
+ <_>
+ 9 6 3 4 -1.
+ <_>
+ 10 6 1 4 3.
+ <_>
+
+ <_>
+ 4 13 3 2 -1.
+ <_>
+ 4 14 3 1 2.
+ <_>
+
+ <_>
+ 9 4 6 3 -1.
+ <_>
+ 11 4 2 3 3.
+ <_>
+
+ <_>
+ 5 4 6 3 -1.
+ <_>
+ 7 4 2 3 3.
+ <_>
+
+ <_>
+ 14 11 5 2 -1.
+ <_>
+ 14 12 5 1 2.
+ <_>
+
+ <_>
+ 1 2 6 9 -1.
+ <_>
+ 3 2 2 9 3.
+ <_>
+
+ <_>
+ 14 6 6 13 -1.
+ <_>
+ 14 6 3 13 2.
+ <_>
+
+ <_>
+ 3 6 14 8 -1.
+ <_>
+ 3 6 7 4 2.
+ <_>
+ 10 10 7 4 2.
+ <_>
+
+ <_>
+ 16 0 4 11 -1.
+ <_>
+ 16 0 2 11 2.
+ <_>
+
+ <_>
+ 3 4 12 12 -1.
+ <_>
+ 3 4 6 6 2.
+ <_>
+ 9 10 6 6 2.
+ <_>
+
+ <_>
+ 11 4 5 3 -1.
+ <_>
+ 11 5 5 1 3.
+ <_>
+
+ <_>
+ 4 11 4 2 -1.
+ <_>
+ 4 12 4 1 2.
+ <_>
+
+ <_>
+ 10 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 8 7 2 2 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 5 6 3 3 -1.
+ <_>
+ 5 7 3 1 3.
+ <_>
+
+ <_>
+ 10 0 3 3 -1.
+ <_>
+ 11 0 1 3 3.
+ <_>
+
+ <_>
+ 5 6 6 2 -1.
+ <_>
+ 5 6 3 1 2.
+ <_>
+ 8 7 3 1 2.
+ <_>
+
+ <_>
+ 12 16 4 3 -1.
+ <_>
+ 12 17 4 1 3.
+ <_>
+
+ <_>
+ 3 12 3 2 -1.
+ <_>
+ 3 13 3 1 2.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 4 4 5 3 -1.
+ <_>
+ 4 5 5 1 3.
+ <_>
+
+ <_>
+ 12 16 4 3 -1.
+ <_>
+ 12 17 4 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 9 0 2 2 -1.
+ <_>
+ 9 1 2 1 2.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 0 13 6 3 -1.
+ <_>
+ 2 13 2 3 3.
+ <_>
+
+ <_>
+ 16 14 3 2 -1.
+ <_>
+ 16 15 3 1 2.
+ <_>
+
+ <_>
+ 1 18 18 2 -1.
+ <_>
+ 7 18 6 2 3.
+ <_>
+
+ <_>
+ 16 14 3 2 -1.
+ <_>
+ 16 15 3 1 2.
+ <_>
+
+ <_>
+ 1 14 3 2 -1.
+ <_>
+ 1 15 3 1 2.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 5 14 8 3 -1.
+ <_>
+ 5 15 8 1 3.
+ <_>
+
+ <_>
+ 10 6 4 14 -1.
+ <_>
+ 10 6 2 14 2.
+ <_>
+
+ <_>
+ 6 6 4 14 -1.
+ <_>
+ 8 6 2 14 2.
+ <_>
+
+ <_>
+ 13 5 2 3 -1.
+ <_>
+ 13 6 2 1 3.
+ <_>
+
+ <_>
+ 7 16 6 1 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 7 0 3 3 -1.
+ <_>
+ 8 0 1 3 3.
+ <_>
+
+ <_>
+ 4 0 16 18 -1.
+ <_>
+ 4 9 16 9 2.
+ <_>
+
+ <_>
+ 1 1 16 14 -1.
+ <_>
+ 1 8 16 7 2.
+ <_>
+
+ <_>
+ 3 9 15 4 -1.
+ <_>
+ 8 9 5 4 3.
+ <_>
+
+ <_>
+ 6 12 7 3 -1.
+ <_>
+ 6 13 7 1 3.
+ <_>
+
+ <_>
+ 14 15 2 3 -1.
+ <_>
+ 14 16 2 1 3.
+ <_>
+
+ <_>
+ 2 3 16 14 -1.
+ <_>
+ 2 3 8 7 2.
+ <_>
+ 10 10 8 7 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 4 15 2 3 -1.
+ <_>
+ 4 16 2 1 3.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 1 1 8 3 -1.
+ <_>
+ 1 2 8 1 3.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 5 11 5 9 -1.
+ <_>
+ 5 14 5 3 3.
+ <_>
+
+ <_>
+ 16 0 4 11 -1.
+ <_>
+ 16 0 2 11 2.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 16 3 3 7 -1.
+ <_>
+ 17 3 1 7 3.
+ <_>
+
+ <_>
+ 1 3 3 7 -1.
+ <_>
+ 2 3 1 7 3.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 7 12 6 4 3.
+ <_>
+
+ <_>
+ 0 0 4 11 -1.
+ <_>
+ 2 0 2 11 2.
+ <_>
+
+ <_>
+ 14 0 6 20 -1.
+ <_>
+ 14 0 3 20 2.
+ <_>
+
+ <_>
+ 0 3 1 2 -1.
+ <_>
+ 0 4 1 1 2.
+ <_>
+
+ <_>
+ 5 5 10 8 -1.
+ <_>
+ 10 5 5 4 2.
+ <_>
+ 5 9 5 4 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+ 10 9 6 2 2.
+ <_>
+
+ <_>
+ 2 1 6 4 -1.
+ <_>
+ 5 1 3 4 2.
+ <_>
+
+ <_>
+ 9 7 6 4 -1.
+ <_>
+ 12 7 3 2 2.
+ <_>
+ 9 9 3 2 2.
+ <_>
+
+ <_>
+ 5 6 2 6 -1.
+ <_>
+ 5 9 2 3 2.
+ <_>
+
+ <_>
+ 9 16 6 4 -1.
+ <_>
+ 12 16 3 2 2.
+ <_>
+ 9 18 3 2 2.
+ <_>
+
+ <_>
+ 9 4 2 12 -1.
+ <_>
+ 9 10 2 6 2.
+ <_>
+
+ <_>
+ 7 1 6 18 -1.
+ <_>
+ 9 1 2 18 3.
+ <_>
+
+ <_>
+ 4 12 12 2 -1.
+ <_>
+ 8 12 4 2 3.
+ <_>
+
+ <_>
+ 8 8 6 2 -1.
+ <_>
+ 8 9 6 1 2.
+ <_>
+
+ <_>
+ 8 0 3 6 -1.
+ <_>
+ 9 0 1 6 3.
+ <_>
+
+ <_>
+ 11 18 3 2 -1.
+ <_>
+ 11 19 3 1 2.
+ <_>
+
+ <_>
+ 1 1 17 4 -1.
+ <_>
+ 1 3 17 2 2.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 12 3 2 17 -1.
+ <_>
+ 12 3 1 17 2.
+ <_>
+
+ <_>
+ 4 7 6 1 -1.
+ <_>
+ 6 7 2 1 3.
+ <_>
+
+ <_>
+ 18 3 2 3 -1.
+ <_>
+ 18 4 2 1 3.
+ <_>
+
+ <_>
+ 8 4 3 4 -1.
+ <_>
+ 8 6 3 2 2.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 4 10 12 5 2.
+ <_>
+
+ <_>
+ 5 18 4 2 -1.
+ <_>
+ 7 18 2 2 2.
+ <_>
+
+ <_>
+ 17 2 3 6 -1.
+ <_>
+ 17 4 3 2 3.
+ <_>
+
+ <_>
+ 7 7 6 6 -1.
+ <_>
+ 9 7 2 6 3.
+ <_>
+
+ <_>
+ 17 2 3 6 -1.
+ <_>
+ 17 4 3 2 3.
+ <_>
+
+ <_>
+ 8 0 3 4 -1.
+ <_>
+ 9 0 1 4 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 0 12 6 3 -1.
+ <_>
+ 0 13 6 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 3 12 2 3 -1.
+ <_>
+ 3 13 2 1 3.
+ <_>
+
+ <_>
+ 5 6 12 7 -1.
+ <_>
+ 9 6 4 7 3.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 14 6 1 3 -1.
+ <_>
+ 14 7 1 1 3.
+ <_>
+
+ <_>
+ 2 0 3 14 -1.
+ <_>
+ 3 0 1 14 3.
+ <_>
+
+ <_>
+ 12 14 5 6 -1.
+ <_>
+ 12 16 5 2 3.
+ <_>
+
+ <_>
+ 4 14 5 6 -1.
+ <_>
+ 4 16 5 2 3.
+ <_>
+
+ <_>
+ 11 10 2 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 5 0 3 14 -1.
+ <_>
+ 6 0 1 14 3.
+ <_>
+
+ <_>
+ 10 15 2 3 -1.
+ <_>
+ 10 16 2 1 3.
+ <_>
+
+ <_>
+ 0 2 2 3 -1.
+ <_>
+ 0 3 2 1 3.
+ <_>
+
+ <_>
+ 5 11 12 6 -1.
+ <_>
+ 5 14 12 3 2.
+ <_>
+
+ <_>
+ 6 11 3 9 -1.
+ <_>
+ 6 14 3 3 3.
+ <_>
+
+ <_>
+ 11 10 2 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 5 6 1 3 -1.
+ <_>
+ 5 7 1 1 3.
+ <_>
+
+ <_>
+ 4 9 13 3 -1.
+ <_>
+ 4 10 13 1 3.
+ <_>
+
+ <_>
+ 1 7 15 6 -1.
+ <_>
+ 6 7 5 6 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 8 5 4 6 3.
+ <_>
+
+ <_>
+ 8 10 4 3 -1.
+ <_>
+ 8 11 4 1 3.
+ <_>
+
+ <_>
+ 15 14 1 3 -1.
+ <_>
+ 15 15 1 1 3.
+ <_>
+
+ <_>
+ 1 11 5 3 -1.
+ <_>
+ 1 12 5 1 3.
+ <_>
+
+ <_>
+ 7 1 7 12 -1.
+ <_>
+ 7 7 7 6 2.
+ <_>
+
+ <_>
+ 0 1 6 10 -1.
+ <_>
+ 0 1 3 5 2.
+ <_>
+ 3 6 3 5 2.
+ <_>
+
+ <_>
+ 16 1 4 3 -1.
+ <_>
+ 16 2 4 1 3.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 12 2 3 5 -1.
+ <_>
+ 13 2 1 5 3.
+ <_>
+
+ <_>
+ 0 3 4 6 -1.
+ <_>
+ 0 5 4 2 3.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 8 18 3 1 -1.
+ <_>
+ 9 18 1 1 3.
+ <_>
+
+ <_>
+ 11 10 2 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 7 10 2 2 -1.
+ <_>
+ 7 10 1 1 2.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 11 11 4 4 -1.
+ <_>
+ 11 13 4 2 2.
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 9 12 1 8 3.
+ <_>
+
+ <_>
+ 13 0 6 3 -1.
+ <_>
+ 13 1 6 1 3.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 9 8 1 4 3.
+ <_>
+
+ <_>
+ 5 7 10 10 -1.
+ <_>
+ 10 7 5 5 2.
+ <_>
+ 5 12 5 5 2.
+ <_>
+
+ <_>
+ 3 18 8 2 -1.
+ <_>
+ 3 18 4 1 2.
+ <_>
+ 7 19 4 1 2.
+ <_>
+
+ <_>
+ 10 2 6 8 -1.
+ <_>
+ 12 2 2 8 3.
+ <_>
+
+ <_>
+ 4 2 6 8 -1.
+ <_>
+ 6 2 2 8 3.
+ <_>
+
+ <_>
+ 11 0 3 7 -1.
+ <_>
+ 12 0 1 7 3.
+ <_>
+
+ <_>
+ 7 11 2 1 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 15 14 1 3 -1.
+ <_>
+ 15 15 1 1 3.
+ <_>
+
+ <_>
+ 7 15 2 2 -1.
+ <_>
+ 7 15 1 1 2.
+ <_>
+ 8 16 1 1 2.
+ <_>
+
+ <_>
+ 15 14 1 3 -1.
+ <_>
+ 15 15 1 1 3.
+ <_>
+
+ <_>
+ 6 0 3 7 -1.
+ <_>
+ 7 0 1 7 3.
+ <_>
+
+ <_>
+ 18 1 2 7 -1.
+ <_>
+ 18 1 1 7 2.
+ <_>
+
+ <_>
+ 2 0 8 20 -1.
+ <_>
+ 2 10 8 10 2.
+ <_>
+
+ <_>
+ 3 0 15 6 -1.
+ <_>
+ 3 2 15 2 3.
+ <_>
+
+ <_>
+ 4 3 12 2 -1.
+ <_>
+ 4 4 12 1 2.
+ <_>
+
+ <_>
+ 16 0 4 5 -1.
+ <_>
+ 16 0 2 5 2.
+ <_>
+
+ <_>
+ 7 0 3 4 -1.
+ <_>
+ 8 0 1 4 3.
+ <_>
+
+ <_>
+ 16 0 4 5 -1.
+ <_>
+ 16 0 2 5 2.
+ <_>
+
+ <_>
+ 1 7 6 13 -1.
+ <_>
+ 3 7 2 13 3.
+ <_>
+
+ <_>
+ 16 0 4 5 -1.
+ <_>
+ 16 0 2 5 2.
+ <_>
+
+ <_>
+ 0 0 4 5 -1.
+ <_>
+ 2 0 2 5 2.
+ <_>
+
+ <_>
+ 14 12 3 6 -1.
+ <_>
+ 14 14 3 2 3.
+ <_>
+
+ <_>
+ 3 12 3 6 -1.
+ <_>
+ 3 14 3 2 3.
+ <_>
+
+ <_>
+ 16 1 4 3 -1.
+ <_>
+ 16 2 4 1 3.
+ <_>
+
+ <_>
+ 8 7 2 10 -1.
+ <_>
+ 8 7 1 5 2.
+ <_>
+ 9 12 1 5 2.
+ <_>
+
+ <_>
+ 11 11 4 4 -1.
+ <_>
+ 11 13 4 2 2.
+ <_>
+
+ <_>
+ 0 1 4 3 -1.
+ <_>
+ 0 2 4 1 3.
+ <_>
+
+ <_>
+ 13 4 1 3 -1.
+ <_>
+ 13 5 1 1 3.
+ <_>
+
+ <_>
+ 7 15 3 5 -1.
+ <_>
+ 8 15 1 5 3.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 10 6 4 14 -1.
+ <_>
+ 10 6 2 14 2.
+ <_>
+
+ <_>
+ 0 5 5 6 -1.
+ <_>
+ 0 7 5 2 3.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 0 0 18 10 -1.
+ <_>
+ 6 0 6 10 3.
+ <_>
+
+ <_>
+ 10 6 4 14 -1.
+ <_>
+ 10 6 2 14 2.
+ <_>
+
+ <_>
+ 6 6 4 14 -1.
+ <_>
+ 8 6 2 14 2.
+ <_>
+
+ <_>
+ 13 4 1 3 -1.
+ <_>
+ 13 5 1 1 3.
+ <_>
+
+ <_>
+ 5 1 2 3 -1.
+ <_>
+ 6 1 1 3 2.
+ <_>
+
+ <_>
+ 18 1 2 18 -1.
+ <_>
+ 19 1 1 9 2.
+ <_>
+ 18 10 1 9 2.
+ <_>
+
+ <_>
+ 2 1 4 3 -1.
+ <_>
+ 2 2 4 1 3.
+ <_>
+
+ <_>
+ 18 1 2 18 -1.
+ <_>
+ 19 1 1 9 2.
+ <_>
+ 18 10 1 9 2.
+ <_>
+
+ <_>
+ 1 14 4 6 -1.
+ <_>
+ 1 14 2 3 2.
+ <_>
+ 3 17 2 3 2.
+ <_>
+
+ <_>
+ 10 11 7 6 -1.
+ <_>
+ 10 13 7 2 3.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 11 0 3 4 -1.
+ <_>
+ 12 0 1 4 3.
+ <_>
+
+ <_>
+ 5 10 5 6 -1.
+ <_>
+ 5 13 5 3 2.
+ <_>
+
+ <_>
+ 14 6 1 8 -1.
+ <_>
+ 14 10 1 4 2.
+ <_>
+
+ <_>
+ 1 7 18 6 -1.
+ <_>
+ 1 7 9 3 2.
+ <_>
+ 10 10 9 3 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 5 9 4 5 -1.
+ <_>
+ 7 9 2 5 2.
+ <_>
+
+ <_>
+ 7 6 6 3 -1.
+ <_>
+ 9 6 2 3 3.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 7 15 2 4 -1.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 1 0 19 9 -1.
+ <_>
+ 1 3 19 3 3.
+ <_>
+
+ <_>
+ 3 7 3 6 -1.
+ <_>
+ 3 9 3 2 3.
+ <_>
+
+ <_>
+ 13 7 4 4 -1.
+ <_>
+ 15 7 2 2 2.
+ <_>
+ 13 9 2 2 2.
+ <_>
+
+ <_>
+ 3 7 4 4 -1.
+ <_>
+ 3 7 2 2 2.
+ <_>
+ 5 9 2 2 2.
+ <_>
+
+ <_>
+ 9 6 10 8 -1.
+ <_>
+ 9 10 10 4 2.
+ <_>
+
+ <_>
+ 3 8 14 12 -1.
+ <_>
+ 3 14 14 6 2.
+ <_>
+
+ <_>
+ 6 5 10 12 -1.
+ <_>
+ 11 5 5 6 2.
+ <_>
+ 6 11 5 6 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 9 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 9 4 2 4 -1.
+ <_>
+ 9 6 2 2 2.
+ <_>
+
+ <_>
+ 9 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 11 2 6 1 -1.
+ <_>
+ 13 2 2 1 3.
+ <_>
+
+ <_>
+ 3 2 6 1 -1.
+ <_>
+ 5 2 2 1 3.
+ <_>
+
+ <_>
+ 13 5 2 3 -1.
+ <_>
+ 13 6 2 1 3.
+ <_>
+
+ <_>
+ 0 10 1 4 -1.
+ <_>
+ 0 12 1 2 2.
+ <_>
+
+ <_>
+ 13 5 2 3 -1.
+ <_>
+ 13 6 2 1 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 6 15 9 2 -1.
+ <_>
+ 6 16 9 1 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 18 4 2 4 -1.
+ <_>
+ 18 6 2 2 2.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 15 16 3 2 -1.
+ <_>
+ 15 17 3 1 2.
+ <_>
+
+ <_>
+ 0 0 3 9 -1.
+ <_>
+ 0 3 3 3 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 9 8 3 1 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 5 1 6 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 7 6 8 12 -1.
+ <_>
+ 11 6 4 6 2.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 5 6 8 12 -1.
+ <_>
+ 5 6 4 6 2.
+ <_>
+ 9 12 4 6 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 2 16 3 2 -1.
+ <_>
+ 2 17 3 1 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 2 12 6 6 -1.
+ <_>
+ 2 14 6 2 3.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 6 14 6 3 -1.
+ <_>
+ 6 15 6 1 3.
+ <_>
+
+ <_>
+ 14 15 5 3 -1.
+ <_>
+ 14 16 5 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 14 15 5 3 -1.
+ <_>
+ 14 16 5 1 3.
+ <_>
+
+ <_>
+ 5 3 6 2 -1.
+ <_>
+ 7 3 2 2 3.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 1 15 5 3 -1.
+ <_>
+ 1 16 5 1 3.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 10 13 2 3 2.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 7 8 3 3 -1.
+ <_>
+ 8 8 1 3 3.
+ <_>
+
+ <_>
+ 12 0 5 4 -1.
+ <_>
+ 12 2 5 2 2.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 0 2 10 1 2.
+ <_>
+ 10 3 10 1 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 4 3 6 1 -1.
+ <_>
+ 6 3 2 1 3.
+ <_>
+
+ <_>
+ 4 18 13 2 -1.
+ <_>
+ 4 19 13 1 2.
+ <_>
+
+ <_>
+ 2 10 3 6 -1.
+ <_>
+ 2 12 3 2 3.
+ <_>
+
+ <_>
+ 14 12 6 8 -1.
+ <_>
+ 17 12 3 4 2.
+ <_>
+ 14 16 3 4 2.
+ <_>
+
+ <_>
+ 4 13 10 6 -1.
+ <_>
+ 4 13 5 3 2.
+ <_>
+ 9 16 5 3 2.
+ <_>
+
+ <_>
+ 14 12 1 2 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 14 12 2 2 -1.
+ <_>
+ 14 13 2 1 2.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 8 12 9 2 -1.
+ <_>
+ 8 13 9 1 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 11 10 3 6 -1.
+ <_>
+ 11 13 3 3 2.
+ <_>
+
+ <_>
+ 5 6 9 12 -1.
+ <_>
+ 5 12 9 6 2.
+ <_>
+
+ <_>
+ 11 10 3 6 -1.
+ <_>
+ 11 13 3 3 2.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 13 3 3 2.
+ <_>
+
+ <_>
+ 5 4 11 3 -1.
+ <_>
+ 5 5 11 1 3.
+ <_>
+
+ <_>
+ 7 1 5 10 -1.
+ <_>
+ 7 6 5 5 2.
+ <_>
+
+ <_>
+ 2 8 18 2 -1.
+ <_>
+ 2 9 18 1 2.
+ <_>
+
+ <_>
+ 7 17 5 3 -1.
+ <_>
+ 7 18 5 1 3.
+ <_>
+
+ <_>
+ 5 9 12 1 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 0 14 6 6 -1.
+ <_>
+ 0 14 3 3 2.
+ <_>
+ 3 17 3 3 2.
+ <_>
+
+ <_>
+ 5 9 12 1 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 3 9 12 1 -1.
+ <_>
+ 7 9 4 1 3.
+ <_>
+
+ <_>
+ 14 10 6 7 -1.
+ <_>
+ 14 10 3 7 2.
+ <_>
+
+ <_>
+ 1 0 16 2 -1.
+ <_>
+ 1 1 16 1 2.
+ <_>
+
+ <_>
+ 10 9 10 9 -1.
+ <_>
+ 10 12 10 3 3.
+ <_>
+
+ <_>
+ 0 1 10 2 -1.
+ <_>
+ 5 1 5 2 2.
+ <_>
+
+ <_>
+ 17 3 2 3 -1.
+ <_>
+ 17 4 2 1 3.
+ <_>
+
+ <_>
+ 1 3 2 3 -1.
+ <_>
+ 1 4 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 10 7 1 6 3.
+ <_>
+
+ <_>
+ 6 5 4 3 -1.
+ <_>
+ 8 5 2 3 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 9 5 2 6 3.
+ <_>
+
+ <_>
+ 3 4 12 12 -1.
+ <_>
+ 3 4 6 6 2.
+ <_>
+ 9 10 6 6 2.
+ <_>
+
+ <_>
+ 9 2 6 15 -1.
+ <_>
+ 11 2 2 15 3.
+ <_>
+
+ <_>
+ 2 2 6 17 -1.
+ <_>
+ 4 2 2 17 3.
+ <_>
+
+ <_>
+ 14 10 6 7 -1.
+ <_>
+ 14 10 3 7 2.
+ <_>
+
+ <_>
+ 0 10 6 7 -1.
+ <_>
+ 3 10 3 7 2.
+ <_>
+
+ <_>
+ 9 2 6 15 -1.
+ <_>
+ 11 2 2 15 3.
+ <_>
+
+ <_>
+ 5 2 6 15 -1.
+ <_>
+ 7 2 2 15 3.
+ <_>
+
+ <_>
+ 17 9 3 6 -1.
+ <_>
+ 17 11 3 2 3.
+ <_>
+
+ <_>
+ 6 7 6 6 -1.
+ <_>
+ 8 7 2 6 3.
+ <_>
+
+ <_>
+ 1 10 18 6 -1.
+ <_>
+ 10 10 9 3 2.
+ <_>
+ 1 13 9 3 2.
+ <_>
+
+ <_>
+ 0 9 10 9 -1.
+ <_>
+ 0 12 10 3 3.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 5 12 3 4 -1.
+ <_>
+ 5 14 3 2 2.
+ <_>
+
+ <_>
+ 3 3 16 12 -1.
+ <_>
+ 3 9 16 6 2.
+ <_>
+
+ <_>
+ 1 1 12 12 -1.
+ <_>
+ 1 1 6 6 2.
+ <_>
+ 7 7 6 6 2.
+ <_>
+
+ <_>
+ 10 4 2 4 -1.
+ <_>
+ 11 4 1 2 2.
+ <_>
+ 10 6 1 2 2.
+ <_>
+
+ <_>
+ 0 9 10 2 -1.
+ <_>
+ 0 9 5 1 2.
+ <_>
+ 5 10 5 1 2.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 9 12 3 1 3.
+ <_>
+
+ <_>
+ 3 12 9 2 -1.
+ <_>
+ 3 13 9 1 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 3 4 13 6 -1.
+ <_>
+ 3 6 13 2 3.
+ <_>
+
+ <_>
+ 9 7 6 4 -1.
+ <_>
+ 12 7 3 2 2.
+ <_>
+ 9 9 3 2 2.
+ <_>
+
+ <_>
+ 1 0 6 8 -1.
+ <_>
+ 4 0 3 8 2.
+ <_>
+
+ <_>
+ 9 5 2 12 -1.
+ <_>
+ 9 11 2 6 2.
+ <_>
+
+ <_>
+ 4 4 3 10 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 6 17 8 3 -1.
+ <_>
+ 6 18 8 1 3.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 13 2 3 2 -1.
+ <_>
+ 13 3 3 1 2.
+ <_>
+
+ <_>
+ 7 5 4 5 -1.
+ <_>
+ 9 5 2 5 2.
+ <_>
+
+ <_>
+ 12 14 3 6 -1.
+ <_>
+ 12 16 3 2 3.
+ <_>
+
+ <_>
+ 1 11 8 2 -1.
+ <_>
+ 1 12 8 1 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 0 5 3 6 -1.
+ <_>
+ 0 7 3 2 3.
+ <_>
+
+ <_>
+ 13 2 3 2 -1.
+ <_>
+ 13 3 3 1 2.
+ <_>
+
+ <_>
+ 4 14 4 6 -1.
+ <_>
+ 4 14 2 3 2.
+ <_>
+ 6 17 2 3 2.
+ <_>
+
+ <_>
+ 13 2 3 2 -1.
+ <_>
+ 13 3 3 1 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 14 0 6 8 -1.
+ <_>
+ 17 0 3 4 2.
+ <_>
+ 14 4 3 4 2.
+ <_>
+
+ <_>
+ 7 17 3 2 -1.
+ <_>
+ 8 17 1 2 3.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 0 4 6 2.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 14 0 2 10 -1.
+ <_>
+ 15 0 1 5 2.
+ <_>
+ 14 5 1 5 2.
+ <_>
+
+ <_>
+ 5 3 8 6 -1.
+ <_>
+ 5 3 4 3 2.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 9 14 1 2 -1.
+ <_>
+ 9 15 1 1 2.
+ <_>
+
+ <_>
+ 15 10 4 3 -1.
+ <_>
+ 15 11 4 1 3.
+ <_>
+
+ <_>
+ 8 14 2 3 -1.
+ <_>
+ 8 15 2 1 3.
+ <_>
+
+ <_>
+ 3 13 14 4 -1.
+ <_>
+ 10 13 7 2 2.
+ <_>
+ 3 15 7 2 2.
+ <_>
+
+ <_>
+ 1 10 4 3 -1.
+ <_>
+ 1 11 4 1 3.
+ <_>
+
+ <_>
+ 9 11 6 1 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 3 5 16 15 -1.
+ <_>
+ 3 10 16 5 3.
+ <_>
+
+ <_>
+ 6 12 4 2 -1.
+ <_>
+ 8 12 2 2 2.
+ <_>
+
+ <_>
+ 4 4 12 10 -1.
+ <_>
+ 10 4 6 5 2.
+ <_>
+ 4 9 6 5 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 10 12 2 4 2.
+ <_>
+ 8 16 2 4 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 12 2 3 2 -1.
+ <_>
+ 13 2 1 2 3.
+ <_>
+
+ <_>
+ 8 15 3 2 -1.
+ <_>
+ 8 16 3 1 2.
+ <_>
+
+ <_>
+ 6 0 9 14 -1.
+ <_>
+ 9 0 3 14 3.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 10 6 1 3 2.
+ <_>
+
+ <_>
+ 10 8 2 3 -1.
+ <_>
+ 10 9 2 1 3.
+ <_>
+
+ <_>
+ 0 9 4 6 -1.
+ <_>
+ 0 11 4 2 3.
+ <_>
+
+ <_>
+ 6 0 8 2 -1.
+ <_>
+ 6 1 8 1 2.
+ <_>
+
+ <_>
+ 6 14 7 3 -1.
+ <_>
+ 6 15 7 1 3.
+ <_>
+
+ <_>
+ 8 10 8 9 -1.
+ <_>
+ 8 13 8 3 3.
+ <_>
+
+ <_>
+ 5 2 3 2 -1.
+ <_>
+ 6 2 1 2 3.
+ <_>
+
+ <_>
+ 14 1 6 8 -1.
+ <_>
+ 17 1 3 4 2.
+ <_>
+ 14 5 3 4 2.
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 0 1 3 4 2.
+ <_>
+ 3 5 3 4 2.
+ <_>
+
+ <_>
+ 1 2 18 6 -1.
+ <_>
+ 10 2 9 3 2.
+ <_>
+ 1 5 9 3 2.
+ <_>
+
+ <_>
+ 9 3 2 1 -1.
+ <_>
+ 10 3 1 1 2.
+ <_>
+
+ <_>
+ 13 2 4 6 -1.
+ <_>
+ 15 2 2 3 2.
+ <_>
+ 13 5 2 3 2.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 13 5 1 3 -1.
+ <_>
+ 13 6 1 1 3.
+ <_>
+
+ <_>
+ 2 16 5 3 -1.
+ <_>
+ 2 17 5 1 3.
+ <_>
+
+ <_>
+ 13 2 4 6 -1.
+ <_>
+ 15 2 2 3 2.
+ <_>
+ 13 5 2 3 2.
+ <_>
+
+ <_>
+ 3 2 4 6 -1.
+ <_>
+ 3 2 2 3 2.
+ <_>
+ 5 5 2 3 2.
+ <_>
+
+ <_>
+ 13 5 1 2 -1.
+ <_>
+ 13 6 1 1 2.
+ <_>
+
+ <_>
+ 5 5 2 2 -1.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 13 9 2 2 -1.
+ <_>
+ 13 9 1 2 2.
+ <_>
+
+ <_>
+ 5 9 2 2 -1.
+ <_>
+ 6 9 1 2 2.
+ <_>
+
+ <_>
+ 13 17 3 2 -1.
+ <_>
+ 13 18 3 1 2.
+ <_>
+
+ <_>
+ 6 16 4 4 -1.
+ <_>
+ 6 16 2 2 2.
+ <_>
+ 8 18 2 2 2.
+ <_>
+
+ <_>
+ 9 16 2 3 -1.
+ <_>
+ 9 17 2 1 3.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 9 14 2 6 -1.
+ <_>
+ 9 17 2 3 2.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 1 10 18 6 -1.
+ <_>
+ 1 12 18 2 3.
+ <_>
+
+ <_>
+ 8 11 4 2 -1.
+ <_>
+ 8 12 4 1 2.
+ <_>
+
+ <_>
+ 7 9 6 2 -1.
+ <_>
+ 7 10 6 1 2.
+ <_>
+
+ <_>
+ 8 8 2 3 -1.
+ <_>
+ 8 9 2 1 3.
+ <_>
+
+ <_>
+ 17 5 3 4 -1.
+ <_>
+ 18 5 1 4 3.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 9 0 3 2 -1.
+ <_>
+ 10 0 1 2 3.
+ <_>
+
+ <_>
+ 1 8 1 6 -1.
+ <_>
+ 1 10 1 2 3.
+ <_>
+
+ <_>
+ 12 17 8 3 -1.
+ <_>
+ 12 17 4 3 2.
+ <_>
+
+ <_>
+ 0 5 3 4 -1.
+ <_>
+ 1 5 1 4 3.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+ 8 12 1 1 2.
+ <_>
+
+ <_>
+ 11 3 2 5 -1.
+ <_>
+ 11 3 1 5 2.
+ <_>
+
+ <_>
+ 7 3 2 5 -1.
+ <_>
+ 8 3 1 5 2.
+ <_>
+
+ <_>
+ 15 13 2 3 -1.
+ <_>
+ 15 14 2 1 3.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 5 7 2 1 3.
+ <_>
+
+ <_>
+ 4 19 15 1 -1.
+ <_>
+ 9 19 5 1 3.
+ <_>
+
+ <_>
+ 1 19 15 1 -1.
+ <_>
+ 6 19 5 1 3.
+ <_>
+
+ <_>
+ 15 13 2 3 -1.
+ <_>
+ 15 14 2 1 3.
+ <_>
+
+ <_>
+ 5 0 4 15 -1.
+ <_>
+ 7 0 2 15 2.
+ <_>
+
+ <_>
+ 9 6 2 5 -1.
+ <_>
+ 9 6 1 5 2.
+ <_>
+
+ <_>
+ 9 5 2 7 -1.
+ <_>
+ 10 5 1 7 2.
+ <_>
+
+ <_>
+ 16 11 3 3 -1.
+ <_>
+ 16 12 3 1 3.
+ <_>
+
+ <_>
+ 1 11 3 3 -1.
+ <_>
+ 1 12 3 1 3.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 7 8 1 3.
+ <_>
+
+ <_>
+ 0 15 6 2 -1.
+ <_>
+ 0 16 6 1 2.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 7 0 6 6 3.
+ <_>
+
+ <_>
+ 6 0 3 4 -1.
+ <_>
+ 7 0 1 4 3.
+ <_>
+
+ <_>
+ 14 10 4 10 -1.
+ <_>
+ 16 10 2 5 2.
+ <_>
+ 14 15 2 5 2.
+ <_>
+
+ <_>
+ 3 2 3 2 -1.
+ <_>
+ 4 2 1 2 3.
+ <_>
+
+ <_>
+ 11 2 2 2 -1.
+ <_>
+ 11 3 2 1 2.
+ <_>
+
+ <_>
+ 2 10 4 10 -1.
+ <_>
+ 2 10 2 5 2.
+ <_>
+ 4 15 2 5 2.
+ <_>
+
+ <_>
+ 0 13 20 6 -1.
+ <_>
+ 10 13 10 3 2.
+ <_>
+ 0 16 10 3 2.
+ <_>
+
+ <_>
+ 0 5 2 15 -1.
+ <_>
+ 1 5 1 15 2.
+ <_>
+
+ <_>
+ 1 7 18 4 -1.
+ <_>
+ 10 7 9 2 2.
+ <_>
+ 1 9 9 2 2.
+ <_>
+
+ <_>
+ 0 0 2 17 -1.
+ <_>
+ 1 0 1 17 2.
+ <_>
+
+ <_>
+ 2 6 16 6 -1.
+ <_>
+ 10 6 8 3 2.
+ <_>
+ 2 9 8 3 2.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 8 15 4 2 -1.
+ <_>
+ 8 16 4 1 2.
+ <_>
+
+ <_>
+ 5 2 8 2 -1.
+ <_>
+ 5 2 4 1 2.
+ <_>
+ 9 3 4 1 2.
+ <_>
+
+ <_>
+ 6 11 8 6 -1.
+ <_>
+ 6 14 8 3 2.
+ <_>
+
+ <_>
+ 9 13 2 2 -1.
+ <_>
+ 9 14 2 1 2.
+ <_>
+
+ <_>
+ 18 4 2 6 -1.
+ <_>
+ 18 6 2 2 3.
+ <_>
+
+ <_>
+ 9 12 2 2 -1.
+ <_>
+ 9 13 2 1 2.
+ <_>
+
+ <_>
+ 18 4 2 6 -1.
+ <_>
+ 18 6 2 2 3.
+ <_>
+
+ <_>
+ 9 13 1 3 -1.
+ <_>
+ 9 14 1 1 3.
+ <_>
+
+ <_>
+ 18 4 2 6 -1.
+ <_>
+ 18 6 2 2 3.
+ <_>
+
+ <_>
+ 0 4 2 6 -1.
+ <_>
+ 0 6 2 2 3.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 13 13 4 3 -1.
+ <_>
+ 13 14 4 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 5 2 10 6 -1.
+ <_>
+ 5 4 10 2 3.
+ <_>
+
+ <_>
+ 3 13 4 3 -1.
+ <_>
+ 3 14 4 1 3.
+ <_>
+
+ <_>
+ 3 7 15 5 -1.
+ <_>
+ 8 7 5 5 3.
+ <_>
+
+ <_>
+ 3 7 12 2 -1.
+ <_>
+ 7 7 4 2 3.
+ <_>
+
+ <_>
+ 10 3 3 9 -1.
+ <_>
+ 11 3 1 9 3.
+ <_>
+
+ <_>
+ 8 6 4 6 -1.
+ <_>
+ 10 6 2 6 2.
+ <_>
+
+ <_>
+ 9 7 4 3 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 0 9 4 9 -1.
+ <_>
+ 2 9 2 9 2.
+ <_>
+
+ <_>
+ 9 13 3 5 -1.
+ <_>
+ 10 13 1 5 3.
+ <_>
+
+ <_>
+ 7 7 6 3 -1.
+ <_>
+ 9 7 2 3 3.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 9 7 4 2 2.
+ <_>
+
+ <_>
+ 5 9 12 2 -1.
+ <_>
+ 9 9 4 2 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 10 12 3 1 -1.
+ <_>
+ 11 12 1 1 3.
+ <_>
+
+ <_>
+ 0 1 11 15 -1.
+ <_>
+ 0 6 11 5 3.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 7 0 6 6 3.
+ <_>
+
+ <_>
+ 7 7 6 1 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 5 16 6 4 -1.
+ <_>
+ 5 16 3 2 2.
+ <_>
+ 8 18 3 2 2.
+ <_>
+
+ <_>
+ 6 5 9 8 -1.
+ <_>
+ 6 9 9 4 2.
+ <_>
+
+ <_>
+ 5 10 2 6 -1.
+ <_>
+ 5 13 2 3 2.
+ <_>
+
+ <_>
+ 7 6 8 10 -1.
+ <_>
+ 11 6 4 5 2.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 5 6 8 10 -1.
+ <_>
+ 5 6 4 5 2.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 9 5 2 2 -1.
+ <_>
+ 9 6 2 1 2.
+ <_>
+
+ <_>
+ 5 12 8 2 -1.
+ <_>
+ 5 13 8 1 2.
+ <_>
+
+ <_>
+ 10 2 8 2 -1.
+ <_>
+ 10 3 8 1 2.
+ <_>
+
+ <_>
+ 4 0 2 10 -1.
+ <_>
+ 4 0 1 5 2.
+ <_>
+ 5 5 1 5 2.
+ <_>
+
+ <_>
+ 9 10 2 2 -1.
+ <_>
+ 9 11 2 1 2.
+ <_>
+
+ <_>
+ 2 8 15 3 -1.
+ <_>
+ 2 9 15 1 3.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 7 2 3 2 -1.
+ <_>
+ 8 2 1 2 3.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 17 2 3 6 -1.
+ <_>
+ 17 4 3 2 3.
+ <_>
+
+ <_>
+ 1 5 3 4 -1.
+ <_>
+ 2 5 1 4 3.
+ <_>
+
+ <_>
+ 14 8 4 6 -1.
+ <_>
+ 14 10 4 2 3.
+ <_>
+
+ <_>
+ 1 4 3 8 -1.
+ <_>
+ 2 4 1 8 3.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 8 16 4 3 2.
+ <_>
+
+ <_>
+ 3 14 2 2 -1.
+ <_>
+ 3 15 2 1 2.
+ <_>
+
+ <_>
+ 14 8 4 6 -1.
+ <_>
+ 14 10 4 2 3.
+ <_>
+
+ <_>
+ 2 8 4 6 -1.
+ <_>
+ 2 10 4 2 3.
+ <_>
+
+ <_>
+ 10 14 1 6 -1.
+ <_>
+ 10 17 1 3 2.
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 8 5 1 6 3.
+ <_>
+
+ <_>
+ 11 2 2 6 -1.
+ <_>
+ 12 2 1 3 2.
+ <_>
+ 11 5 1 3 2.
+ <_>
+
+ <_>
+ 6 6 6 5 -1.
+ <_>
+ 8 6 2 5 3.
+ <_>
+
+ <_>
+ 17 1 3 6 -1.
+ <_>
+ 17 3 3 2 3.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 12 3 5 2 -1.
+ <_>
+ 12 4 5 1 2.
+ <_>
+
+ <_>
+ 7 1 5 12 -1.
+ <_>
+ 7 7 5 6 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 4 2 2 2 -1.
+ <_>
+ 4 3 2 1 2.
+ <_>
+
+ <_>
+ 11 14 4 2 -1.
+ <_>
+ 13 14 2 1 2.
+ <_>
+ 11 15 2 1 2.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 5 5 1 3 -1.
+ <_>
+ 5 6 1 1 3.
+ <_>
+
+ <_>
+ 10 10 6 1 -1.
+ <_>
+ 10 10 3 1 2.
+ <_>
+
+ <_>
+ 4 10 6 1 -1.
+ <_>
+ 7 10 3 1 2.
+ <_>
+
+ <_>
+ 9 17 3 3 -1.
+ <_>
+ 9 18 3 1 3.
+ <_>
+
+ <_>
+ 4 14 1 3 -1.
+ <_>
+ 4 15 1 1 3.
+ <_>
+
+ <_>
+ 12 5 3 3 -1.
+ <_>
+ 12 6 3 1 3.
+ <_>
+
+ <_>
+ 4 5 12 3 -1.
+ <_>
+ 4 6 12 1 3.
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ <_>
+
+ <_>
+ 4 9 3 3 -1.
+ <_>
+ 5 9 1 3 3.
+ <_>
+
+ <_>
+ 6 0 9 17 -1.
+ <_>
+ 9 0 3 17 3.
+ <_>
+
+ <_>
+ 9 12 1 3 -1.
+ <_>
+ 9 13 1 1 3.
+ <_>
+
+ <_>
+ 9 5 2 15 -1.
+ <_>
+ 9 10 2 5 3.
+ <_>
+
+ <_>
+ 8 14 2 3 -1.
+ <_>
+ 8 15 2 1 3.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 7 1 6 5 -1.
+ <_>
+ 9 1 2 5 3.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 0 0 10 2 2.
+ <_>
+
+ <_>
+ 2 13 5 3 -1.
+ <_>
+ 2 14 5 1 3.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 2 5 9 15 -1.
+ <_>
+ 2 10 9 5 3.
+ <_>
+
+ <_>
+ 5 0 12 10 -1.
+ <_>
+ 11 0 6 5 2.
+ <_>
+ 5 5 6 5 2.
+ <_>
+
+ <_>
+ 5 1 2 3 -1.
+ <_>
+ 6 1 1 3 2.
+ <_>
+
+ <_>
+ 10 7 6 1 -1.
+ <_>
+ 12 7 2 1 3.
+ <_>
+
+ <_>
+ 3 1 2 10 -1.
+ <_>
+ 3 1 1 5 2.
+ <_>
+ 4 6 1 5 2.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 4 13 4 6 -1.
+ <_>
+ 4 15 4 2 3.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 5 7 2 1 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 2 12 18 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 5 7 1 1 2.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 16 3 4 2 -1.
+ <_>
+ 16 4 4 1 2.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 0 2 1 9 2.
+ <_>
+ 1 11 1 9 2.
+ <_>
+
+ <_>
+ 1 2 18 4 -1.
+ <_>
+ 10 2 9 2 2.
+ <_>
+ 1 4 9 2 2.
+ <_>
+
+ <_>
+ 9 14 1 3 -1.
+ <_>
+ 9 15 1 1 3.
+ <_>
+
+ <_>
+ 2 12 18 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 0 12 18 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 11 4 5 3 -1.
+ <_>
+ 11 5 5 1 3.
+ <_>
+
+ <_>
+ 6 4 7 3 -1.
+ <_>
+ 6 5 7 1 3.
+ <_>
+
+ <_>
+ 13 17 3 3 -1.
+ <_>
+ 13 18 3 1 3.
+ <_>
+
+ <_>
+ 8 1 3 4 -1.
+ <_>
+ 9 1 1 4 3.
+ <_>
+
+ <_>
+ 11 4 2 4 -1.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 0 17 9 3 -1.
+ <_>
+ 3 17 3 3 3.
+ <_>
+
+ <_>
+ 11 0 2 8 -1.
+ <_>
+ 12 0 1 4 2.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 0 8 3 6 2.
+ <_>
+ 3 14 3 6 2.
+ <_>
+
+ <_>
+ 10 7 4 12 -1.
+ <_>
+ 10 13 4 6 2.
+ <_>
+
+ <_>
+ 5 3 8 14 -1.
+ <_>
+ 5 10 8 7 2.
+ <_>
+
+ <_>
+ 14 10 6 1 -1.
+ <_>
+ 14 10 3 1 2.
+ <_>
+
+ <_>
+ 0 4 10 4 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 10 0 5 8 -1.
+ <_>
+ 10 4 5 4 2.
+ <_>
+
+ <_>
+ 8 1 4 8 -1.
+ <_>
+ 8 1 2 4 2.
+ <_>
+ 10 5 2 4 2.
+ <_>
+
+ <_>
+ 9 11 6 1 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 8 9 3 4 -1.
+ <_>
+ 9 9 1 4 3.
+ <_>
+
+ <_>
+ 18 4 2 6 -1.
+ <_>
+ 18 6 2 2 3.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 9 8 1 4 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 7 13 6 1 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 12 11 3 6 -1.
+ <_>
+ 12 13 3 2 3.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 1 4 18 10 -1.
+ <_>
+ 10 4 9 5 2.
+ <_>
+ 1 9 9 5 2.
+ <_>
+
+ <_>
+ 8 6 4 9 -1.
+ <_>
+ 8 9 4 3 3.
+ <_>
+
+ <_>
+ 8 6 4 3 -1.
+ <_>
+ 8 7 4 1 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 14 15 4 3 -1.
+ <_>
+ 14 16 4 1 3.
+ <_>
+
+ <_>
+ 5 10 3 10 -1.
+ <_>
+ 6 10 1 10 3.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 0 8 1 6 -1.
+ <_>
+ 0 10 1 2 3.
+ <_>
+
+ <_>
+ 10 15 1 3 -1.
+ <_>
+ 10 16 1 1 3.
+ <_>
+
+ <_>
+ 2 15 4 3 -1.
+ <_>
+ 2 16 4 1 3.
+ <_>
+
+ <_>
+ 18 3 2 8 -1.
+ <_>
+ 19 3 1 4 2.
+ <_>
+ 18 7 1 4 2.
+ <_>
+
+ <_>
+ 0 3 2 8 -1.
+ <_>
+ 0 3 1 4 2.
+ <_>
+ 1 7 1 4 2.
+ <_>
+
+ <_>
+ 3 7 14 10 -1.
+ <_>
+ 10 7 7 5 2.
+ <_>
+ 3 12 7 5 2.
+ <_>
+
+ <_>
+ 0 7 19 3 -1.
+ <_>
+ 0 8 19 1 3.
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 12 7 3 1 3.
+ <_>
+
+ <_>
+ 0 6 1 3 -1.
+ <_>
+ 0 7 1 1 3.
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 12 7 3 1 3.
+ <_>
+
+ <_>
+ 5 6 3 3 -1.
+ <_>
+ 5 7 3 1 3.
+ <_>
+
+ <_>
+ 8 2 4 2 -1.
+ <_>
+ 8 3 4 1 2.
+ <_>
+
+ <_>
+ 6 3 4 12 -1.
+ <_>
+ 8 3 2 12 2.
+ <_>
+
+ <_>
+ 13 6 2 3 -1.
+ <_>
+ 13 7 2 1 3.
+ <_>
+
+ <_>
+ 0 10 20 4 -1.
+ <_>
+ 0 12 20 2 2.
+ <_>
+
+ <_>
+ 2 0 17 14 -1.
+ <_>
+ 2 7 17 7 2.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 14 6 6 4 -1.
+ <_>
+ 14 6 3 4 2.
+ <_>
+
+ <_>
+ 0 6 6 4 -1.
+ <_>
+ 3 6 3 4 2.
+ <_>
+
+ <_>
+ 13 2 7 2 -1.
+ <_>
+ 13 3 7 1 2.
+ <_>
+
+ <_>
+ 0 2 7 2 -1.
+ <_>
+ 0 3 7 1 2.
+ <_>
+
+ <_>
+ 6 11 14 2 -1.
+ <_>
+ 13 11 7 1 2.
+ <_>
+ 6 12 7 1 2.
+ <_>
+
+ <_>
+ 8 5 2 2 -1.
+ <_>
+ 8 5 1 1 2.
+ <_>
+ 9 6 1 1 2.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 1 1 3 12 -1.
+ <_>
+ 2 1 1 12 3.
+ <_>
+
+ <_>
+ 17 4 1 3 -1.
+ <_>
+ 17 5 1 1 3.
+ <_>
+
+ <_>
+ 2 4 1 3 -1.
+ <_>
+ 2 5 1 1 3.
+ <_>
+
+ <_>
+ 14 5 1 3 -1.
+ <_>
+ 14 6 1 1 3.
+ <_>
+
+ <_>
+ 7 16 2 3 -1.
+ <_>
+ 7 17 2 1 3.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 10 13 2 3 2.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 5 5 1 3 -1.
+ <_>
+ 5 6 1 1 3.
+ <_>
+
+ <_>
+ 16 0 4 20 -1.
+ <_>
+ 16 0 2 20 2.
+ <_>
+
+ <_>
+ 5 1 2 6 -1.
+ <_>
+ 5 1 1 3 2.
+ <_>
+ 6 4 1 3 2.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 15 2 4 12 -1.
+ <_>
+ 15 2 2 12 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 14 5 1 8 -1.
+ <_>
+ 14 9 1 4 2.
+ <_>
+
+ <_>
+ 1 4 14 10 -1.
+ <_>
+ 1 4 7 5 2.
+ <_>
+ 8 9 7 5 2.
+ <_>
+
+ <_>
+ 11 6 6 14 -1.
+ <_>
+ 14 6 3 7 2.
+ <_>
+ 11 13 3 7 2.
+ <_>
+
+ <_>
+ 3 6 6 14 -1.
+ <_>
+ 3 6 3 7 2.
+ <_>
+ 6 13 3 7 2.
+ <_>
+
+ <_>
+ 4 9 15 2 -1.
+ <_>
+ 9 9 5 2 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 6 3 14 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+ 6 5 7 2 2.
+ <_>
+
+ <_>
+ 1 9 15 2 -1.
+ <_>
+ 6 9 5 2 3.
+ <_>
+
+ <_>
+ 6 11 8 9 -1.
+ <_>
+ 6 14 8 3 3.
+ <_>
+
+ <_>
+ 7 4 3 8 -1.
+ <_>
+ 8 4 1 8 3.
+ <_>
+
+ <_>
+ 14 6 2 6 -1.
+ <_>
+ 14 9 2 3 2.
+ <_>
+
+ <_>
+ 5 7 6 4 -1.
+ <_>
+ 5 7 3 2 2.
+ <_>
+ 8 9 3 2 2.
+ <_>
+
+ <_>
+ 1 1 18 19 -1.
+ <_>
+ 7 1 6 19 3.
+ <_>
+
+ <_>
+ 1 2 6 5 -1.
+ <_>
+ 4 2 3 5 2.
+ <_>
+
+ <_>
+ 12 17 6 2 -1.
+ <_>
+ 12 18 6 1 2.
+ <_>
+
+ <_>
+ 2 17 6 2 -1.
+ <_>
+ 2 18 6 1 2.
+ <_>
+
+ <_>
+ 17 3 3 6 -1.
+ <_>
+ 17 5 3 2 3.
+ <_>
+
+ <_>
+ 8 17 3 3 -1.
+ <_>
+ 8 18 3 1 3.
+ <_>
+
+ <_>
+ 10 13 2 6 -1.
+ <_>
+ 10 16 2 3 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 17 3 3 6 -1.
+ <_>
+ 17 5 3 2 3.
+ <_>
+
+ <_>
+ 8 13 2 3 -1.
+ <_>
+ 8 14 2 1 3.
+ <_>
+
+ <_>
+ 9 3 6 2 -1.
+ <_>
+ 11 3 2 2 3.
+ <_>
+
+ <_>
+ 0 3 3 6 -1.
+ <_>
+ 0 5 3 2 3.
+ <_>
+
+ <_>
+ 8 5 4 6 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 5 5 3 2 -1.
+ <_>
+ 5 6 3 1 2.
+ <_>
+
+ <_>
+ 10 1 3 4 -1.
+ <_>
+ 11 1 1 4 3.
+ <_>
+
+ <_>
+ 1 2 5 9 -1.
+ <_>
+ 1 5 5 3 3.
+ <_>
+
+ <_>
+ 13 6 2 3 -1.
+ <_>
+ 13 7 2 1 3.
+ <_>
+
+ <_>
+ 0 6 14 3 -1.
+ <_>
+ 7 6 7 3 2.
+ <_>
+
+ <_>
+ 2 11 18 8 -1.
+ <_>
+ 2 15 18 4 2.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 5 7 2 1 3.
+ <_>
+
+ <_>
+ 10 6 4 2 -1.
+ <_>
+ 12 6 2 1 2.
+ <_>
+ 10 7 2 1 2.
+ <_>
+
+ <_>
+ 6 6 4 2 -1.
+ <_>
+ 6 6 2 1 2.
+ <_>
+ 8 7 2 1 2.
+ <_>
+
+ <_>
+ 10 1 3 4 -1.
+ <_>
+ 11 1 1 4 3.
+ <_>
+
+ <_>
+ 7 1 2 7 -1.
+ <_>
+ 8 1 1 7 2.
+ <_>
+
+ <_>
+ 4 2 15 14 -1.
+ <_>
+ 4 9 15 7 2.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 9 7 1 2 3.
+ <_>
+
+ <_>
+ 2 3 18 4 -1.
+ <_>
+ 11 3 9 2 2.
+ <_>
+ 2 5 9 2 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 5 2 6 2 -1.
+ <_>
+ 7 2 2 2 3.
+ <_>
+
+ <_>
+ 9 5 2 7 -1.
+ <_>
+ 9 5 1 7 2.
+ <_>
+
+ <_>
+ 5 9 2 3 -1.
+ <_>
+ 6 9 1 3 2.
+ <_>
+
+ <_>
+ 6 0 14 18 -1.
+ <_>
+ 6 9 14 9 2.
+ <_>
+
+ <_>
+ 2 16 6 3 -1.
+ <_>
+ 2 17 6 1 3.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 10 7 1 6 3.
+ <_>
+
+ <_>
+ 7 8 4 3 -1.
+ <_>
+ 7 9 4 1 3.
+ <_>
+
+ <_>
+ 7 12 6 3 -1.
+ <_>
+ 7 13 6 1 3.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 7 12 6 2 -1.
+ <_>
+ 9 12 2 2 3.
+ <_>
+
+ <_>
+ 5 11 4 6 -1.
+ <_>
+ 5 14 4 3 2.
+ <_>
+
+ <_>
+ 11 12 7 2 -1.
+ <_>
+ 11 13 7 1 2.
+ <_>
+
+ <_>
+ 6 10 8 6 -1.
+ <_>
+ 6 10 4 3 2.
+ <_>
+ 10 13 4 3 2.
+ <_>
+
+ <_>
+ 11 10 3 4 -1.
+ <_>
+ 11 12 3 2 2.
+ <_>
+
+ <_>
+ 9 16 2 3 -1.
+ <_>
+ 9 17 2 1 3.
+ <_>
+
+ <_>
+ 13 3 1 9 -1.
+ <_>
+ 13 6 1 3 3.
+ <_>
+
+ <_>
+ 1 13 14 6 -1.
+ <_>
+ 1 15 14 2 3.
+ <_>
+
+ <_>
+ 13 6 1 6 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 0 4 3 8 -1.
+ <_>
+ 1 4 1 8 3.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 0 1 18 2.
+ <_>
+
+ <_>
+ 2 3 6 2 -1.
+ <_>
+ 2 4 6 1 2.
+ <_>
+
+ <_>
+ 9 0 8 6 -1.
+ <_>
+ 9 2 8 2 3.
+ <_>
+
+ <_>
+ 6 6 1 6 -1.
+ <_>
+ 6 9 1 3 2.
+ <_>
+
+ <_>
+ 14 8 6 3 -1.
+ <_>
+ 14 9 6 1 3.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 1 0 1 18 2.
+ <_>
+
+ <_>
+ 1 18 18 2 -1.
+ <_>
+ 10 18 9 1 2.
+ <_>
+ 1 19 9 1 2.
+ <_>
+
+ <_>
+ 3 15 2 2 -1.
+ <_>
+ 3 16 2 1 2.
+ <_>
+
+ <_>
+ 8 14 5 3 -1.
+ <_>
+ 8 15 5 1 3.
+ <_>
+
+ <_>
+ 8 14 2 3 -1.
+ <_>
+ 8 15 2 1 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 7 5 6 2 -1.
+ <_>
+ 9 5 2 2 3.
+ <_>
+
+ <_>
+ 15 5 5 2 -1.
+ <_>
+ 15 6 5 1 2.
+ <_>
+
+ <_>
+ 0 5 5 2 -1.
+ <_>
+ 0 6 5 1 2.
+ <_>
+
+ <_>
+ 17 14 1 6 -1.
+ <_>
+ 17 17 1 3 2.
+ <_>
+
+ <_>
+ 2 9 9 3 -1.
+ <_>
+ 5 9 3 3 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 0 0 4 18 -1.
+ <_>
+ 2 0 2 18 2.
+ <_>
+
+ <_>
+ 17 6 1 3 -1.
+ <_>
+ 17 7 1 1 3.
+ <_>
+
+ <_>
+ 2 14 1 6 -1.
+ <_>
+ 2 17 1 3 2.
+ <_>
+
+ <_>
+ 19 8 1 2 -1.
+ <_>
+ 19 9 1 1 2.
+ <_>
+
+ <_>
+ 5 3 3 3 -1.
+ <_>
+ 6 3 1 3 3.
+ <_>
+
+ <_>
+ 9 16 2 3 -1.
+ <_>
+ 9 17 2 1 3.
+ <_>
+
+ <_>
+ 2 6 1 3 -1.
+ <_>
+ 2 7 1 1 3.
+ <_>
+
+ <_>
+ 12 4 8 2 -1.
+ <_>
+ 16 4 4 1 2.
+ <_>
+ 12 5 4 1 2.
+ <_>
+
+ <_>
+ 0 4 8 2 -1.
+ <_>
+ 0 4 4 1 2.
+ <_>
+ 4 5 4 1 2.
+ <_>
+
+ <_>
+ 2 16 18 4 -1.
+ <_>
+ 2 18 18 2 2.
+ <_>
+
+ <_>
+ 7 15 2 4 -1.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 4 0 14 3 -1.
+ <_>
+ 4 1 14 1 3.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 2 0 2 20 2.
+ <_>
+
+ <_>
+ 12 4 4 8 -1.
+ <_>
+ 14 4 2 4 2.
+ <_>
+ 12 8 2 4 2.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 10 6 2 3 -1.
+ <_>
+ 10 7 2 1 3.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 8 8 3 1 2.
+ <_>
+
+ <_>
+ 8 2 6 12 -1.
+ <_>
+ 8 8 6 6 2.
+ <_>
+
+ <_>
+ 4 0 11 12 -1.
+ <_>
+ 4 4 11 4 3.
+ <_>
+
+ <_>
+ 14 9 6 11 -1.
+ <_>
+ 16 9 2 11 3.
+ <_>
+
+ <_>
+ 0 14 4 3 -1.
+ <_>
+ 0 15 4 1 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 5 12 3 1 2.
+ <_>
+
+ <_>
+ 9 15 3 3 -1.
+ <_>
+ 10 15 1 3 3.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 9 8 1 4 3.
+ <_>
+
+ <_>
+ 9 15 3 3 -1.
+ <_>
+ 10 15 1 3 3.
+ <_>
+
+ <_>
+ 7 7 3 2 -1.
+ <_>
+ 8 7 1 2 3.
+ <_>
+
+ <_>
+ 2 10 16 4 -1.
+ <_>
+ 10 10 8 2 2.
+ <_>
+ 2 12 8 2 2.
+ <_>
+
+ <_>
+ 2 3 4 17 -1.
+ <_>
+ 4 3 2 17 2.
+ <_>
+
+ <_>
+ 15 13 2 7 -1.
+ <_>
+ 15 13 1 7 2.
+ <_>
+
+ <_>
+ 2 2 6 1 -1.
+ <_>
+ 5 2 3 1 2.
+ <_>
+
+ <_>
+ 5 2 12 4 -1.
+ <_>
+ 9 2 4 4 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 0 4 6 2.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 13 7 2 2 -1.
+ <_>
+ 14 7 1 1 2.
+ <_>
+ 13 8 1 1 2.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 14 20 2 3.
+ <_>
+
+ <_>
+ 14 7 2 3 -1.
+ <_>
+ 14 7 1 3 2.
+ <_>
+
+ <_>
+ 0 8 9 12 -1.
+ <_>
+ 3 8 3 12 3.
+ <_>
+
+ <_>
+ 3 0 16 2 -1.
+ <_>
+ 3 0 8 2 2.
+ <_>
+
+ <_>
+ 6 15 3 3 -1.
+ <_>
+ 6 16 3 1 3.
+ <_>
+
+ <_>
+ 8 15 6 3 -1.
+ <_>
+ 8 16 6 1 3.
+ <_>
+
+ <_>
+ 0 10 1 6 -1.
+ <_>
+ 0 12 1 2 3.
+ <_>
+
+ <_>
+ 10 9 4 3 -1.
+ <_>
+ 10 10 4 1 3.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 5 7 10 1 -1.
+ <_>
+ 5 7 5 1 2.
+ <_>
+
+ <_>
+ 4 0 12 19 -1.
+ <_>
+ 10 0 6 19 2.
+ <_>
+
+ <_>
+ 0 6 20 6 -1.
+ <_>
+ 10 6 10 3 2.
+ <_>
+ 0 9 10 3 2.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 15 6 2 2 -1.
+ <_>
+ 16 6 1 1 2.
+ <_>
+ 15 7 1 1 2.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 14 4 1 12 -1.
+ <_>
+ 14 10 1 6 2.
+ <_>
+
+ <_>
+ 2 5 16 10 -1.
+ <_>
+ 2 5 8 5 2.
+ <_>
+ 10 10 8 5 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 1 4 2 2 -1.
+ <_>
+ 1 5 2 1 2.
+ <_>
+
+ <_>
+ 5 0 15 5 -1.
+ <_>
+ 10 0 5 5 3.
+ <_>
+
+ <_>
+ 0 0 15 5 -1.
+ <_>
+ 5 0 5 5 3.
+ <_>
+
+ <_>
+ 11 2 2 17 -1.
+ <_>
+ 11 2 1 17 2.
+ <_>
+
+ <_>
+ 7 2 2 17 -1.
+ <_>
+ 8 2 1 17 2.
+ <_>
+
+ <_>
+ 15 11 2 9 -1.
+ <_>
+ 15 11 1 9 2.
+ <_>
+
+ <_>
+ 3 11 2 9 -1.
+ <_>
+ 4 11 1 9 2.
+ <_>
+
+ <_>
+ 5 16 14 4 -1.
+ <_>
+ 5 16 7 4 2.
+ <_>
+
+ <_>
+ 1 4 18 1 -1.
+ <_>
+ 7 4 6 1 3.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 9 8 2 12 -1.
+ <_>
+ 9 12 2 4 3.
+ <_>
+
+ <_>
+ 12 1 6 6 -1.
+ <_>
+ 12 3 6 2 3.
+ <_>
+
+ <_>
+ 5 2 6 6 -1.
+ <_>
+ 5 2 3 3 2.
+ <_>
+ 8 5 3 3 2.
+ <_>
+
+ <_>
+ 9 16 6 4 -1.
+ <_>
+ 12 16 3 2 2.
+ <_>
+ 9 18 3 2 2.
+ <_>
+
+ <_>
+ 1 2 18 3 -1.
+ <_>
+ 7 2 6 3 3.
+ <_>
+
+ <_>
+ 7 4 9 10 -1.
+ <_>
+ 7 9 9 5 2.
+ <_>
+
+ <_>
+ 5 9 4 4 -1.
+ <_>
+ 7 9 2 4 2.
+ <_>
+
+ <_>
+ 11 10 3 6 -1.
+ <_>
+ 11 13 3 3 2.
+ <_>
+
+ <_>
+ 7 11 5 3 -1.
+ <_>
+ 7 12 5 1 3.
+ <_>
+
+ <_>
+ 7 11 6 6 -1.
+ <_>
+ 10 11 3 3 2.
+ <_>
+ 7 14 3 3 2.
+ <_>
+
+ <_>
+ 0 0 10 9 -1.
+ <_>
+ 0 3 10 3 3.
+ <_>
+
+ <_>
+ 13 14 1 6 -1.
+ <_>
+ 13 16 1 2 3.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 6 14 1 6 -1.
+ <_>
+ 6 16 1 2 3.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 6 4 3 3 -1.
+ <_>
+ 7 4 1 3 3.
+ <_>
+
+ <_>
+ 9 0 11 3 -1.
+ <_>
+ 9 1 11 1 3.
+ <_>
+
+ <_>
+ 0 6 20 3 -1.
+ <_>
+ 0 7 20 1 3.
+ <_>
+
+ <_>
+ 10 1 1 2 -1.
+ <_>
+ 10 2 1 1 2.
+ <_>
+
+ <_>
+ 9 6 2 6 -1.
+ <_>
+ 10 6 1 6 2.
+ <_>
+
+ <_>
+ 5 8 12 1 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 3 8 12 1 -1.
+ <_>
+ 7 8 4 1 3.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 3 9 6 2 -1.
+ <_>
+ 6 9 3 2 2.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 7 10 2 1 -1.
+ <_>
+ 8 10 1 1 2.
+ <_>
+
+ <_>
+ 6 4 9 13 -1.
+ <_>
+ 9 4 3 13 3.
+ <_>
+
+ <_>
+ 6 8 4 2 -1.
+ <_>
+ 6 9 4 1 2.
+ <_>
+
+ <_>
+ 16 2 4 6 -1.
+ <_>
+ 16 2 2 6 2.
+ <_>
+
+ <_>
+ 0 17 6 3 -1.
+ <_>
+ 0 18 6 1 3.
+ <_>
+
+ <_>
+ 10 10 3 10 -1.
+ <_>
+ 10 15 3 5 2.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 10 4 4 3 -1.
+ <_>
+ 10 4 2 3 2.
+ <_>
+
+ <_>
+ 8 4 3 8 -1.
+ <_>
+ 9 4 1 8 3.
+ <_>
+
+ <_>
+ 6 6 9 13 -1.
+ <_>
+ 9 6 3 13 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 0 4 6 2.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 14 2 6 8 -1.
+ <_>
+ 16 2 2 8 3.
+ <_>
+
+ <_>
+ 6 0 3 6 -1.
+ <_>
+ 7 0 1 6 3.
+ <_>
+
+ <_>
+ 14 2 6 8 -1.
+ <_>
+ 16 2 2 8 3.
+ <_>
+
+ <_>
+ 0 5 6 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+
+ <_>
+ 9 12 6 2 -1.
+ <_>
+ 12 12 3 1 2.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 11 6 2 2 -1.
+ <_>
+ 12 6 1 1 2.
+ <_>
+ 11 7 1 1 2.
+ <_>
+
+ <_>
+ 1 9 18 2 -1.
+ <_>
+ 7 9 6 2 3.
+ <_>
+
+ <_>
+ 11 6 2 2 -1.
+ <_>
+ 12 6 1 1 2.
+ <_>
+ 11 7 1 1 2.
+ <_>
+
+ <_>
+ 3 4 12 8 -1.
+ <_>
+ 7 4 4 8 3.
+ <_>
+
+ <_>
+ 13 11 5 3 -1.
+ <_>
+ 13 12 5 1 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 14 7 2 3 -1.
+ <_>
+ 14 7 1 3 2.
+ <_>
+
+ <_>
+ 5 4 1 3 -1.
+ <_>
+ 5 5 1 1 3.
+ <_>
+
+ <_>
+ 13 4 2 3 -1.
+ <_>
+ 13 5 2 1 3.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ <_>
+
+ <_>
+ 8 9 2 2 -1.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 15 14 1 4 -1.
+ <_>
+ 15 16 1 2 2.
+ <_>
+
+ <_>
+ 3 12 2 2 -1.
+ <_>
+ 3 13 2 1 2.
+ <_>
+
+ <_>
+ 12 15 2 2 -1.
+ <_>
+ 13 15 1 1 2.
+ <_>
+ 12 16 1 1 2.
+ <_>
+
+ <_>
+ 9 13 2 2 -1.
+ <_>
+ 9 14 2 1 2.
+ <_>
+
+ <_>
+ 4 11 14 9 -1.
+ <_>
+ 4 14 14 3 3.
+ <_>
+
+ <_>
+ 7 13 4 3 -1.
+ <_>
+ 7 14 4 1 3.
+ <_>
+
+ <_>
+ 15 14 1 4 -1.
+ <_>
+ 15 16 1 2 2.
+ <_>
+
+ <_>
+ 4 14 1 4 -1.
+ <_>
+ 4 16 1 2 2.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 16 0 2 13 3.
+ <_>
+
+ <_>
+ 4 1 2 12 -1.
+ <_>
+ 4 1 1 6 2.
+ <_>
+ 5 7 1 6 2.
+ <_>
+
+ <_>
+ 11 14 6 6 -1.
+ <_>
+ 14 14 3 3 2.
+ <_>
+ 11 17 3 3 2.
+ <_>
+
+ <_>
+ 3 14 6 6 -1.
+ <_>
+ 3 14 3 3 2.
+ <_>
+ 6 17 3 3 2.
+ <_>
+
+ <_>
+ 14 17 3 2 -1.
+ <_>
+ 14 18 3 1 2.
+ <_>
+
+ <_>
+ 3 17 3 2 -1.
+ <_>
+ 3 18 3 1 2.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 16 0 2 13 3.
+ <_>
+
+ <_>
+ 0 0 6 13 -1.
+ <_>
+ 2 0 2 13 3.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 6 15 2 2 -1.
+ <_>
+ 6 15 1 1 2.
+ <_>
+ 7 16 1 1 2.
+ <_>
+
+ <_>
+ 6 11 8 6 -1.
+ <_>
+ 10 11 4 3 2.
+ <_>
+ 6 14 4 3 2.
+ <_>
+
+ <_>
+ 7 6 2 2 -1.
+ <_>
+ 7 6 1 1 2.
+ <_>
+ 8 7 1 1 2.
+ <_>
+
+ <_>
+ 2 2 16 6 -1.
+ <_>
+ 10 2 8 3 2.
+ <_>
+ 2 5 8 3 2.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 11 7 3 10 -1.
+ <_>
+ 11 12 3 5 2.
+ <_>
+
+ <_>
+ 6 7 3 10 -1.
+ <_>
+ 6 12 3 5 2.
+ <_>
+
+ <_>
+ 10 7 3 2 -1.
+ <_>
+ 11 7 1 2 3.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 10 1 1 3 -1.
+ <_>
+ 10 2 1 1 3.
+ <_>
+
+ <_>
+ 1 2 4 18 -1.
+ <_>
+ 1 2 2 9 2.
+ <_>
+ 3 11 2 9 2.
+ <_>
+
+ <_>
+ 12 4 4 12 -1.
+ <_>
+ 12 10 4 6 2.
+ <_>
+
+ <_>
+ 0 0 1 6 -1.
+ <_>
+ 0 2 1 2 3.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ <_>
+
+ <_>
+ 10 7 3 2 -1.
+ <_>
+ 11 7 1 2 3.
+ <_>
+
+ <_>
+ 7 7 3 2 -1.
+ <_>
+ 8 7 1 2 3.
+ <_>
+
+ <_>
+ 9 4 6 1 -1.
+ <_>
+ 11 4 2 1 3.
+ <_>
+
+ <_>
+ 8 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+
+ <_>
+ 12 7 8 6 -1.
+ <_>
+ 16 7 4 3 2.
+ <_>
+ 12 10 4 3 2.
+ <_>
+
+ <_>
+ 0 7 8 6 -1.
+ <_>
+ 0 7 4 3 2.
+ <_>
+ 4 10 4 3 2.
+ <_>
+
+ <_>
+ 18 2 2 10 -1.
+ <_>
+ 19 2 1 5 2.
+ <_>
+ 18 7 1 5 2.
+ <_>
+
+ <_>
+ 0 2 6 4 -1.
+ <_>
+ 3 2 3 4 2.
+ <_>
+
+ <_>
+ 9 4 6 1 -1.
+ <_>
+ 11 4 2 1 3.
+ <_>
+
+ <_>
+ 7 15 2 2 -1.
+ <_>
+ 7 15 1 1 2.
+ <_>
+ 8 16 1 1 2.
+ <_>
+
+ <_>
+ 11 13 1 6 -1.
+ <_>
+ 11 16 1 3 2.
+ <_>
+
+ <_>
+ 8 13 1 6 -1.
+ <_>
+ 8 16 1 3 2.
+ <_>
+
+ <_>
+ 14 3 2 1 -1.
+ <_>
+ 14 3 1 1 2.
+ <_>
+
+ <_>
+ 8 15 2 3 -1.
+ <_>
+ 8 16 2 1 3.
+ <_>
+
+ <_>
+ 12 15 7 4 -1.
+ <_>
+ 12 17 7 2 2.
+ <_>
+
+ <_>
+ 4 14 12 3 -1.
+ <_>
+ 4 15 12 1 3.
+ <_>
+
+ <_>
+ 10 3 3 2 -1.
+ <_>
+ 11 3 1 2 3.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 10 11 4 6 -1.
+ <_>
+ 10 14 4 3 2.
+ <_>
+
+ <_>
+ 7 13 2 2 -1.
+ <_>
+ 7 13 1 1 2.
+ <_>
+ 8 14 1 1 2.
+ <_>
+
+ <_>
+ 4 11 14 4 -1.
+ <_>
+ 11 11 7 2 2.
+ <_>
+ 4 13 7 2 2.
+ <_>
+
+ <_>
+ 1 18 18 2 -1.
+ <_>
+ 7 18 6 2 3.
+ <_>
+
+ <_>
+ 11 18 2 2 -1.
+ <_>
+ 12 18 1 1 2.
+ <_>
+ 11 19 1 1 2.
+ <_>
+
+ <_>
+ 7 18 2 2 -1.
+ <_>
+ 7 18 1 1 2.
+ <_>
+ 8 19 1 1 2.
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 12 19 8 1 2.
+ <_>
+
+ <_>
+ 7 14 6 2 -1.
+ <_>
+ 7 15 6 1 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 10 12 2 4 2.
+ <_>
+ 8 16 2 4 2.
+ <_>
+
+ <_>
+ 4 9 3 3 -1.
+ <_>
+ 4 10 3 1 3.
+ <_>
+
+ <_>
+ 7 10 6 2 -1.
+ <_>
+ 9 10 2 2 3.
+ <_>
+
+ <_>
+ 5 0 4 15 -1.
+ <_>
+ 7 0 2 15 2.
+ <_>
+
+ <_>
+ 8 6 12 14 -1.
+ <_>
+ 12 6 4 14 3.
+ <_>
+
+ <_>
+ 5 16 3 3 -1.
+ <_>
+ 5 17 3 1 3.
+ <_>
+
+ <_>
+ 8 1 12 19 -1.
+ <_>
+ 12 1 4 19 3.
+ <_>
+
+ <_>
+ 3 0 3 2 -1.
+ <_>
+ 3 1 3 1 2.
+ <_>
+
+ <_>
+ 10 12 4 5 -1.
+ <_>
+ 10 12 2 5 2.
+ <_>
+
+ <_>
+ 6 12 4 5 -1.
+ <_>
+ 8 12 2 5 2.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 7 6 4 10 -1.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 2 13 5 2 -1.
+ <_>
+ 2 14 5 1 2.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+ 8 12 1 1 2.
+ <_>
+
+ <_>
+ 14 13 3 3 -1.
+ <_>
+ 14 14 3 1 3.
+ <_>
+
+ <_>
+ 3 13 3 3 -1.
+ <_>
+ 3 14 3 1 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 13 5 3 3 -1.
+ <_>
+ 13 6 3 1 3.
+ <_>
+
+ <_>
+ 0 9 5 3 -1.
+ <_>
+ 0 10 5 1 3.
+ <_>
+
+ <_>
+ 13 5 3 3 -1.
+ <_>
+ 13 6 3 1 3.
+ <_>
+
+ <_>
+ 9 12 2 8 -1.
+ <_>
+ 9 12 1 4 2.
+ <_>
+ 10 16 1 4 2.
+ <_>
+
+ <_>
+ 11 7 2 2 -1.
+ <_>
+ 12 7 1 1 2.
+ <_>
+ 11 8 1 1 2.
+ <_>
+
+ <_>
+ 0 16 6 4 -1.
+ <_>
+ 3 16 3 4 2.
+ <_>
+
+ <_>
+ 10 6 2 3 -1.
+ <_>
+ 10 7 2 1 3.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 7 2 2 3.
+ <_>
+
+ <_>
+ 12 15 8 4 -1.
+ <_>
+ 12 15 4 4 2.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 9 0 3 2 -1.
+ <_>
+ 10 0 1 2 3.
+ <_>
+
+ <_>
+ 4 15 4 2 -1.
+ <_>
+ 6 15 2 2 2.
+ <_>
+
+ <_>
+ 12 7 3 13 -1.
+ <_>
+ 13 7 1 13 3.
+ <_>
+
+ <_>
+ 5 7 3 13 -1.
+ <_>
+ 6 7 1 13 3.
+ <_>
+
+ <_>
+ 9 6 3 9 -1.
+ <_>
+ 9 9 3 3 3.
+ <_>
+
+ <_>
+ 4 4 7 12 -1.
+ <_>
+ 4 10 7 6 2.
+ <_>
+
+ <_>
+ 12 12 2 2 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 6 12 2 2 -1.
+ <_>
+ 6 12 1 1 2.
+ <_>
+ 7 13 1 1 2.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 10 9 2 1 2.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 16 6 3 2 -1.
+ <_>
+ 16 7 3 1 2.
+ <_>
+
+ <_>
+ 0 7 19 4 -1.
+ <_>
+ 0 9 19 2 2.
+ <_>
+
+ <_>
+ 10 2 10 1 -1.
+ <_>
+ 10 2 5 1 2.
+ <_>
+
+ <_>
+ 9 4 2 12 -1.
+ <_>
+ 9 10 2 6 2.
+ <_>
+
+ <_>
+ 12 18 4 1 -1.
+ <_>
+ 12 18 2 1 2.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 7 3 2 2.
+ <_>
+ 4 9 3 2 2.
+ <_>
+
+ <_>
+ 12 0 6 13 -1.
+ <_>
+ 14 0 2 13 3.
+ <_>
+
+ <_>
+ 2 0 6 13 -1.
+ <_>
+ 4 0 2 13 3.
+ <_>
+
+ <_>
+ 10 5 8 8 -1.
+ <_>
+ 10 9 8 4 2.
+ <_>
+
+ <_>
+ 8 3 2 5 -1.
+ <_>
+ 9 3 1 5 2.
+ <_>
+
+ <_>
+ 8 4 9 1 -1.
+ <_>
+ 11 4 3 1 3.
+ <_>
+
+ <_>
+ 3 4 9 1 -1.
+ <_>
+ 6 4 3 1 3.
+ <_>
+
+ <_>
+ 1 0 18 10 -1.
+ <_>
+ 7 0 6 10 3.
+ <_>
+
+ <_>
+ 7 17 5 3 -1.
+ <_>
+ 7 18 5 1 3.
+ <_>
+
+ <_>
+ 7 11 6 1 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 2 2 3 2 -1.
+ <_>
+ 2 3 3 1 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 13 3 3 2.
+ <_>
+
+ <_>
+ 11 4 2 4 -1.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 9 6 1 4 2.
+ <_>
+
+ <_>
+ 6 13 8 3 -1.
+ <_>
+ 6 14 8 1 3.
+ <_>
+
+ <_>
+ 9 15 3 4 -1.
+ <_>
+ 10 15 1 4 3.
+ <_>
+
+ <_>
+ 9 2 2 17 -1.
+ <_>
+ 10 2 1 17 2.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 8 15 3 4 -1.
+ <_>
+ 9 15 1 4 3.
+ <_>
+
+ <_>
+ 7 13 7 3 -1.
+ <_>
+ 7 14 7 1 3.
+ <_>
+
+ <_>
+ 8 16 3 3 -1.
+ <_>
+ 9 16 1 3 3.
+ <_>
+
+ <_>
+ 6 2 8 10 -1.
+ <_>
+ 6 7 8 5 2.
+ <_>
+
+ <_>
+ 2 5 8 8 -1.
+ <_>
+ 2 9 8 4 2.
+ <_>
+
+ <_>
+ 14 16 2 2 -1.
+ <_>
+ 14 17 2 1 2.
+ <_>
+
+ <_>
+ 4 16 2 2 -1.
+ <_>
+ 4 17 2 1 2.
+ <_>
+
+ <_>
+ 10 11 4 6 -1.
+ <_>
+ 10 14 4 3 2.
+ <_>
+
+ <_>
+ 6 11 4 6 -1.
+ <_>
+ 6 14 4 3 2.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 10 0 4 6 -1.
+ <_>
+ 12 0 2 3 2.
+ <_>
+ 10 3 2 3 2.
+ <_>
+
+ <_>
+ 0 3 20 2 -1.
+ <_>
+ 0 4 20 1 2.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 16 0 4 1 2.
+ <_>
+ 12 1 4 1 2.
+ <_>
+
+ <_>
+ 2 12 10 8 -1.
+ <_>
+ 2 16 10 4 2.
+ <_>
+
+ <_>
+ 17 7 2 10 -1.
+ <_>
+ 18 7 1 5 2.
+ <_>
+ 17 12 1 5 2.
+ <_>
+
+ <_>
+ 1 7 2 10 -1.
+ <_>
+ 1 7 1 5 2.
+ <_>
+ 2 12 1 5 2.
+ <_>
+
+ <_>
+ 15 10 3 6 -1.
+ <_>
+ 15 12 3 2 3.
+ <_>
+
+ <_>
+ 4 4 6 2 -1.
+ <_>
+ 6 4 2 2 3.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 0 0 8 2 -1.
+ <_>
+ 0 0 4 1 2.
+ <_>
+ 4 1 4 1 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 1 13 6 2 -1.
+ <_>
+ 1 14 6 1 2.
+ <_>
+
+ <_>
+ 10 8 3 4 -1.
+ <_>
+ 11 8 1 4 3.
+ <_>
+
+ <_>
+ 6 1 6 1 -1.
+ <_>
+ 8 1 2 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 1 6 18 2 -1.
+ <_>
+ 10 6 9 2 2.
+ <_>
+
+ <_>
+ 15 11 1 2 -1.
+ <_>
+ 15 12 1 1 2.
+ <_>
+
+ <_>
+ 6 5 1 2 -1.
+ <_>
+ 6 6 1 1 2.
+ <_>
+
+ <_>
+ 13 4 1 3 -1.
+ <_>
+ 13 5 1 1 3.
+ <_>
+
+ <_>
+ 2 15 1 2 -1.
+ <_>
+ 2 16 1 1 2.
+ <_>
+
+ <_>
+ 12 4 4 3 -1.
+ <_>
+ 12 5 4 1 3.
+ <_>
+
+ <_>
+ 0 0 7 3 -1.
+ <_>
+ 0 1 7 1 3.
+ <_>
+
+ <_>
+ 9 12 6 2 -1.
+ <_>
+ 9 12 3 2 2.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 18 4 2 3 -1.
+ <_>
+ 18 5 2 1 3.
+ <_>
+
+ <_>
+ 3 0 8 6 -1.
+ <_>
+ 3 2 8 2 3.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 10 2 10 3 2.
+ <_>
+ 0 5 10 3 2.
+ <_>
+
+ <_>
+ 4 7 2 4 -1.
+ <_>
+ 5 7 1 4 2.
+ <_>
+
+ <_>
+ 3 10 15 2 -1.
+ <_>
+ 8 10 5 2 3.
+ <_>
+
+ <_>
+ 3 0 12 11 -1.
+ <_>
+ 9 0 6 11 2.
+ <_>
+
+ <_>
+ 13 0 2 6 -1.
+ <_>
+ 13 0 1 6 2.
+ <_>
+
+ <_>
+ 0 19 2 1 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 16 10 4 10 -1.
+ <_>
+ 18 10 2 5 2.
+ <_>
+ 16 15 2 5 2.
+ <_>
+
+ <_>
+ 4 8 10 3 -1.
+ <_>
+ 4 9 10 1 3.
+ <_>
+
+ <_>
+ 14 12 3 3 -1.
+ <_>
+ 14 13 3 1 3.
+ <_>
+
+ <_>
+ 0 10 4 10 -1.
+ <_>
+ 0 10 2 5 2.
+ <_>
+ 2 15 2 5 2.
+ <_>
+
+ <_>
+ 18 3 2 6 -1.
+ <_>
+ 18 5 2 2 3.
+ <_>
+
+ <_>
+ 6 6 1 3 -1.
+ <_>
+ 6 7 1 1 3.
+ <_>
+
+ <_>
+ 7 7 7 2 -1.
+ <_>
+ 7 8 7 1 2.
+ <_>
+
+ <_>
+ 0 3 2 6 -1.
+ <_>
+ 0 5 2 2 3.
+ <_>
+
+ <_>
+ 11 1 3 1 -1.
+ <_>
+ 12 1 1 1 3.
+ <_>
+
+ <_>
+ 5 0 2 6 -1.
+ <_>
+ 6 0 1 6 2.
+ <_>
+
+ <_>
+ 1 1 18 14 -1.
+ <_>
+ 7 1 6 14 3.
+ <_>
+
+ <_>
+ 4 6 8 3 -1.
+ <_>
+ 8 6 4 3 2.
+ <_>
+
+ <_>
+ 9 12 6 2 -1.
+ <_>
+ 9 12 3 2 2.
+ <_>
+
+ <_>
+ 5 12 6 2 -1.
+ <_>
+ 8 12 3 2 2.
+ <_>
+
+ <_>
+ 10 7 3 5 -1.
+ <_>
+ 11 7 1 5 3.
+ <_>
+
+ <_>
+ 7 7 3 5 -1.
+ <_>
+ 8 7 1 5 3.
+ <_>
+
+ <_>
+ 13 0 3 10 -1.
+ <_>
+ 14 0 1 10 3.
+ <_>
+
+ <_>
+ 4 11 3 2 -1.
+ <_>
+ 4 12 3 1 2.
+ <_>
+
+ <_>
+ 17 3 3 6 -1.
+ <_>
+ 18 3 1 6 3.
+ <_>
+
+ <_>
+ 1 8 18 10 -1.
+ <_>
+ 1 13 18 5 2.
+ <_>
+
+ <_>
+ 13 0 3 10 -1.
+ <_>
+ 14 0 1 10 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 16 3 3 7 -1.
+ <_>
+ 17 3 1 7 3.
+ <_>
+
+ <_>
+ 4 0 3 10 -1.
+ <_>
+ 5 0 1 10 3.
+ <_>
+
+ <_>
+ 16 3 3 7 -1.
+ <_>
+ 17 3 1 7 3.
+ <_>
+
+ <_>
+ 0 9 1 2 -1.
+ <_>
+ 0 10 1 1 2.
+ <_>
+
+ <_>
+ 18 1 2 10 -1.
+ <_>
+ 18 1 1 10 2.
+ <_>
+
+ <_>
+ 0 1 2 10 -1.
+ <_>
+ 1 1 1 10 2.
+ <_>
+
+ <_>
+ 10 16 3 4 -1.
+ <_>
+ 11 16 1 4 3.
+ <_>
+
+ <_>
+ 2 8 3 3 -1.
+ <_>
+ 3 8 1 3 3.
+ <_>
+
+ <_>
+ 11 0 2 6 -1.
+ <_>
+ 12 0 1 3 2.
+ <_>
+ 11 3 1 3 2.
+ <_>
+
+ <_>
+ 7 0 2 6 -1.
+ <_>
+ 7 0 1 3 2.
+ <_>
+ 8 3 1 3 2.
+ <_>
+
+ <_>
+ 16 3 3 7 -1.
+ <_>
+ 17 3 1 7 3.
+ <_>
+
+ <_>
+ 1 3 3 7 -1.
+ <_>
+ 2 3 1 7 3.
+ <_>
+
+ <_>
+ 14 1 6 16 -1.
+ <_>
+ 16 1 2 16 3.
+ <_>
+
+ <_>
+ 0 1 6 16 -1.
+ <_>
+ 2 1 2 16 3.
+ <_>
+
+ <_>
+ 2 0 16 8 -1.
+ <_>
+ 10 0 8 4 2.
+ <_>
+ 2 4 8 4 2.
+ <_>
+
+ <_>
+ 6 8 5 3 -1.
+ <_>
+ 6 9 5 1 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 9 6 1 4 2.
+ <_>
+
+ <_>
+ 0 7 15 1 -1.
+ <_>
+ 5 7 5 1 3.
+ <_>
+
+ <_>
+ 8 2 7 9 -1.
+ <_>
+ 8 5 7 3 3.
+ <_>
+
+ <_>
+ 1 7 16 4 -1.
+ <_>
+ 1 7 8 2 2.
+ <_>
+ 9 9 8 2 2.
+ <_>
+
+ <_>
+ 6 12 8 2 -1.
+ <_>
+ 6 13 8 1 2.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 8 12 3 1 3.
+ <_>
+
+ <_>
+ 4 5 14 10 -1.
+ <_>
+ 11 5 7 5 2.
+ <_>
+ 4 10 7 5 2.
+ <_>
+
+ <_>
+ 4 12 3 2 -1.
+ <_>
+ 4 13 3 1 2.
+ <_>
+
+ <_>
+ 9 11 6 1 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 4 9 7 6 -1.
+ <_>
+ 4 11 7 2 3.
+ <_>
+
+ <_>
+ 7 10 6 3 -1.
+ <_>
+ 7 11 6 1 3.
+ <_>
+
+ <_>
+ 9 11 2 2 -1.
+ <_>
+ 9 12 2 1 2.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 6 4 6 1 -1.
+ <_>
+ 8 4 2 1 3.
+ <_>
+
+ <_>
+ 9 11 6 1 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 10 16 3 4 -1.
+ <_>
+ 11 16 1 4 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 2 12 16 8 -1.
+ <_>
+ 2 16 16 4 2.
+ <_>
+
+ <_>
+ 0 15 15 2 -1.
+ <_>
+ 0 16 15 1 2.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 6 5 2 3.
+ <_>
+
+ <_>
+ 9 5 2 4 -1.
+ <_>
+ 10 5 1 4 2.
+ <_>
+
+ <_>
+ 8 10 9 6 -1.
+ <_>
+ 8 12 9 2 3.
+ <_>
+
+ <_>
+ 2 19 15 1 -1.
+ <_>
+ 7 19 5 1 3.
+ <_>
+
+ <_>
+ 10 16 3 4 -1.
+ <_>
+ 11 16 1 4 3.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 0 17 20 2 2.
+ <_>
+
+ <_>
+ 10 16 3 4 -1.
+ <_>
+ 11 16 1 4 3.
+ <_>
+
+ <_>
+ 7 16 3 4 -1.
+ <_>
+ 8 16 1 4 3.
+ <_>
+
+ <_>
+ 9 16 3 3 -1.
+ <_>
+ 9 17 3 1 3.
+ <_>
+
+ <_>
+ 8 11 4 6 -1.
+ <_>
+ 8 14 4 3 2.
+ <_>
+
+ <_>
+ 9 6 2 12 -1.
+ <_>
+ 9 10 2 4 3.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 8 18 4 1 3.
+ <_>
+
+ <_>
+ 9 18 8 2 -1.
+ <_>
+ 13 18 4 1 2.
+ <_>
+ 9 19 4 1 2.
+ <_>
+
+ <_>
+ 1 18 8 2 -1.
+ <_>
+ 1 19 8 1 2.
+ <_>
+
+ <_>
+ 13 5 6 15 -1.
+ <_>
+ 15 5 2 15 3.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 9 5 2 3 -1.
+ <_>
+ 9 5 1 3 2.
+ <_>
+
+ <_>
+ 1 5 6 15 -1.
+ <_>
+ 3 5 2 15 3.
+ <_>
+
+ <_>
+ 4 1 14 8 -1.
+ <_>
+ 11 1 7 4 2.
+ <_>
+ 4 5 7 4 2.
+ <_>
+
+ <_>
+ 2 4 4 16 -1.
+ <_>
+ 2 4 2 8 2.
+ <_>
+ 4 12 2 8 2.
+ <_>
+
+ <_>
+ 12 4 3 12 -1.
+ <_>
+ 12 10 3 6 2.
+ <_>
+
+ <_>
+ 4 5 10 12 -1.
+ <_>
+ 4 5 5 6 2.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 12 2 4 10 -1.
+ <_>
+ 14 2 2 5 2.
+ <_>
+ 12 7 2 5 2.
+ <_>
+
+ <_>
+ 6 4 7 3 -1.
+ <_>
+ 6 5 7 1 3.
+ <_>
+
+ <_>
+ 2 0 18 2 -1.
+ <_>
+ 11 0 9 1 2.
+ <_>
+ 2 1 9 1 2.
+ <_>
+
+ <_>
+ 0 0 18 2 -1.
+ <_>
+ 0 0 9 1 2.
+ <_>
+ 9 1 9 1 2.
+ <_>
+
+ <_>
+ 13 13 4 6 -1.
+ <_>
+ 15 13 2 3 2.
+ <_>
+ 13 16 2 3 2.
+ <_>
+
+ <_>
+ 3 13 4 6 -1.
+ <_>
+ 3 13 2 3 2.
+ <_>
+ 5 16 2 3 2.
+ <_>
+
+ <_>
+ 10 12 2 6 -1.
+ <_>
+ 10 15 2 3 2.
+ <_>
+
+ <_>
+ 5 9 10 10 -1.
+ <_>
+ 5 9 5 5 2.
+ <_>
+ 10 14 5 5 2.
+ <_>
+
+ <_>
+ 11 4 4 2 -1.
+ <_>
+ 13 4 2 1 2.
+ <_>
+ 11 5 2 1 2.
+ <_>
+
+ <_>
+ 7 12 6 8 -1.
+ <_>
+ 10 12 3 8 2.
+ <_>
+
+ <_>
+ 12 2 4 10 -1.
+ <_>
+ 14 2 2 5 2.
+ <_>
+ 12 7 2 5 2.
+ <_>
+
+ <_>
+ 8 11 2 1 -1.
+ <_>
+ 9 11 1 1 2.
+ <_>
+
+ <_>
+ 10 5 1 12 -1.
+ <_>
+ 10 9 1 4 3.
+ <_>
+
+ <_>
+ 0 11 6 9 -1.
+ <_>
+ 3 11 3 9 2.
+ <_>
+
+ <_>
+ 12 2 4 10 -1.
+ <_>
+ 14 2 2 5 2.
+ <_>
+ 12 7 2 5 2.
+ <_>
+
+ <_>
+ 4 2 4 10 -1.
+ <_>
+ 4 2 2 5 2.
+ <_>
+ 6 7 2 5 2.
+ <_>
+
+ <_>
+ 11 4 4 2 -1.
+ <_>
+ 13 4 2 1 2.
+ <_>
+ 11 5 2 1 2.
+ <_>
+
+ <_>
+ 0 14 6 3 -1.
+ <_>
+ 0 15 6 1 3.
+ <_>
+
+ <_>
+ 11 4 4 2 -1.
+ <_>
+ 13 4 2 1 2.
+ <_>
+ 11 5 2 1 2.
+ <_>
+
+ <_>
+ 6 1 3 2 -1.
+ <_>
+ 7 1 1 2 3.
+ <_>
+
+ <_>
+ 11 4 4 2 -1.
+ <_>
+ 13 4 2 1 2.
+ <_>
+ 11 5 2 1 2.
+ <_>
+
+ <_>
+ 5 4 4 2 -1.
+ <_>
+ 5 4 2 1 2.
+ <_>
+ 7 5 2 1 2.
+ <_>
+
+ <_>
+ 13 0 2 12 -1.
+ <_>
+ 14 0 1 6 2.
+ <_>
+ 13 6 1 6 2.
+ <_>
+
+ <_>
+ 6 0 3 10 -1.
+ <_>
+ 7 0 1 10 3.
+ <_>
+
+ <_>
+ 3 0 17 8 -1.
+ <_>
+ 3 4 17 4 2.
+ <_>
+
+ <_>
+ 0 4 20 4 -1.
+ <_>
+ 0 6 20 2 2.
+ <_>
+
+ <_>
+ 0 3 8 2 -1.
+ <_>
+ 4 3 4 2 2.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 5 7 6 4 -1.
+ <_>
+ 5 7 3 2 2.
+ <_>
+ 8 9 3 2 2.
+ <_>
+
+ <_>
+ 8 3 4 9 -1.
+ <_>
+ 8 6 4 3 3.
+ <_>
+
+ <_>
+ 8 15 1 4 -1.
+ <_>
+ 8 17 1 2 2.
+ <_>
+
+ <_>
+ 4 5 12 7 -1.
+ <_>
+ 8 5 4 7 3.
+ <_>
+
+ <_>
+ 4 2 4 10 -1.
+ <_>
+ 4 2 2 5 2.
+ <_>
+ 6 7 2 5 2.
+ <_>
+
+ <_>
+ 3 0 17 2 -1.
+ <_>
+ 3 1 17 1 2.
+ <_>
+
+ <_>
+ 2 2 16 15 -1.
+ <_>
+ 2 7 16 5 3.
+ <_>
+
+ <_>
+ 15 2 5 2 -1.
+ <_>
+ 15 3 5 1 2.
+ <_>
+
+ <_>
+ 9 3 2 2 -1.
+ <_>
+ 10 3 1 2 2.
+ <_>
+
+ <_>
+ 4 5 16 15 -1.
+ <_>
+ 4 10 16 5 3.
+ <_>
+
+ <_>
+ 7 13 5 6 -1.
+ <_>
+ 7 16 5 3 2.
+ <_>
+
+ <_>
+ 10 7 3 2 -1.
+ <_>
+ 11 7 1 2 3.
+ <_>
+
+ <_>
+ 8 3 3 1 -1.
+ <_>
+ 9 3 1 1 3.
+ <_>
+
+ <_>
+ 9 16 3 3 -1.
+ <_>
+ 9 17 3 1 3.
+ <_>
+
+ <_>
+ 0 2 5 2 -1.
+ <_>
+ 0 3 5 1 2.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 1 7 12 1 -1.
+ <_>
+ 5 7 4 1 3.
+ <_>
+
+ <_>
+ 7 5 6 14 -1.
+ <_>
+ 7 12 6 7 2.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 0 4 5 2.
+ <_>
+ 4 5 4 5 2.
+ <_>
+
+ <_>
+ 9 1 3 2 -1.
+ <_>
+ 10 1 1 2 3.
+ <_>
+
+ <_>
+ 8 1 3 2 -1.
+ <_>
+ 9 1 1 2 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 7 4 6 16 -1.
+ <_>
+ 7 12 6 8 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 2 3 2 6 -1.
+ <_>
+ 2 5 2 2 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 13 11 3 6 -1.
+ <_>
+ 13 13 3 2 3.
+ <_>
+
+ <_>
+ 3 14 2 6 -1.
+ <_>
+ 3 17 2 3 2.
+ <_>
+
+ <_>
+ 14 3 6 2 -1.
+ <_>
+ 14 4 6 1 2.
+ <_>
+
+ <_>
+ 0 8 16 2 -1.
+ <_>
+ 0 9 16 1 2.
+ <_>
+
+ <_>
+ 14 3 6 2 -1.
+ <_>
+ 14 4 6 1 2.
+ <_>
+
+ <_>
+ 0 0 5 6 -1.
+ <_>
+ 0 2 5 2 3.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 4 11 3 6 -1.
+ <_>
+ 4 13 3 2 3.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 9 5 1 3 -1.
+ <_>
+ 9 6 1 1 3.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 6 6 8 12 -1.
+ <_>
+ 6 12 8 6 2.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 5 12 9 2 -1.
+ <_>
+ 8 12 3 2 3.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 4 5 4 3 -1.
+ <_>
+ 4 6 4 1 3.
+ <_>
+
+ <_>
+ 6 6 9 2 -1.
+ <_>
+ 9 6 3 2 3.
+ <_>
+
+ <_>
+ 4 11 1 3 -1.
+ <_>
+ 4 12 1 1 3.
+ <_>
+
+ <_>
+ 14 12 6 6 -1.
+ <_>
+ 14 12 3 6 2.
+ <_>
+
+ <_>
+ 7 0 3 7 -1.
+ <_>
+ 8 0 1 7 3.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 10 8 1 3 3.
+ <_>
+
+ <_>
+ 8 8 3 3 -1.
+ <_>
+ 9 8 1 3 3.
+ <_>
+
+ <_>
+ 5 10 11 3 -1.
+ <_>
+ 5 11 11 1 3.
+ <_>
+
+ <_>
+ 5 7 10 1 -1.
+ <_>
+ 10 7 5 1 2.
+ <_>
+
+ <_>
+ 9 7 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 9 7 1 2 3.
+ <_>
+
+ <_>
+ 11 9 4 2 -1.
+ <_>
+ 11 9 2 2 2.
+ <_>
+
+ <_>
+ 5 9 4 2 -1.
+ <_>
+ 7 9 2 2 2.
+ <_>
+
+ <_>
+ 14 10 2 4 -1.
+ <_>
+ 14 12 2 2 2.
+ <_>
+
+ <_>
+ 7 7 3 2 -1.
+ <_>
+ 8 7 1 2 3.
+ <_>
+
+ <_>
+ 14 17 6 3 -1.
+ <_>
+ 14 18 6 1 3.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 4 5 6 6 2.
+ <_>
+ 10 11 6 6 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 0 4 15 4 -1.
+ <_>
+ 5 4 5 4 3.
+ <_>
+
+ <_>
+ 13 2 4 1 -1.
+ <_>
+ 13 2 2 1 2.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 9 13 2 3 -1.
+ <_>
+ 9 14 2 1 3.
+ <_>
+
+ <_>
+ 13 11 2 3 -1.
+ <_>
+ 13 12 2 1 3.
+ <_>
+
+ <_>
+ 7 12 4 4 -1.
+ <_>
+ 7 12 2 2 2.
+ <_>
+ 9 14 2 2 2.
+ <_>
+
+ <_>
+ 10 11 2 2 -1.
+ <_>
+ 11 11 1 1 2.
+ <_>
+ 10 12 1 1 2.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 10 11 2 2 -1.
+ <_>
+ 11 11 1 1 2.
+ <_>
+ 10 12 1 1 2.
+ <_>
+
+ <_>
+ 0 17 6 3 -1.
+ <_>
+ 0 18 6 1 3.
+ <_>
+
+ <_>
+ 10 11 2 2 -1.
+ <_>
+ 11 11 1 1 2.
+ <_>
+ 10 12 1 1 2.
+ <_>
+
+ <_>
+ 8 11 2 2 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+ 9 12 1 1 2.
+ <_>
+
+ <_>
+ 12 5 8 4 -1.
+ <_>
+ 12 5 4 4 2.
+ <_>
+
+ <_>
+ 0 5 8 4 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+
+ <_>
+ 13 2 4 1 -1.
+ <_>
+ 13 2 2 1 2.
+ <_>
+
+ <_>
+ 3 2 4 1 -1.
+ <_>
+ 5 2 2 1 2.
+ <_>
+
+ <_>
+ 10 0 4 2 -1.
+ <_>
+ 12 0 2 1 2.
+ <_>
+ 10 1 2 1 2.
+ <_>
+
+ <_>
+ 7 12 3 1 -1.
+ <_>
+ 8 12 1 1 3.
+ <_>
+
+ <_>
+ 8 11 4 8 -1.
+ <_>
+ 10 11 2 4 2.
+ <_>
+ 8 15 2 4 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 3 18 15 2 -1.
+ <_>
+ 3 19 15 1 2.
+ <_>
+
+ <_>
+ 2 6 2 12 -1.
+ <_>
+ 2 6 1 6 2.
+ <_>
+ 3 12 1 6 2.
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ <_>
+
+ <_>
+ 7 10 3 2 -1.
+ <_>
+ 8 10 1 2 3.
+ <_>
+
+ <_>
+ 11 11 3 1 -1.
+ <_>
+ 12 11 1 1 3.
+ <_>
+
+ <_>
+ 6 11 3 1 -1.
+ <_>
+ 7 11 1 1 3.
+ <_>
+
+ <_>
+ 9 2 4 2 -1.
+ <_>
+ 11 2 2 1 2.
+ <_>
+ 9 3 2 1 2.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 8 1 6 3 3.
+ <_>
+
+ <_>
+ 5 1 4 14 -1.
+ <_>
+ 7 1 2 14 2.
+ <_>
+
+ <_>
+ 8 16 12 3 -1.
+ <_>
+ 8 16 6 3 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 9 14 2 6 -1.
+ <_>
+ 9 17 2 3 2.
+ <_>
+
+ <_>
+ 9 12 1 8 -1.
+ <_>
+ 9 16 1 4 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 9 6 2 12 -1.
+ <_>
+ 9 10 2 4 3.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 0 1 4 8 -1.
+ <_>
+ 2 1 2 8 2.
+ <_>
+
+ <_>
+ 9 1 6 2 -1.
+ <_>
+ 12 1 3 1 2.
+ <_>
+ 9 2 3 1 2.
+ <_>
+
+ <_>
+ 1 3 12 14 -1.
+ <_>
+ 1 10 12 7 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 10 12 2 1 2.
+ <_>
+ 8 13 2 1 2.
+ <_>
+
+ <_>
+ 1 9 10 2 -1.
+ <_>
+ 1 9 5 1 2.
+ <_>
+ 6 10 5 1 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 6 8 8 3 -1.
+ <_>
+ 6 9 8 1 3.
+ <_>
+
+ <_>
+ 9 15 5 3 -1.
+ <_>
+ 9 16 5 1 3.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ <_>
+
+ <_>
+ 7 7 6 2 -1.
+ <_>
+ 7 8 6 1 2.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 5 7 4 1 2.
+ <_>
+ 9 8 4 1 2.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 4 7 4 2 -1.
+ <_>
+ 4 8 4 1 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 4 9 3 3 -1.
+ <_>
+ 5 9 1 3 3.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 17 3 3 6 -1.
+ <_>
+ 18 3 1 6 3.
+ <_>
+
+ <_>
+ 0 3 3 6 -1.
+ <_>
+ 1 3 1 6 3.
+ <_>
+
+ <_>
+ 17 14 1 2 -1.
+ <_>
+ 17 15 1 1 2.
+ <_>
+
+ <_>
+ 4 9 4 3 -1.
+ <_>
+ 6 9 2 3 2.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 12 10 3 1 3.
+ <_>
+
+ <_>
+ 5 9 3 3 -1.
+ <_>
+ 5 10 3 1 3.
+ <_>
+
+ <_>
+ 9 5 6 8 -1.
+ <_>
+ 12 5 3 4 2.
+ <_>
+ 9 9 3 4 2.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 5 5 3 4 2.
+ <_>
+ 8 9 3 4 2.
+ <_>
+
+ <_>
+ 16 1 4 6 -1.
+ <_>
+ 16 4 4 3 2.
+ <_>
+
+ <_>
+ 1 0 6 20 -1.
+ <_>
+ 3 0 2 20 3.
+ <_>
+
+ <_>
+ 12 11 3 2 -1.
+ <_>
+ 13 11 1 2 3.
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 6 11 1 2 3.
+ <_>
+
+ <_>
+ 9 4 6 1 -1.
+ <_>
+ 11 4 2 1 3.
+ <_>
+
+ <_>
+ 0 0 8 3 -1.
+ <_>
+ 4 0 4 3 2.
+ <_>
+
+ <_>
+ 15 0 2 5 -1.
+ <_>
+ 15 0 1 5 2.
+ <_>
+
+ <_>
+ 4 1 3 2 -1.
+ <_>
+ 5 1 1 2 3.
+ <_>
+
+ <_>
+ 7 0 6 15 -1.
+ <_>
+ 9 0 2 15 3.
+ <_>
+
+ <_>
+ 6 11 3 1 -1.
+ <_>
+ 7 11 1 1 3.
+ <_>
+
+ <_>
+ 12 0 3 4 -1.
+ <_>
+ 13 0 1 4 3.
+ <_>
+
+ <_>
+ 5 4 6 1 -1.
+ <_>
+ 7 4 2 1 3.
+ <_>
+
+ <_>
+ 12 7 3 2 -1.
+ <_>
+ 12 8 3 1 2.
+ <_>
+
+ <_>
+ 0 1 4 6 -1.
+ <_>
+ 0 4 4 3 2.
+ <_>
+
+ <_>
+ 12 7 3 2 -1.
+ <_>
+ 12 8 3 1 2.
+ <_>
+
+ <_>
+ 2 16 3 3 -1.
+ <_>
+ 2 17 3 1 3.
+ <_>
+
+ <_>
+ 13 8 6 10 -1.
+ <_>
+ 16 8 3 5 2.
+ <_>
+ 13 13 3 5 2.
+ <_>
+
+ <_>
+ 0 9 5 2 -1.
+ <_>
+ 0 10 5 1 2.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 3 15 3 3 -1.
+ <_>
+ 3 16 3 1 3.
+ <_>
+
+ <_>
+ 12 7 3 2 -1.
+ <_>
+ 12 8 3 1 2.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 5 8 3 1 2.
+ <_>
+
+ <_>
+ 9 5 9 9 -1.
+ <_>
+ 9 8 9 3 3.
+ <_>
+
+ <_>
+ 5 0 3 7 -1.
+ <_>
+ 6 0 1 7 3.
+ <_>
+
+ <_>
+ 5 2 12 5 -1.
+ <_>
+ 9 2 4 5 3.
+ <_>
+
+ <_>
+ 6 11 2 2 -1.
+ <_>
+ 6 11 1 1 2.
+ <_>
+ 7 12 1 1 2.
+ <_>
+
+ <_>
+ 15 15 3 2 -1.
+ <_>
+ 15 16 3 1 2.
+ <_>
+
+ <_>
+ 2 15 3 2 -1.
+ <_>
+ 2 16 3 1 2.
+ <_>
+
+ <_>
+ 14 12 6 8 -1.
+ <_>
+ 17 12 3 4 2.
+ <_>
+ 14 16 3 4 2.
+ <_>
+
+ <_>
+ 2 8 15 6 -1.
+ <_>
+ 7 8 5 6 3.
+ <_>
+
+ <_>
+ 2 2 18 17 -1.
+ <_>
+ 8 2 6 17 3.
+ <_>
+
+ <_>
+ 5 1 4 1 -1.
+ <_>
+ 7 1 2 1 2.
+ <_>
+
+ <_>
+ 5 2 12 5 -1.
+ <_>
+ 9 2 4 5 3.
+ <_>
+
+ <_>
+ 3 2 12 5 -1.
+ <_>
+ 7 2 4 5 3.
+ <_>
+
+ <_>
+ 4 9 12 4 -1.
+ <_>
+ 10 9 6 2 2.
+ <_>
+ 4 11 6 2 2.
+ <_>
+
+ <_>
+ 5 15 6 2 -1.
+ <_>
+ 5 15 3 1 2.
+ <_>
+ 8 16 3 1 2.
+ <_>
+
+ <_>
+ 10 14 2 3 -1.
+ <_>
+ 10 15 2 1 3.
+ <_>
+
+ <_>
+ 0 13 20 2 -1.
+ <_>
+ 0 13 10 1 2.
+ <_>
+ 10 14 10 1 2.
+ <_>
+
+ <_>
+ 4 9 12 8 -1.
+ <_>
+ 10 9 6 4 2.
+ <_>
+ 4 13 6 4 2.
+ <_>
+
+ <_>
+ 8 13 3 6 -1.
+ <_>
+ 8 16 3 3 2.
+ <_>
+
+ <_>
+ 10 12 2 2 -1.
+ <_>
+ 10 13 2 1 2.
+ <_>
+
+ <_>
+ 9 12 2 2 -1.
+ <_>
+ 9 12 1 1 2.
+ <_>
+ 10 13 1 1 2.
+ <_>
+
+ <_>
+ 4 11 14 4 -1.
+ <_>
+ 11 11 7 2 2.
+ <_>
+ 4 13 7 2 2.
+ <_>
+
+ <_>
+ 8 5 4 2 -1.
+ <_>
+ 8 6 4 1 2.
+ <_>
+
+ <_>
+ 10 10 6 3 -1.
+ <_>
+ 12 10 2 3 3.
+ <_>
+
+ <_>
+ 2 14 1 2 -1.
+ <_>
+ 2 15 1 1 2.
+ <_>
+
+ <_>
+ 13 8 6 12 -1.
+ <_>
+ 16 8 3 6 2.
+ <_>
+ 13 14 3 6 2.
+ <_>
+
+ <_>
+ 1 8 6 12 -1.
+ <_>
+ 1 8 3 6 2.
+ <_>
+ 4 14 3 6 2.
+ <_>
+
+ <_>
+ 10 0 6 10 -1.
+ <_>
+ 12 0 2 10 3.
+ <_>
+
+ <_>
+ 5 11 8 4 -1.
+ <_>
+ 5 11 4 2 2.
+ <_>
+ 9 13 4 2 2.
+ <_>
+
+ <_>
+ 10 16 8 4 -1.
+ <_>
+ 14 16 4 2 2.
+ <_>
+ 10 18 4 2 2.
+ <_>
+
+ <_>
+ 7 7 6 6 -1.
+ <_>
+ 9 7 2 6 3.
+ <_>
+
+ <_>
+ 10 2 4 10 -1.
+ <_>
+ 10 2 2 10 2.
+ <_>
+
+ <_>
+ 6 1 4 9 -1.
+ <_>
+ 8 1 2 9 2.
+ <_>
+
+ <_>
+ 12 19 2 1 -1.
+ <_>
+ 12 19 1 1 2.
+ <_>
+
+ <_>
+ 1 2 4 9 -1.
+ <_>
+ 3 2 2 9 2.
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 9 5 2 4 3.
+ <_>
+
+ <_>
+ 9 4 2 4 -1.
+ <_>
+ 9 6 2 2 2.
+ <_>
+
+ <_>
+ 14 5 2 8 -1.
+ <_>
+ 14 9 2 4 2.
+ <_>
+
+ <_>
+ 7 6 5 12 -1.
+ <_>
+ 7 12 5 6 2.
+ <_>
+
+ <_>
+ 14 6 2 6 -1.
+ <_>
+ 14 9 2 3 2.
+ <_>
+
+ <_>
+ 4 6 2 6 -1.
+ <_>
+ 4 9 2 3 2.
+ <_>
+
+ <_>
+ 8 15 10 4 -1.
+ <_>
+ 13 15 5 2 2.
+ <_>
+ 8 17 5 2 2.
+ <_>
+
+ <_>
+ 6 18 2 2 -1.
+ <_>
+ 7 18 1 2 2.
+ <_>
+
+ <_>
+ 11 3 6 2 -1.
+ <_>
+ 11 4 6 1 2.
+ <_>
+
+ <_>
+ 2 0 16 6 -1.
+ <_>
+ 2 2 16 2 3.
+ <_>
+
+ <_>
+ 11 3 6 2 -1.
+ <_>
+ 11 4 6 1 2.
+ <_>
+
+ <_>
+ 4 11 10 3 -1.
+ <_>
+ 4 12 10 1 3.
+ <_>
+
+ <_>
+ 11 3 6 2 -1.
+ <_>
+ 11 4 6 1 2.
+ <_>
+
+ <_>
+ 3 3 6 2 -1.
+ <_>
+ 3 4 6 1 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 9 16 3 3 -1.
+ <_>
+ 9 17 3 1 3.
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 6 6 2 2 3.
+ <_>
+
+ <_>
+ 15 11 1 3 -1.
+ <_>
+ 15 12 1 1 3.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 10 9 2 2 -1.
+ <_>
+ 10 10 2 1 2.
+ <_>
+
+ <_>
+ 3 1 4 3 -1.
+ <_>
+ 5 1 2 3 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 20 1 -1.
+ <_>
+ 10 0 10 1 2.
+ <_>
+
+ <_>
+ 15 11 1 3 -1.
+ <_>
+ 15 12 1 1 3.
+ <_>
+
+ <_>
+ 0 4 3 4 -1.
+ <_>
+ 1 4 1 4 3.
+ <_>
+
+ <_>
+ 16 3 3 6 -1.
+ <_>
+ 16 5 3 2 3.
+ <_>
+
+ <_>
+ 1 3 3 6 -1.
+ <_>
+ 1 5 3 2 3.
+ <_>
+
+ <_>
+ 6 2 12 6 -1.
+ <_>
+ 12 2 6 3 2.
+ <_>
+ 6 5 6 3 2.
+ <_>
+
+ <_>
+ 8 10 4 3 -1.
+ <_>
+ 8 11 4 1 3.
+ <_>
+
+ <_>
+ 4 2 14 6 -1.
+ <_>
+ 11 2 7 3 2.
+ <_>
+ 4 5 7 3 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 15 13 2 3 -1.
+ <_>
+ 15 14 2 1 3.
+ <_>
+
+ <_>
+ 8 12 4 3 -1.
+ <_>
+ 8 13 4 1 3.
+ <_>
+
+ <_>
+ 15 11 1 3 -1.
+ <_>
+ 15 12 1 1 3.
+ <_>
+
+ <_>
+ 7 13 5 2 -1.
+ <_>
+ 7 14 5 1 2.
+ <_>
+
+ <_>
+ 7 12 6 3 -1.
+ <_>
+ 7 13 6 1 3.
+ <_>
+
+ <_>
+ 5 11 4 4 -1.
+ <_>
+ 5 13 4 2 2.
+ <_>
+
+ <_>
+ 11 4 3 3 -1.
+ <_>
+ 12 4 1 3 3.
+ <_>
+
+ <_>
+ 6 4 3 3 -1.
+ <_>
+ 7 4 1 3 3.
+ <_>
+
+ <_>
+ 16 5 3 6 -1.
+ <_>
+ 17 5 1 6 3.
+ <_>
+
+ <_>
+ 3 6 12 7 -1.
+ <_>
+ 7 6 4 7 3.
+ <_>
+
+ <_>
+ 16 5 3 6 -1.
+ <_>
+ 17 5 1 6 3.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 16 5 3 6 -1.
+ <_>
+ 17 5 1 6 3.
+ <_>
+
+ <_>
+ 1 5 3 6 -1.
+ <_>
+ 2 5 1 6 3.
+ <_>
+
+ <_>
+ 1 9 18 1 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 0 9 8 7 -1.
+ <_>
+ 4 9 4 7 2.
+ <_>
+
+ <_>
+ 12 11 8 2 -1.
+ <_>
+ 12 12 8 1 2.
+ <_>
+
+ <_>
+ 0 11 8 2 -1.
+ <_>
+ 0 12 8 1 2.
+ <_>
+
+ <_>
+ 9 13 2 3 -1.
+ <_>
+ 9 14 2 1 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 4 10 6 2 2.
+ <_>
+ 10 12 6 2 2.
+ <_>
+
+ <_>
+ 9 3 3 7 -1.
+ <_>
+ 10 3 1 7 3.
+ <_>
+
+ <_>
+ 7 2 3 5 -1.
+ <_>
+ 8 2 1 5 3.
+ <_>
+
+ <_>
+ 9 12 4 6 -1.
+ <_>
+ 11 12 2 3 2.
+ <_>
+ 9 15 2 3 2.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 15 4 4 2 -1.
+ <_>
+ 15 5 4 1 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 14 2 6 4 -1.
+ <_>
+ 14 4 6 2 2.
+ <_>
+
+ <_>
+ 7 16 6 1 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 15 13 2 3 -1.
+ <_>
+ 15 14 2 1 3.
+ <_>
+
+ <_>
+ 8 7 3 10 -1.
+ <_>
+ 9 7 1 10 3.
+ <_>
+
+ <_>
+ 11 10 2 6 -1.
+ <_>
+ 11 12 2 2 3.
+ <_>
+
+ <_>
+ 6 10 4 1 -1.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 10 9 2 2 -1.
+ <_>
+ 10 10 2 1 2.
+ <_>
+
+ <_>
+ 8 9 2 2 -1.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 12 7 2 2 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+ 12 8 1 1 2.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 5 7 1 1 2.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 13 0 3 14 -1.
+ <_>
+ 14 0 1 14 3.
+ <_>
+
+ <_>
+ 4 0 3 14 -1.
+ <_>
+ 5 0 1 14 3.
+ <_>
+
+ <_>
+ 13 4 3 14 -1.
+ <_>
+ 14 4 1 14 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 4 2 3 16 -1.
+ <_>
+ 5 2 1 16 3.
+ <_>
+
+ <_>
+ 7 2 8 10 -1.
+ <_>
+ 7 7 8 5 2.
+ <_>
+
+ <_>
+ 6 14 7 3 -1.
+ <_>
+ 6 15 7 1 3.
+ <_>
+
+ <_>
+ 9 2 10 12 -1.
+ <_>
+ 14 2 5 6 2.
+ <_>
+ 9 8 5 6 2.
+ <_>
+
+ <_>
+ 6 7 8 2 -1.
+ <_>
+ 6 8 8 1 2.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 8 16 4 3 2.
+ <_>
+
+ <_>
+ 6 6 1 3 -1.
+ <_>
+ 6 7 1 1 3.
+ <_>
+
+ <_>
+ 16 2 4 6 -1.
+ <_>
+ 16 4 4 2 3.
+ <_>
+
+ <_>
+ 6 6 4 2 -1.
+ <_>
+ 6 6 2 1 2.
+ <_>
+ 8 7 2 1 2.
+ <_>
+
+ <_>
+ 16 2 4 6 -1.
+ <_>
+ 16 4 4 2 3.
+ <_>
+
+ <_>
+ 0 2 4 6 -1.
+ <_>
+ 0 4 4 2 3.
+ <_>
+
+ <_>
+ 9 6 2 6 -1.
+ <_>
+ 9 6 1 6 2.
+ <_>
+
+ <_>
+ 3 4 6 10 -1.
+ <_>
+ 3 9 6 5 2.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 5 1 6 2.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 13 13 3 2 -1.
+ <_>
+ 13 14 3 1 2.
+ <_>
+
+ <_>
+ 2 16 10 4 -1.
+ <_>
+ 2 16 5 2 2.
+ <_>
+ 7 18 5 2 2.
+ <_>
+
+ <_>
+ 5 6 10 6 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ <_>
+
+ <_>
+ 14 16 6 3 -1.
+ <_>
+ 14 17 6 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 7 4 10 3 -1.
+ <_>
+ 7 5 10 1 3.
+ <_>
+
+ <_>
+ 0 4 5 4 -1.
+ <_>
+ 0 6 5 2 2.
+ <_>
+
+ <_>
+ 13 11 3 9 -1.
+ <_>
+ 13 14 3 3 3.
+ <_>
+
+ <_>
+ 4 11 3 9 -1.
+ <_>
+ 4 14 3 3 3.
+ <_>
+
+ <_>
+ 9 7 2 1 -1.
+ <_>
+ 9 7 1 1 2.
+ <_>
+
+ <_>
+ 5 0 6 17 -1.
+ <_>
+ 7 0 2 17 3.
+ <_>
+
+ <_>
+ 10 3 6 3 -1.
+ <_>
+ 10 3 3 3 2.
+ <_>
+
+ <_>
+ 2 2 15 4 -1.
+ <_>
+ 7 2 5 4 3.
+ <_>
+
+ <_>
+ 8 2 8 2 -1.
+ <_>
+ 12 2 4 1 2.
+ <_>
+ 8 3 4 1 2.
+ <_>
+
+ <_>
+ 8 1 3 6 -1.
+ <_>
+ 8 3 3 2 3.
+ <_>
+
+ <_>
+ 9 17 2 2 -1.
+ <_>
+ 9 18 2 1 2.
+ <_>
+
+ <_>
+ 0 0 2 14 -1.
+ <_>
+ 1 0 1 14 2.
+ <_>
+
+ <_>
+ 12 0 7 3 -1.
+ <_>
+ 12 1 7 1 3.
+ <_>
+
+ <_>
+ 1 14 1 2 -1.
+ <_>
+ 1 15 1 1 2.
+ <_>
+
+ <_>
+ 14 12 2 8 -1.
+ <_>
+ 15 12 1 4 2.
+ <_>
+ 14 16 1 4 2.
+ <_>
+
+ <_>
+ 1 0 7 3 -1.
+ <_>
+ 1 1 7 1 3.
+ <_>
+
+ <_>
+ 14 12 2 8 -1.
+ <_>
+ 15 12 1 4 2.
+ <_>
+ 14 16 1 4 2.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 0 4 6 2.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 6 1 8 9 -1.
+ <_>
+ 6 4 8 3 3.
+ <_>
+
+ <_>
+ 5 2 2 2 -1.
+ <_>
+ 5 3 2 1 2.
+ <_>
+
+ <_>
+ 13 14 6 6 -1.
+ <_>
+ 16 14 3 3 2.
+ <_>
+ 13 17 3 3 2.
+ <_>
+
+ <_>
+ 0 17 20 2 -1.
+ <_>
+ 0 17 10 1 2.
+ <_>
+ 10 18 10 1 2.
+ <_>
+
+ <_>
+ 10 3 2 6 -1.
+ <_>
+ 11 3 1 3 2.
+ <_>
+ 10 6 1 3 2.
+ <_>
+
+ <_>
+ 5 12 6 2 -1.
+ <_>
+ 8 12 3 2 2.
+ <_>
+
+ <_>
+ 10 7 6 13 -1.
+ <_>
+ 10 7 3 13 2.
+ <_>
+
+ <_>
+ 5 15 10 5 -1.
+ <_>
+ 10 15 5 5 2.
+ <_>
+
+ <_>
+ 10 4 4 10 -1.
+ <_>
+ 10 4 2 10 2.
+ <_>
+
+ <_>
+ 5 7 2 1 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 10 3 3 7 2.
+ <_>
+
+ <_>
+ 4 3 6 7 -1.
+ <_>
+ 7 3 3 7 2.
+ <_>
+
+ <_>
+ 1 7 18 5 -1.
+ <_>
+ 7 7 6 5 3.
+ <_>
+
+ <_>
+ 3 17 4 3 -1.
+ <_>
+ 5 17 2 3 2.
+ <_>
+
+ <_>
+ 8 14 12 6 -1.
+ <_>
+ 14 14 6 3 2.
+ <_>
+ 8 17 6 3 2.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 0 13 10 2 2.
+ <_>
+ 10 15 10 2 2.
+ <_>
+
+ <_>
+ 4 5 14 2 -1.
+ <_>
+ 11 5 7 1 2.
+ <_>
+ 4 6 7 1 2.
+ <_>
+
+ <_>
+ 1 2 10 12 -1.
+ <_>
+ 1 2 5 6 2.
+ <_>
+ 6 8 5 6 2.
+ <_>
+
+ <_>
+ 6 1 14 3 -1.
+ <_>
+ 6 2 14 1 3.
+ <_>
+
+ <_>
+ 8 16 2 3 -1.
+ <_>
+ 8 17 2 1 3.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 5 15 4 2 -1.
+ <_>
+ 5 15 2 1 2.
+ <_>
+ 7 16 2 1 2.
+ <_>
+
+ <_>
+ 10 15 1 3 -1.
+ <_>
+ 10 16 1 1 3.
+ <_>
+
+ <_>
+ 8 16 4 4 -1.
+ <_>
+ 8 16 2 2 2.
+ <_>
+ 10 18 2 2 2.
+ <_>
+
+ <_>
+ 6 11 8 6 -1.
+ <_>
+ 6 14 8 3 2.
+ <_>
+
+ <_>
+ 2 13 5 2 -1.
+ <_>
+ 2 14 5 1 2.
+ <_>
+
+ <_>
+ 13 14 6 6 -1.
+ <_>
+ 16 14 3 3 2.
+ <_>
+ 13 17 3 3 2.
+ <_>
+
+ <_>
+ 1 9 18 4 -1.
+ <_>
+ 7 9 6 4 3.
+ <_>
+
+ <_>
+ 13 14 6 6 -1.
+ <_>
+ 16 14 3 3 2.
+ <_>
+ 13 17 3 3 2.
+ <_>
+
+ <_>
+ 0 2 1 6 -1.
+ <_>
+ 0 4 1 2 3.
+ <_>
+
+ <_>
+ 5 0 15 20 -1.
+ <_>
+ 5 10 15 10 2.
+ <_>
+
+ <_>
+ 1 14 6 6 -1.
+ <_>
+ 1 14 3 3 2.
+ <_>
+ 4 17 3 3 2.
+ <_>
+
+ <_>
+ 8 14 4 6 -1.
+ <_>
+ 10 14 2 3 2.
+ <_>
+ 8 17 2 3 2.
+ <_>
+
+ <_>
+ 7 11 2 1 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 12 14 4 6 -1.
+ <_>
+ 14 14 2 3 2.
+ <_>
+ 12 17 2 3 2.
+ <_>
+
+ <_>
+ 4 14 4 6 -1.
+ <_>
+ 4 14 2 3 2.
+ <_>
+ 6 17 2 3 2.
+ <_>
+
+ <_>
+ 13 14 2 6 -1.
+ <_>
+ 14 14 1 3 2.
+ <_>
+ 13 17 1 3 2.
+ <_>
+
+ <_>
+ 5 14 2 6 -1.
+ <_>
+ 5 14 1 3 2.
+ <_>
+ 6 17 1 3 2.
+ <_>
+
+ <_>
+ 7 0 6 12 -1.
+ <_>
+ 7 4 6 4 3.
+ <_>
+
+ <_>
+ 0 7 12 2 -1.
+ <_>
+ 4 7 4 2 3.
+ <_>
+
+ <_>
+ 10 3 3 13 -1.
+ <_>
+ 11 3 1 13 3.
+ <_>
+
+ <_>
+ 7 3 3 13 -1.
+ <_>
+ 8 3 1 13 3.
+ <_>
+
+ <_>
+ 10 8 6 3 -1.
+ <_>
+ 10 9 6 1 3.
+ <_>
+
+ <_>
+ 3 11 3 2 -1.
+ <_>
+ 4 11 1 2 3.
+ <_>
+
+ <_>
+ 13 12 6 8 -1.
+ <_>
+ 16 12 3 4 2.
+ <_>
+ 13 16 3 4 2.
+ <_>
+
+ <_>
+ 7 6 6 5 -1.
+ <_>
+ 9 6 2 5 3.
+ <_>
+
+ <_>
+ 17 11 2 7 -1.
+ <_>
+ 17 11 1 7 2.
+ <_>
+
+ <_>
+ 3 13 8 2 -1.
+ <_>
+ 7 13 4 2 2.
+ <_>
+
+ <_>
+ 6 9 8 3 -1.
+ <_>
+ 6 10 8 1 3.
+ <_>
+
+ <_>
+ 4 3 4 3 -1.
+ <_>
+ 4 4 4 1 3.
+ <_>
+
+ <_>
+ 11 3 4 3 -1.
+ <_>
+ 11 4 4 1 3.
+ <_>
+
+ <_>
+ 1 4 17 12 -1.
+ <_>
+ 1 8 17 4 3.
+ <_>
+
+ <_>
+ 11 3 4 3 -1.
+ <_>
+ 11 4 4 1 3.
+ <_>
+
+ <_>
+ 4 8 6 3 -1.
+ <_>
+ 4 9 6 1 3.
+ <_>
+
+ <_>
+ 12 3 5 3 -1.
+ <_>
+ 12 4 5 1 3.
+ <_>
+
+ <_>
+ 1 11 2 7 -1.
+ <_>
+ 2 11 1 7 2.
+ <_>
+
+ <_>
+ 15 12 2 8 -1.
+ <_>
+ 16 12 1 4 2.
+ <_>
+ 15 16 1 4 2.
+ <_>
+
+ <_>
+ 4 8 11 3 -1.
+ <_>
+ 4 9 11 1 3.
+ <_>
+
+ <_>
+ 9 13 6 2 -1.
+ <_>
+ 12 13 3 1 2.
+ <_>
+ 9 14 3 1 2.
+ <_>
+
+ <_>
+ 6 13 4 3 -1.
+ <_>
+ 6 14 4 1 3.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 10 12 1 3 3.
+ <_>
+
+ <_>
+ 5 3 3 3 -1.
+ <_>
+ 5 4 3 1 3.
+ <_>
+
+ <_>
+ 9 4 2 3 -1.
+ <_>
+ 9 5 2 1 3.
+ <_>
+
+ <_>
+ 0 2 16 3 -1.
+ <_>
+ 0 3 16 1 3.
+ <_>
+
+ <_>
+ 15 12 2 8 -1.
+ <_>
+ 16 12 1 4 2.
+ <_>
+ 15 16 1 4 2.
+ <_>
+
+ <_>
+ 3 12 2 8 -1.
+ <_>
+ 3 12 1 4 2.
+ <_>
+ 4 16 1 4 2.
+ <_>
+
+ <_>
+ 14 13 3 6 -1.
+ <_>
+ 14 15 3 2 3.
+ <_>
+
+ <_>
+ 3 13 3 6 -1.
+ <_>
+ 3 15 3 2 3.
+ <_>
+
+ <_>
+ 6 5 10 2 -1.
+ <_>
+ 11 5 5 1 2.
+ <_>
+ 6 6 5 1 2.
+ <_>
+
+ <_>
+ 2 14 14 6 -1.
+ <_>
+ 2 17 14 3 2.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 4 16 2 2 -1.
+ <_>
+ 4 16 1 1 2.
+ <_>
+ 5 17 1 1 2.
+ <_>
+
+ <_>
+ 10 6 2 3 -1.
+ <_>
+ 10 7 2 1 3.
+ <_>
+
+ <_>
+ 0 17 20 2 -1.
+ <_>
+ 0 17 10 1 2.
+ <_>
+ 10 18 10 1 2.
+ <_>
+
+ <_>
+ 13 6 1 3 -1.
+ <_>
+ 13 7 1 1 3.
+ <_>
+
+ <_>
+ 8 13 3 2 -1.
+ <_>
+ 9 13 1 2 3.
+ <_>
+
+ <_>
+ 12 2 3 3 -1.
+ <_>
+ 13 2 1 3 3.
+ <_>
+
+ <_>
+ 3 18 2 2 -1.
+ <_>
+ 3 18 1 1 2.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 9 16 3 4 -1.
+ <_>
+ 10 16 1 4 3.
+ <_>
+
+ <_>
+ 6 6 1 3 -1.
+ <_>
+ 6 7 1 1 3.
+ <_>
+
+ <_>
+ 13 1 5 2 -1.
+ <_>
+ 13 2 5 1 2.
+ <_>
+
+ <_>
+ 7 14 6 2 -1.
+ <_>
+ 7 14 3 1 2.
+ <_>
+ 10 15 3 1 2.
+ <_>
+
+ <_>
+ 11 3 3 4 -1.
+ <_>
+ 12 3 1 4 3.
+ <_>
+
+ <_>
+ 1 13 12 6 -1.
+ <_>
+ 5 13 4 6 3.
+ <_>
+
+ <_>
+ 14 11 5 2 -1.
+ <_>
+ 14 12 5 1 2.
+ <_>
+
+ <_>
+ 2 15 14 4 -1.
+ <_>
+ 2 15 7 2 2.
+ <_>
+ 9 17 7 2 2.
+ <_>
+
+ <_>
+ 3 7 14 2 -1.
+ <_>
+ 10 7 7 1 2.
+ <_>
+ 3 8 7 1 2.
+ <_>
+
+ <_>
+ 1 11 4 2 -1.
+ <_>
+ 1 12 4 1 2.
+ <_>
+
+ <_>
+ 14 0 6 14 -1.
+ <_>
+ 16 0 2 14 3.
+ <_>
+
+ <_>
+ 4 11 1 3 -1.
+ <_>
+ 4 12 1 1 3.
+ <_>
+
+ <_>
+ 14 0 6 14 -1.
+ <_>
+ 16 0 2 14 3.
+ <_>
+
+ <_>
+ 1 10 3 7 -1.
+ <_>
+ 2 10 1 7 3.
+ <_>
+
+ <_>
+ 8 12 9 2 -1.
+ <_>
+ 8 13 9 1 2.
+ <_>
+
+ <_>
+ 0 6 20 1 -1.
+ <_>
+ 10 6 10 1 2.
+ <_>
+
+ <_>
+ 8 4 4 4 -1.
+ <_>
+ 8 4 2 4 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 5 3 10 9 -1.
+ <_>
+ 5 6 10 3 3.
+ <_>
+
+ <_>
+ 15 2 4 10 -1.
+ <_>
+ 15 2 2 10 2.
+ <_>
+
+ <_>
+ 8 2 2 7 -1.
+ <_>
+ 9 2 1 7 2.
+ <_>
+
+ <_>
+ 7 4 12 1 -1.
+ <_>
+ 11 4 4 1 3.
+ <_>
+
+ <_>
+ 3 4 9 1 -1.
+ <_>
+ 6 4 3 1 3.
+ <_>
+
+ <_>
+ 15 10 1 4 -1.
+ <_>
+ 15 12 1 2 2.
+ <_>
+
+ <_>
+ 4 10 6 4 -1.
+ <_>
+ 7 10 3 4 2.
+ <_>
+
+ <_>
+ 15 9 1 6 -1.
+ <_>
+ 15 12 1 3 2.
+ <_>
+
+ <_>
+ 7 17 6 3 -1.
+ <_>
+ 7 18 6 1 3.
+ <_>
+
+ <_>
+ 14 3 2 16 -1.
+ <_>
+ 15 3 1 8 2.
+ <_>
+ 14 11 1 8 2.
+ <_>
+
+ <_>
+ 4 9 1 6 -1.
+ <_>
+ 4 12 1 3 2.
+ <_>
+
+ <_>
+ 12 1 5 2 -1.
+ <_>
+ 12 2 5 1 2.
+ <_>
+
+ <_>
+ 6 18 4 2 -1.
+ <_>
+ 6 18 2 1 2.
+ <_>
+ 8 19 2 1 2.
+ <_>
+
+ <_>
+ 2 4 16 10 -1.
+ <_>
+ 10 4 8 5 2.
+ <_>
+ 2 9 8 5 2.
+ <_>
+
+ <_>
+ 6 5 1 10 -1.
+ <_>
+ 6 10 1 5 2.
+ <_>
+
+ <_>
+ 4 8 15 2 -1.
+ <_>
+ 9 8 5 2 3.
+ <_>
+
+ <_>
+ 1 8 15 2 -1.
+ <_>
+ 6 8 5 2 3.
+ <_>
+
+ <_>
+ 9 5 3 6 -1.
+ <_>
+ 9 7 3 2 3.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 9 7 4 2 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 1 0 16 3 -1.
+ <_>
+ 1 1 16 1 3.
+ <_>
+
+ <_>
+ 11 2 7 2 -1.
+ <_>
+ 11 3 7 1 2.
+ <_>
+
+ <_>
+ 5 1 10 18 -1.
+ <_>
+ 5 7 10 6 3.
+ <_>
+
+ <_>
+ 17 4 3 2 -1.
+ <_>
+ 18 4 1 2 3.
+ <_>
+
+ <_>
+ 8 13 1 3 -1.
+ <_>
+ 8 14 1 1 3.
+ <_>
+
+ <_>
+ 3 14 14 6 -1.
+ <_>
+ 3 16 14 2 3.
+ <_>
+
+ <_>
+ 0 2 3 4 -1.
+ <_>
+ 1 2 1 4 3.
+ <_>
+
+ <_>
+ 12 1 5 2 -1.
+ <_>
+ 12 2 5 1 2.
+ <_>
+
+ <_>
+ 3 1 5 2 -1.
+ <_>
+ 3 2 5 1 2.
+ <_>
+
+ <_>
+ 10 13 2 3 -1.
+ <_>
+ 10 14 2 1 3.
+ <_>
+
+ <_>
+ 8 13 2 3 -1.
+ <_>
+ 8 14 2 1 3.
+ <_>
+
+ <_>
+ 14 12 2 3 -1.
+ <_>
+ 14 13 2 1 3.
+ <_>
+
+ <_>
+ 7 2 2 3 -1.
+ <_>
+ 7 3 2 1 3.
+ <_>
+
+ <_>
+ 5 6 10 4 -1.
+ <_>
+ 10 6 5 2 2.
+ <_>
+ 5 8 5 2 2.
+ <_>
+
+ <_>
+ 9 13 1 6 -1.
+ <_>
+ 9 16 1 3 2.
+ <_>
+
+ <_>
+ 10 12 2 2 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+ 10 13 1 1 2.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 14 4 6 6 -1.
+ <_>
+ 14 6 6 2 3.
+ <_>
+
+ <_>
+ 8 17 2 3 -1.
+ <_>
+ 8 18 2 1 3.
+ <_>
+
+ <_>
+ 16 4 4 6 -1.
+ <_>
+ 16 6 4 2 3.
+ <_>
+
+ <_>
+ 0 4 4 6 -1.
+ <_>
+ 0 6 4 2 3.
+ <_>
+
+ <_>
+ 14 6 2 3 -1.
+ <_>
+ 14 6 1 3 2.
+ <_>
+
+ <_>
+ 4 9 8 1 -1.
+ <_>
+ 8 9 4 1 2.
+ <_>
+
+ <_>
+ 8 12 4 3 -1.
+ <_>
+ 8 13 4 1 3.
+ <_>
+
+ <_>
+ 5 12 10 6 -1.
+ <_>
+ 5 14 10 2 3.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 8 15 4 2 -1.
+ <_>
+ 8 16 4 1 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 7 12 4 6 -1.
+ <_>
+ 7 12 2 3 2.
+ <_>
+ 9 15 2 3 2.
+ <_>
+
+ <_>
+ 10 11 3 1 -1.
+ <_>
+ 11 11 1 1 3.
+ <_>
+
+ <_>
+ 9 7 2 10 -1.
+ <_>
+ 9 7 1 5 2.
+ <_>
+ 10 12 1 5 2.
+ <_>
+
+ <_>
+ 8 0 6 6 -1.
+ <_>
+ 10 0 2 6 3.
+ <_>
+
+ <_>
+ 3 11 2 6 -1.
+ <_>
+ 3 13 2 2 3.
+ <_>
+
+ <_>
+ 16 12 1 2 -1.
+ <_>
+ 16 13 1 1 2.
+ <_>
+
+ <_>
+ 1 14 6 6 -1.
+ <_>
+ 1 14 3 3 2.
+ <_>
+ 4 17 3 3 2.
+ <_>
+
+ <_>
+ 13 1 3 6 -1.
+ <_>
+ 14 1 1 6 3.
+ <_>
+
+ <_>
+ 8 8 2 2 -1.
+ <_>
+ 8 9 2 1 2.
+ <_>
+
+ <_>
+ 9 9 3 3 -1.
+ <_>
+ 10 9 1 3 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 14 0 2 3 -1.
+ <_>
+ 14 0 1 3 2.
+ <_>
+
+ <_>
+ 1 0 18 9 -1.
+ <_>
+ 7 0 6 9 3.
+ <_>
+
+ <_>
+ 11 5 4 15 -1.
+ <_>
+ 11 5 2 15 2.
+ <_>
+
+ <_>
+ 5 5 4 15 -1.
+ <_>
+ 7 5 2 15 2.
+ <_>
+
+ <_>
+ 14 0 2 3 -1.
+ <_>
+ 14 0 1 3 2.
+ <_>
+
+ <_>
+ 4 0 2 3 -1.
+ <_>
+ 5 0 1 3 2.
+ <_>
+
+ <_>
+ 11 12 2 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 7 12 2 2 -1.
+ <_>
+ 7 12 1 1 2.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 12 0 3 4 -1.
+ <_>
+ 13 0 1 4 3.
+ <_>
+
+ <_>
+ 4 11 3 3 -1.
+ <_>
+ 4 12 3 1 3.
+ <_>
+
+ <_>
+ 12 7 4 2 -1.
+ <_>
+ 12 8 4 1 2.
+ <_>
+
+ <_>
+ 8 10 3 2 -1.
+ <_>
+ 9 10 1 2 3.
+ <_>
+
+ <_>
+ 9 9 3 2 -1.
+ <_>
+ 10 9 1 2 3.
+ <_>
+
+ <_>
+ 8 9 3 2 -1.
+ <_>
+ 9 9 1 2 3.
+ <_>
+
+ <_>
+ 12 0 3 4 -1.
+ <_>
+ 13 0 1 4 3.
+ <_>
+
+ <_>
+ 5 0 3 4 -1.
+ <_>
+ 6 0 1 4 3.
+ <_>
+
+ <_>
+ 4 14 12 4 -1.
+ <_>
+ 10 14 6 2 2.
+ <_>
+ 4 16 6 2 2.
+ <_>
+
+ <_>
+ 8 13 2 3 -1.
+ <_>
+ 8 14 2 1 3.
+ <_>
+
+ <_>
+ 10 10 3 8 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 8 10 4 8 -1.
+ <_>
+ 8 10 2 4 2.
+ <_>
+ 10 14 2 4 2.
+ <_>
+
+ <_>
+ 10 8 3 1 -1.
+ <_>
+ 11 8 1 1 3.
+ <_>
+
+ <_>
+ 9 12 1 6 -1.
+ <_>
+ 9 15 1 3 2.
+ <_>
+
+ <_>
+ 10 8 3 1 -1.
+ <_>
+ 11 8 1 1 3.
+ <_>
+
+ <_>
+ 7 8 3 1 -1.
+ <_>
+ 8 8 1 1 3.
+ <_>
+
+ <_>
+ 5 2 15 14 -1.
+ <_>
+ 5 9 15 7 2.
+ <_>
+
+ <_>
+ 2 1 2 10 -1.
+ <_>
+ 2 1 1 5 2.
+ <_>
+ 3 6 1 5 2.
+ <_>
+
+ <_>
+ 14 14 2 3 -1.
+ <_>
+ 14 15 2 1 3.
+ <_>
+
+ <_>
+ 2 7 3 3 -1.
+ <_>
+ 3 7 1 3 3.
+ <_>
+
+ <_>
+ 17 4 3 3 -1.
+ <_>
+ 17 5 3 1 3.
+ <_>
+
+ <_>
+ 0 4 3 3 -1.
+ <_>
+ 0 5 3 1 3.
+ <_>
+
+ <_>
+ 13 5 6 2 -1.
+ <_>
+ 16 5 3 1 2.
+ <_>
+ 13 6 3 1 2.
+ <_>
+
+ <_>
+ 4 19 12 1 -1.
+ <_>
+ 8 19 4 1 3.
+ <_>
+
+ <_>
+ 12 12 2 4 -1.
+ <_>
+ 12 14 2 2 2.
+ <_>
+
+ <_>
+ 3 15 1 3 -1.
+ <_>
+ 3 16 1 1 3.
+ <_>
+
+ <_>
+ 11 16 6 4 -1.
+ <_>
+ 11 16 3 4 2.
+ <_>
+
+ <_>
+ 2 10 3 10 -1.
+ <_>
+ 3 10 1 10 3.
+ <_>
+
+ <_>
+ 12 8 2 4 -1.
+ <_>
+ 12 8 1 4 2.
+ <_>
+
+ <_>
+ 6 8 2 4 -1.
+ <_>
+ 7 8 1 4 2.
+ <_>
+
+ <_>
+ 10 14 2 3 -1.
+ <_>
+ 10 14 1 3 2.
+ <_>
+
+ <_>
+ 5 1 10 3 -1.
+ <_>
+ 10 1 5 3 2.
+ <_>
+
+ <_>
+ 10 7 3 2 -1.
+ <_>
+ 11 7 1 2 3.
+ <_>
+
+ <_>
+ 5 6 9 2 -1.
+ <_>
+ 8 6 3 2 3.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 2 11 16 6 -1.
+ <_>
+ 2 11 8 3 2.
+ <_>
+ 10 14 8 3 2.
+ <_>
+
+ <_>
+ 12 7 2 2 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+ 12 8 1 1 2.
+ <_>
+
+ <_>
+ 9 5 2 3 -1.
+ <_>
+ 9 6 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ <_>
+
+ <_>
+ 5 1 8 12 -1.
+ <_>
+ 5 7 8 6 2.
+ <_>
+
+ <_>
+ 13 5 2 2 -1.
+ <_>
+ 13 6 2 1 2.
+ <_>
+
+ <_>
+ 5 5 2 2 -1.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 4 14 2 3 -1.
+ <_>
+ 4 15 2 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 9 14 2 6 -1.
+ <_>
+ 10 14 1 3 2.
+ <_>
+ 9 17 1 3 2.
+ <_>
+
+ <_>
+ 8 14 3 2 -1.
+ <_>
+ 9 14 1 2 3.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 11 5 2 6 3.
+ <_>
+
+ <_>
+ 5 5 6 6 -1.
+ <_>
+ 7 5 2 6 3.
+ <_>
+
+ <_>
+ 13 13 1 2 -1.
+ <_>
+ 13 14 1 1 2.
+ <_>
+
+ <_>
+ 0 2 10 2 -1.
+ <_>
+ 0 3 10 1 2.
+ <_>
+
+ <_>
+ 13 13 1 2 -1.
+ <_>
+ 13 14 1 1 2.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 5 7 1 1 2.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 13 5 2 7 -1.
+ <_>
+ 13 5 1 7 2.
+ <_>
+
+ <_>
+ 6 13 1 2 -1.
+ <_>
+ 6 14 1 1 2.
+ <_>
+
+ <_>
+ 11 0 3 7 -1.
+ <_>
+ 12 0 1 7 3.
+ <_>
+
+ <_>
+ 0 3 2 16 -1.
+ <_>
+ 0 3 1 8 2.
+ <_>
+ 1 11 1 8 2.
+ <_>
+
+ <_>
+ 11 0 3 7 -1.
+ <_>
+ 12 0 1 7 3.
+ <_>
+
+ <_>
+ 6 0 3 7 -1.
+ <_>
+ 7 0 1 7 3.
+ <_>
+
+ <_>
+ 11 16 8 4 -1.
+ <_>
+ 11 16 4 4 2.
+ <_>
+
+ <_>
+ 1 16 8 4 -1.
+ <_>
+ 5 16 4 4 2.
+ <_>
+
+ <_>
+ 13 5 2 7 -1.
+ <_>
+ 13 5 1 7 2.
+ <_>
+
+ <_>
+ 5 5 2 7 -1.
+ <_>
+ 6 5 1 7 2.
+ <_>
+
+ <_>
+ 18 6 2 14 -1.
+ <_>
+ 18 13 2 7 2.
+ <_>
+
+ <_>
+ 6 10 3 4 -1.
+ <_>
+ 6 12 3 2 2.
+ <_>
+
+ <_>
+ 14 7 1 2 -1.
+ <_>
+ 14 8 1 1 2.
+ <_>
+
+ <_>
+ 0 1 18 6 -1.
+ <_>
+ 0 1 9 3 2.
+ <_>
+ 9 4 9 3 2.
+ <_>
+
+ <_>
+ 14 7 1 2 -1.
+ <_>
+ 14 8 1 1 2.
+ <_>
+
+ <_>
+ 0 6 2 14 -1.
+ <_>
+ 0 13 2 7 2.
+ <_>
+
+ <_>
+ 17 0 3 12 -1.
+ <_>
+ 18 0 1 12 3.
+ <_>
+
+ <_>
+ 0 6 18 3 -1.
+ <_>
+ 0 7 18 1 3.
+ <_>
+
+ <_>
+ 6 0 14 16 -1.
+ <_>
+ 6 8 14 8 2.
+ <_>
+
+ <_>
+ 0 0 3 12 -1.
+ <_>
+ 1 0 1 12 3.
+ <_>
+
+ <_>
+ 13 0 3 7 -1.
+ <_>
+ 14 0 1 7 3.
+ <_>
+
+ <_>
+ 5 7 1 2 -1.
+ <_>
+ 5 8 1 1 2.
+ <_>
+
+ <_>
+ 14 4 6 6 -1.
+ <_>
+ 14 6 6 2 3.
+ <_>
+
+ <_>
+ 5 7 7 2 -1.
+ <_>
+ 5 8 7 1 2.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 8 9 6 3 3.
+ <_>
+
+ <_>
+ 5 4 6 1 -1.
+ <_>
+ 7 4 2 1 3.
+ <_>
+
+ <_>
+ 13 0 6 4 -1.
+ <_>
+ 16 0 3 2 2.
+ <_>
+ 13 2 3 2 2.
+ <_>
+
+ <_>
+ 1 2 18 12 -1.
+ <_>
+ 1 6 18 4 3.
+ <_>
+
+ <_>
+ 3 2 17 12 -1.
+ <_>
+ 3 6 17 4 3.
+ <_>
+
+ <_>
+ 5 14 7 3 -1.
+ <_>
+ 5 15 7 1 3.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 3 14 3 3 -1.
+ <_>
+ 3 15 3 1 3.
+ <_>
+
+ <_>
+ 14 4 6 6 -1.
+ <_>
+ 14 6 6 2 3.
+ <_>
+
+ <_>
+ 0 4 6 6 -1.
+ <_>
+ 0 6 6 2 3.
+ <_>
+
+ <_>
+ 12 5 4 3 -1.
+ <_>
+ 12 6 4 1 3.
+ <_>
+
+ <_>
+ 4 5 4 3 -1.
+ <_>
+ 4 6 4 1 3.
+ <_>
+
+ <_>
+ 18 0 2 6 -1.
+ <_>
+ 18 2 2 2 3.
+ <_>
+
+ <_>
+ 8 1 4 9 -1.
+ <_>
+ 10 1 2 9 2.
+ <_>
+
+ <_>
+ 6 6 8 2 -1.
+ <_>
+ 6 6 4 2 2.
+ <_>
+
+ <_>
+ 6 5 4 2 -1.
+ <_>
+ 6 5 2 1 2.
+ <_>
+ 8 6 2 1 2.
+ <_>
+
+ <_>
+ 10 5 2 3 -1.
+ <_>
+ 10 6 2 1 3.
+ <_>
+
+ <_>
+ 9 5 1 3 -1.
+ <_>
+ 9 6 1 1 3.
+ <_>
+
+ <_>
+ 9 10 2 2 -1.
+ <_>
+ 9 11 2 1 2.
+ <_>
+
+ <_>
+ 0 8 4 3 -1.
+ <_>
+ 0 9 4 1 3.
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 6 3 8 3 2.
+ <_>
+
+ <_>
+ 1 0 6 4 -1.
+ <_>
+ 1 0 3 2 2.
+ <_>
+ 4 2 3 2 2.
+ <_>
+
+ <_>
+ 13 0 3 7 -1.
+ <_>
+ 14 0 1 7 3.
+ <_>
+
+ <_>
+ 9 16 2 2 -1.
+ <_>
+ 9 17 2 1 2.
+ <_>
+
+ <_>
+ 11 4 6 10 -1.
+ <_>
+ 11 9 6 5 2.
+ <_>
+
+ <_>
+ 0 10 19 2 -1.
+ <_>
+ 0 11 19 1 2.
+ <_>
+
+ <_>
+ 9 5 8 9 -1.
+ <_>
+ 9 8 8 3 3.
+ <_>
+
+ <_>
+ 4 0 3 7 -1.
+ <_>
+ 5 0 1 7 3.
+ <_>
+
+ <_>
+ 8 6 4 12 -1.
+ <_>
+ 10 6 2 6 2.
+ <_>
+ 8 12 2 6 2.
+ <_>
+
+ <_>
+ 0 2 6 4 -1.
+ <_>
+ 0 4 6 2 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 8 0 3 7 -1.
+ <_>
+ 9 0 1 7 3.
+ <_>
+
+ <_>
+ 9 5 3 4 -1.
+ <_>
+ 10 5 1 4 3.
+ <_>
+
+ <_>
+ 8 5 3 4 -1.
+ <_>
+ 9 5 1 4 3.
+ <_>
+
+ <_>
+ 7 6 6 1 -1.
+ <_>
+ 9 6 2 1 3.
+ <_>
+
+ <_>
+ 7 14 4 4 -1.
+ <_>
+ 7 14 2 2 2.
+ <_>
+ 9 16 2 2 2.
+ <_>
+
+ <_>
+ 13 14 4 6 -1.
+ <_>
+ 15 14 2 3 2.
+ <_>
+ 13 17 2 3 2.
+ <_>
+
+ <_>
+ 7 8 1 8 -1.
+ <_>
+ 7 12 1 4 2.
+ <_>
+
+ <_>
+ 16 0 2 8 -1.
+ <_>
+ 17 0 1 4 2.
+ <_>
+ 16 4 1 4 2.
+ <_>
+
+ <_>
+ 2 0 2 8 -1.
+ <_>
+ 2 0 1 4 2.
+ <_>
+ 3 4 1 4 2.
+ <_>
+
+ <_>
+ 6 1 14 3 -1.
+ <_>
+ 6 2 14 1 3.
+ <_>
+
+ <_>
+ 7 9 3 10 -1.
+ <_>
+ 7 14 3 5 2.
+ <_>
+
+ <_>
+ 9 14 2 2 -1.
+ <_>
+ 9 15 2 1 2.
+ <_>
+
+ <_>
+ 7 7 6 8 -1.
+ <_>
+ 7 11 6 4 2.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 9 10 3 3 2.
+ <_>
+
+ <_>
+ 7 13 3 3 -1.
+ <_>
+ 7 14 3 1 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 0 1 18 2 -1.
+ <_>
+ 6 1 6 2 3.
+ <_>
+
+ <_>
+ 7 1 6 14 -1.
+ <_>
+ 7 8 6 7 2.
+ <_>
+
+ <_>
+ 1 9 18 1 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 9 3 2 9 -1.
+ <_>
+ 10 3 1 9 2.
+ <_>
+
+ <_>
+ 18 14 2 3 -1.
+ <_>
+ 18 15 2 1 3.
+ <_>
+
+ <_>
+ 7 11 3 1 -1.
+ <_>
+ 8 11 1 1 3.
+ <_>
+
+ <_>
+ 10 8 3 4 -1.
+ <_>
+ 11 8 1 4 3.
+ <_>
+
+ <_>
+ 7 14 3 6 -1.
+ <_>
+ 8 14 1 6 3.
+ <_>
+
+ <_>
+ 10 8 3 4 -1.
+ <_>
+ 11 8 1 4 3.
+ <_>
+
+ <_>
+ 7 8 3 4 -1.
+ <_>
+ 8 8 1 4 3.
+ <_>
+
+ <_>
+ 7 9 6 9 -1.
+ <_>
+ 7 12 6 3 3.
+ <_>
+
+ <_>
+ 0 14 2 3 -1.
+ <_>
+ 0 15 2 1 3.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 4 3 8 3 -1.
+ <_>
+ 8 3 4 3 2.
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 0 4 10 6 2.
+ <_>
+
+ <_>
+ 9 14 1 3 -1.
+ <_>
+ 9 15 1 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 0 15 14 4 -1.
+ <_>
+ 0 17 14 2 2.
+ <_>
+
+ <_>
+ 1 14 18 6 -1.
+ <_>
+ 1 17 18 3 2.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt2.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt2.xml
new file mode 100644
index 0000000000000000000000000000000000000000..b49cf5df3b0c561c9b3887d5e63a93b813847e18
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt2.xml
@@ -0,0 +1,20719 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 109
+
+ 0
+ 20
+
+ <_>
+ 3
+ 3.5069230198860168e-01
+
+ <_>
+
+ 0 1 0 4.3272329494357109e-03 -1 -2 1 1.3076160103082657e-02
+
+ 3.8381900638341904e-02 8.9652568101882935e-01
+ 2.6293140649795532e-01
+ <_>
+
+ 0 1 2 5.2434601821005344e-04 -1 -2 3 4.4573000632226467e-03
+
+ 1.0216630250215530e-01 1.2384019792079926e-01
+ 6.9103831052780151e-01
+ <_>
+
+ 1 0 4 -9.2708261217921972e-04 -1 -2 5 3.3989109215326607e-04
+
+ 1.9536970555782318e-01 2.1014410257339478e-01
+ 8.2586747407913208e-01
+ <_>
+ 9
+ 3.4721779823303223e+00
+
+ <_>
+
+ 0 1 6 2.3025739938020706e-03 -1 -2 7 4.4174338690936565e-03
+
+ 1.0183759778738022e-01 8.2190579175949097e-01
+ 1.9565549492835999e-01
+ <_>
+
+ 0 1 8 2.2203210741281509e-02 -1 -2 9 -1.7283110355492681e-04
+
+ 2.2054070234298706e-01 7.3263257741928101e-02
+ 5.9314841032028198e-01
+ <_>
+
+ 0 1 10 4.3567270040512085e-03 -1 -2 11
+ -2.6032889727503061e-03
+
+ 1.8441149592399597e-01 4.0322139859199524e-01
+ 8.0665212869644165e-01
+ <_>
+
+ 0 1 12 1.7309630056843162e-03 -1 -2 13
+ -7.8146401792764664e-03
+
+ 2.5483280420303345e-01 6.0570698976516724e-01
+ 2.7790638804435730e-01
+ <_>
+
+ 0 1 14 -8.7343417108058929e-03 -1 -2 15
+ 9.4522320432588458e-04
+
+ 2.8899800777435303e-01 7.6165872812271118e-01
+ 3.4956431388854980e-01
+ <_>
+
+ 1 0 16 4.9414858222007751e-02 -1 -2 17
+ 4.4891750440001488e-03
+
+ 8.1516528129577637e-01 2.8087830543518066e-01
+ 6.0277748107910156e-01
+ <_>
+
+ 1 0 18 6.0313619673252106e-02 -1 -2 19
+ -1.0762850288301706e-03
+
+ 7.6075017452239990e-01 4.4440358877182007e-01
+ 1.4373120665550232e-01
+ <_>
+
+ 1 0 20 -9.5083238556981087e-03 -1 -2 21
+ 7.6601309701800346e-03
+
+ 5.3181701898574829e-01 5.4110521078109741e-01
+ 2.1806870400905609e-01
+ <_>
+
+ 1 0 22 7.6467678882181644e-03 -1 -2 23
+ -8.4662932204082608e-04
+
+ 1.1589600145816803e-01 2.3406790196895599e-01
+ 5.9903818368911743e-01
+ <_>
+ 14
+ 5.9844889640808105e+00
+
+ <_>
+
+ 1 0 24 -4.8506218008697033e-03 -1 -2 25
+ -4.6141650527715683e-03
+
+ 1.8054960668087006e-01 2.1778939664363861e-01
+ 8.0182367563247681e-01
+ <_>
+
+ 0 1 26 -2.4301309604197741e-03 -1 -2 27
+ 4.1787960799410939e-04
+
+ 1.1413549631834030e-01 1.2030939757823944e-01
+ 6.1085307598114014e-01
+ <_>
+
+ 0 1 28 1.0010929545387626e-03 -1 -2 29
+ 1.0577100329101086e-03
+
+ 2.0799599587917328e-01 3.3020541071891785e-01
+ 7.5110942125320435e-01
+ <_>
+
+ 1 0 30 1.2376549420878291e-03 -1 -2 31
+ 3.5315038985572755e-04
+
+ 2.7682220935821533e-01 1.6682930290699005e-01
+ 5.8294767141342163e-01
+ <_>
+
+ 0 1 32 -1.1953660286962986e-02 -1 -2 33
+ 1.4182999730110168e-03
+
+ 1.5087880194187164e-01 4.3912279605865479e-01
+ 7.6465952396392822e-01
+ <_>
+
+ 1 0 34 3.4642980899661779e-03 -1 -2 35
+ -1.4948950149118900e-02
+
+ 2.6515561342239380e-01 2.2980530560016632e-01
+ 5.4421657323837280e-01
+ <_>
+
+ 1 0 36 -1.0506849503144622e-03 -1 -2 37
+ -4.0782918222248554e-03
+
+ 3.6228439211845398e-01 2.6012599468231201e-01
+ 7.2336578369140625e-01
+ <_>
+
+ 0 1 38 5.4242828628048301e-04 -1 -2 39
+ -7.3204059153795242e-03
+
+ 3.8496789336204529e-01 2.9655128717422485e-01
+ 5.4803091287612915e-01
+ <_>
+
+ 0 1 40 1.1421289527788758e-03 -1 -2 41
+ 1.1783400550484657e-03
+
+ 4.1047701239585876e-01 7.2390240430831909e-01
+ 2.7872839570045471e-01
+ <_>
+
+ 0 1 42 4.4077109545469284e-02 -1 -2 43
+ 3.7900090683251619e-03
+
+ 5.6405162811279297e-01 5.9475481510162354e-01
+ 3.3120200037956238e-01
+ <_>
+
+ 0 1 44 -2.4291418958455324e-03 -1 -2 45
+ 9.4262324273586273e-03
+
+ 6.6032320261001587e-01 4.6806651353836060e-01
+ 2.0643380284309387e-01
+ <_>
+
+ 0 1 46 8.0630257725715637e-03 -1 -2 47
+ 5.2240812219679356e-03
+
+ 5.2988511323928833e-01 5.2816027402877808e-01
+ 1.9095499813556671e-01
+ <_>
+
+ 0 1 48 -7.0630568079650402e-03 -1 -2 49
+ 5.6897541508078575e-03
+
+ 1.3806459307670593e-01 5.4906368255615234e-01
+ 1.2602810561656952e-01
+ <_>
+
+ 0 1 50 1.2472929665818810e-03 -1 -2 51
+ 4.9543488770723343e-02
+
+ 2.3726630210876465e-01 5.2401661872863770e-01
+ 1.7692160606384277e-01
+ <_>
+ 19
+ 8.5117864608764648e+00
+
+ <_>
+
+ 1 0 52 -4.9326149746775627e-03 -1 -2 53
+ 2.7918140403926373e-05
+
+ 1.9980649650096893e-01 2.2993800044059753e-01
+ 7.3932111263275146e-01
+ <_>
+
+ 1 0 54 3.0876200180500746e-03 -1 -2 55
+ 7.4669660534709692e-06
+
+ 1.5338400006294250e-01 2.0368589460849762e-01
+ 5.8549159765243530e-01
+ <_>
+
+ 0 1 56 1.8739729421213269e-03 -1 -2 57
+ 9.3380251200869679e-04
+
+ 2.0498959720134735e-01 3.2341998815536499e-01
+ 7.3230141401290894e-01
+ <_>
+
+ 0 1 58 1.9151850137859583e-03 -1 -2 59
+ -5.9683797881007195e-03
+
+ 3.0451491475105286e-01 2.9321339726448059e-01
+ 5.6212961673736572e-01
+ <_>
+
+ 0 1 60 -7.2115601506084204e-04 -1 -2 61
+ -5.9663117863237858e-03
+
+ 3.6580368876457214e-01 2.7121558785438538e-01
+ 7.2263348102569580e-01
+ <_>
+
+ 0 1 62 3.0874179676175117e-02 -1 -2 63
+ -1.1099710129201412e-02
+
+ 4.4198378920555115e-01 3.6129769682884216e-01
+ 5.2514511346817017e-01
+ <_>
+
+ 0 1 64 2.1164179779589176e-03 -1 -2 65
+ -9.4317439943552017e-03
+
+ 3.6286169290542603e-01 1.6010950505733490e-01
+ 7.0522767305374146e-01
+ <_>
+
+ 0 1 66 -3.5266019403934479e-03 -1 -2 67
+ -1.6907559474930167e-03
+
+ 1.3012880086898804e-01 1.7863239347934723e-01
+ 5.5215299129486084e-01
+ <_>
+
+ 0 1 68 4.6470930101349950e-04 -1 -2 69
+ -1.0215570218861103e-02
+
+ 3.4873831272125244e-01 2.6739910244941711e-01
+ 6.6679191589355469e-01
+ <_>
+
+ 1 0 70 1.2634709710255265e-03 -1 -2 71
+ -1.1875299736857414e-02
+
+ 3.4378638863563538e-01 5.9953361749649048e-01
+ 3.4977179765701294e-01
+ <_>
+
+ 0 1 72 -1.0732339695096016e-02 -1 -2 73
+ 7.1836481802165508e-03
+
+ 2.1504899859428406e-01 6.2714362144470215e-01
+ 2.5195419788360596e-01
+ <_>
+
+ 0 1 74 -2.8340889140963554e-02 -1 -2 75
+ -4.5813230099156499e-04
+
+ 8.2411892712116241e-02 5.9100568294525146e-01
+ 3.7052011489868164e-01
+ <_>
+
+ 1 0 76 4.2940340936183929e-03 -1 -2 77
+ 1.0751079767942429e-02
+
+ 1.5947279334068298e-01 5.9804809093475342e-01
+ 2.8325080871582031e-01
+ <_>
+
+ 1 0 78 2.2465119138360023e-02 -1 -2 79
+ -5.7988539338111877e-02
+
+ 7.8770911693572998e-01 1.5557409822940826e-01
+ 5.2396571636199951e-01
+ <_>
+
+ 1 0 80 7.2110891342163086e-03 -1 -2 81
+ -4.8367571085691452e-02
+
+ 6.6203659772872925e-01 1.4247199892997742e-01
+ 4.4298338890075684e-01
+ <_>
+
+ 0 1 82 -1.4418059960007668e-02 -1 -2 83
+ -2.3156389594078064e-02
+
+ 1.5885409712791443e-01 2.3757989704608917e-01
+ 5.2171349525451660e-01
+ <_>
+
+ 1 0 84 7.6985340565443039e-03 -1 -2 85
+ -5.6248619221150875e-03
+
+ 1.9417250156402588e-01 6.2784057855606079e-01
+ 3.7460449337959290e-01
+ <_>
+
+ 1 0 86 -7.2936748620122671e-04 -1 -2 87
+ 6.1783898854628205e-04
+
+ 3.8409221172332764e-01 3.1064930558204651e-01
+ 5.5378472805023193e-01
+ <_>
+
+ 1 0 88 -4.5803939428878948e-05 -1 -2 89
+ -1.4719359569426160e-05
+
+ 3.4444490075111389e-01 2.7295520901679993e-01
+ 6.4289510250091553e-01
+ <_>
+ 19
+ 8.4680156707763672e+00
+
+ <_>
+
+ 0 1 90 -1.3469370314851403e-03 -1 -2 91
+ -2.4774789344519377e-03
+
+ 1.6570860147476196e-01 2.2738510370254517e-01
+ 6.9893497228622437e-01
+ <_>
+
+ 0 1 92 5.2632777951657772e-03 -1 -2 93
+ 4.9075339920818806e-03
+
+ 1.5120740234851837e-01 5.5644702911376953e-01
+ 1.6054420173168182e-01
+ <_>
+
+ 0 1 94 -2.3254349362105131e-03 -1 -2 95
+ -1.4665479538962245e-03
+
+ 1.8802590668201447e-01 3.1224989891052246e-01
+ 7.1653962135314941e-01
+ <_>
+
+ 1 0 96 -1.2311690300703049e-01 -1 -2 97
+ 2.2108340635895729e-03
+
+ 3.8595831394195557e-01 2.4552939832210541e-01
+ 5.6957101821899414e-01
+ <_>
+
+ 0 1 98 2.0661531016230583e-03 -1 -2 99
+ 3.6130280932411551e-04
+
+ 2.7165201306343079e-01 2.2933620214462280e-01
+ 7.2086298465728760e-01
+ <_>
+
+ 1 0 100 7.9957872629165649e-02 -1 -2 101
+ 2.6064720004796982e-03
+
+ 7.8336209058761597e-01 5.5452322959899902e-01
+ 2.5506898760795593e-01
+ <_>
+
+ 1 0 102 6.5699010156095028e-03 -1 -2 103
+ 1.6259610420092940e-03
+
+ 1.8193900585174561e-01 3.5298758745193481e-01
+ 6.5528190135955811e-01
+ <_>
+
+ 0 1 104 3.6204981151968241e-03 -1 -2 105
+ -4.4391951523721218e-03
+
+ 5.4623097181320190e-01 1.3598430156707764e-01
+ 5.4158151149749756e-01
+ <_>
+
+ 0 1 106 -9.0540945529937744e-03 -1 -2 107
+ -4.6067481162026525e-04
+
+ 1.1151199787855148e-01 5.8467197418212891e-01
+ 2.5983488559722900e-01
+ <_>
+
+ 0 1 108 -5.6621041148900986e-03 -1 -2 109
+ 5.1165837794542313e-03
+
+ 1.6105690598487854e-01 5.3766787052154541e-01
+ 1.7394550144672394e-01
+ <_>
+
+ 0 1 110 -2.1362339612096548e-03 -1 -2 111
+ -5.4809921421110630e-03
+
+ 1.9020730257034302e-01 3.2720080018043518e-01
+ 6.3648408651351929e-01
+ <_>
+
+ 0 1 112 -8.1061907112598419e-03 -1 -2 113
+ 6.0048708692193031e-03
+
+ 6.9148528575897217e-01 4.3273261189460754e-01
+ 6.9638431072235107e-01
+ <_>
+
+ 0 1 114 -8.7028548121452332e-02 -1 -2 115
+ -4.7809639945626259e-03
+
+ 8.5941338539123535e-01 9.7394466400146484e-02
+ 4.5870301127433777e-01
+ <_>
+
+ 0 1 116 -2.2166660055518150e-03 -1 -2 117
+ 1.3642730191349983e-03
+
+ 2.5546258687973022e-01 3.3190909028053284e-01
+ 5.9641027450561523e-01
+ <_>
+
+ 0 1 118 -9.0077864006161690e-03 -1 -2 119
+ -1.5494120307266712e-02
+
+ 2.6665949821472168e-01 1.8481859564781189e-01
+ 6.2459707260131836e-01
+ <_>
+
+ 1 0 120 -4.2165028862655163e-03 -1 -2 121
+ 4.3249759823083878e-02
+
+ 5.3799271583557129e-01 5.1830291748046875e-01
+ 2.1704199910163879e-01
+ <_>
+
+ 1 0 122 2.8786511393263936e-04 -1 -2 123
+ 1.2373150093480945e-03
+
+ 2.6133841276168823e-01 2.7865320444107056e-01
+ 5.9089881181716919e-01
+ <_>
+
+ 1 0 124 1.9528300035744905e-03 -1 -2 125
+ -1.4947060262784362e-03
+
+ 2.6128691434860229e-01 5.9154129028320312e-01
+ 3.4557819366455078e-01
+ <_>
+
+ 1 0 126 3.5878680646419525e-03 -1 -2 127
+ -2.5938691105693579e-03
+
+ 1.5870520472526550e-01 1.2704110145568848e-01
+ 5.9794288873672485e-01
+ <_>
+ 27
+ 1.2578499794006348e+01
+
+ <_>
+
+ 0 1 128 3.5810680128633976e-03 -1 -2 129
+ -2.8552350122481585e-03
+
+ 1.9951049983501434e-01 7.3730701208114624e-01
+ 2.9217371344566345e-01
+ <_>
+
+ 0 1 130 1.9758539274334908e-03 -1 -2 131
+ 3.2583118882030249e-03
+
+ 1.9564199447631836e-01 5.6920468807220459e-01
+ 1.8390649557113647e-01
+ <_>
+
+ 0 1 132 2.3711679386906326e-04 -1 -2 133
+ 2.5942500215023756e-03
+
+ 2.1716670691967010e-01 2.7199891209602356e-01
+ 7.1502441167831421e-01
+ <_>
+
+ 0 1 134 -2.5032449513673782e-02 -1 -2 135
+ 6.3087949529290199e-03
+
+ 1.8251839280128479e-01 5.6998378038406372e-01
+ 3.5098528861999512e-01
+ <_>
+
+ 1 0 136 -3.2494920305907726e-03 -1 -2 137
+ -1.4885730110108852e-02
+
+ 4.0239268541336060e-01 3.6040958762168884e-01
+ 7.2919952869415283e-01
+ <_>
+
+ 1 0 138 8.0623216927051544e-03 -1 -2 139
+ 2.7405679225921631e-02
+
+ 6.4914900064468384e-01 5.5189931392669678e-01
+ 2.6596811413764954e-01
+ <_>
+
+ 1 0 140 3.4368600696325302e-02 -1 -2 141
+ -2.7292970567941666e-02
+
+ 6.7125129699707031e-01 1.6913780570030212e-01
+ 4.3262779712677002e-01
+ <_>
+
+ 0 1 142 7.4452121043577790e-04 -1 -2 143
+ 7.0336280623450875e-04
+
+ 3.4051001071929932e-01 5.5167931318283081e-01
+ 3.3113878965377808e-01
+ <_>
+
+ 0 1 144 -1.2275460362434387e-01 -1 -2 145
+ 3.2559928949922323e-03
+
+ 1.6753150522708893e-01 3.6157518625259399e-01
+ 6.4207828044891357e-01
+ <_>
+
+ 0 1 146 -3.2090399414300919e-02 -1 -2 147
+ 3.2957999501377344e-03
+
+ 2.9210790991783142e-01 5.6130319833755493e-01
+ 3.3578601479530334e-01
+ <_>
+
+ 0 1 148 -3.2273170072585344e-03 -1 -2 149
+ 1.1171669466421008e-03
+
+ 6.9706428050994873e-01 3.5411500930786133e-01
+ 6.1440062522888184e-01
+ <_>
+
+ 1 0 150 -1.7279950901865959e-02 -1 -2 151
+ 1.1741200461983681e-02
+
+ 5.5371809005737305e-01 5.3419572114944458e-01
+ 2.7571049332618713e-01
+ <_>
+
+ 1 0 152 4.6405228786170483e-03 -1 -2 153
+ -1.6913030296564102e-02
+
+ 2.4895210564136505e-01 1.7119289934635162e-01
+ 5.5239528417587280e-01
+ <_>
+
+ 1 0 154 1.0060169734060764e-02 -1 -2 155
+ -6.0715491417795420e-04
+
+ 8.2734507322311401e-01 3.7793910503387451e-01
+ 5.4762518405914307e-01
+ <_>
+
+ 1 0 156 -1.0865400545299053e-03 -1 -2 157
+ 8.9362077414989471e-03
+
+ 3.2965409755706787e-01 6.0628837347030640e-01
+ 2.4342200160026550e-01
+ <_>
+
+ 1 0 158 -2.6372660067863762e-04 -1 -2 159
+ 1.3110050000250340e-02
+
+ 3.8140949606895447e-01 5.5176162719726562e-01
+ 3.7268930673599243e-01
+ <_>
+
+ 0 1 160 -2.9806280508637428e-03 -1 -2 161
+ -4.1619571857154369e-03
+
+ 1.2296640127897263e-01 7.2522747516632080e-01
+ 4.9734550714492798e-01
+ <_>
+
+ 0 1 162 3.3842328935861588e-02 -1 -2 163
+ -1.2564560165628791e-03
+
+ 5.3483128547668457e-01 5.8519148826599121e-01
+ 4.3841668963432312e-01
+ <_>
+
+ 0 1 164 -1.9635230302810669e-02 -1 -2 165
+ -9.9625496659427881e-04
+
+ 2.2978340089321136e-01 6.2959378957748413e-01
+ 4.1315990686416626e-01
+ <_>
+
+ 0 1 166 -2.3127110674977303e-02 -1 -2 167
+ 2.3525709286332130e-02
+
+ 1.6954590380191803e-01 5.1741302013397217e-01
+ 5.9519391506910324e-02
+ <_>
+
+ 0 1 168 -1.9356520846486092e-02 -1 -2 169
+ -4.1787112131714821e-03
+
+ 1.3572479784488678e-01 2.9966288805007935e-01
+ 5.7916951179504395e-01
+ <_>
+
+ 1 0 170 3.1488779932260513e-03 -1 -2 171
+ 7.3972279205918312e-03
+
+ 6.5925890207290649e-01 5.3071719408035278e-01
+ 3.7951210141181946e-01
+ <_>
+
+ 0 1 172 7.1955118983169086e-06 -1 -2 173
+ 4.7114409506320953e-02
+
+ 3.1283149123191833e-01 5.5378931760787964e-01
+ 1.0273090004920959e-01
+ <_>
+
+ 0 1 174 7.2878710925579071e-03 -1 -2 175
+ -6.1887511983513832e-03
+
+ 4.6608591079711914e-01 7.1588581800460815e-01
+ 4.7244489192962646e-01
+ <_>
+
+ 1 0 176 2.9757320880889893e-03 -1 -2 177
+ -1.8449809867888689e-03
+
+ 5.9345688670873642e-02 7.0273017883300781e-01
+ 4.7187310457229614e-01
+ <_>
+
+ 0 1 178 1.0239540279144421e-04 -1 -2 179
+ 2.4277009069919586e-03
+
+ 5.8947342634201050e-01 4.8623558878898621e-01
+ 5.2475881576538086e-01
+ <_>
+
+ 0 1 180 -6.4751312136650085e-02 -1 -2 181
+ 3.9380151429213583e-04
+
+ 6.9174712896347046e-01 4.6696171164512634e-01
+ 2.3824059963226318e-01
+ <_>
+ 31
+ 1.4546750068664551e+01
+
+ <_>
+
+ 0 1 182 1.4397440245375037e-03 -1 -2 183
+ -5.4068560712039471e-04
+
+ 2.7734708786010742e-01 7.4271547794342041e-01
+ 2.4797350168228149e-01
+ <_>
+
+ 1 0 184 -7.1237959673453588e-06 -1 -2 185
+ -2.3661039303988218e-03
+
+ 2.1995030343532562e-01 5.8899897336959839e-01
+ 2.5957161188125610e-01
+ <_>
+
+ 0 1 186 1.7343269428238273e-03 -1 -2 187
+ 1.5874590026214719e-03
+
+ 1.8601259589195251e-01 4.1518709063529968e-01
+ 7.1034741401672363e-01
+ <_>
+
+ 1 0 188 3.7285638973116875e-03 -1 -2 189
+ -1.2883819639682770e-01
+
+ 2.5279670953750610e-01 1.3930009305477142e-01
+ 5.2545148134231567e-01
+ <_>
+
+ 1 0 190 7.9412180930376053e-03 -1 -2 191
+ -1.2661729939281940e-02
+
+ 2.4877290427684784e-01 2.7107000350952148e-01
+ 6.6188377141952515e-01
+ <_>
+
+ 0 1 192 3.0146789868013002e-05 -1 -2 193
+ -1.6330160200595856e-02
+
+ 3.8128259778022766e-01 2.3264320194721222e-01
+ 5.2630108594894409e-01
+ <_>
+
+ 0 1 194 1.4622770322603174e-05 -1 -2 195
+ -2.0858660340309143e-02
+
+ 4.2933320999145508e-01 1.6004039347171783e-01
+ 6.7823147773742676e-01
+ <_>
+
+ 1 0 196 2.8194559272378683e-03 -1 -2 197
+ 3.7899368908256292e-03
+
+ 6.6792941093444824e-01 4.5877051353454590e-01
+ 7.1762388944625854e-01
+ <_>
+
+ 1 0 198 3.5344641655683517e-02 -1 -2 199
+ -1.1571600334718823e-03
+
+ 1.8640750646591187e-01 5.5382597446441650e-01
+ 3.1504508852958679e-01
+ <_>
+
+ 0 1 200 -5.8742752298712730e-03 -1 -2 201
+ -1.5201780115603469e-05
+
+ 2.8287911415100098e-01 5.8702242374420166e-01
+ 3.7048238515853882e-01
+ <_>
+
+ 1 0 202 -2.2681879636365920e-04 -1 -2 203
+ 3.7845689803361893e-03
+
+ 4.2189309000968933e-01 6.6670012474060059e-01
+ 2.4611820280551910e-01
+ <_>
+
+ 1 0 204 -8.5295992903411388e-05 -1 -2 205
+ -4.4394891709089279e-02
+
+ 3.5575878620147705e-01 1.6655470430850983e-01
+ 5.2348488569259644e-01
+ <_>
+
+ 0 1 206 1.0126030538231134e-03 -1 -2 207
+ -7.6327780261635780e-03
+
+ 2.8846129775047302e-01 2.9693400859832764e-01
+ 6.0801112651824951e-01
+ <_>
+
+ 0 1 208 4.0330411866307259e-03 -1 -2 209
+ 1.3676689565181732e-01
+
+ 4.5363900065422058e-01 5.1772642135620117e-01
+ 1.4491820335388184e-01
+ <_>
+
+ 0 1 210 -5.0060478970408440e-03 -1 -2 211
+ -1.2475839816033840e-02
+
+ 7.6169097423553467e-01 2.1597060561180115e-01
+ 5.4601877927780151e-01
+ <_>
+
+ 1 0 212 -9.4012258341535926e-04 -1 -2 213
+ -1.2191980145871639e-02
+
+ 3.9262959361076355e-01 3.4788811206817627e-01
+ 5.5426627397537231e-01
+ <_>
+
+ 0 1 214 -5.4959481349214911e-04 -1 -2 215
+ -2.1802430273965001e-04
+
+ 6.0642760992050171e-01 5.6974071264266968e-01
+ 1.7797139286994934e-01
+ <_>
+
+ 0 1 216 6.9115799851715565e-03 -1 -2 217
+ -9.7631698008626699e-04
+
+ 5.3793722391128540e-01 3.3278390765190125e-01
+ 5.4615312814712524e-01
+ <_>
+
+ 0 1 218 -8.7870173156261444e-03 -1 -2 219
+ -1.6761029837653041e-03
+
+ 2.1161609888076782e-01 6.6358232498168945e-01
+ 4.3658590316772461e-01
+ <_>
+
+ 1 0 220 -5.5694948881864548e-02 -1 -2 221
+ -1.9844379276037216e-02
+
+ 5.3874248266220093e-01 1.6028049588203430e-01
+ 5.3304588794708252e-01
+ <_>
+
+ 0 1 222 -7.4751611100509763e-04 -1 -2 223
+ 2.3032890632748604e-02
+
+ 2.9174768924713135e-01 5.6081241369247437e-01
+ 1.9979810714721680e-01
+ <_>
+
+ 1 0 224 -3.0700280331075191e-03 -1 -2 225
+ -1.1636839481070638e-03
+
+ 3.9383140206336975e-01 5.7574361562728882e-01
+ 4.2394569516181946e-01
+ <_>
+
+ 1 0 226 2.2464339435100555e-01 -1 -2 227
+ 1.4412109740078449e-03
+
+ 7.6765531301498413e-01 5.3538662195205688e-01
+ 2.5147768855094910e-01
+ <_>
+
+ 0 1 228 -3.0011249706149101e-02 -1 -2 229
+ -5.3078960627317429e-02
+
+ 2.3649039864540100e-01 2.3858639597892761e-01
+ 5.4146647453308105e-01
+ <_>
+
+ 1 0 230 2.0800929050892591e-03 -1 -2 231
+ -4.0738182142376900e-03
+
+ 6.5116149187088013e-01 6.0304141044616699e-01
+ 3.5877010226249695e-01
+ <_>
+
+ 1 0 232 -1.9529370591044426e-02 -1 -2 233
+ -5.3309470415115356e-02
+
+ 5.4235929250717163e-01 2.3609539866447449e-01
+ 5.4017579555511475e-01
+ <_>
+
+ 0 1 234 -3.4849561750888824e-02 -1 -2 235
+ -1.2658450007438660e-01
+
+ 2.8369858860969543e-01 1.8135160207748413e-01
+ 5.4210460186004639e-01
+ <_>
+
+ 0 1 236 7.3325118137290701e-06 -1 -2 237
+ -1.1843870393931866e-02
+
+ 3.9803659915924072e-01 2.6163849234580994e-01
+ 5.2377301454544067e-01
+ <_>
+
+ 0 1 238 -4.8470678739249706e-03 -1 -2 239
+ 8.1693977117538452e-03
+
+ 2.4381080269813538e-01 5.3271460533142090e-01
+ 8.1903767585754395e-01
+ <_>
+
+ 1 0 240 -6.4716790802776814e-03 -1 -2 241
+ -1.5188479665084742e-05
+
+ 4.6796938776969910e-01 5.5639117956161499e-01
+ 4.3675860762596130e-01
+ <_>
+
+ 1 0 242 3.0696711037307978e-03 -1 -2 243
+ -1.6296720423270017e-04
+
+ 6.6643488407135010e-01 5.5946111679077148e-01
+ 3.0427119135856628e-01
+ <_>
+ 39
+ 1.8572250366210938e+01
+
+ <_>
+
+ 1 0 244 -9.8275858908891678e-03 -1 -2 245
+ -4.1693858802318573e-03
+
+ 2.1160189807415009e-01 6.9246852397918701e-01
+ 3.0437770485877991e-01
+ <_>
+
+ 0 1 246 3.5341319744475186e-04 -1 -2 247
+ 4.8054549843072891e-03
+
+ 3.1832858920097351e-01 5.4565590620040894e-01
+ 2.5222688913345337e-01
+ <_>
+
+ 0 1 248 2.1071180526632816e-04 -1 -2 249
+ -2.8318869881331921e-03
+
+ 2.9026180505752563e-01 3.1304559111595154e-01
+ 6.8849372863769531e-01
+ <_>
+
+ 1 0 250 -7.5633679443853907e-06 -1 -2 251
+ -8.2888139877468348e-04
+
+ 2.9624658823013306e-01 3.0996260046958923e-01
+ 5.7525151968002319e-01
+ <_>
+
+ 0 1 252 1.6209259629249573e-03 -1 -2 253
+ 9.1338958591222763e-03
+
+ 3.9931958913803101e-01 4.8273721337318420e-01
+ 7.5378328561782837e-01
+ <_>
+
+ 0 1 254 -4.1212290525436401e-03 -1 -2 255
+ -2.5447290390729904e-03
+
+ 2.6169270277023315e-01 3.1087028980255127e-01
+ 5.4912358522415161e-01
+ <_>
+
+ 0 1 256 -6.2652782071381807e-04 -1 -2 257
+ -3.6596331483451650e-05
+
+ 3.2396918535232544e-01 6.5174108743667603e-01
+ 4.1789120435714722e-01
+ <_>
+
+ 1 0 258 1.3882719911634922e-02 -1 -2 259
+ 1.0493700392544270e-03
+
+ 6.7712038755416870e-01 4.1595110297203064e-01
+ 5.6528919935226440e-01
+ <_>
+
+ 1 0 260 1.8215360119938850e-02 -1 -2 261
+ -1.1334580369293690e-02
+
+ 7.6896011829376221e-01 2.8733238577842712e-01
+ 4.9889329075813293e-01
+ <_>
+
+ 1 0 262 -4.1097560897469521e-03 -1 -2 263
+ 4.2612891411408782e-04
+
+ 5.4630082845687866e-01 3.6312350630760193e-01
+ 5.5125522613525391e-01
+ <_>
+
+ 1 0 264 6.0301548801362514e-03 -1 -2 265
+ 3.3587709185667336e-04
+
+ 1.1437670141458511e-01 2.8910788893699646e-01
+ 5.4473417997360229e-01
+ <_>
+
+ 1 0 266 6.2279507983475924e-04 -1 -2 267
+ -2.5837119668722153e-02
+
+ 3.0234318971633911e-01 2.1670059859752655e-01
+ 5.2781528234481812e-01
+ <_>
+
+ 1 0 268 2.1774910390377045e-02 -1 -2 269
+ 1.7682299949228764e-03
+
+ 3.2548341155052185e-01 5.2630507946014404e-01
+ 7.5263291597366333e-01
+ <_>
+
+ 0 1 270 -1.3793810270726681e-02 -1 -2 271
+ -5.0852829590439796e-03
+
+ 7.4103301763534546e-01 6.8366098403930664e-01
+ 4.5790711045265198e-01
+ <_>
+
+ 1 0 272 6.1795017682015896e-03 -1 -2 273
+ 1.0030319914221764e-02
+
+ 7.4499362707138062e-01 4.8607799410820007e-01
+ 2.3614570498466492e-01
+ <_>
+
+ 0 1 274 -6.4201927743852139e-03 -1 -2 275
+ -5.6961281225085258e-03
+
+ 1.4673270285129547e-01 2.3478199541568756e-01
+ 5.3233772516250610e-01
+ <_>
+
+ 0 1 276 -7.1498160250484943e-03 -1 -2 277
+ 2.4450740311294794e-03
+
+ 1.4770570397377014e-01 3.4985339641571045e-01
+ 5.8035618066787720e-01
+ <_>
+
+ 1 0 278 -3.7503410130739212e-02 -1 -2 279
+ 4.7799441381357610e-04
+
+ 5.2595508098602295e-01 4.3628829717636108e-01
+ 6.2089228630065918e-01
+ <_>
+
+ 0 1 280 -7.0806080475449562e-03 -1 -2 281
+ 3.2818000763654709e-02
+
+ 2.0394609868526459e-01 5.1983588933944702e-01
+ 1.3711960613727570e-01
+ <_>
+
+ 1 0 282 6.5188988810405135e-04 -1 -2 283
+ 4.6485587954521179e-03
+
+ 6.3234299421310425e-01 4.7201630473136902e-01
+ 6.5670871734619141e-01
+ <_>
+
+ 0 1 284 -1.9827929791063070e-03 -1 -2 285
+ -1.6011310508474708e-03
+
+ 6.0530602931976318e-01 5.0905191898345947e-01
+ 3.1169331073760986e-01
+ <_>
+
+ 0 1 286 -3.0539939180016518e-03 -1 -2 287
+ 4.3212040327489376e-04
+
+ 3.4298041462898254e-01 3.8384029269218445e-01
+ 5.7755982875823975e-01
+ <_>
+
+ 0 1 288 -2.7452120557427406e-02 -1 -2 289
+ 9.3099439982324839e-04
+
+ 2.1434690058231354e-01 5.9529662132263184e-01
+ 3.7601581215858459e-01
+ <_>
+
+ 0 1 290 6.7144189961254597e-03 -1 -2 291
+ -3.3701690845191479e-03
+
+ 5.6926268339157104e-01 5.7843041419982910e-01
+ 3.9742821455001831e-01
+ <_>
+
+ 0 1 292 -1.8903959542512894e-02 -1 -2 293
+ -6.5850871615111828e-03
+
+ 1.8188929557800293e-01 6.8491101264953613e-01
+ 4.3515840172767639e-01
+ <_>
+
+ 1 0 294 5.8810501359403133e-03 -1 -2 295
+ 8.0092082498595119e-04
+
+ 2.7266609668731689e-01 4.2364311218261719e-01
+ 5.8446758985519409e-01
+ <_>
+
+ 1 0 296 1.8510579830035567e-03 -1 -2 297
+ 6.3273650594055653e-03
+
+ 3.3713209629058838e-01 5.2702218294143677e-01
+ 8.0536508560180664e-01
+ <_>
+
+ 0 1 298 -3.3820930402725935e-03 -1 -2 299
+ -1.9292969955131412e-03
+
+ 2.8660181164741516e-01 5.8889460563659668e-01
+ 3.8957870006561279e-01
+ <_>
+
+ 1 0 300 1.4995220117270947e-02 -1 -2 301
+ -2.6330750435590744e-02
+
+ 2.1778169274330139e-01 1.7753170430660248e-01
+ 5.6714701652526855e-01
+ <_>
+
+ 1 0 302 -4.1734222322702408e-03 -1 -2 303
+ 2.7268350124359131e-02
+
+ 4.6529620885848999e-01 4.7683110833168030e-01
+ 5.6952387094497681e-01
+ <_>
+
+ 1 0 304 9.8880263976752758e-04 -1 -2 305
+ -1.0528849670663476e-03
+
+ 3.3974018692970276e-01 6.2500411272048950e-01
+ 4.2884120345115662e-01
+ <_>
+
+ 0 1 306 5.2288072183728218e-03 -1 -2 307
+ 3.0395459383726120e-02
+
+ 5.3477621078491211e-01 4.1155189275741577e-01
+ 5.6607538461685181e-01
+ <_>
+
+ 0 1 308 -7.9113930463790894e-02 -1 -2 309
+ 1.8231669440865517e-02
+
+ 7.8813230991363525e-01 3.6043399572372437e-01
+ 5.5695050954818726e-01
+ <_>
+
+ 0 1 310 5.2288072183728218e-03 -1 -2 311
+ 4.3922828626818955e-04
+
+ 5.4166442155838013e-01 5.5071568489074707e-01
+ 3.8822770118713379e-01
+ <_>
+
+ 0 1 312 -8.6501962505280972e-04 -1 -2 313
+ 1.0326979681849480e-03
+
+ 3.1858509778976440e-01 5.5783641338348389e-01
+ 3.2192459702491760e-01
+ <_>
+
+ 0 1 314 -7.2997747920453548e-03 -1 -2 315
+ -9.3629042385146022e-04
+
+ 7.0732331275939941e-01 5.5580157041549683e-01
+ 4.6138420701026917e-01
+ <_>
+
+ 0 1 316 -6.0483231209218502e-03 -1 -2 317
+ 6.7529221996665001e-03
+
+ 6.8692898750305176e-01 4.8703178763389587e-01
+ 2.6503708958625793e-01
+ <_>
+
+ 0 1 318 5.3078029304742813e-02 -1 -2 319
+ -1.0225810110569000e-03
+
+ 5.2815151214599609e-01 6.0858821868896484e-01
+ 4.3048679828643799e-01
+ <_>
+
+ 1 0 320 3.1270649284124374e-02 -1 -2 321
+ -6.3522169366478920e-03
+
+ 5.4458320140838623e-01 5.3283357620239258e-01
+ 2.3643240332603455e-01
+ <_>
+ 45
+ 2.1578119277954102e+01
+
+ <_>
+
+ 1 0 322 -6.2215630896389484e-03 -1 -2 323
+ 2.1097389981150627e-03
+
+ 2.6255810260772705e-01 1.5649929642677307e-01
+ 6.7928832769393921e-01
+ <_>
+
+ 0 1 324 1.0845859535038471e-02 -1 -2 325
+ 6.4230401767417789e-04
+
+ 3.4858089685440063e-01 3.6982551217079163e-01
+ 5.9216582775115967e-01
+ <_>
+
+ 1 0 326 7.3311722371727228e-04 -1 -2 327
+ 1.0134200565516949e-03
+
+ 3.0070841312408447e-01 3.6249229311943054e-01
+ 7.0724260807037354e-01
+ <_>
+
+ 0 1 328 1.1093559674918652e-02 -1 -2 329
+ -7.9127531498670578e-03
+
+ 4.4167020916938782e-01 3.0287081003189087e-01
+ 5.4173761606216431e-01
+ <_>
+
+ 0 1 330 1.2905309908092022e-02 -1 -2 331
+ -4.2430912144482136e-03
+
+ 4.3745040893554688e-01 4.4015899300575256e-01
+ 7.5651907920837402e-01
+ <_>
+
+ 0 1 332 -2.1304309484548867e-04 -1 -2 333
+ -2.2308640182018280e-03
+
+ 2.3107869923114777e-01 3.5681959986686707e-01
+ 5.7499992847442627e-01
+ <_>
+
+ 0 1 334 2.6400520000606775e-03 -1 -2 335
+ 7.5101032853126526e-02
+
+ 3.5936889052391052e-01 6.3635677099227905e-01
+ 2.3270289599895477e-01
+ <_>
+
+ 0 1 336 -7.7012968249619007e-03 -1 -2 337
+ 1.5588370151817799e-03
+
+ 7.0746237039566040e-01 5.7002371549606323e-01
+ 3.5904508829116821e-01
+ <_>
+
+ 0 1 338 -4.7687938786111772e-04 -1 -2 339
+ 8.4234727546572685e-04
+
+ 2.8054410219192505e-01 4.1254189610481262e-01
+ 6.1779958009719849e-01
+ <_>
+
+ 1 0 340 -1.2825109995901585e-02 -1 -2 341
+ -6.5156567143276334e-04
+
+ 5.4030781984329224e-01 5.6336438655853271e-01
+ 3.3565390110015869e-01
+ <_>
+
+ 0 1 342 -1.2006159871816635e-02 -1 -2 343
+ 1.3213419588282704e-03
+
+ 7.1095108985900879e-01 4.9038508534431458e-01
+ 2.8245830535888672e-01
+ <_>
+
+ 0 1 344 -2.0307440310716629e-02 -1 -2 345
+ 4.0180929936468601e-03
+
+ 1.8913699686527252e-01 5.3779661655426025e-01
+ 3.1194949150085449e-01
+ <_>
+
+ 1 0 346 4.5315311290323734e-03 -1 -2 347
+ -4.4381739571690559e-03
+
+ 7.2067582607269287e-01 1.8546679615974426e-01
+ 4.9817329645156860e-01
+ <_>
+
+ 1 0 348 1.5692010056227446e-03 -1 -2 349
+ -4.9516442231833935e-03
+
+ 2.6382741332054138e-01 6.8710672855377197e-01
+ 4.7146868705749512e-01
+ <_>
+
+ 0 1 350 -2.7429679408669472e-02 -1 -2 351
+ 1.4181969454512000e-03
+
+ 1.5482850372791290e-01 4.3768429756164551e-01
+ 6.3273680210113525e-01
+ <_>
+
+ 0 1 352 -1.3078940100967884e-02 -1 -2 353
+ -3.5092779435217381e-03
+
+ 3.1668141484260559e-01 6.1997437477111816e-01
+ 4.3796870112419128e-01
+ <_>
+
+ 1 0 354 1.8920730799436569e-02 -1 -2 355
+ 2.1683350205421448e-03
+
+ 1.4707140624523163e-01 5.8094590902328491e-01
+ 3.4319490194320679e-01
+ <_>
+
+ 0 1 356 1.6401590546593070e-03 -1 -2 357
+ 1.4005920093040913e-04
+
+ 3.9594578742980957e-01 3.2400250434875488e-01
+ 5.6466472148895264e-01
+ <_>
+
+ 1 0 358 -3.3137591090053320e-03 -1 -2 359
+ -2.9459029901772738e-03
+
+ 4.2745280265808105e-01 3.3416679501533508e-01
+ 6.6279602050781250e-01
+ <_>
+
+ 0 1 360 1.3612229668069631e-04 -1 -2 361
+ 6.0512032359838486e-04
+
+ 4.0469279885292053e-01 5.4840582609176636e-01
+ 3.5699409246444702e-01
+ <_>
+
+ 0 1 362 -1.7513990402221680e-02 -1 -2 363
+ -1.8735030665993690e-02
+
+ 1.8241509795188904e-01 7.9718202352523804e-01
+ 5.0685691833496094e-01
+ <_>
+
+ 1 0 364 1.2065649963915348e-02 -1 -2 365
+ -2.6544178836047649e-03
+
+ 2.1670070290565491e-01 6.5841788053512573e-01
+ 4.6282431483268738e-01
+ <_>
+
+ 1 0 366 1.4501289697363973e-03 -1 -2 367
+ 1.0954019613564014e-02
+
+ 2.0902520418167114e-01 5.1123052835464478e-01
+ 7.7845758199691772e-01
+ <_>
+
+ 0 1 368 1.5771709382534027e-02 -1 -2 369
+ -1.4252689667046070e-02
+
+ 5.1323592662811279e-01 1.7424149811267853e-01
+ 5.2671480178833008e-01
+ <_>
+
+ 0 1 370 3.0411860279855318e-05 -1 -2 371
+ 2.3486299440264702e-02
+
+ 3.4184479713439941e-01 5.6312650442123413e-01
+ 2.0063939690589905e-01
+ <_>
+
+ 1 0 372 5.2205449901521206e-03 -1 -2 373
+ -2.5812430307269096e-02
+
+ 6.2496489286422729e-01 3.2032281160354614e-01
+ 5.1993298530578613e-01
+ <_>
+
+ 0 1 374 -1.9526650430634618e-03 -1 -2 375
+ -8.1470049917697906e-03
+
+ 6.1407059431076050e-01 6.5928959846496582e-01
+ 3.7111249566078186e-01
+ <_>
+
+ 1 0 376 3.2962448894977570e-03 -1 -2 377
+ -1.3961310032755136e-03
+
+ 2.9521119594573975e-01 3.3208039402961731e-01
+ 5.5284148454666138e-01
+ <_>
+
+ 0 1 378 -4.1055441834032536e-03 -1 -2 379
+ -1.0888779535889626e-02
+
+ 1.7105500400066376e-01 3.3594349026679993e-01
+ 5.6749051809310913e-01
+ <_>
+
+ 1 0 380 -7.6768421567976475e-03 -1 -2 381
+ -9.7729787230491638e-03
+
+ 4.7732418775558472e-01 8.0810451507568359e-01
+ 4.8458281159400940e-01
+ <_>
+
+ 1 0 382 6.0439710505306721e-03 -1 -2 383
+ -4.6134641161188483e-04
+
+ 6.7840021848678589e-01 5.5146390199661255e-01
+ 3.6423599720001221e-01
+ <_>
+
+ 1 0 384 5.7992361485958099e-02 -1 -2 385
+ 5.9384980704635382e-04
+
+ 1.2544350326061249e-01 4.4248789548873901e-01
+ 5.7284617424011230e-01
+ <_>
+
+ 0 1 386 -6.2353480607271194e-03 -1 -2 387
+ -1.2784929946064949e-02
+
+ 2.8050419688224792e-01 1.9509120285511017e-01
+ 5.6529247760772705e-01
+ <_>
+
+ 1 0 388 4.1973669431172311e-04 -1 -2 389
+ 8.0646801507100463e-04
+
+ 6.1664837598800659e-01 4.5265799760818481e-01
+ 5.9444868564605713e-01
+ <_>
+
+ 1 0 390 -1.6339010326191783e-03 -1 -2 391
+ -4.8299999907612801e-03
+
+ 4.0869420766830444e-01 2.7935269474983215e-01
+ 6.4449352025985718e-01
+ <_>
+
+ 1 0 392 -6.3992068171501160e-03 -1 -2 393
+ 1.0819199681282043e-01
+
+ 5.6716561317443848e-01 5.3118121623992920e-01
+ 2.6143568754196167e-01
+ <_>
+
+ 1 0 394 6.5056560561060905e-04 -1 -2 395
+ 2.0611250773072243e-02
+
+ 2.9967740178108215e-01 4.4899430871009827e-01
+ 6.8882799148559570e-01
+ <_>
+
+ 1 0 396 -2.5129050016403198e-02 -1 -2 397
+ 1.7922939732670784e-03
+
+ 5.1968640089035034e-01 3.4669959545135498e-01
+ 5.5335879325866699e-01
+ <_>
+
+ 1 0 398 1.5626220265403390e-03 -1 -2 399
+ -6.1898730928078294e-04
+
+ 3.0814400315284729e-01 2.6938709616661072e-01
+ 5.5444890260696411e-01
+ <_>
+
+ 0 1 400 4.8111421056091785e-03 -1 -2 401
+ 2.2484229411929846e-03
+
+ 5.5878478288650513e-01 4.6721130609512329e-01
+ 6.0908252000808716e-01
+ <_>
+
+ 0 1 402 -3.0147239565849304e-02 -1 -2 403
+ 2.7548679709434509e-01
+
+ 9.0275919437408447e-01 4.7198349237442017e-01
+ 2.1969200670719147e-01
+ <_>
+
+ 1 0 404 3.6894630175083876e-03 -1 -2 405
+ 7.2957701049745083e-03
+
+ 6.2730091810226440e-01 4.8392179608345032e-01
+ 6.9090622663497925e-01
+ <_>
+
+ 0 1 406 -5.6211069226264954e-02 -1 -2 407
+ -2.6478560175746679e-03
+
+ 1.7384879291057587e-01 6.3041448593139648e-01
+ 4.4743019342422485e-01
+ <_>
+
+ 1 0 408 -1.4534000074490905e-03 -1 -2 409
+ 2.8540920466184616e-03
+
+ 5.3025382757186890e-01 5.3383970260620117e-01
+ 3.7968829274177551e-01
+ <_>
+
+ 1 0 410 5.8243022067472339e-04 -1 -2 411
+ 9.2509482055902481e-04
+
+ 3.2698369026184082e-01 4.5548120141029358e-01
+ 6.3583481311798096e-01
+ <_>
+ 47
+ 2.2585290908813477e+01
+
+ <_>
+
+ 0 1 412 1.9806440919637680e-02 -1 -2 413
+ 7.0395611692219973e-04
+
+ 2.8097251057624817e-01 3.1198260188102722e-01
+ 7.0903062820434570e-01
+ <_>
+
+ 0 1 414 2.5563780218362808e-03 -1 -2 415
+ 1.0824160417541862e-03
+
+ 2.9819479584693909e-01 3.0205601453781128e-01
+ 5.8088111877441406e-01
+ <_>
+
+ 1 0 416 -9.2893769033253193e-04 -1 -2 417
+ -1.8009729683399200e-02
+
+ 3.7381029129028320e-01 2.1631260216236115e-01
+ 6.6192537546157837e-01
+ <_>
+
+ 1 0 418 2.3500190582126379e-03 -1 -2 419
+ 8.1822491483762860e-04
+
+ 2.9104039072990417e-01 5.5786228179931641e-01
+ 3.3666279911994934e-01
+ <_>
+
+ 0 1 420 6.2095321482047439e-04 -1 -2 421
+ 9.6780969761312008e-04
+
+ 4.0724259614944458e-01 6.8595957756042480e-01
+ 3.1054618954658508e-01
+ <_>
+
+ 1 0 422 4.8000211245380342e-04 -1 -2 423
+ 9.0538640506565571e-05
+
+ 3.3373329043388367e-01 3.3709588646888733e-01
+ 5.4512107372283936e-01
+ <_>
+
+ 0 1 424 -4.3914798647165298e-02 -1 -2 425
+ -5.6501338258385658e-03
+
+ 2.6256701350212097e-01 6.0504627227783203e-01
+ 3.2324150204658508e-01
+ <_>
+
+ 1 0 426 3.8661491125822067e-03 -1 -2 427
+ -6.3069426687434316e-05
+
+ 3.2626131176948547e-01 5.8173078298568726e-01
+ 4.1643899679183960e-01
+ <_>
+
+ 1 0 428 5.2533738315105438e-02 -1 -2 429
+ 1.3818660518154502e-03
+
+ 7.0953989028930664e-01 5.2928757667541504e-01
+ 2.5413888692855835e-01
+ <_>
+
+ 1 0 430 -8.9264067355543375e-04 -1 -2 431
+ 8.5579507052898407e-02
+
+ 4.0853410959243774e-01 5.2632361650466919e-01
+ 3.0032029747962952e-01
+ <_>
+
+ 1 0 432 -1.8343339615967125e-04 -1 -2 433
+ -9.7924815490841866e-03
+
+ 4.0292051434516907e-01 3.5213199257850647e-01
+ 6.6640049219131470e-01
+ <_>
+
+ 0 1 434 1.4428620226681232e-02 -1 -2 435
+ -4.5687001198530197e-02
+
+ 4.5935660600662231e-01 1.4747560024261475e-01
+ 5.1786321401596069e-01
+ <_>
+
+ 0 1 436 -2.5763090234249830e-03 -1 -2 437
+ -3.8301859050989151e-02
+
+ 1.8372780084609985e-01 8.0826580524444580e-01
+ 5.1666879653930664e-01
+ <_>
+
+ 0 1 438 2.8978290501981974e-03 -1 -2 439
+ -2.5165060069411993e-03
+
+ 4.7980138659477234e-01 3.3462959527969360e-01
+ 5.4444491863250732e-01
+ <_>
+
+ 0 1 440 5.6281982688233256e-04 -1 -2 441
+ 3.6684391088783741e-03
+
+ 3.5890269279479980e-01 5.9831297397613525e-01
+ 2.9839640855789185e-01
+ <_>
+
+ 1 0 442 2.1319789811968803e-03 -1 -2 443
+ 7.6037310063838959e-03
+
+ 6.1632239818572998e-01 5.2171301841735840e-01
+ 2.0541590452194214e-01
+ <_>
+
+ 1 0 444 -1.1668079969240353e-04 -1 -2 445
+ 3.1659509986639023e-03
+
+ 3.4466689825057983e-01 5.5974847078323364e-01
+ 2.6737868785858154e-01
+ <_>
+
+ 0 1 446 -2.2569499909877777e-02 -1 -2 447
+ 2.7129601221531630e-04
+
+ 6.9002681970596313e-01 4.4866389036178589e-01
+ 5.5087852478027344e-01
+ <_>
+
+ 0 1 448 -1.5434459783136845e-02 -1 -2 449
+ -8.4861656650900841e-03
+
+ 2.0483230054378510e-01 1.2549529969692230e-01
+ 5.0603562593460083e-01
+ <_>
+
+ 0 1 450 -1.1807470023632050e-01 -1 -2 451
+ -1.2300079688429832e-03
+
+ 6.7633062601089478e-02 5.6607007980346680e-01
+ 4.2922011017799377e-01
+ <_>
+
+ 0 1 452 -7.0290351286530495e-03 -1 -2 453
+ 8.9325206354260445e-03
+
+ 7.1364039182662964e-01 4.3388760089874268e-01
+ 7.0608752965927124e-01
+ <_>
+
+ 1 0 454 -4.7735981643199921e-02 -1 -2 455
+ -4.4155579060316086e-02
+
+ 5.2686852216720581e-01 2.5805801153182983e-01
+ 5.4069608449935913e-01
+ <_>
+
+ 0 1 456 -2.5983480736613274e-02 -1 -2 457
+ -4.7885831445455551e-03
+
+ 1.9050540030002594e-01 2.5518929958343506e-01
+ 5.3390771150588989e-01
+ <_>
+
+ 0 1 458 6.7423451691865921e-03 -1 -2 459
+ 1.1654750443994999e-02
+
+ 4.6933099627494812e-01 5.2619642019271851e-01
+ 3.1454348564147949e-01
+ <_>
+
+ 0 1 460 -5.6982729583978653e-03 -1 -2 461
+ -7.2983349673449993e-03
+
+ 1.7568530142307281e-01 7.7747297286987305e-01
+ 5.1242929697036743e-01
+ <_>
+
+ 0 1 462 7.9091778025031090e-03 -1 -2 463
+ -1.5874979726504534e-04
+
+ 5.2845597267150879e-01 3.8878020644187927e-01
+ 5.5011737346649170e-01
+ <_>
+
+ 0 1 464 -6.2235877849161625e-03 -1 -2 465
+ 1.3308860361576080e-03
+
+ 2.4898290634155273e-01 4.2621460556983948e-01
+ 5.9350621700286865e-01
+ <_>
+
+ 1 0 466 5.2055278792977333e-03 -1 -2 467
+ 1.4065169729292393e-02
+
+ 2.5452229380607605e-01 4.8519900441169739e-01
+ 7.0214188098907471e-01
+ <_>
+
+ 0 1 468 -6.7384149879217148e-03 -1 -2 469
+ 3.3406780567020178e-03
+
+ 7.1432709693908691e-01 5.1757252216339111e-01
+ 2.8086438775062561e-01
+ <_>
+
+ 1 0 470 -1.1880699545145035e-02 -1 -2 471
+ 1.4226379571482539e-03
+
+ 5.1732218265533447e-01 4.5028659701347351e-01
+ 5.7956951856613159e-01
+ <_>
+
+ 1 0 472 2.9858129564672709e-03 -1 -2 473
+ -2.0481580868363380e-03
+
+ 1.9151160120964050e-01 6.5024322271347046e-01
+ 4.5593151450157166e-01
+ <_>
+
+ 0 1 474 1.7122729914262891e-03 -1 -2 475
+ -1.6980869695544243e-02
+
+ 5.3762471675872803e-01 7.0562332868576050e-01
+ 4.9146059155464172e-01
+ <_>
+
+ 0 1 476 -1.1290470138192177e-03 -1 -2 477
+ 2.8620059601962566e-03
+
+ 2.6787060499191284e-01 4.4108539819717407e-01
+ 6.3683199882507324e-01
+ <_>
+
+ 0 1 478 -3.8065758999437094e-03 -1 -2 479
+ 5.9090270660817623e-03
+
+ 2.7635639905929565e-01 4.8673018813133240e-01
+ 6.7287760972976685e-01
+ <_>
+
+ 0 1 480 1.1004370171576738e-03 -1 -2 481
+ -2.3396299220621586e-03
+
+ 4.0705141425132751e-01 2.6049488782882690e-01
+ 6.1548602581024170e-01
+ <_>
+
+ 0 1 482 -3.6068160552531481e-03 -1 -2 483
+ 4.0831189602613449e-02
+
+ 5.7319998741149902e-01 4.9733769893646240e-01
+ 7.3870068788528442e-01
+ <_>
+
+ 0 1 484 -7.1082250215113163e-03 -1 -2 485
+ -9.3759730225428939e-04
+
+ 6.9847512245178223e-01 2.6911678910255432e-01
+ 4.7417798638343811e-01
+ <_>
+
+ 0 1 486 -1.6740820137783885e-03 -1 -2 487
+ 8.8287703692913055e-02
+
+ 3.5510140657424927e-01 5.2446138858795166e-01
+ 2.0966500043869019e-01
+ <_>
+
+ 0 1 488 8.2009629113599658e-04 -1 -2 489
+ -7.6624617213383317e-04
+
+ 4.1310968995094299e-01 4.6202930808067322e-01
+ 6.7754101753234863e-01
+ <_>
+
+ 1 0 490 6.5769668435677886e-04 -1 -2 491
+ -2.1304790861904621e-03
+
+ 5.6282752752304077e-01 5.5768597126007080e-01
+ 4.5776501297950745e-01
+ <_>
+
+ 1 0 492 -3.7317050737328827e-04 -1 -2 493
+ -1.1172230355441570e-02
+
+ 4.9592560529708862e-01 5.6256359815597534e-01
+ 2.0471079647541046e-01
+ <_>
+
+ 1 0 494 4.3435219675302505e-02 -1 -2 495
+ 9.6736161503940821e-04
+
+ 2.2421480715274811e-01 4.5333439111709595e-01
+ 6.1999320983886719e-01
+ <_>
+
+ 0 1 496 -3.1452889088541269e-03 -1 -2 497
+ 1.5233129961416125e-03
+
+ 6.6627562046051025e-01 5.0079882144927979e-01
+ 2.3849929869174957e-01
+ <_>
+
+ 1 0 498 2.0854279864579439e-03 -1 -2 499
+ 3.6098200827836990e-02
+
+ 3.7535008788108826e-01 5.1771712303161621e-01
+ 1.6344930231571198e-01
+ <_>
+
+ 1 0 500 1.6179570229724050e-03 -1 -2 501
+ -6.2132300809025764e-04
+
+ 2.5873818993568420e-01 6.2995338439941406e-01
+ 4.6587899327278137e-01
+ <_>
+
+ 1 0 502 7.1878539165481925e-04 -1 -2 503
+ -3.9339520037174225e-02
+
+ 3.3540761470794678e-01 2.1541289985179901e-01
+ 5.2357137203216553e-01
+ <_>
+
+ 0 1 504 -1.0988829890266061e-03 -1 -2 505
+ 2.1191420964896679e-03
+
+ 6.4688968658447266e-01 2.8930890560150146e-01
+ 5.2548158168792725e-01
+ <_>
+ 53
+ 2.5609300613403320e+01
+
+ <_>
+
+ 0 1 506 5.2359891124069691e-03 -1 -2 507
+ -2.2169889416545630e-03
+
+ 3.2997110486030579e-01 7.0415931940078735e-01
+ 3.2354658842086792e-01
+ <_>
+
+ 1 0 508 -8.2303592935204506e-03 -1 -2 509
+ -8.2303592935204506e-03
+
+ 4.9611708521842957e-01 7.1280431747436523e-01
+ 4.9611708521842957e-01
+ <_>
+
+ 0 1 510 4.5343261444941163e-04 -1 -2 511
+ -4.1777061414904892e-04
+
+ 3.2084721326828003e-01 6.6139167547225952e-01
+ 3.5513329505920410e-01
+ <_>
+
+ 0 1 512 2.7823769487440586e-03 -1 -2 513
+ -6.0361868236213923e-05
+
+ 3.7101349234580994e-01 5.7463937997817993e-01
+ 3.8948801159858704e-01
+ <_>
+
+ 1 0 514 3.5061789676547050e-03 -1 -2 515
+ 1.7013119941111654e-04
+
+ 3.0541029572486877e-01 2.8855779767036438e-01
+ 6.4877450466156006e-01
+ <_>
+
+ 1 0 516 -2.3378930054605007e-03 -1 -2 517
+ -2.1369170863181353e-03
+
+ 3.1744310259819031e-01 3.8209199905395508e-01
+ 5.2328932285308838e-01
+ <_>
+
+ 0 1 518 1.0250400518998504e-03 -1 -2 519
+ -4.4726220949087292e-05
+
+ 3.6227950453758240e-01 6.5389591455459595e-01
+ 4.0036809444427490e-01
+ <_>
+
+ 1 0 520 5.7102291611954570e-04 -1 -2 521
+ 5.7743012439459562e-04
+
+ 3.8931730389595032e-01 5.6145328283309937e-01
+ 3.6876440048217773e-01
+ <_>
+
+ 1 0 522 7.9692091094329953e-04 -1 -2 523
+ 3.5945948911830783e-04
+
+ 6.4430278539657593e-01 3.3808529376983643e-01
+ 5.8246481418609619e-01
+ <_>
+
+ 1 0 524 4.3973900028504431e-04 -1 -2 525
+ -8.9061429025605321e-04
+
+ 3.9387670159339905e-01 3.4279710054397583e-01
+ 5.5156987905502319e-01
+ <_>
+
+ 1 0 526 5.4110242053866386e-03 -1 -2 527
+ -8.5764907998964190e-04
+
+ 3.8035380840301514e-01 6.4395052194595337e-01
+ 4.1683459281921387e-01
+ <_>
+
+ 0 1 528 -2.2000649943947792e-02 -1 -2 529
+ -7.8731682151556015e-03
+
+ 6.6546010971069336e-01 4.1827228665351868e-01
+ 5.6047242879867554e-01
+ <_>
+
+ 0 1 530 -2.7444459497928619e-02 -1 -2 531
+ 1.9792269449681044e-03
+
+ 6.5868628025054932e-01 3.2449120283126831e-01
+ 4.8828700184822083e-01
+ <_>
+
+ 0 1 532 -5.6783691979944706e-03 -1 -2 533
+ 1.5057219570735469e-05
+
+ 2.2290790081024170e-01 4.1072851419448853e-01
+ 5.7475912570953369e-01
+ <_>
+
+ 0 1 534 -5.4136710241436958e-03 -1 -2 535
+ 5.3679239936172962e-03
+
+ 2.0657970011234283e-01 4.9264231324195862e-01
+ 7.1394848823547363e-01
+ <_>
+
+ 0 1 536 -3.1426660716533661e-03 -1 -2 537
+ 1.0907390154898167e-02
+
+ 6.7800867557525635e-01 5.2149301767349243e-01
+ 1.1439959704875946e-01
+ <_>
+
+ 1 0 538 5.8436761610209942e-03 -1 -2 539
+ 9.0507230197545141e-05
+
+ 1.9375260174274445e-01 3.8125771284103394e-01
+ 5.5141878128051758e-01
+ <_>
+
+ 0 1 540 -1.6345789656043053e-02 -1 -2 541
+ 1.5987500082701445e-03
+
+ 2.4740239977836609e-01 4.8177829384803772e-01
+ 5.9230798482894897e-01
+ <_>
+
+ 0 1 542 -4.0257978253066540e-03 -1 -2 543
+ -6.7750471644103527e-03
+
+ 7.5082087516784668e-01 2.8798109292984009e-01
+ 5.1996952295303345e-01
+ <_>
+
+ 0 1 544 -3.2470689620822668e-03 -1 -2 545
+ 1.5409620245918632e-03
+
+ 3.0449101328849792e-01 4.0634828805923462e-01
+ 5.6765627861022949e-01
+ <_>
+
+ 0 1 546 -1.2858119793236256e-02 -1 -2 547
+ -1.4824670506641269e-04
+
+ 9.6717558801174164e-02 4.5378330349922180e-01
+ 6.1153751611709595e-01
+ <_>
+
+ 1 0 548 -9.0210810303688049e-03 -1 -2 549
+ -2.8795029968023300e-02
+
+ 4.8077508807182312e-01 3.4037950634956360e-01
+ 5.2555292844772339e-01
+ <_>
+
+ 1 0 550 9.0210810303688049e-03 -1 -2 551
+ 7.4121179059147835e-03
+
+ 7.5058358907699585e-01 5.4554468393325806e-01
+ 3.2260689139366150e-01
+ <_>
+
+ 0 1 552 -3.7217529024928808e-03 -1 -2 553
+ 1.9865889847278595e-01
+
+ 2.3118489980697632e-01 5.2710479497909546e-01
+ 1.4699299633502960e-01
+ <_>
+
+ 0 1 554 1.5208719560177997e-05 -1 -2 555
+ -3.9089918136596680e-03
+
+ 3.6781388521194458e-01 7.1319299936294556e-01
+ 4.9938669800758362e-01
+ <_>
+
+ 0 1 556 2.5106288958340883e-03 -1 -2 557
+ 2.3921660613268614e-04
+
+ 5.3120541572570801e-01 4.6893781423568726e-01
+ 5.7140219211578369e-01
+ <_>
+
+ 1 0 558 6.9443131797015667e-03 -1 -2 559
+ 1.2065629707649350e-03
+
+ 6.9487977027893066e-01 4.0045049786567688e-01
+ 5.8748817443847656e-01
+ <_>
+
+ 0 1 560 2.5106288958340883e-03 -1 -2 561
+ 1.7514040227979422e-03
+
+ 5.3295719623565674e-01 5.5458492040634155e-01
+ 3.4495818614959717e-01
+ <_>
+
+ 0 1 562 -4.1978210210800171e-03 -1 -2 563
+ 1.3092850567772985e-03
+
+ 1.2171830236911774e-01 5.3750497102737427e-01
+ 3.4156250953674316e-01
+ <_>
+
+ 0 1 564 6.7396182566881180e-04 -1 -2 565
+ -1.0530710220336914e-02
+
+ 4.1951790452003479e-01 3.4607538580894470e-01
+ 5.1558601856231689e-01
+ <_>
+
+ 0 1 566 -4.0672299265861511e-01 -1 -2 567
+ -2.6314549148082733e-02
+
+ 5.8065678924322128e-02 1.4734490215778351e-01
+ 5.5593782663345337e-01
+ <_>
+
+ 1 0 568 2.2557149641215801e-03 -1 -2 569
+ 1.2154860422015190e-02
+
+ 5.4777151346206665e-01 4.2077910900115967e-01
+ 5.6218808889389038e-01
+ <_>
+
+ 0 1 570 -1.8436539918184280e-02 -1 -2 571
+ 5.3676147945225239e-04
+
+ 6.4471471309661865e-01 2.7651271224021912e-01
+ 4.8885959386825562e-01
+ <_>
+
+ 1 0 572 -2.6265541091561317e-03 -1 -2 573
+ -5.1119807176291943e-04
+
+ 5.2646911144256592e-01 5.7853102684020996e-01
+ 4.2911028861999512e-01
+ <_>
+
+ 1 0 574 4.1454841266386211e-04 -1 -2 575
+ -5.5028748465701938e-04
+
+ 3.4554108977317810e-01 6.0269188880920410e-01
+ 4.1438931226730347e-01
+ <_>
+
+ 0 1 576 -1.0347720235586166e-03 -1 -2 577
+ -3.3966631162911654e-03
+
+ 6.0952937602996826e-01 6.1082822084426880e-01
+ 4.7077208757400513e-01
+ <_>
+
+ 1 0 578 3.1795909162610769e-03 -1 -2 579
+ -1.6528950072824955e-04
+
+ 3.2443669438362122e-01 3.8307571411132812e-01
+ 5.7343262434005737e-01
+ <_>
+
+ 1 0 580 8.3725210279226303e-03 -1 -2 581
+ -2.5799809955060482e-03
+
+ 6.6109192371368408e-01 6.1393070220947266e-01
+ 4.6861499547958374e-01
+ <_>
+
+ 1 0 582 9.0194388758391142e-04 -1 -2 583
+ 3.6952210939489305e-04
+
+ 3.5200220346450806e-01 2.5787541270256042e-01
+ 5.4672420024871826e-01
+ <_>
+
+ 0 1 584 9.9746137857437134e-04 -1 -2 585
+ -3.6688039544969797e-03
+
+ 4.8201468586921692e-01 5.7101500034332275e-01
+ 4.8319110274314880e-01
+ <_>
+
+ 0 1 586 -8.9501030743122101e-04 -1 -2 587
+ 5.1904921419918537e-03
+
+ 6.1336791515350342e-01 4.9285829067230225e-01
+ 2.5813090801239014e-01
+ <_>
+
+ 0 1 588 4.2274440056644380e-04 -1 -2 589
+ 8.5176713764667511e-03
+
+ 4.4711241126060486e-01 5.1610249280929565e-01
+ 3.3165338635444641e-01
+ <_>
+
+ 0 1 590 -3.6623608320951462e-02 -1 -2 591
+ -4.1103712283074856e-03
+
+ 9.2606216669082642e-02 8.5221147537231445e-01
+ 5.1379078626632690e-01
+ <_>
+
+ 1 0 592 -6.6017331555485725e-03 -1 -2 593
+ 2.5578640401363373e-02
+
+ 5.4590600728988647e-01 5.2193528413772583e-01
+ 1.9271859526634216e-01
+ <_>
+
+ 1 0 594 1.1447439901530743e-02 -1 -2 595
+ 7.2427501436322927e-04
+
+ 1.9160020351409912e-01 5.2315711975097656e-01
+ 3.5353401303291321e-01
+ <_>
+
+ 1 0 596 9.7127500921487808e-03 -1 -2 597
+ -1.1337569914758205e-02
+
+ 6.4641010761260986e-01 7.3830378055572510e-01
+ 4.9647438526153564e-01
+ <_>
+
+ 0 1 598 -8.1453882157802582e-03 -1 -2 599
+ -8.5570756345987320e-03
+
+ 3.6117058992385864e-01 3.4219071269035339e-01
+ 5.9435117244720459e-01
+ <_>
+
+ 0 1 600 2.2993308957666159e-03 -1 -2 601
+ 3.8430930580943823e-03
+
+ 4.5501041412353516e-01 4.7168621420860291e-01
+ 6.6561907529830933e-01
+ <_>
+
+ 1 0 602 -9.9116540513932705e-04 -1 -2 603
+ 2.5496469810605049e-02
+
+ 4.5927169919013977e-01 6.5634012222290039e-01
+ 1.2588350474834442e-01
+ <_>
+
+ 1 0 604 -1.5748359262943268e-02 -1 -2 605
+ -1.8046120181679726e-02
+
+ 5.2395021915435791e-01 8.0158519744873047e-01
+ 5.0079578161239624e-01
+ <_>
+
+ 1 0 606 1.0323390364646912e-02 -1 -2 607
+ 1.6452240524813533e-03
+
+ 2.2748200595378876e-01 4.3519461154937744e-01
+ 5.8676278591156006e-01
+ <_>
+
+ 0 1 608 1.5881149098277092e-02 -1 -2 609
+ 1.0586519725620747e-02
+
+ 4.4650518894195557e-01 4.5444580912590027e-01
+ 5.7071107625961304e-01
+ <_>
+
+ 0 1 610 -2.1531689912080765e-02 -1 -2 611
+ 5.2480469457805157e-03
+
+ 6.5276437997817993e-01 3.4447279572486877e-01
+ 5.3246361017227173e-01
+ <_>
+ 67
+ 3.2647129058837891e+01
+
+ <_>
+
+ 0 1 612 1.8219340126961470e-03 -1 -2 613
+ 8.1313941627740860e-03
+
+ 3.1087881326675415e-01 3.1332370638847351e-01
+ 6.6458672285079956e-01
+ <_>
+
+ 0 1 614 1.7055979697033763e-03 -1 -2 615
+ -7.4483548814896494e-05
+
+ 2.6401311159133911e-01 5.6472051143646240e-01
+ 3.4853729605674744e-01
+ <_>
+
+ 1 0 616 3.8342390325851738e-04 -1 -2 617
+ 3.1868910882622004e-03
+
+ 3.1406548619270325e-01 6.4891988039016724e-01
+ 3.8877290487289429e-01
+ <_>
+
+ 1 0 618 1.6044320166110992e-01 -1 -2 619
+ -6.7285560071468353e-03
+
+ 7.2165298461914062e-01 1.6531379520893097e-01
+ 5.1398259401321411e-01
+ <_>
+
+ 0 1 620 7.2638481469766703e-06 -1 -2 621
+ 5.5551197146996856e-04
+
+ 3.1406199932098389e-01 5.9936988353729248e-01
+ 3.3173981308937073e-01
+ <_>
+
+ 0 1 622 -1.0822320356965065e-02 -1 -2 623
+ -4.5834020711481571e-03
+
+ 2.6529380679130554e-01 1.8495689332485199e-01
+ 5.3139579296112061e-01
+ <_>
+
+ 1 0 624 -3.0205070506781340e-03 -1 -2 625
+ 7.7864617109298706e-02
+
+ 4.0400999784469604e-01 6.1581897735595703e-01
+ 1.7864869534969330e-01
+ <_>
+
+ 0 1 626 2.6494380086660385e-02 -1 -2 627
+ 3.6912109702825546e-02
+
+ 4.5110899209976196e-01 4.5282199978828430e-01
+ 5.9722828865051270e-01
+ <_>
+
+ 1 0 628 5.7857790961861610e-03 -1 -2 629
+ 9.3849771656095982e-04
+
+ 2.5338920950889587e-01 3.4104120731353760e-01
+ 5.9236437082290649e-01
+ <_>
+
+ 0 1 630 -1.1003199964761734e-02 -1 -2 631
+ -1.1737640015780926e-03
+
+ 6.9580441713333130e-01 3.8510841131210327e-01
+ 5.4081892967224121e-01
+ <_>
+
+ 0 1 632 -3.6596669815480709e-03 -1 -2 633
+ -2.4822750128805637e-03
+
+ 2.0093089342117310e-01 6.2953931093215942e-01
+ 4.3950408697128296e-01
+ <_>
+
+ 0 1 634 -4.4606071896851063e-03 -1 -2 635
+ -3.5969649907201529e-03
+
+ 2.4052999913692474e-01 5.4501742124557495e-01
+ 3.7823578715324402e-01
+ <_>
+
+ 0 1 636 -3.6222559865564108e-03 -1 -2 637
+ 1.2059339787811041e-03
+
+ 3.0338969826698303e-01 4.6337789297103882e-01
+ 6.3359522819519043e-01
+ <_>
+
+ 1 0 638 4.3124938383698463e-03 -1 -2 639
+ -4.4961250387132168e-03
+
+ 6.5988260507583618e-01 6.6216969490051270e-01
+ 4.7552469372749329e-01
+ <_>
+
+ 0 1 640 -1.3860689941793680e-03 -1 -2 641
+ -5.1588460337370634e-04
+
+ 2.8012010455131531e-01 3.8294890522956848e-01
+ 5.6236267089843750e-01
+ <_>
+
+ 0 1 642 7.0330002927221358e-05 -1 -2 643
+ -2.0976549421902746e-04
+
+ 4.5363429188728333e-01 5.6081390380859375e-01
+ 4.2657798528671265e-01
+ <_>
+
+ 1 0 644 1.3642259873449802e-03 -1 -2 645
+ 1.5483660390600562e-03
+
+ 2.6370918750762939e-01 4.1707509756088257e-01
+ 5.9329879283905029e-01
+ <_>
+
+ 0 1 646 1.9179609417915344e-01 -1 -2 647
+ -4.4776909053325653e-03
+
+ 5.2567642927169800e-01 6.6326218843460083e-01
+ 4.8925888538360596e-01
+ <_>
+
+ 0 1 648 -1.2649179995059967e-01 -1 -2 649
+ 6.5253327193204314e-05
+
+ 1.4997789263725281e-01 4.2333200573921204e-01
+ 5.7560402154922485e-01
+ <_>
+
+ 0 1 650 4.1856421157717705e-03 -1 -2 651
+ 2.7478230185806751e-04
+
+ 5.2888268232345581e-01 4.5240178704261780e-01
+ 5.6041252613067627e-01
+ <_>
+
+ 0 1 652 -2.2906810045242310e-03 -1 -2 653
+ 1.6744500026106834e-03
+
+ 5.5782741308212280e-01 3.3230578899383545e-01
+ 5.5587881803512573e-01
+ <_>
+
+ 1 0 654 1.2349759927019477e-03 -1 -2 655
+ -8.7158754467964172e-03
+
+ 3.6539471149444580e-01 1.9245339930057526e-01
+ 5.3136497735977173e-01
+ <_>
+
+ 1 0 656 4.6613621525466442e-03 -1 -2 657
+ -8.5815992206335068e-03
+
+ 2.0277309417724609e-01 7.6360601186752319e-01
+ 5.1408261060714722e-01
+ <_>
+
+ 0 1 658 1.4352120459079742e-02 -1 -2 659
+ -7.7948719263076782e-03
+
+ 5.2529758214950562e-01 2.6329371333122253e-01
+ 5.3286892175674438e-01
+ <_>
+
+ 0 1 660 -3.4155680332332850e-03 -1 -2 661
+ -4.2639090679585934e-03
+
+ 2.4160879850387573e-01 3.9365449547767639e-01
+ 5.4787421226501465e-01
+ <_>
+
+ 0 1 662 8.7177697569131851e-03 -1 -2 663
+ -3.2232629600912333e-03
+
+ 4.7881990671157837e-01 3.6316120624542236e-01
+ 5.2883160114288330e-01
+ <_>
+
+ 0 1 664 -4.2188368737697601e-02 -1 -2 665
+ 1.9875749945640564e-02
+
+ 6.9311392307281494e-01 4.5201000571250916e-01
+ 6.8550550937652588e-01
+ <_>
+
+ 1 0 666 -3.1134510412812233e-02 -1 -2 667
+ 5.7032387703657150e-03
+
+ 5.3004240989685059e-01 5.6068921089172363e-01
+ 4.2306229472160339e-01
+ <_>
+
+ 1 0 668 5.2733682096004486e-03 -1 -2 669
+ -3.1231069006025791e-03
+
+ 3.2472288608551025e-01 1.9856959581375122e-01
+ 5.3498727083206177e-01
+ <_>
+
+ 0 1 670 4.6453849063254893e-04 -1 -2 671
+ 3.0355889350175858e-02
+
+ 4.2075088620185852e-01 5.1534587144851685e-01
+ 3.1181010603904724e-01
+ <_>
+
+ 0 1 672 -4.2992769740521908e-03 -1 -2 673
+ 1.9509199773892760e-04
+
+ 3.2745069265365601e-01 5.9530782699584961e-01
+ 4.2255210876464844e-01
+ <_>
+
+ 0 1 674 -7.7784480527043343e-03 -1 -2 675
+ 1.6917599365115166e-02
+
+ 7.2111797332763672e-01 4.9365919828414917e-01
+ 7.0302772521972656e-01
+ <_>
+
+ 0 1 676 -5.1948569715023041e-02 -1 -2 677
+ -5.4751220159232616e-03
+
+ 1.4255349338054657e-01 6.0593318939208984e-01
+ 4.3939951062202454e-01
+ <_>
+
+ 0 1 678 1.5210839592327829e-05 -1 -2 679
+ 1.0235579684376717e-03
+
+ 4.4888499379158020e-01 4.2565500736236572e-01
+ 5.7954382896423340e-01
+ <_>
+
+ 0 1 680 -1.0427719826111570e-04 -1 -2 681
+ 8.7853781878948212e-03
+
+ 4.2460399866104126e-01 4.9580091238021851e-01
+ 6.7594307661056519e-01
+ <_>
+
+ 0 1 682 3.4012699034065008e-03 -1 -2 683
+ 5.8582378551363945e-04
+
+ 5.4234808683395386e-01 3.6365428566932678e-01
+ 5.4643487930297852e-01
+ <_>
+
+ 0 1 684 -2.2973360028117895e-03 -1 -2 685
+ -1.4330189675092697e-02
+
+ 2.5488188862800598e-01 6.5876567363739014e-01
+ 4.5328021049499512e-01
+ <_>
+
+ 0 1 686 9.8565965890884399e-04 -1 -2 687
+ -4.6640761196613312e-02
+
+ 3.8227710127830505e-01 3.0773219466209412e-01
+ 5.2441328763961792e-01
+ <_>
+
+ 0 1 688 -1.1907300353050232e-01 -1 -2 689
+ 1.9333280622959137e-02
+
+ 1.0338629782199860e-01 5.5547451972961426e-01
+ 3.2213169336318970e-01
+ <_>
+
+ 0 1 690 3.1427849084138870e-02 -1 -2 691
+ 2.0082130504306406e-04
+
+ 4.6823790669441223e-01 5.3730702400207520e-01
+ 3.8006669282913208e-01
+ <_>
+
+ 0 1 692 -6.2584900297224522e-03 -1 -2 693
+ 8.2861045375466347e-03
+
+ 1.7992070317268372e-01 5.0950688123703003e-01
+ 7.5446051359176636e-01
+ <_>
+
+ 0 1 694 2.0529709290713072e-03 -1 -2 695
+ 3.2524869311600924e-03
+
+ 5.6286448240280151e-01 4.8016890883445740e-01
+ 5.8021020889282227e-01
+ <_>
+
+ 0 1 696 -3.1884901225566864e-02 -1 -2 697
+ 1.8379340181127191e-03
+
+ 1.7427450418472290e-01 3.4665969014167786e-01
+ 5.1071548461914062e-01
+ <_>
+
+ 1 0 698 -4.8512680223211646e-04 -1 -2 699
+ -2.5407879147678614e-03
+
+ 5.3260862827301025e-01 6.3427752256393433e-01
+ 4.9926930665969849e-01
+ <_>
+
+ 0 1 700 -5.1559060811996460e-03 -1 -2 701
+ -4.4968750327825546e-02
+
+ 3.4334290027618408e-01 1.8681369721889496e-01
+ 5.2154648303985596e-01
+ <_>
+
+ 1 0 702 5.8984281495213509e-03 -1 -2 703
+ 3.2763120252639055e-03
+
+ 6.2293052673339844e-01 4.9357721209526062e-01
+ 7.2179448604583740e-01
+ <_>
+
+ 1 0 704 -1.0161520185647532e-04 -1 -2 705
+ -1.6290300118271261e-04
+
+ 5.0079762935638428e-01 6.0241490602493286e-01
+ 2.3295080661773682e-01
+ <_>
+
+ 0 1 706 9.0541364625096321e-03 -1 -2 707
+ 3.5398490726947784e-02
+
+ 4.5104169845581055e-01 5.1419967412948608e-01
+ 2.8602918982505798e-01
+ <_>
+
+ 0 1 708 5.6469351984560490e-03 -1 -2 709
+ -2.4807190056890249e-03
+
+ 4.7049251198768616e-01 4.1798511147499084e-01
+ 6.7266470193862915e-01
+ <_>
+
+ 0 1 710 -4.1088787838816643e-03 -1 -2 711
+ -2.0714469719678164e-03
+
+ 5.8098018169403076e-01 6.0747838020324707e-01
+ 4.5240598917007446e-01
+ <_>
+
+ 0 1 712 -2.8939060866832733e-03 -1 -2 713
+ 1.3467279495671391e-03
+
+ 3.3835199475288391e-01 5.6969100236892700e-01
+ 3.9708450436592102e-01
+ <_>
+
+ 0 1 714 -9.0779133141040802e-02 -1 -2 715
+ -8.3171762526035309e-02
+
+ 1.5027019381523132e-01 7.5736707448959351e-01
+ 4.9364370107650757e-01
+ <_>
+
+ 0 1 716 -1.4107000315561891e-03 -1 -2 717
+ 5.5668760091066360e-02
+
+ 3.3909329771995544e-01 5.0250971317291260e-01
+ 7.4220830202102661e-01
+ <_>
+
+ 0 1 718 5.7701539248228073e-02 -1 -2 719
+ -4.2503291368484497e-01
+
+ 5.1973718404769897e-01 9.7346916794776917e-02
+ 5.1857399940490723e-01
+ <_>
+
+ 0 1 720 -4.4380719191394746e-04 -1 -2 721
+ 1.7924769781529903e-04
+
+ 3.6493501067161560e-01 5.6192791461944580e-01
+ 3.7602970004081726e-01
+ <_>
+
+ 1 0 722 5.0382469780743122e-03 -1 -2 723
+ 1.5191170386970043e-02
+
+ 6.3284450769424438e-01 4.9360820651054382e-01
+ 7.4265247583389282e-01
+ <_>
+
+ 0 1 724 -1.2300389818847179e-02 -1 -2 725
+ 1.5168030513450503e-03
+
+ 1.3893499970436096e-01 5.0919622182846069e-01
+ 3.4826481342315674e-01
+ <_>
+
+ 1 0 726 9.5754547510296106e-04 -1 -2 727
+ -1.8962200731039047e-02
+
+ 6.0363167524337769e-01 2.3191730678081512e-01
+ 5.1166528463363647e-01
+ <_>
+
+ 0 1 728 -2.2272260859608650e-02 -1 -2 729
+ -2.5145230814814568e-02
+
+ 6.5550220012664795e-01 1.3260710239410400e-01
+ 4.6740341186523438e-01
+ <_>
+
+ 0 1 730 1.9533900544047356e-02 -1 -2 731
+ -1.1231349781155586e-03
+
+ 5.1820272207260132e-01 6.3182431459426880e-01
+ 4.8255190253257751e-01
+ <_>
+
+ 0 1 732 -1.4861139934509993e-03 -1 -2 733
+ 3.5002888762392104e-04
+
+ 2.9186710715293884e-01 5.6213712692260742e-01
+ 4.2492130398750305e-01
+ <_>
+
+ 1 0 734 -1.1231349781155586e-03 -1 -2 735
+ 1.0409739799797535e-02
+
+ 4.8137450218200684e-01 5.1840060949325562e-01
+ 2.0512230694293976e-01
+ <_>
+
+ 0 1 736 -8.7832562625408173e-02 -1 -2 737
+ 1.6584879485890269e-03
+
+ 1.1799219995737076e-01 4.9878111481666565e-01
+ 6.9737559556961060e-01
+ <_>
+
+ 1 0 738 -2.3008750285953283e-03 -1 -2 739
+ 3.3026169985532761e-02
+
+ 5.3398311138153076e-01 5.0332891941070557e-01
+ 6.8519067764282227e-01
+ <_>
+
+ 0 1 740 -1.3585069682449102e-03 -1 -2 741
+ 7.8067491995170712e-04
+
+ 3.0028221011161804e-01 4.5930838584899902e-01
+ 6.4400452375411987e-01
+ <_>
+
+ 1 0 742 -1.8025759607553482e-02 -1 -2 743
+ 1.2354910140857100e-03
+
+ 5.3112912178039551e-01 4.7291061282157898e-01
+ 5.7214611768722534e-01
+ <_>
+
+ 0 1 744 -9.2583027435466647e-04 -1 -2 745
+ 8.0123997759073973e-04
+
+ 3.6623328924179077e-01 5.3619897365570068e-01
+ 3.0086329579353333e-01
+ <_>
+ 63
+ 3.0672130584716797e+01
+
+ <_>
+
+ 0 1 746 2.4914839304983616e-03 -1 -2 747
+ -5.0488598644733429e-02
+
+ 3.4223890304565430e-01 7.7034580707550049e-01
+ 4.5163908600807190e-01
+ <_>
+
+ 1 0 748 -7.7838351717218757e-04 -1 -2 749
+ 2.3572890495415777e-04
+
+ 3.2563421130180359e-01 3.4065559506416321e-01
+ 5.8970272541046143e-01
+ <_>
+
+ 0 1 750 4.5575071126222610e-03 -1 -2 751
+ 8.1241987645626068e-03
+
+ 4.3065789341926575e-01 7.1495872735977173e-01
+ 4.3456849455833435e-01
+ <_>
+
+ 0 1 752 -4.4612158671952784e-04 -1 -2 753
+ -2.8972938889637589e-04
+
+ 3.2959741353988647e-01 5.8456200361251831e-01
+ 3.5266879200935364e-01
+ <_>
+
+ 0 1 754 7.1604831646254752e-06 -1 -2 755
+ -3.8497708737850189e-04
+
+ 4.0819549560546875e-01 4.2031130194664001e-01
+ 6.6341269016265869e-01
+ <_>
+
+ 0 1 756 1.9489860278554261e-04 -1 -2 757
+ -1.7083849757909775e-02
+
+ 3.9424669742584229e-01 2.2940720617771149e-01
+ 5.2389609813690186e-01
+ <_>
+
+ 0 1 758 8.3513697609305382e-04 -1 -2 759
+ 7.5499608647078276e-04
+
+ 3.0260318517684937e-01 6.0321962833404541e-01
+ 3.4124588966369629e-01
+ <_>
+
+ 1 0 760 8.0216713249683380e-03 -1 -2 761
+ -3.8930509239435196e-02
+
+ 7.3062407970428467e-01 3.5993251204490662e-01
+ 5.2343809604644775e-01
+ <_>
+
+ 1 0 762 -7.0348767621908337e-05 -1 -2 763
+ -8.5350573062896729e-03
+
+ 3.4937581419944763e-01 2.7461090683937073e-01
+ 5.6265860795974731e-01
+ <_>
+
+ 0 1 764 1.0854450054466724e-02 -1 -2 765
+ 4.5329501153901219e-04
+
+ 5.2822262048721313e-01 4.5220491290092468e-01
+ 6.0543018579483032e-01
+ <_>
+
+ 0 1 766 1.8117150466423482e-04 -1 -2 767
+ 4.6641560038551688e-04
+
+ 3.3068621158599854e-01 1.4550000429153442e-01
+ 5.3849279880523682e-01
+ <_>
+
+ 1 0 768 -8.4854792803525925e-03 -1 -2 769
+ -1.8934309482574463e-02
+
+ 4.8141559958457947e-01 3.5637411475181580e-01
+ 5.4051452875137329e-01
+ <_>
+
+ 1 0 770 4.9814549274742603e-03 -1 -2 771
+ 3.4286780282855034e-03
+
+ 6.9577431678771973e-01 5.0508928298950195e-01
+ 2.3169949650764465e-01
+ <_>
+
+ 1 0 772 4.4203791185282171e-04 -1 -2 773
+ 2.3822550429031253e-04
+
+ 6.0185819864273071e-01 4.7550821304321289e-01
+ 5.5852377414703369e-01
+ <_>
+
+ 0 1 774 -6.4261639490723610e-03 -1 -2 775
+ 9.9637769162654877e-03
+
+ 2.2824659943580627e-01 4.0405881404876709e-01
+ 5.6501698493957520e-01
+ <_>
+
+ 0 1 776 1.3654050417244434e-02 -1 -2 777
+ -9.9892877042293549e-03
+
+ 5.2677392959594727e-01 6.7940497398376465e-01
+ 4.7970339655876160e-01
+ <_>
+
+ 1 0 778 3.6558631807565689e-02 -1 -2 779
+ 4.8999379941960797e-05
+
+ 8.8425733149051666e-02 4.0207880735397339e-01
+ 5.4573321342468262e-01
+ <_>
+
+ 0 1 780 1.3654050417244434e-02 -1 -2 781
+ 1.8802779959514737e-03
+
+ 5.2676129341125488e-01 4.8060521483421326e-01
+ 6.3943648338317871e-01
+ <_>
+
+ 0 1 782 -1.3654050417244434e-02 -1 -2 783
+ 1.2778700329363346e-03
+
+ 1.7248100042343140e-01 4.4798240065574646e-01
+ 6.3100087642669678e-01
+ <_>
+
+ 1 0 784 9.8843395244330168e-04 -1 -2 785
+ 1.4511500012304168e-05
+
+ 5.9481692314147949e-01 4.8541748523712158e-01
+ 5.3093612194061279e-01
+ <_>
+
+ 0 1 786 -2.2775429533794522e-04 -1 -2 787
+ -1.4753740280866623e-02
+
+ 3.1836318969726562e-01 3.0849760770797729e-01
+ 5.3520262241363525e-01
+ <_>
+
+ 0 1 788 -3.4148250706493855e-03 -1 -2 789
+ 7.5806681998074055e-03
+
+ 6.1153268814086914e-01 4.9516460299491882e-01
+ 7.0613312721252441e-01
+ <_>
+
+ 1 0 790 -5.7734688743948936e-03 -1 -2 791
+ 7.4033669079653919e-05
+
+ 3.7542209029197693e-01 4.1155171394348145e-01
+ 5.8894449472427368e-01
+ <_>
+
+ 0 1 792 -8.2278084009885788e-03 -1 -2 793
+ 5.3380909375846386e-03
+
+ 9.5610566437244415e-02 5.3005087375640869e-01
+ 3.9618980884552002e-01
+ <_>
+
+ 0 1 794 -2.7049109339714050e-03 -1 -2 795
+ 7.7341338619589806e-03
+
+ 6.4818692207336426e-01 5.1104402542114258e-01
+ 3.1215190887451172e-01
+ <_>
+
+ 0 1 796 1.0886609554290771e-02 -1 -2 797
+ 1.1038660071790218e-02
+
+ 4.8014289140701294e-01 5.4297101497650146e-01
+ 4.1623631119728088e-01
+ <_>
+
+ 0 1 798 -1.0054199956357479e-02 -1 -2 799
+ 7.7072880230844021e-03
+
+ 7.3293352127075195e-01 5.3568720817565918e-01
+ 3.4555470943450928e-01
+ <_>
+
+ 0 1 800 -5.8278098003938794e-04 -1 -2 801
+ -2.5739220436662436e-03
+
+ 3.6550220847129822e-01 3.7767601013183594e-01
+ 5.3917747735977173e-01
+ <_>
+
+ 0 1 802 -7.0167761296033859e-03 -1 -2 803
+ -1.7727289814502001e-03
+
+ 4.0393048524856567e-01 6.9504439830780029e-01
+ 4.9811169505119324e-01
+ <_>
+
+ 1 0 804 -1.6318289563059807e-02 -1 -2 805
+ -1.1663000099360943e-02
+
+ 5.2967327833175659e-01 5.8426398038864136e-01
+ 4.7895029187202454e-01
+ <_>
+
+ 1 0 806 2.5881489273160696e-03 -1 -2 807
+ -3.7328999023884535e-03
+
+ 6.0921788215637207e-01 6.7217427492141724e-01
+ 4.0668940544128418e-01
+ <_>
+
+ 0 1 808 -1.4355930034071207e-03 -1 -2 809
+ 1.8340899841859937e-03
+
+ 3.5850879549980164e-01 5.3711581230163574e-01
+ 4.0335071086883545e-01
+ <_>
+
+ 1 0 810 1.2280289828777313e-01 -1 -2 811
+ 5.0228700041770935e-02
+
+ 1.5475720167160034e-01 5.4338437318801880e-01
+ 8.4292672574520111e-02
+ <_>
+
+ 1 0 812 -2.1437000483274460e-02 -1 -2 813
+ -3.1009620055556297e-02
+
+ 4.8600539565086365e-01 1.8330100178718567e-01
+ 5.2075541019439697e-01
+ <_>
+
+ 0 1 814 -1.2973720207810402e-02 -1 -2 815
+ 1.5818020328879356e-03
+
+ 7.0482409000396729e-01 4.1705870628356934e-01
+ 5.8651638031005859e-01
+ <_>
+
+ 1 0 816 -9.7806248813867569e-03 -1 -2 817
+ 1.1735740117728710e-03
+
+ 5.3079181909561157e-01 5.5224531888961792e-01
+ 3.5071650147438049e-01
+ <_>
+
+ 1 0 818 1.4651629608124495e-03 -1 -2 819
+ 2.3532148916274309e-03
+
+ 3.0426511168479919e-01 5.3393232822418213e-01
+ 2.8062361478805542e-01
+ <_>
+
+ 0 1 820 -6.1809681355953217e-03 -1 -2 821
+ 6.5688649192452431e-04
+
+ 6.4101332426071167e-01 5.6208711862564087e-01
+ 4.3903189897537231e-01
+ <_>
+
+ 1 0 822 2.6228010654449463e-02 -1 -2 823
+ -1.7958110198378563e-02
+
+ 6.4455568790435791e-01 2.0027139782905579e-01
+ 4.6246650815010071e-01
+ <_>
+
+ 1 0 824 -7.6468721963465214e-03 -1 -2 825
+ -2.7482809964567423e-03
+
+ 5.2632009983062744e-01 5.8739811182022095e-01
+ 4.8366001248359680e-01
+ <_>
+
+ 1 0 826 1.3851850293576717e-02 -1 -2 827
+ 2.6369190309196711e-03
+
+ 1.5661309659481049e-01 4.2701789736747742e-01
+ 5.8066600561141968e-01
+ <_>
+
+ 0 1 828 -3.1513599678874016e-03 -1 -2 829
+ -1.4788460248382762e-05
+
+ 6.2158662080764771e-01 5.5766427516937256e-01
+ 4.1220021247863770e-01
+ <_>
+
+ 0 1 830 -7.3676988482475281e-02 -1 -2 831
+ -3.0912780202925205e-03
+
+ 1.5367099642753601e-01 6.3442689180374146e-01
+ 4.5074120163917542e-01
+ <_>
+
+ 0 1 832 7.9240966588258743e-03 -1 -2 833
+ 8.5778040811419487e-03
+
+ 5.4579752683639526e-01 5.4016572237014771e-01
+ 3.8907998800277710e-01
+ <_>
+
+ 1 0 834 5.5403169244527817e-03 -1 -2 835
+ -1.1886510037584230e-04
+
+ 3.5556110739707947e-01 5.8367502689361572e-01
+ 4.2743161320686340e-01
+ <_>
+
+ 0 1 836 -1.8408369272947311e-02 -1 -2 837
+ -2.3490579333156347e-03
+
+ 5.8604401350021362e-01 4.4989579916000366e-01
+ 5.4981988668441772e-01
+ <_>
+
+ 1 0 838 -7.6157399453222752e-03 -1 -2 839
+ -3.3190969843417406e-03
+
+ 4.1009929776191711e-01 6.7013788223266602e-01
+ 4.3530011177062988e-01
+ <_>
+
+ 1 0 840 -9.4642979092895985e-04 -1 -2 841
+ 8.7858550250530243e-03
+
+ 5.3911769390106201e-01 5.5040502548217773e-01
+ 3.9909350872039795e-01
+ <_>
+
+ 1 0 842 1.6395459533669055e-04 -1 -2 843
+ -2.3508940357714891e-03
+
+ 3.5929331183433533e-01 4.0341728925704956e-01
+ 5.8060771226882935e-01
+ <_>
+
+ 1 0 844 7.5449963333085179e-05 -1 -2 845
+ 2.7018489316105843e-02
+
+ 5.4123848676681519e-01 4.9449229240417480e-01
+ 5.5894362926483154e-01
+ <_>
+
+ 1 0 846 8.4561208495870233e-04 -1 -2 847
+ -1.1687109945341945e-03
+
+ 5.8092182874679565e-01 4.7469571232795715e-01
+ 2.8458958864212036e-01
+ <_>
+
+ 1 0 848 2.2897500544786453e-02 -1 -2 849
+ 7.0879262685775757e-01
+
+ 2.4144110083580017e-01 5.1957648992538452e-01
+ 1.0300920158624649e-01
+ <_>
+
+ 1 0 850 3.7483830004930496e-02 -1 -2 851
+ 1.2827500468119979e-03
+
+ 1.8146389722824097e-01 4.2460718750953674e-01
+ 5.7079732418060303e-01
+ <_>
+
+ 0 1 852 -5.1718312315642834e-03 -1 -2 853
+ 2.7545939665287733e-03
+
+ 6.1433231830596924e-01 5.2056711912155151e-01
+ 4.2204418778419495e-01
+ <_>
+
+ 0 1 854 -3.6072919610887766e-03 -1 -2 855
+ -2.5258748792111874e-04
+
+ 3.1825920939445496e-01 5.7104682922363281e-01
+ 4.2260938882827759e-01
+ <_>
+
+ 1 0 856 -7.0514748804271221e-03 -1 -2 857
+ -5.4323761723935604e-03
+
+ 5.1628297567367554e-01 2.6662889122962952e-01
+ 5.2146798372268677e-01
+ <_>
+
+ 1 0 858 -1.4652940080850385e-05 -1 -2 859
+ -1.8556920113041997e-03
+
+ 3.9817610383033752e-01 3.3227631449699402e-01
+ 5.7058340311050415e-01
+ <_>
+
+ 1 0 860 4.7609540633857250e-03 -1 -2 861
+ 1.5676260227337480e-03
+
+ 6.6365581750869751e-01 5.5055677890777588e-01
+ 4.4206619262695312e-01
+ <_>
+
+ 1 0 862 5.4239919409155846e-03 -1 -2 863
+ -6.4692399464547634e-03
+
+ 5.9599381685256958e-01 5.3695940971374512e-01
+ 3.7443399429321289e-01
+ <_>
+
+ 0 1 864 -7.8038539504632354e-04 -1 -2 865
+ 4.5086450874805450e-02
+
+ 4.1035950183868408e-01 5.1775068044662476e-01
+ 1.8781000375747681e-01
+ <_>
+
+ 0 1 866 -5.1405387930572033e-03 -1 -2 867
+ -2.1236129105091095e-02
+
+ 2.3528920114040375e-01 1.7087510228157043e-01
+ 5.4249739646911621e-01
+ <_>
+
+ 0 1 868 -2.3763340432196856e-03 -1 -2 869
+ 5.4122589528560638e-02
+
+ 5.8365309238433838e-01 5.1174330711364746e-01
+ 1.8659310042858124e-01
+ <_>
+
+ 0 1 870 -5.3492980077862740e-04 -1 -2 871
+ -5.8454048121348023e-04
+
+ 5.1086932420730591e-01 4.7754910588264465e-01
+ 2.4398539960384369e-01
+ <_>
+ 71
+ 3.4677078247070312e+01
+
+ <_>
+
+ 0 1 872 3.0031939968466759e-03 -1 -2 873
+ 6.9161207647994161e-04
+
+ 3.3496499061584473e-01 4.5183679461479187e-01
+ 7.2893542051315308e-01
+ <_>
+
+ 0 1 874 1.1212790384888649e-02 -1 -2 875
+ -7.6108198845759034e-04
+
+ 2.9508009552955627e-01 5.6690549850463867e-01
+ 2.8308510780334473e-01
+ <_>
+
+ 0 1 876 1.1984579759882763e-04 -1 -2 877
+ -1.9725349557120353e-04
+
+ 4.0905779600143433e-01 6.9514942169189453e-01
+ 4.6378681063652039e-01
+ <_>
+
+ 1 0 878 -5.5180420167744160e-03 -1 -2 879
+ 1.2148249661549926e-03
+
+ 3.1676751375198364e-01 3.3167061209678650e-01
+ 5.3963977098464966e-01
+ <_>
+
+ 0 1 880 -4.2497441172599792e-03 -1 -2 881
+ -9.4915721565485001e-03
+
+ 2.6005738973617554e-01 7.4842947721481323e-01
+ 5.0731921195983887e-01
+ <_>
+
+ 1 0 882 6.5378600265830755e-04 -1 -2 883
+ -4.9741100519895554e-04
+
+ 3.9520108699798584e-01 5.8802747726440430e-01
+ 3.5521200299263000e-01
+ <_>
+
+ 0 1 884 -4.3079249560832977e-02 -1 -2 885
+ -5.1999092102050781e-04
+
+ 2.4348780512809753e-01 3.1955629587173462e-01
+ 5.5854547023773193e-01
+ <_>
+
+ 1 0 886 -4.5451628975570202e-03 -1 -2 887
+ -7.9610403627157211e-03
+
+ 4.8452898859977722e-01 3.8011810183525085e-01
+ 5.3585118055343628e-01
+ <_>
+
+ 1 0 888 -3.1919340835884213e-04 -1 -2 889
+ -1.9223889335989952e-02
+
+ 4.3563291430473328e-01 2.6130661368370056e-01
+ 6.1554962396621704e-01
+ <_>
+
+ 0 1 890 -1.3076990144327283e-03 -1 -2 891
+ 1.9825039431452751e-02
+
+ 5.9420621395111084e-01 4.9454280734062195e-01
+ 7.3848551511764526e-01
+ <_>
+
+ 0 1 892 -2.2013280540704727e-03 -1 -2 893
+ -7.8596705570816994e-03
+
+ 2.2144819796085358e-01 3.6009770631790161e-01
+ 5.2985501289367676e-01
+ <_>
+
+ 1 0 894 1.4142199652269483e-03 -1 -2 895
+ -1.1232759803533554e-02
+
+ 5.7765662670135498e-01 6.9344568252563477e-01
+ 4.8272070288658142e-01
+ <_>
+
+ 1 0 896 2.9746301006525755e-03 -1 -2 897
+ 5.3283828310668468e-04
+
+ 3.2166770100593567e-01 3.9625000953674316e-01
+ 5.6803637742996216e-01
+ <_>
+
+ 1 0 898 1.0105259716510773e-02 -1 -2 899
+ -1.1653699912130833e-02
+
+ 7.5674182176589966e-01 6.5235567092895508e-01
+ 5.0270539522171021e-01
+ <_>
+
+ 0 1 900 -7.0609981194138527e-03 -1 -2 901
+ 2.2343141026794910e-03
+
+ 2.5387701392173767e-01 4.3872770667076111e-01
+ 6.1776322126388550e-01
+ <_>
+
+ 1 0 902 -2.9802279546856880e-02 -1 -2 903
+ 1.1611840454861522e-03
+
+ 5.2011400461196899e-01 4.6479099988937378e-01
+ 6.1842548847198486e-01
+ <_>
+
+ 1 0 904 9.4824447296559811e-04 -1 -2 905
+ 4.1284630424343050e-04
+
+ 3.0409941077232361e-01 4.5188081264495850e-01
+ 6.2457829713821411e-01
+ <_>
+
+ 0 1 906 -3.1203540042042732e-02 -1 -2 907
+ 2.7652881108224392e-03
+
+ 2.7889358997344971e-01 4.6985000371932983e-01
+ 6.5024542808532715e-01
+ <_>
+
+ 1 0 908 2.5644779205322266e-02 -1 -2 909
+ -7.5331530533730984e-03
+
+ 1.8051710724830627e-01 3.2080689072608948e-01
+ 5.5220228433609009e-01
+ <_>
+
+ 1 0 910 3.2047149725258350e-03 -1 -2 911
+ -2.4282479716930538e-04
+
+ 6.4369338750839233e-01 5.6767052412033081e-01
+ 4.5091038942337036e-01
+ <_>
+
+ 0 1 912 -6.1979342717677355e-04 -1 -2 913
+ -8.0101029016077518e-04
+
+ 3.1221461296081543e-01 2.9651939868927002e-01
+ 5.2304947376251221e-01
+ <_>
+
+ 1 0 914 -9.1816839994862676e-04 -1 -2 915
+ 1.2239529751241207e-03
+
+ 5.4647117853164673e-01 4.6185028553009033e-01
+ 5.6795489788055420e-01
+ <_>
+
+ 0 1 916 -6.8743730662390590e-04 -1 -2 917
+ -1.8252469599246979e-03
+
+ 5.4308801889419556e-01 5.4336231946945190e-01
+ 3.3852210640907288e-01
+ <_>
+
+ 1 0 918 -7.4570789001882076e-03 -1 -2 919
+ 5.3775748237967491e-03
+
+ 5.2655947208404541e-01 4.8572158813476562e-01
+ 6.8151241540908813e-01
+ <_>
+
+ 1 0 920 3.7602309603244066e-03 -1 -2 921
+ 8.7752222316339612e-04
+
+ 2.8321608901023865e-01 3.9668309688568115e-01
+ 5.5124807357788086e-01
+ <_>
+
+ 1 0 922 5.5084479972720146e-03 -1 -2 923
+ -7.5949047459289432e-04
+
+ 6.7846202850341797e-01 3.9065030217170715e-01
+ 5.4572027921676636e-01
+ <_>
+
+ 1 0 924 1.6352660022675991e-03 -1 -2 925
+ -1.2750849418807775e-04
+
+ 3.6402040719985962e-01 5.8297240734100342e-01
+ 4.1949799656867981e-01
+ <_>
+
+ 0 1 926 2.2067610174417496e-02 -1 -2 927
+ -1.9203789532184601e-02
+
+ 4.6067029237747192e-01 3.2614830136299133e-01
+ 5.2360808849334717e-01
+ <_>
+
+ 0 1 928 -1.2998109683394432e-02 -1 -2 929
+ -3.1332690268754959e-03
+
+ 7.0221120119094849e-01 2.8704708814620972e-01
+ 5.0764769315719604e-01
+ <_>
+
+ 1 0 930 -5.2937557920813560e-03 -1 -2 931
+ 2.1857069805264473e-03
+
+ 4.7095209360122681e-01 4.7082918882369995e-01
+ 6.1698418855667114e-01
+ <_>
+
+ 0 1 932 -4.5750709250569344e-03 -1 -2 933
+ -4.5152138918638229e-02
+
+ 3.1142529845237732e-01 1.8514350056648254e-01
+ 5.5048149824142456e-01
+ <_>
+
+ 1 0 934 -2.7783559635281563e-03 -1 -2 935
+ -2.5752480141818523e-03
+
+ 4.9373480677604675e-01 6.1529481410980225e-01
+ 4.7354999184608459e-01
+ <_>
+
+ 1 0 936 1.1614130344241858e-03 -1 -2 937
+ 2.3350189439952374e-03
+
+ 6.5105718374252319e-01 4.0883418917655945e-01
+ 5.6841522455215454e-01
+ <_>
+
+ 1 0 938 3.8499289657920599e-03 -1 -2 939
+ 2.4529630318284035e-03
+
+ 3.0258288979530334e-01 5.2325028181076050e-01
+ 2.0176209509372711e-01
+ <_>
+
+ 1 0 940 3.6731390282511711e-03 -1 -2 941
+ 2.1937100682407618e-03
+
+ 6.4284259080886841e-01 4.3288651108741760e-01
+ 6.4205098152160645e-01
+ <_>
+
+ 1 0 942 -6.4666871912777424e-03 -1 -2 943
+ -5.7186251506209373e-03
+
+ 5.2540659904479980e-01 2.4909840524196625e-01
+ 5.2876192331314087e-01
+ <_>
+
+ 1 0 944 9.9941878579556942e-04 -1 -2 945
+ -7.8276498243212700e-04
+
+ 3.3297958970069885e-01 3.5983449220657349e-01
+ 5.4983407258987427e-01
+ <_>
+
+ 0 1 946 4.3231188319623470e-03 -1 -2 947
+ 4.0838290005922318e-03
+
+ 4.8187050223350525e-01 5.2663302421569824e-01
+ 3.1057891249656677e-01
+ <_>
+
+ 1 0 948 3.0515898833982646e-04 -1 -2 949
+ 1.2640280183404684e-03
+
+ 3.9952918887138367e-01 3.2284379005432129e-01
+ 5.8192151784896851e-01
+ <_>
+
+ 0 1 950 -1.0152660310268402e-02 -1 -2 951
+ -2.6863690000027418e-03
+
+ 8.0260711908340454e-01 3.8756170868873596e-01
+ 5.4665708541870117e-01
+ <_>
+
+ 1 0 952 -9.0515613555908203e-03 -1 -2 953
+ -6.3204211182892323e-03
+
+ 4.3720579147338867e-01 1.1265510320663452e-01
+ 6.3954162597656250e-01
+ <_>
+
+ 0 1 954 2.6117300149053335e-03 -1 -2 955
+ 1.4339019544422626e-02
+
+ 5.4239892959594727e-01 4.9792730808258057e-01
+ 6.0422360897064209e-01
+ <_>
+
+ 1 0 956 2.8452780097723007e-03 -1 -2 957
+ 1.4783289771003183e-05
+
+ 3.4910920262336731e-01 4.1950678825378418e-01
+ 5.7759660482406616e-01
+ <_>
+
+ 0 1 958 8.1814555451273918e-03 -1 -2 959
+ 6.6321990452706814e-03
+
+ 4.8859870433807373e-01 5.4444682598114014e-01
+ 4.4209951162338257e-01
+ <_>
+
+ 0 1 960 -2.2483461070805788e-03 -1 -2 961
+ 1.2374560348689556e-02
+
+ 6.6997921466827393e-01 4.4786059856414795e-01
+ 6.5648937225341797e-01
+ <_>
+
+ 1 0 962 -6.6516688093543053e-03 -1 -2 963
+ -8.5750613361597061e-03
+
+ 5.5118787288665771e-01 4.0174451470375061e-01
+ 5.4055362939834595e-01
+ <_>
+
+ 1 0 964 6.5078441984951496e-03 -1 -2 965
+ 2.8675209730863571e-02
+
+ 2.2943930327892303e-01 5.1779001951217651e-01
+ 3.5677561163902283e-01
+ <_>
+
+ 0 1 966 7.0673860609531403e-03 -1 -2 967
+ 1.2367829913273454e-03
+
+ 5.5646997690200806e-01 3.6276981234550476e-01
+ 5.5724138021469116e-01
+ <_>
+
+ 1 0 968 7.4818679131567478e-03 -1 -2 969
+ 4.7109839506447315e-03
+
+ 6.7849111557006836e-01 4.1212528944015503e-01
+ 6.0722357034683228e-01
+ <_>
+
+ 1 0 970 -6.9405790418386459e-03 -1 -2 971
+ 3.3302098512649536e-02
+
+ 5.4597669839859009e-01 5.2767068147659302e-01
+ 2.3749159276485443e-01
+ <_>
+
+ 1 0 972 3.6104630678892136e-02 -1 -2 973
+ 1.9674649462103844e-02
+
+ 7.2492793202400208e-02 4.6263459324836731e-01
+ 8.2089632749557495e-01
+ <_>
+
+ 0 1 974 3.4766150638461113e-03 -1 -2 975
+ 1.3987369602546096e-03
+
+ 5.2087318897247314e-01 5.4844141006469727e-01
+ 4.2300349473953247e-01
+ <_>
+
+ 1 0 976 4.0974249131977558e-03 -1 -2 977
+ 2.6973790954798460e-03
+
+ 2.7805531024932861e-01 5.4038310050964355e-01
+ 3.7909889221191406e-01
+ <_>
+
+ 1 0 978 -5.6591699831187725e-03 -1 -2 979
+ 3.9460969856008887e-04
+
+ 4.7983360290527344e-01 3.7669500708580017e-01
+ 5.4292291402816772e-01
+ <_>
+
+ 1 0 980 2.1750570740550756e-03 -1 -2 981
+ 1.4614439569413662e-03
+
+ 6.2071627378463745e-01 3.3579450845718384e-01
+ 5.1426321268081665e-01
+ <_>
+
+ 1 0 982 -5.3006567759439349e-04 -1 -2 983
+ 1.4869309961795807e-01
+
+ 5.3446400165557861e-01 5.1596081256866455e-01
+ 2.5618231296539307e-01
+ <_>
+
+ 1 0 984 -5.8816498494707048e-05 -1 -2 985
+ -1.6275369562208652e-03
+
+ 5.1230919361114502e-01 6.0176461935043335e-01
+ 3.1093719601631165e-01
+ <_>
+
+ 0 1 986 -1.2881809845566750e-02 -1 -2 987
+ 9.4982917653396726e-04
+
+ 2.7122870087623596e-01 5.4424422979354858e-01
+ 4.0288880467414856e-01
+ <_>
+
+ 1 0 988 -1.2315999716520309e-02 -1 -2 989
+ 9.0286601334810257e-03
+
+ 4.7360658645629883e-01 7.4514347314834595e-01
+ 3.4879919886589050e-01
+ <_>
+
+ 0 1 990 -8.6876116693019867e-02 -1 -2 991
+ -1.5107560102478601e-05
+
+ 2.2903330624103546e-01 5.5178898572921753e-01
+ 4.3931490182876587e-01
+ <_>
+
+ 0 1 992 -1.7457660287618637e-02 -1 -2 993
+ -2.5219470262527466e-03
+
+ 9.0167902410030365e-02 6.2335401773452759e-01
+ 4.7894591093063354e-01
+ <_>
+
+ 0 1 994 1.0656520025804639e-03 -1 -2 995
+ -4.2540300637483597e-03
+
+ 5.4896962642669678e-01 5.5798089504241943e-01
+ 4.3758779764175415e-01
+ <_>
+
+ 0 1 996 -9.0349102392792702e-03 -1 -2 997
+ -1.5230999561026692e-03
+
+ 3.5791561007499695e-01 5.6136602163314819e-01
+ 3.9390438795089722e-01
+ <_>
+
+ 1 0 998 2.8441150207072496e-03 -1 -2 999
+ -3.2824429217725992e-03
+
+ 3.9015549421310425e-01 4.5286190509796143e-01
+ 5.4413431882858276e-01
+ <_>
+
+ 1 0 1000 3.2161718991119415e-05 -1 -2 1001
+ 3.0118400900391862e-05
+
+ 5.8031117916107178e-01 3.3368501067161560e-01
+ 5.5048561096191406e-01
+ <_>
+
+ 0 1 1002 -5.6150099262595177e-03 -1 -2 1003
+ -1.7389209941029549e-02
+
+ 6.1247891187667847e-01 8.7271630764007568e-02
+ 5.2045881748199463e-01
+ <_>
+
+ 0 1 1004 -4.4361080654198304e-05 -1 -2 1005
+ 1.0354899859521538e-04
+
+ 3.9353290200233459e-01 5.9188538789749146e-01
+ 4.1196140646934509e-01
+ <_>
+
+ 0 1 1006 1.5939630102366209e-03 -1 -2 1007
+ 2.5440789759159088e-03
+
+ 4.8396238684654236e-01 4.7873649001121521e-01
+ 6.3606631755828857e-01
+ <_>
+
+ 0 1 1008 1.5083180187502876e-05 -1 -2 1009
+ -9.9282202427275479e-05
+
+ 4.2311170697212219e-01 4.2745891213417053e-01
+ 6.0940480232238770e-01
+ <_>
+
+ 1 0 1010 5.5371708003804088e-04 -1 -2 1011
+ 1.9186759600415826e-03
+
+ 4.2719879746437073e-01 4.4971078634262085e-01
+ 5.5491220951080322e-01
+ <_>
+
+ 1 0 1012 -5.0764222396537662e-04 -1 -2 1013
+ 1.7236480489373207e-03
+
+ 5.4771959781646729e-01 2.8829228878021240e-01
+ 5.6151270866394043e-01
+ <_>
+ 75
+ 3.6726501464843750e+01
+
+ <_>
+
+ 0 1 1014 1.3092169538140297e-02 -1 -2 1015
+ 4.1446479735895991e-04
+
+ 3.3388701081275940e-01 3.0993521213531494e-01
+ 6.6774922609329224e-01
+ <_>
+
+ 0 1 1016 2.1835729479789734e-02 -1 -2 1017
+ 4.8323940485715866e-02
+
+ 4.3690490722656250e-01 4.3017241358757019e-01
+ 6.1538851261138916e-01
+ <_>
+
+ 0 1 1018 1.6091950237751007e-03 -1 -2 1019
+ 1.3469760306179523e-03
+
+ 3.3873260021209717e-01 6.2487137317657471e-01
+ 3.5941308736801147e-01
+ <_>
+
+ 0 1 1020 1.7729059618432075e-04 -1 -2 1021
+ 3.6743620876222849e-04
+
+ 3.8684248924255371e-01 4.4093450903892517e-01
+ 5.4764741659164429e-01
+ <_>
+
+ 0 1 1022 -1.2352119665592909e-03 -1 -2 1023
+ 1.1705530341714621e-03
+
+ 3.2601711153984070e-01 4.1113489866256714e-01
+ 6.0881638526916504e-01
+ <_>
+
+ 1 0 1024 -2.9695429475395940e-05 -1 -2 1025
+ 2.7050738572143018e-04
+
+ 4.2694228887557983e-01 4.3064668774604797e-01
+ 5.8105140924453735e-01
+ <_>
+
+ 1 0 1026 -7.9626210208516568e-05 -1 -2 1027
+ 3.3152441028505564e-04
+
+ 3.6691430211067200e-01 4.6106639504432678e-01
+ 6.2905901670455933e-01
+ <_>
+
+ 1 0 1028 -5.2305828779935837e-02 -1 -2 1029
+ 2.6880469173192978e-02
+
+ 5.3286898136138916e-01 5.2132612466812134e-01
+ 3.2312199473381042e-01
+ <_>
+
+ 1 0 1030 -2.4203000066336244e-04 -1 -2 1031
+ -1.6424639616161585e-03
+
+ 3.5685700178146362e-01 3.4406611323356628e-01
+ 5.6256049871444702e-01
+ <_>
+
+ 1 0 1032 -2.6830288697965443e-04 -1 -2 1033
+ -2.2649629972875118e-03
+
+ 4.5611730217933655e-01 5.3213518857955933e-01
+ 3.6741548776626587e-01
+ <_>
+
+ 1 0 1034 1.5627209097146988e-02 -1 -2 1035
+ 1.6211320459842682e-01
+
+ 2.0293539762496948e-01 5.5630332231521606e-01
+ 2.6188498735427856e-01
+ <_>
+
+ 0 1 1036 -3.7391691002994776e-03 -1 -2 1037
+ -2.0878419745713472e-03
+
+ 6.0621947050094604e-01 5.9507638216018677e-01
+ 4.5451170206069946e-01
+ <_>
+
+ 1 0 1038 2.3334210272878408e-03 -1 -2 1039
+ 6.5116386394947767e-05
+
+ 6.4355242252349854e-01 3.5207340121269226e-01
+ 5.1797789335250854e-01
+ <_>
+
+ 0 1 1040 7.4625718407332897e-03 -1 -2 1041
+ -2.2032689303159714e-02
+
+ 5.3266882896423340e-01 3.4919810295104980e-01
+ 5.4292368888854980e-01
+ <_>
+
+ 0 1 1042 -8.3081610500812531e-03 -1 -2 1043
+ -4.3259368976578116e-04
+
+ 2.0840230584144592e-01 3.9652720093727112e-01
+ 5.4254537820816040e-01
+ <_>
+
+ 1 0 1044 -3.2209228724241257e-02 -1 -2 1045
+ -9.0424838708713651e-04
+
+ 5.3064119815826416e-01 5.4503858089447021e-01
+ 4.2566969990730286e-01
+ <_>
+
+ 1 0 1046 2.2727500181645155e-03 -1 -2 1047
+ 5.9820008464157581e-03
+
+ 5.9686112403869629e-01 4.7581401467323303e-01
+ 3.1509441137313843e-01
+ <_>
+
+ 1 0 1048 -5.8856618124991655e-04 -1 -2 1049
+ -8.8227191008627415e-04
+
+ 4.8477488756179810e-01 5.4263162612915039e-01
+ 4.3383410573005676e-01
+ <_>
+
+ 1 0 1050 -7.4473457061685622e-05 -1 -2 1051
+ 3.9148979703895748e-04
+
+ 4.2875099182128906e-01 6.3451850414276123e-01
+ 4.1018518805503845e-01
+ <_>
+
+ 1 0 1052 -3.6939629353582859e-03 -1 -2 1053
+ -1.1207849718630314e-02
+
+ 4.8491048812866211e-01 4.1463369131088257e-01
+ 5.4712641239166260e-01
+ <_>
+
+ 0 1 1054 -1.0337409563362598e-02 -1 -2 1055
+ 3.6883640568703413e-03
+
+ 2.8771838545799255e-01 5.1019018888473511e-01
+ 7.2169512510299683e-01
+ <_>
+
+ 1 0 1056 -3.8984280545264482e-03 -1 -2 1057
+ -5.9986729174852371e-03
+
+ 5.2761822938919067e-01 6.6184598207473755e-01
+ 4.8416310548782349e-01
+ <_>
+
+ 1 0 1058 4.5043681748211384e-03 -1 -2 1059
+ 1.7799530178308487e-02
+
+ 1.8741579353809357e-01 4.6169349551200867e-01
+ 7.0889657735824585e-01
+ <_>
+
+ 0 1 1060 -1.8462570384144783e-02 -1 -2 1061
+ 1.4931300029275008e-05
+
+ 3.0019798874855042e-01 4.5618081092834473e-01
+ 5.6107878684997559e-01
+ <_>
+
+ 0 1 1062 -8.6021229624748230e-02 -1 -2 1063
+ -6.0818758356617764e-05
+
+ 2.3417009413242340e-01 5.6722861528396606e-01
+ 4.1999641060829163e-01
+ <_>
+
+ 1 0 1064 1.2670679716393352e-03 -1 -2 1065
+ 1.3699879636988044e-03
+
+ 6.2074822187423706e-01 5.3949588537216187e-01
+ 3.8238629698753357e-01
+ <_>
+
+ 1 0 1066 3.3162781037390232e-03 -1 -2 1067
+ -1.4532039640471339e-03
+
+ 7.0616811513900757e-01 3.0655130743980408e-01
+ 4.8273730278015137e-01
+ <_>
+
+ 1 0 1068 -7.1492061018943787e-02 -1 -2 1069
+ 1.9857978913933039e-03
+
+ 5.1931220293045044e-01 4.6424350142478943e-01
+ 5.8076947927474976e-01
+ <_>
+
+ 1 0 1070 6.2516499310731888e-03 -1 -2 1071
+ 2.7005500160157681e-03
+
+ 2.9498139023780823e-01 4.5858868956565857e-01
+ 6.0223537683486938e-01
+ <_>
+
+ 0 1 1072 1.1130389757454395e-02 -1 -2 1073
+ 1.5092849731445312e-02
+
+ 4.3578410148620605e-01 4.5615398883819580e-01
+ 6.1190617084503174e-01
+ <_>
+
+ 0 1 1074 -2.7943300083279610e-02 -1 -2 1075
+ 4.4036991312168539e-05
+
+ 6.5371441841125488e-01 3.4747231006622314e-01
+ 5.3369677066802979e-01
+ <_>
+
+ 0 1 1076 -1.2232770211994648e-02 -1 -2 1077
+ -6.8591412855312228e-04
+
+ 3.7316760420799255e-01 5.7172292470932007e-01
+ 4.7933790087699890e-01
+ <_>
+
+ 0 1 1078 -3.8992990739643574e-03 -1 -2 1079
+ 4.9113907152786851e-04
+
+ 4.0564361214637756e-01 6.1740481853485107e-01
+ 4.4717541337013245e-01
+ <_>
+
+ 1 0 1080 8.2117747515439987e-03 -1 -2 1081
+ -4.5564480125904083e-02
+
+ 6.1796981096267700e-01 2.2854949533939362e-01
+ 5.2495658397674561e-01
+ <_>
+
+ 0 1 1082 -5.3631910122931004e-03 -1 -2 1083
+ -1.2274970300495625e-02
+
+ 1.7849500477313995e-01 7.2619527578353882e-01
+ 4.5503988862037659e-01
+ <_>
+
+ 0 1 1084 5.4185991175472736e-03 -1 -2 1085
+ 8.1846961984410882e-04
+
+ 5.2529907226562500e-01 5.4452222585678101e-01
+ 3.2722181081771851e-01
+ <_>
+
+ 1 0 1086 4.1358140297234058e-03 -1 -2 1087
+ 3.9578010910190642e-04
+
+ 7.0138317346572876e-01 4.9659439921379089e-01
+ 3.2955980300903320e-01
+ <_>
+
+ 0 1 1088 4.6887691132724285e-03 -1 -2 1089
+ -1.8255440518260002e-02
+
+ 5.3626418113708496e-01 6.4961087703704834e-01
+ 4.7571370005607605e-01
+ <_>
+
+ 0 1 1090 -6.2736468389630318e-03 -1 -2 1091
+ 2.4320168886333704e-03
+
+ 2.3437410593032837e-01 4.6201181411743164e-01
+ 6.8984192609786987e-01
+ <_>
+
+ 0 1 1092 -4.9617629498243332e-02 -1 -2 1093
+ 1.1701210169121623e-03
+
+ 2.1007199585437775e-01 4.6215289831161499e-01
+ 5.7971358299255371e-01
+ <_>
+
+ 0 1 1094 -4.5237291604280472e-02 -1 -2 1095
+ 4.7563421539962292e-03
+
+ 2.1182620525360107e-01 4.8846149444580078e-01
+ 6.8724989891052246e-01
+ <_>
+
+ 1 0 1096 -1.4835969544947147e-02 -1 -2 1097
+ 7.7436608262360096e-04
+
+ 5.2751058340072632e-01 4.1723209619522095e-01
+ 5.4911398887634277e-01
+ <_>
+
+ 1 0 1098 1.4835969544947147e-02 -1 -2 1099
+ -8.0892542609944940e-04
+
+ 2.1248769760131836e-01 5.4952150583267212e-01
+ 4.2077958583831787e-01
+ <_>
+
+ 0 1 1100 7.7517668250948191e-04 -1 -2 1101
+ -6.7618978209793568e-03
+
+ 3.3219420909881592e-01 2.2129580378532410e-01
+ 5.2326530218124390e-01
+ <_>
+
+ 0 1 1102 -4.0135860443115234e-02 -1 -2 1103
+ -3.3651469275355339e-03
+
+ 1.1017960309982300e-01 3.8101008534431458e-01
+ 5.6172919273376465e-01
+ <_>
+
+ 1 0 1104 7.4713007779791951e-04 -1 -2 1105
+ -4.2727389372885227e-03
+
+ 5.7950568199157715e-01 6.3922691345214844e-01
+ 4.7114381194114685e-01
+ <_>
+
+ 1 0 1106 3.6202510818839073e-03 -1 -2 1107
+ 4.7307618660852313e-04
+
+ 3.4098839759826660e-01 3.6593028903007507e-01
+ 5.3881710767745972e-01
+ <_>
+
+ 1 0 1108 3.3094909042119980e-02 -1 -2 1109
+ -1.1544119566679001e-02
+
+ 7.1703857183456421e-01 6.3868182897567749e-01
+ 4.6813040971755981e-01
+ <_>
+
+ 0 1 1110 -7.4234469793736935e-03 -1 -2 1111
+ -4.2252950370311737e-03
+
+ 3.2637009024620056e-01 5.7678192853927612e-01
+ 4.3464180827140808e-01
+ <_>
+
+ 0 1 1112 1.8133109435439110e-02 -1 -2 1113
+ 7.0903049781918526e-03
+
+ 4.6978279948234558e-01 4.4373890757560730e-01
+ 6.0616689920425415e-01
+ <_>
+
+ 0 1 1114 -1.3272940181195736e-02 -1 -2 1115
+ 1.4632199599873275e-04
+
+ 6.5585112571716309e-01 3.3763539791107178e-01
+ 5.0916552543640137e-01
+ <_>
+
+ 0 1 1116 -3.5790191031992435e-03 -1 -2 1117
+ -4.6997101162560284e-04
+
+ 2.9478839039802551e-01 5.5569821596145630e-01
+ 4.6654561161994934e-01
+ <_>
+
+ 0 1 1118 -4.8179440200328827e-02 -1 -2 1119
+ -9.2581362696364522e-04
+
+ 7.3383557796478271e-01 3.5438719391822815e-01
+ 5.2851498126983643e-01
+ <_>
+
+ 0 1 1120 -1.4780730009078979e-02 -1 -2 1121
+ -1.0027450323104858e-01
+
+ 1.9444419443607330e-01 9.9049292504787445e-02
+ 5.1398539543151855e-01
+ <_>
+
+ 0 1 1122 -9.3848101096227765e-04 -1 -2 1123
+ -2.8861360624432564e-03
+
+ 5.8271098136901855e-01 3.4414279460906982e-01
+ 5.1488387584686279e-01
+ <_>
+
+ 1 0 1124 -4.3682761490345001e-02 -1 -2 1125
+ 2.6115700602531433e-03
+
+ 5.2079981565475464e-01 4.8355031013488770e-01
+ 6.3222199678421021e-01
+ <_>
+
+ 1 0 1126 4.3682761490345001e-02 -1 -2 1127
+ 1.7179530113935471e-03
+
+ 1.3645380735397339e-01 4.5373201370239258e-01
+ 6.0667508840560913e-01
+ <_>
+
+ 1 0 1128 -3.3964909613132477e-02 -1 -2 1129
+ -1.0993590112775564e-03
+
+ 4.9683749675750732e-01 5.8316808938980103e-01
+ 4.6882399916648865e-01
+ <_>
+
+ 1 0 1130 5.4301079362630844e-02 -1 -2 1131
+ 1.0993590112775564e-03
+
+ 7.5682890415191650e-01 4.3301481008529663e-01
+ 5.7684689760208130e-01
+ <_>
+
+ 1 0 1132 -1.4954120160837192e-05 -1 -2 1133
+ 3.1415868550539017e-02
+
+ 4.4432818889617920e-01 5.2744728326797485e-01
+ 3.0378559231758118e-01
+ <_>
+
+ 1 0 1134 1.0831849649548531e-02 -1 -2 1135
+ 8.6545711383223534e-04
+
+ 3.5817208886146545e-01 5.9375840425491333e-01
+ 4.2946299910545349e-01
+ <_>
+
+ 1 0 1136 2.2743160370737314e-03 -1 -2 1137
+ 3.9340821094810963e-03
+
+ 5.9545767307281494e-01 4.7922229766845703e-01
+ 5.8561331033706665e-01
+ <_>
+
+ 1 0 1138 8.1451907753944397e-03 -1 -2 1139
+ -5.2763288840651512e-03
+
+ 3.5734778642654419e-01 4.0260228514671326e-01
+ 5.7647430896759033e-01
+ <_>
+
+ 1 0 1140 -8.3787851035594940e-03 -1 -2 1141
+ 1.5621910570189357e-03
+
+ 4.9813330173492432e-01 4.7365880012512207e-01
+ 5.5836081504821777e-01
+ <_>
+
+ 1 0 1142 3.2318739686161280e-03 -1 -2 1143
+ 6.6804019734263420e-03
+
+ 6.1674368381500244e-01 4.1314241290092468e-01
+ 6.2806951999664307e-01
+ <_>
+
+ 0 1 1144 -3.3396480139344931e-03 -1 -2 1145
+ -2.0933480560779572e-01
+
+ 3.4463581442832947e-01 1.0386580228805542e-01
+ 5.2044892311096191e-01
+ <_>
+
+ 1 0 1146 6.3805822283029556e-03 -1 -2 1147
+ -6.0137799009680748e-03
+
+ 2.1674020588397980e-01 6.7383992671966553e-01
+ 4.8966509103775024e-01
+ <_>
+
+ 1 0 1148 -8.1756077706813812e-03 -1 -2 1149
+ 6.3951779156923294e-04
+
+ 5.1779150962829590e-01 4.8196458816528320e-01
+ 5.4644381999969482e-01
+ <_>
+
+ 1 0 1150 1.0127760469913483e-03 -1 -2 1151
+ 4.9784599104896188e-04
+
+ 3.4235960245132446e-01 4.4884610176086426e-01
+ 5.9126710891723633e-01
+ <_>
+
+ 1 0 1152 1.3596490316558629e-04 -1 -2 1153
+ 1.3571660034358501e-02
+
+ 5.5688631534576416e-01 5.1610678434371948e-01
+ 1.7130009829998016e-01
+ <_>
+
+ 1 0 1154 3.0259079721872695e-05 -1 -2 1155
+ -3.2625840976834297e-03
+
+ 4.9162039160728455e-01 6.4046627283096313e-01
+ 2.8590849041938782e-01
+ <_>
+
+ 1 0 1156 -1.9217010412830859e-04 -1 -2 1157
+ 2.1993879228830338e-02
+
+ 5.4592829942703247e-01 4.7157138586044312e-01
+ 5.6900751590728760e-01
+ <_>
+
+ 1 0 1158 7.8907777788117528e-04 -1 -2 1159
+ 5.0893891602754593e-04
+
+ 3.2798269391059875e-01 4.3020078539848328e-01
+ 5.6960451602935791e-01
+ <_>
+
+ 1 0 1160 1.1662710312521085e-04 -1 -2 1161
+ 8.0604078248143196e-03
+
+ 5.3872352838516235e-01 5.0214231014251709e-01
+ 5.9653222560882568e-01
+ <_>
+
+ 1 0 1162 9.5925969071686268e-04 -1 -2 1163
+ -1.9526129588484764e-02
+
+ 3.4734940528869629e-01 6.4755451679229736e-01
+ 4.6437820792198181e-01
+ <_>
+ 78
+ 3.8236038208007812e+01
+
+ <_>
+
+ 0 1 1164 4.1242439299821854e-02 -1 -2 1165
+ 1.5626709908246994e-02
+
+ 3.3933150768280029e-01 5.1041001081466675e-01
+ 7.7728152275085449e-01
+ <_>
+
+ 0 1 1166 2.9947189614176750e-04 -1 -2 1167
+ -1.0037609608843923e-03
+
+ 3.6646738648414612e-01 5.4056507349014282e-01
+ 3.9262050390243530e-01
+ <_>
+
+ 0 1 1168 6.8128242855891585e-04 -1 -2 1169
+ 1.3098999625071883e-04
+
+ 4.2515191435813904e-01 4.1351449489593506e-01
+ 6.9257462024688721e-01
+ <_>
+
+ 1 0 1170 3.1696720980107784e-03 -1 -2 1171
+ -2.0587369799613953e-03
+
+ 3.4558731317520142e-01 2.2341939806938171e-01
+ 5.2861189842224121e-01
+ <_>
+
+ 1 0 1172 -4.6395038953050971e-04 -1 -2 1173
+ 3.5089480224996805e-03
+
+ 4.2065200209617615e-01 6.5029817819595337e-01
+ 4.1175979375839233e-01
+ <_>
+
+ 1 0 1174 -2.3975980002433062e-03 -1 -2 1175
+ 1.0901279747486115e-03
+
+ 3.6733010411262512e-01 2.9062381386756897e-01
+ 5.4451119899749756e-01
+ <_>
+
+ 0 1 1176 -1.6524370585102588e-04 -1 -2 1177
+ -4.1602319106459618e-04
+
+ 4.2335158586502075e-01 3.8863611221313477e-01
+ 6.2691658735275269e-01
+ <_>
+
+ 0 1 1178 -2.3739910102449358e-04 -1 -2 1179
+ 2.4739760905504227e-02
+
+ 5.5244511365890503e-01 4.9600958824157715e-01
+ 5.3734910488128662e-01
+ <_>
+
+ 0 1 1180 -1.5342839993536472e-02 -1 -2 1181
+ 1.1540469713509083e-02
+
+ 6.8494051694869995e-01 4.0372350811958313e-01
+ 6.7869400978088379e-01
+ <_>
+
+ 1 0 1182 6.4230621792376041e-03 -1 -2 1183
+ 1.2977809645235538e-02
+
+ 3.8146761059761047e-01 5.5270588397979736e-01
+ 3.7449559569358826e-01
+ <_>
+
+ 0 1 1184 1.1063399724662304e-03 -1 -2 1185
+ 1.3743690215051174e-03
+
+ 3.5209289193153381e-01 5.6419032812118530e-01
+ 3.0750259757041931e-01
+ <_>
+
+ 0 1 1186 1.6233779489994049e-02 -1 -2 1187
+ -8.1519351806491613e-04
+
+ 4.8888280987739563e-01 5.4563212394714355e-01
+ 4.7435501217842102e-01
+ <_>
+
+ 0 1 1188 -9.0782493352890015e-02 -1 -2 1189
+ 1.1665210127830505e-02
+
+ 2.9252481460571289e-01 4.6884548664093018e-01
+ 6.2303477525711060e-01
+ <_>
+
+ 0 1 1190 -2.3286409676074982e-02 -1 -2 1191
+ 2.1559339947998524e-03
+
+ 6.8958431482315063e-01 5.3558021783828735e-01
+ 3.4234660863876343e-01
+ <_>
+
+ 0 1 1192 -4.3167220428586006e-03 -1 -2 1193
+ 1.5610599657520652e-03
+
+ 5.9370762109756470e-01 4.7086599469184875e-01
+ 2.7369970083236694e-01
+ <_>
+
+ 0 1 1194 1.4076639898121357e-02 -1 -2 1195
+ 7.1018589660525322e-03
+
+ 5.2871561050415039e-01 5.3361928462982178e-01
+ 3.2248139381408691e-01
+ <_>
+
+ 0 1 1196 -4.8221647739410400e-03 -1 -2 1197
+ -5.3852899000048637e-03
+
+ 2.9839101433753967e-01 5.6239992380142212e-01
+ 4.2959120869636536e-01
+ <_>
+
+ 1 0 1198 7.3483278974890709e-03 -1 -2 1199
+ -3.5707519855350256e-03
+
+ 6.8139612674713135e-01 5.8579689264297485e-01
+ 4.6034291386604309e-01
+ <_>
+
+ 1 0 1200 2.3340100888162851e-03 -1 -2 1201
+ 4.7432780265808105e-03
+
+ 2.7448511123657227e-01 5.0475269556045532e-01
+ 2.3627419769763947e-01
+ <_>
+
+ 0 1 1202 6.5055489540100098e-03 -1 -2 1203
+ 1.2589249759912491e-02
+
+ 5.2422481775283813e-01 4.8236909508705139e-01
+ 6.7525368928909302e-01
+ <_>
+
+ 0 1 1204 -6.3358368352055550e-03 -1 -2 1205
+ -5.7639651931822300e-03
+
+ 1.7346349358558655e-01 6.3543808460235596e-01
+ 4.5874750614166260e-01
+ <_>
+
+ 0 1 1206 1.3599749654531479e-03 -1 -2 1207
+ 2.8404260054230690e-02
+
+ 4.5803809165954590e-01 5.1763808727264404e-01
+ 1.2043850123882294e-01
+ <_>
+
+ 0 1 1208 -9.2958156019449234e-03 -1 -2 1209
+ -1.1800320353358984e-03
+
+ 2.3379570245742798e-01 3.9028140902519226e-01
+ 5.6529301404953003e-01
+ <_>
+
+ 0 1 1210 -2.0948140881955624e-03 -1 -2 1211
+ 4.1679958812892437e-03
+
+ 5.5120289325714111e-01 5.4559761285781860e-01
+ 4.7989490628242493e-01
+ <_>
+
+ 1 0 1212 5.4458891972899437e-03 -1 -2 1213
+ -1.2766510481014848e-03
+
+ 6.1270868778228760e-01 5.3171318769454956e-01
+ 3.8509321212768555e-01
+ <_>
+
+ 0 1 1214 5.9404270723462105e-04 -1 -2 1215
+ 4.2309608310461044e-02
+
+ 5.4464370012283325e-01 5.2346438169479370e-01
+ 2.2130440175533295e-01
+ <_>
+
+ 0 1 1216 5.6189671158790588e-03 -1 -2 1217
+ 7.2401198558509350e-03
+
+ 4.9161979556083679e-01 1.4714759588241577e-01
+ 4.8528939485549927e-01
+ <_>
+
+ 0 1 1218 -4.5610670931637287e-03 -1 -2 1219
+ 4.5506159949582070e-05
+
+ 2.7737739682197571e-01 4.6264618635177612e-01
+ 5.7680791616439819e-01
+ <_>
+
+ 0 1 1220 -6.1903791502118111e-03 -1 -2 1221
+ 8.1186462193727493e-04
+
+ 1.6442899405956268e-01 4.7785910964012146e-01
+ 6.2618649005889893e-01
+ <_>
+
+ 0 1 1222 1.3779809698462486e-02 -1 -2 1223
+ 1.1290319962427020e-03
+
+ 5.2573078870773315e-01 5.4980480670928955e-01
+ 3.9831069111824036e-01
+ <_>
+
+ 0 1 1224 -1.0610350000206381e-04 -1 -2 1225
+ 1.6695790691301227e-04
+
+ 4.0335190296173096e-01 4.1493400931358337e-01
+ 5.7953411340713501e-01
+ <_>
+
+ 1 0 1226 1.1290319962427020e-03 -1 -2 1227
+ -1.2019349634647369e-01
+
+ 3.9341148734092712e-01 7.3400482535362244e-02
+ 5.2025860548019409e-01
+ <_>
+
+ 0 1 1228 -1.5230740420520306e-02 -1 -2 1229
+ 3.5759829916059971e-03
+
+ 3.7495058774948120e-01 5.0781500339508057e-01
+ 6.6060662269592285e-01
+ <_>
+
+ 0 1 1230 1.3479460030794144e-02 -1 -2 1231
+ -2.1162950433790684e-03
+
+ 4.5477110147476196e-01 3.3110061287879944e-01
+ 5.3842592239379883e-01
+ <_>
+
+ 0 1 1232 -1.7877709120512009e-02 -1 -2 1233
+ 1.0931970318779349e-03
+
+ 6.5132528543472290e-01 5.2647650241851807e-01
+ 3.4569910168647766e-01
+ <_>
+
+ 0 1 1234 -3.0553159303963184e-03 -1 -2 1235
+ 3.6365049891173840e-03
+
+ 6.2686139345169067e-01 5.3992128372192383e-01
+ 4.3453970551490784e-01
+ <_>
+
+ 0 1 1236 9.7896481747739017e-05 -1 -2 1237
+ -3.2714448752813041e-04
+
+ 3.8356059789657593e-01 3.3376678824424744e-01
+ 5.5391657352447510e-01
+ <_>
+
+ 1 0 1238 4.3425030889920890e-04 -1 -2 1239
+ 1.4005579985678196e-02
+
+ 5.7882702350616455e-01 5.2750778198242188e-01
+ 2.7011251449584961e-01
+ <_>
+
+ 0 1 1240 -9.2654931358993053e-04 -1 -2 1241
+ 3.9504268206655979e-03
+
+ 5.8522802591323853e-01 4.7283369302749634e-01
+ 3.3139181137084961e-01
+ <_>
+
+ 1 0 1242 -5.8086868375539780e-04 -1 -2 1243
+ -1.2018020264804363e-02
+
+ 4.2588108777999878e-01 5.6097871065139771e-01
+ 4.8951920866966248e-01
+ <_>
+
+ 0 1 1244 -1.4521540701389313e-01 -1 -2 1245
+ -6.6049019806087017e-03
+
+ 4.3894480913877487e-02 4.2291709780693054e-01
+ 5.6162929534912109e-01
+ <_>
+
+ 1 0 1246 -3.4909751266241074e-02 -1 -2 1247
+ 3.7478420417755842e-03
+
+ 4.7881281375885010e-01 4.8002821207046509e-01
+ 5.8013892173767090e-01
+ <_>
+
+ 1 0 1248 3.3038031309843063e-02 -1 -2 1249
+ 3.6872599739581347e-03
+
+ 7.0781761407852173e-01 4.4496241211891174e-01
+ 5.9577310085296631e-01
+ <_>
+
+ 0 1 1250 -4.5311939902603626e-03 -1 -2 1251
+ 4.1058510541915894e-03
+
+ 4.1770470142364502e-01 5.3729480504989624e-01
+ 3.7369269132614136e-01
+ <_>
+
+ 0 1 1252 -8.7599847465753555e-03 -1 -2 1253
+ -2.3003309965133667e-02
+
+ 6.6588079929351807e-01 2.6479220390319824e-01
+ 5.1018178462982178e-01
+ <_>
+
+ 0 1 1254 5.3664818406105042e-03 -1 -2 1255
+ 3.8971770554780960e-02
+
+ 4.5486348867416382e-01 5.1570618152618408e-01
+ 3.4364390373229980e-01
+ <_>
+
+ 0 1 1256 -2.7767190709710121e-02 -1 -2 1257
+ -9.8894089460372925e-03
+
+ 2.3543910682201385e-01 6.8877410888671875e-01
+ 5.1110517978668213e-01
+ <_>
+
+ 0 1 1258 -3.2073140610009432e-03 -1 -2 1259
+ -6.7484978353604674e-04
+
+ 5.4388678073883057e-01 5.4511487483978271e-01
+ 4.8313531279563904e-01
+ <_>
+
+ 0 1 1260 -5.1947520114481449e-03 -1 -2 1261
+ -2.6169899501837790e-04
+
+ 2.1134190261363983e-01 5.2736818790435791e-01
+ 3.9925870299339294e-01
+ <_>
+
+ 0 1 1262 2.2421479225158691e-03 -1 -2 1263
+ -1.2139769969508052e-03
+
+ 4.6882608532905579e-01 5.5042350292205811e-01
+ 4.3848711252212524e-01
+ <_>
+
+ 0 1 1264 -2.9469770379364491e-03 -1 -2 1265
+ -3.9291830034926534e-04
+
+ 3.8928470015525818e-01 6.0017228126525879e-01
+ 4.5616629719734192e-01
+ <_>
+
+ 1 0 1266 6.2550729513168335e-01 -1 -2 1267
+ 9.7744520753622055e-03
+
+ 6.8125613033771515e-02 4.8130258917808533e-01
+ 5.6206572055816650e-01
+ <_>
+
+ 1 0 1268 9.4378247857093811e-02 -1 -2 1269
+ -1.9560910295695066e-03
+
+ 6.6632293164730072e-02 3.5882329940795898e-01
+ 5.2954071760177612e-01
+ <_>
+
+ 0 1 1270 9.0652769431471825e-03 -1 -2 1271
+ 4.2138071148656309e-04
+
+ 4.8226881027221680e-01 4.6703329682350159e-01
+ 5.6831127405166626e-01
+ <_>
+
+ 1 0 1272 -4.4220191193744540e-04 -1 -2 1273
+ -4.7313501127064228e-03
+
+ 5.3607952594757080e-01 6.1372458934783936e-01
+ 3.1880891323089600e-01
+ <_>
+
+ 0 1 1274 1.5395509544759989e-03 -1 -2 1275
+ 2.4315000046044588e-03
+
+ 4.4877201318740845e-01 4.8941668868064880e-01
+ 6.7166537046432495e-01
+ <_>
+
+ 0 1 1276 -1.5581619925796986e-02 -1 -2 1277
+ 1.0816920548677444e-03
+
+ 3.3367419242858887e-01 4.7182199358940125e-01
+ 5.9606271982192993e-01
+ <_>
+
+ 0 1 1278 -2.2197659127414227e-03 -1 -2 1279
+ -9.3048671260476112e-04
+
+ 3.5885548591613770e-01 6.2187129259109497e-01
+ 4.8173001408576965e-01
+ <_>
+
+ 0 1 1280 -4.7418707981705666e-03 -1 -2 1281
+ -6.2950369901955128e-03
+
+ 2.5500270724296570e-01 6.7280787229537964e-01
+ 5.0510638952255249e-01
+ <_>
+
+ 0 1 1282 3.5216049291193485e-03 -1 -2 1283
+ -2.4289379362016916e-03
+
+ 5.4019099473953247e-01 5.4194617271423340e-01
+ 4.3471428751945496e-01
+ <_>
+
+ 0 1 1284 -2.5261470582336187e-03 -1 -2 1285
+ -1.4817339833825827e-03
+
+ 6.9706249237060547e-01 3.2634168863296509e-01
+ 4.9178731441497803e-01
+ <_>
+
+ 0 1 1286 -2.2474530339241028e-01 -1 -2 1287
+ 2.8342509176582098e-03
+
+ 7.2937291115522385e-03 4.5792299509048462e-01
+ 5.3798812627792358e-01
+ <_>
+
+ 0 1 1288 -2.0821610465645790e-02 -1 -2 1289
+ 1.4896340144332498e-04
+
+ 6.0240888595581055e-01 3.3361440896987915e-01
+ 4.9628159403800964e-01
+ <_>
+
+ 0 1 1290 -3.3524499740451574e-03 -1 -2 1291
+ -3.7279881536960602e-02
+
+ 3.5587510466575623e-01 1.6985629498958588e-01
+ 5.2089858055114746e-01
+ <_>
+
+ 1 0 1292 1.3896770542487502e-04 -1 -2 1293
+ -3.1912620761431754e-04
+
+ 5.5906862020492554e-01 5.8487337827682495e-01
+ 3.7958368659019470e-01
+ <_>
+
+ 1 0 1294 5.4003461264073849e-04 -1 -2 1295
+ 3.8956850767135620e-03
+
+ 5.6702882051467896e-01 5.1826947927474976e-01
+ 3.3277091383934021e-01
+ <_>
+
+ 1 0 1296 1.6084529925137758e-03 -1 -2 1297
+ -5.7474587811157107e-04
+
+ 5.4104858636856079e-01 6.0226422548294067e-01
+ 3.6446440219879150e-01
+ <_>
+
+ 1 0 1298 1.3435039669275284e-02 -1 -2 1299
+ 2.1368139423429966e-03
+
+ 3.4412819147109985e-01 5.2924340963363647e-01
+ 2.7470758557319641e-01
+ <_>
+
+ 1 0 1300 1.4157629571855068e-02 -1 -2 1301
+ 5.3884391672909260e-03
+
+ 8.0278682708740234e-01 5.2223151922225952e-01
+ 3.5867279767990112e-01
+ <_>
+
+ 0 1 1302 8.8013410568237305e-03 -1 -2 1303
+ 3.8858849438838661e-04
+
+ 4.9003869295120239e-01 4.6810561418533325e-01
+ 5.7219529151916504e-01
+ <_>
+
+ 0 1 1304 -2.2143588867038488e-03 -1 -2 1305
+ -8.4642972797155380e-03
+
+ 5.3888058662414551e-01 6.6755378246307373e-01
+ 3.4484419226646423e-01
+ <_>
+
+ 1 0 1306 1.5044390223920345e-02 -1 -2 1307
+ 7.6346402056515217e-03
+
+ 9.2396140098571777e-01 4.8848968744277954e-01
+ 6.3060528039932251e-01
+ <_>
+
+ 1 0 1308 3.3895121305249631e-04 -1 -2 1309
+ 2.1157610171940178e-04
+
+ 3.9974310994148254e-01 5.6639820337295532e-01
+ 3.9729809761047363e-01
+ <_>
+
+ 1 0 1310 -2.7514949440956116e-02 -1 -2 1311
+ 5.1603060215711594e-02
+
+ 5.2010637521743774e-01 5.1407301425933838e-01
+ 1.2451309710741043e-01
+ <_>
+
+ 1 0 1312 3.7510651163756847e-03 -1 -2 1313
+ -2.1457639522850513e-03
+
+ 3.8020950555801392e-01 3.3094480633735657e-01
+ 5.4745388031005859e-01
+ <_>
+
+ 1 0 1314 -5.8178009930998087e-04 -1 -2 1315
+ -9.3638541875407100e-04
+
+ 4.8926019668579102e-01 5.9373992681503296e-01
+ 4.6646690368652344e-01
+ <_>
+
+ 1 0 1316 4.1667491197586060e-02 -1 -2 1317
+ -6.7763780243694782e-03
+
+ 7.0213532447814941e-01 3.2227510213851929e-01
+ 5.0683951377868652e-01
+ <_>
+
+ 1 0 1318 -2.9170580673962831e-03 -1 -2 1319
+ 3.2789530814625323e-04
+
+ 4.7177010774612427e-01 4.5093831419944763e-01
+ 5.6511628627777100e-01
+ <_>
+ 91
+ 4.4682968139648438e+01
+
+ <_>
+
+ 0 1 1320 1.1729800142347813e-02 -1 -2 1321
+ 1.1712179984897375e-03
+
+ 3.8052248954772949e-01 3.1400179862976074e-01
+ 6.8581461906433105e-01
+ <_>
+
+ 1 0 1322 9.3555096536874771e-03 -1 -2 1323
+ 1.6570610459893942e-03
+
+ 6.8346732854843140e-01 2.9924729466438293e-01
+ 5.4756778478622437e-01
+ <_>
+
+ 1 0 1324 -1.3387809740379453e-03 -1 -2 1325
+ 1.7580550047568977e-04
+
+ 2.9414069652557373e-01 3.8969779014587402e-01
+ 5.8729708194732666e-01
+ <_>
+
+ 0 1 1326 -2.9473248869180679e-03 -1 -2 1327
+ 8.3220899105072021e-03
+
+ 3.5765719413757324e-01 5.2324008941650391e-01
+ 3.2310879230499268e-01
+ <_>
+
+ 1 0 1328 7.4366689659655094e-03 -1 -2 1329
+ -2.1322889369912446e-04
+
+ 6.7156732082366943e-01 5.4705417156219482e-01
+ 3.8633960485458374e-01
+ <_>
+
+ 0 1 1330 -7.8024631366133690e-03 -1 -2 1331
+ 5.6611228501424193e-04
+
+ 2.7714601159095764e-01 4.6891361474990845e-01
+ 5.8519637584686279e-01
+ <_>
+
+ 0 1 1332 -9.2346500605344772e-03 -1 -2 1333
+ -1.4676499631605111e-05
+
+ 2.7043971419334412e-01 5.6225502490997314e-01
+ 3.5793170332908630e-01
+ <_>
+
+ 0 1 1334 9.7007937729358673e-03 -1 -2 1335
+ -3.5320650786161423e-03
+
+ 4.1738718748092651e-01 4.1950130462646484e-01
+ 5.5494689941406250e-01
+ <_>
+
+ 1 0 1336 2.1616410464048386e-02 -1 -2 1337
+ 3.4567608963698149e-03
+
+ 2.8573909401893616e-01 6.0245329141616821e-01
+ 4.3775078654289246e-01
+ <_>
+
+ 0 1 1338 2.2914320230484009e-02 -1 -2 1339
+ 3.4328910987824202e-03
+
+ 4.6893501281738281e-01 4.6646049618721008e-01
+ 5.7625621557235718e-01
+ <_>
+
+ 0 1 1340 -8.6510833352804184e-03 -1 -2 1341
+ 1.4510039472952485e-03
+
+ 6.3817399740219116e-01 3.7114879488945007e-01
+ 5.5307507514953613e-01
+ <_>
+
+ 0 1 1342 7.8191719949245453e-03 -1 -2 1343
+ 2.0798550394829363e-04
+
+ 5.2643620967864990e-01 3.7305128574371338e-01
+ 5.4457312822341919e-01
+ <_>
+
+ 0 1 1344 -3.9962218143045902e-03 -1 -2 1345
+ -1.5010139577498194e-05
+
+ 2.4381700158119202e-01 5.3246712684631348e-01
+ 3.6829888820648193e-01
+ <_>
+
+ 0 1 1346 -4.2428788729012012e-03 -1 -2 1347
+ 9.1374982148408890e-03
+
+ 6.4814740419387817e-01 4.8961588740348816e-01
+ 6.5588432550430298e-01
+ <_>
+
+ 1 0 1348 8.8254585862159729e-03 -1 -2 1349
+ 9.4092212384566665e-04
+
+ 3.6138701438903809e-01 5.5028957128524780e-01
+ 3.6325180530548096e-01
+ <_>
+
+ 0 1 1350 -1.2503350153565407e-02 -1 -2 1351
+ 8.6759645491838455e-03
+
+ 2.2611320018768311e-01 4.9878901243209839e-01
+ 6.8471962213516235e-01
+ <_>
+
+ 0 1 1352 -1.0416760109364986e-02 -1 -2 1353
+ 2.7432460337877274e-03
+
+ 2.4462990462779999e-01 3.5115250945091248e-01
+ 5.3998267650604248e-01
+ <_>
+
+ 0 1 1354 -4.2385691776871681e-03 -1 -2 1355
+ 1.8325870856642723e-02
+
+ 6.8236732482910156e-01 4.8915800452232361e-01
+ 7.1356189250946045e-01
+ <_>
+
+ 0 1 1356 -2.4334540590643883e-02 -1 -2 1357
+ 4.6469361404888332e-04
+
+ 3.5225218534469604e-01 4.0498688817024231e-01
+ 5.5158257484436035e-01
+ <_>
+
+ 1 0 1358 3.4260009415447712e-03 -1 -2 1359
+ -2.5827318895608187e-03
+
+ 4.1267699003219604e-01 2.8994289040565491e-01
+ 5.3864318132400513e-01
+ <_>
+
+ 1 0 1360 1.0545699624344707e-03 -1 -2 1361
+ -9.1257691383361816e-04
+
+ 3.7713441252708435e-01 5.8273869752883911e-01
+ 4.2675569653511047e-01
+ <_>
+
+ 0 1 1362 2.6589010376483202e-03 -1 -2 1363
+ 4.8598358407616615e-03
+
+ 4.6881249547004700e-01 4.8539221286773682e-01
+ 6.1636447906494141e-01
+ <_>
+
+ 1 0 1364 8.0638676881790161e-03 -1 -2 1365
+ -7.5898370705544949e-03
+
+ 1.7491950094699860e-01 6.8261897563934326e-01
+ 4.8940700292587280e-01
+ <_>
+
+ 0 1 1366 3.6368070868775249e-04 -1 -2 1367
+ 6.2594950199127197e-02
+
+ 4.6145960688591003e-01 5.1830172538757324e-01
+ 2.6866960525512695e-01
+ <_>
+
+ 0 1 1368 -4.9753207713365555e-03 -1 -2 1369
+ -2.0880119409412146e-03
+
+ 1.7584669589996338e-01 6.3693821430206299e-01
+ 4.9300441145896912e-01
+ <_>
+
+ 1 0 1370 9.5644511748105288e-04 -1 -2 1371
+ -3.1721461564302444e-02
+
+ 4.1393989324569702e-01 6.0455572605133057e-01
+ 4.8163640499114990e-01
+ <_>
+
+ 0 1 1372 1.2898689601570368e-03 -1 -2 1373
+ 9.8405163735151291e-03
+
+ 5.4508107900619507e-01 2.9240009188652039e-01
+ 6.6996061801910400e-01
+ <_>
+
+ 1 0 1374 1.2237089686095715e-03 -1 -2 1375
+ -8.4232585504651070e-03
+
+ 6.2828367948532104e-01 5.9865701198577881e-01
+ 4.8525801301002502e-01
+ <_>
+
+ 0 1 1376 -7.2726322105154395e-04 -1 -2 1377
+ 4.6842931769788265e-03
+
+ 3.3400490880012512e-01 5.1689237356185913e-01
+ 2.6794800162315369e-01
+ <_>
+
+ 0 1 1378 -1.0379579616710544e-03 -1 -2 1379
+ 9.1342730447649956e-03
+
+ 5.9257918596267700e-01 5.4377281665802002e-01
+ 4.3468001484870911e-01
+ <_>
+
+ 0 1 1380 1.4971119817346334e-03 -1 -2 1381
+ 1.5762320253998041e-03
+
+ 4.1295009851455688e-01 4.5228740572929382e-01
+ 6.5562921762466431e-01
+ <_>
+
+ 0 1 1382 8.7496247142553329e-03 -1 -2 1383
+ -8.5103599121794105e-04
+
+ 4.5320340991020203e-01 3.7859839200973511e-01
+ 5.4169750213623047e-01
+ <_>
+
+ 0 1 1384 -1.7325570806860924e-02 -1 -2 1385
+ -8.3266440778970718e-03
+
+ 6.8842482566833496e-01 3.0913260579109192e-01
+ 5.2436548471450806e-01
+ <_>
+
+ 0 1 1386 1.5157909729168750e-05 -1 -2 1387
+ 1.8041470320895314e-03
+
+ 4.7657939791679382e-01 4.7253859043121338e-01
+ 5.7165551185607910e-01
+ <_>
+
+ 1 0 1388 3.0691560823470354e-03 -1 -2 1389
+ -5.2225510444259271e-05
+
+ 2.1433599293231964e-01 5.6532102823257446e-01
+ 4.3851110339164734e-01
+ <_>
+
+ 1 0 1390 1.0072169970953837e-04 -1 -2 1391
+ 1.3573700562119484e-04
+
+ 5.9247761964797974e-01 4.5734488964080811e-01
+ 5.7693827152252197e-01
+ <_>
+
+ 1 0 1392 9.2137878527864814e-04 -1 -2 1393
+ 3.0316581251099706e-04
+
+ 5.9926092624664307e-01 3.6100810766220093e-01
+ 5.0493258237838745e-01
+ <_>
+
+ 1 0 1394 3.9582479745149612e-02 -1 -2 1395
+ 4.7519680112600327e-02
+
+ 1.5384890139102936e-01 5.2161407470703125e-01
+ 1.4283910393714905e-01
+ <_>
+
+ 1 0 1396 1.8871759995818138e-02 -1 -2 1397
+ -3.9876459049992263e-04
+
+ 2.8255069255828857e-01 4.0350168943405151e-01
+ 5.4377931356430054e-01
+ <_>
+
+ 0 1 1398 4.6556600136682391e-04 -1 -2 1399
+ 6.7090610973536968e-03
+
+ 4.6689969301223755e-01 5.3313547372817993e-01
+ 4.1365718841552734e-01
+ <_>
+
+ 0 1 1400 -1.8931160448119044e-03 -1 -2 1401
+ -1.3056949712336063e-02
+
+ 7.1551632881164551e-01 3.1178998947143555e-01
+ 5.2084398269653320e-01
+ <_>
+
+ 1 0 1402 -1.9484119547996670e-04 -1 -2 1403
+ 1.5093220099515747e-05
+
+ 4.6376588940620422e-01 4.5616531372070312e-01
+ 5.4452341794967651e-01
+ <_>
+
+ 1 0 1404 -7.1617960202274844e-06 -1 -2 1405
+ 3.0164679628796875e-04
+
+ 4.1931080818176270e-01 5.9662377834320068e-01
+ 4.1005000472068787e-01
+ <_>
+
+ 0 1 1406 4.4195181690156460e-03 -1 -2 1407
+ -7.3984181508421898e-03
+
+ 4.8450559377670288e-01 6.2068462371826172e-01
+ 4.9312090873718262e-01
+ <_>
+
+ 1 0 1408 -7.8031201846897602e-03 -1 -2 1409
+ -1.0731429792940617e-02
+
+ 5.2824628353118896e-01 9.1048341989517212e-01
+ 3.4559220075607300e-01
+ <_>
+
+ 0 1 1410 1.4246780192479491e-03 -1 -2 1411
+ -8.2717568147927523e-05
+
+ 4.7085541486740112e-01 5.6516230106353760e-01
+ 4.7310239076614380e-01
+ <_>
+
+ 1 0 1412 4.4803409837186337e-03 -1 -2 1413
+ 3.0789140146225691e-03
+
+ 6.1758869886398315e-01 5.1395332813262939e-01
+ 3.4230878949165344e-01
+ <_>
+
+ 1 0 1414 -1.1310289846733212e-03 -1 -2 1415
+ -1.0410690447315574e-03
+
+ 4.9182820320129395e-01 5.9420871734619141e-01
+ 4.9230429530143738e-01
+ <_>
+
+ 1 0 1416 1.1648540385067463e-03 -1 -2 1417
+ 9.0057362103834748e-04
+
+ 6.4052718877792358e-01 4.5043969154357910e-01
+ 6.1920768022537231e-01
+ <_>
+
+ 0 1 1418 6.8781538866460323e-03 -1 -2 1419
+ -3.5283900797367096e-02
+
+ 5.3748130798339844e-01 2.2471010684967041e-01
+ 5.2171707153320312e-01
+ <_>
+
+ 0 1 1420 -1.3320200378075242e-03 -1 -2 1421
+ -2.3177571129053831e-03
+
+ 2.5547030568122864e-01 3.7925159931182861e-01
+ 5.2432268857955933e-01
+ <_>
+
+ 0 1 1422 2.1332940377760679e-04 -1 -2 1423
+ 1.3467900454998016e-02
+
+ 3.8603371381759644e-01 5.3806877136230469e-01
+ 4.1783639788627625e-01
+ <_>
+
+ 0 1 1424 -1.2829169863834977e-03 -1 -2 1425
+ 5.1571638323366642e-04
+
+ 6.1336231231689453e-01 4.0285378694534302e-01
+ 5.5368518829345703e-01
+ <_>
+
+ 0 1 1426 3.9254198782145977e-03 -1 -2 1427
+ -3.3780589699745178e-02
+
+ 5.2799212932586670e-01 2.3346750438213348e-01
+ 5.1759117841720581e-01
+ <_>
+
+ 0 1 1428 -3.7853721529245377e-02 -1 -2 1429
+ -4.0752900531515479e-04
+
+ 1.0748530179262161e-01 5.3459298610687256e-01
+ 4.1989380121231079e-01
+ <_>
+
+ 0 1 1430 -3.1193809118121862e-03 -1 -2 1431
+ -1.5714969485998154e-02
+
+ 3.8558250665664673e-01 3.3351901173591614e-01
+ 5.2632021903991699e-01
+ <_>
+
+ 0 1 1432 -7.8525702701881528e-04 -1 -2 1433
+ -2.8750501223839819e-04
+
+ 5.8603972196578979e-01 5.4377847909927368e-01
+ 3.7161049246788025e-01
+ <_>
+
+ 1 0 1434 2.8016859665513039e-02 -1 -2 1435
+ -1.9018839811906219e-03
+
+ 3.3307549357414246e-01 5.3665977716445923e-01
+ 4.6937939524650574e-01
+ <_>
+
+ 1 0 1436 2.0647559314966202e-02 -1 -2 1437
+ 4.3002571910619736e-03
+
+ 1.0069560259580612e-01 4.8160359263420105e-01
+ 6.2156772613525391e-01
+ <_>
+
+ 0 1 1438 1.3459140434861183e-02 -1 -2 1439
+ -1.0320040397346020e-02
+
+ 5.4619538784027100e-01 4.5784530043601990e-01
+ 5.4193097352981567e-01
+ <_>
+
+ 1 0 1440 3.1990748643875122e-01 -1 -2 1441
+ 9.2198798665776849e-04
+
+ 2.0080469548702240e-01 5.1932811737060547e-01
+ 3.9121940732002258e-01
+ <_>
+
+ 0 1 1442 4.1852539288811386e-04 -1 -2 1443
+ 3.5891108564101160e-04
+
+ 4.2997440695762634e-01 4.3445029854774475e-01
+ 5.5319738388061523e-01
+ <_>
+
+ 0 1 1444 -2.0992439985275269e-01 -1 -2 1445
+ -4.9328152090311050e-03
+
+ 1.0757210105657578e-01 5.7627969980239868e-01
+ 4.5746439695358276e-01
+ <_>
+
+ 1 0 1446 2.3409130517393351e-03 -1 -2 1447
+ 4.7120270319283009e-03
+
+ 7.4768078327178955e-01 5.2617651224136353e-01
+ 4.5055508613586426e-01
+ <_>
+
+ 0 1 1448 2.8713190928101540e-02 -1 -2 1449
+ -2.6156550738960505e-03
+
+ 4.4071030616760254e-01 4.2442709207534790e-01
+ 6.8929767608642578e-01
+ <_>
+
+ 0 1 1450 -1.3558969832956791e-02 -1 -2 1451
+ -3.0331799644045532e-04
+
+ 1.2522679567337036e-01 4.0777918696403503e-01
+ 5.4428178071975708e-01
+ <_>
+
+ 0 1 1452 -5.5601762142032385e-04 -1 -2 1453
+ 2.4025330785661936e-03
+
+ 5.3780037164688110e-01 3.1665799021720886e-01
+ 5.2857381105422974e-01
+ <_>
+
+ 1 0 1454 -3.4089901018887758e-03 -1 -2 1455
+ 8.0019602319225669e-04
+
+ 4.9052149057388306e-01 4.5227360725402832e-01
+ 5.5806142091751099e-01
+ <_>
+
+ 1 0 1456 2.1901070140302181e-03 -1 -2 1457
+ 3.3745369873940945e-03
+
+ 6.6126817464828491e-01 5.1077651977539062e-01
+ 3.3869299292564392e-01
+ <_>
+
+ 1 0 1458 8.0019602319225669e-04 -1 -2 1459
+ 1.7346069216728210e-02
+
+ 5.7075601816177368e-01 5.0160211324691772e-01
+ 6.3064599037170410e-01
+ <_>
+
+ 0 1 1460 -1.9568449351936579e-03 -1 -2 1461
+ -1.1229019612073898e-02
+
+ 3.0178061127662659e-01 6.2938511371612549e-01
+ 4.5204889774322510e-01
+ <_>
+
+ 0 1 1462 -2.6608388870954514e-03 -1 -2 1463
+ -1.1615100316703320e-02
+
+ 3.3440071344375610e-01 2.8253790736198425e-01
+ 5.1509708166122437e-01
+ <_>
+
+ 0 1 1464 -9.5248602330684662e-02 -1 -2 1465
+ 7.3701781220734119e-03
+
+ 1.3982650637626648e-01 5.2939987182617188e-01
+ 2.3317280411720276e-01
+ <_>
+
+ 1 0 1466 -1.4953900128602982e-02 -1 -2 1467
+ 5.7038792874664068e-04
+
+ 4.9404659867286682e-01 5.4665708541870117e-01
+ 4.6267679333686829e-01
+ <_>
+
+ 1 0 1468 5.8516198769211769e-03 -1 -2 1469
+ 2.1150549582671374e-04
+
+ 6.2700408697128296e-01 5.5081409215927124e-01
+ 4.0618729591369629e-01
+ <_>
+
+ 1 0 1470 -6.9679190346505493e-06 -1 -2 1471
+ -7.9677387839183211e-04
+
+ 4.0965679287910461e-01 5.6155568361282349e-01
+ 4.6668860316276550e-01
+ <_>
+
+ 1 0 1472 1.9459480419754982e-02 -1 -2 1473
+ -1.1160830035805702e-02
+
+ 2.3114809393882751e-01 3.0870118737220764e-01
+ 5.5146622657775879e-01
+ <_>
+
+ 1 0 1474 1.4056149870157242e-02 -1 -2 1475
+ -3.2958350493572652e-04
+
+ 7.0050561428070068e-01 5.7974857091903687e-01
+ 4.6916508674621582e-01
+ <_>
+
+ 0 1 1476 -5.4636420682072639e-03 -1 -2 1477
+ 5.8881669247057289e-05
+
+ 5.9285950660705566e-01 3.7413978576660156e-01
+ 5.1701688766479492e-01
+ <_>
+
+ 0 1 1478 6.6343429498374462e-03 -1 -2 1479
+ 4.5263409614562988e-02
+
+ 5.4149878025054932e-01 5.1803272962570190e-01
+ 1.5296840667724609e-01
+ <_>
+
+ 0 1 1480 -8.0646127462387085e-03 -1 -2 1481
+ 4.7389548853971064e-04
+
+ 2.5154680013656616e-01 5.1219987869262695e-01
+ 3.7259489297866821e-01
+ <_>
+
+ 1 0 1482 1.4877359717502259e-05 -1 -2 1483
+ 2.4321159347891808e-02
+
+ 5.5324357748031616e-01 4.9607661366462708e-01
+ 5.9833151102066040e-01
+ <_>
+
+ 0 1 1484 6.9931396865285933e-05 -1 -2 1485
+ 2.6287760119885206e-03
+
+ 4.1639530658721924e-01 5.8801448345184326e-01
+ 3.3996629714965820e-01
+ <_>
+
+ 1 0 1486 3.8190539926290512e-03 -1 -2 1487
+ -2.5989150628447533e-02
+
+ 7.8466212749481201e-01 3.2881140708923340e-01
+ 5.1550877094268799e-01
+ <_>
+
+ 0 1 1488 1.2062400346621871e-03 -1 -2 1489
+ -1.5557400183752179e-03
+
+ 4.5960599184036255e-01 3.1269869208335876e-01
+ 7.1833992004394531e-01
+ <_>
+
+ 1 0 1490 -2.2691930644214153e-03 -1 -2 1491
+ 2.3287249496206641e-04
+
+ 5.2740061283111572e-01 4.8786661028862000e-01
+ 5.6151527166366577e-01
+ <_>
+
+ 1 0 1492 -5.5999699980020523e-03 -1 -2 1493
+ -1.0496189817786217e-02
+
+ 5.1608121395111084e-01 5.7016140222549438e-01
+ 3.2048508524894714e-01
+ <_>
+
+ 0 1 1494 -1.4814930182183161e-05 -1 -2 1495
+ -6.4287078566849232e-04
+
+ 5.5388379096984863e-01 5.3494292497634888e-01
+ 4.4721511006355286e-01
+ <_>
+
+ 0 1 1496 -1.8891949730459601e-04 -1 -2 1497
+ -9.0413521975278854e-03
+
+ 5.0128370523452759e-01 2.5629359483718872e-01
+ 4.5033830404281616e-01
+ <_>
+
+ 1 0 1498 7.9534705728292465e-03 -1 -2 1499
+ -2.7908999472856522e-03
+
+ 2.6304998993873596e-01 5.7565087080001831e-01
+ 4.8548638820648193e-01
+ <_>
+
+ 1 0 1500 3.2857100013643503e-03 -1 -2 1501
+ 7.7063008211553097e-04
+
+ 4.0847519040107727e-01 4.0733560919761658e-01
+ 5.9202408790588379e-01
+ <_>
+ 97
+ 4.7763450622558594e+01
+
+ <_>
+
+ 0 1 1502 6.3021942973136902e-02 -1 -2 1503
+ -2.8374609537422657e-03
+
+ 3.4193828701972961e-01 6.8295639753341675e-01
+ 4.4045230746269226e-01
+ <_>
+
+ 0 1 1504 4.6461950987577438e-02 -1 -2 1505
+ 2.9152540490031242e-02
+
+ 4.3917450308799744e-01 4.6010631322860718e-01
+ 6.3579368591308594e-01
+ <_>
+
+ 1 0 1506 -1.4000290320836939e-05 -1 -2 1507
+ -1.2757079675793648e-03
+
+ 3.7300100922584534e-01 3.0938240885734558e-01
+ 5.9013700485229492e-01
+ <_>
+
+ 0 1 1508 1.3596529606729746e-03 -1 -2 1509
+ 1.7991929780691862e-04
+
+ 4.3375650048255920e-01 4.2175039649009705e-01
+ 5.8468478918075562e-01
+ <_>
+
+ 1 0 1510 -1.4166639630275313e-05 -1 -2 1511
+ 6.0252390539972112e-05
+
+ 4.0846911072731018e-01 5.0872868299484253e-01
+ 7.2771841287612915e-01
+ <_>
+
+ 1 0 1512 6.4320368692278862e-03 -1 -2 1513
+ 4.6682319953106344e-04
+
+ 2.9679030179977417e-01 4.1104629635810852e-01
+ 5.5812197923660278e-01
+ <_>
+
+ 0 1 1514 5.7436279021203518e-03 -1 -2 1515
+ 3.2019240316003561e-03
+
+ 4.2873099446296692e-01 4.2661958932876587e-01
+ 6.4440459012985229e-01
+ <_>
+
+ 1 0 1516 -5.7637941790744662e-04 -1 -2 1517
+ -3.7901920732110739e-03
+
+ 4.0848249197006226e-01 3.1819209456443787e-01
+ 5.2306932210922241e-01
+ <_>
+
+ 1 0 1518 4.8914109356701374e-03 -1 -2 1519
+ 4.6459292061626911e-03
+
+ 3.5483568906784058e-01 5.6105977296829224e-01
+ 2.6938489079475403e-01
+ <_>
+
+ 0 1 1520 -6.8799369037151337e-03 -1 -2 1521
+ -1.8147470429539680e-02
+
+ 6.2354081869125366e-01 2.8619819879531860e-01
+ 5.2268481254577637e-01
+ <_>
+
+ 1 0 1522 1.1409220314817503e-04 -1 -2 1523
+ -5.4334272863343358e-04
+
+ 3.2578331232070923e-01 3.8829690217971802e-01
+ 5.3411662578582764e-01
+ <_>
+
+ 0 1 1524 -2.7602489572018385e-03 -1 -2 1525
+ -1.9730569329112768e-03
+
+ 6.3539659976959229e-01 5.8807611465454102e-01
+ 4.5930901169776917e-01
+ <_>
+
+ 1 0 1526 2.4565239436924458e-03 -1 -2 1527
+ 1.9392010290175676e-04
+
+ 3.1340101361274719e-01 5.2771317958831787e-01
+ 3.6041069030761719e-01
+ <_>
+
+ 0 1 1528 7.8643016517162323e-02 -1 -2 1529
+ 6.5276869572699070e-03
+
+ 5.2903419733047485e-01 4.6544799208641052e-01
+ 6.0449051856994629e-01
+ <_>
+
+ 0 1 1530 -7.8716799616813660e-02 -1 -2 1531
+ 5.7298499159514904e-03
+
+ 2.5411269068717957e-01 4.3669191002845764e-01
+ 5.8228862285614014e-01
+ <_>
+
+ 1 0 1532 6.2386557692661881e-04 -1 -2 1533
+ -8.5267230868339539e-02
+
+ 5.4726922512054443e-01 1.4616079628467560e-01
+ 5.1818108558654785e-01
+ <_>
+
+ 1 0 1534 4.0981110185384750e-02 -1 -2 1535
+ 7.7135749161243439e-03
+
+ 1.2701350450515747e-01 4.8326849937438965e-01
+ 2.2235789895057678e-01
+ <_>
+
+ 0 1 1536 -6.8663940764963627e-03 -1 -2 1537
+ 1.4559639617800713e-02
+
+ 5.9189289808273315e-01 4.7615069150924683e-01
+ 5.7272237539291382e-01
+ <_>
+
+ 0 1 1538 -1.0064310394227505e-02 -1 -2 1539
+ 3.6274080630391836e-03
+
+ 3.6367309093475342e-01 5.2717310190200806e-01
+ 2.7405250072479248e-01
+ <_>
+
+ 0 1 1540 -2.3421540390700102e-03 -1 -2 1541
+ -2.4686409160494804e-02
+
+ 5.4977840185165405e-01 6.0598951578140259e-01
+ 4.9603140354156494e-01
+ <_>
+
+ 1 0 1542 1.9456120207905769e-04 -1 -2 1543
+ 3.1714211218059063e-04
+
+ 3.7694650888442993e-01 4.0623620152473450e-01
+ 5.6682151556015015e-01
+ <_>
+
+ 0 1 1544 2.0793990697711706e-03 -1 -2 1545
+ 1.7982709687203169e-03
+
+ 4.6186569333076477e-01 4.8675051331520081e-01
+ 6.5184497833251953e-01
+ <_>
+
+ 0 1 1546 -2.2287059982772917e-04 -1 -2 1547
+ 3.2623921288177371e-04
+
+ 5.6775957345962524e-01 3.7107339501380920e-01
+ 5.6766051054000854e-01
+ <_>
+
+ 0 1 1548 -6.6792681813240051e-02 -1 -2 1549
+ -1.4869889710098505e-03
+
+ 2.5115218758583069e-01 3.8867509365081787e-01
+ 5.2622538805007935e-01
+ <_>
+
+ 0 1 1550 -5.0454870797693729e-03 -1 -2 1551
+ -4.8297587782144547e-03
+
+ 6.5574729442596436e-01 5.9341061115264893e-01
+ 4.2859220504760742e-01
+ <_>
+
+ 1 0 1552 -1.0722599690780044e-03 -1 -2 1553
+ 8.7901195511221886e-03
+
+ 5.4260587692260742e-01 5.3513032197952271e-01
+ 4.8342779278755188e-01
+ <_>
+
+ 0 1 1554 -7.1750381030142307e-03 -1 -2 1555
+ 1.1251230025663972e-03
+
+ 2.0671689510345459e-01 5.1122522354125977e-01
+ 3.4687140583992004e-01
+ <_>
+
+ 0 1 1556 1.0634710080921650e-02 -1 -2 1557
+ -1.1763219721615314e-02
+
+ 4.4790080189704895e-01 6.2539017200469971e-01
+ 4.9689871072769165e-01
+ <_>
+
+ 1 0 1558 9.2324063181877136e-02 -1 -2 1559
+ 1.8991080578416586e-03
+
+ 2.0313039422035217e-01 5.6187218427658081e-01
+ 4.0465721487998962e-01
+ <_>
+
+ 1 0 1560 -1.0510340332984924e-02 -1 -2 1561
+ -7.4531312566250563e-04
+
+ 4.9432641267776489e-01 5.6134277582168579e-01
+ 3.8453319668769836e-01
+ <_>
+
+ 1 0 1562 8.0041000619530678e-03 -1 -2 1563
+ 5.8110528625547886e-03
+
+ 7.7598422765731812e-01 4.6247330307960510e-01
+ 6.2862771749496460e-01
+ <_>
+
+ 0 1 1564 -2.7918580919504166e-02 -1 -2 1565
+ 2.1739399526268244e-03
+
+ 2.4093140661716461e-01 5.3455048799514771e-01
+ 3.5079580545425415e-01
+ <_>
+
+ 0 1 1566 -4.0639587678015232e-03 -1 -2 1567
+ 6.0017139185220003e-04
+
+ 6.6471010446548462e-01 4.9985098838806152e-01
+ 3.0221650004386902e-01
+ <_>
+
+ 1 0 1568 1.9214770291000605e-03 -1 -2 1569
+ -1.3860830105841160e-02
+
+ 5.9191507101058960e-01 6.3517677783966064e-01
+ 4.9933108687400818e-01
+ <_>
+
+ 1 0 1570 2.3006850853562355e-02 -1 -2 1571
+ -1.3857929734513164e-03
+
+ 1.9023360311985016e-01 5.2533692121505737e-01
+ 3.9858600497245789e-01
+ <_>
+
+ 0 1 1572 1.2637410545721650e-03 -1 -2 1573
+ -1.4675210230052471e-02
+
+ 4.6661040186882019e-01 3.8231649994850159e-01
+ 5.3266328573226929e-01
+ <_>
+
+ 0 1 1574 -2.9535070061683655e-03 -1 -2 1575
+ -1.7189770005643368e-03
+
+ 7.0636558532714844e-01 3.8134628534317017e-01
+ 5.2467352151870728e-01
+ <_>
+
+ 1 0 1576 -4.2484089499339461e-04 -1 -2 1577
+ -8.5248658433556557e-04
+
+ 4.7916388511657715e-01 4.4912180304527283e-01
+ 5.3709012269973755e-01
+ <_>
+
+ 1 0 1578 8.9034568518400192e-03 -1 -2 1579
+ 1.4895649655954912e-05
+
+ 2.0764739811420441e-01 4.4476351141929626e-01
+ 5.6671631336212158e-01
+ <_>
+
+ 0 1 1580 -4.7091601300053298e-04 -1 -2 1581
+ 4.3084810022264719e-04
+
+ 5.4650712013244629e-01 5.4932618141174316e-01
+ 4.5807081460952759e-01
+ <_>
+
+ 0 1 1582 -6.3893961487337947e-04 -1 -2 1583
+ -7.3733746830839664e-05
+
+ 5.5015718936920166e-01 5.0857907533645630e-01
+ 3.3056980371475220e-01
+ <_>
+
+ 0 1 1584 -8.8991485536098480e-03 -1 -2 1585
+ -1.0253350250422955e-02
+
+ 4.2764690518379211e-01 1.1232180148363113e-01
+ 5.1527231931686401e-01
+ <_>
+
+ 0 1 1586 -5.9637490659952164e-02 -1 -2 1587
+ 2.1707199513912201e-02
+
+ 7.3867720365524292e-01 4.9962919950485229e-01
+ 1.3394139707088470e-01
+ <_>
+
+ 0 1 1588 9.9107045680284500e-03 -1 -2 1589
+ -1.0998300276696682e-02
+
+ 4.6790120005607605e-01 6.9286561012268066e-01
+ 5.0120681524276733e-01
+ <_>
+
+ 1 0 1590 7.4608891736716032e-04 -1 -2 1591
+ 2.9539171373471618e-04
+
+ 5.8335822820663452e-01 3.8263911008834839e-01
+ 5.5663508176803589e-01
+ <_>
+
+ 1 0 1592 5.0054129213094711e-02 -1 -2 1593
+ -7.2330660186707973e-03
+
+ 3.0027210712432861e-01 5.9080427885055542e-01
+ 5.0008708238601685e-01
+ <_>
+
+ 0 1 1594 -2.6863380335271358e-03 -1 -2 1595
+ -1.0195849463343620e-03
+
+ 3.9750349521636963e-01 3.6976858973503113e-01
+ 5.7561928033828735e-01
+ <_>
+
+ 0 1 1596 -2.0204920321702957e-02 -1 -2 1597
+ 2.1340379025787115e-03
+
+ 6.3752681016921997e-01 5.3632658720016479e-01
+ 4.4331708550453186e-01
+ <_>
+
+ 0 1 1598 -1.8348889425396919e-03 -1 -2 1599
+ -5.9489468112587929e-03
+
+ 5.8289992809295654e-01 2.6806709170341492e-01
+ 4.6428859233856201e-01
+ <_>
+
+ 0 1 1600 -2.3030120064504445e-04 -1 -2 1601
+ 5.0581009127199650e-03
+
+ 5.4753202199935913e-01 5.3208339214324951e-01
+ 4.6464928984642029e-01
+ <_>
+
+ 0 1 1602 -5.1950011402368546e-04 -1 -2 1603
+ -6.8620947422459722e-04
+
+ 5.2327448129653931e-01 4.9350860714912415e-01
+ 3.1031179428100586e-01
+ <_>
+
+ 0 1 1604 -7.4936267919838428e-03 -1 -2 1605
+ -1.5682930126786232e-02
+
+ 2.8830468654632568e-01 3.6403131484985352e-01
+ 5.3687548637390137e-01
+ <_>
+
+ 0 1 1606 -3.2649750355631113e-03 -1 -2 1607
+ 3.8463930832222104e-04
+
+ 6.4686310291290283e-01 5.2596598863601685e-01
+ 3.8314279913902283e-01
+ <_>
+
+ 1 0 1608 4.4492390006780624e-03 -1 -2 1609
+ 2.3118320852518082e-02
+
+ 2.0868189632892609e-01 4.9785330891609192e-01
+ 5.9612572193145752e-01
+ <_>
+
+ 1 0 1610 2.0835159812122583e-03 -1 -2 1611
+ 1.1513150529935956e-03
+
+ 5.7464218139648438e-01 3.5868450999259949e-01
+ 5.3634738922119141e-01
+ <_>
+
+ 1 0 1612 3.6104708909988403e-02 -1 -2 1613
+ 3.6256198654882610e-04
+
+ 2.8331369161605835e-01 5.4777222871780396e-01
+ 4.1105321049690247e-01
+ <_>
+
+ 0 1 1614 -3.4635469783097506e-03 -1 -2 1615
+ -2.8796829283237457e-03
+
+ 5.9903860092163086e-01 5.7252532243728638e-01
+ 4.1495120525360107e-01
+ <_>
+
+ 1 0 1616 -8.1119500100612640e-03 -1 -2 1617
+ 4.5932079665362835e-03
+
+ 5.3963518142700195e-01 5.3797042369842529e-01
+ 3.8913029432296753e-01
+ <_>
+
+ 1 0 1618 7.0014740340411663e-03 -1 -2 1619
+ 8.0169539432972670e-04
+
+ 3.7146711349487305e-01 5.5295670032501221e-01
+ 3.7558048963546753e-01
+ <_>
+
+ 1 0 1620 -8.6652329191565514e-03 -1 -2 1621
+ -2.7315050829201937e-03
+
+ 5.0257730484008789e-01 5.8503222465515137e-01
+ 4.6175739169120789e-01
+ <_>
+
+ 1 0 1622 1.3301590224727988e-03 -1 -2 1623
+ -4.2648240923881531e-03
+
+ 5.9377008676528931e-01 5.6453680992126465e-01
+ 3.9376249909400940e-01
+ <_>
+
+ 0 1 1624 6.3251499086618423e-03 -1 -2 1625
+ -3.0753740575164557e-03
+
+ 5.1821058988571167e-01 3.0074161291122437e-01
+ 5.1964038610458374e-01
+ <_>
+
+ 0 1 1626 -7.3622138006612659e-04 -1 -2 1627
+ 3.0082479497650638e-05
+
+ 3.6975800991058350e-01 4.3275931477546692e-01
+ 5.7158088684082031e-01
+ <_>
+
+ 0 1 1628 -3.8722730241715908e-03 -1 -2 1629
+ 6.2879058532416821e-04
+
+ 3.4737130999565125e-01 5.4382592439651489e-01
+ 4.4539061188697815e-01
+ <_>
+
+ 1 0 1630 1.3411579420790076e-03 -1 -2 1631
+ -8.3681922405958176e-03
+
+ 6.5117138624191284e-01 1.4432950317859650e-01
+ 4.8881998658180237e-01
+ <_>
+
+ 1 0 1632 9.3305751215666533e-04 -1 -2 1633
+ -1.0746510233730078e-03
+
+ 3.9511090517044067e-01 3.9102658629417419e-01
+ 5.3495037555694580e-01
+ <_>
+
+ 0 1 1634 -1.8610050901770592e-02 -1 -2 1635
+ 1.3651419430971146e-03
+
+ 1.2757439911365509e-01 5.0382888317108154e-01
+ 6.9513040781021118e-01
+ <_>
+
+ 0 1 1636 7.3744421824812889e-03 -1 -2 1637
+ 8.4163323044776917e-03
+
+ 5.2534431219100952e-01 5.0112438201904297e-01
+ 7.3113328218460083e-01
+ <_>
+
+ 0 1 1638 5.1413988694548607e-03 -1 -2 1639
+ 4.5847031287848949e-03
+
+ 4.9535360932350159e-01 2.5355559587478638e-01
+ 6.4624428749084473e-01
+ <_>
+
+ 1 0 1640 2.8565239161252975e-02 -1 -2 1641
+ 4.3958800961263478e-04
+
+ 2.3307220637798309e-01 4.7022441029548645e-01
+ 5.5445492267608643e-01
+ <_>
+
+ 1 0 1642 3.1459458172321320e-02 -1 -2 1643
+ 5.6011630222201347e-03
+
+ 3.3689688891172409e-02 4.7871211171150208e-01
+ 6.3383519649505615e-01
+ <_>
+
+ 0 1 1644 7.1835669223219156e-04 -1 -2 1645
+ -5.5303089320659637e-03
+
+ 5.4314869642257690e-01 4.1058328747749329e-01
+ 5.4039907455444336e-01
+ <_>
+
+ 1 0 1646 1.4129279879853129e-03 -1 -2 1647
+ 2.5530709535814822e-04
+
+ 3.1055399775505066e-01 4.2544719576835632e-01
+ 5.4471540451049805e-01
+ <_>
+
+ 1 0 1648 3.1966410460881889e-04 -1 -2 1649
+ 5.0411392003297806e-03
+
+ 6.1183619499206543e-01 5.2900421619415283e-01
+ 4.2247870564460754e-01
+ <_>
+
+ 0 1 1650 7.7617880888283253e-03 -1 -2 1651
+ 2.9374631121754646e-03
+
+ 4.3153458833694458e-01 6.6292631626129150e-01
+ 3.0289649963378906e-01
+ <_>
+
+ 1 0 1652 -1.6497720498591661e-03 -1 -2 1653
+ -5.8834417723119259e-03
+
+ 5.4918527603149414e-01 3.1885540485382080e-01
+ 5.1842892169952393e-01
+ <_>
+
+ 1 0 1654 8.7459187489002943e-04 -1 -2 1655
+ -1.5308779664337635e-02
+
+ 3.3288308978080750e-01 3.9236080646514893e-01
+ 5.2351391315460205e-01
+ <_>
+
+ 1 0 1656 3.2292451709508896e-02 -1 -2 1657
+ -4.3842519517056644e-04
+
+ 5.9776467084884644e-01 4.5416879653930664e-01
+ 5.3694289922714233e-01
+ <_>
+
+ 1 0 1658 1.5429529594257474e-03 -1 -2 1659
+ -2.4733028840273619e-03
+
+ 6.3181412220001221e-01 3.4906330704689026e-01
+ 4.7590249776840210e-01
+ <_>
+
+ 1 0 1660 2.0994939841330051e-03 -1 -2 1661
+ -5.7541108690202236e-03
+
+ 5.8871978521347046e-01 5.9613317251205444e-01
+ 4.8419830203056335e-01
+ <_>
+
+ 0 1 1662 -1.0233130306005478e-02 -1 -2 1663
+ 2.2554509341716766e-01
+
+ 1.7054040729999542e-01 4.7793799638748169e-01
+ 9.7879663109779358e-02
+ <_>
+
+ 1 0 1664 2.9666559770703316e-02 -1 -2 1665
+ -2.8518449980765581e-03
+
+ 5.8222240209579468e-01 5.4596269130706787e-01
+ 4.6100661158561707e-01
+ <_>
+
+ 1 0 1666 9.7465328872203827e-04 -1 -2 1667
+ 1.4044740055396687e-05
+
+ 3.6703228950500488e-01 4.3023860454559326e-01
+ 5.6917107105255127e-01
+ <_>
+
+ 0 1 1668 -1.7579430714249611e-02 -1 -2 1669
+ -5.2381679415702820e-02
+
+ 6.9173210859298706e-01 7.1100401878356934e-01
+ 5.0601547956466675e-01
+ <_>
+
+ 0 1 1670 -1.1242110282182693e-02 -1 -2 1671
+ -3.6728400737047195e-03
+
+ 8.7691891193389893e-01 6.5191918611526489e-01
+ 4.5460689067840576e-01
+ <_>
+
+ 0 1 1672 3.5082760732620955e-03 -1 -2 1673
+ 6.1679710634052753e-03
+
+ 5.3298658132553101e-01 5.2204591035842896e-01
+ 2.9535189270973206e-01
+ <_>
+
+ 1 0 1674 -9.7009900491684675e-04 -1 -2 1675
+ -1.0957010090351105e-02
+
+ 5.0486332178115845e-01 5.8373582363128662e-01
+ 3.0200859904289246e-01
+ <_>
+
+ 0 1 1676 -8.3272513002157211e-03 -1 -2 1677
+ 2.9798380637657829e-05
+
+ 3.1580638885498047e-01 4.3863898515701294e-01
+ 5.4432111978530884e-01
+ <_>
+
+ 1 0 1678 2.8244039276614785e-04 -1 -2 1679
+ -8.1364117795601487e-04
+
+ 5.6253957748413086e-01 5.2811980247497559e-01
+ 3.4014078974723816e-01
+ <_>
+
+ 1 0 1680 1.8008040497079492e-03 -1 -2 1681
+ -6.9944779388606548e-03
+
+ 3.4716591238975525e-01 4.4816970825195312e-01
+ 5.3857702016830444e-01
+ <_>
+
+ 0 1 1682 4.5625398342963308e-05 -1 -2 1683
+ -7.3189922841265798e-04
+
+ 4.4925129413604736e-01 4.1673120856285095e-01
+ 6.0211020708084106e-01
+ <_>
+
+ 0 1 1684 -2.9980219551362097e-04 -1 -2 1685
+ -2.9060940505587496e-05
+
+ 4.1484281420707703e-01 5.5920898914337158e-01
+ 4.0732109546661377e-01
+ <_>
+
+ 0 1 1686 -5.9742690064013004e-04 -1 -2 1687
+ 1.4831830048933625e-04
+
+ 6.0889142751693726e-01 5.2983051538467407e-01
+ 3.7619501352310181e-01
+ <_>
+
+ 1 0 1688 -2.9441029764711857e-03 -1 -2 1689
+ 1.3741210103034973e-01
+
+ 4.7160848975181580e-01 5.1013368368148804e-01
+ 4.6746801584959030e-02
+ <_>
+
+ 0 1 1690 -8.8414177298545837e-02 -1 -2 1691
+ 7.0610277354717255e-02
+
+ 1.1818689852952957e-01 5.1190632581710815e-01
+ 7.7784419059753418e-01
+ <_>
+
+ 0 1 1692 -7.7188978902995586e-03 -1 -2 1693
+ 1.5115399844944477e-02
+
+ 1.8741349875926971e-01 4.9800279736518860e-01
+ 7.0058178901672363e-01
+ <_>
+
+ 0 1 1694 1.0671879863366485e-03 -1 -2 1695
+ 7.0487911580130458e-04
+
+ 4.4822388887405396e-01 6.2657529115676880e-01
+ 4.4026550650596619e-01
+ <_>
+ 90
+ 4.4251281738281250e+01
+
+ <_>
+
+ 1 0 1696 -9.8690733313560486e-02 -1 -2 1697
+ 6.2373418360948563e-02
+
+ 3.9994749426841736e-01 5.2477848529815674e-01
+ 8.1935757398605347e-01
+ <_>
+
+ 0 1 1698 1.9496519817039371e-03 -1 -2 1699
+ -8.9139147894456983e-04
+
+ 3.5298168659210205e-01 5.8527278900146484e-01
+ 3.2459780573844910e-01
+ <_>
+
+ 0 1 1700 -5.5150408297777176e-04 -1 -2 1701
+ -1.1721949558705091e-03
+
+ 3.8928169012069702e-01 4.3350520730018616e-01
+ 6.5206241607666016e-01
+ <_>
+
+ 1 0 1702 -7.4480642797425389e-04 -1 -2 1703
+ -2.6264840271323919e-03
+
+ 4.0411350131034851e-01 5.6249821186065674e-01
+ 3.9675250649452209e-01
+ <_>
+
+ 0 1 1704 -3.9712688885629177e-04 -1 -2 1705
+ 3.5984949208796024e-03
+
+ 3.8561120629310608e-01 5.9978890419006348e-01
+ 4.2416140437126160e-01
+ <_>
+
+ 1 0 1706 5.3080618381500244e-03 -1 -2 1707
+ 9.6319877775385976e-04
+
+ 6.6601687669754028e-01 4.4813790917396545e-01
+ 5.5834877490997314e-01
+ <_>
+
+ 0 1 1708 5.0776469288393855e-04 -1 -2 1709
+ 3.6223160568624735e-03
+
+ 3.5354590415954590e-01 3.4098070859909058e-01
+ 5.4206877946853638e-01
+ <_>
+
+ 0 1 1710 -6.2061410397291183e-02 -1 -2 1711
+ 6.4387189922854304e-04
+
+ 1.9340839982032776e-01 4.0836268663406372e-01
+ 5.4902219772338867e-01
+ <_>
+
+ 1 0 1712 2.6239909231662750e-02 -1 -2 1713
+ 8.1940297968685627e-04
+
+ 2.2857080399990082e-01 4.6486678719520569e-01
+ 6.0173559188842773e-01
+ <_>
+
+ 1 0 1714 2.3833119485061616e-04 -1 -2 1715
+ -1.5869759954512119e-03
+
+ 3.5980388522148132e-01 4.2596510052680969e-01
+ 5.4764348268508911e-01
+ <_>
+
+ 0 1 1716 -6.7263417877256870e-03 -1 -2 1717
+ 1.1006110347807407e-02
+
+ 6.5072381496429443e-01 5.1494097709655762e-01
+ 3.3629849553108215e-01
+ <_>
+
+ 1 0 1718 7.1445819921791553e-03 -1 -2 1719
+ -4.7233798541128635e-03
+
+ 2.6729300618171692e-01 5.6521821022033691e-01
+ 4.2981448769569397e-01
+ <_>
+
+ 1 0 1720 9.8437406122684479e-03 -1 -2 1721
+ 1.5124640412977897e-05
+
+ 1.1518859863281250e-01 4.3735980987548828e-01
+ 5.6121289730072021e-01
+ <_>
+
+ 0 1 1722 3.9908871054649353e-02 -1 -2 1723
+ 5.3903679363429546e-03
+
+ 5.2046489715576172e-01 4.8134678602218628e-01
+ 6.3612091541290283e-01
+ <_>
+
+ 0 1 1724 -3.9908871054649353e-02 -1 -2 1725
+ 5.3903679363429546e-03
+
+ 1.5068709850311279e-01 4.5816949009895325e-01
+ 6.2002408504486084e-01
+ <_>
+
+ 1 0 1726 6.7005190066993237e-03 -1 -2 1727
+ -1.2623789720237255e-02
+
+ 3.4322351217269897e-01 3.0882269144058228e-01
+ 5.2267378568649292e-01
+ <_>
+
+ 1 0 1728 1.1806610040366650e-02 -1 -2 1729
+ -3.4257229417562485e-03
+
+ 7.1879392862319946e-01 3.1208148598670959e-01
+ 5.0658440589904785e-01
+ <_>
+
+ 0 1 1730 3.9385299896821380e-04 -1 -2 1731
+ 3.4388188272714615e-02
+
+ 4.7545841336250305e-01 5.2616578340530396e-01
+ 3.3501741290092468e-01
+ <_>
+
+ 0 1 1732 -7.5009986758232117e-02 -1 -2 1733
+ 4.9022492021322250e-04
+
+ 1.7134809494018555e-01 4.7258019447326660e-01
+ 5.9564691781997681e-01
+ <_>
+
+ 0 1 1734 -8.5525289177894592e-03 -1 -2 1735
+ 1.3135520566720515e-04
+
+ 6.5582227706909180e-01 4.8354008793830872e-01
+ 5.5869138240814209e-01
+ <_>
+
+ 1 0 1736 4.7948658466339111e-03 -1 -2 1737
+ 2.0124691072851419e-03
+
+ 2.6457059383392334e-01 3.6579450964927673e-01
+ 5.1247721910476685e-01
+ <_>
+
+ 0 1 1738 -1.1785479635000229e-01 -1 -2 1739
+ 1.5575019642710686e-03
+
+ 2.3856540024280548e-01 5.4904741048812866e-01
+ 4.2747479677200317e-01
+ <_>
+
+ 0 1 1740 -1.5573759563267231e-02 -1 -2 1741
+ -2.1854790393263102e-03
+
+ 6.9389009475708008e-01 3.6459881067276001e-01
+ 5.0925260782241821e-01
+ <_>
+
+ 0 1 1742 2.9272339306771755e-03 -1 -2 1743
+ 6.4663668163120747e-03
+
+ 4.6858081221580505e-01 4.9734100699424744e-01
+ 7.7260971069335938e-01
+ <_>
+
+ 0 1 1744 -7.6140360906720161e-03 -1 -2 1745
+ 4.1512572206556797e-03
+
+ 6.8774658441543579e-01 4.7885251045227051e-01
+ 6.9216579198837280e-01
+ <_>
+
+ 0 1 1746 2.7711640577763319e-03 -1 -2 1747
+ -1.2836109846830368e-02
+
+ 5.4818397760391235e-01 3.8001629710197449e-01
+ 5.2044928073883057e-01
+ <_>
+
+ 0 1 1748 -2.4380050599575043e-03 -1 -2 1749
+ 2.1713329479098320e-03
+
+ 2.5824350118637085e-01 4.9611631035804749e-01
+ 3.2152029871940613e-01
+ <_>
+
+ 1 0 1750 6.2800728483125567e-04 -1 -2 1751
+ -9.7982389852404594e-03
+
+ 5.4604238271713257e-01 6.0465437173843384e-01
+ 4.9399220943450928e-01
+ <_>
+
+ 1 0 1752 7.3543828912079334e-03 -1 -2 1753
+ -1.4665040187537670e-02
+
+ 5.2910941839218140e-01 5.4461228847503662e-01
+ 3.5673621296882629e-01
+ <_>
+
+ 0 1 1754 3.0244510620832443e-02 -1 -2 1755
+ -5.6660208851099014e-02
+
+ 5.5183291435241699e-01 6.9309788942337036e-01
+ 5.0933879613876343e-01
+ <_>
+
+ 0 1 1756 -5.6967479176819324e-03 -1 -2 1757
+ 3.0806770548224449e-02
+
+ 3.2015261054039001e-01 4.9892461299896240e-01
+ 2.2770540416240692e-01
+ <_>
+
+ 0 1 1758 2.2748769260942936e-03 -1 -2 1759
+ 2.0436900667846203e-03
+
+ 4.8109310865402222e-01 5.2838671207427979e-01
+ 3.2559248805046082e-01
+ <_>
+
+ 0 1 1760 -8.6277956143021584e-03 -1 -2 1761
+ 6.5113382879644632e-04
+
+ 6.2665361166000366e-01 5.0971370935440063e-01
+ 3.1919100880622864e-01
+ <_>
+
+ 0 1 1762 8.8188261725008488e-04 -1 -2 1763
+ -1.4594909735023975e-02
+
+ 4.5495858788490295e-01 2.6450389623641968e-01
+ 5.1538681983947754e-01
+ <_>
+
+ 0 1 1764 -1.2304580304771662e-03 -1 -2 1765
+ -2.1867299801670015e-04
+
+ 6.1975848674774170e-01 5.4691988229751587e-01
+ 4.2068558931350708e-01
+ <_>
+
+ 0 1 1766 -1.0909959673881531e-03 -1 -2 1767
+ 3.5210378700867295e-04
+
+ 4.1407600045204163e-01 5.4766088724136353e-01
+ 4.1550210118293762e-01
+ <_>
+
+ 0 1 1768 -7.2563779540359974e-03 -1 -2 1769
+ 1.4701850013807416e-03
+
+ 7.1604692935943604e-01 5.2408081293106079e-01
+ 3.7296628952026367e-01
+ <_>
+
+ 0 1 1770 1.1472719779703766e-04 -1 -2 1771
+ 3.0506469774991274e-03
+
+ 4.0337988734245300e-01 5.2639859914779663e-01
+ 3.5600930452346802e-01
+ <_>
+
+ 0 1 1772 2.6269949739798903e-04 -1 -2 1773
+ -3.6365550477057695e-03
+
+ 4.5697999000549316e-01 3.0425709486007690e-01
+ 5.8682537078857422e-01
+ <_>
+
+ 1 0 1774 -8.4893293678760529e-03 -1 -2 1775
+ 5.8107408694922924e-03
+
+ 4.9141570925712585e-01 4.9185299873352051e-01
+ 6.2669628858566284e-01
+ <_>
+
+ 1 0 1776 7.5583951547741890e-04 -1 -2 1777
+ -2.2017690353095531e-03
+
+ 5.6332361698150635e-01 5.5539160966873169e-01
+ 3.8276460766792297e-01
+ <_>
+
+ 0 1 1778 2.7908938936889172e-03 -1 -2 1779
+ -1.8228569533675909e-03
+
+ 5.4986977577209473e-01 4.3822830915451050e-01
+ 5.4240328073501587e-01
+ <_>
+
+ 0 1 1780 -7.2495508939027786e-03 -1 -2 1781
+ -6.8744522286579013e-04
+
+ 2.8881219029426575e-01 3.4726551175117493e-01
+ 5.0763708353042603e-01
+ <_>
+
+ 0 1 1782 2.5174440816044807e-03 -1 -2 1783
+ -1.0151379741728306e-02
+
+ 4.6612051129341125e-01 3.7447750568389893e-01
+ 5.2940011024475098e-01
+ <_>
+
+ 1 0 1784 -4.1399952024221420e-03 -1 -2 1785
+ -4.7078551724553108e-03
+
+ 4.6604850888252258e-01 4.1750618815422058e-01
+ 6.9163060188293457e-01
+ <_>
+
+ 1 0 1786 4.1981041431427002e-02 -1 -2 1787
+ -1.4272999949753284e-02
+
+ 2.0182150602340698e-01 7.5111979246139526e-01
+ 5.0320839881896973e-01
+ <_>
+
+ 1 0 1788 4.0869521908462048e-03 -1 -2 1789
+ 1.7606799956411123e-03
+
+ 2.5045138597488403e-01 3.3014011383056641e-01
+ 5.2183371782302856e-01
+ <_>
+
+ 0 1 1790 1.2550549581646919e-04 -1 -2 1791
+ -2.9503209516406059e-03
+
+ 4.6144428849220276e-01 4.6199500560760498e-01
+ 5.2470302581787109e-01
+ <_>
+
+ 0 1 1792 -1.1312420247122645e-03 -1 -2 1793
+ -1.6983180539682508e-03
+
+ 6.3143682479858398e-01 3.4013068675994873e-01
+ 5.0555270910263062e-01
+ <_>
+
+ 1 0 1794 -1.1457820422947407e-02 -1 -2 1795
+ -8.4962565451860428e-03
+
+ 4.9399960041046143e-01 2.9654508829116821e-01
+ 5.1943677663803101e-01
+ <_>
+
+ 1 0 1796 1.1919089592993259e-02 -1 -2 1797
+ 6.4416420646011829e-03
+
+ 7.8869980573654175e-01 5.1069867610931396e-01
+ 2.9671460390090942e-01
+ <_>
+
+ 0 1 1798 -8.7857811013236642e-04 -1 -2 1799
+ -2.0312711130827665e-03
+
+ 5.7143712043762207e-01 4.4812008738517761e-01
+ 5.3849118947982788e-01
+ <_>
+
+ 0 1 1800 -1.5262430533766747e-03 -1 -2 1801
+ 4.2860880494117737e-03
+
+ 6.1935687065124512e-01 4.3398851156234741e-01
+ 7.6972991228103638e-01
+ <_>
+
+ 1 0 1802 3.5010920837521553e-03 -1 -2 1803
+ 1.2587670236825943e-02
+
+ 3.1713891029357910e-01 5.2466988563537598e-01
+ 4.2412081360816956e-01
+ <_>
+
+ 0 1 1804 2.6207490009255707e-04 -1 -2 1805
+ 4.4701730075757951e-05
+
+ 4.2318999767303467e-01 4.1741389036178589e-01
+ 5.9196037054061890e-01
+ <_>
+
+ 0 1 1806 7.8084698179736733e-04 -1 -2 1807
+ 8.8851212058216333e-04
+
+ 4.2773890495300293e-01 3.7201610207557678e-01
+ 5.2268189191818237e-01
+ <_>
+
+ 0 1 1808 2.3369069676846266e-03 -1 -2 1809
+ 1.6688359901309013e-03
+
+ 5.4780668020248413e-01 3.6286789178848267e-01
+ 6.1500048637390137e-01
+ <_>
+
+ 0 1 1810 3.0844469438306987e-04 -1 -2 1811
+ 3.4617560449987650e-03
+
+ 4.7470751404762268e-01 4.5801380276679993e-01
+ 5.5856817960739136e-01
+ <_>
+
+ 0 1 1812 1.8961310386657715e-02 -1 -2 1813
+ 1.7347310483455658e-01
+
+ 5.2988010644912720e-01 3.6983850598335266e-01
+ 8.4986197948455811e-01
+ <_>
+
+ 1 0 1814 2.0020549709443003e-04 -1 -2 1815
+ 1.0967060225084424e-03
+
+ 5.5656617879867554e-01 4.7957131266593933e-01
+ 6.2862598896026611e-01
+ <_>
+
+ 0 1 1816 1.5107099898159504e-04 -1 -2 1817
+ -3.4463501069694757e-03
+
+ 4.0524059534072876e-01 6.1730152368545532e-01
+ 4.4142639636993408e-01
+ <_>
+
+ 1 0 1818 8.5176620632410049e-03 -1 -2 1819
+ -3.5812109708786011e-02
+
+ 3.5705709457397461e-01 3.1513288617134094e-01
+ 5.2527028322219849e-01
+ <_>
+
+ 0 1 1820 -2.1155400201678276e-02 -1 -2 1821
+ 8.9890940580517054e-04
+
+ 6.1247211694717407e-01 5.1699757575988770e-01
+ 3.5962718725204468e-01
+ <_>
+
+ 1 0 1822 -1.5613760333508253e-03 -1 -2 1823
+ 6.7120860330760479e-04
+
+ 4.9149879813194275e-01 4.5462110638618469e-01
+ 5.3958117961883545e-01
+ <_>
+
+ 0 1 1824 -2.1597029641270638e-02 -1 -2 1825
+ -2.4947229772806168e-02
+
+ 1.9031339883804321e-01 6.9740772247314453e-01
+ 4.9677160382270813e-01
+ <_>
+
+ 0 1 1826 1.8725979607552290e-03 -1 -2 1827
+ 6.3912719488143921e-03
+
+ 4.7489479184150696e-01 5.1801782846450806e-01
+ 2.9243218898773193e-01
+ <_>
+
+ 0 1 1828 -9.1552399098873138e-03 -1 -2 1829
+ 2.1715660113841295e-03
+
+ 7.6658701896667480e-01 5.2155512571334839e-01
+ 3.3657190203666687e-01
+ <_>
+
+ 1 0 1830 1.2330369791015983e-03 -1 -2 1831
+ -4.0785901364870369e-04
+
+ 6.2609577178955078e-01 4.5335099101066589e-01
+ 5.3864890336990356e-01
+ <_>
+
+ 0 1 1832 4.6437609125860035e-04 -1 -2 1833
+ -1.1600199650274590e-04
+
+ 4.1034960746765137e-01 5.8303910493850708e-01
+ 4.3041059374809265e-01
+ <_>
+
+ 0 1 1834 -1.2718720361590385e-02 -1 -2 1835
+ 8.9431880041956902e-05
+
+ 2.1325829625129700e-01 4.8728910088539124e-01
+ 5.4589152336120605e-01
+ <_>
+
+ 0 1 1836 -3.3913689549081028e-04 -1 -2 1837
+ -1.8026340752840042e-02
+
+ 3.9743649959564209e-01 7.5685507059097290e-01
+ 5.0456118583679199e-01
+ <_>
+
+ 1 0 1838 6.9179181009531021e-03 -1 -2 1839
+ -1.1839679791592062e-04
+
+ 3.9662998914718628e-01 4.1980829834938049e-01
+ 5.4358041286468506e-01
+ <_>
+
+ 0 1 1840 -3.9474181830883026e-03 -1 -2 1841
+ 6.0050919273635373e-05
+
+ 6.3694578409194946e-01 5.2695667743682861e-01
+ 3.8122430443763733e-01
+ <_>
+
+ 1 0 1842 9.1423643752932549e-03 -1 -2 1843
+ 2.1305440168362111e-04
+
+ 4.1567629575729370e-01 3.5235330462455750e-01
+ 5.3494542837142944e-01
+ <_>
+
+ 1 0 1844 -2.0855850016232580e-04 -1 -2 1845
+ 1.3130389852449298e-03
+
+ 4.4033220410346985e-01 6.0581612586975098e-01
+ 4.4682189822196960e-01
+ <_>
+
+ 1 0 1846 -2.9134768992662430e-03 -1 -2 1847
+ 2.9645769391208887e-03
+
+ 4.8257058858871460e-01 4.8359981179237366e-01
+ 6.0392779111862183e-01
+ <_>
+
+ 1 0 1848 1.7772549763321877e-03 -1 -2 1849
+ -7.7136349864304066e-03
+
+ 6.8718272447586060e-01 2.8422209620475769e-01
+ 5.1454281806945801e-01
+ <_>
+
+ 1 0 1850 5.1027478184551001e-04 -1 -2 1851
+ 1.7460630042478442e-03
+
+ 6.0244262218475342e-01 4.7566100955009460e-01
+ 5.7211542129516602e-01
+ <_>
+
+ 1 0 1852 3.8068278809078038e-04 -1 -2 1853
+ 2.8228890150785446e-03
+
+ 4.9310690164566040e-01 3.3116981387138367e-01
+ 6.2275981903076172e-01
+ <_>
+
+ 1 0 1854 -5.3000478073954582e-03 -1 -2 1855
+ 4.4951299059903249e-05
+
+ 5.2320927381515503e-01 3.9952319860458374e-01
+ 5.3147977590560913e-01
+ <_>
+
+ 0 1 1856 3.2752458937466145e-03 -1 -2 1857
+ -2.8162579983472824e-03
+
+ 4.4816198945045471e-01 3.9079719781875610e-01
+ 6.6716408729553223e-01
+ <_>
+
+ 0 1 1858 1.4112279750406742e-03 -1 -2 1859
+ 8.3062034100294113e-03
+
+ 5.3570109605789185e-01 4.7709658741950989e-01
+ 5.5700999498367310e-01
+ <_>
+
+ 0 1 1860 2.2164839319884777e-03 -1 -2 1861
+ -4.9868631176650524e-03
+
+ 4.9471241235733032e-01 5.2413070201873779e-01
+ 2.5126549601554871e-01
+ <_>
+
+ 1 0 1862 -3.6664260551333427e-03 -1 -2 1863
+ -1.0581229813396931e-02
+
+ 4.6195539832115173e-01 6.3017189502716064e-01
+ 4.9730318784713745e-01
+ <_>
+
+ 1 0 1864 7.3366491124033928e-03 -1 -2 1865
+ -3.9318940252996981e-04
+
+ 2.8709700703620911e-01 4.2528051137924194e-01
+ 5.5792468786239624e-01
+ <_>
+
+ 0 1 1866 -8.1375334411859512e-03 -1 -2 1867
+ 2.4809150490909815e-03
+
+ 5.7473158836364746e-01 5.2033740282058716e-01
+ 3.9035668969154358e-01
+ <_>
+
+ 1 0 1868 8.8749779388308525e-04 -1 -2 1869
+ -4.2194919660687447e-04
+
+ 5.5343210697174072e-01 5.3380441665649414e-01
+ 3.9258408546447754e-01
+ <_>
+
+ 0 1 1870 -7.9790111631155014e-03 -1 -2 1871
+ 1.1439629597589374e-03
+
+ 4.1443160176277161e-01 4.7013729810714722e-01
+ 5.2817362546920776e-01
+ <_>
+
+ 1 0 1872 7.5542130507528782e-03 -1 -2 1873
+ 1.0288399644196033e-03
+
+ 2.5272560119628906e-01 5.6051462888717651e-01
+ 4.2978560924530029e-01
+ <_>
+
+ 1 0 1874 -1.7234670231118798e-03 -1 -2 1875
+ 5.7586699724197388e-01
+
+ 4.8396828770637512e-01 5.1105028390884399e-01
+ 8.0489329993724823e-02
+ <_>
+ 109
+ 5.3755569458007812e+01
+
+ <_>
+
+ 0 1 1876 6.6640521399676800e-03 -1 -2 1877
+ 8.9905522763729095e-03
+
+ 3.8289201259613037e-01 4.8584291338920593e-01
+ 7.3549592494964600e-01
+ <_>
+
+ 1 0 1878 5.7154200039803982e-03 -1 -2 1879
+ 1.1257929727435112e-03
+
+ 6.7232239246368408e-01 4.4295778870582581e-01
+ 6.0707777738571167e-01
+ <_>
+
+ 1 0 1880 -9.1789010912179947e-04 -1 -2 1881
+ -1.0492859873920679e-03
+
+ 3.0763450264930725e-01 5.5936437845230103e-01
+ 3.6510229110717773e-01
+ <_>
+
+ 0 1 1882 3.5453929740469903e-05 -1 -2 1883
+ 2.9015709878876805e-04
+
+ 4.2779681086540222e-01 4.5835450291633606e-01
+ 5.2846831083297729e-01
+ <_>
+
+ 1 0 1884 1.6071660502348095e-04 -1 -2 1885
+ -5.2961107576265931e-04
+
+ 3.7981921434402466e-01 3.8504371047019958e-01
+ 5.9396880865097046e-01
+ <_>
+
+ 0 1 1886 2.6682569296099246e-04 -1 -2 1887
+ -1.3492540165316314e-04
+
+ 4.1230249404907227e-01 5.7605999708175659e-01
+ 4.2376458644866943e-01
+ <_>
+
+ 0 1 1888 -1.0841679759323597e-02 -1 -2 1889
+ 1.2077829800546169e-02
+
+ 3.9299210906028748e-01 5.7619231939315796e-01
+ 2.7804449200630188e-01
+ <_>
+
+ 0 1 1890 2.2128869313746691e-03 -1 -2 1891
+ -1.5266190283000469e-02
+
+ 4.7945070266723633e-01 7.4055880308151245e-02
+ 5.1535779237747192e-01
+ <_>
+
+ 1 0 1892 6.7929533543065190e-05 -1 -2 1893
+ 1.7633590323384851e-04
+
+ 5.8587378263473511e-01 3.5676109790802002e-01
+ 5.5989629030227661e-01
+ <_>
+
+ 1 0 1894 8.1311381654813886e-04 -1 -2 1895
+ 3.2630451023578644e-03
+
+ 5.3468507528305054e-01 4.7825369238853455e-01
+ 5.4567539691925049e-01
+ <_>
+
+ 0 1 1896 -3.9503918960690498e-03 -1 -2 1897
+ -3.9864578866399825e-04
+
+ 2.8318119049072266e-01 5.4852157831192017e-01
+ 4.1596978902816772e-01
+ <_>
+
+ 0 1 1898 -1.1432520113885403e-02 -1 -2 1899
+ 5.3339172154664993e-03
+
+ 5.6391012668609619e-01 4.5969840884208679e-01
+ 5.9312427043914795e-01
+ <_>
+
+ 1 0 1900 8.3193257451057434e-03 -1 -2 1901
+ -4.2479918920435011e-04
+
+ 3.2306200265884399e-01 3.7952938675880432e-01
+ 5.4086112976074219e-01
+ <_>
+
+ 0 1 1902 -1.1189430207014084e-01 -1 -2 1903
+ -7.5553781352937222e-03
+
+ 1.1322979629039764e-01 6.3393700122833252e-01
+ 4.8387709259986877e-01
+ <_>
+
+ 0 1 1904 -7.0337029173970222e-03 -1 -2 1905
+ -1.4833680354058743e-02
+
+ 5.6652551889419556e-01 6.7514181137084961e-01
+ 4.1409450769424438e-01
+ <_>
+
+ 1 0 1906 8.7506724521517754e-03 -1 -2 1907
+ 1.6645010327920318e-03
+
+ 3.5612589120864868e-01 5.3472799062728882e-01
+ 3.6497798562049866e-01
+ <_>
+
+ 1 0 1908 9.4900820404291153e-03 -1 -2 1909
+ 1.1133110383525491e-03
+
+ 2.7546560764312744e-01 4.2259928584098816e-01
+ 5.6291788816452026e-01
+ <_>
+
+ 0 1 1910 9.4940755516290665e-03 -1 -2 1911
+ -1.5396620146930218e-03
+
+ 4.9060368537902832e-01 4.0070518851280212e-01
+ 5.3807091712951660e-01
+ <_>
+
+ 1 0 1912 1.3434959948062897e-01 -1 -2 1913
+ -9.4940755516290665e-03
+
+ 2.2146719694137573e-01 7.3531562089920044e-01
+ 5.0050330162048340e-01
+ <_>
+
+ 1 0 1914 2.0011790096759796e-02 -1 -2 1915
+ -1.8875009845942259e-03
+
+ 3.3279061317443848e-01 3.9152890443801880e-01
+ 5.4018497467041016e-01
+ <_>
+
+ 1 0 1916 7.1842782199382782e-03 -1 -2 1917
+ 1.6976969782263041e-03
+
+ 7.1766048669815063e-01 4.5269781351089478e-01
+ 6.0769128799438477e-01
+ <_>
+
+ 1 0 1918 4.9219978973269463e-03 -1 -2 1919
+ 1.1803199537098408e-02
+
+ 2.5698339939117432e-01 4.9996379017829895e-01
+ 5.9582281112670898e-01
+ <_>
+
+ 0 1 1920 -9.7703449428081512e-03 -1 -2 1921
+ 2.1174899302423000e-03
+
+ 3.4590938687324524e-01 4.5151269435882568e-01
+ 5.8297157287597656e-01
+ <_>
+
+ 0 1 1922 9.4801411032676697e-03 -1 -2 1923
+ -2.6078789960592985e-03
+
+ 4.8073920607566833e-01 3.4622168540954590e-01
+ 5.2015948295593262e-01
+ <_>
+
+ 0 1 1924 -5.7252747938036919e-03 -1 -2 1925
+ -8.2325618714094162e-03
+
+ 6.5998530387878418e-01 2.8218281269073486e-01
+ 5.1252847909927368e-01
+ <_>
+
+ 0 1 1926 8.9571950957179070e-04 -1 -2 1927
+ -1.5021569561213255e-04
+
+ 4.8838189244270325e-01 4.8299181461334229e-01
+ 5.4287171363830566e-01
+ <_>
+
+ 0 1 1928 4.8489659093320370e-04 -1 -2 1929
+ -9.6192650496959686e-02
+
+ 4.4345989823341370e-01 2.2566360235214233e-01
+ 5.9562277793884277e-01
+ <_>
+
+ 0 1 1930 -1.1053519556298852e-03 -1 -2 1931
+ -1.0215040296316147e-01
+
+ 4.5272240042686462e-01 2.8443491458892822e-01
+ 5.1864528656005859e-01
+ <_>
+
+ 1 0 1932 3.0147889629006386e-03 -1 -2 1933
+ 7.6131648384034634e-03
+
+ 3.8089990615844727e-01 5.7186990976333618e-01
+ 4.2625638842582703e-01
+ <_>
+
+ 1 0 1934 1.5197630273178220e-03 -1 -2 1935
+ -1.4197279699146748e-02
+
+ 5.9427189826965332e-01 7.7311038970947266e-01
+ 4.9976539611816406e-01
+ <_>
+
+ 0 1 1936 -1.3818879611790180e-02 -1 -2 1937
+ -5.0701329018920660e-04
+
+ 6.6811382770538330e-01 3.3056080341339111e-01
+ 4.7499749064445496e-01
+ <_>
+
+ 0 1 1938 -9.3537531793117523e-03 -1 -2 1939
+ -9.4771059229969978e-03
+
+ 2.8609329462051392e-01 6.1888831853866577e-01
+ 4.8421001434326172e-01
+ <_>
+
+ 1 0 1940 1.6923650400713086e-03 -1 -2 1941
+ 5.8652542065829039e-04
+
+ 6.0702490806579590e-01 3.7826898694038391e-01
+ 5.3681969642639160e-01
+ <_>
+
+ 0 1 1942 -2.5826620403677225e-03 -1 -2 1943
+ -2.7307639829814434e-03
+
+ 3.6902099847793579e-01 3.8571149110794067e-01
+ 5.3181087970733643e-01
+ <_>
+
+ 1 0 1944 2.1871570497751236e-02 -1 -2 1945
+ -1.5010299648565706e-05
+
+ 2.3270089924335480e-01 5.5607229471206665e-01
+ 4.3014100193977356e-01
+ <_>
+
+ 1 0 1946 5.3583700209856033e-03 -1 -2 1947
+ 5.0057549960911274e-03
+
+ 6.7676377296447754e-01 5.1949042081832886e-01
+ 3.6128538846969604e-01
+ <_>
+
+ 0 1 1948 -1.9030070398002863e-03 -1 -2 1949
+ -7.8506693243980408e-03
+
+ 3.2378450036048889e-01 1.1948519945144653e-01
+ 4.9917238950729370e-01
+ <_>
+
+ 1 0 1950 -2.7093670796602964e-03 -1 -2 1951
+ 1.4138079714030027e-03
+
+ 4.8549601435661316e-01 4.8723229765892029e-01
+ 5.9035778045654297e-01
+ <_>
+
+ 1 0 1952 9.0300198644399643e-03 -1 -2 1953
+ -9.7925681620836258e-04
+
+ 6.5473157167434692e-01 5.8492732048034668e-01
+ 4.5542308688163757e-01
+ <_>
+
+ 1 0 1954 1.3984439428895712e-03 -1 -2 1955
+ 8.3372107474133372e-04
+
+ 4.0646260976791382e-01 5.3995430469512939e-01
+ 4.1528099775314331e-01
+ <_>
+
+ 1 0 1956 1.0551059618592262e-02 -1 -2 1957
+ 8.8344102550763637e-05
+
+ 1.7966809868812561e-01 4.2518630623817444e-01
+ 5.4135227203369141e-01
+ <_>
+
+ 1 0 1958 -4.1022308170795441e-02 -1 -2 1959
+ 7.5065628625452518e-03
+
+ 5.2281248569488525e-01 4.8537430167198181e-01
+ 6.0934442281723022e-01
+ <_>
+
+ 1 0 1960 4.1022308170795441e-02 -1 -2 1961
+ -5.3961377125233412e-04
+
+ 2.2050240635871887e-01 5.6927317380905151e-01
+ 4.4687569141387939e-01
+ <_>
+
+ 0 1 1962 -6.8696036934852600e-02 -1 -2 1963
+ -1.8447940237820148e-03
+
+ 1.4833140373229980e-01 6.2112838029861450e-01
+ 4.9666011333465576e-01
+ <_>
+
+ 0 1 1964 -6.0959919355809689e-03 -1 -2 1965
+ -4.2068301700055599e-03
+
+ 2.2946719825267792e-01 6.4070910215377808e-01
+ 4.7485628724098206e-01
+ <_>
+
+ 1 0 1966 -7.1332789957523346e-04 -1 -2 1967
+ 1.1756779998540878e-01
+
+ 5.3549361228942871e-01 5.1369780302047729e-01
+ 1.0595739819109440e-02
+ <_>
+
+ 0 1 1968 5.9354289987822995e-05 -1 -2 1969
+ -6.3173691742122173e-03
+
+ 3.7118038535118103e-01 1.7120739817619324e-01
+ 5.0617581605911255e-01
+ <_>
+
+ 1 0 1970 1.4941499568521976e-02 -1 -2 1971
+ -2.0789399277418852e-03
+
+ 6.7291188240051270e-01 4.4106459617614746e-01
+ 5.4440277814865112e-01
+ <_>
+
+ 0 1 1972 -7.0736219640821218e-04 -1 -2 1973
+ -3.1247111037373543e-03
+
+ 5.5689108371734619e-01 5.0238692760467529e-01
+ 3.5624051094055176e-01
+ <_>
+
+ 1 0 1974 -7.8919378574937582e-04 -1 -2 1975
+ 1.0179580189287663e-02
+
+ 5.4567861557006836e-01 5.5451387166976929e-01
+ 4.6223109960556030e-01
+ <_>
+
+ 1 0 1976 -2.7506109327077866e-03 -1 -2 1977
+ 1.0601329617202282e-02
+
+ 4.9425360560417175e-01 2.9612338542938232e-01
+ 5.9643387794494629e-01
+ <_>
+
+ 0 1 1978 5.1466780714690685e-03 -1 -2 1979
+ 7.6321147382259369e-02
+
+ 5.4952287673950195e-01 5.1739591360092163e-01
+ 2.9402169585227966e-01
+ <_>
+
+ 0 1 1980 -1.5027689514681697e-03 -1 -2 1981
+ 1.2266670353710651e-02
+
+ 3.1062999367713928e-01 4.6511501073837280e-01
+ 6.8466138839721680e-01
+ <_>
+
+ 1 0 1982 -3.1118579208850861e-02 -1 -2 1983
+ 2.8905589133501053e-02
+
+ 5.2260571718215942e-01 5.1822441816329956e-01
+ 2.7054280042648315e-01
+ <_>
+
+ 1 0 1984 4.7598380595445633e-02 -1 -2 1985
+ 3.0808549374341965e-02
+
+ 1.1095120012760162e-01 4.9386250972747803e-01
+ 1.4041109383106232e-01
+ <_>
+
+ 1 0 1986 -2.1277810446918011e-04 -1 -2 1987
+ 7.8969962894916534e-02
+
+ 4.3923568725585938e-01 5.2165520191192627e-01
+ 2.2941139340400696e-01
+ <_>
+
+ 0 1 1988 -1.0257950052618980e-02 -1 -2 1989
+ 1.2604889925569296e-03
+
+ 6.1766529083251953e-01 5.2362227439880371e-01
+ 3.3289659023284912e-01
+ <_>
+
+ 1 0 1990 -3.3490460366010666e-02 -1 -2 1991
+ -5.9202767442911863e-04
+
+ 4.8661869764328003e-01 4.1164070367813110e-01
+ 5.3956401348114014e-01
+ <_>
+
+ 1 0 1992 3.0320750738610514e-05 -1 -2 1993
+ -5.4369680583477020e-04
+
+ 5.6107360124588013e-01 5.6213891506195068e-01
+ 3.4612038731575012e-01
+ <_>
+
+ 1 0 1994 -3.3490460366010666e-02 -1 -2 1995
+ -5.9202767442911863e-04
+
+ 4.8967620730400085e-01 4.3054041266441345e-01
+ 5.3407138586044312e-01
+ <_>
+
+ 0 1 1996 2.0550889894366264e-03 -1 -2 1997
+ -4.4353571720421314e-03
+
+ 5.5449998378753662e-01 6.0385400056838989e-01
+ 3.7465929985046387e-01
+ <_>
+
+ 1 0 1998 -8.4170423448085785e-02 -1 -2 1999
+ 6.7419027909636497e-03
+
+ 5.0073480606079102e-01 5.2980971336364746e-01
+ 4.7161450982093811e-01
+ <_>
+
+ 1 0 2000 1.0278150439262390e-02 -1 -2 2001
+ 5.8800862170755863e-03
+
+ 6.2693750858306885e-01 5.1548278331756592e-01
+ 3.8130408525466919e-01
+ <_>
+
+ 1 0 2002 -6.9679190346505493e-06 -1 -2 2003
+ 8.2419527461752295e-04
+
+ 4.4402399659156799e-01 4.6975341439247131e-01
+ 5.4855042695999146e-01
+ <_>
+
+ 0 1 2004 -5.5268318392336369e-03 -1 -2 2005
+ 9.6128671430051327e-04
+
+ 5.5136048793792725e-01 3.6186391115188599e-01
+ 5.8384567499160767e-01
+ <_>
+
+ 1 0 2006 2.4810510221868753e-03 -1 -2 2007
+ -1.0480589699000120e-03
+
+ 2.5232228636741638e-01 4.1172578930854797e-01
+ 5.3929960727691650e-01
+ <_>
+
+ 0 1 2008 -6.1287907883524895e-03 -1 -2 2009
+ 1.1682329932227731e-04
+
+ 6.7263299226760864e-01 5.0411927700042725e-01
+ 3.6077290773391724e-01
+ <_>
+
+ 0 1 2010 -3.9909478276968002e-02 -1 -2 2011
+ 1.5859459526836872e-03
+
+ 1.5637390315532684e-01 4.8919808864593506e-01
+ 5.7798451185226440e-01
+ <_>
+
+ 0 1 2012 -2.2690229117870331e-02 -1 -2 2013
+ 2.0916070789098740e-03
+
+ 2.1868790686130524e-01 4.7715771198272705e-01
+ 6.0992312431335449e-01
+ <_>
+
+ 0 1 2014 -2.4715419858694077e-02 -1 -2 2015
+ -1.3419450260698795e-02
+
+ 3.4639969468116760e-01 3.6306929588317871e-01
+ 5.2521961927413940e-01
+ <_>
+
+ 0 1 2016 -6.0629472136497498e-03 -1 -2 2017
+ -2.0921030081808567e-03
+
+ 6.6663217544555664e-01 3.3995470404624939e-01
+ 5.0356978178024292e-01
+ <_>
+
+ 0 1 2018 2.5961859151721001e-02 -1 -2 2019
+ 1.7908669542521238e-04
+
+ 5.0368028879165649e-01 5.4185307025909424e-01
+ 4.3189769983291626e-01
+ <_>
+
+ 0 1 2020 -3.1546850223094225e-03 -1 -2 2021
+ -1.1397759662941098e-03
+
+ 7.2210252285003662e-01 3.3209729194641113e-01
+ 5.0244337320327759e-01
+ <_>
+
+ 0 1 2022 -4.7840211540460587e-02 -1 -2 2023
+ 4.1577088995836675e-04
+
+ 1.9387650489807129e-01 4.8021888732910156e-01
+ 5.7307147979736328e-01
+ <_>
+
+ 0 1 2024 -4.4247039477340877e-04 -1 -2 2025
+ 1.4479350065812469e-03
+
+ 4.2625150084495544e-01 5.7191711664199829e-01
+ 4.0641531348228455e-01
+ <_>
+
+ 0 1 2026 1.5701510012149811e-02 -1 -2 2027
+ 2.7805729769170284e-04
+
+ 4.9957260489463806e-01 5.2892869710922241e-01
+ 4.5817288756370544e-01
+ <_>
+
+ 0 1 2028 -2.9010509606450796e-03 -1 -2 2029
+ 2.0830519497394562e-04
+
+ 6.0121482610702515e-01 5.0579768419265747e-01
+ 3.5994321107864380e-01
+ <_>
+
+ 1 0 2030 -5.1530029624700546e-02 -1 -2 2031
+ 1.7163449956569821e-04
+
+ 4.9917969107627869e-01 4.6754699945449829e-01
+ 5.3747731447219849e-01
+ <_>
+
+ 1 0 2032 2.3614279925823212e-02 -1 -2 2033
+ -5.6427798699587584e-04
+
+ 6.5864789485931396e-01 3.8532960414886475e-01
+ 5.1960402727127075e-01
+ <_>
+
+ 1 0 2034 6.6903959959745407e-03 -1 -2 2035
+ -4.8789530992507935e-03
+
+ 6.0042357444763184e-01 3.2932278513908386e-01
+ 5.2452367544174194e-01
+ <_>
+
+ 0 1 2036 -6.8537332117557526e-03 -1 -2 2037
+ 9.9893810693174601e-04
+
+ 2.5659140944480896e-01 4.6154940128326416e-01
+ 5.9424322843551636e-01
+ <_>
+
+ 0 1 2038 -1.3354700058698654e-04 -1 -2 2039
+ 1.0165109997615218e-03
+
+ 5.4873758554458618e-01 4.5783591270446777e-01
+ 5.4269278049468994e-01
+ <_>
+
+ 1 0 2040 9.1216771397739649e-04 -1 -2 2041
+ 1.0080259526148438e-03
+
+ 3.9394611120223999e-01 4.0497899055480957e-01
+ 5.5207037925720215e-01
+ <_>
+
+ 1 0 2042 -1.3102490629535168e-04 -1 -2 2043
+ 5.5228749988600612e-04
+
+ 4.8790889978408813e-01 4.8449438810348511e-01
+ 5.5128258466720581e-01
+ <_>
+
+ 1 0 2044 -1.2130969844292849e-04 -1 -2 2045
+ -1.5112989785848185e-05
+
+ 4.3679711222648621e-01 6.4259552955627441e-01
+ 4.8818269371986389e-01
+ <_>
+
+ 1 0 2046 -4.0125829400494695e-04 -1 -2 2047
+ -6.5766851184889674e-04
+
+ 5.3720992803573608e-01 5.8345532417297363e-01
+ 4.8690780997276306e-01
+ <_>
+
+ 1 0 2048 6.2220421386882663e-04 -1 -2 2049
+ 1.4663359615951777e-03
+
+ 3.8246369361877441e-01 4.8134881258010864e-01
+ 6.9667392969131470e-01
+ <_>
+
+ 0 1 2050 -4.9547709524631500e-02 -1 -2 2051
+ 1.3017569435760379e-03
+
+ 5.3927659988403320e-02 5.3374558687210083e-01
+ 4.1607481241226196e-01
+ <_>
+
+ 0 1 2052 -4.4914530590176582e-03 -1 -2 2053
+ 1.6592369647696614e-03
+
+ 5.9974372386932373e-01 3.7271851301193237e-01
+ 5.1156342029571533e-01
+ <_>
+
+ 0 1 2054 6.4695458859205246e-03 -1 -2 2055
+ 4.9810269847512245e-03
+
+ 5.2520352602005005e-01 5.2567178010940552e-01
+ 3.9344060420989990e-01
+ <_>
+
+ 0 1 2056 -3.8536980748176575e-02 -1 -2 2057
+ -2.8275650739669800e-01
+
+ 2.0619249343872070e-01 6.1883211135864258e-02
+ 4.9250578880310059e-01
+ <_>
+
+ 0 1 2058 -9.0301828458905220e-03 -1 -2 2059
+ -4.3866269290447235e-02
+
+ 3.1575900316238403e-01 2.0336820185184479e-01
+ 5.1647698879241943e-01
+ <_>
+
+ 0 1 2060 -4.5701069757342339e-03 -1 -2 2061
+ -2.3362410720437765e-03
+
+ 6.6111832857131958e-01 2.8077891469001770e-01
+ 4.9628761410713196e-01
+ <_>
+
+ 0 1 2062 5.3960331715643406e-03 -1 -2 2063
+ -2.6297608856111765e-03
+
+ 5.1463878154754639e-01 6.2844878435134888e-01
+ 4.9555888772010803e-01
+ <_>
+
+ 0 1 2064 -3.8577478844672441e-03 -1 -2 2065
+ 1.3963800156489015e-03
+
+ 1.4867480099201202e-01 4.7013381123542786e-01
+ 6.3209718465805054e-01
+ <_>
+
+ 1 0 2066 -8.8699469342827797e-03 -1 -2 2067
+ -7.0626288652420044e-04
+
+ 5.2868181467056274e-01 4.6483701467514038e-01
+ 5.3332102298736572e-01
+ <_>
+
+ 0 1 2068 4.2645810171961784e-03 -1 -2 2069
+ 6.1572100967168808e-02
+
+ 5.0848782062530518e-01 3.6296251416206360e-01
+ 8.7571567296981812e-01
+ <_>
+
+ 1 0 2070 -4.5381980016827583e-03 -1 -2 2071
+ -4.0877899155020714e-03
+
+ 4.8566961288452148e-01 4.5841160416603088e-01
+ 5.4202407598495483e-01
+ <_>
+
+ 1 0 2072 6.4308601431548595e-03 -1 -2 2073
+ 7.0455260574817657e-03
+
+ 2.7073028683662415e-01 5.0574868917465210e-01
+ 7.0265239477157593e-01
+ <_>
+
+ 1 0 2074 -2.3246440105140209e-03 -1 -2 2075
+ 6.0276601288933307e-05
+
+ 4.8272788524627686e-01 4.2472490668296814e-01
+ 5.5087631940841675e-01
+ <_>
+
+ 1 0 2076 1.8084559589624405e-02 -1 -2 2077
+ 8.4693520329892635e-04
+
+ 8.1048011779785156e-01 5.1546192169189453e-01
+ 3.5143798589706421e-01
+ <_>
+
+ 1 0 2078 -2.6931039988994598e-02 -1 -2 2079
+ -4.2346641421318054e-03
+
+ 4.8868888616561890e-01 4.6223780512809753e-01
+ 5.3824782371520996e-01
+ <_>
+
+ 1 0 2080 2.6947110891342163e-02 -1 -2 2081
+ 4.6446882188320160e-03
+
+ 6.3665962219238281e-01 5.3685069084167480e-01
+ 3.7654298543930054e-01
+ <_>
+
+ 0 1 2082 -6.9577661342918873e-03 -1 -2 2083
+ 8.7609712500125170e-04
+
+ 4.2346870899200439e-01 4.6724060177803040e-01
+ 5.3506839275360107e-01
+ <_>
+
+ 1 0 2084 1.6103329835459590e-03 -1 -2 2085
+ -1.2848590267822146e-03
+
+ 5.7327628135681152e-01 5.4817992448806763e-01
+ 3.7845930457115173e-01
+ <_>
+
+ 0 1 2086 1.0243539698421955e-02 -1 -2 2087
+ 2.6889349101111293e-04
+
+ 5.1559072732925415e-01 5.3531897068023682e-01
+ 4.3871539831161499e-01
+ <_>
+
+ 0 1 2088 3.7903659977018833e-03 -1 -2 2089
+ -2.9369680210947990e-02
+
+ 5.0320029258728027e-01 5.8735388517379761e-01
+ 2.2154450416564941e-01
+ <_>
+
+ 1 0 2090 6.0743088833987713e-03 -1 -2 2091
+ -1.2710720300674438e-02
+
+ 5.4170298576354980e-01 6.0565119981765747e-01
+ 4.9851819872856140e-01
+ <_>
+
+ 0 1 2092 -5.9445449151098728e-03 -1 -2 2093
+ -2.8927479870617390e-03
+
+ 3.3520698547363281e-01 6.9292408227920532e-01
+ 4.7782200574874878e-01
+
+ <_>
+
+ <_>
+ 2 7 16 4 -1.
+ <_>
+ 2 9 16 2 2.
+ <_>
+
+ <_>
+ 8 4 3 14 -1.
+ <_>
+ 8 11 3 7 2.
+ <_>
+
+ <_>
+ 13 6 1 6 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 4 2 12 8 -1.
+ <_>
+ 8 2 4 8 3.
+ <_>
+
+ <_>
+ 6 3 1 9 -1.
+ <_>
+ 6 6 1 3 3.
+ <_>
+
+ <_>
+ 3 7 14 9 -1.
+ <_>
+ 3 10 14 3 3.
+ <_>
+
+ <_>
+ 4 7 4 4 -1.
+ <_>
+ 4 9 4 2 2.
+ <_>
+
+ <_>
+ 9 4 2 16 -1.
+ <_>
+ 9 12 2 8 2.
+ <_>
+
+ <_>
+ 1 1 18 5 -1.
+ <_>
+ 7 1 6 5 3.
+ <_>
+
+ <_>
+ 4 5 13 8 -1.
+ <_>
+ 4 9 13 4 2.
+ <_>
+
+ <_>
+ 1 7 16 9 -1.
+ <_>
+ 1 10 16 3 3.
+ <_>
+
+ <_>
+ 2 0 15 4 -1.
+ <_>
+ 2 2 15 2 2.
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 9 5 2 4 3.
+ <_>
+
+ <_>
+ 6 3 8 9 -1.
+ <_>
+ 6 6 8 3 3.
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 8 16 3 4 2.
+ <_>
+
+ <_>
+ 3 16 2 2 -1.
+ <_>
+ 3 17 2 1 2.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 14 1 3 12 2.
+ <_>
+
+ <_>
+ 4 4 12 6 -1.
+ <_>
+ 8 4 4 6 3.
+ <_>
+
+ <_>
+ 0 2 6 15 -1.
+ <_>
+ 3 2 3 15 2.
+ <_>
+
+ <_>
+ 5 4 9 6 -1.
+ <_>
+ 5 6 9 2 3.
+ <_>
+
+ <_>
+ 13 11 6 3 -1.
+ <_>
+ 13 12 6 1 3.
+ <_>
+
+ <_>
+ 12 12 6 4 -1.
+ <_>
+ 12 14 6 2 2.
+ <_>
+
+ <_>
+ 1 11 6 3 -1.
+ <_>
+ 1 12 6 1 3.
+ <_>
+
+ <_>
+ 2 5 5 8 -1.
+ <_>
+ 2 9 5 4 2.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 2 4 16 12 -1.
+ <_>
+ 2 8 16 4 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 8 5 4 6 3.
+ <_>
+
+ <_>
+ 13 7 2 9 -1.
+ <_>
+ 13 10 2 3 3.
+ <_>
+
+ <_>
+ 5 7 2 9 -1.
+ <_>
+ 5 10 2 3 3.
+ <_>
+
+ <_>
+ 7 1 6 8 -1.
+ <_>
+ 9 1 2 8 3.
+ <_>
+
+ <_>
+ 12 0 4 12 -1.
+ <_>
+ 14 0 2 6 2.
+ <_>
+ 12 6 2 6 2.
+ <_>
+
+ <_>
+ 5 8 10 2 -1.
+ <_>
+ 5 9 10 1 2.
+ <_>
+
+ <_>
+ 5 1 6 4 -1.
+ <_>
+ 7 1 2 4 3.
+ <_>
+
+ <_>
+ 0 3 9 12 -1.
+ <_>
+ 3 3 3 12 3.
+ <_>
+
+ <_>
+ 9 8 3 12 -1.
+ <_>
+ 9 12 3 4 3.
+ <_>
+
+ <_>
+ 0 5 20 15 -1.
+ <_>
+ 0 10 20 5 3.
+ <_>
+
+ <_>
+ 2 2 6 8 -1.
+ <_>
+ 2 2 3 4 2.
+ <_>
+ 5 6 3 4 2.
+ <_>
+
+ <_>
+ 2 1 6 2 -1.
+ <_>
+ 2 2 6 1 2.
+ <_>
+
+ <_>
+ 10 15 6 4 -1.
+ <_>
+ 13 15 3 2 2.
+ <_>
+ 10 17 3 2 2.
+ <_>
+
+ <_>
+ 12 14 2 6 -1.
+ <_>
+ 12 16 2 2 3.
+ <_>
+
+ <_>
+ 5 15 4 4 -1.
+ <_>
+ 5 15 2 2 2.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 7 18 1 2 -1.
+ <_>
+ 7 19 1 1 2.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 10 5 6 5 2.
+ <_>
+ 4 10 6 5 2.
+ <_>
+
+ <_>
+ 7 4 8 12 -1.
+ <_>
+ 11 4 4 6 2.
+ <_>
+ 7 10 4 6 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 3 3 12 12 -1.
+ <_>
+ 3 3 6 6 2.
+ <_>
+ 9 9 6 6 2.
+ <_>
+
+ <_>
+ 15 11 5 3 -1.
+ <_>
+ 15 12 5 1 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 0 11 5 3 -1.
+ <_>
+ 0 12 5 1 3.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 2 8 16 2 -1.
+ <_>
+ 2 9 16 1 2.
+ <_>
+
+ <_>
+ 9 6 5 12 -1.
+ <_>
+ 9 12 5 6 2.
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 6 6 8 3 2.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 10 9 6 8 -1.
+ <_>
+ 10 13 6 4 2.
+ <_>
+
+ <_>
+ 12 5 3 10 -1.
+ <_>
+ 12 10 3 5 2.
+ <_>
+
+ <_>
+ 4 6 3 9 -1.
+ <_>
+ 4 9 3 3 3.
+ <_>
+
+ <_>
+ 7 4 6 4 -1.
+ <_>
+ 9 4 2 4 3.
+ <_>
+
+ <_>
+ 12 3 8 3 -1.
+ <_>
+ 12 3 4 3 2.
+ <_>
+
+ <_>
+ 15 0 3 6 -1.
+ <_>
+ 15 3 3 3 2.
+ <_>
+
+ <_>
+ 2 12 10 8 -1.
+ <_>
+ 2 12 5 4 2.
+ <_>
+ 7 16 5 4 2.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 5 9 6 4 2.
+ <_>
+
+ <_>
+ 12 3 8 3 -1.
+ <_>
+ 12 3 4 3 2.
+ <_>
+
+ <_>
+ 15 0 3 6 -1.
+ <_>
+ 15 3 3 3 2.
+ <_>
+
+ <_>
+ 0 3 8 3 -1.
+ <_>
+ 4 3 4 3 2.
+ <_>
+
+ <_>
+ 2 1 4 4 -1.
+ <_>
+ 2 3 4 2 2.
+ <_>
+
+ <_>
+ 10 2 3 2 -1.
+ <_>
+ 11 2 1 2 3.
+ <_>
+
+ <_>
+ 10 3 3 1 -1.
+ <_>
+ 11 3 1 1 3.
+ <_>
+
+ <_>
+ 7 15 3 4 -1.
+ <_>
+ 7 17 3 2 2.
+ <_>
+
+ <_>
+ 4 13 3 6 -1.
+ <_>
+ 4 15 3 2 3.
+ <_>
+
+ <_>
+ 10 5 1 14 -1.
+ <_>
+ 10 12 1 7 2.
+ <_>
+
+ <_>
+ 5 4 10 6 -1.
+ <_>
+ 5 6 10 2 3.
+ <_>
+
+ <_>
+ 5 0 6 3 -1.
+ <_>
+ 7 0 2 3 3.
+ <_>
+
+ <_>
+ 6 0 3 5 -1.
+ <_>
+ 7 0 1 5 3.
+ <_>
+
+ <_>
+ 7 15 6 5 -1.
+ <_>
+ 9 15 2 5 3.
+ <_>
+
+ <_>
+ 9 10 2 6 -1.
+ <_>
+ 9 12 2 2 3.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 9 6 3 7 -1.
+ <_>
+ 10 6 1 7 3.
+ <_>
+
+ <_>
+ 16 3 4 9 -1.
+ <_>
+ 16 6 4 3 3.
+ <_>
+
+ <_>
+ 8 6 3 7 -1.
+ <_>
+ 9 6 1 7 3.
+ <_>
+
+ <_>
+ 0 5 18 8 -1.
+ <_>
+ 0 5 9 4 2.
+ <_>
+ 9 9 9 4 2.
+ <_>
+
+ <_>
+ 13 5 2 10 -1.
+ <_>
+ 13 10 2 5 2.
+ <_>
+
+ <_>
+ 12 10 2 6 -1.
+ <_>
+ 12 13 2 3 2.
+ <_>
+
+ <_>
+ 7 0 3 5 -1.
+ <_>
+ 8 0 1 5 3.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 7 8 2 3.
+ <_>
+
+ <_>
+ 10 3 6 14 -1.
+ <_>
+ 13 3 3 7 2.
+ <_>
+ 10 10 3 7 2.
+ <_>
+
+ <_>
+ 13 5 1 8 -1.
+ <_>
+ 13 9 1 4 2.
+ <_>
+
+ <_>
+ 4 3 6 14 -1.
+ <_>
+ 4 3 3 7 2.
+ <_>
+ 7 10 3 7 2.
+ <_>
+
+ <_>
+ 6 5 1 8 -1.
+ <_>
+ 6 9 1 4 2.
+ <_>
+
+ <_>
+ 8 1 1 6 -1.
+ <_>
+ 8 3 1 2 3.
+ <_>
+
+ <_>
+ 2 0 15 2 -1.
+ <_>
+ 2 1 15 1 2.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 10 10 6 8 -1.
+ <_>
+ 10 14 6 4 2.
+ <_>
+
+ <_>
+ 7 1 3 2 -1.
+ <_>
+ 8 1 1 2 3.
+ <_>
+
+ <_>
+ 8 1 2 2 -1.
+ <_>
+ 9 1 1 2 2.
+ <_>
+
+ <_>
+ 4 3 12 9 -1.
+ <_>
+ 4 6 12 3 3.
+ <_>
+
+ <_>
+ 6 5 9 5 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 5 5 9 5 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 4 6 6 12 -1.
+ <_>
+ 4 10 6 4 3.
+ <_>
+
+ <_>
+ 13 0 6 18 -1.
+ <_>
+ 13 0 3 18 2.
+ <_>
+
+ <_>
+ 10 8 1 12 -1.
+ <_>
+ 10 12 1 4 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 1 2 4 6 -1.
+ <_>
+ 3 2 2 6 2.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 2 8 2 6 -1.
+ <_>
+ 2 10 2 2 3.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 7 7 6 2 3.
+ <_>
+
+ <_>
+ 7 19 6 1 -1.
+ <_>
+ 9 19 2 1 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 8 3 3 1 -1.
+ <_>
+ 9 3 1 1 3.
+ <_>
+
+ <_>
+ 2 2 16 2 -1.
+ <_>
+ 2 2 8 1 2.
+ <_>
+ 10 3 8 1 2.
+ <_>
+
+ <_>
+ 8 11 5 3 -1.
+ <_>
+ 8 12 5 1 3.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 0 1 6 15 -1.
+ <_>
+ 2 1 2 15 3.
+ <_>
+
+ <_>
+ 2 12 2 3 -1.
+ <_>
+ 2 13 2 1 3.
+ <_>
+
+ <_>
+ 16 13 1 3 -1.
+ <_>
+ 16 14 1 1 3.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 7 13 3 6 -1.
+ <_>
+ 7 16 3 3 2.
+ <_>
+
+ <_>
+ 7 5 1 14 -1.
+ <_>
+ 7 12 1 7 2.
+ <_>
+
+ <_>
+ 15 12 2 3 -1.
+ <_>
+ 15 13 2 1 3.
+ <_>
+
+ <_>
+ 10 5 3 14 -1.
+ <_>
+ 10 12 3 7 2.
+ <_>
+
+ <_>
+ 6 10 2 6 -1.
+ <_>
+ 6 13 2 3 2.
+ <_>
+
+ <_>
+ 6 5 1 8 -1.
+ <_>
+ 6 9 1 4 2.
+ <_>
+
+ <_>
+ 13 11 2 1 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+
+ <_>
+ 12 1 6 10 -1.
+ <_>
+ 15 1 3 5 2.
+ <_>
+ 12 6 3 5 2.
+ <_>
+
+ <_>
+ 3 12 2 3 -1.
+ <_>
+ 3 13 2 1 3.
+ <_>
+
+ <_>
+ 9 18 2 1 -1.
+ <_>
+ 10 18 1 1 2.
+ <_>
+
+ <_>
+ 1 0 17 9 -1.
+ <_>
+ 1 3 17 3 3.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 2 4 4 2.
+ <_>
+ 5 6 4 4 2.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 10 9 7 10 -1.
+ <_>
+ 10 14 7 5 2.
+ <_>
+
+ <_>
+ 5 5 6 4 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 6 5 9 10 -1.
+ <_>
+ 6 10 9 5 2.
+ <_>
+
+ <_>
+ 8 4 4 12 -1.
+ <_>
+ 8 10 4 6 2.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 7 8 1 3.
+ <_>
+
+ <_>
+ 3 13 10 6 -1.
+ <_>
+ 3 13 5 3 2.
+ <_>
+ 8 16 5 3 2.
+ <_>
+
+ <_>
+ 15 1 4 11 -1.
+ <_>
+ 15 1 2 11 2.
+ <_>
+
+ <_>
+ 5 7 10 10 -1.
+ <_>
+ 10 7 5 5 2.
+ <_>
+ 5 12 5 5 2.
+ <_>
+
+ <_>
+ 1 1 4 11 -1.
+ <_>
+ 3 1 2 11 2.
+ <_>
+
+ <_>
+ 1 5 8 12 -1.
+ <_>
+ 1 11 8 6 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 11 10 7 4 -1.
+ <_>
+ 11 12 7 2 2.
+ <_>
+
+ <_>
+ 0 4 20 12 -1.
+ <_>
+ 0 4 10 6 2.
+ <_>
+ 10 10 10 6 2.
+ <_>
+
+ <_>
+ 1 5 6 15 -1.
+ <_>
+ 1 10 6 5 3.
+ <_>
+
+ <_>
+ 11 10 3 8 -1.
+ <_>
+ 11 14 3 4 2.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 10 14 7 2 2.
+ <_>
+ 3 16 7 2 2.
+ <_>
+
+ <_>
+ 18 7 2 4 -1.
+ <_>
+ 18 9 2 2 2.
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 3 14 6 2 3.
+ <_>
+
+ <_>
+ 0 4 3 6 -1.
+ <_>
+ 0 6 3 2 3.
+ <_>
+
+ <_>
+ 9 14 3 3 -1.
+ <_>
+ 9 15 3 1 3.
+ <_>
+
+ <_>
+ 10 7 10 4 -1.
+ <_>
+ 15 7 5 2 2.
+ <_>
+ 10 9 5 2 2.
+ <_>
+
+ <_>
+ 7 2 6 8 -1.
+ <_>
+ 7 6 6 4 2.
+ <_>
+
+ <_>
+ 6 3 6 2 -1.
+ <_>
+ 8 3 2 2 3.
+ <_>
+
+ <_>
+ 10 6 3 5 -1.
+ <_>
+ 11 6 1 5 3.
+ <_>
+
+ <_>
+ 9 0 6 19 -1.
+ <_>
+ 11 0 2 19 3.
+ <_>
+
+ <_>
+ 3 12 1 2 -1.
+ <_>
+ 3 13 1 1 2.
+ <_>
+
+ <_>
+ 7 14 5 3 -1.
+ <_>
+ 7 15 5 1 3.
+ <_>
+
+ <_>
+ 2 1 18 4 -1.
+ <_>
+ 11 1 9 2 2.
+ <_>
+ 2 3 9 2 2.
+ <_>
+
+ <_>
+ 10 5 3 8 -1.
+ <_>
+ 11 5 1 8 3.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 0 1 9 2 2.
+ <_>
+ 9 3 9 2 2.
+ <_>
+
+ <_>
+ 7 5 3 8 -1.
+ <_>
+ 8 5 1 8 3.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 7 2 2 3.
+ <_>
+
+ <_>
+ 10 8 5 2 -1.
+ <_>
+ 10 9 5 1 2.
+ <_>
+
+ <_>
+ 2 10 15 1 -1.
+ <_>
+ 7 10 5 1 3.
+ <_>
+
+ <_>
+ 2 7 2 6 -1.
+ <_>
+ 2 9 2 2 3.
+ <_>
+
+ <_>
+ 9 14 3 3 -1.
+ <_>
+ 9 15 3 1 3.
+ <_>
+
+ <_>
+ 9 7 4 10 -1.
+ <_>
+ 9 12 4 5 2.
+ <_>
+
+ <_>
+ 0 8 8 2 -1.
+ <_>
+ 0 8 4 1 2.
+ <_>
+ 4 9 4 1 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 5 9 5 4 2.
+ <_>
+ 10 13 5 4 2.
+ <_>
+
+ <_>
+ 9 7 2 4 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+
+ <_>
+ 9 6 3 4 -1.
+ <_>
+ 10 6 1 4 3.
+ <_>
+
+ <_>
+ 8 3 2 1 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 12 0 4 14 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 12 5 6 9 -1.
+ <_>
+ 12 5 3 9 2.
+ <_>
+
+ <_>
+ 0 2 6 16 -1.
+ <_>
+ 3 2 3 16 2.
+ <_>
+
+ <_>
+ 1 12 4 2 -1.
+ <_>
+ 1 13 4 1 2.
+ <_>
+
+ <_>
+ 7 7 6 1 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 8 3 4 9 -1.
+ <_>
+ 8 6 4 3 3.
+ <_>
+
+ <_>
+ 12 10 4 6 -1.
+ <_>
+ 12 13 4 3 2.
+ <_>
+
+ <_>
+ 8 1 8 16 -1.
+ <_>
+ 12 1 4 8 2.
+ <_>
+ 8 9 4 8 2.
+ <_>
+
+ <_>
+ 4 6 3 6 -1.
+ <_>
+ 4 9 3 3 2.
+ <_>
+
+ <_>
+ 1 3 6 2 -1.
+ <_>
+ 4 3 3 2 2.
+ <_>
+
+ <_>
+ 9 8 3 12 -1.
+ <_>
+ 9 12 3 4 3.
+ <_>
+
+ <_>
+ 10 9 7 10 -1.
+ <_>
+ 10 14 7 5 2.
+ <_>
+
+ <_>
+ 3 9 7 10 -1.
+ <_>
+ 3 14 7 5 2.
+ <_>
+
+ <_>
+ 7 5 1 14 -1.
+ <_>
+ 7 12 1 7 2.
+ <_>
+
+ <_>
+ 13 14 1 6 -1.
+ <_>
+ 13 16 1 2 3.
+ <_>
+
+ <_>
+ 14 12 3 6 -1.
+ <_>
+ 14 14 3 2 3.
+ <_>
+
+ <_>
+ 6 14 1 6 -1.
+ <_>
+ 6 16 1 2 3.
+ <_>
+
+ <_>
+ 3 12 3 6 -1.
+ <_>
+ 3 14 3 2 3.
+ <_>
+
+ <_>
+ 8 13 5 3 -1.
+ <_>
+ 8 14 5 1 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 5 1 10 8 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+ 10 5 5 4 2.
+ <_>
+
+ <_>
+ 6 4 5 4 -1.
+ <_>
+ 6 6 5 2 2.
+ <_>
+
+ <_>
+ 1 10 18 1 -1.
+ <_>
+ 7 10 6 1 3.
+ <_>
+
+ <_>
+ 11 10 4 3 -1.
+ <_>
+ 11 10 2 3 2.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 3 13 2 3 -1.
+ <_>
+ 3 14 2 1 3.
+ <_>
+
+ <_>
+ 12 12 3 4 -1.
+ <_>
+ 12 14 3 2 2.
+ <_>
+
+ <_>
+ 11 10 5 6 -1.
+ <_>
+ 11 12 5 2 3.
+ <_>
+
+ <_>
+ 0 8 16 2 -1.
+ <_>
+ 0 9 16 1 2.
+ <_>
+
+ <_>
+ 2 1 3 4 -1.
+ <_>
+ 2 3 3 2 2.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 5 6 12 6 -1.
+ <_>
+ 9 6 4 6 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 3 6 12 6 -1.
+ <_>
+ 7 6 4 6 3.
+ <_>
+
+ <_>
+ 10 5 6 5 -1.
+ <_>
+ 12 5 2 5 3.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 5 7 5 2 2.
+ <_>
+
+ <_>
+ 4 5 6 5 -1.
+ <_>
+ 6 5 2 5 3.
+ <_>
+
+ <_>
+ 9 3 2 10 -1.
+ <_>
+ 9 8 2 5 2.
+ <_>
+
+ <_>
+ 3 1 16 2 -1.
+ <_>
+ 11 1 8 1 2.
+ <_>
+ 3 2 8 1 2.
+ <_>
+
+ <_>
+ 9 9 3 2 -1.
+ <_>
+ 9 10 3 1 2.
+ <_>
+
+ <_>
+ 1 1 16 2 -1.
+ <_>
+ 1 1 8 1 2.
+ <_>
+ 9 2 8 1 2.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 10 5 6 5 2.
+ <_>
+ 4 10 6 5 2.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 10 13 3 3 2.
+ <_>
+ 7 16 3 3 2.
+ <_>
+
+ <_>
+ 8 9 3 2 -1.
+ <_>
+ 8 10 3 1 2.
+ <_>
+
+ <_>
+ 7 2 6 4 -1.
+ <_>
+ 9 2 2 4 3.
+ <_>
+
+ <_>
+ 6 6 9 3 -1.
+ <_>
+ 6 7 9 1 3.
+ <_>
+
+ <_>
+ 10 7 6 1 -1.
+ <_>
+ 12 7 2 1 3.
+ <_>
+
+ <_>
+ 0 0 18 6 -1.
+ <_>
+ 6 0 6 6 3.
+ <_>
+
+ <_>
+ 6 10 2 6 -1.
+ <_>
+ 6 13 2 3 2.
+ <_>
+
+ <_>
+ 11 12 3 6 -1.
+ <_>
+ 11 15 3 3 2.
+ <_>
+
+ <_>
+ 4 4 12 12 -1.
+ <_>
+ 10 4 6 6 2.
+ <_>
+ 4 10 6 6 2.
+ <_>
+
+ <_>
+ 1 2 3 6 -1.
+ <_>
+ 2 2 1 6 3.
+ <_>
+
+ <_>
+ 1 5 3 7 -1.
+ <_>
+ 2 5 1 7 3.
+ <_>
+
+ <_>
+ 4 13 12 4 -1.
+ <_>
+ 10 13 6 2 2.
+ <_>
+ 4 15 6 2 2.
+ <_>
+
+ <_>
+ 3 3 17 12 -1.
+ <_>
+ 3 9 17 6 2.
+ <_>
+
+ <_>
+ 3 3 14 12 -1.
+ <_>
+ 3 3 7 6 2.
+ <_>
+ 10 9 7 6 2.
+ <_>
+
+ <_>
+ 2 11 16 9 -1.
+ <_>
+ 2 14 16 3 3.
+ <_>
+
+ <_>
+ 9 14 3 6 -1.
+ <_>
+ 9 17 3 3 2.
+ <_>
+
+ <_>
+ 8 14 4 6 -1.
+ <_>
+ 10 14 2 3 2.
+ <_>
+ 8 17 2 3 2.
+ <_>
+
+ <_>
+ 6 2 6 1 -1.
+ <_>
+ 8 2 2 1 3.
+ <_>
+
+ <_>
+ 9 5 2 5 -1.
+ <_>
+ 10 5 1 5 2.
+ <_>
+
+ <_>
+ 9 8 3 5 -1.
+ <_>
+ 10 8 1 5 3.
+ <_>
+
+ <_>
+ 9 12 6 1 -1.
+ <_>
+ 9 12 3 1 2.
+ <_>
+
+ <_>
+ 8 8 3 5 -1.
+ <_>
+ 9 8 1 5 3.
+ <_>
+
+ <_>
+ 6 10 4 3 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 0 6 20 2 3.
+ <_>
+
+ <_>
+ 1 3 8 6 -1.
+ <_>
+ 1 3 4 3 2.
+ <_>
+ 5 6 4 3 2.
+ <_>
+
+ <_>
+ 7 15 6 4 -1.
+ <_>
+ 7 17 6 2 2.
+ <_>
+
+ <_>
+ 3 10 14 10 -1.
+ <_>
+ 3 15 14 5 2.
+ <_>
+
+ <_>
+ 6 4 4 4 -1.
+ <_>
+ 8 4 2 4 2.
+ <_>
+
+ <_>
+ 0 4 20 10 -1.
+ <_>
+ 0 9 20 5 2.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 2 0 16 4 -1.
+ <_>
+ 2 2 16 2 2.
+ <_>
+
+ <_>
+ 4 12 6 8 -1.
+ <_>
+ 4 12 3 4 2.
+ <_>
+ 7 16 3 4 2.
+ <_>
+
+ <_>
+ 0 5 6 7 -1.
+ <_>
+ 3 5 3 7 2.
+ <_>
+
+ <_>
+ 10 7 10 4 -1.
+ <_>
+ 15 7 5 2 2.
+ <_>
+ 10 9 5 2 2.
+ <_>
+
+ <_>
+ 5 8 12 1 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 9 4 2 4 -1.
+ <_>
+ 9 6 2 2 2.
+ <_>
+
+ <_>
+ 9 6 3 6 -1.
+ <_>
+ 10 6 1 6 3.
+ <_>
+
+ <_>
+ 12 7 6 4 -1.
+ <_>
+ 15 7 3 2 2.
+ <_>
+ 12 9 3 2 2.
+ <_>
+
+ <_>
+ 8 6 3 6 -1.
+ <_>
+ 9 6 1 6 3.
+ <_>
+
+ <_>
+ 1 6 18 6 -1.
+ <_>
+ 1 6 9 3 2.
+ <_>
+ 10 9 9 3 2.
+ <_>
+
+ <_>
+ 9 1 3 3 -1.
+ <_>
+ 10 1 1 3 3.
+ <_>
+
+ <_>
+ 10 8 5 2 -1.
+ <_>
+ 10 9 5 1 2.
+ <_>
+
+ <_>
+ 8 1 3 3 -1.
+ <_>
+ 9 1 1 3 3.
+ <_>
+
+ <_>
+ 5 8 5 2 -1.
+ <_>
+ 5 9 5 1 2.
+ <_>
+
+ <_>
+ 8 6 8 8 -1.
+ <_>
+ 12 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 5 7 5 2 2.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 4 5 6 5 2.
+ <_>
+ 10 10 6 5 2.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 9 14 3 3 -1.
+ <_>
+ 9 15 3 1 3.
+ <_>
+
+ <_>
+ 8 14 3 3 -1.
+ <_>
+ 8 15 3 1 3.
+ <_>
+
+ <_>
+ 1 10 8 9 -1.
+ <_>
+ 1 13 8 3 3.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 13 3 1 3 3.
+ <_>
+
+ <_>
+ 5 3 3 3 -1.
+ <_>
+ 6 3 1 3 3.
+ <_>
+
+ <_>
+ 5 6 2 12 -1.
+ <_>
+ 5 10 2 4 3.
+ <_>
+
+ <_>
+ 1 11 18 4 -1.
+ <_>
+ 10 11 9 2 2.
+ <_>
+ 1 13 9 2 2.
+ <_>
+
+ <_>
+ 7 12 6 2 -1.
+ <_>
+ 7 13 6 1 2.
+ <_>
+
+ <_>
+ 6 0 3 6 -1.
+ <_>
+ 7 0 1 6 3.
+ <_>
+
+ <_>
+ 0 11 18 4 -1.
+ <_>
+ 0 11 9 2 2.
+ <_>
+ 9 13 9 2 2.
+ <_>
+
+ <_>
+ 7 12 6 2 -1.
+ <_>
+ 7 13 6 1 2.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 13 3 4 2 -1.
+ <_>
+ 13 4 4 1 2.
+ <_>
+
+ <_>
+ 4 0 12 2 -1.
+ <_>
+ 4 1 12 1 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 6 9 4 4 2.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 1 11 6 2 -1.
+ <_>
+ 1 12 6 1 2.
+ <_>
+
+ <_>
+ 2 5 18 8 -1.
+ <_>
+ 11 5 9 4 2.
+ <_>
+ 2 9 9 4 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 0 3 3 6 -1.
+ <_>
+ 0 5 3 2 3.
+ <_>
+
+ <_>
+ 4 5 4 3 -1.
+ <_>
+ 4 6 4 1 3.
+ <_>
+
+ <_>
+ 19 3 1 6 -1.
+ <_>
+ 19 5 1 2 3.
+ <_>
+
+ <_>
+ 6 15 8 2 -1.
+ <_>
+ 6 16 8 1 2.
+ <_>
+
+ <_>
+ 0 3 1 6 -1.
+ <_>
+ 0 5 1 2 3.
+ <_>
+
+ <_>
+ 5 5 3 3 -1.
+ <_>
+ 5 6 3 1 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 10 6 6 3 -1.
+ <_>
+ 12 6 2 3 3.
+ <_>
+
+ <_>
+ 8 13 2 6 -1.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 9 11 2 8 -1.
+ <_>
+ 9 15 2 4 2.
+ <_>
+
+ <_>
+ 10 6 6 3 -1.
+ <_>
+ 12 6 2 3 3.
+ <_>
+
+ <_>
+ 5 15 15 5 -1.
+ <_>
+ 10 15 5 5 3.
+ <_>
+
+ <_>
+ 2 14 2 2 -1.
+ <_>
+ 2 15 2 1 2.
+ <_>
+
+ <_>
+ 4 7 6 2 -1.
+ <_>
+ 6 7 2 2 3.
+ <_>
+
+ <_>
+ 8 3 6 1 -1.
+ <_>
+ 10 3 2 1 3.
+ <_>
+
+ <_>
+ 1 0 18 12 -1.
+ <_>
+ 7 0 6 12 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 0 15 15 5 -1.
+ <_>
+ 5 15 5 5 3.
+ <_>
+
+ <_>
+ 8 3 6 1 -1.
+ <_>
+ 10 3 2 1 3.
+ <_>
+
+ <_>
+ 11 11 3 6 -1.
+ <_>
+ 11 14 3 3 2.
+ <_>
+
+ <_>
+ 6 3 6 1 -1.
+ <_>
+ 8 3 2 1 3.
+ <_>
+
+ <_>
+ 6 11 3 6 -1.
+ <_>
+ 6 14 3 3 2.
+ <_>
+
+ <_>
+ 9 6 3 4 -1.
+ <_>
+ 10 6 1 4 3.
+ <_>
+
+ <_>
+ 12 10 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 4 6 4 7 -1.
+ <_>
+ 6 6 2 7 2.
+ <_>
+
+ <_>
+ 10 3 4 12 -1.
+ <_>
+ 10 3 2 12 2.
+ <_>
+
+ <_>
+ 10 8 3 4 -1.
+ <_>
+ 11 8 1 4 3.
+ <_>
+
+ <_>
+ 1 0 18 14 -1.
+ <_>
+ 7 0 6 14 3.
+ <_>
+
+ <_>
+ 2 8 6 11 -1.
+ <_>
+ 5 8 3 11 2.
+ <_>
+
+ <_>
+ 1 4 15 4 -1.
+ <_>
+ 1 6 15 2 2.
+ <_>
+
+ <_>
+ 5 5 10 8 -1.
+ <_>
+ 5 9 10 4 2.
+ <_>
+
+ <_>
+ 14 2 6 8 -1.
+ <_>
+ 14 2 3 8 2.
+ <_>
+
+ <_>
+ 11 6 6 14 -1.
+ <_>
+ 14 6 3 7 2.
+ <_>
+ 11 13 3 7 2.
+ <_>
+
+ <_>
+ 9 5 2 12 -1.
+ <_>
+ 9 11 2 6 2.
+ <_>
+
+ <_>
+ 3 7 4 6 -1.
+ <_>
+ 3 9 4 2 3.
+ <_>
+
+ <_>
+ 14 3 6 6 -1.
+ <_>
+ 14 3 3 6 2.
+ <_>
+
+ <_>
+ 15 2 4 4 -1.
+ <_>
+ 15 4 4 2 2.
+ <_>
+
+ <_>
+ 0 2 6 7 -1.
+ <_>
+ 3 2 3 7 2.
+ <_>
+
+ <_>
+ 3 6 6 14 -1.
+ <_>
+ 3 6 3 7 2.
+ <_>
+ 6 13 3 7 2.
+ <_>
+
+ <_>
+ 4 6 16 8 -1.
+ <_>
+ 4 10 16 4 2.
+ <_>
+
+ <_>
+ 10 12 2 8 -1.
+ <_>
+ 10 16 2 4 2.
+ <_>
+
+ <_>
+ 7 0 6 20 -1.
+ <_>
+ 9 0 2 20 3.
+ <_>
+
+ <_>
+ 1 7 16 12 -1.
+ <_>
+ 1 7 8 6 2.
+ <_>
+ 9 13 8 6 2.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 9 12 3 1 3.
+ <_>
+
+ <_>
+ 11 9 4 5 -1.
+ <_>
+ 11 9 2 5 2.
+ <_>
+
+ <_>
+ 3 3 1 2 -1.
+ <_>
+ 3 4 1 1 2.
+ <_>
+
+ <_>
+ 7 17 5 3 -1.
+ <_>
+ 7 18 5 1 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 10 12 2 4 2.
+ <_>
+ 8 16 2 4 2.
+ <_>
+
+ <_>
+ 7 4 10 12 -1.
+ <_>
+ 12 4 5 6 2.
+ <_>
+ 7 10 5 6 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 5 9 4 5 -1.
+ <_>
+ 7 9 2 5 2.
+ <_>
+
+ <_>
+ 9 9 8 2 -1.
+ <_>
+ 9 9 4 2 2.
+ <_>
+
+ <_>
+ 14 15 5 2 -1.
+ <_>
+ 14 16 5 1 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 1 7 8 4 -1.
+ <_>
+ 1 7 4 2 2.
+ <_>
+ 5 9 4 2 2.
+ <_>
+
+ <_>
+ 19 3 1 2 -1.
+ <_>
+ 19 4 1 1 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 3 14 7 2 2.
+ <_>
+ 10 16 7 2 2.
+ <_>
+
+ <_>
+ 5 0 10 2 -1.
+ <_>
+ 5 1 10 1 2.
+ <_>
+
+ <_>
+ 11 14 4 6 -1.
+ <_>
+ 11 16 4 2 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 7 13 3 3 2.
+ <_>
+ 10 16 3 3 2.
+ <_>
+
+ <_>
+ 0 2 1 6 -1.
+ <_>
+ 0 4 1 2 3.
+ <_>
+
+ <_>
+ 6 7 8 2 -1.
+ <_>
+ 6 8 8 1 2.
+ <_>
+
+ <_>
+ 9 7 6 1 -1.
+ <_>
+ 9 7 3 1 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 0 2 6 2 -1.
+ <_>
+ 0 3 6 1 2.
+ <_>
+
+ <_>
+ 11 4 2 4 -1.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 11 10 3 6 -1.
+ <_>
+ 11 13 3 3 2.
+ <_>
+
+ <_>
+ 3 9 8 2 -1.
+ <_>
+ 7 9 4 2 2.
+ <_>
+
+ <_>
+ 0 0 4 6 -1.
+ <_>
+ 2 0 2 6 2.
+ <_>
+
+ <_>
+ 7 0 6 2 -1.
+ <_>
+ 9 0 2 2 3.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 3 12 1 2 -1.
+ <_>
+ 3 13 1 1 2.
+ <_>
+
+ <_>
+ 4 5 11 3 -1.
+ <_>
+ 4 6 11 1 3.
+ <_>
+
+ <_>
+ 11 4 2 4 -1.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 8 3 6 3 -1.
+ <_>
+ 10 3 2 3 3.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+
+ <_>
+ 6 3 6 3 -1.
+ <_>
+ 8 3 2 3 3.
+ <_>
+
+ <_>
+ 11 4 4 3 -1.
+ <_>
+ 11 5 4 1 3.
+ <_>
+
+ <_>
+ 11 8 2 8 -1.
+ <_>
+ 11 12 2 4 2.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 9 7 2 5 -1.
+ <_>
+ 10 7 1 5 2.
+ <_>
+
+ <_>
+ 14 11 1 6 -1.
+ <_>
+ 14 13 1 2 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 0 3 2 2 -1.
+ <_>
+ 0 4 2 1 2.
+ <_>
+
+ <_>
+ 4 14 5 6 -1.
+ <_>
+ 4 16 5 2 3.
+ <_>
+
+ <_>
+ 11 4 4 3 -1.
+ <_>
+ 11 5 4 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 5 4 4 3 -1.
+ <_>
+ 5 5 4 1 3.
+ <_>
+
+ <_>
+ 5 15 4 2 -1.
+ <_>
+ 7 15 2 2 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 9 10 3 3 -1.
+ <_>
+ 9 11 3 1 3.
+ <_>
+
+ <_>
+ 1 6 2 6 -1.
+ <_>
+ 1 8 2 2 3.
+ <_>
+
+ <_>
+ 2 4 8 15 -1.
+ <_>
+ 2 9 8 5 3.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 7 6 3 5 -1.
+ <_>
+ 8 6 1 5 3.
+ <_>
+
+ <_>
+ 5 3 6 2 -1.
+ <_>
+ 7 3 2 2 3.
+ <_>
+
+ <_>
+ 6 1 8 10 -1.
+ <_>
+ 10 1 4 5 2.
+ <_>
+ 6 6 4 5 2.
+ <_>
+
+ <_>
+ 0 0 20 10 -1.
+ <_>
+ 10 0 10 5 2.
+ <_>
+ 0 5 10 5 2.
+ <_>
+
+ <_>
+ 6 3 3 1 -1.
+ <_>
+ 7 3 1 1 3.
+ <_>
+
+ <_>
+ 0 2 6 8 -1.
+ <_>
+ 2 2 2 8 3.
+ <_>
+
+ <_>
+ 11 10 3 4 -1.
+ <_>
+ 11 12 3 2 2.
+ <_>
+
+ <_>
+ 12 6 3 8 -1.
+ <_>
+ 12 10 3 4 2.
+ <_>
+
+ <_>
+ 6 10 3 4 -1.
+ <_>
+ 6 12 3 2 2.
+ <_>
+
+ <_>
+ 5 6 3 8 -1.
+ <_>
+ 5 10 3 4 2.
+ <_>
+
+ <_>
+ 2 6 18 6 -1.
+ <_>
+ 11 6 9 3 2.
+ <_>
+ 2 9 9 3 2.
+ <_>
+
+ <_>
+ 7 14 7 3 -1.
+ <_>
+ 7 15 7 1 3.
+ <_>
+
+ <_>
+ 0 0 2 12 -1.
+ <_>
+ 1 0 1 12 2.
+ <_>
+
+ <_>
+ 1 2 18 16 -1.
+ <_>
+ 1 10 18 8 2.
+ <_>
+
+ <_>
+ 9 13 5 3 -1.
+ <_>
+ 9 14 5 1 3.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 0 6 18 6 -1.
+ <_>
+ 0 6 9 3 2.
+ <_>
+ 9 9 9 3 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 17 4 1 3 -1.
+ <_>
+ 17 5 1 1 3.
+ <_>
+
+ <_>
+ 12 11 1 9 -1.
+ <_>
+ 12 14 1 3 3.
+ <_>
+
+ <_>
+ 2 4 1 3 -1.
+ <_>
+ 2 5 1 1 3.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 1 2 18 3 -1.
+ <_>
+ 7 2 6 3 3.
+ <_>
+
+ <_>
+ 0 1 20 6 -1.
+ <_>
+ 0 3 20 2 3.
+ <_>
+
+ <_>
+ 7 5 6 3 -1.
+ <_>
+ 9 5 2 3 3.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 3 1 4 10 -1.
+ <_>
+ 3 1 2 5 2.
+ <_>
+ 5 6 2 5 2.
+ <_>
+
+ <_>
+ 0 4 19 10 -1.
+ <_>
+ 0 9 19 5 2.
+ <_>
+
+ <_>
+ 9 8 3 12 -1.
+ <_>
+ 9 12 3 4 3.
+ <_>
+
+ <_>
+ 11 18 5 2 -1.
+ <_>
+ 11 19 5 1 2.
+ <_>
+
+ <_>
+ 5 16 6 4 -1.
+ <_>
+ 5 16 3 2 2.
+ <_>
+ 8 18 3 2 2.
+ <_>
+
+ <_>
+ 5 18 3 2 -1.
+ <_>
+ 5 19 3 1 2.
+ <_>
+
+ <_>
+ 13 11 3 2 -1.
+ <_>
+ 13 12 3 1 2.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 1 2 18 6 -1.
+ <_>
+ 1 2 9 3 2.
+ <_>
+ 10 5 9 3 2.
+ <_>
+
+ <_>
+ 3 5 14 6 -1.
+ <_>
+ 3 7 14 2 3.
+ <_>
+
+ <_>
+ 18 1 2 6 -1.
+ <_>
+ 18 3 2 2 3.
+ <_>
+
+ <_>
+ 9 11 6 1 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 3 2 3 11 2.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 6 12 9 2 -1.
+ <_>
+ 9 12 3 2 3.
+ <_>
+
+ <_>
+ 9 4 6 15 -1.
+ <_>
+ 9 4 3 15 2.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 5 4 6 15 -1.
+ <_>
+ 8 4 3 15 2.
+ <_>
+
+ <_>
+ 14 12 6 7 -1.
+ <_>
+ 14 12 3 7 2.
+ <_>
+
+ <_>
+ 18 3 2 9 -1.
+ <_>
+ 18 6 2 3 3.
+ <_>
+
+ <_>
+ 8 1 3 1 -1.
+ <_>
+ 9 1 1 1 3.
+ <_>
+
+ <_>
+ 0 12 6 7 -1.
+ <_>
+ 3 12 3 7 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 16 7 3 2 2.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 8 0 10 2 -1.
+ <_>
+ 8 1 10 1 2.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 7 3 2 2.
+ <_>
+ 4 9 3 2 2.
+ <_>
+
+ <_>
+ 1 2 3 3 -1.
+ <_>
+ 1 3 3 1 3.
+ <_>
+
+ <_>
+ 9 13 4 3 -1.
+ <_>
+ 9 14 4 1 3.
+ <_>
+
+ <_>
+ 12 13 7 2 -1.
+ <_>
+ 12 14 7 1 2.
+ <_>
+
+ <_>
+ 5 12 9 2 -1.
+ <_>
+ 8 12 3 2 3.
+ <_>
+
+ <_>
+ 6 10 4 8 -1.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 12 0 5 2 -1.
+ <_>
+ 12 1 5 1 2.
+ <_>
+
+ <_>
+ 7 7 1 12 -1.
+ <_>
+ 7 13 1 6 2.
+ <_>
+
+ <_>
+ 6 2 3 4 -1.
+ <_>
+ 7 2 1 4 3.
+ <_>
+
+ <_>
+ 0 13 20 6 -1.
+ <_>
+ 0 15 20 2 3.
+ <_>
+
+ <_>
+ 8 5 12 2 -1.
+ <_>
+ 14 5 6 1 2.
+ <_>
+ 8 6 6 1 2.
+ <_>
+
+ <_>
+ 8 14 2 3 -1.
+ <_>
+ 8 15 2 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+ 6 6 4 6 2.
+ <_>
+
+ <_>
+ 0 15 9 4 -1.
+ <_>
+ 0 17 9 2 2.
+ <_>
+
+ <_>
+ 9 0 2 5 -1.
+ <_>
+ 10 0 1 5 2.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 9 5 1 6 2.
+ <_>
+
+ <_>
+ 17 2 3 6 -1.
+ <_>
+ 17 4 3 2 3.
+ <_>
+
+ <_>
+ 3 11 2 3 -1.
+ <_>
+ 3 12 2 1 3.
+ <_>
+
+ <_>
+ 7 13 3 3 -1.
+ <_>
+ 7 14 3 1 3.
+ <_>
+
+ <_>
+ 14 12 5 3 -1.
+ <_>
+ 14 13 5 1 3.
+ <_>
+
+ <_>
+ 4 8 14 3 -1.
+ <_>
+ 4 9 14 1 3.
+ <_>
+
+ <_>
+ 1 12 5 3 -1.
+ <_>
+ 1 13 5 1 3.
+ <_>
+
+ <_>
+ 1 15 12 2 -1.
+ <_>
+ 1 15 6 1 2.
+ <_>
+ 7 16 6 1 2.
+ <_>
+
+ <_>
+ 12 11 4 2 -1.
+ <_>
+ 12 12 4 1 2.
+ <_>
+
+ <_>
+ 9 8 3 5 -1.
+ <_>
+ 10 8 1 5 3.
+ <_>
+
+ <_>
+ 9 5 2 6 -1.
+ <_>
+ 10 5 1 6 2.
+ <_>
+
+ <_>
+ 0 2 3 6 -1.
+ <_>
+ 0 4 3 2 3.
+ <_>
+
+ <_>
+ 12 11 4 2 -1.
+ <_>
+ 12 12 4 1 2.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 4 11 4 2 -1.
+ <_>
+ 4 12 4 1 2.
+ <_>
+
+ <_>
+ 8 8 3 5 -1.
+ <_>
+ 9 8 1 5 3.
+ <_>
+
+ <_>
+ 9 3 3 1 -1.
+ <_>
+ 10 3 1 1 3.
+ <_>
+
+ <_>
+ 16 5 3 8 -1.
+ <_>
+ 17 5 1 8 3.
+ <_>
+
+ <_>
+ 8 3 3 1 -1.
+ <_>
+ 9 3 1 1 3.
+ <_>
+
+ <_>
+ 1 5 3 8 -1.
+ <_>
+ 2 5 1 8 3.
+ <_>
+
+ <_>
+ 10 1 3 3 -1.
+ <_>
+ 11 1 1 3 3.
+ <_>
+
+ <_>
+ 17 5 2 4 -1.
+ <_>
+ 17 5 1 4 2.
+ <_>
+
+ <_>
+ 2 8 14 3 -1.
+ <_>
+ 2 9 14 1 3.
+ <_>
+
+ <_>
+ 9 7 1 3 -1.
+ <_>
+ 9 8 1 1 3.
+ <_>
+
+ <_>
+ 6 1 8 10 -1.
+ <_>
+ 6 6 8 5 2.
+ <_>
+
+ <_>
+ 13 0 6 8 -1.
+ <_>
+ 16 0 3 4 2.
+ <_>
+ 13 4 3 4 2.
+ <_>
+
+ <_>
+ 1 5 2 4 -1.
+ <_>
+ 2 5 1 4 2.
+ <_>
+
+ <_>
+ 4 2 12 2 -1.
+ <_>
+ 4 3 12 1 2.
+ <_>
+
+ <_>
+ 8 8 4 4 -1.
+ <_>
+ 8 10 4 2 2.
+ <_>
+
+ <_>
+ 5 6 12 4 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 1 2 8 1 -1.
+ <_>
+ 5 2 4 1 2.
+ <_>
+
+ <_>
+ 1 1 6 10 -1.
+ <_>
+ 3 1 2 10 3.
+ <_>
+
+ <_>
+ 8 6 8 2 -1.
+ <_>
+ 8 6 4 2 2.
+ <_>
+
+ <_>
+ 10 7 6 6 -1.
+ <_>
+ 12 7 2 6 3.
+ <_>
+
+ <_>
+ 4 6 8 2 -1.
+ <_>
+ 8 6 4 2 2.
+ <_>
+
+ <_>
+ 4 7 6 6 -1.
+ <_>
+ 6 7 2 6 3.
+ <_>
+
+ <_>
+ 3 14 16 4 -1.
+ <_>
+ 3 16 16 2 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 8 12 3 3 -1.
+ <_>
+ 8 13 3 1 3.
+ <_>
+
+ <_>
+ 5 12 6 1 -1.
+ <_>
+ 8 12 3 1 2.
+ <_>
+
+ <_>
+ 18 10 2 3 -1.
+ <_>
+ 18 11 2 1 3.
+ <_>
+
+ <_>
+ 16 8 4 6 -1.
+ <_>
+ 16 10 4 2 3.
+ <_>
+
+ <_>
+ 8 3 2 1 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+
+ <_>
+ 7 1 3 9 -1.
+ <_>
+ 8 1 1 9 3.
+ <_>
+
+ <_>
+ 5 11 11 6 -1.
+ <_>
+ 5 14 11 3 2.
+ <_>
+
+ <_>
+ 12 2 3 14 -1.
+ <_>
+ 12 9 3 7 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 3 5 12 5 -1.
+ <_>
+ 7 5 4 5 3.
+ <_>
+
+ <_>
+ 1 2 6 3 -1.
+ <_>
+ 4 2 3 3 2.
+ <_>
+
+ <_>
+ 5 5 6 10 -1.
+ <_>
+ 5 5 3 5 2.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 2 2.
+ <_>
+
+ <_>
+ 16 18 2 2 -1.
+ <_>
+ 16 18 1 2 2.
+ <_>
+
+ <_>
+ 8 4 2 5 -1.
+ <_>
+ 9 4 1 5 2.
+ <_>
+
+ <_>
+ 8 4 1 4 -1.
+ <_>
+ 8 6 1 2 2.
+ <_>
+
+ <_>
+ 7 15 12 4 -1.
+ <_>
+ 13 15 6 2 2.
+ <_>
+ 7 17 6 2 2.
+ <_>
+
+ <_>
+ 11 18 6 2 -1.
+ <_>
+ 11 19 6 1 2.
+ <_>
+
+ <_>
+ 7 7 4 10 -1.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 5 10 10 4 2.
+ <_>
+
+ <_>
+ 11 1 6 12 -1.
+ <_>
+ 14 1 3 6 2.
+ <_>
+ 11 7 3 6 2.
+ <_>
+
+ <_>
+ 5 8 12 1 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 4 7 3 6 -1.
+ <_>
+ 4 9 3 2 3.
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 4 13 3 2 2.
+ <_>
+
+ <_>
+ 14 16 2 2 -1.
+ <_>
+ 14 17 2 1 2.
+ <_>
+
+ <_>
+ 15 15 2 2 -1.
+ <_>
+ 15 16 2 1 2.
+ <_>
+
+ <_>
+ 7 12 6 2 -1.
+ <_>
+ 7 13 6 1 2.
+ <_>
+
+ <_>
+ 8 13 4 2 -1.
+ <_>
+ 8 14 4 1 2.
+ <_>
+
+ <_>
+ 11 1 6 12 -1.
+ <_>
+ 14 1 3 6 2.
+ <_>
+ 11 7 3 6 2.
+ <_>
+
+ <_>
+ 12 2 4 2 -1.
+ <_>
+ 12 3 4 1 2.
+ <_>
+
+ <_>
+ 3 10 12 6 -1.
+ <_>
+ 3 10 6 3 2.
+ <_>
+ 9 13 6 3 2.
+ <_>
+
+ <_>
+ 3 1 6 12 -1.
+ <_>
+ 3 1 3 6 2.
+ <_>
+ 6 7 3 6 2.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 5 1 10 8 -1.
+ <_>
+ 10 1 5 4 2.
+ <_>
+ 5 5 5 4 2.
+ <_>
+
+ <_>
+ 0 6 4 14 -1.
+ <_>
+ 0 6 2 7 2.
+ <_>
+ 2 13 2 7 2.
+ <_>
+
+ <_>
+ 1 15 12 4 -1.
+ <_>
+ 1 15 6 2 2.
+ <_>
+ 7 17 6 2 2.
+ <_>
+
+ <_>
+ 10 17 3 3 -1.
+ <_>
+ 11 17 1 3 3.
+ <_>
+
+ <_>
+ 11 2 2 6 -1.
+ <_>
+ 12 2 1 3 2.
+ <_>
+ 11 5 1 3 2.
+ <_>
+
+ <_>
+ 7 17 3 3 -1.
+ <_>
+ 8 17 1 3 3.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 10 15 4 2 -1.
+ <_>
+ 12 15 2 1 2.
+ <_>
+ 10 16 2 1 2.
+ <_>
+
+ <_>
+ 13 13 4 3 -1.
+ <_>
+ 13 14 4 1 3.
+ <_>
+
+ <_>
+ 3 13 4 3 -1.
+ <_>
+ 3 14 4 1 3.
+ <_>
+
+ <_>
+ 7 2 2 6 -1.
+ <_>
+ 7 2 1 3 2.
+ <_>
+ 8 5 1 3 2.
+ <_>
+
+ <_>
+ 2 1 16 3 -1.
+ <_>
+ 2 2 16 1 3.
+ <_>
+
+ <_>
+ 10 15 4 2 -1.
+ <_>
+ 12 15 2 1 2.
+ <_>
+ 10 16 2 1 2.
+ <_>
+
+ <_>
+ 6 15 4 2 -1.
+ <_>
+ 6 15 2 1 2.
+ <_>
+ 8 16 2 1 2.
+ <_>
+
+ <_>
+ 3 0 13 3 -1.
+ <_>
+ 3 1 13 1 3.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 6 7 9 2 -1.
+ <_>
+ 6 8 9 1 2.
+ <_>
+
+ <_>
+ 8 14 3 6 -1.
+ <_>
+ 9 14 1 6 3.
+ <_>
+
+ <_>
+ 9 10 2 2 -1.
+ <_>
+ 9 11 2 1 2.
+ <_>
+
+ <_>
+ 9 7 2 5 -1.
+ <_>
+ 9 7 1 5 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 9 7 2 5 -1.
+ <_>
+ 10 7 1 5 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 13 9 2 2 -1.
+ <_>
+ 13 9 1 2 2.
+ <_>
+
+ <_>
+ 4 3 12 11 -1.
+ <_>
+ 8 3 4 11 3.
+ <_>
+
+ <_>
+ 7 1 2 7 -1.
+ <_>
+ 8 1 1 7 2.
+ <_>
+
+ <_>
+ 7 4 3 8 -1.
+ <_>
+ 8 4 1 8 3.
+ <_>
+
+ <_>
+ 13 9 2 2 -1.
+ <_>
+ 13 9 1 2 2.
+ <_>
+
+ <_>
+ 11 6 2 2 -1.
+ <_>
+ 12 6 1 1 2.
+ <_>
+ 11 7 1 1 2.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 6 5 1 3 -1.
+ <_>
+ 6 6 1 1 3.
+ <_>
+
+ <_>
+ 13 9 2 2 -1.
+ <_>
+ 13 9 1 2 2.
+ <_>
+
+ <_>
+ 16 14 3 3 -1.
+ <_>
+ 16 15 3 1 3.
+ <_>
+
+ <_>
+ 5 9 2 2 -1.
+ <_>
+ 6 9 1 2 2.
+ <_>
+
+ <_>
+ 1 14 3 3 -1.
+ <_>
+ 1 15 3 1 3.
+ <_>
+
+ <_>
+ 13 1 1 6 -1.
+ <_>
+ 13 3 1 2 3.
+ <_>
+
+ <_>
+ 13 3 7 2 -1.
+ <_>
+ 13 4 7 1 2.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 0 13 20 7 2.
+ <_>
+
+ <_>
+ 0 4 3 6 -1.
+ <_>
+ 0 6 3 2 3.
+ <_>
+
+ <_>
+ 10 1 9 6 -1.
+ <_>
+ 10 3 9 2 3.
+ <_>
+
+ <_>
+ 8 0 12 5 -1.
+ <_>
+ 8 0 6 5 2.
+ <_>
+
+ <_>
+ 0 0 18 5 -1.
+ <_>
+ 6 0 6 5 3.
+ <_>
+
+ <_>
+ 1 1 9 6 -1.
+ <_>
+ 1 3 9 2 3.
+ <_>
+
+ <_>
+ 15 15 2 2 -1.
+ <_>
+ 15 16 2 1 2.
+ <_>
+
+ <_>
+ 13 16 3 4 -1.
+ <_>
+ 13 18 3 2 2.
+ <_>
+
+ <_>
+ 3 15 2 2 -1.
+ <_>
+ 3 16 2 1 2.
+ <_>
+
+ <_>
+ 4 16 3 4 -1.
+ <_>
+ 4 18 3 2 2.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 9 13 5 3 -1.
+ <_>
+ 9 14 5 1 3.
+ <_>
+
+ <_>
+ 0 0 3 6 -1.
+ <_>
+ 0 2 3 2 3.
+ <_>
+
+ <_>
+ 4 1 6 3 -1.
+ <_>
+ 6 1 2 3 3.
+ <_>
+
+ <_>
+ 9 13 4 3 -1.
+ <_>
+ 9 14 4 1 3.
+ <_>
+
+ <_>
+ 8 15 5 3 -1.
+ <_>
+ 8 16 5 1 3.
+ <_>
+
+ <_>
+ 8 3 3 2 -1.
+ <_>
+ 9 3 1 2 3.
+ <_>
+
+ <_>
+ 1 8 18 2 -1.
+ <_>
+ 1 9 18 1 2.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 8 13 6 3 -1.
+ <_>
+ 8 14 6 1 3.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 4 13 12 4 -1.
+ <_>
+ 4 13 6 2 2.
+ <_>
+ 10 15 6 2 2.
+ <_>
+
+ <_>
+ 10 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 13 4 2 8 -1.
+ <_>
+ 14 4 1 4 2.
+ <_>
+ 13 8 1 4 2.
+ <_>
+
+ <_>
+ 0 5 4 6 -1.
+ <_>
+ 0 7 4 2 3.
+ <_>
+
+ <_>
+ 8 7 2 2 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 13 0 3 7 -1.
+ <_>
+ 14 0 1 7 3.
+ <_>
+
+ <_>
+ 11 2 2 14 -1.
+ <_>
+ 11 2 1 14 2.
+ <_>
+
+ <_>
+ 4 0 3 7 -1.
+ <_>
+ 5 0 1 7 3.
+ <_>
+
+ <_>
+ 5 5 8 12 -1.
+ <_>
+ 5 5 4 6 2.
+ <_>
+ 9 11 4 6 2.
+ <_>
+
+ <_>
+ 11 4 6 3 -1.
+ <_>
+ 11 5 6 1 3.
+ <_>
+
+ <_>
+ 12 3 4 3 -1.
+ <_>
+ 12 4 4 1 3.
+ <_>
+
+ <_>
+ 5 5 10 12 -1.
+ <_>
+ 5 5 5 6 2.
+ <_>
+ 10 11 5 6 2.
+ <_>
+
+ <_>
+ 3 6 12 3 -1.
+ <_>
+ 9 6 6 3 2.
+ <_>
+
+ <_>
+ 9 6 2 7 -1.
+ <_>
+ 9 6 1 7 2.
+ <_>
+
+ <_>
+ 9 5 2 4 -1.
+ <_>
+ 9 5 1 4 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 5 1 6 4 -1.
+ <_>
+ 7 1 2 4 3.
+ <_>
+
+ <_>
+ 13 16 7 3 -1.
+ <_>
+ 13 17 7 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 0 16 7 3 -1.
+ <_>
+ 0 17 7 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 12 9 8 10 -1.
+ <_>
+ 12 9 4 10 2.
+ <_>
+
+ <_>
+ 8 10 12 5 -1.
+ <_>
+ 12 10 4 5 3.
+ <_>
+
+ <_>
+ 0 9 8 10 -1.
+ <_>
+ 4 9 4 10 2.
+ <_>
+
+ <_>
+ 0 10 12 5 -1.
+ <_>
+ 4 10 4 5 3.
+ <_>
+
+ <_>
+ 2 3 6 2 -1.
+ <_>
+ 5 3 3 2 2.
+ <_>
+
+ <_>
+ 0 0 17 9 -1.
+ <_>
+ 0 3 17 3 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 10 4 6 4 -1.
+ <_>
+ 12 4 2 4 3.
+ <_>
+
+ <_>
+ 0 10 20 4 -1.
+ <_>
+ 0 12 20 2 2.
+ <_>
+
+ <_>
+ 4 3 6 5 -1.
+ <_>
+ 6 3 2 5 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 3 17 4 2 -1.
+ <_>
+ 3 18 4 1 2.
+ <_>
+
+ <_>
+ 9 4 8 10 -1.
+ <_>
+ 9 9 8 5 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 8 6 4 4 2.
+ <_>
+
+ <_>
+ 3 4 14 12 -1.
+ <_>
+ 3 4 7 6 2.
+ <_>
+ 10 10 7 6 2.
+ <_>
+
+ <_>
+ 7 7 6 4 -1.
+ <_>
+ 9 7 2 4 3.
+ <_>
+
+ <_>
+ 6 7 9 4 -1.
+ <_>
+ 6 9 9 2 2.
+ <_>
+
+ <_>
+ 2 10 3 3 -1.
+ <_>
+ 2 11 3 1 3.
+ <_>
+
+ <_>
+ 4 6 2 9 -1.
+ <_>
+ 4 9 2 3 3.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 9 12 3 1 3.
+ <_>
+
+ <_>
+ 3 1 15 2 -1.
+ <_>
+ 3 2 15 1 2.
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ <_>
+
+ <_>
+ 9 6 2 5 -1.
+ <_>
+ 10 6 1 5 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 4 10 12 10 -1.
+ <_>
+ 4 15 12 5 2.
+ <_>
+
+ <_>
+ 0 10 4 2 -1.
+ <_>
+ 0 11 4 1 2.
+ <_>
+
+ <_>
+ 5 15 9 2 -1.
+ <_>
+ 5 16 9 1 2.
+ <_>
+
+ <_>
+ 8 14 6 3 -1.
+ <_>
+ 8 15 6 1 3.
+ <_>
+
+ <_>
+ 8 16 4 3 -1.
+ <_>
+ 8 17 4 1 3.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+
+ <_>
+ 3 3 14 2 -1.
+ <_>
+ 3 4 14 1 2.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 4 12 12 1 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 0 2 1 2 -1.
+ <_>
+ 0 3 1 1 2.
+ <_>
+
+ <_>
+ 7 4 4 6 -1.
+ <_>
+ 9 4 2 6 2.
+ <_>
+
+ <_>
+ 0 2 20 14 -1.
+ <_>
+ 10 2 10 7 2.
+ <_>
+ 0 9 10 7 2.
+ <_>
+
+ <_>
+ 14 6 1 3 -1.
+ <_>
+ 14 7 1 1 3.
+ <_>
+
+ <_>
+ 0 4 20 12 -1.
+ <_>
+ 0 4 10 6 2.
+ <_>
+ 10 10 10 6 2.
+ <_>
+
+ <_>
+ 8 12 1 2 -1.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 9 18 3 2 -1.
+ <_>
+ 10 18 1 2 3.
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 11 17 2 2 3.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 5 7 2 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 14 15 3 2 -1.
+ <_>
+ 14 16 3 1 2.
+ <_>
+
+ <_>
+ 11 3 3 4 -1.
+ <_>
+ 12 3 1 4 3.
+ <_>
+
+ <_>
+ 3 15 3 2 -1.
+ <_>
+ 3 16 3 1 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 9 13 3 7 -1.
+ <_>
+ 10 13 1 7 3.
+ <_>
+
+ <_>
+ 12 12 5 3 -1.
+ <_>
+ 12 13 5 1 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+ 10 9 6 2 2.
+ <_>
+
+ <_>
+ 6 19 14 1 -1.
+ <_>
+ 6 19 7 1 2.
+ <_>
+
+ <_>
+ 16 14 3 2 -1.
+ <_>
+ 16 15 3 1 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 1 0 4 10 -1.
+ <_>
+ 1 0 2 5 2.
+ <_>
+ 3 5 2 5 2.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 5 5 2 3.
+ <_>
+
+ <_>
+ 9 5 2 15 -1.
+ <_>
+ 9 10 2 5 3.
+ <_>
+
+ <_>
+ 0 3 5 6 -1.
+ <_>
+ 0 5 5 2 3.
+ <_>
+
+ <_>
+ 6 0 3 2 -1.
+ <_>
+ 7 0 1 2 3.
+ <_>
+
+ <_>
+ 12 8 8 2 -1.
+ <_>
+ 16 8 4 1 2.
+ <_>
+ 12 9 4 1 2.
+ <_>
+
+ <_>
+ 5 8 12 1 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 3 13 3 3 -1.
+ <_>
+ 3 14 3 1 3.
+ <_>
+
+ <_>
+ 5 13 3 2 -1.
+ <_>
+ 5 14 3 1 2.
+ <_>
+
+ <_>
+ 9 15 3 3 -1.
+ <_>
+ 9 16 3 1 3.
+ <_>
+
+ <_>
+ 7 15 7 3 -1.
+ <_>
+ 7 16 7 1 3.
+ <_>
+
+ <_>
+ 3 14 11 6 -1.
+ <_>
+ 3 16 11 2 3.
+ <_>
+
+ <_>
+ 0 19 14 1 -1.
+ <_>
+ 7 19 7 1 2.
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 11 17 2 2 3.
+ <_>
+
+ <_>
+ 12 11 6 2 -1.
+ <_>
+ 14 11 2 2 3.
+ <_>
+
+ <_>
+ 5 17 6 2 -1.
+ <_>
+ 7 17 2 2 3.
+ <_>
+
+ <_>
+ 0 1 9 10 -1.
+ <_>
+ 3 1 3 10 3.
+ <_>
+
+ <_>
+ 10 1 3 3 -1.
+ <_>
+ 11 1 1 3 3.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 7 1 3 3 -1.
+ <_>
+ 8 1 1 3 3.
+ <_>
+
+ <_>
+ 0 4 4 11 -1.
+ <_>
+ 2 4 2 11 2.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 6 0 8 10 -1.
+ <_>
+ 10 0 4 5 2.
+ <_>
+ 6 5 4 5 2.
+ <_>
+
+ <_>
+ 6 6 5 14 -1.
+ <_>
+ 6 13 5 7 2.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 8 12 4 7 2.
+ <_>
+
+ <_>
+ 7 7 6 5 -1.
+ <_>
+ 9 7 2 5 3.
+ <_>
+
+ <_>
+ 9 3 3 9 -1.
+ <_>
+ 9 6 3 3 3.
+ <_>
+
+ <_>
+ 8 1 3 3 -1.
+ <_>
+ 9 1 1 3 3.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 10 6 1 4 2.
+ <_>
+
+ <_>
+ 10 8 6 9 -1.
+ <_>
+ 10 8 3 9 2.
+ <_>
+
+ <_>
+ 16 4 3 8 -1.
+ <_>
+ 17 4 1 8 3.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 5 5 6 4 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+
+ <_>
+ 9 8 4 2 -1.
+ <_>
+ 9 9 4 1 2.
+ <_>
+
+ <_>
+ 11 7 2 2 -1.
+ <_>
+ 11 7 1 2 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 12 2 4 2.
+ <_>
+ 10 16 2 4 2.
+ <_>
+
+ <_>
+ 0 1 4 9 -1.
+ <_>
+ 0 4 4 3 3.
+ <_>
+
+ <_>
+ 9 10 3 3 -1.
+ <_>
+ 9 11 3 1 3.
+ <_>
+
+ <_>
+ 8 11 4 2 -1.
+ <_>
+ 8 12 4 1 2.
+ <_>
+
+ <_>
+ 7 8 4 2 -1.
+ <_>
+ 7 9 4 1 2.
+ <_>
+
+ <_>
+ 7 8 6 1 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 16 0 4 9 -1.
+ <_>
+ 16 0 2 9 2.
+ <_>
+
+ <_>
+ 16 0 3 6 -1.
+ <_>
+ 16 3 3 3 2.
+ <_>
+
+ <_>
+ 0 0 4 9 -1.
+ <_>
+ 2 0 2 9 2.
+ <_>
+
+ <_>
+ 1 0 3 6 -1.
+ <_>
+ 1 3 3 3 2.
+ <_>
+
+ <_>
+ 9 7 6 9 -1.
+ <_>
+ 11 7 2 9 3.
+ <_>
+
+ <_>
+ 10 6 3 6 -1.
+ <_>
+ 11 6 1 6 3.
+ <_>
+
+ <_>
+ 1 2 18 2 -1.
+ <_>
+ 1 2 9 1 2.
+ <_>
+ 10 3 9 1 2.
+ <_>
+
+ <_>
+ 5 8 6 8 -1.
+ <_>
+ 7 8 2 8 3.
+ <_>
+
+ <_>
+ 9 0 6 16 -1.
+ <_>
+ 11 0 2 16 3.
+ <_>
+
+ <_>
+ 14 1 6 18 -1.
+ <_>
+ 17 1 3 9 2.
+ <_>
+ 14 10 3 9 2.
+ <_>
+
+ <_>
+ 2 9 2 3 -1.
+ <_>
+ 2 10 2 1 3.
+ <_>
+
+ <_>
+ 0 1 6 18 -1.
+ <_>
+ 0 1 3 9 2.
+ <_>
+ 3 10 3 9 2.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 2 1 18 18 -1.
+ <_>
+ 2 10 18 9 2.
+ <_>
+
+ <_>
+ 6 3 3 1 -1.
+ <_>
+ 7 3 1 1 3.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 8 13 5 3 -1.
+ <_>
+ 8 14 5 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 3 12 5 3 -1.
+ <_>
+ 3 13 5 1 3.
+ <_>
+
+ <_>
+ 6 3 3 4 -1.
+ <_>
+ 7 3 1 4 3.
+ <_>
+
+ <_>
+ 11 10 2 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 5 8 12 1 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 8 4 4 8 -1.
+ <_>
+ 10 4 2 8 2.
+ <_>
+
+ <_>
+ 6 6 8 5 -1.
+ <_>
+ 10 6 4 5 2.
+ <_>
+
+ <_>
+ 10 4 6 4 -1.
+ <_>
+ 12 4 2 4 3.
+ <_>
+
+ <_>
+ 12 7 2 2 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+ 12 8 1 1 2.
+ <_>
+
+ <_>
+ 3 5 10 8 -1.
+ <_>
+ 3 9 10 4 2.
+ <_>
+
+ <_>
+ 7 1 2 12 -1.
+ <_>
+ 7 7 2 6 2.
+ <_>
+
+ <_>
+ 12 7 2 2 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+ 12 8 1 1 2.
+ <_>
+
+ <_>
+ 11 13 1 6 -1.
+ <_>
+ 11 16 1 3 2.
+ <_>
+
+ <_>
+ 5 1 6 15 -1.
+ <_>
+ 7 1 2 15 3.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 17 5 2 2 -1.
+ <_>
+ 17 6 2 1 2.
+ <_>
+
+ <_>
+ 10 3 4 10 -1.
+ <_>
+ 12 3 2 5 2.
+ <_>
+ 10 8 2 5 2.
+ <_>
+
+ <_>
+ 1 5 2 2 -1.
+ <_>
+ 1 6 2 1 2.
+ <_>
+
+ <_>
+ 7 10 2 2 -1.
+ <_>
+ 7 10 1 1 2.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 10 12 7 2 2.
+ <_>
+ 3 14 7 2 2.
+ <_>
+
+ <_>
+ 9 15 3 2 -1.
+ <_>
+ 9 16 3 1 2.
+ <_>
+
+ <_>
+ 1 13 3 3 -1.
+ <_>
+ 1 14 3 1 3.
+ <_>
+
+ <_>
+ 0 3 1 2 -1.
+ <_>
+ 0 4 1 1 2.
+ <_>
+
+ <_>
+ 7 7 6 1 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 0 4 16 6 -1.
+ <_>
+ 0 6 16 2 3.
+ <_>
+
+ <_>
+ 9 3 2 14 -1.
+ <_>
+ 9 10 2 7 2.
+ <_>
+
+ <_>
+ 12 0 4 3 -1.
+ <_>
+ 12 0 2 3 2.
+ <_>
+
+ <_>
+ 4 18 12 2 -1.
+ <_>
+ 8 18 4 2 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 14 1 2 8 -1.
+ <_>
+ 15 1 1 4 2.
+ <_>
+ 14 5 1 4 2.
+ <_>
+
+ <_>
+ 3 4 9 1 -1.
+ <_>
+ 6 4 3 1 3.
+ <_>
+
+ <_>
+ 3 3 4 2 -1.
+ <_>
+ 3 4 4 1 2.
+ <_>
+
+ <_>
+ 11 15 2 4 -1.
+ <_>
+ 11 17 2 2 2.
+ <_>
+
+ <_>
+ 14 13 2 6 -1.
+ <_>
+ 14 15 2 2 3.
+ <_>
+
+ <_>
+ 6 6 1 6 -1.
+ <_>
+ 6 9 1 3 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 14 8 4 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 10 11 4 8 -1.
+ <_>
+ 10 15 4 4 2.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 5 4 6 10 -1.
+ <_>
+ 8 4 3 10 2.
+ <_>
+
+ <_>
+ 14 2 6 3 -1.
+ <_>
+ 14 3 6 1 3.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 8 1 4 6 -1.
+ <_>
+ 8 3 4 2 3.
+ <_>
+
+ <_>
+ 3 5 13 8 -1.
+ <_>
+ 3 9 13 4 2.
+ <_>
+
+ <_>
+ 12 5 5 3 -1.
+ <_>
+ 12 6 5 1 3.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 5 16 15 2 3.
+ <_>
+
+ <_>
+ 3 5 5 3 -1.
+ <_>
+ 3 6 5 1 3.
+ <_>
+
+ <_>
+ 9 14 2 6 -1.
+ <_>
+ 9 14 1 3 2.
+ <_>
+ 10 17 1 3 2.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 9 13 3 2 -1.
+ <_>
+ 9 14 3 1 2.
+ <_>
+
+ <_>
+ 0 2 6 3 -1.
+ <_>
+ 0 3 6 1 3.
+ <_>
+
+ <_>
+ 0 1 9 11 -1.
+ <_>
+ 3 1 3 11 3.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 10 13 2 3 2.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 3 12 7 2 2.
+ <_>
+ 10 14 7 2 2.
+ <_>
+
+ <_>
+ 7 14 1 4 -1.
+ <_>
+ 7 16 1 2 2.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 10 13 2 3 2.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 8 13 2 3 2.
+ <_>
+ 10 16 2 3 2.
+ <_>
+
+ <_>
+ 9 14 1 3 -1.
+ <_>
+ 9 15 1 1 3.
+ <_>
+
+ <_>
+ 10 15 2 3 -1.
+ <_>
+ 10 16 2 1 3.
+ <_>
+
+ <_>
+ 11 16 1 2 -1.
+ <_>
+ 11 17 1 1 2.
+ <_>
+
+ <_>
+ 9 0 2 2 -1.
+ <_>
+ 9 1 2 1 2.
+ <_>
+
+ <_>
+ 0 1 5 8 -1.
+ <_>
+ 0 5 5 4 2.
+ <_>
+
+ <_>
+ 10 14 2 3 -1.
+ <_>
+ 10 15 2 1 3.
+ <_>
+
+ <_>
+ 10 13 2 3 -1.
+ <_>
+ 10 14 2 1 3.
+ <_>
+
+ <_>
+ 0 3 16 6 -1.
+ <_>
+ 0 6 16 3 2.
+ <_>
+
+ <_>
+ 4 1 2 2 -1.
+ <_>
+ 5 1 1 2 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 10 8 2 12 -1.
+ <_>
+ 10 12 2 4 3.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 7 0 2 8 3.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 10 7 1 6 3.
+ <_>
+
+ <_>
+ 8 12 10 8 -1.
+ <_>
+ 8 16 10 4 2.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 10 7 6 2 2.
+ <_>
+
+ <_>
+ 8 6 8 3 -1.
+ <_>
+ 8 6 4 3 2.
+ <_>
+
+ <_>
+ 16 15 3 3 -1.
+ <_>
+ 16 16 3 1 3.
+ <_>
+
+ <_>
+ 4 6 12 3 -1.
+ <_>
+ 10 6 6 3 2.
+ <_>
+
+ <_>
+ 7 8 3 5 -1.
+ <_>
+ 8 8 1 5 3.
+ <_>
+
+ <_>
+ 0 10 20 2 -1.
+ <_>
+ 10 10 10 1 2.
+ <_>
+ 0 11 10 1 2.
+ <_>
+
+ <_>
+ 11 16 9 4 -1.
+ <_>
+ 14 16 3 4 3.
+ <_>
+
+ <_>
+ 0 5 3 4 -1.
+ <_>
+ 1 5 1 4 3.
+ <_>
+
+ <_>
+ 8 15 4 2 -1.
+ <_>
+ 8 15 2 1 2.
+ <_>
+ 10 16 2 1 2.
+ <_>
+
+ <_>
+ 1 8 19 3 -1.
+ <_>
+ 1 9 19 1 3.
+ <_>
+
+ <_>
+ 15 16 3 3 -1.
+ <_>
+ 15 17 3 1 3.
+ <_>
+
+ <_>
+ 0 4 20 10 -1.
+ <_>
+ 0 4 10 5 2.
+ <_>
+ 10 9 10 5 2.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 8 6 6 6 -1.
+ <_>
+ 10 6 2 6 3.
+ <_>
+
+ <_>
+ 16 4 4 6 -1.
+ <_>
+ 16 6 4 2 3.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 7 13 4 3 -1.
+ <_>
+ 7 14 4 1 3.
+ <_>
+
+ <_>
+ 13 13 6 2 -1.
+ <_>
+ 13 14 6 1 2.
+ <_>
+
+ <_>
+ 14 12 2 3 -1.
+ <_>
+ 14 13 2 1 3.
+ <_>
+
+ <_>
+ 1 13 6 2 -1.
+ <_>
+ 1 14 6 1 2.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 17 4 3 5 -1.
+ <_>
+ 18 4 1 5 3.
+ <_>
+
+ <_>
+ 5 5 14 8 -1.
+ <_>
+ 12 5 7 4 2.
+ <_>
+ 5 9 7 4 2.
+ <_>
+
+ <_>
+ 6 8 6 5 -1.
+ <_>
+ 8 8 2 5 3.
+ <_>
+
+ <_>
+ 0 4 4 6 -1.
+ <_>
+ 0 6 4 2 3.
+ <_>
+
+ <_>
+ 9 1 3 6 -1.
+ <_>
+ 10 1 1 6 3.
+ <_>
+
+ <_>
+ 10 4 6 3 -1.
+ <_>
+ 10 5 6 1 3.
+ <_>
+
+ <_>
+ 8 1 3 6 -1.
+ <_>
+ 9 1 1 6 3.
+ <_>
+
+ <_>
+ 4 4 6 3 -1.
+ <_>
+ 4 5 6 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 12 11 4 2 -1.
+ <_>
+ 12 12 4 1 2.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 0 2 10 3 2.
+ <_>
+ 10 5 10 3 2.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 2 10 16 4 -1.
+ <_>
+ 10 10 8 2 2.
+ <_>
+ 2 12 8 2 2.
+ <_>
+
+ <_>
+ 3 10 16 6 -1.
+ <_>
+ 11 10 8 3 2.
+ <_>
+ 3 13 8 3 2.
+ <_>
+
+ <_>
+ 1 10 16 6 -1.
+ <_>
+ 1 10 8 3 2.
+ <_>
+ 9 13 8 3 2.
+ <_>
+
+ <_>
+ 4 7 2 4 -1.
+ <_>
+ 5 7 1 4 2.
+ <_>
+
+ <_>
+ 11 16 9 4 -1.
+ <_>
+ 14 16 3 4 3.
+ <_>
+
+ <_>
+ 3 16 14 4 -1.
+ <_>
+ 10 16 7 2 2.
+ <_>
+ 3 18 7 2 2.
+ <_>
+
+ <_>
+ 0 16 9 4 -1.
+ <_>
+ 3 16 3 4 3.
+ <_>
+
+ <_>
+ 1 14 6 6 -1.
+ <_>
+ 1 14 3 3 2.
+ <_>
+ 4 17 3 3 2.
+ <_>
+
+ <_>
+ 9 0 2 1 -1.
+ <_>
+ 9 0 1 1 2.
+ <_>
+
+ <_>
+ 6 7 8 10 -1.
+ <_>
+ 10 7 4 5 2.
+ <_>
+ 6 12 4 5 2.
+ <_>
+
+ <_>
+ 2 15 1 2 -1.
+ <_>
+ 2 16 1 1 2.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 7 8 6 2 -1.
+ <_>
+ 7 9 6 1 2.
+ <_>
+
+ <_>
+ 9 2 2 15 -1.
+ <_>
+ 9 7 2 5 3.
+ <_>
+
+ <_>
+ 5 6 2 2 -1.
+ <_>
+ 5 7 2 1 2.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 7 8 1 3.
+ <_>
+
+ <_>
+ 12 13 5 6 -1.
+ <_>
+ 12 15 5 2 3.
+ <_>
+
+ <_>
+ 0 0 20 18 -1.
+ <_>
+ 0 9 20 9 2.
+ <_>
+
+ <_>
+ 5 1 6 6 -1.
+ <_>
+ 7 1 2 6 3.
+ <_>
+
+ <_>
+ 5 1 4 9 -1.
+ <_>
+ 7 1 2 9 2.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 14 16 5 2 -1.
+ <_>
+ 14 17 5 1 2.
+ <_>
+
+ <_>
+ 0 5 15 10 -1.
+ <_>
+ 0 10 15 5 2.
+ <_>
+
+ <_>
+ 7 15 4 2 -1.
+ <_>
+ 7 15 2 1 2.
+ <_>
+ 9 16 2 1 2.
+ <_>
+
+ <_>
+ 14 11 2 2 -1.
+ <_>
+ 14 12 2 1 2.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ <_>
+
+ <_>
+ 4 11 2 2 -1.
+ <_>
+ 4 12 2 1 2.
+ <_>
+
+ <_>
+ 8 8 3 3 -1.
+ <_>
+ 8 9 3 1 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 1 9 4 10 -1.
+ <_>
+ 1 9 2 5 2.
+ <_>
+ 3 14 2 5 2.
+ <_>
+
+ <_>
+ 0 12 6 8 -1.
+ <_>
+ 2 12 2 8 3.
+ <_>
+
+ <_>
+ 9 1 4 2 -1.
+ <_>
+ 11 1 2 1 2.
+ <_>
+ 9 2 2 1 2.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 7 0 2 3 -1.
+ <_>
+ 7 1 2 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 9 14 2 3 3.
+ <_>
+
+ <_>
+ 9 6 6 4 -1.
+ <_>
+ 11 6 2 4 3.
+ <_>
+
+ <_>
+ 8 10 8 3 -1.
+ <_>
+ 8 10 4 3 2.
+ <_>
+
+ <_>
+ 6 10 4 3 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+
+ <_>
+ 6 8 3 5 -1.
+ <_>
+ 7 8 1 5 3.
+ <_>
+
+ <_>
+ 0 4 8 1 -1.
+ <_>
+ 4 4 4 1 2.
+ <_>
+
+ <_>
+ 8 2 2 6 -1.
+ <_>
+ 8 2 1 3 2.
+ <_>
+ 9 5 1 3 2.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 12 10 3 6 -1.
+ <_>
+ 12 13 3 3 2.
+ <_>
+
+ <_>
+ 8 15 1 4 -1.
+ <_>
+ 8 17 1 2 2.
+ <_>
+
+ <_>
+ 5 16 2 4 -1.
+ <_>
+ 5 18 2 2 2.
+ <_>
+
+ <_>
+ 6 2 8 12 -1.
+ <_>
+ 6 6 8 4 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 8 12 3 1 3.
+ <_>
+
+ <_>
+ 12 11 3 6 -1.
+ <_>
+ 12 14 3 3 2.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 5 7 10 12 -1.
+ <_>
+ 5 7 5 6 2.
+ <_>
+ 10 13 5 6 2.
+ <_>
+
+ <_>
+ 4 4 2 10 -1.
+ <_>
+ 4 9 2 5 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+
+ <_>
+ 11 9 6 2 -1.
+ <_>
+ 11 9 3 2 2.
+ <_>
+
+ <_>
+ 4 7 2 2 -1.
+ <_>
+ 5 7 1 2 2.
+ <_>
+
+ <_>
+ 0 2 4 6 -1.
+ <_>
+ 0 4 4 2 3.
+ <_>
+
+ <_>
+ 10 7 3 4 -1.
+ <_>
+ 11 7 1 4 3.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 9 1 1 3 -1.
+ <_>
+ 9 2 1 1 3.
+ <_>
+
+ <_>
+ 0 6 16 6 -1.
+ <_>
+ 0 6 8 3 2.
+ <_>
+ 8 9 8 3 2.
+ <_>
+
+ <_>
+ 10 15 3 3 -1.
+ <_>
+ 10 16 3 1 3.
+ <_>
+
+ <_>
+ 9 14 4 3 -1.
+ <_>
+ 9 15 4 1 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 3 0 14 2 -1.
+ <_>
+ 3 1 14 1 2.
+ <_>
+
+ <_>
+ 9 14 3 3 -1.
+ <_>
+ 9 15 3 1 3.
+ <_>
+
+ <_>
+ 10 15 3 3 -1.
+ <_>
+ 10 16 3 1 3.
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 9 16 2 3 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 12 11 3 6 -1.
+ <_>
+ 12 14 3 3 2.
+ <_>
+
+ <_>
+ 8 12 5 2 -1.
+ <_>
+ 8 13 5 1 2.
+ <_>
+
+ <_>
+ 5 11 3 6 -1.
+ <_>
+ 5 14 3 3 2.
+ <_>
+
+ <_>
+ 8 12 3 2 -1.
+ <_>
+ 8 13 3 1 2.
+ <_>
+
+ <_>
+ 11 13 7 6 -1.
+ <_>
+ 11 15 7 2 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 3 13 14 4 -1.
+ <_>
+ 3 13 7 2 2.
+ <_>
+ 10 15 7 2 2.
+ <_>
+
+ <_>
+ 8 14 4 6 -1.
+ <_>
+ 8 14 2 3 2.
+ <_>
+ 10 17 2 3 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 7 16 6 2 -1.
+ <_>
+ 9 16 2 2 3.
+ <_>
+
+ <_>
+ 7 7 6 2 -1.
+ <_>
+ 7 8 6 1 2.
+ <_>
+
+ <_>
+ 3 9 13 3 -1.
+ <_>
+ 3 10 13 1 3.
+ <_>
+
+ <_>
+ 9 8 3 4 -1.
+ <_>
+ 9 10 3 2 2.
+ <_>
+
+ <_>
+ 8 10 4 3 -1.
+ <_>
+ 8 11 4 1 3.
+ <_>
+
+ <_>
+ 7 7 3 4 -1.
+ <_>
+ 8 7 1 4 3.
+ <_>
+
+ <_>
+ 8 7 3 5 -1.
+ <_>
+ 9 7 1 5 3.
+ <_>
+
+ <_>
+ 12 3 3 4 -1.
+ <_>
+ 13 3 1 4 3.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+
+ <_>
+ 5 3 3 4 -1.
+ <_>
+ 6 3 1 4 3.
+ <_>
+
+ <_>
+ 3 7 12 1 -1.
+ <_>
+ 7 7 4 1 3.
+ <_>
+
+ <_>
+ 12 5 3 3 -1.
+ <_>
+ 12 6 3 1 3.
+ <_>
+
+ <_>
+ 11 2 6 2 -1.
+ <_>
+ 11 3 6 1 2.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 2 7 1 2.
+ <_>
+ 10 3 7 1 2.
+ <_>
+
+ <_>
+ 6 1 7 14 -1.
+ <_>
+ 6 8 7 7 2.
+ <_>
+
+ <_>
+ 8 0 12 5 -1.
+ <_>
+ 8 0 6 5 2.
+ <_>
+
+ <_>
+ 1 9 18 1 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 0 0 10 5 -1.
+ <_>
+ 5 0 5 5 2.
+ <_>
+
+ <_>
+ 2 5 8 15 -1.
+ <_>
+ 2 10 8 5 3.
+ <_>
+
+ <_>
+ 12 5 3 3 -1.
+ <_>
+ 12 6 3 1 3.
+ <_>
+
+ <_>
+ 13 4 2 3 -1.
+ <_>
+ 13 5 2 1 3.
+ <_>
+
+ <_>
+ 2 15 4 3 -1.
+ <_>
+ 2 16 4 1 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 11 6 2 2 -1.
+ <_>
+ 12 6 1 1 2.
+ <_>
+ 11 7 1 1 2.
+ <_>
+
+ <_>
+ 12 4 4 3 -1.
+ <_>
+ 12 5 4 1 3.
+ <_>
+
+ <_>
+ 7 6 2 2 -1.
+ <_>
+ 7 6 1 1 2.
+ <_>
+ 8 7 1 1 2.
+ <_>
+
+ <_>
+ 4 4 4 3 -1.
+ <_>
+ 4 5 4 1 3.
+ <_>
+
+ <_>
+ 11 4 3 3 -1.
+ <_>
+ 12 4 1 3 3.
+ <_>
+
+ <_>
+ 9 3 2 1 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+
+ <_>
+ 4 5 5 3 -1.
+ <_>
+ 4 6 5 1 3.
+ <_>
+
+ <_>
+ 4 6 4 3 -1.
+ <_>
+ 4 7 4 1 3.
+ <_>
+
+ <_>
+ 11 4 3 3 -1.
+ <_>
+ 12 4 1 3 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 6 4 3 3 -1.
+ <_>
+ 7 4 1 3 3.
+ <_>
+
+ <_>
+ 4 14 1 3 -1.
+ <_>
+ 4 15 1 1 3.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+
+ <_>
+ 17 0 3 2 -1.
+ <_>
+ 17 1 3 1 2.
+ <_>
+
+ <_>
+ 8 10 2 9 -1.
+ <_>
+ 8 13 2 3 3.
+ <_>
+
+ <_>
+ 0 8 18 2 -1.
+ <_>
+ 0 9 18 1 2.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ <_>
+
+ <_>
+ 1 14 6 6 -1.
+ <_>
+ 1 14 3 3 2.
+ <_>
+ 4 17 3 3 2.
+ <_>
+
+ <_>
+ 0 18 6 2 -1.
+ <_>
+ 0 19 6 1 2.
+ <_>
+
+ <_>
+ 12 9 4 3 -1.
+ <_>
+ 12 9 2 3 2.
+ <_>
+
+ <_>
+ 9 8 3 8 -1.
+ <_>
+ 10 8 1 8 3.
+ <_>
+
+ <_>
+ 4 9 4 3 -1.
+ <_>
+ 6 9 2 3 2.
+ <_>
+
+ <_>
+ 4 18 6 1 -1.
+ <_>
+ 6 18 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 2 -1.
+ <_>
+ 10 7 1 2 3.
+ <_>
+
+ <_>
+ 6 7 8 12 -1.
+ <_>
+ 10 7 4 6 2.
+ <_>
+ 6 13 4 6 2.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 9 7 1 2 3.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 3 16 14 4 -1.
+ <_>
+ 10 16 7 2 2.
+ <_>
+ 3 18 7 2 2.
+ <_>
+
+ <_>
+ 1 14 18 4 -1.
+ <_>
+ 10 14 9 2 2.
+ <_>
+ 1 16 9 2 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 0 4 20 12 -1.
+ <_>
+ 0 4 10 6 2.
+ <_>
+ 10 10 10 6 2.
+ <_>
+
+ <_>
+ 5 5 10 12 -1.
+ <_>
+ 10 5 5 6 2.
+ <_>
+ 5 11 5 6 2.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 8 12 4 1 3.
+ <_>
+
+ <_>
+ 8 12 3 3 -1.
+ <_>
+ 8 13 3 1 3.
+ <_>
+
+ <_>
+ 13 13 5 6 -1.
+ <_>
+ 13 15 5 2 3.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 9 0 2 6 3.
+ <_>
+
+ <_>
+ 2 13 5 6 -1.
+ <_>
+ 2 15 5 2 3.
+ <_>
+
+ <_>
+ 0 4 2 12 -1.
+ <_>
+ 0 4 1 6 2.
+ <_>
+ 1 10 1 6 2.
+ <_>
+
+ <_>
+ 9 19 3 1 -1.
+ <_>
+ 10 19 1 1 3.
+ <_>
+
+ <_>
+ 18 0 2 6 -1.
+ <_>
+ 18 2 2 2 3.
+ <_>
+
+ <_>
+ 0 3 1 6 -1.
+ <_>
+ 0 5 1 2 3.
+ <_>
+
+ <_>
+ 0 0 3 6 -1.
+ <_>
+ 0 2 3 2 3.
+ <_>
+
+ <_>
+ 17 2 3 7 -1.
+ <_>
+ 18 2 1 7 3.
+ <_>
+
+ <_>
+ 10 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 0 2 3 7 -1.
+ <_>
+ 1 2 1 7 3.
+ <_>
+
+ <_>
+ 6 2 4 8 -1.
+ <_>
+ 8 2 2 8 2.
+ <_>
+
+ <_>
+ 13 0 1 4 -1.
+ <_>
+ 13 2 1 2 2.
+ <_>
+
+ <_>
+ 5 1 12 5 -1.
+ <_>
+ 9 1 4 5 3.
+ <_>
+
+ <_>
+ 6 0 1 4 -1.
+ <_>
+ 6 2 1 2 2.
+ <_>
+
+ <_>
+ 3 1 12 5 -1.
+ <_>
+ 7 1 4 5 3.
+ <_>
+
+ <_>
+ 9 12 3 8 -1.
+ <_>
+ 10 12 1 8 3.
+ <_>
+
+ <_>
+ 7 13 6 1 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 5 16 7 3 -1.
+ <_>
+ 5 17 7 1 3.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 14 20 2 3.
+ <_>
+
+ <_>
+ 4 18 14 2 -1.
+ <_>
+ 4 19 14 1 2.
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 9 12 1 8 3.
+ <_>
+
+ <_>
+ 7 13 3 3 -1.
+ <_>
+ 7 14 3 1 3.
+ <_>
+
+ <_>
+ 5 5 12 10 -1.
+ <_>
+ 11 5 6 5 2.
+ <_>
+ 5 10 6 5 2.
+ <_>
+
+ <_>
+ 8 1 5 10 -1.
+ <_>
+ 8 6 5 5 2.
+ <_>
+
+ <_>
+ 5 4 9 12 -1.
+ <_>
+ 5 10 9 6 2.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 7 15 6 2 3.
+ <_>
+
+ <_>
+ 8 4 5 16 -1.
+ <_>
+ 8 12 5 8 2.
+ <_>
+
+ <_>
+ 8 12 4 6 -1.
+ <_>
+ 8 15 4 3 2.
+ <_>
+
+ <_>
+ 7 13 2 2 -1.
+ <_>
+ 7 13 1 1 2.
+ <_>
+ 8 14 1 1 2.
+ <_>
+
+ <_>
+ 7 12 2 2 -1.
+ <_>
+ 7 12 1 1 2.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 18 0 2 14 -1.
+ <_>
+ 18 0 1 14 2.
+ <_>
+
+ <_>
+ 12 11 7 2 -1.
+ <_>
+ 12 12 7 1 2.
+ <_>
+
+ <_>
+ 1 18 1 2 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 2 18 1 2 -1.
+ <_>
+ 2 19 1 1 2.
+ <_>
+
+ <_>
+ 9 7 2 1 -1.
+ <_>
+ 9 7 1 1 2.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 9 6 1 3 2.
+ <_>
+
+ <_>
+ 3 1 2 2 -1.
+ <_>
+ 4 1 1 2 2.
+ <_>
+
+ <_>
+ 3 0 3 2 -1.
+ <_>
+ 3 1 3 1 2.
+ <_>
+
+ <_>
+ 12 10 3 4 -1.
+ <_>
+ 12 12 3 2 2.
+ <_>
+
+ <_>
+ 7 7 8 2 -1.
+ <_>
+ 7 8 8 1 2.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 8 10 3 2 2.
+ <_>
+
+ <_>
+ 7 12 6 3 -1.
+ <_>
+ 7 13 6 1 3.
+ <_>
+
+ <_>
+ 0 2 10 3 -1.
+ <_>
+ 5 2 5 3 2.
+ <_>
+
+ <_>
+ 0 1 20 6 -1.
+ <_>
+ 0 3 20 2 3.
+ <_>
+
+ <_>
+ 7 6 6 3 -1.
+ <_>
+ 9 6 2 3 3.
+ <_>
+
+ <_>
+ 3 7 14 4 -1.
+ <_>
+ 3 9 14 2 2.
+ <_>
+
+ <_>
+ 5 7 3 6 -1.
+ <_>
+ 5 9 3 2 3.
+ <_>
+
+ <_>
+ 8 8 3 12 -1.
+ <_>
+ 8 12 3 4 3.
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 12 17 3 1 2.
+ <_>
+ 9 18 3 1 2.
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 10 18 4 1 3.
+ <_>
+
+ <_>
+ 4 2 4 2 -1.
+ <_>
+ 4 3 4 1 2.
+ <_>
+
+ <_>
+ 7 3 6 14 -1.
+ <_>
+ 9 3 2 14 3.
+ <_>
+
+ <_>
+ 15 13 1 6 -1.
+ <_>
+ 15 16 1 3 2.
+ <_>
+
+ <_>
+ 13 14 2 6 -1.
+ <_>
+ 13 16 2 2 3.
+ <_>
+
+ <_>
+ 4 11 5 6 -1.
+ <_>
+ 4 14 5 3 2.
+ <_>
+
+ <_>
+ 4 17 4 2 -1.
+ <_>
+ 6 17 2 2 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 6 5 10 12 -1.
+ <_>
+ 11 5 5 6 2.
+ <_>
+ 6 11 5 6 2.
+ <_>
+
+ <_>
+ 4 0 2 12 -1.
+ <_>
+ 4 0 1 6 2.
+ <_>
+ 5 6 1 6 2.
+ <_>
+
+ <_>
+ 4 1 6 2 -1.
+ <_>
+ 6 1 2 2 3.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 5 5 15 6 -1.
+ <_>
+ 5 7 15 2 3.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 10 9 1 2.
+ <_>
+ 10 11 9 1 2.
+ <_>
+
+ <_>
+ 1 6 15 7 -1.
+ <_>
+ 6 6 5 7 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 9 14 3 3 -1.
+ <_>
+ 9 15 3 1 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 8 13 3 2 -1.
+ <_>
+ 8 14 3 1 2.
+ <_>
+
+ <_>
+ 15 14 5 3 -1.
+ <_>
+ 15 15 5 1 3.
+ <_>
+
+ <_>
+ 0 14 20 1 -1.
+ <_>
+ 0 14 10 1 2.
+ <_>
+
+ <_>
+ 0 14 6 3 -1.
+ <_>
+ 0 15 6 1 3.
+ <_>
+
+ <_>
+ 5 3 4 2 -1.
+ <_>
+ 5 4 4 1 2.
+ <_>
+
+ <_>
+ 0 6 20 1 -1.
+ <_>
+ 0 6 10 1 2.
+ <_>
+
+ <_>
+ 6 3 10 14 -1.
+ <_>
+ 11 3 5 7 2.
+ <_>
+ 6 10 5 7 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 6 3 4 3 2.
+ <_>
+ 10 6 4 3 2.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 6 3 10 14 -1.
+ <_>
+ 11 3 5 7 2.
+ <_>
+ 6 10 5 7 2.
+ <_>
+
+ <_>
+ 5 7 2 1 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 4 3 10 14 -1.
+ <_>
+ 4 3 5 7 2.
+ <_>
+ 9 10 5 7 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 0 3 20 1 -1.
+ <_>
+ 0 3 10 1 2.
+ <_>
+
+ <_>
+ 2 1 10 3 -1.
+ <_>
+ 2 2 10 1 3.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 10 7 1 6 3.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 16 3 4 6 -1.
+ <_>
+ 16 5 4 2 3.
+ <_>
+
+ <_>
+ 15 6 2 12 -1.
+ <_>
+ 16 6 1 6 2.
+ <_>
+ 15 12 1 6 2.
+ <_>
+
+ <_>
+ 1 4 18 10 -1.
+ <_>
+ 1 4 9 5 2.
+ <_>
+ 10 9 9 5 2.
+ <_>
+
+ <_>
+ 9 4 2 4 -1.
+ <_>
+ 9 6 2 2 2.
+ <_>
+
+ <_>
+ 12 5 3 2 -1.
+ <_>
+ 12 6 3 1 2.
+ <_>
+
+ <_>
+ 5 12 10 4 -1.
+ <_>
+ 5 14 10 2 2.
+ <_>
+
+ <_>
+ 5 5 3 2 -1.
+ <_>
+ 5 6 3 1 2.
+ <_>
+
+ <_>
+ 4 6 12 6 -1.
+ <_>
+ 8 6 4 6 3.
+ <_>
+
+ <_>
+ 14 4 6 6 -1.
+ <_>
+ 14 6 6 2 3.
+ <_>
+
+ <_>
+ 16 0 4 6 -1.
+ <_>
+ 18 0 2 3 2.
+ <_>
+ 16 3 2 3 2.
+ <_>
+
+ <_>
+ 0 4 6 6 -1.
+ <_>
+ 0 6 6 2 3.
+ <_>
+
+ <_>
+ 0 0 4 6 -1.
+ <_>
+ 0 0 2 3 2.
+ <_>
+ 2 3 2 3 2.
+ <_>
+
+ <_>
+ 12 0 8 5 -1.
+ <_>
+ 12 0 4 5 2.
+ <_>
+
+ <_>
+ 16 0 4 17 -1.
+ <_>
+ 16 0 2 17 2.
+ <_>
+
+ <_>
+ 1 0 18 20 -1.
+ <_>
+ 7 0 6 20 3.
+ <_>
+
+ <_>
+ 6 0 2 5 -1.
+ <_>
+ 7 0 1 5 2.
+ <_>
+
+ <_>
+ 0 6 20 1 -1.
+ <_>
+ 0 6 10 1 2.
+ <_>
+
+ <_>
+ 8 7 6 4 -1.
+ <_>
+ 10 7 2 4 3.
+ <_>
+
+ <_>
+ 1 1 16 4 -1.
+ <_>
+ 1 1 8 2 2.
+ <_>
+ 9 3 8 2 2.
+ <_>
+
+ <_>
+ 7 2 4 2 -1.
+ <_>
+ 7 2 2 1 2.
+ <_>
+ 9 3 2 1 2.
+ <_>
+
+ <_>
+ 7 4 9 3 -1.
+ <_>
+ 7 5 9 1 3.
+ <_>
+
+ <_>
+ 10 4 5 12 -1.
+ <_>
+ 10 10 5 6 2.
+ <_>
+
+ <_>
+ 3 12 2 3 -1.
+ <_>
+ 3 13 2 1 3.
+ <_>
+
+ <_>
+ 8 8 3 5 -1.
+ <_>
+ 9 8 1 5 3.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 12 2 1 2.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 5 7 2 1 3.
+ <_>
+
+ <_>
+ 2 11 6 2 -1.
+ <_>
+ 2 12 6 1 2.
+ <_>
+
+ <_>
+ 15 11 4 3 -1.
+ <_>
+ 15 12 4 1 3.
+ <_>
+
+ <_>
+ 16 0 4 17 -1.
+ <_>
+ 16 0 2 17 2.
+ <_>
+
+ <_>
+ 1 11 4 3 -1.
+ <_>
+ 1 12 4 1 3.
+ <_>
+
+ <_>
+ 9 11 1 3 -1.
+ <_>
+ 9 12 1 1 3.
+ <_>
+
+ <_>
+ 10 9 6 7 -1.
+ <_>
+ 10 9 3 7 2.
+ <_>
+
+ <_>
+ 8 15 4 2 -1.
+ <_>
+ 8 16 4 1 2.
+ <_>
+
+ <_>
+ 4 9 6 7 -1.
+ <_>
+ 7 9 3 7 2.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 10 2 10 1 2.
+ <_>
+ 0 3 10 1 2.
+ <_>
+
+ <_>
+ 6 7 8 2 -1.
+ <_>
+ 6 8 8 1 2.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 0 2 10 1 2.
+ <_>
+ 10 3 10 1 2.
+ <_>
+
+ <_>
+ 3 1 2 10 -1.
+ <_>
+ 3 1 1 5 2.
+ <_>
+ 4 6 1 5 2.
+ <_>
+
+ <_>
+ 13 4 1 10 -1.
+ <_>
+ 13 9 1 5 2.
+ <_>
+
+ <_>
+ 9 8 4 3 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 2 11 16 4 -1.
+ <_>
+ 2 11 8 2 2.
+ <_>
+ 10 13 8 2 2.
+ <_>
+
+ <_>
+ 5 1 3 5 -1.
+ <_>
+ 6 1 1 5 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 9 11 2 2 -1.
+ <_>
+ 9 12 2 1 2.
+ <_>
+
+ <_>
+ 0 10 20 2 -1.
+ <_>
+ 0 11 20 1 2.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 7 3 2 2.
+ <_>
+ 4 9 3 2 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 14 1 6 4 -1.
+ <_>
+ 16 1 2 4 3.
+ <_>
+
+ <_>
+ 6 3 2 14 -1.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 6 1 7 12 -1.
+ <_>
+ 6 7 7 6 2.
+ <_>
+
+ <_>
+ 5 0 15 5 -1.
+ <_>
+ 10 0 5 5 3.
+ <_>
+
+ <_>
+ 15 0 4 10 -1.
+ <_>
+ 15 0 2 10 2.
+ <_>
+
+ <_>
+ 1 0 18 3 -1.
+ <_>
+ 7 0 6 3 3.
+ <_>
+
+ <_>
+ 0 0 17 2 -1.
+ <_>
+ 0 1 17 1 2.
+ <_>
+
+ <_>
+ 10 0 3 3 -1.
+ <_>
+ 11 0 1 3 3.
+ <_>
+
+ <_>
+ 10 0 3 12 -1.
+ <_>
+ 11 0 1 12 3.
+ <_>
+
+ <_>
+ 1 3 4 16 -1.
+ <_>
+ 1 3 2 8 2.
+ <_>
+ 3 11 2 8 2.
+ <_>
+
+ <_>
+ 7 0 3 3 -1.
+ <_>
+ 8 0 1 3 3.
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 9 16 2 3 2.
+ <_>
+
+ <_>
+ 9 0 6 13 -1.
+ <_>
+ 11 0 2 13 3.
+ <_>
+
+ <_>
+ 7 7 3 2 -1.
+ <_>
+ 8 7 1 2 3.
+ <_>
+
+ <_>
+ 8 2 1 12 -1.
+ <_>
+ 8 6 1 4 3.
+ <_>
+
+ <_>
+ 4 10 12 6 -1.
+ <_>
+ 10 10 6 3 2.
+ <_>
+ 4 13 6 3 2.
+ <_>
+
+ <_>
+ 13 5 2 3 -1.
+ <_>
+ 13 6 2 1 3.
+ <_>
+
+ <_>
+ 4 10 12 6 -1.
+ <_>
+ 4 10 6 3 2.
+ <_>
+ 10 13 6 3 2.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 9 6 1 4 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 10 6 1 4 2.
+ <_>
+
+ <_>
+ 12 9 2 3 -1.
+ <_>
+ 12 9 1 3 2.
+ <_>
+
+ <_>
+ 0 6 20 1 -1.
+ <_>
+ 0 6 10 1 2.
+ <_>
+
+ <_>
+ 5 7 10 2 -1.
+ <_>
+ 10 7 5 2 2.
+ <_>
+
+ <_>
+ 1 16 4 3 -1.
+ <_>
+ 1 17 4 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 10 3 5 3 -1.
+ <_>
+ 10 4 5 1 3.
+ <_>
+
+ <_>
+ 3 9 14 8 -1.
+ <_>
+ 3 9 7 4 2.
+ <_>
+ 10 13 7 4 2.
+ <_>
+
+ <_>
+ 6 8 8 10 -1.
+ <_>
+ 6 8 4 5 2.
+ <_>
+ 10 13 4 5 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 10 3 5 3 -1.
+ <_>
+ 10 4 5 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 5 3 5 3 -1.
+ <_>
+ 5 4 5 1 3.
+ <_>
+
+ <_>
+ 13 16 2 3 -1.
+ <_>
+ 13 17 2 1 3.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 3 14 3 3 -1.
+ <_>
+ 3 15 3 1 3.
+ <_>
+
+ <_>
+ 7 15 5 3 -1.
+ <_>
+ 7 16 5 1 3.
+ <_>
+
+ <_>
+ 12 9 2 3 -1.
+ <_>
+ 12 9 1 3 2.
+ <_>
+
+ <_>
+ 15 13 2 6 -1.
+ <_>
+ 15 13 1 6 2.
+ <_>
+
+ <_>
+ 6 9 2 3 -1.
+ <_>
+ 7 9 1 3 2.
+ <_>
+
+ <_>
+ 3 13 2 6 -1.
+ <_>
+ 4 13 1 6 2.
+ <_>
+
+ <_>
+ 11 4 2 4 -1.
+ <_>
+ 11 4 1 4 2.
+ <_>
+
+ <_>
+ 13 4 2 5 -1.
+ <_>
+ 13 4 1 5 2.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+
+ <_>
+ 5 4 2 5 -1.
+ <_>
+ 6 4 1 5 2.
+ <_>
+
+ <_>
+ 19 6 1 2 -1.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 12 7 8 13 -1.
+ <_>
+ 12 7 4 13 2.
+ <_>
+
+ <_>
+ 0 6 1 2 -1.
+ <_>
+ 0 7 1 1 2.
+ <_>
+
+ <_>
+ 6 15 4 3 -1.
+ <_>
+ 6 16 4 1 3.
+ <_>
+
+ <_>
+ 11 8 2 2 -1.
+ <_>
+ 11 9 2 1 2.
+ <_>
+
+ <_>
+ 11 7 2 4 -1.
+ <_>
+ 11 7 1 4 2.
+ <_>
+
+ <_>
+ 4 13 2 3 -1.
+ <_>
+ 4 14 2 1 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 1 0 18 5 -1.
+ <_>
+ 7 0 6 5 3.
+ <_>
+
+ <_>
+ 5 7 3 4 -1.
+ <_>
+ 5 9 3 2 2.
+ <_>
+
+ <_>
+ 10 6 2 2 -1.
+ <_>
+ 10 6 1 2 2.
+ <_>
+
+ <_>
+ 6 4 14 4 -1.
+ <_>
+ 13 4 7 2 2.
+ <_>
+ 6 6 7 2 2.
+ <_>
+
+ <_>
+ 5 16 6 4 -1.
+ <_>
+ 5 16 3 2 2.
+ <_>
+ 8 18 3 2 2.
+ <_>
+
+ <_>
+ 7 15 2 4 -1.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 8 5 5 14 -1.
+ <_>
+ 8 12 5 7 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 7 5 3 7 -1.
+ <_>
+ 8 5 1 7 3.
+ <_>
+
+ <_>
+ 0 0 3 9 -1.
+ <_>
+ 0 3 3 3 3.
+ <_>
+
+ <_>
+ 8 6 8 8 -1.
+ <_>
+ 12 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 4 3 6 1 -1.
+ <_>
+ 6 3 2 1 3.
+ <_>
+
+ <_>
+ 9 1 2 6 -1.
+ <_>
+ 9 3 2 2 3.
+ <_>
+
+ <_>
+ 10 5 6 4 -1.
+ <_>
+ 12 5 2 4 3.
+ <_>
+
+ <_>
+ 9 5 2 12 -1.
+ <_>
+ 9 9 2 4 3.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 8 12 4 3 -1.
+ <_>
+ 8 13 4 1 3.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 12 3 2 7 3.
+ <_>
+
+ <_>
+ 3 10 16 6 -1.
+ <_>
+ 3 12 16 2 3.
+ <_>
+
+ <_>
+ 5 5 3 10 -1.
+ <_>
+ 5 10 3 5 2.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 13 3 3 2.
+ <_>
+
+ <_>
+ 17 2 2 12 -1.
+ <_>
+ 17 2 1 12 2.
+ <_>
+
+ <_>
+ 16 6 2 14 -1.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 3 11 12 9 -1.
+ <_>
+ 3 14 12 3 3.
+ <_>
+
+ <_>
+ 0 2 4 12 -1.
+ <_>
+ 2 2 2 12 2.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 0 1 18 2.
+ <_>
+
+ <_>
+ 16 12 3 2 -1.
+ <_>
+ 16 13 3 1 2.
+ <_>
+
+ <_>
+ 0 2 2 15 -1.
+ <_>
+ 1 2 1 15 2.
+ <_>
+
+ <_>
+ 1 10 2 4 -1.
+ <_>
+ 1 12 2 2 2.
+ <_>
+
+ <_>
+ 11 1 2 18 -1.
+ <_>
+ 11 1 1 18 2.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 10 2 7 1 2.
+ <_>
+ 3 3 7 1 2.
+ <_>
+
+ <_>
+ 7 1 2 18 -1.
+ <_>
+ 8 1 1 18 2.
+ <_>
+
+ <_>
+ 6 1 8 12 -1.
+ <_>
+ 6 7 8 6 2.
+ <_>
+
+ <_>
+ 8 14 4 3 -1.
+ <_>
+ 8 15 4 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 0 13 5 2 -1.
+ <_>
+ 0 14 5 1 2.
+ <_>
+
+ <_>
+ 9 0 2 6 -1.
+ <_>
+ 9 0 1 3 2.
+ <_>
+ 10 3 1 3 2.
+ <_>
+
+ <_>
+ 9 0 2 6 -1.
+ <_>
+ 10 0 1 3 2.
+ <_>
+ 9 3 1 3 2.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 10 7 1 6 3.
+ <_>
+
+ <_>
+ 9 0 2 6 -1.
+ <_>
+ 9 0 1 3 2.
+ <_>
+ 10 3 1 3 2.
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 9 7 1 6 3.
+ <_>
+
+ <_>
+ 9 6 2 6 -1.
+ <_>
+ 9 6 1 6 2.
+ <_>
+
+ <_>
+ 9 4 4 3 -1.
+ <_>
+ 9 4 2 3 2.
+ <_>
+
+ <_>
+ 0 4 4 3 -1.
+ <_>
+ 0 5 4 1 3.
+ <_>
+
+ <_>
+ 8 7 4 2 -1.
+ <_>
+ 8 8 4 1 2.
+ <_>
+
+ <_>
+ 10 6 6 3 -1.
+ <_>
+ 12 6 2 3 3.
+ <_>
+
+ <_>
+ 9 6 3 12 -1.
+ <_>
+ 9 10 3 4 3.
+ <_>
+
+ <_>
+ 5 4 2 3 -1.
+ <_>
+ 5 5 2 1 3.
+ <_>
+
+ <_>
+ 5 6 1 3 -1.
+ <_>
+ 5 7 1 1 3.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 0 8 20 1 2.
+ <_>
+
+ <_>
+ 4 3 6 7 -1.
+ <_>
+ 6 3 2 7 3.
+ <_>
+
+ <_>
+ 5 10 6 10 -1.
+ <_>
+ 5 10 3 5 2.
+ <_>
+ 8 15 3 5 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 9 10 2 2 -1.
+ <_>
+ 9 11 2 1 2.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 5 6 1 3 -1.
+ <_>
+ 5 7 1 1 3.
+ <_>
+
+ <_>
+ 0 1 20 2 -1.
+ <_>
+ 10 1 10 1 2.
+ <_>
+ 0 2 10 1 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 5 3 3 2 -1.
+ <_>
+ 5 4 3 1 2.
+ <_>
+
+ <_>
+ 5 4 4 2 -1.
+ <_>
+ 7 4 2 2 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 14 20 2 3.
+ <_>
+
+ <_>
+ 2 2 16 4 -1.
+ <_>
+ 2 2 8 2 2.
+ <_>
+ 10 4 8 2 2.
+ <_>
+
+ <_>
+ 7 12 5 3 -1.
+ <_>
+ 7 13 5 1 3.
+ <_>
+
+ <_>
+ 14 9 6 10 -1.
+ <_>
+ 14 9 3 10 2.
+ <_>
+
+ <_>
+ 16 6 3 2 -1.
+ <_>
+ 16 7 3 1 2.
+ <_>
+
+ <_>
+ 0 9 6 10 -1.
+ <_>
+ 3 9 3 10 2.
+ <_>
+
+ <_>
+ 0 16 5 2 -1.
+ <_>
+ 0 17 5 1 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 9 7 2 12 -1.
+ <_>
+ 9 11 2 4 3.
+ <_>
+
+ <_>
+ 3 2 6 2 -1.
+ <_>
+ 5 2 2 2 3.
+ <_>
+
+ <_>
+ 4 1 1 2 -1.
+ <_>
+ 4 2 1 1 2.
+ <_>
+
+ <_>
+ 11 15 1 2 -1.
+ <_>
+ 11 16 1 1 2.
+ <_>
+
+ <_>
+ 3 1 16 2 -1.
+ <_>
+ 11 1 8 1 2.
+ <_>
+ 3 2 8 1 2.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 11 5 3 2.
+ <_>
+ 10 14 5 3 2.
+ <_>
+
+ <_>
+ 10 11 4 6 -1.
+ <_>
+ 10 14 4 3 2.
+ <_>
+
+ <_>
+ 14 9 6 11 -1.
+ <_>
+ 16 9 2 11 3.
+ <_>
+
+ <_>
+ 0 9 6 11 -1.
+ <_>
+ 2 9 2 11 3.
+ <_>
+
+ <_>
+ 2 11 16 6 -1.
+ <_>
+ 2 11 8 3 2.
+ <_>
+ 10 14 8 3 2.
+ <_>
+
+ <_>
+ 12 0 8 10 -1.
+ <_>
+ 16 0 4 5 2.
+ <_>
+ 12 5 4 5 2.
+ <_>
+
+ <_>
+ 14 2 6 4 -1.
+ <_>
+ 16 2 2 4 3.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 0 4 5 2.
+ <_>
+ 4 5 4 5 2.
+ <_>
+
+ <_>
+ 0 2 6 4 -1.
+ <_>
+ 2 2 2 4 3.
+ <_>
+
+ <_>
+ 4 9 15 2 -1.
+ <_>
+ 9 9 5 2 3.
+ <_>
+
+ <_>
+ 12 3 4 8 -1.
+ <_>
+ 14 3 2 4 2.
+ <_>
+ 12 7 2 4 2.
+ <_>
+
+ <_>
+ 9 2 2 9 -1.
+ <_>
+ 10 2 1 9 2.
+ <_>
+
+ <_>
+ 0 2 20 1 -1.
+ <_>
+ 10 2 10 1 2.
+ <_>
+
+ <_>
+ 16 1 4 5 -1.
+ <_>
+ 16 1 2 5 2.
+ <_>
+
+ <_>
+ 16 0 4 6 -1.
+ <_>
+ 16 3 4 3 2.
+ <_>
+
+ <_>
+ 4 3 6 4 -1.
+ <_>
+ 6 3 2 4 3.
+ <_>
+
+ <_>
+ 0 0 18 5 -1.
+ <_>
+ 6 0 6 5 3.
+ <_>
+
+ <_>
+ 6 2 12 14 -1.
+ <_>
+ 12 2 6 7 2.
+ <_>
+ 6 9 6 7 2.
+ <_>
+
+ <_>
+ 11 8 3 5 -1.
+ <_>
+ 12 8 1 5 3.
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 5 13 2 1 2.
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 7 10 2 3 2.
+ <_>
+
+ <_>
+ 4 9 15 2 -1.
+ <_>
+ 9 9 5 2 3.
+ <_>
+
+ <_>
+ 10 7 6 2 -1.
+ <_>
+ 12 7 2 2 3.
+ <_>
+
+ <_>
+ 1 9 15 2 -1.
+ <_>
+ 6 9 5 2 3.
+ <_>
+
+ <_>
+ 5 0 2 10 -1.
+ <_>
+ 5 0 1 5 2.
+ <_>
+ 6 5 1 5 2.
+ <_>
+
+ <_>
+ 0 0 20 14 -1.
+ <_>
+ 0 7 20 7 2.
+ <_>
+
+ <_>
+ 12 7 8 4 -1.
+ <_>
+ 12 7 4 4 2.
+ <_>
+
+ <_>
+ 0 7 8 4 -1.
+ <_>
+ 4 7 4 4 2.
+ <_>
+
+ <_>
+ 8 1 3 3 -1.
+ <_>
+ 9 1 1 3 3.
+ <_>
+
+ <_>
+ 9 7 3 4 -1.
+ <_>
+ 10 7 1 4 3.
+ <_>
+
+ <_>
+ 9 9 3 1 -1.
+ <_>
+ 10 9 1 1 3.
+ <_>
+
+ <_>
+ 8 9 3 2 -1.
+ <_>
+ 8 10 3 1 2.
+ <_>
+
+ <_>
+ 8 4 2 8 -1.
+ <_>
+ 8 4 1 4 2.
+ <_>
+ 9 8 1 4 2.
+ <_>
+
+ <_>
+ 5 8 12 3 -1.
+ <_>
+ 5 9 12 1 3.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 12 3 2 3.
+ <_>
+
+ <_>
+ 4 17 8 3 -1.
+ <_>
+ 4 18 8 1 3.
+ <_>
+
+ <_>
+ 17 6 2 3 -1.
+ <_>
+ 17 7 2 1 3.
+ <_>
+
+ <_>
+ 9 12 2 2 -1.
+ <_>
+ 10 12 1 1 2.
+ <_>
+ 9 13 1 1 2.
+ <_>
+
+ <_>
+ 9 13 2 4 -1.
+ <_>
+ 9 13 1 2 2.
+ <_>
+ 10 15 1 2 2.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 5 5 12 10 -1.
+ <_>
+ 11 5 6 5 2.
+ <_>
+ 5 10 6 5 2.
+ <_>
+
+ <_>
+ 6 3 12 12 -1.
+ <_>
+ 12 3 6 6 2.
+ <_>
+ 6 9 6 6 2.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 5 7 1 1 2.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 4 3 3 2 -1.
+ <_>
+ 5 3 1 2 3.
+ <_>
+
+ <_>
+ 6 2 12 14 -1.
+ <_>
+ 12 2 6 7 2.
+ <_>
+ 6 9 6 7 2.
+ <_>
+
+ <_>
+ 5 2 12 3 -1.
+ <_>
+ 9 2 4 3 3.
+ <_>
+
+ <_>
+ 1 1 18 17 -1.
+ <_>
+ 7 1 6 17 3.
+ <_>
+
+ <_>
+ 0 9 10 1 -1.
+ <_>
+ 5 9 5 1 2.
+ <_>
+
+ <_>
+ 16 8 4 3 -1.
+ <_>
+ 16 9 4 1 3.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 7 16 6 3 2.
+ <_>
+
+ <_>
+ 6 14 1 6 -1.
+ <_>
+ 6 16 1 2 3.
+ <_>
+
+ <_>
+ 6 17 4 2 -1.
+ <_>
+ 6 18 4 1 2.
+ <_>
+
+ <_>
+ 10 18 6 2 -1.
+ <_>
+ 13 18 3 1 2.
+ <_>
+ 10 19 3 1 2.
+ <_>
+
+ <_>
+ 16 8 1 3 -1.
+ <_>
+ 16 9 1 1 3.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 9 15 1 2 -1.
+ <_>
+ 9 16 1 1 2.
+ <_>
+
+ <_>
+ 13 0 3 12 -1.
+ <_>
+ 14 0 1 12 3.
+ <_>
+
+ <_>
+ 15 11 1 3 -1.
+ <_>
+ 15 12 1 1 3.
+ <_>
+
+ <_>
+ 8 15 3 3 -1.
+ <_>
+ 8 16 3 1 3.
+ <_>
+
+ <_>
+ 4 0 3 12 -1.
+ <_>
+ 5 0 1 12 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 9 9 3 1 -1.
+ <_>
+ 10 9 1 1 3.
+ <_>
+
+ <_>
+ 2 2 12 14 -1.
+ <_>
+ 2 2 6 7 2.
+ <_>
+ 8 9 6 7 2.
+ <_>
+
+ <_>
+ 4 2 12 3 -1.
+ <_>
+ 8 2 4 3 3.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 18 1 2 2.
+ <_>
+
+ <_>
+ 17 2 3 8 -1.
+ <_>
+ 18 2 1 8 3.
+ <_>
+
+ <_>
+ 0 18 2 2 -1.
+ <_>
+ 1 18 1 2 2.
+ <_>
+
+ <_>
+ 6 11 2 6 -1.
+ <_>
+ 6 14 2 3 2.
+ <_>
+
+ <_>
+ 13 10 5 6 -1.
+ <_>
+ 13 12 5 2 3.
+ <_>
+
+ <_>
+ 5 8 15 3 -1.
+ <_>
+ 5 9 15 1 3.
+ <_>
+
+ <_>
+ 2 10 5 6 -1.
+ <_>
+ 2 12 5 2 3.
+ <_>
+
+ <_>
+ 0 8 15 3 -1.
+ <_>
+ 0 9 15 1 3.
+ <_>
+
+ <_>
+ 16 2 3 1 -1.
+ <_>
+ 17 2 1 1 3.
+ <_>
+
+ <_>
+ 17 4 3 2 -1.
+ <_>
+ 18 4 1 2 3.
+ <_>
+
+ <_>
+ 0 8 8 12 -1.
+ <_>
+ 0 8 4 6 2.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 1 7 8 6 -1.
+ <_>
+ 1 7 4 3 2.
+ <_>
+ 5 10 4 3 2.
+ <_>
+
+ <_>
+ 14 1 6 2 -1.
+ <_>
+ 16 1 2 2 3.
+ <_>
+
+ <_>
+ 15 0 4 4 -1.
+ <_>
+ 17 0 2 2 2.
+ <_>
+ 15 2 2 2 2.
+ <_>
+
+ <_>
+ 1 1 4 11 -1.
+ <_>
+ 3 1 2 11 2.
+ <_>
+
+ <_>
+ 5 5 1 8 -1.
+ <_>
+ 5 9 1 4 2.
+ <_>
+
+ <_>
+ 7 7 6 1 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 8 4 4 4 -1.
+ <_>
+ 8 6 4 2 2.
+ <_>
+
+ <_>
+ 2 4 9 1 -1.
+ <_>
+ 5 4 3 1 3.
+ <_>
+
+ <_>
+ 9 12 2 8 -1.
+ <_>
+ 9 16 2 4 2.
+ <_>
+
+ <_>
+ 3 8 14 12 -1.
+ <_>
+ 3 14 14 6 2.
+ <_>
+
+ <_>
+ 6 13 7 3 -1.
+ <_>
+ 6 14 7 1 3.
+ <_>
+
+ <_>
+ 5 9 6 3 -1.
+ <_>
+ 7 9 2 3 3.
+ <_>
+
+ <_>
+ 12 1 6 3 -1.
+ <_>
+ 12 2 6 1 3.
+ <_>
+
+ <_>
+ 8 12 6 2 -1.
+ <_>
+ 8 13 6 1 2.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 0 2 9 1 2.
+ <_>
+ 9 3 9 1 2.
+ <_>
+
+ <_>
+ 6 10 3 6 -1.
+ <_>
+ 6 13 3 3 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 15 0 5 8 -1.
+ <_>
+ 15 4 5 4 2.
+ <_>
+
+ <_>
+ 7 16 6 4 -1.
+ <_>
+ 9 16 2 4 3.
+ <_>
+
+ <_>
+ 2 11 14 4 -1.
+ <_>
+ 2 11 7 2 2.
+ <_>
+ 9 13 7 2 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 14 10 3 10 2.
+ <_>
+
+ <_>
+ 9 8 10 12 -1.
+ <_>
+ 14 8 5 6 2.
+ <_>
+ 9 14 5 6 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 3 10 3 10 2.
+ <_>
+
+ <_>
+ 1 8 10 12 -1.
+ <_>
+ 1 8 5 6 2.
+ <_>
+ 6 14 5 6 2.
+ <_>
+
+ <_>
+ 9 3 6 1 -1.
+ <_>
+ 11 3 2 1 3.
+ <_>
+
+ <_>
+ 7 4 6 3 -1.
+ <_>
+ 9 4 2 3 3.
+ <_>
+
+ <_>
+ 5 3 6 1 -1.
+ <_>
+ 7 3 2 1 3.
+ <_>
+
+ <_>
+ 4 5 6 3 -1.
+ <_>
+ 6 5 2 3 3.
+ <_>
+
+ <_>
+ 9 16 3 3 -1.
+ <_>
+ 9 17 3 1 3.
+ <_>
+
+ <_>
+ 8 14 6 3 -1.
+ <_>
+ 8 15 6 1 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 0 4 6 2.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 4 12 2 3 -1.
+ <_>
+ 4 13 2 1 3.
+ <_>
+
+ <_>
+ 12 16 6 3 -1.
+ <_>
+ 12 17 6 1 3.
+ <_>
+
+ <_>
+ 7 12 7 2 -1.
+ <_>
+ 7 13 7 1 2.
+ <_>
+
+ <_>
+ 2 16 6 3 -1.
+ <_>
+ 2 17 6 1 3.
+ <_>
+
+ <_>
+ 0 7 16 6 -1.
+ <_>
+ 0 10 16 3 2.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 9 7 3 5 -1.
+ <_>
+ 10 7 1 5 3.
+ <_>
+
+ <_>
+ 0 5 20 10 -1.
+ <_>
+ 0 5 10 5 2.
+ <_>
+ 10 10 10 5 2.
+ <_>
+
+ <_>
+ 3 1 4 2 -1.
+ <_>
+ 5 1 2 2 2.
+ <_>
+
+ <_>
+ 7 6 8 10 -1.
+ <_>
+ 11 6 4 5 2.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 17 6 3 2 -1.
+ <_>
+ 17 7 3 1 2.
+ <_>
+
+ <_>
+ 5 6 8 10 -1.
+ <_>
+ 5 6 4 5 2.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 5 12 10 6 -1.
+ <_>
+ 5 14 10 2 3.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 10 3 2 6 -1.
+ <_>
+ 11 3 1 3 2.
+ <_>
+ 10 6 1 3 2.
+ <_>
+
+ <_>
+ 0 4 3 3 -1.
+ <_>
+ 0 5 3 1 3.
+ <_>
+
+ <_>
+ 3 16 8 4 -1.
+ <_>
+ 3 16 4 2 2.
+ <_>
+ 7 18 4 2 2.
+ <_>
+
+ <_>
+ 8 13 5 2 -1.
+ <_>
+ 8 14 5 1 2.
+ <_>
+
+ <_>
+ 8 7 4 12 -1.
+ <_>
+ 8 11 4 4 3.
+ <_>
+
+ <_>
+ 5 9 2 2 -1.
+ <_>
+ 6 9 1 2 2.
+ <_>
+
+ <_>
+ 9 15 2 3 -1.
+ <_>
+ 9 16 2 1 3.
+ <_>
+
+ <_>
+ 13 9 2 3 -1.
+ <_>
+ 13 9 1 3 2.
+ <_>
+
+ <_>
+ 14 0 6 17 -1.
+ <_>
+ 16 0 2 17 3.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 6 10 1 2 2.
+ <_>
+
+ <_>
+ 2 9 9 1 -1.
+ <_>
+ 5 9 3 1 3.
+ <_>
+
+ <_>
+ 9 11 2 3 -1.
+ <_>
+ 9 12 2 1 3.
+ <_>
+
+ <_>
+ 7 11 6 3 -1.
+ <_>
+ 7 12 6 1 3.
+ <_>
+
+ <_>
+ 0 6 3 2 -1.
+ <_>
+ 0 7 3 1 2.
+ <_>
+
+ <_>
+ 7 0 6 1 -1.
+ <_>
+ 9 0 2 1 3.
+ <_>
+
+ <_>
+ 9 16 3 3 -1.
+ <_>
+ 9 17 3 1 3.
+ <_>
+
+ <_>
+ 2 13 17 6 -1.
+ <_>
+ 2 16 17 3 2.
+ <_>
+
+ <_>
+ 1 3 3 7 -1.
+ <_>
+ 2 3 1 7 3.
+ <_>
+
+ <_>
+ 1 1 6 4 -1.
+ <_>
+ 3 1 2 4 3.
+ <_>
+
+ <_>
+ 14 1 6 5 -1.
+ <_>
+ 14 1 3 5 2.
+ <_>
+
+ <_>
+ 13 2 3 2 -1.
+ <_>
+ 13 3 3 1 2.
+ <_>
+
+ <_>
+ 0 1 6 5 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+
+ <_>
+ 2 3 2 6 -1.
+ <_>
+ 2 5 2 2 3.
+ <_>
+
+ <_>
+ 9 10 3 2 -1.
+ <_>
+ 9 11 3 1 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 6 3 3 1 -1.
+ <_>
+ 7 3 1 1 3.
+ <_>
+
+ <_>
+ 8 2 3 12 -1.
+ <_>
+ 8 6 3 4 3.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 11 12 2 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 5 5 2 2 -1.
+ <_>
+ 5 6 2 1 2.
+ <_>
+
+ <_>
+ 5 4 1 3 -1.
+ <_>
+ 5 5 1 1 3.
+ <_>
+
+ <_>
+ 3 11 16 4 -1.
+ <_>
+ 11 11 8 2 2.
+ <_>
+ 3 13 8 2 2.
+ <_>
+
+ <_>
+ 0 10 20 3 -1.
+ <_>
+ 0 11 20 1 3.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 4 2 4 2 -1.
+ <_>
+ 4 3 4 1 2.
+ <_>
+
+ <_>
+ 12 6 2 2 -1.
+ <_>
+ 13 6 1 1 2.
+ <_>
+ 12 7 1 1 2.
+ <_>
+
+ <_>
+ 12 11 6 6 -1.
+ <_>
+ 12 13 6 2 3.
+ <_>
+
+ <_>
+ 6 6 2 2 -1.
+ <_>
+ 6 6 1 1 2.
+ <_>
+ 7 7 1 1 2.
+ <_>
+
+ <_>
+ 6 4 4 16 -1.
+ <_>
+ 8 4 2 16 2.
+ <_>
+
+ <_>
+ 11 18 3 2 -1.
+ <_>
+ 11 19 3 1 2.
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 12 17 3 1 2.
+ <_>
+ 9 18 3 1 2.
+ <_>
+
+ <_>
+ 2 13 5 2 -1.
+ <_>
+ 2 14 5 1 2.
+ <_>
+
+ <_>
+ 3 15 2 2 -1.
+ <_>
+ 3 16 2 1 2.
+ <_>
+
+ <_>
+ 9 7 3 3 -1.
+ <_>
+ 10 7 1 3 3.
+ <_>
+
+ <_>
+ 9 6 2 6 -1.
+ <_>
+ 9 6 1 6 2.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 8 1 2 11 -1.
+ <_>
+ 9 1 1 11 2.
+ <_>
+
+ <_>
+ 9 7 2 4 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+
+ <_>
+ 11 10 2 1 -1.
+ <_>
+ 11 10 1 1 2.
+ <_>
+
+ <_>
+ 0 3 3 9 -1.
+ <_>
+ 1 3 1 9 3.
+ <_>
+
+ <_>
+ 0 3 3 6 -1.
+ <_>
+ 0 5 3 2 3.
+ <_>
+
+ <_>
+ 11 15 2 2 -1.
+ <_>
+ 12 15 1 1 2.
+ <_>
+ 11 16 1 1 2.
+ <_>
+
+ <_>
+ 11 14 2 2 -1.
+ <_>
+ 12 14 1 1 2.
+ <_>
+ 11 15 1 1 2.
+ <_>
+
+ <_>
+ 7 15 2 2 -1.
+ <_>
+ 7 15 1 1 2.
+ <_>
+ 8 16 1 1 2.
+ <_>
+
+ <_>
+ 7 14 2 2 -1.
+ <_>
+ 7 14 1 1 2.
+ <_>
+ 8 15 1 1 2.
+ <_>
+
+ <_>
+ 8 13 4 6 -1.
+ <_>
+ 10 13 2 3 2.
+ <_>
+ 8 16 2 3 2.
+ <_>
+
+ <_>
+ 2 14 16 4 -1.
+ <_>
+ 10 14 8 2 2.
+ <_>
+ 2 16 8 2 2.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 7 7 5 3 -1.
+ <_>
+ 7 8 5 1 3.
+ <_>
+
+ <_>
+ 7 5 6 2 -1.
+ <_>
+ 9 5 2 2 3.
+ <_>
+
+ <_>
+ 9 1 6 18 -1.
+ <_>
+ 11 1 2 18 3.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 8 5 2 4 -1.
+ <_>
+ 8 5 1 2 2.
+ <_>
+ 9 7 1 2 2.
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 10 13 1 3 2.
+ <_>
+ 9 16 1 3 2.
+ <_>
+
+ <_>
+ 11 0 3 18 -1.
+ <_>
+ 12 0 1 18 3.
+ <_>
+
+ <_>
+ 6 0 3 18 -1.
+ <_>
+ 7 0 1 18 3.
+ <_>
+
+ <_>
+ 5 15 4 2 -1.
+ <_>
+ 7 15 2 2 2.
+ <_>
+
+ <_>
+ 1 9 18 1 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 10 6 1 4 2.
+ <_>
+
+ <_>
+ 6 10 6 2 -1.
+ <_>
+ 8 10 2 2 3.
+ <_>
+
+ <_>
+ 0 7 20 1 -1.
+ <_>
+ 0 7 10 1 2.
+ <_>
+
+ <_>
+ 11 3 5 4 -1.
+ <_>
+ 11 5 5 2 2.
+ <_>
+
+ <_>
+ 5 7 10 1 -1.
+ <_>
+ 10 7 5 1 2.
+ <_>
+
+ <_>
+ 8 10 3 3 -1.
+ <_>
+ 8 11 3 1 3.
+ <_>
+
+ <_>
+ 2 0 16 8 -1.
+ <_>
+ 10 0 8 4 2.
+ <_>
+ 2 4 8 4 2.
+ <_>
+
+ <_>
+ 11 0 9 10 -1.
+ <_>
+ 11 5 9 5 2.
+ <_>
+
+ <_>
+ 0 2 8 18 -1.
+ <_>
+ 4 2 4 18 2.
+ <_>
+
+ <_>
+ 0 0 2 6 -1.
+ <_>
+ 0 2 2 2 3.
+ <_>
+
+ <_>
+ 6 0 9 2 -1.
+ <_>
+ 6 1 9 1 2.
+ <_>
+
+ <_>
+ 4 1 12 2 -1.
+ <_>
+ 4 2 12 1 2.
+ <_>
+
+ <_>
+ 2 1 16 14 -1.
+ <_>
+ 2 8 16 7 2.
+ <_>
+
+ <_>
+ 5 1 8 12 -1.
+ <_>
+ 5 7 8 6 2.
+ <_>
+
+ <_>
+ 9 11 2 2 -1.
+ <_>
+ 9 12 2 1 2.
+ <_>
+
+ <_>
+ 9 10 5 6 -1.
+ <_>
+ 9 12 5 2 3.
+ <_>
+
+ <_>
+ 3 0 13 8 -1.
+ <_>
+ 3 4 13 4 2.
+ <_>
+
+ <_>
+ 6 7 5 8 -1.
+ <_>
+ 6 11 5 4 2.
+ <_>
+
+ <_>
+ 9 5 2 3 -1.
+ <_>
+ 9 6 2 1 3.
+ <_>
+
+ <_>
+ 6 8 8 3 -1.
+ <_>
+ 6 9 8 1 3.
+ <_>
+
+ <_>
+ 2 2 7 6 -1.
+ <_>
+ 2 5 7 3 2.
+ <_>
+
+ <_>
+ 2 1 14 4 -1.
+ <_>
+ 2 1 7 2 2.
+ <_>
+ 9 3 7 2 2.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 6 15 8 2 -1.
+ <_>
+ 6 16 8 1 2.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 8 11 2 8 -1.
+ <_>
+ 8 15 2 4 2.
+ <_>
+
+ <_>
+ 6 15 8 2 -1.
+ <_>
+ 6 16 8 1 2.
+ <_>
+
+ <_>
+ 7 16 8 3 -1.
+ <_>
+ 7 17 8 1 3.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 17 2 1 2.
+ <_>
+
+ <_>
+ 1 16 8 4 -1.
+ <_>
+ 1 16 4 2 2.
+ <_>
+ 5 18 4 2 2.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 2 10 16 1 3.
+ <_>
+
+ <_>
+ 13 11 2 4 -1.
+ <_>
+ 13 11 1 4 2.
+ <_>
+
+ <_>
+ 0 13 16 6 -1.
+ <_>
+ 0 15 16 2 3.
+ <_>
+
+ <_>
+ 5 11 2 4 -1.
+ <_>
+ 6 11 1 4 2.
+ <_>
+
+ <_>
+ 18 2 2 18 -1.
+ <_>
+ 19 2 1 9 2.
+ <_>
+ 18 11 1 9 2.
+ <_>
+
+ <_>
+ 19 7 1 9 -1.
+ <_>
+ 19 10 1 3 3.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 0 2 1 9 2.
+ <_>
+ 1 11 1 9 2.
+ <_>
+
+ <_>
+ 0 7 1 9 -1.
+ <_>
+ 0 10 1 3 3.
+ <_>
+
+ <_>
+ 14 12 2 2 -1.
+ <_>
+ 14 13 2 1 2.
+ <_>
+
+ <_>
+ 11 14 2 3 -1.
+ <_>
+ 11 15 2 1 3.
+ <_>
+
+ <_>
+ 7 8 6 2 -1.
+ <_>
+ 7 9 6 1 2.
+ <_>
+
+ <_>
+ 7 12 4 6 -1.
+ <_>
+ 7 12 2 3 2.
+ <_>
+ 9 15 2 3 2.
+ <_>
+
+ <_>
+ 8 13 5 3 -1.
+ <_>
+ 8 14 5 1 3.
+ <_>
+
+ <_>
+ 12 14 2 2 -1.
+ <_>
+ 13 14 1 1 2.
+ <_>
+ 12 15 1 1 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 7 13 5 2 -1.
+ <_>
+ 7 14 5 1 2.
+ <_>
+
+ <_>
+ 2 10 16 4 -1.
+ <_>
+ 10 10 8 2 2.
+ <_>
+ 2 12 8 2 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 9 0 2 6 3.
+ <_>
+
+ <_>
+ 7 1 6 3 -1.
+ <_>
+ 7 2 6 1 3.
+ <_>
+
+ <_>
+ 0 12 6 2 -1.
+ <_>
+ 0 13 6 1 2.
+ <_>
+
+ <_>
+ 6 3 11 2 -1.
+ <_>
+ 6 4 11 1 2.
+ <_>
+
+ <_>
+ 12 0 8 6 -1.
+ <_>
+ 16 0 4 3 2.
+ <_>
+ 12 3 4 3 2.
+ <_>
+
+ <_>
+ 8 12 1 2 -1.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 8 8 1 12 -1.
+ <_>
+ 8 12 1 4 3.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 12 7 3 13 -1.
+ <_>
+ 13 7 1 13 3.
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+ 8 12 1 1 2.
+ <_>
+
+ <_>
+ 3 13 1 3 -1.
+ <_>
+ 3 14 1 1 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 11 11 2 1 -1.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 1 10 5 9 -1.
+ <_>
+ 1 13 5 3 3.
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 6 8 2 4 3.
+ <_>
+
+ <_>
+ 13 12 1 4 -1.
+ <_>
+ 13 14 1 2 2.
+ <_>
+
+ <_>
+ 11 3 4 14 -1.
+ <_>
+ 13 3 2 7 2.
+ <_>
+ 11 10 2 7 2.
+ <_>
+
+ <_>
+ 6 12 1 4 -1.
+ <_>
+ 6 14 1 2 2.
+ <_>
+
+ <_>
+ 5 3 4 14 -1.
+ <_>
+ 5 3 2 7 2.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 2 2 12 6 -1.
+ <_>
+ 2 2 6 3 2.
+ <_>
+ 8 5 6 3 2.
+ <_>
+
+ <_>
+ 6 6 6 2 -1.
+ <_>
+ 9 6 3 2 2.
+ <_>
+
+ <_>
+ 1 0 18 12 -1.
+ <_>
+ 7 0 6 12 3.
+ <_>
+
+ <_>
+ 5 7 6 4 -1.
+ <_>
+ 5 7 3 2 2.
+ <_>
+ 8 9 3 2 2.
+ <_>
+
+ <_>
+ 5 7 10 4 -1.
+ <_>
+ 5 9 10 2 2.
+ <_>
+
+ <_>
+ 7 7 6 4 -1.
+ <_>
+ 9 7 2 4 3.
+ <_>
+
+ <_>
+ 9 5 2 2 -1.
+ <_>
+ 9 6 2 1 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 6 17 8 3 -1.
+ <_>
+ 6 18 8 1 3.
+ <_>
+
+ <_>
+ 9 17 6 2 -1.
+ <_>
+ 12 17 3 1 2.
+ <_>
+ 9 18 3 1 2.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 3 12 9 2 -1.
+ <_>
+ 3 13 9 1 2.
+ <_>
+
+ <_>
+ 8 3 6 1 -1.
+ <_>
+ 10 3 2 1 3.
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 11 3 2 3 2.
+ <_>
+ 9 6 2 3 2.
+ <_>
+
+ <_>
+ 0 3 6 5 -1.
+ <_>
+ 3 3 3 5 2.
+ <_>
+
+ <_>
+ 2 0 2 18 -1.
+ <_>
+ 2 6 2 6 3.
+ <_>
+
+ <_>
+ 14 2 4 9 -1.
+ <_>
+ 14 5 4 3 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 2 2 4 9 -1.
+ <_>
+ 2 5 4 3 3.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 10 14 3 3 -1.
+ <_>
+ 10 15 3 1 3.
+ <_>
+
+ <_>
+ 10 12 2 6 -1.
+ <_>
+ 10 15 2 3 2.
+ <_>
+
+ <_>
+ 7 5 3 6 -1.
+ <_>
+ 7 7 3 2 3.
+ <_>
+
+ <_>
+ 3 3 6 2 -1.
+ <_>
+ 3 4 6 1 2.
+ <_>
+
+ <_>
+ 8 4 7 3 -1.
+ <_>
+ 8 5 7 1 3.
+ <_>
+
+ <_>
+ 13 6 2 3 -1.
+ <_>
+ 13 7 2 1 3.
+ <_>
+
+ <_>
+ 8 8 2 12 -1.
+ <_>
+ 8 12 2 4 3.
+ <_>
+
+ <_>
+ 5 4 8 14 -1.
+ <_>
+ 5 4 4 7 2.
+ <_>
+ 9 11 4 7 2.
+ <_>
+
+ <_>
+ 0 1 20 8 -1.
+ <_>
+ 10 1 10 4 2.
+ <_>
+ 0 5 10 4 2.
+ <_>
+
+ <_>
+ 4 0 12 2 -1.
+ <_>
+ 4 1 12 1 2.
+ <_>
+
+ <_>
+ 0 1 20 8 -1.
+ <_>
+ 0 1 10 4 2.
+ <_>
+ 10 5 10 4 2.
+ <_>
+
+ <_>
+ 4 0 12 2 -1.
+ <_>
+ 4 1 12 1 2.
+ <_>
+
+ <_>
+ 9 5 6 3 -1.
+ <_>
+ 9 5 3 3 2.
+ <_>
+
+ <_>
+ 8 13 10 6 -1.
+ <_>
+ 8 15 10 2 3.
+ <_>
+
+ <_>
+ 5 5 6 3 -1.
+ <_>
+ 8 5 3 3 2.
+ <_>
+
+ <_>
+ 6 3 6 1 -1.
+ <_>
+ 8 3 2 1 3.
+ <_>
+
+ <_>
+ 11 18 9 2 -1.
+ <_>
+ 14 18 3 2 3.
+ <_>
+
+ <_>
+ 13 11 6 7 -1.
+ <_>
+ 13 11 3 7 2.
+ <_>
+
+ <_>
+ 4 6 12 10 -1.
+ <_>
+ 4 6 6 5 2.
+ <_>
+ 10 11 6 5 2.
+ <_>
+
+ <_>
+ 8 17 3 3 -1.
+ <_>
+ 9 17 1 3 3.
+ <_>
+
+ <_>
+ 11 18 9 2 -1.
+ <_>
+ 14 18 3 2 3.
+ <_>
+
+ <_>
+ 13 11 6 8 -1.
+ <_>
+ 13 11 3 8 2.
+ <_>
+
+ <_>
+ 4 16 2 2 -1.
+ <_>
+ 4 17 2 1 2.
+ <_>
+
+ <_>
+ 7 15 4 4 -1.
+ <_>
+ 7 17 4 2 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 13 6 2 3 -1.
+ <_>
+ 13 7 2 1 3.
+ <_>
+
+ <_>
+ 5 11 6 1 -1.
+ <_>
+ 7 11 2 1 3.
+ <_>
+
+ <_>
+ 7 10 3 1 -1.
+ <_>
+ 8 10 1 1 3.
+ <_>
+
+ <_>
+ 0 12 20 4 -1.
+ <_>
+ 0 14 20 2 2.
+ <_>
+
+ <_>
+ 10 2 3 2 -1.
+ <_>
+ 10 3 3 1 2.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 5 5 4 3 -1.
+ <_>
+ 5 6 4 1 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 10 4 2 12 -1.
+ <_>
+ 10 8 2 4 3.
+ <_>
+
+ <_>
+ 0 3 4 3 -1.
+ <_>
+ 0 4 4 1 3.
+ <_>
+
+ <_>
+ 1 3 2 3 -1.
+ <_>
+ 1 4 2 1 3.
+ <_>
+
+ <_>
+ 16 1 4 11 -1.
+ <_>
+ 16 1 2 11 2.
+ <_>
+
+ <_>
+ 18 2 2 16 -1.
+ <_>
+ 19 2 1 8 2.
+ <_>
+ 18 10 1 8 2.
+ <_>
+
+ <_>
+ 1 8 6 12 -1.
+ <_>
+ 3 8 2 12 3.
+ <_>
+
+ <_>
+ 7 2 6 2 -1.
+ <_>
+ 7 2 3 1 2.
+ <_>
+ 10 3 3 1 2.
+ <_>
+
+ <_>
+ 12 4 8 2 -1.
+ <_>
+ 16 4 4 1 2.
+ <_>
+ 12 5 4 1 2.
+ <_>
+
+ <_>
+ 10 6 6 2 -1.
+ <_>
+ 12 6 2 2 3.
+ <_>
+
+ <_>
+ 0 4 8 2 -1.
+ <_>
+ 0 4 4 1 2.
+ <_>
+ 4 5 4 1 2.
+ <_>
+
+ <_>
+ 1 3 3 5 -1.
+ <_>
+ 2 3 1 5 3.
+ <_>
+
+ <_>
+ 16 3 4 6 -1.
+ <_>
+ 16 5 4 2 3.
+ <_>
+
+ <_>
+ 8 6 4 3 -1.
+ <_>
+ 8 7 4 1 3.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 4 11 1 2 -1.
+ <_>
+ 4 12 1 1 2.
+ <_>
+
+ <_>
+ 8 14 6 3 -1.
+ <_>
+ 8 15 6 1 3.
+ <_>
+
+ <_>
+ 7 15 7 3 -1.
+ <_>
+ 7 16 7 1 3.
+ <_>
+
+ <_>
+ 9 12 2 8 -1.
+ <_>
+ 9 16 2 4 2.
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 6 6 2 2 3.
+ <_>
+
+ <_>
+ 12 7 4 2 -1.
+ <_>
+ 12 8 4 1 2.
+ <_>
+
+ <_>
+ 5 3 13 10 -1.
+ <_>
+ 5 8 13 5 2.
+ <_>
+
+ <_>
+ 4 7 4 2 -1.
+ <_>
+ 4 8 4 1 2.
+ <_>
+
+ <_>
+ 0 8 16 2 -1.
+ <_>
+ 0 8 8 1 2.
+ <_>
+ 8 9 8 1 2.
+ <_>
+
+ <_>
+ 11 8 2 5 -1.
+ <_>
+ 11 8 1 5 2.
+ <_>
+
+ <_>
+ 10 0 6 13 -1.
+ <_>
+ 10 0 3 13 2.
+ <_>
+
+ <_>
+ 1 6 4 2 -1.
+ <_>
+ 1 7 4 1 2.
+ <_>
+
+ <_>
+ 4 3 2 1 -1.
+ <_>
+ 5 3 1 1 2.
+ <_>
+
+ <_>
+ 11 8 2 5 -1.
+ <_>
+ 11 8 1 5 2.
+ <_>
+
+ <_>
+ 12 10 4 8 -1.
+ <_>
+ 12 10 2 8 2.
+ <_>
+
+ <_>
+ 7 8 2 5 -1.
+ <_>
+ 8 8 1 5 2.
+ <_>
+
+ <_>
+ 4 10 4 8 -1.
+ <_>
+ 6 10 2 8 2.
+ <_>
+
+ <_>
+ 6 7 9 12 -1.
+ <_>
+ 9 7 3 12 3.
+ <_>
+
+ <_>
+ 11 13 2 3 -1.
+ <_>
+ 11 13 1 3 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 10 2.
+ <_>
+
+ <_>
+ 8 11 4 8 -1.
+ <_>
+ 8 11 2 4 2.
+ <_>
+ 10 15 2 4 2.
+ <_>
+
+ <_>
+ 16 1 4 11 -1.
+ <_>
+ 16 1 2 11 2.
+ <_>
+
+ <_>
+ 18 2 2 4 -1.
+ <_>
+ 18 2 1 4 2.
+ <_>
+
+ <_>
+ 5 6 6 2 -1.
+ <_>
+ 5 6 3 1 2.
+ <_>
+ 8 7 3 1 2.
+ <_>
+
+ <_>
+ 5 4 1 3 -1.
+ <_>
+ 5 5 1 1 3.
+ <_>
+
+ <_>
+ 11 1 4 14 -1.
+ <_>
+ 11 1 2 14 2.
+ <_>
+
+ <_>
+ 4 2 12 3 -1.
+ <_>
+ 8 2 4 3 3.
+ <_>
+
+ <_>
+ 5 1 4 14 -1.
+ <_>
+ 7 1 2 14 2.
+ <_>
+
+ <_>
+ 7 3 6 2 -1.
+ <_>
+ 9 3 2 2 3.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 8 0 6 4 3.
+ <_>
+
+ <_>
+ 9 5 2 10 -1.
+ <_>
+ 9 10 2 5 2.
+ <_>
+
+ <_>
+ 8 6 3 4 -1.
+ <_>
+ 9 6 1 4 3.
+ <_>
+
+ <_>
+ 5 5 9 11 -1.
+ <_>
+ 8 5 3 11 3.
+ <_>
+
+ <_>
+ 10 6 3 5 -1.
+ <_>
+ 11 6 1 5 3.
+ <_>
+
+ <_>
+ 8 9 6 5 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 7 6 3 5 -1.
+ <_>
+ 8 6 1 5 3.
+ <_>
+
+ <_>
+ 6 10 6 3 -1.
+ <_>
+ 9 10 3 3 2.
+ <_>
+
+ <_>
+ 10 0 3 7 -1.
+ <_>
+ 11 0 1 7 3.
+ <_>
+
+ <_>
+ 0 3 20 12 -1.
+ <_>
+ 0 9 20 6 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 5 9 4 1 -1.
+ <_>
+ 7 9 2 1 2.
+ <_>
+
+ <_>
+ 13 13 3 2 -1.
+ <_>
+ 13 14 3 1 2.
+ <_>
+
+ <_>
+ 16 9 4 6 -1.
+ <_>
+ 16 9 2 6 2.
+ <_>
+
+ <_>
+ 7 15 6 3 -1.
+ <_>
+ 7 16 6 1 3.
+ <_>
+
+ <_>
+ 6 16 7 3 -1.
+ <_>
+ 6 17 7 1 3.
+ <_>
+
+ <_>
+ 11 14 9 6 -1.
+ <_>
+ 11 16 9 2 3.
+ <_>
+
+ <_>
+ 19 14 1 3 -1.
+ <_>
+ 19 15 1 1 3.
+ <_>
+
+ <_>
+ 0 9 6 6 -1.
+ <_>
+ 3 9 3 6 2.
+ <_>
+
+ <_>
+ 0 19 9 1 -1.
+ <_>
+ 3 19 3 1 3.
+ <_>
+
+ <_>
+ 11 14 9 6 -1.
+ <_>
+ 11 16 9 2 3.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 12 14 6 2 3.
+ <_>
+
+ <_>
+ 1 14 8 6 -1.
+ <_>
+ 1 16 8 2 3.
+ <_>
+
+ <_>
+ 8 1 3 2 -1.
+ <_>
+ 9 1 1 2 3.
+ <_>
+
+ <_>
+ 18 2 2 4 -1.
+ <_>
+ 18 2 1 4 2.
+ <_>
+
+ <_>
+ 14 0 6 3 -1.
+ <_>
+ 16 0 2 3 3.
+ <_>
+
+ <_>
+ 0 2 2 4 -1.
+ <_>
+ 1 2 1 4 2.
+ <_>
+
+ <_>
+ 0 0 6 3 -1.
+ <_>
+ 2 0 2 3 3.
+ <_>
+
+ <_>
+ 9 0 3 2 -1.
+ <_>
+ 10 0 1 2 3.
+ <_>
+
+ <_>
+ 12 1 2 2 -1.
+ <_>
+ 12 1 1 2 2.
+ <_>
+
+ <_>
+ 8 0 3 2 -1.
+ <_>
+ 9 0 1 2 3.
+ <_>
+
+ <_>
+ 6 1 2 2 -1.
+ <_>
+ 7 1 1 2 2.
+ <_>
+
+ <_>
+ 10 8 2 3 -1.
+ <_>
+ 10 9 2 1 3.
+ <_>
+
+ <_>
+ 13 15 6 2 -1.
+ <_>
+ 13 16 6 1 2.
+ <_>
+
+ <_>
+ 8 12 2 2 -1.
+ <_>
+ 8 12 1 1 2.
+ <_>
+ 9 13 1 1 2.
+ <_>
+
+ <_>
+ 8 15 3 5 -1.
+ <_>
+ 9 15 1 5 3.
+ <_>
+
+ <_>
+ 8 6 4 12 -1.
+ <_>
+ 8 12 4 6 2.
+ <_>
+
+ <_>
+ 7 6 7 8 -1.
+ <_>
+ 7 10 7 4 2.
+ <_>
+
+ <_>
+ 0 11 8 2 -1.
+ <_>
+ 0 12 8 1 2.
+ <_>
+
+ <_>
+ 8 11 2 2 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+ 9 12 1 1 2.
+ <_>
+
+ <_>
+ 7 7 12 1 -1.
+ <_>
+ 11 7 4 1 3.
+ <_>
+
+ <_>
+ 10 8 3 2 -1.
+ <_>
+ 11 8 1 2 3.
+ <_>
+
+ <_>
+ 1 7 12 1 -1.
+ <_>
+ 5 7 4 1 3.
+ <_>
+
+ <_>
+ 6 5 8 2 -1.
+ <_>
+ 6 5 4 1 2.
+ <_>
+ 10 6 4 1 2.
+ <_>
+
+ <_>
+ 9 10 3 10 -1.
+ <_>
+ 10 10 1 10 3.
+ <_>
+
+ <_>
+ 16 0 2 4 -1.
+ <_>
+ 16 0 1 4 2.
+ <_>
+
+ <_>
+ 8 10 3 10 -1.
+ <_>
+ 9 10 1 10 3.
+ <_>
+
+ <_>
+ 9 10 2 3 -1.
+ <_>
+ 9 11 2 1 3.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 10 9 2 1 2.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 6 1 3 1 -1.
+ <_>
+ 7 1 1 1 3.
+ <_>
+
+ <_>
+ 2 0 2 4 -1.
+ <_>
+ 3 0 1 4 2.
+ <_>
+
+ <_>
+ 11 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 12 14 6 2 3.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 3 0 2 9 -1.
+ <_>
+ 3 3 2 3 3.
+ <_>
+
+ <_>
+ 14 13 3 2 -1.
+ <_>
+ 14 14 3 1 2.
+ <_>
+
+ <_>
+ 15 2 3 2 -1.
+ <_>
+ 15 3 3 1 2.
+ <_>
+
+ <_>
+ 2 13 5 2 -1.
+ <_>
+ 2 14 5 1 2.
+ <_>
+
+ <_>
+ 3 4 12 10 -1.
+ <_>
+ 3 4 6 5 2.
+ <_>
+ 9 9 6 5 2.
+ <_>
+
+ <_>
+ 5 1 14 6 -1.
+ <_>
+ 5 3 14 2 3.
+ <_>
+
+ <_>
+ 15 3 3 2 -1.
+ <_>
+ 15 4 3 1 2.
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+ 8 12 1 1 2.
+ <_>
+
+ <_>
+ 2 14 6 6 -1.
+ <_>
+ 2 16 6 2 3.
+ <_>
+
+ <_>
+ 6 13 8 3 -1.
+ <_>
+ 6 14 8 1 3.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 8 12 1 6 -1.
+ <_>
+ 8 15 1 3 2.
+ <_>
+
+ <_>
+ 0 0 14 15 -1.
+ <_>
+ 0 5 14 5 3.
+ <_>
+
+ <_>
+ 3 0 16 8 -1.
+ <_>
+ 3 4 16 4 2.
+ <_>
+
+ <_>
+ 6 1 8 12 -1.
+ <_>
+ 6 7 8 6 2.
+ <_>
+
+ <_>
+ 5 3 3 3 -1.
+ <_>
+ 6 3 1 3 3.
+ <_>
+
+ <_>
+ 5 1 3 4 -1.
+ <_>
+ 6 1 1 4 3.
+ <_>
+
+ <_>
+ 15 14 4 6 -1.
+ <_>
+ 17 14 2 3 2.
+ <_>
+ 15 17 2 3 2.
+ <_>
+
+ <_>
+ 12 11 6 8 -1.
+ <_>
+ 15 11 3 4 2.
+ <_>
+ 12 15 3 4 2.
+ <_>
+
+ <_>
+ 8 7 2 4 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+
+ <_>
+ 6 11 3 1 -1.
+ <_>
+ 7 11 1 1 3.
+ <_>
+
+ <_>
+ 12 3 2 14 -1.
+ <_>
+ 12 3 1 14 2.
+ <_>
+
+ <_>
+ 12 11 6 2 -1.
+ <_>
+ 15 11 3 1 2.
+ <_>
+ 12 12 3 1 2.
+ <_>
+
+ <_>
+ 0 2 5 2 -1.
+ <_>
+ 0 3 5 1 2.
+ <_>
+
+ <_>
+ 0 0 15 1 -1.
+ <_>
+ 5 0 5 1 3.
+ <_>
+
+ <_>
+ 12 11 6 2 -1.
+ <_>
+ 15 11 3 1 2.
+ <_>
+ 12 12 3 1 2.
+ <_>
+
+ <_>
+ 10 5 2 2 -1.
+ <_>
+ 10 5 1 2 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 9 0 2 10 -1.
+ <_>
+ 9 0 1 5 2.
+ <_>
+ 10 5 1 5 2.
+ <_>
+
+ <_>
+ 18 14 2 2 -1.
+ <_>
+ 18 15 2 1 2.
+ <_>
+
+ <_>
+ 13 11 4 9 -1.
+ <_>
+ 13 14 4 3 3.
+ <_>
+
+ <_>
+ 8 13 2 2 -1.
+ <_>
+ 8 13 1 1 2.
+ <_>
+ 9 14 1 1 2.
+ <_>
+
+ <_>
+ 7 8 4 3 -1.
+ <_>
+ 7 9 4 1 3.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 8 10 4 1 2.
+ <_>
+
+ <_>
+ 13 12 4 2 -1.
+ <_>
+ 13 13 4 1 2.
+ <_>
+
+ <_>
+ 6 14 2 2 -1.
+ <_>
+ 6 14 1 1 2.
+ <_>
+ 7 15 1 1 2.
+ <_>
+
+ <_>
+ 0 14 2 2 -1.
+ <_>
+ 0 15 2 1 2.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 7 9 10 6 -1.
+ <_>
+ 7 11 10 2 3.
+ <_>
+
+ <_>
+ 2 9 12 4 -1.
+ <_>
+ 6 9 4 4 3.
+ <_>
+
+ <_>
+ 7 9 6 11 -1.
+ <_>
+ 10 9 3 11 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 9 14 4 3 -1.
+ <_>
+ 9 15 4 1 3.
+ <_>
+
+ <_>
+ 2 3 3 17 -1.
+ <_>
+ 3 3 1 17 3.
+ <_>
+
+ <_>
+ 0 11 6 3 -1.
+ <_>
+ 0 12 6 1 3.
+ <_>
+
+ <_>
+ 4 3 11 9 -1.
+ <_>
+ 4 6 11 3 3.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 3 2 3 11 2.
+ <_>
+
+ <_>
+ 13 0 4 5 -1.
+ <_>
+ 13 0 2 5 2.
+ <_>
+
+ <_>
+ 9 7 6 4 -1.
+ <_>
+ 12 7 3 2 2.
+ <_>
+ 9 9 3 2 2.
+ <_>
+
+ <_>
+ 5 7 8 2 -1.
+ <_>
+ 9 7 4 2 2.
+ <_>
+
+ <_>
+ 1 8 15 1 -1.
+ <_>
+ 6 8 5 1 3.
+ <_>
+
+ <_>
+ 4 12 12 2 -1.
+ <_>
+ 8 12 4 2 3.
+ <_>
+
+ <_>
+ 13 0 4 10 -1.
+ <_>
+ 15 0 2 5 2.
+ <_>
+ 13 5 2 5 2.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 3 9 6 2 -1.
+ <_>
+ 6 9 3 2 2.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 8 18 4 1 3.
+ <_>
+
+ <_>
+ 8 3 9 2 -1.
+ <_>
+ 11 3 3 2 3.
+ <_>
+
+ <_>
+ 3 3 9 2 -1.
+ <_>
+ 6 3 3 2 3.
+ <_>
+
+ <_>
+ 5 0 9 14 -1.
+ <_>
+ 8 0 3 14 3.
+ <_>
+
+ <_>
+ 7 3 7 10 -1.
+ <_>
+ 7 8 7 5 2.
+ <_>
+
+ <_>
+ 4 8 13 3 -1.
+ <_>
+ 4 9 13 1 3.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 3 12 7 2 2.
+ <_>
+ 10 14 7 2 2.
+ <_>
+
+ <_>
+ 8 12 4 2 -1.
+ <_>
+ 8 13 4 1 2.
+ <_>
+
+ <_>
+ 6 10 9 8 -1.
+ <_>
+ 6 14 9 4 2.
+ <_>
+
+ <_>
+ 9 12 2 8 -1.
+ <_>
+ 9 16 2 4 2.
+ <_>
+
+ <_>
+ 8 12 3 3 -1.
+ <_>
+ 8 13 3 1 3.
+ <_>
+
+ <_>
+ 5 5 4 10 -1.
+ <_>
+ 7 5 2 10 2.
+ <_>
+
+ <_>
+ 14 15 3 3 -1.
+ <_>
+ 14 16 3 1 3.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 3 15 3 3 -1.
+ <_>
+ 3 16 3 1 3.
+ <_>
+
+ <_>
+ 3 9 4 2 -1.
+ <_>
+ 3 9 2 1 2.
+ <_>
+ 5 10 2 1 2.
+ <_>
+
+ <_>
+ 0 11 20 4 -1.
+ <_>
+ 10 11 10 2 2.
+ <_>
+ 0 13 10 2 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 0 11 20 4 -1.
+ <_>
+ 0 11 10 2 2.
+ <_>
+ 10 13 10 2 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 10 13 1 6 -1.
+ <_>
+ 10 16 1 3 2.
+ <_>
+
+ <_>
+ 2 1 18 2 -1.
+ <_>
+ 11 1 9 1 2.
+ <_>
+ 2 2 9 1 2.
+ <_>
+
+ <_>
+ 8 14 3 3 -1.
+ <_>
+ 8 15 3 1 3.
+ <_>
+
+ <_>
+ 4 1 6 1 -1.
+ <_>
+ 6 1 2 1 3.
+ <_>
+
+ <_>
+ 11 13 1 3 -1.
+ <_>
+ 11 14 1 1 3.
+ <_>
+
+ <_>
+ 13 5 2 12 -1.
+ <_>
+ 13 11 2 6 2.
+ <_>
+
+ <_>
+ 1 14 18 6 -1.
+ <_>
+ 1 16 18 2 3.
+ <_>
+
+ <_>
+ 8 13 1 3 -1.
+ <_>
+ 8 14 1 1 3.
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 7 14 6 1 3.
+ <_>
+
+ <_>
+ 9 10 3 2 -1.
+ <_>
+ 9 11 3 1 2.
+ <_>
+
+ <_>
+ 5 1 3 3 -1.
+ <_>
+ 6 1 1 3 3.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 7 5 6 14 -1.
+ <_>
+ 7 12 6 7 2.
+ <_>
+
+ <_>
+ 7 16 6 2 -1.
+ <_>
+ 9 16 2 2 3.
+ <_>
+
+ <_>
+ 0 2 2 12 -1.
+ <_>
+ 1 2 1 12 2.
+ <_>
+
+ <_>
+ 1 0 5 3 -1.
+ <_>
+ 1 1 5 1 3.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 12 7 3 1 3.
+ <_>
+
+ <_>
+ 5 4 3 3 -1.
+ <_>
+ 5 5 3 1 3.
+ <_>
+
+ <_>
+ 5 6 3 3 -1.
+ <_>
+ 5 7 3 1 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 10 12 2 4 2.
+ <_>
+ 8 16 2 4 2.
+ <_>
+
+ <_>
+ 2 17 18 2 -1.
+ <_>
+ 11 17 9 1 2.
+ <_>
+ 2 18 9 1 2.
+ <_>
+
+ <_>
+ 9 3 2 2 -1.
+ <_>
+ 9 4 2 1 2.
+ <_>
+
+ <_>
+ 8 5 4 6 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 9 0 8 6 -1.
+ <_>
+ 9 2 8 2 3.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 0 4 6 9 -1.
+ <_>
+ 2 4 2 9 3.
+ <_>
+
+ <_>
+ 1 4 18 2 -1.
+ <_>
+ 7 4 6 2 3.
+ <_>
+
+ <_>
+ 8 16 12 4 -1.
+ <_>
+ 14 16 6 2 2.
+ <_>
+ 8 18 6 2 2.
+ <_>
+
+ <_>
+ 0 0 18 2 -1.
+ <_>
+ 0 0 9 1 2.
+ <_>
+ 9 1 9 1 2.
+ <_>
+
+ <_>
+ 3 0 3 18 -1.
+ <_>
+ 4 0 1 18 3.
+ <_>
+
+ <_>
+ 14 9 4 7 -1.
+ <_>
+ 14 9 2 7 2.
+ <_>
+
+ <_>
+ 15 14 2 2 -1.
+ <_>
+ 15 15 2 1 2.
+ <_>
+
+ <_>
+ 2 9 4 7 -1.
+ <_>
+ 4 9 2 7 2.
+ <_>
+
+ <_>
+ 3 14 2 2 -1.
+ <_>
+ 3 15 2 1 2.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 11 2 6 2 3.
+ <_>
+
+ <_>
+ 14 0 2 6 -1.
+ <_>
+ 15 0 1 3 2.
+ <_>
+ 14 3 1 3 2.
+ <_>
+
+ <_>
+ 7 11 2 2 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+ 8 12 1 1 2.
+ <_>
+
+ <_>
+ 7 10 2 2 -1.
+ <_>
+ 8 10 1 2 2.
+ <_>
+
+ <_>
+ 9 14 2 6 -1.
+ <_>
+ 9 17 2 3 2.
+ <_>
+
+ <_>
+ 12 18 4 2 -1.
+ <_>
+ 12 19 4 1 2.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 8 18 4 1 3.
+ <_>
+
+ <_>
+ 2 18 8 2 -1.
+ <_>
+ 2 19 8 1 2.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 2 10 16 1 3.
+ <_>
+
+ <_>
+ 9 9 2 2 -1.
+ <_>
+ 9 10 2 1 2.
+ <_>
+
+ <_>
+ 5 14 2 4 -1.
+ <_>
+ 5 14 1 2 2.
+ <_>
+ 6 16 1 2 2.
+ <_>
+
+ <_>
+ 8 9 4 2 -1.
+ <_>
+ 8 9 2 1 2.
+ <_>
+ 10 10 2 1 2.
+ <_>
+
+ <_>
+ 9 5 2 5 -1.
+ <_>
+ 9 5 1 5 2.
+ <_>
+
+ <_>
+ 9 9 3 2 -1.
+ <_>
+ 10 9 1 2 3.
+ <_>
+
+ <_>
+ 8 9 3 2 -1.
+ <_>
+ 9 9 1 2 3.
+ <_>
+
+ <_>
+ 8 8 3 6 -1.
+ <_>
+ 9 8 1 6 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 10 12 2 4 2.
+ <_>
+ 8 16 2 4 2.
+ <_>
+
+ <_>
+ 2 17 16 2 -1.
+ <_>
+ 10 17 8 1 2.
+ <_>
+ 2 18 8 1 2.
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 9 12 1 8 3.
+ <_>
+
+ <_>
+ 3 10 1 3 -1.
+ <_>
+ 3 11 1 1 3.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 14 13 3 6 -1.
+ <_>
+ 14 15 3 2 3.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 2 10 15 2 -1.
+ <_>
+ 7 10 5 2 3.
+ <_>
+
+ <_>
+ 4 17 16 3 -1.
+ <_>
+ 4 18 16 1 3.
+ <_>
+
+ <_>
+ 8 6 4 9 -1.
+ <_>
+ 8 9 4 3 3.
+ <_>
+
+ <_>
+ 9 16 2 4 -1.
+ <_>
+ 9 16 1 2 2.
+ <_>
+ 10 18 1 2 2.
+ <_>
+
+ <_>
+ 5 5 10 8 -1.
+ <_>
+ 5 9 10 4 2.
+ <_>
+
+ <_>
+ 13 1 4 2 -1.
+ <_>
+ 13 1 2 2 2.
+ <_>
+
+ <_>
+ 14 0 3 6 -1.
+ <_>
+ 14 2 3 2 3.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 7 1 6 1 -1.
+ <_>
+ 9 1 2 1 3.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 9 12 3 1 3.
+ <_>
+
+ <_>
+ 12 9 3 3 -1.
+ <_>
+ 13 9 1 3 3.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 8 12 3 1 3.
+ <_>
+
+ <_>
+ 5 9 3 3 -1.
+ <_>
+ 6 9 1 3 3.
+ <_>
+
+ <_>
+ 10 11 1 3 -1.
+ <_>
+ 10 12 1 1 3.
+ <_>
+
+ <_>
+ 7 9 6 4 -1.
+ <_>
+ 10 9 3 2 2.
+ <_>
+ 7 11 3 2 2.
+ <_>
+
+ <_>
+ 4 7 2 2 -1.
+ <_>
+ 4 7 1 1 2.
+ <_>
+ 5 8 1 1 2.
+ <_>
+
+ <_>
+ 5 7 3 1 -1.
+ <_>
+ 6 7 1 1 3.
+ <_>
+
+ <_>
+ 18 3 2 3 -1.
+ <_>
+ 18 4 2 1 3.
+ <_>
+
+ <_>
+ 13 1 4 2 -1.
+ <_>
+ 13 1 2 2 2.
+ <_>
+
+ <_>
+ 3 1 4 2 -1.
+ <_>
+ 5 1 2 2 2.
+ <_>
+
+ <_>
+ 3 0 5 2 -1.
+ <_>
+ 3 1 5 1 2.
+ <_>
+
+ <_>
+ 14 7 6 4 -1.
+ <_>
+ 17 7 3 2 2.
+ <_>
+ 14 9 3 2 2.
+ <_>
+
+ <_>
+ 4 8 16 2 -1.
+ <_>
+ 4 9 16 1 2.
+ <_>
+
+ <_>
+ 2 11 5 6 -1.
+ <_>
+ 2 13 5 2 3.
+ <_>
+
+ <_>
+ 5 16 2 4 -1.
+ <_>
+ 5 16 1 2 2.
+ <_>
+ 6 18 1 2 2.
+ <_>
+
+ <_>
+ 15 6 2 12 -1.
+ <_>
+ 16 6 1 6 2.
+ <_>
+ 15 12 1 6 2.
+ <_>
+
+ <_>
+ 13 3 6 16 -1.
+ <_>
+ 15 3 2 16 3.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 4 5 6 6 2.
+ <_>
+ 10 11 6 6 2.
+ <_>
+
+ <_>
+ 5 1 10 13 -1.
+ <_>
+ 10 1 5 13 2.
+ <_>
+
+ <_>
+ 11 5 2 2 -1.
+ <_>
+ 12 5 1 1 2.
+ <_>
+ 11 6 1 1 2.
+ <_>
+
+ <_>
+ 13 5 1 3 -1.
+ <_>
+ 13 6 1 1 3.
+ <_>
+
+ <_>
+ 7 4 2 4 -1.
+ <_>
+ 7 4 1 2 2.
+ <_>
+ 8 6 1 2 2.
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 10 5 3 4 2.
+ <_>
+
+ <_>
+ 12 4 4 6 -1.
+ <_>
+ 14 4 2 3 2.
+ <_>
+ 12 7 2 3 2.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 5 6 6 6 -1.
+ <_>
+ 7 6 2 6 3.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 15 6 2 2 -1.
+ <_>
+ 16 6 1 1 2.
+ <_>
+ 15 7 1 1 2.
+ <_>
+
+ <_>
+ 14 7 4 4 -1.
+ <_>
+ 16 7 2 2 2.
+ <_>
+ 14 9 2 2 2.
+ <_>
+
+ <_>
+ 5 5 6 2 -1.
+ <_>
+ 7 5 2 2 3.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 7 19 6 1 3.
+ <_>
+
+ <_>
+ 12 3 3 3 -1.
+ <_>
+ 12 4 3 1 3.
+ <_>
+
+ <_>
+ 16 0 2 3 -1.
+ <_>
+ 16 1 2 1 3.
+ <_>
+
+ <_>
+ 5 3 3 3 -1.
+ <_>
+ 5 4 3 1 3.
+ <_>
+
+ <_>
+ 2 0 2 3 -1.
+ <_>
+ 2 1 2 1 3.
+ <_>
+
+ <_>
+ 15 6 2 2 -1.
+ <_>
+ 16 6 1 1 2.
+ <_>
+ 15 7 1 1 2.
+ <_>
+
+ <_>
+ 10 13 1 6 -1.
+ <_>
+ 10 16 1 3 2.
+ <_>
+
+ <_>
+ 0 7 10 2 -1.
+ <_>
+ 0 7 5 1 2.
+ <_>
+ 5 8 5 1 2.
+ <_>
+
+ <_>
+ 3 10 6 2 -1.
+ <_>
+ 3 11 6 1 2.
+ <_>
+
+ <_>
+ 12 18 4 2 -1.
+ <_>
+ 12 19 4 1 2.
+ <_>
+
+ <_>
+ 12 18 2 2 -1.
+ <_>
+ 13 18 1 1 2.
+ <_>
+ 12 19 1 1 2.
+ <_>
+
+ <_>
+ 6 19 2 1 -1.
+ <_>
+ 7 19 1 1 2.
+ <_>
+
+ <_>
+ 0 4 2 16 -1.
+ <_>
+ 0 4 1 8 2.
+ <_>
+ 1 12 1 8 2.
+ <_>
+
+ <_>
+ 16 1 4 9 -1.
+ <_>
+ 16 4 4 3 3.
+ <_>
+
+ <_>
+ 10 2 1 2 -1.
+ <_>
+ 10 3 1 1 2.
+ <_>
+
+ <_>
+ 4 14 4 6 -1.
+ <_>
+ 4 14 2 3 2.
+ <_>
+ 6 17 2 3 2.
+ <_>
+
+ <_>
+ 4 15 1 4 -1.
+ <_>
+ 4 17 1 2 2.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 10 2 10 2 2.
+ <_>
+ 0 4 10 2 2.
+ <_>
+
+ <_>
+ 14 5 2 8 -1.
+ <_>
+ 14 9 2 4 2.
+ <_>
+
+ <_>
+ 5 12 4 5 -1.
+ <_>
+ 7 12 2 5 2.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 9 14 11 3 -1.
+ <_>
+ 9 15 11 1 3.
+ <_>
+
+ <_>
+ 7 14 7 3 -1.
+ <_>
+ 7 15 7 1 3.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 6 7 2 7 -1.
+ <_>
+ 7 7 1 7 2.
+ <_>
+
+ <_>
+ 14 5 1 3 -1.
+ <_>
+ 14 6 1 1 3.
+ <_>
+
+ <_>
+ 13 4 4 3 -1.
+ <_>
+ 13 5 4 1 3.
+ <_>
+
+ <_>
+ 2 7 4 4 -1.
+ <_>
+ 2 7 2 2 2.
+ <_>
+ 4 9 2 2 2.
+ <_>
+
+ <_>
+ 2 9 13 6 -1.
+ <_>
+ 2 12 13 3 2.
+ <_>
+
+ <_>
+ 10 1 3 4 -1.
+ <_>
+ 11 1 1 4 3.
+ <_>
+
+ <_>
+ 9 8 5 2 -1.
+ <_>
+ 9 9 5 1 2.
+ <_>
+
+ <_>
+ 0 14 11 3 -1.
+ <_>
+ 0 15 11 1 3.
+ <_>
+
+ <_>
+ 8 11 2 8 -1.
+ <_>
+ 8 15 2 4 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 14 10 3 2.
+ <_>
+
+ <_>
+ 5 13 15 5 -1.
+ <_>
+ 10 13 5 5 3.
+ <_>
+
+ <_>
+ 8 10 1 10 -1.
+ <_>
+ 8 15 1 5 2.
+ <_>
+
+ <_>
+ 4 14 6 2 -1.
+ <_>
+ 6 14 2 2 3.
+ <_>
+
+ <_>
+ 7 14 7 3 -1.
+ <_>
+ 7 15 7 1 3.
+ <_>
+
+ <_>
+ 7 16 9 3 -1.
+ <_>
+ 7 17 9 1 3.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 3 5 1 6 -1.
+ <_>
+ 3 8 1 3 2.
+ <_>
+
+ <_>
+ 6 5 11 2 -1.
+ <_>
+ 6 6 11 1 2.
+ <_>
+
+ <_>
+ 9 0 3 2 -1.
+ <_>
+ 10 0 1 2 3.
+ <_>
+
+ <_>
+ 5 5 1 3 -1.
+ <_>
+ 5 6 1 1 3.
+ <_>
+
+ <_>
+ 8 7 3 2 -1.
+ <_>
+ 9 7 1 2 3.
+ <_>
+
+ <_>
+ 5 2 10 6 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+ 5 5 5 3 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 3 4 2.
+ <_>
+
+ <_>
+ 8 16 3 4 -1.
+ <_>
+ 9 16 1 4 3.
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 9 13 1 3 2.
+ <_>
+ 10 16 1 3 2.
+ <_>
+
+ <_>
+ 9 8 3 1 -1.
+ <_>
+ 10 8 1 1 3.
+ <_>
+
+ <_>
+ 2 5 18 15 -1.
+ <_>
+ 2 10 18 5 3.
+ <_>
+
+ <_>
+ 1 3 6 2 -1.
+ <_>
+ 4 3 3 2 2.
+ <_>
+
+ <_>
+ 7 6 6 2 -1.
+ <_>
+ 9 6 2 2 3.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 8 18 4 1 3.
+ <_>
+
+ <_>
+ 10 13 2 3 -1.
+ <_>
+ 10 14 2 1 3.
+ <_>
+
+ <_>
+ 0 10 20 4 -1.
+ <_>
+ 0 12 20 2 2.
+ <_>
+
+ <_>
+ 5 7 6 4 -1.
+ <_>
+ 5 7 3 2 2.
+ <_>
+ 8 9 3 2 2.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 10 10 2 3 -1.
+ <_>
+ 10 11 2 1 3.
+ <_>
+
+ <_>
+ 9 5 2 2 -1.
+ <_>
+ 9 6 2 1 2.
+ <_>
+
+ <_>
+ 4 4 1 10 -1.
+ <_>
+ 4 9 1 5 2.
+ <_>
+
+ <_>
+ 11 18 4 2 -1.
+ <_>
+ 11 18 2 2 2.
+ <_>
+
+ <_>
+ 12 18 3 2 -1.
+ <_>
+ 12 19 3 1 2.
+ <_>
+
+ <_>
+ 0 6 16 6 -1.
+ <_>
+ 0 6 8 3 2.
+ <_>
+ 8 9 8 3 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 11 18 4 2 -1.
+ <_>
+ 11 18 2 2 2.
+ <_>
+
+ <_>
+ 12 18 3 2 -1.
+ <_>
+ 12 19 3 1 2.
+ <_>
+
+ <_>
+ 8 12 1 2 -1.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 8 13 1 3 -1.
+ <_>
+ 8 14 1 1 3.
+ <_>
+
+ <_>
+ 11 18 4 2 -1.
+ <_>
+ 11 18 2 2 2.
+ <_>
+
+ <_>
+ 14 12 4 6 -1.
+ <_>
+ 14 12 2 6 2.
+ <_>
+
+ <_>
+ 6 0 3 4 -1.
+ <_>
+ 7 0 1 4 3.
+ <_>
+
+ <_>
+ 4 0 2 8 -1.
+ <_>
+ 4 0 1 4 2.
+ <_>
+ 5 4 1 4 2.
+ <_>
+
+ <_>
+ 11 17 9 3 -1.
+ <_>
+ 14 17 3 3 3.
+ <_>
+
+ <_>
+ 16 2 4 5 -1.
+ <_>
+ 16 2 2 5 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 7 2 3 2 -1.
+ <_>
+ 8 2 1 2 3.
+ <_>
+
+ <_>
+ 11 17 9 3 -1.
+ <_>
+ 14 17 3 3 3.
+ <_>
+
+ <_>
+ 16 2 4 5 -1.
+ <_>
+ 16 2 2 5 2.
+ <_>
+
+ <_>
+ 0 17 9 3 -1.
+ <_>
+ 3 17 3 3 3.
+ <_>
+
+ <_>
+ 0 2 4 5 -1.
+ <_>
+ 2 2 2 5 2.
+ <_>
+
+ <_>
+ 5 11 10 9 -1.
+ <_>
+ 5 14 10 3 3.
+ <_>
+
+ <_>
+ 9 6 3 3 -1.
+ <_>
+ 9 7 3 1 3.
+ <_>
+
+ <_>
+ 3 17 5 3 -1.
+ <_>
+ 3 18 5 1 3.
+ <_>
+
+ <_>
+ 7 5 4 7 -1.
+ <_>
+ 9 5 2 7 2.
+ <_>
+
+ <_>
+ 9 8 2 5 -1.
+ <_>
+ 9 8 1 5 2.
+ <_>
+
+ <_>
+ 2 2 18 2 -1.
+ <_>
+ 2 3 18 1 2.
+ <_>
+
+ <_>
+ 2 8 15 6 -1.
+ <_>
+ 7 8 5 6 3.
+ <_>
+
+ <_>
+ 9 8 2 5 -1.
+ <_>
+ 10 8 1 5 2.
+ <_>
+
+ <_>
+ 12 10 4 6 -1.
+ <_>
+ 12 12 4 2 3.
+ <_>
+
+ <_>
+ 14 3 6 2 -1.
+ <_>
+ 14 4 6 1 2.
+ <_>
+
+ <_>
+ 5 5 2 3 -1.
+ <_>
+ 5 6 2 1 3.
+ <_>
+
+ <_>
+ 4 6 3 3 -1.
+ <_>
+ 4 7 3 1 3.
+ <_>
+
+ <_>
+ 14 12 3 3 -1.
+ <_>
+ 14 13 3 1 3.
+ <_>
+
+ <_>
+ 6 12 11 3 -1.
+ <_>
+ 6 13 11 1 3.
+ <_>
+
+ <_>
+ 1 2 3 6 -1.
+ <_>
+ 1 4 3 2 3.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+
+ <_>
+ 9 8 3 4 -1.
+ <_>
+ 10 8 1 4 3.
+ <_>
+
+ <_>
+ 10 9 2 2 -1.
+ <_>
+ 10 10 2 1 2.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 9 8 1 4 3.
+ <_>
+
+ <_>
+ 4 4 10 10 -1.
+ <_>
+ 4 9 10 5 2.
+ <_>
+
+ <_>
+ 9 10 3 2 -1.
+ <_>
+ 10 10 1 2 3.
+ <_>
+
+ <_>
+ 9 10 3 2 -1.
+ <_>
+ 9 11 3 1 2.
+ <_>
+
+ <_>
+ 8 10 3 2 -1.
+ <_>
+ 9 10 1 2 3.
+ <_>
+
+ <_>
+ 2 4 14 12 -1.
+ <_>
+ 2 4 7 6 2.
+ <_>
+ 9 10 7 6 2.
+ <_>
+
+ <_>
+ 10 12 1 6 -1.
+ <_>
+ 10 15 1 3 2.
+ <_>
+
+ <_>
+ 7 3 8 16 -1.
+ <_>
+ 11 3 4 8 2.
+ <_>
+ 7 11 4 8 2.
+ <_>
+
+ <_>
+ 5 6 8 10 -1.
+ <_>
+ 5 6 4 5 2.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 6 2 8 8 -1.
+ <_>
+ 6 2 4 4 2.
+ <_>
+ 10 6 4 4 2.
+ <_>
+
+ <_>
+ 10 5 4 2 -1.
+ <_>
+ 12 5 2 1 2.
+ <_>
+ 10 6 2 1 2.
+ <_>
+
+ <_>
+ 12 4 3 3 -1.
+ <_>
+ 12 5 3 1 3.
+ <_>
+
+ <_>
+ 4 19 12 1 -1.
+ <_>
+ 8 19 4 1 3.
+ <_>
+
+ <_>
+ 8 2 3 1 -1.
+ <_>
+ 9 2 1 1 3.
+ <_>
+
+ <_>
+ 13 17 4 3 -1.
+ <_>
+ 13 18 4 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 7 15 6 3 -1.
+ <_>
+ 7 16 6 1 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 14 12 2 3 -1.
+ <_>
+ 14 13 2 1 3.
+ <_>
+
+ <_>
+ 4 10 4 6 -1.
+ <_>
+ 4 12 4 2 3.
+ <_>
+
+ <_>
+ 4 13 3 2 -1.
+ <_>
+ 4 14 3 1 2.
+ <_>
+
+ <_>
+ 9 16 2 3 -1.
+ <_>
+ 9 17 2 1 3.
+ <_>
+
+ <_>
+ 10 18 3 2 -1.
+ <_>
+ 11 18 1 2 3.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 1 10 4 2 -1.
+ <_>
+ 1 11 4 1 2.
+ <_>
+
+ <_>
+ 12 4 6 3 -1.
+ <_>
+ 12 5 6 1 3.
+ <_>
+
+ <_>
+ 14 4 1 3 -1.
+ <_>
+ 14 5 1 1 3.
+ <_>
+
+ <_>
+ 2 4 6 3 -1.
+ <_>
+ 2 5 6 1 3.
+ <_>
+
+ <_>
+ 5 4 1 3 -1.
+ <_>
+ 5 5 1 1 3.
+ <_>
+
+ <_>
+ 14 12 3 3 -1.
+ <_>
+ 14 13 3 1 3.
+ <_>
+
+ <_>
+ 15 12 2 3 -1.
+ <_>
+ 15 13 2 1 3.
+ <_>
+
+ <_>
+ 3 16 4 3 -1.
+ <_>
+ 3 17 4 1 3.
+ <_>
+
+ <_>
+ 8 0 4 2 -1.
+ <_>
+ 8 1 4 1 2.
+ <_>
+
+ <_>
+ 0 0 20 1 -1.
+ <_>
+ 0 0 10 1 2.
+ <_>
+
+ <_>
+ 9 7 3 4 -1.
+ <_>
+ 10 7 1 4 3.
+ <_>
+
+ <_>
+ 0 0 20 1 -1.
+ <_>
+ 10 0 10 1 2.
+ <_>
+
+ <_>
+ 8 7 3 4 -1.
+ <_>
+ 9 7 1 4 3.
+ <_>
+
+ <_>
+ 1 6 19 3 -1.
+ <_>
+ 1 7 19 1 3.
+ <_>
+
+ <_>
+ 12 7 4 2 -1.
+ <_>
+ 12 8 4 1 2.
+ <_>
+
+ <_>
+ 7 8 3 3 -1.
+ <_>
+ 7 9 3 1 3.
+ <_>
+
+ <_>
+ 7 7 3 3 -1.
+ <_>
+ 8 7 1 3 3.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 2 10 16 1 3.
+ <_>
+
+ <_>
+ 9 4 2 12 -1.
+ <_>
+ 9 8 2 4 3.
+ <_>
+
+ <_>
+ 7 3 2 5 -1.
+ <_>
+ 8 3 1 5 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 9 14 4 3 -1.
+ <_>
+ 9 15 4 1 3.
+ <_>
+
+ <_>
+ 7 8 6 4 -1.
+ <_>
+ 10 8 3 2 2.
+ <_>
+ 7 10 3 2 2.
+ <_>
+
+ <_>
+ 9 7 2 2 -1.
+ <_>
+ 10 7 1 2 2.
+ <_>
+
+ <_>
+ 5 5 6 6 -1.
+ <_>
+ 7 5 2 6 3.
+ <_>
+
+ <_>
+ 9 1 3 6 -1.
+ <_>
+ 10 1 1 6 3.
+ <_>
+
+ <_>
+ 4 5 12 2 -1.
+ <_>
+ 8 5 4 2 3.
+ <_>
+
+ <_>
+ 4 2 6 4 -1.
+ <_>
+ 6 2 2 4 3.
+ <_>
+
+ <_>
+ 4 7 8 2 -1.
+ <_>
+ 4 8 8 1 2.
+ <_>
+
+ <_>
+ 3 6 14 6 -1.
+ <_>
+ 10 6 7 3 2.
+ <_>
+ 3 9 7 3 2.
+ <_>
+
+ <_>
+ 3 6 14 3 -1.
+ <_>
+ 3 6 7 3 2.
+ <_>
+
+ <_>
+ 0 5 2 2 -1.
+ <_>
+ 0 6 2 1 2.
+ <_>
+
+ <_>
+ 8 13 4 3 -1.
+ <_>
+ 8 14 4 1 3.
+ <_>
+
+ <_>
+ 13 0 3 20 -1.
+ <_>
+ 14 0 1 20 3.
+ <_>
+
+ <_>
+ 10 8 10 3 -1.
+ <_>
+ 10 9 10 1 3.
+ <_>
+
+ <_>
+ 4 0 3 20 -1.
+ <_>
+ 5 0 1 20 3.
+ <_>
+
+ <_>
+ 0 8 10 3 -1.
+ <_>
+ 0 9 10 1 3.
+ <_>
+
+ <_>
+ 12 5 3 4 -1.
+ <_>
+ 13 5 1 4 3.
+ <_>
+
+ <_>
+ 6 7 12 4 -1.
+ <_>
+ 10 7 4 4 3.
+ <_>
+
+ <_>
+ 1 14 6 6 -1.
+ <_>
+ 1 14 3 3 2.
+ <_>
+ 4 17 3 3 2.
+ <_>
+
+ <_>
+ 1 17 6 2 -1.
+ <_>
+ 1 18 6 1 2.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 17 8 3 6 2.
+ <_>
+ 14 14 3 6 2.
+ <_>
+
+ <_>
+ 18 5 2 2 -1.
+ <_>
+ 18 6 2 1 2.
+ <_>
+
+ <_>
+ 3 16 4 2 -1.
+ <_>
+ 3 16 2 1 2.
+ <_>
+ 5 17 2 1 2.
+ <_>
+
+ <_>
+ 2 16 6 2 -1.
+ <_>
+ 4 16 2 2 3.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 17 8 3 6 2.
+ <_>
+ 14 14 3 6 2.
+ <_>
+
+ <_>
+ 18 5 2 2 -1.
+ <_>
+ 18 6 2 1 2.
+ <_>
+
+ <_>
+ 5 16 9 2 -1.
+ <_>
+ 8 16 3 2 3.
+ <_>
+
+ <_>
+ 3 14 6 6 -1.
+ <_>
+ 3 14 3 3 2.
+ <_>
+ 6 17 3 3 2.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 17 8 3 6 2.
+ <_>
+ 14 14 3 6 2.
+ <_>
+
+ <_>
+ 11 7 2 12 -1.
+ <_>
+ 11 11 2 4 3.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 0 8 3 6 2.
+ <_>
+ 3 14 3 6 2.
+ <_>
+
+ <_>
+ 7 7 2 12 -1.
+ <_>
+ 7 11 2 4 3.
+ <_>
+
+ <_>
+ 14 12 1 2 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 12 13 8 1 -1.
+ <_>
+ 12 13 4 1 2.
+ <_>
+
+ <_>
+ 0 3 16 6 -1.
+ <_>
+ 0 6 16 3 2.
+ <_>
+
+ <_>
+ 1 4 8 2 -1.
+ <_>
+ 1 4 4 1 2.
+ <_>
+ 5 5 4 1 2.
+ <_>
+
+ <_>
+ 14 12 1 2 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 15 12 2 3 -1.
+ <_>
+ 15 13 2 1 3.
+ <_>
+
+ <_>
+ 8 16 3 3 -1.
+ <_>
+ 8 17 3 1 3.
+ <_>
+
+ <_>
+ 5 12 1 2 -1.
+ <_>
+ 5 13 1 1 2.
+ <_>
+
+ <_>
+ 13 4 3 15 -1.
+ <_>
+ 14 4 1 15 3.
+ <_>
+
+ <_>
+ 17 3 2 6 -1.
+ <_>
+ 18 3 1 3 2.
+ <_>
+ 17 6 1 3 2.
+ <_>
+
+ <_>
+ 4 4 3 15 -1.
+ <_>
+ 5 4 1 15 3.
+ <_>
+
+ <_>
+ 1 3 2 6 -1.
+ <_>
+ 1 3 1 3 2.
+ <_>
+ 2 6 1 3 2.
+ <_>
+
+ <_>
+ 7 15 12 4 -1.
+ <_>
+ 7 17 12 2 2.
+ <_>
+
+ <_>
+ 1 0 19 3 -1.
+ <_>
+ 1 1 19 1 3.
+ <_>
+
+ <_>
+ 3 17 10 2 -1.
+ <_>
+ 3 17 5 1 2.
+ <_>
+ 8 18 5 1 2.
+ <_>
+
+ <_>
+ 2 5 10 15 -1.
+ <_>
+ 2 10 10 5 3.
+ <_>
+
+ <_>
+ 13 8 3 4 -1.
+ <_>
+ 13 10 3 2 2.
+ <_>
+
+ <_>
+ 19 13 1 2 -1.
+ <_>
+ 19 14 1 1 2.
+ <_>
+
+ <_>
+ 4 8 3 4 -1.
+ <_>
+ 4 10 3 2 2.
+ <_>
+
+ <_>
+ 0 13 1 2 -1.
+ <_>
+ 0 14 1 1 2.
+ <_>
+
+ <_>
+ 12 7 2 12 -1.
+ <_>
+ 12 13 2 6 2.
+ <_>
+
+ <_>
+ 14 7 2 2 -1.
+ <_>
+ 15 7 1 1 2.
+ <_>
+ 14 8 1 1 2.
+ <_>
+
+ <_>
+ 5 3 8 2 -1.
+ <_>
+ 5 4 8 1 2.
+ <_>
+
+ <_>
+ 0 2 2 6 -1.
+ <_>
+ 0 4 2 2 3.
+ <_>
+
+ <_>
+ 18 2 2 12 -1.
+ <_>
+ 19 2 1 6 2.
+ <_>
+ 18 8 1 6 2.
+ <_>
+
+ <_>
+ 18 1 1 2 -1.
+ <_>
+ 18 2 1 1 2.
+ <_>
+
+ <_>
+ 0 2 2 12 -1.
+ <_>
+ 0 2 1 6 2.
+ <_>
+ 1 8 1 6 2.
+ <_>
+
+ <_>
+ 1 1 1 2 -1.
+ <_>
+ 1 2 1 1 2.
+ <_>
+
+ <_>
+ 16 4 4 14 -1.
+ <_>
+ 18 4 2 7 2.
+ <_>
+ 16 11 2 7 2.
+ <_>
+
+ <_>
+ 10 14 1 6 -1.
+ <_>
+ 10 17 1 3 2.
+ <_>
+
+ <_>
+ 0 4 4 14 -1.
+ <_>
+ 0 4 2 7 2.
+ <_>
+ 2 11 2 7 2.
+ <_>
+
+ <_>
+ 9 14 1 6 -1.
+ <_>
+ 9 17 1 3 2.
+ <_>
+
+ <_>
+ 9 14 4 3 -1.
+ <_>
+ 9 15 4 1 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 8 7 4 2 3.
+ <_>
+
+ <_>
+ 0 8 4 3 -1.
+ <_>
+ 0 9 4 1 3.
+ <_>
+
+ <_>
+ 4 7 2 2 -1.
+ <_>
+ 4 7 1 1 2.
+ <_>
+ 5 8 1 1 2.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 11 4 4 5 -1.
+ <_>
+ 11 4 2 5 2.
+ <_>
+
+ <_>
+ 4 8 3 3 -1.
+ <_>
+ 5 8 1 3 3.
+ <_>
+
+ <_>
+ 0 3 8 1 -1.
+ <_>
+ 4 3 4 1 2.
+ <_>
+
+ <_>
+ 13 7 2 1 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 14 7 3 2 -1.
+ <_>
+ 15 7 1 2 3.
+ <_>
+
+ <_>
+ 5 7 2 1 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 3 7 3 2 -1.
+ <_>
+ 4 7 1 2 3.
+ <_>
+
+ <_>
+ 18 5 2 2 -1.
+ <_>
+ 18 6 2 1 2.
+ <_>
+
+ <_>
+ 12 14 2 2 -1.
+ <_>
+ 13 14 1 1 2.
+ <_>
+ 12 15 1 1 2.
+ <_>
+
+ <_>
+ 0 5 2 2 -1.
+ <_>
+ 0 6 2 1 2.
+ <_>
+
+ <_>
+ 6 14 2 2 -1.
+ <_>
+ 6 14 1 1 2.
+ <_>
+ 7 15 1 1 2.
+ <_>
+
+ <_>
+ 7 12 6 5 -1.
+ <_>
+ 9 12 2 5 3.
+ <_>
+
+ <_>
+ 12 17 5 2 -1.
+ <_>
+ 12 18 5 1 2.
+ <_>
+
+ <_>
+ 1 11 6 3 -1.
+ <_>
+ 4 11 3 3 2.
+ <_>
+
+ <_>
+ 1 9 6 3 -1.
+ <_>
+ 4 9 3 3 2.
+ <_>
+
+ <_>
+ 12 7 2 12 -1.
+ <_>
+ 12 13 2 6 2.
+ <_>
+
+ <_>
+ 8 7 5 3 -1.
+ <_>
+ 8 8 5 1 3.
+ <_>
+
+ <_>
+ 6 7 2 12 -1.
+ <_>
+ 6 13 2 6 2.
+ <_>
+
+ <_>
+ 1 2 9 18 -1.
+ <_>
+ 4 2 3 18 3.
+ <_>
+
+ <_>
+ 12 17 5 2 -1.
+ <_>
+ 12 18 5 1 2.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+
+ <_>
+ 6 7 6 1 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 7 3 3 2 -1.
+ <_>
+ 8 3 1 2 3.
+ <_>
+
+ <_>
+ 9 4 3 1 -1.
+ <_>
+ 10 4 1 1 3.
+ <_>
+
+ <_>
+ 11 11 3 1 -1.
+ <_>
+ 12 11 1 1 3.
+ <_>
+
+ <_>
+ 8 4 3 1 -1.
+ <_>
+ 9 4 1 1 3.
+ <_>
+
+ <_>
+ 6 11 3 1 -1.
+ <_>
+ 7 11 1 1 3.
+ <_>
+
+ <_>
+ 12 13 6 6 -1.
+ <_>
+ 12 15 6 2 3.
+ <_>
+
+ <_>
+ 14 13 1 6 -1.
+ <_>
+ 14 15 1 2 3.
+ <_>
+
+ <_>
+ 2 13 6 6 -1.
+ <_>
+ 2 15 6 2 3.
+ <_>
+
+ <_>
+ 1 5 18 1 -1.
+ <_>
+ 7 5 6 1 3.
+ <_>
+
+ <_>
+ 4 7 12 2 -1.
+ <_>
+ 10 7 6 1 2.
+ <_>
+ 4 8 6 1 2.
+ <_>
+
+ <_>
+ 6 1 8 10 -1.
+ <_>
+ 10 1 4 5 2.
+ <_>
+ 6 6 4 5 2.
+ <_>
+
+ <_>
+ 3 13 4 3 -1.
+ <_>
+ 3 14 4 1 3.
+ <_>
+
+ <_>
+ 6 13 4 3 -1.
+ <_>
+ 6 14 4 1 3.
+ <_>
+
+ <_>
+ 9 14 4 3 -1.
+ <_>
+ 9 15 4 1 3.
+ <_>
+
+ <_>
+ 12 9 2 3 -1.
+ <_>
+ 12 10 2 1 3.
+ <_>
+
+ <_>
+ 7 14 4 3 -1.
+ <_>
+ 7 15 4 1 3.
+ <_>
+
+ <_>
+ 9 0 2 1 -1.
+ <_>
+ 10 0 1 1 2.
+ <_>
+
+ <_>
+ 5 0 10 5 -1.
+ <_>
+ 5 0 5 5 2.
+ <_>
+
+ <_>
+ 6 6 8 7 -1.
+ <_>
+ 6 6 4 7 2.
+ <_>
+
+ <_>
+ 5 0 10 5 -1.
+ <_>
+ 10 0 5 5 2.
+ <_>
+
+ <_>
+ 6 6 8 7 -1.
+ <_>
+ 10 6 4 7 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 10 9 5 4 2.
+ <_>
+ 5 13 5 4 2.
+ <_>
+
+ <_>
+ 10 0 4 10 -1.
+ <_>
+ 12 0 2 5 2.
+ <_>
+ 10 5 2 5 2.
+ <_>
+
+ <_>
+ 1 4 8 3 -1.
+ <_>
+ 1 5 8 1 3.
+ <_>
+
+ <_>
+ 4 4 8 3 -1.
+ <_>
+ 4 5 8 1 3.
+ <_>
+
+ <_>
+ 9 7 4 3 -1.
+ <_>
+ 9 8 4 1 3.
+ <_>
+
+ <_>
+ 12 8 3 12 -1.
+ <_>
+ 12 14 3 6 2.
+ <_>
+
+ <_>
+ 7 7 4 3 -1.
+ <_>
+ 7 8 4 1 3.
+ <_>
+
+ <_>
+ 5 8 3 12 -1.
+ <_>
+ 5 14 3 6 2.
+ <_>
+
+ <_>
+ 10 0 7 6 -1.
+ <_>
+ 10 2 7 2 3.
+ <_>
+
+ <_>
+ 2 1 18 1 -1.
+ <_>
+ 8 1 6 1 3.
+ <_>
+
+ <_>
+ 5 0 3 8 -1.
+ <_>
+ 6 0 1 8 3.
+ <_>
+
+ <_>
+ 4 7 4 2 -1.
+ <_>
+ 4 8 4 1 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt_tree.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt_tree.xml
new file mode 100644
index 0000000000000000000000000000000000000000..e0420a274333613f57ef8c2661b26780afdde6de
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_alt_tree.xml
@@ -0,0 +1,96484 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 406
+
+ 0
+ 47
+
+ <_>
+ 3
+ -1.3442519903182983e+00
+
+ <_>
+
+ 0 -1 0 3.7895569112151861e-03
+
+ -9.2945802211761475e-01 6.4119851589202881e-01
+ <_>
+
+ 0 -1 1 1.2098110280930996e-02
+
+ -7.1810090541839600e-01 4.7141009569168091e-01
+ <_>
+
+ 0 -1 2 1.2138449819758534e-03
+
+ -7.2831612825393677e-01 3.0330690741539001e-01
+ <_>
+ 9
+ -1.6378560066223145e+00
+
+ <_>
+
+ 0 -1 3 8.7510552257299423e-03
+
+ -8.5947072505950928e-01 3.6881381273269653e-01
+ <_>
+
+ 0 -1 4 2.1986700594425201e-02
+
+ -6.0180151462554932e-01 3.2897830009460449e-01
+ <_>
+
+ 0 -1 5 6.4913398819044232e-04
+
+ -7.9431951045989990e-01 2.5493299961090088e-01
+ <_>
+
+ 0 -1 6 -1.0192029876634479e-03
+
+ 2.2729329764842987e-01 -6.3627982139587402e-01
+ <_>
+
+ 0 -1 7 1.3674780493602157e-03
+
+ -6.0014182329177856e-01 2.4118369817733765e-01
+ <_>
+
+ 0 -1 8 1.0245250305160880e-03
+
+ -5.8542472124099731e-01 1.2550109624862671e-01
+ <_>
+
+ 0 -1 9 1.8465859815478325e-02
+
+ 1.9563560187816620e-01 -6.7630231380462646e-01
+ <_>
+
+ 0 -1 10 4.0901508182287216e-03
+
+ -4.4916498661041260e-01 2.6677688956260681e-01
+ <_>
+
+ 0 -1 11 1.1358099989593029e-02
+
+ 1.8783229589462280e-01 -6.1379361152648926e-01
+ <_>
+ 16
+ -1.7317579984664917e+00
+
+ <_>
+
+ 0 -1 12 -1.1588949710130692e-02
+
+ 3.4567040205001831e-01 -7.6478981971740723e-01
+ <_>
+
+ 0 -1 13 5.1809530705213547e-03
+
+ 2.4104920029640198e-01 -6.9623559713363647e-01
+ <_>
+
+ 0 -1 14 2.1468549966812134e-03
+
+ -8.0553662776947021e-01 1.9838610291481018e-01
+ <_>
+
+ 0 -1 15 -3.6556499544531107e-03
+
+ -7.1833139657974243e-01 1.2305679917335510e-01
+ <_>
+
+ 0 -1 16 -1.9701640121638775e-03
+
+ 2.2777689993381500e-01 -4.7520169615745544e-01
+ <_>
+
+ 0 -1 17 -3.3645539078861475e-03
+
+ -4.6095049381256104e-01 2.0394650101661682e-01
+ <_>
+
+ 0 -1 18 -7.4126059189438820e-05
+
+ 1.8213239312171936e-01 -4.7829270362854004e-01
+ <_>
+
+ 0 -1 19 -1.7571110278367996e-02
+
+ -7.1737551689147949e-01 1.1311130225658417e-01
+ <_>
+
+ 0 -1 20 6.3840472139418125e-03
+
+ -4.0205681324005127e-01 2.0730289816856384e-01
+ <_>
+
+ 0 -1 21 -1.4723399654030800e-02
+
+ -6.7558771371841431e-01 6.8973086774349213e-02
+ <_>
+
+ 0 -1 22 -5.2889222279191017e-03
+
+ -6.2105172872543335e-01 1.3349360227584839e-01
+ <_>
+
+ 0 -1 23 2.7743630111217499e-02
+
+ 1.1760850250720978e-01 -5.4641121625900269e-01
+ <_>
+
+ 0 -1 24 3.9427559822797775e-02
+
+ -2.1134279668331146e-01 3.9452999830245972e-01
+ <_>
+
+ 0 -1 25 8.6949411779642105e-03
+
+ 1.2580950558185577e-01 -4.7989100217819214e-01
+ <_>
+
+ 0 -1 26 2.8245279099792242e-03
+
+ 1.9653140008449554e-01 -4.0256679058074951e-01
+ <_>
+
+ 0 -1 27 -2.8915189206600189e-02
+
+ -8.0616527795791626e-01 8.1882260739803314e-02
+ <_>
+ 29
+ -1.9308480024337769e+00
+
+ <_>
+
+ 0 -1 28 8.0171944573521614e-03
+
+ -6.8981552124023438e-01 2.4136860668659210e-01
+ <_>
+
+ 0 -1 29 -2.4478728882968426e-03
+
+ 2.1353200078010559e-01 -6.4146691560745239e-01
+ <_>
+
+ 0 -1 30 1.7917619552463293e-03
+
+ -6.1445468664169312e-01 1.9236929714679718e-01
+ <_>
+
+ 0 -1 31 4.3905500206165016e-04
+
+ -7.5360429286956787e-01 1.5696890652179718e-01
+ <_>
+
+ 0 -1 32 -3.6769549478776753e-04
+
+ 1.7380510270595551e-01 -5.8404499292373657e-01
+ <_>
+
+ 0 -1 33 -4.2802388779819012e-03
+
+ -6.6968989372253418e-01 1.1289729923009872e-01
+ <_>
+
+ 0 -1 34 3.5238768905401230e-03
+
+ 1.2501940131187439e-01 -7.3299217224121094e-01
+ <_>
+
+ 0 -1 35 7.9299701610580087e-04
+
+ -4.4966199994087219e-01 2.1590930223464966e-01
+ <_>
+
+ 0 -1 36 4.4371088733896613e-04
+
+ -3.8909769058227539e-01 2.1181149780750275e-01
+ <_>
+
+ 0 -1 37 -2.7145470958203077e-03
+
+ -4.6716868877410889e-01 1.5038399398326874e-01
+ <_>
+
+ 0 -1 38 -6.9272058317437768e-04
+
+ -5.8596551418304443e-01 1.1714380234479904e-01
+ <_>
+
+ 0 -1 39 4.9261808395385742e-02
+
+ -1.3800150156021118e-01 4.9366238713264465e-01
+ <_>
+
+ 0 -1 40 -2.2837519645690918e-02
+
+ -6.3743507862091064e-01 1.2324090301990509e-01
+ <_>
+
+ 0 -1 41 4.8372112214565277e-03
+
+ -1.2391629815101624e-01 1.0620889812707901e-01
+ <_>
+
+ 0 -1 42 1.0256259702146053e-02
+
+ -1.8767049908638000e-01 2.9824170470237732e-01
+ <_>
+
+ 0 -1 43 1.0618680156767368e-02
+
+ 1.0612460225820541e-01 -3.3244881033897400e-01
+ <_>
+
+ 0 -1 44 2.4113139137625694e-02
+
+ 8.7200611829757690e-02 -6.6846621036529541e-01
+ <_>
+
+ 0 -1 45 -3.6754710599780083e-03
+
+ 1.1043280363082886e-01 -4.4581958651542664e-01
+ <_>
+
+ 0 -1 46 -3.8996201008558273e-02
+
+ -7.0228111743927002e-01 8.1809490919113159e-02
+ <_>
+
+ 0 -1 47 1.5777100343257189e-03
+
+ 1.5954199433326721e-01 -3.2860770821571350e-01
+ <_>
+
+ 0 -1 48 9.1089410707354546e-03
+
+ 1.0326369851827621e-01 -4.4402560591697693e-01
+ <_>
+
+ 0 -1 49 -1.7051609233021736e-02
+
+ -5.5853348970413208e-01 6.2711499631404877e-02
+ <_>
+
+ 0 -1 50 1.3652660418301821e-03
+
+ -5.3934460878372192e-01 7.0839896798133850e-02
+ <_>
+
+ 0 -1 51 -1.1186149902641773e-02
+
+ -4.7260180115699768e-01 8.1019416451454163e-02
+ <_>
+
+ 0 -1 52 -1.1705270037055016e-02
+
+ 2.4750089645385742e-01 -1.7778989672660828e-01
+ <_>
+
+ 0 -1 53 -9.7736932337284088e-02
+
+ -5.6177508831024170e-01 8.0921821296215057e-02
+ <_>
+
+ 0 -1 54 -8.5228063166141510e-02
+
+ -5.2233248949050903e-01 7.2821393609046936e-02
+ <_>
+
+ 0 -1 55 -3.6733459681272507e-02
+
+ 4.3623578548431396e-01 -9.9339507520198822e-02
+ <_>
+
+ 0 -1 56 -3.6704430822283030e-03
+
+ 1.4834220707416534e-01 -2.7119669318199158e-01
+ <_>
+ 36
+ -2.0711259841918945e+00
+
+ <_>
+
+ 0 -1 57 -1.1610370129346848e-03
+
+ -5.6377887725830078e-01 2.3568780720233917e-01
+ <_>
+
+ 0 -1 58 1.1830299627035856e-03
+
+ 1.5724280476570129e-01 -6.7728179693222046e-01
+ <_>
+
+ 0 -1 59 -2.1273950114846230e-03
+
+ -6.6150152683258057e-01 1.4943139255046844e-01
+ <_>
+
+ 0 -1 60 -1.1893469840288162e-01
+
+ 5.3225821256637573e-01 -2.2968369722366333e-01
+ <_>
+
+ 0 -1 61 -1.3624870218336582e-02
+
+ -6.0635501146316528e-01 1.7001089453697205e-01
+ <_>
+
+ 0 -1 62 -6.3198682619258761e-04
+
+ -6.8972241878509521e-01 1.1584629863500595e-01
+ <_>
+
+ 0 -1 63 -4.4108428992331028e-03
+
+ -6.2967002391815186e-01 1.2430600076913834e-01
+ <_>
+
+ 0 -1 64 -2.2982239723205566e-02
+
+ -5.0497251749038696e-01 1.6636120155453682e-02
+ <_>
+
+ 0 -1 65 -2.3721898905932903e-03
+
+ -6.2462240457534790e-01 1.3793750107288361e-01
+ <_>
+
+ 0 -1 66 8.7364763021469116e-03
+
+ 1.3996620476245880e-01 -5.4822951555252075e-01
+ <_>
+
+ 0 -1 67 6.7737072706222534e-02
+
+ -1.9172480702400208e-01 5.4700487852096558e-01
+ <_>
+
+ 0 -1 68 -4.0138149634003639e-03
+
+ -5.5429118871688843e-01 1.4517059922218323e-01
+ <_>
+
+ 0 -1 69 1.2857170077040792e-04
+
+ -5.1031237840652466e-01 1.1023940145969391e-01
+ <_>
+
+ 0 -1 70 -3.9688948541879654e-02
+
+ -6.1830729246139526e-01 9.6676096320152283e-02
+ <_>
+
+ 0 -1 71 -1.6646150033921003e-03
+
+ 1.6449889540672302e-01 -3.7186318635940552e-01
+ <_>
+
+ 0 -1 72 5.3499247878789902e-03
+
+ 1.1145050078630447e-01 -3.7441021203994751e-01
+ <_>
+
+ 0 -1 73 -2.2904010489583015e-02
+
+ -5.8097589015960693e-01 1.1077260226011276e-01
+ <_>
+
+ 0 -1 74 1.0703450068831444e-02
+
+ 4.4733259826898575e-02 -5.8116632699966431e-01
+ <_>
+
+ 0 -1 75 -4.2331559234298766e-04
+
+ -5.4423791170120239e-01 8.7089292705059052e-02
+ <_>
+
+ 0 -1 76 1.5554429963231087e-02
+
+ 5.6884340941905975e-02 -3.7645170092582703e-01
+ <_>
+
+ 0 -1 77 -2.0539449527859688e-02
+
+ -3.8714569807052612e-01 1.1833839863538742e-01
+ <_>
+
+ 0 -1 78 -3.1234358903020620e-03
+
+ 8.3635427057743073e-02 -1.9862389564514160e-01
+ <_>
+
+ 0 -1 79 2.3932829499244690e-02
+
+ 7.9600542783737183e-02 -6.5370100736618042e-01
+ <_>
+
+ 0 -1 80 8.3920456469058990e-02
+
+ -1.0653129965066910e-01 4.8772820830345154e-01
+ <_>
+
+ 0 -1 81 1.6003159806132317e-02
+
+ 8.3643212914466858e-02 -5.9207731485366821e-01
+ <_>
+
+ 0 -1 82 5.8071441017091274e-03
+
+ 8.7997503578662872e-02 -3.3279138803482056e-01
+ <_>
+
+ 0 -1 83 -8.1104427576065063e-02
+
+ 6.3775187730789185e-01 -6.7692361772060394e-02
+ <_>
+
+ 0 -1 84 4.5403029769659042e-02
+
+ -5.1510389894247055e-02 3.0225670337677002e-01
+ <_>
+
+ 0 -1 85 1.3877229765057564e-02
+
+ 9.9967628717422485e-02 -4.6520909667015076e-01
+ <_>
+
+ 0 -1 86 3.4590709954500198e-02
+
+ -9.7614437341690063e-02 3.4678751230239868e-01
+ <_>
+
+ 0 -1 87 1.5704549849033356e-02
+
+ 7.6344117522239685e-02 -5.3356319665908813e-01
+ <_>
+
+ 0 -1 88 -1.0420549660921097e-01
+
+ 6.1890971660614014e-01 -4.4259760528802872e-02
+ <_>
+
+ 0 -1 89 1.3443189859390259e-01
+
+ -5.9853021055459976e-02 6.3635712862014771e-01
+ <_>
+
+ 0 -1 90 -2.5646309368312359e-03
+
+ -5.3600472211837769e-01 7.3116026818752289e-02
+ <_>
+
+ 0 -1 91 1.8647089600563049e-02
+
+ 6.9856151938438416e-02 -5.6878322362899780e-01
+ <_>
+
+ 0 -1 92 1.5159539878368378e-02
+
+ 1.8206339329481125e-02 -2.7663159370422363e-01
+ <_>
+ 7
+ -2.1360809803009033e+00
+
+ <_>
+
+ 0 -1 93 1.4778429269790649e-01
+
+ -8.9933121204376221e-01 5.7035928964614868e-01
+ <_>
+
+ 0 -1 94 2.9984670877456665e-01
+
+ -6.5394151210784912e-01 3.5054451227188110e-01
+ <_>
+
+ 0 -1 95 -7.9061716794967651e-02
+
+ 4.4085291028022766e-01 -6.5087568759918213e-01
+ <_>
+
+ 0 -1 96 5.8428961783647537e-02
+
+ -4.2665359377861023e-01 5.8410567045211792e-01
+ <_>
+
+ 0 -1 97 -1.4664280228316784e-02
+
+ 3.2435241341590881e-01 -5.9659618139266968e-01
+ <_>
+
+ 0 -1 98 3.9517199993133545e-01
+
+ -7.5798347592353821e-02 4.8659950494766235e-01
+ <_>
+
+ 0 -1 99 1.1040589958429337e-01
+
+ -8.4556102752685547e-01 2.1374569833278656e-01
+ <_>
+ 50
+ -1.8755869865417480e+00
+
+ <_>
+
+ 0 -1 100 3.7777079269289970e-03
+
+ 1.8744400143623352e-01 -6.5354061126708984e-01
+ <_>
+
+ 0 -1 101 5.3003188222646713e-03
+
+ 9.3951843678951263e-02 -5.6917887926101685e-01
+ <_>
+
+ 0 -1 102 -5.5426009930670261e-03
+
+ 1.6031709313392639e-01 -5.1822239160537720e-01
+ <_>
+
+ 0 -1 103 -9.1971885412931442e-03
+
+ -5.7420462369918823e-01 1.4791400730609894e-01
+ <_>
+
+ 0 -1 104 5.3701602155342698e-04
+
+ -7.0449697971343994e-01 1.0752149671316147e-01
+ <_>
+
+ 0 -1 105 -2.2125479299575090e-03
+
+ -5.0877428054809570e-01 1.1367189884185791e-01
+ <_>
+
+ 0 -1 106 1.1675730347633362e-02
+
+ 8.4258683025836945e-02 -6.7384701967239380e-01
+ <_>
+
+ 0 -1 107 -2.0404369570314884e-03
+
+ 1.6251119971275330e-01 -4.1435649991035461e-01
+ <_>
+
+ 0 -1 108 -7.6540438458323479e-03
+
+ -4.2833179235458374e-01 1.3060709834098816e-01
+ <_>
+
+ 0 -1 109 2.9370479285717010e-02
+
+ 5.4651051759719849e-02 -3.4795379638671875e-01
+ <_>
+
+ 0 -1 110 -9.5828901976346970e-03
+
+ -4.8620718717575073e-01 1.1706890165805817e-01
+ <_>
+
+ 0 -1 111 6.0666278004646301e-03
+
+ -3.6553880572319031e-01 8.7813600897789001e-02
+ <_>
+
+ 0 -1 112 1.7992249922826886e-03
+
+ 1.6035990417003632e-01 -3.0859109759330750e-01
+ <_>
+
+ 0 -1 113 -1.0092309676110744e-02
+
+ -3.9505869150161743e-01 1.1514779925346375e-01
+ <_>
+
+ 0 -1 114 2.5171819142997265e-03
+
+ -3.0043110251426697e-01 1.8256050348281860e-01
+ <_>
+
+ 0 -1 115 -1.7089240252971649e-02
+
+ -5.2173590660095215e-01 9.7457267343997955e-02
+ <_>
+
+ 0 -1 116 -5.5856268852949142e-02
+
+ 5.3540021181106567e-01 -8.9221552014350891e-02
+ <_>
+
+ 0 -1 117 -2.3930610623210669e-03
+
+ -4.7012439370155334e-01 8.6141407489776611e-02
+ <_>
+
+ 0 -1 118 3.6918919067829847e-03
+
+ -2.7755591273307800e-01 1.5186099708080292e-01
+ <_>
+
+ 0 -1 119 2.1945969201624393e-03
+
+ -1.6867069900035858e-01 1.1952520161867142e-01
+ <_>
+
+ 0 -1 120 2.9675459954887629e-03
+
+ -3.8940680027008057e-01 1.0388910025358200e-01
+ <_>
+
+ 0 -1 121 1.9976729527115822e-03
+
+ 9.1141343116760254e-02 -4.1050049662590027e-01
+ <_>
+
+ 0 -1 122 -2.0369699224829674e-02
+
+ -5.9968769550323486e-01 6.9301806390285492e-02
+ <_>
+
+ 0 -1 123 2.3318571038544178e-03
+
+ 6.1892550438642502e-02 -3.2886800169944763e-01
+ <_>
+
+ 0 -1 124 -4.2863588780164719e-02
+
+ -7.3844969272613525e-01 5.7071659713983536e-02
+ <_>
+
+ 0 -1 125 1.1471749749034643e-03
+
+ -5.1379621028900146e-01 7.1196496486663818e-02
+ <_>
+
+ 0 -1 126 -1.3735669665038586e-02
+
+ -5.3785508871078491e-01 6.5542042255401611e-02
+ <_>
+
+ 0 -1 127 4.7165591269731522e-02
+
+ 4.5389361679553986e-02 -6.8944799900054932e-01
+ <_>
+
+ 0 -1 128 -1.1204879730939865e-02
+
+ 1.6932639479637146e-01 -2.3061719536781311e-01
+ <_>
+
+ 0 -1 129 -1.5478420257568359e-01
+
+ -7.7705371379852295e-01 1.2142470106482506e-02
+ <_>
+
+ 0 -1 130 5.8086342178285122e-03
+
+ 1.1318100243806839e-01 -3.3206319808959961e-01
+ <_>
+
+ 0 -1 131 -2.8529569506645203e-02
+
+ -5.6747281551361084e-01 4.8734560608863831e-02
+ <_>
+
+ 0 -1 132 -3.8758948445320129e-02
+
+ 5.9423100948333740e-01 -7.5139336287975311e-02
+ <_>
+
+ 0 -1 133 3.1037809327244759e-02
+
+ 5.1973540335893631e-02 -5.8552652597427368e-01
+ <_>
+
+ 0 -1 134 7.4786080404010136e-06
+
+ -2.7623200416564941e-01 1.4088490605354309e-01
+ <_>
+
+ 0 -1 135 3.1000260263681412e-02
+
+ 3.1331729143857956e-02 -5.6860172748565674e-01
+ <_>
+
+ 0 -1 136 -4.9860659986734390e-02
+
+ -8.2924622297286987e-01 3.8801580667495728e-02
+ <_>
+
+ 0 -1 137 -4.2323280125856400e-02
+
+ -4.3062108755111694e-01 1.6579480841755867e-02
+ <_>
+
+ 0 -1 138 9.1987219639122486e-04
+
+ -2.1154449880123138e-01 1.5517529845237732e-01
+ <_>
+
+ 0 -1 139 2.0559869706630707e-01
+
+ -6.2403179705142975e-02 3.2229611277580261e-01
+ <_>
+
+ 0 -1 140 2.9118418693542480e-01
+
+ 3.9228469133377075e-02 -9.4128221273422241e-01
+ <_>
+
+ 0 -1 141 7.8337509185075760e-03
+
+ -1.4806599915027618e-01 1.7849209904670715e-01
+ <_>
+
+ 0 -1 142 1.1393319815397263e-02
+
+ 7.7987723052501678e-02 -4.2424258589744568e-01
+ <_>
+
+ 0 -1 143 -9.1807022690773010e-02
+
+ 3.3689481019973755e-01 -5.6174129247665405e-02
+ <_>
+
+ 0 -1 144 -1.6038250178098679e-02
+
+ -2.4954010546207428e-01 1.4570869505405426e-01
+ <_>
+
+ 0 -1 145 5.4830290377140045e-02
+
+ -1.5496000647544861e-01 2.0329600572586060e-01
+ <_>
+
+ 0 -1 146 2.4449700489640236e-02
+
+ 6.0974378138780594e-02 -6.3072341680526733e-01
+ <_>
+
+ 0 -1 147 2.9260670766234398e-02
+
+ 4.6833608299493790e-02 -3.7985381484031677e-01
+ <_>
+
+ 0 -1 148 3.9965552277863026e-03
+
+ -1.6927300393581390e-01 1.9100320339202881e-01
+ <_>
+
+ 0 -1 149 -6.9938853383064270e-02
+
+ 5.4655587673187256e-01 -5.4965749382972717e-02
+ <_>
+ 25
+ -1.9646480083465576e+00
+
+ <_>
+
+ 0 -1 150 4.5835621654987335e-02
+
+ -4.9982848763465881e-01 4.0961080789566040e-01
+ <_>
+
+ 0 -1 151 2.6363100856542587e-02
+
+ -3.9193201065063477e-01 5.1567757129669189e-01
+ <_>
+
+ 0 -1 152 1.5189830213785172e-02
+
+ -5.2216362953186035e-01 3.1368219852447510e-01
+ <_>
+
+ 0 -1 153 -2.0805280655622482e-02
+
+ 3.7614479660987854e-01 -4.7375538945198059e-01
+ <_>
+
+ 0 -1 154 -7.4902721680700779e-03
+
+ 1.6283489763736725e-01 -7.0384472608566284e-01
+ <_>
+
+ 0 -1 155 2.7719369530677795e-01
+
+ -1.6404120624065399e-01 3.3481580018997192e-01
+ <_>
+
+ 0 -1 156 6.4188443124294281e-02
+
+ -8.0176621675491333e-01 1.2763829529285431e-01
+ <_>
+
+ 0 -1 157 4.0668170899152756e-02
+
+ -3.3386930823326111e-01 2.8456181287765503e-01
+ <_>
+
+ 0 -1 158 7.4888020753860474e-03
+
+ -3.7188920378684998e-01 2.5932261347770691e-01
+ <_>
+
+ 0 -1 159 6.4942672848701477e-02
+
+ 1.0372909903526306e-01 -7.1671068668365479e-01
+ <_>
+
+ 0 -1 160 -2.1149769891053438e-03
+
+ -7.5683927536010742e-01 7.9019591212272644e-02
+ <_>
+
+ 0 -1 161 -4.8293141298927367e-04
+
+ -4.9852079153060913e-01 8.1111326813697815e-02
+ <_>
+
+ 0 -1 162 1.3996459543704987e-01
+
+ 8.7497599422931671e-02 -7.6389372348785400e-01
+ <_>
+
+ 0 -1 163 5.2211988717317581e-02
+
+ 3.1640481203794479e-02 -5.3281372785568237e-01
+ <_>
+
+ 0 -1 164 3.0680459458380938e-03
+
+ -6.2458527088165283e-01 1.3869540393352509e-01
+ <_>
+
+ 0 -1 165 5.0478860735893250e-02
+
+ 7.9063497483730316e-02 -7.4017041921615601e-01
+ <_>
+
+ 0 -1 166 -8.5122063755989075e-03
+
+ -4.9971660971641541e-01 1.1132259666919708e-01
+ <_>
+
+ 0 -1 167 7.0091806352138519e-02
+
+ 9.7081907093524933e-02 -6.1879187822341919e-01
+ <_>
+
+ 0 -1 168 -2.7261190116405487e-03
+
+ 9.7546629607677460e-02 -5.7760041952133179e-01
+ <_>
+
+ 0 -1 169 1.0676559992134571e-02
+
+ -2.9058128595352173e-01 1.8426120281219482e-01
+ <_>
+
+ 0 -1 170 6.3848652644082904e-04
+
+ 1.3869750499725342e-01 -4.2546540498733521e-01
+ <_>
+
+ 0 -1 171 -4.7957260161638260e-02
+
+ -7.3249137401580811e-01 4.1188109666109085e-02
+ <_>
+
+ 0 -1 172 1.7140049487352371e-02
+
+ -3.1973451375961304e-01 1.6840089857578278e-01
+ <_>
+
+ 0 -1 173 7.8544542193412781e-02
+
+ 5.0053231418132782e-02 -7.1410048007965088e-01
+ <_>
+
+ 0 -1 174 -1.1342849582433701e-02
+
+ -3.8810971379280090e-01 1.2976409494876862e-01
+ <_>
+ 53
+ -2.1222629547119141e+00
+
+ <_>
+
+ 0 -1 175 -8.6751781054772437e-05
+
+ 2.5179910659790039e-01 -6.7723119258880615e-01
+ <_>
+
+ 0 -1 176 2.0550179481506348e-01
+
+ 2.0217150449752808e-02 -3.3618199825286865e-01
+ <_>
+
+ 0 -1 177 1.3893260061740875e-01
+
+ 1.0678269714117050e-01 -8.6710119247436523e-01
+ <_>
+
+ 0 -1 178 2.6432450395077467e-03
+
+ -4.1057088971138000e-01 2.5603920221328735e-01
+ <_>
+
+ 0 -1 179 -1.6145260306075215e-03
+
+ 1.7448160052299500e-01 -5.0290131568908691e-01
+ <_>
+
+ 0 -1 180 -4.6492749825119972e-03
+
+ -8.3960932493209839e-01 1.0409969836473465e-01
+ <_>
+
+ 0 -1 181 -5.5983918718993664e-03
+
+ -5.2673357725143433e-01 1.2114489823579788e-01
+ <_>
+
+ 0 -1 182 2.1482799202203751e-03
+
+ 8.6831927299499512e-02 -5.2384740114212036e-01
+ <_>
+
+ 0 -1 183 -2.2942349314689636e-03
+
+ 1.5666730701923370e-01 -3.9387580752372742e-01
+ <_>
+
+ 0 -1 184 -1.0809659725055099e-03
+
+ 9.4777546823024750e-02 -5.7967597246170044e-01
+ <_>
+
+ 0 -1 185 -1.8739879131317139e-02
+
+ -4.3780770897865295e-01 1.2754319608211517e-01
+ <_>
+
+ 0 -1 186 -2.0956669468432665e-03
+
+ 2.1275860071182251e-01 -1.7645539343357086e-01
+ <_>
+
+ 0 -1 187 -6.1370119452476501e-02
+
+ -6.7007988691329956e-01 8.5291177034378052e-02
+ <_>
+
+ 0 -1 188 -4.5074969530105591e-02
+
+ -4.7614151239395142e-01 3.8384389132261276e-02
+ <_>
+
+ 0 -1 189 4.5961341820657253e-03
+
+ 9.0776696801185608e-02 -5.3642177581787109e-01
+ <_>
+
+ 0 -1 190 -5.6205179542303085e-02
+
+ -4.4128128886222839e-01 2.6340639218688011e-02
+ <_>
+
+ 0 -1 191 -1.7070030793547630e-02
+
+ 3.1962528824806213e-01 -1.5699079632759094e-01
+ <_>
+
+ 0 -1 192 1.3778540305793285e-02
+
+ -4.1468238830566406e-01 1.0832040011882782e-01
+ <_>
+
+ 0 -1 193 5.6932470761239529e-03
+
+ 1.0973270237445831e-01 -4.1420969367027283e-01
+ <_>
+
+ 0 -1 194 1.1573060182854533e-03
+
+ -4.6996459364891052e-01 1.4088229835033417e-01
+ <_>
+
+ 0 -1 195 -4.3259391532046720e-05
+
+ -5.9117478132247925e-01 7.2208836674690247e-02
+ <_>
+
+ 0 -1 196 -1.4467669825535268e-04
+
+ 1.4340500533580780e-01 -2.0809020102024078e-01
+ <_>
+
+ 0 -1 197 -3.0667539685964584e-02
+
+ -6.4181727170944214e-01 7.6316222548484802e-02
+ <_>
+
+ 0 -1 198 6.4002368599176407e-03
+
+ -1.5426200628280640e-01 2.0618820190429688e-01
+ <_>
+
+ 0 -1 199 2.7318780776113272e-03
+
+ -1.8429130315780640e-01 2.2046269476413727e-01
+ <_>
+
+ 0 -1 200 -4.1759859770536423e-02
+
+ 5.1284658908843994e-01 -4.3097220361232758e-02
+ <_>
+
+ 0 -1 201 -3.0174419283866882e-02
+
+ -3.6134809255599976e-01 1.1633390188217163e-01
+ <_>
+
+ 0 -1 202 6.8081771023571491e-03
+
+ -2.5953280925750732e-01 1.4927390217781067e-01
+ <_>
+
+ 0 -1 203 4.3430369347333908e-02
+
+ 6.8601243197917938e-02 -5.8221191167831421e-01
+ <_>
+
+ 0 -1 204 2.1121300756931305e-02
+
+ -8.5372917354106903e-02 8.0498583614826202e-02
+ <_>
+
+ 0 -1 205 9.9840283393859863e-02
+
+ 5.3292520344257355e-02 -7.1819657087326050e-01
+ <_>
+
+ 0 -1 206 5.6953770108520985e-03
+
+ -8.8976107537746429e-02 1.3483940064907074e-01
+ <_>
+
+ 0 -1 207 -5.9984568506479263e-02
+
+ 6.8324291706085205e-01 -5.1916271448135376e-02
+ <_>
+
+ 0 -1 208 5.9353262186050415e-03
+
+ 1.0305190086364746e-01 -2.5361439585685730e-01
+ <_>
+
+ 0 -1 209 -7.4867930379696190e-05
+
+ 1.3340729475021362e-01 -2.9323559999465942e-01
+ <_>
+
+ 0 -1 210 -2.5437519070692360e-04
+
+ 1.5335780382156372e-01 -1.9387570023536682e-01
+ <_>
+
+ 0 -1 211 7.7576987678185105e-04
+
+ -3.1155571341514587e-01 1.0632509738206863e-01
+ <_>
+
+ 0 -1 212 5.4478500038385391e-02
+
+ 2.6277480646967888e-02 -6.6687411069869995e-01
+ <_>
+
+ 0 -1 213 1.2692850083112717e-02
+
+ 9.3613043427467346e-02 -3.9152190089225769e-01
+ <_>
+
+ 0 -1 214 -3.0766960233449936e-02
+
+ -5.9238088130950928e-01 4.8314999788999557e-02
+ <_>
+
+ 0 -1 215 -1.9366150721907616e-02
+
+ 4.3661609292030334e-01 -8.8672943413257599e-02
+ <_>
+
+ 0 -1 216 -2.8705620206892490e-03
+
+ 1.5244780480861664e-01 -1.3861170411109924e-01
+ <_>
+
+ 0 -1 217 4.0003698319196701e-02
+
+ 5.8748051524162292e-02 -6.9119709730148315e-01
+ <_>
+
+ 0 -1 218 -8.1130467355251312e-02
+
+ -7.8684318065643311e-01 2.0421498920768499e-03
+ <_>
+
+ 0 -1 219 -2.1017501130700111e-03
+
+ 1.9100449979305267e-01 -1.9659680128097534e-01
+ <_>
+
+ 0 -1 220 8.6481617763638496e-03
+
+ 8.8689289987087250e-02 -3.7414151430130005e-01
+ <_>
+
+ 0 -1 221 -5.2429020404815674e-02
+
+ -7.2615998983383179e-01 3.9465688169002533e-02
+ <_>
+
+ 0 -1 222 3.4464800264686346e-03
+
+ -1.1640899628400803e-01 2.7386268973350525e-01
+ <_>
+
+ 0 -1 223 -7.0581152103841305e-03
+
+ -3.6283940076828003e-01 9.2023678123950958e-02
+ <_>
+
+ 0 -1 224 -5.7412259280681610e-02
+
+ -8.8839381933212280e-01 2.6647759601473808e-02
+ <_>
+
+ 0 -1 225 3.3479030244052410e-03
+
+ -1.4884050190448761e-01 1.8366430699825287e-01
+ <_>
+
+ 0 -1 226 -5.3958419710397720e-02
+
+ 3.8098138570785522e-01 -4.4046580791473389e-02
+ <_>
+
+ 0 -1 227 -2.5719689205288887e-02
+
+ 3.2570821046829224e-01 -1.0078220069408417e-01
+ <_>
+ 44
+ -2.1038460731506348e+00
+
+ <_>
+
+ 0 -1 228 1.2441220134496689e-01
+
+ -3.8573729991912842e-01 3.9273661375045776e-01
+ <_>
+
+ 0 -1 229 3.7802878767251968e-02
+
+ -4.7028678655624390e-01 3.5786831378936768e-01
+ <_>
+
+ 0 -1 230 3.0441429466009140e-02
+
+ -3.9460399746894836e-01 3.2518500089645386e-01
+ <_>
+
+ 0 -1 231 3.9223438943736255e-04
+
+ -4.5166510343551636e-01 1.9672380387783051e-01
+ <_>
+
+ 0 -1 232 3.9077710360288620e-02
+
+ -2.1073329448699951e-01 4.3864768743515015e-01
+ <_>
+
+ 0 -1 233 -8.9118082541972399e-05
+
+ 1.5196959674358368e-01 -5.9563517570495605e-01
+ <_>
+
+ 0 -1 234 8.8415127247571945e-03
+
+ -4.9292489886283875e-01 1.7406579852104187e-01
+ <_>
+
+ 0 -1 235 1.3666059821844101e-02
+
+ 9.2861749231815338e-02 -5.5182307958602905e-01
+ <_>
+
+ 0 -1 236 -6.1203300952911377e-02
+
+ -6.7985290288925171e-01 1.0049080103635788e-01
+ <_>
+
+ 0 -1 237 5.7719892356544733e-04
+
+ -5.8301997184753418e-01 1.1089629679918289e-01
+ <_>
+
+ 0 -1 238 2.8370460495352745e-04
+
+ -5.9793341159820557e-01 9.3898378312587738e-02
+ <_>
+
+ 0 -1 239 1.7665980383753777e-02
+
+ -2.2015470266342163e-01 3.4533089399337769e-01
+ <_>
+
+ 0 -1 240 2.5697330012917519e-02
+
+ -3.6195701360702515e-01 1.6877350211143494e-01
+ <_>
+
+ 0 -1 241 -4.0316689759492874e-02
+
+ 2.2964400053024292e-01 -2.9301440715789795e-01
+ <_>
+
+ 0 -1 242 4.6522719785571098e-03
+
+ -5.8995968103408813e-01 1.0466910153627396e-01
+ <_>
+
+ 0 -1 243 -1.3406000100076199e-02
+
+ -3.9572098851203918e-01 8.3528116345405579e-02
+ <_>
+
+ 0 -1 244 3.6127280443906784e-02
+
+ 9.4165802001953125e-02 -5.4097181558609009e-01
+ <_>
+
+ 0 -1 245 2.2792080417275429e-03
+
+ 1.2819069623947144e-01 -3.6514538526535034e-01
+ <_>
+
+ 0 -1 246 1.4454070478677750e-03
+
+ -2.3281599581241608e-01 1.9829919934272766e-01
+ <_>
+
+ 0 -1 247 5.7482529431581497e-02
+
+ 7.5042396783828735e-02 -5.7704979181289673e-01
+ <_>
+
+ 0 -1 248 3.3360819797962904e-03
+
+ 8.8012017309665680e-02 -4.6779251098632812e-01
+ <_>
+
+ 0 -1 249 3.7225749343633652e-02
+
+ 3.2155111432075500e-02 -6.6346621513366699e-01
+ <_>
+
+ 0 -1 250 1.6612760722637177e-02
+
+ 9.1689839959144592e-02 -5.2128171920776367e-01
+ <_>
+
+ 0 -1 251 2.0543249323964119e-02
+
+ -2.8753378987312317e-01 1.4261309802532196e-01
+ <_>
+
+ 0 -1 252 -1.5633470320608467e-04
+
+ 2.0246730744838715e-01 -2.2424469888210297e-01
+ <_>
+
+ 0 -1 253 1.2188810110092163e-01
+
+ -1.6461309790611267e-01 1.7583920061588287e-01
+ <_>
+
+ 0 -1 254 4.6413440257310867e-02
+
+ -6.8978017568588257e-01 6.4349927008152008e-02
+ <_>
+
+ 0 -1 255 1.4946439862251282e-01
+
+ 3.9805840700864792e-02 -7.0177328586578369e-01
+ <_>
+
+ 0 -1 256 1.4346869662404060e-02
+
+ 9.2628777027130127e-02 -4.6314170956611633e-01
+ <_>
+
+ 0 -1 257 3.6158718168735504e-02
+
+ 6.4412936568260193e-02 -6.5277212858200073e-01
+ <_>
+
+ 0 -1 258 -5.5098228156566620e-02
+
+ -6.1021989583969116e-01 6.6034287214279175e-02
+ <_>
+
+ 0 -1 259 -3.2978600356727839e-03
+
+ 8.6579866707324982e-02 -2.1844820678234100e-01
+ <_>
+
+ 0 -1 260 4.1257790289819241e-03
+
+ -4.4980299472808838e-01 9.3251250684261322e-02
+ <_>
+
+ 0 -1 261 3.3465269953012466e-02
+
+ 1.4524499885737896e-02 -4.0200001001358032e-01
+ <_>
+
+ 0 -1 262 -2.2584630176424980e-02
+
+ -6.0067617893218994e-01 6.4416721463203430e-02
+ <_>
+
+ 0 -1 263 -7.1505038067698479e-03
+
+ 6.7139469087123871e-02 -1.2947300076484680e-01
+ <_>
+
+ 0 -1 264 -5.1440041512250900e-02
+
+ -4.8466479778289795e-01 8.2093752920627594e-02
+ <_>
+
+ 0 -1 265 -1.9100949168205261e-02
+
+ -3.5394379496574402e-01 1.0851690173149109e-01
+ <_>
+
+ 0 -1 266 6.9468282163143158e-03
+
+ 1.5407569706439972e-01 -2.3040190339088440e-01
+ <_>
+
+ 0 -1 267 -2.3886600509285927e-02
+
+ 4.9007979035377502e-01 -5.9650428593158722e-02
+ <_>
+
+ 0 -1 268 -1.3964619720354676e-03
+
+ -3.3704701066017151e-01 1.1569459736347198e-01
+ <_>
+
+ 0 -1 269 2.6320600882172585e-02
+
+ -3.9132680743932724e-02 3.7615358829498291e-01
+ <_>
+
+ 0 -1 270 5.0336541607975960e-03
+
+ -3.5457020998001099e-01 1.0786720365285873e-01
+ <_>
+
+ 0 -1 271 -1.1523960158228874e-02
+
+ 3.5148641467094421e-01 -1.1373709887266159e-01
+ <_>
+ 72
+ -1.9109580516815186e+00
+
+ <_>
+
+ 0 -1 272 -5.6698019616305828e-03
+
+ 2.5299090147018433e-01 -5.5377197265625000e-01
+ <_>
+
+ 0 -1 273 1.2186550302430987e-03
+
+ 9.1723538935184479e-02 -6.5661650896072388e-01
+ <_>
+
+ 0 -1 274 3.1903409399092197e-03
+
+ 1.2116809934377670e-01 -5.4405361413955688e-01
+ <_>
+
+ 0 -1 275 -1.2117680162191391e-02
+
+ -6.8211251497268677e-01 1.1178220063447952e-01
+ <_>
+
+ 0 -1 276 2.2634069900959730e-03
+
+ -5.6313961744308472e-01 9.9629260599613190e-02
+ <_>
+
+ 0 -1 277 2.2871519904583693e-03
+
+ -5.0227242708206177e-01 1.1288029700517654e-01
+ <_>
+
+ 0 -1 278 -7.4018500745296478e-03
+
+ -5.0622308254241943e-01 1.0325270146131516e-01
+ <_>
+
+ 0 -1 279 6.5725757740437984e-03
+
+ 3.1603671610355377e-02 -4.5879349112510681e-01
+ <_>
+
+ 0 -1 280 -1.7237069085240364e-02
+
+ -3.6556100845336914e-01 1.4122049510478973e-01
+ <_>
+
+ 0 -1 281 -1.7646619817242026e-03
+
+ 1.8962210416793823e-01 -3.4349760413169861e-01
+ <_>
+
+ 0 -1 282 2.6085950434207916e-02
+
+ 8.7369233369827271e-02 -5.3332161903381348e-01
+ <_>
+
+ 0 -1 283 8.5357967764139175e-03
+
+ -3.7360730767250061e-01 1.4508520066738129e-01
+ <_>
+
+ 0 -1 284 -6.2934341840445995e-03
+
+ -4.5775079727172852e-01 1.0016269981861115e-01
+ <_>
+
+ 0 -1 285 9.7081549465656281e-02
+
+ 3.3761640079319477e-03 -8.4679859876632690e-01
+ <_>
+
+ 0 -1 286 -9.9455721676349640e-02
+
+ 7.7892357110977173e-01 -5.4456088691949844e-02
+ <_>
+
+ 0 -1 287 3.9128549396991730e-02
+
+ 3.9479929953813553e-02 -4.6620211005210876e-01
+ <_>
+
+ 0 -1 288 6.8423762917518616e-02
+
+ 4.8163410276174545e-02 -8.1910741329193115e-01
+ <_>
+
+ 0 -1 289 -1.7304550856351852e-02
+
+ -4.6001830697059631e-01 2.1781340241432190e-02
+ <_>
+
+ 0 -1 290 4.5203989429865032e-05
+
+ 1.5590970218181610e-01 -2.5734600424766541e-01
+ <_>
+
+ 0 -1 291 -5.3720749914646149e-02
+
+ -7.3984587192535400e-01 2.3658139631152153e-02
+ <_>
+
+ 0 -1 292 -2.1576840663328767e-04
+
+ 1.1803720146417618e-01 -3.5380458831787109e-01
+ <_>
+
+ 0 -1 293 1.2613219441846013e-03
+
+ -1.8313080072402954e-01 1.6306960582733154e-01
+ <_>
+
+ 0 -1 294 2.2714029997587204e-02
+
+ -9.5647342503070831e-02 3.8062781095504761e-01
+ <_>
+
+ 0 -1 295 2.0958330482244492e-02
+
+ 6.1185598373413086e-02 -5.2644938230514526e-01
+ <_>
+
+ 0 -1 296 1.5458449721336365e-02
+
+ 6.4466789364814758e-02 -4.7441288828849792e-01
+ <_>
+
+ 0 -1 297 -5.0828810781240463e-03
+
+ 1.0018830001354218e-01 -3.6397251486778259e-01
+ <_>
+
+ 0 -1 298 1.1842510430142283e-03
+
+ -2.0603519678115845e-01 1.7129589617252350e-01
+ <_>
+
+ 0 -1 299 5.0187770277261734e-02
+
+ -7.0924967527389526e-02 1.0435319691896439e-01
+ <_>
+
+ 0 -1 300 1.7535200715065002e-01
+
+ 3.7766210734844208e-02 -8.0802738666534424e-01
+ <_>
+
+ 0 -1 301 -6.8425558507442474e-02
+
+ -5.0214898586273193e-01 5.4671119898557663e-02
+ <_>
+
+ 0 -1 302 2.2496099118143320e-03
+
+ -2.8013509511947632e-01 1.0950099676847458e-01
+ <_>
+
+ 0 -1 303 8.5355632007122040e-02
+
+ 3.3376980572938919e-02 -7.3676842451095581e-01
+ <_>
+
+ 0 -1 304 -2.8825979679822922e-02
+
+ -4.8528099060058594e-01 4.9596078693866730e-02
+ <_>
+
+ 0 -1 305 -1.3562700478360057e-03
+
+ 1.8493090569972992e-01 -1.6541489958763123e-01
+ <_>
+
+ 0 -1 306 1.5731659950688481e-03
+
+ 9.0431816875934601e-02 -3.0193880200386047e-01
+ <_>
+
+ 0 -1 307 -5.2912188693881035e-03
+
+ -4.3963611125946045e-01 4.6880699694156647e-02
+ <_>
+
+ 0 -1 308 4.2200140655040741e-02
+
+ -7.5348012149333954e-02 3.7712809443473816e-01
+ <_>
+
+ 0 -1 309 3.1030770391225815e-02
+
+ 6.6053368151187897e-02 -4.7378420829772949e-01
+ <_>
+
+ 0 -1 310 8.0451928079128265e-03
+
+ -7.7326983213424683e-02 3.4898889064788818e-01
+ <_>
+
+ 0 -1 311 2.3791180923581123e-02
+
+ 4.8629928380250931e-02 -5.8155477046966553e-01
+ <_>
+
+ 0 -1 312 -2.6884680613875389e-02
+
+ 7.3852258920669556e-01 -4.0025118738412857e-02
+ <_>
+
+ 0 -1 313 -1.7013859469443560e-03
+
+ 1.4116409420967102e-01 -1.8305079638957977e-01
+ <_>
+
+ 0 -1 314 -3.2258979976177216e-02
+
+ -6.4598697423934937e-01 4.1774179786443710e-02
+ <_>
+
+ 0 -1 315 -9.1719552874565125e-02
+
+ 6.3651692867279053e-01 -4.4406279921531677e-02
+ <_>
+
+ 0 -1 316 1.1253220029175282e-02
+
+ -1.0398969799280167e-01 2.4386499822139740e-01
+ <_>
+
+ 0 -1 317 9.1702006757259369e-03
+
+ -1.0142300277948380e-01 1.7325720191001892e-01
+ <_>
+
+ 0 -1 318 -3.7584431469440460e-02
+
+ -6.5999048948287964e-01 3.5357259213924408e-02
+ <_>
+
+ 0 -1 319 1.4904039562679827e-04
+
+ -1.2504950165748596e-01 1.0161379724740982e-01
+ <_>
+
+ 0 -1 320 5.6240631965920329e-04
+
+ -2.1511219441890717e-01 1.0537440329790115e-01
+ <_>
+
+ 0 -1 321 -1.7314270138740540e-02
+
+ -1.6798290610313416e-01 6.1207499355077744e-02
+ <_>
+
+ 0 -1 322 -1.5429870225489140e-02
+
+ 2.5674480199813843e-01 -9.7193486988544464e-02
+ <_>
+
+ 0 -1 323 -1.5612079761922359e-02
+
+ -3.5797500610351562e-01 6.9260068237781525e-02
+ <_>
+
+ 0 -1 324 7.4424187187105417e-04
+
+ -1.5740460157394409e-01 1.4921070635318756e-01
+ <_>
+
+ 0 -1 325 7.9008340835571289e-02
+
+ 3.5924728959798813e-02 -6.4907592535018921e-01
+ <_>
+
+ 0 -1 326 -3.3477540127933025e-03
+
+ -2.5794708728790283e-01 8.1626862287521362e-02
+ <_>
+
+ 0 -1 327 3.5589419305324554e-02
+
+ -4.6870049089193344e-02 5.3945267200469971e-01
+ <_>
+
+ 0 -1 328 7.6168961822986603e-04
+
+ 8.0409869551658630e-02 -2.8045970201492310e-01
+ <_>
+
+ 0 -1 329 9.6126887947320938e-03
+
+ 9.2715777456760406e-02 -2.2755210101604462e-01
+ <_>
+
+ 0 -1 330 3.4582789987325668e-02
+
+ -9.5495507121086121e-02 2.8116491436958313e-01
+ <_>
+
+ 0 -1 331 -8.2031842321157455e-03
+
+ -3.3162289857864380e-01 4.0629711002111435e-02
+ <_>
+
+ 0 -1 332 2.5540109723806381e-02
+
+ 7.0458933711051941e-02 -3.2799351215362549e-01
+ <_>
+
+ 0 -1 333 -3.1389920040965080e-03
+
+ 1.2529349327087402e-01 -6.0766801238059998e-02
+ <_>
+
+ 0 -1 334 4.5892409980297089e-03
+
+ -9.5335446298122406e-02 2.4738679826259613e-01
+ <_>
+
+ 0 -1 335 -2.3260030895471573e-02
+
+ -2.3823159933090210e-01 3.3502969890832901e-02
+ <_>
+
+ 0 -1 336 1.7964519793167710e-03
+
+ 8.9843861758708954e-02 -2.8049159049987793e-01
+ <_>
+
+ 0 -1 337 -1.0952910035848618e-01
+
+ -4.6206548810005188e-01 7.4333418160676956e-03
+ <_>
+
+ 0 -1 338 6.8442770279943943e-03
+
+ 7.3520109057426453e-02 -3.6190700531005859e-01
+ <_>
+
+ 0 -1 339 -7.3719851672649384e-02
+
+ 4.1131800413131714e-01 -6.8293057382106781e-02
+ <_>
+
+ 0 -1 340 9.4485012814402580e-03
+
+ -1.2132299691438675e-01 2.1491959691047668e-01
+ <_>
+
+ 0 -1 341 -7.4686057865619659e-02
+
+ 2.4292010068893433e-01 -3.8520719856023788e-02
+ <_>
+
+ 0 -1 342 -1.8958229571580887e-02
+
+ -3.7263819575309753e-01 6.8381950259208679e-02
+ <_>
+
+ 0 -1 343 -8.3170487778261304e-04
+
+ 9.5785446465015411e-02 -1.0169020295143127e-01
+ <_>
+ 54
+ -2.0048389434814453e+00
+
+ <_>
+
+ 0 -1 344 1.5233230590820312e-01
+
+ -3.1805351376533508e-01 4.7039988636970520e-01
+ <_>
+
+ 0 -1 345 8.8482722640037537e-03
+
+ -3.6134269833564758e-01 2.7332958579063416e-01
+ <_>
+
+ 0 -1 346 2.9788410291075706e-02
+
+ -2.8059279918670654e-01 3.6270239949226379e-01
+ <_>
+
+ 0 -1 347 5.2725639194250107e-02
+
+ -1.9320569932460785e-01 3.5507258772850037e-01
+ <_>
+
+ 0 -1 348 2.6077419519424438e-02
+
+ -3.7120199203491211e-01 2.7038440108299255e-01
+ <_>
+
+ 0 -1 349 -4.4878520071506500e-02
+
+ 2.9119300842285156e-01 -3.5178241133689880e-01
+ <_>
+
+ 0 -1 350 -9.3984341947361827e-04
+
+ -6.0143661499023438e-01 1.1815790086984634e-01
+ <_>
+
+ 0 -1 351 3.1817350536584854e-03
+
+ -6.1632722616195679e-01 1.0581470280885696e-01
+ <_>
+
+ 0 -1 352 -6.2214181525632739e-04
+
+ 1.1701049655675888e-01 -6.1873781681060791e-01
+ <_>
+
+ 0 -1 353 5.4993429221212864e-03
+
+ 7.1740642189979553e-02 -3.2122710347175598e-01
+ <_>
+
+ 0 -1 354 7.0621701888740063e-03
+
+ -3.0814599990844727e-01 1.8299129605293274e-01
+ <_>
+
+ 0 -1 355 -3.4492298960685730e-02
+
+ -3.6952570080757141e-01 1.1142779886722565e-01
+ <_>
+
+ 0 -1 356 -5.3783431649208069e-02
+
+ -6.6689962148666382e-01 8.4863640367984772e-02
+ <_>
+
+ 0 -1 357 -2.0194910466670990e-02
+
+ -4.2300069332122803e-01 5.6325469166040421e-02
+ <_>
+
+ 0 -1 358 -7.6839578105136752e-04
+
+ 1.3547450304031372e-01 -3.5696288943290710e-01
+ <_>
+
+ 0 -1 359 6.6877179779112339e-03
+
+ -3.4379830956459045e-01 1.3302099704742432e-01
+ <_>
+
+ 0 -1 360 1.1147409677505493e-01
+
+ -4.9523550271987915e-01 9.7303003072738647e-02
+ <_>
+
+ 0 -1 361 -8.5021732375025749e-03
+
+ -5.1778990030288696e-01 6.7188903689384460e-02
+ <_>
+
+ 0 -1 362 -1.8897019326686859e-02
+
+ -4.7064769268035889e-01 9.0873777866363525e-02
+ <_>
+
+ 0 -1 363 5.7387170381844044e-03
+
+ -1.4860689640045166e-01 3.0976840853691101e-01
+ <_>
+
+ 0 -1 364 3.2604049891233444e-02
+
+ 7.8677706420421600e-02 -5.4713827371597290e-01
+ <_>
+
+ 0 -1 365 1.8975350030814297e-05
+
+ -2.4359850585460663e-01 9.8908931016921997e-02
+ <_>
+
+ 0 -1 366 -1.9267159514129162e-03
+
+ -5.0522977113723755e-01 7.5119331479072571e-02
+ <_>
+
+ 0 -1 367 -7.7145430259406567e-03
+
+ -2.5014960765838623e-01 1.0211499780416489e-01
+ <_>
+
+ 0 -1 368 -1.8806649371981621e-02
+
+ -4.3269169330596924e-01 1.1147680133581161e-01
+ <_>
+
+ 0 -1 369 2.9912199825048447e-02
+
+ 4.6748448163270950e-02 -5.8818292617797852e-01
+ <_>
+
+ 0 -1 370 -7.4260600376874208e-04
+
+ 1.8389309942722321e-01 -2.0138260722160339e-01
+ <_>
+
+ 0 -1 371 4.0662181563675404e-03
+
+ -4.4948458671569824e-01 8.6881376802921295e-02
+ <_>
+
+ 0 -1 372 1.8681669607758522e-02
+
+ -1.7103520035743713e-01 2.2931230068206787e-01
+ <_>
+
+ 0 -1 373 4.6580690890550613e-02
+
+ 4.3874379247426987e-02 -6.6704601049423218e-01
+ <_>
+
+ 0 -1 374 -1.5030739828944206e-02
+
+ -7.6569449901580811e-01 4.2524490505456924e-02
+ <_>
+
+ 0 -1 375 6.3602820038795471e-02
+
+ 3.3629488199949265e-02 -8.6777329444885254e-01
+ <_>
+
+ 0 -1 376 -3.3613100647926331e-02
+
+ -6.7464047670364380e-01 4.5196920633316040e-02
+ <_>
+
+ 0 -1 377 -4.4314529746770859e-02
+
+ -4.7056430578231812e-01 2.0987950265407562e-02
+ <_>
+
+ 0 -1 378 2.9175819829106331e-02
+
+ 5.6036490947008133e-02 -6.5745961666107178e-01
+ <_>
+
+ 0 -1 379 8.4737781435251236e-03
+
+ -1.2312129884958267e-01 3.6037188768386841e-01
+ <_>
+
+ 0 -1 380 -2.6930740103125572e-02
+
+ -6.5255117416381836e-01 6.0726620256900787e-02
+ <_>
+
+ 0 -1 381 3.7930138409137726e-02
+
+ -1.5491360425949097e-01 2.1770450472831726e-01
+ <_>
+
+ 0 -1 382 1.6430050134658813e-02
+
+ -2.5250691175460815e-01 1.5458230674266815e-01
+ <_>
+
+ 0 -1 383 5.1079809665679932e-02
+
+ 3.0773499980568886e-02 -6.4929312467575073e-01
+ <_>
+
+ 0 -1 384 1.6663300339132547e-03
+
+ -3.7425559759140015e-01 8.1392176449298859e-02
+ <_>
+
+ 0 -1 385 -9.0896980836987495e-03
+
+ 1.7854049801826477e-01 -7.6578080654144287e-02
+ <_>
+
+ 0 -1 386 2.0629199221730232e-02
+
+ 7.2373263537883759e-02 -4.2050579190254211e-01
+ <_>
+
+ 0 -1 387 8.2410024479031563e-03
+
+ 3.2896678894758224e-02 -3.7325268983840942e-01
+ <_>
+
+ 0 -1 388 -4.6126499772071838e-02
+
+ -3.7356421351432800e-01 7.7336780726909637e-02
+ <_>
+
+ 0 -1 389 -8.3484929054975510e-03
+
+ 1.8690130114555359e-01 -1.5126839280128479e-01
+ <_>
+
+ 0 -1 390 -4.7689080238342285e-02
+
+ -4.0730020403862000e-01 8.7598368525505066e-02
+ <_>
+
+ 0 -1 391 -5.0166220171377063e-04
+
+ 1.2036769837141037e-01 -2.4717660248279572e-01
+ <_>
+
+ 0 -1 392 2.1794239728478715e-05
+
+ -2.9800811409950256e-01 1.2065000087022781e-01
+ <_>
+
+ 0 -1 393 -7.0597290992736816e-02
+
+ -6.8116611242294312e-01 6.4198948442935944e-02
+ <_>
+
+ 0 -1 394 -6.4999358728528023e-03
+
+ 2.6219159364700317e-01 -1.4015009999275208e-01
+ <_>
+
+ 0 -1 395 5.3664338774979115e-03
+
+ -3.4273180365562439e-01 9.2048570513725281e-02
+ <_>
+
+ 0 -1 396 -1.3341950252652168e-02
+
+ 4.0258079767227173e-01 -7.2052307426929474e-02
+ <_>
+
+ 0 -1 397 1.2243090197443962e-02
+
+ -8.2426831126213074e-02 3.8369199633598328e-01
+ <_>
+ 100
+ -1.8743180036544800e+00
+
+ <_>
+
+ 0 -1 398 -2.8617910575121641e-03
+
+ 2.1443170309066772e-01 -5.1532137393951416e-01
+ <_>
+
+ 0 -1 399 1.9125089747831225e-03
+
+ 1.4483030140399933e-01 -6.1175411939620972e-01
+ <_>
+
+ 0 -1 400 4.8059499822556973e-03
+
+ -4.4235628843307495e-01 1.3466580212116241e-01
+ <_>
+
+ 0 -1 401 -9.5777623355388641e-02
+
+ -4.8914781212806702e-01 1.3169640302658081e-01
+ <_>
+
+ 0 -1 402 -8.9395968243479729e-03
+
+ 1.4790549874305725e-01 -4.6696281433105469e-01
+ <_>
+
+ 0 -1 403 8.1128235906362534e-03
+
+ 5.0671331584453583e-02 -4.0227508544921875e-01
+ <_>
+
+ 0 -1 404 2.2638900554738939e-04
+
+ -5.0928252935409546e-01 8.2113206386566162e-02
+ <_>
+
+ 0 -1 405 -6.1516009736806154e-04
+
+ -3.8136801123619080e-01 1.0157950222492218e-01
+ <_>
+
+ 0 -1 406 -3.2050691079348326e-03
+
+ -5.8352458477020264e-01 6.2385398894548416e-02
+ <_>
+
+ 0 -1 407 5.4250762332230806e-04
+
+ -2.5548499822616577e-01 1.4832200109958649e-01
+ <_>
+
+ 0 -1 408 1.0713520459830761e-03
+
+ -3.5334318876266479e-01 1.1791589856147766e-01
+ <_>
+
+ 0 -1 409 -1.7755989683791995e-03
+
+ -3.4087279438972473e-01 9.4740107655525208e-02
+ <_>
+
+ 0 -1 410 -9.3014203011989594e-02
+
+ 7.4685460329055786e-01 -5.2443340420722961e-02
+ <_>
+
+ 0 -1 411 -1.4192130416631699e-02
+
+ -3.1433999538421631e-01 9.0452186763286591e-02
+ <_>
+
+ 0 -1 412 -5.3375191055238247e-04
+
+ 1.4119710028171539e-01 -2.0296710729598999e-01
+ <_>
+
+ 0 -1 413 9.4844609498977661e-02
+
+ 1.4625679701566696e-02 -6.2215209007263184e-01
+ <_>
+
+ 0 -1 414 1.1853160103783011e-03
+
+ -2.5984010100364685e-01 1.2153120338916779e-01
+ <_>
+
+ 0 -1 415 -2.4541220627725124e-03
+
+ 7.1894593536853790e-02 -3.9803519845008850e-01
+ <_>
+
+ 0 -1 416 6.8703000433743000e-03
+
+ 6.8626098334789276e-02 -3.8565808534622192e-01
+ <_>
+
+ 0 -1 417 -6.0411270707845688e-02
+
+ -4.8482391238212585e-01 2.0706020295619965e-02
+ <_>
+
+ 0 -1 418 -4.6826168545521796e-04
+
+ 9.5856241881847382e-02 -3.1230351328849792e-01
+ <_>
+
+ 0 -1 419 -3.3507338957861066e-04
+
+ 7.8128658235073090e-02 -9.4751000404357910e-02
+ <_>
+
+ 0 -1 420 3.6313060671091080e-02
+
+ 4.4824421405792236e-02 -6.3693147897720337e-01
+ <_>
+
+ 0 -1 421 3.8052719901315868e-04
+
+ -2.1931269764900208e-01 1.1780519783496857e-01
+ <_>
+
+ 0 -1 422 -5.0964631140232086e-02
+
+ 5.5783379077911377e-01 -4.3869689106941223e-02
+ <_>
+
+ 0 -1 423 -7.6198756694793701e-02
+
+ 6.7789608240127563e-01 -1.7935890704393387e-02
+ <_>
+
+ 0 -1 424 -1.2677020393311977e-02
+
+ -6.0731011629104614e-01 4.9086190760135651e-02
+ <_>
+
+ 0 -1 425 -3.6766629200428724e-03
+
+ 1.5226639807224274e-01 -1.9953680038452148e-01
+ <_>
+
+ 0 -1 426 -3.8846738636493683e-02
+
+ -7.7045238018035889e-01 3.3732470124959946e-02
+ <_>
+
+ 0 -1 427 9.4217229634523392e-03
+
+ -6.9929488003253937e-02 1.3669140636920929e-01
+ <_>
+
+ 0 -1 428 7.3391180485486984e-03
+
+ -1.2133339792490005e-01 2.1175499260425568e-01
+ <_>
+
+ 0 -1 429 1.2211379595100880e-02
+
+ 6.7636847496032715e-02 -4.3353718519210815e-01
+ <_>
+
+ 0 -1 430 -9.3064550310373306e-03
+
+ -3.4682491421699524e-01 6.4062312245368958e-02
+ <_>
+
+ 0 -1 431 5.2111309021711349e-02
+
+ -3.4146990627050400e-02 3.8904741406440735e-01
+ <_>
+
+ 0 -1 432 -4.3582019861787558e-04
+
+ 1.3956509530544281e-01 -1.8289420008659363e-01
+ <_>
+
+ 0 -1 433 -1.0575359687209129e-02
+
+ -2.7782461047172546e-01 8.5667066276073456e-02
+ <_>
+
+ 0 -1 434 1.4794029993936419e-03
+
+ -2.3154720664024353e-01 1.1765889823436737e-01
+ <_>
+
+ 0 -1 435 9.4746891409158707e-03
+
+ -1.3345280289649963e-01 1.8066969513893127e-01
+ <_>
+
+ 0 -1 436 8.3355188369750977e-02
+
+ 3.3563960343599319e-02 -7.2860741615295410e-01
+ <_>
+
+ 0 -1 437 -6.6629007458686829e-02
+
+ 3.8058251142501831e-01 -3.3490750938653946e-02
+ <_>
+
+ 0 -1 438 5.0287488847970963e-03
+
+ -1.1418010294437408e-01 2.1534989774227142e-01
+ <_>
+
+ 0 -1 439 5.1222002506256104e-01
+
+ 7.6377480290830135e-03 -6.5067559480667114e-01
+ <_>
+
+ 0 -1 440 1.2300059944391251e-01
+
+ 3.8879081606864929e-02 -5.9420442581176758e-01
+ <_>
+
+ 0 -1 441 -1.1227129725739360e-03
+
+ 1.0235410183668137e-01 -1.1207509785890579e-01
+ <_>
+
+ 0 -1 442 -6.2220949679613113e-02
+
+ -5.1173472404479980e-01 4.1879799216985703e-02
+ <_>
+
+ 0 -1 443 -2.6323389261960983e-02
+
+ 3.4005990624427795e-01 -5.0624471157789230e-02
+ <_>
+
+ 0 -1 444 -1.8875019624829292e-02
+
+ -5.4550838470458984e-01 4.1524920612573624e-02
+ <_>
+
+ 0 -1 445 -3.4034788608551025e-01
+
+ -9.1541802883148193e-01 1.6561320051550865e-02
+ <_>
+
+ 0 -1 446 -8.0456008436158299e-04
+
+ 1.4270770549774170e-01 -1.2901450693607330e-01
+ <_>
+
+ 0 -1 447 -3.9579509757459164e-03
+
+ -3.3408370614051819e-01 5.8637548238039017e-02
+ <_>
+
+ 0 -1 448 1.8336549401283264e-02
+
+ -4.5632220804691315e-02 5.2696329355239868e-01
+ <_>
+
+ 0 -1 449 -5.7686101645231247e-02
+
+ -5.7604360580444336e-01 3.9550099521875381e-02
+ <_>
+
+ 0 -1 450 -8.6881890892982483e-03
+
+ 2.0929679274559021e-01 -1.0309000313282013e-01
+ <_>
+
+ 0 -1 451 2.0318549871444702e-01
+
+ 9.4080818817019463e-03 -9.9389547109603882e-01
+ <_>
+
+ 0 -1 452 2.0097799599170685e-02
+
+ 5.6577399373054504e-02 -3.7819018959999084e-01
+ <_>
+
+ 0 -1 453 1.3217139989137650e-02
+
+ -7.4322126805782318e-02 1.7874650657176971e-01
+ <_>
+
+ 0 -1 454 -9.1346688568592072e-03
+
+ -4.9356880784034729e-01 3.7799369543790817e-02
+ <_>
+
+ 0 -1 455 8.7239191634580493e-04
+
+ -1.3848680257797241e-01 1.1516919732093811e-01
+ <_>
+
+ 0 -1 456 -3.4609009162522852e-04
+
+ -1.6371829807758331e-01 1.1949790269136429e-01
+ <_>
+
+ 0 -1 457 -9.8570866975933313e-04
+
+ -5.4642897844314575e-01 4.4689279049634933e-02
+ <_>
+
+ 0 -1 458 1.0218559764325619e-02
+
+ -1.1570169776678085e-01 1.6723839938640594e-01
+ <_>
+
+ 0 -1 459 2.6702679693698883e-02
+
+ 4.3922040611505508e-02 -4.5120438933372498e-01
+ <_>
+
+ 0 -1 460 -2.0299260504543781e-03
+
+ 1.1932279914617538e-01 -1.6979490220546722e-01
+ <_>
+
+ 0 -1 461 -8.8023602962493896e-02
+
+ -8.0279791355133057e-01 9.4295190647244453e-03
+ <_>
+
+ 0 -1 462 -1.3109110295772552e-02
+
+ -3.0865308642387390e-01 6.0802049934864044e-02
+ <_>
+
+ 0 -1 463 -9.9501870572566986e-03
+
+ 1.8400619924068451e-01 -4.6465478837490082e-02
+ <_>
+
+ 0 -1 464 -3.4293539356440306e-03
+
+ 2.6682999730110168e-01 -9.9338643252849579e-02
+ <_>
+
+ 0 -1 465 5.4729141294956207e-02
+
+ 2.8731130063533783e-02 -7.7745848894119263e-01
+ <_>
+
+ 0 -1 466 7.2012972086668015e-03
+
+ 4.4892478734254837e-02 -3.8289341330528259e-01
+ <_>
+
+ 0 -1 467 4.2047120630741119e-02
+
+ -2.2562339901924133e-02 4.0646651387214661e-01
+ <_>
+
+ 0 -1 468 4.4444389641284943e-03
+
+ 9.1204106807708740e-02 -1.8748210370540619e-01
+ <_>
+
+ 0 -1 469 2.8441840782761574e-02
+
+ 4.0668040513992310e-02 -4.0552121400833130e-01
+ <_>
+
+ 0 -1 470 -1.5141829848289490e-02
+
+ 2.4799869954586029e-01 -8.3607338368892670e-02
+ <_>
+
+ 0 -1 471 3.9388090372085571e-02
+
+ 2.4279279634356499e-02 -7.6827299594879150e-01
+ <_>
+
+ 0 -1 472 6.1649468261748552e-04
+
+ -1.7249910533428192e-01 1.0311610251665115e-01
+ <_>
+
+ 0 -1 473 2.6001650840044022e-02
+
+ 2.2825349122285843e-02 -7.7545452117919922e-01
+ <_>
+
+ 0 -1 474 1.4940380351617932e-03
+
+ -1.1028409749269485e-01 1.6966749727725983e-01
+ <_>
+
+ 0 -1 475 -1.3777149841189384e-02
+
+ -3.8424721360206604e-01 3.0320269986987114e-02
+ <_>
+
+ 0 -1 476 9.9619822576642036e-03
+
+ -5.3764659911394119e-02 3.7887129187583923e-01
+ <_>
+
+ 0 -1 477 3.2952039036899805e-03
+
+ 9.4384163618087769e-02 -3.2762721180915833e-01
+ <_>
+
+ 0 -1 478 5.7747410610318184e-03
+
+ 5.7114940136671066e-02 -3.0719769001007080e-01
+ <_>
+
+ 0 -1 479 -4.8392590135335922e-02
+
+ 1.7021059989929199e-01 -8.7045513093471527e-02
+ <_>
+
+ 0 -1 480 5.6376052089035511e-04
+
+ -9.3816302716732025e-02 2.0642310380935669e-01
+ <_>
+
+ 0 -1 481 -2.3873809725046158e-02
+
+ -3.0082350969314575e-01 1.7477719113230705e-02
+ <_>
+
+ 0 -1 482 -1.0526900179684162e-02
+
+ -3.4418928623199463e-01 5.7995639741420746e-02
+ <_>
+
+ 0 -1 483 2.2288670763373375e-02
+
+ -5.7179849594831467e-02 1.9739510118961334e-01
+ <_>
+
+ 0 -1 484 -1.4589070342481136e-02
+
+ -4.5168799161911011e-01 4.1490409523248672e-02
+ <_>
+
+ 0 -1 485 -4.6936370432376862e-02
+
+ 2.0457950234413147e-01 -5.1769189536571503e-02
+ <_>
+
+ 0 -1 486 5.3777720313519239e-04
+
+ -3.9481449127197266e-01 4.5076690614223480e-02
+ <_>
+
+ 0 -1 487 -2.2181039676070213e-03
+
+ -2.4575619399547577e-01 1.0261219739913940e-01
+ <_>
+
+ 0 -1 488 3.5076549649238586e-01
+
+ 1.9791129976511002e-02 -9.5161467790603638e-01
+ <_>
+
+ 0 -1 489 -2.6712059974670410e-02
+
+ 2.2393140196800232e-01 -4.5580100268125534e-02
+ <_>
+
+ 0 -1 490 -3.9627091027796268e-03
+
+ -2.4207019805908203e-01 7.6588593423366547e-02
+ <_>
+
+ 0 -1 491 -4.7878702171146870e-03
+
+ 1.2655270099639893e-01 -1.1964710056781769e-01
+ <_>
+
+ 0 -1 492 7.1042939089238644e-03
+
+ -9.2130422592163086e-02 2.1519139409065247e-01
+ <_>
+
+ 0 -1 493 -2.2581929442822002e-05
+
+ 6.0634609311819077e-02 -1.5848989784717560e-01
+ <_>
+
+ 0 -1 494 -7.8060641884803772e-02
+
+ 3.4822109341621399e-01 -5.3173709660768509e-02
+ <_>
+
+ 0 -1 495 2.7555850148200989e-01
+
+ 7.4112107977271080e-03 -1.0000040531158447e+00
+ <_>
+
+ 0 -1 496 1.9652329385280609e-01
+
+ 2.0131109282374382e-02 -8.5326671600341797e-01
+ <_>
+
+ 0 -1 497 -1.6801860183477402e-03
+
+ 7.7082179486751556e-02 -2.2620369493961334e-01
+ <_>
+ 71
+ -1.9982930421829224e+00
+
+ <_>
+
+ 0 -1 498 -1.8814710900187492e-02
+
+ 3.7744289636611938e-01 -4.0770640969276428e-01
+ <_>
+
+ 0 -1 499 -2.3191049695014954e-02
+
+ 3.4049031138420105e-01 -3.6144611239433289e-01
+ <_>
+
+ 0 -1 500 3.1333088874816895e-02
+
+ -4.3613511323928833e-01 1.9668689370155334e-01
+ <_>
+
+ 0 -1 501 -1.1318700388073921e-02
+
+ 1.1685170233249664e-01 -5.6359791755676270e-01
+ <_>
+
+ 0 -1 502 -3.1084290822036564e-04
+
+ -4.3396338820457458e-01 1.4264069497585297e-01
+ <_>
+
+ 0 -1 503 8.7350063025951385e-02
+
+ -1.9952809810638428e-01 3.3043611049652100e-01
+ <_>
+
+ 0 -1 504 -2.9018519446253777e-02
+
+ 3.2315209507942200e-01 -2.1707040071487427e-01
+ <_>
+
+ 0 -1 505 5.9860680252313614e-02
+
+ -1.8764750659465790e-01 2.7651038765907288e-01
+ <_>
+
+ 0 -1 506 -2.9682170599699020e-02
+
+ -4.6436330676078796e-01 1.1129009723663330e-01
+ <_>
+
+ 0 -1 507 -2.2648361045867205e-03
+
+ -2.7163028717041016e-01 8.6916759610176086e-02
+ <_>
+
+ 0 -1 508 -1.6869819955900311e-03
+
+ 1.7998990416526794e-01 -2.7152928709983826e-01
+ <_>
+
+ 0 -1 509 1.0256370296701789e-03
+
+ -4.3248209357261658e-01 1.0256689786911011e-01
+ <_>
+
+ 0 -1 510 -3.1762920320034027e-02
+
+ -6.4419168233871460e-01 6.7505106329917908e-02
+ <_>
+
+ 0 -1 511 -8.5913296788930893e-03
+
+ -3.7672510743141174e-01 7.2900757193565369e-02
+ <_>
+
+ 0 -1 512 -2.1636451128870249e-03
+
+ -4.2209509015083313e-01 1.0724630206823349e-01
+ <_>
+
+ 0 -1 513 6.0111237689852715e-04
+
+ 6.1302110552787781e-02 -3.8004979491233826e-01
+ <_>
+
+ 0 -1 514 -6.1244412790983915e-05
+
+ 7.4765786528587341e-02 -5.2644491195678711e-01
+ <_>
+
+ 0 -1 515 -2.3666430264711380e-02
+
+ -5.6801301240921021e-01 3.6377541720867157e-02
+ <_>
+
+ 0 -1 516 -1.4256609603762627e-02
+
+ -5.3446692228317261e-01 6.2768869102001190e-02
+ <_>
+
+ 0 -1 517 -1.5713909640908241e-02
+
+ 3.1898561120033264e-01 -1.1541239917278290e-01
+ <_>
+
+ 0 -1 518 -5.9286020696163177e-02
+
+ -5.7135957479476929e-01 8.1775680184364319e-02
+ <_>
+
+ 0 -1 519 -4.4122908264398575e-02
+
+ -7.0591008663177490e-01 2.0833099260926247e-02
+ <_>
+
+ 0 -1 520 -7.2728260420262814e-04
+
+ 1.0819850116968155e-01 -3.8077458739280701e-01
+ <_>
+
+ 0 -1 521 -6.6653728485107422e-02
+
+ -6.0824638605117798e-01 4.3248821049928665e-02
+ <_>
+
+ 0 -1 522 2.3679709993302822e-03
+
+ -2.9793098568916321e-01 1.2091939896345139e-01
+ <_>
+
+ 0 -1 523 3.3566180616617203e-02
+
+ 3.6464620381593704e-02 -5.5766987800598145e-01
+ <_>
+
+ 0 -1 524 -5.3138811141252518e-02
+
+ -5.6245392560958862e-01 6.5296277403831482e-02
+ <_>
+
+ 0 -1 525 -2.9401908977888525e-04
+
+ -5.8417952060699463e-01 5.0005510449409485e-02
+ <_>
+
+ 0 -1 526 -4.8085048911161721e-04
+
+ 1.4018669724464417e-01 -2.4792720377445221e-01
+ <_>
+
+ 0 -1 527 4.7777060419321060e-02
+
+ 5.5672798305749893e-02 -5.9540742635726929e-01
+ <_>
+
+ 0 -1 528 3.3423870801925659e-02
+
+ -1.4370389282703400e-01 2.3300980031490326e-01
+ <_>
+
+ 0 -1 529 2.0432810485363007e-01
+
+ 4.5327048748731613e-02 -7.4164307117462158e-01
+ <_>
+
+ 0 -1 530 1.4106060564517975e-01
+
+ -3.9674291014671326e-01 8.1692866981029510e-02
+ <_>
+
+ 0 -1 531 1.0005939839174971e-04
+
+ -2.2317939996719360e-01 1.3917629420757294e-01
+ <_>
+
+ 0 -1 532 6.0689389705657959e-02
+
+ 3.4324988722801208e-02 -8.2796847820281982e-01
+ <_>
+
+ 0 -1 533 -3.6456179805099964e-03
+
+ 1.5286439657211304e-01 -1.4005979895591736e-01
+ <_>
+
+ 0 -1 534 3.1945340335369110e-02
+
+ 6.5343692898750305e-02 -4.4296088814735413e-01
+ <_>
+
+ 0 -1 535 2.3428380489349365e-02
+
+ 2.5527309626340866e-02 -6.3270658254623413e-01
+ <_>
+
+ 0 -1 536 4.6067949384450912e-02
+
+ 4.3579101562500000e-02 -6.4929872751235962e-01
+ <_>
+
+ 0 -1 537 -5.8055151253938675e-02
+
+ -6.3957542181015015e-01 1.4028750360012054e-02
+ <_>
+
+ 0 -1 538 3.8783740252256393e-02
+
+ 5.1233518868684769e-02 -5.4144388437271118e-01
+ <_>
+
+ 0 -1 539 -1.2765520252287388e-02
+
+ 2.7082890272140503e-01 -9.1927766799926758e-02
+ <_>
+
+ 0 -1 540 -3.1400551088154316e-03
+
+ -3.4679821133613586e-01 8.3973668515682220e-02
+ <_>
+
+ 0 -1 541 -1.9719999283552170e-02
+
+ -2.0476959645748138e-01 6.3232198357582092e-02
+ <_>
+
+ 0 -1 542 3.2241051085293293e-03
+
+ 9.6259713172912598e-02 -2.8098219633102417e-01
+ <_>
+
+ 0 -1 543 -5.9271860867738724e-02
+
+ -2.6686909794807434e-01 3.2907258719205856e-02
+ <_>
+
+ 0 -1 544 1.5636639669537544e-02
+
+ 6.9188073277473450e-02 -4.1761711239814758e-01
+ <_>
+
+ 0 -1 545 -8.8900122791528702e-03
+
+ 1.9603550434112549e-01 -1.1249750107526779e-01
+ <_>
+
+ 0 -1 546 2.4458909407258034e-02
+
+ 5.6988969445228577e-02 -5.1025021076202393e-01
+ <_>
+
+ 0 -1 547 1.0101319849491119e-01
+
+ 9.4210049137473106e-03 -3.6691328883171082e-01
+ <_>
+
+ 0 -1 548 9.0739831328392029e-02
+
+ 5.3999878466129303e-02 -5.1181477308273315e-01
+ <_>
+
+ 0 -1 549 -4.9557868391275406e-02
+
+ -6.2467038631439209e-01 4.0988270193338394e-02
+ <_>
+
+ 0 -1 550 2.6558348536491394e-01
+
+ -8.6136549711227417e-02 3.2438439130783081e-01
+ <_>
+
+ 0 -1 551 1.8632459687069058e-03
+
+ -5.4563361406326294e-01 5.8684051036834717e-02
+ <_>
+
+ 0 -1 552 1.1804940178990364e-02
+
+ -2.0603899657726288e-01 1.4167340099811554e-01
+ <_>
+
+ 0 -1 553 6.8137067137286067e-04
+
+ -2.0806470513343811e-01 9.2627376317977905e-02
+ <_>
+
+ 0 -1 554 5.7278381427749991e-04
+
+ -4.3170881271362305e-01 6.3360363245010376e-02
+ <_>
+
+ 0 -1 555 -1.1041999794542789e-02
+
+ 1.8144379556179047e-01 -4.1707839816808701e-02
+ <_>
+
+ 0 -1 556 9.5696747303009033e-03
+
+ -1.2098339945077896e-01 2.1607619524002075e-01
+ <_>
+
+ 0 -1 557 7.4274197220802307e-02
+
+ 2.6399549096822739e-02 -7.7601867914199829e-01
+ <_>
+
+ 0 -1 558 -2.5815829634666443e-02
+
+ 5.3497368097305298e-01 -5.2025150507688522e-02
+ <_>
+
+ 0 -1 559 -6.3314691185951233e-02
+
+ 5.1900321245193481e-01 -1.9329590722918510e-02
+ <_>
+
+ 0 -1 560 -6.6432490944862366e-02
+
+ 7.2140932083129883e-01 -3.2882031053304672e-02
+ <_>
+
+ 0 -1 561 -7.5749039649963379e-02
+
+ 4.1485249996185303e-01 -5.5451728403568268e-02
+ <_>
+
+ 0 -1 562 -2.0296040922403336e-02
+
+ -3.3250689506530762e-01 8.2397893071174622e-02
+ <_>
+
+ 0 -1 563 2.2172650322318077e-02
+
+ -1.4419150352478027e-01 1.7280860245227814e-01
+ <_>
+
+ 0 -1 564 4.2085880413651466e-03
+
+ -3.0237489938735962e-01 8.6699083447456360e-02
+ <_>
+
+ 0 -1 565 6.8267330527305603e-02
+
+ 8.7291244417428970e-03 -3.6955729126930237e-01
+ <_>
+
+ 0 -1 566 5.1220320165157318e-03
+
+ -2.0824980735778809e-01 1.4530059695243835e-01
+ <_>
+
+ 0 -1 567 -5.3114328533411026e-02
+
+ -5.5142301321029663e-01 4.3421190232038498e-02
+ <_>
+
+ 0 -1 568 -4.9739979207515717e-02
+
+ 4.4077101349830627e-01 -6.4349673688411713e-02
+ <_>
+ 94
+ -1.8377989530563354e+00
+
+ <_>
+
+ 0 -1 569 -3.3883380820043385e-04
+
+ 1.8997849524021149e-01 -4.6184849739074707e-01
+ <_>
+
+ 0 -1 570 -1.5632030554115772e-03
+
+ 1.9381409883499146e-01 -4.3518841266632080e-01
+ <_>
+
+ 0 -1 571 1.5552520053461194e-03
+
+ -4.7420310974121094e-01 1.2137629836797714e-01
+ <_>
+
+ 0 -1 572 -3.1417120248079300e-02
+
+ -3.9096689224243164e-01 1.0951930284500122e-01
+ <_>
+
+ 0 -1 573 -3.2835190650075674e-03
+
+ 1.6428950428962708e-01 -3.2751929759979248e-01
+ <_>
+
+ 0 -1 574 5.8749080635607243e-03
+
+ 7.6225973665714264e-02 -4.3470710515975952e-01
+ <_>
+
+ 0 -1 575 4.4846539385616779e-03
+
+ 1.2197560071945190e-01 -4.4872379302978516e-01
+ <_>
+
+ 0 -1 576 1.9835829734802246e-03
+
+ -6.2911021709442139e-01 1.0122530162334442e-01
+ <_>
+
+ 0 -1 577 1.2609469704329967e-02
+
+ 1.0438250005245209e-01 -3.5015499591827393e-01
+ <_>
+
+ 0 -1 578 -4.7475768951699138e-04
+
+ 1.1008159816265106e-01 -3.0429539084434509e-01
+ <_>
+
+ 0 -1 579 3.2356760930269957e-03
+
+ -2.7057901024818420e-01 1.2746180593967438e-01
+ <_>
+
+ 0 -1 580 9.9898613989353180e-03
+
+ 6.3906982541084290e-02 -4.7118431329727173e-01
+ <_>
+
+ 0 -1 581 5.6069239508360624e-04
+
+ -3.1783330440521240e-01 1.0404340177774429e-01
+ <_>
+
+ 0 -1 582 -5.7694699615240097e-02
+
+ -5.1342570781707764e-01 2.6394980028271675e-02
+ <_>
+
+ 0 -1 583 5.5947788059711456e-03
+
+ 7.6774753630161285e-02 -4.3374261260032654e-01
+ <_>
+
+ 0 -1 584 -3.8770840037614107e-03
+
+ 1.3988199830055237e-01 -2.0221559703350067e-01
+ <_>
+
+ 0 -1 585 -4.7874201089143753e-02
+
+ -4.7928389906883240e-01 6.8043030798435211e-02
+ <_>
+
+ 0 -1 586 2.5817550718784332e-02
+
+ -4.5524198561906815e-02 3.9452901482582092e-01
+ <_>
+
+ 0 -1 587 1.6696650709491223e-04
+
+ -3.0880719423294067e-01 1.0875239968299866e-01
+ <_>
+
+ 0 -1 588 9.8888948559761047e-04
+
+ 6.8699032068252563e-02 -4.1813009977340698e-01
+ <_>
+
+ 0 -1 589 -3.4260770771652460e-03
+
+ -2.8929701447486877e-01 1.1479649692773819e-01
+ <_>
+
+ 0 -1 590 6.6044367849826813e-02
+
+ 1.6809269785881042e-02 -3.3534801006317139e-01
+ <_>
+
+ 0 -1 591 2.8318059630692005e-03
+
+ -3.9482170343399048e-01 8.5598722100257874e-02
+ <_>
+
+ 0 -1 592 4.2680549621582031e-01
+
+ 5.0977780483663082e-03 -5.9331178665161133e-01
+ <_>
+
+ 0 -1 593 1.1960650235414505e-01
+
+ 2.7437770739197731e-02 -7.6616281270980835e-01
+ <_>
+
+ 0 -1 594 1.9571319222450256e-02
+
+ -1.1966180056333542e-01 2.3962239921092987e-01
+ <_>
+
+ 0 -1 595 -1.7432469874620438e-02
+
+ -5.8530348539352417e-01 5.6400340050458908e-02
+ <_>
+
+ 0 -1 596 -1.1196629703044891e-01
+
+ -6.7248320579528809e-01 2.9150659218430519e-02
+ <_>
+
+ 0 -1 597 -4.5747519470751286e-03
+
+ -4.7730261087417603e-01 5.6612998247146606e-02
+ <_>
+
+ 0 -1 598 -5.1501519046723843e-03
+
+ 1.1510629951953888e-01 -1.0732329636812210e-01
+ <_>
+
+ 0 -1 599 2.9034249484539032e-02
+
+ -5.3368709981441498e-02 6.4226460456848145e-01
+ <_>
+
+ 0 -1 600 -1.8050910439342260e-03
+
+ 1.2795349955558777e-01 -1.2329389899969101e-01
+ <_>
+
+ 0 -1 601 -2.4374839849770069e-03
+
+ -3.5312348604202271e-01 8.7703153491020203e-02
+ <_>
+
+ 0 -1 602 -1.9070079550147057e-02
+
+ -4.0662440657615662e-01 4.3273188173770905e-02
+ <_>
+
+ 0 -1 603 -5.0454240292310715e-02
+
+ -8.1198102235794067e-01 2.8289109468460083e-02
+ <_>
+
+ 0 -1 604 1.6544000245630741e-03
+
+ -1.6964040696620941e-01 1.2194740027189255e-01
+ <_>
+
+ 0 -1 605 -4.6791311353445053e-02
+
+ 4.0614441037178040e-01 -6.1174858361482620e-02
+ <_>
+
+ 0 -1 606 -5.5953849107027054e-02
+
+ -8.2662910223007202e-01 2.7774749323725700e-02
+ <_>
+
+ 0 -1 607 1.4469559537246823e-03
+
+ -1.4953869581222534e-01 1.5966990590095520e-01
+ <_>
+
+ 0 -1 608 -1.2529050000011921e-02
+
+ -4.2504650354385376e-01 2.1658079698681831e-02
+ <_>
+
+ 0 -1 609 1.1086500016972423e-03
+
+ -3.6006990075111389e-01 6.4415097236633301e-02
+ <_>
+
+ 0 -1 610 3.9361778646707535e-02
+
+ 8.2419048994779587e-03 -7.5303071737289429e-01
+ <_>
+
+ 0 -1 611 1.8823929131031036e-02
+
+ 4.4821120798587799e-02 -5.0604110956192017e-01
+ <_>
+
+ 0 -1 612 -3.2083000987768173e-02
+
+ 3.1431311368942261e-01 -3.9181869477033615e-02
+ <_>
+
+ 0 -1 613 -3.1081929802894592e-02
+
+ -7.6903742551803589e-01 3.0742960050702095e-02
+ <_>
+
+ 0 -1 614 2.3218210786581039e-02
+
+ -5.7748749852180481e-02 2.8955349326133728e-01
+ <_>
+
+ 0 -1 615 -1.1492100311443210e-03
+
+ 1.1501409858465195e-01 -1.9310690462589264e-01
+ <_>
+
+ 0 -1 616 -1.6593940556049347e-02
+
+ -4.2298540472984314e-01 4.3738979846239090e-02
+ <_>
+
+ 0 -1 617 -1.0146570391952991e-02
+
+ 2.5579848885536194e-01 -9.1966241598129272e-02
+ <_>
+
+ 0 -1 618 -1.3054019771516323e-02
+
+ 1.8339529633522034e-01 -4.0160831063985825e-02
+ <_>
+
+ 0 -1 619 3.7463540211319923e-03
+
+ -1.2586769461631775e-01 2.2247019410133362e-01
+ <_>
+
+ 0 -1 620 -4.8463590443134308e-02
+
+ -5.8155900239944458e-01 2.9713390395045280e-02
+ <_>
+
+ 0 -1 621 6.4649381674826145e-03
+
+ 9.3169108033180237e-02 -2.9046580195426941e-01
+ <_>
+
+ 0 -1 622 1.5607809647917747e-02
+
+ 4.7331970185041428e-02 -4.4805559515953064e-01
+ <_>
+
+ 0 -1 623 -5.8314641937613487e-03
+
+ 9.8941758275032043e-02 -2.2056859731674194e-01
+ <_>
+
+ 0 -1 624 7.3607802391052246e-02
+
+ 1.6780460253357887e-02 -5.4953122138977051e-01
+ <_>
+
+ 0 -1 625 -6.4223129302263260e-03
+
+ -2.9647961258888245e-01 7.3539912700653076e-02
+ <_>
+
+ 0 -1 626 2.2267029635258950e-05
+
+ -3.4211820363998413e-01 4.1858270764350891e-02
+ <_>
+
+ 0 -1 627 3.7273630499839783e-02
+
+ 2.7458079159259796e-02 -7.8551971912384033e-01
+ <_>
+
+ 0 -1 628 4.2738770134747028e-03
+
+ -8.2514517009258270e-02 1.0404880344867706e-01
+ <_>
+
+ 0 -1 629 1.1906049912795424e-03
+
+ -1.6300439834594727e-01 1.5300649404525757e-01
+ <_>
+
+ 0 -1 630 8.7800435721874237e-03
+
+ -9.2885948717594147e-02 1.3147510588169098e-01
+ <_>
+
+ 0 -1 631 2.4151368997991085e-03
+
+ 4.7598559409379959e-02 -4.4829669594764709e-01
+ <_>
+
+ 0 -1 632 -2.7428340166807175e-02
+
+ 1.9811069965362549e-01 -5.5979698896408081e-02
+ <_>
+
+ 0 -1 633 -1.4117059763520956e-03
+
+ -2.1138970553874969e-01 1.0409740358591080e-01
+ <_>
+
+ 0 -1 634 -2.0210200548171997e-01
+
+ -7.7120232582092285e-01 7.0582218468189240e-03
+ <_>
+
+ 0 -1 635 -4.1451320052146912e-02
+
+ 2.8295141458511353e-01 -7.1323528885841370e-02
+ <_>
+
+ 0 -1 636 4.8561887815594673e-03
+
+ 8.6693897843360901e-02 -2.3541820049285889e-01
+ <_>
+
+ 0 -1 637 -4.4662880100077018e-05
+
+ 1.3257139921188354e-01 -2.0168599486351013e-01
+ <_>
+
+ 0 -1 638 3.7671580910682678e-02
+
+ -7.4952289462089539e-02 3.3843380212783813e-01
+ <_>
+
+ 0 -1 639 7.4343256652355194e-02
+
+ 3.2905030995607376e-02 -7.3536777496337891e-01
+ <_>
+
+ 0 -1 640 -1.0186419822275639e-02
+
+ -3.1277081370353699e-01 4.4163990765810013e-02
+ <_>
+
+ 0 -1 641 -2.4506879970431328e-02
+
+ -6.1346518993377686e-01 2.9692139476537704e-02
+ <_>
+
+ 0 -1 642 -3.8238149136304855e-02
+
+ 3.5583540797233582e-01 -4.8388618975877762e-02
+ <_>
+
+ 0 -1 643 1.7983660101890564e-01
+
+ 1.9501589238643646e-02 -9.8485881090164185e-01
+ <_>
+
+ 0 -1 644 8.4765878273174167e-04
+
+ -2.7960330247879028e-01 7.8323036432266235e-02
+ <_>
+
+ 0 -1 645 3.7178809288889170e-03
+
+ 7.2525441646575928e-02 -2.4067409336566925e-01
+ <_>
+
+ 0 -1 646 -9.0932317078113556e-02
+
+ -7.1539151668548584e-01 8.8080493733286858e-03
+ <_>
+
+ 0 -1 647 -8.0087810754776001e-02
+
+ -6.7830717563629150e-01 2.4904320016503334e-02
+ <_>
+
+ 0 -1 648 7.6924148015677929e-03
+
+ -5.0967499613761902e-02 1.1952529847621918e-01
+ <_>
+
+ 0 -1 649 4.1485231369733810e-02
+
+ -4.9493920058012009e-02 3.5386860370635986e-01
+ <_>
+
+ 0 -1 650 3.4051608294248581e-02
+
+ 4.2200978845357895e-02 -5.0110721588134766e-01
+ <_>
+
+ 0 -1 651 -2.6235830038785934e-02
+
+ 4.4934839010238647e-01 -4.1851200163364410e-02
+ <_>
+
+ 0 -1 652 -5.1373958587646484e-02
+
+ -9.5942801237106323e-01 1.7192790284752846e-02
+ <_>
+
+ 0 -1 653 -2.6742739602923393e-02
+
+ -6.5632241964340210e-01 2.1778080612421036e-02
+ <_>
+
+ 0 -1 654 -1.3730529462918639e-03
+
+ -1.8638509511947632e-01 4.1139349341392517e-02
+ <_>
+
+ 0 -1 655 1.0963230160996318e-03
+
+ -1.4219370484352112e-01 1.3832019269466400e-01
+ <_>
+
+ 0 -1 656 -4.5011811889708042e-03
+
+ -1.8468600511550903e-01 9.1024190187454224e-02
+ <_>
+
+ 0 -1 657 4.4253250234760344e-04
+
+ -1.2736940383911133e-01 1.3655360043048859e-01
+ <_>
+
+ 0 -1 658 3.0500710010528564e-02
+
+ -5.8146148920059204e-02 2.4189910292625427e-01
+ <_>
+
+ 0 -1 659 -1.1691919714212418e-01
+
+ -5.5466407537460327e-01 3.0249029397964478e-02
+ <_>
+
+ 0 -1 660 -9.5684931147843599e-04
+
+ 5.1899868994951248e-02 -1.4152799546718597e-01
+ <_>
+
+ 0 -1 661 1.3096149777993560e-03
+
+ -1.4248229563236237e-01 1.2227780371904373e-01
+ <_>
+
+ 0 -1 662 3.4988880157470703e-02
+
+ 2.7653129771351814e-02 -6.1738812923431396e-01
+ <_>
+ 82
+ -1.9031070470809937e+00
+
+ <_>
+
+ 0 -1 663 1.6489429771900177e-01
+
+ -2.5657209753990173e-01 4.1277718544006348e-01
+ <_>
+
+ 0 -1 664 2.0584860816597939e-02
+
+ -5.2442210912704468e-01 1.4910830557346344e-01
+ <_>
+
+ 0 -1 665 8.8764587417244911e-04
+
+ 1.3334700465202332e-01 -5.2259522676467896e-01
+ <_>
+
+ 0 -1 666 -1.3320889556780457e-03
+
+ -3.6568748950958252e-01 2.0482279360294342e-01
+ <_>
+
+ 0 -1 667 7.7916197478771210e-02
+
+ -2.1557159721851349e-01 3.1069579720497131e-01
+ <_>
+
+ 0 -1 668 2.4321360979229212e-03
+
+ -4.4742551445960999e-01 1.0638339817523956e-01
+ <_>
+
+ 0 -1 669 -5.8699389919638634e-03
+
+ -3.8800778985023499e-01 1.4410589635372162e-01
+ <_>
+
+ 0 -1 670 6.9754302501678467e-02
+
+ 1.3224910013377666e-02 -8.0096632242202759e-01
+ <_>
+
+ 0 -1 671 3.8338101003319025e-03
+
+ -4.3139308691024780e-01 1.4253990352153778e-01
+ <_>
+
+ 0 -1 672 -1.5829030424356461e-02
+
+ 3.0954799056053162e-01 -1.2232720106840134e-01
+ <_>
+
+ 0 -1 673 6.6198296844959259e-02
+
+ -2.0558249950408936e-01 1.9531220197677612e-01
+ <_>
+
+ 0 -1 674 1.7639519646763802e-02
+
+ 1.0770589858293533e-01 -4.3488320708274841e-01
+ <_>
+
+ 0 -1 675 -1.1082629673182964e-02
+
+ -3.6149570345878601e-01 1.1327210068702698e-01
+ <_>
+
+ 0 -1 676 -3.6515299230813980e-02
+
+ -4.3912211060523987e-01 5.5279448628425598e-02
+ <_>
+
+ 0 -1 677 -3.3373299986124039e-02
+
+ -5.6869208812713623e-01 8.4043957293033600e-02
+ <_>
+
+ 0 -1 678 8.1395559012889862e-02
+
+ -1.4235010743141174e-01 2.8748288750648499e-01
+ <_>
+
+ 0 -1 679 -4.3892292305827141e-03
+
+ -3.4859830141067505e-01 1.1650340259075165e-01
+ <_>
+
+ 0 -1 680 -6.3558202236890793e-03
+
+ -3.3823049068450928e-01 1.1005490273237228e-01
+ <_>
+
+ 0 -1 681 2.0912459120154381e-02
+
+ 7.8197829425334930e-02 -4.6337550878524780e-01
+ <_>
+
+ 0 -1 682 1.1600360274314880e-01
+
+ -2.0528669655323029e-01 1.5923389792442322e-01
+ <_>
+
+ 0 -1 683 1.6316600143909454e-02
+
+ -1.0633999854326248e-01 3.3453521132469177e-01
+ <_>
+
+ 0 -1 684 -2.8488141298294067e-01
+
+ 5.1638001203536987e-01 -3.9357859641313553e-03
+ <_>
+
+ 0 -1 685 2.4155430495738983e-02
+
+ -7.1670228242874146e-01 5.0031550228595734e-02
+ <_>
+
+ 0 -1 686 1.1413260363042355e-02
+
+ 5.9236031025648117e-02 -3.8141900300979614e-01
+ <_>
+
+ 0 -1 687 -2.4304199963808060e-02
+
+ 4.3475851416587830e-01 -8.6574159562587738e-02
+ <_>
+
+ 0 -1 688 -1.5267609851434827e-03
+
+ -6.4307600259780884e-01 5.1642779260873795e-02
+ <_>
+
+ 0 -1 689 1.0073349811136723e-02
+
+ 7.5743027031421661e-02 -4.2902961373329163e-01
+ <_>
+
+ 0 -1 690 -8.1224881112575531e-02
+
+ -4.0827330946922302e-01 5.5444631725549698e-02
+ <_>
+
+ 0 -1 691 1.5149010345339775e-02
+
+ 5.3084861487150192e-02 -5.4495412111282349e-01
+ <_>
+
+ 0 -1 692 -5.3490739315748215e-02
+
+ -4.7422149777412415e-01 3.9420779794454575e-02
+ <_>
+
+ 0 -1 693 -4.0884271264076233e-02
+
+ -8.8557797670364380e-01 3.2042708247900009e-02
+ <_>
+
+ 0 -1 694 -4.2768509592860937e-04
+
+ -3.0554470419883728e-01 5.1432881504297256e-02
+ <_>
+
+ 0 -1 695 1.8441269174218178e-02
+
+ 8.0688089132308960e-02 -3.5884049534797668e-01
+ <_>
+
+ 0 -1 696 -4.7630790621042252e-02
+
+ -4.6131908893585205e-01 6.0592770576477051e-02
+ <_>
+
+ 0 -1 697 8.2442145794630051e-03
+
+ 8.9793607592582703e-02 -3.7605780363082886e-01
+ <_>
+
+ 0 -1 698 1.0003759711980820e-01
+
+ -8.3760380744934082e-02 3.9221811294555664e-01
+ <_>
+
+ 0 -1 699 -2.8420550748705864e-02
+
+ -6.9483548402786255e-01 4.9100410193204880e-02
+ <_>
+
+ 0 -1 700 5.6485999375581741e-02
+
+ 4.4795661233365536e-03 -7.5373399257659912e-01
+ <_>
+
+ 0 -1 701 1.0085420217365026e-03
+
+ -3.7881261110305786e-01 7.8376993536949158e-02
+ <_>
+
+ 0 -1 702 -1.2643639929592609e-03
+
+ 7.5486026704311371e-02 -3.1015640497207642e-01
+ <_>
+
+ 0 -1 703 1.4146340079605579e-02
+
+ -8.1805020570755005e-02 3.7313848733901978e-01
+ <_>
+
+ 0 -1 704 -3.1549399718642235e-03
+
+ -2.1241660416126251e-01 8.9129790663719177e-02
+ <_>
+
+ 0 -1 705 1.4796239556744695e-03
+
+ -2.1479040384292603e-01 1.3543279469013214e-01
+ <_>
+
+ 0 -1 706 -3.1343609094619751e-02
+
+ -5.8114588260650635e-01 4.8576328903436661e-02
+ <_>
+
+ 0 -1 707 -7.6149761676788330e-02
+
+ -5.3774517774581909e-01 4.8339068889617920e-02
+ <_>
+
+ 0 -1 708 -6.1668939888477325e-02
+
+ -8.4525662660598755e-01 1.7448999278713018e-04
+ <_>
+
+ 0 -1 709 -2.7084920555353165e-02
+
+ -5.0659137964248657e-01 4.7709420323371887e-02
+ <_>
+
+ 0 -1 710 -2.4240929633378983e-02
+
+ -3.8534450531005859e-01 5.0300780683755875e-02
+ <_>
+
+ 0 -1 711 4.1979398578405380e-02
+
+ -1.0378009825944901e-01 2.6236268877983093e-01
+ <_>
+
+ 0 -1 712 2.3717690259218216e-02
+
+ 5.6897271424531937e-02 -2.8959441184997559e-01
+ <_>
+
+ 0 -1 713 -1.8669789656996727e-02
+
+ -3.9924529194831848e-01 7.3442213237285614e-02
+ <_>
+
+ 0 -1 714 -1.4987000264227390e-02
+
+ -3.2296919822692871e-01 4.1676748543977737e-02
+ <_>
+
+ 0 -1 715 8.7209865450859070e-03
+
+ 1.3521389663219452e-01 -1.8224580585956573e-01
+ <_>
+
+ 0 -1 716 -1.2239219620823860e-02
+
+ 1.5540809929370880e-01 -1.5208069980144501e-01
+ <_>
+
+ 0 -1 717 -4.8744980245828629e-02
+
+ -3.6606758832931519e-01 6.3152566552162170e-02
+ <_>
+
+ 0 -1 718 -3.8249569479376078e-03
+
+ 8.3472989499568939e-02 -2.4186329543590546e-01
+ <_>
+
+ 0 -1 719 1.5581659972667694e-01
+
+ 3.1953960657119751e-02 -6.7813181877136230e-01
+ <_>
+
+ 0 -1 720 6.8241581320762634e-02
+
+ 1.5478439629077911e-02 -4.2029750347137451e-01
+ <_>
+
+ 0 -1 721 -9.5974646508693695e-02
+
+ -9.5647841691970825e-01 2.1444590762257576e-02
+ <_>
+
+ 0 -1 722 -1.2618429958820343e-02
+
+ -5.0544857978820801e-01 3.0875260010361671e-02
+ <_>
+
+ 0 -1 723 7.2727642953395844e-02
+
+ 4.7215349972248077e-02 -4.5075151324272156e-01
+ <_>
+
+ 0 -1 724 2.9923219233751297e-02
+
+ -8.1444352865219116e-02 3.1656229496002197e-01
+ <_>
+
+ 0 -1 725 1.9138090312480927e-02
+
+ 6.8187400698661804e-02 -3.4876790642738342e-01
+ <_>
+
+ 0 -1 726 -3.4314721822738647e-02
+
+ -5.5220371484756470e-01 3.7325009703636169e-02
+ <_>
+
+ 0 -1 727 5.2559198811650276e-03
+
+ 6.4786978065967560e-02 -3.6363509297370911e-01
+ <_>
+
+ 0 -1 728 1.4092399738729000e-02
+
+ -4.8704359680414200e-02 2.7677831053733826e-01
+ <_>
+
+ 0 -1 729 -9.0101473033428192e-03
+
+ 2.3452599346637726e-01 -1.3140350580215454e-01
+ <_>
+
+ 0 -1 730 9.6720218658447266e-02
+
+ 2.6661360636353493e-02 -7.7422797679901123e-01
+ <_>
+
+ 0 -1 731 8.5365071892738342e-02
+
+ 2.3529909551143646e-02 -7.0710861682891846e-01
+ <_>
+
+ 0 -1 732 2.4384429678320885e-02
+
+ -6.2648482620716095e-02 3.7251880764961243e-01
+ <_>
+
+ 0 -1 733 3.6380778998136520e-02
+
+ 4.3358739465475082e-02 -6.0222417116165161e-01
+ <_>
+
+ 0 -1 734 -5.3780268877744675e-02
+
+ -3.3441001176834106e-01 3.5700578242540359e-02
+ <_>
+
+ 0 -1 735 -1.4787100255489349e-02
+
+ 2.9136168956756592e-01 -7.4075296521186829e-02
+ <_>
+
+ 0 -1 736 1.2491010129451752e-03
+
+ 4.1654240339994431e-02 -9.3758836388587952e-02
+ <_>
+
+ 0 -1 737 -2.7572909370064735e-02
+
+ -3.1398218870162964e-01 7.2411999106407166e-02
+ <_>
+
+ 0 -1 738 -7.8866451978683472e-02
+
+ 6.0655838251113892e-01 -2.3838050663471222e-02
+ <_>
+
+ 0 -1 739 -6.9339312613010406e-02
+
+ 7.1137732267379761e-01 -2.9814269393682480e-02
+ <_>
+
+ 0 -1 740 9.4372592866420746e-02
+
+ 3.3579438924789429e-02 -5.9774041175842285e-01
+ <_>
+
+ 0 -1 741 -2.6048649102449417e-02
+
+ -4.0574911236763000e-01 5.5603530257940292e-02
+ <_>
+
+ 0 -1 742 -7.3630206286907196e-02
+
+ -6.0780352354049683e-01 2.5251649320125580e-02
+ <_>
+
+ 0 -1 743 -1.8610449507832527e-02
+
+ 2.4013559520244598e-01 -9.5389783382415771e-02
+ <_>
+
+ 0 -1 744 1.3329629600048065e-01
+
+ -6.9742381572723389e-02 1.3323000073432922e-01
+ <_>
+ 112
+ -1.6909840106964111e+00
+
+ <_>
+
+ 0 -1 745 -4.1724857874214649e-03
+
+ 1.9310890138149261e-01 -4.9630740284919739e-01
+ <_>
+
+ 0 -1 746 9.6606701845303178e-04
+
+ -5.4340302944183350e-01 1.2434119731187820e-01
+ <_>
+
+ 0 -1 747 1.0261629940941930e-03
+
+ -4.6321579813957214e-01 1.1160290241241455e-01
+ <_>
+
+ 0 -1 748 3.6368470173329115e-03
+
+ 8.2918949425220490e-02 -3.6662510037422180e-01
+ <_>
+
+ 0 -1 749 -2.8364539612084627e-03
+
+ -6.7365992069244385e-01 6.5546013414859772e-02
+ <_>
+
+ 0 -1 750 -1.0111520532518625e-03
+
+ 1.4055189490318298e-01 -3.5270330309867859e-01
+ <_>
+
+ 0 -1 751 -2.5434889830648899e-03
+
+ 1.4191180467605591e-01 -2.8350821137428284e-01
+ <_>
+
+ 0 -1 752 3.3014779910445213e-03
+
+ 4.6553891152143478e-02 -4.8537290096282959e-01
+ <_>
+
+ 0 -1 753 -1.1802930384874344e-02
+
+ -3.7958830595016479e-01 9.2071913182735443e-02
+ <_>
+
+ 0 -1 754 -1.3293370138853788e-03
+
+ 1.7311429977416992e-01 -1.6890439391136169e-01
+ <_>
+
+ 0 -1 755 1.4958450198173523e-01
+
+ 3.7626601755619049e-02 -8.0016881227493286e-01
+ <_>
+
+ 0 -1 756 1.6352189704775810e-03
+
+ -2.0858129858970642e-01 1.5985429286956787e-01
+ <_>
+
+ 0 -1 757 1.5483440365642309e-03
+
+ -1.7578269541263580e-01 1.7560100555419922e-01
+ <_>
+
+ 0 -1 758 -3.5674259066581726e-02
+
+ -4.6057531237602234e-01 4.3983791023492813e-02
+ <_>
+
+ 0 -1 759 -1.4558699913322926e-02
+
+ -3.3587411046028137e-01 8.3965480327606201e-02
+ <_>
+
+ 0 -1 760 5.2891410887241364e-03
+
+ -3.5635179281234741e-01 9.4101972877979279e-02
+ <_>
+
+ 0 -1 761 -9.8066125065088272e-04
+
+ -4.4301840662956238e-01 6.4368210732936859e-02
+ <_>
+
+ 0 -1 762 -4.0704999119043350e-02
+
+ -5.9700322151184082e-01 1.7846770584583282e-02
+ <_>
+
+ 0 -1 763 2.9682040214538574e-02
+
+ 3.8127020001411438e-02 -6.6795140504837036e-01
+ <_>
+
+ 0 -1 764 -1.7841320368461311e-04
+
+ 7.4118576943874359e-02 -3.2121241092681885e-01
+ <_>
+
+ 0 -1 765 1.0050840210169554e-03
+
+ -2.0642249286174774e-01 1.2194109708070755e-01
+ <_>
+
+ 0 -1 766 -1.6711819916963577e-03
+
+ -2.6586419343948364e-01 7.1882687509059906e-02
+ <_>
+
+ 0 -1 767 -6.9955319166183472e-02
+
+ 5.0097060203552246e-01 -5.2172549068927765e-02
+ <_>
+
+ 0 -1 768 8.3406828343868256e-03
+
+ -6.9546110928058624e-02 1.6949440538883209e-01
+ <_>
+
+ 0 -1 769 1.5483159571886063e-02
+
+ -9.5865622162818909e-02 2.8736731410026550e-01
+ <_>
+
+ 0 -1 770 -4.2621988803148270e-02
+
+ -2.5160768628120422e-01 1.1381790041923523e-01
+ <_>
+
+ 0 -1 771 3.6459038965404034e-03
+
+ 7.0138469338417053e-02 -4.0376278758049011e-01
+ <_>
+
+ 0 -1 772 -1.8889949424192309e-03
+
+ 1.4695550501346588e-01 -1.7879849672317505e-01
+ <_>
+
+ 0 -1 773 -3.4749018959701061e-03
+
+ -2.4985860288143158e-01 1.0349679738283157e-01
+ <_>
+
+ 0 -1 774 -3.7792209535837173e-02
+
+ -6.5756058692932129e-01 2.3007599636912346e-02
+ <_>
+
+ 0 -1 775 -4.0167139377444983e-04
+
+ 1.4987960457801819e-01 -1.4527609944343567e-01
+ <_>
+
+ 0 -1 776 3.4890990704298019e-02
+
+ -4.5207828283309937e-02 5.1295852661132812e-01
+ <_>
+
+ 0 -1 777 -9.5964537467807531e-04
+
+ 1.4688290655612946e-01 -1.7244540154933929e-01
+ <_>
+
+ 0 -1 778 -9.6461333334445953e-02
+
+ -7.1814310550689697e-01 3.2587919384241104e-02
+ <_>
+
+ 0 -1 779 -1.1924919672310352e-03
+
+ 1.3805310428142548e-01 -1.4162309467792511e-01
+ <_>
+
+ 0 -1 780 -1.6420070081949234e-02
+
+ -4.1954740881919861e-01 4.3040689080953598e-02
+ <_>
+
+ 0 -1 781 -6.1112269759178162e-02
+
+ 3.7761390209197998e-01 -5.6264769285917282e-02
+ <_>
+
+ 0 -1 782 -3.1682170927524567e-02
+
+ 2.1038809418678284e-01 -5.4475009441375732e-02
+ <_>
+
+ 0 -1 783 -7.4058552272617817e-03
+
+ -1.8709950149059296e-01 1.0876149684190750e-01
+ <_>
+
+ 0 -1 784 -2.8892440604977310e-04
+
+ 6.9734372198581696e-02 -2.4516759812831879e-01
+ <_>
+
+ 0 -1 785 -7.9921782016754150e-03
+
+ -2.4069899320602417e-01 8.8012270629405975e-02
+ <_>
+
+ 0 -1 786 -6.4670671708881855e-03
+
+ 2.0819950103759766e-01 -6.9062210619449615e-02
+ <_>
+
+ 0 -1 787 -5.3345328196883202e-03
+
+ 3.2469388842582703e-01 -7.4058808386325836e-02
+ <_>
+
+ 0 -1 788 -6.7914440296590328e-03
+
+ -1.7014460265636444e-01 3.7378448992967606e-02
+ <_>
+
+ 0 -1 789 1.6337619721889496e-01
+
+ 1.9682100042700768e-02 -9.1652041673660278e-01
+ <_>
+
+ 0 -1 790 1.1759659647941589e-01
+
+ 8.8446342851966619e-04 -7.8050827980041504e-01
+ <_>
+
+ 0 -1 791 -1.1682280153036118e-01
+
+ -9.6009898185729980e-01 1.7070280387997627e-02
+ <_>
+
+ 0 -1 792 4.6899251639842987e-02
+
+ 4.7891899943351746e-02 -3.2044771313667297e-01
+ <_>
+
+ 0 -1 793 -4.0058898739516735e-03
+
+ 1.1414390057325363e-01 -1.5711469948291779e-01
+ <_>
+
+ 0 -1 794 -4.4986438297200948e-05
+
+ 2.9008099436759949e-01 -4.2413331568241119e-02
+ <_>
+
+ 0 -1 795 2.1421080455183983e-03
+
+ -3.3137580752372742e-01 5.3943689912557602e-02
+ <_>
+
+ 0 -1 796 -7.1408763527870178e-02
+
+ -8.8519471883773804e-01 9.3488330021500587e-03
+ <_>
+
+ 0 -1 797 -1.3733670115470886e-01
+
+ -8.3241897821426392e-01 1.7800329253077507e-02
+ <_>
+
+ 0 -1 798 6.1765720602124929e-04
+
+ -1.9419220089912415e-01 6.8034619092941284e-02
+ <_>
+
+ 0 -1 799 -6.7170798778533936e-02
+
+ -5.7243210077285767e-01 3.0333630740642548e-02
+ <_>
+
+ 0 -1 800 2.4611391127109528e-03
+
+ -1.0570179671049118e-01 1.8801900744438171e-01
+ <_>
+
+ 0 -1 801 5.0573959015309811e-03
+
+ -6.5921753644943237e-02 2.9868951439857483e-01
+ <_>
+
+ 0 -1 802 1.4213779941201210e-02
+
+ 6.3767880201339722e-02 -2.1217249333858490e-01
+ <_>
+
+ 0 -1 803 -2.0629619248211384e-03
+
+ -2.6714050769805908e-01 7.6817572116851807e-02
+ <_>
+
+ 0 -1 804 3.3787779510021210e-02
+
+ 2.1774150431156158e-02 -7.4938130378723145e-01
+ <_>
+
+ 0 -1 805 -2.7371870353817940e-02
+
+ 3.2008060812950134e-01 -5.9622511267662048e-02
+ <_>
+
+ 0 -1 806 2.8310349211096764e-02
+
+ 4.4150609523057938e-02 -4.4278699159622192e-01
+ <_>
+
+ 0 -1 807 3.7205279804766178e-03
+
+ -1.3136489689350128e-01 1.5447700023651123e-01
+ <_>
+
+ 0 -1 808 2.3320990148931742e-03
+
+ -1.0849229991436005e-01 2.2682890295982361e-01
+ <_>
+
+ 0 -1 809 7.6775359921157360e-03
+
+ 4.9520388245582581e-02 -3.8854768872261047e-01
+ <_>
+
+ 0 -1 810 -2.9863099916838109e-04
+
+ -1.9632560014724731e-01 8.3448931574821472e-02
+ <_>
+
+ 0 -1 811 6.1346050351858139e-03
+
+ 5.1433250308036804e-02 -3.0831611156463623e-01
+ <_>
+
+ 0 -1 812 3.1090779229998589e-02
+
+ 2.4180799722671509e-02 -6.0184460878372192e-01
+ <_>
+
+ 0 -1 813 2.9320400953292847e-01
+
+ 1.1811030097305775e-02 -9.6253931522369385e-01
+ <_>
+
+ 0 -1 814 -6.6321907797828317e-04
+
+ 1.0245270282030106e-01 -1.4200760424137115e-01
+ <_>
+
+ 0 -1 815 4.4736359268426895e-02
+
+ -1.1238799989223480e-01 1.7392039299011230e-01
+ <_>
+
+ 0 -1 816 -1.5153390355408192e-02
+
+ -1.6100360453128815e-01 3.1116949394345284e-02
+ <_>
+
+ 0 -1 817 -1.1029309825971723e-03
+
+ 1.2128510326147079e-01 -1.6182290017604828e-01
+ <_>
+
+ 0 -1 818 -2.8973959852010012e-03
+
+ 1.0827620327472687e-01 -5.3621310740709305e-02
+ <_>
+
+ 0 -1 819 -9.5785204321146011e-03
+
+ -1.6808320581912994e-01 8.5053622722625732e-02
+ <_>
+
+ 0 -1 820 9.9092386662960052e-02
+
+ -1.5469879843294621e-02 4.1138508915901184e-01
+ <_>
+
+ 0 -1 821 3.7229780107736588e-02
+
+ -5.2865970879793167e-02 3.1804299354553223e-01
+ <_>
+
+ 0 -1 822 -2.4716049432754517e-02
+
+ -4.0339410305023193e-01 2.9964840039610863e-02
+ <_>
+
+ 0 -1 823 -9.8965302109718323e-02
+
+ 5.8510482311248779e-01 -2.6924170553684235e-02
+ <_>
+
+ 0 -1 824 -9.6337851136922836e-03
+
+ -1.7467470467090607e-01 7.5126871466636658e-02
+ <_>
+
+ 0 -1 825 1.0483879595994949e-03
+
+ -1.3728469610214233e-01 1.0684580355882645e-01
+ <_>
+
+ 0 -1 826 4.2523849755525589e-02
+
+ 1.6578629612922668e-02 -5.6332737207412720e-01
+ <_>
+
+ 0 -1 827 -3.0866260640323162e-03
+
+ 7.5264893472194672e-02 -1.9476540386676788e-01
+ <_>
+
+ 0 -1 828 2.8643399477005005e-02
+
+ -6.7578136920928955e-02 2.5766220688819885e-01
+ <_>
+
+ 0 -1 829 -1.0627339594066143e-02
+
+ -2.2384619712829590e-01 7.2172448039054871e-02
+ <_>
+
+ 0 -1 830 4.6080970205366611e-03
+
+ 5.0876080989837646e-02 -1.4076329767704010e-01
+ <_>
+
+ 0 -1 831 2.9914160259068012e-03
+
+ -9.7337983548641205e-02 1.7665959894657135e-01
+ <_>
+
+ 0 -1 832 -7.7902628108859062e-03
+
+ -9.8008237779140472e-02 3.7403069436550140e-02
+ <_>
+
+ 0 -1 833 -6.1339238891378045e-04
+
+ 9.9036023020744324e-02 -1.6265949606895447e-01
+ <_>
+
+ 0 -1 834 -1.0234319604933262e-02
+
+ 2.3654979467391968e-01 -3.7817131727933884e-02
+ <_>
+
+ 0 -1 835 -1.1867409572005272e-02
+
+ -8.5035067796707153e-01 1.9063299521803856e-02
+ <_>
+
+ 0 -1 836 4.1437768377363682e-03
+
+ 8.7878346443176270e-02 -9.4404630362987518e-02
+ <_>
+
+ 0 -1 837 -5.1355729810893536e-03
+
+ -3.5699799656867981e-01 4.1546490043401718e-02
+ <_>
+
+ 0 -1 838 -1.5296200290322304e-03
+
+ 7.7694572508335114e-02 -4.3186578899621964e-02
+ <_>
+
+ 0 -1 839 -2.7581020258367062e-03
+
+ 1.9065889716148376e-01 -8.0679900944232941e-02
+ <_>
+
+ 0 -1 840 2.8375169634819031e-01
+
+ 6.2291761860251427e-03 -8.8578152656555176e-01
+ <_>
+
+ 0 -1 841 -2.4612499773502350e-01
+
+ -7.0548111200332642e-01 2.1798960864543915e-02
+ <_>
+
+ 0 -1 842 -3.9965631440281868e-03
+
+ -1.9710969924926758e-01 8.0300606787204742e-02
+ <_>
+
+ 0 -1 843 -8.4951231256127357e-03
+
+ 2.1296609938144684e-01 -8.2974627614021301e-02
+ <_>
+
+ 0 -1 844 4.7206480056047440e-02
+
+ 9.7466083243489265e-03 -7.0066297054290771e-01
+ <_>
+
+ 0 -1 845 3.7802560254931450e-03
+
+ 7.7478893101215363e-02 -2.3372000455856323e-01
+ <_>
+
+ 0 -1 846 4.4631671160459518e-02
+
+ -2.1464770659804344e-02 3.2136338949203491e-01
+ <_>
+
+ 0 -1 847 6.8157288478687406e-04
+
+ 1.2177070230245590e-01 -1.2063200026750565e-01
+ <_>
+
+ 0 -1 848 -6.9712452590465546e-02
+
+ -9.4828051328659058e-01 1.2017440050840378e-02
+ <_>
+
+ 0 -1 849 -4.8821792006492615e-03
+
+ -2.1774840354919434e-01 7.7113322913646698e-02
+ <_>
+
+ 0 -1 850 3.4387600608170033e-03
+
+ -1.8093569576740265e-01 9.3595556914806366e-02
+ <_>
+
+ 0 -1 851 -2.5215700268745422e-02
+
+ -5.5714958906173706e-01 2.7420820668339729e-02
+ <_>
+
+ 0 -1 852 7.4309771880507469e-03
+
+ -4.6630490571260452e-02 2.1024890244007111e-01
+ <_>
+
+ 0 -1 853 -1.5789959579706192e-02
+
+ -3.3443140983581543e-01 4.6291690319776535e-02
+ <_>
+
+ 0 -1 854 3.5080160014331341e-03
+
+ -6.4612612128257751e-02 2.2737669944763184e-01
+ <_>
+
+ 0 -1 855 4.4291261583566666e-02
+
+ 2.2642729803919792e-02 -7.0683121681213379e-01
+ <_>
+
+ 0 -1 856 1.9108189269900322e-02
+
+ -3.5893321037292480e-02 1.4613699913024902e-01
+ <_>
+ 99
+ -1.8724700212478638e+00
+
+ <_>
+
+ 0 -1 857 -1.6636669635772705e-02
+
+ 2.5966519117355347e-01 -4.1162249445915222e-01
+ <_>
+
+ 0 -1 858 2.9865810647606850e-02
+
+ -3.3182668685913086e-01 2.0545999705791473e-01
+ <_>
+
+ 0 -1 859 9.1892024502158165e-03
+
+ -3.4481799602508545e-01 1.8148690462112427e-01
+ <_>
+
+ 0 -1 860 2.8450509998947382e-03
+
+ -3.2904830574989319e-01 9.4392292201519012e-02
+ <_>
+
+ 0 -1 861 3.4257639199495316e-02
+
+ -3.2212799787521362e-01 1.7332050204277039e-01
+ <_>
+
+ 0 -1 862 3.4367710351943970e-02
+
+ -3.2593810558319092e-01 1.7473269999027252e-01
+ <_>
+
+ 0 -1 863 9.0881884098052979e-03
+
+ 1.0527010262012482e-01 -4.8131370544433594e-01
+ <_>
+
+ 0 -1 864 -5.0939731299877167e-03
+
+ 1.7374989390373230e-01 -2.7883121371269226e-01
+ <_>
+
+ 0 -1 865 1.1773620499297976e-03
+
+ -4.2217200994491577e-01 1.0231760144233704e-01
+ <_>
+
+ 0 -1 866 3.6797609180212021e-02
+
+ 1.1229369789361954e-01 -3.8409191370010376e-01
+ <_>
+
+ 0 -1 867 -7.2484882548451424e-04
+
+ -4.4795128703117371e-01 8.5079587996006012e-02
+ <_>
+
+ 0 -1 868 1.2603210285305977e-02
+
+ 6.0475040227174759e-02 -3.5327509045600891e-01
+ <_>
+
+ 0 -1 869 5.1925552543252707e-04
+
+ -3.1916388869285583e-01 1.1903370171785355e-01
+ <_>
+
+ 0 -1 870 -1.3244180008769035e-02
+
+ 2.1975730359554291e-01 -9.5025591552257538e-02
+ <_>
+
+ 0 -1 871 -2.7882310096174479e-03
+
+ -2.7294808626174927e-01 1.2419769912958145e-01
+ <_>
+
+ 0 -1 872 2.6591470465064049e-02
+
+ 6.0452010482549667e-02 -3.9637029170989990e-01
+ <_>
+
+ 0 -1 873 1.2505210004746914e-02
+
+ 7.8631103038787842e-02 -4.0303888916969299e-01
+ <_>
+
+ 0 -1 874 -1.3857340440154076e-02
+
+ 2.5759750604629517e-01 -1.0351459681987762e-01
+ <_>
+
+ 0 -1 875 7.2099752724170685e-02
+
+ -5.5193781852722168e-01 6.0020800679922104e-02
+ <_>
+
+ 0 -1 876 -9.8338630050420761e-04
+
+ -3.1915199756622314e-01 8.7977647781372070e-02
+ <_>
+
+ 0 -1 877 -5.8390170335769653e-02
+
+ -5.5988979339599609e-01 5.2990190684795380e-02
+ <_>
+
+ 0 -1 878 4.2504342272877693e-03
+
+ -2.8897258639335632e-01 9.2816516757011414e-02
+ <_>
+
+ 0 -1 879 -3.2332520931959152e-02
+
+ -4.8713520169258118e-01 6.0787629336118698e-02
+ <_>
+
+ 0 -1 880 4.7365639358758926e-02
+
+ -1.0111550241708755e-01 3.2597780227661133e-01
+ <_>
+
+ 0 -1 881 -3.8943330291658640e-03
+
+ 1.9173160195350647e-01 -1.6729380190372467e-01
+ <_>
+
+ 0 -1 882 5.7729199528694153e-02
+
+ 3.6343291401863098e-02 -7.3161131143569946e-01
+ <_>
+
+ 0 -1 883 -1.8925540149211884e-02
+
+ 3.2471498847007751e-01 -8.6188063025474548e-02
+ <_>
+
+ 0 -1 884 -3.9679601788520813e-02
+
+ -4.1826680302619934e-01 5.3354211151599884e-02
+ <_>
+
+ 0 -1 885 -2.0733650773763657e-02
+
+ -4.1205188632011414e-01 6.3596852123737335e-02
+ <_>
+
+ 0 -1 886 1.5387910604476929e-01
+
+ 1.9954150542616844e-02 -5.7643288373947144e-01
+ <_>
+
+ 0 -1 887 1.2131260335445404e-01
+
+ 4.4516459107398987e-02 -5.9093242883682251e-01
+ <_>
+
+ 0 -1 888 2.7478559786686674e-05
+
+ -4.0688499808311462e-01 5.2828099578619003e-02
+ <_>
+
+ 0 -1 889 8.8893681764602661e-02
+
+ 5.1985241472721100e-02 -5.0228989124298096e-01
+ <_>
+
+ 0 -1 890 2.8169099241495132e-03
+
+ 6.7726433277130127e-02 -1.3582049310207367e-01
+ <_>
+
+ 0 -1 891 -1.7215269326698035e-04
+
+ 8.9616917073726654e-02 -2.9589369893074036e-01
+ <_>
+
+ 0 -1 892 -3.1830620020627975e-02
+
+ -5.6433600187301636e-01 2.2822249680757523e-02
+ <_>
+
+ 0 -1 893 -6.3334330916404724e-02
+
+ -8.2371699810028076e-01 2.7576120570302010e-02
+ <_>
+
+ 0 -1 894 -6.9032818078994751e-02
+
+ -6.9788217544555664e-01 3.3770920708775520e-03
+ <_>
+
+ 0 -1 895 2.1021519787609577e-03
+
+ -2.7244049310684204e-01 8.6922891438007355e-02
+ <_>
+
+ 0 -1 896 3.4065779298543930e-02
+
+ 1.7670579254627228e-02 -4.3001320958137512e-01
+ <_>
+
+ 0 -1 897 8.1215314567089081e-03
+
+ -1.5942670404911041e-01 1.6256070137023926e-01
+ <_>
+
+ 0 -1 898 -1.6329119680449367e-03
+
+ 4.2009588330984116e-02 -3.2923451066017151e-01
+ <_>
+
+ 0 -1 899 -3.9110329002141953e-02
+
+ -6.0666251182556152e-01 4.1248850524425507e-02
+ <_>
+
+ 0 -1 900 -2.3188870400190353e-02
+
+ -5.5365419387817383e-01 1.7315510660409927e-02
+ <_>
+
+ 0 -1 901 -6.2944158911705017e-02
+
+ -5.3853708505630493e-01 4.1758351027965546e-02
+ <_>
+
+ 0 -1 902 -8.5414372384548187e-02
+
+ -9.3122452497482300e-01 -9.1123272432014346e-04
+ <_>
+
+ 0 -1 903 -4.1963338851928711e-02
+
+ -5.6720697879791260e-01 3.9175700396299362e-02
+ <_>
+
+ 0 -1 904 1.1165619827806950e-02
+
+ -6.7815810441970825e-02 2.9003840684890747e-01
+ <_>
+
+ 0 -1 905 -1.3730769976973534e-02
+
+ 3.2328099012374878e-01 -1.0592839866876602e-01
+ <_>
+
+ 0 -1 906 -7.5793050229549408e-02
+
+ 5.5545729398727417e-01 -3.2934208866208792e-03
+ <_>
+
+ 0 -1 907 2.7008100878447294e-03
+
+ 1.5311180055141449e-01 -1.6604180634021759e-01
+ <_>
+
+ 0 -1 908 1.0164660401642323e-02
+
+ 7.6404631137847900e-02 -2.8745749592781067e-01
+ <_>
+
+ 0 -1 909 -5.9808149933815002e-02
+
+ -7.3486739397048950e-01 3.0370820313692093e-02
+ <_>
+
+ 0 -1 910 9.6447616815567017e-02
+
+ 2.6198839768767357e-02 -6.6001427173614502e-01
+ <_>
+
+ 0 -1 911 3.2350219786167145e-02
+
+ 4.1407719254493713e-02 -4.7442498803138733e-01
+ <_>
+
+ 0 -1 912 2.3717279732227325e-01
+
+ -9.5941081643104553e-02 2.4070499837398529e-01
+ <_>
+
+ 0 -1 913 -4.0942471474409103e-02
+
+ -4.0582120418548584e-01 6.4327560365200043e-02
+ <_>
+
+ 0 -1 914 -3.4409161657094955e-02
+
+ -7.4849551916122437e-01 2.2520760074257851e-02
+ <_>
+
+ 0 -1 915 1.3847379386425018e-01
+
+ 2.8472309932112694e-02 -7.0612120628356934e-01
+ <_>
+
+ 0 -1 916 4.6567160636186600e-02
+
+ -4.1168119758367538e-02 6.9962567090988159e-01
+ <_>
+
+ 0 -1 917 -3.0492639169096947e-02
+
+ -6.5116977691650391e-01 3.9995279163122177e-02
+ <_>
+
+ 0 -1 918 8.6345896124839783e-03
+
+ -1.1207970231771469e-01 7.7241696417331696e-02
+ <_>
+
+ 0 -1 919 3.1845968216657639e-02
+
+ -1.1552079766988754e-01 1.7539389431476593e-01
+ <_>
+
+ 0 -1 920 1.7124590277671814e-01
+
+ 5.0687979906797409e-02 -4.7042238712310791e-01
+ <_>
+
+ 0 -1 921 5.2879499271512032e-03
+
+ 6.5041497349739075e-02 -2.8894019126892090e-01
+ <_>
+
+ 0 -1 922 1.0060779750347137e-02
+
+ 6.3689216971397400e-02 -2.6081889867782593e-01
+ <_>
+
+ 0 -1 923 3.3330768346786499e-02
+
+ 3.4809298813343048e-02 -5.7845467329025269e-01
+ <_>
+
+ 0 -1 924 -5.2802279591560364e-02
+
+ -6.8521040678024292e-01 1.7583779990673065e-02
+ <_>
+
+ 0 -1 925 -1.5452199615538120e-02
+
+ 3.1395891308784485e-01 -7.7611543238162994e-02
+ <_>
+
+ 0 -1 926 -6.5528601408004761e-04
+
+ 5.6181360036134720e-02 -1.5184390544891357e-01
+ <_>
+
+ 0 -1 927 3.7062149494886398e-02
+
+ 2.8928549960255623e-02 -7.0487600564956665e-01
+ <_>
+
+ 0 -1 928 -5.7728089392185211e-02
+
+ -4.3192410469055176e-01 9.2153800651431084e-03
+ <_>
+
+ 0 -1 929 -2.2813139948993921e-03
+
+ 1.0200300067663193e-01 -2.1657040715217590e-01
+ <_>
+
+ 0 -1 930 2.6513230055570602e-02
+
+ -8.3650946617126465e-02 3.0740359425544739e-01
+ <_>
+
+ 0 -1 931 7.3622196912765503e-02
+
+ 3.0683049932122231e-02 -7.1910232305526733e-01
+ <_>
+
+ 0 -1 932 -1.3022350147366524e-02
+
+ -3.6386561393737793e-01 2.5367209687829018e-02
+ <_>
+
+ 0 -1 933 -1.3319820165634155e-02
+
+ -5.1884061098098755e-01 3.5935029387474060e-02
+ <_>
+
+ 0 -1 934 2.3190369829535484e-03
+
+ -6.1515200883150101e-02 7.1100451052188873e-02
+ <_>
+
+ 0 -1 935 -2.1372830495238304e-02
+
+ -5.0247579813003540e-01 3.9844810962677002e-02
+ <_>
+
+ 0 -1 936 2.4474589154124260e-02
+
+ -4.7960858792066574e-02 2.6931110024452209e-01
+ <_>
+
+ 0 -1 937 -1.0679869912564754e-02
+
+ 3.1474280357360840e-01 -8.4758952260017395e-02
+ <_>
+
+ 0 -1 938 4.8961799591779709e-02
+
+ 2.7358099818229675e-02 -3.8229361176490784e-01
+ <_>
+
+ 0 -1 939 3.2376348972320557e-02
+
+ -4.7090999782085419e-02 4.5985230803489685e-01
+ <_>
+
+ 0 -1 940 -1.0995220392942429e-02
+
+ -1.8544240295886993e-01 3.6006979644298553e-02
+ <_>
+
+ 0 -1 941 1.7626030743122101e-01
+
+ 2.4375159293413162e-02 -7.7686601877212524e-01
+ <_>
+
+ 0 -1 942 7.9778492450714111e-02
+
+ 3.3787339925765991e-03 -7.2928887605667114e-01
+ <_>
+
+ 0 -1 943 -1.1329210363328457e-02
+
+ -4.6397671103477478e-01 3.9380829781293869e-02
+ <_>
+
+ 0 -1 944 6.3431300222873688e-02
+
+ -9.7074061632156372e-02 1.0118869692087173e-01
+ <_>
+
+ 0 -1 945 -1.2691849842667580e-02
+
+ 2.8142300248146057e-01 -7.2105713188648224e-02
+ <_>
+
+ 0 -1 946 -7.8238412737846375e-02
+
+ 5.7400637865066528e-01 -1.8400549888610840e-02
+ <_>
+
+ 0 -1 947 3.9532519876956940e-02
+
+ 4.3154988437891006e-02 -5.2327841520309448e-01
+ <_>
+
+ 0 -1 948 1.5355779789388180e-02
+
+ -4.7316178679466248e-02 4.6925771236419678e-01
+ <_>
+
+ 0 -1 949 -6.4018620178103447e-03
+
+ 1.3297230005264282e-01 -1.4365619421005249e-01
+ <_>
+
+ 0 -1 950 -1.0567340254783630e-01
+
+ 2.0206320285797119e-01 -1.4406460337340832e-02
+ <_>
+
+ 0 -1 951 2.8163839131593704e-02
+
+ 7.1180991828441620e-02 -3.1034231185913086e-01
+ <_>
+
+ 0 -1 952 1.1702980101108551e-01
+
+ 1.1619930155575275e-02 -7.1530961990356445e-01
+ <_>
+
+ 0 -1 953 -3.8921568542718887e-02
+
+ 2.4412679672241211e-01 -8.2244850695133209e-02
+ <_>
+
+ 0 -1 954 -2.8435489162802696e-02
+
+ -3.6785170435905457e-01 3.8488820195198059e-02
+ <_>
+
+ 0 -1 955 -3.6393549293279648e-02
+
+ 5.2206730842590332e-01 -4.7079380601644516e-02
+ <_>
+ 139
+ -1.7121059894561768e+00
+
+ <_>
+
+ 0 -1 956 -2.1428510546684265e-02
+
+ 1.9014079868793488e-01 -5.0612741708755493e-01
+ <_>
+
+ 0 -1 957 2.0596129819750786e-02
+
+ -2.9283228516578674e-01 2.4655179679393768e-01
+ <_>
+
+ 0 -1 958 2.7893469668924809e-03
+
+ 1.1085920035839081e-01 -4.6909829974174500e-01
+ <_>
+
+ 0 -1 959 4.4722640886902809e-03
+
+ -2.8250780701637268e-01 1.4564670622348785e-01
+ <_>
+
+ 0 -1 960 -1.0463190264999866e-03
+
+ -2.6603269577026367e-01 1.2815919518470764e-01
+ <_>
+
+ 0 -1 961 1.5831940108910203e-03
+
+ -6.3467299938201904e-01 7.1003831923007965e-02
+ <_>
+
+ 0 -1 962 -7.3153319135599304e-06
+
+ 1.0248930007219315e-01 -3.4815961122512817e-01
+ <_>
+
+ 0 -1 963 5.4208859801292419e-03
+
+ 5.9830531477928162e-02 -3.1387779116630554e-01
+ <_>
+
+ 0 -1 964 1.2645759852603078e-03
+
+ -2.2709150612354279e-01 1.3160009682178497e-01
+ <_>
+
+ 0 -1 965 3.0235300073400140e-05
+
+ -2.6413309574127197e-01 2.8918080031871796e-02
+ <_>
+
+ 0 -1 966 1.5345469582825899e-03
+
+ -4.0711951255798340e-01 6.9787837564945221e-02
+ <_>
+
+ 0 -1 967 6.8222070112824440e-03
+
+ -1.5069720149040222e-01 2.1888419985771179e-01
+ <_>
+
+ 0 -1 968 -9.8558319732546806e-03
+
+ -3.5441368818283081e-01 8.6026392877101898e-02
+ <_>
+
+ 0 -1 969 -2.9890429228544235e-02
+
+ 2.2117440402507782e-01 -2.8611009940505028e-02
+ <_>
+
+ 0 -1 970 -2.6285760104656219e-03
+
+ 9.8204180598258972e-02 -2.7149739861488342e-01
+ <_>
+
+ 0 -1 971 3.2039839425124228e-04
+
+ -9.8540462553501129e-02 1.8785539269447327e-01
+ <_>
+
+ 0 -1 972 1.1079469695687294e-03
+
+ 6.4034536480903625e-02 -4.3082669377326965e-01
+ <_>
+
+ 0 -1 973 -9.1538369655609131e-02
+
+ -5.2440929412841797e-01 1.2250489555299282e-02
+ <_>
+
+ 0 -1 974 4.3205898255109787e-02
+
+ 9.6655867993831635e-02 -2.6809310913085938e-01
+ <_>
+
+ 0 -1 975 9.1920839622616768e-04
+
+ -1.3260160386562347e-01 1.2358319759368896e-01
+ <_>
+
+ 0 -1 976 8.9521165937185287e-03
+
+ 8.6445420980453491e-02 -2.3219430446624756e-01
+ <_>
+
+ 0 -1 977 5.6190020404756069e-03
+
+ -6.0304049402475357e-02 1.5070669353008270e-01
+ <_>
+
+ 0 -1 978 3.7380240391939878e-03
+
+ -1.8652540445327759e-01 1.3011780381202698e-01
+ <_>
+
+ 0 -1 979 -4.4416960328817368e-02
+
+ 1.9036759436130524e-01 -1.7527159303426743e-02
+ <_>
+
+ 0 -1 980 1.9832739606499672e-02
+
+ -5.3527630865573883e-02 4.0238130092620850e-01
+ <_>
+
+ 0 -1 981 1.2155610136687756e-02
+
+ 9.1288566589355469e-02 -2.6862761378288269e-01
+ <_>
+
+ 0 -1 982 5.0532341003417969e-02
+
+ 3.1295180320739746e-02 -6.2836539745330811e-01
+ <_>
+
+ 0 -1 983 -1.7635909607633948e-03
+
+ 5.6185219436883926e-02 -2.1861009299755096e-01
+ <_>
+
+ 0 -1 984 4.9412921071052551e-03
+
+ 5.5915899574756622e-02 -3.5954388976097107e-01
+ <_>
+
+ 0 -1 985 -1.1536119878292084e-01
+
+ -5.3168737888336182e-01 7.9654296860098839e-03
+ <_>
+
+ 0 -1 986 -2.0473708864301443e-03
+
+ 7.9633012413978577e-02 -2.5389900803565979e-01
+ <_>
+
+ 0 -1 987 4.7814860008656979e-03
+
+ -9.4149880111217499e-02 1.1631009727716446e-01
+ <_>
+
+ 0 -1 988 2.1274939179420471e-02
+
+ -4.7486610710620880e-02 3.7564519047737122e-01
+ <_>
+
+ 0 -1 989 5.1177050918340683e-03
+
+ 7.4936643242835999e-02 -2.6105350255966187e-01
+ <_>
+
+ 0 -1 990 -1.3952000066637993e-02
+
+ 2.3960170149803162e-01 -9.6836768090724945e-02
+ <_>
+
+ 0 -1 991 -1.3828179799020290e-02
+
+ -3.9605268836021423e-01 5.8639749884605408e-02
+ <_>
+
+ 0 -1 992 -4.7117020934820175e-02
+
+ -5.5717539787292480e-01 3.1678650528192520e-02
+ <_>
+
+ 0 -1 993 1.0515590198338032e-02
+
+ -4.3930530548095703e-02 8.5277959704399109e-02
+ <_>
+
+ 0 -1 994 4.0591089054942131e-03
+
+ -1.0774219781160355e-01 1.6283099353313446e-01
+ <_>
+
+ 0 -1 995 -3.0376210808753967e-02
+
+ 2.0997379720211029e-01 -9.9417790770530701e-02
+ <_>
+
+ 0 -1 996 -6.6932791378349066e-04
+
+ -3.4863340854644775e-01 5.9148021042346954e-02
+ <_>
+
+ 0 -1 997 -1.4665089547634125e-02
+
+ -4.3786540627479553e-01 2.8008179739117622e-02
+ <_>
+
+ 0 -1 998 -3.5847770050168037e-03
+
+ 9.6611537039279938e-02 -1.7948310077190399e-01
+ <_>
+
+ 0 -1 999 -5.5043050087988377e-03
+
+ -3.3546659350395203e-01 7.5057849287986755e-02
+ <_>
+
+ 0 -1 1000 1.0141800157725811e-03
+
+ -1.8602859973907471e-01 8.6880050599575043e-02
+ <_>
+
+ 0 -1 1001 1.4642399735748768e-02
+
+ 2.6652090251445770e-02 -2.6002681255340576e-01
+ <_>
+
+ 0 -1 1002 -5.8538499288260937e-03
+
+ -1.4993189275264740e-01 1.2684640288352966e-01
+ <_>
+
+ 0 -1 1003 -5.3472168743610382e-02
+
+ 5.2131122350692749e-01 -2.0375749096274376e-02
+ <_>
+
+ 0 -1 1004 -7.6695926487445831e-02
+
+ 4.5817071199417114e-01 -3.4876950085163116e-02
+ <_>
+
+ 0 -1 1005 -5.9094227617606521e-04
+
+ 1.1570499837398529e-01 -1.2966969609260559e-01
+ <_>
+
+ 0 -1 1006 -4.3543361127376556e-02
+
+ -8.2132732868194580e-01 2.0535599440336227e-02
+ <_>
+
+ 0 -1 1007 5.0691701471805573e-02
+
+ -3.6280639469623566e-02 4.0212449431419373e-01
+ <_>
+
+ 0 -1 1008 1.3124669902026653e-02
+
+ -8.3614267408847809e-02 2.0441520214080811e-01
+ <_>
+
+ 0 -1 1009 3.5445049405097961e-01
+
+ 1.4580509625375271e-02 -5.6883698701858521e-01
+ <_>
+
+ 0 -1 1010 -2.1929910406470299e-02
+
+ 1.6368280351161957e-01 -1.0018540173768997e-01
+ <_>
+
+ 0 -1 1011 3.8168739527463913e-02
+
+ 3.5331390798091888e-02 -5.3782612085342407e-01
+ <_>
+
+ 0 -1 1012 6.3126571476459503e-03
+
+ 5.6145761162042618e-02 -2.8158029913902283e-01
+ <_>
+
+ 0 -1 1013 -4.3002668768167496e-02
+
+ -6.4804542064666748e-01 1.7478020861744881e-02
+ <_>
+
+ 0 -1 1014 2.4681850336492062e-03
+
+ -1.1719709634780884e-01 1.3693059980869293e-01
+ <_>
+
+ 0 -1 1015 4.5261289924383163e-02
+
+ 1.5927750617265701e-02 -7.1915590763092041e-01
+ <_>
+
+ 0 -1 1016 -4.2067110538482666e-02
+
+ -6.4201879501342773e-01 2.0196499302983284e-02
+ <_>
+
+ 0 -1 1017 3.9601750904694200e-04
+
+ -3.1774568557739258e-01 7.6843477785587311e-02
+ <_>
+
+ 0 -1 1018 -1.2469319626688957e-02
+
+ 1.9531419873237610e-01 -7.8799232840538025e-02
+ <_>
+
+ 0 -1 1019 7.9188523814082146e-03
+
+ 5.6721080094575882e-02 -2.6906439661979675e-01
+ <_>
+
+ 0 -1 1020 -6.2929331324994564e-03
+
+ 1.5688340365886688e-01 -9.9287010729312897e-02
+ <_>
+
+ 0 -1 1021 2.2974120453000069e-02
+
+ -6.6930226981639862e-02 2.4427099525928497e-01
+ <_>
+
+ 0 -1 1022 -9.1710267588496208e-03
+
+ -2.9078531265258789e-01 5.9312019497156143e-02
+ <_>
+
+ 0 -1 1023 -9.5892272889614105e-02
+
+ -6.3700878620147705e-01 1.3278760015964508e-02
+ <_>
+
+ 0 -1 1024 5.6696119718253613e-03
+
+ 5.6131001561880112e-02 -2.9535120725631714e-01
+ <_>
+
+ 0 -1 1025 -1.3495329767465591e-02
+
+ 2.0205779373645782e-01 -6.3128583133220673e-02
+ <_>
+
+ 0 -1 1026 1.6108239069581032e-02
+
+ 4.5092061161994934e-02 -3.6163818836212158e-01
+ <_>
+
+ 0 -1 1027 1.1768710101023316e-03
+
+ -1.9879919290542603e-01 1.3078540563583374e-01
+ <_>
+
+ 0 -1 1028 1.4128970215097070e-03
+
+ -2.0856089890003204e-01 8.1473708152770996e-02
+ <_>
+
+ 0 -1 1029 -4.3028060346841812e-02
+
+ -2.8687548637390137e-01 2.9704660177230835e-02
+ <_>
+
+ 0 -1 1030 -1.0961409658193588e-02
+
+ 4.8846191167831421e-01 -3.5002779215574265e-02
+ <_>
+
+ 0 -1 1031 -4.5575079275295138e-04
+
+ 1.0644569993019104e-01 -1.0506340116262436e-01
+ <_>
+
+ 0 -1 1032 -5.0013329833745956e-02
+
+ -8.2039457559585571e-01 1.8604470416903496e-02
+ <_>
+
+ 0 -1 1033 -4.6841200441122055e-02
+
+ -8.6972111463546753e-01 3.9388639852404594e-03
+ <_>
+
+ 0 -1 1034 -8.0362131120637059e-04
+
+ 1.4196899533271790e-01 -1.2184119969606400e-01
+ <_>
+
+ 0 -1 1035 1.9802400842308998e-02
+
+ 4.0857948362827301e-02 -3.6116421222686768e-01
+ <_>
+
+ 0 -1 1036 2.1874029189348221e-02
+
+ -5.8230601251125336e-02 2.4490930140018463e-01
+ <_>
+
+ 0 -1 1037 3.2371848821640015e-02
+
+ 2.6172259822487831e-02 -4.0803569555282593e-01
+ <_>
+
+ 0 -1 1038 -7.0319771766662598e-03
+
+ -2.5175130367279053e-01 6.0090810060501099e-02
+ <_>
+
+ 0 -1 1039 2.6019799988716841e-03
+
+ -7.0827886462211609e-02 2.0735129714012146e-01
+ <_>
+
+ 0 -1 1040 -3.1531439162790775e-03
+
+ 1.7268289625644684e-01 -1.1326900124549866e-01
+ <_>
+
+ 0 -1 1041 5.8357551693916321e-02
+
+ 1.4668770134449005e-02 -9.2907238006591797e-01
+ <_>
+
+ 0 -1 1042 3.6941959988325834e-03
+
+ 6.6812008619308472e-02 -2.0454549789428711e-01
+ <_>
+
+ 0 -1 1043 1.8183739855885506e-02
+
+ -3.5921659320592880e-02 2.3765130341053009e-01
+ <_>
+
+ 0 -1 1044 -4.4514648616313934e-03
+
+ -1.8156670033931732e-01 8.0072969198226929e-02
+ <_>
+
+ 0 -1 1045 3.5554010421037674e-02
+
+ 1.1413309723138809e-02 -3.9503180980682373e-01
+ <_>
+
+ 0 -1 1046 1.6067499294877052e-02
+
+ -4.9147009849548340e-02 3.0306708812713623e-01
+ <_>
+
+ 0 -1 1047 3.6372188478708267e-02
+
+ 2.3675160482525826e-02 -6.8069261312484741e-01
+ <_>
+
+ 0 -1 1048 -7.4834008701145649e-03
+
+ 2.4146680533885956e-01 -5.8301728218793869e-02
+ <_>
+
+ 0 -1 1049 -7.2762509807944298e-03
+
+ -2.2373069822788239e-01 5.0284590572118759e-02
+ <_>
+
+ 0 -1 1050 -4.7946218401193619e-03
+
+ -2.1922710537910461e-01 6.6698201000690460e-02
+ <_>
+
+ 0 -1 1051 -1.3066439889371395e-02
+
+ 2.2604539990425110e-01 -3.7037428468465805e-02
+ <_>
+
+ 0 -1 1052 2.3257338907569647e-03
+
+ -8.1509239971637726e-02 2.3270750045776367e-01
+ <_>
+
+ 0 -1 1053 -1.1436239816248417e-02
+
+ 6.7732691764831543e-02 -3.3069651573896408e-02
+ <_>
+
+ 0 -1 1054 6.7957569845020771e-03
+
+ 9.3188859522342682e-02 -1.8542419373989105e-01
+ <_>
+
+ 0 -1 1055 -5.2705928683280945e-02
+
+ 4.0707829594612122e-01 -2.5846559554338455e-02
+ <_>
+
+ 0 -1 1056 1.2774269282817841e-01
+
+ 1.7207339406013489e-02 -8.8952672481536865e-01
+ <_>
+
+ 0 -1 1057 -2.7999880909919739e-01
+
+ -9.1963422298431396e-01 2.5054879370145500e-04
+ <_>
+
+ 0 -1 1058 1.2669020332396030e-02
+
+ -7.3152393102645874e-02 2.0872280001640320e-01
+ <_>
+
+ 0 -1 1059 -1.5894599258899689e-02
+
+ 1.1266420036554337e-01 -4.0140561759471893e-02
+ <_>
+
+ 0 -1 1060 5.3938169032335281e-02
+
+ 3.0137389898300171e-02 -5.0454300642013550e-01
+ <_>
+
+ 0 -1 1061 7.3805922875180840e-04
+
+ -3.5923779010772705e-01 3.3418480306863785e-02
+ <_>
+
+ 0 -1 1062 4.7065159305930138e-03
+
+ 4.4195190072059631e-01 -3.9396088570356369e-02
+ <_>
+
+ 0 -1 1063 3.0945870094001293e-03
+
+ -7.1224376559257507e-02 1.2306260317564011e-01
+ <_>
+
+ 0 -1 1064 -3.2640039920806885e-02
+
+ -4.4644719362258911e-01 3.4509830176830292e-02
+ <_>
+
+ 0 -1 1065 -7.8390557318925858e-03
+
+ -9.9895596504211426e-02 3.3491879701614380e-02
+ <_>
+
+ 0 -1 1066 7.6504289172589779e-03
+
+ 5.5107340216636658e-02 -2.4002109467983246e-01
+ <_>
+
+ 0 -1 1067 3.8153179921209812e-03
+
+ -5.7143520563840866e-02 1.7120680212974548e-01
+ <_>
+
+ 0 -1 1068 1.4295349828898907e-02
+
+ -5.5747661739587784e-02 2.6719009876251221e-01
+ <_>
+
+ 0 -1 1069 -1.8241480574943125e-04
+
+ 4.7362379729747772e-02 -2.1473219990730286e-01
+ <_>
+
+ 0 -1 1070 -3.1916480511426926e-02
+
+ -1.4398300647735596e-01 9.2526309192180634e-02
+ <_>
+
+ 0 -1 1071 -7.6755490154027939e-03
+
+ 1.2513080239295959e-01 -5.2855581045150757e-02
+ <_>
+
+ 0 -1 1072 1.4152109622955322e-02
+
+ -5.8198999613523483e-02 2.4444380402565002e-01
+ <_>
+
+ 0 -1 1073 -1.6701059415936470e-02
+
+ -3.0269339680671692e-01 2.5713469833135605e-02
+ <_>
+
+ 0 -1 1074 3.5869849380105734e-03
+
+ -1.1999790370464325e-01 1.2468840181827545e-01
+ <_>
+
+ 0 -1 1075 3.7683059927076101e-03
+
+ 5.0271350890398026e-02 -2.0477029681205750e-01
+ <_>
+
+ 0 -1 1076 9.9043175578117371e-04
+
+ -8.5413850843906403e-02 1.6316239535808563e-01
+ <_>
+
+ 0 -1 1077 9.3151312321424484e-03
+
+ 9.4177378341555595e-03 -3.5209101438522339e-01
+ <_>
+
+ 0 -1 1078 -1.5002860163804144e-04
+
+ 8.3480976521968842e-02 -1.7047779262065887e-01
+ <_>
+
+ 0 -1 1079 8.7790598627179861e-04
+
+ -1.1054719984531403e-01 1.1750820279121399e-01
+ <_>
+
+ 0 -1 1080 -3.7630271166563034e-02
+
+ 5.0325840711593628e-01 -2.6165060698986053e-02
+ <_>
+
+ 0 -1 1081 5.6488867849111557e-03
+
+ 7.4713237583637238e-02 -1.4058519899845123e-01
+ <_>
+
+ 0 -1 1082 -1.4621330192312598e-03
+
+ 6.7465327680110931e-02 -2.0143230259418488e-01
+ <_>
+
+ 0 -1 1083 5.3189881145954132e-03
+
+ -3.5997938364744186e-02 3.7376481294631958e-01
+ <_>
+
+ 0 -1 1084 2.1019520238041878e-02
+
+ 2.7063809335231781e-02 -5.0199657678604126e-01
+ <_>
+
+ 0 -1 1085 -1.1328969895839691e-01
+
+ -7.4395442008972168e-01 1.3778089545667171e-02
+ <_>
+
+ 0 -1 1086 -6.1144838109612465e-03
+
+ 1.4044840633869171e-01 -8.7939672172069550e-02
+ <_>
+
+ 0 -1 1087 -7.7648349106311798e-03
+
+ -1.4341640472412109e-01 4.3061099946498871e-02
+ <_>
+
+ 0 -1 1088 -9.1335996985435486e-02
+
+ -6.3246071338653564e-01 2.0902950316667557e-02
+ <_>
+
+ 0 -1 1089 -1.6339610517024994e-01
+
+ -7.7071088552474976e-01 1.3627690263092518e-02
+ <_>
+
+ 0 -1 1090 5.3004521131515503e-01
+
+ 1.2292830273509026e-02 -7.9708522558212280e-01
+ <_>
+
+ 0 -1 1091 -3.0609068926423788e-03
+
+ 5.7478528469800949e-02 -8.8626816868782043e-02
+ <_>
+
+ 0 -1 1092 1.3204859569668770e-03
+
+ -1.0473939776420593e-01 1.2416320294141769e-01
+ <_>
+
+ 0 -1 1093 -6.6045127809047699e-02
+
+ -7.0403701066970825e-01 7.2672651149332523e-03
+ <_>
+
+ 0 -1 1094 5.2080051973462105e-03
+
+ 7.3289416730403900e-02 -1.6105780005455017e-01
+ <_>
+ 106
+ -1.8098859786987305e+00
+
+ <_>
+
+ 0 -1 1095 -2.4040700867772102e-02
+
+ 2.4318559467792511e-01 -3.8189288973808289e-01
+ <_>
+
+ 0 -1 1096 2.6374191045761108e-01
+
+ -2.5091141462326050e-01 2.7231940627098083e-01
+ <_>
+
+ 0 -1 1097 3.3161949831992388e-03
+
+ -2.8115370869636536e-01 2.2977580130100250e-01
+ <_>
+
+ 0 -1 1098 2.5751669891178608e-03
+
+ -6.4815878868103027e-01 8.3049327135086060e-02
+ <_>
+
+ 0 -1 1099 1.2843149714171886e-02
+
+ -5.4388070106506348e-01 8.6304552853107452e-02
+ <_>
+
+ 0 -1 1100 1.3005360029637814e-02
+
+ -2.6411589980125427e-01 2.2107879817485809e-01
+ <_>
+
+ 0 -1 1101 2.6304060593247414e-02
+
+ -2.2276160120964050e-01 2.2458629310131073e-01
+ <_>
+
+ 0 -1 1102 -6.8887993693351746e-02
+
+ 4.4677790999412537e-01 -1.8398750573396683e-02
+ <_>
+
+ 0 -1 1103 1.5864400193095207e-02
+
+ -3.3532321453094482e-01 1.6380620002746582e-01
+ <_>
+
+ 0 -1 1104 -7.1481592021882534e-03
+
+ -3.5999459028244019e-01 1.0679650306701660e-01
+ <_>
+
+ 0 -1 1105 -1.2002130039036274e-02
+
+ -3.7498581409454346e-01 9.6759349107742310e-02
+ <_>
+
+ 0 -1 1106 -2.6663220487535000e-03
+
+ -3.8941639661788940e-01 5.9776391834020615e-02
+ <_>
+
+ 0 -1 1107 5.2618351764976978e-04
+
+ -3.0557510256767273e-01 1.0778070241212845e-01
+ <_>
+
+ 0 -1 1108 -4.0705721825361252e-02
+
+ -5.8572947978973389e-01 4.0660858154296875e-02
+ <_>
+
+ 0 -1 1109 -8.7929163128137589e-03
+
+ 2.3699410259723663e-01 -1.3827539980411530e-01
+ <_>
+
+ 0 -1 1110 -2.2475840523838997e-03
+
+ -3.5475319623947144e-01 8.9079782366752625e-02
+ <_>
+
+ 0 -1 1111 5.8501982130110264e-03
+
+ 9.1695636510848999e-02 -3.3329799771308899e-01
+ <_>
+
+ 0 -1 1112 -3.9623910561203957e-03
+
+ -1.9845740497112274e-01 1.2363869696855545e-01
+ <_>
+
+ 0 -1 1113 -1.7685770289972425e-03
+
+ 7.3684811592102051e-02 -4.5862528681755066e-01
+ <_>
+
+ 0 -1 1114 6.3303880393505096e-02
+
+ 4.8690151423215866e-02 -5.7301318645477295e-01
+ <_>
+
+ 0 -1 1115 7.9875197261571884e-03
+
+ -8.1072300672531128e-01 2.7054410427808762e-02
+ <_>
+
+ 0 -1 1116 -1.3520400039851665e-02
+
+ 1.6274809837341309e-01 -1.6841860115528107e-01
+ <_>
+
+ 0 -1 1117 4.8139609396457672e-02
+
+ 4.5234218239784241e-02 -5.7300239801406860e-01
+ <_>
+
+ 0 -1 1118 5.0355647690594196e-03
+
+ 6.5225511789321899e-02 -2.5856611132621765e-01
+ <_>
+
+ 0 -1 1119 1.9625260028988123e-04
+
+ 1.4221550524234772e-01 -1.8481519818305969e-01
+ <_>
+
+ 0 -1 1120 2.5747891049832106e-03
+
+ -3.5904300212860107e-01 7.5663506984710693e-02
+ <_>
+
+ 0 -1 1121 -4.0524629876017570e-03
+
+ -2.1212129294872284e-01 1.1840210109949112e-01
+ <_>
+
+ 0 -1 1122 5.6920260190963745e-02
+
+ -4.3657299131155014e-02 3.8774600625038147e-01
+ <_>
+
+ 0 -1 1123 3.7986990064382553e-02
+
+ -8.1706330180168152e-02 3.9529800415039062e-01
+ <_>
+
+ 0 -1 1124 -2.2731529548764229e-02
+
+ -3.4693419933319092e-01 6.8438567221164703e-02
+ <_>
+
+ 0 -1 1125 9.9069473799318075e-04
+
+ -3.6681869626045227e-01 6.1036650091409683e-02
+ <_>
+
+ 0 -1 1126 -4.3086782097816467e-03
+
+ 1.4361980557441711e-01 -9.6160076558589935e-02
+ <_>
+
+ 0 -1 1127 -2.5202209129929543e-02
+
+ -4.6109348535537720e-01 5.9420660138130188e-02
+ <_>
+
+ 0 -1 1128 -3.3597718924283981e-02
+
+ -4.7127521038055420e-01 9.6356319263577461e-03
+ <_>
+
+ 0 -1 1129 -4.6891071833670139e-03
+
+ 1.9676209986209869e-01 -1.1853359639644623e-01
+ <_>
+
+ 0 -1 1130 2.4549920111894608e-02
+
+ -4.5542590320110321e-02 2.8717058897018433e-01
+ <_>
+
+ 0 -1 1131 -1.8802500562742352e-03
+
+ -2.9892438650131226e-01 8.0199889838695526e-02
+ <_>
+
+ 0 -1 1132 2.0160999894142151e-01
+
+ 3.0502580106258392e-02 -4.8414209485054016e-01
+ <_>
+
+ 0 -1 1133 -6.9803953170776367e-02
+
+ -6.2382811307907104e-01 3.5180661827325821e-02
+ <_>
+
+ 0 -1 1134 9.1318902559578419e-04
+
+ -1.9935069978237152e-01 6.8270348012447357e-02
+ <_>
+
+ 0 -1 1135 1.4578959904611111e-02
+
+ 1.0063359886407852e-01 -2.5353130698204041e-01
+ <_>
+
+ 0 -1 1136 5.0130348652601242e-02
+
+ 5.7192109525203705e-02 -4.1628059744834900e-01
+ <_>
+
+ 0 -1 1137 -1.8048109486699104e-02
+
+ -4.4572651386260986e-01 5.0399489700794220e-02
+ <_>
+
+ 0 -1 1138 1.4818160235881805e-01
+
+ 1.6779610887169838e-02 -4.5810478925704956e-01
+ <_>
+
+ 0 -1 1139 -2.6285950094461441e-02
+
+ 3.5442620515823364e-01 -6.1184428632259369e-02
+ <_>
+
+ 0 -1 1140 -1.8414109945297241e-02
+
+ -3.2132109999656677e-01 7.6148152351379395e-02
+ <_>
+
+ 0 -1 1141 6.1610070988535881e-03
+
+ 8.7946079671382904e-02 -2.5913208723068237e-01
+ <_>
+
+ 0 -1 1142 -2.5900160893797874e-02
+
+ 3.0681431293487549e-01 -6.5600410103797913e-02
+ <_>
+
+ 0 -1 1143 1.5014899894595146e-02
+
+ -5.6076969951391220e-02 3.8661429286003113e-01
+ <_>
+
+ 0 -1 1144 -4.3112158775329590e-02
+
+ 5.5926108360290527e-01 -3.9232630282640457e-02
+ <_>
+
+ 0 -1 1145 -2.1485170349478722e-02
+
+ -4.6384871006011963e-01 4.8264618963003159e-02
+ <_>
+
+ 0 -1 1146 -2.5131789967417717e-02
+
+ -4.8091739416122437e-01 4.1346170008182526e-02
+ <_>
+
+ 0 -1 1147 4.1451459401287138e-04
+
+ 4.4691830873489380e-02 -4.2174011468887329e-01
+ <_>
+
+ 0 -1 1148 1.0218570008873940e-02
+
+ 5.3744480013847351e-02 -1.9395479559898376e-01
+ <_>
+
+ 0 -1 1149 -2.0342700183391571e-02
+
+ 2.9722499847412109e-01 -7.1297563612461090e-02
+ <_>
+
+ 0 -1 1150 -3.0666049569845200e-02
+
+ -3.9920780062675476e-01 4.5510981231927872e-02
+ <_>
+
+ 0 -1 1151 -3.2767441123723984e-02
+
+ -5.0248539447784424e-01 4.4888608157634735e-02
+ <_>
+
+ 0 -1 1152 -5.4365001618862152e-02
+
+ -4.7751170396804810e-01 4.1882470250129700e-02
+ <_>
+
+ 0 -1 1153 -2.9916359111666679e-02
+
+ 3.5793611407279968e-01 -6.1831939965486526e-02
+ <_>
+
+ 0 -1 1154 1.0144179686903954e-02
+
+ -1.5790919959545135e-01 5.7373359799385071e-02
+ <_>
+
+ 0 -1 1155 1.5639010071754456e-01
+
+ 3.2949700951576233e-02 -6.4462232589721680e-01
+ <_>
+
+ 0 -1 1156 5.4447978734970093e-02
+
+ -4.1508059948682785e-02 1.2866689264774323e-01
+ <_>
+
+ 0 -1 1157 -3.9772719144821167e-02
+
+ -6.8962317705154419e-01 2.9046570882201195e-02
+ <_>
+
+ 0 -1 1158 6.9650667719542980e-03
+
+ -9.4761677086353302e-02 1.8257130682468414e-01
+ <_>
+
+ 0 -1 1159 -5.1617428660392761e-02
+
+ -4.4907289743423462e-01 4.3913140892982483e-02
+ <_>
+
+ 0 -1 1160 -2.6814609766006470e-02
+
+ -2.2568839788436890e-01 5.4928071796894073e-02
+ <_>
+
+ 0 -1 1161 1.3181920163333416e-02
+
+ 8.0101907253265381e-02 -2.8673300147056580e-01
+ <_>
+
+ 0 -1 1162 1.4241590164601803e-02
+
+ -8.4264412522315979e-02 2.1000739932060242e-01
+ <_>
+
+ 0 -1 1163 3.1410539522767067e-03
+
+ 1.3257560133934021e-01 -1.5610539913177490e-01
+ <_>
+
+ 0 -1 1164 1.0995150357484818e-01
+
+ 1.2388270348310471e-02 -4.0302368998527527e-01
+ <_>
+
+ 0 -1 1165 1.7845850437879562e-02
+
+ 5.2870228886604309e-02 -3.7930241227149963e-01
+ <_>
+
+ 0 -1 1166 1.0851990431547165e-02
+
+ -5.4071258753538132e-02 3.5186240077018738e-01
+ <_>
+
+ 0 -1 1167 -2.5958200916647911e-02
+
+ 4.1978350281715393e-01 -4.0477428585290909e-02
+ <_>
+
+ 0 -1 1168 4.0990379638969898e-03
+
+ 5.0911288708448410e-02 -3.5974949598312378e-01
+ <_>
+
+ 0 -1 1169 1.4909840188920498e-02
+
+ -6.1437230557203293e-02 2.8947550058364868e-01
+ <_>
+
+ 0 -1 1170 4.0265037678182125e-03
+
+ 1.0686399787664413e-01 -1.2979680299758911e-01
+ <_>
+
+ 0 -1 1171 3.9495688676834106e-01
+
+ -2.8920559212565422e-02 6.3535267114639282e-01
+ <_>
+
+ 0 -1 1172 1.2874379754066467e-02
+
+ -1.1910410225391388e-01 1.2068430334329605e-01
+ <_>
+
+ 0 -1 1173 -4.8598181456327438e-02
+
+ 4.6885690093040466e-01 -4.2797289788722992e-02
+ <_>
+
+ 0 -1 1174 1.5357979573309422e-03
+
+ -3.0882269144058228e-01 6.3154831528663635e-02
+ <_>
+
+ 0 -1 1175 3.5379750188440084e-03
+
+ 1.0132449865341187e-01 -1.7726400494575500e-01
+ <_>
+
+ 0 -1 1176 -1.9441220909357071e-02
+
+ 2.3254390060901642e-01 -5.3732268512248993e-02
+ <_>
+
+ 0 -1 1177 2.5940369814634323e-03
+
+ -3.5682299733161926e-01 5.0598859786987305e-02
+ <_>
+
+ 0 -1 1178 5.9910379350185394e-02
+
+ -2.4030869826674461e-02 1.7003220319747925e-01
+ <_>
+
+ 0 -1 1179 -1.1181759648025036e-02
+
+ 3.4869500994682312e-01 -6.2812417745590210e-02
+ <_>
+
+ 0 -1 1180 4.9201812362298369e-04
+
+ -1.2642909586429596e-01 3.6503899842500687e-02
+ <_>
+
+ 0 -1 1181 6.7902177572250366e-02
+
+ -4.2887088656425476e-01 4.6336911618709564e-02
+ <_>
+
+ 0 -1 1182 1.5728829428553581e-02
+
+ -6.3028946518898010e-02 1.6275769472122192e-01
+ <_>
+
+ 0 -1 1183 -1.4824390411376953e-02
+
+ -5.3391677141189575e-01 3.2132621854543686e-02
+ <_>
+
+ 0 -1 1184 -1.9706260412931442e-02
+
+ 2.5455629825592041e-01 -3.0816650018095970e-02
+ <_>
+
+ 0 -1 1185 9.6607124432921410e-03
+
+ 9.2674352228641510e-02 -1.7940239608287811e-01
+ <_>
+
+ 0 -1 1186 -4.9929421395063400e-02
+
+ 2.6743340492248535e-01 -2.5595119222998619e-02
+ <_>
+
+ 0 -1 1187 7.3459640145301819e-02
+
+ -5.8698959648609161e-02 2.8898829221725464e-01
+ <_>
+
+ 0 -1 1188 -8.6538150208070874e-04
+
+ -1.4318460226058960e-01 6.5386183559894562e-02
+ <_>
+
+ 0 -1 1189 -1.0462219826877117e-02
+
+ -3.2498508691787720e-01 5.4955318570137024e-02
+ <_>
+
+ 0 -1 1190 -6.3478751108050346e-03
+
+ -1.0396370291709900e-01 4.0321409702301025e-02
+ <_>
+
+ 0 -1 1191 1.1406400054693222e-01
+
+ 2.6192039251327515e-02 -6.6177910566329956e-01
+ <_>
+
+ 0 -1 1192 -2.6893770322203636e-02
+
+ -3.5338699817657471e-01 1.9753590226173401e-02
+ <_>
+
+ 0 -1 1193 8.0600962042808533e-02
+
+ 2.8878480195999146e-02 -5.4975187778472900e-01
+ <_>
+
+ 0 -1 1194 -7.4676960706710815e-02
+
+ -3.4416058659553528e-01 2.6990719139575958e-02
+ <_>
+
+ 0 -1 1195 -7.7004089951515198e-02
+
+ 4.0045699477195740e-01 -4.5340269804000854e-02
+ <_>
+
+ 0 -1 1196 -8.6920477449893951e-02
+
+ -3.4687021374702454e-01 3.9195980876684189e-02
+ <_>
+
+ 0 -1 1197 -4.3200692161917686e-03
+
+ 7.5932569801807404e-02 -2.3720650374889374e-01
+ <_>
+
+ 0 -1 1198 -3.4127760678529739e-02
+
+ -4.1994720697402954e-01 4.3633870780467987e-02
+ <_>
+
+ 0 -1 1199 2.1845370531082153e-02
+
+ -5.8681700378656387e-02 3.2972678542137146e-01
+ <_>
+
+ 0 -1 1200 1.0037229955196381e-01
+
+ 4.2507208883762360e-02 -4.3366080522537231e-01
+ <_>
+ 157
+ -1.5512030124664307e+00
+
+ <_>
+
+ 0 -1 1201 -2.8922120109200478e-03
+
+ 1.4381329715251923e-01 -4.0896520018577576e-01
+ <_>
+
+ 0 -1 1202 -3.2057950738817453e-03
+
+ -3.3472418785095215e-01 1.2834690511226654e-01
+ <_>
+
+ 0 -1 1203 -1.4795559764024802e-05
+
+ 1.0139170289039612e-01 -4.4680911302566528e-01
+ <_>
+
+ 0 -1 1204 3.7529919063672423e-04
+
+ -2.8604930639266968e-01 1.5357840061187744e-01
+ <_>
+
+ 0 -1 1205 4.9170467536896467e-04
+
+ -2.8404960036277771e-01 1.3163900375366211e-01
+ <_>
+
+ 0 -1 1206 1.6417380422353745e-02
+
+ 7.9901106655597687e-02 -2.8092819452285767e-01
+ <_>
+
+ 0 -1 1207 1.0119860060513020e-02
+
+ 1.0026869922876358e-01 -4.0932568907737732e-01
+ <_>
+
+ 0 -1 1208 -6.5251751802861691e-03
+
+ -3.3101710677146912e-01 9.6044629812240601e-02
+ <_>
+
+ 0 -1 1209 6.1215078458189964e-03
+
+ -3.5483101010322571e-01 8.4309920668601990e-02
+ <_>
+
+ 0 -1 1210 2.5817379355430603e-03
+
+ 8.3384357392787933e-02 -2.8031709790229797e-01
+ <_>
+
+ 0 -1 1211 -1.3406439684331417e-03
+
+ 1.5083800256252289e-01 -1.4946520328521729e-01
+ <_>
+
+ 0 -1 1212 3.3681320492178202e-03
+
+ 4.2112700641155243e-02 -2.2309710085391998e-01
+ <_>
+
+ 0 -1 1213 2.8937528841197491e-03
+
+ 8.2953810691833496e-02 -2.9152309894561768e-01
+ <_>
+
+ 0 -1 1214 3.3696501050144434e-03
+
+ 4.8548549413681030e-02 -1.9542780518531799e-01
+ <_>
+
+ 0 -1 1215 -7.1538880467414856e-02
+
+ 5.2008682489395142e-01 -4.2644441127777100e-02
+ <_>
+
+ 0 -1 1216 7.6072360388934612e-03
+
+ -8.5208661854267120e-02 1.1523310095071793e-01
+ <_>
+
+ 0 -1 1217 1.9313229713588953e-03
+
+ 8.9357398450374603e-02 -2.3614349961280823e-01
+ <_>
+
+ 0 -1 1218 9.0475968318060040e-04
+
+ -7.7408589422702789e-02 1.6829580068588257e-01
+ <_>
+
+ 0 -1 1219 1.1103670112788677e-02
+
+ -9.5963977277278900e-02 2.0391720533370972e-01
+ <_>
+
+ 0 -1 1220 -3.1021970789879560e-03
+
+ -3.8605719804763794e-01 4.6329721808433533e-02
+ <_>
+
+ 0 -1 1221 1.1446890421211720e-03
+
+ -2.8306689858436584e-01 5.8978211134672165e-02
+ <_>
+
+ 0 -1 1222 7.7077788300812244e-03
+
+ 1.0474249720573425e-01 -1.7146070301532745e-01
+ <_>
+
+ 0 -1 1223 4.9893710762262344e-02
+
+ -6.4692601561546326e-02 3.0140951275825500e-01
+ <_>
+
+ 0 -1 1224 -1.4937819913029671e-02
+
+ -2.7854371070861816e-01 7.0895470678806305e-02
+ <_>
+
+ 0 -1 1225 -2.5303829461336136e-03
+
+ 1.2108519673347473e-01 -1.4635290205478668e-01
+ <_>
+
+ 0 -1 1226 2.8611259534955025e-02
+
+ -5.0357531756162643e-02 4.0651878714561462e-01
+ <_>
+
+ 0 -1 1227 3.6244060844182968e-02
+
+ 4.4577218592166901e-02 -5.6234288215637207e-01
+ <_>
+
+ 0 -1 1228 -3.0544339679181576e-03
+
+ 1.1526989936828613e-01 -2.7371090650558472e-01
+ <_>
+
+ 0 -1 1229 -1.3101019430905581e-03
+
+ -2.6798000931739807e-01 5.9726651757955551e-02
+ <_>
+
+ 0 -1 1230 1.0702989529818296e-03
+
+ -1.5439410507678986e-01 1.1206989735364914e-01
+ <_>
+
+ 0 -1 1231 -2.3467160761356354e-02
+
+ -6.2424921989440918e-01 2.6010479778051376e-02
+ <_>
+
+ 0 -1 1232 -2.2787749767303467e-02
+
+ 1.7903989553451538e-01 -6.8230852484703064e-02
+ <_>
+
+ 0 -1 1233 7.5017688795924187e-03
+
+ 5.2637178450822830e-02 -3.3333471417427063e-01
+ <_>
+
+ 0 -1 1234 1.3881090097129345e-02
+
+ 6.5118886530399323e-02 -2.4152719974517822e-01
+ <_>
+
+ 0 -1 1235 -8.7769115343689919e-03
+
+ 1.9925190508365631e-01 -8.8063232600688934e-02
+ <_>
+
+ 0 -1 1236 2.6523560285568237e-02
+
+ 4.6574778854846954e-02 -3.6550509929656982e-01
+ <_>
+
+ 0 -1 1237 7.2263809852302074e-03
+
+ -1.0806850343942642e-01 1.5131799876689911e-01
+ <_>
+
+ 0 -1 1238 2.3426050320267677e-03
+
+ -1.5072929859161377e-01 9.9945023655891418e-02
+ <_>
+
+ 0 -1 1239 -2.8811080483137630e-05
+
+ 6.1413038522005081e-02 -2.4344439804553986e-01
+ <_>
+
+ 0 -1 1240 -1.3911900110542774e-02
+
+ -3.1010839343070984e-01 2.4895850569009781e-02
+ <_>
+
+ 0 -1 1241 2.4768780916929245e-02
+
+ 2.3218030110001564e-02 -6.5071028470993042e-01
+ <_>
+
+ 0 -1 1242 -6.0916407965123653e-03
+
+ 5.9768490493297577e-02 -2.5360348820686340e-01
+ <_>
+
+ 0 -1 1243 -9.7264908254146576e-03
+
+ -2.5584441423416138e-01 5.5554620921611786e-02
+ <_>
+
+ 0 -1 1244 9.7499042749404907e-02
+
+ 5.3867488168179989e-03 -7.3567670583724976e-01
+ <_>
+
+ 0 -1 1245 3.0411418993026018e-03
+
+ -1.3759210705757141e-01 1.2143649905920029e-01
+ <_>
+
+ 0 -1 1246 2.7967148926109076e-03
+
+ 1.8048660457134247e-01 -8.4527000784873962e-02
+ <_>
+
+ 0 -1 1247 1.0707279667258263e-02
+
+ -4.3970860540866852e-02 3.1042009592056274e-01
+ <_>
+
+ 0 -1 1248 1.7561139538884163e-03
+
+ 5.1866840571165085e-02 -2.2768710553646088e-01
+ <_>
+
+ 0 -1 1249 -3.0384738929569721e-03
+
+ 7.1652042865753174e-01 -2.2465929388999939e-02
+ <_>
+
+ 0 -1 1250 -9.4161480665206909e-02
+
+ -7.9338562488555908e-01 1.3117490336298943e-02
+ <_>
+
+ 0 -1 1251 -2.3869009688496590e-02
+
+ 4.9338179826736450e-01 -3.2169021666049957e-02
+ <_>
+
+ 0 -1 1252 -3.9958588778972626e-02
+
+ -1.8914769589900970e-01 2.8500700369477272e-02
+ <_>
+
+ 0 -1 1253 6.9391070865094662e-03
+
+ 3.9777211844921112e-02 -3.9105901122093201e-01
+ <_>
+
+ 0 -1 1254 -3.3596780151128769e-02
+
+ -5.6830072402954102e-01 2.1618509665131569e-02
+ <_>
+
+ 0 -1 1255 -1.4079840481281281e-01
+
+ -7.9014372825622559e-01 1.4884609729051590e-02
+ <_>
+
+ 0 -1 1256 -5.7346289977431297e-03
+
+ -1.5512639284133911e-01 4.2879570275545120e-02
+ <_>
+
+ 0 -1 1257 -5.2841830998659134e-02
+
+ 3.0823838710784912e-01 -5.0709690898656845e-02
+ <_>
+
+ 0 -1 1258 1.5207099728286266e-02
+
+ -2.5789769366383553e-02 3.3292320370674133e-01
+ <_>
+
+ 0 -1 1259 -5.8392022037878633e-04
+
+ 8.8900387287139893e-02 -1.6297949850559235e-01
+ <_>
+
+ 0 -1 1260 -3.3715530298650265e-03
+
+ -1.7890229821205139e-01 7.5376607477664948e-02
+ <_>
+
+ 0 -1 1261 -1.2047060299664736e-03
+
+ 1.0491970181465149e-01 -1.2970739603042603e-01
+ <_>
+
+ 0 -1 1262 5.5276479572057724e-02
+
+ -4.3197508901357651e-02 3.7212029099464417e-01
+ <_>
+
+ 0 -1 1263 3.9330609142780304e-02
+
+ 3.0416399240493774e-02 -4.9076101183891296e-01
+ <_>
+
+ 0 -1 1264 -9.7229599487036467e-04
+
+ -2.1895459294319153e-01 3.9032708853483200e-02
+ <_>
+
+ 0 -1 1265 -5.6048069149255753e-02
+
+ 4.1632568836212158e-01 -3.3747311681509018e-02
+ <_>
+
+ 0 -1 1266 7.1376740932464600e-02
+
+ 1.2129209935665131e-02 -6.4814078807830811e-01
+ <_>
+
+ 0 -1 1267 1.4940260443836451e-03
+
+ -2.1393610537052155e-01 8.4887221455574036e-02
+ <_>
+
+ 0 -1 1268 -3.2299170270562172e-03
+
+ 9.0792432427406311e-02 -9.5816053450107574e-02
+ <_>
+
+ 0 -1 1269 4.2182870209217072e-02
+
+ -6.6914401948451996e-02 2.5217619538307190e-01
+ <_>
+
+ 0 -1 1270 -6.5001910552382469e-03
+
+ -1.2149559706449509e-01 3.7367988377809525e-02
+ <_>
+
+ 0 -1 1271 1.9457129761576653e-02
+
+ 5.0163779407739639e-02 -2.8700378537178040e-01
+ <_>
+
+ 0 -1 1272 3.7291388958692551e-02
+
+ 2.9608439654111862e-02 -5.7222497463226318e-01
+ <_>
+
+ 0 -1 1273 -2.5571519508957863e-02
+
+ 4.3941849470138550e-01 -3.6532308906316757e-02
+ <_>
+
+ 0 -1 1274 -7.9122912138700485e-03
+
+ -2.9618510603904724e-01 3.5483270883560181e-02
+ <_>
+
+ 0 -1 1275 3.0267490074038506e-03
+
+ -1.2113779783248901e-01 1.1271420121192932e-01
+ <_>
+
+ 0 -1 1276 -2.1035820245742798e-02
+
+ 2.9206061363220215e-01 -3.1001489609479904e-02
+ <_>
+
+ 0 -1 1277 -1.2911420315504074e-02
+
+ -5.4194331169128418e-01 2.6756240054965019e-02
+ <_>
+
+ 0 -1 1278 5.5096071213483810e-02
+
+ 8.4169982001185417e-03 -6.2873458862304688e-01
+ <_>
+
+ 0 -1 1279 -6.3893562182784081e-03
+
+ -2.0784839987754822e-01 6.0436788946390152e-02
+ <_>
+
+ 0 -1 1280 1.0858760215342045e-02
+
+ -7.8497253358364105e-02 1.2957990169525146e-01
+ <_>
+
+ 0 -1 1281 -1.5859620645642281e-02
+
+ 1.5772910416126251e-01 -1.0143510252237320e-01
+ <_>
+
+ 0 -1 1282 1.5203879773616791e-01
+
+ 2.1721320226788521e-02 -3.1713140010833740e-01
+ <_>
+
+ 0 -1 1283 1.7942039296030998e-02
+
+ -8.4816932678222656e-02 1.7697300016880035e-01
+ <_>
+
+ 0 -1 1284 8.8212518021464348e-03
+
+ 5.1800601184368134e-02 -2.1443609893321991e-01
+ <_>
+
+ 0 -1 1285 1.5715289860963821e-02
+
+ 4.2525820434093475e-02 -3.2278341054916382e-01
+ <_>
+
+ 0 -1 1286 -2.4744209367781878e-03
+
+ 1.0828550159931183e-01 -1.2953069806098938e-01
+ <_>
+
+ 0 -1 1287 1.2597530148923397e-02
+
+ -6.0251701623201370e-02 2.7512151002883911e-01
+ <_>
+
+ 0 -1 1288 -1.0955630568787456e-03
+
+ -5.4244071245193481e-01 2.8166439384222031e-02
+ <_>
+
+ 0 -1 1289 -1.4035019557923079e-03
+
+ -2.3625169694423676e-01 6.1887249350547791e-02
+ <_>
+
+ 0 -1 1290 -7.7294543385505676e-02
+
+ -5.2141982316970825e-01 1.1844149790704250e-02
+ <_>
+
+ 0 -1 1291 -7.5442157685756683e-02
+
+ -7.1588802337646484e-01 1.7151419073343277e-02
+ <_>
+
+ 0 -1 1292 -6.5148338675498962e-02
+
+ 2.4099840223789215e-01 -5.0278738141059875e-02
+ <_>
+
+ 0 -1 1293 -1.0481229983270168e-03
+
+ 6.5461628139019012e-02 -1.9198420643806458e-01
+ <_>
+
+ 0 -1 1294 2.0919230300933123e-03
+
+ 4.8702161759138107e-02 -2.0062549412250519e-01
+ <_>
+
+ 0 -1 1295 -4.2849369347095490e-02
+
+ -4.6154209971427917e-01 2.9137039557099342e-02
+ <_>
+
+ 0 -1 1296 -4.5563629828393459e-03
+
+ 1.3732179999351501e-01 -7.3871016502380371e-02
+ <_>
+
+ 0 -1 1297 6.7648440599441528e-03
+
+ -6.3866026699542999e-02 2.7578699588775635e-01
+ <_>
+
+ 0 -1 1298 4.2252071201801300e-02
+
+ 1.3583010062575340e-02 -6.2714421749114990e-01
+ <_>
+
+ 0 -1 1299 -3.5438220947980881e-02
+
+ -5.2436131238937378e-01 2.1047530695796013e-02
+ <_>
+
+ 0 -1 1300 -5.3693209774792194e-03
+
+ 1.8366709351539612e-01 -6.6432453691959381e-02
+ <_>
+
+ 0 -1 1301 1.3521539513021708e-03
+
+ 5.8834321796894073e-02 -2.2455100715160370e-01
+ <_>
+
+ 0 -1 1302 -3.2204028218984604e-02
+
+ -4.8017048835754395e-01 9.2976661399006844e-03
+ <_>
+
+ 0 -1 1303 4.0550291305407882e-04
+
+ -8.5948407649993896e-02 2.0100370049476624e-01
+ <_>
+
+ 0 -1 1304 -3.8419410120695829e-03
+
+ 2.0595569908618927e-01 -6.6863708198070526e-02
+ <_>
+
+ 0 -1 1305 -4.5518199913203716e-03
+
+ -2.2908920049667358e-01 5.8954399079084396e-02
+ <_>
+
+ 0 -1 1306 -4.9340371042490005e-02
+
+ -3.8995718955993652e-01 1.6714079305529594e-02
+ <_>
+
+ 0 -1 1307 8.6456492543220520e-02
+
+ -3.2278828322887421e-02 3.6371639370918274e-01
+ <_>
+
+ 0 -1 1308 5.1636258140206337e-03
+
+ -1.7399039864540100e-01 5.6017149239778519e-02
+ <_>
+
+ 0 -1 1309 3.5364869982004166e-03
+
+ -7.9630948603153229e-02 1.6313460469245911e-01
+ <_>
+
+ 0 -1 1310 -4.3170839548110962e-02
+
+ -3.7036859989166260e-01 1.9841130822896957e-02
+ <_>
+
+ 0 -1 1311 6.1772209592163563e-03
+
+ 5.9052169322967529e-02 -2.3701970279216766e-01
+ <_>
+
+ 0 -1 1312 -2.2244770079851151e-02
+
+ 2.5762718915939331e-01 -2.2968450561165810e-02
+ <_>
+
+ 0 -1 1313 5.0163730978965759e-02
+
+ 1.7468400299549103e-02 -6.8128740787506104e-01
+ <_>
+
+ 0 -1 1314 -3.0043811420910060e-04
+
+ 5.5781401693820953e-02 -1.2685780227184296e-01
+ <_>
+
+ 0 -1 1315 1.9783550500869751e-01
+
+ 1.2211419641971588e-02 -8.6064267158508301e-01
+ <_>
+
+ 0 -1 1316 6.5362468361854553e-02
+
+ 4.1287927888333797e-03 -6.2948238849639893e-01
+ <_>
+
+ 0 -1 1317 -1.8684990704059601e-02
+
+ -2.4377359449863434e-01 4.3232489377260208e-02
+ <_>
+
+ 0 -1 1318 -7.5593511573970318e-03
+
+ 1.7254440486431122e-01 -1.6871780157089233e-02
+ <_>
+
+ 0 -1 1319 1.4699660241603851e-03
+
+ -1.5561489760875702e-01 6.9231852889060974e-02
+ <_>
+
+ 0 -1 1320 1.1925940215587616e-01
+
+ -2.6341190561652184e-02 4.4847229123115540e-01
+ <_>
+
+ 0 -1 1321 1.3763479888439178e-02
+
+ 3.1852710992097855e-02 -3.8184550404548645e-01
+ <_>
+
+ 0 -1 1322 1.2966440059244633e-02
+
+ -3.9391368627548218e-02 1.9092699885368347e-01
+ <_>
+
+ 0 -1 1323 -1.1041419580578804e-02
+
+ -2.7309378981590271e-01 4.7777820378541946e-02
+ <_>
+
+ 0 -1 1324 6.8364411592483521e-01
+
+ 9.6240043640136719e-03 -9.7447502613067627e-01
+ <_>
+
+ 0 -1 1325 -2.4255160242319107e-03
+
+ -2.5439569354057312e-01 4.0732551366090775e-02
+ <_>
+
+ 0 -1 1326 6.4529682276770473e-04
+
+ -1.3824179768562317e-01 7.4660047888755798e-02
+ <_>
+
+ 0 -1 1327 -2.2386180236935616e-02
+
+ 3.9404779672622681e-01 -4.2591951787471771e-02
+ <_>
+
+ 0 -1 1328 -6.4325161278247833e-02
+
+ -9.6853357553482056e-01 5.4289568215608597e-03
+ <_>
+
+ 0 -1 1329 4.0803711861371994e-02
+
+ 1.4779980294406414e-02 -7.5445967912673950e-01
+ <_>
+
+ 0 -1 1330 -2.4066439364105463e-03
+
+ 7.6213918626308441e-02 -8.1325337290763855e-02
+ <_>
+
+ 0 -1 1331 -4.9865059554576874e-02
+
+ -7.8447979688644409e-01 1.5130150131881237e-02
+ <_>
+
+ 0 -1 1332 -8.9749991893768311e-02
+
+ -9.0076518058776855e-01 4.0898341685533524e-03
+ <_>
+
+ 0 -1 1333 2.1489290520548820e-03
+
+ -7.7873408794403076e-02 1.4538989961147308e-01
+ <_>
+
+ 0 -1 1334 1.8653910374268889e-03
+
+ -5.1264639943838120e-02 1.4514209330081940e-01
+ <_>
+
+ 0 -1 1335 5.4189950227737427e-02
+
+ 1.6740569844841957e-02 -7.2964847087860107e-01
+ <_>
+
+ 0 -1 1336 -3.7668810691684484e-03
+
+ 1.5345999598503113e-01 -5.9867210686206818e-02
+ <_>
+
+ 0 -1 1337 -1.5151940286159515e-01
+
+ -8.2612198591232300e-01 1.4488279819488525e-02
+ <_>
+
+ 0 -1 1338 1.0246659629046917e-02
+
+ -6.3145689666271210e-02 1.8994790315628052e-01
+ <_>
+
+ 0 -1 1339 1.0578270070254803e-02
+
+ 5.9726748615503311e-02 -1.9162079691886902e-01
+ <_>
+
+ 0 -1 1340 1.5032970346510410e-02
+
+ -7.3868520557880402e-02 1.5511709451675415e-01
+ <_>
+
+ 0 -1 1341 -4.2136289179325104e-02
+
+ -6.8733322620391846e-01 1.6604630276560783e-02
+ <_>
+
+ 0 -1 1342 1.8628799589350820e-03
+
+ -1.5732850134372711e-01 7.5714908540248871e-02
+ <_>
+
+ 0 -1 1343 2.4659639224410057e-02
+
+ 9.7081139683723450e-02 -1.6045799851417542e-01
+ <_>
+
+ 0 -1 1344 1.9145730137825012e-01
+
+ 7.1056559681892395e-03 -7.5537341833114624e-01
+ <_>
+
+ 0 -1 1345 -3.0167160555720329e-02
+
+ 1.7002609372138977e-01 -8.6163826286792755e-02
+ <_>
+
+ 0 -1 1346 9.2923697084188461e-03
+
+ 4.3352611362934113e-02 -1.9533480703830719e-01
+ <_>
+
+ 0 -1 1347 -1.9069829722866416e-03
+
+ 8.2421518862247467e-02 -1.4644089341163635e-01
+ <_>
+
+ 0 -1 1348 3.1027841032482684e-04
+
+ -1.1879319697618484e-01 9.4635762274265289e-02
+ <_>
+
+ 0 -1 1349 4.4492271263152361e-04
+
+ -1.5645760297775269e-01 6.8512812256813049e-02
+ <_>
+
+ 0 -1 1350 -1.2095469981431961e-02
+
+ -9.0144127607345581e-02 3.0050620436668396e-02
+ <_>
+
+ 0 -1 1351 -2.0358909387141466e-03
+
+ 1.3586470484733582e-01 -7.2631262242794037e-02
+ <_>
+
+ 0 -1 1352 -9.3594277277588844e-03
+
+ 1.1376120150089264e-01 -3.9632719010114670e-02
+ <_>
+
+ 0 -1 1353 4.2418478988111019e-03
+
+ -8.1519439816474915e-02 1.5766209363937378e-01
+ <_>
+
+ 0 -1 1354 -5.9963759034872055e-02
+
+ -2.3273150622844696e-01 2.0836880430579185e-02
+ <_>
+
+ 0 -1 1355 4.6651167795062065e-03
+
+ 1.3135330379009247e-01 -1.2394910305738449e-01
+ <_>
+
+ 0 -1 1356 6.2358117429539561e-04
+
+ -1.2920179963111877e-01 6.5220557153224945e-02
+ <_>
+
+ 0 -1 1357 2.0561330020427704e-03
+
+ -6.2910877168178558e-02 1.6288000345230103e-01
+ <_>
+ 127
+ -1.7598799467086792e+00
+
+ <_>
+
+ 0 -1 1358 1.1216440051794052e-01
+
+ -2.9065090417861938e-01 3.1510210037231445e-01
+ <_>
+
+ 0 -1 1359 2.7850609272718430e-02
+
+ -3.9972350001335144e-01 1.7894990742206573e-01
+ <_>
+
+ 0 -1 1360 4.0804240852594376e-02
+
+ -2.4171060323715210e-01 2.2376739978790283e-01
+ <_>
+
+ 0 -1 1361 1.3134710025042295e-03
+
+ -4.2230761051177979e-01 6.9066837430000305e-02
+ <_>
+
+ 0 -1 1362 3.9736120961606503e-03
+
+ -5.5243992805480957e-01 1.0362079739570618e-01
+ <_>
+
+ 0 -1 1363 -9.7877913503907621e-05
+
+ 7.0300459861755371e-02 -4.1970318555831909e-01
+ <_>
+
+ 0 -1 1364 6.2921550124883652e-03
+
+ -3.0629968643188477e-01 1.3072040677070618e-01
+ <_>
+
+ 0 -1 1365 -8.7216142565011978e-03
+
+ -4.1267630457878113e-01 7.2738148272037506e-02
+ <_>
+
+ 0 -1 1366 -5.8611109852790833e-02
+
+ 1.9491520524024963e-01 -1.9737449288368225e-01
+ <_>
+
+ 0 -1 1367 -4.6104468405246735e-02
+
+ -2.6274758577346802e-01 2.4362189695239067e-02
+ <_>
+
+ 0 -1 1368 -5.2685278933495283e-04
+
+ 7.9876311123371124e-02 -4.4358581304550171e-01
+ <_>
+
+ 0 -1 1369 -2.5521939620375633e-02
+
+ -4.4183689355850220e-01 1.0705660097301006e-02
+ <_>
+
+ 0 -1 1370 -6.8350387737154961e-03
+
+ -3.9501190185546875e-01 7.8441992402076721e-02
+ <_>
+
+ 0 -1 1371 6.1055209487676620e-02
+
+ 3.5330320242792368e-03 -6.0677450895309448e-01
+ <_>
+
+ 0 -1 1372 4.7110877931118011e-03
+
+ -1.9310380518436432e-01 1.5259410440921783e-01
+ <_>
+
+ 0 -1 1373 3.7552498281002045e-02
+
+ 6.9572687149047852e-02 -4.1588190197944641e-01
+ <_>
+
+ 0 -1 1374 4.0887430310249329e-02
+
+ -1.3596929609775543e-01 2.4894300103187561e-01
+ <_>
+
+ 0 -1 1375 2.6306639483664185e-05
+
+ -2.5603210926055908e-01 1.1001589894294739e-01
+ <_>
+
+ 0 -1 1376 9.4716809689998627e-03
+
+ -2.2197020053863525e-01 1.3640490174293518e-01
+ <_>
+
+ 0 -1 1377 3.4596489276736975e-03
+
+ 1.5568970143795013e-01 -1.8454350531101227e-01
+ <_>
+
+ 0 -1 1378 -8.1670414656400681e-03
+
+ -3.7346610426902771e-01 8.2206420600414276e-02
+ <_>
+
+ 0 -1 1379 4.7045178711414337e-02
+
+ 1.2655580416321754e-02 -6.9167500734329224e-01
+ <_>
+
+ 0 -1 1380 -1.9954189192503691e-03
+
+ -4.2871651053428650e-01 6.0119848698377609e-02
+ <_>
+
+ 0 -1 1381 -3.2797679305076599e-02
+
+ -5.8513718843460083e-01 3.9739210158586502e-02
+ <_>
+
+ 0 -1 1382 4.3516121804714203e-02
+
+ 3.6311239004135132e-02 -5.8556967973709106e-01
+ <_>
+
+ 0 -1 1383 -1.3213600032031536e-02
+
+ 2.1160380542278290e-01 -8.9618362486362457e-02
+ <_>
+
+ 0 -1 1384 -3.8574080914258957e-02
+
+ -5.9375947713851929e-01 3.7297870963811874e-02
+ <_>
+
+ 0 -1 1385 -1.5351839363574982e-01
+
+ 4.4116440415382385e-01 -5.9058368206024170e-02
+ <_>
+
+ 0 -1 1386 -1.4133240096271038e-02
+
+ -3.4045210480690002e-01 6.6277496516704559e-02
+ <_>
+
+ 0 -1 1387 1.4061010442674160e-02
+
+ 1.1312460154294968e-01 -1.9001239538192749e-01
+ <_>
+
+ 0 -1 1388 3.5457469522953033e-02
+
+ 3.7297818809747696e-02 -5.3568178415298462e-01
+ <_>
+
+ 0 -1 1389 -1.2931039556860924e-02
+
+ -2.8593328595161438e-01 5.8341801166534424e-02
+ <_>
+
+ 0 -1 1390 -1.1986999772489071e-02
+
+ -4.0216270089149475e-01 4.7841191291809082e-02
+ <_>
+
+ 0 -1 1391 -1.3723289594054222e-02
+
+ 2.0238439738750458e-01 -8.9290492236614227e-02
+ <_>
+
+ 0 -1 1392 1.5990810468792915e-02
+
+ -6.1742551624774933e-02 3.9387008547782898e-01
+ <_>
+
+ 0 -1 1393 -1.4505759812891483e-02
+
+ -3.5829049348831177e-01 4.3789908289909363e-02
+ <_>
+
+ 0 -1 1394 3.1443528831005096e-02
+
+ -6.7374527454376221e-02 2.8779721260070801e-01
+ <_>
+
+ 0 -1 1395 3.4287340939044952e-02
+
+ 5.6390259414911270e-02 -3.3407160639762878e-01
+ <_>
+
+ 0 -1 1396 8.8674569269642234e-05
+
+ -2.8655600547790527e-01 7.0318557322025299e-02
+ <_>
+
+ 0 -1 1397 1.8266469240188599e-02
+
+ -5.2221570163965225e-02 1.7026390135288239e-01
+ <_>
+
+ 0 -1 1398 6.1769630759954453e-02
+
+ -6.8800583481788635e-02 2.7483311295509338e-01
+ <_>
+
+ 0 -1 1399 -2.3383310064673424e-02
+
+ -2.7845630049705505e-01 2.4131359532475471e-02
+ <_>
+
+ 0 -1 1400 -1.1182860285043716e-01
+
+ 4.5687168836593628e-01 -4.3217949569225311e-02
+ <_>
+
+ 0 -1 1401 -6.4386896789073944e-02
+
+ -3.4228751063346863e-01 6.4063712954521179e-02
+ <_>
+
+ 0 -1 1402 2.1763430535793304e-01
+
+ -6.0564499348402023e-02 3.6352708935737610e-01
+ <_>
+
+ 0 -1 1403 -4.9456087872385979e-03
+
+ -1.6526390612125397e-01 4.6035580337047577e-02
+ <_>
+
+ 0 -1 1404 -1.2704910477623343e-03
+
+ -2.5035798549652100e-01 8.2336440682411194e-02
+ <_>
+
+ 0 -1 1405 2.6536729186773300e-02
+
+ -1.3919049501419067e-01 1.9524000585079193e-01
+ <_>
+
+ 0 -1 1406 -2.0027440041303635e-02
+
+ -3.7472829222679138e-01 5.3981021046638489e-02
+ <_>
+
+ 0 -1 1407 -6.1987549066543579e-02
+
+ -1.4436429738998413e-01 1.5863290056586266e-02
+ <_>
+
+ 0 -1 1408 2.3037059232592583e-02
+
+ 3.8429230451583862e-02 -4.8479309678077698e-01
+ <_>
+
+ 0 -1 1409 5.7958271354436874e-02
+
+ 2.0750140771269798e-02 -7.6776617765426636e-01
+ <_>
+
+ 0 -1 1410 5.4419268853962421e-03
+
+ 7.2074413299560547e-02 -2.4254220724105835e-01
+ <_>
+
+ 0 -1 1411 7.2400430217385292e-03
+
+ -8.2432948052883148e-02 1.8463499844074249e-01
+ <_>
+
+ 0 -1 1412 1.4847779646515846e-02
+
+ 5.6245408952236176e-02 -3.6297059059143066e-01
+ <_>
+
+ 0 -1 1413 1.2084879912436008e-02
+
+ -6.3536256551742554e-02 2.8614228963851929e-01
+ <_>
+
+ 0 -1 1414 8.0831356346607208e-02
+
+ 4.7143958508968353e-02 -4.9968090653419495e-01
+ <_>
+
+ 0 -1 1415 1.9218639936298132e-03
+
+ -4.0469148755073547e-01 2.2093040868639946e-02
+ <_>
+
+ 0 -1 1416 -1.4179679565131664e-02
+
+ -1.8520280718803406e-01 8.6823917925357819e-02
+ <_>
+
+ 0 -1 1417 -2.9600440029753372e-05
+
+ 7.4054829776287079e-02 -1.9331359863281250e-01
+ <_>
+
+ 0 -1 1418 1.7121590208262205e-03
+
+ -4.9954649806022644e-01 3.8273740559816360e-02
+ <_>
+
+ 0 -1 1419 -1.3207949697971344e-01
+
+ 5.2964788675308228e-01 -1.0363499633967876e-02
+ <_>
+
+ 0 -1 1420 3.6922071129083633e-02
+
+ 1.9587470218539238e-02 -8.8954067230224609e-01
+ <_>
+
+ 0 -1 1421 -7.3079409048659727e-06
+
+ 6.4993053674697876e-02 -1.7331290245056152e-01
+ <_>
+
+ 0 -1 1422 -3.5222709178924561e-02
+
+ -3.6849930882453918e-01 5.0565738230943680e-02
+ <_>
+
+ 0 -1 1423 -5.5531110614538193e-02
+
+ 3.1555691361427307e-01 -4.5015729963779449e-02
+ <_>
+
+ 0 -1 1424 1.8762869760394096e-02
+
+ -1.9359070062637329e-01 7.9093530774116516e-02
+ <_>
+
+ 0 -1 1425 2.4971760809421539e-02
+
+ -8.1862196326255798e-02 2.1014890074729919e-01
+ <_>
+
+ 0 -1 1426 -2.0817129407078028e-03
+
+ -1.7723660171031952e-01 9.1757282614707947e-02
+ <_>
+
+ 0 -1 1427 -1.1499860137701035e-01
+
+ 5.0862562656402588e-01 -1.8267450854182243e-02
+ <_>
+
+ 0 -1 1428 3.2068958878517151e-01
+
+ 2.1651009097695351e-02 -7.6685470342636108e-01
+ <_>
+
+ 0 -1 1429 -8.1451296806335449e-02
+
+ -4.6331760287284851e-01 2.9383579269051552e-02
+ <_>
+
+ 0 -1 1430 -1.5007940120995045e-02
+
+ -3.9308649301528931e-01 3.6867558956146240e-02
+ <_>
+
+ 0 -1 1431 2.3795820772647858e-02
+
+ -3.2482311129570007e-02 1.6764250397682190e-01
+ <_>
+
+ 0 -1 1432 -8.8508807122707367e-02
+
+ 7.2103458642959595e-01 -2.1140210330486298e-02
+ <_>
+
+ 0 -1 1433 4.5011121779680252e-02
+
+ -2.5326130911707878e-02 2.8062760829925537e-01
+ <_>
+
+ 0 -1 1434 1.9286990165710449e-02
+
+ 6.5771162509918213e-02 -2.5697788596153259e-01
+ <_>
+
+ 0 -1 1435 2.2137619554996490e-02
+
+ 3.9154991507530212e-02 -1.9145630300045013e-01
+ <_>
+
+ 0 -1 1436 2.9847979545593262e-02
+
+ -1.2521019577980042e-01 1.4867870509624481e-01
+ <_>
+
+ 0 -1 1437 -6.8392023444175720e-02
+
+ 2.6023870706558228e-01 -4.7525301575660706e-02
+ <_>
+
+ 0 -1 1438 6.8003371357917786e-02
+
+ -4.5898560434579849e-02 4.0107101202011108e-01
+ <_>
+
+ 0 -1 1439 5.6098159402608871e-02
+
+ 2.3277789354324341e-02 -8.4457129240036011e-01
+ <_>
+
+ 0 -1 1440 -1.3024089857935905e-02
+
+ -3.8348990678787231e-01 3.8314189761877060e-02
+ <_>
+
+ 0 -1 1441 1.2594680301845074e-02
+
+ -6.7616842687129974e-02 2.9852440953254700e-01
+ <_>
+
+ 0 -1 1442 -4.9063879996538162e-02
+
+ -5.5862659215927124e-01 2.8511619195342064e-02
+ <_>
+
+ 0 -1 1443 -1.5734169632196426e-02
+
+ 2.5611931085586548e-01 -5.9407141059637070e-02
+ <_>
+
+ 0 -1 1444 1.4674849808216095e-02
+
+ -6.3001021742820740e-02 2.7854999899864197e-01
+ <_>
+
+ 0 -1 1445 2.5068029761314392e-02
+
+ -7.8861348330974579e-02 1.0577370226383209e-01
+ <_>
+
+ 0 -1 1446 7.4170758016407490e-03
+
+ -3.5775899887084961e-01 4.8707701265811920e-02
+ <_>
+
+ 0 -1 1447 -7.7149281278252602e-03
+
+ -1.8049560487270355e-01 9.7531601786613464e-02
+ <_>
+
+ 0 -1 1448 4.9982070922851562e-02
+
+ 2.1009320393204689e-02 -7.6537537574768066e-01
+ <_>
+
+ 0 -1 1449 -1.6759630292654037e-02
+
+ -5.9045380353927612e-01 2.6948049664497375e-02
+ <_>
+
+ 0 -1 1450 3.7632828950881958e-01
+
+ 2.1989850327372551e-02 -6.1461311578750610e-01
+ <_>
+
+ 0 -1 1451 5.2720829844474792e-02
+
+ -3.9074160158634186e-02 2.6600670814514160e-01
+ <_>
+
+ 0 -1 1452 2.6270199567079544e-02
+
+ -9.3863986432552338e-02 2.2280269861221313e-01
+ <_>
+
+ 0 -1 1453 -2.5664661079645157e-03
+
+ -1.8621809780597687e-01 9.8519712686538696e-02
+ <_>
+
+ 0 -1 1454 5.3800269961357117e-03
+
+ 1.2816059589385986e-01 -1.3671700656414032e-01
+ <_>
+
+ 0 -1 1455 2.5200050324201584e-02
+
+ 3.0875589698553085e-02 -2.9681420326232910e-01
+ <_>
+
+ 0 -1 1456 2.5444060564041138e-02
+
+ 4.3978411704301834e-02 -4.0505328774452209e-01
+ <_>
+
+ 0 -1 1457 -2.4715809151530266e-02
+
+ -5.8492290973663330e-01 2.3179760202765465e-02
+ <_>
+
+ 0 -1 1458 -1.6159649938344955e-02
+
+ -3.1950500607490540e-01 4.4603530317544937e-02
+ <_>
+
+ 0 -1 1459 6.5401610918343067e-03
+
+ -5.8575991541147232e-02 7.4016787111759186e-02
+ <_>
+
+ 0 -1 1460 -4.3940648436546326e-02
+
+ -7.7211838960647583e-01 1.9352979958057404e-02
+ <_>
+
+ 0 -1 1461 -4.5612620306201279e-04
+
+ 3.0397420749068260e-02 -2.6982998847961426e-01
+ <_>
+
+ 0 -1 1462 2.8633379843086004e-03
+
+ -1.6874340176582336e-01 8.8886268436908722e-02
+ <_>
+
+ 0 -1 1463 -5.9488460421562195e-02
+
+ -3.4058949351310730e-01 2.4625880643725395e-02
+ <_>
+
+ 0 -1 1464 3.0714470893144608e-02
+
+ 3.1796399503946304e-02 -4.1572770476341248e-01
+ <_>
+
+ 0 -1 1465 -2.2330379113554955e-02
+
+ 1.2896050512790680e-01 -2.4232570081949234e-02
+ <_>
+
+ 0 -1 1466 2.3971609771251678e-02
+
+ -7.6858058571815491e-02 2.0360720157623291e-01
+ <_>
+
+ 0 -1 1467 -6.0696780681610107e-02
+
+ -7.2060132026672363e-01 1.1617880314588547e-02
+ <_>
+
+ 0 -1 1468 -6.8362243473529816e-02
+
+ 3.5825181007385254e-01 -4.4807899743318558e-02
+ <_>
+
+ 0 -1 1469 1.3451039791107178e-01
+
+ 2.6008069515228271e-02 -2.5077620148658752e-01
+ <_>
+
+ 0 -1 1470 1.3341170549392700e-01
+
+ 4.7138180583715439e-02 -3.9661580324172974e-01
+ <_>
+
+ 0 -1 1471 2.0524330437183380e-02
+
+ 4.3894171714782715e-02 -2.8501969575881958e-01
+ <_>
+
+ 0 -1 1472 4.1543610394001007e-02
+
+ 2.5452220812439919e-02 -5.9377658367156982e-01
+ <_>
+
+ 0 -1 1473 -7.1573443710803986e-02
+
+ -7.8743761777877808e-01 1.3979320414364338e-02
+ <_>
+
+ 0 -1 1474 6.6264629364013672e-02
+
+ 2.2939130663871765e-02 -5.4304981231689453e-01
+ <_>
+
+ 0 -1 1475 4.4609569013118744e-03
+
+ 5.0688140094280243e-02 -2.0599000155925751e-01
+ <_>
+
+ 0 -1 1476 1.4859540387988091e-02
+
+ -7.3408462107181549e-02 1.9902250170707703e-01
+ <_>
+
+ 0 -1 1477 -3.9625339210033417e-02
+
+ -5.3522932529449463e-01 9.3211038038134575e-03
+ <_>
+
+ 0 -1 1478 -9.6143726259469986e-03
+
+ 2.7664861083030701e-01 -6.3087522983551025e-02
+ <_>
+
+ 0 -1 1479 5.4589830338954926e-02
+
+ 2.4962859228253365e-02 -5.8171188831329346e-01
+ <_>
+
+ 0 -1 1480 1.3770899735391140e-02
+
+ -2.2891749441623688e-01 6.9963671267032623e-02
+ <_>
+
+ 0 -1 1481 8.6862340569496155e-02
+
+ 2.4058010429143906e-02 -5.8642482757568359e-01
+ <_>
+
+ 0 -1 1482 -2.2433010861277580e-02
+
+ -9.2169362306594849e-01 1.3281799852848053e-02
+ <_>
+
+ 0 -1 1483 -7.3779597878456116e-02
+
+ 3.8463789224624634e-01 -8.5962712764739990e-03
+ <_>
+
+ 0 -1 1484 2.9300490859895945e-04
+
+ -1.7170579731464386e-01 8.8520109653472900e-02
+ <_>
+ 178
+ -1.5360039472579956e+00
+
+ <_>
+
+ 0 -1 1485 5.3288340568542480e-03
+
+ -2.6616770029067993e-01 1.7760449647903442e-01
+ <_>
+
+ 0 -1 1486 -4.0987450629472733e-03
+
+ 1.2358420342206955e-01 -3.0805110931396484e-01
+ <_>
+
+ 0 -1 1487 -5.5853058584034443e-03
+
+ -5.0533992052078247e-01 6.2050119042396545e-02
+ <_>
+
+ 0 -1 1488 -5.1797390915453434e-04
+
+ 6.9178067147731781e-02 -3.4831359982490540e-01
+ <_>
+
+ 0 -1 1489 5.3605018183588982e-03
+
+ 6.5158672630786896e-02 -4.6262231469154358e-01
+ <_>
+
+ 0 -1 1490 3.0114270746707916e-02
+
+ -6.4132362604141235e-02 7.1070060133934021e-02
+ <_>
+
+ 0 -1 1491 8.9014291763305664e-02
+
+ 4.2987130582332611e-02 -6.0177898406982422e-01
+ <_>
+
+ 0 -1 1492 1.5248140553012490e-03
+
+ -3.3071789145469666e-01 7.1408301591873169e-02
+ <_>
+
+ 0 -1 1493 1.8556410213932395e-03
+
+ -3.4727120399475098e-01 7.0630677044391632e-02
+ <_>
+
+ 0 -1 1494 -1.6151620075106621e-02
+
+ -2.5611770153045654e-01 7.1255698800086975e-02
+ <_>
+
+ 0 -1 1495 -3.1278008827939630e-04
+
+ 7.3420330882072449e-02 -2.9594621062278748e-01
+ <_>
+
+ 0 -1 1496 -6.0263078921707347e-05
+
+ 6.6566191613674164e-02 -2.1802450716495514e-01
+ <_>
+
+ 0 -1 1497 7.6520902803167701e-04
+
+ 7.5537197291851044e-02 -3.7677881121635437e-01
+ <_>
+
+ 0 -1 1498 -6.9589070975780487e-02
+
+ 3.9810648560523987e-01 -2.5841819122433662e-02
+ <_>
+
+ 0 -1 1499 -9.8529577255249023e-02
+
+ 6.7321968078613281e-01 -3.3925469964742661e-02
+ <_>
+
+ 0 -1 1500 4.9950059503316879e-02
+
+ 6.1660569161176682e-02 -3.7851110100746155e-01
+ <_>
+
+ 0 -1 1501 3.9009240572340786e-04
+
+ -9.6428610384464264e-02 2.1700200438499451e-01
+ <_>
+
+ 0 -1 1502 -7.1598717477172613e-04
+
+ -1.8358109891414642e-01 1.0587400197982788e-01
+ <_>
+
+ 0 -1 1503 3.8064830005168915e-03
+
+ -1.7527610063552856e-01 1.1430399864912033e-01
+ <_>
+
+ 0 -1 1504 6.5288757905364037e-03
+
+ 6.7994527518749237e-02 -3.0726119875907898e-01
+ <_>
+
+ 0 -1 1505 2.2182099055498838e-03
+
+ -2.7935230731964111e-01 5.8790720999240875e-02
+ <_>
+
+ 0 -1 1506 1.7800349451135844e-04
+
+ 9.9489107728004456e-02 -2.6616880297660828e-01
+ <_>
+
+ 0 -1 1507 -3.2656680792570114e-02
+
+ 5.8734762668609619e-01 -2.6545880362391472e-02
+ <_>
+
+ 0 -1 1508 2.6773350313305855e-02
+
+ 3.6414410918951035e-02 -3.7188830971717834e-01
+ <_>
+
+ 0 -1 1509 1.2780309654772282e-02
+
+ -8.4540523588657379e-02 1.7853260040283203e-01
+ <_>
+
+ 0 -1 1510 5.5374070070683956e-03
+
+ -1.0892049968242645e-01 1.4403919875621796e-01
+ <_>
+
+ 0 -1 1511 -7.1258977986872196e-03
+
+ 1.9850020110607147e-01 -8.3359397947788239e-02
+ <_>
+
+ 0 -1 1512 8.0109452828764915e-03
+
+ 4.8844348639249802e-02 -2.8590029478073120e-01
+ <_>
+
+ 0 -1 1513 -2.7231130748987198e-02
+
+ -6.8558162450790405e-01 2.1877769380807877e-02
+ <_>
+
+ 0 -1 1514 -2.0928949117660522e-02
+
+ -2.0820230245590210e-01 2.6585230603814125e-02
+ <_>
+
+ 0 -1 1515 3.9801741950213909e-03
+
+ 6.7004777491092682e-02 -2.3015810549259186e-01
+ <_>
+
+ 0 -1 1516 2.1598068997263908e-03
+
+ -9.3109019100666046e-02 1.7235539853572845e-01
+ <_>
+
+ 0 -1 1517 9.9411439150571823e-03
+
+ -4.4999819248914719e-02 3.1830498576164246e-01
+ <_>
+
+ 0 -1 1518 -1.7938859760761261e-02
+
+ -2.1515959501266479e-01 7.2462916374206543e-02
+ <_>
+
+ 0 -1 1519 -1.5030350368760992e-05
+
+ 9.1437973082065582e-02 -1.6706299781799316e-01
+ <_>
+
+ 0 -1 1520 4.2446260340511799e-03
+
+ 6.4810760319232941e-02 -1.0556270182132721e-01
+ <_>
+
+ 0 -1 1521 7.4575991675374098e-06
+
+ -2.6309689879417419e-01 5.6588400155305862e-02
+ <_>
+
+ 0 -1 1522 -1.0457210242748260e-02
+
+ 1.6078880429267883e-01 -7.2708033025264740e-02
+ <_>
+
+ 0 -1 1523 -1.2225599493831396e-03
+
+ 1.1558330059051514e-01 -1.2233489751815796e-01
+ <_>
+
+ 0 -1 1524 1.6061630100011826e-02
+
+ 2.8201790526509285e-02 -5.0996178388595581e-01
+ <_>
+
+ 0 -1 1525 -1.6162030398845673e-02
+
+ -3.3857521414756775e-01 3.5924781113862991e-02
+ <_>
+
+ 0 -1 1526 7.2181350551545620e-03
+
+ -7.2706200182437897e-02 1.0624659806489944e-01
+ <_>
+
+ 0 -1 1527 -1.0416660457849503e-02
+
+ 1.6205810010433197e-01 -9.4567760825157166e-02
+ <_>
+
+ 0 -1 1528 1.3946600258350372e-02
+
+ 5.4169639945030212e-02 -3.2068040966987610e-01
+ <_>
+
+ 0 -1 1529 1.2734119780361652e-02
+
+ -8.6066111922264099e-02 1.9648639857769012e-01
+ <_>
+
+ 0 -1 1530 -2.7858370915055275e-02
+
+ -2.8409239649772644e-01 2.6706550270318985e-02
+ <_>
+
+ 0 -1 1531 -9.8931521177291870e-02
+
+ 5.8457607030868530e-01 -2.1955510601401329e-02
+ <_>
+
+ 0 -1 1532 2.3434299509972334e-03
+
+ 9.6475467085838318e-02 -1.2095340341329575e-01
+ <_>
+
+ 0 -1 1533 -2.3025700356811285e-03
+
+ 7.3297969996929169e-02 -2.2309069335460663e-01
+ <_>
+
+ 0 -1 1534 3.0791079625487328e-02
+
+ 1.1463879607617855e-02 -2.4034079909324646e-01
+ <_>
+
+ 0 -1 1535 -8.4339501336216927e-03
+
+ 2.9611539840698242e-01 -4.2663689702749252e-02
+ <_>
+
+ 0 -1 1536 -3.4617669880390167e-03
+
+ -2.1257869899272919e-01 4.2709458619356155e-02
+ <_>
+
+ 0 -1 1537 -3.3371929079294205e-02
+
+ 3.5299271345138550e-01 -3.5570569336414337e-02
+ <_>
+
+ 0 -1 1538 -3.7238128483295441e-02
+
+ -5.9177130460739136e-01 2.6775840669870377e-02
+ <_>
+
+ 0 -1 1539 -2.0860069990158081e-01
+
+ -5.7595241069793701e-01 1.9763559103012085e-02
+ <_>
+
+ 0 -1 1540 -6.8279817700386047e-02
+
+ 3.4582608938217163e-01 -3.7861179560422897e-02
+ <_>
+
+ 0 -1 1541 1.1600320227444172e-02
+
+ 5.7685580104589462e-02 -2.6008209586143494e-01
+ <_>
+
+ 0 -1 1542 -6.7218959331512451e-02
+
+ -4.5048278570175171e-01 1.2495189905166626e-02
+ <_>
+
+ 0 -1 1543 -5.1632397808134556e-03
+
+ 1.6146700084209442e-01 -7.6975770294666290e-02
+ <_>
+
+ 0 -1 1544 4.0113311260938644e-02
+
+ 1.3131230138242245e-02 -4.5731449127197266e-01
+ <_>
+
+ 0 -1 1545 3.7837740033864975e-02
+
+ 2.3001920431852341e-02 -5.3636288642883301e-01
+ <_>
+
+ 0 -1 1546 2.6023429818451405e-03
+
+ -6.1007440090179443e-02 1.7084220051765442e-01
+ <_>
+
+ 0 -1 1547 -7.1841642260551453e-02
+
+ -5.8330380916595459e-01 2.0075250416994095e-02
+ <_>
+
+ 0 -1 1548 -8.2885712618008256e-04
+
+ 5.3465340286493301e-02 -1.9092260301113129e-01
+ <_>
+
+ 0 -1 1549 -8.1979477545246482e-04
+
+ -2.3775930702686310e-01 4.5844908803701401e-02
+ <_>
+
+ 0 -1 1550 1.0474859736859798e-02
+
+ -4.0103420615196228e-02 2.4948400259017944e-01
+ <_>
+
+ 0 -1 1551 -6.3726361840963364e-03
+
+ -1.7087849974632263e-01 7.2894603013992310e-02
+ <_>
+
+ 0 -1 1552 -3.6113489419221878e-02
+
+ -3.6879929900169373e-01 1.8331730738282204e-02
+ <_>
+
+ 0 -1 1553 5.4730800911784172e-04
+
+ 7.2073057293891907e-02 -1.8893779814243317e-01
+ <_>
+
+ 0 -1 1554 1.7547659575939178e-02
+
+ -9.4452597200870514e-02 1.3311000168323517e-01
+ <_>
+
+ 0 -1 1555 6.3078789971768856e-03
+
+ 7.6223470270633698e-02 -1.6668230295181274e-01
+ <_>
+
+ 0 -1 1556 2.5120719801634550e-03
+
+ 5.0375527143478394e-01 -2.2624349221587181e-02
+ <_>
+
+ 0 -1 1557 4.5274170115590096e-03
+
+ -1.3446590304374695e-01 9.9167577922344208e-02
+ <_>
+
+ 0 -1 1558 -1.4772829308640212e-04
+
+ 3.9675179868936539e-02 -6.0015488415956497e-02
+ <_>
+
+ 0 -1 1559 1.4728739857673645e-02
+
+ 3.9208918809890747e-02 -3.0560019612312317e-01
+ <_>
+
+ 0 -1 1560 -5.6161261163651943e-03
+
+ -1.0845050215721130e-01 4.7754660248756409e-02
+ <_>
+
+ 0 -1 1561 -9.8265614360570908e-03
+
+ 1.6729339957237244e-01 -7.6756693422794342e-02
+ <_>
+
+ 0 -1 1562 1.7972329631447792e-02
+
+ -5.9147968888282776e-02 1.2773279845714569e-01
+ <_>
+
+ 0 -1 1563 1.1233139783143997e-02
+
+ -9.2626020312309265e-02 1.5735739469528198e-01
+ <_>
+
+ 0 -1 1564 1.3678249670192599e-03
+
+ -5.6156760454177856e-01 2.1800750866532326e-02
+ <_>
+
+ 0 -1 1565 -4.1535100899636745e-03
+
+ -2.6951169967651367e-01 4.1213478893041611e-02
+ <_>
+
+ 0 -1 1566 -6.7194692790508270e-02
+
+ 5.6008362770080566e-01 -2.0973740145564079e-02
+ <_>
+
+ 0 -1 1567 -8.0572411417961121e-02
+
+ -7.5846642255783081e-01 1.6614310443401337e-02
+ <_>
+
+ 0 -1 1568 -9.7504993900656700e-03
+
+ 2.2781279683113098e-01 -4.0246330201625824e-02
+ <_>
+
+ 0 -1 1569 5.6034037843346596e-03
+
+ -7.5519852340221405e-02 1.6372010111808777e-01
+ <_>
+
+ 0 -1 1570 -1.0232060216367245e-02
+
+ -3.5803198814392090e-01 4.6331088989973068e-02
+ <_>
+
+ 0 -1 1571 2.8616760391741991e-03
+
+ 6.7746236920356750e-02 -1.6429120302200317e-01
+ <_>
+
+ 0 -1 1572 7.7214869670569897e-03
+
+ 3.4494820982217789e-02 -1.7762580513954163e-01
+ <_>
+
+ 0 -1 1573 -7.0147789083421230e-03
+
+ 1.7282240092754364e-01 -6.5176323056221008e-02
+ <_>
+
+ 0 -1 1574 5.0470869988203049e-02
+
+ -2.7071960270404816e-02 3.5509440302848816e-01
+ <_>
+
+ 0 -1 1575 -5.7124681770801544e-03
+
+ -1.5901079773902893e-01 7.9559110105037689e-02
+ <_>
+
+ 0 -1 1576 8.7470682337880135e-03
+
+ 3.7789858877658844e-02 -1.9156649708747864e-01
+ <_>
+
+ 0 -1 1577 2.0058929920196533e-02
+
+ 2.7415299788117409e-02 -3.8070109486579895e-01
+ <_>
+
+ 0 -1 1578 -1.8094859551638365e-03
+
+ 1.0538379848003387e-01 -1.4996549487113953e-01
+ <_>
+
+ 0 -1 1579 -7.3339277878403664e-03
+
+ 2.9203268885612488e-01 -6.1218190938234329e-02
+ <_>
+
+ 0 -1 1580 4.4179419055581093e-03
+
+ 1.8868620693683624e-01 -5.8132741600275040e-02
+ <_>
+
+ 0 -1 1581 -1.3543309643864632e-02
+
+ -4.9409559369087219e-01 2.2855930030345917e-02
+ <_>
+
+ 0 -1 1582 3.6197271198034286e-02
+
+ -2.6089120656251907e-02 3.0890250205993652e-01
+ <_>
+
+ 0 -1 1583 -1.1831840127706528e-01
+
+ -5.9094661474227905e-01 1.8215280026197433e-02
+ <_>
+
+ 0 -1 1584 7.5656071305274963e-02
+
+ -3.5965580493211746e-02 3.0386120080947876e-01
+ <_>
+
+ 0 -1 1585 -1.3134519569575787e-02
+
+ -2.6306131482124329e-01 4.2262919247150421e-02
+ <_>
+
+ 0 -1 1586 1.8981160596013069e-02
+
+ -2.6483630761504173e-02 1.9371989369392395e-01
+ <_>
+
+ 0 -1 1587 -4.6003229916095734e-02
+
+ 4.0513500571250916e-01 -2.4454200640320778e-02
+ <_>
+
+ 0 -1 1588 -1.3232730329036713e-02
+
+ -2.9721269011497498e-01 4.7959219664335251e-02
+ <_>
+
+ 0 -1 1589 1.9586850702762604e-01
+
+ 1.0540399700403214e-02 -8.6647927761077881e-01
+ <_>
+
+ 0 -1 1590 9.6459556370973587e-03
+
+ -7.1334943175315857e-02 1.1469510197639465e-01
+ <_>
+
+ 0 -1 1591 -3.9044579025357962e-03
+
+ 1.0740319639444351e-01 -9.8514996469020844e-02
+ <_>
+
+ 0 -1 1592 1.6896370798349380e-02
+
+ -7.6805070042610168e-02 1.9533200562000275e-01
+ <_>
+
+ 0 -1 1593 -5.5025662295520306e-03
+
+ 5.0643190741539001e-02 -2.0898430049419403e-01
+ <_>
+
+ 0 -1 1594 -1.9621569663286209e-02
+
+ -2.9651358723640442e-01 3.2955050468444824e-02
+ <_>
+
+ 0 -1 1595 7.7158107887953520e-04
+
+ 4.6017099171876907e-02 -1.9982999563217163e-01
+ <_>
+
+ 0 -1 1596 -1.1102840304374695e-01
+
+ 5.7578712701797485e-01 -1.7741529271006584e-02
+ <_>
+
+ 0 -1 1597 1.4945500297471881e-03
+
+ 4.7335729002952576e-02 -2.0898909866809845e-01
+ <_>
+
+ 0 -1 1598 5.0667919218540192e-02
+
+ -1.8657619133591652e-02 3.4070459008216858e-01
+ <_>
+
+ 0 -1 1599 1.6073169186711311e-02
+
+ -3.6449488252401352e-02 2.6568078994750977e-01
+ <_>
+
+ 0 -1 1600 -2.6536740362644196e-02
+
+ -3.6141690611839294e-01 2.9734270647168159e-02
+ <_>
+
+ 0 -1 1601 -5.2550169639289379e-03
+
+ -1.3104499876499176e-01 8.2153528928756714e-02
+ <_>
+
+ 0 -1 1602 -1.6678560525178909e-02
+
+ 3.1324890255928040e-01 -4.5052528381347656e-02
+ <_>
+
+ 0 -1 1603 3.4808400087058544e-03
+
+ 8.2945778965950012e-02 -1.5753500163555145e-01
+ <_>
+
+ 0 -1 1604 -8.0889053642749786e-02
+
+ -6.4314198493957520e-01 7.1740332059562206e-03
+ <_>
+
+ 0 -1 1605 -5.4260632023215294e-03
+
+ 1.3533130288124084e-01 -1.0547909885644913e-01
+ <_>
+
+ 0 -1 1606 1.6630839556455612e-02
+
+ 4.1602101176977158e-02 -2.6668208837509155e-01
+ <_>
+
+ 0 -1 1607 1.7991060158237815e-03
+
+ 5.9531088918447495e-02 -1.8355309963226318e-01
+ <_>
+
+ 0 -1 1608 2.7219969779253006e-02
+
+ -2.6586830615997314e-02 2.2722280025482178e-01
+ <_>
+
+ 0 -1 1609 -9.6450755372643471e-03
+
+ -2.1428169310092926e-01 4.9515731632709503e-02
+ <_>
+
+ 0 -1 1610 8.3123803138732910e-02
+
+ -4.2176891118288040e-02 3.0793419480323792e-01
+ <_>
+
+ 0 -1 1611 1.4406450092792511e-02
+
+ -2.9500020667910576e-02 3.2144379615783691e-01
+ <_>
+
+ 0 -1 1612 4.7938730567693710e-03
+
+ 5.1244091242551804e-02 -1.0931850224733353e-01
+ <_>
+
+ 0 -1 1613 -2.8978011105209589e-03
+
+ -1.4344370365142822e-01 6.6597223281860352e-02
+ <_>
+
+ 0 -1 1614 -4.5887690037488937e-02
+
+ 1.8003830313682556e-01 -1.5642790123820305e-02
+ <_>
+
+ 0 -1 1615 -5.4717700928449631e-02
+
+ -3.5110801458358765e-01 3.0438890680670738e-02
+ <_>
+
+ 0 -1 1616 -1.9787369295954704e-02
+
+ 9.3385331332683563e-02 -4.9382571130990982e-02
+ <_>
+
+ 0 -1 1617 2.5110379792749882e-03
+
+ -6.6672600805759430e-02 1.4406199753284454e-01
+ <_>
+
+ 0 -1 1618 5.3660150617361069e-02
+
+ 1.4468840323388577e-02 -6.7007470130920410e-01
+ <_>
+
+ 0 -1 1619 -8.1825470551848412e-03
+
+ 1.1510120332241058e-01 -8.0932617187500000e-02
+ <_>
+
+ 0 -1 1620 -3.5225939936935902e-03
+
+ -1.4181140065193176e-01 6.1330620199441910e-02
+ <_>
+
+ 0 -1 1621 2.8271550312638283e-02
+
+ -2.8353890404105186e-02 3.7045130133628845e-01
+ <_>
+
+ 0 -1 1622 -6.4923018217086792e-02
+
+ -4.6481159329414368e-01 2.2807259112596512e-02
+ <_>
+
+ 0 -1 1623 -3.5065850615501404e-01
+
+ -8.2529050111770630e-01 1.1031460016965866e-02
+ <_>
+
+ 0 -1 1624 5.1821782253682613e-03
+
+ 3.6583270877599716e-02 -2.4567179381847382e-01
+ <_>
+
+ 0 -1 1625 9.2609220882877707e-04
+
+ -6.1898738145828247e-02 1.9307570159435272e-01
+ <_>
+
+ 0 -1 1626 2.5952830910682678e-03
+
+ 4.3015718460083008e-02 -1.9770270586013794e-01
+ <_>
+
+ 0 -1 1627 3.4880579914897680e-03
+
+ -6.8296536803245544e-02 1.5725280344486237e-01
+ <_>
+
+ 0 -1 1628 2.4002529680728912e-03
+
+ -6.8618178367614746e-02 6.8551987409591675e-02
+ <_>
+
+ 0 -1 1629 1.2020230060443282e-03
+
+ -1.2073139846324921e-01 9.5026522874832153e-02
+ <_>
+
+ 0 -1 1630 -2.0470360293984413e-02
+
+ -1.2891639769077301e-01 7.9386599361896515e-02
+ <_>
+
+ 0 -1 1631 -5.9516180306673050e-02
+
+ 2.4869689345359802e-01 -4.9729160964488983e-02
+ <_>
+
+ 0 -1 1632 -1.0568950325250626e-02
+
+ -1.8583840131759644e-01 2.0700320601463318e-02
+ <_>
+
+ 0 -1 1633 -1.4192920178174973e-02
+
+ -3.8137429952621460e-01 2.9879279434680939e-02
+ <_>
+
+ 0 -1 1634 -2.4968578945845366e-03
+
+ 9.1516681015491486e-02 -5.0178311765193939e-02
+ <_>
+
+ 0 -1 1635 1.7714010027702898e-04
+
+ -1.1470019817352295e-01 9.9245697259902954e-02
+ <_>
+
+ 0 -1 1636 7.8318670392036438e-02
+
+ 3.6057420074939728e-03 -9.9996072053909302e-01
+ <_>
+
+ 0 -1 1637 1.5502399764955044e-03
+
+ -1.2888610363006592e-01 7.9822011291980743e-02
+ <_>
+
+ 0 -1 1638 -6.6678877919912338e-03
+
+ -8.8244557380676270e-02 2.8102599084377289e-02
+ <_>
+
+ 0 -1 1639 -4.0497239679098129e-03
+
+ -1.4427180588245392e-01 8.7126396596431732e-02
+ <_>
+
+ 0 -1 1640 -3.5481531172990799e-02
+
+ -4.4681170582771301e-01 1.4808270148932934e-02
+ <_>
+
+ 0 -1 1641 -1.2597720138728619e-02
+
+ 8.9324191212654114e-02 -1.2518140673637390e-01
+ <_>
+
+ 0 -1 1642 7.4662449769675732e-03
+
+ 7.4888199567794800e-02 -1.3587780296802521e-01
+ <_>
+
+ 0 -1 1643 -6.7536987364292145e-02
+
+ 2.3416820168495178e-01 -4.0952268987894058e-02
+ <_>
+
+ 0 -1 1644 8.2704171538352966e-02
+
+ 7.6422439888119698e-03 -8.5177552700042725e-01
+ <_>
+
+ 0 -1 1645 -7.1595138870179653e-03
+
+ -1.8738010525703430e-01 5.5288419127464294e-02
+ <_>
+
+ 0 -1 1646 -1.0481069795787334e-02
+
+ 1.8271109461784363e-01 -5.9641968458890915e-02
+ <_>
+
+ 0 -1 1647 4.5238467864692211e-03
+
+ -8.3817601203918457e-02 1.4822180569171906e-01
+ <_>
+
+ 0 -1 1648 -2.6731120306067169e-04
+
+ -2.0896770060062408e-01 4.5835729688405991e-02
+ <_>
+
+ 0 -1 1649 3.3838581293821335e-02
+
+ 4.2582869529724121e-02 -2.1883819997310638e-01
+ <_>
+
+ 0 -1 1650 2.2287720348685980e-03
+
+ -1.3284230232238770e-01 8.1795319914817810e-02
+ <_>
+
+ 0 -1 1651 -5.4200361482799053e-03
+
+ -1.3896510004997253e-01 7.1154713630676270e-02
+ <_>
+
+ 0 -1 1652 -4.9642968922853470e-02
+
+ 4.8901641368865967e-01 -1.1556959711015224e-02
+ <_>
+
+ 0 -1 1653 3.3323399256914854e-03
+
+ 5.1426161080598831e-02 -1.8269440531730652e-01
+ <_>
+
+ 0 -1 1654 2.4343939498066902e-02
+
+ -3.1839560717344284e-02 1.2758859992027283e-01
+ <_>
+
+ 0 -1 1655 -2.3774489760398865e-02
+
+ 3.2773551344871521e-01 -2.7216760441660881e-02
+ <_>
+
+ 0 -1 1656 3.6809889134019613e-03
+
+ 5.2922040224075317e-02 -1.2880720198154449e-01
+ <_>
+
+ 0 -1 1657 -3.2609070185571909e-03
+
+ -1.4948120713233948e-01 6.5733537077903748e-02
+ <_>
+
+ 0 -1 1658 1.0793889872729778e-02
+
+ -3.2969951629638672e-02 3.2955420017242432e-01
+ <_>
+
+ 0 -1 1659 5.4287910461425781e-04
+
+ -1.0678680241107941e-01 9.8564229905605316e-02
+ <_>
+
+ 0 -1 1660 1.1902759782969952e-02
+
+ 3.5682920366525650e-02 -3.1317448616027832e-01
+ <_>
+
+ 0 -1 1661 2.4277849588543177e-03
+
+ -6.2080658972263336e-02 1.7598509788513184e-01
+ <_>
+
+ 0 -1 1662 -4.4930889271199703e-03
+
+ 1.1790850013494492e-01 -1.0593199729919434e-01
+ <_>
+ 143
+ -1.7262409925460815e+00
+
+ <_>
+
+ 0 -1 1663 -2.0656470209360123e-02
+
+ 2.5365149974822998e-01 -3.1044611334800720e-01
+ <_>
+
+ 0 -1 1664 -3.6518350243568420e-02
+
+ 2.4484130740165710e-01 -2.3221190273761749e-01
+ <_>
+
+ 0 -1 1665 4.9312350153923035e-01
+
+ -1.6275240480899811e-01 2.8116190433502197e-01
+ <_>
+
+ 0 -1 1666 2.0970099285477772e-05
+
+ -3.0840009450912476e-01 1.7317549884319305e-01
+ <_>
+
+ 0 -1 1667 1.3082929886877537e-02
+
+ -2.5983220338821411e-01 1.5675869584083557e-01
+ <_>
+
+ 0 -1 1668 -4.3061940232291818e-04
+
+ 7.8543603420257568e-02 -3.9016070961952209e-01
+ <_>
+
+ 0 -1 1669 -1.6367400065064430e-02
+
+ -4.3000039458274841e-01 7.4141636490821838e-02
+ <_>
+
+ 0 -1 1670 3.6269389092922211e-02
+
+ -1.7073200643062592e-01 1.8045969307422638e-01
+ <_>
+
+ 0 -1 1671 1.2340269982814789e-02
+
+ 8.8775381445884705e-02 -3.4402659535408020e-01
+ <_>
+
+ 0 -1 1672 -7.3516286909580231e-02
+
+ -4.1623479127883911e-01 -2.9528199229389429e-03
+ <_>
+
+ 0 -1 1673 4.6191830188035965e-04
+
+ 6.5629899501800537e-02 -4.1018250584602356e-01
+ <_>
+
+ 0 -1 1674 -1.4744039624929428e-02
+
+ 2.2775030136108398e-01 -7.9184867441654205e-02
+ <_>
+
+ 0 -1 1675 4.2559150606393814e-03
+
+ -2.4004960060119629e-01 1.1321090161800385e-01
+ <_>
+
+ 0 -1 1676 -3.6180280148983002e-03
+
+ -2.7612069249153137e-01 1.0118050128221512e-01
+ <_>
+
+ 0 -1 1677 4.6012919396162033e-02
+
+ 4.5763589441776276e-02 -5.4713648557662964e-01
+ <_>
+
+ 0 -1 1678 -1.6181809827685356e-02
+
+ 1.9489669799804688e-01 -7.3955342173576355e-02
+ <_>
+
+ 0 -1 1679 -2.3682719984208234e-05
+
+ 1.1729680001735687e-01 -1.9396829605102539e-01
+ <_>
+
+ 0 -1 1680 -2.1599140018224716e-03
+
+ -4.5654550194740295e-01 4.2699530720710754e-02
+ <_>
+
+ 0 -1 1681 -7.9827345907688141e-03
+
+ -5.4107201099395752e-01 4.0036130696535110e-02
+ <_>
+
+ 0 -1 1682 -8.1530469469726086e-04
+
+ -2.0640519261360168e-01 6.6795073449611664e-02
+ <_>
+
+ 0 -1 1683 -4.7501060180366039e-03
+
+ -3.6572128534317017e-01 7.5665749609470367e-02
+ <_>
+
+ 0 -1 1684 -3.4870140254497528e-02
+
+ -8.0093812942504883e-01 2.2356539964675903e-02
+ <_>
+
+ 0 -1 1685 -1.9949559122323990e-02
+
+ -3.9110630750656128e-01 4.6844650059938431e-02
+ <_>
+
+ 0 -1 1686 -5.9008211828768253e-03
+
+ 9.0756498277187347e-02 -1.7600280046463013e-01
+ <_>
+
+ 0 -1 1687 -1.4019970549270511e-03
+
+ -2.9260930418968201e-01 6.4894109964370728e-02
+ <_>
+
+ 0 -1 1688 -2.2886939346790314e-02
+
+ -4.8391869664192200e-01 5.0514958798885345e-02
+ <_>
+
+ 0 -1 1689 -1.0039290413260460e-02
+
+ 2.6921668648719788e-01 -7.5274370610713959e-02
+ <_>
+
+ 0 -1 1690 1.6729189082980156e-02
+
+ -7.3217533528804779e-02 2.2045159339904785e-01
+ <_>
+
+ 0 -1 1691 -2.0423909649252892e-02
+
+ -4.5161980390548706e-01 4.5858111232519150e-02
+ <_>
+
+ 0 -1 1692 -3.5104680806398392e-02
+
+ -5.5169981718063354e-01 2.3118300363421440e-02
+ <_>
+
+ 0 -1 1693 1.0697999969124794e-02
+
+ 3.3516589552164078e-02 -5.2482652664184570e-01
+ <_>
+
+ 0 -1 1694 -3.8978241384029388e-02
+
+ -6.2331187725067139e-01 2.6838419958949089e-02
+ <_>
+
+ 0 -1 1695 4.8226700164377689e-03
+
+ -1.1215549707412720e-01 1.5613789856433868e-01
+ <_>
+
+ 0 -1 1696 3.6878231167793274e-01
+
+ 1.9857980310916901e-02 -6.1260747909545898e-01
+ <_>
+
+ 0 -1 1697 -7.7059920877218246e-03
+
+ -3.7371110916137695e-01 4.3724238872528076e-02
+ <_>
+
+ 0 -1 1698 -6.6843323409557343e-02
+
+ -5.0772088766098022e-01 2.4401089176535606e-02
+ <_>
+
+ 0 -1 1699 3.7273049354553223e-02
+
+ 3.6522880196571350e-02 -4.3735611438751221e-01
+ <_>
+
+ 0 -1 1700 -3.3105209469795227e-02
+
+ -3.4438988566398621e-01 3.2440148293972015e-02
+ <_>
+
+ 0 -1 1701 5.3402669727802277e-03
+
+ 9.2385761439800262e-02 -1.7823779582977295e-01
+ <_>
+
+ 0 -1 1702 2.1542439237236977e-02
+
+ -1.9848670065402985e-01 5.1953200250864029e-02
+ <_>
+
+ 0 -1 1703 3.3289310336112976e-01
+
+ -6.0750268399715424e-02 2.8925099968910217e-01
+ <_>
+
+ 0 -1 1704 -6.6301261540502310e-04
+
+ 3.3636718988418579e-02 -2.8510418534278870e-01
+ <_>
+
+ 0 -1 1705 4.6686761081218719e-02
+
+ -4.9883669614791870e-01 3.3776078373193741e-02
+ <_>
+
+ 0 -1 1706 -2.2452229168266058e-03
+
+ -1.9685390591621399e-01 9.5161177217960358e-02
+ <_>
+
+ 0 -1 1707 -1.1499020271003246e-02
+
+ -3.2423889636993408e-01 5.2468359470367432e-02
+ <_>
+
+ 0 -1 1708 1.3134529814124107e-02
+
+ -6.7538492381572723e-02 2.7605938911437988e-01
+ <_>
+
+ 0 -1 1709 -1.5978980809450150e-02
+
+ 3.1496050953865051e-01 -7.6657392084598541e-02
+ <_>
+
+ 0 -1 1710 2.4199750274419785e-02
+
+ 5.5836521089076996e-02 -3.6609899997711182e-01
+ <_>
+
+ 0 -1 1711 4.0229028090834618e-03
+
+ -1.3053479790687561e-01 1.3470110297203064e-01
+ <_>
+
+ 0 -1 1712 -1.4172590337693691e-02
+
+ -8.8616542518138885e-02 5.5053278803825378e-02
+ <_>
+
+ 0 -1 1713 1.8967399373650551e-02
+
+ 5.1348548382520676e-02 -3.1439921259880066e-01
+ <_>
+
+ 0 -1 1714 2.6502970606088638e-02
+
+ -1.1065970361232758e-01 8.8080927729606628e-02
+ <_>
+
+ 0 -1 1715 -3.9654489606618881e-02
+
+ -5.0742971897125244e-01 3.2999441027641296e-02
+ <_>
+
+ 0 -1 1716 -8.9988503605127335e-03
+
+ 1.2830139696598053e-01 -7.3064133524894714e-02
+ <_>
+
+ 0 -1 1717 7.4613288044929504e-02
+
+ 3.1729809939861298e-02 -5.3899657726287842e-01
+ <_>
+
+ 0 -1 1718 3.3414870500564575e-02
+
+ -6.1130590736865997e-02 2.4669900536537170e-01
+ <_>
+
+ 0 -1 1719 9.6071150619536638e-04
+
+ 1.2528179585933685e-01 -1.4304199814796448e-01
+ <_>
+
+ 0 -1 1720 -8.6224973201751709e-03
+
+ -2.2081799805164337e-01 4.7569438815116882e-02
+ <_>
+
+ 0 -1 1721 3.9893008768558502e-02
+
+ -5.1774360239505768e-02 3.1735679507255554e-01
+ <_>
+
+ 0 -1 1722 8.5388116538524628e-02
+
+ -3.5584390163421631e-02 4.1974198818206787e-01
+ <_>
+
+ 0 -1 1723 6.3205747865140438e-03
+
+ 6.9412536919116974e-02 -2.9979988932609558e-01
+ <_>
+
+ 0 -1 1724 -5.8932311832904816e-02
+
+ -4.6194219589233398e-01 2.2290540859103203e-02
+ <_>
+
+ 0 -1 1725 -1.0054419748485088e-02
+
+ 2.3649129271507263e-01 -6.6811926662921906e-02
+ <_>
+
+ 0 -1 1726 -2.5194720365107059e-05
+
+ 7.8815452754497528e-02 -1.1585489660501480e-01
+ <_>
+
+ 0 -1 1727 -5.9346649795770645e-02
+
+ -5.8799749612808228e-01 3.0486419796943665e-02
+ <_>
+
+ 0 -1 1728 2.0421659573912621e-02
+
+ 3.9184041321277618e-02 -2.6986798644065857e-01
+ <_>
+
+ 0 -1 1729 -4.0381640195846558e-02
+
+ -6.1601102352142334e-01 2.5353100150823593e-02
+ <_>
+
+ 0 -1 1730 1.7877650260925293e-01
+
+ -5.7135760784149170e-02 1.7361579835414886e-01
+ <_>
+
+ 0 -1 1731 -2.2120740264654160e-02
+
+ -3.7697589397430420e-01 4.2690049856901169e-02
+ <_>
+
+ 0 -1 1732 1.1585020273923874e-01
+
+ 9.8102567717432976e-03 -6.1380887031555176e-01
+ <_>
+
+ 0 -1 1733 9.7944810986518860e-02
+
+ 3.6329559981822968e-02 -4.5240780711174011e-01
+ <_>
+
+ 0 -1 1734 -2.9123030602931976e-02
+
+ -6.5607357025146484e-01 8.4500880911946297e-03
+ <_>
+
+ 0 -1 1735 -1.3053599745035172e-02
+
+ -3.4685650467872620e-01 4.6511679887771606e-02
+ <_>
+
+ 0 -1 1736 1.3451489619910717e-02
+
+ 3.4420430660247803e-02 -1.0168869793415070e-01
+ <_>
+
+ 0 -1 1737 -2.3957140743732452e-02
+
+ -8.4189480543136597e-01 1.9317319616675377e-02
+ <_>
+
+ 0 -1 1738 -1.3450190424919128e-01
+
+ 3.9132338762283325e-01 -2.1901259198784828e-02
+ <_>
+
+ 0 -1 1739 -1.0342430323362350e-01
+
+ 6.0790222883224487e-01 -2.5869879871606827e-02
+ <_>
+
+ 0 -1 1740 -4.1464429348707199e-02
+
+ -3.9631319046020508e-01 3.7771981209516525e-02
+ <_>
+
+ 0 -1 1741 -3.4945748746395111e-02
+
+ -4.5746931433677673e-01 3.2913569360971451e-02
+ <_>
+
+ 0 -1 1742 1.4289909973740578e-02
+
+ -5.0757531076669693e-02 3.1772908568382263e-01
+ <_>
+
+ 0 -1 1743 -5.4311589337885380e-03
+
+ 2.4708689749240875e-01 -7.8526623547077179e-02
+ <_>
+
+ 0 -1 1744 2.6972589548677206e-03
+
+ -3.4061861038208008e-01 5.0948519259691238e-02
+ <_>
+
+ 0 -1 1745 -4.3831961229443550e-03
+
+ 8.0095797777175903e-02 -2.0902189612388611e-01
+ <_>
+
+ 0 -1 1746 -1.5958329662680626e-02
+
+ -2.4625590443611145e-01 5.8348231017589569e-02
+ <_>
+
+ 0 -1 1747 4.5252371579408646e-02
+
+ 4.1630141437053680e-02 -3.5550931096076965e-01
+ <_>
+
+ 0 -1 1748 -1.8278149887919426e-02
+
+ 3.0804929137229919e-01 -4.7184839844703674e-02
+ <_>
+
+ 0 -1 1749 2.5277629494667053e-02
+
+ 2.9698649421334267e-02 -5.3776097297668457e-01
+ <_>
+
+ 0 -1 1750 7.2078350931406021e-03
+
+ -1.2820510566234589e-01 1.1753190308809280e-01
+ <_>
+
+ 0 -1 1751 -1.4014700055122375e-01
+
+ -4.5020869374275208e-01 3.2753791660070419e-02
+ <_>
+
+ 0 -1 1752 -4.5832369476556778e-02
+
+ -4.2000839114189148e-01 2.4114929139614105e-02
+ <_>
+
+ 0 -1 1753 -4.3976899236440659e-02
+
+ -4.5973241329193115e-01 3.3604741096496582e-02
+ <_>
+
+ 0 -1 1754 -1.0124820284545422e-02
+
+ 1.6260810196399689e-01 -6.6449157893657684e-02
+ <_>
+
+ 0 -1 1755 -1.3071260182186961e-03
+
+ 1.1608310043811798e-01 -1.3168659806251526e-01
+ <_>
+
+ 0 -1 1756 4.5284889638423920e-02
+
+ 3.5751760005950928e-02 -4.4795739650726318e-01
+ <_>
+
+ 0 -1 1757 -2.0851079374551773e-02
+
+ 2.4665319919586182e-01 -6.5854541957378387e-02
+ <_>
+
+ 0 -1 1758 2.6742550544440746e-03
+
+ 5.1683109253644943e-02 -1.3699389994144440e-01
+ <_>
+
+ 0 -1 1759 1.3148089637979865e-03
+
+ 7.7798873186111450e-02 -2.1064509451389313e-01
+ <_>
+
+ 0 -1 1760 -1.8174739554524422e-02
+
+ 1.7355039715766907e-01 -7.2417192161083221e-02
+ <_>
+
+ 0 -1 1761 1.4314319938421249e-02
+
+ 8.1756986677646637e-02 -1.7111450433731079e-01
+ <_>
+
+ 0 -1 1762 -1.6486430540680885e-02
+
+ 2.2809509932994843e-01 -6.5906368196010590e-02
+ <_>
+
+ 0 -1 1763 3.0756060034036636e-02
+
+ 3.8717139512300491e-02 -4.0505141019821167e-01
+ <_>
+
+ 0 -1 1764 2.6106089353561401e-02
+
+ 3.0850199982523918e-02 -2.7759250998497009e-01
+ <_>
+
+ 0 -1 1765 8.0401107668876648e-02
+
+ 2.9792500659823418e-02 -4.4742569327354431e-01
+ <_>
+
+ 0 -1 1766 -1.8350789323449135e-02
+
+ 1.1515419930219650e-01 -2.8744319453835487e-02
+ <_>
+
+ 0 -1 1767 3.4827049821615219e-02
+
+ 2.8738139197230339e-02 -4.8401808738708496e-01
+ <_>
+
+ 0 -1 1768 -8.8250182569026947e-02
+
+ -4.2635539174079895e-01 3.0173489823937416e-02
+ <_>
+
+ 0 -1 1769 1.4836989343166351e-01
+
+ 2.2089749574661255e-02 -5.5364227294921875e-01
+ <_>
+
+ 0 -1 1770 -1.8949609249830246e-02
+
+ -2.3020160198211670e-01 3.9267301559448242e-02
+ <_>
+
+ 0 -1 1771 -5.6775949895381927e-02
+
+ 3.5013529658317566e-01 -4.0862828493118286e-02
+ <_>
+
+ 0 -1 1772 6.2286540865898132e-02
+
+ 2.2344540804624557e-02 -7.1082341670989990e-01
+ <_>
+
+ 0 -1 1773 -3.8629550486803055e-02
+
+ -3.2933491468429565e-01 3.8508068770170212e-02
+ <_>
+
+ 0 -1 1774 2.8154330328106880e-02
+
+ -7.3690913617610931e-02 1.8824370205402374e-01
+ <_>
+
+ 0 -1 1775 -1.0570179671049118e-02
+
+ -2.7806881070137024e-01 4.7679189592599869e-02
+ <_>
+
+ 0 -1 1776 5.6604571640491486e-02
+
+ 2.4767610430717468e-01 -5.6830938905477524e-02
+ <_>
+
+ 0 -1 1777 -2.8522670269012451e-01
+
+ 5.2345401048660278e-01 -2.3652829229831696e-02
+ <_>
+
+ 0 -1 1778 3.4807138144969940e-02
+
+ 2.4819910526275635e-02 -4.3205270171165466e-01
+ <_>
+
+ 0 -1 1779 -2.3218799382448196e-02
+
+ 2.9929161071777344e-01 -4.4712670147418976e-02
+ <_>
+
+ 0 -1 1780 -6.3094392418861389e-02
+
+ 3.3279260993003845e-01 -1.6075499355792999e-02
+ <_>
+
+ 0 -1 1781 3.0182430148124695e-01
+
+ -7.5196906924247742e-02 1.9139809906482697e-01
+ <_>
+
+ 0 -1 1782 2.3077869787812233e-02
+
+ 3.6844979971647263e-02 -2.8761258721351624e-01
+ <_>
+
+ 0 -1 1783 1.0964149981737137e-01
+
+ 3.7548121064901352e-02 -4.1763558983802795e-01
+ <_>
+
+ 0 -1 1784 2.9672039672732353e-02
+
+ -7.8409820795059204e-02 1.3064210116863251e-01
+ <_>
+
+ 0 -1 1785 6.3356538303196430e-03
+
+ 6.7014321684837341e-02 -2.0481500029563904e-01
+ <_>
+
+ 0 -1 1786 -1.9940949976444244e-02
+
+ 8.4663636982440948e-02 -4.2069409042596817e-02
+ <_>
+
+ 0 -1 1787 -4.7988001257181168e-02
+
+ -6.1099517345428467e-01 2.2842260077595711e-02
+ <_>
+
+ 0 -1 1788 4.8280019313097000e-02
+
+ 7.4727279134094715e-03 -7.5153297185897827e-01
+ <_>
+
+ 0 -1 1789 -2.5825301418080926e-04
+
+ 3.5517089068889618e-02 -3.2686069607734680e-01
+ <_>
+
+ 0 -1 1790 -4.8175308853387833e-02
+
+ -5.8099460601806641e-01 1.9760759547352791e-02
+ <_>
+
+ 0 -1 1791 -2.8606340289115906e-02
+
+ 3.2096970081329346e-01 -4.0734320878982544e-02
+ <_>
+
+ 0 -1 1792 -4.3328531086444855e-02
+
+ -3.3021429181098938e-01 3.1527239829301834e-02
+ <_>
+
+ 0 -1 1793 2.2753410041332245e-02
+
+ 3.7327829748392105e-02 -3.6291739344596863e-01
+ <_>
+
+ 0 -1 1794 1.8975350030814297e-05
+
+ -1.1503349989652634e-01 4.1816640645265579e-02
+ <_>
+
+ 0 -1 1795 1.8077540397644043e-01
+
+ -5.5751871317625046e-02 2.2424830496311188e-01
+ <_>
+
+ 0 -1 1796 -1.2539149820804596e-01
+
+ -8.8098400831222534e-01 3.8788339588791132e-03
+ <_>
+
+ 0 -1 1797 -8.0908974632620811e-03
+
+ 2.6210701465606689e-01 -5.3706649690866470e-02
+ <_>
+
+ 0 -1 1798 9.9102966487407684e-03
+
+ -1.2978099286556244e-01 8.3635807037353516e-02
+ <_>
+
+ 0 -1 1799 2.4792920798063278e-02
+
+ -1.4584439992904663e-01 9.2305660247802734e-02
+ <_>
+
+ 0 -1 1800 4.5074880123138428e-02
+
+ -7.2375498712062836e-02 2.6057431101799011e-01
+ <_>
+
+ 0 -1 1801 -7.9205513000488281e-02
+
+ -6.2073522806167603e-01 2.1323349326848984e-02
+ <_>
+
+ 0 -1 1802 -4.4725250452756882e-02
+
+ -6.4248198270797729e-01 9.5317112281918526e-03
+ <_>
+
+ 0 -1 1803 -3.4065779298543930e-02
+
+ 3.0759710073471069e-01 -4.2296990752220154e-02
+ <_>
+
+ 0 -1 1804 -2.9756739735603333e-02
+
+ 2.5211650133132935e-01 -3.1183030456304550e-02
+ <_>
+
+ 0 -1 1805 -3.2026950269937515e-02
+
+ -5.5300801992416382e-01 2.8021570295095444e-02
+ <_>
+ 193
+ -1.4976780414581299e+00
+
+ <_>
+
+ 0 -1 1806 2.8652619570493698e-02
+
+ -2.1822139620780945e-01 2.2675579786300659e-01
+ <_>
+
+ 0 -1 1807 4.3320041149854660e-03
+
+ -2.8597879409790039e-01 1.0589209944009781e-01
+ <_>
+
+ 0 -1 1808 5.6604119017720222e-03
+
+ 8.8295452296733856e-02 -3.8920480012893677e-01
+ <_>
+
+ 0 -1 1809 2.4440148845314980e-03
+
+ -3.5482680797576904e-01 9.9362373352050781e-02
+ <_>
+
+ 0 -1 1810 2.2643520496785641e-03
+
+ -2.8858441114425659e-01 8.8367857038974762e-02
+ <_>
+
+ 0 -1 1811 5.3952648304402828e-03
+
+ 8.5537381470203400e-02 -3.0366399884223938e-01
+ <_>
+
+ 0 -1 1812 -7.2699488373473287e-04
+
+ 7.4840240180492401e-02 -3.4039780497550964e-01
+ <_>
+
+ 0 -1 1813 -9.7503658616915345e-04
+
+ 1.2008629739284515e-01 -2.5634410977363586e-01
+ <_>
+
+ 0 -1 1814 4.0540988557040691e-03
+
+ 6.7266032099723816e-02 -3.5701939463615417e-01
+ <_>
+
+ 0 -1 1815 2.5258921086788177e-03
+
+ -4.1966471076011658e-01 5.5665798485279083e-02
+ <_>
+
+ 0 -1 1816 -1.2021360453218222e-03
+
+ 1.0004480183124542e-01 -2.1932320296764374e-01
+ <_>
+
+ 0 -1 1817 7.7549100387841463e-04
+
+ -1.3562729954719543e-01 1.1973659694194794e-01
+ <_>
+
+ 0 -1 1818 -5.0699848681688309e-02
+
+ 4.5418289303779602e-01 -3.9030350744724274e-02
+ <_>
+
+ 0 -1 1819 1.3364490121603012e-02
+
+ 1.1166039854288101e-01 -1.7938789725303650e-01
+ <_>
+
+ 0 -1 1820 -1.5418980270624161e-02
+
+ -3.5180059075355530e-01 4.7354999929666519e-02
+ <_>
+
+ 0 -1 1821 -4.2981099337339401e-02
+
+ 3.9232799410820007e-01 -4.5337028801441193e-02
+ <_>
+
+ 0 -1 1822 6.2867929227650166e-03
+
+ 6.4331822097301483e-02 -2.2239510715007782e-01
+ <_>
+
+ 0 -1 1823 -3.5951940808445215e-03
+
+ 9.5404297113418579e-02 -1.5338289737701416e-01
+ <_>
+
+ 0 -1 1824 -7.6760917901992798e-02
+
+ -6.5099817514419556e-01 1.7283650115132332e-02
+ <_>
+
+ 0 -1 1825 4.6225200640037656e-04
+
+ -4.3415609002113342e-01 2.5241859257221222e-02
+ <_>
+
+ 0 -1 1826 7.5868278509005904e-04
+
+ -1.4624330401420593e-01 9.6319071948528290e-02
+ <_>
+
+ 0 -1 1827 -5.0252641085535288e-04
+
+ 1.3584020733833313e-01 -2.3181040585041046e-01
+ <_>
+
+ 0 -1 1828 9.7315143793821335e-03
+
+ -8.5155591368675232e-02 2.0156989991664886e-01
+ <_>
+
+ 0 -1 1829 -2.6432229205965996e-02
+
+ -3.7002518773078918e-01 2.4616630747914314e-02
+ <_>
+
+ 0 -1 1830 -4.4683468877337873e-04
+
+ 1.0048960149288177e-01 -1.8588609993457794e-01
+ <_>
+
+ 0 -1 1831 1.9872789271175861e-03
+
+ 5.3223919123411179e-02 -3.1603801250457764e-01
+ <_>
+
+ 0 -1 1832 3.1368629424832761e-04
+
+ -1.3213190436363220e-01 9.5771767199039459e-02
+ <_>
+
+ 0 -1 1833 5.9834700077772141e-03
+
+ -7.5681813061237335e-02 1.5230950713157654e-01
+ <_>
+
+ 0 -1 1834 -5.0965389236807823e-03
+
+ -1.8477819859981537e-01 7.6022140681743622e-02
+ <_>
+
+ 0 -1 1835 -1.9187610596418381e-02
+
+ 2.1431809663772583e-01 -4.9764219671487808e-02
+ <_>
+
+ 0 -1 1836 2.3320479318499565e-02
+
+ -4.8689320683479309e-02 2.6578998565673828e-01
+ <_>
+
+ 0 -1 1837 -6.9449091097339988e-04
+
+ -1.5433350205421448e-01 8.7410651147365570e-02
+ <_>
+
+ 0 -1 1838 4.8893648199737072e-03
+
+ 5.1342789083719254e-02 -2.6165360212326050e-01
+ <_>
+
+ 0 -1 1839 -2.7428869158029556e-02
+
+ -3.7972038984298706e-01 3.1821161508560181e-02
+ <_>
+
+ 0 -1 1840 -1.7734549939632416e-02
+
+ 1.9976620376110077e-01 -6.2318049371242523e-02
+ <_>
+
+ 0 -1 1841 1.5148259699344635e-01
+
+ 7.4510741978883743e-03 -5.8031332492828369e-01
+ <_>
+
+ 0 -1 1842 1.5324390260502696e-03
+
+ -1.2510550022125244e-01 1.0431899875402451e-01
+ <_>
+
+ 0 -1 1843 -1.2310810387134552e-02
+
+ -2.3539729416370392e-01 5.3646210581064224e-02
+ <_>
+
+ 0 -1 1844 -1.1210800148546696e-02
+
+ 1.0759239643812180e-01 -1.2055230140686035e-01
+ <_>
+
+ 0 -1 1845 2.7532500680536032e-03
+
+ -6.6479906439781189e-02 1.7321150004863739e-01
+ <_>
+
+ 0 -1 1846 -8.4678819403052330e-03
+
+ -3.1850680708885193e-01 4.2280819267034531e-02
+ <_>
+
+ 0 -1 1847 -7.3283319361507893e-03
+
+ -1.6369259357452393e-01 3.1772349029779434e-02
+ <_>
+
+ 0 -1 1848 4.7156549990177155e-02
+
+ -6.1667099595069885e-02 1.7410990595817566e-01
+ <_>
+
+ 0 -1 1849 8.2125868648290634e-03
+
+ 6.7069798707962036e-02 -2.2030070424079895e-01
+ <_>
+
+ 0 -1 1850 7.6550841331481934e-03
+
+ 6.1422310769557953e-02 -1.9357620179653168e-01
+ <_>
+
+ 0 -1 1851 -4.5372851192951202e-02
+
+ -4.7565659880638123e-01 2.2869469597935677e-02
+ <_>
+
+ 0 -1 1852 3.7434820551425219e-03
+
+ -9.0940922498703003e-02 1.3841210305690765e-01
+ <_>
+
+ 0 -1 1853 2.3490150924772024e-03
+
+ 6.3291497528553009e-02 -1.5506389737129211e-01
+ <_>
+
+ 0 -1 1854 -2.4149749428033829e-02
+
+ 3.4588441252708435e-01 -3.1525820493698120e-02
+ <_>
+
+ 0 -1 1855 1.4878350310027599e-02
+
+ 2.4215059354901314e-02 -3.2387629151344299e-01
+ <_>
+
+ 0 -1 1856 2.9843160882592201e-02
+
+ -2.7817690744996071e-02 4.0939471125602722e-01
+ <_>
+
+ 0 -1 1857 7.1600051596760750e-03
+
+ -4.6596240252256393e-02 7.4547067284584045e-02
+ <_>
+
+ 0 -1 1858 5.6267209351062775e-02
+
+ 2.9551850631833076e-02 -4.0098059177398682e-01
+ <_>
+
+ 0 -1 1859 -4.5356149785220623e-03
+
+ 8.1820577383041382e-02 -1.0619299858808517e-01
+ <_>
+
+ 0 -1 1860 -1.3697359710931778e-02
+
+ -1.9359089434146881e-01 7.0917747914791107e-02
+ <_>
+
+ 0 -1 1861 -1.5458730049431324e-03
+
+ -2.1987679600715637e-01 2.8396489098668098e-02
+ <_>
+
+ 0 -1 1862 2.9332858975976706e-03
+
+ -7.6153233647346497e-02 1.6460180282592773e-01
+ <_>
+
+ 0 -1 1863 3.4973609726876020e-03
+
+ -6.8196080625057220e-02 1.6717350482940674e-01
+ <_>
+
+ 0 -1 1864 -1.8307069316506386e-02
+
+ -1.8867099285125732e-01 6.9932736456394196e-02
+ <_>
+
+ 0 -1 1865 -1.7092080414295197e-01
+
+ -5.0067770481109619e-01 7.8164357692003250e-03
+ <_>
+
+ 0 -1 1866 4.1620130650699139e-03
+
+ 5.5900041013956070e-02 -2.2972549498081207e-01
+ <_>
+
+ 0 -1 1867 -1.9724309444427490e-02
+
+ 3.2998558878898621e-01 -3.6602400243282318e-02
+ <_>
+
+ 0 -1 1868 5.3331600502133369e-03
+
+ -1.4134259521961212e-01 8.8277637958526611e-02
+ <_>
+
+ 0 -1 1869 -4.2182218283414841e-02
+
+ -6.6718780994415283e-01 1.5770509839057922e-02
+ <_>
+
+ 0 -1 1870 -5.2826730534434319e-03
+
+ 1.7025630176067352e-01 -6.8491317331790924e-02
+ <_>
+
+ 0 -1 1871 -2.3227441124618053e-03
+
+ 7.2378590703010559e-02 -1.0066709667444229e-01
+ <_>
+
+ 0 -1 1872 -1.6239390242844820e-03
+
+ -2.2501319646835327e-01 5.5898498743772507e-02
+ <_>
+
+ 0 -1 1873 5.6083410978317261e-02
+
+ 1.3646169565618038e-02 -4.9306789040565491e-01
+ <_>
+
+ 0 -1 1874 -3.0199930071830750e-02
+
+ 2.3070830106735229e-01 -5.3645938634872437e-02
+ <_>
+
+ 0 -1 1875 1.9157670438289642e-02
+
+ 3.6830320954322815e-02 -3.9522978663444519e-01
+ <_>
+
+ 0 -1 1876 3.5853029694408178e-03
+
+ -6.1893220990896225e-02 1.7583209276199341e-01
+ <_>
+
+ 0 -1 1877 -2.8775330632925034e-02
+
+ -3.1838440895080566e-01 2.3103740066289902e-02
+ <_>
+
+ 0 -1 1878 2.5611401069909334e-03
+
+ -1.0484419763088226e-01 9.7152568399906158e-02
+ <_>
+
+ 0 -1 1879 -3.1554490327835083e-02
+
+ 2.9366511106491089e-01 -2.4189069867134094e-02
+ <_>
+
+ 0 -1 1880 -7.3520588921383023e-04
+
+ 9.7711041569709778e-02 -1.5248039364814758e-01
+ <_>
+
+ 0 -1 1881 -4.7993879765272141e-02
+
+ -9.4587820768356323e-01 9.0406481176614761e-03
+ <_>
+
+ 0 -1 1882 5.2936570718884468e-03
+
+ 3.3320371061563492e-02 -3.1268939375877380e-01
+ <_>
+
+ 0 -1 1883 1.6903249546885490e-02
+
+ -2.4132709950208664e-02 2.8483408689498901e-01
+ <_>
+
+ 0 -1 1884 -7.0723611861467361e-03
+
+ -1.7524200677871704e-01 7.2713881731033325e-02
+ <_>
+
+ 0 -1 1885 6.4191617071628571e-02
+
+ -2.0969670265913010e-02 3.5402628779411316e-01
+ <_>
+
+ 0 -1 1886 2.9694940894842148e-03
+
+ -7.5086936354637146e-02 1.4321349561214447e-01
+ <_>
+
+ 0 -1 1887 -2.0105259492993355e-02
+
+ 6.0784012079238892e-01 -1.8104499205946922e-02
+ <_>
+
+ 0 -1 1888 -1.3169869780540466e-02
+
+ -5.4678368568420410e-01 2.4742240086197853e-02
+ <_>
+
+ 0 -1 1889 -1.4226729981601238e-02
+
+ -4.6722590923309326e-01 3.1489629298448563e-02
+ <_>
+
+ 0 -1 1890 3.7746191024780273e-02
+
+ -3.8495831191539764e-02 3.5333481431007385e-01
+ <_>
+
+ 0 -1 1891 -3.8704369217157364e-03
+
+ 1.4984290301799774e-01 -5.6549768894910812e-02
+ <_>
+
+ 0 -1 1892 -1.1565440334379673e-02
+
+ -1.5227930247783661e-01 7.6062962412834167e-02
+ <_>
+
+ 0 -1 1893 -8.8854476809501648e-02
+
+ -7.2967928647994995e-01 4.8231678083539009e-03
+ <_>
+
+ 0 -1 1894 -2.0447981078177691e-03
+
+ 1.4148180186748505e-01 -8.3200357854366302e-02
+ <_>
+
+ 0 -1 1895 -1.1762860231101513e-02
+
+ -4.0200519561767578e-01 2.6679439470171928e-02
+ <_>
+
+ 0 -1 1896 -1.7539029940962791e-02
+
+ -3.7316259741783142e-01 3.0171979218721390e-02
+ <_>
+
+ 0 -1 1897 3.8314110133796930e-03
+
+ -9.3409948050975800e-02 7.9503498971462250e-02
+ <_>
+
+ 0 -1 1898 -1.4472359791398048e-02
+
+ 3.4333580732345581e-01 -4.3657060712575912e-02
+ <_>
+
+ 0 -1 1899 -2.6516690850257874e-02
+
+ -4.8230230808258057e-01 1.6811650246381760e-02
+ <_>
+
+ 0 -1 1900 -3.3194791525602341e-02
+
+ -4.3580260872840881e-01 2.2644890472292900e-02
+ <_>
+
+ 0 -1 1901 4.4987560249865055e-03
+
+ -3.2281540334224701e-02 8.9946307241916656e-02
+ <_>
+
+ 0 -1 1902 3.6823831032961607e-03
+
+ -6.8755462765693665e-02 1.4339810609817505e-01
+ <_>
+
+ 0 -1 1903 -1.1184140294790268e-01
+
+ -7.7756762504577637e-01 5.2246451377868652e-03
+ <_>
+
+ 0 -1 1904 -7.3255039751529694e-02
+
+ -5.5630749464035034e-01 1.9127149134874344e-02
+ <_>
+
+ 0 -1 1905 2.9855769127607346e-02
+
+ 2.1178830415010452e-02 -4.0850040316581726e-01
+ <_>
+
+ 0 -1 1906 -7.3472231626510620e-02
+
+ 8.2820487022399902e-01 -1.2452909722924232e-02
+ <_>
+
+ 0 -1 1907 -7.2046648710966110e-04
+
+ 9.9630527198314667e-02 -9.5278859138488770e-02
+ <_>
+
+ 0 -1 1908 -3.8003330701030791e-04
+
+ 1.0231109708547592e-01 -1.0351389646530151e-01
+ <_>
+
+ 0 -1 1909 -4.5453108847141266e-02
+
+ -6.4885061979293823e-01 1.1966000311076641e-02
+ <_>
+
+ 0 -1 1910 -5.1456969231367111e-04
+
+ -1.5083299577236176e-01 6.6544473171234131e-02
+ <_>
+
+ 0 -1 1911 2.7949180454015732e-02
+
+ 1.7186399549245834e-02 -3.7501189112663269e-01
+ <_>
+
+ 0 -1 1912 6.3039876520633698e-02
+
+ -4.3821588158607483e-02 2.4789440631866455e-01
+ <_>
+
+ 0 -1 1913 -2.2690258920192719e-03
+
+ 7.4712008237838745e-02 -1.1131580173969269e-01
+ <_>
+
+ 0 -1 1914 -3.8063840474933386e-03
+
+ -1.5530909597873688e-01 6.5264508128166199e-02
+ <_>
+
+ 0 -1 1915 3.7190090864896774e-02
+
+ -2.9698630794882774e-02 2.3071870207786560e-01
+ <_>
+
+ 0 -1 1916 2.1895840764045715e-02
+
+ 1.5778519213199615e-02 -6.3006269931793213e-01
+ <_>
+
+ 0 -1 1917 -3.1993988901376724e-02
+
+ 2.6250898838043213e-01 -2.4627109989523888e-02
+ <_>
+
+ 0 -1 1918 -1.6778679564595222e-02
+
+ -4.2436981201171875e-01 2.2607849910855293e-02
+ <_>
+
+ 0 -1 1919 5.2477661520242691e-02
+
+ -1.6188420355319977e-02 3.1766140460968018e-01
+ <_>
+
+ 0 -1 1920 1.0443729907274246e-01
+
+ 1.1290200054645538e-02 -8.6021018028259277e-01
+ <_>
+
+ 0 -1 1921 -6.5574781037867069e-03
+
+ 1.2225849926471710e-01 -5.6091431528329849e-02
+ <_>
+
+ 0 -1 1922 1.6797389835119247e-02
+
+ 3.5811539739370346e-02 -3.1163010001182556e-01
+ <_>
+
+ 0 -1 1923 5.0427159294486046e-03
+
+ -5.0439529120922089e-02 6.3930332660675049e-02
+ <_>
+
+ 0 -1 1924 -3.4571789205074310e-02
+
+ -5.6278371810913086e-01 1.6692740842700005e-02
+ <_>
+
+ 0 -1 1925 3.7999521009624004e-03
+
+ -6.8566747009754181e-02 9.6017867326736450e-02
+ <_>
+
+ 0 -1 1926 -1.1995599605143070e-02
+
+ 1.3819910585880280e-01 -7.1510016918182373e-02
+ <_>
+
+ 0 -1 1927 1.1098429560661316e-02
+
+ 5.3506620228290558e-02 -1.0482089966535568e-01
+ <_>
+
+ 0 -1 1928 -1.2905290722846985e-01
+
+ -6.7262178659439087e-01 1.5195850282907486e-02
+ <_>
+
+ 0 -1 1929 6.3130040653049946e-03
+
+ -6.1030130833387375e-02 1.0355649888515472e-01
+ <_>
+
+ 0 -1 1930 4.0955888107419014e-03
+
+ 7.0534646511077881e-02 -1.4484269917011261e-01
+ <_>
+
+ 0 -1 1931 -1.0530550032854080e-02
+
+ 9.8569639027118683e-02 -3.7973210215568542e-02
+ <_>
+
+ 0 -1 1932 3.6035990342497826e-03
+
+ 5.1277790218591690e-02 -1.8671560287475586e-01
+ <_>
+
+ 0 -1 1933 1.1999369598925114e-03
+
+ -6.3231408596038818e-02 1.0446310043334961e-01
+ <_>
+
+ 0 -1 1934 -1.9585370318964124e-04
+
+ 8.6044862866401672e-02 -1.1856850236654282e-01
+ <_>
+
+ 0 -1 1935 -1.2213560193777084e-01
+
+ -8.8419800996780396e-01 6.3145011663436890e-03
+ <_>
+
+ 0 -1 1936 -7.7650691382586956e-03
+
+ 1.3725960254669189e-01 -8.0412857234477997e-02
+ <_>
+
+ 0 -1 1937 1.5734319388866425e-01
+
+ 1.2743320316076279e-02 -6.5401297807693481e-01
+ <_>
+
+ 0 -1 1938 -7.6066371984779835e-03
+
+ -1.3797719776630402e-01 7.6062493026256561e-02
+ <_>
+
+ 0 -1 1939 -4.3096300214529037e-03
+
+ 1.1195199936628342e-01 -3.2390709966421127e-02
+ <_>
+
+ 0 -1 1940 -3.2239840365946293e-03
+
+ 2.1420599520206451e-01 -5.8244630694389343e-02
+ <_>
+
+ 0 -1 1941 8.3754826337099075e-03
+
+ 4.7615598887205124e-02 -2.4216049909591675e-01
+ <_>
+
+ 0 -1 1942 3.0904430896043777e-03
+
+ -9.0418681502342224e-02 9.9244832992553711e-02
+ <_>
+
+ 0 -1 1943 9.8243616521358490e-03
+
+ -4.4643919914960861e-02 1.0423039644956589e-01
+ <_>
+
+ 0 -1 1944 -3.2808810938149691e-03
+
+ -1.9123159348964691e-01 6.3141517341136932e-02
+ <_>
+
+ 0 -1 1945 3.6370379384607077e-03
+
+ 3.6944739520549774e-02 -1.1988619714975357e-01
+ <_>
+
+ 0 -1 1946 7.8952945768833160e-03
+
+ -7.1313530206680298e-02 1.6107399761676788e-01
+ <_>
+
+ 0 -1 1947 -3.3853040076792240e-03
+
+ -1.1704929918050766e-01 2.5579249486327171e-02
+ <_>
+
+ 0 -1 1948 -2.6786550879478455e-03
+
+ -1.7064009606838226e-01 6.0627460479736328e-02
+ <_>
+
+ 0 -1 1949 -4.5887688174843788e-03
+
+ 3.4779790788888931e-02 -6.8817831575870514e-02
+ <_>
+
+ 0 -1 1950 -6.1642300337553024e-02
+
+ 5.1108109951019287e-01 -1.9752239808440208e-02
+ <_>
+
+ 0 -1 1951 2.5235159322619438e-02
+
+ 2.0203070715069771e-02 -3.4359911084175110e-01
+ <_>
+
+ 0 -1 1952 -2.1312809549272060e-03
+
+ 5.4698210209608078e-02 -1.6512370109558105e-01
+ <_>
+
+ 0 -1 1953 -8.2598842680454254e-02
+
+ 3.3804669976234436e-01 -2.8026569634675980e-02
+ <_>
+
+ 0 -1 1954 -5.6678601540625095e-03
+
+ -3.3786231279373169e-01 2.9727049171924591e-02
+ <_>
+
+ 0 -1 1955 -9.3317396938800812e-02
+
+ -6.7238032817840576e-01 2.0025020930916071e-03
+ <_>
+
+ 0 -1 1956 9.2052231775596738e-04
+
+ -1.3974259793758392e-01 6.3175596296787262e-02
+ <_>
+
+ 0 -1 1957 5.1411538152024150e-04
+
+ -8.1585250794887543e-02 5.9324279427528381e-02
+ <_>
+
+ 0 -1 1958 -6.7130490206182003e-03
+
+ -1.6645990312099457e-01 6.1560809612274170e-02
+ <_>
+
+ 0 -1 1959 3.1578689813613892e-03
+
+ -1.0710070282220840e-01 6.6695116460323334e-02
+ <_>
+
+ 0 -1 1960 1.2202030047774315e-02
+
+ -2.4845300242304802e-02 4.2458030581474304e-01
+ <_>
+
+ 0 -1 1961 -2.8585169464349747e-02
+
+ 2.3526839911937714e-01 -2.1121440455317497e-02
+ <_>
+
+ 0 -1 1962 2.3390499409288168e-03
+
+ 6.4441107213497162e-02 -1.4063580334186554e-01
+ <_>
+
+ 0 -1 1963 3.5900938510894775e-01
+
+ 1.2122919782996178e-02 -7.3121142387390137e-01
+ <_>
+
+ 0 -1 1964 7.6048658229410648e-03
+
+ -4.0700931102037430e-02 2.3581039905548096e-01
+ <_>
+
+ 0 -1 1965 4.4263368472456932e-03
+
+ 5.3039629012346268e-02 -1.5912020206451416e-01
+ <_>
+
+ 0 -1 1966 8.5811351891607046e-04
+
+ -8.5265956819057465e-02 1.0489220172166824e-01
+ <_>
+
+ 0 -1 1967 -4.2959367856383324e-03
+
+ -1.2851840257644653e-01 6.2752753496170044e-02
+ <_>
+
+ 0 -1 1968 4.4881720095872879e-03
+
+ 6.4671441912651062e-02 -1.8789650499820709e-01
+ <_>
+
+ 0 -1 1969 -4.9869619309902191e-02
+
+ 2.1496759355068207e-01 -3.5577021539211273e-02
+ <_>
+
+ 0 -1 1970 -1.1942230165004730e-01
+
+ -6.7953938245773315e-01 1.5091570094227791e-02
+ <_>
+
+ 0 -1 1971 6.2965508550405502e-04
+
+ -9.2145420610904694e-02 6.1806648969650269e-02
+ <_>
+
+ 0 -1 1972 2.9381969943642616e-03
+
+ 1.7903240025043488e-01 -4.9355998635292053e-02
+ <_>
+
+ 0 -1 1973 -2.2860679775476456e-02
+
+ 2.0976249873638153e-01 -3.1370889395475388e-02
+ <_>
+
+ 0 -1 1974 4.3369621038436890e-02
+
+ 1.8286330625414848e-02 -5.1288998126983643e-01
+ <_>
+
+ 0 -1 1975 1.9932509958744049e-01
+
+ 6.7204708466306329e-04 -8.9769357442855835e-01
+ <_>
+
+ 0 -1 1976 8.0751203000545502e-02
+
+ -2.0869649946689606e-02 4.3768700957298279e-01
+ <_>
+
+ 0 -1 1977 1.5349129680544138e-03
+
+ 3.6761760711669922e-02 -2.2203999757766724e-01
+ <_>
+
+ 0 -1 1978 -3.6580949090421200e-03
+
+ -1.5471710264682770e-01 6.7229896783828735e-02
+ <_>
+
+ 0 -1 1979 2.4743290618062019e-02
+
+ -5.5474709719419479e-02 1.7429579794406891e-01
+ <_>
+
+ 0 -1 1980 -1.6451500356197357e-02
+
+ 1.8817320466041565e-01 -5.5719010531902313e-02
+ <_>
+
+ 0 -1 1981 -8.4505761042237282e-03
+
+ -3.2943668961524963e-01 2.2743720561265945e-02
+ <_>
+
+ 0 -1 1982 2.9369179159402847e-02
+
+ 1.5479310415685177e-02 -5.9099632501602173e-01
+ <_>
+
+ 0 -1 1983 1.0524799674749374e-01
+
+ 2.1177560556679964e-03 -4.9212720990180969e-01
+ <_>
+
+ 0 -1 1984 -2.7816150337457657e-02
+
+ 3.6421439051628113e-01 -2.5163119658827782e-02
+ <_>
+
+ 0 -1 1985 5.3339339792728424e-03
+
+ -4.8402350395917892e-02 3.9851561188697815e-02
+ <_>
+
+ 0 -1 1986 1.1682730168104172e-02
+
+ 2.4898340925574303e-02 -3.5719999670982361e-01
+ <_>
+
+ 0 -1 1987 8.9094992727041245e-03
+
+ 4.6579260379076004e-02 -1.5088100731372833e-01
+ <_>
+
+ 0 -1 1988 7.3203681968152523e-03
+
+ 7.0891879498958588e-02 -1.3278549909591675e-01
+ <_>
+
+ 0 -1 1989 -2.0311130210757256e-02
+
+ 1.7783379554748535e-01 -3.7538051605224609e-02
+ <_>
+
+ 0 -1 1990 1.3689160114154220e-03
+
+ -1.2096449732780457e-01 7.8017823398113251e-02
+ <_>
+
+ 0 -1 1991 7.6994091272354126e-02
+
+ -8.7762605398893356e-03 3.2993561029434204e-01
+ <_>
+
+ 0 -1 1992 8.8949268683791161e-03
+
+ -5.5553250014781952e-02 1.6372109949588776e-01
+ <_>
+
+ 0 -1 1993 -1.8518440425395966e-02
+
+ -1.4479570090770721e-01 3.0250260606408119e-02
+ <_>
+
+ 0 -1 1994 -4.0174879133701324e-02
+
+ -2.4990509450435638e-01 4.0788788348436356e-02
+ <_>
+
+ 0 -1 1995 6.5176486968994141e-02
+
+ -1.4393090270459652e-02 3.7707069516181946e-01
+ <_>
+
+ 0 -1 1996 -1.4845930039882660e-02
+
+ 2.7375608682632446e-01 -3.3898409456014633e-02
+ <_>
+
+ 0 -1 1997 -6.1434650421142578e-01
+
+ -6.9167751073837280e-01 4.0905540809035301e-03
+ <_>
+
+ 0 -1 1998 1.4119890332221985e-01
+
+ 1.6643870621919632e-02 -5.8944582939147949e-01
+ <_>
+ 157
+ -1.5337220430374146e+00
+
+ <_>
+
+ 0 -1 1999 2.1962670609354973e-02
+
+ -3.0903491377830505e-01 2.1529789268970490e-01
+ <_>
+
+ 0 -1 2000 5.1272530108690262e-02
+
+ -2.2286629676818848e-01 2.9869711399078369e-01
+ <_>
+
+ 0 -1 2001 4.1870009154081345e-02
+
+ -2.7849119901657104e-01 2.0416070520877838e-01
+ <_>
+
+ 0 -1 2002 6.7551871761679649e-03
+
+ -2.1988549828529358e-01 7.3887020349502563e-02
+ <_>
+
+ 0 -1 2003 1.7311690375208855e-02
+
+ -3.4227430820465088e-01 1.3190160691738129e-01
+ <_>
+
+ 0 -1 2004 1.5399109572172165e-02
+
+ -2.3149499297142029e-01 1.8828059732913971e-01
+ <_>
+
+ 0 -1 2005 -1.0792730376124382e-02
+
+ -3.0813691020011902e-01 1.1191529780626297e-01
+ <_>
+
+ 0 -1 2006 8.5879449034109712e-04
+
+ 7.2238206863403320e-02 -4.4624349474906921e-01
+ <_>
+
+ 0 -1 2007 9.2791311908513308e-04
+
+ -2.9247429966926575e-01 9.3132883310317993e-02
+ <_>
+
+ 0 -1 2008 -8.5785696282982826e-03
+
+ 2.0642790198326111e-01 -1.1203339695930481e-01
+ <_>
+
+ 0 -1 2009 -1.8951490521430969e-02
+
+ -3.9317628741264343e-01 6.7260466516017914e-02
+ <_>
+
+ 0 -1 2010 3.4939948469400406e-02
+
+ 2.8045989573001862e-02 -5.7410031557083130e-01
+ <_>
+
+ 0 -1 2011 -4.2870659381151199e-02
+
+ -5.9856891632080078e-01 3.4607890993356705e-02
+ <_>
+
+ 0 -1 2012 5.4958608234301209e-04
+
+ -4.1193041205406189e-01 6.7322418093681335e-02
+ <_>
+
+ 0 -1 2013 2.2494920995086432e-03
+
+ 1.3482889533042908e-01 -1.9777689874172211e-01
+ <_>
+
+ 0 -1 2014 -9.2442613095045090e-03
+
+ -1.7850719392299652e-01 7.6734513044357300e-02
+ <_>
+
+ 0 -1 2015 1.2210760032758117e-03
+
+ -3.4616300463676453e-01 7.5431950390338898e-02
+ <_>
+
+ 0 -1 2016 1.3654090464115143e-02
+
+ 7.7861636877059937e-02 -4.3963378667831421e-01
+ <_>
+
+ 0 -1 2017 1.7332829535007477e-02
+
+ 4.8317600041627884e-02 -4.1461798548698425e-01
+ <_>
+
+ 0 -1 2018 -1.6807779669761658e-02
+
+ 2.3211599886417389e-01 -8.2342058420181274e-02
+ <_>
+
+ 0 -1 2019 3.2203171402215958e-02
+
+ 3.4065268933773041e-02 -5.9796607494354248e-01
+ <_>
+
+ 0 -1 2020 1.6777820885181427e-02
+
+ -5.9402968734502792e-02 1.6782909631729126e-01
+ <_>
+
+ 0 -1 2021 1.3074859976768494e-02
+
+ -1.0592609643936157e-01 2.3796890676021576e-01
+ <_>
+
+ 0 -1 2022 9.4082832336425781e-02
+
+ 1.0573189705610275e-02 -5.3249269723892212e-01
+ <_>
+
+ 0 -1 2023 -7.6036658138036728e-03
+
+ -2.3031429946422577e-01 1.0104469954967499e-01
+ <_>
+
+ 0 -1 2024 8.2368071889504790e-04
+
+ 4.6598970890045166e-02 -1.0087580233812332e-01
+ <_>
+
+ 0 -1 2025 -7.6875449158251286e-03
+
+ -2.6123398542404175e-01 7.3543973267078400e-02
+ <_>
+
+ 0 -1 2026 -3.3729180693626404e-02
+
+ 2.1907149255275726e-01 -2.1958939731121063e-02
+ <_>
+
+ 0 -1 2027 1.3204690068960190e-02
+
+ -1.4203189313411713e-01 1.5107029676437378e-01
+ <_>
+
+ 0 -1 2028 8.5354369366541505e-04
+
+ -2.4303670227527618e-01 8.3283171057701111e-02
+ <_>
+
+ 0 -1 2029 -1.4071330428123474e-02
+
+ -3.6977100372314453e-01 5.5142328143119812e-02
+ <_>
+
+ 0 -1 2030 -1.1115919798612595e-02
+
+ -4.6575489640235901e-01 2.7285559102892876e-02
+ <_>
+
+ 0 -1 2031 1.3858900405466557e-02
+
+ -9.1722346842288971e-02 1.9947899878025055e-01
+ <_>
+
+ 0 -1 2032 8.5548251867294312e-02
+
+ 2.6189789175987244e-02 -3.6603820323944092e-01
+ <_>
+
+ 0 -1 2033 -1.9484929740428925e-02
+
+ 1.7259980738162994e-01 -8.9445300400257111e-02
+ <_>
+
+ 0 -1 2034 2.1631179377436638e-02
+
+ -5.6183289736509323e-02 6.7707277834415436e-02
+ <_>
+
+ 0 -1 2035 1.9267840310931206e-02
+
+ 5.5609680712223053e-02 -2.9480481147766113e-01
+ <_>
+
+ 0 -1 2036 1.1855900287628174e-02
+
+ 6.8580061197280884e-02 -2.7094689011573792e-01
+ <_>
+
+ 0 -1 2037 1.7135039670392871e-03
+
+ -1.5590840578079224e-01 9.4477489590644836e-02
+ <_>
+
+ 0 -1 2038 6.2993362545967102e-02
+
+ 2.9042679816484451e-02 -2.5151410698890686e-01
+ <_>
+
+ 0 -1 2039 1.7328880727291107e-02
+
+ -4.3562661856412888e-02 3.4017661213874817e-01
+ <_>
+
+ 0 -1 2040 2.4053089320659637e-02
+
+ 3.7450179457664490e-02 -2.8990021347999573e-01
+ <_>
+
+ 0 -1 2041 2.1294029429554939e-02
+
+ 4.8889711499214172e-02 -3.6390760540962219e-01
+ <_>
+
+ 0 -1 2042 9.2860676348209381e-02
+
+ -3.6604419350624084e-02 3.2365238666534424e-01
+ <_>
+
+ 0 -1 2043 2.1167730446904898e-03
+
+ 8.7506070733070374e-02 -1.8339939415454865e-01
+ <_>
+
+ 0 -1 2044 -8.7125040590763092e-02
+
+ -4.6162751317024231e-01 3.1342040747404099e-02
+ <_>
+
+ 0 -1 2045 1.9298809766769409e-01
+
+ 2.9041619971394539e-02 -4.4543629884719849e-01
+ <_>
+
+ 0 -1 2046 -2.4475890313624404e-05
+
+ 5.9352759271860123e-02 -2.0239880681037903e-01
+ <_>
+
+ 0 -1 2047 -3.4894149750471115e-02
+
+ -4.5676550269126892e-01 3.5249751061201096e-02
+ <_>
+
+ 0 -1 2048 1.9192209839820862e-01
+
+ -4.0733739733695984e-02 1.5444849431514740e-01
+ <_>
+
+ 0 -1 2049 -2.3085139691829681e-02
+
+ 7.1740321815013885e-02 -2.0493650436401367e-01
+ <_>
+
+ 0 -1 2050 2.9535569250583649e-02
+
+ 4.0762118995189667e-02 -3.6926439404487610e-01
+ <_>
+
+ 0 -1 2051 -3.6492519080638885e-02
+
+ -5.4941332340240479e-01 2.5431329384446144e-02
+ <_>
+
+ 0 -1 2052 4.0696229785680771e-02
+
+ 1.0515309870243073e-02 -4.9906229972839355e-01
+ <_>
+
+ 0 -1 2053 -3.6384560167789459e-02
+
+ -2.4736070632934570e-01 5.3187850862741470e-02
+ <_>
+
+ 0 -1 2054 3.7000048905611038e-02
+
+ -4.6731691807508469e-02 3.0095300078392029e-01
+ <_>
+
+ 0 -1 2055 3.7872981280088425e-02
+
+ 4.5600850135087967e-02 -3.3789730072021484e-01
+ <_>
+
+ 0 -1 2056 -1.6164340078830719e-02
+
+ 1.9655610620975494e-01 -5.6567810475826263e-02
+ <_>
+
+ 0 -1 2057 2.4253420531749725e-01
+
+ 3.7772599607706070e-02 -3.6190840601921082e-01
+ <_>
+
+ 0 -1 2058 -1.7429869621992111e-02
+
+ 7.8519687056541443e-02 -1.9835950806736946e-02
+ <_>
+
+ 0 -1 2059 1.4150669798254967e-02
+
+ -1.5143400430679321e-01 1.2028410285711288e-01
+ <_>
+
+ 0 -1 2060 6.3771687448024750e-02
+
+ 6.8969810381531715e-03 -8.0511492490768433e-01
+ <_>
+
+ 0 -1 2061 1.1273720301687717e-03
+
+ -2.6931971311569214e-01 5.2550218999385834e-02
+ <_>
+
+ 0 -1 2062 -3.8293499499559402e-02
+
+ 2.0563830435276031e-01 -2.1474370732903481e-02
+ <_>
+
+ 0 -1 2063 5.0103109329938889e-02
+
+ 2.3352440446615219e-02 -5.4645192623138428e-01
+ <_>
+
+ 0 -1 2064 -4.0057931095361710e-02
+
+ 2.4553330242633820e-01 -3.3474709838628769e-02
+ <_>
+
+ 0 -1 2065 1.8415290862321854e-02
+
+ -7.5977481901645660e-02 1.8510019779205322e-01
+ <_>
+
+ 0 -1 2066 1.0548150166869164e-02
+
+ 6.6050186753273010e-02 -6.4367741346359253e-02
+ <_>
+
+ 0 -1 2067 7.3007687926292419e-02
+
+ -2.6471909135580063e-02 4.6508520841598511e-01
+ <_>
+
+ 0 -1 2068 -3.4658040851354599e-02
+
+ 2.7848151326179504e-01 -4.6662889420986176e-02
+ <_>
+
+ 0 -1 2069 1.6924630850553513e-02
+
+ 1.1554700136184692e-01 -1.1504360288381577e-01
+ <_>
+
+ 0 -1 2070 -7.4245870113372803e-02
+
+ -4.3072721362113953e-01 1.6461249440908432e-02
+ <_>
+
+ 0 -1 2071 -7.3406308889389038e-02
+
+ -5.6626558303833008e-01 2.3453989997506142e-02
+ <_>
+
+ 0 -1 2072 1.2397419661283493e-01
+
+ -5.4616708308458328e-02 1.0024350136518478e-01
+ <_>
+
+ 0 -1 2073 -1.6235560178756714e-02
+
+ -1.9912120699882507e-01 6.8537697196006775e-02
+ <_>
+
+ 0 -1 2074 -3.0137969180941582e-02
+
+ -3.3398950099945068e-01 2.2806070744991302e-02
+ <_>
+
+ 0 -1 2075 -8.1836536526679993e-02
+
+ 4.0628650784492493e-01 -3.7828210741281509e-02
+ <_>
+
+ 0 -1 2076 5.2240878343582153e-01
+
+ 1.8094440922141075e-02 -4.3477010726928711e-01
+ <_>
+
+ 0 -1 2077 1.4845579862594604e-02
+
+ -7.0279222726821899e-01 1.9977509975433350e-02
+ <_>
+
+ 0 -1 2078 -5.5507790297269821e-02
+
+ 5.1214778423309326e-01 -2.8097610920667648e-02
+ <_>
+
+ 0 -1 2079 -2.7078049257397652e-02
+
+ 3.0834761261940002e-01 -4.0676809847354889e-02
+ <_>
+
+ 0 -1 2080 -2.4416339583694935e-03
+
+ -1.2054579704999924e-01 5.9857279062271118e-02
+ <_>
+
+ 0 -1 2081 1.5043720602989197e-01
+
+ -6.0036379843950272e-02 2.2021989524364471e-01
+ <_>
+
+ 0 -1 2082 -4.1030261665582657e-02
+
+ -3.3254709839820862e-01 2.5029130280017853e-02
+ <_>
+
+ 0 -1 2083 1.4609499834477901e-02
+
+ 5.1357660442590714e-02 -2.8190329670906067e-01
+ <_>
+
+ 0 -1 2084 1.2588420510292053e-01
+
+ 6.7158509045839310e-03 -4.9155730009078979e-01
+ <_>
+
+ 0 -1 2085 -3.7784978747367859e-02
+
+ 5.1675951480865479e-01 -2.7236010879278183e-02
+ <_>
+
+ 0 -1 2086 -1.8090210855007172e-02
+
+ -3.5778409242630005e-01 3.5485059022903442e-02
+ <_>
+
+ 0 -1 2087 -3.9881139993667603e-02
+
+ -4.8079541325569153e-01 2.7166770771145821e-02
+ <_>
+
+ 0 -1 2088 7.3324372060596943e-03
+
+ -5.3297691047191620e-02 1.1757290363311768e-01
+ <_>
+
+ 0 -1 2089 -6.9262558827176690e-04
+
+ -1.4501209557056427e-01 9.2885218560695648e-02
+ <_>
+
+ 0 -1 2090 -8.2166977226734161e-02
+
+ 2.3127609491348267e-01 -5.6990649551153183e-02
+ <_>
+
+ 0 -1 2091 3.8556379731744528e-03
+
+ 9.5330670475959778e-02 -1.5586289763450623e-01
+ <_>
+
+ 0 -1 2092 -7.4245668947696686e-03
+
+ -2.7692940831184387e-01 3.5343449562788010e-02
+ <_>
+
+ 0 -1 2093 2.2808350622653961e-02
+
+ 4.6904660761356354e-02 -3.3659911155700684e-01
+ <_>
+
+ 0 -1 2094 8.2916222512722015e-02
+
+ 2.8655149508267641e-03 -5.2691662311553955e-01
+ <_>
+
+ 0 -1 2095 -5.2402060478925705e-02
+
+ -6.9835901260375977e-01 1.8587840721011162e-02
+ <_>
+
+ 0 -1 2096 1.5193739905953407e-02
+
+ -6.0126390308141708e-02 2.5917008519172668e-01
+ <_>
+
+ 0 -1 2097 -1.4240809716284275e-02
+
+ 2.7056190371513367e-01 -6.4629502594470978e-02
+ <_>
+
+ 0 -1 2098 -3.2158840913325548e-03
+
+ -9.3549117445945740e-02 2.8090029954910278e-02
+ <_>
+
+ 0 -1 2099 4.7198659740388393e-03
+
+ -1.8783959746360779e-01 7.1021787822246552e-02
+ <_>
+
+ 0 -1 2100 -2.5415599346160889e-02
+
+ -3.3236810564994812e-01 4.0915489196777344e-02
+ <_>
+
+ 0 -1 2101 4.2758490890264511e-02
+
+ 2.6150930672883987e-02 -5.1128530502319336e-01
+ <_>
+
+ 0 -1 2102 4.2231049388647079e-02
+
+ -2.1398520097136497e-02 1.7453899979591370e-01
+ <_>
+
+ 0 -1 2103 -2.0674670115113258e-02
+
+ 2.5898760557174683e-01 -5.6440889835357666e-02
+ <_>
+
+ 0 -1 2104 2.8976969420909882e-02
+
+ -2.0763730630278587e-02 9.6909962594509125e-02
+ <_>
+
+ 0 -1 2105 3.4173950552940369e-03
+
+ 9.3572951853275299e-02 -1.5996080636978149e-01
+ <_>
+
+ 0 -1 2106 6.7922919988632202e-02
+
+ 1.6243519261479378e-02 -7.4624717235565186e-01
+ <_>
+
+ 0 -1 2107 -9.0270619839429855e-03
+
+ 3.3382698893547058e-01 -3.8774389773607254e-02
+ <_>
+
+ 0 -1 2108 -2.8317999094724655e-02
+
+ -3.6276119947433472e-01 2.3800129070878029e-02
+ <_>
+
+ 0 -1 2109 -1.5302050160244107e-03
+
+ -1.8413589894771576e-01 7.0150263607501984e-02
+ <_>
+
+ 0 -1 2110 8.4196459501981735e-03
+
+ 9.0586692094802856e-02 -6.1134628951549530e-02
+ <_>
+
+ 0 -1 2111 4.4346109032630920e-02
+
+ 6.1388049274682999e-02 -2.1231949329376221e-01
+ <_>
+
+ 0 -1 2112 2.5921100750565529e-02
+
+ -3.5028610378503799e-02 2.2107489407062531e-01
+ <_>
+
+ 0 -1 2113 -6.0503371059894562e-03
+
+ -3.2179000973701477e-01 3.9333820343017578e-02
+ <_>
+
+ 0 -1 2114 -2.5171019136905670e-02
+
+ 6.9517672061920166e-01 -1.8360199406743050e-02
+ <_>
+
+ 0 -1 2115 -5.2073050290346146e-02
+
+ -7.4727028608322144e-01 1.9030340015888214e-02
+ <_>
+
+ 0 -1 2116 -1.3639439828693867e-02
+
+ -6.2003239989280701e-02 4.1589640080928802e-02
+ <_>
+
+ 0 -1 2117 -3.8377299904823303e-02
+
+ 3.8518410921096802e-01 -3.1509511172771454e-02
+ <_>
+
+ 0 -1 2118 -1.4677719771862030e-01
+
+ -6.0099261999130249e-01 1.0989420115947723e-02
+ <_>
+
+ 0 -1 2119 2.0508460700511932e-02
+
+ 5.6464750319719315e-02 -2.5149369239807129e-01
+ <_>
+
+ 0 -1 2120 2.3784590885043144e-02
+
+ 5.8459620922803879e-02 -2.2233340144157410e-01
+ <_>
+
+ 0 -1 2121 1.8658170476555824e-02
+
+ -7.3706217110157013e-02 1.8556639552116394e-01
+ <_>
+
+ 0 -1 2122 -2.6653500273823738e-02
+
+ 2.1061730384826660e-01 -6.8629503250122070e-02
+ <_>
+
+ 0 -1 2123 -7.5975798070430756e-02
+
+ -4.8535370826721191e-01 2.7239590883255005e-02
+ <_>
+
+ 0 -1 2124 5.3205721080303192e-02
+
+ 5.1950141787528992e-03 -4.7940468788146973e-01
+ <_>
+
+ 0 -1 2125 4.1206479072570801e-02
+
+ 1.9166460260748863e-02 -6.4439648389816284e-01
+ <_>
+
+ 0 -1 2126 2.2624490782618523e-02
+
+ 1.7490459606051445e-02 -2.0645530521869659e-01
+ <_>
+
+ 0 -1 2127 2.1147429943084717e-02
+
+ -3.2944951206445694e-02 3.5154509544372559e-01
+ <_>
+
+ 0 -1 2128 1.3374770060181618e-02
+
+ 4.0784850716590881e-02 -1.9725930690765381e-01
+ <_>
+
+ 0 -1 2129 4.2831092141568661e-03
+
+ -8.5159152746200562e-02 1.4025710523128510e-01
+ <_>
+
+ 0 -1 2130 6.3718900084495544e-02
+
+ -4.9198199994862080e-03 4.5491519570350647e-01
+ <_>
+
+ 0 -1 2131 1.2082169763743877e-02
+
+ 5.3176809102296829e-02 -2.6156601309776306e-01
+ <_>
+
+ 0 -1 2132 1.8195409327745438e-02
+
+ -3.8999419659376144e-02 3.3412361145019531e-01
+ <_>
+
+ 0 -1 2133 2.8948329389095306e-02
+
+ 3.9750248193740845e-02 -3.4182530641555786e-01
+ <_>
+
+ 0 -1 2134 -9.3633607029914856e-02
+
+ -9.4571298360824585e-01 3.0850030016154051e-03
+ <_>
+
+ 0 -1 2135 3.4850560128688812e-02
+
+ 3.1342729926109314e-02 -3.5700461268424988e-01
+ <_>
+
+ 0 -1 2136 1.2895749509334564e-01
+
+ -3.9653491228818893e-02 3.7412929534912109e-01
+ <_>
+
+ 0 -1 2137 2.3297289386391640e-02
+
+ 2.5941710919141769e-02 -4.7231191396713257e-01
+ <_>
+
+ 0 -1 2138 1.5667669475078583e-02
+
+ -8.1445790827274323e-02 1.5750789642333984e-01
+ <_>
+
+ 0 -1 2139 1.1425570119172335e-03
+
+ 6.3901476562023163e-02 -2.0547799766063690e-01
+ <_>
+
+ 0 -1 2140 -5.5744551122188568e-02
+
+ -3.4481841325759888e-01 1.1300710029900074e-02
+ <_>
+
+ 0 -1 2141 -9.2509537935256958e-02
+
+ 8.9074200391769409e-01 -1.5398530289530754e-02
+ <_>
+
+ 0 -1 2142 -5.5660872021690011e-04
+
+ 8.7056189775466919e-02 -5.1321998238563538e-02
+ <_>
+
+ 0 -1 2143 -1.4538520015776157e-02
+
+ -4.5140060782432556e-01 2.8146119788289070e-02
+ <_>
+
+ 0 -1 2144 -3.7515729665756226e-02
+
+ -7.3286539316177368e-01 6.7265569232404232e-03
+ <_>
+
+ 0 -1 2145 -1.5516959829255939e-03
+
+ 9.1213479638099670e-02 -1.3395330309867859e-01
+ <_>
+
+ 0 -1 2146 -9.5461420714855194e-02
+
+ -9.5529359579086304e-01 2.3820339702069759e-03
+ <_>
+
+ 0 -1 2147 -1.2917599640786648e-02
+
+ 2.7040511369705200e-01 -4.6904701739549637e-02
+ <_>
+
+ 0 -1 2148 7.9802395775914192e-03
+
+ 5.5390980094671249e-02 -2.0667399466037750e-01
+ <_>
+
+ 0 -1 2149 6.6025177948176861e-03
+
+ 6.6448308527469635e-02 -1.9922210276126862e-01
+ <_>
+
+ 0 -1 2150 1.7824679613113403e-02
+
+ -1.4532490074634552e-01 8.9904323220252991e-02
+ <_>
+
+ 0 -1 2151 -2.3261539638042450e-02
+
+ 4.8062869906425476e-01 -2.7084289118647575e-02
+ <_>
+
+ 0 -1 2152 -5.3659449331462383e-03
+
+ -1.9143599271774292e-01 7.0398069918155670e-02
+ <_>
+
+ 0 -1 2153 -2.0775340497493744e-02
+
+ 1.6774240136146545e-01 -8.9455418288707733e-02
+ <_>
+
+ 0 -1 2154 6.2107890844345093e-02
+
+ 1.2815490365028381e-02 -6.4452892541885376e-01
+ <_>
+
+ 0 -1 2155 -4.4327871873974800e-03
+
+ 1.3405950367450714e-01 -1.0231850296258926e-01
+ <_>
+ 210
+ -1.4604519605636597e+00
+
+ <_>
+
+ 0 -1 2156 -4.6693067997694016e-03
+
+ 1.4297600090503693e-01 -3.5293748974800110e-01
+ <_>
+
+ 0 -1 2157 -5.8510829694569111e-04
+
+ -2.2447289526462555e-01 7.3556646704673767e-02
+ <_>
+
+ 0 -1 2158 -3.4788011107593775e-03
+
+ 1.0603249818086624e-01 -2.5625610351562500e-01
+ <_>
+
+ 0 -1 2159 6.2952568987384439e-04
+
+ 4.1076458990573883e-02 -3.6061421036720276e-01
+ <_>
+
+ 0 -1 2160 2.1010650380048901e-04
+
+ -2.4425220489501953e-01 1.0942090302705765e-01
+ <_>
+
+ 0 -1 2161 -2.6671579107642174e-03
+
+ 8.4581501781940460e-02 -2.7449008822441101e-01
+ <_>
+
+ 0 -1 2162 7.1533219888806343e-03
+
+ -1.2603819370269775e-01 2.0079800486564636e-01
+ <_>
+
+ 0 -1 2163 -2.3616119287908077e-03
+
+ 1.6627199947834015e-01 -1.3186289370059967e-01
+ <_>
+
+ 0 -1 2164 3.9599660784006119e-02
+
+ 5.5119238793849945e-02 -3.4003400802612305e-01
+ <_>
+
+ 0 -1 2165 1.9385309424251318e-03
+
+ -2.0686650276184082e-01 1.0400419682264328e-01
+ <_>
+
+ 0 -1 2166 4.3686539866030216e-03
+
+ 6.4766593277454376e-02 -2.7426311373710632e-01
+ <_>
+
+ 0 -1 2167 -3.9834968629293144e-04
+
+ 5.2820999175310135e-02 -2.2684779763221741e-01
+ <_>
+
+ 0 -1 2168 -5.2277399227023125e-03
+
+ -2.5515750050544739e-01 7.6405368745326996e-02
+ <_>
+
+ 0 -1 2169 -1.0445619933307171e-02
+
+ 1.3513970375061035e-01 -5.0032071769237518e-02
+ <_>
+
+ 0 -1 2170 -2.0478919614106417e-03
+
+ -2.7669870853424072e-01 5.4732039570808411e-02
+ <_>
+
+ 0 -1 2171 9.1795288026332855e-03
+
+ -1.2642470002174377e-01 1.9979229569435120e-01
+ <_>
+
+ 0 -1 2172 9.4128772616386414e-04
+
+ -4.0286481380462646e-01 3.8918491452932358e-02
+ <_>
+
+ 0 -1 2173 -4.0410319343209267e-03
+
+ -2.0108319818973541e-01 5.1456429064273834e-02
+ <_>
+
+ 0 -1 2174 -1.2742569670081139e-02
+
+ 2.2716869413852692e-01 -6.8204790353775024e-02
+ <_>
+
+ 0 -1 2175 -4.6246009878814220e-03
+
+ -2.5854289531707764e-01 7.8878343105316162e-02
+ <_>
+
+ 0 -1 2176 -6.4845927990972996e-03
+
+ -3.1391140818595886e-01 7.1605153381824493e-02
+ <_>
+
+ 0 -1 2177 -4.8291690647602081e-02
+
+ 2.5488480925559998e-01 -2.1891580894589424e-02
+ <_>
+
+ 0 -1 2178 8.4315962158143520e-04
+
+ -1.6529269516468048e-01 8.9575611054897308e-02
+ <_>
+
+ 0 -1 2179 -1.0773389786481857e-01
+
+ -6.0115939378738403e-01 3.3779250225052238e-04
+ <_>
+
+ 0 -1 2180 -4.5969419181346893e-02
+
+ 3.6489740014076233e-01 -3.9942290633916855e-02
+ <_>
+
+ 0 -1 2181 -1.6649639233946800e-02
+
+ -1.1858119815587997e-01 1.0585139691829681e-01
+ <_>
+
+ 0 -1 2182 -1.4521550387144089e-02
+
+ -3.7954211235046387e-01 3.4867148846387863e-02
+ <_>
+
+ 0 -1 2183 1.3591590104624629e-03
+
+ -2.3180609941482544e-01 5.0401471555233002e-02
+ <_>
+
+ 0 -1 2184 -5.8343587443232536e-04
+
+ -2.8496581315994263e-01 4.0894281119108200e-02
+ <_>
+
+ 0 -1 2185 7.9833306372165680e-03
+
+ -3.6992359906435013e-02 1.6985300183296204e-01
+ <_>
+
+ 0 -1 2186 9.9762203171849251e-04
+
+ 6.4871042966842651e-02 -1.8648339807987213e-01
+ <_>
+
+ 0 -1 2187 -4.6869087964296341e-03
+
+ 7.6987423002719879e-02 -8.1482626497745514e-02
+ <_>
+
+ 0 -1 2188 3.0047740787267685e-02
+
+ -2.9839929193258286e-02 4.3676841259002686e-01
+ <_>
+
+ 0 -1 2189 1.8069539219141006e-02
+
+ 2.7509700506925583e-02 -4.2724269628524780e-01
+ <_>
+
+ 0 -1 2190 -1.5088430047035217e-01
+
+ -6.7918521165847778e-01 1.8012860789895058e-02
+ <_>
+
+ 0 -1 2191 -2.5836290791630745e-02
+
+ 2.5797989964485168e-01 -3.5906858742237091e-02
+ <_>
+
+ 0 -1 2192 1.8183529376983643e-02
+
+ 3.5895019769668579e-02 -3.7197691202163696e-01
+ <_>
+
+ 0 -1 2193 6.3127309083938599e-02
+
+ -7.3392972350120544e-02 1.2563429772853851e-01
+ <_>
+
+ 0 -1 2194 -6.6507689189165831e-04
+
+ 8.5442617535591125e-02 -1.5228550136089325e-01
+ <_>
+
+ 0 -1 2195 1.0104980319738388e-02
+
+ 3.4569118171930313e-02 -2.2657699882984161e-01
+ <_>
+
+ 0 -1 2196 -1.2355949729681015e-02
+
+ 1.5785010159015656e-01 -7.4710778892040253e-02
+ <_>
+
+ 0 -1 2197 1.5728179365396500e-02
+
+ 6.8844422698020935e-02 -1.6961769759654999e-01
+ <_>
+
+ 0 -1 2198 1.5084549886523746e-05
+
+ -1.3695539534091949e-01 9.0837597846984863e-02
+ <_>
+
+ 0 -1 2199 2.9634479433298111e-02
+
+ 4.9822349101305008e-02 -2.6809689402580261e-01
+ <_>
+
+ 0 -1 2200 2.8015200048685074e-02
+
+ -8.1799760460853577e-02 1.7842799425125122e-01
+ <_>
+
+ 0 -1 2201 2.3299450986087322e-03
+
+ 6.9535210728645325e-02 -1.8205040693283081e-01
+ <_>
+
+ 0 -1 2202 1.3453120365738869e-02
+
+ -7.0231497287750244e-02 1.8492579460144043e-01
+ <_>
+
+ 0 -1 2203 1.4049040153622627e-02
+
+ 7.6328299939632416e-02 -1.7219689488410950e-01
+ <_>
+
+ 0 -1 2204 -1.4648989774286747e-02
+
+ 3.4281060099601746e-01 -4.3134819716215134e-02
+ <_>
+
+ 0 -1 2205 1.4879769878461957e-04
+
+ -2.7614209055900574e-01 7.3140732944011688e-02
+ <_>
+
+ 0 -1 2206 -6.8892319686710835e-03
+
+ -1.8386749923229218e-01 6.5872021019458771e-02
+ <_>
+
+ 0 -1 2207 1.2898260029032826e-03
+
+ -1.1688020080327988e-01 1.1173330247402191e-01
+ <_>
+
+ 0 -1 2208 -2.5763860321603715e-04
+
+ 8.9391976594924927e-02 -1.4183540642261505e-01
+ <_>
+
+ 0 -1 2209 1.3652349822223186e-02
+
+ 2.5085829198360443e-02 -1.7959770560264587e-01
+ <_>
+
+ 0 -1 2210 -5.7484027929604053e-03
+
+ 1.6128179430961609e-01 -7.9023167490959167e-02
+ <_>
+
+ 0 -1 2211 -1.1682719923555851e-02
+
+ -1.8493950366973877e-01 4.5419961214065552e-02
+ <_>
+
+ 0 -1 2212 2.7498970739543438e-03
+
+ -6.5800942480564117e-02 1.9426700472831726e-01
+ <_>
+
+ 0 -1 2213 -1.1797569459304214e-03
+
+ 5.3563870489597321e-02 -5.5225171148777008e-02
+ <_>
+
+ 0 -1 2214 -3.7005849182605743e-02
+
+ -5.1369887590408325e-01 2.4779239669442177e-02
+ <_>
+
+ 0 -1 2215 2.3432020097970963e-02
+
+ 1.4517559669911861e-02 -3.2621389627456665e-01
+ <_>
+
+ 0 -1 2216 -2.4803660809993744e-02
+
+ 4.1374489665031433e-01 -3.1516589224338531e-02
+ <_>
+
+ 0 -1 2217 -9.1133005917072296e-03
+
+ -2.3262369632720947e-01 6.5307170152664185e-02
+ <_>
+
+ 0 -1 2218 -7.2223007678985596e-02
+
+ 3.1365010142326355e-01 -4.0287811309099197e-02
+ <_>
+
+ 0 -1 2219 6.4163007773458958e-03
+
+ 4.4151920825242996e-02 -1.4439010620117188e-01
+ <_>
+
+ 0 -1 2220 5.4361939430236816e-02
+
+ -4.9821659922599792e-02 2.6239651441574097e-01
+ <_>
+
+ 0 -1 2221 -5.9238062240183353e-03
+
+ 7.4054516851902008e-02 -7.2215773165225983e-02
+ <_>
+
+ 0 -1 2222 -3.4175089094787836e-03
+
+ -3.0714958906173706e-01 3.9461899548768997e-02
+ <_>
+
+ 0 -1 2223 1.1367879807949066e-02
+
+ -4.8698928207159042e-02 1.0077890008687973e-01
+ <_>
+
+ 0 -1 2224 2.3361030034720898e-03
+
+ 4.9539480358362198e-02 -2.3815050721168518e-01
+ <_>
+
+ 0 -1 2225 -7.2044372791424394e-04
+
+ 9.6084482967853546e-02 -9.8123528063297272e-02
+ <_>
+
+ 0 -1 2226 -3.4777939436025918e-04
+
+ 1.0546120256185532e-01 -1.0600890219211578e-01
+ <_>
+
+ 0 -1 2227 -6.6456091590225697e-03
+
+ -1.7471200227737427e-01 4.7264128923416138e-02
+ <_>
+
+ 0 -1 2228 4.4261440634727478e-02
+
+ -4.0742669254541397e-02 2.8637731075286865e-01
+ <_>
+
+ 0 -1 2229 3.4959740936756134e-02
+
+ 1.3479149900376797e-02 -4.4233149290084839e-01
+ <_>
+
+ 0 -1 2230 -2.5971820577979088e-02
+
+ -4.6334660053253174e-01 2.5301979854702950e-02
+ <_>
+
+ 0 -1 2231 1.8818200333043933e-03
+
+ -7.2344467043876648e-02 1.5579940378665924e-01
+ <_>
+
+ 0 -1 2232 3.2623678445816040e-02
+
+ 1.8171060830354691e-02 -6.3472539186477661e-01
+ <_>
+
+ 0 -1 2233 1.5041300095617771e-02
+
+ -5.3582038730382919e-02 1.8320439755916595e-01
+ <_>
+
+ 0 -1 2234 -5.5875489488244057e-03
+
+ 1.5442819893360138e-01 -6.9521442055702209e-02
+ <_>
+
+ 0 -1 2235 3.9029030594974756e-03
+
+ 7.2893843054771423e-02 -1.3542290031909943e-01
+ <_>
+
+ 0 -1 2236 4.5964889228343964e-02
+
+ 2.1482560783624649e-02 -5.4532879590988159e-01
+ <_>
+
+ 0 -1 2237 -7.4338473379611969e-02
+
+ -7.1795612573623657e-01 3.5341270267963409e-03
+ <_>
+
+ 0 -1 2238 2.0902850665152073e-03
+
+ 4.3308760970830917e-02 -2.5078159570693970e-01
+ <_>
+
+ 0 -1 2239 -7.5608417391777039e-02
+
+ 2.7488818764686584e-01 -3.4967329353094101e-02
+ <_>
+
+ 0 -1 2240 5.1200888119637966e-03
+
+ 4.7384329140186310e-02 -2.6794269680976868e-01
+ <_>
+
+ 0 -1 2241 -2.0140670239925385e-02
+
+ 7.2039432823657990e-02 -4.4537059962749481e-02
+ <_>
+
+ 0 -1 2242 2.6719279587268829e-02
+
+ -6.0671631246805191e-02 2.4019980430603027e-01
+ <_>
+
+ 0 -1 2243 -2.3299809545278549e-03
+
+ -1.4848700165748596e-01 6.3779368996620178e-02
+ <_>
+
+ 0 -1 2244 1.4248250052332878e-02
+
+ 3.9471931755542755e-02 -2.7790299057960510e-01
+ <_>
+
+ 0 -1 2245 -6.8691447377204895e-02
+
+ 3.1307551264762878e-01 -2.2111769765615463e-02
+ <_>
+
+ 0 -1 2246 -6.5213128924369812e-02
+
+ 3.6191588640213013e-01 -3.1089780852198601e-02
+ <_>
+
+ 0 -1 2247 -1.4469860121607780e-02
+
+ -1.9942939281463623e-01 2.6489760726690292e-02
+ <_>
+
+ 0 -1 2248 -9.4575136899948120e-03
+
+ -2.9698899388313293e-01 3.6693658679723740e-02
+ <_>
+
+ 0 -1 2249 -1.8222700059413910e-01
+
+ -4.0887731313705444e-01 7.3904348537325859e-03
+ <_>
+
+ 0 -1 2250 -2.3991869390010834e-01
+
+ -9.5519691705703735e-01 1.0895749554038048e-02
+ <_>
+
+ 0 -1 2251 -1.4964600093662739e-02
+
+ 1.3325509428977966e-01 -6.4146116375923157e-02
+ <_>
+
+ 0 -1 2252 1.1056339740753174e-01
+
+ -2.1147079765796661e-02 5.2262008190155029e-01
+ <_>
+
+ 0 -1 2253 -1.1857460252940655e-02
+
+ -2.6103261113166809e-01 2.4917129427194595e-02
+ <_>
+
+ 0 -1 2254 1.7032399773597717e-02
+
+ -4.2655009776353836e-02 2.4324589967727661e-01
+ <_>
+
+ 0 -1 2255 -6.6315201111137867e-03
+
+ -2.7996608614921570e-01 4.7972209751605988e-02
+ <_>
+
+ 0 -1 2256 -1.3527619885280728e-03
+
+ -1.7117640376091003e-01 6.8423986434936523e-02
+ <_>
+
+ 0 -1 2257 5.8159399777650833e-02
+
+ 1.4452300034463406e-02 -3.6640700697898865e-01
+ <_>
+
+ 0 -1 2258 9.6522513777017593e-03
+
+ 6.4102686941623688e-02 -1.9386090338230133e-01
+ <_>
+
+ 0 -1 2259 4.6681659296154976e-03
+
+ -6.4305387437343597e-02 1.2191460281610489e-01
+ <_>
+
+ 0 -1 2260 4.8228199593722820e-03
+
+ 4.2306859046220779e-02 -2.5486230850219727e-01
+ <_>
+
+ 0 -1 2261 7.2615491226315498e-03
+
+ -4.4169031083583832e-02 1.9888080656528473e-01
+ <_>
+
+ 0 -1 2262 2.7650638949126005e-03
+
+ 5.6748721748590469e-02 -1.8802900612354279e-01
+ <_>
+
+ 0 -1 2263 -1.2599739711731672e-03
+
+ 2.9681721329689026e-01 -3.0795339494943619e-02
+ <_>
+
+ 0 -1 2264 -1.4079749584197998e-02
+
+ 1.2790699303150177e-01 -7.7078782021999359e-02
+ <_>
+
+ 0 -1 2265 4.1978028602898121e-03
+
+ -3.2651171088218689e-02 4.4282011687755585e-02
+ <_>
+
+ 0 -1 2266 7.4891891563311219e-04
+
+ -1.1801239848136902e-01 1.0196279734373093e-01
+ <_>
+
+ 0 -1 2267 3.9699498564004898e-02
+
+ 1.6263889148831367e-02 -3.2391819357872009e-01
+ <_>
+
+ 0 -1 2268 2.9685199260711670e-03
+
+ 5.0729360431432724e-02 -2.2522340714931488e-01
+ <_>
+
+ 0 -1 2269 3.0207540839910507e-03
+
+ -6.4312063157558441e-02 6.3618481159210205e-02
+ <_>
+
+ 0 -1 2270 -1.0064570233225822e-03
+
+ -2.2469790279865265e-01 4.3256420642137527e-02
+ <_>
+
+ 0 -1 2271 1.6607339493930340e-03
+
+ -5.8126531541347504e-02 5.9540931135416031e-02
+ <_>
+
+ 0 -1 2272 4.9640638753771782e-03
+
+ -4.8804368823766708e-02 1.8437810242176056e-01
+ <_>
+
+ 0 -1 2273 1.7194069921970367e-01
+
+ 3.6377978976815939e-03 -1.0000029802322388e+00
+ <_>
+
+ 0 -1 2274 -2.0992290228605270e-03
+
+ 1.1951360106468201e-01 -8.8613957166671753e-02
+ <_>
+
+ 0 -1 2275 -4.0529989637434483e-03
+
+ -2.0199899375438690e-01 5.3564589470624924e-02
+ <_>
+
+ 0 -1 2276 1.5536800492554903e-03
+
+ -9.6797212958335876e-02 9.5135137438774109e-02
+ <_>
+
+ 0 -1 2277 2.2837040014564991e-03
+
+ -4.5535419136285782e-02 1.4682759344577789e-01
+ <_>
+
+ 0 -1 2278 -1.0094629600644112e-02
+
+ -1.8853099644184113e-01 4.8864368349313736e-02
+ <_>
+
+ 0 -1 2279 -7.0200799964368343e-03
+
+ 1.4628750085830688e-01 -4.2158648371696472e-02
+ <_>
+
+ 0 -1 2280 3.4074939321726561e-03
+
+ -7.7149718999862671e-02 1.3702009618282318e-01
+ <_>
+
+ 0 -1 2281 3.9907437749207020e-03
+
+ -6.4178831875324249e-02 8.5484616458415985e-02
+ <_>
+
+ 0 -1 2282 2.0611559972167015e-02
+
+ 3.7988938391208649e-02 -2.9359170794487000e-01
+ <_>
+
+ 0 -1 2283 -1.9768020138144493e-03
+
+ 6.0499001294374466e-02 -1.6910280287265778e-01
+ <_>
+
+ 0 -1 2284 -2.4783300235867500e-02
+
+ -5.5052608251571655e-01 1.5831759199500084e-02
+ <_>
+
+ 0 -1 2285 -1.5710920095443726e-02
+
+ 1.9716830551624298e-01 -3.1884010881185532e-02
+ <_>
+
+ 0 -1 2286 1.0070169810205698e-03
+
+ 4.6532750129699707e-02 -2.1853099763393402e-01
+ <_>
+
+ 0 -1 2287 -3.7466569337993860e-03
+
+ -2.5379389524459839e-01 3.9463929831981659e-02
+ <_>
+
+ 0 -1 2288 4.5849520713090897e-02
+
+ 1.3636340387165546e-02 -6.2976127862930298e-01
+ <_>
+
+ 0 -1 2289 -1.1040110141038895e-02
+
+ 2.4939639866352081e-01 -3.8895469158887863e-02
+ <_>
+
+ 0 -1 2290 -4.2415689677000046e-03
+
+ -2.1564769744873047e-01 4.5613430440425873e-02
+ <_>
+
+ 0 -1 2291 -3.1175611075013876e-03
+
+ 1.0641460120677948e-01 -1.2268310040235519e-01
+ <_>
+
+ 0 -1 2292 -2.3725910577923059e-03
+
+ 2.0573639869689941e-01 -6.6338561475276947e-02
+ <_>
+
+ 0 -1 2293 -3.6906299646943808e-03
+
+ -1.5802620351314545e-01 6.6760621964931488e-02
+ <_>
+
+ 0 -1 2294 1.0908120311796665e-03
+
+ -1.7830020189285278e-01 5.7181321084499359e-02
+ <_>
+
+ 0 -1 2295 -1.3929420150816441e-02
+
+ -1.4185859262943268e-01 5.8131370693445206e-02
+ <_>
+
+ 0 -1 2296 -2.8283370658755302e-02
+
+ 2.6451000571250916e-01 -4.5332599431276321e-02
+ <_>
+
+ 0 -1 2297 -3.9213709533214569e-04
+
+ 7.6039716601371765e-02 -8.4666326642036438e-02
+ <_>
+
+ 0 -1 2298 -2.0424809772521257e-03
+
+ -1.6393850743770599e-01 5.7595171034336090e-02
+ <_>
+
+ 0 -1 2299 -6.0634050518274307e-02
+
+ 2.4343550205230713e-01 -1.3630810193717480e-02
+ <_>
+
+ 0 -1 2300 5.5472988635301590e-02
+
+ 1.2274630367755890e-02 -7.6161897182464600e-01
+ <_>
+
+ 0 -1 2301 2.6451710611581802e-02
+
+ -1.6103159636259079e-02 1.4696520566940308e-01
+ <_>
+
+ 0 -1 2302 -6.5615847706794739e-02
+
+ -6.6936880350112915e-01 1.2788389809429646e-02
+ <_>
+
+ 0 -1 2303 -2.9287360608577728e-02
+
+ 3.8422039151191711e-01 -2.0979570224881172e-02
+ <_>
+
+ 0 -1 2304 -8.7814256548881531e-02
+
+ -5.5386292934417725e-01 1.6540929675102234e-02
+ <_>
+
+ 0 -1 2305 4.0213011205196381e-02
+
+ 5.5229798890650272e-03 -1.5169410407543182e-01
+ <_>
+
+ 0 -1 2306 7.5501110404729843e-03
+
+ -5.3081061691045761e-02 1.6791249811649323e-01
+ <_>
+
+ 0 -1 2307 7.5557199306786060e-03
+
+ 4.9213249236345291e-02 -1.8097420036792755e-01
+ <_>
+
+ 0 -1 2308 4.2264759540557861e-02
+
+ 9.8954448476433754e-03 -8.7265938520431519e-01
+ <_>
+
+ 0 -1 2309 -1.5821179375052452e-02
+
+ -4.9515271186828613e-01 1.0424910113215446e-02
+ <_>
+
+ 0 -1 2310 4.4557699002325535e-03
+
+ -5.2823610603809357e-02 1.7409110069274902e-01
+ <_>
+
+ 0 -1 2311 -6.3567152246832848e-03
+
+ 1.0278800129890442e-01 -9.4062283635139465e-02
+ <_>
+
+ 0 -1 2312 2.1308339200913906e-03
+
+ -5.7343449443578720e-02 1.5747800469398499e-01
+ <_>
+
+ 0 -1 2313 6.4157308079302311e-03
+
+ 4.1112188249826431e-02 -2.6482531428337097e-01
+ <_>
+
+ 0 -1 2314 -1.0572739690542221e-01
+
+ -9.2719399929046631e-01 8.6396038532257080e-03
+ <_>
+
+ 0 -1 2315 6.1298489570617676e-02
+
+ 1.1242480017244816e-02 -5.2976250648498535e-01
+ <_>
+
+ 0 -1 2316 1.0018650442361832e-02
+
+ -6.1801191419363022e-02 1.5441860258579254e-01
+ <_>
+
+ 0 -1 2317 2.3613891098648310e-03
+
+ -3.9282340556383133e-02 8.8061779737472534e-02
+ <_>
+
+ 0 -1 2318 -4.7975129564292729e-04
+
+ -1.0663200169801712e-01 8.3887517452239990e-02
+ <_>
+
+ 0 -1 2319 7.3982410132884979e-02
+
+ 4.7058681957423687e-03 -6.0129082202911377e-01
+ <_>
+
+ 0 -1 2320 6.3821911811828613e-02
+
+ 1.1372390203177929e-02 -7.4044847488403320e-01
+ <_>
+
+ 0 -1 2321 4.6818208647891879e-04
+
+ -7.6545506715774536e-02 5.3563810884952545e-02
+ <_>
+
+ 0 -1 2322 4.3877989053726196e-01
+
+ 1.2420959770679474e-02 -6.8776041269302368e-01
+ <_>
+
+ 0 -1 2323 2.8831470757722855e-02
+
+ 1.5150110237300396e-02 -1.3229629397392273e-01
+ <_>
+
+ 0 -1 2324 6.7726813256740570e-02
+
+ -1.8901329487562180e-02 4.8799818754196167e-01
+ <_>
+
+ 0 -1 2325 9.5125466585159302e-02
+
+ 1.2518660165369511e-02 -7.4607741832733154e-01
+ <_>
+
+ 0 -1 2326 3.4629011061042547e-03
+
+ -6.4396522939205170e-02 1.3450330495834351e-01
+ <_>
+
+ 0 -1 2327 -1.0220340453088284e-02
+
+ -1.2102399766445160e-01 3.5081598907709122e-02
+ <_>
+
+ 0 -1 2328 -2.5227791070938110e-01
+
+ 5.3186398744583130e-01 -1.7373610287904739e-02
+ <_>
+
+ 0 -1 2329 4.7006108798086643e-03
+
+ 2.6264479383826256e-02 -1.6305670142173767e-01
+ <_>
+
+ 0 -1 2330 8.0487072467803955e-02
+
+ -1.1193430051207542e-02 7.3598998785018921e-01
+ <_>
+
+ 0 -1 2331 -3.8025099784135818e-03
+
+ -1.1756920069456100e-01 6.4899243414402008e-02
+ <_>
+
+ 0 -1 2332 -5.1970399916172028e-02
+
+ 2.1764869987964630e-01 -4.6299580484628677e-02
+ <_>
+
+ 0 -1 2333 -1.2381119653582573e-02
+
+ -1.3483320176601410e-01 7.0956252515316010e-02
+ <_>
+
+ 0 -1 2334 4.6567008830606937e-03
+
+ 8.4818847477436066e-02 -1.0850810259580612e-01
+ <_>
+
+ 0 -1 2335 2.4520549923181534e-02
+
+ -5.6512400507926941e-02 2.0845490694046021e-01
+ <_>
+
+ 0 -1 2336 -6.0728159733116627e-03
+
+ 1.0253319889307022e-01 -1.0739710181951523e-01
+ <_>
+
+ 0 -1 2337 1.3803950278088450e-03
+
+ -1.2355019897222519e-01 3.8523931056261063e-02
+ <_>
+
+ 0 -1 2338 8.3129312843084335e-03
+
+ 5.0441969186067581e-02 -1.7901860177516937e-01
+ <_>
+
+ 0 -1 2339 6.8436772562563419e-04
+
+ -6.1334688216447830e-02 4.9543838948011398e-02
+ <_>
+
+ 0 -1 2340 7.1589440107345581e-02
+
+ 1.1258729733526707e-02 -7.2902548313140869e-01
+ <_>
+
+ 0 -1 2341 -3.9251110865734518e-04
+
+ -2.9022648930549622e-01 1.3908719643950462e-02
+ <_>
+
+ 0 -1 2342 -1.6948020085692406e-02
+
+ 1.4616020023822784e-01 -5.6298948824405670e-02
+ <_>
+
+ 0 -1 2343 2.3180670104920864e-03
+
+ 2.0289139449596405e-01 -4.3649390339851379e-02
+ <_>
+
+ 0 -1 2344 7.9764174297451973e-03
+
+ -4.8768021166324615e-02 1.8070909380912781e-01
+ <_>
+
+ 0 -1 2345 -1.1533150449395180e-02
+
+ -1.4238800108432770e-01 5.6691840291023254e-02
+ <_>
+
+ 0 -1 2346 -5.4723728680983186e-04
+
+ -2.3844610154628754e-01 3.2061301171779633e-02
+ <_>
+
+ 0 -1 2347 -1.1751300189644098e-03
+
+ 2.5394979864358902e-02 -8.9872613549232483e-02
+ <_>
+
+ 0 -1 2348 1.3655239716172218e-02
+
+ -2.7230219915509224e-02 3.3419778943061829e-01
+ <_>
+
+ 0 -1 2349 4.1803810745477676e-03
+
+ 2.6914540678262711e-02 -1.2557040154933929e-01
+ <_>
+
+ 0 -1 2350 3.1565671088173985e-04
+
+ 6.2177520245313644e-02 -1.3345809280872345e-01
+ <_>
+
+ 0 -1 2351 7.4048307724297047e-03
+
+ 3.1548298895359039e-02 -2.8247129917144775e-01
+ <_>
+
+ 0 -1 2352 -1.3977429829537868e-02
+
+ 1.2342610210180283e-01 -8.0493018031120300e-02
+ <_>
+
+ 0 -1 2353 -1.4240520074963570e-02
+
+ -2.3979499936103821e-01 1.8016669899225235e-02
+ <_>
+
+ 0 -1 2354 -2.2901569306850433e-01
+
+ -4.2895668745040894e-01 2.0032370463013649e-02
+ <_>
+
+ 0 -1 2355 2.6522560045123100e-02
+
+ -2.9899509623646736e-02 3.1195539236068726e-01
+ <_>
+
+ 0 -1 2356 5.0723659805953503e-03
+
+ 6.2117800116539001e-02 -1.5442310273647308e-01
+ <_>
+
+ 0 -1 2357 2.2340700961649418e-03
+
+ 3.0717259272933006e-02 -1.4656220376491547e-01
+ <_>
+
+ 0 -1 2358 -4.6348381787538528e-02
+
+ -6.7844080924987793e-01 1.2258620001375675e-02
+ <_>
+
+ 0 -1 2359 -3.0467000324279070e-03
+
+ 1.0547509789466858e-01 -5.4426789283752441e-02
+ <_>
+
+ 0 -1 2360 7.0065702311694622e-03
+
+ -5.2537959069013596e-02 2.4259300529956818e-01
+ <_>
+
+ 0 -1 2361 -2.7783720288425684e-03
+
+ -1.0732100158929825e-01 7.4064619839191437e-02
+ <_>
+
+ 0 -1 2362 -4.2294961167499423e-04
+
+ 6.8151466548442841e-02 -1.4117160439491272e-01
+ <_>
+
+ 0 -1 2363 -8.7614007294178009e-02
+
+ -6.5271192789077759e-01 3.3460480626672506e-03
+ <_>
+
+ 0 -1 2364 1.2552930042147636e-02
+
+ 3.3235169947147369e-02 -2.6571980118751526e-01
+ <_>
+
+ 0 -1 2365 -2.1863510832190514e-02
+
+ 1.5599909424781799e-01 -3.7561919540166855e-02
+ <_>
+ 189
+ -1.6477719545364380e+00
+
+ <_>
+
+ 0 -1 2366 1.9715659320354462e-02
+
+ -4.0786159038543701e-01 1.6317300498485565e-01
+ <_>
+
+ 0 -1 2367 4.9977540969848633e-02
+
+ -2.5753161311149597e-01 2.3471170663833618e-01
+ <_>
+
+ 0 -1 2368 3.4774339292198420e-04
+
+ -2.7148011326789856e-01 1.5202049911022186e-01
+ <_>
+
+ 0 -1 2369 8.2787703722715378e-03
+
+ 8.6229562759399414e-02 -4.2272651195526123e-01
+ <_>
+
+ 0 -1 2370 1.2891810387372971e-02
+
+ -2.7589491009712219e-01 9.9677331745624542e-02
+ <_>
+
+ 0 -1 2371 -5.2444688044488430e-03
+
+ 1.4687310159206390e-01 -1.8090559542179108e-01
+ <_>
+
+ 0 -1 2372 4.7363140038214624e-04
+
+ 1.1544570326805115e-01 -2.3242090642452240e-01
+ <_>
+
+ 0 -1 2373 1.0767930187284946e-02
+
+ -2.3256160318851471e-01 5.7885929942131042e-02
+ <_>
+
+ 0 -1 2374 -2.0576089154928923e-03
+
+ -4.0554818511009216e-01 6.1086129397153854e-02
+ <_>
+
+ 0 -1 2375 1.2648279964923859e-01
+
+ 2.5926080998033285e-03 -6.0955828428268433e-01
+ <_>
+
+ 0 -1 2376 2.2029090672731400e-02
+
+ -2.3835970461368561e-01 1.1523839831352234e-01
+ <_>
+
+ 0 -1 2377 8.6279091192409396e-04
+
+ -2.4382559955120087e-01 4.8174999654293060e-02
+ <_>
+
+ 0 -1 2378 6.1232252046465874e-03
+
+ -3.3293130993843079e-01 7.3860548436641693e-02
+ <_>
+
+ 0 -1 2379 1.8321570241823792e-03
+
+ 7.4964806437492371e-02 -3.6050680279731750e-01
+ <_>
+
+ 0 -1 2380 1.3176959939301014e-02
+
+ 7.8650407493114471e-02 -3.0009350180625916e-01
+ <_>
+
+ 0 -1 2381 -1.5092800371348858e-02
+
+ -4.5663359761238098e-01 4.5359719544649124e-02
+ <_>
+
+ 0 -1 2382 -3.9765550754964352e-03
+
+ -3.7404119968414307e-01 5.7276591658592224e-02
+ <_>
+
+ 0 -1 2383 -1.2558099813759327e-02
+
+ 1.8079389631748199e-01 -9.0798392891883850e-02
+ <_>
+
+ 0 -1 2384 1.1346530169248581e-02
+
+ 6.7842416465282440e-02 -3.3354648947715759e-01
+ <_>
+
+ 0 -1 2385 3.0938379932194948e-03
+
+ -6.4362257719039917e-02 1.6250990331172943e-01
+ <_>
+
+ 0 -1 2386 -7.9837916418910027e-03
+
+ -2.8237259387969971e-01 6.4243227243423462e-02
+ <_>
+
+ 0 -1 2387 5.3257539868354797e-02
+
+ -1.1842279881238937e-01 1.5403720736503601e-01
+ <_>
+
+ 0 -1 2388 -3.2308440655469894e-02
+
+ -3.8174659013748169e-01 4.6444781124591827e-02
+ <_>
+
+ 0 -1 2389 7.4837519787251949e-03
+
+ 1.0087630152702332e-01 -1.7848369479179382e-01
+ <_>
+
+ 0 -1 2390 1.4075540006160736e-02
+
+ -1.3612699508666992e-01 1.2589199841022491e-01
+ <_>
+
+ 0 -1 2391 1.1945860460400581e-02
+
+ -4.6452131122350693e-02 3.1823348999023438e-01
+ <_>
+
+ 0 -1 2392 4.9774140119552612e-02
+
+ 3.7373390048742294e-02 -4.3919241428375244e-01
+ <_>
+
+ 0 -1 2393 1.1070669861510396e-03
+
+ 3.3163610845804214e-02 -1.8855419754981995e-01
+ <_>
+
+ 0 -1 2394 -2.8594989329576492e-02
+
+ -3.6906918883323669e-01 4.1930228471755981e-02
+ <_>
+
+ 0 -1 2395 -7.6013091020286083e-03
+
+ 5.2191480994224548e-02 -2.4689050018787384e-01
+ <_>
+
+ 0 -1 2396 1.3114510476589203e-01
+
+ -5.7957381010055542e-02 2.7318599820137024e-01
+ <_>
+
+ 0 -1 2397 -7.4186350502714049e-06
+
+ 1.1802060157060623e-01 -1.0745350271463394e-01
+ <_>
+
+ 0 -1 2398 3.1472120434045792e-02
+
+ -7.1733877062797546e-02 2.5617578625679016e-01
+ <_>
+
+ 0 -1 2399 3.8700491189956665e-02
+
+ 4.2863689363002777e-02 -6.0855817794799805e-01
+ <_>
+
+ 0 -1 2400 -3.9322520606219769e-03
+
+ -2.2127309441566467e-01 6.5617948770523071e-02
+ <_>
+
+ 0 -1 2401 2.3144779726862907e-02
+
+ -6.8200387060642242e-02 1.6107009351253510e-01
+ <_>
+
+ 0 -1 2402 4.4043041765689850e-02
+
+ -5.4092731326818466e-02 2.7009010314941406e-01
+ <_>
+
+ 0 -1 2403 1.6363389790058136e-02
+
+ -6.7165039479732513e-02 1.4292019605636597e-01
+ <_>
+
+ 0 -1 2404 4.0575690567493439e-02
+
+ 2.7095599099993706e-02 -5.1922810077667236e-01
+ <_>
+
+ 0 -1 2405 -8.1591978669166565e-02
+
+ 3.6290401220321655e-01 -5.0641149282455444e-02
+ <_>
+
+ 0 -1 2406 9.6564572304487228e-03
+
+ -6.5868496894836426e-02 2.0459869503974915e-01
+ <_>
+
+ 0 -1 2407 4.3875370174646378e-02
+
+ 2.8287120163440704e-02 -4.7316759824752808e-01
+ <_>
+
+ 0 -1 2408 -5.3375590592622757e-02
+
+ -6.3912391662597656e-01 1.9213579595088959e-02
+ <_>
+
+ 0 -1 2409 -4.2789369821548462e-02
+
+ 3.7414470314979553e-01 -3.6020539700984955e-02
+ <_>
+
+ 0 -1 2410 -1.4193350449204445e-02
+
+ -3.0562171339988708e-01 5.1724649965763092e-02
+ <_>
+
+ 0 -1 2411 -5.2947051823139191e-02
+
+ 2.2203849256038666e-01 -2.7123190462589264e-02
+ <_>
+
+ 0 -1 2412 3.0441719293594360e-01
+
+ 2.8107000514864922e-02 -5.1486051082611084e-01
+ <_>
+
+ 0 -1 2413 9.6917577087879181e-02
+
+ 7.5603500008583069e-03 -5.4642218351364136e-01
+ <_>
+
+ 0 -1 2414 4.5469900942407548e-04
+
+ -2.2257779538631439e-01 5.9663061052560806e-02
+ <_>
+
+ 0 -1 2415 6.4785419963300228e-03
+
+ 7.0507273077964783e-02 -8.6525917053222656e-02
+ <_>
+
+ 0 -1 2416 9.5442440360784531e-03
+
+ 1.1858390271663666e-01 -1.2846529483795166e-01
+ <_>
+
+ 0 -1 2417 1.0664040222764015e-02
+
+ 6.0251180082559586e-02 -2.3454129695892334e-01
+ <_>
+
+ 0 -1 2418 -5.9601400047540665e-02
+
+ -4.9083110690116882e-01 3.1179970130324364e-02
+ <_>
+
+ 0 -1 2419 -1.4810609631240368e-02
+
+ 1.7928470671176910e-01 -5.3788300603628159e-02
+ <_>
+
+ 0 -1 2420 2.4988459423184395e-02
+
+ 4.5585051178932190e-02 -3.1542968750000000e-01
+ <_>
+
+ 0 -1 2421 3.7159871309995651e-02
+
+ -2.5552989915013313e-02 1.2824480235576630e-01
+ <_>
+
+ 0 -1 2422 -3.6023799329996109e-02
+
+ 3.0338558554649353e-01 -5.0723869353532791e-02
+ <_>
+
+ 0 -1 2423 -4.0073681622743607e-02
+
+ -3.5327419638633728e-01 2.5542749091982841e-02
+ <_>
+
+ 0 -1 2424 1.0118799656629562e-01
+
+ 1.4954050071537495e-02 -8.5275518894195557e-01
+ <_>
+
+ 0 -1 2425 1.2551939487457275e-01
+
+ -5.5777598172426224e-02 3.5162329673767090e-02
+ <_>
+
+ 0 -1 2426 -1.0094200260937214e-02
+
+ -7.9517722129821777e-01 1.6658289358019829e-02
+ <_>
+
+ 0 -1 2427 2.7957880869507790e-02
+
+ 3.0823230743408203e-02 -2.9073038697242737e-01
+ <_>
+
+ 0 -1 2428 3.6360241472721100e-02
+
+ 2.7960959821939468e-02 -4.7691631317138672e-01
+ <_>
+
+ 0 -1 2429 -9.9100463092327118e-02
+
+ -3.0804800987243652e-01 4.2725458741188049e-02
+ <_>
+
+ 0 -1 2430 -5.8572040870785713e-04
+
+ 5.9227660298347473e-02 -2.3531119525432587e-01
+ <_>
+
+ 0 -1 2431 -5.1202569156885147e-02
+
+ -5.2199620008468628e-01 1.4952239580452442e-02
+ <_>
+
+ 0 -1 2432 -6.7564798519015312e-03
+
+ 1.4085020124912262e-01 -9.0452179312705994e-02
+ <_>
+
+ 0 -1 2433 -4.8959780484437943e-02
+
+ -6.6878128051757812e-01 2.0590359345078468e-02
+ <_>
+
+ 0 -1 2434 1.4971289783716202e-04
+
+ -1.8641050159931183e-01 6.5254852175712585e-02
+ <_>
+
+ 0 -1 2435 -3.4409679472446442e-02
+
+ -6.5235960483551025e-01 1.4693650417029858e-02
+ <_>
+
+ 0 -1 2436 6.4725689589977264e-02
+
+ 1.2329719960689545e-02 -8.4077721834182739e-01
+ <_>
+
+ 0 -1 2437 1.7888710135594010e-03
+
+ -3.3088308572769165e-01 2.3944050073623657e-02
+ <_>
+
+ 0 -1 2438 7.4999839067459106e-02
+
+ 2.6347629725933075e-02 -4.4841340184211731e-01
+ <_>
+
+ 0 -1 2439 -1.3695800304412842e-01
+
+ -5.7192331552505493e-01 1.2316530337557197e-03
+ <_>
+
+ 0 -1 2440 8.7679617106914520e-02
+
+ 9.1852411627769470e-02 -1.4714670181274414e-01
+ <_>
+
+ 0 -1 2441 -1.4691170305013657e-02
+
+ -2.7389299869537354e-01 5.5910948663949966e-02
+ <_>
+
+ 0 -1 2442 1.8059760332107544e-01
+
+ 1.8475739285349846e-02 -6.2247991561889648e-01
+ <_>
+
+ 0 -1 2443 -6.9349152036011219e-03
+
+ -1.6723890602588654e-01 4.2348120361566544e-02
+ <_>
+
+ 0 -1 2444 -4.5395728200674057e-02
+
+ 5.6401878595352173e-01 -2.0763039588928223e-02
+ <_>
+
+ 0 -1 2445 -3.7714779376983643e-02
+
+ -4.9726399779319763e-01 1.3457749970257282e-02
+ <_>
+
+ 0 -1 2446 -6.6780918277800083e-03
+
+ 1.5654189884662628e-01 -7.9254247248172760e-02
+ <_>
+
+ 0 -1 2447 -3.5693418234586716e-02
+
+ 3.2214561104774475e-01 -2.7933960780501366e-02
+ <_>
+
+ 0 -1 2448 2.0231369417160749e-03
+
+ -2.0472900569438934e-01 6.0136921703815460e-02
+ <_>
+
+ 0 -1 2449 7.7706989832222462e-03
+
+ -6.2275718897581100e-02 1.3619600236415863e-01
+ <_>
+
+ 0 -1 2450 -2.3846060037612915e-02
+
+ -6.4280962944030762e-01 1.9216870889067650e-02
+ <_>
+
+ 0 -1 2451 3.8112789392471313e-02
+
+ 1.6926249489188194e-02 -3.2001879811286926e-01
+ <_>
+
+ 0 -1 2452 -8.1509854644536972e-03
+
+ -1.8527400493621826e-01 6.7431643605232239e-02
+ <_>
+
+ 0 -1 2453 3.0041670799255371e-01
+
+ -3.4997869282960892e-02 3.7719568610191345e-01
+ <_>
+
+ 0 -1 2454 3.2188769546337426e-04
+
+ -4.3860068917274475e-01 3.1008180230855942e-02
+ <_>
+
+ 0 -1 2455 9.9805131554603577e-02
+
+ 2.1043010056018829e-02 -2.4182139337062836e-01
+ <_>
+
+ 0 -1 2456 -1.3132029771804810e-01
+
+ -6.0744529962539673e-01 1.9127229228615761e-02
+ <_>
+
+ 0 -1 2457 -4.4457878917455673e-02
+
+ -2.8207719326019287e-01 1.6199590638279915e-02
+ <_>
+
+ 0 -1 2458 -5.3282459266483784e-03
+
+ 1.9118839502334595e-01 -6.4483523368835449e-02
+ <_>
+
+ 0 -1 2459 4.0367528796195984e-02
+
+ 1.6362620517611504e-02 -5.5463272333145142e-01
+ <_>
+
+ 0 -1 2460 -8.7769925594329834e-03
+
+ -3.8903188705444336e-01 3.1277969479560852e-02
+ <_>
+
+ 0 -1 2461 -1.5031780116260052e-02
+
+ 4.4966968894004822e-01 -1.8708650022745132e-02
+ <_>
+
+ 0 -1 2462 -3.2085120677947998e-02
+
+ 2.2872669994831085e-01 -5.2647799253463745e-02
+ <_>
+
+ 0 -1 2463 1.7735429573804140e-03
+
+ 1.0644569993019104e-01 -1.1970230191946030e-01
+ <_>
+
+ 0 -1 2464 5.9195980429649353e-02
+
+ -6.4485557377338409e-02 1.8440729379653931e-01
+ <_>
+
+ 0 -1 2465 1.1976130306720734e-02
+
+ -4.6655338257551193e-02 2.2750610113143921e-01
+ <_>
+
+ 0 -1 2466 -7.3619361501187086e-04
+
+ 6.4427956938743591e-02 -1.9669359922409058e-01
+ <_>
+
+ 0 -1 2467 1.1274980008602142e-01
+
+ -3.2603729516267776e-02 2.6165801286697388e-01
+ <_>
+
+ 0 -1 2468 -2.9639130458235741e-02
+
+ -2.4286089837551117e-01 5.2550770342350006e-02
+ <_>
+
+ 0 -1 2469 -4.8972599208354950e-02
+
+ 2.9013419151306152e-01 -3.9936609566211700e-02
+ <_>
+
+ 0 -1 2470 -2.0732060074806213e-03
+
+ 6.6728956997394562e-02 -1.8385919928550720e-01
+ <_>
+
+ 0 -1 2471 1.8652489781379700e-01
+
+ 2.5788070634007454e-02 -3.0477121472358704e-01
+ <_>
+
+ 0 -1 2472 -6.4846210181713104e-02
+
+ 5.8964151144027710e-01 -2.1531870588660240e-02
+ <_>
+
+ 0 -1 2473 5.9668030589818954e-02
+
+ 9.0434495359659195e-03 -8.9928478002548218e-01
+ <_>
+
+ 0 -1 2474 -2.2810790687799454e-02
+
+ -5.5689752101898193e-01 2.1036420017480850e-02
+ <_>
+
+ 0 -1 2475 -4.3924558907747269e-02
+
+ -7.7569800615310669e-01 1.3244120404124260e-02
+ <_>
+
+ 0 -1 2476 -8.1411283463239670e-03
+
+ -1.6145749390125275e-01 6.3869751989841461e-02
+ <_>
+
+ 0 -1 2477 -1.7681140452623367e-02
+
+ -1.7088229954242706e-01 4.4323820620775223e-02
+ <_>
+
+ 0 -1 2478 3.5615780949592590e-01
+
+ 1.3911530375480652e-02 -8.2366949319839478e-01
+ <_>
+
+ 0 -1 2479 8.9791387319564819e-02
+
+ -3.3068671822547913e-02 3.9501950144767761e-01
+ <_>
+
+ 0 -1 2480 -5.1039960235357285e-02
+
+ -4.9687319993972778e-01 2.4911910295486450e-02
+ <_>
+
+ 0 -1 2481 4.4502970576286316e-01
+
+ 1.3085749931633472e-02 -7.1374338865280151e-01
+ <_>
+
+ 0 -1 2482 -3.1571299768984318e-03
+
+ -2.3235230147838593e-01 4.5422729104757309e-02
+ <_>
+
+ 0 -1 2483 2.2295509278774261e-01
+
+ 2.5272920727729797e-02 -4.5817920565605164e-01
+ <_>
+
+ 0 -1 2484 8.1787049770355225e-02
+
+ -5.6966669857501984e-02 2.0633119344711304e-01
+ <_>
+
+ 0 -1 2485 1.2290639802813530e-02
+
+ 1.0433530062437057e-01 -1.4129990339279175e-01
+ <_>
+
+ 0 -1 2486 3.2738980371505022e-03
+
+ -1.9929160177707672e-01 5.7900499552488327e-02
+ <_>
+
+ 0 -1 2487 3.1915940344333649e-03
+
+ -2.8649568557739258e-01 3.8445938378572464e-02
+ <_>
+
+ 0 -1 2488 -6.9429136812686920e-02
+
+ 3.9995300769805908e-01 -2.9228420928120613e-02
+ <_>
+
+ 0 -1 2489 3.0896291136741638e-01
+
+ 4.5684990473091602e-03 -9.7593581676483154e-01
+ <_>
+
+ 0 -1 2490 6.0547169297933578e-02
+
+ -1.7227350175380707e-01 7.3367759585380554e-02
+ <_>
+
+ 0 -1 2491 8.0296747386455536e-02
+
+ 1.2790890410542488e-02 -2.9636448621749878e-01
+ <_>
+
+ 0 -1 2492 9.8309047520160675e-02
+
+ 1.7421530559659004e-02 -7.3428112268447876e-01
+ <_>
+
+ 0 -1 2493 -6.0651078820228577e-02
+
+ -8.9268088340759277e-01 9.2950398102402687e-03
+ <_>
+
+ 0 -1 2494 -1.1067830026149750e-02
+
+ 3.6940470337867737e-01 -3.2281860709190369e-02
+ <_>
+
+ 0 -1 2495 -1.7252689227461815e-02
+
+ 2.0163689553737640e-01 -3.0649609863758087e-02
+ <_>
+
+ 0 -1 2496 1.1417149752378464e-01
+
+ -7.2567440569400787e-02 1.4580799639225006e-01
+ <_>
+
+ 0 -1 2497 -1.1878489749506116e-04
+
+ 6.6703669726848602e-02 -1.2044110149145126e-01
+ <_>
+
+ 0 -1 2498 4.2538821697235107e-02
+
+ 1.4235669374465942e-01 -9.3128196895122528e-02
+ <_>
+
+ 0 -1 2499 4.6220790594816208e-02
+
+ -4.5348118990659714e-02 2.6667690277099609e-01
+ <_>
+
+ 0 -1 2500 -1.2598860263824463e-01
+
+ -6.2195998430252075e-01 1.9361790269613266e-02
+ <_>
+
+ 0 -1 2501 1.4336410164833069e-01
+
+ 1.5602460131049156e-02 -3.4269729256629944e-01
+ <_>
+
+ 0 -1 2502 1.4853400178253651e-02
+
+ -1.9399890303611755e-01 5.9365049004554749e-02
+ <_>
+
+ 0 -1 2503 2.9607299715280533e-02
+
+ 2.9370859265327454e-02 -1.1840560287237167e-01
+ <_>
+
+ 0 -1 2504 4.5151200145483017e-02
+
+ -3.1025370582938194e-02 4.2335650324821472e-01
+ <_>
+
+ 0 -1 2505 1.7347050830721855e-02
+
+ 5.2468661218881607e-02 -1.7071889340877533e-01
+ <_>
+
+ 0 -1 2506 4.8696789890527725e-02
+
+ 1.3757590204477310e-02 -7.3853892087936401e-01
+ <_>
+
+ 0 -1 2507 -2.5120940059423447e-02
+
+ -2.6077219843864441e-01 3.6249000579118729e-02
+ <_>
+
+ 0 -1 2508 -1.4412039890885353e-02
+
+ 1.8435400724411011e-01 -5.5376049131155014e-02
+ <_>
+
+ 0 -1 2509 1.6011130064725876e-02
+
+ -3.3822190016508102e-02 9.8490990698337555e-02
+ <_>
+
+ 0 -1 2510 -6.3778877258300781e-02
+
+ 3.9596658945083618e-01 -2.6605289429426193e-02
+ <_>
+
+ 0 -1 2511 -1.2431790120899677e-02
+
+ -2.7103281021118164e-01 5.1153909415006638e-02
+ <_>
+
+ 0 -1 2512 1.5430289506912231e-01
+
+ -2.9742069542407990e-02 3.6223879456520081e-01
+ <_>
+
+ 0 -1 2513 6.8953618407249451e-02
+
+ 1.4560540206730366e-02 -7.1308761835098267e-01
+ <_>
+
+ 0 -1 2514 2.6809390634298325e-02
+
+ 3.0903020873665810e-02 -3.1453761458396912e-01
+ <_>
+
+ 0 -1 2515 -5.4339639842510223e-02
+
+ -5.7081592082977295e-01 6.3606691546738148e-03
+ <_>
+
+ 0 -1 2516 -7.4291341006755829e-03
+
+ -2.1167820692062378e-01 5.4728411138057709e-02
+ <_>
+
+ 0 -1 2517 1.5004719607532024e-02
+
+ -1.3576979935169220e-01 3.6672618240118027e-02
+ <_>
+
+ 0 -1 2518 2.3438859730958939e-02
+
+ -6.2095177173614502e-01 1.7451370134949684e-02
+ <_>
+
+ 0 -1 2519 2.1869429945945740e-01
+
+ -2.5175819173455238e-02 2.4256730079650879e-01
+ <_>
+
+ 0 -1 2520 7.2554901242256165e-02
+
+ 3.0378310009837151e-02 -3.5316839814186096e-01
+ <_>
+
+ 0 -1 2521 -6.0775190591812134e-02
+
+ 6.1231142282485962e-01 -2.9397750273346901e-02
+ <_>
+
+ 0 -1 2522 1.0405359789729118e-02
+
+ -4.8925351351499557e-02 2.0042200386524200e-01
+ <_>
+
+ 0 -1 2523 -4.4559161178767681e-03
+
+ -1.8175999820232391e-01 5.1460109651088715e-02
+ <_>
+
+ 0 -1 2524 5.3141661919653416e-03
+
+ 1.0836429893970490e-01 -1.1464370042085648e-01
+ <_>
+
+ 0 -1 2525 2.8129909187555313e-02
+
+ 4.8452459275722504e-02 -1.0588149726390839e-01
+ <_>
+
+ 0 -1 2526 -1.0029030032455921e-02
+
+ -2.8854200243949890e-01 4.6509381383657455e-02
+ <_>
+
+ 0 -1 2527 4.1623760014772415e-02
+
+ -5.2424181252717972e-02 2.4638059735298157e-01
+ <_>
+
+ 0 -1 2528 1.7407029867172241e-02
+
+ -5.9511799365282059e-02 2.2489009797573090e-01
+ <_>
+
+ 0 -1 2529 -9.1012917459011078e-02
+
+ 3.8434851169586182e-01 -2.6776079088449478e-02
+ <_>
+
+ 0 -1 2530 -5.5964559316635132e-02
+
+ 3.3512559533119202e-01 -3.7086669355630875e-02
+ <_>
+
+ 0 -1 2531 -2.3191609978675842e-01
+
+ -7.9937142133712769e-01 1.6157710924744606e-02
+ <_>
+
+ 0 -1 2532 1.5095779672265053e-02
+
+ 1.9562739878892899e-02 -4.7588780522346497e-01
+ <_>
+
+ 0 -1 2533 -6.3537202775478363e-02
+
+ 5.5103862285614014e-01 -9.9191991612315178e-03
+ <_>
+
+ 0 -1 2534 5.0780471414327621e-02
+
+ -5.0766121596097946e-02 1.9856730103492737e-01
+ <_>
+
+ 0 -1 2535 3.3435709774494171e-02
+
+ 1.7100030556321144e-02 -3.9106050133705139e-01
+ <_>
+
+ 0 -1 2536 2.7236310765147209e-02
+
+ 1.9491130486130714e-02 -4.9955821037292480e-01
+ <_>
+
+ 0 -1 2537 3.6144461482763290e-02
+
+ 1.9712809473276138e-02 -4.7714808583259583e-01
+ <_>
+
+ 0 -1 2538 -3.7110898643732071e-02
+
+ -7.1080970764160156e-01 1.3297240249812603e-02
+ <_>
+
+ 0 -1 2539 -1.6986919799819589e-03
+
+ -1.1454039812088013e-01 5.3833190351724625e-02
+ <_>
+
+ 0 -1 2540 7.0956937270238996e-04
+
+ -1.1852429807186127e-01 8.6146153509616852e-02
+ <_>
+
+ 0 -1 2541 -3.9854459464550018e-02
+
+ -2.1784169971942902e-01 7.9314615577459335e-03
+ <_>
+
+ 0 -1 2542 -2.6265300810337067e-02
+
+ 5.1828277111053467e-01 -1.9502539187669754e-02
+ <_>
+
+ 0 -1 2543 1.5767179429531097e-03
+
+ -9.0025149285793304e-02 4.3614149093627930e-02
+ <_>
+
+ 0 -1 2544 8.4500849246978760e-02
+
+ 1.9108800217509270e-02 -5.8049428462982178e-01
+ <_>
+
+ 0 -1 2545 5.8061029762029648e-02
+
+ 5.1128780469298363e-03 -3.6629718542098999e-01
+ <_>
+
+ 0 -1 2546 -8.6446420755237341e-04
+
+ 9.8551221191883087e-02 -9.9286876618862152e-02
+ <_>
+
+ 0 -1 2547 -1.6358779743313789e-02
+
+ -2.2353939712047577e-01 4.5100010931491852e-02
+ <_>
+
+ 0 -1 2548 1.2069500051438808e-02
+
+ -3.0885580927133560e-02 3.5933670401573181e-01
+ <_>
+
+ 0 -1 2549 6.4932592213153839e-02
+
+ 8.9946594089269638e-03 -6.5505272150039673e-01
+ <_>
+
+ 0 -1 2550 -1.6384720802307129e-02
+
+ 1.8374380469322205e-01 -5.8319728821516037e-02
+ <_>
+
+ 0 -1 2551 3.6467831581830978e-02
+
+ 3.3053800463676453e-02 -3.1176608800888062e-01
+ <_>
+
+ 0 -1 2552 -4.8026088625192642e-03
+
+ -1.3096930086612701e-01 8.8815420866012573e-02
+ <_>
+
+ 0 -1 2553 -9.7134411334991455e-03
+
+ 1.2485890090465546e-01 -4.5851919800043106e-02
+ <_>
+
+ 0 -1 2554 -3.6871319753117859e-04
+
+ 1.0798580199480057e-01 -1.0795330256223679e-01
+ <_>
+ 248
+ -1.3472950458526611e+00
+
+ <_>
+
+ 0 -1 2555 4.8573319800198078e-03
+
+ -2.2165919840335846e-01 2.0661990344524384e-01
+ <_>
+
+ 0 -1 2556 -9.0601091505959630e-04
+
+ 9.2684216797351837e-02 -3.4692689776420593e-01
+ <_>
+
+ 0 -1 2557 3.8109601009637117e-03
+
+ -4.7693979740142822e-01 7.2208866477012634e-02
+ <_>
+
+ 0 -1 2558 -1.9349349895492196e-03
+
+ -2.3474289476871490e-01 1.0308369994163513e-01
+ <_>
+
+ 0 -1 2559 4.6932199038565159e-03
+
+ -2.1755599975585938e-01 1.0297770053148270e-01
+ <_>
+
+ 0 -1 2560 -4.5681721530854702e-03
+
+ -3.2979539036750793e-01 6.2108699232339859e-02
+ <_>
+
+ 0 -1 2561 2.0976159721612930e-03
+
+ -2.7585551142692566e-01 7.4447788298130035e-02
+ <_>
+
+ 0 -1 2562 -2.3434460163116455e-02
+
+ -2.4517090618610382e-01 2.0888300612568855e-02
+ <_>
+
+ 0 -1 2563 -7.5489659793674946e-03
+
+ -2.3539499938488007e-01 8.0594792962074280e-02
+ <_>
+
+ 0 -1 2564 -1.3637889642268419e-03
+
+ 1.2462289631366730e-01 -1.4383980631828308e-01
+ <_>
+
+ 0 -1 2565 2.0881770178675652e-02
+
+ -2.5486978888511658e-01 7.0480130612850189e-02
+ <_>
+
+ 0 -1 2566 -1.6712560318410397e-03
+
+ -1.4747080206871033e-01 9.3597747385501862e-02
+ <_>
+
+ 0 -1 2567 -5.8552708476781845e-02
+
+ 3.7929660081863403e-01 -3.7892241030931473e-02
+ <_>
+
+ 0 -1 2568 -4.7591641545295715e-02
+
+ 3.4769389033317566e-01 -2.9484409838914871e-02
+ <_>
+
+ 0 -1 2569 5.7788072153925896e-03
+
+ 4.1627179831266403e-02 -3.8012310862541199e-01
+ <_>
+
+ 0 -1 2570 6.1923051252961159e-03
+
+ -7.9854242503643036e-02 1.4662300050258636e-01
+ <_>
+
+ 0 -1 2571 8.6211357265710831e-03
+
+ -7.9052597284317017e-02 1.9707180559635162e-01
+ <_>
+
+ 0 -1 2572 3.8787689805030823e-01
+
+ 9.9500510841608047e-03 -5.4955279827117920e-01
+ <_>
+
+ 0 -1 2573 1.2184830009937286e-01
+
+ 2.1560879424214363e-02 -7.1182191371917725e-01
+ <_>
+
+ 0 -1 2574 5.6779510341584682e-03
+
+ 5.0778731703758240e-02 -1.9817540049552917e-01
+ <_>
+
+ 0 -1 2575 -3.2407268881797791e-02
+
+ -6.5776360034942627e-01 1.8930230289697647e-02
+ <_>
+
+ 0 -1 2576 2.3834649473428726e-03
+
+ 3.5910621285438538e-02 -1.9386079907417297e-01
+ <_>
+
+ 0 -1 2577 4.4861159403808415e-04
+
+ 6.3049189746379852e-02 -2.3067280650138855e-01
+ <_>
+
+ 0 -1 2578 2.8381360694766045e-02
+
+ 1.3798769563436508e-02 -2.0287990570068359e-01
+ <_>
+
+ 0 -1 2579 -2.7084869798272848e-03
+
+ -1.6455270349979401e-01 8.1182733178138733e-02
+ <_>
+
+ 0 -1 2580 -1.3218579813838005e-02
+
+ 1.2929069995880127e-01 -4.9410581588745117e-02
+ <_>
+
+ 0 -1 2581 1.8623949727043509e-03
+
+ -2.7398198843002319e-01 4.5746099203824997e-02
+ <_>
+
+ 0 -1 2582 -6.6727721132338047e-03
+
+ -1.5167540311813354e-01 5.5587619543075562e-02
+ <_>
+
+ 0 -1 2583 1.9492399878799915e-03
+
+ -8.5547126829624176e-02 1.3712610304355621e-01
+ <_>
+
+ 0 -1 2584 -7.0978812873363495e-02
+
+ -7.7429318428039551e-01 5.5506629869341850e-03
+ <_>
+
+ 0 -1 2585 5.7003321126103401e-03
+
+ 6.0299661010503769e-02 -2.3000110685825348e-01
+ <_>
+
+ 0 -1 2586 6.6310778260231018e-02
+
+ -8.5690699517726898e-02 1.5169920027256012e-01
+ <_>
+
+ 0 -1 2587 -8.5291899740695953e-03
+
+ 1.4297589659690857e-01 -9.1805547475814819e-02
+ <_>
+
+ 0 -1 2588 5.1141469739377499e-03
+
+ 4.6917989850044250e-02 -1.3319849967956543e-01
+ <_>
+
+ 0 -1 2589 1.9523530500009656e-03
+
+ -1.4177489280700684e-01 1.0524170100688934e-01
+ <_>
+
+ 0 -1 2590 1.9558310508728027e-01
+
+ 1.4478860422968864e-02 -7.9985427856445312e-01
+ <_>
+
+ 0 -1 2591 5.3029200062155724e-03
+
+ 3.7237700074911118e-02 -2.6131349802017212e-01
+ <_>
+
+ 0 -1 2592 6.4814360812306404e-03
+
+ -4.9092698842287064e-02 2.5681778788566589e-01
+ <_>
+
+ 0 -1 2593 -6.1802868731319904e-03
+
+ -2.1317920088768005e-01 6.1390031129121780e-02
+ <_>
+
+ 0 -1 2594 1.9895739387720823e-03
+
+ -7.1335382759571075e-02 1.3002429902553558e-01
+ <_>
+
+ 0 -1 2595 -4.2928531183861196e-04
+
+ 7.2383478283882141e-02 -1.5643799304962158e-01
+ <_>
+
+ 0 -1 2596 -4.5690318802371621e-04
+
+ 7.5732357800006866e-02 -1.0932859778404236e-01
+ <_>
+
+ 0 -1 2597 -1.3333739340305328e-01
+
+ -5.4889208078384399e-01 1.9494550302624702e-02
+ <_>
+
+ 0 -1 2598 8.2705507520586252e-04
+
+ -1.8739989399909973e-01 5.7498261332511902e-02
+ <_>
+
+ 0 -1 2599 -1.6954699531197548e-03
+
+ -1.4100700616836548e-01 8.6548388004302979e-02
+ <_>
+
+ 0 -1 2600 9.8944529891014099e-03
+
+ 1.7898159101605415e-02 -3.1395688652992249e-01
+ <_>
+
+ 0 -1 2601 6.0766572132706642e-03
+
+ -1.3120110332965851e-01 9.1578528285026550e-02
+ <_>
+
+ 0 -1 2602 -3.5680279135704041e-02
+
+ -3.8880988955497742e-01 1.1377809569239616e-02
+ <_>
+
+ 0 -1 2603 8.7540567619726062e-04
+
+ 5.3022928535938263e-02 -2.1509949862957001e-01
+ <_>
+
+ 0 -1 2604 1.9438719609752297e-03
+
+ -8.1035703420639038e-02 1.3382309675216675e-01
+ <_>
+
+ 0 -1 2605 5.6398138403892517e-02
+
+ 1.4857930131256580e-02 -6.9551151990890503e-01
+ <_>
+
+ 0 -1 2606 -1.0274930391460657e-03
+
+ -1.9196349382400513e-01 4.7596029937267303e-02
+ <_>
+
+ 0 -1 2607 -3.3568819053471088e-03
+
+ 1.0466050356626511e-01 -1.0170979797840118e-01
+ <_>
+
+ 0 -1 2608 1.1734040081501007e-01
+
+ -4.6565439552068710e-02 2.0878739655017853e-01
+ <_>
+
+ 0 -1 2609 8.8005866855382919e-03
+
+ 9.1754652559757233e-02 -1.2221500277519226e-01
+ <_>
+
+ 0 -1 2610 2.4095149710774422e-03
+
+ -3.6752160638570786e-02 2.3443439602851868e-01
+ <_>
+
+ 0 -1 2611 -2.8434590785764158e-04
+
+ -1.9996729493141174e-01 4.7353159636259079e-02
+ <_>
+
+ 0 -1 2612 1.7623709514737129e-02
+
+ -2.2765519097447395e-02 2.5646668672561646e-01
+ <_>
+
+ 0 -1 2613 1.4121740125119686e-02
+
+ 2.2659989073872566e-02 -4.2449080944061279e-01
+ <_>
+
+ 0 -1 2614 -1.5290649607777596e-02
+
+ 2.4445760250091553e-01 -4.3145630508661270e-02
+ <_>
+
+ 0 -1 2615 -2.5426879525184631e-02
+
+ 4.1280931234359741e-01 -2.5002820417284966e-02
+ <_>
+
+ 0 -1 2616 8.7438793852925301e-03
+
+ 4.1931539773941040e-02 -1.2433040142059326e-01
+ <_>
+
+ 0 -1 2617 4.1642960160970688e-02
+
+ 2.1535869687795639e-02 -4.9062231183052063e-01
+ <_>
+
+ 0 -1 2618 7.0692330598831177e-02
+
+ -2.4307090789079666e-02 3.3606329560279846e-01
+ <_>
+
+ 0 -1 2619 -7.7690348029136658e-02
+
+ -7.3883998394012451e-01 1.3576829805970192e-02
+ <_>
+
+ 0 -1 2620 3.7781539140269160e-04
+
+ -9.6697732806205750e-02 9.4690509140491486e-02
+ <_>
+
+ 0 -1 2621 -1.1192850070074201e-03
+
+ -2.1631820499897003e-01 4.4235199689865112e-02
+ <_>
+
+ 0 -1 2622 5.9772249311208725e-02
+
+ -3.2024260610342026e-02 3.0602660775184631e-01
+ <_>
+
+ 0 -1 2623 -1.5417120419442654e-02
+
+ -3.4087839722633362e-01 2.8097979724407196e-02
+ <_>
+
+ 0 -1 2624 -6.3111339695751667e-03
+
+ 1.5327680110931396e-01 -4.7901459038257599e-02
+ <_>
+
+ 0 -1 2625 -1.8826499581336975e-02
+
+ -1.5269599854946136e-01 6.0955628752708435e-02
+ <_>
+
+ 0 -1 2626 -3.9223838597536087e-02
+
+ 2.6624131202697754e-01 -7.6400930993258953e-03
+ <_>
+
+ 0 -1 2627 -4.8653159290552139e-02
+
+ -4.5488500595092773e-01 1.9853049889206886e-02
+ <_>
+
+ 0 -1 2628 6.7260518670082092e-02
+
+ 1.0999150108546019e-03 -7.5273478031158447e-01
+ <_>
+
+ 0 -1 2629 1.2728190049529076e-03
+
+ -7.8121297061443329e-02 1.1816550046205521e-01
+ <_>
+
+ 0 -1 2630 -9.4147026538848877e-02
+
+ -5.2153587341308594e-01 1.4973170123994350e-02
+ <_>
+
+ 0 -1 2631 -4.7454461455345154e-02
+
+ 2.6547148823738098e-01 -3.0587410554289818e-02
+ <_>
+
+ 0 -1 2632 -5.6014367146417499e-04
+
+ -1.0506449639797211e-01 6.0161281377077103e-02
+ <_>
+
+ 0 -1 2633 -2.9601220740005374e-04
+
+ 6.2257450073957443e-02 -1.3126540184020996e-01
+ <_>
+
+ 0 -1 2634 -2.0918490365147591e-02
+
+ -2.0831510424613953e-01 2.6843119412660599e-02
+ <_>
+
+ 0 -1 2635 -7.2696260176599026e-03
+
+ -1.6227640211582184e-01 6.1937049031257629e-02
+ <_>
+
+ 0 -1 2636 7.2555372025817633e-04
+
+ -1.0315939784049988e-01 6.8040877580642700e-02
+ <_>
+
+ 0 -1 2637 2.0828839391469955e-02
+
+ -4.4557690620422363e-02 2.2167469561100006e-01
+ <_>
+
+ 0 -1 2638 8.7201192975044250e-02
+
+ 9.5432223752140999e-03 -5.8706420660018921e-01
+ <_>
+
+ 0 -1 2639 4.1596628725528717e-02
+
+ -3.0774539336562157e-02 2.8809019923210144e-01
+ <_>
+
+ 0 -1 2640 -2.6154879480600357e-02
+
+ -5.9353542327880859e-01 1.4388410374522209e-02
+ <_>
+
+ 0 -1 2641 2.7175429463386536e-01
+
+ 1.3717720285058022e-02 -5.4619067907333374e-01
+ <_>
+
+ 0 -1 2642 2.1811699494719505e-02
+
+ -1.6798110678792000e-02 2.9062330722808838e-01
+ <_>
+
+ 0 -1 2643 -1.9965929910540581e-02
+
+ -4.3052119016647339e-01 1.8917759880423546e-02
+ <_>
+
+ 0 -1 2644 -1.1561929713934660e-03
+
+ 8.8031537830829620e-02 -1.9590209424495697e-01
+ <_>
+
+ 0 -1 2645 -1.6627550357952714e-03
+
+ 8.9111559092998505e-02 -9.0959653258323669e-02
+ <_>
+
+ 0 -1 2646 -1.7325150547549129e-03
+
+ -1.1540830135345459e-01 5.3636670112609863e-02
+ <_>
+
+ 0 -1 2647 -3.9231408387422562e-02
+
+ 6.2471270561218262e-01 -1.3666920363903046e-02
+ <_>
+
+ 0 -1 2648 1.0423580184578896e-02
+
+ 2.4711130186915398e-02 -1.6751749813556671e-01
+ <_>
+
+ 0 -1 2649 2.2725639864802361e-03
+
+ -5.5126778781414032e-02 1.4781460165977478e-01
+ <_>
+
+ 0 -1 2650 -3.9644641801714897e-03
+
+ 1.1337990313768387e-01 -6.8672053515911102e-02
+ <_>
+
+ 0 -1 2651 4.0544760413467884e-03
+
+ 4.0180210024118423e-02 -2.3837350308895111e-01
+ <_>
+
+ 0 -1 2652 2.0538640674203634e-03
+
+ 3.2863691449165344e-02 -1.2495829910039902e-01
+ <_>
+
+ 0 -1 2653 2.9705381020903587e-03
+
+ 4.1810061782598495e-02 -2.0539659261703491e-01
+ <_>
+
+ 0 -1 2654 -8.3381328731775284e-03
+
+ 9.2258736491203308e-02 -3.8435179740190506e-02
+ <_>
+
+ 0 -1 2655 1.5640279743820429e-03
+
+ -9.6661567687988281e-02 8.5594817996025085e-02
+ <_>
+
+ 0 -1 2656 -3.7052970379590988e-02
+
+ -7.7915471792221069e-01 1.0418290272355080e-02
+ <_>
+
+ 0 -1 2657 -1.0109930299222469e-02
+
+ 1.2499059736728668e-01 -6.4437836408615112e-02
+ <_>
+
+ 0 -1 2658 -7.9335980117321014e-02
+
+ 7.0784372091293335e-01 -3.1601081136614084e-03
+ <_>
+
+ 0 -1 2659 -2.5811919476836920e-03
+
+ -1.6802759468555450e-01 6.7257612943649292e-02
+ <_>
+
+ 0 -1 2660 1.8863540142774582e-02
+
+ -5.2749298512935638e-02 1.4578150212764740e-01
+ <_>
+
+ 0 -1 2661 6.1697891214862466e-04
+
+ -9.6527166664600372e-02 9.3077242374420166e-02
+ <_>
+
+ 0 -1 2662 -9.9242655560374260e-03
+
+ 1.2164440006017685e-01 -2.6439830660820007e-02
+ <_>
+
+ 0 -1 2663 -4.7382008284330368e-02
+
+ -3.7194240093231201e-01 2.4884449318051338e-02
+ <_>
+
+ 0 -1 2664 3.8585590664297342e-03
+
+ -4.2420830577611923e-02 1.1997900158166885e-01
+ <_>
+
+ 0 -1 2665 2.3721279576420784e-03
+
+ -7.2769053280353546e-02 1.3027629256248474e-01
+ <_>
+
+ 0 -1 2666 -3.1968571245670319e-02
+
+ -4.7088149189949036e-01 1.8863039091229439e-02
+ <_>
+
+ 0 -1 2667 -7.2849751450121403e-04
+
+ 2.8128319978713989e-01 -3.0785139650106430e-02
+ <_>
+
+ 0 -1 2668 -1.2096880003809929e-02
+
+ -7.0163071155548096e-01 1.3336709700524807e-02
+ <_>
+
+ 0 -1 2669 -1.7658369615674019e-02
+
+ 1.9193160533905029e-01 -4.7951001673936844e-02
+ <_>
+
+ 0 -1 2670 -1.0974059812724590e-02
+
+ -2.7307328581809998e-01 2.8784489259123802e-02
+ <_>
+
+ 0 -1 2671 -1.8560180440545082e-02
+
+ -4.4306761026382446e-01 2.0472019910812378e-02
+ <_>
+
+ 0 -1 2672 1.3861100189387798e-02
+
+ -3.7471339106559753e-02 1.0929849743843079e-01
+ <_>
+
+ 0 -1 2673 5.6243170052766800e-02
+
+ 1.3322129845619202e-02 -6.1972159147262573e-01
+ <_>
+
+ 0 -1 2674 -1.3746799901127815e-02
+
+ 1.8980909883975983e-01 -4.3810151517391205e-02
+ <_>
+
+ 0 -1 2675 -2.0494889758992940e-04
+
+ -1.4809520542621613e-01 5.9458550065755844e-02
+ <_>
+
+ 0 -1 2676 1.1416030116379261e-02
+
+ 4.5111801475286484e-02 -1.7277219891548157e-01
+ <_>
+
+ 0 -1 2677 4.1169788688421249e-02
+
+ -2.3442840203642845e-02 3.3413231372833252e-01
+ <_>
+
+ 0 -1 2678 -9.6223354339599609e-03
+
+ -1.6086310148239136e-01 3.3183149993419647e-02
+ <_>
+
+ 0 -1 2679 1.5951909590512514e-03
+
+ -6.3590511679649353e-02 1.3396669924259186e-01
+ <_>
+
+ 0 -1 2680 -6.3169049099087715e-03
+
+ -1.6365319490432739e-01 5.1552049815654755e-02
+ <_>
+
+ 0 -1 2681 4.6467378735542297e-02
+
+ -2.5627709925174713e-02 3.8097569346427917e-01
+ <_>
+
+ 0 -1 2682 9.1598592698574066e-02
+
+ 4.2748241685330868e-03 -5.9740132093429565e-01
+ <_>
+
+ 0 -1 2683 -1.0416290024295449e-03
+
+ -1.4733889698982239e-01 5.5105950683355331e-02
+ <_>
+
+ 0 -1 2684 -2.3334469646215439e-02
+
+ 9.2266462743282318e-02 -5.3653880953788757e-02
+ <_>
+
+ 0 -1 2685 -6.3067381270229816e-03
+
+ -1.6974699497222900e-01 6.0046479105949402e-02
+ <_>
+
+ 0 -1 2686 5.2549671381711960e-03
+
+ -8.8989406824111938e-02 4.7306548804044724e-02
+ <_>
+
+ 0 -1 2687 -1.0699460282921791e-02
+
+ -1.5823520720005035e-01 5.1100831478834152e-02
+ <_>
+
+ 0 -1 2688 -5.4387808777391911e-03
+
+ 1.2524560093879700e-01 -3.9472699165344238e-02
+ <_>
+
+ 0 -1 2689 3.4613600000739098e-03
+
+ -6.8892680108547211e-02 1.7920389771461487e-01
+ <_>
+
+ 0 -1 2690 -1.7894359305500984e-02
+
+ -9.4599656760692596e-02 6.2322728335857391e-02
+ <_>
+
+ 0 -1 2691 -2.1147909760475159e-01
+
+ -8.6275768280029297e-01 9.4653964042663574e-03
+ <_>
+
+ 0 -1 2692 1.4149859780445695e-03
+
+ -8.6214788258075714e-02 4.0635921061038971e-02
+ <_>
+
+ 0 -1 2693 -1.5357299707829952e-03
+
+ 9.9525436758995056e-02 -7.7558159828186035e-02
+ <_>
+
+ 0 -1 2694 2.8714749496430159e-03
+
+ -6.3778772950172424e-02 1.1251030117273331e-01
+ <_>
+
+ 0 -1 2695 1.8400069326162338e-02
+
+ 2.3700669407844543e-02 -3.5953688621520996e-01
+ <_>
+
+ 0 -1 2696 -7.3078006505966187e-02
+
+ -8.3836638927459717e-01 2.1687510889023542e-03
+ <_>
+
+ 0 -1 2697 9.8323542624711990e-03
+
+ -5.3899969905614853e-02 1.6186970472335815e-01
+ <_>
+
+ 0 -1 2698 2.2987959906458855e-02
+
+ 1.5955159440636635e-02 -3.3074310421943665e-01
+ <_>
+
+ 0 -1 2699 -5.4363980889320374e-03
+
+ -1.3372650742530823e-01 5.8162450790405273e-02
+ <_>
+
+ 0 -1 2700 1.0177739895880222e-02
+
+ -5.7901948690414429e-02 4.0789060294628143e-02
+ <_>
+
+ 0 -1 2701 -5.1690369844436646e-02
+
+ 4.7881290316581726e-01 -2.0051179453730583e-02
+ <_>
+
+ 0 -1 2702 -4.6395331621170044e-02
+
+ 3.5422900319099426e-01 -1.6692889854311943e-02
+ <_>
+
+ 0 -1 2703 4.0920148603618145e-04
+
+ -5.8872789144515991e-02 1.3617689907550812e-01
+ <_>
+
+ 0 -1 2704 3.0743801034986973e-03
+
+ 3.1892731785774231e-02 -2.9396781325340271e-01
+ <_>
+
+ 0 -1 2705 1.3438959419727325e-01
+
+ 1.5018840320408344e-02 -5.1557308435440063e-01
+ <_>
+
+ 0 -1 2706 -4.4954590499401093e-02
+
+ -6.5404319763183594e-01 5.8901738375425339e-03
+ <_>
+
+ 0 -1 2707 -4.1479051113128662e-02
+
+ -5.6925541162490845e-01 1.3012220151722431e-02
+ <_>
+
+ 0 -1 2708 2.9117099940776825e-02
+
+ -1.9148029386997223e-02 1.8318380415439606e-01
+ <_>
+
+ 0 -1 2709 5.1073249429464340e-02
+
+ 1.5260309912264347e-02 -4.9480628967285156e-01
+ <_>
+
+ 0 -1 2710 7.0886377943679690e-04
+
+ 8.7698653340339661e-02 -7.3333673179149628e-02
+ <_>
+
+ 0 -1 2711 1.1835389770567417e-02
+
+ -3.9189878851175308e-02 2.0834849774837494e-01
+ <_>
+
+ 0 -1 2712 -4.2260489426553249e-03
+
+ -1.8733769655227661e-01 7.4666850268840790e-02
+ <_>
+
+ 0 -1 2713 3.4847799688577652e-02
+
+ -3.0572960153222084e-02 2.6511108875274658e-01
+ <_>
+
+ 0 -1 2714 1.2932980433106422e-02
+
+ 2.2224349901080132e-02 -2.3204100131988525e-01
+ <_>
+
+ 0 -1 2715 -3.4806900657713413e-03
+
+ 6.0548238456249237e-02 -1.3034850358963013e-01
+ <_>
+
+ 0 -1 2716 1.7225079238414764e-02
+
+ -6.7219920456409454e-03 1.1128149926662445e-01
+ <_>
+
+ 0 -1 2717 -2.4316289927810431e-03
+
+ -1.8720659613609314e-01 4.1284140199422836e-02
+ <_>
+
+ 0 -1 2718 -1.1786689981818199e-02
+
+ 1.5917420387268066e-01 -3.0763400718569756e-02
+ <_>
+
+ 0 -1 2719 -5.3132520988583565e-03
+
+ -1.3786070048809052e-01 5.4246630519628525e-02
+ <_>
+
+ 0 -1 2720 -2.0012039691209793e-02
+
+ 2.9359638690948486e-01 -2.6866350322961807e-02
+ <_>
+
+ 0 -1 2721 2.0955558866262436e-03
+
+ 6.7963063716888428e-02 -1.2520860135555267e-01
+ <_>
+
+ 0 -1 2722 -3.9648640900850296e-02
+
+ -5.8195388317108154e-01 1.3146690092980862e-02
+ <_>
+
+ 0 -1 2723 -3.4485850483179092e-02
+
+ 4.5559158921241760e-01 -1.8659429624676704e-02
+ <_>
+
+ 0 -1 2724 -4.4569540768861771e-02
+
+ -9.2067569494247437e-01 5.3931041620671749e-03
+ <_>
+
+ 0 -1 2725 -1.1394550092518330e-03
+
+ -2.1932439506053925e-01 3.6249380558729172e-02
+ <_>
+
+ 0 -1 2726 -3.7044081836938858e-02
+
+ 1.6192549467086792e-01 -4.7661919146776199e-02
+ <_>
+
+ 0 -1 2727 1.9300490617752075e-02
+
+ -5.4432831704616547e-02 1.4432109892368317e-01
+ <_>
+
+ 0 -1 2728 -1.4382150257006288e-03
+
+ -6.7343980073928833e-02 4.2511381208896637e-02
+ <_>
+
+ 0 -1 2729 3.8761008530855179e-02
+
+ 1.4171930029988289e-02 -5.3382647037506104e-01
+ <_>
+
+ 0 -1 2730 -1.5265800058841705e-01
+
+ -9.1533327102661133e-01 2.1413750946521759e-03
+ <_>
+
+ 0 -1 2731 -8.4089813753962517e-03
+
+ 1.7705249786376953e-01 -4.3753430247306824e-02
+ <_>
+
+ 0 -1 2732 -1.6673170030117035e-01
+
+ -5.6390452384948730e-01 7.5904577970504761e-03
+ <_>
+
+ 0 -1 2733 -7.3619261384010315e-03
+
+ -1.9691839814186096e-01 3.9698500186204910e-02
+ <_>
+
+ 0 -1 2734 -9.9920090287923813e-03
+
+ -1.3419510424137115e-01 6.3489198684692383e-02
+ <_>
+
+ 0 -1 2735 -2.2656610235571861e-03
+
+ 7.9676061868667603e-02 -1.0685960203409195e-01
+ <_>
+
+ 0 -1 2736 -1.3868820667266846e-01
+
+ -4.7306931018829346e-01 1.5354130417108536e-02
+ <_>
+
+ 0 -1 2737 -1.3284240663051605e-01
+
+ -8.7984371185302734e-01 7.0595988072454929e-03
+ <_>
+
+ 0 -1 2738 -2.4882299825549126e-02
+
+ 1.3333520293235779e-01 -4.0933601558208466e-02
+ <_>
+
+ 0 -1 2739 -6.6814320161938667e-03
+
+ -1.0295540094375610e-01 7.4870042502880096e-02
+ <_>
+
+ 0 -1 2740 6.0326699167490005e-02
+
+ 1.3355839997529984e-02 -3.7602999806404114e-01
+ <_>
+
+ 0 -1 2741 -8.5582301020622253e-02
+
+ 2.1200770139694214e-01 -3.8742028176784515e-02
+ <_>
+
+ 0 -1 2742 -1.2076400220394135e-02
+
+ -8.2457520067691803e-02 6.7780442535877228e-02
+ <_>
+
+ 0 -1 2743 2.0311089232563972e-02
+
+ -1.1817990243434906e-01 6.4830578863620758e-02
+ <_>
+
+ 0 -1 2744 -3.9900741539895535e-03
+
+ -1.5723599493503571e-01 5.3033929318189621e-02
+ <_>
+
+ 0 -1 2745 -1.4961370034143329e-03
+
+ 2.4392129480838776e-01 -3.1170839443802834e-02
+ <_>
+
+ 0 -1 2746 1.8568099767435342e-04
+
+ -1.9409550726413727e-01 4.5490209013223648e-02
+ <_>
+
+ 0 -1 2747 1.4796480536460876e-01
+
+ 6.2650348991155624e-03 -9.9987298250198364e-01
+ <_>
+
+ 0 -1 2748 1.6918669641017914e-01
+
+ 4.2962608858942986e-04 -3.5496100783348083e-01
+ <_>
+
+ 0 -1 2749 -1.9380000594537705e-04
+
+ -1.3056799769401550e-01 5.4877169430255890e-02
+ <_>
+
+ 0 -1 2750 -6.2729098135605454e-04
+
+ 4.1053570806980133e-02 -8.3174988627433777e-02
+ <_>
+
+ 0 -1 2751 -2.6877908967435360e-03
+
+ 1.5513989329338074e-01 -5.5573899298906326e-02
+ <_>
+
+ 0 -1 2752 -7.6885253190994263e-02
+
+ -6.1440211534500122e-01 3.2789220567792654e-03
+ <_>
+
+ 0 -1 2753 -1.6956549370661378e-04
+
+ 6.0934148728847504e-02 -1.4717090129852295e-01
+ <_>
+
+ 0 -1 2754 3.7390850484371185e-02
+
+ 8.8595114648342133e-03 -2.3843410611152649e-01
+ <_>
+
+ 0 -1 2755 -3.7611280567944050e-03
+
+ -1.1896059662103653e-01 5.4526679217815399e-02
+ <_>
+
+ 0 -1 2756 -7.5538672506809235e-02
+
+ 1. -2.8170819859951735e-03
+ <_>
+
+ 0 -1 2757 5.1163119496777654e-04
+
+ -1.1333829909563065e-01 6.8293251097202301e-02
+ <_>
+
+ 0 -1 2758 -5.4373521357774734e-02
+
+ 5.6772488355636597e-01 -5.5303489789366722e-03
+ <_>
+
+ 0 -1 2759 -1.2200759723782539e-02
+
+ 2.6310768723487854e-01 -3.5334069281816483e-02
+ <_>
+
+ 0 -1 2760 6.5340757369995117e-02
+
+ 8.2145677879452705e-03 -9.7914510965347290e-01
+ <_>
+
+ 0 -1 2761 -9.7028106451034546e-02
+
+ -7.5845307111740112e-01 6.8704010918736458e-03
+ <_>
+
+ 0 -1 2762 -4.9768280237913132e-02
+
+ -8.0786317586898804e-01 1.3162019895389676e-03
+ <_>
+
+ 0 -1 2763 -2.9802118660882115e-04
+
+ 8.5099622607231140e-02 -9.1054826974868774e-02
+ <_>
+
+ 0 -1 2764 1.0124569758772850e-02
+
+ -8.9172579348087311e-02 7.7402189373970032e-02
+ <_>
+
+ 0 -1 2765 8.1574246287345886e-03
+
+ -6.4016029238700867e-02 1.2462829798460007e-01
+ <_>
+
+ 0 -1 2766 -1.2093920260667801e-02
+
+ -1.8433560431003571e-01 4.9659188836812973e-02
+ <_>
+
+ 0 -1 2767 -1.1906909756362438e-02
+
+ 2.6277810335159302e-01 -2.9921159148216248e-02
+ <_>
+
+ 0 -1 2768 -8.1438422203063965e-02
+
+ -6.4389252662658691e-01 1.7232710495591164e-02
+ <_>
+
+ 0 -1 2769 1.4961180277168751e-03
+
+ -1.2228660285472870e-01 5.7763870805501938e-02
+ <_>
+
+ 0 -1 2770 -2.2651249542832375e-02
+
+ -1.1090759932994843e-01 7.0385642349720001e-02
+ <_>
+
+ 0 -1 2771 -2.3789770901203156e-02
+
+ 2.9644450545310974e-01 -2.5997739285230637e-02
+ <_>
+
+ 0 -1 2772 1.4299990143626928e-03
+
+ -8.9716851711273193e-02 5.6030821055173874e-02
+ <_>
+
+ 0 -1 2773 -4.1593458503484726e-02
+
+ -5.8160471916198730e-01 1.1599930003285408e-02
+ <_>
+
+ 0 -1 2774 -2.5586199481040239e-03
+
+ 6.2241408973932266e-02 -1.1328329890966415e-01
+ <_>
+
+ 0 -1 2775 -1.0252290219068527e-01
+
+ -8.5185718536376953e-01 8.2774916663765907e-03
+ <_>
+
+ 0 -1 2776 -3.1799520365893841e-03
+
+ -1.3918060064315796e-01 5.3719218820333481e-02
+ <_>
+
+ 0 -1 2777 -3.9835860952734947e-03
+
+ 1.5531490743160248e-01 -5.3399000316858292e-02
+ <_>
+
+ 0 -1 2778 1.0895960032939911e-02
+
+ 3.9084900170564651e-02 -2.1268959343433380e-01
+ <_>
+
+ 0 -1 2779 1.7865100875496864e-02
+
+ -2.5146210566163063e-02 3.3581560850143433e-01
+ <_>
+
+ 0 -1 2780 5.5075511336326599e-03
+
+ 2.3314310237765312e-02 -9.3666307628154755e-02
+ <_>
+
+ 0 -1 2781 2.0092551130801439e-03
+
+ 5.7231310755014420e-02 -1.4091749489307404e-01
+ <_>
+
+ 0 -1 2782 -1.2218699790537357e-02
+
+ 1.9243550300598145e-01 -2.4631109088659286e-02
+ <_>
+
+ 0 -1 2783 1.8039119895547628e-03
+
+ 5.5793199688196182e-02 -1.2940339744091034e-01
+ <_>
+
+ 0 -1 2784 2.2159840911626816e-02
+
+ -9.0001197531819344e-03 5.2156221866607666e-01
+ <_>
+
+ 0 -1 2785 -3.5827290266752243e-02
+
+ -6.2905979156494141e-01 1.1712389998137951e-02
+ <_>
+
+ 0 -1 2786 8.9478418231010437e-03
+
+ -3.7455581128597260e-02 1.0906309634447098e-01
+ <_>
+
+ 0 -1 2787 -1.2861900031566620e-01
+
+ -3.9527180790901184e-01 1.8151529133319855e-02
+ <_>
+
+ 0 -1 2788 1.8464029999449849e-03
+
+ -3.3952530473470688e-02 9.6596188843250275e-02
+ <_>
+
+ 0 -1 2789 2.8246780857443810e-03
+
+ -6.2633261084556580e-02 1.1198879778385162e-01
+ <_>
+
+ 0 -1 2790 6.9075852632522583e-02
+
+ 1.3590560294687748e-02 -5.2598261833190918e-01
+ <_>
+
+ 0 -1 2791 -8.0794151872396469e-03
+
+ 1.3081569969654083e-01 -5.0100728869438171e-02
+ <_>
+
+ 0 -1 2792 -3.7193649914115667e-03
+
+ -1.4887580275535583e-01 5.1823489367961884e-02
+ <_>
+
+ 0 -1 2793 2.0610638894140720e-03
+
+ -6.5545938909053802e-02 1.1345130205154419e-01
+ <_>
+
+ 0 -1 2794 -6.0795281082391739e-02
+
+ -7.8219258785247803e-01 4.5540397986769676e-03
+ <_>
+
+ 0 -1 2795 -7.3096780106425285e-03
+
+ -1.9586810469627380e-01 3.5591870546340942e-02
+ <_>
+
+ 0 -1 2796 -2.3796008899807930e-03
+
+ 4.3329920619726181e-02 -6.0119420289993286e-02
+ <_>
+
+ 0 -1 2797 -3.7874478846788406e-02
+
+ 1.6700419783592224e-01 -4.1082471609115601e-02
+ <_>
+
+ 0 -1 2798 -1.1011550202965736e-02
+
+ -7.9715803265571594e-02 3.2247040420770645e-02
+ <_>
+
+ 0 -1 2799 -1.5278880018740892e-03
+
+ 9.7541913390159607e-02 -9.4694830477237701e-02
+ <_>
+
+ 0 -1 2800 3.7144418805837631e-02
+
+ -4.4054100289940834e-03 4.4159731268882751e-01
+ <_>
+
+ 0 -1 2801 -4.9948949366807938e-02
+
+ -8.0400061607360840e-01 9.0302517637610435e-03
+ <_>
+
+ 0 -1 2802 -1.8558859825134277e-02
+
+ 1.8556900322437286e-01 -2.6648480445146561e-02
+ <_>
+ 208
+ -1.5900419950485229e+00
+
+ <_>
+
+ 0 -1 2803 5.9106469154357910e-02
+
+ -1.9395799934864044e-01 2.7272081375122070e-01
+ <_>
+
+ 0 -1 2804 2.6784019544720650e-02
+
+ -4.2093229293823242e-01 1.2330240011215210e-01
+ <_>
+
+ 0 -1 2805 8.6407009512186050e-03
+
+ -3.0236870050430298e-01 1.3153509795665741e-01
+ <_>
+
+ 0 -1 2806 -1.1792869772762060e-03
+
+ 8.2713536918163300e-02 -3.5140541195869446e-01
+ <_>
+
+ 0 -1 2807 -2.2481461055576801e-03
+
+ -5.1323968172073364e-01 5.4614610970020294e-02
+ <_>
+
+ 0 -1 2808 5.7527530007064342e-03
+
+ -1.9243009388446808e-01 1.3872030377388000e-01
+ <_>
+
+ 0 -1 2809 1.0034020058810711e-02
+
+ 6.0773681849241257e-02 -3.1631371378898621e-01
+ <_>
+
+ 0 -1 2810 -3.2057110220193863e-03
+
+ 1.3471069931983948e-01 -1.6333019733428955e-01
+ <_>
+
+ 0 -1 2811 1.3803630135953426e-02
+
+ 7.4590288102626801e-02 -2.7751418948173523e-01
+ <_>
+
+ 0 -1 2812 -1.9213010370731354e-01
+
+ 2.6890340447425842e-01 -6.6552907228469849e-02
+ <_>
+
+ 0 -1 2813 -7.0279821753501892e-02
+
+ -3.2870158553123474e-01 4.9912039190530777e-02
+ <_>
+
+ 0 -1 2814 3.1519670039415359e-02
+
+ 3.5865701735019684e-02 -5.0489199161529541e-01
+ <_>
+
+ 0 -1 2815 -1.1164420284330845e-02
+
+ -2.7422958612442017e-01 7.3949173092842102e-02
+ <_>
+
+ 0 -1 2816 6.1416681855916977e-03
+
+ -8.7944798171520233e-02 1.5492740273475647e-01
+ <_>
+
+ 0 -1 2817 2.5183141231536865e-01
+
+ -9.3605853617191315e-02 1.8827579915523529e-01
+ <_>
+
+ 0 -1 2818 -1.9524399191141129e-02
+
+ -2.8733500838279724e-01 4.9147769808769226e-02
+ <_>
+
+ 0 -1 2819 -2.1689489483833313e-02
+
+ -3.3415651321411133e-01 4.8450991511344910e-02
+ <_>
+
+ 0 -1 2820 3.4099910408258438e-02
+
+ -1.4776800572872162e-01 1.1322359740734100e-01
+ <_>
+
+ 0 -1 2821 -2.0377550274133682e-02
+
+ -2.9778409004211426e-01 5.6795541197061539e-02
+ <_>
+
+ 0 -1 2822 2.3986540734767914e-02
+
+ -5.5139839649200439e-02 3.5672488808631897e-01
+ <_>
+
+ 0 -1 2823 -1.4578890055418015e-02
+
+ -3.3595868945121765e-01 4.9776330590248108e-02
+ <_>
+
+ 0 -1 2824 -5.4530607303604484e-04
+
+ 1.4906319975852966e-01 -1.2674619257450104e-01
+ <_>
+
+ 0 -1 2825 3.0076410621404648e-03
+
+ -3.8654258847236633e-01 3.7338510155677795e-02
+ <_>
+
+ 0 -1 2826 6.1654142336919904e-04
+
+ 7.0350617170333862e-02 -2.7769538760185242e-01
+ <_>
+
+ 0 -1 2827 5.1461078226566315e-02
+
+ 2.7613859623670578e-02 -4.9107590317726135e-01
+ <_>
+
+ 0 -1 2828 5.5607639253139496e-02
+
+ 2.7626939117908478e-02 -2.9615479707717896e-01
+ <_>
+
+ 0 -1 2829 2.9709029942750931e-02
+
+ 6.5961636602878571e-02 -2.0508719980716705e-01
+ <_>
+
+ 0 -1 2830 3.4046828746795654e-02
+
+ -3.8902580738067627e-02 2.4681000411510468e-01
+ <_>
+
+ 0 -1 2831 2.4807849898934364e-02
+
+ 3.5015519708395004e-02 -4.1401639580726624e-01
+ <_>
+
+ 0 -1 2832 4.0748160332441330e-02
+
+ 4.2967729270458221e-02 -3.2043859362602234e-01
+ <_>
+
+ 0 -1 2833 1.0664659552276134e-02
+
+ 5.6952890008687973e-02 -2.4745999276638031e-01
+ <_>
+
+ 0 -1 2834 -6.3090369105339050e-02
+
+ 1.6899240016937256e-01 -1.8692910671234131e-02
+ <_>
+
+ 0 -1 2835 3.4371189773082733e-02
+
+ -4.7546751797199249e-02 3.2781639695167542e-01
+ <_>
+
+ 0 -1 2836 -1.2518119812011719e-01
+
+ -5.6282979249954224e-01 1.3721459545195103e-02
+ <_>
+
+ 0 -1 2837 -2.2273709997534752e-02
+
+ 2.8452938795089722e-01 -4.7334741801023483e-02
+ <_>
+
+ 0 -1 2838 3.1560619827359915e-03
+
+ 6.7093066871166229e-02 -1.5777610242366791e-01
+ <_>
+
+ 0 -1 2839 -8.5235182195901871e-03
+
+ -4.5404490828514099e-01 3.0238900333642960e-02
+ <_>
+
+ 0 -1 2840 9.4529008492827415e-03
+
+ -5.5023040622472763e-02 1.4025360345840454e-01
+ <_>
+
+ 0 -1 2841 -1.5268090181052685e-02
+
+ -4.1039389371871948e-01 3.3160910010337830e-02
+ <_>
+
+ 0 -1 2842 1.0665830224752426e-02
+
+ -1.1716780066490173e-01 9.5943398773670197e-02
+ <_>
+
+ 0 -1 2843 -1.8211569637060165e-02
+
+ -2.4850100278854370e-01 6.7713633179664612e-02
+ <_>
+
+ 0 -1 2844 2.9094598721712828e-04
+
+ 4.9981009215116501e-02 -2.2298039495944977e-01
+ <_>
+
+ 0 -1 2845 1.2524049961939454e-03
+
+ -2.3567390441894531e-01 6.0058139264583588e-02
+ <_>
+
+ 0 -1 2846 -1.0200130194425583e-01
+
+ 4.6817669272422791e-01 -1.4046870172023773e-02
+ <_>
+
+ 0 -1 2847 -5.3803320974111557e-02
+
+ -3.8875138759613037e-01 3.8533151149749756e-02
+ <_>
+
+ 0 -1 2848 3.5919819027185440e-02
+
+ 1.7687749117612839e-02 -6.3149172067642212e-01
+ <_>
+
+ 0 -1 2849 -9.9846003577113152e-03
+
+ 2.3914399743080139e-01 -5.8490000665187836e-02
+ <_>
+
+ 0 -1 2850 2.2157909348607063e-02
+
+ -4.4814221560955048e-02 1.9423240423202515e-01
+ <_>
+
+ 0 -1 2851 -1.4240739867091179e-02
+
+ -3.7670499086380005e-01 3.4929048269987106e-02
+ <_>
+
+ 0 -1 2852 -5.9150479733943939e-02
+
+ 1.6816680133342743e-01 -3.5232000052928925e-02
+ <_>
+
+ 0 -1 2853 3.6074228584766388e-02
+
+ 2.2868489846587181e-02 -5.7828897237777710e-01
+ <_>
+
+ 0 -1 2854 5.7692300528287888e-02
+
+ -2.1003179252147675e-02 3.0750969052314758e-01
+ <_>
+
+ 0 -1 2855 -5.6619398295879364e-02
+
+ 2.3383679986000061e-01 -5.5003248155117035e-02
+ <_>
+
+ 0 -1 2856 -1.0697569698095322e-02
+
+ -1.3236419856548309e-01 9.1536827385425568e-02
+ <_>
+
+ 0 -1 2857 4.2940411367453635e-04
+
+ 5.2362058311700821e-02 -2.3470179736614227e-01
+ <_>
+
+ 0 -1 2858 3.9490307681262493e-03
+
+ 5.8583620935678482e-02 -8.2533597946166992e-02
+ <_>
+
+ 0 -1 2859 2.9810430482029915e-02
+
+ 7.1684047579765320e-02 -1.6931280493736267e-01
+ <_>
+
+ 0 -1 2860 -1.1462910100817680e-02
+
+ -2.6410359144210815e-01 4.4687580317258835e-02
+ <_>
+
+ 0 -1 2861 2.2996390238404274e-02
+
+ 3.2992180436849594e-02 -3.4358990192413330e-01
+ <_>
+
+ 0 -1 2862 -5.6792609393596649e-02
+
+ -7.5760507583618164e-01 2.4003670550882816e-03
+ <_>
+
+ 0 -1 2863 -4.4709402136504650e-03
+
+ 1.6277609765529633e-01 -6.8193063139915466e-02
+ <_>
+
+ 0 -1 2864 -1.2394989840686321e-02
+
+ -4.3603330850601196e-01 2.8416140004992485e-02
+ <_>
+
+ 0 -1 2865 2.9185590147972107e-01
+
+ -3.3300530165433884e-02 3.9866968989372253e-01
+ <_>
+
+ 0 -1 2866 3.3633329439908266e-03
+
+ -1.0972090065479279e-01 5.6931249797344208e-02
+ <_>
+
+ 0 -1 2867 -3.5175260156393051e-02
+
+ -5.7213717699050903e-01 2.0903490483760834e-02
+ <_>
+
+ 0 -1 2868 -1.2044839560985565e-02
+
+ 9.1090522706508636e-02 -1.1947949975728989e-01
+ <_>
+
+ 0 -1 2869 6.5466752275824547e-03
+
+ 2.2512340545654297e-01 -5.8309450745582581e-02
+ <_>
+
+ 0 -1 2870 -3.3635019790381193e-03
+
+ 8.3123452961444855e-02 -1.6144299507141113e-01
+ <_>
+
+ 0 -1 2871 -2.3451250046491623e-02
+
+ 2.5118809938430786e-01 -4.8030331730842590e-02
+ <_>
+
+ 0 -1 2872 1.9356099888682365e-02
+
+ 5.8134589344263077e-02 -2.0791250467300415e-01
+ <_>
+
+ 0 -1 2873 -8.9994952082633972e-02
+
+ -7.5068491697311401e-01 1.4169859699904919e-02
+ <_>
+
+ 0 -1 2874 1.2888260185718536e-02
+
+ 3.3752571791410446e-02 -2.5715011358261108e-01
+ <_>
+
+ 0 -1 2875 1.8961170688271523e-02
+
+ 3.4717381000518799e-02 -3.6027848720550537e-01
+ <_>
+
+ 0 -1 2876 -2.0835550501942635e-02
+
+ 5.7851308584213257e-01 -2.2111309692263603e-02
+ <_>
+
+ 0 -1 2877 1.0018779896199703e-02
+
+ -3.9775848388671875e-02 2.6814839243888855e-01
+ <_>
+
+ 0 -1 2878 -8.7516820058226585e-03
+
+ 1.1257819831371307e-01 -4.8538278788328171e-02
+ <_>
+
+ 0 -1 2879 -6.2366750091314316e-02
+
+ -6.6089111566543579e-01 1.6852140426635742e-02
+ <_>
+
+ 0 -1 2880 -1.9582180306315422e-02
+
+ -2.1182540059089661e-01 3.5702988505363464e-02
+ <_>
+
+ 0 -1 2881 2.2675599902868271e-03
+
+ 6.1212919652462006e-02 -2.0048849284648895e-01
+ <_>
+
+ 0 -1 2882 -4.6558458358049393e-02
+
+ -5.6454938650131226e-01 9.2866625636816025e-03
+ <_>
+
+ 0 -1 2883 -7.7152079902589321e-03
+
+ 1.5039919316768646e-01 -8.3328150212764740e-02
+ <_>
+
+ 0 -1 2884 4.1551668196916580e-02
+
+ 2.6247739791870117e-02 -3.2347521185874939e-01
+ <_>
+
+ 0 -1 2885 -2.1789079532027245e-02
+
+ -3.2375821471214294e-01 3.1726188957691193e-02
+ <_>
+
+ 0 -1 2886 1.9698198884725571e-03
+
+ -9.2564247548580170e-02 1.0823410004377365e-01
+ <_>
+
+ 0 -1 2887 -5.2744988352060318e-03
+
+ -1.3990330696105957e-01 7.7120877802371979e-02
+ <_>
+
+ 0 -1 2888 5.6007660925388336e-02
+
+ -1.0328499972820282e-01 1.1455559730529785e-01
+ <_>
+
+ 0 -1 2889 2.2741030156612396e-01
+
+ 1.6028450801968575e-02 -6.8145108222961426e-01
+ <_>
+
+ 0 -1 2890 5.1362380385398865e-02
+
+ -2.3025810718536377e-02 1.5446029603481293e-01
+ <_>
+
+ 0 -1 2891 -1.3017069548368454e-02
+
+ -3.2606399059295654e-01 3.2892610877752304e-02
+ <_>
+
+ 0 -1 2892 1.5782029926776886e-01
+
+ -3.9765262044966221e-03 7.7765262126922607e-01
+ <_>
+
+ 0 -1 2893 -9.9805086851119995e-02
+
+ 6.8609541654586792e-01 -1.4648180454969406e-02
+ <_>
+
+ 0 -1 2894 3.7506350874900818e-01
+
+ 1.4925800263881683e-02 -8.3105468750000000e-01
+ <_>
+
+ 0 -1 2895 -7.9828302841633558e-04
+
+ -2.0161899924278259e-01 4.7897689044475555e-02
+ <_>
+
+ 0 -1 2896 -2.1241609752178192e-01
+
+ -3.4409451484680176e-01 1.0950430296361446e-02
+ <_>
+
+ 0 -1 2897 3.9451681077480316e-02
+
+ 1.3966959901154041e-02 -7.2163110971450806e-01
+ <_>
+
+ 0 -1 2898 -2.9185509309172630e-02
+
+ -2.7462458610534668e-01 3.5496920347213745e-02
+ <_>
+
+ 0 -1 2899 2.7055600658059120e-02
+
+ -4.6995740383863449e-02 2.9289430379867554e-01
+ <_>
+
+ 0 -1 2900 -2.6052350178360939e-02
+
+ 2.0752039551734924e-01 -3.6353081464767456e-02
+ <_>
+
+ 0 -1 2901 5.7216219604015350e-02
+
+ 1.8895739689469337e-02 -5.7143908739089966e-01
+ <_>
+
+ 0 -1 2902 -1.7151840031147003e-02
+
+ -3.3009570837020874e-01 3.8528628647327423e-02
+ <_>
+
+ 0 -1 2903 -1.2304399907588959e-01
+
+ -7.8316390514373779e-01 1.1679390445351601e-02
+ <_>
+
+ 0 -1 2904 5.6786160916090012e-02
+
+ 1.1063819751143456e-02 -5.3526097536087036e-01
+ <_>
+
+ 0 -1 2905 1.1942840367555618e-01
+
+ 9.5137851312756538e-03 -9.0637218952178955e-01
+ <_>
+
+ 0 -1 2906 6.7707143723964691e-02
+
+ -3.9227519184350967e-02 2.8176560997962952e-01
+ <_>
+
+ 0 -1 2907 -5.4918881505727768e-02
+
+ -6.2061691284179688e-01 1.6072269529104233e-02
+ <_>
+
+ 0 -1 2908 9.2878006398677826e-03
+
+ -5.0339490175247192e-02 1.9040100276470184e-01
+ <_>
+
+ 0 -1 2909 -1.3141489587724209e-02
+
+ 1.8629829585552216e-01 -7.5528547167778015e-02
+ <_>
+
+ 0 -1 2910 2.9876120970584452e-04
+
+ -1.6163469851016998e-01 5.3589500486850739e-02
+ <_>
+
+ 0 -1 2911 1.0153599828481674e-01
+
+ 1.8458279967308044e-01 -6.2570616602897644e-02
+ <_>
+
+ 0 -1 2912 2.7205729484558105e-01
+
+ 1.3762479647994041e-02 -4.9364060163497925e-01
+ <_>
+
+ 0 -1 2913 5.8730211108922958e-02
+
+ -2.3933680355548859e-01 7.9166807234287262e-02
+ <_>
+
+ 0 -1 2914 1.9694259390234947e-02
+
+ 3.7195280194282532e-02 -2.6109260320663452e-01
+ <_>
+
+ 0 -1 2915 -1.0566900164121762e-04
+
+ 6.7052997648715973e-02 -1.6515819728374481e-01
+ <_>
+
+ 0 -1 2916 -1.9761279225349426e-02
+
+ 8.6443692445755005e-02 -6.8657971918582916e-02
+ <_>
+
+ 0 -1 2917 5.3168509155511856e-02
+
+ 2.9767790809273720e-02 -3.5225778818130493e-01
+ <_>
+
+ 0 -1 2918 2.6071069762110710e-02
+
+ 2.5216359645128250e-02 -1.4159369468688965e-01
+ <_>
+
+ 0 -1 2919 -2.8720689937472343e-02
+
+ 3.5941401124000549e-01 -2.9199620708823204e-02
+ <_>
+
+ 0 -1 2920 1.2989250011742115e-02
+
+ 4.0009770542383194e-02 -1.9973039627075195e-01
+ <_>
+
+ 0 -1 2921 -5.8176040649414062e-02
+
+ 2.9345899820327759e-01 -4.3967530131340027e-02
+ <_>
+
+ 0 -1 2922 2.8285140171647072e-02
+
+ 3.7457428872585297e-02 -3.1361749768257141e-01
+ <_>
+
+ 0 -1 2923 4.2701218277215958e-02
+
+ -2.0987769588828087e-02 5.0845777988433838e-01
+ <_>
+
+ 0 -1 2924 2.4763600900769234e-02
+
+ -1.1869250237941742e-01 9.4457350671291351e-02
+ <_>
+
+ 0 -1 2925 -2.8076129965484142e-03
+
+ -2.3249779641628265e-01 4.5222718268632889e-02
+ <_>
+
+ 0 -1 2926 -7.5583919882774353e-02
+
+ -4.5907029509544373e-01 1.2932280078530312e-02
+ <_>
+
+ 0 -1 2927 8.3796821534633636e-02
+
+ -1.5801630914211273e-02 6.8670481443405151e-01
+ <_>
+
+ 0 -1 2928 -3.7072401493787766e-02
+
+ 5.4146029055118561e-02 -4.2207449674606323e-02
+ <_>
+
+ 0 -1 2929 2.4691069498658180e-02
+
+ 2.6097679510712624e-02 -3.7760400772094727e-01
+ <_>
+
+ 0 -1 2930 -2.7743929997086525e-02
+
+ -7.8631508350372314e-01 4.7534159384667873e-03
+ <_>
+
+ 0 -1 2931 1.9119970500469208e-02
+
+ 2.6497760787606239e-02 -3.6489969491958618e-01
+ <_>
+
+ 0 -1 2932 3.3773269969969988e-03
+
+ 3.1966090202331543e-02 -3.2346761226654053e-01
+ <_>
+
+ 0 -1 2933 1.9876819103956223e-02
+
+ -3.5128418356180191e-02 2.9078298807144165e-01
+ <_>
+
+ 0 -1 2934 1.0035640001296997e-01
+
+ 1.4607840217649937e-02 -5.2812242507934570e-01
+ <_>
+
+ 0 -1 2935 -1.6163289546966553e-02
+
+ -1.0158140212297440e-01 1.1796499788761139e-01
+ <_>
+
+ 0 -1 2936 1.0253380052745342e-02
+
+ 3.6024410277605057e-02 -1.6520780324935913e-01
+ <_>
+
+ 0 -1 2937 9.0665705502033234e-03
+
+ -3.4731701016426086e-02 3.7327200174331665e-01
+ <_>
+
+ 0 -1 2938 3.0124900862574577e-02
+
+ 5.1758479326963425e-02 -2.3582160472869873e-01
+ <_>
+
+ 0 -1 2939 -6.6870311275124550e-03
+
+ 4.3394241482019424e-02 -2.5202989578247070e-01
+ <_>
+
+ 0 -1 2940 -2.0257479045540094e-03
+
+ -1.2479010224342346e-01 3.9309531450271606e-02
+ <_>
+
+ 0 -1 2941 2.3254070430994034e-02
+
+ -4.7446910291910172e-02 2.3287700116634369e-01
+ <_>
+
+ 0 -1 2942 2.3867199197411537e-02
+
+ -2.7421670034527779e-02 1.4630970358848572e-01
+ <_>
+
+ 0 -1 2943 -4.0523000061511993e-02
+
+ -4.0472960472106934e-01 3.0415959656238556e-02
+ <_>
+
+ 0 -1 2944 1.9958209991455078e-01
+
+ 2.2049469873309135e-02 -4.6558481454849243e-01
+ <_>
+
+ 0 -1 2945 -1.2990590184926987e-02
+
+ -1.7970620095729828e-01 5.8874938637018204e-02
+ <_>
+
+ 0 -1 2946 2.5623949244618416e-02
+
+ 9.9402610212564468e-03 -2.6575279235839844e-01
+ <_>
+
+ 0 -1 2947 -3.2004870474338531e-02
+
+ 2.5087380409240723e-01 -4.6291470527648926e-02
+ <_>
+
+ 0 -1 2948 1.8758419901132584e-02
+
+ -2.2038230672478676e-02 9.4407431781291962e-02
+ <_>
+
+ 0 -1 2949 4.5425668358802795e-02
+
+ 2.3371569812297821e-02 -4.8393398523330688e-01
+ <_>
+
+ 0 -1 2950 1.5670580789446831e-02
+
+ -5.5109858512878418e-02 1.9907830655574799e-01
+ <_>
+
+ 0 -1 2951 5.1336981356143951e-02
+
+ 2.6425419375300407e-02 -4.4082790613174438e-01
+ <_>
+
+ 0 -1 2952 4.0884170681238174e-02
+
+ 2.0071209967136383e-01 -3.4887779504060745e-02
+ <_>
+
+ 0 -1 2953 6.9165557622909546e-02
+
+ -2.9303310438990593e-02 3.4936821460723877e-01
+ <_>
+
+ 0 -1 2954 4.7967158257961273e-02
+
+ -2.4416960775852203e-02 2.7018651366233826e-01
+ <_>
+
+ 0 -1 2955 4.4068440794944763e-02
+
+ -4.0497269481420517e-02 2.4382269382476807e-01
+ <_>
+
+ 0 -1 2956 -1.0287550091743469e-01
+
+ 7.1105289459228516e-01 -9.9055245518684387e-03
+ <_>
+
+ 0 -1 2957 2.2407740354537964e-01
+
+ -5.4946999996900558e-02 1.9853439927101135e-01
+ <_>
+
+ 0 -1 2958 -9.6570551395416260e-03
+
+ -2.5050228834152222e-01 3.7410989403724670e-02
+ <_>
+
+ 0 -1 2959 7.9199701547622681e-02
+
+ -2.2147569805383682e-02 4.8771071434020996e-01
+ <_>
+
+ 0 -1 2960 4.5983199030160904e-02
+
+ 8.2229733467102051e-02 -3.9335750043392181e-02
+ <_>
+
+ 0 -1 2961 4.2670449614524841e-01
+
+ 1.7132800072431564e-02 -5.3996258974075317e-01
+ <_>
+
+ 0 -1 2962 1.5413990616798401e-01
+
+ 1.1902350001037121e-02 -6.8533718585968018e-01
+ <_>
+
+ 0 -1 2963 -1.7699889838695526e-01
+
+ -6.3113832473754883e-01 1.2545200064778328e-02
+ <_>
+
+ 0 -1 2964 -2.3769829422235489e-02
+
+ -1.4281429350376129e-01 1.4284349977970123e-02
+ <_>
+
+ 0 -1 2965 -8.3290286362171173e-02
+
+ 3.6433398723602295e-01 -2.5287430733442307e-02
+ <_>
+
+ 0 -1 2966 -3.0276349280029535e-03
+
+ -1.7501260340213776e-01 3.5528600215911865e-02
+ <_>
+
+ 0 -1 2967 9.3518232461065054e-04
+
+ -3.4317269921302795e-01 2.8196020051836967e-02
+ <_>
+
+ 0 -1 2968 8.6792530491948128e-03
+
+ 9.1854788362979889e-02 -1.1349800229072571e-01
+ <_>
+
+ 0 -1 2969 -4.3289531022310257e-03
+
+ 7.6560527086257935e-02 -1.2850379943847656e-01
+ <_>
+
+ 0 -1 2970 6.1485089361667633e-02
+
+ 4.0065501816570759e-03 -4.2798730731010437e-01
+ <_>
+
+ 0 -1 2971 -2.3108569905161858e-02
+
+ -3.2999789714813232e-01 3.1228100880980492e-02
+ <_>
+
+ 0 -1 2972 -6.3490739557892084e-04
+
+ 5.3318761289119720e-02 -6.0307938605546951e-02
+ <_>
+
+ 0 -1 2973 -4.1278889402747154e-03
+
+ 1.5029670298099518e-01 -8.9805796742439270e-02
+ <_>
+
+ 0 -1 2974 1.5408970415592194e-01
+
+ -2.3309229873120785e-03 9.6946477890014648e-01
+ <_>
+
+ 0 -1 2975 1.8083740025758743e-02
+
+ -4.6674519777297974e-02 2.1941949427127838e-01
+ <_>
+
+ 0 -1 2976 -6.0022968798875809e-02
+
+ 3.7283098697662354e-01 -1.3637940399348736e-02
+ <_>
+
+ 0 -1 2977 -1.6025049984455109e-01
+
+ 3.9442360401153564e-01 -2.4808609858155251e-02
+ <_>
+
+ 0 -1 2978 -2.3220200091600418e-02
+
+ -2.8352069854736328e-01 3.8456469774246216e-02
+ <_>
+
+ 0 -1 2979 3.2353829592466354e-02
+
+ 3.0197540298104286e-02 -3.5371699929237366e-01
+ <_>
+
+ 0 -1 2980 -1.2930749915540218e-02
+
+ -1.8275280296802521e-01 4.0219429880380630e-02
+ <_>
+
+ 0 -1 2981 -2.9022840317338705e-03
+
+ 5.7583440095186234e-02 -1.8175080418586731e-01
+ <_>
+
+ 0 -1 2982 3.7042409181594849e-02
+
+ 2.3471569642424583e-02 -3.7222048640251160e-01
+ <_>
+
+ 0 -1 2983 -1.4371460676193237e-01
+
+ -6.7353278398513794e-01 1.3768459670245647e-02
+ <_>
+
+ 0 -1 2984 -1.0714099742472172e-02
+
+ 2.3074600100517273e-01 -5.9898581355810165e-02
+ <_>
+
+ 0 -1 2985 1.1370699852705002e-02
+
+ -5.5859100073575974e-02 2.1604159474372864e-01
+ <_>
+
+ 0 -1 2986 -3.3829350024461746e-02
+
+ -3.2868561148643494e-01 1.6743719577789307e-02
+ <_>
+
+ 0 -1 2987 3.6406058818101883e-02
+
+ 2.3512810468673706e-02 -4.7999539971351624e-01
+ <_>
+
+ 0 -1 2988 -3.9853308349847794e-02
+
+ 3.0388408899307251e-01 -2.2388210520148277e-02
+ <_>
+
+ 0 -1 2989 2.3857640102505684e-02
+
+ -4.3960139155387878e-02 2.5021830201148987e-01
+ <_>
+
+ 0 -1 2990 -8.6149327456951141e-02
+
+ -9.2641222476959229e-01 1.0180849581956863e-02
+ <_>
+
+ 0 -1 2991 -2.7360459789633751e-02
+
+ -4.5331078767776489e-01 1.8517250195145607e-02
+ <_>
+
+ 0 -1 2992 4.6891667880117893e-03
+
+ 1.4983110129833221e-02 -9.8690867424011230e-02
+ <_>
+
+ 0 -1 2993 3.6140959709882736e-02
+
+ 2.1240329369902611e-02 -4.2275610566139221e-01
+ <_>
+
+ 0 -1 2994 1.0714419931173325e-01
+
+ -4.1592169553041458e-02 2.4880869686603546e-01
+ <_>
+
+ 0 -1 2995 -1.2024450115859509e-02
+
+ -1.8906030058860779e-01 5.5290900170803070e-02
+ <_>
+
+ 0 -1 2996 2.1671090275049210e-02
+
+ -3.7164088338613510e-02 2.9896330833435059e-01
+ <_>
+
+ 0 -1 2997 -3.3205719664692879e-03
+
+ -9.1837689280509949e-02 1.1810839921236038e-01
+ <_>
+
+ 0 -1 2998 -8.4256403148174286e-02
+
+ -5.4935282468795776e-01 4.6934271231293678e-03
+ <_>
+
+ 0 -1 2999 -2.7107410132884979e-03
+
+ 5.2301179617643356e-02 -2.1932560205459595e-01
+ <_>
+
+ 0 -1 3000 -1.9661630503833294e-03
+
+ 6.9522850215435028e-02 -1.2369599938392639e-01
+ <_>
+
+ 0 -1 3001 1.0835859924554825e-01
+
+ -1.6028439626097679e-02 6.7538297176361084e-01
+ <_>
+
+ 0 -1 3002 -4.0661569684743881e-02
+
+ 2.8239870071411133e-01 -1.8643079325556755e-02
+ <_>
+
+ 0 -1 3003 9.4869043678045273e-03
+
+ -1.4204730093479156e-01 7.4218176305294037e-02
+ <_>
+
+ 0 -1 3004 -8.1196203827857971e-03
+
+ 1.2733109295368195e-01 -7.5325429439544678e-02
+ <_>
+
+ 0 -1 3005 -3.6718908697366714e-02
+
+ 2.5209701061248779e-01 -3.8642361760139465e-02
+ <_>
+
+ 0 -1 3006 4.2515851557254791e-02
+
+ 3.4613508731126785e-02 -3.1406149268150330e-01
+ <_>
+
+ 0 -1 3007 -1.6484249383211136e-02
+
+ -3.4622931480407715e-01 2.6470340788364410e-02
+ <_>
+
+ 0 -1 3008 1.8608599901199341e-02
+
+ 3.1125839799642563e-02 -2.3837919533252716e-01
+ <_>
+
+ 0 -1 3009 -1.0872060433030128e-02
+
+ 2.3061220347881317e-01 -4.3469380587339401e-02
+ <_>
+
+ 0 -1 3010 -4.0728081017732620e-02
+
+ 1.3258880376815796e-01 -3.8833290338516235e-02
+ <_>
+ 240
+ -1.3404430150985718e+00
+
+ <_>
+
+ 0 -1 3011 2.7802670374512672e-02
+
+ -1.8535159528255463e-01 2.3777860403060913e-01
+ <_>
+
+ 0 -1 3012 1.6392730176448822e-03
+
+ -2.6787629723548889e-01 1.1733309924602509e-01
+ <_>
+
+ 0 -1 3013 -3.0419689137488604e-03
+
+ 1.9552859663963318e-01 -1.3240019977092743e-01
+ <_>
+
+ 0 -1 3014 -2.7744288672693074e-04
+
+ 6.0701820999383926e-02 -3.0465421080589294e-01
+ <_>
+
+ 0 -1 3015 -2.7942769229412079e-03
+
+ -2.5370940566062927e-01 7.6147846877574921e-02
+ <_>
+
+ 0 -1 3016 7.4005699716508389e-03
+
+ 6.5623492002487183e-02 -3.0128520727157593e-01
+ <_>
+
+ 0 -1 3017 1.1316470336169004e-03
+
+ -1.3232930004596710e-01 1.3622519373893738e-01
+ <_>
+
+ 0 -1 3018 -8.7306648492813110e-03
+
+ -1.0246229916810989e-01 1.0649880394339561e-02
+ <_>
+
+ 0 -1 3019 -6.4327879808843136e-03
+
+ -2.1301789581775665e-01 7.7425397932529449e-02
+ <_>
+
+ 0 -1 3020 -1.3303949963301420e-03
+
+ 9.6234247088432312e-02 -1.7086009681224823e-01
+ <_>
+
+ 0 -1 3021 -2.3770590778440237e-03
+
+ 1.1657089740037918e-01 -1.5135769546031952e-01
+ <_>
+
+ 0 -1 3022 -5.3865360096096992e-03
+
+ -1.6851960122585297e-01 4.4324558228254318e-02
+ <_>
+
+ 0 -1 3023 -5.6973858736455441e-03
+
+ -2.4702399969100952e-01 7.7735342085361481e-02
+ <_>
+
+ 0 -1 3024 4.5654520392417908e-02
+
+ -1.6687670722603798e-02 1.4222119748592377e-01
+ <_>
+
+ 0 -1 3025 -1.4929420103726443e-05
+
+ -3.2725390791893005e-01 4.8142101615667343e-02
+ <_>
+
+ 0 -1 3026 -1.7635900294408202e-03
+
+ 7.0115849375724792e-02 -1.6864499077200890e-02
+ <_>
+
+ 0 -1 3027 1.9133860478177667e-03
+
+ -1.9570820033550262e-01 9.0169131755828857e-02
+ <_>
+
+ 0 -1 3028 -1.9309469498693943e-03
+
+ 1.1824289709329605e-01 -1.2146709859371185e-01
+ <_>
+
+ 0 -1 3029 9.7775761969387531e-04
+
+ 1.1657200008630753e-01 -1.2770849466323853e-01
+ <_>
+
+ 0 -1 3030 -5.2643800154328346e-03
+
+ 1.9958360493183136e-01 -6.2928676605224609e-02
+ <_>
+
+ 0 -1 3031 -2.2730689961463213e-03
+
+ -2.1804699301719666e-01 6.6565290093421936e-02
+ <_>
+
+ 0 -1 3032 -3.5128789022564888e-03
+
+ 8.1114247441291809e-02 -1.4230330288410187e-01
+ <_>
+
+ 0 -1 3033 2.8102330397814512e-03
+
+ 6.0884710401296616e-02 -2.2008429467678070e-01
+ <_>
+
+ 0 -1 3034 -2.3211359977722168e-02
+
+ 2.3182259500026703e-01 -3.4014280885457993e-02
+ <_>
+
+ 0 -1 3035 -8.7068388238549232e-03
+
+ -2.0691269636154175e-01 6.8004116415977478e-02
+ <_>
+
+ 0 -1 3036 7.0584798231720924e-03
+
+ -1.0500799864530563e-01 1.2610189616680145e-01
+ <_>
+
+ 0 -1 3037 -6.8878240883350372e-02
+
+ 4.2687618732452393e-01 -3.1305618584156036e-02
+ <_>
+
+ 0 -1 3038 -1.2785149738192558e-02
+
+ -2.0268030464649200e-01 3.2005790621042252e-02
+ <_>
+
+ 0 -1 3039 -4.2242300696671009e-03
+
+ -2.1619689464569092e-01 7.5660832226276398e-02
+ <_>
+
+ 0 -1 3040 -4.1660640388727188e-02
+
+ 3.5601380467414856e-01 -3.6500900983810425e-02
+ <_>
+
+ 0 -1 3041 1.4983239583671093e-02
+
+ 3.3663559705018997e-02 -4.3016681075096130e-01
+ <_>
+
+ 0 -1 3042 1.8940219888463616e-03
+
+ -7.7785640954971313e-02 1.4130039513111115e-01
+ <_>
+
+ 0 -1 3043 -1.0271830251440406e-03
+
+ 6.1292048543691635e-02 -1.8569129705429077e-01
+ <_>
+
+ 0 -1 3044 -1.0491760447621346e-02
+
+ -2.1280039846897125e-01 4.6641569584608078e-02
+ <_>
+
+ 0 -1 3045 4.1263508610427380e-03
+
+ -6.3113473355770111e-02 2.1683399379253387e-01
+ <_>
+
+ 0 -1 3046 2.1284529939293861e-02
+
+ -1.9541380926966667e-02 4.0555500984191895e-01
+ <_>
+
+ 0 -1 3047 6.0370927676558495e-03
+
+ 6.1322800815105438e-02 -1.7558750510215759e-01
+ <_>
+
+ 0 -1 3048 2.8550080023705959e-03
+
+ -3.7402968853712082e-02 8.6794376373291016e-02
+ <_>
+
+ 0 -1 3049 -3.0839299783110619e-02
+
+ 4.5826399326324463e-01 -2.2824319079518318e-02
+ <_>
+
+ 0 -1 3050 -1.2664640322327614e-02
+
+ -1.5179179608821869e-01 3.8325909525156021e-02
+ <_>
+
+ 0 -1 3051 8.4788333624601364e-03
+
+ -7.9164452850818634e-02 1.3821309804916382e-01
+ <_>
+
+ 0 -1 3052 -9.0271160006523132e-03
+
+ 2.0483429729938507e-01 -5.8428239077329636e-02
+ <_>
+
+ 0 -1 3053 -5.3999028168618679e-03
+
+ -1.9563870131969452e-01 6.2881819903850555e-02
+ <_>
+
+ 0 -1 3054 4.8698568716645241e-03
+
+ 4.7269448637962341e-02 -2.0357230305671692e-01
+ <_>
+
+ 0 -1 3055 -5.6715728715062141e-03
+
+ 1.6232620179653168e-01 -7.2473183274269104e-02
+ <_>
+
+ 0 -1 3056 -6.3621107256039977e-04
+
+ -1.7648829519748688e-01 6.1553929001092911e-02
+ <_>
+
+ 0 -1 3057 -5.7404721155762672e-03
+
+ -2.3773890733718872e-01 4.8493091017007828e-02
+ <_>
+
+ 0 -1 3058 2.3313059937208891e-03
+
+ -9.8087467253208160e-02 7.6705731451511383e-02
+ <_>
+
+ 0 -1 3059 2.6579289697110653e-03
+
+ -1.0429590195417404e-01 1.3275440037250519e-01
+ <_>
+
+ 0 -1 3060 -1.2426489964127541e-02
+
+ -1.7686119675636292e-01 7.8797861933708191e-02
+ <_>
+
+ 0 -1 3061 3.7596069741994143e-03
+
+ 5.8028500527143478e-02 -2.0235699415206909e-01
+ <_>
+
+ 0 -1 3062 -1.3941819779574871e-02
+
+ 2.9365628957748413e-01 -3.1069029122591019e-02
+ <_>
+
+ 0 -1 3063 2.4605529382824898e-02
+
+ -4.9767840653657913e-02 2.0446600019931793e-01
+ <_>
+
+ 0 -1 3064 1.1572279781103134e-01
+
+ 5.7542040012776852e-03 -5.5789208412170410e-01
+ <_>
+
+ 0 -1 3065 1.4880299568176270e-03
+
+ -1.2870499491691589e-01 8.6191363632678986e-02
+ <_>
+
+ 0 -1 3066 -1.0085869580507278e-02
+
+ -1.8718029558658600e-01 2.7143789455294609e-02
+ <_>
+
+ 0 -1 3067 -4.0125781670212746e-03
+
+ -1.4843569695949554e-01 6.1482351273298264e-02
+ <_>
+
+ 0 -1 3068 4.5241288840770721e-02
+
+ -2.2187199443578720e-02 4.9022749066352844e-01
+ <_>
+
+ 0 -1 3069 -5.4588477360084653e-04
+
+ 1.0740750283002853e-01 -9.4784751534461975e-02
+ <_>
+
+ 0 -1 3070 1.0822109878063202e-02
+
+ -1.1820139735937119e-01 8.4009647369384766e-02
+ <_>
+
+ 0 -1 3071 6.4339267555624247e-04
+
+ -1.1072149872779846e-01 8.4126397967338562e-02
+ <_>
+
+ 0 -1 3072 9.3544989824295044e-02
+
+ 6.1726439744234085e-03 -3.8121530413627625e-01
+ <_>
+
+ 0 -1 3073 -3.9214221760630608e-03
+
+ 1.2969920039176941e-01 -7.5530029833316803e-02
+ <_>
+
+ 0 -1 3074 -4.5141312293708324e-03
+
+ -2.1222509443759918e-01 5.0941351801156998e-02
+ <_>
+
+ 0 -1 3075 5.1563870161771774e-02
+
+ 1.1215999722480774e-02 -8.4125047922134399e-01
+ <_>
+
+ 0 -1 3076 -3.7086829543113708e-02
+
+ -3.3443790674209595e-01 1.2198350392282009e-02
+ <_>
+
+ 0 -1 3077 -1.5274320030584931e-03
+
+ 1.7022849619388580e-01 -5.3171109408140182e-02
+ <_>
+
+ 0 -1 3078 -3.3183719497174025e-03
+
+ 1.4972689747810364e-01 -3.9522700011730194e-02
+ <_>
+
+ 0 -1 3079 -1.0695139877498150e-02
+
+ -2.0767690241336823e-01 4.8223540186882019e-02
+ <_>
+
+ 0 -1 3080 8.0909933894872665e-03
+
+ -5.5572569370269775e-02 8.1361941993236542e-02
+ <_>
+
+ 0 -1 3081 8.9193560415878892e-04
+
+ -1.4888229966163635e-01 5.6974019855260849e-02
+ <_>
+
+ 0 -1 3082 2.1180939802434295e-04
+
+ -1.8776890635490417e-01 4.5087080448865891e-02
+ <_>
+
+ 0 -1 3083 6.8865409120917320e-03
+
+ -7.4651539325714111e-02 1.1806459724903107e-01
+ <_>
+
+ 0 -1 3084 3.8009819388389587e-01
+
+ 9.6241412684321404e-03 -5.0257128477096558e-01
+ <_>
+
+ 0 -1 3085 9.4844900071620941e-02
+
+ 2.0284110680222511e-02 -3.9478880167007446e-01
+ <_>
+
+ 0 -1 3086 -1.1133160296594724e-04
+
+ 5.3717028349637985e-02 -1.5433239936828613e-01
+ <_>
+
+ 0 -1 3087 3.5911630839109421e-02
+
+ -2.4374049156904221e-02 3.5077759623527527e-01
+ <_>
+
+ 0 -1 3088 -2.9291780665516853e-02
+
+ -4.9002739787101746e-01 2.1694840863347054e-02
+ <_>
+
+ 0 -1 3089 -2.4277189746499062e-02
+
+ -5.0206911563873291e-01 1.5807420015335083e-02
+ <_>
+
+ 0 -1 3090 1.2620110064744949e-02
+
+ -4.8637848347425461e-02 2.1370050311088562e-01
+ <_>
+
+ 0 -1 3091 -4.1045118123292923e-03
+
+ -1.6757939755916595e-01 6.2675923109054565e-02
+ <_>
+
+ 0 -1 3092 -2.3477169871330261e-01
+
+ 6.2205511331558228e-01 -1.3949319720268250e-02
+ <_>
+
+ 0 -1 3093 -6.7914247512817383e-02
+
+ -9.7014141082763672e-01 1.0490460321307182e-02
+ <_>
+
+ 0 -1 3094 1.4207609929144382e-03
+
+ -6.0801118612289429e-02 1.3500739634037018e-01
+ <_>
+
+ 0 -1 3095 -5.0894408486783504e-03
+
+ -1.6992169618606567e-01 5.0795670598745346e-02
+ <_>
+
+ 0 -1 3096 -1.9226800650358200e-02
+
+ 9.8861172795295715e-02 -3.3686220645904541e-02
+ <_>
+
+ 0 -1 3097 1.0590540245175362e-02
+
+ 5.9616900980472565e-02 -1.6495449841022491e-01
+ <_>
+
+ 0 -1 3098 3.3726880792528391e-03
+
+ -3.8652341812849045e-02 5.5400568991899490e-02
+ <_>
+
+ 0 -1 3099 -8.9012801647186279e-02
+
+ 4.0750509500503540e-01 -2.4150330573320389e-02
+ <_>
+
+ 0 -1 3100 -2.3359079658985138e-01
+
+ -7.2641909122467041e-01 6.5185138955712318e-03
+ <_>
+
+ 0 -1 3101 -2.2732259333133698e-01
+
+ -8.9977008104324341e-01 9.1146891936659813e-03
+ <_>
+
+ 0 -1 3102 -2.9601769521832466e-02
+
+ -4.3270850181579590e-01 1.6021190211176872e-02
+ <_>
+
+ 0 -1 3103 -6.9494689814746380e-03
+
+ 1.5218999981880188e-01 -6.1896830797195435e-02
+ <_>
+
+ 0 -1 3104 -1.9150479929521680e-03
+
+ 7.2570547461509705e-02 -1.3121089339256287e-01
+ <_>
+
+ 0 -1 3105 8.5106380283832550e-03
+
+ -5.7326089590787888e-02 1.5743100643157959e-01
+ <_>
+
+ 0 -1 3106 -2.4363139644265175e-02
+
+ 9.5700822770595551e-02 -5.8364428579807281e-02
+ <_>
+
+ 0 -1 3107 -2.2522659972310066e-02
+
+ -4.6943131089210510e-01 2.0241359248757362e-02
+ <_>
+
+ 0 -1 3108 -4.4660381972789764e-03
+
+ 7.6211109757423401e-02 -8.1844657659530640e-02
+ <_>
+
+ 0 -1 3109 -4.2101819999516010e-03
+
+ -2.2083589434623718e-01 4.7010198235511780e-02
+ <_>
+
+ 0 -1 3110 5.7130381464958191e-03
+
+ -6.2254000455141068e-02 5.2705820649862289e-02
+ <_>
+
+ 0 -1 3111 -5.6021669879555702e-03
+
+ -1.8985760211944580e-01 5.0114821642637253e-02
+ <_>
+
+ 0 -1 3112 -2.2042069584131241e-02
+
+ 8.7683752179145813e-02 -2.4777179583907127e-02
+ <_>
+
+ 0 -1 3113 -2.1817081142216921e-03
+
+ 1.6766600310802460e-01 -6.6771760582923889e-02
+ <_>
+
+ 0 -1 3114 2.4545300751924515e-02
+
+ 4.9205120652914047e-02 -2.2503720223903656e-01
+ <_>
+
+ 0 -1 3115 -2.4728688877075911e-03
+
+ 1.3539670407772064e-01 -6.2330130487680435e-02
+ <_>
+
+ 0 -1 3116 2.3717728909105062e-03
+
+ 5.7926058769226074e-02 -1.3325250148773193e-01
+ <_>
+
+ 0 -1 3117 -3.8999661803245544e-02
+
+ 2.9875481128692627e-01 -3.0257239937782288e-02
+ <_>
+
+ 0 -1 3118 -1.7835620092228055e-03
+
+ 9.2680282890796661e-02 -7.4350588023662567e-02
+ <_>
+
+ 0 -1 3119 1.9984450191259384e-02
+
+ 2.2409349679946899e-02 -4.1501939296722412e-01
+ <_>
+
+ 0 -1 3120 4.1170548647642136e-03
+
+ 5.3432278335094452e-02 -1.5092259645462036e-01
+ <_>
+
+ 0 -1 3121 4.3995600193738937e-02
+
+ 1.1389889754354954e-02 -6.6494518518447876e-01
+ <_>
+
+ 0 -1 3122 -3.5350578837096691e-03
+
+ 1.1005590111017227e-01 -7.6377056539058685e-02
+ <_>
+
+ 0 -1 3123 1.4632029924541712e-03
+
+ -5.6962151080369949e-02 1.3184599578380585e-01
+ <_>
+
+ 0 -1 3124 -4.9925539642572403e-03
+
+ -1.4675070345401764e-01 5.5129978805780411e-02
+ <_>
+
+ 0 -1 3125 -7.8646428883075714e-02
+
+ -5.2768182754516602e-01 1.3662739656865597e-02
+ <_>
+
+ 0 -1 3126 -4.3559111654758453e-03
+
+ 9.1798119246959686e-02 -5.7598169893026352e-02
+ <_>
+
+ 0 -1 3127 8.2531487569212914e-03
+
+ -6.5613977611064911e-02 1.3083070516586304e-01
+ <_>
+
+ 0 -1 3128 -3.5033349413424730e-03
+
+ -1.2742599844932556e-01 6.0875169932842255e-02
+ <_>
+
+ 0 -1 3129 3.9662471972405910e-03
+
+ -5.5715151131153107e-02 1.4783249795436859e-01
+ <_>
+
+ 0 -1 3130 -1.0260219685733318e-02
+
+ -1.3472290337085724e-01 4.4514350593090057e-02
+ <_>
+
+ 0 -1 3131 3.6724930396303535e-04
+
+ -1.3727700710296631e-01 6.1179649084806442e-02
+ <_>
+
+ 0 -1 3132 1.9500199705362320e-02
+
+ -5.9033330529928207e-02 1.5589320659637451e-01
+ <_>
+
+ 0 -1 3133 1.4041420072317123e-02
+
+ 2.2140439599752426e-02 -4.2831090092658997e-01
+ <_>
+
+ 0 -1 3134 3.8459740579128265e-02
+
+ 1.6875730827450752e-02 -5.2425742149353027e-01
+ <_>
+
+ 0 -1 3135 -2.5901539251208305e-02
+
+ 2.5163099169731140e-01 -3.2579511404037476e-02
+ <_>
+
+ 0 -1 3136 2.8264479711651802e-02
+
+ 2.1297719329595566e-02 -2.3978309333324432e-01
+ <_>
+
+ 0 -1 3137 -5.3067881613969803e-02
+
+ 7.6594692468643188e-01 -1.0163240134716034e-02
+ <_>
+
+ 0 -1 3138 1.6842440236359835e-03
+
+ 4.0168728679418564e-02 -2.1810980141162872e-01
+ <_>
+
+ 0 -1 3139 6.5255112713202834e-04
+
+ -3.2155249267816544e-02 2.6028048992156982e-01
+ <_>
+
+ 0 -1 3140 -1.5381099283695221e-01
+
+ -7.9570180177688599e-01 9.9420538172125816e-03
+ <_>
+
+ 0 -1 3141 -1.7530319746583700e-04
+
+ 6.1257161200046539e-02 -1.1830890178680420e-01
+ <_>
+
+ 0 -1 3142 1.1829809518530965e-03
+
+ -8.2589529454708099e-02 5.8234758675098419e-02
+ <_>
+
+ 0 -1 3143 1.4753890223801136e-02
+
+ 4.6728778630495071e-02 -1.9874340295791626e-01
+ <_>
+
+ 0 -1 3144 1.0592579841613770e-02
+
+ -5.7157158851623535e-02 1.2261729687452316e-01
+ <_>
+
+ 0 -1 3145 -4.6638969331979752e-02
+
+ 3.9221999049186707e-01 -1.8770450726151466e-02
+ <_>
+
+ 0 -1 3146 -2.2761020809412003e-03
+
+ -1.9819819927215576e-01 3.2669950276613235e-02
+ <_>
+
+ 0 -1 3147 -8.9252636826131493e-05
+
+ -1.7795699834823608e-01 4.5088160783052444e-02
+ <_>
+
+ 0 -1 3148 -4.8888921737670898e-03
+
+ 3.7973329424858093e-01 -2.5622500106692314e-02
+ <_>
+
+ 0 -1 3149 -4.7039450146257877e-03
+
+ -1.4075440168380737e-01 5.1885869354009628e-02
+ <_>
+
+ 0 -1 3150 6.8887867964804173e-03
+
+ -6.0707900673151016e-02 6.7318782210350037e-02
+ <_>
+
+ 0 -1 3151 9.4449967145919800e-02
+
+ -4.3975159525871277e-02 1.6885830461978912e-01
+ <_>
+
+ 0 -1 3152 5.1520671695470810e-02
+
+ 3.8239071145653725e-03 -6.3077712059020996e-01
+ <_>
+
+ 0 -1 3153 6.3957129605114460e-03
+
+ 4.4094309210777283e-02 -1.8156020343303680e-01
+ <_>
+
+ 0 -1 3154 -4.9659270793199539e-02
+
+ 1.1174239963293076e-01 -5.5821210145950317e-02
+ <_>
+
+ 0 -1 3155 -6.9081829860806465e-03
+
+ -1.4038950204849243e-01 5.9535760432481766e-02
+ <_>
+
+ 0 -1 3156 9.2546567320823669e-03
+
+ -3.3587910234928131e-02 5.8593101799488068e-02
+ <_>
+
+ 0 -1 3157 5.0454521551728249e-03
+
+ 5.3777661174535751e-02 -1.3626030087471008e-01
+ <_>
+
+ 0 -1 3158 -3.3333420753479004e-02
+
+ 2.4641269445419312e-01 -3.1888678669929504e-02
+ <_>
+
+ 0 -1 3159 6.1201080679893494e-02
+
+ 2.0013030618429184e-02 -3.9326569437980652e-01
+ <_>
+
+ 0 -1 3160 -1.0175120085477829e-02
+
+ 7.5324602425098419e-02 -3.9622548967599869e-02
+ <_>
+
+ 0 -1 3161 1.0271370410919189e-02
+
+ -5.2234519273042679e-02 1.7939470708370209e-01
+ <_>
+
+ 0 -1 3162 -5.1337860524654388e-02
+
+ -3.1097239255905151e-01 2.1656470373272896e-02
+ <_>
+
+ 0 -1 3163 2.3615739773958921e-03
+
+ -6.4843319356441498e-02 1.1771979928016663e-01
+ <_>
+
+ 0 -1 3164 -2.7691819705069065e-03
+
+ 1.4682589471340179e-01 -5.7794518768787384e-02
+ <_>
+
+ 0 -1 3165 2.1457809954881668e-02
+
+ 2.5269350036978722e-02 -3.3404821157455444e-01
+ <_>
+
+ 0 -1 3166 -5.9619098901748657e-03
+
+ 9.9241338670253754e-02 -3.5371959209442139e-02
+ <_>
+
+ 0 -1 3167 7.5217390060424805e-01
+
+ 7.7095897868275642e-03 -8.6434108018875122e-01
+ <_>
+
+ 0 -1 3168 -9.2514551943168044e-04
+
+ 3.8251910358667374e-02 -7.5597628951072693e-02
+ <_>
+
+ 0 -1 3169 4.0818289853632450e-03
+
+ 6.6699139773845673e-02 -1.1289499700069427e-01
+ <_>
+
+ 0 -1 3170 1.6256010159850121e-02
+
+ -1.8782900646328926e-02 1.8875749409198761e-01
+ <_>
+
+ 0 -1 3171 -9.3405954539775848e-03
+
+ -1.6462349891662598e-01 4.6859718859195709e-02
+ <_>
+
+ 0 -1 3172 -3.8136378861963749e-04
+
+ 6.0498170554637909e-02 -1.0089360177516937e-01
+ <_>
+
+ 0 -1 3173 -2.3470960557460785e-02
+
+ 1.8546760082244873e-01 -3.9577301591634750e-02
+ <_>
+
+ 0 -1 3174 -7.8684352338314056e-02
+
+ -6.0540008544921875e-01 1.3162979856133461e-02
+ <_>
+
+ 0 -1 3175 1.0616140067577362e-01
+
+ 9.4080185517668724e-03 -7.2416877746582031e-01
+ <_>
+
+ 0 -1 3176 -6.9211378693580627e-02
+
+ -9.2819648981094360e-01 5.4140980355441570e-03
+ <_>
+
+ 0 -1 3177 -4.3828289955854416e-02
+
+ 5.4933768510818481e-01 -1.5516829676926136e-02
+ <_>
+
+ 0 -1 3178 5.6881271302700043e-03
+
+ 3.7328861653804779e-02 -1.2019480019807816e-01
+ <_>
+
+ 0 -1 3179 3.6933881044387817e-01
+
+ -9.9545158445835114e-03 8.1607538461685181e-01
+ <_>
+
+ 0 -1 3180 -1.0447519831359386e-02
+
+ 1.4190499484539032e-01 -4.9798399209976196e-02
+ <_>
+
+ 0 -1 3181 1.5151320025324821e-02
+
+ 2.2705320268869400e-02 -3.4523698687553406e-01
+ <_>
+
+ 0 -1 3182 1.2503850460052490e-01
+
+ -2.7150910347700119e-02 3.0379050970077515e-01
+ <_>
+
+ 0 -1 3183 -9.1995187103748322e-03
+
+ -1.7020559310913086e-01 4.4314298778772354e-02
+ <_>
+
+ 0 -1 3184 7.1795531548559666e-03
+
+ -7.8971788287162781e-02 6.3919156789779663e-02
+ <_>
+
+ 0 -1 3185 -1.8217830359935760e-01
+
+ -9.7598892450332642e-01 7.1003441698849201e-03
+ <_>
+
+ 0 -1 3186 1.5047369743115269e-05
+
+ -9.8960377275943756e-02 3.9371099323034286e-02
+ <_>
+
+ 0 -1 3187 -3.8763400167226791e-02
+
+ -5.9095138311386108e-01 1.0429039597511292e-02
+ <_>
+
+ 0 -1 3188 -4.3799880892038345e-02
+
+ 2.5290209054946899e-01 -9.5704924315214157e-03
+ <_>
+
+ 0 -1 3189 -5.6705519556999207e-02
+
+ -7.2466772794723511e-01 9.0332692489027977e-03
+ <_>
+
+ 0 -1 3190 7.5183928012847900e-02
+
+ -6.7565650679171085e-03 7.3075437545776367e-01
+ <_>
+
+ 0 -1 3191 -6.4183590002357960e-03
+
+ 8.5421830415725708e-02 -7.6056882739067078e-02
+ <_>
+
+ 0 -1 3192 1.3349299551919103e-03
+
+ 6.9977663457393646e-02 -9.2187918722629547e-02
+ <_>
+
+ 0 -1 3193 2.8028399683535099e-03
+
+ -5.0953198224306107e-02 1.2934680283069611e-01
+ <_>
+
+ 0 -1 3194 -6.4196899533271790e-02
+
+ -6.1751341819763184e-01 8.7323756888508797e-03
+ <_>
+
+ 0 -1 3195 1.7879910301417112e-03
+
+ -5.9445429593324661e-02 1.1325009912252426e-01
+ <_>
+
+ 0 -1 3196 2.3370790295302868e-03
+
+ 2.2643320262432098e-02 -1.7427070438861847e-01
+ <_>
+
+ 0 -1 3197 2.1500359289348125e-03
+
+ -5.1846258342266083e-02 1.5027989447116852e-01
+ <_>
+
+ 0 -1 3198 -2.9744949191808701e-02
+
+ -1.7235560715198517e-01 1.6160540282726288e-02
+ <_>
+
+ 0 -1 3199 -2.9182229191064835e-03
+
+ -1.1646019667387009e-01 5.3380940109491348e-02
+ <_>
+
+ 0 -1 3200 -5.2581899799406528e-03
+
+ -8.4262102842330933e-02 3.6880351603031158e-02
+ <_>
+
+ 0 -1 3201 2.0302489399909973e-02
+
+ -5.3297229111194611e-02 1.6949890553951263e-01
+ <_>
+
+ 0 -1 3202 3.1120770145207644e-03
+
+ 4.4630430638790131e-02 -1.4054660499095917e-01
+ <_>
+
+ 0 -1 3203 -7.7524736523628235e-02
+
+ -6.5038281679153442e-01 1.0468889959156513e-02
+ <_>
+
+ 0 -1 3204 2.0978450775146484e-02
+
+ -3.0001569539308548e-02 1.9233350455760956e-01
+ <_>
+
+ 0 -1 3205 2.0581670105457306e-03
+
+ 5.1535431295633316e-02 -1.3114020228385925e-01
+ <_>
+
+ 0 -1 3206 -7.8407032415270805e-03
+
+ -1.3882939517498016e-01 5.0657931715250015e-02
+ <_>
+
+ 0 -1 3207 -7.1894749999046326e-02
+
+ 2.1866980195045471e-01 -3.3615190535783768e-02
+ <_>
+
+ 0 -1 3208 1.4218500256538391e-01
+
+ 1.2880220077931881e-02 -5.8853518962860107e-01
+ <_>
+
+ 0 -1 3209 4.4800378382205963e-03
+
+ -5.5522039532661438e-02 1.1976230144500732e-01
+ <_>
+
+ 0 -1 3210 -9.4673000276088715e-03
+
+ -1.2036380171775818e-01 3.0232360586524010e-02
+ <_>
+
+ 0 -1 3211 -1.2275399640202522e-03
+
+ 8.3563826978206635e-02 -8.7046720087528229e-02
+ <_>
+
+ 0 -1 3212 -6.2556960619986057e-03
+
+ 6.9355137646198273e-02 -3.5146340727806091e-02
+ <_>
+
+ 0 -1 3213 6.4953900873661041e-02
+
+ -1.9296510145068169e-02 3.4898158907890320e-01
+ <_>
+
+ 0 -1 3214 -3.2067541033029556e-03
+
+ -1.5205690264701843e-01 5.5897928774356842e-02
+ <_>
+
+ 0 -1 3215 -4.8260089010000229e-02
+
+ -6.0309630632400513e-01 1.0463859885931015e-02
+ <_>
+
+ 0 -1 3216 -4.2638331651687622e-03
+
+ -1.5278290212154388e-01 1.8424319103360176e-02
+ <_>
+
+ 0 -1 3217 4.9363691359758377e-02
+
+ -2.5442009791731834e-02 3.9227759838104248e-01
+ <_>
+
+ 0 -1 3218 2.3624610621482134e-03
+
+ 3.8519620895385742e-01 -1.7071360722184181e-02
+ <_>
+
+ 0 -1 3219 2.5921489577740431e-03
+
+ -1.5459729731082916e-01 4.3975789099931717e-02
+ <_>
+
+ 0 -1 3220 1.1510170064866543e-02
+
+ 6.0740210115909576e-02 -9.8671890795230865e-02
+ <_>
+
+ 0 -1 3221 3.9182868786156178e-03
+
+ 2.6165749877691269e-02 -2.9697629809379578e-01
+ <_>
+
+ 0 -1 3222 7.3265641927719116e-02
+
+ 5.5715530179440975e-03 -3.0474159121513367e-01
+ <_>
+
+ 0 -1 3223 -4.8912810161709785e-03
+
+ 1.2753780186176300e-01 -6.6236838698387146e-02
+ <_>
+
+ 0 -1 3224 -1.3187030330300331e-02
+
+ -2.0257690548896790e-01 3.0369829386472702e-02
+ <_>
+
+ 0 -1 3225 1.8196239834651351e-03
+
+ 4.9198139458894730e-02 -1.3782709836959839e-01
+ <_>
+
+ 0 -1 3226 -1.0299400426447392e-02
+
+ 1.3534359633922577e-01 -2.9193470254540443e-02
+ <_>
+
+ 0 -1 3227 1.7157079279422760e-01
+
+ -9.5548974350094795e-03 7.1399718523025513e-01
+ <_>
+
+ 0 -1 3228 -3.4571110736578703e-03
+
+ 6.1094630509614944e-02 -7.6816998422145844e-02
+ <_>
+
+ 0 -1 3229 3.3349241130053997e-04
+
+ -1.8768610060214996e-01 3.9411719888448715e-02
+ <_>
+
+ 0 -1 3230 5.6019209325313568e-02
+
+ 8.5914824157953262e-03 -7.3577058315277100e-01
+ <_>
+
+ 0 -1 3231 6.2299368437379599e-04
+
+ -9.4062000513076782e-02 6.7965887486934662e-02
+ <_>
+
+ 0 -1 3232 -1.4288679696619511e-02
+
+ 2.4144929647445679e-01 -2.7025459334254265e-02
+ <_>
+
+ 0 -1 3233 -9.9114552140235901e-03
+
+ -1.5346029400825500e-01 5.3243361413478851e-02
+ <_>
+
+ 0 -1 3234 -7.0727966725826263e-02
+
+ -7.1243101358413696e-01 7.4889077804982662e-03
+ <_>
+
+ 0 -1 3235 1.6112169250845909e-02
+
+ -3.5437509417533875e-02 2.2026020288467407e-01
+ <_>
+
+ 0 -1 3236 2.9938609804958105e-03
+
+ 1.1530820280313492e-02 -9.2017240822315216e-02
+ <_>
+
+ 0 -1 3237 1.4030840247869492e-03
+
+ 5.4302141070365906e-02 -1.1777610331773758e-01
+ <_>
+
+ 0 -1 3238 -8.9894913136959076e-02
+
+ -6.7658591270446777e-01 1.5741019742563367e-03
+ <_>
+
+ 0 -1 3239 2.7459259144961834e-03
+
+ 2.9860800132155418e-02 -2.2091430425643921e-01
+ <_>
+
+ 0 -1 3240 2.2225940600037575e-02
+
+ -4.6592909842729568e-02 8.0418691039085388e-02
+ <_>
+
+ 0 -1 3241 4.4512529857456684e-03
+
+ 1.0706499963998795e-01 -6.5101496875286102e-02
+ <_>
+
+ 0 -1 3242 -2.1191150881350040e-03
+
+ 3.9871860295534134e-02 -5.2555959671735764e-02
+ <_>
+
+ 0 -1 3243 1.0229589790105820e-01
+
+ 1.3386270031332970e-02 -4.5546561479568481e-01
+ <_>
+
+ 0 -1 3244 -6.8260570988059044e-03
+
+ 1.2695349752902985e-01 -5.9704031795263290e-02
+ <_>
+
+ 0 -1 3245 -5.6890580803155899e-02
+
+ 4.0180799365043640e-01 -1.6048269346356392e-02
+ <_>
+
+ 0 -1 3246 -1.8590029329061508e-02
+
+ -4.0374109148979187e-01 1.3502580113708973e-02
+ <_>
+
+ 0 -1 3247 3.3882200717926025e-02
+
+ 7.8824451193213463e-03 -7.9268622398376465e-01
+ <_>
+
+ 0 -1 3248 1.8759339582175016e-03
+
+ -3.4521240741014481e-02 1.8177880346775055e-01
+ <_>
+
+ 0 -1 3249 1.5652549918740988e-03
+
+ 4.8419889062643051e-02 -1.5185169875621796e-01
+ <_>
+
+ 0 -1 3250 3.9563868194818497e-03
+
+ -4.2162090539932251e-02 7.8943721950054169e-02
+ <_>
+ 199
+ -1.4275209903717041e+00
+
+ <_>
+
+ 0 -1 3251 8.8487491011619568e-02
+
+ -2.2935929894447327e-01 2.4001109600067139e-01
+ <_>
+
+ 0 -1 3252 4.3344359844923019e-02
+
+ -1.9927449524402618e-01 2.0298740267753601e-01
+ <_>
+
+ 0 -1 3253 1.5985079109668732e-02
+
+ -1.9890889525413513e-01 1.9233879446983337e-01
+ <_>
+
+ 0 -1 3254 9.8411232233047485e-02
+
+ -9.4830892980098724e-02 2.4474050104618073e-01
+ <_>
+
+ 0 -1 3255 1.0079979896545410e-02
+
+ -4.8000910878181458e-01 5.9808451682329178e-02
+ <_>
+
+ 0 -1 3256 6.2629938125610352e-02
+
+ -1.5902659296989441e-01 1.5163069963455200e-01
+ <_>
+
+ 0 -1 3257 1.3623869977891445e-02
+
+ -2.7451339364051819e-01 9.0433366596698761e-02
+ <_>
+
+ 0 -1 3258 -3.8067731074988842e-03
+
+ -2.9342180490493774e-01 7.3020830750465393e-02
+ <_>
+
+ 0 -1 3259 -1.4649610035121441e-02
+
+ 2.6059079170227051e-01 -9.5248378813266754e-02
+ <_>
+
+ 0 -1 3260 -4.9288192531093955e-04
+
+ 5.9352219104766846e-02 -2.8081470727920532e-01
+ <_>
+
+ 0 -1 3261 -5.1220930181443691e-03
+
+ -2.4218030273914337e-01 8.1701509654521942e-02
+ <_>
+
+ 0 -1 3262 3.3120220177806914e-04
+
+ -4.0093910694122314e-01 3.4026090055704117e-02
+ <_>
+
+ 0 -1 3263 -7.4724480509757996e-04
+
+ 6.0560788959264755e-02 -2.9127869009971619e-01
+ <_>
+
+ 0 -1 3264 4.8829670995473862e-02
+
+ -7.2298422455787659e-02 2.6132971048355103e-01
+ <_>
+
+ 0 -1 3265 2.6994010433554649e-02
+
+ 9.5457129180431366e-02 -2.6758649945259094e-01
+ <_>
+
+ 0 -1 3266 -2.1151660475879908e-03
+
+ -2.5773069262504578e-01 5.3247869014739990e-02
+ <_>
+
+ 0 -1 3267 2.2652999177807942e-05
+
+ -3.0092310905456543e-01 5.9096790850162506e-02
+ <_>
+
+ 0 -1 3268 1.1034930124878883e-02
+
+ -7.4277937412261963e-02 1.9048790633678436e-01
+ <_>
+
+ 0 -1 3269 -1.0275219567120075e-02
+
+ -3.2835999131202698e-01 4.9218688160181046e-02
+ <_>
+
+ 0 -1 3270 -8.3319991827011108e-03
+
+ -2.9651468992233276e-01 3.9428789168596268e-02
+ <_>
+
+ 0 -1 3271 5.0808671861886978e-02
+
+ -4.7661241143941879e-02 3.7404251098632812e-01
+ <_>
+
+ 0 -1 3272 -1.2126479996368289e-03
+
+ -1.2148889899253845e-01 6.5059438347816467e-02
+ <_>
+
+ 0 -1 3273 4.1254470124840736e-03
+
+ -1.4912040531635284e-01 1.1146119982004166e-01
+ <_>
+
+ 0 -1 3274 -1.8284359946846962e-02
+
+ -2.8573518991470337e-01 5.9268131852149963e-02
+ <_>
+
+ 0 -1 3275 1.4156280457973480e-01
+
+ -3.4436151385307312e-02 4.6374419331550598e-01
+ <_>
+
+ 0 -1 3276 -3.6982420831918716e-02
+
+ -5.0853198766708374e-01 2.5087080895900726e-02
+ <_>
+
+ 0 -1 3277 5.0303530879318714e-03
+
+ 9.4626903533935547e-02 -1.6120310127735138e-01
+ <_>
+
+ 0 -1 3278 -4.6149080991744995e-01
+
+ 4.5096570253372192e-01 -3.1209290027618408e-02
+ <_>
+
+ 0 -1 3279 -1.9794689491391182e-02
+
+ -4.1046530008316040e-01 3.8790289312601089e-02
+ <_>
+
+ 0 -1 3280 -2.3872030898928642e-02
+
+ -1.5252740681171417e-01 9.2825219035148621e-03
+ <_>
+
+ 0 -1 3281 1.8736299825832248e-03
+
+ -1.9186599552631378e-01 6.9048486649990082e-02
+ <_>
+
+ 0 -1 3282 5.8244299143552780e-02
+
+ -2.2612230852246284e-02 2.1975080668926239e-01
+ <_>
+
+ 0 -1 3283 1.5281150117516518e-02
+
+ 5.6379750370979309e-02 -2.4171100556850433e-01
+ <_>
+
+ 0 -1 3284 1.3347120583057404e-01
+
+ -4.1846349835395813e-02 1.3641799986362457e-01
+ <_>
+
+ 0 -1 3285 -1.8359240144491196e-02
+
+ 1.3650700449943542e-01 -1.0537090152502060e-01
+ <_>
+
+ 0 -1 3286 -1.1236529797315598e-02
+
+ -2.1045160293579102e-01 6.1872761696577072e-02
+ <_>
+
+ 0 -1 3287 -7.2013743221759796e-02
+
+ -3.8488849997520447e-01 3.6731179803609848e-02
+ <_>
+
+ 0 -1 3288 -1.9893420860171318e-02
+
+ 1.9913719594478607e-01 -5.4470948874950409e-02
+ <_>
+
+ 0 -1 3289 -8.1342989578843117e-03
+
+ -2.7529388666152954e-01 4.7152820974588394e-02
+ <_>
+
+ 0 -1 3290 -1.3614459894597530e-02
+
+ 1.9248710572719574e-01 -6.0025930404663086e-02
+ <_>
+
+ 0 -1 3291 -6.4553669653832912e-03
+
+ -2.1480080485343933e-01 6.2654919922351837e-02
+ <_>
+
+ 0 -1 3292 -7.2288706898689270e-02
+
+ -5.3200727701187134e-01 2.2132480517029762e-02
+ <_>
+
+ 0 -1 3293 -7.0425979793071747e-02
+
+ -3.2588490843772888e-01 3.7150900810956955e-02
+ <_>
+
+ 0 -1 3294 -1.2219670228660107e-02
+
+ -6.5945722162723541e-02 2.8728110715746880e-02
+ <_>
+
+ 0 -1 3295 6.9816941395401955e-03
+
+ -2.8508388996124268e-01 4.2512468993663788e-02
+ <_>
+
+ 0 -1 3296 -2.1437550894916058e-03
+
+ -1.0019320249557495e-01 7.1198999881744385e-02
+ <_>
+
+ 0 -1 3297 -1.5813990030437708e-03
+
+ -1.2926709651947021e-01 9.5332272350788116e-02
+ <_>
+
+ 0 -1 3298 2.1735160771640949e-05
+
+ -1.9246159493923187e-01 5.3724698722362518e-02
+ <_>
+
+ 0 -1 3299 -1.0075280070304871e-01
+
+ 5.8181059360504150e-01 -2.1155519410967827e-02
+ <_>
+
+ 0 -1 3300 8.0153037561103702e-04
+
+ -1.6752170026302338e-01 6.1912689357995987e-02
+ <_>
+
+ 0 -1 3301 -1.3424370437860489e-02
+
+ 1.7007820308208466e-01 -6.5821729600429535e-02
+ <_>
+
+ 0 -1 3302 2.5006510317325592e-02
+
+ 3.1838789582252502e-02 -3.5664460062980652e-01
+ <_>
+
+ 0 -1 3303 -2.3061310872435570e-02
+
+ -5.3446078300476074e-01 2.0500430837273598e-02
+ <_>
+
+ 0 -1 3304 -8.1409228732809424e-04
+
+ 7.3716811835765839e-02 -9.8385728895664215e-02
+ <_>
+
+ 0 -1 3305 -1.3083440251648426e-02
+
+ 2.3585100471973419e-01 -4.7893758863210678e-02
+ <_>
+
+ 0 -1 3306 1.0480909608304501e-02
+
+ -6.7725770175457001e-02 1.1783230304718018e-01
+ <_>
+
+ 0 -1 3307 -4.3198268860578537e-02
+
+ -4.3816858530044556e-01 2.5101570412516594e-02
+ <_>
+
+ 0 -1 3308 -3.2453269232064486e-03
+
+ -2.2451759874820709e-01 4.3056890368461609e-02
+ <_>
+
+ 0 -1 3309 -1.6294110100716352e-03
+
+ -2.3388780653476715e-01 4.5073401182889938e-02
+ <_>
+
+ 0 -1 3310 -3.2911408692598343e-02
+
+ 2.1012680232524872e-01 -2.1296700462698936e-02
+ <_>
+
+ 0 -1 3311 1.4785619896429125e-05
+
+ -7.0854157209396362e-02 1.4696949720382690e-01
+ <_>
+
+ 0 -1 3312 -6.0208540409803391e-02
+
+ -5.2135831117630005e-01 1.9577400758862495e-02
+ <_>
+
+ 0 -1 3313 1.1327289976179600e-03
+
+ 4.4817470014095306e-02 -2.4390450119972229e-01
+ <_>
+
+ 0 -1 3314 8.3639882504940033e-03
+
+ -5.6976079940795898e-02 1.1684290319681168e-01
+ <_>
+
+ 0 -1 3315 1.4313389547169209e-02
+
+ 4.7445211559534073e-02 -2.2202989459037781e-01
+ <_>
+
+ 0 -1 3316 -1.1530060321092606e-01
+
+ 8.6662977933883667e-01 -4.2397230863571167e-03
+ <_>
+
+ 0 -1 3317 -2.0798090845346451e-02
+
+ 2.8666529059410095e-01 -4.0919508785009384e-02
+ <_>
+
+ 0 -1 3318 -1.8268700689077377e-02
+
+ 1.3087140023708344e-01 -4.5348200947046280e-02
+ <_>
+
+ 0 -1 3319 -2.5494489073753357e-01
+
+ -3.2410839200019836e-01 4.0496330708265305e-02
+ <_>
+
+ 0 -1 3320 -2.1786570549011230e-02
+
+ 3.3126661181449890e-01 -3.7021800875663757e-02
+ <_>
+
+ 0 -1 3321 4.2743898928165436e-02
+
+ 3.2316859811544418e-02 -3.5259619355201721e-01
+ <_>
+
+ 0 -1 3322 3.4730590879917145e-02
+
+ 3.4049548208713531e-02 -2.1393370628356934e-01
+ <_>
+
+ 0 -1 3323 -8.8458160462323576e-05
+
+ -3.1134480237960815e-01 3.9364520460367203e-02
+ <_>
+
+ 0 -1 3324 2.2288469970226288e-01
+
+ -8.7889749556779861e-03 8.6566871404647827e-01
+ <_>
+
+ 0 -1 3325 2.7045139670372009e-01
+
+ -5.2694901823997498e-02 1.8746510148048401e-01
+ <_>
+
+ 0 -1 3326 -2.4789940565824509e-02
+
+ 2.7650299668312073e-01 -2.7306249365210533e-02
+ <_>
+
+ 0 -1 3327 -3.5731170326471329e-02
+
+ 4.1157469153404236e-01 -2.2886089980602264e-02
+ <_>
+
+ 0 -1 3328 4.7842580825090408e-02
+
+ 2.2989360615611076e-02 -4.1287249326705933e-01
+ <_>
+
+ 0 -1 3329 -3.1846091151237488e-02
+
+ 3.8073039054870605e-01 -2.9582230374217033e-02
+ <_>
+
+ 0 -1 3330 -6.9219218567013741e-03
+
+ -1.3741379976272583e-01 4.8710118979215622e-02
+ <_>
+
+ 0 -1 3331 4.1339758783578873e-02
+
+ 4.4119630008935928e-02 -2.3561610281467438e-01
+ <_>
+
+ 0 -1 3332 -3.4157071262598038e-02
+
+ -2.4877929687500000e-01 1.1872059665620327e-02
+ <_>
+
+ 0 -1 3333 -1.2198990210890770e-02
+
+ -2.1426199376583099e-01 5.1533300429582596e-02
+ <_>
+
+ 0 -1 3334 -7.9321218654513359e-03
+
+ 8.1553332507610321e-02 -6.9921717047691345e-02
+ <_>
+
+ 0 -1 3335 -4.2665388435125351e-02
+
+ -5.0616562366485596e-01 1.9237969070672989e-02
+ <_>
+
+ 0 -1 3336 3.5445880144834518e-02
+
+ -1.6394840553402901e-02 1.7057849466800690e-01
+ <_>
+
+ 0 -1 3337 4.5686280727386475e-01
+
+ 1.9264170899987221e-02 -5.4413592815399170e-01
+ <_>
+
+ 0 -1 3338 3.1118420884013176e-02
+
+ -3.0776979401707649e-02 1.3581100106239319e-01
+ <_>
+
+ 0 -1 3339 -1.6103679314255714e-02
+
+ 2.1244280040264130e-01 -4.8341780900955200e-02
+ <_>
+
+ 0 -1 3340 5.7916441000998020e-03
+
+ -7.3984377086162567e-02 3.5749029368162155e-02
+ <_>
+
+ 0 -1 3341 -6.5660297870635986e-02
+
+ 2.6183378696441650e-01 -4.1004821658134460e-02
+ <_>
+
+ 0 -1 3342 8.1464983522891998e-02
+
+ 1.2928999960422516e-02 -3.5362771153450012e-01
+ <_>
+
+ 0 -1 3343 1.2561170384287834e-02
+
+ -1.9108769297599792e-01 6.9965943694114685e-02
+ <_>
+
+ 0 -1 3344 7.8783802688121796e-02
+
+ -5.4801939986646175e-03 3.9217329025268555e-01
+ <_>
+
+ 0 -1 3345 3.3984828740358353e-02
+
+ 8.4328763186931610e-02 -1.2477640062570572e-01
+ <_>
+
+ 0 -1 3346 1.7718339338898659e-02
+
+ 4.4793829321861267e-02 -1.9760879874229431e-01
+ <_>
+
+ 0 -1 3347 -9.8835285753011703e-03
+
+ -1.5149329602718353e-01 6.7348048090934753e-02
+ <_>
+
+ 0 -1 3348 2.3850230500102043e-02
+
+ -3.3219821751117706e-02 1.6131630539894104e-01
+ <_>
+
+ 0 -1 3349 -3.9590701460838318e-02
+
+ 3.9903929829597473e-01 -2.8885990381240845e-02
+ <_>
+
+ 0 -1 3350 3.4961920231580734e-02
+
+ 2.2103229537606239e-02 -5.2885407209396362e-01
+ <_>
+
+ 0 -1 3351 9.4825841486454010e-02
+
+ 9.5985615625977516e-03 -8.2035672664642334e-01
+ <_>
+
+ 0 -1 3352 -1.0215540230274200e-01
+
+ -2.0551559329032898e-01 3.0388559680432081e-03
+ <_>
+
+ 0 -1 3353 -9.3128867447376251e-03
+
+ 3.6827068775892258e-02 -2.4656419456005096e-01
+ <_>
+
+ 0 -1 3354 -5.4135788232088089e-03
+
+ -2.3878090083599091e-01 4.1015189141035080e-02
+ <_>
+
+ 0 -1 3355 -2.6281980797648430e-02
+
+ 2.7853861451148987e-01 -3.6868080496788025e-02
+ <_>
+
+ 0 -1 3356 -9.9223516881465912e-03
+
+ -2.5322121381759644e-01 3.3522550016641617e-02
+ <_>
+
+ 0 -1 3357 -1.7109709978103638e-01
+
+ -2.9404911398887634e-01 3.2432679086923599e-02
+ <_>
+
+ 0 -1 3358 -8.7599586695432663e-03
+
+ 6.8787500262260437e-02 -1.0647170245647430e-01
+ <_>
+
+ 0 -1 3359 1.2942530214786530e-01
+
+ 1.3241300359368324e-02 -6.8923670053482056e-01
+ <_>
+
+ 0 -1 3360 -4.7723919153213501e-02
+
+ 2.2214810550212860e-01 -2.8517080470919609e-02
+ <_>
+
+ 0 -1 3361 1.0812310129404068e-01
+
+ 1.1902020312845707e-02 -7.7915120124816895e-01
+ <_>
+
+ 0 -1 3362 -2.7494689449667931e-02
+
+ -3.0192640423774719e-01 2.8540210798382759e-02
+ <_>
+
+ 0 -1 3363 -4.9534138292074203e-02
+
+ -3.0015140771865845e-01 3.1750950962305069e-02
+ <_>
+
+ 0 -1 3364 -1.0358350351452827e-02
+
+ 1.2287119776010513e-01 -3.9123039692640305e-02
+ <_>
+
+ 0 -1 3365 -3.2705869525671005e-02
+
+ -3.3354911208152771e-01 2.7965290471911430e-02
+ <_>
+
+ 0 -1 3366 -1.3580479659140110e-02
+
+ 1.1192899942398071e-01 -4.9471028149127960e-02
+ <_>
+
+ 0 -1 3367 5.5075851269066334e-03
+
+ -1.3118129968643188e-01 6.9403477013111115e-02
+ <_>
+
+ 0 -1 3368 7.5508110225200653e-02
+
+ -2.9019629582762718e-02 3.9413800835609436e-01
+ <_>
+
+ 0 -1 3369 5.6811410933732986e-02
+
+ 2.6788659393787384e-02 -4.1989549994468689e-01
+ <_>
+
+ 0 -1 3370 5.0004580989480019e-03
+
+ 4.6239160001277924e-02 -6.7620649933815002e-02
+ <_>
+
+ 0 -1 3371 1.9717490300536156e-02
+
+ -6.0402508825063705e-02 1.6632139682769775e-01
+ <_>
+
+ 0 -1 3372 -6.4729452133178711e-02
+
+ -5.2484118938446045e-01 2.7922600507736206e-02
+ <_>
+
+ 0 -1 3373 -3.0683130025863647e-02
+
+ 2.1945460140705109e-01 -4.8111628741025925e-02
+ <_>
+
+ 0 -1 3374 8.1467535346746445e-03
+
+ 6.0279220342636108e-02 -1.1600890010595322e-01
+ <_>
+
+ 0 -1 3375 7.9492190852761269e-03
+
+ 8.3563491702079773e-02 -1.6053000092506409e-01
+ <_>
+
+ 0 -1 3376 -2.2406199946999550e-02
+
+ 2.8271418809890747e-01 -2.8184479102492332e-02
+ <_>
+
+ 0 -1 3377 8.2993790507316589e-02
+
+ 1.0475059971213341e-02 -9.6875292062759399e-01
+ <_>
+
+ 0 -1 3378 -7.0176632143557072e-03
+
+ -1.3753229379653931e-01 6.8205498158931732e-02
+ <_>
+
+ 0 -1 3379 -9.7560193389654160e-03
+
+ -1.3707080483436584e-01 7.2890587151050568e-02
+ <_>
+
+ 0 -1 3380 -5.2217379212379456e-02
+
+ -6.4300441741943359e-01 1.4492220245301723e-02
+ <_>
+
+ 0 -1 3381 -7.8029942233115435e-04
+
+ -2.6479271054267883e-01 3.3517841249704361e-02
+ <_>
+
+ 0 -1 3382 3.7919931113719940e-02
+
+ -8.4846787154674530e-02 1.1260589957237244e-01
+ <_>
+
+ 0 -1 3383 3.0561289750039577e-03
+
+ 4.8086941242218018e-02 -1.9009250402450562e-01
+ <_>
+
+ 0 -1 3384 6.5862268209457397e-02
+
+ -5.2452040836215019e-03 9.1280621290206909e-01
+ <_>
+
+ 0 -1 3385 1.5568210184574127e-01
+
+ 2.0884050056338310e-02 -4.9580439925193787e-01
+ <_>
+
+ 0 -1 3386 -1.9058469915762544e-03
+
+ 1.8305900692939758e-01 -4.9756310880184174e-02
+ <_>
+
+ 0 -1 3387 -9.8356999456882477e-02
+
+ 4.8020449280738831e-01 -2.0384309813380241e-02
+ <_>
+
+ 0 -1 3388 4.2754490859806538e-03
+
+ 4.0095929056406021e-02 -1.4071129262447357e-01
+ <_>
+
+ 0 -1 3389 -1.4033010229468346e-02
+
+ -2.0791560411453247e-01 5.2576299756765366e-02
+ <_>
+
+ 0 -1 3390 8.0179408192634583e-02
+
+ -2.5790559127926826e-02 3.7651219964027405e-01
+ <_>
+
+ 0 -1 3391 1.8175759911537170e-01
+
+ 1.1428649537265301e-02 -8.3382111787796021e-01
+ <_>
+
+ 0 -1 3392 -1.9141690805554390e-02
+
+ -5.0522857904434204e-01 1.2605519965291023e-02
+ <_>
+
+ 0 -1 3393 -5.1260828971862793e-02
+
+ 5.8292531967163086e-01 -1.6109749674797058e-02
+ <_>
+
+ 0 -1 3394 6.4478136599063873e-02
+
+ 1.0237329639494419e-02 -6.0302352905273438e-01
+ <_>
+
+ 0 -1 3395 3.1238300725817680e-02
+
+ 2.0845850929617882e-02 -3.9785829186439514e-01
+ <_>
+
+ 0 -1 3396 -5.0772321410477161e-03
+
+ 1.2331540137529373e-01 -3.5224981606006622e-02
+ <_>
+
+ 0 -1 3397 -1.9385579507797956e-03
+
+ 1.5726689994335175e-01 -7.3316320776939392e-02
+ <_>
+
+ 0 -1 3398 2.4099789559841156e-02
+
+ -1.1178609728813171e-01 1.0738980025053024e-01
+ <_>
+
+ 0 -1 3399 -8.8700000196695328e-03
+
+ -3.6048200726509094e-01 2.7034249156713486e-02
+ <_>
+
+ 0 -1 3400 -3.7424121052026749e-02
+
+ -3.5229408740997314e-01 1.6786530613899231e-02
+ <_>
+
+ 0 -1 3401 -2.0067069679498672e-02
+
+ -2.7460938692092896e-01 3.9532590657472610e-02
+ <_>
+
+ 0 -1 3402 6.5169870853424072e-02
+
+ 1.1402159929275513e-02 -2.4819959700107574e-01
+ <_>
+
+ 0 -1 3403 3.8157470524311066e-02
+
+ 4.6323310583829880e-02 -2.0989510416984558e-01
+ <_>
+
+ 0 -1 3404 1.1075180023908615e-02
+
+ 3.4411158412694931e-02 -5.1256500184535980e-02
+ <_>
+
+ 0 -1 3405 1.1583480238914490e-01
+
+ 4.2282830923795700e-02 -2.1705499291419983e-01
+ <_>
+
+ 0 -1 3406 -4.6720780432224274e-02
+
+ 2.3093520104885101e-01 -8.3234477788209915e-03
+ <_>
+
+ 0 -1 3407 1.2567450106143951e-01
+
+ -4.9882501363754272e-02 2.1018449962139130e-01
+ <_>
+
+ 0 -1 3408 1.8088010256178677e-04
+
+ -1.1836589872837067e-01 8.4278896450996399e-02
+ <_>
+
+ 0 -1 3409 1.0470690205693245e-02
+
+ -8.6210608482360840e-02 1.1760850250720978e-01
+ <_>
+
+ 0 -1 3410 5.8065719902515411e-02
+
+ 1.5582700259983540e-02 -7.4217921495437622e-01
+ <_>
+
+ 0 -1 3411 2.2783069871366024e-03
+
+ -1.9151380658149719e-01 4.7990638762712479e-02
+ <_>
+
+ 0 -1 3412 -6.9596558809280396e-02
+
+ -7.3241692781448364e-01 1.1130559723824263e-03
+ <_>
+
+ 0 -1 3413 5.8907870203256607e-02
+
+ 1.6878390684723854e-02 -5.4400408267974854e-01
+ <_>
+
+ 0 -1 3414 -8.0658823251724243e-02
+
+ 2.9922959208488464e-01 -1.8570570275187492e-02
+ <_>
+
+ 0 -1 3415 1.7686929553747177e-02
+
+ 4.2936161160469055e-02 -2.2591550648212433e-01
+ <_>
+
+ 0 -1 3416 -1.6319070011377335e-02
+
+ 1.8889640271663666e-01 -4.7047398984432220e-02
+ <_>
+
+ 0 -1 3417 -3.9527568966150284e-02
+
+ -3.2657331228256226e-01 2.8762219473719597e-02
+ <_>
+
+ 0 -1 3418 1.9769819919019938e-03
+
+ -8.8217496871948242e-02 5.7402729988098145e-02
+ <_>
+
+ 0 -1 3419 -3.0272029340267181e-02
+
+ -5.1177912950515747e-01 1.7359249293804169e-02
+ <_>
+
+ 0 -1 3420 5.3786419332027435e-02
+
+ 1.2071570381522179e-02 -4.0201959013938904e-01
+ <_>
+
+ 0 -1 3421 -9.4136483967304230e-03
+
+ 2.4728150665760040e-01 -3.6734741181135178e-02
+ <_>
+
+ 0 -1 3422 -5.9014528989791870e-02
+
+ -1.3277289271354675e-01 1.5220739878714085e-02
+ <_>
+
+ 0 -1 3423 8.9417606592178345e-02
+
+ -2.5917148590087891e-01 3.7563629448413849e-02
+ <_>
+
+ 0 -1 3424 -8.7996140122413635e-02
+
+ 4.9200880527496338e-01 -2.1210839971899986e-02
+ <_>
+
+ 0 -1 3425 -5.0747569650411606e-02
+
+ -4.8567768931388855e-01 2.0005319267511368e-02
+ <_>
+
+ 0 -1 3426 -3.8918260484933853e-02
+
+ -8.9558547735214233e-01 7.8960238024592400e-03
+ <_>
+
+ 0 -1 3427 2.0968139171600342e-02
+
+ -5.4431710392236710e-02 1.6123360395431519e-01
+ <_>
+
+ 0 -1 3428 -3.2103069126605988e-02
+
+ -3.6822700500488281e-01 1.9163349643349648e-02
+ <_>
+
+ 0 -1 3429 5.5592609569430351e-03
+
+ 7.8368440270423889e-02 -1.1842489987611771e-01
+ <_>
+
+ 0 -1 3430 5.9554249048233032e-02
+
+ -5.2290938794612885e-02 3.6194879561662674e-02
+ <_>
+
+ 0 -1 3431 -1.0973160155117512e-02
+
+ 1.5855990350246429e-01 -5.5804491043090820e-02
+ <_>
+
+ 0 -1 3432 -1.1934650130569935e-02
+
+ -2.5717508792877197e-01 3.2829850912094116e-02
+ <_>
+
+ 0 -1 3433 6.0441631823778152e-02
+
+ -3.8720801472663879e-02 2.2971870005130768e-01
+ <_>
+
+ 0 -1 3434 -8.2118069985881448e-04
+
+ 6.9738790392875671e-02 -1.5992000699043274e-01
+ <_>
+
+ 0 -1 3435 2.0469389855861664e-02
+
+ -8.4349267184734344e-02 1.0139500349760056e-01
+ <_>
+
+ 0 -1 3436 -7.6305761933326721e-02
+
+ 8.3174228668212891e-01 -5.0806580111384392e-03
+ <_>
+
+ 0 -1 3437 6.0551889240741730e-02
+
+ -3.7971161305904388e-02 2.1850149333477020e-01
+ <_>
+
+ 0 -1 3438 -4.1085779666900635e-03
+
+ -1.1496649682521820e-01 3.6647479981184006e-02
+ <_>
+
+ 0 -1 3439 1.2399969622492790e-02
+
+ 6.2838301062583923e-02 -1.4144660532474518e-01
+ <_>
+
+ 0 -1 3440 -7.1455702185630798e-02
+
+ -4.2673790454864502e-01 1.3947109691798687e-02
+ <_>
+
+ 0 -1 3441 3.3709030598402023e-02
+
+ -1.2713599950075150e-02 7.4775099754333496e-01
+ <_>
+
+ 0 -1 3442 3.4742768853902817e-02
+
+ 2.0969500765204430e-02 -1.4630280435085297e-01
+ <_>
+
+ 0 -1 3443 -4.3705299496650696e-02
+
+ 1.8064750730991364e-01 -5.2335180342197418e-02
+ <_>
+
+ 0 -1 3444 8.4926873445510864e-02
+
+ 6.9014527834951878e-03 -2.6073959469795227e-01
+ <_>
+
+ 0 -1 3445 -1.7119079828262329e-02
+
+ -1.4590080082416534e-01 6.7484676837921143e-02
+ <_>
+
+ 0 -1 3446 3.3630719780921936e-01
+
+ 7.8989071771502495e-03 -8.3852928876876831e-01
+ <_>
+
+ 0 -1 3447 1.2371230125427246e-01
+
+ -2.5482710450887680e-02 3.9098039269447327e-01
+ <_>
+
+ 0 -1 3448 -1.1195900291204453e-01
+
+ -3.8317111134529114e-01 6.0780011117458344e-03
+ <_>
+
+ 0 -1 3449 -1.0881890356540680e-01
+
+ -7.1362990140914917e-01 1.2700069695711136e-02
+ <_>
+ 268
+ -1.3290590047836304e+00
+
+ <_>
+
+ 0 -1 3450 9.6844611689448357e-03
+
+ -1.9455039501190186e-01 2.0048019289970398e-01
+ <_>
+
+ 0 -1 3451 -6.6196201369166374e-03
+
+ 9.2211641371250153e-02 -3.4824401140213013e-01
+ <_>
+
+ 0 -1 3452 5.6163137778639793e-03
+
+ 6.6767610609531403e-02 -4.1172260046005249e-01
+ <_>
+
+ 0 -1 3453 -1.6882510390132666e-03
+
+ 7.2629712522029877e-02 -2.0694479346275330e-01
+ <_>
+
+ 0 -1 3454 -2.9599820263683796e-03
+
+ -2.0635899901390076e-01 7.7335417270660400e-02
+ <_>
+
+ 0 -1 3455 1.7798959743231535e-03
+
+ -3.2149469852447510e-01 6.4107127487659454e-02
+ <_>
+
+ 0 -1 3456 -4.0264189010486007e-04
+
+ 7.9512253403663635e-02 -2.4051089584827423e-01
+ <_>
+
+ 0 -1 3457 -5.0024548545479774e-04
+
+ 8.6675606667995453e-02 -2.0504170656204224e-01
+ <_>
+
+ 0 -1 3458 -2.0284270867705345e-03
+
+ 1.4322499930858612e-01 -1.2220569700002670e-01
+ <_>
+
+ 0 -1 3459 6.0648359358310699e-03
+
+ 3.7860579788684845e-02 -2.4375459551811218e-01
+ <_>
+
+ 0 -1 3460 9.6257496625185013e-03
+
+ 5.7141840457916260e-02 -2.8827920556068420e-01
+ <_>
+
+ 0 -1 3461 2.5888499803841114e-03
+
+ -1.8906019628047943e-01 8.6430206894874573e-02
+ <_>
+
+ 0 -1 3462 2.9090950265526772e-03
+
+ -8.3108469843864441e-02 1.7618839442729950e-01
+ <_>
+
+ 0 -1 3463 2.2233440540730953e-03
+
+ 2.0150169730186462e-02 -2.4882750213146210e-01
+ <_>
+
+ 0 -1 3464 -9.8997671157121658e-03
+
+ -2.0639769732952118e-01 6.0985010117292404e-02
+ <_>
+
+ 0 -1 3465 1.9689390435814857e-02
+
+ -3.4452438354492188e-02 2.0069779455661774e-01
+ <_>
+
+ 0 -1 3466 2.1106770262122154e-02
+
+ 4.3886858969926834e-02 -2.6610890030860901e-01
+ <_>
+
+ 0 -1 3467 -7.2028310969471931e-03
+
+ 1.7015519738197327e-01 -5.4639339447021484e-02
+ <_>
+
+ 0 -1 3468 4.0647671557962894e-03
+
+ 5.2182808518409729e-02 -2.1304030716419220e-01
+ <_>
+
+ 0 -1 3469 -2.8419198933988810e-03
+
+ 5.3180210292339325e-02 -1.7669560015201569e-01
+ <_>
+
+ 0 -1 3470 -4.9461819231510162e-02
+
+ 3.7221330404281616e-01 -3.3969849348068237e-02
+ <_>
+
+ 0 -1 3471 4.3024159967899323e-02
+
+ 3.1251549720764160e-02 -3.1831890344619751e-01
+ <_>
+
+ 0 -1 3472 -7.0111698005348444e-04
+
+ -2.0340210199356079e-01 5.8964170515537262e-02
+ <_>
+
+ 0 -1 3473 5.7489587925374508e-04
+
+ -9.4937190413475037e-02 1.0538189858198166e-01
+ <_>
+
+ 0 -1 3474 -1.4911209291312844e-04
+
+ 6.8423688411712646e-02 -1.8207779526710510e-01
+ <_>
+
+ 0 -1 3475 8.7993890047073364e-03
+
+ 3.3866070210933685e-02 -1.1625579744577408e-01
+ <_>
+
+ 0 -1 3476 -8.7150773033499718e-03
+
+ 1.8041290342807770e-01 -6.5721526741981506e-02
+ <_>
+
+ 0 -1 3477 -1.3727629557251930e-02
+
+ -1.3337810337543488e-01 3.5966601222753525e-02
+ <_>
+
+ 0 -1 3478 -2.3620850406587124e-03
+
+ -1.9088070094585419e-01 6.1849810183048248e-02
+ <_>
+
+ 0 -1 3479 1.7863539978861809e-03
+
+ -8.3071537315845490e-02 9.8926126956939697e-02
+ <_>
+
+ 0 -1 3480 -9.4514712691307068e-03
+
+ -1.8024919927120209e-01 6.0146760195493698e-02
+ <_>
+
+ 0 -1 3481 4.8195280134677887e-02
+
+ -2.6617299765348434e-02 3.0134469270706177e-01
+ <_>
+
+ 0 -1 3482 -1.2248229468241334e-03
+
+ -2.3560139536857605e-01 4.5572910457849503e-02
+ <_>
+
+ 0 -1 3483 -4.2851101607084274e-02
+
+ 1.6086329519748688e-01 -2.3455940186977386e-02
+ <_>
+
+ 0 -1 3484 3.4798709675669670e-03
+
+ 7.6882630586624146e-02 -1.3299170136451721e-01
+ <_>
+
+ 0 -1 3485 -3.9859190583229065e-03
+
+ 4.3115191161632538e-02 -2.3132759332656860e-01
+ <_>
+
+ 0 -1 3486 4.3139848858118057e-02
+
+ -3.6780070513486862e-02 2.3883450031280518e-01
+ <_>
+
+ 0 -1 3487 -1.7436629161238670e-02
+
+ -1.4046260714530945e-01 5.9077050536870956e-02
+ <_>
+
+ 0 -1 3488 -7.5254887342453003e-02
+
+ 3.6328521370887756e-01 -3.1380280852317810e-02
+ <_>
+
+ 0 -1 3489 6.0125540941953659e-02
+
+ 8.2496693357825279e-03 -2.3485200107097626e-01
+ <_>
+
+ 0 -1 3490 1.2755369534716010e-03
+
+ -1.2268169969320297e-01 9.0071536600589752e-02
+ <_>
+
+ 0 -1 3491 -1.3465109514072537e-03
+
+ -1.4554239809513092e-01 7.0761166512966156e-02
+ <_>
+
+ 0 -1 3492 2.3758469149470329e-02
+
+ -5.1834989339113235e-02 1.7583900690078735e-01
+ <_>
+
+ 0 -1 3493 2.2376580163836479e-03
+
+ 9.1763339936733246e-02 -1.1206050217151642e-01
+ <_>
+
+ 0 -1 3494 3.8662939332425594e-03
+
+ 6.2390189617872238e-02 -1.5142339468002319e-01
+ <_>
+
+ 0 -1 3495 7.6868042349815369e-02
+
+ -2.7640199288725853e-02 3.7636131048202515e-01
+ <_>
+
+ 0 -1 3496 1.6617199406027794e-02
+
+ 3.3067818731069565e-02 -3.0950650572776794e-01
+ <_>
+
+ 0 -1 3497 -4.6145029366016388e-02
+
+ 1.0798139870166779e-01 -5.8277439326047897e-02
+ <_>
+
+ 0 -1 3498 9.8206609487533569e-02
+
+ 1.7502160742878914e-02 -5.0861918926239014e-01
+ <_>
+
+ 0 -1 3499 4.7838049940764904e-03
+
+ -1.0207810252904892e-01 5.7796850800514221e-02
+ <_>
+
+ 0 -1 3500 2.0467689260840416e-02
+
+ -2.0362010225653648e-02 4.5001450181007385e-01
+ <_>
+
+ 0 -1 3501 1.5141700394451618e-02
+
+ 2.8140379115939140e-02 -8.5130028426647186e-02
+ <_>
+
+ 0 -1 3502 5.2229189313948154e-03
+
+ -5.7789258658885956e-02 1.5580329298973083e-01
+ <_>
+
+ 0 -1 3503 1.8871299922466278e-02
+
+ 2.7053799480199814e-02 -1.2046360224485397e-01
+ <_>
+
+ 0 -1 3504 4.5608580112457275e-03
+
+ -7.9567588865756989e-02 1.1571010202169418e-01
+ <_>
+
+ 0 -1 3505 -1.2172549962997437e-02
+
+ -1.6149179637432098e-01 2.4571539834141731e-02
+ <_>
+
+ 0 -1 3506 -1.6468809545040131e-01
+
+ -6.5712791681289673e-01 1.2428689748048782e-02
+ <_>
+
+ 0 -1 3507 1.8241419456899166e-03
+
+ -9.1526739299297333e-02 8.7851390242576599e-02
+ <_>
+
+ 0 -1 3508 -5.4591207299381495e-04
+
+ -1.2581209838390350e-01 6.6968381404876709e-02
+ <_>
+
+ 0 -1 3509 2.1177160087972879e-03
+
+ 1.4261330664157867e-01 -6.1729468405246735e-02
+ <_>
+
+ 0 -1 3510 1.1853260220959783e-03
+
+ -9.1425627470016479e-02 9.2089362442493439e-02
+ <_>
+
+ 0 -1 3511 7.9899299889802933e-03
+
+ -6.3119217753410339e-02 1.5446299314498901e-01
+ <_>
+
+ 0 -1 3512 4.5044990256428719e-03
+
+ 4.0920298546552658e-02 -2.2475910186767578e-01
+ <_>
+
+ 0 -1 3513 7.4563547968864441e-03
+
+ -3.9540700614452362e-02 2.4208679795265198e-01
+ <_>
+
+ 0 -1 3514 6.3897971995174885e-03
+
+ 5.2900739014148712e-02 -1.7378969490528107e-01
+ <_>
+
+ 0 -1 3515 -5.9052068740129471e-02
+
+ -4.7957658767700195e-01 8.3919316530227661e-03
+ <_>
+
+ 0 -1 3516 -5.3746208548545837e-02
+
+ -5.0854432582855225e-01 1.6880670562386513e-02
+ <_>
+
+ 0 -1 3517 -9.1852366924285889e-02
+
+ 1.9466249644756317e-01 -1.1129629798233509e-02
+ <_>
+
+ 0 -1 3518 1.5038819611072540e-01
+
+ -2.0112350583076477e-02 4.4738510251045227e-01
+ <_>
+
+ 0 -1 3519 -2.1317429840564728e-02
+
+ 2.9676139354705811e-01 -2.8231840580701828e-02
+ <_>
+
+ 0 -1 3520 1.2711419723927975e-02
+
+ 3.3570941537618637e-02 -2.8972589969635010e-01
+ <_>
+
+ 0 -1 3521 -9.3287907540798187e-02
+
+ 6.4380300045013428e-01 -1.4923879876732826e-02
+ <_>
+
+ 0 -1 3522 -4.5716729946434498e-03
+
+ -2.6994249224662781e-01 3.3246111124753952e-02
+ <_>
+
+ 0 -1 3523 -3.4010890522040427e-04
+
+ 8.1715546548366547e-02 -1.0642260313034058e-01
+ <_>
+
+ 0 -1 3524 -2.6096890214830637e-03
+
+ 1.8403419852256775e-01 -6.4724236726760864e-02
+ <_>
+
+ 0 -1 3525 4.6332611236721277e-04
+
+ -1.4283409714698792e-01 4.2033299803733826e-02
+ <_>
+
+ 0 -1 3526 1.4095300436019897e-01
+
+ 9.4516919925808907e-03 -7.7727228403091431e-01
+ <_>
+
+ 0 -1 3527 2.0406199619174004e-03
+
+ -6.6505432128906250e-02 1.1805409938097000e-01
+ <_>
+
+ 0 -1 3528 -2.2302009165287018e-02
+
+ -1.0419870167970657e-01 8.9387677609920502e-02
+ <_>
+
+ 0 -1 3529 3.9168349467217922e-03
+
+ 2.5769380852580070e-02 -1.6625499725341797e-01
+ <_>
+
+ 0 -1 3530 6.1153857968747616e-03
+
+ -6.2531687319278717e-02 1.4075349271297455e-01
+ <_>
+
+ 0 -1 3531 -2.9564529540948570e-05
+
+ 4.6978309750556946e-02 -1.0862989723682404e-01
+ <_>
+
+ 0 -1 3532 1.4300559996627271e-04
+
+ -1.0005149990320206e-01 8.0335728824138641e-02
+ <_>
+
+ 0 -1 3533 1.1430789716541767e-02
+
+ 2.3201359435915947e-02 -3.1366908550262451e-01
+ <_>
+
+ 0 -1 3534 -1.3724610209465027e-02
+
+ 1.2814410030841827e-01 -6.1290029436349869e-02
+ <_>
+
+ 0 -1 3535 -4.5548770576715469e-02
+
+ -4.7528308629989624e-01 1.3631340116262436e-02
+ <_>
+
+ 0 -1 3536 7.6914107194170356e-04
+
+ -8.9416027069091797e-02 9.6091486513614655e-02
+ <_>
+
+ 0 -1 3537 6.3840910792350769e-02
+
+ 1.6064060851931572e-02 -3.8221898674964905e-01
+ <_>
+
+ 0 -1 3538 -7.2662779130041599e-03
+
+ -2.1940490603446960e-01 3.8170509040355682e-02
+ <_>
+
+ 0 -1 3539 -1.2828599661588669e-02
+
+ 1.4705429971218109e-01 -5.5832669138908386e-02
+ <_>
+
+ 0 -1 3540 -9.1467969119548798e-02
+
+ -7.9265332221984863e-01 1.0404639877378941e-02
+ <_>
+
+ 0 -1 3541 -2.7164160273969173e-03
+
+ -1.7725169658660889e-01 5.6455809623003006e-02
+ <_>
+
+ 0 -1 3542 -1.0097579658031464e-01
+
+ -5.9372657537460327e-01 1.3162240386009216e-02
+ <_>
+
+ 0 -1 3543 -3.7983559072017670e-02
+
+ -1.5072999894618988e-01 1.9557390362024307e-02
+ <_>
+
+ 0 -1 3544 5.3728191414847970e-04
+
+ 5.2257049828767776e-02 -1.7996260523796082e-01
+ <_>
+
+ 0 -1 3545 1.2443910352885723e-02
+
+ -2.8953019529581070e-02 2.5448489189147949e-01
+ <_>
+
+ 0 -1 3546 -1.8171280622482300e-02
+
+ 3.2203981280326843e-01 -3.1395100057125092e-02
+ <_>
+
+ 0 -1 3547 -3.0619159340858459e-02
+
+ -1.2817279994487762e-01 6.0485020279884338e-02
+ <_>
+
+ 0 -1 3548 2.8726200107485056e-03
+
+ -1.4807400107383728e-01 5.3796000778675079e-02
+ <_>
+
+ 0 -1 3549 -2.8772678971290588e-01
+
+ -8.3234447240829468e-01 3.6127590574324131e-03
+ <_>
+
+ 0 -1 3550 4.1057071089744568e-01
+
+ 8.3212452009320259e-03 -8.2476407289505005e-01
+ <_>
+
+ 0 -1 3551 1.6370510682463646e-02
+
+ -2.4849100038409233e-02 1.6309140622615814e-01
+ <_>
+
+ 0 -1 3552 5.3615570068359375e-02
+
+ 1.8034080043435097e-02 -4.6126970648765564e-01
+ <_>
+
+ 0 -1 3553 -1.0296109830960631e-03
+
+ 3.8824349641799927e-02 -7.3625981807708740e-02
+ <_>
+
+ 0 -1 3554 -6.3063339330255985e-03
+
+ 1.3288870453834534e-01 -5.5812060832977295e-02
+ <_>
+
+ 0 -1 3555 6.8714357912540436e-03
+
+ 6.9562442600727081e-02 -1.1383140087127686e-01
+ <_>
+
+ 0 -1 3556 -8.3098851609975100e-04
+
+ 1.0002700239419937e-01 -8.5704028606414795e-02
+ <_>
+
+ 0 -1 3557 1.3288210146129131e-02
+
+ 4.2606260627508163e-02 -1.1729510128498077e-01
+ <_>
+
+ 0 -1 3558 1.7035039141774178e-02
+
+ -4.2757850140333176e-02 2.2400109469890594e-01
+ <_>
+
+ 0 -1 3559 3.2128300517797470e-02
+
+ 1.5296909958124161e-02 -5.3317558765411377e-01
+ <_>
+
+ 0 -1 3560 1.1440330184996128e-02
+
+ -5.8955609798431396e-02 1.2842489778995514e-01
+ <_>
+
+ 0 -1 3561 2.5446009822189808e-03
+
+ 4.6037770807743073e-02 -1.4760190248489380e-01
+ <_>
+
+ 0 -1 3562 -3.5062368959188461e-02
+
+ -3.4721338748931885e-01 2.4020459502935410e-02
+ <_>
+
+ 0 -1 3563 4.6889069490134716e-03
+
+ -8.2460209727287292e-02 7.6254382729530334e-02
+ <_>
+
+ 0 -1 3564 -1.5067459571582731e-05
+
+ 5.8223988860845566e-02 -1.3496190309524536e-01
+ <_>
+
+ 0 -1 3565 -6.5259548136964440e-04
+
+ 3.6780450493097305e-02 -7.0881396532058716e-02
+ <_>
+
+ 0 -1 3566 4.5456850784830749e-04
+
+ 5.9895541518926620e-02 -1.4553959667682648e-01
+ <_>
+
+ 0 -1 3567 -1.0570470243692398e-01
+
+ 1.3766160607337952e-01 -2.2337099537253380e-02
+ <_>
+
+ 0 -1 3568 -4.6019242145121098e-03
+
+ -3.3811721205711365e-01 2.2578509524464607e-02
+ <_>
+
+ 0 -1 3569 5.5374279618263245e-03
+
+ -4.1250869631767273e-02 9.4750680029392242e-02
+ <_>
+
+ 0 -1 3570 -2.7569069061428308e-03
+
+ 1.7380860447883606e-01 -4.5417640358209610e-02
+ <_>
+
+ 0 -1 3571 4.1876680916175246e-04
+
+ -5.5233258754014969e-02 5.8342628180980682e-02
+ <_>
+
+ 0 -1 3572 -2.4587850202806294e-04
+
+ -8.9373029768466949e-02 8.1158749759197235e-02
+ <_>
+
+ 0 -1 3573 -7.4991412460803986e-02
+
+ -5.9057062864303589e-01 6.7846179008483887e-03
+ <_>
+
+ 0 -1 3574 1.7898950027301908e-03
+
+ 5.2262220531702042e-02 -1.5884269773960114e-01
+ <_>
+
+ 0 -1 3575 -3.2704160548746586e-03
+
+ 1.1216899752616882e-01 -6.2488421797752380e-02
+ <_>
+
+ 0 -1 3576 -1.7803650349378586e-02
+
+ -4.5739078521728516e-01 1.6650289297103882e-02
+ <_>
+
+ 0 -1 3577 -3.3537930250167847e-01
+
+ -8.2564651966094971e-01 7.1495971642434597e-03
+ <_>
+
+ 0 -1 3578 1.1451829969882965e-01
+
+ -1.8937719985842705e-02 4.1076439619064331e-01
+ <_>
+
+ 0 -1 3579 6.5141052007675171e-02
+
+ 1.1196400038897991e-02 -7.6225310564041138e-01
+ <_>
+
+ 0 -1 3580 -1.8442489206790924e-02
+
+ 1.4006440341472626e-01 -5.1568318158388138e-02
+ <_>
+
+ 0 -1 3581 2.0362680777907372e-02
+
+ 2.7635680511593819e-02 -2.2622610628604889e-01
+ <_>
+
+ 0 -1 3582 -5.4255980066955090e-03
+
+ -1.4688220620155334e-01 5.1294069737195969e-02
+ <_>
+
+ 0 -1 3583 -1.4608480036258698e-02
+
+ 2.8014749288558960e-01 -3.2668899744749069e-02
+ <_>
+
+ 0 -1 3584 1.2462410377338529e-03
+
+ -2.0888839662075043e-01 3.3212959766387939e-02
+ <_>
+
+ 0 -1 3585 -5.1487259566783905e-02
+
+ 1.9872699677944183e-01 -1.0376259684562683e-02
+ <_>
+
+ 0 -1 3586 -1.4138059690594673e-02
+
+ -1.6193750500679016e-01 4.6604789793491364e-02
+ <_>
+
+ 0 -1 3587 -8.3356946706771851e-03
+
+ 1.6429559886455536e-01 -4.2695630341768265e-02
+ <_>
+
+ 0 -1 3588 9.5129031687974930e-03
+
+ 4.4999569654464722e-02 -1.5971189737319946e-01
+ <_>
+
+ 0 -1 3589 -7.0411129854619503e-03
+
+ 7.0638000965118408e-01 -9.1527765616774559e-03
+ <_>
+
+ 0 -1 3590 -4.0637628990225494e-04
+
+ 7.0747792720794678e-02 -1.0194250196218491e-01
+ <_>
+
+ 0 -1 3591 4.2529408819973469e-03
+
+ 3.1937479972839355e-02 -1.0357219725847244e-01
+ <_>
+
+ 0 -1 3592 -1.9221140246372670e-04
+
+ 1.0241460055112839e-01 -8.9996367692947388e-02
+ <_>
+
+ 0 -1 3593 -1.3621139805763960e-03
+
+ -1.8157319724559784e-01 2.3933520540595055e-02
+ <_>
+
+ 0 -1 3594 -9.3250330537557602e-03
+
+ 1.5883359313011169e-01 -4.5317139476537704e-02
+ <_>
+
+ 0 -1 3595 -3.4641081094741821e-01
+
+ -3.5901129245758057e-01 9.8646534606814384e-03
+ <_>
+
+ 0 -1 3596 1.7026960849761963e-02
+
+ -5.9731051325798035e-02 1.2576000392436981e-01
+ <_>
+
+ 0 -1 3597 -3.9226989611051977e-04
+
+ 6.4828976988792419e-02 -9.2051766812801361e-02
+ <_>
+
+ 0 -1 3598 7.0719248615205288e-03
+
+ 3.7144500762224197e-02 -1.9167420268058777e-01
+ <_>
+
+ 0 -1 3599 2.9001249931752682e-03
+
+ -6.2633208930492401e-02 5.3248930722475052e-02
+ <_>
+
+ 0 -1 3600 -2.4164669215679169e-02
+
+ 3.0798891186714172e-01 -2.6505900546908379e-02
+ <_>
+
+ 0 -1 3601 -7.5509406626224518e-02
+
+ -6.1827278137207031e-01 7.8803002834320068e-03
+ <_>
+
+ 0 -1 3602 -2.6605799212120473e-04
+
+ 6.9619670510292053e-02 -9.9268868565559387e-02
+ <_>
+
+ 0 -1 3603 2.3389840498566628e-03
+
+ 4.2269691824913025e-02 -1.6290849447250366e-01
+ <_>
+
+ 0 -1 3604 -1.2518429430201650e-03
+
+ 9.0814828872680664e-02 -7.9618006944656372e-02
+ <_>
+
+ 0 -1 3605 -1.9330839859321713e-03
+
+ 7.6956093311309814e-02 -6.5234251320362091e-02
+ <_>
+
+ 0 -1 3606 2.3863440379500389e-02
+
+ -7.7985651791095734e-02 9.7926571965217590e-02
+ <_>
+
+ 0 -1 3607 -5.1995079964399338e-02
+
+ -2.0676060020923615e-01 1.2264530174434185e-02
+ <_>
+
+ 0 -1 3608 -9.4953901134431362e-04
+
+ 7.2090931236743927e-02 -1.2452449649572372e-01
+ <_>
+
+ 0 -1 3609 -9.0458765625953674e-03
+
+ -1.0756769776344299e-01 2.6017999276518822e-02
+ <_>
+
+ 0 -1 3610 3.2019101083278656e-02
+
+ -4.4689521193504333e-02 1.6712300479412079e-01
+ <_>
+
+ 0 -1 3611 -7.1996808983385563e-03
+
+ -1.2065560370683670e-01 5.3329549729824066e-02
+ <_>
+
+ 0 -1 3612 9.7247883677482605e-02
+
+ -2.0059280097484589e-02 4.1321530938148499e-01
+ <_>
+
+ 0 -1 3613 1.7411670414730906e-03
+
+ 2.5265200063586235e-02 -1.1400379985570908e-01
+ <_>
+
+ 0 -1 3614 -1.5694150328636169e-01
+
+ -9.6121889352798462e-01 7.4661090038716793e-03
+ <_>
+
+ 0 -1 3615 -2.0573820918798447e-02
+
+ 1.3207539916038513e-01 -5.3688809275627136e-02
+ <_>
+
+ 0 -1 3616 2.0626350305974483e-03
+
+ 3.7869140505790710e-02 -2.0333750545978546e-01
+ <_>
+
+ 0 -1 3617 1.2381599843502045e-01
+
+ 2.3662589956074953e-03 -4.8794668912887573e-01
+ <_>
+
+ 0 -1 3618 3.1255739741027355e-03
+
+ -6.4476020634174347e-02 1.5053239464759827e-01
+ <_>
+
+ 0 -1 3619 1.8766360357403755e-02
+
+ 1.2639230117201805e-02 -1.9121849536895752e-01
+ <_>
+
+ 0 -1 3620 -8.6109619587659836e-03
+
+ -1.1916559934616089e-01 6.6547170281410217e-02
+ <_>
+
+ 0 -1 3621 1.4604110270738602e-02
+
+ -2.1980939432978630e-02 2.6832428574562073e-01
+ <_>
+
+ 0 -1 3622 1.8387939780950546e-03
+
+ -1.1506830155849457e-01 6.0840509831905365e-02
+ <_>
+
+ 0 -1 3623 -5.7930707931518555e-01
+
+ -1. 3.7629920989274979e-03
+ <_>
+
+ 0 -1 3624 1.8690739572048187e-01
+
+ 6.2871198169887066e-03 -9.2426669597625732e-01
+ <_>
+
+ 0 -1 3625 1.8341749906539917e-02
+
+ 1.7516769468784332e-02 -1.6519400477409363e-01
+ <_>
+
+ 0 -1 3626 -1.4776510186493397e-02
+
+ 2.5068140029907227e-01 -2.6199640706181526e-02
+ <_>
+
+ 0 -1 3627 4.4032301753759384e-02
+
+ 1.1479279957711697e-02 -6.4663171768188477e-01
+ <_>
+
+ 0 -1 3628 3.5362939815968275e-03
+
+ 4.8670079559087753e-02 -1.3171669840812683e-01
+ <_>
+
+ 0 -1 3629 -4.5765978284180164e-03
+
+ 1.2401209771633148e-01 -5.3882170468568802e-02
+ <_>
+
+ 0 -1 3630 3.0529699288308620e-03
+
+ -5.2538860589265823e-02 1.2860049307346344e-01
+ <_>
+
+ 0 -1 3631 -1.1333939619362354e-02
+
+ -1.6732269525527954e-01 1.2890639714896679e-02
+ <_>
+
+ 0 -1 3632 2.7712888550013304e-04
+
+ 6.5776027739048004e-02 -9.4573900103569031e-02
+ <_>
+
+ 0 -1 3633 5.4571928922086954e-04
+
+ -5.9766601771116257e-02 1.3265900313854218e-01
+ <_>
+
+ 0 -1 3634 6.2958751805126667e-03
+
+ 2.8854750096797943e-02 -2.4328909814357758e-01
+ <_>
+
+ 0 -1 3635 1.5611880226060748e-03
+
+ -5.6346539407968521e-02 8.0620631575584412e-02
+ <_>
+
+ 0 -1 3636 1.0501279681921005e-01
+
+ -1.4052099548280239e-02 5.5927920341491699e-01
+ <_>
+
+ 0 -1 3637 3.6907300353050232e-02
+
+ 1.5443010255694389e-02 -2.0881450176239014e-01
+ <_>
+
+ 0 -1 3638 -4.0569249540567398e-02
+
+ 1.5851789712905884e-01 -4.3176181614398956e-02
+ <_>
+
+ 0 -1 3639 -7.2549749165773392e-03
+
+ -2.6104170083999634e-01 1.7242910340428352e-02
+ <_>
+
+ 0 -1 3640 4.5905262231826782e-03
+
+ -3.8419000804424286e-02 1.7464800179004669e-01
+ <_>
+
+ 0 -1 3641 -4.2836060747504234e-03
+
+ -1.2006240338087082e-01 4.1917610913515091e-02
+ <_>
+
+ 0 -1 3642 -1.0835780203342438e-01
+
+ 5.4927551746368408e-01 -1.2255569919943810e-02
+ <_>
+
+ 0 -1 3643 6.4851208589971066e-03
+
+ 4.4952411204576492e-02 -1.6583940386772156e-01
+ <_>
+
+ 0 -1 3644 -2.3725129663944244e-02
+
+ 5.7158672809600830e-01 -1.2361500412225723e-02
+ <_>
+
+ 0 -1 3645 -3.0070519074797630e-02
+
+ -3.0609959363937378e-01 1.1695429682731628e-02
+ <_>
+
+ 0 -1 3646 -7.9774633049964905e-03
+
+ -1.8185980618000031e-01 3.6925770342350006e-02
+ <_>
+
+ 0 -1 3647 -1.7213199287652969e-02
+
+ 1.2317930161952972e-01 -3.6632679402828217e-02
+ <_>
+
+ 0 -1 3648 -1.4119789702817798e-03
+
+ -5.0499087572097778e-01 1.3695210218429565e-02
+ <_>
+
+ 0 -1 3649 2.9909020289778709e-02
+
+ -2.3535439744591713e-02 1.4312979578971863e-01
+ <_>
+
+ 0 -1 3650 -1.1660479940474033e-02
+
+ -1.7822280526161194e-01 4.0250599384307861e-02
+ <_>
+
+ 0 -1 3651 -8.9040184393525124e-03
+
+ 3.5567161440849304e-01 -2.4783140048384666e-02
+ <_>
+
+ 0 -1 3652 -1.1394720058888197e-03
+
+ -1.4268599450588226e-01 4.9102801829576492e-02
+ <_>
+
+ 0 -1 3653 2.9107509180903435e-03
+
+ -5.4471809417009354e-02 1.3025890290737152e-01
+ <_>
+
+ 0 -1 3654 1.7640810459852219e-02
+
+ 2.0184019580483437e-02 -4.1954588890075684e-01
+ <_>
+
+ 0 -1 3655 5.0001900643110275e-02
+
+ 1.1975940316915512e-02 -5.1889878511428833e-01
+ <_>
+
+ 0 -1 3656 2.7523660100996494e-03
+
+ -6.0628410428762436e-02 1.1169119924306870e-01
+ <_>
+
+ 0 -1 3657 -3.1753338873386383e-02
+
+ -2.2611990571022034e-01 1.5267389826476574e-02
+ <_>
+
+ 0 -1 3658 -1.2823809869587421e-02
+
+ 2.3027139902114868e-01 -2.9404800385236740e-02
+ <_>
+
+ 0 -1 3659 5.2626157412305474e-04
+
+ -1.5677809715270996e-01 4.9938481301069260e-02
+ <_>
+
+ 0 -1 3660 1.2779150158166885e-02
+
+ -5.8851849287748337e-02 1.2255299836397171e-01
+ <_>
+
+ 0 -1 3661 7.7667668461799622e-02
+
+ 4.6644411049783230e-03 -5.0614321231842041e-01
+ <_>
+
+ 0 -1 3662 -5.2286800928413868e-03
+
+ -1.8939809501171112e-01 4.4714428484439850e-02
+ <_>
+
+ 0 -1 3663 8.4478305652737617e-03
+
+ 3.9108898490667343e-02 -1.4809159934520721e-01
+ <_>
+
+ 0 -1 3664 5.5970861576497555e-03
+
+ 5.4664470255374908e-02 -1.4698089659214020e-01
+ <_>
+
+ 0 -1 3665 1.6882989555597305e-02
+
+ -4.6449739485979080e-02 1.4121970534324646e-01
+ <_>
+
+ 0 -1 3666 -6.1205658130347729e-04
+
+ -1.3906019926071167e-01 5.2586868405342102e-02
+ <_>
+
+ 0 -1 3667 -3.6216019652783871e-03
+
+ 5.3345881402492523e-02 -3.8361679762601852e-02
+ <_>
+
+ 0 -1 3668 -1.4149090275168419e-03
+
+ 2.0082549750804901e-01 -3.5985361784696579e-02
+ <_>
+
+ 0 -1 3669 2.4758750805631280e-04
+
+ -1.8205779790878296e-01 1.5915339812636375e-02
+ <_>
+
+ 0 -1 3670 1.3457840681076050e-01
+
+ 9.7890906035900116e-03 -7.2879707813262939e-01
+ <_>
+
+ 0 -1 3671 1.1352010071277618e-02
+
+ -3.5553149878978729e-02 6.3222207129001617e-02
+ <_>
+
+ 0 -1 3672 -7.9044885933399200e-03
+
+ 9.0774089097976685e-02 -9.8796442151069641e-02
+ <_>
+
+ 0 -1 3673 7.9050168395042419e-02
+
+ 4.7087217681109905e-03 -6.0529369115829468e-01
+ <_>
+
+ 0 -1 3674 8.9114397997036576e-04
+
+ -9.0216107666492462e-02 8.4293842315673828e-02
+ <_>
+
+ 0 -1 3675 4.1404040530323982e-03
+
+ 6.0314171016216278e-02 -1.2171939760446548e-01
+ <_>
+
+ 0 -1 3676 -9.2683091759681702e-02
+
+ 6.7853301763534546e-01 -1.0615170001983643e-02
+ <_>
+
+ 0 -1 3677 4.2872380465269089e-02
+
+ 7.3283850215375423e-03 -5.2321487665176392e-01
+ <_>
+
+ 0 -1 3678 -3.0652560293674469e-02
+
+ -6.5578341484069824e-01 9.7402445971965790e-03
+ <_>
+
+ 0 -1 3679 7.5054399669170380e-02
+
+ -1.1660519987344742e-02 3.7559139728546143e-01
+ <_>
+
+ 0 -1 3680 9.3033112585544586e-02
+
+ 7.4912221170961857e-03 -8.1748551130294800e-01
+ <_>
+
+ 0 -1 3681 -4.0522208437323570e-03
+
+ 3.6431130766868591e-01 -1.8015889450907707e-02
+ <_>
+
+ 0 -1 3682 1.0411429684609175e-03
+
+ -1.9623729586601257e-01 3.4336969256401062e-02
+ <_>
+
+ 0 -1 3683 4.0790800005197525e-02
+
+ 1.7464859411120415e-02 -3.8497269153594971e-01
+ <_>
+
+ 0 -1 3684 -1.8009789346251637e-04
+
+ 5.2157621830701828e-02 -1.2038189917802811e-01
+ <_>
+
+ 0 -1 3685 -3.5496380180120468e-02
+
+ 2.1371629834175110e-01 -9.4601595774292946e-03
+ <_>
+
+ 0 -1 3686 -1.2321450049057603e-03
+
+ -1.2999939918518066e-01 4.8752531409263611e-02
+ <_>
+
+ 0 -1 3687 -6.6326446831226349e-02
+
+ -5.0795209407806396e-01 5.8305650018155575e-03
+ <_>
+
+ 0 -1 3688 -2.7689670678228140e-03
+
+ 1.2596920132637024e-01 -5.5794779211282730e-02
+ <_>
+
+ 0 -1 3689 3.9610429666936398e-03
+
+ -8.4471739828586578e-02 6.2092550098896027e-02
+ <_>
+
+ 0 -1 3690 -7.5474479235708714e-03
+
+ -2.0992270112037659e-01 3.1419910490512848e-02
+ <_>
+
+ 0 -1 3691 -3.2456999178975821e-03
+
+ 5.6223601102828979e-02 -3.6774989217519760e-02
+ <_>
+
+ 0 -1 3692 -5.0519341602921486e-03
+
+ 9.4136670231819153e-02 -8.0893777310848236e-02
+ <_>
+
+ 0 -1 3693 2.1375959739089012e-02
+
+ 4.9529589712619781e-02 -4.7989148646593094e-02
+ <_>
+
+ 0 -1 3694 -1.6724619269371033e-01
+
+ -9.3551367521286011e-01 7.4155409820377827e-03
+ <_>
+
+ 0 -1 3695 6.4946119673550129e-03
+
+ -3.6735821515321732e-02 1.0955040156841278e-01
+ <_>
+
+ 0 -1 3696 -5.5810972116887569e-03
+
+ -1.2764470279216766e-01 5.8691799640655518e-02
+ <_>
+
+ 0 -1 3697 -7.0414197398349643e-04
+
+ 3.9361558854579926e-02 -7.4844732880592346e-02
+ <_>
+
+ 0 -1 3698 -7.3160971514880657e-03
+
+ 2.1767179667949677e-01 -3.8703199476003647e-02
+ <_>
+
+ 0 -1 3699 -5.4676099680364132e-03
+
+ -5.3973350673913956e-02 5.5032800883054733e-02
+ <_>
+
+ 0 -1 3700 4.3309312313795090e-03
+
+ 5.7104710489511490e-02 -1.2603929638862610e-01
+ <_>
+
+ 0 -1 3701 2.8189779259264469e-03
+
+ -3.9729248732328415e-02 9.2701591551303864e-02
+ <_>
+
+ 0 -1 3702 -4.7759278677403927e-03
+
+ -1.2856410443782806e-01 6.1216689646244049e-02
+ <_>
+
+ 0 -1 3703 6.3424631953239441e-02
+
+ -4.8541268333792686e-03 5.9883451461791992e-01
+ <_>
+
+ 0 -1 3704 -3.5035109613090754e-03
+
+ 1.0191550105810165e-01 -9.8801277577877045e-02
+ <_>
+
+ 0 -1 3705 -4.1303951293230057e-03
+
+ 1.0890380293130875e-01 -3.8225919008255005e-02
+ <_>
+
+ 0 -1 3706 -2.2271529305726290e-03
+
+ -1.3501960039138794e-01 5.1316611468791962e-02
+ <_>
+
+ 0 -1 3707 -1.0730850044637918e-03
+
+ 5.1526721566915512e-02 -7.4171036481857300e-02
+ <_>
+
+ 0 -1 3708 -7.7973678708076477e-04
+
+ 7.0857577025890350e-02 -1.1204849928617477e-01
+ <_>
+
+ 0 -1 3709 -5.5701348930597305e-02
+
+ 3.9836230874061584e-01 -5.2183559164404869e-03
+ <_>
+
+ 0 -1 3710 1.0608229786157608e-02
+
+ -3.2323788851499557e-02 2.1950970590114594e-01
+ <_>
+
+ 0 -1 3711 -9.8208207637071609e-03
+
+ -1.6507670283317566e-01 4.2444411665201187e-02
+ <_>
+
+ 0 -1 3712 1.4465330168604851e-03
+
+ -7.8392669558525085e-02 8.1393733620643616e-02
+ <_>
+
+ 0 -1 3713 -4.4582188129425049e-03
+
+ -9.2314578592777252e-02 3.8734171539545059e-02
+ <_>
+
+ 0 -1 3714 5.6474958546459675e-03
+
+ 3.9651289582252502e-02 -1.7495639622211456e-01
+ <_>
+
+ 0 -1 3715 4.2097918689250946e-02
+
+ -1.1850739829242229e-02 1.2762710452079773e-01
+ <_>
+
+ 0 -1 3716 6.9958101958036423e-03
+
+ -4.7668740153312683e-02 1.4204859733581543e-01
+ <_>
+
+ 0 -1 3717 3.8686778396368027e-02
+
+ 1.3582780025899410e-02 -4.7315898537635803e-01
+ <_>
+ 238
+ -1.4597640037536621e+00
+
+ <_>
+
+ 0 -1 3718 3.5009320825338364e-02
+
+ -2.7020230889320374e-01 2.0429250597953796e-01
+ <_>
+
+ 0 -1 3719 -3.6780539900064468e-02
+
+ 1.5254889428615570e-01 -2.6741871237754822e-01
+ <_>
+
+ 0 -1 3720 5.6993318721652031e-03
+
+ 1.6803050041198730e-01 -2.3068240284919739e-01
+ <_>
+
+ 0 -1 3721 7.5601637363433838e-02
+
+ -1.5271709859371185e-01 1.9510839879512787e-01
+ <_>
+
+ 0 -1 3722 -1.7248390242457390e-02
+
+ 2.9379200935363770e-01 -9.8869532346725464e-02
+ <_>
+
+ 0 -1 3723 2.8574180323630571e-03
+
+ -1.9790470600128174e-01 8.3361737430095673e-02
+ <_>
+
+ 0 -1 3724 3.1029269099235535e-02
+
+ -2.1582309901714325e-01 1.1695130169391632e-01
+ <_>
+
+ 0 -1 3725 -7.1099428460001945e-03
+
+ -2.5206819176673889e-01 3.6116510629653931e-02
+ <_>
+
+ 0 -1 3726 4.5894421637058258e-03
+
+ -2.9707619547843933e-01 1.0743969678878784e-01
+ <_>
+
+ 0 -1 3727 -7.0509258657693863e-03
+
+ -4.5635029673576355e-01 4.1864778846502304e-02
+ <_>
+
+ 0 -1 3728 6.6762260394170880e-04
+
+ -1.7432719469070435e-01 1.2306489795446396e-01
+ <_>
+
+ 0 -1 3729 -3.6481819115579128e-03
+
+ -4.0347629785537720e-01 4.9114771187305450e-02
+ <_>
+
+ 0 -1 3730 2.2194240242242813e-02
+
+ 6.1241529881954193e-02 -3.4557360410690308e-01
+ <_>
+
+ 0 -1 3731 -1.1259679449722171e-03
+
+ 5.2013769745826721e-02 -2.8461641073226929e-01
+ <_>
+
+ 0 -1 3732 -1.5913739800453186e-02
+
+ -2.7667850255966187e-01 7.5852021574974060e-02
+ <_>
+
+ 0 -1 3733 5.7643437758088112e-03
+
+ -2.7182090282440186e-01 6.6790662705898285e-02
+ <_>
+
+ 0 -1 3734 -4.2196471244096756e-02
+
+ 1.5786080062389374e-01 -1.0557679831981659e-01
+ <_>
+
+ 0 -1 3735 -1.8624680116772652e-02
+
+ -2.5504299998283386e-01 4.7586869448423386e-02
+ <_>
+
+ 0 -1 3736 -9.5020089065656066e-04
+
+ 4.9903839826583862e-02 -2.9068550467491150e-01
+ <_>
+
+ 0 -1 3737 2.0823240280151367e-02
+
+ 2.6825139299035072e-02 -2.0558500289916992e-01
+ <_>
+
+ 0 -1 3738 -1.3118459843099117e-02
+
+ -2.2395209968090057e-01 6.9013498723506927e-02
+ <_>
+
+ 0 -1 3739 -8.6902417242527008e-03
+
+ 1.9493189454078674e-01 -3.7850689142942429e-02
+ <_>
+
+ 0 -1 3740 4.5589819550514221e-02
+
+ 2.5170389562845230e-02 -5.7766669988632202e-01
+ <_>
+
+ 0 -1 3741 -4.8458490520715714e-02
+
+ 9.5191553235054016e-02 -1.4320190250873566e-01
+ <_>
+
+ 0 -1 3742 -7.2761103510856628e-02
+
+ -6.5967410802841187e-01 2.1175239235162735e-02
+ <_>
+
+ 0 -1 3743 -5.3840368986129761e-02
+
+ -3.6426779627799988e-01 2.4827929213643074e-02
+ <_>
+
+ 0 -1 3744 2.3190240608528256e-04
+
+ -1.4767690002918243e-01 8.3764038980007172e-02
+ <_>
+
+ 0 -1 3745 -3.4166979603469372e-03
+
+ -1.7865709960460663e-01 6.0721088200807571e-02
+ <_>
+
+ 0 -1 3746 4.9744218587875366e-02
+
+ 1.8918199464678764e-02 -6.6629868745803833e-01
+ <_>
+
+ 0 -1 3747 6.6813439130783081e-02
+
+ -2.8286559507250786e-02 1.7401529848575592e-01
+ <_>
+
+ 0 -1 3748 3.1445559114217758e-02
+
+ 5.2556060254573822e-02 -3.0884549021720886e-01
+ <_>
+
+ 0 -1 3749 3.9593618363142014e-02
+
+ -6.4875252544879913e-02 2.5706759095191956e-01
+ <_>
+
+ 0 -1 3750 1.8663380295038223e-02
+
+ -5.9568431228399277e-02 2.1532599627971649e-01
+ <_>
+
+ 0 -1 3751 4.0150571614503860e-02
+
+ 1.9589129835367203e-02 -3.5392150282859802e-01
+ <_>
+
+ 0 -1 3752 -1.8263690173625946e-02
+
+ -3.1224039196968079e-01 4.1845381259918213e-02
+ <_>
+
+ 0 -1 3753 -2.2579960525035858e-02
+
+ -1.4898709952831268e-01 1.7757140100002289e-02
+ <_>
+
+ 0 -1 3754 8.5281759500503540e-02
+
+ 2.4866759777069092e-02 -5.2197951078414917e-01
+ <_>
+
+ 0 -1 3755 4.9491669051349163e-03
+
+ 4.0433339774608612e-02 -1.1230610311031342e-01
+ <_>
+
+ 0 -1 3756 -2.7419520542025566e-02
+
+ -4.1119968891143799e-01 3.0549079179763794e-02
+ <_>
+
+ 0 -1 3757 3.8277640938758850e-02
+
+ 1.2211250141263008e-02 -8.1860828399658203e-01
+ <_>
+
+ 0 -1 3758 -2.1632280200719833e-02
+
+ 2.2030480206012726e-01 -5.5459130555391312e-02
+ <_>
+
+ 0 -1 3759 -2.4522699415683746e-01
+
+ 4.1013330221176147e-01 -2.7000149711966515e-02
+ <_>
+
+ 0 -1 3760 3.9314631372690201e-02
+
+ -3.1242560595273972e-02 3.6714181303977966e-01
+ <_>
+
+ 0 -1 3761 1.3630360364913940e-02
+
+ -1.3902300596237183e-01 9.5946237444877625e-02
+ <_>
+
+ 0 -1 3762 -6.7042862065136433e-03
+
+ 7.8772000968456268e-02 -1.4522729814052582e-01
+ <_>
+
+ 0 -1 3763 2.3312810808420181e-02
+
+ 2.2815790027379990e-02 -4.4990560412406921e-01
+ <_>
+
+ 0 -1 3764 3.0621029436588287e-02
+
+ -6.9781273603439331e-02 1.5422509610652924e-01
+ <_>
+
+ 0 -1 3765 5.2047189325094223e-02
+
+ -1.7720200121402740e-02 4.4397410750389099e-01
+ <_>
+
+ 0 -1 3766 2.0850539207458496e-02
+
+ -5.2309051156044006e-02 2.0608800649642944e-01
+ <_>
+
+ 0 -1 3767 8.2694664597511292e-03
+
+ 7.7132821083068848e-02 -1.9474139809608459e-01
+ <_>
+
+ 0 -1 3768 5.5706288665533066e-02
+
+ 3.3715151250362396e-02 -3.5783401131629944e-01
+ <_>
+
+ 0 -1 3769 -2.5406919419765472e-02
+
+ -2.1424999833106995e-01 5.3813599050045013e-02
+ <_>
+
+ 0 -1 3770 3.7127479445189238e-03
+
+ 5.7478290051221848e-02 -1.7734010517597198e-01
+ <_>
+
+ 0 -1 3771 9.8399087786674500e-02
+
+ -3.5304271150380373e-03 7.7086448669433594e-01
+ <_>
+
+ 0 -1 3772 -7.0944158360362053e-03
+
+ -1.3782690465450287e-01 7.0290572941303253e-02
+ <_>
+
+ 0 -1 3773 -7.8213073313236237e-02
+
+ 4.6844071149826050e-01 -4.8642340116202831e-03
+ <_>
+
+ 0 -1 3774 3.0407020822167397e-02
+
+ -2.8489479795098305e-02 3.4157308936119080e-01
+ <_>
+
+ 0 -1 3775 1.7667879583314061e-03
+
+ -1.4614230394363403e-01 2.3572970181703568e-02
+ <_>
+
+ 0 -1 3776 7.1991011500358582e-02
+
+ -3.5075180232524872e-02 2.8865718841552734e-01
+ <_>
+
+ 0 -1 3777 5.0020869821310043e-02
+
+ 2.4096360430121422e-02 -3.3890551328659058e-01
+ <_>
+
+ 0 -1 3778 -1.7998270690441132e-02
+
+ 2.9191690683364868e-01 -4.1259169578552246e-02
+ <_>
+
+ 0 -1 3779 -8.6585222743451595e-04
+
+ -1.2248259782791138e-01 5.9690121561288834e-02
+ <_>
+
+ 0 -1 3780 5.7470470666885376e-02
+
+ 2.1541740745306015e-02 -4.7508370876312256e-01
+ <_>
+
+ 0 -1 3781 -1.6517810523509979e-02
+
+ 1.6598740220069885e-01 -3.9656970649957657e-02
+ <_>
+
+ 0 -1 3782 2.1703030914068222e-02
+
+ -3.8327228277921677e-02 3.3476251363754272e-01
+ <_>
+
+ 0 -1 3783 -6.1237839981913567e-03
+
+ -1.4342689514160156e-01 2.6313329115509987e-02
+ <_>
+
+ 0 -1 3784 -1.0893509723246098e-02
+
+ -7.9468882083892822e-01 1.2403479777276516e-02
+ <_>
+
+ 0 -1 3785 -3.8589738309383392e-02
+
+ 3.3763501048088074e-01 -1.8747940659523010e-02
+ <_>
+
+ 0 -1 3786 1.3378040166571736e-03
+
+ -3.6288881301879883e-01 2.9460189864039421e-02
+ <_>
+
+ 0 -1 3787 2.7590300305746496e-04
+
+ 7.6419189572334290e-02 -8.6953632533550262e-02
+ <_>
+
+ 0 -1 3788 7.9552736133337021e-03
+
+ 5.2696179598569870e-02 -1.9200770556926727e-01
+ <_>
+
+ 0 -1 3789 -1.2174629606306553e-02
+
+ 8.4013037383556366e-02 -2.1740090101957321e-02
+ <_>
+
+ 0 -1 3790 -1.6361070796847343e-02
+
+ -2.5493758916854858e-01 3.8582589477300644e-02
+ <_>
+
+ 0 -1 3791 -3.4992128610610962e-02
+
+ 2.5760510563850403e-01 -1.5727080404758453e-02
+ <_>
+
+ 0 -1 3792 -7.6113208197057247e-03
+
+ 1.9114670157432556e-01 -5.2980780601501465e-02
+ <_>
+
+ 0 -1 3793 5.0110749900341034e-02
+
+ 2.4265250191092491e-02 -5.1509189605712891e-01
+ <_>
+
+ 0 -1 3794 -9.1486647725105286e-03
+
+ -3.3170440793037415e-01 2.6774439960718155e-02
+ <_>
+
+ 0 -1 3795 8.3293259143829346e-02
+
+ 4.2860410176217556e-03 -3.0381551384925842e-01
+ <_>
+
+ 0 -1 3796 -1.9334359094500542e-02
+
+ 3.8916379213333130e-01 -2.4908309802412987e-02
+ <_>
+
+ 0 -1 3797 -7.2061046957969666e-02
+
+ 4.1184291243553162e-01 -2.5687059387564659e-02
+ <_>
+
+ 0 -1 3798 2.2506359964609146e-02
+
+ -2.1196739375591278e-01 5.3825020790100098e-02
+ <_>
+
+ 0 -1 3799 5.5772401392459869e-02
+
+ -2.3104140534996986e-02 9.1578252613544464e-02
+ <_>
+
+ 0 -1 3800 -2.6210390031337738e-02
+
+ 3.3509409427642822e-01 -3.4225810319185257e-02
+ <_>
+
+ 0 -1 3801 -4.6085331588983536e-02
+
+ -5.3006750345230103e-01 1.9083080813288689e-02
+ <_>
+
+ 0 -1 3802 -3.2998260110616684e-02
+
+ 3.0701389908790588e-01 -3.1638059765100479e-02
+ <_>
+
+ 0 -1 3803 1.0677659884095192e-02
+
+ 3.8186781108379364e-02 -2.0256699621677399e-01
+ <_>
+
+ 0 -1 3804 3.7972650025039911e-03
+
+ 7.8951433300971985e-02 -1.3040140271186829e-01
+ <_>
+
+ 0 -1 3805 -2.4965009652078152e-03
+
+ -1.9799210131168365e-01 3.0743129551410675e-02
+ <_>
+
+ 0 -1 3806 1.4203139580786228e-02
+
+ -4.5443460345268250e-02 2.1806409955024719e-01
+ <_>
+
+ 0 -1 3807 7.7012999099679291e-05
+
+ -2.5858289003372192e-01 4.2508359998464584e-02
+ <_>
+
+ 0 -1 3808 2.3724909406155348e-03
+
+ -1.5815889835357666e-01 6.1494071036577225e-02
+ <_>
+
+ 0 -1 3809 -8.4086082875728607e-02
+
+ -9.3704527616500854e-01 8.3687662845477462e-04
+ <_>
+
+ 0 -1 3810 -2.2892290726304054e-02
+
+ 4.2960539460182190e-01 -2.7215819805860519e-02
+ <_>
+
+ 0 -1 3811 -1.1238969862461090e-01
+
+ -2.0607289671897888e-01 1.7798800021409988e-02
+ <_>
+
+ 0 -1 3812 6.8175032734870911e-02
+
+ -4.2019781470298767e-01 2.5051090866327286e-02
+ <_>
+
+ 0 -1 3813 -1.0620189830660820e-02
+
+ -2.1870230138301849e-01 2.4231420829892159e-02
+ <_>
+
+ 0 -1 3814 2.9390859417617321e-03
+
+ 8.8470183312892914e-02 -1.1958040297031403e-01
+ <_>
+
+ 0 -1 3815 5.6766260415315628e-02
+
+ -5.8820329606533051e-02 1.7845800518989563e-01
+ <_>
+
+ 0 -1 3816 -7.3099520523101091e-04
+
+ 3.0122080445289612e-01 -3.4890830516815186e-02
+ <_>
+
+ 0 -1 3817 3.4174978733062744e-02
+
+ 1.9614150747656822e-02 -1.7419980466365814e-01
+ <_>
+
+ 0 -1 3818 3.3152099698781967e-02
+
+ 2.9344469308853149e-02 -3.5163739323616028e-01
+ <_>
+
+ 0 -1 3819 1.7158590257167816e-02
+
+ -4.7744009643793106e-02 2.0690310001373291e-01
+ <_>
+
+ 0 -1 3820 -3.3270310610532761e-02
+
+ -3.6818051338195801e-01 3.0547879636287689e-02
+ <_>
+
+ 0 -1 3821 -7.5228337664157152e-04
+
+ -1.0068210214376450e-01 3.7446059286594391e-02
+ <_>
+
+ 0 -1 3822 -5.7363631203770638e-03
+
+ -2.9704639315605164e-01 3.0889809131622314e-02
+ <_>
+
+ 0 -1 3823 3.4203678369522095e-02
+
+ 3.2694388180971146e-02 -1.9386410713195801e-01
+ <_>
+
+ 0 -1 3824 1.1759670078754425e-01
+
+ 2.8010509908199310e-02 -3.4469729661941528e-01
+ <_>
+
+ 0 -1 3825 3.5684760659933090e-02
+
+ 1.4612049795687199e-02 -3.2323908805847168e-01
+ <_>
+
+ 0 -1 3826 -1.4562480151653290e-01
+
+ -4.3703469634056091e-01 2.0697519183158875e-02
+ <_>
+
+ 0 -1 3827 8.0413380637764931e-03
+
+ 1.8440550193190575e-02 -3.2272771000862122e-01
+ <_>
+
+ 0 -1 3828 5.3446288220584393e-03
+
+ 5.0503399223089218e-02 -1.8428540229797363e-01
+ <_>
+
+ 0 -1 3829 8.6473226547241211e-02
+
+ 6.2484769150614738e-03 -9.3612897396087646e-01
+ <_>
+
+ 0 -1 3830 6.6168710589408875e-02
+
+ -5.9868391603231430e-02 1.5810599923133850e-01
+ <_>
+
+ 0 -1 3831 2.8978990390896797e-02
+
+ 2.8844339773058891e-02 -2.8269919753074646e-01
+ <_>
+
+ 0 -1 3832 1.8636519089341164e-02
+
+ -5.1709290593862534e-02 1.7777459323406219e-01
+ <_>
+
+ 0 -1 3833 -2.6881769299507141e-02
+
+ 7.3635026812553406e-02 -3.6229219287633896e-02
+ <_>
+
+ 0 -1 3834 -1.3696019537746906e-02
+
+ 1.8215629458427429e-01 -5.9880878776311874e-02
+ <_>
+
+ 0 -1 3835 -4.1931979358196259e-03
+
+ -9.3321792781352997e-02 2.7901070192456245e-02
+ <_>
+
+ 0 -1 3836 2.2784220054745674e-02
+
+ 3.0631329864263535e-02 -2.8531938791275024e-01
+ <_>
+
+ 0 -1 3837 -8.3819748833775520e-03
+
+ -2.3251660168170929e-01 5.0801441073417664e-02
+ <_>
+
+ 0 -1 3838 -6.4928620122373104e-03
+
+ 1.1060830205678940e-01 -8.3281010389328003e-02
+ <_>
+
+ 0 -1 3839 5.5866848677396774e-02
+
+ 2.3439039289951324e-01 -4.5191779732704163e-02
+ <_>
+
+ 0 -1 3840 -1.0926710441708565e-02
+
+ 2.0532840490341187e-01 -5.0775919109582901e-02
+ <_>
+
+ 0 -1 3841 1.7515379935503006e-02
+
+ 3.6728449165821075e-02 -3.0638590455055237e-01
+ <_>
+
+ 0 -1 3842 1.4543980360031128e-02
+
+ 4.4784490019083023e-02 -2.0757840573787689e-01
+ <_>
+
+ 0 -1 3843 1.7274370184168220e-03
+
+ 2.3706600069999695e-02 -1.8639369308948517e-01
+ <_>
+
+ 0 -1 3844 2.0160499960184097e-02
+
+ 4.1744660586118698e-02 -2.1943749487400055e-01
+ <_>
+
+ 0 -1 3845 -5.5732231587171555e-02
+
+ -3.7666681408882141e-01 7.3045571334660053e-03
+ <_>
+
+ 0 -1 3846 -4.2138090357184410e-03
+
+ 1.1314260214567184e-01 -8.4451928734779358e-02
+ <_>
+
+ 0 -1 3847 -5.7113498449325562e-02
+
+ -4.1903460025787354e-01 4.2158551514148712e-03
+ <_>
+
+ 0 -1 3848 -3.3385161310434341e-02
+
+ -3.9007860422134399e-01 2.5290969759225845e-02
+ <_>
+
+ 0 -1 3849 -8.5305999964475632e-03
+
+ 5.3572379052639008e-02 -1.2238460034132004e-01
+ <_>
+
+ 0 -1 3850 -1.5144890174269676e-02
+
+ 4.5743760466575623e-01 -2.5002999231219292e-02
+ <_>
+
+ 0 -1 3851 7.5857941992580891e-03
+
+ 2.6268539950251579e-02 -9.8890319466590881e-02
+ <_>
+
+ 0 -1 3852 -6.4347468316555023e-02
+
+ 2.2607059776782990e-01 -4.1821580380201340e-02
+ <_>
+
+ 0 -1 3853 6.5772183239459991e-02
+
+ 2.4147959426045418e-02 -4.0227779746055603e-01
+ <_>
+
+ 0 -1 3854 -1.0496930032968521e-01
+
+ -4.6343261003494263e-01 1.9134109839797020e-02
+ <_>
+
+ 0 -1 3855 9.6320390701293945e-02
+
+ 8.7147848680615425e-03 -3.5269328951835632e-01
+ <_>
+
+ 0 -1 3856 1.6651069745421410e-02
+
+ -2.3842410743236542e-01 3.8928661495447159e-02
+ <_>
+
+ 0 -1 3857 5.8829918503761292e-02
+
+ -1.6538100317120552e-02 3.3465591073036194e-01
+ <_>
+
+ 0 -1 3858 5.2411198616027832e-02
+
+ -1.9688919186592102e-02 4.6966078877449036e-01
+ <_>
+
+ 0 -1 3859 1.2325269635766745e-03
+
+ -1.2056189775466919e-01 5.0563529133796692e-02
+ <_>
+
+ 0 -1 3860 -2.4530949071049690e-02
+
+ -3.9168059825897217e-01 2.3108620196580887e-02
+ <_>
+
+ 0 -1 3861 3.5507690161466599e-02
+
+ 2.0499339327216148e-02 -3.6233830451965332e-01
+ <_>
+
+ 0 -1 3862 -1.5282739885151386e-02
+
+ -2.4604129791259766e-01 3.4749999642372131e-02
+ <_>
+
+ 0 -1 3863 6.0466449707746506e-02
+
+ -5.5071748793125153e-02 2.0428660511970520e-01
+ <_>
+
+ 0 -1 3864 6.5809831023216248e-02
+
+ -7.1466080844402313e-02 1.2002970278263092e-01
+ <_>
+
+ 0 -1 3865 -7.9543672502040863e-02
+
+ 4.9044218659400940e-01 -7.8059309162199497e-03
+ <_>
+
+ 0 -1 3866 7.1057200431823730e-02
+
+ 4.4219430536031723e-02 -2.1077010035514832e-01
+ <_>
+
+ 0 -1 3867 1.2412209762260318e-03
+
+ 9.9759846925735474e-02 -7.4065141379833221e-02
+ <_>
+
+ 0 -1 3868 4.3900560587644577e-02
+
+ 2.0245339721441269e-02 -4.7800138592720032e-01
+ <_>
+
+ 0 -1 3869 1.3814829289913177e-01
+
+ -3.4169729799032211e-02 2.0662400126457214e-01
+ <_>
+
+ 0 -1 3870 6.4026713371276855e-02
+
+ 1.7396930605173111e-02 -5.7749879360198975e-01
+ <_>
+
+ 0 -1 3871 -1.2456770054996014e-02
+
+ -1.6710869967937469e-01 1.2106380425393581e-02
+ <_>
+
+ 0 -1 3872 3.7183608859777451e-02
+
+ -1.9024299457669258e-02 4.4476169347763062e-01
+ <_>
+
+ 0 -1 3873 -3.4905251115560532e-02
+
+ -1.4648060500621796e-01 2.0895779132843018e-02
+ <_>
+
+ 0 -1 3874 6.1689559370279312e-02
+
+ 1.2428649701178074e-02 -7.1737641096115112e-01
+ <_>
+
+ 0 -1 3875 -2.7358489111065865e-02
+
+ -2.4311469495296478e-01 2.6138730347156525e-02
+ <_>
+
+ 0 -1 3876 6.3740741461515427e-03
+
+ -8.2593016326427460e-02 1.1356580257415771e-01
+ <_>
+
+ 0 -1 3877 -1.0299839824438095e-01
+
+ 4.5398610830307007e-01 -1.6315529122948647e-02
+ <_>
+
+ 0 -1 3878 -1.4695020392537117e-02
+
+ -1.8050310015678406e-01 4.8061780631542206e-02
+ <_>
+
+ 0 -1 3879 6.0288330132607371e-05
+
+ -9.8974503576755524e-02 3.8105670362710953e-02
+ <_>
+
+ 0 -1 3880 -1.3763650320470333e-02
+
+ 4.5689401030540466e-01 -2.0808599889278412e-02
+ <_>
+
+ 0 -1 3881 5.1598600111901760e-03
+
+ 2.8479820117354393e-02 -1.9778659939765930e-01
+ <_>
+
+ 0 -1 3882 6.6321617923676968e-03
+
+ -6.1560358852148056e-02 1.4045900106430054e-01
+ <_>
+
+ 0 -1 3883 -1.1073590256273746e-02
+
+ 1.1272329837083817e-01 -3.8423039019107819e-02
+ <_>
+
+ 0 -1 3884 7.3836948722600937e-03
+
+ 2.4575280025601387e-02 -3.3994451165199280e-01
+ <_>
+
+ 0 -1 3885 -1.9277689978480339e-02
+
+ 1.5732249617576599e-01 -5.8382220566272736e-02
+ <_>
+
+ 0 -1 3886 -2.6209199801087379e-02
+
+ -3.2575431466102600e-01 3.5296149551868439e-02
+ <_>
+
+ 0 -1 3887 1.3872079551219940e-02
+
+ 2.7504689991474152e-02 -2.0510050654411316e-01
+ <_>
+
+ 0 -1 3888 2.5171930901706219e-03
+
+ 6.9805637001991272e-02 -1.1518660187721252e-01
+ <_>
+
+ 0 -1 3889 6.7753292620182037e-02
+
+ -3.7268139421939850e-02 2.3363080620765686e-01
+ <_>
+
+ 0 -1 3890 -2.4352179840207100e-02
+
+ -2.1191249787807465e-01 4.2971581220626831e-02
+ <_>
+
+ 0 -1 3891 -1.5085450373589993e-02
+
+ 1.4743280410766602e-01 -3.8589131087064743e-02
+ <_>
+
+ 0 -1 3892 3.0052060261368752e-02
+
+ 4.3882489204406738e-02 -2.0401340723037720e-01
+ <_>
+
+ 0 -1 3893 -7.9878583550453186e-02
+
+ 7.1355827152729034e-02 -3.5806309431791306e-02
+ <_>
+
+ 0 -1 3894 -4.9845650792121887e-02
+
+ 2.8991028666496277e-01 -2.9193209484219551e-02
+ <_>
+
+ 0 -1 3895 6.0983549803495407e-02
+
+ 1.1078090406954288e-02 -8.0549037456512451e-01
+ <_>
+
+ 0 -1 3896 -2.4187229573726654e-02
+
+ 2.0816670358181000e-01 -4.0332991629838943e-02
+ <_>
+
+ 0 -1 3897 2.9581909999251366e-02
+
+ 1.7189880833029747e-02 -3.0174249410629272e-01
+ <_>
+
+ 0 -1 3898 -9.6158936619758606e-02
+
+ -3.6115181446075439e-01 2.1451879292726517e-02
+ <_>
+
+ 0 -1 3899 1.1087789898738265e-03
+
+ 6.0711268335580826e-02 -1.2995730340480804e-01
+ <_>
+
+ 0 -1 3900 3.6577019840478897e-02
+
+ -1.5757689252495766e-02 6.1568331718444824e-01
+ <_>
+
+ 0 -1 3901 8.9887566864490509e-02
+
+ 7.5012152083218098e-03 -8.4639918804168701e-01
+ <_>
+
+ 0 -1 3902 5.2048689685761929e-03
+
+ -5.0408910959959030e-02 1.5618799626827240e-01
+ <_>
+
+ 0 -1 3903 3.4727361053228378e-02
+
+ 2.1034790202975273e-02 -2.1834190189838409e-01
+ <_>
+
+ 0 -1 3904 -5.4695051163434982e-02
+
+ -8.3126282691955566e-01 8.9029762893915176e-03
+ <_>
+
+ 0 -1 3905 1.5987730026245117e-01
+
+ 8.5425339639186859e-03 -6.9280862808227539e-01
+ <_>
+
+ 0 -1 3906 -3.8558691740036011e-02
+
+ -2.7078241109848022e-01 2.7025369927287102e-02
+ <_>
+
+ 0 -1 3907 -7.1866370737552643e-02
+
+ -3.9044618606567383e-01 1.0923280380666256e-02
+ <_>
+
+ 0 -1 3908 1.9590340554714203e-01
+
+ 1.3423370197415352e-02 -5.4260522127151489e-01
+ <_>
+
+ 0 -1 3909 -2.2330079227685928e-02
+
+ -1.7275239527225494e-01 2.9058510437607765e-02
+ <_>
+
+ 0 -1 3910 5.1018559932708740e-01
+
+ 1.1418639682233334e-02 -6.7876529693603516e-01
+ <_>
+
+ 0 -1 3911 -1.1239909566938877e-02
+
+ 1.1462499946355820e-01 -5.6867629289627075e-02
+ <_>
+
+ 0 -1 3912 1.7486160621047020e-02
+
+ 5.2641868591308594e-02 -1.6195179522037506e-01
+ <_>
+
+ 0 -1 3913 -1.4517609961330891e-03
+
+ -1.0877469927072525e-01 5.6960400193929672e-02
+ <_>
+
+ 0 -1 3914 3.7016559392213821e-02
+
+ 1.7460089176893234e-02 -4.6505320072174072e-01
+ <_>
+
+ 0 -1 3915 -8.6366441100835800e-03
+
+ 7.3076270520687103e-02 -1.0616590082645416e-01
+ <_>
+
+ 0 -1 3916 1.9361129961907864e-03
+
+ -1.4585369825363159e-01 5.9394489973783493e-02
+ <_>
+
+ 0 -1 3917 -2.3119550198316574e-02
+
+ -9.4876237213611603e-02 3.0387479811906815e-02
+ <_>
+
+ 0 -1 3918 6.3178739510476589e-03
+
+ -1.0537099838256836e-01 7.7892847359180450e-02
+ <_>
+
+ 0 -1 3919 1.0961949825286865e-02
+
+ -6.6041983664035797e-02 1.0566339641809464e-01
+ <_>
+
+ 0 -1 3920 -4.2129520326852798e-02
+
+ 2.4344080686569214e-01 -5.1573678851127625e-02
+ <_>
+
+ 0 -1 3921 4.5132819563150406e-02
+
+ 1.0772050358355045e-02 -7.6156777143478394e-01
+ <_>
+
+ 0 -1 3922 9.4924736768007278e-03
+
+ 4.5273378491401672e-02 -1.8770030140876770e-01
+ <_>
+
+ 0 -1 3923 -1.1573860049247742e-01
+
+ 4.4831728935241699e-01 -8.6225848644971848e-03
+ <_>
+
+ 0 -1 3924 1.5801179688423872e-03
+
+ -1.0931409895420074e-01 7.9391218721866608e-02
+ <_>
+
+ 0 -1 3925 -4.4442281126976013e-02
+
+ 3.3827048540115356e-01 -2.6649719104170799e-02
+ <_>
+
+ 0 -1 3926 -6.5993092954158783e-02
+
+ -5.3106492757797241e-01 1.7543010413646698e-02
+ <_>
+
+ 0 -1 3927 -1.0968820191919804e-02
+
+ -1.6612820327281952e-01 4.9488350749015808e-02
+ <_>
+
+ 0 -1 3928 3.8149021565914154e-02
+
+ -4.1509900242090225e-02 2.0616669952869415e-01
+ <_>
+
+ 0 -1 3929 4.0625538676977158e-03
+
+ 4.8925049602985382e-02 -8.4866181015968323e-02
+ <_>
+
+ 0 -1 3930 3.2693019602447748e-03
+
+ -1.1883019655942917e-01 8.6803138256072998e-02
+ <_>
+
+ 0 -1 3931 -1.2488859938457608e-03
+
+ -1.4354729652404785e-01 2.1422969177365303e-02
+ <_>
+
+ 0 -1 3932 -1.7064889892935753e-02
+
+ -5.2316349744796753e-01 1.6529040411114693e-02
+ <_>
+
+ 0 -1 3933 -2.3354699835181236e-02
+
+ -1.9698520004749298e-01 2.1972300484776497e-02
+ <_>
+
+ 0 -1 3934 2.7899529784917831e-02
+
+ 3.8033228367567062e-02 -2.2323200106620789e-01
+ <_>
+
+ 0 -1 3935 -6.7869402468204498e-02
+
+ -4.2076128721237183e-01 1.0559639893472195e-02
+ <_>
+
+ 0 -1 3936 5.7542059570550919e-02
+
+ -4.2111430317163467e-02 2.3515710234642029e-01
+ <_>
+
+ 0 -1 3937 -2.1877309679985046e-01
+
+ 6.9553351402282715e-01 -9.9031934514641762e-03
+ <_>
+
+ 0 -1 3938 3.7776291370391846e-01
+
+ -2.4721829220652580e-02 3.0367389321327209e-01
+ <_>
+
+ 0 -1 3939 4.1029900312423706e-02
+
+ 2.1999280899763107e-02 -2.4707089364528656e-01
+ <_>
+
+ 0 -1 3940 2.5587070733308792e-02
+
+ 4.2045179754495621e-02 -2.2333100438117981e-01
+ <_>
+
+ 0 -1 3941 6.7200772464275360e-02
+
+ -1.6648389399051666e-02 2.4265660345554352e-01
+ <_>
+
+ 0 -1 3942 2.8230389580130577e-02
+
+ 2.9572259634733200e-02 -3.0128848552703857e-01
+ <_>
+
+ 0 -1 3943 2.4588680267333984e-01
+
+ 1.9440819742158055e-03 -4.2153918743133545e-01
+ <_>
+
+ 0 -1 3944 -9.5752447843551636e-02
+
+ -6.4711397886276245e-01 1.3180449604988098e-02
+ <_>
+
+ 0 -1 3945 -1.0596579872071743e-02
+
+ -2.0484970510005951e-01 2.8054440394043922e-02
+ <_>
+
+ 0 -1 3946 6.7103967070579529e-02
+
+ 2.9053989797830582e-02 -2.6770511269569397e-01
+ <_>
+
+ 0 -1 3947 -7.9280838370323181e-02
+
+ 2.1911109983921051e-01 -1.5684010460972786e-02
+ <_>
+
+ 0 -1 3948 -4.0710358880460262e-03
+
+ 2.2031579911708832e-01 -4.0581289678812027e-02
+ <_>
+
+ 0 -1 3949 3.7690360099077225e-02
+
+ -1.2946240603923798e-01 6.1921589076519012e-02
+ <_>
+
+ 0 -1 3950 1.8453929573297501e-02
+
+ -3.2800889015197754e-01 2.9745969921350479e-02
+ <_>
+
+ 0 -1 3951 1.5218369662761688e-01
+
+ 1.1928870342671871e-02 -4.3678689002990723e-01
+ <_>
+
+ 0 -1 3952 1.0948959738016129e-01
+
+ 2.4663779884576797e-02 -3.1567180156707764e-01
+ <_>
+
+ 0 -1 3953 -4.4906709343194962e-02
+
+ 2.3082759976387024e-01 -2.2163389250636101e-02
+ <_>
+
+ 0 -1 3954 1.4668619632720947e-01
+
+ 1.8490659072995186e-02 -4.6669480204582214e-01
+ <_>
+
+ 0 -1 3955 -4.0597580373287201e-02
+
+ 2.0691379904747009e-01 -4.1412089020013809e-02
+ <_>
+ 293
+ -1.3393770456314087e+00
+
+ <_>
+
+ 0 -1 3956 2.5723339058458805e-03
+
+ -2.4097059667110443e-01 1.5659730136394501e-01
+ <_>
+
+ 0 -1 3957 5.7603712193667889e-03
+
+ -4.3601021170616150e-01 8.0516032874584198e-02
+ <_>
+
+ 0 -1 3958 -1.0138600319623947e-01
+
+ 3.9704030752182007e-01 -6.5761536359786987e-02
+ <_>
+
+ 0 -1 3959 1.3221249682828784e-03
+
+ -4.2382979393005371e-01 2.8659680858254433e-02
+ <_>
+
+ 0 -1 3960 5.4164527682587504e-04
+
+ 6.7418687045574188e-02 -3.1019261479377747e-01
+ <_>
+
+ 0 -1 3961 2.4447739124298096e-03
+
+ 1.3928419910371304e-02 -2.4488939344882965e-01
+ <_>
+
+ 0 -1 3962 1.4049450401216745e-03
+
+ -1.5040999650955200e-01 1.2638579308986664e-01
+ <_>
+
+ 0 -1 3963 1.1241709580644965e-03
+
+ -2.7436348795890808e-01 7.1175657212734222e-02
+ <_>
+
+ 0 -1 3964 -1.3413740089163184e-03
+
+ -3.7685438990592957e-01 5.0038158893585205e-02
+ <_>
+
+ 0 -1 3965 4.1714560240507126e-02
+
+ 1.1733000166714191e-02 -5.4509437084197998e-01
+ <_>
+
+ 0 -1 3966 2.1810019388794899e-03
+
+ -2.0847110450267792e-01 8.4929227828979492e-02
+ <_>
+
+ 0 -1 3967 1.9655700773000717e-02
+
+ 2.9568189755082130e-02 -2.4840490520000458e-01
+ <_>
+
+ 0 -1 3968 4.9905799096450210e-04
+
+ -1.7222259938716888e-01 9.3910522758960724e-02
+ <_>
+
+ 0 -1 3969 3.3110571093857288e-03
+
+ 7.9480826854705811e-02 -1.8249939382076263e-01
+ <_>
+
+ 0 -1 3970 3.4921199548989534e-03
+
+ 6.0159709304571152e-02 -2.3041090369224548e-01
+ <_>
+
+ 0 -1 3971 1.3379369629547000e-03
+
+ -7.8347019851207733e-02 1.5814539790153503e-01
+ <_>
+
+ 0 -1 3972 -3.4234288614243269e-04
+
+ -1.5121580660343170e-01 9.5998182892799377e-02
+ <_>
+
+ 0 -1 3973 -7.2008459828794003e-03
+
+ 1.0716210305690765e-01 -1.2086699903011322e-01
+ <_>
+
+ 0 -1 3974 -3.3037480898201466e-03
+
+ -1.9142769277095795e-01 7.1347109973430634e-02
+ <_>
+
+ 0 -1 3975 -8.1909723579883575e-02
+
+ -8.5086518526077271e-01 6.6832960583269596e-03
+ <_>
+
+ 0 -1 3976 -5.2563002100214362e-04
+
+ 7.1854703128337860e-02 -2.3162660002708435e-01
+ <_>
+
+ 0 -1 3977 -2.1477319300174713e-02
+
+ 2.2399149835109711e-01 -3.2982278615236282e-02
+ <_>
+
+ 0 -1 3978 -5.6700430810451508e-02
+
+ 5.1475530862808228e-01 -2.3378230631351471e-02
+ <_>
+
+ 0 -1 3979 1.8419699743390083e-02
+
+ 1.8853360787034035e-02 -4.4701090455055237e-01
+ <_>
+
+ 0 -1 3980 -8.8926553726196289e-03
+
+ 1.8497599661350250e-01 -6.6978506743907928e-02
+ <_>
+
+ 0 -1 3981 1.2642369605600834e-02
+
+ 8.6571149528026581e-02 -1.4233930408954620e-01
+ <_>
+
+ 0 -1 3982 8.0502573400735855e-03
+
+ -7.7052421867847443e-02 2.1340900659561157e-01
+ <_>
+
+ 0 -1 3983 -6.9165248423814774e-03
+
+ -1.7848269641399384e-01 5.6415598839521408e-02
+ <_>
+
+ 0 -1 3984 -1.4194440096616745e-02
+
+ 1.8763299286365509e-01 -6.7588217556476593e-02
+ <_>
+
+ 0 -1 3985 3.5530389286577702e-03
+
+ 3.8925249129533768e-02 -1.4981240034103394e-01
+ <_>
+
+ 0 -1 3986 4.8001301474869251e-03
+
+ 4.4963311403989792e-02 -2.4595139920711517e-01
+ <_>
+
+ 0 -1 3987 9.0420730412006378e-03
+
+ -5.3614400327205658e-02 1.3824699819087982e-01
+ <_>
+
+ 0 -1 3988 4.3342178687453270e-03
+
+ -8.6166441440582275e-02 1.2793409824371338e-01
+ <_>
+
+ 0 -1 3989 1.2264699675142765e-02
+
+ 3.6203060299158096e-02 -3.7494099140167236e-01
+ <_>
+
+ 0 -1 3990 4.9155529588460922e-02
+
+ -9.1319262981414795e-02 1.2587989866733551e-01
+ <_>
+
+ 0 -1 3991 -5.8642931981012225e-04
+
+ 9.3702591955661774e-02 -1.0736119747161865e-01
+ <_>
+
+ 0 -1 3992 3.2971050590276718e-02
+
+ 2.7238529175519943e-02 -4.5005699992179871e-01
+ <_>
+
+ 0 -1 3993 1.6174600459635258e-03
+
+ 3.2863009721040726e-02 -1.4241309463977814e-01
+ <_>
+
+ 0 -1 3994 1.0178020456805825e-03
+
+ 6.9898538291454315e-02 -1.7507210373878479e-01
+ <_>
+
+ 0 -1 3995 3.4081579651683569e-03
+
+ -7.7970616519451141e-02 5.8423690497875214e-02
+ <_>
+
+ 0 -1 3996 -6.9078300148248672e-03
+
+ 1.1711090058088303e-01 -9.5380999147891998e-02
+ <_>
+
+ 0 -1 3997 -7.8317627776414156e-04
+
+ 6.3730940222740173e-02 -8.8190883398056030e-02
+ <_>
+
+ 0 -1 3998 -1.3578870333731174e-02
+
+ -2.7168250083923340e-01 3.9688158780336380e-02
+ <_>
+
+ 0 -1 3999 -8.0021530389785767e-02
+
+ 6.0115522146224976e-01 -2.4968839716166258e-03
+ <_>
+
+ 0 -1 4000 -1.7085570143535733e-03
+
+ 1.0888680070638657e-01 -1.0520359873771667e-01
+ <_>
+
+ 0 -1 4001 8.5700387135148048e-03
+
+ -4.1784621775150299e-02 1.4857980608940125e-01
+ <_>
+
+ 0 -1 4002 1.5518560074269772e-02
+
+ 2.1855160593986511e-02 -4.5708781480789185e-01
+ <_>
+
+ 0 -1 4003 -1.5739940572530031e-03
+
+ 5.0655461847782135e-02 -6.9658473134040833e-02
+ <_>
+
+ 0 -1 4004 -1.0979890357702971e-03
+
+ 7.9917587339878082e-02 -1.1895059794187546e-01
+ <_>
+
+ 0 -1 4005 -2.6248019188642502e-02
+
+ 7.0614987611770630e-01 -1.3660780154168606e-02
+ <_>
+
+ 0 -1 4006 -1.0281460359692574e-02
+
+ -1.8412110209465027e-01 6.6442340612411499e-02
+ <_>
+
+ 0 -1 4007 -3.6530280485749245e-03
+
+ 1.2995550036430359e-01 -5.8351561427116394e-02
+ <_>
+
+ 0 -1 4008 7.8363716602325439e-03
+
+ 2.7073230594396591e-02 -3.3601909875869751e-01
+ <_>
+
+ 0 -1 4009 -1.5283710323274136e-02
+
+ 2.5562399625778198e-01 -3.5940971225500107e-02
+ <_>
+
+ 0 -1 4010 -6.7279259674251080e-03
+
+ 2.4661159515380859e-01 -4.8673499375581741e-02
+ <_>
+
+ 0 -1 4011 1.7807850241661072e-01
+
+ 6.0471030883491039e-03 -7.2566151618957520e-01
+ <_>
+
+ 0 -1 4012 -1.0486179962754250e-03
+
+ -1.9335940480232239e-01 5.0940699875354767e-02
+ <_>
+
+ 0 -1 4013 8.9163314551115036e-03
+
+ 3.3024791628122330e-02 -1.6986289620399475e-01
+ <_>
+
+ 0 -1 4014 4.0643039392307401e-04
+
+ -1.3117119669914246e-01 6.6818282008171082e-02
+ <_>
+
+ 0 -1 4015 -4.7499048709869385e-01
+
+ -4.0152749419212341e-01 6.3146720640361309e-03
+ <_>
+
+ 0 -1 4016 1.0430049896240234e-01
+
+ 2.4024970829486847e-02 -3.2695800065994263e-01
+ <_>
+
+ 0 -1 4017 -5.1650121808052063e-02
+
+ 1.6934829950332642e-01 -1.5539200045168400e-02
+ <_>
+
+ 0 -1 4018 4.0506269782781601e-02
+
+ -2.2082980722188950e-02 3.9694729447364807e-01
+ <_>
+
+ 0 -1 4019 2.4179749190807343e-02
+
+ 2.1926779299974442e-02 -4.3460670113563538e-01
+ <_>
+
+ 0 -1 4020 -3.0531319789588451e-03
+
+ -1.4108030498027802e-01 5.6175179779529572e-02
+ <_>
+
+ 0 -1 4021 -1.7123650759458542e-02
+
+ -6.3341897726058960e-01 9.8466947674751282e-03
+ <_>
+
+ 0 -1 4022 4.1705969721078873e-02
+
+ 1.0977629572153091e-02 -6.7681282758712769e-01
+ <_>
+
+ 0 -1 4023 4.3895491398870945e-03
+
+ -5.7781290262937546e-02 1.5501640737056732e-01
+ <_>
+
+ 0 -1 4024 -4.4786250218749046e-03
+
+ -1.6706019639968872e-01 4.6572938561439514e-02
+ <_>
+
+ 0 -1 4025 4.8733421135693789e-04
+
+ -1.5037140250205994e-01 4.6920441091060638e-02
+ <_>
+
+ 0 -1 4026 1.5530640259385109e-02
+
+ 2.2556010633707047e-02 -3.2370451092720032e-01
+ <_>
+
+ 0 -1 4027 4.5443180948495865e-02
+
+ -9.8806591704487801e-03 6.0815322399139404e-01
+ <_>
+
+ 0 -1 4028 -7.7960297465324402e-02
+
+ 4.0743818879127502e-01 -1.8391529098153114e-02
+ <_>
+
+ 0 -1 4029 -4.5014719944447279e-04
+
+ -3.8319730758666992e-01 1.3420820236206055e-02
+ <_>
+
+ 0 -1 4030 -2.1852780133485794e-02
+
+ -4.4697651267051697e-01 1.5379330143332481e-02
+ <_>
+
+ 0 -1 4031 -6.3410878181457520e-02
+
+ 3.9926728606224060e-01 -2.2168820723891258e-02
+ <_>
+
+ 0 -1 4032 -6.6417120397090912e-03
+
+ -1.4594499766826630e-01 5.1541730761528015e-02
+ <_>
+
+ 0 -1 4033 2.0355410873889923e-02
+
+ -2.3113679140806198e-02 1.8792650103569031e-01
+ <_>
+
+ 0 -1 4034 9.2754261568188667e-03
+
+ -5.5808931589126587e-02 1.3504269719123840e-01
+ <_>
+
+ 0 -1 4035 -6.4075283706188202e-02
+
+ 2.6259770989418030e-01 -3.1913250684738159e-02
+ <_>
+
+ 0 -1 4036 5.7537898421287537e-02
+
+ 3.4703690558671951e-02 -2.7203989028930664e-01
+ <_>
+
+ 0 -1 4037 -1.3369999825954437e-02
+
+ -1.0251790285110474e-01 2.0719829946756363e-02
+ <_>
+
+ 0 -1 4038 2.9637520201504230e-03
+
+ -5.7579819113016129e-02 1.3346299529075623e-01
+ <_>
+
+ 0 -1 4039 -4.7313207760453224e-03
+
+ -1.4229220151901245e-01 5.3106248378753662e-02
+ <_>
+
+ 0 -1 4040 1.2967540323734283e-01
+
+ -2.1926470100879669e-02 3.3583769202232361e-01
+ <_>
+
+ 0 -1 4041 -2.8757948894053698e-03
+
+ 7.4970930814743042e-02 -1.0183060169219971e-01
+ <_>
+
+ 0 -1 4042 -1.3546359725296497e-02
+
+ -1.5313720703125000e-01 5.2247390151023865e-02
+ <_>
+
+ 0 -1 4043 6.3532173633575439e-02
+
+ 9.1543495655059814e-03 -7.4869108200073242e-01
+ <_>
+
+ 0 -1 4044 -1.0261409915983677e-02
+
+ 1.2742519378662109e-01 -5.6786071509122849e-02
+ <_>
+
+ 0 -1 4045 -4.3331928551197052e-02
+
+ -6.1829072237014771e-01 8.0406935885548592e-03
+ <_>
+
+ 0 -1 4046 4.0195342153310776e-03
+
+ -5.4130308330059052e-02 1.4864480495452881e-01
+ <_>
+
+ 0 -1 4047 6.7003332078456879e-03
+
+ 3.7507299333810806e-02 -1.9986230134963989e-01
+ <_>
+
+ 0 -1 4048 -1.1208239942789078e-02
+
+ -1.4704710245132446e-01 5.7189401239156723e-02
+ <_>
+
+ 0 -1 4049 -3.7890970706939697e-03
+
+ 1.5529400110244751e-01 -3.7930488586425781e-02
+ <_>
+
+ 0 -1 4050 -1.1098479852080345e-02
+
+ 1.7850440740585327e-01 -4.5689649879932404e-02
+ <_>
+
+ 0 -1 4051 -7.3761218227446079e-03
+
+ -1.0891640186309814e-01 7.4425593018531799e-02
+ <_>
+
+ 0 -1 4052 -3.2149269245564938e-03
+
+ 9.0641707181930542e-02 -9.4377033412456512e-02
+ <_>
+
+ 0 -1 4053 -3.5010059364140034e-03
+
+ -1.3498190045356750e-01 6.6652722656726837e-02
+ <_>
+
+ 0 -1 4054 -1.4920319699740503e-05
+
+ -1.0505480319261551e-01 8.4583170711994171e-02
+ <_>
+
+ 0 -1 4055 9.5882397145032883e-03
+
+ 1.9421499222517014e-02 -2.4732840061187744e-01
+ <_>
+
+ 0 -1 4056 5.7274959981441498e-02
+
+ 8.1852423027157784e-03 -7.9508548974990845e-01
+ <_>
+
+ 0 -1 4057 2.4549640715122223e-02
+
+ -1.5515980310738087e-02 4.8995479941368103e-01
+ <_>
+
+ 0 -1 4058 -4.6792559325695038e-02
+
+ -8.4720087051391602e-01 9.0526090934872627e-03
+ <_>
+
+ 0 -1 4059 3.1038739252835512e-03
+
+ -5.3271029144525528e-02 7.8815557062625885e-02
+ <_>
+
+ 0 -1 4060 -3.4241031855344772e-02
+
+ -4.8161220550537109e-01 1.3654340058565140e-02
+ <_>
+
+ 0 -1 4061 4.4056270271539688e-03
+
+ -4.9280438572168350e-02 7.8709162771701813e-02
+ <_>
+
+ 0 -1 4062 2.3878510110080242e-03
+
+ -7.6887659728527069e-02 8.4614582359790802e-02
+ <_>
+
+ 0 -1 4063 -1.1621230281889439e-02
+
+ -2.3086050152778625e-01 2.2584810853004456e-02
+ <_>
+
+ 0 -1 4064 2.5225759018212557e-03
+
+ -5.0813131034374237e-02 1.3810400664806366e-01
+ <_>
+
+ 0 -1 4065 1.3507470488548279e-01
+
+ 7.5730998069047928e-03 -4.7955051064491272e-01
+ <_>
+
+ 0 -1 4066 -2.2317951079457998e-03
+
+ -9.0258792042732239e-02 8.3118766546249390e-02
+ <_>
+
+ 0 -1 4067 -3.0061710625886917e-02
+
+ -5.1799142360687256e-01 1.2881710194051266e-02
+ <_>
+
+ 0 -1 4068 -4.5464351773262024e-02
+
+ 2.0660980045795441e-01 -3.4860398620367050e-02
+ <_>
+
+ 0 -1 4069 -9.2374589294195175e-03
+
+ -1.4695020020008087e-01 3.1320258975028992e-02
+ <_>
+
+ 0 -1 4070 6.0185948386788368e-03
+
+ 6.3885621726512909e-02 -1.1779619753360748e-01
+ <_>
+
+ 0 -1 4071 -1.0322810150682926e-02
+
+ 1.7958350479602814e-01 -4.6830028295516968e-02
+ <_>
+
+ 0 -1 4072 -1.7961780540645123e-03
+
+ -1.1374049633741379e-01 6.1730381101369858e-02
+ <_>
+
+ 0 -1 4073 7.1363700553774834e-03
+
+ 3.3574521541595459e-02 -1.5472589433193207e-01
+ <_>
+
+ 0 -1 4074 6.9487772881984711e-02
+
+ -5.9162009507417679e-02 1.3841110467910767e-01
+ <_>
+
+ 0 -1 4075 -3.8321871310472488e-02
+
+ 1.5628719329833984e-01 -3.1815651804208755e-02
+ <_>
+
+ 0 -1 4076 3.9706169627606869e-03
+
+ 5.1252529025077820e-02 -1.7615999281406403e-01
+ <_>
+
+ 0 -1 4077 -3.9275288581848145e-03
+
+ 7.8947998583316803e-02 -5.1486730575561523e-02
+ <_>
+
+ 0 -1 4078 1.9882800988852978e-03
+
+ -5.0474651157855988e-02 1.3366329669952393e-01
+ <_>
+
+ 0 -1 4079 -1.6472870483994484e-03
+
+ 4.9180198460817337e-02 -5.3437490016222000e-02
+ <_>
+
+ 0 -1 4080 -1.1580109596252441e-02
+
+ -1.3224309682846069e-01 5.8321509510278702e-02
+ <_>
+
+ 0 -1 4081 4.3496791273355484e-02
+
+ -2.3527380079030991e-02 1.2179140001535416e-01
+ <_>
+
+ 0 -1 4082 1.8956169951707125e-03
+
+ 5.6072939187288284e-02 -1.1997289955615997e-01
+ <_>
+
+ 0 -1 4083 2.4906420148909092e-03
+
+ -1.2799920141696930e-01 3.5218570381402969e-02
+ <_>
+
+ 0 -1 4084 -6.0253150761127472e-02
+
+ -7.8707909584045410e-01 7.7965850941836834e-03
+ <_>
+
+ 0 -1 4085 -1.5306809917092323e-02
+
+ -1.2276060134172440e-01 4.2537391185760498e-02
+ <_>
+
+ 0 -1 4086 3.6899570841342211e-04
+
+ -1.2192569673061371e-01 5.9650231152772903e-02
+ <_>
+
+ 0 -1 4087 3.0398070812225342e-03
+
+ -6.3023842871189117e-02 5.0918091088533401e-02
+ <_>
+
+ 0 -1 4088 -3.5760499304160476e-04
+
+ -7.6859332621097565e-02 8.6624316871166229e-02
+ <_>
+
+ 0 -1 4089 -2.7939230203628540e-03
+
+ 1.3074369728565216e-01 -4.6912711113691330e-02
+ <_>
+
+ 0 -1 4090 4.2060539126396179e-03
+
+ -5.3119719028472900e-02 1.2866240739822388e-01
+ <_>
+
+ 0 -1 4091 5.1448699086904526e-02
+
+ 1.1080370284616947e-02 -4.1434210538864136e-01
+ <_>
+
+ 0 -1 4092 3.2859880477190018e-02
+
+ 1.7495309934020042e-02 -3.7538790702819824e-01
+ <_>
+
+ 0 -1 4093 -4.8408061265945435e-02
+
+ 1.7011879384517670e-01 -2.3726450279355049e-02
+ <_>
+
+ 0 -1 4094 1.4061340130865574e-02
+
+ 2.5981390848755836e-02 -2.7635771036148071e-01
+ <_>
+
+ 0 -1 4095 5.2196439355611801e-02
+
+ -9.5534622669219971e-03 1.0973469913005829e-01
+ <_>
+
+ 0 -1 4096 4.4780261814594269e-02
+
+ -2.7032930403947830e-02 2.7434709668159485e-01
+ <_>
+
+ 0 -1 4097 -3.7703409325331450e-03
+
+ -1.4412869513034821e-01 5.2342470735311508e-02
+ <_>
+
+ 0 -1 4098 -4.1479258798062801e-03
+
+ -1.3706830143928528e-01 4.9621090292930603e-02
+ <_>
+
+ 0 -1 4099 1.4685150235891342e-02
+
+ -4.9949668347835541e-02 1.3658650219440460e-01
+ <_>
+
+ 0 -1 4100 1.0325849987566471e-02
+
+ 8.3659462630748749e-02 -1.0378009825944901e-01
+ <_>
+
+ 0 -1 4101 -1.7972270143218338e-04
+
+ -8.6658917367458344e-02 2.2592369467020035e-02
+ <_>
+
+ 0 -1 4102 2.0081000402569771e-02
+
+ -1.9589949399232864e-02 3.4358739852905273e-01
+ <_>
+
+ 0 -1 4103 -2.2905580699443817e-02
+
+ -4.2482820153236389e-01 1.5416770242154598e-02
+ <_>
+
+ 0 -1 4104 -5.5506028234958649e-02
+
+ 7.3143810033798218e-01 -9.4347409904003143e-03
+ <_>
+
+ 0 -1 4105 -1.7899540252983570e-03
+
+ -8.1951782107353210e-02 3.5823788493871689e-02
+ <_>
+
+ 0 -1 4106 -8.0740358680486679e-04
+
+ 8.6620979011058807e-02 -7.8758612275123596e-02
+ <_>
+
+ 0 -1 4107 2.4445019662380219e-02
+
+ -2.2004250437021255e-02 9.4158843159675598e-02
+ <_>
+
+ 0 -1 4108 -7.5640110298991203e-03
+
+ 1.2011729925870895e-01 -7.2349771857261658e-02
+ <_>
+
+ 0 -1 4109 2.3397218901664019e-03
+
+ -8.1034347414970398e-02 9.8173618316650391e-02
+ <_>
+
+ 0 -1 4110 -3.1817611306905746e-02
+
+ -3.5730469226837158e-01 1.9601309671998024e-02
+ <_>
+
+ 0 -1 4111 1.0028080083429813e-02
+
+ -2.4160459637641907e-02 3.1340339779853821e-01
+ <_>
+
+ 0 -1 4112 9.0504523541312665e-05
+
+ 5.8050628751516342e-02 -1.1760439723730087e-01
+ <_>
+
+ 0 -1 4113 -2.1010750904679298e-02
+
+ -2.0346039533615112e-01 3.4145411103963852e-02
+ <_>
+
+ 0 -1 4114 -7.1200268575921655e-04
+
+ 6.3303150236606598e-02 -1.0497389733791351e-01
+ <_>
+
+ 0 -1 4115 -7.6272932346910238e-04
+
+ -7.4432566761970520e-02 3.4912228584289551e-02
+ <_>
+
+ 0 -1 4116 -5.8506328612565994e-02
+
+ 5.5758380889892578e-01 -1.2666489928960800e-02
+ <_>
+
+ 0 -1 4117 2.4057500995695591e-03
+
+ 4.4605068862438202e-02 -1.1581590026617050e-01
+ <_>
+
+ 0 -1 4118 -1.9729519262909889e-02
+
+ -4.7550109028816223e-01 1.5548559837043285e-02
+ <_>
+
+ 0 -1 4119 -2.2645130753517151e-02
+
+ 1.1828950047492981e-01 -2.2170929238200188e-02
+ <_>
+
+ 0 -1 4120 -1.3123790267854929e-03
+
+ 5.0635538995265961e-02 -1.3423310220241547e-01
+ <_>
+
+ 0 -1 4121 -5.9856739826500416e-03
+
+ 5.4273821413516998e-02 -6.9639056921005249e-02
+ <_>
+
+ 0 -1 4122 5.2245449274778366e-02
+
+ -1.8341360613703728e-02 4.1689381003379822e-01
+ <_>
+
+ 0 -1 4123 -4.6837949194014072e-03
+
+ -1.2121260166168213e-01 3.9187919348478317e-02
+ <_>
+
+ 0 -1 4124 -1.5208399854600430e-02
+
+ -9.6487842500209808e-02 6.5325021743774414e-02
+ <_>
+
+ 0 -1 4125 -5.7328920811414719e-03
+
+ 2.1023470163345337e-01 -3.1721260398626328e-02
+ <_>
+
+ 0 -1 4126 -3.7612610030919313e-03
+
+ 1.0085880011320114e-01 -6.1392951756715775e-02
+ <_>
+
+ 0 -1 4127 -1.0980520397424698e-02
+
+ -1.8342439830303192e-01 1.7121249809861183e-02
+ <_>
+
+ 0 -1 4128 2.7213071007281542e-03
+
+ -5.8404140174388885e-02 1.0729049891233444e-01
+ <_>
+
+ 0 -1 4129 -1.8969269469380379e-02
+
+ 7.4764728546142578e-02 -3.4056201577186584e-02
+ <_>
+
+ 0 -1 4130 -7.1104627568274736e-04
+
+ -1.4749570190906525e-01 5.2447158843278885e-02
+ <_>
+
+ 0 -1 4131 9.4774961471557617e-03
+
+ -2.5232490152120590e-02 1.0677599906921387e-01
+ <_>
+
+ 0 -1 4132 1.0275880247354507e-01
+
+ 1.0039360262453556e-02 -6.4630568027496338e-01
+ <_>
+
+ 0 -1 4133 -1.1228179931640625e-01
+
+ -5.7247608900070190e-01 6.3971187919378281e-03
+ <_>
+
+ 0 -1 4134 -2.5683579966425896e-02
+
+ -3.2004079222679138e-01 1.7239449545741081e-02
+ <_>
+
+ 0 -1 4135 2.5494299829006195e-02
+
+ -2.2127779200673103e-02 1.1838120222091675e-01
+ <_>
+
+ 0 -1 4136 -3.0458789318799973e-02
+
+ -5.8747881650924683e-01 9.8222652450203896e-03
+ <_>
+
+ 0 -1 4137 -2.7816120535135269e-02
+
+ 3.6785709857940674e-01 -1.2260340154170990e-02
+ <_>
+
+ 0 -1 4138 -1.2768269516527653e-03
+
+ 2.4150429666042328e-01 -2.4503409862518311e-02
+ <_>
+
+ 0 -1 4139 -7.6435826718807220e-02
+
+ -6.3471722602844238e-01 2.7080429717898369e-03
+ <_>
+
+ 0 -1 4140 3.7574430461972952e-04
+
+ -1.3316820561885834e-01 4.6189591288566589e-02
+ <_>
+
+ 0 -1 4141 1.3193810358643532e-02
+
+ 2.6501480489969254e-02 -6.8515978753566742e-02
+ <_>
+
+ 0 -1 4142 -6.3689619302749634e-02
+
+ 4.1126638650894165e-01 -1.5647120773792267e-02
+ <_>
+
+ 0 -1 4143 -8.0426287604495883e-04
+
+ -9.4006098806858063e-02 3.1002070754766464e-02
+ <_>
+
+ 0 -1 4144 8.2476891111582518e-04
+
+ -1.5928819775581360e-01 3.7096790969371796e-02
+ <_>
+
+ 0 -1 4145 4.8443409614264965e-03
+
+ -2.5698879733681679e-02 1.5079009532928467e-01
+ <_>
+
+ 0 -1 4146 2.2941319271922112e-02
+
+ 2.2941149771213531e-02 -2.7759069204330444e-01
+ <_>
+
+ 0 -1 4147 5.6285588070750237e-03
+
+ 2.0121619105339050e-02 -6.3584417104721069e-02
+ <_>
+
+ 0 -1 4148 -8.1927451537922025e-04
+
+ 5.5934138596057892e-02 -1.0776060074567795e-01
+ <_>
+
+ 0 -1 4149 5.1910132169723511e-03
+
+ -2.6781970635056496e-02 5.5094171315431595e-02
+ <_>
+
+ 0 -1 4150 -2.0220499485731125e-02
+
+ -1.2501780688762665e-01 5.9274829924106598e-02
+ <_>
+
+ 0 -1 4151 -3.6798599176108837e-03
+
+ 6.0474321246147156e-02 -5.9632349759340286e-02
+ <_>
+
+ 0 -1 4152 1.0483860038220882e-02
+
+ -5.3652260452508926e-02 1.2906110286712646e-01
+ <_>
+
+ 0 -1 4153 1.7904460430145264e-02
+
+ 1.4318290166556835e-02 -2.7349731326103210e-01
+ <_>
+
+ 0 -1 4154 3.3693820238113403e-01
+
+ -8.6311781778931618e-03 7.3288571834564209e-01
+ <_>
+
+ 0 -1 4155 -1.0807479918003082e-01
+
+ -5.0707489252090454e-01 6.7152627743780613e-03
+ <_>
+
+ 0 -1 4156 -1.2219610065221786e-01
+
+ -7.9352718591690063e-01 7.4890498071908951e-03
+ <_>
+
+ 0 -1 4157 -3.7357630208134651e-03
+
+ -1.5436430275440216e-01 1.9933359697461128e-02
+ <_>
+
+ 0 -1 4158 4.7283530235290527e-02
+
+ -3.2180741429328918e-02 2.2332429885864258e-01
+ <_>
+
+ 0 -1 4159 -4.8949089832603931e-03
+
+ -1.4440849423408508e-01 2.7687419205904007e-02
+ <_>
+
+ 0 -1 4160 -4.6767960302531719e-03
+
+ 4.2589519172906876e-02 -1.3181249797344208e-01
+ <_>
+
+ 0 -1 4161 -4.0526568889617920e-02
+
+ 1.5155360102653503e-01 -1.3137400150299072e-02
+ <_>
+
+ 0 -1 4162 5.1309340633451939e-03
+
+ -4.2436398565769196e-02 1.9428129494190216e-01
+ <_>
+
+ 0 -1 4163 4.9947341904044151e-03
+
+ 2.0656300708651543e-02 -1.8332560360431671e-01
+ <_>
+
+ 0 -1 4164 -1.0946449823677540e-02
+
+ -1.1576370149850845e-01 6.1964198946952820e-02
+ <_>
+
+ 0 -1 4165 -6.7135482095181942e-03
+
+ 1.5796749293804169e-01 -3.5399619489908218e-02
+ <_>
+
+ 0 -1 4166 -3.0990630388259888e-02
+
+ -1.7271049320697784e-01 3.7916570901870728e-02
+ <_>
+
+ 0 -1 4167 -2.7503890451043844e-03
+
+ 4.1495159268379211e-02 -5.5152788758277893e-02
+ <_>
+
+ 0 -1 4168 -2.4700429290533066e-02
+
+ 2.9076111316680908e-01 -2.0552640780806541e-02
+ <_>
+
+ 0 -1 4169 -1.7607269808650017e-02
+
+ -9.8671503365039825e-02 3.2800450921058655e-02
+ <_>
+
+ 0 -1 4170 8.7928329594433308e-04
+
+ 3.6442421376705170e-02 -1.7518040537834167e-01
+ <_>
+
+ 0 -1 4171 6.9036949425935745e-03
+
+ 2.1444270387291908e-02 -1.1997299641370773e-01
+ <_>
+
+ 0 -1 4172 -2.2592858877032995e-03
+
+ 9.5944248139858246e-02 -8.1264480948448181e-02
+ <_>
+
+ 0 -1 4173 1.5885939821600914e-02
+
+ -3.1494110822677612e-02 8.7531946599483490e-02
+ <_>
+
+ 0 -1 4174 1.9379710778594017e-02
+
+ -3.5075489431619644e-02 1.6199189424514771e-01
+ <_>
+
+ 0 -1 4175 -2.3565329611301422e-02
+
+ 9.9367812275886536e-02 -5.0409961491823196e-02
+ <_>
+
+ 0 -1 4176 -6.2582190148532391e-03
+
+ -1.5962609648704529e-01 5.6871950626373291e-02
+ <_>
+
+ 0 -1 4177 1.0289040394127369e-02
+
+ 3.2422259449958801e-02 -1.1825840175151825e-01
+ <_>
+
+ 0 -1 4178 -5.8485912159085274e-03
+
+ 1.9107459485530853e-01 -3.7084739655256271e-02
+ <_>
+
+ 0 -1 4179 -8.5805162787437439e-02
+
+ -4.0877249836921692e-01 1.2781100347638130e-02
+ <_>
+
+ 0 -1 4180 -2.4852859787642956e-03
+
+ -1.0116399824619293e-01 5.6311480700969696e-02
+ <_>
+
+ 0 -1 4181 -7.1535720489919186e-03
+
+ -4.4118609279394150e-02 2.2217169404029846e-02
+ <_>
+
+ 0 -1 4182 1.2644700473174453e-03
+
+ 6.5305598080158234e-02 -1.2273000180721283e-01
+ <_>
+
+ 0 -1 4183 3.9825689047574997e-02
+
+ -5.0402980297803879e-02 1.4424259960651398e-01
+ <_>
+
+ 0 -1 4184 1.3322670012712479e-02
+
+ 2.3235419392585754e-01 -2.8198169544339180e-02
+ <_>
+
+ 0 -1 4185 2.1017350256443024e-02
+
+ -1.9653260707855225e-02 1.0432569682598114e-01
+ <_>
+
+ 0 -1 4186 2.4515210092067719e-01
+
+ 8.4479590877890587e-03 -7.4833422899246216e-01
+ <_>
+
+ 0 -1 4187 4.3030278757214546e-03
+
+ 3.1172480434179306e-02 -9.4183586537837982e-02
+ <_>
+
+ 0 -1 4188 2.2224480286240578e-02
+
+ -3.9602920413017273e-02 1.5614870190620422e-01
+ <_>
+
+ 0 -1 4189 -8.5019748657941818e-03
+
+ -1.0852319747209549e-01 2.8045600280165672e-02
+ <_>
+
+ 0 -1 4190 1.0845540091395378e-02
+
+ -6.5594159066677094e-02 1.0217399895191193e-01
+ <_>
+
+ 0 -1 4191 1.7696369905024767e-03
+
+ 7.5369141995906830e-02 -9.5298826694488525e-02
+ <_>
+
+ 0 -1 4192 1.0289049893617630e-01
+
+ -1.1767229996621609e-02 4.8167210817337036e-01
+ <_>
+
+ 0 -1 4193 -3.5074170678853989e-02
+
+ -2.6299050450325012e-01 1.0002779774367809e-02
+ <_>
+
+ 0 -1 4194 3.8302998989820480e-02
+
+ 1.0883949697017670e-02 -5.8092927932739258e-01
+ <_>
+
+ 0 -1 4195 1.2183119542896748e-02
+
+ 3.1098999083042145e-02 -5.4257929325103760e-02
+ <_>
+
+ 0 -1 4196 2.0388139411807060e-02
+
+ -3.7379540503025055e-02 1.8725450336933136e-01
+ <_>
+
+ 0 -1 4197 6.5857400186359882e-03
+
+ -4.4194780290126801e-02 6.0033790767192841e-02
+ <_>
+
+ 0 -1 4198 5.8739529922604561e-03
+
+ 3.9219710975885391e-02 -1.5857939422130585e-01
+ <_>
+
+ 0 -1 4199 -7.8279033303260803e-02
+
+ 2.1789179742336273e-01 -1.0094420053064823e-02
+ <_>
+
+ 0 -1 4200 1.5336579643189907e-02
+
+ -3.1219519674777985e-02 2.2452400624752045e-01
+ <_>
+
+ 0 -1 4201 1.4171670190989971e-03
+
+ -1.6625450551509857e-01 2.7684109285473824e-02
+ <_>
+
+ 0 -1 4202 -3.4021309111267328e-03
+
+ -2.8452378511428833e-01 2.2661060094833374e-02
+ <_>
+
+ 0 -1 4203 -1.9340340048074722e-02
+
+ 5.2300518751144409e-01 -5.0734821707010269e-03
+ <_>
+
+ 0 -1 4204 -1.6514319926500320e-02
+
+ 7.0619380474090576e-01 -8.2714930176734924e-03
+ <_>
+
+ 0 -1 4205 -6.4589809626340866e-03
+
+ -1.2104330211877823e-01 3.8718421012163162e-02
+ <_>
+
+ 0 -1 4206 -4.3003219179809093e-03
+
+ -1.2103659659624100e-01 5.5335890501737595e-02
+ <_>
+
+ 0 -1 4207 1.0784200392663479e-02
+
+ -3.8975819945335388e-02 1.9870519638061523e-01
+ <_>
+
+ 0 -1 4208 -1.1527650058269501e-03
+
+ 9.3596100807189941e-02 -6.4248889684677124e-02
+ <_>
+
+ 0 -1 4209 -4.2101260274648666e-02
+
+ -3.0032190680503845e-01 1.5909299254417419e-02
+ <_>
+
+ 0 -1 4210 3.0202090274542570e-03
+
+ -6.5310478210449219e-02 9.4754762947559357e-02
+ <_>
+
+ 0 -1 4211 2.9999990016222000e-02
+
+ 1.7673229798674583e-02 -2.2457149624824524e-01
+ <_>
+
+ 0 -1 4212 -1.3678170507773757e-03
+
+ 1.3394910097122192e-01 -5.0086550414562225e-02
+ <_>
+
+ 0 -1 4213 -2.3151950910687447e-02
+
+ -1.8310110270977020e-01 1.9103579223155975e-02
+ <_>
+
+ 0 -1 4214 6.3826322555541992e-02
+
+ 7.5651248916983604e-03 -8.3116590976715088e-01
+ <_>
+
+ 0 -1 4215 -1.4831620454788208e-01
+
+ -1. 3.4445689525455236e-03
+ <_>
+
+ 0 -1 4216 1.3207890151534230e-04
+
+ 5.1135819405317307e-02 -1.1863200366497040e-01
+ <_>
+
+ 0 -1 4217 6.6078707575798035e-02
+
+ 7.1528651751577854e-03 -4.2906388640403748e-01
+ <_>
+
+ 0 -1 4218 6.1758249066770077e-03
+
+ -5.9010580182075500e-02 1.0781309753656387e-01
+ <_>
+
+ 0 -1 4219 -3.3506110310554504e-02
+
+ -3.7636739015579224e-01 1.7037799581885338e-02
+ <_>
+
+ 0 -1 4220 -9.7032980993390083e-03
+
+ 1.3820339739322662e-01 -4.3922200798988342e-02
+ <_>
+
+ 0 -1 4221 -7.2475131601095200e-03
+
+ -2.2192749381065369e-01 1.2801939621567726e-02
+ <_>
+
+ 0 -1 4222 -5.3309328854084015e-02
+
+ -4.5594760775566101e-01 1.2495010159909725e-02
+ <_>
+
+ 0 -1 4223 1.0387069545686245e-02
+
+ -5.1624130457639694e-02 1.2236239761114120e-01
+ <_>
+
+ 0 -1 4224 6.7208573222160339e-02
+
+ 3.1655121594667435e-02 -2.1086180210113525e-01
+ <_>
+
+ 0 -1 4225 -1.5143319964408875e-02
+
+ 1.7224070429801941e-01 -2.9209939762949944e-02
+ <_>
+
+ 0 -1 4226 -3.9284970611333847e-02
+
+ -4.8226779699325562e-01 1.4366200193762779e-02
+ <_>
+
+ 0 -1 4227 -5.1000402309000492e-03
+
+ 1.3700410723686218e-01 -4.3541591614484787e-02
+ <_>
+
+ 0 -1 4228 4.7284159809350967e-03
+
+ 6.5495520830154419e-02 -1.2913839519023895e-01
+ <_>
+
+ 0 -1 4229 -1.1877629905939102e-02
+
+ 2.0146130025386810e-01 -2.3640049621462822e-02
+ <_>
+
+ 0 -1 4230 -4.5396368950605392e-03
+
+ -1.6872450709342957e-01 4.4881179928779602e-02
+ <_>
+
+ 0 -1 4231 -8.0548608675599098e-03
+
+ 6.5916322171688080e-02 -4.5184228569269180e-02
+ <_>
+
+ 0 -1 4232 -4.3037731200456619e-02
+
+ 1.2817430496215820e-01 -6.3021719455718994e-02
+ <_>
+
+ 0 -1 4233 1.0952279716730118e-01
+
+ 6.0560060665011406e-03 -5.1614511013031006e-01
+ <_>
+
+ 0 -1 4234 -7.0019549457356334e-04
+
+ -1.2845410406589508e-01 4.9936100840568542e-02
+ <_>
+
+ 0 -1 4235 -2.9595570595120080e-05
+
+ 6.7076332867145538e-02 -9.0397119522094727e-02
+ <_>
+
+ 0 -1 4236 1.7749640345573425e-01
+
+ -7.6472861692309380e-03 8.9716571569442749e-01
+ <_>
+
+ 0 -1 4237 -5.5364448577165604e-02
+
+ -6.5513938665390015e-01 6.7208600230515003e-03
+ <_>
+
+ 0 -1 4238 -5.1461409777402878e-02
+
+ -6.5337532758712769e-01 8.9703118428587914e-03
+ <_>
+
+ 0 -1 4239 -2.6581719517707825e-02
+
+ -2.8116428852081299e-01 1.7766090109944344e-02
+ <_>
+
+ 0 -1 4240 -6.9034337997436523e-02
+
+ 9.2583978176116943e-01 -6.2460578046739101e-03
+ <_>
+
+ 0 -1 4241 -3.0205730348825455e-02
+
+ 2.3784290254116058e-01 -1.6295459121465683e-02
+ <_>
+
+ 0 -1 4242 -9.1226873919367790e-03
+
+ -1.4569890499114990e-01 4.5654390007257462e-02
+ <_>
+
+ 0 -1 4243 -2.1233780682086945e-01
+
+ 1.6472199559211731e-01 -1.4758829958736897e-02
+ <_>
+
+ 0 -1 4244 -2.6254689320921898e-02
+
+ 3.0381628870964050e-01 -2.0108530297875404e-02
+ <_>
+
+ 0 -1 4245 3.0262209475040436e-03
+
+ -1.5298280119895935e-01 2.6878539472818375e-02
+ <_>
+
+ 0 -1 4246 8.3838596940040588e-02
+
+ 1.0042349807918072e-02 -5.9345102310180664e-01
+ <_>
+
+ 0 -1 4247 1.8845759332180023e-02
+
+ -4.5260541141033173e-02 8.4220200777053833e-02
+ <_>
+
+ 0 -1 4248 -4.8671411350369453e-03
+
+ -1.1234840005636215e-01 5.6676398962736130e-02
+ <_>
+ 243
+ -1.4994510412216187e+00
+
+ <_>
+
+ 0 -1 4249 1.1900869756937027e-01
+
+ -2.0186680555343628e-01 2.4417600035667419e-01
+ <_>
+
+ 0 -1 4250 2.1277489140629768e-02
+
+ -2.3454399406909943e-01 1.6303069889545441e-01
+ <_>
+
+ 0 -1 4251 3.7066950462758541e-03
+
+ -2.0559909939765930e-01 1.4982059597969055e-01
+ <_>
+
+ 0 -1 4252 3.2929550856351852e-02
+
+ 7.8803077340126038e-02 -3.3688440918922424e-01
+ <_>
+
+ 0 -1 4253 2.5057960301637650e-02
+
+ -1.5932090580463409e-01 1.6405050456523895e-01
+ <_>
+
+ 0 -1 4254 6.5863109193742275e-04
+
+ -2.7804228663444519e-01 8.3028919994831085e-02
+ <_>
+
+ 0 -1 4255 -6.6210910677909851e-02
+
+ -3.6402150988578796e-01 6.0067348182201385e-02
+ <_>
+
+ 0 -1 4256 4.2186300270259380e-03
+
+ -1.8551510572433472e-01 1.2828220427036285e-01
+ <_>
+
+ 0 -1 4257 1.7119459807872772e-03
+
+ -2.1572509407997131e-01 8.6879499256610870e-02
+ <_>
+
+ 0 -1 4258 -2.1390480920672417e-02
+
+ 1.1124739795923233e-01 -1.4486509561538696e-01
+ <_>
+
+ 0 -1 4259 5.5712480098009109e-03
+
+ 6.2546879053115845e-02 -3.1598201394081116e-01
+ <_>
+
+ 0 -1 4260 4.5709838159382343e-03
+
+ -2.3647899925708771e-01 3.8399569690227509e-02
+ <_>
+
+ 0 -1 4261 -1.7086030915379524e-02
+
+ 2.0653559267520905e-01 -8.6405612528324127e-02
+ <_>
+
+ 0 -1 4262 -3.0640950426459312e-02
+
+ 4.1523000597953796e-01 -2.5601850822567940e-02
+ <_>
+
+ 0 -1 4263 2.5803469121456146e-02
+
+ 4.0156230330467224e-02 -3.7444010376930237e-01
+ <_>
+
+ 0 -1 4264 2.6425920426845551e-02
+
+ 4.2625781148672104e-02 -4.1888910531997681e-01
+ <_>
+
+ 0 -1 4265 -1.1849730275571346e-02
+
+ -3.0619880557060242e-01 5.1505949348211288e-02
+ <_>
+
+ 0 -1 4266 -1.6269849613308907e-02
+
+ -1.9878490269184113e-01 4.2683240026235580e-02
+ <_>
+
+ 0 -1 4267 -2.4036159738898277e-02
+
+ -3.3211991190910339e-01 4.6091418713331223e-02
+ <_>
+
+ 0 -1 4268 7.3583971243351698e-04
+
+ -2.0677410066127777e-01 5.7418260723352432e-02
+ <_>
+
+ 0 -1 4269 -2.0423160865902901e-02
+
+ -2.6922059059143066e-01 4.4893719255924225e-02
+ <_>
+
+ 0 -1 4270 1.9533000886440277e-03
+
+ 4.3481849133968353e-02 -1.4295850694179535e-01
+ <_>
+
+ 0 -1 4271 3.3202540129423141e-02
+
+ 6.1112720519304276e-02 -2.0773139595985413e-01
+ <_>
+
+ 0 -1 4272 2.1049549803137779e-02
+
+ -5.5196329951286316e-02 1.7273330688476562e-01
+ <_>
+
+ 0 -1 4273 -4.2487941682338715e-03
+
+ -3.1202110648155212e-01 3.5714551806449890e-02
+ <_>
+
+ 0 -1 4274 1.4544890262186527e-02
+
+ -1.2891520559787750e-01 1.0874609649181366e-01
+ <_>
+
+ 0 -1 4275 4.4858800247311592e-03
+
+ 5.0264850258827209e-02 -2.2729620337486267e-01
+ <_>
+
+ 0 -1 4276 -7.2019517421722412e-02
+
+ -5.0357151031494141e-01 2.4909170344471931e-02
+ <_>
+
+ 0 -1 4277 7.4088312685489655e-02
+
+ -2.6110179722309113e-02 4.6904951333999634e-01
+ <_>
+
+ 0 -1 4278 -1.9376210868358612e-02
+
+ -8.7742328643798828e-02 5.2696809172630310e-02
+ <_>
+
+ 0 -1 4279 -1.5192059800028801e-02
+
+ -1.6470350325107574e-01 7.4841916561126709e-02
+ <_>
+
+ 0 -1 4280 6.7975218407809734e-03
+
+ -1.2512689828872681e-01 8.2092992961406708e-02
+ <_>
+
+ 0 -1 4281 -1.9816169515252113e-03
+
+ 6.1259880661964417e-02 -1.9138810038566589e-01
+ <_>
+
+ 0 -1 4282 -4.0343839675188065e-02
+
+ -3.4634640812873840e-01 3.3814091235399246e-02
+ <_>
+
+ 0 -1 4283 -9.7851715981960297e-03
+
+ 2.4771960079669952e-01 -5.1031429320573807e-02
+ <_>
+
+ 0 -1 4284 1.3061050325632095e-02
+
+ -5.9378169476985931e-02 1.4298720657825470e-01
+ <_>
+
+ 0 -1 4285 1.2519969604909420e-02
+
+ -1.0087440162897110e-01 2.0617449283599854e-01
+ <_>
+
+ 0 -1 4286 6.1620049178600311e-02
+
+ 1.0850620456039906e-02 -4.9976751208305359e-01
+ <_>
+
+ 0 -1 4287 1.5351610258221626e-02
+
+ 3.0459180474281311e-02 -4.0248531103134155e-01
+ <_>
+
+ 0 -1 4288 6.7390319891273975e-03
+
+ -1.5230870246887207e-01 3.4763731062412262e-02
+ <_>
+
+ 0 -1 4289 2.7166040614247322e-02
+
+ 3.2465178519487381e-02 -3.7905651330947876e-01
+ <_>
+
+ 0 -1 4290 -4.9443650990724564e-02
+
+ -4.1042488813400269e-01 1.5265700407326221e-02
+ <_>
+
+ 0 -1 4291 3.2999709248542786e-02
+
+ 2.8922239318490028e-02 -4.3119680881500244e-01
+ <_>
+
+ 0 -1 4292 3.7604149430990219e-02
+
+ 2.0920699462294579e-02 -3.5471540689468384e-01
+ <_>
+
+ 0 -1 4293 1.7311640083789825e-02
+
+ -1.5490870177745819e-01 7.3543228209018707e-02
+ <_>
+
+ 0 -1 4294 -1.7037079669535160e-03
+
+ -9.5346920192241669e-02 5.1517289131879807e-02
+ <_>
+
+ 0 -1 4295 -1.5008790418505669e-02
+
+ 2.1057499945163727e-01 -5.2197169512510300e-02
+ <_>
+
+ 0 -1 4296 -4.1283361613750458e-02
+
+ -4.8727679252624512e-01 1.6686370596289635e-02
+ <_>
+
+ 0 -1 4297 -1.7190299928188324e-02
+
+ 2.3070749640464783e-01 -5.7094439864158630e-02
+ <_>
+
+ 0 -1 4298 3.9707008749246597e-02
+
+ 1.7016230151057243e-02 -3.8233861327171326e-01
+ <_>
+
+ 0 -1 4299 4.7051470726728439e-02
+
+ 4.2239248752593994e-02 -2.8050369024276733e-01
+ <_>
+
+ 0 -1 4300 -1.1948949657380581e-02
+
+ -2.3056490719318390e-01 2.6532189920544624e-02
+ <_>
+
+ 0 -1 4301 -7.9857409000396729e-02
+
+ -8.4963917732238770e-01 1.2582180090248585e-02
+ <_>
+
+ 0 -1 4302 2.5627639144659042e-02
+
+ 2.3311240598559380e-02 -2.4923819303512573e-01
+ <_>
+
+ 0 -1 4303 -3.1094370409846306e-02
+
+ -2.3769870400428772e-01 4.6116128563880920e-02
+ <_>
+
+ 0 -1 4304 4.6573221683502197e-02
+
+ 2.8770290315151215e-02 -5.3739601373672485e-01
+ <_>
+
+ 0 -1 4305 -5.4066929966211319e-02
+
+ 2.7794760465621948e-01 -4.7770768404006958e-02
+ <_>
+
+ 0 -1 4306 1.8918470013886690e-03
+
+ -9.8254829645156860e-02 4.7856420278549194e-02
+ <_>
+
+ 0 -1 4307 3.3229328691959381e-02
+
+ -5.2595350891351700e-02 2.3564100265502930e-01
+ <_>
+
+ 0 -1 4308 1.1775200255215168e-03
+
+ -2.3401489853858948e-01 2.6142070069909096e-02
+ <_>
+
+ 0 -1 4309 1.9482020288705826e-03
+
+ -1.5223619341850281e-01 7.8751467168331146e-02
+ <_>
+
+ 0 -1 4310 5.5945508182048798e-02
+
+ 1.1540699750185013e-02 -1.9889539480209351e-01
+ <_>
+
+ 0 -1 4311 2.9455369338393211e-02
+
+ 3.3315770328044891e-02 -3.2850489020347595e-01
+ <_>
+
+ 0 -1 4312 4.0880320593714714e-03
+
+ -8.6178407073020935e-02 7.9575799405574799e-02
+ <_>
+
+ 0 -1 4313 -5.9127728454768658e-03
+
+ -1.7738300561904907e-01 6.0648940503597260e-02
+ <_>
+
+ 0 -1 4314 -6.2419679015874863e-02
+
+ 2.4396699666976929e-01 -3.3243889920413494e-03
+ <_>
+
+ 0 -1 4315 -3.7195120006799698e-02
+
+ 2.6807048916816711e-01 -3.9979271590709686e-02
+ <_>
+
+ 0 -1 4316 -1.4324760437011719e-01
+
+ 2.9332828521728516e-01 -2.6897290721535683e-02
+ <_>
+
+ 0 -1 4317 -4.2845219373703003e-02
+
+ -2.5283750891685486e-01 4.1232049465179443e-02
+ <_>
+
+ 0 -1 4318 1.1560089886188507e-01
+
+ -1.4965849928557873e-02 2.4187250435352325e-01
+ <_>
+
+ 0 -1 4319 5.0169471651315689e-02
+
+ 8.8590547442436218e-02 -1.2442570179700851e-01
+ <_>
+
+ 0 -1 4320 1.0200110077857971e-01
+
+ 1.2396319769322872e-02 -3.6982178688049316e-01
+ <_>
+
+ 0 -1 4321 -5.2397060208022594e-03
+
+ -2.5912949442863464e-01 4.0550298988819122e-02
+ <_>
+
+ 0 -1 4322 -1.9227810204029083e-02
+
+ 2.0064230263233185e-01 -6.5223582088947296e-02
+ <_>
+
+ 0 -1 4323 -1.1133120395243168e-02
+
+ -4.6262189745903015e-01 2.4428030475974083e-02
+ <_>
+
+ 0 -1 4324 9.7551010549068451e-02
+
+ 1.2901189737021923e-02 -7.4022471904754639e-01
+ <_>
+
+ 0 -1 4325 4.6071741729974747e-02
+
+ 1.8453989177942276e-02 -4.8419821262359619e-01
+ <_>
+
+ 0 -1 4326 -8.3533532917499542e-02
+
+ -8.8434767723083496e-01 1.6764779575169086e-03
+ <_>
+
+ 0 -1 4327 6.0535832308232784e-03
+
+ -1.5865640342235565e-01 6.7758671939373016e-02
+ <_>
+
+ 0 -1 4328 -1.3178240042179823e-03
+
+ -8.7943129241466522e-02 6.6591359674930573e-02
+ <_>
+
+ 0 -1 4329 -2.0939730107784271e-02
+
+ 2.3358969390392303e-01 -5.2145671099424362e-02
+ <_>
+
+ 0 -1 4330 -8.8145419955253601e-02
+
+ 4.8081308603286743e-01 -1.1917640455067158e-02
+ <_>
+
+ 0 -1 4331 1.6344599425792694e-02
+
+ -5.3838059306144714e-02 2.2349910438060760e-01
+ <_>
+
+ 0 -1 4332 -2.2833999991416931e-01
+
+ 3.6013820767402649e-01 -1.8727909773588181e-02
+ <_>
+
+ 0 -1 4333 8.4737362340092659e-03
+
+ -5.6207131594419479e-02 1.6089470684528351e-01
+ <_>
+
+ 0 -1 4334 -9.8505034111440182e-04
+
+ 1.0108830034732819e-01 -1.0455229878425598e-01
+ <_>
+
+ 0 -1 4335 4.9648447893559933e-03
+
+ -7.9359367489814758e-02 1.3140240311622620e-01
+ <_>
+
+ 0 -1 4336 -1.3171610422432423e-02
+
+ -1.2099819630384445e-01 3.7730131298303604e-02
+ <_>
+
+ 0 -1 4337 8.2112876698374748e-03
+
+ -5.3597409278154373e-02 2.2156579792499542e-01
+ <_>
+
+ 0 -1 4338 -4.8930559307336807e-02
+
+ -3.9349249005317688e-01 1.9850309938192368e-02
+ <_>
+
+ 0 -1 4339 7.4527352117002010e-03
+
+ 5.8218438178300858e-02 -2.5317558646202087e-01
+ <_>
+
+ 0 -1 4340 7.7388651669025421e-02
+
+ -5.7724680751562119e-02 2.0154540240764618e-01
+ <_>
+
+ 0 -1 4341 4.9968929961323738e-03
+
+ 8.9260630309581757e-02 -1.3082459568977356e-01
+ <_>
+
+ 0 -1 4342 -4.0977269411087036e-02
+
+ -1.7190429568290710e-01 2.2051449865102768e-02
+ <_>
+
+ 0 -1 4343 3.0041709542274475e-03
+
+ 4.5379869639873505e-02 -2.4130369722843170e-01
+ <_>
+
+ 0 -1 4344 1.5435700118541718e-01
+
+ -3.2916471362113953e-02 3.2090398669242859e-01
+ <_>
+
+ 0 -1 4345 1.5153509564697742e-02
+
+ 5.3576458245515823e-02 -1.6273179650306702e-01
+ <_>
+
+ 0 -1 4346 9.5209293067455292e-02
+
+ 1.3132530264556408e-02 -4.3389630317687988e-01
+ <_>
+
+ 0 -1 4347 -2.2066019475460052e-02
+
+ 1.8358850479125977e-01 -5.3995680063962936e-02
+ <_>
+
+ 0 -1 4348 -4.0623430162668228e-02
+
+ -4.5687249302864075e-01 1.1119400151073933e-02
+ <_>
+
+ 0 -1 4349 -2.1428579930216074e-03
+
+ 9.5221467316150665e-02 -1.0431689769029617e-01
+ <_>
+
+ 0 -1 4350 -9.6598910167813301e-03
+
+ -2.8121781349182129e-01 3.1387180089950562e-02
+ <_>
+
+ 0 -1 4351 -1.7860020697116852e-01
+
+ 4.6675390005111694e-01 -2.2296290844678879e-02
+ <_>
+
+ 0 -1 4352 -2.0536049269139767e-03
+
+ -8.8460110127925873e-02 2.5863479822874069e-02
+ <_>
+
+ 0 -1 4353 -4.6333461068570614e-03
+
+ 6.0720779001712799e-02 -1.6562700271606445e-01
+ <_>
+
+ 0 -1 4354 4.6847991645336151e-02
+
+ -4.0696758776903152e-02 1.0598970204591751e-01
+ <_>
+
+ 0 -1 4355 -9.0538233518600464e-02
+
+ -6.3367050886154175e-01 1.6277700662612915e-02
+ <_>
+
+ 0 -1 4356 -6.6260926425457001e-02
+
+ -2.8792759776115417e-01 6.1133177950978279e-03
+ <_>
+
+ 0 -1 4357 2.4731729179620743e-02
+
+ 4.0057931095361710e-02 -2.3272530734539032e-01
+ <_>
+
+ 0 -1 4358 -1.3736580312252045e-01
+
+ 4.7250029444694519e-01 -8.2997139543294907e-03
+ <_>
+
+ 0 -1 4359 -6.3414901494979858e-02
+
+ 4.3039301037788391e-01 -2.1049000322818756e-02
+ <_>
+
+ 0 -1 4360 -3.3071819692850113e-02
+
+ -1.1073499917984009e-01 3.3718731254339218e-02
+ <_>
+
+ 0 -1 4361 1.0934790223836899e-01
+
+ 1.3508499599993229e-02 -6.5502017736434937e-01
+ <_>
+
+ 0 -1 4362 1.5925880521535873e-02
+
+ 3.3672690391540527e-02 -7.0779062807559967e-02
+ <_>
+
+ 0 -1 4363 -7.4891438707709312e-03
+
+ -2.6472839713096619e-01 3.8183860480785370e-02
+ <_>
+
+ 0 -1 4364 9.8611623980104923e-04
+
+ -1.6149909794330597e-01 2.9475390911102295e-02
+ <_>
+
+ 0 -1 4365 2.5206479430198669e-01
+
+ -3.2382488250732422e-02 3.1068611145019531e-01
+ <_>
+
+ 0 -1 4366 -2.8892729431390762e-02
+
+ -4.9116641283035278e-01 1.4923149719834328e-02
+ <_>
+
+ 0 -1 4367 -5.5389881134033203e-02
+
+ 5.7543408870697021e-01 -1.8582839518785477e-02
+ <_>
+
+ 0 -1 4368 3.1414598226547241e-02
+
+ 2.0720759406685829e-02 -9.4729647040367126e-02
+ <_>
+
+ 0 -1 4369 2.8307519387453794e-03
+
+ -2.2519350051879883e-01 4.1564159095287323e-02
+ <_>
+
+ 0 -1 4370 -3.3751260489225388e-02
+
+ -1.6646580398082733e-01 7.2693623602390289e-02
+ <_>
+
+ 0 -1 4371 -3.8290288299322128e-02
+
+ 7.9213732481002808e-01 -1.1434529908001423e-02
+ <_>
+
+ 0 -1 4372 -1.7989480867981911e-02
+
+ 1.1361669749021530e-01 -4.4032510370016098e-02
+ <_>
+
+ 0 -1 4373 1.8146529793739319e-02
+
+ 3.4219540655612946e-02 -2.5041630864143372e-01
+ <_>
+
+ 0 -1 4374 -6.9133192300796509e-02
+
+ -2.9793199896812439e-01 4.9929767847061157e-03
+ <_>
+
+ 0 -1 4375 1.2525920569896698e-01
+
+ 1.0709079913794994e-02 -7.6342308521270752e-01
+ <_>
+
+ 0 -1 4376 3.7683561444282532e-02
+
+ -3.4866910427808762e-02 1.9532379508018494e-01
+ <_>
+
+ 0 -1 4377 -7.6676071621477604e-03
+
+ 1.7114819586277008e-01 -5.1101781427860260e-02
+ <_>
+
+ 0 -1 4378 3.5654550883919001e-03
+
+ -6.9071911275386810e-02 6.5724693238735199e-02
+ <_>
+
+ 0 -1 4379 -1.8968600779771805e-02
+
+ -4.0976929664611816e-01 2.0560229197144508e-02
+ <_>
+
+ 0 -1 4380 -2.0211370661854744e-02
+
+ 3.3508920669555664e-01 -2.7907410636544228e-02
+ <_>
+
+ 0 -1 4381 -1.9064599648118019e-02
+
+ 1.9361929595470428e-01 -4.8648219555616379e-02
+ <_>
+
+ 0 -1 4382 1.0313340276479721e-01
+
+ 1.9382460042834282e-02 -1.1198680102825165e-01
+ <_>
+
+ 0 -1 4383 9.8863355815410614e-03
+
+ -2.4043160676956177e-01 4.4305600225925446e-02
+ <_>
+
+ 0 -1 4384 4.3293699622154236e-02
+
+ 1.0728780180215836e-02 -6.4660537242889404e-01
+ <_>
+
+ 0 -1 4385 6.1878331005573273e-02
+
+ 1.0291899554431438e-02 -7.2967112064361572e-01
+ <_>
+
+ 0 -1 4386 9.7703160718083382e-03
+
+ 3.1311180442571640e-02 -1.5605080127716064e-01
+ <_>
+
+ 0 -1 4387 -8.3175063133239746e-02
+
+ -3.3045348525047302e-01 2.3997390642762184e-02
+ <_>
+
+ 0 -1 4388 -3.1724658608436584e-01
+
+ 5.4760771989822388e-01 -1.7853379249572754e-02
+ <_>
+
+ 0 -1 4389 6.7434520460665226e-03
+
+ -6.6969439387321472e-02 1.2657959759235382e-01
+ <_>
+
+ 0 -1 4390 4.0886890143156052e-02
+
+ 4.3191551230847836e-03 -2.2032399475574493e-01
+ <_>
+
+ 0 -1 4391 6.4959921874105930e-03
+
+ 5.4097741842269897e-02 -1.5504899621009827e-01
+ <_>
+
+ 0 -1 4392 -3.2832350581884384e-02
+
+ 3.0770578980445862e-01 -2.4346910417079926e-02
+ <_>
+
+ 0 -1 4393 -1.6127960756421089e-02
+
+ -1.0477919876575470e-01 9.1267466545104980e-02
+ <_>
+
+ 0 -1 4394 3.4646671265363693e-02
+
+ 1.4030230231583118e-02 -1.8207600712776184e-01
+ <_>
+
+ 0 -1 4395 -3.3005408942699432e-02
+
+ 3.8698929548263550e-01 -2.1859629079699516e-02
+ <_>
+
+ 0 -1 4396 -4.3908338993787766e-02
+
+ -3.0621778964996338e-01 2.2774800658226013e-02
+ <_>
+
+ 0 -1 4397 2.4842899292707443e-02
+
+ 3.2077241688966751e-02 -2.5279021263122559e-01
+ <_>
+
+ 0 -1 4398 1.0331260040402412e-02
+
+ -6.0551200062036514e-02 1.2119130045175552e-01
+ <_>
+
+ 0 -1 4399 -6.7832246422767639e-02
+
+ -5.5833387374877930e-01 1.5336999669671059e-02
+ <_>
+
+ 0 -1 4400 3.4947868436574936e-02
+
+ 1.1647179722785950e-02 -2.5563651323318481e-01
+ <_>
+
+ 0 -1 4401 -2.5261789560317993e-02
+
+ 3.2832020521163940e-01 -2.3357210680842400e-02
+ <_>
+
+ 0 -1 4402 7.5701558962464333e-03
+
+ 7.1183882653713226e-02 -8.3878181874752045e-02
+ <_>
+
+ 0 -1 4403 1.1809100210666656e-01
+
+ -4.1809991002082825e-02 2.2083349525928497e-01
+ <_>
+
+ 0 -1 4404 3.6332231014966965e-02
+
+ 1.7415270209312439e-01 -5.1788080483675003e-02
+ <_>
+
+ 0 -1 4405 1.3216850347816944e-02
+
+ -4.7699850797653198e-01 1.8878389149904251e-02
+ <_>
+
+ 0 -1 4406 1.4325110241770744e-02
+
+ 2.1834760904312134e-02 -1.3961690664291382e-01
+ <_>
+
+ 0 -1 4407 1.3779220171272755e-03
+
+ -2.0156779885292053e-01 3.9925381541252136e-02
+ <_>
+
+ 0 -1 4408 1.4492850005626678e-01
+
+ -3.3947311341762543e-02 1.4805939793586731e-01
+ <_>
+
+ 0 -1 4409 2.0336720347404480e-01
+
+ -2.8280159458518028e-02 3.0469599366188049e-01
+ <_>
+
+ 0 -1 4410 -3.0550520867109299e-02
+
+ 1.5751589834690094e-01 -3.4339658915996552e-02
+ <_>
+
+ 0 -1 4411 -1.1067859828472137e-02
+
+ 2.4688349664211273e-01 -3.7554491311311722e-02
+ <_>
+
+ 0 -1 4412 2.5981210172176361e-02
+
+ 2.1994030103087425e-02 -1.4765749871730804e-01
+ <_>
+
+ 0 -1 4413 -4.8331938683986664e-02
+
+ -2.5580298900604248e-01 3.2857868820428848e-02
+ <_>
+
+ 0 -1 4414 1.5268280170857906e-02
+
+ 6.2162041664123535e-02 -5.1811810582876205e-02
+ <_>
+
+ 0 -1 4415 -2.4390730261802673e-01
+
+ 5.0339847803115845e-01 -1.6864169389009476e-02
+ <_>
+
+ 0 -1 4416 -3.2398870680481195e-03
+
+ -1.3850170373916626e-01 6.3738316297531128e-02
+ <_>
+
+ 0 -1 4417 6.1450928449630737e-02
+
+ -5.6962829083204269e-02 1.4706780016422272e-01
+ <_>
+
+ 0 -1 4418 4.3161489069461823e-02
+
+ 2.3441100493073463e-02 -2.6922780275344849e-01
+ <_>
+
+ 0 -1 4419 -1.1370860040187836e-02
+
+ -2.6135998964309692e-01 3.3624760806560516e-02
+ <_>
+
+ 0 -1 4420 -1.5418549999594688e-02
+
+ 2.2153179347515106e-01 -4.0866490453481674e-02
+ <_>
+
+ 0 -1 4421 4.5487228780984879e-02
+
+ -3.1598750501871109e-02 2.5687301158905029e-01
+ <_>
+
+ 0 -1 4422 -1.5879619866609573e-02
+
+ -2.9981338977813721e-01 2.7006199583411217e-02
+ <_>
+
+ 0 -1 4423 5.7012498378753662e-02
+
+ 1.5179580077528954e-02 -5.2078807353973389e-01
+ <_>
+
+ 0 -1 4424 -1.5038490295410156e-01
+
+ 2.5164321064949036e-01 -4.0796510875225067e-02
+ <_>
+
+ 0 -1 4425 -4.2246039956808090e-02
+
+ -4.8303580284118652e-01 1.9222039729356766e-02
+ <_>
+
+ 0 -1 4426 -7.4928469955921173e-02
+
+ -9.5458990335464478e-01 4.4229729101061821e-03
+ <_>
+
+ 0 -1 4427 -2.1251840516924858e-02
+
+ 3.1850698590278625e-01 -2.8021970763802528e-02
+ <_>
+
+ 0 -1 4428 5.3983781486749649e-02
+
+ 2.7037480846047401e-02 -3.4430688619613647e-01
+ <_>
+
+ 0 -1 4429 3.3572580665349960e-02
+
+ -7.6545879244804382e-02 1.4255550503730774e-01
+ <_>
+
+ 0 -1 4430 -6.7975879646837711e-03
+
+ 1.7748320102691650e-01 -4.3155338615179062e-02
+ <_>
+
+ 0 -1 4431 -1.3311849907040596e-03
+
+ 1.5498100221157074e-01 -7.6261833310127258e-02
+ <_>
+
+ 0 -1 4432 3.9364699274301529e-02
+
+ 3.6991588771343231e-02 -2.4243550002574921e-01
+ <_>
+
+ 0 -1 4433 -6.8364520557224751e-03
+
+ 1.0743640363216400e-01 -9.3058176338672638e-02
+ <_>
+
+ 0 -1 4434 1.6118010506033897e-02
+
+ -3.5690911114215851e-02 2.4185790121555328e-01
+ <_>
+
+ 0 -1 4435 -7.0620089769363403e-02
+
+ 6.3363391160964966e-01 -1.2438289821147919e-02
+ <_>
+
+ 0 -1 4436 4.4361630082130432e-01
+
+ -3.7221789360046387e-02 1.1892700195312500e-01
+ <_>
+
+ 0 -1 4437 -8.1899233162403107e-02
+
+ 3.4853339195251465e-01 -2.5211019441485405e-02
+ <_>
+
+ 0 -1 4438 -8.2997446879744530e-03
+
+ -3.0899089574813843e-01 2.5778239592909813e-02
+ <_>
+
+ 0 -1 4439 -2.9730390757322311e-02
+
+ -3.0759811401367188e-01 2.5530820712447166e-02
+ <_>
+
+ 0 -1 4440 -2.6014490053057671e-02
+
+ -1.2162390351295471e-01 1.8338350579142570e-02
+ <_>
+
+ 0 -1 4441 4.5121149742044508e-04
+
+ -5.4737848043441772e-01 1.3564749620854855e-02
+ <_>
+
+ 0 -1 4442 1.8679940700531006e-01
+
+ 7.8039847314357758e-02 -5.8137271553277969e-02
+ <_>
+
+ 0 -1 4443 3.1894310377538204e-03
+
+ -2.4976019561290741e-01 3.0865840613842010e-02
+ <_>
+
+ 0 -1 4444 -2.9449069872498512e-02
+
+ 1.0489200055599213e-01 -4.8869129270315170e-02
+ <_>
+
+ 0 -1 4445 2.9614970088005066e-02
+
+ -2.2261720150709152e-02 3.4992438554763794e-01
+ <_>
+
+ 0 -1 4446 3.9882060140371323e-02
+
+ 9.6727507188916206e-03 -6.7914432287216187e-01
+ <_>
+
+ 0 -1 4447 -2.4404419586062431e-02
+
+ -2.6743829250335693e-01 3.0360370874404907e-02
+ <_>
+
+ 0 -1 4448 4.3481849133968353e-02
+
+ -2.3372199386358261e-02 2.1356420218944550e-01
+ <_>
+
+ 0 -1 4449 -4.8128370195627213e-02
+
+ -3.6890029907226562e-01 2.2832820191979408e-02
+ <_>
+
+ 0 -1 4450 -1.3142440002411604e-03
+
+ 5.6764688342809677e-02 -1.3795310258865356e-01
+ <_>
+
+ 0 -1 4451 2.1767991129308939e-03
+
+ 8.2446262240409851e-02 -1.0511689633131027e-01
+ <_>
+
+ 0 -1 4452 -2.7471050620079041e-02
+
+ 9.6438340842723846e-02 -5.1520779728889465e-02
+ <_>
+
+ 0 -1 4453 5.2003171294927597e-02
+
+ -2.3240759968757629e-02 3.5900598764419556e-01
+ <_>
+
+ 0 -1 4454 2.9681740328669548e-02
+
+ 1.4641559682786465e-02 -2.1500889956951141e-01
+ <_>
+
+ 0 -1 4455 -4.7545950859785080e-02
+
+ -3.8834908604621887e-01 2.2062640637159348e-02
+ <_>
+
+ 0 -1 4456 -9.6900813281536102e-02
+
+ -4.3412810564041138e-01 6.4087379723787308e-03
+ <_>
+
+ 0 -1 4457 -3.8218989968299866e-01
+
+ -9.0176671743392944e-01 7.9825157299637794e-03
+ <_>
+
+ 0 -1 4458 -3.4389309585094452e-02
+
+ -3.1850269436836243e-01 9.1135511174798012e-03
+ <_>
+
+ 0 -1 4459 3.9068788290023804e-02
+
+ 2.8420960530638695e-02 -2.6570749282836914e-01
+ <_>
+
+ 0 -1 4460 1.0031700134277344e-01
+
+ -1.6155399382114410e-02 1.2212689965963364e-01
+ <_>
+
+ 0 -1 4461 -1.0857210308313370e-01
+
+ 3.7742871046066284e-01 -2.4014420807361603e-02
+ <_>
+
+ 0 -1 4462 -4.3303978600306436e-05
+
+ 2.0308060571551323e-02 -1.3060510158538818e-01
+ <_>
+
+ 0 -1 4463 -3.8757279515266418e-02
+
+ -1.5826420485973358e-01 4.9129229038953781e-02
+ <_>
+
+ 0 -1 4464 6.8668089807033539e-02
+
+ 5.5041261948645115e-03 -7.2222518920898438e-01
+ <_>
+
+ 0 -1 4465 -4.4268090277910233e-03
+
+ 8.2263059914112091e-02 -1.0354729741811752e-01
+ <_>
+
+ 0 -1 4466 -3.1016240245662630e-04
+
+ 9.0432256460189819e-02 -1.0348629951477051e-01
+ <_>
+
+ 0 -1 4467 3.7703070789575577e-02
+
+ 6.0126338154077530e-02 -1.6111390292644501e-01
+ <_>
+
+ 0 -1 4468 4.1672129184007645e-02
+
+ 8.5145309567451477e-03 -2.4217429757118225e-01
+ <_>
+
+ 0 -1 4469 -6.6434321925044060e-03
+
+ -2.7172479033470154e-01 3.1463291496038437e-02
+ <_>
+
+ 0 -1 4470 -4.0658649057149887e-02
+
+ -1.1673620343208313e-01 1.4849590137600899e-02
+ <_>
+
+ 0 -1 4471 -3.0082110315561295e-03
+
+ 4.0028568357229233e-02 -2.3079049587249756e-01
+ <_>
+
+ 0 -1 4472 -4.4187769293785095e-02
+
+ -1.7888109385967255e-01 1.7313620075583458e-02
+ <_>
+
+ 0 -1 4473 -1.1813719756901264e-02
+
+ 1.5633359551429749e-01 -5.4751630872488022e-02
+ <_>
+
+ 0 -1 4474 -2.4433450400829315e-01
+
+ 4.0716889500617981e-01 -3.8216509856283665e-03
+ <_>
+
+ 0 -1 4475 4.7230181097984314e-01
+
+ -5.5454619228839874e-02 1.6410639882087708e-01
+ <_>
+
+ 0 -1 4476 1.7955109942704439e-03
+
+ 9.5228001475334167e-02 -1.2934769690036774e-01
+ <_>
+
+ 0 -1 4477 -5.0934039056301117e-02
+
+ 2.2153440117835999e-01 -3.7975560873746872e-02
+ <_>
+
+ 0 -1 4478 -5.9531718492507935e-02
+
+ -4.2974939942359924e-01 1.3196409679949284e-02
+ <_>
+
+ 0 -1 4479 -3.5149399191141129e-02
+
+ -2.1232509613037109e-01 3.6872539669275284e-02
+ <_>
+
+ 0 -1 4480 -8.2134327385574579e-04
+
+ 7.4890241026878357e-02 -6.9701731204986572e-02
+ <_>
+
+ 0 -1 4481 6.3945869915187359e-03
+
+ 8.0602109432220459e-02 -1.0488619655370712e-01
+ <_>
+
+ 0 -1 4482 6.3735827803611755e-02
+
+ 1.1988660320639610e-02 -5.9508371353149414e-01
+ <_>
+
+ 0 -1 4483 6.6942021250724792e-02
+
+ 1.0711859911680222e-02 -7.0240277051925659e-01
+ <_>
+
+ 0 -1 4484 3.5445358604192734e-02
+
+ 8.8395569473505020e-03 -2.0588539540767670e-01
+ <_>
+
+ 0 -1 4485 8.2025423645973206e-02
+
+ 1.1511360295116901e-02 -6.7081338167190552e-01
+ <_>
+
+ 0 -1 4486 -1.2151840329170227e-01
+
+ 3.9124768972396851e-01 -6.0432488098740578e-03
+ <_>
+
+ 0 -1 4487 1.3732859492301941e-01
+
+ -1.6136020421981812e-02 4.6182548999786377e-01
+ <_>
+
+ 0 -1 4488 -1.6075259447097778e-01
+
+ -1. 2.4232869036495686e-03
+ <_>
+
+ 0 -1 4489 6.3080438412725925e-03
+
+ 4.3026689440011978e-02 -1.9072249531745911e-01
+ <_>
+
+ 0 -1 4490 -8.5772968828678131e-02
+
+ -5.3327548503875732e-01 1.4197999611496925e-02
+ <_>
+
+ 0 -1 4491 5.5853448808193207e-02
+
+ 4.0535259991884232e-02 -2.0816819369792938e-01
+ <_>
+ 350
+ -1.3171190023422241e+00
+
+ <_>
+
+ 0 -1 4492 -1.1009960435330868e-02
+
+ 1.6106800734996796e-01 -2.3270499706268311e-01
+ <_>
+
+ 0 -1 4493 5.6892321445047855e-03
+
+ -2.2233660519123077e-01 1.2257739901542664e-01
+ <_>
+
+ 0 -1 4494 4.3932348489761353e-03
+
+ -1.5293380618095398e-01 1.5888489782810211e-01
+ <_>
+
+ 0 -1 4495 -5.0024059601128101e-04
+
+ 6.1716180294752121e-02 -2.3175540566444397e-01
+ <_>
+
+ 0 -1 4496 4.2015648796223104e-04
+
+ -3.0259498953819275e-01 6.1093948781490326e-02
+ <_>
+
+ 0 -1 4497 -4.2626978829503059e-03
+
+ -2.4387679994106293e-01 6.9513782858848572e-02
+ <_>
+
+ 0 -1 4498 6.5330968936905265e-04
+
+ -3.7112379074096680e-01 4.6169780194759369e-02
+ <_>
+
+ 0 -1 4499 -1.0163539648056030e-01
+
+ 4.5089960098266602e-01 -1.4424510300159454e-02
+ <_>
+
+ 0 -1 4500 -1.3200199464336038e-03
+
+ 7.5765132904052734e-02 -1.9461849331855774e-01
+ <_>
+
+ 0 -1 4501 -9.8261423408985138e-03
+
+ -2.7440890669822693e-01 5.2373219281435013e-02
+ <_>
+
+ 0 -1 4502 -6.6574551165103912e-02
+
+ 4.2804849147796631e-01 -3.2640948891639709e-02
+ <_>
+
+ 0 -1 4503 -9.1772843152284622e-03
+
+ -2.5876390933990479e-01 6.1596788465976715e-02
+ <_>
+
+ 0 -1 4504 -2.5353950913995504e-03
+
+ 1.1473689973354340e-01 -1.0097979754209518e-01
+ <_>
+
+ 0 -1 4505 4.9194418825209141e-03
+
+ 4.0027469396591187e-02 -1.6378170251846313e-01
+ <_>
+
+ 0 -1 4506 -1.6810640227049589e-03
+
+ -1.3706670701503754e-01 8.0321729183197021e-02
+ <_>
+
+ 0 -1 4507 2.1476070396602154e-03
+
+ -2.3408600687980652e-01 4.3113950639963150e-02
+ <_>
+
+ 0 -1 4508 -3.3502440899610519e-02
+
+ -2.4204289913177490e-01 4.9100209027528763e-02
+ <_>
+
+ 0 -1 4509 1.4241789281368256e-01
+
+ -2.8680980205535889e-02 4.7807058691978455e-01
+ <_>
+
+ 0 -1 4510 5.8733951300382614e-04
+
+ -2.1685610711574554e-01 4.8530109226703644e-02
+ <_>
+
+ 0 -1 4511 -1.2295519700273871e-03
+
+ 9.3180246651172638e-02 -1.0158210247755051e-01
+ <_>
+
+ 0 -1 4512 1.1210669763386250e-02
+
+ 3.6210179328918457e-02 -2.3106449842453003e-01
+ <_>
+
+ 0 -1 4513 -2.5235990062355995e-02
+
+ 8.5747621953487396e-02 -5.4415158927440643e-02
+ <_>
+
+ 0 -1 4514 -1.0014030151069164e-02
+
+ -1.9362440705299377e-01 5.0274729728698730e-02
+ <_>
+
+ 0 -1 4515 -4.5554949901998043e-03
+
+ 8.8674992322921753e-02 -1.4237509667873383e-01
+ <_>
+
+ 0 -1 4516 -9.5264799892902374e-03
+
+ 2.6754239201545715e-01 -3.7632450461387634e-02
+ <_>
+
+ 0 -1 4517 2.3753349669277668e-03
+
+ 3.9261918514966965e-02 -1.4199909567832947e-01
+ <_>
+
+ 0 -1 4518 1.2389000039547682e-03
+
+ 6.8643912672996521e-02 -1.8060870468616486e-01
+ <_>
+
+ 0 -1 4519 -1.5835729427635670e-03
+
+ -1.3684159517288208e-01 5.7875689119100571e-02
+ <_>
+
+ 0 -1 4520 6.5202586352825165e-02
+
+ -3.4448388963937759e-02 2.5318139791488647e-01
+ <_>
+
+ 0 -1 4521 6.6306376538705081e-05
+
+ -8.4601633250713348e-02 9.1657586395740509e-02
+ <_>
+
+ 0 -1 4522 1.5117590010049753e-05
+
+ -9.3343816697597504e-02 1.1079390347003937e-01
+ <_>
+
+ 0 -1 4523 -2.2637350484728813e-03
+
+ -1.9531199336051941e-01 3.8263510912656784e-02
+ <_>
+
+ 0 -1 4524 6.5463641658425331e-04
+
+ 4.7860879451036453e-02 -1.6354900598526001e-01
+ <_>
+
+ 0 -1 4525 5.0345290452241898e-02
+
+ -1.5618369914591312e-02 5.2660512924194336e-01
+ <_>
+
+ 0 -1 4526 8.5375197231769562e-03
+
+ 3.3894728869199753e-02 -2.7040940523147583e-01
+ <_>
+
+ 0 -1 4527 -6.1621618270874023e-01
+
+ -9.3156081438064575e-01 2.6866910047829151e-03
+ <_>
+
+ 0 -1 4528 -2.6742840185761452e-02
+
+ 1.2415560334920883e-01 -8.1576861441135406e-02
+ <_>
+
+ 0 -1 4529 -1.4756740070879459e-02
+
+ -4.4224148988723755e-01 2.4418739601969719e-02
+ <_>
+
+ 0 -1 4530 1.2045809999108315e-02
+
+ -8.4552876651287079e-02 9.2735297977924347e-02
+ <_>
+
+ 0 -1 4531 -4.0131900459527969e-02
+
+ -2.5734719634056091e-01 1.0692110285162926e-02
+ <_>
+
+ 0 -1 4532 -1.0760580189526081e-03
+
+ 2.8027180582284927e-02 -2.6805961132049561e-01
+ <_>
+
+ 0 -1 4533 7.7456878498196602e-03
+
+ -3.6401689052581787e-02 2.6165041327476501e-01
+ <_>
+
+ 0 -1 4534 1.3539849780499935e-02
+
+ 2.8945919126272202e-02 -2.8003379702568054e-01
+ <_>
+
+ 0 -1 4535 -1.2464780360460281e-02
+
+ -3.6258488893508911e-01 1.3006039895117283e-02
+ <_>
+
+ 0 -1 4536 3.5297829657793045e-02
+
+ 1.2918749824166298e-02 -5.6460797786712646e-01
+ <_>
+
+ 0 -1 4537 -5.5710550397634506e-02
+
+ 1.2794859707355499e-01 -3.8257118314504623e-02
+ <_>
+
+ 0 -1 4538 -4.5230439864099026e-03
+
+ -9.9410563707351685e-02 7.8997522592544556e-02
+ <_>
+
+ 0 -1 4539 2.9874469619244337e-03
+
+ -4.8509139567613602e-02 1.1298680305480957e-01
+ <_>
+
+ 0 -1 4540 -6.3613310456275940e-02
+
+ -6.6647279262542725e-01 1.1221170425415039e-02
+ <_>
+
+ 0 -1 4541 1.3244490139186382e-02
+
+ -6.1976868659257889e-02 1.3122899830341339e-01
+ <_>
+
+ 0 -1 4542 -3.6382430698722601e-04
+
+ 4.3054241687059402e-02 -1.6996359825134277e-01
+ <_>
+
+ 0 -1 4543 -2.1500189602375031e-01
+
+ -4.6784079074859619e-01 1.2286320328712463e-02
+ <_>
+
+ 0 -1 4544 6.0248938389122486e-03
+
+ -5.1475919783115387e-02 1.5234859287738800e-01
+ <_>
+
+ 0 -1 4545 4.3000571429729462e-02
+
+ 3.8120739627629519e-03 -7.5349187850952148e-01
+ <_>
+
+ 0 -1 4546 8.5592586547136307e-03
+
+ 2.4470439180731773e-02 -3.2796609401702881e-01
+ <_>
+
+ 0 -1 4547 2.9510160675272346e-04
+
+ -7.6456926763057709e-02 6.8010047078132629e-02
+ <_>
+
+ 0 -1 4548 9.9761411547660828e-04
+
+ -8.4680661559104919e-02 9.6316136419773102e-02
+ <_>
+
+ 0 -1 4549 5.0175599753856659e-03
+
+ -3.9048101752996445e-02 1.0983789712190628e-01
+ <_>
+
+ 0 -1 4550 5.5693010799586773e-03
+
+ 4.0719300508499146e-02 -1.8395960330963135e-01
+ <_>
+
+ 0 -1 4551 1.0486049577593803e-03
+
+ -4.4622048735618591e-02 7.0918112993240356e-02
+ <_>
+
+ 0 -1 4552 3.2043100800365210e-03
+
+ -5.8839108794927597e-02 1.2777310609817505e-01
+ <_>
+
+ 0 -1 4553 -1.0644660145044327e-01
+
+ 4.3339949846267700e-01 -1.2449969537556171e-02
+ <_>
+
+ 0 -1 4554 -8.9908082736656070e-04
+
+ -1.1510500311851501e-01 6.3306562602519989e-02
+ <_>
+
+ 0 -1 4555 2.9652470257133245e-03
+
+ -3.1290680170059204e-02 7.2845660150051117e-02
+ <_>
+
+ 0 -1 4556 8.9800870046019554e-04
+
+ -8.6840502917766571e-02 1.0022729635238647e-01
+ <_>
+
+ 0 -1 4557 -2.1874029189348221e-02
+
+ 7.6143169403076172e-01 -4.5735938474535942e-03
+ <_>
+
+ 0 -1 4558 1.4919589739292860e-03
+
+ 8.2724168896675110e-02 -9.6837893128395081e-02
+ <_>
+
+ 0 -1 4559 -2.4136069696396589e-03
+
+ 6.2480941414833069e-02 -5.0549559295177460e-02
+ <_>
+
+ 0 -1 4560 1.2893830426037312e-02
+
+ -3.3901989459991455e-02 2.8036591410636902e-01
+ <_>
+
+ 0 -1 4561 -1.9992720335721970e-03
+
+ -1.7152810096740723e-01 4.0084149688482285e-02
+ <_>
+
+ 0 -1 4562 1.3713949592784047e-03
+
+ -1.2216719985008240e-01 6.2122181057929993e-02
+ <_>
+
+ 0 -1 4563 -8.9740045368671417e-03
+
+ -1.7094230651855469e-01 4.4032000005245209e-02
+ <_>
+
+ 0 -1 4564 -2.9300691094249487e-03
+
+ 1.2364040315151215e-01 -6.3765726983547211e-02
+ <_>
+
+ 0 -1 4565 -8.0555928871035576e-03
+
+ 1.1552560329437256e-01 -4.4458869844675064e-02
+ <_>
+
+ 0 -1 4566 6.4662001095712185e-03
+
+ 7.5147427618503571e-02 -1.1281009763479233e-01
+ <_>
+
+ 0 -1 4567 -1.9541789591312408e-01
+
+ -8.6494231224060059e-01 3.1826570630073547e-03
+ <_>
+
+ 0 -1 4568 -1.5740759670734406e-01
+
+ -7.2405809164047241e-01 9.4235781580209732e-03
+ <_>
+
+ 0 -1 4569 -3.1526461243629456e-02
+
+ -3.8218951225280762e-01 1.6386790201067924e-02
+ <_>
+
+ 0 -1 4570 5.0439048558473587e-02
+
+ -2.7623040601611137e-02 2.7306279540061951e-01
+ <_>
+
+ 0 -1 4571 -5.5078428704291582e-04
+
+ 4.9623548984527588e-02 -5.4462801665067673e-02
+ <_>
+
+ 0 -1 4572 1.5047970227897167e-03
+
+ -6.2058940529823303e-02 1.2204010039567947e-01
+ <_>
+
+ 0 -1 4573 -4.5796841382980347e-02
+
+ -9.3314772844314575e-01 6.8162381649017334e-03
+ <_>
+
+ 0 -1 4574 -9.3235643580555916e-03
+
+ -2.7436700463294983e-01 2.7820749208331108e-02
+ <_>
+
+ 0 -1 4575 1.0689129680395126e-01
+
+ 4.7212988138198853e-03 -4.4037041068077087e-01
+ <_>
+
+ 0 -1 4576 1.1234519770368934e-03
+
+ -1.4162249863147736e-01 4.7511368989944458e-02
+ <_>
+
+ 0 -1 4577 6.7312899045646191e-03
+
+ -4.5881479978561401e-02 1.1342740058898926e-01
+ <_>
+
+ 0 -1 4578 4.1264150291681290e-02
+
+ 1.1406780220568180e-02 -6.2894171476364136e-01
+ <_>
+
+ 0 -1 4579 -7.3788799345493317e-02
+
+ -4.1924831271171570e-01 7.9344836995005608e-03
+ <_>
+
+ 0 -1 4580 -3.2669529318809509e-02
+
+ 2.2224910557270050e-01 -3.0845979228615761e-02
+ <_>
+
+ 0 -1 4581 -5.9001590125262737e-03
+
+ -1.5003520250320435e-01 4.5819710940122604e-02
+ <_>
+
+ 0 -1 4582 -7.4141867458820343e-02
+
+ 5.6236612796783447e-01 -1.1184119619429111e-02
+ <_>
+
+ 0 -1 4583 -1.7110589891672134e-02
+
+ -3.0888330936431885e-01 1.7340350896120071e-02
+ <_>
+
+ 0 -1 4584 2.4508470669388771e-03
+
+ -5.7074081152677536e-02 1.1306890100240707e-01
+ <_>
+
+ 0 -1 4585 -2.1157979965209961e-02
+
+ 2.0264630019664764e-01 -1.4705169945955276e-02
+ <_>
+
+ 0 -1 4586 7.1819419972598553e-03
+
+ 2.9788199812173843e-02 -2.2308370471000671e-01
+ <_>
+
+ 0 -1 4587 5.0557879731059074e-03
+
+ -2.6257280260324478e-02 1.2028290331363678e-01
+ <_>
+
+ 0 -1 4588 1.2610659934580326e-02
+
+ 2.5965299457311630e-02 -2.5755238533020020e-01
+ <_>
+
+ 0 -1 4589 3.0165250791469589e-05
+
+ -1.1994919925928116e-01 2.8916500508785248e-02
+ <_>
+
+ 0 -1 4590 -1.3415860012173653e-03
+
+ 2.0592840015888214e-01 -3.2803039997816086e-02
+ <_>
+
+ 0 -1 4591 5.9342157328501344e-04
+
+ 4.9788691103458405e-02 -7.0998527109622955e-02
+ <_>
+
+ 0 -1 4592 -1.5428929589688778e-02
+
+ 3.2733771204948425e-01 -2.0239489153027534e-02
+ <_>
+
+ 0 -1 4593 -1.1928460298804566e-04
+
+ 2.6405010372400284e-02 -1.4666070044040680e-01
+ <_>
+
+ 0 -1 4594 -2.1726880222558975e-02
+
+ -4.4014349579811096e-01 1.4264649711549282e-02
+ <_>
+
+ 0 -1 4595 -3.0710769817233086e-02
+
+ 1.3549150526523590e-01 -1.7586210742592812e-02
+ <_>
+
+ 0 -1 4596 4.3861479498445988e-03
+
+ 5.4423790425062180e-02 -1.1234579980373383e-01
+ <_>
+
+ 0 -1 4597 4.7966800630092621e-03
+
+ -4.3494079262018204e-02 1.3108870387077332e-01
+ <_>
+
+ 0 -1 4598 2.2497470490634441e-03
+
+ 5.9489808976650238e-02 -1.0955479741096497e-01
+ <_>
+
+ 0 -1 4599 4.3578739278018475e-03
+
+ 5.9186179190874100e-02 -1.3026049733161926e-01
+ <_>
+
+ 0 -1 4600 2.0433720201253891e-03
+
+ -5.1625490188598633e-02 1.3787810504436493e-01
+ <_>
+
+ 0 -1 4601 -2.0268680527806282e-03
+
+ 8.8105127215385437e-02 -8.5867561399936676e-02
+ <_>
+
+ 0 -1 4602 -6.5703789005056024e-04
+
+ 7.1044988930225372e-02 -9.0751543641090393e-02
+ <_>
+
+ 0 -1 4603 4.4309969991445541e-02
+
+ -1.1522290296852589e-02 2.2733740508556366e-01
+ <_>
+
+ 0 -1 4604 4.6578957699239254e-03
+
+ -4.6123549342155457e-02 1.5277029573917389e-01
+ <_>
+
+ 0 -1 4605 -4.0960058569908142e-02
+
+ -5.5988901853561401e-01 1.2064740061759949e-02
+ <_>
+
+ 0 -1 4606 -6.7416871897876263e-03
+
+ 1.0484070330858231e-01 -6.5152801573276520e-02
+ <_>
+
+ 0 -1 4607 -2.9713090043514967e-04
+
+ 3.2221201807260513e-02 -8.4709979593753815e-02
+ <_>
+
+ 0 -1 4608 -8.0926045775413513e-03
+
+ -1.6476640105247498e-01 4.5700121670961380e-02
+ <_>
+
+ 0 -1 4609 4.0710348635911942e-02
+
+ 1.0099260136485100e-02 -1.0893329977989197e-01
+ <_>
+
+ 0 -1 4610 -1.1402929667383432e-03
+
+ -1.9269819557666779e-01 4.4590830802917480e-02
+ <_>
+
+ 0 -1 4611 -2.0306430757045746e-02
+
+ 6.8668061494827271e-01 -9.8533723503351212e-03
+ <_>
+
+ 0 -1 4612 4.8631370067596436e-02
+
+ 1.1991590261459351e-02 -6.4770907163619995e-01
+ <_>
+
+ 0 -1 4613 -5.4414950311183929e-02
+
+ 3.4730699658393860e-01 -1.1940590105950832e-02
+ <_>
+
+ 0 -1 4614 -5.9532530605792999e-02
+
+ 3.6410269141197205e-01 -1.6050819307565689e-02
+ <_>
+
+ 0 -1 4615 -3.5089451819658279e-02
+
+ -1.9252899289131165e-01 2.3598629981279373e-02
+ <_>
+
+ 0 -1 4616 5.7658711448311806e-03
+
+ -4.6293850988149643e-02 1.5287970006465912e-01
+ <_>
+
+ 0 -1 4617 -2.3687579669058323e-03
+
+ 5.7345230132341385e-02 -8.8195472955703735e-02
+ <_>
+
+ 0 -1 4618 -2.7341600507497787e-03
+
+ -2.3896160721778870e-01 2.5761809200048447e-02
+ <_>
+
+ 0 -1 4619 -9.1599775478243828e-03
+
+ 1.0037499666213989e-01 -2.6731979101896286e-02
+ <_>
+
+ 0 -1 4620 -5.0623171031475067e-02
+
+ 4.6908378601074219e-01 -1.3880429789423943e-02
+ <_>
+
+ 0 -1 4621 -4.3487590737640858e-03
+
+ -1.4812940359115601e-01 5.2115358412265778e-02
+ <_>
+
+ 0 -1 4622 4.0859800577163696e-01
+
+ 1.5454529784619808e-02 -4.6494269371032715e-01
+ <_>
+
+ 0 -1 4623 5.3104009479284286e-02
+
+ 7.8609427437186241e-03 -5.3555142879486084e-01
+ <_>
+
+ 0 -1 4624 -4.1035288013517857e-03
+
+ -1.3777880370616913e-01 4.6847809106111526e-02
+ <_>
+
+ 0 -1 4625 -2.7622529305517673e-03
+
+ 5.2303940057754517e-02 -9.4970837235450745e-02
+ <_>
+
+ 0 -1 4626 9.3903020024299622e-03
+
+ -2.3493729531764984e-02 3.6259791254997253e-01
+ <_>
+
+ 0 -1 4627 2.3771630600094795e-02
+
+ 8.0746166408061981e-02 -8.2893602550029755e-02
+ <_>
+
+ 0 -1 4628 2.8008709196001291e-03
+
+ -2.6595699787139893e-01 2.8534680604934692e-02
+ <_>
+
+ 0 -1 4629 -6.3013769686222076e-03
+
+ 8.0481633543968201e-02 -2.9016179963946342e-02
+ <_>
+
+ 0 -1 4630 -5.1433448679745197e-03
+
+ -1.1473509669303894e-01 5.8448631316423416e-02
+ <_>
+
+ 0 -1 4631 1.0679479455575347e-03
+
+ -3.1661890447139740e-02 5.4522778838872910e-02
+ <_>
+
+ 0 -1 4632 1.5213950537145138e-03
+
+ -6.2172550708055496e-02 9.7601316869258881e-02
+ <_>
+
+ 0 -1 4633 -3.3779911696910858e-02
+
+ -4.9582698941230774e-01 1.2093319557607174e-02
+ <_>
+
+ 0 -1 4634 -1.0505370050668716e-01
+
+ -9.8738801479339600e-01 5.1499558612704277e-03
+ <_>
+
+ 0 -1 4635 1.9685840234160423e-02
+
+ -5.6189429014921188e-02 9.1260537505149841e-02
+ <_>
+
+ 0 -1 4636 6.6470399498939514e-02
+
+ 1.4097889885306358e-02 -4.5731648802757263e-01
+ <_>
+
+ 0 -1 4637 -1.5898099169135094e-02
+
+ -2.3317760229110718e-01 1.1369620449841022e-02
+ <_>
+
+ 0 -1 4638 4.0450799278914928e-03
+
+ 4.3345049023628235e-02 -1.5908020734786987e-01
+ <_>
+
+ 0 -1 4639 -3.3486548811197281e-02
+
+ 1.3086590170860291e-01 -3.4327559173107147e-02
+ <_>
+
+ 0 -1 4640 2.1458480507135391e-02
+
+ -5.0213351845741272e-02 1.1467009782791138e-01
+ <_>
+
+ 0 -1 4641 1.1672739684581757e-01
+
+ -3.4590030554682016e-03 4.4156730175018311e-01
+ <_>
+
+ 0 -1 4642 -5.0386278890073299e-03
+
+ -1.3995400071144104e-01 4.0854398161172867e-02
+ <_>
+
+ 0 -1 4643 3.7261120975017548e-02
+
+ -1.6399189829826355e-02 2.3627850413322449e-01
+ <_>
+
+ 0 -1 4644 -1.7991460859775543e-02
+
+ -5.6703627109527588e-01 1.0185079649090767e-02
+ <_>
+
+ 0 -1 4645 1.0748039931058884e-01
+
+ 1.8287489656358957e-03 -7.8705781698226929e-01
+ <_>
+
+ 0 -1 4646 -2.1439619362354279e-02
+
+ 1.8347090482711792e-01 -3.2410789281129837e-02
+ <_>
+
+ 0 -1 4647 6.8095367169007659e-04
+
+ 4.1675068438053131e-02 -8.9301638305187225e-02
+ <_>
+
+ 0 -1 4648 -6.8581351079046726e-03
+
+ -1.4511869847774506e-01 5.1585499197244644e-02
+ <_>
+
+ 0 -1 4649 1.5318280458450317e-01
+
+ 3.1881679315119982e-03 -4.4190090894699097e-01
+ <_>
+
+ 0 -1 4650 2.2777369245886803e-02
+
+ -4.3234121054410934e-02 1.7477220296859741e-01
+ <_>
+
+ 0 -1 4651 6.6160550341010094e-03
+
+ 4.3140821158885956e-02 -1.7188510298728943e-01
+ <_>
+
+ 0 -1 4652 -8.8224448263645172e-03
+
+ 1.3203169405460358e-01 -4.7509200870990753e-02
+ <_>
+
+ 0 -1 4653 -5.1209977827966213e-03
+
+ -1.8979160487651825e-01 5.7657308876514435e-02
+ <_>
+
+ 0 -1 4654 -1.0311880148947239e-02
+
+ 3.2286819815635681e-01 -1.9725019112229347e-02
+ <_>
+
+ 0 -1 4655 -2.5065759196877480e-02
+
+ -3.6572399735450745e-01 1.8344869837164879e-02
+ <_>
+
+ 0 -1 4656 -1.4318429864943027e-02
+
+ 1.5795469284057617e-01 -3.8276918232440948e-02
+ <_>
+
+ 0 -1 4657 -5.7383939623832703e-02
+
+ -3.6835289001464844e-01 1.6900209710001945e-02
+ <_>
+
+ 0 -1 4658 -4.3680299073457718e-02
+
+ 4.4766798615455627e-01 -1.3710459694266319e-02
+ <_>
+
+ 0 -1 4659 -2.4289099872112274e-01
+
+ -7.5490927696228027e-01 8.9195184409618378e-03
+ <_>
+
+ 0 -1 4660 3.8089449517428875e-03
+
+ -6.2916718423366547e-02 9.4282902777194977e-02
+ <_>
+
+ 0 -1 4661 8.9389752247370780e-05
+
+ -1.1253400146961212e-01 9.9447913467884064e-02
+ <_>
+
+ 0 -1 4662 2.7378369122743607e-03
+
+ 7.4880510568618774e-02 -9.9257610738277435e-02
+ <_>
+
+ 0 -1 4663 2.3680560290813446e-02
+
+ 1.2105870060622692e-02 -1.1780750006437302e-01
+ <_>
+
+ 0 -1 4664 -4.6060070395469666e-02
+
+ 3.9799740910530090e-01 -1.7129369080066681e-02
+ <_>
+
+ 0 -1 4665 2.1130219101905823e-03
+
+ -6.0906849801540375e-02 4.9974281340837479e-02
+ <_>
+
+ 0 -1 4666 1.4753149822354317e-02
+
+ 1.6629729419946671e-02 -3.7806668877601624e-01
+ <_>
+
+ 0 -1 4667 3.5430908203125000e-02
+
+ -2.3844370618462563e-02 2.6354551315307617e-01
+ <_>
+
+ 0 -1 4668 -5.0745099782943726e-02
+
+ -2.3141309618949890e-01 2.8320349752902985e-02
+ <_>
+
+ 0 -1 4669 8.9874058961868286e-02
+
+ -1.0191249661147594e-02 2.6277700066566467e-01
+ <_>
+
+ 0 -1 4670 -2.7411670889705420e-03
+
+ -1.3828440010547638e-01 4.6966280788183212e-02
+ <_>
+
+ 0 -1 4671 8.7385937571525574e-02
+
+ 1.7351199639961123e-03 -8.0810409784317017e-01
+ <_>
+
+ 0 -1 4672 -2.9055110644549131e-03
+
+ 6.6193267703056335e-02 -9.5981188118457794e-02
+ <_>
+
+ 0 -1 4673 -5.1255577802658081e-01
+
+ -1. 8.6886010831221938e-04
+ <_>
+
+ 0 -1 4674 -1.3281259685754776e-02
+
+ 1.0134270042181015e-01 -6.4344279468059540e-02
+ <_>
+
+ 0 -1 4675 5.3660940378904343e-02
+
+ 3.2843649387359619e-03 -8.0011987686157227e-01
+ <_>
+
+ 0 -1 4676 3.9290629327297211e-02
+
+ 9.0429633855819702e-03 -6.7074328660964966e-01
+ <_>
+
+ 0 -1 4677 6.5197132527828217e-02
+
+ 4.4964649714529514e-03 -9.7931307554244995e-01
+ <_>
+
+ 0 -1 4678 3.2505281269550323e-02
+
+ -1.2679249979555607e-02 4.9774479866027832e-01
+ <_>
+
+ 0 -1 4679 -6.5749078989028931e-02
+
+ -3.7844368815422058e-01 5.9391320683062077e-03
+ <_>
+
+ 0 -1 4680 -6.0045070946216583e-02
+
+ -3.9957770705223083e-01 1.4155699871480465e-02
+ <_>
+
+ 0 -1 4681 -4.6631351113319397e-02
+
+ 1.6843810677528381e-01 -3.7634961307048798e-02
+ <_>
+
+ 0 -1 4682 1.8095660198014230e-04
+
+ -1.0198330134153366e-01 7.2940513491630554e-02
+ <_>
+
+ 0 -1 4683 -3.7607289850711823e-03
+
+ 4.5154098421335220e-02 -5.4370220750570297e-02
+ <_>
+
+ 0 -1 4684 -5.0964287947863340e-04
+
+ 1.6106060147285461e-01 -5.4398071020841599e-02
+ <_>
+
+ 0 -1 4685 -1.6095000319182873e-03
+
+ -2.1058610081672668e-01 3.0864259228110313e-02
+ <_>
+
+ 0 -1 4686 -5.4673491977155209e-03
+
+ 1.9076080620288849e-01 -3.2738618552684784e-02
+ <_>
+
+ 0 -1 4687 4.1697090491652489e-03
+
+ 2.0009849220514297e-02 -6.8173840641975403e-02
+ <_>
+
+ 0 -1 4688 3.2709140796214342e-03
+
+ -1.1110019683837891e-01 5.8211889117956161e-02
+ <_>
+
+ 0 -1 4689 -5.1663857884705067e-03
+
+ -8.5210792720317841e-02 3.3905100077390671e-02
+ <_>
+
+ 0 -1 4690 -1.2914719991385937e-02
+
+ -1.3726939260959625e-01 4.8348769545555115e-02
+ <_>
+
+ 0 -1 4691 -3.8130749017000198e-03
+
+ -1.1084940284490585e-01 3.2373629510402679e-02
+ <_>
+
+ 0 -1 4692 -5.7762481272220612e-02
+
+ 2.1701450645923615e-01 -2.9828049242496490e-02
+ <_>
+
+ 0 -1 4693 -2.2619909141212702e-03
+
+ 3.5641018301248550e-02 -5.5289078503847122e-02
+ <_>
+
+ 0 -1 4694 5.2979849278926849e-02
+
+ 7.7050398103892803e-03 -7.2121208906173706e-01
+ <_>
+
+ 0 -1 4695 -3.3839911222457886e-01
+
+ -9.4540262222290039e-01 4.5049181208014488e-03
+ <_>
+
+ 0 -1 4696 5.2918092114850879e-04
+
+ 4.1633930057287216e-02 -1.3283179700374603e-01
+ <_>
+
+ 0 -1 4697 2.8239609673619270e-03
+
+ 1.3815909624099731e-01 -1.1371930129826069e-02
+ <_>
+
+ 0 -1 4698 -2.1569489035755396e-03
+
+ 6.3553653657436371e-02 -8.4683336317539215e-02
+ <_>
+
+ 0 -1 4699 4.1426848620176315e-03
+
+ 4.1431330144405365e-02 -9.1413199901580811e-02
+ <_>
+
+ 0 -1 4700 -1.1016559787094593e-02
+
+ 8.0382406711578369e-02 -8.3978570997714996e-02
+ <_>
+
+ 0 -1 4701 -6.5561989322304726e-03
+
+ -1.3563759624958038e-01 3.4514341503381729e-02
+ <_>
+
+ 0 -1 4702 -2.2384698968380690e-03
+
+ -1.2900340557098389e-01 6.0718830674886703e-02
+ <_>
+
+ 0 -1 4703 -1.2789719738066196e-02
+
+ 2.6254388689994812e-01 -2.5295289233326912e-02
+ <_>
+
+ 0 -1 4704 -1.1028759926557541e-01
+
+ -4.0324538946151733e-01 1.3996849767863750e-02
+ <_>
+
+ 0 -1 4705 2.9025289695709944e-03
+
+ -6.0133900493383408e-02 4.0657509118318558e-02
+ <_>
+
+ 0 -1 4706 1.3041580095887184e-03
+
+ -1.1271840333938599e-01 5.3001549094915390e-02
+ <_>
+
+ 0 -1 4707 4.8518911004066467e-02
+
+ 9.9352700635790825e-03 -3.3844459056854248e-01
+ <_>
+
+ 0 -1 4708 -5.0848070532083511e-03
+
+ -1.3072639703750610e-01 4.7106929123401642e-02
+ <_>
+
+ 0 -1 4709 5.7023460976779461e-03
+
+ -5.2840489894151688e-02 1.2418749928474426e-01
+ <_>
+
+ 0 -1 4710 -2.7858179528266191e-03
+
+ -9.6685640513896942e-02 6.6828437149524689e-02
+ <_>
+
+ 0 -1 4711 -3.0082210432738066e-03
+
+ 7.1778140962123871e-02 -3.8511540740728378e-02
+ <_>
+
+ 0 -1 4712 6.9350451231002808e-03
+
+ -5.7932149618864059e-02 1.0691670328378677e-01
+ <_>
+
+ 0 -1 4713 -4.7064341604709625e-02
+
+ 1.0284499824047089e-01 -2.7998289093375206e-02
+ <_>
+
+ 0 -1 4714 -8.2645736634731293e-02
+
+ -8.5849452018737793e-01 6.3560227863490582e-03
+ <_>
+
+ 0 -1 4715 8.9476434513926506e-03
+
+ -3.9904471486806870e-02 6.6897280514240265e-02
+ <_>
+
+ 0 -1 4716 3.0593979358673096e-01
+
+ 7.2277039289474487e-03 -7.9749721288681030e-01
+ <_>
+
+ 0 -1 4717 -5.8336472138762474e-03
+
+ -1.9526490569114685e-01 2.4196550250053406e-02
+ <_>
+
+ 0 -1 4718 -5.3784619085490704e-03
+
+ 7.1967631578445435e-02 -9.1547563672065735e-02
+ <_>
+
+ 0 -1 4719 9.2504899948835373e-03
+
+ 3.6146361380815506e-02 -7.4494920670986176e-02
+ <_>
+
+ 0 -1 4720 3.7581291049718857e-02
+
+ -2.0222729071974754e-02 3.3224269747734070e-01
+ <_>
+
+ 0 -1 4721 -4.6818740665912628e-02
+
+ -5.0513672828674316e-01 1.2870309874415398e-02
+ <_>
+
+ 0 -1 4722 3.3507939428091049e-02
+
+ -1.8688799813389778e-02 3.0542388558387756e-01
+ <_>
+
+ 0 -1 4723 6.8437248468399048e-02
+
+ -6.2482542125508189e-04 8.3963787555694580e-01
+ <_>
+
+ 0 -1 4724 1.0151940397918224e-02
+
+ 2.5653729215264320e-02 -2.1830080449581146e-01
+ <_>
+
+ 0 -1 4725 -1.3866250216960907e-01
+
+ 5.7341670989990234e-01 -6.0921781696379185e-03
+ <_>
+
+ 0 -1 4726 -1.1214310070499778e-03
+
+ 7.0692487061023712e-02 -8.2995750010013580e-02
+ <_>
+
+ 0 -1 4727 1.4782310463488102e-03
+
+ -3.5161279141902924e-02 5.8569159358739853e-02
+ <_>
+
+ 0 -1 4728 -2.3407500702887774e-03
+
+ 1.2667399644851685e-01 -7.7700607478618622e-02
+ <_>
+
+ 0 -1 4729 4.3265568092465401e-03
+
+ 3.1229879707098007e-02 -1.1680649966001511e-01
+ <_>
+
+ 0 -1 4730 -3.2252248376607895e-02
+
+ -5.4395800828933716e-01 1.0386509820818901e-02
+ <_>
+
+ 0 -1 4731 -7.1836792631074786e-04
+
+ -6.3850082457065582e-02 4.8989679664373398e-02
+ <_>
+
+ 0 -1 4732 1.1035969946533442e-03
+
+ -7.1095839142799377e-02 8.3087973296642303e-02
+ <_>
+
+ 0 -1 4733 -1.0265519842505455e-02
+
+ 1.1647050082683563e-01 -2.8178630396723747e-02
+ <_>
+
+ 0 -1 4734 7.2632037103176117e-02
+
+ 7.5578331016004086e-03 -7.1635490655899048e-01
+ <_>
+
+ 0 -1 4735 1.2232369929552078e-01
+
+ -3.9898478426039219e-03 6.0708892345428467e-01
+ <_>
+
+ 0 -1 4736 -1.4398260414600372e-01
+
+ 8.5836321115493774e-01 -5.8769038878381252e-03
+ <_>
+
+ 0 -1 4737 5.9525449760258198e-03
+
+ 2.1712759509682655e-02 -1.5896700322628021e-01
+ <_>
+
+ 0 -1 4738 -1.3158279471099377e-03
+
+ 8.3239771425724030e-02 -7.1944266557693481e-02
+ <_>
+
+ 0 -1 4739 -3.5782668739557266e-02
+
+ -3.1888490915298462e-01 6.7262151278555393e-03
+ <_>
+
+ 0 -1 4740 1.4122560387477279e-03
+
+ -6.9247573614120483e-02 8.8037729263305664e-02
+ <_>
+
+ 0 -1 4741 -1.6188029199838638e-02
+
+ -6.0439001768827438e-02 6.7530423402786255e-02
+ <_>
+
+ 0 -1 4742 -2.8433150146156549e-03
+
+ 6.4466439187526703e-02 -1.0504409670829773e-01
+ <_>
+
+ 0 -1 4743 -1.5944750048220158e-03
+
+ -5.1919359713792801e-02 5.3710401058197021e-02
+ <_>
+
+ 0 -1 4744 1.8808269500732422e-01
+
+ -8.1325937062501907e-03 7.0354807376861572e-01
+ <_>
+
+ 0 -1 4745 -3.3552229404449463e-02
+
+ -3.1318250298500061e-01 2.4297190830111504e-02
+ <_>
+
+ 0 -1 4746 -1.5341060236096382e-02
+
+ 2.3687170445919037e-01 -2.8020450845360756e-02
+ <_>
+
+ 0 -1 4747 -1.3534810394048691e-02
+
+ -3.1544640660285950e-01 2.3011740297079086e-02
+ <_>
+
+ 0 -1 4748 3.2969659660011530e-03
+
+ 3.2923359423875809e-02 -1.5933570265769958e-01
+ <_>
+
+ 0 -1 4749 -4.4846888631582260e-02
+
+ 1.2876190245151520e-01 -1.7795780673623085e-02
+ <_>
+
+ 0 -1 4750 5.1291137933731079e-03
+
+ 3.2709009945392609e-02 -1.7871360480785370e-01
+ <_>
+
+ 0 -1 4751 1.1287770466879010e-03
+
+ -7.6234400272369385e-02 7.1267232298851013e-02
+ <_>
+
+ 0 -1 4752 1.2759109959006310e-02
+
+ -5.1268041133880615e-02 1.2901780009269714e-01
+ <_>
+
+ 0 -1 4753 5.3586461581289768e-04
+
+ 6.6144347190856934e-02 -6.8021528422832489e-02
+ <_>
+
+ 0 -1 4754 5.8012880617752671e-04
+
+ 7.5946256518363953e-02 -7.2426833212375641e-02
+ <_>
+
+ 0 -1 4755 9.8113536834716797e-02
+
+ 4.4115697965025902e-03 -5.7646822929382324e-01
+ <_>
+
+ 0 -1 4756 3.2547891139984131e-01
+
+ -2.8849789872765541e-02 2.3245050013065338e-01
+ <_>
+
+ 0 -1 4757 1.6109529882669449e-02
+
+ 2.6149509474635124e-02 -2.2507910430431366e-01
+ <_>
+
+ 0 -1 4758 1.6630800440907478e-02
+
+ -5.6001648306846619e-02 1.0011140257120132e-01
+ <_>
+
+ 0 -1 4759 1.2567469850182533e-02
+
+ 1.1760590225458145e-01 -2.5833690539002419e-02
+ <_>
+
+ 0 -1 4760 2.4531960487365723e-02
+
+ 2.1979559212923050e-02 -2.4158330261707306e-01
+ <_>
+
+ 0 -1 4761 5.1343659870326519e-03
+
+ -1.3964179903268814e-02 1.0398290306329727e-01
+ <_>
+
+ 0 -1 4762 -1.1144300224259496e-03
+
+ -8.1608608365058899e-02 6.4991973340511322e-02
+ <_>
+
+ 0 -1 4763 -6.8641006946563721e-02
+
+ 3.7113350629806519e-01 -1.7774619162082672e-02
+ <_>
+
+ 0 -1 4764 8.8211498223245144e-04
+
+ -8.4080681204795837e-02 6.2524639070034027e-02
+ <_>
+
+ 0 -1 4765 1.0471940040588379e-03
+
+ 6.9488562643527985e-02 -8.3000160753726959e-02
+ <_>
+
+ 0 -1 4766 1.6197249293327332e-02
+
+ 1.6007730737328529e-02 -3.4216699004173279e-01
+ <_>
+
+ 0 -1 4767 -2.2690620273351669e-02
+
+ 1.3959160447120667e-01 -4.2305570095777512e-02
+ <_>
+
+ 0 -1 4768 -4.1030000895261765e-02
+
+ -3.4669420123100281e-01 1.7233539372682571e-02
+ <_>
+
+ 0 -1 4769 8.5194930434226990e-02
+
+ -8.8493460789322853e-03 6.0639351606369019e-01
+ <_>
+
+ 0 -1 4770 3.9775099605321884e-02
+
+ 6.5457229502499104e-03 -9.3794268369674683e-01
+ <_>
+
+ 0 -1 4771 -1.8673250451683998e-02
+
+ 8.4701649844646454e-02 -2.1742990240454674e-02
+ <_>
+
+ 0 -1 4772 -1.1632209643721581e-02
+
+ -1.6503639519214630e-01 3.2852791249752045e-02
+ <_>
+
+ 0 -1 4773 -2.1068679634481668e-03
+
+ 2.5774169713258743e-02 -1.0540559887886047e-01
+ <_>
+
+ 0 -1 4774 -1.0474229929968715e-03
+
+ 5.3470570594072342e-02 -1.0844449698925018e-01
+ <_>
+
+ 0 -1 4775 6.6169992089271545e-02
+
+ 2.6304489001631737e-03 -4.3908849358558655e-01
+ <_>
+
+ 0 -1 4776 -1.2816500384360552e-03
+
+ -8.8744208216667175e-02 6.7286081612110138e-02
+ <_>
+
+ 0 -1 4777 -1.2601809576153755e-02
+
+ 2.3047180473804474e-01 -1.4204639941453934e-02
+ <_>
+
+ 0 -1 4778 3.1882619950920343e-03
+
+ -6.0790609568357468e-02 9.3256607651710510e-02
+ <_>
+
+ 0 -1 4779 -4.4821877963840961e-03
+
+ -7.4911139905452728e-02 3.5563640296459198e-02
+ <_>
+
+ 0 -1 4780 1.3803370529785752e-03
+
+ -6.5355330705642700e-02 8.9660577476024628e-02
+ <_>
+
+ 0 -1 4781 9.3855522572994232e-03
+
+ 2.2601179778575897e-02 -1.6038919985294342e-01
+ <_>
+
+ 0 -1 4782 -3.3057469408959150e-03
+
+ -9.3390651047229767e-02 5.6599788367748260e-02
+ <_>
+
+ 0 -1 4783 -1.4823249541223049e-02
+
+ 6.3946582376956940e-02 -3.7617258727550507e-02
+ <_>
+
+ 0 -1 4784 -2.4304309859871864e-02
+
+ 1.1825300008058548e-01 -5.3607080131769180e-02
+ <_>
+
+ 0 -1 4785 -2.6398031041026115e-03
+
+ -7.8462429344654083e-02 4.7125939279794693e-02
+ <_>
+
+ 0 -1 4786 -6.6844499669969082e-03
+
+ -1.4298090338706970e-01 5.4876580834388733e-02
+ <_>
+
+ 0 -1 4787 -1.8713249592110515e-03
+
+ 6.5964557230472565e-02 -5.9726029634475708e-02
+ <_>
+
+ 0 -1 4788 -5.0526339560747147e-02
+
+ 5.2933692932128906e-01 -1.0625099763274193e-02
+ <_>
+
+ 0 -1 4789 -7.1036286652088165e-02
+
+ -3.3027708530426025e-01 5.6759058497846127e-03
+ <_>
+
+ 0 -1 4790 -5.4212540388107300e-02
+
+ 3.7536340951919556e-01 -1.6479549929499626e-02
+ <_>
+
+ 0 -1 4791 1.4903850387781858e-04
+
+ -5.2896250039339066e-02 1.0646480321884155e-01
+ <_>
+
+ 0 -1 4792 1.0254220105707645e-03
+
+ -5.1714900881052017e-02 1.0771189630031586e-01
+ <_>
+
+ 0 -1 4793 7.6022921130061150e-03
+
+ 2.4376839399337769e-02 -1.2493179738521576e-01
+ <_>
+
+ 0 -1 4794 6.8572920281440020e-04
+
+ 7.1341581642627716e-02 -7.6490812003612518e-02
+ <_>
+
+ 0 -1 4795 -1.3697240501642227e-03
+
+ -1.5173940360546112e-01 3.9827719330787659e-02
+ <_>
+
+ 0 -1 4796 -2.4336120113730431e-03
+
+ 6.5315209329128265e-02 -7.9230897128582001e-02
+ <_>
+
+ 0 -1 4797 -1.4390869997441769e-02
+
+ -2.3706260323524475e-01 1.6740530729293823e-02
+ <_>
+
+ 0 -1 4798 7.8907981514930725e-02
+
+ -4.2810469865798950e-02 1.4248989522457123e-01
+ <_>
+
+ 0 -1 4799 1.0681129992008209e-01
+
+ 3.4115819726139307e-03 -7.7656471729278564e-01
+ <_>
+
+ 0 -1 4800 5.1377359777688980e-02
+
+ 1.0703410021960735e-02 -5.3400570154190063e-01
+ <_>
+
+ 0 -1 4801 -8.6883217096328735e-02
+
+ 1. -3.0740019865334034e-03
+ <_>
+
+ 0 -1 4802 -2.4080339353531599e-03
+
+ -1.0685530304908752e-01 4.9721568822860718e-02
+ <_>
+
+ 0 -1 4803 -1.5590289607644081e-02
+
+ 1.0636159777641296e-01 -2.4414319545030594e-02
+ <_>
+
+ 0 -1 4804 2.3770150728523731e-03
+
+ 3.9840381592512131e-02 -1.4689840376377106e-01
+ <_>
+
+ 0 -1 4805 -9.0648621320724487e-02
+
+ 1.8861660361289978e-01 -1.2951680459082127e-02
+ <_>
+
+ 0 -1 4806 4.4955732300877571e-03
+
+ -2.6563400402665138e-02 2.3943750560283661e-01
+ <_>
+
+ 0 -1 4807 -6.4725756645202637e-02
+
+ -5.4622077941894531e-01 9.2595359310507774e-03
+ <_>
+
+ 0 -1 4808 2.1703580394387245e-02
+
+ -8.8741881772875786e-03 6.4019817113876343e-01
+ <_>
+
+ 0 -1 4809 6.1110239475965500e-02
+
+ 9.5075201243162155e-03 -4.3702909350395203e-01
+ <_>
+
+ 0 -1 4810 2.0086880773305893e-02
+
+ 2.2985199466347694e-02 -2.2840890288352966e-01
+ <_>
+
+ 0 -1 4811 4.1216641664505005e-02
+
+ -1.4420590363442898e-02 1.3452969491481781e-01
+ <_>
+
+ 0 -1 4812 -2.3712279275059700e-02
+
+ -2.9533639550209045e-01 1.8435720354318619e-02
+ <_>
+
+ 0 -1 4813 -6.8324371241033077e-03
+
+ 1.2094250321388245e-01 -4.3016240000724792e-02
+ <_>
+
+ 0 -1 4814 1.0880210250616074e-01
+
+ -1.0228149592876434e-02 5.2824842929840088e-01
+ <_>
+
+ 0 -1 4815 9.8231732845306396e-03
+
+ 4.1886411607265472e-02 -1.3665479421615601e-01
+ <_>
+
+ 0 -1 4816 -1.5005770139396191e-02
+
+ 1.8148930370807648e-01 -3.0691139400005341e-02
+ <_>
+
+ 0 -1 4817 -4.4110611081123352e-01
+
+ -1. 1.4937899541109800e-03
+ <_>
+
+ 0 -1 4818 -3.4122800827026367e-01
+
+ -4.9184858798980713e-01 1.0096929967403412e-02
+ <_>
+
+ 0 -1 4819 9.3225948512554169e-03
+
+ -2.2894829511642456e-02 7.0796586573123932e-02
+ <_>
+
+ 0 -1 4820 7.3594371788203716e-03
+
+ 1.3842869549989700e-02 -3.6142700910568237e-01
+ <_>
+
+ 0 -1 4821 -8.4109082818031311e-02
+
+ -6.2284982204437256e-01 7.3129259981215000e-03
+ <_>
+
+ 0 -1 4822 1.0704870335757732e-02
+
+ -4.2617131024599075e-02 1.1360719799995422e-01
+ <_>
+
+ 0 -1 4823 1.1478140018880367e-02
+
+ 3.6586448550224304e-02 -9.6474952995777130e-02
+ <_>
+
+ 0 -1 4824 1.6416399739682674e-03
+
+ -9.8777309060096741e-02 5.5158369243144989e-02
+ <_>
+
+ 0 -1 4825 -1.5731199528090656e-04
+
+ -6.1207920312881470e-02 5.6053601205348969e-02
+ <_>
+
+ 0 -1 4826 4.1953278705477715e-03
+
+ 5.0657391548156738e-02 -1.0238680243492126e-01
+ <_>
+
+ 0 -1 4827 -1.6238249838352203e-02
+
+ 1.1267519742250443e-01 -1.3786830008029938e-02
+ <_>
+
+ 0 -1 4828 3.2428819686174393e-02
+
+ -2.5513019412755966e-02 2.3171940445899963e-01
+ <_>
+
+ 0 -1 4829 -8.3901472389698029e-03
+
+ -6.2842369079589844e-02 2.3776959627866745e-02
+ <_>
+
+ 0 -1 4830 4.9057020805776119e-03
+
+ 5.7676758617162704e-02 -1.2715479731559753e-01
+ <_>
+
+ 0 -1 4831 1.4458860270678997e-02
+
+ -5.0932768732309341e-02 6.2239319086074829e-02
+ <_>
+
+ 0 -1 4832 1.2484519928693771e-01
+
+ -1.1612229980528355e-02 4.9361020326614380e-01
+ <_>
+
+ 0 -1 4833 4.8587709665298462e-01
+
+ 4.8130601644515991e-03 -5.5395811796188354e-01
+ <_>
+
+ 0 -1 4834 1.6886210441589355e-01
+
+ 7.8053288161754608e-03 -7.3394978046417236e-01
+ <_>
+
+ 0 -1 4835 -2.1220340568106622e-04
+
+ 3.1656648963689804e-02 -1.0314700007438660e-01
+ <_>
+
+ 0 -1 4836 1.9249629694968462e-03
+
+ 5.5135779082775116e-02 -1.0309369862079620e-01
+ <_>
+
+ 0 -1 4837 -2.8178339824080467e-02
+
+ 1.1637330055236816e-01 -3.4630060195922852e-02
+ <_>
+
+ 0 -1 4838 -1.4069500379264355e-02
+
+ -1.4737719297409058e-01 4.4723790138959885e-02
+ <_>
+
+ 0 -1 4839 -1.2483589816838503e-03
+
+ -1.1185120046138763e-01 6.8806178867816925e-02
+ <_>
+
+ 0 -1 4840 5.3278112318366766e-04
+
+ -9.3908883631229401e-02 6.7072838544845581e-02
+ <_>
+
+ 0 -1 4841 1.1722769588232040e-02
+
+ -1.9012469798326492e-02 1.8834389746189117e-01
+ <_>
+ 249
+ -1.4526200294494629e+00
+
+ <_>
+
+ 0 -1 4842 5.8254651725292206e-02
+
+ -2.3232789337635040e-01 2.1454159915447235e-01
+ <_>
+
+ 0 -1 4843 3.4433450549840927e-02
+
+ -2.6520681381225586e-01 1.3274359703063965e-01
+ <_>
+
+ 0 -1 4844 1.4937009662389755e-02
+
+ -2.3927900195121765e-01 1.5786519646644592e-01
+ <_>
+
+ 0 -1 4845 3.1153639778494835e-02
+
+ -1.5004000067710876e-01 1.6116039454936981e-01
+ <_>
+
+ 0 -1 4846 2.6988480240106583e-03
+
+ -2.3409889638423920e-01 9.9983781576156616e-02
+ <_>
+
+ 0 -1 4847 9.2046073405072093e-05
+
+ -2.9268169403076172e-01 4.7872740775346756e-02
+ <_>
+
+ 0 -1 4848 5.0020251364912838e-05
+
+ -3.6815708875656128e-01 5.8189608156681061e-02
+ <_>
+
+ 0 -1 4849 -1.4902159571647644e-02
+
+ -3.8818851113319397e-01 2.6158519089221954e-02
+ <_>
+
+ 0 -1 4850 2.0448720082640648e-02
+
+ 6.0846891254186630e-02 -3.0645281076431274e-01
+ <_>
+
+ 0 -1 4851 6.2656581576447934e-05
+
+ -1.7161040008068085e-01 1.0800299793481827e-01
+ <_>
+
+ 0 -1 4852 -7.0627559907734394e-03
+
+ -2.3428949713706970e-01 7.6327130198478699e-02
+ <_>
+
+ 0 -1 4853 -2.9078179504722357e-03
+
+ -2.1010600030422211e-01 7.8605473041534424e-02
+ <_>
+
+ 0 -1 4854 -3.6554310470819473e-02
+
+ 1.7013889551162720e-01 -1.2837870419025421e-01
+ <_>
+
+ 0 -1 4855 -1.3991629704833031e-02
+
+ -1.5198560059070587e-01 3.1168300658464432e-02
+ <_>
+
+ 0 -1 4856 7.4681073427200317e-02
+
+ 3.6079999059438705e-02 -4.6322378516197205e-01
+ <_>
+
+ 0 -1 4857 -1.0407929867506027e-01
+
+ -3.1802299618721008e-01 2.0612560212612152e-02
+ <_>
+
+ 0 -1 4858 1.2444700114428997e-02
+
+ 7.7818617224693298e-02 -1.6825589537620544e-01
+ <_>
+
+ 0 -1 4859 3.4679330885410309e-02
+
+ 3.2584380358457565e-02 -2.6884159445762634e-01
+ <_>
+
+ 0 -1 4860 -2.9028469696640968e-02
+
+ -4.4522678852081299e-01 2.9661040753126144e-02
+ <_>
+
+ 0 -1 4861 2.3345749650616199e-04
+
+ -1.3071049749851227e-01 6.1756659299135208e-02
+ <_>
+
+ 0 -1 4862 3.6993178725242615e-01
+
+ 1.7400909215211868e-02 -7.0418548583984375e-01
+ <_>
+
+ 0 -1 4863 -2.1505730226635933e-02
+
+ -2.4095299839973450e-01 2.8891649097204208e-02
+ <_>
+
+ 0 -1 4864 5.4181810468435287e-02
+
+ -8.4053620696067810e-02 1.3876989483833313e-01
+ <_>
+
+ 0 -1 4865 -3.2677378505468369e-02
+
+ -2.9904881119728088e-01 2.8195250779390335e-02
+ <_>
+
+ 0 -1 4866 1.1804300360381603e-02
+
+ 4.9124121665954590e-02 -2.5538289546966553e-01
+ <_>
+
+ 0 -1 4867 -9.5703108236193657e-03
+
+ 1.1865220218896866e-01 -7.9305157065391541e-02
+ <_>
+
+ 0 -1 4868 -8.5534068057313561e-04
+
+ -9.0315766632556915e-02 1.2984269857406616e-01
+ <_>
+
+ 0 -1 4869 7.1445330977439880e-02
+
+ 1.4396210201084614e-02 -5.3161299228668213e-01
+ <_>
+
+ 0 -1 4870 6.1263251118361950e-03
+
+ -2.4559390544891357e-01 4.8353280872106552e-02
+ <_>
+
+ 0 -1 4871 -4.8277149908244610e-03
+
+ -2.3828850686550140e-01 7.5664043426513672e-02
+ <_>
+
+ 0 -1 4872 -2.6015359908342361e-03
+
+ 4.5826680958271027e-02 -2.4928370118141174e-01
+ <_>
+
+ 0 -1 4873 -4.7515620826743543e-04
+
+ 3.8604840636253357e-02 -1.3118830323219299e-01
+ <_>
+
+ 0 -1 4874 -5.4591469466686249e-02
+
+ 5.5260437726974487e-01 -1.9622489809989929e-02
+ <_>
+
+ 0 -1 4875 5.3931411355733871e-02
+
+ -4.8285599797964096e-02 2.2110609710216522e-01
+ <_>
+
+ 0 -1 4876 -9.1672148555517197e-03
+
+ -2.5744551420211792e-01 4.0833171457052231e-02
+ <_>
+
+ 0 -1 4877 -2.9818129260092974e-03
+
+ -7.5891457498073578e-02 6.0899209231138229e-02
+ <_>
+
+ 0 -1 4878 7.4697382748126984e-02
+
+ 3.6657888442277908e-02 -2.6946181058883667e-01
+ <_>
+
+ 0 -1 4879 -2.7006270363926888e-02
+
+ 1.8391659855842590e-01 -5.5832479149103165e-02
+ <_>
+
+ 0 -1 4880 -6.0810879804193974e-03
+
+ -3.2777228951454163e-01 3.5269659012556076e-02
+ <_>
+
+ 0 -1 4881 3.8182068616151810e-02
+
+ -5.6075371801853180e-02 2.1839509904384613e-01
+ <_>
+
+ 0 -1 4882 9.5723047852516174e-03
+
+ 8.4293976426124573e-02 -1.1767770349979401e-01
+ <_>
+
+ 0 -1 4883 7.8028216958045959e-02
+
+ 5.6959469802677631e-03 -8.1442731618881226e-01
+ <_>
+
+ 0 -1 4884 -3.2862029969692230e-02
+
+ -4.7212830185890198e-01 1.9418969750404358e-02
+ <_>
+
+ 0 -1 4885 4.2359679937362671e-02
+
+ -1.7929280176758766e-02 3.1368249654769897e-01
+ <_>
+
+ 0 -1 4886 -2.1030420437455177e-02
+
+ 1.4199249446392059e-01 -6.7171506583690643e-02
+ <_>
+
+ 0 -1 4887 -4.6487968415021896e-02
+
+ -3.0455109477043152e-01 3.1824499368667603e-02
+ <_>
+
+ 0 -1 4888 -8.5280627012252808e-02
+
+ 2.4725529551506042e-01 -4.0726520121097565e-02
+ <_>
+
+ 0 -1 4889 4.7598700039088726e-03
+
+ -6.4076490700244904e-02 1.0103560239076614e-01
+ <_>
+
+ 0 -1 4890 6.0733199119567871e-02
+
+ -8.8772647082805634e-02 1.1654719710350037e-01
+ <_>
+
+ 0 -1 4891 5.4770488291978836e-02
+
+ 2.2390449419617653e-02 -4.9855118989944458e-01
+ <_>
+
+ 0 -1 4892 -3.7478970625670627e-05
+
+ 6.2433928251266479e-02 -1.6515359282493591e-01
+ <_>
+
+ 0 -1 4893 -2.3898750543594360e-02
+
+ -1.9021050631999969e-01 1.4979549683630466e-02
+ <_>
+
+ 0 -1 4894 -1.8465859815478325e-02
+
+ 2.3008669912815094e-01 -4.5363288372755051e-02
+ <_>
+
+ 0 -1 4895 -3.8619639817625284e-03
+
+ -1.1168369650840759e-01 7.9550966620445251e-02
+ <_>
+
+ 0 -1 4896 6.0682989656925201e-02
+
+ 2.5401040911674500e-02 -4.1787821054458618e-01
+ <_>
+
+ 0 -1 4897 -6.1235381290316582e-03
+
+ -2.4201570451259613e-01 1.9984690472483635e-02
+ <_>
+
+ 0 -1 4898 -2.7558460831642151e-02
+
+ -4.5678210258483887e-01 2.0328069105744362e-02
+ <_>
+
+ 0 -1 4899 2.4938629940152168e-02
+
+ -3.8399018347263336e-02 1.3205289840698242e-01
+ <_>
+
+ 0 -1 4900 -4.7081429511308670e-02
+
+ 3.1839731335639954e-01 -3.2127480953931808e-02
+ <_>
+
+ 0 -1 4901 6.2321990728378296e-02
+
+ 1.7846960574388504e-02 -5.0114768743515015e-01
+ <_>
+
+ 0 -1 4902 -5.5789871839806437e-04
+
+ 1.0673029720783234e-01 -9.0454310178756714e-02
+ <_>
+
+ 0 -1 4903 -2.0528730005025864e-02
+
+ 2.2777000069618225e-01 -4.6683758497238159e-02
+ <_>
+
+ 0 -1 4904 1.4043749542906880e-03
+
+ -2.0688509941101074e-01 6.7320853471755981e-02
+ <_>
+
+ 0 -1 4905 3.1474549323320389e-02
+
+ 2.5873050093650818e-02 -3.1385809183120728e-01
+ <_>
+
+ 0 -1 4906 -3.1364340335130692e-02
+
+ -3.5079669952392578e-01 2.4890480563044548e-02
+ <_>
+
+ 0 -1 4907 -1.0076019912958145e-01
+
+ -2.2738389670848846e-01 1.0731879621744156e-02
+ <_>
+
+ 0 -1 4908 1.4409960247576237e-02
+
+ 2.4001860618591309e-01 -3.8389049470424652e-02
+ <_>
+
+ 0 -1 4909 5.6410171091556549e-02
+
+ -4.0667269378900528e-02 1.9880810379981995e-01
+ <_>
+
+ 0 -1 4910 -1.4310100115835667e-02
+
+ -2.2484239935874939e-01 5.1415968686342239e-02
+ <_>
+
+ 0 -1 4911 3.8093481212854385e-02
+
+ 1.0602000169456005e-02 -6.5031349658966064e-01
+ <_>
+
+ 0 -1 4912 7.3483381420373917e-03
+
+ 3.7624299526214600e-02 -2.3660179972648621e-01
+ <_>
+
+ 0 -1 4913 1.5990389883518219e-01
+
+ -3.1958691775798798e-02 7.8257188200950623e-02
+ <_>
+
+ 0 -1 4914 7.5298376381397247e-02
+
+ -2.2225739434361458e-02 4.7734829783439636e-01
+ <_>
+
+ 0 -1 4915 1.0515630245208740e-02
+
+ 2.4979539215564728e-02 -4.3517309427261353e-01
+ <_>
+
+ 0 -1 4916 1.1720249801874161e-01
+
+ -3.7235978990793228e-02 2.6529499888420105e-01
+ <_>
+
+ 0 -1 4917 1.5799700122443028e-05
+
+ -1.0837449878454208e-01 7.2809703648090363e-02
+ <_>
+
+ 0 -1 4918 1.2115119956433773e-02
+
+ 6.5032199025154114e-02 -1.4378160238265991e-01
+ <_>
+
+ 0 -1 4919 -1.7766270786523819e-02
+
+ 1.0095430165529251e-01 -2.4499140679836273e-02
+ <_>
+
+ 0 -1 4920 4.2227920144796371e-02
+
+ -3.6625079810619354e-02 2.8341490030288696e-01
+ <_>
+
+ 0 -1 4921 2.4346679449081421e-02
+
+ 2.4560010060667992e-02 -1.9787840545177460e-01
+ <_>
+
+ 0 -1 4922 3.1748838722705841e-02
+
+ 2.9603859409689903e-02 -3.0412709712982178e-01
+ <_>
+
+ 0 -1 4923 -5.2616238594055176e-02
+
+ 1.7751359939575195e-01 -3.1825721263885498e-02
+ <_>
+
+ 0 -1 4924 -5.4358910769224167e-02
+
+ 2.2886650264263153e-01 -4.0221411734819412e-02
+ <_>
+
+ 0 -1 4925 1.1845750268548727e-03
+
+ 6.1528120189905167e-02 -1.2204740196466446e-01
+ <_>
+
+ 0 -1 4926 -3.6325298249721527e-02
+
+ -2.9528170824050903e-01 3.3452831208705902e-02
+ <_>
+
+ 0 -1 4927 1.5100809931755066e-01
+
+ -2.5661900639533997e-02 3.8788089156150818e-01
+ <_>
+
+ 0 -1 4928 2.8278939425945282e-02
+
+ -3.5951491445302963e-02 2.5251358747482300e-01
+ <_>
+
+ 0 -1 4929 -8.3803251385688782e-02
+
+ -7.2599482536315918e-01 4.1993269696831703e-03
+ <_>
+
+ 0 -1 4930 -2.9865629039704800e-04
+
+ 5.5302988737821579e-02 -1.6678869724273682e-01
+ <_>
+
+ 0 -1 4931 -1.6872739419341087e-02
+
+ -1.9040539860725403e-01 5.2307758480310440e-02
+ <_>
+
+ 0 -1 4932 -5.9451311826705933e-02
+
+ -4.7634351253509521e-01 2.0981209352612495e-02
+ <_>
+
+ 0 -1 4933 -1.8378829583525658e-02
+
+ 6.6858462989330292e-02 -6.0389090329408646e-02
+ <_>
+
+ 0 -1 4934 4.8198848962783813e-02
+
+ 4.2580351233482361e-02 -2.6010730862617493e-01
+ <_>
+
+ 0 -1 4935 -4.3217130005359650e-02
+
+ -2.5067010521888733e-01 1.7225300893187523e-02
+ <_>
+
+ 0 -1 4936 -6.3647949136793613e-03
+
+ -1.6788710653781891e-01 6.8857319653034210e-02
+ <_>
+
+ 0 -1 4937 2.4770569801330566e-01
+
+ -3.3154450356960297e-02 1.4794079959392548e-01
+ <_>
+
+ 0 -1 4938 -1.1216869950294495e-01
+
+ 5.1129728555679321e-01 -1.7360100522637367e-02
+ <_>
+
+ 0 -1 4939 3.6601010710000992e-02
+
+ -4.3869979679584503e-02 1.9755239784717560e-01
+ <_>
+
+ 0 -1 4940 -7.2332553565502167e-02
+
+ -8.2932412624359131e-01 1.1810120195150375e-02
+ <_>
+
+ 0 -1 4941 7.7837951481342316e-02
+
+ 2.4520579725503922e-02 -2.7260521054267883e-01
+ <_>
+
+ 0 -1 4942 7.2094596922397614e-02
+
+ 3.7606250494718552e-02 -2.7291780710220337e-01
+ <_>
+
+ 0 -1 4943 -8.7373353540897369e-02
+
+ -9.5344787836074829e-01 3.2734218984842300e-03
+ <_>
+
+ 0 -1 4944 -3.6240059882402420e-02
+
+ -3.2300001382827759e-01 2.6389310136437416e-02
+ <_>
+
+ 0 -1 4945 -8.7862694635987282e-03
+
+ -1.4808210730552673e-01 4.6761561185121536e-02
+ <_>
+
+ 0 -1 4946 6.5432381816208363e-03
+
+ 6.0071479529142380e-02 -1.5036399662494659e-01
+ <_>
+
+ 0 -1 4947 2.7910009957849979e-03
+
+ -7.9585656523704529e-02 6.4064942300319672e-02
+ <_>
+
+ 0 -1 4948 2.9471930116415024e-02
+
+ 3.6904528737068176e-02 -2.7659609913825989e-01
+ <_>
+
+ 0 -1 4949 -4.4924151152372360e-02
+
+ 3.5313630104064941e-01 -2.7219140902161598e-02
+ <_>
+
+ 0 -1 4950 7.8969523310661316e-02
+
+ 1.0873800143599510e-02 -9.3217527866363525e-01
+ <_>
+
+ 0 -1 4951 -3.1053030863404274e-02
+
+ 2.4087889492511749e-01 -2.7155969291925430e-02
+ <_>
+
+ 0 -1 4952 5.0429090857505798e-02
+
+ -5.4164800792932510e-02 2.0343920588493347e-01
+ <_>
+
+ 0 -1 4953 -3.7637658417224884e-02
+
+ 3.2998979091644287e-01 -3.4573089331388474e-02
+ <_>
+
+ 0 -1 4954 -1.7269999952986836e-03
+
+ -1.2339779734611511e-01 7.5958393514156342e-02
+ <_>
+
+ 0 -1 4955 1.2604339979588985e-02
+
+ 3.6150000989437103e-02 -2.1591770648956299e-01
+ <_>
+
+ 0 -1 4956 1.1010640300810337e-02
+
+ -1.4330290257930756e-01 6.3043266534805298e-02
+ <_>
+
+ 0 -1 4957 1.3539699837565422e-02
+
+ -7.8418523073196411e-02 1.8389409780502319e-01
+ <_>
+
+ 0 -1 4958 -3.8949768990278244e-02
+
+ 3.4183630347251892e-01 -2.9505429789423943e-02
+ <_>
+
+ 0 -1 4959 -4.9093078821897507e-02
+
+ -3.6278200149536133e-01 1.7093619331717491e-02
+ <_>
+
+ 0 -1 4960 4.2306110262870789e-03
+
+ 5.8190550655126572e-02 -1.8383790552616119e-01
+ <_>
+
+ 0 -1 4961 8.9376904070377350e-03
+
+ -5.1576498895883560e-02 1.9376990199089050e-01
+ <_>
+
+ 0 -1 4962 4.0846280753612518e-02
+
+ 1.3241729699075222e-02 -7.0892220735549927e-01
+ <_>
+
+ 0 -1 4963 -3.6945961415767670e-02
+
+ -3.4456318616867065e-01 7.1702878922224045e-03
+ <_>
+
+ 0 -1 4964 -1.2924180366098881e-02
+
+ -1.9354179501533508e-01 4.8157788813114166e-02
+ <_>
+
+ 0 -1 4965 3.3079650253057480e-02
+
+ -5.1704820245504379e-02 1.3492329418659210e-01
+ <_>
+
+ 0 -1 4966 2.2233519703149796e-02
+
+ 5.2919991314411163e-02 -1.7628639936447144e-01
+ <_>
+
+ 0 -1 4967 -1.4483500272035599e-02
+
+ 1.5105240046977997e-01 -3.9817798882722855e-02
+ <_>
+
+ 0 -1 4968 1.5934909880161285e-01
+
+ -3.3422928303480148e-02 2.8085818886756897e-01
+ <_>
+
+ 0 -1 4969 1.2470430135726929e-01
+
+ 1.1225829832255840e-02 -4.5520108938217163e-01
+ <_>
+
+ 0 -1 4970 7.0243299007415771e-02
+
+ 2.6213169097900391e-02 -3.4778589010238647e-01
+ <_>
+
+ 0 -1 4971 6.1747688055038452e-01
+
+ 9.0320473536849022e-03 -5.5216097831726074e-01
+ <_>
+
+ 0 -1 4972 7.7007927000522614e-02
+
+ 9.3850009143352509e-03 -6.9495117664337158e-01
+ <_>
+
+ 0 -1 4973 4.2874120175838470e-02
+
+ -3.3166319131851196e-02 1.3550239801406860e-01
+ <_>
+
+ 0 -1 4974 -2.4558259174227715e-02
+
+ 3.8989260792732239e-01 -2.0506320521235466e-02
+ <_>
+
+ 0 -1 4975 1.0723150335252285e-02
+
+ -5.1526758819818497e-02 8.9461207389831543e-02
+ <_>
+
+ 0 -1 4976 3.8331970572471619e-02
+
+ -3.9952859282493591e-02 1.8591549992561340e-01
+ <_>
+
+ 0 -1 4977 1.2556019425392151e-01
+
+ 5.1561538130044937e-03 -8.4782391786575317e-01
+ <_>
+
+ 0 -1 4978 1.1590070277452469e-01
+
+ 9.7828712314367294e-03 -7.6437431573867798e-01
+ <_>
+
+ 0 -1 4979 -1.5016060322523117e-02
+
+ -1.8328569829463959e-01 3.2125338912010193e-02
+ <_>
+
+ 0 -1 4980 -4.1521931998431683e-03
+
+ 9.8160982131958008e-02 -8.2769006490707397e-02
+ <_>
+
+ 0 -1 4981 1.4998050173744559e-03
+
+ 4.1228689253330231e-02 -8.4460526704788208e-02
+ <_>
+
+ 0 -1 4982 3.8117531687021255e-02
+
+ 1.9691960886120796e-02 -3.9931151270866394e-01
+ <_>
+
+ 0 -1 4983 9.4391452148556709e-04
+
+ -1.9674700498580933e-01 5.6476209312677383e-02
+ <_>
+
+ 0 -1 4984 2.4907960323616862e-04
+
+ 9.2797473073005676e-02 -1.0708689689636230e-01
+ <_>
+
+ 0 -1 4985 2.5447670370340347e-02
+
+ -2.5304390117526054e-02 1.0032439976930618e-01
+ <_>
+
+ 0 -1 4986 -2.8884090483188629e-02
+
+ -1.7259830236434937e-01 4.9671061336994171e-02
+ <_>
+
+ 0 -1 4987 1.2102840095758438e-01
+
+ -5.5194748565554619e-03 9.5438259840011597e-01
+ <_>
+
+ 0 -1 4988 -7.9245921224355698e-03
+
+ 6.4903482794761658e-02 -1.2671549618244171e-01
+ <_>
+
+ 0 -1 4989 -6.5536066889762878e-02
+
+ -3.7892189621925354e-01 1.6463089734315872e-02
+ <_>
+
+ 0 -1 4990 -1.6883460804820061e-02
+
+ 5.8534818887710571e-01 -1.4671769924461842e-02
+ <_>
+
+ 0 -1 4991 6.7252418957650661e-03
+
+ 2.7604229748249054e-02 -3.4817421436309814e-01
+ <_>
+
+ 0 -1 4992 -6.3783898949623108e-02
+
+ -3.9567160606384277e-01 1.9867889583110809e-02
+ <_>
+
+ 0 -1 4993 1.8600550293922424e-01
+
+ -4.5898579061031342e-02 7.3586076498031616e-02
+ <_>
+
+ 0 -1 4994 4.9724031239748001e-02
+
+ -2.0517630502581596e-02 4.3107840418815613e-01
+ <_>
+
+ 0 -1 4995 1.5011380426585674e-02
+
+ 4.0192149579524994e-02 -1.0242489725351334e-01
+ <_>
+
+ 0 -1 4996 -1.5085030347108841e-02
+
+ 2.3888920247554779e-01 -3.5642918199300766e-02
+ <_>
+
+ 0 -1 4997 -1.2931490316987038e-02
+
+ -3.6863088607788086e-01 1.7377890646457672e-02
+ <_>
+
+ 0 -1 4998 -1.3186899945139885e-02
+
+ -4.3170270323753357e-01 1.7947910353541374e-02
+ <_>
+
+ 0 -1 4999 -6.6814959049224854e-02
+
+ 4.1336119174957275e-01 -2.0904310047626495e-02
+ <_>
+
+ 0 -1 5000 4.4064331799745560e-02
+
+ -3.8615190982818604e-01 2.1414510905742645e-02
+ <_>
+
+ 0 -1 5001 4.1341730952262878e-01
+
+ 1.0130990296602249e-02 -4.7053098678588867e-01
+ <_>
+
+ 0 -1 5002 2.4443659931421280e-02
+
+ 9.3184120953083038e-02 -8.6774162948131561e-02
+ <_>
+
+ 0 -1 5003 1.5779680013656616e-01
+
+ 4.8137311823666096e-03 -5.8746212720870972e-01
+ <_>
+
+ 0 -1 5004 -2.0141510292887688e-02
+
+ 2.2643919289112091e-01 -4.6824630349874496e-02
+ <_>
+
+ 0 -1 5005 3.8796770386397839e-03
+
+ -7.7155217528343201e-02 3.6106169223785400e-02
+ <_>
+
+ 0 -1 5006 1.5064960345625877e-02
+
+ -5.6656859815120697e-02 1.4758649468421936e-01
+ <_>
+
+ 0 -1 5007 1.2925310060381889e-02
+
+ 3.5308018326759338e-02 -1.1645320057868958e-01
+ <_>
+
+ 0 -1 5008 -1.4788310043513775e-02
+
+ -1.1459939926862717e-01 7.5000070035457611e-02
+ <_>
+
+ 0 -1 5009 -2.0497168879956007e-03
+
+ 4.2067401111125946e-02 -7.0409573614597321e-02
+ <_>
+
+ 0 -1 5010 8.9428946375846863e-03
+
+ 5.3989838808774948e-02 -1.5380840003490448e-01
+ <_>
+
+ 0 -1 5011 1.0064999759197235e-01
+
+ -2.9709249734878540e-02 3.1293758749961853e-01
+ <_>
+
+ 0 -1 5012 -4.6580079942941666e-02
+
+ -7.2227877378463745e-01 1.3004340231418610e-02
+ <_>
+
+ 0 -1 5013 -3.8618590682744980e-02
+
+ 3.3867758512496948e-01 -2.1726610139012337e-02
+ <_>
+
+ 0 -1 5014 8.5657741874456406e-03
+
+ 7.0621289312839508e-02 -1.3055880367755890e-01
+ <_>
+
+ 0 -1 5015 -1.0986299812793732e-01
+
+ 3.7974509596824646e-01 -5.1755867898464203e-03
+ <_>
+
+ 0 -1 5016 3.0184251070022583e-01
+
+ -2.4274839088320732e-02 3.6632651090621948e-01
+ <_>
+
+ 0 -1 5017 -5.3246088325977325e-02
+
+ -5.5290502309799194e-01 6.2071220017969608e-03
+ <_>
+
+ 0 -1 5018 3.6629870533943176e-02
+
+ 2.3161249235272408e-02 -3.5514861345291138e-01
+ <_>
+
+ 0 -1 5019 6.9993197917938232e-02
+
+ 8.9623704552650452e-03 -8.2245421409606934e-01
+ <_>
+
+ 0 -1 5020 -8.7623577564954758e-03
+
+ -2.8028720617294312e-01 2.6217460632324219e-02
+ <_>
+
+ 0 -1 5021 1.5275989659130573e-02
+
+ -5.0123069435358047e-02 1.5774080157279968e-01
+ <_>
+
+ 0 -1 5022 1.8836189806461334e-01
+
+ 1.1483459733426571e-02 -7.4004447460174561e-01
+ <_>
+
+ 0 -1 5023 -1.4518629759550095e-02
+
+ 8.2921922206878662e-02 -5.2536141127347946e-02
+ <_>
+
+ 0 -1 5024 1.9221989437937737e-02
+
+ 4.0790341794490814e-02 -2.0889760553836823e-01
+ <_>
+
+ 0 -1 5025 -3.1274989247322083e-02
+
+ 8.0864340066909790e-01 -1.0754980146884918e-02
+ <_>
+
+ 0 -1 5026 -4.9813431687653065e-03
+
+ -1.9617860019207001e-01 4.1330069303512573e-02
+ <_>
+
+ 0 -1 5027 3.7296909838914871e-02
+
+ 3.0313879251480103e-02 -2.7336311340332031e-01
+ <_>
+
+ 0 -1 5028 -1.9014550372958183e-02
+
+ 1.3439440727233887e-01 -6.0782499611377716e-02
+ <_>
+
+ 0 -1 5029 -7.9229613766074181e-03
+
+ -7.9689770936965942e-02 4.0497440844774246e-02
+ <_>
+
+ 0 -1 5030 9.6371799707412720e-02
+
+ -2.5576870888471603e-02 3.2440510392189026e-01
+ <_>
+
+ 0 -1 5031 -1.7210310325026512e-02
+
+ 2.9772299528121948e-01 -3.0994139611721039e-02
+ <_>
+
+ 0 -1 5032 1.0736179538071156e-02
+
+ -7.0299342274665833e-02 1.2448900192975998e-01
+ <_>
+
+ 0 -1 5033 -4.0398869663476944e-02
+
+ -6.4470887184143066e-01 6.9025149568915367e-03
+ <_>
+
+ 0 -1 5034 -3.1870428472757339e-02
+
+ -5.3339338302612305e-01 1.5221790410578251e-02
+ <_>
+
+ 0 -1 5035 3.6518078297376633e-02
+
+ -7.7875651419162750e-02 1.4458900690078735e-01
+ <_>
+
+ 0 -1 5036 1.2330260127782822e-01
+
+ 1.7689300701022148e-02 -5.1895797252655029e-01
+ <_>
+
+ 0 -1 5037 1.0086199641227722e-01
+
+ 6.6002830862998962e-03 -5.5289500951766968e-01
+ <_>
+
+ 0 -1 5038 1.0026770085096359e-01
+
+ 1.0175090283155441e-02 -7.1554392576217651e-01
+ <_>
+
+ 0 -1 5039 3.6956761032342911e-02
+
+ 2.2131860256195068e-02 -3.1452280282974243e-01
+ <_>
+
+ 0 -1 5040 8.5017476230859756e-03
+
+ 4.9146678298711777e-02 -1.5193499624729156e-01
+ <_>
+
+ 0 -1 5041 5.3833048790693283e-02
+
+ 2.5698679964989424e-03 -5.0750207901000977e-01
+ <_>
+
+ 0 -1 5042 4.8958938568830490e-02
+
+ 9.2353876680135727e-03 -7.9371142387390137e-01
+ <_>
+
+ 0 -1 5043 4.0810879319906235e-02
+
+ -4.6270430088043213e-02 1.9726410508155823e-01
+ <_>
+
+ 0 -1 5044 -3.3165120985358953e-03
+
+ -2.1495009958744049e-01 3.8868401199579239e-02
+ <_>
+
+ 0 -1 5045 4.8434760537929833e-04
+
+ -1.7870649695396423e-01 5.7129681110382080e-02
+ <_>
+
+ 0 -1 5046 7.9494096338748932e-02
+
+ -2.2463550791144371e-02 3.6770978569984436e-01
+ <_>
+
+ 0 -1 5047 -8.8844364508986473e-03
+
+ -3.3796560764312744e-01 2.5869650766253471e-02
+ <_>
+
+ 0 -1 5048 -1.0575620457530022e-02
+
+ 1.2438619881868362e-01 -6.8147383630275726e-02
+ <_>
+
+ 0 -1 5049 7.3358109220862389e-03
+
+ -4.3375171720981598e-02 1.5483480691909790e-01
+ <_>
+
+ 0 -1 5050 4.2306821793317795e-02
+
+ 1.0016439855098724e-01 -8.8011689484119415e-02
+ <_>
+
+ 0 -1 5051 7.1759216487407684e-02
+
+ -8.9269876480102539e-03 2.3254199326038361e-01
+ <_>
+
+ 0 -1 5052 -2.2478280588984489e-02
+
+ -5.4057407379150391e-01 1.4396119862794876e-02
+ <_>
+
+ 0 -1 5053 -2.5606580078601837e-02
+
+ -4.3508179485797882e-02 6.4285047352313995e-02
+ <_>
+
+ 0 -1 5054 2.5733409449458122e-02
+
+ 2.3084849119186401e-02 -3.4278741478919983e-01
+ <_>
+
+ 0 -1 5055 -7.0163339376449585e-02
+
+ 4.0744331479072571e-01 -1.1836090125143528e-02
+ <_>
+
+ 0 -1 5056 -1.2527329847216606e-02
+
+ 9.1184526681900024e-02 -8.7035633623600006e-02
+ <_>
+
+ 0 -1 5057 5.9983458369970322e-02
+
+ 3.6528799682855606e-03 -8.0261522531509399e-01
+ <_>
+
+ 0 -1 5058 -5.2271911408752203e-04
+
+ 6.9573827087879181e-02 -1.2091639637947083e-01
+ <_>
+
+ 0 -1 5059 -2.0996539294719696e-01
+
+ -4.6747279167175293e-01 9.4682360067963600e-03
+ <_>
+
+ 0 -1 5060 -1.8358640372753143e-02
+
+ 1.4919880032539368e-01 -5.7198900729417801e-02
+ <_>
+
+ 0 -1 5061 -1.3342049904167652e-02
+
+ 1.4447879791259766e-01 -2.2494640201330185e-02
+ <_>
+
+ 0 -1 5062 -3.0613059177994728e-02
+
+ -3.3590090274810791e-01 2.4433709681034088e-02
+ <_>
+
+ 0 -1 5063 -1.9018750637769699e-02
+
+ 1.5518119931221008e-01 -2.5613630190491676e-02
+ <_>
+
+ 0 -1 5064 -4.5201808214187622e-02
+
+ 4.8730811476707458e-01 -1.7641659826040268e-02
+ <_>
+
+ 0 -1 5065 6.3432596623897552e-02
+
+ -5.1946818828582764e-02 1.2361440062522888e-01
+ <_>
+
+ 0 -1 5066 3.4017860889434814e-03
+
+ -1.7030030488967896e-01 5.4143410176038742e-02
+ <_>
+
+ 0 -1 5067 -8.5307076573371887e-02
+
+ -7.1878427267074585e-01 1.0392259806394577e-02
+ <_>
+
+ 0 -1 5068 -5.3066499531269073e-02
+
+ 5.2359157800674438e-01 -1.8369760364294052e-02
+ <_>
+
+ 0 -1 5069 -2.8319370001554489e-02
+
+ -1.1979889869689941e-01 5.8951549232006073e-02
+ <_>
+
+ 0 -1 5070 -8.7353803217411041e-02
+
+ 2.7089080214500427e-01 -2.9345329850912094e-02
+ <_>
+
+ 0 -1 5071 2.7152231335639954e-01
+
+ -1.1648589745163918e-02 5.5842977762222290e-01
+ <_>
+
+ 0 -1 5072 1.9388480111956596e-02
+
+ 5.0895590335130692e-02 -1.7962279915809631e-01
+ <_>
+
+ 0 -1 5073 2.1159179508686066e-02
+
+ -4.8424899578094482e-02 9.5020256936550140e-02
+ <_>
+
+ 0 -1 5074 1.2039250135421753e-01
+
+ 9.2587787657976151e-03 -8.7804621458053589e-01
+ <_>
+
+ 0 -1 5075 5.0090719014406204e-02
+
+ -2.1926950663328171e-02 2.0202030241489410e-01
+ <_>
+
+ 0 -1 5076 -5.5227670818567276e-03
+
+ 2.1560280025005341e-01 -3.6554779857397079e-02
+ <_>
+
+ 0 -1 5077 2.7551440522074699e-02
+
+ -3.2782018184661865e-02 1.6503919661045074e-01
+ <_>
+
+ 0 -1 5078 -2.5543190538883209e-02
+
+ -3.6424461007118225e-01 2.1275209262967110e-02
+ <_>
+
+ 0 -1 5079 -2.6791828870773315e-01
+
+ 4.8525270819664001e-01 -4.7535290941596031e-03
+ <_>
+
+ 0 -1 5080 -1.6798110306262970e-01
+
+ 3.9280641078948975e-01 -1.9414989277720451e-02
+ <_>
+
+ 0 -1 5081 4.5900348573923111e-02
+
+ -3.6706160753965378e-02 2.0677609741687775e-01
+ <_>
+
+ 0 -1 5082 3.6797890788875520e-04
+
+ -8.7039902806282043e-02 9.2830970883369446e-02
+ <_>
+
+ 0 -1 5083 -9.9194556474685669e-02
+
+ -3.6096671223640442e-01 2.1962769329547882e-02
+ <_>
+
+ 0 -1 5084 8.0924080975819379e-05
+
+ -7.9007692635059357e-02 9.5904067158699036e-02
+ <_>
+
+ 0 -1 5085 7.0894961245357990e-03
+
+ 3.7076078355312347e-02 -5.0917111337184906e-02
+ <_>
+
+ 0 -1 5086 -1.2181960046291351e-03
+
+ 4.9094028770923615e-02 -1.5975970029830933e-01
+ <_>
+
+ 0 -1 5087 -9.2138662934303284e-02
+
+ 5.5284732580184937e-01 -1.3595860451459885e-02
+ <_>
+
+ 0 -1 5088 6.2209279276430607e-03
+
+ 4.6889189630746841e-02 -1.8105800449848175e-01
+ <_>
+
+ 0 -1 5089 6.5014839172363281e-02
+
+ 9.4407051801681519e-03 -5.1224017143249512e-01
+ <_>
+
+ 0 -1 5090 5.4055921733379364e-02
+
+ 1.6289059072732925e-02 -4.2684501409530640e-01
+ <_>
+ 368
+ -1.3073990345001221e+00
+
+ <_>
+
+ 0 -1 5091 3.7594079971313477e-02
+
+ -1.5953080356121063e-01 2.4245350062847137e-01
+ <_>
+
+ 0 -1 5092 4.0349629707634449e-03
+
+ -2.5617128610610962e-01 8.0420561134815216e-02
+ <_>
+
+ 0 -1 5093 2.1681638900190592e-03
+
+ -2.8089070320129395e-01 7.0903629064559937e-02
+ <_>
+
+ 0 -1 5094 -7.4014628808072302e-06
+
+ 4.9326181411743164e-02 -1.9688490033149719e-01
+ <_>
+
+ 0 -1 5095 -2.2384349722415209e-03
+
+ 6.8618856370449066e-02 -2.1775339543819427e-01
+ <_>
+
+ 0 -1 5096 2.9939650557935238e-03
+
+ -2.4257700145244598e-01 2.9716130346059799e-02
+ <_>
+
+ 0 -1 5097 4.5135850086808205e-03
+
+ 8.9443869888782501e-02 -1.9461549818515778e-01
+ <_>
+
+ 0 -1 5098 3.8457550108432770e-03
+
+ 5.0935801118612289e-02 -2.7721929550170898e-01
+ <_>
+
+ 0 -1 5099 4.0572669240646064e-04
+
+ -8.5517741739749908e-02 1.6446280479431152e-01
+ <_>
+
+ 0 -1 5100 -7.0624578256683890e-06
+
+ 7.8454487025737762e-02 -1.2395980209112167e-01
+ <_>
+
+ 0 -1 5101 -2.8428720543161035e-04
+
+ 1.0774250328540802e-01 -1.2222009897232056e-01
+ <_>
+
+ 0 -1 5102 7.3404680006206036e-03
+
+ 4.7837160527706146e-02 -2.4441170692443848e-01
+ <_>
+
+ 0 -1 5103 3.6235509905964136e-03
+
+ -3.1533789634704590e-01 3.5066880285739899e-02
+ <_>
+
+ 0 -1 5104 -1.5671759610995650e-03
+
+ -1.7147080600261688e-01 6.5121836960315704e-02
+ <_>
+
+ 0 -1 5105 4.2834067717194557e-03
+
+ -1.3190010190010071e-01 9.2709146440029144e-02
+ <_>
+
+ 0 -1 5106 -8.9772082865238190e-03
+
+ 1.2469480186700821e-01 -2.8118500486016273e-02
+ <_>
+
+ 0 -1 5107 5.5919871665537357e-03
+
+ 4.8671621829271317e-02 -2.2460219264030457e-01
+ <_>
+
+ 0 -1 5108 1.1782390065491199e-02
+
+ 3.1041109934449196e-02 -2.9882109165191650e-01
+ <_>
+
+ 0 -1 5109 -5.5568912066519260e-03
+
+ 1.3689100742340088e-01 -7.7152192592620850e-02
+ <_>
+
+ 0 -1 5110 1.7162049189209938e-02
+
+ -4.0298670530319214e-02 1.1232800036668777e-01
+ <_>
+
+ 0 -1 5111 3.5631000064313412e-03
+
+ 5.6056100875139236e-02 -1.9608840346336365e-01
+ <_>
+
+ 0 -1 5112 2.2586699575185776e-02
+
+ 1.1250300332903862e-02 -5.0490778684616089e-01
+ <_>
+
+ 0 -1 5113 2.6307879015803337e-03
+
+ 4.1528269648551941e-02 -2.2185860574245453e-01
+ <_>
+
+ 0 -1 5114 -1.0008380049839616e-03
+
+ 5.9657059609889984e-02 -1.5395790338516235e-01
+ <_>
+
+ 0 -1 5115 -7.1316999383270741e-03
+
+ 1.0590689629316330e-01 -8.9700952172279358e-02
+ <_>
+
+ 0 -1 5116 -6.1685360968112946e-02
+
+ 1.2677849829196930e-01 -2.2709969431161880e-02
+ <_>
+
+ 0 -1 5117 1.3120709918439388e-02
+
+ -6.3731230795383453e-02 1.5842080116271973e-01
+ <_>
+
+ 0 -1 5118 3.2676599919795990e-02
+
+ 2.5724250823259354e-02 -3.3406201004981995e-01
+ <_>
+
+ 0 -1 5119 1.8886770308017731e-01
+
+ -1.7100410535931587e-02 5.3700131177902222e-01
+ <_>
+
+ 0 -1 5120 -1.6522880468983203e-04
+
+ 5.4908581078052521e-02 -1.1608000099658966e-01
+ <_>
+
+ 0 -1 5121 -1.4789770357310772e-03
+
+ 7.7602192759513855e-02 -1.0971190035343170e-01
+ <_>
+
+ 0 -1 5122 -1.2441210448741913e-02
+
+ -1.4090730249881744e-01 6.8732522428035736e-02
+ <_>
+
+ 0 -1 5123 1.9457910209894180e-02
+
+ -3.7276178598403931e-02 2.6319879293441772e-01
+ <_>
+
+ 0 -1 5124 -2.9123809654265642e-03
+
+ -1.8960340321063995e-01 2.9360920190811157e-02
+ <_>
+
+ 0 -1 5125 -2.3870699107646942e-02
+
+ 2.5528749823570251e-01 -3.1279411166906357e-02
+ <_>
+
+ 0 -1 5126 -2.6912079192698002e-03
+
+ -1.4431649446487427e-01 4.8498779535293579e-02
+ <_>
+
+ 0 -1 5127 -1.7636029515415430e-03
+
+ -1.3328640162944794e-01 5.4250828921794891e-02
+ <_>
+
+ 0 -1 5128 -1.8844179809093475e-02
+
+ 1.1653099954128265e-01 -3.8028150796890259e-02
+ <_>
+
+ 0 -1 5129 3.8752850145101547e-02
+
+ -3.6811299622058868e-02 2.1002089977264404e-01
+ <_>
+
+ 0 -1 5130 9.4316434115171432e-03
+
+ 5.7964589446783066e-02 -1.8342800438404083e-01
+ <_>
+
+ 0 -1 5131 -1.1705379933118820e-02
+
+ 1.7905050516128540e-01 -4.9799650907516479e-02
+ <_>
+
+ 0 -1 5132 -4.4072889722883701e-03
+
+ -1.9810500741004944e-01 4.4608719646930695e-02
+ <_>
+
+ 0 -1 5133 -4.7192219644784927e-03
+
+ -1.8307499587535858e-01 4.2252171784639359e-02
+ <_>
+
+ 0 -1 5134 -4.5182029716670513e-03
+
+ 9.5572151243686676e-02 -6.0799460858106613e-02
+ <_>
+
+ 0 -1 5135 -5.4851798340678215e-03
+
+ -1.7556129395961761e-01 4.0092539042234421e-02
+ <_>
+
+ 0 -1 5136 -9.9079031497240067e-04
+
+ -1.3978339731693268e-01 4.8252910375595093e-02
+ <_>
+
+ 0 -1 5137 -5.0425329245626926e-03
+
+ -8.8625833392143250e-02 7.9794026911258698e-02
+ <_>
+
+ 0 -1 5138 -6.3926707953214645e-03
+
+ 3.5854909569025040e-02 -8.5030712187290192e-02
+ <_>
+
+ 0 -1 5139 -1.1408809572458267e-02
+
+ 7.7756106853485107e-02 -1.0200379788875580e-01
+ <_>
+
+ 0 -1 5140 5.9286449104547501e-02
+
+ 6.4652841538190842e-03 -4.9082350730895996e-01
+ <_>
+
+ 0 -1 5141 -5.7389298453927040e-03
+
+ -1.6221189498901367e-01 5.9541791677474976e-02
+ <_>
+
+ 0 -1 5142 4.4626160524785519e-03
+
+ -2.4659389629960060e-02 2.8509560227394104e-01
+ <_>
+
+ 0 -1 5143 -7.4683688580989838e-04
+
+ 5.5159430950880051e-02 -1.4510269463062286e-01
+ <_>
+
+ 0 -1 5144 7.5665451586246490e-03
+
+ -3.0510440468788147e-02 9.2685796320438385e-02
+ <_>
+
+ 0 -1 5145 8.1203378736972809e-02
+
+ 8.3315223455429077e-03 -8.8626891374588013e-01
+ <_>
+
+ 0 -1 5146 2.5454829446971416e-03
+
+ -5.4131258279085159e-02 1.6551689803600311e-01
+ <_>
+
+ 0 -1 5147 5.6319180876016617e-02
+
+ 1.5744749456644058e-02 -4.6605950593948364e-01
+ <_>
+
+ 0 -1 5148 -2.7670960873365402e-02
+
+ 2.7910009026527405e-01 -2.1267570555210114e-02
+ <_>
+
+ 0 -1 5149 5.7495549321174622e-02
+
+ 1.3765430077910423e-02 -5.6881892681121826e-01
+ <_>
+
+ 0 -1 5150 1.1847530258819461e-03
+
+ 6.3452966511249542e-02 -1.6044929623603821e-01
+ <_>
+
+ 0 -1 5151 4.2551690712571144e-03
+
+ 6.3017703592777252e-02 -1.3584609329700470e-01
+ <_>
+
+ 0 -1 5152 -2.1190859377384186e-02
+
+ 1.9623500108718872e-01 -2.8249129652976990e-02
+ <_>
+
+ 0 -1 5153 8.3922911435365677e-03
+
+ -6.2064249068498611e-02 1.1225070059299469e-01
+ <_>
+
+ 0 -1 5154 -3.5534579306840897e-02
+
+ 1.8565779924392700e-01 -2.1027710288763046e-02
+ <_>
+
+ 0 -1 5155 -9.2783384025096893e-03
+
+ -1.6255140304565430e-01 5.3493771702051163e-02
+ <_>
+
+ 0 -1 5156 -7.4480189941823483e-03
+
+ 5.6045979261398315e-02 -2.7357129380106926e-02
+ <_>
+
+ 0 -1 5157 3.4573610872030258e-02
+
+ 2.7872329577803612e-02 -2.5443691015243530e-01
+ <_>
+
+ 0 -1 5158 1.0644230060279369e-02
+
+ -2.5041149929165840e-02 1.2895500659942627e-01
+ <_>
+
+ 0 -1 5159 -6.9164121523499489e-03
+
+ 5.5145461112260818e-02 -1.4286629855632782e-01
+ <_>
+
+ 0 -1 5160 4.0446728467941284e-02
+
+ 4.3409019708633423e-03 -3.0095139145851135e-01
+ <_>
+
+ 0 -1 5161 -2.1182280033826828e-02
+
+ 2.3987750709056854e-01 -3.0267970636487007e-02
+ <_>
+
+ 0 -1 5162 -1.8278649076819420e-02
+
+ -2.8024369478225708e-01 2.0352259278297424e-02
+ <_>
+
+ 0 -1 5163 -6.0500060208141804e-03
+
+ -1.5138089656829834e-01 4.5843418687582016e-02
+ <_>
+
+ 0 -1 5164 -7.4632540345191956e-03
+
+ 7.3087826371192932e-02 -3.9645120501518250e-02
+ <_>
+
+ 0 -1 5165 -3.1640689820051193e-02
+
+ 3.8544759154319763e-01 -1.8987689167261124e-02
+ <_>
+
+ 0 -1 5166 -4.9488719552755356e-02
+
+ -3.7455439567565918e-01 4.6011591330170631e-03
+ <_>
+
+ 0 -1 5167 -2.4384791031479836e-03
+
+ -1.0864440351724625e-01 7.0171296596527100e-02
+ <_>
+
+ 0 -1 5168 7.4253929778933525e-03
+
+ -4.4223289936780930e-02 7.5678370893001556e-02
+ <_>
+
+ 0 -1 5169 -5.3592741489410400e-02
+
+ 1.9981780648231506e-01 -3.8047380745410919e-02
+ <_>
+
+ 0 -1 5170 -2.1555580198764801e-02
+
+ -5.2737689018249512e-01 7.7934260480105877e-03
+ <_>
+
+ 0 -1 5171 4.1731819510459900e-03
+
+ 3.8742069154977798e-02 -1.6946560144424438e-01
+ <_>
+
+ 0 -1 5172 4.1882280260324478e-02
+
+ -1.1853899806737900e-02 2.9235321283340454e-01
+ <_>
+
+ 0 -1 5173 -2.2035069763660431e-02
+
+ -1.3629269599914551e-01 4.7323219478130341e-02
+ <_>
+
+ 0 -1 5174 1.6916249878704548e-03
+
+ -4.9461908638477325e-02 7.4048481881618500e-02
+ <_>
+
+ 0 -1 5175 -1.9994638860225677e-03
+
+ 9.3016393482685089e-02 -7.5230561196804047e-02
+ <_>
+
+ 0 -1 5176 -8.7527623400092125e-03
+
+ 8.4076300263404846e-02 -3.7777189165353775e-02
+ <_>
+
+ 0 -1 5177 2.8121439740061760e-02
+
+ 3.8471631705760956e-02 -1.9039680063724518e-01
+ <_>
+
+ 0 -1 5178 2.4713769555091858e-02
+
+ -1.1225669644773006e-02 1.3408440351486206e-01
+ <_>
+
+ 0 -1 5179 2.1718820556998253e-02
+
+ -1.7361419275403023e-02 3.4876769781112671e-01
+ <_>
+
+ 0 -1 5180 -4.3202299624681473e-02
+
+ -5.1877439022064209e-01 1.2914709746837616e-02
+ <_>
+
+ 0 -1 5181 -1.6658119857311249e-03
+
+ -3.0727219581604004e-01 1.9104089587926865e-02
+ <_>
+
+ 0 -1 5182 -3.2269109040498734e-02
+
+ 3.1825730204582214e-01 -6.1126789078116417e-03
+ <_>
+
+ 0 -1 5183 -9.6689872443675995e-03
+
+ 3.3182978630065918e-01 -1.8409479409456253e-02
+ <_>
+
+ 0 -1 5184 1.7683519981801510e-03
+
+ 3.1587228178977966e-02 -1.1481689661741257e-01
+ <_>
+
+ 0 -1 5185 3.4618038684129715e-02
+
+ -1.8013959750533104e-02 3.4668689966201782e-01
+ <_>
+
+ 0 -1 5186 -9.3643896281719208e-02
+
+ -5.1143682003021240e-01 1.4282460324466228e-02
+ <_>
+
+ 0 -1 5187 4.3095857836306095e-03
+
+ 2.4471389129757881e-02 -2.3517690598964691e-01
+ <_>
+
+ 0 -1 5188 6.6311933100223541e-02
+
+ -1.5711139887571335e-02 2.4676759541034698e-01
+ <_>
+
+ 0 -1 5189 -9.2896772548556328e-03
+
+ -1.3924039900302887e-01 4.8822149634361267e-02
+ <_>
+
+ 0 -1 5190 -3.3214599825441837e-03
+
+ 1.3379609584808350e-01 -3.6818679422140121e-02
+ <_>
+
+ 0 -1 5191 4.0180981159210205e-02
+
+ -1.2793520465493202e-02 5.2580958604812622e-01
+ <_>
+
+ 0 -1 5192 8.7590962648391724e-02
+
+ 1.2522599659860134e-02 -5.5810731649398804e-01
+ <_>
+
+ 0 -1 5193 3.5475298762321472e-02
+
+ 2.3128280416131020e-02 -2.7402919530868530e-01
+ <_>
+
+ 0 -1 5194 5.2033789455890656e-02
+
+ -6.1640930362045765e-03 1.9052730500698090e-01
+ <_>
+
+ 0 -1 5195 -1.3046549260616302e-01
+
+ 2.5712540745735168e-01 -2.3529190570116043e-02
+ <_>
+
+ 0 -1 5196 2.8882310725748539e-03
+
+ -6.0755409300327301e-02 6.0243420302867889e-02
+ <_>
+
+ 0 -1 5197 1.5083160251379013e-02
+
+ 2.1192179992794991e-02 -2.8479540348052979e-01
+ <_>
+
+ 0 -1 5198 8.0875161802396178e-04
+
+ -8.5497900843620300e-02 5.4305519908666611e-02
+ <_>
+
+ 0 -1 5199 1.4947880059480667e-02
+
+ -5.7983450591564178e-02 1.0115720331668854e-01
+ <_>
+
+ 0 -1 5200 -4.5683588832616806e-02
+
+ -3.9345711469650269e-01 1.7556620761752129e-02
+ <_>
+
+ 0 -1 5201 -9.4226107466965914e-04
+
+ 1.3064099848270416e-01 -5.1675319671630859e-02
+ <_>
+
+ 0 -1 5202 -2.8342329896986485e-03
+
+ 1.5992760658264160e-01 -3.4787811338901520e-02
+ <_>
+
+ 0 -1 5203 -1.8812920898199081e-02
+
+ -2.9807311296463013e-01 2.2536030039191246e-02
+ <_>
+
+ 0 -1 5204 1.9601570442318916e-02
+
+ 1.3461099937558174e-02 -1.6885930299758911e-01
+ <_>
+
+ 0 -1 5205 -6.4929589629173279e-02
+
+ -7.1198761463165283e-01 8.5184276103973389e-03
+ <_>
+
+ 0 -1 5206 -1.4283999800682068e-02
+
+ -7.8602321445941925e-02 4.2226359248161316e-02
+ <_>
+
+ 0 -1 5207 2.5105919688940048e-02
+
+ -2.9744949191808701e-02 2.2586929798126221e-01
+ <_>
+
+ 0 -1 5208 3.8459669798612595e-02
+
+ 1.7592959105968475e-02 -3.4457311034202576e-01
+ <_>
+
+ 0 -1 5209 2.9701360035687685e-03
+
+ -5.2914209663867950e-02 1.1567460000514984e-01
+ <_>
+
+ 0 -1 5210 -3.5584170836955309e-03
+
+ 1.2957760691642761e-01 -6.1714299023151398e-02
+ <_>
+
+ 0 -1 5211 5.5475500412285328e-03
+
+ 4.9168299883604050e-02 -1.2925429642200470e-01
+ <_>
+
+ 0 -1 5212 7.1379862725734711e-02
+
+ -1.1528199538588524e-02 3.2423359155654907e-01
+ <_>
+
+ 0 -1 5213 -1.1731989681720734e-01
+
+ -9.0184438228607178e-01 6.3025541603565216e-03
+ <_>
+
+ 0 -1 5214 2.2931929677724838e-02
+
+ -1.1425419710576534e-02 4.1168990731239319e-01
+ <_>
+
+ 0 -1 5215 3.6658400204032660e-03
+
+ 2.8030570596456528e-02 -2.0567989349365234e-01
+ <_>
+
+ 0 -1 5216 -7.0796072483062744e-02
+
+ -2.1817129850387573e-01 1.2820649892091751e-02
+ <_>
+
+ 0 -1 5217 6.7239440977573395e-03
+
+ -4.2305160313844681e-02 1.4150319993495941e-01
+ <_>
+
+ 0 -1 5218 -2.0242671016603708e-03
+
+ 9.1976962983608246e-02 -4.6815071254968643e-02
+ <_>
+
+ 0 -1 5219 2.3123170249164104e-03
+
+ -7.1074202656745911e-02 9.8617300391197205e-02
+ <_>
+
+ 0 -1 5220 2.7525359764695168e-03
+
+ -5.0785668194293976e-02 7.5282126665115356e-02
+ <_>
+
+ 0 -1 5221 -3.4460208844393492e-03
+
+ 9.6368476748466492e-02 -7.8051783144474030e-02
+ <_>
+
+ 0 -1 5222 -1.1416469700634480e-02
+
+ -1.1313349753618240e-01 7.5080856680870056e-02
+ <_>
+
+ 0 -1 5223 3.0283999876701273e-05
+
+ -1.3886189460754395e-01 4.3761149048805237e-02
+ <_>
+
+ 0 -1 5224 -1.4150349888950586e-03
+
+ 3.7164621055126190e-02 -1.1095599830150604e-01
+ <_>
+
+ 0 -1 5225 -1.9245060393586755e-03
+
+ 7.0604592561721802e-02 -9.4269059598445892e-02
+ <_>
+
+ 0 -1 5226 3.0031649395823479e-02
+
+ -5.1407739520072937e-02 1.6337560117244720e-01
+ <_>
+
+ 0 -1 5227 -2.5132829323410988e-03
+
+ -1.4933520555496216e-01 5.1749840378761292e-02
+ <_>
+
+ 0 -1 5228 1.9437290029600263e-04
+
+ -4.8553969711065292e-02 1.0562740266323090e-01
+ <_>
+
+ 0 -1 5229 2.9679399449378252e-03
+
+ 3.6664169281721115e-02 -1.5650020539760590e-01
+ <_>
+
+ 0 -1 5230 3.2629880588501692e-03
+
+ 4.2934000492095947e-02 -1.4514559507369995e-01
+ <_>
+
+ 0 -1 5231 2.9959511011838913e-03
+
+ -6.3821822404861450e-02 9.3514777719974518e-02
+ <_>
+
+ 0 -1 5232 -1.5483190305531025e-02
+
+ -2.0184549689292908e-01 3.1191380694508553e-02
+ <_>
+
+ 0 -1 5233 -2.3956559598445892e-02
+
+ 3.6116409301757812e-01 -2.4698240682482719e-02
+ <_>
+
+ 0 -1 5234 -1.7136270180344582e-02
+
+ -2.6252090930938721e-01 2.4616269394755363e-02
+ <_>
+
+ 0 -1 5235 -6.2233610078692436e-03
+
+ 1.1059129983186722e-01 -5.7947199791669846e-02
+ <_>
+
+ 0 -1 5236 2.9878519475460052e-02
+
+ 7.8794546425342560e-03 -2.8504589200019836e-01
+ <_>
+
+ 0 -1 5237 -9.6910241991281509e-03
+
+ -1.5696419775485992e-01 3.8263391703367233e-02
+ <_>
+
+ 0 -1 5238 -1.2825420498847961e-01
+
+ 2.8350758552551270e-01 -2.7224350720643997e-02
+ <_>
+
+ 0 -1 5239 -3.9670959813520312e-04
+
+ -1.3316330313682556e-01 5.3896941244602203e-02
+ <_>
+
+ 0 -1 5240 -8.2217011367902160e-04
+
+ -1.3680179417133331e-01 7.7957339584827423e-02
+ <_>
+
+ 0 -1 5241 7.4795359978452325e-05
+
+ -9.0496443212032318e-02 6.8528160452842712e-02
+ <_>
+
+ 0 -1 5242 9.3816556036472321e-03
+
+ -9.9184580147266388e-02 6.4078651368618011e-02
+ <_>
+
+ 0 -1 5243 -6.6485297866165638e-03
+
+ 1.4783580601215363e-01 -4.6988330781459808e-02
+ <_>
+
+ 0 -1 5244 -5.5821631103754044e-03
+
+ -1.3562120497226715e-01 5.5308390408754349e-02
+ <_>
+
+ 0 -1 5245 -3.0224759131669998e-02
+
+ 3.4760668873786926e-01 -1.6698839142918587e-02
+ <_>
+
+ 0 -1 5246 -2.7506949380040169e-02
+
+ 2.8031051158905029e-01 -1.0123490355908871e-02
+ <_>
+
+ 0 -1 5247 1.5043930150568485e-02
+
+ 1.5279079787433147e-02 -3.9506959915161133e-01
+ <_>
+
+ 0 -1 5248 9.2139653861522675e-03
+
+ 2.6678409427404404e-02 -1.4255590736865997e-01
+ <_>
+
+ 0 -1 5249 6.3955582678318024e-02
+
+ 6.2569188885390759e-03 -8.8076668977737427e-01
+ <_>
+
+ 0 -1 5250 3.0171850085025653e-05
+
+ -1.1047919839620590e-01 5.1936849951744080e-02
+ <_>
+
+ 0 -1 5251 -5.1049161702394485e-03
+
+ 2.1350729465484619e-01 -2.7889270335435867e-02
+ <_>
+
+ 0 -1 5252 -9.1436346992850304e-03
+
+ -1.9197109341621399e-01 3.0341459438204765e-02
+ <_>
+
+ 0 -1 5253 -7.6746046543121338e-02
+
+ -7.2468912601470947e-01 7.1879802271723747e-03
+ <_>
+
+ 0 -1 5254 4.8780560493469238e-02
+
+ -2.1447779610753059e-02 3.0364468693733215e-01
+ <_>
+
+ 0 -1 5255 4.2551410198211670e-01
+
+ 6.3504311256110668e-03 -9.4783991575241089e-01
+ <_>
+
+ 0 -1 5256 2.2590209264308214e-03
+
+ 1.8893169239163399e-02 -1.9443869590759277e-01
+ <_>
+
+ 0 -1 5257 -3.8309961091727018e-03
+
+ -1.2813219428062439e-01 4.7748729586601257e-02
+ <_>
+
+ 0 -1 5258 7.5495108030736446e-03
+
+ -6.7982822656631470e-02 7.6470799744129181e-02
+ <_>
+
+ 0 -1 5259 1.4784730039536953e-02
+
+ -3.4885041415691376e-02 1.7936830222606659e-01
+ <_>
+
+ 0 -1 5260 5.6762639433145523e-02
+
+ 1.2816789560019970e-02 -4.8105829954147339e-01
+ <_>
+
+ 0 -1 5261 -2.5854599662125111e-03
+
+ 1.2653970718383789e-01 -4.7761850059032440e-02
+ <_>
+
+ 0 -1 5262 -5.5542518384754658e-03
+
+ 7.2126902639865875e-02 -3.8657661527395248e-02
+ <_>
+
+ 0 -1 5263 2.6672501116991043e-03
+
+ -6.1485260725021362e-02 1.2647840380668640e-01
+ <_>
+
+ 0 -1 5264 -2.2879959642887115e-01
+
+ -4.8435351252555847e-01 4.5618140138685703e-03
+ <_>
+
+ 0 -1 5265 3.7851329892873764e-02
+
+ 1.8769560381770134e-02 -3.0806949734687805e-01
+ <_>
+
+ 0 -1 5266 2.4275709874927998e-03
+
+ -7.1589171886444092e-02 8.1694543361663818e-02
+ <_>
+
+ 0 -1 5267 -7.9000797122716904e-03
+
+ -1.2589320540428162e-01 4.7421310096979141e-02
+ <_>
+
+ 0 -1 5268 -6.7925411276519299e-03
+
+ 6.1758730560541153e-02 -5.3803559392690659e-02
+ <_>
+
+ 0 -1 5269 -1.7522360384464264e-01
+
+ 3.3726111054420471e-01 -1.7961960285902023e-02
+ <_>
+
+ 0 -1 5270 6.6033959388732910e-02
+
+ 4.4206557795405388e-03 -5.5819147825241089e-01
+ <_>
+
+ 0 -1 5271 5.1699979230761528e-03
+
+ 5.3349301218986511e-02 -1.2245289981365204e-01
+ <_>
+
+ 0 -1 5272 1.2047989666461945e-01
+
+ -6.9788158871233463e-03 7.9341912269592285e-01
+ <_>
+
+ 0 -1 5273 -4.2617730796337128e-03
+
+ 7.8014120459556580e-02 -6.8260386586189270e-02
+ <_>
+
+ 0 -1 5274 3.0685370787978172e-02
+
+ 9.3320813030004501e-03 -2.7420249581336975e-01
+ <_>
+
+ 0 -1 5275 -6.8651121109724045e-03
+
+ -1.3084979355335236e-01 4.7273408621549606e-02
+ <_>
+
+ 0 -1 5276 -3.9284229278564453e-03
+
+ 1.1553719639778137e-01 -5.5044289678335190e-02
+ <_>
+
+ 0 -1 5277 -4.2112590745091438e-03
+
+ 1.3730779290199280e-01 -5.2514389157295227e-02
+ <_>
+
+ 0 -1 5278 -7.6999869197607040e-03
+
+ -3.4011191129684448e-01 1.7478680238127708e-02
+ <_>
+
+ 0 -1 5279 -1.1867909692227840e-02
+
+ 2.5731179118156433e-01 -2.5691770017147064e-02
+ <_>
+
+ 0 -1 5280 5.3619472309947014e-03
+
+ 1.1936780065298080e-02 -2.8930050134658813e-01
+ <_>
+
+ 0 -1 5281 -2.3130229674279690e-03
+
+ -1.0821309685707092e-01 5.3640749305486679e-02
+ <_>
+
+ 0 -1 5282 -2.2222870588302612e-01
+
+ 3.1654310226440430e-01 -1.4542319811880589e-02
+ <_>
+
+ 0 -1 5283 6.2593920156359673e-03
+
+ 3.7795171141624451e-02 -1.5100699663162231e-01
+ <_>
+
+ 0 -1 5284 3.4754760563373566e-03
+
+ -6.3047468662261963e-02 8.5025683045387268e-02
+ <_>
+
+ 0 -1 5285 -2.8249478782527149e-04
+
+ -1.1442869901657104e-01 5.6041400879621506e-02
+ <_>
+
+ 0 -1 5286 4.8107700422406197e-04
+
+ -9.6898466348648071e-02 2.8347050771117210e-02
+ <_>
+
+ 0 -1 5287 2.4178959429264069e-02
+
+ -2.1033059805631638e-02 2.5629448890686035e-01
+ <_>
+
+ 0 -1 5288 2.9526960104703903e-02
+
+ 1.6122579574584961e-02 -3.4472090005874634e-01
+ <_>
+
+ 0 -1 5289 -3.0501780565828085e-03
+
+ -1.3633529841899872e-01 4.0983788669109344e-02
+ <_>
+
+ 0 -1 5290 1.0082300286740065e-03
+
+ -6.0927029699087143e-02 4.0717199444770813e-02
+ <_>
+
+ 0 -1 5291 -3.0384280253201723e-03
+
+ 6.1883278191089630e-02 -9.7887121140956879e-02
+ <_>
+
+ 0 -1 5292 3.2816259190440178e-03
+
+ -4.7950621694326401e-02 6.2675401568412781e-02
+ <_>
+
+ 0 -1 5293 1.3182610273361206e-02
+
+ 2.2476239502429962e-01 -2.5649169459939003e-02
+ <_>
+
+ 0 -1 5294 -2.3278119042515755e-03
+
+ 7.3735602200031281e-02 -5.1023889333009720e-02
+ <_>
+
+ 0 -1 5295 -1.0695509612560272e-02
+
+ -7.5625538825988770e-01 7.3301601223647594e-03
+ <_>
+
+ 0 -1 5296 7.8046746551990509e-02
+
+ 1.8139410531148314e-03 -6.2067931890487671e-01
+ <_>
+
+ 0 -1 5297 5.6678339838981628e-02
+
+ 6.2128840945661068e-03 -7.8200930356979370e-01
+ <_>
+
+ 0 -1 5298 7.2442921809852123e-03
+
+ -4.8852469772100449e-02 1.0644549876451492e-01
+ <_>
+
+ 0 -1 5299 -6.6754333674907684e-02
+
+ -6.4796060323715210e-01 8.7654050439596176e-03
+ <_>
+
+ 0 -1 5300 -3.4662630409002304e-02
+
+ 3.3293959498405457e-01 -1.7286069691181183e-02
+ <_>
+
+ 0 -1 5301 -1.5084750019013882e-02
+
+ -1.2696580588817596e-01 4.5507699251174927e-02
+ <_>
+
+ 0 -1 5302 -2.3421730846166611e-02
+
+ -2.5279340147972107e-01 1.5818970277905464e-02
+ <_>
+
+ 0 -1 5303 2.5689320638775826e-02
+
+ -3.7194628268480301e-02 1.6223169863224030e-01
+ <_>
+
+ 0 -1 5304 6.3883140683174133e-03
+
+ 3.0617009848356247e-02 -1.3695000112056732e-01
+ <_>
+
+ 0 -1 5305 -1.0519590228796005e-01
+
+ -8.4453481435775757e-01 6.6635669209063053e-03
+ <_>
+
+ 0 -1 5306 1.8773669376969337e-02
+
+ 4.6610347926616669e-03 -1.7115519940853119e-01
+ <_>
+
+ 0 -1 5307 -1.3318320270627737e-03
+
+ 6.5780423581600189e-02 -8.7241567671298981e-02
+ <_>
+
+ 0 -1 5308 -2.1417330205440521e-01
+
+ 4.7866639494895935e-01 -3.0801231041550636e-03
+ <_>
+
+ 0 -1 5309 -5.5097872018814087e-01
+
+ -6.3633698225021362e-01 8.8994754478335381e-03
+ <_>
+
+ 0 -1 5310 -3.3415539655834436e-03
+
+ 1.2846040725708008e-01 -3.2317079603672028e-02
+ <_>
+
+ 0 -1 5311 1.0858159512281418e-03
+
+ -1.1438050121068954e-01 4.7090869396924973e-02
+ <_>
+
+ 0 -1 5312 4.2784498073160648e-03
+
+ 4.3842699378728867e-02 -8.0856688320636749e-02
+ <_>
+
+ 0 -1 5313 -2.0054390188306570e-03
+
+ 1.0532370209693909e-01 -5.0866328179836273e-02
+ <_>
+
+ 0 -1 5314 -3.4336079843342304e-03
+
+ -7.9986043274402618e-02 4.2570270597934723e-02
+ <_>
+
+ 0 -1 5315 -1.2204749509692192e-03
+
+ 4.1162941604852676e-02 -1.3378110527992249e-01
+ <_>
+
+ 0 -1 5316 -1.3440379500389099e-01
+
+ -5.2044588327407837e-01 2.9635489918291569e-03
+ <_>
+
+ 0 -1 5317 1.4581819996237755e-02
+
+ -1.9067969173192978e-02 4.0065661072731018e-01
+ <_>
+
+ 0 -1 5318 -2.8450360987335443e-03
+
+ -5.8998711407184601e-02 3.1797751784324646e-02
+ <_>
+
+ 0 -1 5319 4.8618339933454990e-03
+
+ 3.9754759520292282e-02 -1.4741879701614380e-01
+ <_>
+
+ 0 -1 5320 5.6295008398592472e-03
+
+ -4.2094878852367401e-02 4.1394129395484924e-02
+ <_>
+
+ 0 -1 5321 -4.5936359092593193e-03
+
+ 2.0751099288463593e-01 -2.7909379452466965e-02
+ <_>
+
+ 0 -1 5322 -3.0693739652633667e-02
+
+ -3.4029048681259155e-01 5.0333337858319283e-03
+ <_>
+
+ 0 -1 5323 3.1476689036935568e-04
+
+ -8.8118873536586761e-02 6.3354291021823883e-02
+ <_>
+
+ 0 -1 5324 -3.4313879441469908e-03
+
+ 5.9088770300149918e-02 -6.7773580551147461e-02
+ <_>
+
+ 0 -1 5325 -3.4075058647431433e-04
+
+ -9.8268762230873108e-02 5.8783698827028275e-02
+ <_>
+
+ 0 -1 5326 -3.7829359062016010e-03
+
+ 1.7841720581054688e-01 -4.6912178397178650e-02
+ <_>
+
+ 0 -1 5327 -4.6322058886289597e-02
+
+ -1.6307410597801208e-01 3.9191931486129761e-02
+ <_>
+
+ 0 -1 5328 1.8471380695700645e-02
+
+ 1.5975039452314377e-02 -2.8808701038360596e-01
+ <_>
+
+ 0 -1 5329 9.0416809543967247e-03
+
+ -3.1815830618143082e-02 1.6392929852008820e-01
+ <_>
+
+ 0 -1 5330 -3.1387940049171448e-02
+
+ 1.5696319937705994e-01 -1.5333149582147598e-02
+ <_>
+
+ 0 -1 5331 -7.5614887464325875e-05
+
+ 7.4591353535652161e-02 -8.4359541535377502e-02
+ <_>
+
+ 0 -1 5332 -2.3939300328493118e-02
+
+ -1.1604589968919754e-01 3.0868789181113243e-02
+ <_>
+
+ 0 -1 5333 2.2537580225616693e-03
+
+ 4.0261909365653992e-02 -1.6604030132293701e-01
+ <_>
+
+ 0 -1 5334 -5.3389810025691986e-02
+
+ 1.0318890213966370e-01 -2.0877240225672722e-02
+ <_>
+
+ 0 -1 5335 5.6420508772134781e-03
+
+ -4.6839520335197449e-02 1.1634089797735214e-01
+ <_>
+
+ 0 -1 5336 4.2355400510132313e-03
+
+ 2.5631250813603401e-02 -9.3193583190441132e-02
+ <_>
+
+ 0 -1 5337 -2.1929260343313217e-02
+
+ -3.5141220688819885e-01 1.5704020857810974e-02
+ <_>
+
+ 0 -1 5338 1.3050789944827557e-02
+
+ -7.6834131032228470e-03 1.3095930218696594e-01
+ <_>
+
+ 0 -1 5339 2.2426109760999680e-02
+
+ 6.3964631408452988e-03 -8.0513131618499756e-01
+ <_>
+
+ 0 -1 5340 -8.8755652308464050e-02
+
+ 3.9323249459266663e-01 -1.0365420021116734e-02
+ <_>
+
+ 0 -1 5341 1.1768270283937454e-02
+
+ -7.5270563364028931e-02 7.1183227002620697e-02
+ <_>
+
+ 0 -1 5342 2.1221570670604706e-02
+
+ 2.4082770571112633e-02 -1.6292670369148254e-01
+ <_>
+
+ 0 -1 5343 -5.2887611091136932e-02
+
+ 3.3231079578399658e-01 -1.5548040159046650e-02
+ <_>
+
+ 0 -1 5344 2.5847768783569336e-01
+
+ 9.5278248190879822e-03 -6.3773447275161743e-01
+ <_>
+
+ 0 -1 5345 -2.8695159126073122e-03
+
+ -9.8719991743564606e-02 5.5244650691747665e-02
+ <_>
+
+ 0 -1 5346 1.2492690235376358e-01
+
+ 1.9365450134500861e-03 -9.9999272823333740e-01
+ <_>
+
+ 0 -1 5347 4.3900720775127411e-02
+
+ -1.6385570168495178e-02 3.7183851003646851e-01
+ <_>
+
+ 0 -1 5348 5.2520469762384892e-03
+
+ 4.7758270055055618e-02 -1.3461829721927643e-01
+ <_>
+
+ 0 -1 5349 -2.0031959284096956e-03
+
+ 8.3587102591991425e-02 -6.7750580608844757e-02
+ <_>
+
+ 0 -1 5350 4.4535310007631779e-03
+
+ -8.9202463626861572e-02 4.6748258173465729e-02
+ <_>
+
+ 0 -1 5351 1.5174630284309387e-01
+
+ 5.6481529027223587e-03 -8.2450437545776367e-01
+ <_>
+
+ 0 -1 5352 -6.1992209404706955e-02
+
+ -4.3334591388702393e-01 5.3922580555081367e-03
+ <_>
+
+ 0 -1 5353 -9.3085348606109619e-02
+
+ 5.2169102430343628e-01 -9.9382782354950905e-03
+ <_>
+
+ 0 -1 5354 -4.9394429661333561e-03
+
+ -2.0004139840602875e-01 2.7710979804396629e-02
+ <_>
+
+ 0 -1 5355 -1.3681269483640790e-03
+
+ 8.5065416991710663e-02 -7.4542969465255737e-02
+ <_>
+
+ 0 -1 5356 -2.7988219517283142e-04
+
+ -7.6987631618976593e-02 6.8912938237190247e-02
+ <_>
+
+ 0 -1 5357 -3.2129848841577768e-03
+
+ 1.5940999984741211e-01 -3.4221589565277100e-02
+ <_>
+
+ 0 -1 5358 3.9533369243144989e-02
+
+ 3.1095379963517189e-03 -8.5460907220840454e-01
+ <_>
+
+ 0 -1 5359 2.0442719105631113e-03
+
+ -6.4074553549289703e-02 7.8644759953022003e-02
+ <_>
+
+ 0 -1 5360 -2.0770760253071785e-02
+
+ -3.1129410862922668e-01 4.3864948675036430e-03
+ <_>
+
+ 0 -1 5361 -4.7200381755828857e-02
+
+ 1.0526890307664871e-01 -5.1456131041049957e-02
+ <_>
+
+ 0 -1 5362 1.3096869923174381e-02
+
+ 9.9430568516254425e-03 -1.4253680408000946e-01
+ <_>
+
+ 0 -1 5363 -1.0935390368103981e-02
+
+ -1.6756610572338104e-01 3.5863548517227173e-02
+ <_>
+
+ 0 -1 5364 -1.6354349255561829e-01
+
+ -8.2129329442977905e-01 1.9741130527108908e-03
+ <_>
+
+ 0 -1 5365 3.8668718189001083e-02
+
+ -1.1329679749906063e-02 4.7532460093498230e-01
+ <_>
+
+ 0 -1 5366 6.0949958860874176e-02
+
+ 1.1516530066728592e-02 -5.7472079992294312e-01
+ <_>
+
+ 0 -1 5367 -1.2101690284907818e-02
+
+ 1.5505610406398773e-01 -3.2629158347845078e-02
+ <_>
+
+ 0 -1 5368 -1.0064270347356796e-02
+
+ -9.2389531433582306e-02 3.2318059355020523e-02
+ <_>
+
+ 0 -1 5369 -5.8900681324303150e-03
+
+ -2.6503130793571472e-01 1.9127139821648598e-02
+ <_>
+
+ 0 -1 5370 -3.1361039727926254e-02
+
+ 5.6730771064758301e-01 -9.6010044217109680e-03
+ <_>
+
+ 0 -1 5371 -4.7777321189641953e-02
+
+ 5.9038662910461426e-01 -7.4091539718210697e-03
+ <_>
+
+ 0 -1 5372 -1.0792270302772522e-02
+
+ -1.2814930081367493e-01 4.0264949202537537e-02
+ <_>
+
+ 0 -1 5373 -1.4374120160937309e-02
+
+ 2.0772540569305420e-01 -2.9854990541934967e-02
+ <_>
+
+ 0 -1 5374 5.2079811692237854e-02
+
+ -3.8335260469466448e-03 7.5818628072738647e-01
+ <_>
+
+ 0 -1 5375 6.1354418285191059e-03
+
+ 3.0476450920104980e-02 -1.7281690239906311e-01
+ <_>
+
+ 0 -1 5376 -3.0654598958790302e-03
+
+ 5.8025300502777100e-02 -7.9617038369178772e-02
+ <_>
+
+ 0 -1 5377 5.7721929624676704e-03
+
+ -3.6747518926858902e-02 1.6319790482521057e-01
+ <_>
+
+ 0 -1 5378 2.7028471231460571e-01
+
+ -3.9847781881690025e-03 4.9476540088653564e-01
+ <_>
+
+ 0 -1 5379 -1.5034529566764832e-01
+
+ -5.2624911069869995e-01 1.0567910037934780e-02
+ <_>
+
+ 0 -1 5380 7.6101601123809814e-02
+
+ -2.3525250144302845e-03 9.1819989681243896e-01
+ <_>
+
+ 0 -1 5381 -5.5953811854124069e-02
+
+ -7.8321272134780884e-01 6.8363421596586704e-03
+ <_>
+
+ 0 -1 5382 -2.4320950731635094e-02
+
+ 2.2739610075950623e-01 -1.1622290126979351e-02
+ <_>
+
+ 0 -1 5383 1.6274319961667061e-02
+
+ 1.4024170115590096e-02 -3.4222239255905151e-01
+ <_>
+
+ 0 -1 5384 7.7015208080410957e-04
+
+ -4.4768709689378738e-02 5.7412229478359222e-02
+ <_>
+
+ 0 -1 5385 1.3995269546285272e-03
+
+ -6.0614239424467087e-02 8.4398999810218811e-02
+ <_>
+
+ 0 -1 5386 -2.0544769242405891e-02
+
+ -1.8160410225391388e-01 2.0795119926333427e-02
+ <_>
+
+ 0 -1 5387 -3.6872550845146179e-02
+
+ 2.6817229390144348e-01 -1.9921269267797470e-02
+ <_>
+
+ 0 -1 5388 -2.5466610677540302e-03
+
+ -1.3361929357051849e-01 1.9191939383745193e-02
+ <_>
+
+ 0 -1 5389 3.3513590693473816e-02
+
+ 9.8206587135791779e-03 -5.2659887075424194e-01
+ <_>
+
+ 0 -1 5390 -5.5437661707401276e-02
+
+ 4.5292490720748901e-01 -9.3475803732872009e-03
+ <_>
+
+ 0 -1 5391 -5.3564338013529778e-03
+
+ -1.4787580072879791e-01 3.3617950975894928e-02
+ <_>
+
+ 0 -1 5392 1.1551200412213802e-02
+
+ -3.2851058989763260e-02 6.3716597855091095e-02
+ <_>
+
+ 0 -1 5393 7.2917826473712921e-02
+
+ -1.6388719901442528e-02 3.1580808758735657e-01
+ <_>
+
+ 0 -1 5394 -8.9563012123107910e-02
+
+ 7.5366562604904175e-01 -2.0717559382319450e-03
+ <_>
+
+ 0 -1 5395 -2.2225419525057077e-03
+
+ -9.2733852565288544e-02 6.0395851731300354e-02
+ <_>
+
+ 0 -1 5396 -1.7847110331058502e-01
+
+ 4.7988530993461609e-01 -1.0481510311365128e-02
+ <_>
+
+ 0 -1 5397 6.7723011597990990e-03
+
+ 5.2660830318927765e-02 -1.0471290349960327e-01
+ <_>
+
+ 0 -1 5398 2.8399130329489708e-02
+
+ -2.2862000390887260e-02 2.5348138809204102e-01
+ <_>
+
+ 0 -1 5399 -7.0053818635642529e-03
+
+ -1.3017000257968903e-01 4.3448921293020248e-02
+ <_>
+
+ 0 -1 5400 -5.1440461538732052e-03
+
+ -1.4800100028514862e-01 4.5171629637479782e-02
+ <_>
+
+ 0 -1 5401 -1.1269059963524342e-02
+
+ 1.1185359954833984e-01 -5.4867088794708252e-02
+ <_>
+
+ 0 -1 5402 2.2866109386086464e-02
+
+ -1.5563690103590488e-02 2.1705490350723267e-01
+ <_>
+
+ 0 -1 5403 5.1559228450059891e-02
+
+ 1.0421809740364552e-02 -5.3233247995376587e-01
+ <_>
+
+ 0 -1 5404 1.8902059644460678e-02
+
+ -3.0878869816660881e-02 5.5574499070644379e-02
+ <_>
+
+ 0 -1 5405 5.5700382217764854e-03
+
+ 5.3661361336708069e-02 -9.4876497983932495e-02
+ <_>
+
+ 0 -1 5406 -2.3021729663014412e-02
+
+ 1.2766240537166595e-01 -2.2307910025119781e-02
+ <_>
+
+ 0 -1 5407 7.1334750391542912e-03
+
+ 3.1089689582586288e-02 -1.6293430328369141e-01
+ <_>
+
+ 0 -1 5408 -2.9335260391235352e-02
+
+ 1.0503090173006058e-01 -2.6008550077676773e-02
+ <_>
+
+ 0 -1 5409 4.6253278851509094e-02
+
+ 7.8362170606851578e-03 -6.6226661205291748e-01
+ <_>
+
+ 0 -1 5410 3.9622580516152084e-04
+
+ -9.4567127525806427e-02 2.6796899735927582e-02
+ <_>
+
+ 0 -1 5411 -1.1323750019073486e-02
+
+ 7.4313652515411377e-01 -6.7432140931487083e-03
+ <_>
+
+ 0 -1 5412 -1.7217209935188293e-01
+
+ -7.1483498811721802e-01 8.1747565418481827e-03
+ <_>
+
+ 0 -1 5413 1.8156579462811351e-03
+
+ 4.8135720193386078e-02 -1.0678470134735107e-01
+ <_>
+
+ 0 -1 5414 5.8022491633892059e-02
+
+ -7.4218288064002991e-03 3.8226440548896790e-01
+ <_>
+
+ 0 -1 5415 1.4357370091602206e-03
+
+ -2.2542880475521088e-01 2.1576719358563423e-02
+ <_>
+
+ 0 -1 5416 5.5960440076887608e-03
+
+ 2.5731930136680603e-01 -2.1246509626507759e-02
+ <_>
+
+ 0 -1 5417 2.5314849335700274e-03
+
+ -3.6227720975875854e-01 1.5138260088860989e-02
+ <_>
+
+ 0 -1 5418 -4.2207110673189163e-03
+
+ -4.6638991683721542e-02 2.6125539094209671e-02
+ <_>
+
+ 0 -1 5419 -5.4260431788861752e-03
+
+ 1.0110379755496979e-01 -5.2066121250391006e-02
+ <_>
+
+ 0 -1 5420 1.6170790186151862e-03
+
+ -4.1680540889501572e-02 9.6459351480007172e-02
+ <_>
+
+ 0 -1 5421 -3.2414530869573355e-03
+
+ -1.2638680636882782e-01 3.9169210940599442e-02
+ <_>
+
+ 0 -1 5422 4.5421482063829899e-03
+
+ -2.9149880632758141e-02 6.9948889315128326e-02
+ <_>
+
+ 0 -1 5423 5.3024510852992535e-03
+
+ -7.9129062592983246e-02 6.1111859977245331e-02
+ <_>
+
+ 0 -1 5424 -4.6412080526351929e-02
+
+ 3.1127449870109558e-01 -6.2580788508057594e-03
+ <_>
+
+ 0 -1 5425 -6.2991487793624401e-03
+
+ -8.3928130567073822e-02 6.6761530935764313e-02
+ <_>
+
+ 0 -1 5426 7.9948090016841888e-02
+
+ 2.6887101121246815e-03 -5.6553709506988525e-01
+ <_>
+
+ 0 -1 5427 9.9693494848906994e-04
+
+ -7.2051003575325012e-02 9.2260897159576416e-02
+ <_>
+
+ 0 -1 5428 -2.1847949828952551e-03
+
+ 8.3864517509937286e-02 -6.6099606454372406e-02
+ <_>
+
+ 0 -1 5429 -1.5286840498447418e-01
+
+ 6.1705768108367920e-01 -8.1674018874764442e-03
+ <_>
+
+ 0 -1 5430 1.7121130600571632e-02
+
+ 2.6676440611481667e-02 -1.4158309996128082e-01
+ <_>
+
+ 0 -1 5431 1.8799189710989594e-03
+
+ -7.7865563333034515e-02 6.7955218255519867e-02
+ <_>
+
+ 0 -1 5432 5.5029629729688168e-03
+
+ -7.9979859292507172e-02 6.4055956900119781e-02
+ <_>
+
+ 0 -1 5433 2.7474550530314445e-02
+
+ 6.0482721775770187e-02 -8.8957548141479492e-02
+ <_>
+
+ 0 -1 5434 2.7708879113197327e-01
+
+ 4.4098719954490662e-03 -1.0000040531158447e+00
+ <_>
+
+ 0 -1 5435 -4.9538668245077133e-03
+
+ 1.4720940589904785e-01 -3.5671569406986237e-02
+ <_>
+
+ 0 -1 5436 4.7095369547605515e-02
+
+ -6.0950522311031818e-03 2.4319580197334290e-01
+ <_>
+
+ 0 -1 5437 -3.1939700711518526e-03
+
+ -1.3417580723762512e-01 3.9335511624813080e-02
+ <_>
+
+ 0 -1 5438 3.5586568992584944e-03
+
+ 2.1399470046162605e-02 -4.3609801679849625e-02
+ <_>
+
+ 0 -1 5439 -1.0028639808297157e-02
+
+ 1.6288889944553375e-01 -3.1448449939489365e-02
+ <_>
+
+ 0 -1 5440 -2.9802629724144936e-03
+
+ -7.0220857858657837e-02 3.7910789251327515e-02
+ <_>
+
+ 0 -1 5441 1.7347529530525208e-02
+
+ 1.1053959839046001e-02 -4.5107790827751160e-01
+ <_>
+
+ 0 -1 5442 -4.4207129627466202e-02
+
+ 1.4115320146083832e-01 -6.2362072058022022e-03
+ <_>
+
+ 0 -1 5443 -3.2249989453703165e-03
+
+ -1.0305760055780411e-01 4.9647849053144455e-02
+ <_>
+
+ 0 -1 5444 7.5196991674602032e-03
+
+ -2.8604390099644661e-02 9.8367802798748016e-02
+ <_>
+
+ 0 -1 5445 -6.1209458857774734e-02
+
+ 2.2113859653472900e-01 -2.9835490509867668e-02
+ <_>
+
+ 0 -1 5446 2.0107250660657883e-02
+
+ 1.6412479802966118e-02 -1.2316829711198807e-01
+ <_>
+
+ 0 -1 5447 -1.6578679904341698e-02
+
+ -2.3395630717277527e-01 3.0250690877437592e-02
+ <_>
+
+ 0 -1 5448 -6.0900870710611343e-02
+
+ 3.1688570976257324e-01 -1.8433200195431709e-02
+ <_>
+
+ 0 -1 5449 4.2772209271788597e-03
+
+ -4.3859448283910751e-02 1.2858760356903076e-01
+ <_>
+
+ 0 -1 5450 6.6130697727203369e-02
+
+ 2.0941190421581268e-02 -2.0549100637435913e-01
+ <_>
+
+ 0 -1 5451 2.5896991137415171e-03
+
+ -8.2597322762012482e-02 7.7048726379871368e-02
+ <_>
+
+ 0 -1 5452 -1.7113700509071350e-02
+
+ -9.9560201168060303e-02 2.0174279808998108e-02
+ <_>
+
+ 0 -1 5453 6.2078679911792278e-03
+
+ -1.5074240043759346e-02 3.5393691062927246e-01
+ <_>
+
+ 0 -1 5454 -3.3676949143409729e-01
+
+ -4.9838671088218689e-01 7.4067250825464725e-03
+ <_>
+
+ 0 -1 5455 5.0239380449056625e-02
+
+ -1.8589239567518234e-02 2.8223350644111633e-01
+ <_>
+
+ 0 -1 5456 1.1036300100386143e-02
+
+ 2.9623959213495255e-02 -2.0078790187835693e-01
+ <_>
+
+ 0 -1 5457 6.0965020209550858e-02
+
+ -1.1036460287868977e-02 5.0334519147872925e-01
+ <_>
+
+ 0 -1 5458 1.5966590493917465e-02
+
+ 1.3941870070993900e-02 -2.4742470681667328e-01
+ <_>
+ 243
+ -1.4138590097427368e+00
+
+ <_>
+
+ 0 -1 5459 -3.8829419761896133e-02
+
+ 3.1823828816413879e-01 -1.4062009751796722e-01
+ <_>
+
+ 0 -1 5460 -6.7771300673484802e-02
+
+ 2.0526969432830811e-01 -1.7867469787597656e-01
+ <_>
+
+ 0 -1 5461 9.3152940273284912e-02
+
+ -1.3293810188770294e-01 2.3252120614051819e-01
+ <_>
+
+ 0 -1 5462 -6.0846367850899696e-03
+
+ 1.9817650318145752e-01 -1.5535140037536621e-01
+ <_>
+
+ 0 -1 5463 -1.7230149358510971e-02
+
+ 2.5784310698509216e-01 -9.0387366712093353e-02
+ <_>
+
+ 0 -1 5464 4.1907798498868942e-02
+
+ 6.2066148966550827e-02 -3.2303139567375183e-01
+ <_>
+
+ 0 -1 5465 -3.4084350336343050e-03
+
+ -3.1667909026145935e-01 6.0275040566921234e-02
+ <_>
+
+ 0 -1 5466 3.4909289330244064e-02
+
+ -1.2456309795379639e-01 1.6099859774112701e-01
+ <_>
+
+ 0 -1 5467 1.1676900088787079e-02
+
+ -1.8025660514831543e-01 1.2234430015087128e-01
+ <_>
+
+ 0 -1 5468 -1.2773449998348951e-03
+
+ -2.4735580384731293e-01 6.2129739671945572e-02
+ <_>
+
+ 0 -1 5469 1.6917299479246140e-02
+
+ 6.9671042263507843e-02 -2.5292581319808960e-01
+ <_>
+
+ 0 -1 5470 2.5656640529632568e-02
+
+ 2.6212580502033234e-02 -1.6348999738693237e-01
+ <_>
+
+ 0 -1 5471 1.9884048961102962e-03
+
+ -3.1018510460853577e-01 5.0259251147508621e-02
+ <_>
+
+ 0 -1 5472 4.2548488825559616e-02
+
+ 1.7065819352865219e-02 -4.7830620408058167e-01
+ <_>
+
+ 0 -1 5473 6.0466718859970570e-03
+
+ -2.2118049860000610e-01 7.2842411696910858e-02
+ <_>
+
+ 0 -1 5474 -8.0229081213474274e-03
+
+ -1.4530059695243835e-01 4.9906261265277863e-02
+ <_>
+
+ 0 -1 5475 3.7937261164188385e-02
+
+ -3.4007780253887177e-02 4.3715330958366394e-01
+ <_>
+
+ 0 -1 5476 -5.2960298955440521e-02
+
+ -2.8856590390205383e-01 1.8457209691405296e-02
+ <_>
+
+ 0 -1 5477 7.5578060932457447e-03
+
+ -2.3534600436687469e-01 6.0302570462226868e-02
+ <_>
+
+ 0 -1 5478 -1.5554980374872684e-02
+
+ -2.6567730307579041e-01 5.5279370397329330e-02
+ <_>
+
+ 0 -1 5479 3.4035260323435068e-03
+
+ 4.6175889670848846e-02 -3.3651891350746155e-01
+ <_>
+
+ 0 -1 5480 -1.9370270892977715e-02
+
+ 1.9603839516639709e-01 -8.0186828970909119e-02
+ <_>
+
+ 0 -1 5481 2.1719569340348244e-02
+
+ 4.1932079941034317e-02 -3.4327590465545654e-01
+ <_>
+
+ 0 -1 5482 -3.8787510129623115e-04
+
+ -2.5382238626480103e-01 4.5200780034065247e-02
+ <_>
+
+ 0 -1 5483 3.3794559538364410e-02
+
+ -6.4901560544967651e-02 2.1238659322261810e-01
+ <_>
+
+ 0 -1 5484 -9.1701336205005646e-03
+
+ -2.3874589800834656e-01 4.0796380490064621e-02
+ <_>
+
+ 0 -1 5485 -1.3741330476477742e-03
+
+ -1.6430020332336426e-01 8.1496283411979675e-02
+ <_>
+
+ 0 -1 5486 -1.2352719902992249e-02
+
+ 1.6805070638656616e-01 -5.7883970439434052e-02
+ <_>
+
+ 0 -1 5487 -1.1177700012922287e-02
+
+ -1.9775860011577606e-01 6.3408702611923218e-02
+ <_>
+
+ 0 -1 5488 2.5044390931725502e-03
+
+ -1.2900459766387939e-01 5.8973610401153564e-02
+ <_>
+
+ 0 -1 5489 2.1939110010862350e-03
+
+ 1.4937159419059753e-01 -7.9897291958332062e-02
+ <_>
+
+ 0 -1 5490 -4.6443499624729156e-02
+
+ -4.4332349300384521e-01 2.0691359415650368e-02
+ <_>
+
+ 0 -1 5491 -3.8867309689521790e-02
+
+ -5.3450870513916016e-01 2.1435650065541267e-02
+ <_>
+
+ 0 -1 5492 -2.0838780328631401e-03
+
+ 5.3876239806413651e-02 -1.6674530506134033e-01
+ <_>
+
+ 0 -1 5493 -1.7784969881176949e-02
+
+ 2.5898349285125732e-01 -6.5794423222541809e-02
+ <_>
+
+ 0 -1 5494 -9.9478460848331451e-02
+
+ -7.2332090139389038e-01 6.1601991765201092e-03
+ <_>
+
+ 0 -1 5495 -2.5733250658959150e-03
+
+ 7.2027653455734253e-02 -1.7522309720516205e-01
+ <_>
+
+ 0 -1 5496 6.9977439939975739e-02
+
+ -3.0238330364227295e-02 3.9809378981590271e-01
+ <_>
+
+ 0 -1 5497 -1.0880780406296253e-02
+
+ -3.0606269836425781e-01 4.5210558921098709e-02
+ <_>
+
+ 0 -1 5498 4.8081401735544205e-02
+
+ 4.3911099433898926e-02 -2.5686219334602356e-01
+ <_>
+
+ 0 -1 5499 7.9688243567943573e-02
+
+ -3.3741600811481476e-02 3.6532700061798096e-01
+ <_>
+
+ 0 -1 5500 -1.5404020436108112e-02
+
+ -1.7731459438800812e-01 2.3800730705261230e-02
+ <_>
+
+ 0 -1 5501 -3.6643899977207184e-02
+
+ -6.3931107521057129e-01 1.7518630251288414e-02
+ <_>
+
+ 0 -1 5502 -1.3072500005364418e-02
+
+ -2.4119360744953156e-01 5.8876950293779373e-02
+ <_>
+
+ 0 -1 5503 -2.5379280559718609e-03
+
+ -2.0509210228919983e-01 5.8915760368108749e-02
+ <_>
+
+ 0 -1 5504 4.7491278499364853e-02
+
+ 2.2842779755592346e-02 -3.9453479647636414e-01
+ <_>
+
+ 0 -1 5505 -2.1489640697836876e-02
+
+ -3.1091120839118958e-01 3.8020871579647064e-02
+ <_>
+
+ 0 -1 5506 1.3841330073773861e-02
+
+ -5.6039519608020782e-02 2.1308979392051697e-01
+ <_>
+
+ 0 -1 5507 4.9399589188396931e-03
+
+ -1.8838630616664886e-01 6.2171839177608490e-02
+ <_>
+
+ 0 -1 5508 1.3483439572155476e-02
+
+ 3.6875329911708832e-02 -2.4952369928359985e-01
+ <_>
+
+ 0 -1 5509 -8.4225656464695930e-03
+
+ 7.1501091122627258e-02 -1.3996620476245880e-01
+ <_>
+
+ 0 -1 5510 -4.3786991387605667e-02
+
+ 2.0128419995307922e-01 -5.3744260221719742e-02
+ <_>
+
+ 0 -1 5511 -1.0068439878523350e-02
+
+ -1.6707019507884979e-01 6.1345089226961136e-02
+ <_>
+
+ 0 -1 5512 2.4383061099797487e-03
+
+ -1.2105459719896317e-01 4.9807701259851456e-02
+ <_>
+
+ 0 -1 5513 3.2083820551633835e-03
+
+ -5.6045360863208771e-02 1.7955709993839264e-01
+ <_>
+
+ 0 -1 5514 -2.0389519631862640e-02
+
+ -3.1983590126037598e-01 3.4141618758440018e-02
+ <_>
+
+ 0 -1 5515 -2.2914420813322067e-02
+
+ -3.9454650878906250e-01 2.3838970810174942e-02
+ <_>
+
+ 0 -1 5516 1.8566900864243507e-02
+
+ 3.8432560861110687e-02 -2.2991999983787537e-01
+ <_>
+
+ 0 -1 5517 -1.0277030058205128e-02
+
+ 2.2557449340820312e-01 -4.9223229289054871e-02
+ <_>
+
+ 0 -1 5518 -9.7914133220911026e-03
+
+ 1.9327880442142487e-01 -3.6139059811830521e-02
+ <_>
+
+ 0 -1 5519 1.2699839659035206e-02
+
+ 5.6297991424798965e-02 -2.0981599390506744e-01
+ <_>
+
+ 0 -1 5520 3.9867468178272247e-02
+
+ 9.4982674345374107e-03 -4.7686201333999634e-01
+ <_>
+
+ 0 -1 5521 3.3704519271850586e-02
+
+ 1.8848460167646408e-02 -5.3707981109619141e-01
+ <_>
+
+ 0 -1 5522 -3.3695269376039505e-02
+
+ -2.7003350853919983e-01 3.8956340402364731e-02
+ <_>
+
+ 0 -1 5523 2.3961249738931656e-02
+
+ -9.5000430941581726e-02 1.0282819718122482e-01
+ <_>
+
+ 0 -1 5524 8.2990229129791260e-02
+
+ 3.7828568369150162e-02 -3.0267751216888428e-01
+ <_>
+
+ 0 -1 5525 1.6537210345268250e-01
+
+ 2.3912150412797928e-02 -4.1214409470558167e-01
+ <_>
+
+ 0 -1 5526 1.8202569335699081e-02
+
+ 2.6127459481358528e-02 -6.9227010011672974e-02
+ <_>
+
+ 0 -1 5527 -4.5322380959987640e-02
+
+ -4.4437649846076965e-01 2.1279569715261459e-02
+ <_>
+
+ 0 -1 5528 4.7620609402656555e-02
+
+ -3.4070000052452087e-02 2.1065680682659149e-01
+ <_>
+
+ 0 -1 5529 1.0596530046314001e-03
+
+ 9.8347820341587067e-02 -9.2732593417167664e-02
+ <_>
+
+ 0 -1 5530 3.2028049230575562e-02
+
+ 2.3833949118852615e-02 -4.3276590108871460e-01
+ <_>
+
+ 0 -1 5531 -1.3764370232820511e-02
+
+ -4.1726619005203247e-01 2.1883359178900719e-02
+ <_>
+
+ 0 -1 5532 3.6652158945798874e-02
+
+ -2.6851410046219826e-02 1.0051230341196060e-01
+ <_>
+
+ 0 -1 5533 -1.5507760457694530e-02
+
+ 4.8519268631935120e-01 -2.4900710210204124e-02
+ <_>
+
+ 0 -1 5534 7.1460101753473282e-03
+
+ 5.7906471192836761e-02 -5.1613971590995789e-02
+ <_>
+
+ 0 -1 5535 2.4280229583382607e-02
+
+ -3.7341829389333725e-02 2.9201799631118774e-01
+ <_>
+
+ 0 -1 5536 -8.3522319793701172e-02
+
+ 3.7447971105575562e-01 -3.4602559171617031e-03
+ <_>
+
+ 0 -1 5537 3.1485721468925476e-02
+
+ 2.4092009291052818e-02 -3.9594879746437073e-01
+ <_>
+
+ 0 -1 5538 9.4820279628038406e-03
+
+ -7.3714673519134521e-02 1.3066330552101135e-01
+ <_>
+
+ 0 -1 5539 4.0116958320140839e-02
+
+ 3.0453719198703766e-02 -3.0641159415245056e-01
+ <_>
+
+ 0 -1 5540 -5.2815478295087814e-02
+
+ 4.5792409777641296e-01 -2.3906230926513672e-02
+ <_>
+
+ 0 -1 5541 4.6821571886539459e-03
+
+ -8.8395930826663971e-02 1.2858130037784576e-01
+ <_>
+
+ 0 -1 5542 -1.3448280096054077e-01
+
+ -2.7471750974655151e-01 1.5970310196280479e-02
+ <_>
+
+ 0 -1 5543 5.4646627977490425e-03
+
+ -2.1628439426422119e-01 4.3035320937633514e-02
+ <_>
+
+ 0 -1 5544 -3.5996358841657639e-02
+
+ -4.8524090647697449e-01 1.0563749819993973e-02
+ <_>
+
+ 0 -1 5545 2.5235998630523682e-01
+
+ 9.3745701014995575e-03 -8.8613390922546387e-01
+ <_>
+
+ 0 -1 5546 -2.5067269802093506e-02
+
+ -2.2364640235900879e-01 3.7146601825952530e-02
+ <_>
+
+ 0 -1 5547 -1.4150329865515232e-02
+
+ 3.7856650352478027e-01 -2.7817489579319954e-02
+ <_>
+
+ 0 -1 5548 1.0049570351839066e-01
+
+ 1.1244839988648891e-02 -7.1869522333145142e-01
+ <_>
+
+ 0 -1 5549 1.9989080727100372e-02
+
+ 2.6056809350848198e-02 -3.2147800922393799e-01
+ <_>
+
+ 0 -1 5550 -4.9160558730363846e-02
+
+ -2.3164880275726318e-01 1.6317559406161308e-02
+ <_>
+
+ 0 -1 5551 2.2118790075182915e-02
+
+ -5.0569478422403336e-02 1.7572580277919769e-01
+ <_>
+
+ 0 -1 5552 -7.6390360482037067e-03
+
+ 2.2264319658279419e-01 -4.3685391545295715e-02
+ <_>
+
+ 0 -1 5553 -1.6813250258564949e-03
+
+ 5.5582441389560699e-02 -1.7739319801330566e-01
+ <_>
+
+ 0 -1 5554 -1.6619000583887100e-02
+
+ -2.7812969684600830e-01 1.9737830385565758e-02
+ <_>
+
+ 0 -1 5555 -3.2801620662212372e-02
+
+ -2.3325189948081970e-01 3.6663819104433060e-02
+ <_>
+
+ 0 -1 5556 2.4526590108871460e-01
+
+ -2.9738940298557281e-02 3.1338408589363098e-01
+ <_>
+
+ 0 -1 5557 -1.7271770164370537e-02
+
+ 5.2818918228149414e-01 -1.4151779934763908e-02
+ <_>
+
+ 0 -1 5558 2.0111909136176109e-02
+
+ 2.7173580601811409e-02 -8.3122722804546356e-02
+ <_>
+
+ 0 -1 5559 1.6076749190688133e-02
+
+ 5.6346639990806580e-02 -1.5893140435218811e-01
+ <_>
+
+ 0 -1 5560 -1.0179769992828369e-01
+
+ 6.0448008775711060e-01 -7.6062050648033619e-03
+ <_>
+
+ 0 -1 5561 -4.4865649193525314e-02
+
+ 3.3077031373977661e-01 -2.5329189375042915e-02
+ <_>
+
+ 0 -1 5562 2.7094980701804161e-02
+
+ -6.9251723587512970e-02 1.5350599586963654e-01
+ <_>
+
+ 0 -1 5563 -3.7675891071557999e-02
+
+ -3.1949838995933533e-01 2.9909679666161537e-02
+ <_>
+
+ 0 -1 5564 -8.2310457946732640e-04
+
+ 6.0612969100475311e-02 -1.0531579703092575e-01
+ <_>
+
+ 0 -1 5565 5.5686049163341522e-02
+
+ -4.0920350700616837e-02 2.2959649562835693e-01
+ <_>
+
+ 0 -1 5566 -1.6866069927345961e-04
+
+ -7.7643588185310364e-02 2.9549270868301392e-02
+ <_>
+
+ 0 -1 5567 -2.3873209953308105e-02
+
+ 2.7944079041481018e-01 -3.1888458877801895e-02
+ <_>
+
+ 0 -1 5568 -1.5003600157797337e-02
+
+ 2.5077390670776367e-01 -4.5932788401842117e-02
+ <_>
+
+ 0 -1 5569 -1.4522319659590721e-02
+
+ -1.6453540325164795e-01 5.5180910974740982e-02
+ <_>
+
+ 0 -1 5570 -7.4650160968303680e-03
+
+ -1.2690469622612000e-01 7.1543112397193909e-02
+ <_>
+
+ 0 -1 5571 5.4984640330076218e-02
+
+ -1.3730799779295921e-02 6.5119642019271851e-01
+ <_>
+
+ 0 -1 5572 -8.8030762970447540e-02
+
+ 2.5416490435600281e-01 -1.2233870103955269e-02
+ <_>
+
+ 0 -1 5573 -3.6195501685142517e-02
+
+ -4.4917309284210205e-01 2.1093770861625671e-02
+ <_>
+
+ 0 -1 5574 3.7063211202621460e-02
+
+ -6.6644148901104927e-03 2.4940170347690582e-01
+ <_>
+
+ 0 -1 5575 -1.0568380355834961e-02
+
+ -4.1061571240425110e-01 2.1398089826107025e-02
+ <_>
+
+ 0 -1 5576 1.2662780284881592e-01
+
+ 5.2506178617477417e-03 -3.3240249752998352e-01
+ <_>
+
+ 0 -1 5577 -8.7341770995408297e-04
+
+ 3.2687219977378845e-01 -2.7704829350113869e-02
+ <_>
+
+ 0 -1 5578 -1.0967969428747892e-03
+
+ -2.7710831165313721e-01 3.6352828145027161e-02
+ <_>
+
+ 0 -1 5579 -7.9738020896911621e-02
+
+ -5.8329159021377563e-01 1.4061779715120792e-02
+ <_>
+
+ 0 -1 5580 -3.8278030697256327e-03
+
+ 3.5459451377391815e-02 -1.3996809720993042e-01
+ <_>
+
+ 0 -1 5581 2.0333999767899513e-02
+
+ -2.1421350538730621e-02 5.1610380411148071e-01
+ <_>
+
+ 0 -1 5582 7.5564032886177301e-04
+
+ -1.0803470015525818e-01 3.3538289368152618e-02
+ <_>
+
+ 0 -1 5583 1.7855849862098694e-01
+
+ 9.4842249527573586e-03 -8.1858187913894653e-01
+ <_>
+
+ 0 -1 5584 -3.4745071083307266e-02
+
+ -5.8172190189361572e-01 1.1315549723803997e-02
+ <_>
+
+ 0 -1 5585 5.1304209046065807e-03
+
+ -1.0659860074520111e-01 7.4440896511077881e-02
+ <_>
+
+ 0 -1 5586 -3.3936198800802231e-02
+
+ -4.5997759699821472e-01 1.5264419838786125e-02
+ <_>
+
+ 0 -1 5587 -1.0171560570597649e-03
+
+ 1.0301309823989868e-01 -8.9842960238456726e-02
+ <_>
+
+ 0 -1 5588 6.3489019870758057e-02
+
+ 6.8669100292026997e-03 -7.6022517681121826e-01
+ <_>
+
+ 0 -1 5589 2.4077939987182617e-01
+
+ -2.1571479737758636e-02 4.1113030910491943e-01
+ <_>
+
+ 0 -1 5590 -5.1963441073894501e-02
+
+ -2.8517320752143860e-01 4.0943060070276260e-02
+ <_>
+
+ 0 -1 5591 3.6408171057701111e-02
+
+ -5.0460960716009140e-02 1.6671819984912872e-01
+ <_>
+
+ 0 -1 5592 9.6712149679660797e-03
+
+ -4.8915110528469086e-02 1.8224430084228516e-01
+ <_>
+
+ 0 -1 5593 2.2268150001764297e-02
+
+ 6.1390981078147888e-02 -1.5445849299430847e-01
+ <_>
+
+ 0 -1 5594 -7.0929281413555145e-02
+
+ 5.0010168552398682e-01 -3.9896317757666111e-03
+ <_>
+
+ 0 -1 5595 2.0806699467357248e-04
+
+ -1.4475630223751068e-01 6.3607528805732727e-02
+ <_>
+
+ 0 -1 5596 -9.2365043237805367e-03
+
+ -2.1817289292812347e-01 3.8856260478496552e-02
+ <_>
+
+ 0 -1 5597 2.2781990468502045e-02
+
+ 2.0108619704842567e-02 -3.8452360033988953e-01
+ <_>
+
+ 0 -1 5598 -7.0844120346009731e-03
+
+ -4.8885490745306015e-02 4.6367339789867401e-02
+ <_>
+
+ 0 -1 5599 -8.4006279706954956e-02
+
+ 3.5921669006347656e-01 -2.2461889311671257e-02
+ <_>
+
+ 0 -1 5600 -7.0446580648422241e-02
+
+ -8.8395321369171143e-01 2.9730550013482571e-03
+ <_>
+
+ 0 -1 5601 4.8899810761213303e-02
+
+ 2.3936219513416290e-02 -3.6770141124725342e-01
+ <_>
+
+ 0 -1 5602 2.9677329584956169e-02
+
+ 1.6608120873570442e-02 -2.2972689568996429e-01
+ <_>
+
+ 0 -1 5603 2.5721399579197168e-03
+
+ -3.2572209835052490e-01 2.4146009236574173e-02
+ <_>
+
+ 0 -1 5604 1.6117929480969906e-03
+
+ 2.9355300590395927e-02 -3.7541579455137253e-02
+ <_>
+
+ 0 -1 5605 1.7546640709042549e-02
+
+ -5.0879240036010742e-02 1.5283130109310150e-01
+ <_>
+
+ 0 -1 5606 -4.6326398849487305e-02
+
+ -2.2843320667743683e-01 1.4442530460655689e-02
+ <_>
+
+ 0 -1 5607 -3.3205670118331909e-01
+
+ 7.4457818269729614e-01 -1.0856879875063896e-02
+ <_>
+
+ 0 -1 5608 -4.2317830026149750e-02
+
+ -1.4666019380092621e-01 5.7799231261014938e-02
+ <_>
+
+ 0 -1 5609 3.2436659093946218e-03
+
+ 5.4021451622247696e-02 -1.7029410600662231e-01
+ <_>
+
+ 0 -1 5610 -2.0900890231132507e-02
+
+ -4.0789291262626648e-01 2.5334810838103294e-02
+ <_>
+
+ 0 -1 5611 2.0325010642409325e-02
+
+ 3.3015929162502289e-02 -2.4503390491008759e-01
+ <_>
+
+ 0 -1 5612 -4.6341929584741592e-02
+
+ 1.5976649522781372e-01 -4.1177939623594284e-02
+ <_>
+
+ 0 -1 5613 -3.4356329590082169e-02
+
+ 1.6021409630775452e-01 -6.2500953674316406e-02
+ <_>
+
+ 0 -1 5614 2.4465970695018768e-02
+
+ -3.7487599998712540e-02 2.2807280719280243e-01
+ <_>
+
+ 0 -1 5615 -1.8139539286494255e-02
+
+ -1.5909589827060699e-01 6.0539811849594116e-02
+ <_>
+
+ 0 -1 5616 6.4394161105155945e-02
+
+ 6.6441670060157776e-03 -7.4860227108001709e-01
+ <_>
+
+ 0 -1 5617 9.6367759397253394e-04
+
+ -9.0620808303356171e-02 9.4118133187294006e-02
+ <_>
+
+ 0 -1 5618 2.0024490356445312e-01
+
+ 5.9731658548116684e-03 -8.2521688938140869e-01
+ <_>
+
+ 0 -1 5619 -6.3498668372631073e-02
+
+ -6.9635838270187378e-01 9.3487137928605080e-03
+ <_>
+
+ 0 -1 5620 -1.9232399761676788e-02
+
+ 1.1236680299043655e-01 -2.9199739918112755e-02
+ <_>
+
+ 0 -1 5621 2.5418749451637268e-01
+
+ 1.3959039933979511e-02 -5.1584947109222412e-01
+ <_>
+
+ 0 -1 5622 1.0437460243701935e-01
+
+ -2.7743030339479446e-02 2.7373430132865906e-01
+ <_>
+
+ 0 -1 5623 8.5034370422363281e-03
+
+ 5.4144650697708130e-02 -1.3029509782791138e-01
+ <_>
+
+ 0 -1 5624 5.2647730335593224e-03
+
+ -4.8077501356601715e-02 1.0371380299329758e-01
+ <_>
+
+ 0 -1 5625 -2.4193519726395607e-02
+
+ 1.9932989776134491e-01 -3.7111040204763412e-02
+ <_>
+
+ 0 -1 5626 -4.6968772076070309e-03
+
+ -6.5797090530395508e-02 3.3837348222732544e-02
+ <_>
+
+ 0 -1 5627 -2.3464579135179520e-02
+
+ -2.6043030619621277e-01 3.0933089554309845e-02
+ <_>
+
+ 0 -1 5628 -2.9029840603470802e-02
+
+ 2.0683619379997253e-01 -2.7628650888800621e-02
+ <_>
+
+ 0 -1 5629 7.9100236296653748e-02
+
+ 7.7356752008199692e-03 -9.1816711425781250e-01
+ <_>
+
+ 0 -1 5630 6.2152887694537640e-03
+
+ -7.3988027870655060e-02 8.7727412581443787e-02
+ <_>
+
+ 0 -1 5631 -6.7013278603553772e-02
+
+ 3.7628298997879028e-01 -2.0892709493637085e-02
+ <_>
+
+ 0 -1 5632 -7.9359989613294601e-03
+
+ -8.9532703161239624e-02 6.6559307277202606e-02
+ <_>
+
+ 0 -1 5633 1.3035970041528344e-03
+
+ -6.6657140851020813e-02 1.1399099975824356e-01
+ <_>
+
+ 0 -1 5634 -1.1964319646358490e-01
+
+ -6.0656189918518066e-01 7.3508038185536861e-03
+ <_>
+
+ 0 -1 5635 -2.2869240492582321e-03
+
+ 7.3336817324161530e-02 -1.1889570206403732e-01
+ <_>
+
+ 0 -1 5636 -1.1462569981813431e-01
+
+ 2.9288530349731445e-01 -6.7763519473373890e-03
+ <_>
+
+ 0 -1 5637 4.8477489501237869e-02
+
+ -1.7062950879335403e-02 4.2953211069107056e-01
+ <_>
+
+ 0 -1 5638 -1.3129960279911757e-03
+
+ -7.4319638311862946e-02 6.2149789184331894e-02
+ <_>
+
+ 0 -1 5639 -6.6344782710075378e-02
+
+ -5.8945667743682861e-01 1.3225819915533066e-02
+ <_>
+
+ 0 -1 5640 -4.6543189091607928e-04
+
+ 5.7886548340320587e-02 -6.4295299351215363e-02
+ <_>
+
+ 0 -1 5641 -1.3286540284752846e-02
+
+ 1.4123329520225525e-01 -6.1506468802690506e-02
+ <_>
+
+ 0 -1 5642 7.3928399942815304e-03
+
+ -7.2719991207122803e-02 4.2179141193628311e-02
+ <_>
+
+ 0 -1 5643 -4.7434169799089432e-02
+
+ 3.2672271132469177e-01 -2.9001530259847641e-02
+ <_>
+
+ 0 -1 5644 1.3546790182590485e-01
+
+ 1.0393570177257061e-02 -4.5354479551315308e-01
+ <_>
+
+ 0 -1 5645 -2.5216810405254364e-02
+
+ -1.9075979292392731e-01 4.1522741317749023e-02
+ <_>
+
+ 0 -1 5646 -4.9431398510932922e-02
+
+ -9.4192171096801758e-01 3.5473550669848919e-03
+ <_>
+
+ 0 -1 5647 -4.8375181853771210e-02
+
+ -8.3028668165206909e-01 7.2369067929685116e-03
+ <_>
+
+ 0 -1 5648 -1.4348509721457958e-02
+
+ -2.1860499680042267e-01 3.1486429274082184e-02
+ <_>
+
+ 0 -1 5649 -5.5373171344399452e-03
+
+ -2.1521030366420746e-01 4.4235888868570328e-02
+ <_>
+
+ 0 -1 5650 2.1771800518035889e-01
+
+ -5.0501842051744461e-03 4.9025520682334900e-01
+ <_>
+
+ 0 -1 5651 1.7441399395465851e-01
+
+ -9.7074145451188087e-03 7.4196231365203857e-01
+ <_>
+
+ 0 -1 5652 8.8840499520301819e-02
+
+ -5.8005251921713352e-03 3.3403220772743225e-01
+ <_>
+
+ 0 -1 5653 -3.8012791424989700e-02
+
+ 5.0677591562271118e-01 -1.3809430412948132e-02
+ <_>
+
+ 0 -1 5654 -6.3611388206481934e-02
+
+ -5.6696820259094238e-01 7.9266652464866638e-03
+ <_>
+
+ 0 -1 5655 9.8358482122421265e-02
+
+ 3.4634899348020554e-02 -1.9651760160923004e-01
+ <_>
+
+ 0 -1 5656 2.2929610684514046e-02
+
+ -4.4682640582323074e-02 6.0062419623136520e-02
+ <_>
+
+ 0 -1 5657 -3.9763651788234711e-02
+
+ -2.8310349583625793e-01 2.6087069883942604e-02
+ <_>
+
+ 0 -1 5658 1.1215689778327942e-01
+
+ -4.3225709348917007e-02 1.5505640208721161e-01
+ <_>
+
+ 0 -1 5659 -1.4957940578460693e-01
+
+ 4.1476088762283325e-01 -2.5112669914960861e-02
+ <_>
+
+ 0 -1 5660 1.4239370357245207e-03
+
+ -2.2813330590724945e-01 2.2414619103074074e-02
+ <_>
+
+ 0 -1 5661 -1.1346139945089817e-02
+
+ -2.6083931326866150e-01 2.6456480845808983e-02
+ <_>
+
+ 0 -1 5662 -9.0518407523632050e-02
+
+ 6.0067182779312134e-01 -1.2559159658849239e-02
+ <_>
+
+ 0 -1 5663 3.6097481846809387e-02
+
+ 1.9451009109616280e-02 -4.0998241305351257e-01
+ <_>
+
+ 0 -1 5664 -2.5657469406723976e-02
+
+ 2.3453080654144287e-01 -3.2354518771171570e-02
+ <_>
+
+ 0 -1 5665 -9.2462729662656784e-03
+
+ 1.4458569884300232e-01 -5.7280141860246658e-02
+ <_>
+
+ 0 -1 5666 6.1006739735603333e-02
+
+ 1.9963319599628448e-01 -3.5018790513277054e-02
+ <_>
+
+ 0 -1 5667 -2.2736669052392244e-03
+
+ -2.7180460095405579e-01 3.5324309021234512e-02
+ <_>
+
+ 0 -1 5668 -1.1173350363969803e-01
+
+ 2.6010888814926147e-01 -8.4183625876903534e-03
+ <_>
+
+ 0 -1 5669 1.4601589739322662e-01
+
+ -4.3707858771085739e-02 1.9343809783458710e-01
+ <_>
+
+ 0 -1 5670 -3.9008598774671555e-02
+
+ -2.4021549522876740e-01 1.9324809312820435e-02
+ <_>
+
+ 0 -1 5671 -3.2065149396657944e-02
+
+ -1.4616030454635620e-01 5.0410438328981400e-02
+ <_>
+
+ 0 -1 5672 -3.9755292236804962e-03
+
+ 8.6786061525344849e-02 -7.5101003050804138e-02
+ <_>
+
+ 0 -1 5673 -2.2264609113335609e-02
+
+ -1.7820209264755249e-01 4.2221881449222565e-02
+ <_>
+
+ 0 -1 5674 -6.0096651315689087e-02
+
+ 3.3062270283699036e-01 -1.3347219675779343e-02
+ <_>
+
+ 0 -1 5675 -8.3170406520366669e-02
+
+ 6.9863271713256836e-01 -1.1014309711754322e-02
+ <_>
+
+ 0 -1 5676 -7.7182397246360779e-02
+
+ -2.5630331039428711e-01 8.8049499318003654e-03
+ <_>
+
+ 0 -1 5677 6.8902172148227692e-02
+
+ 1.0996440425515175e-02 -6.3520067930221558e-01
+ <_>
+
+ 0 -1 5678 -5.0353281199932098e-02
+
+ 2.2927890717983246e-01 -3.2763719558715820e-02
+ <_>
+
+ 0 -1 5679 2.4320879019796848e-03
+
+ -1.3213059306144714e-01 7.1088582277297974e-02
+ <_>
+
+ 0 -1 5680 -1.4196460135281086e-02
+
+ 7.1845069527626038e-02 -4.5263659209012985e-02
+ <_>
+
+ 0 -1 5681 -4.5774779282510281e-03
+
+ -2.5832280516624451e-01 2.9419040307402611e-02
+ <_>
+
+ 0 -1 5682 -1.4008210273459554e-03
+
+ 4.4636521488428116e-02 -1.2310150265693665e-01
+ <_>
+
+ 0 -1 5683 3.5062711685895920e-02
+
+ -1.8722500652074814e-02 4.5533668994903564e-01
+ <_>
+
+ 0 -1 5684 3.9364919066429138e-02
+
+ -3.8776830770075321e-03 4.8229390382766724e-01
+ <_>
+
+ 0 -1 5685 2.9430290684103966e-02
+
+ -5.6632690131664276e-02 1.3604450225830078e-01
+ <_>
+
+ 0 -1 5686 7.9320840537548065e-02
+
+ -4.0827351622283459e-03 9.9998551607131958e-01
+ <_>
+
+ 0 -1 5687 4.2696330696344376e-02
+
+ 2.3583339527249336e-02 -3.7798878550529480e-01
+ <_>
+
+ 0 -1 5688 2.5937719270586967e-02
+
+ 5.0283338874578476e-02 -6.7249342799186707e-02
+ <_>
+
+ 0 -1 5689 2.7053659781813622e-02
+
+ 1.0406839847564697e-01 -1.0069710016250610e-01
+ <_>
+
+ 0 -1 5690 3.0322301387786865e-01
+
+ -5.1615409553050995e-02 1.2398669868707657e-01
+ <_>
+
+ 0 -1 5691 7.4373193085193634e-02
+
+ -2.9979649931192398e-02 2.5944980978965759e-01
+ <_>
+
+ 0 -1 5692 4.6059768646955490e-02
+
+ 6.1678960919380188e-03 -7.0887911319732666e-01
+ <_>
+
+ 0 -1 5693 3.6883510649204254e-02
+
+ 1.5985019505023956e-02 -4.4436019659042358e-01
+ <_>
+
+ 0 -1 5694 1.3493379950523376e-01
+
+ 8.8313389569520950e-03 -7.3426938056945801e-01
+ <_>
+
+ 0 -1 5695 1.4799199998378754e-01
+
+ 6.9719799794256687e-03 -8.2078450918197632e-01
+ <_>
+
+ 0 -1 5696 3.9690379053354263e-02
+
+ -1.8247799947857857e-02 2.6955920457839966e-01
+ <_>
+
+ 0 -1 5697 -5.3511280566453934e-02
+
+ 2.0000250637531281e-01 -3.9136700332164764e-02
+ <_>
+
+ 0 -1 5698 6.3795700669288635e-02
+
+ 1.1616130359470844e-02 -2.5315120816230774e-01
+ <_>
+
+ 0 -1 5699 -8.1078916788101196e-02
+
+ -7.7582788467407227e-01 9.7084697335958481e-03
+ <_>
+
+ 0 -1 5700 -4.8272658139467239e-02
+
+ -3.0734309554100037e-01 1.1298010125756264e-02
+ <_>
+
+ 0 -1 5701 4.3912570923566818e-02
+
+ -3.9403300732374191e-02 1.9216950237751007e-01
+ <_>
+ 394
+ -1.2940989732742310e+00
+
+ <_>
+
+ 0 -1 5702 1.9188739359378815e-02
+
+ -2.1150399744510651e-01 1.3286529481410980e-01
+ <_>
+
+ 0 -1 5703 -8.1222038716077805e-03
+
+ 9.2491082847118378e-02 -1.7585119605064392e-01
+ <_>
+
+ 0 -1 5704 1.5851219650357962e-03
+
+ -2.8565698862075806e-01 6.6710568964481354e-02
+ <_>
+
+ 0 -1 5705 -4.3140850029885769e-03
+
+ -1.3885229825973511e-01 5.2694689482450485e-02
+ <_>
+
+ 0 -1 5706 -1.7131429631263018e-03
+
+ 1.3135610520839691e-01 -1.3149109482765198e-01
+ <_>
+
+ 0 -1 5707 6.8447366356849670e-02
+
+ 9.3052154406905174e-03 -2.5063261389732361e-01
+ <_>
+
+ 0 -1 5708 -2.4445978924632072e-03
+
+ -1.7205530405044556e-01 9.8322823643684387e-02
+ <_>
+
+ 0 -1 5709 1.0310600046068430e-03
+
+ 2.3039160296320915e-02 -2.7527621388435364e-01
+ <_>
+
+ 0 -1 5710 7.4603251414373517e-04
+
+ -2.3276780545711517e-01 5.2693009376525879e-02
+ <_>
+
+ 0 -1 5711 -6.6399492789059877e-04
+
+ 6.8990781903266907e-02 -8.4687709808349609e-02
+ <_>
+
+ 0 -1 5712 -4.0997468749992549e-04
+
+ 1.0501380264759064e-01 -1.0819009691476822e-01
+ <_>
+
+ 0 -1 5713 -1.8094549886882305e-03
+
+ -1.8178839981555939e-01 4.4184140861034393e-02
+ <_>
+
+ 0 -1 5714 9.3385757645592093e-04
+
+ -1.4622689783573151e-01 7.2726443409919739e-02
+ <_>
+
+ 0 -1 5715 -3.8197741378098726e-04
+
+ 2.4009939283132553e-02 -1.7295800149440765e-01
+ <_>
+
+ 0 -1 5716 -1.4950280310586095e-03
+
+ -1.9403380155563354e-01 4.8807919025421143e-02
+ <_>
+
+ 0 -1 5717 -1.0159100405871868e-02
+
+ 1.9173899292945862e-01 -5.2749071270227432e-02
+ <_>
+
+ 0 -1 5718 5.9903519286308438e-05
+
+ -1.0791549831628799e-01 9.0988166630268097e-02
+ <_>
+
+ 0 -1 5719 -3.1967550516128540e-02
+
+ 4.1109889745712280e-01 -2.2650640457868576e-02
+ <_>
+
+ 0 -1 5720 1.4343270100653172e-02
+
+ 2.4315539747476578e-02 -4.2680150270462036e-01
+ <_>
+
+ 0 -1 5721 1.1039529927074909e-02
+
+ -6.2717013061046600e-02 1.1330530047416687e-01
+ <_>
+
+ 0 -1 5722 -8.4228850901126862e-03
+
+ -2.1369309723377228e-01 4.2059201747179031e-02
+ <_>
+
+ 0 -1 5723 -2.0549839362502098e-02
+
+ 1.5161630511283875e-01 -2.4594139307737350e-02
+ <_>
+
+ 0 -1 5724 -6.5411031246185303e-03
+
+ 1.4883629977703094e-01 -6.1179339885711670e-02
+ <_>
+
+ 0 -1 5725 -1.3324400410056114e-02
+
+ -2.0791970193386078e-01 4.8333309590816498e-02
+ <_>
+
+ 0 -1 5726 7.0111267268657684e-02
+
+ -2.6863219216465950e-02 3.6322259902954102e-01
+ <_>
+
+ 0 -1 5727 -2.6973750209435821e-04
+
+ 6.0876660048961639e-02 -1.1272370070219040e-01
+ <_>
+
+ 0 -1 5728 -1.3509000418707728e-03
+
+ -1.8552079796791077e-01 5.2154958248138428e-02
+ <_>
+
+ 0 -1 5729 -2.8083190321922302e-02
+
+ 3.5111880302429199e-01 -2.3596329614520073e-02
+ <_>
+
+ 0 -1 5730 -1.0003290139138699e-02
+
+ -2.9058480262756348e-01 3.2125689089298248e-02
+ <_>
+
+ 0 -1 5731 -1.6111029544845223e-03
+
+ 9.8113670945167542e-02 -5.2203711122274399e-02
+ <_>
+
+ 0 -1 5732 -1.8411900848150253e-02
+
+ -1.8082669377326965e-01 5.4536700248718262e-02
+ <_>
+
+ 0 -1 5733 -7.1738816797733307e-02
+
+ -7.6654988527297974e-01 3.3518690615892410e-03
+ <_>
+
+ 0 -1 5734 -2.7943260502070189e-03
+
+ 1.5871369838714600e-01 -6.4271800220012665e-02
+ <_>
+
+ 0 -1 5735 -1.6874749958515167e-01
+
+ -6.9956189393997192e-01 4.8861699178814888e-03
+ <_>
+
+ 0 -1 5736 -1.2672400334849954e-03
+
+ 3.1616039574146271e-02 -2.4953269958496094e-01
+ <_>
+
+ 0 -1 5737 2.0807750523090363e-02
+
+ 1.7053410410881042e-02 -2.4331410229206085e-01
+ <_>
+
+ 0 -1 5738 -1.5869849594309926e-03
+
+ 9.3171089887619019e-02 -8.1361927092075348e-02
+ <_>
+
+ 0 -1 5739 -1.0014690458774567e-02
+
+ -2.7789619565010071e-01 2.6569239795207977e-02
+ <_>
+
+ 0 -1 5740 -5.7948171161115170e-03
+
+ -2.2287739813327789e-01 3.5975661128759384e-02
+ <_>
+
+ 0 -1 5741 2.7189950924366713e-03
+
+ -9.0631909668445587e-02 5.6820400059223175e-02
+ <_>
+
+ 0 -1 5742 3.8845159113407135e-02
+
+ 1.2280859984457493e-02 -5.8521348237991333e-01
+ <_>
+
+ 0 -1 5743 -1.4158680103719234e-02
+
+ 1.8153870105743408e-01 -3.1109429895877838e-02
+ <_>
+
+ 0 -1 5744 -1.8278600275516510e-01
+
+ -9.0013808012008667e-01 7.6544750481843948e-03
+ <_>
+
+ 0 -1 5745 2.7588419616222382e-02
+
+ -1.2460039928555489e-02 2.0069369673728943e-01
+ <_>
+
+ 0 -1 5746 -1.4784430153667927e-02
+
+ -8.9910492300987244e-02 8.1648677587509155e-02
+ <_>
+
+ 0 -1 5747 1.1625719815492630e-01
+
+ 2.3692469112575054e-03 -9.9998068809509277e-01
+ <_>
+
+ 0 -1 5748 3.5341090988367796e-03
+
+ -6.1760541051626205e-02 1.3490639626979828e-01
+ <_>
+
+ 0 -1 5749 5.1878788508474827e-03
+
+ 1.8745860084891319e-02 -1.7449170351028442e-01
+ <_>
+
+ 0 -1 5750 7.9457357525825500e-02
+
+ -2.3402990773320198e-02 3.3502200245857239e-01
+ <_>
+
+ 0 -1 5751 2.7684379369020462e-02
+
+ 2.3663910105824471e-02 -3.3256360888481140e-01
+ <_>
+
+ 0 -1 5752 -4.4806320220232010e-03
+
+ -1.4658750593662262e-01 4.7376811504364014e-02
+ <_>
+
+ 0 -1 5753 5.6939688511192799e-03
+
+ -5.6776121258735657e-02 6.7580856382846832e-02
+ <_>
+
+ 0 -1 5754 7.7299480326473713e-03
+
+ -3.1156649813055992e-02 2.3102590441703796e-01
+ <_>
+
+ 0 -1 5755 3.9786100387573242e-03
+
+ -5.6882441043853760e-02 1.3271529972553253e-01
+ <_>
+
+ 0 -1 5756 -1.1275880038738251e-02
+
+ -2.0938649773597717e-01 3.5291459411382675e-02
+ <_>
+
+ 0 -1 5757 -2.4308220017701387e-03
+
+ -2.0176360011100769e-01 3.4513931721448898e-02
+ <_>
+
+ 0 -1 5758 5.7369591668248177e-03
+
+ -5.5607158690690994e-02 1.1532089859247208e-01
+ <_>
+
+ 0 -1 5759 4.6170800924301147e-03
+
+ -5.6083500385284424e-02 8.1762917339801788e-02
+ <_>
+
+ 0 -1 5760 -4.7089671716094017e-03
+
+ -1.3351219892501831e-01 5.6296080350875854e-02
+ <_>
+
+ 0 -1 5761 -3.2688070088624954e-02
+
+ 2.7922388911247253e-01 -1.0867659933865070e-02
+ <_>
+
+ 0 -1 5762 8.8686197996139526e-02
+
+ 1.8268220126628876e-02 -3.5637390613555908e-01
+ <_>
+
+ 0 -1 5763 4.5751677826046944e-03
+
+ -5.1558461040258408e-02 6.3948810100555420e-02
+ <_>
+
+ 0 -1 5764 4.9765850417315960e-03
+
+ -5.4684590548276901e-02 1.1907110363245010e-01
+ <_>
+
+ 0 -1 5765 -6.4881290309131145e-03
+
+ -9.9121123552322388e-02 2.6508849114179611e-02
+ <_>
+
+ 0 -1 5766 2.4523450993001461e-03
+
+ -9.5045946538448334e-02 6.6802926361560822e-02
+ <_>
+
+ 0 -1 5767 7.0354789495468140e-03
+
+ 1.0705590248107910e-01 -6.2395099550485611e-02
+ <_>
+
+ 0 -1 5768 4.2746789753437042e-02
+
+ -1.6092179343104362e-02 4.3256199359893799e-01
+ <_>
+
+ 0 -1 5769 -4.5301730278879404e-04
+
+ 3.6420568823814392e-02 -9.9322892725467682e-02
+ <_>
+
+ 0 -1 5770 -5.2631930448114872e-03
+
+ -1.1416749656200409e-01 5.7260219007730484e-02
+ <_>
+
+ 0 -1 5771 1.0581909446045756e-03
+
+ 3.3220488578081131e-02 -1.1831220239400864e-01
+ <_>
+
+ 0 -1 5772 2.5088949128985405e-02
+
+ -6.0655020177364349e-02 1.2601740658283234e-01
+ <_>
+
+ 0 -1 5773 2.4252159893512726e-01
+
+ 2.2060840856283903e-03 -1.0000120401382446e+00
+ <_>
+
+ 0 -1 5774 -1.4393079280853271e-01
+
+ 3.7419798970222473e-01 -2.2252110764384270e-02
+ <_>
+
+ 0 -1 5775 -6.0972762294113636e-03
+
+ -1.1038099974393845e-01 4.5996960252523422e-02
+ <_>
+
+ 0 -1 5776 6.1375470831990242e-03
+
+ 3.8307808339595795e-02 -1.8086770176887512e-01
+ <_>
+
+ 0 -1 5777 -3.6617079749703407e-03
+
+ 3.8439918309450150e-02 -6.2540791928768158e-02
+ <_>
+
+ 0 -1 5778 -1.5854850411415100e-01
+
+ 3.4469398856163025e-01 -1.9837500527501106e-02
+ <_>
+
+ 0 -1 5779 6.7219287157058716e-02
+
+ 9.5165139064192772e-03 -5.0206458568572998e-01
+ <_>
+
+ 0 -1 5780 2.2499680053442717e-03
+
+ -1.3063929975032806e-01 6.4832933247089386e-02
+ <_>
+
+ 0 -1 5781 8.4626786410808563e-02
+
+ 5.9339799918234348e-03 -4.1516590118408203e-01
+ <_>
+
+ 0 -1 5782 -9.5411221263930202e-04
+
+ -9.3790747225284576e-02 7.5486607849597931e-02
+ <_>
+
+ 0 -1 5783 -7.6813949272036552e-03
+
+ -1.4821960031986237e-01 2.9010580852627754e-02
+ <_>
+
+ 0 -1 5784 -2.5593319907784462e-02
+
+ 1.4859579503536224e-01 -4.7195930033922195e-02
+ <_>
+
+ 0 -1 5785 2.1508369594812393e-02
+
+ 2.3782620206475258e-02 -9.6659287810325623e-02
+ <_>
+
+ 0 -1 5786 3.4463100135326385e-02
+
+ -3.7410069257020950e-02 2.2015300393104553e-01
+ <_>
+
+ 0 -1 5787 -3.7860300391912460e-02
+
+ -5.0047469139099121e-01 1.4059869572520256e-02
+ <_>
+
+ 0 -1 5788 1.2028450146317482e-03
+
+ -6.5087057650089264e-02 8.9583486318588257e-02
+ <_>
+
+ 0 -1 5789 1.6753520816564560e-02
+
+ 4.9179811030626297e-03 -4.3030908703804016e-01
+ <_>
+
+ 0 -1 5790 1.6640779795125127e-03
+
+ 4.0807429701089859e-02 -1.4469960331916809e-01
+ <_>
+
+ 0 -1 5791 3.4473428968340158e-03
+
+ -3.9910178631544113e-02 1.5272960066795349e-01
+ <_>
+
+ 0 -1 5792 8.9918142184615135e-03
+
+ 7.1071267127990723e-02 -8.6169913411140442e-02
+ <_>
+
+ 0 -1 5793 8.3185202674940228e-04
+
+ -2.5739189982414246e-01 1.7941089347004890e-02
+ <_>
+
+ 0 -1 5794 -6.8142730742692947e-03
+
+ 1.3823160529136658e-01 -5.3994540125131607e-02
+ <_>
+
+ 0 -1 5795 2.9746210202574730e-03
+
+ -4.1550260037183762e-02 3.9839770644903183e-02
+ <_>
+
+ 0 -1 5796 2.5836620479822159e-03
+
+ -7.0656493306159973e-02 9.5045506954193115e-02
+ <_>
+
+ 0 -1 5797 2.7143809711560607e-04
+
+ 5.8070071041584015e-02 -1.2781760096549988e-01
+ <_>
+
+ 0 -1 5798 3.5418298840522766e-01
+
+ 5.4909070022404194e-03 -9.7960698604583740e-01
+ <_>
+
+ 0 -1 5799 2.5318650528788567e-02
+
+ -1.4410969801247120e-02 2.6219129562377930e-01
+ <_>
+
+ 0 -1 5800 -2.2658439411316067e-04
+
+ 5.2997849881649017e-02 -1.1629349738359451e-01
+ <_>
+
+ 0 -1 5801 6.8859090097248554e-03
+
+ 1.6437310725450516e-02 -2.0349490642547607e-01
+ <_>
+
+ 0 -1 5802 1.1607459746301174e-02
+
+ -3.6651011556386948e-02 1.5184010565280914e-01
+ <_>
+
+ 0 -1 5803 -4.8253959976136684e-03
+
+ -2.3476150631904602e-01 3.7914011627435684e-02
+ <_>
+
+ 0 -1 5804 2.5656020734459162e-03
+
+ 3.5185638815164566e-02 -1.8540710210800171e-01
+ <_>
+
+ 0 -1 5805 1.2601399421691895e-01
+
+ -9.8542850464582443e-03 2.5520691275596619e-01
+ <_>
+
+ 0 -1 5806 2.7164958883076906e-03
+
+ -2.1748440340161324e-02 2.5467529892921448e-01
+ <_>
+
+ 0 -1 5807 3.2356029748916626e-01
+
+ 8.8657345622777939e-03 -7.0383572578430176e-01
+ <_>
+
+ 0 -1 5808 -8.4016058826819062e-04
+
+ 3.6831360310316086e-02 -1.4953260123729706e-01
+ <_>
+
+ 0 -1 5809 3.3291990403085947e-03
+
+ 4.8185840249061584e-02 -1.2290470302104950e-01
+ <_>
+
+ 0 -1 5810 2.1130539476871490e-01
+
+ 6.5245870500802994e-03 -8.8293862342834473e-01
+ <_>
+
+ 0 -1 5811 5.0388509407639503e-03
+
+ -6.7079946398735046e-02 3.7849709391593933e-02
+ <_>
+
+ 0 -1 5812 -2.7862399816513062e-02
+
+ 3.3469489216804504e-01 -1.8816500902175903e-02
+ <_>
+
+ 0 -1 5813 3.8636629469692707e-03
+
+ 4.3644730001688004e-02 -1.7481489479541779e-01
+ <_>
+
+ 0 -1 5814 1.0480300337076187e-01
+
+ -1.5737529844045639e-02 4.2094239592552185e-01
+ <_>
+
+ 0 -1 5815 -3.4130848944187164e-03
+
+ -1.0835570096969604e-01 4.3717790395021439e-02
+ <_>
+
+ 0 -1 5816 -4.6396970748901367e-02
+
+ -7.5680077075958252e-01 8.6701400578022003e-03
+ <_>
+
+ 0 -1 5817 5.3708078339695930e-03
+
+ -4.1797801852226257e-02 1.4824719727039337e-01
+ <_>
+
+ 0 -1 5818 -6.1126388609409332e-03
+
+ 1.8673719465732574e-01 -4.3387491255998611e-02
+ <_>
+
+ 0 -1 5819 4.2509321123361588e-02
+
+ 1.1690679937601089e-02 -4.3740659952163696e-01
+ <_>
+
+ 0 -1 5820 1.0473020374774933e-02
+
+ 4.3143630027770996e-02 -1.5654399991035461e-01
+ <_>
+
+ 0 -1 5821 -4.7223959118127823e-02
+
+ -7.4483537673950195e-01 3.4918629098683596e-03
+ <_>
+
+ 0 -1 5822 5.3090360015630722e-02
+
+ 1.0408150032162666e-02 -5.3499448299407959e-01
+ <_>
+
+ 0 -1 5823 -7.0432561915367842e-04
+
+ 3.3384170383214951e-02 -7.3706030845642090e-02
+ <_>
+
+ 0 -1 5824 7.5942431576550007e-03
+
+ -2.9107049107551575e-02 1.9468860328197479e-01
+ <_>
+
+ 0 -1 5825 2.2676989436149597e-02
+
+ 3.3803820610046387e-02 -2.7627611160278320e-01
+ <_>
+
+ 0 -1 5826 6.6533521749079227e-03
+
+ -2.6578240096569061e-02 2.4283319711685181e-01
+ <_>
+
+ 0 -1 5827 3.7712270859628916e-03
+
+ 2.6554299518465996e-02 -6.4952917397022247e-02
+ <_>
+
+ 0 -1 5828 -2.0740530453622341e-03
+
+ -1.7968970537185669e-01 3.1532160937786102e-02
+ <_>
+
+ 0 -1 5829 -1.5632519498467445e-03
+
+ 5.3109679371118546e-02 -8.7415628135204315e-02
+ <_>
+
+ 0 -1 5830 1.2540889903903008e-02
+
+ -3.4136459231376648e-02 2.2097539901733398e-01
+ <_>
+
+ 0 -1 5831 -3.2660199794918299e-03
+
+ -5.5261608213186264e-02 3.2669559121131897e-02
+ <_>
+
+ 0 -1 5832 -8.2185603678226471e-03
+
+ -1.4478379487991333e-01 5.5743928998708725e-02
+ <_>
+
+ 0 -1 5833 -5.5811040103435516e-02
+
+ 1.7237940430641174e-01 -1.4456519857048988e-02
+ <_>
+
+ 0 -1 5834 -1.4723159372806549e-01
+
+ -8.1392312049865723e-01 7.4356291443109512e-03
+ <_>
+
+ 0 -1 5835 -5.8468529023230076e-03
+
+ -6.9043442606925964e-02 1.9456790760159492e-02
+ <_>
+
+ 0 -1 5836 1.9462220370769501e-02
+
+ -3.5472229123115540e-02 1.6666300594806671e-01
+ <_>
+
+ 0 -1 5837 5.8353468775749207e-02
+
+ 3.0551329255104065e-03 -3.9289128780364990e-01
+ <_>
+
+ 0 -1 5838 4.3785829097032547e-02
+
+ 1.3574630022048950e-02 -4.6152359247207642e-01
+ <_>
+
+ 0 -1 5839 -5.1904350519180298e-02
+
+ 6.3802438974380493e-01 -9.6664745360612869e-03
+ <_>
+
+ 0 -1 5840 -7.7811058145016432e-04
+
+ -9.9303223192691803e-02 5.6094601750373840e-02
+ <_>
+
+ 0 -1 5841 4.9657518975436687e-03
+
+ 4.1419368237257004e-02 -1.1274819821119308e-01
+ <_>
+
+ 0 -1 5842 -5.4516079835593700e-03
+
+ 1.7399060726165771e-01 -4.1147731244564056e-02
+ <_>
+
+ 0 -1 5843 5.0428751856088638e-03
+
+ -4.1255220770835876e-02 1.3794229924678802e-01
+ <_>
+
+ 0 -1 5844 -1.6985220136120915e-03
+
+ -2.2874790430068970e-01 2.5274980813264847e-02
+ <_>
+
+ 0 -1 5845 8.2764238119125366e-02
+
+ 3.3066510222852230e-03 -6.9113439321517944e-01
+ <_>
+
+ 0 -1 5846 3.9285849779844284e-03
+
+ -7.9043358564376831e-02 6.6218852996826172e-02
+ <_>
+
+ 0 -1 5847 -3.0601240694522858e-02
+
+ -2.6517450809478760e-01 1.6467850655317307e-02
+ <_>
+
+ 0 -1 5848 -1.9941160455346107e-02
+
+ 1.5431809425354004e-01 -3.6100689321756363e-02
+ <_>
+
+ 0 -1 5849 8.0520063638687134e-02
+
+ 1.7015919089317322e-02 -3.3448880910873413e-01
+ <_>
+
+ 0 -1 5850 7.0323847234249115e-02
+
+ 1.7122440040111542e-02 -3.3302140235900879e-01
+ <_>
+
+ 0 -1 5851 -5.2850939333438873e-02
+
+ 6.2421400099992752e-02 -1.4690199866890907e-02
+ <_>
+
+ 0 -1 5852 -7.1594159817323089e-04
+
+ -1.1335150152444839e-01 5.2260790020227432e-02
+ <_>
+
+ 0 -1 5853 2.1469970047473907e-01
+
+ 9.9299731664359570e-04 -9.9997580051422119e-01
+ <_>
+
+ 0 -1 5854 8.7042592465877533e-02
+
+ -1.2329760007560253e-02 5.0260668992996216e-01
+ <_>
+
+ 0 -1 5855 -5.8731262106448412e-04
+
+ -9.9346466362476349e-02 5.1705610007047653e-02
+ <_>
+
+ 0 -1 5856 -4.4215220957994461e-02
+
+ -3.9368900656700134e-01 1.3920850120484829e-02
+ <_>
+
+ 0 -1 5857 -8.7676227092742920e-02
+
+ 3.0157440900802612e-01 -6.8702381104230881e-03
+ <_>
+
+ 0 -1 5858 -4.8453990370035172e-02
+
+ 2.5477871298789978e-01 -2.2457750514149666e-02
+ <_>
+
+ 0 -1 5859 -2.1567570511251688e-03
+
+ -1.3562899827957153e-01 3.1725399196147919e-02
+ <_>
+
+ 0 -1 5860 3.9050900377333164e-03
+
+ 4.9100890755653381e-02 -1.1861059814691544e-01
+ <_>
+
+ 0 -1 5861 -3.9808028377592564e-03
+
+ 4.8333909362554550e-02 -5.5897079408168793e-02
+ <_>
+
+ 0 -1 5862 2.9744929634034634e-03
+
+ -6.4802452921867371e-02 9.3583501875400543e-02
+ <_>
+
+ 0 -1 5863 2.5875229388475418e-02
+
+ 1.8487609922885895e-02 -3.3436349034309387e-01
+ <_>
+
+ 0 -1 5864 -1.9373580580577254e-03
+
+ 2.2000649571418762e-01 -2.5404980406165123e-02
+ <_>
+
+ 0 -1 5865 -2.0171629264950752e-02
+
+ -7.8228309750556946e-02 4.5462790876626968e-02
+ <_>
+
+ 0 -1 5866 -2.6088140904903412e-02
+
+ 1.7637069523334503e-01 -4.5097298920154572e-02
+ <_>
+
+ 0 -1 5867 -2.6868300512433052e-02
+
+ -3.2656419277191162e-01 1.7994230613112450e-02
+ <_>
+
+ 0 -1 5868 -7.0211151614785194e-04
+
+ 3.9671998471021652e-02 -1.4533540606498718e-01
+ <_>
+
+ 0 -1 5869 8.3507681265473366e-03
+
+ -2.3051729425787926e-02 1.8850760161876678e-01
+ <_>
+
+ 0 -1 5870 4.6823569573462009e-03
+
+ 2.9996560886502266e-02 -2.0701029896736145e-01
+ <_>
+
+ 0 -1 5871 3.3109660726040602e-03
+
+ 5.6536730378866196e-02 -1.6835589706897736e-01
+ <_>
+
+ 0 -1 5872 7.6425541192293167e-03
+
+ -4.1423950344324112e-02 1.2557519972324371e-01
+ <_>
+
+ 0 -1 5873 -2.4713110178709030e-03
+
+ 7.2156153619289398e-02 -1.0767730325460434e-01
+ <_>
+
+ 0 -1 5874 -9.9495360627770424e-03
+
+ -1.8187619745731354e-01 3.3567231148481369e-02
+ <_>
+
+ 0 -1 5875 1.9820800516754389e-03
+
+ -5.6488718837499619e-02 1.0741490125656128e-01
+ <_>
+
+ 0 -1 5876 2.3254439234733582e-02
+
+ -1.6543349251151085e-02 3.6466678977012634e-01
+ <_>
+
+ 0 -1 5877 -5.4177921265363693e-02
+
+ -1. 3.3418419770896435e-03
+ <_>
+
+ 0 -1 5878 6.1567849479615688e-04
+
+ 4.0159329771995544e-02 -1.6460220515727997e-01
+ <_>
+
+ 0 -1 5879 -4.2699510231614113e-03
+
+ -5.6978620588779449e-02 4.4480901211500168e-02
+ <_>
+
+ 0 -1 5880 1.9749389030039310e-03
+
+ 5.9283681213855743e-02 -1.0791260004043579e-01
+ <_>
+
+ 0 -1 5881 -5.8583128266036510e-03
+
+ 1.3734050095081329e-01 -3.4231521189212799e-02
+ <_>
+
+ 0 -1 5882 -7.2995189111679792e-04
+
+ -1.0075060278177261e-01 5.4733160883188248e-02
+ <_>
+
+ 0 -1 5883 -2.9930740594863892e-02
+
+ 6.3882559537887573e-02 -4.1027020663022995e-02
+ <_>
+
+ 0 -1 5884 -5.1738750189542770e-02
+
+ -7.2713458538055420e-01 7.4993381276726723e-03
+ <_>
+
+ 0 -1 5885 2.4021189659833908e-02
+
+ 7.8491801396012306e-03 -5.5794471502304077e-01
+ <_>
+
+ 0 -1 5886 -3.7574321031570435e-03
+
+ -1.6086879372596741e-01 3.1015990301966667e-02
+ <_>
+
+ 0 -1 5887 -6.2635682523250580e-02
+
+ 9.0577863156795502e-02 -2.9033770784735680e-02
+ <_>
+
+ 0 -1 5888 1.9363429397344589e-02
+
+ -4.9920588731765747e-02 1.2835779786109924e-01
+ <_>
+
+ 0 -1 5889 -3.5072889178991318e-02
+
+ 2.1391840279102325e-01 -8.8168960064649582e-03
+ <_>
+
+ 0 -1 5890 -1.3243310153484344e-02
+
+ 2.3349699378013611e-01 -2.3088019341230392e-02
+ <_>
+
+ 0 -1 5891 -3.1290829181671143e-02
+
+ -6.9495099782943726e-01 9.3020889908075333e-03
+ <_>
+
+ 0 -1 5892 7.2391419671475887e-03
+
+ 2.8485849499702454e-02 -1.8310770392417908e-01
+ <_>
+
+ 0 -1 5893 6.6785318776965141e-03
+
+ -4.9132950603961945e-02 5.4181691259145737e-02
+ <_>
+
+ 0 -1 5894 -3.6825571209192276e-02
+
+ 3.3120208978652954e-01 -2.1359929814934731e-02
+ <_>
+
+ 0 -1 5895 -4.5507341623306274e-02
+
+ -1.2893490493297577e-01 4.9545988440513611e-02
+ <_>
+
+ 0 -1 5896 7.7639957889914513e-03
+
+ -3.6255620419979095e-02 1.5321409702301025e-01
+ <_>
+
+ 0 -1 5897 6.0417611151933670e-02
+
+ 4.5740022324025631e-03 -6.7541092634201050e-01
+ <_>
+
+ 0 -1 5898 2.4624960497021675e-03
+
+ 5.3674161434173584e-02 -1.1326540261507034e-01
+ <_>
+
+ 0 -1 5899 7.3594506829977036e-05
+
+ -3.5648930817842484e-02 2.5458969175815582e-02
+ <_>
+
+ 0 -1 5900 -4.0958370082080364e-03
+
+ 1.5562909841537476e-01 -3.9390601217746735e-02
+ <_>
+
+ 0 -1 5901 2.8689370083156973e-05
+
+ -8.4823302924633026e-02 3.8254238665103912e-02
+ <_>
+
+ 0 -1 5902 -4.6220528893172741e-03
+
+ -1.8994529545307159e-01 3.3508758991956711e-02
+ <_>
+
+ 0 -1 5903 -8.5343196988105774e-03
+
+ 1.1212539672851562e-01 -3.3968489617109299e-02
+ <_>
+
+ 0 -1 5904 -5.8803848922252655e-02
+
+ -5.1244312524795532e-01 1.0789549909532070e-02
+ <_>
+
+ 0 -1 5905 6.0719929635524750e-02
+
+ -1.2555030174553394e-02 2.2509759664535522e-01
+ <_>
+
+ 0 -1 5906 1.1038020020350814e-03
+
+ -9.6294492483139038e-02 5.6727480143308640e-02
+ <_>
+
+ 0 -1 5907 -3.8484560791403055e-03
+
+ 4.0573459118604660e-02 -2.5326859205961227e-02
+ <_>
+
+ 0 -1 5908 -1.0771050117909908e-02
+
+ 8.8735632598400116e-02 -5.5628679692745209e-02
+ <_>
+
+ 0 -1 5909 1.2016809545457363e-02
+
+ 2.3566279560327530e-02 -2.4590580165386200e-01
+ <_>
+
+ 0 -1 5910 -1.1656560236588120e-03
+
+ -3.7417300045490265e-02 1.6503289341926575e-01
+ <_>
+
+ 0 -1 5911 3.2137628644704819e-02
+
+ 1.4245970174670219e-02 -2.6480850577354431e-01
+ <_>
+
+ 0 -1 5912 2.3331670090556145e-02
+
+ -3.5288721323013306e-02 1.8447829782962799e-01
+ <_>
+
+ 0 -1 5913 -1.2685320340096951e-02
+
+ -1.1757309734821320e-01 1.6436910256743431e-02
+ <_>
+
+ 0 -1 5914 7.3903938755393028e-05
+
+ -1.0271479934453964e-01 7.4301436543464661e-02
+ <_>
+
+ 0 -1 5915 -1.0925470292568207e-01
+
+ -8.3165317773818970e-01 5.6438110768795013e-03
+ <_>
+
+ 0 -1 5916 -1.3324350118637085e-01
+
+ 7.7729821205139160e-01 -8.3403270691633224e-03
+ <_>
+
+ 0 -1 5917 8.9381448924541473e-04
+
+ -5.9524301439523697e-02 4.1173089295625687e-02
+ <_>
+
+ 0 -1 5918 1.0318649932742119e-02
+
+ 1.5926430001854897e-02 -3.1637790799140930e-01
+ <_>
+
+ 0 -1 5919 -5.2297548390924931e-03
+
+ -7.1166560053825378e-02 3.3489290624856949e-02
+ <_>
+
+ 0 -1 5920 1.6409620642662048e-02
+
+ -2.6454120874404907e-02 1.9589969515800476e-01
+ <_>
+
+ 0 -1 5921 1.4068709686398506e-02
+
+ -3.9364140480756760e-02 1.3977420330047607e-01
+ <_>
+
+ 0 -1 5922 6.6486410796642303e-03
+
+ 6.4070828258991241e-02 -1.0493399947881699e-01
+ <_>
+
+ 0 -1 5923 -1.8030619248747826e-02
+
+ 8.3942912518978119e-02 -1.3399159535765648e-02
+ <_>
+
+ 0 -1 5924 -4.4034369289875031e-02
+
+ -5.5825459957122803e-01 9.7633162513375282e-03
+ <_>
+
+ 0 -1 5925 -8.0966893583536148e-03
+
+ -2.0489789545536041e-01 2.6520200073719025e-02
+ <_>
+
+ 0 -1 5926 5.0180461257696152e-03
+
+ -1.1661209911108017e-01 4.5791670680046082e-02
+ <_>
+
+ 0 -1 5927 -1.7064629122614861e-02
+
+ 2.6282730698585510e-01 -2.0390639081597328e-02
+ <_>
+
+ 0 -1 5928 7.1850173175334930e-02
+
+ -6.9503681734204292e-03 6.7032539844512939e-01
+ <_>
+
+ 0 -1 5929 -5.6914370507001877e-02
+
+ -1.3477900624275208e-01 1.8399080261588097e-02
+ <_>
+
+ 0 -1 5930 -3.2365729566663504e-03
+
+ 6.9673851132392883e-02 -7.2314530611038208e-02
+ <_>
+
+ 0 -1 5931 4.1818909347057343e-02
+
+ 1.1151459999382496e-02 -5.1680111885070801e-01
+ <_>
+
+ 0 -1 5932 -6.1106588691473007e-03
+
+ -1.3163940608501434e-01 4.3796509504318237e-02
+ <_>
+
+ 0 -1 5933 -3.5560909658670425e-02
+
+ 6.8005502223968506e-02 -3.6331020295619965e-02
+ <_>
+
+ 0 -1 5934 6.8789169192314148e-02
+
+ 1.4698959887027740e-02 -3.8212299346923828e-01
+ <_>
+
+ 0 -1 5935 -7.8313373029232025e-02
+
+ 2.0296069979667664e-01 -8.6810020729899406e-03
+ <_>
+
+ 0 -1 5936 3.9626220241189003e-03
+
+ -3.5797890275716782e-02 1.3905510306358337e-01
+ <_>
+
+ 0 -1 5937 -3.3874038606882095e-02
+
+ -2.2253429889678955e-01 7.5455638580024242e-03
+ <_>
+
+ 0 -1 5938 -6.4755856990814209e-02
+
+ 4.7521549463272095e-01 -1.0970680043101311e-02
+ <_>
+
+ 0 -1 5939 2.6647940278053284e-02
+
+ 1.5445309691131115e-02 -2.6785778999328613e-01
+ <_>
+
+ 0 -1 5940 -3.0731109902262688e-02
+
+ -4.7668689489364624e-01 9.6429884433746338e-03
+ <_>
+
+ 0 -1 5941 -2.4022700265049934e-02
+
+ -1.0633960366249084e-01 1.2849040329456329e-02
+ <_>
+
+ 0 -1 5942 -1.3036349555477500e-03
+
+ 7.3524177074432373e-02 -6.8074919283390045e-02
+ <_>
+
+ 0 -1 5943 -9.8344050347805023e-03
+
+ -1.1843550205230713e-01 4.2866699397563934e-02
+ <_>
+
+ 0 -1 5944 8.7102197110652924e-02
+
+ -4.0088258683681488e-02 1.7804540693759918e-01
+ <_>
+
+ 0 -1 5945 2.0411569625139236e-02
+
+ 1.6849989071488380e-02 -3.8953658938407898e-01
+ <_>
+
+ 0 -1 5946 9.5875263214111328e-02
+
+ 5.9905550442636013e-03 -8.1525659561157227e-01
+ <_>
+
+ 0 -1 5947 6.4893220551311970e-03
+
+ -2.4039229378104210e-02 5.3871169686317444e-02
+ <_>
+
+ 0 -1 5948 -9.6279237186536193e-04
+
+ 9.4299189746379852e-02 -6.4436018466949463e-02
+ <_>
+
+ 0 -1 5949 -3.7659960798919201e-04
+
+ -6.2296878546476364e-02 4.1251849383115768e-02
+ <_>
+
+ 0 -1 5950 6.5272641368210316e-03
+
+ 5.1325131207704544e-02 -1.3037790358066559e-01
+ <_>
+
+ 0 -1 5951 2.1429110318422318e-02
+
+ -1.1989659629762173e-02 2.6280459761619568e-01
+ <_>
+
+ 0 -1 5952 -5.0938720814883709e-03
+
+ 6.3418947160243988e-02 -9.0566337108612061e-02
+ <_>
+
+ 0 -1 5953 -2.5309680495411158e-03
+
+ 6.0297761112451553e-02 -2.5049470365047455e-02
+ <_>
+
+ 0 -1 5954 -1.5915350522845984e-03
+
+ -1.2171190232038498e-01 3.7737991660833359e-02
+ <_>
+
+ 0 -1 5955 -3.4030709415674210e-02
+
+ 4.6413430571556091e-01 -3.5409750416874886e-03
+ <_>
+
+ 0 -1 5956 5.1074200309813023e-03
+
+ 3.9823830127716064e-02 -1.2645539641380310e-01
+ <_>
+
+ 0 -1 5957 -9.6449116244912148e-03
+
+ 3.3464258909225464e-01 -6.6040740348398685e-03
+ <_>
+
+ 0 -1 5958 1.1422860436141491e-02
+
+ -3.6080420017242432e-02 1.3714550435543060e-01
+ <_>
+
+ 0 -1 5959 -5.1042139530181885e-03
+
+ -9.3986809253692627e-02 2.8844779357314110e-02
+ <_>
+
+ 0 -1 5960 -2.6332271099090576e-01
+
+ 4.9980929493904114e-01 -1.0173249989748001e-02
+ <_>
+
+ 0 -1 5961 -2.4556639790534973e-01
+
+ -8.1778347492218018e-01 6.9596339017152786e-03
+ <_>
+
+ 0 -1 5962 -2.1419329941272736e-01
+
+ -5.1040518283843994e-01 9.4540230929851532e-03
+ <_>
+
+ 0 -1 5963 -1.4363219961524010e-02
+
+ -9.1000981628894806e-02 2.4646669626235962e-02
+ <_>
+
+ 0 -1 5964 -1.2388969771564007e-03
+
+ 1.1544570326805115e-01 -4.9565620720386505e-02
+ <_>
+
+ 0 -1 5965 2.1015120670199394e-02
+
+ -1.7765879631042480e-02 1.9577859342098236e-01
+ <_>
+
+ 0 -1 5966 -4.1783051565289497e-03
+
+ -1.1172860115766525e-01 4.4625449925661087e-02
+ <_>
+
+ 0 -1 5967 2.0896939095109701e-03
+
+ -3.3988729119300842e-02 6.5539501607418060e-02
+ <_>
+
+ 0 -1 5968 1.6410060226917267e-02
+
+ -2.0373269915580750e-02 2.5331538915634155e-01
+ <_>
+
+ 0 -1 5969 -6.4266882836818695e-02
+
+ -6.5880149602890015e-01 3.4550630953162909e-03
+ <_>
+
+ 0 -1 5970 6.8898178869858384e-04
+
+ 6.7643247544765472e-02 -8.7556242942810059e-02
+ <_>
+
+ 0 -1 5971 5.6662331335246563e-03
+
+ 3.0638309195637703e-02 -1.1895540356636047e-01
+ <_>
+
+ 0 -1 5972 -4.3778121471405029e-02
+
+ -2.8309130668640137e-01 1.7713630571961403e-02
+ <_>
+
+ 0 -1 5973 3.4748481120914221e-03
+
+ -9.5787122845649719e-02 4.2630400508642197e-02
+ <_>
+
+ 0 -1 5974 -1.1673940345644951e-02
+
+ -1.0502570122480392e-01 5.0903890281915665e-02
+ <_>
+
+ 0 -1 5975 -3.4004659391939640e-03
+
+ 1.0470719635486603e-01 -4.0939141064882278e-02
+ <_>
+
+ 0 -1 5976 2.7091780211776495e-03
+
+ -6.0524601489305496e-02 1.3978950679302216e-01
+ <_>
+
+ 0 -1 5977 -1.7439300194382668e-02
+
+ -3.2391169667243958e-01 1.4630249701440334e-02
+ <_>
+
+ 0 -1 5978 -1.2598330155014992e-02
+
+ -2.0682629942893982e-01 2.5501869618892670e-02
+ <_>
+
+ 0 -1 5979 1.8755869939923286e-02
+
+ -4.7925960272550583e-02 1.0864380002021790e-01
+ <_>
+
+ 0 -1 5980 -4.2074159719049931e-03
+
+ -8.2077808678150177e-02 6.3647769391536713e-02
+ <_>
+
+ 0 -1 5981 -1.6427719674538821e-04
+
+ 1.0120390355587006e-01 -3.4067928791046143e-02
+ <_>
+
+ 0 -1 5982 4.3847691267728806e-02
+
+ 6.0980222187936306e-03 -8.3685982227325439e-01
+ <_>
+
+ 0 -1 5983 -3.9284680038690567e-02
+
+ 2.8250560164451599e-01 -2.2389259189367294e-02
+ <_>
+
+ 0 -1 5984 3.8550909608602524e-02
+
+ 1.5570489689707756e-02 -3.3978620171546936e-01
+ <_>
+
+ 0 -1 5985 -6.9177031517028809e-02
+
+ 1.2258320301771164e-01 -1.7850179225206375e-02
+ <_>
+
+ 0 -1 5986 -1.9251030171290040e-03
+
+ -1.0687749832868576e-01 4.6379510313272476e-02
+ <_>
+
+ 0 -1 5987 -8.6635202169418335e-03
+
+ 9.6412748098373413e-02 -1.7563249915838242e-02
+ <_>
+
+ 0 -1 5988 1.3393509387969971e-01
+
+ 6.3692941330373287e-03 -7.0170587301254272e-01
+ <_>
+
+ 0 -1 5989 4.1082348674535751e-02
+
+ -1.1077569797635078e-02 1.3463750481605530e-01
+ <_>
+
+ 0 -1 5990 1.4911450445652008e-01
+
+ 9.5263421535491943e-03 -5.0872552394866943e-01
+ <_>
+
+ 0 -1 5991 -5.2500818856060505e-03
+
+ 7.0025578141212463e-02 -4.2880270630121231e-02
+ <_>
+
+ 0 -1 5992 2.2823570296168327e-02
+
+ -4.1884049773216248e-02 1.1770319938659668e-01
+ <_>
+
+ 0 -1 5993 -8.5306530818343163e-03
+
+ 6.1222139745950699e-02 -2.4944549426436424e-02
+ <_>
+
+ 0 -1 5994 1.1971729807555676e-02
+
+ 3.9662770926952362e-02 -1.6267740726470947e-01
+ <_>
+
+ 0 -1 5995 -3.8938269019126892e-02
+
+ 2.5743520259857178e-01 -1.6356239095330238e-02
+ <_>
+
+ 0 -1 5996 -2.1706389263272285e-02
+
+ -3.1998679041862488e-01 1.7135290428996086e-02
+ <_>
+
+ 0 -1 5997 6.6900630481541157e-03
+
+ 2.6101849973201752e-02 -1.0980729758739471e-01
+ <_>
+
+ 0 -1 5998 -7.2270832955837250e-02
+
+ 1.9431130588054657e-01 -2.6044359430670738e-02
+ <_>
+
+ 0 -1 5999 -6.7073688842356205e-03
+
+ -1.7747850716114044e-01 4.5862998813390732e-02
+ <_>
+
+ 0 -1 6000 5.5019360035657883e-02
+
+ -8.3471573889255524e-03 6.0511541366577148e-01
+ <_>
+
+ 0 -1 6001 1.3142649829387665e-01
+
+ -5.7535418309271336e-03 2.9167538881301880e-01
+ <_>
+
+ 0 -1 6002 -1.6564460238441825e-03
+
+ 7.0003032684326172e-02 -6.2690876424312592e-02
+ <_>
+
+ 0 -1 6003 1.5445409715175629e-01
+
+ 6.1896732077002525e-03 -7.4323302507400513e-01
+ <_>
+
+ 0 -1 6004 -5.0357519648969173e-03
+
+ -1.1333289742469788e-01 3.8741771131753922e-02
+ <_>
+
+ 0 -1 6005 2.2772569209337234e-03
+
+ -1.1340530216693878e-01 2.1319400519132614e-02
+ <_>
+
+ 0 -1 6006 3.3173530828207731e-03
+
+ 4.4273331761360168e-02 -1.0459829866886139e-01
+ <_>
+
+ 0 -1 6007 -2.9692800715565681e-02
+
+ 9.2483766376972198e-02 -2.3342609405517578e-02
+ <_>
+
+ 0 -1 6008 6.2937840819358826e-02
+
+ -1.2998280115425587e-02 3.8887938857078552e-01
+ <_>
+
+ 0 -1 6009 3.6641359329223633e-03
+
+ 3.2099820673465729e-02 -3.9647988975048065e-02
+ <_>
+
+ 0 -1 6010 4.4782999902963638e-03
+
+ -4.5701328665018082e-02 1.0697010159492493e-01
+ <_>
+
+ 0 -1 6011 1.8147319788113236e-03
+
+ -3.2871820032596588e-02 1.0647939890623093e-01
+ <_>
+
+ 0 -1 6012 4.8941639252007008e-03
+
+ 2.7911009266972542e-02 -2.1725590527057648e-01
+ <_>
+
+ 0 -1 6013 -4.4425828382372856e-03
+
+ -1.3470150530338287e-01 1.0781410150229931e-02
+ <_>
+
+ 0 -1 6014 -2.5493400171399117e-02
+
+ 6.8371468782424927e-01 -7.7452720142900944e-03
+ <_>
+
+ 0 -1 6015 2.7835449203848839e-02
+
+ 2.4144299328327179e-02 -1.5170599520206451e-01
+ <_>
+
+ 0 -1 6016 7.5548859313130379e-03
+
+ -4.7643400728702545e-02 1.1925770342350006e-01
+ <_>
+
+ 0 -1 6017 1.0329609736800194e-02
+
+ 1.8646810203790665e-02 -1.6122570633888245e-01
+ <_>
+
+ 0 -1 6018 -1.2393389828503132e-02
+
+ 6.0304921865463257e-01 -7.7566630207002163e-03
+ <_>
+
+ 0 -1 6019 1.3833769597113132e-02
+
+ -2.7617299929261208e-02 5.1266878843307495e-02
+ <_>
+
+ 0 -1 6020 -2.5669319555163383e-02
+
+ 2.3801359534263611e-01 -2.3971909657120705e-02
+ <_>
+
+ 0 -1 6021 -5.2043660543859005e-03
+
+ -1.0721790045499802e-01 2.6645049452781677e-02
+ <_>
+
+ 0 -1 6022 3.4628969151526690e-03
+
+ 5.4313410073518753e-02 -1.3458320498466492e-01
+ <_>
+
+ 0 -1 6023 -1.9220679998397827e-02
+
+ 7.2996392846107483e-02 -4.0652111172676086e-02
+ <_>
+
+ 0 -1 6024 -2.5009829550981522e-03
+
+ -7.7671296894550323e-02 5.9096541255712509e-02
+ <_>
+
+ 0 -1 6025 -8.5285156965255737e-03
+
+ 4.9050811678171158e-02 -6.4078353345394135e-02
+ <_>
+
+ 0 -1 6026 4.3327538296580315e-03
+
+ 2.5221010670065880e-02 -1.9358980655670166e-01
+ <_>
+
+ 0 -1 6027 3.6595970392227173e-02
+
+ -1.6262590885162354e-02 1.5651239454746246e-01
+ <_>
+
+ 0 -1 6028 -1.1795730097219348e-03
+
+ -7.2468072175979614e-02 7.0449486374855042e-02
+ <_>
+
+ 0 -1 6029 -1.3975829817354679e-02
+
+ -1.1789470165967941e-01 2.1292049437761307e-02
+ <_>
+
+ 0 -1 6030 -1.3828700175508857e-03
+
+ 7.9283542931079865e-02 -9.5104120671749115e-02
+ <_>
+
+ 0 -1 6031 -2.9435830656439066e-03
+
+ 7.0368431508541107e-02 -3.3217910677194595e-02
+ <_>
+
+ 0 -1 6032 9.5262555405497551e-03
+
+ -2.9733620584011078e-02 1.6670459508895874e-01
+ <_>
+
+ 0 -1 6033 -9.0114273130893707e-02
+
+ -1.6625370085239410e-01 8.6199166253209114e-03
+ <_>
+
+ 0 -1 6034 -1.2089919764548540e-03
+
+ 8.1083856523036957e-02 -7.3029123246669769e-02
+ <_>
+
+ 0 -1 6035 -1.4199960231781006e-01
+
+ -1. 2.2284830920398235e-03
+ <_>
+
+ 0 -1 6036 8.0690719187259674e-03
+
+ 4.7412220388650894e-02 -1.0178930312395096e-01
+ <_>
+
+ 0 -1 6037 -4.7410889528691769e-03
+
+ 1.2051119655370712e-01 -4.9957480281591415e-02
+ <_>
+
+ 0 -1 6038 -1.6977200284600258e-03
+
+ -2.4171440303325653e-01 1.9534369930624962e-02
+ <_>
+
+ 0 -1 6039 -2.8892089612782001e-03
+
+ 2.5727990269660950e-01 -1.1625059880316257e-02
+ <_>
+
+ 0 -1 6040 -1.5177440363913774e-03
+
+ -9.8784193396568298e-02 4.6706128865480423e-02
+ <_>
+
+ 0 -1 6041 1.4197319746017456e-01
+
+ -2.5096370372921228e-03 7.5450611114501953e-01
+ <_>
+
+ 0 -1 6042 9.7517937421798706e-02
+
+ -6.9059049710631371e-03 6.5184432268142700e-01
+ <_>
+
+ 0 -1 6043 1.3567379675805569e-02
+
+ -7.6325193047523499e-02 8.8054582476615906e-02
+ <_>
+
+ 0 -1 6044 8.0981463193893433e-02
+
+ 1.5558109618723392e-02 -3.4601628780364990e-01
+ <_>
+
+ 0 -1 6045 -4.7192731872200966e-03
+
+ 8.1620022654533386e-02 -4.6072289347648621e-02
+ <_>
+
+ 0 -1 6046 2.0368969999253750e-03
+
+ -4.4817630201578140e-02 1.2861390411853790e-01
+ <_>
+
+ 0 -1 6047 -1.7878509825095534e-03
+
+ 4.3731331825256348e-02 -4.4995948672294617e-02
+ <_>
+
+ 0 -1 6048 -7.1685528382658958e-03
+
+ -1.3597999513149261e-01 3.8796991109848022e-02
+ <_>
+
+ 0 -1 6049 -6.7460887134075165e-02
+
+ -2.9265740513801575e-01 3.5135280340909958e-03
+ <_>
+
+ 0 -1 6050 -1.5598500147461891e-02
+
+ 2.3105660080909729e-01 -2.2405069321393967e-02
+ <_>
+
+ 0 -1 6051 -2.1026479080319405e-02
+
+ -1.5283830463886261e-01 3.1531449407339096e-02
+ <_>
+
+ 0 -1 6052 -1.0558360069990158e-01
+
+ -6.8366038799285889e-01 6.8997950293123722e-03
+ <_>
+
+ 0 -1 6053 -3.6966579500585794e-03
+
+ 3.4315150231122971e-02 -4.8922799527645111e-02
+ <_>
+
+ 0 -1 6054 -6.0826627304777503e-04
+
+ -5.2638430148363113e-02 8.9546948671340942e-02
+ <_>
+
+ 0 -1 6055 -2.8936540707945824e-02
+
+ 4.1818480938673019e-02 -1.3818169943988323e-02
+ <_>
+
+ 0 -1 6056 -5.8082528412342072e-03
+
+ 6.7874796688556671e-02 -8.5578799247741699e-02
+ <_>
+
+ 0 -1 6057 -4.6095378696918488e-02
+
+ -1.2584780156612396e-01 2.0466970279812813e-02
+ <_>
+
+ 0 -1 6058 5.2972920238971710e-02
+
+ -1.2453259900212288e-02 3.4565049409866333e-01
+ <_>
+
+ 0 -1 6059 4.9351599067449570e-02
+
+ 1.0901239700615406e-02 -4.8506981134414673e-01
+ <_>
+
+ 0 -1 6060 4.4377800077199936e-02
+
+ 9.9294837564229965e-03 -4.3877899646759033e-01
+ <_>
+
+ 0 -1 6061 -1.1464890092611313e-01
+
+ 2.6874598860740662e-01 -9.2000560835003853e-03
+ <_>
+
+ 0 -1 6062 1.6887830197811127e-01
+
+ 5.7101310230791569e-03 -8.5972881317138672e-01
+ <_>
+
+ 0 -1 6063 5.1198098808526993e-02
+
+ -8.5723921656608582e-03 1.3395169377326965e-01
+ <_>
+
+ 0 -1 6064 -3.0789880547672510e-03
+
+ -1.0338760167360306e-01 4.3459478765726089e-02
+ <_>
+
+ 0 -1 6065 4.7223128378391266e-02
+
+ 8.1934239715337753e-03 -4.3803408741950989e-01
+ <_>
+
+ 0 -1 6066 -7.6270569115877151e-03
+
+ 1.8713890016078949e-01 -2.4660250172019005e-02
+ <_>
+
+ 0 -1 6067 5.4106907919049263e-03
+
+ 4.1099831461906433e-02 -7.8868232667446136e-02
+ <_>
+
+ 0 -1 6068 -1.4900229871273041e-03
+
+ -2.0115040242671967e-01 3.1898159533739090e-02
+ <_>
+
+ 0 -1 6069 -8.3831608295440674e-02
+
+ 5.8017939329147339e-01 -5.2973427809774876e-03
+ <_>
+
+ 0 -1 6070 6.2233800999820232e-03
+
+ -3.9786059409379959e-02 1.2283950299024582e-01
+ <_>
+
+ 0 -1 6071 1.1475080251693726e-01
+
+ -1.1975419707596302e-02 2.1586710214614868e-01
+ <_>
+
+ 0 -1 6072 -1.5253260498866439e-03
+
+ 1.3804529607295990e-01 -3.9941880851984024e-02
+ <_>
+
+ 0 -1 6073 -5.2878521382808685e-03
+
+ -1.2790650129318237e-01 3.2893560826778412e-02
+ <_>
+
+ 0 -1 6074 8.9670647867023945e-04
+
+ -1.2481059879064560e-01 4.4544249773025513e-02
+ <_>
+
+ 0 -1 6075 3.8421660661697388e-02
+
+ 7.7155791223049164e-03 -6.5575468540191650e-01
+ <_>
+
+ 0 -1 6076 -9.3785318313166499e-04
+
+ 5.5608510971069336e-02 -8.9876912534236908e-02
+ <_>
+
+ 0 -1 6077 1.9965849351137877e-03
+
+ -2.5297610089182854e-02 1.9413180649280548e-01
+ <_>
+
+ 0 -1 6078 4.5782068627886474e-04
+
+ 3.9089199155569077e-02 -1.2908570468425751e-01
+ <_>
+
+ 0 -1 6079 3.8373940624296665e-03
+
+ -2.8748869895935059e-02 1.9429750740528107e-01
+ <_>
+
+ 0 -1 6080 3.7142829387448728e-04
+
+ 3.8272358477115631e-02 -1.3759189844131470e-01
+ <_>
+
+ 0 -1 6081 7.5116259977221489e-03
+
+ -1.4461129903793335e-02 1.2656949460506439e-01
+ <_>
+
+ 0 -1 6082 -5.0362840294837952e-02
+
+ 3.5183578729629517e-01 -1.4051860198378563e-02
+ <_>
+
+ 0 -1 6083 3.9921641349792480e-02
+
+ 2.7280429378151894e-02 -1.9958199560642242e-01
+ <_>
+
+ 0 -1 6084 2.2605259716510773e-01
+
+ -6.8001961335539818e-03 7.3006898164749146e-01
+ <_>
+
+ 0 -1 6085 1.1081779748201370e-01
+
+ 4.3370737694203854e-03 -8.6829161643981934e-01
+ <_>
+
+ 0 -1 6086 -9.7494889050722122e-03
+
+ -6.3740663230419159e-02 8.4537997841835022e-02
+ <_>
+
+ 0 -1 6087 -2.2887689992785454e-03
+
+ 9.9654018878936768e-02 -4.1565418243408203e-02
+ <_>
+
+ 0 -1 6088 2.0008319988846779e-03
+
+ -5.5650699883699417e-02 1.0709869861602783e-01
+ <_>
+
+ 0 -1 6089 -1.5160050243139267e-02
+
+ -1.4098760485649109e-01 3.8741599768400192e-02
+ <_>
+
+ 0 -1 6090 -6.3132969662547112e-03
+
+ -1. 4.4605308212339878e-03
+ <_>
+
+ 0 -1 6091 -1.3970009982585907e-02
+
+ 1.2481089681386948e-01 -2.1425830200314522e-02
+ <_>
+
+ 0 -1 6092 -4.4321279972791672e-02
+
+ -5.3340071439743042e-01 1.0165239684283733e-02
+ <_>
+
+ 0 -1 6093 1.4885979471728206e-03
+
+ -4.8868600279092789e-02 3.6077901721000671e-02
+ <_>
+
+ 0 -1 6094 6.5139681100845337e-02
+
+ 7.6331058517098427e-03 -5.8781641721725464e-01
+ <_>
+
+ 0 -1 6095 -2.0741410553455353e-02
+
+ -2.9658278822898865e-01 1.8622800707817078e-02
+ <_>
+ 394
+ -1.2940989732742310e+00
+
+ <_>
+
+ 0 -1 6096 1.9188739359378815e-02
+
+ -2.1150399744510651e-01 1.3286529481410980e-01
+ <_>
+
+ 0 -1 6097 -8.1222038716077805e-03
+
+ 9.2491082847118378e-02 -1.7585119605064392e-01
+ <_>
+
+ 0 -1 6098 1.5851219650357962e-03
+
+ -2.8565698862075806e-01 6.6710568964481354e-02
+ <_>
+
+ 0 -1 6099 -4.3140850029885769e-03
+
+ -1.3885229825973511e-01 5.2694689482450485e-02
+ <_>
+
+ 0 -1 6100 -1.7131429631263018e-03
+
+ 1.3135610520839691e-01 -1.3149109482765198e-01
+ <_>
+
+ 0 -1 6101 6.8447366356849670e-02
+
+ 9.3052154406905174e-03 -2.5063261389732361e-01
+ <_>
+
+ 0 -1 6102 -2.4445978924632072e-03
+
+ -1.7205530405044556e-01 9.8322823643684387e-02
+ <_>
+
+ 0 -1 6103 1.0310600046068430e-03
+
+ 2.3039160296320915e-02 -2.7527621388435364e-01
+ <_>
+
+ 0 -1 6104 7.4603251414373517e-04
+
+ -2.3276780545711517e-01 5.2693009376525879e-02
+ <_>
+
+ 0 -1 6105 -6.6399492789059877e-04
+
+ 6.8990781903266907e-02 -8.4687709808349609e-02
+ <_>
+
+ 0 -1 6106 -4.0997468749992549e-04
+
+ 1.0501380264759064e-01 -1.0819009691476822e-01
+ <_>
+
+ 0 -1 6107 -1.8094549886882305e-03
+
+ -1.8178839981555939e-01 4.4184140861034393e-02
+ <_>
+
+ 0 -1 6108 9.3385757645592093e-04
+
+ -1.4622689783573151e-01 7.2726443409919739e-02
+ <_>
+
+ 0 -1 6109 -3.8197741378098726e-04
+
+ 2.4009939283132553e-02 -1.7295800149440765e-01
+ <_>
+
+ 0 -1 6110 -1.4950280310586095e-03
+
+ -1.9403380155563354e-01 4.8807919025421143e-02
+ <_>
+
+ 0 -1 6111 -1.0159100405871868e-02
+
+ 1.9173899292945862e-01 -5.2749071270227432e-02
+ <_>
+
+ 0 -1 6112 5.9903519286308438e-05
+
+ -1.0791549831628799e-01 9.0988166630268097e-02
+ <_>
+
+ 0 -1 6113 -3.1967550516128540e-02
+
+ 4.1109889745712280e-01 -2.2650640457868576e-02
+ <_>
+
+ 0 -1 6114 1.4343270100653172e-02
+
+ 2.4315539747476578e-02 -4.2680150270462036e-01
+ <_>
+
+ 0 -1 6115 1.1039529927074909e-02
+
+ -6.2717013061046600e-02 1.1330530047416687e-01
+ <_>
+
+ 0 -1 6116 -8.4228850901126862e-03
+
+ -2.1369309723377228e-01 4.2059201747179031e-02
+ <_>
+
+ 0 -1 6117 -2.0549839362502098e-02
+
+ 1.5161630511283875e-01 -2.4594139307737350e-02
+ <_>
+
+ 0 -1 6118 -6.5411031246185303e-03
+
+ 1.4883629977703094e-01 -6.1179339885711670e-02
+ <_>
+
+ 0 -1 6119 -1.3324400410056114e-02
+
+ -2.0791970193386078e-01 4.8333309590816498e-02
+ <_>
+
+ 0 -1 6120 7.0111267268657684e-02
+
+ -2.6863219216465950e-02 3.6322259902954102e-01
+ <_>
+
+ 0 -1 6121 -2.6973750209435821e-04
+
+ 6.0876660048961639e-02 -1.1272370070219040e-01
+ <_>
+
+ 0 -1 6122 -1.3509000418707728e-03
+
+ -1.8552079796791077e-01 5.2154958248138428e-02
+ <_>
+
+ 0 -1 6123 -2.8083190321922302e-02
+
+ 3.5111880302429199e-01 -2.3596329614520073e-02
+ <_>
+
+ 0 -1 6124 -1.0003290139138699e-02
+
+ -2.9058480262756348e-01 3.2125689089298248e-02
+ <_>
+
+ 0 -1 6125 -1.6111029544845223e-03
+
+ 9.8113670945167542e-02 -5.2203711122274399e-02
+ <_>
+
+ 0 -1 6126 -1.8411900848150253e-02
+
+ -1.8082669377326965e-01 5.4536700248718262e-02
+ <_>
+
+ 0 -1 6127 -7.1738816797733307e-02
+
+ -7.6654988527297974e-01 3.3518690615892410e-03
+ <_>
+
+ 0 -1 6128 -2.7943260502070189e-03
+
+ 1.5871369838714600e-01 -6.4271800220012665e-02
+ <_>
+
+ 0 -1 6129 -1.6874749958515167e-01
+
+ -6.9956189393997192e-01 4.8861699178814888e-03
+ <_>
+
+ 0 -1 6130 -1.2672400334849954e-03
+
+ 3.1616039574146271e-02 -2.4953269958496094e-01
+ <_>
+
+ 0 -1 6131 2.0807750523090363e-02
+
+ 1.7053410410881042e-02 -2.4331410229206085e-01
+ <_>
+
+ 0 -1 6132 -1.5869849594309926e-03
+
+ 9.3171089887619019e-02 -8.1361927092075348e-02
+ <_>
+
+ 0 -1 6133 -1.0014690458774567e-02
+
+ -2.7789619565010071e-01 2.6569239795207977e-02
+ <_>
+
+ 0 -1 6134 -5.7948171161115170e-03
+
+ -2.2287739813327789e-01 3.5975661128759384e-02
+ <_>
+
+ 0 -1 6135 2.7189950924366713e-03
+
+ -9.0631909668445587e-02 5.6820400059223175e-02
+ <_>
+
+ 0 -1 6136 3.8845159113407135e-02
+
+ 1.2280859984457493e-02 -5.8521348237991333e-01
+ <_>
+
+ 0 -1 6137 -1.4158680103719234e-02
+
+ 1.8153870105743408e-01 -3.1109429895877838e-02
+ <_>
+
+ 0 -1 6138 -1.8278600275516510e-01
+
+ -9.0013808012008667e-01 7.6544750481843948e-03
+ <_>
+
+ 0 -1 6139 2.7588419616222382e-02
+
+ -1.2460039928555489e-02 2.0069369673728943e-01
+ <_>
+
+ 0 -1 6140 -1.4784430153667927e-02
+
+ -8.9910492300987244e-02 8.1648677587509155e-02
+ <_>
+
+ 0 -1 6141 1.1625719815492630e-01
+
+ 2.3692469112575054e-03 -9.9998068809509277e-01
+ <_>
+
+ 0 -1 6142 3.5341090988367796e-03
+
+ -6.1760541051626205e-02 1.3490639626979828e-01
+ <_>
+
+ 0 -1 6143 5.1878788508474827e-03
+
+ 1.8745860084891319e-02 -1.7449170351028442e-01
+ <_>
+
+ 0 -1 6144 7.9457357525825500e-02
+
+ -2.3402990773320198e-02 3.3502200245857239e-01
+ <_>
+
+ 0 -1 6145 2.7684379369020462e-02
+
+ 2.3663910105824471e-02 -3.3256360888481140e-01
+ <_>
+
+ 0 -1 6146 -4.4806320220232010e-03
+
+ -1.4658750593662262e-01 4.7376811504364014e-02
+ <_>
+
+ 0 -1 6147 5.6939688511192799e-03
+
+ -5.6776121258735657e-02 6.7580856382846832e-02
+ <_>
+
+ 0 -1 6148 7.7299480326473713e-03
+
+ -3.1156649813055992e-02 2.3102590441703796e-01
+ <_>
+
+ 0 -1 6149 3.9786100387573242e-03
+
+ -5.6882441043853760e-02 1.3271529972553253e-01
+ <_>
+
+ 0 -1 6150 -1.1275880038738251e-02
+
+ -2.0938649773597717e-01 3.5291459411382675e-02
+ <_>
+
+ 0 -1 6151 -2.4308220017701387e-03
+
+ -2.0176360011100769e-01 3.4513931721448898e-02
+ <_>
+
+ 0 -1 6152 5.7369591668248177e-03
+
+ -5.5607158690690994e-02 1.1532089859247208e-01
+ <_>
+
+ 0 -1 6153 4.6170800924301147e-03
+
+ -5.6083500385284424e-02 8.1762917339801788e-02
+ <_>
+
+ 0 -1 6154 -4.7089671716094017e-03
+
+ -1.3351219892501831e-01 5.6296080350875854e-02
+ <_>
+
+ 0 -1 6155 -3.2688070088624954e-02
+
+ 2.7922388911247253e-01 -1.0867659933865070e-02
+ <_>
+
+ 0 -1 6156 8.8686197996139526e-02
+
+ 1.8268220126628876e-02 -3.5637390613555908e-01
+ <_>
+
+ 0 -1 6157 4.5751677826046944e-03
+
+ -5.1558461040258408e-02 6.3948810100555420e-02
+ <_>
+
+ 0 -1 6158 4.9765850417315960e-03
+
+ -5.4684590548276901e-02 1.1907110363245010e-01
+ <_>
+
+ 0 -1 6159 -6.4881290309131145e-03
+
+ -9.9121123552322388e-02 2.6508849114179611e-02
+ <_>
+
+ 0 -1 6160 2.4523450993001461e-03
+
+ -9.5045946538448334e-02 6.6802926361560822e-02
+ <_>
+
+ 0 -1 6161 7.0354789495468140e-03
+
+ 1.0705590248107910e-01 -6.2395099550485611e-02
+ <_>
+
+ 0 -1 6162 4.2746789753437042e-02
+
+ -1.6092179343104362e-02 4.3256199359893799e-01
+ <_>
+
+ 0 -1 6163 -4.5301730278879404e-04
+
+ 3.6420568823814392e-02 -9.9322892725467682e-02
+ <_>
+
+ 0 -1 6164 -5.2631930448114872e-03
+
+ -1.1416749656200409e-01 5.7260219007730484e-02
+ <_>
+
+ 0 -1 6165 1.0581909446045756e-03
+
+ 3.3220488578081131e-02 -1.1831220239400864e-01
+ <_>
+
+ 0 -1 6166 2.5088949128985405e-02
+
+ -6.0655020177364349e-02 1.2601740658283234e-01
+ <_>
+
+ 0 -1 6167 2.4252159893512726e-01
+
+ 2.2060840856283903e-03 -1.0000120401382446e+00
+ <_>
+
+ 0 -1 6168 -1.4393079280853271e-01
+
+ 3.7419798970222473e-01 -2.2252110764384270e-02
+ <_>
+
+ 0 -1 6169 -6.0972762294113636e-03
+
+ -1.1038099974393845e-01 4.5996960252523422e-02
+ <_>
+
+ 0 -1 6170 6.1375470831990242e-03
+
+ 3.8307808339595795e-02 -1.8086770176887512e-01
+ <_>
+
+ 0 -1 6171 -3.6617079749703407e-03
+
+ 3.8439918309450150e-02 -6.2540791928768158e-02
+ <_>
+
+ 0 -1 6172 -1.5854850411415100e-01
+
+ 3.4469398856163025e-01 -1.9837500527501106e-02
+ <_>
+
+ 0 -1 6173 6.7219287157058716e-02
+
+ 9.5165139064192772e-03 -5.0206458568572998e-01
+ <_>
+
+ 0 -1 6174 2.2499680053442717e-03
+
+ -1.3063929975032806e-01 6.4832933247089386e-02
+ <_>
+
+ 0 -1 6175 8.4626786410808563e-02
+
+ 5.9339799918234348e-03 -4.1516590118408203e-01
+ <_>
+
+ 0 -1 6176 -9.5411221263930202e-04
+
+ -9.3790747225284576e-02 7.5486607849597931e-02
+ <_>
+
+ 0 -1 6177 -7.6813949272036552e-03
+
+ -1.4821960031986237e-01 2.9010580852627754e-02
+ <_>
+
+ 0 -1 6178 -2.5593319907784462e-02
+
+ 1.4859579503536224e-01 -4.7195930033922195e-02
+ <_>
+
+ 0 -1 6179 2.1508369594812393e-02
+
+ 2.3782620206475258e-02 -9.6659287810325623e-02
+ <_>
+
+ 0 -1 6180 3.4463100135326385e-02
+
+ -3.7410069257020950e-02 2.2015300393104553e-01
+ <_>
+
+ 0 -1 6181 -3.7860300391912460e-02
+
+ -5.0047469139099121e-01 1.4059869572520256e-02
+ <_>
+
+ 0 -1 6182 1.2028450146317482e-03
+
+ -6.5087057650089264e-02 8.9583486318588257e-02
+ <_>
+
+ 0 -1 6183 1.6753520816564560e-02
+
+ 4.9179811030626297e-03 -4.3030908703804016e-01
+ <_>
+
+ 0 -1 6184 1.6640779795125127e-03
+
+ 4.0807429701089859e-02 -1.4469960331916809e-01
+ <_>
+
+ 0 -1 6185 3.4473428968340158e-03
+
+ -3.9910178631544113e-02 1.5272960066795349e-01
+ <_>
+
+ 0 -1 6186 8.9918142184615135e-03
+
+ 7.1071267127990723e-02 -8.6169913411140442e-02
+ <_>
+
+ 0 -1 6187 8.3185202674940228e-04
+
+ -2.5739189982414246e-01 1.7941089347004890e-02
+ <_>
+
+ 0 -1 6188 -6.8142730742692947e-03
+
+ 1.3823160529136658e-01 -5.3994540125131607e-02
+ <_>
+
+ 0 -1 6189 2.9746210202574730e-03
+
+ -4.1550260037183762e-02 3.9839770644903183e-02
+ <_>
+
+ 0 -1 6190 2.5836620479822159e-03
+
+ -7.0656493306159973e-02 9.5045506954193115e-02
+ <_>
+
+ 0 -1 6191 2.7143809711560607e-04
+
+ 5.8070071041584015e-02 -1.2781760096549988e-01
+ <_>
+
+ 0 -1 6192 3.5418298840522766e-01
+
+ 5.4909070022404194e-03 -9.7960698604583740e-01
+ <_>
+
+ 0 -1 6193 2.5318650528788567e-02
+
+ -1.4410969801247120e-02 2.6219129562377930e-01
+ <_>
+
+ 0 -1 6194 -2.2658439411316067e-04
+
+ 5.2997849881649017e-02 -1.1629349738359451e-01
+ <_>
+
+ 0 -1 6195 6.8859090097248554e-03
+
+ 1.6437310725450516e-02 -2.0349490642547607e-01
+ <_>
+
+ 0 -1 6196 1.1607459746301174e-02
+
+ -3.6651011556386948e-02 1.5184010565280914e-01
+ <_>
+
+ 0 -1 6197 -4.8253959976136684e-03
+
+ -2.3476150631904602e-01 3.7914011627435684e-02
+ <_>
+
+ 0 -1 6198 2.5656020734459162e-03
+
+ 3.5185638815164566e-02 -1.8540710210800171e-01
+ <_>
+
+ 0 -1 6199 1.2601399421691895e-01
+
+ -9.8542850464582443e-03 2.5520691275596619e-01
+ <_>
+
+ 0 -1 6200 2.7164958883076906e-03
+
+ -2.1748440340161324e-02 2.5467529892921448e-01
+ <_>
+
+ 0 -1 6201 3.2356029748916626e-01
+
+ 8.8657345622777939e-03 -7.0383572578430176e-01
+ <_>
+
+ 0 -1 6202 -8.4016058826819062e-04
+
+ 3.6831360310316086e-02 -1.4953260123729706e-01
+ <_>
+
+ 0 -1 6203 3.3291990403085947e-03
+
+ 4.8185840249061584e-02 -1.2290470302104950e-01
+ <_>
+
+ 0 -1 6204 2.1130539476871490e-01
+
+ 6.5245870500802994e-03 -8.8293862342834473e-01
+ <_>
+
+ 0 -1 6205 5.0388509407639503e-03
+
+ -6.7079946398735046e-02 3.7849709391593933e-02
+ <_>
+
+ 0 -1 6206 -2.7862399816513062e-02
+
+ 3.3469489216804504e-01 -1.8816500902175903e-02
+ <_>
+
+ 0 -1 6207 3.8636629469692707e-03
+
+ 4.3644730001688004e-02 -1.7481489479541779e-01
+ <_>
+
+ 0 -1 6208 1.0480300337076187e-01
+
+ -1.5737529844045639e-02 4.2094239592552185e-01
+ <_>
+
+ 0 -1 6209 -3.4130848944187164e-03
+
+ -1.0835570096969604e-01 4.3717790395021439e-02
+ <_>
+
+ 0 -1 6210 -4.6396970748901367e-02
+
+ -7.5680077075958252e-01 8.6701400578022003e-03
+ <_>
+
+ 0 -1 6211 5.3708078339695930e-03
+
+ -4.1797801852226257e-02 1.4824719727039337e-01
+ <_>
+
+ 0 -1 6212 -6.1126388609409332e-03
+
+ 1.8673719465732574e-01 -4.3387491255998611e-02
+ <_>
+
+ 0 -1 6213 4.2509321123361588e-02
+
+ 1.1690679937601089e-02 -4.3740659952163696e-01
+ <_>
+
+ 0 -1 6214 1.0473020374774933e-02
+
+ 4.3143630027770996e-02 -1.5654399991035461e-01
+ <_>
+
+ 0 -1 6215 -4.7223959118127823e-02
+
+ -7.4483537673950195e-01 3.4918629098683596e-03
+ <_>
+
+ 0 -1 6216 5.3090360015630722e-02
+
+ 1.0408150032162666e-02 -5.3499448299407959e-01
+ <_>
+
+ 0 -1 6217 -7.0432561915367842e-04
+
+ 3.3384170383214951e-02 -7.3706030845642090e-02
+ <_>
+
+ 0 -1 6218 7.5942431576550007e-03
+
+ -2.9107049107551575e-02 1.9468860328197479e-01
+ <_>
+
+ 0 -1 6219 2.2676989436149597e-02
+
+ 3.3803820610046387e-02 -2.7627611160278320e-01
+ <_>
+
+ 0 -1 6220 6.6533521749079227e-03
+
+ -2.6578240096569061e-02 2.4283319711685181e-01
+ <_>
+
+ 0 -1 6221 3.7712270859628916e-03
+
+ 2.6554299518465996e-02 -6.4952917397022247e-02
+ <_>
+
+ 0 -1 6222 -2.0740530453622341e-03
+
+ -1.7968970537185669e-01 3.1532160937786102e-02
+ <_>
+
+ 0 -1 6223 -1.5632519498467445e-03
+
+ 5.3109679371118546e-02 -8.7415628135204315e-02
+ <_>
+
+ 0 -1 6224 1.2540889903903008e-02
+
+ -3.4136459231376648e-02 2.2097539901733398e-01
+ <_>
+
+ 0 -1 6225 -3.2660199794918299e-03
+
+ -5.5261608213186264e-02 3.2669559121131897e-02
+ <_>
+
+ 0 -1 6226 -8.2185603678226471e-03
+
+ -1.4478379487991333e-01 5.5743928998708725e-02
+ <_>
+
+ 0 -1 6227 -5.5811040103435516e-02
+
+ 1.7237940430641174e-01 -1.4456519857048988e-02
+ <_>
+
+ 0 -1 6228 -1.4723159372806549e-01
+
+ -8.1392312049865723e-01 7.4356291443109512e-03
+ <_>
+
+ 0 -1 6229 -5.8468529023230076e-03
+
+ -6.9043442606925964e-02 1.9456790760159492e-02
+ <_>
+
+ 0 -1 6230 1.9462220370769501e-02
+
+ -3.5472229123115540e-02 1.6666300594806671e-01
+ <_>
+
+ 0 -1 6231 5.8353468775749207e-02
+
+ 3.0551329255104065e-03 -3.9289128780364990e-01
+ <_>
+
+ 0 -1 6232 4.3785829097032547e-02
+
+ 1.3574630022048950e-02 -4.6152359247207642e-01
+ <_>
+
+ 0 -1 6233 -5.1904350519180298e-02
+
+ 6.3802438974380493e-01 -9.6664745360612869e-03
+ <_>
+
+ 0 -1 6234 -7.7811058145016432e-04
+
+ -9.9303223192691803e-02 5.6094601750373840e-02
+ <_>
+
+ 0 -1 6235 4.9657518975436687e-03
+
+ 4.1419368237257004e-02 -1.1274819821119308e-01
+ <_>
+
+ 0 -1 6236 -5.4516079835593700e-03
+
+ 1.7399060726165771e-01 -4.1147731244564056e-02
+ <_>
+
+ 0 -1 6237 5.0428751856088638e-03
+
+ -4.1255220770835876e-02 1.3794229924678802e-01
+ <_>
+
+ 0 -1 6238 -1.6985220136120915e-03
+
+ -2.2874790430068970e-01 2.5274980813264847e-02
+ <_>
+
+ 0 -1 6239 8.2764238119125366e-02
+
+ 3.3066510222852230e-03 -6.9113439321517944e-01
+ <_>
+
+ 0 -1 6240 3.9285849779844284e-03
+
+ -7.9043358564376831e-02 6.6218852996826172e-02
+ <_>
+
+ 0 -1 6241 -3.0601240694522858e-02
+
+ -2.6517450809478760e-01 1.6467850655317307e-02
+ <_>
+
+ 0 -1 6242 -1.9941160455346107e-02
+
+ 1.5431809425354004e-01 -3.6100689321756363e-02
+ <_>
+
+ 0 -1 6243 8.0520063638687134e-02
+
+ 1.7015919089317322e-02 -3.3448880910873413e-01
+ <_>
+
+ 0 -1 6244 7.0323847234249115e-02
+
+ 1.7122440040111542e-02 -3.3302140235900879e-01
+ <_>
+
+ 0 -1 6245 -5.2850939333438873e-02
+
+ 6.2421400099992752e-02 -1.4690199866890907e-02
+ <_>
+
+ 0 -1 6246 -7.1594159817323089e-04
+
+ -1.1335150152444839e-01 5.2260790020227432e-02
+ <_>
+
+ 0 -1 6247 2.1469970047473907e-01
+
+ 9.9299731664359570e-04 -9.9997580051422119e-01
+ <_>
+
+ 0 -1 6248 8.7042592465877533e-02
+
+ -1.2329760007560253e-02 5.0260668992996216e-01
+ <_>
+
+ 0 -1 6249 -5.8731262106448412e-04
+
+ -9.9346466362476349e-02 5.1705610007047653e-02
+ <_>
+
+ 0 -1 6250 -4.4215220957994461e-02
+
+ -3.9368900656700134e-01 1.3920850120484829e-02
+ <_>
+
+ 0 -1 6251 -8.7676227092742920e-02
+
+ 3.0157440900802612e-01 -6.8702381104230881e-03
+ <_>
+
+ 0 -1 6252 -4.8453990370035172e-02
+
+ 2.5477871298789978e-01 -2.2457750514149666e-02
+ <_>
+
+ 0 -1 6253 -2.1567570511251688e-03
+
+ -1.3562899827957153e-01 3.1725399196147919e-02
+ <_>
+
+ 0 -1 6254 3.9050900377333164e-03
+
+ 4.9100890755653381e-02 -1.1861059814691544e-01
+ <_>
+
+ 0 -1 6255 -3.9808028377592564e-03
+
+ 4.8333909362554550e-02 -5.5897079408168793e-02
+ <_>
+
+ 0 -1 6256 2.9744929634034634e-03
+
+ -6.4802452921867371e-02 9.3583501875400543e-02
+ <_>
+
+ 0 -1 6257 2.5875229388475418e-02
+
+ 1.8487609922885895e-02 -3.3436349034309387e-01
+ <_>
+
+ 0 -1 6258 -1.9373580580577254e-03
+
+ 2.2000649571418762e-01 -2.5404980406165123e-02
+ <_>
+
+ 0 -1 6259 -2.0171629264950752e-02
+
+ -7.8228309750556946e-02 4.5462790876626968e-02
+ <_>
+
+ 0 -1 6260 -2.6088140904903412e-02
+
+ 1.7637069523334503e-01 -4.5097298920154572e-02
+ <_>
+
+ 0 -1 6261 -2.6868300512433052e-02
+
+ -3.2656419277191162e-01 1.7994230613112450e-02
+ <_>
+
+ 0 -1 6262 -7.0211151614785194e-04
+
+ 3.9671998471021652e-02 -1.4533540606498718e-01
+ <_>
+
+ 0 -1 6263 8.3507681265473366e-03
+
+ -2.3051729425787926e-02 1.8850760161876678e-01
+ <_>
+
+ 0 -1 6264 4.6823569573462009e-03
+
+ 2.9996560886502266e-02 -2.0701029896736145e-01
+ <_>
+
+ 0 -1 6265 3.3109660726040602e-03
+
+ 5.6536730378866196e-02 -1.6835589706897736e-01
+ <_>
+
+ 0 -1 6266 7.6425541192293167e-03
+
+ -4.1423950344324112e-02 1.2557519972324371e-01
+ <_>
+
+ 0 -1 6267 -2.4713110178709030e-03
+
+ 7.2156153619289398e-02 -1.0767730325460434e-01
+ <_>
+
+ 0 -1 6268 -9.9495360627770424e-03
+
+ -1.8187619745731354e-01 3.3567231148481369e-02
+ <_>
+
+ 0 -1 6269 1.9820800516754389e-03
+
+ -5.6488718837499619e-02 1.0741490125656128e-01
+ <_>
+
+ 0 -1 6270 2.3254439234733582e-02
+
+ -1.6543349251151085e-02 3.6466678977012634e-01
+ <_>
+
+ 0 -1 6271 -5.4177921265363693e-02
+
+ -1. 3.3418419770896435e-03
+ <_>
+
+ 0 -1 6272 6.1567849479615688e-04
+
+ 4.0159329771995544e-02 -1.6460220515727997e-01
+ <_>
+
+ 0 -1 6273 -4.2699510231614113e-03
+
+ -5.6978620588779449e-02 4.4480901211500168e-02
+ <_>
+
+ 0 -1 6274 1.9749389030039310e-03
+
+ 5.9283681213855743e-02 -1.0791260004043579e-01
+ <_>
+
+ 0 -1 6275 -5.8583128266036510e-03
+
+ 1.3734050095081329e-01 -3.4231521189212799e-02
+ <_>
+
+ 0 -1 6276 -7.2995189111679792e-04
+
+ -1.0075060278177261e-01 5.4733160883188248e-02
+ <_>
+
+ 0 -1 6277 -2.9930740594863892e-02
+
+ 6.3882559537887573e-02 -4.1027020663022995e-02
+ <_>
+
+ 0 -1 6278 -5.1738750189542770e-02
+
+ -7.2713458538055420e-01 7.4993381276726723e-03
+ <_>
+
+ 0 -1 6279 2.4021189659833908e-02
+
+ 7.8491801396012306e-03 -5.5794471502304077e-01
+ <_>
+
+ 0 -1 6280 -3.7574321031570435e-03
+
+ -1.6086879372596741e-01 3.1015990301966667e-02
+ <_>
+
+ 0 -1 6281 -6.2635682523250580e-02
+
+ 9.0577863156795502e-02 -2.9033770784735680e-02
+ <_>
+
+ 0 -1 6282 1.9363429397344589e-02
+
+ -4.9920588731765747e-02 1.2835779786109924e-01
+ <_>
+
+ 0 -1 6283 -3.5072889178991318e-02
+
+ 2.1391840279102325e-01 -8.8168960064649582e-03
+ <_>
+
+ 0 -1 6284 -1.3243310153484344e-02
+
+ 2.3349699378013611e-01 -2.3088019341230392e-02
+ <_>
+
+ 0 -1 6285 -3.1290829181671143e-02
+
+ -6.9495099782943726e-01 9.3020889908075333e-03
+ <_>
+
+ 0 -1 6286 7.2391419671475887e-03
+
+ 2.8485849499702454e-02 -1.8310770392417908e-01
+ <_>
+
+ 0 -1 6287 6.6785318776965141e-03
+
+ -4.9132950603961945e-02 5.4181691259145737e-02
+ <_>
+
+ 0 -1 6288 -3.6825571209192276e-02
+
+ 3.3120208978652954e-01 -2.1359929814934731e-02
+ <_>
+
+ 0 -1 6289 -4.5507341623306274e-02
+
+ -1.2893490493297577e-01 4.9545988440513611e-02
+ <_>
+
+ 0 -1 6290 7.7639957889914513e-03
+
+ -3.6255620419979095e-02 1.5321409702301025e-01
+ <_>
+
+ 0 -1 6291 6.0417611151933670e-02
+
+ 4.5740022324025631e-03 -6.7541092634201050e-01
+ <_>
+
+ 0 -1 6292 2.4624960497021675e-03
+
+ 5.3674161434173584e-02 -1.1326540261507034e-01
+ <_>
+
+ 0 -1 6293 7.3594506829977036e-05
+
+ -3.5648930817842484e-02 2.5458969175815582e-02
+ <_>
+
+ 0 -1 6294 -4.0958370082080364e-03
+
+ 1.5562909841537476e-01 -3.9390601217746735e-02
+ <_>
+
+ 0 -1 6295 2.8689370083156973e-05
+
+ -8.4823302924633026e-02 3.8254238665103912e-02
+ <_>
+
+ 0 -1 6296 -4.6220528893172741e-03
+
+ -1.8994529545307159e-01 3.3508758991956711e-02
+ <_>
+
+ 0 -1 6297 -8.5343196988105774e-03
+
+ 1.1212539672851562e-01 -3.3968489617109299e-02
+ <_>
+
+ 0 -1 6298 -5.8803848922252655e-02
+
+ -5.1244312524795532e-01 1.0789549909532070e-02
+ <_>
+
+ 0 -1 6299 6.0719929635524750e-02
+
+ -1.2555030174553394e-02 2.2509759664535522e-01
+ <_>
+
+ 0 -1 6300 1.1038020020350814e-03
+
+ -9.6294492483139038e-02 5.6727480143308640e-02
+ <_>
+
+ 0 -1 6301 -3.8484560791403055e-03
+
+ 4.0573459118604660e-02 -2.5326859205961227e-02
+ <_>
+
+ 0 -1 6302 -1.0771050117909908e-02
+
+ 8.8735632598400116e-02 -5.5628679692745209e-02
+ <_>
+
+ 0 -1 6303 1.2016809545457363e-02
+
+ 2.3566279560327530e-02 -2.4590580165386200e-01
+ <_>
+
+ 0 -1 6304 -1.1656560236588120e-03
+
+ -3.7417300045490265e-02 1.6503289341926575e-01
+ <_>
+
+ 0 -1 6305 3.2137628644704819e-02
+
+ 1.4245970174670219e-02 -2.6480850577354431e-01
+ <_>
+
+ 0 -1 6306 2.3331670090556145e-02
+
+ -3.5288721323013306e-02 1.8447829782962799e-01
+ <_>
+
+ 0 -1 6307 -1.2685320340096951e-02
+
+ -1.1757309734821320e-01 1.6436910256743431e-02
+ <_>
+
+ 0 -1 6308 7.3903938755393028e-05
+
+ -1.0271479934453964e-01 7.4301436543464661e-02
+ <_>
+
+ 0 -1 6309 -1.0925470292568207e-01
+
+ -8.3165317773818970e-01 5.6438110768795013e-03
+ <_>
+
+ 0 -1 6310 -1.3324350118637085e-01
+
+ 7.7729821205139160e-01 -8.3403270691633224e-03
+ <_>
+
+ 0 -1 6311 8.9381448924541473e-04
+
+ -5.9524301439523697e-02 4.1173089295625687e-02
+ <_>
+
+ 0 -1 6312 1.0318649932742119e-02
+
+ 1.5926430001854897e-02 -3.1637790799140930e-01
+ <_>
+
+ 0 -1 6313 -5.2297548390924931e-03
+
+ -7.1166560053825378e-02 3.3489290624856949e-02
+ <_>
+
+ 0 -1 6314 1.6409620642662048e-02
+
+ -2.6454120874404907e-02 1.9589969515800476e-01
+ <_>
+
+ 0 -1 6315 1.4068709686398506e-02
+
+ -3.9364140480756760e-02 1.3977420330047607e-01
+ <_>
+
+ 0 -1 6316 6.6486410796642303e-03
+
+ 6.4070828258991241e-02 -1.0493399947881699e-01
+ <_>
+
+ 0 -1 6317 -1.8030619248747826e-02
+
+ 8.3942912518978119e-02 -1.3399159535765648e-02
+ <_>
+
+ 0 -1 6318 -4.4034369289875031e-02
+
+ -5.5825459957122803e-01 9.7633162513375282e-03
+ <_>
+
+ 0 -1 6319 -8.0966893583536148e-03
+
+ -2.0489789545536041e-01 2.6520200073719025e-02
+ <_>
+
+ 0 -1 6320 5.0180461257696152e-03
+
+ -1.1661209911108017e-01 4.5791670680046082e-02
+ <_>
+
+ 0 -1 6321 -1.7064629122614861e-02
+
+ 2.6282730698585510e-01 -2.0390639081597328e-02
+ <_>
+
+ 0 -1 6322 7.1850173175334930e-02
+
+ -6.9503681734204292e-03 6.7032539844512939e-01
+ <_>
+
+ 0 -1 6323 -5.6914370507001877e-02
+
+ -1.3477900624275208e-01 1.8399080261588097e-02
+ <_>
+
+ 0 -1 6324 -3.2365729566663504e-03
+
+ 6.9673851132392883e-02 -7.2314530611038208e-02
+ <_>
+
+ 0 -1 6325 4.1818909347057343e-02
+
+ 1.1151459999382496e-02 -5.1680111885070801e-01
+ <_>
+
+ 0 -1 6326 -6.1106588691473007e-03
+
+ -1.3163940608501434e-01 4.3796509504318237e-02
+ <_>
+
+ 0 -1 6327 -3.5560909658670425e-02
+
+ 6.8005502223968506e-02 -3.6331020295619965e-02
+ <_>
+
+ 0 -1 6328 6.8789169192314148e-02
+
+ 1.4698959887027740e-02 -3.8212299346923828e-01
+ <_>
+
+ 0 -1 6329 -7.8313373029232025e-02
+
+ 2.0296069979667664e-01 -8.6810020729899406e-03
+ <_>
+
+ 0 -1 6330 3.9626220241189003e-03
+
+ -3.5797890275716782e-02 1.3905510306358337e-01
+ <_>
+
+ 0 -1 6331 -3.3874038606882095e-02
+
+ -2.2253429889678955e-01 7.5455638580024242e-03
+ <_>
+
+ 0 -1 6332 -6.4755856990814209e-02
+
+ 4.7521549463272095e-01 -1.0970680043101311e-02
+ <_>
+
+ 0 -1 6333 2.6647940278053284e-02
+
+ 1.5445309691131115e-02 -2.6785778999328613e-01
+ <_>
+
+ 0 -1 6334 -3.0731109902262688e-02
+
+ -4.7668689489364624e-01 9.6429884433746338e-03
+ <_>
+
+ 0 -1 6335 -2.4022700265049934e-02
+
+ -1.0633960366249084e-01 1.2849040329456329e-02
+ <_>
+
+ 0 -1 6336 -1.3036349555477500e-03
+
+ 7.3524177074432373e-02 -6.8074919283390045e-02
+ <_>
+
+ 0 -1 6337 -9.8344050347805023e-03
+
+ -1.1843550205230713e-01 4.2866699397563934e-02
+ <_>
+
+ 0 -1 6338 8.7102197110652924e-02
+
+ -4.0088258683681488e-02 1.7804540693759918e-01
+ <_>
+
+ 0 -1 6339 2.0411569625139236e-02
+
+ 1.6849989071488380e-02 -3.8953658938407898e-01
+ <_>
+
+ 0 -1 6340 9.5875263214111328e-02
+
+ 5.9905550442636013e-03 -8.1525659561157227e-01
+ <_>
+
+ 0 -1 6341 6.4893220551311970e-03
+
+ -2.4039229378104210e-02 5.3871169686317444e-02
+ <_>
+
+ 0 -1 6342 -9.6279237186536193e-04
+
+ 9.4299189746379852e-02 -6.4436018466949463e-02
+ <_>
+
+ 0 -1 6343 -3.7659960798919201e-04
+
+ -6.2296878546476364e-02 4.1251849383115768e-02
+ <_>
+
+ 0 -1 6344 6.5272641368210316e-03
+
+ 5.1325131207704544e-02 -1.3037790358066559e-01
+ <_>
+
+ 0 -1 6345 2.1429110318422318e-02
+
+ -1.1989659629762173e-02 2.6280459761619568e-01
+ <_>
+
+ 0 -1 6346 -5.0938720814883709e-03
+
+ 6.3418947160243988e-02 -9.0566337108612061e-02
+ <_>
+
+ 0 -1 6347 -2.5309680495411158e-03
+
+ 6.0297761112451553e-02 -2.5049470365047455e-02
+ <_>
+
+ 0 -1 6348 -1.5915350522845984e-03
+
+ -1.2171190232038498e-01 3.7737991660833359e-02
+ <_>
+
+ 0 -1 6349 -3.4030709415674210e-02
+
+ 4.6413430571556091e-01 -3.5409750416874886e-03
+ <_>
+
+ 0 -1 6350 5.1074200309813023e-03
+
+ 3.9823830127716064e-02 -1.2645539641380310e-01
+ <_>
+
+ 0 -1 6351 -9.6449116244912148e-03
+
+ 3.3464258909225464e-01 -6.6040740348398685e-03
+ <_>
+
+ 0 -1 6352 1.1422860436141491e-02
+
+ -3.6080420017242432e-02 1.3714550435543060e-01
+ <_>
+
+ 0 -1 6353 -5.1042139530181885e-03
+
+ -9.3986809253692627e-02 2.8844779357314110e-02
+ <_>
+
+ 0 -1 6354 -2.6332271099090576e-01
+
+ 4.9980929493904114e-01 -1.0173249989748001e-02
+ <_>
+
+ 0 -1 6355 -2.4556639790534973e-01
+
+ -8.1778347492218018e-01 6.9596339017152786e-03
+ <_>
+
+ 0 -1 6356 -2.1419329941272736e-01
+
+ -5.1040518283843994e-01 9.4540230929851532e-03
+ <_>
+
+ 0 -1 6357 -1.4363219961524010e-02
+
+ -9.1000981628894806e-02 2.4646669626235962e-02
+ <_>
+
+ 0 -1 6358 -1.2388969771564007e-03
+
+ 1.1544570326805115e-01 -4.9565620720386505e-02
+ <_>
+
+ 0 -1 6359 2.1015120670199394e-02
+
+ -1.7765879631042480e-02 1.9577859342098236e-01
+ <_>
+
+ 0 -1 6360 -4.1783051565289497e-03
+
+ -1.1172860115766525e-01 4.4625449925661087e-02
+ <_>
+
+ 0 -1 6361 2.0896939095109701e-03
+
+ -3.3988729119300842e-02 6.5539501607418060e-02
+ <_>
+
+ 0 -1 6362 1.6410060226917267e-02
+
+ -2.0373269915580750e-02 2.5331538915634155e-01
+ <_>
+
+ 0 -1 6363 -6.4266882836818695e-02
+
+ -6.5880149602890015e-01 3.4550630953162909e-03
+ <_>
+
+ 0 -1 6364 6.8898178869858384e-04
+
+ 6.7643247544765472e-02 -8.7556242942810059e-02
+ <_>
+
+ 0 -1 6365 5.6662331335246563e-03
+
+ 3.0638309195637703e-02 -1.1895540356636047e-01
+ <_>
+
+ 0 -1 6366 -4.3778121471405029e-02
+
+ -2.8309130668640137e-01 1.7713630571961403e-02
+ <_>
+
+ 0 -1 6367 3.4748481120914221e-03
+
+ -9.5787122845649719e-02 4.2630400508642197e-02
+ <_>
+
+ 0 -1 6368 -1.1673940345644951e-02
+
+ -1.0502570122480392e-01 5.0903890281915665e-02
+ <_>
+
+ 0 -1 6369 -3.4004659391939640e-03
+
+ 1.0470719635486603e-01 -4.0939141064882278e-02
+ <_>
+
+ 0 -1 6370 2.7091780211776495e-03
+
+ -6.0524601489305496e-02 1.3978950679302216e-01
+ <_>
+
+ 0 -1 6371 -1.7439300194382668e-02
+
+ -3.2391169667243958e-01 1.4630249701440334e-02
+ <_>
+
+ 0 -1 6372 -1.2598330155014992e-02
+
+ -2.0682629942893982e-01 2.5501869618892670e-02
+ <_>
+
+ 0 -1 6373 1.8755869939923286e-02
+
+ -4.7925960272550583e-02 1.0864380002021790e-01
+ <_>
+
+ 0 -1 6374 -4.2074159719049931e-03
+
+ -8.2077808678150177e-02 6.3647769391536713e-02
+ <_>
+
+ 0 -1 6375 -1.6427719674538821e-04
+
+ 1.0120390355587006e-01 -3.4067928791046143e-02
+ <_>
+
+ 0 -1 6376 4.3847691267728806e-02
+
+ 6.0980222187936306e-03 -8.3685982227325439e-01
+ <_>
+
+ 0 -1 6377 -3.9284680038690567e-02
+
+ 2.8250560164451599e-01 -2.2389259189367294e-02
+ <_>
+
+ 0 -1 6378 3.8550909608602524e-02
+
+ 1.5570489689707756e-02 -3.3978620171546936e-01
+ <_>
+
+ 0 -1 6379 -6.9177031517028809e-02
+
+ 1.2258320301771164e-01 -1.7850179225206375e-02
+ <_>
+
+ 0 -1 6380 -1.9251030171290040e-03
+
+ -1.0687749832868576e-01 4.6379510313272476e-02
+ <_>
+
+ 0 -1 6381 -8.6635202169418335e-03
+
+ 9.6412748098373413e-02 -1.7563249915838242e-02
+ <_>
+
+ 0 -1 6382 1.3393509387969971e-01
+
+ 6.3692941330373287e-03 -7.0170587301254272e-01
+ <_>
+
+ 0 -1 6383 4.1082348674535751e-02
+
+ -1.1077569797635078e-02 1.3463750481605530e-01
+ <_>
+
+ 0 -1 6384 1.4911450445652008e-01
+
+ 9.5263421535491943e-03 -5.0872552394866943e-01
+ <_>
+
+ 0 -1 6385 -5.2500818856060505e-03
+
+ 7.0025578141212463e-02 -4.2880270630121231e-02
+ <_>
+
+ 0 -1 6386 2.2823570296168327e-02
+
+ -4.1884049773216248e-02 1.1770319938659668e-01
+ <_>
+
+ 0 -1 6387 -8.5306530818343163e-03
+
+ 6.1222139745950699e-02 -2.4944549426436424e-02
+ <_>
+
+ 0 -1 6388 1.1971729807555676e-02
+
+ 3.9662770926952362e-02 -1.6267740726470947e-01
+ <_>
+
+ 0 -1 6389 -3.8938269019126892e-02
+
+ 2.5743520259857178e-01 -1.6356239095330238e-02
+ <_>
+
+ 0 -1 6390 -2.1706389263272285e-02
+
+ -3.1998679041862488e-01 1.7135290428996086e-02
+ <_>
+
+ 0 -1 6391 6.6900630481541157e-03
+
+ 2.6101849973201752e-02 -1.0980729758739471e-01
+ <_>
+
+ 0 -1 6392 -7.2270832955837250e-02
+
+ 1.9431130588054657e-01 -2.6044359430670738e-02
+ <_>
+
+ 0 -1 6393 -6.7073688842356205e-03
+
+ -1.7747850716114044e-01 4.5862998813390732e-02
+ <_>
+
+ 0 -1 6394 5.5019360035657883e-02
+
+ -8.3471573889255524e-03 6.0511541366577148e-01
+ <_>
+
+ 0 -1 6395 1.3142649829387665e-01
+
+ -5.7535418309271336e-03 2.9167538881301880e-01
+ <_>
+
+ 0 -1 6396 -1.6564460238441825e-03
+
+ 7.0003032684326172e-02 -6.2690876424312592e-02
+ <_>
+
+ 0 -1 6397 1.5445409715175629e-01
+
+ 6.1896732077002525e-03 -7.4323302507400513e-01
+ <_>
+
+ 0 -1 6398 -5.0357519648969173e-03
+
+ -1.1333289742469788e-01 3.8741771131753922e-02
+ <_>
+
+ 0 -1 6399 2.2772569209337234e-03
+
+ -1.1340530216693878e-01 2.1319400519132614e-02
+ <_>
+
+ 0 -1 6400 3.3173530828207731e-03
+
+ 4.4273331761360168e-02 -1.0459829866886139e-01
+ <_>
+
+ 0 -1 6401 -2.9692800715565681e-02
+
+ 9.2483766376972198e-02 -2.3342609405517578e-02
+ <_>
+
+ 0 -1 6402 6.2937840819358826e-02
+
+ -1.2998280115425587e-02 3.8887938857078552e-01
+ <_>
+
+ 0 -1 6403 3.6641359329223633e-03
+
+ 3.2099820673465729e-02 -3.9647988975048065e-02
+ <_>
+
+ 0 -1 6404 4.4782999902963638e-03
+
+ -4.5701328665018082e-02 1.0697010159492493e-01
+ <_>
+
+ 0 -1 6405 1.8147319788113236e-03
+
+ -3.2871820032596588e-02 1.0647939890623093e-01
+ <_>
+
+ 0 -1 6406 4.8941639252007008e-03
+
+ 2.7911009266972542e-02 -2.1725590527057648e-01
+ <_>
+
+ 0 -1 6407 -4.4425828382372856e-03
+
+ -1.3470150530338287e-01 1.0781410150229931e-02
+ <_>
+
+ 0 -1 6408 -2.5493400171399117e-02
+
+ 6.8371468782424927e-01 -7.7452720142900944e-03
+ <_>
+
+ 0 -1 6409 2.7835449203848839e-02
+
+ 2.4144299328327179e-02 -1.5170599520206451e-01
+ <_>
+
+ 0 -1 6410 7.5548859313130379e-03
+
+ -4.7643400728702545e-02 1.1925770342350006e-01
+ <_>
+
+ 0 -1 6411 1.0329609736800194e-02
+
+ 1.8646810203790665e-02 -1.6122570633888245e-01
+ <_>
+
+ 0 -1 6412 -1.2393389828503132e-02
+
+ 6.0304921865463257e-01 -7.7566630207002163e-03
+ <_>
+
+ 0 -1 6413 1.3833769597113132e-02
+
+ -2.7617299929261208e-02 5.1266878843307495e-02
+ <_>
+
+ 0 -1 6414 -2.5669319555163383e-02
+
+ 2.3801359534263611e-01 -2.3971909657120705e-02
+ <_>
+
+ 0 -1 6415 -5.2043660543859005e-03
+
+ -1.0721790045499802e-01 2.6645049452781677e-02
+ <_>
+
+ 0 -1 6416 3.4628969151526690e-03
+
+ 5.4313410073518753e-02 -1.3458320498466492e-01
+ <_>
+
+ 0 -1 6417 -1.9220679998397827e-02
+
+ 7.2996392846107483e-02 -4.0652111172676086e-02
+ <_>
+
+ 0 -1 6418 -2.5009829550981522e-03
+
+ -7.7671296894550323e-02 5.9096541255712509e-02
+ <_>
+
+ 0 -1 6419 -8.5285156965255737e-03
+
+ 4.9050811678171158e-02 -6.4078353345394135e-02
+ <_>
+
+ 0 -1 6420 4.3327538296580315e-03
+
+ 2.5221010670065880e-02 -1.9358980655670166e-01
+ <_>
+
+ 0 -1 6421 3.6595970392227173e-02
+
+ -1.6262590885162354e-02 1.5651239454746246e-01
+ <_>
+
+ 0 -1 6422 -1.1795730097219348e-03
+
+ -7.2468072175979614e-02 7.0449486374855042e-02
+ <_>
+
+ 0 -1 6423 -1.3975829817354679e-02
+
+ -1.1789470165967941e-01 2.1292049437761307e-02
+ <_>
+
+ 0 -1 6424 -1.3828700175508857e-03
+
+ 7.9283542931079865e-02 -9.5104120671749115e-02
+ <_>
+
+ 0 -1 6425 -2.9435830656439066e-03
+
+ 7.0368431508541107e-02 -3.3217910677194595e-02
+ <_>
+
+ 0 -1 6426 9.5262555405497551e-03
+
+ -2.9733620584011078e-02 1.6670459508895874e-01
+ <_>
+
+ 0 -1 6427 -9.0114273130893707e-02
+
+ -1.6625370085239410e-01 8.6199166253209114e-03
+ <_>
+
+ 0 -1 6428 -1.2089919764548540e-03
+
+ 8.1083856523036957e-02 -7.3029123246669769e-02
+ <_>
+
+ 0 -1 6429 -1.4199960231781006e-01
+
+ -1. 2.2284830920398235e-03
+ <_>
+
+ 0 -1 6430 8.0690719187259674e-03
+
+ 4.7412220388650894e-02 -1.0178930312395096e-01
+ <_>
+
+ 0 -1 6431 -4.7410889528691769e-03
+
+ 1.2051119655370712e-01 -4.9957480281591415e-02
+ <_>
+
+ 0 -1 6432 -1.6977200284600258e-03
+
+ -2.4171440303325653e-01 1.9534369930624962e-02
+ <_>
+
+ 0 -1 6433 -2.8892089612782001e-03
+
+ 2.5727990269660950e-01 -1.1625059880316257e-02
+ <_>
+
+ 0 -1 6434 -1.5177440363913774e-03
+
+ -9.8784193396568298e-02 4.6706128865480423e-02
+ <_>
+
+ 0 -1 6435 1.4197319746017456e-01
+
+ -2.5096370372921228e-03 7.5450611114501953e-01
+ <_>
+
+ 0 -1 6436 9.7517937421798706e-02
+
+ -6.9059049710631371e-03 6.5184432268142700e-01
+ <_>
+
+ 0 -1 6437 1.3567379675805569e-02
+
+ -7.6325193047523499e-02 8.8054582476615906e-02
+ <_>
+
+ 0 -1 6438 8.0981463193893433e-02
+
+ 1.5558109618723392e-02 -3.4601628780364990e-01
+ <_>
+
+ 0 -1 6439 -4.7192731872200966e-03
+
+ 8.1620022654533386e-02 -4.6072289347648621e-02
+ <_>
+
+ 0 -1 6440 2.0368969999253750e-03
+
+ -4.4817630201578140e-02 1.2861390411853790e-01
+ <_>
+
+ 0 -1 6441 -1.7878509825095534e-03
+
+ 4.3731331825256348e-02 -4.4995948672294617e-02
+ <_>
+
+ 0 -1 6442 -7.1685528382658958e-03
+
+ -1.3597999513149261e-01 3.8796991109848022e-02
+ <_>
+
+ 0 -1 6443 -6.7460887134075165e-02
+
+ -2.9265740513801575e-01 3.5135280340909958e-03
+ <_>
+
+ 0 -1 6444 -1.5598500147461891e-02
+
+ 2.3105660080909729e-01 -2.2405069321393967e-02
+ <_>
+
+ 0 -1 6445 -2.1026479080319405e-02
+
+ -1.5283830463886261e-01 3.1531449407339096e-02
+ <_>
+
+ 0 -1 6446 -1.0558360069990158e-01
+
+ -6.8366038799285889e-01 6.8997950293123722e-03
+ <_>
+
+ 0 -1 6447 -3.6966579500585794e-03
+
+ 3.4315150231122971e-02 -4.8922799527645111e-02
+ <_>
+
+ 0 -1 6448 -6.0826627304777503e-04
+
+ -5.2638430148363113e-02 8.9546948671340942e-02
+ <_>
+
+ 0 -1 6449 -2.8936540707945824e-02
+
+ 4.1818480938673019e-02 -1.3818169943988323e-02
+ <_>
+
+ 0 -1 6450 -5.8082528412342072e-03
+
+ 6.7874796688556671e-02 -8.5578799247741699e-02
+ <_>
+
+ 0 -1 6451 -4.6095378696918488e-02
+
+ -1.2584780156612396e-01 2.0466970279812813e-02
+ <_>
+
+ 0 -1 6452 5.2972920238971710e-02
+
+ -1.2453259900212288e-02 3.4565049409866333e-01
+ <_>
+
+ 0 -1 6453 4.9351599067449570e-02
+
+ 1.0901239700615406e-02 -4.8506981134414673e-01
+ <_>
+
+ 0 -1 6454 4.4377800077199936e-02
+
+ 9.9294837564229965e-03 -4.3877899646759033e-01
+ <_>
+
+ 0 -1 6455 -1.1464890092611313e-01
+
+ 2.6874598860740662e-01 -9.2000560835003853e-03
+ <_>
+
+ 0 -1 6456 1.6887830197811127e-01
+
+ 5.7101310230791569e-03 -8.5972881317138672e-01
+ <_>
+
+ 0 -1 6457 5.1198098808526993e-02
+
+ -8.5723921656608582e-03 1.3395169377326965e-01
+ <_>
+
+ 0 -1 6458 -3.0789880547672510e-03
+
+ -1.0338760167360306e-01 4.3459478765726089e-02
+ <_>
+
+ 0 -1 6459 4.7223128378391266e-02
+
+ 8.1934239715337753e-03 -4.3803408741950989e-01
+ <_>
+
+ 0 -1 6460 -7.6270569115877151e-03
+
+ 1.8713890016078949e-01 -2.4660250172019005e-02
+ <_>
+
+ 0 -1 6461 5.4106907919049263e-03
+
+ 4.1099831461906433e-02 -7.8868232667446136e-02
+ <_>
+
+ 0 -1 6462 -1.4900229871273041e-03
+
+ -2.0115040242671967e-01 3.1898159533739090e-02
+ <_>
+
+ 0 -1 6463 -8.3831608295440674e-02
+
+ 5.8017939329147339e-01 -5.2973427809774876e-03
+ <_>
+
+ 0 -1 6464 6.2233800999820232e-03
+
+ -3.9786059409379959e-02 1.2283950299024582e-01
+ <_>
+
+ 0 -1 6465 1.1475080251693726e-01
+
+ -1.1975419707596302e-02 2.1586710214614868e-01
+ <_>
+
+ 0 -1 6466 -1.5253260498866439e-03
+
+ 1.3804529607295990e-01 -3.9941880851984024e-02
+ <_>
+
+ 0 -1 6467 -5.2878521382808685e-03
+
+ -1.2790650129318237e-01 3.2893560826778412e-02
+ <_>
+
+ 0 -1 6468 8.9670647867023945e-04
+
+ -1.2481059879064560e-01 4.4544249773025513e-02
+ <_>
+
+ 0 -1 6469 3.8421660661697388e-02
+
+ 7.7155791223049164e-03 -6.5575468540191650e-01
+ <_>
+
+ 0 -1 6470 -9.3785318313166499e-04
+
+ 5.5608510971069336e-02 -8.9876912534236908e-02
+ <_>
+
+ 0 -1 6471 1.9965849351137877e-03
+
+ -2.5297610089182854e-02 1.9413180649280548e-01
+ <_>
+
+ 0 -1 6472 4.5782068627886474e-04
+
+ 3.9089199155569077e-02 -1.2908570468425751e-01
+ <_>
+
+ 0 -1 6473 3.8373940624296665e-03
+
+ -2.8748869895935059e-02 1.9429750740528107e-01
+ <_>
+
+ 0 -1 6474 3.7142829387448728e-04
+
+ 3.8272358477115631e-02 -1.3759189844131470e-01
+ <_>
+
+ 0 -1 6475 7.5116259977221489e-03
+
+ -1.4461129903793335e-02 1.2656949460506439e-01
+ <_>
+
+ 0 -1 6476 -5.0362840294837952e-02
+
+ 3.5183578729629517e-01 -1.4051860198378563e-02
+ <_>
+
+ 0 -1 6477 3.9921641349792480e-02
+
+ 2.7280429378151894e-02 -1.9958199560642242e-01
+ <_>
+
+ 0 -1 6478 2.2605259716510773e-01
+
+ -6.8001961335539818e-03 7.3006898164749146e-01
+ <_>
+
+ 0 -1 6479 1.1081779748201370e-01
+
+ 4.3370737694203854e-03 -8.6829161643981934e-01
+ <_>
+
+ 0 -1 6480 -9.7494889050722122e-03
+
+ -6.3740663230419159e-02 8.4537997841835022e-02
+ <_>
+
+ 0 -1 6481 -2.2887689992785454e-03
+
+ 9.9654018878936768e-02 -4.1565418243408203e-02
+ <_>
+
+ 0 -1 6482 2.0008319988846779e-03
+
+ -5.5650699883699417e-02 1.0709869861602783e-01
+ <_>
+
+ 0 -1 6483 -1.5160050243139267e-02
+
+ -1.4098760485649109e-01 3.8741599768400192e-02
+ <_>
+
+ 0 -1 6484 -6.3132969662547112e-03
+
+ -1. 4.4605308212339878e-03
+ <_>
+
+ 0 -1 6485 -1.3970009982585907e-02
+
+ 1.2481089681386948e-01 -2.1425830200314522e-02
+ <_>
+
+ 0 -1 6486 -4.4321279972791672e-02
+
+ -5.3340071439743042e-01 1.0165239684283733e-02
+ <_>
+
+ 0 -1 6487 1.4885979471728206e-03
+
+ -4.8868600279092789e-02 3.6077901721000671e-02
+ <_>
+
+ 0 -1 6488 6.5139681100845337e-02
+
+ 7.6331058517098427e-03 -5.8781641721725464e-01
+ <_>
+
+ 0 -1 6489 -2.0741410553455353e-02
+
+ -2.9658278822898865e-01 1.8622800707817078e-02
+ <_>
+ 396
+ -1.2181390523910522e+00
+
+ <_>
+
+ 0 -1 6490 1.3575689867138863e-02
+
+ -1.4249590039253235e-01 2.3337620496749878e-01
+ <_>
+
+ 0 -1 6491 -7.5882389210164547e-03
+
+ 8.6464479565620422e-02 -2.3954319953918457e-01
+ <_>
+
+ 0 -1 6492 4.2986529879271984e-03
+
+ 5.0282090902328491e-02 -3.5250121355056763e-01
+ <_>
+
+ 0 -1 6493 -1.9793119281530380e-02
+
+ -1.6827470064163208e-01 4.3712720274925232e-02
+ <_>
+
+ 0 -1 6494 6.6613829694688320e-03
+
+ -2.0371539890766144e-01 7.1225747466087341e-02
+ <_>
+
+ 0 -1 6495 3.2715050037950277e-03
+
+ 5.4536718875169754e-02 -2.2428829967975616e-01
+ <_>
+
+ 0 -1 6496 -3.6143321543931961e-02
+
+ 5.5044889450073242e-01 -2.3597210645675659e-02
+ <_>
+
+ 0 -1 6497 3.1145319808274508e-03
+
+ 2.2049430757761002e-02 -3.0109429359436035e-01
+ <_>
+
+ 0 -1 6498 8.9540961198508739e-04
+
+ -1.2279850244522095e-01 1.0751420259475708e-01
+ <_>
+
+ 0 -1 6499 8.0573331797495484e-04
+
+ -8.7587781250476837e-02 5.4632049053907394e-02
+ <_>
+
+ 0 -1 6500 -6.5726130269467831e-03
+
+ -1.5649870038032532e-01 7.6560758054256439e-02
+ <_>
+
+ 0 -1 6501 2.2269350010901690e-03
+
+ 2.9490780085325241e-02 -5.9210199862718582e-02
+ <_>
+
+ 0 -1 6502 6.2076752074062824e-03
+
+ 7.5727343559265137e-02 -1.7675329744815826e-01
+ <_>
+
+ 0 -1 6503 6.0021011158823967e-03
+
+ -7.8353807330131531e-02 1.4492890238761902e-01
+ <_>
+
+ 0 -1 6504 1.1996340006589890e-02
+
+ 2.8644030913710594e-02 -3.1982469558715820e-01
+ <_>
+
+ 0 -1 6505 6.7174229770898819e-03
+
+ -1.0739900171756744e-01 1.3106329739093781e-01
+ <_>
+
+ 0 -1 6506 5.7567027397453785e-04
+
+ -6.4126797020435333e-02 1.6293540596961975e-01
+ <_>
+
+ 0 -1 6507 3.9552329108119011e-03
+
+ 3.7347421050071716e-02 -1.5253570675849915e-01
+ <_>
+
+ 0 -1 6508 1.5598450554534793e-03
+
+ -9.8687313497066498e-02 9.8718203604221344e-02
+ <_>
+
+ 0 -1 6509 -8.4324590861797333e-03
+
+ 2.0905649662017822e-01 -6.0484018176794052e-02
+ <_>
+
+ 0 -1 6510 8.7580326944589615e-03
+
+ 5.0603430718183517e-02 -2.1845470368862152e-01
+ <_>
+
+ 0 -1 6511 -1.1965750157833099e-01
+
+ 2.6711589097976685e-01 -7.4574039317667484e-03
+ <_>
+
+ 0 -1 6512 2.0653149113059044e-03
+
+ 3.5194810479879379e-02 -2.5230750441551208e-01
+ <_>
+
+ 0 -1 6513 -5.7491107145324349e-04
+
+ 8.2424223423004150e-02 -1.0830479860305786e-01
+ <_>
+
+ 0 -1 6514 -6.7591401748359203e-03
+
+ -1.3704189658164978e-01 7.0154368877410889e-02
+ <_>
+
+ 0 -1 6515 1.8210740759968758e-02
+
+ -2.5407770648598671e-02 1.0123729705810547e-01
+ <_>
+
+ 0 -1 6516 -8.8006846606731415e-02
+
+ 3.6638718843460083e-01 -3.0893180519342422e-02
+ <_>
+
+ 0 -1 6517 -4.4944360852241516e-03
+
+ -1.5753810107707977e-01 6.0070630162954330e-02
+ <_>
+
+ 0 -1 6518 -6.3741360791027546e-03
+
+ 2.1189889311790466e-01 -3.9567999541759491e-02
+ <_>
+
+ 0 -1 6519 -3.1097440049052238e-02
+
+ -5.9965521097183228e-01 9.9493442103266716e-03
+ <_>
+
+ 0 -1 6520 5.8496380224823952e-03
+
+ 2.8244689106941223e-02 -2.9778000712394714e-01
+ <_>
+
+ 0 -1 6521 -2.2763800807297230e-03
+
+ 1.0270419716835022e-01 -7.3711991310119629e-02
+ <_>
+
+ 0 -1 6522 3.9103049784898758e-03
+
+ 5.2445668727159500e-02 -2.0123919844627380e-01
+ <_>
+
+ 0 -1 6523 2.8906730003654957e-03
+
+ -2.1692280471324921e-01 3.7294570356607437e-02
+ <_>
+
+ 0 -1 6524 4.5904931612312794e-03
+
+ -8.1276580691337585e-02 1.1013159900903702e-01
+ <_>
+
+ 0 -1 6525 -3.4245800226926804e-02
+
+ -1.1541730165481567e-01 1.4384049922227859e-02
+ <_>
+
+ 0 -1 6526 -1.7881620442494750e-04
+
+ 6.2885977327823639e-02 -1.3267129659652710e-01
+ <_>
+
+ 0 -1 6527 -4.0114559233188629e-03
+
+ -1.8961720168590546e-01 3.6701768636703491e-02
+ <_>
+
+ 0 -1 6528 3.1429999507963657e-03
+
+ -4.9915120005607605e-02 1.7299769818782806e-01
+ <_>
+
+ 0 -1 6529 7.8082352876663208e-02
+
+ 4.7195390798151493e-03 -3.4015879034996033e-01
+ <_>
+
+ 0 -1 6530 2.0370949804782867e-01
+
+ -2.1733140572905540e-02 3.7422651052474976e-01
+ <_>
+
+ 0 -1 6531 9.7424820065498352e-02
+
+ -6.8117439514026046e-04 4.9639159440994263e-01
+ <_>
+
+ 0 -1 6532 -2.6366419624537230e-03
+
+ -1.8532100319862366e-01 4.3768830597400665e-02
+ <_>
+
+ 0 -1 6533 4.1020149365067482e-04
+
+ 2.7802910655736923e-02 -8.7706968188285828e-02
+ <_>
+
+ 0 -1 6534 -5.9666559100151062e-02
+
+ -5.6872707605361938e-01 1.3388640247285366e-02
+ <_>
+
+ 0 -1 6535 -5.1892381161451340e-03
+
+ 5.0499498844146729e-02 -1.4465869963169098e-01
+ <_>
+
+ 0 -1 6536 1.0377140343189240e-01
+
+ -1.8952060490846634e-02 4.1107979416847229e-01
+ <_>
+
+ 0 -1 6537 -1.4075759798288345e-02
+
+ -2.0367360115051270e-01 3.2513279467821121e-02
+ <_>
+
+ 0 -1 6538 -6.8877148441970348e-03
+
+ 1.2401729822158813e-01 -7.6617129147052765e-02
+ <_>
+
+ 0 -1 6539 2.9345849528908730e-02
+
+ 8.4471162408590317e-03 -3.4656980633735657e-01
+ <_>
+
+ 0 -1 6540 -8.3123557269573212e-03
+
+ -1.9180110096931458e-01 3.8585629314184189e-02
+ <_>
+
+ 0 -1 6541 6.4493268728256226e-02
+
+ -2.7158880606293678e-02 3.0217999219894409e-01
+ <_>
+
+ 0 -1 6542 8.0413377145305276e-04
+
+ -1.0444170236587524e-01 6.4721979200839996e-02
+ <_>
+
+ 0 -1 6543 -6.5569980069994926e-03
+
+ -1.0658600181341171e-01 2.5238489732146263e-02
+ <_>
+
+ 0 -1 6544 -3.8326930254697800e-02
+
+ -6.8506389856338501e-01 9.6486946567893028e-03
+ <_>
+
+ 0 -1 6545 -4.0327329188585281e-02
+
+ 1.9759850203990936e-01 -2.5184169411659241e-02
+ <_>
+
+ 0 -1 6546 6.1981407925486565e-03
+
+ 4.6415790915489197e-02 -1.7171670496463776e-01
+ <_>
+
+ 0 -1 6547 3.7465501576662064e-02
+
+ -1.5010279603302479e-02 8.6962252855300903e-02
+ <_>
+
+ 0 -1 6548 -6.0584479942917824e-03
+
+ 6.9242753088474274e-02 -9.4594202935695648e-02
+ <_>
+
+ 0 -1 6549 -1.4991699717938900e-02
+
+ -1.4969819784164429e-01 4.6579450368881226e-02
+ <_>
+
+ 0 -1 6550 6.4760357141494751e-02
+
+ -2.6089169085025787e-02 2.7072009444236755e-01
+ <_>
+
+ 0 -1 6551 5.9020328521728516e-01
+
+ 3.9715780876576900e-03 -6.3918071985244751e-01
+ <_>
+
+ 0 -1 6552 7.3892213404178619e-02
+
+ -6.2506332993507385e-02 1.3100719451904297e-01
+ <_>
+
+ 0 -1 6553 4.3928170204162598e-01
+
+ 5.0452877767384052e-03 -3.7628439068794250e-01
+ <_>
+
+ 0 -1 6554 1.0192040354013443e-01
+
+ 2.2053290158510208e-02 -3.3408200740814209e-01
+ <_>
+
+ 0 -1 6555 1.1084219813346863e-01
+
+ 1.6215540468692780e-02 -3.4900701045989990e-01
+ <_>
+
+ 0 -1 6556 5.5628088302910328e-03
+
+ -5.2196711301803589e-02 1.1796370148658752e-01
+ <_>
+
+ 0 -1 6557 -6.3897081417962909e-04
+
+ -1.5659700334072113e-01 4.4744450598955154e-02
+ <_>
+
+ 0 -1 6558 -3.5426639951765537e-03
+
+ 1.4490570127964020e-01 -4.2518708854913712e-02
+ <_>
+
+ 0 -1 6559 -3.3016160130500793e-02
+
+ -3.6942940950393677e-01 7.6470980420708656e-03
+ <_>
+
+ 0 -1 6560 9.6050858497619629e-02
+
+ 6.5154801122844219e-03 -8.7827038764953613e-01
+ <_>
+
+ 0 -1 6561 -4.9572009593248367e-02
+
+ -4.2723020911216736e-01 3.1567770056426525e-03
+ <_>
+
+ 0 -1 6562 2.5885479408316314e-04
+
+ -1.5689669549465179e-01 3.8051828742027283e-02
+ <_>
+
+ 0 -1 6563 -1.5898289857432246e-03
+
+ -1.8845720589160919e-01 2.4630049243569374e-02
+ <_>
+
+ 0 -1 6564 -1.3463890354614705e-04
+
+ 1.4452700316905975e-01 -4.4172260910272598e-02
+ <_>
+
+ 0 -1 6565 1.1674249544739723e-02
+
+ -2.5676380842924118e-02 1.9527709484100342e-01
+ <_>
+
+ 0 -1 6566 -2.3507000878453255e-02
+
+ -3.2271888852119446e-01 1.8514839932322502e-02
+ <_>
+
+ 0 -1 6567 3.1225800514221191e-02
+
+ -1.9622299820184708e-02 1.4570100605487823e-01
+ <_>
+
+ 0 -1 6568 8.0607319250702858e-04
+
+ 4.4379990547895432e-02 -1.3635620474815369e-01
+ <_>
+
+ 0 -1 6569 -2.6445880532264709e-01
+
+ 4.1771200299263000e-01 -6.3821650110185146e-03
+ <_>
+
+ 0 -1 6570 3.5479381680488586e-02
+
+ -2.2758480161428452e-02 2.6946100592613220e-01
+ <_>
+
+ 0 -1 6571 -3.8137599825859070e-02
+
+ -3.6719909310340881e-01 1.8722059205174446e-02
+ <_>
+
+ 0 -1 6572 3.9108810015022755e-03
+
+ -1.8176819384098053e-01 3.9054948836565018e-02
+ <_>
+
+ 0 -1 6573 4.1834539733827114e-03
+
+ 4.8676248639822006e-02 -1.3558860123157501e-01
+ <_>
+
+ 0 -1 6574 -4.6641420572996140e-02
+
+ -5.8741682767868042e-01 9.8590552806854248e-03
+ <_>
+
+ 0 -1 6575 1.1950139887630939e-02
+
+ -2.5506049394607544e-02 2.7971199154853821e-01
+ <_>
+
+ 0 -1 6576 -6.3585072755813599e-02
+
+ -7.0940697193145752e-01 8.8691459968686104e-03
+ <_>
+
+ 0 -1 6577 9.7221415489912033e-03
+
+ -2.7885029092431068e-02 5.4626680910587311e-02
+ <_>
+
+ 0 -1 6578 -1.6111459583044052e-02
+
+ -6.8265482783317566e-02 8.0932967364788055e-02
+ <_>
+
+ 0 -1 6579 -7.9950511455535889e-02
+
+ 2.0425680279731750e-01 -3.4306850284337997e-02
+ <_>
+
+ 0 -1 6580 3.1421340536326170e-03
+
+ 4.2196881026029587e-02 -1.5366910398006439e-01
+ <_>
+
+ 0 -1 6581 2.9253180400701240e-05
+
+ -7.6382257044315338e-02 3.1748879700899124e-02
+ <_>
+
+ 0 -1 6582 -5.4587088525295258e-02
+
+ -6.4891487360000610e-01 9.1545386239886284e-03
+ <_>
+
+ 0 -1 6583 -2.1083420142531395e-02
+
+ 1.9058999419212341e-01 -2.4686640128493309e-02
+ <_>
+
+ 0 -1 6584 3.9170900708995759e-04
+
+ -1.0570889711380005e-01 5.2946768701076508e-02
+ <_>
+
+ 0 -1 6585 2.2588829696178436e-01
+
+ 2.3077470250427723e-03 -9.2606049776077271e-01
+ <_>
+
+ 0 -1 6586 -1.8899979069828987e-02
+
+ 1.4503970742225647e-01 -3.8506619632244110e-02
+ <_>
+
+ 0 -1 6587 -8.7533425539731979e-03
+
+ 8.3958826959133148e-02 -3.7479098886251450e-02
+ <_>
+
+ 0 -1 6588 -2.0821259915828705e-01
+
+ -6.7948538064956665e-01 9.8609952256083488e-03
+ <_>
+
+ 0 -1 6589 1.6270060092210770e-02
+
+ 1.4115580357611179e-02 -1.8218359351158142e-01
+ <_>
+
+ 0 -1 6590 3.0145489145070314e-03
+
+ 5.2013739943504333e-02 -1.1450190097093582e-01
+ <_>
+
+ 0 -1 6591 1.8547449260950089e-02
+
+ -2.5681620463728905e-02 1.6456380486488342e-01
+ <_>
+
+ 0 -1 6592 4.2732958681881428e-03
+
+ -5.9573240578174591e-02 1.0390280187129974e-01
+ <_>
+
+ 0 -1 6593 -2.8249630704522133e-02
+
+ -7.8161589801311493e-02 2.9064230620861053e-02
+ <_>
+
+ 0 -1 6594 -1.5538600273430347e-02
+
+ -1.4481380581855774e-01 3.8434058427810669e-02
+ <_>
+
+ 0 -1 6595 3.8620950654149055e-03
+
+ -3.8745380938053131e-02 9.8183527588844299e-02
+ <_>
+
+ 0 -1 6596 1.5253369696438313e-02
+
+ 1.7946500331163406e-02 -3.0948030948638916e-01
+ <_>
+
+ 0 -1 6597 -4.2140888981521130e-03
+
+ 5.7521570473909378e-02 -2.7782430872321129e-02
+ <_>
+
+ 0 -1 6598 -2.1610679104924202e-03
+
+ 1.0617449879646301e-01 -5.9411250054836273e-02
+ <_>
+
+ 0 -1 6599 -1.8687519477680326e-03
+
+ -1.2807689607143402e-01 4.7781638801097870e-02
+ <_>
+
+ 0 -1 6600 -6.2083022203296423e-04
+
+ 1.1725349724292755e-01 -4.7861199826002121e-02
+ <_>
+
+ 0 -1 6601 -2.5575871113687754e-03
+
+ 5.7900648564100266e-02 -8.4036856889724731e-02
+ <_>
+
+ 0 -1 6602 4.1207410395145416e-03
+
+ 5.4239779710769653e-02 -1.2611140310764313e-01
+ <_>
+
+ 0 -1 6603 1.7525779083371162e-02
+
+ 2.8792750090360641e-02 -1.9793170690536499e-01
+ <_>
+
+ 0 -1 6604 -1.9012490287423134e-02
+
+ 1.1444319784641266e-01 -6.6813051700592041e-02
+ <_>
+
+ 0 -1 6605 9.5198452472686768e-03
+
+ -3.9105638861656189e-02 8.8588982820510864e-02
+ <_>
+
+ 0 -1 6606 7.7857482247054577e-03
+
+ 4.7903850674629211e-02 -1.1941280215978622e-01
+ <_>
+
+ 0 -1 6607 -2.5355129037052393e-03
+
+ 6.1377499252557755e-02 -5.1576390862464905e-02
+ <_>
+
+ 0 -1 6608 1.3886679708957672e-01
+
+ 7.1258218958973885e-03 -7.5076061487197876e-01
+ <_>
+
+ 0 -1 6609 -3.0958889983594418e-03
+
+ 7.3432266712188721e-02 -4.0409181267023087e-02
+ <_>
+
+ 0 -1 6610 4.7118910588324070e-03
+
+ 2.2374270483851433e-02 -2.3885080218315125e-01
+ <_>
+
+ 0 -1 6611 6.3587618060410023e-03
+
+ 5.3684379905462265e-02 -1.3398240506649017e-01
+ <_>
+
+ 0 -1 6612 6.8367011845111847e-02
+
+ -3.6103919148445129e-02 1.7410080134868622e-01
+ <_>
+
+ 0 -1 6613 -3.2802459318190813e-03
+
+ -1.4603079855442047e-01 4.8215139657258987e-02
+ <_>
+
+ 0 -1 6614 -6.6430270671844482e-02
+
+ 4.6738991141319275e-01 -1.3140380382537842e-02
+ <_>
+
+ 0 -1 6615 -4.2274069041013718e-02
+
+ -6.3253331184387207e-01 1.0359439998865128e-02
+ <_>
+
+ 0 -1 6616 -1.0691370116546750e-03
+
+ -1.1469829827547073e-01 4.5048121362924576e-02
+ <_>
+
+ 0 -1 6617 5.4235469549894333e-02
+
+ -1.9809609279036522e-02 3.1430730223655701e-01
+ <_>
+
+ 0 -1 6618 -7.2852471930673346e-06
+
+ 5.8051250874996185e-02 -1.0246170312166214e-01
+ <_>
+
+ 0 -1 6619 2.0893309265375137e-02
+
+ 1.5608809888362885e-02 -2.1545739471912384e-01
+ <_>
+
+ 0 -1 6620 -5.3765181452035904e-02
+
+ 2.0559239387512207e-01 -3.2525919377803802e-02
+ <_>
+
+ 0 -1 6621 -1.5972670167684555e-02
+
+ -1.7119890451431274e-01 1.4773829840123653e-02
+ <_>
+
+ 0 -1 6622 -1.4591409824788570e-02
+
+ -2.3046019673347473e-01 2.3345010355114937e-02
+ <_>
+
+ 0 -1 6623 2.4016639217734337e-03
+
+ -2.8272429481148720e-02 9.5124237239360809e-02
+ <_>
+
+ 0 -1 6624 -2.0430689677596092e-02
+
+ 4.0655559301376343e-01 -1.6212539747357368e-02
+ <_>
+
+ 0 -1 6625 8.1926792860031128e-02
+
+ 8.7937163189053535e-03 -4.0210300683975220e-01
+ <_>
+
+ 0 -1 6626 -1.2892849743366241e-02
+
+ -1.1946929991245270e-01 4.5022130012512207e-02
+ <_>
+
+ 0 -1 6627 9.4712682068347931e-02
+
+ -1.0760080069303513e-02 2.1693980693817139e-01
+ <_>
+
+ 0 -1 6628 4.0901689790189266e-03
+
+ -8.4592603147029877e-02 7.0457696914672852e-02
+ <_>
+
+ 0 -1 6629 -1.2496539950370789e-01
+
+ 2.8276950120925903e-01 -4.2760102078318596e-03
+ <_>
+
+ 0 -1 6630 1.5758169814944267e-02
+
+ -4.8926588147878647e-02 1.2380229681730270e-01
+ <_>
+
+ 0 -1 6631 -5.2818129770457745e-03
+
+ 6.1836440116167068e-02 -3.6712940782308578e-02
+ <_>
+
+ 0 -1 6632 8.6735859513282776e-03
+
+ -4.7372240573167801e-02 1.5809150040149689e-01
+ <_>
+
+ 0 -1 6633 -5.2273580804467201e-03
+
+ -1.1694569885730743e-01 2.9156440868973732e-02
+ <_>
+
+ 0 -1 6634 6.1831828206777573e-02
+
+ 8.0447606742382050e-03 -6.8530529737472534e-01
+ <_>
+
+ 0 -1 6635 6.6815607249736786e-02
+
+ -8.4813889116048813e-03 1.4523769915103912e-01
+ <_>
+
+ 0 -1 6636 -1.0062000155448914e-01
+
+ 7.4605828523635864e-01 -6.8016690202057362e-03
+ <_>
+
+ 0 -1 6637 -1.4751539565622807e-02
+
+ -1.4893519878387451e-01 3.9579190313816071e-02
+ <_>
+
+ 0 -1 6638 3.4616589546203613e-02
+
+ -2.0749099552631378e-02 2.8549820184707642e-01
+ <_>
+
+ 0 -1 6639 -1.2966389954090118e-01
+
+ -5.5446487665176392e-01 4.6082548797130585e-03
+ <_>
+
+ 0 -1 6640 7.4035510420799255e-02
+
+ 5.3174998611211777e-03 -8.4149527549743652e-01
+ <_>
+
+ 0 -1 6641 1.0177110135555267e-01
+
+ -7.6451660133898258e-03 3.5442221164703369e-01
+ <_>
+
+ 0 -1 6642 8.9658737182617188e-02
+
+ -9.3901483342051506e-03 5.0577938556671143e-01
+ <_>
+
+ 0 -1 6643 -1.6180740296840668e-01
+
+ -6.5451782941818237e-01 8.7116202339529991e-03
+ <_>
+
+ 0 -1 6644 1.8784119747579098e-03
+
+ 5.2064418792724609e-02 -9.0741947293281555e-02
+ <_>
+
+ 0 -1 6645 1.9505689851939678e-03
+
+ -5.4091621190309525e-02 3.5506200045347214e-02
+ <_>
+
+ 0 -1 6646 -6.0789179988205433e-03
+
+ 1.2238519638776779e-01 -4.6803738921880722e-02
+ <_>
+
+ 0 -1 6647 -2.2403250634670258e-01
+
+ -7.7728492021560669e-01 2.3639709688723087e-03
+ <_>
+
+ 0 -1 6648 -1.3039590418338776e-01
+
+ -2.7692648768424988e-01 2.1548289805650711e-02
+ <_>
+
+ 0 -1 6649 7.2587423026561737e-02
+
+ 1.0621299967169762e-02 -1.6270780563354492e-01
+ <_>
+
+ 0 -1 6650 7.3180042207241058e-02
+
+ -1.7519259825348854e-02 3.3697870373725891e-01
+ <_>
+
+ 0 -1 6651 -3.4525979310274124e-02
+
+ -5.3538697957992554e-01 1.0397709906101227e-02
+ <_>
+
+ 0 -1 6652 2.3753559216856956e-03
+
+ 5.1910828799009323e-02 -9.6959516406059265e-02
+ <_>
+
+ 0 -1 6653 -6.8947779946029186e-03
+
+ 8.2409977912902832e-02 -2.3098999634385109e-02
+ <_>
+
+ 0 -1 6654 -9.4773292541503906e-02
+
+ -7.0510691404342651e-01 7.7322297729551792e-03
+ <_>
+
+ 0 -1 6655 5.6327427737414837e-03
+
+ 1.7960680648684502e-02 -7.2307042777538300e-02
+ <_>
+
+ 0 -1 6656 6.6090249456465244e-03
+
+ -3.6701079457998276e-02 1.3706339895725250e-01
+ <_>
+
+ 0 -1 6657 -2.4978399276733398e-02
+
+ -1.6281390190124512e-01 7.6992698013782501e-03
+ <_>
+
+ 0 -1 6658 -6.0882410034537315e-03
+
+ 1.0555619746446609e-01 -4.8507411032915115e-02
+ <_>
+
+ 0 -1 6659 6.1161588877439499e-02
+
+ 1.1127579491585493e-03 -5.6657880544662476e-01
+ <_>
+
+ 0 -1 6660 -3.8722809404134750e-02
+
+ -5.9797358512878418e-01 8.4153199568390846e-03
+ <_>
+
+ 0 -1 6661 6.2335198745131493e-03
+
+ 3.1563021242618561e-02 -1.8769240379333496e-01
+ <_>
+
+ 0 -1 6662 1.6939510405063629e-01
+
+ -1.7183739691972733e-02 3.1440049409866333e-01
+ <_>
+
+ 0 -1 6663 8.5851341485977173e-02
+
+ 5.7081878185272217e-03 -4.9966809153556824e-01
+ <_>
+
+ 0 -1 6664 -2.0315010100603104e-02
+
+ -1.2359900027513504e-01 4.4704839587211609e-02
+ <_>
+
+ 0 -1 6665 -4.0276069194078445e-03
+
+ 4.7957219183444977e-02 -9.7137056291103363e-02
+ <_>
+
+ 0 -1 6666 -3.9274509996175766e-02
+
+ 1.8804270029067993e-01 -2.9754199087619781e-02
+ <_>
+
+ 0 -1 6667 -2.1163629367947578e-02
+
+ -1.5724900364875793e-01 3.9636529982089996e-02
+ <_>
+
+ 0 -1 6668 4.0783579461276531e-03
+
+ -4.7562818974256516e-02 1.0976249724626541e-01
+ <_>
+
+ 0 -1 6669 1.0180410463362932e-03
+
+ -6.6306091845035553e-02 9.8773077130317688e-02
+ <_>
+
+ 0 -1 6670 2.8516049496829510e-03
+
+ -5.1101740449666977e-02 9.6994958817958832e-02
+ <_>
+
+ 0 -1 6671 4.8373742029070854e-03
+
+ 4.0866550058126450e-02 -1.2480360269546509e-01
+ <_>
+
+ 0 -1 6672 -3.4715479705482721e-04
+
+ 4.1778691112995148e-02 -1.2574540078639984e-01
+ <_>
+
+ 0 -1 6673 -6.3760261982679367e-03
+
+ 1.5754230320453644e-01 -4.1692778468132019e-02
+ <_>
+
+ 0 -1 6674 -1.2534069828689098e-02
+
+ -1.3565440475940704e-01 4.1295569390058517e-02
+ <_>
+
+ 0 -1 6675 -2.3321550339460373e-02
+
+ 1.2518349289894104e-01 -1.3427260331809521e-02
+ <_>
+
+ 0 -1 6676 2.1691620349884033e-03
+
+ 1.4331200718879700e-01 -3.5120349377393723e-02
+ <_>
+
+ 0 -1 6677 -5.0005540251731873e-02
+
+ 2.1500219404697418e-01 -2.7628419920802116e-02
+ <_>
+
+ 0 -1 6678 1.3818169943988323e-02
+
+ 2.2208500653505325e-02 -2.6048558950424194e-01
+ <_>
+
+ 0 -1 6679 -1.1389379948377609e-01
+
+ -2.6434680819511414e-01 5.8247619308531284e-03
+ <_>
+
+ 0 -1 6680 1.4204699546098709e-03
+
+ -7.1546286344528198e-02 7.0379182696342468e-02
+ <_>
+
+ 0 -1 6681 1.2329610064625740e-02
+
+ 2.9475130140781403e-02 -1.9224089384078979e-01
+ <_>
+
+ 0 -1 6682 3.4679430536925793e-03
+
+ -6.1920940876007080e-02 9.0893089771270752e-02
+ <_>
+
+ 0 -1 6683 -1.2088479846715927e-01
+
+ 4.6626859903335571e-01 -2.7361230459064245e-03
+ <_>
+
+ 0 -1 6684 -1.5827519819140434e-02
+
+ -9.5342837274074554e-02 5.5003169924020767e-02
+ <_>
+
+ 0 -1 6685 -5.3695850074291229e-03
+
+ 1.6891020536422729e-01 -4.6700950711965561e-02
+ <_>
+
+ 0 -1 6686 5.2695080637931824e-02
+
+ -5.6889699772000313e-03 9.0487861633300781e-01
+ <_>
+
+ 0 -1 6687 -1.1397979687899351e-03
+
+ 3.4316681325435638e-02 -7.5787901878356934e-02
+ <_>
+
+ 0 -1 6688 -2.8946578968316317e-03
+
+ 7.5482390820980072e-02 -7.6466552913188934e-02
+ <_>
+
+ 0 -1 6689 -5.1091420464217663e-03
+
+ -1.2294950336217880e-01 4.9972750246524811e-02
+ <_>
+
+ 0 -1 6690 1.8837359966710210e-03
+
+ 4.3406400829553604e-02 -1.2572230398654938e-01
+ <_>
+
+ 0 -1 6691 1.5422919765114784e-02
+
+ 1.5831289812922478e-02 -2.0917390286922455e-01
+ <_>
+
+ 0 -1 6692 2.1666040644049644e-02
+
+ -2.4713400751352310e-02 2.4171669781208038e-01
+ <_>
+
+ 0 -1 6693 -9.4336412847042084e-02
+
+ 8.0389547348022461e-01 -2.6913180481642485e-03
+ <_>
+
+ 0 -1 6694 -6.0154758393764496e-03
+
+ -1.3231749832630157e-01 4.9613710492849350e-02
+ <_>
+
+ 0 -1 6695 4.3775320053100586e-02
+
+ 4.5396219938993454e-03 -5.8732748031616211e-01
+ <_>
+
+ 0 -1 6696 1.0561950039118528e-03
+
+ -8.8057562708854675e-02 7.1294106543064117e-02
+ <_>
+
+ 0 -1 6697 -1.6394529957324266e-03
+
+ 9.0810842812061310e-02 -3.7760701030492783e-02
+ <_>
+
+ 0 -1 6698 2.6742160320281982e-01
+
+ 9.4182817265391350e-03 -5.2740138769149780e-01
+ <_>
+
+ 0 -1 6699 -2.1629330515861511e-01
+
+ -6.1128187179565430e-01 5.2118571475148201e-03
+ <_>
+
+ 0 -1 6700 -2.6974570751190186e-01
+
+ -7.3394459486007690e-01 6.0041057877242565e-03
+ <_>
+
+ 0 -1 6701 -6.0050850734114647e-03
+
+ 1.1067090183496475e-01 -2.0614199340343475e-02
+ <_>
+
+ 0 -1 6702 4.9247939139604568e-02
+
+ 1.0287189856171608e-02 -4.9581390619277954e-01
+ <_>
+
+ 0 -1 6703 4.9235569313168526e-03
+
+ 1.4880360104143620e-02 -1.1287470161914825e-01
+ <_>
+
+ 0 -1 6704 -8.2946997135877609e-03
+
+ 5.6476062536239624e-01 -1.0442149825394154e-02
+ <_>
+
+ 0 -1 6705 2.3567330092191696e-02
+
+ -2.9235871043056250e-03 2.4979250133037567e-01
+ <_>
+
+ 0 -1 6706 -4.1040919721126556e-02
+
+ 4.0030491352081299e-01 -1.3312620110809803e-02
+ <_>
+
+ 0 -1 6707 -5.3690220229327679e-03
+
+ -2.9186370968818665e-01 1.6781600192189217e-02
+ <_>
+
+ 0 -1 6708 3.6616099532693624e-03
+
+ -4.7920960932970047e-02 1.0898339748382568e-01
+ <_>
+
+ 0 -1 6709 -2.4735789746046066e-02
+
+ 6.7270919680595398e-02 -1.6207970678806305e-02
+ <_>
+
+ 0 -1 6710 8.6064152419567108e-03
+
+ -6.0250200331211090e-02 1.0674320161342621e-01
+ <_>
+
+ 0 -1 6711 -3.3892609179019928e-02
+
+ -1.9795329868793488e-01 1.9014969468116760e-02
+ <_>
+
+ 0 -1 6712 1.0522030293941498e-01
+
+ 6.0530952177941799e-03 -7.5238007307052612e-01
+ <_>
+
+ 0 -1 6713 -5.9583578258752823e-03
+
+ 9.9094383418560028e-02 -3.5570640116930008e-02
+ <_>
+
+ 0 -1 6714 2.7306210249662399e-03
+
+ -8.8879808783531189e-02 6.4843989908695221e-02
+ <_>
+
+ 0 -1 6715 4.3243571417406201e-04
+
+ 3.2528489828109741e-02 -9.1479070484638214e-02
+ <_>
+
+ 0 -1 6716 -5.2608880214393139e-03
+
+ 1.3896170258522034e-01 -4.0624819695949554e-02
+ <_>
+
+ 0 -1 6717 -1.5605129301548004e-01
+
+ -7.3170071840286255e-01 2.5103189982473850e-03
+ <_>
+
+ 0 -1 6718 -1.1245990172028542e-02
+
+ -1.1834110319614410e-01 5.2261721342802048e-02
+ <_>
+
+ 0 -1 6719 -9.2654878972098231e-04
+
+ 4.3350778520107269e-02 -7.6521359384059906e-02
+ <_>
+
+ 0 -1 6720 1.5148459933698177e-03
+
+ -7.1485839784145355e-02 7.3206916451454163e-02
+ <_>
+
+ 0 -1 6721 4.6230577863752842e-03
+
+ 2.0211879163980484e-02 -4.6565961092710495e-02
+ <_>
+
+ 0 -1 6722 1.2555140256881714e-01
+
+ 9.2135155573487282e-03 -5.4831707477569580e-01
+ <_>
+
+ 0 -1 6723 4.0751680731773376e-02
+
+ -4.5771248638629913e-02 5.6990999728441238e-02
+ <_>
+
+ 0 -1 6724 -2.2074349224567413e-02
+
+ -3.9075499773025513e-01 1.1654710397124290e-02
+ <_>
+
+ 0 -1 6725 1.2412919849157333e-01
+
+ -6.0688108205795288e-03 2.6376709342002869e-01
+ <_>
+
+ 0 -1 6726 6.0741119086742401e-03
+
+ 1.0768520087003708e-01 -5.0139870494604111e-02
+ <_>
+
+ 0 -1 6727 -1.4694149792194366e-01
+
+ -4.3452548980712891e-01 5.5836569517850876e-03
+ <_>
+
+ 0 -1 6728 -1.2046460062265396e-01
+
+ -5.4068279266357422e-01 9.8318615928292274e-03
+ <_>
+
+ 0 -1 6729 -9.0990159660577774e-03
+
+ -1.3625259697437286e-01 9.5357475802302361e-03
+ <_>
+
+ 0 -1 6730 1.0966449975967407e-02
+
+ -3.1344298273324966e-02 1.7068630456924438e-01
+ <_>
+
+ 0 -1 6731 -2.1763380616903305e-02
+
+ 7.3918178677558899e-02 -1.7846420407295227e-02
+ <_>
+
+ 0 -1 6732 -4.9578789621591568e-02
+
+ -5.8034032583236694e-01 1.0063209570944309e-02
+ <_>
+
+ 0 -1 6733 -6.6796392202377319e-03
+
+ -4.7280300408601761e-02 3.8668069988489151e-02
+ <_>
+
+ 0 -1 6734 -1.0112039744853973e-03
+
+ 4.5412030071020126e-02 -1.4603359997272491e-01
+ <_>
+
+ 0 -1 6735 2.5813570246100426e-03
+
+ 3.1112480908632278e-02 -1.0001499950885773e-01
+ <_>
+
+ 0 -1 6736 2.0418369676917791e-03
+
+ 4.8378061503171921e-02 -1.4722709357738495e-01
+ <_>
+
+ 0 -1 6737 5.6246068328619003e-02
+
+ 3.7779449485242367e-03 -6.1013627052307129e-01
+ <_>
+
+ 0 -1 6738 -2.6130750775337219e-02
+
+ 2.6240581274032593e-01 -2.4313600733876228e-02
+ <_>
+
+ 0 -1 6739 -1.2151029892265797e-02
+
+ -5.6114129722118378e-02 2.9739160090684891e-02
+ <_>
+
+ 0 -1 6740 -5.1036469638347626e-02
+
+ 2.7955740690231323e-01 -2.1683510392904282e-02
+ <_>
+
+ 0 -1 6741 8.7444618344306946e-02
+
+ -3.7635879125446081e-03 5.2711361646652222e-01
+ <_>
+
+ 0 -1 6742 3.4982790239155293e-03
+
+ 5.6673228740692139e-02 -9.2554636299610138e-02
+ <_>
+
+ 0 -1 6743 9.7861722111701965e-02
+
+ 3.7442990578711033e-03 -5.4237729310989380e-01
+ <_>
+
+ 0 -1 6744 -6.3886200077831745e-03
+
+ -9.7468167543411255e-02 6.0299299657344818e-02
+ <_>
+
+ 0 -1 6745 -1.0128310322761536e-01
+
+ -6.5173667669296265e-01 3.4321940038353205e-03
+ <_>
+
+ 0 -1 6746 -3.9312228560447693e-02
+
+ 2.6476991176605225e-01 -2.6981310918927193e-02
+ <_>
+
+ 0 -1 6747 1.1417990177869797e-01
+
+ 7.5375889427959919e-03 -6.8553638458251953e-01
+ <_>
+
+ 0 -1 6748 8.4078265354037285e-03
+
+ -3.0973089858889580e-02 1.7200429737567902e-01
+ <_>
+
+ 0 -1 6749 -1.5489499783143401e-03
+
+ 4.6454809606075287e-02 -6.9261766970157623e-02
+ <_>
+
+ 0 -1 6750 2.9730569804087281e-04
+
+ 3.7772700190544128e-02 -1.3767069578170776e-01
+ <_>
+
+ 0 -1 6751 2.8460770845413208e-03
+
+ -4.3182320892810822e-02 9.9634610116481781e-02
+ <_>
+
+ 0 -1 6752 4.9144420772790909e-02
+
+ 5.9465290978550911e-03 -8.2366597652435303e-01
+ <_>
+
+ 0 -1 6753 1.0286020115017891e-02
+
+ 2.8591090813279152e-02 -1.5941999852657318e-01
+ <_>
+
+ 0 -1 6754 1.9976280629634857e-02
+
+ -2.9617030173540115e-02 1.5943069756031036e-01
+ <_>
+
+ 0 -1 6755 2.3533409461379051e-02
+
+ 7.5594270601868629e-03 -2.3041130602359772e-01
+ <_>
+
+ 0 -1 6756 -9.0482197701931000e-03
+
+ -1.2408699840307236e-01 4.1615001857280731e-02
+ <_>
+
+ 0 -1 6757 -3.8635660894215107e-03
+
+ 8.7811216711997986e-02 -4.1511181741952896e-02
+ <_>
+
+ 0 -1 6758 -2.7298410423099995e-03
+
+ 9.4712667167186737e-02 -5.2838958799839020e-02
+ <_>
+
+ 0 -1 6759 -4.5442068949341774e-03
+
+ -1.0748460143804550e-01 1.7744770273566246e-02
+ <_>
+
+ 0 -1 6760 2.3271010722965002e-03
+
+ -8.3826236426830292e-02 5.7210709899663925e-02
+ <_>
+
+ 0 -1 6761 -1.2409550137817860e-02
+
+ 2.3100300133228302e-01 -2.2110419347882271e-02
+ <_>
+
+ 0 -1 6762 -4.5268908143043518e-03
+
+ -1.6244150698184967e-01 3.2564349472522736e-02
+ <_>
+
+ 0 -1 6763 -4.4666860048891976e-05
+
+ 2.4341119825839996e-01 -2.6702800765633583e-02
+ <_>
+
+ 0 -1 6764 7.7015289571136236e-04
+
+ -1.2858650088310242e-01 4.2308151721954346e-02
+ <_>
+
+ 0 -1 6765 4.4863048940896988e-02
+
+ 1.0781999677419662e-02 -3.5814240574836731e-01
+ <_>
+
+ 0 -1 6766 3.7869490683078766e-02
+
+ -1.4966360293328762e-02 3.4195008873939514e-01
+ <_>
+
+ 0 -1 6767 -8.3092376589775085e-03
+
+ -2.7514660358428955e-01 2.0139539614319801e-02
+ <_>
+
+ 0 -1 6768 -4.3290119618177414e-02
+
+ 3.0036559700965881e-01 -1.9493019208312035e-02
+ <_>
+
+ 0 -1 6769 -1.0075629688799381e-02
+
+ -1.2262579798698425e-01 9.1246366500854492e-03
+ <_>
+
+ 0 -1 6770 -3.3486529719084501e-03
+
+ 1.1790259927511215e-01 -4.1050188243389130e-02
+ <_>
+
+ 0 -1 6771 -6.4645247766748071e-04
+
+ -7.8154936432838440e-02 4.6990569680929184e-02
+ <_>
+
+ 0 -1 6772 3.5247370600700378e-02
+
+ 1.0365270078182220e-02 -5.1507127285003662e-01
+ <_>
+
+ 0 -1 6773 3.5965928691439331e-04
+
+ -7.7936813235282898e-02 3.0275240540504456e-02
+ <_>
+
+ 0 -1 6774 -1.5898740384727716e-03
+
+ -1.0594320297241211e-01 5.0036150962114334e-02
+ <_>
+
+ 0 -1 6775 -2.1408300846815109e-02
+
+ 1.1649339646100998e-01 -3.7540700286626816e-02
+ <_>
+
+ 0 -1 6776 -2.7612380217760801e-03
+
+ 3.4751810133457184e-02 -1.3718530535697937e-01
+ <_>
+
+ 0 -1 6777 6.4307968132197857e-03
+
+ -1.3667429797351360e-02 1.4938560128211975e-01
+ <_>
+
+ 0 -1 6778 -6.9555612280964851e-03
+
+ -1.2171459943056107e-01 5.6100189685821533e-02
+ <_>
+
+ 0 -1 6779 -2.7654969692230225e-01
+
+ -8.5077387094497681e-01 3.8885050453245640e-03
+ <_>
+
+ 0 -1 6780 4.7567309811711311e-03
+
+ -6.5594427287578583e-02 7.5947061181068420e-02
+ <_>
+
+ 0 -1 6781 8.9218050241470337e-02
+
+ 6.5016360022127628e-03 -3.2032990455627441e-01
+ <_>
+
+ 0 -1 6782 6.7748151719570160e-02
+
+ -1.1878870427608490e-02 4.4954490661621094e-01
+ <_>
+
+ 0 -1 6783 4.5336190611124039e-02
+
+ 7.4317739345133305e-03 -4.3144878745079041e-01
+ <_>
+
+ 0 -1 6784 1.0965850204229355e-02
+
+ 2.5135010480880737e-02 -2.0359070599079132e-01
+ <_>
+
+ 0 -1 6785 -6.5938562154769897e-02
+
+ 4.5524141192436218e-01 -7.5815711170434952e-03
+ <_>
+
+ 0 -1 6786 -4.2270109057426453e-02
+
+ 3.8470050692558289e-01 -1.1672279797494411e-02
+ <_>
+
+ 0 -1 6787 -6.3518402166664600e-03
+
+ -8.7010167539119720e-02 3.4159921109676361e-02
+ <_>
+
+ 0 -1 6788 3.2269880175590515e-02
+
+ -4.0711440145969391e-02 1.2469469755887985e-01
+ <_>
+
+ 0 -1 6789 -3.9068311452865601e-02
+
+ -1.0403119772672653e-01 6.7032999359071255e-03
+ <_>
+
+ 0 -1 6790 -1.0384949855506420e-03
+
+ 5.8422528207302094e-02 -1.0154890269041061e-01
+ <_>
+
+ 0 -1 6791 2.9740650206804276e-02
+
+ 1.2596059590578079e-02 -1.5170450508594513e-01
+ <_>
+
+ 0 -1 6792 5.3193639032542706e-03
+
+ -4.6843089163303375e-02 1.1005250364542007e-01
+ <_>
+
+ 0 -1 6793 -3.2385820522904396e-03
+
+ -1.0309839993715286e-01 5.0686061382293701e-02
+ <_>
+
+ 0 -1 6794 4.2344750836491585e-03
+
+ -4.9582429230213165e-02 1.2092150002717972e-01
+ <_>
+
+ 0 -1 6795 -7.4786663055419922e-02
+
+ -4.6895131468772888e-01 3.8582859560847282e-03
+ <_>
+
+ 0 -1 6796 8.5299033671617508e-03
+
+ 3.8806159049272537e-02 -1.2022049725055695e-01
+ <_>
+
+ 0 -1 6797 -4.8662569373846054e-02
+
+ 1.6113990545272827e-01 -1.1717130430042744e-02
+ <_>
+
+ 0 -1 6798 -1.3677199603989720e-03
+
+ -8.5303716361522675e-02 5.5394109338521957e-02
+ <_>
+
+ 0 -1 6799 -5.8111362159252167e-03
+
+ 4.7039270401000977e-02 -5.1736868917942047e-02
+ <_>
+
+ 0 -1 6800 -3.9951619692146778e-03
+
+ -7.8167162835597992e-02 6.3919343054294586e-02
+ <_>
+
+ 0 -1 6801 3.0817699152976274e-03
+
+ -6.9289833307266235e-02 2.8242539614439011e-02
+ <_>
+
+ 0 -1 6802 -4.6279471367597580e-02
+
+ -3.4760490059852600e-01 1.3878909870982170e-02
+ <_>
+
+ 0 -1 6803 -1.8725780770182610e-02
+
+ 1.5222269296646118e-01 -1.5724090859293938e-02
+ <_>
+
+ 0 -1 6804 -2.1445369347929955e-02
+
+ -3.5962730646133423e-01 1.2764260172843933e-02
+ <_>
+
+ 0 -1 6805 -9.1003477573394775e-02
+
+ -7.9615950584411621e-01 4.9090441316366196e-03
+ <_>
+
+ 0 -1 6806 2.5607119314372540e-03
+
+ -5.4551690816879272e-02 8.4403410553932190e-02
+ <_>
+
+ 0 -1 6807 -1.3662099838256836e-02
+
+ 9.4987250864505768e-02 -6.2036819756031036e-02
+ <_>
+
+ 0 -1 6808 9.2437807470560074e-03
+
+ 5.3822331130504608e-02 -9.9236510694026947e-02
+ <_>
+
+ 0 -1 6809 -1.4612140133976936e-02
+
+ -1.5248660743236542e-01 4.2905550450086594e-02
+ <_>
+
+ 0 -1 6810 -3.9584659039974213e-02
+
+ 1.5883240103721619e-01 -3.5484429448843002e-02
+ <_>
+
+ 0 -1 6811 -6.7460699938237667e-03
+
+ 1.1749260127544403e-01 -3.7934441119432449e-02
+ <_>
+
+ 0 -1 6812 2.0449559669941664e-03
+
+ 6.1626188457012177e-02 -9.4409346580505371e-02
+ <_>
+
+ 0 -1 6813 -1.5146560035645962e-02
+
+ -3.3887571096420288e-01 6.8320450372993946e-03
+ <_>
+
+ 0 -1 6814 -2.0916219800710678e-03
+
+ -1.4829570055007935e-01 3.3358350396156311e-02
+ <_>
+
+ 0 -1 6815 1.3274390250444412e-02
+
+ -3.8169000297784805e-02 4.6379629522562027e-02
+ <_>
+
+ 0 -1 6816 1.2404330074787140e-02
+
+ -1.8498679623007774e-02 2.7952960133552551e-01
+ <_>
+
+ 0 -1 6817 -2.3678259924054146e-02
+
+ -4.7142859548330307e-02 2.3141339421272278e-02
+ <_>
+
+ 0 -1 6818 6.7575983703136444e-02
+
+ -1.8598400056362152e-02 2.7481150627136230e-01
+ <_>
+
+ 0 -1 6819 7.6359122991561890e-02
+
+ 2.9178129509091377e-02 -2.0572820305824280e-01
+ <_>
+
+ 0 -1 6820 -1.0918889939785004e-01
+
+ 6.2577211856842041e-01 -9.8246810957789421e-03
+ <_>
+
+ 0 -1 6821 1.2964319903403521e-03
+
+ -3.1776499003171921e-02 6.7833930253982544e-02
+ <_>
+
+ 0 -1 6822 4.1218679398298264e-02
+
+ 8.5701625794172287e-03 -5.8379119634628296e-01
+ <_>
+
+ 0 -1 6823 -1.8773629562929273e-03
+
+ 5.3263541311025620e-02 -4.1702788323163986e-02
+ <_>
+
+ 0 -1 6824 -2.9402649961411953e-03
+
+ 8.6931921541690826e-02 -7.1344070136547089e-02
+ <_>
+
+ 0 -1 6825 -3.0833749100565910e-02
+
+ -3.9439570903778076e-01 6.0907239094376564e-03
+ <_>
+
+ 0 -1 6826 -3.7960989866405725e-03
+
+ 7.4150532484054565e-02 -6.1881281435489655e-02
+ <_>
+
+ 0 -1 6827 -6.3087488524615765e-03
+
+ -1.1662469804286957e-01 2.5016760453581810e-02
+ <_>
+
+ 0 -1 6828 4.0001370944082737e-03
+
+ -5.7236731052398682e-02 9.7589701414108276e-02
+ <_>
+
+ 0 -1 6829 6.7752957344055176e-02
+
+ 9.5101362094283104e-03 -3.3777019381523132e-01
+ <_>
+
+ 0 -1 6830 -9.2353783547878265e-02
+
+ 7.9015249013900757e-01 -6.2939748167991638e-03
+ <_>
+
+ 0 -1 6831 -2.4050839245319366e-02
+
+ -1.5585710108280182e-01 1.8099930137395859e-02
+ <_>
+
+ 0 -1 6832 3.2272089738398790e-03
+
+ -4.7936741262674332e-02 1.0735899955034256e-01
+ <_>
+
+ 0 -1 6833 -7.2444709949195385e-03
+
+ 9.6775539219379425e-02 -2.4095900356769562e-02
+ <_>
+
+ 0 -1 6834 -1.0888259857892990e-01
+
+ -8.1255799531936646e-01 6.0875630006194115e-03
+ <_>
+
+ 0 -1 6835 -1.4077230356633663e-02
+
+ -1.3358989357948303e-01 2.5421140715479851e-02
+ <_>
+
+ 0 -1 6836 -3.0071370303630829e-02
+
+ 3.5427039861679077e-01 -1.3553430326282978e-02
+ <_>
+
+ 0 -1 6837 3.4985799342393875e-02
+
+ -3.0686240643262863e-03 4.6311178803443909e-01
+ <_>
+
+ 0 -1 6838 1.8354769796133041e-02
+
+ 1.1218019761145115e-02 -4.6143579483032227e-01
+ <_>
+
+ 0 -1 6839 -6.4306408166885376e-02
+
+ -6.1207151412963867e-01 1.9155009649693966e-03
+ <_>
+
+ 0 -1 6840 8.2096129655838013e-02
+
+ -8.8210906833410263e-03 5.4885977506637573e-01
+ <_>
+
+ 0 -1 6841 7.7698810491710901e-04
+
+ 1.3247950375080109e-01 -3.3915128558874130e-02
+ <_>
+
+ 0 -1 6842 6.4568981528282166e-02
+
+ 6.4043831080198288e-03 -7.7150177955627441e-01
+ <_>
+
+ 0 -1 6843 -1.5833489596843719e-02
+
+ -1.9498950242996216e-01 7.5541301630437374e-03
+ <_>
+
+ 0 -1 6844 3.4125618636608124e-02
+
+ -1.5915289521217346e-02 2.9716441035270691e-01
+ <_>
+
+ 0 -1 6845 -1.2615050189197063e-02
+
+ -2.4650709331035614e-01 2.2699799388647079e-02
+ <_>
+
+ 0 -1 6846 1.8272679299116135e-02
+
+ -4.0593959391117096e-02 1.1693490296602249e-01
+ <_>
+
+ 0 -1 6847 -6.6374349407851696e-03
+
+ -1.4557109773159027e-01 3.5353910177946091e-02
+ <_>
+
+ 0 -1 6848 -2.6520919054746628e-03
+
+ 7.6382592320442200e-02 -6.6688627004623413e-02
+ <_>
+
+ 0 -1 6849 2.2452129051089287e-03
+
+ -8.9759878814220428e-02 5.5091369897127151e-02
+ <_>
+
+ 0 -1 6850 -4.4775419519282877e-04
+
+ 2.1264159679412842e-01 -2.6620639488101006e-02
+ <_>
+
+ 0 -1 6851 -1.1115259677171707e-01
+
+ -4.3139949440956116e-01 4.6484731137752533e-03
+ <_>
+
+ 0 -1 6852 -1.1578770354390144e-02
+
+ -3.5296261310577393e-01 1.2750539928674698e-02
+ <_>
+
+ 0 -1 6853 -2.5290170684456825e-02
+
+ 5.1385980844497681e-01 -6.7363809794187546e-03
+ <_>
+
+ 0 -1 6854 -3.2232340425252914e-02
+
+ -5.7690191268920898e-01 7.7741048298776150e-03
+ <_>
+
+ 0 -1 6855 -4.1698799468576908e-03
+
+ -1.7519310116767883e-01 1.1018699966371059e-02
+ <_>
+
+ 0 -1 6856 -2.0664500072598457e-02
+
+ 2.5821951031684875e-01 -1.7920289188623428e-02
+ <_>
+
+ 0 -1 6857 -1.0834420099854469e-03
+
+ -1.3178519904613495e-01 2.5419749319553375e-02
+ <_>
+
+ 0 -1 6858 -9.5458701252937317e-03
+
+ 4.4964689016342163e-01 -1.1315030045807362e-02
+ <_>
+
+ 0 -1 6859 5.3232181817293167e-02
+
+ 7.4498020112514496e-03 -6.8122059106826782e-01
+ <_>
+
+ 0 -1 6860 -1.3852520287036896e-01
+
+ -6.0117882490158081e-01 6.5434179268777370e-03
+ <_>
+
+ 0 -1 6861 1.7173439264297485e-02
+
+ -2.5120509788393974e-02 8.6516633629798889e-02
+ <_>
+
+ 0 -1 6862 3.9947189390659332e-02
+
+ 5.8647249825298786e-03 -7.4653059244155884e-01
+ <_>
+
+ 0 -1 6863 2.0647009834647179e-02
+
+ -1.0226000100374222e-02 1.7227609455585480e-01
+ <_>
+
+ 0 -1 6864 -1.8602909985929728e-03
+
+ -6.5767973661422729e-02 6.9248490035533905e-02
+ <_>
+
+ 0 -1 6865 -3.4106068313121796e-02
+
+ 1.5908730030059814e-01 -1.3241630047559738e-02
+ <_>
+
+ 0 -1 6866 6.3425069674849510e-03
+
+ 3.5119149833917618e-02 -1.3436080515384674e-01
+ <_>
+
+ 0 -1 6867 1.6866199439391494e-03
+
+ -4.3401770293712616e-02 5.0606630742549896e-02
+ <_>
+
+ 0 -1 6868 -3.0595089774578810e-03
+
+ 5.6976709514856339e-02 -8.1074528396129608e-02
+ <_>
+
+ 0 -1 6869 2.7664829976856709e-03
+
+ 2.0497009158134460e-02 -8.0963827669620514e-02
+ <_>
+
+ 0 -1 6870 -3.2909188885241747e-03
+
+ -1.0803789645433426e-01 4.6237960457801819e-02
+ <_>
+
+ 0 -1 6871 1.7244400456547737e-02
+
+ -2.5127060711383820e-02 2.4591030180454254e-01
+ <_>
+
+ 0 -1 6872 9.1161586344242096e-02
+
+ 1.0174980387091637e-02 -4.6983879804611206e-01
+ <_>
+
+ 0 -1 6873 2.5459621101617813e-03
+
+ -3.0003750696778297e-02 1.4800469577312469e-01
+ <_>
+
+ 0 -1 6874 1.7582690343260765e-03
+
+ 5.4400689899921417e-02 -7.7444270253181458e-02
+ <_>
+
+ 0 -1 6875 -1.6833960544317961e-03
+
+ 8.1838123500347137e-02 -4.3751198798418045e-02
+ <_>
+
+ 0 -1 6876 -7.6617579907178879e-04
+
+ -1.3564400374889374e-01 3.6041948944330215e-02
+ <_>
+
+ 0 -1 6877 1.1155450483784080e-03
+
+ -4.8263888806104660e-02 5.0273448228836060e-02
+ <_>
+
+ 0 -1 6878 -2.6005289983004332e-03
+
+ 8.8793486356735229e-02 -5.4554209113121033e-02
+ <_>
+
+ 0 -1 6879 -3.2424980308860540e-03
+
+ -1.3159190118312836e-01 3.4248508512973785e-02
+ <_>
+
+ 0 -1 6880 -1.4817930059507489e-04
+
+ 3.7875428795814514e-02 -1.2225220352411270e-01
+ <_>
+
+ 0 -1 6881 1.1546639725565910e-02
+
+ 1.5370969660580158e-02 -1.0286240279674530e-01
+ <_>
+
+ 0 -1 6882 2.4446300230920315e-03
+
+ -5.1783051341772079e-02 1.0735079646110535e-01
+ <_>
+
+ 0 -1 6883 4.5723789371550083e-03
+
+ -3.6362100392580032e-02 1.3289859890937805e-01
+ <_>
+
+ 0 -1 6884 -1.1938340030610561e-02
+
+ -1.0882350057363510e-01 4.7698900103569031e-02
+ <_>
+
+ 0 -1 6885 -4.1671381331980228e-03
+
+ 1.1637099832296371e-01 -3.0638780444860458e-02
+ <_>
+ 399
+ -1.2330470085144043e+00
+
+ <_>
+
+ 0 -1 6886 3.3659618347883224e-02
+
+ -1.5576040744781494e-01 1.9109010696411133e-01
+ <_>
+
+ 0 -1 6887 -1.5392389614135027e-03
+
+ 7.2527736425399780e-02 -2.8808951377868652e-01
+ <_>
+
+ 0 -1 6888 1.5648789703845978e-03
+
+ -1.1329220235347748e-01 1.5057389438152313e-01
+ <_>
+
+ 0 -1 6889 5.6565739214420319e-04
+
+ -4.0502288937568665e-01 3.0235100537538528e-02
+ <_>
+
+ 0 -1 6890 -2.9683491447940469e-04
+
+ -1.2592320144176483e-01 1.0352999716997147e-01
+ <_>
+
+ 0 -1 6891 4.3946141377091408e-03
+
+ -1.0582420229911804e-01 2.3163750767707825e-02
+ <_>
+
+ 0 -1 6892 3.2444300595670938e-03
+
+ 5.0188560038805008e-02 -2.5477260351181030e-01
+ <_>
+
+ 0 -1 6893 3.8864749949425459e-03
+
+ -1.4332659542560577e-01 2.9871070757508278e-02
+ <_>
+
+ 0 -1 6894 3.3563380129635334e-03
+
+ -1.8739770352840424e-01 6.1354521661996841e-02
+ <_>
+
+ 0 -1 6895 1.9797699525952339e-02
+
+ 2.7567919343709946e-02 -7.3189876973628998e-02
+ <_>
+
+ 0 -1 6896 3.3829871099442244e-03
+
+ -2.6915690302848816e-01 4.7561220824718475e-02
+ <_>
+
+ 0 -1 6897 5.0223460420966148e-03
+
+ 4.2572669684886932e-02 -2.0097489655017853e-01
+ <_>
+
+ 0 -1 6898 1.4903279952704906e-03
+
+ -1.0160639882087708e-01 1.1291279643774033e-01
+ <_>
+
+ 0 -1 6899 -5.5050072260200977e-03
+
+ -2.1760410070419312e-01 2.5067379698157310e-02
+ <_>
+
+ 0 -1 6900 4.1127130389213562e-03
+
+ -1.3703300058841705e-01 6.6536687314510345e-02
+ <_>
+
+ 0 -1 6901 1.9442260265350342e-02
+
+ 4.2253911495208740e-02 -1.1731100082397461e-01
+ <_>
+
+ 0 -1 6902 -1.9445870071649551e-02
+
+ 2.8616631031036377e-01 -3.0423089861869812e-02
+ <_>
+
+ 0 -1 6903 -1.5500449808314443e-03
+
+ -1.5157119929790497e-01 6.3723236322402954e-02
+ <_>
+
+ 0 -1 6904 -3.2575910445302725e-03
+
+ 6.1063949018716812e-02 -1.3006690144538879e-01
+ <_>
+
+ 0 -1 6905 8.5774611216038465e-04
+
+ -6.2051288783550262e-02 5.4809290915727615e-02
+ <_>
+
+ 0 -1 6906 6.8592262687161565e-04
+
+ -9.2828713357448578e-02 9.2287853360176086e-02
+ <_>
+
+ 0 -1 6907 4.8905659466981888e-02
+
+ -1.2098040431737900e-02 2.4674870073795319e-01
+ <_>
+
+ 0 -1 6908 -4.6415459364652634e-03
+
+ -1.7103439569473267e-01 5.1900148391723633e-02
+ <_>
+
+ 0 -1 6909 -9.9253775551915169e-03
+
+ 1.6824729740619659e-01 -4.3742731213569641e-02
+ <_>
+
+ 0 -1 6910 -7.2820088826119900e-04
+
+ -1.5762010216712952e-01 4.9283239990472794e-02
+ <_>
+
+ 0 -1 6911 7.1829417720437050e-03
+
+ -7.5083851814270020e-02 1.5677660703659058e-01
+ <_>
+
+ 0 -1 6912 7.4819842120632529e-04
+
+ 9.4303682446479797e-02 -9.4410486519336700e-02
+ <_>
+
+ 0 -1 6913 1.3856319710612297e-02
+
+ 4.2250029742717743e-02 -2.4046279489994049e-01
+ <_>
+
+ 0 -1 6914 -5.0514908507466316e-03
+
+ 2.0170919597148895e-01 -4.4972479343414307e-02
+ <_>
+
+ 0 -1 6915 -2.5696419179439545e-03
+
+ -1.4004689455032349e-01 4.1754510253667831e-02
+ <_>
+
+ 0 -1 6916 5.4275751113891602e-02
+
+ -2.6094799861311913e-02 2.8374740481376648e-01
+ <_>
+
+ 0 -1 6917 -3.7299469113349915e-02
+
+ -5.8281177282333374e-01 1.3501949608325958e-02
+ <_>
+
+ 0 -1 6918 3.0674990266561508e-03
+
+ 5.6224178522825241e-02 -1.1995050311088562e-01
+ <_>
+
+ 0 -1 6919 -3.5402809735387564e-03
+
+ 6.6515468060970306e-02 -1.1834269762039185e-01
+ <_>
+
+ 0 -1 6920 4.1401982307434082e-03
+
+ 2.0988019183278084e-02 -3.1807440519332886e-01
+ <_>
+
+ 0 -1 6921 -1.1183559894561768e-02
+
+ 1.2467139959335327e-01 -4.1797909885644913e-02
+ <_>
+
+ 0 -1 6922 1.0800679447129369e-03
+
+ 4.5548491179943085e-02 -1.5857310593128204e-01
+ <_>
+
+ 0 -1 6923 -7.7602718956768513e-03
+
+ -1.7031720280647278e-01 3.3989530056715012e-02
+ <_>
+
+ 0 -1 6924 -3.1192360911518335e-03
+
+ 9.6817880868911743e-02 -8.6022533476352692e-02
+ <_>
+
+ 0 -1 6925 -1.3673380017280579e-02
+
+ -2.2536599636077881e-01 1.5587169677019119e-02
+ <_>
+
+ 0 -1 6926 -2.0611209329217672e-03
+
+ -1.5269860625267029e-01 5.0227679312229156e-02
+ <_>
+
+ 0 -1 6927 2.2635459899902344e-03
+
+ -4.2889460921287537e-02 7.6818563044071198e-02
+ <_>
+
+ 0 -1 6928 -3.4530080854892731e-02
+
+ 1.2874439358711243e-01 -6.7660316824913025e-02
+ <_>
+
+ 0 -1 6929 6.1309239827096462e-03
+
+ -6.3456058502197266e-02 6.4237646758556366e-02
+ <_>
+
+ 0 -1 6930 -1.0171280242502689e-02
+
+ -2.9192021489143372e-01 2.6645509526133537e-02
+ <_>
+
+ 0 -1 6931 -1.3060650229454041e-01
+
+ -9.6297067403793335e-01 1.5367489540949464e-03
+ <_>
+
+ 0 -1 6932 6.8621779792010784e-03
+
+ -4.7239519655704498e-02 1.5440399944782257e-01
+ <_>
+
+ 0 -1 6933 1.2950079981237650e-03
+
+ -7.1122348308563232e-02 5.8697238564491272e-02
+ <_>
+
+ 0 -1 6934 -5.6443549692630768e-03
+
+ -1.7261339724063873e-01 4.4769309461116791e-02
+ <_>
+
+ 0 -1 6935 1.6346110403537750e-01
+
+ -2.1536830812692642e-02 3.6825808882713318e-01
+ <_>
+
+ 0 -1 6936 1.4170600101351738e-02
+
+ 2.3462019860744476e-02 -3.0498749017715454e-01
+ <_>
+
+ 0 -1 6937 -1.0679910331964493e-01
+
+ 3.1485679745674133e-01 -9.1049326583743095e-03
+ <_>
+
+ 0 -1 6938 7.0258649066090584e-03
+
+ -6.5418191254138947e-02 1.0200239717960358e-01
+ <_>
+
+ 0 -1 6939 -4.3358937837183475e-03
+
+ 1.1601199954748154e-01 -5.5041059851646423e-02
+ <_>
+
+ 0 -1 6940 3.5394240170717239e-02
+
+ 2.7795480564236641e-02 -2.5534549355506897e-01
+ <_>
+
+ 0 -1 6941 2.1599680185317993e-02
+
+ -1.0513960383832455e-02 2.6087591052055359e-01
+ <_>
+
+ 0 -1 6942 4.3032150715589523e-03
+
+ -4.6745400875806808e-02 1.3318620622158051e-01
+ <_>
+
+ 0 -1 6943 7.8372862190008163e-03
+
+ 6.1899811029434204e-02 -1.2405169755220413e-01
+ <_>
+
+ 0 -1 6944 -1.6856989823281765e-03
+
+ -9.5696307718753815e-02 7.7667310833930969e-02
+ <_>
+
+ 0 -1 6945 -4.1602249257266521e-03
+
+ 6.5850533545017242e-02 -7.6837591826915741e-02
+ <_>
+
+ 0 -1 6946 -5.0864819437265396e-02
+
+ 5.2419060468673706e-01 -1.7342429608106613e-02
+ <_>
+
+ 0 -1 6947 -6.4477883279323578e-02
+
+ -4.1972258687019348e-01 1.2231100350618362e-02
+ <_>
+
+ 0 -1 6948 -2.4949579965323210e-03
+
+ 6.4242206513881683e-02 -9.7457312047481537e-02
+ <_>
+
+ 0 -1 6949 3.2167730387300253e-03
+
+ -3.7902288138866425e-02 8.2197092473506927e-02
+ <_>
+
+ 0 -1 6950 -2.3393060546368361e-03
+
+ -1.0608460009098053e-01 7.2004899382591248e-02
+ <_>
+
+ 0 -1 6951 -8.0535542219877243e-03
+
+ -1.0991869866847992e-01 2.5643279775977135e-02
+ <_>
+
+ 0 -1 6952 1.5007739886641502e-02
+
+ -3.1267128884792328e-02 2.0507030189037323e-01
+ <_>
+
+ 0 -1 6953 -4.7144708223640919e-03
+
+ -1.4058899879455566e-01 4.8687249422073364e-02
+ <_>
+
+ 0 -1 6954 -2.7188581228256226e-01
+
+ -7.7086192369461060e-01 8.2119107246398926e-03
+ <_>
+
+ 0 -1 6955 -3.7261729594320059e-03
+
+ 7.8386418521404266e-02 -6.1110321432352066e-02
+ <_>
+
+ 0 -1 6956 8.1726117059588432e-03
+
+ 2.5872390717267990e-02 -2.4203300476074219e-01
+ <_>
+
+ 0 -1 6957 -1.5384130179882050e-01
+
+ -8.3681619167327881e-01 1.0526239639148116e-03
+ <_>
+
+ 0 -1 6958 -4.2209690436720848e-03
+
+ 1.0987819731235504e-01 -6.0973130166530609e-02
+ <_>
+
+ 0 -1 6959 3.4641180187463760e-02
+
+ 5.9377611614763737e-03 -7.3021429777145386e-01
+ <_>
+
+ 0 -1 6960 -1.0757029522210360e-03
+
+ 6.3253231346607208e-02 -9.3954533338546753e-02
+ <_>
+
+ 0 -1 6961 6.0506182489916682e-04
+
+ -7.2633743286132812e-02 5.4847791790962219e-02
+ <_>
+
+ 0 -1 6962 -4.9192002043128014e-03
+
+ -1.4617989957332611e-01 4.9854889512062073e-02
+ <_>
+
+ 0 -1 6963 5.8641340583562851e-02
+
+ -1.4487889595329762e-02 2.1949279308319092e-01
+ <_>
+
+ 0 -1 6964 -9.5993638038635254e-02
+
+ -4.2456990480422974e-01 1.5611169859766960e-02
+ <_>
+
+ 0 -1 6965 -1.7546750605106354e-01
+
+ -5.7154530286788940e-01 2.7310380246490240e-03
+ <_>
+
+ 0 -1 6966 5.3192701190710068e-02
+
+ -2.0759610459208488e-02 3.1531611084938049e-01
+ <_>
+
+ 0 -1 6967 -3.0862109735608101e-02
+
+ -4.0818691253662109e-01 9.1538606211543083e-03
+ <_>
+
+ 0 -1 6968 -2.9243549797683954e-03
+
+ 1.6538919508457184e-01 -3.7048339843750000e-02
+ <_>
+
+ 0 -1 6969 7.9757552593946457e-03
+
+ 4.0010299533605576e-02 -1.0603089630603790e-01
+ <_>
+
+ 0 -1 6970 1.0228200256824493e-01
+
+ 9.6151717007160187e-03 -6.5299248695373535e-01
+ <_>
+
+ 0 -1 6971 2.3435470648109913e-03
+
+ -4.3119609355926514e-02 1.1908730119466782e-01
+ <_>
+
+ 0 -1 6972 -3.3627110533416271e-03
+
+ 1.0518670082092285e-01 -6.9644443690776825e-02
+ <_>
+
+ 0 -1 6973 4.9040392041206360e-03
+
+ 4.8949901014566422e-02 -1.2949359416961670e-01
+ <_>
+
+ 0 -1 6974 4.5119290007278323e-05
+
+ -1.6148559749126434e-01 4.1733540594577789e-02
+ <_>
+
+ 0 -1 6975 1.6195859760046005e-02
+
+ -1.2759320437908173e-02 2.0746350288391113e-01
+ <_>
+
+ 0 -1 6976 -6.4254719763994217e-03
+
+ -1.3736939430236816e-01 4.3490421026945114e-02
+ <_>
+
+ 0 -1 6977 -6.6467811120674014e-04
+
+ 6.6771537065505981e-02 -7.4648462235927582e-02
+ <_>
+
+ 0 -1 6978 -2.3743628989905119e-03
+
+ -1.2377700209617615e-01 5.1728729158639908e-02
+ <_>
+
+ 0 -1 6979 -8.3166018128395081e-02
+
+ 1.5261100232601166e-01 -2.1502759307622910e-02
+ <_>
+
+ 0 -1 6980 1.3301270082592964e-03
+
+ -6.1925448477268219e-02 1.0591439902782440e-01
+ <_>
+
+ 0 -1 6981 9.0925350785255432e-02
+
+ 6.9404938258230686e-03 -5.1022678613662720e-01
+ <_>
+
+ 0 -1 6982 5.7555912062525749e-03
+
+ 5.2849009633064270e-02 -1.0758169740438461e-01
+ <_>
+
+ 0 -1 6983 9.3440711498260498e-04
+
+ -1.0605130344629288e-01 4.7824278473854065e-02
+ <_>
+
+ 0 -1 6984 5.2353799343109131e-02
+
+ -1.6387209296226501e-02 4.2318668961524963e-01
+ <_>
+
+ 0 -1 6985 -2.4307209998369217e-02
+
+ 1.3521690666675568e-01 -1.0088359937071800e-02
+ <_>
+
+ 0 -1 6986 -1.3722239993512630e-02
+
+ -4.9520999193191528e-01 1.1784340254962444e-02
+ <_>
+
+ 0 -1 6987 -1.1442030081525445e-03
+
+ 4.3818730860948563e-02 -6.9104023277759552e-02
+ <_>
+
+ 0 -1 6988 -7.8848190605640411e-02
+
+ 3.5198599100112915e-01 -1.6464689746499062e-02
+ <_>
+
+ 0 -1 6989 1.7305529909208417e-03
+
+ -6.6790081560611725e-02 8.2463577389717102e-02
+ <_>
+
+ 0 -1 6990 -1.2928839772939682e-02
+
+ -8.1002123653888702e-02 8.5223287343978882e-02
+ <_>
+
+ 0 -1 6991 8.7096104398369789e-03
+
+ -5.0021901726722717e-02 1.3493220508098602e-01
+ <_>
+
+ 0 -1 6992 -6.3483066856861115e-02
+
+ -7.7681750059127808e-01 7.0912609808146954e-03
+ <_>
+
+ 0 -1 6993 -4.3746097944676876e-03
+
+ -1.3329389691352844e-01 4.2627040296792984e-02
+ <_>
+
+ 0 -1 6994 -4.3985169380903244e-02
+
+ 1.5131869912147522e-01 -4.0801558643579483e-02
+ <_>
+
+ 0 -1 6995 -6.0488767921924591e-03
+
+ -5.3645741194486618e-02 1.7832729965448380e-02
+ <_>
+
+ 0 -1 6996 -5.1487190648913383e-04
+
+ 6.2102951109409332e-02 -9.5339402556419373e-02
+ <_>
+
+ 0 -1 6997 -3.3046479802578688e-03
+
+ -2.4732820689678192e-01 2.1977340802550316e-02
+ <_>
+
+ 0 -1 6998 -3.0949179199524224e-04
+
+ -3.4656081348657608e-02 1.9599510729312897e-01
+ <_>
+
+ 0 -1 6999 -8.3323381841182709e-03
+
+ 1.7436729371547699e-01 -3.2631549984216690e-02
+ <_>
+
+ 0 -1 7000 6.6935829818248749e-03
+
+ 2.5050759315490723e-02 -2.7362829446792603e-01
+ <_>
+
+ 0 -1 7001 1.4068570453673601e-03
+
+ -2.9797010123729706e-02 6.5752580761909485e-02
+ <_>
+
+ 0 -1 7002 4.0725398808717728e-02
+
+ 1.4967479743063450e-02 -3.7111800909042358e-01
+ <_>
+
+ 0 -1 7003 -2.1524120122194290e-02
+
+ 3.7294471263885498e-01 -1.4142910018563271e-02
+ <_>
+
+ 0 -1 7004 4.1689630597829819e-02
+
+ 8.3227548748254776e-03 -6.6822868585586548e-01
+ <_>
+
+ 0 -1 7005 -3.2075429335236549e-03
+
+ 6.2741018831729889e-02 -1.3061609864234924e-01
+ <_>
+
+ 0 -1 7006 2.6418430730700493e-02
+
+ 6.6760168410837650e-03 -7.5557070970535278e-01
+ <_>
+
+ 0 -1 7007 -5.1153838634490967e-02
+
+ -5.0382971763610840e-01 2.2476969752460718e-03
+ <_>
+
+ 0 -1 7008 1.5723450342193246e-03
+
+ -6.0214620083570480e-02 7.9933151602745056e-02
+ <_>
+
+ 0 -1 7009 1.2616170570254326e-03
+
+ 4.4674988836050034e-02 -8.3830736577510834e-02
+ <_>
+
+ 0 -1 7010 -2.8608670458197594e-02
+
+ -3.0249071121215820e-01 1.6254810616374016e-02
+ <_>
+
+ 0 -1 7011 1.4726459980010986e-02
+
+ -4.9459420144557953e-02 1.1457759886980057e-01
+ <_>
+
+ 0 -1 7012 3.5319201648235321e-02
+
+ 1.1276819743216038e-02 -4.8055538535118103e-01
+ <_>
+
+ 0 -1 7013 2.2470189630985260e-01
+
+ -1.0596769861876965e-02 5.4026299715042114e-01
+ <_>
+
+ 0 -1 7014 -7.0188841782510281e-03
+
+ -1.1836989969015121e-01 5.2995279431343079e-02
+ <_>
+
+ 0 -1 7015 -2.9194930568337440e-02
+
+ 2.8498569130897522e-01 -1.4652130194008350e-02
+ <_>
+
+ 0 -1 7016 -1.6918469918891788e-03
+
+ 6.7731522023677826e-02 -7.4129588901996613e-02
+ <_>
+
+ 0 -1 7017 1.3110489584505558e-02
+
+ -4.0418051183223724e-02 9.6537798643112183e-02
+ <_>
+
+ 0 -1 7018 7.5334981374908239e-05
+
+ -7.3065057396888733e-02 7.1049667894840240e-02
+ <_>
+
+ 0 -1 7019 2.9962710104882717e-03
+
+ 2.4401130154728889e-02 -1.0679820179939270e-01
+ <_>
+
+ 0 -1 7020 -4.1236128658056259e-02
+
+ 2.5446560978889465e-01 -1.9801229238510132e-02
+ <_>
+
+ 0 -1 7021 2.2827479988336563e-03
+
+ -5.9622149914503098e-02 8.6871787905693054e-02
+ <_>
+
+ 0 -1 7022 -2.1318379731383175e-04
+
+ 4.0506061166524887e-02 -1.2357629835605621e-01
+ <_>
+
+ 0 -1 7023 4.1725938208401203e-03
+
+ 4.1674789041280746e-02 -1.3029229640960693e-01
+ <_>
+
+ 0 -1 7024 -1.7945859581232071e-02
+
+ 2.5395989418029785e-01 -2.0783929154276848e-02
+ <_>
+
+ 0 -1 7025 -6.0957930982112885e-02
+
+ -5.9399938583374023e-01 5.6327730417251587e-03
+ <_>
+
+ 0 -1 7026 -8.3080737385898829e-04
+
+ 4.8011310398578644e-02 -1.1289869993925095e-01
+ <_>
+
+ 0 -1 7027 2.7037229388952255e-02
+
+ 2.6524379849433899e-02 -1.7208619415760040e-01
+ <_>
+
+ 0 -1 7028 3.7293829955160618e-03
+
+ -5.0795450806617737e-02 1.1093439906835556e-01
+ <_>
+
+ 0 -1 7029 -1.0271129431203008e-03
+
+ -8.9025869965553284e-02 4.9861740320920944e-02
+ <_>
+
+ 0 -1 7030 4.3261310202069581e-04
+
+ -7.6471529901027679e-02 7.2490736842155457e-02
+ <_>
+
+ 0 -1 7031 -8.3997912704944611e-02
+
+ 4.0178960561752319e-01 -8.4397885948419571e-03
+ <_>
+
+ 0 -1 7032 -3.4407388884574175e-03
+
+ -1.4326460659503937e-01 3.9170410484075546e-02
+ <_>
+
+ 0 -1 7033 -2.1418789401650429e-02
+
+ 1.5835569798946381e-01 -1.3701870106160641e-02
+ <_>
+
+ 0 -1 7034 2.4877830874174833e-03
+
+ -5.6875430047512054e-02 1.0218720138072968e-01
+ <_>
+
+ 0 -1 7035 -1.0390300303697586e-03
+
+ 8.1530712544918060e-02 -4.7183711081743240e-02
+ <_>
+
+ 0 -1 7036 4.6788761392235756e-04
+
+ 7.0995680987834930e-02 -8.8464602828025818e-02
+ <_>
+
+ 0 -1 7037 2.7436260133981705e-02
+
+ 1.5190550126135349e-02 -1.2117669731378555e-01
+ <_>
+
+ 0 -1 7038 -5.8917858405038714e-04
+
+ -8.1471607089042664e-02 6.8480782210826874e-02
+ <_>
+
+ 0 -1 7039 7.9439081251621246e-02
+
+ -7.3907868936657906e-03 1.4902259409427643e-01
+ <_>
+
+ 0 -1 7040 -3.5153090953826904e-02
+
+ 4.1942089796066284e-01 -1.2480289675295353e-02
+ <_>
+
+ 0 -1 7041 6.8230971693992615e-02
+
+ 9.3489149585366249e-03 -2.5965470075607300e-01
+ <_>
+
+ 0 -1 7042 8.1733033061027527e-02
+
+ 1.5513390302658081e-02 -3.2704469561576843e-01
+ <_>
+
+ 0 -1 7043 -3.0718350317329168e-03
+
+ 6.6938467323780060e-02 -4.2225748300552368e-02
+ <_>
+
+ 0 -1 7044 5.6301880627870560e-02
+
+ -2.5680650025606155e-02 2.1728150546550751e-01
+ <_>
+
+ 0 -1 7045 2.5166019797325134e-02
+
+ 2.3228300735354424e-02 -9.2791043221950531e-02
+ <_>
+
+ 0 -1 7046 6.5088197588920593e-02
+
+ 6.8949609994888306e-03 -8.2639491558074951e-01
+ <_>
+
+ 0 -1 7047 2.2007930092513561e-03
+
+ -7.4394248425960541e-02 8.7209381163120270e-02
+ <_>
+
+ 0 -1 7048 -8.8553391396999359e-03
+
+ -1.3203050196170807e-01 3.7658430635929108e-02
+ <_>
+
+ 0 -1 7049 6.0942411422729492e-02
+
+ 1.0197839699685574e-02 -5.4252862930297852e-01
+ <_>
+
+ 0 -1 7050 -5.2589550614356995e-04
+
+ 4.8835718631744385e-01 -1.1828079819679260e-02
+ <_>
+
+ 0 -1 7051 1.3005370274186134e-03
+
+ -3.8898441195487976e-01 1.4226339757442474e-02
+ <_>
+
+ 0 -1 7052 -1.6531689465045929e-01
+
+ 4.0004518628120422e-01 -1.2666770257055759e-02
+ <_>
+
+ 0 -1 7053 1.8595480360090733e-03
+
+ 4.7802660614252090e-02 -1.1368919909000397e-01
+ <_>
+
+ 0 -1 7054 1.3065179809927940e-02
+
+ -3.3714219927787781e-02 1.5762269496917725e-01
+ <_>
+
+ 0 -1 7055 3.1612750142812729e-02
+
+ 7.6767429709434509e-03 -5.9641021490097046e-01
+ <_>
+
+ 0 -1 7056 -2.2566620260477066e-02
+
+ 1.0603710263967514e-01 -4.7383170574903488e-02
+ <_>
+
+ 0 -1 7057 6.2679480761289597e-03
+
+ 3.4595031291246414e-02 -7.7622346580028534e-02
+ <_>
+
+ 0 -1 7058 -3.1758081167936325e-02
+
+ -3.2147431373596191e-01 1.5986470505595207e-02
+ <_>
+
+ 0 -1 7059 -2.1477609872817993e-02
+
+ 2.0527760684490204e-01 -1.8074609339237213e-02
+ <_>
+
+ 0 -1 7060 1.8594050779938698e-02
+
+ 1.6375590115785599e-02 -2.9955211281776428e-01
+ <_>
+
+ 0 -1 7061 1.4604429714381695e-02
+
+ -2.0433440804481506e-02 2.2725510597229004e-01
+ <_>
+
+ 0 -1 7062 1.9902919884771109e-03
+
+ -5.8518249541521072e-02 1.0997360199689865e-01
+ <_>
+
+ 0 -1 7063 9.7299525514245033e-03
+
+ 3.1371861696243286e-02 -4.4369909912347794e-02
+ <_>
+
+ 0 -1 7064 -2.3401379585266113e-03
+
+ 9.6488200128078461e-02 -5.7249929755926132e-02
+ <_>
+
+ 0 -1 7065 -1.9590060692280531e-03
+
+ -1.4031149446964264e-01 1.3546340167522430e-02
+ <_>
+
+ 0 -1 7066 8.4066856652498245e-03
+
+ 6.6289551556110382e-02 -8.0348283052444458e-02
+ <_>
+
+ 0 -1 7067 5.2574548870325089e-02
+
+ -3.6297008395195007e-02 1.4638340473175049e-01
+ <_>
+
+ 0 -1 7068 4.1065202094614506e-03
+
+ 3.0372349545359612e-02 -1.8155770003795624e-01
+ <_>
+
+ 0 -1 7069 -4.1818427853286266e-03
+
+ 5.5590789765119553e-02 -3.7148520350456238e-02
+ <_>
+
+ 0 -1 7070 -1.5470250509679317e-03
+
+ 1.0347150266170502e-01 -4.6374730765819550e-02
+ <_>
+
+ 0 -1 7071 -8.2695618038997054e-04
+
+ -9.3296989798545837e-02 4.3734461069107056e-02
+ <_>
+
+ 0 -1 7072 4.1385791264474392e-03
+
+ -4.4266488403081894e-02 1.0968980193138123e-01
+ <_>
+
+ 0 -1 7073 -3.3684119582176208e-02
+
+ -6.4337152242660522e-01 7.9893283545970917e-03
+ <_>
+
+ 0 -1 7074 5.2798818796873093e-02
+
+ -1.2490300461649895e-02 4.1572460532188416e-01
+ <_>
+
+ 0 -1 7075 -2.9699259996414185e-01
+
+ -1.9598379731178284e-01 9.4300797209143639e-03
+ <_>
+
+ 0 -1 7076 1.1196310073137283e-01
+
+ 1.1162719689309597e-02 -4.6838051080703735e-01
+ <_>
+
+ 0 -1 7077 -1.8544310703873634e-02
+
+ -7.4080787599086761e-02 1.9528210163116455e-02
+ <_>
+
+ 0 -1 7078 -1.0937429964542389e-02
+
+ 8.8206529617309570e-02 -6.2830187380313873e-02
+ <_>
+
+ 0 -1 7079 2.7186619117856026e-03
+
+ 3.0855480581521988e-02 -9.2405863106250763e-02
+ <_>
+
+ 0 -1 7080 2.0727319642901421e-02
+
+ -5.2543301135301590e-02 1.0608410090208054e-01
+ <_>
+
+ 0 -1 7081 -2.7961930260062218e-02
+
+ 2.1735160052776337e-01 -2.1356139332056046e-02
+ <_>
+
+ 0 -1 7082 -9.0406360104680061e-03
+
+ -1.9535389542579651e-01 3.0077420175075531e-02
+ <_>
+
+ 0 -1 7083 -1.0906349867582321e-02
+
+ 1.4888639748096466e-01 -3.1188679859042168e-02
+ <_>
+
+ 0 -1 7084 -3.8616119418293238e-03
+
+ -1.2094800174236298e-01 4.5144081115722656e-02
+ <_>
+
+ 0 -1 7085 4.3162601068615913e-03
+
+ -1.0713649913668633e-02 2.8116491436958313e-01
+ <_>
+
+ 0 -1 7086 -1.4098359970375896e-03
+
+ 6.4685508608818054e-02 -9.9471300840377808e-02
+ <_>
+
+ 0 -1 7087 3.2964099664241076e-03
+
+ 1.4295330643653870e-01 -3.1101010739803314e-02
+ <_>
+
+ 0 -1 7088 -2.9802869539707899e-03
+
+ -2.4578930437564850e-01 2.1760260686278343e-02
+ <_>
+
+ 0 -1 7089 6.7178793251514435e-02
+
+ 3.3457649406045675e-03 -4.5685601234436035e-01
+ <_>
+
+ 0 -1 7090 2.9182849451899529e-02
+
+ -1.7016859725117683e-02 3.3545929193496704e-01
+ <_>
+
+ 0 -1 7091 1.7935150535777211e-03
+
+ 3.0516179278492928e-02 -1.2526740133762360e-01
+ <_>
+
+ 0 -1 7092 2.0465679466724396e-02
+
+ -1.0909980162978172e-02 4.3552139401435852e-01
+ <_>
+
+ 0 -1 7093 -2.6115079526789486e-04
+
+ 3.8759760558605194e-02 -6.4098693430423737e-02
+ <_>
+
+ 0 -1 7094 3.7161160726100206e-03
+
+ 3.7150889635086060e-02 -1.5467320382595062e-01
+ <_>
+
+ 0 -1 7095 -7.4094999581575394e-03
+
+ -8.2704223692417145e-02 6.2809906899929047e-02
+ <_>
+
+ 0 -1 7096 1.7094809561967850e-02
+
+ -4.8347331583499908e-02 9.8770812153816223e-02
+ <_>
+
+ 0 -1 7097 -3.0473200604319572e-03
+
+ -1.0638830065727234e-01 3.0948650091886520e-02
+ <_>
+
+ 0 -1 7098 3.4502498805522919e-02
+
+ 1.0997230187058449e-02 -4.2861738801002502e-01
+ <_>
+
+ 0 -1 7099 -2.6834919117391109e-03
+
+ -1.4986449480056763e-01 3.3157639205455780e-02
+ <_>
+
+ 0 -1 7100 9.2392861843109131e-03
+
+ -3.7733338773250580e-02 1.5778259932994843e-01
+ <_>
+
+ 0 -1 7101 8.8205106556415558e-02
+
+ -1.0704769752919674e-02 3.2353109121322632e-01
+ <_>
+
+ 0 -1 7102 7.7868886291980743e-02
+
+ 1.0804659686982632e-02 -4.4243350625038147e-01
+ <_>
+
+ 0 -1 7103 -3.1202291138470173e-03
+
+ 2.0444509387016296e-01 -2.3976439610123634e-02
+ <_>
+
+ 0 -1 7104 2.6000461075454950e-03
+
+ 4.5765019953250885e-02 -1.0138899832963943e-01
+ <_>
+
+ 0 -1 7105 7.0194108411669731e-03
+
+ 2.5740729644894600e-02 -4.9060840159654617e-02
+ <_>
+
+ 0 -1 7106 -2.4108150973916054e-03
+
+ -1.1837480217218399e-01 4.8649929463863373e-02
+ <_>
+
+ 0 -1 7107 4.9886249005794525e-02
+
+ -1.4449880458414555e-02 2.0894059538841248e-01
+ <_>
+
+ 0 -1 7108 -7.2655039839446545e-03
+
+ 8.9042186737060547e-02 -4.9845550209283829e-02
+ <_>
+
+ 0 -1 7109 1.0560270398855209e-02
+
+ 5.2911709994077682e-02 -1.1509139835834503e-01
+ <_>
+
+ 0 -1 7110 5.6417449377477169e-03
+
+ -6.8672746419906616e-02 7.7489316463470459e-02
+ <_>
+
+ 0 -1 7111 4.3234648182988167e-03
+
+ -7.9207062721252441e-02 5.3491309285163879e-02
+ <_>
+
+ 0 -1 7112 1.1184070259332657e-02
+
+ 7.1656093001365662e-02 -1.0634940117597580e-01
+ <_>
+
+ 0 -1 7113 -9.9230423569679260e-02
+
+ 3.7169519066810608e-01 -6.6843931563198566e-03
+ <_>
+
+ 0 -1 7114 -4.4848727993667126e-03
+
+ 7.5577408075332642e-02 -6.9481082260608673e-02
+ <_>
+
+ 0 -1 7115 -1.9104180857539177e-02
+
+ -1.7291219532489777e-01 1.1360409669578075e-02
+ <_>
+
+ 0 -1 7116 -1.7672680551186204e-03
+
+ 9.2567160725593567e-02 -5.2470050752162933e-02
+ <_>
+
+ 0 -1 7117 5.9071529656648636e-02
+
+ 9.2153968289494514e-03 -2.6687648892402649e-01
+ <_>
+
+ 0 -1 7118 -3.4362819045782089e-02
+
+ -5.7914721965789795e-01 7.9972539097070694e-03
+ <_>
+
+ 0 -1 7119 5.6766539812088013e-02
+
+ 5.8937501162290573e-03 -5.2275192737579346e-01
+ <_>
+
+ 0 -1 7120 -1.2173549830913544e-01
+
+ -5.2229601144790649e-01 7.9296948388218880e-03
+ <_>
+
+ 0 -1 7121 3.4274619072675705e-02
+
+ -1.7069879919290543e-02 1.2958990037441254e-01
+ <_>
+
+ 0 -1 7122 -6.7191021516919136e-03
+
+ 1.1187720298767090e-01 -4.4685728847980499e-02
+ <_>
+
+ 0 -1 7123 3.1698260456323624e-02
+
+ 2.8529319912195206e-02 -1.1617069691419601e-01
+ <_>
+
+ 0 -1 7124 -9.5326751470565796e-02
+
+ 3.6362048983573914e-01 -1.3523319736123085e-02
+ <_>
+
+ 0 -1 7125 1.2620569765567780e-01
+
+ 6.0956259258091450e-03 -8.4947621822357178e-01
+ <_>
+
+ 0 -1 7126 -2.7324870228767395e-02
+
+ -2.9046019911766052e-01 1.4303879812359810e-02
+ <_>
+
+ 0 -1 7127 -7.3618680238723755e-02
+
+ 4.8824289441108704e-01 -1.0269859805703163e-02
+ <_>
+
+ 0 -1 7128 5.0417389720678329e-03
+
+ -8.4770277142524719e-02 5.6035611778497696e-02
+ <_>
+
+ 0 -1 7129 2.7569099329411983e-03
+
+ -4.8269480466842651e-02 3.8525570183992386e-02
+ <_>
+
+ 0 -1 7130 2.1967370063066483e-02
+
+ 8.6190566420555115e-02 -8.0797329545021057e-02
+ <_>
+
+ 0 -1 7131 -3.8637530803680420e-01
+
+ -8.3998018503189087e-01 3.6657860036939383e-03
+ <_>
+
+ 0 -1 7132 -4.1083219647407532e-01
+
+ -9.7182428836822510e-01 3.9403690025210381e-03
+ <_>
+
+ 0 -1 7133 -4.1033279150724411e-02
+
+ 1. -3.3212041016668081e-03
+ <_>
+
+ 0 -1 7134 2.4305000901222229e-02
+
+ 1.8234970048069954e-02 -2.4954320490360260e-01
+ <_>
+
+ 0 -1 7135 1.6170740127563477e-03
+
+ -1.2958160042762756e-01 3.2725200057029724e-02
+ <_>
+
+ 0 -1 7136 4.4785268604755402e-02
+
+ -2.3868849501013756e-02 1.9763439893722534e-01
+ <_>
+
+ 0 -1 7137 4.0209591388702393e-02
+
+ 5.3034191951155663e-03 -6.6284531354904175e-01
+ <_>
+
+ 0 -1 7138 3.3616109285503626e-03
+
+ 3.0226179957389832e-01 -1.6103280708193779e-02
+ <_>
+
+ 0 -1 7139 -1.1624400503933430e-03
+
+ -2.7934190630912781e-01 1.8276169896125793e-02
+ <_>
+
+ 0 -1 7140 5.5524259805679321e-02
+
+ -6.5288958139717579e-03 7.5690442323684692e-01
+ <_>
+
+ 0 -1 7141 4.6308599412441254e-03
+
+ 2.8254630044102669e-02 -9.4945177435874939e-02
+ <_>
+
+ 0 -1 7142 2.7387610170990229e-03
+
+ -4.6980410814285278e-02 9.4511218369007111e-02
+ <_>
+
+ 0 -1 7143 2.9127181041985750e-03
+
+ -2.2264670580625534e-02 7.2091333568096161e-02
+ <_>
+
+ 0 -1 7144 -2.3628510534763336e-02
+
+ -3.9147511124610901e-01 1.2840859591960907e-02
+ <_>
+
+ 0 -1 7145 7.1669870521873236e-04
+
+ 2.0413680002093315e-02 -1.6587799787521362e-01
+ <_>
+
+ 0 -1 7146 3.2723631709814072e-02
+
+ 8.5352789610624313e-03 -5.1838648319244385e-01
+ <_>
+
+ 0 -1 7147 5.6393269449472427e-02
+
+ -2.4937599897384644e-02 1.9025549292564392e-01
+ <_>
+
+ 0 -1 7148 2.9392001032829285e-01
+
+ 5.7944031432271004e-03 -8.5530591011047363e-01
+ <_>
+
+ 0 -1 7149 -5.6904228404164314e-03
+
+ -2.4354919791221619e-01 1.0601679794490337e-02
+ <_>
+
+ 0 -1 7150 9.8184328526258469e-03
+
+ -1.3599770143628120e-02 3.3795401453971863e-01
+ <_>
+
+ 0 -1 7151 -3.6970589309930801e-02
+
+ -5.7309299707412720e-01 1.0090970434248447e-02
+ <_>
+
+ 0 -1 7152 1.8607610836625099e-02
+
+ -1.2938570231199265e-02 4.1123750805854797e-01
+ <_>
+
+ 0 -1 7153 -1.5049210051074624e-03
+
+ -8.4678567945957184e-02 3.3724751323461533e-02
+ <_>
+
+ 0 -1 7154 -3.9040379226207733e-02
+
+ -4.7390699386596680e-01 9.5385275781154633e-03
+ <_>
+
+ 0 -1 7155 -3.4379279240965843e-03
+
+ 1.4112870395183563e-01 -2.2367769852280617e-02
+ <_>
+
+ 0 -1 7156 -1.1330900015309453e-03
+
+ -1.3950189948081970e-01 3.2505869865417480e-02
+ <_>
+
+ 0 -1 7157 -6.5370470285415649e-02
+
+ 1.4801700413227081e-01 -2.2039920091629028e-02
+ <_>
+
+ 0 -1 7158 -2.0970970392227173e-01
+
+ -7.4392271041870117e-01 7.5829490087926388e-03
+ <_>
+
+ 0 -1 7159 -5.8827060274779797e-03
+
+ -6.3253037631511688e-02 2.3363839834928513e-02
+ <_>
+
+ 0 -1 7160 -2.9759449884295464e-02
+
+ 4.8733299970626831e-01 -9.2995148152112961e-03
+ <_>
+
+ 0 -1 7161 -5.3064361214637756e-02
+
+ -3.8064101338386536e-01 5.6431228294968605e-03
+ <_>
+
+ 0 -1 7162 6.6667333245277405e-02
+
+ 4.6323328278958797e-03 -9.1536080837249756e-01
+ <_>
+
+ 0 -1 7163 -9.2325232923030853e-02
+
+ 2.9184600710868835e-01 -7.4540497735142708e-03
+ <_>
+
+ 0 -1 7164 8.5644036531448364e-02
+
+ -1.0288530029356480e-02 4.1251561045646667e-01
+ <_>
+
+ 0 -1 7165 2.2969970107078552e-01
+
+ -4.6802540309727192e-03 3.6509141325950623e-01
+ <_>
+
+ 0 -1 7166 8.7508037686347961e-03
+
+ 7.7816851437091827e-02 -6.3657559454441071e-02
+ <_>
+
+ 0 -1 7167 5.7104961015284061e-03
+
+ -5.9653200209140778e-02 4.2732730507850647e-02
+ <_>
+
+ 0 -1 7168 -4.8026451840996742e-03
+
+ -9.8918512463569641e-02 4.4956978410482407e-02
+ <_>
+
+ 0 -1 7169 3.2986800651997328e-03
+
+ 3.3164538443088531e-02 -1.3477820158004761e-01
+ <_>
+
+ 0 -1 7170 -4.0092850103974342e-03
+
+ 1.3551770150661469e-01 -3.7139780819416046e-02
+ <_>
+
+ 0 -1 7171 -7.7049341052770615e-04
+
+ 2.6690600439906120e-02 -8.4502391517162323e-02
+ <_>
+
+ 0 -1 7172 2.3074099794030190e-02
+
+ -2.6398969814181328e-02 1.8520879745483398e-01
+ <_>
+
+ 0 -1 7173 9.9315540865063667e-03
+
+ 2.1702500060200691e-02 -1.4147830009460449e-01
+ <_>
+
+ 0 -1 7174 -4.3977480381727219e-02
+
+ -5.9306997060775757e-01 7.6594059355556965e-03
+ <_>
+
+ 0 -1 7175 -2.1170598920434713e-03
+
+ 9.6989497542381287e-02 -4.9988958984613419e-02
+ <_>
+
+ 0 -1 7176 -1.1178949847817421e-02
+
+ -1.5058480203151703e-01 3.1385689973831177e-02
+ <_>
+
+ 0 -1 7177 -1.1888720327988267e-03
+
+ 8.7665252387523651e-02 -6.8861946463584900e-02
+ <_>
+
+ 0 -1 7178 -1.2205859646201134e-02
+
+ 8.2670666277408600e-02 -6.5326899290084839e-02
+ <_>
+
+ 0 -1 7179 -3.7645969539880753e-02
+
+ -4.8226159811019897e-01 5.5899759754538536e-03
+ <_>
+
+ 0 -1 7180 -1.7758710309863091e-03
+
+ -9.1606341302394867e-02 5.8380361646413803e-02
+ <_>
+
+ 0 -1 7181 -1.1116299778223038e-02
+
+ 1.4710609614849091e-01 -2.9255999252200127e-02
+ <_>
+
+ 0 -1 7182 4.3831788934767246e-04
+
+ -1.0494749993085861e-01 4.4445890933275223e-02
+ <_>
+
+ 0 -1 7183 -9.8695211112499237e-02
+
+ 2.6521149277687073e-01 -9.5453672111034393e-03
+ <_>
+
+ 0 -1 7184 1.1736120097339153e-02
+
+ 2.8968680649995804e-02 -1.5355010330677032e-01
+ <_>
+
+ 0 -1 7185 -3.6601141095161438e-02
+
+ 2.4063609540462494e-01 -2.2525599226355553e-02
+ <_>
+
+ 0 -1 7186 -5.2371289581060410e-02
+
+ -4.9006670713424683e-01 1.0319559834897518e-02
+ <_>
+
+ 0 -1 7187 -3.1134579330682755e-03
+
+ 6.2287129461765289e-02 -4.5234039425849915e-02
+ <_>
+
+ 0 -1 7188 1.0345289483666420e-03
+
+ -5.6548729538917542e-02 1.1970130354166031e-01
+ <_>
+
+ 0 -1 7189 -2.3240610025823116e-03
+
+ -9.5265246927738190e-02 3.2402478158473969e-02
+ <_>
+
+ 0 -1 7190 -2.7458980679512024e-02
+
+ 2.9548159241676331e-01 -1.6016509383916855e-02
+ <_>
+
+ 0 -1 7191 -9.3150883913040161e-03
+
+ -1.1465849727392197e-01 2.8171680867671967e-02
+ <_>
+
+ 0 -1 7192 7.6356199570000172e-03
+
+ 2.9264479875564575e-02 -1.6166350245475769e-01
+ <_>
+
+ 0 -1 7193 1.6107590869069099e-02
+
+ -3.0923349782824516e-02 1.6677390038967133e-01
+ <_>
+
+ 0 -1 7194 6.1460789293050766e-02
+
+ 8.1282109022140503e-03 -5.4833447933197021e-01
+ <_>
+
+ 0 -1 7195 4.3377321213483810e-02
+
+ -7.7782347798347473e-03 3.5578370094299316e-01
+ <_>
+
+ 0 -1 7196 -1.5809480100870132e-02
+
+ -3.1237179040908813e-01 1.4910760335624218e-02
+ <_>
+
+ 0 -1 7197 -4.3263029307126999e-02
+
+ 4.7393178939819336e-01 -9.4731850549578667e-03
+ <_>
+
+ 0 -1 7198 1.0775650152936578e-03
+
+ -1.0892640054225922e-01 5.0780758261680603e-02
+ <_>
+
+ 0 -1 7199 -6.8012787960469723e-03
+
+ -9.3841306865215302e-02 3.8555730134248734e-02
+ <_>
+
+ 0 -1 7200 -3.8845991366542876e-04
+
+ 6.4071871340274811e-02 -9.3577213585376740e-02
+ <_>
+
+ 0 -1 7201 3.8177249953150749e-03
+
+ -4.7590740025043488e-02 7.1997672319412231e-02
+ <_>
+
+ 0 -1 7202 -3.1246189028024673e-03
+
+ 1.5269869565963745e-01 -4.8789650201797485e-02
+ <_>
+
+ 0 -1 7203 6.0980509966611862e-02
+
+ 8.0068446695804596e-03 -6.7602759599685669e-01
+ <_>
+
+ 0 -1 7204 2.1819709800183773e-03
+
+ -6.8491749465465546e-02 7.5863577425479889e-02
+ <_>
+
+ 0 -1 7205 2.4469599593430758e-03
+
+ -7.4371293187141418e-02 3.2011859118938446e-02
+ <_>
+
+ 0 -1 7206 1.4674840494990349e-03
+
+ -1.1912509799003601e-01 4.6667739748954773e-02
+ <_>
+
+ 0 -1 7207 -2.1786419674754143e-03
+
+ -6.5324276685714722e-02 7.6355278491973877e-02
+ <_>
+
+ 0 -1 7208 -2.8284740983508527e-04
+
+ 5.8292400091886520e-02 -8.7847188115119934e-02
+ <_>
+
+ 0 -1 7209 1.4723110012710094e-02
+
+ 1.9820490479469299e-01 -2.4962980300188065e-02
+ <_>
+
+ 0 -1 7210 4.6598021872341633e-03
+
+ -9.3732737004756927e-02 5.4197840392589569e-02
+ <_>
+
+ 0 -1 7211 -6.0316991060972214e-02
+
+ -6.2958812713623047e-01 6.8706739693880081e-03
+ <_>
+
+ 0 -1 7212 -3.6654649302363396e-03
+
+ 3.6130189895629883e-02 -1.2816099822521210e-01
+ <_>
+
+ 0 -1 7213 1.4875479973852634e-02
+
+ -2.4313909932971001e-02 4.6657409518957138e-02
+ <_>
+
+ 0 -1 7214 1.1842879652976990e-01
+
+ 1.0476130060851574e-02 -5.1786392927169800e-01
+ <_>
+
+ 0 -1 7215 1.9809199869632721e-01
+
+ 1.0157800279557705e-02 -4.1872209310531616e-01
+ <_>
+
+ 0 -1 7216 -1.0167530179023743e-01
+
+ -8.5121291875839233e-01 4.4935508631169796e-03
+ <_>
+
+ 0 -1 7217 -3.0325200408697128e-02
+
+ -3.1803390383720398e-01 6.4301840029656887e-03
+ <_>
+
+ 0 -1 7218 3.4531850367784500e-02
+
+ -1.2561430223286152e-02 3.4778198599815369e-01
+ <_>
+
+ 0 -1 7219 -3.5133380442857742e-02
+
+ 1.1475030332803726e-01 -1.7527149990200996e-02
+ <_>
+
+ 0 -1 7220 5.3501729853451252e-03
+
+ 3.5263419151306152e-02 -1.3867680728435516e-01
+ <_>
+
+ 0 -1 7221 3.1209299340844154e-02
+
+ -2.0925100892782211e-02 1.4748610556125641e-01
+ <_>
+
+ 0 -1 7222 -5.5827602045610547e-04
+
+ -9.5544241368770599e-02 5.6234899908304214e-02
+ <_>
+
+ 0 -1 7223 -2.1599860489368439e-01
+
+ 5.9710198640823364e-01 -3.9994427934288979e-03
+ <_>
+
+ 0 -1 7224 7.7018201351165771e-02
+
+ -1.2182369828224182e-02 3.5995039343833923e-01
+ <_>
+
+ 0 -1 7225 -2.5808349251747131e-02
+
+ -1.9994600117206573e-01 1.6562040895223618e-02
+ <_>
+
+ 0 -1 7226 4.0148189291357994e-03
+
+ 3.8874860852956772e-02 -1.1775989830493927e-01
+ <_>
+
+ 0 -1 7227 7.4287859206378926e-06
+
+ 3.1405460089445114e-02 -4.9142509698867798e-02
+ <_>
+
+ 0 -1 7228 -2.8249230235815048e-03
+
+ -5.5889118462800980e-02 1.1791130155324936e-01
+ <_>
+
+ 0 -1 7229 -2.2713130339980125e-02
+
+ 1.0733339935541153e-01 -4.1647680103778839e-02
+ <_>
+
+ 0 -1 7230 -1.0052169673144817e-02
+
+ -1.4102290570735931e-01 3.7707269191741943e-02
+ <_>
+
+ 0 -1 7231 -2.1023969352245331e-01
+
+ -6.3184642791748047e-01 3.6316630430519581e-03
+ <_>
+
+ 0 -1 7232 -1.1812710203230381e-02
+
+ 1.2123010307550430e-01 -5.0373788923025131e-02
+ <_>
+
+ 0 -1 7233 6.3666589558124542e-03
+
+ 3.0198849737644196e-02 -9.5920257270336151e-02
+ <_>
+
+ 0 -1 7234 -1.2146410346031189e-01
+
+ -6.8696069717407227e-01 6.8671889603137970e-03
+ <_>
+
+ 0 -1 7235 2.3568300530314445e-02
+
+ -1.0376869700849056e-02 2.6333120465278625e-01
+ <_>
+
+ 0 -1 7236 -4.9841329455375671e-03
+
+ 5.2314449101686478e-02 -8.6597919464111328e-02
+ <_>
+
+ 0 -1 7237 1.4171230141073465e-03
+
+ -4.1445188224315643e-02 9.3332767486572266e-02
+ <_>
+
+ 0 -1 7238 1.6522710211575031e-03
+
+ 2.7292339131236076e-02 -1.7193740606307983e-01
+ <_>
+
+ 0 -1 7239 -4.2191468179225922e-02
+
+ 7.7588337659835815e-01 -2.4552440736442804e-03
+ <_>
+
+ 0 -1 7240 -1.5193390427157283e-03
+
+ 2.3297169804573059e-01 -1.9499920308589935e-02
+ <_>
+
+ 0 -1 7241 -5.9203859418630600e-03
+
+ -8.3495929837226868e-02 1.9756000488996506e-02
+ <_>
+
+ 0 -1 7242 6.4658280462026596e-03
+
+ -4.0668301284313202e-02 1.2236029654741287e-01
+ <_>
+
+ 0 -1 7243 -4.8110671341419220e-02
+
+ -3.1629499793052673e-01 1.2694340199232101e-02
+ <_>
+
+ 0 -1 7244 5.0246939063072205e-03
+
+ 3.1356900930404663e-02 -1.9190339744091034e-01
+ <_>
+
+ 0 -1 7245 1.1158010363578796e-01
+
+ -1.4073889702558517e-02 1.7848959565162659e-01
+ <_>
+
+ 0 -1 7246 -6.4665876328945160e-02
+
+ -5.6230849027633667e-01 8.2082729786634445e-03
+ <_>
+
+ 0 -1 7247 -5.7942468672990799e-02
+
+ 7.7341747283935547e-01 -4.3547940440475941e-03
+ <_>
+
+ 0 -1 7248 -8.1669846549630165e-03
+
+ 2.1019349992275238e-01 -2.0802220329642296e-02
+ <_>
+
+ 0 -1 7249 2.8506839647889137e-02
+
+ 8.1413127481937408e-02 -6.2663510441780090e-02
+ <_>
+
+ 0 -1 7250 2.4857679381966591e-03
+
+ -1.5635970234870911e-01 3.5210859030485153e-02
+ <_>
+
+ 0 -1 7251 1.9798949360847473e-02
+
+ 1.1353739537298679e-02 -1.6531160473823547e-01
+ <_>
+
+ 0 -1 7252 -2.7027919888496399e-02
+
+ 2.8912219405174255e-01 -1.6753070056438446e-02
+ <_>
+
+ 0 -1 7253 -6.9706928916275501e-03
+
+ -2.5769388675689697e-01 1.6355020925402641e-02
+ <_>
+
+ 0 -1 7254 1.1425119591876864e-03
+
+ -4.1056800633668900e-02 1.1580900102853775e-01
+ <_>
+
+ 0 -1 7255 -1.3041249476373196e-03
+
+ 5.1082979887723923e-02 -1.1724369972944260e-01
+ <_>
+
+ 0 -1 7256 3.7698419764637947e-03
+
+ 5.8557331562042236e-02 -8.2840107381343842e-02
+ <_>
+
+ 0 -1 7257 -4.8689868301153183e-02
+
+ -3.8769158720970154e-01 8.6165666580200195e-03
+ <_>
+
+ 0 -1 7258 -1.1471740156412125e-01
+
+ 1.3444100320339203e-01 -4.2848691344261169e-02
+ <_>
+
+ 0 -1 7259 2.3503519594669342e-02
+
+ 3.8586359005421400e-03 -4.3615299463272095e-01
+ <_>
+
+ 0 -1 7260 -5.9582752874121070e-04
+
+ 4.2376730591058731e-02 -1.2161590158939362e-01
+ <_>
+
+ 0 -1 7261 5.4052029736340046e-03
+
+ -2.3753000423312187e-02 2.0137269794940948e-01
+ <_>
+
+ 0 -1 7262 9.1158300638198853e-03
+
+ 2.8088169172406197e-02 -1.9667729735374451e-01
+ <_>
+
+ 0 -1 7263 3.3211729023605585e-03
+
+ -5.1258899271488190e-02 4.7993980348110199e-02
+ <_>
+
+ 0 -1 7264 1.2975499965250492e-02
+
+ 1.1851020157337189e-02 -3.9444020390510559e-01
+ <_>
+
+ 0 -1 7265 -5.0546238198876381e-03
+
+ -1.0956159979104996e-01 4.2662780731916428e-02
+ <_>
+
+ 0 -1 7266 -7.6824478805065155e-02
+
+ 7.6269572973251343e-01 -6.6229291260242462e-03
+ <_>
+
+ 0 -1 7267 -1.8690669676288962e-03
+
+ 4.0112659335136414e-02 -7.1398198604583740e-02
+ <_>
+
+ 0 -1 7268 -6.0407500714063644e-03
+
+ 1.2614290416240692e-01 -3.9585150778293610e-02
+ <_>
+
+ 0 -1 7269 -4.5013230293989182e-02
+
+ -2.1871440112590790e-01 6.5213250927627087e-03
+ <_>
+
+ 0 -1 7270 3.8492688909173012e-03
+
+ -9.2213302850723267e-02 6.6925182938575745e-02
+ <_>
+
+ 0 -1 7271 -4.3247821740806103e-03
+
+ 1.4973750710487366e-01 -3.1123559921979904e-02
+ <_>
+
+ 0 -1 7272 -2.6776840910315514e-02
+
+ -1.1432229727506638e-01 5.3090259432792664e-02
+ <_>
+
+ 0 -1 7273 2.0645130425691605e-03
+
+ -3.8483418524265289e-02 7.1507766842842102e-02
+ <_>
+
+ 0 -1 7274 5.7206518948078156e-02
+
+ 1.2463140301406384e-02 -3.9884459972381592e-01
+ <_>
+
+ 0 -1 7275 7.7696829102933407e-03
+
+ -2.4309959262609482e-02 6.1120841652154922e-02
+ <_>
+
+ 0 -1 7276 2.8191099409013987e-03
+
+ 6.2243871390819550e-02 -7.9774282872676849e-02
+ <_>
+
+ 0 -1 7277 -5.1747109740972519e-02
+
+ -2.0475579798221588e-01 9.8433922976255417e-03
+ <_>
+
+ 0 -1 7278 4.2840079404413700e-03
+
+ -3.6799129098653793e-02 1.2380699813365936e-01
+ <_>
+
+ 0 -1 7279 -8.0563372466713190e-04
+
+ -5.3742490708827972e-02 6.8746432662010193e-02
+ <_>
+
+ 0 -1 7280 4.6062450855970383e-02
+
+ 7.3871058411896229e-03 -6.1133211851119995e-01
+ <_>
+
+ 0 -1 7281 6.6807270050048828e-02
+
+ -1.2545309960842133e-02 1.5731689333915710e-01
+ <_>
+
+ 0 -1 7282 2.0568699110299349e-03
+
+ 4.3087389320135117e-02 -1.1062700301408768e-01
+ <_>
+
+ 0 -1 7283 2.8760819695889950e-03
+
+ 2.5800980627536774e-02 -8.4697857499122620e-02
+ <_>
+
+ 0 -1 7284 -4.9642049707472324e-03
+
+ 8.3168722689151764e-02 -5.6750860065221786e-02
+ <_>
+ 385
+ -1.1474020481109619e+00
+
+ <_>
+
+ 0 -1 7285 1.5166849829256535e-02
+
+ -1.7501029372215271e-01 1.5165300667285919e-01
+ <_>
+
+ 0 -1 7286 4.1852002032101154e-03
+
+ -1.8253259360790253e-01 1.0545530170202255e-01
+ <_>
+
+ 0 -1 7287 -2.6159440167248249e-03
+
+ -2.1517610549926758e-01 7.7460259199142456e-02
+ <_>
+
+ 0 -1 7288 2.7645078953355551e-03
+
+ -1.1506909877061844e-01 6.7771263420581818e-02
+ <_>
+
+ 0 -1 7289 -2.7296729967929423e-04
+
+ 5.5712651461362839e-02 -2.8723669052124023e-01
+ <_>
+
+ 0 -1 7290 2.4992981343530118e-04
+
+ 5.5202499032020569e-02 -1.5191499888896942e-01
+ <_>
+
+ 0 -1 7291 1.3287579640746117e-03
+
+ -1.2567579746246338e-01 9.4094827771186829e-02
+ <_>
+
+ 0 -1 7292 -2.4653770960867405e-03
+
+ 4.9393590539693832e-02 -2.2239279747009277e-01
+ <_>
+
+ 0 -1 7293 -3.2979049719870090e-03
+
+ -1.7367990314960480e-01 6.9391071796417236e-02
+ <_>
+
+ 0 -1 7294 -4.9667809158563614e-02
+
+ 3.2854220271110535e-01 -3.3067218959331512e-02
+ <_>
+
+ 0 -1 7295 5.7844468392431736e-03
+
+ 6.1289519071578979e-02 -1.6873429715633392e-01
+ <_>
+
+ 0 -1 7296 2.9754149727523327e-03
+
+ -2.4017000198364258e-01 5.7906478643417358e-02
+ <_>
+
+ 0 -1 7297 2.3769649851601571e-04
+
+ 1.1141020059585571e-01 -8.6508020758628845e-02
+ <_>
+
+ 0 -1 7298 5.4410300217568874e-03
+
+ -8.9257702231407166e-02 2.8492979705333710e-02
+ <_>
+
+ 0 -1 7299 2.5746610481292009e-03
+
+ 6.0383580625057220e-02 -1.4771540462970734e-01
+ <_>
+
+ 0 -1 7300 -1.2155439704656601e-02
+
+ 1.8026730418205261e-01 -3.5744961351156235e-02
+ <_>
+
+ 0 -1 7301 5.5069979280233383e-03
+
+ 6.1453469097614288e-02 -1.6147279739379883e-01
+ <_>
+
+ 0 -1 7302 -3.0918378615751863e-04
+
+ -9.1295689344406128e-02 6.8111963570117950e-02
+ <_>
+
+ 0 -1 7303 -7.7705271542072296e-02
+
+ 3.3344480395317078e-01 -2.6795169338583946e-02
+ <_>
+
+ 0 -1 7304 4.5874878764152527e-02
+
+ 6.2387371435761452e-03 -2.2738909721374512e-01
+ <_>
+
+ 0 -1 7305 3.1658360967412591e-04
+
+ -1.1297920346260071e-01 9.8602570593357086e-02
+ <_>
+
+ 0 -1 7306 -5.2962768822908401e-02
+
+ -6.0117399692535400e-01 1.0004489682614803e-02
+ <_>
+
+ 0 -1 7307 5.3028380498290062e-03
+
+ 3.6164399236440659e-02 -2.6359859108924866e-01
+ <_>
+
+ 0 -1 7308 -2.3473590612411499e-02
+
+ 1.0663519799709320e-01 -3.0653990805149078e-02
+ <_>
+
+ 0 -1 7309 -1.5029460191726685e-03
+
+ 6.2882840633392334e-02 -1.2285350263118744e-01
+ <_>
+
+ 0 -1 7310 -1.2232650071382523e-02
+
+ -2.3047080636024475e-01 4.0048789232969284e-02
+ <_>
+
+ 0 -1 7311 -4.7428268939256668e-02
+
+ 4.4135141372680664e-01 -1.8873579800128937e-02
+ <_>
+
+ 0 -1 7312 3.6379251629114151e-02
+
+ -1.3020380400121212e-02 1.4685730636119843e-01
+ <_>
+
+ 0 -1 7313 3.6343511193990707e-02
+
+ 3.8788039237260818e-02 -1.9903139770030975e-01
+ <_>
+
+ 0 -1 7314 -1.0792929679155350e-01
+
+ 1.6177520155906677e-01 -6.3546439632773399e-03
+ <_>
+
+ 0 -1 7315 -9.5479741692543030e-02
+
+ 3.7320658564567566e-01 -2.3940289393067360e-02
+ <_>
+
+ 0 -1 7316 3.8954298943281174e-02
+
+ 1.1239799670875072e-02 -3.4794488549232483e-01
+ <_>
+
+ 0 -1 7317 -3.2646209001541138e-02
+
+ -3.1797638535499573e-01 2.1780189126729965e-02
+ <_>
+
+ 0 -1 7318 -2.5872089900076389e-03
+
+ 4.7268610447645187e-02 -1.5624779462814331e-01
+ <_>
+
+ 0 -1 7319 1.2979200109839439e-02
+
+ -2.4394070729613304e-02 3.0341750383377075e-01
+ <_>
+
+ 0 -1 7320 -1.7490500584244728e-02
+
+ 1.1967100203037262e-01 -3.4825209528207779e-02
+ <_>
+
+ 0 -1 7321 8.2290060818195343e-03
+
+ 5.1706299185752869e-02 -1.4124310016632080e-01
+ <_>
+
+ 0 -1 7322 8.7701035663485527e-03
+
+ 1.2139629572629929e-02 -9.3410186469554901e-02
+ <_>
+
+ 0 -1 7323 -2.5523800868541002e-03
+
+ 9.1882079839706421e-02 -7.9693943262100220e-02
+ <_>
+
+ 0 -1 7324 1.2640489730983973e-03
+
+ -4.2868331074714661e-02 9.8469160497188568e-02
+ <_>
+
+ 0 -1 7325 -3.8762169424444437e-03
+
+ 6.4477890729904175e-02 -1.1426970362663269e-01
+ <_>
+
+ 0 -1 7326 1.5416350215673447e-03
+
+ -3.8240168243646622e-02 5.0880789756774902e-02
+ <_>
+
+ 0 -1 7327 7.6829752651974559e-04
+
+ -1.2869219481945038e-01 5.8161370456218719e-02
+ <_>
+
+ 0 -1 7328 1.6587260179221630e-03
+
+ 1.6391919553279877e-01 -4.7164998948574066e-02
+ <_>
+
+ 0 -1 7329 1.6514799790456891e-03
+
+ -5.9221718460321426e-02 1.3165080547332764e-01
+ <_>
+
+ 0 -1 7330 -3.8682940066792071e-04
+
+ 6.4493581652641296e-02 -1.0728739947080612e-01
+ <_>
+
+ 0 -1 7331 -3.4595469478517771e-03
+
+ 8.0743201076984406e-02 -9.2568591237068176e-02
+ <_>
+
+ 0 -1 7332 3.5130660980939865e-02
+
+ 1.5520620159804821e-02 -1.9732579588890076e-01
+ <_>
+
+ 0 -1 7333 1.2025350332260132e-01
+
+ -2.0497029647231102e-02 4.0905651450157166e-01
+ <_>
+
+ 0 -1 7334 7.8581331763416529e-04
+
+ -9.4858787953853607e-02 6.9316640496253967e-02
+ <_>
+
+ 0 -1 7335 6.1606317758560181e-03
+
+ 6.0556668788194656e-02 -1.2436509877443314e-01
+ <_>
+
+ 0 -1 7336 1.3351559638977051e-02
+
+ 1.7634969204664230e-02 -1.4649459719657898e-01
+ <_>
+
+ 0 -1 7337 1.9873639568686485e-02
+
+ -2.4449799209833145e-02 2.7322331070899963e-01
+ <_>
+
+ 0 -1 7338 -2.3918889928609133e-03
+
+ -4.0744900703430176e-02 4.9925319850444794e-02
+ <_>
+
+ 0 -1 7339 8.6433859542012215e-03
+
+ 2.8967950493097305e-02 -2.3661069571971893e-01
+ <_>
+
+ 0 -1 7340 -8.8321920484304428e-03
+
+ 1.2054029852151871e-01 -2.7702990919351578e-02
+ <_>
+
+ 0 -1 7341 -4.4150479137897491e-02
+
+ 5.0038051605224609e-01 -1.2251130305230618e-02
+ <_>
+
+ 0 -1 7342 -4.0243011899292469e-03
+
+ -1.9502529501914978e-01 2.5193009525537491e-02
+ <_>
+
+ 0 -1 7343 9.8465122282505035e-03
+
+ -6.0283869504928589e-02 1.2665469944477081e-01
+ <_>
+
+ 0 -1 7344 -2.7608149684965611e-03
+
+ -8.3926528692245483e-02 6.0102649033069611e-02
+ <_>
+
+ 0 -1 7345 3.9076831191778183e-02
+
+ 1.5327650122344494e-02 -4.3197798728942871e-01
+ <_>
+
+ 0 -1 7346 3.8136269431561232e-03
+
+ -3.1281091272830963e-02 7.7942118048667908e-02
+ <_>
+
+ 0 -1 7347 2.7646059170365334e-03
+
+ 1.7334839329123497e-02 -3.4732720255851746e-01
+ <_>
+
+ 0 -1 7348 -3.6096980329602957e-03
+
+ -8.2286708056926727e-02 2.8170879930257797e-02
+ <_>
+
+ 0 -1 7349 3.5445080138742924e-03
+
+ -1.0557620227336884e-01 6.0050919651985168e-02
+ <_>
+
+ 0 -1 7350 1.2985900044441223e-02
+
+ 1.8597990274429321e-02 -9.4987802207469940e-02
+ <_>
+
+ 0 -1 7351 -2.0027540624141693e-02
+
+ 2.6007258892059326e-01 -2.7079159393906593e-02
+ <_>
+
+ 0 -1 7352 -7.2966597974300385e-02
+
+ -7.6848107576370239e-01 2.3947900626808405e-03
+ <_>
+
+ 0 -1 7353 -2.1148719824850559e-03
+
+ -1.0763320326805115e-01 5.2361391484737396e-02
+ <_>
+
+ 0 -1 7354 -7.7667146921157837e-02
+
+ 1.7822329699993134e-01 -3.1463298946619034e-02
+ <_>
+
+ 0 -1 7355 -4.6600410714745522e-03
+
+ -2.0386479794979095e-01 3.9025411009788513e-02
+ <_>
+
+ 0 -1 7356 1.7059499397873878e-02
+
+ 1.8954740837216377e-02 -1.7260240018367767e-01
+ <_>
+
+ 0 -1 7357 4.3174691498279572e-02
+
+ -3.1685609370470047e-02 2.3346449434757233e-01
+ <_>
+
+ 0 -1 7358 -4.8927929997444153e-01
+
+ -7.1043139696121216e-01 4.6672620810568333e-03
+ <_>
+
+ 0 -1 7359 9.1495506465435028e-02
+
+ 1.6027629375457764e-02 -4.0538018941879272e-01
+ <_>
+
+ 0 -1 7360 -4.6843249350786209e-02
+
+ 6.9358861446380615e-01 -2.0055349450558424e-03
+ <_>
+
+ 0 -1 7361 6.0863760299980640e-03
+
+ -1.5218159556388855e-01 4.0408309549093246e-02
+ <_>
+
+ 0 -1 7362 4.3676611036062241e-02
+
+ 1.2257159687578678e-02 -2.5996598601341248e-01
+ <_>
+
+ 0 -1 7363 -4.9580529332160950e-02
+
+ 6.7571347951889038e-01 -8.0354865640401840e-03
+ <_>
+
+ 0 -1 7364 -2.8614638722501695e-04
+
+ 3.4548770636320114e-02 -6.1849180608987808e-02
+ <_>
+
+ 0 -1 7365 -1.1863199993968010e-02
+
+ -1.2061329931020737e-01 5.1416579633951187e-02
+ <_>
+
+ 0 -1 7366 1.4754010364413261e-02
+
+ -2.4638049304485321e-02 1.5234139561653137e-01
+ <_>
+
+ 0 -1 7367 -5.1772277802228928e-03
+
+ 1.8428930640220642e-01 -4.2200319468975067e-02
+ <_>
+
+ 0 -1 7368 -2.0033530890941620e-02
+
+ -2.0986419916152954e-01 2.3016780614852905e-02
+ <_>
+
+ 0 -1 7369 4.1349478997290134e-03
+
+ 3.8500111550092697e-02 -1.5400919318199158e-01
+ <_>
+
+ 0 -1 7370 4.9832498189061880e-04
+
+ -5.6834470480680466e-02 1.1737540364265442e-01
+ <_>
+
+ 0 -1 7371 1.5235079918056726e-03
+
+ -8.2305751740932465e-02 7.3340758681297302e-02
+ <_>
+
+ 0 -1 7372 2.6669060811400414e-02
+
+ 1.7131920903921127e-02 -3.3337280154228210e-01
+ <_>
+
+ 0 -1 7373 -2.5192899629473686e-02
+
+ 1.8348090350627899e-01 -3.5275999456644058e-02
+ <_>
+
+ 0 -1 7374 1.1769080301746726e-03
+
+ -1.3197030127048492e-01 2.4242419749498367e-02
+ <_>
+
+ 0 -1 7375 -6.6034111659973860e-04
+
+ -1.0725550353527069e-01 5.8605268597602844e-02
+ <_>
+
+ 0 -1 7376 4.3386619538068771e-02
+
+ -1.6498409211635590e-02 3.9293581247329712e-01
+ <_>
+
+ 0 -1 7377 -1.1490290053188801e-02
+
+ -2.6332950592041016e-01 2.4240590631961823e-02
+ <_>
+
+ 0 -1 7378 8.5933692753314972e-02
+
+ -1.6279760748147964e-02 4.1729450225830078e-01
+ <_>
+
+ 0 -1 7379 2.0756269805133343e-03
+
+ 5.2543889731168747e-02 -1.0574310272932053e-01
+ <_>
+
+ 0 -1 7380 1.4016899513080716e-03
+
+ -4.6594541519880295e-02 1.1355359852313995e-01
+ <_>
+
+ 0 -1 7381 -3.4351870417594910e-03
+
+ -1.0806330293416977e-01 5.8778531849384308e-02
+ <_>
+
+ 0 -1 7382 -1.8299809889867902e-03
+
+ 6.0645598918199539e-02 -6.6084399819374084e-02
+ <_>
+
+ 0 -1 7383 -3.4186599077656865e-04
+
+ -1.2682560086250305e-01 4.9244668334722519e-02
+ <_>
+
+ 0 -1 7384 1.0616290383040905e-02
+
+ -5.5619470775127411e-02 1.2270829826593399e-01
+ <_>
+
+ 0 -1 7385 3.9490770548582077e-02
+
+ 8.2882875576615334e-03 -6.6194152832031250e-01
+ <_>
+
+ 0 -1 7386 -1.9746040925383568e-02
+
+ 1.5761069953441620e-01 -9.3961963430047035e-03
+ <_>
+
+ 0 -1 7387 4.6383799053728580e-04
+
+ -2.0127220451831818e-01 2.6706330478191376e-02
+ <_>
+
+ 0 -1 7388 5.1521410932764411e-04
+
+ -8.6019717156887054e-02 6.7131496965885162e-02
+ <_>
+
+ 0 -1 7389 -1.1283540166914463e-02
+
+ -2.2754089534282684e-01 2.2250600159168243e-02
+ <_>
+
+ 0 -1 7390 -8.4253363311290741e-03
+
+ 1.6505259275436401e-01 -5.0438180565834045e-02
+ <_>
+
+ 0 -1 7391 3.0604569241404533e-02
+
+ 2.7500540018081665e-02 -2.0984129607677460e-01
+ <_>
+
+ 0 -1 7392 5.0000958144664764e-03
+
+ -3.8911771029233932e-02 1.1553470045328140e-01
+ <_>
+
+ 0 -1 7393 4.1644461452960968e-02
+
+ -1.4164280146360397e-02 4.4004911184310913e-01
+ <_>
+
+ 0 -1 7394 -3.9140251465141773e-03
+
+ -1.1528140306472778e-01 2.7629520744085312e-02
+ <_>
+
+ 0 -1 7395 -2.2060431074351072e-03
+
+ 7.4794493615627289e-02 -7.5950391590595245e-02
+ <_>
+
+ 0 -1 7396 -7.4060507118701935e-02
+
+ -6.0902571678161621e-01 3.8528270088136196e-03
+ <_>
+
+ 0 -1 7397 1.5966329956427217e-03
+
+ -7.0015199482440948e-02 1.1019259691238403e-01
+ <_>
+
+ 0 -1 7398 2.0102860871702433e-03
+
+ -3.1859181821346283e-02 7.1592740714550018e-02
+ <_>
+
+ 0 -1 7399 3.2757699955254793e-03
+
+ -5.2260760217905045e-02 1.2652389705181122e-01
+ <_>
+
+ 0 -1 7400 3.6700100172311068e-03
+
+ 5.4018720984458923e-02 -4.6530380845069885e-02
+ <_>
+
+ 0 -1 7401 -5.7776779867708683e-03
+
+ -2.2940860688686371e-01 2.4704450741410255e-02
+ <_>
+
+ 0 -1 7402 3.7388929631561041e-03
+
+ -4.8273131251335144e-02 7.6772913336753845e-02
+ <_>
+
+ 0 -1 7403 -1.2404560111463070e-02
+
+ 1.1491999775171280e-01 -4.9308139830827713e-02
+ <_>
+
+ 0 -1 7404 9.0428609400987625e-03
+
+ 4.3013140559196472e-02 -1.4439429342746735e-01
+ <_>
+
+ 0 -1 7405 6.1762649565935135e-03
+
+ -3.9362821727991104e-02 1.6073490679264069e-01
+ <_>
+
+ 0 -1 7406 2.1051440387964249e-02
+
+ 2.4608060717582703e-02 -1.3768480718135834e-01
+ <_>
+
+ 0 -1 7407 2.7457328978925943e-03
+
+ -6.3271999359130859e-02 9.1269433498382568e-02
+ <_>
+
+ 0 -1 7408 -1.0777959600090981e-02
+
+ 9.1245301067829132e-02 -3.0110929161310196e-02
+ <_>
+
+ 0 -1 7409 1.6699189320206642e-02
+
+ 4.3539609760046005e-02 -1.5240140259265900e-01
+ <_>
+
+ 0 -1 7410 5.4665589705109596e-03
+
+ -5.3575031459331512e-02 6.0266200453042984e-02
+ <_>
+
+ 0 -1 7411 -3.2001500949263573e-03
+
+ 1.4220920205116272e-01 -4.0823381394147873e-02
+ <_>
+
+ 0 -1 7412 4.7289058566093445e-02
+
+ 1.5853699296712875e-02 -2.7123591303825378e-01
+ <_>
+
+ 0 -1 7413 -1.3604690320789814e-03
+
+ 4.0636081248521805e-02 -1.4885699748992920e-01
+ <_>
+
+ 0 -1 7414 6.2847061781212687e-04
+
+ 4.1833158582448959e-02 -1.2394890189170837e-01
+ <_>
+
+ 0 -1 7415 -3.7036079913377762e-02
+
+ -3.6944690346717834e-01 1.3664159923791885e-02
+ <_>
+
+ 0 -1 7416 -2.2578550502657890e-02
+
+ 1.1812049895524979e-01 -2.2939860820770264e-02
+ <_>
+
+ 0 -1 7417 3.2851321157068014e-03
+
+ 3.1136950850486755e-01 -1.8856419250369072e-02
+ <_>
+
+ 0 -1 7418 -2.0225369930267334e-01
+
+ -6.2465697526931763e-01 3.9239428006112576e-03
+ <_>
+
+ 0 -1 7419 -4.9903858453035355e-03
+
+ 1.0674989968538284e-01 -6.0000490397214890e-02
+ <_>
+
+ 0 -1 7420 -2.2539479658007622e-02
+
+ -1.9891190528869629e-01 1.8829969689249992e-02
+ <_>
+
+ 0 -1 7421 2.6878459379076958e-02
+
+ -3.1185189262032509e-02 2.0841309428215027e-01
+ <_>
+
+ 0 -1 7422 -6.3416860066354275e-03
+
+ -8.3658866584300995e-02 4.0603660047054291e-02
+ <_>
+
+ 0 -1 7423 2.8207020368427038e-03
+
+ -5.8255858719348907e-02 9.7203142940998077e-02
+ <_>
+
+ 0 -1 7424 2.4739980697631836e-02
+
+ -1.8699239939451218e-02 9.9858507513999939e-02
+ <_>
+
+ 0 -1 7425 7.4140671640634537e-03
+
+ 2.9613019898533821e-02 -1.9177620112895966e-01
+ <_>
+
+ 0 -1 7426 -8.3040986210107803e-03
+
+ 1.2958979606628418e-01 -4.2671140283346176e-02
+ <_>
+
+ 0 -1 7427 1.1470559984445572e-03
+
+ -1.5365119278430939e-01 4.1083239018917084e-02
+ <_>
+
+ 0 -1 7428 -1.6470700502395630e-01
+
+ -4.1437658667564392e-01 1.3509290292859077e-02
+ <_>
+
+ 0 -1 7429 2.4328620731830597e-01
+
+ -1.2499390169978142e-02 4.4623729586601257e-01
+ <_>
+
+ 0 -1 7430 2.4545079097151756e-02
+
+ 2.2270770743489265e-02 -1.0766860097646713e-01
+ <_>
+
+ 0 -1 7431 -3.6004021763801575e-02
+
+ 2.1495530009269714e-01 -2.3298330605030060e-02
+ <_>
+
+ 0 -1 7432 1.7012679949402809e-02
+
+ 2.8566520661115646e-02 -1.3689860701560974e-01
+ <_>
+
+ 0 -1 7433 -1.7947000451385975e-03
+
+ 2.6063710451126099e-02 -1.8060439825057983e-01
+ <_>
+
+ 0 -1 7434 -3.4492081403732300e-01
+
+ -5.9101992845535278e-01 1.3455889420583844e-03
+ <_>
+
+ 0 -1 7435 -1.0471549816429615e-02
+
+ -6.4394369721412659e-02 8.1244252622127533e-02
+ <_>
+
+ 0 -1 7436 6.4335219562053680e-02
+
+ -5.0874471664428711e-02 8.3752527832984924e-02
+ <_>
+
+ 0 -1 7437 4.6703450381755829e-02
+
+ 8.1825926899909973e-03 -6.2220478057861328e-01
+ <_>
+
+ 0 -1 7438 6.7396290600299835e-02
+
+ -4.0585128590464592e-03 3.1115430593490601e-01
+ <_>
+
+ 0 -1 7439 -1.8122399342246354e-04
+
+ 6.3599228858947754e-02 -8.3870701491832733e-02
+ <_>
+
+ 0 -1 7440 -4.6783890575170517e-02
+
+ -4.3748119473457336e-01 3.6999220028519630e-03
+ <_>
+
+ 0 -1 7441 1.2537419795989990e-01
+
+ -7.1869022212922573e-03 6.9267672300338745e-01
+ <_>
+
+ 0 -1 7442 3.5549318999983370e-04
+
+ 3.5804919898509979e-02 -4.1999049484729767e-02
+ <_>
+
+ 0 -1 7443 -1.8169870600104332e-02
+
+ -2.6467940211296082e-01 1.9274869933724403e-02
+ <_>
+
+ 0 -1 7444 2.7509370818734169e-02
+
+ -9.9343024194240570e-03 1.2481729686260223e-01
+ <_>
+
+ 0 -1 7445 -3.1984839588403702e-02
+
+ 2.5694110989570618e-01 -2.6392020285129547e-02
+ <_>
+
+ 0 -1 7446 -1.2891650199890137e-02
+
+ -1.8838110566139221e-01 1.6135750338435173e-02
+ <_>
+
+ 0 -1 7447 4.5009091496467590e-02
+
+ 8.4453048184514046e-03 -5.7920891046524048e-01
+ <_>
+
+ 0 -1 7448 3.9589041844010353e-03
+
+ -4.3672330677509308e-02 1.2087629735469818e-01
+ <_>
+
+ 0 -1 7449 2.7181839104741812e-03
+
+ -4.0779389441013336e-02 1.2974439561367035e-01
+ <_>
+
+ 0 -1 7450 -7.5994711369276047e-04
+
+ 3.2954100519418716e-02 -8.6419321596622467e-02
+ <_>
+
+ 0 -1 7451 6.6315899603068829e-03
+
+ 3.6079831421375275e-02 -1.5763629972934723e-01
+ <_>
+
+ 0 -1 7452 -3.6433320492506027e-03
+
+ -2.9832119122147560e-02 6.2801547348499298e-02
+ <_>
+
+ 0 -1 7453 -6.4768336713314056e-02
+
+ -8.4351742267608643e-01 6.0920589603483677e-03
+ <_>
+
+ 0 -1 7454 4.1712251305580139e-01
+
+ 3.0659181065857410e-03 -4.4269698858261108e-01
+ <_>
+
+ 0 -1 7455 1.8854279816150665e-01
+
+ 4.8159952275454998e-03 -9.5497727394104004e-01
+ <_>
+
+ 0 -1 7456 2.3751270025968552e-02
+
+ -1.2166289612650871e-02 3.0827128887176514e-01
+ <_>
+
+ 0 -1 7457 1.8907970516011119e-03
+
+ -1.2497080117464066e-01 3.7261988967657089e-02
+ <_>
+
+ 0 -1 7458 -1.5546990325674415e-03
+
+ 7.3636576533317566e-02 -4.9398850649595261e-02
+ <_>
+
+ 0 -1 7459 -9.2505775392055511e-03
+
+ 1.2446039915084839e-01 -3.8673549890518188e-02
+ <_>
+
+ 0 -1 7460 -9.9219558760523796e-03
+
+ -1.2231759727001190e-01 2.7252480387687683e-02
+ <_>
+
+ 0 -1 7461 -6.7504931939765811e-04
+
+ 8.0792732536792755e-02 -6.1003699898719788e-02
+ <_>
+
+ 0 -1 7462 -1.3286190107464790e-02
+
+ 1.7295649647712708e-01 -3.0486939474940300e-02
+ <_>
+
+ 0 -1 7463 4.3905568309128284e-03
+
+ 2.9421260580420494e-02 -1.8230539560317993e-01
+ <_>
+
+ 0 -1 7464 -1.8879309296607971e-02
+
+ -5.3837429732084274e-02 2.8330469503998756e-02
+ <_>
+
+ 0 -1 7465 -6.9391563534736633e-02
+
+ 5.4713129997253418e-01 -9.0404544025659561e-03
+ <_>
+
+ 0 -1 7466 7.8226983547210693e-02
+
+ 6.9561759009957314e-03 -1.5992170572280884e-01
+ <_>
+
+ 0 -1 7467 -9.5910448580980301e-03
+
+ 8.3477370440959930e-02 -6.0714289546012878e-02
+ <_>
+
+ 0 -1 7468 8.0856353044509888e-02
+
+ -3.1028070952743292e-03 8.1530278921127319e-01
+ <_>
+
+ 0 -1 7469 -6.9029820151627064e-03
+
+ -6.2625996768474579e-02 7.7994093298912048e-02
+ <_>
+
+ 0 -1 7470 3.8219179958105087e-02
+
+ -9.4691133126616478e-03 4.1828629374504089e-01
+ <_>
+
+ 0 -1 7471 -7.2923908010125160e-04
+
+ 5.4394990205764771e-02 -1.0869490355253220e-01
+ <_>
+
+ 0 -1 7472 -1.1224360205233097e-02
+
+ -2.8774300217628479e-01 1.9332440569996834e-02
+ <_>
+
+ 0 -1 7473 -2.3755239322781563e-02
+
+ 2.9632499814033508e-01 -1.6995029523968697e-02
+ <_>
+
+ 0 -1 7474 2.5170940905809402e-02
+
+ 1.8151640892028809e-02 -6.9211177527904510e-02
+ <_>
+
+ 0 -1 7475 8.4619410336017609e-02
+
+ -1.2618330307304859e-02 4.0188309550285339e-01
+ <_>
+
+ 0 -1 7476 -2.8461799956858158e-03
+
+ -1.6565479338169098e-01 3.5540379583835602e-02
+ <_>
+
+ 0 -1 7477 9.9000544287264347e-04
+
+ -7.0647209882736206e-02 9.2070832848548889e-02
+ <_>
+
+ 0 -1 7478 8.5722869262099266e-03
+
+ -1.6599319875240326e-02 6.0025580227375031e-02
+ <_>
+
+ 0 -1 7479 7.7498499304056168e-03
+
+ 2.5065049529075623e-02 -2.0419560372829437e-01
+ <_>
+
+ 0 -1 7480 -5.1633790135383606e-03
+
+ 5.6465640664100647e-02 -3.9366569370031357e-02
+ <_>
+
+ 0 -1 7481 3.4570649731904268e-03
+
+ -4.8712749034166336e-02 1.1756400018930435e-01
+ <_>
+
+ 0 -1 7482 1.5435590175911784e-03
+
+ -1.2385150045156479e-01 4.7240950167179108e-02
+ <_>
+
+ 0 -1 7483 3.9221469312906265e-02
+
+ 9.7949290648102760e-03 -5.5965268611907959e-01
+ <_>
+
+ 0 -1 7484 -4.8019930720329285e-02
+
+ -2.4514609575271606e-01 1.5544380061328411e-02
+ <_>
+
+ 0 -1 7485 1.7867749556899071e-02
+
+ -2.6458689942955971e-02 1.8536129593849182e-01
+ <_>
+
+ 0 -1 7486 -7.8233405947685242e-03
+
+ -1.2305969744920731e-01 2.1850170567631721e-02
+ <_>
+
+ 0 -1 7487 -4.8894518986344337e-03
+
+ 2.5086471438407898e-01 -1.9914150238037109e-02
+ <_>
+
+ 0 -1 7488 1.1090599745512009e-01
+
+ 2.1982348989695311e-03 -9.6110188961029053e-01
+ <_>
+
+ 0 -1 7489 5.3139701485633850e-03
+
+ -7.0207841694355011e-02 7.4792057275772095e-02
+ <_>
+
+ 0 -1 7490 -4.0226429700851440e-03
+
+ -9.2982061207294464e-02 2.7642169967293739e-02
+ <_>
+
+ 0 -1 7491 -9.9820762872695923e-02
+
+ -8.2527607679367065e-01 5.8367499150335789e-03
+ <_>
+
+ 0 -1 7492 3.2612269278615713e-03
+
+ 3.0481850728392601e-02 -4.8289291560649872e-02
+ <_>
+
+ 0 -1 7493 -4.1559059172868729e-02
+
+ 5.8879297971725464e-01 -8.5169300436973572e-03
+ <_>
+
+ 0 -1 7494 5.4297139868140221e-03
+
+ 1.8141800537705421e-02 -1.3948309421539307e-01
+ <_>
+
+ 0 -1 7495 1.6756299883127213e-02
+
+ 1.2322929687798023e-02 -4.1245520114898682e-01
+ <_>
+
+ 0 -1 7496 -1.7563860863447189e-02
+
+ 1.1385770142078400e-01 -3.0968630686402321e-02
+ <_>
+
+ 0 -1 7497 1.8308760598301888e-02
+
+ -3.5930249840021133e-02 1.4697270095348358e-01
+ <_>
+
+ 0 -1 7498 3.5556308925151825e-02
+
+ 1.0190679691731930e-02 -2.5837650895118713e-01
+ <_>
+
+ 0 -1 7499 -5.1635081035783514e-05
+
+ 4.6089090406894684e-02 -1.1719120293855667e-01
+ <_>
+
+ 0 -1 7500 2.5128800189122558e-04
+
+ -4.0896330028772354e-02 1.0669410228729248e-01
+ <_>
+
+ 0 -1 7501 -1.5876770485192537e-03
+
+ 1.0786730051040649e-01 -4.5890059322118759e-02
+ <_>
+
+ 0 -1 7502 -9.5712337642908096e-03
+
+ -1.5212120115756989e-01 3.7137780338525772e-02
+ <_>
+
+ 0 -1 7503 2.8643130790442228e-03
+
+ 3.6075118929147720e-02 -1.4268599450588226e-01
+ <_>
+
+ 0 -1 7504 -5.0454098731279373e-02
+
+ 1.9622960686683655e-01 -2.8599070385098457e-02
+ <_>
+
+ 0 -1 7505 -2.8714470099657774e-03
+
+ 7.3919989168643951e-02 -8.6024001240730286e-02
+ <_>
+
+ 0 -1 7506 4.9587138928472996e-03
+
+ 9.4060972332954407e-03 -2.4880349636077881e-01
+ <_>
+
+ 0 -1 7507 -7.8270390629768372e-02
+
+ 4.3305158615112305e-01 -1.1123429983854294e-02
+ <_>
+
+ 0 -1 7508 -6.4656808972358704e-02
+
+ -1.9539129734039307e-01 9.3969572335481644e-03
+ <_>
+
+ 0 -1 7509 -4.0213608741760254e-01
+
+ -9.3731278181076050e-01 4.8170168884098530e-03
+ <_>
+
+ 0 -1 7510 4.2917151004076004e-02
+
+ 5.9442862402647734e-04 -7.9430317878723145e-01
+ <_>
+
+ 0 -1 7511 2.1517940331250429e-03
+
+ -2.4127319455146790e-02 2.1096949279308319e-01
+ <_>
+
+ 0 -1 7512 9.5514237880706787e-02
+
+ 3.0073130037635565e-03 -3.0030760169029236e-01
+ <_>
+
+ 0 -1 7513 3.5949420183897018e-02
+
+ 9.1736158356070518e-03 -5.3301852941513062e-01
+ <_>
+
+ 0 -1 7514 1.4061479270458221e-01
+
+ -1.9780038855969906e-03 5.8360362052917480e-01
+ <_>
+
+ 0 -1 7515 -1.0000269860029221e-01
+
+ -4.6577060222625732e-01 1.0447300039231777e-02
+ <_>
+
+ 0 -1 7516 -1.6898410022258759e-01
+
+ 4.7578391432762146e-01 -3.0947721097618341e-03
+ <_>
+
+ 0 -1 7517 2.6123190298676491e-02
+
+ -1.8673470243811607e-02 2.5583058595657349e-01
+ <_>
+
+ 0 -1 7518 8.8816967036109418e-05
+
+ 1.2931160628795624e-01 -2.2033900022506714e-02
+ <_>
+
+ 0 -1 7519 -2.5785199832171202e-03
+
+ 7.7590242028236389e-02 -5.8669801801443100e-02
+ <_>
+
+ 0 -1 7520 -5.5829741060733795e-02
+
+ -5.6296068429946899e-01 8.2240002229809761e-03
+ <_>
+
+ 0 -1 7521 -3.5114258527755737e-02
+
+ -4.1525208950042725e-01 1.0237259790301323e-02
+ <_>
+
+ 0 -1 7522 3.0091139487922192e-03
+
+ -3.2801661640405655e-02 1.1237899959087372e-01
+ <_>
+
+ 0 -1 7523 -3.0068641062825918e-03
+
+ -1.5794169902801514e-01 3.0354220420122147e-02
+ <_>
+
+ 0 -1 7524 -2.0059049129486084e-03
+
+ 1.1346399784088135e-01 -3.3372201025485992e-02
+ <_>
+
+ 0 -1 7525 -1.3963360106572509e-03
+
+ 1.4454230666160583e-01 -5.0115231424570084e-02
+ <_>
+
+ 0 -1 7526 -5.4588310420513153e-02
+
+ -9.6552258729934692e-01 2.6290758978575468e-03
+ <_>
+
+ 0 -1 7527 -5.0577907823026180e-03
+
+ -2.1536730229854584e-01 2.7823869138956070e-02
+ <_>
+
+ 0 -1 7528 -7.4430949985980988e-02
+
+ 5.9244579076766968e-01 -3.5832428839057684e-03
+ <_>
+
+ 0 -1 7529 -6.9759570062160492e-02
+
+ 6.5854609012603760e-01 -7.1275448426604271e-03
+ <_>
+
+ 0 -1 7530 3.4715738729573786e-04
+
+ 4.3214511126279831e-02 -6.5209239721298218e-02
+ <_>
+
+ 0 -1 7531 6.5575069747865200e-03
+
+ 4.1032981127500534e-02 -1.2200939655303955e-01
+ <_>
+
+ 0 -1 7532 9.2287212610244751e-02
+
+ -2.1933389827609062e-02 8.9953176677227020e-02
+ <_>
+
+ 0 -1 7533 5.2685599774122238e-02
+
+ 1.6439350321888924e-02 -2.7847930788993835e-01
+ <_>
+
+ 0 -1 7534 7.2394758462905884e-03
+
+ -3.3217910677194595e-02 9.7244061529636383e-02
+ <_>
+
+ 0 -1 7535 -2.2218099329620600e-03
+
+ 3.5860918462276459e-02 -1.3876199722290039e-01
+ <_>
+
+ 0 -1 7536 -2.3309379816055298e-02
+
+ -2.7913948893547058e-01 1.6362229362130165e-02
+ <_>
+
+ 0 -1 7537 1.4036920038051903e-04
+
+ -4.0096871554851532e-02 1.2379959970712662e-01
+ <_>
+
+ 0 -1 7538 5.3702849894762039e-02
+
+ 1.4607049524784088e-03 -8.6436408758163452e-01
+ <_>
+
+ 0 -1 7539 4.1926259291358292e-04
+
+ -4.9342829734086990e-02 1.0289549827575684e-01
+ <_>
+
+ 0 -1 7540 -1.6786300111562014e-03
+
+ -1.9065080583095551e-01 2.5145059451460838e-02
+ <_>
+
+ 0 -1 7541 1.6603240743279457e-02
+
+ -1.8125709146261215e-02 2.6887449622154236e-01
+ <_>
+
+ 0 -1 7542 -2.2621789947152138e-02
+
+ 1.3145700097084045e-01 -2.5288559496402740e-02
+ <_>
+
+ 0 -1 7543 4.4634779915213585e-03
+
+ 5.6568209081888199e-02 -1.0306429862976074e-01
+ <_>
+
+ 0 -1 7544 3.3281201031059027e-03
+
+ 2.1517809480428696e-02 -1.4086639881134033e-01
+ <_>
+
+ 0 -1 7545 -2.5311840698122978e-02
+
+ 1.1237470060586929e-01 -4.1784498840570450e-02
+ <_>
+
+ 0 -1 7546 -2.6119880378246307e-02
+
+ 1.2703700363636017e-01 -2.3530310019850731e-02
+ <_>
+
+ 0 -1 7547 -7.2608642280101776e-02
+
+ -3.3052888512611389e-01 2.1741159260272980e-02
+ <_>
+
+ 0 -1 7548 5.8377808891236782e-03
+
+ -2.8170680627226830e-02 6.1300031840801239e-02
+ <_>
+
+ 0 -1 7549 1.7830949509516358e-03
+
+ -7.6140716671943665e-02 8.4391303360462189e-02
+ <_>
+
+ 0 -1 7550 -1.4502589404582977e-01
+
+ -2.8886368870735168e-01 9.4371382147073746e-03
+ <_>
+
+ 0 -1 7551 -2.4291570298373699e-03
+
+ -6.3645169138908386e-02 9.0057007968425751e-02
+ <_>
+
+ 0 -1 7552 1.0977900028228760e-01
+
+ -1.4906959841027856e-03 8.9710217714309692e-01
+ <_>
+
+ 0 -1 7553 -3.8412429857999086e-03
+
+ 7.3980011045932770e-02 -6.9378383457660675e-02
+ <_>
+
+ 0 -1 7554 3.9507250767201185e-04
+
+ -7.1166411042213440e-02 6.3150741159915924e-02
+ <_>
+
+ 0 -1 7555 -6.6879019141197205e-03
+
+ -1.4211960136890411e-01 5.1007200032472610e-02
+ <_>
+
+ 0 -1 7556 -2.1278159320354462e-01
+
+ 1.7479549348354340e-01 -1.6866499558091164e-02
+ <_>
+
+ 0 -1 7557 4.3913610279560089e-02
+
+ -7.9228030517697334e-03 5.9994518756866455e-01
+ <_>
+
+ 0 -1 7558 3.0486818868666887e-03
+
+ 2.7880100533366203e-02 -1.4996689558029175e-01
+ <_>
+
+ 0 -1 7559 1.7128599574789405e-03
+
+ -6.1575889587402344e-02 1.0793119668960571e-01
+ <_>
+
+ 0 -1 7560 -1.3061589561402798e-02
+
+ -3.5864189267158508e-01 1.2332689948379993e-02
+ <_>
+
+ 0 -1 7561 1.4779239427298307e-03
+
+ -5.5280618369579315e-02 7.6400339603424072e-02
+ <_>
+
+ 0 -1 7562 -7.4117183685302734e-02
+
+ 3.3055660128593445e-01 -5.4406579583883286e-03
+ <_>
+
+ 0 -1 7563 4.1532788425683975e-02
+
+ 1.2762749567627907e-02 -3.4091010689735413e-01
+ <_>
+
+ 0 -1 7564 -1.6474310308694839e-02
+
+ -1.1935900151729584e-01 3.5997871309518814e-02
+ <_>
+
+ 0 -1 7565 -1.3384450227022171e-02
+
+ 1.4927010238170624e-01 -3.7151250988245010e-02
+ <_>
+
+ 0 -1 7566 -4.3293130584061146e-03
+
+ -1.5257209539413452e-01 2.0008029416203499e-02
+ <_>
+
+ 0 -1 7567 3.7254339549690485e-03
+
+ 3.8249280303716660e-02 -1.3562840223312378e-01
+ <_>
+
+ 0 -1 7568 -3.5788780078291893e-03
+
+ 1.1951140314340591e-01 -5.1356971263885498e-02
+ <_>
+
+ 0 -1 7569 9.0936541557312012e-02
+
+ -9.6294376999139786e-03 5.0582927465438843e-01
+ <_>
+
+ 0 -1 7570 -3.1301870476454496e-03
+
+ 2.4587530642747879e-02 -1.5752519667148590e-01
+ <_>
+
+ 0 -1 7571 -3.0295769684016705e-03
+
+ -9.6669957041740417e-02 4.7402460128068924e-02
+ <_>
+
+ 0 -1 7572 -3.1865050550550222e-03
+
+ 3.5035319626331329e-02 -4.0841709822416306e-02
+ <_>
+
+ 0 -1 7573 4.4836260378360748e-02
+
+ -7.4580628424882889e-03 6.5190207958221436e-01
+ <_>
+
+ 0 -1 7574 -6.4811948686838150e-03
+
+ 1.3163930177688599e-01 -3.6060128360986710e-02
+ <_>
+
+ 0 -1 7575 -2.0486880093812943e-03
+
+ -1.1097510159015656e-01 5.1011908799409866e-02
+ <_>
+
+ 0 -1 7576 4.9175620079040527e-02
+
+ 5.1457029767334461e-03 -8.9148598909378052e-01
+ <_>
+
+ 0 -1 7577 8.4772880654782057e-04
+
+ -9.0741790831089020e-02 4.4853020459413528e-02
+ <_>
+
+ 0 -1 7578 -1.6545709222555161e-02
+
+ 2.5329568982124329e-01 -1.6997080296278000e-02
+ <_>
+
+ 0 -1 7579 6.9274050183594227e-03
+
+ 3.8941461592912674e-02 -1.3961300253868103e-01
+ <_>
+
+ 0 -1 7580 -6.5109939314424992e-03
+
+ 1.5610300004482269e-01 -2.4493880569934845e-02
+ <_>
+
+ 0 -1 7581 -4.9708629958331585e-03
+
+ -9.8298586905002594e-02 5.7903841137886047e-02
+ <_>
+
+ 0 -1 7582 1.3074609637260437e-01
+
+ -2.7071859221905470e-04 1.0000669956207275e+00
+ <_>
+
+ 0 -1 7583 -2.6705920696258545e-02
+
+ -4.2577031254768372e-01 1.0705970227718353e-02
+ <_>
+
+ 0 -1 7584 -1.0329060256481171e-01
+
+ 2.5896188616752625e-01 -1.8414590507745743e-02
+ <_>
+
+ 0 -1 7585 -2.0166130736470222e-02
+
+ -1.1455850303173065e-01 4.0439568459987640e-02
+ <_>
+
+ 0 -1 7586 -4.2215920984745026e-03
+
+ 4.3039258569478989e-02 -4.8735860735177994e-02
+ <_>
+
+ 0 -1 7587 -1.0038839653134346e-02
+
+ 7.1608737111091614e-02 -6.6204607486724854e-02
+ <_>
+
+ 0 -1 7588 1.5833059325814247e-02
+
+ -3.2066859304904938e-02 8.9950896799564362e-02
+ <_>
+
+ 0 -1 7589 3.4065160434693098e-03
+
+ 4.7216009348630905e-02 -1.0898789763450623e-01
+ <_>
+
+ 0 -1 7590 -9.8251160234212875e-03
+
+ 1.0213229805231094e-01 -5.2902109920978546e-02
+ <_>
+
+ 0 -1 7591 1.6804629936814308e-02
+
+ -3.7189990282058716e-02 1.3787649571895599e-01
+ <_>
+
+ 0 -1 7592 8.5175316780805588e-03
+
+ 2.7141440659761429e-02 -1.3569560647010803e-01
+ <_>
+
+ 0 -1 7593 -6.3797592883929610e-04
+
+ 6.9217190146446228e-02 -9.0696737170219421e-02
+ <_>
+
+ 0 -1 7594 -9.6052087610587478e-04
+
+ 2.2472479939460754e-01 -2.4032639339566231e-02
+ <_>
+
+ 0 -1 7595 7.2245922638103366e-04
+
+ -4.6731200069189072e-02 9.6905507147312164e-02
+ <_>
+
+ 0 -1 7596 1.0769399814307690e-03
+
+ 3.8259491324424744e-02 -6.6674157977104187e-02
+ <_>
+
+ 0 -1 7597 4.1620191186666489e-02
+
+ 9.3473913148045540e-03 -4.9046689271926880e-01
+ <_>
+
+ 0 -1 7598 -8.1712089013308287e-04
+
+ 5.2797440439462662e-02 -9.6458092331886292e-02
+ <_>
+
+ 0 -1 7599 6.2240879051387310e-03
+
+ -3.5350788384675980e-02 1.6484160721302032e-01
+ <_>
+
+ 0 -1 7600 2.0862540695816278e-03
+
+ 3.3958710730075836e-02 -1.3114009797573090e-01
+ <_>
+
+ 0 -1 7601 4.2804637923836708e-03
+
+ 3.0104041099548340e-01 -1.6245450824499130e-02
+ <_>
+
+ 0 -1 7602 -3.3040030393749475e-04
+
+ -1.1665459722280502e-01 3.8146208971738815e-02
+ <_>
+
+ 0 -1 7603 2.8100309427827597e-03
+
+ 4.1940510272979736e-02 -1.1180300265550613e-01
+ <_>
+
+ 0 -1 7604 1.9832739606499672e-02
+
+ -1.1701569892466068e-02 2.0122130215167999e-01
+ <_>
+
+ 0 -1 7605 7.0879682898521423e-02
+
+ -1.8197819590568542e-02 2.5429588556289673e-01
+ <_>
+
+ 0 -1 7606 -8.3893969655036926e-02
+
+ -3.8719230890274048e-01 1.1727290228009224e-02
+ <_>
+
+ 0 -1 7607 2.8477620333433151e-02
+
+ 1.3701519928872585e-02 -3.2496619224548340e-01
+ <_>
+
+ 0 -1 7608 1.2077310122549534e-02
+
+ -2.3975890129804611e-02 2.5232788920402527e-01
+ <_>
+
+ 0 -1 7609 -7.5613409280776978e-02
+
+ -6.0866451263427734e-01 8.2847801968455315e-03
+ <_>
+
+ 0 -1 7610 -1.7563860863447189e-02
+
+ 1.0811589658260345e-01 -2.8622759506106377e-02
+ <_>
+
+ 0 -1 7611 1.1809109710156918e-02
+
+ 3.4758269786834717e-02 -1.4444710314273834e-01
+ <_>
+
+ 0 -1 7612 3.3459219336509705e-01
+
+ 3.5104870330542326e-03 -9.1507577896118164e-01
+ <_>
+
+ 0 -1 7613 9.8447836935520172e-02
+
+ -1.0290330275893211e-02 4.7943019866943359e-01
+ <_>
+
+ 0 -1 7614 -4.0277838706970215e-02
+
+ -7.3793828487396240e-01 4.8832078464329243e-03
+ <_>
+
+ 0 -1 7615 4.6712718904018402e-03
+
+ 2.5037309154868126e-02 -1.7003759741783142e-01
+ <_>
+
+ 0 -1 7616 1.3958489894866943e-01
+
+ 1.9962170626968145e-03 -7.1547168493270874e-01
+ <_>
+
+ 0 -1 7617 6.9742716848850250e-02
+
+ -8.4846932440996170e-03 5.5378282070159912e-01
+ <_>
+
+ 0 -1 7618 4.0283710695803165e-03
+
+ -1.6718029975891113e-02 2.3914240300655365e-01
+ <_>
+
+ 0 -1 7619 1.0911709628999233e-02
+
+ 1.5781659632921219e-02 -2.6813709735870361e-01
+ <_>
+
+ 0 -1 7620 -6.7120362073183060e-03
+
+ 1.1087659746408463e-01 -3.1365878880023956e-02
+ <_>
+
+ 0 -1 7621 -1.3467820361256599e-02
+
+ -2.0741519331932068e-01 2.3459080606698990e-02
+ <_>
+
+ 0 -1 7622 -2.1431609056890011e-03
+
+ 7.8274592757225037e-02 -2.7959430590271950e-02
+ <_>
+
+ 0 -1 7623 1.5163370408117771e-02
+
+ 2.1727830171585083e-02 -1.8995440006256104e-01
+ <_>
+
+ 0 -1 7624 -1.8551949411630630e-02
+
+ 1.1164160072803497e-01 -3.0374029651284218e-02
+ <_>
+
+ 0 -1 7625 -1.1083459854125977e-01
+
+ -5.6379908323287964e-01 7.6859779655933380e-03
+ <_>
+
+ 0 -1 7626 5.6210728362202644e-03
+
+ 3.2930258661508560e-02 -1.0337010025978088e-01
+ <_>
+
+ 0 -1 7627 3.0593289993703365e-03
+
+ -6.8871803581714630e-02 6.0389719903469086e-02
+ <_>
+
+ 0 -1 7628 -6.9845258258283138e-04
+
+ 3.8080908358097076e-02 -7.0112928748130798e-02
+ <_>
+
+ 0 -1 7629 -1.3236569939181209e-03
+
+ 7.5004093348979950e-02 -6.3950046896934509e-02
+ <_>
+
+ 0 -1 7630 -1.6736539546400309e-03
+
+ -1.0580399632453918e-01 4.9476388841867447e-02
+ <_>
+
+ 0 -1 7631 7.0728380233049393e-03
+
+ -3.6582119762897491e-02 1.3126540184020996e-01
+ <_>
+
+ 0 -1 7632 1.8164990469813347e-03
+
+ 3.9953831583261490e-02 -5.1589578390121460e-02
+ <_>
+
+ 0 -1 7633 4.1909920983016491e-03
+
+ 4.8665199428796768e-02 -1.0598509758710861e-01
+ <_>
+
+ 0 -1 7634 1.1940020322799683e-01
+
+ -6.7811049520969391e-03 7.4523490667343140e-01
+ <_>
+
+ 0 -1 7635 -1.4965030131861567e-03
+
+ 6.6805936396121979e-02 -6.7798472940921783e-02
+ <_>
+
+ 0 -1 7636 -1.1722999811172485e-01
+
+ -8.7860488891601562e-01 1.8648250261321664e-03
+ <_>
+
+ 0 -1 7637 3.2925528939813375e-03
+
+ 3.5634901374578476e-02 -1.5030789375305176e-01
+ <_>
+
+ 0 -1 7638 6.8493567407131195e-02
+
+ -9.8042488098144531e-03 3.0161941051483154e-01
+ <_>
+
+ 0 -1 7639 2.1837449166923761e-03
+
+ -5.3420849144458771e-02 8.5626326501369476e-02
+ <_>
+
+ 0 -1 7640 6.9181360304355621e-03
+
+ -4.3685518205165863e-02 1.2706759572029114e-01
+ <_>
+
+ 0 -1 7641 -1.5878600534051657e-03
+
+ -1.2640440464019775e-01 3.9026089012622833e-02
+ <_>
+
+ 0 -1 7642 3.8289129734039307e-03
+
+ 3.9025381207466125e-02 -7.9675689339637756e-02
+ <_>
+
+ 0 -1 7643 1.2253260239958763e-02
+
+ -4.4809628278017044e-02 9.7772710025310516e-02
+ <_>
+
+ 0 -1 7644 6.4031239598989487e-03
+
+ 3.3579610288143158e-02 -1.3300299644470215e-01
+ <_>
+
+ 0 -1 7645 7.0500532165169716e-03
+
+ -5.1121409982442856e-02 1.1772400140762329e-01
+ <_>
+
+ 0 -1 7646 1.3216730207204819e-02
+
+ 2.6454009115695953e-02 -1.3190220296382904e-01
+ <_>
+
+ 0 -1 7647 6.7367991432547569e-03
+
+ -1.0153199546039104e-02 4.1570469737052917e-01
+ <_>
+
+ 0 -1 7648 2.4951510131359100e-03
+
+ 1.4631019905209541e-02 -1.6560359299182892e-01
+ <_>
+
+ 0 -1 7649 3.8302998989820480e-02
+
+ 7.2940620593726635e-03 -6.0744607448577881e-01
+ <_>
+
+ 0 -1 7650 -1.6491059213876724e-02
+
+ 1.6788350045681000e-01 -1.5062170103192329e-02
+ <_>
+
+ 0 -1 7651 -2.7071639895439148e-02
+
+ -4.6381551027297974e-01 1.0335059836506844e-02
+ <_>
+
+ 0 -1 7652 -5.8714959770441055e-02
+
+ 1.4860999584197998e-01 -1.6663730144500732e-02
+ <_>
+
+ 0 -1 7653 9.2380512505769730e-03
+
+ 4.3830338865518570e-02 -1.0612689703702927e-01
+ <_>
+
+ 0 -1 7654 3.0808299779891968e-03
+
+ -3.6781489849090576e-02 8.9559197425842285e-02
+ <_>
+
+ 0 -1 7655 2.9910521116107702e-03
+
+ 1.6019189730286598e-02 -2.9177838563919067e-01
+ <_>
+
+ 0 -1 7656 4.4786609709262848e-02
+
+ -6.7814979702234268e-03 3.6695161461830139e-01
+ <_>
+
+ 0 -1 7657 -2.9985690489411354e-03
+
+ -9.0316072106361389e-02 4.8048041760921478e-02
+ <_>
+
+ 0 -1 7658 -8.9135952293872833e-03
+
+ 1.6903600096702576e-01 -2.1880460903048515e-02
+ <_>
+
+ 0 -1 7659 -3.9598200470209122e-02
+
+ -4.4884848594665527e-01 1.0027219541370869e-02
+ <_>
+
+ 0 -1 7660 -3.7064809352159500e-02
+
+ -4.4183561205863953e-01 2.2891450207680464e-03
+ <_>
+
+ 0 -1 7661 -9.3376229051500559e-04
+
+ 7.3633059859275818e-02 -5.8901689946651459e-02
+ <_>
+
+ 0 -1 7662 8.0887757241725922e-02
+
+ -2.4963580071926117e-02 6.0303758829832077e-02
+ <_>
+
+ 0 -1 7663 -3.0697569251060486e-02
+
+ -1.7819009721279144e-01 2.6090290397405624e-02
+ <_>
+
+ 0 -1 7664 -1.8495260179042816e-01
+
+ 3.4901228547096252e-01 -3.8219890557229519e-03
+ <_>
+
+ 0 -1 7665 1.1218319647014141e-02
+
+ -2.6781549677252769e-02 1.7431420087814331e-01
+ <_>
+
+ 0 -1 7666 6.2761609442532063e-03
+
+ 1.4532440342009068e-02 -1.1864569783210754e-01
+ <_>
+
+ 0 -1 7667 -8.8509358465671539e-03
+
+ -1.0515689849853516e-01 5.7655680924654007e-02
+ <_>
+
+ 0 -1 7668 -3.8575798273086548e-02
+
+ 1.5004560351371765e-01 -3.6080200225114822e-02
+ <_>
+
+ 0 -1 7669 -5.2720211446285248e-02
+
+ -4.7556790709495544e-01 1.1126070283353329e-02
+ <_>
+ 392
+ -1.1210759878158569e+00
+
+ <_>
+
+ 0 -1 7670 -3.8506588898599148e-03
+
+ 1.1209569871425629e-01 -2.7330291271209717e-01
+ <_>
+
+ 0 -1 7671 -4.9427259713411331e-02
+
+ 3.9270120859146118e-01 -3.9871849119663239e-02
+ <_>
+
+ 0 -1 7672 1.3538210187107325e-03
+
+ -1.5965040028095245e-01 1.2521059811115265e-01
+ <_>
+
+ 0 -1 7673 3.9328690618276596e-03
+
+ -3.4043839573860168e-01 4.7437489032745361e-02
+ <_>
+
+ 0 -1 7674 2.3011169396340847e-03
+
+ -2.0827749371528625e-01 7.4891701340675354e-02
+ <_>
+
+ 0 -1 7675 5.9128052089363337e-04
+
+ -2.0842720568180084e-01 3.7798780947923660e-02
+ <_>
+
+ 0 -1 7676 1.7478190129622817e-03
+
+ -1.9635179638862610e-01 6.4582027494907379e-02
+ <_>
+
+ 0 -1 7677 5.8316658250987530e-03
+
+ 3.1582038849592209e-02 -1.9084580242633820e-01
+ <_>
+
+ 0 -1 7678 1.2435190146788955e-03
+
+ -5.3213578462600708e-01 2.2162230685353279e-02
+ <_>
+
+ 0 -1 7679 1.6247769817709923e-03
+
+ -1.3276180624961853e-01 8.0135673284530640e-02
+ <_>
+
+ 0 -1 7680 -2.2734089288860559e-03
+
+ -1.7344699800014496e-01 5.4782990366220474e-02
+ <_>
+
+ 0 -1 7681 5.7859059423208237e-02
+
+ -1.5829589683562517e-03 -6.6367942094802856e-01
+ <_>
+
+ 0 -1 7682 5.7728560641407967e-03
+
+ 3.9815168827772141e-02 -2.2919249534606934e-01
+ <_>
+
+ 0 -1 7683 -4.4039610773324966e-02
+
+ 2.1793280541896820e-01 -2.3534009233117104e-02
+ <_>
+
+ 0 -1 7684 3.0226248782128096e-04
+
+ -8.9419580996036530e-02 1.1042869836091995e-01
+ <_>
+
+ 0 -1 7685 -3.4470859915018082e-02
+
+ -3.6666679382324219e-01 2.7858279645442963e-02
+ <_>
+
+ 0 -1 7686 3.2460398972034454e-02
+
+ 1.5733880922198296e-02 -4.9733749032020569e-01
+ <_>
+
+ 0 -1 7687 9.9335552658885717e-04
+
+ -9.1800943017005920e-02 8.4003977477550507e-02
+ <_>
+
+ 0 -1 7688 -2.3473830893635750e-02
+
+ -4.4375669956207275e-01 1.5148010104894638e-02
+ <_>
+
+ 0 -1 7689 -2.9013049788773060e-03
+
+ 5.4642349481582642e-02 -2.0156529545783997e-01
+ <_>
+
+ 0 -1 7690 -6.5832951804623008e-04
+
+ -1.2285769730806351e-01 5.6707888841629028e-02
+ <_>
+
+ 0 -1 7691 2.0407158881425858e-03
+
+ -1.0899069905281067e-01 5.9933699667453766e-02
+ <_>
+
+ 0 -1 7692 -1.3161499984562397e-02
+
+ 1.4091959595680237e-01 -4.7396201640367508e-02
+ <_>
+
+ 0 -1 7693 -4.2273551225662231e-03
+
+ -1.2498269975185394e-01 5.1124658435583115e-02
+ <_>
+
+ 0 -1 7694 7.6580629684031010e-03
+
+ 3.8773480802774429e-02 -1.8095690011978149e-01
+ <_>
+
+ 0 -1 7695 -5.1912548951804638e-03
+
+ 1.2545259296894073e-01 -4.4012580066919327e-02
+ <_>
+
+ 0 -1 7696 1.1874590069055557e-01
+
+ -1.4801479876041412e-02 4.0071210265159607e-01
+ <_>
+
+ 0 -1 7697 4.5105828903615475e-03
+
+ 5.3336851298809052e-02 -1.5709049999713898e-01
+ <_>
+
+ 0 -1 7698 4.5015379786491394e-02
+
+ -3.3278778195381165e-02 2.0535139739513397e-01
+ <_>
+
+ 0 -1 7699 -2.0866969134658575e-03
+
+ 4.2103528976440430e-02 -1.0361789911985397e-01
+ <_>
+
+ 0 -1 7700 -1.3008449459448457e-03
+
+ 6.4424470067024231e-02 -9.7897060215473175e-02
+ <_>
+
+ 0 -1 7701 -1.3591230381280184e-03
+
+ 7.2987347841262817e-02 -9.4451002776622772e-02
+ <_>
+
+ 0 -1 7702 -7.4056759476661682e-03
+
+ -1.5320360660552979e-01 5.3242001682519913e-02
+ <_>
+
+ 0 -1 7703 2.0208859350532293e-03
+
+ -3.3245529979467392e-02 6.0319710522890091e-02
+ <_>
+
+ 0 -1 7704 -1.0342149995267391e-02
+
+ 8.5510559380054474e-02 -8.3920828998088837e-02
+ <_>
+
+ 0 -1 7705 2.4865860119462013e-02
+
+ 1.2639460153877735e-02 -3.4757199883460999e-01
+ <_>
+
+ 0 -1 7706 9.9798657000064850e-02
+
+ -1.8823970109224319e-02 3.4465000033378601e-01
+ <_>
+
+ 0 -1 7707 2.1201390773057938e-02
+
+ -1.0467799752950668e-01 3.1494509428739548e-02
+ <_>
+
+ 0 -1 7708 -5.1909908652305603e-03
+
+ -1.5792340040206909e-01 5.0269961357116699e-02
+ <_>
+
+ 0 -1 7709 6.6961228847503662e-02
+
+ 3.2651789952069521e-03 -5.6049168109893799e-01
+ <_>
+
+ 0 -1 7710 1.1809109710156918e-02
+
+ -2.8513789176940918e-02 2.1226319670677185e-01
+ <_>
+
+ 0 -1 7711 -1.7645660787820816e-02
+
+ -4.4503360986709595e-01 5.0029670819640160e-03
+ <_>
+
+ 0 -1 7712 -6.8918941542506218e-03
+
+ -4.2199620604515076e-01 1.4813040383160114e-02
+ <_>
+
+ 0 -1 7713 2.1675550378859043e-03
+
+ -1.3125190138816833e-01 6.7140422761440277e-02
+ <_>
+
+ 0 -1 7714 -3.3283489756286144e-03
+
+ -1.0765329748392105e-01 5.3610768169164658e-02
+ <_>
+
+ 0 -1 7715 4.8869621008634567e-02
+
+ 6.4427889883518219e-03 -6.4563280344009399e-01
+ <_>
+
+ 0 -1 7716 7.2693959809839725e-03
+
+ -3.9603620767593384e-02 1.5369640290737152e-01
+ <_>
+
+ 0 -1 7717 8.8849991559982300e-02
+
+ -1.3234400190412998e-02 2.8555288910865784e-01
+ <_>
+
+ 0 -1 7718 1.5455950051546097e-02
+
+ 3.9694100618362427e-02 -1.7206269502639771e-01
+ <_>
+
+ 0 -1 7719 -1.3747200369834900e-02
+
+ 1.0079269856214523e-01 -4.3812029063701630e-02
+ <_>
+
+ 0 -1 7720 -2.2805750370025635e-02
+
+ 1.5014170110225677e-01 -4.3767798691987991e-02
+ <_>
+
+ 0 -1 7721 2.3838039487600327e-02
+
+ 5.3901281207799911e-02 -1.4610290527343750e-01
+ <_>
+
+ 0 -1 7722 -1.0181629657745361e-01
+
+ 3.1905040144920349e-01 -2.0011590793728828e-02
+ <_>
+
+ 0 -1 7723 7.1074268780648708e-03
+
+ 5.6244179606437683e-02 -1.2587560713291168e-01
+ <_>
+
+ 0 -1 7724 7.6678092591464520e-04
+
+ -1.0704190284013748e-01 6.6436298191547394e-02
+ <_>
+
+ 0 -1 7725 3.7424071342684329e-04
+
+ -3.7826299667358398e-02 4.7234989702701569e-02
+ <_>
+
+ 0 -1 7726 -2.0078169181942940e-03
+
+ -9.3316286802291870e-02 6.7641608417034149e-02
+ <_>
+
+ 0 -1 7727 3.3469051122665405e-02
+
+ -2.7926150709390640e-02 2.5293371081352234e-01
+ <_>
+
+ 0 -1 7728 -1.5507030300796032e-02
+
+ -5.5145150423049927e-01 1.2821160256862640e-02
+ <_>
+
+ 0 -1 7729 -1.9248709082603455e-02
+
+ 5.2688628435134888e-02 -3.0364990234375000e-02
+ <_>
+
+ 0 -1 7730 -1.7556030303239822e-02
+
+ -3.3247348666191101e-01 1.8780380487442017e-02
+ <_>
+
+ 0 -1 7731 1.9324380904436111e-02
+
+ -3.2458461821079254e-02 9.4986997544765472e-02
+ <_>
+
+ 0 -1 7732 -2.0367160439491272e-02
+
+ 1.1348400264978409e-01 -5.8434821665287018e-02
+ <_>
+
+ 0 -1 7733 5.1770661957561970e-03
+
+ 4.7030560672283173e-02 -8.4960326552391052e-02
+ <_>
+
+ 0 -1 7734 1.9768481142818928e-03
+
+ -7.0794142782688141e-02 1.0375150293111801e-01
+ <_>
+
+ 0 -1 7735 -7.0216279709711671e-04
+
+ 3.0781729146838188e-02 -1.0170820355415344e-01
+ <_>
+
+ 0 -1 7736 -2.4710369762033224e-03
+
+ 5.1577620208263397e-02 -1.1920809745788574e-01
+ <_>
+
+ 0 -1 7737 2.3278540000319481e-02
+
+ 3.0191570520401001e-02 -9.3937888741493225e-02
+ <_>
+
+ 0 -1 7738 1.3673819601535797e-02
+
+ -2.6758959516882896e-02 2.4014200270175934e-01
+ <_>
+
+ 0 -1 7739 -8.3967903628945351e-03
+
+ -5.0403770059347153e-02 2.2368110716342926e-02
+ <_>
+
+ 0 -1 7740 4.7878470271825790e-02
+
+ -2.3758050054311752e-02 2.6486390829086304e-01
+ <_>
+
+ 0 -1 7741 -2.2483520209789276e-02
+
+ -2.3042780160903931e-01 1.2840679846704006e-02
+ <_>
+
+ 0 -1 7742 -1.0883989743888378e-02
+
+ -1.8380180001258850e-01 3.2639708369970322e-02
+ <_>
+
+ 0 -1 7743 -4.4901989400386810e-02
+
+ 2.4195960164070129e-01 -2.6507280766963959e-02
+ <_>
+
+ 0 -1 7744 -8.3042927086353302e-02
+
+ -8.0491328239440918e-01 7.5420029461383820e-03
+ <_>
+
+ 0 -1 7745 -3.7240530364215374e-03
+
+ -8.0228239297866821e-02 3.1584471464157104e-02
+ <_>
+
+ 0 -1 7746 -7.3502189479768276e-03
+
+ 6.8962231278419495e-02 -9.7391247749328613e-02
+ <_>
+
+ 0 -1 7747 5.5313981138169765e-03
+
+ -3.0180720612406731e-02 6.0174800455570221e-02
+ <_>
+
+ 0 -1 7748 1.7293080687522888e-02
+
+ 4.0732100605964661e-02 -1.5600660443305969e-01
+ <_>
+
+ 0 -1 7749 -3.3298740163445473e-03
+
+ 4.1001088917255402e-02 -7.6909027993679047e-02
+ <_>
+
+ 0 -1 7750 -4.9308240413665771e-03
+
+ 1.7031539976596832e-01 -4.0582239627838135e-02
+ <_>
+
+ 0 -1 7751 8.6011141538619995e-03
+
+ 3.1656920909881592e-02 -1.4050039649009705e-01
+ <_>
+
+ 0 -1 7752 1.3674340210855007e-02
+
+ -2.1845709532499313e-02 3.0128660798072815e-01
+ <_>
+
+ 0 -1 7753 -1.1375419795513153e-02
+
+ -1.5687340497970581e-01 2.8256019577383995e-02
+ <_>
+
+ 0 -1 7754 -4.2750681750476360e-03
+
+ -1.2155970185995102e-01 5.0146799534559250e-02
+ <_>
+
+ 0 -1 7755 1.6484759747982025e-02
+
+ -3.6557890474796295e-02 1.2583729624748230e-01
+ <_>
+
+ 0 -1 7756 -3.9056900888681412e-02
+
+ 2.4053129553794861e-01 -2.6983890682458878e-02
+ <_>
+
+ 0 -1 7757 -5.7546719908714294e-03
+
+ -1.3337680697441101e-01 2.0266020670533180e-02
+ <_>
+
+ 0 -1 7758 5.1583289168775082e-03
+
+ 6.4666390419006348e-02 -1.1428499966859818e-01
+ <_>
+
+ 0 -1 7759 -3.0463270377367735e-03
+
+ 4.5018680393695831e-02 -8.1573590636253357e-02
+ <_>
+
+ 0 -1 7760 7.4743861332535744e-03
+
+ 3.1246710568666458e-02 -1.8929730355739594e-01
+ <_>
+
+ 0 -1 7761 1.6480450285598636e-03
+
+ -2.5895040482282639e-02 1.8652880191802979e-01
+ <_>
+
+ 0 -1 7762 4.5184311456978321e-03
+
+ 5.4803468286991119e-02 -1.0444000363349915e-01
+ <_>
+
+ 0 -1 7763 -3.3209871035069227e-03
+
+ 4.3959401547908783e-02 -8.1240482628345490e-02
+ <_>
+
+ 0 -1 7764 5.2665979601442814e-03
+
+ -4.4853471219539642e-02 1.1343909800052643e-01
+ <_>
+
+ 0 -1 7765 -4.7867707908153534e-03
+
+ 7.6319009065628052e-02 -2.8551170602440834e-02
+ <_>
+
+ 0 -1 7766 -4.4710118323564529e-02
+
+ -3.4795719385147095e-01 1.4928230084478855e-02
+ <_>
+
+ 0 -1 7767 4.3861730955541134e-03
+
+ 7.4540950357913971e-02 -4.6298071742057800e-02
+ <_>
+
+ 0 -1 7768 9.2240851372480392e-03
+
+ -5.8626178652048111e-02 9.8693408071994781e-02
+ <_>
+
+ 0 -1 7769 -1.1849260190501809e-03
+
+ 1.0023140162229538e-01 -5.6729640811681747e-02
+ <_>
+
+ 0 -1 7770 -1.8546540290117264e-02
+
+ -3.8236171007156372e-01 1.5141529962420464e-02
+ <_>
+
+ 0 -1 7771 3.4743950236588717e-03
+
+ 2.6523910462856293e-02 -1.1289829760789871e-01
+ <_>
+
+ 0 -1 7772 1.0274019837379456e-01
+
+ -6.6097700037062168e-03 7.7561777830123901e-01
+ <_>
+
+ 0 -1 7773 2.0479390025138855e-01
+
+ 6.9657550193369389e-03 -3.5988980531692505e-01
+ <_>
+
+ 0 -1 7774 1.2094060331583023e-01
+
+ 1.8174450844526291e-02 -3.3531171083450317e-01
+ <_>
+
+ 0 -1 7775 1.2224229983985424e-02
+
+ -3.1454049050807953e-02 7.9004973173141479e-02
+ <_>
+
+ 0 -1 7776 1.5176460146903992e-01
+
+ -1.0826669633388519e-02 4.5583090186119080e-01
+ <_>
+
+ 0 -1 7777 -9.9692150950431824e-02
+
+ -3.5422179102897644e-01 3.1256359070539474e-03
+ <_>
+
+ 0 -1 7778 -6.3465638086199760e-03
+
+ -1.1098819971084595e-01 5.3735308349132538e-02
+ <_>
+
+ 0 -1 7779 -6.7007602192461491e-03
+
+ 1.8910090625286102e-01 -3.0930159613490105e-02
+ <_>
+
+ 0 -1 7780 -1.0101199895143509e-01
+
+ 2.3763500154018402e-01 -2.2213969379663467e-02
+ <_>
+
+ 0 -1 7781 4.6111021190881729e-02
+
+ -3.7543330341577530e-02 4.8733759671449661e-02
+ <_>
+
+ 0 -1 7782 1.4146809279918671e-01
+
+ 1.1148019693791866e-02 -5.1474362611770630e-01
+ <_>
+
+ 0 -1 7783 -1.1394499801099300e-02
+
+ -7.0824302732944489e-02 3.1759370118379593e-02
+ <_>
+
+ 0 -1 7784 3.1667309813201427e-03
+
+ 4.1177280247211456e-02 -1.4900580048561096e-01
+ <_>
+
+ 0 -1 7785 8.9959725737571716e-03
+
+ -4.1186511516571045e-02 7.2816781699657440e-02
+ <_>
+
+ 0 -1 7786 -6.1559271067380905e-02
+
+ -7.3937642574310303e-01 6.6859079524874687e-03
+ <_>
+
+ 0 -1 7787 -3.5607949830591679e-03
+
+ 1.3260509818792343e-02 -6.1150819063186646e-02
+ <_>
+
+ 0 -1 7788 -1.2476339936256409e-01
+
+ -7.8580498695373535e-01 6.2701301649212837e-03
+ <_>
+
+ 0 -1 7789 6.2739187479019165e-01
+
+ 3.5465341061353683e-03 -7.3363810777664185e-01
+ <_>
+
+ 0 -1 7790 3.4219160676002502e-02
+
+ 8.2031572237610817e-03 -5.3330212831497192e-01
+ <_>
+
+ 0 -1 7791 1.0574149928288534e-04
+
+ -5.0354700535535812e-02 4.7019489109516144e-02
+ <_>
+
+ 0 -1 7792 -3.2112289220094681e-02
+
+ 1.7085300385951996e-01 -3.4734141081571579e-02
+ <_>
+
+ 0 -1 7793 -1.6140839084982872e-02
+
+ -6.4753092825412750e-02 5.6943111121654510e-02
+ <_>
+
+ 0 -1 7794 1.9737280905246735e-02
+
+ -1.8065180629491806e-02 2.6183420419692993e-01
+ <_>
+
+ 0 -1 7795 2.7895450592041016e-02
+
+ 1.7641060054302216e-02 -3.0951151251792908e-01
+ <_>
+
+ 0 -1 7796 3.5123159177601337e-03
+
+ -8.3447068929672241e-02 6.5015971660614014e-02
+ <_>
+
+ 0 -1 7797 -4.4775637798011303e-03
+
+ -1.2423449754714966e-01 4.7061119228601456e-02
+ <_>
+
+ 0 -1 7798 -6.1348858289420605e-03
+
+ 1.0248269885778427e-01 -5.9700958430767059e-02
+ <_>
+
+ 0 -1 7799 1.4047959819436073e-02
+
+ 1.4833379536867142e-02 -1.1229590326547623e-01
+ <_>
+
+ 0 -1 7800 1.1907520238310099e-03
+
+ 4.9986690282821655e-02 -1.1696290224790573e-01
+ <_>
+
+ 0 -1 7801 1.7617389559745789e-02
+
+ -1.7687700688838959e-02 1.5416090190410614e-01
+ <_>
+
+ 0 -1 7802 -4.9166870303452015e-03
+
+ -1.0227180272340775e-01 4.6994391828775406e-02
+ <_>
+
+ 0 -1 7803 -3.9010820910334587e-03
+
+ 1.4229449629783630e-01 -4.5312799513339996e-02
+ <_>
+
+ 0 -1 7804 -1.7458139918744564e-03
+
+ -1.0853090137243271e-01 7.5689561665058136e-02
+ <_>
+
+ 0 -1 7805 -1.2748650042340159e-03
+
+ 2.2384520620107651e-02 -7.5150527060031891e-02
+ <_>
+
+ 0 -1 7806 -7.9109556972980499e-02
+
+ 4.8773929476737976e-01 -9.6941655501723289e-03
+ <_>
+
+ 0 -1 7807 -1.4103270135819912e-02
+
+ -2.3263689875602722e-01 1.5091559849679470e-02
+ <_>
+
+ 0 -1 7808 -2.2076119203120470e-03
+
+ 1.9268399477005005e-01 -2.5429060682654381e-02
+ <_>
+
+ 0 -1 7809 3.9626058191061020e-02
+
+ -1.5630759298801422e-02 1.2270029634237289e-01
+ <_>
+
+ 0 -1 7810 -7.8973636846058071e-05
+
+ -7.3257647454738617e-02 6.5848693251609802e-02
+ <_>
+
+ 0 -1 7811 5.1964947488158941e-04
+
+ -1.1366380006074905e-01 8.1133492290973663e-02
+ <_>
+
+ 0 -1 7812 -1.1722079943865538e-03
+
+ -9.7602643072605133e-02 5.9839569032192230e-02
+ <_>
+
+ 0 -1 7813 3.9326730184257030e-03
+
+ -5.7026151567697525e-02 4.2226128280162811e-02
+ <_>
+
+ 0 -1 7814 -8.7386153638362885e-02
+
+ -3.7896049022674561e-01 1.2869279831647873e-02
+ <_>
+
+ 0 -1 7815 -2.1324040368199348e-02
+
+ 3.0886441469192505e-01 -1.7734240740537643e-02
+ <_>
+
+ 0 -1 7816 -2.3385910317301750e-03
+
+ -1.1322320252656937e-01 4.3914940208196640e-02
+ <_>
+
+ 0 -1 7817 1.5183660434558988e-03
+
+ -1.4337620139122009e-01 3.9441708475351334e-02
+ <_>
+
+ 0 -1 7818 -1.1085519939661026e-01
+
+ 7.4037587642669678e-01 -6.7982021719217300e-03
+ <_>
+
+ 0 -1 7819 -1.0009120218455791e-02
+
+ -3.9203230291604996e-02 3.1749211251735687e-02
+ <_>
+
+ 0 -1 7820 -2.0916430279612541e-02
+
+ 1.8927730619907379e-01 -3.0490230768918991e-02
+ <_>
+
+ 0 -1 7821 7.4165337719023228e-03
+
+ 4.6797450631856918e-02 -1.1113610118627548e-01
+ <_>
+
+ 0 -1 7822 3.3599510788917542e-03
+
+ -4.5254990458488464e-02 1.1508409678936005e-01
+ <_>
+
+ 0 -1 7823 -5.7189498329535127e-04
+
+ -6.3472077250480652e-02 5.2049949765205383e-02
+ <_>
+
+ 0 -1 7824 -6.8120293319225311e-02
+
+ 5.0806027650833130e-01 -9.5091843977570534e-03
+ <_>
+
+ 0 -1 7825 2.5180799420922995e-03
+
+ 5.5305320769548416e-02 -1.4402769505977631e-01
+ <_>
+
+ 0 -1 7826 5.6055251508951187e-02
+
+ -2.3359170183539391e-02 2.1935400366783142e-01
+ <_>
+
+ 0 -1 7827 -4.0386710315942764e-02
+
+ -1.9183440506458282e-01 7.8779058530926704e-03
+ <_>
+
+ 0 -1 7828 3.1857648864388466e-03
+
+ 2.7605779469013214e-02 -2.0084309577941895e-01
+ <_>
+
+ 0 -1 7829 2.5159550830721855e-02
+
+ 1.1265699751675129e-02 -4.3628180027008057e-01
+ <_>
+
+ 0 -1 7830 -2.7010419871658087e-03
+
+ 1.1336500197649002e-01 -4.6904269605875015e-02
+ <_>
+
+ 0 -1 7831 -3.0056890100240707e-02
+
+ -6.2368732690811157e-01 7.3214052245020866e-03
+ <_>
+
+ 0 -1 7832 -1.2088020145893097e-01
+
+ -8.6428368091583252e-01 4.3813590891659260e-03
+ <_>
+
+ 0 -1 7833 4.0104859508574009e-03
+
+ -5.3471650928258896e-02 7.1113802492618561e-02
+ <_>
+
+ 0 -1 7834 -2.9688570648431778e-03
+
+ 1.0076630115509033e-01 -4.9233928322792053e-02
+ <_>
+
+ 0 -1 7835 -3.7600689101964235e-03
+
+ -2.0928700268268585e-01 2.6549680158495903e-02
+ <_>
+
+ 0 -1 7836 -1.5982619952410460e-03
+
+ 6.1070188879966736e-02 -7.9623572528362274e-02
+ <_>
+
+ 0 -1 7837 5.4285880178213120e-03
+
+ 3.9766579866409302e-02 -1.1746849864721298e-01
+ <_>
+
+ 0 -1 7838 1.0872900020331144e-03
+
+ -6.4596228301525116e-02 7.4964426457881927e-02
+ <_>
+
+ 0 -1 7839 -2.8442030306905508e-03
+
+ 1.1738350242376328e-01 -4.0159400552511215e-02
+ <_>
+
+ 0 -1 7840 3.5546101629734039e-02
+
+ 1.2194969691336155e-02 -4.2184820771217346e-01
+ <_>
+
+ 0 -1 7841 -4.8542950302362442e-02
+
+ 3.1292769312858582e-01 -1.2773830443620682e-02
+ <_>
+
+ 0 -1 7842 -3.0732100829482079e-02
+
+ -5.0631237030029297e-01 1.0600729845464230e-02
+ <_>
+
+ 0 -1 7843 1.3066929765045643e-02
+
+ -5.0003118813037872e-02 4.4005930423736572e-02
+ <_>
+
+ 0 -1 7844 2.9200640320777893e-01
+
+ 5.3693680092692375e-03 -8.9039158821105957e-01
+ <_>
+
+ 0 -1 7845 -8.7579451501369476e-03
+
+ 9.6666730940341949e-02 -3.1310658901929855e-02
+ <_>
+
+ 0 -1 7846 -2.3599369451403618e-03
+
+ 4.3046280741691589e-02 -1.0992430150508881e-01
+ <_>
+
+ 0 -1 7847 6.9077489897608757e-03
+
+ -2.9174160212278366e-02 8.9174896478652954e-02
+ <_>
+
+ 0 -1 7848 2.0849689841270447e-02
+
+ 1.2614700198173523e-01 -4.4358100742101669e-02
+ <_>
+
+ 0 -1 7849 -5.8846421539783478e-02
+
+ 2.1661500632762909e-01 -8.7285088375210762e-03
+ <_>
+
+ 0 -1 7850 2.5576311163604259e-03
+
+ -1.1648210138082504e-01 5.4756019264459610e-02
+ <_>
+
+ 0 -1 7851 3.8973900955170393e-03
+
+ 3.5759489983320236e-02 -9.7868561744689941e-02
+ <_>
+
+ 0 -1 7852 -1.2494160328060389e-03
+
+ 9.1347962617874146e-02 -5.7817179709672928e-02
+ <_>
+
+ 0 -1 7853 3.4928850363940001e-03
+
+ 2.0634220913052559e-02 -1.4494930207729340e-01
+ <_>
+
+ 0 -1 7854 -1.1378509923815727e-02
+
+ 2.1203260123729706e-01 -2.4150850251317024e-02
+ <_>
+
+ 0 -1 7855 -4.4060450047254562e-02
+
+ 4.2267361283302307e-01 -4.7765900380909443e-03
+ <_>
+
+ 0 -1 7856 -8.3084795624017715e-03
+
+ -8.4928646683692932e-02 6.0228090733289719e-02
+ <_>
+
+ 0 -1 7857 -9.1945994645357132e-03
+
+ 7.2318702936172485e-02 -2.0472260192036629e-02
+ <_>
+
+ 0 -1 7858 6.5575107932090759e-02
+
+ 5.0813751295208931e-03 -8.9693188667297363e-01
+ <_>
+
+ 0 -1 7859 1.8510420620441437e-01
+
+ 2.2485901135951281e-03 -7.5125169754028320e-01
+ <_>
+
+ 0 -1 7860 -1.7608819901943207e-01
+
+ -7.8969222307205200e-01 5.2678477950394154e-03
+ <_>
+
+ 0 -1 7861 9.8349712789058685e-02
+
+ 2.8081049676984549e-03 -2.5828519463539124e-01
+ <_>
+
+ 0 -1 7862 -1.8191979324910790e-04
+
+ -8.6206100881099701e-02 5.2294798195362091e-02
+ <_>
+
+ 0 -1 7863 -5.2928649820387363e-03
+
+ -5.4600238800048828e-02 2.8304630890488625e-02
+ <_>
+
+ 0 -1 7864 1.1537299724295735e-03
+
+ 4.6684168279170990e-02 -1.1234779655933380e-01
+ <_>
+
+ 0 -1 7865 -3.8274680264294147e-03
+
+ 6.0145508497953415e-02 -8.2371100783348083e-02
+ <_>
+
+ 0 -1 7866 -8.6957857012748718e-02
+
+ -4.8363038897514343e-01 9.2326821759343147e-03
+ <_>
+
+ 0 -1 7867 -2.4195960722863674e-03
+
+ -3.5221140831708908e-02 2.7081709355115891e-02
+ <_>
+
+ 0 -1 7868 -4.7905668616294861e-03
+
+ 5.8955200016498566e-02 -7.8748136758804321e-02
+ <_>
+
+ 0 -1 7869 -4.0910490788519382e-03
+
+ -1.7550939321517944e-01 2.6454729959368706e-02
+ <_>
+
+ 0 -1 7870 2.5641750544309616e-03
+
+ -3.6814831197261810e-02 1.5140229463577271e-01
+ <_>
+
+ 0 -1 7871 5.4726968519389629e-03
+
+ 3.1243579462170601e-02 -9.7890958189964294e-02
+ <_>
+
+ 0 -1 7872 -1.0310260113328695e-03
+
+ -1.2424050271511078e-01 4.0365029126405716e-02
+ <_>
+
+ 0 -1 7873 -1.3030169904232025e-01
+
+ 1.7106169462203979e-01 -6.9856629706919193e-03
+ <_>
+
+ 0 -1 7874 3.5753389820456505e-03
+
+ -2.5437129661440849e-02 2.1967570483684540e-01
+ <_>
+
+ 0 -1 7875 8.4238024428486824e-03
+
+ 2.9582399874925613e-02 -1.7390090227127075e-01
+ <_>
+
+ 0 -1 7876 4.1154649108648300e-02
+
+ -1.3265499845147133e-02 3.6282411217689514e-01
+ <_>
+
+ 0 -1 7877 -1.8620759248733521e-02
+
+ -2.2806780040264130e-01 2.1502569317817688e-02
+ <_>
+
+ 0 -1 7878 2.3307619616389275e-02
+
+ -2.3047760128974915e-02 2.3208670318126678e-01
+ <_>
+
+ 0 -1 7879 4.6518299728631973e-02
+
+ 1.0585400275886059e-02 -4.6076700091362000e-01
+ <_>
+
+ 0 -1 7880 -8.3499401807785034e-02
+
+ 3.7845119833946228e-01 -1.4105740003287792e-02
+ <_>
+
+ 0 -1 7881 -9.6897013485431671e-02
+
+ -3.2995849847793579e-01 6.2883920036256313e-03
+ <_>
+
+ 0 -1 7882 6.9753699935972691e-03
+
+ 2.4593630805611610e-02 -2.1003679931163788e-01
+ <_>
+
+ 0 -1 7883 -3.3859949558973312e-02
+
+ 1.8927900493144989e-01 -8.7296841666102409e-03
+ <_>
+
+ 0 -1 7884 1.0354740079492331e-03
+
+ -6.4493343234062195e-02 8.0192290246486664e-02
+ <_>
+
+ 0 -1 7885 3.9950661361217499e-02
+
+ 2.5073040276765823e-02 -1.1636939644813538e-01
+ <_>
+
+ 0 -1 7886 3.0460350681096315e-03
+
+ -3.3754941076040268e-02 1.3324250280857086e-01
+ <_>
+
+ 0 -1 7887 -1.5341850230470300e-03
+
+ 6.2442861497402191e-02 -5.6061070412397385e-02
+ <_>
+
+ 0 -1 7888 2.0531520713120699e-03
+
+ -8.4790043532848358e-02 5.3408049046993256e-02
+ <_>
+
+ 0 -1 7889 2.1295580081641674e-03
+
+ 4.0650319308042526e-02 -1.1124719679355621e-01
+ <_>
+
+ 0 -1 7890 -1.5462029725313187e-02
+
+ 1.3806979358196259e-01 -3.3944208174943924e-02
+ <_>
+
+ 0 -1 7891 -2.7878239750862122e-02
+
+ -1.0025399923324585e-01 1.3444880023598671e-02
+ <_>
+
+ 0 -1 7892 1.7255680635571480e-02
+
+ 1.5361789613962173e-02 -3.6930799484252930e-01
+ <_>
+
+ 0 -1 7893 -1.7870500683784485e-02
+
+ 5.2870798856019974e-02 -2.5108009576797485e-02
+ <_>
+
+ 0 -1 7894 -1.4443919993937016e-02
+
+ -2.2763819992542267e-01 2.0391609519720078e-02
+ <_>
+
+ 0 -1 7895 -8.3497241139411926e-03
+
+ -8.7055817246437073e-02 3.2707940787076950e-02
+ <_>
+
+ 0 -1 7896 2.7514319866895676e-02
+
+ -2.0628409460186958e-02 2.5977128744125366e-01
+ <_>
+
+ 0 -1 7897 1.8610119819641113e-02
+
+ -8.0523788928985596e-03 1.6925090551376343e-01
+ <_>
+
+ 0 -1 7898 -9.5786049962043762e-02
+
+ -5.0116628408432007e-01 8.7666641920804977e-03
+ <_>
+
+ 0 -1 7899 1.2036979943513870e-01
+
+ 9.8632962908595800e-04 -1.0000280141830444e+00
+ <_>
+
+ 0 -1 7900 2.4782579392194748e-02
+
+ -1.2519709765911102e-02 3.5919609665870667e-01
+ <_>
+
+ 0 -1 7901 -5.0353828817605972e-02
+
+ -3.3340519666671753e-01 6.9066900759935379e-03
+ <_>
+
+ 0 -1 7902 3.1298059970140457e-02
+
+ 1.0963119566440582e-02 -4.0645220875740051e-01
+ <_>
+
+ 0 -1 7903 7.4575231410562992e-03
+
+ -2.1207600831985474e-02 1.3167420029640198e-01
+ <_>
+
+ 0 -1 7904 5.5791479535400867e-03
+
+ -3.4098070114850998e-02 1.2983830273151398e-01
+ <_>
+
+ 0 -1 7905 5.9088319540023804e-03
+
+ -2.6940669864416122e-02 1.6839459538459778e-01
+ <_>
+
+ 0 -1 7906 1.7543360590934753e-02
+
+ 4.2376369237899780e-02 -1.2350399792194366e-01
+ <_>
+
+ 0 -1 7907 -9.6103046089410782e-03
+
+ 5.2223920822143555e-02 -2.5582559406757355e-02
+ <_>
+
+ 0 -1 7908 2.0607879851013422e-03
+
+ 4.0174130350351334e-02 -1.0548079758882523e-01
+ <_>
+
+ 0 -1 7909 -5.3874161094427109e-03
+
+ -6.4995579421520233e-02 2.7807140722870827e-02
+ <_>
+
+ 0 -1 7910 1.1102309823036194e-01
+
+ -4.9670711159706116e-03 8.1718921661376953e-01
+ <_>
+
+ 0 -1 7911 -3.7374150007963181e-02
+
+ -6.2611418962478638e-01 3.0927599873393774e-03
+ <_>
+
+ 0 -1 7912 5.0286632031202316e-03
+
+ 2.4978660047054291e-01 -1.8151100724935532e-02
+ <_>
+
+ 0 -1 7913 2.9225579928606749e-03
+
+ -6.0576818883419037e-02 2.6497339829802513e-02
+ <_>
+
+ 0 -1 7914 -5.4296620190143585e-02
+
+ -5.7990437746047974e-01 6.5989522263407707e-03
+ <_>
+
+ 0 -1 7915 1.2996720150113106e-02
+
+ -2.6128260418772697e-02 9.7030609846115112e-02
+ <_>
+
+ 0 -1 7916 3.3001229166984558e-02
+
+ 1.4960479922592640e-02 -3.2304659485816956e-01
+ <_>
+
+ 0 -1 7917 -1.1660449951887131e-01
+
+ 2.5725141167640686e-01 -1.2625830247998238e-02
+ <_>
+
+ 0 -1 7918 7.0706337690353394e-02
+
+ 7.0192231796681881e-03 -6.9260591268539429e-01
+ <_>
+
+ 0 -1 7919 -4.4549949467182159e-02
+
+ -7.1134221553802490e-01 4.9668429419398308e-03
+ <_>
+
+ 0 -1 7920 4.2873818427324295e-02
+
+ 6.7160711623728275e-03 -5.2660852670669556e-01
+ <_>
+
+ 0 -1 7921 2.5025280192494392e-02
+
+ -1.8445409834384918e-02 7.8793220221996307e-02
+ <_>
+
+ 0 -1 7922 2.1663550287485123e-03
+
+ 3.2540310174226761e-02 -1.3115049898624420e-01
+ <_>
+
+ 0 -1 7923 2.5540040805935860e-02
+
+ -3.4693568944931030e-02 4.1404798626899719e-02
+ <_>
+
+ 0 -1 7924 -8.3627507090568542e-02
+
+ -5.2143442630767822e-01 7.7060810290277004e-03
+ <_>
+
+ 0 -1 7925 3.7637550849467516e-03
+
+ -2.9463630169630051e-02 7.4424192309379578e-02
+ <_>
+
+ 0 -1 7926 3.7175719626247883e-03
+
+ -4.2123001068830490e-02 1.0287009924650192e-01
+ <_>
+
+ 0 -1 7927 -5.2892807871103287e-03
+
+ -1.2348390370607376e-01 3.7152700126171112e-02
+ <_>
+
+ 0 -1 7928 -9.1878473758697510e-03
+
+ 9.0256750583648682e-02 -5.2674051374197006e-02
+ <_>
+
+ 0 -1 7929 -5.5448919534683228e-02
+
+ -5.3639650344848633e-01 2.6584670413285494e-03
+ <_>
+
+ 0 -1 7930 6.4754108898341656e-03
+
+ 5.5367350578308105e-02 -9.2722631990909576e-02
+ <_>
+
+ 0 -1 7931 -1.5773440245538950e-03
+
+ 1.3578939437866211e-01 -4.0911730378866196e-02
+ <_>
+
+ 0 -1 7932 -4.9912789836525917e-04
+
+ -1.4728380739688873e-01 5.3603630512952805e-02
+ <_>
+
+ 0 -1 7933 1.5690509974956512e-01
+
+ -7.8873159363865852e-03 3.7397789955139160e-01
+ <_>
+
+ 0 -1 7934 3.6391850560903549e-02
+
+ 4.9765990115702152e-03 -9.1157531738281250e-01
+ <_>
+
+ 0 -1 7935 -9.5625342801213264e-03
+
+ 1.2767709791660309e-01 -1.4394680038094521e-02
+ <_>
+
+ 0 -1 7936 2.4007901083678007e-03
+
+ -1.3107380270957947e-01 4.4731479138135910e-02
+ <_>
+
+ 0 -1 7937 3.2929850276559591e-03
+
+ 4.0428631007671356e-02 -5.3223561495542526e-02
+ <_>
+
+ 0 -1 7938 -3.1314359512180090e-03
+
+ 3.6826111376285553e-02 -1.2113159894943237e-01
+ <_>
+
+ 0 -1 7939 5.2008330821990967e-02
+
+ 5.9283021837472916e-03 -4.3858841061592102e-01
+ <_>
+
+ 0 -1 7940 5.7681259931996465e-04
+
+ -6.9851770997047424e-02 6.4286291599273682e-02
+ <_>
+
+ 0 -1 7941 6.1443001031875610e-03
+
+ 3.0908059328794479e-02 -1.8229809403419495e-01
+ <_>
+
+ 0 -1 7942 3.5959720611572266e-02
+
+ -4.1680991649627686e-02 1.4244790375232697e-01
+ <_>
+
+ 0 -1 7943 -2.1290820091962814e-02
+
+ -9.6662320196628571e-02 5.5888749659061432e-02
+ <_>
+
+ 0 -1 7944 -6.2724511371925473e-04
+
+ 9.0150557458400726e-02 -6.9430753588676453e-02
+ <_>
+
+ 0 -1 7945 -2.5145700201392174e-03
+
+ -6.9526046514511108e-02 4.5552581548690796e-02
+ <_>
+
+ 0 -1 7946 5.7874649763107300e-02
+
+ -2.5036580860614777e-02 2.0633180439472198e-01
+ <_>
+
+ 0 -1 7947 1.5898469835519791e-02
+
+ -1.7133399844169617e-02 1.1004959791898727e-01
+ <_>
+
+ 0 -1 7948 2.7882799506187439e-02
+
+ 2.7713179588317871e-02 -1.6536410152912140e-01
+ <_>
+
+ 0 -1 7949 8.8283112272620201e-03
+
+ -2.7497250586748123e-02 5.9822890907526016e-02
+ <_>
+
+ 0 -1 7950 -1.5679910778999329e-02
+
+ -2.6984989643096924e-01 1.6398239880800247e-02
+ <_>
+
+ 0 -1 7951 4.1906189173460007e-02
+
+ -8.0525986850261688e-03 3.1556311249732971e-01
+ <_>
+
+ 0 -1 7952 -4.1068609803915024e-02
+
+ 2.5637561082839966e-01 -1.8357910215854645e-02
+ <_>
+
+ 0 -1 7953 3.5570110194385052e-03
+
+ 2.9343830421566963e-02 -1.2668469548225403e-01
+ <_>
+
+ 0 -1 7954 -2.1371750626713037e-03
+
+ 1.2923260033130646e-01 -4.0102209895849228e-02
+ <_>
+
+ 0 -1 7955 3.3638089895248413e-02
+
+ 8.1196166574954987e-03 -4.0394780039787292e-01
+ <_>
+
+ 0 -1 7956 1.0182919912040234e-02
+
+ -4.2566180229187012e-02 1.1843100190162659e-01
+ <_>
+
+ 0 -1 7957 -7.0302112726494670e-04
+
+ 3.8721978664398193e-02 -7.9703420400619507e-02
+ <_>
+
+ 0 -1 7958 -2.8552680741995573e-03
+
+ 9.1274276375770569e-02 -6.1691451817750931e-02
+ <_>
+
+ 0 -1 7959 -2.9935541097074747e-03
+
+ -1.0913450270891190e-01 3.8736950606107712e-02
+ <_>
+
+ 0 -1 7960 -5.3608341841027141e-04
+
+ -4.3252488970756531e-01 1.0958270169794559e-02
+ <_>
+
+ 0 -1 7961 5.1431890577077866e-02
+
+ 4.7060111537575722e-03 -2.6765900850296021e-01
+ <_>
+
+ 0 -1 7962 -4.8872891813516617e-02
+
+ 2.0144729316234589e-01 -2.2844519466161728e-02
+ <_>
+
+ 0 -1 7963 -1.6080449521541595e-01
+
+ -1. 1.9577229395508766e-03
+ <_>
+
+ 0 -1 7964 1.8509939312934875e-02
+
+ 1.7808660864830017e-02 -2.7871158719062805e-01
+ <_>
+
+ 0 -1 7965 -4.2106948792934418e-02
+
+ -6.2493157386779785e-01 7.0520970039069653e-03
+ <_>
+
+ 0 -1 7966 -9.7096778452396393e-02
+
+ -8.4505838155746460e-01 4.4749649241566658e-03
+ <_>
+
+ 0 -1 7967 -9.4244757201522589e-04
+
+ 1.9796760380268097e-01 -2.2733120247721672e-02
+ <_>
+
+ 0 -1 7968 -1.8040809780359268e-02
+
+ -3.3424109220504761e-01 1.3358039781451225e-02
+ <_>
+
+ 0 -1 7969 6.3626631163060665e-04
+
+ -1.0530749708414078e-01 4.4016160070896149e-02
+ <_>
+
+ 0 -1 7970 -3.4530549310147762e-03
+
+ -1.3687069714069366e-01 3.0288280919194221e-02
+ <_>
+
+ 0 -1 7971 1.7589809373021126e-02
+
+ -2.8031280264258385e-02 1.8331700563430786e-01
+ <_>
+
+ 0 -1 7972 -1.4289390528574586e-03
+
+ 6.7616157233715057e-02 -6.4400359988212585e-02
+ <_>
+
+ 0 -1 7973 1.4584570191800594e-02
+
+ -3.2548811286687851e-02 7.7070221304893494e-02
+ <_>
+
+ 0 -1 7974 7.4579578638076782e-01
+
+ 9.1963959857821465e-03 -4.5680120587348938e-01
+ <_>
+
+ 0 -1 7975 -1.2285649776458740e-01
+
+ -6.4423608779907227e-01 2.0847769919782877e-03
+ <_>
+
+ 0 -1 7976 -1.1613000184297562e-01
+
+ -7.9274278879165649e-01 4.9578230828046799e-03
+ <_>
+
+ 0 -1 7977 5.5644840002059937e-02
+
+ -5.7718120515346527e-03 3.0834281444549561e-01
+ <_>
+
+ 0 -1 7978 2.0566429942846298e-02
+
+ -1.5474709682166576e-02 2.8002938628196716e-01
+ <_>
+
+ 0 -1 7979 3.8393519935198128e-04
+
+ 3.4390248358249664e-02 -1.0244189947843552e-01
+ <_>
+
+ 0 -1 7980 4.0198508650064468e-03
+
+ 5.2533138543367386e-02 -1.1492720246315002e-01
+ <_>
+
+ 0 -1 7981 -7.4124410748481750e-02
+
+ -3.0216461420059204e-01 4.2779031209647655e-03
+ <_>
+
+ 0 -1 7982 -3.4346429165452719e-03
+
+ 6.5627492964267731e-02 -6.9991588592529297e-02
+ <_>
+
+ 0 -1 7983 -4.3740049004554749e-03
+
+ -1.2934839725494385e-01 5.1233518868684769e-02
+ <_>
+
+ 0 -1 7984 6.9464151747524738e-03
+
+ -3.2591849565505981e-02 1.5098060667514801e-01
+ <_>
+
+ 0 -1 7985 -1.8434170633554459e-02
+
+ -3.1364220380783081e-01 9.5867328345775604e-03
+ <_>
+
+ 0 -1 7986 -3.2201830763369799e-03
+
+ -1.7494319379329681e-01 3.3579058945178986e-02
+ <_>
+
+ 0 -1 7987 -3.2273299992084503e-02
+
+ 2.4136200547218323e-01 -2.4392010644078255e-02
+ <_>
+
+ 0 -1 7988 -4.8193791881203651e-03
+
+ -1.3610219955444336e-01 4.1156660765409470e-02
+ <_>
+
+ 0 -1 7989 -9.8347626626491547e-02
+
+ -5.3324717283248901e-01 8.8729923591017723e-03
+ <_>
+
+ 0 -1 7990 1.9054619595408440e-02
+
+ -3.2564271241426468e-02 1.6729709506034851e-01
+ <_>
+
+ 0 -1 7991 -8.1796169281005859e-02
+
+ -6.4131242036819458e-01 8.7052602320909500e-03
+ <_>
+
+ 0 -1 7992 3.2996949739754200e-03
+
+ -5.9765439480543137e-02 7.1879856288433075e-02
+ <_>
+
+ 0 -1 7993 -7.5977660715579987e-02
+
+ -5.0415420532226562e-01 5.6795510463416576e-03
+ <_>
+
+ 0 -1 7994 3.0508760362863541e-02
+
+ 1.0317360050976276e-02 -4.3552881479263306e-01
+ <_>
+
+ 0 -1 7995 -3.7642959505319595e-02
+
+ 3.7324428558349609e-01 -1.7276229336857796e-02
+ <_>
+
+ 0 -1 7996 -9.9801109172403812e-04
+
+ -1.4508770406246185e-01 3.0973700806498528e-02
+ <_>
+
+ 0 -1 7997 -2.0703389309346676e-03
+
+ 1.2285920232534409e-01 -2.5285899639129639e-02
+ <_>
+
+ 0 -1 7998 7.1816377341747284e-02
+
+ 7.2997398674488068e-03 -6.2621092796325684e-01
+ <_>
+
+ 0 -1 7999 1.6781920194625854e-01
+
+ -1.0094069875776768e-02 2.2531180083751678e-01
+ <_>
+
+ 0 -1 8000 1.5028619964141399e-04
+
+ -4.9013838171958923e-02 9.5635637640953064e-02
+ <_>
+
+ 0 -1 8001 9.5139637589454651e-02
+
+ -2.3964960128068924e-03 7.8972822427749634e-01
+ <_>
+
+ 0 -1 8002 3.8569360040128231e-03
+
+ 4.0852431207895279e-02 -1.1976979672908783e-01
+ <_>
+
+ 0 -1 8003 2.3172760382294655e-02
+
+ -8.1755416467785835e-03 3.4895899891853333e-01
+ <_>
+
+ 0 -1 8004 1.3417989946901798e-02
+
+ 2.9357729479670525e-02 -1.4476950466632843e-01
+ <_>
+
+ 0 -1 8005 -1.4165779948234558e-01
+
+ 3.4960448741912842e-01 -3.9633908309042454e-03
+ <_>
+
+ 0 -1 8006 5.5483141914010048e-03
+
+ -4.6736769378185272e-02 8.7630823254585266e-02
+ <_>
+
+ 0 -1 8007 -4.7431029379367828e-03
+
+ 6.2899678945541382e-02 -2.6983590796589851e-02
+ <_>
+
+ 0 -1 8008 -6.6862776875495911e-02
+
+ -9.5272868871688843e-01 3.9776111952960491e-03
+ <_>
+
+ 0 -1 8009 2.2987840697169304e-02
+
+ -1.7802899703383446e-02 1.4564949274063110e-01
+ <_>
+
+ 0 -1 8010 -2.2234279662370682e-02
+
+ -9.3360446393489838e-02 5.1537070423364639e-02
+ <_>
+
+ 0 -1 8011 1.5045719919726253e-05
+
+ -3.0237749218940735e-02 2.6654670014977455e-02
+ <_>
+
+ 0 -1 8012 -4.7994707711040974e-03
+
+ 1.0105530172586441e-01 -5.0083991140127182e-02
+ <_>
+
+ 0 -1 8013 -2.4227909743785858e-01
+
+ -6.8399482965469360e-01 2.1470880601555109e-03
+ <_>
+
+ 0 -1 8014 4.6939790248870850e-02
+
+ 8.1193735823035240e-03 -4.7671818733215332e-01
+ <_>
+
+ 0 -1 8015 -6.0940280556678772e-02
+
+ 2.3827329277992249e-01 -9.5430584624409676e-03
+ <_>
+
+ 0 -1 8016 2.4104740470647812e-02
+
+ -1.5799079090356827e-02 2.6727899909019470e-01
+ <_>
+
+ 0 -1 8017 -4.6567570418119431e-02
+
+ -3.1017771363258362e-01 8.3353007212281227e-03
+ <_>
+
+ 0 -1 8018 1.8709240248426795e-03
+
+ -7.2588071227073669e-02 6.5608270466327667e-02
+ <_>
+
+ 0 -1 8019 -5.9872400015592575e-03
+
+ -1.8159690499305725e-01 1.4030029997229576e-02
+ <_>
+
+ 0 -1 8020 -7.3103660724882502e-06
+
+ 4.0913790464401245e-02 -1.0656440258026123e-01
+ <_>
+
+ 0 -1 8021 -2.3244550451636314e-02
+
+ -1.9035540521144867e-01 1.5966059640049934e-02
+ <_>
+
+ 0 -1 8022 -1.1853489559143782e-03
+
+ 5.9956710785627365e-02 -7.6678447425365448e-02
+ <_>
+
+ 0 -1 8023 -1.2981820106506348e-01
+
+ 4.0999498963356018e-01 -5.0850748084485531e-03
+ <_>
+
+ 0 -1 8024 -5.1512669771909714e-02
+
+ -3.0527231097221375e-01 1.4186340384185314e-02
+ <_>
+
+ 0 -1 8025 -3.9303461089730263e-03
+
+ -7.9763479530811310e-02 2.6248890906572342e-02
+ <_>
+
+ 0 -1 8026 1.5822829678654671e-02
+
+ -1.6849309206008911e-02 2.7549791336059570e-01
+ <_>
+
+ 0 -1 8027 1.1561570316553116e-01
+
+ 6.7870649509131908e-03 -1.2709319591522217e-01
+ <_>
+
+ 0 -1 8028 1.1260829633101821e-03
+
+ 8.1908516585826874e-02 -5.8194048702716827e-02
+ <_>
+
+ 0 -1 8029 1.5513430349528790e-02
+
+ -4.2989719659090042e-02 7.8364297747612000e-02
+ <_>
+
+ 0 -1 8030 4.6268731355667114e-02
+
+ 1.1759550310671329e-02 -3.9947330951690674e-01
+ <_>
+
+ 0 -1 8031 7.9535972326993942e-03
+
+ 1.6848539933562279e-02 -8.8599078357219696e-02
+ <_>
+
+ 0 -1 8032 -1.8991220742464066e-02
+
+ 2.4813260138034821e-01 -1.7320850864052773e-02
+ <_>
+
+ 0 -1 8033 3.7058200687170029e-03
+
+ -2.1747030317783356e-02 5.8276090770959854e-02
+ <_>
+
+ 0 -1 8034 2.5829279329627752e-03
+
+ 5.0559278577566147e-02 -9.3193918466567993e-02
+ <_>
+
+ 0 -1 8035 -3.1010560691356659e-02
+
+ 2.2110439836978912e-01 -1.4786499552428722e-02
+ <_>
+
+ 0 -1 8036 2.5402549654245377e-03
+
+ -8.6743600666522980e-02 5.7932410389184952e-02
+ <_>
+
+ 0 -1 8037 -8.9100487530231476e-03
+
+ 5.3846079856157303e-02 -4.5931909233331680e-02
+ <_>
+
+ 0 -1 8038 4.0557151660323143e-03
+
+ 5.9298399835824966e-02 -8.3007253706455231e-02
+ <_>
+
+ 0 -1 8039 6.1204940080642700e-02
+
+ 9.2248879373073578e-03 -2.1082369983196259e-01
+ <_>
+
+ 0 -1 8040 7.7630057930946350e-03
+
+ -7.5927056372165680e-02 5.7865709066390991e-02
+ <_>
+
+ 0 -1 8041 1.5921150147914886e-01
+
+ 8.3040859317407012e-04 -1.0000480413436890e+00
+ <_>
+
+ 0 -1 8042 3.9196189492940903e-02
+
+ 7.1930838748812675e-03 -6.0338622331619263e-01
+ <_>
+
+ 0 -1 8043 1.0220289975404739e-01
+
+ -3.6227719392627478e-03 5.4500752687454224e-01
+ <_>
+
+ 0 -1 8044 -1.5064980089664459e-01
+
+ -7.0450758934020996e-01 6.6995541565120220e-03
+ <_>
+
+ 0 -1 8045 1.3819299638271332e-01
+
+ -1.1153860017657280e-02 1.7932909727096558e-01
+ <_>
+
+ 0 -1 8046 -3.8313010009005666e-04
+
+ -7.2442352771759033e-02 5.7925980538129807e-02
+ <_>
+
+ 0 -1 8047 -2.7796919457614422e-03
+
+ -8.6280398070812225e-02 4.1014600545167923e-02
+ <_>
+
+ 0 -1 8048 3.9365138858556747e-02
+
+ -4.6629320830106735e-02 8.8124006986618042e-02
+ <_>
+
+ 0 -1 8049 -6.1933819204568863e-02
+
+ 7.0118552446365356e-01 -2.5661089457571507e-03
+ <_>
+
+ 0 -1 8050 -5.9742941521108150e-03
+
+ -1.6519010066986084e-01 3.7947021424770355e-02
+ <_>
+
+ 0 -1 8051 7.5101079419255257e-03
+
+ 5.4191488772630692e-02 -7.9166658222675323e-02
+ <_>
+
+ 0 -1 8052 -9.7005672752857208e-02
+
+ -8.8104772567749023e-01 4.8486101441085339e-03
+ <_>
+
+ 0 -1 8053 -6.7751510068774223e-03
+
+ 9.1601163148880005e-02 -4.8942770808935165e-02
+ <_>
+
+ 0 -1 8054 -9.2599419876933098e-03
+
+ -1.3298119604587555e-01 4.1785500943660736e-02
+ <_>
+
+ 0 -1 8055 1.5215040184557438e-03
+
+ 5.2633590996265411e-02 -6.0624439269304276e-02
+ <_>
+
+ 0 -1 8056 5.4703168570995331e-03
+
+ -4.7825179994106293e-02 1.1194570362567902e-01
+ <_>
+
+ 0 -1 8057 2.5002110749483109e-02
+
+ -2.0354969426989555e-02 1.0175590217113495e-01
+ <_>
+
+ 0 -1 8058 3.2576780766248703e-02
+
+ 2.5629660114645958e-02 -1.9484190642833710e-01
+ <_>
+
+ 0 -1 8059 -7.7732130885124207e-03
+
+ 1.2477400153875351e-01 -3.4667998552322388e-02
+ <_>
+
+ 0 -1 8060 1.7777189612388611e-02
+
+ 3.3261820673942566e-02 -1.4155229926109314e-01
+ <_>
+
+ 0 -1 8061 1.0459429584443569e-02
+
+ -4.4039878994226456e-02 6.1871558427810669e-02
+ <_>
+ 406
+ -1.1700680255889893e+00
+
+ <_>
+
+ 0 -1 8062 1.8751189112663269e-02
+
+ -1.7775079607963562e-01 1.7157439887523651e-01
+ <_>
+
+ 0 -1 8063 -2.1875950042158365e-03
+
+ 7.5339153409004211e-02 -2.5842121243476868e-01
+ <_>
+
+ 0 -1 8064 -1.1698690056800842e-01
+
+ 4.2645370960235596e-01 -3.7121698260307312e-02
+ <_>
+
+ 0 -1 8065 3.8377330638468266e-03
+
+ 3.5092439502477646e-02 -1.5757289528846741e-01
+ <_>
+
+ 0 -1 8066 -1.2941210297867656e-03
+
+ -2.0068730413913727e-01 5.5704809725284576e-02
+ <_>
+
+ 0 -1 8067 4.3927300721406937e-03
+
+ 5.7497099041938782e-02 -1.9302740693092346e-01
+ <_>
+
+ 0 -1 8068 -1.5021540457382798e-03
+
+ 7.2378978133201599e-02 -1.4534910023212433e-01
+ <_>
+
+ 0 -1 8069 1.2381949927657843e-03
+
+ -9.0413779020309448e-02 8.2838788628578186e-02
+ <_>
+
+ 0 -1 8070 3.0004729051142931e-03
+
+ 6.0199409723281860e-02 -1.5556170046329498e-01
+ <_>
+
+ 0 -1 8071 4.5666601508855820e-03
+
+ -7.6936639845371246e-02 1.3762770593166351e-01
+ <_>
+
+ 0 -1 8072 9.9231943022459745e-04
+
+ 4.7918211668729782e-02 -2.0472359657287598e-01
+ <_>
+
+ 0 -1 8073 -3.8909649010747671e-03
+
+ -2.1067039668560028e-01 5.9297189116477966e-02
+ <_>
+
+ 0 -1 8074 2.4324860423803329e-03
+
+ -7.3611870408058167e-02 1.4165569841861725e-01
+ <_>
+
+ 0 -1 8075 -3.3090400975197554e-03
+
+ -1.6489060223102570e-01 4.3310891836881638e-02
+ <_>
+
+ 0 -1 8076 5.9596560895442963e-03
+
+ -2.1388399600982666e-01 4.3472908437252045e-02
+ <_>
+
+ 0 -1 8077 9.7754271700978279e-03
+
+ 2.7664290741086006e-02 -1.9119890034198761e-01
+ <_>
+
+ 0 -1 8078 -3.8124300539493561e-02
+
+ 3.1658840179443359e-01 -2.9972679913043976e-02
+ <_>
+
+ 0 -1 8079 1.4401610242202878e-03
+
+ -1.6602130234241486e-01 6.1300911009311676e-02
+ <_>
+
+ 0 -1 8080 7.5199408456683159e-04
+
+ -1.3568510115146637e-01 5.7345770299434662e-02
+ <_>
+
+ 0 -1 8081 2.4780649691820145e-03
+
+ -7.7258758246898651e-02 5.3781200200319290e-02
+ <_>
+
+ 0 -1 8082 9.2068109661340714e-03
+
+ 7.4349351227283478e-02 -1.3886499404907227e-01
+ <_>
+
+ 0 -1 8083 1.7634540796279907e-02
+
+ -2.6817159727215767e-02 3.4912449121475220e-01
+ <_>
+
+ 0 -1 8084 1.0517879854887724e-03
+
+ 8.3444483578205109e-02 -8.3271436393260956e-02
+ <_>
+
+ 0 -1 8085 -7.2119189426302910e-03
+
+ 1.4149050414562225e-01 -3.0853189527988434e-02
+ <_>
+
+ 0 -1 8086 8.1929508596658707e-03
+
+ 6.4249828457832336e-02 -1.4224460721015930e-01
+ <_>
+
+ 0 -1 8087 -5.7932751951739192e-04
+
+ -6.1768930405378342e-02 3.4835230559110641e-02
+ <_>
+
+ 0 -1 8088 4.5172017998993397e-03
+
+ -7.3925666511058807e-02 9.5347866415977478e-02
+ <_>
+
+ 0 -1 8089 2.2280250489711761e-01
+
+ 2.8079450130462646e-02 -2.6174598932266235e-01
+ <_>
+
+ 0 -1 8090 -8.1560667604207993e-04
+
+ -1.1128710210323334e-01 6.1751261353492737e-02
+ <_>
+
+ 0 -1 8091 1.9009260460734367e-02
+
+ -3.5914849489927292e-02 9.5332697033882141e-02
+ <_>
+
+ 0 -1 8092 -1.1708099627867341e-03
+
+ -1.7809429764747620e-01 3.8471758365631104e-02
+ <_>
+
+ 0 -1 8093 -2.7492839843034744e-02
+
+ 1.5674190223217010e-01 -3.6307450383901596e-02
+ <_>
+
+ 0 -1 8094 -5.4139150306582451e-03
+
+ -1.6014580428600311e-01 4.5228298753499985e-02
+ <_>
+
+ 0 -1 8095 1.1325670406222343e-02
+
+ -5.2679128944873810e-02 1.2411580234766006e-01
+ <_>
+
+ 0 -1 8096 -1.3919079303741455e-01
+
+ -2.8573009371757507e-01 2.5642180815339088e-02
+ <_>
+
+ 0 -1 8097 -7.6183810830116272e-02
+
+ 2.0390880107879639e-01 -1.2701939791440964e-02
+ <_>
+
+ 0 -1 8098 1.3947900151833892e-03
+
+ -1.1320529878139496e-01 5.7419300079345703e-02
+ <_>
+
+ 0 -1 8099 4.6532237902283669e-03
+
+ 5.7795990258455276e-02 -1.0997010022401810e-01
+ <_>
+
+ 0 -1 8100 4.5034389942884445e-02
+
+ -2.8761979192495346e-02 2.2605720162391663e-01
+ <_>
+
+ 0 -1 8101 1.6864009201526642e-02
+
+ 3.6318089812994003e-02 -2.0162770152091980e-01
+ <_>
+
+ 0 -1 8102 1.9251279532909393e-01
+
+ -1.3869989663362503e-02 5.4226338863372803e-01
+ <_>
+
+ 0 -1 8103 -1.6758369747549295e-03
+
+ -1.1462789773941040e-01 4.9984849989414215e-02
+ <_>
+
+ 0 -1 8104 -4.5270361006259918e-03
+
+ 1.1731909960508347e-01 -6.1384700238704681e-02
+ <_>
+
+ 0 -1 8105 5.4975082166492939e-03
+
+ 3.2194830477237701e-02 -1.5348540246486664e-01
+ <_>
+
+ 0 -1 8106 3.5562040284276009e-03
+
+ -6.3937939703464508e-02 1.0787469893693924e-01
+ <_>
+
+ 0 -1 8107 2.1489830687642097e-03
+
+ -5.0976738333702087e-02 2.9315000399947166e-02
+ <_>
+
+ 0 -1 8108 -1.0464210063219070e-02
+
+ 1.9548749923706055e-01 -3.2784409821033478e-02
+ <_>
+
+ 0 -1 8109 -2.9779719188809395e-02
+
+ -3.9286538958549500e-01 1.2266620062291622e-02
+ <_>
+
+ 0 -1 8110 9.6993939951062202e-04
+
+ -1.0772799700498581e-01 6.1684250831604004e-02
+ <_>
+
+ 0 -1 8111 -4.0499098598957062e-02
+
+ -3.6696648597717285e-01 1.1805539950728416e-02
+ <_>
+
+ 0 -1 8112 -2.3762779310345650e-03
+
+ -1.3933740556240082e-01 5.0010170787572861e-02
+ <_>
+
+ 0 -1 8113 -5.1528858020901680e-03
+
+ 9.7424000501632690e-02 -2.3820690810680389e-02
+ <_>
+
+ 0 -1 8114 -2.8726980090141296e-02
+
+ 2.1031719446182251e-01 -3.6088269203901291e-02
+ <_>
+
+ 0 -1 8115 1.4215350151062012e-02
+
+ 3.4664131700992584e-02 -1.5814340114593506e-01
+ <_>
+
+ 0 -1 8116 2.0164670422673225e-03
+
+ 5.0487071275711060e-02 -1.2704199552536011e-01
+ <_>
+
+ 0 -1 8117 4.1724709444679320e-04
+
+ -5.6635189801454544e-02 1.0789140313863754e-01
+ <_>
+
+ 0 -1 8118 7.3380130343139172e-03
+
+ 5.0891719758510590e-02 -1.2210439890623093e-01
+ <_>
+
+ 0 -1 8119 -7.5930766761302948e-02
+
+ 2.2627210617065430e-01 -6.6569480113685131e-03
+ <_>
+
+ 0 -1 8120 -4.2873369529843330e-03
+
+ 7.2104290127754211e-02 -8.0106139183044434e-02
+ <_>
+
+ 0 -1 8121 -2.4101670831441879e-02
+
+ 9.1355301439762115e-02 -3.4591969102621078e-02
+ <_>
+
+ 0 -1 8122 1.9936550408601761e-02
+
+ -3.7764240056276321e-02 1.8896919488906860e-01
+ <_>
+
+ 0 -1 8123 5.6939899921417236e-01
+
+ 3.1492649577558041e-03 -5.9846472740173340e-01
+ <_>
+
+ 0 -1 8124 1.0352060198783875e-01
+
+ 2.3323200643062592e-02 -3.2129231095314026e-01
+ <_>
+
+ 0 -1 8125 5.9556990861892700e-02
+
+ 4.2170342057943344e-03 -3.3442139625549316e-01
+ <_>
+
+ 0 -1 8126 -5.0575539469718933e-02
+
+ -8.4793227910995483e-01 6.6583030857145786e-03
+ <_>
+
+ 0 -1 8127 -5.5158971808850765e-03
+
+ -7.0507496595382690e-02 2.1716769784688950e-02
+ <_>
+
+ 0 -1 8128 2.9419310390949249e-02
+
+ -3.6319408565759659e-02 1.7510940134525299e-01
+ <_>
+
+ 0 -1 8129 1.0972440242767334e-02
+
+ 1.8267199397087097e-02 -1.8641340732574463e-01
+ <_>
+
+ 0 -1 8130 -3.8842339999973774e-03
+
+ -1.0735920071601868e-01 6.0849040746688843e-02
+ <_>
+
+ 0 -1 8131 -1.1936859664274380e-04
+
+ 5.2348621189594269e-02 -1.2701539695262909e-01
+ <_>
+
+ 0 -1 8132 -5.0230980850756168e-03
+
+ 5.2682720124721527e-02 -1.2703679502010345e-01
+ <_>
+
+ 0 -1 8133 1.8986819684505463e-01
+
+ 1.7255579587072134e-03 -3.2701051235198975e-01
+ <_>
+
+ 0 -1 8134 -2.4319409858435392e-03
+
+ 1.3875140249729156e-01 -4.3046601116657257e-02
+ <_>
+
+ 0 -1 8135 -2.0888550207018852e-03
+
+ -1.1241009831428528e-01 3.7676859647035599e-02
+ <_>
+
+ 0 -1 8136 4.2116310447454453e-02
+
+ 8.1929191946983337e-03 -6.8541908264160156e-01
+ <_>
+
+ 0 -1 8137 2.7380110695958138e-02
+
+ 4.4103930704295635e-03 -5.3421849012374878e-01
+ <_>
+
+ 0 -1 8138 2.1348569542169571e-02
+
+ -5.1160380244255066e-02 1.0021480172872543e-01
+ <_>
+
+ 0 -1 8139 -1.7236869782209396e-02
+
+ -3.9995738863945007e-01 2.0257489755749702e-02
+ <_>
+
+ 0 -1 8140 7.8617185354232788e-03
+
+ 2.8996279463171959e-02 -1.8014070391654968e-01
+ <_>
+
+ 0 -1 8141 8.1942398101091385e-03
+
+ -2.5498030707240105e-02 8.4693931043148041e-02
+ <_>
+
+ 0 -1 8142 6.2367911450564861e-03
+
+ 1.8659260123968124e-02 -2.6443660259246826e-01
+ <_>
+
+ 0 -1 8143 2.1872919751331210e-04
+
+ -1.5943029522895813e-01 3.0722649767994881e-02
+ <_>
+
+ 0 -1 8144 -6.4004249870777130e-03
+
+ 2.8331050276756287e-01 -1.9352490082383156e-02
+ <_>
+
+ 0 -1 8145 -1.0007199645042419e-01
+
+ -4.0704050660133362e-01 6.1583020724356174e-03
+ <_>
+
+ 0 -1 8146 1.5690149739384651e-02
+
+ -1.6772339120507240e-02 2.9049569368362427e-01
+ <_>
+
+ 0 -1 8147 -7.0421490818262100e-03
+
+ -6.7985177040100098e-02 3.1130369752645493e-02
+ <_>
+
+ 0 -1 8148 -1.5320030041038990e-02
+
+ 3.6400088667869568e-01 -1.3608699664473534e-02
+ <_>
+
+ 0 -1 8149 5.8485660701990128e-02
+
+ 7.4363988824188709e-03 -7.5599330663681030e-01
+ <_>
+
+ 0 -1 8150 -3.5200670827180147e-03
+
+ -1.3923290371894836e-01 3.7657551467418671e-02
+ <_>
+
+ 0 -1 8151 -8.7158178212121129e-04
+
+ 4.2339839041233063e-02 -5.3530458360910416e-02
+ <_>
+
+ 0 -1 8152 2.4548629298806190e-03
+
+ -4.4667050242424011e-02 1.3785070180892944e-01
+ <_>
+
+ 0 -1 8153 -6.1778929084539413e-02
+
+ -3.5338079929351807e-01 4.5869671739637852e-03
+ <_>
+
+ 0 -1 8154 -3.8533521001227200e-04
+
+ 7.2278007864952087e-02 -1.0433299839496613e-01
+ <_>
+
+ 0 -1 8155 7.6227717101573944e-02
+
+ -1.1004550382494926e-02 5.0025188922882080e-01
+ <_>
+
+ 0 -1 8156 -4.4210380874574184e-03
+
+ -8.6290426552295685e-02 5.8773420751094818e-02
+ <_>
+
+ 0 -1 8157 1.5068270266056061e-02
+
+ -5.8916270732879639e-02 1.0025119781494141e-01
+ <_>
+
+ 0 -1 8158 2.5007940828800201e-02
+
+ 7.6251477003097534e-02 -8.8744960725307465e-02
+ <_>
+
+ 0 -1 8159 -7.7328123152256012e-02
+
+ 2.5363400578498840e-01 -1.5778530389070511e-02
+ <_>
+
+ 0 -1 8160 3.5588641185313463e-04
+
+ 6.2983699142932892e-02 -7.7181987464427948e-02
+ <_>
+
+ 0 -1 8161 6.9400526583194733e-02
+
+ -8.9571140706539154e-03 1.5102629363536835e-01
+ <_>
+
+ 0 -1 8162 -1.8577709794044495e-01
+
+ -6.9518351554870605e-01 7.8398203477263451e-03
+ <_>
+
+ 0 -1 8163 -6.6014728508889675e-03
+
+ -5.6056641042232513e-02 2.4557920172810555e-02
+ <_>
+
+ 0 -1 8164 4.0490310639142990e-02
+
+ -2.0202599465847015e-02 2.7736270427703857e-01
+ <_>
+
+ 0 -1 8165 1.6997240018099546e-03
+
+ -1.1403460055589676e-01 1.9222680479288101e-02
+ <_>
+
+ 0 -1 8166 8.4750041365623474e-02
+
+ 1.8607510253787041e-02 -3.0505430698394775e-01
+ <_>
+
+ 0 -1 8167 -1.6975879669189453e-02
+
+ 1.2357109785079956e-01 -2.9016660526394844e-02
+ <_>
+
+ 0 -1 8168 4.6773189678788185e-03
+
+ -4.5864760875701904e-02 1.1718840152025223e-01
+ <_>
+
+ 0 -1 8169 -1.4066020026803017e-02
+
+ -1.3670490682125092e-01 1.7362629994750023e-02
+ <_>
+
+ 0 -1 8170 5.0944689661264420e-02
+
+ 1.3865640386939049e-02 -3.9529040455818176e-01
+ <_>
+
+ 0 -1 8171 9.8265796899795532e-02
+
+ -1.2339199893176556e-02 3.6408239603042603e-01
+ <_>
+
+ 0 -1 8172 1.1730480473488569e-03
+
+ 6.6400513052940369e-02 -8.2091093063354492e-02
+ <_>
+
+ 0 -1 8173 1.0979039967060089e-01
+
+ 4.6397978439927101e-03 -6.1344558000564575e-01
+ <_>
+
+ 0 -1 8174 4.9452850362285972e-04
+
+ -1.0062679648399353e-01 5.7191990315914154e-02
+ <_>
+
+ 0 -1 8175 3.5673558712005615e-01
+
+ -1.4482989907264709e-02 3.9276111125946045e-01
+ <_>
+
+ 0 -1 8176 8.7493062019348145e-03
+
+ -4.8551220446825027e-02 1.0460250079631805e-01
+ <_>
+
+ 0 -1 8177 2.2463349625468254e-02
+
+ 2.2396000102162361e-02 -1.3587850332260132e-01
+ <_>
+
+ 0 -1 8178 1.8538760021328926e-02
+
+ 3.0029479414224625e-02 -2.0861870050430298e-01
+ <_>
+
+ 0 -1 8179 3.4236259758472443e-02
+
+ -1.0644080117344856e-02 1.6675490140914917e-01
+ <_>
+
+ 0 -1 8180 4.0900480002164841e-02
+
+ -1.2056970037519932e-02 4.3773320317268372e-01
+ <_>
+
+ 0 -1 8181 1.0512579977512360e-01
+
+ -9.4033451750874519e-04 7.8061622381210327e-01
+ <_>
+
+ 0 -1 8182 7.4799366295337677e-02
+
+ 7.8805796802043915e-03 -6.6342961788177490e-01
+ <_>
+
+ 0 -1 8183 4.3973559513688087e-05
+
+ -5.8106150478124619e-02 1.0466519743204117e-01
+ <_>
+
+ 0 -1 8184 6.6341059282422066e-03
+
+ 1.9750369712710381e-02 -2.7033481001853943e-01
+ <_>
+
+ 0 -1 8185 6.9901258684694767e-03
+
+ -3.2210368663072586e-02 5.6677810847759247e-02
+ <_>
+
+ 0 -1 8186 -6.9424291141331196e-03
+
+ 8.3492629230022430e-02 -6.4236722886562347e-02
+ <_>
+
+ 0 -1 8187 1.2524950504302979e-01
+
+ 1.9679870456457138e-03 -8.7889492511749268e-01
+ <_>
+
+ 0 -1 8188 -6.0555808246135712e-02
+
+ -6.5825527906417847e-01 7.3593561537563801e-03
+ <_>
+
+ 0 -1 8189 4.2092729359865189e-02
+
+ 9.0475538745522499e-03 -3.7676310539245605e-01
+ <_>
+
+ 0 -1 8190 1.6190059483051300e-02
+
+ 1.4534840360283852e-02 -3.4089210629463196e-01
+ <_>
+
+ 0 -1 8191 -2.6756960898637772e-02
+
+ 1.6862440109252930e-01 -1.0768949985504150e-02
+ <_>
+
+ 0 -1 8192 -5.1163539290428162e-02
+
+ -9.4068449735641479e-01 4.8503028228878975e-03
+ <_>
+
+ 0 -1 8193 -2.9093079268932343e-02
+
+ 1.3051369786262512e-01 -2.7216060087084770e-02
+ <_>
+
+ 0 -1 8194 -1.3433809578418732e-01
+
+ -5.3713047504425049e-01 1.0605730116367340e-02
+ <_>
+
+ 0 -1 8195 -4.0363678708672523e-03
+
+ -7.8597947955131531e-02 4.5609310269355774e-02
+ <_>
+
+ 0 -1 8196 -1.6303880512714386e-01
+
+ 6.9153147935867310e-01 -6.8249078467488289e-03
+ <_>
+
+ 0 -1 8197 5.3527228534221649e-02
+
+ -8.2422774285078049e-03 2.3649579286575317e-01
+ <_>
+
+ 0 -1 8198 9.3209616839885712e-02
+
+ -7.0793349295854568e-03 6.3985627889633179e-01
+ <_>
+
+ 0 -1 8199 -4.1583351790904999e-02
+
+ -4.0527749061584473e-01 1.1953369714319706e-02
+ <_>
+
+ 0 -1 8200 1.5241269767284393e-01
+
+ -1.6016889363527298e-02 3.7084808945655823e-01
+ <_>
+
+ 0 -1 8201 -1.3017480261623859e-02
+
+ -1.2366600334644318e-01 4.4537510722875595e-02
+ <_>
+
+ 0 -1 8202 5.4946541786193848e-02
+
+ 2.4852929636836052e-02 -2.1955069899559021e-01
+ <_>
+
+ 0 -1 8203 3.0320021323859692e-04
+
+ -1.3367289304733276e-01 4.0226090699434280e-02
+ <_>
+
+ 0 -1 8204 1.3891180045902729e-02
+
+ -2.6901820674538612e-02 1.9647410511970520e-01
+ <_>
+
+ 0 -1 8205 1.0848880046978593e-03
+
+ 3.6422070115804672e-02 -8.3430632948875427e-02
+ <_>
+
+ 0 -1 8206 2.3160090204328299e-03
+
+ -6.1215829104185104e-02 1.1277849972248077e-01
+ <_>
+
+ 0 -1 8207 -7.1280319243669510e-03
+
+ -1.4642429351806641e-01 3.1300168484449387e-02
+ <_>
+
+ 0 -1 8208 -3.5769429523497820e-03
+
+ 1.0159090161323547e-01 -6.0789510607719421e-02
+ <_>
+
+ 0 -1 8209 7.6856701634824276e-03
+
+ 4.2229469865560532e-02 -1.2583130598068237e-01
+ <_>
+
+ 0 -1 8210 8.4121264517307281e-03
+
+ -4.6872619539499283e-02 1.3011389970779419e-01
+ <_>
+
+ 0 -1 8211 7.5839929282665253e-02
+
+ -9.2988023534417152e-03 2.4260810017585754e-01
+ <_>
+
+ 0 -1 8212 8.6365960305556655e-04
+
+ 9.1133847832679749e-02 -6.1323560774326324e-02
+ <_>
+
+ 0 -1 8213 -1.0632569901645184e-02
+
+ -6.7818403244018555e-02 1.9036499783396721e-02
+ <_>
+
+ 0 -1 8214 -1.4120140112936497e-02
+
+ 2.9123929142951965e-01 -1.7482239753007889e-02
+ <_>
+
+ 0 -1 8215 2.0944620482623577e-03
+
+ -1.1744289845228195e-01 5.4129518568515778e-02
+ <_>
+
+ 0 -1 8216 4.2378879152238369e-03
+
+ 3.8495510816574097e-02 -1.4472819864749908e-01
+ <_>
+
+ 0 -1 8217 -2.2818730212748051e-03
+
+ -1.1576230078935623e-01 2.7663499116897583e-02
+ <_>
+
+ 0 -1 8218 9.4367301790043712e-04
+
+ -9.4088926911354065e-02 5.3373821079730988e-02
+ <_>
+
+ 0 -1 8219 1.4890190213918686e-02
+
+ -1.1562420055270195e-02 1.0941980034112930e-01
+ <_>
+
+ 0 -1 8220 5.2381302230060101e-03
+
+ 3.5265430808067322e-02 -1.5212060511112213e-01
+ <_>
+
+ 0 -1 8221 1.2663690140470862e-03
+
+ -3.3352568745613098e-02 7.9812049865722656e-02
+ <_>
+
+ 0 -1 8222 -5.3786882199347019e-03
+
+ 2.0934769511222839e-01 -2.4073069915175438e-02
+ <_>
+
+ 0 -1 8223 -1.9063480431213975e-03
+
+ -2.0774979889392853e-01 2.5406830012798309e-02
+ <_>
+
+ 0 -1 8224 3.0771149322390556e-03
+
+ -5.1940180361270905e-02 1.0475979745388031e-01
+ <_>
+
+ 0 -1 8225 9.5619028434157372e-03
+
+ 3.0633790418505669e-02 -1.0758169740438461e-01
+ <_>
+
+ 0 -1 8226 2.0540829747915268e-02
+
+ -2.2028919309377670e-02 2.3570840060710907e-01
+ <_>
+
+ 0 -1 8227 7.0854742079973221e-03
+
+ -4.7188248485326767e-02 8.4122747182846069e-02
+ <_>
+
+ 0 -1 8228 -6.2047559767961502e-03
+
+ -1.2209820002317429e-01 4.5177329331636429e-02
+ <_>
+
+ 0 -1 8229 -2.3474119603633881e-02
+
+ -2.8770458698272705e-01 1.0876529850065708e-02
+ <_>
+
+ 0 -1 8230 9.1368835419416428e-03
+
+ -3.3426750451326370e-02 2.0680120587348938e-01
+ <_>
+
+ 0 -1 8231 1.0512090520933270e-03
+
+ 4.7006800770759583e-02 -9.5018379390239716e-02
+ <_>
+
+ 0 -1 8232 -6.0899247182533145e-04
+
+ 5.3419198840856552e-02 -1.0444770008325577e-01
+ <_>
+
+ 0 -1 8233 -7.4382261373102665e-03
+
+ -4.8089329153299332e-02 1.9244499504566193e-02
+ <_>
+
+ 0 -1 8234 1.9495990127325058e-02
+
+ -3.0136700719594955e-02 2.0381480455398560e-01
+ <_>
+
+ 0 -1 8235 7.7799506485462189e-02
+
+ 4.2237630113959312e-03 -7.2407877445220947e-01
+ <_>
+
+ 0 -1 8236 3.1717489473521709e-03
+
+ 2.8818940743803978e-02 -1.6305699944496155e-01
+ <_>
+
+ 0 -1 8237 -3.9012718945741653e-02
+
+ -2.9151159524917603e-01 1.1131940409541130e-02
+ <_>
+
+ 0 -1 8238 -3.1845991034060717e-03
+
+ 6.3072219491004944e-02 -7.7291563153266907e-02
+ <_>
+
+ 0 -1 8239 1.7876720055937767e-02
+
+ 5.1196590065956116e-02 -3.7885930389165878e-02
+ <_>
+
+ 0 -1 8240 1.2821210548281670e-03
+
+ -5.7314708828926086e-02 8.7054982781410217e-02
+ <_>
+
+ 0 -1 8241 1.0710550099611282e-01
+
+ -1.5561000443994999e-02 3.1525009870529175e-01
+ <_>
+
+ 0 -1 8242 6.9577127695083618e-02
+
+ 8.9664813131093979e-03 -5.8589607477188110e-01
+ <_>
+
+ 0 -1 8243 -4.1071181185543537e-03
+
+ 9.5472246408462524e-02 -3.5176470875740051e-02
+ <_>
+
+ 0 -1 8244 -2.4557299911975861e-03
+
+ -1.6605280339717865e-01 3.7322919815778732e-02
+ <_>
+
+ 0 -1 8245 -2.0908420905470848e-02
+
+ 1.3989880681037903e-01 -2.9987450689077377e-02
+ <_>
+
+ 0 -1 8246 -8.1008402630686760e-03
+
+ -1.0529220104217529e-01 7.0245787501335144e-02
+ <_>
+
+ 0 -1 8247 -2.5671819224953651e-02
+
+ 4.4254720211029053e-01 -1.1081459932029247e-02
+ <_>
+
+ 0 -1 8248 -9.3759642913937569e-03
+
+ -6.0765031725168228e-02 8.1338323652744293e-02
+ <_>
+
+ 0 -1 8249 5.1140699535608292e-02
+
+ -1.0516249574720860e-02 3.4041538834571838e-01
+ <_>
+
+ 0 -1 8250 -4.0337219834327698e-03
+
+ 8.5099473595619202e-02 -6.3421532511711121e-02
+ <_>
+
+ 0 -1 8251 3.3258409239351749e-03
+
+ -8.4625139832496643e-02 4.7368369996547699e-02
+ <_>
+
+ 0 -1 8252 -3.9332117885351181e-03
+
+ -1.2637099623680115e-01 4.2450599372386932e-02
+ <_>
+
+ 0 -1 8253 -4.7937841154634953e-03
+
+ -4.2527411133050919e-02 2.5126809254288673e-02
+ <_>
+
+ 0 -1 8254 2.5972370058298111e-03
+
+ 4.1884120553731918e-02 -1.4374159276485443e-01
+ <_>
+
+ 0 -1 8255 5.2807550877332687e-02
+
+ -1.2467020191252232e-02 4.0223389863967896e-01
+ <_>
+
+ 0 -1 8256 -8.1413555890321732e-03
+
+ -1.2783770263195038e-01 3.8975879549980164e-02
+ <_>
+
+ 0 -1 8257 2.9801739379763603e-02
+
+ -1.6747390851378441e-02 1.2424229830503464e-01
+ <_>
+
+ 0 -1 8258 -8.9907720685005188e-02
+
+ 3.1418469548225403e-01 -1.8360419198870659e-02
+ <_>
+
+ 0 -1 8259 1.7845210433006287e-01
+
+ 1.0455190204083920e-02 -3.2048919796943665e-01
+ <_>
+
+ 0 -1 8260 1.8588220700621605e-02
+
+ -3.8541439920663834e-02 1.5135329961776733e-01
+ <_>
+
+ 0 -1 8261 -4.5074601075612009e-05
+
+ 5.0462849438190460e-02 -5.6574851274490356e-02
+ <_>
+
+ 0 -1 8262 3.8339050952345133e-03
+
+ 4.7501549124717712e-02 -1.4327140152454376e-01
+ <_>
+
+ 0 -1 8263 8.8608250021934509e-02
+
+ -3.3567149657756090e-03 5.8598208427429199e-01
+ <_>
+
+ 0 -1 8264 -7.0611469447612762e-02
+
+ 6.0292667150497437e-01 -8.3463769406080246e-03
+ <_>
+
+ 0 -1 8265 -1.3958199322223663e-01
+
+ -9.1693513095378876e-02 1.5311989933252335e-02
+ <_>
+
+ 0 -1 8266 7.6274941675364971e-03
+
+ -4.0825009346008301e-02 1.1937720328569412e-01
+ <_>
+
+ 0 -1 8267 -7.0419587194919586e-02
+
+ -6.6531497240066528e-01 2.6815559249371290e-03
+ <_>
+
+ 0 -1 8268 2.2952680010348558e-03
+
+ -7.9496517777442932e-02 5.7034268975257874e-02
+ <_>
+
+ 0 -1 8269 3.6756680347025394e-03
+
+ -2.9180280864238739e-02 5.6333038955926895e-02
+ <_>
+
+ 0 -1 8270 4.6072501689195633e-02
+
+ 1.9100179895758629e-02 -2.9163768887519836e-01
+ <_>
+
+ 0 -1 8271 2.1738489158451557e-03
+
+ -2.6912130415439606e-02 2.0199960470199585e-01
+ <_>
+
+ 0 -1 8272 -5.3164511919021606e-03
+
+ 9.3022979795932770e-02 -7.1548640727996826e-02
+ <_>
+
+ 0 -1 8273 -1.1198960244655609e-02
+
+ -1.0618919879198074e-01 4.8395581543445587e-02
+ <_>
+
+ 0 -1 8274 1.7013610340654850e-03
+
+ -1.3111209869384766e-01 4.3086219578981400e-02
+ <_>
+
+ 0 -1 8275 -1.1626269668340683e-02
+
+ 1.5684530138969421e-01 -2.4698950350284576e-02
+ <_>
+
+ 0 -1 8276 9.3881830573081970e-02
+
+ -1.2058589607477188e-02 3.7941938638687134e-01
+ <_>
+
+ 0 -1 8277 1.2041090056300163e-02
+
+ 2.9569109901785851e-02 -1.3328549265861511e-01
+ <_>
+
+ 0 -1 8278 -4.1863098740577698e-03
+
+ 6.7244023084640503e-02 -7.2228990495204926e-02
+ <_>
+
+ 0 -1 8279 8.8373906910419464e-02
+
+ 7.5915241613984108e-03 -6.2512797117233276e-01
+ <_>
+
+ 0 -1 8280 -1.4876410365104675e-02
+
+ 1.1762090027332306e-01 -4.3840218335390091e-02
+ <_>
+
+ 0 -1 8281 1.3433529995381832e-02
+
+ 1.9615789875388145e-02 -1.1923760175704956e-01
+ <_>
+
+ 0 -1 8282 1.5091040730476379e-01
+
+ -9.9040074273943901e-03 5.6262481212615967e-01
+ <_>
+
+ 0 -1 8283 -1.7507839947938919e-02
+
+ -2.3439739644527435e-01 1.8828360363841057e-02
+ <_>
+
+ 0 -1 8284 -1.4707089960575104e-01
+
+ -7.4530661106109619e-01 7.0233740843832493e-03
+ <_>
+
+ 0 -1 8285 3.1485889106988907e-02
+
+ -3.6193220876157284e-03 6.9215708971023560e-01
+ <_>
+
+ 0 -1 8286 -1.6217399388551712e-04
+
+ 4.6460039913654327e-02 -1.0642550140619278e-01
+ <_>
+
+ 0 -1 8287 5.6881760247051716e-04
+
+ -2.8816150501370430e-02 7.4378728866577148e-02
+ <_>
+
+ 0 -1 8288 -1.9876200705766678e-02
+
+ -2.0997400581836700e-01 2.3018810898065567e-02
+ <_>
+
+ 0 -1 8289 -8.7401196360588074e-03
+
+ 1.7325100302696228e-01 -3.5786859691143036e-02
+ <_>
+
+ 0 -1 8290 -5.0579208880662918e-02
+
+ -5.2024918794631958e-01 9.2388605698943138e-03
+ <_>
+
+ 0 -1 8291 9.3982152640819550e-02
+
+ 3.4048059023916721e-03 -2.9207429289817810e-01
+ <_>
+
+ 0 -1 8292 -1.3326539658010006e-02
+
+ 1.3661830127239227e-01 -3.4405559301376343e-02
+ <_>
+
+ 0 -1 8293 -2.2472620010375977e-02
+
+ -2.5913679599761963e-01 1.1266170069575310e-02
+ <_>
+
+ 0 -1 8294 -4.1125040501356125e-02
+
+ -6.6921561956405640e-01 7.3854308575391769e-03
+ <_>
+
+ 0 -1 8295 6.9720767438411713e-02
+
+ 5.0764488987624645e-03 -2.4747189879417419e-01
+ <_>
+
+ 0 -1 8296 2.5198599323630333e-02
+
+ -1.5660049393773079e-02 2.9408401250839233e-01
+ <_>
+
+ 0 -1 8297 4.2568319477140903e-03
+
+ 3.8112118840217590e-02 -1.2368690222501755e-01
+ <_>
+
+ 0 -1 8298 -1.2679009698331356e-02
+
+ -1.9976189732551575e-01 2.8806639835238457e-02
+ <_>
+
+ 0 -1 8299 -1.6080659627914429e-01
+
+ 1.8710459768772125e-01 -8.2025080919265747e-03
+ <_>
+
+ 0 -1 8300 1.2181399762630463e-01
+
+ -1.0855929926037788e-02 4.5412290096282959e-01
+ <_>
+
+ 0 -1 8301 2.8687159065157175e-03
+
+ -9.8563097417354584e-03 1.9689890742301941e-01
+ <_>
+
+ 0 -1 8302 -3.4924471401609480e-04
+
+ 4.7955259680747986e-02 -1.2549050152301788e-01
+ <_>
+
+ 0 -1 8303 4.3789181858301163e-02
+
+ 5.1197651773691177e-03 -6.6044712066650391e-01
+ <_>
+
+ 0 -1 8304 4.9425449222326279e-02
+
+ 7.9704420641064644e-03 -5.1537191867828369e-01
+ <_>
+
+ 0 -1 8305 1.2263789772987366e-02
+
+ 9.8127601668238640e-03 -1.6274920105934143e-01
+ <_>
+
+ 0 -1 8306 -6.7564379423856735e-03
+
+ -6.6992767155170441e-02 7.8426092863082886e-02
+ <_>
+
+ 0 -1 8307 1.9599240273237228e-02
+
+ -2.4508479982614517e-02 1.7892380058765411e-01
+ <_>
+
+ 0 -1 8308 1.3520059874281287e-03
+
+ -7.5853422284126282e-02 5.7282470166683197e-02
+ <_>
+
+ 0 -1 8309 5.1610758528113365e-03
+
+ 5.0592619925737381e-02 -9.6658922731876373e-02
+ <_>
+
+ 0 -1 8310 2.7124589309096336e-02
+
+ -1.3078499585390091e-02 3.3894819021224976e-01
+ <_>
+
+ 0 -1 8311 -7.3659062385559082e-02
+
+ -9.0775561332702637e-01 5.3760888986289501e-03
+ <_>
+
+ 0 -1 8312 -2.7619479224085808e-03
+
+ 1.3446320593357086e-01 -3.4483309835195541e-02
+ <_>
+
+ 0 -1 8313 -1.5638889744877815e-03
+
+ -1.9992120563983917e-01 1.4003699645400047e-02
+ <_>
+
+ 0 -1 8314 4.0559601038694382e-03
+
+ 5.3183209151029587e-02 -1.0070829838514328e-01
+ <_>
+
+ 0 -1 8315 -3.2189621124416590e-03
+
+ 6.2624312937259674e-02 -3.0276089906692505e-02
+ <_>
+
+ 0 -1 8316 4.1666622273623943e-03
+
+ -9.1761156916618347e-02 5.8400500565767288e-02
+ <_>
+
+ 0 -1 8317 2.0393060520291328e-02
+
+ 4.8048538155853748e-03 -3.8386350870132446e-01
+ <_>
+
+ 0 -1 8318 -9.9844802170991898e-03
+
+ -6.9473296403884888e-02 7.0034191012382507e-02
+ <_>
+
+ 0 -1 8319 1.9515320658683777e-02
+
+ -3.4106500446796417e-02 1.0831409692764282e-01
+ <_>
+
+ 0 -1 8320 8.7807718664407730e-03
+
+ 3.6990050226449966e-02 -1.3089330494403839e-01
+ <_>
+
+ 0 -1 8321 1.7314519500359893e-03
+
+ -4.2123470455408096e-02 8.4982097148895264e-02
+ <_>
+
+ 0 -1 8322 -2.6709519326686859e-02
+
+ 3.2326829433441162e-01 -1.5427160076797009e-02
+ <_>
+
+ 0 -1 8323 7.8696580603718758e-03
+
+ 3.1361158937215805e-02 -1.0568609833717346e-01
+ <_>
+
+ 0 -1 8324 3.2152980566024780e-03
+
+ -6.5161801874637604e-02 7.6189488172531128e-02
+ <_>
+
+ 0 -1 8325 -2.3215120658278465e-02
+
+ 2.2522650659084320e-01 -1.4838770031929016e-02
+ <_>
+
+ 0 -1 8326 -4.4935368932783604e-03
+
+ -1.3131460547447205e-01 4.2855940759181976e-02
+ <_>
+
+ 0 -1 8327 -1.1850389651954174e-02
+
+ 1.4825740456581116e-01 -2.9456850141286850e-02
+ <_>
+
+ 0 -1 8328 -9.3039282364770770e-04
+
+ 7.9329937696456909e-02 -7.5784526765346527e-02
+ <_>
+
+ 0 -1 8329 -7.2138011455535889e-04
+
+ 2.2042410448193550e-02 -2.0893280208110809e-01
+ <_>
+
+ 0 -1 8330 1.3078770041465759e-01
+
+ -1.2214420363306999e-02 4.3224608898162842e-01
+ <_>
+
+ 0 -1 8331 2.7863389253616333e-01
+
+ -7.4468360980972648e-04 9.9999761581420898e-01
+ <_>
+
+ 0 -1 8332 -4.0815200656652451e-02
+
+ -6.1310279369354248e-01 8.2405265420675278e-03
+ <_>
+
+ 0 -1 8333 1.5054940013214946e-03
+
+ -1.8053399398922920e-02 6.5230727195739746e-02
+ <_>
+
+ 0 -1 8334 6.5729310736060143e-03
+
+ 3.0967630445957184e-02 -1.5021359920501709e-01
+ <_>
+
+ 0 -1 8335 -1.4033170044422150e-01
+
+ -4.4641208648681641e-01 5.0997259095311165e-03
+ <_>
+
+ 0 -1 8336 -1.2781560420989990e-02
+
+ 1.2579609453678131e-01 -4.6258769929409027e-02
+ <_>
+
+ 0 -1 8337 1.3383819721639156e-02
+
+ 7.5233832001686096e-02 -2.9858419671654701e-02
+ <_>
+
+ 0 -1 8338 9.5225386321544647e-03
+
+ -4.4135529547929764e-02 1.0822969675064087e-01
+ <_>
+
+ 0 -1 8339 -7.2484686970710754e-02
+
+ -1. 1.3005880173295736e-03
+ <_>
+
+ 0 -1 8340 3.6246789386495948e-04
+
+ -6.6878542304039001e-02 7.3916479945182800e-02
+ <_>
+
+ 0 -1 8341 -1.5511980280280113e-02
+
+ -1.8414540588855743e-01 1.5999039635062218e-02
+ <_>
+
+ 0 -1 8342 5.1146611571311951e-02
+
+ -9.4361994415521622e-03 5.4720860719680786e-01
+ <_>
+
+ 0 -1 8343 -8.9448272774461657e-05
+
+ 3.2970890402793884e-02 -4.5103389769792557e-02
+ <_>
+
+ 0 -1 8344 1.0151580208912492e-03
+
+ 4.8603180795907974e-02 -9.8257049918174744e-02
+ <_>
+
+ 0 -1 8345 5.3570970892906189e-02
+
+ 1.0325700044631958e-02 -1.4304420351982117e-01
+ <_>
+
+ 0 -1 8346 1.2302629649639130e-01
+
+ -5.2219899371266365e-03 8.6903452873229980e-01
+ <_>
+
+ 0 -1 8347 -6.0005468549206853e-04
+
+ 5.3572040051221848e-02 -5.8203268796205521e-02
+ <_>
+
+ 0 -1 8348 -4.4715698808431625e-02
+
+ 4.4988310337066650e-01 -1.0549419559538364e-02
+ <_>
+
+ 0 -1 8349 6.3781379722058773e-03
+
+ 2.6184290647506714e-02 -1.0640030354261398e-01
+ <_>
+
+ 0 -1 8350 -5.6618300732225180e-04
+
+ 5.7264849543571472e-02 -7.7750243246555328e-02
+ <_>
+
+ 0 -1 8351 -1.5853339573368430e-04
+
+ 2.5316949933767319e-02 -5.7189941406250000e-02
+ <_>
+
+ 0 -1 8352 -4.9790769815444946e-02
+
+ -3.7127709388732910e-01 1.3125170022249222e-02
+ <_>
+
+ 0 -1 8353 -1.0477020405232906e-02
+
+ 8.4245949983596802e-02 -3.6731608211994171e-02
+ <_>
+
+ 0 -1 8354 -9.0497080236673355e-03
+
+ -1.6894440352916718e-01 2.8471369296312332e-02
+ <_>
+
+ 0 -1 8355 -3.5202078521251678e-02
+
+ -4.3810841441154480e-01 5.8491500094532967e-03
+ <_>
+
+ 0 -1 8356 -2.0730090327560902e-03
+
+ 9.4890840351581573e-02 -5.3059589117765427e-02
+ <_>
+
+ 0 -1 8357 -5.0727208144962788e-03
+
+ -1.1221739649772644e-01 4.4165991246700287e-02
+ <_>
+
+ 0 -1 8358 2.5876651052385569e-03
+
+ -5.5557820945978165e-02 1.1426319926977158e-01
+ <_>
+
+ 0 -1 8359 -2.4757650680840015e-03
+
+ -4.8213180154561996e-02 3.1529899686574936e-02
+ <_>
+
+ 0 -1 8360 -1.2912530452013016e-02
+
+ 1.1486659944057465e-01 -3.8589760661125183e-02
+ <_>
+
+ 0 -1 8361 7.0194348692893982e-02
+
+ 3.5798270255327225e-03 -7.3008167743682861e-01
+ <_>
+
+ 0 -1 8362 -1.2016300112009048e-01
+
+ -6.7217922210693359e-01 5.8088749647140503e-03
+ <_>
+
+ 0 -1 8363 1.3109490275382996e-01
+
+ 1.5340699814260006e-02 -1.2917870283126831e-01
+ <_>
+
+ 0 -1 8364 -1.1350499838590622e-01
+
+ 4.7297981381416321e-01 -1.0574280284345150e-02
+ <_>
+
+ 0 -1 8365 -7.1533523499965668e-02
+
+ -3.4910291433334351e-01 9.8157208412885666e-03
+ <_>
+
+ 0 -1 8366 1.5889670699834824e-02
+
+ -3.0149290338158607e-02 1.5134809911251068e-01
+ <_>
+
+ 0 -1 8367 2.6840370893478394e-01
+
+ 9.9974423646926880e-03 -1.2243749946355820e-01
+ <_>
+
+ 0 -1 8368 -1.4922569692134857e-01
+
+ -1.5773139894008636e-01 2.7682509273290634e-02
+ <_>
+
+ 0 -1 8369 -2.2858489304780960e-02
+
+ 1.7340719699859619e-01 -2.1124770864844322e-02
+ <_>
+
+ 0 -1 8370 -9.0983451809734106e-04
+
+ 5.5269908159971237e-02 -8.5052981972694397e-02
+ <_>
+
+ 0 -1 8371 -1.1462160386145115e-02
+
+ -1.4397600293159485e-01 1.3809709809720516e-02
+ <_>
+
+ 0 -1 8372 8.7118431925773621e-02
+
+ 6.4688520506024361e-03 -7.2809070348739624e-01
+ <_>
+
+ 0 -1 8373 5.3810589015483856e-02
+
+ -2.8251519426703453e-02 1.3615800440311432e-01
+ <_>
+
+ 0 -1 8374 -1.6928049735724926e-03
+
+ -1.0114800184965134e-01 5.2096601575613022e-02
+ <_>
+
+ 0 -1 8375 -1.4526920393109322e-02
+
+ -1.0613209754228592e-01 2.7218030765652657e-02
+ <_>
+
+ 0 -1 8376 -5.9082340449094772e-03
+
+ 1.1257000267505646e-01 -6.1032701283693314e-02
+ <_>
+
+ 0 -1 8377 -2.1421469748020172e-02
+
+ -1.5464189648628235e-01 1.1853870004415512e-02
+ <_>
+
+ 0 -1 8378 8.0171570181846619e-02
+
+ 5.5826799944043159e-03 -8.2389092445373535e-01
+ <_>
+
+ 0 -1 8379 -1.0931739816442132e-03
+
+ -7.8393906354904175e-02 1.3433099724352360e-02
+ <_>
+
+ 0 -1 8380 4.1605130536481738e-04
+
+ -4.3186139315366745e-02 1.0500840097665787e-01
+ <_>
+
+ 0 -1 8381 -2.8376420959830284e-03
+
+ 7.8960210084915161e-02 -4.2247280478477478e-02
+ <_>
+
+ 0 -1 8382 -2.8522519394755363e-02
+
+ -1.0722970217466354e-01 4.7789189964532852e-02
+ <_>
+
+ 0 -1 8383 4.0068081021308899e-01
+
+ -5.7991011999547482e-03 3.0695509910583496e-01
+ <_>
+
+ 0 -1 8384 -8.1703867763280869e-03
+
+ 1.0851760208606720e-01 -5.6153468787670135e-02
+ <_>
+
+ 0 -1 8385 9.3125440180301666e-03
+
+ -4.4560939073562622e-02 4.3634049594402313e-02
+ <_>
+
+ 0 -1 8386 5.8274720795452595e-03
+
+ 3.1310841441154480e-02 -1.6053420305252075e-01
+ <_>
+
+ 0 -1 8387 -2.9063750989735126e-03
+
+ 3.7148229777812958e-02 -2.7310580015182495e-02
+ <_>
+
+ 0 -1 8388 1.6421969980001450e-02
+
+ -3.1616371124982834e-02 1.6195470094680786e-01
+ <_>
+
+ 0 -1 8389 -1.3876060023903847e-02
+
+ -1.7840880155563354e-01 2.6925239711999893e-02
+ <_>
+
+ 0 -1 8390 -2.9935980215668678e-02
+
+ 2.0069709420204163e-01 -2.7372730895876884e-02
+ <_>
+
+ 0 -1 8391 8.1381313502788544e-03
+
+ 4.0951769798994064e-02 -7.4756972491741180e-02
+ <_>
+
+ 0 -1 8392 -5.8591389097273350e-03
+
+ -1.2337020039558411e-01 3.9641879498958588e-02
+ <_>
+
+ 0 -1 8393 7.1592196822166443e-02
+
+ -1.0293760336935520e-02 2.2391259670257568e-01
+ <_>
+
+ 0 -1 8394 5.0111521035432816e-02
+
+ 2.4072999134659767e-02 -2.1443809568881989e-01
+ <_>
+
+ 0 -1 8395 4.2603579349815845e-03
+
+ -2.3712050169706345e-02 7.3603406548500061e-02
+ <_>
+
+ 0 -1 8396 6.5065422095358372e-03
+
+ -6.7402780055999756e-02 7.6926141977310181e-02
+ <_>
+
+ 0 -1 8397 2.0325470250099897e-03
+
+ -9.9664673209190369e-02 5.7994231581687927e-02
+ <_>
+
+ 0 -1 8398 -9.3465158715844154e-03
+
+ 1.9432920217514038e-01 -3.1387709081172943e-02
+ <_>
+
+ 0 -1 8399 9.5768114551901817e-03
+
+ 2.2594990208745003e-02 -1.6090850532054901e-01
+ <_>
+
+ 0 -1 8400 -4.6763911843299866e-02
+
+ -3.5020270943641663e-01 1.5035149641335011e-02
+ <_>
+
+ 0 -1 8401 -5.0164870917797089e-02
+
+ 1.2763389945030212e-01 -1.1035620234906673e-02
+ <_>
+
+ 0 -1 8402 2.3148149251937866e-02
+
+ -2.4636579677462578e-02 2.0264349877834320e-01
+ <_>
+
+ 0 -1 8403 -7.4168562889099121e-02
+
+ -9.4854289293289185e-01 2.2216918878257275e-03
+ <_>
+
+ 0 -1 8404 -2.0698629319667816e-02
+
+ -2.4585549533367157e-01 2.1370820701122284e-02
+ <_>
+
+ 0 -1 8405 -5.8187540620565414e-02
+
+ 3.0531001091003418e-01 -8.1265745684504509e-03
+ <_>
+
+ 0 -1 8406 -5.2451588213443756e-02
+
+ 5.0567781925201416e-01 -9.7108660265803337e-03
+ <_>
+
+ 0 -1 8407 -4.6721640974283218e-02
+
+ 8.0896109342575073e-01 -1.8908439669758081e-03
+ <_>
+
+ 0 -1 8408 -1.0385509580373764e-02
+
+ -2.8369909524917603e-01 1.9166229292750359e-02
+ <_>
+
+ 0 -1 8409 5.4432367905974388e-03
+
+ 4.1430719196796417e-02 -1.6033279895782471e-01
+ <_>
+
+ 0 -1 8410 2.4030160158872604e-02
+
+ -4.3751548975706100e-02 1.0553020238876343e-01
+ <_>
+
+ 0 -1 8411 -2.6430420577526093e-02
+
+ -8.7448269128799438e-02 2.8769830241799355e-02
+ <_>
+
+ 0 -1 8412 4.8743681982159615e-03
+
+ 3.5032961517572403e-02 -1.5881679952144623e-01
+ <_>
+
+ 0 -1 8413 -2.5106489192694426e-03
+
+ 8.8161677122116089e-02 -3.0205590650439262e-02
+ <_>
+
+ 0 -1 8414 -5.2146320231258869e-03
+
+ -1.1350130289793015e-01 4.2001061141490936e-02
+ <_>
+
+ 0 -1 8415 -1.0986009612679482e-02
+
+ 8.4428779780864716e-02 -3.8272839039564133e-02
+ <_>
+
+ 0 -1 8416 -6.0057129710912704e-02
+
+ -7.9249101877212524e-01 5.2951448597013950e-03
+ <_>
+
+ 0 -1 8417 1.3621809892356396e-02
+
+ -1.7419820651412010e-02 2.1612060070037842e-01
+ <_>
+
+ 0 -1 8418 -2.2223800420761108e-02
+
+ 2.6721641421318054e-01 -2.0207190886139870e-02
+ <_>
+
+ 0 -1 8419 5.8124359697103500e-02
+
+ 6.0539757832884789e-03 -4.0927109122276306e-01
+ <_>
+
+ 0 -1 8420 -2.8097970411181450e-02
+
+ -1.1217900365591049e-01 5.4144639521837234e-02
+ <_>
+
+ 0 -1 8421 6.5278373658657074e-02
+
+ -7.4973162263631821e-03 1.2384270131587982e-01
+ <_>
+
+ 0 -1 8422 -2.5233640335500240e-03
+
+ -1.8224379420280457e-01 2.4537850171327591e-02
+ <_>
+
+ 0 -1 8423 1.1478599905967712e-01
+
+ 1.9617579877376556e-02 -1.1905120313167572e-01
+ <_>
+
+ 0 -1 8424 9.6991509199142456e-03
+
+ -5.3946550935506821e-02 1.1180210113525391e-01
+ <_>
+
+ 0 -1 8425 2.9359150677919388e-02
+
+ -2.3395609110593796e-02 1.8534250557422638e-01
+ <_>
+
+ 0 -1 8426 7.8490097075700760e-03
+
+ 1.6454109549522400e-01 -4.2129490524530411e-02
+ <_>
+
+ 0 -1 8427 4.0329899638891220e-03
+
+ 2.4495590478181839e-02 -6.5955489873886108e-02
+ <_>
+
+ 0 -1 8428 2.1471390128135681e-01
+
+ -1.0462880134582520e-02 4.7438031435012817e-01
+ <_>
+
+ 0 -1 8429 -2.2316209506243467e-03
+
+ 4.9796439707279205e-02 -1.0328280180692673e-01
+ <_>
+
+ 0 -1 8430 2.1833330392837524e-02
+
+ -5.3884848952293396e-02 9.3277551233768463e-02
+ <_>
+
+ 0 -1 8431 2.4430779740214348e-02
+
+ 1.5706099569797516e-02 -2.8244438767433167e-01
+ <_>
+
+ 0 -1 8432 1.2532520107924938e-02
+
+ -3.0983900651335716e-02 1.5599699318408966e-01
+ <_>
+
+ 0 -1 8433 7.9741179943084717e-03
+
+ 2.6650540530681610e-02 -1.3689580559730530e-01
+ <_>
+
+ 0 -1 8434 7.9444557428359985e-02
+
+ 6.4238710328936577e-03 -7.8485661745071411e-01
+ <_>
+
+ 0 -1 8435 -1.7925030551850796e-03
+
+ 3.9645589888095856e-02 -1.1497259885072708e-01
+ <_>
+
+ 0 -1 8436 -9.0927572455257177e-04
+
+ 6.3256889581680298e-02 -7.5250372290611267e-02
+ <_>
+
+ 0 -1 8437 -2.6040049269795418e-02
+
+ 1.4864259958267212e-01 -1.8506240099668503e-02
+ <_>
+
+ 0 -1 8438 4.1452320292592049e-03
+
+ 3.3959619700908661e-02 -1.4355990290641785e-01
+ <_>
+
+ 0 -1 8439 5.7123368605971336e-04
+
+ -6.8550966680049896e-02 6.9944731891155243e-02
+ <_>
+
+ 0 -1 8440 -4.9577720463275909e-02
+
+ 3.9880838990211487e-01 -1.1339910328388214e-02
+ <_>
+
+ 0 -1 8441 -1.5334860421717167e-02
+
+ -8.3445623517036438e-02 3.2276369631290436e-02
+ <_>
+
+ 0 -1 8442 -1.7406089231371880e-02
+
+ 1.3560940325260162e-01 -3.1945578753948212e-02
+ <_>
+
+ 0 -1 8443 -2.1422259509563446e-02
+
+ -1.1050239950418472e-01 2.8536040335893631e-02
+ <_>
+
+ 0 -1 8444 1.9694769289344549e-03
+
+ 4.3834108859300613e-02 -1.0551860183477402e-01
+ <_>
+
+ 0 -1 8445 -1.9115379080176353e-02
+
+ 1.4690290391445160e-01 -1.5405310317873955e-02
+ <_>
+
+ 0 -1 8446 4.6963259577751160e-02
+
+ 8.1654358655214310e-03 -5.8734887838363647e-01
+ <_>
+
+ 0 -1 8447 2.0964320003986359e-01
+
+ 3.1721789855509996e-03 -8.0437898635864258e-01
+ <_>
+
+ 0 -1 8448 6.2511406838893890e-02
+
+ -1.6422789543867111e-02 3.0976039171218872e-01
+ <_>
+
+ 0 -1 8449 -1.0126180201768875e-01
+
+ -6.1639147996902466e-01 7.2699659503996372e-03
+ <_>
+
+ 0 -1 8450 3.3980670850723982e-03
+
+ -1.9664889201521873e-02 2.2541929781436920e-01
+ <_>
+
+ 0 -1 8451 -1.7059950157999992e-02
+
+ -1.7193520441651344e-02 6.9114550948143005e-02
+ <_>
+
+ 0 -1 8452 3.7455849815160036e-03
+
+ 5.1737461239099503e-02 -8.2748822867870331e-02
+ <_>
+
+ 0 -1 8453 8.7769806385040283e-02
+
+ -6.3681108877062798e-03 7.9492002725601196e-02
+ <_>
+
+ 0 -1 8454 2.3725361097604036e-03
+
+ -3.0487439036369324e-01 1.4520769938826561e-02
+ <_>
+
+ 0 -1 8455 -1.9282909110188484e-02
+
+ 1.8806980550289154e-01 -1.3220929540693760e-02
+ <_>
+
+ 0 -1 8456 3.8580079562962055e-03
+
+ 3.3978439867496490e-02 -1.2854169309139252e-01
+ <_>
+
+ 0 -1 8457 2.6525680441409349e-03
+
+ -3.9146900177001953e-02 9.9119357764720917e-02
+ <_>
+
+ 0 -1 8458 9.9175602197647095e-02
+
+ 5.0618657842278481e-03 -8.7370461225509644e-01
+ <_>
+
+ 0 -1 8459 -7.0648840628564358e-03
+
+ 8.5219286382198334e-02 -2.4467790499329567e-02
+ <_>
+
+ 0 -1 8460 -5.2547529339790344e-03
+
+ -1.2158469855785370e-01 3.7228528410196304e-02
+ <_>
+
+ 0 -1 8461 5.0068609416484833e-03
+
+ -3.5557191818952560e-02 7.8515462577342987e-02
+ <_>
+
+ 0 -1 8462 -6.8118162453174591e-02
+
+ -2.6292499899864197e-01 1.8325960263609886e-02
+ <_>
+
+ 0 -1 8463 9.3348289374262094e-04
+
+ -3.0107179656624794e-02 4.4869720935821533e-02
+ <_>
+
+ 0 -1 8464 -2.1996269933879375e-03
+
+ 1.1136700212955475e-01 -6.6201932728290558e-02
+ <_>
+
+ 0 -1 8465 -6.6485330462455750e-03
+
+ -7.8398697078227997e-02 2.0472070202231407e-02
+ <_>
+
+ 0 -1 8466 1.4126920141279697e-03
+
+ -5.2428670227527618e-02 8.9471399784088135e-02
+ <_>
+
+ 0 -1 8467 5.1406599581241608e-02
+
+ -1.4306739903986454e-03 6.3885271549224854e-01
+
+ <_>
+
+ <_>
+ 2 7 14 4 -1.
+ <_>
+ 2 9 14 2 2.
+ <_>
+
+ <_>
+ 1 2 18 4 -1.
+ <_>
+ 7 2 6 4 3.
+ <_>
+
+ <_>
+ 5 5 9 5 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 3 6 14 9 -1.
+ <_>
+ 3 9 14 3 3.
+ <_>
+
+ <_>
+ 1 1 18 5 -1.
+ <_>
+ 7 1 6 5 3.
+ <_>
+
+ <_>
+ 4 6 12 8 -1.
+ <_>
+ 4 10 12 4 2.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 12 5 3 5 2.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 4 0 11 9 -1.
+ <_>
+ 4 3 11 3 3.
+ <_>
+
+ <_>
+ 12 5 4 8 -1.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 4 5 10 10 -1.
+ <_>
+ 4 5 5 5 2.
+ <_>
+ 9 10 5 5 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 3 8 5 12 -1.
+ <_>
+ 3 14 5 6 2.
+ <_>
+
+ <_>
+ 5 3 9 9 -1.
+ <_>
+ 5 6 9 3 3.
+ <_>
+
+ <_>
+ 8 5 4 12 -1.
+ <_>
+ 8 11 4 6 2.
+ <_>
+
+ <_>
+ 3 6 5 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+
+ <_>
+ 4 5 12 5 -1.
+ <_>
+ 8 5 4 5 3.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 2 4 4 2.
+ <_>
+ 5 6 4 4 2.
+ <_>
+
+ <_>
+ 8 12 10 8 -1.
+ <_>
+ 13 12 5 4 2.
+ <_>
+ 8 16 5 4 2.
+ <_>
+
+ <_>
+ 4 9 3 10 -1.
+ <_>
+ 4 14 3 5 2.
+ <_>
+
+ <_>
+ 0 4 20 10 -1.
+ <_>
+ 0 9 20 5 2.
+ <_>
+
+ <_>
+ 3 0 13 9 -1.
+ <_>
+ 3 3 13 3 3.
+ <_>
+
+ <_>
+ 10 1 4 11 -1.
+ <_>
+ 10 1 2 11 2.
+ <_>
+
+ <_>
+ 6 1 4 11 -1.
+ <_>
+ 8 1 2 11 2.
+ <_>
+
+ <_>
+ 4 6 12 8 -1.
+ <_>
+ 10 6 6 4 2.
+ <_>
+ 4 10 6 4 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 11 9 4 7 -1.
+ <_>
+ 11 9 2 7 2.
+ <_>
+
+ <_>
+ 5 9 4 7 -1.
+ <_>
+ 7 9 2 7 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 9 20 2 3.
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 6 6 8 3 2.
+ <_>
+
+ <_>
+ 7 2 6 7 -1.
+ <_>
+ 9 2 2 7 3.
+ <_>
+
+ <_>
+ 11 7 5 9 -1.
+ <_>
+ 11 10 5 3 3.
+ <_>
+
+ <_>
+ 4 6 8 8 -1.
+ <_>
+ 4 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 9 5 6 8 -1.
+ <_>
+ 9 9 6 4 2.
+ <_>
+
+ <_>
+ 4 10 5 6 -1.
+ <_>
+ 4 13 5 3 2.
+ <_>
+
+ <_>
+ 12 0 6 5 -1.
+ <_>
+ 12 0 3 5 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 3 2 17 2 -1.
+ <_>
+ 3 3 17 1 2.
+ <_>
+
+ <_>
+ 5 6 4 8 -1.
+ <_>
+ 5 10 4 4 2.
+ <_>
+
+ <_>
+ 14 3 6 9 -1.
+ <_>
+ 14 3 3 9 2.
+ <_>
+
+ <_>
+ 3 0 9 5 -1.
+ <_>
+ 6 0 3 5 3.
+ <_>
+
+ <_>
+ 15 2 4 9 -1.
+ <_>
+ 15 2 2 9 2.
+ <_>
+
+ <_>
+ 1 2 4 9 -1.
+ <_>
+ 3 2 2 9 2.
+ <_>
+
+ <_>
+ 8 8 6 12 -1.
+ <_>
+ 8 12 6 4 3.
+ <_>
+
+ <_>
+ 2 13 16 4 -1.
+ <_>
+ 2 13 8 2 2.
+ <_>
+ 10 15 8 2 2.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 7 8 2 3.
+ <_>
+
+ <_>
+ 0 11 8 6 -1.
+ <_>
+ 0 13 8 2 3.
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 19 20 1 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 3 1 17 3 -1.
+ <_>
+ 3 2 17 1 3.
+ <_>
+
+ <_>
+ 3 6 5 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+
+ <_>
+ 4 5 12 7 -1.
+ <_>
+ 8 5 4 7 3.
+ <_>
+
+ <_>
+ 0 4 14 4 -1.
+ <_>
+ 0 4 7 2 2.
+ <_>
+ 7 6 7 2 2.
+ <_>
+
+ <_>
+ 4 11 12 9 -1.
+ <_>
+ 4 14 12 3 3.
+ <_>
+
+ <_>
+ 3 2 14 16 -1.
+ <_>
+ 3 2 7 8 2.
+ <_>
+ 10 10 7 8 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 3 1 10 16 -1.
+ <_>
+ 3 1 5 8 2.
+ <_>
+ 8 9 5 8 2.
+ <_>
+
+ <_>
+ 1 0 16 2 -1.
+ <_>
+ 1 1 16 1 2.
+ <_>
+
+ <_>
+ 2 10 16 4 -1.
+ <_>
+ 2 12 16 2 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 9 0 2 8 3.
+ <_>
+
+ <_>
+ 5 3 10 9 -1.
+ <_>
+ 5 6 10 3 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 6 8 12 -1.
+ <_>
+ 10 10 8 4 3.
+ <_>
+
+ <_>
+ 2 8 15 3 -1.
+ <_>
+ 2 9 15 1 3.
+ <_>
+
+ <_>
+ 10 6 9 12 -1.
+ <_>
+ 10 10 9 4 3.
+ <_>
+
+ <_>
+ 4 6 6 8 -1.
+ <_>
+ 4 10 6 4 2.
+ <_>
+
+ <_>
+ 9 8 4 12 -1.
+ <_>
+ 9 12 4 4 3.
+ <_>
+
+ <_>
+ 1 0 6 18 -1.
+ <_>
+ 4 0 3 18 2.
+ <_>
+
+ <_>
+ 5 2 13 2 -1.
+ <_>
+ 5 3 13 1 2.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+ 6 6 4 6 2.
+ <_>
+
+ <_>
+ 2 1 6 10 -1.
+ <_>
+ 2 1 3 5 2.
+ <_>
+ 5 6 3 5 2.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 0 12 18 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 5 5 15 6 -1.
+ <_>
+ 5 7 15 2 3.
+ <_>
+
+ <_>
+ 2 6 5 9 -1.
+ <_>
+ 2 9 5 3 3.
+ <_>
+
+ <_>
+ 9 8 10 6 -1.
+ <_>
+ 14 8 5 3 2.
+ <_>
+ 9 11 5 3 2.
+ <_>
+
+ <_>
+ 5 6 10 10 -1.
+ <_>
+ 5 6 5 5 2.
+ <_>
+ 10 11 5 5 2.
+ <_>
+
+ <_>
+ 7 4 12 4 -1.
+ <_>
+ 7 6 12 2 2.
+ <_>
+
+ <_>
+ 1 10 16 4 -1.
+ <_>
+ 1 10 8 2 2.
+ <_>
+ 9 12 8 2 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 6 0 3 17 -1.
+ <_>
+ 7 0 1 17 3.
+ <_>
+
+ <_>
+ 9 4 4 16 -1.
+ <_>
+ 11 4 2 8 2.
+ <_>
+ 9 12 2 8 2.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 2 0 2 20 2.
+ <_>
+
+ <_>
+ 13 2 6 13 -1.
+ <_>
+ 15 2 2 13 3.
+ <_>
+
+ <_>
+ 6 1 6 18 -1.
+ <_>
+ 6 1 3 9 2.
+ <_>
+ 9 10 3 9 2.
+ <_>
+
+ <_>
+ 15 0 4 13 -1.
+ <_>
+ 15 0 2 13 2.
+ <_>
+
+ <_>
+ 5 6 3 14 -1.
+ <_>
+ 6 6 1 14 3.
+ <_>
+
+ <_>
+ 14 2 6 13 -1.
+ <_>
+ 14 2 3 13 2.
+ <_>
+
+ <_>
+ 1 2 18 3 -1.
+ <_>
+ 7 2 6 3 3.
+ <_>
+
+ <_>
+ 5 5 11 8 -1.
+ <_>
+ 5 9 11 4 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 11 4 7 4 -1.
+ <_>
+ 11 6 7 2 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 1 0 18 20 -1.
+ <_>
+ 7 0 6 20 3.
+ <_>
+
+ <_>
+ 5 3 10 9 -1.
+ <_>
+ 5 6 10 3 3.
+ <_>
+
+ <_>
+ 14 3 6 11 -1.
+ <_>
+ 14 3 3 11 2.
+ <_>
+
+ <_>
+ 3 9 4 10 -1.
+ <_>
+ 3 14 4 5 2.
+ <_>
+
+ <_>
+ 8 1 12 19 -1.
+ <_>
+ 8 1 6 19 2.
+ <_>
+
+ <_>
+ 0 1 12 19 -1.
+ <_>
+ 6 1 6 19 2.
+ <_>
+
+ <_>
+ 8 4 4 16 -1.
+ <_>
+ 8 12 4 8 2.
+ <_>
+
+ <_>
+ 9 8 4 12 -1.
+ <_>
+ 9 12 4 4 3.
+ <_>
+
+ <_>
+ 6 2 8 12 -1.
+ <_>
+ 6 6 8 4 3.
+ <_>
+
+ <_>
+ 7 7 6 13 -1.
+ <_>
+ 9 7 2 13 3.
+ <_>
+
+ <_>
+ 0 6 7 6 -1.
+ <_>
+ 0 9 7 3 2.
+ <_>
+
+ <_>
+ 1 8 19 3 -1.
+ <_>
+ 1 9 19 1 3.
+ <_>
+
+ <_>
+ 5 0 3 14 -1.
+ <_>
+ 6 0 1 14 3.
+ <_>
+
+ <_>
+ 10 3 10 6 -1.
+ <_>
+ 15 3 5 3 2.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 6 7 14 4 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 0 7 14 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 10 6 9 12 -1.
+ <_>
+ 10 10 9 4 3.
+ <_>
+
+ <_>
+ 4 10 8 4 -1.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 11 14 8 6 -1.
+ <_>
+ 11 16 8 2 3.
+ <_>
+
+ <_>
+ 2 7 13 2 -1.
+ <_>
+ 2 8 13 1 2.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 10 14 7 2 2.
+ <_>
+ 3 16 7 2 2.
+ <_>
+
+ <_>
+ 0 11 6 9 -1.
+ <_>
+ 3 11 3 9 2.
+ <_>
+
+ <_>
+ 5 9 13 2 -1.
+ <_>
+ 5 10 13 1 2.
+ <_>
+
+ <_>
+ 3 0 7 9 -1.
+ <_>
+ 3 3 7 3 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 5 4 9 5 -1.
+ <_>
+ 8 4 3 5 3.
+ <_>
+
+ <_>
+ 11 10 7 4 -1.
+ <_>
+ 11 12 7 2 2.
+ <_>
+
+ <_>
+ 2 5 8 15 -1.
+ <_>
+ 2 10 8 5 3.
+ <_>
+
+ <_>
+ 10 11 5 6 -1.
+ <_>
+ 10 14 5 3 2.
+ <_>
+
+ <_>
+ 5 11 5 6 -1.
+ <_>
+ 5 14 5 3 2.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 1 14 12 -1.
+ <_>
+ 0 1 7 6 2.
+ <_>
+ 7 7 7 6 2.
+ <_>
+
+ <_>
+ 10 10 10 9 -1.
+ <_>
+ 10 13 10 3 3.
+ <_>
+
+ <_>
+ 0 10 10 9 -1.
+ <_>
+ 0 13 10 3 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 4 10 -1.
+ <_>
+ 10 5 2 10 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 7 1 4 14 -1.
+ <_>
+ 9 1 2 14 2.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 3 8 15 3 -1.
+ <_>
+ 8 8 5 3 3.
+ <_>
+
+ <_>
+ 6 15 8 4 -1.
+ <_>
+ 6 17 8 2 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 15 0 4 11 -1.
+ <_>
+ 15 0 2 11 2.
+ <_>
+
+ <_>
+ 7 0 4 18 -1.
+ <_>
+ 7 0 2 9 2.
+ <_>
+ 9 9 2 9 2.
+ <_>
+
+ <_>
+ 12 2 8 18 -1.
+ <_>
+ 16 2 4 9 2.
+ <_>
+ 12 11 4 9 2.
+ <_>
+
+ <_>
+ 4 2 12 18 -1.
+ <_>
+ 4 2 6 9 2.
+ <_>
+ 10 11 6 9 2.
+ <_>
+
+ <_>
+ 4 6 12 6 -1.
+ <_>
+ 4 9 12 3 2.
+ <_>
+
+ <_>
+ 0 9 18 4 -1.
+ <_>
+ 0 9 9 2 2.
+ <_>
+ 9 11 9 2 2.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 11 0 9 2 2.
+ <_>
+ 2 2 9 2 2.
+ <_>
+
+ <_>
+ 1 0 4 11 -1.
+ <_>
+ 3 0 2 11 2.
+ <_>
+
+ <_>
+ 16 0 4 15 -1.
+ <_>
+ 16 0 2 15 2.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 3 2 3 11 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 2 17 15 3 -1.
+ <_>
+ 7 17 5 3 3.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 3 9 14 8 -1.
+ <_>
+ 3 13 14 4 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 3 7 14 6 -1.
+ <_>
+ 3 9 14 2 3.
+ <_>
+
+ <_>
+ 3 10 6 8 -1.
+ <_>
+ 5 10 2 8 3.
+ <_>
+
+ <_>
+ 0 5 20 8 -1.
+ <_>
+ 10 5 10 4 2.
+ <_>
+ 0 9 10 4 2.
+ <_>
+
+ <_>
+ 0 5 16 8 -1.
+ <_>
+ 0 9 16 4 2.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 2 6 15 5 -1.
+ <_>
+ 7 6 5 5 3.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 6 8 8 12 -1.
+ <_>
+ 10 8 4 6 2.
+ <_>
+ 6 14 4 6 2.
+ <_>
+
+ <_>
+ 1 1 7 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+
+ <_>
+ 0 0 20 8 -1.
+ <_>
+ 10 0 10 4 2.
+ <_>
+ 0 4 10 4 2.
+ <_>
+
+ <_>
+ 5 3 5 9 -1.
+ <_>
+ 5 6 5 3 3.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 3 4 4 2.
+ <_>
+
+ <_>
+ 1 10 7 4 -1.
+ <_>
+ 1 12 7 2 2.
+ <_>
+
+ <_>
+ 5 10 12 6 -1.
+ <_>
+ 11 10 6 3 2.
+ <_>
+ 5 13 6 3 2.
+ <_>
+
+ <_>
+ 1 3 8 4 -1.
+ <_>
+ 5 3 4 4 2.
+ <_>
+
+ <_>
+ 6 0 9 5 -1.
+ <_>
+ 9 0 3 5 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 8 1 12 19 -1.
+ <_>
+ 8 1 6 19 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 0 3 10 6 -1.
+ <_>
+ 0 3 5 3 2.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 6 5 8 8 -1.
+ <_>
+ 6 9 8 4 2.
+ <_>
+
+ <_>
+ 7 13 5 6 -1.
+ <_>
+ 7 16 5 3 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 4 6 8 8 -1.
+ <_>
+ 4 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 2 5 16 6 -1.
+ <_>
+ 2 7 16 2 3.
+ <_>
+
+ <_>
+ 5 7 10 12 -1.
+ <_>
+ 5 7 5 6 2.
+ <_>
+ 10 13 5 6 2.
+ <_>
+
+ <_>
+ 6 11 13 3 -1.
+ <_>
+ 6 12 13 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 14 7 3 2.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 3 10 16 6 -1.
+ <_>
+ 11 10 8 3 2.
+ <_>
+ 3 13 8 3 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 3 8 3 12 2.
+ <_>
+
+ <_>
+ 0 5 20 15 -1.
+ <_>
+ 0 10 20 5 3.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 3 6 5 9 -1.
+ <_>
+ 3 9 5 3 3.
+ <_>
+
+ <_>
+ 10 10 6 5 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+
+ <_>
+ 4 10 6 5 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+
+ <_>
+ 13 4 6 9 -1.
+ <_>
+ 15 4 2 9 3.
+ <_>
+
+ <_>
+ 1 4 6 7 -1.
+ <_>
+ 3 4 2 7 3.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+
+ <_>
+ 2 5 12 12 -1.
+ <_>
+ 2 11 12 6 2.
+ <_>
+
+ <_>
+ 3 1 14 6 -1.
+ <_>
+ 3 3 14 2 3.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 10 2 10 18 -1.
+ <_>
+ 10 2 5 18 2.
+ <_>
+
+ <_>
+ 0 3 10 17 -1.
+ <_>
+ 5 3 5 17 2.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 10 12 10 2 3.
+ <_>
+
+ <_>
+ 5 11 5 9 -1.
+ <_>
+ 5 14 5 3 3.
+ <_>
+
+ <_>
+ 5 18 13 2 -1.
+ <_>
+ 5 19 13 1 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 5 6 14 2 -1.
+ <_>
+ 5 6 7 2 2.
+ <_>
+
+ <_>
+ 1 6 14 2 -1.
+ <_>
+ 8 6 7 2 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 9 6 4 14 -1.
+ <_>
+ 9 13 4 7 2.
+ <_>
+
+ <_>
+ 3 7 12 5 -1.
+ <_>
+ 7 7 4 5 3.
+ <_>
+
+ <_>
+ 3 13 14 3 -1.
+ <_>
+ 3 14 14 1 3.
+ <_>
+
+ <_>
+ 1 0 16 4 -1.
+ <_>
+ 1 2 16 2 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 3 1 3 8 2.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 14 0 3 9 2.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 3 0 3 9 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 1 9 9 8 -1.
+ <_>
+ 4 9 3 8 3.
+ <_>
+
+ <_>
+ 2 0 16 2 -1.
+ <_>
+ 2 1 16 1 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 1 16 10 3 -1.
+ <_>
+ 6 16 5 3 2.
+ <_>
+
+ <_>
+ 9 5 3 12 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 3 4 14 12 -1.
+ <_>
+ 3 4 7 6 2.
+ <_>
+ 10 10 7 6 2.
+ <_>
+
+ <_>
+ 6 6 9 8 -1.
+ <_>
+ 6 10 9 4 2.
+ <_>
+
+ <_>
+ 0 7 7 4 -1.
+ <_>
+ 0 9 7 2 2.
+ <_>
+
+ <_>
+ 16 3 4 8 -1.
+ <_>
+ 16 3 2 8 2.
+ <_>
+
+ <_>
+ 0 3 6 10 -1.
+ <_>
+ 3 3 3 10 2.
+ <_>
+
+ <_>
+ 5 4 10 6 -1.
+ <_>
+ 5 6 10 2 3.
+ <_>
+
+ <_>
+ 4 5 12 4 -1.
+ <_>
+ 8 5 4 4 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 3 14 15 6 -1.
+ <_>
+ 3 17 15 3 2.
+ <_>
+
+ <_>
+ 0 11 7 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+
+ <_>
+ 5 9 12 6 -1.
+ <_>
+ 11 9 6 3 2.
+ <_>
+ 5 12 6 3 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 1 0 19 9 -1.
+ <_>
+ 1 3 19 3 3.
+ <_>
+
+ <_>
+ 1 11 16 3 -1.
+ <_>
+ 1 12 16 1 3.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 3 6 15 5 -1.
+ <_>
+ 8 6 5 5 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 2 11 7 6 -1.
+ <_>
+ 2 14 7 3 2.
+ <_>
+
+ <_>
+ 12 11 5 6 -1.
+ <_>
+ 12 14 5 3 2.
+ <_>
+
+ <_>
+ 4 5 3 15 -1.
+ <_>
+ 4 10 3 5 3.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 7 10 10 9 -1.
+ <_>
+ 7 13 10 3 3.
+ <_>
+
+ <_>
+ 2 6 16 10 -1.
+ <_>
+ 2 6 8 5 2.
+ <_>
+ 10 11 8 5 2.
+ <_>
+
+ <_>
+ 0 9 20 4 -1.
+ <_>
+ 10 9 10 2 2.
+ <_>
+ 0 11 10 2 2.
+ <_>
+
+ <_>
+ 4 6 4 7 -1.
+ <_>
+ 6 6 2 7 2.
+ <_>
+
+ <_>
+ 18 0 2 20 -1.
+ <_>
+ 18 0 1 20 2.
+ <_>
+
+ <_>
+ 3 1 13 2 -1.
+ <_>
+ 3 2 13 1 2.
+ <_>
+
+ <_>
+ 17 0 3 18 -1.
+ <_>
+ 18 0 1 18 3.
+ <_>
+
+ <_>
+ 1 7 15 5 -1.
+ <_>
+ 6 7 5 5 3.
+ <_>
+
+ <_>
+ 9 3 2 15 -1.
+ <_>
+ 9 3 1 15 2.
+ <_>
+
+ <_>
+ 5 3 10 6 -1.
+ <_>
+ 5 6 10 3 2.
+ <_>
+
+ <_>
+ 10 9 4 8 -1.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 7 8 4 12 -1.
+ <_>
+ 7 12 4 4 3.
+ <_>
+
+ <_>
+ 5 5 15 10 -1.
+ <_>
+ 5 10 15 5 2.
+ <_>
+
+ <_>
+ 4 7 7 4 -1.
+ <_>
+ 4 9 7 2 2.
+ <_>
+
+ <_>
+ 4 5 12 4 -1.
+ <_>
+ 8 5 4 4 3.
+ <_>
+
+ <_>
+ 1 1 7 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 13 4 4 2.
+ <_>
+
+ <_>
+ 4 6 12 12 -1.
+ <_>
+ 4 6 6 6 2.
+ <_>
+ 10 12 6 6 2.
+ <_>
+
+ <_>
+ 11 1 6 10 -1.
+ <_>
+ 14 1 3 5 2.
+ <_>
+ 11 6 3 5 2.
+ <_>
+
+ <_>
+ 1 5 16 12 -1.
+ <_>
+ 1 5 8 6 2.
+ <_>
+ 9 11 8 6 2.
+ <_>
+
+ <_>
+ 4 7 12 6 -1.
+ <_>
+ 4 9 12 2 3.
+ <_>
+
+ <_>
+ 6 0 6 10 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 7 1 12 8 -1.
+ <_>
+ 13 1 6 4 2.
+ <_>
+ 7 5 6 4 2.
+ <_>
+
+ <_>
+ 0 1 4 18 -1.
+ <_>
+ 2 1 2 18 2.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 12 10 3 2.
+ <_>
+ 10 15 10 3 2.
+ <_>
+
+ <_>
+ 10 4 4 15 -1.
+ <_>
+ 10 9 4 5 3.
+ <_>
+
+ <_>
+ 1 1 12 8 -1.
+ <_>
+ 1 1 6 4 2.
+ <_>
+ 7 5 6 4 2.
+ <_>
+
+ <_>
+ 11 11 5 6 -1.
+ <_>
+ 11 14 5 3 2.
+ <_>
+
+ <_>
+ 4 11 5 6 -1.
+ <_>
+ 4 14 5 3 2.
+ <_>
+
+ <_>
+ 4 14 13 6 -1.
+ <_>
+ 4 16 13 2 3.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 2 0 2 9 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 7 10 2 3.
+ <_>
+
+ <_>
+ 2 0 16 2 -1.
+ <_>
+ 2 1 16 1 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 1 2 18 10 -1.
+ <_>
+ 10 2 9 5 2.
+ <_>
+ 1 7 9 5 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 5 4 10 14 -1.
+ <_>
+ 10 4 5 7 2.
+ <_>
+ 5 11 5 7 2.
+ <_>
+
+ <_>
+ 0 11 5 6 -1.
+ <_>
+ 0 14 5 3 2.
+ <_>
+
+ <_>
+ 7 11 13 3 -1.
+ <_>
+ 7 12 13 1 3.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 5 6 14 8 -1.
+ <_>
+ 5 10 14 4 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 1 13 18 3 -1.
+ <_>
+ 1 14 18 1 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+ 3 17 7 2 2.
+ <_>
+
+ <_>
+ 0 2 2 13 -1.
+ <_>
+ 1 2 1 13 2.
+ <_>
+
+ <_>
+ 4 9 12 8 -1.
+ <_>
+ 8 9 4 8 3.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 16 0 4 20 -1.
+ <_>
+ 16 0 2 20 2.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 2 0 2 20 2.
+ <_>
+
+ <_>
+ 16 1 4 19 -1.
+ <_>
+ 16 1 2 19 2.
+ <_>
+
+ <_>
+ 1 0 16 4 -1.
+ <_>
+ 1 0 8 2 2.
+ <_>
+ 9 2 8 2 2.
+ <_>
+
+ <_>
+ 12 6 4 14 -1.
+ <_>
+ 14 6 2 7 2.
+ <_>
+ 12 13 2 7 2.
+ <_>
+
+ <_>
+ 2 8 15 3 -1.
+ <_>
+ 2 9 15 1 3.
+ <_>
+
+ <_>
+ 7 6 8 10 -1.
+ <_>
+ 11 6 4 5 2.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 2 0 2 20 2.
+ <_>
+
+ <_>
+ 5 5 10 3 -1.
+ <_>
+ 5 5 5 3 2.
+ <_>
+
+ <_>
+ 1 17 14 3 -1.
+ <_>
+ 1 18 14 1 3.
+ <_>
+
+ <_>
+ 15 6 5 9 -1.
+ <_>
+ 15 9 5 3 3.
+ <_>
+
+ <_>
+ 7 6 4 10 -1.
+ <_>
+ 9 6 2 10 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 5 4 8 14 -1.
+ <_>
+ 5 4 4 7 2.
+ <_>
+ 9 11 4 7 2.
+ <_>
+
+ <_>
+ 4 6 12 8 -1.
+ <_>
+ 10 6 6 4 2.
+ <_>
+ 4 10 6 4 2.
+ <_>
+
+ <_>
+ 3 2 13 6 -1.
+ <_>
+ 3 4 13 2 3.
+ <_>
+
+ <_>
+ 10 4 7 10 -1.
+ <_>
+ 10 9 7 5 2.
+ <_>
+
+ <_>
+ 3 4 14 10 -1.
+ <_>
+ 3 4 7 5 2.
+ <_>
+ 10 9 7 5 2.
+ <_>
+
+ <_>
+ 16 4 3 13 -1.
+ <_>
+ 17 4 1 13 3.
+ <_>
+
+ <_>
+ 1 4 3 13 -1.
+ <_>
+ 2 4 1 13 3.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 0 10 9 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+
+ <_>
+ 7 8 12 8 -1.
+ <_>
+ 13 8 6 4 2.
+ <_>
+ 7 12 6 4 2.
+ <_>
+
+ <_>
+ 1 8 12 8 -1.
+ <_>
+ 1 8 6 4 2.
+ <_>
+ 7 12 6 4 2.
+ <_>
+
+ <_>
+ 1 0 18 10 -1.
+ <_>
+ 7 0 6 10 3.
+ <_>
+
+ <_>
+ 0 2 12 12 -1.
+ <_>
+ 4 2 4 12 3.
+ <_>
+
+ <_>
+ 8 11 12 9 -1.
+ <_>
+ 12 11 4 9 3.
+ <_>
+
+ <_>
+ 5 10 4 9 -1.
+ <_>
+ 7 10 2 9 2.
+ <_>
+
+ <_>
+ 10 2 3 10 -1.
+ <_>
+ 10 7 3 5 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 9 12 8 8 -1.
+ <_>
+ 13 12 4 4 2.
+ <_>
+ 9 16 4 4 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 10 2 9 15 -1.
+ <_>
+ 13 2 3 15 3.
+ <_>
+
+ <_>
+ 1 1 9 15 -1.
+ <_>
+ 4 1 3 15 3.
+ <_>
+
+ <_>
+ 5 4 10 6 -1.
+ <_>
+ 5 6 10 2 3.
+ <_>
+
+ <_>
+ 5 6 5 8 -1.
+ <_>
+ 5 10 5 4 2.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 3 9 5 8 -1.
+ <_>
+ 3 13 5 4 2.
+ <_>
+
+ <_>
+ 11 1 6 12 -1.
+ <_>
+ 14 1 3 6 2.
+ <_>
+ 11 7 3 6 2.
+ <_>
+
+ <_>
+ 3 12 8 8 -1.
+ <_>
+ 3 12 4 4 2.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 15 0 3 15 -1.
+ <_>
+ 15 5 3 5 3.
+ <_>
+
+ <_>
+ 2 5 14 8 -1.
+ <_>
+ 2 5 7 4 2.
+ <_>
+ 9 9 7 4 2.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 3 1 6 10 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 1 2 19 2 -1.
+ <_>
+ 1 3 19 1 2.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 7 0 13 2 -1.
+ <_>
+ 7 1 13 1 2.
+ <_>
+
+ <_>
+ 6 6 8 12 -1.
+ <_>
+ 6 10 8 4 3.
+ <_>
+
+ <_>
+ 7 1 8 8 -1.
+ <_>
+ 11 1 4 4 2.
+ <_>
+ 7 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 10 10 8 6 -1.
+ <_>
+ 10 12 8 2 3.
+ <_>
+
+ <_>
+ 8 2 3 12 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 12 5 7 8 -1.
+ <_>
+ 12 9 7 4 2.
+ <_>
+
+ <_>
+ 1 2 6 14 -1.
+ <_>
+ 3 2 2 14 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 1 5 7 8 -1.
+ <_>
+ 1 9 7 4 2.
+ <_>
+
+ <_>
+ 8 4 4 16 -1.
+ <_>
+ 8 12 4 8 2.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 11 10 7 6 -1.
+ <_>
+ 11 12 7 2 3.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 5 12 13 3 -1.
+ <_>
+ 5 13 13 1 3.
+ <_>
+
+ <_>
+ 1 15 7 4 -1.
+ <_>
+ 1 17 7 2 2.
+ <_>
+
+ <_>
+ 2 2 17 6 -1.
+ <_>
+ 2 4 17 2 3.
+ <_>
+
+ <_>
+ 1 15 8 4 -1.
+ <_>
+ 5 15 4 4 2.
+ <_>
+
+ <_>
+ 10 1 4 8 -1.
+ <_>
+ 10 1 2 8 2.
+ <_>
+
+ <_>
+ 6 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ <_>
+
+ <_>
+ 10 3 3 14 -1.
+ <_>
+ 11 3 1 14 3.
+ <_>
+
+ <_>
+ 0 11 18 4 -1.
+ <_>
+ 0 11 9 2 2.
+ <_>
+ 9 13 9 2 2.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 2 7 12 12 -1.
+ <_>
+ 2 7 6 6 2.
+ <_>
+ 8 13 6 6 2.
+ <_>
+
+ <_>
+ 4 11 13 2 -1.
+ <_>
+ 4 12 13 1 2.
+ <_>
+
+ <_>
+ 0 4 15 12 -1.
+ <_>
+ 0 10 15 6 2.
+ <_>
+
+ <_>
+ 5 2 11 8 -1.
+ <_>
+ 5 6 11 4 2.
+ <_>
+
+ <_>
+ 2 8 13 3 -1.
+ <_>
+ 2 9 13 1 3.
+ <_>
+
+ <_>
+ 15 3 5 9 -1.
+ <_>
+ 15 6 5 3 3.
+ <_>
+
+ <_>
+ 7 3 3 13 -1.
+ <_>
+ 8 3 1 13 3.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 8 1 3 13 -1.
+ <_>
+ 9 1 1 13 3.
+ <_>
+
+ <_>
+ 9 3 2 13 -1.
+ <_>
+ 9 3 1 13 2.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 2 4 4 2.
+ <_>
+ 5 6 4 4 2.
+ <_>
+
+ <_>
+ 9 5 3 12 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 5 4 9 5 -1.
+ <_>
+ 8 4 3 5 3.
+ <_>
+
+ <_>
+ 0 3 20 16 -1.
+ <_>
+ 0 11 20 8 2.
+ <_>
+
+ <_>
+ 0 4 16 6 -1.
+ <_>
+ 0 6 16 2 3.
+ <_>
+
+ <_>
+ 9 6 5 12 -1.
+ <_>
+ 9 12 5 6 2.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 5 10 10 4 2.
+ <_>
+
+ <_>
+ 2 8 16 3 -1.
+ <_>
+ 2 9 16 1 3.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 2 10 16 1 3.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 6 3 7 2 3.
+ <_>
+
+ <_>
+ 3 10 14 3 -1.
+ <_>
+ 3 11 14 1 3.
+ <_>
+
+ <_>
+ 1 4 6 16 -1.
+ <_>
+ 1 4 3 8 2.
+ <_>
+ 4 12 3 8 2.
+ <_>
+
+ <_>
+ 1 14 19 6 -1.
+ <_>
+ 1 16 19 2 3.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 7 9 2 8 2.
+ <_>
+
+ <_>
+ 5 7 12 4 -1.
+ <_>
+ 9 7 4 4 3.
+ <_>
+
+ <_>
+ 3 6 12 4 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 7 8 2 3.
+ <_>
+
+ <_>
+ 4 0 6 10 -1.
+ <_>
+ 6 0 2 10 3.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 13 4 4 2.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 5 13 4 4 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 13 2 -1.
+ <_>
+ 4 1 13 1 2.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 14 3 6 7 -1.
+ <_>
+ 16 3 2 7 3.
+ <_>
+
+ <_>
+ 5 4 5 10 -1.
+ <_>
+ 5 9 5 5 2.
+ <_>
+
+ <_>
+ 8 1 5 10 -1.
+ <_>
+ 8 6 5 5 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 14 3 6 9 -1.
+ <_>
+ 16 3 2 9 3.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 2 3 2 9 3.
+ <_>
+
+ <_>
+ 1 1 19 3 -1.
+ <_>
+ 1 2 19 1 3.
+ <_>
+
+ <_>
+ 6 6 4 14 -1.
+ <_>
+ 8 6 2 14 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 6 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 13 2 6 11 -1.
+ <_>
+ 13 2 3 11 2.
+ <_>
+
+ <_>
+ 0 6 5 9 -1.
+ <_>
+ 0 9 5 3 3.
+ <_>
+
+ <_>
+ 13 2 6 8 -1.
+ <_>
+ 13 2 3 8 2.
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 4 2 3 8 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 7 11 13 3 -1.
+ <_>
+ 7 12 13 1 3.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 0 2 10 3 2.
+ <_>
+ 10 5 10 3 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 0 3 13 -1.
+ <_>
+ 6 0 1 13 3.
+ <_>
+
+ <_>
+ 0 1 20 10 -1.
+ <_>
+ 0 6 20 5 2.
+ <_>
+
+ <_>
+ 7 1 3 13 -1.
+ <_>
+ 8 1 1 13 3.
+ <_>
+
+ <_>
+ 11 0 2 16 -1.
+ <_>
+ 11 0 1 16 2.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 0 13 20 6 -1.
+ <_>
+ 10 13 10 3 2.
+ <_>
+ 0 16 10 3 2.
+ <_>
+
+ <_>
+ 0 7 4 13 -1.
+ <_>
+ 2 7 2 13 2.
+ <_>
+
+ <_>
+ 5 10 15 10 -1.
+ <_>
+ 5 15 15 5 2.
+ <_>
+
+ <_>
+ 0 10 15 10 -1.
+ <_>
+ 0 15 15 5 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 7 0 2 16 -1.
+ <_>
+ 8 0 1 16 2.
+ <_>
+
+ <_>
+ 6 14 9 4 -1.
+ <_>
+ 6 16 9 2 2.
+ <_>
+
+ <_>
+ 1 3 15 2 -1.
+ <_>
+ 1 4 15 1 2.
+ <_>
+
+ <_>
+ 6 5 13 8 -1.
+ <_>
+ 6 9 13 4 2.
+ <_>
+
+ <_>
+ 4 0 11 6 -1.
+ <_>
+ 4 2 11 2 3.
+ <_>
+
+ <_>
+ 1 9 18 4 -1.
+ <_>
+ 10 9 9 2 2.
+ <_>
+ 1 11 9 2 2.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 6 9 3 8 2.
+ <_>
+
+ <_>
+ 5 8 12 4 -1.
+ <_>
+ 9 8 4 4 3.
+ <_>
+
+ <_>
+ 3 8 12 4 -1.
+ <_>
+ 7 8 4 4 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 5 7 8 8 -1.
+ <_>
+ 5 7 4 4 2.
+ <_>
+ 9 11 4 4 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 4 6 12 3 -1.
+ <_>
+ 10 6 6 3 2.
+ <_>
+
+ <_>
+ 0 0 20 4 -1.
+ <_>
+ 10 0 10 2 2.
+ <_>
+ 0 2 10 2 2.
+ <_>
+
+ <_>
+ 3 6 13 3 -1.
+ <_>
+ 3 7 13 1 3.
+ <_>
+
+ <_>
+ 11 2 4 7 -1.
+ <_>
+ 11 2 2 7 2.
+ <_>
+
+ <_>
+ 5 2 4 7 -1.
+ <_>
+ 7 2 2 7 2.
+ <_>
+
+ <_>
+ 1 16 18 2 -1.
+ <_>
+ 1 17 18 1 2.
+ <_>
+
+ <_>
+ 0 13 14 3 -1.
+ <_>
+ 0 14 14 1 3.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 3 14 13 3 -1.
+ <_>
+ 3 15 13 1 3.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 2 10 18 10 -1.
+ <_>
+ 8 10 6 10 3.
+ <_>
+
+ <_>
+ 0 12 13 2 -1.
+ <_>
+ 0 13 13 1 2.
+ <_>
+
+ <_>
+ 5 7 14 4 -1.
+ <_>
+ 12 7 7 2 2.
+ <_>
+ 5 9 7 2 2.
+ <_>
+
+ <_>
+ 1 7 14 4 -1.
+ <_>
+ 1 7 7 2 2.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 9 7 9 9 -1.
+ <_>
+ 12 7 3 9 3.
+ <_>
+
+ <_>
+ 0 8 15 2 -1.
+ <_>
+ 0 9 15 1 2.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+
+ <_>
+ 4 0 9 18 -1.
+ <_>
+ 4 9 9 9 2.
+ <_>
+
+ <_>
+ 14 15 6 5 -1.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+
+ <_>
+ 9 1 5 10 -1.
+ <_>
+ 9 6 5 5 2.
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 3 11 3 8 2.
+ <_>
+
+ <_>
+ 9 7 6 10 -1.
+ <_>
+ 12 7 3 5 2.
+ <_>
+ 9 12 3 5 2.
+ <_>
+
+ <_>
+ 1 5 9 10 -1.
+ <_>
+ 4 5 3 10 3.
+ <_>
+
+ <_>
+ 6 2 9 16 -1.
+ <_>
+ 9 2 3 16 3.
+ <_>
+
+ <_>
+ 5 2 9 16 -1.
+ <_>
+ 8 2 3 16 3.
+ <_>
+
+ <_>
+ 5 10 10 10 -1.
+ <_>
+ 5 15 10 5 2.
+ <_>
+
+ <_>
+ 5 4 6 10 -1.
+ <_>
+ 5 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 11 2 8 8 -1.
+ <_>
+ 15 2 4 4 2.
+ <_>
+ 11 6 4 4 2.
+ <_>
+
+ <_>
+ 0 2 6 10 -1.
+ <_>
+ 3 2 3 10 2.
+ <_>
+
+ <_>
+ 4 10 13 8 -1.
+ <_>
+ 4 14 13 4 2.
+ <_>
+
+ <_>
+ 5 6 8 4 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 2 4 4 2.
+ <_>
+ 5 6 4 4 2.
+ <_>
+
+ <_>
+ 4 7 12 6 -1.
+ <_>
+ 4 9 12 2 3.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 4 5 6 5 2.
+ <_>
+ 10 10 6 5 2.
+ <_>
+
+ <_>
+ 8 12 8 8 -1.
+ <_>
+ 12 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 3 14 5 6 -1.
+ <_>
+ 3 17 5 3 2.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 9 4 2 8 3.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 6 0 2 8 3.
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 7 1 13 1 3.
+ <_>
+
+ <_>
+ 3 1 14 2 -1.
+ <_>
+ 3 2 14 1 2.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 13 1 3 18 -1.
+ <_>
+ 14 1 1 18 3.
+ <_>
+
+ <_>
+ 4 1 3 15 -1.
+ <_>
+ 5 1 1 15 3.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 0 12 20 4 -1.
+ <_>
+ 0 14 20 2 2.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 0 8 20 1 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 5 5 10 8 -1.
+ <_>
+ 5 9 10 4 2.
+ <_>
+
+ <_>
+ 7 1 3 10 -1.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 4 9 12 11 -1.
+ <_>
+ 8 9 4 11 3.
+ <_>
+
+ <_>
+ 1 0 18 20 -1.
+ <_>
+ 7 0 6 20 3.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 2 15 16 4 -1.
+ <_>
+ 2 17 16 2 2.
+ <_>
+
+ <_>
+ 5 18 13 2 -1.
+ <_>
+ 5 19 13 1 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 5 0 2 8 3.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 14 9 6 -1.
+ <_>
+ 10 16 9 2 3.
+ <_>
+
+ <_>
+ 1 14 9 6 -1.
+ <_>
+ 1 16 9 2 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 3 2 13 2 -1.
+ <_>
+ 3 3 13 1 2.
+ <_>
+
+ <_>
+ 4 6 16 3 -1.
+ <_>
+ 4 6 8 3 2.
+ <_>
+
+ <_>
+ 0 10 17 2 -1.
+ <_>
+ 0 11 17 1 2.
+ <_>
+
+ <_>
+ 11 6 6 12 -1.
+ <_>
+ 11 12 6 6 2.
+ <_>
+
+ <_>
+ 0 10 16 4 -1.
+ <_>
+ 0 10 8 2 2.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 3 14 7 2 2.
+ <_>
+ 10 16 7 2 2.
+ <_>
+
+ <_>
+ 6 6 14 3 -1.
+ <_>
+ 6 6 7 3 2.
+ <_>
+
+ <_>
+ 0 6 14 3 -1.
+ <_>
+ 7 6 7 3 2.
+ <_>
+
+ <_>
+ 5 8 10 8 -1.
+ <_>
+ 10 8 5 4 2.
+ <_>
+ 5 12 5 4 2.
+ <_>
+
+ <_>
+ 1 2 18 7 -1.
+ <_>
+ 7 2 6 7 3.
+ <_>
+
+ <_>
+ 12 6 5 6 -1.
+ <_>
+ 12 9 5 3 2.
+ <_>
+
+ <_>
+ 1 10 4 7 -1.
+ <_>
+ 3 10 2 7 2.
+ <_>
+
+ <_>
+ 4 0 14 2 -1.
+ <_>
+ 4 1 14 1 2.
+ <_>
+
+ <_>
+ 0 6 7 9 -1.
+ <_>
+ 0 9 7 3 3.
+ <_>
+
+ <_>
+ 9 6 3 14 -1.
+ <_>
+ 10 6 1 14 3.
+ <_>
+
+ <_>
+ 3 4 13 3 -1.
+ <_>
+ 3 5 13 1 3.
+ <_>
+
+ <_>
+ 13 2 7 6 -1.
+ <_>
+ 13 4 7 2 3.
+ <_>
+
+ <_>
+ 0 1 18 5 -1.
+ <_>
+ 6 1 6 5 3.
+ <_>
+
+ <_>
+ 12 10 6 10 -1.
+ <_>
+ 15 10 3 5 2.
+ <_>
+ 12 15 3 5 2.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 2 10 3 5 2.
+ <_>
+ 5 15 3 5 2.
+ <_>
+
+ <_>
+ 4 3 12 6 -1.
+ <_>
+ 4 5 12 2 3.
+ <_>
+
+ <_>
+ 0 2 18 4 -1.
+ <_>
+ 0 2 9 2 2.
+ <_>
+ 9 4 9 2 2.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 10 10 6 10 -1.
+ <_>
+ 13 10 3 5 2.
+ <_>
+ 10 15 3 5 2.
+ <_>
+
+ <_>
+ 4 10 6 10 -1.
+ <_>
+ 4 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 6 0 8 10 -1.
+ <_>
+ 10 0 4 5 2.
+ <_>
+ 6 5 4 5 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 9 3 2 14 -1.
+ <_>
+ 9 10 2 7 2.
+ <_>
+
+ <_>
+ 12 1 6 10 -1.
+ <_>
+ 15 1 3 5 2.
+ <_>
+ 12 6 3 5 2.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 11 1 9 18 -1.
+ <_>
+ 11 10 9 9 2.
+ <_>
+
+ <_>
+ 2 1 6 10 -1.
+ <_>
+ 2 1 3 5 2.
+ <_>
+ 5 6 3 5 2.
+ <_>
+
+ <_>
+ 4 10 16 4 -1.
+ <_>
+ 12 10 8 2 2.
+ <_>
+ 4 12 8 2 2.
+ <_>
+
+ <_>
+ 0 10 18 4 -1.
+ <_>
+ 0 10 9 2 2.
+ <_>
+ 9 12 9 2 2.
+ <_>
+
+ <_>
+ 12 5 4 8 -1.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 0 4 18 10 -1.
+ <_>
+ 0 4 9 5 2.
+ <_>
+ 9 9 9 5 2.
+ <_>
+
+ <_>
+ 2 11 18 2 -1.
+ <_>
+ 2 12 18 1 2.
+ <_>
+
+ <_>
+ 4 0 5 9 -1.
+ <_>
+ 4 3 5 3 3.
+ <_>
+
+ <_>
+ 10 2 6 8 -1.
+ <_>
+ 12 2 2 8 3.
+ <_>
+
+ <_>
+ 1 7 13 2 -1.
+ <_>
+ 1 8 13 1 2.
+ <_>
+
+ <_>
+ 10 2 6 8 -1.
+ <_>
+ 12 2 2 8 3.
+ <_>
+
+ <_>
+ 4 2 6 8 -1.
+ <_>
+ 6 2 2 8 3.
+ <_>
+
+ <_>
+ 8 5 8 8 -1.
+ <_>
+ 12 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 3 9 13 3 -1.
+ <_>
+ 3 10 13 1 3.
+ <_>
+
+ <_>
+ 5 11 11 6 -1.
+ <_>
+ 5 14 11 3 2.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 3 5 4 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 0 1 16 3 -1.
+ <_>
+ 0 2 16 1 3.
+ <_>
+
+ <_>
+ 8 9 6 10 -1.
+ <_>
+ 8 14 6 5 2.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 7 1 8 12 -1.
+ <_>
+ 7 7 8 6 2.
+ <_>
+
+ <_>
+ 1 2 17 2 -1.
+ <_>
+ 1 3 17 1 2.
+ <_>
+
+ <_>
+ 11 0 3 18 -1.
+ <_>
+ 12 0 1 18 3.
+ <_>
+
+ <_>
+ 0 13 8 6 -1.
+ <_>
+ 0 15 8 2 3.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 0 6 6 14 -1.
+ <_>
+ 0 6 3 7 2.
+ <_>
+ 3 13 3 7 2.
+ <_>
+
+ <_>
+ 12 11 8 6 -1.
+ <_>
+ 12 13 8 2 3.
+ <_>
+
+ <_>
+ 2 16 12 4 -1.
+ <_>
+ 6 16 4 4 3.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 5 6 4 8 -1.
+ <_>
+ 5 10 4 4 2.
+ <_>
+
+ <_>
+ 3 11 16 4 -1.
+ <_>
+ 11 11 8 2 2.
+ <_>
+ 3 13 8 2 2.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 16 3 4 8 -1.
+ <_>
+ 16 3 2 8 2.
+ <_>
+
+ <_>
+ 6 0 3 18 -1.
+ <_>
+ 7 0 1 18 3.
+ <_>
+
+ <_>
+ 16 3 4 8 -1.
+ <_>
+ 16 3 2 8 2.
+ <_>
+
+ <_>
+ 4 12 12 4 -1.
+ <_>
+ 8 12 4 4 3.
+ <_>
+
+ <_>
+ 4 0 16 3 -1.
+ <_>
+ 4 1 16 1 3.
+ <_>
+
+ <_>
+ 0 3 4 8 -1.
+ <_>
+ 2 3 2 8 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 9 6 6 12 -1.
+ <_>
+ 9 6 3 12 2.
+ <_>
+
+ <_>
+ 0 10 10 6 -1.
+ <_>
+ 0 12 10 2 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 4 10 12 10 -1.
+ <_>
+ 4 15 12 5 2.
+ <_>
+
+ <_>
+ 10 4 4 16 -1.
+ <_>
+ 10 4 2 16 2.
+ <_>
+
+ <_>
+ 6 4 4 16 -1.
+ <_>
+ 8 4 2 16 2.
+ <_>
+
+ <_>
+ 7 8 13 2 -1.
+ <_>
+ 7 9 13 1 2.
+ <_>
+
+ <_>
+ 0 8 13 2 -1.
+ <_>
+ 0 9 13 1 2.
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 3 0 9 5 -1.
+ <_>
+ 6 0 3 5 3.
+ <_>
+
+ <_>
+ 14 6 6 10 -1.
+ <_>
+ 14 6 3 10 2.
+ <_>
+
+ <_>
+ 1 5 17 6 -1.
+ <_>
+ 1 7 17 2 3.
+ <_>
+
+ <_>
+ 14 6 6 10 -1.
+ <_>
+ 14 6 3 10 2.
+ <_>
+
+ <_>
+ 0 17 14 3 -1.
+ <_>
+ 0 18 14 1 3.
+ <_>
+
+ <_>
+ 14 6 6 10 -1.
+ <_>
+ 14 6 3 10 2.
+ <_>
+
+ <_>
+ 0 6 6 10 -1.
+ <_>
+ 3 6 3 10 2.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 2 7 6 13 -1.
+ <_>
+ 4 7 2 13 3.
+ <_>
+
+ <_>
+ 13 3 3 15 -1.
+ <_>
+ 14 3 1 15 3.
+ <_>
+
+ <_>
+ 4 3 3 15 -1.
+ <_>
+ 5 3 1 15 3.
+ <_>
+
+ <_>
+ 3 2 15 5 -1.
+ <_>
+ 8 2 5 5 3.
+ <_>
+
+ <_>
+ 5 4 9 14 -1.
+ <_>
+ 5 11 9 7 2.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 4 6 10 12 -1.
+ <_>
+ 4 6 5 6 2.
+ <_>
+ 9 12 5 6 2.
+ <_>
+
+ <_>
+ 5 5 12 10 -1.
+ <_>
+ 11 5 6 5 2.
+ <_>
+ 5 10 6 5 2.
+ <_>
+
+ <_>
+ 3 5 12 10 -1.
+ <_>
+ 3 5 6 5 2.
+ <_>
+ 9 10 6 5 2.
+ <_>
+
+ <_>
+ 12 0 8 12 -1.
+ <_>
+ 16 0 4 6 2.
+ <_>
+ 12 6 4 6 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 10 2 10 2 2.
+ <_>
+ 0 4 10 2 2.
+ <_>
+
+ <_>
+ 6 6 6 8 -1.
+ <_>
+ 8 6 2 8 3.
+ <_>
+
+ <_>
+ 10 0 3 20 -1.
+ <_>
+ 11 0 1 20 3.
+ <_>
+
+ <_>
+ 7 0 3 20 -1.
+ <_>
+ 8 0 1 20 3.
+ <_>
+
+ <_>
+ 10 0 2 13 -1.
+ <_>
+ 10 0 1 13 2.
+ <_>
+
+ <_>
+ 8 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 10 15 10 2 2.
+ <_>
+ 0 17 10 2 2.
+ <_>
+
+ <_>
+ 2 3 3 13 -1.
+ <_>
+ 3 3 1 13 3.
+ <_>
+
+ <_>
+ 7 2 7 6 -1.
+ <_>
+ 7 4 7 2 3.
+ <_>
+
+ <_>
+ 0 2 15 14 -1.
+ <_>
+ 0 9 15 7 2.
+ <_>
+
+ <_>
+ 12 10 4 8 -1.
+ <_>
+ 12 14 4 4 2.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 4 16 12 2 3.
+ <_>
+
+ <_>
+ 1 13 18 4 -1.
+ <_>
+ 10 13 9 2 2.
+ <_>
+ 1 15 9 2 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 5 7 11 4 -1.
+ <_>
+ 5 9 11 2 2.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 11 6 6 14 -1.
+ <_>
+ 14 6 3 7 2.
+ <_>
+ 11 13 3 7 2.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 3 2 3 11 2.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 3 7 6 12 -1.
+ <_>
+ 3 7 3 6 2.
+ <_>
+ 6 13 3 6 2.
+ <_>
+
+ <_>
+ 7 6 10 3 -1.
+ <_>
+ 7 6 5 3 2.
+ <_>
+
+ <_>
+ 3 6 10 3 -1.
+ <_>
+ 8 6 5 3 2.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 3 0 14 9 -1.
+ <_>
+ 3 3 14 3 3.
+ <_>
+
+ <_>
+ 3 1 14 4 -1.
+ <_>
+ 10 1 7 2 2.
+ <_>
+ 3 3 7 2 2.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 6 9 10 10 -1.
+ <_>
+ 11 9 5 5 2.
+ <_>
+ 6 14 5 5 2.
+ <_>
+
+ <_>
+ 4 9 10 10 -1.
+ <_>
+ 4 9 5 5 2.
+ <_>
+ 9 14 5 5 2.
+ <_>
+
+ <_>
+ 5 6 10 6 -1.
+ <_>
+ 5 9 10 3 2.
+ <_>
+
+ <_>
+ 1 1 7 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+
+ <_>
+ 3 0 14 3 -1.
+ <_>
+ 3 1 14 1 3.
+ <_>
+
+ <_>
+ 6 7 7 10 -1.
+ <_>
+ 6 12 7 5 2.
+ <_>
+
+ <_>
+ 10 1 10 19 -1.
+ <_>
+ 10 1 5 19 2.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 12 0 2 13 -1.
+ <_>
+ 12 0 1 13 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 5 5 12 8 -1.
+ <_>
+ 5 9 12 4 2.
+ <_>
+
+ <_>
+ 1 14 7 4 -1.
+ <_>
+ 1 16 7 2 2.
+ <_>
+
+ <_>
+ 7 12 11 8 -1.
+ <_>
+ 7 16 11 4 2.
+ <_>
+
+ <_>
+ 6 0 2 13 -1.
+ <_>
+ 7 0 1 13 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 2 15 16 4 -1.
+ <_>
+ 2 15 8 2 2.
+ <_>
+ 10 17 8 2 2.
+ <_>
+
+ <_>
+ 1 1 18 6 -1.
+ <_>
+ 10 1 9 3 2.
+ <_>
+ 1 4 9 3 2.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 3 0 14 6 -1.
+ <_>
+ 3 3 14 3 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 10 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 6 3 4 7 -1.
+ <_>
+ 8 3 2 7 2.
+ <_>
+
+ <_>
+ 4 2 13 12 -1.
+ <_>
+ 4 6 13 4 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+
+ <_>
+ 3 10 13 3 -1.
+ <_>
+ 3 11 13 1 3.
+ <_>
+
+ <_>
+ 5 10 10 6 -1.
+ <_>
+ 10 10 5 3 2.
+ <_>
+ 5 13 5 3 2.
+ <_>
+
+ <_>
+ 3 5 12 12 -1.
+ <_>
+ 3 5 6 6 2.
+ <_>
+ 9 11 6 6 2.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+
+ <_>
+ 1 3 4 8 -1.
+ <_>
+ 1 7 4 4 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 2 2 18 1 3.
+ <_>
+
+ <_>
+ 4 11 6 6 -1.
+ <_>
+ 7 11 3 6 2.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 1 12 18 4 -1.
+ <_>
+ 1 14 18 2 2.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 0 1 5 14 -1.
+ <_>
+ 0 8 5 7 2.
+ <_>
+
+ <_>
+ 2 12 18 6 -1.
+ <_>
+ 11 12 9 3 2.
+ <_>
+ 2 15 9 3 2.
+ <_>
+
+ <_>
+ 5 2 6 13 -1.
+ <_>
+ 7 2 2 13 3.
+ <_>
+
+ <_>
+ 13 8 7 6 -1.
+ <_>
+ 13 10 7 2 3.
+ <_>
+
+ <_>
+ 2 5 16 10 -1.
+ <_>
+ 2 5 8 5 2.
+ <_>
+ 10 10 8 5 2.
+ <_>
+
+ <_>
+ 14 4 6 7 -1.
+ <_>
+ 16 4 2 7 3.
+ <_>
+
+ <_>
+ 4 1 6 7 -1.
+ <_>
+ 6 1 2 7 3.
+ <_>
+
+ <_>
+ 13 10 7 4 -1.
+ <_>
+ 13 12 7 2 2.
+ <_>
+
+ <_>
+ 0 10 7 4 -1.
+ <_>
+ 0 12 7 2 2.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 2 14 17 6 -1.
+ <_>
+ 2 16 17 2 3.
+ <_>
+
+ <_>
+ 7 7 5 12 -1.
+ <_>
+ 7 11 5 4 3.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+ 10 15 3 5 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 13 15 3 -1.
+ <_>
+ 0 14 15 1 3.
+ <_>
+
+ <_>
+ 13 12 5 8 -1.
+ <_>
+ 13 16 5 4 2.
+ <_>
+
+ <_>
+ 0 12 18 6 -1.
+ <_>
+ 0 12 9 3 2.
+ <_>
+ 9 15 9 3 2.
+ <_>
+
+ <_>
+ 12 10 6 10 -1.
+ <_>
+ 15 10 3 5 2.
+ <_>
+ 12 15 3 5 2.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 2 10 3 5 2.
+ <_>
+ 5 15 3 5 2.
+ <_>
+
+ <_>
+ 4 7 15 3 -1.
+ <_>
+ 9 7 5 3 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 5 7 15 3 -1.
+ <_>
+ 10 7 5 3 3.
+ <_>
+
+ <_>
+ 2 5 16 3 -1.
+ <_>
+ 2 6 16 1 3.
+ <_>
+
+ <_>
+ 8 8 12 12 -1.
+ <_>
+ 8 8 6 12 2.
+ <_>
+
+ <_>
+ 6 3 7 6 -1.
+ <_>
+ 6 6 7 3 2.
+ <_>
+
+ <_>
+ 9 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 9 8 5 12 -1.
+ <_>
+ 9 12 5 4 3.
+ <_>
+
+ <_>
+ 6 5 8 8 -1.
+ <_>
+ 6 9 8 4 2.
+ <_>
+
+ <_>
+ 11 0 6 12 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+ 11 6 3 6 2.
+ <_>
+
+ <_>
+ 3 0 6 12 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+ 6 6 3 6 2.
+ <_>
+
+ <_>
+ 10 10 4 8 -1.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 5 9 5 4 2.
+ <_>
+ 10 13 5 4 2.
+ <_>
+
+ <_>
+ 4 11 13 3 -1.
+ <_>
+ 4 12 13 1 3.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 14 0 4 7 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+
+ <_>
+ 2 0 4 7 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+
+ <_>
+ 6 5 14 6 -1.
+ <_>
+ 13 5 7 3 2.
+ <_>
+ 6 8 7 3 2.
+ <_>
+
+ <_>
+ 0 6 16 6 -1.
+ <_>
+ 0 6 8 3 2.
+ <_>
+ 8 9 8 3 2.
+ <_>
+
+ <_>
+ 12 6 5 9 -1.
+ <_>
+ 12 9 5 3 3.
+ <_>
+
+ <_>
+ 1 6 9 8 -1.
+ <_>
+ 1 10 9 4 2.
+ <_>
+
+ <_>
+ 13 10 7 6 -1.
+ <_>
+ 13 12 7 2 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 9 5 2 14 -1.
+ <_>
+ 9 12 2 7 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 1 2 19 2 -1.
+ <_>
+ 1 3 19 1 2.
+ <_>
+
+ <_>
+ 0 0 4 13 -1.
+ <_>
+ 2 0 2 13 2.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 16 1 2 9 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 2 1 2 9 3.
+ <_>
+
+ <_>
+ 0 11 20 9 -1.
+ <_>
+ 0 14 20 3 3.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 9 3 6 10 -1.
+ <_>
+ 11 3 2 10 3.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 5 3 6 9 -1.
+ <_>
+ 7 3 2 9 3.
+ <_>
+
+ <_>
+ 1 0 18 8 -1.
+ <_>
+ 10 0 9 4 2.
+ <_>
+ 1 4 9 4 2.
+ <_>
+
+ <_>
+ 3 18 14 2 -1.
+ <_>
+ 3 19 14 1 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 0 4 6 16 -1.
+ <_>
+ 0 4 3 8 2.
+ <_>
+ 3 12 3 8 2.
+ <_>
+
+ <_>
+ 14 6 6 13 -1.
+ <_>
+ 14 6 3 13 2.
+ <_>
+
+ <_>
+ 6 7 3 12 -1.
+ <_>
+ 6 13 3 6 2.
+ <_>
+
+ <_>
+ 11 11 5 6 -1.
+ <_>
+ 11 14 5 3 2.
+ <_>
+
+ <_>
+ 1 8 15 4 -1.
+ <_>
+ 6 8 5 4 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 6 4 6 7 -1.
+ <_>
+ 8 4 2 7 3.
+ <_>
+
+ <_>
+ 9 0 6 10 -1.
+ <_>
+ 12 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 15 10 4 10 -1.
+ <_>
+ 15 10 2 10 2.
+ <_>
+
+ <_>
+ 1 10 4 10 -1.
+ <_>
+ 3 10 2 10 2.
+ <_>
+
+ <_>
+ 5 0 10 16 -1.
+ <_>
+ 10 0 5 8 2.
+ <_>
+ 5 8 5 8 2.
+ <_>
+
+ <_>
+ 3 6 13 3 -1.
+ <_>
+ 3 7 13 1 3.
+ <_>
+
+ <_>
+ 8 6 5 9 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 4 6 6 12 -1.
+ <_>
+ 4 10 6 4 3.
+ <_>
+
+ <_>
+ 8 13 9 6 -1.
+ <_>
+ 8 16 9 3 2.
+ <_>
+
+ <_>
+ 0 5 12 6 -1.
+ <_>
+ 0 7 12 2 3.
+ <_>
+
+ <_>
+ 4 8 13 3 -1.
+ <_>
+ 4 9 13 1 3.
+ <_>
+
+ <_>
+ 6 6 4 12 -1.
+ <_>
+ 6 12 4 6 2.
+ <_>
+
+ <_>
+ 4 15 13 3 -1.
+ <_>
+ 4 16 13 1 3.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 11 1 4 14 -1.
+ <_>
+ 11 1 2 14 2.
+ <_>
+
+ <_>
+ 3 6 12 4 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 8 0 4 7 -1.
+ <_>
+ 8 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 2 11 16 9 -1.
+ <_>
+ 2 14 16 3 3.
+ <_>
+
+ <_>
+ 0 4 6 7 -1.
+ <_>
+ 2 4 2 7 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 0 10 16 4 -1.
+ <_>
+ 0 10 8 2 2.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 3 1 14 2 -1.
+ <_>
+ 3 2 14 1 2.
+ <_>
+
+ <_>
+ 4 10 5 9 -1.
+ <_>
+ 4 13 5 3 3.
+ <_>
+
+ <_>
+ 2 14 16 4 -1.
+ <_>
+ 10 14 8 2 2.
+ <_>
+ 2 16 8 2 2.
+ <_>
+
+ <_>
+ 0 0 19 8 -1.
+ <_>
+ 0 4 19 4 2.
+ <_>
+
+ <_>
+ 10 10 6 5 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+
+ <_>
+ 1 1 18 15 -1.
+ <_>
+ 7 1 6 15 3.
+ <_>
+
+ <_>
+ 10 10 6 5 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+
+ <_>
+ 4 7 4 8 -1.
+ <_>
+ 6 7 2 8 2.
+ <_>
+
+ <_>
+ 17 3 3 14 -1.
+ <_>
+ 18 3 1 14 3.
+ <_>
+
+ <_>
+ 4 6 12 12 -1.
+ <_>
+ 4 6 6 6 2.
+ <_>
+ 10 12 6 6 2.
+ <_>
+
+ <_>
+ 12 6 8 14 -1.
+ <_>
+ 16 6 4 7 2.
+ <_>
+ 12 13 4 7 2.
+ <_>
+
+ <_>
+ 0 6 8 14 -1.
+ <_>
+ 0 6 4 7 2.
+ <_>
+ 4 13 4 7 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 2 4 6 16 -1.
+ <_>
+ 2 4 3 8 2.
+ <_>
+ 5 12 3 8 2.
+ <_>
+
+ <_>
+ 14 11 5 9 -1.
+ <_>
+ 14 14 5 3 3.
+ <_>
+
+ <_>
+ 3 3 14 3 -1.
+ <_>
+ 3 4 14 1 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 5 1 6 16 -1.
+ <_>
+ 5 1 3 8 2.
+ <_>
+ 8 9 3 8 2.
+ <_>
+
+ <_>
+ 7 7 6 10 -1.
+ <_>
+ 9 7 2 10 3.
+ <_>
+
+ <_>
+ 5 9 4 11 -1.
+ <_>
+ 7 9 2 11 2.
+ <_>
+
+ <_>
+ 10 9 6 6 -1.
+ <_>
+ 10 9 3 6 2.
+ <_>
+
+ <_>
+ 0 3 3 14 -1.
+ <_>
+ 1 3 1 14 3.
+ <_>
+
+ <_>
+ 10 9 6 6 -1.
+ <_>
+ 10 9 3 6 2.
+ <_>
+
+ <_>
+ 5 10 4 7 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 2 5 16 8 -1.
+ <_>
+ 2 9 16 4 2.
+ <_>
+
+ <_>
+ 6 2 12 10 -1.
+ <_>
+ 6 7 12 5 2.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 12 3 8 12 -1.
+ <_>
+ 12 3 4 12 2.
+ <_>
+
+ <_>
+ 0 3 8 12 -1.
+ <_>
+ 4 3 4 12 2.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 2 11 18 4 -1.
+ <_>
+ 11 11 9 2 2.
+ <_>
+ 2 13 9 2 2.
+ <_>
+
+ <_>
+ 0 11 18 4 -1.
+ <_>
+ 0 11 9 2 2.
+ <_>
+ 9 13 9 2 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 4 1 9 12 -1.
+ <_>
+ 4 7 9 6 2.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 0 3 5 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+
+ <_>
+ 6 6 8 4 -1.
+ <_>
+ 6 8 8 2 2.
+ <_>
+
+ <_>
+ 0 9 7 6 -1.
+ <_>
+ 0 11 7 2 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 5 2 4 13 -1.
+ <_>
+ 7 2 2 13 2.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 0 8 20 1 2.
+ <_>
+
+ <_>
+ 11 0 9 5 -1.
+ <_>
+ 14 0 3 5 3.
+ <_>
+
+ <_>
+ 0 3 10 6 -1.
+ <_>
+ 0 3 5 3 2.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 6 4 9 5 -1.
+ <_>
+ 9 4 3 5 3.
+ <_>
+
+ <_>
+ 3 12 8 8 -1.
+ <_>
+ 3 12 4 4 2.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 4 7 15 3 -1.
+ <_>
+ 9 7 5 3 3.
+ <_>
+
+ <_>
+ 0 4 6 9 -1.
+ <_>
+ 3 4 3 9 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 6 1 8 15 -1.
+ <_>
+ 6 6 8 5 3.
+ <_>
+
+ <_>
+ 1 7 15 3 -1.
+ <_>
+ 6 7 5 3 3.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 6 6 8 8 -1.
+ <_>
+ 6 10 8 4 2.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 2 0 14 2 -1.
+ <_>
+ 2 1 14 1 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 1 3 16 2 -1.
+ <_>
+ 1 4 16 1 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 5 11 13 3 -1.
+ <_>
+ 5 12 13 1 3.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 2 8 17 3 -1.
+ <_>
+ 2 9 17 1 3.
+ <_>
+
+ <_>
+ 1 1 18 6 -1.
+ <_>
+ 1 1 9 3 2.
+ <_>
+ 10 4 9 3 2.
+ <_>
+
+ <_>
+ 1 1 19 6 -1.
+ <_>
+ 1 3 19 2 3.
+ <_>
+
+ <_>
+ 4 6 12 6 -1.
+ <_>
+ 4 6 6 3 2.
+ <_>
+ 10 9 6 3 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 3 18 13 2 -1.
+ <_>
+ 3 19 13 1 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 10 12 8 6 -1.
+ <_>
+ 10 14 8 2 3.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 0 0 9 2 2.
+ <_>
+ 9 2 9 2 2.
+ <_>
+
+ <_>
+ 4 6 15 5 -1.
+ <_>
+ 9 6 5 5 3.
+ <_>
+
+ <_>
+ 0 7 15 4 -1.
+ <_>
+ 5 7 5 4 3.
+ <_>
+
+ <_>
+ 12 4 4 10 -1.
+ <_>
+ 12 9 4 5 2.
+ <_>
+
+ <_>
+ 0 6 18 12 -1.
+ <_>
+ 0 6 9 6 2.
+ <_>
+ 9 12 9 6 2.
+ <_>
+
+ <_>
+ 16 5 2 14 -1.
+ <_>
+ 16 12 2 7 2.
+ <_>
+
+ <_>
+ 2 9 5 6 -1.
+ <_>
+ 2 12 5 3 2.
+ <_>
+
+ <_>
+ 12 0 3 19 -1.
+ <_>
+ 13 0 1 19 3.
+ <_>
+
+ <_>
+ 0 10 9 6 -1.
+ <_>
+ 0 12 9 2 3.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 5 0 4 7 -1.
+ <_>
+ 7 0 2 7 2.
+ <_>
+
+ <_>
+ 12 0 3 19 -1.
+ <_>
+ 13 0 1 19 3.
+ <_>
+
+ <_>
+ 0 15 14 4 -1.
+ <_>
+ 0 15 7 2 2.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 4 5 14 6 -1.
+ <_>
+ 4 7 14 2 3.
+ <_>
+
+ <_>
+ 3 1 6 7 -1.
+ <_>
+ 5 1 2 7 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 0 4 6 3 3.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 8 9 6 5 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 6 9 6 5 -1.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 5 8 10 10 -1.
+ <_>
+ 5 8 5 5 2.
+ <_>
+ 10 13 5 5 2.
+ <_>
+
+ <_>
+ 1 5 18 10 -1.
+ <_>
+ 10 5 9 5 2.
+ <_>
+ 1 10 9 5 2.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 7 0 6 6 3.
+ <_>
+
+ <_>
+ 4 3 5 14 -1.
+ <_>
+ 4 10 5 7 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 5 8 5 2.
+ <_>
+
+ <_>
+ 7 2 6 6 -1.
+ <_>
+ 7 5 6 3 2.
+ <_>
+
+ <_>
+ 0 0 19 3 -1.
+ <_>
+ 0 1 19 1 3.
+ <_>
+
+ <_>
+ 8 0 8 6 -1.
+ <_>
+ 8 2 8 2 3.
+ <_>
+
+ <_>
+ 7 5 6 11 -1.
+ <_>
+ 9 5 2 11 3.
+ <_>
+
+ <_>
+ 4 3 12 10 -1.
+ <_>
+ 8 3 4 10 3.
+ <_>
+
+ <_>
+ 0 4 18 4 -1.
+ <_>
+ 0 6 18 2 2.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 10 4 4 14 -1.
+ <_>
+ 12 4 2 7 2.
+ <_>
+ 10 11 2 7 2.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 10 4 4 14 -1.
+ <_>
+ 12 4 2 7 2.
+ <_>
+ 10 11 2 7 2.
+ <_>
+
+ <_>
+ 6 4 4 14 -1.
+ <_>
+ 6 4 2 7 2.
+ <_>
+ 8 11 2 7 2.
+ <_>
+
+ <_>
+ 14 3 6 7 -1.
+ <_>
+ 16 3 2 7 3.
+ <_>
+
+ <_>
+ 6 6 8 4 -1.
+ <_>
+ 6 8 8 2 2.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 6 0 2 15 -1.
+ <_>
+ 7 0 1 15 2.
+ <_>
+
+ <_>
+ 12 1 3 17 -1.
+ <_>
+ 13 1 1 17 3.
+ <_>
+
+ <_>
+ 5 1 3 17 -1.
+ <_>
+ 6 1 1 17 3.
+ <_>
+
+ <_>
+ 9 4 3 13 -1.
+ <_>
+ 10 4 1 13 3.
+ <_>
+
+ <_>
+ 9 3 2 14 -1.
+ <_>
+ 10 3 1 14 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 5 20 4 -1.
+ <_>
+ 10 5 10 4 2.
+ <_>
+
+ <_>
+ 13 2 7 6 -1.
+ <_>
+ 13 4 7 2 3.
+ <_>
+
+ <_>
+ 0 2 19 2 -1.
+ <_>
+ 0 3 19 1 2.
+ <_>
+
+ <_>
+ 10 9 10 11 -1.
+ <_>
+ 10 9 5 11 2.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 3 0 15 9 -1.
+ <_>
+ 8 0 5 9 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 3 4 14 2 -1.
+ <_>
+ 3 5 14 1 2.
+ <_>
+
+ <_>
+ 0 11 6 7 -1.
+ <_>
+ 2 11 2 7 3.
+ <_>
+
+ <_>
+ 10 9 10 11 -1.
+ <_>
+ 10 9 5 11 2.
+ <_>
+
+ <_>
+ 3 13 6 7 -1.
+ <_>
+ 5 13 2 7 3.
+ <_>
+
+ <_>
+ 3 8 15 3 -1.
+ <_>
+ 8 8 5 3 3.
+ <_>
+
+ <_>
+ 0 1 8 8 -1.
+ <_>
+ 0 1 4 4 2.
+ <_>
+ 4 5 4 4 2.
+ <_>
+
+ <_>
+ 9 8 10 4 -1.
+ <_>
+ 9 8 5 4 2.
+ <_>
+
+ <_>
+ 0 0 18 6 -1.
+ <_>
+ 6 0 6 6 3.
+ <_>
+
+ <_>
+ 4 3 12 9 -1.
+ <_>
+ 4 6 12 3 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 8 6 4 10 -1.
+ <_>
+ 8 11 4 5 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 0 3 17 2 -1.
+ <_>
+ 0 4 17 1 2.
+ <_>
+
+ <_>
+ 12 6 5 6 -1.
+ <_>
+ 12 9 5 3 2.
+ <_>
+
+ <_>
+ 5 6 8 8 -1.
+ <_>
+ 5 6 4 4 2.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 9 10 7 6 -1.
+ <_>
+ 9 12 7 2 3.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 13 6 5 9 -1.
+ <_>
+ 13 9 5 3 3.
+ <_>
+
+ <_>
+ 2 6 5 9 -1.
+ <_>
+ 2 9 5 3 3.
+ <_>
+
+ <_>
+ 14 2 6 5 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+
+ <_>
+ 5 6 6 11 -1.
+ <_>
+ 8 6 3 11 2.
+ <_>
+
+ <_>
+ 14 2 6 5 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+
+ <_>
+ 0 3 10 6 -1.
+ <_>
+ 0 3 5 3 2.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 14 10 3 2.
+ <_>
+
+ <_>
+ 12 11 8 8 -1.
+ <_>
+ 12 15 8 4 2.
+ <_>
+
+ <_>
+ 4 0 12 7 -1.
+ <_>
+ 8 0 4 7 3.
+ <_>
+
+ <_>
+ 5 15 13 2 -1.
+ <_>
+ 5 16 13 1 2.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 12 10 3 2.
+ <_>
+ 10 15 10 3 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 2 12 2 3.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 5 6 10 12 -1.
+ <_>
+ 10 6 5 6 2.
+ <_>
+ 5 12 5 6 2.
+ <_>
+
+ <_>
+ 1 15 15 4 -1.
+ <_>
+ 1 17 15 2 2.
+ <_>
+
+ <_>
+ 10 5 9 6 -1.
+ <_>
+ 10 7 9 2 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 10 5 10 6 -1.
+ <_>
+ 10 7 10 2 3.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 8 9 12 4 -1.
+ <_>
+ 12 9 4 4 3.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 0 0 4 17 -1.
+ <_>
+ 2 0 2 17 2.
+ <_>
+
+ <_>
+ 5 6 12 3 -1.
+ <_>
+ 5 6 6 3 2.
+ <_>
+
+ <_>
+ 6 7 3 12 -1.
+ <_>
+ 6 13 3 6 2.
+ <_>
+
+ <_>
+ 14 2 6 5 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+
+ <_>
+ 0 2 6 5 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+
+ <_>
+ 1 3 18 16 -1.
+ <_>
+ 7 3 6 16 3.
+ <_>
+
+ <_>
+ 4 4 11 10 -1.
+ <_>
+ 4 9 11 5 2.
+ <_>
+
+ <_>
+ 6 1 13 3 -1.
+ <_>
+ 6 2 13 1 3.
+ <_>
+
+ <_>
+ 3 4 8 10 -1.
+ <_>
+ 3 4 4 5 2.
+ <_>
+ 7 9 4 5 2.
+ <_>
+
+ <_>
+ 6 7 14 4 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 1 1 8 6 -1.
+ <_>
+ 1 3 8 2 3.
+ <_>
+
+ <_>
+ 15 3 5 9 -1.
+ <_>
+ 15 6 5 3 3.
+ <_>
+
+ <_>
+ 0 3 5 9 -1.
+ <_>
+ 0 6 5 3 3.
+ <_>
+
+ <_>
+ 14 6 4 14 -1.
+ <_>
+ 16 6 2 7 2.
+ <_>
+ 14 13 2 7 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 2 1 2 12 3.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 0 13 18 7 -1.
+ <_>
+ 6 13 6 7 3.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 9 10 11 -1.
+ <_>
+ 5 9 5 11 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 5 8 10 12 -1.
+ <_>
+ 5 14 10 6 2.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 1 10 6 7 -1.
+ <_>
+ 3 10 2 7 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 7 20 3 -1.
+ <_>
+ 0 8 20 1 3.
+ <_>
+
+ <_>
+ 10 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 0 6 6 14 -1.
+ <_>
+ 0 6 3 7 2.
+ <_>
+ 3 13 3 7 2.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 2 1 11 12 -1.
+ <_>
+ 2 7 11 6 2.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 4 10 4 2.
+ <_>
+
+ <_>
+ 1 5 8 8 -1.
+ <_>
+ 1 5 4 4 2.
+ <_>
+ 5 9 4 4 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 16 4 4 16 -1.
+ <_>
+ 18 4 2 8 2.
+ <_>
+ 16 12 2 8 2.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 6 15 14 4 -1.
+ <_>
+ 13 15 7 2 2.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 6 3 4 7 -1.
+ <_>
+ 8 3 2 7 2.
+ <_>
+
+ <_>
+ 10 11 5 9 -1.
+ <_>
+ 10 14 5 3 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 10 0 3 14 -1.
+ <_>
+ 11 0 1 14 3.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 10 1 3 13 -1.
+ <_>
+ 11 1 1 13 3.
+ <_>
+
+ <_>
+ 7 1 3 13 -1.
+ <_>
+ 8 1 1 13 3.
+ <_>
+
+ <_>
+ 5 14 10 6 -1.
+ <_>
+ 10 14 5 3 2.
+ <_>
+ 5 17 5 3 2.
+ <_>
+
+ <_>
+ 6 8 8 4 -1.
+ <_>
+ 6 10 8 2 2.
+ <_>
+
+ <_>
+ 11 14 8 6 -1.
+ <_>
+ 11 16 8 2 3.
+ <_>
+
+ <_>
+ 1 14 8 6 -1.
+ <_>
+ 1 16 8 2 3.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 2 2 12 6 -1.
+ <_>
+ 2 2 6 3 2.
+ <_>
+ 8 5 6 3 2.
+ <_>
+
+ <_>
+ 16 4 4 16 -1.
+ <_>
+ 18 4 2 8 2.
+ <_>
+ 16 12 2 8 2.
+ <_>
+
+ <_>
+ 0 8 5 12 -1.
+ <_>
+ 0 12 5 4 3.
+ <_>
+
+ <_>
+ 10 10 9 6 -1.
+ <_>
+ 10 12 9 2 3.
+ <_>
+
+ <_>
+ 5 2 6 10 -1.
+ <_>
+ 5 2 3 5 2.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 8 -1.
+ <_>
+ 8 5 2 8 3.
+ <_>
+
+ <_>
+ 11 0 4 14 -1.
+ <_>
+ 11 0 2 14 2.
+ <_>
+
+ <_>
+ 5 0 4 14 -1.
+ <_>
+ 7 0 2 14 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 8 3 12 17 -1.
+ <_>
+ 8 3 6 17 2.
+ <_>
+
+ <_>
+ 4 6 10 4 -1.
+ <_>
+ 9 6 5 4 2.
+ <_>
+
+ <_>
+ 16 4 4 16 -1.
+ <_>
+ 18 4 2 8 2.
+ <_>
+ 16 12 2 8 2.
+ <_>
+
+ <_>
+ 0 6 12 14 -1.
+ <_>
+ 6 6 6 14 2.
+ <_>
+
+ <_>
+ 12 9 8 10 -1.
+ <_>
+ 12 9 4 10 2.
+ <_>
+
+ <_>
+ 0 9 8 10 -1.
+ <_>
+ 4 9 4 10 2.
+ <_>
+
+ <_>
+ 13 2 6 18 -1.
+ <_>
+ 13 2 3 18 2.
+ <_>
+
+ <_>
+ 1 2 6 18 -1.
+ <_>
+ 4 2 3 18 2.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 0 6 18 9 -1.
+ <_>
+ 0 9 18 3 3.
+ <_>
+
+ <_>
+ 5 4 15 3 -1.
+ <_>
+ 5 5 15 1 3.
+ <_>
+
+ <_>
+ 0 3 19 15 -1.
+ <_>
+ 0 8 19 5 3.
+ <_>
+
+ <_>
+ 10 10 9 6 -1.
+ <_>
+ 10 12 9 2 3.
+ <_>
+
+ <_>
+ 1 10 9 6 -1.
+ <_>
+ 1 12 9 2 3.
+ <_>
+
+ <_>
+ 5 12 13 3 -1.
+ <_>
+ 5 13 13 1 3.
+ <_>
+
+ <_>
+ 0 4 4 16 -1.
+ <_>
+ 0 4 2 8 2.
+ <_>
+ 2 12 2 8 2.
+ <_>
+
+ <_>
+ 10 10 5 6 -1.
+ <_>
+ 10 13 5 3 2.
+ <_>
+
+ <_>
+ 0 10 20 8 -1.
+ <_>
+ 0 14 20 4 2.
+ <_>
+
+ <_>
+ 14 0 6 7 -1.
+ <_>
+ 16 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 2 0 2 7 3.
+ <_>
+
+ <_>
+ 13 0 3 19 -1.
+ <_>
+ 14 0 1 19 3.
+ <_>
+
+ <_>
+ 0 2 8 4 -1.
+ <_>
+ 4 2 4 4 2.
+ <_>
+
+ <_>
+ 12 12 7 6 -1.
+ <_>
+ 12 14 7 2 3.
+ <_>
+
+ <_>
+ 6 11 7 6 -1.
+ <_>
+ 6 13 7 2 3.
+ <_>
+
+ <_>
+ 10 10 5 6 -1.
+ <_>
+ 10 13 5 3 2.
+ <_>
+
+ <_>
+ 3 10 6 9 -1.
+ <_>
+ 3 13 6 3 3.
+ <_>
+
+ <_>
+ 13 5 4 14 -1.
+ <_>
+ 15 5 2 7 2.
+ <_>
+ 13 12 2 7 2.
+ <_>
+
+ <_>
+ 3 5 10 9 -1.
+ <_>
+ 3 8 10 3 3.
+ <_>
+
+ <_>
+ 2 15 18 4 -1.
+ <_>
+ 2 17 18 2 2.
+ <_>
+
+ <_>
+ 0 4 8 6 -1.
+ <_>
+ 0 6 8 2 3.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 6 13 1 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 14 20 2 3.
+ <_>
+
+ <_>
+ 0 10 6 8 -1.
+ <_>
+ 3 10 3 8 2.
+ <_>
+
+ <_>
+ 4 8 15 3 -1.
+ <_>
+ 9 8 5 3 3.
+ <_>
+
+ <_>
+ 1 9 9 6 -1.
+ <_>
+ 4 9 3 6 3.
+ <_>
+
+ <_>
+ 2 0 16 14 -1.
+ <_>
+ 10 0 8 7 2.
+ <_>
+ 2 7 8 7 2.
+ <_>
+
+ <_>
+ 3 0 14 18 -1.
+ <_>
+ 3 9 14 9 2.
+ <_>
+
+ <_>
+ 9 7 6 10 -1.
+ <_>
+ 12 7 3 5 2.
+ <_>
+ 9 12 3 5 2.
+ <_>
+
+ <_>
+ 3 4 4 16 -1.
+ <_>
+ 3 4 2 8 2.
+ <_>
+ 5 12 2 8 2.
+ <_>
+
+ <_>
+ 12 14 8 6 -1.
+ <_>
+ 12 16 8 2 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 1 0 18 10 -1.
+ <_>
+ 7 0 6 10 3.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 13 4 3 15 -1.
+ <_>
+ 13 9 3 5 3.
+ <_>
+
+ <_>
+ 4 4 3 15 -1.
+ <_>
+ 4 9 3 5 3.
+ <_>
+
+ <_>
+ 14 3 6 5 -1.
+ <_>
+ 14 3 3 5 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 14 2 3 7 2.
+ <_>
+
+ <_>
+ 0 2 6 7 -1.
+ <_>
+ 3 2 3 7 2.
+ <_>
+
+ <_>
+ 11 6 8 8 -1.
+ <_>
+ 15 6 4 4 2.
+ <_>
+ 11 10 4 4 2.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 5 9 13 3 -1.
+ <_>
+ 5 10 13 1 3.
+ <_>
+
+ <_>
+ 0 8 15 3 -1.
+ <_>
+ 0 9 15 1 3.
+ <_>
+
+ <_>
+ 11 5 4 12 -1.
+ <_>
+ 11 11 4 6 2.
+ <_>
+
+ <_>
+ 2 11 13 3 -1.
+ <_>
+ 2 12 13 1 3.
+ <_>
+
+ <_>
+ 2 1 16 2 -1.
+ <_>
+ 2 2 16 1 2.
+ <_>
+
+ <_>
+ 5 6 8 10 -1.
+ <_>
+ 5 6 4 5 2.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 8 8 10 12 -1.
+ <_>
+ 13 8 5 6 2.
+ <_>
+ 8 14 5 6 2.
+ <_>
+
+ <_>
+ 3 10 6 6 -1.
+ <_>
+ 3 13 6 3 2.
+ <_>
+
+ <_>
+ 1 5 18 8 -1.
+ <_>
+ 10 5 9 4 2.
+ <_>
+ 1 9 9 4 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 5 9 4 7 -1.
+ <_>
+ 7 9 2 7 2.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 2 6 8 14 -1.
+ <_>
+ 2 6 4 7 2.
+ <_>
+ 6 13 4 7 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 4 9 -1.
+ <_>
+ 8 0 2 9 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 9 1 3 13 -1.
+ <_>
+ 10 1 1 13 3.
+ <_>
+
+ <_>
+ 0 9 13 2 -1.
+ <_>
+ 0 10 13 1 2.
+ <_>
+
+ <_>
+ 7 3 13 16 -1.
+ <_>
+ 7 11 13 8 2.
+ <_>
+
+ <_>
+ 0 3 5 9 -1.
+ <_>
+ 0 6 5 3 3.
+ <_>
+
+ <_>
+ 11 1 7 6 -1.
+ <_>
+ 11 3 7 2 3.
+ <_>
+
+ <_>
+ 1 1 16 4 -1.
+ <_>
+ 1 1 8 2 2.
+ <_>
+ 9 3 8 2 2.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 10 2 10 3 2.
+ <_>
+ 0 5 10 3 2.
+ <_>
+
+ <_>
+ 0 4 19 10 -1.
+ <_>
+ 0 9 19 5 2.
+ <_>
+
+ <_>
+ 4 6 15 5 -1.
+ <_>
+ 9 6 5 5 3.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 1 12 9 8 -1.
+ <_>
+ 1 16 9 4 2.
+ <_>
+
+ <_>
+ 3 5 14 3 -1.
+ <_>
+ 3 6 14 1 3.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+ 10 13 7 2 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 10 11 7 2 2.
+ <_>
+ 3 13 7 2 2.
+ <_>
+
+ <_>
+ 2 5 14 6 -1.
+ <_>
+ 2 7 14 2 3.
+ <_>
+
+ <_>
+ 11 15 9 4 -1.
+ <_>
+ 11 17 9 2 2.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 1 13 7 6 -1.
+ <_>
+ 1 15 7 2 3.
+ <_>
+
+ <_>
+ 0 16 20 4 -1.
+ <_>
+ 0 18 20 2 2.
+ <_>
+
+ <_>
+ 0 14 12 6 -1.
+ <_>
+ 0 14 6 3 2.
+ <_>
+ 6 17 6 3 2.
+ <_>
+
+ <_>
+ 4 6 15 5 -1.
+ <_>
+ 9 6 5 5 3.
+ <_>
+
+ <_>
+ 1 6 15 5 -1.
+ <_>
+ 6 6 5 5 3.
+ <_>
+
+ <_>
+ 11 5 6 9 -1.
+ <_>
+ 11 8 6 3 3.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 7 0 2 8 3.
+ <_>
+
+ <_>
+ 5 17 13 3 -1.
+ <_>
+ 5 18 13 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 5 3 14 3 -1.
+ <_>
+ 5 4 14 1 3.
+ <_>
+
+ <_>
+ 6 9 6 5 -1.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 12 6 8 5 -1.
+ <_>
+ 12 6 4 5 2.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 4 14 13 2 -1.
+ <_>
+ 4 15 13 1 2.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 6 13 8 4 2.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 9 3 3 10 -1.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 4 0 12 20 -1.
+ <_>
+ 10 0 6 20 2.
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 13 12 3 6 2.
+ <_>
+
+ <_>
+ 3 2 12 4 -1.
+ <_>
+ 9 2 6 4 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 6 4 2 13 -1.
+ <_>
+ 7 4 1 13 2.
+ <_>
+
+ <_>
+ 13 4 4 12 -1.
+ <_>
+ 13 4 2 12 2.
+ <_>
+
+ <_>
+ 0 9 12 3 -1.
+ <_>
+ 6 9 6 3 2.
+ <_>
+
+ <_>
+ 13 4 4 12 -1.
+ <_>
+ 13 4 2 12 2.
+ <_>
+
+ <_>
+ 3 4 4 12 -1.
+ <_>
+ 5 4 2 12 2.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 7 15 13 3 -1.
+ <_>
+ 7 16 13 1 3.
+ <_>
+
+ <_>
+ 0 2 18 4 -1.
+ <_>
+ 0 2 9 2 2.
+ <_>
+ 9 4 9 2 2.
+ <_>
+
+ <_>
+ 12 6 8 5 -1.
+ <_>
+ 12 6 4 5 2.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 4 10 4 2.
+ <_>
+
+ <_>
+ 9 0 10 6 -1.
+ <_>
+ 9 2 10 2 3.
+ <_>
+
+ <_>
+ 3 0 14 3 -1.
+ <_>
+ 3 1 14 1 3.
+ <_>
+
+ <_>
+ 12 6 8 5 -1.
+ <_>
+ 12 6 4 5 2.
+ <_>
+
+ <_>
+ 0 6 8 5 -1.
+ <_>
+ 4 6 4 5 2.
+ <_>
+
+ <_>
+ 11 15 7 4 -1.
+ <_>
+ 11 17 7 2 2.
+ <_>
+
+ <_>
+ 4 2 9 5 -1.
+ <_>
+ 7 2 3 5 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 5 3 10 6 -1.
+ <_>
+ 5 5 10 2 3.
+ <_>
+
+ <_>
+ 8 4 6 14 -1.
+ <_>
+ 8 11 6 7 2.
+ <_>
+
+ <_>
+ 1 5 9 6 -1.
+ <_>
+ 1 7 9 2 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 8 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 0 4 20 12 -1.
+ <_>
+ 10 4 10 6 2.
+ <_>
+ 0 10 10 6 2.
+ <_>
+
+ <_>
+ 5 4 7 4 -1.
+ <_>
+ 5 6 7 2 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 3 0 14 2 -1.
+ <_>
+ 3 1 14 1 2.
+ <_>
+
+ <_>
+ 7 7 6 13 -1.
+ <_>
+ 9 7 2 13 3.
+ <_>
+
+ <_>
+ 3 4 16 12 -1.
+ <_>
+ 11 4 8 6 2.
+ <_>
+ 3 10 8 6 2.
+ <_>
+
+ <_>
+ 1 4 16 12 -1.
+ <_>
+ 1 4 8 6 2.
+ <_>
+ 9 10 8 6 2.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 7 10 6 5 2.
+ <_>
+
+ <_>
+ 3 6 5 9 -1.
+ <_>
+ 3 9 5 3 3.
+ <_>
+
+ <_>
+ 6 3 14 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+ 6 5 7 2 2.
+ <_>
+
+ <_>
+ 3 18 13 2 -1.
+ <_>
+ 3 19 13 1 2.
+ <_>
+
+ <_>
+ 4 10 16 4 -1.
+ <_>
+ 12 10 8 2 2.
+ <_>
+ 4 12 8 2 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 12 12 7 6 -1.
+ <_>
+ 12 14 7 2 3.
+ <_>
+
+ <_>
+ 0 0 4 11 -1.
+ <_>
+ 2 0 2 11 2.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 14 0 3 9 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 3 0 3 9 2.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 5 5 3 10 -1.
+ <_>
+ 5 10 3 5 2.
+ <_>
+
+ <_>
+ 1 5 18 8 -1.
+ <_>
+ 10 5 9 4 2.
+ <_>
+ 1 9 9 4 2.
+ <_>
+
+ <_>
+ 4 2 10 6 -1.
+ <_>
+ 4 4 10 2 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+ 6 6 4 6 2.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 7 6 2 7 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 9 4 6 10 -1.
+ <_>
+ 12 4 3 5 2.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 0 8 19 3 -1.
+ <_>
+ 0 9 19 1 3.
+ <_>
+
+ <_>
+ 1 10 18 3 -1.
+ <_>
+ 1 11 18 1 3.
+ <_>
+
+ <_>
+ 5 1 3 13 -1.
+ <_>
+ 6 1 1 13 3.
+ <_>
+
+ <_>
+ 12 11 8 9 -1.
+ <_>
+ 12 11 4 9 2.
+ <_>
+
+ <_>
+ 5 0 3 20 -1.
+ <_>
+ 6 0 1 20 3.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 0 1 4 14 -1.
+ <_>
+ 2 1 2 14 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 10 1 10 2 2.
+ <_>
+ 0 3 10 2 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 2 1 2 12 3.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 11 0 3 6 2.
+ <_>
+
+ <_>
+ 6 10 4 8 -1.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 7 1 13 1 3.
+ <_>
+
+ <_>
+ 0 0 13 3 -1.
+ <_>
+ 0 1 13 1 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 7 10 2 3.
+ <_>
+
+ <_>
+ 4 5 4 14 -1.
+ <_>
+ 4 5 2 7 2.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 11 0 3 6 2.
+ <_>
+
+ <_>
+ 3 0 6 6 -1.
+ <_>
+ 6 0 3 6 2.
+ <_>
+
+ <_>
+ 1 0 18 7 -1.
+ <_>
+ 7 0 6 7 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 2 6 14 9 -1.
+ <_>
+ 2 9 14 3 3.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 1 14 18 4 -1.
+ <_>
+ 10 14 9 2 2.
+ <_>
+ 1 16 9 2 2.
+ <_>
+
+ <_>
+ 2 8 15 6 -1.
+ <_>
+ 7 8 5 6 3.
+ <_>
+
+ <_>
+ 16 2 4 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+
+ <_>
+ 0 1 8 8 -1.
+ <_>
+ 0 1 4 4 2.
+ <_>
+ 4 5 4 4 2.
+ <_>
+
+ <_>
+ 7 3 8 4 -1.
+ <_>
+ 7 5 8 2 2.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 10 12 7 2 2.
+ <_>
+ 3 14 7 2 2.
+ <_>
+
+ <_>
+ 4 9 8 5 -1.
+ <_>
+ 8 9 4 5 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 2 2 15 7 -1.
+ <_>
+ 7 2 5 7 3.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 4 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 7 1 7 12 -1.
+ <_>
+ 7 7 7 6 2.
+ <_>
+
+ <_>
+ 4 0 12 10 -1.
+ <_>
+ 4 5 12 5 2.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 0 1 5 6 -1.
+ <_>
+ 0 4 5 3 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 12 2 2 14 -1.
+ <_>
+ 12 2 1 14 2.
+ <_>
+
+ <_>
+ 0 15 14 4 -1.
+ <_>
+ 0 15 7 2 2.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 6 2 2 14 -1.
+ <_>
+ 7 2 1 14 2.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 0 6 14 4 -1.
+ <_>
+ 0 6 7 2 2.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 12 11 8 9 -1.
+ <_>
+ 12 11 4 9 2.
+ <_>
+
+ <_>
+ 0 11 8 9 -1.
+ <_>
+ 4 11 4 9 2.
+ <_>
+
+ <_>
+ 7 1 12 18 -1.
+ <_>
+ 11 1 4 18 3.
+ <_>
+
+ <_>
+ 1 1 12 18 -1.
+ <_>
+ 5 1 4 18 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 8 6 4 5 2.
+ <_>
+
+ <_>
+ 6 3 7 6 -1.
+ <_>
+ 6 5 7 2 3.
+ <_>
+
+ <_>
+ 5 5 13 8 -1.
+ <_>
+ 5 9 13 4 2.
+ <_>
+
+ <_>
+ 1 2 14 2 -1.
+ <_>
+ 1 3 14 1 2.
+ <_>
+
+ <_>
+ 15 4 5 9 -1.
+ <_>
+ 15 7 5 3 3.
+ <_>
+
+ <_>
+ 0 4 5 9 -1.
+ <_>
+ 0 7 5 3 3.
+ <_>
+
+ <_>
+ 7 1 8 8 -1.
+ <_>
+ 7 5 8 4 2.
+ <_>
+
+ <_>
+ 2 5 12 12 -1.
+ <_>
+ 2 5 6 6 2.
+ <_>
+ 8 11 6 6 2.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 5 7 10 10 -1.
+ <_>
+ 5 7 5 5 2.
+ <_>
+ 10 12 5 5 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 2 14 16 3 -1.
+ <_>
+ 2 15 16 1 3.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 13 18 4 -1.
+ <_>
+ 0 13 9 2 2.
+ <_>
+ 9 15 9 2 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ <_>
+
+ <_>
+ 1 12 13 2 -1.
+ <_>
+ 1 13 13 1 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 0 7 14 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 13 3 7 6 -1.
+ <_>
+ 13 5 7 2 3.
+ <_>
+
+ <_>
+ 0 4 3 16 -1.
+ <_>
+ 0 12 3 8 2.
+ <_>
+
+ <_>
+ 13 5 5 15 -1.
+ <_>
+ 13 10 5 5 3.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 2 10 3 5 2.
+ <_>
+ 5 15 3 5 2.
+ <_>
+
+ <_>
+ 11 11 9 6 -1.
+ <_>
+ 11 13 9 2 3.
+ <_>
+
+ <_>
+ 0 11 9 6 -1.
+ <_>
+ 0 13 9 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 1 3 18 4 -1.
+ <_>
+ 1 3 9 2 2.
+ <_>
+ 10 5 9 2 2.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+ 10 13 5 3 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 8 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 3 6 12 7 -1.
+ <_>
+ 7 6 4 7 3.
+ <_>
+
+ <_>
+ 8 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 6 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 7 1 6 19 -1.
+ <_>
+ 7 1 3 19 2.
+ <_>
+
+ <_>
+ 6 0 3 20 -1.
+ <_>
+ 7 0 1 20 3.
+ <_>
+
+ <_>
+ 9 1 3 13 -1.
+ <_>
+ 10 1 1 13 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 2 0 18 16 -1.
+ <_>
+ 2 8 18 8 2.
+ <_>
+
+ <_>
+ 1 5 6 15 -1.
+ <_>
+ 1 10 6 5 3.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 6 13 10 6 -1.
+ <_>
+ 11 13 5 3 2.
+ <_>
+ 6 16 5 3 2.
+ <_>
+
+ <_>
+ 0 10 14 3 -1.
+ <_>
+ 0 11 14 1 3.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 1 13 7 6 -1.
+ <_>
+ 1 15 7 2 3.
+ <_>
+
+ <_>
+ 9 0 3 12 -1.
+ <_>
+ 9 6 3 6 2.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 4 14 13 2 -1.
+ <_>
+ 4 15 13 1 2.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 16 10 4 7 -1.
+ <_>
+ 16 10 2 7 2.
+ <_>
+
+ <_>
+ 0 6 4 13 -1.
+ <_>
+ 2 6 2 13 2.
+ <_>
+
+ <_>
+ 1 15 18 3 -1.
+ <_>
+ 7 15 6 3 3.
+ <_>
+
+ <_>
+ 0 1 16 4 -1.
+ <_>
+ 0 1 8 2 2.
+ <_>
+ 8 3 8 2 2.
+ <_>
+
+ <_>
+ 3 0 14 4 -1.
+ <_>
+ 3 2 14 2 2.
+ <_>
+
+ <_>
+ 3 13 12 6 -1.
+ <_>
+ 3 13 6 3 2.
+ <_>
+ 9 16 6 3 2.
+ <_>
+
+ <_>
+ 6 8 8 9 -1.
+ <_>
+ 6 11 8 3 3.
+ <_>
+
+ <_>
+ 0 8 18 9 -1.
+ <_>
+ 0 11 18 3 3.
+ <_>
+
+ <_>
+ 10 13 10 7 -1.
+ <_>
+ 10 13 5 7 2.
+ <_>
+
+ <_>
+ 0 13 10 7 -1.
+ <_>
+ 5 13 5 7 2.
+ <_>
+
+ <_>
+ 12 10 8 6 -1.
+ <_>
+ 12 12 8 2 3.
+ <_>
+
+ <_>
+ 0 12 17 6 -1.
+ <_>
+ 0 15 17 3 2.
+ <_>
+
+ <_>
+ 5 14 10 4 -1.
+ <_>
+ 5 16 10 2 2.
+ <_>
+
+ <_>
+ 1 8 13 3 -1.
+ <_>
+ 1 9 13 1 3.
+ <_>
+
+ <_>
+ 11 10 9 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 1 2 1 18 2.
+ <_>
+
+ <_>
+ 14 12 6 7 -1.
+ <_>
+ 14 12 3 7 2.
+ <_>
+
+ <_>
+ 0 12 6 7 -1.
+ <_>
+ 3 12 3 7 2.
+ <_>
+
+ <_>
+ 8 2 8 14 -1.
+ <_>
+ 8 9 8 7 2.
+ <_>
+
+ <_>
+ 4 2 8 14 -1.
+ <_>
+ 4 9 8 7 2.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 1 2 18 3 -1.
+ <_>
+ 7 2 6 3 3.
+ <_>
+
+ <_>
+ 12 6 5 9 -1.
+ <_>
+ 12 9 5 3 3.
+ <_>
+
+ <_>
+ 0 4 9 12 -1.
+ <_>
+ 3 4 3 12 3.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 13 9 4 10 -1.
+ <_>
+ 13 14 4 5 2.
+ <_>
+
+ <_>
+ 3 12 10 8 -1.
+ <_>
+ 3 12 5 4 2.
+ <_>
+ 8 16 5 4 2.
+ <_>
+
+ <_>
+ 12 1 7 4 -1.
+ <_>
+ 12 3 7 2 2.
+ <_>
+
+ <_>
+ 2 4 12 6 -1.
+ <_>
+ 2 6 12 2 3.
+ <_>
+
+ <_>
+ 13 10 5 6 -1.
+ <_>
+ 13 13 5 3 2.
+ <_>
+
+ <_>
+ 2 10 5 6 -1.
+ <_>
+ 2 13 5 3 2.
+ <_>
+
+ <_>
+ 12 1 7 4 -1.
+ <_>
+ 12 3 7 2 2.
+ <_>
+
+ <_>
+ 5 5 9 10 -1.
+ <_>
+ 5 10 9 5 2.
+ <_>
+
+ <_>
+ 12 1 7 4 -1.
+ <_>
+ 12 3 7 2 2.
+ <_>
+
+ <_>
+ 0 0 17 2 -1.
+ <_>
+ 0 1 17 1 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 11 10 6 8 -1.
+ <_>
+ 13 10 2 8 3.
+ <_>
+
+ <_>
+ 3 10 6 8 -1.
+ <_>
+ 5 10 2 8 3.
+ <_>
+
+ <_>
+ 5 1 10 12 -1.
+ <_>
+ 5 7 10 6 2.
+ <_>
+
+ <_>
+ 1 1 7 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+
+ <_>
+ 10 10 8 6 -1.
+ <_>
+ 10 12 8 2 3.
+ <_>
+
+ <_>
+ 0 7 8 6 -1.
+ <_>
+ 0 9 8 2 3.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 10 11 5 3 2.
+ <_>
+ 5 14 5 3 2.
+ <_>
+
+ <_>
+ 0 8 20 3 -1.
+ <_>
+ 0 9 20 1 3.
+ <_>
+
+ <_>
+ 7 11 13 3 -1.
+ <_>
+ 7 12 13 1 3.
+ <_>
+
+ <_>
+ 2 7 15 5 -1.
+ <_>
+ 7 7 5 5 3.
+ <_>
+
+ <_>
+ 2 9 16 6 -1.
+ <_>
+ 2 9 8 6 2.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+
+ <_>
+ 4 12 12 5 -1.
+ <_>
+ 8 12 4 5 3.
+ <_>
+
+ <_>
+ 2 16 16 4 -1.
+ <_>
+ 2 16 8 2 2.
+ <_>
+ 10 18 8 2 2.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 4 6 7 -1.
+ <_>
+ 2 4 2 7 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 20 -1.
+ <_>
+ 9 0 2 20 3.
+ <_>
+
+ <_>
+ 9 5 3 13 -1.
+ <_>
+ 10 5 1 13 3.
+ <_>
+
+ <_>
+ 5 1 10 9 -1.
+ <_>
+ 5 4 10 3 3.
+ <_>
+
+ <_>
+ 12 5 8 8 -1.
+ <_>
+ 16 5 4 4 2.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 6 4 8 4 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 13 2 6 6 -1.
+ <_>
+ 13 2 3 6 2.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 7 6 10 14 -1.
+ <_>
+ 12 6 5 7 2.
+ <_>
+ 7 13 5 7 2.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 1 2 18 1 3.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 2 15 7 4 -1.
+ <_>
+ 2 17 7 2 2.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 4 0 9 6 -1.
+ <_>
+ 7 0 3 6 3.
+ <_>
+
+ <_>
+ 11 6 5 6 -1.
+ <_>
+ 11 9 5 3 2.
+ <_>
+
+ <_>
+ 3 6 10 14 -1.
+ <_>
+ 3 6 5 7 2.
+ <_>
+ 8 13 5 7 2.
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 12 4 6 6 2.
+ <_>
+ 6 10 6 6 2.
+ <_>
+
+ <_>
+ 4 6 5 6 -1.
+ <_>
+ 4 9 5 3 2.
+ <_>
+
+ <_>
+ 5 1 14 5 -1.
+ <_>
+ 5 1 7 5 2.
+ <_>
+
+ <_>
+ 9 4 2 16 -1.
+ <_>
+ 9 12 2 8 2.
+ <_>
+
+ <_>
+ 13 12 7 4 -1.
+ <_>
+ 13 14 7 2 2.
+ <_>
+
+ <_>
+ 3 12 5 6 -1.
+ <_>
+ 3 15 5 3 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 1 3 8 4 -1.
+ <_>
+ 5 3 4 4 2.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 3 0 3 13 -1.
+ <_>
+ 4 0 1 13 3.
+ <_>
+
+ <_>
+ 10 10 10 10 -1.
+ <_>
+ 15 10 5 5 2.
+ <_>
+ 10 15 5 5 2.
+ <_>
+
+ <_>
+ 0 6 8 14 -1.
+ <_>
+ 4 6 4 14 2.
+ <_>
+
+ <_>
+ 4 3 12 12 -1.
+ <_>
+ 10 3 6 6 2.
+ <_>
+ 4 9 6 6 2.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 9 6 3 13 -1.
+ <_>
+ 10 6 1 13 3.
+ <_>
+
+ <_>
+ 4 1 10 5 -1.
+ <_>
+ 9 1 5 5 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 3 2 12 6 -1.
+ <_>
+ 3 2 6 3 2.
+ <_>
+ 9 5 6 3 2.
+ <_>
+
+ <_>
+ 2 2 18 4 -1.
+ <_>
+ 11 2 9 2 2.
+ <_>
+ 2 4 9 2 2.
+ <_>
+
+ <_>
+ 3 2 11 6 -1.
+ <_>
+ 3 4 11 2 3.
+ <_>
+
+ <_>
+ 12 0 8 12 -1.
+ <_>
+ 16 0 4 6 2.
+ <_>
+ 12 6 4 6 2.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 10 1 3 5 2.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 0 0 13 3 -1.
+ <_>
+ 0 1 13 1 3.
+ <_>
+
+ <_>
+ 4 5 13 3 -1.
+ <_>
+ 4 6 13 1 3.
+ <_>
+
+ <_>
+ 3 12 7 6 -1.
+ <_>
+ 3 14 7 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 8 1 7 6 -1.
+ <_>
+ 8 3 7 2 3.
+ <_>
+
+ <_>
+ 0 8 12 7 -1.
+ <_>
+ 6 8 6 7 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 10 1 10 2 2.
+ <_>
+ 0 3 10 2 2.
+ <_>
+
+ <_>
+ 0 10 20 3 -1.
+ <_>
+ 0 11 20 1 3.
+ <_>
+
+ <_>
+ 12 1 2 14 -1.
+ <_>
+ 12 1 1 14 2.
+ <_>
+
+ <_>
+ 1 7 18 10 -1.
+ <_>
+ 7 7 6 10 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 14 1 3 14 -1.
+ <_>
+ 15 1 1 14 3.
+ <_>
+
+ <_>
+ 5 8 6 5 -1.
+ <_>
+ 8 8 3 5 2.
+ <_>
+
+ <_>
+ 14 1 3 14 -1.
+ <_>
+ 15 1 1 14 3.
+ <_>
+
+ <_>
+ 3 1 3 14 -1.
+ <_>
+ 4 1 1 14 3.
+ <_>
+
+ <_>
+ 0 16 20 2 -1.
+ <_>
+ 0 17 20 1 2.
+ <_>
+
+ <_>
+ 6 6 4 14 -1.
+ <_>
+ 8 6 2 14 2.
+ <_>
+
+ <_>
+ 9 6 3 13 -1.
+ <_>
+ 10 6 1 13 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 9 3 5 9 -1.
+ <_>
+ 9 6 5 3 3.
+ <_>
+
+ <_>
+ 2 13 9 6 -1.
+ <_>
+ 5 13 3 6 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 1 14 10 6 -1.
+ <_>
+ 1 14 5 3 2.
+ <_>
+ 6 17 5 3 2.
+ <_>
+
+ <_>
+ 11 13 7 6 -1.
+ <_>
+ 11 15 7 2 3.
+ <_>
+
+ <_>
+ 1 8 8 12 -1.
+ <_>
+ 1 8 4 6 2.
+ <_>
+ 5 14 4 6 2.
+ <_>
+
+ <_>
+ 5 7 15 5 -1.
+ <_>
+ 10 7 5 5 3.
+ <_>
+
+ <_>
+ 0 7 15 5 -1.
+ <_>
+ 5 7 5 5 3.
+ <_>
+
+ <_>
+ 12 13 8 6 -1.
+ <_>
+ 12 15 8 2 3.
+ <_>
+
+ <_>
+ 8 10 4 10 -1.
+ <_>
+ 8 15 4 5 2.
+ <_>
+
+ <_>
+ 1 6 19 3 -1.
+ <_>
+ 1 7 19 1 3.
+ <_>
+
+ <_>
+ 7 8 6 9 -1.
+ <_>
+ 7 11 6 3 3.
+ <_>
+
+ <_>
+ 11 2 8 8 -1.
+ <_>
+ 15 2 4 4 2.
+ <_>
+ 11 6 4 4 2.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 9 2 3 13 -1.
+ <_>
+ 10 2 1 13 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 3 2 3 18 -1.
+ <_>
+ 3 8 3 6 3.
+ <_>
+
+ <_>
+ 1 5 18 10 -1.
+ <_>
+ 10 5 9 5 2.
+ <_>
+ 1 10 9 5 2.
+ <_>
+
+ <_>
+ 6 1 2 13 -1.
+ <_>
+ 7 1 1 13 2.
+ <_>
+
+ <_>
+ 11 0 8 6 -1.
+ <_>
+ 11 2 8 2 3.
+ <_>
+
+ <_>
+ 4 0 7 6 -1.
+ <_>
+ 4 2 7 2 3.
+ <_>
+
+ <_>
+ 0 2 10 3 -1.
+ <_>
+ 5 2 5 3 2.
+ <_>
+
+ <_>
+ 1 4 19 4 -1.
+ <_>
+ 1 6 19 2 2.
+ <_>
+
+ <_>
+ 5 7 6 5 -1.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 11 10 5 6 -1.
+ <_>
+ 11 13 5 3 2.
+ <_>
+
+ <_>
+ 7 8 4 12 -1.
+ <_>
+ 7 12 4 4 3.
+ <_>
+
+ <_>
+ 10 1 10 19 -1.
+ <_>
+ 10 1 5 19 2.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 2 7 7 6 -1.
+ <_>
+ 2 9 7 2 3.
+ <_>
+
+ <_>
+ 10 5 10 12 -1.
+ <_>
+ 10 11 10 6 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 5 14 4 4 2.
+ <_>
+
+ <_>
+ 7 5 8 12 -1.
+ <_>
+ 11 5 4 6 2.
+ <_>
+ 7 11 4 6 2.
+ <_>
+
+ <_>
+ 5 5 8 12 -1.
+ <_>
+ 5 5 4 6 2.
+ <_>
+ 9 11 4 6 2.
+ <_>
+
+ <_>
+ 14 1 6 8 -1.
+ <_>
+ 16 1 2 8 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 2 1 2 9 3.
+ <_>
+
+ <_>
+ 1 6 18 4 -1.
+ <_>
+ 7 6 6 4 3.
+ <_>
+
+ <_>
+ 3 12 13 2 -1.
+ <_>
+ 3 13 13 1 2.
+ <_>
+
+ <_>
+ 3 3 14 2 -1.
+ <_>
+ 3 4 14 1 2.
+ <_>
+
+ <_>
+ 2 0 13 6 -1.
+ <_>
+ 2 2 13 2 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 3 8 13 2 -1.
+ <_>
+ 3 9 13 1 2.
+ <_>
+
+ <_>
+ 12 0 4 14 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 1 0 6 12 -1.
+ <_>
+ 4 0 3 12 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 5 1 15 3 -1.
+ <_>
+ 5 2 15 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 1 11 7 6 -1.
+ <_>
+ 1 13 7 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 0 5 20 10 -1.
+ <_>
+ 10 5 10 5 2.
+ <_>
+ 0 10 10 5 2.
+ <_>
+
+ <_>
+ 4 6 4 7 -1.
+ <_>
+ 6 6 2 7 2.
+ <_>
+
+ <_>
+ 4 6 14 6 -1.
+ <_>
+ 11 6 7 3 2.
+ <_>
+ 4 9 7 3 2.
+ <_>
+
+ <_>
+ 5 6 6 8 -1.
+ <_>
+ 5 10 6 4 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 14 10 3 10 2.
+ <_>
+
+ <_>
+ 2 18 13 2 -1.
+ <_>
+ 2 19 13 1 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 14 16 2 2.
+ <_>
+
+ <_>
+ 1 6 10 6 -1.
+ <_>
+ 1 6 5 3 2.
+ <_>
+ 6 9 5 3 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 14 10 3 10 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 3 10 3 10 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 4 17 -1.
+ <_>
+ 2 0 2 17 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 2 4 6 16 -1.
+ <_>
+ 2 4 3 8 2.
+ <_>
+ 5 12 3 8 2.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 10 6 5 4 2.
+ <_>
+ 5 10 5 4 2.
+ <_>
+
+ <_>
+ 4 6 8 8 -1.
+ <_>
+ 4 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 4 2 12 5 -1.
+ <_>
+ 8 2 4 5 3.
+ <_>
+
+ <_>
+ 11 2 2 18 -1.
+ <_>
+ 11 2 1 18 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 0 5 20 5 -1.
+ <_>
+ 10 5 10 5 2.
+ <_>
+
+ <_>
+ 4 4 12 4 -1.
+ <_>
+ 4 6 12 2 2.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 3 15 16 4 -1.
+ <_>
+ 11 15 8 2 2.
+ <_>
+ 3 17 8 2 2.
+ <_>
+
+ <_>
+ 1 15 16 4 -1.
+ <_>
+ 1 15 8 2 2.
+ <_>
+ 9 17 8 2 2.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 6 11 8 9 -1.
+ <_>
+ 6 14 8 3 3.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 4 15 13 3 -1.
+ <_>
+ 4 16 13 1 3.
+ <_>
+
+ <_>
+ 0 10 5 9 -1.
+ <_>
+ 0 13 5 3 3.
+ <_>
+
+ <_>
+ 12 10 8 4 -1.
+ <_>
+ 12 12 8 2 2.
+ <_>
+
+ <_>
+ 0 10 8 4 -1.
+ <_>
+ 0 12 8 2 2.
+ <_>
+
+ <_>
+ 5 1 10 6 -1.
+ <_>
+ 5 3 10 2 3.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 3 6 14 9 -1.
+ <_>
+ 3 9 14 3 3.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 3 0 6 9 -1.
+ <_>
+ 5 0 2 9 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 4 17 -1.
+ <_>
+ 2 0 2 17 2.
+ <_>
+
+ <_>
+ 8 0 12 16 -1.
+ <_>
+ 12 0 4 16 3.
+ <_>
+
+ <_>
+ 0 0 12 16 -1.
+ <_>
+ 4 0 4 16 3.
+ <_>
+
+ <_>
+ 5 6 10 6 -1.
+ <_>
+ 5 9 10 3 2.
+ <_>
+
+ <_>
+ 7 4 2 14 -1.
+ <_>
+ 8 4 1 14 2.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 18 5 2 7 2.
+ <_>
+ 16 12 2 7 2.
+ <_>
+
+ <_>
+ 4 4 6 8 -1.
+ <_>
+ 6 4 2 8 3.
+ <_>
+
+ <_>
+ 5 4 14 3 -1.
+ <_>
+ 5 5 14 1 3.
+ <_>
+
+ <_>
+ 3 4 13 3 -1.
+ <_>
+ 3 5 13 1 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 8 10 10 6 -1.
+ <_>
+ 8 12 10 2 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 13 0 3 19 -1.
+ <_>
+ 14 0 1 19 3.
+ <_>
+
+ <_>
+ 4 0 3 19 -1.
+ <_>
+ 5 0 1 19 3.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 7 7 6 9 -1.
+ <_>
+ 7 10 6 3 3.
+ <_>
+
+ <_>
+ 6 4 4 15 -1.
+ <_>
+ 6 9 4 5 3.
+ <_>
+
+ <_>
+ 14 0 6 7 -1.
+ <_>
+ 16 0 2 7 3.
+ <_>
+
+ <_>
+ 2 4 14 12 -1.
+ <_>
+ 2 4 7 6 2.
+ <_>
+ 9 10 7 6 2.
+ <_>
+
+ <_>
+ 4 15 12 5 -1.
+ <_>
+ 4 15 6 5 2.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 0 6 4 14 -1.
+ <_>
+ 0 6 2 7 2.
+ <_>
+ 2 13 2 7 2.
+ <_>
+
+ <_>
+ 11 14 8 6 -1.
+ <_>
+ 11 16 8 2 3.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 7 1 5 12 -1.
+ <_>
+ 7 7 5 6 2.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 4 10 4 2.
+ <_>
+
+ <_>
+ 0 1 15 12 -1.
+ <_>
+ 0 5 15 4 3.
+ <_>
+
+ <_>
+ 7 3 6 10 -1.
+ <_>
+ 7 8 6 5 2.
+ <_>
+
+ <_>
+ 6 4 4 16 -1.
+ <_>
+ 6 4 2 8 2.
+ <_>
+ 8 12 2 8 2.
+ <_>
+
+ <_>
+ 1 4 18 4 -1.
+ <_>
+ 7 4 6 4 3.
+ <_>
+
+ <_>
+ 0 3 12 6 -1.
+ <_>
+ 0 3 6 3 2.
+ <_>
+ 6 6 6 3 2.
+ <_>
+
+ <_>
+ 12 1 8 10 -1.
+ <_>
+ 16 1 4 5 2.
+ <_>
+ 12 6 4 5 2.
+ <_>
+
+ <_>
+ 0 1 8 10 -1.
+ <_>
+ 0 1 4 5 2.
+ <_>
+ 4 6 4 5 2.
+ <_>
+
+ <_>
+ 6 12 8 8 -1.
+ <_>
+ 10 12 4 4 2.
+ <_>
+ 6 16 4 4 2.
+ <_>
+
+ <_>
+ 5 8 8 12 -1.
+ <_>
+ 5 8 4 6 2.
+ <_>
+ 9 14 4 6 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 3 11 14 6 -1.
+ <_>
+ 3 11 7 3 2.
+ <_>
+ 10 14 7 3 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 11 4 4 12 -1.
+ <_>
+ 11 4 2 12 2.
+ <_>
+
+ <_>
+ 7 4 5 14 -1.
+ <_>
+ 7 11 5 7 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 5 4 4 12 -1.
+ <_>
+ 7 4 2 12 2.
+ <_>
+
+ <_>
+ 4 11 12 7 -1.
+ <_>
+ 4 11 6 7 2.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 5 6 12 6 -1.
+ <_>
+ 11 6 6 3 2.
+ <_>
+ 5 9 6 3 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+ 10 13 7 2 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 4 0 12 10 -1.
+ <_>
+ 4 0 6 5 2.
+ <_>
+ 10 5 6 5 2.
+ <_>
+
+ <_>
+ 8 5 12 15 -1.
+ <_>
+ 8 5 6 15 2.
+ <_>
+
+ <_>
+ 1 12 14 3 -1.
+ <_>
+ 1 13 14 1 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 2 17 16 3 -1.
+ <_>
+ 10 17 8 3 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 7 8 4 9 -1.
+ <_>
+ 9 8 2 9 2.
+ <_>
+
+ <_>
+ 4 3 12 12 -1.
+ <_>
+ 10 3 6 6 2.
+ <_>
+ 4 9 6 6 2.
+ <_>
+
+ <_>
+ 0 0 6 20 -1.
+ <_>
+ 3 0 3 20 2.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 3 13 14 2 -1.
+ <_>
+ 3 14 14 1 2.
+ <_>
+
+ <_>
+ 13 11 7 4 -1.
+ <_>
+ 13 13 7 2 2.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 13 1 6 12 -1.
+ <_>
+ 15 1 2 12 3.
+ <_>
+
+ <_>
+ 1 1 6 12 -1.
+ <_>
+ 3 1 2 12 3.
+ <_>
+
+ <_>
+ 4 8 14 12 -1.
+ <_>
+ 4 12 14 4 3.
+ <_>
+
+ <_>
+ 0 6 6 12 -1.
+ <_>
+ 3 6 3 12 2.
+ <_>
+
+ <_>
+ 13 1 3 13 -1.
+ <_>
+ 14 1 1 13 3.
+ <_>
+
+ <_>
+ 4 1 3 13 -1.
+ <_>
+ 5 1 1 13 3.
+ <_>
+
+ <_>
+ 16 2 3 14 -1.
+ <_>
+ 17 2 1 14 3.
+ <_>
+
+ <_>
+ 1 2 3 14 -1.
+ <_>
+ 2 2 1 14 3.
+ <_>
+
+ <_>
+ 6 9 14 3 -1.
+ <_>
+ 6 10 14 1 3.
+ <_>
+
+ <_>
+ 0 9 14 3 -1.
+ <_>
+ 0 10 14 1 3.
+ <_>
+
+ <_>
+ 4 6 14 6 -1.
+ <_>
+ 11 6 7 3 2.
+ <_>
+ 4 9 7 3 2.
+ <_>
+
+ <_>
+ 2 6 14 6 -1.
+ <_>
+ 2 6 7 3 2.
+ <_>
+ 9 9 7 3 2.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 3 1 10 16 -1.
+ <_>
+ 3 1 5 8 2.
+ <_>
+ 8 9 5 8 2.
+ <_>
+
+ <_>
+ 3 7 14 12 -1.
+ <_>
+ 10 7 7 6 2.
+ <_>
+ 3 13 7 6 2.
+ <_>
+
+ <_>
+ 2 2 13 6 -1.
+ <_>
+ 2 5 13 3 2.
+ <_>
+
+ <_>
+ 14 1 6 6 -1.
+ <_>
+ 14 4 6 3 2.
+ <_>
+
+ <_>
+ 0 1 6 6 -1.
+ <_>
+ 0 4 6 3 2.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 2 0 4 14 -1.
+ <_>
+ 4 0 2 14 2.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 1 8 18 3 -1.
+ <_>
+ 7 8 6 3 3.
+ <_>
+
+ <_>
+ 4 7 13 2 -1.
+ <_>
+ 4 8 13 1 2.
+ <_>
+
+ <_>
+ 2 1 16 6 -1.
+ <_>
+ 2 1 8 3 2.
+ <_>
+ 10 4 8 3 2.
+ <_>
+
+ <_>
+ 9 5 7 9 -1.
+ <_>
+ 9 8 7 3 3.
+ <_>
+
+ <_>
+ 2 9 8 8 -1.
+ <_>
+ 2 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 13 10 7 6 -1.
+ <_>
+ 13 12 7 2 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 1 15 14 2 -1.
+ <_>
+ 1 16 14 1 2.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 7 13 7 6 -1.
+ <_>
+ 7 15 7 2 3.
+ <_>
+
+ <_>
+ 5 5 6 10 -1.
+ <_>
+ 5 5 3 5 2.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 5 4 10 4 -1.
+ <_>
+ 5 6 10 2 2.
+ <_>
+
+ <_>
+ 1 0 18 20 -1.
+ <_>
+ 7 0 6 20 3.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 0 5 9 7 -1.
+ <_>
+ 3 5 3 7 3.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 13 4 4 2.
+ <_>
+
+ <_>
+ 0 3 20 10 -1.
+ <_>
+ 0 8 20 5 2.
+ <_>
+
+ <_>
+ 7 0 6 12 -1.
+ <_>
+ 9 0 2 12 3.
+ <_>
+
+ <_>
+ 3 16 14 4 -1.
+ <_>
+ 3 18 14 2 2.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 13 4 4 2.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 5 13 4 4 2.
+ <_>
+
+ <_>
+ 6 11 13 3 -1.
+ <_>
+ 6 12 13 1 3.
+ <_>
+
+ <_>
+ 0 0 19 6 -1.
+ <_>
+ 0 2 19 2 3.
+ <_>
+
+ <_>
+ 2 3 16 2 -1.
+ <_>
+ 2 4 16 1 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 7 1 3 12 -1.
+ <_>
+ 7 7 3 6 2.
+ <_>
+
+ <_>
+ 12 4 4 10 -1.
+ <_>
+ 12 9 4 5 2.
+ <_>
+
+ <_>
+ 0 2 13 2 -1.
+ <_>
+ 0 3 13 1 2.
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 7 6 4 4 2.
+ <_>
+
+ <_>
+ 5 6 8 4 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 10 11 7 2 2.
+ <_>
+ 3 13 7 2 2.
+ <_>
+
+ <_>
+ 3 10 14 4 -1.
+ <_>
+ 3 10 7 2 2.
+ <_>
+ 10 12 7 2 2.
+ <_>
+
+ <_>
+ 6 6 14 3 -1.
+ <_>
+ 6 7 14 1 3.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 9 3 2 13 -1.
+ <_>
+ 10 3 1 13 2.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 12 12 7 4 -1.
+ <_>
+ 12 14 7 2 2.
+ <_>
+
+ <_>
+ 1 12 7 4 -1.
+ <_>
+ 1 14 7 2 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 1 17 13 3 -1.
+ <_>
+ 1 18 13 1 3.
+ <_>
+
+ <_>
+ 4 0 16 9 -1.
+ <_>
+ 4 0 8 9 2.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 0 3 10 2 2.
+ <_>
+ 10 5 10 2 2.
+ <_>
+
+ <_>
+ 12 13 8 6 -1.
+ <_>
+ 12 15 8 2 3.
+ <_>
+
+ <_>
+ 6 1 2 16 -1.
+ <_>
+ 7 1 1 16 2.
+ <_>
+
+ <_>
+ 10 0 10 19 -1.
+ <_>
+ 10 0 5 19 2.
+ <_>
+
+ <_>
+ 2 0 14 18 -1.
+ <_>
+ 9 0 7 18 2.
+ <_>
+
+ <_>
+ 9 3 5 9 -1.
+ <_>
+ 9 6 5 3 3.
+ <_>
+
+ <_>
+ 0 0 10 19 -1.
+ <_>
+ 5 0 5 19 2.
+ <_>
+
+ <_>
+ 14 0 3 14 -1.
+ <_>
+ 15 0 1 14 3.
+ <_>
+
+ <_>
+ 3 0 3 14 -1.
+ <_>
+ 4 0 1 14 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 0 10 13 3 -1.
+ <_>
+ 0 11 13 1 3.
+ <_>
+
+ <_>
+ 12 11 5 9 -1.
+ <_>
+ 12 14 5 3 3.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 12 5 4 8 -1.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 0 13 8 6 -1.
+ <_>
+ 0 15 8 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 2 5 16 8 -1.
+ <_>
+ 2 5 8 4 2.
+ <_>
+ 10 9 8 4 2.
+ <_>
+
+ <_>
+ 14 3 6 8 -1.
+ <_>
+ 16 3 2 8 3.
+ <_>
+
+ <_>
+ 8 4 3 10 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 9 6 4 8 -1.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 0 4 6 7 -1.
+ <_>
+ 2 4 2 7 3.
+ <_>
+
+ <_>
+ 5 1 10 6 -1.
+ <_>
+ 5 4 10 3 2.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 10 4 8 8 -1.
+ <_>
+ 14 4 4 4 2.
+ <_>
+ 10 8 4 4 2.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 10 4 8 8 -1.
+ <_>
+ 14 4 4 4 2.
+ <_>
+ 10 8 4 4 2.
+ <_>
+
+ <_>
+ 2 4 8 8 -1.
+ <_>
+ 2 4 4 4 2.
+ <_>
+ 6 8 4 4 2.
+ <_>
+
+ <_>
+ 13 0 2 20 -1.
+ <_>
+ 13 0 1 20 2.
+ <_>
+
+ <_>
+ 3 14 7 6 -1.
+ <_>
+ 3 16 7 2 3.
+ <_>
+
+ <_>
+ 2 2 18 4 -1.
+ <_>
+ 8 2 6 4 3.
+ <_>
+
+ <_>
+ 6 0 6 10 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 4 6 16 3 -1.
+ <_>
+ 4 6 8 3 2.
+ <_>
+
+ <_>
+ 0 6 16 3 -1.
+ <_>
+ 8 6 8 3 2.
+ <_>
+
+ <_>
+ 13 0 2 20 -1.
+ <_>
+ 13 0 1 20 2.
+ <_>
+
+ <_>
+ 2 1 16 3 -1.
+ <_>
+ 2 2 16 1 3.
+ <_>
+
+ <_>
+ 13 0 2 20 -1.
+ <_>
+ 13 0 1 20 2.
+ <_>
+
+ <_>
+ 5 0 2 20 -1.
+ <_>
+ 6 0 1 20 2.
+ <_>
+
+ <_>
+ 5 0 15 8 -1.
+ <_>
+ 10 0 5 8 3.
+ <_>
+
+ <_>
+ 0 0 15 8 -1.
+ <_>
+ 5 0 5 8 3.
+ <_>
+
+ <_>
+ 11 3 6 7 -1.
+ <_>
+ 13 3 2 7 3.
+ <_>
+
+ <_>
+ 3 3 6 7 -1.
+ <_>
+ 5 3 2 7 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 8 4 3 13 -1.
+ <_>
+ 9 4 1 13 3.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 3 1 6 10 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 6 9 12 -1.
+ <_>
+ 4 12 9 6 2.
+ <_>
+
+ <_>
+ 4 4 13 3 -1.
+ <_>
+ 4 5 13 1 3.
+ <_>
+
+ <_>
+ 1 7 18 3 -1.
+ <_>
+ 1 8 18 1 3.
+ <_>
+
+ <_>
+ 6 7 13 2 -1.
+ <_>
+ 6 8 13 1 2.
+ <_>
+
+ <_>
+ 6 3 7 16 -1.
+ <_>
+ 6 11 7 8 2.
+ <_>
+
+ <_>
+ 8 11 6 9 -1.
+ <_>
+ 10 11 2 9 3.
+ <_>
+
+ <_>
+ 6 11 6 9 -1.
+ <_>
+ 8 11 2 9 3.
+ <_>
+
+ <_>
+ 10 5 3 13 -1.
+ <_>
+ 11 5 1 13 3.
+ <_>
+
+ <_>
+ 7 4 3 13 -1.
+ <_>
+ 8 4 1 13 3.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 0 14 12 6 -1.
+ <_>
+ 0 14 6 3 2.
+ <_>
+ 6 17 6 3 2.
+ <_>
+
+ <_>
+ 14 13 5 6 -1.
+ <_>
+ 14 16 5 3 2.
+ <_>
+
+ <_>
+ 1 13 5 6 -1.
+ <_>
+ 1 16 5 3 2.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 6 13 1 2.
+ <_>
+
+ <_>
+ 0 10 20 6 -1.
+ <_>
+ 0 10 10 3 2.
+ <_>
+ 10 13 10 3 2.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+ 8 12 2 7 2.
+ <_>
+
+ <_>
+ 6 8 8 8 -1.
+ <_>
+ 6 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 13 10 5 9 -1.
+ <_>
+ 13 13 5 3 3.
+ <_>
+
+ <_>
+ 5 0 10 12 -1.
+ <_>
+ 5 0 5 6 2.
+ <_>
+ 10 6 5 6 2.
+ <_>
+
+ <_>
+ 10 10 6 7 -1.
+ <_>
+ 12 10 2 7 3.
+ <_>
+
+ <_>
+ 2 10 5 9 -1.
+ <_>
+ 2 13 5 3 3.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 0 0 10 2 2.
+ <_>
+
+ <_>
+ 1 0 4 18 -1.
+ <_>
+ 3 0 2 18 2.
+ <_>
+
+ <_>
+ 15 2 5 6 -1.
+ <_>
+ 15 5 5 3 2.
+ <_>
+
+ <_>
+ 2 4 14 6 -1.
+ <_>
+ 2 4 7 3 2.
+ <_>
+ 9 7 7 3 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 3 3 5 12 -1.
+ <_>
+ 3 9 5 6 2.
+ <_>
+
+ <_>
+ 2 4 17 15 -1.
+ <_>
+ 2 9 17 5 3.
+ <_>
+
+ <_>
+ 3 0 13 12 -1.
+ <_>
+ 3 4 13 4 3.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 2 18 18 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 2 0 18 6 -1.
+ <_>
+ 8 0 6 6 3.
+ <_>
+
+ <_>
+ 0 0 18 9 -1.
+ <_>
+ 6 0 6 9 3.
+ <_>
+
+ <_>
+ 10 2 6 7 -1.
+ <_>
+ 12 2 2 7 3.
+ <_>
+
+ <_>
+ 1 6 15 4 -1.
+ <_>
+ 6 6 5 4 3.
+ <_>
+
+ <_>
+ 5 1 12 9 -1.
+ <_>
+ 5 4 12 3 3.
+ <_>
+
+ <_>
+ 6 7 4 12 -1.
+ <_>
+ 6 13 4 6 2.
+ <_>
+
+ <_>
+ 10 6 6 10 -1.
+ <_>
+ 12 6 2 10 3.
+ <_>
+
+ <_>
+ 3 12 9 4 -1.
+ <_>
+ 3 14 9 2 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 4 3 5 9 -1.
+ <_>
+ 4 6 5 3 3.
+ <_>
+
+ <_>
+ 1 7 18 5 -1.
+ <_>
+ 7 7 6 5 3.
+ <_>
+
+ <_>
+ 6 4 6 8 -1.
+ <_>
+ 8 4 2 8 3.
+ <_>
+
+ <_>
+ 10 1 6 8 -1.
+ <_>
+ 12 1 2 8 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 7 0 13 2 -1.
+ <_>
+ 7 1 13 1 2.
+ <_>
+
+ <_>
+ 0 4 18 5 -1.
+ <_>
+ 6 4 6 5 3.
+ <_>
+
+ <_>
+ 10 5 6 11 -1.
+ <_>
+ 12 5 2 11 3.
+ <_>
+
+ <_>
+ 3 5 4 11 -1.
+ <_>
+ 5 5 2 11 2.
+ <_>
+
+ <_>
+ 9 9 9 10 -1.
+ <_>
+ 12 9 3 10 3.
+ <_>
+
+ <_>
+ 2 9 9 10 -1.
+ <_>
+ 5 9 3 10 3.
+ <_>
+
+ <_>
+ 7 7 6 9 -1.
+ <_>
+ 9 7 2 9 3.
+ <_>
+
+ <_>
+ 5 0 6 15 -1.
+ <_>
+ 7 0 2 15 3.
+ <_>
+
+ <_>
+ 6 12 10 6 -1.
+ <_>
+ 11 12 5 3 2.
+ <_>
+ 6 15 5 3 2.
+ <_>
+
+ <_>
+ 0 17 15 3 -1.
+ <_>
+ 5 17 5 3 3.
+ <_>
+
+ <_>
+ 11 10 6 10 -1.
+ <_>
+ 14 10 3 5 2.
+ <_>
+ 11 15 3 5 2.
+ <_>
+
+ <_>
+ 4 12 10 6 -1.
+ <_>
+ 4 12 5 3 2.
+ <_>
+ 9 15 5 3 2.
+ <_>
+
+ <_>
+ 0 0 18 5 -1.
+ <_>
+ 6 0 6 5 3.
+ <_>
+
+ <_>
+ 2 1 18 6 -1.
+ <_>
+ 2 3 18 2 3.
+ <_>
+
+ <_>
+ 2 10 9 6 -1.
+ <_>
+ 2 12 9 2 3.
+ <_>
+
+ <_>
+ 9 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 7 12 6 7 -1.
+ <_>
+ 9 12 2 7 3.
+ <_>
+
+ <_>
+ 4 10 5 6 -1.
+ <_>
+ 4 13 5 3 2.
+ <_>
+
+ <_>
+ 12 2 6 10 -1.
+ <_>
+ 15 2 3 5 2.
+ <_>
+ 12 7 3 5 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 4 6 12 8 -1.
+ <_>
+ 4 10 12 4 2.
+ <_>
+
+ <_>
+ 2 2 6 10 -1.
+ <_>
+ 2 2 3 5 2.
+ <_>
+ 5 7 3 5 2.
+ <_>
+
+ <_>
+ 6 15 14 2 -1.
+ <_>
+ 6 16 14 1 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 6 2 9 5 -1.
+ <_>
+ 9 2 3 5 3.
+ <_>
+
+ <_>
+ 1 14 8 6 -1.
+ <_>
+ 1 16 8 2 3.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 2 8 18 2 -1.
+ <_>
+ 2 9 18 1 2.
+ <_>
+
+ <_>
+ 2 0 14 2 -1.
+ <_>
+ 2 1 14 1 2.
+ <_>
+
+ <_>
+ 11 10 4 7 -1.
+ <_>
+ 11 10 2 7 2.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 8 14 4 6 3.
+ <_>
+
+ <_>
+ 11 10 4 7 -1.
+ <_>
+ 11 10 2 7 2.
+ <_>
+
+ <_>
+ 5 10 4 7 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 9 6 2 14 -1.
+ <_>
+ 9 13 2 7 2.
+ <_>
+
+ <_>
+ 2 17 15 3 -1.
+ <_>
+ 2 18 15 1 3.
+ <_>
+
+ <_>
+ 16 1 4 7 -1.
+ <_>
+ 16 1 2 7 2.
+ <_>
+
+ <_>
+ 5 13 4 7 -1.
+ <_>
+ 7 13 2 7 2.
+ <_>
+
+ <_>
+ 14 1 6 7 -1.
+ <_>
+ 16 1 2 7 3.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 2 1 2 7 3.
+ <_>
+
+ <_>
+ 4 3 13 2 -1.
+ <_>
+ 4 4 13 1 2.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 2 6 14 -1.
+ <_>
+ 2 2 2 14 3.
+ <_>
+
+ <_>
+ 13 0 6 13 -1.
+ <_>
+ 15 0 2 13 3.
+ <_>
+
+ <_>
+ 1 0 6 13 -1.
+ <_>
+ 3 0 2 13 3.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 10 3 10 2 2.
+ <_>
+ 0 5 10 2 2.
+ <_>
+
+ <_>
+ 0 7 12 11 -1.
+ <_>
+ 6 7 6 11 2.
+ <_>
+
+ <_>
+ 7 11 7 6 -1.
+ <_>
+ 7 13 7 2 3.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 10 7 4 12 -1.
+ <_>
+ 10 7 2 12 2.
+ <_>
+
+ <_>
+ 4 7 11 4 -1.
+ <_>
+ 4 9 11 2 2.
+ <_>
+
+ <_>
+ 5 7 10 6 -1.
+ <_>
+ 10 7 5 3 2.
+ <_>
+ 5 10 5 3 2.
+ <_>
+
+ <_>
+ 0 5 18 10 -1.
+ <_>
+ 0 5 9 5 2.
+ <_>
+ 9 10 9 5 2.
+ <_>
+
+ <_>
+ 0 0 20 4 -1.
+ <_>
+ 10 0 10 2 2.
+ <_>
+ 0 2 10 2 2.
+ <_>
+
+ <_>
+ 2 4 13 3 -1.
+ <_>
+ 2 5 13 1 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 2 4 13 2 -1.
+ <_>
+ 2 5 13 1 2.
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 7 1 13 1 3.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 10 6 9 14 -1.
+ <_>
+ 13 6 3 14 3.
+ <_>
+
+ <_>
+ 1 6 9 14 -1.
+ <_>
+ 4 6 3 14 3.
+ <_>
+
+ <_>
+ 8 1 5 10 -1.
+ <_>
+ 8 6 5 5 2.
+ <_>
+
+ <_>
+ 0 3 20 8 -1.
+ <_>
+ 0 7 20 4 2.
+ <_>
+
+ <_>
+ 4 9 14 2 -1.
+ <_>
+ 4 10 14 1 2.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 3 13 14 6 -1.
+ <_>
+ 3 15 14 2 3.
+ <_>
+
+ <_>
+ 6 11 13 9 -1.
+ <_>
+ 6 14 13 3 3.
+ <_>
+
+ <_>
+ 1 11 13 9 -1.
+ <_>
+ 1 14 13 3 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 3 5 12 4 -1.
+ <_>
+ 7 5 4 4 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 6 0 6 4 3.
+ <_>
+
+ <_>
+ 9 1 4 10 -1.
+ <_>
+ 9 6 4 5 2.
+ <_>
+
+ <_>
+ 0 2 13 2 -1.
+ <_>
+ 0 3 13 1 2.
+ <_>
+
+ <_>
+ 7 1 8 8 -1.
+ <_>
+ 11 1 4 4 2.
+ <_>
+ 7 5 4 4 2.
+ <_>
+
+ <_>
+ 5 7 6 12 -1.
+ <_>
+ 5 7 3 6 2.
+ <_>
+ 8 13 3 6 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 0 14 20 3 -1.
+ <_>
+ 0 15 20 1 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 9 5 -1.
+ <_>
+ 6 0 3 5 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 7 6 2 7 3.
+ <_>
+
+ <_>
+ 9 1 3 19 -1.
+ <_>
+ 10 1 1 19 3.
+ <_>
+
+ <_>
+ 0 11 7 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 11 5 6 -1.
+ <_>
+ 0 14 5 3 2.
+ <_>
+
+ <_>
+ 9 2 10 18 -1.
+ <_>
+ 14 2 5 9 2.
+ <_>
+ 9 11 5 9 2.
+ <_>
+
+ <_>
+ 2 16 8 4 -1.
+ <_>
+ 6 16 4 4 2.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 9 4 2 8 3.
+ <_>
+
+ <_>
+ 7 0 2 19 -1.
+ <_>
+ 8 0 1 19 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 9 5 -1.
+ <_>
+ 3 0 3 5 3.
+ <_>
+
+ <_>
+ 18 2 2 18 -1.
+ <_>
+ 18 2 1 18 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 18 2 2 18 -1.
+ <_>
+ 18 2 1 18 2.
+ <_>
+
+ <_>
+ 0 2 2 18 -1.
+ <_>
+ 1 2 1 18 2.
+ <_>
+
+ <_>
+ 7 4 7 15 -1.
+ <_>
+ 7 9 7 5 3.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 7 16 6 3 2.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 17 0 3 16 -1.
+ <_>
+ 18 0 1 16 3.
+ <_>
+
+ <_>
+ 0 4 3 14 -1.
+ <_>
+ 1 4 1 14 3.
+ <_>
+
+ <_>
+ 14 8 6 5 -1.
+ <_>
+ 14 8 3 5 2.
+ <_>
+
+ <_>
+ 0 8 6 5 -1.
+ <_>
+ 3 8 3 5 2.
+ <_>
+
+ <_>
+ 1 13 18 4 -1.
+ <_>
+ 10 13 9 2 2.
+ <_>
+ 1 15 9 2 2.
+ <_>
+
+ <_>
+ 7 0 5 9 -1.
+ <_>
+ 7 3 5 3 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 7 3 3 13 -1.
+ <_>
+ 8 3 1 13 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 10 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 14 8 -1.
+ <_>
+ 3 4 14 4 2.
+ <_>
+
+ <_>
+ 8 1 5 10 -1.
+ <_>
+ 8 6 5 5 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 2 18 15 2 -1.
+ <_>
+ 2 19 15 1 2.
+ <_>
+
+ <_>
+ 8 7 6 7 -1.
+ <_>
+ 10 7 2 7 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 0 7 12 4 -1.
+ <_>
+ 0 9 12 2 2.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 3 16 14 4 -1.
+ <_>
+ 3 16 7 2 2.
+ <_>
+ 10 18 7 2 2.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 9 6 6 12 -1.
+ <_>
+ 9 6 3 12 2.
+ <_>
+
+ <_>
+ 0 8 18 4 -1.
+ <_>
+ 6 8 6 4 3.
+ <_>
+
+ <_>
+ 14 1 6 10 -1.
+ <_>
+ 16 1 2 10 3.
+ <_>
+
+ <_>
+ 6 9 8 10 -1.
+ <_>
+ 6 9 4 5 2.
+ <_>
+ 10 14 4 5 2.
+ <_>
+
+ <_>
+ 14 1 6 10 -1.
+ <_>
+ 16 1 2 10 3.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 1 14 5 6 -1.
+ <_>
+ 1 17 5 3 2.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 1 11 6 6 -1.
+ <_>
+ 4 11 3 6 2.
+ <_>
+
+ <_>
+ 4 7 15 7 -1.
+ <_>
+ 9 7 5 7 3.
+ <_>
+
+ <_>
+ 3 6 12 11 -1.
+ <_>
+ 7 6 4 11 3.
+ <_>
+
+ <_>
+ 8 4 6 7 -1.
+ <_>
+ 10 4 2 7 3.
+ <_>
+
+ <_>
+ 6 4 6 7 -1.
+ <_>
+ 8 4 2 7 3.
+ <_>
+
+ <_>
+ 11 2 2 15 -1.
+ <_>
+ 11 2 1 15 2.
+ <_>
+
+ <_>
+ 0 1 6 10 -1.
+ <_>
+ 2 1 2 10 3.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 15 0 5 3 2.
+ <_>
+ 10 3 5 3 2.
+ <_>
+
+ <_>
+ 1 0 15 3 -1.
+ <_>
+ 1 1 15 1 3.
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 7 1 13 1 3.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 0 5 3 2.
+ <_>
+ 5 3 5 3 2.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 6 2 12 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 9 6 2 12 2.
+ <_>
+
+ <_>
+ 9 0 6 18 -1.
+ <_>
+ 12 0 3 9 2.
+ <_>
+ 9 9 3 9 2.
+ <_>
+
+ <_>
+ 3 9 14 2 -1.
+ <_>
+ 10 9 7 2 2.
+ <_>
+
+ <_>
+ 13 10 7 6 -1.
+ <_>
+ 13 12 7 2 3.
+ <_>
+
+ <_>
+ 6 2 4 12 -1.
+ <_>
+ 6 6 4 4 3.
+ <_>
+
+ <_>
+ 3 1 14 6 -1.
+ <_>
+ 3 1 7 6 2.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 9 4 7 4 -1.
+ <_>
+ 9 6 7 2 2.
+ <_>
+
+ <_>
+ 0 9 15 3 -1.
+ <_>
+ 0 10 15 1 3.
+ <_>
+
+ <_>
+ 7 0 8 8 -1.
+ <_>
+ 11 0 4 4 2.
+ <_>
+ 7 4 4 4 2.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 0 3 10 2 2.
+ <_>
+ 10 5 10 2 2.
+ <_>
+
+ <_>
+ 10 2 10 3 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+
+ <_>
+ 4 4 7 4 -1.
+ <_>
+ 4 6 7 2 2.
+ <_>
+
+ <_>
+ 10 2 10 3 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+
+ <_>
+ 2 11 12 6 -1.
+ <_>
+ 2 11 6 3 2.
+ <_>
+ 8 14 6 3 2.
+ <_>
+
+ <_>
+ 0 0 20 10 -1.
+ <_>
+ 0 5 20 5 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 12 13 8 6 -1.
+ <_>
+ 12 15 8 2 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 12 13 8 6 -1.
+ <_>
+ 12 15 8 2 3.
+ <_>
+
+ <_>
+ 0 13 8 6 -1.
+ <_>
+ 0 15 8 2 3.
+ <_>
+
+ <_>
+ 12 0 8 12 -1.
+ <_>
+ 16 0 4 6 2.
+ <_>
+ 12 6 4 6 2.
+ <_>
+
+ <_>
+ 7 1 6 14 -1.
+ <_>
+ 7 8 6 7 2.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 7 7 6 9 -1.
+ <_>
+ 7 10 6 3 3.
+ <_>
+
+ <_>
+ 5 6 13 3 -1.
+ <_>
+ 5 7 13 1 3.
+ <_>
+
+ <_>
+ 2 4 8 8 -1.
+ <_>
+ 2 4 4 4 2.
+ <_>
+ 6 8 4 4 2.
+ <_>
+
+ <_>
+ 11 4 8 16 -1.
+ <_>
+ 15 4 4 8 2.
+ <_>
+ 11 12 4 8 2.
+ <_>
+
+ <_>
+ 1 4 8 16 -1.
+ <_>
+ 1 4 4 8 2.
+ <_>
+ 5 12 4 8 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 4 0 12 8 -1.
+ <_>
+ 4 4 12 4 2.
+ <_>
+
+ <_>
+ 5 1 8 6 -1.
+ <_>
+ 5 4 8 3 2.
+ <_>
+
+ <_>
+ 5 2 15 2 -1.
+ <_>
+ 5 3 15 1 2.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 10 2 10 3 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+
+ <_>
+ 1 0 10 6 -1.
+ <_>
+ 1 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 10 2 10 3 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+
+ <_>
+ 0 5 7 6 -1.
+ <_>
+ 0 7 7 2 3.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 1 1 18 8 -1.
+ <_>
+ 1 1 9 4 2.
+ <_>
+ 10 5 9 4 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 0 15 14 4 -1.
+ <_>
+ 0 15 7 2 2.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 0 2 4 18 -1.
+ <_>
+ 0 2 2 9 2.
+ <_>
+ 2 11 2 9 2.
+ <_>
+
+ <_>
+ 10 6 6 11 -1.
+ <_>
+ 10 6 3 11 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 10 6 10 2 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 7 2 6 7 -1.
+ <_>
+ 9 2 2 7 3.
+ <_>
+
+ <_>
+ 12 2 8 4 -1.
+ <_>
+ 12 2 4 4 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 13 1 6 6 -1.
+ <_>
+ 13 1 3 6 2.
+ <_>
+
+ <_>
+ 0 3 6 7 -1.
+ <_>
+ 3 3 3 7 2.
+ <_>
+
+ <_>
+ 8 12 10 8 -1.
+ <_>
+ 13 12 5 4 2.
+ <_>
+ 8 16 5 4 2.
+ <_>
+
+ <_>
+ 2 9 12 10 -1.
+ <_>
+ 2 9 6 5 2.
+ <_>
+ 8 14 6 5 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 14 8 4 2.
+ <_>
+
+ <_>
+ 1 1 8 6 -1.
+ <_>
+ 1 3 8 2 3.
+ <_>
+
+ <_>
+ 7 11 13 3 -1.
+ <_>
+ 7 12 13 1 3.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 0 1 9 2 2.
+ <_>
+ 9 3 9 2 2.
+ <_>
+
+ <_>
+ 10 1 6 8 -1.
+ <_>
+ 12 1 2 8 3.
+ <_>
+
+ <_>
+ 4 1 6 8 -1.
+ <_>
+ 6 1 2 8 3.
+ <_>
+
+ <_>
+ 12 5 3 10 -1.
+ <_>
+ 12 10 3 5 2.
+ <_>
+
+ <_>
+ 7 1 6 16 -1.
+ <_>
+ 7 9 6 8 2.
+ <_>
+
+ <_>
+ 14 0 5 8 -1.
+ <_>
+ 14 4 5 4 2.
+ <_>
+
+ <_>
+ 5 5 3 10 -1.
+ <_>
+ 5 10 3 5 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 3 14 7 2 2.
+ <_>
+ 10 16 7 2 2.
+ <_>
+
+ <_>
+ 9 6 3 13 -1.
+ <_>
+ 10 6 1 13 3.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 14 0 5 8 -1.
+ <_>
+ 14 4 5 4 2.
+ <_>
+
+ <_>
+ 1 0 5 8 -1.
+ <_>
+ 1 4 5 4 2.
+ <_>
+
+ <_>
+ 14 13 6 6 -1.
+ <_>
+ 14 16 6 3 2.
+ <_>
+
+ <_>
+ 0 0 19 3 -1.
+ <_>
+ 0 1 19 1 3.
+ <_>
+
+ <_>
+ 10 12 8 8 -1.
+ <_>
+ 14 12 4 4 2.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 2 12 8 8 -1.
+ <_>
+ 2 12 4 4 2.
+ <_>
+ 6 16 4 4 2.
+ <_>
+
+ <_>
+ 3 8 15 3 -1.
+ <_>
+ 3 9 15 1 3.
+ <_>
+
+ <_>
+ 5 2 4 13 -1.
+ <_>
+ 7 2 2 13 2.
+ <_>
+
+ <_>
+ 3 9 17 3 -1.
+ <_>
+ 3 10 17 1 3.
+ <_>
+
+ <_>
+ 2 4 13 3 -1.
+ <_>
+ 2 5 13 1 3.
+ <_>
+
+ <_>
+ 12 0 6 13 -1.
+ <_>
+ 14 0 2 13 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 9 12 9 6 -1.
+ <_>
+ 12 12 3 6 3.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 3 10 14 4 -1.
+ <_>
+ 10 10 7 2 2.
+ <_>
+ 3 12 7 2 2.
+ <_>
+
+ <_>
+ 1 0 8 6 -1.
+ <_>
+ 1 2 8 2 3.
+ <_>
+
+ <_>
+ 6 0 9 5 -1.
+ <_>
+ 9 0 3 5 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 11 13 9 6 -1.
+ <_>
+ 11 15 9 2 3.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 4 1 13 6 -1.
+ <_>
+ 4 4 13 3 2.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 0 5 20 3 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 2 6 15 8 -1.
+ <_>
+ 7 6 5 8 3.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 2 1 18 4 -1.
+ <_>
+ 8 1 6 4 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 7 10 2 3.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 7 0 3 20 -1.
+ <_>
+ 8 0 1 20 3.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 10 0 10 2 2.
+ <_>
+
+ <_>
+ 3 4 14 2 -1.
+ <_>
+ 3 4 7 2 2.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 7 11 13 3 -1.
+ <_>
+ 7 12 13 1 3.
+ <_>
+
+ <_>
+ 0 6 8 14 -1.
+ <_>
+ 4 6 4 14 2.
+ <_>
+
+ <_>
+ 9 13 9 5 -1.
+ <_>
+ 12 13 3 5 3.
+ <_>
+
+ <_>
+ 2 13 9 5 -1.
+ <_>
+ 5 13 3 5 3.
+ <_>
+
+ <_>
+ 10 1 4 7 -1.
+ <_>
+ 10 1 2 7 2.
+ <_>
+
+ <_>
+ 6 1 4 7 -1.
+ <_>
+ 8 1 2 7 2.
+ <_>
+
+ <_>
+ 12 8 6 8 -1.
+ <_>
+ 12 8 3 8 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 11 12 8 8 -1.
+ <_>
+ 15 12 4 4 2.
+ <_>
+ 11 16 4 4 2.
+ <_>
+
+ <_>
+ 1 12 8 8 -1.
+ <_>
+ 1 12 4 4 2.
+ <_>
+ 5 16 4 4 2.
+ <_>
+
+ <_>
+ 12 8 6 5 -1.
+ <_>
+ 12 8 3 5 2.
+ <_>
+
+ <_>
+ 2 8 6 5 -1.
+ <_>
+ 5 8 3 5 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 10 5 6 3 2.
+ <_>
+ 4 8 6 3 2.
+ <_>
+
+ <_>
+ 2 9 10 3 -1.
+ <_>
+ 7 9 5 3 2.
+ <_>
+
+ <_>
+ 10 3 8 8 -1.
+ <_>
+ 14 3 4 4 2.
+ <_>
+ 10 7 4 4 2.
+ <_>
+
+ <_>
+ 2 3 8 8 -1.
+ <_>
+ 2 3 4 4 2.
+ <_>
+ 6 7 4 4 2.
+ <_>
+
+ <_>
+ 2 2 18 3 -1.
+ <_>
+ 8 2 6 3 3.
+ <_>
+
+ <_>
+ 4 1 8 8 -1.
+ <_>
+ 4 1 4 4 2.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 10 11 4 9 -1.
+ <_>
+ 10 11 2 9 2.
+ <_>
+
+ <_>
+ 0 13 15 7 -1.
+ <_>
+ 5 13 5 7 3.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 14 1 3 14 -1.
+ <_>
+ 15 1 1 14 3.
+ <_>
+
+ <_>
+ 0 2 18 3 -1.
+ <_>
+ 6 2 6 3 3.
+ <_>
+
+ <_>
+ 10 2 6 7 -1.
+ <_>
+ 12 2 2 7 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 4 16 10 -1.
+ <_>
+ 0 9 16 5 2.
+ <_>
+
+ <_>
+ 6 15 13 3 -1.
+ <_>
+ 6 16 13 1 3.
+ <_>
+
+ <_>
+ 2 3 13 2 -1.
+ <_>
+ 2 4 13 1 2.
+ <_>
+
+ <_>
+ 5 0 11 8 -1.
+ <_>
+ 5 4 11 4 2.
+ <_>
+
+ <_>
+ 1 6 3 10 -1.
+ <_>
+ 1 11 3 5 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 14 1 4 7 -1.
+ <_>
+ 14 1 2 7 2.
+ <_>
+
+ <_>
+ 1 14 8 6 -1.
+ <_>
+ 1 16 8 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 14 1 4 7 -1.
+ <_>
+ 14 1 2 7 2.
+ <_>
+
+ <_>
+ 2 1 4 7 -1.
+ <_>
+ 4 1 2 7 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 1 14 9 6 -1.
+ <_>
+ 1 16 9 2 3.
+ <_>
+
+ <_>
+ 10 9 6 7 -1.
+ <_>
+ 12 9 2 7 3.
+ <_>
+
+ <_>
+ 4 9 6 7 -1.
+ <_>
+ 6 9 2 7 3.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+ 10 17 5 3 2.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 4 17 12 3 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 1 3 15 4 -1.
+ <_>
+ 6 3 5 4 3.
+ <_>
+
+ <_>
+ 2 9 18 3 -1.
+ <_>
+ 8 9 6 3 3.
+ <_>
+
+ <_>
+ 2 8 12 4 -1.
+ <_>
+ 6 8 4 4 3.
+ <_>
+
+ <_>
+ 12 5 6 11 -1.
+ <_>
+ 12 5 3 11 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 10 0 10 2 2.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 4 8 12 4 -1.
+ <_>
+ 4 10 12 2 2.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 11 8 3 10 -1.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 1 14 10 6 -1.
+ <_>
+ 1 14 5 3 2.
+ <_>
+ 6 17 5 3 2.
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 12 4 6 6 2.
+ <_>
+ 6 10 6 6 2.
+ <_>
+
+ <_>
+ 2 4 12 12 -1.
+ <_>
+ 2 4 6 6 2.
+ <_>
+ 8 10 6 6 2.
+ <_>
+
+ <_>
+ 3 5 14 8 -1.
+ <_>
+ 10 5 7 4 2.
+ <_>
+ 3 9 7 4 2.
+ <_>
+
+ <_>
+ 0 4 6 7 -1.
+ <_>
+ 2 4 2 7 3.
+ <_>
+
+ <_>
+ 7 13 7 6 -1.
+ <_>
+ 7 15 7 2 3.
+ <_>
+
+ <_>
+ 2 13 16 6 -1.
+ <_>
+ 2 15 16 2 3.
+ <_>
+
+ <_>
+ 16 7 3 13 -1.
+ <_>
+ 17 7 1 13 3.
+ <_>
+
+ <_>
+ 1 7 3 13 -1.
+ <_>
+ 2 7 1 13 3.
+ <_>
+
+ <_>
+ 11 10 5 9 -1.
+ <_>
+ 11 13 5 3 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 7 2 13 3 -1.
+ <_>
+ 7 3 13 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 11 10 5 9 -1.
+ <_>
+ 11 13 5 3 3.
+ <_>
+
+ <_>
+ 4 10 5 9 -1.
+ <_>
+ 4 13 5 3 3.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 1 2 18 4 -1.
+ <_>
+ 1 2 9 2 2.
+ <_>
+ 10 4 9 2 2.
+ <_>
+
+ <_>
+ 14 2 6 6 -1.
+ <_>
+ 14 5 6 3 2.
+ <_>
+
+ <_>
+ 0 2 6 6 -1.
+ <_>
+ 0 5 6 3 2.
+ <_>
+
+ <_>
+ 4 0 13 6 -1.
+ <_>
+ 4 3 13 3 2.
+ <_>
+
+ <_>
+ 2 7 13 3 -1.
+ <_>
+ 2 8 13 1 3.
+ <_>
+
+ <_>
+ 3 7 14 2 -1.
+ <_>
+ 3 8 14 1 2.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 11 10 6 8 -1.
+ <_>
+ 11 10 3 8 2.
+ <_>
+
+ <_>
+ 4 0 8 7 -1.
+ <_>
+ 8 0 4 7 2.
+ <_>
+
+ <_>
+ 11 10 6 7 -1.
+ <_>
+ 11 10 3 7 2.
+ <_>
+
+ <_>
+ 6 2 2 18 -1.
+ <_>
+ 7 2 1 18 2.
+ <_>
+
+ <_>
+ 12 6 3 13 -1.
+ <_>
+ 13 6 1 13 3.
+ <_>
+
+ <_>
+ 2 18 14 2 -1.
+ <_>
+ 2 19 14 1 2.
+ <_>
+
+ <_>
+ 11 10 6 7 -1.
+ <_>
+ 11 10 3 7 2.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 12 4 2 14 -1.
+ <_>
+ 12 4 1 14 2.
+ <_>
+
+ <_>
+ 6 4 2 14 -1.
+ <_>
+ 7 4 1 14 2.
+ <_>
+
+ <_>
+ 1 12 18 3 -1.
+ <_>
+ 7 12 6 3 3.
+ <_>
+
+ <_>
+ 2 8 6 9 -1.
+ <_>
+ 5 8 3 9 2.
+ <_>
+
+ <_>
+ 11 5 8 8 -1.
+ <_>
+ 15 5 4 4 2.
+ <_>
+ 11 9 4 4 2.
+ <_>
+
+ <_>
+ 5 5 8 8 -1.
+ <_>
+ 5 5 4 4 2.
+ <_>
+ 9 9 4 4 2.
+ <_>
+
+ <_>
+ 9 0 3 20 -1.
+ <_>
+ 10 0 1 20 3.
+ <_>
+
+ <_>
+ 7 5 3 13 -1.
+ <_>
+ 8 5 1 13 3.
+ <_>
+
+ <_>
+ 0 3 10 6 -1.
+ <_>
+ 0 3 5 3 2.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 5 7 12 4 -1.
+ <_>
+ 9 7 4 4 3.
+ <_>
+
+ <_>
+ 5 4 6 10 -1.
+ <_>
+ 5 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 10 9 4 8 -1.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 3 7 12 5 -1.
+ <_>
+ 7 7 4 5 3.
+ <_>
+
+ <_>
+ 7 2 6 12 -1.
+ <_>
+ 7 6 6 4 3.
+ <_>
+
+ <_>
+ 0 4 6 8 -1.
+ <_>
+ 3 4 3 8 2.
+ <_>
+
+ <_>
+ 4 11 13 3 -1.
+ <_>
+ 4 12 13 1 3.
+ <_>
+
+ <_>
+ 0 9 18 5 -1.
+ <_>
+ 6 9 6 5 3.
+ <_>
+
+ <_>
+ 5 7 15 2 -1.
+ <_>
+ 5 8 15 1 2.
+ <_>
+
+ <_>
+ 2 11 14 4 -1.
+ <_>
+ 2 11 7 2 2.
+ <_>
+ 9 13 7 2 2.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 4 10 12 6 -1.
+ <_>
+ 4 10 6 3 2.
+ <_>
+ 10 13 6 3 2.
+ <_>
+
+ <_>
+ 14 8 6 10 -1.
+ <_>
+ 14 8 3 10 2.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 0 3 18 1 2.
+ <_>
+
+ <_>
+ 14 1 6 5 -1.
+ <_>
+ 14 1 3 5 2.
+ <_>
+
+ <_>
+ 3 8 13 2 -1.
+ <_>
+ 3 9 13 1 2.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 1 6 5 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+
+ <_>
+ 7 1 8 8 -1.
+ <_>
+ 11 1 4 4 2.
+ <_>
+ 7 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 15 4 4 14 -1.
+ <_>
+ 17 4 2 7 2.
+ <_>
+ 15 11 2 7 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 15 4 4 14 -1.
+ <_>
+ 17 4 2 7 2.
+ <_>
+ 15 11 2 7 2.
+ <_>
+
+ <_>
+ 1 2 4 18 -1.
+ <_>
+ 1 2 2 9 2.
+ <_>
+ 3 11 2 9 2.
+ <_>
+
+ <_>
+ 3 11 16 9 -1.
+ <_>
+ 3 14 16 3 3.
+ <_>
+
+ <_>
+ 0 0 17 3 -1.
+ <_>
+ 0 1 17 1 3.
+ <_>
+
+ <_>
+ 9 5 9 15 -1.
+ <_>
+ 9 10 9 5 3.
+ <_>
+
+ <_>
+ 0 7 7 9 -1.
+ <_>
+ 0 10 7 3 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 10 1 6 7 -1.
+ <_>
+ 12 1 2 7 3.
+ <_>
+
+ <_>
+ 7 4 5 16 -1.
+ <_>
+ 7 12 5 8 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 4 3 6 17 -1.
+ <_>
+ 6 3 2 17 3.
+ <_>
+
+ <_>
+ 2 0 18 20 -1.
+ <_>
+ 8 0 6 20 3.
+ <_>
+
+ <_>
+ 5 12 6 6 -1.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 9 4 5 16 -1.
+ <_>
+ 9 12 5 8 2.
+ <_>
+
+ <_>
+ 0 7 6 9 -1.
+ <_>
+ 3 7 3 9 2.
+ <_>
+
+ <_>
+ 15 7 5 9 -1.
+ <_>
+ 15 10 5 3 3.
+ <_>
+
+ <_>
+ 5 14 10 6 -1.
+ <_>
+ 5 16 10 2 3.
+ <_>
+
+ <_>
+ 2 14 17 6 -1.
+ <_>
+ 2 16 17 2 3.
+ <_>
+
+ <_>
+ 3 2 14 6 -1.
+ <_>
+ 3 4 14 2 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 0 4 15 -1.
+ <_>
+ 2 0 2 15 2.
+ <_>
+
+ <_>
+ 1 4 18 10 -1.
+ <_>
+ 10 4 9 5 2.
+ <_>
+ 1 9 9 5 2.
+ <_>
+
+ <_>
+ 0 1 2 13 -1.
+ <_>
+ 1 1 1 13 2.
+ <_>
+
+ <_>
+ 13 3 3 12 -1.
+ <_>
+ 13 9 3 6 2.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 0 2 10 2 2.
+ <_>
+ 10 4 10 2 2.
+ <_>
+
+ <_>
+ 7 9 6 7 -1.
+ <_>
+ 9 9 2 7 3.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 5 8 4 12 -1.
+ <_>
+ 7 8 2 12 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 14 -1.
+ <_>
+ 10 0 3 7 2.
+ <_>
+ 7 7 3 7 2.
+ <_>
+
+ <_>
+ 5 0 8 8 -1.
+ <_>
+ 5 4 8 4 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 14 8 -1.
+ <_>
+ 3 4 14 4 2.
+ <_>
+
+ <_>
+ 9 1 5 10 -1.
+ <_>
+ 9 6 5 5 2.
+ <_>
+
+ <_>
+ 7 0 2 14 -1.
+ <_>
+ 8 0 1 14 2.
+ <_>
+
+ <_>
+ 2 15 18 5 -1.
+ <_>
+ 8 15 6 5 3.
+ <_>
+
+ <_>
+ 1 9 10 6 -1.
+ <_>
+ 1 9 5 3 2.
+ <_>
+ 6 12 5 3 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 0 1 6 11 -1.
+ <_>
+ 2 1 2 11 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 7 11 7 6 -1.
+ <_>
+ 7 13 7 2 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 8 4 4 8 -1.
+ <_>
+ 10 4 2 8 2.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 11 9 3 10 -1.
+ <_>
+ 11 14 3 5 2.
+ <_>
+
+ <_>
+ 6 9 3 10 -1.
+ <_>
+ 6 14 3 5 2.
+ <_>
+
+ <_>
+ 2 2 18 9 -1.
+ <_>
+ 8 2 6 9 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 2 15 18 5 -1.
+ <_>
+ 8 15 6 5 3.
+ <_>
+
+ <_>
+ 0 15 18 5 -1.
+ <_>
+ 6 15 6 5 3.
+ <_>
+
+ <_>
+ 12 0 8 9 -1.
+ <_>
+ 12 3 8 3 3.
+ <_>
+
+ <_>
+ 7 12 6 8 -1.
+ <_>
+ 9 12 2 8 3.
+ <_>
+
+ <_>
+ 13 0 6 14 -1.
+ <_>
+ 15 0 2 14 3.
+ <_>
+
+ <_>
+ 1 0 6 14 -1.
+ <_>
+ 3 0 2 14 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 10 7 9 13 -1.
+ <_>
+ 13 7 3 13 3.
+ <_>
+
+ <_>
+ 1 7 9 13 -1.
+ <_>
+ 4 7 3 13 3.
+ <_>
+
+ <_>
+ 8 15 12 5 -1.
+ <_>
+ 12 15 4 5 3.
+ <_>
+
+ <_>
+ 3 14 14 6 -1.
+ <_>
+ 10 14 7 6 2.
+ <_>
+
+ <_>
+ 5 2 15 3 -1.
+ <_>
+ 5 3 15 1 3.
+ <_>
+
+ <_>
+ 5 3 10 6 -1.
+ <_>
+ 5 5 10 2 3.
+ <_>
+
+ <_>
+ 7 4 7 8 -1.
+ <_>
+ 7 8 7 4 2.
+ <_>
+
+ <_>
+ 0 0 8 9 -1.
+ <_>
+ 0 3 8 3 3.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 7 3 13 3 -1.
+ <_>
+ 7 4 13 1 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 4 1 6 7 -1.
+ <_>
+ 6 1 2 7 3.
+ <_>
+
+ <_>
+ 8 6 5 9 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 0 8 12 12 -1.
+ <_>
+ 4 8 4 12 3.
+ <_>
+
+ <_>
+ 9 0 9 5 -1.
+ <_>
+ 12 0 3 5 3.
+ <_>
+
+ <_>
+ 2 0 9 5 -1.
+ <_>
+ 5 0 3 5 3.
+ <_>
+
+ <_>
+ 6 4 10 14 -1.
+ <_>
+ 11 4 5 7 2.
+ <_>
+ 6 11 5 7 2.
+ <_>
+
+ <_>
+ 4 4 10 14 -1.
+ <_>
+ 4 4 5 7 2.
+ <_>
+ 9 11 5 7 2.
+ <_>
+
+ <_>
+ 13 9 6 5 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+
+ <_>
+ 3 8 13 3 -1.
+ <_>
+ 3 9 13 1 3.
+ <_>
+
+ <_>
+ 5 16 14 4 -1.
+ <_>
+ 12 16 7 2 2.
+ <_>
+ 5 18 7 2 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 11 1 5 12 -1.
+ <_>
+ 11 7 5 6 2.
+ <_>
+
+ <_>
+ 4 1 5 12 -1.
+ <_>
+ 4 7 5 6 2.
+ <_>
+
+ <_>
+ 8 6 4 8 -1.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 1 16 14 4 -1.
+ <_>
+ 1 16 7 2 2.
+ <_>
+ 8 18 7 2 2.
+ <_>
+
+ <_>
+ 5 14 13 2 -1.
+ <_>
+ 5 15 13 1 2.
+ <_>
+
+ <_>
+ 0 9 5 9 -1.
+ <_>
+ 0 12 5 3 3.
+ <_>
+
+ <_>
+ 13 10 6 5 -1.
+ <_>
+ 13 10 3 5 2.
+ <_>
+
+ <_>
+ 1 10 6 5 -1.
+ <_>
+ 4 10 3 5 2.
+ <_>
+
+ <_>
+ 15 7 4 13 -1.
+ <_>
+ 15 7 2 13 2.
+ <_>
+
+ <_>
+ 1 7 4 13 -1.
+ <_>
+ 3 7 2 13 2.
+ <_>
+
+ <_>
+ 5 10 10 4 -1.
+ <_>
+ 5 12 10 2 2.
+ <_>
+
+ <_>
+ 0 2 15 3 -1.
+ <_>
+ 0 3 15 1 3.
+ <_>
+
+ <_>
+ 7 0 11 6 -1.
+ <_>
+ 7 2 11 2 3.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 12 20 4 -1.
+ <_>
+ 0 12 10 2 2.
+ <_>
+ 10 14 10 2 2.
+ <_>
+
+ <_>
+ 4 1 12 5 -1.
+ <_>
+ 8 1 4 5 3.
+ <_>
+
+ <_>
+ 6 1 2 14 -1.
+ <_>
+ 7 1 1 14 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 6 4 6 8 -1.
+ <_>
+ 8 4 2 8 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 6 3 4 7 -1.
+ <_>
+ 8 3 2 7 2.
+ <_>
+
+ <_>
+ 15 3 5 9 -1.
+ <_>
+ 15 6 5 3 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 2 16 15 4 -1.
+ <_>
+ 2 18 15 2 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 2 8 15 5 -1.
+ <_>
+ 7 8 5 5 3.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 1 4 4 16 -1.
+ <_>
+ 1 4 2 8 2.
+ <_>
+ 3 12 2 8 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 6 4 6 10 -1.
+ <_>
+ 6 4 3 5 2.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 1 9 19 3 -1.
+ <_>
+ 1 10 19 1 3.
+ <_>
+
+ <_>
+ 3 0 14 12 -1.
+ <_>
+ 3 4 14 4 3.
+ <_>
+
+ <_>
+ 6 3 8 4 -1.
+ <_>
+ 6 5 8 2 2.
+ <_>
+
+ <_>
+ 0 5 15 3 -1.
+ <_>
+ 0 6 15 1 3.
+ <_>
+
+ <_>
+ 12 0 2 13 -1.
+ <_>
+ 12 0 1 13 2.
+ <_>
+
+ <_>
+ 8 4 4 14 -1.
+ <_>
+ 10 4 2 14 2.
+ <_>
+
+ <_>
+ 7 0 10 6 -1.
+ <_>
+ 12 0 5 3 2.
+ <_>
+ 7 3 5 3 2.
+ <_>
+
+ <_>
+ 1 6 6 7 -1.
+ <_>
+ 3 6 2 7 3.
+ <_>
+
+ <_>
+ 17 2 3 13 -1.
+ <_>
+ 18 2 1 13 3.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 6 0 10 6 -1.
+ <_>
+ 11 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 4 0 10 6 -1.
+ <_>
+ 4 0 5 3 2.
+ <_>
+ 9 3 5 3 2.
+ <_>
+
+ <_>
+ 6 1 14 2 -1.
+ <_>
+ 6 2 14 1 2.
+ <_>
+
+ <_>
+ 3 0 12 18 -1.
+ <_>
+ 3 9 12 9 2.
+ <_>
+
+ <_>
+ 13 7 6 10 -1.
+ <_>
+ 13 12 6 5 2.
+ <_>
+
+ <_>
+ 1 7 6 10 -1.
+ <_>
+ 1 12 6 5 2.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 10 5 6 6 2.
+ <_>
+ 4 11 6 6 2.
+ <_>
+
+ <_>
+ 7 4 6 5 -1.
+ <_>
+ 10 4 3 5 2.
+ <_>
+
+ <_>
+ 4 8 15 4 -1.
+ <_>
+ 9 8 5 4 3.
+ <_>
+
+ <_>
+ 4 9 12 11 -1.
+ <_>
+ 10 9 6 11 2.
+ <_>
+
+ <_>
+ 7 6 8 10 -1.
+ <_>
+ 11 6 4 5 2.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 4 7 6 6 -1.
+ <_>
+ 4 10 6 3 2.
+ <_>
+
+ <_>
+ 11 10 9 6 -1.
+ <_>
+ 11 12 9 2 3.
+ <_>
+
+ <_>
+ 6 4 7 6 -1.
+ <_>
+ 6 6 7 2 3.
+ <_>
+
+ <_>
+ 9 3 2 16 -1.
+ <_>
+ 9 11 2 8 2.
+ <_>
+
+ <_>
+ 3 2 9 16 -1.
+ <_>
+ 3 10 9 8 2.
+ <_>
+
+ <_>
+ 5 0 10 10 -1.
+ <_>
+ 5 5 10 5 2.
+ <_>
+
+ <_>
+ 5 1 6 10 -1.
+ <_>
+ 5 6 6 5 2.
+ <_>
+
+ <_>
+ 13 3 3 12 -1.
+ <_>
+ 13 9 3 6 2.
+ <_>
+
+ <_>
+ 0 10 18 6 -1.
+ <_>
+ 0 12 18 2 3.
+ <_>
+
+ <_>
+ 6 15 14 2 -1.
+ <_>
+ 6 16 14 1 2.
+ <_>
+
+ <_>
+ 6 7 7 4 -1.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 6 5 11 8 -1.
+ <_>
+ 6 9 11 4 2.
+ <_>
+
+ <_>
+ 0 8 8 12 -1.
+ <_>
+ 0 8 4 6 2.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 8 6 5 9 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 2 6 4 14 -1.
+ <_>
+ 2 6 2 7 2.
+ <_>
+ 4 13 2 7 2.
+ <_>
+
+ <_>
+ 6 10 9 6 -1.
+ <_>
+ 9 10 3 6 3.
+ <_>
+
+ <_>
+ 2 5 4 8 -1.
+ <_>
+ 2 9 4 4 2.
+ <_>
+
+ <_>
+ 9 4 8 12 -1.
+ <_>
+ 13 4 4 6 2.
+ <_>
+ 9 10 4 6 2.
+ <_>
+
+ <_>
+ 3 4 8 12 -1.
+ <_>
+ 3 4 4 6 2.
+ <_>
+ 7 10 4 6 2.
+ <_>
+
+ <_>
+ 9 8 10 8 -1.
+ <_>
+ 14 8 5 4 2.
+ <_>
+ 9 12 5 4 2.
+ <_>
+
+ <_>
+ 2 18 15 2 -1.
+ <_>
+ 2 19 15 1 2.
+ <_>
+
+ <_>
+ 10 11 5 9 -1.
+ <_>
+ 10 14 5 3 3.
+ <_>
+
+ <_>
+ 0 11 16 4 -1.
+ <_>
+ 8 11 8 4 2.
+ <_>
+
+ <_>
+ 13 4 3 14 -1.
+ <_>
+ 14 4 1 14 3.
+ <_>
+
+ <_>
+ 0 11 18 6 -1.
+ <_>
+ 9 11 9 6 2.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 8 2 2 8 2.
+ <_>
+
+ <_>
+ 3 2 12 6 -1.
+ <_>
+ 3 2 6 3 2.
+ <_>
+ 9 5 6 3 2.
+ <_>
+
+ <_>
+ 12 10 8 4 -1.
+ <_>
+ 12 12 8 2 2.
+ <_>
+
+ <_>
+ 0 10 8 4 -1.
+ <_>
+ 0 12 8 2 2.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 2 3 7 4 -1.
+ <_>
+ 2 5 7 2 2.
+ <_>
+
+ <_>
+ 14 13 4 7 -1.
+ <_>
+ 14 13 2 7 2.
+ <_>
+
+ <_>
+ 3 3 3 15 -1.
+ <_>
+ 4 3 1 15 3.
+ <_>
+
+ <_>
+ 2 0 18 7 -1.
+ <_>
+ 8 0 6 7 3.
+ <_>
+
+ <_>
+ 3 6 5 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+
+ <_>
+ 10 2 10 3 -1.
+ <_>
+ 10 2 5 3 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 8 4 4 14 -1.
+ <_>
+ 8 11 4 7 2.
+ <_>
+
+ <_>
+ 2 16 8 4 -1.
+ <_>
+ 6 16 4 4 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 10 3 10 3 -1.
+ <_>
+ 10 3 5 3 2.
+ <_>
+
+ <_>
+ 5 6 5 8 -1.
+ <_>
+ 5 10 5 4 2.
+ <_>
+
+ <_>
+ 13 1 6 6 -1.
+ <_>
+ 13 1 3 6 2.
+ <_>
+
+ <_>
+ 1 1 6 6 -1.
+ <_>
+ 4 1 3 6 2.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 4 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 12 10 7 4 -1.
+ <_>
+ 12 12 7 2 2.
+ <_>
+
+ <_>
+ 3 14 7 6 -1.
+ <_>
+ 3 17 7 3 2.
+ <_>
+
+ <_>
+ 2 1 16 3 -1.
+ <_>
+ 2 2 16 1 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 12 13 2 -1.
+ <_>
+ 7 13 13 1 2.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 0 10 8 4 -1.
+ <_>
+ 0 12 8 2 2.
+ <_>
+
+ <_>
+ 2 6 16 8 -1.
+ <_>
+ 10 6 8 4 2.
+ <_>
+ 2 10 8 4 2.
+ <_>
+
+ <_>
+ 2 10 6 7 -1.
+ <_>
+ 4 10 2 7 3.
+ <_>
+
+ <_>
+ 6 14 13 2 -1.
+ <_>
+ 6 15 13 1 2.
+ <_>
+
+ <_>
+ 1 11 18 6 -1.
+ <_>
+ 1 11 9 3 2.
+ <_>
+ 10 14 9 3 2.
+ <_>
+
+ <_>
+ 10 9 5 10 -1.
+ <_>
+ 10 14 5 5 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+ 10 15 3 5 2.
+ <_>
+
+ <_>
+ 6 2 9 12 -1.
+ <_>
+ 6 6 9 4 3.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 6 7 6 5 -1.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 3 3 13 2 -1.
+ <_>
+ 3 4 13 1 2.
+ <_>
+
+ <_>
+ 14 3 6 13 -1.
+ <_>
+ 16 3 2 13 3.
+ <_>
+
+ <_>
+ 0 3 6 13 -1.
+ <_>
+ 2 3 2 13 3.
+ <_>
+
+ <_>
+ 9 9 6 10 -1.
+ <_>
+ 12 9 3 5 2.
+ <_>
+ 9 14 3 5 2.
+ <_>
+
+ <_>
+ 1 11 5 9 -1.
+ <_>
+ 1 14 5 3 3.
+ <_>
+
+ <_>
+ 12 8 8 12 -1.
+ <_>
+ 16 8 4 6 2.
+ <_>
+ 12 14 4 6 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 4 9 12 8 -1.
+ <_>
+ 10 9 6 4 2.
+ <_>
+ 4 13 6 4 2.
+ <_>
+
+ <_>
+ 4 2 6 8 -1.
+ <_>
+ 6 2 2 8 3.
+ <_>
+
+ <_>
+ 8 2 4 10 -1.
+ <_>
+ 8 2 2 10 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 15 2 4 18 -1.
+ <_>
+ 17 2 2 9 2.
+ <_>
+ 15 11 2 9 2.
+ <_>
+
+ <_>
+ 0 0 20 20 -1.
+ <_>
+ 0 0 10 10 2.
+ <_>
+ 10 10 10 10 2.
+ <_>
+
+ <_>
+ 5 6 14 3 -1.
+ <_>
+ 5 6 7 3 2.
+ <_>
+
+ <_>
+ 3 7 12 4 -1.
+ <_>
+ 7 7 4 4 3.
+ <_>
+
+ <_>
+ 11 6 6 5 -1.
+ <_>
+ 11 6 3 5 2.
+ <_>
+
+ <_>
+ 3 6 6 5 -1.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 6 13 14 3 -1.
+ <_>
+ 6 14 14 1 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 11 12 8 8 -1.
+ <_>
+ 15 12 4 4 2.
+ <_>
+ 11 16 4 4 2.
+ <_>
+
+ <_>
+ 1 12 8 8 -1.
+ <_>
+ 1 12 4 4 2.
+ <_>
+ 5 16 4 4 2.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 1 6 14 3 -1.
+ <_>
+ 8 6 7 3 2.
+ <_>
+
+ <_>
+ 10 1 10 19 -1.
+ <_>
+ 10 1 5 19 2.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 6 0 2 8 3.
+ <_>
+
+ <_>
+ 1 11 18 6 -1.
+ <_>
+ 1 14 18 3 2.
+ <_>
+
+ <_>
+ 5 11 5 6 -1.
+ <_>
+ 5 14 5 3 2.
+ <_>
+
+ <_>
+ 9 12 4 8 -1.
+ <_>
+ 9 16 4 4 2.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 1 11 18 3 -1.
+ <_>
+ 1 12 18 1 3.
+ <_>
+
+ <_>
+ 2 1 16 2 -1.
+ <_>
+ 2 2 16 1 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 9 19 3 -1.
+ <_>
+ 0 10 19 1 3.
+ <_>
+
+ <_>
+ 9 7 7 4 -1.
+ <_>
+ 9 9 7 2 2.
+ <_>
+
+ <_>
+ 0 14 20 6 -1.
+ <_>
+ 0 16 20 2 3.
+ <_>
+
+ <_>
+ 8 7 12 6 -1.
+ <_>
+ 8 7 6 6 2.
+ <_>
+
+ <_>
+ 0 7 12 6 -1.
+ <_>
+ 6 7 6 6 2.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 0 0 7 12 -1.
+ <_>
+ 0 6 7 6 2.
+ <_>
+
+ <_>
+ 13 7 3 13 -1.
+ <_>
+ 14 7 1 13 3.
+ <_>
+
+ <_>
+ 3 1 13 6 -1.
+ <_>
+ 3 3 13 2 3.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 0 4 8 -1.
+ <_>
+ 7 0 2 8 2.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 5 1 3 14 -1.
+ <_>
+ 6 1 1 14 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 1 2 18 6 -1.
+ <_>
+ 7 2 6 6 3.
+ <_>
+
+ <_>
+ 4 7 7 4 -1.
+ <_>
+ 4 9 7 2 2.
+ <_>
+
+ <_>
+ 9 4 10 16 -1.
+ <_>
+ 9 12 10 8 2.
+ <_>
+
+ <_>
+ 1 3 16 12 -1.
+ <_>
+ 1 3 8 6 2.
+ <_>
+ 9 9 8 6 2.
+ <_>
+
+ <_>
+ 11 3 2 16 -1.
+ <_>
+ 11 11 2 8 2.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 0 9 13 3 -1.
+ <_>
+ 0 10 13 1 3.
+ <_>
+
+ <_>
+ 7 7 9 6 -1.
+ <_>
+ 7 9 9 2 3.
+ <_>
+
+ <_>
+ 4 5 6 8 -1.
+ <_>
+ 6 5 2 8 3.
+ <_>
+
+ <_>
+ 9 4 3 10 -1.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 8 4 4 12 -1.
+ <_>
+ 8 8 4 4 3.
+ <_>
+
+ <_>
+ 4 5 15 3 -1.
+ <_>
+ 4 6 15 1 3.
+ <_>
+
+ <_>
+ 2 4 9 4 -1.
+ <_>
+ 2 6 9 2 2.
+ <_>
+
+ <_>
+ 8 0 8 10 -1.
+ <_>
+ 8 5 8 5 2.
+ <_>
+
+ <_>
+ 8 6 3 10 -1.
+ <_>
+ 8 11 3 5 2.
+ <_>
+
+ <_>
+ 5 7 11 8 -1.
+ <_>
+ 5 11 11 4 2.
+ <_>
+
+ <_>
+ 1 12 6 6 -1.
+ <_>
+ 1 15 6 3 2.
+ <_>
+
+ <_>
+ 14 2 5 18 -1.
+ <_>
+ 14 8 5 6 3.
+ <_>
+
+ <_>
+ 1 2 5 18 -1.
+ <_>
+ 1 8 5 6 3.
+ <_>
+
+ <_>
+ 13 7 3 13 -1.
+ <_>
+ 14 7 1 13 3.
+ <_>
+
+ <_>
+ 4 7 3 13 -1.
+ <_>
+ 5 7 1 13 3.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 7 20 1 2.
+ <_>
+
+ <_>
+ 2 1 16 4 -1.
+ <_>
+ 2 1 8 2 2.
+ <_>
+ 10 3 8 2 2.
+ <_>
+
+ <_>
+ 6 1 10 6 -1.
+ <_>
+ 11 1 5 3 2.
+ <_>
+ 6 4 5 3 2.
+ <_>
+
+ <_>
+ 0 5 8 15 -1.
+ <_>
+ 4 5 4 15 2.
+ <_>
+
+ <_>
+ 4 13 12 6 -1.
+ <_>
+ 4 13 6 6 2.
+ <_>
+
+ <_>
+ 7 0 6 14 -1.
+ <_>
+ 7 0 3 7 2.
+ <_>
+ 10 7 3 7 2.
+ <_>
+
+ <_>
+ 1 10 18 10 -1.
+ <_>
+ 7 10 6 10 3.
+ <_>
+
+ <_>
+ 0 2 13 2 -1.
+ <_>
+ 0 3 13 1 2.
+ <_>
+
+ <_>
+ 0 0 20 15 -1.
+ <_>
+ 0 5 20 5 3.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 3 12 3 2.
+ <_>
+
+ <_>
+ 6 1 8 4 -1.
+ <_>
+ 6 3 8 2 2.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 0 0 15 7 -1.
+ <_>
+ 5 0 5 7 3.
+ <_>
+
+ <_>
+ 10 0 10 8 -1.
+ <_>
+ 10 0 5 8 2.
+ <_>
+
+ <_>
+ 0 0 10 8 -1.
+ <_>
+ 5 0 5 8 2.
+ <_>
+
+ <_>
+ 5 6 12 4 -1.
+ <_>
+ 5 6 6 4 2.
+ <_>
+
+ <_>
+ 3 6 12 4 -1.
+ <_>
+ 9 6 6 4 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 2 0 15 9 -1.
+ <_>
+ 7 0 5 9 3.
+ <_>
+
+ <_>
+ 6 14 13 2 -1.
+ <_>
+ 6 15 13 1 2.
+ <_>
+
+ <_>
+ 4 0 12 8 -1.
+ <_>
+ 8 0 4 8 3.
+ <_>
+
+ <_>
+ 12 1 4 14 -1.
+ <_>
+ 14 1 2 7 2.
+ <_>
+ 12 8 2 7 2.
+ <_>
+
+ <_>
+ 0 5 18 3 -1.
+ <_>
+ 6 5 6 3 3.
+ <_>
+
+ <_>
+ 7 1 7 6 -1.
+ <_>
+ 7 4 7 3 2.
+ <_>
+
+ <_>
+ 6 6 5 14 -1.
+ <_>
+ 6 13 5 7 2.
+ <_>
+
+ <_>
+ 4 7 15 5 -1.
+ <_>
+ 9 7 5 5 3.
+ <_>
+
+ <_>
+ 1 7 15 5 -1.
+ <_>
+ 6 7 5 5 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 7 6 4 7 -1.
+ <_>
+ 9 6 2 7 2.
+ <_>
+
+ <_>
+ 7 1 10 6 -1.
+ <_>
+ 12 1 5 3 2.
+ <_>
+ 7 4 5 3 2.
+ <_>
+
+ <_>
+ 2 8 13 2 -1.
+ <_>
+ 2 9 13 1 2.
+ <_>
+
+ <_>
+ 1 2 18 4 -1.
+ <_>
+ 10 2 9 2 2.
+ <_>
+ 1 4 9 2 2.
+ <_>
+
+ <_>
+ 5 8 9 5 -1.
+ <_>
+ 8 8 3 5 3.
+ <_>
+
+ <_>
+ 15 2 4 18 -1.
+ <_>
+ 17 2 2 9 2.
+ <_>
+ 15 11 2 9 2.
+ <_>
+
+ <_>
+ 1 2 4 18 -1.
+ <_>
+ 1 2 2 9 2.
+ <_>
+ 3 11 2 9 2.
+ <_>
+
+ <_>
+ 10 7 10 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+ 10 10 5 3 2.
+ <_>
+
+ <_>
+ 1 7 17 6 -1.
+ <_>
+ 1 9 17 2 3.
+ <_>
+
+ <_>
+ 7 6 7 4 -1.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 1 8 10 6 -1.
+ <_>
+ 1 8 5 3 2.
+ <_>
+ 6 11 5 3 2.
+ <_>
+
+ <_>
+ 10 7 10 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+ 10 10 5 3 2.
+ <_>
+
+ <_>
+ 0 7 10 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+ 5 10 5 3 2.
+ <_>
+
+ <_>
+ 8 1 12 19 -1.
+ <_>
+ 8 1 6 19 2.
+ <_>
+
+ <_>
+ 0 1 12 19 -1.
+ <_>
+ 6 1 6 19 2.
+ <_>
+
+ <_>
+ 5 1 12 13 -1.
+ <_>
+ 5 1 6 13 2.
+ <_>
+
+ <_>
+ 5 1 9 5 -1.
+ <_>
+ 8 1 3 5 3.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+
+ <_>
+ 0 12 13 3 -1.
+ <_>
+ 0 13 13 1 3.
+ <_>
+
+ <_>
+ 10 0 4 16 -1.
+ <_>
+ 10 0 2 16 2.
+ <_>
+
+ <_>
+ 4 12 12 5 -1.
+ <_>
+ 8 12 4 5 3.
+ <_>
+
+ <_>
+ 10 0 4 16 -1.
+ <_>
+ 10 0 2 16 2.
+ <_>
+
+ <_>
+ 6 0 4 16 -1.
+ <_>
+ 8 0 2 16 2.
+ <_>
+
+ <_>
+ 6 1 8 7 -1.
+ <_>
+ 6 1 4 7 2.
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 10 4 2 7 2.
+ <_>
+
+ <_>
+ 11 8 9 9 -1.
+ <_>
+ 14 8 3 9 3.
+ <_>
+
+ <_>
+ 0 8 9 9 -1.
+ <_>
+ 3 8 3 9 3.
+ <_>
+
+ <_>
+ 0 4 20 5 -1.
+ <_>
+ 0 4 10 5 2.
+ <_>
+
+ <_>
+ 1 12 18 2 -1.
+ <_>
+ 1 13 18 1 2.
+ <_>
+
+ <_>
+ 11 5 5 9 -1.
+ <_>
+ 11 8 5 3 3.
+ <_>
+
+ <_>
+ 4 5 5 9 -1.
+ <_>
+ 4 8 5 3 3.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 0 11 20 4 -1.
+ <_>
+ 10 11 10 2 2.
+ <_>
+ 0 13 10 2 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 14 0 3 15 -1.
+ <_>
+ 15 0 1 15 3.
+ <_>
+
+ <_>
+ 3 0 3 15 -1.
+ <_>
+ 4 0 1 15 3.
+ <_>
+
+ <_>
+ 9 12 7 4 -1.
+ <_>
+ 9 14 7 2 2.
+ <_>
+
+ <_>
+ 5 1 6 5 -1.
+ <_>
+ 8 1 3 5 2.
+ <_>
+
+ <_>
+ 14 0 4 9 -1.
+ <_>
+ 14 0 2 9 2.
+ <_>
+
+ <_>
+ 2 0 4 9 -1.
+ <_>
+ 4 0 2 9 2.
+ <_>
+
+ <_>
+ 9 1 8 8 -1.
+ <_>
+ 13 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+ 3 17 7 2 2.
+ <_>
+
+ <_>
+ 4 12 7 4 -1.
+ <_>
+ 4 14 7 2 2.
+ <_>
+
+ <_>
+ 9 12 4 8 -1.
+ <_>
+ 9 16 4 4 2.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 5 7 10 10 -1.
+ <_>
+ 5 12 10 5 2.
+ <_>
+
+ <_>
+ 5 7 6 8 -1.
+ <_>
+ 5 11 6 4 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 8 4 3 10 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 2 0 6 5 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+
+ <_>
+ 8 4 4 14 -1.
+ <_>
+ 8 11 4 7 2.
+ <_>
+
+ <_>
+ 3 6 5 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 1 2 17 6 -1.
+ <_>
+ 1 4 17 2 3.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 9 5 3 10 2.
+ <_>
+
+ <_>
+ 5 4 6 6 -1.
+ <_>
+ 8 4 3 6 2.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 12 6 7 3 2.
+ <_>
+ 5 9 7 3 2.
+ <_>
+
+ <_>
+ 1 6 14 6 -1.
+ <_>
+ 1 6 7 3 2.
+ <_>
+ 8 9 7 3 2.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 0 5 20 15 -1.
+ <_>
+ 0 10 20 5 3.
+ <_>
+
+ <_>
+ 12 5 4 14 -1.
+ <_>
+ 14 5 2 7 2.
+ <_>
+ 12 12 2 7 2.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 2 0 2 9 3.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+
+ <_>
+ 6 0 3 13 -1.
+ <_>
+ 7 0 1 13 3.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 6 0 3 20 -1.
+ <_>
+ 7 0 1 20 3.
+ <_>
+
+ <_>
+ 7 5 8 12 -1.
+ <_>
+ 11 5 4 6 2.
+ <_>
+ 7 11 4 6 2.
+ <_>
+
+ <_>
+ 4 5 10 12 -1.
+ <_>
+ 4 5 5 6 2.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 12 5 4 14 -1.
+ <_>
+ 14 5 2 7 2.
+ <_>
+ 12 12 2 7 2.
+ <_>
+
+ <_>
+ 4 5 4 14 -1.
+ <_>
+ 4 5 2 7 2.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 14 10 6 9 -1.
+ <_>
+ 14 10 3 9 2.
+ <_>
+
+ <_>
+ 3 8 14 2 -1.
+ <_>
+ 3 9 14 1 2.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 0 15 14 3 -1.
+ <_>
+ 0 16 14 1 3.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 1 10 8 6 -1.
+ <_>
+ 1 12 8 2 3.
+ <_>
+
+ <_>
+ 1 0 18 19 -1.
+ <_>
+ 7 0 6 19 3.
+ <_>
+
+ <_>
+ 0 9 6 10 -1.
+ <_>
+ 3 9 3 10 2.
+ <_>
+
+ <_>
+ 11 15 9 4 -1.
+ <_>
+ 11 17 9 2 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 4 3 12 10 -1.
+ <_>
+ 8 3 4 10 3.
+ <_>
+
+ <_>
+ 7 10 3 10 -1.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 0 15 9 4 -1.
+ <_>
+ 0 17 9 2 2.
+ <_>
+
+ <_>
+ 6 12 14 3 -1.
+ <_>
+ 6 13 14 1 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 11 10 6 6 -1.
+ <_>
+ 11 10 3 6 2.
+ <_>
+
+ <_>
+ 7 0 5 15 -1.
+ <_>
+ 7 5 5 5 3.
+ <_>
+
+ <_>
+ 4 7 13 2 -1.
+ <_>
+ 4 8 13 1 2.
+ <_>
+
+ <_>
+ 2 8 4 12 -1.
+ <_>
+ 2 12 4 4 3.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 7 5 6 15 -1.
+ <_>
+ 9 5 2 15 3.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 8 1 4 14 -1.
+ <_>
+ 8 8 4 7 2.
+ <_>
+
+ <_>
+ 2 6 17 6 -1.
+ <_>
+ 2 9 17 3 2.
+ <_>
+
+ <_>
+ 0 7 5 9 -1.
+ <_>
+ 0 10 5 3 3.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 6 13 1 2.
+ <_>
+
+ <_>
+ 2 9 14 2 -1.
+ <_>
+ 2 10 14 1 2.
+ <_>
+
+ <_>
+ 5 15 13 3 -1.
+ <_>
+ 5 16 13 1 3.
+ <_>
+
+ <_>
+ 5 0 3 14 -1.
+ <_>
+ 6 0 1 14 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 4 0 14 4 -1.
+ <_>
+ 11 0 7 2 2.
+ <_>
+ 4 2 7 2 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 0 1 10 2 2.
+ <_>
+ 10 3 10 2 2.
+ <_>
+
+ <_>
+ 7 0 7 6 -1.
+ <_>
+ 7 3 7 3 2.
+ <_>
+
+ <_>
+ 5 2 6 10 -1.
+ <_>
+ 7 2 2 10 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 1 8 13 3 -1.
+ <_>
+ 1 9 13 1 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 18 3 2 17 -1.
+ <_>
+ 18 3 1 17 2.
+ <_>
+
+ <_>
+ 0 0 20 10 -1.
+ <_>
+ 0 0 10 5 2.
+ <_>
+ 10 5 10 5 2.
+ <_>
+
+ <_>
+ 4 8 14 4 -1.
+ <_>
+ 11 8 7 2 2.
+ <_>
+ 4 10 7 2 2.
+ <_>
+
+ <_>
+ 0 3 7 6 -1.
+ <_>
+ 0 5 7 2 3.
+ <_>
+
+ <_>
+ 4 8 14 4 -1.
+ <_>
+ 11 8 7 2 2.
+ <_>
+ 4 10 7 2 2.
+ <_>
+
+ <_>
+ 2 8 14 4 -1.
+ <_>
+ 2 8 7 2 2.
+ <_>
+ 9 10 7 2 2.
+ <_>
+
+ <_>
+ 3 4 16 10 -1.
+ <_>
+ 11 4 8 5 2.
+ <_>
+ 3 9 8 5 2.
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 6 5 8 2 3.
+ <_>
+
+ <_>
+ 5 3 13 2 -1.
+ <_>
+ 5 4 13 1 2.
+ <_>
+
+ <_>
+ 4 10 6 7 -1.
+ <_>
+ 7 10 3 7 2.
+ <_>
+
+ <_>
+ 11 7 4 13 -1.
+ <_>
+ 11 7 2 13 2.
+ <_>
+
+ <_>
+ 5 7 4 13 -1.
+ <_>
+ 7 7 2 13 2.
+ <_>
+
+ <_>
+ 5 10 14 3 -1.
+ <_>
+ 5 11 14 1 3.
+ <_>
+
+ <_>
+ 2 6 3 14 -1.
+ <_>
+ 2 13 3 7 2.
+ <_>
+
+ <_>
+ 3 9 15 3 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 2 4 6 16 -1.
+ <_>
+ 2 4 3 8 2.
+ <_>
+ 5 12 3 8 2.
+ <_>
+
+ <_>
+ 12 0 3 13 -1.
+ <_>
+ 13 0 1 13 3.
+ <_>
+
+ <_>
+ 4 0 8 20 -1.
+ <_>
+ 4 10 8 10 2.
+ <_>
+
+ <_>
+ 8 2 7 9 -1.
+ <_>
+ 8 5 7 3 3.
+ <_>
+
+ <_>
+ 5 0 3 13 -1.
+ <_>
+ 6 0 1 13 3.
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 5 9 6 7 -1.
+ <_>
+ 7 9 2 7 3.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 7 7 6 7 -1.
+ <_>
+ 9 7 2 7 3.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 12 9 4 -1.
+ <_>
+ 0 14 9 2 2.
+ <_>
+
+ <_>
+ 7 7 8 10 -1.
+ <_>
+ 11 7 4 5 2.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 5 7 8 10 -1.
+ <_>
+ 5 7 4 5 2.
+ <_>
+ 9 12 4 5 2.
+ <_>
+
+ <_>
+ 14 15 6 5 -1.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 3 14 13 6 -1.
+ <_>
+ 3 16 13 2 3.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 10 12 7 2 2.
+ <_>
+ 3 14 7 2 2.
+ <_>
+
+ <_>
+ 0 15 6 5 -1.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 3 0 3 13 -1.
+ <_>
+ 4 0 1 13 3.
+ <_>
+
+ <_>
+ 2 11 18 8 -1.
+ <_>
+ 8 11 6 8 3.
+ <_>
+
+ <_>
+ 2 3 3 15 -1.
+ <_>
+ 3 3 1 15 3.
+ <_>
+
+ <_>
+ 16 0 3 13 -1.
+ <_>
+ 17 0 1 13 3.
+ <_>
+
+ <_>
+ 3 3 6 7 -1.
+ <_>
+ 5 3 2 7 3.
+ <_>
+
+ <_>
+ 16 0 3 13 -1.
+ <_>
+ 17 0 1 13 3.
+ <_>
+
+ <_>
+ 1 0 3 13 -1.
+ <_>
+ 2 0 1 13 3.
+ <_>
+
+ <_>
+ 8 1 4 16 -1.
+ <_>
+ 10 1 2 8 2.
+ <_>
+ 8 9 2 8 2.
+ <_>
+
+ <_>
+ 7 6 5 9 -1.
+ <_>
+ 7 9 5 3 3.
+ <_>
+
+ <_>
+ 6 5 8 8 -1.
+ <_>
+ 6 9 8 4 2.
+ <_>
+
+ <_>
+ 0 1 6 5 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 11 0 9 7 -1.
+ <_>
+ 14 0 3 7 3.
+ <_>
+
+ <_>
+ 0 11 12 7 -1.
+ <_>
+ 6 11 6 7 2.
+ <_>
+
+ <_>
+ 7 5 9 5 -1.
+ <_>
+ 10 5 3 5 3.
+ <_>
+
+ <_>
+ 2 1 15 2 -1.
+ <_>
+ 2 2 15 1 2.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 6 8 14 4 -1.
+ <_>
+ 13 8 7 2 2.
+ <_>
+ 6 10 7 2 2.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 10 0 1 13 2.
+ <_>
+
+ <_>
+ 4 6 12 3 -1.
+ <_>
+ 4 6 6 3 2.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 7 2 3 7 2.
+ <_>
+
+ <_>
+ 9 5 4 11 -1.
+ <_>
+ 9 5 2 11 2.
+ <_>
+
+ <_>
+ 7 5 4 11 -1.
+ <_>
+ 9 5 2 11 2.
+ <_>
+
+ <_>
+ 5 12 15 8 -1.
+ <_>
+ 10 12 5 8 3.
+ <_>
+
+ <_>
+ 5 7 4 9 -1.
+ <_>
+ 7 7 2 9 2.
+ <_>
+
+ <_>
+ 6 6 10 4 -1.
+ <_>
+ 6 8 10 2 2.
+ <_>
+
+ <_>
+ 0 4 5 9 -1.
+ <_>
+ 0 7 5 3 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 7 8 10 12 -1.
+ <_>
+ 7 12 10 4 3.
+ <_>
+
+ <_>
+ 2 8 9 12 -1.
+ <_>
+ 5 8 3 12 3.
+ <_>
+
+ <_>
+ 11 0 9 9 -1.
+ <_>
+ 11 3 9 3 3.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 6 3 10 6 -1.
+ <_>
+ 11 3 5 3 2.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 3 4 14 6 -1.
+ <_>
+ 3 4 7 3 2.
+ <_>
+ 10 7 7 3 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 5 3 12 6 -1.
+ <_>
+ 9 3 4 6 3.
+ <_>
+
+ <_>
+ 3 3 12 6 -1.
+ <_>
+ 7 3 4 6 3.
+ <_>
+
+ <_>
+ 8 4 6 9 -1.
+ <_>
+ 10 4 2 9 3.
+ <_>
+
+ <_>
+ 2 12 13 2 -1.
+ <_>
+ 2 13 13 1 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 13 14 2 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 3 1 15 12 -1.
+ <_>
+ 3 7 15 6 2.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 16 1 4 8 -1.
+ <_>
+ 16 5 4 4 2.
+ <_>
+
+ <_>
+ 0 14 12 5 -1.
+ <_>
+ 4 14 4 5 3.
+ <_>
+
+ <_>
+ 11 5 2 15 -1.
+ <_>
+ 11 5 1 15 2.
+ <_>
+
+ <_>
+ 6 2 7 6 -1.
+ <_>
+ 6 5 7 3 2.
+ <_>
+
+ <_>
+ 10 2 6 9 -1.
+ <_>
+ 10 5 6 3 3.
+ <_>
+
+ <_>
+ 7 5 2 15 -1.
+ <_>
+ 8 5 1 15 2.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 0 1 18 2.
+ <_>
+
+ <_>
+ 0 8 4 8 -1.
+ <_>
+ 0 12 4 4 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+
+ <_>
+ 6 7 8 4 -1.
+ <_>
+ 10 7 4 4 2.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 10 9 5 3 2.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 4 7 5 8 -1.
+ <_>
+ 4 11 5 4 2.
+ <_>
+
+ <_>
+ 13 8 7 6 -1.
+ <_>
+ 13 10 7 2 3.
+ <_>
+
+ <_>
+ 0 8 7 6 -1.
+ <_>
+ 0 10 7 2 3.
+ <_>
+
+ <_>
+ 4 0 12 19 -1.
+ <_>
+ 4 0 6 19 2.
+ <_>
+
+ <_>
+ 0 12 15 8 -1.
+ <_>
+ 5 12 5 8 3.
+ <_>
+
+ <_>
+ 6 8 14 4 -1.
+ <_>
+ 13 8 7 2 2.
+ <_>
+ 6 10 7 2 2.
+ <_>
+
+ <_>
+ 1 9 13 3 -1.
+ <_>
+ 1 10 13 1 3.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 0 1 18 2.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 1 0 1 18 2.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 16 6 2 14 2.
+ <_>
+
+ <_>
+ 4 0 8 8 -1.
+ <_>
+ 4 0 4 4 2.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 2 0 16 10 -1.
+ <_>
+ 10 0 8 5 2.
+ <_>
+ 2 5 8 5 2.
+ <_>
+
+ <_>
+ 3 10 6 7 -1.
+ <_>
+ 6 10 3 7 2.
+ <_>
+
+ <_>
+ 1 9 18 5 -1.
+ <_>
+ 7 9 6 5 3.
+ <_>
+
+ <_>
+ 0 7 4 9 -1.
+ <_>
+ 2 7 2 9 2.
+ <_>
+
+ <_>
+ 14 0 6 16 -1.
+ <_>
+ 14 0 3 16 2.
+ <_>
+
+ <_>
+ 0 3 5 9 -1.
+ <_>
+ 0 6 5 3 3.
+ <_>
+
+ <_>
+ 11 2 9 12 -1.
+ <_>
+ 11 6 9 4 3.
+ <_>
+
+ <_>
+ 0 2 9 12 -1.
+ <_>
+ 0 6 9 4 3.
+ <_>
+
+ <_>
+ 8 2 5 12 -1.
+ <_>
+ 8 6 5 4 3.
+ <_>
+
+ <_>
+ 5 6 9 9 -1.
+ <_>
+ 5 9 9 3 3.
+ <_>
+
+ <_>
+ 0 17 20 2 -1.
+ <_>
+ 0 18 20 1 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 9 0 2 8 3.
+ <_>
+
+ <_>
+ 6 5 8 14 -1.
+ <_>
+ 6 12 8 7 2.
+ <_>
+
+ <_>
+ 11 0 9 9 -1.
+ <_>
+ 11 3 9 3 3.
+ <_>
+
+ <_>
+ 0 0 9 9 -1.
+ <_>
+ 0 3 9 3 3.
+ <_>
+
+ <_>
+ 11 0 4 14 -1.
+ <_>
+ 13 0 2 7 2.
+ <_>
+ 11 7 2 7 2.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 6 1 6 4 3.
+ <_>
+
+ <_>
+ 11 0 4 14 -1.
+ <_>
+ 13 0 2 7 2.
+ <_>
+ 11 7 2 7 2.
+ <_>
+
+ <_>
+ 4 0 4 14 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+ 6 7 2 7 2.
+ <_>
+
+ <_>
+ 6 13 10 6 -1.
+ <_>
+ 11 13 5 3 2.
+ <_>
+ 6 16 5 3 2.
+ <_>
+
+ <_>
+ 1 8 14 4 -1.
+ <_>
+ 1 8 7 2 2.
+ <_>
+ 8 10 7 2 2.
+ <_>
+
+ <_>
+ 11 1 4 9 -1.
+ <_>
+ 11 1 2 9 2.
+ <_>
+
+ <_>
+ 5 1 4 9 -1.
+ <_>
+ 7 1 2 9 2.
+ <_>
+
+ <_>
+ 9 0 6 6 -1.
+ <_>
+ 9 0 3 6 2.
+ <_>
+
+ <_>
+ 5 0 6 6 -1.
+ <_>
+ 8 0 3 6 2.
+ <_>
+
+ <_>
+ 6 5 8 4 -1.
+ <_>
+ 6 5 4 4 2.
+ <_>
+
+ <_>
+ 2 9 12 4 -1.
+ <_>
+ 6 9 4 4 3.
+ <_>
+
+ <_>
+ 10 4 3 14 -1.
+ <_>
+ 11 4 1 14 3.
+ <_>
+
+ <_>
+ 7 4 3 14 -1.
+ <_>
+ 8 4 1 14 3.
+ <_>
+
+ <_>
+ 0 0 20 14 -1.
+ <_>
+ 0 0 10 14 2.
+ <_>
+
+ <_>
+ 2 9 16 10 -1.
+ <_>
+ 10 9 8 10 2.
+ <_>
+
+ <_>
+ 2 5 16 8 -1.
+ <_>
+ 10 5 8 4 2.
+ <_>
+ 2 9 8 4 2.
+ <_>
+
+ <_>
+ 4 2 10 6 -1.
+ <_>
+ 4 4 10 2 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 9 18 3 -1.
+ <_>
+ 0 10 18 1 3.
+ <_>
+
+ <_>
+ 3 11 14 9 -1.
+ <_>
+ 3 14 14 3 3.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 6 15 14 4 -1.
+ <_>
+ 13 15 7 2 2.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 3 13 10 6 -1.
+ <_>
+ 3 13 5 3 2.
+ <_>
+ 8 16 5 3 2.
+ <_>
+
+ <_>
+ 0 6 20 3 -1.
+ <_>
+ 0 7 20 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 0 15 16 3 -1.
+ <_>
+ 0 16 16 1 3.
+ <_>
+
+ <_>
+ 2 16 16 4 -1.
+ <_>
+ 10 16 8 2 2.
+ <_>
+ 2 18 8 2 2.
+ <_>
+
+ <_>
+ 1 15 13 3 -1.
+ <_>
+ 1 16 13 1 3.
+ <_>
+
+ <_>
+ 5 10 12 6 -1.
+ <_>
+ 11 10 6 3 2.
+ <_>
+ 5 13 6 3 2.
+ <_>
+
+ <_>
+ 3 10 12 6 -1.
+ <_>
+ 3 10 6 3 2.
+ <_>
+ 9 13 6 3 2.
+ <_>
+
+ <_>
+ 7 14 10 6 -1.
+ <_>
+ 12 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 2 13 7 6 -1.
+ <_>
+ 2 15 7 2 3.
+ <_>
+
+ <_>
+ 5 14 14 2 -1.
+ <_>
+ 5 15 14 1 2.
+ <_>
+
+ <_>
+ 1 16 18 3 -1.
+ <_>
+ 1 17 18 1 3.
+ <_>
+
+ <_>
+ 16 1 4 14 -1.
+ <_>
+ 18 1 2 7 2.
+ <_>
+ 16 8 2 7 2.
+ <_>
+
+ <_>
+ 6 5 8 14 -1.
+ <_>
+ 6 12 8 7 2.
+ <_>
+
+ <_>
+ 5 14 14 2 -1.
+ <_>
+ 5 15 14 1 2.
+ <_>
+
+ <_>
+ 4 10 6 8 -1.
+ <_>
+ 6 10 2 8 3.
+ <_>
+
+ <_>
+ 5 4 10 12 -1.
+ <_>
+ 10 4 5 6 2.
+ <_>
+ 5 10 5 6 2.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 3 13 14 4 -1.
+ <_>
+ 10 13 7 2 2.
+ <_>
+ 3 15 7 2 2.
+ <_>
+
+ <_>
+ 5 9 6 10 -1.
+ <_>
+ 5 9 3 5 2.
+ <_>
+ 8 14 3 5 2.
+ <_>
+
+ <_>
+ 9 7 6 7 -1.
+ <_>
+ 9 7 3 7 2.
+ <_>
+
+ <_>
+ 5 7 6 7 -1.
+ <_>
+ 8 7 3 7 2.
+ <_>
+
+ <_>
+ 7 13 8 6 -1.
+ <_>
+ 7 15 8 2 3.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 6 8 12 5 -1.
+ <_>
+ 10 8 4 5 3.
+ <_>
+
+ <_>
+ 5 9 8 5 -1.
+ <_>
+ 9 9 4 5 2.
+ <_>
+
+ <_>
+ 7 5 13 3 -1.
+ <_>
+ 7 6 13 1 3.
+ <_>
+
+ <_>
+ 0 5 13 3 -1.
+ <_>
+ 0 6 13 1 3.
+ <_>
+
+ <_>
+ 4 0 13 6 -1.
+ <_>
+ 4 2 13 2 3.
+ <_>
+
+ <_>
+ 0 2 8 4 -1.
+ <_>
+ 4 2 4 4 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 2 12 10 8 -1.
+ <_>
+ 2 12 5 4 2.
+ <_>
+ 7 16 5 4 2.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 4 4 3 10 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 3 0 15 2 -1.
+ <_>
+ 3 1 15 1 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 4 18 13 2 -1.
+ <_>
+ 4 19 13 1 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 12 8 2 2.
+ <_>
+ 10 14 8 2 2.
+ <_>
+
+ <_>
+ 5 3 11 9 -1.
+ <_>
+ 5 6 11 3 3.
+ <_>
+
+ <_>
+ 0 2 20 10 -1.
+ <_>
+ 0 7 20 5 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 3 8 6 10 -1.
+ <_>
+ 3 8 3 5 2.
+ <_>
+ 6 13 3 5 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 7 0 6 6 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 6 5 9 5 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 1 7 18 4 -1.
+ <_>
+ 1 7 9 2 2.
+ <_>
+ 10 9 9 2 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 7 6 5 8 -1.
+ <_>
+ 7 10 5 4 2.
+ <_>
+
+ <_>
+ 4 9 12 4 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 4 4 12 8 -1.
+ <_>
+ 8 4 4 8 3.
+ <_>
+
+ <_>
+ 12 10 7 4 -1.
+ <_>
+ 12 12 7 2 2.
+ <_>
+
+ <_>
+ 4 0 8 8 -1.
+ <_>
+ 4 0 4 4 2.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 13 8 7 6 -1.
+ <_>
+ 13 10 7 2 3.
+ <_>
+
+ <_>
+ 1 5 12 4 -1.
+ <_>
+ 5 5 4 4 3.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 1 3 14 4 -1.
+ <_>
+ 1 3 7 2 2.
+ <_>
+ 8 5 7 2 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 7 12 10 8 -1.
+ <_>
+ 7 16 10 4 2.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 10 12 7 8 -1.
+ <_>
+ 10 16 7 4 2.
+ <_>
+
+ <_>
+ 1 2 13 2 -1.
+ <_>
+ 1 3 13 1 2.
+ <_>
+
+ <_>
+ 6 15 13 3 -1.
+ <_>
+ 6 16 13 1 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 0 15 10 2 2.
+ <_>
+ 10 17 10 2 2.
+ <_>
+
+ <_>
+ 4 4 16 4 -1.
+ <_>
+ 4 6 16 2 2.
+ <_>
+
+ <_>
+ 7 5 6 11 -1.
+ <_>
+ 9 5 2 11 3.
+ <_>
+
+ <_>
+ 11 10 8 10 -1.
+ <_>
+ 15 10 4 5 2.
+ <_>
+ 11 15 4 5 2.
+ <_>
+
+ <_>
+ 1 4 10 6 -1.
+ <_>
+ 1 4 5 3 2.
+ <_>
+ 6 7 5 3 2.
+ <_>
+
+ <_>
+ 7 7 13 2 -1.
+ <_>
+ 7 8 13 1 2.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 12 10 8 10 -1.
+ <_>
+ 16 10 4 5 2.
+ <_>
+ 12 15 4 5 2.
+ <_>
+
+ <_>
+ 0 11 18 4 -1.
+ <_>
+ 0 11 9 2 2.
+ <_>
+ 9 13 9 2 2.
+ <_>
+
+ <_>
+ 12 10 8 10 -1.
+ <_>
+ 16 10 4 5 2.
+ <_>
+ 12 15 4 5 2.
+ <_>
+
+ <_>
+ 0 10 8 10 -1.
+ <_>
+ 0 10 4 5 2.
+ <_>
+ 4 15 4 5 2.
+ <_>
+
+ <_>
+ 7 6 12 14 -1.
+ <_>
+ 13 6 6 7 2.
+ <_>
+ 7 13 6 7 2.
+ <_>
+
+ <_>
+ 1 10 7 4 -1.
+ <_>
+ 1 12 7 2 2.
+ <_>
+
+ <_>
+ 12 10 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 10 0 10 2 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 12 10 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ <_>
+
+ <_>
+ 4 10 4 7 -1.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 12 0 2 14 -1.
+ <_>
+ 12 0 1 14 2.
+ <_>
+
+ <_>
+ 4 2 12 17 -1.
+ <_>
+ 10 2 6 17 2.
+ <_>
+
+ <_>
+ 12 12 6 7 -1.
+ <_>
+ 12 12 3 7 2.
+ <_>
+
+ <_>
+ 1 9 10 10 -1.
+ <_>
+ 6 9 5 10 2.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 7 6 5 9 -1.
+ <_>
+ 7 9 5 3 3.
+ <_>
+
+ <_>
+ 9 5 4 14 -1.
+ <_>
+ 11 5 2 7 2.
+ <_>
+ 9 12 2 7 2.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+ 10 12 2 7 2.
+ <_>
+
+ <_>
+ 9 3 6 12 -1.
+ <_>
+ 11 3 2 12 3.
+ <_>
+
+ <_>
+ 5 3 6 12 -1.
+ <_>
+ 7 3 2 12 3.
+ <_>
+
+ <_>
+ 4 10 14 4 -1.
+ <_>
+ 11 10 7 2 2.
+ <_>
+ 4 12 7 2 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 7 4 6 7 -1.
+ <_>
+ 9 4 2 7 3.
+ <_>
+
+ <_>
+ 1 14 13 2 -1.
+ <_>
+ 1 15 13 1 2.
+ <_>
+
+ <_>
+ 7 14 13 2 -1.
+ <_>
+ 7 15 13 1 2.
+ <_>
+
+ <_>
+ 4 13 12 4 -1.
+ <_>
+ 4 15 12 2 2.
+ <_>
+
+ <_>
+ 12 13 7 4 -1.
+ <_>
+ 12 15 7 2 2.
+ <_>
+
+ <_>
+ 1 13 7 4 -1.
+ <_>
+ 1 15 7 2 2.
+ <_>
+
+ <_>
+ 10 6 3 14 -1.
+ <_>
+ 11 6 1 14 3.
+ <_>
+
+ <_>
+ 7 6 3 14 -1.
+ <_>
+ 8 6 1 14 3.
+ <_>
+
+ <_>
+ 8 13 6 7 -1.
+ <_>
+ 10 13 2 7 3.
+ <_>
+
+ <_>
+ 2 5 6 10 -1.
+ <_>
+ 2 5 3 5 2.
+ <_>
+ 5 10 3 5 2.
+ <_>
+
+ <_>
+ 15 3 3 16 -1.
+ <_>
+ 16 3 1 16 3.
+ <_>
+
+ <_>
+ 2 3 3 16 -1.
+ <_>
+ 3 3 1 16 3.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 14 0 3 13 2.
+ <_>
+
+ <_>
+ 0 0 6 13 -1.
+ <_>
+ 3 0 3 13 2.
+ <_>
+
+ <_>
+ 17 6 3 14 -1.
+ <_>
+ 17 13 3 7 2.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 17 6 3 14 -1.
+ <_>
+ 17 13 3 7 2.
+ <_>
+
+ <_>
+ 1 10 10 10 -1.
+ <_>
+ 1 10 5 5 2.
+ <_>
+ 6 15 5 5 2.
+ <_>
+
+ <_>
+ 0 0 20 10 -1.
+ <_>
+ 0 5 20 5 2.
+ <_>
+
+ <_>
+ 2 8 13 3 -1.
+ <_>
+ 2 9 13 1 3.
+ <_>
+
+ <_>
+ 7 6 10 14 -1.
+ <_>
+ 7 13 10 7 2.
+ <_>
+
+ <_>
+ 0 7 13 2 -1.
+ <_>
+ 0 8 13 1 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 8 6 6 10 -1.
+ <_>
+ 10 6 2 10 3.
+ <_>
+
+ <_>
+ 3 13 14 6 -1.
+ <_>
+ 3 13 7 3 2.
+ <_>
+ 10 16 7 3 2.
+ <_>
+
+ <_>
+ 10 1 4 19 -1.
+ <_>
+ 10 1 2 19 2.
+ <_>
+
+ <_>
+ 1 10 18 6 -1.
+ <_>
+ 1 12 18 2 3.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 6 1 4 19 -1.
+ <_>
+ 8 1 2 19 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 0 5 20 2 -1.
+ <_>
+ 0 6 20 1 2.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 12 0 4 7 -1.
+ <_>
+ 12 0 2 7 2.
+ <_>
+
+ <_>
+ 0 2 18 8 -1.
+ <_>
+ 6 2 6 8 3.
+ <_>
+
+ <_>
+ 10 0 10 9 -1.
+ <_>
+ 10 0 5 9 2.
+ <_>
+
+ <_>
+ 0 0 10 9 -1.
+ <_>
+ 5 0 5 9 2.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 1 13 5 6 -1.
+ <_>
+ 1 16 5 3 2.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 4 5 12 10 -1.
+ <_>
+ 4 5 6 5 2.
+ <_>
+ 10 10 6 5 2.
+ <_>
+
+ <_>
+ 13 9 5 9 -1.
+ <_>
+ 13 12 5 3 3.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 1 0 1 18 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 1 12 18 8 -1.
+ <_>
+ 1 12 9 4 2.
+ <_>
+ 10 16 9 4 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 4 3 10 4 -1.
+ <_>
+ 4 5 10 2 2.
+ <_>
+
+ <_>
+ 6 1 9 6 -1.
+ <_>
+ 6 3 9 2 3.
+ <_>
+
+ <_>
+ 5 4 10 10 -1.
+ <_>
+ 5 9 10 5 2.
+ <_>
+
+ <_>
+ 8 10 5 8 -1.
+ <_>
+ 8 14 5 4 2.
+ <_>
+
+ <_>
+ 3 8 13 10 -1.
+ <_>
+ 3 13 13 5 2.
+ <_>
+
+ <_>
+ 12 8 5 12 -1.
+ <_>
+ 12 14 5 6 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 12 0 2 17 -1.
+ <_>
+ 12 0 1 17 2.
+ <_>
+
+ <_>
+ 6 0 2 17 -1.
+ <_>
+ 7 0 1 17 2.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 0 1 2 13 -1.
+ <_>
+ 1 1 1 13 2.
+ <_>
+
+ <_>
+ 12 0 5 15 -1.
+ <_>
+ 12 5 5 5 3.
+ <_>
+
+ <_>
+ 3 0 5 15 -1.
+ <_>
+ 3 5 5 5 3.
+ <_>
+
+ <_>
+ 10 3 9 4 -1.
+ <_>
+ 10 5 9 2 2.
+ <_>
+
+ <_>
+ 3 5 14 2 -1.
+ <_>
+ 3 6 14 1 2.
+ <_>
+
+ <_>
+ 3 2 14 6 -1.
+ <_>
+ 10 2 7 3 2.
+ <_>
+ 3 5 7 3 2.
+ <_>
+
+ <_>
+ 6 4 8 6 -1.
+ <_>
+ 6 6 8 2 3.
+ <_>
+
+ <_>
+ 11 3 4 8 -1.
+ <_>
+ 11 3 2 8 2.
+ <_>
+
+ <_>
+ 8 5 3 13 -1.
+ <_>
+ 9 5 1 13 3.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 5 3 6 7 -1.
+ <_>
+ 7 3 2 7 3.
+ <_>
+
+ <_>
+ 2 6 18 5 -1.
+ <_>
+ 8 6 6 5 3.
+ <_>
+
+ <_>
+ 6 8 8 4 -1.
+ <_>
+ 10 8 4 4 2.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 5 6 3 2.
+ <_>
+ 10 8 6 3 2.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 3 12 7 8 -1.
+ <_>
+ 3 16 7 4 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 2 6 18 9 -1.
+ <_>
+ 2 9 18 3 3.
+ <_>
+
+ <_>
+ 1 8 16 2 -1.
+ <_>
+ 9 8 8 2 2.
+ <_>
+
+ <_>
+ 5 2 11 4 -1.
+ <_>
+ 5 4 11 2 2.
+ <_>
+
+ <_>
+ 0 12 10 8 -1.
+ <_>
+ 0 12 5 4 2.
+ <_>
+ 5 16 5 4 2.
+ <_>
+
+ <_>
+ 3 1 15 8 -1.
+ <_>
+ 8 1 5 8 3.
+ <_>
+
+ <_>
+ 2 1 15 8 -1.
+ <_>
+ 7 1 5 8 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 3 4 14 9 -1.
+ <_>
+ 3 7 14 3 3.
+ <_>
+
+ <_>
+ 4 3 15 5 -1.
+ <_>
+ 9 3 5 5 3.
+ <_>
+
+ <_>
+ 0 2 20 12 -1.
+ <_>
+ 0 8 20 6 2.
+ <_>
+
+ <_>
+ 4 1 12 4 -1.
+ <_>
+ 8 1 4 4 3.
+ <_>
+
+ <_>
+ 0 2 20 12 -1.
+ <_>
+ 0 8 20 6 2.
+ <_>
+
+ <_>
+ 10 11 4 9 -1.
+ <_>
+ 10 11 2 9 2.
+ <_>
+
+ <_>
+ 2 1 12 15 -1.
+ <_>
+ 6 1 4 15 3.
+ <_>
+
+ <_>
+ 10 9 10 3 -1.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 9 10 3 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 6 1 8 14 -1.
+ <_>
+ 6 8 8 7 2.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 6 6 3 6 2.
+ <_>
+ 9 12 3 6 2.
+ <_>
+
+ <_>
+ 10 11 4 9 -1.
+ <_>
+ 10 11 2 9 2.
+ <_>
+
+ <_>
+ 6 11 4 9 -1.
+ <_>
+ 8 11 2 9 2.
+ <_>
+
+ <_>
+ 8 9 6 5 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 6 9 6 5 -1.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 6 11 9 6 -1.
+ <_>
+ 9 11 3 6 3.
+ <_>
+
+ <_>
+ 5 2 6 10 -1.
+ <_>
+ 5 2 3 5 2.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 0 1 9 18 -1.
+ <_>
+ 3 1 3 18 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 3 1 6 10 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 1 3 18 12 -1.
+ <_>
+ 1 3 9 6 2.
+ <_>
+ 10 9 9 6 2.
+ <_>
+
+ <_>
+ 7 15 13 3 -1.
+ <_>
+ 7 16 13 1 3.
+ <_>
+
+ <_>
+ 1 15 13 3 -1.
+ <_>
+ 1 16 13 1 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 6 16 14 4 -1.
+ <_>
+ 13 16 7 2 2.
+ <_>
+ 6 18 7 2 2.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 10 4 6 8 -1.
+ <_>
+ 12 4 2 8 3.
+ <_>
+
+ <_>
+ 6 0 3 13 -1.
+ <_>
+ 7 0 1 13 3.
+ <_>
+
+ <_>
+ 11 9 3 10 -1.
+ <_>
+ 11 14 3 5 2.
+ <_>
+
+ <_>
+ 1 8 14 3 -1.
+ <_>
+ 1 9 14 1 3.
+ <_>
+
+ <_>
+ 4 7 12 6 -1.
+ <_>
+ 4 9 12 2 3.
+ <_>
+
+ <_>
+ 6 8 8 9 -1.
+ <_>
+ 6 11 8 3 3.
+ <_>
+
+ <_>
+ 4 13 12 4 -1.
+ <_>
+ 4 15 12 2 2.
+ <_>
+
+ <_>
+ 1 12 18 2 -1.
+ <_>
+ 1 13 18 1 2.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 13 4 4 2.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 5 13 4 4 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 12 6 5 3 2.
+ <_>
+ 7 9 5 3 2.
+ <_>
+
+ <_>
+ 5 11 9 6 -1.
+ <_>
+ 8 11 3 6 3.
+ <_>
+
+ <_>
+ 4 3 14 2 -1.
+ <_>
+ 4 3 7 2 2.
+ <_>
+
+ <_>
+ 2 12 9 6 -1.
+ <_>
+ 5 12 3 6 3.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 17 1 3 6 2.
+ <_>
+ 14 7 3 6 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 0 1 3 6 2.
+ <_>
+ 3 7 3 6 2.
+ <_>
+
+ <_>
+ 12 0 8 6 -1.
+ <_>
+ 12 2 8 2 3.
+ <_>
+
+ <_>
+ 0 16 18 2 -1.
+ <_>
+ 0 17 18 1 2.
+ <_>
+
+ <_>
+ 5 16 11 4 -1.
+ <_>
+ 5 18 11 2 2.
+ <_>
+
+ <_>
+ 2 16 13 3 -1.
+ <_>
+ 2 17 13 1 3.
+ <_>
+
+ <_>
+ 14 9 6 11 -1.
+ <_>
+ 16 9 2 11 3.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 11 1 8 6 -1.
+ <_>
+ 11 3 8 2 3.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 10 10 4 8 -1.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 5 5 9 15 -1.
+ <_>
+ 8 5 3 15 3.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 0 15 13 2 -1.
+ <_>
+ 0 16 13 1 2.
+ <_>
+
+ <_>
+ 11 1 8 6 -1.
+ <_>
+ 11 3 8 2 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 9 6 6 7 -1.
+ <_>
+ 11 6 2 7 3.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 7 6 2 7 3.
+ <_>
+
+ <_>
+ 6 11 10 6 -1.
+ <_>
+ 11 11 5 3 2.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 11 1 8 6 -1.
+ <_>
+ 11 3 8 2 3.
+ <_>
+
+ <_>
+ 4 4 11 10 -1.
+ <_>
+ 4 9 11 5 2.
+ <_>
+
+ <_>
+ 11 1 8 6 -1.
+ <_>
+ 11 3 8 2 3.
+ <_>
+
+ <_>
+ 1 1 8 6 -1.
+ <_>
+ 1 3 8 2 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 8 4 6 2.
+ <_>
+
+ <_>
+ 2 2 16 3 -1.
+ <_>
+ 2 3 16 1 3.
+ <_>
+
+ <_>
+ 18 1 2 13 -1.
+ <_>
+ 18 1 1 13 2.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+
+ <_>
+ 5 6 13 3 -1.
+ <_>
+ 5 7 13 1 3.
+ <_>
+
+ <_>
+ 4 1 6 7 -1.
+ <_>
+ 6 1 2 7 3.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 7 2 8 8 -1.
+ <_>
+ 11 2 4 4 2.
+ <_>
+ 7 6 4 4 2.
+ <_>
+
+ <_>
+ 5 2 8 8 -1.
+ <_>
+ 5 2 4 4 2.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 15 3 4 16 -1.
+ <_>
+ 17 3 2 8 2.
+ <_>
+ 15 11 2 8 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 4 10 4 8 -1.
+ <_>
+ 4 14 4 4 2.
+ <_>
+
+ <_>
+ 4 14 13 6 -1.
+ <_>
+ 4 16 13 2 3.
+ <_>
+
+ <_>
+ 1 14 14 3 -1.
+ <_>
+ 1 15 14 1 3.
+ <_>
+
+ <_>
+ 18 1 2 13 -1.
+ <_>
+ 18 1 1 13 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 1 1 9 2 2.
+ <_>
+ 10 3 9 2 2.
+ <_>
+
+ <_>
+ 18 1 2 13 -1.
+ <_>
+ 18 1 1 13 2.
+ <_>
+
+ <_>
+ 0 1 2 13 -1.
+ <_>
+ 1 1 1 13 2.
+ <_>
+
+ <_>
+ 2 0 18 2 -1.
+ <_>
+ 2 0 9 2 2.
+ <_>
+
+ <_>
+ 0 0 6 12 -1.
+ <_>
+ 2 0 2 12 3.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 0 2 5 6 -1.
+ <_>
+ 0 5 5 3 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 9 0 9 6 -1.
+ <_>
+ 9 2 9 2 3.
+ <_>
+
+ <_>
+ 0 4 14 3 -1.
+ <_>
+ 0 5 14 1 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 5 0 8 8 -1.
+ <_>
+ 5 4 8 4 2.
+ <_>
+
+ <_>
+ 9 0 9 6 -1.
+ <_>
+ 9 2 9 2 3.
+ <_>
+
+ <_>
+ 2 0 9 6 -1.
+ <_>
+ 2 2 9 2 3.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 1 7 16 4 -1.
+ <_>
+ 1 7 8 2 2.
+ <_>
+ 9 9 8 2 2.
+ <_>
+
+ <_>
+ 8 7 4 7 -1.
+ <_>
+ 8 7 2 7 2.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 4 5 12 4 -1.
+ <_>
+ 8 5 4 4 3.
+ <_>
+
+ <_>
+ 1 0 6 13 -1.
+ <_>
+ 3 0 2 13 3.
+ <_>
+
+ <_>
+ 16 7 4 11 -1.
+ <_>
+ 16 7 2 11 2.
+ <_>
+
+ <_>
+ 0 7 4 11 -1.
+ <_>
+ 2 7 2 11 2.
+ <_>
+
+ <_>
+ 8 6 4 8 -1.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 0 10 20 3 -1.
+ <_>
+ 0 11 20 1 3.
+ <_>
+
+ <_>
+ 11 13 8 6 -1.
+ <_>
+ 11 15 8 2 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 9 6 3 13 -1.
+ <_>
+ 10 6 1 13 3.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 9 10 2 10 3.
+ <_>
+
+ <_>
+ 16 0 4 18 -1.
+ <_>
+ 16 0 2 18 2.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 4 9 13 3 -1.
+ <_>
+ 4 10 13 1 3.
+ <_>
+
+ <_>
+ 0 0 4 19 -1.
+ <_>
+ 2 0 2 19 2.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 8 5 10 10 -1.
+ <_>
+ 13 5 5 5 2.
+ <_>
+ 8 10 5 5 2.
+ <_>
+
+ <_>
+ 1 8 6 12 -1.
+ <_>
+ 1 8 3 6 2.
+ <_>
+ 4 14 3 6 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 4 1 3 13 -1.
+ <_>
+ 5 1 1 13 3.
+ <_>
+
+ <_>
+ 4 4 13 3 -1.
+ <_>
+ 4 5 13 1 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 5 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 1 13 8 6 -1.
+ <_>
+ 1 15 8 2 3.
+ <_>
+
+ <_>
+ 4 5 13 3 -1.
+ <_>
+ 4 6 13 1 3.
+ <_>
+
+ <_>
+ 0 6 14 4 -1.
+ <_>
+ 0 6 7 2 2.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 14 3 6 16 -1.
+ <_>
+ 17 3 3 8 2.
+ <_>
+ 14 11 3 8 2.
+ <_>
+
+ <_>
+ 1 4 18 10 -1.
+ <_>
+ 1 4 9 5 2.
+ <_>
+ 10 9 9 5 2.
+ <_>
+
+ <_>
+ 14 2 6 16 -1.
+ <_>
+ 17 2 3 8 2.
+ <_>
+ 14 10 3 8 2.
+ <_>
+
+ <_>
+ 0 2 6 16 -1.
+ <_>
+ 0 2 3 8 2.
+ <_>
+ 3 10 3 8 2.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 14 8 3 12 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 3 8 3 12 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 8 6 4 4 2.
+ <_>
+
+ <_>
+ 0 12 8 8 -1.
+ <_>
+ 4 12 4 8 2.
+ <_>
+
+ <_>
+ 2 4 18 16 -1.
+ <_>
+ 8 4 6 16 3.
+ <_>
+
+ <_>
+ 5 7 4 7 -1.
+ <_>
+ 7 7 2 7 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 6 8 4 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 7 2 10 4 -1.
+ <_>
+ 7 2 5 4 2.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 1 14 18 6 -1.
+ <_>
+ 1 16 18 2 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 10 0 1 13 2.
+ <_>
+
+ <_>
+ 1 1 19 3 -1.
+ <_>
+ 1 2 19 1 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 4 18 13 2 -1.
+ <_>
+ 4 19 13 1 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 13 10 7 6 -1.
+ <_>
+ 13 12 7 2 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 3 14 13 3 -1.
+ <_>
+ 3 15 13 1 3.
+ <_>
+
+ <_>
+ 1 15 18 4 -1.
+ <_>
+ 10 15 9 2 2.
+ <_>
+ 1 17 9 2 2.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 4 10 2 10 3.
+ <_>
+
+ <_>
+ 11 14 9 6 -1.
+ <_>
+ 14 14 3 6 3.
+ <_>
+
+ <_>
+ 4 10 12 10 -1.
+ <_>
+ 10 10 6 10 2.
+ <_>
+
+ <_>
+ 6 6 8 7 -1.
+ <_>
+ 6 6 4 7 2.
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 10 4 2 7 2.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 2 7 12 12 -1.
+ <_>
+ 2 11 12 4 3.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 2 12 2 3.
+ <_>
+
+ <_>
+ 5 10 9 9 -1.
+ <_>
+ 5 13 9 3 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 12 8 8 -1.
+ <_>
+ 0 12 4 4 2.
+ <_>
+ 4 16 4 4 2.
+ <_>
+
+ <_>
+ 14 11 6 9 -1.
+ <_>
+ 14 14 6 3 3.
+ <_>
+
+ <_>
+ 5 1 7 6 -1.
+ <_>
+ 5 3 7 2 3.
+ <_>
+
+ <_>
+ 9 5 3 14 -1.
+ <_>
+ 9 12 3 7 2.
+ <_>
+
+ <_>
+ 8 9 4 8 -1.
+ <_>
+ 8 13 4 4 2.
+ <_>
+
+ <_>
+ 7 5 6 14 -1.
+ <_>
+ 7 12 6 7 2.
+ <_>
+
+ <_>
+ 4 9 4 8 -1.
+ <_>
+ 6 9 2 8 2.
+ <_>
+
+ <_>
+ 12 9 6 9 -1.
+ <_>
+ 14 9 2 9 3.
+ <_>
+
+ <_>
+ 2 9 6 9 -1.
+ <_>
+ 4 9 2 9 3.
+ <_>
+
+ <_>
+ 4 16 15 4 -1.
+ <_>
+ 9 16 5 4 3.
+ <_>
+
+ <_>
+ 3 2 10 4 -1.
+ <_>
+ 8 2 5 4 2.
+ <_>
+
+ <_>
+ 10 0 4 12 -1.
+ <_>
+ 10 0 2 12 2.
+ <_>
+
+ <_>
+ 6 0 4 12 -1.
+ <_>
+ 8 0 2 12 2.
+ <_>
+
+ <_>
+ 7 4 6 7 -1.
+ <_>
+ 9 4 2 7 3.
+ <_>
+
+ <_>
+ 5 2 3 13 -1.
+ <_>
+ 6 2 1 13 3.
+ <_>
+
+ <_>
+ 12 5 5 9 -1.
+ <_>
+ 12 8 5 3 3.
+ <_>
+
+ <_>
+ 5 6 9 12 -1.
+ <_>
+ 5 10 9 4 3.
+ <_>
+
+ <_>
+ 9 0 4 20 -1.
+ <_>
+ 11 0 2 10 2.
+ <_>
+ 9 10 2 10 2.
+ <_>
+
+ <_>
+ 8 0 4 16 -1.
+ <_>
+ 8 0 2 8 2.
+ <_>
+ 10 8 2 8 2.
+ <_>
+
+ <_>
+ 2 9 18 11 -1.
+ <_>
+ 8 9 6 11 3.
+ <_>
+
+ <_>
+ 0 11 6 9 -1.
+ <_>
+ 0 14 6 3 3.
+ <_>
+
+ <_>
+ 13 6 6 12 -1.
+ <_>
+ 13 6 3 12 2.
+ <_>
+
+ <_>
+ 6 12 8 8 -1.
+ <_>
+ 6 12 4 4 2.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 1 9 18 8 -1.
+ <_>
+ 10 9 9 4 2.
+ <_>
+ 1 13 9 4 2.
+ <_>
+
+ <_>
+ 2 8 12 4 -1.
+ <_>
+ 6 8 4 4 3.
+ <_>
+
+ <_>
+ 13 6 6 12 -1.
+ <_>
+ 13 6 3 12 2.
+ <_>
+
+ <_>
+ 1 6 6 12 -1.
+ <_>
+ 4 6 3 12 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 3 15 13 3 -1.
+ <_>
+ 3 16 13 1 3.
+ <_>
+
+ <_>
+ 7 15 13 3 -1.
+ <_>
+ 7 16 13 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 17 0 3 14 -1.
+ <_>
+ 18 0 1 14 3.
+ <_>
+
+ <_>
+ 0 0 20 16 -1.
+ <_>
+ 0 8 20 8 2.
+ <_>
+
+ <_>
+ 6 3 14 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+ 6 5 7 2 2.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 0 2 10 3 2.
+ <_>
+ 10 5 10 3 2.
+ <_>
+
+ <_>
+ 17 0 3 14 -1.
+ <_>
+ 18 0 1 14 3.
+ <_>
+
+ <_>
+ 5 9 4 9 -1.
+ <_>
+ 7 9 2 9 2.
+ <_>
+
+ <_>
+ 11 11 4 7 -1.
+ <_>
+ 11 11 2 7 2.
+ <_>
+
+ <_>
+ 5 7 6 10 -1.
+ <_>
+ 7 7 2 10 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 0 7 10 2 2.
+ <_>
+
+ <_>
+ 3 4 14 12 -1.
+ <_>
+ 3 4 7 6 2.
+ <_>
+ 10 10 7 6 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 8 -1.
+ <_>
+ 8 5 2 8 3.
+ <_>
+
+ <_>
+ 11 5 4 10 -1.
+ <_>
+ 11 5 2 10 2.
+ <_>
+
+ <_>
+ 1 2 18 14 -1.
+ <_>
+ 7 2 6 14 3.
+ <_>
+
+ <_>
+ 3 3 14 8 -1.
+ <_>
+ 10 3 7 4 2.
+ <_>
+ 3 7 7 4 2.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 5 9 10 11 -1.
+ <_>
+ 5 9 5 11 2.
+ <_>
+
+ <_>
+ 5 7 10 8 -1.
+ <_>
+ 5 7 5 4 2.
+ <_>
+ 10 11 5 4 2.
+ <_>
+
+ <_>
+ 16 0 4 16 -1.
+ <_>
+ 16 8 4 8 2.
+ <_>
+
+ <_>
+ 1 4 18 4 -1.
+ <_>
+ 10 4 9 4 2.
+ <_>
+
+ <_>
+ 4 10 14 3 -1.
+ <_>
+ 4 11 14 1 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 17 0 3 14 -1.
+ <_>
+ 18 0 1 14 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 13 1 6 10 -1.
+ <_>
+ 16 1 3 5 2.
+ <_>
+ 13 6 3 5 2.
+ <_>
+
+ <_>
+ 1 1 6 10 -1.
+ <_>
+ 1 1 3 5 2.
+ <_>
+ 4 6 3 5 2.
+ <_>
+
+ <_>
+ 3 2 14 3 -1.
+ <_>
+ 3 3 14 1 3.
+ <_>
+
+ <_>
+ 3 12 13 3 -1.
+ <_>
+ 3 13 13 1 3.
+ <_>
+
+ <_>
+ 11 4 8 8 -1.
+ <_>
+ 15 4 4 4 2.
+ <_>
+ 11 8 4 4 2.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 0 14 14 2 -1.
+ <_>
+ 0 15 14 1 2.
+ <_>
+
+ <_>
+ 11 4 8 8 -1.
+ <_>
+ 15 4 4 4 2.
+ <_>
+ 11 8 4 4 2.
+ <_>
+
+ <_>
+ 0 9 5 9 -1.
+ <_>
+ 0 12 5 3 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 3 5 5 9 -1.
+ <_>
+ 3 8 5 3 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 10 0 10 8 -1.
+ <_>
+ 15 0 5 4 2.
+ <_>
+ 10 4 5 4 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 0 4 12 9 -1.
+ <_>
+ 0 7 12 3 3.
+ <_>
+
+ <_>
+ 0 7 20 4 -1.
+ <_>
+ 0 9 20 2 2.
+ <_>
+
+ <_>
+ 5 2 10 4 -1.
+ <_>
+ 10 2 5 4 2.
+ <_>
+
+ <_>
+ 11 11 4 7 -1.
+ <_>
+ 11 11 2 7 2.
+ <_>
+
+ <_>
+ 6 12 4 7 -1.
+ <_>
+ 8 12 2 7 2.
+ <_>
+
+ <_>
+ 11 13 9 7 -1.
+ <_>
+ 14 13 3 7 3.
+ <_>
+
+ <_>
+ 4 15 12 5 -1.
+ <_>
+ 10 15 6 5 2.
+ <_>
+
+ <_>
+ 8 9 4 8 -1.
+ <_>
+ 8 9 2 8 2.
+ <_>
+
+ <_>
+ 5 11 6 7 -1.
+ <_>
+ 7 11 2 7 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 8 5 3 7 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 9 5 3 7 2.
+ <_>
+
+ <_>
+ 2 6 16 9 -1.
+ <_>
+ 2 9 16 3 3.
+ <_>
+
+ <_>
+ 3 8 14 2 -1.
+ <_>
+ 3 9 14 1 2.
+ <_>
+
+ <_>
+ 9 4 3 15 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 7 10 4 8 -1.
+ <_>
+ 7 14 4 4 2.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 0 9 4 11 -1.
+ <_>
+ 2 9 2 11 2.
+ <_>
+
+ <_>
+ 7 3 8 10 -1.
+ <_>
+ 7 8 8 5 2.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 7 16 8 4 -1.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 1 0 10 20 -1.
+ <_>
+ 1 0 5 10 2.
+ <_>
+ 6 10 5 10 2.
+ <_>
+
+ <_>
+ 10 1 4 10 -1.
+ <_>
+ 10 6 4 5 2.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 1 7 18 4 -1.
+ <_>
+ 10 7 9 2 2.
+ <_>
+ 1 9 9 2 2.
+ <_>
+
+ <_>
+ 5 14 10 6 -1.
+ <_>
+ 5 16 10 2 3.
+ <_>
+
+ <_>
+ 7 12 13 3 -1.
+ <_>
+ 7 13 13 1 3.
+ <_>
+
+ <_>
+ 2 11 7 6 -1.
+ <_>
+ 2 13 7 2 3.
+ <_>
+
+ <_>
+ 11 12 5 8 -1.
+ <_>
+ 11 16 5 4 2.
+ <_>
+
+ <_>
+ 4 12 5 8 -1.
+ <_>
+ 4 16 5 4 2.
+ <_>
+
+ <_>
+ 10 10 10 4 -1.
+ <_>
+ 10 12 10 2 2.
+ <_>
+
+ <_>
+ 4 12 9 6 -1.
+ <_>
+ 4 15 9 3 2.
+ <_>
+
+ <_>
+ 10 10 10 4 -1.
+ <_>
+ 10 12 10 2 2.
+ <_>
+
+ <_>
+ 0 10 10 4 -1.
+ <_>
+ 0 12 10 2 2.
+ <_>
+
+ <_>
+ 16 0 4 16 -1.
+ <_>
+ 16 8 4 8 2.
+ <_>
+
+ <_>
+ 7 4 3 15 -1.
+ <_>
+ 7 9 3 5 3.
+ <_>
+
+ <_>
+ 9 10 10 6 -1.
+ <_>
+ 14 10 5 3 2.
+ <_>
+ 9 13 5 3 2.
+ <_>
+
+ <_>
+ 3 1 14 14 -1.
+ <_>
+ 3 1 7 7 2.
+ <_>
+ 10 8 7 7 2.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 18 5 2 7 2.
+ <_>
+ 16 12 2 7 2.
+ <_>
+
+ <_>
+ 0 5 4 14 -1.
+ <_>
+ 0 5 2 7 2.
+ <_>
+ 2 12 2 7 2.
+ <_>
+
+ <_>
+ 5 2 13 3 -1.
+ <_>
+ 5 3 13 1 3.
+ <_>
+
+ <_>
+ 0 16 17 2 -1.
+ <_>
+ 0 17 17 1 2.
+ <_>
+
+ <_>
+ 2 9 16 6 -1.
+ <_>
+ 2 12 16 3 2.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 11 18 1 2.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 3 0 13 9 -1.
+ <_>
+ 3 3 13 3 3.
+ <_>
+
+ <_>
+ 6 4 9 5 -1.
+ <_>
+ 9 4 3 5 3.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 10 1 10 4 -1.
+ <_>
+ 10 1 5 4 2.
+ <_>
+
+ <_>
+ 1 3 18 15 -1.
+ <_>
+ 1 8 18 5 3.
+ <_>
+
+ <_>
+ 14 2 6 12 -1.
+ <_>
+ 14 2 3 12 2.
+ <_>
+
+ <_>
+ 1 2 6 5 -1.
+ <_>
+ 4 2 3 5 2.
+ <_>
+
+ <_>
+ 12 5 8 8 -1.
+ <_>
+ 16 5 4 4 2.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 0 0 17 3 -1.
+ <_>
+ 0 1 17 1 3.
+ <_>
+
+ <_>
+ 6 5 9 8 -1.
+ <_>
+ 6 9 9 4 2.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 4 8 15 3 -1.
+ <_>
+ 9 8 5 3 3.
+ <_>
+
+ <_>
+ 1 8 15 3 -1.
+ <_>
+ 6 8 5 3 3.
+ <_>
+
+ <_>
+ 4 13 13 3 -1.
+ <_>
+ 4 14 13 1 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 10 1 7 4 -1.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 10 9 6 10 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ <_>
+
+ <_>
+ 0 10 20 5 -1.
+ <_>
+ 10 10 10 5 2.
+ <_>
+
+ <_>
+ 2 1 16 4 -1.
+ <_>
+ 10 1 8 2 2.
+ <_>
+ 2 3 8 2 2.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 3 12 3 2.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 2 3 16 17 -1.
+ <_>
+ 2 3 8 17 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 12 5 8 8 -1.
+ <_>
+ 16 5 4 4 2.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 0 5 8 8 -1.
+ <_>
+ 0 5 4 4 2.
+ <_>
+ 4 9 4 4 2.
+ <_>
+
+ <_>
+ 18 4 2 16 -1.
+ <_>
+ 18 12 2 8 2.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 8 0 6 3 3.
+ <_>
+
+ <_>
+ 2 6 15 3 -1.
+ <_>
+ 2 7 15 1 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 2 12 16 6 -1.
+ <_>
+ 2 14 16 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 3 0 3 13 -1.
+ <_>
+ 4 0 1 13 3.
+ <_>
+
+ <_>
+ 5 5 10 12 -1.
+ <_>
+ 10 5 5 6 2.
+ <_>
+ 5 11 5 6 2.
+ <_>
+
+ <_>
+ 2 4 14 12 -1.
+ <_>
+ 2 4 7 6 2.
+ <_>
+ 9 10 7 6 2.
+ <_>
+
+ <_>
+ 18 4 2 16 -1.
+ <_>
+ 18 12 2 8 2.
+ <_>
+
+ <_>
+ 5 4 9 5 -1.
+ <_>
+ 8 4 3 5 3.
+ <_>
+
+ <_>
+ 15 0 3 15 -1.
+ <_>
+ 16 0 1 15 3.
+ <_>
+
+ <_>
+ 2 0 3 15 -1.
+ <_>
+ 3 0 1 15 3.
+ <_>
+
+ <_>
+ 8 6 6 8 -1.
+ <_>
+ 8 10 6 4 2.
+ <_>
+
+ <_>
+ 1 4 6 16 -1.
+ <_>
+ 1 4 3 8 2.
+ <_>
+ 4 12 3 8 2.
+ <_>
+
+ <_>
+ 3 0 15 2 -1.
+ <_>
+ 3 1 15 1 2.
+ <_>
+
+ <_>
+ 7 2 6 14 -1.
+ <_>
+ 7 2 3 7 2.
+ <_>
+ 10 9 3 7 2.
+ <_>
+
+ <_>
+ 10 2 6 7 -1.
+ <_>
+ 12 2 2 7 3.
+ <_>
+
+ <_>
+ 5 1 3 16 -1.
+ <_>
+ 6 1 1 16 3.
+ <_>
+
+ <_>
+ 6 2 9 10 -1.
+ <_>
+ 6 7 9 5 2.
+ <_>
+
+ <_>
+ 9 2 2 13 -1.
+ <_>
+ 10 2 1 13 2.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 2 6 14 6 -1.
+ <_>
+ 2 6 7 3 2.
+ <_>
+ 9 9 7 3 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 9 5 7 9 -1.
+ <_>
+ 9 8 7 3 3.
+ <_>
+
+ <_>
+ 3 12 13 2 -1.
+ <_>
+ 3 13 13 1 2.
+ <_>
+
+ <_>
+ 9 13 8 6 -1.
+ <_>
+ 9 15 8 2 3.
+ <_>
+
+ <_>
+ 2 12 7 4 -1.
+ <_>
+ 2 14 7 2 2.
+ <_>
+
+ <_>
+ 6 17 13 3 -1.
+ <_>
+ 6 18 13 1 3.
+ <_>
+
+ <_>
+ 3 10 7 6 -1.
+ <_>
+ 3 12 7 2 3.
+ <_>
+
+ <_>
+ 9 5 7 9 -1.
+ <_>
+ 9 8 7 3 3.
+ <_>
+
+ <_>
+ 4 5 7 9 -1.
+ <_>
+ 4 8 7 3 3.
+ <_>
+
+ <_>
+ 5 5 13 3 -1.
+ <_>
+ 5 6 13 1 3.
+ <_>
+
+ <_>
+ 1 2 18 12 -1.
+ <_>
+ 1 6 18 4 3.
+ <_>
+
+ <_>
+ 4 4 13 3 -1.
+ <_>
+ 4 5 13 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 10 2 4 8 -1.
+ <_>
+ 10 2 2 8 2.
+ <_>
+
+ <_>
+ 6 2 4 8 -1.
+ <_>
+ 8 2 2 8 2.
+ <_>
+
+ <_>
+ 8 0 12 16 -1.
+ <_>
+ 14 0 6 8 2.
+ <_>
+ 8 8 6 8 2.
+ <_>
+
+ <_>
+ 0 0 18 6 -1.
+ <_>
+ 6 0 6 6 3.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 0 4 4 2.
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 3 0 3 7 2.
+ <_>
+
+ <_>
+ 9 13 6 7 -1.
+ <_>
+ 11 13 2 7 3.
+ <_>
+
+ <_>
+ 6 4 6 7 -1.
+ <_>
+ 8 4 2 7 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 1 14 17 6 -1.
+ <_>
+ 1 16 17 2 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 5 5 13 3 -1.
+ <_>
+ 5 6 13 1 3.
+ <_>
+
+ <_>
+ 5 13 6 7 -1.
+ <_>
+ 7 13 2 7 3.
+ <_>
+
+ <_>
+ 12 10 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ <_>
+
+ <_>
+ 1 9 18 11 -1.
+ <_>
+ 7 9 6 11 3.
+ <_>
+
+ <_>
+ 10 10 6 7 -1.
+ <_>
+ 12 10 2 7 3.
+ <_>
+
+ <_>
+ 4 10 6 7 -1.
+ <_>
+ 6 10 2 7 3.
+ <_>
+
+ <_>
+ 9 10 9 9 -1.
+ <_>
+ 12 10 3 9 3.
+ <_>
+
+ <_>
+ 0 10 10 10 -1.
+ <_>
+ 0 10 5 5 2.
+ <_>
+ 5 15 5 5 2.
+ <_>
+
+ <_>
+ 12 15 6 5 -1.
+ <_>
+ 12 15 3 5 2.
+ <_>
+
+ <_>
+ 1 15 8 5 -1.
+ <_>
+ 5 15 4 5 2.
+ <_>
+
+ <_>
+ 5 14 14 2 -1.
+ <_>
+ 5 14 7 2 2.
+ <_>
+
+ <_>
+ 1 14 12 3 -1.
+ <_>
+ 7 14 6 3 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 5 2 8 8 -1.
+ <_>
+ 5 2 4 4 2.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 6 16 14 4 -1.
+ <_>
+ 13 16 7 2 2.
+ <_>
+ 6 18 7 2 2.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+ 3 17 7 2 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 10 6 10 2 2.
+ <_>
+
+ <_>
+ 5 3 14 6 -1.
+ <_>
+ 12 3 7 3 2.
+ <_>
+ 5 6 7 3 2.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 7 10 2 3.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 0 3 20 1 2.
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 6 3 8 3 2.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 0 5 13 14 -1.
+ <_>
+ 0 12 13 7 2.
+ <_>
+
+ <_>
+ 14 11 4 8 -1.
+ <_>
+ 14 15 4 4 2.
+ <_>
+
+ <_>
+ 0 0 20 8 -1.
+ <_>
+ 0 0 10 4 2.
+ <_>
+ 10 4 10 4 2.
+ <_>
+
+ <_>
+ 16 1 4 18 -1.
+ <_>
+ 18 1 2 9 2.
+ <_>
+ 16 10 2 9 2.
+ <_>
+
+ <_>
+ 1 10 6 9 -1.
+ <_>
+ 3 10 2 9 3.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 4 7 6 6 2.
+ <_>
+ 10 13 6 6 2.
+ <_>
+
+ <_>
+ 7 12 13 3 -1.
+ <_>
+ 7 13 13 1 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 0 16 6 -1.
+ <_>
+ 0 2 16 2 3.
+ <_>
+
+ <_>
+ 6 1 8 6 -1.
+ <_>
+ 6 4 8 3 2.
+ <_>
+
+ <_>
+ 0 0 5 8 -1.
+ <_>
+ 0 4 5 4 2.
+ <_>
+
+ <_>
+ 9 3 9 5 -1.
+ <_>
+ 12 3 3 5 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 2 2 2 9 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 4 5 10 6 -1.
+ <_>
+ 4 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 7 1 10 6 -1.
+ <_>
+ 12 1 5 3 2.
+ <_>
+ 7 4 5 3 2.
+ <_>
+
+ <_>
+ 0 2 18 4 -1.
+ <_>
+ 0 2 9 2 2.
+ <_>
+ 9 4 9 2 2.
+ <_>
+
+ <_>
+ 17 1 2 17 -1.
+ <_>
+ 17 1 1 17 2.
+ <_>
+
+ <_>
+ 1 0 2 19 -1.
+ <_>
+ 2 0 1 19 2.
+ <_>
+
+ <_>
+ 2 9 16 4 -1.
+ <_>
+ 10 9 8 2 2.
+ <_>
+ 2 11 8 2 2.
+ <_>
+
+ <_>
+ 1 6 18 8 -1.
+ <_>
+ 1 6 9 4 2.
+ <_>
+ 10 10 9 4 2.
+ <_>
+
+ <_>
+ 1 8 18 4 -1.
+ <_>
+ 7 8 6 4 3.
+ <_>
+
+ <_>
+ 5 4 3 10 -1.
+ <_>
+ 5 9 3 5 2.
+ <_>
+
+ <_>
+ 5 2 10 6 -1.
+ <_>
+ 5 4 10 2 3.
+ <_>
+
+ <_>
+ 7 7 4 10 -1.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 8 11 6 6 -1.
+ <_>
+ 8 14 6 3 2.
+ <_>
+
+ <_>
+ 1 6 15 5 -1.
+ <_>
+ 6 6 5 5 3.
+ <_>
+
+ <_>
+ 8 5 4 12 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 1 8 10 12 -1.
+ <_>
+ 1 8 5 6 2.
+ <_>
+ 6 14 5 6 2.
+ <_>
+
+ <_>
+ 14 12 5 6 -1.
+ <_>
+ 14 15 5 3 2.
+ <_>
+
+ <_>
+ 0 12 18 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 1 3 18 12 -1.
+ <_>
+ 1 3 9 6 2.
+ <_>
+ 10 9 9 6 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 5 2 9 6 -1.
+ <_>
+ 5 4 9 2 3.
+ <_>
+
+ <_>
+ 15 3 2 17 -1.
+ <_>
+ 15 3 1 17 2.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 7 5 6 8 -1.
+ <_>
+ 9 5 2 8 3.
+ <_>
+
+ <_>
+ 3 3 2 17 -1.
+ <_>
+ 4 3 1 17 2.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 11 0 9 2 2.
+ <_>
+ 2 2 9 2 2.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 0 0 9 2 2.
+ <_>
+ 9 2 9 2 2.
+ <_>
+
+ <_>
+ 11 12 6 8 -1.
+ <_>
+ 13 12 2 8 3.
+ <_>
+
+ <_>
+ 3 12 6 8 -1.
+ <_>
+ 5 12 2 8 3.
+ <_>
+
+ <_>
+ 7 12 10 6 -1.
+ <_>
+ 12 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 5 0 9 14 -1.
+ <_>
+ 8 0 3 14 3.
+ <_>
+
+ <_>
+ 4 3 15 4 -1.
+ <_>
+ 9 3 5 4 3.
+ <_>
+
+ <_>
+ 1 3 15 4 -1.
+ <_>
+ 6 3 5 4 3.
+ <_>
+
+ <_>
+ 13 5 4 14 -1.
+ <_>
+ 15 5 2 7 2.
+ <_>
+ 13 12 2 7 2.
+ <_>
+
+ <_>
+ 3 5 4 14 -1.
+ <_>
+ 3 5 2 7 2.
+ <_>
+ 5 12 2 7 2.
+ <_>
+
+ <_>
+ 11 0 4 7 -1.
+ <_>
+ 11 0 2 7 2.
+ <_>
+
+ <_>
+ 5 0 4 7 -1.
+ <_>
+ 7 0 2 7 2.
+ <_>
+
+ <_>
+ 7 12 10 6 -1.
+ <_>
+ 12 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 3 12 10 6 -1.
+ <_>
+ 3 12 5 3 2.
+ <_>
+ 8 15 5 3 2.
+ <_>
+
+ <_>
+ 3 4 16 6 -1.
+ <_>
+ 11 4 8 3 2.
+ <_>
+ 3 7 8 3 2.
+ <_>
+
+ <_>
+ 4 1 6 7 -1.
+ <_>
+ 6 1 2 7 3.
+ <_>
+
+ <_>
+ 6 13 14 3 -1.
+ <_>
+ 6 14 14 1 3.
+ <_>
+
+ <_>
+ 4 3 6 7 -1.
+ <_>
+ 6 3 2 7 3.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 8 11 6 7 -1.
+ <_>
+ 10 11 2 7 3.
+ <_>
+
+ <_>
+ 2 4 6 12 -1.
+ <_>
+ 5 4 3 12 2.
+ <_>
+
+ <_>
+ 10 0 10 18 -1.
+ <_>
+ 10 0 5 18 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 7 10 6 9 -1.
+ <_>
+ 7 10 3 9 2.
+ <_>
+
+ <_>
+ 6 12 6 8 -1.
+ <_>
+ 8 12 2 8 3.
+ <_>
+
+ <_>
+ 3 18 14 2 -1.
+ <_>
+ 3 19 14 1 2.
+ <_>
+
+ <_>
+ 1 6 7 6 -1.
+ <_>
+ 1 8 7 2 3.
+ <_>
+
+ <_>
+ 13 5 7 4 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+
+ <_>
+ 0 5 7 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+
+ <_>
+ 8 5 11 15 -1.
+ <_>
+ 8 10 11 5 3.
+ <_>
+
+ <_>
+ 3 9 10 9 -1.
+ <_>
+ 8 9 5 9 2.
+ <_>
+
+ <_>
+ 4 1 13 3 -1.
+ <_>
+ 4 2 13 1 3.
+ <_>
+
+ <_>
+ 7 0 4 12 -1.
+ <_>
+ 7 6 4 6 2.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 8 6 4 4 2.
+ <_>
+
+ <_>
+ 2 16 16 3 -1.
+ <_>
+ 10 16 8 3 2.
+ <_>
+
+ <_>
+ 6 7 9 5 -1.
+ <_>
+ 9 7 3 5 3.
+ <_>
+
+ <_>
+ 5 7 9 5 -1.
+ <_>
+ 8 7 3 5 3.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 5 5 4 11 -1.
+ <_>
+ 7 5 2 11 2.
+ <_>
+
+ <_>
+ 9 6 6 10 -1.
+ <_>
+ 12 6 3 5 2.
+ <_>
+ 9 11 3 5 2.
+ <_>
+
+ <_>
+ 5 6 6 10 -1.
+ <_>
+ 5 6 3 5 2.
+ <_>
+ 8 11 3 5 2.
+ <_>
+
+ <_>
+ 4 8 16 8 -1.
+ <_>
+ 12 8 8 4 2.
+ <_>
+ 4 12 8 4 2.
+ <_>
+
+ <_>
+ 0 8 16 8 -1.
+ <_>
+ 0 8 8 4 2.
+ <_>
+ 8 12 8 4 2.
+ <_>
+
+ <_>
+ 9 8 10 10 -1.
+ <_>
+ 14 8 5 5 2.
+ <_>
+ 9 13 5 5 2.
+ <_>
+
+ <_>
+ 1 8 10 10 -1.
+ <_>
+ 1 8 5 5 2.
+ <_>
+ 6 13 5 5 2.
+ <_>
+
+ <_>
+ 11 1 9 16 -1.
+ <_>
+ 14 1 3 16 3.
+ <_>
+
+ <_>
+ 3 4 6 12 -1.
+ <_>
+ 6 4 3 12 2.
+ <_>
+
+ <_>
+ 14 12 6 8 -1.
+ <_>
+ 16 12 2 8 3.
+ <_>
+
+ <_>
+ 0 12 6 8 -1.
+ <_>
+ 2 12 2 8 3.
+ <_>
+
+ <_>
+ 0 2 10 3 -1.
+ <_>
+ 5 2 5 3 2.
+ <_>
+
+ <_>
+ 6 4 8 6 -1.
+ <_>
+ 6 6 8 2 3.
+ <_>
+
+ <_>
+ 7 6 6 12 -1.
+ <_>
+ 7 12 6 6 2.
+ <_>
+
+ <_>
+ 10 1 4 18 -1.
+ <_>
+ 12 1 2 9 2.
+ <_>
+ 10 10 2 9 2.
+ <_>
+
+ <_>
+ 4 6 4 14 -1.
+ <_>
+ 4 6 2 7 2.
+ <_>
+ 6 13 2 7 2.
+ <_>
+
+ <_>
+ 13 4 3 10 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+
+ <_>
+ 1 3 14 12 -1.
+ <_>
+ 1 3 7 6 2.
+ <_>
+ 8 9 7 6 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 12 10 5 9 -1.
+ <_>
+ 12 13 5 3 3.
+ <_>
+
+ <_>
+ 1 14 18 4 -1.
+ <_>
+ 1 14 9 2 2.
+ <_>
+ 10 16 9 2 2.
+ <_>
+
+ <_>
+ 7 6 6 14 -1.
+ <_>
+ 9 6 2 14 3.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 10 10 4 8 -1.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 6 8 8 12 -1.
+ <_>
+ 6 8 4 6 2.
+ <_>
+ 10 14 4 6 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 18 2 -1.
+ <_>
+ 9 0 9 2 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 1 11 7 6 -1.
+ <_>
+ 1 13 7 2 3.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 12 5 3 5 2.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 6 1 9 5 -1.
+ <_>
+ 9 1 3 5 3.
+ <_>
+
+ <_>
+ 3 2 13 2 -1.
+ <_>
+ 3 3 13 1 2.
+ <_>
+
+ <_>
+ 4 0 14 3 -1.
+ <_>
+ 4 1 14 1 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 7 1 10 6 -1.
+ <_>
+ 12 1 5 3 2.
+ <_>
+ 7 4 5 3 2.
+ <_>
+
+ <_>
+ 0 0 15 3 -1.
+ <_>
+ 5 0 5 3 3.
+ <_>
+
+ <_>
+ 4 7 15 5 -1.
+ <_>
+ 9 7 5 5 3.
+ <_>
+
+ <_>
+ 0 7 6 12 -1.
+ <_>
+ 0 11 6 4 3.
+ <_>
+
+ <_>
+ 6 17 13 3 -1.
+ <_>
+ 6 18 13 1 3.
+ <_>
+
+ <_>
+ 1 7 15 5 -1.
+ <_>
+ 6 7 5 5 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 1 8 18 3 -1.
+ <_>
+ 1 9 18 1 3.
+ <_>
+
+ <_>
+ 14 0 6 11 -1.
+ <_>
+ 16 0 2 11 3.
+ <_>
+
+ <_>
+ 3 1 12 6 -1.
+ <_>
+ 3 1 6 3 2.
+ <_>
+ 9 4 6 3 2.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 7 8 2 3.
+ <_>
+
+ <_>
+ 0 0 6 11 -1.
+ <_>
+ 2 0 2 11 3.
+ <_>
+
+ <_>
+ 8 5 5 12 -1.
+ <_>
+ 8 11 5 6 2.
+ <_>
+
+ <_>
+ 1 4 6 16 -1.
+ <_>
+ 1 4 3 8 2.
+ <_>
+ 4 12 3 8 2.
+ <_>
+
+ <_>
+ 13 5 6 10 -1.
+ <_>
+ 16 5 3 5 2.
+ <_>
+ 13 10 3 5 2.
+ <_>
+
+ <_>
+ 1 5 6 10 -1.
+ <_>
+ 1 5 3 5 2.
+ <_>
+ 4 10 3 5 2.
+ <_>
+
+ <_>
+ 16 2 4 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 6 1 8 16 -1.
+ <_>
+ 6 9 8 8 2.
+ <_>
+
+ <_>
+ 6 12 6 7 -1.
+ <_>
+ 8 12 2 7 3.
+ <_>
+
+ <_>
+ 7 1 6 13 -1.
+ <_>
+ 7 1 3 13 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 2 10 18 10 -1.
+ <_>
+ 8 10 6 10 3.
+ <_>
+
+ <_>
+ 0 0 8 20 -1.
+ <_>
+ 4 0 4 20 2.
+ <_>
+
+ <_>
+ 10 0 8 6 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+
+ <_>
+ 5 2 8 9 -1.
+ <_>
+ 5 5 8 3 3.
+ <_>
+
+ <_>
+ 16 2 4 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+
+ <_>
+ 3 3 14 2 -1.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 3 3 13 3 -1.
+ <_>
+ 3 4 13 1 3.
+ <_>
+
+ <_>
+ 16 2 4 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+
+ <_>
+ 0 1 11 12 -1.
+ <_>
+ 0 7 11 6 2.
+ <_>
+
+ <_>
+ 9 0 9 5 -1.
+ <_>
+ 12 0 3 5 3.
+ <_>
+
+ <_>
+ 3 0 9 5 -1.
+ <_>
+ 6 0 3 5 3.
+ <_>
+
+ <_>
+ 2 0 18 8 -1.
+ <_>
+ 8 0 6 8 3.
+ <_>
+
+ <_>
+ 0 15 14 2 -1.
+ <_>
+ 0 16 14 1 2.
+ <_>
+
+ <_>
+ 10 15 10 3 -1.
+ <_>
+ 10 15 5 3 2.
+ <_>
+
+ <_>
+ 7 10 3 10 -1.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 4 11 12 6 -1.
+ <_>
+ 4 11 6 3 2.
+ <_>
+ 10 14 6 3 2.
+ <_>
+
+ <_>
+ 3 12 16 6 -1.
+ <_>
+ 11 12 8 3 2.
+ <_>
+ 3 15 8 3 2.
+ <_>
+
+ <_>
+ 1 12 16 6 -1.
+ <_>
+ 1 12 8 3 2.
+ <_>
+ 9 15 8 3 2.
+ <_>
+
+ <_>
+ 4 0 15 6 -1.
+ <_>
+ 9 0 5 6 3.
+ <_>
+
+ <_>
+ 1 0 15 6 -1.
+ <_>
+ 6 0 5 6 3.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 5 0 10 6 -1.
+ <_>
+ 5 3 10 3 2.
+ <_>
+
+ <_>
+ 7 0 2 17 -1.
+ <_>
+ 8 0 1 17 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 1 9 19 3 -1.
+ <_>
+ 1 10 19 1 3.
+ <_>
+
+ <_>
+ 6 0 6 18 -1.
+ <_>
+ 8 0 2 18 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 0 10 20 6 -1.
+ <_>
+ 0 13 20 3 2.
+ <_>
+
+ <_>
+ 10 11 5 9 -1.
+ <_>
+ 10 14 5 3 3.
+ <_>
+
+ <_>
+ 3 4 13 3 -1.
+ <_>
+ 3 5 13 1 3.
+ <_>
+
+ <_>
+ 13 11 7 4 -1.
+ <_>
+ 13 13 7 2 2.
+ <_>
+
+ <_>
+ 3 2 3 14 -1.
+ <_>
+ 4 2 1 14 3.
+ <_>
+
+ <_>
+ 12 3 2 17 -1.
+ <_>
+ 12 3 1 17 2.
+ <_>
+
+ <_>
+ 0 9 6 9 -1.
+ <_>
+ 3 9 3 9 2.
+ <_>
+
+ <_>
+ 11 3 6 10 -1.
+ <_>
+ 14 3 3 5 2.
+ <_>
+ 11 8 3 5 2.
+ <_>
+
+ <_>
+ 2 0 3 13 -1.
+ <_>
+ 3 0 1 13 3.
+ <_>
+
+ <_>
+ 4 5 16 2 -1.
+ <_>
+ 4 5 8 2 2.
+ <_>
+
+ <_>
+ 4 1 3 13 -1.
+ <_>
+ 5 1 1 13 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 12 3 2 17 -1.
+ <_>
+ 12 3 1 17 2.
+ <_>
+
+ <_>
+ 0 15 10 3 -1.
+ <_>
+ 5 15 5 3 2.
+ <_>
+
+ <_>
+ 10 11 5 9 -1.
+ <_>
+ 10 14 5 3 3.
+ <_>
+
+ <_>
+ 5 11 5 9 -1.
+ <_>
+ 5 14 5 3 3.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 3 11 16 9 -1.
+ <_>
+ 3 14 16 3 3.
+ <_>
+
+ <_>
+ 5 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 10 0 10 16 -1.
+ <_>
+ 10 8 10 8 2.
+ <_>
+
+ <_>
+ 0 0 10 16 -1.
+ <_>
+ 0 8 10 8 2.
+ <_>
+
+ <_>
+ 9 5 3 13 -1.
+ <_>
+ 10 5 1 13 3.
+ <_>
+
+ <_>
+ 6 0 6 10 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 11 10 3 10 -1.
+ <_>
+ 11 15 3 5 2.
+ <_>
+
+ <_>
+ 0 0 4 16 -1.
+ <_>
+ 0 0 2 8 2.
+ <_>
+ 2 8 2 8 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 10 6 4 6 3.
+ <_>
+
+ <_>
+ 0 4 4 16 -1.
+ <_>
+ 0 4 2 8 2.
+ <_>
+ 2 12 2 8 2.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 5 0 7 6 -1.
+ <_>
+ 5 2 7 2 3.
+ <_>
+
+ <_>
+ 11 3 6 10 -1.
+ <_>
+ 14 3 3 5 2.
+ <_>
+ 11 8 3 5 2.
+ <_>
+
+ <_>
+ 3 3 6 10 -1.
+ <_>
+ 3 3 3 5 2.
+ <_>
+ 6 8 3 5 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 6 10 3 10 -1.
+ <_>
+ 6 15 3 5 2.
+ <_>
+
+ <_>
+ 12 0 4 16 -1.
+ <_>
+ 14 0 2 8 2.
+ <_>
+ 12 8 2 8 2.
+ <_>
+
+ <_>
+ 4 0 4 16 -1.
+ <_>
+ 4 0 2 8 2.
+ <_>
+ 6 8 2 8 2.
+ <_>
+
+ <_>
+ 5 13 15 7 -1.
+ <_>
+ 10 13 5 7 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 0 8 20 1 2.
+ <_>
+
+ <_>
+ 2 13 18 5 -1.
+ <_>
+ 8 13 6 5 3.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 12 7 6 12 -1.
+ <_>
+ 15 7 3 6 2.
+ <_>
+ 12 13 3 6 2.
+ <_>
+
+ <_>
+ 2 7 6 12 -1.
+ <_>
+ 2 7 3 6 2.
+ <_>
+ 5 13 3 6 2.
+ <_>
+
+ <_>
+ 9 8 10 6 -1.
+ <_>
+ 14 8 5 3 2.
+ <_>
+ 9 11 5 3 2.
+ <_>
+
+ <_>
+ 1 8 10 6 -1.
+ <_>
+ 1 8 5 3 2.
+ <_>
+ 6 11 5 3 2.
+ <_>
+
+ <_>
+ 4 13 13 3 -1.
+ <_>
+ 4 14 13 1 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 8 20 10 -1.
+ <_>
+ 0 13 20 5 2.
+ <_>
+
+ <_>
+ 0 13 15 7 -1.
+ <_>
+ 5 13 5 7 3.
+ <_>
+
+ <_>
+ 7 11 6 9 -1.
+ <_>
+ 9 11 2 9 3.
+ <_>
+
+ <_>
+ 1 11 9 8 -1.
+ <_>
+ 4 11 3 8 3.
+ <_>
+
+ <_>
+ 2 13 17 6 -1.
+ <_>
+ 2 15 17 2 3.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 5 6 4 8 -1.
+ <_>
+ 5 10 4 4 2.
+ <_>
+
+ <_>
+ 13 8 4 12 -1.
+ <_>
+ 13 12 4 4 3.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 4 5 6 6 2.
+ <_>
+ 10 11 6 6 2.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 10 5 5 3 2.
+ <_>
+ 5 8 5 3 2.
+ <_>
+
+ <_>
+ 3 5 14 8 -1.
+ <_>
+ 3 5 7 4 2.
+ <_>
+ 10 9 7 4 2.
+ <_>
+
+ <_>
+ 5 6 10 9 -1.
+ <_>
+ 5 9 10 3 3.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 12 9 8 4 -1.
+ <_>
+ 12 11 8 2 2.
+ <_>
+
+ <_>
+ 0 9 8 4 -1.
+ <_>
+ 0 11 8 2 2.
+ <_>
+
+ <_>
+ 8 8 8 4 -1.
+ <_>
+ 8 10 8 2 2.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 8 2 12 17 -1.
+ <_>
+ 12 2 4 17 3.
+ <_>
+
+ <_>
+ 0 2 12 17 -1.
+ <_>
+ 4 2 4 17 3.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 4 0 3 20 -1.
+ <_>
+ 5 0 1 20 3.
+ <_>
+
+ <_>
+ 5 14 14 6 -1.
+ <_>
+ 12 14 7 3 2.
+ <_>
+ 5 17 7 3 2.
+ <_>
+
+ <_>
+ 0 14 14 6 -1.
+ <_>
+ 0 14 7 3 2.
+ <_>
+ 7 17 7 3 2.
+ <_>
+
+ <_>
+ 9 12 10 6 -1.
+ <_>
+ 9 14 10 2 3.
+ <_>
+
+ <_>
+ 1 14 5 6 -1.
+ <_>
+ 1 17 5 3 2.
+ <_>
+
+ <_>
+ 11 0 3 13 -1.
+ <_>
+ 12 0 1 13 3.
+ <_>
+
+ <_>
+ 6 0 3 13 -1.
+ <_>
+ 7 0 1 13 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 1 4 18 9 -1.
+ <_>
+ 7 4 6 9 3.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 6 9 3 8 2.
+ <_>
+
+ <_>
+ 9 7 6 12 -1.
+ <_>
+ 9 7 3 12 2.
+ <_>
+
+ <_>
+ 3 3 14 12 -1.
+ <_>
+ 10 3 7 12 2.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 1 0 8 20 -1.
+ <_>
+ 1 0 4 10 2.
+ <_>
+ 5 10 4 10 2.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 0 2 10 5 -1.
+ <_>
+ 5 2 5 5 2.
+ <_>
+
+ <_>
+ 12 12 8 8 -1.
+ <_>
+ 12 12 4 8 2.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 15 9 5 10 -1.
+ <_>
+ 15 14 5 5 2.
+ <_>
+
+ <_>
+ 0 9 5 10 -1.
+ <_>
+ 0 14 5 5 2.
+ <_>
+
+ <_>
+ 9 12 10 6 -1.
+ <_>
+ 9 14 10 2 3.
+ <_>
+
+ <_>
+ 1 12 10 6 -1.
+ <_>
+ 1 14 10 2 3.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 6 8 8 9 -1.
+ <_>
+ 6 11 8 3 3.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 7 8 9 12 -1.
+ <_>
+ 7 12 9 4 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 3 8 14 2 -1.
+ <_>
+ 3 9 14 1 2.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 5 16 10 4 -1.
+ <_>
+ 5 18 10 2 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 12 3 2 17 -1.
+ <_>
+ 12 3 1 17 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 12 13 2 -1.
+ <_>
+ 7 13 13 1 2.
+ <_>
+
+ <_>
+ 3 9 10 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+ 8 12 5 3 2.
+ <_>
+
+ <_>
+ 9 9 6 10 -1.
+ <_>
+ 12 9 3 5 2.
+ <_>
+ 9 14 3 5 2.
+ <_>
+
+ <_>
+ 2 6 16 12 -1.
+ <_>
+ 2 6 8 6 2.
+ <_>
+ 10 12 8 6 2.
+ <_>
+
+ <_>
+ 13 2 7 6 -1.
+ <_>
+ 13 4 7 2 3.
+ <_>
+
+ <_>
+ 3 4 14 4 -1.
+ <_>
+ 3 6 14 2 2.
+ <_>
+
+ <_>
+ 7 1 13 2 -1.
+ <_>
+ 7 2 13 1 2.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 2 1 15 6 -1.
+ <_>
+ 7 1 5 6 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 0 10 14 3 -1.
+ <_>
+ 0 11 14 1 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 9 6 4 14 -1.
+ <_>
+ 11 6 2 7 2.
+ <_>
+ 9 13 2 7 2.
+ <_>
+
+ <_>
+ 0 8 19 2 -1.
+ <_>
+ 0 9 19 1 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 6 11 6 8 -1.
+ <_>
+ 8 11 2 8 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 7 5 4 11 -1.
+ <_>
+ 9 5 2 11 2.
+ <_>
+
+ <_>
+ 9 3 2 13 -1.
+ <_>
+ 9 3 1 13 2.
+ <_>
+
+ <_>
+ 0 3 12 6 -1.
+ <_>
+ 0 3 6 3 2.
+ <_>
+ 6 6 6 3 2.
+ <_>
+
+ <_>
+ 3 6 14 2 -1.
+ <_>
+ 3 6 7 2 2.
+ <_>
+
+ <_>
+ 4 11 6 7 -1.
+ <_>
+ 6 11 2 7 3.
+ <_>
+
+ <_>
+ 15 10 5 6 -1.
+ <_>
+ 15 13 5 3 2.
+ <_>
+
+ <_>
+ 4 1 12 6 -1.
+ <_>
+ 8 1 4 6 3.
+ <_>
+
+ <_>
+ 10 0 4 8 -1.
+ <_>
+ 10 0 2 8 2.
+ <_>
+
+ <_>
+ 3 1 12 5 -1.
+ <_>
+ 9 1 6 5 2.
+ <_>
+
+ <_>
+ 13 2 7 6 -1.
+ <_>
+ 13 4 7 2 3.
+ <_>
+
+ <_>
+ 0 2 7 6 -1.
+ <_>
+ 0 4 7 2 3.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 14 4 6 3 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 0 4 6 3 3.
+ <_>
+
+ <_>
+ 6 0 9 8 -1.
+ <_>
+ 6 4 9 4 2.
+ <_>
+
+ <_>
+ 0 5 8 8 -1.
+ <_>
+ 0 5 4 4 2.
+ <_>
+ 4 9 4 4 2.
+ <_>
+
+ <_>
+ 11 1 4 12 -1.
+ <_>
+ 11 7 4 6 2.
+ <_>
+
+ <_>
+ 4 5 5 6 -1.
+ <_>
+ 4 8 5 3 2.
+ <_>
+
+ <_>
+ 7 5 11 8 -1.
+ <_>
+ 7 9 11 4 2.
+ <_>
+
+ <_>
+ 4 2 12 5 -1.
+ <_>
+ 8 2 4 5 3.
+ <_>
+
+ <_>
+ 10 12 10 8 -1.
+ <_>
+ 10 12 5 8 2.
+ <_>
+
+ <_>
+ 0 12 10 8 -1.
+ <_>
+ 5 12 5 8 2.
+ <_>
+
+ <_>
+ 15 0 4 7 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 10 2 10 2 2.
+ <_>
+ 0 4 10 2 2.
+ <_>
+
+ <_>
+ 1 0 12 9 -1.
+ <_>
+ 1 3 12 3 3.
+ <_>
+
+ <_>
+ 10 14 9 4 -1.
+ <_>
+ 10 16 9 2 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 1 6 11 4 -1.
+ <_>
+ 1 8 11 2 2.
+ <_>
+
+ <_>
+ 4 8 12 4 -1.
+ <_>
+ 4 10 12 2 2.
+ <_>
+
+ <_>
+ 4 4 3 10 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 3 9 3 10 -1.
+ <_>
+ 3 14 3 5 2.
+ <_>
+
+ <_>
+ 18 3 2 17 -1.
+ <_>
+ 18 3 1 17 2.
+ <_>
+
+ <_>
+ 0 3 13 2 -1.
+ <_>
+ 0 4 13 1 2.
+ <_>
+
+ <_>
+ 18 3 2 17 -1.
+ <_>
+ 18 3 1 17 2.
+ <_>
+
+ <_>
+ 0 3 2 17 -1.
+ <_>
+ 1 3 1 17 2.
+ <_>
+
+ <_>
+ 2 0 18 6 -1.
+ <_>
+ 2 2 18 2 3.
+ <_>
+
+ <_>
+ 6 5 4 13 -1.
+ <_>
+ 8 5 2 13 2.
+ <_>
+
+ <_>
+ 7 3 12 16 -1.
+ <_>
+ 7 3 6 16 2.
+ <_>
+
+ <_>
+ 0 12 16 2 -1.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 11 6 8 12 -1.
+ <_>
+ 11 10 8 4 3.
+ <_>
+
+ <_>
+ 0 12 6 7 -1.
+ <_>
+ 3 12 3 7 2.
+ <_>
+
+ <_>
+ 12 0 8 12 -1.
+ <_>
+ 16 0 4 6 2.
+ <_>
+ 12 6 4 6 2.
+ <_>
+
+ <_>
+ 5 6 10 10 -1.
+ <_>
+ 5 6 5 5 2.
+ <_>
+ 10 11 5 5 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 10 2 2 18 -1.
+ <_>
+ 10 11 2 9 2.
+ <_>
+
+ <_>
+ 4 9 12 8 -1.
+ <_>
+ 4 9 6 4 2.
+ <_>
+ 10 13 6 4 2.
+ <_>
+
+ <_>
+ 18 0 2 13 -1.
+ <_>
+ 18 0 1 13 2.
+ <_>
+
+ <_>
+ 2 8 12 4 -1.
+ <_>
+ 6 8 4 4 3.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 18 0 2 13 -1.
+ <_>
+ 18 0 1 13 2.
+ <_>
+
+ <_>
+ 6 3 2 17 -1.
+ <_>
+ 7 3 1 17 2.
+ <_>
+
+ <_>
+ 11 9 4 8 -1.
+ <_>
+ 11 9 2 8 2.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 7 9 2 8 2.
+ <_>
+
+ <_>
+ 18 0 2 13 -1.
+ <_>
+ 18 0 1 13 2.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 0 4 13 3 -1.
+ <_>
+ 0 5 13 1 3.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 2 10 8 6 -1.
+ <_>
+ 2 12 8 2 3.
+ <_>
+
+ <_>
+ 5 4 14 8 -1.
+ <_>
+ 12 4 7 4 2.
+ <_>
+ 5 8 7 4 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 5 6 3 2.
+ <_>
+ 10 8 6 3 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 5 5 9 5 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 6 4 8 6 -1.
+ <_>
+ 6 6 8 2 3.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 10 1 10 4 -1.
+ <_>
+ 10 1 5 4 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 15 0 3 18 -1.
+ <_>
+ 15 6 3 6 3.
+ <_>
+
+ <_>
+ 1 2 9 15 -1.
+ <_>
+ 4 2 3 15 3.
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 7 6 4 4 2.
+ <_>
+
+ <_>
+ 5 5 8 5 -1.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 4 2 15 2 -1.
+ <_>
+ 4 3 15 1 2.
+ <_>
+
+ <_>
+ 1 17 13 3 -1.
+ <_>
+ 1 18 13 1 3.
+ <_>
+
+ <_>
+ 6 6 8 8 -1.
+ <_>
+ 6 10 8 4 2.
+ <_>
+
+ <_>
+ 4 9 5 9 -1.
+ <_>
+ 4 12 5 3 3.
+ <_>
+
+ <_>
+ 13 9 4 10 -1.
+ <_>
+ 13 14 4 5 2.
+ <_>
+
+ <_>
+ 2 9 12 10 -1.
+ <_>
+ 2 9 6 5 2.
+ <_>
+ 8 14 6 5 2.
+ <_>
+
+ <_>
+ 3 7 15 3 -1.
+ <_>
+ 8 7 5 3 3.
+ <_>
+
+ <_>
+ 1 0 8 12 -1.
+ <_>
+ 1 0 4 6 2.
+ <_>
+ 5 6 4 6 2.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 5 9 5 10 -1.
+ <_>
+ 5 14 5 5 2.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 9 3 10 12 -1.
+ <_>
+ 9 9 10 6 2.
+ <_>
+
+ <_>
+ 1 0 7 6 -1.
+ <_>
+ 1 2 7 2 3.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 5 9 5 4 2.
+ <_>
+ 10 13 5 4 2.
+ <_>
+
+ <_>
+ 11 5 5 9 -1.
+ <_>
+ 11 8 5 3 3.
+ <_>
+
+ <_>
+ 6 3 8 8 -1.
+ <_>
+ 6 3 4 4 2.
+ <_>
+ 10 7 4 4 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 11 15 9 4 -1.
+ <_>
+ 11 17 9 2 2.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 12 15 8 4 -1.
+ <_>
+ 12 17 8 2 2.
+ <_>
+
+ <_>
+ 0 15 8 4 -1.
+ <_>
+ 0 17 8 2 2.
+ <_>
+
+ <_>
+ 0 11 20 3 -1.
+ <_>
+ 0 12 20 1 3.
+ <_>
+
+ <_>
+ 0 0 3 16 -1.
+ <_>
+ 1 0 1 16 3.
+ <_>
+
+ <_>
+ 3 2 14 11 -1.
+ <_>
+ 3 2 7 11 2.
+ <_>
+
+ <_>
+ 4 2 8 6 -1.
+ <_>
+ 4 5 8 3 2.
+ <_>
+
+ <_>
+ 3 0 15 6 -1.
+ <_>
+ 3 2 15 2 3.
+ <_>
+
+ <_>
+ 1 6 13 3 -1.
+ <_>
+ 1 7 13 1 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 15 14 5 6 -1.
+ <_>
+ 15 17 5 3 2.
+ <_>
+
+ <_>
+ 3 4 13 3 -1.
+ <_>
+ 3 5 13 1 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 8 7 6 -1.
+ <_>
+ 0 10 7 2 3.
+ <_>
+
+ <_>
+ 2 6 16 6 -1.
+ <_>
+ 10 6 8 3 2.
+ <_>
+ 2 9 8 3 2.
+ <_>
+
+ <_>
+ 2 7 3 10 -1.
+ <_>
+ 2 12 3 5 2.
+ <_>
+
+ <_>
+ 15 14 5 6 -1.
+ <_>
+ 15 17 5 3 2.
+ <_>
+
+ <_>
+ 5 7 10 6 -1.
+ <_>
+ 5 7 5 3 2.
+ <_>
+ 10 10 5 3 2.
+ <_>
+
+ <_>
+ 15 14 5 6 -1.
+ <_>
+ 15 17 5 3 2.
+ <_>
+
+ <_>
+ 0 14 5 6 -1.
+ <_>
+ 0 17 5 3 2.
+ <_>
+
+ <_>
+ 10 5 9 15 -1.
+ <_>
+ 10 10 9 5 3.
+ <_>
+
+ <_>
+ 5 7 9 5 -1.
+ <_>
+ 8 7 3 5 3.
+ <_>
+
+ <_>
+ 13 1 7 6 -1.
+ <_>
+ 13 3 7 2 3.
+ <_>
+
+ <_>
+ 3 4 13 3 -1.
+ <_>
+ 3 5 13 1 3.
+ <_>
+
+ <_>
+ 13 1 7 6 -1.
+ <_>
+ 13 3 7 2 3.
+ <_>
+
+ <_>
+ 0 1 7 6 -1.
+ <_>
+ 0 3 7 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 10 1 10 18 -1.
+ <_>
+ 10 1 5 18 2.
+ <_>
+
+ <_>
+ 0 1 10 18 -1.
+ <_>
+ 5 1 5 18 2.
+ <_>
+
+ <_>
+ 2 1 18 5 -1.
+ <_>
+ 8 1 6 5 3.
+ <_>
+
+ <_>
+ 4 5 4 8 -1.
+ <_>
+ 4 9 4 4 2.
+ <_>
+
+ <_>
+ 9 3 3 10 -1.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 9 11 9 5 -1.
+ <_>
+ 12 11 3 5 3.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+ 10 13 7 2 2.
+ <_>
+
+ <_>
+ 10 5 8 4 -1.
+ <_>
+ 10 5 4 4 2.
+ <_>
+
+ <_>
+ 8 3 3 13 -1.
+ <_>
+ 9 3 1 13 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 2 14 -1.
+ <_>
+ 7 0 1 14 2.
+ <_>
+
+ <_>
+ 10 5 8 4 -1.
+ <_>
+ 10 5 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 4 -1.
+ <_>
+ 4 0 4 4 2.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 14 0 3 13 2.
+ <_>
+
+ <_>
+ 0 1 6 11 -1.
+ <_>
+ 3 1 3 11 2.
+ <_>
+
+ <_>
+ 9 11 9 5 -1.
+ <_>
+ 12 11 3 5 3.
+ <_>
+
+ <_>
+ 2 11 9 5 -1.
+ <_>
+ 5 11 3 5 3.
+ <_>
+
+ <_>
+ 7 12 6 7 -1.
+ <_>
+ 9 12 2 7 3.
+ <_>
+
+ <_>
+ 0 0 4 15 -1.
+ <_>
+ 2 0 2 15 2.
+ <_>
+
+ <_>
+ 12 2 2 15 -1.
+ <_>
+ 12 2 1 15 2.
+ <_>
+
+ <_>
+ 6 2 2 15 -1.
+ <_>
+ 7 2 1 15 2.
+ <_>
+
+ <_>
+ 6 0 13 2 -1.
+ <_>
+ 6 1 13 1 2.
+ <_>
+
+ <_>
+ 0 12 13 3 -1.
+ <_>
+ 0 13 13 1 3.
+ <_>
+
+ <_>
+ 10 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 5 3 4 7 -1.
+ <_>
+ 7 3 2 7 2.
+ <_>
+
+ <_>
+ 10 5 8 4 -1.
+ <_>
+ 10 5 4 4 2.
+ <_>
+
+ <_>
+ 2 5 8 4 -1.
+ <_>
+ 6 5 4 4 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 8 0 4 15 -1.
+ <_>
+ 8 5 4 5 3.
+ <_>
+
+ <_>
+ 5 0 11 8 -1.
+ <_>
+ 5 4 11 4 2.
+ <_>
+
+ <_>
+ 2 3 8 14 -1.
+ <_>
+ 6 3 4 14 2.
+ <_>
+
+ <_>
+ 15 1 5 6 -1.
+ <_>
+ 15 4 5 3 2.
+ <_>
+
+ <_>
+ 0 1 5 6 -1.
+ <_>
+ 0 4 5 3 2.
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 8 4 2 7 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+
+ <_>
+ 14 0 2 19 -1.
+ <_>
+ 14 0 1 19 2.
+ <_>
+
+ <_>
+ 4 0 2 19 -1.
+ <_>
+ 5 0 1 19 2.
+ <_>
+
+ <_>
+ 11 13 6 7 -1.
+ <_>
+ 13 13 2 7 3.
+ <_>
+
+ <_>
+ 1 8 18 3 -1.
+ <_>
+ 7 8 6 3 3.
+ <_>
+
+ <_>
+ 8 7 5 8 -1.
+ <_>
+ 8 11 5 4 2.
+ <_>
+
+ <_>
+ 6 2 8 16 -1.
+ <_>
+ 6 10 8 8 2.
+ <_>
+
+ <_>
+ 8 3 6 9 -1.
+ <_>
+ 8 6 6 3 3.
+ <_>
+
+ <_>
+ 2 16 7 4 -1.
+ <_>
+ 2 18 7 2 2.
+ <_>
+
+ <_>
+ 8 7 7 4 -1.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 7 4 5 12 -1.
+ <_>
+ 7 8 5 4 3.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 3 6 14 4 -1.
+ <_>
+ 3 6 7 2 2.
+ <_>
+ 10 8 7 2 2.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 7 4 6 10 -1.
+ <_>
+ 7 4 3 5 2.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 13 0 3 15 -1.
+ <_>
+ 14 0 1 15 3.
+ <_>
+
+ <_>
+ 0 14 14 3 -1.
+ <_>
+ 0 15 14 1 3.
+ <_>
+
+ <_>
+ 1 4 18 15 -1.
+ <_>
+ 1 9 18 5 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 4 0 3 14 -1.
+ <_>
+ 5 0 1 14 3.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 1 15 18 4 -1.
+ <_>
+ 1 15 9 2 2.
+ <_>
+ 10 17 9 2 2.
+ <_>
+
+ <_>
+ 10 13 8 6 -1.
+ <_>
+ 10 15 8 2 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 1 13 7 6 -1.
+ <_>
+ 1 15 7 2 3.
+ <_>
+
+ <_>
+ 8 0 10 18 -1.
+ <_>
+ 13 0 5 9 2.
+ <_>
+ 8 9 5 9 2.
+ <_>
+
+ <_>
+ 0 3 18 3 -1.
+ <_>
+ 6 3 6 3 3.
+ <_>
+
+ <_>
+ 10 4 10 6 -1.
+ <_>
+ 15 4 5 3 2.
+ <_>
+ 10 7 5 3 2.
+ <_>
+
+ <_>
+ 2 8 16 4 -1.
+ <_>
+ 10 8 8 4 2.
+ <_>
+
+ <_>
+ 4 4 12 12 -1.
+ <_>
+ 10 4 6 6 2.
+ <_>
+ 4 10 6 6 2.
+ <_>
+
+ <_>
+ 1 0 18 3 -1.
+ <_>
+ 10 0 9 3 2.
+ <_>
+
+ <_>
+ 11 4 4 10 -1.
+ <_>
+ 11 9 4 5 2.
+ <_>
+
+ <_>
+ 2 4 5 15 -1.
+ <_>
+ 2 9 5 5 3.
+ <_>
+
+ <_>
+ 17 6 2 14 -1.
+ <_>
+ 17 13 2 7 2.
+ <_>
+
+ <_>
+ 1 6 2 14 -1.
+ <_>
+ 1 13 2 7 2.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 2 10 18 3 -1.
+ <_>
+ 2 11 18 1 3.
+ <_>
+
+ <_>
+ 0 2 7 4 -1.
+ <_>
+ 0 4 7 2 2.
+ <_>
+
+ <_>
+ 2 0 16 6 -1.
+ <_>
+ 2 2 16 2 3.
+ <_>
+
+ <_>
+ 2 17 15 3 -1.
+ <_>
+ 7 17 5 3 3.
+ <_>
+
+ <_>
+ 12 13 6 7 -1.
+ <_>
+ 12 13 3 7 2.
+ <_>
+
+ <_>
+ 2 13 6 7 -1.
+ <_>
+ 5 13 3 7 2.
+ <_>
+
+ <_>
+ 14 2 2 13 -1.
+ <_>
+ 14 2 1 13 2.
+ <_>
+
+ <_>
+ 7 12 4 8 -1.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 5 15 6 5 -1.
+ <_>
+ 8 15 3 5 2.
+ <_>
+
+ <_>
+ 14 2 2 13 -1.
+ <_>
+ 14 2 1 13 2.
+ <_>
+
+ <_>
+ 4 2 2 13 -1.
+ <_>
+ 5 2 1 13 2.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 13 11 7 4 -1.
+ <_>
+ 13 13 7 2 2.
+ <_>
+
+ <_>
+ 0 10 13 3 -1.
+ <_>
+ 0 11 13 1 3.
+ <_>
+
+ <_>
+ 6 7 9 12 -1.
+ <_>
+ 6 11 9 4 3.
+ <_>
+
+ <_>
+ 2 2 14 4 -1.
+ <_>
+ 2 2 7 2 2.
+ <_>
+ 9 4 7 2 2.
+ <_>
+
+ <_>
+ 10 0 2 13 -1.
+ <_>
+ 10 0 1 13 2.
+ <_>
+
+ <_>
+ 8 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 13 11 7 4 -1.
+ <_>
+ 13 13 7 2 2.
+ <_>
+
+ <_>
+ 6 11 7 6 -1.
+ <_>
+ 6 13 7 2 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 11 7 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+
+ <_>
+ 4 12 12 6 -1.
+ <_>
+ 8 12 4 6 3.
+ <_>
+
+ <_>
+ 5 6 6 10 -1.
+ <_>
+ 8 6 3 10 2.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 2 2 14 6 -1.
+ <_>
+ 2 2 7 3 2.
+ <_>
+ 9 5 7 3 2.
+ <_>
+
+ <_>
+ 5 0 10 7 -1.
+ <_>
+ 5 0 5 7 2.
+ <_>
+
+ <_>
+ 6 6 8 5 -1.
+ <_>
+ 10 6 4 5 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 8 0 10 18 -1.
+ <_>
+ 13 0 5 9 2.
+ <_>
+ 8 9 5 9 2.
+ <_>
+
+ <_>
+ 2 5 14 6 -1.
+ <_>
+ 2 5 7 3 2.
+ <_>
+ 9 8 7 3 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 10 1 3 5 2.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 9 9 10 6 -1.
+ <_>
+ 14 9 5 3 2.
+ <_>
+ 9 12 5 3 2.
+ <_>
+
+ <_>
+ 2 8 6 10 -1.
+ <_>
+ 2 13 6 5 2.
+ <_>
+
+ <_>
+ 1 10 19 2 -1.
+ <_>
+ 1 11 19 1 2.
+ <_>
+
+ <_>
+ 4 9 12 6 -1.
+ <_>
+ 4 12 12 3 2.
+ <_>
+
+ <_>
+ 9 7 4 12 -1.
+ <_>
+ 9 11 4 4 3.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 10 14 7 6 -1.
+ <_>
+ 10 16 7 2 3.
+ <_>
+
+ <_>
+ 3 14 7 6 -1.
+ <_>
+ 3 16 7 2 3.
+ <_>
+
+ <_>
+ 15 5 4 15 -1.
+ <_>
+ 15 5 2 15 2.
+ <_>
+
+ <_>
+ 0 3 17 10 -1.
+ <_>
+ 0 8 17 5 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 0 20 4 -1.
+ <_>
+ 10 0 10 4 2.
+ <_>
+
+ <_>
+ 6 1 10 6 -1.
+ <_>
+ 11 1 5 3 2.
+ <_>
+ 6 4 5 3 2.
+ <_>
+
+ <_>
+ 0 9 18 11 -1.
+ <_>
+ 6 9 6 11 3.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 0 10 20 6 -1.
+ <_>
+ 0 12 20 2 3.
+ <_>
+
+ <_>
+ 10 9 6 10 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+ 10 15 3 5 2.
+ <_>
+
+ <_>
+ 6 1 8 15 -1.
+ <_>
+ 6 6 8 5 3.
+ <_>
+
+ <_>
+ 0 8 18 3 -1.
+ <_>
+ 0 9 18 1 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 3 10 6 10 -1.
+ <_>
+ 3 10 3 5 2.
+ <_>
+ 6 15 3 5 2.
+ <_>
+
+ <_>
+ 11 8 8 12 -1.
+ <_>
+ 15 8 4 6 2.
+ <_>
+ 11 14 4 6 2.
+ <_>
+
+ <_>
+ 1 8 8 12 -1.
+ <_>
+ 1 8 4 6 2.
+ <_>
+ 5 14 4 6 2.
+ <_>
+
+ <_>
+ 13 7 3 13 -1.
+ <_>
+ 14 7 1 13 3.
+ <_>
+
+ <_>
+ 6 11 5 9 -1.
+ <_>
+ 6 14 5 3 3.
+ <_>
+
+ <_>
+ 7 14 12 5 -1.
+ <_>
+ 7 14 6 5 2.
+ <_>
+
+ <_>
+ 2 0 4 8 -1.
+ <_>
+ 2 4 4 4 2.
+ <_>
+
+ <_>
+ 5 0 10 6 -1.
+ <_>
+ 5 3 10 3 2.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 13 5 2 13 -1.
+ <_>
+ 13 5 1 13 2.
+ <_>
+
+ <_>
+ 5 9 6 10 -1.
+ <_>
+ 5 9 3 5 2.
+ <_>
+ 8 14 3 5 2.
+ <_>
+
+ <_>
+ 2 9 18 3 -1.
+ <_>
+ 8 9 6 3 3.
+ <_>
+
+ <_>
+ 5 5 2 13 -1.
+ <_>
+ 6 5 1 13 2.
+ <_>
+
+ <_>
+ 11 10 4 10 -1.
+ <_>
+ 11 10 2 10 2.
+ <_>
+
+ <_>
+ 5 10 4 10 -1.
+ <_>
+ 7 10 2 10 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 4 2 15 14 -1.
+ <_>
+ 9 2 5 14 3.
+ <_>
+
+ <_>
+ 1 2 15 14 -1.
+ <_>
+ 6 2 5 14 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 3 0 6 9 -1.
+ <_>
+ 5 0 2 9 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 1 3 10 8 -1.
+ <_>
+ 1 3 5 4 2.
+ <_>
+ 6 7 5 4 2.
+ <_>
+
+ <_>
+ 5 13 14 6 -1.
+ <_>
+ 5 13 7 6 2.
+ <_>
+
+ <_>
+ 1 13 14 6 -1.
+ <_>
+ 8 13 7 6 2.
+ <_>
+
+ <_>
+ 7 2 13 3 -1.
+ <_>
+ 7 3 13 1 3.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 10 7 10 2 2.
+ <_>
+
+ <_>
+ 5 0 15 6 -1.
+ <_>
+ 10 0 5 6 3.
+ <_>
+
+ <_>
+ 0 0 15 6 -1.
+ <_>
+ 5 0 5 6 3.
+ <_>
+
+ <_>
+ 12 1 8 13 -1.
+ <_>
+ 12 1 4 13 2.
+ <_>
+
+ <_>
+ 0 1 8 13 -1.
+ <_>
+ 4 1 4 13 2.
+ <_>
+
+ <_>
+ 15 0 4 18 -1.
+ <_>
+ 15 0 2 18 2.
+ <_>
+
+ <_>
+ 4 0 12 4 -1.
+ <_>
+ 8 0 4 4 3.
+ <_>
+
+ <_>
+ 15 0 4 18 -1.
+ <_>
+ 15 0 2 18 2.
+ <_>
+
+ <_>
+ 1 0 4 18 -1.
+ <_>
+ 3 0 2 18 2.
+ <_>
+
+ <_>
+ 4 12 12 6 -1.
+ <_>
+ 8 12 4 6 3.
+ <_>
+
+ <_>
+ 2 0 6 5 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+
+ <_>
+ 12 5 4 12 -1.
+ <_>
+ 12 9 4 4 3.
+ <_>
+
+ <_>
+ 4 4 11 6 -1.
+ <_>
+ 4 6 11 2 3.
+ <_>
+
+ <_>
+ 11 6 5 6 -1.
+ <_>
+ 11 9 5 3 2.
+ <_>
+
+ <_>
+ 5 6 8 8 -1.
+ <_>
+ 5 6 4 4 2.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 10 9 4 8 -1.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 6 14 8 4 -1.
+ <_>
+ 6 16 8 2 2.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 1 9 13 2 -1.
+ <_>
+ 1 10 13 1 2.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 6 2 4 7 -1.
+ <_>
+ 8 2 2 7 2.
+ <_>
+
+ <_>
+ 9 5 7 14 -1.
+ <_>
+ 9 12 7 7 2.
+ <_>
+
+ <_>
+ 0 0 17 2 -1.
+ <_>
+ 0 1 17 1 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 10 9 5 4 2.
+ <_>
+ 5 13 5 4 2.
+ <_>
+
+ <_>
+ 3 10 8 6 -1.
+ <_>
+ 3 12 8 2 3.
+ <_>
+
+ <_>
+ 7 11 7 6 -1.
+ <_>
+ 7 13 7 2 3.
+ <_>
+
+ <_>
+ 3 3 13 2 -1.
+ <_>
+ 3 4 13 1 2.
+ <_>
+
+ <_>
+ 10 2 5 6 -1.
+ <_>
+ 10 5 5 3 2.
+ <_>
+
+ <_>
+ 6 5 2 14 -1.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 12 9 4 8 -1.
+ <_>
+ 12 13 4 4 2.
+ <_>
+
+ <_>
+ 4 9 4 8 -1.
+ <_>
+ 4 13 4 4 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 1 4 4 14 -1.
+ <_>
+ 1 4 2 7 2.
+ <_>
+ 3 11 2 7 2.
+ <_>
+
+ <_>
+ 11 0 3 20 -1.
+ <_>
+ 12 0 1 20 3.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 6 2 9 5 -1.
+ <_>
+ 9 2 3 5 3.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 11 0 3 20 -1.
+ <_>
+ 12 0 1 20 3.
+ <_>
+
+ <_>
+ 0 0 4 14 -1.
+ <_>
+ 2 0 2 14 2.
+ <_>
+
+ <_>
+ 11 0 3 20 -1.
+ <_>
+ 12 0 1 20 3.
+ <_>
+
+ <_>
+ 6 0 3 20 -1.
+ <_>
+ 7 0 1 20 3.
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 16 2 2 7 3.
+ <_>
+
+ <_>
+ 0 2 6 7 -1.
+ <_>
+ 2 2 2 7 3.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 1 1 18 14 -1.
+ <_>
+ 7 1 6 14 3.
+ <_>
+
+ <_>
+ 10 1 3 13 -1.
+ <_>
+ 11 1 1 13 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 4 10 16 4 -1.
+ <_>
+ 12 10 8 2 2.
+ <_>
+ 4 12 8 2 2.
+ <_>
+
+ <_>
+ 0 10 18 4 -1.
+ <_>
+ 0 10 9 2 2.
+ <_>
+ 9 12 9 2 2.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 1 4 14 6 -1.
+ <_>
+ 1 4 7 3 2.
+ <_>
+ 8 7 7 3 2.
+ <_>
+
+ <_>
+ 11 2 3 10 -1.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 5 3 9 10 -1.
+ <_>
+ 5 8 9 5 2.
+ <_>
+
+ <_>
+ 11 2 3 10 -1.
+ <_>
+ 11 7 3 5 2.
+ <_>
+
+ <_>
+ 6 2 3 10 -1.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 5 0 3 20 -1.
+ <_>
+ 6 0 1 20 3.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 10 2 8 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 7 10 2 8 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 4 7 12 8 -1.
+ <_>
+ 8 7 4 8 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 0 13 8 2 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 3 0 16 10 -1.
+ <_>
+ 11 0 8 5 2.
+ <_>
+ 3 5 8 5 2.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 0 3 18 1 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 8 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+ 3 17 7 2 2.
+ <_>
+
+ <_>
+ 4 1 8 8 -1.
+ <_>
+ 4 1 4 4 2.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 0 9 13 3 -1.
+ <_>
+ 0 10 13 1 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 6 7 13 2 -1.
+ <_>
+ 6 8 13 1 2.
+ <_>
+
+ <_>
+ 4 11 5 9 -1.
+ <_>
+ 4 14 5 3 3.
+ <_>
+
+ <_>
+ 7 11 7 6 -1.
+ <_>
+ 7 13 7 2 3.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 2 1 2 7 3.
+ <_>
+
+ <_>
+ 5 8 13 2 -1.
+ <_>
+ 5 9 13 1 2.
+ <_>
+
+ <_>
+ 0 7 14 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 14 7 6 12 -1.
+ <_>
+ 17 7 3 6 2.
+ <_>
+ 14 13 3 6 2.
+ <_>
+
+ <_>
+ 3 16 12 4 -1.
+ <_>
+ 7 16 4 4 3.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 2 7 15 5 -1.
+ <_>
+ 7 7 5 5 3.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 7 0 6 12 -1.
+ <_>
+ 10 0 3 6 2.
+ <_>
+ 7 6 3 6 2.
+ <_>
+
+ <_>
+ 4 3 12 10 -1.
+ <_>
+ 8 3 4 10 3.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 8 6 4 5 2.
+ <_>
+
+ <_>
+ 0 3 20 8 -1.
+ <_>
+ 0 7 20 4 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 7 6 12 -1.
+ <_>
+ 0 7 3 6 2.
+ <_>
+ 3 13 3 6 2.
+ <_>
+
+ <_>
+ 12 5 2 14 -1.
+ <_>
+ 12 12 2 7 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 2 0 16 8 -1.
+ <_>
+ 2 0 8 4 2.
+ <_>
+ 10 4 8 4 2.
+ <_>
+
+ <_>
+ 9 5 7 9 -1.
+ <_>
+ 9 8 7 3 3.
+ <_>
+
+ <_>
+ 0 12 8 8 -1.
+ <_>
+ 0 12 4 4 2.
+ <_>
+ 4 16 4 4 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 10 16 4 -1.
+ <_>
+ 0 10 8 2 2.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 10 2 10 2 2.
+ <_>
+ 0 4 10 2 2.
+ <_>
+
+ <_>
+ 3 5 4 14 -1.
+ <_>
+ 3 5 2 7 2.
+ <_>
+ 5 12 2 7 2.
+ <_>
+
+ <_>
+ 5 10 11 9 -1.
+ <_>
+ 5 13 11 3 3.
+ <_>
+
+ <_>
+ 2 9 4 9 -1.
+ <_>
+ 4 9 2 9 2.
+ <_>
+
+ <_>
+ 3 14 14 3 -1.
+ <_>
+ 3 15 14 1 3.
+ <_>
+
+ <_>
+ 3 4 4 15 -1.
+ <_>
+ 3 9 4 5 3.
+ <_>
+
+ <_>
+ 7 4 13 3 -1.
+ <_>
+ 7 5 13 1 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 11 0 9 7 -1.
+ <_>
+ 14 0 3 7 3.
+ <_>
+
+ <_>
+ 1 10 6 7 -1.
+ <_>
+ 3 10 2 7 3.
+ <_>
+
+ <_>
+ 13 0 3 17 -1.
+ <_>
+ 14 0 1 17 3.
+ <_>
+
+ <_>
+ 9 4 2 13 -1.
+ <_>
+ 10 4 1 13 2.
+ <_>
+
+ <_>
+ 6 6 12 9 -1.
+ <_>
+ 10 6 4 9 3.
+ <_>
+
+ <_>
+ 2 6 12 9 -1.
+ <_>
+ 6 6 4 9 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 10 14 7 2 2.
+ <_>
+ 3 16 7 2 2.
+ <_>
+
+ <_>
+ 3 3 13 4 -1.
+ <_>
+ 3 5 13 2 2.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 10 16 10 2 3.
+ <_>
+
+ <_>
+ 0 14 11 6 -1.
+ <_>
+ 0 16 11 2 3.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 4 0 3 17 -1.
+ <_>
+ 5 0 1 17 3.
+ <_>
+
+ <_>
+ 13 3 3 17 -1.
+ <_>
+ 14 3 1 17 3.
+ <_>
+
+ <_>
+ 1 0 18 9 -1.
+ <_>
+ 7 0 6 9 3.
+ <_>
+
+ <_>
+ 9 7 9 6 -1.
+ <_>
+ 12 7 3 6 3.
+ <_>
+
+ <_>
+ 4 3 3 17 -1.
+ <_>
+ 5 3 1 17 3.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 5 14 15 3 -1.
+ <_>
+ 5 15 15 1 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 7 7 9 6 -1.
+ <_>
+ 7 10 9 3 2.
+ <_>
+
+ <_>
+ 8 5 3 10 -1.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 5 8 14 2 -1.
+ <_>
+ 5 9 14 1 2.
+ <_>
+
+ <_>
+ 0 6 13 3 -1.
+ <_>
+ 0 7 13 1 3.
+ <_>
+
+ <_>
+ 3 13 17 6 -1.
+ <_>
+ 3 15 17 2 3.
+ <_>
+
+ <_>
+ 6 15 8 4 -1.
+ <_>
+ 6 17 8 2 2.
+ <_>
+
+ <_>
+ 6 7 14 2 -1.
+ <_>
+ 6 8 14 1 2.
+ <_>
+
+ <_>
+ 6 7 6 8 -1.
+ <_>
+ 6 11 6 4 2.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 8 5 12 4 -1.
+ <_>
+ 12 5 4 4 3.
+ <_>
+
+ <_>
+ 6 5 2 14 -1.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 11 0 9 7 -1.
+ <_>
+ 14 0 3 7 3.
+ <_>
+
+ <_>
+ 0 5 12 4 -1.
+ <_>
+ 4 5 4 4 3.
+ <_>
+
+ <_>
+ 11 0 9 7 -1.
+ <_>
+ 14 0 3 7 3.
+ <_>
+
+ <_>
+ 0 0 9 7 -1.
+ <_>
+ 3 0 3 7 3.
+ <_>
+
+ <_>
+ 2 13 16 4 -1.
+ <_>
+ 10 13 8 2 2.
+ <_>
+ 2 15 8 2 2.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 4 10 4 2.
+ <_>
+
+ <_>
+ 5 2 10 14 -1.
+ <_>
+ 5 9 10 7 2.
+ <_>
+
+ <_>
+ 7 7 13 2 -1.
+ <_>
+ 7 8 13 1 2.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 4 0 13 3 -1.
+ <_>
+ 4 1 13 1 3.
+ <_>
+
+ <_>
+ 5 0 10 4 -1.
+ <_>
+ 5 2 10 2 2.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 0 18 3 -1.
+ <_>
+ 9 0 9 3 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 11 16 8 4 -1.
+ <_>
+ 11 16 4 4 2.
+ <_>
+
+ <_>
+ 0 3 18 15 -1.
+ <_>
+ 0 8 18 5 3.
+ <_>
+
+ <_>
+ 2 9 16 8 -1.
+ <_>
+ 2 13 16 4 2.
+ <_>
+
+ <_>
+ 0 10 7 4 -1.
+ <_>
+ 0 12 7 2 2.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 10 5 6 6 2.
+ <_>
+ 4 11 6 6 2.
+ <_>
+
+ <_>
+ 5 12 9 5 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 18 0 2 16 -1.
+ <_>
+ 18 8 2 8 2.
+ <_>
+
+ <_>
+ 0 0 2 16 -1.
+ <_>
+ 0 8 2 8 2.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 14 7 6 10 -1.
+ <_>
+ 17 7 3 5 2.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 0 2 12 6 -1.
+ <_>
+ 0 2 6 3 2.
+ <_>
+ 6 5 6 3 2.
+ <_>
+
+ <_>
+ 10 0 10 10 -1.
+ <_>
+ 15 0 5 5 2.
+ <_>
+ 10 5 5 5 2.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 2 7 18 4 -1.
+ <_>
+ 11 7 9 2 2.
+ <_>
+ 2 9 9 2 2.
+ <_>
+
+ <_>
+ 5 3 6 14 -1.
+ <_>
+ 5 3 3 7 2.
+ <_>
+ 8 10 3 7 2.
+ <_>
+
+ <_>
+ 9 2 3 13 -1.
+ <_>
+ 10 2 1 13 3.
+ <_>
+
+ <_>
+ 0 7 6 10 -1.
+ <_>
+ 0 7 3 5 2.
+ <_>
+ 3 12 3 5 2.
+ <_>
+
+ <_>
+ 13 4 3 13 -1.
+ <_>
+ 14 4 1 13 3.
+ <_>
+
+ <_>
+ 1 16 8 4 -1.
+ <_>
+ 5 16 4 4 2.
+ <_>
+
+ <_>
+ 5 15 15 5 -1.
+ <_>
+ 10 15 5 5 3.
+ <_>
+
+ <_>
+ 7 3 4 13 -1.
+ <_>
+ 9 3 2 13 2.
+ <_>
+
+ <_>
+ 7 4 13 3 -1.
+ <_>
+ 7 5 13 1 3.
+ <_>
+
+ <_>
+ 2 0 16 8 -1.
+ <_>
+ 2 0 8 4 2.
+ <_>
+ 10 4 8 4 2.
+ <_>
+
+ <_>
+ 13 7 6 11 -1.
+ <_>
+ 15 7 2 11 3.
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ <_>
+
+ <_>
+ 7 5 9 8 -1.
+ <_>
+ 10 5 3 8 3.
+ <_>
+
+ <_>
+ 4 5 3 13 -1.
+ <_>
+ 5 5 1 13 3.
+ <_>
+
+ <_>
+ 10 4 6 12 -1.
+ <_>
+ 10 8 6 4 3.
+ <_>
+
+ <_>
+ 7 4 6 7 -1.
+ <_>
+ 9 4 2 7 3.
+ <_>
+
+ <_>
+ 5 6 12 4 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 3 6 12 4 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 16 4 4 8 -1.
+ <_>
+ 16 8 4 4 2.
+ <_>
+
+ <_>
+ 4 5 9 8 -1.
+ <_>
+ 7 5 3 8 3.
+ <_>
+
+ <_>
+ 16 4 4 8 -1.
+ <_>
+ 16 8 4 4 2.
+ <_>
+
+ <_>
+ 4 5 8 15 -1.
+ <_>
+ 4 10 8 5 3.
+ <_>
+
+ <_>
+ 5 14 13 2 -1.
+ <_>
+ 5 15 13 1 2.
+ <_>
+
+ <_>
+ 1 7 4 13 -1.
+ <_>
+ 3 7 2 13 2.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 6 9 3 8 2.
+ <_>
+
+ <_>
+ 8 1 9 15 -1.
+ <_>
+ 11 1 3 15 3.
+ <_>
+
+ <_>
+ 3 1 9 15 -1.
+ <_>
+ 6 1 3 15 3.
+ <_>
+
+ <_>
+ 9 7 9 6 -1.
+ <_>
+ 12 7 3 6 3.
+ <_>
+
+ <_>
+ 0 5 6 7 -1.
+ <_>
+ 2 5 2 7 3.
+ <_>
+
+ <_>
+ 11 2 2 16 -1.
+ <_>
+ 11 2 1 16 2.
+ <_>
+
+ <_>
+ 1 1 18 10 -1.
+ <_>
+ 7 1 6 10 3.
+ <_>
+
+ <_>
+ 10 8 10 8 -1.
+ <_>
+ 15 8 5 4 2.
+ <_>
+ 10 12 5 4 2.
+ <_>
+
+ <_>
+ 0 8 10 8 -1.
+ <_>
+ 0 8 5 4 2.
+ <_>
+ 5 12 5 4 2.
+ <_>
+
+ <_>
+ 11 2 2 16 -1.
+ <_>
+ 11 2 1 16 2.
+ <_>
+
+ <_>
+ 3 9 12 11 -1.
+ <_>
+ 9 9 6 11 2.
+ <_>
+
+ <_>
+ 6 7 10 3 -1.
+ <_>
+ 6 7 5 3 2.
+ <_>
+
+ <_>
+ 3 1 10 16 -1.
+ <_>
+ 3 1 5 8 2.
+ <_>
+ 8 9 5 8 2.
+ <_>
+
+ <_>
+ 8 3 8 10 -1.
+ <_>
+ 12 3 4 5 2.
+ <_>
+ 8 8 4 5 2.
+ <_>
+
+ <_>
+ 4 3 8 10 -1.
+ <_>
+ 4 3 4 5 2.
+ <_>
+ 8 8 4 5 2.
+ <_>
+
+ <_>
+ 10 11 9 6 -1.
+ <_>
+ 10 14 9 3 2.
+ <_>
+
+ <_>
+ 1 11 9 6 -1.
+ <_>
+ 1 14 9 3 2.
+ <_>
+
+ <_>
+ 6 16 14 4 -1.
+ <_>
+ 13 16 7 2 2.
+ <_>
+ 6 18 7 2 2.
+ <_>
+
+ <_>
+ 1 0 9 18 -1.
+ <_>
+ 1 6 9 6 3.
+ <_>
+
+ <_>
+ 8 3 12 4 -1.
+ <_>
+ 8 5 12 2 2.
+ <_>
+
+ <_>
+ 1 5 7 9 -1.
+ <_>
+ 1 8 7 3 3.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 9 2 6 7 -1.
+ <_>
+ 11 2 2 7 3.
+ <_>
+
+ <_>
+ 5 2 6 7 -1.
+ <_>
+ 7 2 2 7 3.
+ <_>
+
+ <_>
+ 4 16 15 4 -1.
+ <_>
+ 9 16 5 4 3.
+ <_>
+
+ <_>
+ 0 17 15 3 -1.
+ <_>
+ 5 17 5 3 3.
+ <_>
+
+ <_>
+ 2 2 18 18 -1.
+ <_>
+ 8 2 6 18 3.
+ <_>
+
+ <_>
+ 5 4 4 16 -1.
+ <_>
+ 7 4 2 16 2.
+ <_>
+
+ <_>
+ 6 9 9 6 -1.
+ <_>
+ 9 9 3 6 3.
+ <_>
+
+ <_>
+ 1 14 10 6 -1.
+ <_>
+ 1 14 5 3 2.
+ <_>
+ 6 17 5 3 2.
+ <_>
+
+ <_>
+ 6 7 12 5 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 0 10 5 9 -1.
+ <_>
+ 0 13 5 3 3.
+ <_>
+
+ <_>
+ 13 10 6 9 -1.
+ <_>
+ 13 13 6 3 3.
+ <_>
+
+ <_>
+ 1 10 6 9 -1.
+ <_>
+ 1 13 6 3 3.
+ <_>
+
+ <_>
+ 5 7 10 4 -1.
+ <_>
+ 5 9 10 2 2.
+ <_>
+
+ <_>
+ 1 5 18 12 -1.
+ <_>
+ 1 9 18 4 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 2 4 13 14 -1.
+ <_>
+ 2 11 13 7 2.
+ <_>
+
+ <_>
+ 10 8 6 6 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 2 1 16 8 -1.
+ <_>
+ 2 5 16 4 2.
+ <_>
+
+ <_>
+ 10 8 6 6 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 4 0 11 6 -1.
+ <_>
+ 4 2 11 2 3.
+ <_>
+
+ <_>
+ 2 2 16 2 -1.
+ <_>
+ 2 3 16 1 2.
+ <_>
+
+ <_>
+ 4 15 12 5 -1.
+ <_>
+ 10 15 6 5 2.
+ <_>
+
+ <_>
+ 10 8 6 6 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 0 14 12 4 -1.
+ <_>
+ 6 14 6 4 2.
+ <_>
+
+ <_>
+ 12 7 6 6 -1.
+ <_>
+ 12 10 6 3 2.
+ <_>
+
+ <_>
+ 1 5 6 14 -1.
+ <_>
+ 1 5 3 7 2.
+ <_>
+ 4 12 3 7 2.
+ <_>
+
+ <_>
+ 10 2 9 13 -1.
+ <_>
+ 13 2 3 13 3.
+ <_>
+
+ <_>
+ 4 8 6 6 -1.
+ <_>
+ 7 8 3 6 2.
+ <_>
+
+ <_>
+ 12 5 6 9 -1.
+ <_>
+ 12 5 3 9 2.
+ <_>
+
+ <_>
+ 2 5 6 9 -1.
+ <_>
+ 5 5 3 9 2.
+ <_>
+
+ <_>
+ 5 8 15 2 -1.
+ <_>
+ 5 9 15 1 2.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 2 10 16 1 3.
+ <_>
+
+ <_>
+ 12 7 5 6 -1.
+ <_>
+ 12 10 5 3 2.
+ <_>
+
+ <_>
+ 3 7 5 6 -1.
+ <_>
+ 3 10 5 3 2.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 0 13 10 2 2.
+ <_>
+ 10 15 10 2 2.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 2 12 10 6 -1.
+ <_>
+ 2 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 9 10 3 10 -1.
+ <_>
+ 9 15 3 5 2.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 1 6 3 13 -1.
+ <_>
+ 2 6 1 13 3.
+ <_>
+
+ <_>
+ 10 4 6 16 -1.
+ <_>
+ 12 4 2 16 3.
+ <_>
+
+ <_>
+ 4 4 6 16 -1.
+ <_>
+ 6 4 2 16 3.
+ <_>
+
+ <_>
+ 7 15 9 5 -1.
+ <_>
+ 10 15 3 5 3.
+ <_>
+
+ <_>
+ 4 16 12 4 -1.
+ <_>
+ 8 16 4 4 3.
+ <_>
+
+ <_>
+ 5 3 10 6 -1.
+ <_>
+ 10 3 5 3 2.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 6 2 14 2 -1.
+ <_>
+ 6 3 14 1 2.
+ <_>
+
+ <_>
+ 3 11 8 4 -1.
+ <_>
+ 7 11 4 4 2.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 4 2 6 4 2.
+ <_>
+
+ <_>
+ 0 2 6 15 -1.
+ <_>
+ 0 7 6 5 3.
+ <_>
+
+ <_>
+ 3 0 17 6 -1.
+ <_>
+ 3 2 17 2 3.
+ <_>
+
+ <_>
+ 0 4 7 4 -1.
+ <_>
+ 0 6 7 2 2.
+ <_>
+
+ <_>
+ 3 9 14 2 -1.
+ <_>
+ 3 9 7 2 2.
+ <_>
+
+ <_>
+ 4 7 10 3 -1.
+ <_>
+ 9 7 5 3 2.
+ <_>
+
+ <_>
+ 4 4 13 3 -1.
+ <_>
+ 4 5 13 1 3.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 4 12 16 8 -1.
+ <_>
+ 4 12 8 8 2.
+ <_>
+
+ <_>
+ 0 12 16 8 -1.
+ <_>
+ 8 12 8 8 2.
+ <_>
+
+ <_>
+ 14 9 6 10 -1.
+ <_>
+ 16 9 2 10 3.
+ <_>
+
+ <_>
+ 2 7 11 12 -1.
+ <_>
+ 2 11 11 4 3.
+ <_>
+
+ <_>
+ 9 3 3 12 -1.
+ <_>
+ 9 9 3 6 2.
+ <_>
+
+ <_>
+ 2 1 6 15 -1.
+ <_>
+ 2 6 6 5 3.
+ <_>
+
+ <_>
+ 17 7 2 13 -1.
+ <_>
+ 17 7 1 13 2.
+ <_>
+
+ <_>
+ 1 7 2 13 -1.
+ <_>
+ 2 7 1 13 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 10 1 10 2 2.
+ <_>
+ 0 3 10 2 2.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 6 3 7 2 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 10 6 6 -1.
+ <_>
+ 8 10 3 6 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 12 0 4 20 3.
+ <_>
+
+ <_>
+ 6 7 6 8 -1.
+ <_>
+ 8 7 2 8 3.
+ <_>
+
+ <_>
+ 12 5 4 8 -1.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 5 2 9 5 -1.
+ <_>
+ 8 2 3 5 3.
+ <_>
+
+ <_>
+ 8 10 12 9 -1.
+ <_>
+ 12 10 4 9 3.
+ <_>
+
+ <_>
+ 4 15 9 5 -1.
+ <_>
+ 7 15 3 5 3.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 7 1 6 3 3.
+ <_>
+
+ <_>
+ 12 7 8 4 -1.
+ <_>
+ 12 9 8 2 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 3 4 15 16 -1.
+ <_>
+ 3 12 15 8 2.
+ <_>
+
+ <_>
+ 0 7 8 4 -1.
+ <_>
+ 0 9 8 2 2.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 9 6 2 9 3.
+ <_>
+
+ <_>
+ 4 11 8 9 -1.
+ <_>
+ 4 14 8 3 3.
+ <_>
+
+ <_>
+ 11 3 9 8 -1.
+ <_>
+ 14 3 3 8 3.
+ <_>
+
+ <_>
+ 0 4 9 8 -1.
+ <_>
+ 3 4 3 8 3.
+ <_>
+
+ <_>
+ 9 4 6 10 -1.
+ <_>
+ 12 4 3 5 2.
+ <_>
+ 9 9 3 5 2.
+ <_>
+
+ <_>
+ 0 4 20 4 -1.
+ <_>
+ 0 6 20 2 2.
+ <_>
+
+ <_>
+ 2 9 18 3 -1.
+ <_>
+ 8 9 6 3 3.
+ <_>
+
+ <_>
+ 3 14 13 3 -1.
+ <_>
+ 3 15 13 1 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 0 7 10 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+ 5 10 5 3 2.
+ <_>
+
+ <_>
+ 7 1 8 8 -1.
+ <_>
+ 11 1 4 4 2.
+ <_>
+ 7 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 10 0 8 4 -1.
+ <_>
+ 10 2 8 2 2.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 15 11 5 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+
+ <_>
+ 1 6 18 8 -1.
+ <_>
+ 1 6 9 4 2.
+ <_>
+ 10 10 9 4 2.
+ <_>
+
+ <_>
+ 4 3 13 3 -1.
+ <_>
+ 4 4 13 1 3.
+ <_>
+
+ <_>
+ 1 9 13 2 -1.
+ <_>
+ 1 10 13 1 2.
+ <_>
+
+ <_>
+ 9 12 8 8 -1.
+ <_>
+ 13 12 4 4 2.
+ <_>
+ 9 16 4 4 2.
+ <_>
+
+ <_>
+ 0 11 5 6 -1.
+ <_>
+ 0 14 5 3 2.
+ <_>
+
+ <_>
+ 15 3 5 9 -1.
+ <_>
+ 15 6 5 3 3.
+ <_>
+
+ <_>
+ 0 4 2 16 -1.
+ <_>
+ 0 12 2 8 2.
+ <_>
+
+ <_>
+ 15 3 5 9 -1.
+ <_>
+ 15 6 5 3 3.
+ <_>
+
+ <_>
+ 2 5 16 10 -1.
+ <_>
+ 2 5 8 5 2.
+ <_>
+ 10 10 8 5 2.
+ <_>
+
+ <_>
+ 6 7 14 2 -1.
+ <_>
+ 6 8 14 1 2.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 9 6 3 14 -1.
+ <_>
+ 10 6 1 14 3.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 9 13 6 7 -1.
+ <_>
+ 11 13 2 7 3.
+ <_>
+
+ <_>
+ 6 0 2 13 -1.
+ <_>
+ 7 0 1 13 2.
+ <_>
+
+ <_>
+ 3 7 15 3 -1.
+ <_>
+ 8 7 5 3 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 12 11 8 6 -1.
+ <_>
+ 12 13 8 2 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 9 1 6 7 -1.
+ <_>
+ 11 1 2 7 3.
+ <_>
+
+ <_>
+ 2 9 9 10 -1.
+ <_>
+ 5 9 3 10 3.
+ <_>
+
+ <_>
+ 14 0 3 18 -1.
+ <_>
+ 15 0 1 18 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 9 1 6 7 -1.
+ <_>
+ 11 1 2 7 3.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 10 2 2 8 2.
+ <_>
+
+ <_>
+ 14 0 3 18 -1.
+ <_>
+ 15 0 1 18 3.
+ <_>
+
+ <_>
+ 0 5 12 4 -1.
+ <_>
+ 4 5 4 4 3.
+ <_>
+
+ <_>
+ 6 0 13 3 -1.
+ <_>
+ 6 1 13 1 3.
+ <_>
+
+ <_>
+ 0 6 20 3 -1.
+ <_>
+ 0 7 20 1 3.
+ <_>
+
+ <_>
+ 10 8 8 8 -1.
+ <_>
+ 14 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 1 1 5 9 -1.
+ <_>
+ 1 4 5 3 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 1 4 16 6 -1.
+ <_>
+ 1 4 8 3 2.
+ <_>
+ 9 7 8 3 2.
+ <_>
+
+ <_>
+ 9 0 10 6 -1.
+ <_>
+ 9 2 10 2 3.
+ <_>
+
+ <_>
+ 4 3 12 6 -1.
+ <_>
+ 4 5 12 2 3.
+ <_>
+
+ <_>
+ 9 5 8 8 -1.
+ <_>
+ 9 9 8 4 2.
+ <_>
+
+ <_>
+ 1 0 9 6 -1.
+ <_>
+ 1 2 9 2 3.
+ <_>
+
+ <_>
+ 8 3 9 5 -1.
+ <_>
+ 11 3 3 5 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 3 3 3 16 -1.
+ <_>
+ 4 3 1 16 3.
+ <_>
+
+ <_>
+ 14 0 3 17 -1.
+ <_>
+ 15 0 1 17 3.
+ <_>
+
+ <_>
+ 0 10 9 7 -1.
+ <_>
+ 3 10 3 7 3.
+ <_>
+
+ <_>
+ 8 0 7 12 -1.
+ <_>
+ 8 4 7 4 3.
+ <_>
+
+ <_>
+ 0 3 5 9 -1.
+ <_>
+ 0 6 5 3 3.
+ <_>
+
+ <_>
+ 9 9 10 5 -1.
+ <_>
+ 9 9 5 5 2.
+ <_>
+
+ <_>
+ 1 9 10 5 -1.
+ <_>
+ 6 9 5 5 2.
+ <_>
+
+ <_>
+ 4 8 15 3 -1.
+ <_>
+ 9 8 5 3 3.
+ <_>
+
+ <_>
+ 1 8 15 3 -1.
+ <_>
+ 6 8 5 3 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 10 5 5 3 2.
+ <_>
+ 5 8 5 3 2.
+ <_>
+
+ <_>
+ 3 5 8 8 -1.
+ <_>
+ 3 9 8 4 2.
+ <_>
+
+ <_>
+ 0 1 20 2 -1.
+ <_>
+ 0 1 10 2 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 8 12 8 8 -1.
+ <_>
+ 12 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 12 8 8 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 7 15 13 4 -1.
+ <_>
+ 7 17 13 2 2.
+ <_>
+
+ <_>
+ 0 14 12 6 -1.
+ <_>
+ 0 14 6 3 2.
+ <_>
+ 6 17 6 3 2.
+ <_>
+
+ <_>
+ 12 11 8 8 -1.
+ <_>
+ 16 11 4 4 2.
+ <_>
+ 12 15 4 4 2.
+ <_>
+
+ <_>
+ 0 11 8 8 -1.
+ <_>
+ 0 11 4 4 2.
+ <_>
+ 4 15 4 4 2.
+ <_>
+
+ <_>
+ 6 0 10 19 -1.
+ <_>
+ 6 0 5 19 2.
+ <_>
+
+ <_>
+ 0 12 13 3 -1.
+ <_>
+ 0 13 13 1 3.
+ <_>
+
+ <_>
+ 7 2 6 12 -1.
+ <_>
+ 7 8 6 6 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 11 14 9 4 -1.
+ <_>
+ 11 16 9 2 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 11 12 8 6 -1.
+ <_>
+ 11 14 8 2 3.
+ <_>
+
+ <_>
+ 1 12 8 6 -1.
+ <_>
+ 1 14 8 2 3.
+ <_>
+
+ <_>
+ 4 0 13 8 -1.
+ <_>
+ 4 4 13 4 2.
+ <_>
+
+ <_>
+ 8 0 4 15 -1.
+ <_>
+ 8 5 4 5 3.
+ <_>
+
+ <_>
+ 10 8 8 8 -1.
+ <_>
+ 14 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 8 7 3 10 -1.
+ <_>
+ 8 12 3 5 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 2 9 5 9 -1.
+ <_>
+ 2 12 5 3 3.
+ <_>
+
+ <_>
+ 3 6 16 3 -1.
+ <_>
+ 3 6 8 3 2.
+ <_>
+
+ <_>
+ 3 13 12 7 -1.
+ <_>
+ 9 13 6 7 2.
+ <_>
+
+ <_>
+ 10 2 3 15 -1.
+ <_>
+ 11 2 1 15 3.
+ <_>
+
+ <_>
+ 7 2 3 15 -1.
+ <_>
+ 8 2 1 15 3.
+ <_>
+
+ <_>
+ 10 1 7 4 -1.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 5 0 7 12 -1.
+ <_>
+ 5 4 7 4 3.
+ <_>
+
+ <_>
+ 10 1 7 4 -1.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 3 12 4 8 -1.
+ <_>
+ 3 16 4 4 2.
+ <_>
+
+ <_>
+ 6 7 9 5 -1.
+ <_>
+ 9 7 3 5 3.
+ <_>
+
+ <_>
+ 5 0 6 16 -1.
+ <_>
+ 7 0 2 16 3.
+ <_>
+
+ <_>
+ 10 8 8 8 -1.
+ <_>
+ 14 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 2 8 8 8 -1.
+ <_>
+ 2 8 4 4 2.
+ <_>
+ 6 12 4 4 2.
+ <_>
+
+ <_>
+ 4 8 16 8 -1.
+ <_>
+ 12 8 8 4 2.
+ <_>
+ 4 12 8 4 2.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 2 10 3 5 2.
+ <_>
+ 5 15 3 5 2.
+ <_>
+
+ <_>
+ 10 10 4 8 -1.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 1 6 16 3 -1.
+ <_>
+ 9 6 8 3 2.
+ <_>
+
+ <_>
+ 10 1 7 4 -1.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 3 1 7 4 -1.
+ <_>
+ 3 3 7 2 2.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 4 0 10 19 -1.
+ <_>
+ 9 0 5 19 2.
+ <_>
+
+ <_>
+ 12 0 3 13 -1.
+ <_>
+ 13 0 1 13 3.
+ <_>
+
+ <_>
+ 1 4 18 5 -1.
+ <_>
+ 7 4 6 5 3.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 6 2 4 7 -1.
+ <_>
+ 8 2 2 7 2.
+ <_>
+
+ <_>
+ 2 1 16 3 -1.
+ <_>
+ 2 1 8 3 2.
+ <_>
+
+ <_>
+ 5 7 7 9 -1.
+ <_>
+ 5 10 7 3 3.
+ <_>
+
+ <_>
+ 4 5 14 3 -1.
+ <_>
+ 4 6 14 1 3.
+ <_>
+
+ <_>
+ 2 13 7 6 -1.
+ <_>
+ 2 15 7 2 3.
+ <_>
+
+ <_>
+ 10 10 4 8 -1.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 5 0 3 18 -1.
+ <_>
+ 5 6 3 6 3.
+ <_>
+
+ <_>
+ 10 0 10 10 -1.
+ <_>
+ 15 0 5 5 2.
+ <_>
+ 10 5 5 5 2.
+ <_>
+
+ <_>
+ 0 4 14 3 -1.
+ <_>
+ 0 5 14 1 3.
+ <_>
+
+ <_>
+ 6 4 13 3 -1.
+ <_>
+ 6 5 13 1 3.
+ <_>
+
+ <_>
+ 5 0 3 13 -1.
+ <_>
+ 6 0 1 13 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 4 9 6 7 -1.
+ <_>
+ 6 9 2 7 3.
+ <_>
+
+ <_>
+ 2 9 18 3 -1.
+ <_>
+ 8 9 6 3 3.
+ <_>
+
+ <_>
+ 0 9 18 3 -1.
+ <_>
+ 6 9 6 3 3.
+ <_>
+
+ <_>
+ 2 17 17 3 -1.
+ <_>
+ 2 18 17 1 3.
+ <_>
+
+ <_>
+ 8 1 3 19 -1.
+ <_>
+ 9 1 1 19 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 4 2 12 12 -1.
+ <_>
+ 4 6 12 4 3.
+ <_>
+
+ <_>
+ 0 17 13 3 -1.
+ <_>
+ 0 18 13 1 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 4 8 11 12 -1.
+ <_>
+ 4 12 11 4 3.
+ <_>
+
+ <_>
+ 12 8 5 6 -1.
+ <_>
+ 12 11 5 3 2.
+ <_>
+
+ <_>
+ 3 8 5 6 -1.
+ <_>
+ 3 11 5 3 2.
+ <_>
+
+ <_>
+ 13 3 7 6 -1.
+ <_>
+ 13 5 7 2 3.
+ <_>
+
+ <_>
+ 3 0 3 17 -1.
+ <_>
+ 4 0 1 17 3.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 5 9 4 8 -1.
+ <_>
+ 5 13 4 4 2.
+ <_>
+
+ <_>
+ 13 3 7 6 -1.
+ <_>
+ 13 5 7 2 3.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 7 1 7 14 -1.
+ <_>
+ 7 8 7 7 2.
+ <_>
+
+ <_>
+ 2 0 15 8 -1.
+ <_>
+ 2 4 15 4 2.
+ <_>
+
+ <_>
+ 1 4 18 3 -1.
+ <_>
+ 7 4 6 3 3.
+ <_>
+
+ <_>
+ 0 2 10 16 -1.
+ <_>
+ 5 2 5 16 2.
+ <_>
+
+ <_>
+ 5 2 15 12 -1.
+ <_>
+ 5 6 15 4 3.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 9 0 2 8 3.
+ <_>
+
+ <_>
+ 5 1 15 5 -1.
+ <_>
+ 10 1 5 5 3.
+ <_>
+
+ <_>
+ 0 8 12 9 -1.
+ <_>
+ 4 8 4 9 3.
+ <_>
+
+ <_>
+ 6 5 10 6 -1.
+ <_>
+ 11 5 5 3 2.
+ <_>
+ 6 8 5 3 2.
+ <_>
+
+ <_>
+ 3 4 4 12 -1.
+ <_>
+ 5 4 2 12 2.
+ <_>
+
+ <_>
+ 13 0 7 4 -1.
+ <_>
+ 13 2 7 2 2.
+ <_>
+
+ <_>
+ 0 2 10 12 -1.
+ <_>
+ 0 8 10 6 2.
+ <_>
+
+ <_>
+ 4 8 16 3 -1.
+ <_>
+ 4 8 8 3 2.
+ <_>
+
+ <_>
+ 4 8 11 12 -1.
+ <_>
+ 4 14 11 6 2.
+ <_>
+
+ <_>
+ 2 1 16 3 -1.
+ <_>
+ 2 2 16 1 3.
+ <_>
+
+ <_>
+ 4 2 11 6 -1.
+ <_>
+ 4 4 11 2 3.
+ <_>
+
+ <_>
+ 11 9 8 6 -1.
+ <_>
+ 11 11 8 2 3.
+ <_>
+
+ <_>
+ 0 0 13 3 -1.
+ <_>
+ 0 1 13 1 3.
+ <_>
+
+ <_>
+ 2 4 16 3 -1.
+ <_>
+ 2 5 16 1 3.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 6 2 13 3 -1.
+ <_>
+ 6 3 13 1 3.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 2 7 16 7 -1.
+ <_>
+ 2 7 8 7 2.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 6 6 10 6 -1.
+ <_>
+ 11 6 5 3 2.
+ <_>
+ 6 9 5 3 2.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 9 6 2 9 3.
+ <_>
+
+ <_>
+ 9 1 3 13 -1.
+ <_>
+ 10 1 1 13 3.
+ <_>
+
+ <_>
+ 8 1 3 13 -1.
+ <_>
+ 9 1 1 13 3.
+ <_>
+
+ <_>
+ 6 1 8 12 -1.
+ <_>
+ 10 1 4 6 2.
+ <_>
+ 6 7 4 6 2.
+ <_>
+
+ <_>
+ 4 5 10 6 -1.
+ <_>
+ 4 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 9 3 6 10 -1.
+ <_>
+ 12 3 3 5 2.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 2 1 15 6 -1.
+ <_>
+ 2 3 15 2 3.
+ <_>
+
+ <_>
+ 2 1 18 16 -1.
+ <_>
+ 8 1 6 16 3.
+ <_>
+
+ <_>
+ 2 1 14 6 -1.
+ <_>
+ 9 1 7 6 2.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 8 1 12 14 -1.
+ <_>
+ 8 1 6 14 2.
+ <_>
+
+ <_>
+ 0 1 12 14 -1.
+ <_>
+ 6 1 6 14 2.
+ <_>
+
+ <_>
+ 2 3 18 13 -1.
+ <_>
+ 8 3 6 13 3.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 7 7 13 2 -1.
+ <_>
+ 7 8 13 1 2.
+ <_>
+
+ <_>
+ 5 13 10 6 -1.
+ <_>
+ 5 13 5 3 2.
+ <_>
+ 10 16 5 3 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 7 2 12 6 -1.
+ <_>
+ 13 2 6 3 2.
+ <_>
+ 7 5 6 3 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 4 2 6 3 2.
+ <_>
+ 10 5 6 3 2.
+ <_>
+
+ <_>
+ 12 9 4 8 -1.
+ <_>
+ 12 13 4 4 2.
+ <_>
+
+ <_>
+ 0 8 16 8 -1.
+ <_>
+ 0 8 8 4 2.
+ <_>
+ 8 12 8 4 2.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+ 10 13 5 3 2.
+ <_>
+
+ <_>
+ 0 8 4 8 -1.
+ <_>
+ 0 12 4 4 2.
+ <_>
+
+ <_>
+ 10 2 6 12 -1.
+ <_>
+ 13 2 3 6 2.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 0 0 20 14 -1.
+ <_>
+ 0 7 20 7 2.
+ <_>
+
+ <_>
+ 11 9 7 6 -1.
+ <_>
+ 11 11 7 2 3.
+ <_>
+
+ <_>
+ 1 9 8 6 -1.
+ <_>
+ 1 11 8 2 3.
+ <_>
+
+ <_>
+ 13 1 7 15 -1.
+ <_>
+ 13 6 7 5 3.
+ <_>
+
+ <_>
+ 0 1 7 15 -1.
+ <_>
+ 0 6 7 5 3.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 4 6 10 6 -1.
+ <_>
+ 4 6 5 3 2.
+ <_>
+ 9 9 5 3 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 1 7 12 4 -1.
+ <_>
+ 5 7 4 4 3.
+ <_>
+
+ <_>
+ 14 1 2 19 -1.
+ <_>
+ 14 1 1 19 2.
+ <_>
+
+ <_>
+ 4 1 2 19 -1.
+ <_>
+ 5 1 1 19 2.
+ <_>
+
+ <_>
+ 12 10 5 6 -1.
+ <_>
+ 12 13 5 3 2.
+ <_>
+
+ <_>
+ 3 10 5 6 -1.
+ <_>
+ 3 13 5 3 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 12 6 5 3 2.
+ <_>
+ 7 9 5 3 2.
+ <_>
+
+ <_>
+ 3 11 9 5 -1.
+ <_>
+ 6 11 3 5 3.
+ <_>
+
+ <_>
+ 2 1 18 16 -1.
+ <_>
+ 8 1 6 16 3.
+ <_>
+
+ <_>
+ 0 1 18 16 -1.
+ <_>
+ 6 1 6 16 3.
+ <_>
+
+ <_>
+ 6 12 9 5 -1.
+ <_>
+ 9 12 3 5 3.
+ <_>
+
+ <_>
+ 2 10 16 10 -1.
+ <_>
+ 2 10 8 5 2.
+ <_>
+ 10 15 8 5 2.
+ <_>
+
+ <_>
+ 12 0 4 14 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 4 0 4 14 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+ 6 7 2 7 2.
+ <_>
+
+ <_>
+ 12 7 4 9 -1.
+ <_>
+ 12 7 2 9 2.
+ <_>
+
+ <_>
+ 4 7 4 9 -1.
+ <_>
+ 6 7 2 9 2.
+ <_>
+
+ <_>
+ 16 0 2 20 -1.
+ <_>
+ 16 0 1 20 2.
+ <_>
+
+ <_>
+ 2 0 2 20 -1.
+ <_>
+ 3 0 1 20 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 5 1 2 14 -1.
+ <_>
+ 5 8 2 7 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 0 13 18 3 -1.
+ <_>
+ 6 13 6 3 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 3 14 9 6 -1.
+ <_>
+ 6 14 3 6 3.
+ <_>
+
+ <_>
+ 5 2 9 6 -1.
+ <_>
+ 5 5 9 3 2.
+ <_>
+
+ <_>
+ 10 3 10 3 -1.
+ <_>
+ 10 3 5 3 2.
+ <_>
+
+ <_>
+ 0 3 8 4 -1.
+ <_>
+ 4 3 4 4 2.
+ <_>
+
+ <_>
+ 10 10 7 4 -1.
+ <_>
+ 10 12 7 2 2.
+ <_>
+
+ <_>
+ 6 2 4 7 -1.
+ <_>
+ 8 2 2 7 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 6 6 4 12 -1.
+ <_>
+ 6 10 4 4 3.
+ <_>
+
+ <_>
+ 14 1 6 8 -1.
+ <_>
+ 16 1 2 8 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 9 0 3 18 -1.
+ <_>
+ 9 6 3 6 3.
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 2 1 2 8 3.
+ <_>
+
+ <_>
+ 9 5 10 6 -1.
+ <_>
+ 14 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 0 14 14 3 -1.
+ <_>
+ 0 15 14 1 3.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 3 10 14 4 -1.
+ <_>
+ 3 10 7 2 2.
+ <_>
+ 10 12 7 2 2.
+ <_>
+
+ <_>
+ 3 8 17 2 -1.
+ <_>
+ 3 9 17 1 2.
+ <_>
+
+ <_>
+ 0 5 14 12 -1.
+ <_>
+ 0 11 14 6 2.
+ <_>
+
+ <_>
+ 3 7 14 6 -1.
+ <_>
+ 3 9 14 2 3.
+ <_>
+
+ <_>
+ 7 1 6 7 -1.
+ <_>
+ 9 1 2 7 3.
+ <_>
+
+ <_>
+ 4 18 13 2 -1.
+ <_>
+ 4 19 13 1 2.
+ <_>
+
+ <_>
+ 1 6 14 2 -1.
+ <_>
+ 8 6 7 2 2.
+ <_>
+
+ <_>
+ 2 5 18 15 -1.
+ <_>
+ 8 5 6 15 3.
+ <_>
+
+ <_>
+ 5 6 6 14 -1.
+ <_>
+ 8 6 3 14 2.
+ <_>
+
+ <_>
+ 8 5 8 8 -1.
+ <_>
+ 12 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 5 1 6 5 -1.
+ <_>
+ 8 1 3 5 2.
+ <_>
+
+ <_>
+ 6 5 10 12 -1.
+ <_>
+ 11 5 5 6 2.
+ <_>
+ 6 11 5 6 2.
+ <_>
+
+ <_>
+ 3 5 12 14 -1.
+ <_>
+ 3 5 6 7 2.
+ <_>
+ 9 12 6 7 2.
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 7 1 13 1 3.
+ <_>
+
+ <_>
+ 5 7 9 12 -1.
+ <_>
+ 5 11 9 4 3.
+ <_>
+
+ <_>
+ 11 6 4 14 -1.
+ <_>
+ 13 6 2 7 2.
+ <_>
+ 11 13 2 7 2.
+ <_>
+
+ <_>
+ 5 6 4 14 -1.
+ <_>
+ 5 6 2 7 2.
+ <_>
+ 7 13 2 7 2.
+ <_>
+
+ <_>
+ 3 1 17 2 -1.
+ <_>
+ 3 2 17 1 2.
+ <_>
+
+ <_>
+ 7 4 6 16 -1.
+ <_>
+ 7 12 6 8 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 2 5 18 15 -1.
+ <_>
+ 8 5 6 15 3.
+ <_>
+
+ <_>
+ 0 5 18 15 -1.
+ <_>
+ 6 5 6 15 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 2 0 12 19 -1.
+ <_>
+ 6 0 4 19 3.
+ <_>
+
+ <_>
+ 9 12 11 4 -1.
+ <_>
+ 9 14 11 2 2.
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 0 6 20 2 3.
+ <_>
+
+ <_>
+ 5 3 10 4 -1.
+ <_>
+ 5 5 10 2 2.
+ <_>
+
+ <_>
+ 1 6 12 4 -1.
+ <_>
+ 5 6 4 4 3.
+ <_>
+
+ <_>
+ 6 8 14 3 -1.
+ <_>
+ 6 9 14 1 3.
+ <_>
+
+ <_>
+ 0 8 14 3 -1.
+ <_>
+ 0 9 14 1 3.
+ <_>
+
+ <_>
+ 5 3 13 6 -1.
+ <_>
+ 5 6 13 3 2.
+ <_>
+
+ <_>
+ 0 12 11 4 -1.
+ <_>
+ 0 14 11 2 2.
+ <_>
+
+ <_>
+ 5 12 13 3 -1.
+ <_>
+ 5 13 13 1 3.
+ <_>
+
+ <_>
+ 0 2 20 4 -1.
+ <_>
+ 0 2 10 2 2.
+ <_>
+ 10 4 10 2 2.
+ <_>
+
+ <_>
+ 14 1 6 5 -1.
+ <_>
+ 14 1 3 5 2.
+ <_>
+
+ <_>
+ 4 11 5 6 -1.
+ <_>
+ 4 14 5 3 2.
+ <_>
+
+ <_>
+ 6 1 10 18 -1.
+ <_>
+ 6 10 10 9 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 0 8 3 6 2.
+ <_>
+ 3 14 3 6 2.
+ <_>
+
+ <_>
+ 9 9 10 6 -1.
+ <_>
+ 14 9 5 3 2.
+ <_>
+ 9 12 5 3 2.
+ <_>
+
+ <_>
+ 1 9 10 6 -1.
+ <_>
+ 1 9 5 3 2.
+ <_>
+ 6 12 5 3 2.
+ <_>
+
+ <_>
+ 15 0 3 13 -1.
+ <_>
+ 16 0 1 13 3.
+ <_>
+
+ <_>
+ 2 0 3 13 -1.
+ <_>
+ 3 0 1 13 3.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 17 3 3 13 -1.
+ <_>
+ 18 3 1 13 3.
+ <_>
+
+ <_>
+ 0 3 3 13 -1.
+ <_>
+ 1 3 1 13 3.
+ <_>
+
+ <_>
+ 13 4 6 16 -1.
+ <_>
+ 16 4 3 8 2.
+ <_>
+ 13 12 3 8 2.
+ <_>
+
+ <_>
+ 3 2 3 14 -1.
+ <_>
+ 4 2 1 14 3.
+ <_>
+
+ <_>
+ 16 1 3 13 -1.
+ <_>
+ 17 1 1 13 3.
+ <_>
+
+ <_>
+ 1 1 3 13 -1.
+ <_>
+ 2 1 1 13 3.
+ <_>
+
+ <_>
+ 8 6 9 9 -1.
+ <_>
+ 8 9 9 3 3.
+ <_>
+
+ <_>
+ 0 2 14 2 -1.
+ <_>
+ 0 3 14 1 2.
+ <_>
+
+ <_>
+ 12 5 6 6 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+
+ <_>
+ 2 5 6 6 -1.
+ <_>
+ 5 5 3 6 2.
+ <_>
+
+ <_>
+ 10 1 9 6 -1.
+ <_>
+ 10 3 9 2 3.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 9 10 2 10 3.
+ <_>
+
+ <_>
+ 0 0 2 20 -1.
+ <_>
+ 1 0 1 20 2.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 16 5 2 14 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 16 5 2 14 2.
+ <_>
+
+ <_>
+ 0 5 4 14 -1.
+ <_>
+ 2 5 2 14 2.
+ <_>
+
+ <_>
+ 0 11 20 4 -1.
+ <_>
+ 10 11 10 2 2.
+ <_>
+ 0 13 10 2 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 10 0 1 13 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 10 1 9 6 -1.
+ <_>
+ 10 3 9 2 3.
+ <_>
+
+ <_>
+ 1 1 9 6 -1.
+ <_>
+ 1 3 9 2 3.
+ <_>
+
+ <_>
+ 11 0 5 8 -1.
+ <_>
+ 11 4 5 4 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 9 2 6 11 -1.
+ <_>
+ 11 2 2 11 3.
+ <_>
+
+ <_>
+ 5 2 6 11 -1.
+ <_>
+ 7 2 2 11 3.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 10 1 3 5 2.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 3 2 10 5 -1.
+ <_>
+ 8 2 5 5 2.
+ <_>
+
+ <_>
+ 2 17 17 3 -1.
+ <_>
+ 2 18 17 1 3.
+ <_>
+
+ <_>
+ 0 13 14 3 -1.
+ <_>
+ 0 14 14 1 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 7 10 4 10 -1.
+ <_>
+ 7 15 4 5 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 2 12 16 6 -1.
+ <_>
+ 2 14 16 2 3.
+ <_>
+
+ <_>
+ 5 9 13 3 -1.
+ <_>
+ 5 10 13 1 3.
+ <_>
+
+ <_>
+ 8 5 4 12 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 6 1 14 6 -1.
+ <_>
+ 13 1 7 3 2.
+ <_>
+ 6 4 7 3 2.
+ <_>
+
+ <_>
+ 3 1 12 6 -1.
+ <_>
+ 3 3 12 2 3.
+ <_>
+
+ <_>
+ 9 5 11 6 -1.
+ <_>
+ 9 7 11 2 3.
+ <_>
+
+ <_>
+ 5 2 3 13 -1.
+ <_>
+ 6 2 1 13 3.
+ <_>
+
+ <_>
+ 15 5 4 14 -1.
+ <_>
+ 17 5 2 7 2.
+ <_>
+ 15 12 2 7 2.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 5 15 13 3 -1.
+ <_>
+ 5 16 13 1 3.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 3 10 14 6 -1.
+ <_>
+ 10 10 7 3 2.
+ <_>
+ 3 13 7 3 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 5 14 15 3 -1.
+ <_>
+ 5 15 15 1 3.
+ <_>
+
+ <_>
+ 0 1 14 6 -1.
+ <_>
+ 0 1 7 3 2.
+ <_>
+ 7 4 7 3 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 3 16 14 4 -1.
+ <_>
+ 10 16 7 2 2.
+ <_>
+ 3 18 7 2 2.
+ <_>
+
+ <_>
+ 0 1 6 10 -1.
+ <_>
+ 0 1 3 5 2.
+ <_>
+ 3 6 3 5 2.
+ <_>
+
+ <_>
+ 10 3 8 8 -1.
+ <_>
+ 14 3 4 4 2.
+ <_>
+ 10 7 4 4 2.
+ <_>
+
+ <_>
+ 1 5 10 6 -1.
+ <_>
+ 1 5 5 3 2.
+ <_>
+ 6 8 5 3 2.
+ <_>
+
+ <_>
+ 14 2 2 14 -1.
+ <_>
+ 14 9 2 7 2.
+ <_>
+
+ <_>
+ 4 2 2 14 -1.
+ <_>
+ 4 9 2 7 2.
+ <_>
+
+ <_>
+ 4 8 12 4 -1.
+ <_>
+ 4 10 12 2 2.
+ <_>
+
+ <_>
+ 2 3 8 8 -1.
+ <_>
+ 2 3 4 4 2.
+ <_>
+ 6 7 4 4 2.
+ <_>
+
+ <_>
+ 17 0 2 16 -1.
+ <_>
+ 17 8 2 8 2.
+ <_>
+
+ <_>
+ 1 5 4 14 -1.
+ <_>
+ 1 5 2 7 2.
+ <_>
+ 3 12 2 7 2.
+ <_>
+
+ <_>
+ 8 6 5 10 -1.
+ <_>
+ 8 11 5 5 2.
+ <_>
+
+ <_>
+ 4 2 8 10 -1.
+ <_>
+ 4 2 4 5 2.
+ <_>
+ 8 7 4 5 2.
+ <_>
+
+ <_>
+ 8 5 10 8 -1.
+ <_>
+ 13 5 5 4 2.
+ <_>
+ 8 9 5 4 2.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 16 1 4 7 -1.
+ <_>
+ 16 1 2 7 2.
+ <_>
+
+ <_>
+ 1 0 2 16 -1.
+ <_>
+ 1 8 2 8 2.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 0 0 20 12 -1.
+ <_>
+ 0 6 20 6 2.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 0 3 5 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+
+ <_>
+ 9 10 7 4 -1.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 2 9 13 6 -1.
+ <_>
+ 2 12 13 3 2.
+ <_>
+
+ <_>
+ 2 2 16 14 -1.
+ <_>
+ 2 9 16 7 2.
+ <_>
+
+ <_>
+ 4 5 10 8 -1.
+ <_>
+ 4 9 10 4 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 8 0 3 15 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 1 14 18 4 -1.
+ <_>
+ 10 14 9 2 2.
+ <_>
+ 1 16 9 2 2.
+ <_>
+
+ <_>
+ 1 8 6 5 -1.
+ <_>
+ 4 8 3 5 2.
+ <_>
+
+ <_>
+ 13 1 6 19 -1.
+ <_>
+ 13 1 3 19 2.
+ <_>
+
+ <_>
+ 1 1 6 19 -1.
+ <_>
+ 4 1 3 19 2.
+ <_>
+
+ <_>
+ 6 0 14 3 -1.
+ <_>
+ 6 1 14 1 3.
+ <_>
+
+ <_>
+ 0 0 14 3 -1.
+ <_>
+ 0 1 14 1 3.
+ <_>
+
+ <_>
+ 8 2 7 6 -1.
+ <_>
+ 8 5 7 3 2.
+ <_>
+
+ <_>
+ 0 3 9 14 -1.
+ <_>
+ 3 3 3 14 3.
+ <_>
+
+ <_>
+ 10 8 9 6 -1.
+ <_>
+ 10 10 9 2 3.
+ <_>
+
+ <_>
+ 0 1 16 4 -1.
+ <_>
+ 0 1 8 2 2.
+ <_>
+ 8 3 8 2 2.
+ <_>
+
+ <_>
+ 16 2 4 7 -1.
+ <_>
+ 16 2 2 7 2.
+ <_>
+
+ <_>
+ 0 8 10 6 -1.
+ <_>
+ 0 10 10 2 3.
+ <_>
+
+ <_>
+ 16 2 4 7 -1.
+ <_>
+ 16 2 2 7 2.
+ <_>
+
+ <_>
+ 0 2 4 7 -1.
+ <_>
+ 2 2 2 7 2.
+ <_>
+
+ <_>
+ 5 3 12 14 -1.
+ <_>
+ 11 3 6 7 2.
+ <_>
+ 5 10 6 7 2.
+ <_>
+
+ <_>
+ 7 6 3 10 -1.
+ <_>
+ 7 11 3 5 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 16 2 2 9 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 2 2 2 9 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 5 6 3 2.
+ <_>
+ 10 8 6 3 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 7 5 6 8 -1.
+ <_>
+ 9 5 2 8 3.
+ <_>
+
+ <_>
+ 4 6 12 6 -1.
+ <_>
+ 8 6 4 6 3.
+ <_>
+
+ <_>
+ 1 4 4 14 -1.
+ <_>
+ 1 4 2 7 2.
+ <_>
+ 3 11 2 7 2.
+ <_>
+
+ <_>
+ 0 1 20 6 -1.
+ <_>
+ 10 1 10 3 2.
+ <_>
+ 0 4 10 3 2.
+ <_>
+
+ <_>
+ 5 2 10 6 -1.
+ <_>
+ 5 4 10 2 3.
+ <_>
+
+ <_>
+ 0 2 20 6 -1.
+ <_>
+ 0 5 20 3 2.
+ <_>
+
+ <_>
+ 3 10 6 8 -1.
+ <_>
+ 5 10 2 8 3.
+ <_>
+
+ <_>
+ 13 4 4 16 -1.
+ <_>
+ 15 4 2 8 2.
+ <_>
+ 13 12 2 8 2.
+ <_>
+
+ <_>
+ 6 2 2 18 -1.
+ <_>
+ 6 11 2 9 2.
+ <_>
+
+ <_>
+ 13 4 4 16 -1.
+ <_>
+ 15 4 2 8 2.
+ <_>
+ 13 12 2 8 2.
+ <_>
+
+ <_>
+ 3 4 4 16 -1.
+ <_>
+ 3 4 2 8 2.
+ <_>
+ 5 12 2 8 2.
+ <_>
+
+ <_>
+ 6 15 9 4 -1.
+ <_>
+ 6 17 9 2 2.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 8 0 4 12 -1.
+ <_>
+ 8 0 2 12 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 10 6 10 2 2.
+ <_>
+
+ <_>
+ 14 2 6 18 -1.
+ <_>
+ 17 2 3 9 2.
+ <_>
+ 14 11 3 9 2.
+ <_>
+
+ <_>
+ 0 7 14 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 8 5 10 8 -1.
+ <_>
+ 13 5 5 4 2.
+ <_>
+ 8 9 5 4 2.
+ <_>
+
+ <_>
+ 2 5 10 8 -1.
+ <_>
+ 2 5 5 4 2.
+ <_>
+ 7 9 5 4 2.
+ <_>
+
+ <_>
+ 4 2 16 12 -1.
+ <_>
+ 4 2 8 12 2.
+ <_>
+
+ <_>
+ 0 2 16 12 -1.
+ <_>
+ 8 2 8 12 2.
+ <_>
+
+ <_>
+ 11 2 4 7 -1.
+ <_>
+ 11 2 2 7 2.
+ <_>
+
+ <_>
+ 5 2 4 7 -1.
+ <_>
+ 7 2 2 7 2.
+ <_>
+
+ <_>
+ 6 5 8 4 -1.
+ <_>
+ 6 5 4 4 2.
+ <_>
+
+ <_>
+ 4 5 6 10 -1.
+ <_>
+ 6 5 2 10 3.
+ <_>
+
+ <_>
+ 6 10 10 8 -1.
+ <_>
+ 11 10 5 4 2.
+ <_>
+ 6 14 5 4 2.
+ <_>
+
+ <_>
+ 2 11 6 9 -1.
+ <_>
+ 4 11 2 9 3.
+ <_>
+
+ <_>
+ 4 0 12 18 -1.
+ <_>
+ 4 0 6 18 2.
+ <_>
+
+ <_>
+ 4 1 9 17 -1.
+ <_>
+ 7 1 3 17 3.
+ <_>
+
+ <_>
+ 9 5 6 8 -1.
+ <_>
+ 11 5 2 8 3.
+ <_>
+
+ <_>
+ 6 3 6 7 -1.
+ <_>
+ 8 3 2 7 3.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 5 5 6 9 -1.
+ <_>
+ 5 8 6 3 3.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 4 6 7 4 -1.
+ <_>
+ 4 8 7 2 2.
+ <_>
+
+ <_>
+ 6 10 10 8 -1.
+ <_>
+ 11 10 5 4 2.
+ <_>
+ 6 14 5 4 2.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 5 7 14 4 -1.
+ <_>
+ 12 7 7 2 2.
+ <_>
+ 5 9 7 2 2.
+ <_>
+
+ <_>
+ 4 10 12 7 -1.
+ <_>
+ 8 10 4 7 3.
+ <_>
+
+ <_>
+ 5 2 12 16 -1.
+ <_>
+ 11 2 6 8 2.
+ <_>
+ 5 10 6 8 2.
+ <_>
+
+ <_>
+ 1 7 14 4 -1.
+ <_>
+ 1 7 7 2 2.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 3 5 15 14 -1.
+ <_>
+ 3 12 15 7 2.
+ <_>
+
+ <_>
+ 0 11 7 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+
+ <_>
+ 8 6 9 9 -1.
+ <_>
+ 8 9 9 3 3.
+ <_>
+
+ <_>
+ 5 6 6 10 -1.
+ <_>
+ 7 6 2 10 3.
+ <_>
+
+ <_>
+ 11 4 4 11 -1.
+ <_>
+ 11 4 2 11 2.
+ <_>
+
+ <_>
+ 1 12 14 8 -1.
+ <_>
+ 8 12 7 8 2.
+ <_>
+
+ <_>
+ 11 4 4 11 -1.
+ <_>
+ 11 4 2 11 2.
+ <_>
+
+ <_>
+ 5 0 4 15 -1.
+ <_>
+ 7 0 2 15 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 8 2 4 6 3.
+ <_>
+
+ <_>
+ 3 3 12 14 -1.
+ <_>
+ 3 3 6 7 2.
+ <_>
+ 9 10 6 7 2.
+ <_>
+
+ <_>
+ 9 2 4 7 -1.
+ <_>
+ 9 2 2 7 2.
+ <_>
+
+ <_>
+ 7 2 4 7 -1.
+ <_>
+ 9 2 2 7 2.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 0 9 5 9 -1.
+ <_>
+ 0 12 5 3 3.
+ <_>
+
+ <_>
+ 8 3 4 9 -1.
+ <_>
+ 8 3 2 9 2.
+ <_>
+
+ <_>
+ 7 8 6 6 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 6 13 14 3 -1.
+ <_>
+ 6 14 14 1 3.
+ <_>
+
+ <_>
+ 2 12 12 8 -1.
+ <_>
+ 6 12 4 8 3.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 10 14 5 6 3.
+ <_>
+
+ <_>
+ 6 8 6 12 -1.
+ <_>
+ 6 8 3 6 2.
+ <_>
+ 9 14 3 6 2.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 10 14 5 6 3.
+ <_>
+
+ <_>
+ 6 0 8 20 -1.
+ <_>
+ 6 10 8 10 2.
+ <_>
+
+ <_>
+ 10 3 4 13 -1.
+ <_>
+ 10 3 2 13 2.
+ <_>
+
+ <_>
+ 4 12 12 6 -1.
+ <_>
+ 8 12 4 6 3.
+ <_>
+
+ <_>
+ 10 3 4 13 -1.
+ <_>
+ 10 3 2 13 2.
+ <_>
+
+ <_>
+ 5 11 9 6 -1.
+ <_>
+ 8 11 3 6 3.
+ <_>
+
+ <_>
+ 8 13 6 7 -1.
+ <_>
+ 10 13 2 7 3.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 3 10 7 6 -1.
+ <_>
+ 3 12 7 2 3.
+ <_>
+
+ <_>
+ 12 3 5 12 -1.
+ <_>
+ 12 7 5 4 3.
+ <_>
+
+ <_>
+ 4 13 9 4 -1.
+ <_>
+ 4 15 9 2 2.
+ <_>
+
+ <_>
+ 6 13 14 3 -1.
+ <_>
+ 6 14 14 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 12 0 3 19 -1.
+ <_>
+ 13 0 1 19 3.
+ <_>
+
+ <_>
+ 6 3 4 13 -1.
+ <_>
+ 8 3 2 13 2.
+ <_>
+
+ <_>
+ 10 0 9 5 -1.
+ <_>
+ 13 0 3 5 3.
+ <_>
+
+ <_>
+ 1 0 9 5 -1.
+ <_>
+ 4 0 3 5 3.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 6 11 6 9 -1.
+ <_>
+ 8 11 2 9 3.
+ <_>
+
+ <_>
+ 12 3 5 12 -1.
+ <_>
+ 12 7 5 4 3.
+ <_>
+
+ <_>
+ 3 3 5 12 -1.
+ <_>
+ 3 7 5 4 3.
+ <_>
+
+ <_>
+ 10 11 6 9 -1.
+ <_>
+ 10 14 6 3 3.
+ <_>
+
+ <_>
+ 4 16 12 4 -1.
+ <_>
+ 4 18 12 2 2.
+ <_>
+
+ <_>
+ 2 14 18 4 -1.
+ <_>
+ 11 14 9 2 2.
+ <_>
+ 2 16 9 2 2.
+ <_>
+
+ <_>
+ 6 16 7 4 -1.
+ <_>
+ 6 18 7 2 2.
+ <_>
+
+ <_>
+ 5 10 12 8 -1.
+ <_>
+ 5 14 12 4 2.
+ <_>
+
+ <_>
+ 4 10 7 4 -1.
+ <_>
+ 4 12 7 2 2.
+ <_>
+
+ <_>
+ 8 9 7 4 -1.
+ <_>
+ 8 11 7 2 2.
+ <_>
+
+ <_>
+ 0 10 18 6 -1.
+ <_>
+ 9 10 9 6 2.
+ <_>
+
+ <_>
+ 0 6 20 2 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 6 5 6 8 -1.
+ <_>
+ 8 5 2 8 3.
+ <_>
+
+ <_>
+ 12 0 3 13 -1.
+ <_>
+ 13 0 1 13 3.
+ <_>
+
+ <_>
+ 8 10 3 10 -1.
+ <_>
+ 8 15 3 5 2.
+ <_>
+
+ <_>
+ 8 1 8 14 -1.
+ <_>
+ 12 1 4 7 2.
+ <_>
+ 8 8 4 7 2.
+ <_>
+
+ <_>
+ 5 0 3 19 -1.
+ <_>
+ 6 0 1 19 3.
+ <_>
+
+ <_>
+ 9 10 6 10 -1.
+ <_>
+ 12 10 3 5 2.
+ <_>
+ 9 15 3 5 2.
+ <_>
+
+ <_>
+ 0 6 5 14 -1.
+ <_>
+ 0 13 5 7 2.
+ <_>
+
+ <_>
+ 18 5 2 14 -1.
+ <_>
+ 18 12 2 7 2.
+ <_>
+
+ <_>
+ 0 5 2 14 -1.
+ <_>
+ 0 12 2 7 2.
+ <_>
+
+ <_>
+ 13 0 4 10 -1.
+ <_>
+ 13 5 4 5 2.
+ <_>
+
+ <_>
+ 1 0 18 18 -1.
+ <_>
+ 1 9 18 9 2.
+ <_>
+
+ <_>
+ 1 16 18 4 -1.
+ <_>
+ 10 16 9 2 2.
+ <_>
+ 1 18 9 2 2.
+ <_>
+
+ <_>
+ 5 1 8 6 -1.
+ <_>
+ 5 3 8 2 3.
+ <_>
+
+ <_>
+ 4 7 13 9 -1.
+ <_>
+ 4 10 13 3 3.
+ <_>
+
+ <_>
+ 5 5 10 10 -1.
+ <_>
+ 5 5 5 5 2.
+ <_>
+ 10 10 5 5 2.
+ <_>
+
+ <_>
+ 8 4 8 10 -1.
+ <_>
+ 12 4 4 5 2.
+ <_>
+ 8 9 4 5 2.
+ <_>
+
+ <_>
+ 3 7 14 4 -1.
+ <_>
+ 3 7 7 2 2.
+ <_>
+ 10 9 7 2 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 1 0 13 2 -1.
+ <_>
+ 1 1 13 1 2.
+ <_>
+
+ <_>
+ 6 2 14 3 -1.
+ <_>
+ 6 3 14 1 3.
+ <_>
+
+ <_>
+ 0 0 13 3 -1.
+ <_>
+ 0 1 13 1 3.
+ <_>
+
+ <_>
+ 4 1 12 6 -1.
+ <_>
+ 4 4 12 3 2.
+ <_>
+
+ <_>
+ 0 3 7 6 -1.
+ <_>
+ 0 5 7 2 3.
+ <_>
+
+ <_>
+ 2 5 16 6 -1.
+ <_>
+ 10 5 8 3 2.
+ <_>
+ 2 8 8 3 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 16 2 4 18 -1.
+ <_>
+ 18 2 2 9 2.
+ <_>
+ 16 11 2 9 2.
+ <_>
+
+ <_>
+ 6 2 4 15 -1.
+ <_>
+ 6 7 4 5 3.
+ <_>
+
+ <_>
+ 10 5 7 6 -1.
+ <_>
+ 10 7 7 2 3.
+ <_>
+
+ <_>
+ 4 0 4 14 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+ 6 7 2 7 2.
+ <_>
+
+ <_>
+ 6 3 10 6 -1.
+ <_>
+ 11 3 5 3 2.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 4 3 10 6 -1.
+ <_>
+ 4 3 5 3 2.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 4 4 13 12 -1.
+ <_>
+ 4 8 13 4 3.
+ <_>
+
+ <_>
+ 3 9 6 7 -1.
+ <_>
+ 5 9 2 7 3.
+ <_>
+
+ <_>
+ 11 11 4 9 -1.
+ <_>
+ 11 11 2 9 2.
+ <_>
+
+ <_>
+ 1 0 3 13 -1.
+ <_>
+ 2 0 1 13 3.
+ <_>
+
+ <_>
+ 11 11 4 9 -1.
+ <_>
+ 11 11 2 9 2.
+ <_>
+
+ <_>
+ 5 12 4 8 -1.
+ <_>
+ 7 12 2 8 2.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 10 14 5 6 3.
+ <_>
+
+ <_>
+ 0 14 15 6 -1.
+ <_>
+ 5 14 5 6 3.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 10 8 4 4 3.
+ <_>
+
+ <_>
+ 2 8 12 4 -1.
+ <_>
+ 6 8 4 4 3.
+ <_>
+
+ <_>
+ 13 6 4 10 -1.
+ <_>
+ 13 6 2 10 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 5 1 12 5 -1.
+ <_>
+ 9 1 4 5 3.
+ <_>
+
+ <_>
+ 2 2 15 4 -1.
+ <_>
+ 7 2 5 4 3.
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ <_>
+
+ <_>
+ 3 11 13 3 -1.
+ <_>
+ 3 12 13 1 3.
+ <_>
+
+ <_>
+ 10 10 9 6 -1.
+ <_>
+ 10 12 9 2 3.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 0 3 20 1 2.
+ <_>
+
+ <_>
+ 3 5 4 11 -1.
+ <_>
+ 5 5 2 11 2.
+ <_>
+
+ <_>
+ 13 1 3 17 -1.
+ <_>
+ 14 1 1 17 3.
+ <_>
+
+ <_>
+ 0 0 18 9 -1.
+ <_>
+ 6 0 6 9 3.
+ <_>
+
+ <_>
+ 6 9 9 6 -1.
+ <_>
+ 9 9 3 6 3.
+ <_>
+
+ <_>
+ 2 9 7 6 -1.
+ <_>
+ 2 11 7 2 3.
+ <_>
+
+ <_>
+ 13 1 3 17 -1.
+ <_>
+ 14 1 1 17 3.
+ <_>
+
+ <_>
+ 4 1 3 17 -1.
+ <_>
+ 5 1 1 17 3.
+ <_>
+
+ <_>
+ 2 0 18 6 -1.
+ <_>
+ 8 0 6 6 3.
+ <_>
+
+ <_>
+ 7 2 4 12 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 10 2 5 9 -1.
+ <_>
+ 10 5 5 3 3.
+ <_>
+
+ <_>
+ 5 2 5 9 -1.
+ <_>
+ 5 5 5 3 3.
+ <_>
+
+ <_>
+ 9 0 3 18 -1.
+ <_>
+ 9 6 3 6 3.
+ <_>
+
+ <_>
+ 6 12 7 4 -1.
+ <_>
+ 6 14 7 2 2.
+ <_>
+
+ <_>
+ 16 10 4 9 -1.
+ <_>
+ 16 10 2 9 2.
+ <_>
+
+ <_>
+ 0 10 4 9 -1.
+ <_>
+ 2 10 2 9 2.
+ <_>
+
+ <_>
+ 13 2 6 18 -1.
+ <_>
+ 16 2 3 9 2.
+ <_>
+ 13 11 3 9 2.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 2 3 5 12 -1.
+ <_>
+ 2 7 5 4 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 3 17 14 2 2.
+ <_>
+
+ <_>
+ 3 0 13 6 -1.
+ <_>
+ 3 3 13 3 2.
+ <_>
+
+ <_>
+ 4 11 16 9 -1.
+ <_>
+ 4 11 8 9 2.
+ <_>
+
+ <_>
+ 0 11 16 9 -1.
+ <_>
+ 8 11 8 9 2.
+ <_>
+
+ <_>
+ 11 0 5 8 -1.
+ <_>
+ 11 4 5 4 2.
+ <_>
+
+ <_>
+ 0 3 14 9 -1.
+ <_>
+ 0 6 14 3 3.
+ <_>
+
+ <_>
+ 5 0 10 10 -1.
+ <_>
+ 10 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 0 2 6 18 -1.
+ <_>
+ 0 2 3 9 2.
+ <_>
+ 3 11 3 9 2.
+ <_>
+
+ <_>
+ 9 5 3 15 -1.
+ <_>
+ 9 10 3 5 3.
+ <_>
+
+ <_>
+ 0 7 13 2 -1.
+ <_>
+ 0 8 13 1 2.
+ <_>
+
+ <_>
+ 11 1 5 9 -1.
+ <_>
+ 11 4 5 3 3.
+ <_>
+
+ <_>
+ 2 1 14 6 -1.
+ <_>
+ 2 1 7 3 2.
+ <_>
+ 9 4 7 3 2.
+ <_>
+
+ <_>
+ 9 0 6 12 -1.
+ <_>
+ 12 0 3 6 2.
+ <_>
+ 9 6 3 6 2.
+ <_>
+
+ <_>
+ 5 0 6 12 -1.
+ <_>
+ 5 0 3 6 2.
+ <_>
+ 8 6 3 6 2.
+ <_>
+
+ <_>
+ 6 9 9 6 -1.
+ <_>
+ 9 9 3 6 3.
+ <_>
+
+ <_>
+ 5 9 9 6 -1.
+ <_>
+ 8 9 3 6 3.
+ <_>
+
+ <_>
+ 8 3 10 11 -1.
+ <_>
+ 8 3 5 11 2.
+ <_>
+
+ <_>
+ 2 3 10 11 -1.
+ <_>
+ 7 3 5 11 2.
+ <_>
+
+ <_>
+ 8 2 12 18 -1.
+ <_>
+ 8 2 6 18 2.
+ <_>
+
+ <_>
+ 0 1 12 19 -1.
+ <_>
+ 6 1 6 19 2.
+ <_>
+
+ <_>
+ 10 11 5 9 -1.
+ <_>
+ 10 14 5 3 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 3 15 7 2 2.
+ <_>
+ 10 17 7 2 2.
+ <_>
+
+ <_>
+ 4 14 16 6 -1.
+ <_>
+ 4 14 8 6 2.
+ <_>
+
+ <_>
+ 5 11 9 6 -1.
+ <_>
+ 8 11 3 6 3.
+ <_>
+
+ <_>
+ 13 4 4 14 -1.
+ <_>
+ 15 4 2 7 2.
+ <_>
+ 13 11 2 7 2.
+ <_>
+
+ <_>
+ 1 3 6 9 -1.
+ <_>
+ 3 3 2 9 3.
+ <_>
+
+ <_>
+ 10 7 6 7 -1.
+ <_>
+ 12 7 2 7 3.
+ <_>
+
+ <_>
+ 0 2 10 3 -1.
+ <_>
+ 5 2 5 3 2.
+ <_>
+
+ <_>
+ 12 6 5 9 -1.
+ <_>
+ 12 9 5 3 3.
+ <_>
+
+ <_>
+ 3 12 8 8 -1.
+ <_>
+ 3 12 4 4 2.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 2 0 16 2 -1.
+ <_>
+ 2 1 16 1 2.
+ <_>
+
+ <_>
+ 13 7 7 6 -1.
+ <_>
+ 13 9 7 2 3.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 9 6 5 8 -1.
+ <_>
+ 9 10 5 4 2.
+ <_>
+
+ <_>
+ 7 5 6 12 -1.
+ <_>
+ 7 11 6 6 2.
+ <_>
+
+ <_>
+ 13 4 4 14 -1.
+ <_>
+ 15 4 2 7 2.
+ <_>
+ 13 11 2 7 2.
+ <_>
+
+ <_>
+ 3 4 4 14 -1.
+ <_>
+ 3 4 2 7 2.
+ <_>
+ 5 11 2 7 2.
+ <_>
+
+ <_>
+ 3 3 14 2 -1.
+ <_>
+ 3 4 14 1 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 10 4 10 12 -1.
+ <_>
+ 10 10 10 6 2.
+ <_>
+
+ <_>
+ 4 2 9 5 -1.
+ <_>
+ 7 2 3 5 3.
+ <_>
+
+ <_>
+ 4 4 16 10 -1.
+ <_>
+ 12 4 8 5 2.
+ <_>
+ 4 9 8 5 2.
+ <_>
+
+ <_>
+ 0 4 16 10 -1.
+ <_>
+ 0 4 8 5 2.
+ <_>
+ 8 9 8 5 2.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 5 8 4 12 -1.
+ <_>
+ 7 8 2 12 2.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 0 7 10 13 -1.
+ <_>
+ 5 7 5 13 2.
+ <_>
+
+ <_>
+ 13 13 7 4 -1.
+ <_>
+ 13 15 7 2 2.
+ <_>
+
+ <_>
+ 0 9 9 8 -1.
+ <_>
+ 3 9 3 8 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 12 13 2 -1.
+ <_>
+ 0 13 13 1 2.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 4 5 8 4 -1.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 4 9 4 8 -1.
+ <_>
+ 4 13 4 4 2.
+ <_>
+
+ <_>
+ 10 4 8 4 -1.
+ <_>
+ 10 6 8 2 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 3 2 14 4 -1.
+ <_>
+ 3 2 7 4 2.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 10 0 9 9 -1.
+ <_>
+ 13 0 3 9 3.
+ <_>
+
+ <_>
+ 1 0 9 9 -1.
+ <_>
+ 4 0 3 9 3.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 0 9 18 3 -1.
+ <_>
+ 6 9 6 3 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 4 10 5 -1.
+ <_>
+ 10 4 5 5 2.
+ <_>
+
+ <_>
+ 5 1 14 4 -1.
+ <_>
+ 12 1 7 2 2.
+ <_>
+ 5 3 7 2 2.
+ <_>
+
+ <_>
+ 1 1 14 4 -1.
+ <_>
+ 1 1 7 2 2.
+ <_>
+ 8 3 7 2 2.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 0 6 4 14 -1.
+ <_>
+ 0 6 2 7 2.
+ <_>
+ 2 13 2 7 2.
+ <_>
+
+ <_>
+ 12 11 5 9 -1.
+ <_>
+ 12 14 5 3 3.
+ <_>
+
+ <_>
+ 5 9 10 9 -1.
+ <_>
+ 5 12 10 3 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 4 0 8 9 -1.
+ <_>
+ 8 0 4 9 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 1 13 5 6 -1.
+ <_>
+ 1 16 5 3 2.
+ <_>
+
+ <_>
+ 11 15 7 4 -1.
+ <_>
+ 11 17 7 2 2.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 7 7 7 8 -1.
+ <_>
+ 7 11 7 4 2.
+ <_>
+
+ <_>
+ 2 4 3 10 -1.
+ <_>
+ 2 9 3 5 2.
+ <_>
+
+ <_>
+ 7 2 13 2 -1.
+ <_>
+ 7 3 13 1 2.
+ <_>
+
+ <_>
+ 2 15 7 4 -1.
+ <_>
+ 2 17 7 2 2.
+ <_>
+
+ <_>
+ 14 1 6 10 -1.
+ <_>
+ 17 1 3 5 2.
+ <_>
+ 14 6 3 5 2.
+ <_>
+
+ <_>
+ 0 1 6 10 -1.
+ <_>
+ 0 1 3 5 2.
+ <_>
+ 3 6 3 5 2.
+ <_>
+
+ <_>
+ 8 0 8 8 -1.
+ <_>
+ 12 0 4 4 2.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 6 8 4 9 -1.
+ <_>
+ 8 8 2 9 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 7 1 4 12 -1.
+ <_>
+ 9 1 2 12 2.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 6 0 2 8 3.
+ <_>
+
+ <_>
+ 10 0 4 18 -1.
+ <_>
+ 10 6 4 6 3.
+ <_>
+
+ <_>
+ 0 5 7 12 -1.
+ <_>
+ 0 9 7 4 3.
+ <_>
+
+ <_>
+ 11 5 5 9 -1.
+ <_>
+ 11 8 5 3 3.
+ <_>
+
+ <_>
+ 3 9 14 4 -1.
+ <_>
+ 3 9 7 2 2.
+ <_>
+ 10 11 7 2 2.
+ <_>
+
+ <_>
+ 3 7 17 3 -1.
+ <_>
+ 3 8 17 1 3.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 5 0 15 8 -1.
+ <_>
+ 10 0 5 8 3.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 2 3 16 9 -1.
+ <_>
+ 2 6 16 3 3.
+ <_>
+
+ <_>
+ 4 0 12 8 -1.
+ <_>
+ 4 4 12 4 2.
+ <_>
+
+ <_>
+ 13 0 7 6 -1.
+ <_>
+ 13 2 7 2 3.
+ <_>
+
+ <_>
+ 4 0 2 15 -1.
+ <_>
+ 5 0 1 15 2.
+ <_>
+
+ <_>
+ 10 10 6 7 -1.
+ <_>
+ 12 10 2 7 3.
+ <_>
+
+ <_>
+ 4 10 6 7 -1.
+ <_>
+ 6 10 2 7 3.
+ <_>
+
+ <_>
+ 10 8 8 8 -1.
+ <_>
+ 14 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 2 8 8 8 -1.
+ <_>
+ 2 8 4 4 2.
+ <_>
+ 6 12 4 4 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 10 1 3 10 -1.
+ <_>
+ 10 6 3 5 2.
+ <_>
+
+ <_>
+ 6 11 5 6 -1.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 4 3 12 12 -1.
+ <_>
+ 4 7 12 4 3.
+ <_>
+
+ <_>
+ 4 5 10 6 -1.
+ <_>
+ 4 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 11 4 9 10 -1.
+ <_>
+ 11 9 9 5 2.
+ <_>
+
+ <_>
+ 7 2 4 12 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 11 1 9 18 -1.
+ <_>
+ 11 7 9 6 3.
+ <_>
+
+ <_>
+ 4 8 12 10 -1.
+ <_>
+ 4 8 6 5 2.
+ <_>
+ 10 13 6 5 2.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 6 0 8 14 -1.
+ <_>
+ 6 0 4 7 2.
+ <_>
+ 10 7 4 7 2.
+ <_>
+
+ <_>
+ 8 1 8 8 -1.
+ <_>
+ 12 1 4 4 2.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 2 1 18 5 -1.
+ <_>
+ 8 1 6 5 3.
+ <_>
+
+ <_>
+ 0 0 15 8 -1.
+ <_>
+ 5 0 5 8 3.
+ <_>
+
+ <_>
+ 5 15 10 5 -1.
+ <_>
+ 5 15 5 5 2.
+ <_>
+
+ <_>
+ 0 5 12 15 -1.
+ <_>
+ 6 5 6 15 2.
+ <_>
+
+ <_>
+ 5 7 15 3 -1.
+ <_>
+ 10 7 5 3 3.
+ <_>
+
+ <_>
+ 0 7 15 3 -1.
+ <_>
+ 5 7 5 3 3.
+ <_>
+
+ <_>
+ 11 11 7 6 -1.
+ <_>
+ 11 13 7 2 3.
+ <_>
+
+ <_>
+ 2 11 7 6 -1.
+ <_>
+ 2 13 7 2 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 15 0 5 8 -1.
+ <_>
+ 15 4 5 4 2.
+ <_>
+
+ <_>
+ 0 0 20 4 -1.
+ <_>
+ 0 0 10 2 2.
+ <_>
+ 10 2 10 2 2.
+ <_>
+
+ <_>
+ 7 5 6 14 -1.
+ <_>
+ 10 5 3 7 2.
+ <_>
+ 7 12 3 7 2.
+ <_>
+
+ <_>
+ 6 6 7 4 -1.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 11 5 5 9 -1.
+ <_>
+ 11 8 5 3 3.
+ <_>
+
+ <_>
+ 4 5 5 9 -1.
+ <_>
+ 4 8 5 3 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 10 5 5 3 2.
+ <_>
+ 5 8 5 3 2.
+ <_>
+
+ <_>
+ 0 0 5 8 -1.
+ <_>
+ 0 4 5 4 2.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 2 11 4 8 -1.
+ <_>
+ 4 11 2 8 2.
+ <_>
+
+ <_>
+ 14 5 4 14 -1.
+ <_>
+ 16 5 2 7 2.
+ <_>
+ 14 12 2 7 2.
+ <_>
+
+ <_>
+ 2 5 4 14 -1.
+ <_>
+ 2 5 2 7 2.
+ <_>
+ 4 12 2 7 2.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 8 12 10 6 -1.
+ <_>
+ 8 14 10 2 3.
+ <_>
+
+ <_>
+ 7 2 4 14 -1.
+ <_>
+ 7 2 2 7 2.
+ <_>
+ 9 9 2 7 2.
+ <_>
+
+ <_>
+ 5 7 14 4 -1.
+ <_>
+ 12 7 7 2 2.
+ <_>
+ 5 9 7 2 2.
+ <_>
+
+ <_>
+ 1 7 14 4 -1.
+ <_>
+ 1 7 7 2 2.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 2 6 14 10 -1.
+ <_>
+ 2 6 7 5 2.
+ <_>
+ 9 11 7 5 2.
+ <_>
+
+ <_>
+ 13 5 4 11 -1.
+ <_>
+ 13 5 2 11 2.
+ <_>
+
+ <_>
+ 2 13 15 6 -1.
+ <_>
+ 7 13 5 6 3.
+ <_>
+
+ <_>
+ 5 16 12 4 -1.
+ <_>
+ 9 16 4 4 3.
+ <_>
+
+ <_>
+ 3 15 9 5 -1.
+ <_>
+ 6 15 3 5 3.
+ <_>
+
+ <_>
+ 2 0 17 18 -1.
+ <_>
+ 2 9 17 9 2.
+ <_>
+
+ <_>
+ 1 0 4 12 -1.
+ <_>
+ 1 4 4 4 3.
+ <_>
+
+ <_>
+ 13 5 4 11 -1.
+ <_>
+ 13 5 2 11 2.
+ <_>
+
+ <_>
+ 3 4 6 5 -1.
+ <_>
+ 6 4 3 5 2.
+ <_>
+
+ <_>
+ 3 0 15 2 -1.
+ <_>
+ 3 1 15 1 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 4 7 15 3 -1.
+ <_>
+ 9 7 5 3 3.
+ <_>
+
+ <_>
+ 1 7 15 3 -1.
+ <_>
+ 6 7 5 3 3.
+ <_>
+
+ <_>
+ 11 2 3 14 -1.
+ <_>
+ 12 2 1 14 3.
+ <_>
+
+ <_>
+ 7 6 3 13 -1.
+ <_>
+ 8 6 1 13 3.
+ <_>
+
+ <_>
+ 13 14 7 4 -1.
+ <_>
+ 13 16 7 2 2.
+ <_>
+
+ <_>
+ 2 7 16 2 -1.
+ <_>
+ 2 8 16 1 2.
+ <_>
+
+ <_>
+ 7 6 7 4 -1.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 8 4 3 10 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 9 6 4 8 -1.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 0 4 11 12 -1.
+ <_>
+ 0 10 11 6 2.
+ <_>
+
+ <_>
+ 13 6 4 14 -1.
+ <_>
+ 13 13 4 7 2.
+ <_>
+
+ <_>
+ 3 6 4 14 -1.
+ <_>
+ 3 13 4 7 2.
+ <_>
+
+ <_>
+ 10 2 6 10 -1.
+ <_>
+ 13 2 3 5 2.
+ <_>
+ 10 7 3 5 2.
+ <_>
+
+ <_>
+ 4 7 12 6 -1.
+ <_>
+ 4 9 12 2 3.
+ <_>
+
+ <_>
+ 0 5 20 6 -1.
+ <_>
+ 0 7 20 2 3.
+ <_>
+
+ <_>
+ 4 2 6 10 -1.
+ <_>
+ 4 2 3 5 2.
+ <_>
+ 7 7 3 5 2.
+ <_>
+
+ <_>
+ 2 1 18 5 -1.
+ <_>
+ 8 1 6 5 3.
+ <_>
+
+ <_>
+ 6 1 4 8 -1.
+ <_>
+ 6 5 4 4 2.
+ <_>
+
+ <_>
+ 12 9 6 9 -1.
+ <_>
+ 12 12 6 3 3.
+ <_>
+
+ <_>
+ 8 3 3 13 -1.
+ <_>
+ 9 3 1 13 3.
+ <_>
+
+ <_>
+ 11 0 2 15 -1.
+ <_>
+ 11 0 1 15 2.
+ <_>
+
+ <_>
+ 7 0 2 15 -1.
+ <_>
+ 8 0 1 15 2.
+ <_>
+
+ <_>
+ 4 9 12 4 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 8 7 12 13 -1.
+ <_>
+ 8 7 6 13 2.
+ <_>
+
+ <_>
+ 0 8 14 2 -1.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 5 17 15 3 -1.
+ <_>
+ 10 17 5 3 3.
+ <_>
+
+ <_>
+ 0 17 15 3 -1.
+ <_>
+ 5 17 5 3 3.
+ <_>
+
+ <_>
+ 11 8 8 5 -1.
+ <_>
+ 11 8 4 5 2.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 3 1 8 8 -1.
+ <_>
+ 3 1 4 4 2.
+ <_>
+ 7 5 4 4 2.
+ <_>
+
+ <_>
+ 10 1 3 10 -1.
+ <_>
+ 10 6 3 5 2.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 8 4 4 12 -1.
+ <_>
+ 8 8 4 4 3.
+ <_>
+
+ <_>
+ 0 11 18 2 -1.
+ <_>
+ 0 12 18 1 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 2 9 6 9 -1.
+ <_>
+ 2 12 6 3 3.
+ <_>
+
+ <_>
+ 2 1 18 5 -1.
+ <_>
+ 8 1 6 5 3.
+ <_>
+
+ <_>
+ 0 1 18 5 -1.
+ <_>
+ 6 1 6 5 3.
+ <_>
+
+ <_>
+ 11 5 2 14 -1.
+ <_>
+ 11 12 2 7 2.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 7 8 3 6 2.
+ <_>
+ 10 14 3 6 2.
+ <_>
+
+ <_>
+ 2 15 16 4 -1.
+ <_>
+ 2 17 16 2 2.
+ <_>
+
+ <_>
+ 5 1 2 19 -1.
+ <_>
+ 6 1 1 19 2.
+ <_>
+
+ <_>
+ 7 4 6 10 -1.
+ <_>
+ 10 4 3 5 2.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 2 16 15 4 -1.
+ <_>
+ 7 16 5 4 3.
+ <_>
+
+ <_>
+ 10 1 6 15 -1.
+ <_>
+ 12 1 2 15 3.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 5 8 10 4 -1.
+ <_>
+ 5 10 10 2 2.
+ <_>
+
+ <_>
+ 6 6 5 8 -1.
+ <_>
+ 6 10 5 4 2.
+ <_>
+
+ <_>
+ 4 5 12 8 -1.
+ <_>
+ 10 5 6 4 2.
+ <_>
+ 4 9 6 4 2.
+ <_>
+
+ <_>
+ 4 1 6 15 -1.
+ <_>
+ 6 1 2 15 3.
+ <_>
+
+ <_>
+ 8 8 6 12 -1.
+ <_>
+ 11 8 3 6 2.
+ <_>
+ 8 14 3 6 2.
+ <_>
+
+ <_>
+ 2 6 6 8 -1.
+ <_>
+ 5 6 3 8 2.
+ <_>
+
+ <_>
+ 17 0 2 14 -1.
+ <_>
+ 17 0 1 14 2.
+ <_>
+
+ <_>
+ 1 0 2 14 -1.
+ <_>
+ 2 0 1 14 2.
+ <_>
+
+ <_>
+ 11 2 3 13 -1.
+ <_>
+ 12 2 1 13 3.
+ <_>
+
+ <_>
+ 6 2 3 13 -1.
+ <_>
+ 7 2 1 13 3.
+ <_>
+
+ <_>
+ 16 0 4 13 -1.
+ <_>
+ 16 0 2 13 2.
+ <_>
+
+ <_>
+ 0 0 4 13 -1.
+ <_>
+ 2 0 2 13 2.
+ <_>
+
+ <_>
+ 5 6 14 3 -1.
+ <_>
+ 5 6 7 3 2.
+ <_>
+
+ <_>
+ 1 6 14 3 -1.
+ <_>
+ 8 6 7 3 2.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+ 7 14 3 6 2.
+ <_>
+
+ <_>
+ 5 7 4 7 -1.
+ <_>
+ 7 7 2 7 2.
+ <_>
+
+ <_>
+ 12 1 4 12 -1.
+ <_>
+ 12 5 4 4 3.
+ <_>
+
+ <_>
+ 4 1 4 12 -1.
+ <_>
+ 4 5 4 4 3.
+ <_>
+
+ <_>
+ 3 0 14 12 -1.
+ <_>
+ 3 4 14 4 3.
+ <_>
+
+ <_>
+ 6 6 7 4 -1.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 12 0 4 7 -1.
+ <_>
+ 12 0 2 7 2.
+ <_>
+
+ <_>
+ 2 9 12 3 -1.
+ <_>
+ 8 9 6 3 2.
+ <_>
+
+ <_>
+ 0 9 20 3 -1.
+ <_>
+ 0 10 20 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 2 2 15 12 -1.
+ <_>
+ 2 8 15 6 2.
+ <_>
+
+ <_>
+ 11 5 5 6 -1.
+ <_>
+ 11 8 5 3 2.
+ <_>
+
+ <_>
+ 2 8 14 3 -1.
+ <_>
+ 2 9 14 1 3.
+ <_>
+
+ <_>
+ 10 2 6 9 -1.
+ <_>
+ 10 5 6 3 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 8 14 12 6 -1.
+ <_>
+ 14 14 6 3 2.
+ <_>
+ 8 17 6 3 2.
+ <_>
+
+ <_>
+ 6 12 8 6 -1.
+ <_>
+ 6 14 8 2 3.
+ <_>
+
+ <_>
+ 9 14 9 4 -1.
+ <_>
+ 9 16 9 2 2.
+ <_>
+
+ <_>
+ 0 14 7 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+
+ <_>
+ 2 11 18 8 -1.
+ <_>
+ 2 15 18 4 2.
+ <_>
+
+ <_>
+ 0 12 10 8 -1.
+ <_>
+ 0 12 5 4 2.
+ <_>
+ 5 16 5 4 2.
+ <_>
+
+ <_>
+ 13 9 4 7 -1.
+ <_>
+ 13 9 2 7 2.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 12 5 5 9 -1.
+ <_>
+ 12 8 5 3 3.
+ <_>
+
+ <_>
+ 3 5 5 9 -1.
+ <_>
+ 3 8 5 3 3.
+ <_>
+
+ <_>
+ 5 5 11 6 -1.
+ <_>
+ 5 8 11 3 2.
+ <_>
+
+ <_>
+ 4 0 4 7 -1.
+ <_>
+ 6 0 2 7 2.
+ <_>
+
+ <_>
+ 1 8 18 5 -1.
+ <_>
+ 7 8 6 5 3.
+ <_>
+
+ <_>
+ 1 3 18 7 -1.
+ <_>
+ 7 3 6 7 3.
+ <_>
+
+ <_>
+ 7 11 7 8 -1.
+ <_>
+ 7 15 7 4 2.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 10 14 6 6 2.
+ <_>
+
+ <_>
+ 5 6 11 9 -1.
+ <_>
+ 5 9 11 3 3.
+ <_>
+
+ <_>
+ 7 12 4 8 -1.
+ <_>
+ 7 16 4 4 2.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 6 5 7 6 -1.
+ <_>
+ 6 8 7 3 2.
+ <_>
+
+ <_>
+ 13 9 4 7 -1.
+ <_>
+ 13 9 2 7 2.
+ <_>
+
+ <_>
+ 3 9 4 7 -1.
+ <_>
+ 5 9 2 7 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 2 10 8 10 -1.
+ <_>
+ 6 10 4 10 2.
+ <_>
+
+ <_>
+ 8 4 12 16 -1.
+ <_>
+ 14 4 6 8 2.
+ <_>
+ 8 12 6 8 2.
+ <_>
+
+ <_>
+ 0 4 12 16 -1.
+ <_>
+ 0 4 6 8 2.
+ <_>
+ 6 12 6 8 2.
+ <_>
+
+ <_>
+ 8 4 6 7 -1.
+ <_>
+ 10 4 2 7 3.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+ 10 13 2 7 2.
+ <_>
+
+ <_>
+ 5 2 10 18 -1.
+ <_>
+ 10 2 5 9 2.
+ <_>
+ 5 11 5 9 2.
+ <_>
+
+ <_>
+ 6 11 7 6 -1.
+ <_>
+ 6 13 7 2 3.
+ <_>
+
+ <_>
+ 9 4 5 12 -1.
+ <_>
+ 9 10 5 6 2.
+ <_>
+
+ <_>
+ 0 11 7 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+
+ <_>
+ 1 5 19 15 -1.
+ <_>
+ 1 10 19 5 3.
+ <_>
+
+ <_>
+ 0 15 7 4 -1.
+ <_>
+ 0 17 7 2 2.
+ <_>
+
+ <_>
+ 6 0 10 6 -1.
+ <_>
+ 11 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 4 0 10 6 -1.
+ <_>
+ 4 0 5 3 2.
+ <_>
+ 9 3 5 3 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 11 7 7 6 -1.
+ <_>
+ 11 9 7 2 3.
+ <_>
+
+ <_>
+ 4 6 12 5 -1.
+ <_>
+ 8 6 4 5 3.
+ <_>
+
+ <_>
+ 9 4 11 4 -1.
+ <_>
+ 9 6 11 2 2.
+ <_>
+
+ <_>
+ 2 1 6 10 -1.
+ <_>
+ 2 1 3 5 2.
+ <_>
+ 5 6 3 5 2.
+ <_>
+
+ <_>
+ 12 5 4 8 -1.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 0 5 18 8 -1.
+ <_>
+ 0 5 9 4 2.
+ <_>
+ 9 9 9 4 2.
+ <_>
+
+ <_>
+ 9 6 5 12 -1.
+ <_>
+ 9 12 5 6 2.
+ <_>
+
+ <_>
+ 0 12 13 2 -1.
+ <_>
+ 0 13 13 1 2.
+ <_>
+
+ <_>
+ 10 4 3 13 -1.
+ <_>
+ 11 4 1 13 3.
+ <_>
+
+ <_>
+ 7 3 3 14 -1.
+ <_>
+ 8 3 1 14 3.
+ <_>
+
+ <_>
+ 7 12 6 8 -1.
+ <_>
+ 9 12 2 8 3.
+ <_>
+
+ <_>
+ 4 5 4 12 -1.
+ <_>
+ 4 9 4 4 3.
+ <_>
+
+ <_>
+ 3 3 17 2 -1.
+ <_>
+ 3 4 17 1 2.
+ <_>
+
+ <_>
+ 2 0 15 6 -1.
+ <_>
+ 2 2 15 2 3.
+ <_>
+
+ <_>
+ 8 0 12 4 -1.
+ <_>
+ 8 0 6 4 2.
+ <_>
+
+ <_>
+ 1 10 10 6 -1.
+ <_>
+ 1 12 10 2 3.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 1 8 4 12 -1.
+ <_>
+ 3 8 2 12 2.
+ <_>
+
+ <_>
+ 4 15 15 5 -1.
+ <_>
+ 9 15 5 5 3.
+ <_>
+
+ <_>
+ 0 1 14 3 -1.
+ <_>
+ 0 2 14 1 3.
+ <_>
+
+ <_>
+ 10 2 6 7 -1.
+ <_>
+ 12 2 2 7 3.
+ <_>
+
+ <_>
+ 4 2 6 7 -1.
+ <_>
+ 6 2 2 7 3.
+ <_>
+
+ <_>
+ 6 12 8 6 -1.
+ <_>
+ 6 14 8 2 3.
+ <_>
+
+ <_>
+ 1 3 14 12 -1.
+ <_>
+ 1 7 14 4 3.
+ <_>
+
+ <_>
+ 4 15 15 5 -1.
+ <_>
+ 9 15 5 5 3.
+ <_>
+
+ <_>
+ 1 15 15 5 -1.
+ <_>
+ 6 15 5 5 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 11 10 4 7 -1.
+ <_>
+ 11 10 2 7 2.
+ <_>
+
+ <_>
+ 5 10 4 7 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 4 10 12 5 -1.
+ <_>
+ 8 10 4 5 3.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 7 1 13 2 -1.
+ <_>
+ 7 2 13 1 2.
+ <_>
+
+ <_>
+ 2 5 14 2 -1.
+ <_>
+ 2 6 14 1 2.
+ <_>
+
+ <_>
+ 14 0 3 14 -1.
+ <_>
+ 15 0 1 14 3.
+ <_>
+
+ <_>
+ 3 0 3 14 -1.
+ <_>
+ 4 0 1 14 3.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 16 0 2 13 3.
+ <_>
+
+ <_>
+ 0 0 6 13 -1.
+ <_>
+ 2 0 2 13 3.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 0 3 4 7 -1.
+ <_>
+ 2 3 2 7 2.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 2 4 8 -1.
+ <_>
+ 0 6 4 4 2.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 1 20 16 -1.
+ <_>
+ 0 1 10 8 2.
+ <_>
+ 10 9 10 8 2.
+ <_>
+
+ <_>
+ 7 1 10 16 -1.
+ <_>
+ 12 1 5 8 2.
+ <_>
+ 7 9 5 8 2.
+ <_>
+
+ <_>
+ 0 1 16 14 -1.
+ <_>
+ 0 1 8 7 2.
+ <_>
+ 8 8 8 7 2.
+ <_>
+
+ <_>
+ 9 5 10 6 -1.
+ <_>
+ 14 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 1 5 10 6 -1.
+ <_>
+ 1 5 5 3 2.
+ <_>
+ 6 8 5 3 2.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 6 13 1 2.
+ <_>
+
+ <_>
+ 0 4 10 4 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 10 0 4 8 -1.
+ <_>
+ 10 4 4 4 2.
+ <_>
+
+ <_>
+ 0 3 20 3 -1.
+ <_>
+ 0 4 20 1 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 0 4 6 3 3.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 3 17 14 2 2.
+ <_>
+
+ <_>
+ 12 12 7 6 -1.
+ <_>
+ 12 14 7 2 3.
+ <_>
+
+ <_>
+ 0 14 18 4 -1.
+ <_>
+ 0 14 9 2 2.
+ <_>
+ 9 16 9 2 2.
+ <_>
+
+ <_>
+ 14 4 4 9 -1.
+ <_>
+ 14 4 2 9 2.
+ <_>
+
+ <_>
+ 0 4 6 8 -1.
+ <_>
+ 2 4 2 8 3.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 1 10 5 9 -1.
+ <_>
+ 1 13 5 3 3.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 5 0 9 5 -1.
+ <_>
+ 8 0 3 5 3.
+ <_>
+
+ <_>
+ 16 6 4 14 -1.
+ <_>
+ 18 6 2 7 2.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 3 1 10 16 -1.
+ <_>
+ 3 1 5 8 2.
+ <_>
+ 8 9 5 8 2.
+ <_>
+
+ <_>
+ 2 12 18 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 10 4 2 7 2.
+ <_>
+
+ <_>
+ 12 0 3 20 -1.
+ <_>
+ 13 0 1 20 3.
+ <_>
+
+ <_>
+ 5 0 3 20 -1.
+ <_>
+ 6 0 1 20 3.
+ <_>
+
+ <_>
+ 11 13 9 7 -1.
+ <_>
+ 14 13 3 7 3.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+ 10 12 2 7 2.
+ <_>
+
+ <_>
+ 2 12 18 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 0 12 18 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 8 14 12 5 -1.
+ <_>
+ 12 14 4 5 3.
+ <_>
+
+ <_>
+ 0 14 12 5 -1.
+ <_>
+ 4 14 4 5 3.
+ <_>
+
+ <_>
+ 6 8 14 3 -1.
+ <_>
+ 6 9 14 1 3.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 1 11 8 2 2.
+ <_>
+ 9 13 8 2 2.
+ <_>
+
+ <_>
+ 13 10 6 10 -1.
+ <_>
+ 16 10 3 5 2.
+ <_>
+ 13 15 3 5 2.
+ <_>
+
+ <_>
+ 0 5 20 12 -1.
+ <_>
+ 0 5 10 6 2.
+ <_>
+ 10 11 10 6 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 1 18 15 2 -1.
+ <_>
+ 1 19 15 1 2.
+ <_>
+
+ <_>
+ 13 10 6 10 -1.
+ <_>
+ 16 10 3 5 2.
+ <_>
+ 13 15 3 5 2.
+ <_>
+
+ <_>
+ 0 14 20 6 -1.
+ <_>
+ 0 16 20 2 3.
+ <_>
+
+ <_>
+ 13 10 6 10 -1.
+ <_>
+ 16 10 3 5 2.
+ <_>
+ 13 15 3 5 2.
+ <_>
+
+ <_>
+ 3 0 13 2 -1.
+ <_>
+ 3 1 13 1 2.
+ <_>
+
+ <_>
+ 0 7 20 3 -1.
+ <_>
+ 0 8 20 1 3.
+ <_>
+
+ <_>
+ 2 5 10 8 -1.
+ <_>
+ 2 9 10 4 2.
+ <_>
+
+ <_>
+ 8 5 12 6 -1.
+ <_>
+ 8 8 12 3 2.
+ <_>
+
+ <_>
+ 0 5 11 6 -1.
+ <_>
+ 0 8 11 3 2.
+ <_>
+
+ <_>
+ 3 10 17 2 -1.
+ <_>
+ 3 11 17 1 2.
+ <_>
+
+ <_>
+ 1 10 6 10 -1.
+ <_>
+ 1 10 3 5 2.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 1 0 18 3 -1.
+ <_>
+ 7 0 6 3 3.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 3 14 14 2 2.
+ <_>
+
+ <_>
+ 8 0 7 8 -1.
+ <_>
+ 8 4 7 4 2.
+ <_>
+
+ <_>
+ 3 13 7 6 -1.
+ <_>
+ 3 15 7 2 3.
+ <_>
+
+ <_>
+ 9 7 3 13 -1.
+ <_>
+ 10 7 1 13 3.
+ <_>
+
+ <_>
+ 0 14 5 6 -1.
+ <_>
+ 0 17 5 3 2.
+ <_>
+
+ <_>
+ 5 6 15 4 -1.
+ <_>
+ 10 6 5 4 3.
+ <_>
+
+ <_>
+ 0 6 15 4 -1.
+ <_>
+ 5 6 5 4 3.
+ <_>
+
+ <_>
+ 16 9 3 10 -1.
+ <_>
+ 16 14 3 5 2.
+ <_>
+
+ <_>
+ 1 0 8 15 -1.
+ <_>
+ 1 5 8 5 3.
+ <_>
+
+ <_>
+ 14 0 4 13 -1.
+ <_>
+ 14 0 2 13 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 4 0 15 2 -1.
+ <_>
+ 4 1 15 1 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 10 0 4 6 2.
+ <_>
+ 6 6 4 6 2.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 1 1 16 4 -1.
+ <_>
+ 1 1 8 2 2.
+ <_>
+ 9 3 8 2 2.
+ <_>
+
+ <_>
+ 17 6 3 13 -1.
+ <_>
+ 18 6 1 13 3.
+ <_>
+
+ <_>
+ 0 6 3 13 -1.
+ <_>
+ 1 6 1 13 3.
+ <_>
+
+ <_>
+ 9 2 6 14 -1.
+ <_>
+ 12 2 3 7 2.
+ <_>
+ 9 9 3 7 2.
+ <_>
+
+ <_>
+ 7 6 4 7 -1.
+ <_>
+ 9 6 2 7 2.
+ <_>
+
+ <_>
+ 6 8 8 12 -1.
+ <_>
+ 10 8 4 6 2.
+ <_>
+ 6 14 4 6 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 2 13 16 3 -1.
+ <_>
+ 2 14 16 1 3.
+ <_>
+
+ <_>
+ 6 8 8 10 -1.
+ <_>
+ 6 8 4 5 2.
+ <_>
+ 10 13 4 5 2.
+ <_>
+
+ <_>
+ 5 3 12 3 -1.
+ <_>
+ 5 3 6 3 2.
+ <_>
+
+ <_>
+ 8 0 4 18 -1.
+ <_>
+ 8 6 4 6 3.
+ <_>
+
+ <_>
+ 9 8 3 12 -1.
+ <_>
+ 9 14 3 6 2.
+ <_>
+
+ <_>
+ 7 7 3 10 -1.
+ <_>
+ 7 12 3 5 2.
+ <_>
+
+ <_>
+ 10 5 7 6 -1.
+ <_>
+ 10 7 7 2 3.
+ <_>
+
+ <_>
+ 0 6 4 14 -1.
+ <_>
+ 0 6 2 7 2.
+ <_>
+ 2 13 2 7 2.
+ <_>
+
+ <_>
+ 13 10 6 5 -1.
+ <_>
+ 13 10 3 5 2.
+ <_>
+
+ <_>
+ 1 10 6 5 -1.
+ <_>
+ 4 10 3 5 2.
+ <_>
+
+ <_>
+ 14 10 4 7 -1.
+ <_>
+ 14 10 2 7 2.
+ <_>
+
+ <_>
+ 1 12 6 5 -1.
+ <_>
+ 4 12 3 5 2.
+ <_>
+
+ <_>
+ 6 6 8 12 -1.
+ <_>
+ 6 12 8 6 2.
+ <_>
+
+ <_>
+ 0 8 14 3 -1.
+ <_>
+ 0 9 14 1 3.
+ <_>
+
+ <_>
+ 8 11 6 6 -1.
+ <_>
+ 8 14 6 3 2.
+ <_>
+
+ <_>
+ 6 1 8 12 -1.
+ <_>
+ 6 7 8 6 2.
+ <_>
+
+ <_>
+ 2 0 16 8 -1.
+ <_>
+ 2 4 16 4 2.
+ <_>
+
+ <_>
+ 1 0 17 3 -1.
+ <_>
+ 1 1 17 1 3.
+ <_>
+
+ <_>
+ 5 13 13 2 -1.
+ <_>
+ 5 14 13 1 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 3 14 3 6 3.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 6 0 8 12 -1.
+ <_>
+ 6 4 8 4 3.
+ <_>
+
+ <_>
+ 0 1 13 2 -1.
+ <_>
+ 0 2 13 1 2.
+ <_>
+
+ <_>
+ 15 1 3 13 -1.
+ <_>
+ 16 1 1 13 3.
+ <_>
+
+ <_>
+ 2 1 3 13 -1.
+ <_>
+ 3 1 1 13 3.
+ <_>
+
+ <_>
+ 4 4 12 4 -1.
+ <_>
+ 8 4 4 4 3.
+ <_>
+
+ <_>
+ 1 0 18 4 -1.
+ <_>
+ 7 0 6 4 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 5 2 3 18 -1.
+ <_>
+ 6 2 1 18 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 0 10 20 3 -1.
+ <_>
+ 0 11 20 1 3.
+ <_>
+
+ <_>
+ 7 10 13 3 -1.
+ <_>
+ 7 11 13 1 3.
+ <_>
+
+ <_>
+ 0 15 13 2 -1.
+ <_>
+ 0 16 13 1 2.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 3 7 12 5 -1.
+ <_>
+ 7 7 4 5 3.
+ <_>
+
+ <_>
+ 2 11 16 8 -1.
+ <_>
+ 10 11 8 4 2.
+ <_>
+ 2 15 8 4 2.
+ <_>
+
+ <_>
+ 2 0 14 12 -1.
+ <_>
+ 2 6 14 6 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 11 5 3 2.
+ <_>
+ 10 14 5 3 2.
+ <_>
+
+ <_>
+ 10 1 7 6 -1.
+ <_>
+ 10 3 7 2 3.
+ <_>
+
+ <_>
+ 5 3 10 6 -1.
+ <_>
+ 5 5 10 2 3.
+ <_>
+
+ <_>
+ 4 6 12 3 -1.
+ <_>
+ 4 6 6 3 2.
+ <_>
+
+ <_>
+ 1 4 14 3 -1.
+ <_>
+ 1 5 14 1 3.
+ <_>
+
+ <_>
+ 12 12 8 4 -1.
+ <_>
+ 12 12 4 4 2.
+ <_>
+
+ <_>
+ 0 12 8 4 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+
+ <_>
+ 10 9 10 8 -1.
+ <_>
+ 10 9 5 8 2.
+ <_>
+
+ <_>
+ 0 9 10 8 -1.
+ <_>
+ 5 9 5 8 2.
+ <_>
+
+ <_>
+ 3 4 14 3 -1.
+ <_>
+ 3 5 14 1 3.
+ <_>
+
+ <_>
+ 0 5 12 4 -1.
+ <_>
+ 0 7 12 2 2.
+ <_>
+
+ <_>
+ 7 1 8 12 -1.
+ <_>
+ 7 7 8 6 2.
+ <_>
+
+ <_>
+ 5 0 10 15 -1.
+ <_>
+ 10 0 5 15 2.
+ <_>
+
+ <_>
+ 6 1 10 6 -1.
+ <_>
+ 11 1 5 3 2.
+ <_>
+ 6 4 5 3 2.
+ <_>
+
+ <_>
+ 4 1 10 6 -1.
+ <_>
+ 4 1 5 3 2.
+ <_>
+ 9 4 5 3 2.
+ <_>
+
+ <_>
+ 1 5 18 3 -1.
+ <_>
+ 7 5 6 3 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 11 8 4 12 -1.
+ <_>
+ 11 8 2 12 2.
+ <_>
+
+ <_>
+ 5 8 4 12 -1.
+ <_>
+ 7 8 2 12 2.
+ <_>
+
+ <_>
+ 8 4 4 16 -1.
+ <_>
+ 10 4 2 8 2.
+ <_>
+ 8 12 2 8 2.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+ 10 13 2 7 2.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 3 0 13 9 -1.
+ <_>
+ 3 3 13 3 3.
+ <_>
+
+ <_>
+ 3 5 17 6 -1.
+ <_>
+ 3 7 17 2 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 3 1 15 19 -1.
+ <_>
+ 8 1 5 19 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 3 2 14 3 -1.
+ <_>
+ 3 2 7 3 2.
+ <_>
+
+ <_>
+ 3 6 10 3 -1.
+ <_>
+ 8 6 5 3 2.
+ <_>
+
+ <_>
+ 6 7 14 2 -1.
+ <_>
+ 6 8 14 1 2.
+ <_>
+
+ <_>
+ 2 4 15 3 -1.
+ <_>
+ 2 5 15 1 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 8 15 7 4 -1.
+ <_>
+ 8 17 7 2 2.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 15 20 3 2.
+ <_>
+
+ <_>
+ 6 3 13 3 -1.
+ <_>
+ 6 4 13 1 3.
+ <_>
+
+ <_>
+ 1 5 17 12 -1.
+ <_>
+ 1 9 17 4 3.
+ <_>
+
+ <_>
+ 6 11 13 3 -1.
+ <_>
+ 6 12 13 1 3.
+ <_>
+
+ <_>
+ 2 5 16 8 -1.
+ <_>
+ 2 9 16 4 2.
+ <_>
+
+ <_>
+ 9 5 5 14 -1.
+ <_>
+ 9 12 5 7 2.
+ <_>
+
+ <_>
+ 8 4 3 16 -1.
+ <_>
+ 9 4 1 16 3.
+ <_>
+
+ <_>
+ 3 4 14 6 -1.
+ <_>
+ 10 4 7 3 2.
+ <_>
+ 3 7 7 3 2.
+ <_>
+
+ <_>
+ 0 3 7 6 -1.
+ <_>
+ 0 5 7 2 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 10 5 6 3 2.
+ <_>
+ 4 8 6 3 2.
+ <_>
+
+ <_>
+ 0 13 19 6 -1.
+ <_>
+ 0 15 19 2 3.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 3 1 7 6 -1.
+ <_>
+ 3 3 7 2 3.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 1 3 8 10 -1.
+ <_>
+ 1 3 4 5 2.
+ <_>
+ 5 8 4 5 2.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 12 4 6 2.
+ <_>
+
+ <_>
+ 4 10 4 7 -1.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 8 0 9 14 -1.
+ <_>
+ 11 0 3 14 3.
+ <_>
+
+ <_>
+ 1 1 18 19 -1.
+ <_>
+ 7 1 6 19 3.
+ <_>
+
+ <_>
+ 8 5 8 9 -1.
+ <_>
+ 8 8 8 3 3.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 2 10 6 8 -1.
+ <_>
+ 4 10 2 8 3.
+ <_>
+
+ <_>
+ 12 13 7 6 -1.
+ <_>
+ 12 15 7 2 3.
+ <_>
+
+ <_>
+ 6 10 4 8 -1.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 10 9 6 10 -1.
+ <_>
+ 10 14 6 5 2.
+ <_>
+
+ <_>
+ 4 9 6 10 -1.
+ <_>
+ 4 14 6 5 2.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 1 13 7 6 -1.
+ <_>
+ 1 15 7 2 3.
+ <_>
+
+ <_>
+ 13 1 6 13 -1.
+ <_>
+ 13 1 3 13 2.
+ <_>
+
+ <_>
+ 3 3 13 3 -1.
+ <_>
+ 3 4 13 1 3.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 4 14 10 6 -1.
+ <_>
+ 4 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 11 1 4 14 -1.
+ <_>
+ 13 1 2 7 2.
+ <_>
+ 11 8 2 7 2.
+ <_>
+
+ <_>
+ 0 3 14 2 -1.
+ <_>
+ 0 4 14 1 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 0 0 16 18 -1.
+ <_>
+ 0 6 16 6 3.
+ <_>
+
+ <_>
+ 14 2 5 9 -1.
+ <_>
+ 14 5 5 3 3.
+ <_>
+
+ <_>
+ 1 10 4 10 -1.
+ <_>
+ 1 15 4 5 2.
+ <_>
+
+ <_>
+ 16 6 2 14 -1.
+ <_>
+ 16 13 2 7 2.
+ <_>
+
+ <_>
+ 2 6 2 14 -1.
+ <_>
+ 2 13 2 7 2.
+ <_>
+
+ <_>
+ 14 2 5 9 -1.
+ <_>
+ 14 5 5 3 3.
+ <_>
+
+ <_>
+ 1 2 5 9 -1.
+ <_>
+ 1 5 5 3 3.
+ <_>
+
+ <_>
+ 8 4 9 9 -1.
+ <_>
+ 8 7 9 3 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 5 6 3 2.
+ <_>
+ 10 8 6 3 2.
+ <_>
+
+ <_>
+ 13 4 3 16 -1.
+ <_>
+ 14 4 1 16 3.
+ <_>
+
+ <_>
+ 4 4 3 16 -1.
+ <_>
+ 5 4 1 16 3.
+ <_>
+
+ <_>
+ 12 2 4 12 -1.
+ <_>
+ 12 6 4 4 3.
+ <_>
+
+ <_>
+ 6 0 2 14 -1.
+ <_>
+ 7 0 1 14 2.
+ <_>
+
+ <_>
+ 15 0 4 16 -1.
+ <_>
+ 15 8 4 8 2.
+ <_>
+
+ <_>
+ 1 0 4 16 -1.
+ <_>
+ 1 8 4 8 2.
+ <_>
+
+ <_>
+ 12 9 8 6 -1.
+ <_>
+ 12 11 8 2 3.
+ <_>
+
+ <_>
+ 0 6 14 2 -1.
+ <_>
+ 7 6 7 2 2.
+ <_>
+
+ <_>
+ 0 0 20 5 -1.
+ <_>
+ 0 0 10 5 2.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 0 6 3 2.
+ <_>
+ 10 3 6 3 2.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 14 1 5 9 -1.
+ <_>
+ 14 4 5 3 3.
+ <_>
+
+ <_>
+ 1 6 18 2 -1.
+ <_>
+ 1 7 18 1 2.
+ <_>
+
+ <_>
+ 7 1 7 6 -1.
+ <_>
+ 7 3 7 2 3.
+ <_>
+
+ <_>
+ 1 2 18 10 -1.
+ <_>
+ 1 2 9 5 2.
+ <_>
+ 10 7 9 5 2.
+ <_>
+
+ <_>
+ 9 3 8 8 -1.
+ <_>
+ 13 3 4 4 2.
+ <_>
+ 9 7 4 4 2.
+ <_>
+
+ <_>
+ 3 1 12 4 -1.
+ <_>
+ 9 1 6 4 2.
+ <_>
+
+ <_>
+ 4 5 12 7 -1.
+ <_>
+ 8 5 4 7 3.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 7 10 6 7 -1.
+ <_>
+ 9 10 2 7 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 11 2 2 16 -1.
+ <_>
+ 11 2 1 16 2.
+ <_>
+
+ <_>
+ 2 13 9 7 -1.
+ <_>
+ 5 13 3 7 3.
+ <_>
+
+ <_>
+ 11 2 2 16 -1.
+ <_>
+ 11 2 1 16 2.
+ <_>
+
+ <_>
+ 0 9 18 11 -1.
+ <_>
+ 6 9 6 11 3.
+ <_>
+
+ <_>
+ 11 2 2 16 -1.
+ <_>
+ 11 2 1 16 2.
+ <_>
+
+ <_>
+ 3 7 12 6 -1.
+ <_>
+ 7 7 4 6 3.
+ <_>
+
+ <_>
+ 11 4 5 9 -1.
+ <_>
+ 11 7 5 3 3.
+ <_>
+
+ <_>
+ 4 4 5 9 -1.
+ <_>
+ 4 7 5 3 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 14 1 5 9 -1.
+ <_>
+ 14 4 5 3 3.
+ <_>
+
+ <_>
+ 7 2 2 16 -1.
+ <_>
+ 8 2 1 16 2.
+ <_>
+
+ <_>
+ 3 15 14 3 -1.
+ <_>
+ 3 16 14 1 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 0 1 20 6 -1.
+ <_>
+ 10 1 10 3 2.
+ <_>
+ 0 4 10 3 2.
+ <_>
+
+ <_>
+ 4 0 8 5 -1.
+ <_>
+ 8 0 4 5 2.
+ <_>
+
+ <_>
+ 13 1 3 14 -1.
+ <_>
+ 14 1 1 14 3.
+ <_>
+
+ <_>
+ 4 1 3 14 -1.
+ <_>
+ 5 1 1 14 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 16 0 3 5 2.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 2 0 18 5 -1.
+ <_>
+ 8 0 6 5 3.
+ <_>
+
+ <_>
+ 0 0 18 5 -1.
+ <_>
+ 6 0 6 5 3.
+ <_>
+
+ <_>
+ 11 1 4 14 -1.
+ <_>
+ 13 1 2 7 2.
+ <_>
+ 11 8 2 7 2.
+ <_>
+
+ <_>
+ 5 1 4 14 -1.
+ <_>
+ 5 1 2 7 2.
+ <_>
+ 7 8 2 7 2.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 7 13 3 -1.
+ <_>
+ 0 8 13 1 3.
+ <_>
+
+ <_>
+ 16 1 3 13 -1.
+ <_>
+ 17 1 1 13 3.
+ <_>
+
+ <_>
+ 1 1 3 13 -1.
+ <_>
+ 2 1 1 13 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 2 12 5 8 -1.
+ <_>
+ 2 16 5 4 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 6 9 9 4 -1.
+ <_>
+ 6 11 9 2 2.
+ <_>
+
+ <_>
+ 0 7 10 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+ 5 10 5 3 2.
+ <_>
+
+ <_>
+ 15 4 5 16 -1.
+ <_>
+ 15 12 5 8 2.
+ <_>
+
+ <_>
+ 4 0 9 9 -1.
+ <_>
+ 7 0 3 9 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 3 12 14 8 -1.
+ <_>
+ 3 12 7 8 2.
+ <_>
+
+ <_>
+ 2 10 16 10 -1.
+ <_>
+ 2 10 8 5 2.
+ <_>
+ 10 15 8 5 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 10 5 6 3 2.
+ <_>
+ 4 8 6 3 2.
+ <_>
+
+ <_>
+ 5 5 10 8 -1.
+ <_>
+ 5 5 5 4 2.
+ <_>
+ 10 9 5 4 2.
+ <_>
+
+ <_>
+ 5 6 10 6 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 1 15 12 5 -1.
+ <_>
+ 5 15 4 5 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 5 9 10 8 -1.
+ <_>
+ 5 9 5 4 2.
+ <_>
+ 10 13 5 4 2.
+ <_>
+
+ <_>
+ 2 7 18 13 -1.
+ <_>
+ 8 7 6 13 3.
+ <_>
+
+ <_>
+ 4 6 10 5 -1.
+ <_>
+ 9 6 5 5 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 5 0 2 8 3.
+ <_>
+
+ <_>
+ 3 14 16 6 -1.
+ <_>
+ 3 14 8 6 2.
+ <_>
+
+ <_>
+ 6 2 4 7 -1.
+ <_>
+ 8 2 2 7 2.
+ <_>
+
+ <_>
+ 4 9 14 3 -1.
+ <_>
+ 4 10 14 1 3.
+ <_>
+
+ <_>
+ 3 6 13 9 -1.
+ <_>
+ 3 9 13 3 3.
+ <_>
+
+ <_>
+ 7 0 6 18 -1.
+ <_>
+ 7 9 6 9 2.
+ <_>
+
+ <_>
+ 8 5 3 10 -1.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 3 3 16 4 -1.
+ <_>
+ 3 5 16 2 2.
+ <_>
+
+ <_>
+ 5 6 5 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 4 6 12 6 -1.
+ <_>
+ 4 9 12 3 2.
+ <_>
+
+ <_>
+ 4 7 12 4 -1.
+ <_>
+ 4 9 12 2 2.
+ <_>
+
+ <_>
+ 8 9 9 4 -1.
+ <_>
+ 8 11 9 2 2.
+ <_>
+
+ <_>
+ 1 5 16 3 -1.
+ <_>
+ 1 6 16 1 3.
+ <_>
+
+ <_>
+ 5 5 13 3 -1.
+ <_>
+ 5 6 13 1 3.
+ <_>
+
+ <_>
+ 0 1 18 3 -1.
+ <_>
+ 0 2 18 1 3.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 3 1 12 4 -1.
+ <_>
+ 7 1 4 4 3.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 8 2 2 18 -1.
+ <_>
+ 8 11 2 9 2.
+ <_>
+
+ <_>
+ 9 2 6 10 -1.
+ <_>
+ 12 2 3 5 2.
+ <_>
+ 9 7 3 5 2.
+ <_>
+
+ <_>
+ 5 2 6 10 -1.
+ <_>
+ 5 2 3 5 2.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 4 9 12 4 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 4 9 9 8 -1.
+ <_>
+ 4 13 9 4 2.
+ <_>
+
+ <_>
+ 1 15 19 4 -1.
+ <_>
+ 1 17 19 2 2.
+ <_>
+
+ <_>
+ 5 15 7 4 -1.
+ <_>
+ 5 17 7 2 2.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 0 7 20 6 -1.
+ <_>
+ 0 10 20 3 2.
+ <_>
+
+ <_>
+ 7 0 12 10 -1.
+ <_>
+ 7 5 12 5 2.
+ <_>
+
+ <_>
+ 0 14 10 6 -1.
+ <_>
+ 0 14 5 3 2.
+ <_>
+ 5 17 5 3 2.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 8 5 9 -1.
+ <_>
+ 0 11 5 3 3.
+ <_>
+
+ <_>
+ 15 11 5 9 -1.
+ <_>
+ 15 14 5 3 3.
+ <_>
+
+ <_>
+ 1 11 13 3 -1.
+ <_>
+ 1 12 13 1 3.
+ <_>
+
+ <_>
+ 15 11 5 9 -1.
+ <_>
+ 15 14 5 3 3.
+ <_>
+
+ <_>
+ 0 12 20 2 -1.
+ <_>
+ 0 13 20 1 2.
+ <_>
+
+ <_>
+ 15 11 5 9 -1.
+ <_>
+ 15 14 5 3 3.
+ <_>
+
+ <_>
+ 0 11 5 9 -1.
+ <_>
+ 0 14 5 3 3.
+ <_>
+
+ <_>
+ 13 0 3 10 -1.
+ <_>
+ 13 5 3 5 2.
+ <_>
+
+ <_>
+ 3 0 13 18 -1.
+ <_>
+ 3 9 13 9 2.
+ <_>
+
+ <_>
+ 12 5 3 14 -1.
+ <_>
+ 12 12 3 7 2.
+ <_>
+
+ <_>
+ 5 5 3 14 -1.
+ <_>
+ 5 12 3 7 2.
+ <_>
+
+ <_>
+ 2 8 16 10 -1.
+ <_>
+ 10 8 8 5 2.
+ <_>
+ 2 13 8 5 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+
+ <_>
+ 6 3 12 9 -1.
+ <_>
+ 10 3 4 9 3.
+ <_>
+
+ <_>
+ 4 5 6 5 -1.
+ <_>
+ 7 5 3 5 2.
+ <_>
+
+ <_>
+ 5 1 12 8 -1.
+ <_>
+ 11 1 6 4 2.
+ <_>
+ 5 5 6 4 2.
+ <_>
+
+ <_>
+ 5 6 6 10 -1.
+ <_>
+ 5 6 3 5 2.
+ <_>
+ 8 11 3 5 2.
+ <_>
+
+ <_>
+ 2 10 18 9 -1.
+ <_>
+ 2 10 9 9 2.
+ <_>
+
+ <_>
+ 5 0 10 4 -1.
+ <_>
+ 5 2 10 2 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 0 12 18 3 -1.
+ <_>
+ 6 12 6 3 3.
+ <_>
+
+ <_>
+ 4 1 14 3 -1.
+ <_>
+ 4 2 14 1 3.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 7 12 2 3.
+ <_>
+
+ <_>
+ 0 1 10 4 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+
+ <_>
+ 4 18 13 2 -1.
+ <_>
+ 4 19 13 1 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 2 4 16 10 -1.
+ <_>
+ 10 4 8 5 2.
+ <_>
+ 2 9 8 5 2.
+ <_>
+
+ <_>
+ 0 2 16 2 -1.
+ <_>
+ 0 3 16 1 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 3 11 6 7 -1.
+ <_>
+ 5 11 2 7 3.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 3 1 10 6 -1.
+ <_>
+ 3 1 5 3 2.
+ <_>
+ 8 4 5 3 2.
+ <_>
+
+ <_>
+ 12 9 5 9 -1.
+ <_>
+ 12 12 5 3 3.
+ <_>
+
+ <_>
+ 6 3 4 7 -1.
+ <_>
+ 8 3 2 7 2.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 1 4 4 12 -1.
+ <_>
+ 1 8 4 4 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 10 8 8 8 -1.
+ <_>
+ 14 8 4 4 2.
+ <_>
+ 10 12 4 4 2.
+ <_>
+
+ <_>
+ 1 7 15 3 -1.
+ <_>
+ 6 7 5 3 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 14 8 4 2.
+ <_>
+
+ <_>
+ 3 5 14 3 -1.
+ <_>
+ 3 6 14 1 3.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 8 6 7 8 -1.
+ <_>
+ 8 10 7 4 2.
+ <_>
+
+ <_>
+ 0 2 4 7 -1.
+ <_>
+ 2 2 2 7 2.
+ <_>
+
+ <_>
+ 4 1 14 3 -1.
+ <_>
+ 4 2 14 1 3.
+ <_>
+
+ <_>
+ 2 3 13 2 -1.
+ <_>
+ 2 4 13 1 2.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 2 1 16 4 -1.
+ <_>
+ 2 1 8 2 2.
+ <_>
+ 10 3 8 2 2.
+ <_>
+
+ <_>
+ 9 0 8 6 -1.
+ <_>
+ 9 2 8 2 3.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 6 9 3 8 2.
+ <_>
+
+ <_>
+ 12 10 8 6 -1.
+ <_>
+ 12 12 8 2 3.
+ <_>
+
+ <_>
+ 4 10 6 5 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+
+ <_>
+ 7 6 8 8 -1.
+ <_>
+ 11 6 4 4 2.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 7 5 3 5 2.
+ <_>
+ 10 10 3 5 2.
+ <_>
+
+ <_>
+ 10 4 10 4 -1.
+ <_>
+ 10 6 10 2 2.
+ <_>
+
+ <_>
+ 0 4 10 4 -1.
+ <_>
+ 0 6 10 2 2.
+ <_>
+
+ <_>
+ 4 2 14 6 -1.
+ <_>
+ 4 5 14 3 2.
+ <_>
+
+ <_>
+ 0 2 13 3 -1.
+ <_>
+ 0 3 13 1 3.
+ <_>
+
+ <_>
+ 4 9 12 5 -1.
+ <_>
+ 8 9 4 5 3.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 4 15 12 5 -1.
+ <_>
+ 8 15 4 5 3.
+ <_>
+
+ <_>
+ 12 12 7 6 -1.
+ <_>
+ 12 14 7 2 3.
+ <_>
+
+ <_>
+ 0 6 17 3 -1.
+ <_>
+ 0 7 17 1 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 12 18 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 11 0 4 7 -1.
+ <_>
+ 11 0 2 7 2.
+ <_>
+
+ <_>
+ 0 12 14 2 -1.
+ <_>
+ 0 13 14 1 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 1 6 7 -1.
+ <_>
+ 12 1 2 7 3.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 9 1 3 14 -1.
+ <_>
+ 10 1 1 14 3.
+ <_>
+
+ <_>
+ 4 1 6 7 -1.
+ <_>
+ 6 1 2 7 3.
+ <_>
+
+ <_>
+ 11 11 7 6 -1.
+ <_>
+ 11 13 7 2 3.
+ <_>
+
+ <_>
+ 2 11 7 6 -1.
+ <_>
+ 2 13 7 2 3.
+ <_>
+
+ <_>
+ 0 3 20 12 -1.
+ <_>
+ 0 9 20 6 2.
+ <_>
+
+ <_>
+ 7 6 6 11 -1.
+ <_>
+ 9 6 2 11 3.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 0 1 6 11 -1.
+ <_>
+ 3 1 3 11 2.
+ <_>
+
+ <_>
+ 9 4 5 12 -1.
+ <_>
+ 9 10 5 6 2.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 0 3 10 2 2.
+ <_>
+ 10 5 10 2 2.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 15 0 5 3 2.
+ <_>
+ 10 3 5 3 2.
+ <_>
+
+ <_>
+ 4 0 10 6 -1.
+ <_>
+ 4 0 5 3 2.
+ <_>
+ 9 3 5 3 2.
+ <_>
+
+ <_>
+ 7 8 13 3 -1.
+ <_>
+ 7 9 13 1 3.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 10 6 7 4 -1.
+ <_>
+ 10 8 7 2 2.
+ <_>
+
+ <_>
+ 3 6 7 4 -1.
+ <_>
+ 3 8 7 2 2.
+ <_>
+
+ <_>
+ 11 9 7 6 -1.
+ <_>
+ 11 11 7 2 3.
+ <_>
+
+ <_>
+ 2 8 14 4 -1.
+ <_>
+ 2 8 7 2 2.
+ <_>
+ 9 10 7 2 2.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+ 10 13 5 3 2.
+ <_>
+
+ <_>
+ 0 10 10 6 -1.
+ <_>
+ 0 10 5 3 2.
+ <_>
+ 5 13 5 3 2.
+ <_>
+
+ <_>
+ 14 5 4 14 -1.
+ <_>
+ 16 5 2 7 2.
+ <_>
+ 14 12 2 7 2.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 14 5 4 14 -1.
+ <_>
+ 16 5 2 7 2.
+ <_>
+ 14 12 2 7 2.
+ <_>
+
+ <_>
+ 2 5 4 14 -1.
+ <_>
+ 2 5 2 7 2.
+ <_>
+ 4 12 2 7 2.
+ <_>
+
+ <_>
+ 2 5 18 12 -1.
+ <_>
+ 11 5 9 6 2.
+ <_>
+ 2 11 9 6 2.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 9 0 3 20 -1.
+ <_>
+ 10 0 1 20 3.
+ <_>
+
+ <_>
+ 1 0 6 16 -1.
+ <_>
+ 1 8 6 8 2.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 1 3 15 4 -1.
+ <_>
+ 6 3 5 4 3.
+ <_>
+
+ <_>
+ 8 4 5 16 -1.
+ <_>
+ 8 12 5 8 2.
+ <_>
+
+ <_>
+ 1 12 7 6 -1.
+ <_>
+ 1 14 7 2 3.
+ <_>
+
+ <_>
+ 17 5 3 12 -1.
+ <_>
+ 17 11 3 6 2.
+ <_>
+
+ <_>
+ 1 3 15 3 -1.
+ <_>
+ 1 4 15 1 3.
+ <_>
+
+ <_>
+ 8 5 4 12 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 8 7 3 10 -1.
+ <_>
+ 8 12 3 5 2.
+ <_>
+
+ <_>
+ 4 1 14 3 -1.
+ <_>
+ 4 2 14 1 3.
+ <_>
+
+ <_>
+ 0 5 3 12 -1.
+ <_>
+ 0 11 3 6 2.
+ <_>
+
+ <_>
+ 1 13 18 6 -1.
+ <_>
+ 7 13 6 6 3.
+ <_>
+
+ <_>
+ 7 3 4 7 -1.
+ <_>
+ 9 3 2 7 2.
+ <_>
+
+ <_>
+ 8 7 9 5 -1.
+ <_>
+ 11 7 3 5 3.
+ <_>
+
+ <_>
+ 3 7 9 5 -1.
+ <_>
+ 6 7 3 5 3.
+ <_>
+
+ <_>
+ 10 10 8 10 -1.
+ <_>
+ 14 10 4 5 2.
+ <_>
+ 10 15 4 5 2.
+ <_>
+
+ <_>
+ 2 10 8 10 -1.
+ <_>
+ 2 10 4 5 2.
+ <_>
+ 6 15 4 5 2.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 3 12 7 6 -1.
+ <_>
+ 3 14 7 2 3.
+ <_>
+
+ <_>
+ 8 3 5 8 -1.
+ <_>
+ 8 7 5 4 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 7 4 6 4 2.
+ <_>
+
+ <_>
+ 10 0 7 6 -1.
+ <_>
+ 10 2 7 2 3.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 7 12 13 3 -1.
+ <_>
+ 7 13 13 1 3.
+ <_>
+
+ <_>
+ 1 3 18 4 -1.
+ <_>
+ 1 3 9 2 2.
+ <_>
+ 10 5 9 2 2.
+ <_>
+
+ <_>
+ 6 1 8 8 -1.
+ <_>
+ 10 1 4 4 2.
+ <_>
+ 6 5 4 4 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 2 4 18 6 -1.
+ <_>
+ 11 4 9 3 2.
+ <_>
+ 2 7 9 3 2.
+ <_>
+
+ <_>
+ 1 5 8 8 -1.
+ <_>
+ 1 5 4 4 2.
+ <_>
+ 5 9 4 4 2.
+ <_>
+
+ <_>
+ 14 0 2 13 -1.
+ <_>
+ 14 0 1 13 2.
+ <_>
+
+ <_>
+ 4 0 2 13 -1.
+ <_>
+ 5 0 1 13 2.
+ <_>
+
+ <_>
+ 7 3 12 3 -1.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 1 3 12 3 -1.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 7 1 6 7 -1.
+ <_>
+ 9 1 2 7 3.
+ <_>
+
+ <_>
+ 5 2 6 12 -1.
+ <_>
+ 7 2 2 12 3.
+ <_>
+
+ <_>
+ 9 5 6 12 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 5 5 6 12 -1.
+ <_>
+ 5 5 3 6 2.
+ <_>
+ 8 11 3 6 2.
+ <_>
+
+ <_>
+ 5 9 14 3 -1.
+ <_>
+ 5 10 14 1 3.
+ <_>
+
+ <_>
+ 1 3 18 12 -1.
+ <_>
+ 1 3 9 6 2.
+ <_>
+ 10 9 9 6 2.
+ <_>
+
+ <_>
+ 3 11 14 4 -1.
+ <_>
+ 10 11 7 2 2.
+ <_>
+ 3 13 7 2 2.
+ <_>
+
+ <_>
+ 4 6 4 14 -1.
+ <_>
+ 4 6 2 7 2.
+ <_>
+ 6 13 2 7 2.
+ <_>
+
+ <_>
+ 11 11 4 7 -1.
+ <_>
+ 11 11 2 7 2.
+ <_>
+
+ <_>
+ 5 11 4 7 -1.
+ <_>
+ 7 11 2 7 2.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 1 3 18 4 -1.
+ <_>
+ 7 3 6 4 3.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 10 8 7 3 2.
+ <_>
+
+ <_>
+ 9 4 2 13 -1.
+ <_>
+ 9 4 1 13 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 10 0 7 6 -1.
+ <_>
+ 10 2 7 2 3.
+ <_>
+
+ <_>
+ 3 0 7 6 -1.
+ <_>
+ 3 2 7 2 3.
+ <_>
+
+ <_>
+ 2 0 16 3 -1.
+ <_>
+ 2 1 16 1 3.
+ <_>
+
+ <_>
+ 2 9 7 4 -1.
+ <_>
+ 2 11 7 2 2.
+ <_>
+
+ <_>
+ 4 7 16 8 -1.
+ <_>
+ 12 7 8 4 2.
+ <_>
+ 4 11 8 4 2.
+ <_>
+
+ <_>
+ 0 7 16 8 -1.
+ <_>
+ 0 7 8 4 2.
+ <_>
+ 8 11 8 4 2.
+ <_>
+
+ <_>
+ 7 12 10 6 -1.
+ <_>
+ 12 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 3 12 10 6 -1.
+ <_>
+ 3 12 5 3 2.
+ <_>
+ 8 15 5 3 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 4 5 4 8 -1.
+ <_>
+ 4 9 4 4 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 2 4 14 3 -1.
+ <_>
+ 2 5 14 1 3.
+ <_>
+
+ <_>
+ 2 3 18 4 -1.
+ <_>
+ 11 3 9 2 2.
+ <_>
+ 2 5 9 2 2.
+ <_>
+
+ <_>
+ 5 0 10 18 -1.
+ <_>
+ 5 6 10 6 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 13 4 3 15 -1.
+ <_>
+ 14 4 1 15 3.
+ <_>
+
+ <_>
+ 4 4 3 15 -1.
+ <_>
+ 5 4 1 15 3.
+ <_>
+
+ <_>
+ 14 4 6 10 -1.
+ <_>
+ 16 4 2 10 3.
+ <_>
+
+ <_>
+ 0 4 6 10 -1.
+ <_>
+ 2 4 2 10 3.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 10 5 2 7 2.
+ <_>
+ 8 12 2 7 2.
+ <_>
+
+ <_>
+ 4 6 12 12 -1.
+ <_>
+ 4 6 6 6 2.
+ <_>
+ 10 12 6 6 2.
+ <_>
+
+ <_>
+ 9 1 3 19 -1.
+ <_>
+ 10 1 1 19 3.
+ <_>
+
+ <_>
+ 2 1 3 17 -1.
+ <_>
+ 3 1 1 17 3.
+ <_>
+
+ <_>
+ 2 7 18 4 -1.
+ <_>
+ 8 7 6 4 3.
+ <_>
+
+ <_>
+ 1 10 8 6 -1.
+ <_>
+ 1 12 8 2 3.
+ <_>
+
+ <_>
+ 9 9 9 8 -1.
+ <_>
+ 12 9 3 8 3.
+ <_>
+
+ <_>
+ 0 0 20 15 -1.
+ <_>
+ 0 5 20 5 3.
+ <_>
+
+ <_>
+ 3 1 14 6 -1.
+ <_>
+ 3 4 14 3 2.
+ <_>
+
+ <_>
+ 0 2 7 4 -1.
+ <_>
+ 0 4 7 2 2.
+ <_>
+
+ <_>
+ 16 2 3 15 -1.
+ <_>
+ 17 2 1 15 3.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 2 16 14 4 -1.
+ <_>
+ 2 16 7 2 2.
+ <_>
+ 9 18 7 2 2.
+ <_>
+
+ <_>
+ 16 2 3 15 -1.
+ <_>
+ 17 2 1 15 3.
+ <_>
+
+ <_>
+ 3 0 8 8 -1.
+ <_>
+ 3 0 4 4 2.
+ <_>
+ 7 4 4 4 2.
+ <_>
+
+ <_>
+ 5 10 14 3 -1.
+ <_>
+ 5 11 14 1 3.
+ <_>
+
+ <_>
+ 1 9 16 4 -1.
+ <_>
+ 1 11 16 2 2.
+ <_>
+
+ <_>
+ 8 7 5 8 -1.
+ <_>
+ 8 11 5 4 2.
+ <_>
+
+ <_>
+ 1 2 3 15 -1.
+ <_>
+ 2 2 1 15 3.
+ <_>
+
+ <_>
+ 14 11 6 8 -1.
+ <_>
+ 16 11 2 8 3.
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 2 11 2 8 3.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 17 8 3 6 2.
+ <_>
+ 14 14 3 6 2.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 0 8 3 6 2.
+ <_>
+ 3 14 3 6 2.
+ <_>
+
+ <_>
+ 15 0 3 20 -1.
+ <_>
+ 16 0 1 20 3.
+ <_>
+
+ <_>
+ 2 0 3 20 -1.
+ <_>
+ 3 0 1 20 3.
+ <_>
+
+ <_>
+ 8 9 8 4 -1.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 6 9 6 10 -1.
+ <_>
+ 9 9 3 10 2.
+ <_>
+
+ <_>
+ 9 9 9 8 -1.
+ <_>
+ 12 9 3 8 3.
+ <_>
+
+ <_>
+ 2 9 9 8 -1.
+ <_>
+ 5 9 3 8 3.
+ <_>
+
+ <_>
+ 12 5 6 15 -1.
+ <_>
+ 14 5 2 15 3.
+ <_>
+
+ <_>
+ 1 2 9 5 -1.
+ <_>
+ 4 2 3 5 3.
+ <_>
+
+ <_>
+ 9 1 3 19 -1.
+ <_>
+ 10 1 1 19 3.
+ <_>
+
+ <_>
+ 8 1 3 19 -1.
+ <_>
+ 9 1 1 19 3.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 6 3 10 10 -1.
+ <_>
+ 6 3 5 10 2.
+ <_>
+
+ <_>
+ 3 0 12 5 -1.
+ <_>
+ 9 0 6 5 2.
+ <_>
+
+ <_>
+ 8 1 10 16 -1.
+ <_>
+ 13 1 5 8 2.
+ <_>
+ 8 9 5 8 2.
+ <_>
+
+ <_>
+ 4 8 8 4 -1.
+ <_>
+ 8 8 4 4 2.
+ <_>
+
+ <_>
+ 9 16 9 4 -1.
+ <_>
+ 9 18 9 2 2.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 12 5 6 15 -1.
+ <_>
+ 14 5 2 15 3.
+ <_>
+
+ <_>
+ 2 5 6 15 -1.
+ <_>
+ 4 5 2 15 3.
+ <_>
+
+ <_>
+ 11 0 9 17 -1.
+ <_>
+ 14 0 3 17 3.
+ <_>
+
+ <_>
+ 0 0 9 17 -1.
+ <_>
+ 3 0 3 17 3.
+ <_>
+
+ <_>
+ 3 8 17 2 -1.
+ <_>
+ 3 9 17 1 2.
+ <_>
+
+ <_>
+ 6 1 7 4 -1.
+ <_>
+ 6 3 7 2 2.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 4 4 12 2 2.
+ <_>
+
+ <_>
+ 1 8 14 3 -1.
+ <_>
+ 1 9 14 1 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 1 5 19 12 -1.
+ <_>
+ 1 9 19 4 3.
+ <_>
+
+ <_>
+ 2 3 13 15 -1.
+ <_>
+ 2 8 13 5 3.
+ <_>
+
+ <_>
+ 5 1 15 6 -1.
+ <_>
+ 10 1 5 6 3.
+ <_>
+
+ <_>
+ 0 0 18 3 -1.
+ <_>
+ 6 0 6 3 3.
+ <_>
+
+ <_>
+ 15 9 5 9 -1.
+ <_>
+ 15 12 5 3 3.
+ <_>
+
+ <_>
+ 3 12 14 4 -1.
+ <_>
+ 3 14 14 2 2.
+ <_>
+
+ <_>
+ 7 14 13 2 -1.
+ <_>
+ 7 15 13 1 2.
+ <_>
+
+ <_>
+ 0 9 5 9 -1.
+ <_>
+ 0 12 5 3 3.
+ <_>
+
+ <_>
+ 14 5 5 15 -1.
+ <_>
+ 14 10 5 5 3.
+ <_>
+
+ <_>
+ 1 5 5 15 -1.
+ <_>
+ 1 10 5 5 3.
+ <_>
+
+ <_>
+ 8 3 6 17 -1.
+ <_>
+ 10 3 2 17 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 4 7 12 8 -1.
+ <_>
+ 4 11 12 4 2.
+ <_>
+
+ <_>
+ 5 3 2 14 -1.
+ <_>
+ 5 10 2 7 2.
+ <_>
+
+ <_>
+ 9 3 4 8 -1.
+ <_>
+ 9 7 4 4 2.
+ <_>
+
+ <_>
+ 3 5 9 15 -1.
+ <_>
+ 3 10 9 5 3.
+ <_>
+
+ <_>
+ 9 5 3 12 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 4 3 6 14 -1.
+ <_>
+ 4 3 3 7 2.
+ <_>
+ 7 10 3 7 2.
+ <_>
+
+ <_>
+ 9 8 3 10 -1.
+ <_>
+ 9 13 3 5 2.
+ <_>
+
+ <_>
+ 0 4 20 8 -1.
+ <_>
+ 0 4 10 4 2.
+ <_>
+ 10 8 10 4 2.
+ <_>
+
+ <_>
+ 6 11 10 6 -1.
+ <_>
+ 11 11 5 3 2.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 2 9 8 8 -1.
+ <_>
+ 2 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 6 9 14 2 -1.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 0 9 14 2 -1.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 2 4 18 12 -1.
+ <_>
+ 8 4 6 12 3.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 9 4 2 8 3.
+ <_>
+
+ <_>
+ 9 3 6 12 -1.
+ <_>
+ 12 3 3 6 2.
+ <_>
+ 9 9 3 6 2.
+ <_>
+
+ <_>
+ 6 9 5 9 -1.
+ <_>
+ 6 12 5 3 3.
+ <_>
+
+ <_>
+ 0 1 20 8 -1.
+ <_>
+ 10 1 10 4 2.
+ <_>
+ 0 5 10 4 2.
+ <_>
+
+ <_>
+ 6 3 6 17 -1.
+ <_>
+ 8 3 2 17 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 5 2.
+ <_>
+ 14 15 3 5 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 16 12 4 8 -1.
+ <_>
+ 16 12 2 8 2.
+ <_>
+
+ <_>
+ 0 12 4 8 -1.
+ <_>
+ 2 12 2 8 2.
+ <_>
+
+ <_>
+ 9 3 6 7 -1.
+ <_>
+ 11 3 2 7 3.
+ <_>
+
+ <_>
+ 6 6 6 11 -1.
+ <_>
+ 8 6 2 11 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 5 4 15 4 -1.
+ <_>
+ 5 6 15 2 2.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 12 1 6 11 -1.
+ <_>
+ 14 1 2 11 3.
+ <_>
+
+ <_>
+ 0 11 20 3 -1.
+ <_>
+ 0 12 20 1 3.
+ <_>
+
+ <_>
+ 12 1 6 11 -1.
+ <_>
+ 14 1 2 11 3.
+ <_>
+
+ <_>
+ 2 1 6 11 -1.
+ <_>
+ 4 1 2 11 3.
+ <_>
+
+ <_>
+ 10 9 4 8 -1.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 15 7 5 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 0 7 5 6 -1.
+ <_>
+ 0 10 5 3 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 2 0 14 3 -1.
+ <_>
+ 2 1 14 1 3.
+ <_>
+
+ <_>
+ 4 4 13 2 -1.
+ <_>
+ 4 5 13 1 2.
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 19 20 1 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 6 0 8 14 -1.
+ <_>
+ 10 0 4 7 2.
+ <_>
+ 6 7 4 7 2.
+ <_>
+
+ <_>
+ 0 2 6 12 -1.
+ <_>
+ 2 2 2 12 3.
+ <_>
+
+ <_>
+ 6 12 9 6 -1.
+ <_>
+ 9 12 3 6 3.
+ <_>
+
+ <_>
+ 2 0 7 4 -1.
+ <_>
+ 2 2 7 2 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 5 0 6 10 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 18 6 2 13 -1.
+ <_>
+ 18 6 1 13 2.
+ <_>
+
+ <_>
+ 0 6 2 13 -1.
+ <_>
+ 1 6 1 13 2.
+ <_>
+
+ <_>
+ 16 7 4 13 -1.
+ <_>
+ 16 7 2 13 2.
+ <_>
+
+ <_>
+ 6 5 7 6 -1.
+ <_>
+ 6 7 7 2 3.
+ <_>
+
+ <_>
+ 6 11 10 6 -1.
+ <_>
+ 11 11 5 3 2.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 5 9 6 5 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 10 3 4 15 -1.
+ <_>
+ 10 3 2 15 2.
+ <_>
+
+ <_>
+ 6 3 4 15 -1.
+ <_>
+ 8 3 2 15 2.
+ <_>
+
+ <_>
+ 6 7 13 2 -1.
+ <_>
+ 6 8 13 1 2.
+ <_>
+
+ <_>
+ 2 15 16 4 -1.
+ <_>
+ 2 15 8 2 2.
+ <_>
+ 10 17 8 2 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 7 4 13 -1.
+ <_>
+ 2 7 2 13 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 5 11 10 9 -1.
+ <_>
+ 5 14 10 3 3.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 12 4 6 2.
+ <_>
+
+ <_>
+ 0 3 2 16 -1.
+ <_>
+ 0 11 2 8 2.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 10 15 10 2 2.
+ <_>
+ 0 17 10 2 2.
+ <_>
+
+ <_>
+ 0 15 9 4 -1.
+ <_>
+ 0 17 9 2 2.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 4 15 13 3 -1.
+ <_>
+ 4 16 13 1 3.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 0 0 9 2 2.
+ <_>
+ 9 2 9 2 2.
+ <_>
+
+ <_>
+ 6 5 8 15 -1.
+ <_>
+ 6 10 8 5 3.
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 2 0 2 7 3.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 16 1 2 12 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 18 1 2 13 -1.
+ <_>
+ 18 1 1 13 2.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 14 2 4 10 -1.
+ <_>
+ 14 2 2 10 2.
+ <_>
+
+ <_>
+ 0 3 4 16 -1.
+ <_>
+ 0 3 2 8 2.
+ <_>
+ 2 11 2 8 2.
+ <_>
+
+ <_>
+ 6 0 10 6 -1.
+ <_>
+ 11 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 1 14 10 6 -1.
+ <_>
+ 1 14 5 3 2.
+ <_>
+ 6 17 5 3 2.
+ <_>
+
+ <_>
+ 8 7 5 9 -1.
+ <_>
+ 8 10 5 3 3.
+ <_>
+
+ <_>
+ 2 2 4 10 -1.
+ <_>
+ 4 2 2 10 2.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 5 6 10 12 -1.
+ <_>
+ 5 6 5 6 2.
+ <_>
+ 10 12 5 6 2.
+ <_>
+
+ <_>
+ 9 2 4 12 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 2 0 15 6 -1.
+ <_>
+ 2 3 15 3 2.
+ <_>
+
+ <_>
+ 6 0 13 8 -1.
+ <_>
+ 6 4 13 4 2.
+ <_>
+
+ <_>
+ 1 0 13 8 -1.
+ <_>
+ 1 4 13 4 2.
+ <_>
+
+ <_>
+ 11 4 2 14 -1.
+ <_>
+ 11 11 2 7 2.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 8 5 6 10 -1.
+ <_>
+ 11 5 3 5 2.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 4 8 10 12 -1.
+ <_>
+ 9 8 5 12 2.
+ <_>
+
+ <_>
+ 8 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 6 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 13 0 6 7 -1.
+ <_>
+ 15 0 2 7 3.
+ <_>
+
+ <_>
+ 1 0 6 7 -1.
+ <_>
+ 3 0 2 7 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 6 7 12 8 -1.
+ <_>
+ 10 7 4 8 3.
+ <_>
+
+ <_>
+ 0 14 18 5 -1.
+ <_>
+ 6 14 6 5 3.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 10 13 10 2 2.
+ <_>
+ 0 15 10 2 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 8 8 6 -1.
+ <_>
+ 0 10 8 2 3.
+ <_>
+
+ <_>
+ 4 8 15 2 -1.
+ <_>
+ 4 9 15 1 2.
+ <_>
+
+ <_>
+ 0 9 6 5 -1.
+ <_>
+ 3 9 3 5 2.
+ <_>
+
+ <_>
+ 13 9 6 5 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+
+ <_>
+ 1 9 6 5 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 0 0 14 19 -1.
+ <_>
+ 7 0 7 19 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 3 0 4 14 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+ 5 7 2 7 2.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 2 4 14 3 -1.
+ <_>
+ 2 5 14 1 3.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 6 2 14 18 -1.
+ <_>
+ 13 2 7 9 2.
+ <_>
+ 6 11 7 9 2.
+ <_>
+
+ <_>
+ 5 9 9 6 -1.
+ <_>
+ 5 12 9 3 2.
+ <_>
+
+ <_>
+ 0 1 20 18 -1.
+ <_>
+ 10 1 10 9 2.
+ <_>
+ 0 10 10 9 2.
+ <_>
+
+ <_>
+ 4 10 7 4 -1.
+ <_>
+ 4 12 7 2 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 1 0 14 12 -1.
+ <_>
+ 1 4 14 4 3.
+ <_>
+
+ <_>
+ 9 0 6 8 -1.
+ <_>
+ 9 0 3 8 2.
+ <_>
+
+ <_>
+ 4 2 12 5 -1.
+ <_>
+ 8 2 4 5 3.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 4 0 8 10 -1.
+ <_>
+ 8 0 4 10 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 9 2 2 13 -1.
+ <_>
+ 9 2 1 13 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 4 18 10 -1.
+ <_>
+ 0 4 9 5 2.
+ <_>
+ 9 9 9 5 2.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 4 3 16 6 -1.
+ <_>
+ 12 3 8 3 2.
+ <_>
+ 4 6 8 3 2.
+ <_>
+
+ <_>
+ 3 4 5 9 -1.
+ <_>
+ 3 7 5 3 3.
+ <_>
+
+ <_>
+ 8 4 12 5 -1.
+ <_>
+ 12 4 4 5 3.
+ <_>
+
+ <_>
+ 3 9 8 4 -1.
+ <_>
+ 3 11 8 2 2.
+ <_>
+
+ <_>
+ 11 0 2 15 -1.
+ <_>
+ 11 0 1 15 2.
+ <_>
+
+ <_>
+ 7 0 2 15 -1.
+ <_>
+ 8 0 1 15 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 8 3 4 8 -1.
+ <_>
+ 10 3 2 8 2.
+ <_>
+
+ <_>
+ 9 13 6 7 -1.
+ <_>
+ 11 13 2 7 3.
+ <_>
+
+ <_>
+ 4 14 9 5 -1.
+ <_>
+ 7 14 3 5 3.
+ <_>
+
+ <_>
+ 15 3 4 17 -1.
+ <_>
+ 15 3 2 17 2.
+ <_>
+
+ <_>
+ 1 6 4 13 -1.
+ <_>
+ 3 6 2 13 2.
+ <_>
+
+ <_>
+ 11 12 4 7 -1.
+ <_>
+ 11 12 2 7 2.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 2 1 2 7 3.
+ <_>
+
+ <_>
+ 9 12 6 7 -1.
+ <_>
+ 11 12 2 7 3.
+ <_>
+
+ <_>
+ 5 12 6 7 -1.
+ <_>
+ 7 12 2 7 3.
+ <_>
+
+ <_>
+ 7 7 6 8 -1.
+ <_>
+ 9 7 2 8 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 2 9 14 3 -1.
+ <_>
+ 2 10 14 1 3.
+ <_>
+
+ <_>
+ 8 7 7 4 -1.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 13 12 5 6 -1.
+ <_>
+ 13 15 5 3 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 4 5 16 3 -1.
+ <_>
+ 4 5 8 3 2.
+ <_>
+
+ <_>
+ 5 3 4 14 -1.
+ <_>
+ 5 10 4 7 2.
+ <_>
+
+ <_>
+ 4 13 15 5 -1.
+ <_>
+ 9 13 5 5 3.
+ <_>
+
+ <_>
+ 0 3 14 2 -1.
+ <_>
+ 0 4 14 1 2.
+ <_>
+
+ <_>
+ 4 13 15 5 -1.
+ <_>
+ 9 13 5 5 3.
+ <_>
+
+ <_>
+ 1 13 15 5 -1.
+ <_>
+ 6 13 5 5 3.
+ <_>
+
+ <_>
+ 12 0 8 6 -1.
+ <_>
+ 12 2 8 2 3.
+ <_>
+
+ <_>
+ 3 10 6 5 -1.
+ <_>
+ 6 10 3 5 2.
+ <_>
+
+ <_>
+ 4 7 14 8 -1.
+ <_>
+ 11 7 7 4 2.
+ <_>
+ 4 11 7 4 2.
+ <_>
+
+ <_>
+ 2 7 14 8 -1.
+ <_>
+ 2 7 7 4 2.
+ <_>
+ 9 11 7 4 2.
+ <_>
+
+ <_>
+ 11 0 2 20 -1.
+ <_>
+ 11 0 1 20 2.
+ <_>
+
+ <_>
+ 7 0 2 20 -1.
+ <_>
+ 8 0 1 20 2.
+ <_>
+
+ <_>
+ 10 5 6 8 -1.
+ <_>
+ 12 5 2 8 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 3 2 14 4 -1.
+ <_>
+ 10 2 7 2 2.
+ <_>
+ 3 4 7 2 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 8 4 9 16 -1.
+ <_>
+ 11 4 3 16 3.
+ <_>
+
+ <_>
+ 4 5 6 8 -1.
+ <_>
+ 6 5 2 8 3.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 5 11 5 6 -1.
+ <_>
+ 5 14 5 3 2.
+ <_>
+
+ <_>
+ 4 8 13 8 -1.
+ <_>
+ 4 12 13 4 2.
+ <_>
+
+ <_>
+ 0 9 10 6 -1.
+ <_>
+ 0 9 5 3 2.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 4 0 5 8 -1.
+ <_>
+ 4 4 5 4 2.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 8 6 4 5 2.
+ <_>
+
+ <_>
+ 6 3 7 10 -1.
+ <_>
+ 6 8 7 5 2.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 9 12 9 4 -1.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 12 8 2 2.
+ <_>
+ 10 14 8 2 2.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+ 10 17 5 3 2.
+ <_>
+
+ <_>
+ 4 1 8 8 -1.
+ <_>
+ 4 1 4 4 2.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 2 12 18 7 -1.
+ <_>
+ 8 12 6 7 3.
+ <_>
+
+ <_>
+ 3 13 12 6 -1.
+ <_>
+ 3 13 6 3 2.
+ <_>
+ 9 16 6 3 2.
+ <_>
+
+ <_>
+ 4 12 13 4 -1.
+ <_>
+ 4 14 13 2 2.
+ <_>
+
+ <_>
+ 6 0 2 15 -1.
+ <_>
+ 7 0 1 15 2.
+ <_>
+
+ <_>
+ 4 2 16 18 -1.
+ <_>
+ 12 2 8 9 2.
+ <_>
+ 4 11 8 9 2.
+ <_>
+
+ <_>
+ 1 16 18 4 -1.
+ <_>
+ 7 16 6 4 3.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 4 0 12 9 -1.
+ <_>
+ 8 0 4 9 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 7 9 3 6 2.
+ <_>
+
+ <_>
+ 7 12 12 8 -1.
+ <_>
+ 13 12 6 4 2.
+ <_>
+ 7 16 6 4 2.
+ <_>
+
+ <_>
+ 1 12 12 8 -1.
+ <_>
+ 1 12 6 4 2.
+ <_>
+ 7 16 6 4 2.
+ <_>
+
+ <_>
+ 0 10 20 9 -1.
+ <_>
+ 0 13 20 3 3.
+ <_>
+
+ <_>
+ 4 5 10 6 -1.
+ <_>
+ 4 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 13 3 7 6 -1.
+ <_>
+ 13 5 7 2 3.
+ <_>
+
+ <_>
+ 8 1 4 14 -1.
+ <_>
+ 8 1 2 7 2.
+ <_>
+ 10 8 2 7 2.
+ <_>
+
+ <_>
+ 12 8 5 6 -1.
+ <_>
+ 12 11 5 3 2.
+ <_>
+
+ <_>
+ 3 8 5 6 -1.
+ <_>
+ 3 11 5 3 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 8 0 6 4 3.
+ <_>
+
+ <_>
+ 6 5 3 14 -1.
+ <_>
+ 6 12 3 7 2.
+ <_>
+
+ <_>
+ 5 17 15 3 -1.
+ <_>
+ 10 17 5 3 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 6 0 3 7 2.
+ <_>
+
+ <_>
+ 8 3 12 17 -1.
+ <_>
+ 8 3 6 17 2.
+ <_>
+
+ <_>
+ 0 2 16 12 -1.
+ <_>
+ 8 2 8 12 2.
+ <_>
+
+ <_>
+ 7 6 6 12 -1.
+ <_>
+ 7 12 6 6 2.
+ <_>
+
+ <_>
+ 8 8 4 8 -1.
+ <_>
+ 8 12 4 4 2.
+ <_>
+
+ <_>
+ 8 7 12 10 -1.
+ <_>
+ 14 7 6 5 2.
+ <_>
+ 8 12 6 5 2.
+ <_>
+
+ <_>
+ 4 1 12 5 -1.
+ <_>
+ 10 1 6 5 2.
+ <_>
+
+ <_>
+ 7 2 8 8 -1.
+ <_>
+ 11 2 4 4 2.
+ <_>
+ 7 6 4 4 2.
+ <_>
+
+ <_>
+ 5 2 8 8 -1.
+ <_>
+ 5 2 4 4 2.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 3 14 14 6 -1.
+ <_>
+ 3 17 14 3 2.
+ <_>
+
+ <_>
+ 3 3 5 12 -1.
+ <_>
+ 3 7 5 4 3.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 15 4 5 9 -1.
+ <_>
+ 15 7 5 3 3.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+ 10 13 2 7 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 0 8 10 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 9 12 6 7 -1.
+ <_>
+ 11 12 2 7 3.
+ <_>
+
+ <_>
+ 5 12 6 7 -1.
+ <_>
+ 7 12 2 7 3.
+ <_>
+
+ <_>
+ 13 9 7 6 -1.
+ <_>
+ 13 11 7 2 3.
+ <_>
+
+ <_>
+ 1 1 16 6 -1.
+ <_>
+ 1 3 16 2 3.
+ <_>
+
+ <_>
+ 2 1 17 6 -1.
+ <_>
+ 2 3 17 2 3.
+ <_>
+
+ <_>
+ 4 4 2 16 -1.
+ <_>
+ 4 12 2 8 2.
+ <_>
+
+ <_>
+ 7 6 10 14 -1.
+ <_>
+ 12 6 5 7 2.
+ <_>
+ 7 13 5 7 2.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 4 9 12 6 -1.
+ <_>
+ 10 9 6 3 2.
+ <_>
+ 4 12 6 3 2.
+ <_>
+
+ <_>
+ 1 8 18 3 -1.
+ <_>
+ 7 8 6 3 3.
+ <_>
+
+ <_>
+ 2 13 18 7 -1.
+ <_>
+ 8 13 6 7 3.
+ <_>
+
+ <_>
+ 1 8 15 3 -1.
+ <_>
+ 6 8 5 3 3.
+ <_>
+
+ <_>
+ 6 0 12 7 -1.
+ <_>
+ 10 0 4 7 3.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 6 7 6 8 -1.
+ <_>
+ 6 11 6 4 2.
+ <_>
+
+ <_>
+ 9 2 4 12 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 0 9 7 6 -1.
+ <_>
+ 0 11 7 2 3.
+ <_>
+
+ <_>
+ 15 4 5 9 -1.
+ <_>
+ 15 7 5 3 3.
+ <_>
+
+ <_>
+ 2 18 13 2 -1.
+ <_>
+ 2 19 13 1 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 6 6 8 12 -1.
+ <_>
+ 6 10 8 4 3.
+ <_>
+
+ <_>
+ 7 9 6 9 -1.
+ <_>
+ 7 12 6 3 3.
+ <_>
+
+ <_>
+ 0 7 11 4 -1.
+ <_>
+ 0 9 11 2 2.
+ <_>
+
+ <_>
+ 8 12 10 6 -1.
+ <_>
+ 13 12 5 3 2.
+ <_>
+ 8 15 5 3 2.
+ <_>
+
+ <_>
+ 2 12 10 6 -1.
+ <_>
+ 2 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 12 14 8 6 -1.
+ <_>
+ 12 16 8 2 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 7 6 4 8 -1.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 9 8 11 4 -1.
+ <_>
+ 9 10 11 2 2.
+ <_>
+
+ <_>
+ 6 6 5 10 -1.
+ <_>
+ 6 11 5 5 2.
+ <_>
+
+ <_>
+ 4 7 14 6 -1.
+ <_>
+ 4 9 14 2 3.
+ <_>
+
+ <_>
+ 4 4 12 8 -1.
+ <_>
+ 4 4 6 4 2.
+ <_>
+ 10 8 6 4 2.
+ <_>
+
+ <_>
+ 5 5 12 5 -1.
+ <_>
+ 5 5 6 5 2.
+ <_>
+
+ <_>
+ 1 3 15 12 -1.
+ <_>
+ 6 3 5 12 3.
+ <_>
+
+ <_>
+ 13 3 6 17 -1.
+ <_>
+ 13 3 3 17 2.
+ <_>
+
+ <_>
+ 1 3 6 17 -1.
+ <_>
+ 4 3 3 17 2.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 14 4 6 3 3.
+ <_>
+
+ <_>
+ 4 0 8 6 -1.
+ <_>
+ 4 3 8 3 2.
+ <_>
+
+ <_>
+ 5 4 15 3 -1.
+ <_>
+ 5 5 15 1 3.
+ <_>
+
+ <_>
+ 0 5 8 4 -1.
+ <_>
+ 0 7 8 2 2.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 0 2 2 13 -1.
+ <_>
+ 1 2 1 13 2.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 14 16 2 2.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 6 2 8 6 -1.
+ <_>
+ 6 4 8 2 3.
+ <_>
+
+ <_>
+ 6 5 7 4 -1.
+ <_>
+ 6 7 7 2 2.
+ <_>
+
+ <_>
+ 9 5 10 9 -1.
+ <_>
+ 9 8 10 3 3.
+ <_>
+
+ <_>
+ 0 10 18 4 -1.
+ <_>
+ 0 10 9 2 2.
+ <_>
+ 9 12 9 2 2.
+ <_>
+
+ <_>
+ 8 7 6 9 -1.
+ <_>
+ 10 7 2 9 3.
+ <_>
+
+ <_>
+ 6 4 4 7 -1.
+ <_>
+ 8 4 2 7 2.
+ <_>
+
+ <_>
+ 9 6 9 10 -1.
+ <_>
+ 12 6 3 10 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+ 10 17 5 3 2.
+ <_>
+
+ <_>
+ 0 6 5 12 -1.
+ <_>
+ 0 10 5 4 3.
+ <_>
+
+ <_>
+ 9 6 9 10 -1.
+ <_>
+ 12 6 3 10 3.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 6 13 10 7 -1.
+ <_>
+ 6 13 5 7 2.
+ <_>
+
+ <_>
+ 0 2 6 17 -1.
+ <_>
+ 3 2 3 17 2.
+ <_>
+
+ <_>
+ 10 14 9 5 -1.
+ <_>
+ 13 14 3 5 3.
+ <_>
+
+ <_>
+ 1 14 9 5 -1.
+ <_>
+ 4 14 3 5 3.
+ <_>
+
+ <_>
+ 7 13 7 6 -1.
+ <_>
+ 7 15 7 2 3.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 12 10 8 6 -1.
+ <_>
+ 12 12 8 2 3.
+ <_>
+
+ <_>
+ 2 6 9 9 -1.
+ <_>
+ 5 6 3 9 3.
+ <_>
+
+ <_>
+ 12 10 7 6 -1.
+ <_>
+ 12 12 7 2 3.
+ <_>
+
+ <_>
+ 3 2 4 12 -1.
+ <_>
+ 5 2 2 12 2.
+ <_>
+
+ <_>
+ 9 1 7 15 -1.
+ <_>
+ 9 6 7 5 3.
+ <_>
+
+ <_>
+ 6 10 4 7 -1.
+ <_>
+ 8 10 2 7 2.
+ <_>
+
+ <_>
+ 5 0 10 20 -1.
+ <_>
+ 10 0 5 10 2.
+ <_>
+ 5 10 5 10 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 9 10 2 10 3.
+ <_>
+
+ <_>
+ 12 7 7 4 -1.
+ <_>
+ 12 9 7 2 2.
+ <_>
+
+ <_>
+ 2 7 16 4 -1.
+ <_>
+ 2 7 8 2 2.
+ <_>
+ 10 9 8 2 2.
+ <_>
+
+ <_>
+ 5 10 12 10 -1.
+ <_>
+ 5 10 6 10 2.
+ <_>
+
+ <_>
+ 6 1 2 16 -1.
+ <_>
+ 6 9 2 8 2.
+ <_>
+
+ <_>
+ 6 2 12 10 -1.
+ <_>
+ 6 7 12 5 2.
+ <_>
+
+ <_>
+ 2 4 14 6 -1.
+ <_>
+ 2 4 7 3 2.
+ <_>
+ 9 7 7 3 2.
+ <_>
+
+ <_>
+ 5 0 11 12 -1.
+ <_>
+ 5 4 11 4 3.
+ <_>
+
+ <_>
+ 7 1 6 12 -1.
+ <_>
+ 7 5 6 4 3.
+ <_>
+
+ <_>
+ 9 8 11 4 -1.
+ <_>
+ 9 10 11 2 2.
+ <_>
+
+ <_>
+ 0 8 11 4 -1.
+ <_>
+ 0 10 11 2 2.
+ <_>
+
+ <_>
+ 1 8 19 6 -1.
+ <_>
+ 1 11 19 3 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 7 4 6 4 2.
+ <_>
+
+ <_>
+ 5 3 15 2 -1.
+ <_>
+ 5 4 15 1 2.
+ <_>
+
+ <_>
+ 2 7 14 6 -1.
+ <_>
+ 2 9 14 2 3.
+ <_>
+
+ <_>
+ 3 0 17 6 -1.
+ <_>
+ 3 2 17 2 3.
+ <_>
+
+ <_>
+ 0 0 17 6 -1.
+ <_>
+ 0 2 17 2 3.
+ <_>
+
+ <_>
+ 13 2 7 4 -1.
+ <_>
+ 13 4 7 2 2.
+ <_>
+
+ <_>
+ 0 2 7 4 -1.
+ <_>
+ 0 4 7 2 2.
+ <_>
+
+ <_>
+ 8 1 12 10 -1.
+ <_>
+ 14 1 6 5 2.
+ <_>
+ 8 6 6 5 2.
+ <_>
+
+ <_>
+ 2 1 4 8 -1.
+ <_>
+ 2 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 11 10 -1.
+ <_>
+ 5 6 11 5 2.
+ <_>
+
+ <_>
+ 3 9 10 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+ 8 12 5 3 2.
+ <_>
+
+ <_>
+ 12 7 7 4 -1.
+ <_>
+ 12 9 7 2 2.
+ <_>
+
+ <_>
+ 2 7 12 8 -1.
+ <_>
+ 6 7 4 8 3.
+ <_>
+
+ <_>
+ 10 10 8 4 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+
+ <_>
+ 2 10 8 4 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+
+ <_>
+ 3 10 16 3 -1.
+ <_>
+ 3 10 8 3 2.
+ <_>
+
+ <_>
+ 1 11 6 5 -1.
+ <_>
+ 4 11 3 5 2.
+ <_>
+
+ <_>
+ 10 7 9 9 -1.
+ <_>
+ 13 7 3 9 3.
+ <_>
+
+ <_>
+ 1 7 9 9 -1.
+ <_>
+ 4 7 3 9 3.
+ <_>
+
+ <_>
+ 5 5 12 5 -1.
+ <_>
+ 5 5 6 5 2.
+ <_>
+
+ <_>
+ 3 5 12 5 -1.
+ <_>
+ 9 5 6 5 2.
+ <_>
+
+ <_>
+ 2 3 16 2 -1.
+ <_>
+ 2 3 8 2 2.
+ <_>
+
+ <_>
+ 2 8 7 6 -1.
+ <_>
+ 2 10 7 2 3.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 7 10 9 2 3.
+ <_>
+
+ <_>
+ 3 0 3 15 -1.
+ <_>
+ 4 0 1 15 3.
+ <_>
+
+ <_>
+ 3 10 16 3 -1.
+ <_>
+ 3 10 8 3 2.
+ <_>
+
+ <_>
+ 1 10 16 3 -1.
+ <_>
+ 9 10 8 3 2.
+ <_>
+
+ <_>
+ 12 0 8 19 -1.
+ <_>
+ 12 0 4 19 2.
+ <_>
+
+ <_>
+ 0 0 8 19 -1.
+ <_>
+ 4 0 4 19 2.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 0 12 16 4 -1.
+ <_>
+ 0 12 8 2 2.
+ <_>
+ 8 14 8 2 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 3 3 14 14 -1.
+ <_>
+ 10 3 7 7 2.
+ <_>
+ 3 10 7 7 2.
+ <_>
+
+ <_>
+ 3 6 6 12 -1.
+ <_>
+ 5 6 2 12 3.
+ <_>
+
+ <_>
+ 5 12 12 6 -1.
+ <_>
+ 9 12 4 6 3.
+ <_>
+
+ <_>
+ 1 8 14 6 -1.
+ <_>
+ 1 8 7 3 2.
+ <_>
+ 8 11 7 3 2.
+ <_>
+
+ <_>
+ 8 7 12 10 -1.
+ <_>
+ 14 7 6 5 2.
+ <_>
+ 8 12 6 5 2.
+ <_>
+
+ <_>
+ 0 7 12 10 -1.
+ <_>
+ 0 7 6 5 2.
+ <_>
+ 6 12 6 5 2.
+ <_>
+
+ <_>
+ 9 2 6 18 -1.
+ <_>
+ 12 2 3 9 2.
+ <_>
+ 9 11 3 9 2.
+ <_>
+
+ <_>
+ 1 10 8 10 -1.
+ <_>
+ 1 10 4 5 2.
+ <_>
+ 5 15 4 5 2.
+ <_>
+
+ <_>
+ 4 14 12 4 -1.
+ <_>
+ 4 16 12 2 2.
+ <_>
+
+ <_>
+ 5 13 6 7 -1.
+ <_>
+ 7 13 2 7 3.
+ <_>
+
+ <_>
+ 5 2 15 5 -1.
+ <_>
+ 10 2 5 5 3.
+ <_>
+
+ <_>
+ 5 4 9 14 -1.
+ <_>
+ 5 11 9 7 2.
+ <_>
+
+ <_>
+ 8 0 11 4 -1.
+ <_>
+ 8 2 11 2 2.
+ <_>
+
+ <_>
+ 0 14 16 6 -1.
+ <_>
+ 0 16 16 2 3.
+ <_>
+
+ <_>
+ 10 14 8 6 -1.
+ <_>
+ 10 16 8 2 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 5 8 15 3 -1.
+ <_>
+ 5 9 15 1 3.
+ <_>
+
+ <_>
+ 0 8 19 3 -1.
+ <_>
+ 0 9 19 1 3.
+ <_>
+
+ <_>
+ 8 16 8 4 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 16 8 4 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 9 5 10 9 -1.
+ <_>
+ 9 8 10 3 3.
+ <_>
+
+ <_>
+ 1 5 10 9 -1.
+ <_>
+ 1 8 10 3 3.
+ <_>
+
+ <_>
+ 4 7 14 2 -1.
+ <_>
+ 4 7 7 2 2.
+ <_>
+
+ <_>
+ 2 7 13 2 -1.
+ <_>
+ 2 8 13 1 2.
+ <_>
+
+ <_>
+ 6 5 8 4 -1.
+ <_>
+ 6 7 8 2 2.
+ <_>
+
+ <_>
+ 5 12 9 5 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 3 6 14 3 -1.
+ <_>
+ 3 7 14 1 3.
+ <_>
+
+ <_>
+ 7 2 4 12 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 2 4 16 4 -1.
+ <_>
+ 2 6 16 2 2.
+ <_>
+
+ <_>
+ 1 4 9 4 -1.
+ <_>
+ 1 6 9 2 2.
+ <_>
+
+ <_>
+ 9 4 11 4 -1.
+ <_>
+ 9 6 11 2 2.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 1 5 18 3 -1.
+ <_>
+ 7 5 6 3 3.
+ <_>
+
+ <_>
+ 1 0 15 7 -1.
+ <_>
+ 6 0 5 7 3.
+ <_>
+
+ <_>
+ 12 0 5 15 -1.
+ <_>
+ 12 5 5 5 3.
+ <_>
+
+ <_>
+ 3 0 5 15 -1.
+ <_>
+ 3 5 5 5 3.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 8 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 4 6 12 11 -1.
+ <_>
+ 8 6 4 11 3.
+ <_>
+
+ <_>
+ 1 7 18 4 -1.
+ <_>
+ 1 9 18 2 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 7 2 6 5 -1.
+ <_>
+ 10 2 3 5 2.
+ <_>
+
+ <_>
+ 9 0 4 7 -1.
+ <_>
+ 9 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 13 0 7 6 -1.
+ <_>
+ 13 2 7 2 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 5 4 15 4 -1.
+ <_>
+ 5 6 15 2 2.
+ <_>
+
+ <_>
+ 5 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 12 1 6 11 -1.
+ <_>
+ 14 1 2 11 3.
+ <_>
+
+ <_>
+ 0 11 20 3 -1.
+ <_>
+ 0 12 20 1 3.
+ <_>
+
+ <_>
+ 12 1 6 11 -1.
+ <_>
+ 14 1 2 11 3.
+ <_>
+
+ <_>
+ 2 1 6 11 -1.
+ <_>
+ 4 1 2 11 3.
+ <_>
+
+ <_>
+ 10 9 4 8 -1.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 0 7 7 6 -1.
+ <_>
+ 0 9 7 2 3.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 15 7 5 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 0 7 5 6 -1.
+ <_>
+ 0 10 5 3 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 2 0 14 3 -1.
+ <_>
+ 2 1 14 1 3.
+ <_>
+
+ <_>
+ 4 4 13 2 -1.
+ <_>
+ 4 5 13 1 2.
+ <_>
+
+ <_>
+ 0 18 20 2 -1.
+ <_>
+ 0 19 20 1 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 6 0 8 14 -1.
+ <_>
+ 10 0 4 7 2.
+ <_>
+ 6 7 4 7 2.
+ <_>
+
+ <_>
+ 0 2 6 12 -1.
+ <_>
+ 2 2 2 12 3.
+ <_>
+
+ <_>
+ 6 12 9 6 -1.
+ <_>
+ 9 12 3 6 3.
+ <_>
+
+ <_>
+ 2 0 7 4 -1.
+ <_>
+ 2 2 7 2 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 5 0 6 10 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 18 6 2 13 -1.
+ <_>
+ 18 6 1 13 2.
+ <_>
+
+ <_>
+ 0 6 2 13 -1.
+ <_>
+ 1 6 1 13 2.
+ <_>
+
+ <_>
+ 16 7 4 13 -1.
+ <_>
+ 16 7 2 13 2.
+ <_>
+
+ <_>
+ 6 5 7 6 -1.
+ <_>
+ 6 7 7 2 3.
+ <_>
+
+ <_>
+ 6 11 10 6 -1.
+ <_>
+ 11 11 5 3 2.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 5 9 6 5 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 10 3 4 15 -1.
+ <_>
+ 10 3 2 15 2.
+ <_>
+
+ <_>
+ 6 3 4 15 -1.
+ <_>
+ 8 3 2 15 2.
+ <_>
+
+ <_>
+ 6 7 13 2 -1.
+ <_>
+ 6 8 13 1 2.
+ <_>
+
+ <_>
+ 2 15 16 4 -1.
+ <_>
+ 2 15 8 2 2.
+ <_>
+ 10 17 8 2 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 7 4 13 -1.
+ <_>
+ 2 7 2 13 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 5 11 10 9 -1.
+ <_>
+ 5 14 10 3 3.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 12 4 6 2.
+ <_>
+
+ <_>
+ 0 3 2 16 -1.
+ <_>
+ 0 11 2 8 2.
+ <_>
+
+ <_>
+ 0 15 20 4 -1.
+ <_>
+ 10 15 10 2 2.
+ <_>
+ 0 17 10 2 2.
+ <_>
+
+ <_>
+ 0 15 9 4 -1.
+ <_>
+ 0 17 9 2 2.
+ <_>
+
+ <_>
+ 9 14 10 6 -1.
+ <_>
+ 14 14 5 3 2.
+ <_>
+ 9 17 5 3 2.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 4 15 13 3 -1.
+ <_>
+ 4 16 13 1 3.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 0 0 9 2 2.
+ <_>
+ 9 2 9 2 2.
+ <_>
+
+ <_>
+ 6 5 8 15 -1.
+ <_>
+ 6 10 8 5 3.
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 2 0 2 7 3.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 16 1 2 12 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 18 1 2 13 -1.
+ <_>
+ 18 1 1 13 2.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 14 2 4 10 -1.
+ <_>
+ 14 2 2 10 2.
+ <_>
+
+ <_>
+ 0 3 4 16 -1.
+ <_>
+ 0 3 2 8 2.
+ <_>
+ 2 11 2 8 2.
+ <_>
+
+ <_>
+ 6 0 10 6 -1.
+ <_>
+ 11 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 1 14 10 6 -1.
+ <_>
+ 1 14 5 3 2.
+ <_>
+ 6 17 5 3 2.
+ <_>
+
+ <_>
+ 8 7 5 9 -1.
+ <_>
+ 8 10 5 3 3.
+ <_>
+
+ <_>
+ 2 2 4 10 -1.
+ <_>
+ 4 2 2 10 2.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 5 6 10 12 -1.
+ <_>
+ 5 6 5 6 2.
+ <_>
+ 10 12 5 6 2.
+ <_>
+
+ <_>
+ 9 2 4 12 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 2 0 15 6 -1.
+ <_>
+ 2 3 15 3 2.
+ <_>
+
+ <_>
+ 6 0 13 8 -1.
+ <_>
+ 6 4 13 4 2.
+ <_>
+
+ <_>
+ 1 0 13 8 -1.
+ <_>
+ 1 4 13 4 2.
+ <_>
+
+ <_>
+ 11 4 2 14 -1.
+ <_>
+ 11 11 2 7 2.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 8 5 6 10 -1.
+ <_>
+ 11 5 3 5 2.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 4 8 10 12 -1.
+ <_>
+ 9 8 5 12 2.
+ <_>
+
+ <_>
+ 8 5 6 5 -1.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 6 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 13 0 6 7 -1.
+ <_>
+ 15 0 2 7 3.
+ <_>
+
+ <_>
+ 1 0 6 7 -1.
+ <_>
+ 3 0 2 7 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 6 17 6 3 3.
+ <_>
+
+ <_>
+ 6 7 12 8 -1.
+ <_>
+ 10 7 4 8 3.
+ <_>
+
+ <_>
+ 0 14 18 5 -1.
+ <_>
+ 6 14 6 5 3.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 10 13 10 2 2.
+ <_>
+ 0 15 10 2 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 11 11 7 4 -1.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 8 8 6 -1.
+ <_>
+ 0 10 8 2 3.
+ <_>
+
+ <_>
+ 4 8 15 2 -1.
+ <_>
+ 4 9 15 1 2.
+ <_>
+
+ <_>
+ 0 9 6 5 -1.
+ <_>
+ 3 9 3 5 2.
+ <_>
+
+ <_>
+ 13 9 6 5 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+
+ <_>
+ 1 9 6 5 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 0 0 14 19 -1.
+ <_>
+ 7 0 7 19 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 3 0 4 14 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+ 5 7 2 7 2.
+ <_>
+
+ <_>
+ 13 4 7 6 -1.
+ <_>
+ 13 6 7 2 3.
+ <_>
+
+ <_>
+ 2 4 14 3 -1.
+ <_>
+ 2 5 14 1 3.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 6 2 14 18 -1.
+ <_>
+ 13 2 7 9 2.
+ <_>
+ 6 11 7 9 2.
+ <_>
+
+ <_>
+ 5 9 9 6 -1.
+ <_>
+ 5 12 9 3 2.
+ <_>
+
+ <_>
+ 0 1 20 18 -1.
+ <_>
+ 10 1 10 9 2.
+ <_>
+ 0 10 10 9 2.
+ <_>
+
+ <_>
+ 4 10 7 4 -1.
+ <_>
+ 4 12 7 2 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 1 0 14 12 -1.
+ <_>
+ 1 4 14 4 3.
+ <_>
+
+ <_>
+ 9 0 6 8 -1.
+ <_>
+ 9 0 3 8 2.
+ <_>
+
+ <_>
+ 4 2 12 5 -1.
+ <_>
+ 8 2 4 5 3.
+ <_>
+
+ <_>
+ 12 0 2 15 -1.
+ <_>
+ 12 0 1 15 2.
+ <_>
+
+ <_>
+ 4 0 8 10 -1.
+ <_>
+ 8 0 4 10 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 9 2 2 13 -1.
+ <_>
+ 9 2 1 13 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 4 18 10 -1.
+ <_>
+ 0 4 9 5 2.
+ <_>
+ 9 9 9 5 2.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 4 3 16 6 -1.
+ <_>
+ 12 3 8 3 2.
+ <_>
+ 4 6 8 3 2.
+ <_>
+
+ <_>
+ 3 4 5 9 -1.
+ <_>
+ 3 7 5 3 3.
+ <_>
+
+ <_>
+ 8 4 12 5 -1.
+ <_>
+ 12 4 4 5 3.
+ <_>
+
+ <_>
+ 3 9 8 4 -1.
+ <_>
+ 3 11 8 2 2.
+ <_>
+
+ <_>
+ 11 0 2 15 -1.
+ <_>
+ 11 0 1 15 2.
+ <_>
+
+ <_>
+ 7 0 2 15 -1.
+ <_>
+ 8 0 1 15 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 8 3 4 8 -1.
+ <_>
+ 10 3 2 8 2.
+ <_>
+
+ <_>
+ 9 13 6 7 -1.
+ <_>
+ 11 13 2 7 3.
+ <_>
+
+ <_>
+ 4 14 9 5 -1.
+ <_>
+ 7 14 3 5 3.
+ <_>
+
+ <_>
+ 15 3 4 17 -1.
+ <_>
+ 15 3 2 17 2.
+ <_>
+
+ <_>
+ 1 6 4 13 -1.
+ <_>
+ 3 6 2 13 2.
+ <_>
+
+ <_>
+ 11 12 4 7 -1.
+ <_>
+ 11 12 2 7 2.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 2 1 2 7 3.
+ <_>
+
+ <_>
+ 9 12 6 7 -1.
+ <_>
+ 11 12 2 7 3.
+ <_>
+
+ <_>
+ 5 12 6 7 -1.
+ <_>
+ 7 12 2 7 3.
+ <_>
+
+ <_>
+ 7 7 6 8 -1.
+ <_>
+ 9 7 2 8 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 5 13 13 3 -1.
+ <_>
+ 5 14 13 1 3.
+ <_>
+
+ <_>
+ 2 9 14 3 -1.
+ <_>
+ 2 10 14 1 3.
+ <_>
+
+ <_>
+ 8 7 7 4 -1.
+ <_>
+ 8 9 7 2 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 13 12 5 6 -1.
+ <_>
+ 13 15 5 3 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 4 5 16 3 -1.
+ <_>
+ 4 5 8 3 2.
+ <_>
+
+ <_>
+ 5 3 4 14 -1.
+ <_>
+ 5 10 4 7 2.
+ <_>
+
+ <_>
+ 4 13 15 5 -1.
+ <_>
+ 9 13 5 5 3.
+ <_>
+
+ <_>
+ 0 3 14 2 -1.
+ <_>
+ 0 4 14 1 2.
+ <_>
+
+ <_>
+ 4 13 15 5 -1.
+ <_>
+ 9 13 5 5 3.
+ <_>
+
+ <_>
+ 1 13 15 5 -1.
+ <_>
+ 6 13 5 5 3.
+ <_>
+
+ <_>
+ 12 0 8 6 -1.
+ <_>
+ 12 2 8 2 3.
+ <_>
+
+ <_>
+ 3 10 6 5 -1.
+ <_>
+ 6 10 3 5 2.
+ <_>
+
+ <_>
+ 4 7 14 8 -1.
+ <_>
+ 11 7 7 4 2.
+ <_>
+ 4 11 7 4 2.
+ <_>
+
+ <_>
+ 2 7 14 8 -1.
+ <_>
+ 2 7 7 4 2.
+ <_>
+ 9 11 7 4 2.
+ <_>
+
+ <_>
+ 11 0 2 20 -1.
+ <_>
+ 11 0 1 20 2.
+ <_>
+
+ <_>
+ 7 0 2 20 -1.
+ <_>
+ 8 0 1 20 2.
+ <_>
+
+ <_>
+ 10 5 6 8 -1.
+ <_>
+ 12 5 2 8 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 3 2 14 4 -1.
+ <_>
+ 10 2 7 2 2.
+ <_>
+ 3 4 7 2 2.
+ <_>
+
+ <_>
+ 7 5 6 7 -1.
+ <_>
+ 9 5 2 7 3.
+ <_>
+
+ <_>
+ 8 4 9 16 -1.
+ <_>
+ 11 4 3 16 3.
+ <_>
+
+ <_>
+ 4 5 6 8 -1.
+ <_>
+ 6 5 2 8 3.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 10 10 3 5 2.
+ <_>
+ 7 15 3 5 2.
+ <_>
+
+ <_>
+ 5 11 5 6 -1.
+ <_>
+ 5 14 5 3 2.
+ <_>
+
+ <_>
+ 4 8 13 8 -1.
+ <_>
+ 4 12 13 4 2.
+ <_>
+
+ <_>
+ 0 9 10 6 -1.
+ <_>
+ 0 9 5 3 2.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 4 0 5 8 -1.
+ <_>
+ 4 4 5 4 2.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 8 6 4 5 2.
+ <_>
+
+ <_>
+ 6 3 7 10 -1.
+ <_>
+ 6 8 7 5 2.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 2 13 13 3 -1.
+ <_>
+ 2 14 13 1 3.
+ <_>
+
+ <_>
+ 12 11 7 4 -1.
+ <_>
+ 12 13 7 2 2.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 9 12 9 4 -1.
+ <_>
+ 9 14 9 2 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 12 8 2 2.
+ <_>
+ 10 14 8 2 2.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+ 10 17 5 3 2.
+ <_>
+
+ <_>
+ 4 1 8 8 -1.
+ <_>
+ 4 1 4 4 2.
+ <_>
+ 8 5 4 4 2.
+ <_>
+
+ <_>
+ 2 12 18 7 -1.
+ <_>
+ 8 12 6 7 3.
+ <_>
+
+ <_>
+ 3 13 12 6 -1.
+ <_>
+ 3 13 6 3 2.
+ <_>
+ 9 16 6 3 2.
+ <_>
+
+ <_>
+ 4 12 13 4 -1.
+ <_>
+ 4 14 13 2 2.
+ <_>
+
+ <_>
+ 6 0 2 15 -1.
+ <_>
+ 7 0 1 15 2.
+ <_>
+
+ <_>
+ 4 2 16 18 -1.
+ <_>
+ 12 2 8 9 2.
+ <_>
+ 4 11 8 9 2.
+ <_>
+
+ <_>
+ 1 16 18 4 -1.
+ <_>
+ 7 16 6 4 3.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 4 0 12 9 -1.
+ <_>
+ 8 0 4 9 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 7 9 3 6 2.
+ <_>
+
+ <_>
+ 7 12 12 8 -1.
+ <_>
+ 13 12 6 4 2.
+ <_>
+ 7 16 6 4 2.
+ <_>
+
+ <_>
+ 1 12 12 8 -1.
+ <_>
+ 1 12 6 4 2.
+ <_>
+ 7 16 6 4 2.
+ <_>
+
+ <_>
+ 0 10 20 9 -1.
+ <_>
+ 0 13 20 3 3.
+ <_>
+
+ <_>
+ 4 5 10 6 -1.
+ <_>
+ 4 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 13 3 7 6 -1.
+ <_>
+ 13 5 7 2 3.
+ <_>
+
+ <_>
+ 8 1 4 14 -1.
+ <_>
+ 8 1 2 7 2.
+ <_>
+ 10 8 2 7 2.
+ <_>
+
+ <_>
+ 12 8 5 6 -1.
+ <_>
+ 12 11 5 3 2.
+ <_>
+
+ <_>
+ 3 8 5 6 -1.
+ <_>
+ 3 11 5 3 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 8 0 6 4 3.
+ <_>
+
+ <_>
+ 6 5 3 14 -1.
+ <_>
+ 6 12 3 7 2.
+ <_>
+
+ <_>
+ 5 17 15 3 -1.
+ <_>
+ 10 17 5 3 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 6 0 3 7 2.
+ <_>
+
+ <_>
+ 8 3 12 17 -1.
+ <_>
+ 8 3 6 17 2.
+ <_>
+
+ <_>
+ 0 2 16 12 -1.
+ <_>
+ 8 2 8 12 2.
+ <_>
+
+ <_>
+ 7 6 6 12 -1.
+ <_>
+ 7 12 6 6 2.
+ <_>
+
+ <_>
+ 8 8 4 8 -1.
+ <_>
+ 8 12 4 4 2.
+ <_>
+
+ <_>
+ 8 7 12 10 -1.
+ <_>
+ 14 7 6 5 2.
+ <_>
+ 8 12 6 5 2.
+ <_>
+
+ <_>
+ 4 1 12 5 -1.
+ <_>
+ 10 1 6 5 2.
+ <_>
+
+ <_>
+ 7 2 8 8 -1.
+ <_>
+ 11 2 4 4 2.
+ <_>
+ 7 6 4 4 2.
+ <_>
+
+ <_>
+ 5 2 8 8 -1.
+ <_>
+ 5 2 4 4 2.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 3 14 14 6 -1.
+ <_>
+ 3 17 14 3 2.
+ <_>
+
+ <_>
+ 3 3 5 12 -1.
+ <_>
+ 3 7 5 4 3.
+ <_>
+
+ <_>
+ 15 4 5 6 -1.
+ <_>
+ 15 7 5 3 2.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 15 4 5 9 -1.
+ <_>
+ 15 7 5 3 3.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 8 6 2 7 2.
+ <_>
+ 10 13 2 7 2.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 0 8 10 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 9 12 6 7 -1.
+ <_>
+ 11 12 2 7 3.
+ <_>
+
+ <_>
+ 5 12 6 7 -1.
+ <_>
+ 7 12 2 7 3.
+ <_>
+
+ <_>
+ 13 9 7 6 -1.
+ <_>
+ 13 11 7 2 3.
+ <_>
+
+ <_>
+ 1 1 16 6 -1.
+ <_>
+ 1 3 16 2 3.
+ <_>
+
+ <_>
+ 2 1 17 6 -1.
+ <_>
+ 2 3 17 2 3.
+ <_>
+
+ <_>
+ 4 4 2 16 -1.
+ <_>
+ 4 12 2 8 2.
+ <_>
+
+ <_>
+ 7 6 10 14 -1.
+ <_>
+ 12 6 5 7 2.
+ <_>
+ 7 13 5 7 2.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 4 9 12 6 -1.
+ <_>
+ 10 9 6 3 2.
+ <_>
+ 4 12 6 3 2.
+ <_>
+
+ <_>
+ 1 8 18 3 -1.
+ <_>
+ 7 8 6 3 3.
+ <_>
+
+ <_>
+ 2 13 18 7 -1.
+ <_>
+ 8 13 6 7 3.
+ <_>
+
+ <_>
+ 1 8 15 3 -1.
+ <_>
+ 6 8 5 3 3.
+ <_>
+
+ <_>
+ 6 0 12 7 -1.
+ <_>
+ 10 0 4 7 3.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 6 7 6 8 -1.
+ <_>
+ 6 11 6 4 2.
+ <_>
+
+ <_>
+ 9 2 4 12 -1.
+ <_>
+ 9 6 4 4 3.
+ <_>
+
+ <_>
+ 0 9 7 6 -1.
+ <_>
+ 0 11 7 2 3.
+ <_>
+
+ <_>
+ 15 4 5 9 -1.
+ <_>
+ 15 7 5 3 3.
+ <_>
+
+ <_>
+ 2 18 13 2 -1.
+ <_>
+ 2 19 13 1 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 6 6 8 12 -1.
+ <_>
+ 6 10 8 4 3.
+ <_>
+
+ <_>
+ 7 9 6 9 -1.
+ <_>
+ 7 12 6 3 3.
+ <_>
+
+ <_>
+ 0 7 11 4 -1.
+ <_>
+ 0 9 11 2 2.
+ <_>
+
+ <_>
+ 8 12 10 6 -1.
+ <_>
+ 13 12 5 3 2.
+ <_>
+ 8 15 5 3 2.
+ <_>
+
+ <_>
+ 2 12 10 6 -1.
+ <_>
+ 2 12 5 3 2.
+ <_>
+ 7 15 5 3 2.
+ <_>
+
+ <_>
+ 12 14 8 6 -1.
+ <_>
+ 12 16 8 2 3.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 0 16 8 2 3.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 7 6 4 8 -1.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 9 8 11 4 -1.
+ <_>
+ 9 10 11 2 2.
+ <_>
+
+ <_>
+ 6 6 5 10 -1.
+ <_>
+ 6 11 5 5 2.
+ <_>
+
+ <_>
+ 4 7 14 6 -1.
+ <_>
+ 4 9 14 2 3.
+ <_>
+
+ <_>
+ 4 4 12 8 -1.
+ <_>
+ 4 4 6 4 2.
+ <_>
+ 10 8 6 4 2.
+ <_>
+
+ <_>
+ 5 5 12 5 -1.
+ <_>
+ 5 5 6 5 2.
+ <_>
+
+ <_>
+ 1 3 15 12 -1.
+ <_>
+ 6 3 5 12 3.
+ <_>
+
+ <_>
+ 13 3 6 17 -1.
+ <_>
+ 13 3 3 17 2.
+ <_>
+
+ <_>
+ 1 3 6 17 -1.
+ <_>
+ 4 3 3 17 2.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 14 4 6 3 3.
+ <_>
+
+ <_>
+ 4 0 8 6 -1.
+ <_>
+ 4 3 8 3 2.
+ <_>
+
+ <_>
+ 5 4 15 3 -1.
+ <_>
+ 5 5 15 1 3.
+ <_>
+
+ <_>
+ 0 5 8 4 -1.
+ <_>
+ 0 7 8 2 2.
+ <_>
+
+ <_>
+ 18 2 2 13 -1.
+ <_>
+ 18 2 1 13 2.
+ <_>
+
+ <_>
+ 0 2 2 13 -1.
+ <_>
+ 1 2 1 13 2.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 4 8 13 2 -1.
+ <_>
+ 4 9 13 1 2.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 14 16 2 2.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 6 2 8 6 -1.
+ <_>
+ 6 4 8 2 3.
+ <_>
+
+ <_>
+ 6 5 7 4 -1.
+ <_>
+ 6 7 7 2 2.
+ <_>
+
+ <_>
+ 9 5 10 9 -1.
+ <_>
+ 9 8 10 3 3.
+ <_>
+
+ <_>
+ 0 10 18 4 -1.
+ <_>
+ 0 10 9 2 2.
+ <_>
+ 9 12 9 2 2.
+ <_>
+
+ <_>
+ 8 7 6 9 -1.
+ <_>
+ 10 7 2 9 3.
+ <_>
+
+ <_>
+ 6 4 4 7 -1.
+ <_>
+ 8 4 2 7 2.
+ <_>
+
+ <_>
+ 9 6 9 10 -1.
+ <_>
+ 12 6 3 10 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 10 14 10 6 -1.
+ <_>
+ 15 14 5 3 2.
+ <_>
+ 10 17 5 3 2.
+ <_>
+
+ <_>
+ 0 6 5 12 -1.
+ <_>
+ 0 10 5 4 3.
+ <_>
+
+ <_>
+ 9 6 9 10 -1.
+ <_>
+ 12 6 3 10 3.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 6 13 10 7 -1.
+ <_>
+ 6 13 5 7 2.
+ <_>
+
+ <_>
+ 0 2 6 17 -1.
+ <_>
+ 3 2 3 17 2.
+ <_>
+
+ <_>
+ 10 14 9 5 -1.
+ <_>
+ 13 14 3 5 3.
+ <_>
+
+ <_>
+ 1 14 9 5 -1.
+ <_>
+ 4 14 3 5 3.
+ <_>
+
+ <_>
+ 7 13 7 6 -1.
+ <_>
+ 7 15 7 2 3.
+ <_>
+
+ <_>
+ 1 14 7 6 -1.
+ <_>
+ 1 16 7 2 3.
+ <_>
+
+ <_>
+ 12 10 8 6 -1.
+ <_>
+ 12 12 8 2 3.
+ <_>
+
+ <_>
+ 2 6 9 9 -1.
+ <_>
+ 5 6 3 9 3.
+ <_>
+
+ <_>
+ 12 10 7 6 -1.
+ <_>
+ 12 12 7 2 3.
+ <_>
+
+ <_>
+ 3 2 4 12 -1.
+ <_>
+ 5 2 2 12 2.
+ <_>
+
+ <_>
+ 9 1 7 15 -1.
+ <_>
+ 9 6 7 5 3.
+ <_>
+
+ <_>
+ 6 10 4 7 -1.
+ <_>
+ 8 10 2 7 2.
+ <_>
+
+ <_>
+ 5 0 10 20 -1.
+ <_>
+ 10 0 5 10 2.
+ <_>
+ 5 10 5 10 2.
+ <_>
+
+ <_>
+ 7 10 6 10 -1.
+ <_>
+ 9 10 2 10 3.
+ <_>
+
+ <_>
+ 12 7 7 4 -1.
+ <_>
+ 12 9 7 2 2.
+ <_>
+
+ <_>
+ 2 7 16 4 -1.
+ <_>
+ 2 7 8 2 2.
+ <_>
+ 10 9 8 2 2.
+ <_>
+
+ <_>
+ 5 10 12 10 -1.
+ <_>
+ 5 10 6 10 2.
+ <_>
+
+ <_>
+ 6 1 2 16 -1.
+ <_>
+ 6 9 2 8 2.
+ <_>
+
+ <_>
+ 6 2 12 10 -1.
+ <_>
+ 6 7 12 5 2.
+ <_>
+
+ <_>
+ 2 4 14 6 -1.
+ <_>
+ 2 4 7 3 2.
+ <_>
+ 9 7 7 3 2.
+ <_>
+
+ <_>
+ 5 0 11 12 -1.
+ <_>
+ 5 4 11 4 3.
+ <_>
+
+ <_>
+ 7 1 6 12 -1.
+ <_>
+ 7 5 6 4 3.
+ <_>
+
+ <_>
+ 9 8 11 4 -1.
+ <_>
+ 9 10 11 2 2.
+ <_>
+
+ <_>
+ 0 8 11 4 -1.
+ <_>
+ 0 10 11 2 2.
+ <_>
+
+ <_>
+ 1 8 19 6 -1.
+ <_>
+ 1 11 19 3 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 7 4 6 4 2.
+ <_>
+
+ <_>
+ 5 3 15 2 -1.
+ <_>
+ 5 4 15 1 2.
+ <_>
+
+ <_>
+ 2 7 14 6 -1.
+ <_>
+ 2 9 14 2 3.
+ <_>
+
+ <_>
+ 3 0 17 6 -1.
+ <_>
+ 3 2 17 2 3.
+ <_>
+
+ <_>
+ 0 0 17 6 -1.
+ <_>
+ 0 2 17 2 3.
+ <_>
+
+ <_>
+ 13 2 7 4 -1.
+ <_>
+ 13 4 7 2 2.
+ <_>
+
+ <_>
+ 0 2 7 4 -1.
+ <_>
+ 0 4 7 2 2.
+ <_>
+
+ <_>
+ 8 1 12 10 -1.
+ <_>
+ 14 1 6 5 2.
+ <_>
+ 8 6 6 5 2.
+ <_>
+
+ <_>
+ 2 1 4 8 -1.
+ <_>
+ 2 5 4 4 2.
+ <_>
+
+ <_>
+ 5 1 11 10 -1.
+ <_>
+ 5 6 11 5 2.
+ <_>
+
+ <_>
+ 3 9 10 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+ 8 12 5 3 2.
+ <_>
+
+ <_>
+ 12 7 7 4 -1.
+ <_>
+ 12 9 7 2 2.
+ <_>
+
+ <_>
+ 2 7 12 8 -1.
+ <_>
+ 6 7 4 8 3.
+ <_>
+
+ <_>
+ 10 10 8 4 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+
+ <_>
+ 2 10 8 4 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+
+ <_>
+ 3 10 16 3 -1.
+ <_>
+ 3 10 8 3 2.
+ <_>
+
+ <_>
+ 1 11 6 5 -1.
+ <_>
+ 4 11 3 5 2.
+ <_>
+
+ <_>
+ 10 7 9 9 -1.
+ <_>
+ 13 7 3 9 3.
+ <_>
+
+ <_>
+ 1 7 9 9 -1.
+ <_>
+ 4 7 3 9 3.
+ <_>
+
+ <_>
+ 5 5 12 5 -1.
+ <_>
+ 5 5 6 5 2.
+ <_>
+
+ <_>
+ 3 5 12 5 -1.
+ <_>
+ 9 5 6 5 2.
+ <_>
+
+ <_>
+ 2 3 16 2 -1.
+ <_>
+ 2 3 8 2 2.
+ <_>
+
+ <_>
+ 2 8 7 6 -1.
+ <_>
+ 2 10 7 2 3.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 7 10 9 2 3.
+ <_>
+
+ <_>
+ 3 0 3 15 -1.
+ <_>
+ 4 0 1 15 3.
+ <_>
+
+ <_>
+ 3 10 16 3 -1.
+ <_>
+ 3 10 8 3 2.
+ <_>
+
+ <_>
+ 1 10 16 3 -1.
+ <_>
+ 9 10 8 3 2.
+ <_>
+
+ <_>
+ 12 0 8 19 -1.
+ <_>
+ 12 0 4 19 2.
+ <_>
+
+ <_>
+ 0 0 8 19 -1.
+ <_>
+ 4 0 4 19 2.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 6 14 14 3 -1.
+ <_>
+ 6 15 14 1 3.
+ <_>
+
+ <_>
+ 0 12 16 4 -1.
+ <_>
+ 0 12 8 2 2.
+ <_>
+ 8 14 8 2 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 13 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 3 3 14 14 -1.
+ <_>
+ 10 3 7 7 2.
+ <_>
+ 3 10 7 7 2.
+ <_>
+
+ <_>
+ 3 6 6 12 -1.
+ <_>
+ 5 6 2 12 3.
+ <_>
+
+ <_>
+ 5 12 12 6 -1.
+ <_>
+ 9 12 4 6 3.
+ <_>
+
+ <_>
+ 1 8 14 6 -1.
+ <_>
+ 1 8 7 3 2.
+ <_>
+ 8 11 7 3 2.
+ <_>
+
+ <_>
+ 8 7 12 10 -1.
+ <_>
+ 14 7 6 5 2.
+ <_>
+ 8 12 6 5 2.
+ <_>
+
+ <_>
+ 0 7 12 10 -1.
+ <_>
+ 0 7 6 5 2.
+ <_>
+ 6 12 6 5 2.
+ <_>
+
+ <_>
+ 9 2 6 18 -1.
+ <_>
+ 12 2 3 9 2.
+ <_>
+ 9 11 3 9 2.
+ <_>
+
+ <_>
+ 1 10 8 10 -1.
+ <_>
+ 1 10 4 5 2.
+ <_>
+ 5 15 4 5 2.
+ <_>
+
+ <_>
+ 4 14 12 4 -1.
+ <_>
+ 4 16 12 2 2.
+ <_>
+
+ <_>
+ 5 13 6 7 -1.
+ <_>
+ 7 13 2 7 3.
+ <_>
+
+ <_>
+ 5 2 15 5 -1.
+ <_>
+ 10 2 5 5 3.
+ <_>
+
+ <_>
+ 5 4 9 14 -1.
+ <_>
+ 5 11 9 7 2.
+ <_>
+
+ <_>
+ 8 0 11 4 -1.
+ <_>
+ 8 2 11 2 2.
+ <_>
+
+ <_>
+ 0 14 16 6 -1.
+ <_>
+ 0 16 16 2 3.
+ <_>
+
+ <_>
+ 10 14 8 6 -1.
+ <_>
+ 10 16 8 2 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 5 8 15 3 -1.
+ <_>
+ 5 9 15 1 3.
+ <_>
+
+ <_>
+ 0 8 19 3 -1.
+ <_>
+ 0 9 19 1 3.
+ <_>
+
+ <_>
+ 8 16 8 4 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 16 8 4 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 9 5 10 9 -1.
+ <_>
+ 9 8 10 3 3.
+ <_>
+
+ <_>
+ 1 5 10 9 -1.
+ <_>
+ 1 8 10 3 3.
+ <_>
+
+ <_>
+ 4 7 14 2 -1.
+ <_>
+ 4 7 7 2 2.
+ <_>
+
+ <_>
+ 2 7 13 2 -1.
+ <_>
+ 2 8 13 1 2.
+ <_>
+
+ <_>
+ 6 5 8 4 -1.
+ <_>
+ 6 7 8 2 2.
+ <_>
+
+ <_>
+ 5 12 9 5 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 3 6 14 3 -1.
+ <_>
+ 3 7 14 1 3.
+ <_>
+
+ <_>
+ 7 2 4 12 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 2 4 16 4 -1.
+ <_>
+ 2 6 16 2 2.
+ <_>
+
+ <_>
+ 1 4 9 4 -1.
+ <_>
+ 1 6 9 2 2.
+ <_>
+
+ <_>
+ 9 4 11 4 -1.
+ <_>
+ 9 6 11 2 2.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 1 5 18 3 -1.
+ <_>
+ 7 5 6 3 3.
+ <_>
+
+ <_>
+ 1 0 15 7 -1.
+ <_>
+ 6 0 5 7 3.
+ <_>
+
+ <_>
+ 12 0 5 15 -1.
+ <_>
+ 12 5 5 5 3.
+ <_>
+
+ <_>
+ 3 0 5 15 -1.
+ <_>
+ 3 5 5 5 3.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 8 3 4 7 -1.
+ <_>
+ 10 3 2 7 2.
+ <_>
+
+ <_>
+ 4 6 12 11 -1.
+ <_>
+ 8 6 4 11 3.
+ <_>
+
+ <_>
+ 1 7 18 4 -1.
+ <_>
+ 1 9 18 2 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 10 5 2 8 3.
+ <_>
+
+ <_>
+ 7 2 6 5 -1.
+ <_>
+ 10 2 3 5 2.
+ <_>
+
+ <_>
+ 9 0 4 7 -1.
+ <_>
+ 9 0 2 7 2.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 13 0 7 6 -1.
+ <_>
+ 13 2 7 2 3.
+ <_>
+
+ <_>
+ 1 1 8 4 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+
+ <_>
+ 7 4 7 6 -1.
+ <_>
+ 7 6 7 2 3.
+ <_>
+
+ <_>
+ 4 5 10 12 -1.
+ <_>
+ 4 5 5 6 2.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 8 12 11 8 -1.
+ <_>
+ 8 16 11 4 2.
+ <_>
+
+ <_>
+ 5 5 9 5 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 0 2 14 -1.
+ <_>
+ 1 0 1 14 2.
+ <_>
+
+ <_>
+ 11 9 3 10 -1.
+ <_>
+ 11 14 3 5 2.
+ <_>
+
+ <_>
+ 3 17 13 3 -1.
+ <_>
+ 3 18 13 1 3.
+ <_>
+
+ <_>
+ 6 10 13 3 -1.
+ <_>
+ 6 11 13 1 3.
+ <_>
+
+ <_>
+ 1 2 18 6 -1.
+ <_>
+ 1 2 9 3 2.
+ <_>
+ 10 5 9 3 2.
+ <_>
+
+ <_>
+ 6 1 12 8 -1.
+ <_>
+ 12 1 6 4 2.
+ <_>
+ 6 5 6 4 2.
+ <_>
+
+ <_>
+ 4 1 12 8 -1.
+ <_>
+ 4 1 6 4 2.
+ <_>
+ 10 5 6 4 2.
+ <_>
+
+ <_>
+ 4 3 13 3 -1.
+ <_>
+ 4 4 13 1 3.
+ <_>
+
+ <_>
+ 1 6 12 4 -1.
+ <_>
+ 5 6 4 4 3.
+ <_>
+
+ <_>
+ 14 2 6 5 -1.
+ <_>
+ 14 2 3 5 2.
+ <_>
+
+ <_>
+ 3 12 13 2 -1.
+ <_>
+ 3 13 13 1 2.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 11 0 9 6 -1.
+ <_>
+ 14 0 3 6 3.
+ <_>
+
+ <_>
+ 6 9 3 10 -1.
+ <_>
+ 6 14 3 5 2.
+ <_>
+
+ <_>
+ 10 9 6 5 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+
+ <_>
+ 6 7 3 12 -1.
+ <_>
+ 6 13 3 6 2.
+ <_>
+
+ <_>
+ 11 0 9 6 -1.
+ <_>
+ 14 0 3 6 3.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 3 0 3 6 3.
+ <_>
+
+ <_>
+ 4 6 12 3 -1.
+ <_>
+ 4 6 6 3 2.
+ <_>
+
+ <_>
+ 6 4 6 8 -1.
+ <_>
+ 8 4 2 8 3.
+ <_>
+
+ <_>
+ 11 0 3 13 -1.
+ <_>
+ 12 0 1 13 3.
+ <_>
+
+ <_>
+ 6 0 3 13 -1.
+ <_>
+ 7 0 1 13 3.
+ <_>
+
+ <_>
+ 4 14 13 2 -1.
+ <_>
+ 4 15 13 1 2.
+ <_>
+
+ <_>
+ 1 11 7 6 -1.
+ <_>
+ 1 13 7 2 3.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 4 16 12 4 -1.
+ <_>
+ 8 16 4 4 3.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 6 9 3 8 2.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 2 0 14 9 -1.
+ <_>
+ 2 3 14 3 3.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 9 5 4 12 -1.
+ <_>
+ 9 11 4 6 2.
+ <_>
+
+ <_>
+ 2 4 10 6 -1.
+ <_>
+ 2 4 5 3 2.
+ <_>
+ 7 7 5 3 2.
+ <_>
+
+ <_>
+ 9 1 8 16 -1.
+ <_>
+ 13 1 4 8 2.
+ <_>
+ 9 9 4 8 2.
+ <_>
+
+ <_>
+ 2 1 14 8 -1.
+ <_>
+ 2 5 14 4 2.
+ <_>
+
+ <_>
+ 12 10 7 6 -1.
+ <_>
+ 12 12 7 2 3.
+ <_>
+
+ <_>
+ 0 8 6 9 -1.
+ <_>
+ 3 8 3 9 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 0 0 16 2 -1.
+ <_>
+ 0 1 16 1 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 2 13 14 4 -1.
+ <_>
+ 2 13 7 2 2.
+ <_>
+ 9 15 7 2 2.
+ <_>
+
+ <_>
+ 7 5 9 7 -1.
+ <_>
+ 10 5 3 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 6 1 6 10 -1.
+ <_>
+ 6 6 6 5 2.
+ <_>
+
+ <_>
+ 0 3 20 8 -1.
+ <_>
+ 0 7 20 4 2.
+ <_>
+
+ <_>
+ 4 0 12 8 -1.
+ <_>
+ 10 0 6 8 2.
+ <_>
+
+ <_>
+ 2 1 18 19 -1.
+ <_>
+ 8 1 6 19 3.
+ <_>
+
+ <_>
+ 0 1 18 19 -1.
+ <_>
+ 6 1 6 19 3.
+ <_>
+
+ <_>
+ 8 1 12 19 -1.
+ <_>
+ 8 1 6 19 2.
+ <_>
+
+ <_>
+ 0 1 12 19 -1.
+ <_>
+ 6 1 6 19 2.
+ <_>
+
+ <_>
+ 0 0 20 10 -1.
+ <_>
+ 10 0 10 5 2.
+ <_>
+ 0 5 10 5 2.
+ <_>
+
+ <_>
+ 0 4 13 3 -1.
+ <_>
+ 0 5 13 1 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 1 4 13 3 -1.
+ <_>
+ 1 5 13 1 3.
+ <_>
+
+ <_>
+ 13 12 7 4 -1.
+ <_>
+ 13 14 7 2 2.
+ <_>
+
+ <_>
+ 2 1 4 19 -1.
+ <_>
+ 4 1 2 19 2.
+ <_>
+
+ <_>
+ 12 10 7 6 -1.
+ <_>
+ 12 12 7 2 3.
+ <_>
+
+ <_>
+ 3 9 13 3 -1.
+ <_>
+ 3 10 13 1 3.
+ <_>
+
+ <_>
+ 4 8 14 3 -1.
+ <_>
+ 4 9 14 1 3.
+ <_>
+
+ <_>
+ 4 5 12 9 -1.
+ <_>
+ 4 8 12 3 3.
+ <_>
+
+ <_>
+ 6 15 13 3 -1.
+ <_>
+ 6 16 13 1 3.
+ <_>
+
+ <_>
+ 0 12 7 4 -1.
+ <_>
+ 0 14 7 2 2.
+ <_>
+
+ <_>
+ 5 2 14 18 -1.
+ <_>
+ 12 2 7 9 2.
+ <_>
+ 5 11 7 9 2.
+ <_>
+
+ <_>
+ 7 5 4 12 -1.
+ <_>
+ 7 11 4 6 2.
+ <_>
+
+ <_>
+ 5 2 14 18 -1.
+ <_>
+ 12 2 7 9 2.
+ <_>
+ 5 11 7 9 2.
+ <_>
+
+ <_>
+ 1 2 14 18 -1.
+ <_>
+ 1 2 7 9 2.
+ <_>
+ 8 11 7 9 2.
+ <_>
+
+ <_>
+ 6 10 8 10 -1.
+ <_>
+ 10 10 4 5 2.
+ <_>
+ 6 15 4 5 2.
+ <_>
+
+ <_>
+ 3 5 4 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 10 10 4 4 2.
+ <_>
+ 6 14 4 4 2.
+ <_>
+
+ <_>
+ 1 10 7 6 -1.
+ <_>
+ 1 12 7 2 3.
+ <_>
+
+ <_>
+ 4 14 13 3 -1.
+ <_>
+ 4 15 13 1 3.
+ <_>
+
+ <_>
+ 6 11 6 9 -1.
+ <_>
+ 8 11 2 9 3.
+ <_>
+
+ <_>
+ 7 5 9 7 -1.
+ <_>
+ 10 5 3 7 3.
+ <_>
+
+ <_>
+ 0 10 19 6 -1.
+ <_>
+ 0 13 19 3 2.
+ <_>
+
+ <_>
+ 4 1 12 10 -1.
+ <_>
+ 4 6 12 5 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 0 5 20 2 -1.
+ <_>
+ 0 6 20 1 2.
+ <_>
+
+ <_>
+ 2 0 17 6 -1.
+ <_>
+ 2 2 17 2 3.
+ <_>
+
+ <_>
+ 3 14 10 6 -1.
+ <_>
+ 3 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 6 0 9 11 -1.
+ <_>
+ 9 0 3 11 3.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 2 2 2 11 3.
+ <_>
+
+ <_>
+ 14 0 6 7 -1.
+ <_>
+ 16 0 2 7 3.
+ <_>
+
+ <_>
+ 0 8 9 12 -1.
+ <_>
+ 3 8 3 12 3.
+ <_>
+
+ <_>
+ 13 10 7 6 -1.
+ <_>
+ 13 12 7 2 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 14 0 6 7 -1.
+ <_>
+ 16 0 2 7 3.
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 2 0 2 7 3.
+ <_>
+
+ <_>
+ 8 0 9 15 -1.
+ <_>
+ 11 0 3 15 3.
+ <_>
+
+ <_>
+ 3 5 12 11 -1.
+ <_>
+ 7 5 4 11 3.
+ <_>
+
+ <_>
+ 6 15 13 3 -1.
+ <_>
+ 6 16 13 1 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 7 5 9 7 -1.
+ <_>
+ 10 5 3 7 3.
+ <_>
+
+ <_>
+ 7 6 3 14 -1.
+ <_>
+ 8 6 1 14 3.
+ <_>
+
+ <_>
+ 5 1 13 3 -1.
+ <_>
+ 5 2 13 1 3.
+ <_>
+
+ <_>
+ 8 1 3 13 -1.
+ <_>
+ 9 1 1 13 3.
+ <_>
+
+ <_>
+ 9 6 4 14 -1.
+ <_>
+ 11 6 2 7 2.
+ <_>
+ 9 13 2 7 2.
+ <_>
+
+ <_>
+ 6 9 8 10 -1.
+ <_>
+ 6 9 4 5 2.
+ <_>
+ 10 14 4 5 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 0 15 14 5 -1.
+ <_>
+ 7 15 7 5 2.
+ <_>
+
+ <_>
+ 12 12 8 5 -1.
+ <_>
+ 12 12 4 5 2.
+ <_>
+
+ <_>
+ 0 14 10 6 -1.
+ <_>
+ 0 16 10 2 3.
+ <_>
+
+ <_>
+ 4 16 14 4 -1.
+ <_>
+ 4 18 14 2 2.
+ <_>
+
+ <_>
+ 6 1 6 18 -1.
+ <_>
+ 8 1 2 18 3.
+ <_>
+
+ <_>
+ 6 14 14 2 -1.
+ <_>
+ 6 15 14 1 2.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 3 0 14 20 -1.
+ <_>
+ 10 0 7 20 2.
+ <_>
+
+ <_>
+ 8 10 4 7 -1.
+ <_>
+ 8 10 2 7 2.
+ <_>
+
+ <_>
+ 4 5 9 7 -1.
+ <_>
+ 7 5 3 7 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 5 3 6 13 -1.
+ <_>
+ 8 3 3 13 2.
+ <_>
+
+ <_>
+ 7 12 6 8 -1.
+ <_>
+ 7 12 3 8 2.
+ <_>
+
+ <_>
+ 4 9 6 5 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 11 4 4 10 -1.
+ <_>
+ 11 4 2 10 2.
+ <_>
+
+ <_>
+ 0 11 12 6 -1.
+ <_>
+ 4 11 4 6 3.
+ <_>
+
+ <_>
+ 11 4 4 10 -1.
+ <_>
+ 11 4 2 10 2.
+ <_>
+
+ <_>
+ 5 4 4 10 -1.
+ <_>
+ 7 4 2 10 2.
+ <_>
+
+ <_>
+ 6 14 14 2 -1.
+ <_>
+ 6 15 14 1 2.
+ <_>
+
+ <_>
+ 0 14 14 2 -1.
+ <_>
+ 0 15 14 1 2.
+ <_>
+
+ <_>
+ 15 2 5 12 -1.
+ <_>
+ 15 6 5 4 3.
+ <_>
+
+ <_>
+ 0 2 5 12 -1.
+ <_>
+ 0 6 5 4 3.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 16 12 4 7 2.
+ <_>
+
+ <_>
+ 0 14 12 6 -1.
+ <_>
+ 0 14 6 3 2.
+ <_>
+ 6 17 6 3 2.
+ <_>
+
+ <_>
+ 16 5 4 14 -1.
+ <_>
+ 16 12 4 7 2.
+ <_>
+
+ <_>
+ 0 5 4 14 -1.
+ <_>
+ 0 12 4 7 2.
+ <_>
+
+ <_>
+ 12 12 8 5 -1.
+ <_>
+ 12 12 4 5 2.
+ <_>
+
+ <_>
+ 0 12 8 5 -1.
+ <_>
+ 4 12 4 5 2.
+ <_>
+
+ <_>
+ 12 0 3 14 -1.
+ <_>
+ 13 0 1 14 3.
+ <_>
+
+ <_>
+ 5 12 5 8 -1.
+ <_>
+ 5 16 5 4 2.
+ <_>
+
+ <_>
+ 18 2 2 14 -1.
+ <_>
+ 18 9 2 7 2.
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 6 3 8 3 2.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 14 4 6 3 3.
+ <_>
+
+ <_>
+ 3 4 14 6 -1.
+ <_>
+ 3 4 7 3 2.
+ <_>
+ 10 7 7 3 2.
+ <_>
+
+ <_>
+ 10 5 9 6 -1.
+ <_>
+ 10 7 9 2 3.
+ <_>
+
+ <_>
+ 0 13 8 5 -1.
+ <_>
+ 4 13 4 5 2.
+ <_>
+
+ <_>
+ 12 0 6 18 -1.
+ <_>
+ 15 0 3 9 2.
+ <_>
+ 12 9 3 9 2.
+ <_>
+
+ <_>
+ 2 0 6 18 -1.
+ <_>
+ 2 0 3 9 2.
+ <_>
+ 5 9 3 9 2.
+ <_>
+
+ <_>
+ 2 0 16 14 -1.
+ <_>
+ 10 0 8 7 2.
+ <_>
+ 2 7 8 7 2.
+ <_>
+
+ <_>
+ 2 0 4 16 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+ 4 8 2 8 2.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 0 4 4 2.
+ <_>
+
+ <_>
+ 0 0 8 4 -1.
+ <_>
+ 4 0 4 4 2.
+ <_>
+
+ <_>
+ 6 12 14 5 -1.
+ <_>
+ 6 12 7 5 2.
+ <_>
+
+ <_>
+ 0 12 14 5 -1.
+ <_>
+ 7 12 7 5 2.
+ <_>
+
+ <_>
+ 8 1 12 5 -1.
+ <_>
+ 12 1 4 5 3.
+ <_>
+
+ <_>
+ 0 1 12 5 -1.
+ <_>
+ 4 1 4 5 3.
+ <_>
+
+ <_>
+ 3 10 14 4 -1.
+ <_>
+ 10 10 7 2 2.
+ <_>
+ 3 12 7 2 2.
+ <_>
+
+ <_>
+ 0 14 20 4 -1.
+ <_>
+ 0 14 10 2 2.
+ <_>
+ 10 16 10 2 2.
+ <_>
+
+ <_>
+ 10 9 9 5 -1.
+ <_>
+ 13 9 3 5 3.
+ <_>
+
+ <_>
+ 1 9 9 5 -1.
+ <_>
+ 4 9 3 5 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 6 16 8 4 -1.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 4 5 6 3 2.
+ <_>
+ 10 8 6 3 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 1 1 18 5 -1.
+ <_>
+ 7 1 6 5 3.
+ <_>
+
+ <_>
+ 9 2 10 10 -1.
+ <_>
+ 14 2 5 5 2.
+ <_>
+ 9 7 5 5 2.
+ <_>
+
+ <_>
+ 1 2 10 10 -1.
+ <_>
+ 1 2 5 5 2.
+ <_>
+ 6 7 5 5 2.
+ <_>
+
+ <_>
+ 8 3 12 6 -1.
+ <_>
+ 14 3 6 3 2.
+ <_>
+ 8 6 6 3 2.
+ <_>
+
+ <_>
+ 1 5 8 4 -1.
+ <_>
+ 5 5 4 4 2.
+ <_>
+
+ <_>
+ 0 3 20 12 -1.
+ <_>
+ 10 3 10 6 2.
+ <_>
+ 0 9 10 6 2.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 5 5 3 2.
+ <_>
+ 10 8 5 3 2.
+ <_>
+
+ <_>
+ 9 8 6 12 -1.
+ <_>
+ 12 8 3 6 2.
+ <_>
+ 9 14 3 6 2.
+ <_>
+
+ <_>
+ 0 8 18 4 -1.
+ <_>
+ 0 8 9 2 2.
+ <_>
+ 9 10 9 2 2.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 10 14 7 2 2.
+ <_>
+ 3 16 7 2 2.
+ <_>
+
+ <_>
+ 5 11 5 9 -1.
+ <_>
+ 5 14 5 3 3.
+ <_>
+
+ <_>
+ 6 16 8 4 -1.
+ <_>
+ 6 18 8 2 2.
+ <_>
+
+ <_>
+ 7 4 6 12 -1.
+ <_>
+ 7 10 6 6 2.
+ <_>
+
+ <_>
+ 9 7 7 12 -1.
+ <_>
+ 9 11 7 4 3.
+ <_>
+
+ <_>
+ 7 7 5 9 -1.
+ <_>
+ 7 10 5 3 3.
+ <_>
+
+ <_>
+ 4 13 12 5 -1.
+ <_>
+ 8 13 4 5 3.
+ <_>
+
+ <_>
+ 4 9 7 9 -1.
+ <_>
+ 4 12 7 3 3.
+ <_>
+
+ <_>
+ 2 1 18 4 -1.
+ <_>
+ 8 1 6 4 3.
+ <_>
+
+ <_>
+ 7 9 6 7 -1.
+ <_>
+ 9 9 2 7 3.
+ <_>
+
+ <_>
+ 0 13 20 4 -1.
+ <_>
+ 0 15 20 2 2.
+ <_>
+
+ <_>
+ 2 4 13 3 -1.
+ <_>
+ 2 5 13 1 3.
+ <_>
+
+ <_>
+ 9 7 7 12 -1.
+ <_>
+ 9 11 7 4 3.
+ <_>
+
+ <_>
+ 3 1 9 17 -1.
+ <_>
+ 6 1 3 17 3.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 6 9 4 8 -1.
+ <_>
+ 8 9 2 8 2.
+ <_>
+
+ <_>
+ 5 4 14 12 -1.
+ <_>
+ 12 4 7 6 2.
+ <_>
+ 5 10 7 6 2.
+ <_>
+
+ <_>
+ 0 16 18 2 -1.
+ <_>
+ 9 16 9 2 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 6 0 2 8 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 7 5 6 12 -1.
+ <_>
+ 7 5 3 6 2.
+ <_>
+ 10 11 3 6 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 6 10 14 3 -1.
+ <_>
+ 6 11 14 1 3.
+ <_>
+
+ <_>
+ 0 10 14 3 -1.
+ <_>
+ 0 11 14 1 3.
+ <_>
+
+ <_>
+ 4 4 14 3 -1.
+ <_>
+ 4 5 14 1 3.
+ <_>
+
+ <_>
+ 0 2 15 12 -1.
+ <_>
+ 5 2 5 12 3.
+ <_>
+
+ <_>
+ 14 5 6 12 -1.
+ <_>
+ 14 5 3 12 2.
+ <_>
+
+ <_>
+ 2 1 16 16 -1.
+ <_>
+ 2 9 16 8 2.
+ <_>
+
+ <_>
+ 7 16 13 3 -1.
+ <_>
+ 7 17 13 1 3.
+ <_>
+
+ <_>
+ 3 5 13 4 -1.
+ <_>
+ 3 7 13 2 2.
+ <_>
+
+ <_>
+ 9 9 7 4 -1.
+ <_>
+ 9 11 7 2 2.
+ <_>
+
+ <_>
+ 3 7 14 6 -1.
+ <_>
+ 3 9 14 2 3.
+ <_>
+
+ <_>
+ 9 9 7 4 -1.
+ <_>
+ 9 11 7 2 2.
+ <_>
+
+ <_>
+ 4 9 7 4 -1.
+ <_>
+ 4 11 7 2 2.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 1 10 18 1 3.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 14 5 6 12 -1.
+ <_>
+ 14 5 3 12 2.
+ <_>
+
+ <_>
+ 0 5 6 12 -1.
+ <_>
+ 3 5 3 12 2.
+ <_>
+
+ <_>
+ 11 8 3 10 -1.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 0 0 3 20 -1.
+ <_>
+ 1 0 1 20 3.
+ <_>
+
+ <_>
+ 2 0 18 11 -1.
+ <_>
+ 8 0 6 11 3.
+ <_>
+
+ <_>
+ 4 4 6 5 -1.
+ <_>
+ 7 4 3 5 2.
+ <_>
+
+ <_>
+ 6 3 14 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+ 6 5 7 2 2.
+ <_>
+
+ <_>
+ 4 4 9 6 -1.
+ <_>
+ 7 4 3 6 3.
+ <_>
+
+ <_>
+ 8 9 9 8 -1.
+ <_>
+ 11 9 3 8 3.
+ <_>
+
+ <_>
+ 3 9 9 8 -1.
+ <_>
+ 6 9 3 8 3.
+ <_>
+
+ <_>
+ 10 6 6 10 -1.
+ <_>
+ 12 6 2 10 3.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 6 9 9 9 -1.
+ <_>
+ 9 9 3 9 3.
+ <_>
+
+ <_>
+ 4 3 9 9 -1.
+ <_>
+ 7 3 3 9 3.
+ <_>
+
+ <_>
+ 2 2 18 9 -1.
+ <_>
+ 8 2 6 9 3.
+ <_>
+
+ <_>
+ 0 2 16 3 -1.
+ <_>
+ 0 3 16 1 3.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 10 10 5 6 2.
+ <_>
+
+ <_>
+ 0 0 18 9 -1.
+ <_>
+ 6 0 6 9 3.
+ <_>
+
+ <_>
+ 5 4 14 12 -1.
+ <_>
+ 12 4 7 6 2.
+ <_>
+ 5 10 7 6 2.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 6 1 6 4 3.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 1 10 6 10 -1.
+ <_>
+ 1 10 3 5 2.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 12 10 4 8 -1.
+ <_>
+ 12 14 4 4 2.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 4 14 6 3 2.
+ <_>
+ 10 17 6 3 2.
+ <_>
+
+ <_>
+ 12 10 4 8 -1.
+ <_>
+ 12 14 4 4 2.
+ <_>
+
+ <_>
+ 4 10 4 8 -1.
+ <_>
+ 4 14 4 4 2.
+ <_>
+
+ <_>
+ 4 11 14 4 -1.
+ <_>
+ 11 11 7 2 2.
+ <_>
+ 4 13 7 2 2.
+ <_>
+
+ <_>
+ 2 11 14 4 -1.
+ <_>
+ 2 11 7 2 2.
+ <_>
+ 9 13 7 2 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 12 6 5 3 2.
+ <_>
+ 7 9 5 3 2.
+ <_>
+
+ <_>
+ 3 6 10 6 -1.
+ <_>
+ 3 6 5 3 2.
+ <_>
+ 8 9 5 3 2.
+ <_>
+
+ <_>
+ 9 0 6 19 -1.
+ <_>
+ 11 0 2 19 3.
+ <_>
+
+ <_>
+ 5 0 6 19 -1.
+ <_>
+ 7 0 2 19 3.
+ <_>
+
+ <_>
+ 4 18 14 2 -1.
+ <_>
+ 4 18 7 2 2.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 13 1 7 9 -1.
+ <_>
+ 13 4 7 3 3.
+ <_>
+
+ <_>
+ 0 1 7 9 -1.
+ <_>
+ 0 4 7 3 3.
+ <_>
+
+ <_>
+ 9 11 11 6 -1.
+ <_>
+ 9 13 11 2 3.
+ <_>
+
+ <_>
+ 0 11 11 6 -1.
+ <_>
+ 0 13 11 2 3.
+ <_>
+
+ <_>
+ 2 5 16 10 -1.
+ <_>
+ 10 5 8 5 2.
+ <_>
+ 2 10 8 5 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 5 8 2 2.
+ <_>
+
+ <_>
+ 1 4 14 12 -1.
+ <_>
+ 1 4 7 6 2.
+ <_>
+ 8 10 7 6 2.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 2 17 13 3 -1.
+ <_>
+ 2 18 13 1 3.
+ <_>
+
+ <_>
+ 1 11 18 6 -1.
+ <_>
+ 1 13 18 2 3.
+ <_>
+
+ <_>
+ 6 2 7 18 -1.
+ <_>
+ 6 11 7 9 2.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 5 8 2 2.
+ <_>
+
+ <_>
+ 1 1 16 6 -1.
+ <_>
+ 1 1 8 3 2.
+ <_>
+ 9 4 8 3 2.
+ <_>
+
+ <_>
+ 16 1 4 14 -1.
+ <_>
+ 18 1 2 7 2.
+ <_>
+ 16 8 2 7 2.
+ <_>
+
+ <_>
+ 0 1 4 14 -1.
+ <_>
+ 0 1 2 7 2.
+ <_>
+ 2 8 2 7 2.
+ <_>
+
+ <_>
+ 6 7 14 4 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 4 4 12 2 3.
+ <_>
+
+ <_>
+ 0 7 14 4 -1.
+ <_>
+ 0 7 7 2 2.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 8 6 5 9 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 2 7 13 2 -1.
+ <_>
+ 2 8 13 1 2.
+ <_>
+
+ <_>
+ 9 12 10 6 -1.
+ <_>
+ 14 12 5 3 2.
+ <_>
+ 9 15 5 3 2.
+ <_>
+
+ <_>
+ 5 6 6 10 -1.
+ <_>
+ 7 6 2 10 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 2 2 15 5 -1.
+ <_>
+ 7 2 5 5 3.
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 4 13 1 2.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 14 1 3 17 -1.
+ <_>
+ 15 1 1 17 3.
+ <_>
+
+ <_>
+ 3 1 3 17 -1.
+ <_>
+ 4 1 1 17 3.
+ <_>
+
+ <_>
+ 12 1 7 6 -1.
+ <_>
+ 12 3 7 2 3.
+ <_>
+
+ <_>
+ 3 2 3 17 -1.
+ <_>
+ 4 2 1 17 3.
+ <_>
+
+ <_>
+ 14 0 6 18 -1.
+ <_>
+ 16 0 2 18 3.
+ <_>
+
+ <_>
+ 3 5 7 6 -1.
+ <_>
+ 3 7 7 2 3.
+ <_>
+
+ <_>
+ 8 4 6 12 -1.
+ <_>
+ 11 4 3 6 2.
+ <_>
+ 8 10 3 6 2.
+ <_>
+
+ <_>
+ 4 4 12 10 -1.
+ <_>
+ 4 4 6 5 2.
+ <_>
+ 10 9 6 5 2.
+ <_>
+
+ <_>
+ 14 0 6 18 -1.
+ <_>
+ 16 0 2 18 3.
+ <_>
+
+ <_>
+ 0 0 6 18 -1.
+ <_>
+ 2 0 2 18 3.
+ <_>
+
+ <_>
+ 9 0 3 18 -1.
+ <_>
+ 9 9 3 9 2.
+ <_>
+
+ <_>
+ 3 2 12 6 -1.
+ <_>
+ 3 5 12 3 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 17 3 3 12 -1.
+ <_>
+ 17 9 3 6 2.
+ <_>
+
+ <_>
+ 0 3 3 12 -1.
+ <_>
+ 0 9 3 6 2.
+ <_>
+
+ <_>
+ 14 10 5 9 -1.
+ <_>
+ 14 13 5 3 3.
+ <_>
+
+ <_>
+ 1 0 18 8 -1.
+ <_>
+ 1 4 18 4 2.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 5 8 2 2.
+ <_>
+
+ <_>
+ 1 3 8 4 -1.
+ <_>
+ 1 5 8 2 2.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 4 3 12 3 -1.
+ <_>
+ 10 3 6 3 2.
+ <_>
+
+ <_>
+ 5 7 10 5 -1.
+ <_>
+ 5 7 5 5 2.
+ <_>
+
+ <_>
+ 2 6 16 4 -1.
+ <_>
+ 2 6 8 2 2.
+ <_>
+ 10 8 8 2 2.
+ <_>
+
+ <_>
+ 15 0 5 9 -1.
+ <_>
+ 15 3 5 3 3.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 11 0 3 12 -1.
+ <_>
+ 11 6 3 6 2.
+ <_>
+
+ <_>
+ 0 1 6 6 -1.
+ <_>
+ 0 4 6 3 2.
+ <_>
+
+ <_>
+ 7 1 7 18 -1.
+ <_>
+ 7 10 7 9 2.
+ <_>
+
+ <_>
+ 0 2 18 6 -1.
+ <_>
+ 0 2 9 3 2.
+ <_>
+ 9 5 9 3 2.
+ <_>
+
+ <_>
+ 5 8 13 2 -1.
+ <_>
+ 5 9 13 1 2.
+ <_>
+
+ <_>
+ 6 8 3 10 -1.
+ <_>
+ 6 13 3 5 2.
+ <_>
+
+ <_>
+ 6 11 13 2 -1.
+ <_>
+ 6 12 13 1 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 1 18 18 1 3.
+ <_>
+
+ <_>
+ 1 3 18 2 -1.
+ <_>
+ 1 3 9 2 2.
+ <_>
+
+ <_>
+ 3 17 10 3 -1.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 1 15 18 4 -1.
+ <_>
+ 7 15 6 4 3.
+ <_>
+
+ <_>
+ 5 5 6 9 -1.
+ <_>
+ 8 5 3 9 2.
+ <_>
+
+ <_>
+ 4 6 12 11 -1.
+ <_>
+ 8 6 4 11 3.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 0 4 5 2.
+ <_>
+ 4 5 4 5 2.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 8 0 6 3 3.
+ <_>
+
+ <_>
+ 5 9 9 9 -1.
+ <_>
+ 8 9 3 9 3.
+ <_>
+
+ <_>
+ 11 3 2 17 -1.
+ <_>
+ 11 3 1 17 2.
+ <_>
+
+ <_>
+ 7 0 2 20 -1.
+ <_>
+ 8 0 1 20 2.
+ <_>
+
+ <_>
+ 10 1 8 18 -1.
+ <_>
+ 10 1 4 18 2.
+ <_>
+
+ <_>
+ 4 5 8 8 -1.
+ <_>
+ 4 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 6 1 12 14 -1.
+ <_>
+ 12 1 6 7 2.
+ <_>
+ 6 8 6 7 2.
+ <_>
+
+ <_>
+ 2 1 8 18 -1.
+ <_>
+ 6 1 4 18 2.
+ <_>
+
+ <_>
+ 1 5 18 7 -1.
+ <_>
+ 7 5 6 7 3.
+ <_>
+
+ <_>
+ 3 4 6 16 -1.
+ <_>
+ 3 4 3 8 2.
+ <_>
+ 6 12 3 8 2.
+ <_>
+
+ <_>
+ 12 3 4 14 -1.
+ <_>
+ 14 3 2 7 2.
+ <_>
+ 12 10 2 7 2.
+ <_>
+
+ <_>
+ 4 3 4 14 -1.
+ <_>
+ 4 3 2 7 2.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 6 12 6 6 -1.
+ <_>
+ 9 12 3 6 2.
+ <_>
+
+ <_>
+ 4 1 14 3 -1.
+ <_>
+ 4 2 14 1 3.
+ <_>
+
+ <_>
+ 3 5 10 6 -1.
+ <_>
+ 3 5 5 3 2.
+ <_>
+ 8 8 5 3 2.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 0 4 20 8 -1.
+ <_>
+ 0 4 10 4 2.
+ <_>
+ 10 8 10 4 2.
+ <_>
+
+ <_>
+ 12 5 8 8 -1.
+ <_>
+ 16 5 4 4 2.
+ <_>
+ 12 9 4 4 2.
+ <_>
+
+ <_>
+ 1 1 15 6 -1.
+ <_>
+ 1 3 15 2 3.
+ <_>
+
+ <_>
+ 3 6 16 3 -1.
+ <_>
+ 3 6 8 3 2.
+ <_>
+
+ <_>
+ 7 3 6 5 -1.
+ <_>
+ 10 3 3 5 2.
+ <_>
+
+ <_>
+ 7 4 9 5 -1.
+ <_>
+ 10 4 3 5 3.
+ <_>
+
+ <_>
+ 1 6 16 3 -1.
+ <_>
+ 9 6 8 3 2.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 0 1 2 14 -1.
+ <_>
+ 1 1 1 14 2.
+ <_>
+
+ <_>
+ 12 5 3 13 -1.
+ <_>
+ 13 5 1 13 3.
+ <_>
+
+ <_>
+ 5 5 3 13 -1.
+ <_>
+ 6 5 1 13 3.
+ <_>
+
+ <_>
+ 4 6 16 8 -1.
+ <_>
+ 4 10 16 4 2.
+ <_>
+
+ <_>
+ 3 7 7 6 -1.
+ <_>
+ 3 10 7 3 2.
+ <_>
+
+ <_>
+ 0 3 20 10 -1.
+ <_>
+ 0 8 20 5 2.
+ <_>
+
+ <_>
+ 0 3 7 6 -1.
+ <_>
+ 0 5 7 2 3.
+ <_>
+
+ <_>
+ 11 1 8 4 -1.
+ <_>
+ 11 3 8 2 2.
+ <_>
+
+ <_>
+ 1 1 8 4 -1.
+ <_>
+ 1 3 8 2 2.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 5 0 10 6 -1.
+ <_>
+ 5 2 10 2 3.
+ <_>
+
+ <_>
+ 6 3 8 10 -1.
+ <_>
+ 6 8 8 5 2.
+ <_>
+
+ <_>
+ 7 2 5 12 -1.
+ <_>
+ 7 8 5 6 2.
+ <_>
+
+ <_>
+ 7 7 6 12 -1.
+ <_>
+ 9 7 2 12 3.
+ <_>
+
+ <_>
+ 7 3 6 8 -1.
+ <_>
+ 9 3 2 8 3.
+ <_>
+
+ <_>
+ 10 0 4 16 -1.
+ <_>
+ 10 8 4 8 2.
+ <_>
+
+ <_>
+ 0 6 16 8 -1.
+ <_>
+ 0 10 16 4 2.
+ <_>
+
+ <_>
+ 3 8 16 4 -1.
+ <_>
+ 3 10 16 2 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 10 8 9 4 -1.
+ <_>
+ 10 10 9 2 2.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 7 10 6 5 2.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 10 4 4 3.
+ <_>
+
+ <_>
+ 0 7 13 9 -1.
+ <_>
+ 0 10 13 3 3.
+ <_>
+
+ <_>
+ 6 11 8 8 -1.
+ <_>
+ 10 11 4 4 2.
+ <_>
+ 6 15 4 4 2.
+ <_>
+
+ <_>
+ 0 15 10 4 -1.
+ <_>
+ 5 15 5 4 2.
+ <_>
+
+ <_>
+ 4 18 16 2 -1.
+ <_>
+ 4 18 8 2 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 14 8 4 2.
+ <_>
+
+ <_>
+ 8 13 7 6 -1.
+ <_>
+ 8 15 7 2 3.
+ <_>
+
+ <_>
+ 7 7 5 8 -1.
+ <_>
+ 7 11 5 4 2.
+ <_>
+
+ <_>
+ 6 7 10 12 -1.
+ <_>
+ 6 11 10 4 3.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 14 11 4 7 -1.
+ <_>
+ 14 11 2 7 2.
+ <_>
+
+ <_>
+ 4 6 6 10 -1.
+ <_>
+ 6 6 2 10 3.
+ <_>
+
+ <_>
+ 13 4 2 16 -1.
+ <_>
+ 13 4 1 16 2.
+ <_>
+
+ <_>
+ 5 4 2 16 -1.
+ <_>
+ 6 4 1 16 2.
+ <_>
+
+ <_>
+ 8 3 4 16 -1.
+ <_>
+ 10 3 2 8 2.
+ <_>
+ 8 11 2 8 2.
+ <_>
+
+ <_>
+ 8 0 3 18 -1.
+ <_>
+ 8 9 3 9 2.
+ <_>
+
+ <_>
+ 4 4 13 2 -1.
+ <_>
+ 4 5 13 1 2.
+ <_>
+
+ <_>
+ 0 2 14 2 -1.
+ <_>
+ 0 3 14 1 2.
+ <_>
+
+ <_>
+ 14 11 4 7 -1.
+ <_>
+ 14 11 2 7 2.
+ <_>
+
+ <_>
+ 0 2 13 2 -1.
+ <_>
+ 0 3 13 1 2.
+ <_>
+
+ <_>
+ 14 11 4 7 -1.
+ <_>
+ 14 11 2 7 2.
+ <_>
+
+ <_>
+ 2 11 4 7 -1.
+ <_>
+ 4 11 2 7 2.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 2 10 5 6 -1.
+ <_>
+ 2 13 5 3 2.
+ <_>
+
+ <_>
+ 14 10 5 9 -1.
+ <_>
+ 14 13 5 3 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 5 12 13 3 -1.
+ <_>
+ 5 13 13 1 3.
+ <_>
+
+ <_>
+ 0 13 17 6 -1.
+ <_>
+ 0 15 17 2 3.
+ <_>
+
+ <_>
+ 5 15 13 3 -1.
+ <_>
+ 5 16 13 1 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 9 4 2 14 -1.
+ <_>
+ 9 11 2 7 2.
+ <_>
+
+ <_>
+ 1 15 13 3 -1.
+ <_>
+ 1 16 13 1 3.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 4 5 4 14 -1.
+ <_>
+ 4 5 2 7 2.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 2 8 8 8 -1.
+ <_>
+ 2 8 4 4 2.
+ <_>
+ 6 12 4 4 2.
+ <_>
+
+ <_>
+ 13 6 6 9 -1.
+ <_>
+ 13 9 6 3 3.
+ <_>
+
+ <_>
+ 4 0 5 9 -1.
+ <_>
+ 4 3 5 3 3.
+ <_>
+
+ <_>
+ 13 4 3 10 -1.
+ <_>
+ 13 9 3 5 2.
+ <_>
+
+ <_>
+ 3 5 4 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+
+ <_>
+ 10 10 8 6 -1.
+ <_>
+ 10 12 8 2 3.
+ <_>
+
+ <_>
+ 1 17 13 3 -1.
+ <_>
+ 1 18 13 1 3.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 7 5 6 11 -1.
+ <_>
+ 9 5 2 11 3.
+ <_>
+
+ <_>
+ 6 1 9 6 -1.
+ <_>
+ 9 1 3 6 3.
+ <_>
+
+ <_>
+ 1 11 13 3 -1.
+ <_>
+ 1 12 13 1 3.
+ <_>
+
+ <_>
+ 4 0 13 3 -1.
+ <_>
+ 4 1 13 1 3.
+ <_>
+
+ <_>
+ 1 2 14 12 -1.
+ <_>
+ 1 2 7 6 2.
+ <_>
+ 8 8 7 6 2.
+ <_>
+
+ <_>
+ 13 4 4 14 -1.
+ <_>
+ 15 4 2 7 2.
+ <_>
+ 13 11 2 7 2.
+ <_>
+
+ <_>
+ 3 4 4 14 -1.
+ <_>
+ 3 4 2 7 2.
+ <_>
+ 5 11 2 7 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 1 15 7 4 -1.
+ <_>
+ 1 17 7 2 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 1 2 18 2 -1.
+ <_>
+ 1 3 18 1 2.
+ <_>
+
+ <_>
+ 16 0 4 7 -1.
+ <_>
+ 16 0 2 7 2.
+ <_>
+
+ <_>
+ 3 2 14 3 -1.
+ <_>
+ 3 3 14 1 3.
+ <_>
+
+ <_>
+ 11 13 6 7 -1.
+ <_>
+ 13 13 2 7 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 1 7 19 12 -1.
+ <_>
+ 1 11 19 4 3.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 7 9 3 5 2.
+ <_>
+ 10 14 3 5 2.
+ <_>
+
+ <_>
+ 4 6 13 3 -1.
+ <_>
+ 4 7 13 1 3.
+ <_>
+
+ <_>
+ 3 11 7 4 -1.
+ <_>
+ 3 13 7 2 2.
+ <_>
+
+ <_>
+ 16 0 4 15 -1.
+ <_>
+ 16 0 2 15 2.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 7 0 8 10 -1.
+ <_>
+ 11 0 4 5 2.
+ <_>
+ 7 5 4 5 2.
+ <_>
+
+ <_>
+ 0 2 20 2 -1.
+ <_>
+ 10 2 10 2 2.
+ <_>
+
+ <_>
+ 7 6 10 3 -1.
+ <_>
+ 7 6 5 3 2.
+ <_>
+
+ <_>
+ 3 6 10 3 -1.
+ <_>
+ 8 6 5 3 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 0 4 18 16 -1.
+ <_>
+ 6 4 6 16 3.
+ <_>
+
+ <_>
+ 15 0 4 19 -1.
+ <_>
+ 15 0 2 19 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 9 0 9 5 -1.
+ <_>
+ 12 0 3 5 3.
+ <_>
+
+ <_>
+ 5 0 8 10 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 0 0 14 3 -1.
+ <_>
+ 0 1 14 1 3.
+ <_>
+
+ <_>
+ 16 0 4 12 -1.
+ <_>
+ 16 0 2 12 2.
+ <_>
+
+ <_>
+ 1 0 4 19 -1.
+ <_>
+ 3 0 2 19 2.
+ <_>
+
+ <_>
+ 14 10 6 7 -1.
+ <_>
+ 14 10 3 7 2.
+ <_>
+
+ <_>
+ 1 6 9 14 -1.
+ <_>
+ 4 6 3 14 3.
+ <_>
+
+ <_>
+ 9 2 6 9 -1.
+ <_>
+ 9 5 6 3 3.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 4 8 12 6 -1.
+ <_>
+ 8 8 4 6 3.
+ <_>
+
+ <_>
+ 2 5 12 9 -1.
+ <_>
+ 6 5 4 9 3.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 4 5 9 5 -1.
+ <_>
+ 7 5 3 5 3.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 12 3 2 7 3.
+ <_>
+
+ <_>
+ 6 13 7 6 -1.
+ <_>
+ 6 15 7 2 3.
+ <_>
+
+ <_>
+ 11 6 4 14 -1.
+ <_>
+ 13 6 2 7 2.
+ <_>
+ 11 13 2 7 2.
+ <_>
+
+ <_>
+ 5 6 4 14 -1.
+ <_>
+ 5 6 2 7 2.
+ <_>
+ 7 13 2 7 2.
+ <_>
+
+ <_>
+ 13 13 7 4 -1.
+ <_>
+ 13 15 7 2 2.
+ <_>
+
+ <_>
+ 1 5 4 14 -1.
+ <_>
+ 1 5 2 7 2.
+ <_>
+ 3 12 2 7 2.
+ <_>
+
+ <_>
+ 1 13 18 4 -1.
+ <_>
+ 10 13 9 2 2.
+ <_>
+ 1 15 9 2 2.
+ <_>
+
+ <_>
+ 0 1 18 12 -1.
+ <_>
+ 0 7 18 6 2.
+ <_>
+
+ <_>
+ 4 1 14 18 -1.
+ <_>
+ 4 10 14 9 2.
+ <_>
+
+ <_>
+ 4 0 6 10 -1.
+ <_>
+ 6 0 2 10 3.
+ <_>
+
+ <_>
+ 16 10 4 9 -1.
+ <_>
+ 16 10 2 9 2.
+ <_>
+
+ <_>
+ 0 10 4 9 -1.
+ <_>
+ 2 10 2 9 2.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 12 3 2 7 3.
+ <_>
+
+ <_>
+ 4 10 4 7 -1.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 4 9 15 3 -1.
+ <_>
+ 9 9 5 3 3.
+ <_>
+
+ <_>
+ 1 9 15 3 -1.
+ <_>
+ 6 9 5 3 3.
+ <_>
+
+ <_>
+ 16 0 4 12 -1.
+ <_>
+ 16 0 2 12 2.
+ <_>
+
+ <_>
+ 7 8 4 12 -1.
+ <_>
+ 7 12 4 4 3.
+ <_>
+
+ <_>
+ 16 0 4 12 -1.
+ <_>
+ 16 0 2 12 2.
+ <_>
+
+ <_>
+ 0 0 4 12 -1.
+ <_>
+ 2 0 2 12 2.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 8 1 3 13 -1.
+ <_>
+ 9 1 1 13 3.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 0 6 6 7 -1.
+ <_>
+ 2 6 2 7 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 1 9 18 4 -1.
+ <_>
+ 10 9 9 2 2.
+ <_>
+ 1 11 9 2 2.
+ <_>
+
+ <_>
+ 3 9 13 2 -1.
+ <_>
+ 3 10 13 1 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 6 12 8 8 -1.
+ <_>
+ 6 12 4 4 2.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 3 14 7 6 -1.
+ <_>
+ 3 16 7 2 3.
+ <_>
+
+ <_>
+ 5 10 15 6 -1.
+ <_>
+ 10 10 5 6 3.
+ <_>
+
+ <_>
+ 8 2 4 7 -1.
+ <_>
+ 10 2 2 7 2.
+ <_>
+
+ <_>
+ 7 1 9 7 -1.
+ <_>
+ 10 1 3 7 3.
+ <_>
+
+ <_>
+ 1 14 9 6 -1.
+ <_>
+ 1 16 9 2 3.
+ <_>
+
+ <_>
+ 7 0 8 6 -1.
+ <_>
+ 7 2 8 2 3.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 0 4 5 2.
+ <_>
+ 4 5 4 5 2.
+ <_>
+
+ <_>
+ 11 8 6 7 -1.
+ <_>
+ 13 8 2 7 3.
+ <_>
+
+ <_>
+ 6 0 2 13 -1.
+ <_>
+ 7 0 1 13 2.
+ <_>
+
+ <_>
+ 10 10 6 8 -1.
+ <_>
+ 10 10 3 8 2.
+ <_>
+
+ <_>
+ 2 9 8 9 -1.
+ <_>
+ 2 12 8 3 3.
+ <_>
+
+ <_>
+ 14 4 4 14 -1.
+ <_>
+ 16 4 2 7 2.
+ <_>
+ 14 11 2 7 2.
+ <_>
+
+ <_>
+ 4 9 7 8 -1.
+ <_>
+ 4 13 7 4 2.
+ <_>
+
+ <_>
+ 7 1 6 8 -1.
+ <_>
+ 7 1 3 8 2.
+ <_>
+
+ <_>
+ 1 11 7 6 -1.
+ <_>
+ 1 13 7 2 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 0 10 15 6 -1.
+ <_>
+ 5 10 5 6 3.
+ <_>
+
+ <_>
+ 9 10 6 5 -1.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 5 10 6 5 -1.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 7 6 7 4 -1.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 5 2 5 9 -1.
+ <_>
+ 5 5 5 3 3.
+ <_>
+
+ <_>
+ 7 12 13 3 -1.
+ <_>
+ 7 13 13 1 3.
+ <_>
+
+ <_>
+ 2 12 16 4 -1.
+ <_>
+ 2 14 16 2 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 0 20 4 -1.
+ <_>
+ 0 0 10 2 2.
+ <_>
+ 10 2 10 2 2.
+ <_>
+
+ <_>
+ 6 14 13 2 -1.
+ <_>
+ 6 15 13 1 2.
+ <_>
+
+ <_>
+ 1 10 13 3 -1.
+ <_>
+ 1 11 13 1 3.
+ <_>
+
+ <_>
+ 12 0 6 10 -1.
+ <_>
+ 15 0 3 5 2.
+ <_>
+ 12 5 3 5 2.
+ <_>
+
+ <_>
+ 3 16 13 2 -1.
+ <_>
+ 3 17 13 1 2.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 1 16 13 3 -1.
+ <_>
+ 1 17 13 1 3.
+ <_>
+
+ <_>
+ 15 1 5 9 -1.
+ <_>
+ 15 4 5 3 3.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 0 1 9 2 2.
+ <_>
+ 9 3 9 2 2.
+ <_>
+
+ <_>
+ 5 0 10 4 -1.
+ <_>
+ 5 2 10 2 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 4 2 12 10 -1.
+ <_>
+ 4 2 6 10 2.
+ <_>
+
+ <_>
+ 5 10 6 6 -1.
+ <_>
+ 8 10 3 6 2.
+ <_>
+
+ <_>
+ 5 2 12 6 -1.
+ <_>
+ 5 4 12 2 3.
+ <_>
+
+ <_>
+ 8 0 3 12 -1.
+ <_>
+ 8 6 3 6 2.
+ <_>
+
+ <_>
+ 5 0 14 8 -1.
+ <_>
+ 5 4 14 4 2.
+ <_>
+
+ <_>
+ 2 4 4 14 -1.
+ <_>
+ 2 4 2 7 2.
+ <_>
+ 4 11 2 7 2.
+ <_>
+
+ <_>
+ 10 9 10 6 -1.
+ <_>
+ 15 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 5 12 9 5 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 4 14 12 6 -1.
+ <_>
+ 8 14 4 6 3.
+ <_>
+
+ <_>
+ 2 5 12 14 -1.
+ <_>
+ 2 5 6 7 2.
+ <_>
+ 8 12 6 7 2.
+ <_>
+
+ <_>
+ 3 10 14 4 -1.
+ <_>
+ 10 10 7 2 2.
+ <_>
+ 3 12 7 2 2.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 8 2 4 4 3.
+ <_>
+
+ <_>
+ 12 0 4 14 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 4 0 4 14 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+ 6 7 2 7 2.
+ <_>
+
+ <_>
+ 12 9 6 11 -1.
+ <_>
+ 14 9 2 11 3.
+ <_>
+
+ <_>
+ 0 4 3 14 -1.
+ <_>
+ 1 4 1 14 3.
+ <_>
+
+ <_>
+ 15 1 3 13 -1.
+ <_>
+ 16 1 1 13 3.
+ <_>
+
+ <_>
+ 2 1 3 13 -1.
+ <_>
+ 3 1 1 13 3.
+ <_>
+
+ <_>
+ 8 10 10 10 -1.
+ <_>
+ 13 10 5 5 2.
+ <_>
+ 8 15 5 5 2.
+ <_>
+
+ <_>
+ 6 0 2 20 -1.
+ <_>
+ 7 0 1 20 2.
+ <_>
+
+ <_>
+ 5 14 14 6 -1.
+ <_>
+ 12 14 7 3 2.
+ <_>
+ 5 17 7 3 2.
+ <_>
+
+ <_>
+ 1 4 3 13 -1.
+ <_>
+ 2 4 1 13 3.
+ <_>
+
+ <_>
+ 18 6 2 14 -1.
+ <_>
+ 18 6 1 14 2.
+ <_>
+
+ <_>
+ 0 6 2 14 -1.
+ <_>
+ 1 6 1 14 2.
+ <_>
+
+ <_>
+ 10 2 9 5 -1.
+ <_>
+ 13 2 3 5 3.
+ <_>
+
+ <_>
+ 2 0 6 7 -1.
+ <_>
+ 4 0 2 7 3.
+ <_>
+
+ <_>
+ 4 4 14 16 -1.
+ <_>
+ 11 4 7 8 2.
+ <_>
+ 4 12 7 8 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 12 8 7 6 -1.
+ <_>
+ 12 10 7 2 3.
+ <_>
+
+ <_>
+ 0 17 20 3 -1.
+ <_>
+ 10 17 10 3 2.
+ <_>
+
+ <_>
+ 6 10 10 4 -1.
+ <_>
+ 6 10 5 4 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 12 8 7 6 -1.
+ <_>
+ 12 10 7 2 3.
+ <_>
+
+ <_>
+ 7 11 6 8 -1.
+ <_>
+ 9 11 2 8 3.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 6 2 4 15 -1.
+ <_>
+ 6 7 4 5 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 3 6 14 9 -1.
+ <_>
+ 3 9 14 3 3.
+ <_>
+
+ <_>
+ 4 5 12 8 -1.
+ <_>
+ 4 9 12 4 2.
+ <_>
+
+ <_>
+ 2 4 14 16 -1.
+ <_>
+ 2 4 7 8 2.
+ <_>
+ 9 12 7 8 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 1 17 12 3 -1.
+ <_>
+ 7 17 6 3 2.
+ <_>
+
+ <_>
+ 1 7 19 3 -1.
+ <_>
+ 1 8 19 1 3.
+ <_>
+
+ <_>
+ 4 0 12 10 -1.
+ <_>
+ 10 0 6 10 2.
+ <_>
+
+ <_>
+ 6 11 12 4 -1.
+ <_>
+ 6 11 6 4 2.
+ <_>
+
+ <_>
+ 4 10 6 5 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+
+ <_>
+ 18 0 2 18 -1.
+ <_>
+ 18 0 1 18 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 3 13 14 3 -1.
+ <_>
+ 3 14 14 1 3.
+ <_>
+
+ <_>
+ 12 8 7 6 -1.
+ <_>
+ 12 10 7 2 3.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 12 8 7 6 -1.
+ <_>
+ 12 10 7 2 3.
+ <_>
+
+ <_>
+ 1 8 7 6 -1.
+ <_>
+ 1 10 7 2 3.
+ <_>
+
+ <_>
+ 5 7 12 12 -1.
+ <_>
+ 5 11 12 4 3.
+ <_>
+
+ <_>
+ 4 5 10 10 -1.
+ <_>
+ 4 5 5 5 2.
+ <_>
+ 9 10 5 5 2.
+ <_>
+
+ <_>
+ 12 13 8 7 -1.
+ <_>
+ 12 13 4 7 2.
+ <_>
+
+ <_>
+ 4 0 9 6 -1.
+ <_>
+ 4 3 9 3 2.
+ <_>
+
+ <_>
+ 4 3 13 2 -1.
+ <_>
+ 4 4 13 1 2.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 1 0 1 18 2.
+ <_>
+
+ <_>
+ 0 13 20 2 -1.
+ <_>
+ 0 14 20 1 2.
+ <_>
+
+ <_>
+ 4 10 10 4 -1.
+ <_>
+ 9 10 5 4 2.
+ <_>
+
+ <_>
+ 8 4 12 16 -1.
+ <_>
+ 8 4 6 16 2.
+ <_>
+
+ <_>
+ 0 4 12 16 -1.
+ <_>
+ 6 4 6 16 2.
+ <_>
+
+ <_>
+ 12 5 6 9 -1.
+ <_>
+ 12 5 3 9 2.
+ <_>
+
+ <_>
+ 0 13 8 7 -1.
+ <_>
+ 4 13 4 7 2.
+ <_>
+
+ <_>
+ 12 0 3 16 -1.
+ <_>
+ 13 0 1 16 3.
+ <_>
+
+ <_>
+ 0 7 18 12 -1.
+ <_>
+ 6 7 6 12 3.
+ <_>
+
+ <_>
+ 4 9 12 4 -1.
+ <_>
+ 8 9 4 4 3.
+ <_>
+
+ <_>
+ 0 7 16 4 -1.
+ <_>
+ 0 7 8 2 2.
+ <_>
+ 8 9 8 2 2.
+ <_>
+
+ <_>
+ 7 4 9 5 -1.
+ <_>
+ 10 4 3 5 3.
+ <_>
+
+ <_>
+ 5 0 3 16 -1.
+ <_>
+ 6 0 1 16 3.
+ <_>
+
+ <_>
+ 6 11 13 2 -1.
+ <_>
+ 6 12 13 1 2.
+ <_>
+
+ <_>
+ 1 11 13 2 -1.
+ <_>
+ 1 12 13 1 2.
+ <_>
+
+ <_>
+ 8 6 5 9 -1.
+ <_>
+ 8 9 5 3 3.
+ <_>
+
+ <_>
+ 6 4 4 8 -1.
+ <_>
+ 8 4 2 8 2.
+ <_>
+
+ <_>
+ 14 3 4 8 -1.
+ <_>
+ 14 3 2 8 2.
+ <_>
+
+ <_>
+ 2 3 4 8 -1.
+ <_>
+ 4 3 2 8 2.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 12 3 2 7 3.
+ <_>
+
+ <_>
+ 4 6 8 8 -1.
+ <_>
+ 4 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 10 9 6 7 -1.
+ <_>
+ 10 9 3 7 2.
+ <_>
+
+ <_>
+ 4 9 6 7 -1.
+ <_>
+ 7 9 3 7 2.
+ <_>
+
+ <_>
+ 4 10 12 5 -1.
+ <_>
+ 8 10 4 5 3.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 6 3 7 2 3.
+ <_>
+
+ <_>
+ 4 0 13 3 -1.
+ <_>
+ 4 1 13 1 3.
+ <_>
+
+ <_>
+ 4 3 4 14 -1.
+ <_>
+ 4 3 2 7 2.
+ <_>
+ 6 10 2 7 2.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 2 8 16 2 -1.
+ <_>
+ 10 8 8 2 2.
+ <_>
+
+ <_>
+ 11 6 8 14 -1.
+ <_>
+ 15 6 4 7 2.
+ <_>
+ 11 13 4 7 2.
+ <_>
+
+ <_>
+ 1 0 6 19 -1.
+ <_>
+ 4 0 3 19 2.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 12 5 6 10 -1.
+ <_>
+ 15 5 3 5 2.
+ <_>
+ 12 10 3 5 2.
+ <_>
+
+ <_>
+ 2 5 6 10 -1.
+ <_>
+ 2 5 3 5 2.
+ <_>
+ 5 10 3 5 2.
+ <_>
+
+ <_>
+ 7 0 9 4 -1.
+ <_>
+ 7 2 9 2 2.
+ <_>
+
+ <_>
+ 0 11 18 2 -1.
+ <_>
+ 9 11 9 2 2.
+ <_>
+
+ <_>
+ 6 6 8 9 -1.
+ <_>
+ 6 6 4 9 2.
+ <_>
+
+ <_>
+ 4 4 9 5 -1.
+ <_>
+ 7 4 3 5 3.
+ <_>
+
+ <_>
+ 10 2 6 7 -1.
+ <_>
+ 10 2 3 7 2.
+ <_>
+
+ <_>
+ 5 2 9 5 -1.
+ <_>
+ 8 2 3 5 3.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 4 1 14 4 -1.
+ <_>
+ 11 1 7 2 2.
+ <_>
+ 4 3 7 2 2.
+ <_>
+
+ <_>
+ 9 1 2 13 -1.
+ <_>
+ 10 1 1 13 2.
+ <_>
+
+ <_>
+ 10 6 10 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+ 10 9 5 3 2.
+ <_>
+
+ <_>
+ 0 6 10 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 6 6 10 3 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+
+ <_>
+ 1 7 4 13 -1.
+ <_>
+ 3 7 2 13 2.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 0 0 6 5 -1.
+ <_>
+ 3 0 3 5 2.
+ <_>
+
+ <_>
+ 15 6 5 12 -1.
+ <_>
+ 15 10 5 4 3.
+ <_>
+
+ <_>
+ 0 1 6 16 -1.
+ <_>
+ 0 1 3 8 2.
+ <_>
+ 3 9 3 8 2.
+ <_>
+
+ <_>
+ 0 0 20 2 -1.
+ <_>
+ 0 0 10 2 2.
+ <_>
+
+ <_>
+ 0 6 5 12 -1.
+ <_>
+ 0 10 5 4 3.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 10 0 9 3 2.
+ <_>
+ 1 3 9 3 2.
+ <_>
+
+ <_>
+ 3 0 12 5 -1.
+ <_>
+ 7 0 4 5 3.
+ <_>
+
+ <_>
+ 7 0 9 5 -1.
+ <_>
+ 10 0 3 5 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 11 2 8 18 -1.
+ <_>
+ 11 2 4 18 2.
+ <_>
+
+ <_>
+ 1 2 8 18 -1.
+ <_>
+ 5 2 4 18 2.
+ <_>
+
+ <_>
+ 12 7 5 6 -1.
+ <_>
+ 12 10 5 3 2.
+ <_>
+
+ <_>
+ 2 1 14 4 -1.
+ <_>
+ 2 1 7 2 2.
+ <_>
+ 9 3 7 2 2.
+ <_>
+
+ <_>
+ 12 7 8 6 -1.
+ <_>
+ 12 9 8 2 3.
+ <_>
+
+ <_>
+ 0 7 8 6 -1.
+ <_>
+ 0 9 8 2 3.
+ <_>
+
+ <_>
+ 7 7 13 2 -1.
+ <_>
+ 7 8 13 1 2.
+ <_>
+
+ <_>
+ 1 6 18 9 -1.
+ <_>
+ 1 9 18 3 3.
+ <_>
+
+ <_>
+ 0 8 20 6 -1.
+ <_>
+ 0 10 20 2 3.
+ <_>
+
+ <_>
+ 4 3 4 13 -1.
+ <_>
+ 6 3 2 13 2.
+ <_>
+
+ <_>
+ 13 3 3 15 -1.
+ <_>
+ 14 3 1 15 3.
+ <_>
+
+ <_>
+ 3 15 14 3 -1.
+ <_>
+ 3 16 14 1 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 16 17 3 -1.
+ <_>
+ 0 17 17 1 3.
+ <_>
+
+ <_>
+ 5 11 11 6 -1.
+ <_>
+ 5 14 11 3 2.
+ <_>
+
+ <_>
+ 4 3 3 15 -1.
+ <_>
+ 5 3 1 15 3.
+ <_>
+
+ <_>
+ 3 1 14 9 -1.
+ <_>
+ 3 4 14 3 3.
+ <_>
+
+ <_>
+ 0 0 20 8 -1.
+ <_>
+ 0 4 20 4 2.
+ <_>
+
+ <_>
+ 7 6 7 4 -1.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 2 13 13 2 -1.
+ <_>
+ 2 14 13 1 2.
+ <_>
+
+ <_>
+ 2 12 16 3 -1.
+ <_>
+ 2 13 16 1 3.
+ <_>
+
+ <_>
+ 1 11 13 3 -1.
+ <_>
+ 1 12 13 1 3.
+ <_>
+
+ <_>
+ 7 1 13 3 -1.
+ <_>
+ 7 2 13 1 3.
+ <_>
+
+ <_>
+ 5 13 7 6 -1.
+ <_>
+ 5 16 7 3 2.
+ <_>
+
+ <_>
+ 4 3 14 3 -1.
+ <_>
+ 4 4 14 1 3.
+ <_>
+
+ <_>
+ 3 2 14 2 -1.
+ <_>
+ 3 3 14 1 2.
+ <_>
+
+ <_>
+ 3 0 15 14 -1.
+ <_>
+ 3 7 15 7 2.
+ <_>
+
+ <_>
+ 4 1 12 14 -1.
+ <_>
+ 4 8 12 7 2.
+ <_>
+
+ <_>
+ 9 13 6 7 -1.
+ <_>
+ 11 13 2 7 3.
+ <_>
+
+ <_>
+ 6 14 8 4 -1.
+ <_>
+ 6 16 8 2 2.
+ <_>
+
+ <_>
+ 8 14 8 6 -1.
+ <_>
+ 8 16 8 2 3.
+ <_>
+
+ <_>
+ 5 13 6 7 -1.
+ <_>
+ 7 13 2 7 3.
+ <_>
+
+ <_>
+ 11 10 8 5 -1.
+ <_>
+ 11 10 4 5 2.
+ <_>
+
+ <_>
+ 1 0 8 16 -1.
+ <_>
+ 1 0 4 8 2.
+ <_>
+ 5 8 4 8 2.
+ <_>
+
+ <_>
+ 8 2 6 18 -1.
+ <_>
+ 8 8 6 6 3.
+ <_>
+
+ <_>
+ 6 2 6 18 -1.
+ <_>
+ 6 8 6 6 3.
+ <_>
+
+ <_>
+ 7 6 9 4 -1.
+ <_>
+ 7 8 9 2 2.
+ <_>
+
+ <_>
+ 1 10 5 9 -1.
+ <_>
+ 1 13 5 3 3.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 0 14 10 6 -1.
+ <_>
+ 0 14 5 3 2.
+ <_>
+ 5 17 5 3 2.
+ <_>
+
+ <_>
+ 9 11 5 9 -1.
+ <_>
+ 9 14 5 3 3.
+ <_>
+
+ <_>
+ 0 16 12 4 -1.
+ <_>
+ 4 16 4 4 3.
+ <_>
+
+ <_>
+ 14 6 3 14 -1.
+ <_>
+ 15 6 1 14 3.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 6 9 4 4 2.
+ <_>
+ 10 13 4 4 2.
+ <_>
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+
+ <_>
+ 6 11 6 9 -1.
+ <_>
+ 8 11 2 9 3.
+ <_>
+
+ <_>
+ 7 2 6 16 -1.
+ <_>
+ 10 2 3 8 2.
+ <_>
+ 7 10 3 8 2.
+ <_>
+
+ <_>
+ 0 15 18 5 -1.
+ <_>
+ 9 15 9 5 2.
+ <_>
+
+ <_>
+ 4 12 14 4 -1.
+ <_>
+ 11 12 7 2 2.
+ <_>
+ 4 14 7 2 2.
+ <_>
+
+ <_>
+ 2 12 14 4 -1.
+ <_>
+ 2 12 7 2 2.
+ <_>
+ 9 14 7 2 2.
+ <_>
+
+ <_>
+ 4 3 14 3 -1.
+ <_>
+ 4 3 7 3 2.
+ <_>
+
+ <_>
+ 0 2 10 3 -1.
+ <_>
+ 5 2 5 3 2.
+ <_>
+
+ <_>
+ 3 0 15 8 -1.
+ <_>
+ 8 0 5 8 3.
+ <_>
+
+ <_>
+ 2 5 16 2 -1.
+ <_>
+ 10 5 8 2 2.
+ <_>
+
+ <_>
+ 6 0 8 9 -1.
+ <_>
+ 6 0 4 9 2.
+ <_>
+
+ <_>
+ 3 2 10 6 -1.
+ <_>
+ 3 2 5 3 2.
+ <_>
+ 8 5 5 3 2.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 14 1 3 13 -1.
+ <_>
+ 15 1 1 13 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 11 10 8 6 -1.
+ <_>
+ 11 12 8 2 3.
+ <_>
+
+ <_>
+ 1 10 8 6 -1.
+ <_>
+ 1 12 8 2 3.
+ <_>
+
+ <_>
+ 3 3 14 3 -1.
+ <_>
+ 3 4 14 1 3.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 4 2 15 9 -1.
+ <_>
+ 4 5 15 3 3.
+ <_>
+
+ <_>
+ 0 1 13 3 -1.
+ <_>
+ 0 2 13 1 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 6 16 14 4 -1.
+ <_>
+ 13 16 7 2 2.
+ <_>
+ 6 18 7 2 2.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 4 16 16 4 -1.
+ <_>
+ 12 16 8 2 2.
+ <_>
+ 4 18 8 2 2.
+ <_>
+
+ <_>
+ 0 16 16 4 -1.
+ <_>
+ 0 16 8 2 2.
+ <_>
+ 8 18 8 2 2.
+ <_>
+
+ <_>
+ 8 4 6 5 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+
+ <_>
+ 6 4 6 5 -1.
+ <_>
+ 9 4 3 5 2.
+ <_>
+
+ <_>
+ 8 7 4 8 -1.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 4 6 10 12 -1.
+ <_>
+ 4 12 10 6 2.
+ <_>
+
+ <_>
+ 1 5 18 12 -1.
+ <_>
+ 1 9 18 4 3.
+ <_>
+
+ <_>
+ 4 6 9 4 -1.
+ <_>
+ 4 8 9 2 2.
+ <_>
+
+ <_>
+ 1 5 19 3 -1.
+ <_>
+ 1 6 19 1 3.
+ <_>
+
+ <_>
+ 2 3 12 14 -1.
+ <_>
+ 2 3 6 7 2.
+ <_>
+ 8 10 6 7 2.
+ <_>
+
+ <_>
+ 13 0 3 16 -1.
+ <_>
+ 13 8 3 8 2.
+ <_>
+
+ <_>
+ 4 0 3 16 -1.
+ <_>
+ 4 8 3 8 2.
+ <_>
+
+ <_>
+ 4 0 12 14 -1.
+ <_>
+ 8 0 4 14 3.
+ <_>
+
+ <_>
+ 0 10 10 6 -1.
+ <_>
+ 0 10 5 3 2.
+ <_>
+ 5 13 5 3 2.
+ <_>
+
+ <_>
+ 7 4 13 3 -1.
+ <_>
+ 7 5 13 1 3.
+ <_>
+
+ <_>
+ 2 5 6 10 -1.
+ <_>
+ 5 5 3 10 2.
+ <_>
+
+ <_>
+ 11 6 8 14 -1.
+ <_>
+ 15 6 4 7 2.
+ <_>
+ 11 13 4 7 2.
+ <_>
+
+ <_>
+ 3 1 3 13 -1.
+ <_>
+ 4 1 1 13 3.
+ <_>
+
+ <_>
+ 11 6 8 14 -1.
+ <_>
+ 15 6 4 7 2.
+ <_>
+ 11 13 4 7 2.
+ <_>
+
+ <_>
+ 3 1 3 13 -1.
+ <_>
+ 4 1 1 13 3.
+ <_>
+
+ <_>
+ 9 5 10 9 -1.
+ <_>
+ 9 5 5 9 2.
+ <_>
+
+ <_>
+ 1 6 8 14 -1.
+ <_>
+ 1 6 4 7 2.
+ <_>
+ 5 13 4 7 2.
+ <_>
+
+ <_>
+ 11 13 9 6 -1.
+ <_>
+ 11 15 9 2 3.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 12 11 8 9 -1.
+ <_>
+ 12 14 8 3 3.
+ <_>
+
+ <_>
+ 2 11 15 9 -1.
+ <_>
+ 2 14 15 3 3.
+ <_>
+
+ <_>
+ 2 16 18 4 -1.
+ <_>
+ 8 16 6 4 3.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 14 0 3 10 2.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 3 0 3 10 2.
+ <_>
+
+ <_>
+ 13 1 4 16 -1.
+ <_>
+ 15 1 2 8 2.
+ <_>
+ 13 9 2 8 2.
+ <_>
+
+ <_>
+ 1 9 6 11 -1.
+ <_>
+ 3 9 2 11 3.
+ <_>
+
+ <_>
+ 6 12 13 3 -1.
+ <_>
+ 6 13 13 1 3.
+ <_>
+
+ <_>
+ 0 0 12 10 -1.
+ <_>
+ 0 0 6 5 2.
+ <_>
+ 6 5 6 5 2.
+ <_>
+
+ <_>
+ 4 5 13 3 -1.
+ <_>
+ 4 6 13 1 3.
+ <_>
+
+ <_>
+ 0 4 7 6 -1.
+ <_>
+ 0 6 7 2 3.
+ <_>
+
+ <_>
+ 13 6 4 8 -1.
+ <_>
+ 13 10 4 4 2.
+ <_>
+
+ <_>
+ 3 6 4 8 -1.
+ <_>
+ 3 10 4 4 2.
+ <_>
+
+ <_>
+ 15 8 5 6 -1.
+ <_>
+ 15 11 5 3 2.
+ <_>
+
+ <_>
+ 0 4 13 3 -1.
+ <_>
+ 0 5 13 1 3.
+ <_>
+
+ <_>
+ 9 8 10 6 -1.
+ <_>
+ 14 8 5 3 2.
+ <_>
+ 9 11 5 3 2.
+ <_>
+
+ <_>
+ 1 8 10 6 -1.
+ <_>
+ 1 8 5 3 2.
+ <_>
+ 6 11 5 3 2.
+ <_>
+
+ <_>
+ 5 5 15 6 -1.
+ <_>
+ 5 8 15 3 2.
+ <_>
+
+ <_>
+ 2 8 14 2 -1.
+ <_>
+ 9 8 7 2 2.
+ <_>
+
+ <_>
+ 9 1 6 7 -1.
+ <_>
+ 9 1 3 7 2.
+ <_>
+
+ <_>
+ 5 1 6 7 -1.
+ <_>
+ 8 1 3 7 2.
+ <_>
+
+ <_>
+ 0 6 20 6 -1.
+ <_>
+ 0 9 20 3 2.
+ <_>
+
+ <_>
+ 2 8 15 2 -1.
+ <_>
+ 2 9 15 1 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 0 2 15 6 -1.
+ <_>
+ 0 4 15 2 3.
+ <_>
+
+ <_>
+ 5 2 15 2 -1.
+ <_>
+ 5 3 15 1 2.
+ <_>
+
+ <_>
+ 5 9 7 4 -1.
+ <_>
+ 5 11 7 2 2.
+ <_>
+
+ <_>
+ 13 9 4 8 -1.
+ <_>
+ 13 13 4 4 2.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 12 11 5 6 -1.
+ <_>
+ 12 14 5 3 2.
+ <_>
+
+ <_>
+ 3 3 14 9 -1.
+ <_>
+ 3 6 14 3 3.
+ <_>
+
+ <_>
+ 12 11 5 6 -1.
+ <_>
+ 12 14 5 3 2.
+ <_>
+
+ <_>
+ 3 11 5 6 -1.
+ <_>
+ 3 14 5 3 2.
+ <_>
+
+ <_>
+ 2 9 17 8 -1.
+ <_>
+ 2 13 17 4 2.
+ <_>
+
+ <_>
+ 6 8 7 12 -1.
+ <_>
+ 6 12 7 4 3.
+ <_>
+
+ <_>
+ 11 0 4 9 -1.
+ <_>
+ 11 0 2 9 2.
+ <_>
+
+ <_>
+ 6 2 4 16 -1.
+ <_>
+ 6 2 2 8 2.
+ <_>
+ 8 10 2 8 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 10 4 10 6 -1.
+ <_>
+ 15 4 5 3 2.
+ <_>
+ 10 7 5 3 2.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 6 0 6 4 3.
+ <_>
+
+ <_>
+ 7 1 9 7 -1.
+ <_>
+ 10 1 3 7 3.
+ <_>
+
+ <_>
+ 4 1 9 7 -1.
+ <_>
+ 7 1 3 7 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 1 1 12 17 -1.
+ <_>
+ 5 1 4 17 3.
+ <_>
+
+ <_>
+ 9 1 6 12 -1.
+ <_>
+ 12 1 3 6 2.
+ <_>
+ 9 7 3 6 2.
+ <_>
+
+ <_>
+ 2 5 9 15 -1.
+ <_>
+ 5 5 3 15 3.
+ <_>
+
+ <_>
+ 4 0 16 4 -1.
+ <_>
+ 12 0 8 2 2.
+ <_>
+ 4 2 8 2 2.
+ <_>
+
+ <_>
+ 0 0 16 4 -1.
+ <_>
+ 0 0 8 2 2.
+ <_>
+ 8 2 8 2 2.
+ <_>
+
+ <_>
+ 10 4 10 6 -1.
+ <_>
+ 15 4 5 3 2.
+ <_>
+ 10 7 5 3 2.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 5 13 13 2 -1.
+ <_>
+ 5 14 13 1 2.
+ <_>
+
+ <_>
+ 0 4 10 6 -1.
+ <_>
+ 0 4 5 3 2.
+ <_>
+ 5 7 5 3 2.
+ <_>
+
+ <_>
+ 8 11 12 5 -1.
+ <_>
+ 12 11 4 5 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 11 13 7 6 -1.
+ <_>
+ 11 15 7 2 3.
+ <_>
+
+ <_>
+ 1 14 18 6 -1.
+ <_>
+ 1 17 18 3 2.
+ <_>
+
+ <_>
+ 3 1 14 6 -1.
+ <_>
+ 3 3 14 2 3.
+ <_>
+
+ <_>
+ 12 0 6 6 -1.
+ <_>
+ 12 0 3 6 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 5 7 12 5 -1.
+ <_>
+ 9 7 4 5 3.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 5 14 4 4 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 2 0 9 5 -1.
+ <_>
+ 5 0 3 5 3.
+ <_>
+
+ <_>
+ 9 2 6 16 -1.
+ <_>
+ 12 2 3 8 2.
+ <_>
+ 9 10 3 8 2.
+ <_>
+
+ <_>
+ 6 5 2 14 -1.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 15 4 4 16 -1.
+ <_>
+ 17 4 2 8 2.
+ <_>
+ 15 12 2 8 2.
+ <_>
+
+ <_>
+ 5 1 10 8 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+ 10 5 5 4 2.
+ <_>
+
+ <_>
+ 11 7 7 6 -1.
+ <_>
+ 11 9 7 2 3.
+ <_>
+
+ <_>
+ 1 2 14 3 -1.
+ <_>
+ 1 3 14 1 3.
+ <_>
+
+ <_>
+ 13 5 4 8 -1.
+ <_>
+ 13 9 4 4 2.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 5 18 8 -1.
+ <_>
+ 0 5 9 4 2.
+ <_>
+ 9 9 9 4 2.
+ <_>
+
+ <_>
+ 13 5 4 14 -1.
+ <_>
+ 15 5 2 7 2.
+ <_>
+ 13 12 2 7 2.
+ <_>
+
+ <_>
+ 0 0 4 13 -1.
+ <_>
+ 2 0 2 13 2.
+ <_>
+
+ <_>
+ 13 5 4 14 -1.
+ <_>
+ 15 5 2 7 2.
+ <_>
+ 13 12 2 7 2.
+ <_>
+
+ <_>
+ 3 5 4 14 -1.
+ <_>
+ 3 5 2 7 2.
+ <_>
+ 5 12 2 7 2.
+ <_>
+
+ <_>
+ 11 12 7 6 -1.
+ <_>
+ 11 14 7 2 3.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 13 4 6 16 -1.
+ <_>
+ 16 4 3 8 2.
+ <_>
+ 13 12 3 8 2.
+ <_>
+
+ <_>
+ 0 9 10 6 -1.
+ <_>
+ 0 9 5 3 2.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 9 5 3 15 -1.
+ <_>
+ 9 10 3 5 3.
+ <_>
+
+ <_>
+ 8 2 4 10 -1.
+ <_>
+ 10 2 2 10 2.
+ <_>
+
+ <_>
+ 13 4 6 16 -1.
+ <_>
+ 16 4 3 8 2.
+ <_>
+ 13 12 3 8 2.
+ <_>
+
+ <_>
+ 1 8 18 5 -1.
+ <_>
+ 7 8 6 5 3.
+ <_>
+
+ <_>
+ 13 4 6 16 -1.
+ <_>
+ 16 4 3 8 2.
+ <_>
+ 13 12 3 8 2.
+ <_>
+
+ <_>
+ 1 4 6 16 -1.
+ <_>
+ 1 4 3 8 2.
+ <_>
+ 4 12 3 8 2.
+ <_>
+
+ <_>
+ 2 15 18 4 -1.
+ <_>
+ 11 15 9 2 2.
+ <_>
+ 2 17 9 2 2.
+ <_>
+
+ <_>
+ 7 3 2 16 -1.
+ <_>
+ 7 11 2 8 2.
+ <_>
+
+ <_>
+ 0 4 20 4 -1.
+ <_>
+ 0 6 20 2 2.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 14 1 6 17 -1.
+ <_>
+ 14 1 3 17 2.
+ <_>
+
+ <_>
+ 2 9 7 6 -1.
+ <_>
+ 2 11 7 2 3.
+ <_>
+
+ <_>
+ 11 0 6 16 -1.
+ <_>
+ 14 0 3 8 2.
+ <_>
+ 11 8 3 8 2.
+ <_>
+
+ <_>
+ 1 14 13 3 -1.
+ <_>
+ 1 15 13 1 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 3 0 6 16 -1.
+ <_>
+ 3 0 3 8 2.
+ <_>
+ 6 8 3 8 2.
+ <_>
+
+ <_>
+ 10 12 10 3 -1.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 3 7 12 5 -1.
+ <_>
+ 7 7 4 5 3.
+ <_>
+
+ <_>
+ 1 0 18 6 -1.
+ <_>
+ 7 0 6 6 3.
+ <_>
+
+ <_>
+ 0 12 10 3 -1.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 7 5 2 8 3.
+ <_>
+
+ <_>
+ 11 9 9 6 -1.
+ <_>
+ 11 11 9 2 3.
+ <_>
+
+ <_>
+ 4 7 7 9 -1.
+ <_>
+ 4 10 7 3 3.
+ <_>
+
+ <_>
+ 5 14 10 6 -1.
+ <_>
+ 5 16 10 2 3.
+ <_>
+
+ <_>
+ 0 14 19 4 -1.
+ <_>
+ 0 16 19 2 2.
+ <_>
+
+ <_>
+ 6 9 12 8 -1.
+ <_>
+ 12 9 6 4 2.
+ <_>
+ 6 13 6 4 2.
+ <_>
+
+ <_>
+ 1 1 3 14 -1.
+ <_>
+ 2 1 1 14 3.
+ <_>
+
+ <_>
+ 6 9 12 8 -1.
+ <_>
+ 12 9 6 4 2.
+ <_>
+ 6 13 6 4 2.
+ <_>
+
+ <_>
+ 2 9 12 8 -1.
+ <_>
+ 2 9 6 4 2.
+ <_>
+ 8 13 6 4 2.
+ <_>
+
+ <_>
+ 18 2 2 18 -1.
+ <_>
+ 18 2 1 18 2.
+ <_>
+
+ <_>
+ 6 5 6 8 -1.
+ <_>
+ 8 5 2 8 3.
+ <_>
+
+ <_>
+ 10 3 4 12 -1.
+ <_>
+ 10 3 2 12 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 9 8 6 12 -1.
+ <_>
+ 12 8 3 6 2.
+ <_>
+ 9 14 3 6 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 18 2 2 18 -1.
+ <_>
+ 18 2 1 18 2.
+ <_>
+
+ <_>
+ 1 5 17 6 -1.
+ <_>
+ 1 7 17 2 3.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 2 12 2 3.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 3 0 14 6 -1.
+ <_>
+ 3 2 14 2 3.
+ <_>
+
+ <_>
+ 15 3 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ <_>
+
+ <_>
+ 0 3 5 6 -1.
+ <_>
+ 0 6 5 3 2.
+ <_>
+
+ <_>
+ 4 1 14 10 -1.
+ <_>
+ 4 6 14 5 2.
+ <_>
+
+ <_>
+ 0 1 7 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+
+ <_>
+ 13 1 7 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+
+ <_>
+ 1 4 10 9 -1.
+ <_>
+ 6 4 5 9 2.
+ <_>
+
+ <_>
+ 10 1 10 19 -1.
+ <_>
+ 10 1 5 19 2.
+ <_>
+
+ <_>
+ 0 1 10 19 -1.
+ <_>
+ 5 1 5 19 2.
+ <_>
+
+ <_>
+ 13 5 4 12 -1.
+ <_>
+ 13 9 4 4 3.
+ <_>
+
+ <_>
+ 3 5 4 12 -1.
+ <_>
+ 3 9 4 4 3.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 11 0 9 2 2.
+ <_>
+ 2 2 9 2 2.
+ <_>
+
+ <_>
+ 6 8 6 5 -1.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 6 5 12 8 -1.
+ <_>
+ 12 5 6 4 2.
+ <_>
+ 6 9 6 4 2.
+ <_>
+
+ <_>
+ 2 5 12 8 -1.
+ <_>
+ 2 5 6 4 2.
+ <_>
+ 8 9 6 4 2.
+ <_>
+
+ <_>
+ 5 4 13 3 -1.
+ <_>
+ 5 5 13 1 3.
+ <_>
+
+ <_>
+ 2 4 13 3 -1.
+ <_>
+ 2 5 13 1 3.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 7 12 13 2 -1.
+ <_>
+ 7 13 13 1 2.
+ <_>
+
+ <_>
+ 2 4 15 3 -1.
+ <_>
+ 2 5 15 1 3.
+ <_>
+
+ <_>
+ 1 14 18 4 -1.
+ <_>
+ 10 14 9 2 2.
+ <_>
+ 1 16 9 2 2.
+ <_>
+
+ <_>
+ 5 8 6 10 -1.
+ <_>
+ 5 8 3 5 2.
+ <_>
+ 8 13 3 5 2.
+ <_>
+
+ <_>
+ 12 4 3 10 -1.
+ <_>
+ 12 9 3 5 2.
+ <_>
+
+ <_>
+ 2 0 14 3 -1.
+ <_>
+ 2 1 14 1 3.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 0 1 15 3 -1.
+ <_>
+ 0 2 15 1 3.
+ <_>
+
+ <_>
+ 2 1 16 4 -1.
+ <_>
+ 2 3 16 2 2.
+ <_>
+
+ <_>
+ 0 1 5 9 -1.
+ <_>
+ 0 4 5 3 3.
+ <_>
+
+ <_>
+ 3 5 15 3 -1.
+ <_>
+ 3 6 15 1 3.
+ <_>
+
+ <_>
+ 1 5 10 6 -1.
+ <_>
+ 1 5 5 3 2.
+ <_>
+ 6 8 5 3 2.
+ <_>
+
+ <_>
+ 9 2 3 12 -1.
+ <_>
+ 9 8 3 6 2.
+ <_>
+
+ <_>
+ 0 2 19 2 -1.
+ <_>
+ 0 3 19 1 2.
+ <_>
+
+ <_>
+ 16 0 4 10 -1.
+ <_>
+ 16 0 2 10 2.
+ <_>
+
+ <_>
+ 1 8 13 3 -1.
+ <_>
+ 1 9 13 1 3.
+ <_>
+
+ <_>
+ 7 0 13 4 -1.
+ <_>
+ 7 2 13 2 2.
+ <_>
+
+ <_>
+ 4 4 3 10 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+
+ <_>
+ 7 9 6 7 -1.
+ <_>
+ 9 9 2 7 3.
+ <_>
+
+ <_>
+ 4 3 3 13 -1.
+ <_>
+ 5 3 1 13 3.
+ <_>
+
+ <_>
+ 14 10 6 6 -1.
+ <_>
+ 14 10 3 6 2.
+ <_>
+
+ <_>
+ 8 0 3 15 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 12 0 8 8 -1.
+ <_>
+ 16 0 4 4 2.
+ <_>
+ 12 4 4 4 2.
+ <_>
+
+ <_>
+ 7 4 6 9 -1.
+ <_>
+ 7 7 6 3 3.
+ <_>
+
+ <_>
+ 11 9 9 6 -1.
+ <_>
+ 11 11 9 2 3.
+ <_>
+
+ <_>
+ 5 13 9 5 -1.
+ <_>
+ 8 13 3 5 3.
+ <_>
+
+ <_>
+ 9 9 6 10 -1.
+ <_>
+ 12 9 3 5 2.
+ <_>
+ 9 14 3 5 2.
+ <_>
+
+ <_>
+ 5 9 6 10 -1.
+ <_>
+ 5 9 3 5 2.
+ <_>
+ 8 14 3 5 2.
+ <_>
+
+ <_>
+ 13 10 6 10 -1.
+ <_>
+ 16 10 3 5 2.
+ <_>
+ 13 15 3 5 2.
+ <_>
+
+ <_>
+ 1 10 6 10 -1.
+ <_>
+ 1 10 3 5 2.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 10 3 4 12 -1.
+ <_>
+ 10 3 2 12 2.
+ <_>
+
+ <_>
+ 6 3 4 12 -1.
+ <_>
+ 8 3 2 12 2.
+ <_>
+
+ <_>
+ 11 1 9 5 -1.
+ <_>
+ 14 1 3 5 3.
+ <_>
+
+ <_>
+ 2 9 16 3 -1.
+ <_>
+ 10 9 8 3 2.
+ <_>
+
+ <_>
+ 6 2 8 10 -1.
+ <_>
+ 10 2 4 5 2.
+ <_>
+ 6 7 4 5 2.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 0 0 4 4 2.
+ <_>
+ 4 4 4 4 2.
+ <_>
+
+ <_>
+ 12 10 6 10 -1.
+ <_>
+ 14 10 2 10 3.
+ <_>
+
+ <_>
+ 0 1 9 5 -1.
+ <_>
+ 3 1 3 5 3.
+ <_>
+
+ <_>
+ 16 0 4 17 -1.
+ <_>
+ 16 0 2 17 2.
+ <_>
+
+ <_>
+ 2 0 6 20 -1.
+ <_>
+ 4 0 2 20 3.
+ <_>
+
+ <_>
+ 16 0 4 17 -1.
+ <_>
+ 16 0 2 17 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 10 8 4 4 3.
+ <_>
+
+ <_>
+ 8 5 3 14 -1.
+ <_>
+ 8 12 3 7 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 1 3 14 15 -1.
+ <_>
+ 1 8 14 5 3.
+ <_>
+
+ <_>
+ 16 0 4 16 -1.
+ <_>
+ 16 0 2 16 2.
+ <_>
+
+ <_>
+ 4 6 10 9 -1.
+ <_>
+ 4 9 10 3 3.
+ <_>
+
+ <_>
+ 16 0 4 16 -1.
+ <_>
+ 16 0 2 16 2.
+ <_>
+
+ <_>
+ 0 0 4 16 -1.
+ <_>
+ 2 0 2 16 2.
+ <_>
+
+ <_>
+ 15 9 4 7 -1.
+ <_>
+ 15 9 2 7 2.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 3 0 3 6 3.
+ <_>
+
+ <_>
+ 12 11 8 4 -1.
+ <_>
+ 12 13 8 2 2.
+ <_>
+
+ <_>
+ 1 9 4 7 -1.
+ <_>
+ 3 9 2 7 2.
+ <_>
+
+ <_>
+ 14 10 6 6 -1.
+ <_>
+ 14 10 3 6 2.
+ <_>
+
+ <_>
+ 1 7 2 13 -1.
+ <_>
+ 2 7 1 13 2.
+ <_>
+
+ <_>
+ 1 2 18 11 -1.
+ <_>
+ 7 2 6 11 3.
+ <_>
+
+ <_>
+ 6 2 4 7 -1.
+ <_>
+ 8 2 2 7 2.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 10 6 10 7 2.
+ <_>
+ 0 13 10 7 2.
+ <_>
+
+ <_>
+ 0 5 18 15 -1.
+ <_>
+ 6 5 6 15 3.
+ <_>
+
+ <_>
+ 16 5 4 15 -1.
+ <_>
+ 16 5 2 15 2.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 7 6 2 7 3.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 10 8 4 4 3.
+ <_>
+
+ <_>
+ 5 10 10 6 -1.
+ <_>
+ 5 13 10 3 2.
+ <_>
+
+ <_>
+ 3 7 17 12 -1.
+ <_>
+ 3 13 17 6 2.
+ <_>
+
+ <_>
+ 0 7 17 12 -1.
+ <_>
+ 0 13 17 6 2.
+ <_>
+
+ <_>
+ 2 0 18 19 -1.
+ <_>
+ 8 0 6 19 3.
+ <_>
+
+ <_>
+ 7 2 4 7 -1.
+ <_>
+ 9 2 2 7 2.
+ <_>
+
+ <_>
+ 9 7 7 8 -1.
+ <_>
+ 9 11 7 4 2.
+ <_>
+
+ <_>
+ 0 10 19 2 -1.
+ <_>
+ 0 11 19 1 2.
+ <_>
+
+ <_>
+ 11 9 9 6 -1.
+ <_>
+ 11 11 9 2 3.
+ <_>
+
+ <_>
+ 0 0 15 3 -1.
+ <_>
+ 5 0 5 3 3.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 18 7 1 13 2.
+ <_>
+
+ <_>
+ 0 9 9 6 -1.
+ <_>
+ 0 11 9 2 3.
+ <_>
+
+ <_>
+ 9 7 7 8 -1.
+ <_>
+ 9 11 7 4 2.
+ <_>
+
+ <_>
+ 4 7 7 8 -1.
+ <_>
+ 4 11 7 4 2.
+ <_>
+
+ <_>
+ 3 3 16 2 -1.
+ <_>
+ 3 4 16 1 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 6 12 10 6 -1.
+ <_>
+ 6 14 10 2 3.
+ <_>
+
+ <_>
+ 0 13 7 6 -1.
+ <_>
+ 0 15 7 2 3.
+ <_>
+
+ <_>
+ 3 11 15 9 -1.
+ <_>
+ 3 14 15 3 3.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 10 0 10 20 -1.
+ <_>
+ 10 0 5 20 2.
+ <_>
+
+ <_>
+ 0 0 10 20 -1.
+ <_>
+ 5 0 5 20 2.
+ <_>
+
+ <_>
+ 5 12 13 3 -1.
+ <_>
+ 5 13 13 1 3.
+ <_>
+
+ <_>
+ 5 6 6 8 -1.
+ <_>
+ 5 10 6 4 2.
+ <_>
+
+ <_>
+ 4 0 13 18 -1.
+ <_>
+ 4 9 13 9 2.
+ <_>
+
+ <_>
+ 0 0 15 4 -1.
+ <_>
+ 5 0 5 4 3.
+ <_>
+
+ <_>
+ 4 7 15 3 -1.
+ <_>
+ 9 7 5 3 3.
+ <_>
+
+ <_>
+ 6 8 6 6 -1.
+ <_>
+ 9 8 3 6 2.
+ <_>
+
+ <_>
+ 0 8 20 2 -1.
+ <_>
+ 0 8 10 2 2.
+ <_>
+
+ <_>
+ 5 0 3 14 -1.
+ <_>
+ 6 0 1 14 3.
+ <_>
+
+ <_>
+ 13 2 5 12 -1.
+ <_>
+ 13 6 5 4 3.
+ <_>
+
+ <_>
+ 4 4 12 6 -1.
+ <_>
+ 4 4 6 3 2.
+ <_>
+ 10 7 6 3 2.
+ <_>
+
+ <_>
+ 7 1 9 8 -1.
+ <_>
+ 10 1 3 8 3.
+ <_>
+
+ <_>
+ 1 1 6 10 -1.
+ <_>
+ 1 1 3 5 2.
+ <_>
+ 4 6 3 5 2.
+ <_>
+
+ <_>
+ 11 10 8 8 -1.
+ <_>
+ 11 14 8 4 2.
+ <_>
+
+ <_>
+ 1 10 8 8 -1.
+ <_>
+ 1 14 8 4 2.
+ <_>
+
+ <_>
+ 13 8 3 12 -1.
+ <_>
+ 13 14 3 6 2.
+ <_>
+
+ <_>
+ 4 8 3 12 -1.
+ <_>
+ 4 14 3 6 2.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 7 1 9 8 -1.
+ <_>
+ 10 1 3 8 3.
+ <_>
+
+ <_>
+ 4 1 9 8 -1.
+ <_>
+ 7 1 3 8 3.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 5 2 6 10 -1.
+ <_>
+ 5 2 3 5 2.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 17 0 3 5 2.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 8 5 3 7 2.
+ <_>
+
+ <_>
+ 5 3 4 8 -1.
+ <_>
+ 7 3 2 8 2.
+ <_>
+
+ <_>
+ 15 2 5 9 -1.
+ <_>
+ 15 5 5 3 3.
+ <_>
+
+ <_>
+ 1 4 4 16 -1.
+ <_>
+ 1 4 2 8 2.
+ <_>
+ 3 12 2 8 2.
+ <_>
+
+ <_>
+ 3 14 16 4 -1.
+ <_>
+ 11 14 8 2 2.
+ <_>
+ 3 16 8 2 2.
+ <_>
+
+ <_>
+ 5 2 9 6 -1.
+ <_>
+ 8 2 3 6 3.
+ <_>
+
+ <_>
+ 6 1 14 2 -1.
+ <_>
+ 6 1 7 2 2.
+ <_>
+
+ <_>
+ 0 1 14 2 -1.
+ <_>
+ 7 1 7 2 2.
+ <_>
+
+ <_>
+ 8 0 8 8 -1.
+ <_>
+ 12 0 4 4 2.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 5 4 10 14 -1.
+ <_>
+ 5 4 5 7 2.
+ <_>
+ 10 11 5 7 2.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 11 0 9 2 2.
+ <_>
+ 2 2 9 2 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 9 5 3 7 2.
+ <_>
+
+ <_>
+ 4 10 14 4 -1.
+ <_>
+ 11 10 7 2 2.
+ <_>
+ 4 12 7 2 2.
+ <_>
+
+ <_>
+ 2 10 14 4 -1.
+ <_>
+ 2 10 7 2 2.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 7 1 9 6 -1.
+ <_>
+ 7 4 9 3 2.
+ <_>
+
+ <_>
+ 6 0 7 8 -1.
+ <_>
+ 6 4 7 4 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 1 3 9 4 -1.
+ <_>
+ 1 5 9 2 2.
+ <_>
+
+ <_>
+ 4 4 13 2 -1.
+ <_>
+ 4 5 13 1 2.
+ <_>
+
+ <_>
+ 1 4 14 3 -1.
+ <_>
+ 1 5 14 1 3.
+ <_>
+
+ <_>
+ 7 11 6 9 -1.
+ <_>
+ 9 11 2 9 3.
+ <_>
+
+ <_>
+ 6 11 4 7 -1.
+ <_>
+ 8 11 2 7 2.
+ <_>
+
+ <_>
+ 4 8 12 12 -1.
+ <_>
+ 4 8 6 12 2.
+ <_>
+
+ <_>
+ 1 11 18 5 -1.
+ <_>
+ 10 11 9 5 2.
+ <_>
+
+ <_>
+ 4 5 16 6 -1.
+ <_>
+ 4 7 16 2 3.
+ <_>
+
+ <_>
+ 0 3 4 16 -1.
+ <_>
+ 0 3 2 8 2.
+ <_>
+ 2 11 2 8 2.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 0 0 20 8 -1.
+ <_>
+ 0 4 20 4 2.
+ <_>
+
+ <_>
+ 8 7 8 8 -1.
+ <_>
+ 12 7 4 4 2.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 4 7 8 8 -1.
+ <_>
+ 4 7 4 4 2.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 4 5 10 12 -1.
+ <_>
+ 4 5 5 6 2.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 0 9 4 11 -1.
+ <_>
+ 2 9 2 11 2.
+ <_>
+
+ <_>
+ 12 4 6 11 -1.
+ <_>
+ 12 4 3 11 2.
+ <_>
+
+ <_>
+ 2 4 6 11 -1.
+ <_>
+ 5 4 3 11 2.
+ <_>
+
+ <_>
+ 8 7 5 9 -1.
+ <_>
+ 8 10 5 3 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 10 3 10 2 2.
+ <_>
+ 0 5 10 2 2.
+ <_>
+
+ <_>
+ 0 15 18 4 -1.
+ <_>
+ 0 15 9 2 2.
+ <_>
+ 9 17 9 2 2.
+ <_>
+
+ <_>
+ 6 14 13 3 -1.
+ <_>
+ 6 15 13 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 9 2 3 13 -1.
+ <_>
+ 10 2 1 13 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 9 6 6 7 -1.
+ <_>
+ 9 6 3 7 2.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 8 6 3 7 2.
+ <_>
+
+ <_>
+ 8 0 8 5 -1.
+ <_>
+ 8 0 4 5 2.
+ <_>
+
+ <_>
+ 4 0 8 5 -1.
+ <_>
+ 8 0 4 5 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 5 1 6 19 -1.
+ <_>
+ 7 1 2 19 3.
+ <_>
+
+ <_>
+ 3 0 15 20 -1.
+ <_>
+ 8 0 5 20 3.
+ <_>
+
+ <_>
+ 0 4 14 3 -1.
+ <_>
+ 7 4 7 3 2.
+ <_>
+
+ <_>
+ 4 4 14 6 -1.
+ <_>
+ 11 4 7 3 2.
+ <_>
+ 4 7 7 3 2.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 6 7 14 3 -1.
+ <_>
+ 6 8 14 1 3.
+ <_>
+
+ <_>
+ 2 2 5 12 -1.
+ <_>
+ 2 6 5 4 3.
+ <_>
+
+ <_>
+ 9 9 7 4 -1.
+ <_>
+ 9 11 7 2 2.
+ <_>
+
+ <_>
+ 4 9 7 4 -1.
+ <_>
+ 4 11 7 2 2.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 9 1 4 10 -1.
+ <_>
+ 9 6 4 5 2.
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 3 10 17 2 -1.
+ <_>
+ 3 11 17 1 2.
+ <_>
+
+ <_>
+ 0 0 6 17 -1.
+ <_>
+ 3 0 3 17 2.
+ <_>
+
+ <_>
+ 14 0 6 12 -1.
+ <_>
+ 14 0 3 12 2.
+ <_>
+
+ <_>
+ 2 0 4 16 -1.
+ <_>
+ 4 0 2 16 2.
+ <_>
+
+ <_>
+ 14 1 6 7 -1.
+ <_>
+ 16 1 2 7 3.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 2 1 2 7 3.
+ <_>
+
+ <_>
+ 9 1 9 12 -1.
+ <_>
+ 12 1 3 12 3.
+ <_>
+
+ <_>
+ 2 1 9 12 -1.
+ <_>
+ 5 1 3 12 3.
+ <_>
+
+ <_>
+ 13 5 4 12 -1.
+ <_>
+ 13 5 2 12 2.
+ <_>
+
+ <_>
+ 3 5 4 12 -1.
+ <_>
+ 5 5 2 12 2.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 10 8 4 4 3.
+ <_>
+
+ <_>
+ 2 8 12 4 -1.
+ <_>
+ 6 8 4 4 3.
+ <_>
+
+ <_>
+ 2 9 18 11 -1.
+ <_>
+ 8 9 6 11 3.
+ <_>
+
+ <_>
+ 6 11 6 6 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 1 12 19 2 -1.
+ <_>
+ 1 13 19 1 2.
+ <_>
+
+ <_>
+ 0 12 13 3 -1.
+ <_>
+ 0 13 13 1 3.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 8 16 4 -1.
+ <_>
+ 0 8 8 2 2.
+ <_>
+ 8 10 8 2 2.
+ <_>
+
+ <_>
+ 8 6 8 8 -1.
+ <_>
+ 12 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 3 13 14 6 -1.
+ <_>
+ 3 15 14 2 3.
+ <_>
+
+ <_>
+ 4 13 15 6 -1.
+ <_>
+ 4 15 15 2 3.
+ <_>
+
+ <_>
+ 0 0 14 4 -1.
+ <_>
+ 7 0 7 4 2.
+ <_>
+
+ <_>
+ 14 3 4 10 -1.
+ <_>
+ 14 8 4 5 2.
+ <_>
+
+ <_>
+ 2 4 14 12 -1.
+ <_>
+ 2 4 7 6 2.
+ <_>
+ 9 10 7 6 2.
+ <_>
+
+ <_>
+ 7 4 6 10 -1.
+ <_>
+ 10 4 3 5 2.
+ <_>
+ 7 9 3 5 2.
+ <_>
+
+ <_>
+ 1 0 3 15 -1.
+ <_>
+ 1 5 3 5 3.
+ <_>
+
+ <_>
+ 1 1 19 12 -1.
+ <_>
+ 1 5 19 4 3.
+ <_>
+
+ <_>
+ 5 13 6 7 -1.
+ <_>
+ 7 13 2 7 3.
+ <_>
+
+ <_>
+ 10 0 4 16 -1.
+ <_>
+ 12 0 2 8 2.
+ <_>
+ 10 8 2 8 2.
+ <_>
+
+ <_>
+ 6 0 4 16 -1.
+ <_>
+ 6 0 2 8 2.
+ <_>
+ 8 8 2 8 2.
+ <_>
+
+ <_>
+ 8 1 4 11 -1.
+ <_>
+ 8 1 2 11 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 0 11 20 3 -1.
+ <_>
+ 0 12 20 1 3.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 7 16 7 4 -1.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 1 14 16 4 -1.
+ <_>
+ 1 14 8 2 2.
+ <_>
+ 9 16 8 2 2.
+ <_>
+
+ <_>
+ 7 16 13 3 -1.
+ <_>
+ 7 17 13 1 3.
+ <_>
+
+ <_>
+ 1 12 18 8 -1.
+ <_>
+ 1 12 9 4 2.
+ <_>
+ 10 16 9 4 2.
+ <_>
+
+ <_>
+ 14 3 4 10 -1.
+ <_>
+ 14 8 4 5 2.
+ <_>
+
+ <_>
+ 2 3 4 10 -1.
+ <_>
+ 2 8 4 5 2.
+ <_>
+
+ <_>
+ 2 1 16 12 -1.
+ <_>
+ 2 7 16 6 2.
+ <_>
+
+ <_>
+ 7 0 6 16 -1.
+ <_>
+ 7 8 6 8 2.
+ <_>
+
+ <_>
+ 7 1 8 12 -1.
+ <_>
+ 7 7 8 6 2.
+ <_>
+
+ <_>
+ 2 12 15 8 -1.
+ <_>
+ 7 12 5 8 3.
+ <_>
+
+ <_>
+ 4 16 15 4 -1.
+ <_>
+ 9 16 5 4 3.
+ <_>
+
+ <_>
+ 6 7 8 6 -1.
+ <_>
+ 10 7 4 6 2.
+ <_>
+
+ <_>
+ 1 8 18 12 -1.
+ <_>
+ 1 8 9 12 2.
+ <_>
+
+ <_>
+ 0 17 15 3 -1.
+ <_>
+ 5 17 5 3 3.
+ <_>
+
+ <_>
+ 9 2 6 17 -1.
+ <_>
+ 11 2 2 17 3.
+ <_>
+
+ <_>
+ 5 2 6 17 -1.
+ <_>
+ 7 2 2 17 3.
+ <_>
+
+ <_>
+ 7 4 6 7 -1.
+ <_>
+ 9 4 2 7 3.
+ <_>
+
+ <_>
+ 0 11 15 3 -1.
+ <_>
+ 0 12 15 1 3.
+ <_>
+
+ <_>
+ 9 10 11 6 -1.
+ <_>
+ 9 12 11 2 3.
+ <_>
+
+ <_>
+ 8 0 3 18 -1.
+ <_>
+ 9 0 1 18 3.
+ <_>
+
+ <_>
+ 14 11 4 8 -1.
+ <_>
+ 14 15 4 4 2.
+ <_>
+
+ <_>
+ 1 11 15 8 -1.
+ <_>
+ 1 15 15 4 2.
+ <_>
+
+ <_>
+ 9 10 3 10 -1.
+ <_>
+ 9 15 3 5 2.
+ <_>
+
+ <_>
+ 1 6 18 9 -1.
+ <_>
+ 1 9 18 3 3.
+ <_>
+
+ <_>
+ 3 1 14 2 -1.
+ <_>
+ 3 2 14 1 2.
+ <_>
+
+ <_>
+ 0 1 20 3 -1.
+ <_>
+ 0 2 20 1 3.
+ <_>
+
+ <_>
+ 5 0 14 2 -1.
+ <_>
+ 5 1 14 1 2.
+ <_>
+
+ <_>
+ 3 8 12 10 -1.
+ <_>
+ 7 8 4 10 3.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 6 2 8 12 -1.
+ <_>
+ 6 6 8 4 3.
+ <_>
+
+ <_>
+ 4 3 12 4 -1.
+ <_>
+ 4 5 12 2 2.
+ <_>
+
+ <_>
+ 0 0 5 9 -1.
+ <_>
+ 0 3 5 3 3.
+ <_>
+
+ <_>
+ 7 1 9 6 -1.
+ <_>
+ 7 4 9 3 2.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 4 10 2 10 3.
+ <_>
+
+ <_>
+ 2 5 17 14 -1.
+ <_>
+ 2 12 17 7 2.
+ <_>
+
+ <_>
+ 0 7 10 8 -1.
+ <_>
+ 0 11 10 4 2.
+ <_>
+
+ <_>
+ 12 4 3 15 -1.
+ <_>
+ 13 4 1 15 3.
+ <_>
+
+ <_>
+ 5 4 3 15 -1.
+ <_>
+ 6 4 1 15 3.
+ <_>
+
+ <_>
+ 8 7 12 5 -1.
+ <_>
+ 12 7 4 5 3.
+ <_>
+
+ <_>
+ 0 7 12 5 -1.
+ <_>
+ 4 7 4 5 3.
+ <_>
+
+ <_>
+ 3 6 14 3 -1.
+ <_>
+ 3 7 14 1 3.
+ <_>
+
+ <_>
+ 6 1 2 18 -1.
+ <_>
+ 7 1 1 18 2.
+ <_>
+
+ <_>
+ 6 16 9 4 -1.
+ <_>
+ 6 18 9 2 2.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 3 17 14 2 2.
+ <_>
+
+ <_>
+ 7 16 13 3 -1.
+ <_>
+ 7 17 13 1 3.
+ <_>
+
+ <_>
+ 0 4 12 4 -1.
+ <_>
+ 4 4 4 4 3.
+ <_>
+
+ <_>
+ 6 4 14 4 -1.
+ <_>
+ 13 4 7 2 2.
+ <_>
+ 6 6 7 2 2.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 3 12 10 8 -1.
+ <_>
+ 3 12 5 4 2.
+ <_>
+ 8 16 5 4 2.
+ <_>
+
+ <_>
+ 12 10 5 9 -1.
+ <_>
+ 12 13 5 3 3.
+ <_>
+
+ <_>
+ 0 13 14 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+ 7 15 7 2 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 2 10 6 10 -1.
+ <_>
+ 2 10 3 5 2.
+ <_>
+ 5 15 3 5 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 16 7 2 3.
+ <_>
+
+ <_>
+ 0 12 20 6 -1.
+ <_>
+ 0 15 20 3 2.
+ <_>
+
+ <_>
+ 1 16 16 4 -1.
+ <_>
+ 1 18 16 2 2.
+ <_>
+
+ <_>
+ 12 10 5 9 -1.
+ <_>
+ 12 13 5 3 3.
+ <_>
+
+ <_>
+ 3 10 5 9 -1.
+ <_>
+ 3 13 5 3 3.
+ <_>
+
+ <_>
+ 5 8 13 12 -1.
+ <_>
+ 5 12 13 4 3.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 5 5 5 3 2.
+ <_>
+ 10 8 5 3 2.
+ <_>
+
+ <_>
+ 5 5 10 6 -1.
+ <_>
+ 10 5 5 3 2.
+ <_>
+ 5 8 5 3 2.
+ <_>
+
+ <_>
+ 0 3 13 2 -1.
+ <_>
+ 0 4 13 1 2.
+ <_>
+
+ <_>
+ 8 2 12 4 -1.
+ <_>
+ 8 4 12 2 2.
+ <_>
+
+ <_>
+ 5 0 8 6 -1.
+ <_>
+ 5 2 8 2 3.
+ <_>
+
+ <_>
+ 5 2 14 4 -1.
+ <_>
+ 12 2 7 2 2.
+ <_>
+ 5 4 7 2 2.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 4 10 4 2.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 2 8 2 2.
+ <_>
+
+ <_>
+ 8 9 4 8 -1.
+ <_>
+ 8 13 4 4 2.
+ <_>
+
+ <_>
+ 9 10 5 8 -1.
+ <_>
+ 9 14 5 4 2.
+ <_>
+
+ <_>
+ 0 14 12 4 -1.
+ <_>
+ 6 14 6 4 2.
+ <_>
+
+ <_>
+ 4 6 14 4 -1.
+ <_>
+ 11 6 7 2 2.
+ <_>
+ 4 8 7 2 2.
+ <_>
+
+ <_>
+ 4 4 11 10 -1.
+ <_>
+ 4 9 11 5 2.
+ <_>
+
+ <_>
+ 7 1 9 12 -1.
+ <_>
+ 7 7 9 6 2.
+ <_>
+
+ <_>
+ 8 5 3 15 -1.
+ <_>
+ 8 10 3 5 3.
+ <_>
+
+ <_>
+ 7 13 13 3 -1.
+ <_>
+ 7 14 13 1 3.
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 0 6 20 2 3.
+ <_>
+
+ <_>
+ 5 3 12 4 -1.
+ <_>
+ 5 5 12 2 2.
+ <_>
+
+ <_>
+ 6 11 8 8 -1.
+ <_>
+ 6 11 4 4 2.
+ <_>
+ 10 15 4 4 2.
+ <_>
+
+ <_>
+ 5 15 13 3 -1.
+ <_>
+ 5 16 13 1 3.
+ <_>
+
+ <_>
+ 0 13 18 4 -1.
+ <_>
+ 0 13 9 2 2.
+ <_>
+ 9 15 9 2 2.
+ <_>
+
+ <_>
+ 10 0 3 13 -1.
+ <_>
+ 11 0 1 13 3.
+ <_>
+
+ <_>
+ 7 0 3 13 -1.
+ <_>
+ 8 0 1 13 3.
+ <_>
+
+ <_>
+ 2 0 18 18 -1.
+ <_>
+ 8 0 6 18 3.
+ <_>
+
+ <_>
+ 2 2 12 15 -1.
+ <_>
+ 2 7 12 5 3.
+ <_>
+
+ <_>
+ 7 1 11 18 -1.
+ <_>
+ 7 7 11 6 3.
+ <_>
+
+ <_>
+ 8 5 4 14 -1.
+ <_>
+ 8 5 2 7 2.
+ <_>
+ 10 12 2 7 2.
+ <_>
+
+ <_>
+ 10 5 3 14 -1.
+ <_>
+ 10 12 3 7 2.
+ <_>
+
+ <_>
+ 7 5 3 14 -1.
+ <_>
+ 7 12 3 7 2.
+ <_>
+
+ <_>
+ 3 4 14 4 -1.
+ <_>
+ 3 6 14 2 2.
+ <_>
+
+ <_>
+ 0 5 20 4 -1.
+ <_>
+ 0 5 10 2 2.
+ <_>
+ 10 7 10 2 2.
+ <_>
+
+ <_>
+ 8 4 4 14 -1.
+ <_>
+ 8 11 4 7 2.
+ <_>
+
+ <_>
+ 15 3 4 16 -1.
+ <_>
+ 17 3 2 8 2.
+ <_>
+ 15 11 2 8 2.
+ <_>
+
+ <_>
+ 2 0 4 7 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+
+ <_>
+ 12 6 5 9 -1.
+ <_>
+ 12 9 5 3 3.
+ <_>
+
+ <_>
+ 2 1 8 6 -1.
+ <_>
+ 2 3 8 2 3.
+ <_>
+
+ <_>
+ 10 1 4 8 -1.
+ <_>
+ 10 1 2 8 2.
+ <_>
+
+ <_>
+ 6 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 4 6 5 6 -1.
+ <_>
+ 4 9 5 3 2.
+ <_>
+
+ <_>
+ 7 15 7 4 -1.
+ <_>
+ 7 17 7 2 2.
+ <_>
+
+ <_>
+ 8 6 4 8 -1.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 10 10 7 6 -1.
+ <_>
+ 10 12 7 2 3.
+ <_>
+
+ <_>
+ 3 10 7 6 -1.
+ <_>
+ 3 12 7 2 3.
+ <_>
+
+ <_>
+ 8 6 6 12 -1.
+ <_>
+ 11 6 3 6 2.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 5 6 4 14 -1.
+ <_>
+ 5 6 2 7 2.
+ <_>
+ 7 13 2 7 2.
+ <_>
+
+ <_>
+ 0 15 20 2 -1.
+ <_>
+ 0 15 10 2 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 6 15 13 2 -1.
+ <_>
+ 6 16 13 1 2.
+ <_>
+
+ <_>
+ 0 17 19 3 -1.
+ <_>
+ 0 18 19 1 3.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 12 5 3 5 2.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 3 3 13 2 -1.
+ <_>
+ 3 4 13 1 2.
+ <_>
+
+ <_>
+ 2 0 17 6 -1.
+ <_>
+ 2 2 17 2 3.
+ <_>
+
+ <_>
+ 1 3 4 16 -1.
+ <_>
+ 1 3 2 8 2.
+ <_>
+ 3 11 2 8 2.
+ <_>
+
+ <_>
+ 12 10 8 6 -1.
+ <_>
+ 12 12 8 2 3.
+ <_>
+
+ <_>
+ 1 7 12 4 -1.
+ <_>
+ 5 7 4 4 3.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 14 0 3 5 2.
+ <_>
+
+ <_>
+ 3 0 14 6 -1.
+ <_>
+ 10 0 7 6 2.
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+ 7 14 3 5 2.
+ <_>
+
+ <_>
+ 0 14 18 6 -1.
+ <_>
+ 6 14 6 6 3.
+ <_>
+
+ <_>
+ 11 0 6 16 -1.
+ <_>
+ 14 0 3 8 2.
+ <_>
+ 11 8 3 8 2.
+ <_>
+
+ <_>
+ 5 10 4 7 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 11 10 4 8 -1.
+ <_>
+ 11 10 2 8 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 7 10 2 8 2.
+ <_>
+
+ <_>
+ 16 0 3 13 -1.
+ <_>
+ 17 0 1 13 3.
+ <_>
+
+ <_>
+ 1 14 16 6 -1.
+ <_>
+ 9 14 8 6 2.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 5 0 10 6 -1.
+ <_>
+ 5 3 10 3 2.
+ <_>
+
+ <_>
+ 6 4 14 15 -1.
+ <_>
+ 6 9 14 5 3.
+ <_>
+
+ <_>
+ 3 1 14 4 -1.
+ <_>
+ 3 1 7 2 2.
+ <_>
+ 10 3 7 2 2.
+ <_>
+
+ <_>
+ 8 3 6 10 -1.
+ <_>
+ 11 3 3 5 2.
+ <_>
+ 8 8 3 5 2.
+ <_>
+
+ <_>
+ 6 3 6 10 -1.
+ <_>
+ 6 3 3 5 2.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 12 4 3 10 -1.
+ <_>
+ 12 9 3 5 2.
+ <_>
+
+ <_>
+ 5 4 3 10 -1.
+ <_>
+ 5 9 3 5 2.
+ <_>
+
+ <_>
+ 11 0 6 5 -1.
+ <_>
+ 11 0 3 5 2.
+ <_>
+
+ <_>
+ 5 7 10 6 -1.
+ <_>
+ 5 7 5 3 2.
+ <_>
+ 10 10 5 3 2.
+ <_>
+
+ <_>
+ 1 10 19 3 -1.
+ <_>
+ 1 11 19 1 3.
+ <_>
+
+ <_>
+ 1 0 3 13 -1.
+ <_>
+ 2 0 1 13 3.
+ <_>
+
+ <_>
+ 14 1 6 16 -1.
+ <_>
+ 16 1 2 16 3.
+ <_>
+
+ <_>
+ 3 5 14 12 -1.
+ <_>
+ 3 5 7 6 2.
+ <_>
+ 10 11 7 6 2.
+ <_>
+
+ <_>
+ 14 1 6 16 -1.
+ <_>
+ 16 1 2 16 3.
+ <_>
+
+ <_>
+ 0 1 6 16 -1.
+ <_>
+ 2 1 2 16 3.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 8 2 4 4 3.
+ <_>
+
+ <_>
+ 3 9 12 6 -1.
+ <_>
+ 3 12 12 3 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 8 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 8 9 6 10 -1.
+ <_>
+ 11 9 3 5 2.
+ <_>
+ 8 14 3 5 2.
+ <_>
+
+ <_>
+ 6 9 6 10 -1.
+ <_>
+ 6 9 3 5 2.
+ <_>
+ 9 14 3 5 2.
+ <_>
+
+ <_>
+ 5 17 10 3 -1.
+ <_>
+ 5 17 5 3 2.
+ <_>
+
+ <_>
+ 7 2 2 18 -1.
+ <_>
+ 8 2 1 18 2.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 10 14 5 6 3.
+ <_>
+
+ <_>
+ 0 9 7 6 -1.
+ <_>
+ 0 11 7 2 3.
+ <_>
+
+ <_>
+ 5 14 15 6 -1.
+ <_>
+ 10 14 5 6 3.
+ <_>
+
+ <_>
+ 0 14 15 6 -1.
+ <_>
+ 5 14 5 6 3.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 2 4 4 14 -1.
+ <_>
+ 2 4 2 7 2.
+ <_>
+ 4 11 2 7 2.
+ <_>
+
+ <_>
+ 11 1 6 12 -1.
+ <_>
+ 14 1 3 6 2.
+ <_>
+ 11 7 3 6 2.
+ <_>
+
+ <_>
+ 3 1 6 12 -1.
+ <_>
+ 3 1 3 6 2.
+ <_>
+ 6 7 3 6 2.
+ <_>
+
+ <_>
+ 4 7 15 6 -1.
+ <_>
+ 9 7 5 6 3.
+ <_>
+
+ <_>
+ 1 0 6 10 -1.
+ <_>
+ 1 0 3 5 2.
+ <_>
+ 4 5 3 5 2.
+ <_>
+
+ <_>
+ 8 13 9 5 -1.
+ <_>
+ 11 13 3 5 3.
+ <_>
+
+ <_>
+ 0 0 9 7 -1.
+ <_>
+ 3 0 3 7 3.
+ <_>
+
+ <_>
+ 9 7 8 5 -1.
+ <_>
+ 9 7 4 5 2.
+ <_>
+
+ <_>
+ 3 7 8 5 -1.
+ <_>
+ 7 7 4 5 2.
+ <_>
+
+ <_>
+ 4 0 12 19 -1.
+ <_>
+ 8 0 4 19 3.
+ <_>
+
+ <_>
+ 3 8 8 6 -1.
+ <_>
+ 7 8 4 6 2.
+ <_>
+
+ <_>
+ 15 2 5 6 -1.
+ <_>
+ 15 5 5 3 2.
+ <_>
+
+ <_>
+ 3 1 13 10 -1.
+ <_>
+ 3 6 13 5 2.
+ <_>
+
+ <_>
+ 14 0 3 10 -1.
+ <_>
+ 14 5 3 5 2.
+ <_>
+
+ <_>
+ 0 1 20 8 -1.
+ <_>
+ 0 1 10 4 2.
+ <_>
+ 10 5 10 4 2.
+ <_>
+
+ <_>
+ 8 6 6 12 -1.
+ <_>
+ 11 6 3 6 2.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 8 10 6 10 -1.
+ <_>
+ 10 10 2 10 3.
+ <_>
+
+ <_>
+ 9 3 2 14 -1.
+ <_>
+ 9 10 2 7 2.
+ <_>
+
+ <_>
+ 11 1 4 18 -1.
+ <_>
+ 11 1 2 18 2.
+ <_>
+
+ <_>
+ 5 1 4 18 -1.
+ <_>
+ 7 1 2 18 2.
+ <_>
+
+ <_>
+ 7 1 8 5 -1.
+ <_>
+ 7 1 4 5 2.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 7 5 2 8 3.
+ <_>
+
+ <_>
+ 12 9 7 6 -1.
+ <_>
+ 12 11 7 2 3.
+ <_>
+
+ <_>
+ 1 9 7 6 -1.
+ <_>
+ 1 11 7 2 3.
+ <_>
+
+ <_>
+ 9 10 7 4 -1.
+ <_>
+ 9 12 7 2 2.
+ <_>
+
+ <_>
+ 0 2 5 9 -1.
+ <_>
+ 0 5 5 3 3.
+ <_>
+
+ <_>
+ 10 2 6 9 -1.
+ <_>
+ 10 5 6 3 3.
+ <_>
+
+ <_>
+ 0 1 18 6 -1.
+ <_>
+ 0 1 9 3 2.
+ <_>
+ 9 4 9 3 2.
+ <_>
+
+ <_>
+ 5 6 14 3 -1.
+ <_>
+ 5 7 14 1 3.
+ <_>
+
+ <_>
+ 0 12 6 5 -1.
+ <_>
+ 3 12 3 5 2.
+ <_>
+
+ <_>
+ 10 10 9 6 -1.
+ <_>
+ 13 10 3 6 3.
+ <_>
+
+ <_>
+ 0 9 5 9 -1.
+ <_>
+ 0 12 5 3 3.
+ <_>
+
+ <_>
+ 8 0 8 19 -1.
+ <_>
+ 8 0 4 19 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 9 0 2 13 -1.
+ <_>
+ 9 0 1 13 2.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 3 9 9 6 -1.
+ <_>
+ 6 9 3 6 3.
+ <_>
+
+ <_>
+ 6 4 12 14 -1.
+ <_>
+ 10 4 4 14 3.
+ <_>
+
+ <_>
+ 2 4 12 14 -1.
+ <_>
+ 6 4 4 14 3.
+ <_>
+
+ <_>
+ 7 1 8 5 -1.
+ <_>
+ 7 1 4 5 2.
+ <_>
+
+ <_>
+ 4 0 8 19 -1.
+ <_>
+ 8 0 4 19 2.
+ <_>
+
+ <_>
+ 8 13 9 5 -1.
+ <_>
+ 11 13 3 5 3.
+ <_>
+
+ <_>
+ 3 13 9 5 -1.
+ <_>
+ 6 13 3 5 3.
+ <_>
+
+ <_>
+ 4 1 12 4 -1.
+ <_>
+ 8 1 4 4 3.
+ <_>
+
+ <_>
+ 1 2 8 18 -1.
+ <_>
+ 1 2 4 9 2.
+ <_>
+ 5 11 4 9 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 11 11 6 9 -1.
+ <_>
+ 11 14 6 3 3.
+ <_>
+
+ <_>
+ 3 11 6 9 -1.
+ <_>
+ 3 14 6 3 3.
+ <_>
+
+ <_>
+ 8 14 10 6 -1.
+ <_>
+ 13 14 5 3 2.
+ <_>
+ 8 17 5 3 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 9 5 7 6 -1.
+ <_>
+ 9 7 7 2 3.
+ <_>
+
+ <_>
+ 4 5 7 6 -1.
+ <_>
+ 4 7 7 2 3.
+ <_>
+
+ <_>
+ 3 0 17 16 -1.
+ <_>
+ 3 8 17 8 2.
+ <_>
+
+ <_>
+ 0 0 19 3 -1.
+ <_>
+ 0 1 19 1 3.
+ <_>
+
+ <_>
+ 11 1 5 9 -1.
+ <_>
+ 11 4 5 3 3.
+ <_>
+
+ <_>
+ 4 1 10 6 -1.
+ <_>
+ 4 4 10 3 2.
+ <_>
+
+ <_>
+ 7 10 12 9 -1.
+ <_>
+ 7 13 12 3 3.
+ <_>
+
+ <_>
+ 1 10 12 3 -1.
+ <_>
+ 7 10 6 3 2.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+ 7 14 3 6 2.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 14 5 3 2.
+ <_>
+ 7 17 5 3 2.
+ <_>
+
+ <_>
+ 6 9 8 8 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+ 6 13 4 4 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 7 17 6 3 3.
+ <_>
+
+ <_>
+ 6 6 10 6 -1.
+ <_>
+ 11 6 5 3 2.
+ <_>
+ 6 9 5 3 2.
+ <_>
+
+ <_>
+ 4 6 10 6 -1.
+ <_>
+ 4 6 5 3 2.
+ <_>
+ 9 9 5 3 2.
+ <_>
+
+ <_>
+ 6 14 9 5 -1.
+ <_>
+ 9 14 3 5 3.
+ <_>
+
+ <_>
+ 6 10 6 10 -1.
+ <_>
+ 8 10 2 10 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 8 8 4 7 -1.
+ <_>
+ 10 8 2 7 2.
+ <_>
+
+ <_>
+ 8 10 8 4 -1.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 0 0 10 9 -1.
+ <_>
+ 0 3 10 3 3.
+ <_>
+
+ <_>
+ 9 1 8 4 -1.
+ <_>
+ 9 3 8 2 2.
+ <_>
+
+ <_>
+ 4 5 5 6 -1.
+ <_>
+ 4 8 5 3 2.
+ <_>
+
+ <_>
+ 8 6 9 4 -1.
+ <_>
+ 8 8 9 2 2.
+ <_>
+
+ <_>
+ 0 0 3 13 -1.
+ <_>
+ 1 0 1 13 3.
+ <_>
+
+ <_>
+ 13 1 6 11 -1.
+ <_>
+ 15 1 2 11 3.
+ <_>
+
+ <_>
+ 1 1 6 11 -1.
+ <_>
+ 3 1 2 11 3.
+ <_>
+
+ <_>
+ 11 0 6 5 -1.
+ <_>
+ 11 0 3 5 2.
+ <_>
+
+ <_>
+ 4 2 6 17 -1.
+ <_>
+ 6 2 2 17 3.
+ <_>
+
+ <_>
+ 8 12 8 8 -1.
+ <_>
+ 12 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 6 6 8 4 -1.
+ <_>
+ 6 8 8 2 2.
+ <_>
+
+ <_>
+ 2 10 9 6 -1.
+ <_>
+ 2 13 9 3 2.
+ <_>
+
+ <_>
+ 9 11 11 6 -1.
+ <_>
+ 9 14 11 3 2.
+ <_>
+
+ <_>
+ 3 11 14 8 -1.
+ <_>
+ 3 11 7 4 2.
+ <_>
+ 10 15 7 4 2.
+ <_>
+
+ <_>
+ 8 4 4 10 -1.
+ <_>
+ 8 9 4 5 2.
+ <_>
+
+ <_>
+ 1 12 13 3 -1.
+ <_>
+ 1 13 13 1 3.
+ <_>
+
+ <_>
+ 9 7 4 12 -1.
+ <_>
+ 9 11 4 4 3.
+ <_>
+
+ <_>
+ 0 14 7 6 -1.
+ <_>
+ 0 17 7 3 2.
+ <_>
+
+ <_>
+ 13 11 7 6 -1.
+ <_>
+ 13 13 7 2 3.
+ <_>
+
+ <_>
+ 4 4 12 16 -1.
+ <_>
+ 4 12 12 8 2.
+ <_>
+
+ <_>
+ 11 10 9 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+
+ <_>
+ 0 10 9 4 -1.
+ <_>
+ 0 12 9 2 2.
+ <_>
+
+ <_>
+ 2 11 16 6 -1.
+ <_>
+ 2 14 16 3 2.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 7 0 6 7 -1.
+ <_>
+ 9 0 2 7 3.
+ <_>
+
+ <_>
+ 0 11 12 4 -1.
+ <_>
+ 4 11 4 4 3.
+ <_>
+
+ <_>
+ 11 9 6 8 -1.
+ <_>
+ 13 9 2 8 3.
+ <_>
+
+ <_>
+ 3 9 6 8 -1.
+ <_>
+ 5 9 2 8 3.
+ <_>
+
+ <_>
+ 11 0 2 19 -1.
+ <_>
+ 11 0 1 19 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 7 10 2 8 2.
+ <_>
+
+ <_>
+ 13 14 7 6 -1.
+ <_>
+ 13 16 7 2 3.
+ <_>
+
+ <_>
+ 1 15 13 3 -1.
+ <_>
+ 1 16 13 1 3.
+ <_>
+
+ <_>
+ 5 15 13 3 -1.
+ <_>
+ 5 16 13 1 3.
+ <_>
+
+ <_>
+ 4 16 9 4 -1.
+ <_>
+ 4 18 9 2 2.
+ <_>
+
+ <_>
+ 7 13 7 6 -1.
+ <_>
+ 7 15 7 2 3.
+ <_>
+
+ <_>
+ 3 14 14 4 -1.
+ <_>
+ 3 14 7 2 2.
+ <_>
+ 10 16 7 2 2.
+ <_>
+
+ <_>
+ 13 0 7 14 -1.
+ <_>
+ 13 7 7 7 2.
+ <_>
+
+ <_>
+ 0 0 7 14 -1.
+ <_>
+ 0 7 7 7 2.
+ <_>
+
+ <_>
+ 3 2 16 4 -1.
+ <_>
+ 3 2 8 4 2.
+ <_>
+
+ <_>
+ 6 2 4 8 -1.
+ <_>
+ 6 6 4 4 2.
+ <_>
+
+ <_>
+ 10 0 3 14 -1.
+ <_>
+ 10 7 3 7 2.
+ <_>
+
+ <_>
+ 1 7 18 9 -1.
+ <_>
+ 1 10 18 3 3.
+ <_>
+
+ <_>
+ 6 5 9 14 -1.
+ <_>
+ 9 5 3 14 3.
+ <_>
+
+ <_>
+ 5 5 9 14 -1.
+ <_>
+ 8 5 3 14 3.
+ <_>
+
+ <_>
+ 11 2 2 15 -1.
+ <_>
+ 11 2 1 15 2.
+ <_>
+
+ <_>
+ 6 8 4 8 -1.
+ <_>
+ 8 8 2 8 2.
+ <_>
+
+ <_>
+ 6 10 10 9 -1.
+ <_>
+ 6 13 10 3 3.
+ <_>
+
+ <_>
+ 0 16 14 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+ 7 18 7 2 2.
+ <_>
+
+ <_>
+ 9 5 4 13 -1.
+ <_>
+ 9 5 2 13 2.
+ <_>
+
+ <_>
+ 4 11 12 4 -1.
+ <_>
+ 8 11 4 4 3.
+ <_>
+
+ <_>
+ 6 17 14 2 -1.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 0 9 14 2 -1.
+ <_>
+ 7 9 7 2 2.
+ <_>
+
+ <_>
+ 16 0 4 15 -1.
+ <_>
+ 16 0 2 15 2.
+ <_>
+
+ <_>
+ 0 0 4 10 -1.
+ <_>
+ 2 0 2 10 2.
+ <_>
+
+ <_>
+ 16 8 4 12 -1.
+ <_>
+ 16 12 4 4 3.
+ <_>
+
+ <_>
+ 0 8 4 12 -1.
+ <_>
+ 0 12 4 4 3.
+ <_>
+
+ <_>
+ 12 12 8 6 -1.
+ <_>
+ 12 14 8 2 3.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 9 5 4 14 -1.
+ <_>
+ 11 5 2 7 2.
+ <_>
+ 9 12 2 7 2.
+ <_>
+
+ <_>
+ 0 11 11 6 -1.
+ <_>
+ 0 14 11 3 2.
+ <_>
+
+ <_>
+ 5 15 12 5 -1.
+ <_>
+ 9 15 4 5 3.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 6 6 3 6 2.
+ <_>
+ 9 12 3 6 2.
+ <_>
+
+ <_>
+ 7 7 8 4 -1.
+ <_>
+ 7 7 4 4 2.
+ <_>
+
+ <_>
+ 5 8 6 10 -1.
+ <_>
+ 5 8 3 5 2.
+ <_>
+ 8 13 3 5 2.
+ <_>
+
+ <_>
+ 7 4 7 14 -1.
+ <_>
+ 7 11 7 7 2.
+ <_>
+
+ <_>
+ 7 6 4 8 -1.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 9 2 6 9 -1.
+ <_>
+ 9 5 6 3 3.
+ <_>
+
+ <_>
+ 5 2 6 9 -1.
+ <_>
+ 5 5 6 3 3.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 8 1 4 11 -1.
+ <_>
+ 10 1 2 11 2.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 10 1 9 2 2.
+ <_>
+ 1 3 9 2 2.
+ <_>
+
+ <_>
+ 3 4 4 16 -1.
+ <_>
+ 3 4 2 8 2.
+ <_>
+ 5 12 2 8 2.
+ <_>
+
+ <_>
+ 8 12 6 8 -1.
+ <_>
+ 10 12 2 8 3.
+ <_>
+
+ <_>
+ 0 3 6 7 -1.
+ <_>
+ 2 3 2 7 3.
+ <_>
+
+ <_>
+ 14 2 6 9 -1.
+ <_>
+ 14 5 6 3 3.
+ <_>
+
+ <_>
+ 0 2 7 9 -1.
+ <_>
+ 0 5 7 3 3.
+ <_>
+
+ <_>
+ 16 0 3 13 -1.
+ <_>
+ 17 0 1 13 3.
+ <_>
+
+ <_>
+ 1 0 3 13 -1.
+ <_>
+ 2 0 1 13 3.
+ <_>
+
+ <_>
+ 6 7 12 7 -1.
+ <_>
+ 6 7 6 7 2.
+ <_>
+
+ <_>
+ 5 3 6 10 -1.
+ <_>
+ 5 3 3 5 2.
+ <_>
+ 8 8 3 5 2.
+ <_>
+
+ <_>
+ 6 9 9 5 -1.
+ <_>
+ 9 9 3 5 3.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 4 4 12 8 -1.
+ <_>
+ 4 4 6 4 2.
+ <_>
+ 10 8 6 4 2.
+ <_>
+
+ <_>
+ 8 8 10 6 -1.
+ <_>
+ 13 8 5 3 2.
+ <_>
+ 8 11 5 3 2.
+ <_>
+
+ <_>
+ 2 8 10 6 -1.
+ <_>
+ 2 8 5 3 2.
+ <_>
+ 7 11 5 3 2.
+ <_>
+
+ <_>
+ 9 5 8 14 -1.
+ <_>
+ 13 5 4 7 2.
+ <_>
+ 9 12 4 7 2.
+ <_>
+
+ <_>
+ 3 0 3 13 -1.
+ <_>
+ 4 0 1 13 3.
+ <_>
+
+ <_>
+ 6 14 9 5 -1.
+ <_>
+ 9 14 3 5 3.
+ <_>
+
+ <_>
+ 1 6 4 14 -1.
+ <_>
+ 1 6 2 7 2.
+ <_>
+ 3 13 2 7 2.
+ <_>
+
+ <_>
+ 9 6 8 8 -1.
+ <_>
+ 13 6 4 4 2.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 0 4 4 8 -1.
+ <_>
+ 2 4 2 8 2.
+ <_>
+
+ <_>
+ 9 5 8 14 -1.
+ <_>
+ 13 5 4 7 2.
+ <_>
+ 9 12 4 7 2.
+ <_>
+
+ <_>
+ 3 6 8 8 -1.
+ <_>
+ 3 6 4 4 2.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 11 3 6 10 -1.
+ <_>
+ 14 3 3 5 2.
+ <_>
+ 11 8 3 5 2.
+ <_>
+
+ <_>
+ 3 3 6 10 -1.
+ <_>
+ 3 3 3 5 2.
+ <_>
+ 6 8 3 5 2.
+ <_>
+
+ <_>
+ 11 0 8 10 -1.
+ <_>
+ 15 0 4 5 2.
+ <_>
+ 11 5 4 5 2.
+ <_>
+
+ <_>
+ 3 13 13 3 -1.
+ <_>
+ 3 14 13 1 3.
+ <_>
+
+ <_>
+ 5 14 13 3 -1.
+ <_>
+ 5 15 13 1 3.
+ <_>
+
+ <_>
+ 0 4 4 12 -1.
+ <_>
+ 0 8 4 4 3.
+ <_>
+
+ <_>
+ 4 8 16 6 -1.
+ <_>
+ 12 8 8 3 2.
+ <_>
+ 4 11 8 3 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 12 11 7 6 -1.
+ <_>
+ 12 13 7 2 3.
+ <_>
+
+ <_>
+ 2 9 9 7 -1.
+ <_>
+ 5 9 3 7 3.
+ <_>
+
+ <_>
+ 5 6 15 9 -1.
+ <_>
+ 5 9 15 3 3.
+ <_>
+
+ <_>
+ 0 6 15 9 -1.
+ <_>
+ 0 9 15 3 3.
+ <_>
+
+ <_>
+ 6 8 14 2 -1.
+ <_>
+ 6 9 14 1 2.
+ <_>
+
+ <_>
+ 3 8 10 3 -1.
+ <_>
+ 8 8 5 3 2.
+ <_>
+
+ <_>
+ 11 0 9 5 -1.
+ <_>
+ 14 0 3 5 3.
+ <_>
+
+ <_>
+ 2 6 16 2 -1.
+ <_>
+ 10 6 8 2 2.
+ <_>
+
+ <_>
+ 5 12 12 8 -1.
+ <_>
+ 5 12 6 8 2.
+ <_>
+
+ <_>
+ 0 3 18 3 -1.
+ <_>
+ 0 4 18 1 3.
+ <_>
+
+ <_>
+ 3 15 14 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+ 3 17 7 2 2.
+ <_>
+
+ <_>
+ 2 7 16 2 -1.
+ <_>
+ 2 8 16 1 2.
+ <_>
+
+ <_>
+ 10 2 7 6 -1.
+ <_>
+ 10 4 7 2 3.
+ <_>
+
+ <_>
+ 0 10 19 2 -1.
+ <_>
+ 0 11 19 1 2.
+ <_>
+
+ <_>
+ 13 0 7 18 -1.
+ <_>
+ 13 9 7 9 2.
+ <_>
+
+ <_>
+ 1 9 9 5 -1.
+ <_>
+ 4 9 3 5 3.
+ <_>
+
+ <_>
+ 18 0 2 17 -1.
+ <_>
+ 18 0 1 17 2.
+ <_>
+
+ <_>
+ 0 0 2 16 -1.
+ <_>
+ 1 0 1 16 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 10 1 3 5 2.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 0 9 12 11 -1.
+ <_>
+ 4 9 4 11 3.
+ <_>
+
+ <_>
+ 10 2 4 16 -1.
+ <_>
+ 10 2 2 16 2.
+ <_>
+
+ <_>
+ 6 2 4 16 -1.
+ <_>
+ 8 2 2 16 2.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 7 4 4 12 -1.
+ <_>
+ 9 4 2 12 2.
+ <_>
+
+ <_>
+ 7 9 10 9 -1.
+ <_>
+ 7 9 5 9 2.
+ <_>
+
+ <_>
+ 0 6 13 3 -1.
+ <_>
+ 0 7 13 1 3.
+ <_>
+
+ <_>
+ 10 2 7 6 -1.
+ <_>
+ 10 4 7 2 3.
+ <_>
+
+ <_>
+ 4 2 11 6 -1.
+ <_>
+ 4 4 11 2 3.
+ <_>
+
+ <_>
+ 9 1 8 4 -1.
+ <_>
+ 9 3 8 2 2.
+ <_>
+
+ <_>
+ 5 5 6 10 -1.
+ <_>
+ 5 5 3 5 2.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 15 3 3 13 -1.
+ <_>
+ 16 3 1 13 3.
+ <_>
+
+ <_>
+ 2 3 3 13 -1.
+ <_>
+ 3 3 1 13 3.
+ <_>
+
+ <_>
+ 13 1 3 13 -1.
+ <_>
+ 14 1 1 13 3.
+ <_>
+
+ <_>
+ 4 1 10 6 -1.
+ <_>
+ 4 3 10 2 3.
+ <_>
+
+ <_>
+ 0 2 20 8 -1.
+ <_>
+ 0 6 20 4 2.
+ <_>
+
+ <_>
+ 2 1 13 18 -1.
+ <_>
+ 2 10 13 9 2.
+ <_>
+
+ <_>
+ 9 5 3 10 -1.
+ <_>
+ 9 10 3 5 2.
+ <_>
+
+ <_>
+ 3 6 12 14 -1.
+ <_>
+ 9 6 6 14 2.
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 2 14 18 2 -1.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 4 1 3 13 -1.
+ <_>
+ 5 1 1 13 3.
+ <_>
+
+ <_>
+ 11 6 6 7 -1.
+ <_>
+ 13 6 2 7 3.
+ <_>
+
+ <_>
+ 3 6 6 7 -1.
+ <_>
+ 5 6 2 7 3.
+ <_>
+
+ <_>
+ 12 0 3 13 -1.
+ <_>
+ 13 0 1 13 3.
+ <_>
+
+ <_>
+ 8 6 3 13 -1.
+ <_>
+ 9 6 1 13 3.
+ <_>
+
+ <_>
+ 8 8 5 12 -1.
+ <_>
+ 8 12 5 4 3.
+ <_>
+
+ <_>
+ 2 4 8 5 -1.
+ <_>
+ 6 4 4 5 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 7 4 6 16 -1.
+ <_>
+ 7 4 3 8 2.
+ <_>
+ 10 12 3 8 2.
+ <_>
+
+ <_>
+ 12 0 3 13 -1.
+ <_>
+ 13 0 1 13 3.
+ <_>
+
+ <_>
+ 3 7 8 4 -1.
+ <_>
+ 3 9 8 2 2.
+ <_>
+
+ <_>
+ 4 8 16 6 -1.
+ <_>
+ 12 8 8 3 2.
+ <_>
+ 4 11 8 3 2.
+ <_>
+
+ <_>
+ 5 11 9 8 -1.
+ <_>
+ 5 15 9 4 2.
+ <_>
+
+ <_>
+ 10 3 6 17 -1.
+ <_>
+ 12 3 2 17 3.
+ <_>
+
+ <_>
+ 4 3 6 17 -1.
+ <_>
+ 6 3 2 17 3.
+ <_>
+
+ <_>
+ 5 6 10 3 -1.
+ <_>
+ 5 6 5 3 2.
+ <_>
+
+ <_>
+ 1 16 16 2 -1.
+ <_>
+ 9 16 8 2 2.
+ <_>
+
+ <_>
+ 7 1 6 10 -1.
+ <_>
+ 9 1 2 10 3.
+ <_>
+
+ <_>
+ 5 0 3 13 -1.
+ <_>
+ 6 0 1 13 3.
+ <_>
+
+ <_>
+ 4 9 13 2 -1.
+ <_>
+ 4 10 13 1 2.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 3 0 14 12 -1.
+ <_>
+ 3 4 14 4 3.
+ <_>
+
+ <_>
+ 0 1 10 6 -1.
+ <_>
+ 0 4 10 3 2.
+ <_>
+
+ <_>
+ 9 0 11 10 -1.
+ <_>
+ 9 5 11 5 2.
+ <_>
+
+ <_>
+ 0 0 20 20 -1.
+ <_>
+ 0 10 20 10 2.
+ <_>
+
+ <_>
+ 10 1 10 4 -1.
+ <_>
+ 10 1 5 4 2.
+ <_>
+
+ <_>
+ 0 1 10 4 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+
+ <_>
+ 11 0 8 10 -1.
+ <_>
+ 15 0 4 5 2.
+ <_>
+ 11 5 4 5 2.
+ <_>
+
+ <_>
+ 1 0 8 10 -1.
+ <_>
+ 1 0 4 5 2.
+ <_>
+ 5 5 4 5 2.
+ <_>
+
+ <_>
+ 6 3 14 4 -1.
+ <_>
+ 13 3 7 2 2.
+ <_>
+ 6 5 7 2 2.
+ <_>
+
+ <_>
+ 0 3 20 4 -1.
+ <_>
+ 0 3 10 2 2.
+ <_>
+ 10 5 10 2 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 6 6 8 7 -1.
+ <_>
+ 6 6 4 7 2.
+ <_>
+
+ <_>
+ 8 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 12 16 -1.
+ <_>
+ 8 0 4 16 3.
+ <_>
+
+ <_>
+ 5 6 4 8 -1.
+ <_>
+ 7 6 2 8 2.
+ <_>
+
+ <_>
+ 7 12 11 8 -1.
+ <_>
+ 7 16 11 4 2.
+ <_>
+
+ <_>
+ 6 0 6 12 -1.
+ <_>
+ 6 0 3 6 2.
+ <_>
+ 9 6 3 6 2.
+ <_>
+
+ <_>
+ 4 3 12 12 -1.
+ <_>
+ 10 3 6 6 2.
+ <_>
+ 4 9 6 6 2.
+ <_>
+
+ <_>
+ 2 10 6 7 -1.
+ <_>
+ 4 10 2 7 3.
+ <_>
+
+ <_>
+ 15 10 4 7 -1.
+ <_>
+ 15 10 2 7 2.
+ <_>
+
+ <_>
+ 1 10 4 7 -1.
+ <_>
+ 3 10 2 7 2.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 3 2 13 2 -1.
+ <_>
+ 3 3 13 1 2.
+ <_>
+
+ <_>
+ 4 3 14 3 -1.
+ <_>
+ 4 4 14 1 3.
+ <_>
+
+ <_>
+ 1 0 7 6 -1.
+ <_>
+ 1 2 7 2 3.
+ <_>
+
+ <_>
+ 6 5 13 9 -1.
+ <_>
+ 6 8 13 3 3.
+ <_>
+
+ <_>
+ 0 8 16 6 -1.
+ <_>
+ 0 8 8 3 2.
+ <_>
+ 8 11 8 3 2.
+ <_>
+
+ <_>
+ 15 1 5 12 -1.
+ <_>
+ 15 5 5 4 3.
+ <_>
+
+ <_>
+ 0 1 5 12 -1.
+ <_>
+ 0 5 5 4 3.
+ <_>
+
+ <_>
+ 5 14 14 3 -1.
+ <_>
+ 5 15 14 1 3.
+ <_>
+
+ <_>
+ 2 10 6 9 -1.
+ <_>
+ 4 10 2 9 3.
+ <_>
+
+ <_>
+ 11 13 9 7 -1.
+ <_>
+ 14 13 3 7 3.
+ <_>
+
+ <_>
+ 0 15 9 5 -1.
+ <_>
+ 3 15 3 5 3.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 0 11 19 3 -1.
+ <_>
+ 0 12 19 1 3.
+ <_>
+
+ <_>
+ 6 15 14 4 -1.
+ <_>
+ 13 15 7 2 2.
+ <_>
+ 6 17 7 2 2.
+ <_>
+
+ <_>
+ 0 5 12 6 -1.
+ <_>
+ 0 7 12 2 3.
+ <_>
+
+ <_>
+ 16 9 4 11 -1.
+ <_>
+ 16 9 2 11 2.
+ <_>
+
+ <_>
+ 0 9 4 11 -1.
+ <_>
+ 2 9 2 11 2.
+ <_>
+
+ <_>
+ 2 11 18 5 -1.
+ <_>
+ 8 11 6 5 3.
+ <_>
+
+ <_>
+ 1 15 14 4 -1.
+ <_>
+ 1 15 7 2 2.
+ <_>
+ 8 17 7 2 2.
+ <_>
+
+ <_>
+ 12 10 7 9 -1.
+ <_>
+ 12 13 7 3 3.
+ <_>
+
+ <_>
+ 1 10 7 9 -1.
+ <_>
+ 1 13 7 3 3.
+ <_>
+
+ <_>
+ 11 7 8 8 -1.
+ <_>
+ 15 7 4 4 2.
+ <_>
+ 11 11 4 4 2.
+ <_>
+
+ <_>
+ 6 14 8 4 -1.
+ <_>
+ 6 16 8 2 2.
+ <_>
+
+ <_>
+ 11 1 2 19 -1.
+ <_>
+ 11 1 1 19 2.
+ <_>
+
+ <_>
+ 6 10 3 10 -1.
+ <_>
+ 6 15 3 5 2.
+ <_>
+
+ <_>
+ 11 9 6 5 -1.
+ <_>
+ 11 9 3 5 2.
+ <_>
+
+ <_>
+ 3 9 6 5 -1.
+ <_>
+ 6 9 3 5 2.
+ <_>
+
+ <_>
+ 4 12 15 4 -1.
+ <_>
+ 9 12 5 4 3.
+ <_>
+
+ <_>
+ 0 5 16 2 -1.
+ <_>
+ 8 5 8 2 2.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 3 5 8 14 -1.
+ <_>
+ 3 5 4 7 2.
+ <_>
+ 7 12 4 7 2.
+ <_>
+
+ <_>
+ 12 2 7 15 -1.
+ <_>
+ 12 7 7 5 3.
+ <_>
+
+ <_>
+ 1 2 7 15 -1.
+ <_>
+ 1 7 7 5 3.
+ <_>
+
+ <_>
+ 13 0 6 12 -1.
+ <_>
+ 13 6 6 6 2.
+ <_>
+
+ <_>
+ 6 0 8 10 -1.
+ <_>
+ 6 0 4 5 2.
+ <_>
+ 10 5 4 5 2.
+ <_>
+
+ <_>
+ 11 0 2 19 -1.
+ <_>
+ 11 0 1 19 2.
+ <_>
+
+ <_>
+ 4 12 8 8 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 4 12 15 4 -1.
+ <_>
+ 9 12 5 4 3.
+ <_>
+
+ <_>
+ 7 0 2 19 -1.
+ <_>
+ 8 0 1 19 2.
+ <_>
+
+ <_>
+ 8 4 6 9 -1.
+ <_>
+ 10 4 2 9 3.
+ <_>
+
+ <_>
+ 5 5 8 4 -1.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 4 12 15 4 -1.
+ <_>
+ 9 12 5 4 3.
+ <_>
+
+ <_>
+ 2 6 4 12 -1.
+ <_>
+ 2 12 4 6 2.
+ <_>
+
+ <_>
+ 6 7 12 6 -1.
+ <_>
+ 10 7 4 6 3.
+ <_>
+
+ <_>
+ 3 5 12 4 -1.
+ <_>
+ 7 5 4 4 3.
+ <_>
+
+ <_>
+ 8 14 12 4 -1.
+ <_>
+ 8 14 6 4 2.
+ <_>
+
+ <_>
+ 0 14 12 4 -1.
+ <_>
+ 6 14 6 4 2.
+ <_>
+
+ <_>
+ 4 12 15 4 -1.
+ <_>
+ 9 12 5 4 3.
+ <_>
+
+ <_>
+ 1 12 15 4 -1.
+ <_>
+ 6 12 5 4 3.
+ <_>
+
+ <_>
+ 6 0 12 18 -1.
+ <_>
+ 10 0 4 18 3.
+ <_>
+
+ <_>
+ 0 6 14 4 -1.
+ <_>
+ 0 6 7 2 2.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 13 13 7 6 -1.
+ <_>
+ 13 15 7 2 3.
+ <_>
+
+ <_>
+ 0 0 6 18 -1.
+ <_>
+ 0 9 6 9 2.
+ <_>
+
+ <_>
+ 6 8 14 4 -1.
+ <_>
+ 13 8 7 2 2.
+ <_>
+ 6 10 7 2 2.
+ <_>
+
+ <_>
+ 0 8 14 4 -1.
+ <_>
+ 0 8 7 2 2.
+ <_>
+ 7 10 7 2 2.
+ <_>
+
+ <_>
+ 3 2 14 10 -1.
+ <_>
+ 3 7 14 5 2.
+ <_>
+
+ <_>
+ 3 5 6 7 -1.
+ <_>
+ 5 5 2 7 3.
+ <_>
+
+ <_>
+ 4 4 14 6 -1.
+ <_>
+ 11 4 7 3 2.
+ <_>
+ 4 7 7 3 2.
+ <_>
+
+ <_>
+ 6 2 4 10 -1.
+ <_>
+ 6 7 4 5 2.
+ <_>
+
+ <_>
+ 11 1 3 18 -1.
+ <_>
+ 11 7 3 6 3.
+ <_>
+
+ <_>
+ 3 1 3 15 -1.
+ <_>
+ 3 6 3 5 3.
+ <_>
+
+ <_>
+ 7 0 8 6 -1.
+ <_>
+ 7 0 4 6 2.
+ <_>
+
+ <_>
+ 2 0 9 15 -1.
+ <_>
+ 2 5 9 5 3.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 8 0 6 3 3.
+ <_>
+
+ <_>
+ 2 8 12 8 -1.
+ <_>
+ 6 8 4 8 3.
+ <_>
+
+ <_>
+ 5 8 15 12 -1.
+ <_>
+ 10 8 5 12 3.
+ <_>
+
+ <_>
+ 0 1 18 3 -1.
+ <_>
+ 6 1 6 3 3.
+ <_>
+
+ <_>
+ 9 5 2 14 -1.
+ <_>
+ 9 12 2 7 2.
+ <_>
+
+ <_>
+ 5 4 10 6 -1.
+ <_>
+ 5 6 10 2 3.
+ <_>
+
+ <_>
+ 9 10 7 6 -1.
+ <_>
+ 9 12 7 2 3.
+ <_>
+
+ <_>
+ 3 7 12 4 -1.
+ <_>
+ 7 7 4 4 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 5 17 15 3 -1.
+ <_>
+ 5 18 15 1 3.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 5 11 5 3 2.
+ <_>
+ 10 14 5 3 2.
+ <_>
+
+ <_>
+ 4 4 13 3 -1.
+ <_>
+ 4 5 13 1 3.
+ <_>
+
+ <_>
+ 5 11 5 9 -1.
+ <_>
+ 5 14 5 3 3.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 2 6 6 9 -1.
+ <_>
+ 2 9 6 3 3.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 1 3 4 14 -1.
+ <_>
+ 1 3 2 7 2.
+ <_>
+ 3 10 2 7 2.
+ <_>
+
+ <_>
+ 13 4 3 12 -1.
+ <_>
+ 13 10 3 6 2.
+ <_>
+
+ <_>
+ 7 7 6 13 -1.
+ <_>
+ 9 7 2 13 3.
+ <_>
+
+ <_>
+ 7 0 9 5 -1.
+ <_>
+ 10 0 3 5 3.
+ <_>
+
+ <_>
+ 5 0 9 5 -1.
+ <_>
+ 8 0 3 5 3.
+ <_>
+
+ <_>
+ 9 5 2 13 -1.
+ <_>
+ 9 5 1 13 2.
+ <_>
+
+ <_>
+ 7 3 3 12 -1.
+ <_>
+ 7 9 3 6 2.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 8 1 6 3 3.
+ <_>
+
+ <_>
+ 4 3 12 16 -1.
+ <_>
+ 4 3 6 8 2.
+ <_>
+ 10 11 6 8 2.
+ <_>
+
+ <_>
+ 14 0 3 13 -1.
+ <_>
+ 15 0 1 13 3.
+ <_>
+
+ <_>
+ 3 3 14 3 -1.
+ <_>
+ 3 4 14 1 3.
+ <_>
+
+ <_>
+ 0 13 20 7 -1.
+ <_>
+ 0 13 10 7 2.
+ <_>
+
+ <_>
+ 3 0 3 13 -1.
+ <_>
+ 4 0 1 13 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 6 2.
+ <_>
+
+ <_>
+ 4 2 2 14 -1.
+ <_>
+ 4 9 2 7 2.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 16 1 2 12 3.
+ <_>
+
+ <_>
+ 0 6 14 4 -1.
+ <_>
+ 0 6 7 2 2.
+ <_>
+ 7 8 7 2 2.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 16 1 2 12 3.
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 0 6 20 2 3.
+ <_>
+
+ <_>
+ 14 1 6 12 -1.
+ <_>
+ 16 1 2 12 3.
+ <_>
+
+ <_>
+ 0 8 15 3 -1.
+ <_>
+ 0 9 15 1 3.
+ <_>
+
+ <_>
+ 2 1 16 6 -1.
+ <_>
+ 10 1 8 3 2.
+ <_>
+ 2 4 8 3 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 2 1 2 12 3.
+ <_>
+
+ <_>
+ 9 2 9 5 -1.
+ <_>
+ 12 2 3 5 3.
+ <_>
+
+ <_>
+ 1 1 18 4 -1.
+ <_>
+ 7 1 6 4 3.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 13 0 3 13 -1.
+ <_>
+ 14 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 3 0 3 6 3.
+ <_>
+
+ <_>
+ 10 1 6 5 -1.
+ <_>
+ 10 1 3 5 2.
+ <_>
+
+ <_>
+ 6 6 6 7 -1.
+ <_>
+ 8 6 2 7 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 5 2 4 7 -1.
+ <_>
+ 7 2 2 7 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 3 13 -1.
+ <_>
+ 5 0 1 13 3.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 8 1 6 3 3.
+ <_>
+
+ <_>
+ 6 5 4 14 -1.
+ <_>
+ 6 5 2 7 2.
+ <_>
+ 8 12 2 7 2.
+ <_>
+
+ <_>
+ 1 5 19 4 -1.
+ <_>
+ 1 7 19 2 2.
+ <_>
+
+ <_>
+ 0 11 7 6 -1.
+ <_>
+ 0 13 7 2 3.
+ <_>
+
+ <_>
+ 6 12 13 2 -1.
+ <_>
+ 6 13 13 1 2.
+ <_>
+
+ <_>
+ 3 0 12 10 -1.
+ <_>
+ 3 0 6 5 2.
+ <_>
+ 9 5 6 5 2.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 8 1 6 3 3.
+ <_>
+
+ <_>
+ 0 15 18 3 -1.
+ <_>
+ 9 15 9 3 2.
+ <_>
+
+ <_>
+ 6 14 14 6 -1.
+ <_>
+ 6 14 7 6 2.
+ <_>
+
+ <_>
+ 0 14 14 6 -1.
+ <_>
+ 7 14 7 6 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 11 0 6 7 -1.
+ <_>
+ 13 0 2 7 3.
+ <_>
+
+ <_>
+ 1 8 15 4 -1.
+ <_>
+ 6 8 5 4 3.
+ <_>
+
+ <_>
+ 13 12 7 6 -1.
+ <_>
+ 13 14 7 2 3.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 12 12 7 4 -1.
+ <_>
+ 12 14 7 2 2.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 2 4 4 2.
+ <_>
+ 5 6 4 4 2.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 8 1 6 3 3.
+ <_>
+
+ <_>
+ 0 1 18 3 -1.
+ <_>
+ 6 1 6 3 3.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 2 12 2 3.
+ <_>
+
+ <_>
+ 5 3 4 7 -1.
+ <_>
+ 7 3 2 7 2.
+ <_>
+
+ <_>
+ 3 16 16 2 -1.
+ <_>
+ 3 17 16 1 2.
+ <_>
+
+ <_>
+ 3 0 13 6 -1.
+ <_>
+ 3 3 13 3 2.
+ <_>
+
+ <_>
+ 4 0 13 3 -1.
+ <_>
+ 4 1 13 1 3.
+ <_>
+
+ <_>
+ 1 1 5 12 -1.
+ <_>
+ 1 5 5 4 3.
+ <_>
+
+ <_>
+ 6 10 13 3 -1.
+ <_>
+ 6 11 13 1 3.
+ <_>
+
+ <_>
+ 1 11 7 4 -1.
+ <_>
+ 1 13 7 2 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 9 0 2 8 3.
+ <_>
+
+ <_>
+ 7 5 6 8 -1.
+ <_>
+ 9 5 2 8 3.
+ <_>
+
+ <_>
+ 14 12 6 8 -1.
+ <_>
+ 16 12 2 8 3.
+ <_>
+
+ <_>
+ 3 5 13 3 -1.
+ <_>
+ 3 6 13 1 3.
+ <_>
+
+ <_>
+ 9 2 9 5 -1.
+ <_>
+ 12 2 3 5 3.
+ <_>
+
+ <_>
+ 5 15 7 4 -1.
+ <_>
+ 5 17 7 2 2.
+ <_>
+
+ <_>
+ 11 14 7 6 -1.
+ <_>
+ 11 16 7 2 3.
+ <_>
+
+ <_>
+ 2 14 7 6 -1.
+ <_>
+ 2 16 7 2 3.
+ <_>
+
+ <_>
+ 10 13 9 4 -1.
+ <_>
+ 10 15 9 2 2.
+ <_>
+
+ <_>
+ 2 14 13 3 -1.
+ <_>
+ 2 15 13 1 3.
+ <_>
+
+ <_>
+ 10 13 10 6 -1.
+ <_>
+ 10 15 10 2 3.
+ <_>
+
+ <_>
+ 0 13 10 6 -1.
+ <_>
+ 0 15 10 2 3.
+ <_>
+
+ <_>
+ 2 8 16 8 -1.
+ <_>
+ 10 8 8 4 2.
+ <_>
+ 2 12 8 4 2.
+ <_>
+
+ <_>
+ 2 0 9 7 -1.
+ <_>
+ 5 0 3 7 3.
+ <_>
+
+ <_>
+ 7 6 6 7 -1.
+ <_>
+ 9 6 2 7 3.
+ <_>
+
+ <_>
+ 1 7 10 9 -1.
+ <_>
+ 1 10 10 3 3.
+ <_>
+
+ <_>
+ 5 3 11 6 -1.
+ <_>
+ 5 5 11 2 3.
+ <_>
+
+ <_>
+ 0 7 2 13 -1.
+ <_>
+ 1 7 1 13 2.
+ <_>
+
+ <_>
+ 14 1 6 11 -1.
+ <_>
+ 16 1 2 11 3.
+ <_>
+
+ <_>
+ 0 6 6 14 -1.
+ <_>
+ 2 6 2 14 3.
+ <_>
+
+ <_>
+ 7 8 8 12 -1.
+ <_>
+ 11 8 4 6 2.
+ <_>
+ 7 14 4 6 2.
+ <_>
+
+ <_>
+ 2 10 16 8 -1.
+ <_>
+ 2 10 8 4 2.
+ <_>
+ 10 14 8 4 2.
+ <_>
+
+ <_>
+ 11 6 7 8 -1.
+ <_>
+ 11 10 7 4 2.
+ <_>
+
+ <_>
+ 2 6 7 8 -1.
+ <_>
+ 2 10 7 4 2.
+ <_>
+
+ <_>
+ 15 6 4 14 -1.
+ <_>
+ 17 6 2 7 2.
+ <_>
+ 15 13 2 7 2.
+ <_>
+
+ <_>
+ 1 6 4 14 -1.
+ <_>
+ 1 6 2 7 2.
+ <_>
+ 3 13 2 7 2.
+ <_>
+
+ <_>
+ 15 7 4 8 -1.
+ <_>
+ 15 11 4 4 2.
+ <_>
+
+ <_>
+ 4 0 8 8 -1.
+ <_>
+ 4 0 4 4 2.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 7 0 7 6 -1.
+ <_>
+ 7 3 7 3 2.
+ <_>
+
+ <_>
+ 3 2 14 3 -1.
+ <_>
+ 3 3 14 1 3.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 10 2 10 2 3.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 2 10 2 3.
+ <_>
+
+ <_>
+ 0 3 20 14 -1.
+ <_>
+ 0 10 20 7 2.
+ <_>
+
+ <_>
+ 0 0 4 12 -1.
+ <_>
+ 2 0 2 12 2.
+ <_>
+
+ <_>
+ 8 3 12 6 -1.
+ <_>
+ 12 3 4 6 3.
+ <_>
+
+ <_>
+ 0 3 12 6 -1.
+ <_>
+ 4 3 4 6 3.
+ <_>
+
+ <_>
+ 14 3 4 8 -1.
+ <_>
+ 14 3 2 8 2.
+ <_>
+
+ <_>
+ 2 3 4 8 -1.
+ <_>
+ 4 3 2 8 2.
+ <_>
+
+ <_>
+ 13 6 6 10 -1.
+ <_>
+ 16 6 3 5 2.
+ <_>
+ 13 11 3 5 2.
+ <_>
+
+ <_>
+ 1 6 6 10 -1.
+ <_>
+ 1 6 3 5 2.
+ <_>
+ 4 11 3 5 2.
+ <_>
+
+ <_>
+ 7 13 13 2 -1.
+ <_>
+ 7 14 13 1 2.
+ <_>
+
+ <_>
+ 3 12 11 4 -1.
+ <_>
+ 3 14 11 2 2.
+ <_>
+
+ <_>
+ 13 12 6 8 -1.
+ <_>
+ 13 12 3 8 2.
+ <_>
+
+ <_>
+ 1 12 6 8 -1.
+ <_>
+ 4 12 3 8 2.
+ <_>
+
+ <_>
+ 12 6 8 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+ 12 10 4 4 2.
+ <_>
+
+ <_>
+ 0 6 8 8 -1.
+ <_>
+ 0 6 4 4 2.
+ <_>
+ 4 10 4 4 2.
+ <_>
+
+ <_>
+ 3 8 16 2 -1.
+ <_>
+ 3 9 16 1 2.
+ <_>
+
+ <_>
+ 0 7 16 3 -1.
+ <_>
+ 0 8 16 1 3.
+ <_>
+
+ <_>
+ 5 11 14 3 -1.
+ <_>
+ 5 12 14 1 3.
+ <_>
+
+ <_>
+ 8 0 3 20 -1.
+ <_>
+ 9 0 1 20 3.
+ <_>
+
+ <_>
+ 8 10 9 7 -1.
+ <_>
+ 11 10 3 7 3.
+ <_>
+
+ <_>
+ 0 6 20 3 -1.
+ <_>
+ 10 6 10 3 2.
+ <_>
+
+ <_>
+ 4 7 15 3 -1.
+ <_>
+ 4 8 15 1 3.
+ <_>
+
+ <_>
+ 0 5 14 5 -1.
+ <_>
+ 7 5 7 5 2.
+ <_>
+
+ <_>
+ 8 10 9 7 -1.
+ <_>
+ 11 10 3 7 3.
+ <_>
+
+ <_>
+ 3 10 9 7 -1.
+ <_>
+ 6 10 3 7 3.
+ <_>
+
+ <_>
+ 11 7 3 10 -1.
+ <_>
+ 11 12 3 5 2.
+ <_>
+
+ <_>
+ 1 7 18 6 -1.
+ <_>
+ 1 9 18 2 3.
+ <_>
+
+ <_>
+ 8 0 4 15 -1.
+ <_>
+ 8 5 4 5 3.
+ <_>
+
+ <_>
+ 6 1 7 15 -1.
+ <_>
+ 6 6 7 5 3.
+ <_>
+
+ <_>
+ 6 9 14 3 -1.
+ <_>
+ 6 10 14 1 3.
+ <_>
+
+ <_>
+ 1 10 6 10 -1.
+ <_>
+ 1 10 3 5 2.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 9 3 6 13 -1.
+ <_>
+ 11 3 2 13 3.
+ <_>
+
+ <_>
+ 8 1 4 9 -1.
+ <_>
+ 10 1 2 9 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 7 1 6 8 -1.
+ <_>
+ 10 1 3 8 2.
+ <_>
+
+ <_>
+ 3 6 14 2 -1.
+ <_>
+ 3 6 7 2 2.
+ <_>
+
+ <_>
+ 1 3 4 8 -1.
+ <_>
+ 3 3 2 8 2.
+ <_>
+
+ <_>
+ 18 3 2 14 -1.
+ <_>
+ 18 10 2 7 2.
+ <_>
+
+ <_>
+ 0 3 2 14 -1.
+ <_>
+ 0 10 2 7 2.
+ <_>
+
+ <_>
+ 3 15 16 2 -1.
+ <_>
+ 3 15 8 2 2.
+ <_>
+
+ <_>
+ 2 1 9 6 -1.
+ <_>
+ 2 3 9 2 3.
+ <_>
+
+ <_>
+ 11 1 7 6 -1.
+ <_>
+ 11 3 7 2 3.
+ <_>
+
+ <_>
+ 1 8 8 8 -1.
+ <_>
+ 1 8 4 4 2.
+ <_>
+ 5 12 4 4 2.
+ <_>
+
+ <_>
+ 8 6 5 8 -1.
+ <_>
+ 8 10 5 4 2.
+ <_>
+
+ <_>
+ 4 12 8 8 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 15 12 4 8 -1.
+ <_>
+ 15 16 4 4 2.
+ <_>
+
+ <_>
+ 7 11 5 8 -1.
+ <_>
+ 7 15 5 4 2.
+ <_>
+
+ <_>
+ 5 14 13 2 -1.
+ <_>
+ 5 15 13 1 2.
+ <_>
+
+ <_>
+ 2 4 9 12 -1.
+ <_>
+ 2 8 9 4 3.
+ <_>
+
+ <_>
+ 3 8 14 3 -1.
+ <_>
+ 3 9 14 1 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 9 14 8 6 -1.
+ <_>
+ 9 16 8 2 3.
+ <_>
+
+ <_>
+ 1 12 4 8 -1.
+ <_>
+ 1 16 4 4 2.
+ <_>
+
+ <_>
+ 5 16 12 4 -1.
+ <_>
+ 9 16 4 4 3.
+ <_>
+
+ <_>
+ 4 13 6 7 -1.
+ <_>
+ 6 13 2 7 3.
+ <_>
+
+ <_>
+ 11 1 3 15 -1.
+ <_>
+ 12 1 1 15 3.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 11 1 3 19 -1.
+ <_>
+ 12 1 1 19 3.
+ <_>
+
+ <_>
+ 5 10 4 7 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 8 11 8 4 -1.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 5 12 8 8 -1.
+ <_>
+ 9 12 4 8 2.
+ <_>
+
+ <_>
+ 6 4 10 14 -1.
+ <_>
+ 11 4 5 7 2.
+ <_>
+ 6 11 5 7 2.
+ <_>
+
+ <_>
+ 4 4 10 14 -1.
+ <_>
+ 4 4 5 7 2.
+ <_>
+ 9 11 5 7 2.
+ <_>
+
+ <_>
+ 2 3 18 15 -1.
+ <_>
+ 2 8 18 5 3.
+ <_>
+
+ <_>
+ 4 7 6 9 -1.
+ <_>
+ 6 7 2 9 3.
+ <_>
+
+ <_>
+ 8 7 9 9 -1.
+ <_>
+ 8 10 9 3 3.
+ <_>
+
+ <_>
+ 2 8 14 4 -1.
+ <_>
+ 2 8 7 2 2.
+ <_>
+ 9 10 7 2 2.
+ <_>
+
+ <_>
+ 6 10 8 10 -1.
+ <_>
+ 6 10 4 10 2.
+ <_>
+
+ <_>
+ 4 15 9 5 -1.
+ <_>
+ 7 15 3 5 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 5 6 8 4 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 10 7 6 7 -1.
+ <_>
+ 12 7 2 7 3.
+ <_>
+
+ <_>
+ 4 7 6 12 -1.
+ <_>
+ 6 7 2 12 3.
+ <_>
+
+ <_>
+ 7 6 6 8 -1.
+ <_>
+ 9 6 2 8 3.
+ <_>
+
+ <_>
+ 5 3 6 16 -1.
+ <_>
+ 5 3 3 8 2.
+ <_>
+ 8 11 3 8 2.
+ <_>
+
+ <_>
+ 12 10 6 6 -1.
+ <_>
+ 12 10 3 6 2.
+ <_>
+
+ <_>
+ 2 10 6 6 -1.
+ <_>
+ 5 10 3 6 2.
+ <_>
+
+ <_>
+ 10 0 4 9 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+
+ <_>
+ 5 0 6 7 -1.
+ <_>
+ 7 0 2 7 3.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 12 0 2 8 3.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 6 0 2 8 3.
+ <_>
+
+ <_>
+ 6 6 8 6 -1.
+ <_>
+ 6 8 8 2 3.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 8 10 10 10 -1.
+ <_>
+ 13 10 5 5 2.
+ <_>
+ 8 15 5 5 2.
+ <_>
+
+ <_>
+ 2 16 15 4 -1.
+ <_>
+ 7 16 5 4 3.
+ <_>
+
+ <_>
+ 9 6 10 13 -1.
+ <_>
+ 9 6 5 13 2.
+ <_>
+
+ <_>
+ 1 6 10 13 -1.
+ <_>
+ 6 6 5 13 2.
+ <_>
+
+ <_>
+ 4 15 16 2 -1.
+ <_>
+ 4 15 8 2 2.
+ <_>
+
+ <_>
+ 1 15 16 2 -1.
+ <_>
+ 9 15 8 2 2.
+ <_>
+
+ <_>
+ 15 7 3 12 -1.
+ <_>
+ 15 13 3 6 2.
+ <_>
+
+ <_>
+ 2 7 3 12 -1.
+ <_>
+ 2 13 3 6 2.
+ <_>
+
+ <_>
+ 2 13 18 7 -1.
+ <_>
+ 8 13 6 7 3.
+ <_>
+
+ <_>
+ 2 4 15 3 -1.
+ <_>
+ 2 5 15 1 3.
+ <_>
+
+ <_>
+ 16 6 2 13 -1.
+ <_>
+ 16 6 1 13 2.
+ <_>
+
+ <_>
+ 4 1 6 5 -1.
+ <_>
+ 7 1 3 5 2.
+ <_>
+
+ <_>
+ 14 6 4 14 -1.
+ <_>
+ 16 6 2 7 2.
+ <_>
+ 14 13 2 7 2.
+ <_>
+
+ <_>
+ 0 4 12 3 -1.
+ <_>
+ 6 4 6 3 2.
+ <_>
+
+ <_>
+ 4 5 13 2 -1.
+ <_>
+ 4 6 13 1 2.
+ <_>
+
+ <_>
+ 3 2 13 10 -1.
+ <_>
+ 3 7 13 5 2.
+ <_>
+
+ <_>
+ 7 2 6 10 -1.
+ <_>
+ 7 7 6 5 2.
+ <_>
+
+ <_>
+ 3 1 7 6 -1.
+ <_>
+ 3 3 7 2 3.
+ <_>
+
+ <_>
+ 4 0 13 6 -1.
+ <_>
+ 4 2 13 2 3.
+ <_>
+
+ <_>
+ 3 0 12 6 -1.
+ <_>
+ 3 2 12 2 3.
+ <_>
+
+ <_>
+ 13 0 7 6 -1.
+ <_>
+ 13 2 7 2 3.
+ <_>
+
+ <_>
+ 5 0 4 16 -1.
+ <_>
+ 5 0 2 8 2.
+ <_>
+ 7 8 2 8 2.
+ <_>
+
+ <_>
+ 1 14 18 6 -1.
+ <_>
+ 10 14 9 3 2.
+ <_>
+ 1 17 9 3 2.
+ <_>
+
+ <_>
+ 2 17 14 3 -1.
+ <_>
+ 9 17 7 3 2.
+ <_>
+
+ <_>
+ 16 11 4 7 -1.
+ <_>
+ 16 11 2 7 2.
+ <_>
+
+ <_>
+ 4 1 8 15 -1.
+ <_>
+ 8 1 4 15 2.
+ <_>
+
+ <_>
+ 13 0 7 6 -1.
+ <_>
+ 13 2 7 2 3.
+ <_>
+
+ <_>
+ 1 6 4 13 -1.
+ <_>
+ 3 6 2 13 2.
+ <_>
+
+ <_>
+ 12 12 7 4 -1.
+ <_>
+ 12 14 7 2 2.
+ <_>
+
+ <_>
+ 1 12 7 4 -1.
+ <_>
+ 1 14 7 2 2.
+ <_>
+
+ <_>
+ 7 13 13 2 -1.
+ <_>
+ 7 14 13 1 2.
+ <_>
+
+ <_>
+ 0 12 7 6 -1.
+ <_>
+ 0 14 7 2 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 6 11 6 8 -1.
+ <_>
+ 8 11 2 8 3.
+ <_>
+
+ <_>
+ 8 10 10 10 -1.
+ <_>
+ 13 10 5 5 2.
+ <_>
+ 8 15 5 5 2.
+ <_>
+
+ <_>
+ 2 10 10 10 -1.
+ <_>
+ 2 10 5 5 2.
+ <_>
+ 7 15 5 5 2.
+ <_>
+
+ <_>
+ 6 13 10 6 -1.
+ <_>
+ 11 13 5 3 2.
+ <_>
+ 6 16 5 3 2.
+ <_>
+
+ <_>
+ 4 13 10 6 -1.
+ <_>
+ 4 13 5 3 2.
+ <_>
+ 9 16 5 3 2.
+ <_>
+
+ <_>
+ 7 6 9 12 -1.
+ <_>
+ 7 12 9 6 2.
+ <_>
+
+ <_>
+ 1 14 14 4 -1.
+ <_>
+ 1 14 7 2 2.
+ <_>
+ 8 16 7 2 2.
+ <_>
+
+ <_>
+ 11 15 7 4 -1.
+ <_>
+ 11 17 7 2 2.
+ <_>
+
+ <_>
+ 1 15 16 4 -1.
+ <_>
+ 1 17 16 2 2.
+ <_>
+
+ <_>
+ 2 0 18 8 -1.
+ <_>
+ 8 0 6 8 3.
+ <_>
+
+ <_>
+ 0 8 18 12 -1.
+ <_>
+ 0 12 18 4 3.
+ <_>
+
+ <_>
+ 7 11 13 2 -1.
+ <_>
+ 7 12 13 1 2.
+ <_>
+
+ <_>
+ 0 11 13 2 -1.
+ <_>
+ 0 12 13 1 2.
+ <_>
+
+ <_>
+ 1 12 19 3 -1.
+ <_>
+ 1 13 19 1 3.
+ <_>
+
+ <_>
+ 0 3 13 3 -1.
+ <_>
+ 0 4 13 1 3.
+ <_>
+
+ <_>
+ 9 11 6 9 -1.
+ <_>
+ 9 14 6 3 3.
+ <_>
+
+ <_>
+ 5 11 6 9 -1.
+ <_>
+ 5 14 6 3 3.
+ <_>
+
+ <_>
+ 4 3 13 3 -1.
+ <_>
+ 4 4 13 1 3.
+ <_>
+
+ <_>
+ 5 14 9 4 -1.
+ <_>
+ 5 16 9 2 2.
+ <_>
+
+ <_>
+ 8 12 4 8 -1.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 3 8 14 4 -1.
+ <_>
+ 3 8 7 2 2.
+ <_>
+ 10 10 7 2 2.
+ <_>
+
+ <_>
+ 4 5 12 6 -1.
+ <_>
+ 8 5 4 6 3.
+ <_>
+
+ <_>
+ 3 5 8 9 -1.
+ <_>
+ 3 8 8 3 3.
+ <_>
+
+ <_>
+ 10 5 4 12 -1.
+ <_>
+ 10 9 4 4 3.
+ <_>
+
+ <_>
+ 0 6 18 6 -1.
+ <_>
+ 0 6 9 3 2.
+ <_>
+ 9 9 9 3 2.
+ <_>
+
+ <_>
+ 3 6 16 4 -1.
+ <_>
+ 11 6 8 2 2.
+ <_>
+ 3 8 8 2 2.
+ <_>
+
+ <_>
+ 4 6 7 4 -1.
+ <_>
+ 4 8 7 2 2.
+ <_>
+
+ <_>
+ 12 4 7 6 -1.
+ <_>
+ 12 6 7 2 3.
+ <_>
+
+ <_>
+ 1 4 7 6 -1.
+ <_>
+ 1 6 7 2 3.
+ <_>
+
+ <_>
+ 6 0 10 6 -1.
+ <_>
+ 6 2 10 2 3.
+ <_>
+
+ <_>
+ 0 0 7 6 -1.
+ <_>
+ 0 2 7 2 3.
+ <_>
+
+ <_>
+ 17 2 3 13 -1.
+ <_>
+ 18 2 1 13 3.
+ <_>
+
+ <_>
+ 0 2 3 13 -1.
+ <_>
+ 1 2 1 13 3.
+ <_>
+
+ <_>
+ 6 8 13 3 -1.
+ <_>
+ 6 9 13 1 3.
+ <_>
+
+ <_>
+ 0 13 10 6 -1.
+ <_>
+ 0 13 5 3 2.
+ <_>
+ 5 16 5 3 2.
+ <_>
+
+ <_>
+ 10 12 8 8 -1.
+ <_>
+ 14 12 4 4 2.
+ <_>
+ 10 16 4 4 2.
+ <_>
+
+ <_>
+ 6 10 8 8 -1.
+ <_>
+ 6 10 4 4 2.
+ <_>
+ 10 14 4 4 2.
+ <_>
+
+ <_>
+ 10 10 6 7 -1.
+ <_>
+ 12 10 2 7 3.
+ <_>
+
+ <_>
+ 5 9 9 5 -1.
+ <_>
+ 8 9 3 5 3.
+ <_>
+
+ <_>
+ 7 5 7 6 -1.
+ <_>
+ 7 7 7 2 3.
+ <_>
+
+ <_>
+ 0 13 18 7 -1.
+ <_>
+ 6 13 6 7 3.
+ <_>
+
+ <_>
+ 7 7 12 9 -1.
+ <_>
+ 7 10 12 3 3.
+ <_>
+
+ <_>
+ 1 12 18 3 -1.
+ <_>
+ 1 13 18 1 3.
+ <_>
+
+ <_>
+ 7 13 13 2 -1.
+ <_>
+ 7 14 13 1 2.
+ <_>
+
+ <_>
+ 7 12 6 7 -1.
+ <_>
+ 9 12 2 7 3.
+ <_>
+
+ <_>
+ 8 10 12 10 -1.
+ <_>
+ 14 10 6 5 2.
+ <_>
+ 8 15 6 5 2.
+ <_>
+
+ <_>
+ 0 10 12 10 -1.
+ <_>
+ 0 10 6 5 2.
+ <_>
+ 6 15 6 5 2.
+ <_>
+
+ <_>
+ 7 7 12 9 -1.
+ <_>
+ 7 10 12 3 3.
+ <_>
+
+ <_>
+ 3 16 12 4 -1.
+ <_>
+ 7 16 4 4 3.
+ <_>
+
+ <_>
+ 7 16 9 4 -1.
+ <_>
+ 7 18 9 2 2.
+ <_>
+
+ <_>
+ 4 16 9 4 -1.
+ <_>
+ 4 18 9 2 2.
+ <_>
+
+ <_>
+ 11 1 3 19 -1.
+ <_>
+ 12 1 1 19 3.
+ <_>
+
+ <_>
+ 6 14 7 6 -1.
+ <_>
+ 6 16 7 2 3.
+ <_>
+
+ <_>
+ 11 1 3 15 -1.
+ <_>
+ 12 1 1 15 3.
+ <_>
+
+ <_>
+ 6 1 3 19 -1.
+ <_>
+ 7 1 1 19 3.
+ <_>
+
+ <_>
+ 4 0 14 10 -1.
+ <_>
+ 11 0 7 5 2.
+ <_>
+ 4 5 7 5 2.
+ <_>
+
+ <_>
+ 2 0 14 10 -1.
+ <_>
+ 2 0 7 5 2.
+ <_>
+ 9 5 7 5 2.
+ <_>
+
+ <_>
+ 10 1 3 13 -1.
+ <_>
+ 11 1 1 13 3.
+ <_>
+
+ <_>
+ 6 7 6 8 -1.
+ <_>
+ 8 7 2 8 3.
+ <_>
+
+ <_>
+ 11 5 4 10 -1.
+ <_>
+ 11 5 2 10 2.
+ <_>
+
+ <_>
+ 3 18 13 2 -1.
+ <_>
+ 3 19 13 1 2.
+ <_>
+
+ <_>
+ 11 8 4 8 -1.
+ <_>
+ 11 12 4 4 2.
+ <_>
+
+ <_>
+ 5 8 4 8 -1.
+ <_>
+ 5 12 4 4 2.
+ <_>
+
+ <_>
+ 4 8 16 6 -1.
+ <_>
+ 12 8 8 3 2.
+ <_>
+ 4 11 8 3 2.
+ <_>
+
+ <_>
+ 5 5 4 10 -1.
+ <_>
+ 7 5 2 10 2.
+ <_>
+
+ <_>
+ 10 1 3 13 -1.
+ <_>
+ 11 1 1 13 3.
+ <_>
+
+ <_>
+ 7 1 3 13 -1.
+ <_>
+ 8 1 1 13 3.
+ <_>
+
+ <_>
+ 6 6 8 7 -1.
+ <_>
+ 6 6 4 7 2.
+ <_>
+
+ <_>
+ 8 0 4 9 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+
+ <_>
+ 9 7 4 12 -1.
+ <_>
+ 9 11 4 4 3.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 10 2 6 4 2.
+ <_>
+
+ <_>
+ 8 1 10 6 -1.
+ <_>
+ 13 1 5 3 2.
+ <_>
+ 8 4 5 3 2.
+ <_>
+
+ <_>
+ 0 2 9 10 -1.
+ <_>
+ 0 7 9 5 2.
+ <_>
+
+ <_>
+ 10 1 10 14 -1.
+ <_>
+ 10 8 10 7 2.
+ <_>
+
+ <_>
+ 0 1 10 14 -1.
+ <_>
+ 0 8 10 7 2.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 9 5 3 5 3.
+ <_>
+
+ <_>
+ 0 2 4 18 -1.
+ <_>
+ 0 2 2 9 2.
+ <_>
+ 2 11 2 9 2.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 10 9 6 7 -1.
+ <_>
+ 12 9 2 7 3.
+ <_>
+
+ <_>
+ 3 3 6 7 -1.
+ <_>
+ 5 3 2 7 3.
+ <_>
+
+ <_>
+ 13 2 3 17 -1.
+ <_>
+ 14 2 1 17 3.
+ <_>
+
+ <_>
+ 2 5 4 8 -1.
+ <_>
+ 2 9 4 4 2.
+ <_>
+
+ <_>
+ 6 5 10 10 -1.
+ <_>
+ 6 10 10 5 2.
+ <_>
+
+ <_>
+ 4 2 3 17 -1.
+ <_>
+ 5 2 1 17 3.
+ <_>
+
+ <_>
+ 6 6 14 5 -1.
+ <_>
+ 6 6 7 5 2.
+ <_>
+
+ <_>
+ 0 11 15 3 -1.
+ <_>
+ 5 11 5 3 3.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 3 0 10 6 -1.
+ <_>
+ 3 0 5 3 2.
+ <_>
+ 8 3 5 3 2.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 10 4 4 3.
+ <_>
+
+ <_>
+ 0 13 13 2 -1.
+ <_>
+ 0 14 13 1 2.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 1 2 12 15 -1.
+ <_>
+ 5 2 4 15 3.
+ <_>
+
+ <_>
+ 2 0 18 16 -1.
+ <_>
+ 8 0 6 16 3.
+ <_>
+
+ <_>
+ 0 0 18 16 -1.
+ <_>
+ 6 0 6 16 3.
+ <_>
+
+ <_>
+ 14 0 6 13 -1.
+ <_>
+ 14 0 3 13 2.
+ <_>
+
+ <_>
+ 4 3 3 17 -1.
+ <_>
+ 5 3 1 17 3.
+ <_>
+
+ <_>
+ 13 6 6 10 -1.
+ <_>
+ 13 6 3 10 2.
+ <_>
+
+ <_>
+ 1 5 6 11 -1.
+ <_>
+ 4 5 3 11 2.
+ <_>
+
+ <_>
+ 16 3 4 12 -1.
+ <_>
+ 16 7 4 4 3.
+ <_>
+
+ <_>
+ 5 1 3 10 -1.
+ <_>
+ 5 6 3 5 2.
+ <_>
+
+ <_>
+ 16 3 4 12 -1.
+ <_>
+ 16 7 4 4 3.
+ <_>
+
+ <_>
+ 0 3 4 12 -1.
+ <_>
+ 0 7 4 4 3.
+ <_>
+
+ <_>
+ 6 0 14 6 -1.
+ <_>
+ 13 0 7 3 2.
+ <_>
+ 6 3 7 3 2.
+ <_>
+
+ <_>
+ 0 1 6 19 -1.
+ <_>
+ 3 1 3 19 2.
+ <_>
+
+ <_>
+ 16 1 3 13 -1.
+ <_>
+ 17 1 1 13 3.
+ <_>
+
+ <_>
+ 0 0 6 13 -1.
+ <_>
+ 3 0 3 13 2.
+ <_>
+
+ <_>
+ 12 1 6 5 -1.
+ <_>
+ 12 1 3 5 2.
+ <_>
+
+ <_>
+ 2 1 6 5 -1.
+ <_>
+ 5 1 3 5 2.
+ <_>
+
+ <_>
+ 10 0 6 7 -1.
+ <_>
+ 12 0 2 7 3.
+ <_>
+
+ <_>
+ 1 1 10 3 -1.
+ <_>
+ 6 1 5 3 2.
+ <_>
+
+ <_>
+ 4 0 16 8 -1.
+ <_>
+ 12 0 8 4 2.
+ <_>
+ 4 4 8 4 2.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 11 10 7 6 -1.
+ <_>
+ 11 12 7 2 3.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 3 8 15 9 -1.
+ <_>
+ 3 11 15 3 3.
+ <_>
+
+ <_>
+ 4 6 4 10 -1.
+ <_>
+ 6 6 2 10 2.
+ <_>
+
+ <_>
+ 15 7 5 6 -1.
+ <_>
+ 15 10 5 3 2.
+ <_>
+
+ <_>
+ 0 7 5 6 -1.
+ <_>
+ 0 10 5 3 2.
+ <_>
+
+ <_>
+ 8 5 12 4 -1.
+ <_>
+ 12 5 4 4 3.
+ <_>
+
+ <_>
+ 2 0 14 6 -1.
+ <_>
+ 2 3 14 3 2.
+ <_>
+
+ <_>
+ 8 5 12 4 -1.
+ <_>
+ 12 5 4 4 3.
+ <_>
+
+ <_>
+ 0 5 12 4 -1.
+ <_>
+ 4 5 4 4 3.
+ <_>
+
+ <_>
+ 7 0 7 6 -1.
+ <_>
+ 7 3 7 3 2.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 13 9 3 10 -1.
+ <_>
+ 13 14 3 5 2.
+ <_>
+
+ <_>
+ 2 12 7 6 -1.
+ <_>
+ 2 14 7 2 3.
+ <_>
+
+ <_>
+ 7 14 13 3 -1.
+ <_>
+ 7 15 13 1 3.
+ <_>
+
+ <_>
+ 0 14 13 3 -1.
+ <_>
+ 0 15 13 1 3.
+ <_>
+
+ <_>
+ 9 2 6 12 -1.
+ <_>
+ 9 6 6 4 3.
+ <_>
+
+ <_>
+ 5 2 6 12 -1.
+ <_>
+ 5 6 6 4 3.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 9 10 4 4 3.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 10 4 4 3.
+ <_>
+
+ <_>
+ 9 2 8 18 -1.
+ <_>
+ 9 8 8 6 3.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 8 6 6 7 -1.
+ <_>
+ 10 6 2 7 3.
+ <_>
+
+ <_>
+ 3 7 9 9 -1.
+ <_>
+ 3 10 9 3 3.
+ <_>
+
+ <_>
+ 14 4 3 13 -1.
+ <_>
+ 15 4 1 13 3.
+ <_>
+
+ <_>
+ 4 1 12 15 -1.
+ <_>
+ 4 6 12 5 3.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 8 6 4 4 2.
+ <_>
+
+ <_>
+ 3 0 12 20 -1.
+ <_>
+ 3 10 12 10 2.
+ <_>
+
+ <_>
+ 1 17 19 3 -1.
+ <_>
+ 1 18 19 1 3.
+ <_>
+
+ <_>
+ 0 18 18 2 -1.
+ <_>
+ 9 18 9 2 2.
+ <_>
+
+ <_>
+ 8 10 6 9 -1.
+ <_>
+ 10 10 2 9 3.
+ <_>
+
+ <_>
+ 6 10 6 9 -1.
+ <_>
+ 8 10 2 9 3.
+ <_>
+
+ <_>
+ 5 11 12 4 -1.
+ <_>
+ 5 13 12 2 2.
+ <_>
+
+ <_>
+ 2 5 8 4 -1.
+ <_>
+ 2 7 8 2 2.
+ <_>
+
+ <_>
+ 9 10 7 6 -1.
+ <_>
+ 9 12 7 2 3.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 3 0 14 3 -1.
+ <_>
+ 3 1 14 1 3.
+ <_>
+
+ <_>
+ 8 6 4 8 -1.
+ <_>
+ 10 6 2 8 2.
+ <_>
+
+ <_>
+ 9 3 6 13 -1.
+ <_>
+ 11 3 2 13 3.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 0 0 3 5 2.
+ <_>
+ 3 5 3 5 2.
+ <_>
+
+ <_>
+ 8 0 7 18 -1.
+ <_>
+ 8 6 7 6 3.
+ <_>
+
+ <_>
+ 5 3 6 13 -1.
+ <_>
+ 7 3 2 13 3.
+ <_>
+
+ <_>
+ 7 4 9 5 -1.
+ <_>
+ 10 4 3 5 3.
+ <_>
+
+ <_>
+ 8 1 3 18 -1.
+ <_>
+ 9 1 1 18 3.
+ <_>
+
+ <_>
+ 9 0 11 15 -1.
+ <_>
+ 9 5 11 5 3.
+ <_>
+
+ <_>
+ 0 0 16 8 -1.
+ <_>
+ 0 0 8 4 2.
+ <_>
+ 8 4 8 4 2.
+ <_>
+
+ <_>
+ 4 3 12 14 -1.
+ <_>
+ 10 3 6 7 2.
+ <_>
+ 4 10 6 7 2.
+ <_>
+
+ <_>
+ 5 6 6 12 -1.
+ <_>
+ 5 6 3 6 2.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 6 3 11 9 -1.
+ <_>
+ 6 6 11 3 3.
+ <_>
+
+ <_>
+ 0 0 18 8 -1.
+ <_>
+ 0 0 9 4 2.
+ <_>
+ 9 4 9 4 2.
+ <_>
+
+ <_>
+ 11 5 9 12 -1.
+ <_>
+ 11 11 9 6 2.
+ <_>
+
+ <_>
+ 2 5 14 8 -1.
+ <_>
+ 2 9 14 4 2.
+ <_>
+
+ <_>
+ 16 2 4 8 -1.
+ <_>
+ 16 6 4 4 2.
+ <_>
+
+ <_>
+ 4 10 7 6 -1.
+ <_>
+ 4 12 7 2 3.
+ <_>
+
+ <_>
+ 7 11 7 6 -1.
+ <_>
+ 7 13 7 2 3.
+ <_>
+
+ <_>
+ 0 2 4 8 -1.
+ <_>
+ 0 6 4 4 2.
+ <_>
+
+ <_>
+ 16 1 3 13 -1.
+ <_>
+ 17 1 1 13 3.
+ <_>
+
+ <_>
+ 4 2 10 6 -1.
+ <_>
+ 4 2 5 3 2.
+ <_>
+ 9 5 5 3 2.
+ <_>
+
+ <_>
+ 4 4 14 3 -1.
+ <_>
+ 4 5 14 1 3.
+ <_>
+
+ <_>
+ 5 5 7 6 -1.
+ <_>
+ 5 7 7 2 3.
+ <_>
+
+ <_>
+ 6 13 13 3 -1.
+ <_>
+ 6 14 13 1 3.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 10 13 7 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+
+ <_>
+ 1 13 13 3 -1.
+ <_>
+ 1 14 13 1 3.
+ <_>
+
+ <_>
+ 6 3 11 9 -1.
+ <_>
+ 6 6 11 3 3.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_default.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_default.xml
new file mode 100644
index 0000000000000000000000000000000000000000..cbd1aa89e927d8d54b49fe666bf17244c3c46a7b
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_frontalface_default.xml
@@ -0,0 +1,33314 @@
+
+
+
+BOOST
+ HAAR
+ 24
+ 24
+
+ 211
+
+ 0
+ 25
+
+ <_>
+ 9
+ -5.0425500869750977e+00
+
+ <_>
+
+ 0 -1 0 -3.1511999666690826e-02
+
+ 2.0875380039215088e+00 -2.2172100543975830e+00
+ <_>
+
+ 0 -1 1 1.2396000325679779e-02
+
+ -1.8633940219879150e+00 1.3272049427032471e+00
+ <_>
+
+ 0 -1 2 2.1927999332547188e-02
+
+ -1.5105249881744385e+00 1.0625729560852051e+00
+ <_>
+
+ 0 -1 3 5.7529998011887074e-03
+
+ -8.7463897466659546e-01 1.1760339736938477e+00
+ <_>
+
+ 0 -1 4 1.5014000236988068e-02
+
+ -7.7945697307586670e-01 1.2608419656753540e+00
+ <_>
+
+ 0 -1 5 9.9371001124382019e-02
+
+ 5.5751299858093262e-01 -1.8743000030517578e+00
+ <_>
+
+ 0 -1 6 2.7340000960975885e-03
+
+ -1.6911929845809937e+00 4.4009700417518616e-01
+ <_>
+
+ 0 -1 7 -1.8859000876545906e-02
+
+ -1.4769539833068848e+00 4.4350099563598633e-01
+ <_>
+
+ 0 -1 8 5.9739998541772366e-03
+
+ -8.5909199714660645e-01 8.5255599021911621e-01
+ <_>
+ 16
+ -4.9842400550842285e+00
+
+ <_>
+
+ 0 -1 9 -2.1110000088810921e-02
+
+ 1.2435649633407593e+00 -1.5713009834289551e+00
+ <_>
+
+ 0 -1 10 2.0355999469757080e-02
+
+ -1.6204780340194702e+00 1.1817760467529297e+00
+ <_>
+
+ 0 -1 11 2.1308999508619308e-02
+
+ -1.9415930509567261e+00 7.0069098472595215e-01
+ <_>
+
+ 0 -1 12 9.1660000383853912e-02
+
+ -5.5670100450515747e-01 1.7284419536590576e+00
+ <_>
+
+ 0 -1 13 3.6288000643253326e-02
+
+ 2.6763799786567688e-01 -2.1831810474395752e+00
+ <_>
+
+ 0 -1 14 -1.9109999760985374e-02
+
+ -2.6730210781097412e+00 4.5670801401138306e-01
+ <_>
+
+ 0 -1 15 8.2539999857544899e-03
+
+ -1.0852910280227661e+00 5.3564202785491943e-01
+ <_>
+
+ 0 -1 16 1.8355000764131546e-02
+
+ -3.5200199484825134e-01 9.3339198827743530e-01
+ <_>
+
+ 0 -1 17 -7.0569999516010284e-03
+
+ 9.2782098054885864e-01 -6.6349899768829346e-01
+ <_>
+
+ 0 -1 18 -9.8770000040531158e-03
+
+ 1.1577470302581787e+00 -2.9774799942970276e-01
+ <_>
+
+ 0 -1 19 1.5814000740647316e-02
+
+ -4.1960600018501282e-01 1.3576040267944336e+00
+ <_>
+
+ 0 -1 20 -2.0700000226497650e-02
+
+ 1.4590020179748535e+00 -1.9739399850368500e-01
+ <_>
+
+ 0 -1 21 -1.3760800659656525e-01
+
+ 1.1186759471893311e+00 -5.2915501594543457e-01
+ <_>
+
+ 0 -1 22 1.4318999834358692e-02
+
+ -3.5127198696136475e-01 1.1440860033035278e+00
+ <_>
+
+ 0 -1 23 1.0253000073134899e-02
+
+ -6.0850602388381958e-01 7.7098500728607178e-01
+ <_>
+
+ 0 -1 24 9.1508001089096069e-02
+
+ 3.8817799091339111e-01 -1.5122940540313721e+00
+ <_>
+ 27
+ -4.6551899909973145e+00
+
+ <_>
+
+ 0 -1 25 6.9747000932693481e-02
+
+ -1.0130879878997803e+00 1.4687349796295166e+00
+ <_>
+
+ 0 -1 26 3.1502999365329742e-02
+
+ -1.6463639736175537e+00 1.0000629425048828e+00
+ <_>
+
+ 0 -1 27 1.4260999858379364e-02
+
+ 4.6480301022529602e-01 -1.5959889888763428e+00
+ <_>
+
+ 0 -1 28 1.4453000389039516e-02
+
+ -6.5511900186538696e-01 8.3021801710128784e-01
+ <_>
+
+ 0 -1 29 -3.0509999487549067e-03
+
+ -1.3982310295104980e+00 4.2550599575042725e-01
+ <_>
+
+ 0 -1 30 3.2722998410463333e-02
+
+ -5.0702601671218872e-01 1.0526109933853149e+00
+ <_>
+
+ 0 -1 31 -7.2960001416504383e-03
+
+ 3.6356899142265320e-01 -1.3464889526367188e+00
+ <_>
+
+ 0 -1 32 5.0425000488758087e-02
+
+ -3.0461400747299194e-01 1.4504129886627197e+00
+ <_>
+
+ 0 -1 33 4.6879000961780548e-02
+
+ -4.0286201238632202e-01 1.2145609855651855e+00
+ <_>
+
+ 0 -1 34 -6.9358997046947479e-02
+
+ 1.0539360046386719e+00 -4.5719701051712036e-01
+ <_>
+
+ 0 -1 35 -4.9033999443054199e-02
+
+ -1.6253089904785156e+00 1.5378999710083008e-01
+ <_>
+
+ 0 -1 36 8.4827996790409088e-02
+
+ 2.8402999043464661e-01 -1.5662059783935547e+00
+ <_>
+
+ 0 -1 37 -1.7229999648407102e-03
+
+ -1.0147459506988525e+00 2.3294800519943237e-01
+ <_>
+
+ 0 -1 38 1.1562199890613556e-01
+
+ -1.6732899844646454e-01 1.2804069519042969e+00
+ <_>
+
+ 0 -1 39 -5.1279999315738678e-02
+
+ 1.5162390470504761e+00 -3.0271100997924805e-01
+ <_>
+
+ 0 -1 40 -4.2706999927759171e-02
+
+ 1.7631920576095581e+00 -5.1832001656293869e-02
+ <_>
+
+ 0 -1 41 3.7178099155426025e-01
+
+ -3.1389200687408447e-01 1.5357979536056519e+00
+ <_>
+
+ 0 -1 42 1.9412999972701073e-02
+
+ -1.0017599910497665e-01 9.3655401468276978e-01
+ <_>
+
+ 0 -1 43 1.7439000308513641e-02
+
+ -4.0379899740219116e-01 9.6293002367019653e-01
+ <_>
+
+ 0 -1 44 3.9638999849557877e-02
+
+ 1.7039099335670471e-01 -2.9602990150451660e+00
+ <_>
+
+ 0 -1 45 -9.1469995677471161e-03
+
+ 8.8786798715591431e-01 -4.3818700313568115e-01
+ <_>
+
+ 0 -1 46 1.7219999572262168e-03
+
+ -3.7218600511550903e-01 4.0018901228904724e-01
+ <_>
+
+ 0 -1 47 3.0231000855565071e-02
+
+ 6.5924003720283508e-02 -2.6469180583953857e+00
+ <_>
+
+ 0 -1 48 -7.8795999288558960e-02
+
+ -1.7491459846496582e+00 2.8475299477577209e-01
+ <_>
+
+ 0 -1 49 2.1110000088810921e-03
+
+ -9.3908101320266724e-01 2.3205199837684631e-01
+ <_>
+
+ 0 -1 50 2.7091000229120255e-02
+
+ -5.2664000540971756e-02 1.0756820440292358e+00
+ <_>
+
+ 0 -1 51 -4.4964998960494995e-02
+
+ -1.8294479846954346e+00 9.9561996757984161e-02
+ <_>
+ 32
+ -4.4531588554382324e+00
+
+ <_>
+
+ 0 -1 52 -6.5701000392436981e-02
+
+ 1.1558510065078735e+00 -1.0716359615325928e+00
+ <_>
+
+ 0 -1 53 1.5839999541640282e-02
+
+ -1.5634720325469971e+00 7.6877099275588989e-01
+ <_>
+
+ 0 -1 54 1.4570899307727814e-01
+
+ -5.7450097799301147e-01 1.3808720111846924e+00
+ <_>
+
+ 0 -1 55 6.1389999464154243e-03
+
+ -1.4570560455322266e+00 5.1610302925109863e-01
+ <_>
+
+ 0 -1 56 6.7179999314248562e-03
+
+ -8.3533602952957153e-01 5.8522200584411621e-01
+ <_>
+
+ 0 -1 57 1.8518000841140747e-02
+
+ -3.1312099099159241e-01 1.1696679592132568e+00
+ <_>
+
+ 0 -1 58 1.9958000630140305e-02
+
+ -4.3442600965499878e-01 9.5446902513504028e-01
+ <_>
+
+ 0 -1 59 -2.7755001187324524e-01
+
+ 1.4906179904937744e+00 -1.3815900683403015e-01
+ <_>
+
+ 0 -1 60 9.1859996318817139e-03
+
+ -9.6361500024795532e-01 2.7665498852729797e-01
+ <_>
+
+ 0 -1 61 -3.7737999111413956e-02
+
+ -2.4464108943939209e+00 2.3619599640369415e-01
+ <_>
+
+ 0 -1 62 1.8463000655174255e-02
+
+ 1.7539200186729431e-01 -1.3423130512237549e+00
+ <_>
+
+ 0 -1 63 -1.1114999651908875e-02
+
+ 4.8710799217224121e-01 -8.9851897954940796e-01
+ <_>
+
+ 0 -1 64 3.3927999436855316e-02
+
+ 1.7874200642108917e-01 -1.6342279911041260e+00
+ <_>
+
+ 0 -1 65 -3.5649001598358154e-02
+
+ -1.9607399702072144e+00 1.8102499842643738e-01
+ <_>
+
+ 0 -1 66 -1.1438000015914440e-02
+
+ 9.9010699987411499e-01 -3.8103199005126953e-01
+ <_>
+
+ 0 -1 67 -6.5236002206802368e-02
+
+ -2.5794160366058350e+00 2.4753600358963013e-01
+ <_>
+
+ 0 -1 68 -4.2272001504898071e-02
+
+ 1.4411840438842773e+00 -2.9508298635482788e-01
+ <_>
+
+ 0 -1 69 1.9219999667257071e-03
+
+ -4.9608600139617920e-01 6.3173598051071167e-01
+ <_>
+
+ 0 -1 70 -1.2921799719333649e-01
+
+ -2.3314270973205566e+00 5.4496999830007553e-02
+ <_>
+
+ 0 -1 71 2.2931000217795372e-02
+
+ -8.4447097778320312e-01 3.8738098740577698e-01
+ <_>
+
+ 0 -1 72 -3.4120000898838043e-02
+
+ -1.4431500434875488e+00 9.8422996699810028e-02
+ <_>
+
+ 0 -1 73 2.6223000138998032e-02
+
+ 1.8223099410533905e-01 -1.2586519718170166e+00
+ <_>
+
+ 0 -1 74 2.2236999124288559e-02
+
+ 6.9807998836040497e-02 -2.3820950984954834e+00
+ <_>
+
+ 0 -1 75 -5.8240001089870930e-03
+
+ 3.9332500100135803e-01 -2.7542799711227417e-01
+ <_>
+
+ 0 -1 76 4.3653000146150589e-02
+
+ 1.4832699298858643e-01 -1.1368780136108398e+00
+ <_>
+
+ 0 -1 77 5.7266999036073685e-02
+
+ 2.4628099799156189e-01 -1.2687400579452515e+00
+ <_>
+
+ 0 -1 78 2.3409998975694180e-03
+
+ -7.5448900461196899e-01 2.7163800597190857e-01
+ <_>
+
+ 0 -1 79 1.2996000237762928e-02
+
+ -3.6394900083541870e-01 7.0959198474884033e-01
+ <_>
+
+ 0 -1 80 -2.6517000049352646e-02
+
+ -2.3221859931945801e+00 3.5744000226259232e-02
+ <_>
+
+ 0 -1 81 -5.8400002308189869e-03
+
+ 4.2194300889968872e-01 -4.8184998333454132e-02
+ <_>
+
+ 0 -1 82 -1.6568999737501144e-02
+
+ 1.1099940538406372e+00 -3.4849700331687927e-01
+ <_>
+
+ 0 -1 83 -6.8157002329826355e-02
+
+ -3.3269989490509033e+00 2.1299000084400177e-01
+ <_>
+ 52
+ -4.3864588737487793e+00
+
+ <_>
+
+ 0 -1 84 3.9974000304937363e-02
+
+ -1.2173449993133545e+00 1.0826710462570190e+00
+ <_>
+
+ 0 -1 85 1.8819500505924225e-01
+
+ -4.8289400339126587e-01 1.4045250415802002e+00
+ <_>
+
+ 0 -1 86 7.8027002513408661e-02
+
+ -1.0782150030136108e+00 7.4040299654006958e-01
+ <_>
+
+ 0 -1 87 1.1899999663000926e-04
+
+ -1.2019979953765869e+00 3.7749201059341431e-01
+ <_>
+
+ 0 -1 88 8.5056997835636139e-02
+
+ -4.3939098715782166e-01 1.2647340297698975e+00
+ <_>
+
+ 0 -1 89 8.9720003306865692e-03
+
+ -1.8440499901771545e-01 4.5726400613784790e-01
+ <_>
+
+ 0 -1 90 8.8120000436902046e-03
+
+ 3.0396699905395508e-01 -9.5991098880767822e-01
+ <_>
+
+ 0 -1 91 -2.3507999256253242e-02
+
+ 1.2487529516220093e+00 4.6227999031543732e-02
+ <_>
+
+ 0 -1 92 7.0039997808635235e-03
+
+ -5.9442102909088135e-01 5.3963297605514526e-01
+ <_>
+
+ 0 -1 93 3.3851999789476395e-02
+
+ 2.8496098518371582e-01 -1.4895249605178833e+00
+ <_>
+
+ 0 -1 94 -3.2530000898987055e-03
+
+ 4.8120799660682678e-01 -5.2712398767471313e-01
+ <_>
+
+ 0 -1 95 2.9097000136971474e-02
+
+ 2.6743900775909424e-01 -1.6007850170135498e+00
+ <_>
+
+ 0 -1 96 -8.4790000692009926e-03
+
+ -1.3107639551162720e+00 1.5243099629878998e-01
+ <_>
+
+ 0 -1 97 -1.0795000009238720e-02
+
+ 4.5613598823547363e-01 -7.2050899267196655e-01
+ <_>
+
+ 0 -1 98 -2.4620000272989273e-02
+
+ -1.7320619821548462e+00 6.8363003432750702e-02
+ <_>
+
+ 0 -1 99 3.7380000576376915e-03
+
+ -1.9303299486637115e-01 6.8243497610092163e-01
+ <_>
+
+ 0 -1 100 -1.2264000251889229e-02
+
+ -1.6095290184020996e+00 7.5268000364303589e-02
+ <_>
+
+ 0 -1 101 -4.8670000396668911e-03
+
+ 7.4286502599716187e-01 -2.1510200202465057e-01
+ <_>
+
+ 0 -1 102 7.6725997030735016e-02
+
+ -2.6835098862648010e-01 1.3094140291213989e+00
+ <_>
+
+ 0 -1 103 2.8578000143170357e-02
+
+ -5.8793000876903534e-02 1.2196329832077026e+00
+ <_>
+
+ 0 -1 104 1.9694000482559204e-02
+
+ -3.5142898559570312e-01 8.4926998615264893e-01
+ <_>
+
+ 0 -1 105 -2.9093999415636063e-02
+
+ -1.0507299900054932e+00 2.9806300997734070e-01
+ <_>
+
+ 0 -1 106 -2.9144000262022018e-02
+
+ 8.2547801733016968e-01 -3.2687199115753174e-01
+ <_>
+
+ 0 -1 107 1.9741000607609749e-02
+
+ 2.0452600717544556e-01 -8.3760201930999756e-01
+ <_>
+
+ 0 -1 108 4.3299999088048935e-03
+
+ 2.0577900111675262e-01 -6.6829800605773926e-01
+ <_>
+
+ 0 -1 109 -3.5500999540090561e-02
+
+ -1.2969900369644165e+00 1.3897499442100525e-01
+ <_>
+
+ 0 -1 110 -1.6172999516129494e-02
+
+ -1.3110569715499878e+00 7.5751997530460358e-02
+ <_>
+
+ 0 -1 111 -2.2151000797748566e-02
+
+ -1.0524389743804932e+00 1.9241100549697876e-01
+ <_>
+
+ 0 -1 112 -2.2707000374794006e-02
+
+ -1.3735309839248657e+00 6.6780999302864075e-02
+ <_>
+
+ 0 -1 113 1.6607999801635742e-02
+
+ -3.7135999649763107e-02 7.7846401929855347e-01
+ <_>
+
+ 0 -1 114 -1.3309000059962273e-02
+
+ -9.9850702285766602e-01 1.2248100340366364e-01
+ <_>
+
+ 0 -1 115 -3.3732000738382339e-02
+
+ 1.4461359977722168e+00 1.3151999562978745e-02
+ <_>
+
+ 0 -1 116 1.6935000196099281e-02
+
+ -3.7121298909187317e-01 5.2842199802398682e-01
+ <_>
+
+ 0 -1 117 3.3259999472647905e-03
+
+ -5.7568502426147461e-01 3.9261901378631592e-01
+ <_>
+
+ 0 -1 118 8.3644002676010132e-02
+
+ 1.6116000711917877e-02 -2.1173279285430908e+00
+ <_>
+
+ 0 -1 119 2.5785198807716370e-01
+
+ -8.1609003245830536e-02 9.8782497644424438e-01
+ <_>
+
+ 0 -1 120 -3.6566998809576035e-02
+
+ -1.1512110233306885e+00 9.6459001302719116e-02
+ <_>
+
+ 0 -1 121 -1.6445999965071678e-02
+
+ 3.7315499782562256e-01 -1.4585399627685547e-01
+ <_>
+
+ 0 -1 122 -3.7519999314099550e-03
+
+ 2.6179298758506775e-01 -5.8156698942184448e-01
+ <_>
+
+ 0 -1 123 -6.3660000450909138e-03
+
+ 7.5477397441864014e-01 -1.7055200040340424e-01
+ <_>
+
+ 0 -1 124 -3.8499999791383743e-03
+
+ 2.2653999924659729e-01 -6.3876402378082275e-01
+ <_>
+
+ 0 -1 125 -4.5494001358747482e-02
+
+ -1.2640299797058105e+00 2.5260698795318604e-01
+ <_>
+
+ 0 -1 126 -2.3941000923514366e-02
+
+ 8.7068402767181396e-01 -2.7104699611663818e-01
+ <_>
+
+ 0 -1 127 -7.7558003365993500e-02
+
+ -1.3901610374450684e+00 2.3612299561500549e-01
+ <_>
+
+ 0 -1 128 2.3614000529050827e-02
+
+ 6.6140003502368927e-02 -1.2645419836044312e+00
+ <_>
+
+ 0 -1 129 -2.5750000495463610e-03
+
+ -5.3841698169708252e-01 3.0379098653793335e-01
+ <_>
+
+ 0 -1 130 1.2010800093412399e-01
+
+ -3.5343000292778015e-01 5.2866202592849731e-01
+ <_>
+
+ 0 -1 131 2.2899999748915434e-03
+
+ -5.8701997995376587e-01 2.4061000347137451e-01
+ <_>
+
+ 0 -1 132 6.9716997444629669e-02
+
+ -3.3348900079727173e-01 5.1916301250457764e-01
+ <_>
+
+ 0 -1 133 -4.6670001000165939e-02
+
+ 6.9795399904251099e-01 -1.4895999804139137e-02
+ <_>
+
+ 0 -1 134 -5.0129000097513199e-02
+
+ 8.6146199703216553e-01 -2.5986000895500183e-01
+ <_>
+
+ 0 -1 135 3.0147999525070190e-02
+
+ 1.9332799315452576e-01 -5.9131097793579102e-01
+ <_>
+ 53
+ -4.1299300193786621e+00
+
+ <_>
+
+ 0 -1 136 9.1085001826286316e-02
+
+ -8.9233100414276123e-01 1.0434230566024780e+00
+ <_>
+
+ 0 -1 137 1.2818999588489532e-02
+
+ -1.2597670555114746e+00 5.5317097902297974e-01
+ <_>
+
+ 0 -1 138 1.5931999310851097e-02
+
+ -8.6254400014877319e-01 6.3731801509857178e-01
+ <_>
+
+ 0 -1 139 2.2780001163482666e-03
+
+ -7.4639201164245605e-01 5.3155601024627686e-01
+ <_>
+
+ 0 -1 140 3.1840998679399490e-02
+
+ -1.2650489807128906e+00 3.6153900623321533e-01
+ <_>
+
+ 0 -1 141 2.6960000395774841e-03
+
+ -9.8290401697158813e-01 3.6013001203536987e-01
+ <_>
+
+ 0 -1 142 -1.2055000290274620e-02
+
+ 6.4068400859832764e-01 -5.0125002861022949e-01
+ <_>
+
+ 0 -1 143 2.1324999630451202e-02
+
+ -2.4034999310970306e-01 8.5448002815246582e-01
+ <_>
+
+ 0 -1 144 3.0486000701785088e-02
+
+ -3.4273600578308105e-01 1.1428849697113037e+00
+ <_>
+
+ 0 -1 145 -4.5079998672008514e-02
+
+ 1.0976949930191040e+00 -1.7974600195884705e-01
+ <_>
+
+ 0 -1 146 -7.1700997650623322e-02
+
+ 1.5735000371932983e+00 -3.1433498859405518e-01
+ <_>
+
+ 0 -1 147 5.9218000620603561e-02
+
+ -2.7582401037216187e-01 1.0448570251464844e+00
+ <_>
+
+ 0 -1 148 6.7010000348091125e-03
+
+ -1.0974019765853882e+00 1.9801199436187744e-01
+ <_>
+
+ 0 -1 149 4.1046999394893646e-02
+
+ 3.0547699332237244e-01 -1.3287999629974365e+00
+ <_>
+
+ 0 -1 150 -8.5499999113380909e-04
+
+ 2.5807100534439087e-01 -7.0052897930145264e-01
+ <_>
+
+ 0 -1 151 -3.0360000208020210e-02
+
+ -1.2306419610977173e+00 2.2609399259090424e-01
+ <_>
+
+ 0 -1 152 -1.2930000200867653e-02
+
+ 4.0758600831031799e-01 -5.1234501600265503e-01
+ <_>
+
+ 0 -1 153 3.7367999553680420e-02
+
+ -9.4755001366138458e-02 6.1765098571777344e-01
+ <_>
+
+ 0 -1 154 2.4434000253677368e-02
+
+ -4.1100600361824036e-01 4.7630500793457031e-01
+ <_>
+
+ 0 -1 155 5.7007998228073120e-02
+
+ 2.5249299407005310e-01 -6.8669801950454712e-01
+ <_>
+
+ 0 -1 156 -1.6313999891281128e-02
+
+ -9.3928402662277222e-01 1.1448100209236145e-01
+ <_>
+
+ 0 -1 157 -1.7648899555206299e-01
+
+ 1.2451089620590210e+00 -5.6519001722335815e-02
+ <_>
+
+ 0 -1 158 1.7614600062370300e-01
+
+ -3.2528200745582581e-01 8.2791501283645630e-01
+ <_>
+
+ 0 -1 159 -7.3910001665353775e-03
+
+ 3.4783700108528137e-01 -1.7929099500179291e-01
+ <_>
+
+ 0 -1 160 6.0890998691320419e-02
+
+ 5.5098000913858414e-02 -1.5480779409408569e+00
+ <_>
+
+ 0 -1 161 -2.9123000800609589e-02
+
+ -1.0255639553070068e+00 2.4106900393962860e-01
+ <_>
+
+ 0 -1 162 -4.5648999512195587e-02
+
+ 1.0301599502563477e+00 -3.1672099232673645e-01
+ <_>
+
+ 0 -1 163 3.7333000451326370e-02
+
+ 2.1620599925518036e-01 -8.2589900493621826e-01
+ <_>
+
+ 0 -1 164 -2.4411000311374664e-02
+
+ -1.5957959890365601e+00 5.1139000803232193e-02
+ <_>
+
+ 0 -1 165 -5.9806998819112778e-02
+
+ -1.0312290191650391e+00 1.3092300295829773e-01
+ <_>
+
+ 0 -1 166 -3.0106000602245331e-02
+
+ -1.4781630039215088e+00 3.7211999297142029e-02
+ <_>
+
+ 0 -1 167 7.4209999293088913e-03
+
+ -2.4024100601673126e-01 4.9333998560905457e-01
+ <_>
+
+ 0 -1 168 -2.1909999195486307e-03
+
+ 2.8941500186920166e-01 -5.7259601354598999e-01
+ <_>
+
+ 0 -1 169 2.0860999822616577e-02
+
+ -2.3148399591445923e-01 6.3765901327133179e-01
+ <_>
+
+ 0 -1 170 -6.6990000195801258e-03
+
+ -1.2107750177383423e+00 6.4018003642559052e-02
+ <_>
+
+ 0 -1 171 1.8758000805974007e-02
+
+ 2.4461300671100616e-01 -9.9786698818206787e-01
+ <_>
+
+ 0 -1 172 -4.4323001056909561e-02
+
+ -1.3699189424514771e+00 3.6051999777555466e-02
+ <_>
+
+ 0 -1 173 2.2859999909996986e-02
+
+ 2.1288399398326874e-01 -1.0397620201110840e+00
+ <_>
+
+ 0 -1 174 -9.8600005730986595e-04
+
+ 3.2443600893020630e-01 -5.4291802644729614e-01
+ <_>
+
+ 0 -1 175 1.7239000648260117e-02
+
+ -2.8323900699615479e-01 4.4468200206756592e-01
+ <_>
+
+ 0 -1 176 -3.4531001001596451e-02
+
+ -2.3107020854949951e+00 -3.1399999279528856e-03
+ <_>
+
+ 0 -1 177 6.7006997764110565e-02
+
+ 2.8715699911117554e-01 -6.4481002092361450e-01
+ <_>
+
+ 0 -1 178 2.3776899278163910e-01
+
+ -2.7174800634384155e-01 8.0219101905822754e-01
+ <_>
+
+ 0 -1 179 -1.2903000228106976e-02
+
+ -1.5317620038986206e+00 2.1423600614070892e-01
+ <_>
+
+ 0 -1 180 1.0514999739825726e-02
+
+ 7.7037997543811798e-02 -1.0581140518188477e+00
+ <_>
+
+ 0 -1 181 1.6969000920653343e-02
+
+ 1.4306700229644775e-01 -8.5828399658203125e-01
+ <_>
+
+ 0 -1 182 -7.2460002265870571e-03
+
+ -1.1020129919052124e+00 6.4906999468803406e-02
+ <_>
+
+ 0 -1 183 1.0556999593973160e-02
+
+ 1.3964000158011913e-02 6.3601499795913696e-01
+ <_>
+
+ 0 -1 184 6.1380001716315746e-03
+
+ -3.4545901417732239e-01 5.6296801567077637e-01
+ <_>
+
+ 0 -1 185 1.3158000074326992e-02
+
+ 1.9927300512790680e-01 -1.5040320158004761e+00
+ <_>
+
+ 0 -1 186 3.1310000922530890e-03
+
+ -4.0903699398040771e-01 3.7796398997306824e-01
+ <_>
+
+ 0 -1 187 -1.0920699685811996e-01
+
+ -2.2227079868316650e+00 1.2178199738264084e-01
+ <_>
+
+ 0 -1 188 8.1820003688335419e-03
+
+ -2.8652000427246094e-01 6.7890799045562744e-01
+ <_>
+ 62
+ -4.0218091011047363e+00
+
+ <_>
+
+ 0 -1 189 3.1346999108791351e-02
+
+ -8.8884598016738892e-01 9.4936800003051758e-01
+ <_>
+
+ 0 -1 190 3.1918000429868698e-02
+
+ -1.1146880388259888e+00 4.8888999223709106e-01
+ <_>
+
+ 0 -1 191 6.5939999185502529e-03
+
+ -1.0097689628601074e+00 4.9723801016807556e-01
+ <_>
+
+ 0 -1 192 2.6148000732064247e-02
+
+ 2.5991299748420715e-01 -1.2537480592727661e+00
+ <_>
+
+ 0 -1 193 1.2845000252127647e-02
+
+ -5.7138597965240479e-01 5.9659498929977417e-01
+ <_>
+
+ 0 -1 194 2.6344999670982361e-02
+
+ -5.5203199386596680e-01 3.0217400193214417e-01
+ <_>
+
+ 0 -1 195 -1.5083000063896179e-02
+
+ -1.2871240377426147e+00 2.2354200482368469e-01
+ <_>
+
+ 0 -1 196 -3.8887001574039459e-02
+
+ 1.7425049543380737e+00 -9.9747002124786377e-02
+ <_>
+
+ 0 -1 197 -5.7029998861253262e-03
+
+ -1.0523240566253662e+00 1.8362599611282349e-01
+ <_>
+
+ 0 -1 198 -1.4860000228509307e-03
+
+ 5.6784200668334961e-01 -4.6742001175880432e-01
+ <_>
+
+ 0 -1 199 -2.8486000373959541e-02
+
+ 1.3082909584045410e+00 -2.6460900902748108e-01
+ <_>
+
+ 0 -1 200 6.6224999725818634e-02
+
+ -4.6210700273513794e-01 4.1749599575996399e-01
+ <_>
+
+ 0 -1 201 8.8569996878504753e-03
+
+ -4.1474899649620056e-01 5.9204798936843872e-01
+ <_>
+
+ 0 -1 202 1.1355999857187271e-02
+
+ 3.6103099584579468e-01 -4.5781201124191284e-01
+ <_>
+
+ 0 -1 203 -2.7679998893290758e-03
+
+ -8.9238899946212769e-01 1.4199000597000122e-01
+ <_>
+
+ 0 -1 204 1.1246999725699425e-02
+
+ 2.9353401064872742e-01 -9.7330600023269653e-01
+ <_>
+
+ 0 -1 205 7.1970000863075256e-03
+
+ -7.9334902763366699e-01 1.8313400447368622e-01
+ <_>
+
+ 0 -1 206 3.1768999993801117e-02
+
+ 1.5523099899291992e-01 -1.3245639801025391e+00
+ <_>
+
+ 0 -1 207 2.5173999369144440e-02
+
+ 3.4214999526739120e-02 -2.0948131084442139e+00
+ <_>
+
+ 0 -1 208 7.5360001064836979e-03
+
+ -3.9450600743293762e-01 5.1333999633789062e-01
+ <_>
+
+ 0 -1 209 3.2873000949621201e-02
+
+ 8.8372997939586639e-02 -1.2814120054244995e+00
+ <_>
+
+ 0 -1 210 -2.7379998937249184e-03
+
+ 5.5286502838134766e-01 -4.6384999155998230e-01
+ <_>
+
+ 0 -1 211 -3.8075000047683716e-02
+
+ -1.8497270345687866e+00 4.5944001525640488e-02
+ <_>
+
+ 0 -1 212 -3.8984000682830811e-02
+
+ -4.8223701119422913e-01 3.4760600328445435e-01
+ <_>
+
+ 0 -1 213 2.8029999230057001e-03
+
+ -4.5154699683189392e-01 4.2806300520896912e-01
+ <_>
+
+ 0 -1 214 -5.4145999252796173e-02
+
+ -8.4520798921585083e-01 1.6674900054931641e-01
+ <_>
+
+ 0 -1 215 -8.3280000835657120e-03
+
+ 3.5348299145698547e-01 -4.7163200378417969e-01
+ <_>
+
+ 0 -1 216 3.3778000622987747e-02
+
+ 1.8463100492954254e-01 -1.6686669588088989e+00
+ <_>
+
+ 0 -1 217 -1.1238099634647369e-01
+
+ -1.2521569728851318e+00 3.5992000252008438e-02
+ <_>
+
+ 0 -1 218 -1.0408000089228153e-02
+
+ -8.1620401144027710e-01 2.3428599536418915e-01
+ <_>
+
+ 0 -1 219 -4.9439999274909496e-03
+
+ -9.2584699392318726e-01 1.0034800320863724e-01
+ <_>
+
+ 0 -1 220 -9.3029998242855072e-03
+
+ 5.6499302387237549e-01 -1.8881900608539581e-01
+ <_>
+
+ 0 -1 221 -1.1749999597668648e-02
+
+ 8.0302399396896362e-01 -3.8277000188827515e-01
+ <_>
+
+ 0 -1 222 -2.3217000067234039e-02
+
+ -8.4926998615264893e-01 1.9671200215816498e-01
+ <_>
+
+ 0 -1 223 1.6866000369191170e-02
+
+ -4.0591898560523987e-01 5.0695300102233887e-01
+ <_>
+
+ 0 -1 224 -2.4031000211834908e-02
+
+ -1.5297520160675049e+00 2.3344999551773071e-01
+ <_>
+
+ 0 -1 225 -3.6945998668670654e-02
+
+ 6.3007700443267822e-01 -3.1780400872230530e-01
+ <_>
+
+ 0 -1 226 -6.1563998460769653e-02
+
+ 5.8627897500991821e-01 -1.2107999995350838e-02
+ <_>
+
+ 0 -1 227 2.1661000326275826e-02
+
+ -2.5623700022697449e-01 1.0409849882125854e+00
+ <_>
+
+ 0 -1 228 -3.6710000131279230e-03
+
+ 2.9171100258827209e-01 -8.3287298679351807e-01
+ <_>
+
+ 0 -1 229 4.4849000871181488e-02
+
+ -3.9633199572563171e-01 4.5662000775337219e-01
+ <_>
+
+ 0 -1 230 5.7195000350475311e-02
+
+ 2.1023899316787720e-01 -1.5004800558090210e+00
+ <_>
+
+ 0 -1 231 -1.1342000216245651e-02
+
+ 4.4071298837661743e-01 -3.8653799891471863e-01
+ <_>
+
+ 0 -1 232 -1.2004000134766102e-02
+
+ 9.3954598903656006e-01 -1.0589499771595001e-01
+ <_>
+
+ 0 -1 233 2.2515999153256416e-02
+
+ 9.4480002298951149e-03 -1.6799509525299072e+00
+ <_>
+
+ 0 -1 234 -1.9809000194072723e-02
+
+ -1.0133639574050903e+00 2.4146600067615509e-01
+ <_>
+
+ 0 -1 235 1.5891000628471375e-02
+
+ -3.7507599592208862e-01 4.6614098548889160e-01
+ <_>
+
+ 0 -1 236 -9.1420002281665802e-03
+
+ -8.0484098196029663e-01 1.7816999554634094e-01
+ <_>
+
+ 0 -1 237 -4.4740000739693642e-03
+
+ -1.0562069416046143e+00 7.3305003345012665e-02
+ <_>
+
+ 0 -1 238 1.2742500007152557e-01
+
+ 2.0165599882602692e-01 -1.5467929840087891e+00
+ <_>
+
+ 0 -1 239 4.7703001648187637e-02
+
+ -3.7937799096107483e-01 3.7885999679565430e-01
+ <_>
+
+ 0 -1 240 5.3608000278472900e-02
+
+ 2.1220499277114868e-01 -1.2399710416793823e+00
+ <_>
+
+ 0 -1 241 -3.9680998772382736e-02
+
+ -1.0257550477981567e+00 5.1282998174428940e-02
+ <_>
+
+ 0 -1 242 -6.7327000200748444e-02
+
+ -1.0304750204086304e+00 2.3005299270153046e-01
+ <_>
+
+ 0 -1 243 1.3337600231170654e-01
+
+ -2.0869000256061554e-01 1.2272510528564453e+00
+ <_>
+
+ 0 -1 244 -2.0919300615787506e-01
+
+ 8.7929898500442505e-01 -4.4254999607801437e-02
+ <_>
+
+ 0 -1 245 -6.5589003264904022e-02
+
+ 1.0443429946899414e+00 -2.1682099997997284e-01
+ <_>
+
+ 0 -1 246 6.1882998794317245e-02
+
+ 1.3798199594020844e-01 -1.9009059667587280e+00
+ <_>
+
+ 0 -1 247 -2.5578999891877174e-02
+
+ -1.6607600450515747e+00 5.8439997956156731e-03
+ <_>
+
+ 0 -1 248 -3.4827001392841339e-02
+
+ 7.9940402507781982e-01 -8.2406997680664062e-02
+ <_>
+
+ 0 -1 249 -1.8209999427199364e-02
+
+ -9.6073997020721436e-01 6.6320002079010010e-02
+ <_>
+
+ 0 -1 250 1.5070999972522259e-02
+
+ 1.9899399578571320e-01 -7.6433002948760986e-01
+ <_>
+ 72
+ -3.8832089900970459e+00
+
+ <_>
+
+ 0 -1 251 4.6324998140335083e-02
+
+ -1.0362670421600342e+00 8.2201498746871948e-01
+ <_>
+
+ 0 -1 252 1.5406999737024307e-02
+
+ -1.2327589988708496e+00 2.9647698998451233e-01
+ <_>
+
+ 0 -1 253 1.2808999978005886e-02
+
+ -7.5852298736572266e-01 5.7985502481460571e-01
+ <_>
+
+ 0 -1 254 4.9150999635457993e-02
+
+ -3.8983899354934692e-01 8.9680302143096924e-01
+ <_>
+
+ 0 -1 255 1.2621000409126282e-02
+
+ -7.1799302101135254e-01 5.0440901517868042e-01
+ <_>
+
+ 0 -1 256 -1.8768999725580215e-02
+
+ 5.5147600173950195e-01 -7.0555400848388672e-01
+ <_>
+
+ 0 -1 257 4.1965000331401825e-02
+
+ -4.4782099127769470e-01 7.0985502004623413e-01
+ <_>
+
+ 0 -1 258 -5.1401998847723007e-02
+
+ -1.0932120084762573e+00 2.6701900362968445e-01
+ <_>
+
+ 0 -1 259 -7.0960998535156250e-02
+
+ 8.3618402481079102e-01 -3.8318100571632385e-01
+ <_>
+
+ 0 -1 260 1.6745999455451965e-02
+
+ -2.5733101367950439e-01 2.5966501235961914e-01
+ <_>
+
+ 0 -1 261 -6.2400000169873238e-03
+
+ 3.1631499528884888e-01 -5.8796900510787964e-01
+ <_>
+
+ 0 -1 262 -3.9397999644279480e-02
+
+ -1.0491210222244263e+00 1.6822400689125061e-01
+ <_>
+
+ 0 -1 263 0.
+
+ 1.6144199669361115e-01 -8.7876898050308228e-01
+ <_>
+
+ 0 -1 264 -2.2307999432086945e-02
+
+ -6.9053500890731812e-01 2.3607000708580017e-01
+ <_>
+
+ 0 -1 265 1.8919999711215496e-03
+
+ 2.4989199638366699e-01 -5.6583297252655029e-01
+ <_>
+
+ 0 -1 266 1.0730000212788582e-03
+
+ -5.0415802001953125e-01 3.8374501466751099e-01
+ <_>
+
+ 0 -1 267 3.9230998605489731e-02
+
+ 4.2619001120328903e-02 -1.3875889778137207e+00
+ <_>
+
+ 0 -1 268 6.2238000333309174e-02
+
+ 1.4119400084018707e-01 -1.0688860416412354e+00
+ <_>
+
+ 0 -1 269 2.1399999968707561e-03
+
+ -8.9622402191162109e-01 1.9796399772167206e-01
+ <_>
+
+ 0 -1 270 9.1800000518560410e-04
+
+ -4.5337298512458801e-01 4.3532699346542358e-01
+ <_>
+
+ 0 -1 271 -6.9169998168945312e-03
+
+ 3.3822798728942871e-01 -4.4793000817298889e-01
+ <_>
+
+ 0 -1 272 -2.3866999894380569e-02
+
+ -7.8908598423004150e-01 2.2511799633502960e-01
+ <_>
+
+ 0 -1 273 -1.0262800008058548e-01
+
+ -2.2831439971923828e+00 -5.3960001096129417e-03
+ <_>
+
+ 0 -1 274 -9.5239998772740364e-03
+
+ 3.9346700906753540e-01 -5.2242201566696167e-01
+ <_>
+
+ 0 -1 275 3.9877001196146011e-02
+
+ 3.2799001783132553e-02 -1.5079489946365356e+00
+ <_>
+
+ 0 -1 276 -1.3144999742507935e-02
+
+ -1.0839990377426147e+00 1.8482400476932526e-01
+ <_>
+
+ 0 -1 277 -5.0590999424457550e-02
+
+ -1.8822289705276489e+00 -2.2199999075382948e-03
+ <_>
+
+ 0 -1 278 2.4917000904679298e-02
+
+ 1.4593400061130524e-01 -2.2196519374847412e+00
+ <_>
+
+ 0 -1 279 -7.6370001770555973e-03
+
+ -1.0164569616317749e+00 5.8797001838684082e-02
+ <_>
+
+ 0 -1 280 4.2911998927593231e-02
+
+ 1.5443000197410583e-01 -1.1843889951705933e+00
+ <_>
+
+ 0 -1 281 2.3000000510364771e-04
+
+ -7.7305799722671509e-01 1.2189900130033493e-01
+ <_>
+
+ 0 -1 282 9.0929996222257614e-03
+
+ -1.1450099945068359e-01 7.1091300249099731e-01
+ <_>
+
+ 0 -1 283 1.1145000346004963e-02
+
+ 7.0000998675823212e-02 -1.0534820556640625e+00
+ <_>
+
+ 0 -1 284 -5.2453000098466873e-02
+
+ -1.7594360113143921e+00 1.9523799419403076e-01
+ <_>
+
+ 0 -1 285 -2.3020699620246887e-01
+
+ 9.5840299129486084e-01 -2.5045698881149292e-01
+ <_>
+
+ 0 -1 286 -1.6365999355912209e-02
+
+ 4.6731901168823242e-01 -2.1108399331569672e-01
+ <_>
+
+ 0 -1 287 -1.7208000645041466e-02
+
+ 7.0835697650909424e-01 -2.8018298745155334e-01
+ <_>
+
+ 0 -1 288 -3.6648001521825790e-02
+
+ -1.1013339757919312e+00 2.4341100454330444e-01
+ <_>
+
+ 0 -1 289 -1.0304999537765980e-02
+
+ -1.0933129787445068e+00 5.6258998811244965e-02
+ <_>
+
+ 0 -1 290 -1.3713000342249870e-02
+
+ -2.6438099145889282e-01 1.9821000099182129e-01
+ <_>
+
+ 0 -1 291 2.9308000579476357e-02
+
+ -2.2142399847507477e-01 1.0525950193405151e+00
+ <_>
+
+ 0 -1 292 2.4077000096440315e-02
+
+ 1.8485699594020844e-01 -1.7203969955444336e+00
+ <_>
+
+ 0 -1 293 6.1280000954866409e-03
+
+ -9.2721498012542725e-01 5.8752998709678650e-02
+ <_>
+
+ 0 -1 294 -2.2377999499440193e-02
+
+ 1.9646559953689575e+00 2.7785999700427055e-02
+ <_>
+
+ 0 -1 295 -7.0440000854432583e-03
+
+ 2.1427600085735321e-01 -4.8407599329948425e-01
+ <_>
+
+ 0 -1 296 -4.0603000670671463e-02
+
+ -1.1754349470138550e+00 1.6061200201511383e-01
+ <_>
+
+ 0 -1 297 -2.4466000497341156e-02
+
+ -1.1239900588989258e+00 4.1110001504421234e-02
+ <_>
+
+ 0 -1 298 2.5309999473392963e-03
+
+ -1.7169700562953949e-01 3.2178801298141479e-01
+ <_>
+
+ 0 -1 299 -1.9588999450206757e-02
+
+ 8.2720202207565308e-01 -2.6376700401306152e-01
+ <_>
+
+ 0 -1 300 -2.9635999351739883e-02
+
+ -1.1524770259857178e+00 1.4999300241470337e-01
+ <_>
+
+ 0 -1 301 -1.5030000358819962e-02
+
+ -1.0491830110549927e+00 4.0160998702049255e-02
+ <_>
+
+ 0 -1 302 -6.0715001076459885e-02
+
+ -1.0903840065002441e+00 1.5330800414085388e-01
+ <_>
+
+ 0 -1 303 -1.2790000066161156e-02
+
+ 4.2248600721359253e-01 -4.2399200797080994e-01
+ <_>
+
+ 0 -1 304 -2.0247999578714371e-02
+
+ -9.1866999864578247e-01 1.8485699594020844e-01
+ <_>
+
+ 0 -1 305 -3.0683999881148338e-02
+
+ -1.5958670377731323e+00 2.5760000571608543e-03
+ <_>
+
+ 0 -1 306 -2.0718000829219818e-02
+
+ -6.6299998760223389e-01 3.1037199497222900e-01
+ <_>
+
+ 0 -1 307 -1.7290000105276704e-03
+
+ 1.9183400273323059e-01 -6.5084999799728394e-01
+ <_>
+
+ 0 -1 308 -3.1394001096487045e-02
+
+ -6.3643002510070801e-01 1.5408399701118469e-01
+ <_>
+
+ 0 -1 309 1.9003000110387802e-02
+
+ -1.8919399380683899e-01 1.5294510126113892e+00
+ <_>
+
+ 0 -1 310 6.1769997701048851e-03
+
+ -1.0597900301218033e-01 6.4859598875045776e-01
+ <_>
+
+ 0 -1 311 -1.0165999643504620e-02
+
+ -1.0802700519561768e+00 3.7176001816987991e-02
+ <_>
+
+ 0 -1 312 -1.4169999631121755e-03
+
+ 3.4157499670982361e-01 -9.7737997770309448e-02
+ <_>
+
+ 0 -1 313 -4.0799998678267002e-03
+
+ 4.7624599933624268e-01 -3.4366300702095032e-01
+ <_>
+
+ 0 -1 314 -4.4096998870372772e-02
+
+ 9.7634297609329224e-01 -1.9173000007867813e-02
+ <_>
+
+ 0 -1 315 -6.0669999569654465e-02
+
+ -2.1752851009368896e+00 -2.8925999999046326e-02
+ <_>
+
+ 0 -1 316 -3.2931998372077942e-02
+
+ -6.4383101463317871e-01 1.6494099795818329e-01
+ <_>
+
+ 0 -1 317 -1.4722800254821777e-01
+
+ -1.4745830297470093e+00 2.5839998852461576e-03
+ <_>
+
+ 0 -1 318 -1.1930000036954880e-02
+
+ 4.2441400885581970e-01 -1.7712600529193878e-01
+ <_>
+
+ 0 -1 319 1.4517900347709656e-01
+
+ 2.5444999337196350e-02 -1.2779400348663330e+00
+ <_>
+
+ 0 -1 320 5.1447998732328415e-02
+
+ 1.5678399801254272e-01 -1.5188430547714233e+00
+ <_>
+
+ 0 -1 321 3.1479999888688326e-03
+
+ -4.0424400568008423e-01 3.2429701089859009e-01
+ <_>
+
+ 0 -1 322 -4.3600000441074371e-02
+
+ -1.9932260513305664e+00 1.5018600225448608e-01
+ <_>
+ 83
+ -3.8424909114837646e+00
+
+ <_>
+
+ 0 -1 323 1.2899599969387054e-01
+
+ -6.2161999940872192e-01 1.1116520166397095e+00
+ <_>
+
+ 0 -1 324 -9.1261997818946838e-02
+
+ 1.0143059492111206e+00 -6.1335200071334839e-01
+ <_>
+
+ 0 -1 325 1.4271999709308147e-02
+
+ -1.0261659622192383e+00 3.9779999852180481e-01
+ <_>
+
+ 0 -1 326 3.2889999449253082e-02
+
+ -1.1386079788208008e+00 2.8690800070762634e-01
+ <_>
+
+ 0 -1 327 1.2590000405907631e-02
+
+ -5.6645601987838745e-01 4.5172399282455444e-01
+ <_>
+
+ 0 -1 328 1.4661000110208988e-02
+
+ 3.0505999922752380e-01 -6.8129599094390869e-01
+ <_>
+
+ 0 -1 329 -3.3555999398231506e-02
+
+ -1.7208939790725708e+00 6.1439000070095062e-02
+ <_>
+
+ 0 -1 330 1.4252699911594391e-01
+
+ 2.3192200064659119e-01 -1.7297149896621704e+00
+ <_>
+
+ 0 -1 331 -6.2079997733235359e-03
+
+ -1.2163300514221191e+00 1.2160199880599976e-01
+ <_>
+
+ 0 -1 332 1.8178999423980713e-02
+
+ 3.2553699612617493e-01 -8.1003999710083008e-01
+ <_>
+
+ 0 -1 333 2.5036999955773354e-02
+
+ -3.1698799133300781e-01 6.7361402511596680e-01
+ <_>
+
+ 0 -1 334 4.6560999006032944e-02
+
+ -1.1089800298213959e-01 8.4082502126693726e-01
+ <_>
+
+ 0 -1 335 -8.9999996125698090e-03
+
+ 3.9574500918388367e-01 -4.7624599933624268e-01
+ <_>
+
+ 0 -1 336 4.0805999189615250e-02
+
+ -1.8000000272877514e-04 9.4570702314376831e-01
+ <_>
+
+ 0 -1 337 -3.4221999347209930e-02
+
+ 7.5206297636032104e-01 -3.1531500816345215e-01
+ <_>
+
+ 0 -1 338 -3.9716001600027084e-02
+
+ -8.3139598369598389e-01 1.7744399607181549e-01
+ <_>
+
+ 0 -1 339 2.5170000735670328e-03
+
+ -5.9377998113632202e-01 2.4657000601291656e-01
+ <_>
+
+ 0 -1 340 2.7428999543190002e-02
+
+ 1.5998399257659912e-01 -4.2781999707221985e-01
+ <_>
+
+ 0 -1 341 3.4986000508069992e-02
+
+ 3.5055998712778091e-02 -1.5988600254058838e+00
+ <_>
+
+ 0 -1 342 4.4970000162720680e-03
+
+ -5.2034300565719604e-01 3.7828299403190613e-01
+ <_>
+
+ 0 -1 343 2.7699999045580626e-03
+
+ -5.3182601928710938e-01 2.4951000511646271e-01
+ <_>
+
+ 0 -1 344 3.5174001008272171e-02
+
+ 1.9983400404453278e-01 -1.4446129798889160e+00
+ <_>
+
+ 0 -1 345 2.5970999151468277e-02
+
+ 4.4426999986171722e-02 -1.3622980117797852e+00
+ <_>
+
+ 0 -1 346 -1.5783999115228653e-02
+
+ -9.1020399332046509e-01 2.7190300822257996e-01
+ <_>
+
+ 0 -1 347 -7.5880000367760658e-03
+
+ 9.2064999043941498e-02 -8.1628900766372681e-01
+ <_>
+
+ 0 -1 348 2.0754000172019005e-02
+
+ 2.1185700595378876e-01 -7.4729001522064209e-01
+ <_>
+
+ 0 -1 349 5.9829000383615494e-02
+
+ -2.7301099896430969e-01 8.0923300981521606e-01
+ <_>
+
+ 0 -1 350 3.9039000868797302e-02
+
+ -1.0432299971580505e-01 8.6226201057434082e-01
+ <_>
+
+ 0 -1 351 2.1665999665856361e-02
+
+ 6.2709003686904907e-02 -9.8894298076629639e-01
+ <_>
+
+ 0 -1 352 -2.7496999129652977e-02
+
+ -9.2690998315811157e-01 1.5586300194263458e-01
+ <_>
+
+ 0 -1 353 1.0462000034749508e-02
+
+ 1.3418099284172058e-01 -7.0386397838592529e-01
+ <_>
+
+ 0 -1 354 2.4870999157428741e-02
+
+ 1.9706700742244720e-01 -4.0263301134109497e-01
+ <_>
+
+ 0 -1 355 -1.6036000102758408e-02
+
+ -1.1409829854965210e+00 7.3997996747493744e-02
+ <_>
+
+ 0 -1 356 4.8627000302076340e-02
+
+ 1.6990399360656738e-01 -7.2152197360992432e-01
+ <_>
+
+ 0 -1 357 1.2619999470189214e-03
+
+ -4.7389799356460571e-01 2.6254999637603760e-01
+ <_>
+
+ 0 -1 358 -8.8035002350807190e-02
+
+ -2.1606519222259521e+00 1.4554800093173981e-01
+ <_>
+
+ 0 -1 359 1.8356999382376671e-02
+
+ 4.4750999659299850e-02 -1.0766370296478271e+00
+ <_>
+
+ 0 -1 360 3.5275001078844070e-02
+
+ -3.2919000834226608e-02 1.2153890132904053e+00
+ <_>
+
+ 0 -1 361 -2.0392900705337524e-01
+
+ -1.3187999725341797e+00 1.5503999777138233e-02
+ <_>
+
+ 0 -1 362 -1.6619000583887100e-02
+
+ 3.6850199103355408e-01 -1.5283699333667755e-01
+ <_>
+
+ 0 -1 363 3.7739001214504242e-02
+
+ -2.5727799534797668e-01 7.0655298233032227e-01
+ <_>
+
+ 0 -1 364 2.2720000706613064e-03
+
+ -7.7602997422218323e-02 3.3367800712585449e-01
+ <_>
+
+ 0 -1 365 -1.4802999794483185e-02
+
+ -7.8524798154830933e-01 7.6934002339839935e-02
+ <_>
+
+ 0 -1 366 -4.8319000750780106e-02
+
+ 1.7022320032119751e+00 4.9722000956535339e-02
+ <_>
+
+ 0 -1 367 -2.9539000242948532e-02
+
+ 7.7670699357986450e-01 -2.4534299969673157e-01
+ <_>
+
+ 0 -1 368 -4.6169001609086990e-02
+
+ -1.4922779798507690e+00 1.2340000271797180e-01
+ <_>
+
+ 0 -1 369 -2.8064999729394913e-02
+
+ -2.1345369815826416e+00 -2.5797000154852867e-02
+ <_>
+
+ 0 -1 370 -5.7339998893439770e-03
+
+ 5.6982600688934326e-01 -1.2056600302457809e-01
+ <_>
+
+ 0 -1 371 -1.0111000388860703e-02
+
+ 6.7911398410797119e-01 -2.6638001203536987e-01
+ <_>
+
+ 0 -1 372 1.1359999887645245e-02
+
+ 2.4789799749851227e-01 -6.4493000507354736e-01
+ <_>
+
+ 0 -1 373 5.1809001713991165e-02
+
+ 1.4716000296175480e-02 -1.2395579814910889e+00
+ <_>
+
+ 0 -1 374 3.3291999250650406e-02
+
+ -8.2559995353221893e-03 1.0168470144271851e+00
+ <_>
+
+ 0 -1 375 -1.4494000002741814e-02
+
+ 4.5066800713539124e-01 -3.6250999569892883e-01
+ <_>
+
+ 0 -1 376 -3.4221999347209930e-02
+
+ -9.5292502641677856e-01 2.0684599876403809e-01
+ <_>
+
+ 0 -1 377 -8.0654002726078033e-02
+
+ -2.0139501094818115e+00 -2.3084999993443489e-02
+ <_>
+
+ 0 -1 378 -8.9399999706074595e-04
+
+ 3.9572000503540039e-01 -2.9351300001144409e-01
+ <_>
+
+ 0 -1 379 9.7162000834941864e-02
+
+ -2.4980300664901733e-01 1.0859220027923584e+00
+ <_>
+
+ 0 -1 380 3.6614000797271729e-02
+
+ -5.7844001799821854e-02 1.2162159681320190e+00
+ <_>
+
+ 0 -1 381 5.1693998277187347e-02
+
+ 4.3062999844551086e-02 -1.0636160373687744e+00
+ <_>
+
+ 0 -1 382 -2.4557000026106834e-02
+
+ -4.8946800827980042e-01 1.7182900011539459e-01
+ <_>
+
+ 0 -1 383 3.2736799120903015e-01
+
+ -2.9688599705696106e-01 5.1798301935195923e-01
+ <_>
+
+ 0 -1 384 7.6959999278187752e-03
+
+ -5.9805899858474731e-01 2.4803200364112854e-01
+ <_>
+
+ 0 -1 385 1.6172200441360474e-01
+
+ -2.9613999649882317e-02 -2.3162529468536377e+00
+ <_>
+
+ 0 -1 386 -4.7889999113976955e-03
+
+ 3.7457901239395142e-01 -3.2779198884963989e-01
+ <_>
+
+ 0 -1 387 -1.8402999266982079e-02
+
+ -9.9692702293395996e-01 7.2948001325130463e-02
+ <_>
+
+ 0 -1 388 7.7665001153945923e-02
+
+ 1.4175699651241302e-01 -1.7238730192184448e+00
+ <_>
+
+ 0 -1 389 1.8921000882983208e-02
+
+ -2.1273100376129150e-01 1.0165189504623413e+00
+ <_>
+
+ 0 -1 390 -7.9397998750209808e-02
+
+ -1.3164349794387817e+00 1.4981999993324280e-01
+ <_>
+
+ 0 -1 391 -6.8037003278732300e-02
+
+ 4.9421998858451843e-01 -2.9091000556945801e-01
+ <_>
+
+ 0 -1 392 -6.1010001227259636e-03
+
+ 4.2430499196052551e-01 -3.3899301290512085e-01
+ <_>
+
+ 0 -1 393 3.1927000731229782e-02
+
+ -3.1046999618411064e-02 -2.3459999561309814e+00
+ <_>
+
+ 0 -1 394 -2.9843999072909355e-02
+
+ -7.8989601135253906e-01 1.5417699515819550e-01
+ <_>
+
+ 0 -1 395 -8.0541998147964478e-02
+
+ -2.2509229183197021e+00 -3.0906999483704567e-02
+ <_>
+
+ 0 -1 396 3.8109999150037766e-03
+
+ -2.5577300786972046e-01 2.3785500228404999e-01
+ <_>
+
+ 0 -1 397 3.3647000789642334e-02
+
+ -2.2541399300098419e-01 9.2307400703430176e-01
+ <_>
+
+ 0 -1 398 8.2809999585151672e-03
+
+ -2.8896200656890869e-01 3.1046199798583984e-01
+ <_>
+
+ 0 -1 399 1.0104399919509888e-01
+
+ -3.4864000976085663e-02 -2.7102620601654053e+00
+ <_>
+
+ 0 -1 400 -1.0009000077843666e-02
+
+ 5.9715402126312256e-01 -3.3831000328063965e-02
+ <_>
+
+ 0 -1 401 7.1919998154044151e-03
+
+ -4.7738000750541687e-01 2.2686000168323517e-01
+ <_>
+
+ 0 -1 402 2.4969000369310379e-02
+
+ 2.2877700626850128e-01 -1.0435529947280884e+00
+ <_>
+
+ 0 -1 403 2.7908000349998474e-01
+
+ -2.5818100571632385e-01 7.6780498027801514e-01
+ <_>
+
+ 0 -1 404 -4.4213000684976578e-02
+
+ -5.9798002243041992e-01 2.8039899468421936e-01
+ <_>
+
+ 0 -1 405 -1.4136999845504761e-02
+
+ 7.0987302064895630e-01 -2.5645199418067932e-01
+ <_>
+ 91
+ -3.6478610038757324e+00
+
+ <_>
+
+ 0 -1 406 1.3771200180053711e-01
+
+ -5.5870598554611206e-01 1.0953769683837891e+00
+ <_>
+
+ 0 -1 407 3.4460999071598053e-02
+
+ -7.1171897649765015e-01 5.2899599075317383e-01
+ <_>
+
+ 0 -1 408 1.8580000847578049e-02
+
+ -1.1157519817352295e+00 4.0593999624252319e-01
+ <_>
+
+ 0 -1 409 2.5041999295353889e-02
+
+ -4.0892499685287476e-01 7.4129998683929443e-01
+ <_>
+
+ 0 -1 410 5.7179000228643417e-02
+
+ -3.8054299354553223e-01 7.3647701740264893e-01
+ <_>
+
+ 0 -1 411 1.4932000078260899e-02
+
+ -6.9945502281188965e-01 3.7950998544692993e-01
+ <_>
+
+ 0 -1 412 8.8900001719594002e-03
+
+ -5.4558598995208740e-01 3.6332499980926514e-01
+ <_>
+
+ 0 -1 413 3.0435999855399132e-02
+
+ -1.0124599933624268e-01 7.9585897922515869e-01
+ <_>
+
+ 0 -1 414 -4.4160000979900360e-02
+
+ 8.4410899877548218e-01 -3.2976400852203369e-01
+ <_>
+
+ 0 -1 415 1.8461000174283981e-02
+
+ 2.6326599717140198e-01 -9.6736502647399902e-01
+ <_>
+
+ 0 -1 416 1.0614999569952488e-02
+
+ 1.5251900255680084e-01 -1.0589870214462280e+00
+ <_>
+
+ 0 -1 417 -4.5974001288414001e-02
+
+ -1.9918340444564819e+00 1.3629099726676941e-01
+ <_>
+
+ 0 -1 418 8.2900002598762512e-02
+
+ -3.2037198543548584e-01 6.0304200649261475e-01
+ <_>
+
+ 0 -1 419 -8.9130001142621040e-03
+
+ 5.9586602449417114e-01 -2.1139599382877350e-01
+ <_>
+
+ 0 -1 420 4.2814001441001892e-02
+
+ 2.2925000637769699e-02 -1.4679330587387085e+00
+ <_>
+
+ 0 -1 421 -8.7139997631311417e-03
+
+ -4.3989500403404236e-01 2.0439699292182922e-01
+ <_>
+
+ 0 -1 422 -4.3390002101659775e-03
+
+ -8.9066797494888306e-01 1.0469999909400940e-01
+ <_>
+
+ 0 -1 423 8.0749997869133949e-03
+
+ 2.1164199709892273e-01 -4.0231600403785706e-01
+ <_>
+
+ 0 -1 424 9.6739001572132111e-02
+
+ 1.3319999910891056e-02 -1.6085360050201416e+00
+ <_>
+
+ 0 -1 425 -3.0536999925971031e-02
+
+ 1.0063740015029907e+00 -1.3413299620151520e-01
+ <_>
+
+ 0 -1 426 -6.0855999588966370e-02
+
+ -1.4689979553222656e+00 9.4240000471472740e-03
+ <_>
+
+ 0 -1 427 -3.8162000477313995e-02
+
+ -8.1636399030685425e-01 2.6171201467514038e-01
+ <_>
+
+ 0 -1 428 -9.6960002556443214e-03
+
+ 1.1561699956655502e-01 -7.1693199872970581e-01
+ <_>
+
+ 0 -1 429 4.8902999609708786e-02
+
+ 1.3050499558448792e-01 -1.6448370218276978e+00
+ <_>
+
+ 0 -1 430 -4.1611999273300171e-02
+
+ -1.1795840263366699e+00 2.5017000734806061e-02
+ <_>
+
+ 0 -1 431 -2.0188000053167343e-02
+
+ 6.3188201189041138e-01 -1.0490400344133377e-01
+ <_>
+
+ 0 -1 432 -9.7900000400841236e-04
+
+ 1.8507799506187439e-01 -5.3565901517868042e-01
+ <_>
+
+ 0 -1 433 -3.3622000366449356e-02
+
+ -9.3127602338790894e-01 2.0071500539779663e-01
+ <_>
+
+ 0 -1 434 1.9455999135971069e-02
+
+ 3.8029000163078308e-02 -1.0112210512161255e+00
+ <_>
+
+ 0 -1 435 -3.1800000579096377e-04
+
+ 3.6457699537277222e-01 -2.7610900998115540e-01
+ <_>
+
+ 0 -1 436 -3.8899999344721437e-04
+
+ 1.9665899872779846e-01 -5.3410500288009644e-01
+ <_>
+
+ 0 -1 437 -9.3496002256870270e-02
+
+ -1.6772350072860718e+00 2.0727099478244781e-01
+ <_>
+
+ 0 -1 438 -7.7877998352050781e-02
+
+ -3.0760629177093506e+00 -3.5803999751806259e-02
+ <_>
+
+ 0 -1 439 1.6947999596595764e-02
+
+ 2.1447399258613586e-01 -7.1376299858093262e-01
+ <_>
+
+ 0 -1 440 -2.1459000185132027e-02
+
+ -1.1468060016632080e+00 1.5855999663472176e-02
+ <_>
+
+ 0 -1 441 -1.2865999713540077e-02
+
+ 8.3812397718429565e-01 -6.5944001078605652e-02
+ <_>
+
+ 0 -1 442 7.8220004215836525e-03
+
+ -2.8026801347732544e-01 7.9376900196075439e-01
+ <_>
+
+ 0 -1 443 1.0294400155544281e-01
+
+ 1.7832300066947937e-01 -6.8412202596664429e-01
+ <_>
+
+ 0 -1 444 -3.7487998604774475e-02
+
+ 9.6189999580383301e-01 -2.1735599637031555e-01
+ <_>
+
+ 0 -1 445 2.5505999103188515e-02
+
+ 1.0103999637067318e-02 1.2461110353469849e+00
+ <_>
+
+ 0 -1 446 6.6700001480057836e-04
+
+ -5.3488200902938843e-01 1.4746299386024475e-01
+ <_>
+
+ 0 -1 447 -2.8867900371551514e-01
+
+ 8.2172799110412598e-01 -1.4948000200092793e-02
+ <_>
+
+ 0 -1 448 9.1294996440410614e-02
+
+ -1.9605399668216705e-01 1.0803170204162598e+00
+ <_>
+
+ 0 -1 449 1.2056600302457809e-01
+
+ -2.3848999291658401e-02 1.1392610073089600e+00
+ <_>
+
+ 0 -1 450 -7.3775000870227814e-02
+
+ -1.3583840131759644e+00 -4.2039998807013035e-03
+ <_>
+
+ 0 -1 451 -3.3128000795841217e-02
+
+ -6.4483201503753662e-01 2.4142199754714966e-01
+ <_>
+
+ 0 -1 452 -4.3937001377344131e-02
+
+ 8.4285402297973633e-01 -2.0624800026416779e-01
+ <_>
+
+ 0 -1 453 1.8110199272632599e-01
+
+ 1.9212099909782410e-01 -1.2222139835357666e+00
+ <_>
+
+ 0 -1 454 -1.1850999668240547e-02
+
+ -7.2677397727966309e-01 5.2687998861074448e-02
+ <_>
+
+ 0 -1 455 4.5920000411570072e-03
+
+ -3.6305201053619385e-01 2.9223799705505371e-01
+ <_>
+
+ 0 -1 456 7.0620002225041389e-03
+
+ 5.8116000145673752e-02 -6.7161601781845093e-01
+ <_>
+
+ 0 -1 457 -2.3715000599622726e-02
+
+ 4.7142100334167480e-01 1.8580000847578049e-02
+ <_>
+
+ 0 -1 458 -6.7171998322010040e-02
+
+ -1.1331889629364014e+00 2.3780999705195427e-02
+ <_>
+
+ 0 -1 459 -6.5310001373291016e-02
+
+ 9.8253500461578369e-01 2.8362000361084938e-02
+ <_>
+
+ 0 -1 460 2.2791000083088875e-02
+
+ -2.8213700652122498e-01 5.8993399143218994e-01
+ <_>
+
+ 0 -1 461 -1.9037999212741852e-02
+
+ -6.3711500167846680e-01 2.6514598727226257e-01
+ <_>
+
+ 0 -1 462 -6.8689999170601368e-03
+
+ 3.7487301230430603e-01 -3.3232098817825317e-01
+ <_>
+
+ 0 -1 463 -4.0146000683307648e-02
+
+ -1.3048729896545410e+00 1.5724299848079681e-01
+ <_>
+
+ 0 -1 464 -4.0530998259782791e-02
+
+ -2.0458049774169922e+00 -2.6925999671220779e-02
+ <_>
+
+ 0 -1 465 -1.2253999710083008e-02
+
+ 7.7649402618408203e-01 -4.2971000075340271e-02
+ <_>
+
+ 0 -1 466 -2.7219999581575394e-02
+
+ 1.7424400150775909e-01 -4.4600901007652283e-01
+ <_>
+
+ 0 -1 467 -8.8366001844406128e-02
+
+ -1.5036419630050659e+00 1.4289900660514832e-01
+ <_>
+
+ 0 -1 468 -7.9159997403621674e-03
+
+ 2.8666698932647705e-01 -3.7923699617385864e-01
+ <_>
+
+ 0 -1 469 -4.1960000991821289e-02
+
+ 1.3846950531005859e+00 6.5026998519897461e-02
+ <_>
+
+ 0 -1 470 4.5662999153137207e-02
+
+ -2.2452299296855927e-01 7.9521000385284424e-01
+ <_>
+
+ 0 -1 471 -1.4090600609779358e-01
+
+ -1.5879319906234741e+00 1.1359000205993652e-01
+ <_>
+
+ 0 -1 472 -5.9216000139713287e-02
+
+ -1.1945960521697998e+00 -7.1640000678598881e-03
+ <_>
+
+ 0 -1 473 4.3390002101659775e-03
+
+ -1.5528699755668640e-01 4.0664499998092651e-01
+ <_>
+
+ 0 -1 474 -2.0369999110698700e-03
+
+ 2.5927901268005371e-01 -3.8368299603462219e-01
+ <_>
+
+ 0 -1 475 2.7516499161720276e-01
+
+ -8.8497996330261230e-02 7.6787501573562622e-01
+ <_>
+
+ 0 -1 476 -2.6601999998092651e-02
+
+ 7.5024497509002686e-01 -2.2621999680995941e-01
+ <_>
+
+ 0 -1 477 4.0906000882387161e-02
+
+ 1.2158600240945816e-01 -1.4566910266876221e+00
+ <_>
+
+ 0 -1 478 5.5320002138614655e-03
+
+ -3.6611500382423401e-01 2.5968599319458008e-01
+ <_>
+
+ 0 -1 479 3.1879000365734100e-02
+
+ -7.5019001960754395e-02 4.8484799265861511e-01
+ <_>
+
+ 0 -1 480 -4.1482001543045044e-02
+
+ 7.8220397233963013e-01 -2.1992200613021851e-01
+ <_>
+
+ 0 -1 481 -9.6130996942520142e-02
+
+ -8.9456301927566528e-01 1.4680700004100800e-01
+ <_>
+
+ 0 -1 482 -1.1568999849259853e-02
+
+ 8.2714098691940308e-01 -2.0275600254535675e-01
+ <_>
+
+ 0 -1 483 1.8312999978661537e-02
+
+ 1.6367999836802483e-02 2.7306801080703735e-01
+ <_>
+
+ 0 -1 484 -3.4166000783443451e-02
+
+ 1.1307320594787598e+00 -1.8810899555683136e-01
+ <_>
+
+ 0 -1 485 -2.4476999416947365e-02
+
+ -5.7791298627853394e-01 1.5812499821186066e-01
+ <_>
+
+ 0 -1 486 4.8957001417875290e-02
+
+ -2.2564999759197235e-02 -1.6373280286788940e+00
+ <_>
+
+ 0 -1 487 -2.0702999085187912e-02
+
+ -5.4512101411819458e-01 2.4086999893188477e-01
+ <_>
+
+ 0 -1 488 -2.3002000525593758e-02
+
+ -1.2236540317535400e+00 -7.3440000414848328e-03
+ <_>
+
+ 0 -1 489 6.4585000276565552e-02
+
+ 1.4695599675178528e-01 -4.4967499375343323e-01
+ <_>
+
+ 0 -1 490 1.2666000053286552e-02
+
+ -2.7873900532722473e-01 4.3876600265502930e-01
+ <_>
+
+ 0 -1 491 -1.2002999894320965e-02
+
+ -2.4289099872112274e-01 2.5350099802017212e-01
+ <_>
+
+ 0 -1 492 -2.6443999260663986e-02
+
+ -8.5864800214767456e-01 2.6025999337434769e-02
+ <_>
+
+ 0 -1 493 -2.5547999888658524e-02
+
+ 6.9287902116775513e-01 -2.1160000469535589e-03
+ <_>
+
+ 0 -1 494 3.9115000516176224e-02
+
+ -1.6589100658893585e-01 1.5209139585494995e+00
+ <_>
+
+ 0 -1 495 -6.0330000706017017e-03
+
+ 4.3856900930404663e-01 -2.1613700687885284e-01
+ <_>
+
+ 0 -1 496 -3.3936999738216400e-02
+
+ -9.7998398542404175e-01 2.2133000195026398e-02
+ <_>
+ 99
+ -3.8700489997863770e+00
+
+ <_>
+
+ 0 -1 497 4.0672998875379562e-02
+
+ -9.0474700927734375e-01 6.4410597085952759e-01
+ <_>
+
+ 0 -1 498 2.5609999895095825e-02
+
+ -7.9216998815536499e-01 5.7489997148513794e-01
+ <_>
+
+ 0 -1 499 1.9959500432014465e-01
+
+ -3.0099600553512573e-01 1.3143850564956665e+00
+ <_>
+
+ 0 -1 500 1.2404999695718288e-02
+
+ -8.9882999658584595e-01 2.9205799102783203e-01
+ <_>
+
+ 0 -1 501 3.9207998663187027e-02
+
+ -4.1955199837684631e-01 5.3463298082351685e-01
+ <_>
+
+ 0 -1 502 -3.0843999236822128e-02
+
+ 4.5793399214744568e-01 -4.4629099965095520e-01
+ <_>
+
+ 0 -1 503 -3.5523001104593277e-02
+
+ 9.1310501098632812e-01 -2.7373200654983521e-01
+ <_>
+
+ 0 -1 504 -6.1650000512599945e-02
+
+ -1.4697799682617188e+00 2.0364099740982056e-01
+ <_>
+
+ 0 -1 505 -1.1739999987185001e-02
+
+ -1.0482879877090454e+00 6.7801997065544128e-02
+ <_>
+
+ 0 -1 506 6.6933996975421906e-02
+
+ 2.9274499416351318e-01 -5.2282899618148804e-01
+ <_>
+
+ 0 -1 507 -2.0631000399589539e-02
+
+ -1.2855139970779419e+00 4.4550999999046326e-02
+ <_>
+
+ 0 -1 508 -2.2357000038027763e-02
+
+ -8.5753798484802246e-01 1.8434000015258789e-01
+ <_>
+
+ 0 -1 509 1.1500000255182385e-03
+
+ 1.6405500471591949e-01 -6.9125002622604370e-01
+ <_>
+
+ 0 -1 510 3.5872999578714371e-02
+
+ 1.5756499767303467e-01 -8.4262597560882568e-01
+ <_>
+
+ 0 -1 511 3.0659999698400497e-02
+
+ 2.1637000143527985e-02 -1.3634690046310425e+00
+ <_>
+
+ 0 -1 512 5.5559999309480190e-03
+
+ -1.6737000644207001e-01 2.5888401269912720e-01
+ <_>
+
+ 0 -1 513 -6.1160000041127205e-03
+
+ -9.7271800041198730e-01 6.6100001335144043e-02
+ <_>
+
+ 0 -1 514 -3.0316999182105064e-02
+
+ 9.8474198579788208e-01 -1.6448000445961952e-02
+ <_>
+
+ 0 -1 515 -9.7200004383921623e-03
+
+ 4.7604700922966003e-01 -3.2516700029373169e-01
+ <_>
+
+ 0 -1 516 -5.7126998901367188e-02
+
+ -9.5920699834823608e-01 1.9938200712203979e-01
+ <_>
+
+ 0 -1 517 4.0059997700154781e-03
+
+ -5.2612501382827759e-01 2.2428700327873230e-01
+ <_>
+
+ 0 -1 518 3.3734001219272614e-02
+
+ 1.7070099711418152e-01 -1.0737580060958862e+00
+ <_>
+
+ 0 -1 519 -3.4641999751329422e-02
+
+ -1.1343129873275757e+00 3.6540001630783081e-02
+ <_>
+
+ 0 -1 520 4.6923000365495682e-02
+
+ 2.5832301378250122e-01 -7.1535801887512207e-01
+ <_>
+
+ 0 -1 521 -8.7660001590847969e-03
+
+ 1.9640900194644928e-01 -5.3355097770690918e-01
+ <_>
+
+ 0 -1 522 6.5627999603748322e-02
+
+ -5.1194999366998672e-02 9.7610700130462646e-01
+ <_>
+
+ 0 -1 523 -4.4165000319480896e-02
+
+ 1.0631920099258423e+00 -2.3462599515914917e-01
+ <_>
+
+ 0 -1 524 1.7304999753832817e-02
+
+ -1.8582899868488312e-01 4.5889899134635925e-01
+ <_>
+
+ 0 -1 525 3.3135998994112015e-02
+
+ -2.9381999745965004e-02 -2.6651329994201660e+00
+ <_>
+
+ 0 -1 526 -2.1029999479651451e-02
+
+ 9.9979901313781738e-01 2.4937000125646591e-02
+ <_>
+
+ 0 -1 527 2.9783999547362328e-02
+
+ -2.9605999588966370e-02 -2.1695868968963623e+00
+ <_>
+
+ 0 -1 528 5.5291999131441116e-02
+
+ -7.5599999399855733e-04 7.4651998281478882e-01
+ <_>
+
+ 0 -1 529 -3.3597998321056366e-02
+
+ -1.5274159908294678e+00 1.1060000397264957e-02
+ <_>
+
+ 0 -1 530 1.9602999091148376e-02
+
+ 3.3574998378753662e-02 9.9526202678680420e-01
+ <_>
+
+ 0 -1 531 -2.0787000656127930e-02
+
+ 7.6612901687622070e-01 -2.4670800566673279e-01
+ <_>
+
+ 0 -1 532 3.2536000013351440e-02
+
+ 1.6263400018215179e-01 -6.1134302616119385e-01
+ <_>
+
+ 0 -1 533 -1.0788000188767910e-02
+
+ -9.7839701175689697e-01 2.8969999402761459e-02
+ <_>
+
+ 0 -1 534 -9.9560003727674484e-03
+
+ 4.6145799756050110e-01 -1.3510499894618988e-01
+ <_>
+
+ 0 -1 535 -3.7489999085664749e-03
+
+ 2.5458198785781860e-01 -5.1955598592758179e-01
+ <_>
+
+ 0 -1 536 -4.1779998689889908e-02
+
+ -8.0565100908279419e-01 1.5208500623703003e-01
+ <_>
+
+ 0 -1 537 -3.4221000969409943e-02
+
+ -1.3137799501419067e+00 -3.5800000187009573e-03
+ <_>
+
+ 0 -1 538 1.0130000300705433e-02
+
+ 2.0175799727439880e-01 -6.1339598894119263e-01
+ <_>
+
+ 0 -1 539 -8.9849002659320831e-02
+
+ 9.7632801532745361e-01 -2.0884799957275391e-01
+ <_>
+
+ 0 -1 540 2.6097999885678291e-02
+
+ -1.8807999789714813e-01 4.7705799341201782e-01
+ <_>
+
+ 0 -1 541 -3.7539999466389418e-03
+
+ -6.7980402708053589e-01 1.1288800090551376e-01
+ <_>
+
+ 0 -1 542 3.1973000615835190e-02
+
+ 1.8951700627803802e-01 -1.4967479705810547e+00
+ <_>
+
+ 0 -1 543 1.9332999363541603e-02
+
+ -2.3609900474548340e-01 8.1320500373840332e-01
+ <_>
+
+ 0 -1 544 1.9490000559017062e-03
+
+ 2.4830399453639984e-01 -6.9211997091770172e-02
+ <_>
+
+ 0 -1 545 -4.4146999716758728e-02
+
+ -1.0418920516967773e+00 4.8053000122308731e-02
+ <_>
+
+ 0 -1 546 -4.4681999832391739e-02
+
+ 5.1346302032470703e-01 -7.3799998499453068e-03
+ <_>
+
+ 0 -1 547 -1.0757499933242798e-01
+
+ 1.6202019453048706e+00 -1.8667599558830261e-01
+ <_>
+
+ 0 -1 548 -1.2846800684928894e-01
+
+ 2.9869480133056641e+00 9.5427997410297394e-02
+ <_>
+
+ 0 -1 549 -4.4757999479770660e-02
+
+ 6.0405302047729492e-01 -2.7058699727058411e-01
+ <_>
+
+ 0 -1 550 -4.3990999460220337e-02
+
+ -6.1790502071380615e-01 1.5997199714183807e-01
+ <_>
+
+ 0 -1 551 -1.2268999963998795e-01
+
+ 6.6327202320098877e-01 -2.3636999726295471e-01
+ <_>
+
+ 0 -1 552 -1.9982999190688133e-02
+
+ -1.1228660345077515e+00 1.9616700708866119e-01
+ <_>
+
+ 0 -1 553 -1.5527999959886074e-02
+
+ -1.0770269632339478e+00 2.0693000406026840e-02
+ <_>
+
+ 0 -1 554 -4.8971001058816910e-02
+
+ 8.1168299913406372e-01 -1.7252000048756599e-02
+ <_>
+
+ 0 -1 555 5.5975999683141708e-02
+
+ -2.2529000416398048e-02 -1.7356760501861572e+00
+ <_>
+
+ 0 -1 556 -9.8580000922083855e-03
+
+ 6.7881399393081665e-01 -5.8180000633001328e-02
+ <_>
+
+ 0 -1 557 1.3481000438332558e-02
+
+ 5.7847999036312103e-02 -7.7255302667617798e-01
+ <_>
+
+ 0 -1 558 6.5609999001026154e-03
+
+ -1.3146899640560150e-01 6.7055797576904297e-01
+ <_>
+
+ 0 -1 559 7.1149999275803566e-03
+
+ -3.7880599498748779e-01 3.0978998541831970e-01
+ <_>
+
+ 0 -1 560 4.8159998841583729e-03
+
+ -5.8470398187637329e-01 2.5602099299430847e-01
+ <_>
+
+ 0 -1 561 9.5319999381899834e-03
+
+ -3.0217000842094421e-01 4.1253298521041870e-01
+ <_>
+
+ 0 -1 562 -2.7474999427795410e-02
+
+ 5.9154701232910156e-01 1.7963999882340431e-02
+ <_>
+
+ 0 -1 563 -3.9519999176263809e-02
+
+ 9.6913498640060425e-01 -2.1020300686359406e-01
+ <_>
+
+ 0 -1 564 -3.0658999457955360e-02
+
+ 9.1155898571014404e-01 4.0550000965595245e-02
+ <_>
+
+ 0 -1 565 -1.4680000022053719e-03
+
+ -6.0489797592163086e-01 1.6960899531841278e-01
+ <_>
+
+ 0 -1 566 1.9077600538730621e-01
+
+ 4.3515000492334366e-02 8.1892901659011841e-01
+ <_>
+
+ 0 -1 567 5.1790000870823860e-03
+
+ -9.3617302179336548e-01 2.4937000125646591e-02
+ <_>
+
+ 0 -1 568 2.4126000702381134e-02
+
+ 1.8175500631332397e-01 -3.4185901284217834e-01
+ <_>
+
+ 0 -1 569 -2.6383999735116959e-02
+
+ -1.2912579774856567e+00 -3.4280000254511833e-03
+ <_>
+
+ 0 -1 570 5.4139997810125351e-03
+
+ -4.6291999518871307e-02 2.5269600749015808e-01
+ <_>
+
+ 0 -1 571 5.4216001182794571e-02
+
+ -1.2848000042140484e-02 -1.4304540157318115e+00
+ <_>
+
+ 0 -1 572 2.3799999326001853e-04
+
+ -2.6676699519157410e-01 3.3588299155235291e-01
+ <_>
+
+ 0 -1 573 1.5216999687254429e-02
+
+ -5.1367300748825073e-01 1.3005100190639496e-01
+ <_>
+
+ 0 -1 574 1.7007999122142792e-02
+
+ 4.1575899720191956e-01 -3.1241199374198914e-01
+ <_>
+
+ 0 -1 575 3.0496999621391296e-02
+
+ -2.4820999801158905e-01 7.0828497409820557e-01
+ <_>
+
+ 0 -1 576 6.5430002287030220e-03
+
+ -2.2637000679969788e-01 1.9184599816799164e-01
+ <_>
+
+ 0 -1 577 1.4163999259471893e-01
+
+ 6.5227001905441284e-02 -8.8809502124786377e-01
+ <_>
+
+ 0 -1 578 1.9338000565767288e-02
+
+ 1.8891200423240662e-01 -2.7397701144218445e-01
+ <_>
+
+ 0 -1 579 -1.7324000597000122e-02
+
+ -9.4866698980331421e-01 2.4196999147534370e-02
+ <_>
+
+ 0 -1 580 -6.2069999985396862e-03
+
+ 3.6938399076461792e-01 -1.7494900524616241e-01
+ <_>
+
+ 0 -1 581 -1.6109000891447067e-02
+
+ 9.6159499883651733e-01 -2.0005300641059875e-01
+ <_>
+
+ 0 -1 582 -1.0122500360012054e-01
+
+ -3.0699110031127930e+00 1.1363799870014191e-01
+ <_>
+
+ 0 -1 583 -7.5509999878704548e-03
+
+ 2.2921000421047211e-01 -4.5645099878311157e-01
+ <_>
+
+ 0 -1 584 4.4247999787330627e-02
+
+ -3.1599999056197703e-04 3.9225301146507263e-01
+ <_>
+
+ 0 -1 585 -1.1636000126600266e-01
+
+ 9.5233702659606934e-01 -2.0201599597930908e-01
+ <_>
+
+ 0 -1 586 4.7360002063214779e-03
+
+ -9.9177002906799316e-02 2.0370499789714813e-01
+ <_>
+
+ 0 -1 587 2.2459000349044800e-02
+
+ 8.7280003353953362e-03 -1.0217070579528809e+00
+ <_>
+
+ 0 -1 588 -1.2109000235795975e-02
+
+ 6.4812600612640381e-01 -9.0149000287055969e-02
+ <_>
+
+ 0 -1 589 5.6120000779628754e-02
+
+ -3.6759998649358749e-02 -1.9275590181350708e+00
+ <_>
+
+ 0 -1 590 -8.7379999458789825e-03
+
+ 6.9261300563812256e-01 -6.8374998867511749e-02
+ <_>
+
+ 0 -1 591 6.6399998031556606e-03
+
+ -4.0569800138473511e-01 1.8625700473785400e-01
+ <_>
+
+ 0 -1 592 -1.8131999298930168e-02
+
+ -6.4518201351165771e-01 2.1976399421691895e-01
+ <_>
+
+ 0 -1 593 -2.2718999534845352e-02
+
+ 9.7776198387145996e-01 -1.8654300272464752e-01
+ <_>
+
+ 0 -1 594 1.2705000117421150e-02
+
+ -1.0546600073575974e-01 3.7404099106788635e-01
+ <_>
+
+ 0 -1 595 -1.3682999648153782e-02
+
+ 6.1064100265502930e-01 -2.6881098747253418e-01
+ <_>
+ 115
+ -3.7160909175872803e+00
+
+ <_>
+
+ 0 -1 596 3.1357999891042709e-02
+
+ -1.0183910131454468e+00 5.7528597116470337e-01
+ <_>
+
+ 0 -1 597 9.3050003051757812e-02
+
+ -4.1297501325607300e-01 1.0091199874877930e+00
+ <_>
+
+ 0 -1 598 2.5949999690055847e-02
+
+ -5.8587902784347534e-01 5.6606197357177734e-01
+ <_>
+
+ 0 -1 599 1.6472000628709793e-02
+
+ -9.2857497930526733e-01 3.0924499034881592e-01
+ <_>
+
+ 0 -1 600 -1.8779999809339643e-03
+
+ 1.1951000243425369e-01 -1.1180130243301392e+00
+ <_>
+
+ 0 -1 601 -9.0129999443888664e-03
+
+ -5.7849502563476562e-01 3.3154401183128357e-01
+ <_>
+
+ 0 -1 602 2.2547999396920204e-02
+
+ -3.8325101137161255e-01 5.2462202310562134e-01
+ <_>
+
+ 0 -1 603 -3.7780001759529114e-02
+
+ 1.1790670156478882e+00 -3.4166999161243439e-02
+ <_>
+
+ 0 -1 604 -5.3799999877810478e-03
+
+ -8.6265897750854492e-01 1.1867900192737579e-01
+ <_>
+
+ 0 -1 605 -2.3893000558018684e-02
+
+ -7.4950599670410156e-01 2.1011400222778320e-01
+ <_>
+
+ 0 -1 606 -2.6521999388933182e-02
+
+ 9.2128598690032959e-01 -2.8252801299095154e-01
+ <_>
+
+ 0 -1 607 1.2280000373721123e-02
+
+ 2.6662799715995789e-01 -7.0013600587844849e-01
+ <_>
+
+ 0 -1 608 9.6594996750354767e-02
+
+ -2.8453999757766724e-01 7.3168998956680298e-01
+ <_>
+
+ 0 -1 609 -2.7414999902248383e-02
+
+ -6.1492699384689331e-01 1.5576200187206268e-01
+ <_>
+
+ 0 -1 610 -1.5767000615596771e-02
+
+ 5.7551199197769165e-01 -3.4362199902534485e-01
+ <_>
+
+ 0 -1 611 -2.1100000012665987e-03
+
+ 3.2599699497222900e-01 -1.3008299469947815e-01
+ <_>
+
+ 0 -1 612 1.2006999924778938e-02
+
+ 8.9322999119758606e-02 -9.6025598049163818e-01
+ <_>
+
+ 0 -1 613 -1.5421999618411064e-02
+
+ 3.4449499845504761e-01 -4.6711999177932739e-01
+ <_>
+
+ 0 -1 614 -4.1579999960958958e-03
+
+ 2.3696300387382507e-01 -5.2563297748565674e-01
+ <_>
+
+ 0 -1 615 -2.1185999736189842e-02
+
+ -7.4267697334289551e-01 2.1702000498771667e-01
+ <_>
+
+ 0 -1 616 -1.7077000811696053e-02
+
+ -9.0471798181533813e-01 6.6012002527713776e-02
+ <_>
+
+ 0 -1 617 -4.0849998593330383e-02
+
+ -3.4446600079536438e-01 2.1503700315952301e-01
+ <_>
+
+ 0 -1 618 -8.1930002197623253e-03
+
+ -9.3388599157333374e-01 5.0471000373363495e-02
+ <_>
+
+ 0 -1 619 -1.9238000735640526e-02
+
+ -5.3203701972961426e-01 1.7240600287914276e-01
+ <_>
+
+ 0 -1 620 -4.4192001223564148e-02
+
+ 9.2075002193450928e-01 -2.2148500382900238e-01
+ <_>
+
+ 0 -1 621 -6.2392000108957291e-02
+
+ -7.1053802967071533e-01 1.8323899805545807e-01
+ <_>
+
+ 0 -1 622 -1.0079999919980764e-03
+
+ -8.7063097953796387e-01 5.5330000817775726e-02
+ <_>
+
+ 0 -1 623 2.3870000615715981e-02
+
+ -2.2854200005531311e-01 5.2415597438812256e-01
+ <_>
+
+ 0 -1 624 2.1391000598669052e-02
+
+ -3.0325898528099060e-01 5.5860602855682373e-01
+ <_>
+
+ 0 -1 625 2.0254999399185181e-02
+
+ 2.6901501417160034e-01 -7.0261800289154053e-01
+ <_>
+
+ 0 -1 626 -2.8772000223398209e-02
+
+ -1.1835030317306519e+00 4.6512000262737274e-02
+ <_>
+
+ 0 -1 627 3.4199999645352364e-03
+
+ -5.4652100801467896e-01 2.5962498784065247e-01
+ <_>
+
+ 0 -1 628 5.6983001530170441e-02
+
+ -2.6982900500297546e-01 5.8170700073242188e-01
+ <_>
+
+ 0 -1 629 -9.3892000615596771e-02
+
+ -9.1046398878097534e-01 1.9677700102329254e-01
+ <_>
+
+ 0 -1 630 1.7699999734759331e-02
+
+ -4.4003298878669739e-01 2.1349500119686127e-01
+ <_>
+
+ 0 -1 631 2.2844199836254120e-01
+
+ 2.3605000227689743e-02 7.7171599864959717e-01
+ <_>
+
+ 0 -1 632 -1.8287500739097595e-01
+
+ 7.9228597879409790e-01 -2.4644799530506134e-01
+ <_>
+
+ 0 -1 633 -6.9891996681690216e-02
+
+ 8.0267798900604248e-01 -3.6072000861167908e-02
+ <_>
+
+ 0 -1 634 1.5297000296413898e-02
+
+ -2.0072300732135773e-01 1.1030600070953369e+00
+ <_>
+
+ 0 -1 635 6.7500001750886440e-03
+
+ -4.5967999845743179e-02 7.2094500064849854e-01
+ <_>
+
+ 0 -1 636 -1.5983000397682190e-02
+
+ -9.0357202291488647e-01 4.4987998902797699e-02
+ <_>
+
+ 0 -1 637 1.3088000006973743e-02
+
+ 3.5297098755836487e-01 -3.7710601091384888e-01
+ <_>
+
+ 0 -1 638 1.3061000034213066e-02
+
+ -1.9583599269390106e-01 1.1198940277099609e+00
+ <_>
+
+ 0 -1 639 -3.9907000958919525e-02
+
+ -1.3998429775238037e+00 1.9145099818706512e-01
+ <_>
+
+ 0 -1 640 1.5026999637484550e-02
+
+ 2.3600000422447920e-03 -1.1611249446868896e+00
+ <_>
+
+ 0 -1 641 -2.0517999306321144e-02
+
+ -4.8908099532127380e-01 1.6743400692939758e-01
+ <_>
+
+ 0 -1 642 -2.2359000518918037e-02
+
+ -1.2202980518341064e+00 -1.1975999921560287e-02
+ <_>
+
+ 0 -1 643 -7.9150004312396049e-03
+
+ 3.7228098511695862e-01 -8.5063003003597260e-02
+ <_>
+
+ 0 -1 644 1.5258000232279301e-02
+
+ -2.9412600398063660e-01 5.9406399726867676e-01
+ <_>
+
+ 0 -1 645 -3.1665999442338943e-02
+
+ -1.4395569562911987e+00 1.3578799366950989e-01
+ <_>
+
+ 0 -1 646 -3.0773999169468880e-02
+
+ -2.2545371055603027e+00 -3.3971000462770462e-02
+ <_>
+
+ 0 -1 647 -1.5483000315725803e-02
+
+ 3.7700700759887695e-01 1.5847999602556229e-02
+ <_>
+
+ 0 -1 648 3.5167001187801361e-02
+
+ -2.9446101188659668e-01 5.3159099817276001e-01
+ <_>
+
+ 0 -1 649 -1.7906000837683678e-02
+
+ -9.9788200855255127e-01 1.6235999763011932e-01
+ <_>
+
+ 0 -1 650 -3.1799999997019768e-03
+
+ 4.7657001763582230e-02 -7.5249898433685303e-01
+ <_>
+
+ 0 -1 651 1.5720000490546227e-02
+
+ 1.4873799681663513e-01 -6.5375399589538574e-01
+ <_>
+
+ 0 -1 652 2.9864000156521797e-02
+
+ -1.4952000230550766e-02 -1.2275190353393555e+00
+ <_>
+
+ 0 -1 653 2.9899999499320984e-03
+
+ -1.4263699948787689e-01 4.3272799253463745e-01
+ <_>
+
+ 0 -1 654 8.4749996662139893e-02
+
+ -1.9280999898910522e-02 -1.1946409940719604e+00
+ <_>
+
+ 0 -1 655 -5.8724999427795410e-02
+
+ -1.7328219413757324e+00 1.4374700188636780e-01
+ <_>
+
+ 0 -1 656 4.4755998998880386e-02
+
+ -2.4140599370002747e-01 5.4019999504089355e-01
+ <_>
+
+ 0 -1 657 4.0369000285863876e-02
+
+ 5.7680001482367516e-03 5.6578099727630615e-01
+ <_>
+
+ 0 -1 658 3.7735998630523682e-02
+
+ 3.8180999457836151e-02 -7.9370397329330444e-01
+ <_>
+
+ 0 -1 659 6.0752999037504196e-02
+
+ 7.6453000307083130e-02 1.4813209772109985e+00
+ <_>
+
+ 0 -1 660 -1.9832000136375427e-02
+
+ -1.6971720457077026e+00 -2.7370000258088112e-02
+ <_>
+
+ 0 -1 661 -1.6592699289321899e-01
+
+ 6.2976002693176270e-01 3.1762998551130295e-02
+ <_>
+
+ 0 -1 662 6.9014996290206909e-02
+
+ -3.3463200926780701e-01 3.0076700448989868e-01
+ <_>
+
+ 0 -1 663 1.1358000338077545e-02
+
+ 2.2741499543190002e-01 -3.8224700093269348e-01
+ <_>
+
+ 0 -1 664 1.7000000225380063e-03
+
+ 1.9223800301551819e-01 -5.2735102176666260e-01
+ <_>
+
+ 0 -1 665 7.9769000411033630e-02
+
+ 9.1491997241973877e-02 2.1049048900604248e+00
+ <_>
+
+ 0 -1 666 -5.7144001126289368e-02
+
+ -1.7452130317687988e+00 -4.0910001844167709e-02
+ <_>
+
+ 0 -1 667 7.3830001056194305e-03
+
+ -2.4214799702167511e-01 3.5577800869941711e-01
+ <_>
+
+ 0 -1 668 -1.8040999770164490e-02
+
+ 1.1779999732971191e+00 -1.7676700651645660e-01
+ <_>
+
+ 0 -1 669 9.4503000378608704e-02
+
+ 1.3936099410057068e-01 -1.2993700504302979e+00
+ <_>
+
+ 0 -1 670 5.4210000671446323e-03
+
+ -5.4608601331710815e-01 1.3916400074958801e-01
+ <_>
+
+ 0 -1 671 7.0290002040565014e-03
+
+ -2.1597200632095337e-01 3.9258098602294922e-01
+ <_>
+
+ 0 -1 672 3.4515999257564545e-02
+
+ 6.3188999891281128e-02 -7.2108101844787598e-01
+ <_>
+
+ 0 -1 673 -5.1924999803304672e-02
+
+ 6.8667602539062500e-01 6.3272997736930847e-02
+ <_>
+
+ 0 -1 674 -6.9162003695964813e-02
+
+ 1.7411810159683228e+00 -1.6619299352169037e-01
+ <_>
+
+ 0 -1 675 -5.5229999125003815e-03
+
+ 3.0694699287414551e-01 -1.6662900149822235e-01
+ <_>
+
+ 0 -1 676 6.8599998950958252e-02
+
+ -2.1405400335788727e-01 7.3185002803802490e-01
+ <_>
+
+ 0 -1 677 -6.7038998007774353e-02
+
+ -7.9360598325729370e-01 2.0525799691677094e-01
+ <_>
+
+ 0 -1 678 -2.1005000919103622e-02
+
+ 3.7344399094581604e-01 -2.9618600010871887e-01
+ <_>
+
+ 0 -1 679 2.0278999581933022e-02
+
+ -1.5200000256299973e-02 4.0555301308631897e-01
+ <_>
+
+ 0 -1 680 -4.7107998281717300e-02
+
+ 1.2116849422454834e+00 -1.7464299499988556e-01
+ <_>
+
+ 0 -1 681 1.8768499791622162e-01
+
+ -2.2909000515937805e-02 6.9645798206329346e-01
+ <_>
+
+ 0 -1 682 -4.3228998780250549e-02
+
+ -1.0602480173110962e+00 -5.5599998449906707e-04
+ <_>
+
+ 0 -1 683 2.0004000514745712e-02
+
+ -3.2751001417636871e-02 5.3805100917816162e-01
+ <_>
+
+ 0 -1 684 8.0880001187324524e-03
+
+ 3.7548001855611801e-02 -7.4768900871276855e-01
+ <_>
+
+ 0 -1 685 2.7101000770926476e-02
+
+ -8.1790000200271606e-02 3.3387100696563721e-01
+ <_>
+
+ 0 -1 686 -9.1746002435684204e-02
+
+ -1.9213509559631348e+00 -3.8952998816967010e-02
+ <_>
+
+ 0 -1 687 -1.2454999610781670e-02
+
+ 4.8360601067543030e-01 1.8168000504374504e-02
+ <_>
+
+ 0 -1 688 1.4649000018835068e-02
+
+ -1.9906699657440186e-01 7.2815400362014771e-01
+ <_>
+
+ 0 -1 689 2.9101999476552010e-02
+
+ 1.9871099293231964e-01 -4.9216800928115845e-01
+ <_>
+
+ 0 -1 690 8.7799998000264168e-03
+
+ -1.9499599933624268e-01 7.7317398786544800e-01
+ <_>
+
+ 0 -1 691 -5.4740000516176224e-02
+
+ 1.8087190389633179e+00 6.8323001265525818e-02
+ <_>
+
+ 0 -1 692 -1.4798000454902649e-02
+
+ 7.8064900636672974e-01 -1.8709599971771240e-01
+ <_>
+
+ 0 -1 693 2.5012999773025513e-02
+
+ 1.5285299718379974e-01 -1.6021020412445068e+00
+ <_>
+
+ 0 -1 694 4.6548001468181610e-02
+
+ -1.6738200187683105e-01 1.1902060508728027e+00
+ <_>
+
+ 0 -1 695 1.7624000087380409e-02
+
+ -1.0285499691963196e-01 3.9175900816917419e-01
+ <_>
+
+ 0 -1 696 1.6319599747657776e-01
+
+ -3.5624001175165176e-02 -1.6098170280456543e+00
+ <_>
+
+ 0 -1 697 1.3137999922037125e-02
+
+ -5.6359000504016876e-02 5.4158902168273926e-01
+ <_>
+
+ 0 -1 698 -1.5665000304579735e-02
+
+ 2.8063100576400757e-01 -3.1708601117134094e-01
+ <_>
+
+ 0 -1 699 8.0554001033306122e-02
+
+ 1.2640400230884552e-01 -1.0297529697418213e+00
+ <_>
+
+ 0 -1 700 3.5363998264074326e-02
+
+ 2.0752999931573868e-02 -7.9105597734451294e-01
+ <_>
+
+ 0 -1 701 3.2986998558044434e-02
+
+ 1.9057099521160126e-01 -8.3839899301528931e-01
+ <_>
+
+ 0 -1 702 1.2195000424981117e-02
+
+ 7.3729000985622406e-02 -6.2780702114105225e-01
+ <_>
+
+ 0 -1 703 4.3065998703241348e-02
+
+ 4.7384999692440033e-02 1.5712939500808716e+00
+ <_>
+
+ 0 -1 704 3.0326999723911285e-02
+
+ -2.7314600348472595e-01 3.8572001457214355e-01
+ <_>
+
+ 0 -1 705 3.5493001341819763e-02
+
+ 5.4593998938798904e-02 5.2583402395248413e-01
+ <_>
+
+ 0 -1 706 -1.4596999622881413e-02
+
+ 3.8152599334716797e-01 -2.8332400321960449e-01
+ <_>
+
+ 0 -1 707 1.2606999836862087e-02
+
+ 1.5455099940299988e-01 -3.0501499772071838e-01
+ <_>
+
+ 0 -1 708 1.0172000154852867e-02
+
+ 2.3637000471353531e-02 -8.7217897176742554e-01
+ <_>
+
+ 0 -1 709 2.8843000531196594e-02
+
+ 1.6090999543666840e-01 -2.0277599990367889e-01
+ <_>
+
+ 0 -1 710 5.5100000463426113e-04
+
+ -6.1545401811599731e-01 8.0935999751091003e-02
+ <_>
+ 127
+ -3.5645289421081543e+00
+
+ <_>
+
+ 0 -1 711 4.8344001173973083e-02
+
+ -8.4904599189758301e-01 5.6974399089813232e-01
+ <_>
+
+ 0 -1 712 3.2460000365972519e-02
+
+ -8.1417298316955566e-01 4.4781699776649475e-01
+ <_>
+
+ 0 -1 713 3.3339999616146088e-02
+
+ -3.6423799395561218e-01 6.7937397956848145e-01
+ <_>
+
+ 0 -1 714 6.4019998535513878e-03
+
+ -1.1885459423065186e+00 1.9238699972629547e-01
+ <_>
+
+ 0 -1 715 -5.6889997795224190e-03
+
+ 3.3085298538208008e-01 -7.1334099769592285e-01
+ <_>
+
+ 0 -1 716 1.2698000296950340e-02
+
+ -5.0990802049636841e-01 1.1376299709081650e-01
+ <_>
+
+ 0 -1 717 6.0549997724592686e-03
+
+ -1.0470550060272217e+00 2.0222599804401398e-01
+ <_>
+
+ 0 -1 718 2.6420000940561295e-03
+
+ -5.0559401512145996e-01 3.6441200971603394e-01
+ <_>
+
+ 0 -1 719 -1.6925999894738197e-02
+
+ -9.9541902542114258e-01 1.2602199614048004e-01
+ <_>
+
+ 0 -1 720 2.8235999867320061e-02
+
+ -9.4137996435165405e-02 5.7780402898788452e-01
+ <_>
+
+ 0 -1 721 1.0428999550640583e-02
+
+ 2.3272900283336639e-01 -5.2569699287414551e-01
+ <_>
+
+ 0 -1 722 9.8860003054141998e-03
+
+ -1.0316299647092819e-01 4.7657600045204163e-01
+ <_>
+
+ 0 -1 723 2.6015000417828560e-02
+
+ -1.0920000495389104e-03 -1.5581729412078857e+00
+ <_>
+
+ 0 -1 724 -2.5537999346852303e-02
+
+ -6.5451401472091675e-01 1.8843199312686920e-01
+ <_>
+
+ 0 -1 725 -3.5310001112520695e-03
+
+ 2.8140598535537720e-01 -4.4575300812721252e-01
+ <_>
+
+ 0 -1 726 9.2449998483061790e-03
+
+ 1.5612000226974487e-01 -2.1370999515056610e-01
+ <_>
+
+ 0 -1 727 2.1030999720096588e-02
+
+ -2.9170298576354980e-01 5.2234101295471191e-01
+ <_>
+
+ 0 -1 728 -5.1063001155853271e-02
+
+ 1.3661290407180786e+00 3.0465999618172646e-02
+ <_>
+
+ 0 -1 729 -6.2330000102519989e-02
+
+ 1.2207020521163940e+00 -2.2434400022029877e-01
+ <_>
+
+ 0 -1 730 -3.2963000237941742e-02
+
+ -8.2016801834106445e-01 1.4531899988651276e-01
+ <_>
+
+ 0 -1 731 -3.7418000400066376e-02
+
+ -1.2218099832534790e+00 1.9448999315500259e-02
+ <_>
+
+ 0 -1 732 1.2402799725532532e-01
+
+ 1.2082300335168839e-01 -9.8729300498962402e-01
+ <_>
+
+ 0 -1 733 -8.9229997247457504e-03
+
+ -1.1688489913940430e+00 2.1105000749230385e-02
+ <_>
+
+ 0 -1 734 -5.9879999607801437e-02
+
+ -1.0689330101013184e+00 1.9860200583934784e-01
+ <_>
+
+ 0 -1 735 6.2620001845061779e-03
+
+ -3.6229598522186279e-01 3.8000801205635071e-01
+ <_>
+
+ 0 -1 736 -1.7673000693321228e-02
+
+ 4.9094098806381226e-01 -1.4606699347496033e-01
+ <_>
+
+ 0 -1 737 1.7579000443220139e-02
+
+ 5.8728098869323730e-01 -2.7774399518966675e-01
+ <_>
+
+ 0 -1 738 5.1560001447796822e-03
+
+ -7.5194999575614929e-02 6.0193097591400146e-01
+ <_>
+
+ 0 -1 739 -1.0599999688565731e-02
+
+ 2.7637401223182678e-01 -3.7794300913810730e-01
+ <_>
+
+ 0 -1 740 2.0884099602699280e-01
+
+ -5.3599998354911804e-03 1.0317809581756592e+00
+ <_>
+
+ 0 -1 741 -2.6412999257445335e-02
+
+ 8.2336401939392090e-01 -2.2480599582195282e-01
+ <_>
+
+ 0 -1 742 5.8892000466585159e-02
+
+ 1.3098299503326416e-01 -1.1853699684143066e+00
+ <_>
+
+ 0 -1 743 -1.1579000391066074e-02
+
+ -9.0667802095413208e-01 4.4126998633146286e-02
+ <_>
+
+ 0 -1 744 4.5988000929355621e-02
+
+ 1.0143999941647053e-02 1.0740900039672852e+00
+ <_>
+
+ 0 -1 745 -2.2838000208139420e-02
+
+ 1.7791990041732788e+00 -1.7315499484539032e-01
+ <_>
+
+ 0 -1 746 -8.1709995865821838e-03
+
+ 5.7386302947998047e-01 -7.4106000363826752e-02
+ <_>
+
+ 0 -1 747 3.5359999164938927e-03
+
+ -3.2072898745536804e-01 4.0182501077651978e-01
+ <_>
+
+ 0 -1 748 4.9444999545812607e-02
+
+ 1.9288000464439392e-01 -1.2166700363159180e+00
+ <_>
+
+ 0 -1 749 3.5139999818056822e-03
+
+ 6.9568000733852386e-02 -7.1323698759078979e-01
+ <_>
+
+ 0 -1 750 -3.0996000394225121e-02
+
+ -3.8862198591232300e-01 1.8098799884319305e-01
+ <_>
+
+ 0 -1 751 8.6452998220920563e-02
+
+ -2.5792999193072319e-02 -1.5453219413757324e+00
+ <_>
+
+ 0 -1 752 -1.3652600347995758e-01
+
+ -1.9199420213699341e+00 1.6613300144672394e-01
+ <_>
+
+ 0 -1 753 -5.7689999230206013e-03
+
+ -1.2822589874267578e+00 -1.5907999128103256e-02
+ <_>
+
+ 0 -1 754 -1.7899999395012856e-02
+
+ -4.0409898757934570e-01 2.3591600358486176e-01
+ <_>
+
+ 0 -1 755 -1.9969999790191650e-02
+
+ -7.2891902923583984e-01 5.6235000491142273e-02
+ <_>
+
+ 0 -1 756 -5.7493001222610474e-02
+
+ 5.7830798625946045e-01 -1.5796000137925148e-02
+ <_>
+
+ 0 -1 757 -8.3056002855300903e-02
+
+ 9.1511601209640503e-01 -2.1121400594711304e-01
+ <_>
+
+ 0 -1 758 -5.3771000355482101e-02
+
+ -5.1931297779083252e-01 1.8576000630855560e-01
+ <_>
+
+ 0 -1 759 -8.3670001477003098e-03
+
+ 2.4109700322151184e-01 -3.9648601412773132e-01
+ <_>
+
+ 0 -1 760 5.5406998842954636e-02
+
+ 1.6771200299263000e-01 -2.5664970874786377e+00
+ <_>
+
+ 0 -1 761 -6.7180998623371124e-02
+
+ -1.3658570051193237e+00 -1.4232000336050987e-02
+ <_>
+
+ 0 -1 762 -2.3900000378489494e-02
+
+ -1.7084569931030273e+00 1.6507799923419952e-01
+ <_>
+
+ 0 -1 763 5.5949999950826168e-03
+
+ -3.1373998522758484e-01 3.2837900519371033e-01
+ <_>
+
+ 0 -1 764 2.1294999867677689e-02
+
+ 1.4953400194644928e-01 -4.8579800128936768e-01
+ <_>
+
+ 0 -1 765 -2.4613000452518463e-02
+
+ 7.4346399307250977e-01 -2.2305199503898621e-01
+ <_>
+
+ 0 -1 766 -1.9626000896096230e-02
+
+ -4.0918299555778503e-01 1.8893200159072876e-01
+ <_>
+
+ 0 -1 767 -5.3266000002622604e-02
+
+ 8.1381601095199585e-01 -2.0853699743747711e-01
+ <_>
+
+ 0 -1 768 7.1290000341832638e-03
+
+ 3.2996100187301636e-01 -5.9937399625778198e-01
+ <_>
+
+ 0 -1 769 -2.2486999630928040e-02
+
+ -1.2551610469818115e+00 -2.0413000136613846e-02
+ <_>
+
+ 0 -1 770 -8.2310996949672699e-02
+
+ 1.3821430206298828e+00 5.9308998286724091e-02
+ <_>
+
+ 0 -1 771 1.3097000122070312e-01
+
+ -3.5843998193740845e-02 -1.5396369695663452e+00
+ <_>
+
+ 0 -1 772 1.4293000102043152e-02
+
+ -1.8475200235843658e-01 3.7455001473426819e-01
+ <_>
+
+ 0 -1 773 6.3479999080300331e-03
+
+ -4.4901099801063538e-01 1.3876999914646149e-01
+ <_>
+
+ 0 -1 774 -4.6055000275373459e-02
+
+ 6.7832601070404053e-01 -1.7071999609470367e-02
+ <_>
+
+ 0 -1 775 5.7693999260663986e-02
+
+ -1.1955999769270420e-02 -1.2261159420013428e+00
+ <_>
+
+ 0 -1 776 -6.0609998181462288e-03
+
+ 3.3958598971366882e-01 6.2800000887364149e-04
+ <_>
+
+ 0 -1 777 -5.2163001149892807e-02
+
+ -1.0621069669723511e+00 -1.3779999688267708e-02
+ <_>
+
+ 0 -1 778 4.6572998166084290e-02
+
+ 1.4538800716400146e-01 -1.2384550571441650e+00
+ <_>
+
+ 0 -1 779 7.5309998355805874e-03
+
+ -2.4467700719833374e-01 5.1377099752426147e-01
+ <_>
+
+ 0 -1 780 2.1615000441670418e-02
+
+ 1.3072599470615387e-01 -7.0996797084808350e-01
+ <_>
+
+ 0 -1 781 -1.7864000052213669e-02
+
+ -1.0474660396575928e+00 4.9599999329075217e-04
+ <_>
+
+ 0 -1 782 -3.7195000797510147e-02
+
+ -1.5126730203628540e+00 1.4801399409770966e-01
+ <_>
+
+ 0 -1 783 -3.1100001069717109e-04
+
+ 1.3971500098705292e-01 -4.6867498755455017e-01
+ <_>
+
+ 0 -1 784 2.5042999535799026e-02
+
+ 2.8632000088691711e-01 -4.1794699430465698e-01
+ <_>
+
+ 0 -1 785 9.3449996784329414e-03
+
+ -2.7336201071739197e-01 4.3444699048995972e-01
+ <_>
+
+ 0 -1 786 3.2363999634981155e-02
+
+ 1.8438899517059326e-01 -9.5019298791885376e-01
+ <_>
+
+ 0 -1 787 -6.2299999408423901e-03
+
+ 3.2581999897956848e-01 -3.0815601348876953e-01
+ <_>
+
+ 0 -1 788 5.1488999277353287e-02
+
+ 1.1416000127792358e-01 -1.9795479774475098e+00
+ <_>
+
+ 0 -1 789 -2.6449000462889671e-02
+
+ -1.1067299842834473e+00 -8.5519999265670776e-03
+ <_>
+
+ 0 -1 790 -1.5420000068843365e-02
+
+ 8.0138701200485229e-01 -3.2035000622272491e-02
+ <_>
+
+ 0 -1 791 1.9456999376416206e-02
+
+ -2.6449498534202576e-01 3.8753899931907654e-01
+ <_>
+
+ 0 -1 792 3.3620998263359070e-02
+
+ 1.6052000224590302e-02 5.8840900659561157e-01
+ <_>
+
+ 0 -1 793 2.8906000778079033e-02
+
+ 1.5216000378131866e-02 -9.4723600149154663e-01
+ <_>
+
+ 0 -1 794 2.0300000323913991e-04
+
+ -3.0766001343727112e-01 2.1235899627208710e-01
+ <_>
+
+ 0 -1 795 -4.9141999334096909e-02
+
+ -1.6058609485626221e+00 -3.1094999983906746e-02
+ <_>
+
+ 0 -1 796 7.6425999402999878e-02
+
+ 7.4758999049663544e-02 1.1639410257339478e+00
+ <_>
+
+ 0 -1 797 2.3897999897599220e-02
+
+ -6.4320000819861889e-03 -1.1150749921798706e+00
+ <_>
+
+ 0 -1 798 3.8970001041889191e-03
+
+ -2.4105699360370636e-01 2.0858900249004364e-01
+ <_>
+
+ 0 -1 799 -8.9445002377033234e-02
+
+ 1.9157789945602417e+00 -1.5721100568771362e-01
+ <_>
+
+ 0 -1 800 -1.5008999966084957e-02
+
+ -2.5174099206924438e-01 1.8179899454116821e-01
+ <_>
+
+ 0 -1 801 -1.1145999655127525e-02
+
+ -6.9349497556686401e-01 4.4927999377250671e-02
+ <_>
+
+ 0 -1 802 9.4578996300697327e-02
+
+ 1.8102100491523743e-01 -7.4978601932525635e-01
+ <_>
+
+ 0 -1 803 5.5038899183273315e-01
+
+ -3.0974000692367554e-02 -1.6746139526367188e+00
+ <_>
+
+ 0 -1 804 4.1381001472473145e-02
+
+ 6.3910000026226044e-02 7.6561200618743896e-01
+ <_>
+
+ 0 -1 805 2.4771999567747116e-02
+
+ 1.1380000039935112e-02 -8.8559401035308838e-01
+ <_>
+
+ 0 -1 806 5.0999000668525696e-02
+
+ 1.4890299737453461e-01 -2.4634211063385010e+00
+ <_>
+
+ 0 -1 807 -1.6893999651074409e-02
+
+ 3.8870999217033386e-01 -2.9880300164222717e-01
+ <_>
+
+ 0 -1 808 -1.2162300199270248e-01
+
+ -1.5542800426483154e+00 1.6300800442695618e-01
+ <_>
+
+ 0 -1 809 -3.6049999762326479e-03
+
+ 2.1842800080776215e-01 -3.7312099337577820e-01
+ <_>
+
+ 0 -1 810 1.1575400084257126e-01
+
+ -4.7061000019311905e-02 5.9403699636459351e-01
+ <_>
+
+ 0 -1 811 3.6903999745845795e-02
+
+ -2.5508600473403931e-01 5.5397301912307739e-01
+ <_>
+
+ 0 -1 812 1.1483999900519848e-02
+
+ -1.8129499256610870e-01 4.0682798624038696e-01
+ <_>
+
+ 0 -1 813 -2.0233999937772751e-02
+
+ 5.4311197996139526e-01 -2.3822399973869324e-01
+ <_>
+
+ 0 -1 814 -2.8765000402927399e-02
+
+ -6.9172298908233643e-01 1.5943300724029541e-01
+ <_>
+
+ 0 -1 815 -5.8320001699030399e-03
+
+ 2.9447799921035767e-01 -3.4005999565124512e-01
+ <_>
+
+ 0 -1 816 -5.5468998849391937e-02
+
+ 9.2200797796249390e-01 9.4093002378940582e-02
+ <_>
+
+ 0 -1 817 -1.4801000244915485e-02
+
+ -7.9539698362350464e-01 3.1521998345851898e-02
+ <_>
+
+ 0 -1 818 -7.0940000005066395e-03
+
+ 3.3096000552177429e-01 -5.0886999815702438e-02
+ <_>
+
+ 0 -1 819 -4.5124001801013947e-02
+
+ -1.3719749450683594e+00 -2.1408999338746071e-02
+ <_>
+
+ 0 -1 820 6.4377002418041229e-02
+
+ 6.3901998102664948e-02 9.1478300094604492e-01
+ <_>
+
+ 0 -1 821 -1.4727000147104263e-02
+
+ 3.6050599813461304e-01 -2.8614500164985657e-01
+ <_>
+
+ 0 -1 822 4.5007001608610153e-02
+
+ -1.5619699656963348e-01 5.3160297870635986e-01
+ <_>
+
+ 0 -1 823 -1.1330000124871731e-03
+
+ 1.3422900438308716e-01 -4.4358900189399719e-01
+ <_>
+
+ 0 -1 824 4.9451000988483429e-02
+
+ 1.0571800172328949e-01 -2.5589139461517334e+00
+ <_>
+
+ 0 -1 825 2.9102999716997147e-02
+
+ -1.0088000446557999e-02 -1.1073939800262451e+00
+ <_>
+
+ 0 -1 826 3.4786000847816467e-02
+
+ -2.7719999197870493e-03 5.6700998544692993e-01
+ <_>
+
+ 0 -1 827 -6.1309998854994774e-03
+
+ -4.6889400482177734e-01 1.2636399269104004e-01
+ <_>
+
+ 0 -1 828 1.5525000169873238e-02
+
+ -8.4279999136924744e-03 8.7469202280044556e-01
+ <_>
+
+ 0 -1 829 2.9249999206513166e-03
+
+ -3.4434300661087036e-01 2.0851600170135498e-01
+ <_>
+
+ 0 -1 830 -5.3571000695228577e-02
+
+ 1.4982949495315552e+00 5.7328000664710999e-02
+ <_>
+
+ 0 -1 831 -1.9217999652028084e-02
+
+ -9.9234098196029663e-01 -9.3919998034834862e-03
+ <_>
+
+ 0 -1 832 -5.5282998830080032e-02
+
+ -5.7682299613952637e-01 1.6860599815845490e-01
+ <_>
+
+ 0 -1 833 5.6336000561714172e-02
+
+ -3.3775001764297485e-02 -1.3889650106430054e+00
+ <_>
+
+ 0 -1 834 -2.3824000731110573e-02
+
+ 4.0182098746299744e-01 1.8360000103712082e-03
+ <_>
+
+ 0 -1 835 1.7810000572353601e-03
+
+ 1.8145999312400818e-01 -4.1743400692939758e-01
+ <_>
+
+ 0 -1 836 -3.7689000368118286e-02
+
+ 5.4683101177215576e-01 1.8219999969005585e-02
+ <_>
+
+ 0 -1 837 -2.4144999682903290e-02
+
+ 6.8352097272872925e-01 -1.9650200009346008e-01
+ <_>
+ 135
+ -3.7025990486145020e+00
+
+ <_>
+
+ 0 -1 838 2.7444999665021896e-02
+
+ -8.9984202384948730e-01 5.1876497268676758e-01
+ <_>
+
+ 0 -1 839 1.1554100364446640e-01
+
+ -5.6524401903152466e-01 7.0551300048828125e-01
+ <_>
+
+ 0 -1 840 -2.2297000512480736e-02
+
+ 3.6079999804496765e-01 -6.6864597797393799e-01
+ <_>
+
+ 0 -1 841 1.3325000181794167e-02
+
+ -5.5573397874832153e-01 3.5789999365806580e-01
+ <_>
+
+ 0 -1 842 -3.8060001097619534e-03
+
+ -1.0713000297546387e+00 1.8850000202655792e-01
+ <_>
+
+ 0 -1 843 -2.6819999329745770e-03
+
+ -7.1584302186965942e-01 2.6344498991966248e-01
+ <_>
+
+ 0 -1 844 3.3819999080151320e-03
+
+ -4.6930798888206482e-01 2.6658400893211365e-01
+ <_>
+
+ 0 -1 845 3.7643000483512878e-02
+
+ 2.1098700165748596e-01 -1.0804339647293091e+00
+ <_>
+
+ 0 -1 846 -1.3861999846994877e-02
+
+ 6.6912001371383667e-01 -2.7942800521850586e-01
+ <_>
+
+ 0 -1 847 -2.7350001037120819e-03
+
+ -9.5332300662994385e-01 2.4051299691200256e-01
+ <_>
+
+ 0 -1 848 -3.8336999714374542e-02
+
+ 8.1432801485061646e-01 -2.4919399619102478e-01
+ <_>
+
+ 0 -1 849 -3.4697998315095901e-02
+
+ 1.2330100536346436e+00 6.8600000813603401e-03
+ <_>
+
+ 0 -1 850 2.3360999301075935e-02
+
+ -3.0794700980186462e-01 7.0714497566223145e-01
+ <_>
+
+ 0 -1 851 3.5057999193668365e-02
+
+ 2.1205900609493256e-01 -1.4399830102920532e+00
+ <_>
+
+ 0 -1 852 -1.3256999664008617e-02
+
+ -9.0260702371597290e-01 4.8610001802444458e-02
+ <_>
+
+ 0 -1 853 1.2740000151097775e-02
+
+ 2.2655199468135834e-01 -4.4643801450729370e-01
+ <_>
+
+ 0 -1 854 3.6400000099092722e-03
+
+ -3.9817899465560913e-01 3.4665399789810181e-01
+ <_>
+
+ 0 -1 855 1.0064700245857239e-01
+
+ 1.8383599817752838e-01 -1.3410769701004028e+00
+ <_>
+
+ 0 -1 856 0.
+
+ 1.5536400675773621e-01 -5.1582497358322144e-01
+ <_>
+
+ 0 -1 857 1.1708999983966351e-02
+
+ 2.1651400625705719e-01 -7.2705197334289551e-01
+ <_>
+
+ 0 -1 858 -3.5964999347925186e-02
+
+ -1.4789500236511230e+00 -2.4317000061273575e-02
+ <_>
+
+ 0 -1 859 -2.1236000582575798e-02
+
+ -1.6844099760055542e-01 1.9526599347591400e-01
+ <_>
+
+ 0 -1 860 1.4874000102281570e-02
+
+ 3.7335999310016632e-02 -8.7557297945022583e-01
+ <_>
+
+ 0 -1 861 -5.1409997977316380e-03
+
+ 3.3466500043869019e-01 -2.4109700322151184e-01
+ <_>
+
+ 0 -1 862 2.3450000211596489e-02
+
+ 5.5320002138614655e-03 -1.2509720325469971e+00
+ <_>
+
+ 0 -1 863 -2.5062000378966331e-02
+
+ 4.5212399959564209e-01 -8.4469996392726898e-02
+ <_>
+
+ 0 -1 864 -7.7400001464411616e-04
+
+ 1.5249900519847870e-01 -4.8486500978469849e-01
+ <_>
+
+ 0 -1 865 -4.0483999997377396e-02
+
+ -1.3024920225143433e+00 1.7983500659465790e-01
+ <_>
+
+ 0 -1 866 2.8170999139547348e-02
+
+ -2.4410900473594666e-01 6.2271100282669067e-01
+ <_>
+
+ 0 -1 867 4.5692998915910721e-02
+
+ 2.8122000396251678e-02 9.2394399642944336e-01
+ <_>
+
+ 0 -1 868 3.9707001298666000e-02
+
+ -2.2332799434661865e-01 7.7674001455307007e-01
+ <_>
+
+ 0 -1 869 5.0517000257968903e-02
+
+ 2.0319999754428864e-01 -1.0895930528640747e+00
+ <_>
+
+ 0 -1 870 -1.7266999930143356e-02
+
+ 6.8598401546478271e-01 -2.3304499685764313e-01
+ <_>
+
+ 0 -1 871 8.0186001956462860e-02
+
+ -1.0292000137269497e-02 6.1881101131439209e-01
+ <_>
+
+ 0 -1 872 9.7676001489162445e-02
+
+ -2.0070299506187439e-01 1.0088349580764771e+00
+ <_>
+
+ 0 -1 873 -1.5572000294923782e-02
+
+ 4.7615298628807068e-01 4.5623999089002609e-02
+ <_>
+
+ 0 -1 874 -1.5305000357329845e-02
+
+ -1.1077369451522827e+00 4.5239999890327454e-03
+ <_>
+
+ 0 -1 875 -1.6485000029206276e-02
+
+ 1.0152939558029175e+00 1.6327999532222748e-02
+ <_>
+
+ 0 -1 876 -2.6141999289393425e-02
+
+ 4.1723299026489258e-01 -2.8645500540733337e-01
+ <_>
+
+ 0 -1 877 8.8679995387792587e-03
+
+ 2.1404999494552612e-01 -1.6772800683975220e-01
+ <_>
+
+ 0 -1 878 -2.6886999607086182e-02
+
+ -1.1564220190048218e+00 -1.0324000380933285e-02
+ <_>
+
+ 0 -1 879 7.7789998613297939e-03
+
+ 3.5359498858451843e-01 -2.9611301422119141e-01
+ <_>
+
+ 0 -1 880 -1.5974000096321106e-02
+
+ -1.5374109745025635e+00 -2.9958000406622887e-02
+ <_>
+
+ 0 -1 881 2.0866999402642250e-02
+
+ 2.0244100689888000e-01 -7.1270197629928589e-01
+ <_>
+
+ 0 -1 882 8.5482001304626465e-02
+
+ -2.5932999327778816e-02 -1.5156569480895996e+00
+ <_>
+
+ 0 -1 883 2.3872999474406242e-02
+
+ 1.6803400218486786e-01 -3.8806200027465820e-01
+ <_>
+
+ 0 -1 884 -3.9105001837015152e-02
+
+ -1.1958349943161011e+00 -2.0361000671982765e-02
+ <_>
+
+ 0 -1 885 -7.7946998178958893e-02
+
+ -1.0898950099945068e+00 1.4530299603939056e-01
+ <_>
+
+ 0 -1 886 -1.6876000910997391e-02
+
+ 2.8049701452255249e-01 -4.1336300969123840e-01
+ <_>
+
+ 0 -1 887 1.1875600367784500e-01
+
+ -4.3490998446941376e-02 4.1263699531555176e-01
+ <_>
+
+ 0 -1 888 1.5624199807643890e-01
+
+ -2.6429599523544312e-01 5.5127799510955811e-01
+ <_>
+
+ 0 -1 889 -4.5908000320196152e-02
+
+ 6.0189199447631836e-01 1.8921000882983208e-02
+ <_>
+
+ 0 -1 890 -1.0309999808669090e-02
+
+ 3.8152998685836792e-01 -2.9507899284362793e-01
+ <_>
+
+ 0 -1 891 9.5769003033638000e-02
+
+ 1.3246500492095947e-01 -4.6266800165176392e-01
+ <_>
+
+ 0 -1 892 1.3686999678611755e-02
+
+ 1.1738699674606323e-01 -5.1664102077484131e-01
+ <_>
+
+ 0 -1 893 2.3990001063793898e-03
+
+ -3.4007599949836731e-01 2.0953500270843506e-01
+ <_>
+
+ 0 -1 894 3.3264998346567154e-02
+
+ -1.7052799463272095e-01 1.4366799592971802e+00
+ <_>
+
+ 0 -1 895 -3.3206000924110413e-02
+
+ 6.1295700073242188e-01 -4.1549999266862869e-02
+ <_>
+
+ 0 -1 896 2.7979998849332333e-03
+
+ -4.8554301261901855e-01 1.3372699916362762e-01
+ <_>
+
+ 0 -1 897 -6.5792001783847809e-02
+
+ -4.0257668495178223e+00 1.0876700282096863e-01
+ <_>
+
+ 0 -1 898 2.1430000197142363e-03
+
+ -3.9179998636245728e-01 2.2427099943161011e-01
+ <_>
+
+ 0 -1 899 2.2363999858498573e-02
+
+ -8.6429998278617859e-02 3.7785199284553528e-01
+ <_>
+
+ 0 -1 900 -5.7410001754760742e-02
+
+ 1.1454069614410400e+00 -1.9736599922180176e-01
+ <_>
+
+ 0 -1 901 6.6550001502037048e-03
+
+ -2.1105000749230385e-02 5.8453398942947388e-01
+ <_>
+
+ 0 -1 902 1.2326999567449093e-02
+
+ 3.7817001342773438e-02 -6.6987001895904541e-01
+ <_>
+
+ 0 -1 903 -8.1869997084140778e-03
+
+ 5.6366002559661865e-01 -7.6877996325492859e-02
+ <_>
+
+ 0 -1 904 3.6681000143289566e-02
+
+ -1.7343300580978394e-01 1.1670149564743042e+00
+ <_>
+
+ 0 -1 905 -4.0220400691032410e-01
+
+ 1.2640819549560547e+00 4.3398998677730560e-02
+ <_>
+
+ 0 -1 906 -2.2126000374555588e-02
+
+ 6.6978102922439575e-01 -2.1605299413204193e-01
+ <_>
+
+ 0 -1 907 -1.3156999833881855e-02
+
+ -4.1198599338531494e-01 2.0215000212192535e-01
+ <_>
+
+ 0 -1 908 -1.2860000133514404e-02
+
+ -9.1582697629928589e-01 3.9232999086380005e-02
+ <_>
+
+ 0 -1 909 2.1627999842166901e-02
+
+ 3.8719999138265848e-03 3.5668200254440308e-01
+ <_>
+
+ 0 -1 910 1.1896000243723392e-02
+
+ -3.7303900718688965e-01 1.9235099852085114e-01
+ <_>
+
+ 0 -1 911 -1.9548999145627022e-02
+
+ -4.2374899983406067e-01 2.4429599940776825e-01
+ <_>
+
+ 0 -1 912 6.4444996416568756e-02
+
+ -1.6558900475502014e-01 1.2697030305862427e+00
+ <_>
+
+ 0 -1 913 1.0898499935865402e-01
+
+ 1.4894300699234009e-01 -2.1534640789031982e+00
+ <_>
+
+ 0 -1 914 -3.4077998250722885e-02
+
+ 1.3779460191726685e+00 -1.6198499500751495e-01
+ <_>
+
+ 0 -1 915 -3.7489999085664749e-03
+
+ -3.3828601241111755e-01 2.1152900159358978e-01
+ <_>
+
+ 0 -1 916 -1.0971999727189541e-02
+
+ 7.6517897844314575e-01 -1.9692599773406982e-01
+ <_>
+
+ 0 -1 917 -1.1485000140964985e-02
+
+ -6.9271200895309448e-01 2.1657100319862366e-01
+ <_>
+
+ 0 -1 918 2.5984000414609909e-02
+
+ -1.1983999982476234e-02 -9.9697297811508179e-01
+ <_>
+
+ 0 -1 919 4.2159999720752239e-03
+
+ -1.0205700248479843e-01 4.8884400725364685e-01
+ <_>
+
+ 0 -1 920 -4.7697000205516815e-02
+
+ 1.0666010379791260e+00 -1.7576299607753754e-01
+ <_>
+
+ 0 -1 921 4.0300001273863018e-04
+
+ 1.8524800240993500e-01 -7.4790000915527344e-01
+ <_>
+
+ 0 -1 922 1.1539600044488907e-01
+
+ -2.2019700706005096e-01 5.4509997367858887e-01
+ <_>
+
+ 0 -1 923 1.6021000221371651e-02
+
+ 2.5487500429153442e-01 -5.0740098953247070e-01
+ <_>
+
+ 0 -1 924 5.6632000952959061e-02
+
+ -1.1256000027060509e-02 -9.5968097448348999e-01
+ <_>
+
+ 0 -1 925 -1.0726000182330608e-02
+
+ -2.8544700145721436e-01 1.6994799673557281e-01
+ <_>
+
+ 0 -1 926 1.2420000135898590e-01
+
+ -3.6139998584985733e-02 -1.3132710456848145e+00
+ <_>
+
+ 0 -1 927 -5.3799999877810478e-03
+
+ 3.3092701435089111e-01 1.3307999819517136e-02
+ <_>
+
+ 0 -1 928 1.1908000335097313e-02
+
+ -3.4830299019813538e-01 2.4041900038719177e-01
+ <_>
+
+ 0 -1 929 -4.3007999658584595e-02
+
+ -1.4390469789505005e+00 1.5599599480628967e-01
+ <_>
+
+ 0 -1 930 -3.3149998635053635e-02
+
+ -1.1805850267410278e+00 -1.2347999960184097e-02
+ <_>
+
+ 0 -1 931 -2.1341999992728233e-02
+
+ 2.2119441032409668e+00 6.2737002968788147e-02
+ <_>
+
+ 0 -1 932 -1.2218999676406384e-02
+
+ -1.8709750175476074e+00 -4.5499999076128006e-02
+ <_>
+
+ 0 -1 933 -1.6860999166965485e-02
+
+ -7.6912701129913330e-01 1.5330000221729279e-01
+ <_>
+
+ 0 -1 934 -2.4999999441206455e-03
+
+ -6.2987399101257324e-01 5.1600001752376556e-02
+ <_>
+
+ 0 -1 935 -4.5037999749183655e-02
+
+ 8.5428899526596069e-01 6.2600001692771912e-03
+ <_>
+
+ 0 -1 936 3.9057999849319458e-02
+
+ -3.2458998262882233e-02 -1.3325669765472412e+00
+ <_>
+
+ 0 -1 937 6.6720000468194485e-03
+
+ -1.9423599541187286e-01 3.7328699231147766e-01
+ <_>
+
+ 0 -1 938 -1.6361000016331673e-02
+
+ 2.0605869293212891e+00 -1.5042699873447418e-01
+ <_>
+
+ 0 -1 939 6.1719999648630619e-03
+
+ -1.1610999703407288e-01 2.5455400347709656e-01
+ <_>
+
+ 0 -1 940 4.5722000300884247e-02
+
+ -1.6340000554919243e-02 -1.0449140071868896e+00
+ <_>
+
+ 0 -1 941 4.1209999471902847e-03
+
+ -4.1997998952865601e-02 3.9680999517440796e-01
+ <_>
+
+ 0 -1 942 -1.7800000205170363e-04
+
+ -6.6422599554061890e-01 3.3443000167608261e-02
+ <_>
+
+ 0 -1 943 7.1109998971223831e-03
+
+ -5.8231998234987259e-02 3.7857300043106079e-01
+ <_>
+
+ 0 -1 944 -4.9864001572132111e-02
+
+ 6.1019402742385864e-01 -2.1005700528621674e-01
+ <_>
+
+ 0 -1 945 -2.5011999532580376e-02
+
+ -5.7100099325180054e-01 1.7848399281501770e-01
+ <_>
+
+ 0 -1 946 3.0939999967813492e-02
+
+ 5.6363001465797424e-02 -6.4731001853942871e-01
+ <_>
+
+ 0 -1 947 4.6271000057458878e-02
+
+ 1.7482399940490723e-01 -9.8909401893615723e-01
+ <_>
+
+ 0 -1 948 -3.1870000530034304e-03
+
+ -6.6804802417755127e-01 3.2267000526189804e-02
+ <_>
+
+ 0 -1 949 -2.4351999163627625e-02
+
+ 2.9444900155067444e-01 -1.3599999947473407e-03
+ <_>
+
+ 0 -1 950 1.1974000371992588e-02
+
+ -2.8345099091529846e-01 4.7171199321746826e-01
+ <_>
+
+ 0 -1 951 1.3070000335574150e-02
+
+ -1.0834600031375885e-01 5.7193297147750854e-01
+ <_>
+
+ 0 -1 952 5.9163000434637070e-02
+
+ -5.0939001142978668e-02 -1.9059720039367676e+00
+ <_>
+
+ 0 -1 953 -4.1094999760389328e-02
+
+ 4.5104598999023438e-01 -9.7599998116493225e-03
+ <_>
+
+ 0 -1 954 -8.3989001810550690e-02
+
+ -2.0349199771881104e+00 -5.1019001752138138e-02
+ <_>
+
+ 0 -1 955 4.4619001448154449e-02
+
+ 1.7041100561618805e-01 -1.2278720140457153e+00
+ <_>
+
+ 0 -1 956 2.4419000372290611e-02
+
+ -2.1796999499201775e-02 -1.0822949409484863e+00
+ <_>
+
+ 0 -1 957 -4.3870001100003719e-03
+
+ 3.0466699600219727e-01 -3.7066599726676941e-01
+ <_>
+
+ 0 -1 958 2.4607999250292778e-02
+
+ -3.1169500946998596e-01 2.3657299578189850e-01
+ <_>
+
+ 0 -1 959 -8.5182003676891327e-02
+
+ -1.7982350587844849e+00 1.5254299342632294e-01
+ <_>
+
+ 0 -1 960 2.1844999864697456e-02
+
+ -5.1888000220060349e-02 -1.9017189741134644e+00
+ <_>
+
+ 0 -1 961 -1.6829000785946846e-02
+
+ 2.1025900542736053e-01 2.1656999364495277e-02
+ <_>
+
+ 0 -1 962 3.2547999173402786e-02
+
+ -2.0292599499225616e-01 6.0944002866744995e-01
+ <_>
+
+ 0 -1 963 2.4709999561309814e-03
+
+ -9.5371198654174805e-01 1.8568399548530579e-01
+ <_>
+
+ 0 -1 964 5.5415999144315720e-02
+
+ -1.4405299723148346e-01 2.1506340503692627e+00
+ <_>
+
+ 0 -1 965 -1.0635499656200409e-01
+
+ -1.0911970138549805e+00 1.3228000700473785e-01
+ <_>
+
+ 0 -1 966 -7.9889995977282524e-03
+
+ 1.0253400355577469e-01 -5.1744902133941650e-01
+ <_>
+
+ 0 -1 967 7.5567997992038727e-02
+
+ 5.8965001255273819e-02 1.2354209423065186e+00
+ <_>
+
+ 0 -1 968 -9.2805996537208557e-02
+
+ -1.3431650400161743e+00 -3.4462999552488327e-02
+ <_>
+
+ 0 -1 969 4.9431998282670975e-02
+
+ 4.9601998180150986e-02 1.6054730415344238e+00
+ <_>
+
+ 0 -1 970 -1.1772999539971352e-02
+
+ -1.0261050462722778e+00 -4.1559999808669090e-03
+ <_>
+
+ 0 -1 971 8.5886001586914062e-02
+
+ 8.4642998874187469e-02 9.5220798254013062e-01
+ <_>
+
+ 0 -1 972 8.1031002104282379e-02
+
+ -1.4687100052833557e-01 1.9359990358352661e+00
+ <_>
+ 136
+ -3.4265899658203125e+00
+
+ <_>
+
+ 0 -1 973 -3.3840999007225037e-02
+
+ 6.5889501571655273e-01 -6.9755297899246216e-01
+ <_>
+
+ 0 -1 974 1.5410000458359718e-02
+
+ -9.0728402137756348e-01 3.0478599667549133e-01
+ <_>
+
+ 0 -1 975 5.4905999451875687e-02
+
+ -4.9774798750877380e-01 5.7132601737976074e-01
+ <_>
+
+ 0 -1 976 2.1390000358223915e-02
+
+ -4.2565199732780457e-01 5.8096802234649658e-01
+ <_>
+
+ 0 -1 977 7.8849997371435165e-03
+
+ -4.7905999422073364e-01 4.3016499280929565e-01
+ <_>
+
+ 0 -1 978 -3.7544999271631241e-02
+
+ 5.0861597061157227e-01 -1.9985899329185486e-01
+ <_>
+
+ 0 -1 979 1.5925799310207367e-01
+
+ -2.3263600468635559e-01 1.0993319749832153e+00
+ <_>
+
+ 0 -1 980 -6.8939998745918274e-02
+
+ 4.0569001436233521e-01 5.6855000555515289e-02
+ <_>
+
+ 0 -1 981 -3.3695001155138016e-02
+
+ 4.5132800936698914e-01 -3.3332800865173340e-01
+ <_>
+
+ 0 -1 982 -6.3314996659755707e-02
+
+ -8.5015702247619629e-01 2.2341699898242950e-01
+ <_>
+
+ 0 -1 983 7.3699997738003731e-03
+
+ -9.3082201480865479e-01 5.9216998517513275e-02
+ <_>
+
+ 0 -1 984 -9.5969997346401215e-03
+
+ -1.2794899940490723e+00 1.8447299301624298e-01
+ <_>
+
+ 0 -1 985 -1.3067999482154846e-01
+
+ 5.8426898717880249e-01 -2.6007199287414551e-01
+ <_>
+
+ 0 -1 986 5.7402998208999634e-02
+
+ -5.3789000958204269e-02 7.1175599098205566e-01
+ <_>
+
+ 0 -1 987 -7.2340001352131367e-03
+
+ -8.6962199211120605e-01 7.5214996933937073e-02
+ <_>
+
+ 0 -1 988 3.1098999083042145e-02
+
+ -7.5006999075412750e-02 9.0781599283218384e-01
+ <_>
+
+ 0 -1 989 3.5854000598192215e-02
+
+ -2.4795499444007874e-01 7.2272098064422607e-01
+ <_>
+
+ 0 -1 990 -3.1534999608993530e-02
+
+ -1.1238329410552979e+00 2.0988300442695618e-01
+ <_>
+
+ 0 -1 991 -1.9437000155448914e-02
+
+ -1.4499390125274658e+00 -1.5100000426173210e-02
+ <_>
+
+ 0 -1 992 -7.2420001961290836e-03
+
+ 5.3864902257919312e-01 -1.1375399678945541e-01
+ <_>
+
+ 0 -1 993 8.1639997661113739e-03
+
+ 6.6889002919197083e-02 -7.6872897148132324e-01
+ <_>
+
+ 0 -1 994 -4.3653000146150589e-02
+
+ 1.1413530111312866e+00 4.0217000991106033e-02
+ <_>
+
+ 0 -1 995 2.6569999754428864e-02
+
+ -2.4719099700450897e-01 5.9295099973678589e-01
+ <_>
+
+ 0 -1 996 3.2216999679803848e-02
+
+ -4.0024999529123306e-02 3.2688000798225403e-01
+ <_>
+
+ 0 -1 997 -7.2236001491546631e-02
+
+ 5.8729398250579834e-01 -2.5396001338958740e-01
+ <_>
+
+ 0 -1 998 3.1424999237060547e-02
+
+ 1.5315100550651550e-01 -5.6042098999023438e-01
+ <_>
+
+ 0 -1 999 -4.7699999413453043e-04
+
+ 1.6958899796009064e-01 -5.2626699209213257e-01
+ <_>
+
+ 0 -1 1000 2.7189999818801880e-03
+
+ -1.4944599568843842e-01 2.9658699035644531e-01
+ <_>
+
+ 0 -1 1001 3.2875001430511475e-02
+
+ -3.9943501353263855e-01 2.5156599283218384e-01
+ <_>
+
+ 0 -1 1002 -1.4553000219166279e-02
+
+ 2.7972599864006042e-01 -4.7203800082206726e-01
+ <_>
+
+ 0 -1 1003 3.8017999380826950e-02
+
+ -2.9200001154094934e-03 -1.1300059556961060e+00
+ <_>
+
+ 0 -1 1004 2.8659999370574951e-03
+
+ 4.1111800074577332e-01 -2.6220801472663879e-01
+ <_>
+
+ 0 -1 1005 -4.1606999933719635e-02
+
+ -1.4293819665908813e+00 -1.9132999703288078e-02
+ <_>
+
+ 0 -1 1006 -2.4802999570965767e-02
+
+ -2.5013598799705505e-01 1.5978699922561646e-01
+ <_>
+
+ 0 -1 1007 1.0098000057041645e-02
+
+ 4.3738998472690582e-02 -6.9986099004745483e-01
+ <_>
+
+ 0 -1 1008 -2.0947000011801720e-02
+
+ -9.4137799739837646e-01 2.3204000294208527e-01
+ <_>
+
+ 0 -1 1009 2.2458000108599663e-02
+
+ -2.7185800671577454e-01 4.5319199562072754e-01
+ <_>
+
+ 0 -1 1010 -3.7110999226570129e-02
+
+ -1.0314660072326660e+00 1.4421799778938293e-01
+ <_>
+
+ 0 -1 1011 -1.0648000054061413e-02
+
+ 6.3107001781463623e-01 -2.5520798563957214e-01
+ <_>
+
+ 0 -1 1012 5.5422998964786530e-02
+
+ 1.6206599771976471e-01 -1.7722640037536621e+00
+ <_>
+
+ 0 -1 1013 2.1601999178528786e-02
+
+ -2.5016099214553833e-01 5.4119801521301270e-01
+ <_>
+
+ 0 -1 1014 8.7000000348780304e-05
+
+ -2.9008901119232178e-01 3.3507999777793884e-01
+ <_>
+
+ 0 -1 1015 1.4406000263988972e-02
+
+ -7.8840004280209541e-03 -1.1677219867706299e+00
+ <_>
+
+ 0 -1 1016 1.0777399688959122e-01
+
+ 1.1292000114917755e-01 -2.4940319061279297e+00
+ <_>
+
+ 0 -1 1017 3.5943999886512756e-02
+
+ -1.9480599462985992e-01 9.5757502317428589e-01
+ <_>
+
+ 0 -1 1018 -3.9510000497102737e-03
+
+ 3.0927801132202148e-01 -2.5530201196670532e-01
+ <_>
+
+ 0 -1 1019 2.0942000672221184e-02
+
+ -7.6319999061524868e-03 -1.0086350440979004e+00
+ <_>
+
+ 0 -1 1020 -2.9877999797463417e-02
+
+ -4.6027699112892151e-01 1.9507199525833130e-01
+ <_>
+
+ 0 -1 1021 2.5971999391913414e-02
+
+ -1.2187999673187733e-02 -1.0035500526428223e+00
+ <_>
+
+ 0 -1 1022 1.0603000409901142e-02
+
+ -7.5969003140926361e-02 4.1669899225234985e-01
+ <_>
+
+ 0 -1 1023 8.5819996893405914e-03
+
+ -2.6648598909378052e-01 3.9111500978469849e-01
+ <_>
+
+ 0 -1 1024 2.1270999684929848e-02
+
+ 1.8273900449275970e-01 -3.6052298545837402e-01
+ <_>
+
+ 0 -1 1025 7.4518002569675446e-02
+
+ -1.8938399851322174e-01 9.2658001184463501e-01
+ <_>
+
+ 0 -1 1026 4.6569998376071453e-03
+
+ -1.4506199955940247e-01 3.3294600248336792e-01
+ <_>
+
+ 0 -1 1027 1.7119999974966049e-03
+
+ -5.2464002370834351e-01 8.9879997074604034e-02
+ <_>
+
+ 0 -1 1028 9.8500004969537258e-04
+
+ -3.8381999731063843e-01 2.4392999708652496e-01
+ <_>
+
+ 0 -1 1029 2.8233999386429787e-02
+
+ -5.7879998348653316e-03 -1.2617139816284180e+00
+ <_>
+
+ 0 -1 1030 -3.2678000628948212e-02
+
+ -5.7953298091888428e-01 1.6955299675464630e-01
+ <_>
+
+ 0 -1 1031 2.2536000236868858e-02
+
+ 2.2281000390648842e-02 -8.7869602441787720e-01
+ <_>
+
+ 0 -1 1032 -2.1657999604940414e-02
+
+ -6.5108501911163330e-01 1.2966899573802948e-01
+ <_>
+
+ 0 -1 1033 7.6799998059868813e-03
+
+ -3.3965200185775757e-01 2.2013300657272339e-01
+ <_>
+
+ 0 -1 1034 1.4592000283300877e-02
+
+ 1.5077300369739532e-01 -5.0452399253845215e-01
+ <_>
+
+ 0 -1 1035 2.7868000790476799e-02
+
+ -2.5045299530029297e-01 4.5741999149322510e-01
+ <_>
+
+ 0 -1 1036 5.6940000504255295e-03
+
+ -1.0948500037193298e-01 5.5757802724838257e-01
+ <_>
+
+ 0 -1 1037 -1.0002999566495419e-02
+
+ -9.7366297245025635e-01 1.8467999994754791e-02
+ <_>
+
+ 0 -1 1038 -4.0719998069107533e-03
+
+ 3.8222199678421021e-01 -1.6921100020408630e-01
+ <_>
+
+ 0 -1 1039 -2.2593999281525612e-02
+
+ -1.0391089916229248e+00 5.1839998923242092e-03
+ <_>
+
+ 0 -1 1040 -3.9579998701810837e-02
+
+ -5.5109229087829590e+00 1.1163999885320663e-01
+ <_>
+
+ 0 -1 1041 -1.7537999898195267e-02
+
+ 9.5485800504684448e-01 -1.8584500253200531e-01
+ <_>
+
+ 0 -1 1042 9.0300003066658974e-03
+
+ 1.0436000302433968e-02 8.2114797830581665e-01
+ <_>
+
+ 0 -1 1043 -7.9539995640516281e-03
+
+ 2.2632899880409241e-01 -3.4568199515342712e-01
+ <_>
+
+ 0 -1 1044 2.7091000229120255e-02
+
+ 1.6430099308490753e-01 -1.3926379680633545e+00
+ <_>
+
+ 0 -1 1045 -2.0625999197363853e-02
+
+ -8.6366099119186401e-01 2.3880000226199627e-03
+ <_>
+
+ 0 -1 1046 -7.1989998221397400e-02
+
+ -2.8192629814147949e+00 1.1570499837398529e-01
+ <_>
+
+ 0 -1 1047 -2.6964999735355377e-02
+
+ -1.2946130037307739e+00 -2.4661000818014145e-02
+ <_>
+
+ 0 -1 1048 -4.7377999871969223e-02
+
+ -8.1306397914886475e-01 1.1831399798393250e-01
+ <_>
+
+ 0 -1 1049 -1.0895600169897079e-01
+
+ 6.5937900543212891e-01 -2.0843900740146637e-01
+ <_>
+
+ 0 -1 1050 1.3574000447988510e-02
+
+ 7.4240001849830151e-03 5.3152197599411011e-01
+ <_>
+
+ 0 -1 1051 -6.6920001991093159e-03
+
+ 3.0655801296234131e-01 -3.1084299087524414e-01
+ <_>
+
+ 0 -1 1052 -3.9070001803338528e-03
+
+ 2.5576499104499817e-01 -5.2932001650333405e-02
+ <_>
+
+ 0 -1 1053 -3.7613000720739365e-02
+
+ -1.4350049495697021e+00 -1.5448000282049179e-02
+ <_>
+
+ 0 -1 1054 8.6329998448491096e-03
+
+ -1.6884399950504303e-01 4.2124900221824646e-01
+ <_>
+
+ 0 -1 1055 -3.2097000628709793e-02
+
+ -6.4979398250579834e-01 4.1110001504421234e-02
+ <_>
+
+ 0 -1 1056 5.8495998382568359e-02
+
+ -5.2963998168706894e-02 6.3368302583694458e-01
+ <_>
+
+ 0 -1 1057 -4.0901999920606613e-02
+
+ -9.2101097106933594e-01 9.0640000998973846e-03
+ <_>
+
+ 0 -1 1058 -1.9925000146031380e-02
+
+ 5.3759998083114624e-01 -6.2996998429298401e-02
+ <_>
+
+ 0 -1 1059 -4.6020001173019409e-03
+
+ -5.4333502054214478e-01 8.4104999899864197e-02
+ <_>
+
+ 0 -1 1060 1.6824999824166298e-02
+
+ 1.5563699603080750e-01 -4.0171200037002563e-01
+ <_>
+
+ 0 -1 1061 9.4790002331137657e-03
+
+ -2.4245299398899078e-01 5.1509499549865723e-01
+ <_>
+
+ 0 -1 1062 -1.9534999504685402e-02
+
+ -5.1118397712707520e-01 1.3831999897956848e-01
+ <_>
+
+ 0 -1 1063 1.0746000334620476e-02
+
+ -2.1854999661445618e-01 6.2828701734542847e-01
+ <_>
+
+ 0 -1 1064 3.7927001714706421e-02
+
+ 1.1640299856662750e-01 -2.7301959991455078e+00
+ <_>
+
+ 0 -1 1065 1.6390999779105186e-02
+
+ -1.4635999687016010e-02 -1.0797250270843506e+00
+ <_>
+
+ 0 -1 1066 -1.9785000011324883e-02
+
+ 1.2166420221328735e+00 3.3275000751018524e-02
+ <_>
+
+ 0 -1 1067 1.1067000217735767e-02
+
+ -2.5388300418853760e-01 4.4038599729537964e-01
+ <_>
+
+ 0 -1 1068 5.2479999139904976e-03
+
+ 2.2496800124645233e-01 -2.4216499924659729e-01
+ <_>
+
+ 0 -1 1069 -1.1141999624669552e-02
+
+ 2.5018098950386047e-01 -3.0811500549316406e-01
+ <_>
+
+ 0 -1 1070 -1.0666999965906143e-02
+
+ -3.2729101181030273e-01 2.6168298721313477e-01
+ <_>
+
+ 0 -1 1071 1.0545299947261810e-01
+
+ -5.5750001221895218e-02 -1.9605729579925537e+00
+ <_>
+
+ 0 -1 1072 5.4827999323606491e-02
+
+ -1.9519999623298645e-03 7.3866099119186401e-01
+ <_>
+
+ 0 -1 1073 1.7760999500751495e-02
+
+ -3.0647200345993042e-01 2.6346999406814575e-01
+ <_>
+
+ 0 -1 1074 -3.1185999512672424e-02
+
+ -2.4600900709629059e-01 1.7082199454307556e-01
+ <_>
+
+ 0 -1 1075 -5.7296000421047211e-02
+
+ 4.7033500671386719e-01 -2.6048299670219421e-01
+ <_>
+
+ 0 -1 1076 -1.1312000453472137e-02
+
+ 3.8628900051116943e-01 -2.8817000985145569e-01
+ <_>
+
+ 0 -1 1077 3.0592000111937523e-02
+
+ -4.8826001584529877e-02 -1.7638969421386719e+00
+ <_>
+
+ 0 -1 1078 1.8489999929443002e-03
+
+ 2.1099899709224701e-01 -2.5940999388694763e-02
+ <_>
+
+ 0 -1 1079 1.1419000104069710e-02
+
+ -1.6829599440097809e-01 1.0278660058975220e+00
+ <_>
+
+ 0 -1 1080 8.1403002142906189e-02
+
+ 1.1531999707221985e-01 -1.2482399940490723e+00
+ <_>
+
+ 0 -1 1081 5.3495999425649643e-02
+
+ -4.6303998678922653e-02 -1.7165969610214233e+00
+ <_>
+
+ 0 -1 1082 -2.3948000743985176e-02
+
+ -4.0246599912643433e-01 2.0562100410461426e-01
+ <_>
+
+ 0 -1 1083 6.7690000869333744e-03
+
+ -3.3152300119400024e-01 2.0683400332927704e-01
+ <_>
+
+ 0 -1 1084 -3.2343998551368713e-02
+
+ -7.2632801532745361e-01 2.0073500275611877e-01
+ <_>
+
+ 0 -1 1085 3.7863001227378845e-02
+
+ -1.5631000697612762e-01 1.6697460412979126e+00
+ <_>
+
+ 0 -1 1086 1.5440000221133232e-02
+
+ 1.9487400352954865e-01 -3.5384199023246765e-01
+ <_>
+
+ 0 -1 1087 -4.4376000761985779e-02
+
+ 8.2093602418899536e-01 -1.8193599581718445e-01
+ <_>
+
+ 0 -1 1088 -2.3102000355720520e-02
+
+ -4.3044099211692810e-01 1.2375400215387344e-01
+ <_>
+
+ 0 -1 1089 1.9400000572204590e-02
+
+ -2.9726000502705574e-02 -1.1597590446472168e+00
+ <_>
+
+ 0 -1 1090 1.0385700315237045e-01
+
+ 1.1149899661540985e-01 -4.6835222244262695e+00
+ <_>
+
+ 0 -1 1091 -1.8964000046253204e-02
+
+ 2.1773819923400879e+00 -1.4544400572776794e-01
+ <_>
+
+ 0 -1 1092 3.8750998675823212e-02
+
+ -4.9446001648902893e-02 3.4018298983573914e-01
+ <_>
+
+ 0 -1 1093 2.2766999900341034e-02
+
+ -3.2802999019622803e-01 3.0531400442123413e-01
+ <_>
+
+ 0 -1 1094 -3.1357001513242722e-02
+
+ 1.1520819664001465e+00 2.7305999770760536e-02
+ <_>
+
+ 0 -1 1095 9.6909999847412109e-03
+
+ -3.8799500465393066e-01 2.1512599289417267e-01
+ <_>
+
+ 0 -1 1096 -4.9284998327493668e-02
+
+ -1.6774909496307373e+00 1.5774199366569519e-01
+ <_>
+
+ 0 -1 1097 -3.9510998874902725e-02
+
+ -9.7647899389266968e-01 -1.0552000254392624e-02
+ <_>
+
+ 0 -1 1098 4.7997999936342239e-02
+
+ 2.0843900740146637e-01 -6.8992799520492554e-01
+ <_>
+
+ 0 -1 1099 5.1422998309135437e-02
+
+ -1.6665300726890564e-01 1.2149239778518677e+00
+ <_>
+
+ 0 -1 1100 1.4279999770224094e-02
+
+ 2.3627699911594391e-01 -4.1396799683570862e-01
+ <_>
+
+ 0 -1 1101 -9.1611996293067932e-02
+
+ -9.2830902338027954e-01 -1.8345000222325325e-02
+ <_>
+
+ 0 -1 1102 6.5080001950263977e-03
+
+ -7.3647201061248779e-01 1.9497099518775940e-01
+ <_>
+
+ 0 -1 1103 3.5723000764846802e-02
+
+ 1.4197799563407898e-01 -4.2089301347732544e-01
+ <_>
+
+ 0 -1 1104 5.0638001412153244e-02
+
+ 1.1644000187516212e-02 7.8486597537994385e-01
+ <_>
+
+ 0 -1 1105 -1.4613999985158443e-02
+
+ -1.1909500360488892e+00 -3.5128001123666763e-02
+ <_>
+
+ 0 -1 1106 -3.8662999868392944e-02
+
+ 2.4314730167388916e+00 6.5647996962070465e-02
+ <_>
+
+ 0 -1 1107 -4.0346998721361160e-02
+
+ 7.1755301952362061e-01 -1.9108299911022186e-01
+ <_>
+
+ 0 -1 1108 2.3902000859379768e-02
+
+ 1.5646199882030487e-01 -7.9294800758361816e-01
+ <_>
+ 137
+ -3.5125269889831543e+00
+
+ <_>
+
+ 0 -1 1109 8.5640000179409981e-03
+
+ -8.1450700759887695e-01 5.8875298500061035e-01
+ <_>
+
+ 0 -1 1110 -1.3292600214481354e-01
+
+ 9.3213397264480591e-01 -2.9367300868034363e-01
+ <_>
+
+ 0 -1 1111 9.8400004208087921e-03
+
+ -5.6462901830673218e-01 4.1647699475288391e-01
+ <_>
+
+ 0 -1 1112 5.0889998674392700e-03
+
+ -7.9232800006866455e-01 1.6975000500679016e-01
+ <_>
+
+ 0 -1 1113 -6.1039000749588013e-02
+
+ -1.4169000387191772e+00 2.5020999833941460e-02
+ <_>
+
+ 0 -1 1114 -4.6599999768659472e-04
+
+ 3.7982499599456787e-01 -4.1567099094390869e-01
+ <_>
+
+ 0 -1 1115 3.3889999613165855e-03
+
+ -4.0768599510192871e-01 3.5548499226570129e-01
+ <_>
+
+ 0 -1 1116 2.1006999537348747e-02
+
+ -2.4080100655555725e-01 8.6112701892852783e-01
+ <_>
+
+ 0 -1 1117 7.5559997931122780e-03
+
+ -8.7467199563980103e-01 9.8572000861167908e-02
+ <_>
+
+ 0 -1 1118 2.4779999628663063e-02
+
+ 1.5566200017929077e-01 -6.9229799509048462e-01
+ <_>
+
+ 0 -1 1119 -3.5620000213384628e-02
+
+ -1.1472270488739014e+00 3.6359999328851700e-02
+ <_>
+
+ 0 -1 1120 1.9810000434517860e-02
+
+ 1.5516200661659241e-01 -6.9520097970962524e-01
+ <_>
+
+ 0 -1 1121 1.5019999817013741e-02
+
+ 4.1990000754594803e-02 -9.6622800827026367e-01
+ <_>
+
+ 0 -1 1122 -2.3137999698519707e-02
+
+ 4.3396899104118347e-01 2.4160000029951334e-03
+ <_>
+
+ 0 -1 1123 -1.8743000924587250e-02
+
+ 4.3481099605560303e-01 -3.2522499561309814e-01
+ <_>
+
+ 0 -1 1124 4.5080000162124634e-01
+
+ -9.4573996961116791e-02 7.2421300411224365e-01
+ <_>
+
+ 0 -1 1125 1.1854999698698521e-02
+
+ -3.8133099675178528e-01 3.0098399519920349e-01
+ <_>
+
+ 0 -1 1126 -2.4830000475049019e-02
+
+ 8.9300602674484253e-01 -1.0295899957418442e-01
+ <_>
+
+ 0 -1 1127 -4.4743001461029053e-02
+
+ 8.6280298233032227e-01 -2.1716499328613281e-01
+ <_>
+
+ 0 -1 1128 -1.4600000344216824e-02
+
+ 6.0069400072097778e-01 -1.5906299650669098e-01
+ <_>
+
+ 0 -1 1129 -2.4527000263333321e-02
+
+ -1.5872869491577148e+00 -2.1817000582814217e-02
+ <_>
+
+ 0 -1 1130 2.3024000227451324e-02
+
+ 1.6853399574756622e-01 -3.8106900453567505e-01
+ <_>
+
+ 0 -1 1131 -2.4917000904679298e-02
+
+ 5.0810897350311279e-01 -2.7279898524284363e-01
+ <_>
+
+ 0 -1 1132 1.0130000300705433e-03
+
+ -4.3138799071311951e-01 2.6438099145889282e-01
+ <_>
+
+ 0 -1 1133 1.5603000298142433e-02
+
+ -3.1624200940132141e-01 5.5715900659561157e-01
+ <_>
+
+ 0 -1 1134 -2.6685999706387520e-02
+
+ 1.0553920269012451e+00 2.9074000194668770e-02
+ <_>
+
+ 0 -1 1135 1.3940000208094716e-03
+
+ -7.1873801946640015e-01 6.5390996634960175e-02
+ <_>
+
+ 0 -1 1136 -6.4799998654052615e-04
+
+ 2.4884399771690369e-01 -2.0978200435638428e-01
+ <_>
+
+ 0 -1 1137 -3.1888000667095184e-02
+
+ -6.8844497203826904e-01 6.3589997589588165e-02
+ <_>
+
+ 0 -1 1138 -4.9290000461041927e-03
+
+ -5.9152501821517944e-01 2.7943599224090576e-01
+ <_>
+
+ 0 -1 1139 3.1168000772595406e-02
+
+ 4.5223999768495560e-02 -8.8639199733734131e-01
+ <_>
+
+ 0 -1 1140 -3.3663000911474228e-02
+
+ -6.1590200662612915e-01 1.5749299526214600e-01
+ <_>
+
+ 0 -1 1141 1.1966999620199203e-02
+
+ -3.0606698989868164e-01 4.2293301224708557e-01
+ <_>
+
+ 0 -1 1142 -3.4680001437664032e-02
+
+ -1.3734940290451050e+00 1.5908700227737427e-01
+ <_>
+
+ 0 -1 1143 9.9290004000067711e-03
+
+ -5.5860197544097900e-01 1.2119200080633163e-01
+ <_>
+
+ 0 -1 1144 5.9574998915195465e-02
+
+ 4.9720001406967640e-03 8.2055401802062988e-01
+ <_>
+
+ 0 -1 1145 -6.5428003668785095e-02
+
+ 1.5651429891586304e+00 -1.6817499697208405e-01
+ <_>
+
+ 0 -1 1146 -9.2895999550819397e-02
+
+ -1.5794529914855957e+00 1.4661799371242523e-01
+ <_>
+
+ 0 -1 1147 -4.1184000670909882e-02
+
+ -1.5518720149993896e+00 -2.9969999566674232e-02
+ <_>
+
+ 0 -1 1148 2.1447999402880669e-02
+
+ 1.7196300625801086e-01 -6.9343197345733643e-01
+ <_>
+
+ 0 -1 1149 -2.5569999590516090e-02
+
+ -1.3061310052871704e+00 -2.4336999282240868e-02
+ <_>
+
+ 0 -1 1150 -4.1200999170541763e-02
+
+ -1.3821059465408325e+00 1.4801800251007080e-01
+ <_>
+
+ 0 -1 1151 -1.7668999731540680e-02
+
+ -7.0889997482299805e-01 3.6524001508951187e-02
+ <_>
+
+ 0 -1 1152 9.0060001239180565e-03
+
+ -4.0913999080657959e-02 8.0373102426528931e-01
+ <_>
+
+ 0 -1 1153 -1.1652999557554722e-02
+
+ 5.7546800374984741e-01 -2.4991700053215027e-01
+ <_>
+
+ 0 -1 1154 -7.4780001305043697e-03
+
+ -4.9280899763107300e-01 1.9810900092124939e-01
+ <_>
+
+ 0 -1 1155 8.5499999113380909e-04
+
+ -4.8858100175857544e-01 1.3563099503517151e-01
+ <_>
+
+ 0 -1 1156 -3.0538000166416168e-02
+
+ -6.0278397798538208e-01 1.8522000312805176e-01
+ <_>
+
+ 0 -1 1157 -1.8846999853849411e-02
+
+ 2.3565599322319031e-01 -3.5136300325393677e-01
+ <_>
+
+ 0 -1 1158 -8.1129996106028557e-03
+
+ -8.1304997205734253e-02 2.1069599688053131e-01
+ <_>
+
+ 0 -1 1159 -3.4830000251531601e-02
+
+ -1.2065670490264893e+00 -1.4251999557018280e-02
+ <_>
+
+ 0 -1 1160 1.9021000713109970e-02
+
+ 2.3349900543689728e-01 -4.5664900541305542e-01
+ <_>
+
+ 0 -1 1161 -1.9004000350832939e-02
+
+ -8.1075799465179443e-01 1.3140000402927399e-02
+ <_>
+
+ 0 -1 1162 -8.9057996869087219e-02
+
+ 6.1542397737503052e-01 3.2983001321554184e-02
+ <_>
+
+ 0 -1 1163 6.8620000965893269e-03
+
+ -2.9583099484443665e-01 2.7003699541091919e-01
+ <_>
+
+ 0 -1 1164 -2.8240999206900597e-02
+
+ -6.1102700233459473e-01 1.7357499897480011e-01
+ <_>
+
+ 0 -1 1165 -3.2099999953061342e-04
+
+ -5.3322899341583252e-01 6.8539001047611237e-02
+ <_>
+
+ 0 -1 1166 -1.0829100012779236e-01
+
+ -1.2879559993743896e+00 1.1801700294017792e-01
+ <_>
+
+ 0 -1 1167 1.5878999605774879e-02
+
+ -1.7072600126266479e-01 1.1103910207748413e+00
+ <_>
+
+ 0 -1 1168 8.6859995499253273e-03
+
+ -1.0995099693536758e-01 4.6010500192642212e-01
+ <_>
+
+ 0 -1 1169 -2.5234999135136604e-02
+
+ 1.0220669507980347e+00 -1.8694299459457397e-01
+ <_>
+
+ 0 -1 1170 -1.3508999720215797e-02
+
+ -7.8316599130630493e-01 1.4202600717544556e-01
+ <_>
+
+ 0 -1 1171 -7.7149998396635056e-03
+
+ -8.8060700893402100e-01 1.1060000397264957e-02
+ <_>
+
+ 0 -1 1172 7.1580000221729279e-02
+
+ 1.1369399726390839e-01 -1.1032789945602417e+00
+ <_>
+
+ 0 -1 1173 -1.3554000295698643e-02
+
+ -8.1096500158309937e-01 3.4080001059919596e-03
+ <_>
+
+ 0 -1 1174 2.9450000729411840e-03
+
+ -7.2879999876022339e-02 3.4998100996017456e-01
+ <_>
+
+ 0 -1 1175 -5.0833001732826233e-02
+
+ -1.2868590354919434e+00 -2.8842000290751457e-02
+ <_>
+
+ 0 -1 1176 -8.7989997118711472e-03
+
+ 4.7613599896430969e-01 -1.4690400660037994e-01
+ <_>
+
+ 0 -1 1177 2.1424399316310883e-01
+
+ -5.9702001512050629e-02 -2.4802260398864746e+00
+ <_>
+
+ 0 -1 1178 1.3962999917566776e-02
+
+ 1.7420299351215363e-01 -4.3911001086235046e-01
+ <_>
+
+ 0 -1 1179 4.2502000927925110e-02
+
+ -1.9965299963951111e-01 7.0654797554016113e-01
+ <_>
+
+ 0 -1 1180 1.9827999174594879e-02
+
+ -6.9136001169681549e-02 6.1643397808074951e-01
+ <_>
+
+ 0 -1 1181 -3.3560000360012054e-02
+
+ -1.2740780115127563e+00 -2.5673000141978264e-02
+ <_>
+
+ 0 -1 1182 6.3542999327182770e-02
+
+ 1.2403500080108643e-01 -1.0776289701461792e+00
+ <_>
+
+ 0 -1 1183 2.1933000534772873e-02
+
+ 1.4952000230550766e-02 -7.1023499965667725e-01
+ <_>
+
+ 0 -1 1184 -7.8424997627735138e-02
+
+ 6.2033998966217041e-01 3.3610999584197998e-02
+ <_>
+
+ 0 -1 1185 1.4390000142157078e-02
+
+ -3.6324599385261536e-01 1.7308300733566284e-01
+ <_>
+
+ 0 -1 1186 -6.7309997975826263e-02
+
+ 5.2374100685119629e-01 1.2799999676644802e-02
+ <_>
+
+ 0 -1 1187 1.3047499954700470e-01
+
+ -1.7122499644756317e-01 1.1235200166702271e+00
+ <_>
+
+ 0 -1 1188 -4.6245999634265900e-02
+
+ -1.1908329725265503e+00 1.7425599694252014e-01
+ <_>
+
+ 0 -1 1189 -2.9842000454664230e-02
+
+ 8.3930599689483643e-01 -1.8064199388027191e-01
+ <_>
+
+ 0 -1 1190 -3.8099999073892832e-04
+
+ 3.5532799363136292e-01 -2.3842300474643707e-01
+ <_>
+
+ 0 -1 1191 -2.2378999739885330e-02
+
+ -8.7943899631500244e-01 -7.8399997437372804e-04
+ <_>
+
+ 0 -1 1192 -1.5569999814033508e-03
+
+ -1.4253300428390503e-01 2.5876200199127197e-01
+ <_>
+
+ 0 -1 1193 1.2013000436127186e-02
+
+ -2.9015499353408813e-01 2.6051101088523865e-01
+ <_>
+
+ 0 -1 1194 2.4384999647736549e-02
+
+ -3.1438998878002167e-02 5.8695900440216064e-01
+ <_>
+
+ 0 -1 1195 -4.7180999070405960e-02
+
+ 6.9430100917816162e-01 -2.1816100180149078e-01
+ <_>
+
+ 0 -1 1196 -2.4893999099731445e-02
+
+ -6.4599299430847168e-01 1.5611599385738373e-01
+ <_>
+
+ 0 -1 1197 2.1944999694824219e-02
+
+ -2.7742000296711922e-02 -1.1346880197525024e+00
+ <_>
+
+ 0 -1 1198 1.8809899687767029e-01
+
+ -1.0076000355184078e-02 1.2429029941558838e+00
+ <_>
+
+ 0 -1 1199 -7.7872000634670258e-02
+
+ 8.5008001327514648e-01 -1.9015499949455261e-01
+ <_>
+
+ 0 -1 1200 -4.8769000917673111e-02
+
+ -2.0763080120086670e+00 1.2179400026798248e-01
+ <_>
+
+ 0 -1 1201 -1.7115000635385513e-02
+
+ -8.5687297582626343e-01 7.8760003671050072e-03
+ <_>
+
+ 0 -1 1202 -2.7499999850988388e-03
+
+ 3.8645499944686890e-01 -1.1391499638557434e-01
+ <_>
+
+ 0 -1 1203 -9.8793998360633850e-02
+
+ -1.7233899831771851e+00 -5.6063000112771988e-02
+ <_>
+
+ 0 -1 1204 -2.1936999633908272e-02
+
+ 5.4749399423599243e-01 -4.2481999844312668e-02
+ <_>
+
+ 0 -1 1205 6.1096999794244766e-02
+
+ -3.8945000618696213e-02 -1.0807880163192749e+00
+ <_>
+
+ 0 -1 1206 -2.4563999846577644e-02
+
+ 5.8311098814010620e-01 -9.7599998116493225e-04
+ <_>
+
+ 0 -1 1207 3.3752001821994781e-02
+
+ -1.3795999810099602e-02 -8.4730297327041626e-01
+ <_>
+
+ 0 -1 1208 3.8199000060558319e-02
+
+ 1.5114299952983856e-01 -7.9473400115966797e-01
+ <_>
+
+ 0 -1 1209 -2.0117999985814095e-02
+
+ 5.1579099893569946e-01 -2.1445399522781372e-01
+ <_>
+
+ 0 -1 1210 2.4734999984502792e-02
+
+ -2.2105000913143158e-02 4.2917698621749878e-01
+ <_>
+
+ 0 -1 1211 -2.4357000365853310e-02
+
+ -8.6201298236846924e-01 -3.6760000512003899e-03
+ <_>
+
+ 0 -1 1212 -2.6442000642418861e-02
+
+ -4.5397499203681946e-01 2.2462800145149231e-01
+ <_>
+
+ 0 -1 1213 -3.4429999068379402e-03
+
+ 1.3073000311851501e-01 -3.8622701168060303e-01
+ <_>
+
+ 0 -1 1214 1.0701700299978256e-01
+
+ 1.3158600032329559e-01 -7.9306900501251221e-01
+ <_>
+
+ 0 -1 1215 4.5152999460697174e-02
+
+ -2.5296801328659058e-01 4.0672400593757629e-01
+ <_>
+
+ 0 -1 1216 4.4349998235702515e-02
+
+ 2.2613000124692917e-02 7.9618102312088013e-01
+ <_>
+
+ 0 -1 1217 1.0839999886229634e-03
+
+ -3.9158400893211365e-01 1.1639100313186646e-01
+ <_>
+
+ 0 -1 1218 7.1433000266551971e-02
+
+ 8.2466997206211090e-02 1.2530590295791626e+00
+ <_>
+
+ 0 -1 1219 3.5838000476360321e-02
+
+ -1.8203300237655640e-01 7.7078700065612793e-01
+ <_>
+
+ 0 -1 1220 -2.0839000120759010e-02
+
+ -6.1744397878646851e-01 1.5891399979591370e-01
+ <_>
+
+ 0 -1 1221 4.2525801062583923e-01
+
+ -4.8978000879287720e-02 -1.8422030210494995e+00
+ <_>
+
+ 0 -1 1222 1.1408000253140926e-02
+
+ 1.7918199300765991e-01 -1.5383499860763550e-01
+ <_>
+
+ 0 -1 1223 -1.5364999882876873e-02
+
+ -8.4016501903533936e-01 -1.0280000278726220e-03
+ <_>
+
+ 0 -1 1224 -1.5212000347673893e-02
+
+ -1.8995699286460876e-01 1.7130999267101288e-01
+ <_>
+
+ 0 -1 1225 -1.8972000107169151e-02
+
+ -7.9541999101638794e-01 6.6800001077353954e-03
+ <_>
+
+ 0 -1 1226 -3.3330000005662441e-03
+
+ -2.3530800640583038e-01 2.4730099737644196e-01
+ <_>
+
+ 0 -1 1227 9.3248002231121063e-02
+
+ -5.4758001118898392e-02 -1.8324300050735474e+00
+ <_>
+
+ 0 -1 1228 -1.2555000372231007e-02
+
+ 2.6385200023651123e-01 -3.8526400923728943e-01
+ <_>
+
+ 0 -1 1229 -2.7070000767707825e-02
+
+ -6.6929799318313599e-01 2.0340999588370323e-02
+ <_>
+
+ 0 -1 1230 -2.3677000775933266e-02
+
+ 6.7265301942825317e-01 -1.4344000257551670e-02
+ <_>
+
+ 0 -1 1231 -1.4275000430643559e-02
+
+ 3.0186399817466736e-01 -2.8514400124549866e-01
+ <_>
+
+ 0 -1 1232 2.8096999973058701e-02
+
+ 1.4766000211238861e-01 -1.4078520536422729e+00
+ <_>
+
+ 0 -1 1233 5.0840001553297043e-02
+
+ -1.8613600730895996e-01 7.9953002929687500e-01
+ <_>
+
+ 0 -1 1234 1.1505999602377415e-02
+
+ 1.9118399918079376e-01 -8.5035003721714020e-02
+ <_>
+
+ 0 -1 1235 -1.4661000110208988e-02
+
+ 4.5239299535751343e-01 -2.2205199301242828e-01
+ <_>
+
+ 0 -1 1236 2.2842499613761902e-01
+
+ 1.3488399982452393e-01 -1.2894610166549683e+00
+ <_>
+
+ 0 -1 1237 1.1106900125741959e-01
+
+ -2.0753799378871918e-01 5.4561597108840942e-01
+ <_>
+
+ 0 -1 1238 3.2450000289827585e-03
+
+ 3.2053700089454651e-01 -1.6403500735759735e-01
+ <_>
+
+ 0 -1 1239 8.5309997200965881e-02
+
+ -2.0210500061511993e-01 5.3296798467636108e-01
+ <_>
+
+ 0 -1 1240 2.2048000246286392e-02
+
+ 1.5698599815368652e-01 -1.7014099657535553e-01
+ <_>
+
+ 0 -1 1241 -1.5676999464631081e-02
+
+ -6.2863498926162720e-01 4.0761999785900116e-02
+ <_>
+
+ 0 -1 1242 3.3112901449203491e-01
+
+ 1.6609300673007965e-01 -1.0326379537582397e+00
+ <_>
+
+ 0 -1 1243 8.8470000773668289e-03
+
+ -2.5076198577880859e-01 3.1660598516464233e-01
+ <_>
+
+ 0 -1 1244 4.6080000698566437e-02
+
+ 1.5352100133895874e-01 -1.6333500146865845e+00
+ <_>
+
+ 0 -1 1245 -3.7703000009059906e-02
+
+ 5.6873798370361328e-01 -2.0102599263191223e-01
+ <_>
+ 159
+ -3.5939640998840332e+00
+
+ <_>
+
+ 0 -1 1246 -8.1808999180793762e-02
+
+ 5.7124799489974976e-01 -6.7438799142837524e-01
+ <_>
+
+ 0 -1 1247 2.1761199831962585e-01
+
+ -3.8610199093818665e-01 9.0343999862670898e-01
+ <_>
+
+ 0 -1 1248 1.4878000132739544e-02
+
+ 2.2241599857807159e-01 -1.2779350280761719e+00
+ <_>
+
+ 0 -1 1249 5.2434999495744705e-02
+
+ -2.8690400719642639e-01 7.5742298364639282e-01
+ <_>
+
+ 0 -1 1250 9.1429995372891426e-03
+
+ -6.4880400896072388e-01 2.2268800437450409e-01
+ <_>
+
+ 0 -1 1251 7.9169999808073044e-03
+
+ -2.9253599047660828e-01 3.1030198931694031e-01
+ <_>
+
+ 0 -1 1252 -2.6084000244736671e-02
+
+ 4.5532700419425964e-01 -3.8500601053237915e-01
+ <_>
+
+ 0 -1 1253 -2.9400000348687172e-03
+
+ -5.1264399290084839e-01 2.7432298660278320e-01
+ <_>
+
+ 0 -1 1254 5.7130001485347748e-02
+
+ 1.5788000077009201e-02 -1.2133100032806396e+00
+ <_>
+
+ 0 -1 1255 -6.1309998854994774e-03
+
+ 3.9174601435661316e-01 -3.0866798758506775e-01
+ <_>
+
+ 0 -1 1256 -4.0405001491308212e-02
+
+ 1.1901949644088745e+00 -2.0347100496292114e-01
+ <_>
+
+ 0 -1 1257 -2.0297000184655190e-02
+
+ -6.8239498138427734e-01 2.0458699762821198e-01
+ <_>
+
+ 0 -1 1258 -1.7188999801874161e-02
+
+ -8.4939897060394287e-01 3.8433000445365906e-02
+ <_>
+
+ 0 -1 1259 -2.4215999990701675e-02
+
+ -1.1039420366287231e+00 1.5975099802017212e-01
+ <_>
+
+ 0 -1 1260 5.6869000196456909e-02
+
+ -1.9595299661159515e-01 1.1806850433349609e+00
+ <_>
+
+ 0 -1 1261 3.6199999158270657e-04
+
+ -4.0847799181938171e-01 3.2938599586486816e-01
+ <_>
+
+ 0 -1 1262 9.9790003150701523e-03
+
+ -2.9673001170158386e-01 4.1547900438308716e-01
+ <_>
+
+ 0 -1 1263 -5.2625000476837158e-02
+
+ -1.3069299459457397e+00 1.7862600088119507e-01
+ <_>
+
+ 0 -1 1264 -1.3748999685049057e-02
+
+ 2.3665800690650940e-01 -4.4536599516868591e-01
+ <_>
+
+ 0 -1 1265 -3.0517000705003738e-02
+
+ 2.9018300771713257e-01 -1.1210100352764130e-01
+ <_>
+
+ 0 -1 1266 -3.0037501454353333e-01
+
+ -2.4237680435180664e+00 -4.2830999940633774e-02
+ <_>
+
+ 0 -1 1267 -3.5990998148918152e-02
+
+ 8.8206499814987183e-01 -4.7012999653816223e-02
+ <_>
+
+ 0 -1 1268 -5.5112000554800034e-02
+
+ 8.0119001865386963e-01 -2.0490999519824982e-01
+ <_>
+
+ 0 -1 1269 3.3762000501155853e-02
+
+ 1.4617599546909332e-01 -1.1349489688873291e+00
+ <_>
+
+ 0 -1 1270 -8.2710003480315208e-03
+
+ -8.1604897975921631e-01 1.8988000229001045e-02
+ <_>
+
+ 0 -1 1271 -5.4399999789893627e-03
+
+ -7.0980900526046753e-01 2.2343699634075165e-01
+ <_>
+
+ 0 -1 1272 3.1059999018907547e-03
+
+ -7.2808599472045898e-01 4.0224999189376831e-02
+ <_>
+
+ 0 -1 1273 5.3651999682188034e-02
+
+ 1.7170900106430054e-01 -1.1163710355758667e+00
+ <_>
+
+ 0 -1 1274 -1.2541399896144867e-01
+
+ 2.7680370807647705e+00 -1.4611500501632690e-01
+ <_>
+
+ 0 -1 1275 9.2542000114917755e-02
+
+ 1.1609800159931183e-01 -3.9635529518127441e+00
+ <_>
+
+ 0 -1 1276 3.8513999432325363e-02
+
+ -7.6399999670684338e-03 -9.8780900239944458e-01
+ <_>
+
+ 0 -1 1277 -2.0200000144541264e-03
+
+ 2.3059999942779541e-01 -7.4970299005508423e-01
+ <_>
+
+ 0 -1 1278 9.7599998116493225e-03
+
+ -3.1137999892234802e-01 3.0287799239158630e-01
+ <_>
+
+ 0 -1 1279 2.4095000699162483e-02
+
+ -4.9529999494552612e-02 5.2690100669860840e-01
+ <_>
+
+ 0 -1 1280 -1.7982000485062599e-02
+
+ -1.1610640287399292e+00 -5.7000000961124897e-03
+ <_>
+
+ 0 -1 1281 -1.0555000044405460e-02
+
+ -2.7189099788665771e-01 2.3597699403762817e-01
+ <_>
+
+ 0 -1 1282 -7.2889998555183411e-03
+
+ -5.4219102859497070e-01 8.1914000213146210e-02
+ <_>
+
+ 0 -1 1283 2.3939000442624092e-02
+
+ 1.7975799739360809e-01 -6.7049497365951538e-01
+ <_>
+
+ 0 -1 1284 -1.8365999683737755e-02
+
+ 6.2664300203323364e-01 -2.0970100164413452e-01
+ <_>
+
+ 0 -1 1285 1.5715999528765678e-02
+
+ 2.4193699657917023e-01 -1.0444309711456299e+00
+ <_>
+
+ 0 -1 1286 -4.8804000020027161e-02
+
+ -9.4060599803924561e-01 -3.7519999314099550e-03
+ <_>
+
+ 0 -1 1287 6.7130001261830330e-03
+
+ -7.5432002544403076e-02 6.1575299501419067e-01
+ <_>
+
+ 0 -1 1288 9.7770001739263535e-03
+
+ 3.9285000413656235e-02 -8.4810298681259155e-01
+ <_>
+
+ 0 -1 1289 1.4744999818503857e-02
+
+ 1.6968999803066254e-01 -5.0906401872634888e-01
+ <_>
+
+ 0 -1 1290 9.7079001367092133e-02
+
+ -3.3103000372648239e-02 -1.2706379890441895e+00
+ <_>
+
+ 0 -1 1291 4.8285998404026031e-02
+
+ 9.4329997897148132e-02 2.7203190326690674e+00
+ <_>
+
+ 0 -1 1292 9.7810002043843269e-03
+
+ -3.9533400535583496e-01 1.5363800525665283e-01
+ <_>
+
+ 0 -1 1293 -3.9893999695777893e-02
+
+ -2.2767400741577148e-01 1.3913999497890472e-01
+ <_>
+
+ 0 -1 1294 2.2848000749945641e-02
+
+ -2.7391999959945679e-01 3.4199500083923340e-01
+ <_>
+
+ 0 -1 1295 6.7179999314248562e-03
+
+ -1.0874299705028534e-01 4.8125401139259338e-01
+ <_>
+
+ 0 -1 1296 5.9599999338388443e-02
+
+ -4.9522001296281815e-02 -2.0117089748382568e+00
+ <_>
+
+ 0 -1 1297 6.9340001791715622e-03
+
+ 1.5037499368190765e-01 -1.1271899938583374e-01
+ <_>
+
+ 0 -1 1298 1.5757000073790550e-02
+
+ -2.0885000005364418e-02 -1.1651979684829712e+00
+ <_>
+
+ 0 -1 1299 -4.9690000712871552e-02
+
+ -8.0213499069213867e-01 1.4372299611568451e-01
+ <_>
+
+ 0 -1 1300 5.2347000688314438e-02
+
+ -2.0836700499057770e-01 6.1677598953247070e-01
+ <_>
+
+ 0 -1 1301 2.2430999204516411e-02
+
+ 2.0305900275707245e-01 -7.5326198339462280e-01
+ <_>
+
+ 0 -1 1302 4.1142001748085022e-02
+
+ -1.8118199706077576e-01 1.0033359527587891e+00
+ <_>
+
+ 0 -1 1303 -2.1632000803947449e-02
+
+ 4.9998998641967773e-01 -3.4662999212741852e-02
+ <_>
+
+ 0 -1 1304 -8.2808002829551697e-02
+
+ 1.1711900234222412e+00 -1.8433600664138794e-01
+ <_>
+
+ 0 -1 1305 8.5060000419616699e-03
+
+ -6.3225001096725464e-02 2.9024899005889893e-01
+ <_>
+
+ 0 -1 1306 7.8905001282691956e-02
+
+ -2.3274500668048859e-01 5.9695798158645630e-01
+ <_>
+
+ 0 -1 1307 -9.0207003057003021e-02
+
+ -8.2211899757385254e-01 1.7772200703620911e-01
+ <_>
+
+ 0 -1 1308 -2.9269000515341759e-02
+
+ 6.0860699415206909e-01 -2.1468900144100189e-01
+ <_>
+
+ 0 -1 1309 6.9499998353421688e-03
+
+ -4.2665999382734299e-02 6.0512101650238037e-01
+ <_>
+
+ 0 -1 1310 -8.0629996955394745e-03
+
+ -1.1508270502090454e+00 -2.7286000549793243e-02
+ <_>
+
+ 0 -1 1311 1.9595999270677567e-02
+
+ -9.1880001127719879e-03 5.6857800483703613e-01
+ <_>
+
+ 0 -1 1312 -1.4884999953210354e-02
+
+ 3.7658798694610596e-01 -2.7149501442909241e-01
+ <_>
+
+ 0 -1 1313 2.5217000395059586e-02
+
+ -9.9991001188755035e-02 2.4664700031280518e-01
+ <_>
+
+ 0 -1 1314 -1.5855999663472176e-02
+
+ 6.6826701164245605e-01 -2.0614700019359589e-01
+ <_>
+
+ 0 -1 1315 2.9441000893712044e-02
+
+ 1.5832200646400452e-01 -7.6060897111892700e-01
+ <_>
+
+ 0 -1 1316 -8.5279997438192368e-03
+
+ 3.8212299346923828e-01 -2.5407800078392029e-01
+ <_>
+
+ 0 -1 1317 2.4421999230980873e-02
+
+ 1.5105099976062775e-01 -2.8752899169921875e-01
+ <_>
+
+ 0 -1 1318 -3.3886998891830444e-02
+
+ -6.8002802133560181e-01 3.4327000379562378e-02
+ <_>
+
+ 0 -1 1319 -2.0810000132769346e-03
+
+ 2.5413900613784790e-01 -2.6859098672866821e-01
+ <_>
+
+ 0 -1 1320 3.0358999967575073e-02
+
+ -3.0842000618577003e-02 -1.1476809978485107e+00
+ <_>
+
+ 0 -1 1321 4.0210001170635223e-03
+
+ -3.5253798961639404e-01 2.9868099093437195e-01
+ <_>
+
+ 0 -1 1322 2.7681000530719757e-02
+
+ -3.8148999214172363e-02 -1.3262039422988892e+00
+ <_>
+
+ 0 -1 1323 7.9039996489882469e-03
+
+ -2.3737000301480293e-02 7.0503002405166626e-01
+ <_>
+
+ 0 -1 1324 4.4031001627445221e-02
+
+ 1.0674899816513062e-01 -4.5261201262474060e-01
+ <_>
+
+ 0 -1 1325 -3.2370999455451965e-02
+
+ 4.6674901247024536e-01 -6.1546999961137772e-02
+ <_>
+
+ 0 -1 1326 2.0933000370860100e-02
+
+ -2.8447899222373962e-01 4.3845599889755249e-01
+ <_>
+
+ 0 -1 1327 2.5227999314665794e-02
+
+ -2.2537000477313995e-02 7.0389097929000854e-01
+ <_>
+
+ 0 -1 1328 6.5520000644028187e-03
+
+ -3.2554900646209717e-01 2.4023699760437012e-01
+ <_>
+
+ 0 -1 1329 -5.8557998389005661e-02
+
+ -1.2227720022201538e+00 1.1668799817562103e-01
+ <_>
+
+ 0 -1 1330 3.1899999827146530e-02
+
+ -1.9305000081658363e-02 -1.0973169803619385e+00
+ <_>
+
+ 0 -1 1331 -3.0445000156760216e-02
+
+ 6.5582501888275146e-01 7.5090996921062469e-02
+ <_>
+
+ 0 -1 1332 1.4933000318706036e-02
+
+ -5.2155798673629761e-01 1.1523099988698959e-01
+ <_>
+
+ 0 -1 1333 -4.9008000642061234e-02
+
+ -7.8303998708724976e-01 1.6657200455665588e-01
+ <_>
+
+ 0 -1 1334 8.3158999681472778e-02
+
+ -2.6879999786615372e-03 -8.5282301902770996e-01
+ <_>
+
+ 0 -1 1335 2.3902999237179756e-02
+
+ -5.1010999828577042e-02 4.1999098658561707e-01
+ <_>
+
+ 0 -1 1336 1.6428999602794647e-02
+
+ 1.9232999533414841e-02 -6.5049099922180176e-01
+ <_>
+
+ 0 -1 1337 -1.1838000267744064e-02
+
+ -6.2409800291061401e-01 1.5411199629306793e-01
+ <_>
+
+ 0 -1 1338 -1.6799999866634607e-04
+
+ 1.7589199542999268e-01 -3.4338700771331787e-01
+ <_>
+
+ 0 -1 1339 1.9193999469280243e-02
+
+ 4.3418999761343002e-02 7.9069197177886963e-01
+ <_>
+
+ 0 -1 1340 -1.0032000020146370e-02
+
+ 4.5648899674415588e-01 -2.2494800388813019e-01
+ <_>
+
+ 0 -1 1341 -1.4004000462591648e-02
+
+ 3.3570998907089233e-01 -4.8799999058246613e-03
+ <_>
+
+ 0 -1 1342 -1.0319899767637253e-01
+
+ -2.3378000259399414e+00 -5.8933001011610031e-02
+ <_>
+
+ 0 -1 1343 -9.5697000622749329e-02
+
+ -6.6153901815414429e-01 2.0098599791526794e-01
+ <_>
+
+ 0 -1 1344 -4.1480999439954758e-02
+
+ 4.5939201116561890e-01 -2.2314099967479706e-01
+ <_>
+
+ 0 -1 1345 2.4099999573081732e-03
+
+ -2.6898598670959473e-01 2.4922999739646912e-01
+ <_>
+
+ 0 -1 1346 1.0724999755620956e-01
+
+ -1.8640199303627014e-01 7.2769802808761597e-01
+ <_>
+
+ 0 -1 1347 3.1870000530034304e-03
+
+ -2.4608999490737915e-02 2.8643900156021118e-01
+ <_>
+
+ 0 -1 1348 2.9167000204324722e-02
+
+ -3.4683000296354294e-02 -1.1162580251693726e+00
+ <_>
+
+ 0 -1 1349 1.1287000030279160e-02
+
+ 6.3760001212358475e-03 6.6632097959518433e-01
+ <_>
+
+ 0 -1 1350 -1.2001000344753265e-02
+
+ 4.2420101165771484e-01 -2.6279801130294800e-01
+ <_>
+
+ 0 -1 1351 -1.2695999816060066e-02
+
+ -2.1957000717520714e-02 1.8936799466609955e-01
+ <_>
+
+ 0 -1 1352 2.4597000330686569e-02
+
+ -3.4963998943567276e-02 -1.0989320278167725e+00
+ <_>
+
+ 0 -1 1353 4.5953001827001572e-02
+
+ 1.1109799891710281e-01 -2.9306049346923828e+00
+ <_>
+
+ 0 -1 1354 -2.7241000905632973e-02
+
+ 2.9101699590682983e-01 -2.7407899498939514e-01
+ <_>
+
+ 0 -1 1355 4.0063999593257904e-02
+
+ 1.1877900362014771e-01 -6.2801802158355713e-01
+ <_>
+
+ 0 -1 1356 2.3055000230669975e-02
+
+ 1.4813800156116486e-01 -3.7007498741149902e-01
+ <_>
+
+ 0 -1 1357 -2.3737000301480293e-02
+
+ -5.3724801540374756e-01 1.9358199834823608e-01
+ <_>
+
+ 0 -1 1358 7.7522002160549164e-02
+
+ -6.0194000601768494e-02 -1.9489669799804688e+00
+ <_>
+
+ 0 -1 1359 -1.3345000334084034e-02
+
+ -4.5229598879814148e-01 1.8741500377655029e-01
+ <_>
+
+ 0 -1 1360 -2.1719999611377716e-02
+
+ 1.2144249677658081e+00 -1.5365800261497498e-01
+ <_>
+
+ 0 -1 1361 -7.1474999189376831e-02
+
+ -2.3047130107879639e+00 1.0999900102615356e-01
+ <_>
+
+ 0 -1 1362 -5.4999999701976776e-03
+
+ -7.1855199337005615e-01 2.0100999623537064e-02
+ <_>
+
+ 0 -1 1363 2.6740999892354012e-02
+
+ 7.3545001447200775e-02 9.8786002397537231e-01
+ <_>
+
+ 0 -1 1364 -3.9407998323440552e-02
+
+ -1.2227380275726318e+00 -4.3506998568773270e-02
+ <_>
+
+ 0 -1 1365 2.5888999924063683e-02
+
+ 1.3409300148487091e-01 -1.1770780086517334e+00
+ <_>
+
+ 0 -1 1366 4.8925001174211502e-02
+
+ -3.0810000374913216e-02 -9.3479502201080322e-01
+ <_>
+
+ 0 -1 1367 3.6892998963594437e-02
+
+ 1.3333700597286224e-01 -1.4998290538787842e+00
+ <_>
+
+ 0 -1 1368 7.8929997980594635e-02
+
+ -1.4538800716400146e-01 1.5631790161132812e+00
+ <_>
+
+ 0 -1 1369 2.9006000608205795e-02
+
+ 1.9383700191974640e-01 -6.7642802000045776e-01
+ <_>
+
+ 0 -1 1370 6.3089998438954353e-03
+
+ -3.7465399503707886e-01 1.0857500135898590e-01
+ <_>
+
+ 0 -1 1371 -6.5830998122692108e-02
+
+ 8.1059402227401733e-01 3.0201999470591545e-02
+ <_>
+
+ 0 -1 1372 -6.8965002894401550e-02
+
+ 8.3772599697113037e-01 -1.7140999436378479e-01
+ <_>
+
+ 0 -1 1373 -1.1669100075960159e-01
+
+ -9.4647198915481567e-01 1.3123199343681335e-01
+ <_>
+
+ 0 -1 1374 -1.3060000492259860e-03
+
+ 4.6007998287677765e-02 -5.2011597156524658e-01
+ <_>
+
+ 0 -1 1375 -4.4558998197317123e-02
+
+ -1.9423669576644897e+00 1.3200700283050537e-01
+ <_>
+
+ 0 -1 1376 5.1033001393079758e-02
+
+ -2.1480999886989594e-01 4.8673900961875916e-01
+ <_>
+
+ 0 -1 1377 -3.1578000634908676e-02
+
+ 5.9989798069000244e-01 7.9159997403621674e-03
+ <_>
+
+ 0 -1 1378 2.1020000800490379e-02
+
+ -2.2069500386714935e-01 5.4046201705932617e-01
+ <_>
+
+ 0 -1 1379 -1.3824200630187988e-01
+
+ 6.2957501411437988e-01 -2.1712999790906906e-02
+ <_>
+
+ 0 -1 1380 5.2228998392820358e-02
+
+ -2.3360900580883026e-01 4.9760800600051880e-01
+ <_>
+
+ 0 -1 1381 2.5884000584483147e-02
+
+ 1.8041999638080597e-01 -2.2039200365543365e-01
+ <_>
+
+ 0 -1 1382 -1.2138999998569489e-02
+
+ -6.9731897115707397e-01 1.5712000429630280e-02
+ <_>
+
+ 0 -1 1383 -2.4237999692559242e-02
+
+ 3.4593299031257629e-01 7.1469999849796295e-02
+ <_>
+
+ 0 -1 1384 -2.5272000581026077e-02
+
+ -8.7583297491073608e-01 -9.8240002989768982e-03
+ <_>
+
+ 0 -1 1385 1.2597000226378441e-02
+
+ 2.3649999499320984e-01 -2.8731200098991394e-01
+ <_>
+
+ 0 -1 1386 5.7330999523401260e-02
+
+ -6.1530999839305878e-02 -2.2326040267944336e+00
+ <_>
+
+ 0 -1 1387 1.6671000048518181e-02
+
+ -1.9850100576877594e-01 4.0810701251029968e-01
+ <_>
+
+ 0 -1 1388 -2.2818999364972115e-02
+
+ 9.6487599611282349e-01 -2.0245699584484100e-01
+ <_>
+
+ 0 -1 1389 3.7000001611886546e-05
+
+ -5.8908998966217041e-02 2.7055400609970093e-01
+ <_>
+
+ 0 -1 1390 -7.6700001955032349e-03
+
+ -4.5317101478576660e-01 8.9628003537654877e-02
+ <_>
+
+ 0 -1 1391 9.4085998833179474e-02
+
+ 1.1604599654674530e-01 -1.0951169729232788e+00
+ <_>
+
+ 0 -1 1392 -6.2267001718282700e-02
+
+ 1.8096530437469482e+00 -1.4773200452327728e-01
+ <_>
+
+ 0 -1 1393 1.7416000366210938e-02
+
+ 2.3068200051784515e-01 -4.2417600750923157e-01
+ <_>
+
+ 0 -1 1394 -2.2066000849008560e-02
+
+ 4.9270299077033997e-01 -2.0630900561809540e-01
+ <_>
+
+ 0 -1 1395 -1.0404000058770180e-02
+
+ 6.0924297571182251e-01 2.8130000457167625e-02
+ <_>
+
+ 0 -1 1396 -9.3670003116130829e-03
+
+ 4.0171200037002563e-01 -2.1681700646877289e-01
+ <_>
+
+ 0 -1 1397 -2.9039999470114708e-02
+
+ -8.4876501560211182e-01 1.4246800541877747e-01
+ <_>
+
+ 0 -1 1398 -2.1061999723315239e-02
+
+ -7.9198300838470459e-01 -1.2595999985933304e-02
+ <_>
+
+ 0 -1 1399 -3.7000998854637146e-02
+
+ -6.7488902807235718e-01 1.2830400466918945e-01
+ <_>
+
+ 0 -1 1400 1.0735999792814255e-02
+
+ 3.6779999732971191e-02 -6.3393002748489380e-01
+ <_>
+
+ 0 -1 1401 1.6367599368095398e-01
+
+ 1.3803899288177490e-01 -4.7189000248908997e-01
+ <_>
+
+ 0 -1 1402 9.4917997717857361e-02
+
+ -1.3855700194835663e-01 1.9492419958114624e+00
+ <_>
+
+ 0 -1 1403 3.5261999815702438e-02
+
+ 1.3721899688243866e-01 -2.1186530590057373e+00
+ <_>
+
+ 0 -1 1404 1.2811000458896160e-02
+
+ -2.0008100569248199e-01 4.9507799744606018e-01
+ <_>
+ 155
+ -3.3933560848236084e+00
+
+ <_>
+
+ 0 -1 1405 1.3904400169849396e-01
+
+ -4.6581199765205383e-01 7.6431602239608765e-01
+ <_>
+
+ 0 -1 1406 1.1916999705135822e-02
+
+ -9.4398999214172363e-01 3.9726299047470093e-01
+ <_>
+
+ 0 -1 1407 -1.0006999596953392e-02
+
+ 3.2718798518180847e-01 -6.3367402553558350e-01
+ <_>
+
+ 0 -1 1408 -6.0479999519884586e-03
+
+ 2.7427899837493896e-01 -5.7446998357772827e-01
+ <_>
+
+ 0 -1 1409 -1.2489999644458294e-03
+
+ 2.3629300296306610e-01 -6.8593502044677734e-01
+ <_>
+
+ 0 -1 1410 3.2382000237703323e-02
+
+ -5.7630199193954468e-01 2.7492699027061462e-01
+ <_>
+
+ 0 -1 1411 -1.3957999646663666e-02
+
+ -6.1061501502990723e-01 2.4541600048542023e-01
+ <_>
+
+ 0 -1 1412 1.1159999994561076e-03
+
+ -5.6539100408554077e-01 2.7179300785064697e-01
+ <_>
+
+ 0 -1 1413 2.7000000045518391e-05
+
+ -8.0235999822616577e-01 1.1509100347757339e-01
+ <_>
+
+ 0 -1 1414 -2.5700000696815550e-04
+
+ -8.1205898523330688e-01 2.3844699561595917e-01
+ <_>
+
+ 0 -1 1415 4.0460000745952129e-03
+
+ 1.3909600675106049e-01 -6.6163200139999390e-01
+ <_>
+
+ 0 -1 1416 1.4356000348925591e-02
+
+ -1.6485199332237244e-01 4.1901698708534241e-01
+ <_>
+
+ 0 -1 1417 -5.5374998599290848e-02
+
+ 1.4425870180130005e+00 -1.8820199370384216e-01
+ <_>
+
+ 0 -1 1418 9.3594998121261597e-02
+
+ 1.3548299670219421e-01 -9.1636097431182861e-01
+ <_>
+
+ 0 -1 1419 2.6624999940395355e-02
+
+ -3.3748298883438110e-01 3.9233601093292236e-01
+ <_>
+
+ 0 -1 1420 3.7469998933374882e-03
+
+ -1.1615400016307831e-01 4.4399300217628479e-01
+ <_>
+
+ 0 -1 1421 -3.1886000186204910e-02
+
+ -9.9498301744461060e-01 1.6120000509545207e-03
+ <_>
+
+ 0 -1 1422 -2.2600000724196434e-02
+
+ -4.8067399859428406e-01 1.7007300257682800e-01
+ <_>
+
+ 0 -1 1423 2.5202000513672829e-02
+
+ 3.5580001771450043e-02 -8.0215400457382202e-01
+ <_>
+
+ 0 -1 1424 -3.1036999076604843e-02
+
+ -1.0895340442657471e+00 1.8081900477409363e-01
+ <_>
+
+ 0 -1 1425 -2.6475999504327774e-02
+
+ 9.5671200752258301e-01 -2.1049399673938751e-01
+ <_>
+
+ 0 -1 1426 -1.3853999786078930e-02
+
+ -1.0370320081710815e+00 2.2166700661182404e-01
+ <_>
+
+ 0 -1 1427 -6.2925003468990326e-02
+
+ 9.0199398994445801e-01 -1.9085299968719482e-01
+ <_>
+
+ 0 -1 1428 -4.4750999659299850e-02
+
+ -1.0119110345840454e+00 1.4691199362277985e-01
+ <_>
+
+ 0 -1 1429 -2.0428000018000603e-02
+
+ 6.1624497175216675e-01 -2.3552699387073517e-01
+ <_>
+
+ 0 -1 1430 -8.0329999327659607e-03
+
+ -8.3279997110366821e-02 2.1728700399398804e-01
+ <_>
+
+ 0 -1 1431 8.7280003353953362e-03
+
+ 6.5458998084068298e-02 -6.0318702459335327e-01
+ <_>
+
+ 0 -1 1432 -2.7202000841498375e-02
+
+ -9.3447399139404297e-01 1.5270000696182251e-01
+ <_>
+
+ 0 -1 1433 -1.6471000388264656e-02
+
+ -8.4177100658416748e-01 1.3332000002264977e-02
+ <_>
+
+ 0 -1 1434 -1.3744000345468521e-02
+
+ 6.0567200183868408e-01 -9.2021003365516663e-02
+ <_>
+
+ 0 -1 1435 2.9164999723434448e-02
+
+ -2.8114000335335732e-02 -1.4014569520950317e+00
+ <_>
+
+ 0 -1 1436 3.7457000464200974e-02
+
+ 1.3080599904060364e-01 -4.9382498860359192e-01
+ <_>
+
+ 0 -1 1437 -2.5070000439882278e-02
+
+ -1.1289390325546265e+00 -1.4600000344216824e-02
+ <_>
+
+ 0 -1 1438 -6.3812002539634705e-02
+
+ 7.5871598720550537e-01 -1.8200000049546361e-03
+ <_>
+
+ 0 -1 1439 -9.3900002539157867e-03
+
+ 2.9936400055885315e-01 -2.9487800598144531e-01
+ <_>
+
+ 0 -1 1440 -7.6000002445653081e-04
+
+ 1.9725000485777855e-02 1.9993899762630463e-01
+ <_>
+
+ 0 -1 1441 -2.1740999072790146e-02
+
+ -8.5247898101806641e-01 4.9169998615980148e-02
+ <_>
+
+ 0 -1 1442 -1.7869999632239342e-02
+
+ -5.9985999017953873e-02 1.5222500264644623e-01
+ <_>
+
+ 0 -1 1443 -2.4831000715494156e-02
+
+ 3.5603401064872742e-01 -2.6259899139404297e-01
+ <_>
+
+ 0 -1 1444 1.5715500712394714e-01
+
+ 1.5599999460391700e-04 1.0428730249404907e+00
+ <_>
+
+ 0 -1 1445 6.9026999175548553e-02
+
+ -3.3006999641656876e-02 -1.1796669960021973e+00
+ <_>
+
+ 0 -1 1446 -1.1021999642252922e-02
+
+ 5.8987700939178467e-01 -5.7647999376058578e-02
+ <_>
+
+ 0 -1 1447 -1.3834999874234200e-02
+
+ 5.9502798318862915e-01 -2.4418599903583527e-01
+ <_>
+
+ 0 -1 1448 -3.0941000208258629e-02
+
+ -1.1723799705505371e+00 1.6907000541687012e-01
+ <_>
+
+ 0 -1 1449 2.1258000284433365e-02
+
+ -1.8900999799370766e-02 -1.0684759616851807e+00
+ <_>
+
+ 0 -1 1450 9.3079999089241028e-02
+
+ 1.6305600106716156e-01 -1.3375270366668701e+00
+ <_>
+
+ 0 -1 1451 2.9635999351739883e-02
+
+ -2.2524799406528473e-01 4.5400100946426392e-01
+ <_>
+
+ 0 -1 1452 -1.2199999764561653e-04
+
+ 2.7409100532531738e-01 -3.7371399998664856e-01
+ <_>
+
+ 0 -1 1453 -4.2098000645637512e-02
+
+ -7.5828802585601807e-01 1.7137000337243080e-02
+ <_>
+
+ 0 -1 1454 -2.2505000233650208e-02
+
+ -2.2759300470352173e-01 2.3698699474334717e-01
+ <_>
+
+ 0 -1 1455 -1.2862999923527241e-02
+
+ 1.9252400100231171e-01 -3.2127100229263306e-01
+ <_>
+
+ 0 -1 1456 2.7860000729560852e-02
+
+ 1.6723699867725372e-01 -1.0209059715270996e+00
+ <_>
+
+ 0 -1 1457 -2.7807999402284622e-02
+
+ 1.2824759483337402e+00 -1.7225299775600433e-01
+ <_>
+
+ 0 -1 1458 -6.1630001291632652e-03
+
+ -5.4072898626327515e-01 2.3885700106620789e-01
+ <_>
+
+ 0 -1 1459 -2.0436000078916550e-02
+
+ 6.3355398178100586e-01 -2.1090599894523621e-01
+ <_>
+
+ 0 -1 1460 -1.2307999655604362e-02
+
+ -4.9778199195861816e-01 1.7402599751949310e-01
+ <_>
+
+ 0 -1 1461 -4.0493998676538467e-02
+
+ -1.1848740577697754e+00 -3.3890999853610992e-02
+ <_>
+
+ 0 -1 1462 2.9657000675797462e-02
+
+ 2.1740999072790146e-02 1.0069919824600220e+00
+ <_>
+
+ 0 -1 1463 6.8379999138414860e-03
+
+ 2.9217999428510666e-02 -5.9906297922134399e-01
+ <_>
+
+ 0 -1 1464 1.6164999455213547e-02
+
+ -2.1000799536705017e-01 3.7637299299240112e-01
+ <_>
+
+ 0 -1 1465 5.0193000584840775e-02
+
+ 2.5319999549537897e-03 -7.1668201684951782e-01
+ <_>
+
+ 0 -1 1466 1.9680000841617584e-03
+
+ -2.1921400725841522e-01 3.2298699021339417e-01
+ <_>
+
+ 0 -1 1467 2.4979999288916588e-02
+
+ -9.6840001642704010e-03 -7.7572900056838989e-01
+ <_>
+
+ 0 -1 1468 -1.5809999778866768e-02
+
+ 4.4637501239776611e-01 -6.1760000884532928e-02
+ <_>
+
+ 0 -1 1469 3.7206999957561493e-02
+
+ -2.0495399832725525e-01 5.7722198963165283e-01
+ <_>
+
+ 0 -1 1470 -7.9264998435974121e-02
+
+ -7.6745402812957764e-01 1.2550400197505951e-01
+ <_>
+
+ 0 -1 1471 -1.7152000218629837e-02
+
+ -1.4121830463409424e+00 -5.1704000681638718e-02
+ <_>
+
+ 0 -1 1472 3.2740000635385513e-02
+
+ 1.9334000349044800e-01 -6.3633698225021362e-01
+ <_>
+
+ 0 -1 1473 -1.1756999790668488e-01
+
+ 8.4325402975082397e-01 -1.8018600344657898e-01
+ <_>
+
+ 0 -1 1474 1.2057200074195862e-01
+
+ 1.2530000507831573e-01 -2.1213600635528564e+00
+ <_>
+
+ 0 -1 1475 4.2779999785125256e-03
+
+ -4.6604400873184204e-01 8.9643999934196472e-02
+ <_>
+
+ 0 -1 1476 -7.2544999420642853e-02
+
+ 5.1826500892639160e-01 1.6823999583721161e-02
+ <_>
+
+ 0 -1 1477 1.7710599303245544e-01
+
+ -3.0910000205039978e-02 -1.1046639680862427e+00
+ <_>
+
+ 0 -1 1478 8.4229996427893639e-03
+
+ 2.4445800483226776e-01 -3.8613098859786987e-01
+ <_>
+
+ 0 -1 1479 -1.3035000301897526e-02
+
+ 9.8004400730133057e-01 -1.7016500234603882e-01
+ <_>
+
+ 0 -1 1480 1.8912000581622124e-02
+
+ 2.0248499512672424e-01 -3.8545900583267212e-01
+ <_>
+
+ 0 -1 1481 2.1447999402880669e-02
+
+ -2.5717198848724365e-01 3.5181200504302979e-01
+ <_>
+
+ 0 -1 1482 6.3357003033161163e-02
+
+ 1.6994799673557281e-01 -9.1383802890777588e-01
+ <_>
+
+ 0 -1 1483 -3.2435998320579529e-02
+
+ -8.5681599378585815e-01 -2.1680999547243118e-02
+ <_>
+
+ 0 -1 1484 -2.3564999923110008e-02
+
+ 5.6115597486495972e-01 -2.2400000307243317e-04
+ <_>
+
+ 0 -1 1485 1.8789000809192657e-02
+
+ -2.5459799170494080e-01 3.4512901306152344e-01
+ <_>
+
+ 0 -1 1486 3.1042000278830528e-02
+
+ 7.5719999149441719e-03 3.4800198674201965e-01
+ <_>
+
+ 0 -1 1487 -1.1226999573409557e-02
+
+ -6.0219800472259521e-01 4.2814999818801880e-02
+ <_>
+
+ 0 -1 1488 -1.2845999561250210e-02
+
+ 4.2020401358604431e-01 -5.3801000118255615e-02
+ <_>
+
+ 0 -1 1489 -1.2791999615728855e-02
+
+ 2.2724500298500061e-01 -3.2398000359535217e-01
+ <_>
+
+ 0 -1 1490 6.8651996552944183e-02
+
+ 9.3532003462314606e-02 10.
+ <_>
+
+ 0 -1 1491 5.2789999172091484e-03
+
+ -2.6926299929618835e-01 3.3303201198577881e-01
+ <_>
+
+ 0 -1 1492 -3.8779001682996750e-02
+
+ -7.2365301847457886e-01 1.7806500196456909e-01
+ <_>
+
+ 0 -1 1493 6.1820000410079956e-03
+
+ -3.5119399428367615e-01 1.6586300730705261e-01
+ <_>
+
+ 0 -1 1494 1.7515200376510620e-01
+
+ 1.1623100191354752e-01 -1.5419290065765381e+00
+ <_>
+
+ 0 -1 1495 1.1627999693155289e-01
+
+ -9.1479998081922531e-03 -9.9842602014541626e-01
+ <_>
+
+ 0 -1 1496 -2.2964000701904297e-02
+
+ 2.0565399527549744e-01 1.5432000160217285e-02
+ <_>
+
+ 0 -1 1497 -5.1410000771284103e-02
+
+ 5.8072400093078613e-01 -2.0118400454521179e-01
+ <_>
+
+ 0 -1 1498 2.2474199533462524e-01
+
+ 1.8728999421000481e-02 1.0829299688339233e+00
+ <_>
+
+ 0 -1 1499 9.4860000535845757e-03
+
+ -3.3171299099922180e-01 1.9902999699115753e-01
+ <_>
+
+ 0 -1 1500 -1.1846300214529037e-01
+
+ 1.3711010217666626e+00 6.8926997482776642e-02
+ <_>
+
+ 0 -1 1501 3.7810999900102615e-02
+
+ -9.3600002583116293e-04 -8.3996999263763428e-01
+ <_>
+
+ 0 -1 1502 2.2202000021934509e-02
+
+ -1.1963999830186367e-02 3.6673998832702637e-01
+ <_>
+
+ 0 -1 1503 -3.6366000771522522e-02
+
+ 3.7866500020027161e-01 -2.7714800834655762e-01
+ <_>
+
+ 0 -1 1504 -1.3184699416160583e-01
+
+ -2.7481179237365723e+00 1.0666900128126144e-01
+ <_>
+
+ 0 -1 1505 -4.1655998677015305e-02
+
+ 4.7524300217628479e-01 -2.3249800503253937e-01
+ <_>
+
+ 0 -1 1506 -3.3151999115943909e-02
+
+ -5.7929402589797974e-01 1.7434400320053101e-01
+ <_>
+
+ 0 -1 1507 1.5769999474287033e-02
+
+ -1.1284000240266323e-02 -8.3701401948928833e-01
+ <_>
+
+ 0 -1 1508 -3.9363000541925430e-02
+
+ 3.4821599721908569e-01 -1.7455400526523590e-01
+ <_>
+
+ 0 -1 1509 -6.7849002778530121e-02
+
+ 1.4225699901580811e+00 -1.4765599370002747e-01
+ <_>
+
+ 0 -1 1510 -2.6775000616908073e-02
+
+ 2.3947000503540039e-01 1.3271999545395374e-02
+ <_>
+
+ 0 -1 1511 3.9919000118970871e-02
+
+ -8.9999996125698090e-03 -7.5938898324966431e-01
+ <_>
+
+ 0 -1 1512 1.0065600275993347e-01
+
+ -1.8685000017285347e-02 7.6245301961898804e-01
+ <_>
+
+ 0 -1 1513 -8.1022001802921295e-02
+
+ -9.0439099073410034e-01 -8.5880002006888390e-03
+ <_>
+
+ 0 -1 1514 -2.1258000284433365e-02
+
+ -2.1319599449634552e-01 2.1919700503349304e-01
+ <_>
+
+ 0 -1 1515 -1.0630999691784382e-02
+
+ 1.9598099589347839e-01 -3.5768100619316101e-01
+ <_>
+
+ 0 -1 1516 8.1300002057105303e-04
+
+ -9.2794999480247498e-02 2.6145899295806885e-01
+ <_>
+
+ 0 -1 1517 3.4650000743567944e-03
+
+ -5.5336099863052368e-01 2.7386000379920006e-02
+ <_>
+
+ 0 -1 1518 1.8835999071598053e-02
+
+ 1.8446099758148193e-01 -6.6934299468994141e-01
+ <_>
+
+ 0 -1 1519 -2.5631999596953392e-02
+
+ 1.9382879734039307e+00 -1.4708900451660156e-01
+ <_>
+
+ 0 -1 1520 -4.0939999744296074e-03
+
+ -2.6451599597930908e-01 2.0733200013637543e-01
+ <_>
+
+ 0 -1 1521 -8.9199998183175921e-04
+
+ -5.5031597614288330e-01 5.0374999642372131e-02
+ <_>
+
+ 0 -1 1522 -4.9518000334501266e-02
+
+ -2.5615389347076416e+00 1.3141700625419617e-01
+ <_>
+
+ 0 -1 1523 1.1680999770760536e-02
+
+ -2.4819800257682800e-01 3.9982700347900391e-01
+ <_>
+
+ 0 -1 1524 3.4563999623060226e-02
+
+ 1.6178800165653229e-01 -7.1418899297714233e-01
+ <_>
+
+ 0 -1 1525 -8.2909995689988136e-03
+
+ 2.2180099785327911e-01 -2.9181700944900513e-01
+ <_>
+
+ 0 -1 1526 -2.2358000278472900e-02
+
+ 3.1044098734855652e-01 -2.7280000504106283e-03
+ <_>
+
+ 0 -1 1527 -3.0801000073552132e-02
+
+ -9.5672702789306641e-01 -8.3400001749396324e-03
+ <_>
+
+ 0 -1 1528 4.3779000639915466e-02
+
+ 1.2556900084018707e-01 -1.1759619712829590e+00
+ <_>
+
+ 0 -1 1529 4.3046001344919205e-02
+
+ -5.8876998722553253e-02 -1.8568470478057861e+00
+ <_>
+
+ 0 -1 1530 2.7188999578356743e-02
+
+ 4.2858000844717026e-02 3.9036700129508972e-01
+ <_>
+
+ 0 -1 1531 9.4149997457861900e-03
+
+ -4.3567001819610596e-02 -1.1094470024108887e+00
+ <_>
+
+ 0 -1 1532 9.4311997294425964e-02
+
+ 4.0256999433040619e-02 9.8442298173904419e-01
+ <_>
+
+ 0 -1 1533 1.7025099694728851e-01
+
+ 2.9510000720620155e-02 -6.9509297609329224e-01
+ <_>
+
+ 0 -1 1534 -4.7148000448942184e-02
+
+ 1.0338569879531860e+00 6.7602001130580902e-02
+ <_>
+
+ 0 -1 1535 1.1186300218105316e-01
+
+ -6.8682998418807983e-02 -2.4985830783843994e+00
+ <_>
+
+ 0 -1 1536 -1.4353999868035316e-02
+
+ -5.9481900930404663e-01 1.5001699328422546e-01
+ <_>
+
+ 0 -1 1537 3.4024000167846680e-02
+
+ -6.4823001623153687e-02 -2.1382639408111572e+00
+ <_>
+
+ 0 -1 1538 2.1601999178528786e-02
+
+ 5.5309999734163284e-02 7.8292900323867798e-01
+ <_>
+
+ 0 -1 1539 2.1771999076008797e-02
+
+ -7.1279997937381268e-03 -7.2148102521896362e-01
+ <_>
+
+ 0 -1 1540 8.2416996359825134e-02
+
+ 1.4609499275684357e-01 -1.3636670112609863e+00
+ <_>
+
+ 0 -1 1541 8.4671996533870697e-02
+
+ -1.7784699797630310e-01 7.2857701778411865e-01
+ <_>
+
+ 0 -1 1542 -5.5128000676631927e-02
+
+ -5.9402400255203247e-01 1.9357800483703613e-01
+ <_>
+
+ 0 -1 1543 -6.4823001623153687e-02
+
+ -1.0783840417861938e+00 -4.0734000504016876e-02
+ <_>
+
+ 0 -1 1544 -2.2769000381231308e-02
+
+ 7.7900201082229614e-01 3.4960000775754452e-03
+ <_>
+
+ 0 -1 1545 5.4756000638008118e-02
+
+ -6.5683998167514801e-02 -1.8188409805297852e+00
+ <_>
+
+ 0 -1 1546 -8.9000001025851816e-05
+
+ -1.7891999334096909e-02 2.0768299698829651e-01
+ <_>
+
+ 0 -1 1547 9.8361998796463013e-02
+
+ -5.5946998298168182e-02 -1.4153920412063599e+00
+ <_>
+
+ 0 -1 1548 -7.0930002257227898e-03
+
+ 3.4135299921035767e-01 -1.2089899927377701e-01
+ <_>
+
+ 0 -1 1549 5.0278000533580780e-02
+
+ -2.6286700367927551e-01 2.5797298550605774e-01
+ <_>
+
+ 0 -1 1550 -5.7870000600814819e-03
+
+ -1.3178600370883942e-01 1.7350199818611145e-01
+ <_>
+
+ 0 -1 1551 1.3973999768495560e-02
+
+ 2.8518000617623329e-02 -6.1152201890945435e-01
+ <_>
+
+ 0 -1 1552 2.1449999883770943e-02
+
+ 2.6181999593973160e-02 3.0306598544120789e-01
+ <_>
+
+ 0 -1 1553 -2.9214000329375267e-02
+
+ 4.4940599799156189e-01 -2.2803099453449249e-01
+ <_>
+
+ 0 -1 1554 4.8099999548867345e-04
+
+ -1.9879999756813049e-01 2.0744499564170837e-01
+ <_>
+
+ 0 -1 1555 1.7109999898821115e-03
+
+ -5.4037201404571533e-01 6.7865997552871704e-02
+ <_>
+
+ 0 -1 1556 8.6660003289580345e-03
+
+ -1.3128000311553478e-02 5.2297902107238770e-01
+ <_>
+
+ 0 -1 1557 6.3657999038696289e-02
+
+ 6.8299002945423126e-02 -4.9235099554061890e-01
+ <_>
+
+ 0 -1 1558 -2.7968000620603561e-02
+
+ 6.8183898925781250e-01 7.8781001269817352e-02
+ <_>
+
+ 0 -1 1559 4.8953998833894730e-02
+
+ -2.0622399449348450e-01 5.0388097763061523e-01
+ <_>
+ 169
+ -3.2396929264068604e+00
+
+ <_>
+
+ 0 -1 1560 -2.9312999919056892e-02
+
+ 7.1284699440002441e-01 -5.8230698108673096e-01
+ <_>
+
+ 0 -1 1561 1.2415099889039993e-01
+
+ -3.6863499879837036e-01 6.0067200660705566e-01
+ <_>
+
+ 0 -1 1562 7.9349996522068977e-03
+
+ -8.6008298397064209e-01 2.1724699437618256e-01
+ <_>
+
+ 0 -1 1563 3.0365999788045883e-02
+
+ -2.7186998724937439e-01 6.1247897148132324e-01
+ <_>
+
+ 0 -1 1564 2.5218000635504723e-02
+
+ -3.4748300909996033e-01 5.0427699089050293e-01
+ <_>
+
+ 0 -1 1565 1.0014000348746777e-02
+
+ -3.1898999214172363e-01 4.1376799345016479e-01
+ <_>
+
+ 0 -1 1566 -1.6775000840425491e-02
+
+ -6.9048100709915161e-01 9.4830997288227081e-02
+ <_>
+
+ 0 -1 1567 -2.6950000319629908e-03
+
+ -2.0829799771308899e-01 2.3737199604511261e-01
+ <_>
+
+ 0 -1 1568 4.2257998138666153e-02
+
+ -4.9366700649261475e-01 1.8170599639415741e-01
+ <_>
+
+ 0 -1 1569 -4.8505000770092010e-02
+
+ 1.3429640531539917e+00 3.9769001305103302e-02
+ <_>
+
+ 0 -1 1570 2.8992999345064163e-02
+
+ 4.6496000140905380e-02 -8.1643497943878174e-01
+ <_>
+
+ 0 -1 1571 -4.0089000016450882e-02
+
+ -7.1197801828384399e-01 2.2553899884223938e-01
+ <_>
+
+ 0 -1 1572 -4.1021998971700668e-02
+
+ 1.0057929754257202e+00 -1.9690200686454773e-01
+ <_>
+
+ 0 -1 1573 1.1838000267744064e-02
+
+ -1.2600000016391277e-02 8.0767101049423218e-01
+ <_>
+
+ 0 -1 1574 -2.1328000351786613e-02
+
+ -8.2023900747299194e-01 2.0524999126791954e-02
+ <_>
+
+ 0 -1 1575 -2.3904999718070030e-02
+
+ 5.4210501909255981e-01 -7.4767000973224640e-02
+ <_>
+
+ 0 -1 1576 1.8008999526500702e-02
+
+ -3.3827701210975647e-01 4.2358601093292236e-01
+ <_>
+
+ 0 -1 1577 -4.3614000082015991e-02
+
+ -1.1983489990234375e+00 1.5566200017929077e-01
+ <_>
+
+ 0 -1 1578 -9.2449998483061790e-03
+
+ -8.9029997587203979e-01 1.1003999970853329e-02
+ <_>
+
+ 0 -1 1579 4.7485001385211945e-02
+
+ 1.6664099693298340e-01 -9.0764498710632324e-01
+ <_>
+
+ 0 -1 1580 -1.4233999885618687e-02
+
+ 6.2695199251174927e-01 -2.5791200995445251e-01
+ <_>
+
+ 0 -1 1581 3.8010000716894865e-03
+
+ -2.8229999542236328e-01 2.6624599099159241e-01
+ <_>
+
+ 0 -1 1582 3.4330000635236502e-03
+
+ -6.3771998882293701e-01 9.8422996699810028e-02
+ <_>
+
+ 0 -1 1583 -2.9221000149846077e-02
+
+ -7.6769900321960449e-01 2.2634500265121460e-01
+ <_>
+
+ 0 -1 1584 -6.4949998632073402e-03
+
+ 4.5600101351737976e-01 -2.6528900861740112e-01
+ <_>
+
+ 0 -1 1585 -3.0034000054001808e-02
+
+ -7.6551097631454468e-01 1.4009299874305725e-01
+ <_>
+
+ 0 -1 1586 7.8360000625252724e-03
+
+ 4.6755999326705933e-02 -7.2356200218200684e-01
+ <_>
+
+ 0 -1 1587 8.8550001382827759e-03
+
+ -4.9141999334096909e-02 5.1472699642181396e-01
+ <_>
+
+ 0 -1 1588 9.5973998308181763e-02
+
+ -2.0068999379873276e-02 -1.0850950479507446e+00
+ <_>
+
+ 0 -1 1589 -3.2876998186111450e-02
+
+ -9.5875298976898193e-01 1.4543600380420685e-01
+ <_>
+
+ 0 -1 1590 -1.3384000398218632e-02
+
+ -7.0013600587844849e-01 2.9157999902963638e-02
+ <_>
+
+ 0 -1 1591 1.5235999599099159e-02
+
+ -2.8235700726509094e-01 2.5367999076843262e-01
+ <_>
+
+ 0 -1 1592 1.2054000049829483e-02
+
+ -2.5303399562835693e-01 4.6526700258255005e-01
+ <_>
+
+ 0 -1 1593 -7.6295003294944763e-02
+
+ -6.9915801286697388e-01 1.3217200338840485e-01
+ <_>
+
+ 0 -1 1594 -1.2040000408887863e-02
+
+ 4.5894598960876465e-01 -2.3856499791145325e-01
+ <_>
+
+ 0 -1 1595 2.1916000172495842e-02
+
+ 1.8268600106239319e-01 -6.1629700660705566e-01
+ <_>
+
+ 0 -1 1596 -2.7330000884830952e-03
+
+ -6.3257902860641479e-01 3.4219000488519669e-02
+ <_>
+
+ 0 -1 1597 -4.8652000725269318e-02
+
+ -1.0297729969024658e+00 1.7386500537395477e-01
+ <_>
+
+ 0 -1 1598 -1.0463999584317207e-02
+
+ 3.4757301211357117e-01 -2.7464100718498230e-01
+ <_>
+
+ 0 -1 1599 -6.6550001502037048e-03
+
+ -2.8980299830436707e-01 2.4037900567054749e-01
+ <_>
+
+ 0 -1 1600 8.5469996556639671e-03
+
+ -4.4340500235557556e-01 1.4267399907112122e-01
+ <_>
+
+ 0 -1 1601 1.9913999363780022e-02
+
+ 1.7740400135517120e-01 -2.4096299707889557e-01
+ <_>
+
+ 0 -1 1602 2.2012999281287193e-02
+
+ -1.0812000371515751e-02 -9.4690799713134766e-01
+ <_>
+
+ 0 -1 1603 -5.2179001271724701e-02
+
+ 1.6547499895095825e+00 9.6487000584602356e-02
+ <_>
+
+ 0 -1 1604 1.9698999822139740e-02
+
+ -6.7560002207756042e-03 -8.6311501264572144e-01
+ <_>
+
+ 0 -1 1605 2.3040000349283218e-02
+
+ -2.3519999813288450e-03 3.8531300425529480e-01
+ <_>
+
+ 0 -1 1606 -1.5038000419735909e-02
+
+ -6.1905699968338013e-01 3.1077999621629715e-02
+ <_>
+
+ 0 -1 1607 -4.9956001341342926e-02
+
+ 7.0657497644424438e-01 4.7880999743938446e-02
+ <_>
+
+ 0 -1 1608 -6.9269999861717224e-02
+
+ 3.9212900400161743e-01 -2.3848000168800354e-01
+ <_>
+
+ 0 -1 1609 4.7399997711181641e-03
+
+ -2.4309000000357628e-02 2.5386300683021545e-01
+ <_>
+
+ 0 -1 1610 -3.3923998475074768e-02
+
+ 4.6930399537086487e-01 -2.3321899771690369e-01
+ <_>
+
+ 0 -1 1611 -1.6231000423431396e-02
+
+ 3.2319200038909912e-01 -2.0545600354671478e-01
+ <_>
+
+ 0 -1 1612 -5.0193000584840775e-02
+
+ -1.2277870178222656e+00 -4.0798000991344452e-02
+ <_>
+
+ 0 -1 1613 5.6944001466035843e-02
+
+ 4.5184001326560974e-02 6.0197502374649048e-01
+ <_>
+
+ 0 -1 1614 4.0936999022960663e-02
+
+ -1.6772800683975220e-01 8.9819300174713135e-01
+ <_>
+
+ 0 -1 1615 -3.0839999672025442e-03
+
+ 3.3716198801994324e-01 -2.7240800857543945e-01
+ <_>
+
+ 0 -1 1616 -3.2600000500679016e-02
+
+ -8.5446500778198242e-01 1.9664999097585678e-02
+ <_>
+
+ 0 -1 1617 9.8480999469757080e-02
+
+ 5.4742000997066498e-02 6.3827300071716309e-01
+ <_>
+
+ 0 -1 1618 -3.8185000419616699e-02
+
+ 5.2274698019027710e-01 -2.3384800553321838e-01
+ <_>
+
+ 0 -1 1619 -4.5917000621557236e-02
+
+ 6.2829202413558960e-01 3.2859001308679581e-02
+ <_>
+
+ 0 -1 1620 -1.1955499649047852e-01
+
+ -6.1572700738906860e-01 3.4680001437664032e-02
+ <_>
+
+ 0 -1 1621 -1.2044399976730347e-01
+
+ -8.4380000829696655e-01 1.6530700027942657e-01
+ <_>
+
+ 0 -1 1622 7.0619001984596252e-02
+
+ -6.3261002302169800e-02 -1.9863929748535156e+00
+ <_>
+
+ 0 -1 1623 8.4889996796846390e-03
+
+ -1.7663399875164032e-01 3.8011199235916138e-01
+ <_>
+
+ 0 -1 1624 2.2710999473929405e-02
+
+ -2.7605999261140823e-02 -9.1921401023864746e-01
+ <_>
+
+ 0 -1 1625 4.9700000090524554e-04
+
+ -2.4293200671672821e-01 2.2878900170326233e-01
+ <_>
+
+ 0 -1 1626 3.4651998430490494e-02
+
+ -2.3705999553203583e-01 5.4010999202728271e-01
+ <_>
+
+ 0 -1 1627 -4.4700000435113907e-03
+
+ 3.9078998565673828e-01 -1.2693800032138824e-01
+ <_>
+
+ 0 -1 1628 2.3643000051379204e-02
+
+ -2.6663699746131897e-01 3.2312598824501038e-01
+ <_>
+
+ 0 -1 1629 1.2813000008463860e-02
+
+ 1.7540800571441650e-01 -6.0787999629974365e-01
+ <_>
+
+ 0 -1 1630 -1.1250999756157398e-02
+
+ -1.0852589607238770e+00 -2.8046000748872757e-02
+ <_>
+
+ 0 -1 1631 -4.1535001248121262e-02
+
+ 7.1887397766113281e-01 2.7982000261545181e-02
+ <_>
+
+ 0 -1 1632 -9.3470998108386993e-02
+
+ -1.1906319856643677e+00 -4.4810999184846878e-02
+ <_>
+
+ 0 -1 1633 -2.7249999344348907e-02
+
+ 6.2942498922348022e-01 9.5039997249841690e-03
+ <_>
+
+ 0 -1 1634 -2.1759999915957451e-02
+
+ 1.3233649730682373e+00 -1.5027000010013580e-01
+ <_>
+
+ 0 -1 1635 -9.6890004351735115e-03
+
+ -3.3947101235389709e-01 1.7085799574851990e-01
+ <_>
+
+ 0 -1 1636 6.9395996630191803e-02
+
+ -2.5657799839973450e-01 4.7652098536491394e-01
+ <_>
+
+ 0 -1 1637 3.1208999454975128e-02
+
+ 1.4154000580310822e-01 -3.4942001104354858e-01
+ <_>
+
+ 0 -1 1638 -4.9727000296115875e-02
+
+ -1.1675560474395752e+00 -4.0757998824119568e-02
+ <_>
+
+ 0 -1 1639 -2.0301999524235725e-02
+
+ -3.9486399292945862e-01 1.5814900398254395e-01
+ <_>
+
+ 0 -1 1640 -1.5367000363767147e-02
+
+ 4.9300000071525574e-01 -2.0092099905014038e-01
+ <_>
+
+ 0 -1 1641 -5.0735000520944595e-02
+
+ 1.8736059665679932e+00 8.6730003356933594e-02
+ <_>
+
+ 0 -1 1642 -2.0726000890135765e-02
+
+ -8.8938397169113159e-01 -7.3199998587369919e-03
+ <_>
+
+ 0 -1 1643 -3.0993999913334846e-02
+
+ -1.1664899587631226e+00 1.4274600148200989e-01
+ <_>
+
+ 0 -1 1644 -4.4269999489188194e-03
+
+ -6.6815102100372314e-01 4.4120000675320625e-03
+ <_>
+
+ 0 -1 1645 -4.5743998140096664e-02
+
+ -4.7955200076103210e-01 1.5121999382972717e-01
+ <_>
+
+ 0 -1 1646 1.6698999330401421e-02
+
+ 1.2048599869012833e-01 -4.5235899090766907e-01
+ <_>
+
+ 0 -1 1647 3.2210000790655613e-03
+
+ -7.7615000307559967e-02 2.7846598625183105e-01
+ <_>
+
+ 0 -1 1648 2.4434000253677368e-02
+
+ -1.9987100362777710e-01 6.7253702878952026e-01
+ <_>
+
+ 0 -1 1649 -7.9677999019622803e-02
+
+ 9.2222398519515991e-01 9.2557996511459351e-02
+ <_>
+
+ 0 -1 1650 4.4530000537633896e-02
+
+ -2.6690500974655151e-01 3.3320501446723938e-01
+ <_>
+
+ 0 -1 1651 -1.2528300285339355e-01
+
+ -5.4253101348876953e-01 1.3976299762725830e-01
+ <_>
+
+ 0 -1 1652 1.7971999943256378e-02
+
+ 1.8219999969005585e-02 -6.8048501014709473e-01
+ <_>
+
+ 0 -1 1653 1.9184000790119171e-02
+
+ -1.2583999894559383e-02 5.4126697778701782e-01
+ <_>
+
+ 0 -1 1654 4.0024001151323318e-02
+
+ -1.7638799548149109e-01 7.8810399770736694e-01
+ <_>
+
+ 0 -1 1655 1.3558999635279179e-02
+
+ 2.0737600326538086e-01 -4.7744300961494446e-01
+ <_>
+
+ 0 -1 1656 1.6220999881625175e-02
+
+ 2.3076999932527542e-02 -6.1182099580764771e-01
+ <_>
+
+ 0 -1 1657 1.1229000054299831e-02
+
+ -1.7728000879287720e-02 4.1764199733734131e-01
+ <_>
+
+ 0 -1 1658 3.9193000644445419e-02
+
+ -1.8948499858379364e-01 7.4019300937652588e-01
+ <_>
+
+ 0 -1 1659 -9.5539996400475502e-03
+
+ 4.0947100520133972e-01 -1.3508899509906769e-01
+ <_>
+
+ 0 -1 1660 2.7878999710083008e-02
+
+ -2.0350700616836548e-01 6.1625397205352783e-01
+ <_>
+
+ 0 -1 1661 -2.3600999265909195e-02
+
+ -1.6967060565948486e+00 1.4633199572563171e-01
+ <_>
+
+ 0 -1 1662 2.6930000633001328e-02
+
+ -3.0401999130845070e-02 -1.0909470319747925e+00
+ <_>
+
+ 0 -1 1663 2.8999999631196260e-04
+
+ -2.0076000690460205e-01 2.2314099967479706e-01
+ <_>
+
+ 0 -1 1664 -4.1124999523162842e-02
+
+ -4.5242199301719666e-01 5.7392001152038574e-02
+ <_>
+
+ 0 -1 1665 6.6789998672902584e-03
+
+ 2.3824900388717651e-01 -2.1262100338935852e-01
+ <_>
+
+ 0 -1 1666 4.7864999622106552e-02
+
+ -1.8194800615310669e-01 6.1918401718139648e-01
+ <_>
+
+ 0 -1 1667 -3.1679999083280563e-03
+
+ -2.7393200993537903e-01 2.5017300248146057e-01
+ <_>
+
+ 0 -1 1668 -8.6230002343654633e-03
+
+ -4.6280300617218018e-01 4.2397998273372650e-02
+ <_>
+
+ 0 -1 1669 -7.4350000359117985e-03
+
+ 4.1796800494194031e-01 -1.7079999670386314e-03
+ <_>
+
+ 0 -1 1670 -1.8769999733194709e-03
+
+ 1.4602300524711609e-01 -3.3721101284027100e-01
+ <_>
+
+ 0 -1 1671 -8.6226001381874084e-02
+
+ 7.5143402814865112e-01 1.0711999610066414e-02
+ <_>
+
+ 0 -1 1672 4.6833999454975128e-02
+
+ -1.9119599461555481e-01 4.8414900898933411e-01
+ <_>
+
+ 0 -1 1673 -9.2000002041459084e-05
+
+ 3.5220399498939514e-01 -1.7333300411701202e-01
+ <_>
+
+ 0 -1 1674 -1.6343999654054642e-02
+
+ -6.4397698640823364e-01 9.0680001303553581e-03
+ <_>
+
+ 0 -1 1675 4.5703999698162079e-02
+
+ 1.8216000869870186e-02 3.1970798969268799e-01
+ <_>
+
+ 0 -1 1676 -2.7382999658584595e-02
+
+ 1.0564049482345581e+00 -1.7276400327682495e-01
+ <_>
+
+ 0 -1 1677 -2.7602000162005424e-02
+
+ 2.9715499281883240e-01 -9.4600003212690353e-03
+ <_>
+
+ 0 -1 1678 7.6939999125897884e-03
+
+ -2.1660299599170685e-01 4.7385200858116150e-01
+ <_>
+
+ 0 -1 1679 -7.0500001311302185e-04
+
+ 2.4048799276351929e-01 -2.6776000857353210e-01
+ <_>
+
+ 0 -1 1680 1.1054199934005737e-01
+
+ -3.3539000898599625e-02 -1.0233880281448364e+00
+ <_>
+
+ 0 -1 1681 6.8765997886657715e-02
+
+ -4.3239998631179333e-03 5.7153397798538208e-01
+ <_>
+
+ 0 -1 1682 1.7999999690800905e-03
+
+ 7.7574998140335083e-02 -4.2092698812484741e-01
+ <_>
+
+ 0 -1 1683 1.9232000410556793e-01
+
+ 8.2021996378898621e-02 2.8810169696807861e+00
+ <_>
+
+ 0 -1 1684 1.5742099285125732e-01
+
+ -1.3708199560642242e-01 2.0890059471130371e+00
+ <_>
+
+ 0 -1 1685 -4.9387000501155853e-02
+
+ -1.8610910177230835e+00 1.4332099258899689e-01
+ <_>
+
+ 0 -1 1686 5.1929000765085220e-02
+
+ -1.8737000226974487e-01 5.4231601953506470e-01
+ <_>
+
+ 0 -1 1687 4.9965001642704010e-02
+
+ 1.4175300300121307e-01 -1.5625779628753662e+00
+ <_>
+
+ 0 -1 1688 -4.2633000761270523e-02
+
+ 1.6059479713439941e+00 -1.4712899923324585e-01
+ <_>
+
+ 0 -1 1689 -3.7553999572992325e-02
+
+ -8.0974900722503662e-01 1.3256999850273132e-01
+ <_>
+
+ 0 -1 1690 -3.7174999713897705e-02
+
+ -1.3945020437240601e+00 -5.7055000215768814e-02
+ <_>
+
+ 0 -1 1691 1.3945999555289745e-02
+
+ 3.3427000045776367e-02 5.7474797964096069e-01
+ <_>
+
+ 0 -1 1692 -4.4800000614486635e-04
+
+ -5.5327498912811279e-01 2.1952999755740166e-02
+ <_>
+
+ 0 -1 1693 3.1993001699447632e-02
+
+ 2.0340999588370323e-02 3.7459200620651245e-01
+ <_>
+
+ 0 -1 1694 -4.2799999937415123e-03
+
+ 4.4428700208663940e-01 -2.2999699413776398e-01
+ <_>
+
+ 0 -1 1695 9.8550003021955490e-03
+
+ 1.8315799534320831e-01 -4.0964999794960022e-01
+ <_>
+
+ 0 -1 1696 9.3356996774673462e-02
+
+ -6.3661001622676849e-02 -1.6929290294647217e+00
+ <_>
+
+ 0 -1 1697 1.7209999263286591e-02
+
+ 2.0153899490833282e-01 -4.6061098575592041e-01
+ <_>
+
+ 0 -1 1698 8.4319999441504478e-03
+
+ -3.2003998756408691e-01 1.5312199294567108e-01
+ <_>
+
+ 0 -1 1699 -1.4054999686777592e-02
+
+ 8.6882400512695312e-01 3.2575000077486038e-02
+ <_>
+
+ 0 -1 1700 -7.7180000953376293e-03
+
+ 6.3686698675155640e-01 -1.8425500392913818e-01
+ <_>
+
+ 0 -1 1701 2.8005000203847885e-02
+
+ 1.7357499897480011e-01 -4.7883599996566772e-01
+ <_>
+
+ 0 -1 1702 -1.8884999677538872e-02
+
+ 2.4101600050926208e-01 -2.6547598838806152e-01
+ <_>
+
+ 0 -1 1703 -1.8585000187158585e-02
+
+ 5.4232501983642578e-01 5.3633000701665878e-02
+ <_>
+
+ 0 -1 1704 -3.6437001079320908e-02
+
+ 2.3908898830413818e+00 -1.3634699583053589e-01
+ <_>
+
+ 0 -1 1705 3.2455001026391983e-02
+
+ 1.5910699963569641e-01 -6.7581498622894287e-01
+ <_>
+
+ 0 -1 1706 5.9781998395919800e-02
+
+ -2.3479999508708715e-03 -7.3053699731826782e-01
+ <_>
+
+ 0 -1 1707 9.8209995776414871e-03
+
+ -1.1444099992513657e-01 3.0570301413536072e-01
+ <_>
+
+ 0 -1 1708 -3.5163998603820801e-02
+
+ -1.0511469841003418e+00 -3.3103000372648239e-02
+ <_>
+
+ 0 -1 1709 2.7429999317973852e-03
+
+ -2.0135399699211121e-01 3.2754099369049072e-01
+ <_>
+
+ 0 -1 1710 8.1059997901320457e-03
+
+ -2.1383500099182129e-01 4.3362098932266235e-01
+ <_>
+
+ 0 -1 1711 8.8942997157573700e-02
+
+ 1.0940899699926376e-01 -4.7609338760375977e+00
+ <_>
+
+ 0 -1 1712 -3.0054999515414238e-02
+
+ -1.7169300317764282e+00 -6.0919001698493958e-02
+ <_>
+
+ 0 -1 1713 -2.1734999492764473e-02
+
+ 6.4778900146484375e-01 -3.2830998301506042e-02
+ <_>
+
+ 0 -1 1714 3.7648998200893402e-02
+
+ -1.0060000233352184e-02 -7.6569098234176636e-01
+ <_>
+
+ 0 -1 1715 2.7189999818801880e-03
+
+ 1.9888900220394135e-01 -8.2479000091552734e-02
+ <_>
+
+ 0 -1 1716 -1.0548000223934650e-02
+
+ -8.6613601446151733e-01 -2.5986000895500183e-02
+ <_>
+
+ 0 -1 1717 1.2966300547122955e-01
+
+ 1.3911999762058258e-01 -2.2271950244903564e+00
+ <_>
+
+ 0 -1 1718 -1.7676999792456627e-02
+
+ 3.3967700600624084e-01 -2.3989599943161011e-01
+ <_>
+
+ 0 -1 1719 -7.7051997184753418e-02
+
+ -2.5017969608306885e+00 1.2841999530792236e-01
+ <_>
+
+ 0 -1 1720 -1.9230000674724579e-02
+
+ 5.0641202926635742e-01 -1.9751599431037903e-01
+ <_>
+
+ 0 -1 1721 -5.1222998648881912e-02
+
+ -2.9333369731903076e+00 1.3858500123023987e-01
+ <_>
+
+ 0 -1 1722 2.0830000285059214e-03
+
+ -6.0043597221374512e-01 2.9718000441789627e-02
+ <_>
+
+ 0 -1 1723 2.5418000295758247e-02
+
+ 3.3915799856185913e-01 -1.4392000436782837e-01
+ <_>
+
+ 0 -1 1724 -2.3905999958515167e-02
+
+ -1.1082680225372314e+00 -4.7377001494169235e-02
+ <_>
+
+ 0 -1 1725 -6.3740001060068607e-03
+
+ 4.4533699750900269e-01 -6.7052997648715973e-02
+ <_>
+
+ 0 -1 1726 -3.7698999047279358e-02
+
+ -1.0406579971313477e+00 -4.1790001094341278e-02
+ <_>
+
+ 0 -1 1727 2.1655100584030151e-01
+
+ 3.3863000571727753e-02 8.2017302513122559e-01
+ <_>
+
+ 0 -1 1728 -1.3400999829173088e-02
+
+ 5.2903497219085693e-01 -1.9133000075817108e-01
+ <_>
+ 196
+ -3.2103500366210938e+00
+
+ <_>
+
+ 0 -1 1729 7.1268998086452484e-02
+
+ -5.3631198406219482e-01 6.0715299844741821e-01
+ <_>
+
+ 0 -1 1730 5.6111000478267670e-02
+
+ -5.0141602754592896e-01 4.3976101279258728e-01
+ <_>
+
+ 0 -1 1731 4.0463998913764954e-02
+
+ -3.2922199368476868e-01 5.4834699630737305e-01
+ <_>
+
+ 0 -1 1732 6.3155002892017365e-02
+
+ -3.1701698899269104e-01 4.6152999997138977e-01
+ <_>
+
+ 0 -1 1733 1.0320999659597874e-02
+
+ 1.0694999992847443e-01 -9.8243898153305054e-01
+ <_>
+
+ 0 -1 1734 6.2606997787952423e-02
+
+ -1.4329700171947479e-01 7.1095001697540283e-01
+ <_>
+
+ 0 -1 1735 -3.9416000247001648e-02
+
+ 9.4380199909210205e-01 -2.1572099626064301e-01
+ <_>
+
+ 0 -1 1736 -5.3960001096129417e-03
+
+ -5.4611998796463013e-01 2.5303798913955688e-01
+ <_>
+
+ 0 -1 1737 1.0773199796676636e-01
+
+ 1.2496000155806541e-02 -1.0809199810028076e+00
+ <_>
+
+ 0 -1 1738 1.6982000321149826e-02
+
+ -3.1536400318145752e-01 5.1239997148513794e-01
+ <_>
+
+ 0 -1 1739 3.1216999515891075e-02
+
+ -4.5199999585747719e-03 -1.2443480491638184e+00
+ <_>
+
+ 0 -1 1740 -2.3106999695301056e-02
+
+ -7.6492899656295776e-01 2.0640599727630615e-01
+ <_>
+
+ 0 -1 1741 -1.1203999631106853e-02
+
+ 2.4092699587345123e-01 -3.5142099857330322e-01
+ <_>
+
+ 0 -1 1742 -4.7479998320341110e-03
+
+ -9.7007997334003448e-02 2.0638099312782288e-01
+ <_>
+
+ 0 -1 1743 -1.7358999699354172e-02
+
+ -7.9020297527313232e-01 2.1852999925613403e-02
+ <_>
+
+ 0 -1 1744 1.8851999193429947e-02
+
+ -1.0394600033760071e-01 5.4844200611114502e-01
+ <_>
+
+ 0 -1 1745 7.2249998338520527e-03
+
+ -4.0409401059150696e-01 2.6763799786567688e-01
+ <_>
+
+ 0 -1 1746 1.8915999680757523e-02
+
+ 2.0508000254631042e-01 -1.0206340551376343e+00
+ <_>
+
+ 0 -1 1747 3.1156999990344048e-02
+
+ 1.2400000123307109e-03 -8.7293499708175659e-01
+ <_>
+
+ 0 -1 1748 2.0951999351382256e-02
+
+ -5.5559999309480190e-03 8.0356198549270630e-01
+ <_>
+
+ 0 -1 1749 1.1291000060737133e-02
+
+ -3.6478400230407715e-01 2.2767899930477142e-01
+ <_>
+
+ 0 -1 1750 -5.7011000812053680e-02
+
+ -1.4295619726181030e+00 1.4322000741958618e-01
+ <_>
+
+ 0 -1 1751 7.2194002568721771e-02
+
+ -4.1850000619888306e-02 -1.9111829996109009e+00
+ <_>
+
+ 0 -1 1752 -1.9874000921845436e-02
+
+ 2.6425498723983765e-01 -3.2617700099945068e-01
+ <_>
+
+ 0 -1 1753 -1.6692999750375748e-02
+
+ -8.3907800912857056e-01 4.0799999260343611e-04
+ <_>
+
+ 0 -1 1754 -3.9834998548030853e-02
+
+ -4.8858499526977539e-01 1.6436100006103516e-01
+ <_>
+
+ 0 -1 1755 2.7009999379515648e-02
+
+ -1.8862499296665192e-01 8.3419400453567505e-01
+ <_>
+
+ 0 -1 1756 -3.9420002140104771e-03
+
+ 2.3231500387191772e-01 -7.2360001504421234e-02
+ <_>
+
+ 0 -1 1757 2.2833000868558884e-02
+
+ -3.5884000360965729e-02 -1.1549400091171265e+00
+ <_>
+
+ 0 -1 1758 -6.8888001143932343e-02
+
+ -1.7837309837341309e+00 1.5159000456333160e-01
+ <_>
+
+ 0 -1 1759 4.3097000569105148e-02
+
+ -2.1608099341392517e-01 5.0624102354049683e-01
+ <_>
+
+ 0 -1 1760 8.6239995434880257e-03
+
+ -1.7795599997043610e-01 2.8957900404930115e-01
+ <_>
+
+ 0 -1 1761 1.4561000280082226e-02
+
+ -1.1408000253140926e-02 -8.9402002096176147e-01
+ <_>
+
+ 0 -1 1762 -1.1501000262796879e-02
+
+ 3.0171999335289001e-01 -4.3659001588821411e-02
+ <_>
+
+ 0 -1 1763 -1.0971499979496002e-01
+
+ -9.5147097110748291e-01 -1.9973000511527061e-02
+ <_>
+
+ 0 -1 1764 4.5228000730276108e-02
+
+ 3.3110998570919037e-02 9.6619802713394165e-01
+ <_>
+
+ 0 -1 1765 -2.7047999203205109e-02
+
+ 9.7963601350784302e-01 -1.7261900007724762e-01
+ <_>
+
+ 0 -1 1766 1.8030999228358269e-02
+
+ -2.0801000297069550e-02 2.7385899424552917e-01
+ <_>
+
+ 0 -1 1767 5.0524998456239700e-02
+
+ -5.6802999228239059e-02 -1.7775089740753174e+00
+ <_>
+
+ 0 -1 1768 -2.9923999682068825e-02
+
+ 6.5329200029373169e-01 -2.3537000641226768e-02
+ <_>
+
+ 0 -1 1769 3.8058001548051834e-02
+
+ 2.6317000389099121e-02 -7.0665699243545532e-01
+ <_>
+
+ 0 -1 1770 1.8563899397850037e-01
+
+ -5.6039998307824135e-03 3.2873699069023132e-01
+ <_>
+
+ 0 -1 1771 -4.0670000016689301e-03
+
+ 3.4204798936843872e-01 -3.0171599984169006e-01
+ <_>
+
+ 0 -1 1772 1.0108999907970428e-02
+
+ -7.3600001633167267e-03 5.7981598377227783e-01
+ <_>
+
+ 0 -1 1773 -1.1567000299692154e-02
+
+ -5.2722197771072388e-01 4.6447999775409698e-02
+ <_>
+
+ 0 -1 1774 -6.5649999305605888e-03
+
+ -5.8529102802276611e-01 1.9101899862289429e-01
+ <_>
+
+ 0 -1 1775 1.0582000017166138e-02
+
+ 2.1073000505566597e-02 -6.8892598152160645e-01
+ <_>
+
+ 0 -1 1776 -2.0304000005125999e-02
+
+ -3.6400699615478516e-01 1.5338799357414246e-01
+ <_>
+
+ 0 -1 1777 2.3529999889433384e-03
+
+ 3.6164000630378723e-02 -5.9825098514556885e-01
+ <_>
+
+ 0 -1 1778 -1.4690000098198652e-03
+
+ -1.4707699418067932e-01 3.7507998943328857e-01
+ <_>
+
+ 0 -1 1779 8.6449999362230301e-03
+
+ -2.1708500385284424e-01 5.1936799287796021e-01
+ <_>
+
+ 0 -1 1780 -2.4326000362634659e-02
+
+ -1.0846769809722900e+00 1.4084799587726593e-01
+ <_>
+
+ 0 -1 1781 7.4418999254703522e-02
+
+ -1.5513800084590912e-01 1.1822769641876221e+00
+ <_>
+
+ 0 -1 1782 1.7077999189496040e-02
+
+ 4.4231001287698746e-02 9.1561102867126465e-01
+ <_>
+
+ 0 -1 1783 -2.4577999487519264e-02
+
+ -1.5504100322723389e+00 -5.4745998233556747e-02
+ <_>
+
+ 0 -1 1784 3.0205000191926956e-02
+
+ 1.6662800312042236e-01 -1.0001239776611328e+00
+ <_>
+
+ 0 -1 1785 1.2136000208556652e-02
+
+ -7.7079099416732788e-01 -4.8639997839927673e-03
+ <_>
+
+ 0 -1 1786 8.6717002093791962e-02
+
+ 1.1061699688434601e-01 -1.6857999563217163e+00
+ <_>
+
+ 0 -1 1787 -4.2309001088142395e-02
+
+ 1.1075930595397949e+00 -1.5438599884510040e-01
+ <_>
+
+ 0 -1 1788 -2.6420000940561295e-03
+
+ 2.7451899647712708e-01 -1.8456199765205383e-01
+ <_>
+
+ 0 -1 1789 -5.6662000715732574e-02
+
+ -8.0625599622726440e-01 -1.6928000375628471e-02
+ <_>
+
+ 0 -1 1790 2.3475000634789467e-02
+
+ 1.4187699556350708e-01 -2.5500899553298950e-01
+ <_>
+
+ 0 -1 1791 -2.0803000777959824e-02
+
+ 1.9826300442218781e-01 -3.1171199679374695e-01
+ <_>
+
+ 0 -1 1792 7.2599998675286770e-03
+
+ -5.0590999424457550e-02 4.1923800110816956e-01
+ <_>
+
+ 0 -1 1793 3.4160000085830688e-01
+
+ -1.6674900054931641e-01 9.2748600244522095e-01
+ <_>
+
+ 0 -1 1794 6.2029999680817127e-03
+
+ -1.2625899910926819e-01 4.0445300936698914e-01
+ <_>
+
+ 0 -1 1795 3.2692000269889832e-02
+
+ -3.2634999603033066e-02 -9.8939800262451172e-01
+ <_>
+
+ 0 -1 1796 2.1100000594742596e-04
+
+ -6.4534001052379608e-02 2.5473698973655701e-01
+ <_>
+
+ 0 -1 1797 7.2100001852959394e-04
+
+ -3.6618599295616150e-01 1.1973100155591965e-01
+ <_>
+
+ 0 -1 1798 5.4490998387336731e-02
+
+ 1.2073499709367752e-01 -1.0291390419006348e+00
+ <_>
+
+ 0 -1 1799 -1.0141000151634216e-02
+
+ -5.2177202701568604e-01 3.3734999597072601e-02
+ <_>
+
+ 0 -1 1800 -1.8815999850630760e-02
+
+ 6.5181797742843628e-01 1.3399999588727951e-03
+ <_>
+
+ 0 -1 1801 -5.3480002097785473e-03
+
+ 1.7370699346065521e-01 -3.4132000803947449e-01
+ <_>
+
+ 0 -1 1802 -1.0847000405192375e-02
+
+ -1.9699899852275848e-01 1.5045499801635742e-01
+ <_>
+
+ 0 -1 1803 -4.9926001578569412e-02
+
+ -5.0888502597808838e-01 3.0762000009417534e-02
+ <_>
+
+ 0 -1 1804 1.2160000391304493e-02
+
+ -6.9251999258995056e-02 1.8745499849319458e-01
+ <_>
+
+ 0 -1 1805 -2.2189998999238014e-03
+
+ -4.0849098563194275e-01 7.9954996705055237e-02
+ <_>
+
+ 0 -1 1806 3.1580000650137663e-03
+
+ -2.1124599874019623e-01 2.2366400063037872e-01
+ <_>
+
+ 0 -1 1807 4.1439998894929886e-03
+
+ -4.9900299310684204e-01 6.2917001545429230e-02
+ <_>
+
+ 0 -1 1808 -7.3730000294744968e-03
+
+ -2.0553299784660339e-01 2.2096699476242065e-01
+ <_>
+
+ 0 -1 1809 5.1812000572681427e-02
+
+ 1.8096800148487091e-01 -4.3495801091194153e-01
+ <_>
+
+ 0 -1 1810 1.8340000882744789e-02
+
+ 1.5200000256299973e-02 3.7991699576377869e-01
+ <_>
+
+ 0 -1 1811 1.7490799725055695e-01
+
+ -2.0920799672603607e-01 4.0013000369071960e-01
+ <_>
+
+ 0 -1 1812 5.3993999958038330e-02
+
+ 2.4751600623130798e-01 -2.6712900400161743e-01
+ <_>
+
+ 0 -1 1813 -3.2033199071884155e-01
+
+ -1.9094380140304565e+00 -6.6960997879505157e-02
+ <_>
+
+ 0 -1 1814 -2.7060000225901604e-02
+
+ -7.1371299028396606e-01 1.5904599428176880e-01
+ <_>
+
+ 0 -1 1815 7.7463999390602112e-02
+
+ -1.6970199346542358e-01 7.7552998065948486e-01
+ <_>
+
+ 0 -1 1816 2.3771999403834343e-02
+
+ 1.9021899998188019e-01 -6.0162097215652466e-01
+ <_>
+
+ 0 -1 1817 1.1501000262796879e-02
+
+ 7.7039999887347221e-03 -6.1730301380157471e-01
+ <_>
+
+ 0 -1 1818 3.2616000622510910e-02
+
+ 1.7159199714660645e-01 -7.0978200435638428e-01
+ <_>
+
+ 0 -1 1819 -4.4383000582456589e-02
+
+ -2.2606229782104492e+00 -7.3276996612548828e-02
+ <_>
+
+ 0 -1 1820 -5.8476001024246216e-02
+
+ 2.4087750911712646e+00 8.3091996610164642e-02
+ <_>
+
+ 0 -1 1821 1.9303999841213226e-02
+
+ -2.7082300186157227e-01 2.7369999885559082e-01
+ <_>
+
+ 0 -1 1822 -4.4705998152494431e-02
+
+ 3.1355598568916321e-01 -6.2492001801729202e-02
+ <_>
+
+ 0 -1 1823 -6.0334999114274979e-02
+
+ -1.4515119791030884e+00 -5.8761000633239746e-02
+ <_>
+
+ 0 -1 1824 1.1667000129818916e-02
+
+ -1.8084999173879623e-02 5.0479698181152344e-01
+ <_>
+
+ 0 -1 1825 2.8009999543428421e-02
+
+ -2.3302899301052094e-01 3.0708700418472290e-01
+ <_>
+
+ 0 -1 1826 6.5397001802921295e-02
+
+ 1.4135900139808655e-01 -5.0010901689529419e-01
+ <_>
+
+ 0 -1 1827 9.6239997074007988e-03
+
+ -2.2054600715637207e-01 3.9191201329231262e-01
+ <_>
+
+ 0 -1 1828 2.5510000996291637e-03
+
+ -1.1381500214338303e-01 2.0032300055027008e-01
+ <_>
+
+ 0 -1 1829 3.1847000122070312e-02
+
+ 2.5476999580860138e-02 -5.3326398134231567e-01
+ <_>
+
+ 0 -1 1830 3.3055000007152557e-02
+
+ 1.7807699739933014e-01 -6.2793898582458496e-01
+ <_>
+
+ 0 -1 1831 4.7600999474525452e-02
+
+ -1.4747899770736694e-01 1.4204180240631104e+00
+ <_>
+
+ 0 -1 1832 -1.9571999087929726e-02
+
+ -5.2693498134613037e-01 1.5838600695133209e-01
+ <_>
+
+ 0 -1 1833 -5.4730001837015152e-02
+
+ 8.8231599330902100e-01 -1.6627800464630127e-01
+ <_>
+
+ 0 -1 1834 -2.2686000913381577e-02
+
+ -4.8386898636817932e-01 1.5000100433826447e-01
+ <_>
+
+ 0 -1 1835 1.0713200271129608e-01
+
+ -2.1336199343204498e-01 4.2333900928497314e-01
+ <_>
+
+ 0 -1 1836 -3.6380000412464142e-02
+
+ -7.4198000133037567e-02 1.4589400589466095e-01
+ <_>
+
+ 0 -1 1837 1.3935999944806099e-02
+
+ -2.4911600351333618e-01 2.6771199703216553e-01
+ <_>
+
+ 0 -1 1838 2.0991999655961990e-02
+
+ 8.7959999218583107e-03 4.3064999580383301e-01
+ <_>
+
+ 0 -1 1839 4.9118999391794205e-02
+
+ -1.7591999471187592e-01 6.9282901287078857e-01
+ <_>
+
+ 0 -1 1840 3.6315999925136566e-02
+
+ 1.3145299255847931e-01 -3.3597299456596375e-01
+ <_>
+
+ 0 -1 1841 4.1228000074625015e-02
+
+ -4.5692000538110733e-02 -1.3515930175781250e+00
+ <_>
+
+ 0 -1 1842 1.5672000125050545e-02
+
+ 1.7544099688529968e-01 -6.0550000518560410e-02
+ <_>
+
+ 0 -1 1843 -1.6286000609397888e-02
+
+ -1.1308189630508423e+00 -3.9533000439405441e-02
+ <_>
+
+ 0 -1 1844 -3.0229999683797359e-03
+
+ -2.2454300522804260e-01 2.3628099262714386e-01
+ <_>
+
+ 0 -1 1845 -1.3786299526691437e-01
+
+ 4.5376899838447571e-01 -2.1098700165748596e-01
+ <_>
+
+ 0 -1 1846 -9.6760001033544540e-03
+
+ -1.5105099976062775e-01 2.0781700313091278e-01
+ <_>
+
+ 0 -1 1847 -2.4839999154210091e-02
+
+ -6.8350297212600708e-01 -8.0040004104375839e-03
+ <_>
+
+ 0 -1 1848 -1.3964399695396423e-01
+
+ 6.5011298656463623e-01 4.6544000506401062e-02
+ <_>
+
+ 0 -1 1849 -8.2153998315334320e-02
+
+ 4.4887199997901917e-01 -2.3591999709606171e-01
+ <_>
+
+ 0 -1 1850 3.8449999410659075e-03
+
+ -8.8173002004623413e-02 2.7346798777580261e-01
+ <_>
+
+ 0 -1 1851 -6.6579999402165413e-03
+
+ -4.6866598725318909e-01 7.7001996338367462e-02
+ <_>
+
+ 0 -1 1852 -1.5898000448942184e-02
+
+ 2.9268398880958557e-01 -2.1941000595688820e-02
+ <_>
+
+ 0 -1 1853 -5.0946000963449478e-02
+
+ -1.2093789577484131e+00 -4.2109999805688858e-02
+ <_>
+
+ 0 -1 1854 1.6837999224662781e-02
+
+ -4.5595999807119370e-02 5.0180697441101074e-01
+ <_>
+
+ 0 -1 1855 1.5918999910354614e-02
+
+ -2.6904299855232239e-01 2.6516300439834595e-01
+ <_>
+
+ 0 -1 1856 3.6309999413788319e-03
+
+ -1.3046100735664368e-01 3.1807100772857666e-01
+ <_>
+
+ 0 -1 1857 -8.6144998669624329e-02
+
+ 1.9443659782409668e+00 -1.3978299498558044e-01
+ <_>
+
+ 0 -1 1858 3.3140998333692551e-02
+
+ 1.5266799926757812e-01 -3.0866000801324844e-02
+ <_>
+
+ 0 -1 1859 -3.9679999463260174e-03
+
+ -7.1202301979064941e-01 -1.3844000175595284e-02
+ <_>
+
+ 0 -1 1860 -2.4008000269532204e-02
+
+ 9.2007797956466675e-01 4.6723999083042145e-02
+ <_>
+
+ 0 -1 1861 8.7320003658533096e-03
+
+ -2.2567300498485565e-01 3.1931799650192261e-01
+ <_>
+
+ 0 -1 1862 -2.7786999940872192e-02
+
+ -7.2337102890014648e-01 1.7018599808216095e-01
+ <_>
+
+ 0 -1 1863 -1.9455300271511078e-01
+
+ 1.2461860179901123e+00 -1.4736199378967285e-01
+ <_>
+
+ 0 -1 1864 -1.0869699716567993e-01
+
+ -1.4465179443359375e+00 1.2145300209522247e-01
+ <_>
+
+ 0 -1 1865 -1.9494999200105667e-02
+
+ -7.8153097629547119e-01 -2.3732999339699745e-02
+ <_>
+
+ 0 -1 1866 3.0650000553578138e-03
+
+ -8.5471397638320923e-01 1.6686999797821045e-01
+ <_>
+
+ 0 -1 1867 5.9193998575210571e-02
+
+ -1.4853699505329132e-01 1.1273469924926758e+00
+ <_>
+
+ 0 -1 1868 -5.4207999259233475e-02
+
+ 5.4726999998092651e-01 3.5523999482393265e-02
+ <_>
+
+ 0 -1 1869 -3.9324998855590820e-02
+
+ 3.6642599105834961e-01 -2.0543999969959259e-01
+ <_>
+
+ 0 -1 1870 8.2278996706008911e-02
+
+ -3.5007998347282410e-02 5.3994202613830566e-01
+ <_>
+
+ 0 -1 1871 -7.4479999020695686e-03
+
+ -6.1537498235702515e-01 -3.5319998860359192e-03
+ <_>
+
+ 0 -1 1872 7.3770000599324703e-03
+
+ -6.5591000020503998e-02 4.1961398720741272e-01
+ <_>
+
+ 0 -1 1873 7.0779998786747456e-03
+
+ -3.4129500389099121e-01 1.2536799907684326e-01
+ <_>
+
+ 0 -1 1874 -1.5581999905407429e-02
+
+ -3.0240398645401001e-01 2.1511000394821167e-01
+ <_>
+
+ 0 -1 1875 -2.7399999089539051e-03
+
+ 7.6553001999855042e-02 -4.1060501337051392e-01
+ <_>
+
+ 0 -1 1876 -7.0600003004074097e-02
+
+ -9.7356200218200684e-01 1.1241800338029861e-01
+ <_>
+
+ 0 -1 1877 -1.1706000193953514e-02
+
+ 1.8560700118541718e-01 -2.9755198955535889e-01
+ <_>
+
+ 0 -1 1878 7.1499997284263372e-04
+
+ -5.9650000184774399e-02 2.4824699759483337e-01
+ <_>
+
+ 0 -1 1879 -3.6866001784801483e-02
+
+ 3.2751700282096863e-01 -2.3059600591659546e-01
+ <_>
+
+ 0 -1 1880 -3.2526999711990356e-02
+
+ -2.9320299625396729e-01 1.5427699685096741e-01
+ <_>
+
+ 0 -1 1881 -7.4813999235630035e-02
+
+ -1.2143570184707642e+00 -5.2244000136852264e-02
+ <_>
+
+ 0 -1 1882 4.1469998657703400e-02
+
+ 1.3062499463558197e-01 -2.3274369239807129e+00
+ <_>
+
+ 0 -1 1883 -2.8880000114440918e-02
+
+ -6.6074597835540771e-01 -9.0960003435611725e-03
+ <_>
+
+ 0 -1 1884 4.6381998807191849e-02
+
+ 1.6630199551582336e-01 -6.6949498653411865e-01
+ <_>
+
+ 0 -1 1885 2.5424998998641968e-01
+
+ -5.4641999304294586e-02 -1.2676080465316772e+00
+ <_>
+
+ 0 -1 1886 2.4000001139938831e-03
+
+ 2.0276799798011780e-01 1.4667999930679798e-02
+ <_>
+
+ 0 -1 1887 -8.2805998623371124e-02
+
+ -7.8713601827621460e-01 -2.4468999356031418e-02
+ <_>
+
+ 0 -1 1888 -1.1438000015914440e-02
+
+ 2.8623399138450623e-01 -3.0894000083208084e-02
+ <_>
+
+ 0 -1 1889 -1.2913399934768677e-01
+
+ 1.7292929887771606e+00 -1.4293900132179260e-01
+ <_>
+
+ 0 -1 1890 3.8552999496459961e-02
+
+ 1.9232999533414841e-02 3.7732601165771484e-01
+ <_>
+
+ 0 -1 1891 1.0191400349140167e-01
+
+ -7.4533998966217041e-02 -3.3868899345397949e+00
+ <_>
+
+ 0 -1 1892 -1.9068000838160515e-02
+
+ 3.1814101338386536e-01 1.9261000677943230e-02
+ <_>
+
+ 0 -1 1893 -6.0775000602006912e-02
+
+ 7.6936298608779907e-01 -1.7644000053405762e-01
+ <_>
+
+ 0 -1 1894 2.4679999798536301e-02
+
+ 1.8396499752998352e-01 -3.0868801474571228e-01
+ <_>
+
+ 0 -1 1895 2.6759000495076180e-02
+
+ -2.3454900085926056e-01 3.3056598901748657e-01
+ <_>
+
+ 0 -1 1896 1.4969999901950359e-02
+
+ 1.7213599383831024e-01 -1.8248899281024933e-01
+ <_>
+
+ 0 -1 1897 2.6142999529838562e-02
+
+ -4.6463999897241592e-02 -1.1318379640579224e+00
+ <_>
+
+ 0 -1 1898 -3.7512000650167465e-02
+
+ 8.0404001474380493e-01 6.9660000503063202e-02
+ <_>
+
+ 0 -1 1899 -5.3229997865855694e-03
+
+ -8.1884402036666870e-01 -1.8224999308586121e-02
+ <_>
+
+ 0 -1 1900 1.7813000828027725e-02
+
+ 1.4957800507545471e-01 -1.8667200207710266e-01
+ <_>
+
+ 0 -1 1901 -3.4010000526905060e-02
+
+ -7.2852301597595215e-01 -1.6615999862551689e-02
+ <_>
+
+ 0 -1 1902 -1.5953000634908676e-02
+
+ 5.6944000720977783e-01 1.3832000084221363e-02
+ <_>
+
+ 0 -1 1903 1.9743999466300011e-02
+
+ 4.0525000542402267e-02 -4.1773399710655212e-01
+ <_>
+
+ 0 -1 1904 -1.0374800115823746e-01
+
+ -1.9825149774551392e+00 1.1960200220346451e-01
+ <_>
+
+ 0 -1 1905 -1.9285000860691071e-02
+
+ 5.0230598449707031e-01 -1.9745899736881256e-01
+ <_>
+
+ 0 -1 1906 -1.2780000455677509e-02
+
+ 4.0195000171661377e-01 -2.6957999914884567e-02
+ <_>
+
+ 0 -1 1907 -1.6352999955415726e-02
+
+ -7.6608800888061523e-01 -2.4209000170230865e-02
+ <_>
+
+ 0 -1 1908 -1.2763699889183044e-01
+
+ 8.6578500270843506e-01 6.4205996692180634e-02
+ <_>
+
+ 0 -1 1909 1.9068999215960503e-02
+
+ -5.5929797887802124e-01 -1.6880000475794077e-03
+ <_>
+
+ 0 -1 1910 3.2480999827384949e-02
+
+ 4.0722001343965530e-02 4.8925098776817322e-01
+ <_>
+
+ 0 -1 1911 9.4849998131394386e-03
+
+ -1.9231900572776794e-01 5.1139700412750244e-01
+ <_>
+
+ 0 -1 1912 5.0470000132918358e-03
+
+ 1.8706800043582916e-01 -1.6113600134849548e-01
+ <_>
+
+ 0 -1 1913 4.1267998516559601e-02
+
+ -4.8817999660968781e-02 -1.1326299905776978e+00
+ <_>
+
+ 0 -1 1914 -7.6358996331691742e-02
+
+ 1.4169390201568604e+00 8.7319999933242798e-02
+ <_>
+
+ 0 -1 1915 -7.2834998369216919e-02
+
+ 1.3189860582351685e+00 -1.4819100499153137e-01
+ <_>
+
+ 0 -1 1916 5.9576999396085739e-02
+
+ 4.8376999795436859e-02 8.5611802339553833e-01
+ <_>
+
+ 0 -1 1917 2.0263999700546265e-02
+
+ -2.1044099330902100e-01 3.3858999609947205e-01
+ <_>
+
+ 0 -1 1918 -8.0301001667976379e-02
+
+ -1.2464400529861450e+00 1.1857099831104279e-01
+ <_>
+
+ 0 -1 1919 -1.7835000529885292e-02
+
+ 2.5782299041748047e-01 -2.4564799666404724e-01
+ <_>
+
+ 0 -1 1920 1.1431000195443630e-02
+
+ 2.2949799895286560e-01 -2.9497599601745605e-01
+ <_>
+
+ 0 -1 1921 -2.5541000068187714e-02
+
+ -8.6252999305725098e-01 -7.0400000549852848e-04
+ <_>
+
+ 0 -1 1922 -7.6899997657164931e-04
+
+ 3.1511399149894714e-01 -1.4349000155925751e-01
+ <_>
+
+ 0 -1 1923 -1.4453999698162079e-02
+
+ 2.5148499011993408e-01 -2.8232899308204651e-01
+ <_>
+
+ 0 -1 1924 8.6730001494288445e-03
+
+ 2.6601400971412659e-01 -2.8190800547599792e-01
+ <_>
+ 197
+ -3.2772979736328125e+00
+
+ <_>
+
+ 0 -1 1925 5.4708998650312424e-02
+
+ -5.4144299030303955e-01 6.1043000221252441e-01
+ <_>
+
+ 0 -1 1926 -1.0838799923658371e-01
+
+ 7.1739900112152100e-01 -4.1196098923683167e-01
+ <_>
+
+ 0 -1 1927 2.2996999323368073e-02
+
+ -5.8269798755645752e-01 2.9645600914955139e-01
+ <_>
+
+ 0 -1 1928 2.7540000155568123e-03
+
+ -7.4243897199630737e-01 1.4183300733566284e-01
+ <_>
+
+ 0 -1 1929 -2.1520000882446766e-03
+
+ 1.7879900336265564e-01 -6.8548601865768433e-01
+ <_>
+
+ 0 -1 1930 -2.2559000179171562e-02
+
+ -1.0775549411773682e+00 1.2388999760150909e-01
+ <_>
+
+ 0 -1 1931 8.3025000989437103e-02
+
+ 2.4500999599695206e-02 -1.0251879692077637e+00
+ <_>
+
+ 0 -1 1932 -6.6740000620484352e-03
+
+ -4.5283100008964539e-01 2.1230199933052063e-01
+ <_>
+
+ 0 -1 1933 7.6485000550746918e-02
+
+ -2.6972699165344238e-01 4.8580199480056763e-01
+ <_>
+
+ 0 -1 1934 5.4910001344978809e-03
+
+ -4.8871201276779175e-01 3.1616398692131042e-01
+ <_>
+
+ 0 -1 1935 -1.0414999909698963e-02
+
+ 4.1512900590896606e-01 -3.0044800043106079e-01
+ <_>
+
+ 0 -1 1936 2.7607999742031097e-02
+
+ 1.6203799843788147e-01 -9.9868500232696533e-01
+ <_>
+
+ 0 -1 1937 -2.3272000253200531e-02
+
+ -1.1024399995803833e+00 2.1124999970197678e-02
+ <_>
+
+ 0 -1 1938 -5.5619999766349792e-02
+
+ 6.5033102035522461e-01 -2.7938000857830048e-02
+ <_>
+
+ 0 -1 1939 -4.0631998330354691e-02
+
+ 4.2117300629615784e-01 -2.6763799786567688e-01
+ <_>
+
+ 0 -1 1940 -7.3560001328587532e-03
+
+ 3.5277798771858215e-01 -3.7854000926017761e-01
+ <_>
+
+ 0 -1 1941 1.7007000744342804e-02
+
+ -2.9189500212669373e-01 4.1053798794746399e-01
+ <_>
+
+ 0 -1 1942 -3.7034001201391220e-02
+
+ -1.3216309547424316e+00 1.2966500222682953e-01
+ <_>
+
+ 0 -1 1943 -1.9633000716567039e-02
+
+ -8.7702298164367676e-01 1.0799999581649899e-03
+ <_>
+
+ 0 -1 1944 -2.3546999320387840e-02
+
+ 2.6106101274490356e-01 -2.1481400728225708e-01
+ <_>
+
+ 0 -1 1945 -4.3352998793125153e-02
+
+ -9.9089699983596802e-01 -9.9560003727674484e-03
+ <_>
+
+ 0 -1 1946 -2.2183999419212341e-02
+
+ 6.3454401493072510e-01 -5.6547001004219055e-02
+ <_>
+
+ 0 -1 1947 1.6530999913811684e-02
+
+ 2.4664999917149544e-02 -7.3326802253723145e-01
+ <_>
+
+ 0 -1 1948 -3.2744001597166061e-02
+
+ -5.6297200918197632e-01 1.6640299558639526e-01
+ <_>
+
+ 0 -1 1949 7.1415998041629791e-02
+
+ -3.0000001424923539e-04 -9.3286401033401489e-01
+ <_>
+
+ 0 -1 1950 8.0999999772757292e-04
+
+ -9.5380000770092010e-02 2.5184699892997742e-01
+ <_>
+
+ 0 -1 1951 -8.4090000018477440e-03
+
+ -6.5496802330017090e-01 6.7300997674465179e-02
+ <_>
+
+ 0 -1 1952 -1.7254000529646873e-02
+
+ -4.6492999792098999e-01 1.6070899367332458e-01
+ <_>
+
+ 0 -1 1953 -1.8641000613570213e-02
+
+ -1.0594010353088379e+00 -1.9617000594735146e-02
+ <_>
+
+ 0 -1 1954 -9.1979997232556343e-03
+
+ 5.0716197490692139e-01 -1.5339200198650360e-01
+ <_>
+
+ 0 -1 1955 1.8538000062108040e-02
+
+ -3.0498200654983521e-01 7.3506200313568115e-01
+ <_>
+
+ 0 -1 1956 -5.0335001200437546e-02
+
+ -1.1140480041503906e+00 1.8000100553035736e-01
+ <_>
+
+ 0 -1 1957 -2.3529000580310822e-02
+
+ -8.6907899379730225e-01 -1.2459999881684780e-02
+ <_>
+
+ 0 -1 1958 -2.7100000530481339e-02
+
+ 6.5942901372909546e-01 -3.5323999822139740e-02
+ <_>
+
+ 0 -1 1959 6.5879998728632927e-03
+
+ -2.2953400015830994e-01 4.2425099015235901e-01
+ <_>
+
+ 0 -1 1960 2.3360000923275948e-02
+
+ 1.8356199562549591e-01 -9.8587298393249512e-01
+ <_>
+
+ 0 -1 1961 1.2946999631822109e-02
+
+ -3.3147400617599487e-01 2.1323199570178986e-01
+ <_>
+
+ 0 -1 1962 -6.6559999249875546e-03
+
+ -1.1951400339603424e-01 2.9752799868583679e-01
+ <_>
+
+ 0 -1 1963 -2.2570999339222908e-02
+
+ 3.8499400019645691e-01 -2.4434499442577362e-01
+ <_>
+
+ 0 -1 1964 -6.3813999295234680e-02
+
+ -8.9383500814437866e-01 1.4217500388622284e-01
+ <_>
+
+ 0 -1 1965 -4.9945000559091568e-02
+
+ 5.3864401578903198e-01 -2.0485299825668335e-01
+ <_>
+
+ 0 -1 1966 6.8319998681545258e-03
+
+ -5.6678999215364456e-02 3.9970999956130981e-01
+ <_>
+
+ 0 -1 1967 -5.5835999548435211e-02
+
+ -1.5239470005035400e+00 -5.1183000206947327e-02
+ <_>
+
+ 0 -1 1968 3.1957000494003296e-01
+
+ 7.4574001133441925e-02 1.2447799444198608e+00
+ <_>
+
+ 0 -1 1969 8.0955997109413147e-02
+
+ -1.9665500521659851e-01 5.9889698028564453e-01
+ <_>
+
+ 0 -1 1970 -1.4911999925971031e-02
+
+ -6.4020597934722900e-01 1.5807600319385529e-01
+ <_>
+
+ 0 -1 1971 4.6709001064300537e-02
+
+ 8.5239000618457794e-02 -4.5487201213836670e-01
+ <_>
+
+ 0 -1 1972 6.0539999976754189e-03
+
+ -4.3184000253677368e-01 2.2452600300312042e-01
+ <_>
+
+ 0 -1 1973 -3.4375999122858047e-02
+
+ 4.0202501416206360e-01 -2.3903599381446838e-01
+ <_>
+
+ 0 -1 1974 -3.4924000501632690e-02
+
+ 5.2870100736618042e-01 3.9709001779556274e-02
+ <_>
+
+ 0 -1 1975 3.0030000489205122e-03
+
+ -3.8754299283027649e-01 1.4192600548267365e-01
+ <_>
+
+ 0 -1 1976 -1.4132999815046787e-02
+
+ 8.7528401613235474e-01 8.5507996380329132e-02
+ <_>
+
+ 0 -1 1977 -6.7940000444650650e-03
+
+ -1.1649219989776611e+00 -3.3943001180887222e-02
+ <_>
+
+ 0 -1 1978 -5.2886001765727997e-02
+
+ 1.0930680036544800e+00 5.1187001168727875e-02
+ <_>
+
+ 0 -1 1979 -2.1079999860376120e-03
+
+ 1.3696199655532837e-01 -3.3849999308586121e-01
+ <_>
+
+ 0 -1 1980 1.8353000283241272e-02
+
+ 1.3661600649356842e-01 -4.0777799487113953e-01
+ <_>
+
+ 0 -1 1981 1.2671999633312225e-02
+
+ -1.4936000108718872e-02 -8.1707501411437988e-01
+ <_>
+
+ 0 -1 1982 1.2924999929964542e-02
+
+ 1.7625099420547485e-01 -3.2491698861122131e-01
+ <_>
+
+ 0 -1 1983 -1.7921000719070435e-02
+
+ -5.2745401859283447e-01 4.4443000108003616e-02
+ <_>
+
+ 0 -1 1984 1.9160000374540687e-03
+
+ -1.0978599637746811e-01 2.2067500650882721e-01
+ <_>
+
+ 0 -1 1985 -1.4697999693453312e-02
+
+ 3.9067798852920532e-01 -2.2224999964237213e-01
+ <_>
+
+ 0 -1 1986 -1.4972999691963196e-02
+
+ -2.5450900197029114e-01 1.7790000140666962e-01
+ <_>
+
+ 0 -1 1987 1.4636999927461147e-02
+
+ -2.5125000625848770e-02 -8.7121301889419556e-01
+ <_>
+
+ 0 -1 1988 -1.0974000208079815e-02
+
+ 7.9082798957824707e-01 2.0121000707149506e-02
+ <_>
+
+ 0 -1 1989 -9.1599998995661736e-03
+
+ -4.7906899452209473e-01 5.2232000976800919e-02
+ <_>
+
+ 0 -1 1990 4.6179997734725475e-03
+
+ -1.7244599759578705e-01 3.4527799487113953e-01
+ <_>
+
+ 0 -1 1991 2.3476999253034592e-02
+
+ 3.7760001141577959e-03 -6.5333700180053711e-01
+ <_>
+
+ 0 -1 1992 3.1766999512910843e-02
+
+ 1.6364000737667084e-02 5.8723700046539307e-01
+ <_>
+
+ 0 -1 1993 -1.8419999629259109e-02
+
+ 1.9993899762630463e-01 -3.2056498527526855e-01
+ <_>
+
+ 0 -1 1994 1.9543999806046486e-02
+
+ 1.8450200557708740e-01 -2.3793600499629974e-01
+ <_>
+
+ 0 -1 1995 4.1159498691558838e-01
+
+ -6.0382001101970673e-02 -1.6072119474411011e+00
+ <_>
+
+ 0 -1 1996 -4.1595999151468277e-02
+
+ -3.2756200432777405e-01 1.5058000385761261e-01
+ <_>
+
+ 0 -1 1997 -1.0335999540984631e-02
+
+ -6.2394398450851440e-01 1.3112000189721584e-02
+ <_>
+
+ 0 -1 1998 1.2392999604344368e-02
+
+ -3.3114999532699585e-02 5.5579900741577148e-01
+ <_>
+
+ 0 -1 1999 -8.7270000949501991e-03
+
+ 1.9883200526237488e-01 -3.7635600566864014e-01
+ <_>
+
+ 0 -1 2000 1.6295000910758972e-02
+
+ 2.0373000204563141e-01 -4.2800799012184143e-01
+ <_>
+
+ 0 -1 2001 -1.0483999736607075e-02
+
+ -5.6847000122070312e-01 4.4199001044034958e-02
+ <_>
+
+ 0 -1 2002 -1.2431999668478966e-02
+
+ 7.4641901254653931e-01 4.3678998947143555e-02
+ <_>
+
+ 0 -1 2003 -5.0374999642372131e-02
+
+ 8.5090100765228271e-01 -1.7773799598217010e-01
+ <_>
+
+ 0 -1 2004 4.9548000097274780e-02
+
+ 1.6784900426864624e-01 -2.9877498745918274e-01
+ <_>
+
+ 0 -1 2005 -4.1085001081228256e-02
+
+ -1.3302919864654541e+00 -4.9182001501321793e-02
+ <_>
+
+ 0 -1 2006 1.0069999843835831e-03
+
+ -6.0538999736309052e-02 1.8483200669288635e-01
+ <_>
+
+ 0 -1 2007 -5.0142999738454819e-02
+
+ 7.6447701454162598e-01 -1.8356999754905701e-01
+ <_>
+
+ 0 -1 2008 -8.7879998609423637e-03
+
+ 2.2655999660491943e-01 -6.3156999647617340e-02
+ <_>
+
+ 0 -1 2009 -5.0170999020338058e-02
+
+ -1.5899070501327515e+00 -6.1255000531673431e-02
+ <_>
+
+ 0 -1 2010 1.0216099768877029e-01
+
+ 1.2071800231933594e-01 -1.4120110273361206e+00
+ <_>
+
+ 0 -1 2011 -1.4372999779880047e-02
+
+ -1.3116970062255859e+00 -5.1936000585556030e-02
+ <_>
+
+ 0 -1 2012 1.0281999595463276e-02
+
+ -2.1639999467879534e-03 4.4247201085090637e-01
+ <_>
+
+ 0 -1 2013 -1.1814000084996223e-02
+
+ 6.5378099679946899e-01 -1.8723699450492859e-01
+ <_>
+
+ 0 -1 2014 7.2114996612071991e-02
+
+ 7.1846999228000641e-02 8.1496298313140869e-01
+ <_>
+
+ 0 -1 2015 -1.9001999869942665e-02
+
+ -6.7427200078964233e-01 -4.3200000072829425e-04
+ <_>
+
+ 0 -1 2016 -4.6990001574158669e-03
+
+ 3.3311501145362854e-01 5.5794000625610352e-02
+ <_>
+
+ 0 -1 2017 -5.8157000690698624e-02
+
+ 4.5572298765182495e-01 -2.0305100083351135e-01
+ <_>
+
+ 0 -1 2018 1.1360000353306532e-03
+
+ -4.4686999171972275e-02 2.2681899368762970e-01
+ <_>
+
+ 0 -1 2019 -4.9414999783039093e-02
+
+ 2.6694598793983459e-01 -2.6116999983787537e-01
+ <_>
+
+ 0 -1 2020 -1.1913800239562988e-01
+
+ -8.3017998933792114e-01 1.3248500227928162e-01
+ <_>
+
+ 0 -1 2021 -1.8303999677300453e-02
+
+ -6.7499202489852905e-01 1.7092000693082809e-02
+ <_>
+
+ 0 -1 2022 -7.9199997708201408e-03
+
+ -7.2287000715732574e-02 1.4425800740718842e-01
+ <_>
+
+ 0 -1 2023 5.1925998181104660e-02
+
+ 3.0921999365091324e-02 -5.5860602855682373e-01
+ <_>
+
+ 0 -1 2024 6.6724002361297607e-02
+
+ 1.3666400313377380e-01 -2.9411000013351440e-01
+ <_>
+
+ 0 -1 2025 -1.3778000138700008e-02
+
+ -5.9443902969360352e-01 1.5300000086426735e-02
+ <_>
+
+ 0 -1 2026 -1.7760999500751495e-02
+
+ 4.0496501326560974e-01 -3.3559999428689480e-03
+ <_>
+
+ 0 -1 2027 -4.2234998196363449e-02
+
+ -1.0897940397262573e+00 -4.0224999189376831e-02
+ <_>
+
+ 0 -1 2028 -1.3524999842047691e-02
+
+ 2.8921899199485779e-01 -2.5194799900054932e-01
+ <_>
+
+ 0 -1 2029 -1.1106000281870365e-02
+
+ 6.5312802791595459e-01 -1.8053700029850006e-01
+ <_>
+
+ 0 -1 2030 -1.2284599989652634e-01
+
+ -1.9570649862289429e+00 1.4815400540828705e-01
+ <_>
+
+ 0 -1 2031 4.7715999186038971e-02
+
+ -2.2875599563121796e-01 3.4233701229095459e-01
+ <_>
+
+ 0 -1 2032 3.1817000359296799e-02
+
+ 1.5976299345493317e-01 -1.0091969966888428e+00
+ <_>
+
+ 0 -1 2033 4.2570000514388084e-03
+
+ -3.8881298899650574e-01 8.4210000932216644e-02
+ <_>
+
+ 0 -1 2034 -6.1372999101877213e-02
+
+ 1.7152810096740723e+00 5.9324998408555984e-02
+ <_>
+
+ 0 -1 2035 -2.7030000928789377e-03
+
+ -3.8161700963973999e-01 8.5127003490924835e-02
+ <_>
+
+ 0 -1 2036 -6.8544000387191772e-02
+
+ -3.0925889015197754e+00 1.1788000166416168e-01
+ <_>
+
+ 0 -1 2037 1.0372500121593475e-01
+
+ -1.3769300282001495e-01 1.9009410142898560e+00
+ <_>
+
+ 0 -1 2038 1.5799000859260559e-02
+
+ -6.2660001218318939e-02 2.5917699933052063e-01
+ <_>
+
+ 0 -1 2039 -9.8040001466870308e-03
+
+ -5.6291598081588745e-01 4.3923001736402512e-02
+ <_>
+
+ 0 -1 2040 -9.0229995548725128e-03
+
+ 2.5287100672721863e-01 -4.1225999593734741e-02
+ <_>
+
+ 0 -1 2041 -6.3754998147487640e-02
+
+ -2.6178569793701172e+00 -7.4005998671054840e-02
+ <_>
+
+ 0 -1 2042 3.8954999297857285e-02
+
+ 5.9032998979091644e-02 8.5945600271224976e-01
+ <_>
+
+ 0 -1 2043 -3.9802998304367065e-02
+
+ 9.3600499629974365e-01 -1.5639400482177734e-01
+ <_>
+
+ 0 -1 2044 5.0301998853683472e-02
+
+ 1.3725900650024414e-01 -2.5549728870391846e+00
+ <_>
+
+ 0 -1 2045 4.6250000596046448e-02
+
+ -1.3964000158011913e-02 -7.1026200056076050e-01
+ <_>
+
+ 0 -1 2046 6.2196001410484314e-02
+
+ 5.9526000171899796e-02 1.6509100198745728e+00
+ <_>
+
+ 0 -1 2047 -6.4776003360748291e-02
+
+ 7.1368998289108276e-01 -1.7270000278949738e-01
+ <_>
+
+ 0 -1 2048 2.7522999793291092e-02
+
+ 1.4631600677967072e-01 -8.1428997218608856e-02
+ <_>
+
+ 0 -1 2049 3.9900001138448715e-04
+
+ -3.7144500017166138e-01 1.0152699798345566e-01
+ <_>
+
+ 0 -1 2050 -4.3299999088048935e-03
+
+ -2.3756299912929535e-01 2.6798400282859802e-01
+ <_>
+
+ 0 -1 2051 4.7297000885009766e-02
+
+ -2.7682000771164894e-02 -8.4910297393798828e-01
+ <_>
+
+ 0 -1 2052 1.2508999556303024e-02
+
+ 1.8730199337005615e-01 -5.6001102924346924e-01
+ <_>
+
+ 0 -1 2053 4.5899000018835068e-02
+
+ -1.5601199865341187e-01 9.7073000669479370e-01
+ <_>
+
+ 0 -1 2054 1.9853399693965912e-01
+
+ 1.4895500242710114e-01 -1.1015529632568359e+00
+ <_>
+
+ 0 -1 2055 1.6674999147653580e-02
+
+ -1.6615299880504608e-01 8.2210999727249146e-01
+ <_>
+
+ 0 -1 2056 1.9829999655485153e-03
+
+ -7.1249999105930328e-02 2.8810900449752808e-01
+ <_>
+
+ 0 -1 2057 2.2447999566793442e-02
+
+ -2.0981000736355782e-02 -7.8416502475738525e-01
+ <_>
+
+ 0 -1 2058 -1.3913000002503395e-02
+
+ -1.8165799975395203e-01 2.0491799712181091e-01
+ <_>
+
+ 0 -1 2059 -7.7659999951720238e-03
+
+ -4.5595899224281311e-01 6.3576996326446533e-02
+ <_>
+
+ 0 -1 2060 -1.3209000229835510e-02
+
+ 2.6632300019264221e-01 -1.7795999348163605e-01
+ <_>
+
+ 0 -1 2061 4.9052998423576355e-02
+
+ -1.5476800501346588e-01 1.1069979667663574e+00
+ <_>
+
+ 0 -1 2062 2.0263999700546265e-02
+
+ 6.8915002048015594e-02 6.9867497682571411e-01
+ <_>
+
+ 0 -1 2063 -1.6828000545501709e-02
+
+ 2.7607199549674988e-01 -2.5139200687408447e-01
+ <_>
+
+ 0 -1 2064 -1.6939499974250793e-01
+
+ -3.0767529010772705e+00 1.1617500334978104e-01
+ <_>
+
+ 0 -1 2065 -1.1336100101470947e-01
+
+ -1.4639229774475098e+00 -5.1447000354528427e-02
+ <_>
+
+ 0 -1 2066 -7.7685996890068054e-02
+
+ 8.8430202007293701e-01 4.3306998908519745e-02
+ <_>
+
+ 0 -1 2067 -1.5568000264465809e-02
+
+ 1.3672499358654022e-01 -3.4505501389503479e-01
+ <_>
+
+ 0 -1 2068 -6.6018998622894287e-02
+
+ -1.0300110578536987e+00 1.1601399630308151e-01
+ <_>
+
+ 0 -1 2069 8.3699999377131462e-03
+
+ 7.6429001986980438e-02 -4.4002500176429749e-01
+ <_>
+
+ 0 -1 2070 3.5402998328208923e-02
+
+ 1.1979500204324722e-01 -7.2668302059173584e-01
+ <_>
+
+ 0 -1 2071 -3.9051000028848648e-02
+
+ 6.7375302314758301e-01 -1.8196000158786774e-01
+ <_>
+
+ 0 -1 2072 -9.7899995744228363e-03
+
+ 2.1264599263668060e-01 3.6756001412868500e-02
+ <_>
+
+ 0 -1 2073 -2.3047000169754028e-02
+
+ 4.4742199778556824e-01 -2.0986700057983398e-01
+ <_>
+
+ 0 -1 2074 3.1169999856501818e-03
+
+ 3.7544000893831253e-02 2.7808201313018799e-01
+ <_>
+
+ 0 -1 2075 1.3136000372469425e-02
+
+ -1.9842399656772614e-01 5.4335701465606689e-01
+ <_>
+
+ 0 -1 2076 1.4782000333070755e-02
+
+ 1.3530600070953369e-01 -1.1153600364923477e-01
+ <_>
+
+ 0 -1 2077 -6.0139000415802002e-02
+
+ 8.4039300680160522e-01 -1.6711600124835968e-01
+ <_>
+
+ 0 -1 2078 5.1998998969793320e-02
+
+ 1.7372000217437744e-01 -7.8547602891921997e-01
+ <_>
+
+ 0 -1 2079 2.4792000651359558e-02
+
+ -1.7739200592041016e-01 6.6752600669860840e-01
+ <_>
+
+ 0 -1 2080 -1.2014999985694885e-02
+
+ -1.4263699948787689e-01 1.6070500016212463e-01
+ <_>
+
+ 0 -1 2081 -9.8655998706817627e-02
+
+ 1.0429769754409790e+00 -1.5770199894905090e-01
+ <_>
+
+ 0 -1 2082 1.1758299916982651e-01
+
+ 1.0955700278282166e-01 -4.4920377731323242e+00
+ <_>
+
+ 0 -1 2083 -1.8922999501228333e-02
+
+ -7.8543400764465332e-01 1.2984000146389008e-02
+ <_>
+
+ 0 -1 2084 -2.8390999883413315e-02
+
+ -6.0569900274276733e-01 1.2903499603271484e-01
+ <_>
+
+ 0 -1 2085 1.3182999566197395e-02
+
+ -1.4415999874472618e-02 -7.3210501670837402e-01
+ <_>
+
+ 0 -1 2086 -1.1653000116348267e-01
+
+ -2.0442469120025635e+00 1.4053100347518921e-01
+ <_>
+
+ 0 -1 2087 -3.8880000356584787e-03
+
+ -4.1861599683761597e-01 7.8704997897148132e-02
+ <_>
+
+ 0 -1 2088 3.1229000538587570e-02
+
+ 2.4632999673485756e-02 4.1870400309562683e-01
+ <_>
+
+ 0 -1 2089 2.5198999792337418e-02
+
+ -1.7557799816131592e-01 6.4710599184036255e-01
+ <_>
+
+ 0 -1 2090 -2.8124000877141953e-02
+
+ -2.2005599737167358e-01 1.4121000468730927e-01
+ <_>
+
+ 0 -1 2091 3.6499001085758209e-02
+
+ -6.8426996469497681e-02 -2.3410849571228027e+00
+ <_>
+
+ 0 -1 2092 -7.2292998433113098e-02
+
+ 1.2898750305175781e+00 8.4875002503395081e-02
+ <_>
+
+ 0 -1 2093 -4.1671000421047211e-02
+
+ -1.1630970239639282e+00 -5.3752999752759933e-02
+ <_>
+
+ 0 -1 2094 4.7703001648187637e-02
+
+ 7.0101000368595123e-02 7.3676502704620361e-01
+ <_>
+
+ 0 -1 2095 6.5793000161647797e-02
+
+ -1.7755299806594849e-01 6.9780498743057251e-01
+ <_>
+
+ 0 -1 2096 1.3904999941587448e-02
+
+ 2.1936799585819244e-01 -2.0390799641609192e-01
+ <_>
+
+ 0 -1 2097 -2.7730999514460564e-02
+
+ 6.1867898702621460e-01 -1.7804099619388580e-01
+ <_>
+
+ 0 -1 2098 -1.5879999846220016e-02
+
+ -4.6484100818634033e-01 1.8828600645065308e-01
+ <_>
+
+ 0 -1 2099 7.4128001928329468e-02
+
+ -1.2858100235462189e-01 3.2792479991912842e+00
+ <_>
+
+ 0 -1 2100 -8.9000002481043339e-04
+
+ -3.0117601156234741e-01 2.3818799853324890e-01
+ <_>
+
+ 0 -1 2101 1.7965000122785568e-02
+
+ -2.2284999489784241e-01 2.9954001307487488e-01
+ <_>
+
+ 0 -1 2102 -2.5380000006407499e-03
+
+ 2.5064399838447571e-01 -1.3665600121021271e-01
+ <_>
+
+ 0 -1 2103 -9.0680001303553581e-03
+
+ 2.9017499089241028e-01 -2.8929701447486877e-01
+ <_>
+
+ 0 -1 2104 4.9169998615980148e-02
+
+ 1.9156399369239807e-01 -6.8328702449798584e-01
+ <_>
+
+ 0 -1 2105 -3.0680999159812927e-02
+
+ -7.5677001476287842e-01 -1.3279999606311321e-02
+ <_>
+
+ 0 -1 2106 1.0017400234937668e-01
+
+ 8.4453999996185303e-02 1.0888710021972656e+00
+ <_>
+
+ 0 -1 2107 3.1950001139193773e-03
+
+ -2.6919400691986084e-01 1.9537900388240814e-01
+ <_>
+
+ 0 -1 2108 3.5503000020980835e-02
+
+ 1.3632300496101379e-01 -5.6917202472686768e-01
+ <_>
+
+ 0 -1 2109 4.5900000259280205e-04
+
+ -4.0443998575210571e-01 1.4074799418449402e-01
+ <_>
+
+ 0 -1 2110 2.5258999317884445e-02
+
+ 1.6243200004100800e-01 -5.5741798877716064e-01
+ <_>
+
+ 0 -1 2111 -5.1549999043345451e-03
+
+ 3.1132599711418152e-01 -2.2756099700927734e-01
+ <_>
+
+ 0 -1 2112 1.5869999770075083e-03
+
+ -2.6867699623107910e-01 1.9565400481224060e-01
+ <_>
+
+ 0 -1 2113 -1.6204999759793282e-02
+
+ 1.5486499667167664e-01 -3.4057798981666565e-01
+ <_>
+
+ 0 -1 2114 -2.9624000191688538e-02
+
+ 1.1466799974441528e+00 9.0557999908924103e-02
+ <_>
+
+ 0 -1 2115 -1.5930000226944685e-03
+
+ -7.1257501840591431e-01 -7.0400000549852848e-04
+ <_>
+
+ 0 -1 2116 -5.4019000381231308e-02
+
+ 4.1537499427795410e-01 2.7246000245213509e-02
+ <_>
+
+ 0 -1 2117 -6.6211000084877014e-02
+
+ -1.3340090513229370e+00 -4.7352999448776245e-02
+ <_>
+
+ 0 -1 2118 2.7940999716520309e-02
+
+ 1.4446300268173218e-01 -5.1518398523330688e-01
+ <_>
+
+ 0 -1 2119 2.8957000002264977e-02
+
+ -4.9966000020503998e-02 -1.1929039955139160e+00
+ <_>
+
+ 0 -1 2120 -2.0424999296665192e-02
+
+ 6.3881301879882812e-01 3.8141001015901566e-02
+ <_>
+
+ 0 -1 2121 1.2416999787092209e-02
+
+ -2.1547000110149384e-01 4.9477699398994446e-01
+ <_>
+ 181
+ -3.3196411132812500e+00
+
+ <_>
+
+ 0 -1 2122 4.3274000287055969e-02
+
+ -8.0494397878646851e-01 3.9897298812866211e-01
+ <_>
+
+ 0 -1 2123 1.8615500628948212e-01
+
+ -3.1655299663543701e-01 6.8877297639846802e-01
+ <_>
+
+ 0 -1 2124 3.1860999763011932e-02
+
+ -6.4266198873519897e-01 2.5550898909568787e-01
+ <_>
+
+ 0 -1 2125 1.4022000133991241e-02
+
+ -4.5926600694656372e-01 3.1171199679374695e-01
+ <_>
+
+ 0 -1 2126 -6.3029997982084751e-03
+
+ 4.6026900410652161e-01 -2.7438500523567200e-01
+ <_>
+
+ 0 -1 2127 -5.4310001432895660e-03
+
+ 3.6608600616455078e-01 -2.7205801010131836e-01
+ <_>
+
+ 0 -1 2128 1.6822999343276024e-02
+
+ 2.3476999253034592e-02 -8.8443797826766968e-01
+ <_>
+
+ 0 -1 2129 2.6039000600576401e-02
+
+ 1.7488799989223480e-01 -5.4564702510833740e-01
+ <_>
+
+ 0 -1 2130 -2.6720000430941582e-02
+
+ -9.6396499872207642e-01 2.3524999618530273e-02
+ <_>
+
+ 0 -1 2131 -1.7041999846696854e-02
+
+ -7.0848798751831055e-01 2.1468099951744080e-01
+ <_>
+
+ 0 -1 2132 5.9569999575614929e-03
+
+ 7.3601000010967255e-02 -6.8225598335266113e-01
+ <_>
+
+ 0 -1 2133 -2.8679999522864819e-03
+
+ -7.4935001134872437e-01 2.3803399503231049e-01
+ <_>
+
+ 0 -1 2134 -4.3774999678134918e-02
+
+ 6.8323302268981934e-01 -2.1380299329757690e-01
+ <_>
+
+ 0 -1 2135 5.1633000373840332e-02
+
+ -1.2566499412059784e-01 6.7523801326751709e-01
+ <_>
+
+ 0 -1 2136 8.1780003383755684e-03
+
+ 7.0689998567104340e-02 -8.0665898323059082e-01
+ <_>
+
+ 0 -1 2137 -5.2841998636722565e-02
+
+ 9.5433902740478516e-01 1.6548000276088715e-02
+ <_>
+
+ 0 -1 2138 5.2583999931812286e-02
+
+ -2.8414401412010193e-01 4.7129800915718079e-01
+ <_>
+
+ 0 -1 2139 -1.2659000232815742e-02
+
+ 3.8445401191711426e-01 -6.2288001179695129e-02
+ <_>
+
+ 0 -1 2140 1.1694000102579594e-02
+
+ 5.6000000768108293e-05 -1.0173139572143555e+00
+ <_>
+
+ 0 -1 2141 -2.3918999359011650e-02
+
+ 8.4921300411224365e-01 5.7399999350309372e-03
+ <_>
+
+ 0 -1 2142 -6.1673998832702637e-02
+
+ -9.2571401596069336e-01 -1.7679999582469463e-03
+ <_>
+
+ 0 -1 2143 -1.8279999494552612e-03
+
+ -5.4372298717498779e-01 2.4932399392127991e-01
+ <_>
+
+ 0 -1 2144 3.5257998853921890e-02
+
+ -7.3719997890293598e-03 -9.3963998556137085e-01
+ <_>
+
+ 0 -1 2145 -1.8438000231981277e-02
+
+ 7.2136700153350830e-01 1.0491999797523022e-02
+ <_>
+
+ 0 -1 2146 -3.8389001041650772e-02
+
+ 1.9272600114345551e-01 -3.5832101106643677e-01
+ <_>
+
+ 0 -1 2147 9.9720999598503113e-02
+
+ 1.1354199796915054e-01 -1.6304190158843994e+00
+ <_>
+
+ 0 -1 2148 8.4462001919746399e-02
+
+ -5.3420998156070709e-02 -1.6981120109558105e+00
+ <_>
+
+ 0 -1 2149 4.0270000696182251e-02
+
+ -1.0783199965953827e-01 5.1926600933074951e-01
+ <_>
+
+ 0 -1 2150 5.8935999870300293e-02
+
+ -1.8053700029850006e-01 9.5119798183441162e-01
+ <_>
+
+ 0 -1 2151 1.4957000315189362e-01
+
+ 1.6785299777984619e-01 -1.1591869592666626e+00
+ <_>
+
+ 0 -1 2152 6.9399998756125569e-04
+
+ 2.0491400361061096e-01 -3.3118200302124023e-01
+ <_>
+
+ 0 -1 2153 -3.3369001001119614e-02
+
+ 9.3468099832534790e-01 -2.9639999847859144e-03
+ <_>
+
+ 0 -1 2154 9.3759996816515923e-03
+
+ 3.7000000011175871e-03 -7.7549797296524048e-01
+ <_>
+
+ 0 -1 2155 4.3193999677896500e-02
+
+ -2.2040000185370445e-03 7.4589699506759644e-01
+ <_>
+
+ 0 -1 2156 -6.7555002868175507e-02
+
+ 7.2292101383209229e-01 -1.8404200673103333e-01
+ <_>
+
+ 0 -1 2157 -3.1168600916862488e-01
+
+ 1.0014270544052124e+00 3.4003000706434250e-02
+ <_>
+
+ 0 -1 2158 2.9743999242782593e-02
+
+ -4.6356000006198883e-02 -1.2781809568405151e+00
+ <_>
+
+ 0 -1 2159 1.0737000033259392e-02
+
+ 1.4812000095844269e-02 6.6649997234344482e-01
+ <_>
+
+ 0 -1 2160 -2.8841000050306320e-02
+
+ -9.4222599267959595e-01 -2.0796999335289001e-02
+ <_>
+
+ 0 -1 2161 -5.7649998925626278e-03
+
+ -4.3541899323463440e-01 2.3386000096797943e-01
+ <_>
+
+ 0 -1 2162 2.8410999104380608e-02
+
+ -1.7615799605846405e-01 8.5765302181243896e-01
+ <_>
+
+ 0 -1 2163 -2.9007999226450920e-02
+
+ 5.7978099584579468e-01 2.8565999120473862e-02
+ <_>
+
+ 0 -1 2164 2.4965999647974968e-02
+
+ -2.2729000076651573e-02 -9.6773099899291992e-01
+ <_>
+
+ 0 -1 2165 1.2036000378429890e-02
+
+ -1.4214700460433960e-01 5.1687997579574585e-01
+ <_>
+
+ 0 -1 2166 -4.2514000087976456e-02
+
+ 9.7273802757263184e-01 -1.8119800090789795e-01
+ <_>
+
+ 0 -1 2167 1.0276000015437603e-02
+
+ -8.3099998533725739e-02 3.1762799620628357e-01
+ <_>
+
+ 0 -1 2168 -6.9191999733448029e-02
+
+ -2.0668580532073975e+00 -6.0173999518156052e-02
+ <_>
+
+ 0 -1 2169 -4.6769999898970127e-03
+
+ 4.4131800532341003e-01 2.3209000006318092e-02
+ <_>
+
+ 0 -1 2170 -1.3923999853432178e-02
+
+ 2.8606700897216797e-01 -2.9152700304985046e-01
+ <_>
+
+ 0 -1 2171 -1.5333999879658222e-02
+
+ -5.7414501905441284e-01 2.3063300549983978e-01
+ <_>
+
+ 0 -1 2172 -1.0239000432193279e-02
+
+ 3.4479200839996338e-01 -2.6080399751663208e-01
+ <_>
+
+ 0 -1 2173 -5.0988998264074326e-02
+
+ 5.6154102087020874e-01 6.1218999326229095e-02
+ <_>
+
+ 0 -1 2174 3.0689999461174011e-02
+
+ -1.4772799611091614e-01 1.6378489732742310e+00
+ <_>
+
+ 0 -1 2175 -1.1223999783396721e-02
+
+ 2.4006199836730957e-01 -4.4864898920059204e-01
+ <_>
+
+ 0 -1 2176 -6.2899999320507050e-03
+
+ 4.3119499087333679e-01 -2.3808999359607697e-01
+ <_>
+
+ 0 -1 2177 7.8590996563434601e-02
+
+ 1.9865000620484352e-02 8.0853801965713501e-01
+ <_>
+
+ 0 -1 2178 -1.0178999975323677e-02
+
+ 1.8193200230598450e-01 -3.2877799868583679e-01
+ <_>
+
+ 0 -1 2179 3.1227000057697296e-02
+
+ 1.4973899722099304e-01 -1.4180339574813843e+00
+ <_>
+
+ 0 -1 2180 4.0196999907493591e-02
+
+ -1.9760499894618988e-01 5.8508199453353882e-01
+ <_>
+
+ 0 -1 2181 1.6138000413775444e-02
+
+ 5.0000002374872565e-04 3.9050000905990601e-01
+ <_>
+
+ 0 -1 2182 -4.5519001781940460e-02
+
+ 1.2646820545196533e+00 -1.5632599592208862e-01
+ <_>
+
+ 0 -1 2183 -1.8130000680685043e-02
+
+ 6.5148502588272095e-01 1.0235999710857868e-02
+ <_>
+
+ 0 -1 2184 -1.4001999981701374e-02
+
+ -1.0344820022583008e+00 -3.2182998955249786e-02
+ <_>
+
+ 0 -1 2185 -3.8816001266241074e-02
+
+ -4.7874298691749573e-01 1.6290700435638428e-01
+ <_>
+
+ 0 -1 2186 3.1656000763177872e-02
+
+ -2.0983399450778961e-01 5.4575902223587036e-01
+ <_>
+
+ 0 -1 2187 -1.0839999653398991e-02
+
+ 5.1898801326751709e-01 -1.5080000273883343e-02
+ <_>
+
+ 0 -1 2188 1.2032999657094479e-02
+
+ -2.1107600629329681e-01 7.5937002897262573e-01
+ <_>
+
+ 0 -1 2189 7.0772998034954071e-02
+
+ 1.8048800528049469e-01 -7.4048501253128052e-01
+ <_>
+
+ 0 -1 2190 5.3139799833297729e-01
+
+ -1.4491699635982513e-01 1.5360039472579956e+00
+ <_>
+
+ 0 -1 2191 -1.4774000272154808e-02
+
+ -2.8153699636459351e-01 2.0407299697399139e-01
+ <_>
+
+ 0 -1 2192 -2.2410000674426556e-03
+
+ -4.4876301288604736e-01 5.3989000618457794e-02
+ <_>
+
+ 0 -1 2193 4.9968000501394272e-02
+
+ 4.1514001786708832e-02 2.9417100548744202e-01
+ <_>
+
+ 0 -1 2194 -4.7701999545097351e-02
+
+ 3.9674299955368042e-01 -2.8301799297332764e-01
+ <_>
+
+ 0 -1 2195 -9.1311000287532806e-02
+
+ 2.1994259357452393e+00 8.7964996695518494e-02
+ <_>
+
+ 0 -1 2196 3.8070000708103180e-02
+
+ -2.8025600314140320e-01 2.5156199932098389e-01
+ <_>
+
+ 0 -1 2197 -1.5538999810814857e-02
+
+ 3.4157499670982361e-01 1.7924999818205833e-02
+ <_>
+
+ 0 -1 2198 -1.5445999801158905e-02
+
+ 2.8680199384689331e-01 -2.5135898590087891e-01
+ <_>
+
+ 0 -1 2199 -5.7388000190258026e-02
+
+ 6.3830000162124634e-01 8.8597998023033142e-02
+ <_>
+
+ 0 -1 2200 -5.9440000914037228e-03
+
+ 7.9016998410224915e-02 -4.0774899721145630e-01
+ <_>
+
+ 0 -1 2201 -6.9968998432159424e-02
+
+ -4.4644200801849365e-01 1.7219600081443787e-01
+ <_>
+
+ 0 -1 2202 -2.5064999237656593e-02
+
+ -9.8270201683044434e-01 -3.5388000309467316e-02
+ <_>
+
+ 0 -1 2203 1.7216000705957413e-02
+
+ 2.2705900669097900e-01 -8.0550098419189453e-01
+ <_>
+
+ 0 -1 2204 -4.4279001653194427e-02
+
+ 8.3951997756958008e-01 -1.7429600656032562e-01
+ <_>
+
+ 0 -1 2205 4.3988998979330063e-02
+
+ 1.1557199805974960e-01 -1.9666889905929565e+00
+ <_>
+
+ 0 -1 2206 1.5907000750303268e-02
+
+ -3.7576001137495041e-02 -1.0311100482940674e+00
+ <_>
+
+ 0 -1 2207 -9.2754997313022614e-02
+
+ -1.3530019521713257e+00 1.2141299992799759e-01
+ <_>
+
+ 0 -1 2208 7.1037001907825470e-02
+
+ -1.7684300243854523e-01 7.4485200643539429e-01
+ <_>
+
+ 0 -1 2209 5.7762000709772110e-02
+
+ 1.2835599482059479e-01 -4.4444200396537781e-01
+ <_>
+
+ 0 -1 2210 -1.6432000324130058e-02
+
+ 8.0152702331542969e-01 -1.7491699755191803e-01
+ <_>
+
+ 0 -1 2211 2.3939000442624092e-02
+
+ 1.6144999861717224e-01 -1.2364500015974045e-01
+ <_>
+
+ 0 -1 2212 1.2636000290513039e-02
+
+ 1.5411999821662903e-01 -3.3293798565864563e-01
+ <_>
+
+ 0 -1 2213 -5.4347999393939972e-02
+
+ -1.8400700092315674e+00 1.4835999906063080e-01
+ <_>
+
+ 0 -1 2214 -1.3261999934911728e-02
+
+ -8.0838799476623535e-01 -2.7726000174880028e-02
+ <_>
+
+ 0 -1 2215 6.1340001411736012e-03
+
+ -1.3785000145435333e-01 3.2858499884605408e-01
+ <_>
+
+ 0 -1 2216 2.8991000726819038e-02
+
+ -2.5516999885439873e-02 -8.3387202024459839e-01
+ <_>
+
+ 0 -1 2217 -2.1986000239849091e-02
+
+ -7.3739999532699585e-01 1.7887100577354431e-01
+ <_>
+
+ 0 -1 2218 5.3269998170435429e-03
+
+ -4.5449298620223999e-01 6.8791002035140991e-02
+ <_>
+
+ 0 -1 2219 8.6047999560832977e-02
+
+ 2.1008500456809998e-01 -3.7808901071548462e-01
+ <_>
+
+ 0 -1 2220 -8.5549997165799141e-03
+
+ 4.0134999155998230e-01 -2.1074099838733673e-01
+ <_>
+
+ 0 -1 2221 6.7790001630783081e-03
+
+ -2.1648999303579330e-02 4.5421499013900757e-01
+ <_>
+
+ 0 -1 2222 -6.3959998078644276e-03
+
+ -4.9818599224090576e-01 7.5907997786998749e-02
+ <_>
+
+ 0 -1 2223 8.9469999074935913e-03
+
+ 1.7857700586318970e-01 -2.8454899787902832e-01
+ <_>
+
+ 0 -1 2224 3.2589999027550220e-03
+
+ 4.6624999493360519e-02 -5.5206298828125000e-01
+ <_>
+
+ 0 -1 2225 4.1476998478174210e-02
+
+ 1.7550499737262726e-01 -2.0703999698162079e-01
+ <_>
+
+ 0 -1 2226 -6.7449999041855335e-03
+
+ -4.6392598748207092e-01 6.9303996860980988e-02
+ <_>
+
+ 0 -1 2227 3.0564999207854271e-02
+
+ 5.1734998822212219e-02 7.5550502538681030e-01
+ <_>
+
+ 0 -1 2228 -7.4780001305043697e-03
+
+ 1.4893899857997894e-01 -3.1906801462173462e-01
+ <_>
+
+ 0 -1 2229 8.9088998734951019e-02
+
+ 1.3738800585269928e-01 -1.1379710435867310e+00
+ <_>
+
+ 0 -1 2230 7.3230001144111156e-03
+
+ -2.8829199075698853e-01 1.9088600575923920e-01
+ <_>
+
+ 0 -1 2231 -1.8205000087618828e-02
+
+ -3.0178600549697876e-01 1.6795800626277924e-01
+ <_>
+
+ 0 -1 2232 -2.5828000158071518e-02
+
+ -9.8137998580932617e-01 -1.9860999658703804e-02
+ <_>
+
+ 0 -1 2233 1.0936199873685837e-01
+
+ 4.8790000379085541e-02 5.3118300437927246e-01
+ <_>
+
+ 0 -1 2234 -1.1424999684095383e-02
+
+ 2.3705999553203583e-01 -2.7925300598144531e-01
+ <_>
+
+ 0 -1 2235 -5.7565998286008835e-02
+
+ 4.7255399823188782e-01 6.5171003341674805e-02
+ <_>
+
+ 0 -1 2236 1.0278300195932388e-01
+
+ -2.0765100419521332e-01 5.0947701930999756e-01
+ <_>
+
+ 0 -1 2237 2.7041999623179436e-02
+
+ 1.6421200335025787e-01 -1.4508620500564575e+00
+ <_>
+
+ 0 -1 2238 -1.3635000213980675e-02
+
+ -5.6543898582458496e-01 2.3788999766111374e-02
+ <_>
+
+ 0 -1 2239 -3.2158198952674866e-01
+
+ -3.5602829456329346e+00 1.1801300197839737e-01
+ <_>
+
+ 0 -1 2240 2.0458100736141205e-01
+
+ -3.7016000598669052e-02 -1.0225499868392944e+00
+ <_>
+
+ 0 -1 2241 -7.0347003638744354e-02
+
+ -5.6491899490356445e-01 1.8525199592113495e-01
+ <_>
+
+ 0 -1 2242 3.7831000983715057e-02
+
+ -2.9901999980211258e-02 -8.2921499013900757e-01
+ <_>
+
+ 0 -1 2243 -7.0298001170158386e-02
+
+ -5.3172302246093750e-01 1.4430199563503265e-01
+ <_>
+
+ 0 -1 2244 6.3221000134944916e-02
+
+ -2.2041200101375580e-01 4.7952198982238770e-01
+ <_>
+
+ 0 -1 2245 3.6393001675605774e-02
+
+ 1.4222699403762817e-01 -6.1193901300430298e-01
+ <_>
+
+ 0 -1 2246 4.0099998004734516e-03
+
+ -3.4560799598693848e-01 1.1738699674606323e-01
+ <_>
+
+ 0 -1 2247 -4.9106001853942871e-02
+
+ 9.5984101295471191e-01 6.4934998750686646e-02
+ <_>
+
+ 0 -1 2248 -7.1583002805709839e-02
+
+ 1.7385669946670532e+00 -1.4252899587154388e-01
+ <_>
+
+ 0 -1 2249 -3.8008999079465866e-02
+
+ 1.3872820138931274e+00 6.6188000142574310e-02
+ <_>
+
+ 0 -1 2250 -3.1570000573992729e-03
+
+ 5.3677000105381012e-02 -5.4048001766204834e-01
+ <_>
+
+ 0 -1 2251 1.9458999857306480e-02
+
+ -9.3620002269744873e-02 3.9131000638008118e-01
+ <_>
+
+ 0 -1 2252 1.1293999850749969e-02
+
+ 3.7223998457193375e-02 -5.4251801967620850e-01
+ <_>
+
+ 0 -1 2253 -3.3495001494884491e-02
+
+ 9.5307898521423340e-01 3.7696998566389084e-02
+ <_>
+
+ 0 -1 2254 9.2035003006458282e-02
+
+ -1.3488399982452393e-01 2.2897069454193115e+00
+ <_>
+
+ 0 -1 2255 3.7529999390244484e-03
+
+ 2.2824199497699738e-01 -5.9983700513839722e-01
+ <_>
+
+ 0 -1 2256 1.2848000042140484e-02
+
+ -2.2005200386047363e-01 3.7221899628639221e-01
+ <_>
+
+ 0 -1 2257 -1.4316199719905853e-01
+
+ 1.2855789661407471e+00 4.7237001359462738e-02
+ <_>
+
+ 0 -1 2258 -9.6879996359348297e-02
+
+ -3.9550929069519043e+00 -7.2903998196125031e-02
+ <_>
+
+ 0 -1 2259 -8.8459998369216919e-03
+
+ 3.7674999237060547e-01 -4.6484000980854034e-02
+ <_>
+
+ 0 -1 2260 1.5900000929832458e-02
+
+ -2.4457000195980072e-02 -8.0034798383712769e-01
+ <_>
+
+ 0 -1 2261 7.0372000336647034e-02
+
+ 1.7019000649452209e-01 -6.3068997859954834e-01
+ <_>
+
+ 0 -1 2262 -3.7953998893499374e-02
+
+ -9.3667197227478027e-01 -4.1214000433683395e-02
+ <_>
+
+ 0 -1 2263 5.1597899198532104e-01
+
+ 1.3080599904060364e-01 -1.5802290439605713e+00
+ <_>
+
+ 0 -1 2264 -3.2843001186847687e-02
+
+ -1.1441620588302612e+00 -4.9173999577760696e-02
+ <_>
+
+ 0 -1 2265 -3.6357000470161438e-02
+
+ 4.9606400728225708e-01 -3.4458998590707779e-02
+ <_>
+
+ 0 -1 2266 6.8080001510679722e-03
+
+ -3.0997800827026367e-01 1.7054800689220428e-01
+ <_>
+
+ 0 -1 2267 -1.6114000231027603e-02
+
+ -3.7904599308967590e-01 1.6078999638557434e-01
+ <_>
+
+ 0 -1 2268 8.4530003368854523e-03
+
+ -1.8655499815940857e-01 5.6367701292037964e-01
+ <_>
+
+ 0 -1 2269 -1.3752399384975433e-01
+
+ -5.8989900350570679e-01 1.1749500036239624e-01
+ <_>
+
+ 0 -1 2270 1.7688000202178955e-01
+
+ -1.5424899756908417e-01 9.2911100387573242e-01
+ <_>
+
+ 0 -1 2271 7.9309996217489243e-03
+
+ 3.2190701365470886e-01 -1.6392600536346436e-01
+ <_>
+
+ 0 -1 2272 1.0971800237894058e-01
+
+ -1.5876500308513641e-01 1.0186259746551514e+00
+ <_>
+
+ 0 -1 2273 -3.0293000862002373e-02
+
+ 7.5587302446365356e-01 3.1794998794794083e-02
+ <_>
+
+ 0 -1 2274 -2.3118000477552414e-02
+
+ -8.8451498746871948e-01 -9.5039997249841690e-03
+ <_>
+
+ 0 -1 2275 -3.0900000128895044e-03
+
+ 2.3838299512863159e-01 -1.1606200039386749e-01
+ <_>
+
+ 0 -1 2276 -3.3392000943422318e-02
+
+ -1.8738139867782593e+00 -6.8502999842166901e-02
+ <_>
+
+ 0 -1 2277 1.3190000317990780e-02
+
+ 1.2919899821281433e-01 -6.7512202262878418e-01
+ <_>
+
+ 0 -1 2278 1.4661000110208988e-02
+
+ -2.4829000234603882e-02 -7.4396800994873047e-01
+ <_>
+
+ 0 -1 2279 -1.3248000293970108e-02
+
+ 4.6820199489593506e-01 -2.4165000766515732e-02
+ <_>
+
+ 0 -1 2280 -1.6218999400734901e-02
+
+ 4.0083798766136169e-01 -2.1255700290203094e-01
+ <_>
+
+ 0 -1 2281 -2.9052000492811203e-02
+
+ -1.5650019645690918e+00 1.4375899732112885e-01
+ <_>
+
+ 0 -1 2282 -1.0153199732303619e-01
+
+ -1.9220689535140991e+00 -6.9559998810291290e-02
+ <_>
+
+ 0 -1 2283 3.7753999233245850e-02
+
+ 1.3396799564361572e-01 -2.2639141082763672e+00
+ <_>
+
+ 0 -1 2284 -2.8555598855018616e-01
+
+ 1.0215270519256592e+00 -1.5232199430465698e-01
+ <_>
+
+ 0 -1 2285 1.5360699594020844e-01
+
+ -9.7409002482891083e-02 4.1662400960922241e-01
+ <_>
+
+ 0 -1 2286 -2.1199999901000410e-04
+
+ 1.1271899938583374e-01 -4.1653999686241150e-01
+ <_>
+
+ 0 -1 2287 -2.0597999915480614e-02
+
+ 6.0540497303009033e-01 6.2467999756336212e-02
+ <_>
+
+ 0 -1 2288 3.7353999912738800e-02
+
+ -1.8919000029563904e-01 4.6464699506759644e-01
+ <_>
+
+ 0 -1 2289 5.7275000959634781e-02
+
+ 1.1565300077199936e-01 -1.3213009834289551e+00
+ <_>
+
+ 0 -1 2290 5.1029999740421772e-03
+
+ -2.8061500191688538e-01 1.9313399493694305e-01
+ <_>
+
+ 0 -1 2291 -5.4644998162984848e-02
+
+ 7.2428500652313232e-01 7.5447998940944672e-02
+ <_>
+
+ 0 -1 2292 2.5349000468850136e-02
+
+ -1.9481800496578217e-01 4.6032801270484924e-01
+ <_>
+
+ 0 -1 2293 2.4311000481247902e-02
+
+ 1.5564100444316864e-01 -4.9913901090621948e-01
+ <_>
+
+ 0 -1 2294 3.5962000489234924e-02
+
+ -5.8573000133037567e-02 -1.5418399572372437e+00
+ <_>
+
+ 0 -1 2295 -1.0000699758529663e-01
+
+ -1.6100039482116699e+00 1.1450500041246414e-01
+ <_>
+
+ 0 -1 2296 8.4435999393463135e-02
+
+ -6.1406999826431274e-02 -1.4673349857330322e+00
+ <_>
+
+ 0 -1 2297 1.5947999432682991e-02
+
+ 1.6287900507450104e-01 -1.1026400327682495e-01
+ <_>
+
+ 0 -1 2298 3.3824000507593155e-02
+
+ -1.7932699620723724e-01 5.7218402624130249e-01
+ <_>
+
+ 0 -1 2299 -6.1996001750230789e-02
+
+ 4.6511812210083008e+00 9.4534002244472504e-02
+ <_>
+
+ 0 -1 2300 6.9876998662948608e-02
+
+ -1.6985900700092316e-01 8.7028998136520386e-01
+ <_>
+
+ 0 -1 2301 -2.7916999533772469e-02
+
+ 9.1042500734329224e-01 5.6827001273632050e-02
+ <_>
+
+ 0 -1 2302 -1.2764000333845615e-02
+
+ 2.2066700458526611e-01 -2.7769100666046143e-01
+ <_>
+ 199
+ -3.2573320865631104e+00
+
+ <_>
+
+ 0 -1 2303 2.1662000566720963e-02
+
+ -8.9868897199630737e-01 2.9436299204826355e-01
+ <_>
+
+ 0 -1 2304 1.0044500231742859e-01
+
+ -3.7659201025962830e-01 6.0891002416610718e-01
+ <_>
+
+ 0 -1 2305 2.6003999635577202e-02
+
+ -3.8128501176834106e-01 3.9217400550842285e-01
+ <_>
+
+ 0 -1 2306 2.8441000729799271e-02
+
+ -1.8182300031185150e-01 5.8927202224731445e-01
+ <_>
+
+ 0 -1 2307 3.8612000644207001e-02
+
+ -2.2399599850177765e-01 6.3779997825622559e-01
+ <_>
+
+ 0 -1 2308 -4.6594999730587006e-02
+
+ 7.0812201499938965e-01 -1.4666199684143066e-01
+ <_>
+
+ 0 -1 2309 -4.2791999876499176e-02
+
+ 4.7680398821830750e-01 -2.9233199357986450e-01
+ <_>
+
+ 0 -1 2310 3.7960000336170197e-03
+
+ -1.8510299921035767e-01 5.2626699209213257e-01
+ <_>
+
+ 0 -1 2311 4.2348999530076981e-02
+
+ 3.9244998246431351e-02 -8.9197701215744019e-01
+ <_>
+
+ 0 -1 2312 1.9598999992012978e-02
+
+ -2.3358400166034698e-01 4.4146499037742615e-01
+ <_>
+
+ 0 -1 2313 8.7400001939386129e-04
+
+ -4.6063598990440369e-01 1.7689600586891174e-01
+ <_>
+
+ 0 -1 2314 -4.3629999272525311e-03
+
+ 3.3493199944496155e-01 -2.9893401265144348e-01
+ <_>
+
+ 0 -1 2315 1.6973000019788742e-02
+
+ -1.6408699750900269e-01 1.5993679761886597e+00
+ <_>
+
+ 0 -1 2316 3.6063998937606812e-02
+
+ 2.2601699829101562e-01 -5.3186100721359253e-01
+ <_>
+
+ 0 -1 2317 -7.0864997804164886e-02
+
+ 1.5220500528812408e-01 -4.1914600133895874e-01
+ <_>
+
+ 0 -1 2318 -6.3075996935367584e-02
+
+ -1.4874019622802734e+00 1.2953700125217438e-01
+ <_>
+
+ 0 -1 2319 2.9670000076293945e-02
+
+ -1.9145900011062622e-01 9.8184901475906372e-01
+ <_>
+
+ 0 -1 2320 3.7873998284339905e-02
+
+ 1.3459500670433044e-01 -5.6316298246383667e-01
+ <_>
+
+ 0 -1 2321 -3.3289000391960144e-02
+
+ -1.0828030109405518e+00 -1.1504000052809715e-02
+ <_>
+
+ 0 -1 2322 -3.1608998775482178e-02
+
+ -5.9224498271942139e-01 1.3394799828529358e-01
+ <_>
+
+ 0 -1 2323 1.0740000288933516e-03
+
+ -4.9185800552368164e-01 9.4446003437042236e-02
+ <_>
+
+ 0 -1 2324 -7.1556001901626587e-02
+
+ 5.9710198640823364e-01 -3.9553001523017883e-02
+ <_>
+
+ 0 -1 2325 -8.1170000135898590e-02
+
+ -1.1817820072174072e+00 -2.8254000470042229e-02
+ <_>
+
+ 0 -1 2326 4.4860001653432846e-03
+
+ -6.1028099060058594e-01 2.2619099915027618e-01
+ <_>
+
+ 0 -1 2327 -4.2176000773906708e-02
+
+ -1.1435619592666626e+00 -2.9001999646425247e-02
+ <_>
+
+ 0 -1 2328 -6.5640002489089966e-02
+
+ -1.6470279693603516e+00 1.2810300290584564e-01
+ <_>
+
+ 0 -1 2329 1.8188999965786934e-02
+
+ -3.1149399280548096e-01 2.5739601254463196e-01
+ <_>
+
+ 0 -1 2330 -5.1520001143217087e-02
+
+ -6.9206899404525757e-01 1.5270799398422241e-01
+ <_>
+
+ 0 -1 2331 -4.7150999307632446e-02
+
+ -7.1868300437927246e-01 2.6879999786615372e-03
+ <_>
+
+ 0 -1 2332 1.7488999292254448e-02
+
+ 2.2371199727058411e-01 -5.5381798744201660e-01
+ <_>
+
+ 0 -1 2333 -2.5264000520110130e-02
+
+ 1.0319819450378418e+00 -1.7496499419212341e-01
+ <_>
+
+ 0 -1 2334 -4.0745001286268234e-02
+
+ 4.4961598515510559e-01 3.9349000900983810e-02
+ <_>
+
+ 0 -1 2335 -3.7666998803615570e-02
+
+ -8.5475701093673706e-01 -1.2463999912142754e-02
+ <_>
+
+ 0 -1 2336 -1.3411000370979309e-02
+
+ 5.7845598459243774e-01 -1.7467999830842018e-02
+ <_>
+
+ 0 -1 2337 -7.8999997640494257e-05
+
+ -3.7749201059341431e-01 1.3961799442768097e-01
+ <_>
+
+ 0 -1 2338 -1.1415000073611736e-02
+
+ -2.6186600327491760e-01 2.3712499439716339e-01
+ <_>
+
+ 0 -1 2339 3.7200000137090683e-02
+
+ -2.8626000508666039e-02 -1.2945239543914795e+00
+ <_>
+
+ 0 -1 2340 3.4050000831484795e-03
+
+ 2.0531399548053741e-01 -1.8747499585151672e-01
+ <_>
+
+ 0 -1 2341 -2.2483000531792641e-02
+
+ 6.7027199268341064e-01 -1.9594000279903412e-01
+ <_>
+
+ 0 -1 2342 2.3274999111890793e-02
+
+ 1.7405399680137634e-01 -3.2746300101280212e-01
+ <_>
+
+ 0 -1 2343 -1.3917000032961369e-02
+
+ -8.3954298496246338e-01 -6.3760001212358475e-03
+ <_>
+
+ 0 -1 2344 7.5429999269545078e-03
+
+ -3.4194998443126678e-02 5.8998197317123413e-01
+ <_>
+
+ 0 -1 2345 -1.1539000086486340e-02
+
+ 4.2142799496650696e-01 -2.3510499298572540e-01
+ <_>
+
+ 0 -1 2346 5.2501998841762543e-02
+
+ 6.9303996860980988e-02 7.3226499557495117e-01
+ <_>
+
+ 0 -1 2347 5.2715998142957687e-02
+
+ -1.5688100457191467e-01 1.0907289981842041e+00
+ <_>
+
+ 0 -1 2348 -1.1726000346243382e-02
+
+ -7.0934301614761353e-01 1.6828800737857819e-01
+ <_>
+
+ 0 -1 2349 9.5945999026298523e-02
+
+ -1.6192899644374847e-01 1.0072519779205322e+00
+ <_>
+
+ 0 -1 2350 -1.5871999785304070e-02
+
+ 3.9008399844169617e-01 -5.3777001798152924e-02
+ <_>
+
+ 0 -1 2351 3.4818001091480255e-02
+
+ 1.7179999500513077e-02 -9.3941801786422729e-01
+ <_>
+
+ 0 -1 2352 3.4791998565196991e-02
+
+ 5.0462998449802399e-02 5.4465699195861816e-01
+ <_>
+
+ 0 -1 2353 1.6284000128507614e-02
+
+ -2.6981300115585327e-01 4.0365299582481384e-01
+ <_>
+
+ 0 -1 2354 -4.4319000095129013e-02
+
+ 8.4399998188018799e-01 3.2882999628782272e-02
+ <_>
+
+ 0 -1 2355 -5.5689997971057892e-03
+
+ 1.5309399366378784e-01 -3.4959799051284790e-01
+ <_>
+
+ 0 -1 2356 -6.5842002630233765e-02
+
+ -9.2711198329925537e-01 1.6800999641418457e-01
+ <_>
+
+ 0 -1 2357 -7.3337003588676453e-02
+
+ 5.1614499092102051e-01 -2.0236000418663025e-01
+ <_>
+
+ 0 -1 2358 1.6450000926852226e-02
+
+ 1.3950599730014801e-01 -4.9301299452781677e-01
+ <_>
+
+ 0 -1 2359 -9.2630004510283470e-03
+
+ -9.0101999044418335e-01 -1.6116000711917877e-02
+ <_>
+
+ 0 -1 2360 5.9139998629689217e-03
+
+ 1.9858199357986450e-01 -1.6731299459934235e-01
+ <_>
+
+ 0 -1 2361 -8.4699998842552304e-04
+
+ 9.4005003571510315e-02 -4.1570898890495300e-01
+ <_>
+
+ 0 -1 2362 2.0532900094985962e-01
+
+ -6.0022000223398209e-02 7.0993602275848389e-01
+ <_>
+
+ 0 -1 2363 -1.6883000731468201e-02
+
+ 2.4392199516296387e-01 -3.0551800131797791e-01
+ <_>
+
+ 0 -1 2364 -1.9111000001430511e-02
+
+ 6.1229902505874634e-01 2.4252999573945999e-02
+ <_>
+
+ 0 -1 2365 -2.5962999090552330e-02
+
+ 9.0764999389648438e-01 -1.6722099483013153e-01
+ <_>
+
+ 0 -1 2366 -2.1762000396847725e-02
+
+ -3.1384700536727905e-01 2.0134599506855011e-01
+ <_>
+
+ 0 -1 2367 -2.4119999259710312e-02
+
+ -6.6588401794433594e-01 7.4559999629855156e-03
+ <_>
+
+ 0 -1 2368 4.7129999846220016e-02
+
+ 5.9533998370170593e-02 8.7804502248764038e-01
+ <_>
+
+ 0 -1 2369 -4.5984998345375061e-02
+
+ 8.0067998170852661e-01 -1.7252300679683685e-01
+ <_>
+
+ 0 -1 2370 2.6507999747991562e-02
+
+ 1.8774099647998810e-01 -6.0850602388381958e-01
+ <_>
+
+ 0 -1 2371 -4.8615001142024994e-02
+
+ 5.8644098043441772e-01 -1.9427700340747833e-01
+ <_>
+
+ 0 -1 2372 -1.8562000244855881e-02
+
+ -2.5587901473045349e-01 1.6326199471950531e-01
+ <_>
+
+ 0 -1 2373 1.2678000144660473e-02
+
+ -1.4228000305593014e-02 -7.6738101243972778e-01
+ <_>
+
+ 0 -1 2374 -1.1919999960809946e-03
+
+ 2.0495000481605530e-01 -1.1404299736022949e-01
+ <_>
+
+ 0 -1 2375 -4.9088999629020691e-02
+
+ -1.0740849971771240e+00 -3.8940999656915665e-02
+ <_>
+
+ 0 -1 2376 -1.7436999827623367e-02
+
+ -5.7973802089691162e-01 1.8584500253200531e-01
+ <_>
+
+ 0 -1 2377 -1.4770000241696835e-02
+
+ -6.6150301694869995e-01 5.3119999356567860e-03
+ <_>
+
+ 0 -1 2378 -2.2905200719833374e-01
+
+ -4.8305100202560425e-01 1.2326399981975555e-01
+ <_>
+
+ 0 -1 2379 -1.2707099318504333e-01
+
+ 5.7452601194381714e-01 -1.9420400261878967e-01
+ <_>
+
+ 0 -1 2380 1.0339000262320042e-02
+
+ -5.4641999304294586e-02 2.4501800537109375e-01
+ <_>
+
+ 0 -1 2381 6.9010001607239246e-03
+
+ 1.2180600315332413e-01 -3.8797399401664734e-01
+ <_>
+
+ 0 -1 2382 2.9025399684906006e-01
+
+ 1.0966199636459351e-01 -30.
+ <_>
+
+ 0 -1 2383 -2.3804999887943268e-01
+
+ -1.7352679967880249e+00 -6.3809998333454132e-02
+ <_>
+
+ 0 -1 2384 6.2481001019477844e-02
+
+ 1.3523000478744507e-01 -7.0301097631454468e-01
+ <_>
+
+ 0 -1 2385 4.7109997831285000e-03
+
+ -4.6984100341796875e-01 6.0341998934745789e-02
+ <_>
+
+ 0 -1 2386 -2.7815999463200569e-02
+
+ 6.9807600975036621e-01 1.3719999697059393e-03
+ <_>
+
+ 0 -1 2387 -1.7020000144839287e-02
+
+ 1.6870440244674683e+00 -1.4314800500869751e-01
+ <_>
+
+ 0 -1 2388 -4.9754999577999115e-02
+
+ 7.9497700929641724e-01 7.7199999941512942e-04
+ <_>
+
+ 0 -1 2389 -7.4732996523380280e-02
+
+ -1.0132360458374023e+00 -1.9388999789953232e-02
+ <_>
+
+ 0 -1 2390 3.2009001821279526e-02
+
+ 1.4412100613117218e-01 -4.2139101028442383e-01
+ <_>
+
+ 0 -1 2391 -9.4463996589183807e-02
+
+ 5.0682598352432251e-01 -2.0478899776935577e-01
+ <_>
+
+ 0 -1 2392 -1.5426999889314175e-02
+
+ -1.5811300277709961e-01 1.7806899547576904e-01
+ <_>
+
+ 0 -1 2393 -4.0540001355111599e-03
+
+ -5.4366701841354370e-01 3.1235000118613243e-02
+ <_>
+
+ 0 -1 2394 3.0080000869929790e-03
+
+ -1.7376799881458282e-01 3.0441701412200928e-01
+ <_>
+
+ 0 -1 2395 -1.0091999545693398e-02
+
+ 2.5103801488876343e-01 -2.6224100589752197e-01
+ <_>
+
+ 0 -1 2396 -3.8818001747131348e-02
+
+ 9.3226701021194458e-01 7.2659999132156372e-02
+ <_>
+
+ 0 -1 2397 3.4651998430490494e-02
+
+ -3.3934999257326126e-02 -8.5707902908325195e-01
+ <_>
+
+ 0 -1 2398 -4.6729999594390392e-03
+
+ 3.4969300031661987e-01 -4.8517998307943344e-02
+ <_>
+
+ 0 -1 2399 6.8499997723847628e-04
+
+ 6.6573001444339752e-02 -4.4973799586296082e-01
+ <_>
+
+ 0 -1 2400 3.5317000001668930e-02
+
+ 1.4275799691677094e-01 -4.6726399660110474e-01
+ <_>
+
+ 0 -1 2401 -2.3569999262690544e-02
+
+ -1.0286079645156860e+00 -4.5288000255823135e-02
+ <_>
+
+ 0 -1 2402 -1.9109999993816018e-03
+
+ -1.9652199745178223e-01 2.8661000728607178e-01
+ <_>
+
+ 0 -1 2403 -1.6659000888466835e-02
+
+ -7.7532202005386353e-01 -8.3280000835657120e-03
+ <_>
+
+ 0 -1 2404 6.6062200069427490e-01
+
+ 1.3232499361038208e-01 -3.5266680717468262e+00
+ <_>
+
+ 0 -1 2405 1.0970599949359894e-01
+
+ -1.5547199547290802e-01 1.4674140214920044e+00
+ <_>
+
+ 0 -1 2406 1.3500999659299850e-02
+
+ 1.5233400464057922e-01 -1.3020930290222168e+00
+ <_>
+
+ 0 -1 2407 -2.2871999070048332e-02
+
+ -7.1325999498367310e-01 -8.7040001526474953e-03
+ <_>
+
+ 0 -1 2408 -8.1821002066135406e-02
+
+ 1.1127580404281616e+00 8.3219997584819794e-02
+ <_>
+
+ 0 -1 2409 -5.2728001028299332e-02
+
+ 9.3165099620819092e-01 -1.7103999853134155e-01
+ <_>
+
+ 0 -1 2410 -2.5242000818252563e-02
+
+ -1.9733799993991852e-01 2.5359401106834412e-01
+ <_>
+
+ 0 -1 2411 -4.3818999081850052e-02
+
+ 4.1815200448036194e-01 -2.4585500359535217e-01
+ <_>
+
+ 0 -1 2412 -1.8188999965786934e-02
+
+ -5.1743197441101074e-01 2.0174199342727661e-01
+ <_>
+
+ 0 -1 2413 2.3466000333428383e-02
+
+ -4.3071001768112183e-02 -1.0636579990386963e+00
+ <_>
+
+ 0 -1 2414 3.4216001629829407e-02
+
+ 5.3780999034643173e-02 4.9707201123237610e-01
+ <_>
+
+ 0 -1 2415 2.5692999362945557e-02
+
+ -2.3800100386142731e-01 4.1651499271392822e-01
+ <_>
+
+ 0 -1 2416 -2.6565000414848328e-02
+
+ -8.8574802875518799e-01 1.3365900516510010e-01
+ <_>
+
+ 0 -1 2417 6.0942001640796661e-02
+
+ -2.0669700205326080e-01 5.8309000730514526e-01
+ <_>
+
+ 0 -1 2418 1.4474500715732574e-01
+
+ 1.3282300531864166e-01 -3.1449348926544189e+00
+ <_>
+
+ 0 -1 2419 5.3410999476909637e-02
+
+ -1.7325200140476227e-01 6.9190698862075806e-01
+ <_>
+
+ 0 -1 2420 1.1408000253140926e-02
+
+ 5.4822001606225967e-02 3.0240398645401001e-01
+ <_>
+
+ 0 -1 2421 -2.3179999552667141e-03
+
+ 1.5820899605751038e-01 -3.1973201036453247e-01
+ <_>
+
+ 0 -1 2422 -2.9695000499486923e-02
+
+ 7.1274799108505249e-01 5.8136001229286194e-02
+ <_>
+
+ 0 -1 2423 2.7249999344348907e-02
+
+ -1.5754100680351257e-01 9.2143797874450684e-01
+ <_>
+
+ 0 -1 2424 -3.6200000904500484e-03
+
+ -3.4548398852348328e-01 2.0220999419689178e-01
+ <_>
+
+ 0 -1 2425 -1.2578999623656273e-02
+
+ -5.5650299787521362e-01 2.0388999953866005e-02
+ <_>
+
+ 0 -1 2426 -8.8849000632762909e-02
+
+ -3.6100010871887207e+00 1.3164199888706207e-01
+ <_>
+
+ 0 -1 2427 -1.9256999716162682e-02
+
+ 5.1908999681472778e-01 -1.9284300506114960e-01
+ <_>
+
+ 0 -1 2428 -1.6666999086737633e-02
+
+ -8.7499998509883881e-02 1.5812499821186066e-01
+ <_>
+
+ 0 -1 2429 1.2931999750435352e-02
+
+ 2.7405999600887299e-02 -5.5123901367187500e-01
+ <_>
+
+ 0 -1 2430 -1.3431999832391739e-02
+
+ 2.3457799851894379e-01 -4.3235000222921371e-02
+ <_>
+
+ 0 -1 2431 1.8810000270605087e-02
+
+ -3.9680998772382736e-02 -9.4373297691345215e-01
+ <_>
+
+ 0 -1 2432 -6.4349998719990253e-03
+
+ 4.5703700184822083e-01 -4.0520001202821732e-03
+ <_>
+
+ 0 -1 2433 -2.4249000474810600e-02
+
+ -7.6248002052307129e-01 -1.9857000559568405e-02
+ <_>
+
+ 0 -1 2434 -2.9667999595403671e-02
+
+ -3.7412509918212891e+00 1.1250600218772888e-01
+ <_>
+
+ 0 -1 2435 5.1150000654160976e-03
+
+ -6.3781797885894775e-01 1.1223999783396721e-02
+ <_>
+
+ 0 -1 2436 -5.7819997891783714e-03
+
+ 1.9374400377273560e-01 -8.2042001187801361e-02
+ <_>
+
+ 0 -1 2437 1.6606999561190605e-02
+
+ -1.6192099452018738e-01 1.1334990262985229e+00
+ <_>
+
+ 0 -1 2438 3.8228001445531845e-02
+
+ 2.1105000749230385e-02 7.6264202594757080e-01
+ <_>
+
+ 0 -1 2439 -5.7094000279903412e-02
+
+ -1.6974929571151733e+00 -5.9762001037597656e-02
+ <_>
+
+ 0 -1 2440 -5.3883001208305359e-02
+
+ 1.1850190162658691e+00 9.0966999530792236e-02
+ <_>
+
+ 0 -1 2441 -2.6110000908374786e-03
+
+ -4.0941199660301208e-01 8.3820998668670654e-02
+ <_>
+
+ 0 -1 2442 2.9714399576187134e-01
+
+ 1.5529899299144745e-01 -1.0995409488677979e+00
+ <_>
+
+ 0 -1 2443 -8.9063003659248352e-02
+
+ 4.8947200179100037e-01 -2.0041200518608093e-01
+ <_>
+
+ 0 -1 2444 -5.6193001568317413e-02
+
+ -2.4581399559974670e-01 1.4365500211715698e-01
+ <_>
+
+ 0 -1 2445 3.7004999816417694e-02
+
+ -4.8168998211622238e-02 -1.2310709953308105e+00
+ <_>
+
+ 0 -1 2446 -8.4840003401041031e-03
+
+ 4.3372601270675659e-01 1.3779999688267708e-02
+ <_>
+
+ 0 -1 2447 -2.4379999376833439e-03
+
+ 1.8949699401855469e-01 -3.2294198870658875e-01
+ <_>
+
+ 0 -1 2448 -7.1639999747276306e-02
+
+ -4.3979001045227051e-01 2.2730199992656708e-01
+ <_>
+
+ 0 -1 2449 5.2260002121329308e-03
+
+ -2.0548400282859802e-01 5.0933301448822021e-01
+ <_>
+
+ 0 -1 2450 -6.1360001564025879e-03
+
+ 3.1157198548316956e-01 7.0680998265743256e-02
+ <_>
+
+ 0 -1 2451 1.5595000237226486e-02
+
+ -3.0934798717498779e-01 1.5627700090408325e-01
+ <_>
+
+ 0 -1 2452 2.5995999574661255e-02
+
+ 1.3821600377559662e-01 -1.7616599798202515e-01
+ <_>
+
+ 0 -1 2453 -1.2085000053048134e-02
+
+ -5.1070201396942139e-01 5.8440998196601868e-02
+ <_>
+
+ 0 -1 2454 -6.7836001515388489e-02
+
+ 4.7757101058959961e-01 -7.1446001529693604e-02
+ <_>
+
+ 0 -1 2455 -1.4715000055730343e-02
+
+ 4.5238900184631348e-01 -1.9861400127410889e-01
+ <_>
+
+ 0 -1 2456 2.5118999183177948e-02
+
+ 1.2954899668693542e-01 -8.6266398429870605e-01
+ <_>
+
+ 0 -1 2457 1.8826000392436981e-02
+
+ -4.1570000350475311e-02 -1.1354700326919556e+00
+ <_>
+
+ 0 -1 2458 -2.1263999864459038e-02
+
+ -3.4738001227378845e-01 1.5779499709606171e-01
+ <_>
+
+ 0 -1 2459 9.4609996303915977e-03
+
+ 4.8639997839927673e-03 -6.1654800176620483e-01
+ <_>
+
+ 0 -1 2460 2.2957700490951538e-01
+
+ 8.1372998654842377e-02 6.9841402769088745e-01
+ <_>
+
+ 0 -1 2461 -3.8061998784542084e-02
+
+ 1.1616369485855103e+00 -1.4976699650287628e-01
+ <_>
+
+ 0 -1 2462 -1.3484999537467957e-02
+
+ -3.2036399841308594e-01 1.7365099489688873e-01
+ <_>
+
+ 0 -1 2463 3.6238998174667358e-02
+
+ -1.8158499896526337e-01 6.1956697702407837e-01
+ <_>
+
+ 0 -1 2464 6.7210001870989799e-03
+
+ 7.9600000753998756e-04 4.2441400885581970e-01
+ <_>
+
+ 0 -1 2465 9.6525996923446655e-02
+
+ -1.4696800708770752e-01 1.2525680065155029e+00
+ <_>
+
+ 0 -1 2466 -3.5656999796628952e-02
+
+ -3.9781698584556580e-01 1.4191399514675140e-01
+ <_>
+
+ 0 -1 2467 1.0772000066936016e-02
+
+ -1.8194000422954559e-01 5.9762197732925415e-01
+ <_>
+
+ 0 -1 2468 7.9279996454715729e-02
+
+ 1.4642499387264252e-01 -7.8836899995803833e-01
+ <_>
+
+ 0 -1 2469 3.2841000705957413e-02
+
+ -6.2408000230789185e-02 -1.4227490425109863e+00
+ <_>
+
+ 0 -1 2470 -2.7781000360846519e-02
+
+ 3.4033098816871643e-01 3.0670000240206718e-02
+ <_>
+
+ 0 -1 2471 -4.0339999832212925e-03
+
+ 3.1084701418876648e-01 -2.2595700621604919e-01
+ <_>
+
+ 0 -1 2472 7.4260002002120018e-03
+
+ -3.8936998695135117e-02 3.1702101230621338e-01
+ <_>
+
+ 0 -1 2473 1.1213999986648560e-01
+
+ -1.7578299343585968e-01 6.5056598186492920e-01
+ <_>
+
+ 0 -1 2474 -1.1878100037574768e-01
+
+ -1.0092990398406982e+00 1.1069700121879578e-01
+ <_>
+
+ 0 -1 2475 -4.1584998369216919e-02
+
+ -5.3806400299072266e-01 1.9905000925064087e-02
+ <_>
+
+ 0 -1 2476 -2.7966000139713287e-02
+
+ 4.8143199086189270e-01 3.3590998500585556e-02
+ <_>
+
+ 0 -1 2477 -1.2506400048732758e-01
+
+ 2.6352199912071228e-01 -2.5737899541854858e-01
+ <_>
+
+ 0 -1 2478 2.3666900396347046e-01
+
+ 3.6508001387119293e-02 9.0655601024627686e-01
+ <_>
+
+ 0 -1 2479 -2.9475999996066093e-02
+
+ -6.0048800706863403e-01 9.5880003646016121e-03
+ <_>
+
+ 0 -1 2480 3.7792999297380447e-02
+
+ 1.5506200492382050e-01 -9.5733499526977539e-01
+ <_>
+
+ 0 -1 2481 7.2044000029563904e-02
+
+ -1.4525899291038513e-01 1.3676730394363403e+00
+ <_>
+
+ 0 -1 2482 9.7759999334812164e-03
+
+ 1.2915999628603458e-02 2.1640899777412415e-01
+ <_>
+
+ 0 -1 2483 5.2154000848531723e-02
+
+ -1.6359999775886536e-02 -8.8356298208236694e-01
+ <_>
+
+ 0 -1 2484 -4.3790999799966812e-02
+
+ 3.5829600691795349e-01 6.5131001174449921e-02
+ <_>
+
+ 0 -1 2485 -3.8378998637199402e-02
+
+ 1.1961040496826172e+00 -1.4971500635147095e-01
+ <_>
+
+ 0 -1 2486 -9.8838999867439270e-02
+
+ -6.1834001541137695e-01 1.2786200642585754e-01
+ <_>
+
+ 0 -1 2487 -1.2190700322389603e-01
+
+ -1.8276120424270630e+00 -6.4862996339797974e-02
+ <_>
+
+ 0 -1 2488 -1.1981700360774994e-01
+
+ -30. 1.1323300004005432e-01
+ <_>
+
+ 0 -1 2489 3.0910000205039978e-02
+
+ -2.3934000730514526e-01 3.6332899332046509e-01
+ <_>
+
+ 0 -1 2490 1.0800999589264393e-02
+
+ -3.5140000283718109e-02 2.7707898616790771e-01
+ <_>
+
+ 0 -1 2491 5.6844998151063919e-02
+
+ -1.5524299442768097e-01 1.0802700519561768e+00
+ <_>
+
+ 0 -1 2492 1.0280000278726220e-03
+
+ -6.1202999204397202e-02 2.0508000254631042e-01
+ <_>
+
+ 0 -1 2493 -2.8273999691009521e-02
+
+ -6.4778000116348267e-01 2.3917000740766525e-02
+ <_>
+
+ 0 -1 2494 -1.6013599932193756e-01
+
+ 1.0892050266265869e+00 5.8389000594615936e-02
+ <_>
+
+ 0 -1 2495 4.9629998393356800e-03
+
+ -2.5806298851966858e-01 2.0834599435329437e-01
+ <_>
+
+ 0 -1 2496 4.6937000006437302e-02
+
+ 1.3886299729347229e-01 -1.5662620067596436e+00
+ <_>
+
+ 0 -1 2497 2.4286000058054924e-02
+
+ -2.0728300511837006e-01 5.2430999279022217e-01
+ <_>
+
+ 0 -1 2498 7.0202000439167023e-02
+
+ 1.4796899259090424e-01 -1.3095090389251709e+00
+ <_>
+
+ 0 -1 2499 9.8120002076029778e-03
+
+ 2.7906000614166260e-02 -5.0864601135253906e-01
+ <_>
+
+ 0 -1 2500 -5.6200999766588211e-02
+
+ 1.2618130445480347e+00 6.3801996409893036e-02
+ <_>
+
+ 0 -1 2501 1.0982800275087357e-01
+
+ -1.2850099802017212e-01 3.0776169300079346e+00
+ <_>
+ 211
+ -3.3703000545501709e+00
+
+ <_>
+
+ 0 -1 2502 2.0910000428557396e-02
+
+ -6.8559402227401733e-01 3.8984298706054688e-01
+ <_>
+
+ 0 -1 2503 3.5032000392675400e-02
+
+ -4.7724398970603943e-01 4.5027199387550354e-01
+ <_>
+
+ 0 -1 2504 3.9799001067876816e-02
+
+ -4.7011101245880127e-01 4.2702499032020569e-01
+ <_>
+
+ 0 -1 2505 -4.8409998416900635e-03
+
+ 2.5614300370216370e-01 -6.6556298732757568e-01
+ <_>
+
+ 0 -1 2506 2.3439999204128981e-03
+
+ -4.8083499073982239e-01 2.8013798594474792e-01
+ <_>
+
+ 0 -1 2507 2.5312999263405800e-02
+
+ -2.3948200047016144e-01 4.4191798567771912e-01
+ <_>
+
+ 0 -1 2508 -3.2193001359701157e-02
+
+ 7.6086699962615967e-01 -2.5059100985527039e-01
+ <_>
+
+ 0 -1 2509 7.5409002602100372e-02
+
+ -3.4974598884582520e-01 3.4380298852920532e-01
+ <_>
+
+ 0 -1 2510 -1.8469000235199928e-02
+
+ -7.9085600376129150e-01 3.4788001328706741e-02
+ <_>
+
+ 0 -1 2511 -1.2802000157535076e-02
+
+ 4.7107800841331482e-01 -6.0006000101566315e-02
+ <_>
+
+ 0 -1 2512 -2.6598000898957253e-02
+
+ 6.7116099596023560e-01 -2.4257500469684601e-01
+ <_>
+
+ 0 -1 2513 2.1988999098539352e-02
+
+ 2.4717499315738678e-01 -4.8301699757575989e-01
+ <_>
+
+ 0 -1 2514 1.4654099941253662e-01
+
+ -2.1504099667072296e-01 7.2055900096893311e-01
+ <_>
+
+ 0 -1 2515 3.5310001112520695e-03
+
+ 2.7930998802185059e-01 -3.4339898824691772e-01
+ <_>
+
+ 0 -1 2516 9.4010001048445702e-03
+
+ 5.5861998349428177e-02 -8.2143598794937134e-01
+ <_>
+
+ 0 -1 2517 -8.6390003561973572e-03
+
+ -9.9620598554611206e-01 1.8874999880790710e-01
+ <_>
+
+ 0 -1 2518 -3.9193000644445419e-02
+
+ -1.1945559978485107e+00 -2.9198000207543373e-02
+ <_>
+
+ 0 -1 2519 2.4855000898241997e-02
+
+ 1.4987599849700928e-01 -5.4137802124023438e-01
+ <_>
+
+ 0 -1 2520 -3.4995000809431076e-02
+
+ -1.4210180044174194e+00 -4.2314000427722931e-02
+ <_>
+
+ 0 -1 2521 -1.8378999084234238e-02
+
+ -2.8242599964141846e-01 1.5581800043582916e-01
+ <_>
+
+ 0 -1 2522 -1.3592000119388103e-02
+
+ 4.7317099571228027e-01 -2.1937200427055359e-01
+ <_>
+
+ 0 -1 2523 6.2629999592900276e-03
+
+ -5.9714000672101974e-02 6.0625898838043213e-01
+ <_>
+
+ 0 -1 2524 -1.8478000536561012e-02
+
+ -8.5647201538085938e-01 -1.3783999718725681e-02
+ <_>
+
+ 0 -1 2525 1.4236000366508961e-02
+
+ 1.6654799878597260e-01 -2.7713999152183533e-01
+ <_>
+
+ 0 -1 2526 -3.2547000795602798e-02
+
+ -1.1728240251541138e+00 -4.0185000747442245e-02
+ <_>
+
+ 0 -1 2527 -2.6410000864416361e-03
+
+ 2.6514300704002380e-01 -5.6343000382184982e-02
+ <_>
+
+ 0 -1 2528 -8.7799999164417386e-04
+
+ 3.6556001752614975e-02 -5.5075198411941528e-01
+ <_>
+
+ 0 -1 2529 4.7371998429298401e-02
+
+ -4.2614001780748367e-02 4.8194900155067444e-01
+ <_>
+
+ 0 -1 2530 -7.0790001191198826e-03
+
+ 2.8698998689651489e-01 -3.2923001050949097e-01
+ <_>
+
+ 0 -1 2531 -4.3145999312400818e-02
+
+ -1.4065419435501099e+00 1.2836399674415588e-01
+ <_>
+
+ 0 -1 2532 2.0592000335454941e-02
+
+ -2.1435299515724182e-01 5.3981798887252808e-01
+ <_>
+
+ 0 -1 2533 -2.2367000579833984e-02
+
+ 3.3718299865722656e-01 4.5212000608444214e-02
+ <_>
+
+ 0 -1 2534 5.0039999186992645e-02
+
+ -2.5121700763702393e-01 4.1750499606132507e-01
+ <_>
+
+ 0 -1 2535 6.1794999986886978e-02
+
+ 4.0084999054670334e-02 6.8779802322387695e-01
+ <_>
+
+ 0 -1 2536 -4.1861999779939651e-02
+
+ 5.3027397394180298e-01 -2.2901999950408936e-01
+ <_>
+
+ 0 -1 2537 -3.1959998887032270e-03
+
+ 2.5161498785018921e-01 -2.1514600515365601e-01
+ <_>
+
+ 0 -1 2538 2.4255000054836273e-02
+
+ 7.2320001199841499e-03 -7.2519099712371826e-01
+ <_>
+
+ 0 -1 2539 -1.7303999513387680e-02
+
+ -4.9958199262619019e-01 1.8394500017166138e-01
+ <_>
+
+ 0 -1 2540 -4.1470001451671124e-03
+
+ 8.5211999714374542e-02 -4.6364700794219971e-01
+ <_>
+
+ 0 -1 2541 -1.4369999989867210e-02
+
+ -5.2258902788162231e-01 2.3892599344253540e-01
+ <_>
+
+ 0 -1 2542 -9.0399999171495438e-03
+
+ -6.3250398635864258e-01 3.2551001757383347e-02
+ <_>
+
+ 0 -1 2543 -1.2373100221157074e-01
+
+ 1.2856210470199585e+00 7.6545000076293945e-02
+ <_>
+
+ 0 -1 2544 -8.2221999764442444e-02
+
+ 8.3208197355270386e-01 -1.8590599298477173e-01
+ <_>
+
+ 0 -1 2545 6.5659001469612122e-02
+
+ 1.1298800259828568e-01 -30.
+ <_>
+
+ 0 -1 2546 -3.1582999974489212e-02
+
+ -1.3485900163650513e+00 -4.7097001224756241e-02
+ <_>
+
+ 0 -1 2547 -7.9636000096797943e-02
+
+ -1.3533639907836914e+00 1.5668800473213196e-01
+ <_>
+
+ 0 -1 2548 -1.8880000337958336e-02
+
+ 4.0300300717353821e-01 -2.5148901343345642e-01
+ <_>
+
+ 0 -1 2549 -5.0149997696280479e-03
+
+ -2.6287099719047546e-01 1.8582500517368317e-01
+ <_>
+
+ 0 -1 2550 -1.2218000367283821e-02
+
+ 5.8692401647567749e-01 -1.9427700340747833e-01
+ <_>
+
+ 0 -1 2551 1.2710000155493617e-03
+
+ -1.6688999533653259e-01 2.3006899654865265e-01
+ <_>
+
+ 0 -1 2552 2.9743999242782593e-02
+
+ 1.2520000338554382e-02 -6.6723597049713135e-01
+ <_>
+
+ 0 -1 2553 2.8175000101327896e-02
+
+ -1.7060000449419022e-02 6.4579397439956665e-01
+ <_>
+
+ 0 -1 2554 3.0345000326633453e-02
+
+ -2.4178700149059296e-01 3.4878900647163391e-01
+ <_>
+
+ 0 -1 2555 -1.7325999215245247e-02
+
+ -5.3599399328231812e-01 2.0995999872684479e-01
+ <_>
+
+ 0 -1 2556 -8.4178000688552856e-02
+
+ 7.5093299150466919e-01 -1.7593200504779816e-01
+ <_>
+
+ 0 -1 2557 7.4950000271201134e-03
+
+ -1.6188099980354309e-01 3.0657500028610229e-01
+ <_>
+
+ 0 -1 2558 5.6494999676942825e-02
+
+ -1.7318800091743469e-01 1.0016150474548340e+00
+ <_>
+
+ 0 -1 2559 -5.2939997985959053e-03
+
+ 2.3417599499225616e-01 -6.5347000956535339e-02
+ <_>
+
+ 0 -1 2560 -1.4945000410079956e-02
+
+ 2.5018900632858276e-01 -3.0591198801994324e-01
+ <_>
+
+ 0 -1 2561 5.4919000715017319e-02
+
+ 1.3121999800205231e-01 -9.3765097856521606e-01
+ <_>
+
+ 0 -1 2562 -1.9721999764442444e-02
+
+ -8.3978497982025146e-01 -2.3473000153899193e-02
+ <_>
+
+ 0 -1 2563 -6.7158997058868408e-02
+
+ 2.3586840629577637e+00 8.2970999181270599e-02
+ <_>
+
+ 0 -1 2564 -1.4325999654829502e-02
+
+ 1.8814499676227570e-01 -3.1221601366996765e-01
+ <_>
+
+ 0 -1 2565 2.9841000214219093e-02
+
+ 1.4825099706649780e-01 -8.4681701660156250e-01
+ <_>
+
+ 0 -1 2566 5.1883000880479813e-02
+
+ -4.3731000274419785e-02 -1.3366169929504395e+00
+ <_>
+
+ 0 -1 2567 4.1127000004053116e-02
+
+ 1.7660099267959595e-01 -6.0904097557067871e-01
+ <_>
+
+ 0 -1 2568 -1.2865099310874939e-01
+
+ -9.8701000213623047e-01 -3.7785001099109650e-02
+ <_>
+
+ 0 -1 2569 2.4170000106096268e-03
+
+ -1.6119599342346191e-01 3.2675701379776001e-01
+ <_>
+
+ 0 -1 2570 7.7030002139508724e-03
+
+ -2.3841500282287598e-01 2.9319399595260620e-01
+ <_>
+
+ 0 -1 2571 4.5520000159740448e-02
+
+ 1.4424599707126617e-01 -1.5010160207748413e+00
+ <_>
+
+ 0 -1 2572 -7.8700996935367584e-02
+
+ -1.0394560098648071e+00 -4.5375999063253403e-02
+ <_>
+
+ 0 -1 2573 7.8619997948408127e-03
+
+ 1.9633600115776062e-01 -1.4472399652004242e-01
+ <_>
+
+ 0 -1 2574 -1.3458999805152416e-02
+
+ -9.0634697675704956e-01 -3.8049001246690750e-02
+ <_>
+
+ 0 -1 2575 2.8827000409364700e-02
+
+ -2.9473999515175819e-02 6.0058397054672241e-01
+ <_>
+
+ 0 -1 2576 -2.7365999296307564e-02
+
+ -9.9804002046585083e-01 -3.8653001189231873e-02
+ <_>
+
+ 0 -1 2577 -7.2917997837066650e-02
+
+ 7.3361498117446899e-01 5.7440001517534256e-02
+ <_>
+
+ 0 -1 2578 -1.3988999649882317e-02
+
+ 2.7892601490020752e-01 -2.6516300439834595e-01
+ <_>
+
+ 0 -1 2579 4.3242998421192169e-02
+
+ 4.7760000452399254e-03 3.5925900936126709e-01
+ <_>
+
+ 0 -1 2580 2.9533000662922859e-02
+
+ -2.0083999633789062e-01 5.1202899217605591e-01
+ <_>
+
+ 0 -1 2581 -3.1897000968456268e-02
+
+ 6.4721697568893433e-01 -1.3760000001639128e-03
+ <_>
+
+ 0 -1 2582 3.7868998944759369e-02
+
+ -1.8363800644874573e-01 6.1343097686767578e-01
+ <_>
+
+ 0 -1 2583 -2.2417999804019928e-02
+
+ -2.9187899827957153e-01 1.8194800615310669e-01
+ <_>
+
+ 0 -1 2584 5.8958999812602997e-02
+
+ -6.6451996564865112e-02 -1.9290030002593994e+00
+ <_>
+
+ 0 -1 2585 3.1222999095916748e-02
+
+ -1.2732000090181828e-02 6.1560797691345215e-01
+ <_>
+
+ 0 -1 2586 3.7484999746084213e-02
+
+ -2.0856900513172150e-01 4.4363999366760254e-01
+ <_>
+
+ 0 -1 2587 -2.0966000854969025e-02
+
+ -3.5712799429893494e-01 2.4252200126647949e-01
+ <_>
+
+ 0 -1 2588 -2.5477999821305275e-02
+
+ 1.0846560001373291e+00 -1.5054400265216827e-01
+ <_>
+
+ 0 -1 2589 -7.2570000775158405e-03
+
+ 2.1302600204944611e-01 -1.8308199942111969e-01
+ <_>
+
+ 0 -1 2590 -5.0983000546693802e-02
+
+ 5.1736801862716675e-01 -1.8833099305629730e-01
+ <_>
+
+ 0 -1 2591 -2.0640000700950623e-02
+
+ -4.4030201435089111e-01 2.2745999693870544e-01
+ <_>
+
+ 0 -1 2592 1.0672999545931816e-02
+
+ 3.5059999674558640e-02 -5.1665002107620239e-01
+ <_>
+
+ 0 -1 2593 3.1895998865365982e-02
+
+ 1.3228000141680241e-02 3.4915199875831604e-01
+ <_>
+
+ 0 -1 2594 -2.3824999108910561e-02
+
+ 3.4118801355361938e-01 -2.1510200202465057e-01
+ <_>
+
+ 0 -1 2595 -6.0680001042783260e-03
+
+ 3.2937398552894592e-01 -2.8523799777030945e-01
+ <_>
+
+ 0 -1 2596 2.3881999775767326e-02
+
+ -2.5333800911903381e-01 2.6296100020408630e-01
+ <_>
+
+ 0 -1 2597 2.7966000139713287e-02
+
+ 1.4049099385738373e-01 -4.9887099862098694e-01
+ <_>
+
+ 0 -1 2598 1.4603000134229660e-02
+
+ -1.5395999886095524e-02 -7.6958000659942627e-01
+ <_>
+
+ 0 -1 2599 1.0872399806976318e-01
+
+ 1.9069600105285645e-01 -3.2393100857734680e-01
+ <_>
+
+ 0 -1 2600 -1.4038000255823135e-02
+
+ 3.4924700856208801e-01 -2.2358700633049011e-01
+ <_>
+
+ 0 -1 2601 4.0440000593662262e-03
+
+ -3.8329001516103745e-02 5.1177299022674561e-01
+ <_>
+
+ 0 -1 2602 -4.9769999459385872e-03
+
+ -4.2888298630714417e-01 4.9173999577760696e-02
+ <_>
+
+ 0 -1 2603 -8.5183002054691315e-02
+
+ 6.6624599695205688e-01 7.8079998493194580e-03
+ <_>
+
+ 0 -1 2604 2.1559998858720064e-03
+
+ -4.9135199189186096e-01 6.9555997848510742e-02
+ <_>
+
+ 0 -1 2605 3.6384499073028564e-01
+
+ 1.2997099757194519e-01 -1.8949509859085083e+00
+ <_>
+
+ 0 -1 2606 2.2082500159740448e-01
+
+ -5.7211998850107193e-02 -1.4281120300292969e+00
+ <_>
+
+ 0 -1 2607 -1.6140000894665718e-02
+
+ -5.7589399814605713e-01 1.8062500655651093e-01
+ <_>
+
+ 0 -1 2608 -4.8330001533031464e-02
+
+ 9.7308498620986938e-01 -1.6513000428676605e-01
+ <_>
+
+ 0 -1 2609 1.7529999837279320e-02
+
+ 1.7932699620723724e-01 -2.7948901057243347e-01
+ <_>
+
+ 0 -1 2610 -3.4309998154640198e-02
+
+ -8.1072497367858887e-01 -1.6596000641584396e-02
+ <_>
+
+ 0 -1 2611 -4.5830002054572105e-03
+
+ 2.7908998727798462e-01 -7.4519999325275421e-03
+ <_>
+
+ 0 -1 2612 1.2896400690078735e-01
+
+ -1.3508500158786774e-01 2.5411539077758789e+00
+ <_>
+
+ 0 -1 2613 3.0361000448465347e-02
+
+ -6.8419001996517181e-02 2.8734099864959717e-01
+ <_>
+
+ 0 -1 2614 4.4086001813411713e-02
+
+ -1.8135899305343628e-01 6.5413200855255127e-01
+ <_>
+
+ 0 -1 2615 3.0159999150782824e-03
+
+ -1.5690499544143677e-01 2.6963800191879272e-01
+ <_>
+
+ 0 -1 2616 -2.6336999610066414e-02
+
+ 2.9175600409507751e-01 -2.5274100899696350e-01
+ <_>
+
+ 0 -1 2617 -2.7866000309586525e-02
+
+ 4.4387501478195190e-01 5.5038001388311386e-02
+ <_>
+
+ 0 -1 2618 1.1725000105798244e-02
+
+ -1.9346499443054199e-01 4.6656700968742371e-01
+ <_>
+
+ 0 -1 2619 1.5689999563619494e-03
+
+ -8.2360003143548965e-03 2.5700899958610535e-01
+ <_>
+
+ 0 -1 2620 -3.5550000611692667e-03
+
+ -4.2430898547172546e-01 7.1174003183841705e-02
+ <_>
+
+ 0 -1 2621 -3.1695000827312469e-02
+
+ -8.5393500328063965e-01 1.6916200518608093e-01
+ <_>
+
+ 0 -1 2622 -3.2097000628709793e-02
+
+ 8.3784902095794678e-01 -1.7597299814224243e-01
+ <_>
+
+ 0 -1 2623 1.5544199943542480e-01
+
+ 9.9550001323223114e-02 2.3873300552368164e+00
+ <_>
+
+ 0 -1 2624 8.8045999407768250e-02
+
+ -1.8725299835205078e-01 6.2384301424026489e-01
+ <_>
+
+ 0 -1 2625 -1.6720000421628356e-03
+
+ 2.5008699297904968e-01 -6.5118998289108276e-02
+ <_>
+
+ 0 -1 2626 9.3409996479749680e-03
+
+ -3.5378900170326233e-01 1.0715000331401825e-01
+ <_>
+
+ 0 -1 2627 3.7138000130653381e-02
+
+ 1.6387000679969788e-01 -9.1718399524688721e-01
+ <_>
+
+ 0 -1 2628 8.0183997750282288e-02
+
+ -1.4812999963760376e-01 1.4895190000534058e+00
+ <_>
+
+ 0 -1 2629 -7.9100002767518163e-04
+
+ -2.1326899528503418e-01 1.9676400721073151e-01
+ <_>
+
+ 0 -1 2630 -5.0400001928210258e-03
+
+ -7.1318697929382324e-01 1.8240000354126096e-03
+ <_>
+
+ 0 -1 2631 1.1962399631738663e-01
+
+ 3.3098999410867691e-02 1.0441709756851196e+00
+ <_>
+
+ 0 -1 2632 -4.5280000194907188e-03
+
+ -2.7308499813079834e-01 2.7229800820350647e-01
+ <_>
+
+ 0 -1 2633 -2.9639000073075294e-02
+
+ 3.6225798726081848e-01 5.6795001029968262e-02
+ <_>
+
+ 0 -1 2634 2.6650000363588333e-02
+
+ -4.8041000962257385e-02 -9.6723502874374390e-01
+ <_>
+
+ 0 -1 2635 4.4422000646591187e-02
+
+ 1.3052900135517120e-01 -3.5077300667762756e-01
+ <_>
+
+ 0 -1 2636 -2.4359999224543571e-02
+
+ -1.0766899585723877e+00 -5.1222998648881912e-02
+ <_>
+
+ 0 -1 2637 1.9734999164938927e-02
+
+ 2.6238000020384789e-02 2.8070500493049622e-01
+ <_>
+
+ 0 -1 2638 5.4930001497268677e-03
+
+ -2.6111298799514771e-01 2.1011400222778320e-01
+ <_>
+
+ 0 -1 2639 -2.3200300335884094e-01
+
+ -1.7748440504074097e+00 1.1482600122690201e-01
+ <_>
+
+ 0 -1 2640 -2.5614000856876373e-02
+
+ 2.9900801181793213e-01 -2.2502499818801880e-01
+ <_>
+
+ 0 -1 2641 -6.4949998632073402e-03
+
+ 1.9563800096511841e-01 -9.9762998521327972e-02
+ <_>
+
+ 0 -1 2642 3.9840000681579113e-03
+
+ -4.3021500110626221e-01 8.1261001527309418e-02
+ <_>
+
+ 0 -1 2643 -3.5813000053167343e-02
+
+ -5.0987398624420166e-01 1.6345900297164917e-01
+ <_>
+
+ 0 -1 2644 -1.4169000089168549e-02
+
+ 7.7978098392486572e-01 -1.7476299405097961e-01
+ <_>
+
+ 0 -1 2645 -1.2642100453376770e-01
+
+ -6.3047897815704346e-01 1.2728300690650940e-01
+ <_>
+
+ 0 -1 2646 6.8677999079227448e-02
+
+ -4.6447999775409698e-02 -1.1128979921340942e+00
+ <_>
+
+ 0 -1 2647 8.5864998400211334e-02
+
+ 1.1835400015115738e-01 -4.8235158920288086e+00
+ <_>
+
+ 0 -1 2648 1.5511999838054180e-02
+
+ -1.7467999830842018e-02 -6.3693398237228394e-01
+ <_>
+
+ 0 -1 2649 8.1091001629829407e-02
+
+ 8.6133003234863281e-02 2.4559431076049805e+00
+ <_>
+
+ 0 -1 2650 1.8495000898838043e-02
+
+ 4.0229000151157379e-02 -5.0858199596405029e-01
+ <_>
+
+ 0 -1 2651 -8.6320996284484863e-02
+
+ -1.9006760120391846e+00 1.1019100248813629e-01
+ <_>
+
+ 0 -1 2652 7.2355002164840698e-02
+
+ -6.2111999839544296e-02 -1.4165179729461670e+00
+ <_>
+
+ 0 -1 2653 -7.8179001808166504e-02
+
+ 8.8849300146102905e-01 4.2369998991489410e-02
+ <_>
+
+ 0 -1 2654 9.6681997179985046e-02
+
+ -2.2094200551509857e-01 3.3575099706649780e-01
+ <_>
+
+ 0 -1 2655 -3.9875999093055725e-02
+
+ 5.7804799079895020e-01 4.5347999781370163e-02
+ <_>
+
+ 0 -1 2656 -9.5349997282028198e-03
+
+ -5.4175698757171631e-01 3.2399999909102917e-03
+ <_>
+
+ 0 -1 2657 4.0600000647827983e-04
+
+ -8.1549003720283508e-02 3.5837900638580322e-01
+ <_>
+
+ 0 -1 2658 1.2107999995350838e-02
+
+ -2.0280399918556213e-01 4.3768000602722168e-01
+ <_>
+
+ 0 -1 2659 -2.0873999223113060e-02
+
+ 4.1469898819923401e-01 -4.5568000525236130e-02
+ <_>
+
+ 0 -1 2660 5.7888001203536987e-02
+
+ -2.9009999707341194e-02 -9.1822302341461182e-01
+ <_>
+
+ 0 -1 2661 1.3200000103097409e-04
+
+ -1.1772400140762329e-01 2.0000000298023224e-01
+ <_>
+
+ 0 -1 2662 -1.7137000337243080e-02
+
+ 3.3004799485206604e-01 -2.3055200278759003e-01
+ <_>
+
+ 0 -1 2663 3.0655000358819962e-02
+
+ -2.1545000374317169e-02 2.6878198981285095e-01
+ <_>
+
+ 0 -1 2664 -7.8699999721720815e-04
+
+ -4.4100698828697205e-01 4.9157999455928802e-02
+ <_>
+
+ 0 -1 2665 8.8036999106407166e-02
+
+ 1.1782000213861465e-01 -2.8293309211730957e+00
+ <_>
+
+ 0 -1 2666 -3.9028998464345932e-02
+
+ 9.1777199506759644e-01 -1.5827399492263794e-01
+ <_>
+
+ 0 -1 2667 8.0105997622013092e-02
+
+ 1.1289200186729431e-01 -1.9937280416488647e+00
+ <_>
+
+ 0 -1 2668 3.9538998156785965e-02
+
+ -1.4357399940490723e-01 1.3085240125656128e+00
+ <_>
+
+ 0 -1 2669 2.0684000104665756e-02
+
+ 2.0048099756240845e-01 -4.4186998158693314e-02
+ <_>
+
+ 0 -1 2670 -6.7037999629974365e-02
+
+ 3.2618600130081177e-01 -2.0550400018692017e-01
+ <_>
+
+ 0 -1 2671 4.6815000474452972e-02
+
+ 1.5825299918651581e-01 -9.5535099506378174e-01
+ <_>
+
+ 0 -1 2672 7.8443996608257294e-02
+
+ -7.4651002883911133e-02 -2.1161499023437500e+00
+ <_>
+
+ 0 -1 2673 6.6380001604557037e-02
+
+ 1.1641900241374969e-01 -1.6113519668579102e+00
+ <_>
+
+ 0 -1 2674 3.0053999274969101e-02
+
+ -1.6562600433826447e-01 7.0025402307510376e-01
+ <_>
+
+ 0 -1 2675 1.7119999974966049e-02
+
+ 2.2627699375152588e-01 -4.0114998817443848e-01
+ <_>
+
+ 0 -1 2676 2.0073000341653824e-02
+
+ -1.9389699399471283e-01 4.4420298933982849e-01
+ <_>
+
+ 0 -1 2677 3.3101998269557953e-02
+
+ 1.1637499928474426e-01 -1.5771679878234863e+00
+ <_>
+
+ 0 -1 2678 -1.4882000163197517e-02
+
+ -8.9680302143096924e-01 -4.2010001838207245e-02
+ <_>
+
+ 0 -1 2679 -1.0281000286340714e-02
+
+ 3.5602998733520508e-01 -1.3124000281095505e-02
+ <_>
+
+ 0 -1 2680 -2.8695000335574150e-02
+
+ -4.6039599180221558e-01 2.6801999658346176e-02
+ <_>
+
+ 0 -1 2681 -4.7189998440444469e-03
+
+ 2.3788799345493317e-01 -6.5518997609615326e-02
+ <_>
+
+ 0 -1 2682 3.2201600074768066e-01
+
+ -2.8489999473094940e-02 -8.4234601259231567e-01
+ <_>
+
+ 0 -1 2683 -1.7045000568032265e-02
+
+ -5.0938802957534790e-01 1.6057600080966949e-01
+ <_>
+
+ 0 -1 2684 -7.3469998314976692e-03
+
+ -5.4154998064041138e-01 4.7320001758635044e-03
+ <_>
+
+ 0 -1 2685 -3.0001999810338020e-02
+
+ -8.8785797357559204e-01 1.3621799647808075e-01
+ <_>
+
+ 0 -1 2686 -1.1292999610304832e-02
+
+ 8.0615198612213135e-01 -1.6159500181674957e-01
+ <_>
+
+ 0 -1 2687 4.7749998047947884e-03
+
+ 1.2968000024557114e-02 5.5079901218414307e-01
+ <_>
+
+ 0 -1 2688 5.0710001960396767e-03
+
+ -4.5728001743555069e-02 -1.0766259431838989e+00
+ <_>
+
+ 0 -1 2689 1.9344100356101990e-01
+
+ 7.1262001991271973e-02 1.1694519519805908e+00
+ <_>
+
+ 0 -1 2690 5.3750001825392246e-03
+
+ -1.9736200571060181e-01 3.8206899166107178e-01
+ <_>
+
+ 0 -1 2691 -6.8276003003120422e-02
+
+ -5.4372339248657227e+00 1.1151900142431259e-01
+ <_>
+
+ 0 -1 2692 -3.4933000802993774e-02
+
+ 4.4793400168418884e-01 -1.8657900393009186e-01
+ <_>
+
+ 0 -1 2693 5.1219998858869076e-03
+
+ -1.4871999621391296e-02 1.8413899838924408e-01
+ <_>
+
+ 0 -1 2694 9.5311999320983887e-02
+
+ -1.5117099881172180e-01 9.4991499185562134e-01
+ <_>
+
+ 0 -1 2695 -6.2849000096321106e-02
+
+ 4.6473601460456848e-01 3.8405001163482666e-02
+ <_>
+
+ 0 -1 2696 -1.7040699720382690e-01
+
+ -1.6499999761581421e+00 -6.3236996531486511e-02
+ <_>
+
+ 0 -1 2697 1.0583999566733837e-02
+
+ -3.8348998874425888e-02 4.1913801431655884e-01
+ <_>
+
+ 0 -1 2698 -4.1579000651836395e-02
+
+ 3.4461900591850281e-01 -2.1187700331211090e-01
+ <_>
+
+ 0 -1 2699 1.2718600034713745e-01
+
+ 1.2398199737071991e-01 -2.1254889965057373e+00
+ <_>
+
+ 0 -1 2700 8.2557000219821930e-02
+
+ -6.2024001032114029e-02 -1.4875819683074951e+00
+ <_>
+
+ 0 -1 2701 8.5293002426624298e-02
+
+ 1.7087999731302261e-02 3.2076600193977356e-01
+ <_>
+
+ 0 -1 2702 5.5544000118970871e-02
+
+ -2.7414000034332275e-01 1.8976399302482605e-01
+ <_>
+
+ 0 -1 2703 4.5650000683963299e-03
+
+ -1.7920200526714325e-01 2.7967301011085510e-01
+ <_>
+
+ 0 -1 2704 1.2997999787330627e-02
+
+ -3.2297500967979431e-01 2.6941800117492676e-01
+ <_>
+
+ 0 -1 2705 5.7891998440027237e-02
+
+ 1.2644399702548981e-01 -6.0713499784469604e-01
+ <_>
+
+ 0 -1 2706 -2.2824000567197800e-02
+
+ -4.9682098627090454e-01 2.2376999258995056e-02
+ <_>
+
+ 0 -1 2707 4.8312000930309296e-02
+
+ 4.3607000261545181e-02 4.8537799715995789e-01
+ <_>
+
+ 0 -1 2708 2.5714000687003136e-02
+
+ -4.2950998991727829e-02 -9.3023502826690674e-01
+ <_>
+
+ 0 -1 2709 6.9269998930394650e-03
+
+ -2.9680000152438879e-03 3.4296301007270813e-01
+ <_>
+
+ 0 -1 2710 -3.4446999430656433e-02
+
+ -1.5299769639968872e+00 -6.1014998704195023e-02
+ <_>
+
+ 0 -1 2711 2.9387999325990677e-02
+
+ 3.7595998495817184e-02 6.4172399044036865e-01
+ <_>
+
+ 0 -1 2712 -2.4319998919963837e-03
+
+ 9.9088996648788452e-02 -3.9688101410865784e-01
+ <_>
+ 200
+ -2.9928278923034668e+00
+
+ <_>
+
+ 0 -1 2713 -9.5944002270698547e-02
+
+ 6.2419098615646362e-01 -4.5875200629234314e-01
+ <_>
+
+ 0 -1 2714 1.6834000125527382e-02
+
+ -9.3072801828384399e-01 2.1563600003719330e-01
+ <_>
+
+ 0 -1 2715 2.6049999520182610e-02
+
+ -4.0532299876213074e-01 4.2256599664688110e-01
+ <_>
+
+ 0 -1 2716 3.6500001442618668e-04
+
+ 9.5288001000881195e-02 -6.3298100233078003e-01
+ <_>
+
+ 0 -1 2717 -6.6940002143383026e-03
+
+ 3.7243801355361938e-01 -3.0332401394844055e-01
+ <_>
+
+ 0 -1 2718 1.8874000757932663e-02
+
+ -2.3357200622558594e-01 4.0330699086189270e-01
+ <_>
+
+ 0 -1 2719 -1.6300000424962491e-04
+
+ 4.2886998504400253e-02 -7.7796798944473267e-01
+ <_>
+
+ 0 -1 2720 -7.6259002089500427e-02
+
+ -4.9628499150276184e-01 1.6335399448871613e-01
+ <_>
+
+ 0 -1 2721 5.0149001181125641e-02
+
+ 3.2747000455856323e-02 -8.0047899484634399e-01
+ <_>
+
+ 0 -1 2722 -2.9239999130368233e-03
+
+ -5.0002801418304443e-01 2.5480601191520691e-01
+ <_>
+
+ 0 -1 2723 1.6243999823927879e-02
+
+ 3.8913000375032425e-02 -7.0724898576736450e-01
+ <_>
+
+ 0 -1 2724 3.7811998277902603e-02
+
+ -6.6267997026443481e-02 7.3868799209594727e-01
+ <_>
+
+ 0 -1 2725 -1.2319999746978283e-02
+
+ 4.8696398735046387e-01 -2.4485599994659424e-01
+ <_>
+
+ 0 -1 2726 5.8003999292850494e-02
+
+ 1.3459099829196930e-01 -1.3232100009918213e-01
+ <_>
+
+ 0 -1 2727 4.8630000092089176e-03
+
+ -4.4172900915145874e-01 1.4005599915981293e-01
+ <_>
+
+ 0 -1 2728 4.5690998435020447e-02
+
+ 3.1217999756336212e-02 8.9818298816680908e-01
+ <_>
+
+ 0 -1 2729 2.1321000531315804e-02
+
+ 1.2008000165224075e-02 -8.6066198348999023e-01
+ <_>
+
+ 0 -1 2730 1.5679100155830383e-01
+
+ 1.4055999927222729e-02 8.5332900285720825e-01
+ <_>
+
+ 0 -1 2731 -1.0328999720513821e-02
+
+ 2.9022800922393799e-01 -2.9478800296783447e-01
+ <_>
+
+ 0 -1 2732 2.4290001019835472e-03
+
+ -4.0439900755882263e-01 1.9400200247764587e-01
+ <_>
+
+ 0 -1 2733 -2.3338999599218369e-02
+
+ 3.2945200800895691e-01 -2.5712698698043823e-01
+ <_>
+
+ 0 -1 2734 -6.8970001302659512e-03
+
+ -5.3352999687194824e-01 2.1635200083255768e-01
+ <_>
+
+ 0 -1 2735 -3.4403000026941299e-02
+
+ -1.4425489902496338e+00 -4.4682998210191727e-02
+ <_>
+
+ 0 -1 2736 -2.1235000342130661e-02
+
+ -7.9017502069473267e-01 1.9084100425243378e-01
+ <_>
+
+ 0 -1 2737 2.0620001014322042e-03
+
+ -2.6931199431419373e-01 3.1488001346588135e-01
+ <_>
+
+ 0 -1 2738 -4.2190002277493477e-03
+
+ -5.4464399814605713e-01 1.6574600338935852e-01
+ <_>
+
+ 0 -1 2739 -1.4334999956190586e-02
+
+ 2.2105000913143158e-02 -6.2342500686645508e-01
+ <_>
+
+ 0 -1 2740 -8.2120001316070557e-03
+
+ -4.9884998798370361e-01 1.9237099587917328e-01
+ <_>
+
+ 0 -1 2741 -9.3350000679492950e-03
+
+ -7.9131197929382324e-01 -1.4143999665975571e-02
+ <_>
+
+ 0 -1 2742 -3.7937998771667480e-02
+
+ 7.9841297864913940e-01 -3.3799000084400177e-02
+ <_>
+
+ 0 -1 2743 4.7059999778866768e-03
+
+ -3.3163401484489441e-01 2.0726299285888672e-01
+ <_>
+
+ 0 -1 2744 -4.4499998912215233e-03
+
+ -2.7256301045417786e-01 1.8402199447154999e-01
+ <_>
+
+ 0 -1 2745 5.2189999260008335e-03
+
+ -5.3096002340316772e-01 5.2607998251914978e-02
+ <_>
+
+ 0 -1 2746 -9.5399999991059303e-03
+
+ -5.6485402584075928e-01 1.9269399344921112e-01
+ <_>
+
+ 0 -1 2747 4.4969998300075531e-02
+
+ -1.7411500215530396e-01 9.5382601022720337e-01
+ <_>
+
+ 0 -1 2748 1.4209000393748283e-02
+
+ -9.1949000954627991e-02 2.4836100637912750e-01
+ <_>
+
+ 0 -1 2749 1.6380199790000916e-01
+
+ -5.8497000485658646e-02 -1.6404409408569336e+00
+ <_>
+
+ 0 -1 2750 2.5579999200999737e-03
+
+ 2.3447999358177185e-01 -9.2734001576900482e-02
+ <_>
+
+ 0 -1 2751 -3.8499999791383743e-03
+
+ 1.7880700528621674e-01 -3.5844099521636963e-01
+ <_>
+
+ 0 -1 2752 -2.5221999734640121e-02
+
+ -4.2903000116348267e-01 2.0244500041007996e-01
+ <_>
+
+ 0 -1 2753 -1.9415000453591347e-02
+
+ 5.8016300201416016e-01 -1.8806399405002594e-01
+ <_>
+
+ 0 -1 2754 1.4419999904930592e-02
+
+ 3.2846998423337936e-02 8.1980502605438232e-01
+ <_>
+
+ 0 -1 2755 5.1582999527454376e-02
+
+ 6.9176003336906433e-02 -4.5866298675537109e-01
+ <_>
+
+ 0 -1 2756 -3.7960000336170197e-02
+
+ -1.2553000450134277e+00 1.4332899451255798e-01
+ <_>
+
+ 0 -1 2757 -2.9560999944806099e-02
+
+ 5.3151798248291016e-01 -2.0596499741077423e-01
+ <_>
+
+ 0 -1 2758 -3.9110999554395676e-02
+
+ 1.1658719778060913e+00 5.3897000849246979e-02
+ <_>
+
+ 0 -1 2759 -2.9159000143408775e-02
+
+ 3.9307600259780884e-01 -2.2184500098228455e-01
+ <_>
+
+ 0 -1 2760 -8.3617001771926880e-02
+
+ -7.3744499683380127e-01 1.4268200099468231e-01
+ <_>
+
+ 0 -1 2761 4.2004001140594482e-01
+
+ -1.4277400076389313e-01 1.7894840240478516e+00
+ <_>
+
+ 0 -1 2762 6.0005001723766327e-02
+
+ 1.1976700276136398e-01 -1.8886189460754395e+00
+ <_>
+
+ 0 -1 2763 -1.8981000408530235e-02
+
+ -1.4148449897766113e+00 -5.6522998958826065e-02
+ <_>
+
+ 0 -1 2764 -6.0049998573958874e-03
+
+ 4.4170799851417542e-01 -1.0200800001621246e-01
+ <_>
+
+ 0 -1 2765 -5.8214001357555389e-02
+
+ -1.3918470144271851e+00 -4.8268999904394150e-02
+ <_>
+
+ 0 -1 2766 -1.2271000072360039e-02
+
+ 5.1317697763442993e-01 -9.3696996569633484e-02
+ <_>
+
+ 0 -1 2767 4.6585999429225922e-02
+
+ -5.7484000921249390e-02 -1.4283169507980347e+00
+ <_>
+
+ 0 -1 2768 1.2110000243410468e-03
+
+ -8.0891996622085571e-02 3.2333201169967651e-01
+ <_>
+
+ 0 -1 2769 -8.8642001152038574e-02
+
+ -8.6449098587036133e-01 -3.3146999776363373e-02
+ <_>
+
+ 0 -1 2770 -2.3184999823570251e-02
+
+ 5.2162200212478638e-01 -1.6168000176548958e-02
+ <_>
+
+ 0 -1 2771 4.3090000748634338e-02
+
+ -1.6153800487518311e-01 1.0915000438690186e+00
+ <_>
+
+ 0 -1 2772 2.0599999697878957e-04
+
+ -1.7091499269008636e-01 3.1236699223518372e-01
+ <_>
+
+ 0 -1 2773 8.9159999042749405e-03
+
+ -6.7039998248219490e-03 -6.8810397386550903e-01
+ <_>
+
+ 0 -1 2774 -1.7752999439835548e-02
+
+ 6.3292801380157471e-01 -4.2360001243650913e-03
+ <_>
+
+ 0 -1 2775 6.2299999408423901e-03
+
+ -3.3637198805809021e-01 1.2790599465370178e-01
+ <_>
+
+ 0 -1 2776 2.2770000621676445e-02
+
+ -3.4703999757766724e-02 3.9141800999641418e-01
+ <_>
+
+ 0 -1 2777 -2.1534999832510948e-02
+
+ 6.4765101671218872e-01 -2.0097799599170685e-01
+ <_>
+
+ 0 -1 2778 6.1758998781442642e-02
+
+ 5.4297000169754028e-02 9.0700101852416992e-01
+ <_>
+
+ 0 -1 2779 -7.8069999814033508e-02
+
+ 6.5523397922515869e-01 -1.9754399359226227e-01
+ <_>
+
+ 0 -1 2780 1.1315000243484974e-02
+
+ 1.9385300576686859e-01 -5.1707297563552856e-01
+ <_>
+
+ 0 -1 2781 -2.5590000674128532e-02
+
+ -9.3096500635147095e-01 -3.1546998769044876e-02
+ <_>
+
+ 0 -1 2782 -3.8058999925851822e-02
+
+ -6.8326902389526367e-01 1.2709100544452667e-01
+ <_>
+
+ 0 -1 2783 9.7970003262162209e-03
+
+ 1.5523999929428101e-02 -6.3347899913787842e-01
+ <_>
+
+ 0 -1 2784 -1.3841999694705009e-02
+
+ 1.0060529708862305e+00 6.2812998890876770e-02
+ <_>
+
+ 0 -1 2785 8.3459997549653053e-03
+
+ -2.3383200168609619e-01 3.0982699990272522e-01
+ <_>
+
+ 0 -1 2786 -7.1439996361732483e-02
+
+ -7.2505402565002441e-01 1.7148299515247345e-01
+ <_>
+
+ 0 -1 2787 1.0006000287830830e-02
+
+ -2.2071999311447144e-01 3.5266199707984924e-01
+ <_>
+
+ 0 -1 2788 1.1005300283432007e-01
+
+ 1.6662000119686127e-01 -7.4318999052047729e-01
+ <_>
+
+ 0 -1 2789 3.5310998558998108e-02
+
+ -2.3982700705528259e-01 4.1435998678207397e-01
+ <_>
+
+ 0 -1 2790 -1.1174699664115906e-01
+
+ 5.1045399904251099e-01 2.2319999989122152e-03
+ <_>
+
+ 0 -1 2791 -1.1367800086736679e-01
+
+ 9.0475201606750488e-01 -1.6615299880504608e-01
+ <_>
+
+ 0 -1 2792 1.6667999327182770e-02
+
+ 1.4024500548839569e-01 -5.2178502082824707e-01
+ <_>
+
+ 0 -1 2793 -8.0340001732110977e-03
+
+ -6.6178399324417114e-01 3.7640000227838755e-03
+ <_>
+
+ 0 -1 2794 -3.3096998929977417e-02
+
+ 8.0185902118682861e-01 5.9385001659393311e-02
+ <_>
+
+ 0 -1 2795 1.2547999620437622e-02
+
+ -3.3545500040054321e-01 1.4578600227832794e-01
+ <_>
+
+ 0 -1 2796 -4.2073998600244522e-02
+
+ -5.5509102344512939e-01 1.3266600668430328e-01
+ <_>
+
+ 0 -1 2797 2.5221999734640121e-02
+
+ -6.1631999909877777e-02 -1.3678770065307617e+00
+ <_>
+
+ 0 -1 2798 -2.4268999695777893e-02
+
+ 3.4185099601745605e-01 -7.4160001240670681e-03
+ <_>
+
+ 0 -1 2799 -1.2280000373721123e-02
+
+ 2.7745801210403442e-01 -3.1033900380134583e-01
+ <_>
+
+ 0 -1 2800 -1.1377099901437759e-01
+
+ 1.1719540357589722e+00 8.3681002259254456e-02
+ <_>
+
+ 0 -1 2801 -8.4771998226642609e-02
+
+ 8.1694799661636353e-01 -1.7837500572204590e-01
+ <_>
+
+ 0 -1 2802 -2.4552000686526299e-02
+
+ -1.8627299368381500e-01 1.4340099692344666e-01
+ <_>
+
+ 0 -1 2803 -9.0269995853304863e-03
+
+ 3.2659199833869934e-01 -2.3541299998760223e-01
+ <_>
+
+ 0 -1 2804 1.1177999898791313e-02
+
+ 1.9761200249195099e-01 -2.1701000630855560e-02
+ <_>
+
+ 0 -1 2805 -2.9366999864578247e-02
+
+ -9.3414801359176636e-01 -2.1704999729990959e-02
+ <_>
+
+ 0 -1 2806 6.3640000298619270e-03
+
+ 2.5573000311851501e-02 4.6412798762321472e-01
+ <_>
+
+ 0 -1 2807 1.4026000164449215e-02
+
+ -2.1228599548339844e-01 4.0078800916671753e-01
+ <_>
+
+ 0 -1 2808 -1.3341999612748623e-02
+
+ 7.4202698469161987e-01 2.9001999646425247e-02
+ <_>
+
+ 0 -1 2809 2.8422799706459045e-01
+
+ -1.9243599474430084e-01 4.3631199002265930e-01
+ <_>
+
+ 0 -1 2810 -2.3724000155925751e-01
+
+ 6.9736397266387939e-01 6.9307997822761536e-02
+ <_>
+
+ 0 -1 2811 -1.1169700324535370e-01
+
+ 3.9147201180458069e-01 -2.0922000706195831e-01
+ <_>
+
+ 0 -1 2812 1.2787500023841858e-01
+
+ -7.2555996477603912e-02 3.6088201403617859e-01
+ <_>
+
+ 0 -1 2813 -6.2900997698307037e-02
+
+ 9.5424997806549072e-01 -1.5402799844741821e-01
+ <_>
+
+ 0 -1 2814 1.7439000308513641e-02
+
+ -5.1134999841451645e-02 2.7750301361083984e-01
+ <_>
+
+ 0 -1 2815 1.2319999514147639e-03
+
+ 7.5627997517585754e-02 -3.6456099152565002e-01
+ <_>
+
+ 0 -1 2816 2.7495000511407852e-02
+
+ 5.1844000816345215e-02 4.1562598943710327e-01
+ <_>
+
+ 0 -1 2817 -4.3543998152017593e-02
+
+ 7.1969997882843018e-01 -1.7132200300693512e-01
+ <_>
+
+ 0 -1 2818 1.1025999672710896e-02
+
+ 1.4354600012302399e-01 -6.5403002500534058e-01
+ <_>
+
+ 0 -1 2819 2.0865999162197113e-02
+
+ 4.0089000016450882e-02 -4.5743298530578613e-01
+ <_>
+
+ 0 -1 2820 -2.2304000332951546e-02
+
+ 5.3855001926422119e-01 7.1662999689579010e-02
+ <_>
+
+ 0 -1 2821 3.2492000609636307e-02
+
+ -4.5991998165845871e-02 -1.0047069787979126e+00
+ <_>
+
+ 0 -1 2822 1.2269999831914902e-02
+
+ 3.4334998577833176e-02 4.2431798577308655e-01
+ <_>
+
+ 0 -1 2823 8.3820000290870667e-03
+
+ -2.5850600004196167e-01 2.6263499259948730e-01
+ <_>
+
+ 0 -1 2824 3.7353999912738800e-02
+
+ 1.5692499279975891e-01 -1.0429090261459351e+00
+ <_>
+
+ 0 -1 2825 -1.4111000113189220e-02
+
+ -7.3177701234817505e-01 -2.0276999101042747e-02
+ <_>
+
+ 0 -1 2826 5.7066999375820160e-02
+
+ 8.3360001444816589e-02 1.5661499500274658e+00
+ <_>
+
+ 0 -1 2827 4.9680001102387905e-03
+
+ -3.5318198800086975e-01 1.4698399603366852e-01
+ <_>
+
+ 0 -1 2828 -2.4492999538779259e-02
+
+ 2.8325900435447693e-01 -3.4640000667423010e-03
+ <_>
+
+ 0 -1 2829 -1.1254999786615372e-02
+
+ -8.4017497301101685e-01 -3.6251999437808990e-02
+ <_>
+
+ 0 -1 2830 3.4533001482486725e-02
+
+ 1.4998500049114227e-01 -8.7367099523544312e-01
+ <_>
+
+ 0 -1 2831 2.4303000420331955e-02
+
+ -1.8787500262260437e-01 5.9483999013900757e-01
+ <_>
+
+ 0 -1 2832 -7.8790001571178436e-03
+
+ 4.4315698742866516e-01 -5.6570999324321747e-02
+ <_>
+
+ 0 -1 2833 3.5142000764608383e-02
+
+ -5.6494999676942825e-02 -1.3617190122604370e+00
+ <_>
+
+ 0 -1 2834 4.6259998343884945e-03
+
+ -3.1161698698997498e-01 2.5447699427604675e-01
+ <_>
+
+ 0 -1 2835 -8.3131000399589539e-02
+
+ 1.6424349546432495e+00 -1.4429399371147156e-01
+ <_>
+
+ 0 -1 2836 -1.4015999622642994e-02
+
+ -7.7819502353668213e-01 1.7173300683498383e-01
+ <_>
+
+ 0 -1 2837 1.2450000504031777e-03
+
+ -2.3191399872303009e-01 2.8527900576591492e-01
+ <_>
+
+ 0 -1 2838 -1.6803000122308731e-02
+
+ -3.5965099930763245e-01 2.0412999391555786e-01
+ <_>
+
+ 0 -1 2839 -7.6747998595237732e-02
+
+ 7.8050500154495239e-01 -1.5612800419330597e-01
+ <_>
+
+ 0 -1 2840 -2.3671999573707581e-01
+
+ 1.1813700199127197e+00 7.8111998736858368e-02
+ <_>
+
+ 0 -1 2841 -1.0057400166988373e-01
+
+ -4.7104099392890930e-01 7.9172998666763306e-02
+ <_>
+
+ 0 -1 2842 1.3239999534562230e-03
+
+ 2.2262699902057648e-01 -3.7099799513816833e-01
+ <_>
+
+ 0 -1 2843 2.2152999415993690e-02
+
+ -3.8649000227451324e-02 -9.2274999618530273e-01
+ <_>
+
+ 0 -1 2844 -1.1246199905872345e-01
+
+ 4.1899600625038147e-01 8.0411002039909363e-02
+ <_>
+
+ 0 -1 2845 1.6481000930070877e-02
+
+ -1.6756699979305267e-01 7.1842402219772339e-01
+ <_>
+
+ 0 -1 2846 6.8113997578620911e-02
+
+ 1.5719899535179138e-01 -8.7681102752685547e-01
+ <_>
+
+ 0 -1 2847 1.6011999920010567e-02
+
+ -4.1600000113248825e-03 -5.9327799081802368e-01
+ <_>
+
+ 0 -1 2848 4.6640001237392426e-03
+
+ -3.0153999105095863e-02 4.8345300555229187e-01
+ <_>
+
+ 0 -1 2849 6.7579997703433037e-03
+
+ -2.2667400538921356e-01 3.3662301301956177e-01
+ <_>
+
+ 0 -1 2850 4.7289999201893806e-03
+
+ -6.0373999178409576e-02 3.1458100676536560e-01
+ <_>
+
+ 0 -1 2851 2.5869999080896378e-03
+
+ -2.9872599244117737e-01 1.7787499725818634e-01
+ <_>
+
+ 0 -1 2852 2.8989999555051327e-03
+
+ 2.1890200674533844e-01 -2.9567098617553711e-01
+ <_>
+
+ 0 -1 2853 -3.0053999274969101e-02
+
+ 1.2150429487228394e+00 -1.4354999363422394e-01
+ <_>
+
+ 0 -1 2854 1.4181000180542469e-02
+
+ 1.2451999820768833e-02 5.5490100383758545e-01
+ <_>
+
+ 0 -1 2855 -6.0527000576257706e-02
+
+ -1.4933999776840210e+00 -6.5227001905441284e-02
+ <_>
+
+ 0 -1 2856 -1.9882999360561371e-02
+
+ -3.8526400923728943e-01 1.9761200249195099e-01
+ <_>
+
+ 0 -1 2857 3.1218999996781349e-02
+
+ -2.1281200647354126e-01 2.9446500539779663e-01
+ <_>
+
+ 0 -1 2858 1.8271999433636665e-02
+
+ 9.7200000891461968e-04 6.6814202070236206e-01
+ <_>
+
+ 0 -1 2859 1.1089999461546540e-03
+
+ -6.2467902898788452e-01 -1.6599999507889152e-03
+ <_>
+
+ 0 -1 2860 -3.6713998764753342e-02
+
+ -4.2333900928497314e-01 1.2084700167179108e-01
+ <_>
+
+ 0 -1 2861 1.2044000439345837e-02
+
+ 2.5882000103592873e-02 -5.0732398033142090e-01
+ <_>
+
+ 0 -1 2862 7.4749000370502472e-02
+
+ 1.3184699416160583e-01 -2.1739600598812103e-01
+ <_>
+
+ 0 -1 2863 -2.3473200201988220e-01
+
+ 1.1775610446929932e+00 -1.5114699304103851e-01
+ <_>
+
+ 0 -1 2864 1.4096499979496002e-01
+
+ 3.3991001546382904e-02 3.9923098683357239e-01
+ <_>
+
+ 0 -1 2865 6.1789997853338718e-03
+
+ -3.1806701421737671e-01 1.1681699752807617e-01
+ <_>
+
+ 0 -1 2866 -5.7216998189687729e-02
+
+ 8.4399098157882690e-01 8.3889000117778778e-02
+ <_>
+
+ 0 -1 2867 -5.5227000266313553e-02
+
+ 3.6888301372528076e-01 -1.8913400173187256e-01
+ <_>
+
+ 0 -1 2868 -2.1583000198006630e-02
+
+ -5.2161800861358643e-01 1.5772600471973419e-01
+ <_>
+
+ 0 -1 2869 2.5747999548912048e-02
+
+ -5.9921998530626297e-02 -1.0674990415573120e+00
+ <_>
+
+ 0 -1 2870 -1.3098999857902527e-02
+
+ 7.8958398103713989e-01 5.2099999040365219e-02
+ <_>
+
+ 0 -1 2871 2.2799998987466097e-03
+
+ -1.1704430580139160e+00 -5.9356998652219772e-02
+ <_>
+
+ 0 -1 2872 8.8060004636645317e-03
+
+ 4.1717998683452606e-02 6.6352599859237671e-01
+ <_>
+
+ 0 -1 2873 -8.9699998497962952e-03
+
+ -3.5862699151039124e-01 6.0458000749349594e-02
+ <_>
+
+ 0 -1 2874 4.0230001322925091e-03
+
+ 2.0979399979114532e-01 -2.4806000292301178e-01
+ <_>
+
+ 0 -1 2875 2.5017000734806061e-02
+
+ -1.8795900046825409e-01 3.9547100663185120e-01
+ <_>
+
+ 0 -1 2876 -5.9009999968111515e-03
+
+ 2.5663900375366211e-01 -9.4919003546237946e-02
+ <_>
+
+ 0 -1 2877 4.3850000947713852e-03
+
+ 3.3139001578092575e-02 -4.6075400710105896e-01
+ <_>
+
+ 0 -1 2878 -3.3771999180316925e-02
+
+ -9.8881602287292480e-01 1.4636899530887604e-01
+ <_>
+
+ 0 -1 2879 4.4523000717163086e-02
+
+ -1.3286699354648590e-01 1.5796790122985840e+00
+ <_>
+
+ 0 -1 2880 -4.0929000824689865e-02
+
+ 3.3877098560333252e-01 7.4970997869968414e-02
+ <_>
+
+ 0 -1 2881 3.9351999759674072e-02
+
+ -1.8327899277210236e-01 4.6980699896812439e-01
+ <_>
+
+ 0 -1 2882 -7.0322997868061066e-02
+
+ -9.8322701454162598e-01 1.1808100342750549e-01
+ <_>
+
+ 0 -1 2883 3.5743001848459244e-02
+
+ -3.3050999045372009e-02 -8.3610898256301880e-01
+ <_>
+
+ 0 -1 2884 -4.2961999773979187e-02
+
+ 1.1670809984207153e+00 8.0692000687122345e-02
+ <_>
+
+ 0 -1 2885 -2.1007999777793884e-02
+
+ 6.3869798183441162e-01 -1.7626300454139709e-01
+ <_>
+
+ 0 -1 2886 -1.5742200613021851e-01
+
+ -2.3302499949932098e-01 1.2517499923706055e-01
+ <_>
+
+ 0 -1 2887 7.8659998252987862e-03
+
+ -2.2037999331951141e-01 2.7196800708770752e-01
+ <_>
+
+ 0 -1 2888 2.3622000589966774e-02
+
+ 1.6127300262451172e-01 -4.3329000473022461e-01
+ <_>
+
+ 0 -1 2889 7.4692003428936005e-02
+
+ -1.6991999745368958e-01 5.8884900808334351e-01
+ <_>
+
+ 0 -1 2890 -6.4799998654052615e-04
+
+ 2.5842899084091187e-01 -3.5911999642848969e-02
+ <_>
+
+ 0 -1 2891 -1.6290999948978424e-02
+
+ -7.6764398813247681e-01 -2.0472999662160873e-02
+ <_>
+
+ 0 -1 2892 -3.3133998513221741e-02
+
+ -2.7180099487304688e-01 1.4325700700283051e-01
+ <_>
+
+ 0 -1 2893 4.8797998577356339e-02
+
+ 7.6408997178077698e-02 -4.1445198655128479e-01
+ <_>
+
+ 0 -1 2894 2.2869999520480633e-03
+
+ -3.8628999143838882e-02 2.0753799378871918e-01
+ <_>
+
+ 0 -1 2895 4.5304000377655029e-02
+
+ -1.7777900397777557e-01 6.3461399078369141e-01
+ <_>
+
+ 0 -1 2896 1.0705800354480743e-01
+
+ 1.8972299993038177e-01 -5.1236200332641602e-01
+ <_>
+
+ 0 -1 2897 -4.0525000542402267e-02
+
+ 7.0614999532699585e-01 -1.7803299427032471e-01
+ <_>
+
+ 0 -1 2898 3.1968999654054642e-02
+
+ 6.8149998784065247e-02 6.8733102083206177e-01
+ <_>
+
+ 0 -1 2899 -5.7617001235485077e-02
+
+ 7.5170499086380005e-01 -1.5764999389648438e-01
+ <_>
+
+ 0 -1 2900 1.3593999668955803e-02
+
+ 1.9411900639533997e-01 -2.4561899900436401e-01
+ <_>
+
+ 0 -1 2901 7.1396000683307648e-02
+
+ -4.6881001442670822e-02 -8.8198298215866089e-01
+ <_>
+
+ 0 -1 2902 -1.4895999804139137e-02
+
+ -4.4532400369644165e-01 1.7679899930953979e-01
+ <_>
+
+ 0 -1 2903 -1.0026000440120697e-02
+
+ 6.5122699737548828e-01 -1.6709999740123749e-01
+ <_>
+
+ 0 -1 2904 3.7589999847114086e-03
+
+ -5.8301001787185669e-02 3.4483298659324646e-01
+ <_>
+
+ 0 -1 2905 1.6263000667095184e-02
+
+ -1.5581500530242920e-01 8.6432701349258423e-01
+ <_>
+
+ 0 -1 2906 -4.0176000446081161e-02
+
+ -6.1028599739074707e-01 1.1796399950981140e-01
+ <_>
+
+ 0 -1 2907 2.7080999687314034e-02
+
+ -4.9601998180150986e-02 -8.9990001916885376e-01
+ <_>
+
+ 0 -1 2908 5.2420001477003098e-02
+
+ 1.1297199875116348e-01 -1.0833640098571777e+00
+ <_>
+
+ 0 -1 2909 -1.9160000607371330e-02
+
+ -7.9880100488662720e-01 -3.4079000353813171e-02
+ <_>
+
+ 0 -1 2910 -3.7730000913143158e-03
+
+ -1.9124099612236023e-01 2.1535199880599976e-01
+ <_>
+
+ 0 -1 2911 7.5762003660202026e-02
+
+ -1.3421699404716492e-01 1.6807060241699219e+00
+ <_>
+
+ 0 -1 2912 -2.2173000499606133e-02
+
+ 4.8600998520851135e-01 3.6160000599920750e-03
+
+ <_>
+
+ <_>
+ 6 4 12 9 -1.
+ <_>
+ 6 7 12 3 3.
+ <_>
+
+ <_>
+ 6 4 12 7 -1.
+ <_>
+ 10 4 4 7 3.
+ <_>
+
+ <_>
+ 3 9 18 9 -1.
+ <_>
+ 3 12 18 3 3.
+ <_>
+
+ <_>
+ 8 18 9 6 -1.
+ <_>
+ 8 20 9 2 3.
+ <_>
+
+ <_>
+ 3 5 4 19 -1.
+ <_>
+ 5 5 2 19 2.
+ <_>
+
+ <_>
+ 6 5 12 16 -1.
+ <_>
+ 6 13 12 8 2.
+ <_>
+
+ <_>
+ 5 8 12 6 -1.
+ <_>
+ 5 11 12 3 2.
+ <_>
+
+ <_>
+ 11 14 4 10 -1.
+ <_>
+ 11 19 4 5 2.
+ <_>
+
+ <_>
+ 4 0 7 6 -1.
+ <_>
+ 4 3 7 3 2.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 6 8 12 2 3.
+ <_>
+
+ <_>
+ 6 4 12 7 -1.
+ <_>
+ 10 4 4 7 3.
+ <_>
+
+ <_>
+ 1 8 19 12 -1.
+ <_>
+ 1 12 19 4 3.
+ <_>
+
+ <_>
+ 0 2 24 3 -1.
+ <_>
+ 8 2 8 3 3.
+ <_>
+
+ <_>
+ 9 9 6 15 -1.
+ <_>
+ 9 14 6 5 3.
+ <_>
+
+ <_>
+ 5 6 14 10 -1.
+ <_>
+ 5 11 14 5 2.
+ <_>
+
+ <_>
+ 5 0 14 9 -1.
+ <_>
+ 5 3 14 3 3.
+ <_>
+
+ <_>
+ 13 11 9 6 -1.
+ <_>
+ 16 11 3 6 3.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 9 5 2 10 3.
+ <_>
+
+ <_>
+ 10 8 6 10 -1.
+ <_>
+ 12 8 2 10 3.
+ <_>
+
+ <_>
+ 2 5 4 9 -1.
+ <_>
+ 4 5 2 9 2.
+ <_>
+
+ <_>
+ 18 0 6 11 -1.
+ <_>
+ 20 0 2 11 3.
+ <_>
+
+ <_>
+ 0 6 24 13 -1.
+ <_>
+ 8 6 8 13 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 7 18 10 6 -1.
+ <_>
+ 7 20 10 2 3.
+ <_>
+
+ <_>
+ 5 7 14 12 -1.
+ <_>
+ 5 13 14 6 2.
+ <_>
+
+ <_>
+ 0 3 24 3 -1.
+ <_>
+ 8 3 8 3 3.
+ <_>
+
+ <_>
+ 5 8 15 6 -1.
+ <_>
+ 5 11 15 3 2.
+ <_>
+
+ <_>
+ 9 6 5 14 -1.
+ <_>
+ 9 13 5 7 2.
+ <_>
+
+ <_>
+ 9 5 6 10 -1.
+ <_>
+ 11 5 2 10 3.
+ <_>
+
+ <_>
+ 6 6 3 12 -1.
+ <_>
+ 6 12 3 6 2.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 9 21 6 3 3.
+ <_>
+
+ <_>
+ 5 6 13 6 -1.
+ <_>
+ 5 8 13 2 3.
+ <_>
+
+ <_>
+ 18 1 6 15 -1.
+ <_>
+ 18 1 3 15 2.
+ <_>
+
+ <_>
+ 1 1 6 15 -1.
+ <_>
+ 4 1 3 15 2.
+ <_>
+
+ <_>
+ 0 8 24 15 -1.
+ <_>
+ 8 8 8 15 3.
+ <_>
+
+ <_>
+ 5 6 14 12 -1.
+ <_>
+ 5 6 7 6 2.
+ <_>
+ 12 12 7 6 2.
+ <_>
+
+ <_>
+ 2 12 21 12 -1.
+ <_>
+ 2 16 21 4 3.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 10 1 2 10 2.
+ <_>
+
+ <_>
+ 2 13 20 10 -1.
+ <_>
+ 2 13 10 10 2.
+ <_>
+
+ <_>
+ 0 1 6 13 -1.
+ <_>
+ 2 1 2 13 3.
+ <_>
+
+ <_>
+ 20 2 4 13 -1.
+ <_>
+ 20 2 2 13 2.
+ <_>
+
+ <_>
+ 0 5 22 19 -1.
+ <_>
+ 11 5 11 19 2.
+ <_>
+
+ <_>
+ 18 4 6 9 -1.
+ <_>
+ 20 4 2 9 3.
+ <_>
+
+ <_>
+ 0 3 6 11 -1.
+ <_>
+ 2 3 2 11 3.
+ <_>
+
+ <_>
+ 12 1 4 9 -1.
+ <_>
+ 12 1 2 9 2.
+ <_>
+
+ <_>
+ 0 6 19 3 -1.
+ <_>
+ 0 7 19 1 3.
+ <_>
+
+ <_>
+ 12 1 4 9 -1.
+ <_>
+ 12 1 2 9 2.
+ <_>
+
+ <_>
+ 8 1 4 9 -1.
+ <_>
+ 10 1 2 9 2.
+ <_>
+
+ <_>
+ 5 5 14 14 -1.
+ <_>
+ 12 5 7 7 2.
+ <_>
+ 5 12 7 7 2.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 11 18 1 2.
+ <_>
+
+ <_>
+ 17 13 4 11 -1.
+ <_>
+ 17 13 2 11 2.
+ <_>
+
+ <_>
+ 0 4 6 9 -1.
+ <_>
+ 0 7 6 3 3.
+ <_>
+
+ <_>
+ 6 4 12 9 -1.
+ <_>
+ 6 7 12 3 3.
+ <_>
+
+ <_>
+ 6 5 12 6 -1.
+ <_>
+ 10 5 4 6 3.
+ <_>
+
+ <_>
+ 0 1 24 5 -1.
+ <_>
+ 8 1 8 5 3.
+ <_>
+
+ <_>
+ 4 10 18 6 -1.
+ <_>
+ 4 12 18 2 3.
+ <_>
+
+ <_>
+ 2 17 12 6 -1.
+ <_>
+ 2 17 6 3 2.
+ <_>
+ 8 20 6 3 2.
+ <_>
+
+ <_>
+ 19 3 4 13 -1.
+ <_>
+ 19 3 2 13 2.
+ <_>
+
+ <_>
+ 1 3 4 13 -1.
+ <_>
+ 3 3 2 13 2.
+ <_>
+
+ <_>
+ 0 1 24 23 -1.
+ <_>
+ 8 1 8 23 3.
+ <_>
+
+ <_>
+ 1 7 8 12 -1.
+ <_>
+ 1 11 8 4 3.
+ <_>
+
+ <_>
+ 14 7 3 14 -1.
+ <_>
+ 14 14 3 7 2.
+ <_>
+
+ <_>
+ 3 12 16 6 -1.
+ <_>
+ 3 12 8 3 2.
+ <_>
+ 11 15 8 3 2.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 6 8 12 2 3.
+ <_>
+
+ <_>
+ 8 7 6 12 -1.
+ <_>
+ 8 13 6 6 2.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 1 18 18 1 3.
+ <_>
+
+ <_>
+ 4 4 16 12 -1.
+ <_>
+ 4 10 16 6 2.
+ <_>
+
+ <_>
+ 0 1 4 20 -1.
+ <_>
+ 2 1 2 20 2.
+ <_>
+
+ <_>
+ 3 0 18 2 -1.
+ <_>
+ 3 1 18 1 2.
+ <_>
+
+ <_>
+ 1 5 20 14 -1.
+ <_>
+ 1 5 10 7 2.
+ <_>
+ 11 12 10 7 2.
+ <_>
+
+ <_>
+ 5 8 14 12 -1.
+ <_>
+ 5 12 14 4 3.
+ <_>
+
+ <_>
+ 3 14 7 9 -1.
+ <_>
+ 3 17 7 3 3.
+ <_>
+
+ <_>
+ 14 15 9 6 -1.
+ <_>
+ 14 17 9 2 3.
+ <_>
+
+ <_>
+ 1 15 9 6 -1.
+ <_>
+ 1 17 9 2 3.
+ <_>
+
+ <_>
+ 11 6 8 10 -1.
+ <_>
+ 15 6 4 5 2.
+ <_>
+ 11 11 4 5 2.
+ <_>
+
+ <_>
+ 5 5 14 14 -1.
+ <_>
+ 5 5 7 7 2.
+ <_>
+ 12 12 7 7 2.
+ <_>
+
+ <_>
+ 6 0 12 5 -1.
+ <_>
+ 10 0 4 5 3.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 9 3 6 3 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 3 8 18 4 -1.
+ <_>
+ 9 8 6 4 3.
+ <_>
+
+ <_>
+ 6 0 12 9 -1.
+ <_>
+ 6 3 12 3 3.
+ <_>
+
+ <_>
+ 0 0 24 6 -1.
+ <_>
+ 8 0 8 6 3.
+ <_>
+
+ <_>
+ 4 7 16 12 -1.
+ <_>
+ 4 11 16 4 3.
+ <_>
+
+ <_>
+ 11 6 6 6 -1.
+ <_>
+ 11 6 3 6 2.
+ <_>
+
+ <_>
+ 0 20 24 3 -1.
+ <_>
+ 8 20 8 3 3.
+ <_>
+
+ <_>
+ 11 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 4 13 15 4 -1.
+ <_>
+ 9 13 5 4 3.
+ <_>
+
+ <_>
+ 11 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 9 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 9 12 6 12 -1.
+ <_>
+ 9 18 6 6 2.
+ <_>
+
+ <_>
+ 1 22 18 2 -1.
+ <_>
+ 1 23 18 1 2.
+ <_>
+
+ <_>
+ 10 7 4 10 -1.
+ <_>
+ 10 12 4 5 2.
+ <_>
+
+ <_>
+ 6 7 8 10 -1.
+ <_>
+ 6 12 8 5 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 0 14 10 4 -1.
+ <_>
+ 0 16 10 2 2.
+ <_>
+
+ <_>
+ 6 18 18 2 -1.
+ <_>
+ 6 19 18 1 2.
+ <_>
+
+ <_>
+ 1 1 22 3 -1.
+ <_>
+ 1 2 22 1 3.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 2 4 6 15 -1.
+ <_>
+ 5 4 3 15 2.
+ <_>
+
+ <_>
+ 20 4 4 10 -1.
+ <_>
+ 20 4 2 10 2.
+ <_>
+
+ <_>
+ 0 4 4 10 -1.
+ <_>
+ 2 4 2 10 2.
+ <_>
+
+ <_>
+ 2 16 20 6 -1.
+ <_>
+ 12 16 10 3 2.
+ <_>
+ 2 19 10 3 2.
+ <_>
+
+ <_>
+ 0 12 8 9 -1.
+ <_>
+ 4 12 4 9 2.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 5 10 6 6 -1.
+ <_>
+ 8 10 3 6 2.
+ <_>
+
+ <_>
+ 11 8 12 6 -1.
+ <_>
+ 17 8 6 3 2.
+ <_>
+ 11 11 6 3 2.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+ 6 11 6 3 2.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 8 14 9 6 -1.
+ <_>
+ 8 16 9 2 3.
+ <_>
+
+ <_>
+ 0 16 9 6 -1.
+ <_>
+ 0 18 9 2 3.
+ <_>
+
+ <_>
+ 10 8 6 10 -1.
+ <_>
+ 12 8 2 10 3.
+ <_>
+
+ <_>
+ 3 19 12 3 -1.
+ <_>
+ 9 19 6 3 2.
+ <_>
+
+ <_>
+ 2 10 20 2 -1.
+ <_>
+ 2 11 20 1 2.
+ <_>
+
+ <_>
+ 2 9 18 12 -1.
+ <_>
+ 2 9 9 6 2.
+ <_>
+ 11 15 9 6 2.
+ <_>
+
+ <_>
+ 3 0 18 24 -1.
+ <_>
+ 3 0 9 24 2.
+ <_>
+
+ <_>
+ 5 6 14 10 -1.
+ <_>
+ 5 6 7 5 2.
+ <_>
+ 12 11 7 5 2.
+ <_>
+
+ <_>
+ 9 5 10 12 -1.
+ <_>
+ 14 5 5 6 2.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 4 5 12 12 -1.
+ <_>
+ 4 5 6 6 2.
+ <_>
+ 10 11 6 6 2.
+ <_>
+
+ <_>
+ 4 14 18 3 -1.
+ <_>
+ 4 15 18 1 3.
+ <_>
+
+ <_>
+ 6 13 8 8 -1.
+ <_>
+ 6 17 8 4 2.
+ <_>
+
+ <_>
+ 3 16 18 6 -1.
+ <_>
+ 3 19 18 3 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 6 6 12 18 -1.
+ <_>
+ 10 6 4 18 3.
+ <_>
+
+ <_>
+ 6 1 4 14 -1.
+ <_>
+ 8 1 2 14 2.
+ <_>
+
+ <_>
+ 3 2 19 2 -1.
+ <_>
+ 3 3 19 1 2.
+ <_>
+
+ <_>
+ 1 8 22 13 -1.
+ <_>
+ 12 8 11 13 2.
+ <_>
+
+ <_>
+ 8 9 11 4 -1.
+ <_>
+ 8 11 11 2 2.
+ <_>
+
+ <_>
+ 0 12 15 10 -1.
+ <_>
+ 5 12 5 10 3.
+ <_>
+
+ <_>
+ 12 16 12 6 -1.
+ <_>
+ 16 16 4 6 3.
+ <_>
+
+ <_>
+ 0 16 12 6 -1.
+ <_>
+ 4 16 4 6 3.
+ <_>
+
+ <_>
+ 19 1 5 12 -1.
+ <_>
+ 19 5 5 4 3.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 8 2 8 4 3.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 6 10 12 2 2.
+ <_>
+
+ <_>
+ 7 5 9 6 -1.
+ <_>
+ 10 5 3 6 3.
+ <_>
+
+ <_>
+ 9 17 6 6 -1.
+ <_>
+ 9 20 6 3 2.
+ <_>
+
+ <_>
+ 0 7 22 15 -1.
+ <_>
+ 0 12 22 5 3.
+ <_>
+
+ <_>
+ 4 1 17 9 -1.
+ <_>
+ 4 4 17 3 3.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 9 5 2 10 3.
+ <_>
+
+ <_>
+ 18 1 6 8 -1.
+ <_>
+ 18 1 3 8 2.
+ <_>
+
+ <_>
+ 0 1 6 7 -1.
+ <_>
+ 3 1 3 7 2.
+ <_>
+
+ <_>
+ 18 0 6 22 -1.
+ <_>
+ 18 0 3 22 2.
+ <_>
+
+ <_>
+ 0 0 6 22 -1.
+ <_>
+ 3 0 3 22 2.
+ <_>
+
+ <_>
+ 16 7 8 16 -1.
+ <_>
+ 16 7 4 16 2.
+ <_>
+
+ <_>
+ 2 10 19 6 -1.
+ <_>
+ 2 12 19 2 3.
+ <_>
+
+ <_>
+ 9 9 6 12 -1.
+ <_>
+ 9 13 6 4 3.
+ <_>
+
+ <_>
+ 2 15 17 6 -1.
+ <_>
+ 2 17 17 2 3.
+ <_>
+
+ <_>
+ 14 7 3 14 -1.
+ <_>
+ 14 14 3 7 2.
+ <_>
+
+ <_>
+ 5 6 8 10 -1.
+ <_>
+ 5 6 4 5 2.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 15 8 9 11 -1.
+ <_>
+ 18 8 3 11 3.
+ <_>
+
+ <_>
+ 0 8 9 11 -1.
+ <_>
+ 3 8 3 11 3.
+ <_>
+
+ <_>
+ 8 6 10 18 -1.
+ <_>
+ 8 15 10 9 2.
+ <_>
+
+ <_>
+ 7 7 3 14 -1.
+ <_>
+ 7 14 3 7 2.
+ <_>
+
+ <_>
+ 0 14 24 8 -1.
+ <_>
+ 8 14 8 8 3.
+ <_>
+
+ <_>
+ 1 10 18 14 -1.
+ <_>
+ 10 10 9 14 2.
+ <_>
+
+ <_>
+ 14 12 6 6 -1.
+ <_>
+ 14 15 6 3 2.
+ <_>
+
+ <_>
+ 7 0 10 16 -1.
+ <_>
+ 7 0 5 8 2.
+ <_>
+ 12 8 5 8 2.
+ <_>
+
+ <_>
+ 10 0 9 6 -1.
+ <_>
+ 13 0 3 6 3.
+ <_>
+
+ <_>
+ 4 3 16 4 -1.
+ <_>
+ 12 3 8 4 2.
+ <_>
+
+ <_>
+ 10 0 9 6 -1.
+ <_>
+ 13 0 3 6 3.
+ <_>
+
+ <_>
+ 1 1 20 4 -1.
+ <_>
+ 1 1 10 2 2.
+ <_>
+ 11 3 10 2 2.
+ <_>
+
+ <_>
+ 10 0 9 6 -1.
+ <_>
+ 13 0 3 6 3.
+ <_>
+
+ <_>
+ 5 0 9 6 -1.
+ <_>
+ 8 0 3 6 3.
+ <_>
+
+ <_>
+ 8 18 10 6 -1.
+ <_>
+ 8 20 10 2 3.
+ <_>
+
+ <_>
+ 6 3 6 9 -1.
+ <_>
+ 8 3 2 9 3.
+ <_>
+
+ <_>
+ 7 3 12 6 -1.
+ <_>
+ 7 5 12 2 3.
+ <_>
+
+ <_>
+ 0 10 18 3 -1.
+ <_>
+ 0 11 18 1 3.
+ <_>
+
+ <_>
+ 1 10 22 3 -1.
+ <_>
+ 1 11 22 1 3.
+ <_>
+
+ <_>
+ 5 11 8 8 -1.
+ <_>
+ 9 11 4 8 2.
+ <_>
+
+ <_>
+ 12 11 6 6 -1.
+ <_>
+ 12 11 3 6 2.
+ <_>
+
+ <_>
+ 6 11 6 6 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 7 10 11 6 -1.
+ <_>
+ 7 12 11 2 3.
+ <_>
+
+ <_>
+ 0 13 24 4 -1.
+ <_>
+ 0 13 12 2 2.
+ <_>
+ 12 15 12 2 2.
+ <_>
+
+ <_>
+ 2 4 22 12 -1.
+ <_>
+ 13 4 11 6 2.
+ <_>
+ 2 10 11 6 2.
+ <_>
+
+ <_>
+ 2 0 20 17 -1.
+ <_>
+ 12 0 10 17 2.
+ <_>
+
+ <_>
+ 14 0 2 24 -1.
+ <_>
+ 14 0 1 24 2.
+ <_>
+
+ <_>
+ 8 0 2 24 -1.
+ <_>
+ 9 0 1 24 2.
+ <_>
+
+ <_>
+ 14 1 2 22 -1.
+ <_>
+ 14 1 1 22 2.
+ <_>
+
+ <_>
+ 8 1 2 22 -1.
+ <_>
+ 9 1 1 22 2.
+ <_>
+
+ <_>
+ 17 6 3 18 -1.
+ <_>
+ 18 6 1 18 3.
+ <_>
+
+ <_>
+ 6 14 9 6 -1.
+ <_>
+ 6 16 9 2 3.
+ <_>
+
+ <_>
+ 13 14 9 4 -1.
+ <_>
+ 13 16 9 2 2.
+ <_>
+
+ <_>
+ 3 18 18 3 -1.
+ <_>
+ 3 19 18 1 3.
+ <_>
+
+ <_>
+ 9 4 8 18 -1.
+ <_>
+ 13 4 4 9 2.
+ <_>
+ 9 13 4 9 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 0 2 12 4 -1.
+ <_>
+ 6 2 6 4 2.
+ <_>
+
+ <_>
+ 6 8 14 6 -1.
+ <_>
+ 6 11 14 3 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 10 5 3 6 2.
+ <_>
+
+ <_>
+ 10 5 6 16 -1.
+ <_>
+ 10 13 6 8 2.
+ <_>
+
+ <_>
+ 1 4 9 16 -1.
+ <_>
+ 4 4 3 16 3.
+ <_>
+
+ <_>
+ 5 0 18 9 -1.
+ <_>
+ 5 3 18 3 3.
+ <_>
+
+ <_>
+ 9 15 5 8 -1.
+ <_>
+ 9 19 5 4 2.
+ <_>
+
+ <_>
+ 20 0 4 9 -1.
+ <_>
+ 20 0 2 9 2.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 2 1 18 1 3.
+ <_>
+
+ <_>
+ 5 22 19 2 -1.
+ <_>
+ 5 23 19 1 2.
+ <_>
+
+ <_>
+ 0 0 4 9 -1.
+ <_>
+ 2 0 2 9 2.
+ <_>
+
+ <_>
+ 5 6 19 18 -1.
+ <_>
+ 5 12 19 6 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 2 1 2 9 3.
+ <_>
+
+ <_>
+ 6 5 14 12 -1.
+ <_>
+ 13 5 7 6 2.
+ <_>
+ 6 11 7 6 2.
+ <_>
+
+ <_>
+ 0 1 20 2 -1.
+ <_>
+ 0 2 20 1 2.
+ <_>
+
+ <_>
+ 1 2 22 3 -1.
+ <_>
+ 1 3 22 1 3.
+ <_>
+
+ <_>
+ 2 8 7 9 -1.
+ <_>
+ 2 11 7 3 3.
+ <_>
+
+ <_>
+ 2 12 22 4 -1.
+ <_>
+ 13 12 11 2 2.
+ <_>
+ 2 14 11 2 2.
+ <_>
+
+ <_>
+ 0 12 22 4 -1.
+ <_>
+ 0 12 11 2 2.
+ <_>
+ 11 14 11 2 2.
+ <_>
+
+ <_>
+ 9 7 6 11 -1.
+ <_>
+ 11 7 2 11 3.
+ <_>
+
+ <_>
+ 7 1 9 6 -1.
+ <_>
+ 10 1 3 6 3.
+ <_>
+
+ <_>
+ 11 2 4 10 -1.
+ <_>
+ 11 7 4 5 2.
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 6 10 12 6 2.
+ <_>
+
+ <_>
+ 18 1 6 15 -1.
+ <_>
+ 18 6 6 5 3.
+ <_>
+
+ <_>
+ 3 15 18 3 -1.
+ <_>
+ 3 16 18 1 3.
+ <_>
+
+ <_>
+ 18 5 6 9 -1.
+ <_>
+ 18 8 6 3 3.
+ <_>
+
+ <_>
+ 1 5 16 6 -1.
+ <_>
+ 1 5 8 3 2.
+ <_>
+ 9 8 8 3 2.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 0 4 24 14 -1.
+ <_>
+ 0 4 12 7 2.
+ <_>
+ 12 11 12 7 2.
+ <_>
+
+ <_>
+ 13 0 4 13 -1.
+ <_>
+ 13 0 2 13 2.
+ <_>
+
+ <_>
+ 7 0 4 13 -1.
+ <_>
+ 9 0 2 13 2.
+ <_>
+
+ <_>
+ 11 6 6 9 -1.
+ <_>
+ 13 6 2 9 3.
+ <_>
+
+ <_>
+ 8 7 6 9 -1.
+ <_>
+ 10 7 2 9 3.
+ <_>
+
+ <_>
+ 13 17 9 6 -1.
+ <_>
+ 13 19 9 2 3.
+ <_>
+
+ <_>
+ 2 18 14 6 -1.
+ <_>
+ 2 18 7 3 2.
+ <_>
+ 9 21 7 3 2.
+ <_>
+
+ <_>
+ 3 18 18 4 -1.
+ <_>
+ 12 18 9 2 2.
+ <_>
+ 3 20 9 2 2.
+ <_>
+
+ <_>
+ 0 20 15 4 -1.
+ <_>
+ 5 20 5 4 3.
+ <_>
+
+ <_>
+ 9 15 15 9 -1.
+ <_>
+ 14 15 5 9 3.
+ <_>
+
+ <_>
+ 4 4 16 4 -1.
+ <_>
+ 4 6 16 2 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 0 14 15 10 -1.
+ <_>
+ 5 14 5 10 3.
+ <_>
+
+ <_>
+ 7 9 10 14 -1.
+ <_>
+ 12 9 5 7 2.
+ <_>
+ 7 16 5 7 2.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 9 6 2 9 3.
+ <_>
+
+ <_>
+ 3 6 18 3 -1.
+ <_>
+ 3 7 18 1 3.
+ <_>
+
+ <_>
+ 0 10 18 3 -1.
+ <_>
+ 0 11 18 1 3.
+ <_>
+
+ <_>
+ 3 16 18 4 -1.
+ <_>
+ 12 16 9 2 2.
+ <_>
+ 3 18 9 2 2.
+ <_>
+
+ <_>
+ 4 6 14 6 -1.
+ <_>
+ 4 6 7 3 2.
+ <_>
+ 11 9 7 3 2.
+ <_>
+
+ <_>
+ 13 0 2 18 -1.
+ <_>
+ 13 0 1 18 2.
+ <_>
+
+ <_>
+ 9 0 2 18 -1.
+ <_>
+ 10 0 1 18 2.
+ <_>
+
+ <_>
+ 5 7 15 10 -1.
+ <_>
+ 10 7 5 10 3.
+ <_>
+
+ <_>
+ 1 20 21 4 -1.
+ <_>
+ 8 20 7 4 3.
+ <_>
+
+ <_>
+ 10 5 5 18 -1.
+ <_>
+ 10 14 5 9 2.
+ <_>
+
+ <_>
+ 0 2 24 6 -1.
+ <_>
+ 0 2 12 3 2.
+ <_>
+ 12 5 12 3 2.
+ <_>
+
+ <_>
+ 1 1 22 8 -1.
+ <_>
+ 12 1 11 4 2.
+ <_>
+ 1 5 11 4 2.
+ <_>
+
+ <_>
+ 4 0 15 9 -1.
+ <_>
+ 4 3 15 3 3.
+ <_>
+
+ <_>
+ 0 0 24 19 -1.
+ <_>
+ 8 0 8 19 3.
+ <_>
+
+ <_>
+ 2 21 18 3 -1.
+ <_>
+ 11 21 9 3 2.
+ <_>
+
+ <_>
+ 9 7 10 4 -1.
+ <_>
+ 9 7 5 4 2.
+ <_>
+
+ <_>
+ 5 7 10 4 -1.
+ <_>
+ 10 7 5 4 2.
+ <_>
+
+ <_>
+ 17 8 6 16 -1.
+ <_>
+ 20 8 3 8 2.
+ <_>
+ 17 16 3 8 2.
+ <_>
+
+ <_>
+ 1 15 20 4 -1.
+ <_>
+ 1 15 10 2 2.
+ <_>
+ 11 17 10 2 2.
+ <_>
+
+ <_>
+ 14 15 10 6 -1.
+ <_>
+ 14 17 10 2 3.
+ <_>
+
+ <_>
+ 3 0 16 9 -1.
+ <_>
+ 3 3 16 3 3.
+ <_>
+
+ <_>
+ 15 6 7 15 -1.
+ <_>
+ 15 11 7 5 3.
+ <_>
+
+ <_>
+ 9 1 6 13 -1.
+ <_>
+ 11 1 2 13 3.
+ <_>
+
+ <_>
+ 17 2 6 14 -1.
+ <_>
+ 17 2 3 14 2.
+ <_>
+
+ <_>
+ 3 14 12 10 -1.
+ <_>
+ 3 14 6 5 2.
+ <_>
+ 9 19 6 5 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 1 2 6 14 -1.
+ <_>
+ 4 2 3 14 2.
+ <_>
+
+ <_>
+ 10 4 5 12 -1.
+ <_>
+ 10 8 5 4 3.
+ <_>
+
+ <_>
+ 0 17 24 5 -1.
+ <_>
+ 8 17 8 5 3.
+ <_>
+
+ <_>
+ 15 7 5 12 -1.
+ <_>
+ 15 11 5 4 3.
+ <_>
+
+ <_>
+ 3 1 6 12 -1.
+ <_>
+ 3 1 3 6 2.
+ <_>
+ 6 7 3 6 2.
+ <_>
+
+ <_>
+ 12 13 6 6 -1.
+ <_>
+ 12 16 6 3 2.
+ <_>
+
+ <_>
+ 6 13 6 6 -1.
+ <_>
+ 6 16 6 3 2.
+ <_>
+
+ <_>
+ 14 6 3 16 -1.
+ <_>
+ 14 14 3 8 2.
+ <_>
+
+ <_>
+ 1 12 13 6 -1.
+ <_>
+ 1 14 13 2 3.
+ <_>
+
+ <_>
+ 13 1 4 9 -1.
+ <_>
+ 13 1 2 9 2.
+ <_>
+
+ <_>
+ 7 0 9 6 -1.
+ <_>
+ 10 0 3 6 3.
+ <_>
+
+ <_>
+ 12 2 6 9 -1.
+ <_>
+ 12 2 3 9 2.
+ <_>
+
+ <_>
+ 6 2 6 9 -1.
+ <_>
+ 9 2 3 9 2.
+ <_>
+
+ <_>
+ 6 18 12 6 -1.
+ <_>
+ 6 20 12 2 3.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 9 6 2 9 3.
+ <_>
+
+ <_>
+ 7 7 12 3 -1.
+ <_>
+ 7 7 6 3 2.
+ <_>
+
+ <_>
+ 8 3 8 21 -1.
+ <_>
+ 8 10 8 7 3.
+ <_>
+
+ <_>
+ 7 4 10 12 -1.
+ <_>
+ 7 8 10 4 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 0 4 6 3 3.
+ <_>
+
+ <_>
+ 15 2 2 20 -1.
+ <_>
+ 15 2 1 20 2.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 0 6 6 3 3.
+ <_>
+
+ <_>
+ 15 3 2 21 -1.
+ <_>
+ 15 3 1 21 2.
+ <_>
+
+ <_>
+ 7 0 2 23 -1.
+ <_>
+ 8 0 1 23 2.
+ <_>
+
+ <_>
+ 15 8 9 4 -1.
+ <_>
+ 15 10 9 2 2.
+ <_>
+
+ <_>
+ 0 8 9 4 -1.
+ <_>
+ 0 10 9 2 2.
+ <_>
+
+ <_>
+ 8 14 9 6 -1.
+ <_>
+ 8 16 9 2 3.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 3 10 18 4 -1.
+ <_>
+ 9 10 6 4 3.
+ <_>
+
+ <_>
+ 0 0 24 19 -1.
+ <_>
+ 8 0 8 19 3.
+ <_>
+
+ <_>
+ 9 1 8 12 -1.
+ <_>
+ 9 7 8 6 2.
+ <_>
+
+ <_>
+ 10 6 4 10 -1.
+ <_>
+ 12 6 2 10 2.
+ <_>
+
+ <_>
+ 7 9 10 12 -1.
+ <_>
+ 12 9 5 6 2.
+ <_>
+ 7 15 5 6 2.
+ <_>
+
+ <_>
+ 5 0 3 19 -1.
+ <_>
+ 6 0 1 19 3.
+ <_>
+
+ <_>
+ 14 0 6 10 -1.
+ <_>
+ 16 0 2 10 3.
+ <_>
+
+ <_>
+ 2 0 6 12 -1.
+ <_>
+ 2 0 3 6 2.
+ <_>
+ 5 6 3 6 2.
+ <_>
+
+ <_>
+ 0 11 24 2 -1.
+ <_>
+ 0 12 24 1 2.
+ <_>
+
+ <_>
+ 4 9 13 4 -1.
+ <_>
+ 4 11 13 2 2.
+ <_>
+
+ <_>
+ 9 8 6 9 -1.
+ <_>
+ 9 11 6 3 3.
+ <_>
+
+ <_>
+ 0 12 16 4 -1.
+ <_>
+ 0 14 16 2 2.
+ <_>
+
+ <_>
+ 18 12 6 9 -1.
+ <_>
+ 18 15 6 3 3.
+ <_>
+
+ <_>
+ 0 12 6 9 -1.
+ <_>
+ 0 15 6 3 3.
+ <_>
+
+ <_>
+ 8 7 10 4 -1.
+ <_>
+ 8 7 5 4 2.
+ <_>
+
+ <_>
+ 8 7 6 9 -1.
+ <_>
+ 10 7 2 9 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 12 3 6 15 -1.
+ <_>
+ 14 3 2 15 3.
+ <_>
+
+ <_>
+ 6 3 6 15 -1.
+ <_>
+ 8 3 2 15 3.
+ <_>
+
+ <_>
+ 15 2 9 4 -1.
+ <_>
+ 15 4 9 2 2.
+ <_>
+
+ <_>
+ 5 10 6 7 -1.
+ <_>
+ 8 10 3 7 2.
+ <_>
+
+ <_>
+ 9 14 6 10 -1.
+ <_>
+ 9 19 6 5 2.
+ <_>
+
+ <_>
+ 7 13 5 8 -1.
+ <_>
+ 7 17 5 4 2.
+ <_>
+
+ <_>
+ 14 5 3 16 -1.
+ <_>
+ 14 13 3 8 2.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 2 18 18 1 3.
+ <_>
+
+ <_>
+ 5 18 19 3 -1.
+ <_>
+ 5 19 19 1 3.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 12 4 3 18 -1.
+ <_>
+ 13 4 1 18 3.
+ <_>
+
+ <_>
+ 9 4 3 18 -1.
+ <_>
+ 10 4 1 18 3.
+ <_>
+
+ <_>
+ 3 3 18 9 -1.
+ <_>
+ 9 3 6 9 3.
+ <_>
+
+ <_>
+ 6 1 6 14 -1.
+ <_>
+ 8 1 2 14 3.
+ <_>
+
+ <_>
+ 12 16 9 6 -1.
+ <_>
+ 12 19 9 3 2.
+ <_>
+
+ <_>
+ 1 3 20 16 -1.
+ <_>
+ 1 3 10 8 2.
+ <_>
+ 11 11 10 8 2.
+ <_>
+
+ <_>
+ 12 5 6 12 -1.
+ <_>
+ 15 5 3 6 2.
+ <_>
+ 12 11 3 6 2.
+ <_>
+
+ <_>
+ 1 2 22 16 -1.
+ <_>
+ 1 2 11 8 2.
+ <_>
+ 12 10 11 8 2.
+ <_>
+
+ <_>
+ 10 14 5 10 -1.
+ <_>
+ 10 19 5 5 2.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 3 22 18 1 3.
+ <_>
+
+ <_>
+ 10 14 6 10 -1.
+ <_>
+ 12 14 2 10 3.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 8 2 8 4 3.
+ <_>
+
+ <_>
+ 6 4 12 9 -1.
+ <_>
+ 6 7 12 3 3.
+ <_>
+
+ <_>
+ 6 6 12 5 -1.
+ <_>
+ 10 6 4 5 3.
+ <_>
+
+ <_>
+ 5 8 14 12 -1.
+ <_>
+ 5 12 14 4 3.
+ <_>
+
+ <_>
+ 4 14 8 10 -1.
+ <_>
+ 4 14 4 5 2.
+ <_>
+ 8 19 4 5 2.
+ <_>
+
+ <_>
+ 11 6 5 14 -1.
+ <_>
+ 11 13 5 7 2.
+ <_>
+
+ <_>
+ 7 6 3 16 -1.
+ <_>
+ 7 14 3 8 2.
+ <_>
+
+ <_>
+ 3 7 18 8 -1.
+ <_>
+ 9 7 6 8 3.
+ <_>
+
+ <_>
+ 2 3 20 2 -1.
+ <_>
+ 2 4 20 1 2.
+ <_>
+
+ <_>
+ 3 12 19 6 -1.
+ <_>
+ 3 14 19 2 3.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 16 6 6 14 -1.
+ <_>
+ 16 6 3 14 2.
+ <_>
+
+ <_>
+ 7 9 6 12 -1.
+ <_>
+ 9 9 2 12 3.
+ <_>
+
+ <_>
+ 18 6 6 18 -1.
+ <_>
+ 21 6 3 9 2.
+ <_>
+ 18 15 3 9 2.
+ <_>
+
+ <_>
+ 0 6 6 18 -1.
+ <_>
+ 0 6 3 9 2.
+ <_>
+ 3 15 3 9 2.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 18 5 6 3 3.
+ <_>
+
+ <_>
+ 3 18 15 6 -1.
+ <_>
+ 3 20 15 2 3.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 18 5 6 3 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 5 10 18 2 -1.
+ <_>
+ 5 11 18 1 2.
+ <_>
+
+ <_>
+ 6 0 12 6 -1.
+ <_>
+ 6 2 12 2 3.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 10 0 2 9 3.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 3 6 13 6 -1.
+ <_>
+ 3 8 13 2 3.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 2 5 6 15 -1.
+ <_>
+ 5 5 3 15 2.
+ <_>
+
+ <_>
+ 8 8 9 6 -1.
+ <_>
+ 11 8 3 6 3.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 8 13 3 7 2.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 4 12 10 4 -1.
+ <_>
+ 9 12 5 4 2.
+ <_>
+
+ <_>
+ 13 1 4 19 -1.
+ <_>
+ 13 1 2 19 2.
+ <_>
+
+ <_>
+ 7 1 4 19 -1.
+ <_>
+ 9 1 2 19 2.
+ <_>
+
+ <_>
+ 18 9 6 9 -1.
+ <_>
+ 18 12 6 3 3.
+ <_>
+
+ <_>
+ 1 21 18 3 -1.
+ <_>
+ 1 22 18 1 3.
+ <_>
+
+ <_>
+ 14 13 10 9 -1.
+ <_>
+ 14 16 10 3 3.
+ <_>
+
+ <_>
+ 1 13 22 4 -1.
+ <_>
+ 1 13 11 2 2.
+ <_>
+ 12 15 11 2 2.
+ <_>
+
+ <_>
+ 4 6 16 6 -1.
+ <_>
+ 12 6 8 3 2.
+ <_>
+ 4 9 8 3 2.
+ <_>
+
+ <_>
+ 1 0 18 22 -1.
+ <_>
+ 1 0 9 11 2.
+ <_>
+ 10 11 9 11 2.
+ <_>
+
+ <_>
+ 10 7 8 14 -1.
+ <_>
+ 14 7 4 7 2.
+ <_>
+ 10 14 4 7 2.
+ <_>
+
+ <_>
+ 0 4 6 20 -1.
+ <_>
+ 0 4 3 10 2.
+ <_>
+ 3 14 3 10 2.
+ <_>
+
+ <_>
+ 15 0 6 9 -1.
+ <_>
+ 17 0 2 9 3.
+ <_>
+
+ <_>
+ 3 0 6 9 -1.
+ <_>
+ 5 0 2 9 3.
+ <_>
+
+ <_>
+ 15 12 6 12 -1.
+ <_>
+ 18 12 3 6 2.
+ <_>
+ 15 18 3 6 2.
+ <_>
+
+ <_>
+ 3 12 6 12 -1.
+ <_>
+ 3 12 3 6 2.
+ <_>
+ 6 18 3 6 2.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 0 12 9 6 -1.
+ <_>
+ 0 14 9 2 3.
+ <_>
+
+ <_>
+ 4 14 19 3 -1.
+ <_>
+ 4 15 19 1 3.
+ <_>
+
+ <_>
+ 2 13 19 3 -1.
+ <_>
+ 2 14 19 1 3.
+ <_>
+
+ <_>
+ 14 15 10 6 -1.
+ <_>
+ 14 17 10 2 3.
+ <_>
+
+ <_>
+ 6 0 10 12 -1.
+ <_>
+ 6 0 5 6 2.
+ <_>
+ 11 6 5 6 2.
+ <_>
+
+ <_>
+ 17 1 6 12 -1.
+ <_>
+ 20 1 3 6 2.
+ <_>
+ 17 7 3 6 2.
+ <_>
+
+ <_>
+ 1 1 6 12 -1.
+ <_>
+ 1 1 3 6 2.
+ <_>
+ 4 7 3 6 2.
+ <_>
+
+ <_>
+ 16 14 6 9 -1.
+ <_>
+ 16 17 6 3 3.
+ <_>
+
+ <_>
+ 7 3 9 12 -1.
+ <_>
+ 7 9 9 6 2.
+ <_>
+
+ <_>
+ 12 1 4 12 -1.
+ <_>
+ 12 7 4 6 2.
+ <_>
+
+ <_>
+ 4 0 14 8 -1.
+ <_>
+ 4 4 14 4 2.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 2 10 18 3 -1.
+ <_>
+ 8 10 6 3 3.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 0 1 21 23 -1.
+ <_>
+ 7 1 7 23 3.
+ <_>
+
+ <_>
+ 6 9 17 4 -1.
+ <_>
+ 6 11 17 2 2.
+ <_>
+
+ <_>
+ 1 0 11 18 -1.
+ <_>
+ 1 6 11 6 3.
+ <_>
+
+ <_>
+ 6 15 13 6 -1.
+ <_>
+ 6 17 13 2 3.
+ <_>
+
+ <_>
+ 0 15 9 6 -1.
+ <_>
+ 0 17 9 2 3.
+ <_>
+
+ <_>
+ 8 7 15 4 -1.
+ <_>
+ 13 7 5 4 3.
+ <_>
+
+ <_>
+ 9 12 6 9 -1.
+ <_>
+ 9 15 6 3 3.
+ <_>
+
+ <_>
+ 6 8 18 3 -1.
+ <_>
+ 12 8 6 3 3.
+ <_>
+
+ <_>
+ 0 14 24 4 -1.
+ <_>
+ 8 14 8 4 3.
+ <_>
+
+ <_>
+ 16 10 3 12 -1.
+ <_>
+ 16 16 3 6 2.
+ <_>
+
+ <_>
+ 0 3 24 3 -1.
+ <_>
+ 0 4 24 1 3.
+ <_>
+
+ <_>
+ 14 17 10 6 -1.
+ <_>
+ 14 19 10 2 3.
+ <_>
+
+ <_>
+ 1 13 18 3 -1.
+ <_>
+ 7 13 6 3 3.
+ <_>
+
+ <_>
+ 5 0 18 9 -1.
+ <_>
+ 5 3 18 3 3.
+ <_>
+
+ <_>
+ 4 3 16 9 -1.
+ <_>
+ 4 6 16 3 3.
+ <_>
+
+ <_>
+ 16 5 3 12 -1.
+ <_>
+ 16 11 3 6 2.
+ <_>
+
+ <_>
+ 0 7 18 4 -1.
+ <_>
+ 6 7 6 4 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 9 8 6 10 -1.
+ <_>
+ 11 8 2 10 3.
+ <_>
+
+ <_>
+ 9 15 6 9 -1.
+ <_>
+ 11 15 2 9 3.
+ <_>
+
+ <_>
+ 3 1 18 21 -1.
+ <_>
+ 12 1 9 21 2.
+ <_>
+
+ <_>
+ 6 8 12 7 -1.
+ <_>
+ 6 8 6 7 2.
+ <_>
+
+ <_>
+ 8 5 6 9 -1.
+ <_>
+ 10 5 2 9 3.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 8 2 8 4 3.
+ <_>
+
+ <_>
+ 14 7 5 12 -1.
+ <_>
+ 14 11 5 4 3.
+ <_>
+
+ <_>
+ 5 7 5 12 -1.
+ <_>
+ 5 11 5 4 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 0 1 6 17 -1.
+ <_>
+ 3 1 3 17 2.
+ <_>
+
+ <_>
+ 3 1 19 9 -1.
+ <_>
+ 3 4 19 3 3.
+ <_>
+
+ <_>
+ 3 18 12 6 -1.
+ <_>
+ 3 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 20 4 4 19 -1.
+ <_>
+ 20 4 2 19 2.
+ <_>
+
+ <_>
+ 0 16 10 7 -1.
+ <_>
+ 5 16 5 7 2.
+ <_>
+
+ <_>
+ 8 7 10 12 -1.
+ <_>
+ 13 7 5 6 2.
+ <_>
+ 8 13 5 6 2.
+ <_>
+
+ <_>
+ 6 7 10 12 -1.
+ <_>
+ 6 7 5 6 2.
+ <_>
+ 11 13 5 6 2.
+ <_>
+
+ <_>
+ 9 2 9 6 -1.
+ <_>
+ 12 2 3 6 3.
+ <_>
+
+ <_>
+ 1 20 21 4 -1.
+ <_>
+ 8 20 7 4 3.
+ <_>
+
+ <_>
+ 9 12 9 6 -1.
+ <_>
+ 9 14 9 2 3.
+ <_>
+
+ <_>
+ 7 2 9 6 -1.
+ <_>
+ 10 2 3 6 3.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 13 0 2 14 2.
+ <_>
+
+ <_>
+ 7 0 4 14 -1.
+ <_>
+ 9 0 2 14 2.
+ <_>
+
+ <_>
+ 14 15 9 6 -1.
+ <_>
+ 14 17 9 2 3.
+ <_>
+
+ <_>
+ 2 8 18 5 -1.
+ <_>
+ 8 8 6 5 3.
+ <_>
+
+ <_>
+ 18 3 6 11 -1.
+ <_>
+ 20 3 2 11 3.
+ <_>
+
+ <_>
+ 6 5 11 14 -1.
+ <_>
+ 6 12 11 7 2.
+ <_>
+
+ <_>
+ 18 4 6 9 -1.
+ <_>
+ 18 7 6 3 3.
+ <_>
+
+ <_>
+ 7 6 9 6 -1.
+ <_>
+ 7 8 9 2 3.
+ <_>
+
+ <_>
+ 18 4 6 9 -1.
+ <_>
+ 18 7 6 3 3.
+ <_>
+
+ <_>
+ 0 4 6 9 -1.
+ <_>
+ 0 7 6 3 3.
+ <_>
+
+ <_>
+ 9 4 9 4 -1.
+ <_>
+ 9 6 9 2 2.
+ <_>
+
+ <_>
+ 0 22 19 2 -1.
+ <_>
+ 0 23 19 1 2.
+ <_>
+
+ <_>
+ 17 14 6 9 -1.
+ <_>
+ 17 17 6 3 3.
+ <_>
+
+ <_>
+ 1 14 6 9 -1.
+ <_>
+ 1 17 6 3 3.
+ <_>
+
+ <_>
+ 14 11 4 9 -1.
+ <_>
+ 14 11 2 9 2.
+ <_>
+
+ <_>
+ 6 11 4 9 -1.
+ <_>
+ 8 11 2 9 2.
+ <_>
+
+ <_>
+ 3 9 18 7 -1.
+ <_>
+ 9 9 6 7 3.
+ <_>
+
+ <_>
+ 9 12 6 10 -1.
+ <_>
+ 9 17 6 5 2.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 6 17 18 3 -1.
+ <_>
+ 6 18 18 1 3.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 1 18 18 1 3.
+ <_>
+
+ <_>
+ 10 6 11 12 -1.
+ <_>
+ 10 12 11 6 2.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 5 6 7 3 2.
+ <_>
+ 12 9 7 3 2.
+ <_>
+
+ <_>
+ 5 4 15 4 -1.
+ <_>
+ 5 6 15 2 2.
+ <_>
+
+ <_>
+ 0 0 22 2 -1.
+ <_>
+ 0 1 22 1 2.
+ <_>
+
+ <_>
+ 0 0 24 24 -1.
+ <_>
+ 8 0 8 24 3.
+ <_>
+
+ <_>
+ 1 15 18 4 -1.
+ <_>
+ 10 15 9 4 2.
+ <_>
+
+ <_>
+ 6 8 12 9 -1.
+ <_>
+ 6 11 12 3 3.
+ <_>
+
+ <_>
+ 4 12 7 12 -1.
+ <_>
+ 4 16 7 4 3.
+ <_>
+
+ <_>
+ 1 2 22 6 -1.
+ <_>
+ 12 2 11 3 2.
+ <_>
+ 1 5 11 3 2.
+ <_>
+
+ <_>
+ 5 20 14 3 -1.
+ <_>
+ 12 20 7 3 2.
+ <_>
+
+ <_>
+ 0 0 24 16 -1.
+ <_>
+ 12 0 12 8 2.
+ <_>
+ 0 8 12 8 2.
+ <_>
+
+ <_>
+ 3 13 18 4 -1.
+ <_>
+ 3 13 9 2 2.
+ <_>
+ 12 15 9 2 2.
+ <_>
+
+ <_>
+ 2 10 22 2 -1.
+ <_>
+ 2 11 22 1 2.
+ <_>
+
+ <_>
+ 6 3 11 8 -1.
+ <_>
+ 6 7 11 4 2.
+ <_>
+
+ <_>
+ 14 5 6 6 -1.
+ <_>
+ 14 8 6 3 2.
+ <_>
+
+ <_>
+ 0 7 24 6 -1.
+ <_>
+ 0 9 24 2 3.
+ <_>
+
+ <_>
+ 14 0 10 10 -1.
+ <_>
+ 19 0 5 5 2.
+ <_>
+ 14 5 5 5 2.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 0 1 24 4 -1.
+ <_>
+ 12 1 12 2 2.
+ <_>
+ 0 3 12 2 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 5 15 16 6 -1.
+ <_>
+ 13 15 8 3 2.
+ <_>
+ 5 18 8 3 2.
+ <_>
+
+ <_>
+ 3 15 16 6 -1.
+ <_>
+ 3 15 8 3 2.
+ <_>
+ 11 18 8 3 2.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 0 13 21 10 -1.
+ <_>
+ 0 18 21 5 2.
+ <_>
+
+ <_>
+ 13 0 6 24 -1.
+ <_>
+ 15 0 2 24 3.
+ <_>
+
+ <_>
+ 7 4 6 11 -1.
+ <_>
+ 9 4 2 11 3.
+ <_>
+
+ <_>
+ 9 5 9 6 -1.
+ <_>
+ 12 5 3 6 3.
+ <_>
+
+ <_>
+ 1 4 2 20 -1.
+ <_>
+ 1 14 2 10 2.
+ <_>
+
+ <_>
+ 13 0 6 24 -1.
+ <_>
+ 15 0 2 24 3.
+ <_>
+
+ <_>
+ 5 0 6 24 -1.
+ <_>
+ 7 0 2 24 3.
+ <_>
+
+ <_>
+ 16 7 6 14 -1.
+ <_>
+ 19 7 3 7 2.
+ <_>
+ 16 14 3 7 2.
+ <_>
+
+ <_>
+ 4 7 4 12 -1.
+ <_>
+ 6 7 2 12 2.
+ <_>
+
+ <_>
+ 0 5 24 14 -1.
+ <_>
+ 8 5 8 14 3.
+ <_>
+
+ <_>
+ 5 13 10 6 -1.
+ <_>
+ 5 15 10 2 3.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 2 7 6 14 -1.
+ <_>
+ 2 7 3 7 2.
+ <_>
+ 5 14 3 7 2.
+ <_>
+
+ <_>
+ 15 2 9 15 -1.
+ <_>
+ 18 2 3 15 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 2 2 2 9 3.
+ <_>
+
+ <_>
+ 12 2 10 14 -1.
+ <_>
+ 17 2 5 7 2.
+ <_>
+ 12 9 5 7 2.
+ <_>
+
+ <_>
+ 11 6 2 18 -1.
+ <_>
+ 12 6 1 18 2.
+ <_>
+
+ <_>
+ 9 5 15 6 -1.
+ <_>
+ 14 5 5 6 3.
+ <_>
+
+ <_>
+ 8 6 6 10 -1.
+ <_>
+ 10 6 2 10 3.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 3 3 9 7 -1.
+ <_>
+ 6 3 3 7 3.
+ <_>
+
+ <_>
+ 6 7 14 3 -1.
+ <_>
+ 6 7 7 3 2.
+ <_>
+
+ <_>
+ 7 7 8 6 -1.
+ <_>
+ 11 7 4 6 2.
+ <_>
+
+ <_>
+ 12 7 7 12 -1.
+ <_>
+ 12 13 7 6 2.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 10 6 2 9 2.
+ <_>
+ 12 15 2 9 2.
+ <_>
+
+ <_>
+ 16 14 6 9 -1.
+ <_>
+ 16 17 6 3 3.
+ <_>
+
+ <_>
+ 4 0 6 13 -1.
+ <_>
+ 6 0 2 13 3.
+ <_>
+
+ <_>
+ 2 2 21 3 -1.
+ <_>
+ 9 2 7 3 3.
+ <_>
+
+ <_>
+ 5 4 5 12 -1.
+ <_>
+ 5 8 5 4 3.
+ <_>
+
+ <_>
+ 10 3 4 10 -1.
+ <_>
+ 10 8 4 5 2.
+ <_>
+
+ <_>
+ 8 4 5 8 -1.
+ <_>
+ 8 8 5 4 2.
+ <_>
+
+ <_>
+ 6 0 11 9 -1.
+ <_>
+ 6 3 11 3 3.
+ <_>
+
+ <_>
+ 6 6 12 5 -1.
+ <_>
+ 10 6 4 5 3.
+ <_>
+
+ <_>
+ 0 0 24 5 -1.
+ <_>
+ 8 0 8 5 3.
+ <_>
+
+ <_>
+ 1 10 23 6 -1.
+ <_>
+ 1 12 23 2 3.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 9 21 6 3 3.
+ <_>
+
+ <_>
+ 3 6 21 6 -1.
+ <_>
+ 3 8 21 2 3.
+ <_>
+
+ <_>
+ 0 5 6 12 -1.
+ <_>
+ 2 5 2 12 3.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 8 7 8 10 -1.
+ <_>
+ 8 12 8 5 2.
+ <_>
+
+ <_>
+ 5 7 15 12 -1.
+ <_>
+ 10 7 5 12 3.
+ <_>
+
+ <_>
+ 0 17 10 6 -1.
+ <_>
+ 0 19 10 2 3.
+ <_>
+
+ <_>
+ 14 18 9 6 -1.
+ <_>
+ 14 20 9 2 3.
+ <_>
+
+ <_>
+ 9 6 6 16 -1.
+ <_>
+ 9 14 6 8 2.
+ <_>
+
+ <_>
+ 14 18 9 6 -1.
+ <_>
+ 14 20 9 2 3.
+ <_>
+
+ <_>
+ 1 18 9 6 -1.
+ <_>
+ 1 20 9 2 3.
+ <_>
+
+ <_>
+ 15 9 9 6 -1.
+ <_>
+ 15 11 9 2 3.
+ <_>
+
+ <_>
+ 0 9 9 6 -1.
+ <_>
+ 0 11 9 2 3.
+ <_>
+
+ <_>
+ 17 3 6 9 -1.
+ <_>
+ 19 3 2 9 3.
+ <_>
+
+ <_>
+ 2 17 18 3 -1.
+ <_>
+ 2 18 18 1 3.
+ <_>
+
+ <_>
+ 3 15 21 6 -1.
+ <_>
+ 3 17 21 2 3.
+ <_>
+
+ <_>
+ 9 17 6 6 -1.
+ <_>
+ 9 20 6 3 2.
+ <_>
+
+ <_>
+ 18 3 6 9 -1.
+ <_>
+ 18 6 6 3 3.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 0 6 6 3 3.
+ <_>
+
+ <_>
+ 4 0 16 10 -1.
+ <_>
+ 12 0 8 5 2.
+ <_>
+ 4 5 8 5 2.
+ <_>
+
+ <_>
+ 2 0 10 16 -1.
+ <_>
+ 2 0 5 8 2.
+ <_>
+ 7 8 5 8 2.
+ <_>
+
+ <_>
+ 14 0 10 5 -1.
+ <_>
+ 14 0 5 5 2.
+ <_>
+
+ <_>
+ 0 0 10 5 -1.
+ <_>
+ 5 0 5 5 2.
+ <_>
+
+ <_>
+ 18 3 6 10 -1.
+ <_>
+ 18 3 3 10 2.
+ <_>
+
+ <_>
+ 5 11 12 6 -1.
+ <_>
+ 5 11 6 3 2.
+ <_>
+ 11 14 6 3 2.
+ <_>
+
+ <_>
+ 21 0 3 18 -1.
+ <_>
+ 22 0 1 18 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 8 8 9 7 -1.
+ <_>
+ 11 8 3 7 3.
+ <_>
+
+ <_>
+ 7 12 8 10 -1.
+ <_>
+ 7 12 4 5 2.
+ <_>
+ 11 17 4 5 2.
+ <_>
+
+ <_>
+ 21 0 3 18 -1.
+ <_>
+ 22 0 1 18 3.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+
+ <_>
+ 15 0 9 6 -1.
+ <_>
+ 15 2 9 2 3.
+ <_>
+
+ <_>
+ 0 2 24 3 -1.
+ <_>
+ 0 3 24 1 3.
+ <_>
+
+ <_>
+ 11 7 6 9 -1.
+ <_>
+ 13 7 2 9 3.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 12 1 6 12 -1.
+ <_>
+ 14 1 2 12 3.
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 6 10 12 6 2.
+ <_>
+
+ <_>
+ 14 3 2 21 -1.
+ <_>
+ 14 3 1 21 2.
+ <_>
+
+ <_>
+ 6 1 12 8 -1.
+ <_>
+ 6 5 12 4 2.
+ <_>
+
+ <_>
+ 3 0 18 8 -1.
+ <_>
+ 3 4 18 4 2.
+ <_>
+
+ <_>
+ 3 0 18 3 -1.
+ <_>
+ 3 1 18 1 3.
+ <_>
+
+ <_>
+ 0 13 24 4 -1.
+ <_>
+ 12 13 12 2 2.
+ <_>
+ 0 15 12 2 2.
+ <_>
+
+ <_>
+ 10 5 4 9 -1.
+ <_>
+ 12 5 2 9 2.
+ <_>
+
+ <_>
+ 11 1 6 9 -1.
+ <_>
+ 13 1 2 9 3.
+ <_>
+
+ <_>
+ 6 2 6 22 -1.
+ <_>
+ 8 2 2 22 3.
+ <_>
+
+ <_>
+ 16 10 8 14 -1.
+ <_>
+ 20 10 4 7 2.
+ <_>
+ 16 17 4 7 2.
+ <_>
+
+ <_>
+ 3 4 16 15 -1.
+ <_>
+ 3 9 16 5 3.
+ <_>
+
+ <_>
+ 16 10 8 14 -1.
+ <_>
+ 20 10 4 7 2.
+ <_>
+ 16 17 4 7 2.
+ <_>
+
+ <_>
+ 0 10 8 14 -1.
+ <_>
+ 0 10 4 7 2.
+ <_>
+ 4 17 4 7 2.
+ <_>
+
+ <_>
+ 10 14 11 6 -1.
+ <_>
+ 10 17 11 3 2.
+ <_>
+
+ <_>
+ 0 7 24 9 -1.
+ <_>
+ 8 7 8 9 3.
+ <_>
+
+ <_>
+ 13 1 4 16 -1.
+ <_>
+ 13 1 2 16 2.
+ <_>
+
+ <_>
+ 7 1 4 16 -1.
+ <_>
+ 9 1 2 16 2.
+ <_>
+
+ <_>
+ 5 5 16 8 -1.
+ <_>
+ 13 5 8 4 2.
+ <_>
+ 5 9 8 4 2.
+ <_>
+
+ <_>
+ 0 9 6 9 -1.
+ <_>
+ 0 12 6 3 3.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 3 12 6 9 -1.
+ <_>
+ 3 15 6 3 3.
+ <_>
+
+ <_>
+ 8 14 9 6 -1.
+ <_>
+ 8 16 9 2 3.
+ <_>
+
+ <_>
+ 2 13 8 10 -1.
+ <_>
+ 2 13 4 5 2.
+ <_>
+ 6 18 4 5 2.
+ <_>
+
+ <_>
+ 15 5 3 18 -1.
+ <_>
+ 15 11 3 6 3.
+ <_>
+
+ <_>
+ 3 5 18 3 -1.
+ <_>
+ 3 6 18 1 3.
+ <_>
+
+ <_>
+ 17 5 6 11 -1.
+ <_>
+ 19 5 2 11 3.
+ <_>
+
+ <_>
+ 1 5 6 11 -1.
+ <_>
+ 3 5 2 11 3.
+ <_>
+
+ <_>
+ 19 1 4 9 -1.
+ <_>
+ 19 1 2 9 2.
+ <_>
+
+ <_>
+ 1 1 4 9 -1.
+ <_>
+ 3 1 2 9 2.
+ <_>
+
+ <_>
+ 4 15 18 9 -1.
+ <_>
+ 4 15 9 9 2.
+ <_>
+
+ <_>
+ 6 9 12 4 -1.
+ <_>
+ 6 11 12 2 2.
+ <_>
+
+ <_>
+ 15 2 9 6 -1.
+ <_>
+ 15 4 9 2 3.
+ <_>
+
+ <_>
+ 0 2 9 6 -1.
+ <_>
+ 0 4 9 2 3.
+ <_>
+
+ <_>
+ 15 0 6 17 -1.
+ <_>
+ 17 0 2 17 3.
+ <_>
+
+ <_>
+ 3 0 6 17 -1.
+ <_>
+ 5 0 2 17 3.
+ <_>
+
+ <_>
+ 8 17 9 4 -1.
+ <_>
+ 8 19 9 2 2.
+ <_>
+
+ <_>
+ 6 5 3 18 -1.
+ <_>
+ 6 11 3 6 3.
+ <_>
+
+ <_>
+ 5 2 14 12 -1.
+ <_>
+ 5 8 14 6 2.
+ <_>
+
+ <_>
+ 10 2 3 12 -1.
+ <_>
+ 10 8 3 6 2.
+ <_>
+
+ <_>
+ 10 7 14 15 -1.
+ <_>
+ 10 12 14 5 3.
+ <_>
+
+ <_>
+ 0 7 14 15 -1.
+ <_>
+ 0 12 14 5 3.
+ <_>
+
+ <_>
+ 15 0 9 6 -1.
+ <_>
+ 15 2 9 2 3.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 0 2 9 2 3.
+ <_>
+
+ <_>
+ 12 6 6 14 -1.
+ <_>
+ 14 6 2 14 3.
+ <_>
+
+ <_>
+ 9 7 6 9 -1.
+ <_>
+ 11 7 2 9 3.
+ <_>
+
+ <_>
+ 12 6 6 15 -1.
+ <_>
+ 14 6 2 15 3.
+ <_>
+
+ <_>
+ 6 6 6 15 -1.
+ <_>
+ 8 6 2 15 3.
+ <_>
+
+ <_>
+ 15 3 8 9 -1.
+ <_>
+ 15 3 4 9 2.
+ <_>
+
+ <_>
+ 0 0 9 21 -1.
+ <_>
+ 3 0 3 21 3.
+ <_>
+
+ <_>
+ 11 9 8 12 -1.
+ <_>
+ 11 13 8 4 3.
+ <_>
+
+ <_>
+ 6 7 10 12 -1.
+ <_>
+ 6 7 5 6 2.
+ <_>
+ 11 13 5 6 2.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+ 10 15 2 9 2.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 0 3 6 3 3.
+ <_>
+
+ <_>
+ 3 14 18 3 -1.
+ <_>
+ 3 15 18 1 3.
+ <_>
+
+ <_>
+ 3 14 8 10 -1.
+ <_>
+ 3 14 4 5 2.
+ <_>
+ 7 19 4 5 2.
+ <_>
+
+ <_>
+ 0 12 24 4 -1.
+ <_>
+ 12 12 12 2 2.
+ <_>
+ 0 14 12 2 2.
+ <_>
+
+ <_>
+ 0 2 3 20 -1.
+ <_>
+ 1 2 1 20 3.
+ <_>
+
+ <_>
+ 12 16 10 8 -1.
+ <_>
+ 17 16 5 4 2.
+ <_>
+ 12 20 5 4 2.
+ <_>
+
+ <_>
+ 2 16 10 8 -1.
+ <_>
+ 2 16 5 4 2.
+ <_>
+ 7 20 5 4 2.
+ <_>
+
+ <_>
+ 7 0 10 9 -1.
+ <_>
+ 7 3 10 3 3.
+ <_>
+
+ <_>
+ 0 0 24 3 -1.
+ <_>
+ 8 0 8 3 3.
+ <_>
+
+ <_>
+ 3 8 15 4 -1.
+ <_>
+ 3 10 15 2 2.
+ <_>
+
+ <_>
+ 6 5 12 6 -1.
+ <_>
+ 10 5 4 6 3.
+ <_>
+
+ <_>
+ 5 13 14 6 -1.
+ <_>
+ 5 16 14 3 2.
+ <_>
+
+ <_>
+ 11 14 4 10 -1.
+ <_>
+ 11 19 4 5 2.
+ <_>
+
+ <_>
+ 0 6 6 7 -1.
+ <_>
+ 3 6 3 7 2.
+ <_>
+
+ <_>
+ 18 0 6 6 -1.
+ <_>
+ 18 0 3 6 2.
+ <_>
+
+ <_>
+ 3 1 18 3 -1.
+ <_>
+ 3 2 18 1 3.
+ <_>
+
+ <_>
+ 9 6 14 18 -1.
+ <_>
+ 9 12 14 6 3.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 0 20 24 3 -1.
+ <_>
+ 8 20 8 3 3.
+ <_>
+
+ <_>
+ 13 11 6 7 -1.
+ <_>
+ 13 11 3 7 2.
+ <_>
+
+ <_>
+ 4 12 10 6 -1.
+ <_>
+ 4 14 10 2 3.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 5 11 6 7 -1.
+ <_>
+ 8 11 3 7 2.
+ <_>
+
+ <_>
+ 7 4 11 12 -1.
+ <_>
+ 7 8 11 4 3.
+ <_>
+
+ <_>
+ 6 15 10 4 -1.
+ <_>
+ 6 17 10 2 2.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 11 2 4 15 -1.
+ <_>
+ 11 7 4 5 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 13 18 10 6 -1.
+ <_>
+ 13 20 10 2 3.
+ <_>
+
+ <_>
+ 2 7 6 11 -1.
+ <_>
+ 5 7 3 11 2.
+ <_>
+
+ <_>
+ 10 14 10 9 -1.
+ <_>
+ 10 17 10 3 3.
+ <_>
+
+ <_>
+ 8 2 4 9 -1.
+ <_>
+ 10 2 2 9 2.
+ <_>
+
+ <_>
+ 14 3 10 4 -1.
+ <_>
+ 14 3 5 4 2.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 6 6 6 3 2.
+ <_>
+ 12 9 6 3 2.
+ <_>
+
+ <_>
+ 8 8 8 10 -1.
+ <_>
+ 12 8 4 5 2.
+ <_>
+ 8 13 4 5 2.
+ <_>
+
+ <_>
+ 7 4 4 16 -1.
+ <_>
+ 7 12 4 8 2.
+ <_>
+
+ <_>
+ 8 8 9 4 -1.
+ <_>
+ 8 10 9 2 2.
+ <_>
+
+ <_>
+ 5 2 14 9 -1.
+ <_>
+ 5 5 14 3 3.
+ <_>
+
+ <_>
+ 3 16 19 8 -1.
+ <_>
+ 3 20 19 4 2.
+ <_>
+
+ <_>
+ 0 0 10 8 -1.
+ <_>
+ 5 0 5 8 2.
+ <_>
+
+ <_>
+ 5 2 16 18 -1.
+ <_>
+ 5 2 8 18 2.
+ <_>
+
+ <_>
+ 0 11 24 11 -1.
+ <_>
+ 8 11 8 11 3.
+ <_>
+
+ <_>
+ 3 3 18 5 -1.
+ <_>
+ 3 3 9 5 2.
+ <_>
+
+ <_>
+ 1 16 18 3 -1.
+ <_>
+ 1 17 18 1 3.
+ <_>
+
+ <_>
+ 5 17 18 3 -1.
+ <_>
+ 5 18 18 1 3.
+ <_>
+
+ <_>
+ 1 13 9 6 -1.
+ <_>
+ 1 15 9 2 3.
+ <_>
+
+ <_>
+ 1 9 23 10 -1.
+ <_>
+ 1 14 23 5 2.
+ <_>
+
+ <_>
+ 3 7 18 3 -1.
+ <_>
+ 3 8 18 1 3.
+ <_>
+
+ <_>
+ 6 8 12 3 -1.
+ <_>
+ 6 8 6 3 2.
+ <_>
+
+ <_>
+ 6 2 3 22 -1.
+ <_>
+ 7 2 1 22 3.
+ <_>
+
+ <_>
+ 14 17 10 6 -1.
+ <_>
+ 14 19 10 2 3.
+ <_>
+
+ <_>
+ 1 18 10 6 -1.
+ <_>
+ 1 20 10 2 3.
+ <_>
+
+ <_>
+ 11 3 6 12 -1.
+ <_>
+ 13 3 2 12 3.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 12 10 9 6 -1.
+ <_>
+ 15 10 3 6 3.
+ <_>
+
+ <_>
+ 2 11 6 9 -1.
+ <_>
+ 5 11 3 9 2.
+ <_>
+
+ <_>
+ 14 5 3 19 -1.
+ <_>
+ 15 5 1 19 3.
+ <_>
+
+ <_>
+ 6 6 9 6 -1.
+ <_>
+ 6 8 9 2 3.
+ <_>
+
+ <_>
+ 14 5 3 19 -1.
+ <_>
+ 15 5 1 19 3.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 0 6 6 3 3.
+ <_>
+
+ <_>
+ 5 21 18 3 -1.
+ <_>
+ 5 22 18 1 3.
+ <_>
+
+ <_>
+ 1 10 18 4 -1.
+ <_>
+ 7 10 6 4 3.
+ <_>
+
+ <_>
+ 13 4 8 10 -1.
+ <_>
+ 17 4 4 5 2.
+ <_>
+ 13 9 4 5 2.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 10 8 3 6 3.
+ <_>
+
+ <_>
+ 12 9 9 8 -1.
+ <_>
+ 15 9 3 8 3.
+ <_>
+
+ <_>
+ 0 6 5 12 -1.
+ <_>
+ 0 10 5 4 3.
+ <_>
+
+ <_>
+ 7 6 14 6 -1.
+ <_>
+ 14 6 7 3 2.
+ <_>
+ 7 9 7 3 2.
+ <_>
+
+ <_>
+ 7 5 3 19 -1.
+ <_>
+ 8 5 1 19 3.
+ <_>
+
+ <_>
+ 8 4 15 20 -1.
+ <_>
+ 13 4 5 20 3.
+ <_>
+
+ <_>
+ 1 4 15 20 -1.
+ <_>
+ 6 4 5 20 3.
+ <_>
+
+ <_>
+ 13 10 6 6 -1.
+ <_>
+ 13 10 3 6 2.
+ <_>
+
+ <_>
+ 5 10 6 6 -1.
+ <_>
+ 8 10 3 6 2.
+ <_>
+
+ <_>
+ 14 2 6 14 -1.
+ <_>
+ 17 2 3 7 2.
+ <_>
+ 14 9 3 7 2.
+ <_>
+
+ <_>
+ 4 2 6 14 -1.
+ <_>
+ 4 2 3 7 2.
+ <_>
+ 7 9 3 7 2.
+ <_>
+
+ <_>
+ 12 4 6 7 -1.
+ <_>
+ 12 4 3 7 2.
+ <_>
+
+ <_>
+ 9 4 6 9 -1.
+ <_>
+ 11 4 2 9 3.
+ <_>
+
+ <_>
+ 11 4 8 10 -1.
+ <_>
+ 11 4 4 10 2.
+ <_>
+
+ <_>
+ 5 4 8 10 -1.
+ <_>
+ 9 4 4 10 2.
+ <_>
+
+ <_>
+ 8 18 10 6 -1.
+ <_>
+ 8 20 10 2 3.
+ <_>
+
+ <_>
+ 1 18 21 6 -1.
+ <_>
+ 1 20 21 2 3.
+ <_>
+
+ <_>
+ 9 2 12 6 -1.
+ <_>
+ 9 2 6 6 2.
+ <_>
+
+ <_>
+ 3 2 12 6 -1.
+ <_>
+ 9 2 6 6 2.
+ <_>
+
+ <_>
+ 12 5 12 6 -1.
+ <_>
+ 18 5 6 3 2.
+ <_>
+ 12 8 6 3 2.
+ <_>
+
+ <_>
+ 8 8 6 9 -1.
+ <_>
+ 8 11 6 3 3.
+ <_>
+
+ <_>
+ 2 7 20 6 -1.
+ <_>
+ 2 9 20 2 3.
+ <_>
+
+ <_>
+ 0 5 12 6 -1.
+ <_>
+ 0 5 6 3 2.
+ <_>
+ 6 8 6 3 2.
+ <_>
+
+ <_>
+ 14 14 8 10 -1.
+ <_>
+ 18 14 4 5 2.
+ <_>
+ 14 19 4 5 2.
+ <_>
+
+ <_>
+ 2 14 8 10 -1.
+ <_>
+ 2 14 4 5 2.
+ <_>
+ 6 19 4 5 2.
+ <_>
+
+ <_>
+ 2 11 20 13 -1.
+ <_>
+ 2 11 10 13 2.
+ <_>
+
+ <_>
+ 6 9 12 5 -1.
+ <_>
+ 12 9 6 5 2.
+ <_>
+
+ <_>
+ 5 6 16 6 -1.
+ <_>
+ 13 6 8 3 2.
+ <_>
+ 5 9 8 3 2.
+ <_>
+
+ <_>
+ 1 19 9 4 -1.
+ <_>
+ 1 21 9 2 2.
+ <_>
+
+ <_>
+ 7 5 12 5 -1.
+ <_>
+ 11 5 4 5 3.
+ <_>
+
+ <_>
+ 3 5 14 12 -1.
+ <_>
+ 3 5 7 6 2.
+ <_>
+ 10 11 7 6 2.
+ <_>
+
+ <_>
+ 9 4 9 6 -1.
+ <_>
+ 12 4 3 6 3.
+ <_>
+
+ <_>
+ 2 6 19 3 -1.
+ <_>
+ 2 7 19 1 3.
+ <_>
+
+ <_>
+ 18 10 6 9 -1.
+ <_>
+ 18 13 6 3 3.
+ <_>
+
+ <_>
+ 3 7 18 2 -1.
+ <_>
+ 3 8 18 1 2.
+ <_>
+
+ <_>
+ 20 2 4 18 -1.
+ <_>
+ 22 2 2 9 2.
+ <_>
+ 20 11 2 9 2.
+ <_>
+
+ <_>
+ 2 18 20 3 -1.
+ <_>
+ 2 19 20 1 3.
+ <_>
+
+ <_>
+ 1 9 22 3 -1.
+ <_>
+ 1 10 22 1 3.
+ <_>
+
+ <_>
+ 0 2 4 18 -1.
+ <_>
+ 0 2 2 9 2.
+ <_>
+ 2 11 2 9 2.
+ <_>
+
+ <_>
+ 19 0 4 23 -1.
+ <_>
+ 19 0 2 23 2.
+ <_>
+
+ <_>
+ 0 3 6 19 -1.
+ <_>
+ 3 3 3 19 2.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 20 2 2 9 3.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 7 0 12 12 -1.
+ <_>
+ 13 0 6 6 2.
+ <_>
+ 7 6 6 6 2.
+ <_>
+
+ <_>
+ 0 3 24 6 -1.
+ <_>
+ 0 3 12 3 2.
+ <_>
+ 12 6 12 3 2.
+ <_>
+
+ <_>
+ 10 14 4 10 -1.
+ <_>
+ 10 19 4 5 2.
+ <_>
+
+ <_>
+ 8 9 4 15 -1.
+ <_>
+ 8 14 4 5 3.
+ <_>
+
+ <_>
+ 4 11 17 6 -1.
+ <_>
+ 4 14 17 3 2.
+ <_>
+
+ <_>
+ 2 5 18 8 -1.
+ <_>
+ 2 5 9 4 2.
+ <_>
+ 11 9 9 4 2.
+ <_>
+
+ <_>
+ 7 6 14 6 -1.
+ <_>
+ 14 6 7 3 2.
+ <_>
+ 7 9 7 3 2.
+ <_>
+
+ <_>
+ 3 6 14 6 -1.
+ <_>
+ 3 6 7 3 2.
+ <_>
+ 10 9 7 3 2.
+ <_>
+
+ <_>
+ 16 5 3 18 -1.
+ <_>
+ 17 5 1 18 3.
+ <_>
+
+ <_>
+ 5 5 3 18 -1.
+ <_>
+ 6 5 1 18 3.
+ <_>
+
+ <_>
+ 10 10 14 4 -1.
+ <_>
+ 10 12 14 2 2.
+ <_>
+
+ <_>
+ 4 10 9 4 -1.
+ <_>
+ 4 12 9 2 2.
+ <_>
+
+ <_>
+ 2 0 18 9 -1.
+ <_>
+ 2 3 18 3 3.
+ <_>
+
+ <_>
+ 6 3 12 8 -1.
+ <_>
+ 10 3 4 8 3.
+ <_>
+
+ <_>
+ 1 1 8 5 -1.
+ <_>
+ 5 1 4 5 2.
+ <_>
+
+ <_>
+ 12 7 7 8 -1.
+ <_>
+ 12 11 7 4 2.
+ <_>
+
+ <_>
+ 0 12 22 4 -1.
+ <_>
+ 0 14 22 2 2.
+ <_>
+
+ <_>
+ 15 6 4 15 -1.
+ <_>
+ 15 11 4 5 3.
+ <_>
+
+ <_>
+ 5 7 7 8 -1.
+ <_>
+ 5 11 7 4 2.
+ <_>
+
+ <_>
+ 8 18 9 4 -1.
+ <_>
+ 8 20 9 2 2.
+ <_>
+
+ <_>
+ 1 2 22 4 -1.
+ <_>
+ 1 4 22 2 2.
+ <_>
+
+ <_>
+ 17 3 6 17 -1.
+ <_>
+ 19 3 2 17 3.
+ <_>
+
+ <_>
+ 8 2 8 18 -1.
+ <_>
+ 8 11 8 9 2.
+ <_>
+
+ <_>
+ 17 0 6 12 -1.
+ <_>
+ 20 0 3 6 2.
+ <_>
+ 17 6 3 6 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 15 5 9 12 -1.
+ <_>
+ 15 11 9 6 2.
+ <_>
+
+ <_>
+ 2 22 18 2 -1.
+ <_>
+ 2 23 18 1 2.
+ <_>
+
+ <_>
+ 10 10 12 6 -1.
+ <_>
+ 16 10 6 3 2.
+ <_>
+ 10 13 6 3 2.
+ <_>
+
+ <_>
+ 0 1 4 11 -1.
+ <_>
+ 2 1 2 11 2.
+ <_>
+
+ <_>
+ 20 0 4 10 -1.
+ <_>
+ 20 0 2 10 2.
+ <_>
+
+ <_>
+ 1 3 6 17 -1.
+ <_>
+ 3 3 2 17 3.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 0 13 8 9 -1.
+ <_>
+ 0 16 8 3 3.
+ <_>
+
+ <_>
+ 16 8 6 12 -1.
+ <_>
+ 16 12 6 4 3.
+ <_>
+
+ <_>
+ 2 8 6 12 -1.
+ <_>
+ 2 12 6 4 3.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 1 5 19 3 -1.
+ <_>
+ 1 6 19 1 3.
+ <_>
+
+ <_>
+ 11 8 9 7 -1.
+ <_>
+ 14 8 3 7 3.
+ <_>
+
+ <_>
+ 3 8 12 9 -1.
+ <_>
+ 3 11 12 3 3.
+ <_>
+
+ <_>
+ 3 6 18 3 -1.
+ <_>
+ 3 7 18 1 3.
+ <_>
+
+ <_>
+ 10 0 4 12 -1.
+ <_>
+ 10 6 4 6 2.
+ <_>
+
+ <_>
+ 3 9 18 14 -1.
+ <_>
+ 3 9 9 14 2.
+ <_>
+
+ <_>
+ 0 0 4 9 -1.
+ <_>
+ 2 0 2 9 2.
+ <_>
+
+ <_>
+ 12 5 4 18 -1.
+ <_>
+ 12 5 2 18 2.
+ <_>
+
+ <_>
+ 8 5 4 18 -1.
+ <_>
+ 10 5 2 18 2.
+ <_>
+
+ <_>
+ 10 5 6 10 -1.
+ <_>
+ 12 5 2 10 3.
+ <_>
+
+ <_>
+ 9 4 4 11 -1.
+ <_>
+ 11 4 2 11 2.
+ <_>
+
+ <_>
+ 4 16 18 3 -1.
+ <_>
+ 4 17 18 1 3.
+ <_>
+
+ <_>
+ 0 16 20 3 -1.
+ <_>
+ 0 17 20 1 3.
+ <_>
+
+ <_>
+ 9 9 6 12 -1.
+ <_>
+ 9 13 6 4 3.
+ <_>
+
+ <_>
+ 8 13 8 8 -1.
+ <_>
+ 8 17 8 4 2.
+ <_>
+
+ <_>
+ 13 10 3 12 -1.
+ <_>
+ 13 16 3 6 2.
+ <_>
+
+ <_>
+ 5 9 14 14 -1.
+ <_>
+ 5 9 7 7 2.
+ <_>
+ 12 16 7 7 2.
+ <_>
+
+ <_>
+ 0 0 24 10 -1.
+ <_>
+ 12 0 12 5 2.
+ <_>
+ 0 5 12 5 2.
+ <_>
+
+ <_>
+ 1 11 18 2 -1.
+ <_>
+ 1 12 18 1 2.
+ <_>
+
+ <_>
+ 19 5 5 12 -1.
+ <_>
+ 19 9 5 4 3.
+ <_>
+
+ <_>
+ 0 5 5 12 -1.
+ <_>
+ 0 9 5 4 3.
+ <_>
+
+ <_>
+ 16 6 8 18 -1.
+ <_>
+ 20 6 4 9 2.
+ <_>
+ 16 15 4 9 2.
+ <_>
+
+ <_>
+ 0 6 8 18 -1.
+ <_>
+ 0 6 4 9 2.
+ <_>
+ 4 15 4 9 2.
+ <_>
+
+ <_>
+ 12 5 12 12 -1.
+ <_>
+ 18 5 6 6 2.
+ <_>
+ 12 11 6 6 2.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 9 6 2 9 3.
+ <_>
+
+ <_>
+ 9 13 6 11 -1.
+ <_>
+ 11 13 2 11 3.
+ <_>
+
+ <_>
+ 0 5 12 12 -1.
+ <_>
+ 0 5 6 6 2.
+ <_>
+ 6 11 6 6 2.
+ <_>
+
+ <_>
+ 1 2 23 3 -1.
+ <_>
+ 1 3 23 1 3.
+ <_>
+
+ <_>
+ 1 15 19 3 -1.
+ <_>
+ 1 16 19 1 3.
+ <_>
+
+ <_>
+ 13 17 11 4 -1.
+ <_>
+ 13 19 11 2 2.
+ <_>
+
+ <_>
+ 0 13 8 5 -1.
+ <_>
+ 4 13 4 5 2.
+ <_>
+
+ <_>
+ 12 10 10 4 -1.
+ <_>
+ 12 10 5 4 2.
+ <_>
+
+ <_>
+ 4 6 9 9 -1.
+ <_>
+ 4 9 9 3 3.
+ <_>
+
+ <_>
+ 15 14 9 6 -1.
+ <_>
+ 15 16 9 2 3.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 1 14 9 2 3.
+ <_>
+
+ <_>
+ 3 10 20 8 -1.
+ <_>
+ 13 10 10 4 2.
+ <_>
+ 3 14 10 4 2.
+ <_>
+
+ <_>
+ 2 0 9 18 -1.
+ <_>
+ 5 0 3 18 3.
+ <_>
+
+ <_>
+ 13 11 9 10 -1.
+ <_>
+ 16 11 3 10 3.
+ <_>
+
+ <_>
+ 1 2 8 5 -1.
+ <_>
+ 5 2 4 5 2.
+ <_>
+
+ <_>
+ 3 4 21 6 -1.
+ <_>
+ 10 4 7 6 3.
+ <_>
+
+ <_>
+ 7 0 10 14 -1.
+ <_>
+ 7 0 5 7 2.
+ <_>
+ 12 7 5 7 2.
+ <_>
+
+ <_>
+ 12 17 12 4 -1.
+ <_>
+ 12 19 12 2 2.
+ <_>
+
+ <_>
+ 0 6 23 4 -1.
+ <_>
+ 0 8 23 2 2.
+ <_>
+
+ <_>
+ 13 10 8 10 -1.
+ <_>
+ 17 10 4 5 2.
+ <_>
+ 13 15 4 5 2.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 15 16 9 4 -1.
+ <_>
+ 15 18 9 2 2.
+ <_>
+
+ <_>
+ 0 16 9 4 -1.
+ <_>
+ 0 18 9 2 2.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 5 11 6 6 -1.
+ <_>
+ 8 11 3 6 2.
+ <_>
+
+ <_>
+ 0 3 24 6 -1.
+ <_>
+ 12 3 12 3 2.
+ <_>
+ 0 6 12 3 2.
+ <_>
+
+ <_>
+ 2 4 18 3 -1.
+ <_>
+ 2 5 18 1 3.
+ <_>
+
+ <_>
+ 0 0 24 4 -1.
+ <_>
+ 12 0 12 2 2.
+ <_>
+ 0 2 12 2 2.
+ <_>
+
+ <_>
+ 1 16 18 3 -1.
+ <_>
+ 1 17 18 1 3.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 0 15 9 6 -1.
+ <_>
+ 0 17 9 2 3.
+ <_>
+
+ <_>
+ 6 17 18 3 -1.
+ <_>
+ 6 18 18 1 3.
+ <_>
+
+ <_>
+ 8 8 6 10 -1.
+ <_>
+ 10 8 2 10 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 8 8 5 8 -1.
+ <_>
+ 8 12 5 4 2.
+ <_>
+
+ <_>
+ 12 8 6 8 -1.
+ <_>
+ 12 12 6 4 2.
+ <_>
+
+ <_>
+ 6 5 6 11 -1.
+ <_>
+ 8 5 2 11 3.
+ <_>
+
+ <_>
+ 13 6 8 9 -1.
+ <_>
+ 13 9 8 3 3.
+ <_>
+
+ <_>
+ 1 7 21 6 -1.
+ <_>
+ 1 9 21 2 3.
+ <_>
+
+ <_>
+ 15 5 3 12 -1.
+ <_>
+ 15 11 3 6 2.
+ <_>
+
+ <_>
+ 6 9 11 12 -1.
+ <_>
+ 6 13 11 4 3.
+ <_>
+
+ <_>
+ 13 8 10 8 -1.
+ <_>
+ 18 8 5 4 2.
+ <_>
+ 13 12 5 4 2.
+ <_>
+
+ <_>
+ 5 8 12 3 -1.
+ <_>
+ 11 8 6 3 2.
+ <_>
+
+ <_>
+ 6 11 18 4 -1.
+ <_>
+ 12 11 6 4 3.
+ <_>
+
+ <_>
+ 0 0 22 22 -1.
+ <_>
+ 0 11 22 11 2.
+ <_>
+
+ <_>
+ 11 2 6 8 -1.
+ <_>
+ 11 6 6 4 2.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 8 3 6 14 -1.
+ <_>
+ 8 3 3 7 2.
+ <_>
+ 11 10 3 7 2.
+ <_>
+
+ <_>
+ 3 10 18 8 -1.
+ <_>
+ 9 10 6 8 3.
+ <_>
+
+ <_>
+ 10 0 3 14 -1.
+ <_>
+ 10 7 3 7 2.
+ <_>
+
+ <_>
+ 4 3 16 20 -1.
+ <_>
+ 4 13 16 10 2.
+ <_>
+
+ <_>
+ 9 4 6 10 -1.
+ <_>
+ 11 4 2 10 3.
+ <_>
+
+ <_>
+ 5 0 16 4 -1.
+ <_>
+ 5 2 16 2 2.
+ <_>
+
+ <_>
+ 2 5 18 4 -1.
+ <_>
+ 8 5 6 4 3.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 15 0 2 9 3.
+ <_>
+
+ <_>
+ 8 4 8 5 -1.
+ <_>
+ 12 4 4 5 2.
+ <_>
+
+ <_>
+ 12 10 10 4 -1.
+ <_>
+ 12 10 5 4 2.
+ <_>
+
+ <_>
+ 2 10 10 4 -1.
+ <_>
+ 7 10 5 4 2.
+ <_>
+
+ <_>
+ 7 11 12 5 -1.
+ <_>
+ 11 11 4 5 3.
+ <_>
+
+ <_>
+ 3 10 8 10 -1.
+ <_>
+ 3 10 4 5 2.
+ <_>
+ 7 15 4 5 2.
+ <_>
+
+ <_>
+ 11 12 9 8 -1.
+ <_>
+ 14 12 3 8 3.
+ <_>
+
+ <_>
+ 0 21 24 3 -1.
+ <_>
+ 8 21 8 3 3.
+ <_>
+
+ <_>
+ 3 20 18 4 -1.
+ <_>
+ 9 20 6 4 3.
+ <_>
+
+ <_>
+ 1 15 9 6 -1.
+ <_>
+ 1 17 9 2 3.
+ <_>
+
+ <_>
+ 11 17 10 4 -1.
+ <_>
+ 11 19 10 2 2.
+ <_>
+
+ <_>
+ 9 12 4 12 -1.
+ <_>
+ 9 18 4 6 2.
+ <_>
+
+ <_>
+ 9 6 9 6 -1.
+ <_>
+ 12 6 3 6 3.
+ <_>
+
+ <_>
+ 1 13 6 9 -1.
+ <_>
+ 1 16 6 3 3.
+ <_>
+
+ <_>
+ 6 16 12 4 -1.
+ <_>
+ 6 18 12 2 2.
+ <_>
+
+ <_>
+ 1 5 20 3 -1.
+ <_>
+ 1 6 20 1 3.
+ <_>
+
+ <_>
+ 8 1 9 9 -1.
+ <_>
+ 8 4 9 3 3.
+ <_>
+
+ <_>
+ 2 19 9 4 -1.
+ <_>
+ 2 21 9 2 2.
+ <_>
+
+ <_>
+ 11 1 4 18 -1.
+ <_>
+ 11 7 4 6 3.
+ <_>
+
+ <_>
+ 7 2 8 12 -1.
+ <_>
+ 7 2 4 6 2.
+ <_>
+ 11 8 4 6 2.
+ <_>
+
+ <_>
+ 11 10 9 8 -1.
+ <_>
+ 14 10 3 8 3.
+ <_>
+
+ <_>
+ 5 11 12 5 -1.
+ <_>
+ 9 11 4 5 3.
+ <_>
+
+ <_>
+ 11 9 9 6 -1.
+ <_>
+ 14 9 3 6 3.
+ <_>
+
+ <_>
+ 5 10 6 9 -1.
+ <_>
+ 7 10 2 9 3.
+ <_>
+
+ <_>
+ 4 7 5 12 -1.
+ <_>
+ 4 11 5 4 3.
+ <_>
+
+ <_>
+ 2 0 21 6 -1.
+ <_>
+ 9 0 7 6 3.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 9 0 6 15 -1.
+ <_>
+ 11 0 2 15 3.
+ <_>
+
+ <_>
+ 2 2 18 2 -1.
+ <_>
+ 2 3 18 1 2.
+ <_>
+
+ <_>
+ 8 17 8 6 -1.
+ <_>
+ 8 20 8 3 2.
+ <_>
+
+ <_>
+ 3 0 18 2 -1.
+ <_>
+ 3 1 18 1 2.
+ <_>
+
+ <_>
+ 8 0 9 6 -1.
+ <_>
+ 11 0 3 6 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 6 7 12 5 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 2 3 2 9 3.
+ <_>
+
+ <_>
+ 20 2 4 9 -1.
+ <_>
+ 20 2 2 9 2.
+ <_>
+
+ <_>
+ 0 2 4 9 -1.
+ <_>
+ 2 2 2 9 2.
+ <_>
+
+ <_>
+ 0 1 24 4 -1.
+ <_>
+ 12 1 12 2 2.
+ <_>
+ 0 3 12 2 2.
+ <_>
+
+ <_>
+ 0 16 9 6 -1.
+ <_>
+ 0 18 9 2 3.
+ <_>
+
+ <_>
+ 14 13 9 6 -1.
+ <_>
+ 14 15 9 2 3.
+ <_>
+
+ <_>
+ 0 15 19 3 -1.
+ <_>
+ 0 16 19 1 3.
+ <_>
+
+ <_>
+ 1 5 22 12 -1.
+ <_>
+ 12 5 11 6 2.
+ <_>
+ 1 11 11 6 2.
+ <_>
+
+ <_>
+ 5 13 6 6 -1.
+ <_>
+ 8 13 3 6 2.
+ <_>
+
+ <_>
+ 4 2 20 3 -1.
+ <_>
+ 4 3 20 1 3.
+ <_>
+
+ <_>
+ 8 14 6 10 -1.
+ <_>
+ 10 14 2 10 3.
+ <_>
+
+ <_>
+ 6 12 16 6 -1.
+ <_>
+ 14 12 8 3 2.
+ <_>
+ 6 15 8 3 2.
+ <_>
+
+ <_>
+ 2 13 8 9 -1.
+ <_>
+ 2 16 8 3 3.
+ <_>
+
+ <_>
+ 11 8 6 14 -1.
+ <_>
+ 14 8 3 7 2.
+ <_>
+ 11 15 3 7 2.
+ <_>
+
+ <_>
+ 2 12 16 6 -1.
+ <_>
+ 2 12 8 3 2.
+ <_>
+ 10 15 8 3 2.
+ <_>
+
+ <_>
+ 5 16 16 8 -1.
+ <_>
+ 5 20 16 4 2.
+ <_>
+
+ <_>
+ 9 1 4 12 -1.
+ <_>
+ 9 7 4 6 2.
+ <_>
+
+ <_>
+ 8 2 8 10 -1.
+ <_>
+ 12 2 4 5 2.
+ <_>
+ 8 7 4 5 2.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 6 6 6 3 2.
+ <_>
+ 12 9 6 3 2.
+ <_>
+
+ <_>
+ 10 7 6 9 -1.
+ <_>
+ 12 7 2 9 3.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 18 8 6 9 -1.
+ <_>
+ 18 11 6 3 3.
+ <_>
+
+ <_>
+ 2 12 6 6 -1.
+ <_>
+ 5 12 3 6 2.
+ <_>
+
+ <_>
+ 3 21 21 3 -1.
+ <_>
+ 10 21 7 3 3.
+ <_>
+
+ <_>
+ 2 0 16 6 -1.
+ <_>
+ 2 3 16 3 2.
+ <_>
+
+ <_>
+ 13 6 7 6 -1.
+ <_>
+ 13 9 7 3 2.
+ <_>
+
+ <_>
+ 6 4 4 14 -1.
+ <_>
+ 6 11 4 7 2.
+ <_>
+
+ <_>
+ 9 7 6 9 -1.
+ <_>
+ 11 7 2 9 3.
+ <_>
+
+ <_>
+ 7 8 6 14 -1.
+ <_>
+ 7 8 3 7 2.
+ <_>
+ 10 15 3 7 2.
+ <_>
+
+ <_>
+ 18 8 4 16 -1.
+ <_>
+ 18 16 4 8 2.
+ <_>
+
+ <_>
+ 9 14 6 10 -1.
+ <_>
+ 11 14 2 10 3.
+ <_>
+
+ <_>
+ 6 11 12 5 -1.
+ <_>
+ 10 11 4 5 3.
+ <_>
+
+ <_>
+ 0 12 23 3 -1.
+ <_>
+ 0 13 23 1 3.
+ <_>
+
+ <_>
+ 13 0 6 12 -1.
+ <_>
+ 15 0 2 12 3.
+ <_>
+
+ <_>
+ 0 10 12 5 -1.
+ <_>
+ 4 10 4 5 3.
+ <_>
+
+ <_>
+ 13 2 10 4 -1.
+ <_>
+ 13 4 10 2 2.
+ <_>
+
+ <_>
+ 5 0 6 12 -1.
+ <_>
+ 7 0 2 12 3.
+ <_>
+
+ <_>
+ 11 6 9 6 -1.
+ <_>
+ 14 6 3 6 3.
+ <_>
+
+ <_>
+ 4 6 9 6 -1.
+ <_>
+ 7 6 3 6 3.
+ <_>
+
+ <_>
+ 6 11 18 13 -1.
+ <_>
+ 12 11 6 13 3.
+ <_>
+
+ <_>
+ 0 11 18 13 -1.
+ <_>
+ 6 11 6 13 3.
+ <_>
+
+ <_>
+ 12 16 12 6 -1.
+ <_>
+ 16 16 4 6 3.
+ <_>
+
+ <_>
+ 0 6 21 3 -1.
+ <_>
+ 0 7 21 1 3.
+ <_>
+
+ <_>
+ 12 16 12 6 -1.
+ <_>
+ 16 16 4 6 3.
+ <_>
+
+ <_>
+ 5 7 6 14 -1.
+ <_>
+ 5 14 6 7 2.
+ <_>
+
+ <_>
+ 5 10 19 2 -1.
+ <_>
+ 5 11 19 1 2.
+ <_>
+
+ <_>
+ 5 4 14 4 -1.
+ <_>
+ 5 6 14 2 2.
+ <_>
+
+ <_>
+ 3 18 18 4 -1.
+ <_>
+ 9 18 6 4 3.
+ <_>
+
+ <_>
+ 7 0 4 9 -1.
+ <_>
+ 9 0 2 9 2.
+ <_>
+
+ <_>
+ 13 3 11 4 -1.
+ <_>
+ 13 5 11 2 2.
+ <_>
+
+ <_>
+ 2 0 9 6 -1.
+ <_>
+ 5 0 3 6 3.
+ <_>
+
+ <_>
+ 19 1 4 23 -1.
+ <_>
+ 19 1 2 23 2.
+ <_>
+
+ <_>
+ 1 1 4 23 -1.
+ <_>
+ 3 1 2 23 2.
+ <_>
+
+ <_>
+ 5 16 18 3 -1.
+ <_>
+ 5 17 18 1 3.
+ <_>
+
+ <_>
+ 0 3 11 4 -1.
+ <_>
+ 0 5 11 2 2.
+ <_>
+
+ <_>
+ 2 16 20 3 -1.
+ <_>
+ 2 17 20 1 3.
+ <_>
+
+ <_>
+ 5 3 13 4 -1.
+ <_>
+ 5 5 13 2 2.
+ <_>
+
+ <_>
+ 1 9 22 15 -1.
+ <_>
+ 1 9 11 15 2.
+ <_>
+
+ <_>
+ 3 4 14 3 -1.
+ <_>
+ 10 4 7 3 2.
+ <_>
+
+ <_>
+ 8 7 10 4 -1.
+ <_>
+ 8 7 5 4 2.
+ <_>
+
+ <_>
+ 6 7 10 4 -1.
+ <_>
+ 11 7 5 4 2.
+ <_>
+
+ <_>
+ 10 4 6 9 -1.
+ <_>
+ 12 4 2 9 3.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 4 12 3 6 3.
+ <_>
+
+ <_>
+ 8 3 8 10 -1.
+ <_>
+ 12 3 4 5 2.
+ <_>
+ 8 8 4 5 2.
+ <_>
+
+ <_>
+ 3 6 16 6 -1.
+ <_>
+ 3 6 8 3 2.
+ <_>
+ 11 9 8 3 2.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 5 9 14 3 2.
+ <_>
+
+ <_>
+ 4 3 9 6 -1.
+ <_>
+ 4 5 9 2 3.
+ <_>
+
+ <_>
+ 6 3 18 2 -1.
+ <_>
+ 6 4 18 1 2.
+ <_>
+
+ <_>
+ 7 6 9 6 -1.
+ <_>
+ 10 6 3 6 3.
+ <_>
+
+ <_>
+ 0 1 24 3 -1.
+ <_>
+ 0 2 24 1 3.
+ <_>
+
+ <_>
+ 0 17 10 6 -1.
+ <_>
+ 0 19 10 2 3.
+ <_>
+
+ <_>
+ 3 18 18 3 -1.
+ <_>
+ 3 19 18 1 3.
+ <_>
+
+ <_>
+ 2 5 6 16 -1.
+ <_>
+ 2 5 3 8 2.
+ <_>
+ 5 13 3 8 2.
+ <_>
+
+ <_>
+ 7 6 11 6 -1.
+ <_>
+ 7 8 11 2 3.
+ <_>
+
+ <_>
+ 5 2 12 22 -1.
+ <_>
+ 5 13 12 11 2.
+ <_>
+
+ <_>
+ 10 7 4 10 -1.
+ <_>
+ 10 12 4 5 2.
+ <_>
+
+ <_>
+ 9 0 4 18 -1.
+ <_>
+ 9 6 4 6 3.
+ <_>
+
+ <_>
+ 18 8 6 9 -1.
+ <_>
+ 18 11 6 3 3.
+ <_>
+
+ <_>
+ 4 7 15 10 -1.
+ <_>
+ 9 7 5 10 3.
+ <_>
+
+ <_>
+ 10 5 6 9 -1.
+ <_>
+ 12 5 2 9 3.
+ <_>
+
+ <_>
+ 9 9 6 10 -1.
+ <_>
+ 11 9 2 10 3.
+ <_>
+
+ <_>
+ 11 14 6 10 -1.
+ <_>
+ 13 14 2 10 3.
+ <_>
+
+ <_>
+ 7 14 6 10 -1.
+ <_>
+ 9 14 2 10 3.
+ <_>
+
+ <_>
+ 4 8 16 9 -1.
+ <_>
+ 4 11 16 3 3.
+ <_>
+
+ <_>
+ 2 11 20 3 -1.
+ <_>
+ 2 12 20 1 3.
+ <_>
+
+ <_>
+ 13 0 4 13 -1.
+ <_>
+ 13 0 2 13 2.
+ <_>
+
+ <_>
+ 7 0 4 13 -1.
+ <_>
+ 9 0 2 13 2.
+ <_>
+
+ <_>
+ 3 1 18 7 -1.
+ <_>
+ 9 1 6 7 3.
+ <_>
+
+ <_>
+ 1 11 6 9 -1.
+ <_>
+ 1 14 6 3 3.
+ <_>
+
+ <_>
+ 8 18 9 6 -1.
+ <_>
+ 8 20 9 2 3.
+ <_>
+
+ <_>
+ 3 9 15 6 -1.
+ <_>
+ 3 11 15 2 3.
+ <_>
+
+ <_>
+ 5 10 19 2 -1.
+ <_>
+ 5 11 19 1 2.
+ <_>
+
+ <_>
+ 8 6 7 16 -1.
+ <_>
+ 8 14 7 8 2.
+ <_>
+
+ <_>
+ 9 14 9 6 -1.
+ <_>
+ 9 16 9 2 3.
+ <_>
+
+ <_>
+ 0 7 8 12 -1.
+ <_>
+ 0 11 8 4 3.
+ <_>
+
+ <_>
+ 6 4 18 3 -1.
+ <_>
+ 6 5 18 1 3.
+ <_>
+
+ <_>
+ 0 16 12 6 -1.
+ <_>
+ 4 16 4 6 3.
+ <_>
+
+ <_>
+ 13 13 9 4 -1.
+ <_>
+ 13 15 9 2 2.
+ <_>
+
+ <_>
+ 5 8 14 14 -1.
+ <_>
+ 5 8 7 7 2.
+ <_>
+ 12 15 7 7 2.
+ <_>
+
+ <_>
+ 1 16 22 6 -1.
+ <_>
+ 12 16 11 3 2.
+ <_>
+ 1 19 11 3 2.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 9 5 10 10 -1.
+ <_>
+ 14 5 5 5 2.
+ <_>
+ 9 10 5 5 2.
+ <_>
+
+ <_>
+ 5 5 10 10 -1.
+ <_>
+ 5 5 5 5 2.
+ <_>
+ 10 10 5 5 2.
+ <_>
+
+ <_>
+ 4 6 16 6 -1.
+ <_>
+ 12 6 8 3 2.
+ <_>
+ 4 9 8 3 2.
+ <_>
+
+ <_>
+ 0 7 6 9 -1.
+ <_>
+ 0 10 6 3 3.
+ <_>
+
+ <_>
+ 16 10 8 14 -1.
+ <_>
+ 20 10 4 7 2.
+ <_>
+ 16 17 4 7 2.
+ <_>
+
+ <_>
+ 9 12 6 12 -1.
+ <_>
+ 9 18 6 6 2.
+ <_>
+
+ <_>
+ 8 10 8 12 -1.
+ <_>
+ 12 10 4 6 2.
+ <_>
+ 8 16 4 6 2.
+ <_>
+
+ <_>
+ 8 0 4 9 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+
+ <_>
+ 10 4 8 16 -1.
+ <_>
+ 14 4 4 8 2.
+ <_>
+ 10 12 4 8 2.
+ <_>
+
+ <_>
+ 7 10 10 6 -1.
+ <_>
+ 7 12 10 2 3.
+ <_>
+
+ <_>
+ 5 6 14 14 -1.
+ <_>
+ 12 6 7 7 2.
+ <_>
+ 5 13 7 7 2.
+ <_>
+
+ <_>
+ 2 11 20 2 -1.
+ <_>
+ 2 12 20 1 2.
+ <_>
+
+ <_>
+ 18 8 4 16 -1.
+ <_>
+ 18 16 4 8 2.
+ <_>
+
+ <_>
+ 1 11 12 10 -1.
+ <_>
+ 1 11 6 5 2.
+ <_>
+ 7 16 6 5 2.
+ <_>
+
+ <_>
+ 6 9 12 4 -1.
+ <_>
+ 6 11 12 2 2.
+ <_>
+
+ <_>
+ 9 12 6 7 -1.
+ <_>
+ 12 12 3 7 2.
+ <_>
+
+ <_>
+ 10 4 8 16 -1.
+ <_>
+ 14 4 4 8 2.
+ <_>
+ 10 12 4 8 2.
+ <_>
+
+ <_>
+ 6 4 8 16 -1.
+ <_>
+ 6 4 4 8 2.
+ <_>
+ 10 12 4 8 2.
+ <_>
+
+ <_>
+ 8 9 9 6 -1.
+ <_>
+ 11 9 3 6 3.
+ <_>
+
+ <_>
+ 1 5 16 12 -1.
+ <_>
+ 1 5 8 6 2.
+ <_>
+ 9 11 8 6 2.
+ <_>
+
+ <_>
+ 9 9 6 8 -1.
+ <_>
+ 9 9 3 8 2.
+ <_>
+
+ <_>
+ 6 0 3 18 -1.
+ <_>
+ 7 0 1 18 3.
+ <_>
+
+ <_>
+ 17 9 5 14 -1.
+ <_>
+ 17 16 5 7 2.
+ <_>
+
+ <_>
+ 2 9 5 14 -1.
+ <_>
+ 2 16 5 7 2.
+ <_>
+
+ <_>
+ 7 4 10 6 -1.
+ <_>
+ 7 7 10 3 2.
+ <_>
+
+ <_>
+ 1 3 23 18 -1.
+ <_>
+ 1 9 23 6 3.
+ <_>
+
+ <_>
+ 1 1 21 3 -1.
+ <_>
+ 8 1 7 3 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 3 18 12 6 -1.
+ <_>
+ 3 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 16 8 8 16 -1.
+ <_>
+ 20 8 4 8 2.
+ <_>
+ 16 16 4 8 2.
+ <_>
+
+ <_>
+ 0 19 24 4 -1.
+ <_>
+ 8 19 8 4 3.
+ <_>
+
+ <_>
+ 16 8 8 16 -1.
+ <_>
+ 20 8 4 8 2.
+ <_>
+ 16 16 4 8 2.
+ <_>
+
+ <_>
+ 0 8 8 16 -1.
+ <_>
+ 0 8 4 8 2.
+ <_>
+ 4 16 4 8 2.
+ <_>
+
+ <_>
+ 8 12 8 10 -1.
+ <_>
+ 8 17 8 5 2.
+ <_>
+
+ <_>
+ 5 7 5 8 -1.
+ <_>
+ 5 11 5 4 2.
+ <_>
+
+ <_>
+ 4 1 19 2 -1.
+ <_>
+ 4 2 19 1 2.
+ <_>
+
+ <_>
+ 0 12 24 9 -1.
+ <_>
+ 8 12 8 9 3.
+ <_>
+
+ <_>
+ 6 0 13 8 -1.
+ <_>
+ 6 4 13 4 2.
+ <_>
+
+ <_>
+ 0 0 24 3 -1.
+ <_>
+ 0 1 24 1 3.
+ <_>
+
+ <_>
+ 20 3 4 11 -1.
+ <_>
+ 20 3 2 11 2.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 6 11 12 8 -1.
+ <_>
+ 12 11 6 4 2.
+ <_>
+ 6 15 6 4 2.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+ 6 11 6 3 2.
+ <_>
+
+ <_>
+ 6 17 18 3 -1.
+ <_>
+ 6 18 18 1 3.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 20 3 4 9 -1.
+ <_>
+ 20 3 2 9 2.
+ <_>
+
+ <_>
+ 0 3 4 9 -1.
+ <_>
+ 2 3 2 9 2.
+ <_>
+
+ <_>
+ 15 0 9 19 -1.
+ <_>
+ 18 0 3 19 3.
+ <_>
+
+ <_>
+ 0 0 9 19 -1.
+ <_>
+ 3 0 3 19 3.
+ <_>
+
+ <_>
+ 13 11 6 8 -1.
+ <_>
+ 13 11 3 8 2.
+ <_>
+
+ <_>
+ 5 11 6 8 -1.
+ <_>
+ 8 11 3 8 2.
+ <_>
+
+ <_>
+ 5 11 19 3 -1.
+ <_>
+ 5 12 19 1 3.
+ <_>
+
+ <_>
+ 3 20 18 4 -1.
+ <_>
+ 9 20 6 4 3.
+ <_>
+
+ <_>
+ 6 6 16 6 -1.
+ <_>
+ 6 8 16 2 3.
+ <_>
+
+ <_>
+ 6 0 9 6 -1.
+ <_>
+ 9 0 3 6 3.
+ <_>
+
+ <_>
+ 10 3 4 14 -1.
+ <_>
+ 10 10 4 7 2.
+ <_>
+
+ <_>
+ 1 5 15 12 -1.
+ <_>
+ 1 11 15 6 2.
+ <_>
+
+ <_>
+ 11 12 8 5 -1.
+ <_>
+ 11 12 4 5 2.
+ <_>
+
+ <_>
+ 5 0 6 9 -1.
+ <_>
+ 7 0 2 9 3.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 5 5 12 8 -1.
+ <_>
+ 5 5 6 4 2.
+ <_>
+ 11 9 6 4 2.
+ <_>
+
+ <_>
+ 13 12 11 6 -1.
+ <_>
+ 13 14 11 2 3.
+ <_>
+
+ <_>
+ 0 13 21 3 -1.
+ <_>
+ 0 14 21 1 3.
+ <_>
+
+ <_>
+ 8 1 8 12 -1.
+ <_>
+ 12 1 4 6 2.
+ <_>
+ 8 7 4 6 2.
+ <_>
+
+ <_>
+ 1 0 6 12 -1.
+ <_>
+ 1 0 3 6 2.
+ <_>
+ 4 6 3 6 2.
+ <_>
+
+ <_>
+ 2 2 21 2 -1.
+ <_>
+ 2 3 21 1 2.
+ <_>
+
+ <_>
+ 2 2 19 3 -1.
+ <_>
+ 2 3 19 1 3.
+ <_>
+
+ <_>
+ 17 10 6 14 -1.
+ <_>
+ 20 10 3 7 2.
+ <_>
+ 17 17 3 7 2.
+ <_>
+
+ <_>
+ 1 10 6 14 -1.
+ <_>
+ 1 10 3 7 2.
+ <_>
+ 4 17 3 7 2.
+ <_>
+
+ <_>
+ 7 6 14 14 -1.
+ <_>
+ 14 6 7 7 2.
+ <_>
+ 7 13 7 7 2.
+ <_>
+
+ <_>
+ 0 12 9 6 -1.
+ <_>
+ 0 14 9 2 3.
+ <_>
+
+ <_>
+ 15 14 8 9 -1.
+ <_>
+ 15 17 8 3 3.
+ <_>
+
+ <_>
+ 1 1 22 4 -1.
+ <_>
+ 1 1 11 2 2.
+ <_>
+ 12 3 11 2 2.
+ <_>
+
+ <_>
+ 9 11 9 6 -1.
+ <_>
+ 9 13 9 2 3.
+ <_>
+
+ <_>
+ 0 15 18 3 -1.
+ <_>
+ 0 16 18 1 3.
+ <_>
+
+ <_>
+ 16 14 7 9 -1.
+ <_>
+ 16 17 7 3 3.
+ <_>
+
+ <_>
+ 4 3 16 4 -1.
+ <_>
+ 12 3 8 4 2.
+ <_>
+
+ <_>
+ 7 6 12 5 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 9 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 12 1 4 10 -1.
+ <_>
+ 12 1 2 10 2.
+ <_>
+
+ <_>
+ 8 1 4 10 -1.
+ <_>
+ 10 1 2 10 2.
+ <_>
+
+ <_>
+ 15 15 6 9 -1.
+ <_>
+ 15 18 6 3 3.
+ <_>
+
+ <_>
+ 3 15 6 9 -1.
+ <_>
+ 3 18 6 3 3.
+ <_>
+
+ <_>
+ 15 1 3 19 -1.
+ <_>
+ 16 1 1 19 3.
+ <_>
+
+ <_>
+ 1 3 6 9 -1.
+ <_>
+ 3 3 2 9 3.
+ <_>
+
+ <_>
+ 15 0 3 19 -1.
+ <_>
+ 16 0 1 19 3.
+ <_>
+
+ <_>
+ 6 3 12 4 -1.
+ <_>
+ 12 3 6 4 2.
+ <_>
+
+ <_>
+ 10 5 4 9 -1.
+ <_>
+ 10 5 2 9 2.
+ <_>
+
+ <_>
+ 6 0 3 19 -1.
+ <_>
+ 7 0 1 19 3.
+ <_>
+
+ <_>
+ 11 1 3 12 -1.
+ <_>
+ 11 7 3 6 2.
+ <_>
+
+ <_>
+ 6 7 10 5 -1.
+ <_>
+ 11 7 5 5 2.
+ <_>
+
+ <_>
+ 11 3 3 18 -1.
+ <_>
+ 12 3 1 18 3.
+ <_>
+
+ <_>
+ 9 3 6 12 -1.
+ <_>
+ 11 3 2 12 3.
+ <_>
+
+ <_>
+ 3 7 19 3 -1.
+ <_>
+ 3 8 19 1 3.
+ <_>
+
+ <_>
+ 2 7 18 3 -1.
+ <_>
+ 2 8 18 1 3.
+ <_>
+
+ <_>
+ 3 13 18 4 -1.
+ <_>
+ 12 13 9 2 2.
+ <_>
+ 3 15 9 2 2.
+ <_>
+
+ <_>
+ 3 5 6 9 -1.
+ <_>
+ 5 5 2 9 3.
+ <_>
+
+ <_>
+ 4 1 20 4 -1.
+ <_>
+ 14 1 10 2 2.
+ <_>
+ 4 3 10 2 2.
+ <_>
+
+ <_>
+ 0 1 20 4 -1.
+ <_>
+ 0 1 10 2 2.
+ <_>
+ 10 3 10 2 2.
+ <_>
+
+ <_>
+ 10 15 6 6 -1.
+ <_>
+ 10 15 3 6 2.
+ <_>
+
+ <_>
+ 0 2 24 8 -1.
+ <_>
+ 8 2 8 8 3.
+ <_>
+
+ <_>
+ 5 5 18 3 -1.
+ <_>
+ 5 6 18 1 3.
+ <_>
+
+ <_>
+ 8 15 6 6 -1.
+ <_>
+ 11 15 3 6 2.
+ <_>
+
+ <_>
+ 11 12 8 5 -1.
+ <_>
+ 11 12 4 5 2.
+ <_>
+
+ <_>
+ 5 12 8 5 -1.
+ <_>
+ 9 12 4 5 2.
+ <_>
+
+ <_>
+ 5 0 14 6 -1.
+ <_>
+ 5 2 14 2 3.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 10 7 5 12 -1.
+ <_>
+ 10 11 5 4 3.
+ <_>
+
+ <_>
+ 7 9 8 14 -1.
+ <_>
+ 7 9 4 7 2.
+ <_>
+ 11 16 4 7 2.
+ <_>
+
+ <_>
+ 1 5 22 6 -1.
+ <_>
+ 12 5 11 3 2.
+ <_>
+ 1 8 11 3 2.
+ <_>
+
+ <_>
+ 0 5 6 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+
+ <_>
+ 12 17 9 4 -1.
+ <_>
+ 12 19 9 2 2.
+ <_>
+
+ <_>
+ 2 18 19 3 -1.
+ <_>
+ 2 19 19 1 3.
+ <_>
+
+ <_>
+ 12 17 9 4 -1.
+ <_>
+ 12 19 9 2 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 1 18 18 1 3.
+ <_>
+
+ <_>
+ 12 17 9 4 -1.
+ <_>
+ 12 19 9 2 2.
+ <_>
+
+ <_>
+ 0 0 24 3 -1.
+ <_>
+ 0 1 24 1 3.
+ <_>
+
+ <_>
+ 5 0 14 4 -1.
+ <_>
+ 5 2 14 2 2.
+ <_>
+
+ <_>
+ 6 14 9 6 -1.
+ <_>
+ 6 16 9 2 3.
+ <_>
+
+ <_>
+ 14 13 6 9 -1.
+ <_>
+ 14 16 6 3 3.
+ <_>
+
+ <_>
+ 5 20 13 4 -1.
+ <_>
+ 5 22 13 2 2.
+ <_>
+
+ <_>
+ 9 9 6 12 -1.
+ <_>
+ 9 13 6 4 3.
+ <_>
+
+ <_>
+ 1 10 21 3 -1.
+ <_>
+ 8 10 7 3 3.
+ <_>
+
+ <_>
+ 8 8 9 6 -1.
+ <_>
+ 11 8 3 6 3.
+ <_>
+
+ <_>
+ 3 10 9 7 -1.
+ <_>
+ 6 10 3 7 3.
+ <_>
+
+ <_>
+ 12 10 10 8 -1.
+ <_>
+ 17 10 5 4 2.
+ <_>
+ 12 14 5 4 2.
+ <_>
+
+ <_>
+ 0 15 24 3 -1.
+ <_>
+ 8 15 8 3 3.
+ <_>
+
+ <_>
+ 8 5 9 6 -1.
+ <_>
+ 8 7 9 2 3.
+ <_>
+
+ <_>
+ 4 13 6 9 -1.
+ <_>
+ 4 16 6 3 3.
+ <_>
+
+ <_>
+ 12 17 9 4 -1.
+ <_>
+ 12 19 9 2 2.
+ <_>
+
+ <_>
+ 9 12 6 6 -1.
+ <_>
+ 9 15 6 3 2.
+ <_>
+
+ <_>
+ 9 9 14 10 -1.
+ <_>
+ 16 9 7 5 2.
+ <_>
+ 9 14 7 5 2.
+ <_>
+
+ <_>
+ 1 9 14 10 -1.
+ <_>
+ 1 9 7 5 2.
+ <_>
+ 8 14 7 5 2.
+ <_>
+
+ <_>
+ 8 7 9 17 -1.
+ <_>
+ 11 7 3 17 3.
+ <_>
+
+ <_>
+ 3 4 6 20 -1.
+ <_>
+ 3 4 3 10 2.
+ <_>
+ 6 14 3 10 2.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 8 5 4 2.
+ <_>
+
+ <_>
+ 10 7 4 9 -1.
+ <_>
+ 12 7 2 9 2.
+ <_>
+
+ <_>
+ 10 15 6 9 -1.
+ <_>
+ 12 15 2 9 3.
+ <_>
+
+ <_>
+ 3 8 6 16 -1.
+ <_>
+ 3 8 3 8 2.
+ <_>
+ 6 16 3 8 2.
+ <_>
+
+ <_>
+ 12 17 9 4 -1.
+ <_>
+ 12 19 9 2 2.
+ <_>
+
+ <_>
+ 3 17 9 4 -1.
+ <_>
+ 3 19 9 2 2.
+ <_>
+
+ <_>
+ 10 1 9 6 -1.
+ <_>
+ 13 1 3 6 3.
+ <_>
+
+ <_>
+ 5 7 4 10 -1.
+ <_>
+ 5 12 4 5 2.
+ <_>
+
+ <_>
+ 7 5 12 6 -1.
+ <_>
+ 11 5 4 6 3.
+ <_>
+
+ <_>
+ 6 4 9 8 -1.
+ <_>
+ 9 4 3 8 3.
+ <_>
+
+ <_>
+ 12 16 10 8 -1.
+ <_>
+ 17 16 5 4 2.
+ <_>
+ 12 20 5 4 2.
+ <_>
+
+ <_>
+ 2 16 10 8 -1.
+ <_>
+ 2 16 5 4 2.
+ <_>
+ 7 20 5 4 2.
+ <_>
+
+ <_>
+ 0 0 24 4 -1.
+ <_>
+ 12 0 12 2 2.
+ <_>
+ 0 2 12 2 2.
+ <_>
+
+ <_>
+ 0 6 9 6 -1.
+ <_>
+ 0 8 9 2 3.
+ <_>
+
+ <_>
+ 0 4 24 6 -1.
+ <_>
+ 12 4 12 3 2.
+ <_>
+ 0 7 12 3 2.
+ <_>
+
+ <_>
+ 5 0 11 4 -1.
+ <_>
+ 5 2 11 2 2.
+ <_>
+
+ <_>
+ 1 1 22 4 -1.
+ <_>
+ 12 1 11 2 2.
+ <_>
+ 1 3 11 2 2.
+ <_>
+
+ <_>
+ 9 6 6 18 -1.
+ <_>
+ 9 15 6 9 2.
+ <_>
+
+ <_>
+ 2 9 20 4 -1.
+ <_>
+ 2 11 20 2 2.
+ <_>
+
+ <_>
+ 5 2 14 14 -1.
+ <_>
+ 5 9 14 7 2.
+ <_>
+
+ <_>
+ 4 2 16 6 -1.
+ <_>
+ 4 5 16 3 2.
+ <_>
+
+ <_>
+ 2 3 19 3 -1.
+ <_>
+ 2 4 19 1 3.
+ <_>
+
+ <_>
+ 7 1 10 4 -1.
+ <_>
+ 7 3 10 2 2.
+ <_>
+
+ <_>
+ 0 9 4 15 -1.
+ <_>
+ 0 14 4 5 3.
+ <_>
+
+ <_>
+ 2 10 21 3 -1.
+ <_>
+ 2 11 21 1 3.
+ <_>
+
+ <_>
+ 3 0 6 6 -1.
+ <_>
+ 6 0 3 6 2.
+ <_>
+
+ <_>
+ 6 4 14 9 -1.
+ <_>
+ 6 7 14 3 3.
+ <_>
+
+ <_>
+ 9 1 6 9 -1.
+ <_>
+ 11 1 2 9 3.
+ <_>
+
+ <_>
+ 15 8 9 9 -1.
+ <_>
+ 15 11 9 3 3.
+ <_>
+
+ <_>
+ 8 0 4 21 -1.
+ <_>
+ 8 7 4 7 3.
+ <_>
+
+ <_>
+ 3 22 19 2 -1.
+ <_>
+ 3 23 19 1 2.
+ <_>
+
+ <_>
+ 2 15 20 3 -1.
+ <_>
+ 2 16 20 1 3.
+ <_>
+
+ <_>
+ 19 0 4 13 -1.
+ <_>
+ 19 0 2 13 2.
+ <_>
+
+ <_>
+ 1 7 8 8 -1.
+ <_>
+ 1 11 8 4 2.
+ <_>
+
+ <_>
+ 14 14 6 9 -1.
+ <_>
+ 14 17 6 3 3.
+ <_>
+
+ <_>
+ 4 14 6 9 -1.
+ <_>
+ 4 17 6 3 3.
+ <_>
+
+ <_>
+ 14 5 4 10 -1.
+ <_>
+ 14 5 2 10 2.
+ <_>
+
+ <_>
+ 6 5 4 10 -1.
+ <_>
+ 8 5 2 10 2.
+ <_>
+
+ <_>
+ 14 5 6 6 -1.
+ <_>
+ 14 8 6 3 2.
+ <_>
+
+ <_>
+ 4 5 6 6 -1.
+ <_>
+ 4 8 6 3 2.
+ <_>
+
+ <_>
+ 0 2 24 21 -1.
+ <_>
+ 8 2 8 21 3.
+ <_>
+
+ <_>
+ 1 2 6 13 -1.
+ <_>
+ 3 2 2 13 3.
+ <_>
+
+ <_>
+ 20 0 4 21 -1.
+ <_>
+ 20 0 2 21 2.
+ <_>
+
+ <_>
+ 0 4 4 20 -1.
+ <_>
+ 2 4 2 20 2.
+ <_>
+
+ <_>
+ 8 16 9 6 -1.
+ <_>
+ 8 18 9 2 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 16 12 7 9 -1.
+ <_>
+ 16 15 7 3 3.
+ <_>
+
+ <_>
+ 5 21 14 3 -1.
+ <_>
+ 12 21 7 3 2.
+ <_>
+
+ <_>
+ 11 5 6 9 -1.
+ <_>
+ 11 5 3 9 2.
+ <_>
+
+ <_>
+ 10 5 4 10 -1.
+ <_>
+ 12 5 2 10 2.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 7 5 6 9 -1.
+ <_>
+ 10 5 3 9 2.
+ <_>
+
+ <_>
+ 14 14 10 4 -1.
+ <_>
+ 14 16 10 2 2.
+ <_>
+
+ <_>
+ 5 5 14 14 -1.
+ <_>
+ 5 5 7 7 2.
+ <_>
+ 12 12 7 7 2.
+ <_>
+
+ <_>
+ 12 8 12 6 -1.
+ <_>
+ 18 8 6 3 2.
+ <_>
+ 12 11 6 3 2.
+ <_>
+
+ <_>
+ 6 6 12 12 -1.
+ <_>
+ 6 6 6 6 2.
+ <_>
+ 12 12 6 6 2.
+ <_>
+
+ <_>
+ 11 13 6 10 -1.
+ <_>
+ 13 13 2 10 3.
+ <_>
+
+ <_>
+ 1 10 20 8 -1.
+ <_>
+ 1 10 10 4 2.
+ <_>
+ 11 14 10 4 2.
+ <_>
+
+ <_>
+ 15 13 9 6 -1.
+ <_>
+ 15 15 9 2 3.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 9 3 6 3 3.
+ <_>
+
+ <_>
+ 10 1 5 14 -1.
+ <_>
+ 10 8 5 7 2.
+ <_>
+
+ <_>
+ 3 4 16 6 -1.
+ <_>
+ 3 6 16 2 3.
+ <_>
+
+ <_>
+ 16 3 8 9 -1.
+ <_>
+ 16 6 8 3 3.
+ <_>
+
+ <_>
+ 7 13 6 10 -1.
+ <_>
+ 9 13 2 10 3.
+ <_>
+
+ <_>
+ 15 13 9 6 -1.
+ <_>
+ 15 15 9 2 3.
+ <_>
+
+ <_>
+ 0 13 9 6 -1.
+ <_>
+ 0 15 9 2 3.
+ <_>
+
+ <_>
+ 13 16 9 6 -1.
+ <_>
+ 13 18 9 2 3.
+ <_>
+
+ <_>
+ 2 16 9 6 -1.
+ <_>
+ 2 18 9 2 3.
+ <_>
+
+ <_>
+ 5 16 18 3 -1.
+ <_>
+ 5 17 18 1 3.
+ <_>
+
+ <_>
+ 1 16 18 3 -1.
+ <_>
+ 1 17 18 1 3.
+ <_>
+
+ <_>
+ 5 0 18 3 -1.
+ <_>
+ 5 1 18 1 3.
+ <_>
+
+ <_>
+ 1 1 19 2 -1.
+ <_>
+ 1 2 19 1 2.
+ <_>
+
+ <_>
+ 14 2 6 11 -1.
+ <_>
+ 16 2 2 11 3.
+ <_>
+
+ <_>
+ 4 15 15 6 -1.
+ <_>
+ 9 15 5 6 3.
+ <_>
+
+ <_>
+ 14 2 6 11 -1.
+ <_>
+ 16 2 2 11 3.
+ <_>
+
+ <_>
+ 4 2 6 11 -1.
+ <_>
+ 6 2 2 11 3.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 18 5 6 3 3.
+ <_>
+
+ <_>
+ 1 2 22 4 -1.
+ <_>
+ 1 2 11 2 2.
+ <_>
+ 12 4 11 2 2.
+ <_>
+
+ <_>
+ 2 0 21 12 -1.
+ <_>
+ 9 0 7 12 3.
+ <_>
+
+ <_>
+ 0 12 18 3 -1.
+ <_>
+ 0 13 18 1 3.
+ <_>
+
+ <_>
+ 12 2 6 9 -1.
+ <_>
+ 14 2 2 9 3.
+ <_>
+
+ <_>
+ 3 10 18 3 -1.
+ <_>
+ 3 11 18 1 3.
+ <_>
+
+ <_>
+ 16 3 8 9 -1.
+ <_>
+ 16 6 8 3 3.
+ <_>
+
+ <_>
+ 3 7 18 3 -1.
+ <_>
+ 3 8 18 1 3.
+ <_>
+
+ <_>
+ 9 11 6 9 -1.
+ <_>
+ 11 11 2 9 3.
+ <_>
+
+ <_>
+ 9 8 6 9 -1.
+ <_>
+ 11 8 2 9 3.
+ <_>
+
+ <_>
+ 15 0 2 18 -1.
+ <_>
+ 15 0 1 18 2.
+ <_>
+
+ <_>
+ 7 0 2 18 -1.
+ <_>
+ 8 0 1 18 2.
+ <_>
+
+ <_>
+ 17 3 7 9 -1.
+ <_>
+ 17 6 7 3 3.
+ <_>
+
+ <_>
+ 3 18 9 6 -1.
+ <_>
+ 3 20 9 2 3.
+ <_>
+
+ <_>
+ 3 18 21 3 -1.
+ <_>
+ 3 19 21 1 3.
+ <_>
+
+ <_>
+ 0 3 7 9 -1.
+ <_>
+ 0 6 7 3 3.
+ <_>
+
+ <_>
+ 2 7 22 3 -1.
+ <_>
+ 2 8 22 1 3.
+ <_>
+
+ <_>
+ 0 3 24 16 -1.
+ <_>
+ 0 3 12 8 2.
+ <_>
+ 12 11 12 8 2.
+ <_>
+
+ <_>
+ 13 17 9 4 -1.
+ <_>
+ 13 19 9 2 2.
+ <_>
+
+ <_>
+ 5 5 12 8 -1.
+ <_>
+ 5 5 6 4 2.
+ <_>
+ 11 9 6 4 2.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 12 6 7 3 2.
+ <_>
+ 5 9 7 3 2.
+ <_>
+
+ <_>
+ 5 16 14 6 -1.
+ <_>
+ 5 16 7 3 2.
+ <_>
+ 12 19 7 3 2.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 18 5 6 3 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 3 4 20 10 -1.
+ <_>
+ 13 4 10 5 2.
+ <_>
+ 3 9 10 5 2.
+ <_>
+
+ <_>
+ 2 13 9 8 -1.
+ <_>
+ 5 13 3 8 3.
+ <_>
+
+ <_>
+ 2 1 21 15 -1.
+ <_>
+ 9 1 7 15 3.
+ <_>
+
+ <_>
+ 5 12 14 8 -1.
+ <_>
+ 12 12 7 8 2.
+ <_>
+
+ <_>
+ 6 7 12 4 -1.
+ <_>
+ 6 7 6 4 2.
+ <_>
+
+ <_>
+ 6 5 9 6 -1.
+ <_>
+ 9 5 3 6 3.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 5 11 6 6 -1.
+ <_>
+ 8 11 3 6 2.
+ <_>
+
+ <_>
+ 6 4 18 2 -1.
+ <_>
+ 6 5 18 1 2.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 2 2 2 11 3.
+ <_>
+
+ <_>
+ 18 0 6 15 -1.
+ <_>
+ 20 0 2 15 3.
+ <_>
+
+ <_>
+ 0 0 6 13 -1.
+ <_>
+ 2 0 2 13 3.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 8 2 8 4 3.
+ <_>
+
+ <_>
+ 3 13 18 4 -1.
+ <_>
+ 12 13 9 4 2.
+ <_>
+
+ <_>
+ 9 7 10 4 -1.
+ <_>
+ 9 7 5 4 2.
+ <_>
+
+ <_>
+ 5 8 12 3 -1.
+ <_>
+ 11 8 6 3 2.
+ <_>
+
+ <_>
+ 4 14 19 3 -1.
+ <_>
+ 4 15 19 1 3.
+ <_>
+
+ <_>
+ 10 0 4 20 -1.
+ <_>
+ 10 10 4 10 2.
+ <_>
+
+ <_>
+ 8 15 9 6 -1.
+ <_>
+ 8 17 9 2 3.
+ <_>
+
+ <_>
+ 2 9 15 4 -1.
+ <_>
+ 7 9 5 4 3.
+ <_>
+
+ <_>
+ 8 4 12 7 -1.
+ <_>
+ 12 4 4 7 3.
+ <_>
+
+ <_>
+ 0 10 6 9 -1.
+ <_>
+ 0 13 6 3 3.
+ <_>
+
+ <_>
+ 18 5 6 9 -1.
+ <_>
+ 18 8 6 3 3.
+ <_>
+
+ <_>
+ 0 18 16 6 -1.
+ <_>
+ 0 18 8 3 2.
+ <_>
+ 8 21 8 3 2.
+ <_>
+
+ <_>
+ 9 18 14 6 -1.
+ <_>
+ 16 18 7 3 2.
+ <_>
+ 9 21 7 3 2.
+ <_>
+
+ <_>
+ 1 20 20 4 -1.
+ <_>
+ 1 20 10 2 2.
+ <_>
+ 11 22 10 2 2.
+ <_>
+
+ <_>
+ 2 8 20 6 -1.
+ <_>
+ 12 8 10 3 2.
+ <_>
+ 2 11 10 3 2.
+ <_>
+
+ <_>
+ 7 8 6 9 -1.
+ <_>
+ 9 8 2 9 3.
+ <_>
+
+ <_>
+ 8 5 12 8 -1.
+ <_>
+ 12 5 4 8 3.
+ <_>
+
+ <_>
+ 4 5 12 8 -1.
+ <_>
+ 8 5 4 8 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 2 0 6 16 -1.
+ <_>
+ 4 0 2 16 3.
+ <_>
+
+ <_>
+ 15 4 6 12 -1.
+ <_>
+ 15 8 6 4 3.
+ <_>
+
+ <_>
+ 3 4 6 12 -1.
+ <_>
+ 3 8 6 4 3.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 4 0 15 22 -1.
+ <_>
+ 4 11 15 11 2.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 0 12 9 6 -1.
+ <_>
+ 0 14 9 2 3.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 0 15 9 6 -1.
+ <_>
+ 0 17 9 2 3.
+ <_>
+
+ <_>
+ 10 0 8 10 -1.
+ <_>
+ 14 0 4 5 2.
+ <_>
+ 10 5 4 5 2.
+ <_>
+
+ <_>
+ 1 0 4 16 -1.
+ <_>
+ 3 0 2 16 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 10 12 4 10 -1.
+ <_>
+ 10 17 4 5 2.
+ <_>
+
+ <_>
+ 8 4 10 6 -1.
+ <_>
+ 8 6 10 2 3.
+ <_>
+
+ <_>
+ 3 22 18 2 -1.
+ <_>
+ 12 22 9 2 2.
+ <_>
+
+ <_>
+ 7 7 11 6 -1.
+ <_>
+ 7 9 11 2 3.
+ <_>
+
+ <_>
+ 0 0 12 10 -1.
+ <_>
+ 0 0 6 5 2.
+ <_>
+ 6 5 6 5 2.
+ <_>
+
+ <_>
+ 10 1 12 6 -1.
+ <_>
+ 16 1 6 3 2.
+ <_>
+ 10 4 6 3 2.
+ <_>
+
+ <_>
+ 7 16 9 4 -1.
+ <_>
+ 7 18 9 2 2.
+ <_>
+
+ <_>
+ 5 7 15 16 -1.
+ <_>
+ 10 7 5 16 3.
+ <_>
+
+ <_>
+ 5 10 12 13 -1.
+ <_>
+ 11 10 6 13 2.
+ <_>
+
+ <_>
+ 6 2 12 6 -1.
+ <_>
+ 12 2 6 3 2.
+ <_>
+ 6 5 6 3 2.
+ <_>
+
+ <_>
+ 3 9 12 9 -1.
+ <_>
+ 3 12 12 3 3.
+ <_>
+
+ <_>
+ 16 2 8 6 -1.
+ <_>
+ 16 5 8 3 2.
+ <_>
+
+ <_>
+ 0 2 8 6 -1.
+ <_>
+ 0 5 8 3 2.
+ <_>
+
+ <_>
+ 0 3 24 11 -1.
+ <_>
+ 0 3 12 11 2.
+ <_>
+
+ <_>
+ 0 13 8 10 -1.
+ <_>
+ 0 13 4 5 2.
+ <_>
+ 4 18 4 5 2.
+ <_>
+
+ <_>
+ 10 14 4 10 -1.
+ <_>
+ 10 19 4 5 2.
+ <_>
+
+ <_>
+ 10 2 4 21 -1.
+ <_>
+ 10 9 4 7 3.
+ <_>
+
+ <_>
+ 4 4 15 9 -1.
+ <_>
+ 4 7 15 3 3.
+ <_>
+
+ <_>
+ 0 1 24 6 -1.
+ <_>
+ 8 1 8 6 3.
+ <_>
+
+ <_>
+ 9 6 5 16 -1.
+ <_>
+ 9 14 5 8 2.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 9 21 6 3 3.
+ <_>
+
+ <_>
+ 6 5 3 12 -1.
+ <_>
+ 6 11 3 6 2.
+ <_>
+
+ <_>
+ 11 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 5 6 9 8 -1.
+ <_>
+ 8 6 3 8 3.
+ <_>
+
+ <_>
+ 4 3 20 2 -1.
+ <_>
+ 4 4 20 1 2.
+ <_>
+
+ <_>
+ 2 10 18 3 -1.
+ <_>
+ 8 10 6 3 3.
+ <_>
+
+ <_>
+ 7 15 10 6 -1.
+ <_>
+ 7 17 10 2 3.
+ <_>
+
+ <_>
+ 1 4 4 18 -1.
+ <_>
+ 1 4 2 9 2.
+ <_>
+ 3 13 2 9 2.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 15 0 2 9 3.
+ <_>
+
+ <_>
+ 5 0 6 9 -1.
+ <_>
+ 7 0 2 9 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 6 7 9 6 -1.
+ <_>
+ 9 7 3 6 3.
+ <_>
+
+ <_>
+ 3 0 18 2 -1.
+ <_>
+ 3 1 18 1 2.
+ <_>
+
+ <_>
+ 0 10 20 4 -1.
+ <_>
+ 0 10 10 2 2.
+ <_>
+ 10 12 10 2 2.
+ <_>
+
+ <_>
+ 10 2 4 12 -1.
+ <_>
+ 10 8 4 6 2.
+ <_>
+
+ <_>
+ 6 5 6 12 -1.
+ <_>
+ 6 5 3 6 2.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 6 0 18 22 -1.
+ <_>
+ 15 0 9 11 2.
+ <_>
+ 6 11 9 11 2.
+ <_>
+
+ <_>
+ 0 0 18 22 -1.
+ <_>
+ 0 0 9 11 2.
+ <_>
+ 9 11 9 11 2.
+ <_>
+
+ <_>
+ 18 2 6 11 -1.
+ <_>
+ 20 2 2 11 3.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 2 2 2 11 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 0 1 20 1 3.
+ <_>
+
+ <_>
+ 2 2 20 2 -1.
+ <_>
+ 2 3 20 1 2.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 11 18 1 2.
+ <_>
+
+ <_>
+ 18 7 6 9 -1.
+ <_>
+ 18 10 6 3 3.
+ <_>
+
+ <_>
+ 0 0 22 9 -1.
+ <_>
+ 0 3 22 3 3.
+ <_>
+
+ <_>
+ 17 3 6 9 -1.
+ <_>
+ 17 6 6 3 3.
+ <_>
+
+ <_>
+ 0 7 6 9 -1.
+ <_>
+ 0 10 6 3 3.
+ <_>
+
+ <_>
+ 0 6 24 6 -1.
+ <_>
+ 0 8 24 2 3.
+ <_>
+
+ <_>
+ 0 2 6 10 -1.
+ <_>
+ 2 2 2 10 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 15 0 6 9 -1.
+ <_>
+ 17 0 2 9 3.
+ <_>
+
+ <_>
+ 3 0 6 9 -1.
+ <_>
+ 5 0 2 9 3.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 15 14 9 6 -1.
+ <_>
+ 15 16 9 2 3.
+ <_>
+
+ <_>
+ 0 15 23 6 -1.
+ <_>
+ 0 17 23 2 3.
+ <_>
+
+ <_>
+ 5 15 18 3 -1.
+ <_>
+ 5 16 18 1 3.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 9 8 8 10 -1.
+ <_>
+ 13 8 4 5 2.
+ <_>
+ 9 13 4 5 2.
+ <_>
+
+ <_>
+ 3 7 15 6 -1.
+ <_>
+ 8 7 5 6 3.
+ <_>
+
+ <_>
+ 9 8 8 10 -1.
+ <_>
+ 13 8 4 5 2.
+ <_>
+ 9 13 4 5 2.
+ <_>
+
+ <_>
+ 5 0 6 12 -1.
+ <_>
+ 8 0 3 12 2.
+ <_>
+
+ <_>
+ 9 8 8 10 -1.
+ <_>
+ 13 8 4 5 2.
+ <_>
+ 9 13 4 5 2.
+ <_>
+
+ <_>
+ 8 5 6 9 -1.
+ <_>
+ 10 5 2 9 3.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+ 10 15 2 9 2.
+ <_>
+
+ <_>
+ 5 7 12 4 -1.
+ <_>
+ 11 7 6 4 2.
+ <_>
+
+ <_>
+ 9 8 8 10 -1.
+ <_>
+ 13 8 4 5 2.
+ <_>
+ 9 13 4 5 2.
+ <_>
+
+ <_>
+ 7 8 8 10 -1.
+ <_>
+ 7 8 4 5 2.
+ <_>
+ 11 13 4 5 2.
+ <_>
+
+ <_>
+ 11 10 6 14 -1.
+ <_>
+ 14 10 3 7 2.
+ <_>
+ 11 17 3 7 2.
+ <_>
+
+ <_>
+ 9 5 6 19 -1.
+ <_>
+ 12 5 3 19 2.
+ <_>
+
+ <_>
+ 6 12 12 6 -1.
+ <_>
+ 12 12 6 3 2.
+ <_>
+ 6 15 6 3 2.
+ <_>
+
+ <_>
+ 1 9 18 6 -1.
+ <_>
+ 1 9 9 3 2.
+ <_>
+ 10 12 9 3 2.
+ <_>
+
+ <_>
+ 16 14 8 10 -1.
+ <_>
+ 20 14 4 5 2.
+ <_>
+ 16 19 4 5 2.
+ <_>
+
+ <_>
+ 0 9 22 8 -1.
+ <_>
+ 0 9 11 4 2.
+ <_>
+ 11 13 11 4 2.
+ <_>
+
+ <_>
+ 8 18 12 6 -1.
+ <_>
+ 14 18 6 3 2.
+ <_>
+ 8 21 6 3 2.
+ <_>
+
+ <_>
+ 0 6 20 18 -1.
+ <_>
+ 0 6 10 9 2.
+ <_>
+ 10 15 10 9 2.
+ <_>
+
+ <_>
+ 3 6 20 12 -1.
+ <_>
+ 13 6 10 6 2.
+ <_>
+ 3 12 10 6 2.
+ <_>
+
+ <_>
+ 0 16 10 8 -1.
+ <_>
+ 0 16 5 4 2.
+ <_>
+ 5 20 5 4 2.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 0 11 19 3 -1.
+ <_>
+ 0 12 19 1 3.
+ <_>
+
+ <_>
+ 14 6 6 9 -1.
+ <_>
+ 14 9 6 3 3.
+ <_>
+
+ <_>
+ 1 7 22 4 -1.
+ <_>
+ 1 7 11 2 2.
+ <_>
+ 12 9 11 2 2.
+ <_>
+
+ <_>
+ 13 6 7 12 -1.
+ <_>
+ 13 10 7 4 3.
+ <_>
+
+ <_>
+ 4 7 11 9 -1.
+ <_>
+ 4 10 11 3 3.
+ <_>
+
+ <_>
+ 12 10 10 8 -1.
+ <_>
+ 17 10 5 4 2.
+ <_>
+ 12 14 5 4 2.
+ <_>
+
+ <_>
+ 2 12 9 7 -1.
+ <_>
+ 5 12 3 7 3.
+ <_>
+
+ <_>
+ 16 14 6 9 -1.
+ <_>
+ 16 17 6 3 3.
+ <_>
+
+ <_>
+ 3 12 6 12 -1.
+ <_>
+ 3 16 6 4 3.
+ <_>
+
+ <_>
+ 14 13 6 6 -1.
+ <_>
+ 14 16 6 3 2.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 10 0 2 9 3.
+ <_>
+
+ <_>
+ 9 1 6 23 -1.
+ <_>
+ 11 1 2 23 3.
+ <_>
+
+ <_>
+ 0 16 9 6 -1.
+ <_>
+ 0 18 9 2 3.
+ <_>
+
+ <_>
+ 4 17 18 3 -1.
+ <_>
+ 4 18 18 1 3.
+ <_>
+
+ <_>
+ 5 2 13 14 -1.
+ <_>
+ 5 9 13 7 2.
+ <_>
+
+ <_>
+ 15 0 8 12 -1.
+ <_>
+ 19 0 4 6 2.
+ <_>
+ 15 6 4 6 2.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 0 0 4 6 2.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 8 2 8 7 -1.
+ <_>
+ 8 2 4 7 2.
+ <_>
+
+ <_>
+ 1 1 6 9 -1.
+ <_>
+ 3 1 2 9 3.
+ <_>
+
+ <_>
+ 14 8 6 12 -1.
+ <_>
+ 17 8 3 6 2.
+ <_>
+ 14 14 3 6 2.
+ <_>
+
+ <_>
+ 4 8 6 12 -1.
+ <_>
+ 4 8 3 6 2.
+ <_>
+ 7 14 3 6 2.
+ <_>
+
+ <_>
+ 16 5 5 15 -1.
+ <_>
+ 16 10 5 5 3.
+ <_>
+
+ <_>
+ 3 5 5 15 -1.
+ <_>
+ 3 10 5 5 3.
+ <_>
+
+ <_>
+ 18 4 6 9 -1.
+ <_>
+ 18 7 6 3 3.
+ <_>
+
+ <_>
+ 1 7 6 15 -1.
+ <_>
+ 1 12 6 5 3.
+ <_>
+
+ <_>
+ 11 15 12 8 -1.
+ <_>
+ 17 15 6 4 2.
+ <_>
+ 11 19 6 4 2.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 0 2 12 2 2.
+ <_>
+ 12 4 12 2 2.
+ <_>
+
+ <_>
+ 15 1 2 19 -1.
+ <_>
+ 15 1 1 19 2.
+ <_>
+
+ <_>
+ 7 1 2 19 -1.
+ <_>
+ 8 1 1 19 2.
+ <_>
+
+ <_>
+ 22 1 2 20 -1.
+ <_>
+ 22 1 1 20 2.
+ <_>
+
+ <_>
+ 0 1 2 20 -1.
+ <_>
+ 1 1 1 20 2.
+ <_>
+
+ <_>
+ 18 11 6 12 -1.
+ <_>
+ 20 11 2 12 3.
+ <_>
+
+ <_>
+ 0 11 6 12 -1.
+ <_>
+ 2 11 2 12 3.
+ <_>
+
+ <_>
+ 3 6 18 14 -1.
+ <_>
+ 3 13 18 7 2.
+ <_>
+
+ <_>
+ 6 10 7 8 -1.
+ <_>
+ 6 14 7 4 2.
+ <_>
+
+ <_>
+ 7 9 12 12 -1.
+ <_>
+ 7 13 12 4 3.
+ <_>
+
+ <_>
+ 2 18 18 5 -1.
+ <_>
+ 11 18 9 5 2.
+ <_>
+
+ <_>
+ 4 21 20 3 -1.
+ <_>
+ 4 22 20 1 3.
+ <_>
+
+ <_>
+ 9 12 6 12 -1.
+ <_>
+ 9 12 3 6 2.
+ <_>
+ 12 18 3 6 2.
+ <_>
+
+ <_>
+ 4 6 18 3 -1.
+ <_>
+ 4 7 18 1 3.
+ <_>
+
+ <_>
+ 3 6 18 3 -1.
+ <_>
+ 3 7 18 1 3.
+ <_>
+
+ <_>
+ 18 4 6 9 -1.
+ <_>
+ 18 7 6 3 3.
+ <_>
+
+ <_>
+ 2 12 9 6 -1.
+ <_>
+ 2 14 9 2 3.
+ <_>
+
+ <_>
+ 4 14 18 4 -1.
+ <_>
+ 13 14 9 2 2.
+ <_>
+ 4 16 9 2 2.
+ <_>
+
+ <_>
+ 7 7 6 14 -1.
+ <_>
+ 7 7 3 7 2.
+ <_>
+ 10 14 3 7 2.
+ <_>
+
+ <_>
+ 7 13 12 6 -1.
+ <_>
+ 13 13 6 3 2.
+ <_>
+ 7 16 6 3 2.
+ <_>
+
+ <_>
+ 6 7 12 9 -1.
+ <_>
+ 10 7 4 9 3.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 12 12 3 6 2.
+ <_>
+
+ <_>
+ 0 2 4 10 -1.
+ <_>
+ 0 7 4 5 2.
+ <_>
+
+ <_>
+ 8 0 9 6 -1.
+ <_>
+ 11 0 3 6 3.
+ <_>
+
+ <_>
+ 2 9 12 6 -1.
+ <_>
+ 2 12 12 3 2.
+ <_>
+
+ <_>
+ 13 10 6 9 -1.
+ <_>
+ 13 13 6 3 3.
+ <_>
+
+ <_>
+ 5 10 6 9 -1.
+ <_>
+ 5 13 6 3 3.
+ <_>
+
+ <_>
+ 9 15 9 6 -1.
+ <_>
+ 9 17 9 2 3.
+ <_>
+
+ <_>
+ 5 16 12 6 -1.
+ <_>
+ 5 19 12 3 2.
+ <_>
+
+ <_>
+ 3 2 20 3 -1.
+ <_>
+ 3 3 20 1 3.
+ <_>
+
+ <_>
+ 2 5 12 6 -1.
+ <_>
+ 6 5 4 6 3.
+ <_>
+
+ <_>
+ 11 0 3 24 -1.
+ <_>
+ 12 0 1 24 3.
+ <_>
+
+ <_>
+ 3 16 15 4 -1.
+ <_>
+ 8 16 5 4 3.
+ <_>
+
+ <_>
+ 9 12 6 12 -1.
+ <_>
+ 9 18 6 6 2.
+ <_>
+
+ <_>
+ 1 15 12 8 -1.
+ <_>
+ 1 15 6 4 2.
+ <_>
+ 7 19 6 4 2.
+ <_>
+
+ <_>
+ 15 10 8 14 -1.
+ <_>
+ 19 10 4 7 2.
+ <_>
+ 15 17 4 7 2.
+ <_>
+
+ <_>
+ 1 9 8 14 -1.
+ <_>
+ 1 9 4 7 2.
+ <_>
+ 5 16 4 7 2.
+ <_>
+
+ <_>
+ 9 11 9 10 -1.
+ <_>
+ 9 16 9 5 2.
+ <_>
+
+ <_>
+ 6 7 12 6 -1.
+ <_>
+ 6 9 12 2 3.
+ <_>
+
+ <_>
+ 10 15 6 9 -1.
+ <_>
+ 12 15 2 9 3.
+ <_>
+
+ <_>
+ 7 8 9 7 -1.
+ <_>
+ 10 8 3 7 3.
+ <_>
+
+ <_>
+ 10 4 8 10 -1.
+ <_>
+ 14 4 4 5 2.
+ <_>
+ 10 9 4 5 2.
+ <_>
+
+ <_>
+ 4 6 6 9 -1.
+ <_>
+ 4 9 6 3 3.
+ <_>
+
+ <_>
+ 0 6 24 12 -1.
+ <_>
+ 8 6 8 12 3.
+ <_>
+
+ <_>
+ 3 7 6 14 -1.
+ <_>
+ 6 7 3 14 2.
+ <_>
+
+ <_>
+ 19 8 5 8 -1.
+ <_>
+ 19 12 5 4 2.
+ <_>
+
+ <_>
+ 0 8 5 8 -1.
+ <_>
+ 0 12 5 4 2.
+ <_>
+
+ <_>
+ 17 3 6 6 -1.
+ <_>
+ 17 6 6 3 2.
+ <_>
+
+ <_>
+ 1 3 6 6 -1.
+ <_>
+ 1 6 6 3 2.
+ <_>
+
+ <_>
+ 18 2 6 9 -1.
+ <_>
+ 18 5 6 3 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 3 3 18 6 -1.
+ <_>
+ 3 5 18 2 3.
+ <_>
+
+ <_>
+ 2 3 9 6 -1.
+ <_>
+ 2 5 9 2 3.
+ <_>
+
+ <_>
+ 9 3 10 8 -1.
+ <_>
+ 14 3 5 4 2.
+ <_>
+ 9 7 5 4 2.
+ <_>
+
+ <_>
+ 5 3 10 8 -1.
+ <_>
+ 5 3 5 4 2.
+ <_>
+ 10 7 5 4 2.
+ <_>
+
+ <_>
+ 10 11 6 12 -1.
+ <_>
+ 10 11 3 12 2.
+ <_>
+
+ <_>
+ 8 11 6 11 -1.
+ <_>
+ 11 11 3 11 2.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 8 5 4 2.
+ <_>
+
+ <_>
+ 9 6 6 7 -1.
+ <_>
+ 12 6 3 7 2.
+ <_>
+
+ <_>
+ 5 18 18 3 -1.
+ <_>
+ 5 19 18 1 3.
+ <_>
+
+ <_>
+ 8 4 6 9 -1.
+ <_>
+ 10 4 2 9 3.
+ <_>
+
+ <_>
+ 8 1 9 7 -1.
+ <_>
+ 11 1 3 7 3.
+ <_>
+
+ <_>
+ 6 11 6 6 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 14 12 4 11 -1.
+ <_>
+ 14 12 2 11 2.
+ <_>
+
+ <_>
+ 6 12 4 11 -1.
+ <_>
+ 8 12 2 11 2.
+ <_>
+
+ <_>
+ 8 0 12 18 -1.
+ <_>
+ 12 0 4 18 3.
+ <_>
+
+ <_>
+ 2 12 10 5 -1.
+ <_>
+ 7 12 5 5 2.
+ <_>
+
+ <_>
+ 2 20 22 3 -1.
+ <_>
+ 2 21 22 1 3.
+ <_>
+
+ <_>
+ 0 4 2 20 -1.
+ <_>
+ 1 4 1 20 2.
+ <_>
+
+ <_>
+ 0 2 24 4 -1.
+ <_>
+ 8 2 8 4 3.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 10 10 2 2.
+ <_>
+
+ <_>
+ 6 7 8 10 -1.
+ <_>
+ 6 7 4 5 2.
+ <_>
+ 10 12 4 5 2.
+ <_>
+
+ <_>
+ 14 0 6 14 -1.
+ <_>
+ 17 0 3 7 2.
+ <_>
+ 14 7 3 7 2.
+ <_>
+
+ <_>
+ 4 11 5 8 -1.
+ <_>
+ 4 15 5 4 2.
+ <_>
+
+ <_>
+ 2 0 20 9 -1.
+ <_>
+ 2 3 20 3 3.
+ <_>
+
+ <_>
+ 6 7 12 8 -1.
+ <_>
+ 6 7 6 4 2.
+ <_>
+ 12 11 6 4 2.
+ <_>
+
+ <_>
+ 9 17 6 6 -1.
+ <_>
+ 9 20 6 3 2.
+ <_>
+
+ <_>
+ 7 10 10 4 -1.
+ <_>
+ 7 12 10 2 2.
+ <_>
+
+ <_>
+ 6 5 12 9 -1.
+ <_>
+ 10 5 4 9 3.
+ <_>
+
+ <_>
+ 5 11 6 8 -1.
+ <_>
+ 8 11 3 8 2.
+ <_>
+
+ <_>
+ 18 4 4 17 -1.
+ <_>
+ 18 4 2 17 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 18 4 4 17 -1.
+ <_>
+ 18 4 2 17 2.
+ <_>
+
+ <_>
+ 2 4 4 17 -1.
+ <_>
+ 4 4 2 17 2.
+ <_>
+
+ <_>
+ 5 18 19 3 -1.
+ <_>
+ 5 19 19 1 3.
+ <_>
+
+ <_>
+ 11 0 2 18 -1.
+ <_>
+ 11 9 2 9 2.
+ <_>
+
+ <_>
+ 15 4 2 18 -1.
+ <_>
+ 15 13 2 9 2.
+ <_>
+
+ <_>
+ 7 4 2 18 -1.
+ <_>
+ 7 13 2 9 2.
+ <_>
+
+ <_>
+ 7 11 10 8 -1.
+ <_>
+ 12 11 5 4 2.
+ <_>
+ 7 15 5 4 2.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 2 9 16 8 -1.
+ <_>
+ 2 9 8 4 2.
+ <_>
+ 10 13 8 4 2.
+ <_>
+
+ <_>
+ 14 15 6 9 -1.
+ <_>
+ 14 18 6 3 3.
+ <_>
+
+ <_>
+ 8 7 6 9 -1.
+ <_>
+ 10 7 2 9 3.
+ <_>
+
+ <_>
+ 14 15 6 9 -1.
+ <_>
+ 14 18 6 3 3.
+ <_>
+
+ <_>
+ 3 12 12 6 -1.
+ <_>
+ 3 14 12 2 3.
+ <_>
+
+ <_>
+ 14 12 9 6 -1.
+ <_>
+ 14 14 9 2 3.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 1 14 9 2 3.
+ <_>
+
+ <_>
+ 3 7 18 3 -1.
+ <_>
+ 3 8 18 1 3.
+ <_>
+
+ <_>
+ 1 7 22 6 -1.
+ <_>
+ 1 9 22 2 3.
+ <_>
+
+ <_>
+ 18 4 6 6 -1.
+ <_>
+ 18 7 6 3 2.
+ <_>
+
+ <_>
+ 0 4 6 6 -1.
+ <_>
+ 0 7 6 3 2.
+ <_>
+
+ <_>
+ 5 11 16 6 -1.
+ <_>
+ 5 14 16 3 2.
+ <_>
+
+ <_>
+ 6 16 9 4 -1.
+ <_>
+ 6 18 9 2 2.
+ <_>
+
+ <_>
+ 14 15 6 9 -1.
+ <_>
+ 14 18 6 3 3.
+ <_>
+
+ <_>
+ 4 15 6 9 -1.
+ <_>
+ 4 18 6 3 3.
+ <_>
+
+ <_>
+ 15 1 6 23 -1.
+ <_>
+ 17 1 2 23 3.
+ <_>
+
+ <_>
+ 0 21 24 3 -1.
+ <_>
+ 8 21 8 3 3.
+ <_>
+
+ <_>
+ 0 20 24 4 -1.
+ <_>
+ 8 20 8 4 3.
+ <_>
+
+ <_>
+ 3 1 6 23 -1.
+ <_>
+ 5 1 2 23 3.
+ <_>
+
+ <_>
+ 3 17 18 3 -1.
+ <_>
+ 3 18 18 1 3.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 1 16 22 4 -1.
+ <_>
+ 12 16 11 2 2.
+ <_>
+ 1 18 11 2 2.
+ <_>
+
+ <_>
+ 0 16 9 6 -1.
+ <_>
+ 0 18 9 2 3.
+ <_>
+
+ <_>
+ 2 10 21 3 -1.
+ <_>
+ 9 10 7 3 3.
+ <_>
+
+ <_>
+ 2 18 12 6 -1.
+ <_>
+ 2 18 6 3 2.
+ <_>
+ 8 21 6 3 2.
+ <_>
+
+ <_>
+ 0 5 24 4 -1.
+ <_>
+ 0 7 24 2 2.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 10 7 6 12 -1.
+ <_>
+ 10 13 6 6 2.
+ <_>
+
+ <_>
+ 6 6 6 9 -1.
+ <_>
+ 8 6 2 9 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 9 7 6 9 -1.
+ <_>
+ 11 7 2 9 3.
+ <_>
+
+ <_>
+ 2 1 20 3 -1.
+ <_>
+ 2 2 20 1 3.
+ <_>
+
+ <_>
+ 1 18 12 6 -1.
+ <_>
+ 1 18 6 3 2.
+ <_>
+ 7 21 6 3 2.
+ <_>
+
+ <_>
+ 13 2 4 13 -1.
+ <_>
+ 13 2 2 13 2.
+ <_>
+
+ <_>
+ 6 7 12 4 -1.
+ <_>
+ 12 7 6 4 2.
+ <_>
+
+ <_>
+ 10 1 4 13 -1.
+ <_>
+ 10 1 2 13 2.
+ <_>
+
+ <_>
+ 6 0 3 18 -1.
+ <_>
+ 7 0 1 18 3.
+ <_>
+
+ <_>
+ 14 3 10 5 -1.
+ <_>
+ 14 3 5 5 2.
+ <_>
+
+ <_>
+ 6 15 12 8 -1.
+ <_>
+ 10 15 4 8 3.
+ <_>
+
+ <_>
+ 9 10 6 9 -1.
+ <_>
+ 11 10 2 9 3.
+ <_>
+
+ <_>
+ 8 3 4 9 -1.
+ <_>
+ 10 3 2 9 2.
+ <_>
+
+ <_>
+ 17 0 6 14 -1.
+ <_>
+ 20 0 3 7 2.
+ <_>
+ 17 7 3 7 2.
+ <_>
+
+ <_>
+ 1 0 6 14 -1.
+ <_>
+ 1 0 3 7 2.
+ <_>
+ 4 7 3 7 2.
+ <_>
+
+ <_>
+ 14 0 6 16 -1.
+ <_>
+ 17 0 3 8 2.
+ <_>
+ 14 8 3 8 2.
+ <_>
+
+ <_>
+ 7 4 4 10 -1.
+ <_>
+ 9 4 2 10 2.
+ <_>
+
+ <_>
+ 3 17 18 6 -1.
+ <_>
+ 12 17 9 3 2.
+ <_>
+ 3 20 9 3 2.
+ <_>
+
+ <_>
+ 1 20 22 4 -1.
+ <_>
+ 12 20 11 4 2.
+ <_>
+
+ <_>
+ 14 3 10 5 -1.
+ <_>
+ 14 3 5 5 2.
+ <_>
+
+ <_>
+ 0 3 10 5 -1.
+ <_>
+ 5 3 5 5 2.
+ <_>
+
+ <_>
+ 12 6 12 16 -1.
+ <_>
+ 16 6 4 16 3.
+ <_>
+
+ <_>
+ 0 6 12 16 -1.
+ <_>
+ 4 6 4 16 3.
+ <_>
+
+ <_>
+ 10 9 5 15 -1.
+ <_>
+ 10 14 5 5 3.
+ <_>
+
+ <_>
+ 1 18 21 2 -1.
+ <_>
+ 1 19 21 1 2.
+ <_>
+
+ <_>
+ 15 0 9 6 -1.
+ <_>
+ 15 2 9 2 3.
+ <_>
+
+ <_>
+ 6 1 12 4 -1.
+ <_>
+ 12 1 6 4 2.
+ <_>
+
+ <_>
+ 6 0 12 12 -1.
+ <_>
+ 12 0 6 6 2.
+ <_>
+ 6 6 6 6 2.
+ <_>
+
+ <_>
+ 8 10 8 12 -1.
+ <_>
+ 8 10 4 6 2.
+ <_>
+ 12 16 4 6 2.
+ <_>
+
+ <_>
+ 14 16 10 8 -1.
+ <_>
+ 19 16 5 4 2.
+ <_>
+ 14 20 5 4 2.
+ <_>
+
+ <_>
+ 0 16 10 8 -1.
+ <_>
+ 0 16 5 4 2.
+ <_>
+ 5 20 5 4 2.
+ <_>
+
+ <_>
+ 10 12 12 5 -1.
+ <_>
+ 14 12 4 5 3.
+ <_>
+
+ <_>
+ 6 16 10 8 -1.
+ <_>
+ 6 16 5 4 2.
+ <_>
+ 11 20 5 4 2.
+ <_>
+
+ <_>
+ 7 6 12 6 -1.
+ <_>
+ 13 6 6 3 2.
+ <_>
+ 7 9 6 3 2.
+ <_>
+
+ <_>
+ 9 6 4 18 -1.
+ <_>
+ 9 6 2 9 2.
+ <_>
+ 11 15 2 9 2.
+ <_>
+
+ <_>
+ 10 9 6 14 -1.
+ <_>
+ 13 9 3 7 2.
+ <_>
+ 10 16 3 7 2.
+ <_>
+
+ <_>
+ 8 9 6 14 -1.
+ <_>
+ 8 9 3 7 2.
+ <_>
+ 11 16 3 7 2.
+ <_>
+
+ <_>
+ 7 4 11 12 -1.
+ <_>
+ 7 10 11 6 2.
+ <_>
+
+ <_>
+ 4 8 6 16 -1.
+ <_>
+ 4 8 3 8 2.
+ <_>
+ 7 16 3 8 2.
+ <_>
+
+ <_>
+ 17 3 4 21 -1.
+ <_>
+ 17 10 4 7 3.
+ <_>
+
+ <_>
+ 3 3 4 21 -1.
+ <_>
+ 3 10 4 7 3.
+ <_>
+
+ <_>
+ 10 1 8 18 -1.
+ <_>
+ 14 1 4 9 2.
+ <_>
+ 10 10 4 9 2.
+ <_>
+
+ <_>
+ 2 5 16 8 -1.
+ <_>
+ 2 5 8 4 2.
+ <_>
+ 10 9 8 4 2.
+ <_>
+
+ <_>
+ 3 6 18 12 -1.
+ <_>
+ 3 10 18 4 3.
+ <_>
+
+ <_>
+ 4 10 16 12 -1.
+ <_>
+ 4 14 16 4 3.
+ <_>
+
+ <_>
+ 15 4 8 20 -1.
+ <_>
+ 19 4 4 10 2.
+ <_>
+ 15 14 4 10 2.
+ <_>
+
+ <_>
+ 7 2 9 6 -1.
+ <_>
+ 10 2 3 6 3.
+ <_>
+
+ <_>
+ 15 4 8 20 -1.
+ <_>
+ 19 4 4 10 2.
+ <_>
+ 15 14 4 10 2.
+ <_>
+
+ <_>
+ 1 4 8 20 -1.
+ <_>
+ 1 4 4 10 2.
+ <_>
+ 5 14 4 10 2.
+ <_>
+
+ <_>
+ 11 8 8 14 -1.
+ <_>
+ 15 8 4 7 2.
+ <_>
+ 11 15 4 7 2.
+ <_>
+
+ <_>
+ 5 8 8 14 -1.
+ <_>
+ 5 8 4 7 2.
+ <_>
+ 9 15 4 7 2.
+ <_>
+
+ <_>
+ 10 13 5 8 -1.
+ <_>
+ 10 17 5 4 2.
+ <_>
+
+ <_>
+ 4 13 7 9 -1.
+ <_>
+ 4 16 7 3 3.
+ <_>
+
+ <_>
+ 0 13 24 10 -1.
+ <_>
+ 0 18 24 5 2.
+ <_>
+
+ <_>
+ 4 2 8 11 -1.
+ <_>
+ 8 2 4 11 2.
+ <_>
+
+ <_>
+ 10 2 8 16 -1.
+ <_>
+ 14 2 4 8 2.
+ <_>
+ 10 10 4 8 2.
+ <_>
+
+ <_>
+ 0 2 24 6 -1.
+ <_>
+ 0 2 12 3 2.
+ <_>
+ 12 5 12 3 2.
+ <_>
+
+ <_>
+ 6 0 12 9 -1.
+ <_>
+ 6 3 12 3 3.
+ <_>
+
+ <_>
+ 1 2 12 12 -1.
+ <_>
+ 1 2 6 6 2.
+ <_>
+ 7 8 6 6 2.
+ <_>
+
+ <_>
+ 18 5 6 9 -1.
+ <_>
+ 18 8 6 3 3.
+ <_>
+
+ <_>
+ 4 3 8 10 -1.
+ <_>
+ 4 3 4 5 2.
+ <_>
+ 8 8 4 5 2.
+ <_>
+
+ <_>
+ 6 21 18 3 -1.
+ <_>
+ 6 22 18 1 3.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 11 18 1 2.
+ <_>
+
+ <_>
+ 1 10 22 3 -1.
+ <_>
+ 1 11 22 1 3.
+ <_>
+
+ <_>
+ 2 8 12 9 -1.
+ <_>
+ 2 11 12 3 3.
+ <_>
+
+ <_>
+ 12 8 12 6 -1.
+ <_>
+ 18 8 6 3 2.
+ <_>
+ 12 11 6 3 2.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+ 6 11 6 3 2.
+ <_>
+
+ <_>
+ 10 15 6 9 -1.
+ <_>
+ 12 15 2 9 3.
+ <_>
+
+ <_>
+ 7 13 9 6 -1.
+ <_>
+ 7 15 9 2 3.
+ <_>
+
+ <_>
+ 9 8 7 12 -1.
+ <_>
+ 9 14 7 6 2.
+ <_>
+
+ <_>
+ 4 13 9 6 -1.
+ <_>
+ 7 13 3 6 3.
+ <_>
+
+ <_>
+ 6 15 18 4 -1.
+ <_>
+ 12 15 6 4 3.
+ <_>
+
+ <_>
+ 5 4 4 16 -1.
+ <_>
+ 7 4 2 16 2.
+ <_>
+
+ <_>
+ 10 15 6 9 -1.
+ <_>
+ 12 15 2 9 3.
+ <_>
+
+ <_>
+ 8 15 6 9 -1.
+ <_>
+ 10 15 2 9 3.
+ <_>
+
+ <_>
+ 9 11 12 10 -1.
+ <_>
+ 15 11 6 5 2.
+ <_>
+ 9 16 6 5 2.
+ <_>
+
+ <_>
+ 3 6 14 6 -1.
+ <_>
+ 3 8 14 2 3.
+ <_>
+
+ <_>
+ 4 2 17 8 -1.
+ <_>
+ 4 6 17 4 2.
+ <_>
+
+ <_>
+ 6 2 12 21 -1.
+ <_>
+ 6 9 12 7 3.
+ <_>
+
+ <_>
+ 8 1 9 9 -1.
+ <_>
+ 8 4 9 3 3.
+ <_>
+
+ <_>
+ 0 7 24 3 -1.
+ <_>
+ 12 7 12 3 2.
+ <_>
+
+ <_>
+ 11 6 9 10 -1.
+ <_>
+ 11 11 9 5 2.
+ <_>
+
+ <_>
+ 2 11 18 3 -1.
+ <_>
+ 2 12 18 1 3.
+ <_>
+
+ <_>
+ 8 16 9 4 -1.
+ <_>
+ 8 18 9 2 2.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 0 2 9 2 3.
+ <_>
+
+ <_>
+ 0 11 24 6 -1.
+ <_>
+ 0 13 24 2 3.
+ <_>
+
+ <_>
+ 2 9 20 6 -1.
+ <_>
+ 2 12 20 3 2.
+ <_>
+
+ <_>
+ 4 5 16 12 -1.
+ <_>
+ 12 5 8 6 2.
+ <_>
+ 4 11 8 6 2.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 7 3 10 4 -1.
+ <_>
+ 7 5 10 2 2.
+ <_>
+
+ <_>
+ 9 15 6 8 -1.
+ <_>
+ 9 19 6 4 2.
+ <_>
+
+ <_>
+ 17 0 7 10 -1.
+ <_>
+ 17 5 7 5 2.
+ <_>
+
+ <_>
+ 0 0 7 10 -1.
+ <_>
+ 0 5 7 5 2.
+ <_>
+
+ <_>
+ 16 1 6 12 -1.
+ <_>
+ 19 1 3 6 2.
+ <_>
+ 16 7 3 6 2.
+ <_>
+
+ <_>
+ 1 0 19 8 -1.
+ <_>
+ 1 4 19 4 2.
+ <_>
+
+ <_>
+ 12 2 9 4 -1.
+ <_>
+ 12 4 9 2 2.
+ <_>
+
+ <_>
+ 3 2 9 4 -1.
+ <_>
+ 3 4 9 2 2.
+ <_>
+
+ <_>
+ 12 2 10 6 -1.
+ <_>
+ 12 4 10 2 3.
+ <_>
+
+ <_>
+ 3 4 18 2 -1.
+ <_>
+ 12 4 9 2 2.
+ <_>
+
+ <_>
+ 12 1 4 9 -1.
+ <_>
+ 12 1 2 9 2.
+ <_>
+
+ <_>
+ 8 1 4 9 -1.
+ <_>
+ 10 1 2 9 2.
+ <_>
+
+ <_>
+ 10 5 8 10 -1.
+ <_>
+ 14 5 4 5 2.
+ <_>
+ 10 10 4 5 2.
+ <_>
+
+ <_>
+ 6 4 12 13 -1.
+ <_>
+ 10 4 4 13 3.
+ <_>
+
+ <_>
+ 13 5 6 6 -1.
+ <_>
+ 13 5 3 6 2.
+ <_>
+
+ <_>
+ 1 5 12 3 -1.
+ <_>
+ 7 5 6 3 2.
+ <_>
+
+ <_>
+ 7 5 10 6 -1.
+ <_>
+ 7 7 10 2 3.
+ <_>
+
+ <_>
+ 2 0 21 5 -1.
+ <_>
+ 9 0 7 5 3.
+ <_>
+
+ <_>
+ 0 8 9 9 -1.
+ <_>
+ 0 11 9 3 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 0 3 6 7 -1.
+ <_>
+ 3 3 3 7 2.
+ <_>
+
+ <_>
+ 9 18 12 6 -1.
+ <_>
+ 15 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 2 8 20 6 -1.
+ <_>
+ 2 8 10 3 2.
+ <_>
+ 12 11 10 3 2.
+ <_>
+
+ <_>
+ 13 2 10 4 -1.
+ <_>
+ 13 4 10 2 2.
+ <_>
+
+ <_>
+ 4 5 5 18 -1.
+ <_>
+ 4 11 5 6 3.
+ <_>
+
+ <_>
+ 20 4 4 9 -1.
+ <_>
+ 20 4 2 9 2.
+ <_>
+
+ <_>
+ 8 6 8 14 -1.
+ <_>
+ 8 13 8 7 2.
+ <_>
+
+ <_>
+ 0 1 24 6 -1.
+ <_>
+ 12 1 12 3 2.
+ <_>
+ 0 4 12 3 2.
+ <_>
+
+ <_>
+ 0 4 4 9 -1.
+ <_>
+ 2 4 2 9 2.
+ <_>
+
+ <_>
+ 3 6 18 3 -1.
+ <_>
+ 3 7 18 1 3.
+ <_>
+
+ <_>
+ 3 17 16 6 -1.
+ <_>
+ 3 19 16 2 3.
+ <_>
+
+ <_>
+ 13 6 6 9 -1.
+ <_>
+ 13 9 6 3 3.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 5 6 7 3 2.
+ <_>
+ 12 9 7 3 2.
+ <_>
+
+ <_>
+ 13 5 8 10 -1.
+ <_>
+ 17 5 4 5 2.
+ <_>
+ 13 10 4 5 2.
+ <_>
+
+ <_>
+ 2 2 20 3 -1.
+ <_>
+ 2 3 20 1 3.
+ <_>
+
+ <_>
+ 9 2 9 6 -1.
+ <_>
+ 12 2 3 6 3.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 12 3 4 11 -1.
+ <_>
+ 12 3 2 11 2.
+ <_>
+
+ <_>
+ 8 3 4 11 -1.
+ <_>
+ 10 3 2 11 2.
+ <_>
+
+ <_>
+ 8 3 8 10 -1.
+ <_>
+ 12 3 4 5 2.
+ <_>
+ 8 8 4 5 2.
+ <_>
+
+ <_>
+ 11 1 2 18 -1.
+ <_>
+ 12 1 1 18 2.
+ <_>
+
+ <_>
+ 9 2 9 6 -1.
+ <_>
+ 12 2 3 6 3.
+ <_>
+
+ <_>
+ 0 2 19 3 -1.
+ <_>
+ 0 3 19 1 3.
+ <_>
+
+ <_>
+ 9 14 9 6 -1.
+ <_>
+ 9 16 9 2 3.
+ <_>
+
+ <_>
+ 1 8 18 5 -1.
+ <_>
+ 7 8 6 5 3.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 13 6 4 15 -1.
+ <_>
+ 13 11 4 5 3.
+ <_>
+
+ <_>
+ 1 5 18 3 -1.
+ <_>
+ 1 6 18 1 3.
+ <_>
+
+ <_>
+ 9 7 14 6 -1.
+ <_>
+ 9 9 14 2 3.
+ <_>
+
+ <_>
+ 2 16 18 3 -1.
+ <_>
+ 2 17 18 1 3.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+ 6 11 6 3 2.
+ <_>
+
+ <_>
+ 9 13 7 8 -1.
+ <_>
+ 9 17 7 4 2.
+ <_>
+
+ <_>
+ 2 17 20 3 -1.
+ <_>
+ 2 18 20 1 3.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 4 0 15 4 -1.
+ <_>
+ 4 2 15 2 2.
+ <_>
+
+ <_>
+ 17 2 6 6 -1.
+ <_>
+ 17 5 6 3 2.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 0 6 6 3 3.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 0 17 9 6 -1.
+ <_>
+ 0 19 9 2 3.
+ <_>
+
+ <_>
+ 9 18 12 6 -1.
+ <_>
+ 15 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 3 15 6 9 -1.
+ <_>
+ 3 18 6 3 3.
+ <_>
+
+ <_>
+ 16 13 8 10 -1.
+ <_>
+ 20 13 4 5 2.
+ <_>
+ 16 18 4 5 2.
+ <_>
+
+ <_>
+ 0 14 24 4 -1.
+ <_>
+ 8 14 8 4 3.
+ <_>
+
+ <_>
+ 13 18 6 6 -1.
+ <_>
+ 13 18 3 6 2.
+ <_>
+
+ <_>
+ 0 13 8 10 -1.
+ <_>
+ 0 13 4 5 2.
+ <_>
+ 4 18 4 5 2.
+ <_>
+
+ <_>
+ 0 14 24 6 -1.
+ <_>
+ 0 17 24 3 2.
+ <_>
+
+ <_>
+ 5 2 12 8 -1.
+ <_>
+ 5 2 6 4 2.
+ <_>
+ 11 6 6 4 2.
+ <_>
+
+ <_>
+ 8 9 9 6 -1.
+ <_>
+ 11 9 3 6 3.
+ <_>
+
+ <_>
+ 4 3 16 4 -1.
+ <_>
+ 4 5 16 2 2.
+ <_>
+
+ <_>
+ 10 2 4 10 -1.
+ <_>
+ 10 7 4 5 2.
+ <_>
+
+ <_>
+ 8 4 5 8 -1.
+ <_>
+ 8 8 5 4 2.
+ <_>
+
+ <_>
+ 11 5 9 12 -1.
+ <_>
+ 11 9 9 4 3.
+ <_>
+
+ <_>
+ 4 5 9 12 -1.
+ <_>
+ 4 9 9 4 3.
+ <_>
+
+ <_>
+ 14 6 6 9 -1.
+ <_>
+ 14 9 6 3 3.
+ <_>
+
+ <_>
+ 2 4 20 12 -1.
+ <_>
+ 2 8 20 4 3.
+ <_>
+
+ <_>
+ 4 4 17 16 -1.
+ <_>
+ 4 12 17 8 2.
+ <_>
+
+ <_>
+ 8 7 7 6 -1.
+ <_>
+ 8 10 7 3 2.
+ <_>
+
+ <_>
+ 1 9 23 2 -1.
+ <_>
+ 1 10 23 1 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 13 3 4 9 -1.
+ <_>
+ 13 3 2 9 2.
+ <_>
+
+ <_>
+ 8 1 6 13 -1.
+ <_>
+ 10 1 2 13 3.
+ <_>
+
+ <_>
+ 4 22 18 2 -1.
+ <_>
+ 4 23 18 1 2.
+ <_>
+
+ <_>
+ 3 10 9 6 -1.
+ <_>
+ 6 10 3 6 3.
+ <_>
+
+ <_>
+ 14 0 2 24 -1.
+ <_>
+ 14 0 1 24 2.
+ <_>
+
+ <_>
+ 8 0 2 24 -1.
+ <_>
+ 9 0 1 24 2.
+ <_>
+
+ <_>
+ 3 2 18 10 -1.
+ <_>
+ 9 2 6 10 3.
+ <_>
+
+ <_>
+ 4 13 15 6 -1.
+ <_>
+ 9 13 5 6 3.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 9 21 6 3 3.
+ <_>
+
+ <_>
+ 9 1 4 11 -1.
+ <_>
+ 11 1 2 11 2.
+ <_>
+
+ <_>
+ 9 7 10 4 -1.
+ <_>
+ 9 7 5 4 2.
+ <_>
+
+ <_>
+ 7 0 10 18 -1.
+ <_>
+ 12 0 5 18 2.
+ <_>
+
+ <_>
+ 12 1 6 16 -1.
+ <_>
+ 14 1 2 16 3.
+ <_>
+
+ <_>
+ 6 1 6 16 -1.
+ <_>
+ 8 1 2 16 3.
+ <_>
+
+ <_>
+ 18 2 6 6 -1.
+ <_>
+ 18 5 6 3 2.
+ <_>
+
+ <_>
+ 3 5 18 2 -1.
+ <_>
+ 3 6 18 1 2.
+ <_>
+
+ <_>
+ 18 2 6 6 -1.
+ <_>
+ 18 5 6 3 2.
+ <_>
+
+ <_>
+ 0 2 6 6 -1.
+ <_>
+ 0 5 6 3 2.
+ <_>
+
+ <_>
+ 13 11 11 6 -1.
+ <_>
+ 13 13 11 2 3.
+ <_>
+
+ <_>
+ 5 7 10 4 -1.
+ <_>
+ 10 7 5 4 2.
+ <_>
+
+ <_>
+ 11 9 10 7 -1.
+ <_>
+ 11 9 5 7 2.
+ <_>
+
+ <_>
+ 3 9 10 7 -1.
+ <_>
+ 8 9 5 7 2.
+ <_>
+
+ <_>
+ 16 4 6 6 -1.
+ <_>
+ 16 4 3 6 2.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 5 6 5 4 2.
+ <_>
+ 10 10 5 4 2.
+ <_>
+
+ <_>
+ 7 21 16 3 -1.
+ <_>
+ 7 21 8 3 2.
+ <_>
+
+ <_>
+ 1 21 16 3 -1.
+ <_>
+ 9 21 8 3 2.
+ <_>
+
+ <_>
+ 2 5 22 14 -1.
+ <_>
+ 13 5 11 7 2.
+ <_>
+ 2 12 11 7 2.
+ <_>
+
+ <_>
+ 3 10 8 10 -1.
+ <_>
+ 3 10 4 5 2.
+ <_>
+ 7 15 4 5 2.
+ <_>
+
+ <_>
+ 17 0 6 12 -1.
+ <_>
+ 20 0 3 6 2.
+ <_>
+ 17 6 3 6 2.
+ <_>
+
+ <_>
+ 5 2 6 18 -1.
+ <_>
+ 7 2 2 18 3.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 15 0 2 9 3.
+ <_>
+
+ <_>
+ 0 12 7 9 -1.
+ <_>
+ 0 15 7 3 3.
+ <_>
+
+ <_>
+ 15 13 8 10 -1.
+ <_>
+ 19 13 4 5 2.
+ <_>
+ 15 18 4 5 2.
+ <_>
+
+ <_>
+ 1 0 6 12 -1.
+ <_>
+ 1 0 3 6 2.
+ <_>
+ 4 6 3 6 2.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 1 13 8 10 -1.
+ <_>
+ 1 13 4 5 2.
+ <_>
+ 5 18 4 5 2.
+ <_>
+
+ <_>
+ 3 21 19 2 -1.
+ <_>
+ 3 22 19 1 2.
+ <_>
+
+ <_>
+ 6 3 4 13 -1.
+ <_>
+ 8 3 2 13 2.
+ <_>
+
+ <_>
+ 5 10 18 3 -1.
+ <_>
+ 5 11 18 1 3.
+ <_>
+
+ <_>
+ 9 3 5 12 -1.
+ <_>
+ 9 7 5 4 3.
+ <_>
+
+ <_>
+ 11 2 4 15 -1.
+ <_>
+ 11 7 4 5 3.
+ <_>
+
+ <_>
+ 4 1 16 4 -1.
+ <_>
+ 4 3 16 2 2.
+ <_>
+
+ <_>
+ 6 0 18 3 -1.
+ <_>
+ 6 1 18 1 3.
+ <_>
+
+ <_>
+ 5 1 10 8 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+ 10 5 5 4 2.
+ <_>
+
+ <_>
+ 11 18 12 6 -1.
+ <_>
+ 17 18 6 3 2.
+ <_>
+ 11 21 6 3 2.
+ <_>
+
+ <_>
+ 5 15 12 3 -1.
+ <_>
+ 11 15 6 3 2.
+ <_>
+
+ <_>
+ 1 10 22 4 -1.
+ <_>
+ 1 10 11 4 2.
+ <_>
+
+ <_>
+ 7 9 9 6 -1.
+ <_>
+ 10 9 3 6 3.
+ <_>
+
+ <_>
+ 6 11 12 5 -1.
+ <_>
+ 10 11 4 5 3.
+ <_>
+
+ <_>
+ 6 7 10 7 -1.
+ <_>
+ 11 7 5 7 2.
+ <_>
+
+ <_>
+ 11 2 8 10 -1.
+ <_>
+ 11 2 4 10 2.
+ <_>
+
+ <_>
+ 5 2 8 10 -1.
+ <_>
+ 9 2 4 10 2.
+ <_>
+
+ <_>
+ 6 4 18 6 -1.
+ <_>
+ 15 4 9 3 2.
+ <_>
+ 6 7 9 3 2.
+ <_>
+
+ <_>
+ 0 5 10 9 -1.
+ <_>
+ 0 8 10 3 3.
+ <_>
+
+ <_>
+ 2 7 21 6 -1.
+ <_>
+ 2 9 21 2 3.
+ <_>
+
+ <_>
+ 0 4 22 16 -1.
+ <_>
+ 0 4 11 8 2.
+ <_>
+ 11 12 11 8 2.
+ <_>
+
+ <_>
+ 9 0 6 22 -1.
+ <_>
+ 9 11 6 11 2.
+ <_>
+
+ <_>
+ 9 1 3 12 -1.
+ <_>
+ 9 7 3 6 2.
+ <_>
+
+ <_>
+ 12 0 12 18 -1.
+ <_>
+ 18 0 6 9 2.
+ <_>
+ 12 9 6 9 2.
+ <_>
+
+ <_>
+ 0 0 12 18 -1.
+ <_>
+ 0 0 6 9 2.
+ <_>
+ 6 9 6 9 2.
+ <_>
+
+ <_>
+ 1 1 22 4 -1.
+ <_>
+ 12 1 11 2 2.
+ <_>
+ 1 3 11 2 2.
+ <_>
+
+ <_>
+ 3 0 18 4 -1.
+ <_>
+ 3 2 18 2 2.
+ <_>
+
+ <_>
+ 2 5 22 6 -1.
+ <_>
+ 2 7 22 2 3.
+ <_>
+
+ <_>
+ 5 0 6 9 -1.
+ <_>
+ 5 3 6 3 3.
+ <_>
+
+ <_>
+ 10 14 6 9 -1.
+ <_>
+ 12 14 2 9 3.
+ <_>
+
+ <_>
+ 8 14 6 9 -1.
+ <_>
+ 10 14 2 9 3.
+ <_>
+
+ <_>
+ 5 18 18 3 -1.
+ <_>
+ 5 19 18 1 3.
+ <_>
+
+ <_>
+ 6 0 6 13 -1.
+ <_>
+ 9 0 3 13 2.
+ <_>
+
+ <_>
+ 7 4 12 4 -1.
+ <_>
+ 7 4 6 4 2.
+ <_>
+
+ <_>
+ 5 2 12 6 -1.
+ <_>
+ 9 2 4 6 3.
+ <_>
+
+ <_>
+ 4 1 18 3 -1.
+ <_>
+ 4 2 18 1 3.
+ <_>
+
+ <_>
+ 0 8 6 12 -1.
+ <_>
+ 0 12 6 4 3.
+ <_>
+
+ <_>
+ 9 15 6 9 -1.
+ <_>
+ 11 15 2 9 3.
+ <_>
+
+ <_>
+ 9 10 6 13 -1.
+ <_>
+ 11 10 2 13 3.
+ <_>
+
+ <_>
+ 6 17 18 2 -1.
+ <_>
+ 6 18 18 1 2.
+ <_>
+
+ <_>
+ 9 4 6 9 -1.
+ <_>
+ 11 4 2 9 3.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 5 6 10 8 -1.
+ <_>
+ 5 6 5 4 2.
+ <_>
+ 10 10 5 4 2.
+ <_>
+
+ <_>
+ 14 9 5 8 -1.
+ <_>
+ 14 13 5 4 2.
+ <_>
+
+ <_>
+ 5 9 5 8 -1.
+ <_>
+ 5 13 5 4 2.
+ <_>
+
+ <_>
+ 14 11 9 6 -1.
+ <_>
+ 14 13 9 2 3.
+ <_>
+
+ <_>
+ 0 2 23 15 -1.
+ <_>
+ 0 7 23 5 3.
+ <_>
+
+ <_>
+ 16 0 8 12 -1.
+ <_>
+ 16 6 8 6 2.
+ <_>
+
+ <_>
+ 4 15 6 9 -1.
+ <_>
+ 4 18 6 3 3.
+ <_>
+
+ <_>
+ 8 18 9 4 -1.
+ <_>
+ 8 20 9 2 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 13 11 11 6 -1.
+ <_>
+ 13 13 11 2 3.
+ <_>
+
+ <_>
+ 0 11 11 6 -1.
+ <_>
+ 0 13 11 2 3.
+ <_>
+
+ <_>
+ 0 9 24 6 -1.
+ <_>
+ 12 9 12 3 2.
+ <_>
+ 0 12 12 3 2.
+ <_>
+
+ <_>
+ 6 16 8 8 -1.
+ <_>
+ 6 20 8 4 2.
+ <_>
+
+ <_>
+ 10 16 14 6 -1.
+ <_>
+ 10 18 14 2 3.
+ <_>
+
+ <_>
+ 1 1 21 3 -1.
+ <_>
+ 1 2 21 1 3.
+ <_>
+
+ <_>
+ 0 2 24 3 -1.
+ <_>
+ 0 2 12 3 2.
+ <_>
+
+ <_>
+ 2 15 8 5 -1.
+ <_>
+ 6 15 4 5 2.
+ <_>
+
+ <_>
+ 2 11 21 3 -1.
+ <_>
+ 9 11 7 3 3.
+ <_>
+
+ <_>
+ 1 18 12 6 -1.
+ <_>
+ 1 18 6 3 2.
+ <_>
+ 7 21 6 3 2.
+ <_>
+
+ <_>
+ 10 14 4 10 -1.
+ <_>
+ 10 19 4 5 2.
+ <_>
+
+ <_>
+ 7 7 4 10 -1.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 9 8 6 12 -1.
+ <_>
+ 9 12 6 4 3.
+ <_>
+
+ <_>
+ 7 1 9 6 -1.
+ <_>
+ 10 1 3 6 3.
+ <_>
+
+ <_>
+ 3 14 19 2 -1.
+ <_>
+ 3 15 19 1 2.
+ <_>
+
+ <_>
+ 7 7 10 10 -1.
+ <_>
+ 7 7 5 5 2.
+ <_>
+ 12 12 5 5 2.
+ <_>
+
+ <_>
+ 3 12 18 12 -1.
+ <_>
+ 3 12 9 12 2.
+ <_>
+
+ <_>
+ 8 0 6 12 -1.
+ <_>
+ 10 0 2 12 3.
+ <_>
+
+ <_>
+ 3 0 17 9 -1.
+ <_>
+ 3 3 17 3 3.
+ <_>
+
+ <_>
+ 6 0 12 11 -1.
+ <_>
+ 10 0 4 11 3.
+ <_>
+
+ <_>
+ 1 0 6 13 -1.
+ <_>
+ 4 0 3 13 2.
+ <_>
+
+ <_>
+ 5 8 16 6 -1.
+ <_>
+ 5 11 16 3 2.
+ <_>
+
+ <_>
+ 8 8 5 12 -1.
+ <_>
+ 8 14 5 6 2.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 9 21 6 3 3.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 2 0 20 3 -1.
+ <_>
+ 2 1 20 1 3.
+ <_>
+
+ <_>
+ 4 6 15 10 -1.
+ <_>
+ 9 6 5 10 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 7 16 9 6 -1.
+ <_>
+ 7 18 9 2 3.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 17 1 6 16 -1.
+ <_>
+ 19 1 2 16 3.
+ <_>
+
+ <_>
+ 1 1 6 16 -1.
+ <_>
+ 3 1 2 16 3.
+ <_>
+
+ <_>
+ 14 13 6 9 -1.
+ <_>
+ 14 16 6 3 3.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 0 3 6 3 3.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 9 5 3 6 2.
+ <_>
+
+ <_>
+ 3 10 9 6 -1.
+ <_>
+ 6 10 3 6 3.
+ <_>
+
+ <_>
+ 14 7 3 16 -1.
+ <_>
+ 14 15 3 8 2.
+ <_>
+
+ <_>
+ 4 10 14 12 -1.
+ <_>
+ 4 10 7 6 2.
+ <_>
+ 11 16 7 6 2.
+ <_>
+
+ <_>
+ 7 6 12 6 -1.
+ <_>
+ 7 8 12 2 3.
+ <_>
+
+ <_>
+ 7 2 4 20 -1.
+ <_>
+ 9 2 2 20 2.
+ <_>
+
+ <_>
+ 14 13 6 9 -1.
+ <_>
+ 14 16 6 3 3.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+
+ <_>
+ 14 13 6 9 -1.
+ <_>
+ 14 16 6 3 3.
+ <_>
+
+ <_>
+ 5 20 14 4 -1.
+ <_>
+ 5 22 14 2 2.
+ <_>
+
+ <_>
+ 4 4 16 12 -1.
+ <_>
+ 4 10 16 6 2.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 3 0 21 4 -1.
+ <_>
+ 3 2 21 2 2.
+ <_>
+
+ <_>
+ 4 13 6 9 -1.
+ <_>
+ 4 16 6 3 3.
+ <_>
+
+ <_>
+ 16 16 5 8 -1.
+ <_>
+ 16 20 5 4 2.
+ <_>
+
+ <_>
+ 4 0 16 16 -1.
+ <_>
+ 4 0 8 8 2.
+ <_>
+ 12 8 8 8 2.
+ <_>
+
+ <_>
+ 6 6 14 6 -1.
+ <_>
+ 13 6 7 3 2.
+ <_>
+ 6 9 7 3 2.
+ <_>
+
+ <_>
+ 10 5 4 15 -1.
+ <_>
+ 10 10 4 5 3.
+ <_>
+
+ <_>
+ 9 15 12 8 -1.
+ <_>
+ 15 15 6 4 2.
+ <_>
+ 9 19 6 4 2.
+ <_>
+
+ <_>
+ 6 7 12 4 -1.
+ <_>
+ 12 7 6 4 2.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 12 6 7 3 2.
+ <_>
+ 5 9 7 3 2.
+ <_>
+
+ <_>
+ 3 6 18 10 -1.
+ <_>
+ 3 6 9 5 2.
+ <_>
+ 12 11 9 5 2.
+ <_>
+
+ <_>
+ 6 0 18 21 -1.
+ <_>
+ 12 0 6 21 3.
+ <_>
+
+ <_>
+ 0 0 24 21 -1.
+ <_>
+ 8 0 8 21 3.
+ <_>
+
+ <_>
+ 6 18 18 3 -1.
+ <_>
+ 6 19 18 1 3.
+ <_>
+
+ <_>
+ 0 15 9 6 -1.
+ <_>
+ 0 17 9 2 3.
+ <_>
+
+ <_>
+ 4 3 19 2 -1.
+ <_>
+ 4 4 19 1 2.
+ <_>
+
+ <_>
+ 0 3 24 2 -1.
+ <_>
+ 0 4 24 1 2.
+ <_>
+
+ <_>
+ 15 14 9 4 -1.
+ <_>
+ 15 16 9 2 2.
+ <_>
+
+ <_>
+ 0 14 9 4 -1.
+ <_>
+ 0 16 9 2 2.
+ <_>
+
+ <_>
+ 6 15 18 2 -1.
+ <_>
+ 6 16 18 1 2.
+ <_>
+
+ <_>
+ 3 17 18 3 -1.
+ <_>
+ 3 18 18 1 3.
+ <_>
+
+ <_>
+ 12 0 3 23 -1.
+ <_>
+ 13 0 1 23 3.
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 6 3 8 3 2.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 9 0 3 23 -1.
+ <_>
+ 10 0 1 23 3.
+ <_>
+
+ <_>
+ 10 7 4 10 -1.
+ <_>
+ 10 12 4 5 2.
+ <_>
+
+ <_>
+ 7 8 10 12 -1.
+ <_>
+ 7 12 10 4 3.
+ <_>
+
+ <_>
+ 14 9 6 14 -1.
+ <_>
+ 17 9 3 7 2.
+ <_>
+ 14 16 3 7 2.
+ <_>
+
+ <_>
+ 2 0 10 9 -1.
+ <_>
+ 2 3 10 3 3.
+ <_>
+
+ <_>
+ 11 1 5 12 -1.
+ <_>
+ 11 7 5 6 2.
+ <_>
+
+ <_>
+ 1 4 12 10 -1.
+ <_>
+ 1 4 6 5 2.
+ <_>
+ 7 9 6 5 2.
+ <_>
+
+ <_>
+ 15 1 9 4 -1.
+ <_>
+ 15 3 9 2 2.
+ <_>
+
+ <_>
+ 1 2 8 10 -1.
+ <_>
+ 1 2 4 5 2.
+ <_>
+ 5 7 4 5 2.
+ <_>
+
+ <_>
+ 10 1 5 12 -1.
+ <_>
+ 10 5 5 4 3.
+ <_>
+
+ <_>
+ 4 0 14 24 -1.
+ <_>
+ 11 0 7 24 2.
+ <_>
+
+ <_>
+ 7 17 10 4 -1.
+ <_>
+ 7 19 10 2 2.
+ <_>
+
+ <_>
+ 10 14 4 10 -1.
+ <_>
+ 10 19 4 5 2.
+ <_>
+
+ <_>
+ 13 15 6 9 -1.
+ <_>
+ 15 15 2 9 3.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 3 22 18 1 3.
+ <_>
+
+ <_>
+ 13 15 6 9 -1.
+ <_>
+ 15 15 2 9 3.
+ <_>
+
+ <_>
+ 5 15 6 9 -1.
+ <_>
+ 7 15 2 9 3.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+ 10 15 2 9 2.
+ <_>
+
+ <_>
+ 7 3 6 11 -1.
+ <_>
+ 9 3 2 11 3.
+ <_>
+
+ <_>
+ 15 1 9 4 -1.
+ <_>
+ 15 3 9 2 2.
+ <_>
+
+ <_>
+ 5 4 14 8 -1.
+ <_>
+ 5 8 14 4 2.
+ <_>
+
+ <_>
+ 8 1 15 9 -1.
+ <_>
+ 8 4 15 3 3.
+ <_>
+
+ <_>
+ 7 2 8 10 -1.
+ <_>
+ 7 2 4 5 2.
+ <_>
+ 11 7 4 5 2.
+ <_>
+
+ <_>
+ 12 2 6 12 -1.
+ <_>
+ 12 2 3 12 2.
+ <_>
+
+ <_>
+ 6 2 6 12 -1.
+ <_>
+ 9 2 3 12 2.
+ <_>
+
+ <_>
+ 7 7 12 4 -1.
+ <_>
+ 7 7 6 4 2.
+ <_>
+
+ <_>
+ 6 3 12 10 -1.
+ <_>
+ 10 3 4 10 3.
+ <_>
+
+ <_>
+ 5 6 16 6 -1.
+ <_>
+ 13 6 8 3 2.
+ <_>
+ 5 9 8 3 2.
+ <_>
+
+ <_>
+ 3 1 18 9 -1.
+ <_>
+ 9 1 6 9 3.
+ <_>
+
+ <_>
+ 3 8 18 5 -1.
+ <_>
+ 9 8 6 5 3.
+ <_>
+
+ <_>
+ 0 0 24 22 -1.
+ <_>
+ 0 0 12 11 2.
+ <_>
+ 12 11 12 11 2.
+ <_>
+
+ <_>
+ 14 16 9 6 -1.
+ <_>
+ 14 18 9 2 3.
+ <_>
+
+ <_>
+ 0 16 24 8 -1.
+ <_>
+ 0 20 24 4 2.
+ <_>
+
+ <_>
+ 1 19 22 4 -1.
+ <_>
+ 12 19 11 2 2.
+ <_>
+ 1 21 11 2 2.
+ <_>
+
+ <_>
+ 1 16 9 6 -1.
+ <_>
+ 1 18 9 2 3.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 8 5 4 2.
+ <_>
+
+ <_>
+ 9 15 6 9 -1.
+ <_>
+ 11 15 2 9 3.
+ <_>
+
+ <_>
+ 10 18 12 6 -1.
+ <_>
+ 16 18 6 3 2.
+ <_>
+ 10 21 6 3 2.
+ <_>
+
+ <_>
+ 2 18 12 6 -1.
+ <_>
+ 2 18 6 3 2.
+ <_>
+ 8 21 6 3 2.
+ <_>
+
+ <_>
+ 8 3 16 9 -1.
+ <_>
+ 8 6 16 3 3.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 5 5 18 3 -1.
+ <_>
+ 5 6 18 1 3.
+ <_>
+
+ <_>
+ 2 6 9 6 -1.
+ <_>
+ 2 9 9 3 2.
+ <_>
+
+ <_>
+ 14 2 10 9 -1.
+ <_>
+ 14 5 10 3 3.
+ <_>
+
+ <_>
+ 3 6 18 3 -1.
+ <_>
+ 3 7 18 1 3.
+ <_>
+
+ <_>
+ 9 2 15 6 -1.
+ <_>
+ 9 4 15 2 3.
+ <_>
+
+ <_>
+ 4 8 15 6 -1.
+ <_>
+ 4 10 15 2 3.
+ <_>
+
+ <_>
+ 0 5 24 4 -1.
+ <_>
+ 12 5 12 2 2.
+ <_>
+ 0 7 12 2 2.
+ <_>
+
+ <_>
+ 7 8 6 12 -1.
+ <_>
+ 9 8 2 12 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 0 12 6 12 -1.
+ <_>
+ 0 12 3 6 2.
+ <_>
+ 3 18 3 6 2.
+ <_>
+
+ <_>
+ 14 12 10 6 -1.
+ <_>
+ 14 14 10 2 3.
+ <_>
+
+ <_>
+ 2 7 18 9 -1.
+ <_>
+ 2 10 18 3 3.
+ <_>
+
+ <_>
+ 11 14 10 9 -1.
+ <_>
+ 11 17 10 3 3.
+ <_>
+
+ <_>
+ 7 6 10 8 -1.
+ <_>
+ 7 6 5 4 2.
+ <_>
+ 12 10 5 4 2.
+ <_>
+
+ <_>
+ 6 6 14 6 -1.
+ <_>
+ 13 6 7 3 2.
+ <_>
+ 6 9 7 3 2.
+ <_>
+
+ <_>
+ 4 13 9 7 -1.
+ <_>
+ 7 13 3 7 3.
+ <_>
+
+ <_>
+ 14 10 6 12 -1.
+ <_>
+ 17 10 3 6 2.
+ <_>
+ 14 16 3 6 2.
+ <_>
+
+ <_>
+ 4 10 6 12 -1.
+ <_>
+ 4 10 3 6 2.
+ <_>
+ 7 16 3 6 2.
+ <_>
+
+ <_>
+ 13 9 8 6 -1.
+ <_>
+ 13 9 4 6 2.
+ <_>
+
+ <_>
+ 8 3 4 14 -1.
+ <_>
+ 10 3 2 14 2.
+ <_>
+
+ <_>
+ 17 0 3 18 -1.
+ <_>
+ 18 0 1 18 3.
+ <_>
+
+ <_>
+ 4 12 16 12 -1.
+ <_>
+ 12 12 8 12 2.
+ <_>
+
+ <_>
+ 15 0 6 14 -1.
+ <_>
+ 17 0 2 14 3.
+ <_>
+
+ <_>
+ 3 0 6 14 -1.
+ <_>
+ 5 0 2 14 3.
+ <_>
+
+ <_>
+ 12 2 12 20 -1.
+ <_>
+ 16 2 4 20 3.
+ <_>
+
+ <_>
+ 0 2 12 20 -1.
+ <_>
+ 4 2 4 20 3.
+ <_>
+
+ <_>
+ 16 0 6 17 -1.
+ <_>
+ 18 0 2 17 3.
+ <_>
+
+ <_>
+ 2 0 6 17 -1.
+ <_>
+ 4 0 2 17 3.
+ <_>
+
+ <_>
+ 15 6 9 6 -1.
+ <_>
+ 15 8 9 2 3.
+ <_>
+
+ <_>
+ 0 6 9 6 -1.
+ <_>
+ 0 8 9 2 3.
+ <_>
+
+ <_>
+ 18 1 6 13 -1.
+ <_>
+ 20 1 2 13 3.
+ <_>
+
+ <_>
+ 0 1 6 13 -1.
+ <_>
+ 2 1 2 13 3.
+ <_>
+
+ <_>
+ 16 0 4 9 -1.
+ <_>
+ 16 0 2 9 2.
+ <_>
+
+ <_>
+ 5 10 12 7 -1.
+ <_>
+ 9 10 4 7 3.
+ <_>
+
+ <_>
+ 12 9 12 6 -1.
+ <_>
+ 12 11 12 2 3.
+ <_>
+
+ <_>
+ 0 9 12 6 -1.
+ <_>
+ 0 11 12 2 3.
+ <_>
+
+ <_>
+ 5 7 14 9 -1.
+ <_>
+ 5 10 14 3 3.
+ <_>
+
+ <_>
+ 0 15 20 3 -1.
+ <_>
+ 0 16 20 1 3.
+ <_>
+
+ <_>
+ 8 10 8 10 -1.
+ <_>
+ 12 10 4 5 2.
+ <_>
+ 8 15 4 5 2.
+ <_>
+
+ <_>
+ 5 4 13 9 -1.
+ <_>
+ 5 7 13 3 3.
+ <_>
+
+ <_>
+ 10 2 6 18 -1.
+ <_>
+ 10 8 6 6 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 6 9 12 4 -1.
+ <_>
+ 6 11 12 2 2.
+ <_>
+
+ <_>
+ 3 2 15 12 -1.
+ <_>
+ 3 6 15 4 3.
+ <_>
+
+ <_>
+ 12 0 12 5 -1.
+ <_>
+ 16 0 4 5 3.
+ <_>
+
+ <_>
+ 0 15 18 3 -1.
+ <_>
+ 6 15 6 3 3.
+ <_>
+
+ <_>
+ 0 14 24 5 -1.
+ <_>
+ 8 14 8 5 3.
+ <_>
+
+ <_>
+ 5 1 3 18 -1.
+ <_>
+ 6 1 1 18 3.
+ <_>
+
+ <_>
+ 10 0 4 14 -1.
+ <_>
+ 10 0 2 14 2.
+ <_>
+
+ <_>
+ 9 3 4 9 -1.
+ <_>
+ 11 3 2 9 2.
+ <_>
+
+ <_>
+ 8 2 12 6 -1.
+ <_>
+ 14 2 6 3 2.
+ <_>
+ 8 5 6 3 2.
+ <_>
+
+ <_>
+ 0 4 17 4 -1.
+ <_>
+ 0 6 17 2 2.
+ <_>
+
+ <_>
+ 16 16 5 8 -1.
+ <_>
+ 16 20 5 4 2.
+ <_>
+
+ <_>
+ 3 16 5 8 -1.
+ <_>
+ 3 20 5 4 2.
+ <_>
+
+ <_>
+ 6 18 18 2 -1.
+ <_>
+ 6 19 18 1 2.
+ <_>
+
+ <_>
+ 0 0 12 5 -1.
+ <_>
+ 4 0 4 5 3.
+ <_>
+
+ <_>
+ 14 3 6 12 -1.
+ <_>
+ 17 3 3 6 2.
+ <_>
+ 14 9 3 6 2.
+ <_>
+
+ <_>
+ 0 12 6 12 -1.
+ <_>
+ 2 12 2 12 3.
+ <_>
+
+ <_>
+ 2 3 21 3 -1.
+ <_>
+ 2 4 21 1 3.
+ <_>
+
+ <_>
+ 4 3 6 12 -1.
+ <_>
+ 4 3 3 6 2.
+ <_>
+ 7 9 3 6 2.
+ <_>
+
+ <_>
+ 12 8 12 6 -1.
+ <_>
+ 18 8 6 3 2.
+ <_>
+ 12 11 6 3 2.
+ <_>
+
+ <_>
+ 0 15 16 9 -1.
+ <_>
+ 8 15 8 9 2.
+ <_>
+
+ <_>
+ 6 13 18 5 -1.
+ <_>
+ 6 13 9 5 2.
+ <_>
+
+ <_>
+ 1 6 15 6 -1.
+ <_>
+ 6 6 5 6 3.
+ <_>
+
+ <_>
+ 11 9 9 6 -1.
+ <_>
+ 14 9 3 6 3.
+ <_>
+
+ <_>
+ 3 0 15 11 -1.
+ <_>
+ 8 0 5 11 3.
+ <_>
+
+ <_>
+ 15 3 3 18 -1.
+ <_>
+ 15 9 3 6 3.
+ <_>
+
+ <_>
+ 6 3 3 18 -1.
+ <_>
+ 6 9 3 6 3.
+ <_>
+
+ <_>
+ 9 5 10 8 -1.
+ <_>
+ 14 5 5 4 2.
+ <_>
+ 9 9 5 4 2.
+ <_>
+
+ <_>
+ 4 4 16 8 -1.
+ <_>
+ 4 4 8 4 2.
+ <_>
+ 12 8 8 4 2.
+ <_>
+
+ <_>
+ 7 7 12 3 -1.
+ <_>
+ 7 7 6 3 2.
+ <_>
+
+ <_>
+ 5 0 9 13 -1.
+ <_>
+ 8 0 3 13 3.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 8 1 10 9 -1.
+ <_>
+ 8 4 10 3 3.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 0 3 18 1 2.
+ <_>
+
+ <_>
+ 10 13 14 6 -1.
+ <_>
+ 17 13 7 3 2.
+ <_>
+ 10 16 7 3 2.
+ <_>
+
+ <_>
+ 0 13 14 6 -1.
+ <_>
+ 0 13 7 3 2.
+ <_>
+ 7 16 7 3 2.
+ <_>
+
+ <_>
+ 20 2 3 21 -1.
+ <_>
+ 21 2 1 21 3.
+ <_>
+
+ <_>
+ 0 9 5 12 -1.
+ <_>
+ 0 13 5 4 3.
+ <_>
+
+ <_>
+ 12 6 12 6 -1.
+ <_>
+ 12 8 12 2 3.
+ <_>
+
+ <_>
+ 1 8 20 3 -1.
+ <_>
+ 1 9 20 1 3.
+ <_>
+
+ <_>
+ 5 7 19 3 -1.
+ <_>
+ 5 8 19 1 3.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 1 14 9 2 3.
+ <_>
+
+ <_>
+ 6 10 14 12 -1.
+ <_>
+ 6 14 14 4 3.
+ <_>
+
+ <_>
+ 5 6 14 18 -1.
+ <_>
+ 5 12 14 6 3.
+ <_>
+
+ <_>
+ 11 12 9 7 -1.
+ <_>
+ 14 12 3 7 3.
+ <_>
+
+ <_>
+ 1 15 18 4 -1.
+ <_>
+ 1 17 18 2 2.
+ <_>
+
+ <_>
+ 11 14 6 9 -1.
+ <_>
+ 11 17 6 3 3.
+ <_>
+
+ <_>
+ 0 8 18 4 -1.
+ <_>
+ 0 8 9 2 2.
+ <_>
+ 9 10 9 2 2.
+ <_>
+
+ <_>
+ 3 10 20 6 -1.
+ <_>
+ 13 10 10 3 2.
+ <_>
+ 3 13 10 3 2.
+ <_>
+
+ <_>
+ 1 10 20 6 -1.
+ <_>
+ 1 10 10 3 2.
+ <_>
+ 11 13 10 3 2.
+ <_>
+
+ <_>
+ 0 9 24 2 -1.
+ <_>
+ 0 9 12 2 2.
+ <_>
+
+ <_>
+ 1 12 20 8 -1.
+ <_>
+ 1 12 10 4 2.
+ <_>
+ 11 16 10 4 2.
+ <_>
+
+ <_>
+ 11 12 9 7 -1.
+ <_>
+ 14 12 3 7 3.
+ <_>
+
+ <_>
+ 4 12 9 7 -1.
+ <_>
+ 7 12 3 7 3.
+ <_>
+
+ <_>
+ 12 12 8 5 -1.
+ <_>
+ 12 12 4 5 2.
+ <_>
+
+ <_>
+ 4 12 8 5 -1.
+ <_>
+ 8 12 4 5 2.
+ <_>
+
+ <_>
+ 13 10 4 10 -1.
+ <_>
+ 13 10 2 10 2.
+ <_>
+
+ <_>
+ 1 15 20 2 -1.
+ <_>
+ 11 15 10 2 2.
+ <_>
+
+ <_>
+ 9 10 6 6 -1.
+ <_>
+ 9 10 3 6 2.
+ <_>
+
+ <_>
+ 0 1 21 3 -1.
+ <_>
+ 7 1 7 3 3.
+ <_>
+
+ <_>
+ 6 4 13 9 -1.
+ <_>
+ 6 7 13 3 3.
+ <_>
+
+ <_>
+ 6 5 12 5 -1.
+ <_>
+ 10 5 4 5 3.
+ <_>
+
+ <_>
+ 10 10 10 6 -1.
+ <_>
+ 10 12 10 2 3.
+ <_>
+
+ <_>
+ 6 12 5 8 -1.
+ <_>
+ 6 16 5 4 2.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 15 0 2 9 3.
+ <_>
+
+ <_>
+ 2 10 18 6 -1.
+ <_>
+ 8 10 6 6 3.
+ <_>
+
+ <_>
+ 11 2 9 4 -1.
+ <_>
+ 11 4 9 2 2.
+ <_>
+
+ <_>
+ 1 20 21 3 -1.
+ <_>
+ 8 20 7 3 3.
+ <_>
+
+ <_>
+ 1 10 22 2 -1.
+ <_>
+ 1 11 22 1 2.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 13 0 6 9 -1.
+ <_>
+ 15 0 2 9 3.
+ <_>
+
+ <_>
+ 5 0 6 9 -1.
+ <_>
+ 7 0 2 9 3.
+ <_>
+
+ <_>
+ 18 2 6 20 -1.
+ <_>
+ 20 2 2 20 3.
+ <_>
+
+ <_>
+ 0 2 6 20 -1.
+ <_>
+ 2 2 2 20 3.
+ <_>
+
+ <_>
+ 11 7 6 14 -1.
+ <_>
+ 14 7 3 7 2.
+ <_>
+ 11 14 3 7 2.
+ <_>
+
+ <_>
+ 0 1 4 9 -1.
+ <_>
+ 2 1 2 9 2.
+ <_>
+
+ <_>
+ 12 14 9 4 -1.
+ <_>
+ 12 16 9 2 2.
+ <_>
+
+ <_>
+ 1 13 9 4 -1.
+ <_>
+ 1 15 9 2 2.
+ <_>
+
+ <_>
+ 7 6 15 6 -1.
+ <_>
+ 7 8 15 2 3.
+ <_>
+
+ <_>
+ 8 2 3 18 -1.
+ <_>
+ 8 8 3 6 3.
+ <_>
+
+ <_>
+ 6 6 12 6 -1.
+ <_>
+ 12 6 6 3 2.
+ <_>
+ 6 9 6 3 2.
+ <_>
+
+ <_>
+ 2 19 20 4 -1.
+ <_>
+ 2 19 10 2 2.
+ <_>
+ 12 21 10 2 2.
+ <_>
+
+ <_>
+ 14 15 6 9 -1.
+ <_>
+ 14 18 6 3 3.
+ <_>
+
+ <_>
+ 3 5 18 14 -1.
+ <_>
+ 3 5 9 7 2.
+ <_>
+ 12 12 9 7 2.
+ <_>
+
+ <_>
+ 15 6 4 18 -1.
+ <_>
+ 17 6 2 9 2.
+ <_>
+ 15 15 2 9 2.
+ <_>
+
+ <_>
+ 5 6 4 18 -1.
+ <_>
+ 5 6 2 9 2.
+ <_>
+ 7 15 2 9 2.
+ <_>
+
+ <_>
+ 11 0 6 9 -1.
+ <_>
+ 13 0 2 9 3.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 11 5 6 9 -1.
+ <_>
+ 13 5 2 9 3.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+
+ <_>
+ 4 1 16 6 -1.
+ <_>
+ 12 1 8 3 2.
+ <_>
+ 4 4 8 3 2.
+ <_>
+
+ <_>
+ 9 13 6 11 -1.
+ <_>
+ 11 13 2 11 3.
+ <_>
+
+ <_>
+ 17 1 6 12 -1.
+ <_>
+ 20 1 3 6 2.
+ <_>
+ 17 7 3 6 2.
+ <_>
+
+ <_>
+ 1 17 18 3 -1.
+ <_>
+ 1 18 18 1 3.
+ <_>
+
+ <_>
+ 7 13 10 8 -1.
+ <_>
+ 7 17 10 4 2.
+ <_>
+
+ <_>
+ 6 18 10 6 -1.
+ <_>
+ 6 20 10 2 3.
+ <_>
+
+ <_>
+ 9 14 9 4 -1.
+ <_>
+ 9 16 9 2 2.
+ <_>
+
+ <_>
+ 1 1 6 12 -1.
+ <_>
+ 1 1 3 6 2.
+ <_>
+ 4 7 3 6 2.
+ <_>
+
+ <_>
+ 19 4 5 12 -1.
+ <_>
+ 19 8 5 4 3.
+ <_>
+
+ <_>
+ 0 0 8 8 -1.
+ <_>
+ 4 0 4 8 2.
+ <_>
+
+ <_>
+ 3 5 19 3 -1.
+ <_>
+ 3 6 19 1 3.
+ <_>
+
+ <_>
+ 1 5 12 6 -1.
+ <_>
+ 1 5 6 3 2.
+ <_>
+ 7 8 6 3 2.
+ <_>
+
+ <_>
+ 2 1 21 8 -1.
+ <_>
+ 9 1 7 8 3.
+ <_>
+
+ <_>
+ 4 1 16 8 -1.
+ <_>
+ 4 5 16 4 2.
+ <_>
+
+ <_>
+ 6 0 18 3 -1.
+ <_>
+ 6 1 18 1 3.
+ <_>
+
+ <_>
+ 4 4 10 14 -1.
+ <_>
+ 4 11 10 7 2.
+ <_>
+
+ <_>
+ 15 6 4 10 -1.
+ <_>
+ 15 11 4 5 2.
+ <_>
+
+ <_>
+ 3 18 18 3 -1.
+ <_>
+ 9 18 6 3 3.
+ <_>
+
+ <_>
+ 8 18 12 6 -1.
+ <_>
+ 12 18 4 6 3.
+ <_>
+
+ <_>
+ 3 15 6 9 -1.
+ <_>
+ 6 15 3 9 2.
+ <_>
+
+ <_>
+ 15 7 6 8 -1.
+ <_>
+ 15 11 6 4 2.
+ <_>
+
+ <_>
+ 3 7 6 8 -1.
+ <_>
+ 3 11 6 4 2.
+ <_>
+
+ <_>
+ 5 9 18 6 -1.
+ <_>
+ 14 9 9 3 2.
+ <_>
+ 5 12 9 3 2.
+ <_>
+
+ <_>
+ 1 13 12 6 -1.
+ <_>
+ 1 15 12 2 3.
+ <_>
+
+ <_>
+ 14 15 10 6 -1.
+ <_>
+ 14 17 10 2 3.
+ <_>
+
+ <_>
+ 0 15 10 6 -1.
+ <_>
+ 0 17 10 2 3.
+ <_>
+
+ <_>
+ 15 13 6 9 -1.
+ <_>
+ 15 16 6 3 3.
+ <_>
+
+ <_>
+ 3 13 6 9 -1.
+ <_>
+ 3 16 6 3 3.
+ <_>
+
+ <_>
+ 9 5 8 8 -1.
+ <_>
+ 9 5 4 8 2.
+ <_>
+
+ <_>
+ 1 18 12 6 -1.
+ <_>
+ 1 18 6 3 2.
+ <_>
+ 7 21 6 3 2.
+ <_>
+
+ <_>
+ 13 19 10 4 -1.
+ <_>
+ 13 21 10 2 2.
+ <_>
+
+ <_>
+ 1 19 10 4 -1.
+ <_>
+ 1 21 10 2 2.
+ <_>
+
+ <_>
+ 6 19 18 3 -1.
+ <_>
+ 6 20 18 1 3.
+ <_>
+
+ <_>
+ 8 14 4 10 -1.
+ <_>
+ 8 19 4 5 2.
+ <_>
+
+ <_>
+ 0 0 24 6 -1.
+ <_>
+ 0 2 24 2 3.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 0 4 6 3 3.
+ <_>
+
+ <_>
+ 4 9 20 6 -1.
+ <_>
+ 14 9 10 3 2.
+ <_>
+ 4 12 10 3 2.
+ <_>
+
+ <_>
+ 1 15 19 8 -1.
+ <_>
+ 1 19 19 4 2.
+ <_>
+
+ <_>
+ 14 0 10 6 -1.
+ <_>
+ 14 2 10 2 3.
+ <_>
+
+ <_>
+ 1 10 21 14 -1.
+ <_>
+ 8 10 7 14 3.
+ <_>
+
+ <_>
+ 10 10 8 8 -1.
+ <_>
+ 10 10 4 8 2.
+ <_>
+
+ <_>
+ 6 8 10 4 -1.
+ <_>
+ 11 8 5 4 2.
+ <_>
+
+ <_>
+ 10 5 4 9 -1.
+ <_>
+ 10 5 2 9 2.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 9 5 2 10 3.
+ <_>
+
+ <_>
+ 14 4 4 13 -1.
+ <_>
+ 14 4 2 13 2.
+ <_>
+
+ <_>
+ 6 4 4 13 -1.
+ <_>
+ 8 4 2 13 2.
+ <_>
+
+ <_>
+ 8 7 9 6 -1.
+ <_>
+ 11 7 3 6 3.
+ <_>
+
+ <_>
+ 3 6 16 6 -1.
+ <_>
+ 3 6 8 3 2.
+ <_>
+ 11 9 8 3 2.
+ <_>
+
+ <_>
+ 5 4 16 14 -1.
+ <_>
+ 13 4 8 7 2.
+ <_>
+ 5 11 8 7 2.
+ <_>
+
+ <_>
+ 0 0 24 4 -1.
+ <_>
+ 0 0 12 2 2.
+ <_>
+ 12 2 12 2 2.
+ <_>
+
+ <_>
+ 9 1 9 6 -1.
+ <_>
+ 12 1 3 6 3.
+ <_>
+
+ <_>
+ 4 1 14 4 -1.
+ <_>
+ 11 1 7 4 2.
+ <_>
+
+ <_>
+ 10 14 7 9 -1.
+ <_>
+ 10 17 7 3 3.
+ <_>
+
+ <_>
+ 8 3 8 10 -1.
+ <_>
+ 8 3 4 5 2.
+ <_>
+ 12 8 4 5 2.
+ <_>
+
+ <_>
+ 7 3 12 5 -1.
+ <_>
+ 11 3 4 5 3.
+ <_>
+
+ <_>
+ 8 2 4 13 -1.
+ <_>
+ 10 2 2 13 2.
+ <_>
+
+ <_>
+ 11 2 3 19 -1.
+ <_>
+ 12 2 1 19 3.
+ <_>
+
+ <_>
+ 7 7 9 6 -1.
+ <_>
+ 10 7 3 6 3.
+ <_>
+
+ <_>
+ 4 22 20 2 -1.
+ <_>
+ 4 22 10 2 2.
+ <_>
+
+ <_>
+ 0 16 24 4 -1.
+ <_>
+ 0 16 12 2 2.
+ <_>
+ 12 18 12 2 2.
+ <_>
+
+ <_>
+ 7 3 12 5 -1.
+ <_>
+ 11 3 4 5 3.
+ <_>
+
+ <_>
+ 1 10 8 14 -1.
+ <_>
+ 1 10 4 7 2.
+ <_>
+ 5 17 4 7 2.
+ <_>
+
+ <_>
+ 11 16 6 6 -1.
+ <_>
+ 11 19 6 3 2.
+ <_>
+
+ <_>
+ 6 0 10 24 -1.
+ <_>
+ 6 0 5 12 2.
+ <_>
+ 11 12 5 12 2.
+ <_>
+
+ <_>
+ 7 5 14 14 -1.
+ <_>
+ 14 5 7 7 2.
+ <_>
+ 7 12 7 7 2.
+ <_>
+
+ <_>
+ 7 8 10 8 -1.
+ <_>
+ 7 8 5 4 2.
+ <_>
+ 12 12 5 4 2.
+ <_>
+
+ <_>
+ 9 1 9 6 -1.
+ <_>
+ 12 1 3 6 3.
+ <_>
+
+ <_>
+ 0 6 24 3 -1.
+ <_>
+ 12 6 12 3 2.
+ <_>
+
+ <_>
+ 7 3 12 5 -1.
+ <_>
+ 11 3 4 5 3.
+ <_>
+
+ <_>
+ 1 13 22 4 -1.
+ <_>
+ 1 13 11 2 2.
+ <_>
+ 12 15 11 2 2.
+ <_>
+
+ <_>
+ 9 12 12 6 -1.
+ <_>
+ 9 14 12 2 3.
+ <_>
+
+ <_>
+ 0 5 9 6 -1.
+ <_>
+ 0 7 9 2 3.
+ <_>
+
+ <_>
+ 1 5 23 6 -1.
+ <_>
+ 1 7 23 2 3.
+ <_>
+
+ <_>
+ 1 6 19 12 -1.
+ <_>
+ 1 10 19 4 3.
+ <_>
+
+ <_>
+ 9 1 6 21 -1.
+ <_>
+ 9 8 6 7 3.
+ <_>
+
+ <_>
+ 3 19 18 3 -1.
+ <_>
+ 9 19 6 3 3.
+ <_>
+
+ <_>
+ 9 14 6 9 -1.
+ <_>
+ 11 14 2 9 3.
+ <_>
+
+ <_>
+ 9 6 4 12 -1.
+ <_>
+ 11 6 2 12 2.
+ <_>
+
+ <_>
+ 16 0 6 9 -1.
+ <_>
+ 18 0 2 9 3.
+ <_>
+
+ <_>
+ 2 0 6 9 -1.
+ <_>
+ 4 0 2 9 3.
+ <_>
+
+ <_>
+ 13 1 4 22 -1.
+ <_>
+ 15 1 2 11 2.
+ <_>
+ 13 12 2 11 2.
+ <_>
+
+ <_>
+ 1 8 8 12 -1.
+ <_>
+ 1 14 8 6 2.
+ <_>
+
+ <_>
+ 14 7 7 9 -1.
+ <_>
+ 14 10 7 3 3.
+ <_>
+
+ <_>
+ 3 12 18 4 -1.
+ <_>
+ 3 12 9 2 2.
+ <_>
+ 12 14 9 2 2.
+ <_>
+
+ <_>
+ 13 1 4 22 -1.
+ <_>
+ 15 1 2 11 2.
+ <_>
+ 13 12 2 11 2.
+ <_>
+
+ <_>
+ 7 1 4 22 -1.
+ <_>
+ 7 1 2 11 2.
+ <_>
+ 9 12 2 11 2.
+ <_>
+
+ <_>
+ 4 7 20 4 -1.
+ <_>
+ 14 7 10 2 2.
+ <_>
+ 4 9 10 2 2.
+ <_>
+
+ <_>
+ 9 10 6 7 -1.
+ <_>
+ 12 10 3 7 2.
+ <_>
+
+ <_>
+ 7 7 10 4 -1.
+ <_>
+ 7 7 5 4 2.
+ <_>
+
+ <_>
+ 0 3 4 15 -1.
+ <_>
+ 0 8 4 5 3.
+ <_>
+
+ <_>
+ 15 0 8 12 -1.
+ <_>
+ 19 0 4 6 2.
+ <_>
+ 15 6 4 6 2.
+ <_>
+
+ <_>
+ 1 0 8 12 -1.
+ <_>
+ 1 0 4 6 2.
+ <_>
+ 5 6 4 6 2.
+ <_>
+
+ <_>
+ 14 5 6 16 -1.
+ <_>
+ 16 5 2 16 3.
+ <_>
+
+ <_>
+ 4 5 6 16 -1.
+ <_>
+ 6 5 2 16 3.
+ <_>
+
+ <_>
+ 15 0 6 16 -1.
+ <_>
+ 17 0 2 16 3.
+ <_>
+
+ <_>
+ 3 0 6 16 -1.
+ <_>
+ 5 0 2 16 3.
+ <_>
+
+ <_>
+ 0 2 24 3 -1.
+ <_>
+ 0 3 24 1 3.
+ <_>
+
+ <_>
+ 7 1 10 4 -1.
+ <_>
+ 7 3 10 2 2.
+ <_>
+
+ <_>
+ 1 0 23 8 -1.
+ <_>
+ 1 4 23 4 2.
+ <_>
+
+ <_>
+ 1 17 19 3 -1.
+ <_>
+ 1 18 19 1 3.
+ <_>
+
+ <_>
+ 6 18 18 2 -1.
+ <_>
+ 6 19 18 1 2.
+ <_>
+
+ <_>
+ 1 17 9 6 -1.
+ <_>
+ 1 19 9 2 3.
+ <_>
+
+ <_>
+ 15 15 6 9 -1.
+ <_>
+ 15 18 6 3 3.
+ <_>
+
+ <_>
+ 3 15 6 9 -1.
+ <_>
+ 3 18 6 3 3.
+ <_>
+
+ <_>
+ 4 14 20 6 -1.
+ <_>
+ 4 17 20 3 2.
+ <_>
+
+ <_>
+ 0 10 6 14 -1.
+ <_>
+ 0 10 3 7 2.
+ <_>
+ 3 17 3 7 2.
+ <_>
+
+ <_>
+ 6 18 18 3 -1.
+ <_>
+ 6 19 18 1 3.
+ <_>
+
+ <_>
+ 4 12 9 7 -1.
+ <_>
+ 7 12 3 7 3.
+ <_>
+
+ <_>
+ 6 10 18 5 -1.
+ <_>
+ 12 10 6 5 3.
+ <_>
+
+ <_>
+ 0 10 18 5 -1.
+ <_>
+ 6 10 6 5 3.
+ <_>
+
+ <_>
+ 3 2 18 9 -1.
+ <_>
+ 9 2 6 9 3.
+ <_>
+
+ <_>
+ 4 6 10 10 -1.
+ <_>
+ 4 6 5 5 2.
+ <_>
+ 9 11 5 5 2.
+ <_>
+
+ <_>
+ 20 14 4 9 -1.
+ <_>
+ 20 14 2 9 2.
+ <_>
+
+ <_>
+ 0 14 4 9 -1.
+ <_>
+ 2 14 2 9 2.
+ <_>
+
+ <_>
+ 11 1 4 20 -1.
+ <_>
+ 13 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 6 21 12 3 -1.
+ <_>
+ 12 21 6 3 2.
+ <_>
+
+ <_>
+ 11 1 4 20 -1.
+ <_>
+ 13 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 1 16 10 8 -1.
+ <_>
+ 1 16 5 4 2.
+ <_>
+ 6 20 5 4 2.
+ <_>
+
+ <_>
+ 11 1 4 20 -1.
+ <_>
+ 13 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 1 0 3 19 -1.
+ <_>
+ 2 0 1 19 3.
+ <_>
+
+ <_>
+ 11 1 4 20 -1.
+ <_>
+ 13 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 0 1 6 9 -1.
+ <_>
+ 2 1 2 9 3.
+ <_>
+
+ <_>
+ 3 7 19 4 -1.
+ <_>
+ 3 9 19 2 2.
+ <_>
+
+ <_>
+ 7 14 9 6 -1.
+ <_>
+ 7 16 9 2 3.
+ <_>
+
+ <_>
+ 17 1 7 6 -1.
+ <_>
+ 17 4 7 3 2.
+ <_>
+
+ <_>
+ 5 0 14 8 -1.
+ <_>
+ 5 4 14 4 2.
+ <_>
+
+ <_>
+ 16 1 8 6 -1.
+ <_>
+ 16 4 8 3 2.
+ <_>
+
+ <_>
+ 0 1 8 6 -1.
+ <_>
+ 0 4 8 3 2.
+ <_>
+
+ <_>
+ 6 0 18 4 -1.
+ <_>
+ 15 0 9 2 2.
+ <_>
+ 6 2 9 2 2.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 3 7 18 8 -1.
+ <_>
+ 9 7 6 8 3.
+ <_>
+
+ <_>
+ 2 11 6 9 -1.
+ <_>
+ 4 11 2 9 3.
+ <_>
+
+ <_>
+ 10 5 6 9 -1.
+ <_>
+ 12 5 2 9 3.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 10 6 2 9 2.
+ <_>
+ 12 15 2 9 2.
+ <_>
+
+ <_>
+ 11 1 4 20 -1.
+ <_>
+ 13 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 9 1 4 20 -1.
+ <_>
+ 9 1 2 10 2.
+ <_>
+ 11 11 2 10 2.
+ <_>
+
+ <_>
+ 5 9 18 6 -1.
+ <_>
+ 14 9 9 3 2.
+ <_>
+ 5 12 9 3 2.
+ <_>
+
+ <_>
+ 6 4 6 9 -1.
+ <_>
+ 8 4 2 9 3.
+ <_>
+
+ <_>
+ 10 16 8 6 -1.
+ <_>
+ 10 16 4 6 2.
+ <_>
+
+ <_>
+ 0 0 18 8 -1.
+ <_>
+ 0 0 9 4 2.
+ <_>
+ 9 4 9 4 2.
+ <_>
+
+ <_>
+ 6 5 14 12 -1.
+ <_>
+ 13 5 7 6 2.
+ <_>
+ 6 11 7 6 2.
+ <_>
+
+ <_>
+ 4 3 15 7 -1.
+ <_>
+ 9 3 5 7 3.
+ <_>
+
+ <_>
+ 14 12 10 6 -1.
+ <_>
+ 14 14 10 2 3.
+ <_>
+
+ <_>
+ 0 11 4 10 -1.
+ <_>
+ 0 16 4 5 2.
+ <_>
+
+ <_>
+ 1 10 22 3 -1.
+ <_>
+ 1 11 22 1 3.
+ <_>
+
+ <_>
+ 8 9 6 10 -1.
+ <_>
+ 10 9 2 10 3.
+ <_>
+
+ <_>
+ 13 2 6 12 -1.
+ <_>
+ 16 2 3 6 2.
+ <_>
+ 13 8 3 6 2.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 10 6 2 9 2.
+ <_>
+ 12 15 2 9 2.
+ <_>
+
+ <_>
+ 7 8 10 16 -1.
+ <_>
+ 12 8 5 8 2.
+ <_>
+ 7 16 5 8 2.
+ <_>
+
+ <_>
+ 8 1 8 12 -1.
+ <_>
+ 8 1 4 6 2.
+ <_>
+ 12 7 4 6 2.
+ <_>
+
+ <_>
+ 7 1 12 14 -1.
+ <_>
+ 13 1 6 7 2.
+ <_>
+ 7 8 6 7 2.
+ <_>
+
+ <_>
+ 2 14 12 6 -1.
+ <_>
+ 2 16 12 2 3.
+ <_>
+
+ <_>
+ 11 16 6 6 -1.
+ <_>
+ 11 19 6 3 2.
+ <_>
+
+ <_>
+ 7 16 6 6 -1.
+ <_>
+ 7 19 6 3 2.
+ <_>
+
+ <_>
+ 13 4 4 10 -1.
+ <_>
+ 13 4 2 10 2.
+ <_>
+
+ <_>
+ 0 19 19 3 -1.
+ <_>
+ 0 20 19 1 3.
+ <_>
+
+ <_>
+ 12 8 6 8 -1.
+ <_>
+ 12 12 6 4 2.
+ <_>
+
+ <_>
+ 8 1 8 22 -1.
+ <_>
+ 8 12 8 11 2.
+ <_>
+
+ <_>
+ 12 8 6 8 -1.
+ <_>
+ 12 12 6 4 2.
+ <_>
+
+ <_>
+ 6 8 6 8 -1.
+ <_>
+ 6 12 6 4 2.
+ <_>
+
+ <_>
+ 14 5 6 9 -1.
+ <_>
+ 14 8 6 3 3.
+ <_>
+
+ <_>
+ 0 6 24 4 -1.
+ <_>
+ 0 8 24 2 2.
+ <_>
+
+ <_>
+ 14 12 10 6 -1.
+ <_>
+ 14 14 10 2 3.
+ <_>
+
+ <_>
+ 0 12 10 6 -1.
+ <_>
+ 0 14 10 2 3.
+ <_>
+
+ <_>
+ 4 6 19 3 -1.
+ <_>
+ 4 7 19 1 3.
+ <_>
+
+ <_>
+ 1 6 19 3 -1.
+ <_>
+ 1 7 19 1 3.
+ <_>
+
+ <_>
+ 4 0 16 9 -1.
+ <_>
+ 4 3 16 3 3.
+ <_>
+
+ <_>
+ 0 1 24 5 -1.
+ <_>
+ 8 1 8 5 3.
+ <_>
+
+ <_>
+ 3 6 6 15 -1.
+ <_>
+ 3 11 6 5 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 6 22 18 2 -1.
+ <_>
+ 6 23 18 1 2.
+ <_>
+
+ <_>
+ 2 12 6 9 -1.
+ <_>
+ 2 15 6 3 3.
+ <_>
+
+ <_>
+ 18 12 6 9 -1.
+ <_>
+ 18 15 6 3 3.
+ <_>
+
+ <_>
+ 0 12 6 9 -1.
+ <_>
+ 0 15 6 3 3.
+ <_>
+
+ <_>
+ 11 14 4 10 -1.
+ <_>
+ 11 19 4 5 2.
+ <_>
+
+ <_>
+ 9 6 6 16 -1.
+ <_>
+ 9 14 6 8 2.
+ <_>
+
+ <_>
+ 7 7 10 10 -1.
+ <_>
+ 7 12 10 5 2.
+ <_>
+
+ <_>
+ 1 3 6 13 -1.
+ <_>
+ 3 3 2 13 3.
+ <_>
+
+ <_>
+ 18 1 6 13 -1.
+ <_>
+ 18 1 3 13 2.
+ <_>
+
+ <_>
+ 5 1 6 9 -1.
+ <_>
+ 7 1 2 9 3.
+ <_>
+
+ <_>
+ 18 2 6 11 -1.
+ <_>
+ 18 2 3 11 2.
+ <_>
+
+ <_>
+ 0 2 6 11 -1.
+ <_>
+ 3 2 3 11 2.
+ <_>
+
+ <_>
+ 9 12 15 6 -1.
+ <_>
+ 9 14 15 2 3.
+ <_>
+
+ <_>
+ 2 2 20 3 -1.
+ <_>
+ 2 3 20 1 3.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 10 6 2 9 2.
+ <_>
+
+ <_>
+ 5 6 12 14 -1.
+ <_>
+ 5 6 6 7 2.
+ <_>
+ 11 13 6 7 2.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 7 0 9 6 -1.
+ <_>
+ 10 0 3 6 3.
+ <_>
+
+ <_>
+ 10 6 6 9 -1.
+ <_>
+ 12 6 2 9 3.
+ <_>
+
+ <_>
+ 4 1 12 20 -1.
+ <_>
+ 4 1 6 10 2.
+ <_>
+ 10 11 6 10 2.
+ <_>
+
+ <_>
+ 6 7 18 3 -1.
+ <_>
+ 6 7 9 3 2.
+ <_>
+
+ <_>
+ 0 7 18 3 -1.
+ <_>
+ 9 7 9 3 2.
+ <_>
+
+ <_>
+ 3 20 18 3 -1.
+ <_>
+ 9 20 6 3 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 6 2 12 15 -1.
+ <_>
+ 10 2 4 15 3.
+ <_>
+
+ <_>
+ 2 3 18 3 -1.
+ <_>
+ 2 4 18 1 3.
+ <_>
+
+ <_>
+ 19 4 4 18 -1.
+ <_>
+ 21 4 2 9 2.
+ <_>
+ 19 13 2 9 2.
+ <_>
+
+ <_>
+ 0 1 19 3 -1.
+ <_>
+ 0 2 19 1 3.
+ <_>
+
+ <_>
+ 5 0 15 4 -1.
+ <_>
+ 5 2 15 2 2.
+ <_>
+
+ <_>
+ 5 2 14 5 -1.
+ <_>
+ 12 2 7 5 2.
+ <_>
+
+ <_>
+ 1 2 22 14 -1.
+ <_>
+ 1 2 11 14 2.
+ <_>
+
+ <_>
+ 8 15 6 9 -1.
+ <_>
+ 10 15 2 9 3.
+ <_>
+
+ <_>
+ 6 17 18 3 -1.
+ <_>
+ 6 18 18 1 3.
+ <_>
+
+ <_>
+ 9 6 3 18 -1.
+ <_>
+ 9 12 3 6 3.
+ <_>
+
+ <_>
+ 2 0 20 3 -1.
+ <_>
+ 2 1 20 1 3.
+ <_>
+
+ <_>
+ 5 4 5 12 -1.
+ <_>
+ 5 8 5 4 3.
+ <_>
+
+ <_>
+ 8 6 12 5 -1.
+ <_>
+ 12 6 4 5 3.
+ <_>
+
+ <_>
+ 9 12 6 12 -1.
+ <_>
+ 9 12 3 6 2.
+ <_>
+ 12 18 3 6 2.
+ <_>
+
+ <_>
+ 14 14 8 10 -1.
+ <_>
+ 18 14 4 5 2.
+ <_>
+ 14 19 4 5 2.
+ <_>
+
+ <_>
+ 2 14 8 10 -1.
+ <_>
+ 2 14 4 5 2.
+ <_>
+ 6 19 4 5 2.
+ <_>
+
+ <_>
+ 10 18 12 6 -1.
+ <_>
+ 16 18 6 3 2.
+ <_>
+ 10 21 6 3 2.
+ <_>
+
+ <_>
+ 1 3 6 9 -1.
+ <_>
+ 1 6 6 3 3.
+ <_>
+
+ <_>
+ 11 3 3 20 -1.
+ <_>
+ 12 3 1 20 3.
+ <_>
+
+ <_>
+ 4 6 14 6 -1.
+ <_>
+ 4 6 7 3 2.
+ <_>
+ 11 9 7 3 2.
+ <_>
+
+ <_>
+ 6 5 12 13 -1.
+ <_>
+ 10 5 4 13 3.
+ <_>
+
+ <_>
+ 5 4 4 15 -1.
+ <_>
+ 5 9 4 5 3.
+ <_>
+
+ <_>
+ 9 16 15 4 -1.
+ <_>
+ 14 16 5 4 3.
+ <_>
+
+ <_>
+ 7 8 6 14 -1.
+ <_>
+ 7 8 3 7 2.
+ <_>
+ 10 15 3 7 2.
+ <_>
+
+ <_>
+ 7 6 10 6 -1.
+ <_>
+ 7 8 10 2 3.
+ <_>
+
+ <_>
+ 2 5 18 3 -1.
+ <_>
+ 2 6 18 1 3.
+ <_>
+
+ <_>
+ 5 1 15 8 -1.
+ <_>
+ 5 5 15 4 2.
+ <_>
+
+ <_>
+ 7 1 8 18 -1.
+ <_>
+ 7 10 8 9 2.
+ <_>
+
+ <_>
+ 0 10 24 3 -1.
+ <_>
+ 0 11 24 1 3.
+ <_>
+
+ <_>
+ 0 2 6 13 -1.
+ <_>
+ 2 2 2 13 3.
+ <_>
+
+ <_>
+ 16 0 8 10 -1.
+ <_>
+ 20 0 4 5 2.
+ <_>
+ 16 5 4 5 2.
+ <_>
+
+ <_>
+ 5 1 10 9 -1.
+ <_>
+ 5 4 10 3 3.
+ <_>
+
+ <_>
+ 5 6 18 3 -1.
+ <_>
+ 5 7 18 1 3.
+ <_>
+
+ <_>
+ 0 1 24 3 -1.
+ <_>
+ 0 2 24 1 3.
+ <_>
+
+ <_>
+ 11 4 6 11 -1.
+ <_>
+ 13 4 2 11 3.
+ <_>
+
+ <_>
+ 0 0 8 10 -1.
+ <_>
+ 0 0 4 5 2.
+ <_>
+ 4 5 4 5 2.
+ <_>
+
+ <_>
+ 4 16 18 3 -1.
+ <_>
+ 4 17 18 1 3.
+ <_>
+
+ <_>
+ 2 16 18 3 -1.
+ <_>
+ 2 17 18 1 3.
+ <_>
+
+ <_>
+ 3 0 18 10 -1.
+ <_>
+ 12 0 9 5 2.
+ <_>
+ 3 5 9 5 2.
+ <_>
+
+ <_>
+ 2 3 20 21 -1.
+ <_>
+ 12 3 10 21 2.
+ <_>
+
+ <_>
+ 6 7 14 3 -1.
+ <_>
+ 6 7 7 3 2.
+ <_>
+
+ <_>
+ 0 9 12 6 -1.
+ <_>
+ 0 9 6 3 2.
+ <_>
+ 6 12 6 3 2.
+ <_>
+
+ <_>
+ 3 14 21 4 -1.
+ <_>
+ 10 14 7 4 3.
+ <_>
+
+ <_>
+ 0 14 21 4 -1.
+ <_>
+ 7 14 7 4 3.
+ <_>
+
+ <_>
+ 5 21 18 3 -1.
+ <_>
+ 11 21 6 3 3.
+ <_>
+
+ <_>
+ 1 21 18 3 -1.
+ <_>
+ 7 21 6 3 3.
+ <_>
+
+ <_>
+ 19 4 4 18 -1.
+ <_>
+ 21 4 2 9 2.
+ <_>
+ 19 13 2 9 2.
+ <_>
+
+ <_>
+ 3 7 18 3 -1.
+ <_>
+ 3 8 18 1 3.
+ <_>
+
+ <_>
+ 19 4 4 18 -1.
+ <_>
+ 21 4 2 9 2.
+ <_>
+ 19 13 2 9 2.
+ <_>
+
+ <_>
+ 7 15 10 6 -1.
+ <_>
+ 7 17 10 2 3.
+ <_>
+
+ <_>
+ 9 13 11 9 -1.
+ <_>
+ 9 16 11 3 3.
+ <_>
+
+ <_>
+ 0 6 4 10 -1.
+ <_>
+ 0 11 4 5 2.
+ <_>
+
+ <_>
+ 15 16 9 6 -1.
+ <_>
+ 15 18 9 2 3.
+ <_>
+
+ <_>
+ 1 5 4 18 -1.
+ <_>
+ 1 5 2 9 2.
+ <_>
+ 3 14 2 9 2.
+ <_>
+
+ <_>
+ 9 8 8 10 -1.
+ <_>
+ 13 8 4 5 2.
+ <_>
+ 9 13 4 5 2.
+ <_>
+
+ <_>
+ 7 8 8 10 -1.
+ <_>
+ 7 8 4 5 2.
+ <_>
+ 11 13 4 5 2.
+ <_>
+
+ <_>
+ 9 8 12 5 -1.
+ <_>
+ 13 8 4 5 3.
+ <_>
+
+ <_>
+ 7 8 9 7 -1.
+ <_>
+ 10 8 3 7 3.
+ <_>
+
+ <_>
+ 9 8 12 5 -1.
+ <_>
+ 13 8 4 5 3.
+ <_>
+
+ <_>
+ 7 6 9 7 -1.
+ <_>
+ 10 6 3 7 3.
+ <_>
+
+ <_>
+ 9 8 12 5 -1.
+ <_>
+ 13 8 4 5 3.
+ <_>
+
+ <_>
+ 10 5 4 18 -1.
+ <_>
+ 10 11 4 6 3.
+ <_>
+
+ <_>
+ 5 5 14 12 -1.
+ <_>
+ 5 11 14 6 2.
+ <_>
+
+ <_>
+ 0 1 11 4 -1.
+ <_>
+ 0 3 11 2 2.
+ <_>
+
+ <_>
+ 9 10 6 10 -1.
+ <_>
+ 11 10 2 10 3.
+ <_>
+
+ <_>
+ 2 17 11 6 -1.
+ <_>
+ 2 19 11 2 3.
+ <_>
+
+ <_>
+ 15 16 9 6 -1.
+ <_>
+ 15 18 9 2 3.
+ <_>
+
+ <_>
+ 1 10 18 2 -1.
+ <_>
+ 1 11 18 1 2.
+ <_>
+
+ <_>
+ 6 4 12 13 -1.
+ <_>
+ 10 4 4 13 3.
+ <_>
+
+ <_>
+ 0 18 18 3 -1.
+ <_>
+ 0 19 18 1 3.
+ <_>
+
+ <_>
+ 6 18 18 3 -1.
+ <_>
+ 6 19 18 1 3.
+ <_>
+
+ <_>
+ 0 16 9 6 -1.
+ <_>
+ 0 18 9 2 3.
+ <_>
+
+ <_>
+ 13 15 9 6 -1.
+ <_>
+ 13 17 9 2 3.
+ <_>
+
+ <_>
+ 2 15 9 6 -1.
+ <_>
+ 2 17 9 2 3.
+ <_>
+
+ <_>
+ 13 1 6 16 -1.
+ <_>
+ 13 1 3 16 2.
+ <_>
+
+ <_>
+ 5 1 6 16 -1.
+ <_>
+ 8 1 3 16 2.
+ <_>
+
+ <_>
+ 11 5 6 10 -1.
+ <_>
+ 13 5 2 10 3.
+ <_>
+
+ <_>
+ 7 5 6 10 -1.
+ <_>
+ 9 5 2 10 3.
+ <_>
+
+ <_>
+ 10 0 6 24 -1.
+ <_>
+ 12 0 2 24 3.
+ <_>
+
+ <_>
+ 3 4 4 20 -1.
+ <_>
+ 3 4 2 10 2.
+ <_>
+ 5 14 2 10 2.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 4 5 18 5 -1.
+ <_>
+ 10 5 6 5 3.
+ <_>
+
+ <_>
+ 5 6 6 9 -1.
+ <_>
+ 7 6 2 9 3.
+ <_>
+
+ <_>
+ 7 2 15 8 -1.
+ <_>
+ 12 2 5 8 3.
+ <_>
+
+ <_>
+ 2 2 15 8 -1.
+ <_>
+ 7 2 5 8 3.
+ <_>
+
+ <_>
+ 10 0 4 9 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+
+ <_>
+ 3 4 6 12 -1.
+ <_>
+ 3 4 3 6 2.
+ <_>
+ 6 10 3 6 2.
+ <_>
+
+ <_>
+ 16 0 8 18 -1.
+ <_>
+ 16 0 4 18 2.
+ <_>
+
+ <_>
+ 0 0 8 18 -1.
+ <_>
+ 4 0 4 18 2.
+ <_>
+
+ <_>
+ 0 7 24 6 -1.
+ <_>
+ 0 9 24 2 3.
+ <_>
+
+ <_>
+ 4 7 14 3 -1.
+ <_>
+ 11 7 7 3 2.
+ <_>
+
+ <_>
+ 10 8 8 15 -1.
+ <_>
+ 10 8 4 15 2.
+ <_>
+
+ <_>
+ 7 0 10 14 -1.
+ <_>
+ 12 0 5 14 2.
+ <_>
+
+ <_>
+ 13 10 8 10 -1.
+ <_>
+ 17 10 4 5 2.
+ <_>
+ 13 15 4 5 2.
+ <_>
+
+ <_>
+ 3 0 4 9 -1.
+ <_>
+ 5 0 2 9 2.
+ <_>
+
+ <_>
+ 16 1 6 8 -1.
+ <_>
+ 16 1 3 8 2.
+ <_>
+
+ <_>
+ 2 1 6 8 -1.
+ <_>
+ 5 1 3 8 2.
+ <_>
+
+ <_>
+ 3 6 18 12 -1.
+ <_>
+ 3 10 18 4 3.
+ <_>
+
+ <_>
+ 4 12 16 4 -1.
+ <_>
+ 4 14 16 2 2.
+ <_>
+
+ <_>
+ 4 9 16 15 -1.
+ <_>
+ 4 14 16 5 3.
+ <_>
+
+ <_>
+ 3 10 8 10 -1.
+ <_>
+ 3 10 4 5 2.
+ <_>
+ 7 15 4 5 2.
+ <_>
+
+ <_>
+ 8 18 16 6 -1.
+ <_>
+ 16 18 8 3 2.
+ <_>
+ 8 21 8 3 2.
+ <_>
+
+ <_>
+ 2 16 12 5 -1.
+ <_>
+ 6 16 4 5 3.
+ <_>
+
+ <_>
+ 14 14 9 4 -1.
+ <_>
+ 14 16 9 2 2.
+ <_>
+
+ <_>
+ 7 14 9 6 -1.
+ <_>
+ 7 16 9 2 3.
+ <_>
+
+ <_>
+ 4 10 16 12 -1.
+ <_>
+ 4 14 16 4 3.
+ <_>
+
+ <_>
+ 0 13 19 6 -1.
+ <_>
+ 0 15 19 2 3.
+ <_>
+
+ <_>
+ 10 13 9 6 -1.
+ <_>
+ 10 15 9 2 3.
+ <_>
+
+ <_>
+ 5 0 3 23 -1.
+ <_>
+ 6 0 1 23 3.
+ <_>
+
+ <_>
+ 0 8 24 6 -1.
+ <_>
+ 0 10 24 2 3.
+ <_>
+
+ <_>
+ 0 5 5 12 -1.
+ <_>
+ 0 9 5 4 3.
+ <_>
+
+ <_>
+ 3 0 19 18 -1.
+ <_>
+ 3 9 19 9 2.
+ <_>
+
+ <_>
+ 9 11 6 12 -1.
+ <_>
+ 9 11 3 6 2.
+ <_>
+ 12 17 3 6 2.
+ <_>
+
+ <_>
+ 0 5 24 8 -1.
+ <_>
+ 12 5 12 4 2.
+ <_>
+ 0 9 12 4 2.
+ <_>
+
+ <_>
+ 6 18 9 4 -1.
+ <_>
+ 6 20 9 2 2.
+ <_>
+
+ <_>
+ 8 8 10 6 -1.
+ <_>
+ 8 10 10 2 3.
+ <_>
+
+ <_>
+ 2 7 20 3 -1.
+ <_>
+ 2 8 20 1 3.
+ <_>
+
+ <_>
+ 12 0 7 20 -1.
+ <_>
+ 12 10 7 10 2.
+ <_>
+
+ <_>
+ 5 0 7 20 -1.
+ <_>
+ 5 10 7 10 2.
+ <_>
+
+ <_>
+ 14 2 2 18 -1.
+ <_>
+ 14 11 2 9 2.
+ <_>
+
+ <_>
+ 5 8 10 12 -1.
+ <_>
+ 10 8 5 12 2.
+ <_>
+
+ <_>
+ 6 9 12 8 -1.
+ <_>
+ 12 9 6 4 2.
+ <_>
+ 6 13 6 4 2.
+ <_>
+
+ <_>
+ 7 7 3 14 -1.
+ <_>
+ 7 14 3 7 2.
+ <_>
+
+ <_>
+ 11 2 12 16 -1.
+ <_>
+ 17 2 6 8 2.
+ <_>
+ 11 10 6 8 2.
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 13 14 9 4 -1.
+ <_>
+ 13 16 9 2 2.
+ <_>
+
+ <_>
+ 0 12 22 4 -1.
+ <_>
+ 0 12 11 2 2.
+ <_>
+ 11 14 11 2 2.
+ <_>
+
+ <_>
+ 1 12 22 6 -1.
+ <_>
+ 12 12 11 3 2.
+ <_>
+ 1 15 11 3 2.
+ <_>
+
+ <_>
+ 6 6 9 6 -1.
+ <_>
+ 9 6 3 6 3.
+ <_>
+
+ <_>
+ 10 0 4 9 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+
+ <_>
+ 3 8 18 7 -1.
+ <_>
+ 9 8 6 7 3.
+ <_>
+
+ <_>
+ 0 6 24 6 -1.
+ <_>
+ 0 8 24 2 3.
+ <_>
+
+ <_>
+ 0 11 24 10 -1.
+ <_>
+ 8 11 8 10 3.
+ <_>
+
+ <_>
+ 3 3 18 21 -1.
+ <_>
+ 9 3 6 21 3.
+ <_>
+
+ <_>
+ 7 12 4 10 -1.
+ <_>
+ 9 12 2 10 2.
+ <_>
+
+ <_>
+ 10 16 10 8 -1.
+ <_>
+ 15 16 5 4 2.
+ <_>
+ 10 20 5 4 2.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 12 10 6 12 -1.
+ <_>
+ 15 10 3 6 2.
+ <_>
+ 12 16 3 6 2.
+ <_>
+
+ <_>
+ 6 10 6 12 -1.
+ <_>
+ 6 10 3 6 2.
+ <_>
+ 9 16 3 6 2.
+ <_>
+
+ <_>
+ 16 12 6 12 -1.
+ <_>
+ 19 12 3 6 2.
+ <_>
+ 16 18 3 6 2.
+ <_>
+
+ <_>
+ 2 12 6 12 -1.
+ <_>
+ 2 12 3 6 2.
+ <_>
+ 5 18 3 6 2.
+ <_>
+
+ <_>
+ 10 15 6 9 -1.
+ <_>
+ 12 15 2 9 3.
+ <_>
+
+ <_>
+ 8 15 6 9 -1.
+ <_>
+ 10 15 2 9 3.
+ <_>
+
+ <_>
+ 14 20 10 4 -1.
+ <_>
+ 14 20 5 4 2.
+ <_>
+
+ <_>
+ 0 20 10 4 -1.
+ <_>
+ 5 20 5 4 2.
+ <_>
+
+ <_>
+ 11 17 9 6 -1.
+ <_>
+ 11 19 9 2 3.
+ <_>
+
+ <_>
+ 3 2 14 4 -1.
+ <_>
+ 3 4 14 2 2.
+ <_>
+
+ <_>
+ 10 1 10 4 -1.
+ <_>
+ 10 3 10 2 2.
+ <_>
+
+ <_>
+ 0 15 10 4 -1.
+ <_>
+ 5 15 5 4 2.
+ <_>
+
+ <_>
+ 19 2 3 19 -1.
+ <_>
+ 20 2 1 19 3.
+ <_>
+
+ <_>
+ 4 12 9 8 -1.
+ <_>
+ 7 12 3 8 3.
+ <_>
+
+ <_>
+ 4 7 5 12 -1.
+ <_>
+ 4 11 5 4 3.
+ <_>
+
+ <_>
+ 0 1 24 3 -1.
+ <_>
+ 8 1 8 3 3.
+ <_>
+
+ <_>
+ 6 8 12 4 -1.
+ <_>
+ 6 10 12 2 2.
+ <_>
+
+ <_>
+ 19 3 4 10 -1.
+ <_>
+ 19 3 2 10 2.
+ <_>
+
+ <_>
+ 0 6 9 6 -1.
+ <_>
+ 3 6 3 6 3.
+ <_>
+
+ <_>
+ 18 0 6 22 -1.
+ <_>
+ 20 0 2 22 3.
+ <_>
+
+ <_>
+ 0 0 6 22 -1.
+ <_>
+ 2 0 2 22 3.
+ <_>
+
+ <_>
+ 5 15 19 3 -1.
+ <_>
+ 5 16 19 1 3.
+ <_>
+
+ <_>
+ 10 7 4 15 -1.
+ <_>
+ 10 12 4 5 3.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 0 21 18 3 -1.
+ <_>
+ 0 22 18 1 3.
+ <_>
+
+ <_>
+ 7 3 10 15 -1.
+ <_>
+ 7 8 10 5 3.
+ <_>
+
+ <_>
+ 1 7 18 3 -1.
+ <_>
+ 1 8 18 1 3.
+ <_>
+
+ <_>
+ 8 2 9 6 -1.
+ <_>
+ 11 2 3 6 3.
+ <_>
+
+ <_>
+ 0 10 24 14 -1.
+ <_>
+ 0 17 24 7 2.
+ <_>
+
+ <_>
+ 13 9 8 10 -1.
+ <_>
+ 17 9 4 5 2.
+ <_>
+ 13 14 4 5 2.
+ <_>
+
+ <_>
+ 10 5 4 9 -1.
+ <_>
+ 12 5 2 9 2.
+ <_>
+
+ <_>
+ 13 9 8 10 -1.
+ <_>
+ 17 9 4 5 2.
+ <_>
+ 13 14 4 5 2.
+ <_>
+
+ <_>
+ 7 11 10 10 -1.
+ <_>
+ 7 11 5 5 2.
+ <_>
+ 12 16 5 5 2.
+ <_>
+
+ <_>
+ 4 13 18 4 -1.
+ <_>
+ 13 13 9 2 2.
+ <_>
+ 4 15 9 2 2.
+ <_>
+
+ <_>
+ 0 0 19 2 -1.
+ <_>
+ 0 1 19 1 2.
+ <_>
+
+ <_>
+ 0 18 24 6 -1.
+ <_>
+ 8 18 8 6 3.
+ <_>
+
+ <_>
+ 6 4 8 16 -1.
+ <_>
+ 6 12 8 8 2.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 10 10 2 2.
+ <_>
+
+ <_>
+ 0 3 6 9 -1.
+ <_>
+ 0 6 6 3 3.
+ <_>
+
+ <_>
+ 13 15 7 9 -1.
+ <_>
+ 13 18 7 3 3.
+ <_>
+
+ <_>
+ 3 18 12 6 -1.
+ <_>
+ 3 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 12 14 6 9 -1.
+ <_>
+ 12 17 6 3 3.
+ <_>
+
+ <_>
+ 2 15 15 8 -1.
+ <_>
+ 2 19 15 4 2.
+ <_>
+
+ <_>
+ 9 6 6 16 -1.
+ <_>
+ 9 14 6 8 2.
+ <_>
+
+ <_>
+ 6 6 7 12 -1.
+ <_>
+ 6 10 7 4 3.
+ <_>
+
+ <_>
+ 14 6 6 9 -1.
+ <_>
+ 14 9 6 3 3.
+ <_>
+
+ <_>
+ 5 14 6 9 -1.
+ <_>
+ 5 17 6 3 3.
+ <_>
+
+ <_>
+ 10 8 6 9 -1.
+ <_>
+ 12 8 2 9 3.
+ <_>
+
+ <_>
+ 6 6 4 18 -1.
+ <_>
+ 6 6 2 9 2.
+ <_>
+ 8 15 2 9 2.
+ <_>
+
+ <_>
+ 14 9 6 12 -1.
+ <_>
+ 17 9 3 6 2.
+ <_>
+ 14 15 3 6 2.
+ <_>
+
+ <_>
+ 4 9 6 12 -1.
+ <_>
+ 4 9 3 6 2.
+ <_>
+ 7 15 3 6 2.
+ <_>
+
+ <_>
+ 14 15 9 6 -1.
+ <_>
+ 14 17 9 2 3.
+ <_>
+
+ <_>
+ 0 20 18 4 -1.
+ <_>
+ 0 20 9 2 2.
+ <_>
+ 9 22 9 2 2.
+ <_>
+
+ <_>
+ 13 18 9 6 -1.
+ <_>
+ 13 20 9 2 3.
+ <_>
+
+ <_>
+ 2 18 9 6 -1.
+ <_>
+ 2 20 9 2 3.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 19 2 4 22 -1.
+ <_>
+ 21 2 2 11 2.
+ <_>
+ 19 13 2 11 2.
+ <_>
+
+ <_>
+ 1 2 4 22 -1.
+ <_>
+ 1 2 2 11 2.
+ <_>
+ 3 13 2 11 2.
+ <_>
+
+ <_>
+ 15 0 2 24 -1.
+ <_>
+ 15 0 1 24 2.
+ <_>
+
+ <_>
+ 3 20 16 4 -1.
+ <_>
+ 11 20 8 4 2.
+ <_>
+
+ <_>
+ 11 6 4 18 -1.
+ <_>
+ 13 6 2 9 2.
+ <_>
+ 11 15 2 9 2.
+ <_>
+
+ <_>
+ 7 9 10 14 -1.
+ <_>
+ 7 9 5 7 2.
+ <_>
+ 12 16 5 7 2.
+ <_>
+
+ <_>
+ 14 6 6 9 -1.
+ <_>
+ 14 9 6 3 3.
+ <_>
+
+ <_>
+ 3 6 7 9 -1.
+ <_>
+ 3 9 7 3 3.
+ <_>
+
+ <_>
+ 20 4 4 20 -1.
+ <_>
+ 22 4 2 10 2.
+ <_>
+ 20 14 2 10 2.
+ <_>
+
+ <_>
+ 7 6 6 9 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 7 0 10 14 -1.
+ <_>
+ 12 0 5 7 2.
+ <_>
+ 7 7 5 7 2.
+ <_>
+
+ <_>
+ 2 1 18 6 -1.
+ <_>
+ 11 1 9 6 2.
+ <_>
+
+ <_>
+ 15 0 2 24 -1.
+ <_>
+ 15 0 1 24 2.
+ <_>
+
+ <_>
+ 7 0 2 24 -1.
+ <_>
+ 8 0 1 24 2.
+ <_>
+
+ <_>
+ 13 12 6 7 -1.
+ <_>
+ 13 12 3 7 2.
+ <_>
+
+ <_>
+ 5 12 6 7 -1.
+ <_>
+ 8 12 3 7 2.
+ <_>
+
+ <_>
+ 3 5 18 19 -1.
+ <_>
+ 9 5 6 19 3.
+ <_>
+
+ <_>
+ 5 6 9 6 -1.
+ <_>
+ 8 6 3 6 3.
+ <_>
+
+ <_>
+ 9 5 9 6 -1.
+ <_>
+ 12 5 3 6 3.
+ <_>
+
+ <_>
+ 3 16 10 8 -1.
+ <_>
+ 3 16 5 4 2.
+ <_>
+ 8 20 5 4 2.
+ <_>
+
+ <_>
+ 19 8 5 15 -1.
+ <_>
+ 19 13 5 5 3.
+ <_>
+
+ <_>
+ 0 8 5 15 -1.
+ <_>
+ 0 13 5 5 3.
+ <_>
+
+ <_>
+ 20 4 4 20 -1.
+ <_>
+ 22 4 2 10 2.
+ <_>
+ 20 14 2 10 2.
+ <_>
+
+ <_>
+ 0 4 4 20 -1.
+ <_>
+ 0 4 2 10 2.
+ <_>
+ 2 14 2 10 2.
+ <_>
+
+ <_>
+ 7 7 10 4 -1.
+ <_>
+ 7 7 5 4 2.
+ <_>
+
+ <_>
+ 4 19 14 4 -1.
+ <_>
+ 11 19 7 4 2.
+ <_>
+
+ <_>
+ 10 11 12 3 -1.
+ <_>
+ 10 11 6 3 2.
+ <_>
+
+ <_>
+ 0 1 24 3 -1.
+ <_>
+ 0 2 24 1 3.
+ <_>
+
+ <_>
+ 7 2 14 20 -1.
+ <_>
+ 14 2 7 10 2.
+ <_>
+ 7 12 7 10 2.
+ <_>
+
+ <_>
+ 0 13 6 9 -1.
+ <_>
+ 2 13 2 9 3.
+ <_>
+
+ <_>
+ 13 0 4 19 -1.
+ <_>
+ 13 0 2 19 2.
+ <_>
+
+ <_>
+ 1 11 14 3 -1.
+ <_>
+ 8 11 7 3 2.
+ <_>
+
+ <_>
+ 7 1 16 20 -1.
+ <_>
+ 15 1 8 10 2.
+ <_>
+ 7 11 8 10 2.
+ <_>
+
+ <_>
+ 0 10 21 9 -1.
+ <_>
+ 7 10 7 9 3.
+ <_>
+
+ <_>
+ 6 19 15 5 -1.
+ <_>
+ 11 19 5 5 3.
+ <_>
+
+ <_>
+ 8 10 6 6 -1.
+ <_>
+ 11 10 3 6 2.
+ <_>
+
+ <_>
+ 7 1 16 20 -1.
+ <_>
+ 15 1 8 10 2.
+ <_>
+ 7 11 8 10 2.
+ <_>
+
+ <_>
+ 1 1 16 20 -1.
+ <_>
+ 1 1 8 10 2.
+ <_>
+ 9 11 8 10 2.
+ <_>
+
+ <_>
+ 16 4 3 12 -1.
+ <_>
+ 16 10 3 6 2.
+ <_>
+
+ <_>
+ 5 4 3 12 -1.
+ <_>
+ 5 10 3 6 2.
+ <_>
+
+ <_>
+ 7 6 10 8 -1.
+ <_>
+ 12 6 5 4 2.
+ <_>
+ 7 10 5 4 2.
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 4 12 6 3 2.
+ <_>
+
+ <_>
+ 6 5 12 4 -1.
+ <_>
+ 6 7 12 2 2.
+ <_>
+
+ <_>
+ 9 2 5 15 -1.
+ <_>
+ 9 7 5 5 3.
+ <_>
+
+ <_>
+ 15 0 9 6 -1.
+ <_>
+ 15 2 9 2 3.
+ <_>
+
+ <_>
+ 6 0 11 10 -1.
+ <_>
+ 6 5 11 5 2.
+ <_>
+
+ <_>
+ 12 7 4 12 -1.
+ <_>
+ 12 13 4 6 2.
+ <_>
+
+ <_>
+ 7 2 9 4 -1.
+ <_>
+ 7 4 9 2 2.
+ <_>
+
+ <_>
+ 6 0 13 6 -1.
+ <_>
+ 6 2 13 2 3.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 10 6 2 9 2.
+ <_>
+ 12 15 2 9 2.
+ <_>
+
+ <_>
+ 10 8 6 9 -1.
+ <_>
+ 12 8 2 9 3.
+ <_>
+
+ <_>
+ 3 18 10 6 -1.
+ <_>
+ 3 20 10 2 3.
+ <_>
+
+ <_>
+ 4 14 20 3 -1.
+ <_>
+ 4 15 20 1 3.
+ <_>
+
+ <_>
+ 2 15 9 6 -1.
+ <_>
+ 2 17 9 2 3.
+ <_>
+
+ <_>
+ 13 0 4 19 -1.
+ <_>
+ 13 0 2 19 2.
+ <_>
+
+ <_>
+ 7 0 4 19 -1.
+ <_>
+ 9 0 2 19 2.
+ <_>
+
+ <_>
+ 1 4 22 2 -1.
+ <_>
+ 1 5 22 1 2.
+ <_>
+
+ <_>
+ 0 0 9 6 -1.
+ <_>
+ 0 2 9 2 3.
+ <_>
+
+ <_>
+ 0 0 24 18 -1.
+ <_>
+ 0 9 24 9 2.
+ <_>
+
+ <_>
+ 3 2 16 8 -1.
+ <_>
+ 3 6 16 4 2.
+ <_>
+
+ <_>
+ 3 6 18 6 -1.
+ <_>
+ 3 8 18 2 3.
+ <_>
+
+ <_>
+ 3 1 6 10 -1.
+ <_>
+ 5 1 2 10 3.
+ <_>
+
+ <_>
+ 13 0 9 6 -1.
+ <_>
+ 16 0 3 6 3.
+ <_>
+
+ <_>
+ 2 0 9 6 -1.
+ <_>
+ 5 0 3 6 3.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 6 0 7 10 -1.
+ <_>
+ 6 5 7 5 2.
+ <_>
+
+ <_>
+ 2 2 20 4 -1.
+ <_>
+ 12 2 10 2 2.
+ <_>
+ 2 4 10 2 2.
+ <_>
+
+ <_>
+ 2 11 19 3 -1.
+ <_>
+ 2 12 19 1 3.
+ <_>
+
+ <_>
+ 10 8 6 9 -1.
+ <_>
+ 12 8 2 9 3.
+ <_>
+
+ <_>
+ 8 8 6 9 -1.
+ <_>
+ 10 8 2 9 3.
+ <_>
+
+ <_>
+ 13 8 4 9 -1.
+ <_>
+ 13 8 2 9 2.
+ <_>
+
+ <_>
+ 3 11 9 9 -1.
+ <_>
+ 6 11 3 9 3.
+ <_>
+
+ <_>
+ 3 9 18 5 -1.
+ <_>
+ 9 9 6 5 3.
+ <_>
+
+ <_>
+ 2 4 2 20 -1.
+ <_>
+ 2 14 2 10 2.
+ <_>
+
+ <_>
+ 14 17 8 6 -1.
+ <_>
+ 14 20 8 3 2.
+ <_>
+
+ <_>
+ 3 21 18 2 -1.
+ <_>
+ 3 22 18 1 2.
+ <_>
+
+ <_>
+ 5 4 15 6 -1.
+ <_>
+ 10 4 5 6 3.
+ <_>
+
+ <_>
+ 2 15 12 6 -1.
+ <_>
+ 2 17 12 2 3.
+ <_>
+
+ <_>
+ 17 8 6 9 -1.
+ <_>
+ 17 11 6 3 3.
+ <_>
+
+ <_>
+ 2 12 20 4 -1.
+ <_>
+ 2 12 10 2 2.
+ <_>
+ 12 14 10 2 2.
+ <_>
+
+ <_>
+ 0 17 24 6 -1.
+ <_>
+ 0 19 24 2 3.
+ <_>
+
+ <_>
+ 7 16 9 4 -1.
+ <_>
+ 7 18 9 2 2.
+ <_>
+
+ <_>
+ 15 1 4 22 -1.
+ <_>
+ 17 1 2 11 2.
+ <_>
+ 15 12 2 11 2.
+ <_>
+
+ <_>
+ 5 1 4 22 -1.
+ <_>
+ 5 1 2 11 2.
+ <_>
+ 7 12 2 11 2.
+ <_>
+
+ <_>
+ 11 13 8 9 -1.
+ <_>
+ 11 16 8 3 3.
+ <_>
+
+ <_>
+ 6 1 6 9 -1.
+ <_>
+ 8 1 2 9 3.
+ <_>
+
+ <_>
+ 11 4 3 18 -1.
+ <_>
+ 11 10 3 6 3.
+ <_>
+
+ <_>
+ 5 8 12 6 -1.
+ <_>
+ 5 8 6 3 2.
+ <_>
+ 11 11 6 3 2.
+ <_>
+
+ <_>
+ 15 7 5 8 -1.
+ <_>
+ 15 11 5 4 2.
+ <_>
+
+ <_>
+ 4 7 5 8 -1.
+ <_>
+ 4 11 5 4 2.
+ <_>
+
+ <_>
+ 12 6 6 12 -1.
+ <_>
+ 15 6 3 6 2.
+ <_>
+ 12 12 3 6 2.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 6 6 3 6 2.
+ <_>
+ 9 12 3 6 2.
+ <_>
+
+ <_>
+ 5 9 14 8 -1.
+ <_>
+ 12 9 7 4 2.
+ <_>
+ 5 13 7 4 2.
+ <_>
+
+ <_>
+ 9 1 3 14 -1.
+ <_>
+ 9 8 3 7 2.
+ <_>
+
+ <_>
+ 12 6 6 12 -1.
+ <_>
+ 12 10 6 4 3.
+ <_>
+
+ <_>
+ 4 5 4 18 -1.
+ <_>
+ 4 5 2 9 2.
+ <_>
+ 6 14 2 9 2.
+ <_>
+
+ <_>
+ 4 6 16 18 -1.
+ <_>
+ 4 12 16 6 3.
+ <_>
+
+ <_>
+ 5 4 7 20 -1.
+ <_>
+ 5 14 7 10 2.
+ <_>
+
+ <_>
+ 14 8 8 12 -1.
+ <_>
+ 14 14 8 6 2.
+ <_>
+
+ <_>
+ 9 10 6 14 -1.
+ <_>
+ 9 10 3 7 2.
+ <_>
+ 12 17 3 7 2.
+ <_>
+
+ <_>
+ 9 5 9 6 -1.
+ <_>
+ 12 5 3 6 3.
+ <_>
+
+ <_>
+ 9 4 3 18 -1.
+ <_>
+ 10 4 1 18 3.
+ <_>
+
+ <_>
+ 1 4 22 14 -1.
+ <_>
+ 12 4 11 7 2.
+ <_>
+ 1 11 11 7 2.
+ <_>
+
+ <_>
+ 2 7 18 2 -1.
+ <_>
+ 2 8 18 1 2.
+ <_>
+
+ <_>
+ 12 6 6 12 -1.
+ <_>
+ 12 10 6 4 3.
+ <_>
+
+ <_>
+ 6 5 9 7 -1.
+ <_>
+ 9 5 3 7 3.
+ <_>
+
+ <_>
+ 12 7 4 12 -1.
+ <_>
+ 12 13 4 6 2.
+ <_>
+
+ <_>
+ 8 7 4 12 -1.
+ <_>
+ 8 13 4 6 2.
+ <_>
+
+ <_>
+ 7 2 10 22 -1.
+ <_>
+ 7 13 10 11 2.
+ <_>
+
+ <_>
+ 0 1 3 20 -1.
+ <_>
+ 1 1 1 20 3.
+ <_>
+
+ <_>
+ 4 13 18 4 -1.
+ <_>
+ 13 13 9 2 2.
+ <_>
+ 4 15 9 2 2.
+ <_>
+
+ <_>
+ 2 13 18 4 -1.
+ <_>
+ 2 13 9 2 2.
+ <_>
+ 11 15 9 2 2.
+ <_>
+
+ <_>
+ 15 15 9 6 -1.
+ <_>
+ 15 17 9 2 3.
+ <_>
+
+ <_>
+ 0 15 9 6 -1.
+ <_>
+ 0 17 9 2 3.
+ <_>
+
+ <_>
+ 6 0 18 24 -1.
+ <_>
+ 15 0 9 12 2.
+ <_>
+ 6 12 9 12 2.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 6 10 6 4 3.
+ <_>
+
+ <_>
+ 8 7 10 4 -1.
+ <_>
+ 8 9 10 2 2.
+ <_>
+
+ <_>
+ 1 9 18 6 -1.
+ <_>
+ 1 9 9 3 2.
+ <_>
+ 10 12 9 3 2.
+ <_>
+
+ <_>
+ 6 6 18 3 -1.
+ <_>
+ 6 7 18 1 3.
+ <_>
+
+ <_>
+ 7 7 9 8 -1.
+ <_>
+ 10 7 3 8 3.
+ <_>
+
+ <_>
+ 10 12 6 12 -1.
+ <_>
+ 12 12 2 12 3.
+ <_>
+
+ <_>
+ 3 14 18 3 -1.
+ <_>
+ 3 15 18 1 3.
+ <_>
+
+ <_>
+ 15 17 9 7 -1.
+ <_>
+ 18 17 3 7 3.
+ <_>
+
+ <_>
+ 1 12 10 6 -1.
+ <_>
+ 1 14 10 2 3.
+ <_>
+
+ <_>
+ 15 17 9 7 -1.
+ <_>
+ 18 17 3 7 3.
+ <_>
+
+ <_>
+ 10 3 3 19 -1.
+ <_>
+ 11 3 1 19 3.
+ <_>
+
+ <_>
+ 15 17 9 7 -1.
+ <_>
+ 18 17 3 7 3.
+ <_>
+
+ <_>
+ 6 1 11 9 -1.
+ <_>
+ 6 4 11 3 3.
+ <_>
+
+ <_>
+ 15 17 9 7 -1.
+ <_>
+ 18 17 3 7 3.
+ <_>
+
+ <_>
+ 6 5 11 6 -1.
+ <_>
+ 6 8 11 3 2.
+ <_>
+
+ <_>
+ 16 7 8 5 -1.
+ <_>
+ 16 7 4 5 2.
+ <_>
+
+ <_>
+ 2 4 20 19 -1.
+ <_>
+ 12 4 10 19 2.
+ <_>
+
+ <_>
+ 2 1 21 6 -1.
+ <_>
+ 9 1 7 6 3.
+ <_>
+
+ <_>
+ 6 5 12 14 -1.
+ <_>
+ 6 5 6 7 2.
+ <_>
+ 12 12 6 7 2.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 2 11 8 5 -1.
+ <_>
+ 6 11 4 5 2.
+ <_>
+
+ <_>
+ 16 7 8 5 -1.
+ <_>
+ 16 7 4 5 2.
+ <_>
+
+ <_>
+ 0 7 8 5 -1.
+ <_>
+ 4 7 4 5 2.
+ <_>
+
+ <_>
+ 15 17 9 7 -1.
+ <_>
+ 18 17 3 7 3.
+ <_>
+
+ <_>
+ 8 6 8 10 -1.
+ <_>
+ 8 6 4 5 2.
+ <_>
+ 12 11 4 5 2.
+ <_>
+
+ <_>
+ 15 15 9 9 -1.
+ <_>
+ 18 15 3 9 3.
+ <_>
+
+ <_>
+ 0 15 9 9 -1.
+ <_>
+ 3 15 3 9 3.
+ <_>
+
+ <_>
+ 12 10 9 7 -1.
+ <_>
+ 15 10 3 7 3.
+ <_>
+
+ <_>
+ 3 10 9 7 -1.
+ <_>
+ 6 10 3 7 3.
+ <_>
+
+ <_>
+ 13 15 10 8 -1.
+ <_>
+ 18 15 5 4 2.
+ <_>
+ 13 19 5 4 2.
+ <_>
+
+ <_>
+ 0 1 6 12 -1.
+ <_>
+ 0 1 3 6 2.
+ <_>
+ 3 7 3 6 2.
+ <_>
+
+ <_>
+ 10 0 6 12 -1.
+ <_>
+ 13 0 3 6 2.
+ <_>
+ 10 6 3 6 2.
+ <_>
+
+ <_>
+ 7 0 10 12 -1.
+ <_>
+ 7 0 5 6 2.
+ <_>
+ 12 6 5 6 2.
+ <_>
+
+ <_>
+ 4 1 16 8 -1.
+ <_>
+ 4 1 8 8 2.
+ <_>
+
+ <_>
+ 0 21 19 3 -1.
+ <_>
+ 0 22 19 1 3.
+ <_>
+
+ <_>
+ 6 9 18 4 -1.
+ <_>
+ 15 9 9 2 2.
+ <_>
+ 6 11 9 2 2.
+ <_>
+
+ <_>
+ 3 4 9 6 -1.
+ <_>
+ 3 6 9 2 3.
+ <_>
+
+ <_>
+ 9 1 6 15 -1.
+ <_>
+ 9 6 6 5 3.
+ <_>
+
+ <_>
+ 5 9 6 6 -1.
+ <_>
+ 8 9 3 6 2.
+ <_>
+
+ <_>
+ 5 1 14 9 -1.
+ <_>
+ 5 4 14 3 3.
+ <_>
+
+ <_>
+ 3 0 8 20 -1.
+ <_>
+ 3 0 4 10 2.
+ <_>
+ 7 10 4 10 2.
+ <_>
+
+ <_>
+ 5 0 7 9 -1.
+ <_>
+ 5 3 7 3 3.
+ <_>
+
+ <_>
+ 6 6 12 5 -1.
+ <_>
+ 10 6 4 5 3.
+ <_>
+
+ <_>
+ 0 1 8 14 -1.
+ <_>
+ 4 1 4 14 2.
+ <_>
+
+ <_>
+ 2 12 22 4 -1.
+ <_>
+ 2 14 22 2 2.
+ <_>
+
+ <_>
+ 8 17 6 6 -1.
+ <_>
+ 8 20 6 3 2.
+ <_>
+
+ <_>
+ 18 1 6 7 -1.
+ <_>
+ 18 1 3 7 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 4 6 17 18 -1.
+ <_>
+ 4 12 17 6 3.
+ <_>
+
+ <_>
+ 6 0 12 6 -1.
+ <_>
+ 6 0 6 3 2.
+ <_>
+ 12 3 6 3 2.
+ <_>
+
+ <_>
+ 4 7 18 4 -1.
+ <_>
+ 13 7 9 2 2.
+ <_>
+ 4 9 9 2 2.
+ <_>
+
+ <_>
+ 4 12 10 6 -1.
+ <_>
+ 4 14 10 2 3.
+ <_>
+
+ <_>
+ 7 9 10 12 -1.
+ <_>
+ 12 9 5 6 2.
+ <_>
+ 7 15 5 6 2.
+ <_>
+
+ <_>
+ 0 1 24 3 -1.
+ <_>
+ 8 1 8 3 3.
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 13 11 3 6 2.
+ <_>
+
+ <_>
+ 5 11 6 6 -1.
+ <_>
+ 8 11 3 6 2.
+ <_>
+
+ <_>
+ 3 10 19 3 -1.
+ <_>
+ 3 11 19 1 3.
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 0 5 6 3 3.
+ <_>
+
+ <_>
+ 14 16 10 6 -1.
+ <_>
+ 14 18 10 2 3.
+ <_>
+
+ <_>
+ 0 16 10 6 -1.
+ <_>
+ 0 18 10 2 3.
+ <_>
+
+ <_>
+ 14 13 9 6 -1.
+ <_>
+ 14 15 9 2 3.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 0 18 9 6 -1.
+ <_>
+ 0 20 9 2 3.
+ <_>
+
+ <_>
+ 14 13 9 6 -1.
+ <_>
+ 14 15 9 2 3.
+ <_>
+
+ <_>
+ 6 2 6 9 -1.
+ <_>
+ 8 2 2 9 3.
+ <_>
+
+ <_>
+ 15 8 4 12 -1.
+ <_>
+ 15 8 2 12 2.
+ <_>
+
+ <_>
+ 8 13 8 8 -1.
+ <_>
+ 8 17 8 4 2.
+ <_>
+
+ <_>
+ 4 20 18 3 -1.
+ <_>
+ 10 20 6 3 3.
+ <_>
+
+ <_>
+ 5 8 4 12 -1.
+ <_>
+ 7 8 2 12 2.
+ <_>
+
+ <_>
+ 7 7 12 3 -1.
+ <_>
+ 7 7 6 3 2.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+
+ <_>
+ 5 20 18 3 -1.
+ <_>
+ 11 20 6 3 3.
+ <_>
+
+ <_>
+ 1 20 18 3 -1.
+ <_>
+ 7 20 6 3 3.
+ <_>
+
+ <_>
+ 18 1 6 20 -1.
+ <_>
+ 21 1 3 10 2.
+ <_>
+ 18 11 3 10 2.
+ <_>
+
+ <_>
+ 0 1 6 20 -1.
+ <_>
+ 0 1 3 10 2.
+ <_>
+ 3 11 3 10 2.
+ <_>
+
+ <_>
+ 13 3 4 18 -1.
+ <_>
+ 15 3 2 9 2.
+ <_>
+ 13 12 2 9 2.
+ <_>
+
+ <_>
+ 0 2 6 12 -1.
+ <_>
+ 0 6 6 4 3.
+ <_>
+
+ <_>
+ 12 9 12 6 -1.
+ <_>
+ 18 9 6 3 2.
+ <_>
+ 12 12 6 3 2.
+ <_>
+
+ <_>
+ 7 3 4 18 -1.
+ <_>
+ 7 3 2 9 2.
+ <_>
+ 9 12 2 9 2.
+ <_>
+
+ <_>
+ 14 0 6 9 -1.
+ <_>
+ 16 0 2 9 3.
+ <_>
+
+ <_>
+ 0 9 12 6 -1.
+ <_>
+ 0 9 6 3 2.
+ <_>
+ 6 12 6 3 2.
+ <_>
+
+ <_>
+ 14 4 8 20 -1.
+ <_>
+ 18 4 4 10 2.
+ <_>
+ 14 14 4 10 2.
+ <_>
+
+ <_>
+ 2 4 8 20 -1.
+ <_>
+ 2 4 4 10 2.
+ <_>
+ 6 14 4 10 2.
+ <_>
+
+ <_>
+ 14 13 9 6 -1.
+ <_>
+ 14 15 9 2 3.
+ <_>
+
+ <_>
+ 1 13 9 6 -1.
+ <_>
+ 1 15 9 2 3.
+ <_>
+
+ <_>
+ 3 15 18 3 -1.
+ <_>
+ 9 15 6 3 3.
+ <_>
+
+ <_>
+ 5 13 9 6 -1.
+ <_>
+ 5 15 9 2 3.
+ <_>
+
+ <_>
+ 5 0 18 3 -1.
+ <_>
+ 5 1 18 1 3.
+ <_>
+
+ <_>
+ 8 2 6 7 -1.
+ <_>
+ 11 2 3 7 2.
+ <_>
+
+ <_>
+ 9 1 9 6 -1.
+ <_>
+ 12 1 3 6 3.
+ <_>
+
+ <_>
+ 6 1 9 6 -1.
+ <_>
+ 9 1 3 6 3.
+ <_>
+
+ <_>
+ 5 6 14 6 -1.
+ <_>
+ 12 6 7 3 2.
+ <_>
+ 5 9 7 3 2.
+ <_>
+
+ <_>
+ 8 2 6 13 -1.
+ <_>
+ 10 2 2 13 3.
+ <_>
+
+ <_>
+ 6 11 12 6 -1.
+ <_>
+ 12 11 6 3 2.
+ <_>
+ 6 14 6 3 2.
+ <_>
+
+ <_>
+ 3 1 18 15 -1.
+ <_>
+ 9 1 6 15 3.
+ <_>
+
+ <_>
+ 13 0 6 7 -1.
+ <_>
+ 13 0 3 7 2.
+ <_>
+
+ <_>
+ 3 3 16 6 -1.
+ <_>
+ 3 6 16 3 2.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 7 7 6 9 -1.
+ <_>
+ 9 7 2 9 3.
+ <_>
+
+ <_>
+ 13 0 4 24 -1.
+ <_>
+ 13 0 2 24 2.
+ <_>
+
+ <_>
+ 7 0 4 24 -1.
+ <_>
+ 9 0 2 24 2.
+ <_>
+
+ <_>
+ 11 9 5 12 -1.
+ <_>
+ 11 13 5 4 3.
+ <_>
+
+ <_>
+ 7 15 9 6 -1.
+ <_>
+ 7 17 9 2 3.
+ <_>
+
+ <_>
+ 5 7 18 6 -1.
+ <_>
+ 5 9 18 2 3.
+ <_>
+
+ <_>
+ 8 9 5 12 -1.
+ <_>
+ 8 13 5 4 3.
+ <_>
+
+ <_>
+ 4 17 17 6 -1.
+ <_>
+ 4 19 17 2 3.
+ <_>
+
+ <_>
+ 0 3 18 14 -1.
+ <_>
+ 0 3 9 7 2.
+ <_>
+ 9 10 9 7 2.
+ <_>
+
+ <_>
+ 0 1 24 2 -1.
+ <_>
+ 0 2 24 1 2.
+ <_>
+
+ <_>
+ 0 15 18 3 -1.
+ <_>
+ 0 16 18 1 3.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 3 3 14 12 -1.
+ <_>
+ 3 9 14 6 2.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 10 0 2 9 3.
+ <_>
+
+ <_>
+ 10 6 6 10 -1.
+ <_>
+ 12 6 2 10 3.
+ <_>
+
+ <_>
+ 5 0 6 9 -1.
+ <_>
+ 7 0 2 9 3.
+ <_>
+
+ <_>
+ 2 0 21 7 -1.
+ <_>
+ 9 0 7 7 3.
+ <_>
+
+ <_>
+ 6 11 12 5 -1.
+ <_>
+ 10 11 4 5 3.
+ <_>
+
+ <_>
+ 8 7 9 8 -1.
+ <_>
+ 11 7 3 8 3.
+ <_>
+
+ <_>
+ 9 6 6 18 -1.
+ <_>
+ 9 6 3 9 2.
+ <_>
+ 12 15 3 9 2.
+ <_>
+
+ <_>
+ 15 14 8 10 -1.
+ <_>
+ 19 14 4 5 2.
+ <_>
+ 15 19 4 5 2.
+ <_>
+
+ <_>
+ 1 14 8 10 -1.
+ <_>
+ 1 14 4 5 2.
+ <_>
+ 5 19 4 5 2.
+ <_>
+
+ <_>
+ 11 0 8 10 -1.
+ <_>
+ 15 0 4 5 2.
+ <_>
+ 11 5 4 5 2.
+ <_>
+
+ <_>
+ 5 0 8 10 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 6 1 12 5 -1.
+ <_>
+ 6 1 6 5 2.
+ <_>
+
+ <_>
+ 1 12 18 2 -1.
+ <_>
+ 10 12 9 2 2.
+ <_>
+
+ <_>
+ 2 8 20 6 -1.
+ <_>
+ 12 8 10 3 2.
+ <_>
+ 2 11 10 3 2.
+ <_>
+
+ <_>
+ 7 6 9 7 -1.
+ <_>
+ 10 6 3 7 3.
+ <_>
+
+ <_>
+ 10 5 8 16 -1.
+ <_>
+ 14 5 4 8 2.
+ <_>
+ 10 13 4 8 2.
+ <_>
+
+ <_>
+ 3 9 16 8 -1.
+ <_>
+ 3 9 8 4 2.
+ <_>
+ 11 13 8 4 2.
+ <_>
+
+ <_>
+ 7 8 10 4 -1.
+ <_>
+ 7 8 5 4 2.
+ <_>
+
+ <_>
+ 7 12 10 8 -1.
+ <_>
+ 7 12 5 4 2.
+ <_>
+ 12 16 5 4 2.
+ <_>
+
+ <_>
+ 9 19 15 4 -1.
+ <_>
+ 14 19 5 4 3.
+ <_>
+
+ <_>
+ 1 0 18 9 -1.
+ <_>
+ 7 0 6 9 3.
+ <_>
+
+ <_>
+ 13 4 10 8 -1.
+ <_>
+ 18 4 5 4 2.
+ <_>
+ 13 8 5 4 2.
+ <_>
+
+ <_>
+ 3 16 18 4 -1.
+ <_>
+ 9 16 6 4 3.
+ <_>
+
+ <_>
+ 8 7 10 12 -1.
+ <_>
+ 13 7 5 6 2.
+ <_>
+ 8 13 5 6 2.
+ <_>
+
+ <_>
+ 6 7 10 12 -1.
+ <_>
+ 6 7 5 6 2.
+ <_>
+ 11 13 5 6 2.
+ <_>
+
+ <_>
+ 4 6 18 7 -1.
+ <_>
+ 10 6 6 7 3.
+ <_>
+
+ <_>
+ 0 17 18 3 -1.
+ <_>
+ 0 18 18 1 3.
+ <_>
+
+ <_>
+ 3 17 18 3 -1.
+ <_>
+ 3 18 18 1 3.
+ <_>
+
+ <_>
+ 2 4 6 10 -1.
+ <_>
+ 4 4 2 10 3.
+ <_>
+
+ <_>
+ 16 0 8 24 -1.
+ <_>
+ 16 0 4 24 2.
+ <_>
+
+ <_>
+ 4 0 8 15 -1.
+ <_>
+ 8 0 4 15 2.
+ <_>
+
+ <_>
+ 16 0 8 24 -1.
+ <_>
+ 16 0 4 24 2.
+ <_>
+
+ <_>
+ 1 4 18 9 -1.
+ <_>
+ 7 4 6 9 3.
+ <_>
+
+ <_>
+ 15 12 9 6 -1.
+ <_>
+ 15 14 9 2 3.
+ <_>
+
+ <_>
+ 3 9 18 6 -1.
+ <_>
+ 3 9 9 3 2.
+ <_>
+ 12 12 9 3 2.
+ <_>
+
+ <_>
+ 18 5 6 9 -1.
+ <_>
+ 18 8 6 3 3.
+ <_>
+
+ <_>
+ 0 5 6 9 -1.
+ <_>
+ 0 8 6 3 3.
+ <_>
+
+ <_>
+ 4 7 18 4 -1.
+ <_>
+ 13 7 9 2 2.
+ <_>
+ 4 9 9 2 2.
+ <_>
+
+ <_>
+ 2 1 12 20 -1.
+ <_>
+ 2 1 6 10 2.
+ <_>
+ 8 11 6 10 2.
+ <_>
+
+ <_>
+ 17 0 6 23 -1.
+ <_>
+ 17 0 3 23 2.
+ <_>
+
+ <_>
+ 1 6 2 18 -1.
+ <_>
+ 1 15 2 9 2.
+ <_>
+
+ <_>
+ 8 8 10 6 -1.
+ <_>
+ 8 10 10 2 3.
+ <_>
+
+ <_>
+ 0 6 20 6 -1.
+ <_>
+ 0 6 10 3 2.
+ <_>
+ 10 9 10 3 2.
+ <_>
+
+ <_>
+ 11 12 12 5 -1.
+ <_>
+ 15 12 4 5 3.
+ <_>
+
+ <_>
+ 0 4 3 19 -1.
+ <_>
+ 1 4 1 19 3.
+ <_>
+
+ <_>
+ 19 1 3 18 -1.
+ <_>
+ 20 1 1 18 3.
+ <_>
+
+ <_>
+ 2 1 3 18 -1.
+ <_>
+ 3 1 1 18 3.
+ <_>
+
+ <_>
+ 3 10 18 3 -1.
+ <_>
+ 9 10 6 3 3.
+ <_>
+
+ <_>
+ 4 4 10 9 -1.
+ <_>
+ 9 4 5 9 2.
+ <_>
+
+ <_>
+ 7 13 14 7 -1.
+ <_>
+ 7 13 7 7 2.
+ <_>
+
+ <_>
+ 3 13 14 7 -1.
+ <_>
+ 10 13 7 7 2.
+ <_>
+
+ <_>
+ 8 15 9 6 -1.
+ <_>
+ 11 15 3 6 3.
+ <_>
+
+ <_>
+ 4 14 8 10 -1.
+ <_>
+ 4 14 4 5 2.
+ <_>
+ 8 19 4 5 2.
+ <_>
+
+ <_>
+ 10 14 4 10 -1.
+ <_>
+ 10 19 4 5 2.
+ <_>
+
+ <_>
+ 3 8 5 16 -1.
+ <_>
+ 3 16 5 8 2.
+ <_>
+
+ <_>
+ 15 10 9 6 -1.
+ <_>
+ 15 12 9 2 3.
+ <_>
+
+ <_>
+ 0 10 9 6 -1.
+ <_>
+ 0 12 9 2 3.
+ <_>
+
+ <_>
+ 6 7 12 9 -1.
+ <_>
+ 6 10 12 3 3.
+ <_>
+
+ <_>
+ 9 10 5 8 -1.
+ <_>
+ 9 14 5 4 2.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 8 15 6 9 -1.
+ <_>
+ 10 15 2 9 3.
+ <_>
+
+ <_>
+ 16 6 7 6 -1.
+ <_>
+ 16 9 7 3 2.
+ <_>
+
+ <_>
+ 8 1 4 22 -1.
+ <_>
+ 10 1 2 22 2.
+ <_>
+
+ <_>
+ 6 6 14 3 -1.
+ <_>
+ 6 6 7 3 2.
+ <_>
+
+ <_>
+ 0 18 19 3 -1.
+ <_>
+ 0 19 19 1 3.
+ <_>
+
+ <_>
+ 17 0 6 24 -1.
+ <_>
+ 17 0 3 24 2.
+ <_>
+
+ <_>
+ 0 13 15 6 -1.
+ <_>
+ 5 13 5 6 3.
+ <_>
+
+ <_>
+ 9 6 10 14 -1.
+ <_>
+ 14 6 5 7 2.
+ <_>
+ 9 13 5 7 2.
+ <_>
+
+ <_>
+ 1 6 8 10 -1.
+ <_>
+ 1 6 4 5 2.
+ <_>
+ 5 11 4 5 2.
+ <_>
+
+ <_>
+ 7 6 12 5 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 7 7 9 6 -1.
+ <_>
+ 10 7 3 6 3.
+ <_>
+
+ <_>
+ 7 8 14 14 -1.
+ <_>
+ 14 8 7 7 2.
+ <_>
+ 7 15 7 7 2.
+ <_>
+
+ <_>
+ 3 8 14 14 -1.
+ <_>
+ 3 8 7 7 2.
+ <_>
+ 10 15 7 7 2.
+ <_>
+
+ <_>
+ 9 8 13 4 -1.
+ <_>
+ 9 10 13 2 2.
+ <_>
+
+ <_>
+ 3 2 6 12 -1.
+ <_>
+ 3 2 3 6 2.
+ <_>
+ 6 8 3 6 2.
+ <_>
+
+ <_>
+ 6 10 17 6 -1.
+ <_>
+ 6 13 17 3 2.
+ <_>
+
+ <_>
+ 1 10 17 6 -1.
+ <_>
+ 1 13 17 3 2.
+ <_>
+
+ <_>
+ 16 7 8 9 -1.
+ <_>
+ 16 10 8 3 3.
+ <_>
+
+ <_>
+ 0 7 8 9 -1.
+ <_>
+ 0 10 8 3 3.
+ <_>
+
+ <_>
+ 0 9 24 10 -1.
+ <_>
+ 12 9 12 5 2.
+ <_>
+ 0 14 12 5 2.
+ <_>
+
+ <_>
+ 3 2 15 8 -1.
+ <_>
+ 8 2 5 8 3.
+ <_>
+
+ <_>
+ 4 2 18 8 -1.
+ <_>
+ 10 2 6 8 3.
+ <_>
+
+ <_>
+ 0 1 18 4 -1.
+ <_>
+ 0 1 9 2 2.
+ <_>
+ 9 3 9 2 2.
+ <_>
+
+ <_>
+ 20 2 3 18 -1.
+ <_>
+ 21 2 1 18 3.
+ <_>
+
+ <_>
+ 1 3 3 19 -1.
+ <_>
+ 2 3 1 19 3.
+ <_>
+
+ <_>
+ 18 8 6 16 -1.
+ <_>
+ 20 8 2 16 3.
+ <_>
+
+ <_>
+ 0 8 6 16 -1.
+ <_>
+ 2 8 2 16 3.
+ <_>
+
+ <_>
+ 8 18 11 6 -1.
+ <_>
+ 8 20 11 2 3.
+ <_>
+
+ <_>
+ 4 6 12 5 -1.
+ <_>
+ 8 6 4 5 3.
+ <_>
+
+ <_>
+ 7 6 12 5 -1.
+ <_>
+ 11 6 4 5 3.
+ <_>
+
+ <_>
+ 6 3 9 6 -1.
+ <_>
+ 9 3 3 6 3.
+ <_>
+
+ <_>
+ 7 6 12 5 -1.
+ <_>
+ 7 6 6 5 2.
+ <_>
+
+ <_>
+ 9 8 6 7 -1.
+ <_>
+ 12 8 3 7 2.
+ <_>
+
+ <_>
+ 8 2 9 6 -1.
+ <_>
+ 11 2 3 6 3.
+ <_>
+
+ <_>
+ 8 14 6 9 -1.
+ <_>
+ 8 17 6 3 3.
+ <_>
+
+ <_>
+ 8 2 9 6 -1.
+ <_>
+ 11 2 3 6 3.
+ <_>
+
+ <_>
+ 4 3 16 20 -1.
+ <_>
+ 4 3 8 10 2.
+ <_>
+ 12 13 8 10 2.
+ <_>
+
+ <_>
+ 7 6 10 12 -1.
+ <_>
+ 12 6 5 6 2.
+ <_>
+ 7 12 5 6 2.
+ <_>
+
+ <_>
+ 0 2 7 12 -1.
+ <_>
+ 0 6 7 4 3.
+ <_>
+
+ <_>
+ 12 17 11 6 -1.
+ <_>
+ 12 19 11 2 3.
+ <_>
+
+ <_>
+ 4 7 12 8 -1.
+ <_>
+ 4 7 6 4 2.
+ <_>
+ 10 11 6 4 2.
+ <_>
+
+ <_>
+ 8 11 8 10 -1.
+ <_>
+ 12 11 4 5 2.
+ <_>
+ 8 16 4 5 2.
+ <_>
+
+ <_>
+ 9 1 4 9 -1.
+ <_>
+ 11 1 2 9 2.
+ <_>
+
+ <_>
+ 14 0 3 22 -1.
+ <_>
+ 15 0 1 22 3.
+ <_>
+
+ <_>
+ 7 0 3 22 -1.
+ <_>
+ 8 0 1 22 3.
+ <_>
+
+ <_>
+ 4 7 18 4 -1.
+ <_>
+ 13 7 9 2 2.
+ <_>
+ 4 9 9 2 2.
+ <_>
+
+ <_>
+ 10 2 4 15 -1.
+ <_>
+ 10 7 4 5 3.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 0 0 18 13 -1.
+ <_>
+ 9 0 9 13 2.
+ <_>
+
+ <_>
+ 16 0 3 24 -1.
+ <_>
+ 17 0 1 24 3.
+ <_>
+
+ <_>
+ 5 0 3 24 -1.
+ <_>
+ 6 0 1 24 3.
+ <_>
+
+ <_>
+ 10 15 5 8 -1.
+ <_>
+ 10 19 5 4 2.
+ <_>
+
+ <_>
+ 2 18 18 2 -1.
+ <_>
+ 2 19 18 1 2.
+ <_>
+
+ <_>
+ 2 8 20 3 -1.
+ <_>
+ 2 9 20 1 3.
+ <_>
+
+ <_>
+ 7 6 9 6 -1.
+ <_>
+ 7 8 9 2 3.
+ <_>
+
+ <_>
+ 3 2 19 10 -1.
+ <_>
+ 3 7 19 5 2.
+ <_>
+
+ <_>
+ 2 7 19 3 -1.
+ <_>
+ 2 8 19 1 3.
+ <_>
+
+ <_>
+ 15 6 9 4 -1.
+ <_>
+ 15 8 9 2 2.
+ <_>
+
+ <_>
+ 2 2 18 8 -1.
+ <_>
+ 8 2 6 8 3.
+ <_>
+
+ <_>
+ 10 9 14 4 -1.
+ <_>
+ 10 9 7 4 2.
+ <_>
+
+ <_>
+ 4 4 6 16 -1.
+ <_>
+ 7 4 3 16 2.
+ <_>
+
+ <_>
+ 15 8 9 16 -1.
+ <_>
+ 18 8 3 16 3.
+ <_>
+
+ <_>
+ 0 8 9 16 -1.
+ <_>
+ 3 8 3 16 3.
+ <_>
+
+ <_>
+ 18 0 6 14 -1.
+ <_>
+ 20 0 2 14 3.
+ <_>
+
+ <_>
+ 0 0 6 14 -1.
+ <_>
+ 2 0 2 14 3.
+ <_>
+
+ <_>
+ 15 0 6 22 -1.
+ <_>
+ 17 0 2 22 3.
+ <_>
+
+ <_>
+ 3 0 6 22 -1.
+ <_>
+ 5 0 2 22 3.
+ <_>
+
+ <_>
+ 12 2 12 20 -1.
+ <_>
+ 16 2 4 20 3.
+ <_>
+
+ <_>
+ 0 2 12 20 -1.
+ <_>
+ 4 2 4 20 3.
+ <_>
+
+ <_>
+ 11 6 4 9 -1.
+ <_>
+ 11 6 2 9 2.
+ <_>
+
+ <_>
+ 9 0 6 16 -1.
+ <_>
+ 12 0 3 16 2.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 7 3 6 2.
+ <_>
+
+ <_>
+ 3 4 18 6 -1.
+ <_>
+ 3 4 9 3 2.
+ <_>
+ 12 7 9 3 2.
+ <_>
+
+ <_>
+ 5 5 16 8 -1.
+ <_>
+ 13 5 8 4 2.
+ <_>
+ 5 9 8 4 2.
+ <_>
+
+ <_>
+ 0 13 10 6 -1.
+ <_>
+ 0 15 10 2 3.
+ <_>
+
+ <_>
+ 8 14 9 6 -1.
+ <_>
+ 8 16 9 2 3.
+ <_>
+
+ <_>
+ 6 2 9 6 -1.
+ <_>
+ 9 2 3 6 3.
+ <_>
+
+ <_>
+ 14 1 10 8 -1.
+ <_>
+ 19 1 5 4 2.
+ <_>
+ 14 5 5 4 2.
+ <_>
+
+ <_>
+ 9 1 3 12 -1.
+ <_>
+ 9 7 3 6 2.
+ <_>
+
+ <_>
+ 6 4 12 9 -1.
+ <_>
+ 6 7 12 3 3.
+ <_>
+
+ <_>
+ 6 5 12 6 -1.
+ <_>
+ 10 5 4 6 3.
+ <_>
+
+ <_>
+ 1 1 8 5 -1.
+ <_>
+ 5 1 4 5 2.
+ <_>
+
+ <_>
+ 12 12 6 8 -1.
+ <_>
+ 12 16 6 4 2.
+ <_>
+
+ <_>
+ 3 12 12 6 -1.
+ <_>
+ 3 14 12 2 3.
+ <_>
+
+ <_>
+ 9 18 12 6 -1.
+ <_>
+ 15 18 6 3 2.
+ <_>
+ 9 21 6 3 2.
+ <_>
+
+ <_>
+ 4 13 6 6 -1.
+ <_>
+ 4 16 6 3 2.
+ <_>
+
+ <_>
+ 11 3 7 18 -1.
+ <_>
+ 11 12 7 9 2.
+ <_>
+
+ <_>
+ 3 9 18 3 -1.
+ <_>
+ 9 9 6 3 3.
+ <_>
+
+ <_>
+ 5 3 19 2 -1.
+ <_>
+ 5 4 19 1 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 4 2 6 3 2.
+ <_>
+ 10 5 6 3 2.
+ <_>
+
+ <_>
+ 9 6 6 9 -1.
+ <_>
+ 11 6 2 9 3.
+ <_>
+
+ <_>
+ 8 6 6 9 -1.
+ <_>
+ 10 6 2 9 3.
+ <_>
+
+ <_>
+ 16 9 5 15 -1.
+ <_>
+ 16 14 5 5 3.
+ <_>
+
+ <_>
+ 3 9 5 15 -1.
+ <_>
+ 3 14 5 5 3.
+ <_>
+
+ <_>
+ 6 6 14 6 -1.
+ <_>
+ 13 6 7 3 2.
+ <_>
+ 6 9 7 3 2.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 8 13 3 7 2.
+ <_>
+
+ <_>
+ 0 16 24 5 -1.
+ <_>
+ 8 16 8 5 3.
+ <_>
+
+ <_>
+ 0 20 20 3 -1.
+ <_>
+ 10 20 10 3 2.
+ <_>
+
+ <_>
+ 5 10 18 2 -1.
+ <_>
+ 5 11 18 1 2.
+ <_>
+
+ <_>
+ 0 6 6 10 -1.
+ <_>
+ 2 6 2 10 3.
+ <_>
+
+ <_>
+ 2 1 20 3 -1.
+ <_>
+ 2 2 20 1 3.
+ <_>
+
+ <_>
+ 9 13 6 11 -1.
+ <_>
+ 11 13 2 11 3.
+ <_>
+
+ <_>
+ 9 15 6 8 -1.
+ <_>
+ 9 19 6 4 2.
+ <_>
+
+ <_>
+ 9 12 6 9 -1.
+ <_>
+ 9 15 6 3 3.
+ <_>
+
+ <_>
+ 5 11 18 2 -1.
+ <_>
+ 5 12 18 1 2.
+ <_>
+
+ <_>
+ 2 6 15 6 -1.
+ <_>
+ 2 8 15 2 3.
+ <_>
+
+ <_>
+ 6 0 18 3 -1.
+ <_>
+ 6 1 18 1 3.
+ <_>
+
+ <_>
+ 5 0 3 18 -1.
+ <_>
+ 6 0 1 18 3.
+ <_>
+
+ <_>
+ 18 3 6 10 -1.
+ <_>
+ 20 3 2 10 3.
+ <_>
+
+ <_>
+ 0 3 6 10 -1.
+ <_>
+ 2 3 2 10 3.
+ <_>
+
+ <_>
+ 10 5 8 9 -1.
+ <_>
+ 10 5 4 9 2.
+ <_>
+
+ <_>
+ 6 5 8 9 -1.
+ <_>
+ 10 5 4 9 2.
+ <_>
+
+ <_>
+ 3 2 20 3 -1.
+ <_>
+ 3 3 20 1 3.
+ <_>
+
+ <_>
+ 5 2 13 4 -1.
+ <_>
+ 5 4 13 2 2.
+ <_>
+
+ <_>
+ 17 0 7 14 -1.
+ <_>
+ 17 7 7 7 2.
+ <_>
+
+ <_>
+ 0 0 7 14 -1.
+ <_>
+ 0 7 7 7 2.
+ <_>
+
+ <_>
+ 9 11 10 6 -1.
+ <_>
+ 9 11 5 6 2.
+ <_>
+
+ <_>
+ 5 11 10 6 -1.
+ <_>
+ 10 11 5 6 2.
+ <_>
+
+ <_>
+ 11 6 3 18 -1.
+ <_>
+ 11 12 3 6 3.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 6 16 18 3 -1.
+ <_>
+ 6 17 18 1 3.
+ <_>
+
+ <_>
+ 4 6 9 10 -1.
+ <_>
+ 4 11 9 5 2.
+ <_>
+
+ <_>
+ 9 7 15 4 -1.
+ <_>
+ 9 9 15 2 2.
+ <_>
+
+ <_>
+ 5 6 12 6 -1.
+ <_>
+ 5 6 6 3 2.
+ <_>
+ 11 9 6 3 2.
+ <_>
+
+ <_>
+ 6 1 12 9 -1.
+ <_>
+ 6 4 12 3 3.
+ <_>
+
+ <_>
+ 7 9 6 12 -1.
+ <_>
+ 7 9 3 6 2.
+ <_>
+ 10 15 3 6 2.
+ <_>
+
+ <_>
+ 11 5 13 6 -1.
+ <_>
+ 11 7 13 2 3.
+ <_>
+
+ <_>
+ 1 11 22 13 -1.
+ <_>
+ 12 11 11 13 2.
+ <_>
+
+ <_>
+ 18 8 6 6 -1.
+ <_>
+ 18 11 6 3 2.
+ <_>
+
+ <_>
+ 0 8 6 6 -1.
+ <_>
+ 0 11 6 3 2.
+ <_>
+
+ <_>
+ 0 6 24 3 -1.
+ <_>
+ 0 7 24 1 3.
+ <_>
+
+ <_>
+ 0 5 10 6 -1.
+ <_>
+ 0 7 10 2 3.
+ <_>
+
+ <_>
+ 6 7 18 3 -1.
+ <_>
+ 6 8 18 1 3.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 2 10 2 3.
+ <_>
+
+ <_>
+ 19 0 3 19 -1.
+ <_>
+ 20 0 1 19 3.
+ <_>
+
+ <_>
+ 4 6 12 16 -1.
+ <_>
+ 4 6 6 8 2.
+ <_>
+ 10 14 6 8 2.
+ <_>
+
+ <_>
+ 19 6 4 18 -1.
+ <_>
+ 21 6 2 9 2.
+ <_>
+ 19 15 2 9 2.
+ <_>
+
+ <_>
+ 1 6 4 18 -1.
+ <_>
+ 1 6 2 9 2.
+ <_>
+ 3 15 2 9 2.
+ <_>
+
+ <_>
+ 3 21 18 3 -1.
+ <_>
+ 3 22 18 1 3.
+ <_>
+
+ <_>
+ 0 19 9 4 -1.
+ <_>
+ 0 21 9 2 2.
+ <_>
+
+ <_>
+ 12 18 12 6 -1.
+ <_>
+ 18 18 6 3 2.
+ <_>
+ 12 21 6 3 2.
+ <_>
+
+ <_>
+ 7 18 9 4 -1.
+ <_>
+ 7 20 9 2 2.
+ <_>
+
+ <_>
+ 12 16 10 8 -1.
+ <_>
+ 17 16 5 4 2.
+ <_>
+ 12 20 5 4 2.
+ <_>
+
+ <_>
+ 2 16 10 8 -1.
+ <_>
+ 2 16 5 4 2.
+ <_>
+ 7 20 5 4 2.
+ <_>
+
+ <_>
+ 14 0 10 12 -1.
+ <_>
+ 19 0 5 6 2.
+ <_>
+ 14 6 5 6 2.
+ <_>
+
+ <_>
+ 0 0 10 12 -1.
+ <_>
+ 0 0 5 6 2.
+ <_>
+ 5 6 5 6 2.
+ <_>
+
+ <_>
+ 15 14 9 6 -1.
+ <_>
+ 15 16 9 2 3.
+ <_>
+
+ <_>
+ 0 14 9 6 -1.
+ <_>
+ 0 16 9 2 3.
+ <_>
+
+ <_>
+ 14 14 10 6 -1.
+ <_>
+ 14 16 10 2 3.
+ <_>
+
+ <_>
+ 0 14 10 6 -1.
+ <_>
+ 0 16 10 2 3.
+ <_>
+
+ <_>
+ 5 18 18 2 -1.
+ <_>
+ 5 19 18 1 2.
+ <_>
+
+ <_>
+ 0 18 18 3 -1.
+ <_>
+ 0 19 18 1 3.
+ <_>
+
+ <_>
+ 3 5 18 12 -1.
+ <_>
+ 12 5 9 6 2.
+ <_>
+ 3 11 9 6 2.
+ <_>
+
+ <_>
+ 5 3 7 9 -1.
+ <_>
+ 5 6 7 3 3.
+ <_>
+
+ <_>
+ 4 0 19 15 -1.
+ <_>
+ 4 5 19 5 3.
+ <_>
+
+ <_>
+ 3 0 16 4 -1.
+ <_>
+ 3 2 16 2 2.
+ <_>
+
+ <_>
+ 4 12 16 12 -1.
+ <_>
+ 4 12 8 12 2.
+ <_>
+
+ <_>
+ 4 3 12 15 -1.
+ <_>
+ 10 3 6 15 2.
+ <_>
+
+ <_>
+ 16 4 2 19 -1.
+ <_>
+ 16 4 1 19 2.
+ <_>
+
+ <_>
+ 6 4 2 19 -1.
+ <_>
+ 7 4 1 19 2.
+ <_>
+
+ <_>
+ 13 14 8 10 -1.
+ <_>
+ 17 14 4 5 2.
+ <_>
+ 13 19 4 5 2.
+ <_>
+
+ <_>
+ 3 14 8 10 -1.
+ <_>
+ 3 14 4 5 2.
+ <_>
+ 7 19 4 5 2.
+ <_>
+
+ <_>
+ 12 6 3 18 -1.
+ <_>
+ 12 12 3 6 3.
+ <_>
+
+ <_>
+ 5 11 12 6 -1.
+ <_>
+ 5 11 6 3 2.
+ <_>
+ 11 14 6 3 2.
+ <_>
+
+ <_>
+ 10 5 8 10 -1.
+ <_>
+ 14 5 4 5 2.
+ <_>
+ 10 10 4 5 2.
+ <_>
+
+ <_>
+ 6 4 12 10 -1.
+ <_>
+ 6 4 6 5 2.
+ <_>
+ 12 9 6 5 2.
+ <_>
+
+ <_>
+ 6 8 18 10 -1.
+ <_>
+ 15 8 9 5 2.
+ <_>
+ 6 13 9 5 2.
+ <_>
+
+ <_>
+ 0 8 18 10 -1.
+ <_>
+ 0 8 9 5 2.
+ <_>
+ 9 13 9 5 2.
+ <_>
+
+ <_>
+ 12 6 3 18 -1.
+ <_>
+ 12 12 3 6 3.
+ <_>
+
+ <_>
+ 0 14 18 3 -1.
+ <_>
+ 0 15 18 1 3.
+ <_>
+
+ <_>
+ 12 6 3 18 -1.
+ <_>
+ 12 12 3 6 3.
+ <_>
+
+ <_>
+ 9 6 3 18 -1.
+ <_>
+ 9 12 3 6 3.
+ <_>
+
+ <_>
+ 6 14 18 3 -1.
+ <_>
+ 6 15 18 1 3.
+ <_>
+
+ <_>
+ 0 5 18 3 -1.
+ <_>
+ 0 6 18 1 3.
+ <_>
+
+ <_>
+ 2 5 22 3 -1.
+ <_>
+ 2 6 22 1 3.
+ <_>
+
+ <_>
+ 0 0 21 10 -1.
+ <_>
+ 7 0 7 10 3.
+ <_>
+
+ <_>
+ 6 3 18 17 -1.
+ <_>
+ 12 3 6 17 3.
+ <_>
+
+ <_>
+ 0 3 18 17 -1.
+ <_>
+ 6 3 6 17 3.
+ <_>
+
+ <_>
+ 0 12 24 11 -1.
+ <_>
+ 8 12 8 11 3.
+ <_>
+
+ <_>
+ 4 10 16 6 -1.
+ <_>
+ 4 13 16 3 2.
+ <_>
+
+ <_>
+ 12 8 6 8 -1.
+ <_>
+ 12 12 6 4 2.
+ <_>
+
+ <_>
+ 6 14 8 7 -1.
+ <_>
+ 10 14 4 7 2.
+ <_>
+
+ <_>
+ 15 10 6 14 -1.
+ <_>
+ 18 10 3 7 2.
+ <_>
+ 15 17 3 7 2.
+ <_>
+
+ <_>
+ 3 10 6 14 -1.
+ <_>
+ 3 10 3 7 2.
+ <_>
+ 6 17 3 7 2.
+ <_>
+
+ <_>
+ 6 12 18 2 -1.
+ <_>
+ 6 13 18 1 2.
+ <_>
+
+ <_>
+ 5 8 10 6 -1.
+ <_>
+ 5 10 10 2 3.
+ <_>
+
+ <_>
+ 12 11 9 4 -1.
+ <_>
+ 12 13 9 2 2.
+ <_>
+
+ <_>
+ 0 11 9 6 -1.
+ <_>
+ 0 13 9 2 3.
+ <_>
+
+ <_>
+ 11 2 3 18 -1.
+ <_>
+ 12 2 1 18 3.
+ <_>
+
+ <_>
+ 10 2 3 18 -1.
+ <_>
+ 11 2 1 18 3.
+ <_>
+
+ <_>
+ 9 12 6 10 -1.
+ <_>
+ 11 12 2 10 3.
+ <_>
+
+ <_>
+ 1 10 6 9 -1.
+ <_>
+ 1 13 6 3 3.
+ <_>
+
+ <_>
+ 6 9 16 6 -1.
+ <_>
+ 14 9 8 3 2.
+ <_>
+ 6 12 8 3 2.
+ <_>
+
+ <_>
+ 1 8 9 6 -1.
+ <_>
+ 1 10 9 2 3.
+ <_>
+
+ <_>
+ 7 7 16 6 -1.
+ <_>
+ 7 9 16 2 3.
+ <_>
+
+ <_>
+ 0 0 18 3 -1.
+ <_>
+ 0 1 18 1 3.
+ <_>
+
+ <_>
+ 10 0 6 9 -1.
+ <_>
+ 12 0 2 9 3.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+ 10 15 2 9 2.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 10 0 2 9 3.
+ <_>
+
+ <_>
+ 9 1 6 9 -1.
+ <_>
+ 9 4 6 3 3.
+ <_>
+
+ <_>
+ 1 0 18 9 -1.
+ <_>
+ 1 3 18 3 3.
+ <_>
+
+ <_>
+ 0 3 24 3 -1.
+ <_>
+ 0 4 24 1 3.
+ <_>
+
+ <_>
+ 6 14 9 4 -1.
+ <_>
+ 6 16 9 2 2.
+ <_>
+
+ <_>
+ 8 9 8 10 -1.
+ <_>
+ 12 9 4 5 2.
+ <_>
+ 8 14 4 5 2.
+ <_>
+
+ <_>
+ 5 2 13 9 -1.
+ <_>
+ 5 5 13 3 3.
+ <_>
+
+ <_>
+ 4 4 16 9 -1.
+ <_>
+ 4 7 16 3 3.
+ <_>
+
+ <_>
+ 4 4 14 9 -1.
+ <_>
+ 4 7 14 3 3.
+ <_>
+
+ <_>
+ 8 5 9 6 -1.
+ <_>
+ 8 7 9 2 3.
+ <_>
+
+ <_>
+ 1 7 16 6 -1.
+ <_>
+ 1 9 16 2 3.
+ <_>
+
+ <_>
+ 10 5 13 9 -1.
+ <_>
+ 10 8 13 3 3.
+ <_>
+
+ <_>
+ 1 5 13 9 -1.
+ <_>
+ 1 8 13 3 3.
+ <_>
+
+ <_>
+ 0 4 24 6 -1.
+ <_>
+ 12 4 12 3 2.
+ <_>
+ 0 7 12 3 2.
+ <_>
+
+ <_>
+ 1 14 10 9 -1.
+ <_>
+ 1 17 10 3 3.
+ <_>
+
+ <_>
+ 5 17 18 3 -1.
+ <_>
+ 5 18 18 1 3.
+ <_>
+
+ <_>
+ 0 16 18 3 -1.
+ <_>
+ 0 17 18 1 3.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 9 19 9 2 3.
+ <_>
+
+ <_>
+ 1 20 22 4 -1.
+ <_>
+ 1 20 11 2 2.
+ <_>
+ 12 22 11 2 2.
+ <_>
+
+ <_>
+ 8 14 8 6 -1.
+ <_>
+ 8 17 8 3 2.
+ <_>
+
+ <_>
+ 8 6 8 15 -1.
+ <_>
+ 8 11 8 5 3.
+ <_>
+
+ <_>
+ 5 4 18 3 -1.
+ <_>
+ 5 5 18 1 3.
+ <_>
+
+ <_>
+ 9 3 5 10 -1.
+ <_>
+ 9 8 5 5 2.
+ <_>
+
+ <_>
+ 6 8 12 3 -1.
+ <_>
+ 6 8 6 3 2.
+ <_>
+
+ <_>
+ 2 6 18 6 -1.
+ <_>
+ 2 6 9 3 2.
+ <_>
+ 11 9 9 3 2.
+ <_>
+
+ <_>
+ 10 6 4 18 -1.
+ <_>
+ 12 6 2 9 2.
+ <_>
+ 10 15 2 9 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 10 5 3 6 2.
+ <_>
+
+ <_>
+ 14 5 2 18 -1.
+ <_>
+ 14 14 2 9 2.
+ <_>
+
+ <_>
+ 8 5 2 18 -1.
+ <_>
+ 8 14 2 9 2.
+ <_>
+
+ <_>
+ 9 2 10 6 -1.
+ <_>
+ 9 2 5 6 2.
+ <_>
+
+ <_>
+ 3 1 18 12 -1.
+ <_>
+ 12 1 9 12 2.
+ <_>
+
+ <_>
+ 5 2 17 22 -1.
+ <_>
+ 5 13 17 11 2.
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 2 12 2 3.
+ <_>
+
+ <_>
+ 6 9 16 6 -1.
+ <_>
+ 14 9 8 3 2.
+ <_>
+ 6 12 8 3 2.
+ <_>
+
+ <_>
+ 9 0 5 18 -1.
+ <_>
+ 9 9 5 9 2.
+ <_>
+
+ <_>
+ 12 0 6 9 -1.
+ <_>
+ 14 0 2 9 3.
+ <_>
+
+ <_>
+ 6 0 6 9 -1.
+ <_>
+ 8 0 2 9 3.
+ <_>
+
+ <_>
+ 9 1 6 12 -1.
+ <_>
+ 11 1 2 12 3.
+ <_>
+
+ <_>
+ 5 9 13 4 -1.
+ <_>
+ 5 11 13 2 2.
+ <_>
+
+ <_>
+ 5 8 19 3 -1.
+ <_>
+ 5 9 19 1 3.
+ <_>
+
+ <_>
+ 9 9 6 8 -1.
+ <_>
+ 9 13 6 4 2.
+ <_>
+
+ <_>
+ 11 9 4 15 -1.
+ <_>
+ 11 14 4 5 3.
+ <_>
+
+ <_>
+ 2 0 6 14 -1.
+ <_>
+ 2 0 3 7 2.
+ <_>
+ 5 7 3 7 2.
+ <_>
+
+ <_>
+ 15 1 6 14 -1.
+ <_>
+ 18 1 3 7 2.
+ <_>
+ 15 8 3 7 2.
+ <_>
+
+ <_>
+ 3 1 6 14 -1.
+ <_>
+ 3 1 3 7 2.
+ <_>
+ 6 8 3 7 2.
+ <_>
+
+ <_>
+ 3 20 18 4 -1.
+ <_>
+ 12 20 9 2 2.
+ <_>
+ 3 22 9 2 2.
+ <_>
+
+ <_>
+ 5 0 4 20 -1.
+ <_>
+ 5 0 2 10 2.
+ <_>
+ 7 10 2 10 2.
+ <_>
+
+ <_>
+ 16 8 8 12 -1.
+ <_>
+ 20 8 4 6 2.
+ <_>
+ 16 14 4 6 2.
+ <_>
+
+ <_>
+ 0 8 8 12 -1.
+ <_>
+ 0 8 4 6 2.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 13 13 10 8 -1.
+ <_>
+ 18 13 5 4 2.
+ <_>
+ 13 17 5 4 2.
+ <_>
+
+ <_>
+ 1 13 10 8 -1.
+ <_>
+ 1 13 5 4 2.
+ <_>
+ 6 17 5 4 2.
+ <_>
+
+ <_>
+ 15 8 4 15 -1.
+ <_>
+ 15 13 4 5 3.
+ <_>
+
+ <_>
+ 5 8 4 15 -1.
+ <_>
+ 5 13 4 5 3.
+ <_>
+
+ <_>
+ 6 11 16 12 -1.
+ <_>
+ 6 15 16 4 3.
+ <_>
+
+ <_>
+ 2 11 16 12 -1.
+ <_>
+ 2 15 16 4 3.
+ <_>
+
+ <_>
+ 14 12 7 9 -1.
+ <_>
+ 14 15 7 3 3.
+ <_>
+
+ <_>
+ 10 1 3 21 -1.
+ <_>
+ 10 8 3 7 3.
+ <_>
+
+ <_>
+ 13 11 9 4 -1.
+ <_>
+ 13 13 9 2 2.
+ <_>
+
+ <_>
+ 3 10 17 9 -1.
+ <_>
+ 3 13 17 3 3.
+ <_>
+
+ <_>
+ 13 8 8 15 -1.
+ <_>
+ 13 13 8 5 3.
+ <_>
+
+ <_>
+ 3 8 8 15 -1.
+ <_>
+ 3 13 8 5 3.
+ <_>
+
+ <_>
+ 11 14 10 8 -1.
+ <_>
+ 16 14 5 4 2.
+ <_>
+ 11 18 5 4 2.
+ <_>
+
+ <_>
+ 0 18 22 6 -1.
+ <_>
+ 0 18 11 3 2.
+ <_>
+ 11 21 11 3 2.
+ <_>
+
+ <_>
+ 0 16 24 4 -1.
+ <_>
+ 0 16 12 4 2.
+ <_>
+
+ <_>
+ 6 20 12 3 -1.
+ <_>
+ 12 20 6 3 2.
+ <_>
+
+ <_>
+ 18 12 6 12 -1.
+ <_>
+ 21 12 3 6 2.
+ <_>
+ 18 18 3 6 2.
+ <_>
+
+ <_>
+ 0 12 6 12 -1.
+ <_>
+ 0 12 3 6 2.
+ <_>
+ 3 18 3 6 2.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 1 6 22 10 -1.
+ <_>
+ 1 6 11 5 2.
+ <_>
+ 12 11 11 5 2.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 0 18 18 2 -1.
+ <_>
+ 0 19 18 1 2.
+ <_>
+
+ <_>
+ 3 15 19 3 -1.
+ <_>
+ 3 16 19 1 3.
+ <_>
+
+ <_>
+ 0 13 18 3 -1.
+ <_>
+ 0 14 18 1 3.
+ <_>
+
+ <_>
+ 15 17 9 6 -1.
+ <_>
+ 15 19 9 2 3.
+ <_>
+
+ <_>
+ 0 17 9 6 -1.
+ <_>
+ 0 19 9 2 3.
+ <_>
+
+ <_>
+ 12 17 9 6 -1.
+ <_>
+ 12 19 9 2 3.
+ <_>
+
+ <_>
+ 3 17 9 6 -1.
+ <_>
+ 3 19 9 2 3.
+ <_>
+
+ <_>
+ 16 2 3 20 -1.
+ <_>
+ 17 2 1 20 3.
+ <_>
+
+ <_>
+ 0 13 24 8 -1.
+ <_>
+ 0 17 24 4 2.
+ <_>
+
+ <_>
+ 9 1 6 22 -1.
+ <_>
+ 12 1 3 11 2.
+ <_>
+ 9 12 3 11 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_fullbody.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_fullbody.xml
new file mode 100644
index 0000000000000000000000000000000000000000..3ef752cb6c1f4fcc5cc37c5777f412d01e04edbc
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_fullbody.xml
@@ -0,0 +1,17030 @@
+
+
+
+BOOST
+ HAAR
+ 28
+ 14
+
+ 107
+
+ 0
+ 30
+
+ <_>
+ 9
+ -1.2288980484008789e+00
+
+ <_>
+
+ 0 -1 0 -5.5820569396018982e-02
+
+ 5.8697921037673950e-01 -6.2811422348022461e-01
+ <_>
+
+ 0 -1 1 -3.8861181586980820e-02
+
+ -7.0916819572448730e-01 2.6821210980415344e-01
+ <_>
+
+ 0 -1 2 -2.6740878820419312e-01
+
+ 8.3082962036132812e-01 -2.2599589824676514e-01
+ <_>
+
+ 0 -1 3 9.6419736742973328e-02
+
+ -1.1697849631309509e-01 8.7254559993743896e-01
+ <_>
+
+ 0 -1 4 -1.0798710398375988e-02
+
+ -5.7219749689102173e-01 2.5325658917427063e-01
+ <_>
+
+ 0 -1 5 1.1365639977157116e-02
+
+ 1.9650830328464508e-01 -7.2744637727737427e-01
+ <_>
+
+ 0 -1 6 -5.0216919044032693e-04
+
+ 2.4435159564018250e-01 -5.1973581314086914e-01
+ <_>
+
+ 0 -1 7 -2.8462480753660202e-02
+
+ -8.3607292175292969e-01 1.1158040165901184e-01
+ <_>
+
+ 0 -1 8 1.3473170110955834e-03
+
+ -3.8406538963317871e-01 2.6767989993095398e-01
+ <_>
+ 15
+ -1.0969949960708618e+00
+
+ <_>
+
+ 0 -1 9 -1.0743220336735249e-02
+
+ 4.7747328877449036e-01 -6.2392932176589966e-01
+ <_>
+
+ 0 -1 10 -1.3188569573685527e-03
+
+ 2.1242660284042358e-01 -2.4162709712982178e-01
+ <_>
+
+ 0 -1 11 -5.5571161210536957e-03
+
+ 3.6147859692573547e-01 -3.7251719832420349e-01
+ <_>
+
+ 0 -1 12 -1.3893410563468933e-01
+
+ -6.7900502681732178e-01 1.1280310153961182e-01
+ <_>
+
+ 0 -1 13 2.6465829461812973e-02
+
+ 1.2474969774484634e-01 -8.2852339744567871e-01
+ <_>
+
+ 0 -1 14 -8.9386843144893646e-02
+
+ 7.4271762371063232e-01 -1.7019319534301758e-01
+ <_>
+
+ 0 -1 15 -2.1335419267416000e-02
+
+ -7.1750187873840332e-01 1.5566180646419525e-01
+ <_>
+
+ 0 -1 16 5.5709101259708405e-02
+
+ -1.5310040116310120e-01 7.1804767847061157e-01
+ <_>
+
+ 0 -1 17 -6.9709950685501099e-01
+
+ 8.1154191493988037e-01 -1.0886389762163162e-01
+ <_>
+
+ 0 -1 18 2.0205999910831451e-01
+
+ 7.6398417353630066e-02 -7.3011511564254761e-01
+ <_>
+
+ 0 -1 19 -7.1882657706737518e-02
+
+ -7.1488589048385620e-01 1.6517649590969086e-01
+ <_>
+
+ 0 -1 20 -1.9228760153055191e-02
+
+ -3.9868369698524475e-01 4.0557239204645157e-02
+ <_>
+
+ 0 -1 21 1.1500229593366385e-03
+
+ -3.8260778784751892e-01 3.1855079531669617e-01
+ <_>
+
+ 0 -1 22 2.3252779617905617e-02
+
+ 5.4390400648117065e-02 -7.0669990777969360e-01
+ <_>
+
+ 0 -1 23 -3.2618120894767344e-04
+
+ 2.2610600292682648e-01 -4.0709879994392395e-01
+ <_>
+ 14
+ -1.2285970449447632e+00
+
+ <_>
+
+ 0 -1 24 -1.2910200655460358e-01
+
+ 7.6003128290176392e-01 -2.3405790328979492e-01
+ <_>
+
+ 0 -1 25 6.7449256777763367e-02
+
+ 1.7179529368877411e-01 -8.4364777803421021e-01
+ <_>
+
+ 0 -1 26 1.2663270346820354e-02
+
+ 2.2913210093975067e-01 -7.3072457313537598e-01
+ <_>
+
+ 0 -1 27 -4.2741331271827221e-03
+
+ 6.2420479953289032e-02 -4.0985938906669617e-01
+ <_>
+
+ 0 -1 28 -2.3143950849771500e-02
+
+ -8.3971828222274780e-01 2.0115749537944794e-01
+ <_>
+
+ 0 -1 29 -5.5371038615703583e-04
+
+ 1.5369419753551483e-01 -4.4038110971450806e-01
+ <_>
+
+ 0 -1 30 -9.5239803194999695e-03
+
+ -6.3186800479888916e-01 1.6250230371952057e-01
+ <_>
+
+ 0 -1 31 2.8307670727372169e-02
+
+ -7.2599969804286957e-02 3.7919989228248596e-01
+ <_>
+
+ 0 -1 32 -4.5148018747568130e-02
+
+ 7.4493628740310669e-01 -1.5581710636615753e-01
+ <_>
+
+ 0 -1 33 1.0014739632606506e-01
+
+ 1.7949639260768890e-01 -6.4644080400466919e-01
+ <_>
+
+ 0 -1 34 7.3245721869170666e-03
+
+ 1.7763899266719818e-01 -5.7654058933258057e-01
+ <_>
+
+ 0 -1 35 1.1875670403242111e-02
+
+ -3.1129720807075500e-01 1.6321399807929993e-01
+ <_>
+
+ 0 -1 36 -2.5479039177298546e-02
+
+ 6.2692481279373169e-01 -1.1333750188350677e-01
+ <_>
+
+ 0 -1 37 -7.9196523874998093e-03
+
+ -7.7624428272247314e-01 1.5427610278129578e-01
+ <_>
+ 22
+ -1.1200269460678101e+00
+
+ <_>
+
+ 0 -1 38 -8.5809278488159180e-01
+
+ 7.8796839714050293e-01 -2.2135549783706665e-01
+ <_>
+
+ 0 -1 39 -1.6491119749844074e-03
+
+ 2.5673401355743408e-01 -4.3194240331649780e-01
+ <_>
+
+ 0 -1 40 -2.5882309302687645e-02
+
+ -8.7551230192184448e-01 8.8385626673698425e-02
+ <_>
+
+ 0 -1 41 -4.7666151076555252e-03
+
+ -4.7022369503974915e-01 2.2800800204277039e-01
+ <_>
+
+ 0 -1 42 -8.3729699254035950e-02
+
+ 6.3385730981826782e-01 -1.4888319373130798e-01
+ <_>
+
+ 0 -1 43 -4.0685739368200302e-02
+
+ -9.3931788206100464e-01 1.0598939843475819e-02
+ <_>
+
+ 0 -1 44 -5.0759920850396156e-03
+
+ -4.5554420351982117e-01 1.7864370346069336e-01
+ <_>
+
+ 0 -1 45 2.3427829146385193e-03
+
+ -2.1434280276298523e-01 1.5531420707702637e-01
+ <_>
+
+ 0 -1 46 2.7649151161313057e-04
+
+ -3.3348160982131958e-01 2.2780239582061768e-01
+ <_>
+
+ 0 -1 47 1.6941839829087257e-02
+
+ 7.4140816926956177e-02 -5.6262052059173584e-01
+ <_>
+
+ 0 -1 48 4.7558981180191040e-01
+
+ -1.0861130058765411e-01 8.2985258102416992e-01
+ <_>
+
+ 0 -1 49 5.8000627905130386e-03
+
+ 1.3249030709266663e-01 -5.1620399951934814e-01
+ <_>
+
+ 0 -1 50 -7.4477560818195343e-02
+
+ -5.5545568466186523e-01 1.2344320118427277e-01
+ <_>
+
+ 0 -1 51 -3.5143009154126048e-04
+
+ 6.8190753459930420e-02 -1.3616859912872314e-01
+ <_>
+
+ 0 -1 52 7.3454021476209164e-03
+
+ 1.3678510487079620e-01 -5.3645122051239014e-01
+ <_>
+
+ 0 -1 53 -1.5471279621124268e-02
+
+ 2.6180639863014221e-01 -1.0545810312032700e-01
+ <_>
+
+ 0 -1 54 5.6055500172078609e-03
+
+ -2.5746351480484009e-01 2.8795930743217468e-01
+ <_>
+
+ 0 -1 55 -2.4552858667448163e-04
+
+ 1.0099930316209793e-01 -2.6119679212570190e-01
+ <_>
+
+ 0 -1 56 -3.3138900995254517e-02
+
+ -8.3779567480087280e-01 1.1327689886093140e-01
+ <_>
+
+ 0 -1 57 3.5591889172792435e-02
+
+ 8.2336090505123138e-02 -6.2505662441253662e-01
+ <_>
+
+ 0 -1 58 2.0834030210971832e-01
+
+ 6.9524437189102173e-02 -8.6881148815155029e-01
+ <_>
+
+ 0 -1 59 -2.8165400028228760e-02
+
+ -5.9799849987030029e-01 8.0329902470111847e-02
+ <_>
+ 25
+ -1.0664960145950317e+00
+
+ <_>
+
+ 0 -1 60 -2.6740709319710732e-02
+
+ 3.8912421464920044e-01 -4.9827679991722107e-01
+ <_>
+
+ 0 -1 61 -1.2516999850049615e-03
+
+ 1.3123430311679840e-01 -3.6368998885154724e-01
+ <_>
+
+ 0 -1 62 -4.1634511202573776e-02
+
+ 5.7444751262664795e-01 -1.3932879269123077e-01
+ <_>
+
+ 0 -1 63 1.0096579790115356e-02
+
+ 9.9073797464370728e-02 -2.2956989705562592e-01
+ <_>
+
+ 0 -1 64 -1.9090399146080017e-02
+
+ -5.5153107643127441e-01 1.5110069513320923e-01
+ <_>
+
+ 0 -1 65 -3.1481068581342697e-02
+
+ -4.5884269475936890e-01 1.7579549551010132e-01
+ <_>
+
+ 0 -1 66 -1.7687549814581871e-02
+
+ 4.4711831212043762e-01 -1.5292930603027344e-01
+ <_>
+
+ 0 -1 67 -4.3685659766197205e-03
+
+ 1.2185490131378174e-01 -1.6688570380210876e-01
+ <_>
+
+ 0 -1 68 8.9326845481991768e-03
+
+ -1.3333690166473389e-01 6.3753342628479004e-01
+ <_>
+
+ 0 -1 69 -5.0706309266388416e-03
+
+ -1.1220289766788483e-01 6.9824352860450745e-02
+ <_>
+
+ 0 -1 70 -5.9803090989589691e-03
+
+ -5.1842898130416870e-01 1.6099199652671814e-01
+ <_>
+
+ 0 -1 71 2.9967839363962412e-03
+
+ 4.1065338999032974e-02 -1.9455850124359131e-01
+ <_>
+
+ 0 -1 72 3.8641549181193113e-03
+
+ 1.6673240065574646e-01 -4.3569779396057129e-01
+ <_>
+
+ 0 -1 73 6.8349428474903107e-03
+
+ -1.7162640392780304e-01 1.4818060398101807e-01
+ <_>
+
+ 0 -1 74 4.3158490210771561e-02
+
+ 8.3203509449958801e-02 -7.7821850776672363e-01
+ <_>
+
+ 0 -1 75 7.6560080051422119e-03
+
+ 8.4740802645683289e-02 -4.9738150835037231e-01
+ <_>
+
+ 0 -1 76 -3.1110988929867744e-03
+
+ 2.5827148556709290e-01 -2.5552031397819519e-01
+ <_>
+
+ 0 -1 77 1.1870309710502625e-01
+
+ -9.0944238007068634e-02 7.2286212444305420e-01
+ <_>
+
+ 0 -1 78 1.6875969246029854e-02
+
+ 1.2629170715808868e-01 -5.5205297470092773e-01
+ <_>
+
+ 0 -1 79 -1.0887029930017889e-04
+
+ 8.1648796796798706e-02 -1.6937020421028137e-01
+ <_>
+
+ 0 -1 80 2.8222990222275257e-03
+
+ 1.6411300003528595e-01 -3.5218268632888794e-01
+ <_>
+
+ 0 -1 81 -5.2425849437713623e-01
+
+ 4.8906171321868896e-01 -1.2674759328365326e-01
+ <_>
+
+ 0 -1 82 3.6927509307861328e-01
+
+ 8.6115993559360504e-02 -6.7184638977050781e-01
+ <_>
+
+ 0 -1 83 -1.6883780062198639e-01
+
+ -8.4915691614151001e-01 5.4833348840475082e-02
+ <_>
+
+ 0 -1 84 -1.9279260188341141e-02
+
+ -7.8011512756347656e-01 6.2202680855989456e-02
+ <_>
+ 22
+ -1.2319500446319580e+00
+
+ <_>
+
+ 0 -1 85 -2.0901350677013397e-01
+
+ 6.9808167219161987e-01 -3.4573590755462646e-01
+ <_>
+
+ 0 -1 86 -4.8061009147204459e-04
+
+ 2.0923900604248047e-01 -2.4147640168666840e-01
+ <_>
+
+ 0 -1 87 -2.4844119325280190e-03
+
+ 2.7636009454727173e-01 -4.1990399360656738e-01
+ <_>
+
+ 0 -1 88 -2.1536289714276791e-03
+
+ 2.4710460007190704e-01 -3.0677899718284607e-01
+ <_>
+
+ 0 -1 89 5.8911990374326706e-02
+
+ -7.0834763348102570e-02 7.1133142709732056e-01
+ <_>
+
+ 0 -1 90 -2.3095219512470067e-04
+
+ 1.7148600518703461e-01 -3.6168378591537476e-01
+ <_>
+
+ 0 -1 91 -3.1396400183439255e-02
+
+ -8.0131882429122925e-01 1.0042560100555420e-01
+ <_>
+
+ 0 -1 92 -3.5601970739662647e-03
+
+ 9.9432766437530518e-02 -1.4848260581493378e-01
+ <_>
+
+ 0 -1 93 -4.3389322236180305e-03
+
+ -5.6621241569519043e-01 1.4096799492835999e-01
+ <_>
+
+ 0 -1 94 2.1326710283756256e-01
+
+ 4.8158209770917892e-02 -7.4858909845352173e-01
+ <_>
+
+ 0 -1 95 1.0042529553174973e-02
+
+ 1.0428400337696075e-01 -5.5387377738952637e-01
+ <_>
+
+ 0 -1 96 -2.6825280860066414e-02
+
+ 5.7281607389450073e-01 -8.2537978887557983e-02
+ <_>
+
+ 0 -1 97 8.3760882262140512e-04
+
+ -2.5626900792121887e-01 2.5898420810699463e-01
+ <_>
+
+ 0 -1 98 -7.6051978394389153e-03
+
+ -5.8677357435226440e-01 5.1210779696702957e-02
+ <_>
+
+ 0 -1 99 -1.1935640126466751e-01
+
+ -4.5530828833580017e-01 1.2570330500602722e-01
+ <_>
+
+ 0 -1 100 6.6083478741347790e-03
+
+ -1.6316379606723785e-01 4.6659541130065918e-01
+ <_>
+
+ 0 -1 101 1.7303509637713432e-02
+
+ -1.2391400337219238e-01 5.9755408763885498e-01
+ <_>
+
+ 0 -1 102 5.4382272064685822e-03
+
+ 1.3838729262351990e-01 -5.5069202184677124e-01
+ <_>
+
+ 0 -1 103 2.4591449182480574e-03
+
+ -3.9927339553833008e-01 1.5387089550495148e-01
+ <_>
+
+ 0 -1 104 3.5056238994002342e-03
+
+ -1.6146700084209442e-01 1.6086600720882416e-01
+ <_>
+
+ 0 -1 105 -2.3172689543571323e-04
+
+ 1.7059360444545746e-01 -3.5409420728683472e-01
+ <_>
+
+ 0 -1 106 1.1914529837667942e-02
+
+ 1.6265639662742615e-01 -4.1463181376457214e-01
+ <_>
+ 18
+ -1.1912549734115601e+00
+
+ <_>
+
+ 0 -1 107 -4.5429700985550880e-03
+
+ 4.2964971065521240e-01 -5.6915849447250366e-01
+ <_>
+
+ 0 -1 108 4.6804840676486492e-03
+
+ -1.0380080342292786e-01 2.5453719496726990e-01
+ <_>
+
+ 0 -1 109 3.5870380233973265e-03
+
+ -3.6577078700065613e-01 3.9343339204788208e-01
+ <_>
+
+ 0 -1 110 -3.4428331255912781e-01
+
+ 7.3125761747360229e-01 -1.5060240030288696e-01
+ <_>
+
+ 0 -1 111 3.3054459840059280e-02
+
+ 1.7657589912414551e-01 -5.1060509681701660e-01
+ <_>
+
+ 0 -1 112 -2.1190310362726450e-03
+
+ 8.6859323084354401e-02 -1.7733760178089142e-01
+ <_>
+
+ 0 -1 113 1.3780740089714527e-02
+
+ -1.2247169762849808e-01 6.6472941637039185e-01
+ <_>
+
+ 0 -1 114 2.4847950786352158e-02
+
+ 2.3976799845695496e-01 -3.2456618547439575e-01
+ <_>
+
+ 0 -1 115 -1.3126630336046219e-02
+
+ 4.9461808800697327e-01 -2.0954379439353943e-01
+ <_>
+
+ 0 -1 116 -1.6886189579963684e-02
+
+ -1.3973990082740784e-01 7.5013160705566406e-02
+ <_>
+
+ 0 -1 117 -5.2776751108467579e-03
+
+ -3.8919359445571899e-01 1.8921519815921783e-01
+ <_>
+
+ 0 -1 118 -2.0325549412518740e-03
+
+ 2.4965450167655945e-01 -1.7960360646247864e-01
+ <_>
+
+ 0 -1 119 -1.8056800588965416e-02
+
+ -5.3683072328567505e-01 1.0615479946136475e-01
+ <_>
+
+ 0 -1 120 -2.8815109282732010e-02
+
+ 5.3303200006484985e-01 -7.8712686896324158e-02
+ <_>
+
+ 0 -1 121 -6.0971658676862717e-02
+
+ -8.5663092136383057e-01 8.1721447408199310e-02
+ <_>
+
+ 0 -1 122 -6.2022160738706589e-02
+
+ -6.7228960990905762e-01 8.2316987216472626e-02
+ <_>
+
+ 0 -1 123 -6.2961759977042675e-03
+
+ 2.7192309498786926e-01 -2.3713490366935730e-01
+ <_>
+
+ 0 -1 124 4.9608140252530575e-03
+
+ -1.4295519888401031e-01 2.9380369186401367e-01
+ <_>
+ 30
+ -1.1750839948654175e+00
+
+ <_>
+
+ 0 -1 125 -8.7001353502273560e-02
+
+ 6.3087427616119385e-01 -2.6264131069183350e-01
+ <_>
+
+ 0 -1 126 -4.5627020299434662e-03
+
+ 1.4641839265823364e-01 -5.2321881055831909e-02
+ <_>
+
+ 0 -1 127 -4.1381991468369961e-03
+
+ 2.1747599542140961e-01 -3.2107940316200256e-01
+ <_>
+
+ 0 -1 128 -1.9443330529611558e-04
+
+ 1.4305000007152557e-01 -4.4748461246490479e-01
+ <_>
+
+ 0 -1 129 -2.6125069707632065e-03
+
+ -3.5936230421066284e-01 2.0934499800205231e-01
+ <_>
+
+ 0 -1 130 -3.5238351672887802e-02
+
+ -5.5879557132720947e-01 1.1818339675664902e-01
+ <_>
+
+ 0 -1 131 2.3880550637841225e-02
+
+ -1.2345419824123383e-01 6.4505738019943237e-01
+ <_>
+
+ 0 -1 132 -3.5878319758921862e-03
+
+ 2.3340910673141479e-01 -2.9905730485916138e-01
+ <_>
+
+ 0 -1 133 -3.4388148784637451e-01
+
+ 6.3334107398986816e-01 -8.6101479828357697e-02
+ <_>
+
+ 0 -1 134 -2.5634190533310175e-03
+
+ -3.0992001295089722e-01 8.8213436305522919e-02
+ <_>
+
+ 0 -1 135 4.7002349048852921e-02
+
+ 7.3533393442630768e-02 -7.5965261459350586e-01
+ <_>
+
+ 0 -1 136 7.1428148075938225e-03
+
+ -1.6981430351734161e-01 4.1982281208038330e-01
+ <_>
+
+ 0 -1 137 -3.7736629601567984e-03
+
+ -5.5664837360382080e-01 1.0060050338506699e-01
+ <_>
+
+ 0 -1 138 2.2179849445819855e-02
+
+ -7.6009899377822876e-02 6.3711041212081909e-01
+ <_>
+
+ 0 -1 139 2.9807379178237170e-05
+
+ -2.7143061161041260e-01 2.1503789722919464e-01
+ <_>
+
+ 0 -1 140 -1.4308329809864517e-05
+
+ 1.3090610504150391e-01 -2.8089499473571777e-01
+ <_>
+
+ 0 -1 141 -1.1500260233879089e-01
+
+ -7.1986222267150879e-01 7.6884172856807709e-02
+ <_>
+
+ 0 -1 142 -2.5318590924143791e-02
+
+ 4.5250499248504639e-01 -9.0481691062450409e-02
+ <_>
+
+ 0 -1 143 -4.8698320984840393e-02
+
+ -7.4177128076553345e-01 6.7692406475543976e-02
+ <_>
+
+ 0 -1 144 -5.0045289099216461e-03
+
+ 1.3680170476436615e-01 -1.1860919743776321e-01
+ <_>
+
+ 0 -1 145 7.5120502151548862e-03
+
+ 9.1260991990566254e-02 -5.6960678100585938e-01
+ <_>
+
+ 0 -1 146 -5.4631778039038181e-03
+
+ 1.1702360212802887e-01 -1.4761230349540710e-01
+ <_>
+
+ 0 -1 147 1.5256009995937347e-02
+
+ -1.0768359899520874e-01 6.4716261625289917e-01
+ <_>
+
+ 0 -1 148 -2.1900620311498642e-02
+
+ -6.0776418447494507e-01 6.4449213445186615e-02
+ <_>
+
+ 0 -1 149 2.1267218980938196e-03
+
+ -2.3115469515323639e-01 2.1813300251960754e-01
+ <_>
+
+ 0 -1 150 -3.1501919031143188e-02
+
+ -1.3678109645843506e-01 6.6003270447254181e-02
+ <_>
+
+ 0 -1 151 1.8107969313859940e-02
+
+ 1.0865720361471176e-01 -4.4673460721969604e-01
+ <_>
+
+ 0 -1 152 -1.1059570312500000e-01
+
+ 4.6954178810119629e-01 -1.1268380284309387e-01
+ <_>
+
+ 0 -1 153 2.2349569480866194e-03
+
+ -2.9884970188140869e-01 1.8147529661655426e-01
+ <_>
+
+ 0 -1 154 4.6504188328981400e-02
+
+ 1.2846769392490387e-01 -2.6609849929809570e-01
+ <_>
+ 27
+ -1.1861419677734375e+00
+
+ <_>
+
+ 0 -1 155 -4.8820599913597107e-02
+
+ 4.2807990312576294e-01 -5.5154949426651001e-01
+ <_>
+
+ 0 -1 156 1.4779040357097983e-03
+
+ -1.8688060343265533e-01 1.9038289785385132e-01
+ <_>
+
+ 0 -1 157 -1.0012290440499783e-02
+
+ 3.8451421260833740e-01 -2.1723049879074097e-01
+ <_>
+
+ 0 -1 158 -5.1000278443098068e-02
+
+ -7.6136952638626099e-01 1.3625900261104107e-02
+ <_>
+
+ 0 -1 159 5.2959132008254528e-03
+
+ -2.3021429777145386e-01 2.8536239266395569e-01
+ <_>
+
+ 0 -1 160 -4.8654139041900635e-02
+
+ 7.0992070436477661e-01 -4.9203149974346161e-02
+ <_>
+
+ 0 -1 161 8.8448636233806610e-03
+
+ -3.1505361199378967e-01 2.0899020135402679e-01
+ <_>
+
+ 0 -1 162 1.0062800347805023e-01
+
+ 6.6908989101648331e-03 6.7013871669769287e-01
+ <_>
+
+ 0 -1 163 -7.0256260223686695e-03
+
+ -3.9408329129219055e-01 1.7433549463748932e-01
+ <_>
+
+ 0 -1 164 -2.1224319934844971e-03
+
+ 1.6996310651302338e-01 -3.0237409472465515e-01
+ <_>
+
+ 0 -1 165 9.9532064050436020e-03
+
+ -1.4202840626239777e-01 4.5167461037635803e-01
+ <_>
+
+ 0 -1 166 1.2565069831907749e-02
+
+ 7.3175877332687378e-02 -6.1700421571731567e-01
+ <_>
+
+ 0 -1 167 -1.7854310572147369e-03
+
+ 1.4909860491752625e-01 -3.2865241169929504e-01
+ <_>
+
+ 0 -1 168 -4.0306518785655499e-03
+
+ -4.5713710784912109e-01 1.0815720260143280e-01
+ <_>
+
+ 0 -1 169 -7.3099560104310513e-03
+
+ -6.5592771768569946e-01 6.5615788102149963e-02
+ <_>
+
+ 0 -1 170 -3.3843431621789932e-02
+
+ 5.0412368774414062e-01 -6.1626069247722626e-02
+ <_>
+
+ 0 -1 171 3.8319290615618229e-04
+
+ -2.5153478980064392e-01 2.0271340012550354e-01
+ <_>
+
+ 0 -1 172 -2.6169361080974340e-03
+
+ 2.2497959434986115e-01 -2.1958619356155396e-01
+ <_>
+
+ 0 -1 173 -4.5606079511344433e-03
+
+ -4.6598041057586670e-01 1.2348009645938873e-01
+ <_>
+
+ 0 -1 174 1.0822789743542671e-02
+
+ -9.6618972718715668e-02 4.6412429213523865e-01
+ <_>
+
+ 0 -1 175 -5.3171347826719284e-03
+
+ -5.5634248256683350e-01 9.4623282551765442e-02
+ <_>
+
+ 0 -1 176 -9.3140971148386598e-04
+
+ 1.0143929719924927e-01 -1.0564240068197250e-01
+ <_>
+
+ 0 -1 177 8.4296840941533446e-04
+
+ -1.3243100047111511e-01 3.5351079702377319e-01
+ <_>
+
+ 0 -1 178 -2.7806960046291351e-02
+
+ -6.5050601959228516e-01 3.3153589814901352e-02
+ <_>
+
+ 0 -1 179 6.9245469057932496e-04
+
+ -2.6702880859375000e-01 2.1129630506038666e-01
+ <_>
+
+ 0 -1 180 -1.2787230312824249e-02
+
+ 2.1593640744686127e-01 -8.6767077445983887e-02
+ <_>
+
+ 0 -1 181 -6.1678601196035743e-04
+
+ 1.6959980130195618e-01 -2.9248940944671631e-01
+ <_>
+ 21
+ -1.0550270080566406e+00
+
+ <_>
+
+ 0 -1 182 -5.1706928759813309e-02
+
+ 4.6942698955535889e-01 -5.1280671358108521e-01
+ <_>
+
+ 0 -1 183 5.5232150480151176e-03
+
+ -2.4982389807701111e-01 6.3005810976028442e-01
+ <_>
+
+ 0 -1 184 -9.2110745608806610e-03
+
+ 3.7530669569969177e-01 -2.2910380363464355e-01
+ <_>
+
+ 0 -1 185 4.1729960590600967e-02
+
+ -1.1262010037899017e-01 6.7508697509765625e-01
+ <_>
+
+ 0 -1 186 4.5255841687321663e-03
+
+ -2.6939728856086731e-01 2.4889509379863739e-01
+ <_>
+
+ 0 -1 187 -8.5208792006596923e-04
+
+ 2.0098550617694855e-01 -2.3001730442047119e-01
+ <_>
+
+ 0 -1 188 -3.4569639246910810e-03
+
+ -3.6372348666191101e-01 2.7142500877380371e-01
+ <_>
+
+ 0 -1 189 -8.8200360536575317e-02
+
+ -7.5951957702636719e-01 -7.2166309691965580e-03
+ <_>
+
+ 0 -1 190 -2.3253160179592669e-04
+
+ 1.4738219976425171e-01 -4.2548701167106628e-01
+ <_>
+
+ 0 -1 191 1.9258400425314903e-02
+
+ -8.4830872714519501e-02 5.9487771987915039e-01
+ <_>
+
+ 0 -1 192 -3.1915740109980106e-03
+
+ -4.2638280987739563e-01 1.3357159495353699e-01
+ <_>
+
+ 0 -1 193 -2.2229040041565895e-02
+
+ -4.2298269271850586e-01 3.6127958446741104e-02
+ <_>
+
+ 0 -1 194 -5.3123440593481064e-03
+
+ 2.9349780082702637e-01 -2.2197869420051575e-01
+ <_>
+
+ 0 -1 195 5.6796981953084469e-03
+
+ 8.0412790179252625e-02 -1.9725289940834045e-01
+ <_>
+
+ 0 -1 196 3.2511178869754076e-03
+
+ -1.6628390550613403e-01 3.3107280731201172e-01
+ <_>
+
+ 0 -1 197 2.5559039786458015e-03
+
+ 6.7350171506404877e-02 -2.4642370641231537e-01
+ <_>
+
+ 0 -1 198 3.1239999458193779e-02
+
+ -6.7393511533737183e-02 8.2851767539978027e-01
+ <_>
+
+ 0 -1 199 -4.4333371333777905e-03
+
+ -3.8048321008682251e-01 1.4248619973659515e-01
+ <_>
+
+ 0 -1 200 -3.9497618563473225e-03
+
+ -3.5660448670387268e-01 1.8685440719127655e-01
+ <_>
+
+ 0 -1 201 -1.4043290168046951e-02
+
+ 5.3222888708114624e-01 -7.8980803489685059e-02
+ <_>
+
+ 0 -1 202 4.2212791740894318e-03
+
+ -1.9841830432415009e-01 3.1367298960685730e-01
+ <_>
+ 43
+ -1.1214250326156616e+00
+
+ <_>
+
+ 0 -1 203 -1.5278789401054382e-01
+
+ 5.4140037298202515e-01 -1.8756979703903198e-01
+ <_>
+
+ 0 -1 204 -7.0655636489391327e-02
+
+ 3.4003350138664246e-01 -1.4459669589996338e-01
+ <_>
+
+ 0 -1 205 -2.1033229306340218e-02
+
+ -5.5878472328186035e-01 1.1598149687051773e-01
+ <_>
+
+ 0 -1 206 -9.5666358247399330e-03
+
+ 1.0890080034732819e-01 -2.0365689694881439e-01
+ <_>
+
+ 0 -1 207 -4.2720541357994080e-02
+
+ -9.4030022621154785e-01 6.3606321811676025e-02
+ <_>
+
+ 0 -1 208 -4.5477859675884247e-03
+
+ 3.4227019548416138e-01 -1.7053720355033875e-01
+ <_>
+
+ 0 -1 209 3.7029080558568239e-03
+
+ 8.3720892667770386e-02 -4.6139541268348694e-01
+ <_>
+
+ 0 -1 210 -1.1458870023488998e-01
+
+ 6.0027849674224854e-01 -1.7764480784535408e-02
+ <_>
+
+ 0 -1 211 5.7319342158734798e-03
+
+ -2.5590109825134277e-01 2.0062319934368134e-01
+ <_>
+
+ 0 -1 212 -7.0237793028354645e-02
+
+ 2.5359788537025452e-01 -2.9503619298338890e-02
+ <_>
+
+ 0 -1 213 1.3983179815113544e-02
+
+ 1.1456400156021118e-01 -3.9683538675308228e-01
+ <_>
+
+ 0 -1 214 1.8175759911537170e-01
+
+ 5.0749950110912323e-02 -8.3061927556991577e-01
+ <_>
+
+ 0 -1 215 3.0185490846633911e-02
+
+ -2.6683610677719116e-01 1.4070799946784973e-01
+ <_>
+
+ 0 -1 216 7.5633287429809570e-01
+
+ -4.1416618973016739e-02 9.0957278013229370e-01
+ <_>
+
+ 0 -1 217 -8.5228988900780678e-03
+
+ 1.6142499446868896e-01 -2.7549099922180176e-01
+ <_>
+
+ 0 -1 218 -4.9996669404208660e-03
+
+ -1.1666730046272278e-01 6.0298819094896317e-02
+ <_>
+
+ 0 -1 219 -5.9932802105322480e-04
+
+ 1.3015550374984741e-01 -3.1072840094566345e-01
+ <_>
+
+ 0 -1 220 -9.6063673496246338e-02
+
+ -8.5259348154067993e-01 1.5970790758728981e-02
+ <_>
+
+ 0 -1 221 -7.0154820568859577e-03
+
+ -4.5490509271621704e-01 7.7178090810775757e-02
+ <_>
+
+ 0 -1 222 -8.7620541453361511e-03
+
+ 4.8034501075744629e-01 -8.1306837499141693e-02
+ <_>
+
+ 0 -1 223 -3.9868508465588093e-03
+
+ 2.2495600581169128e-01 -2.0447289943695068e-01
+ <_>
+
+ 0 -1 224 -5.7335309684276581e-02
+
+ -5.6859737634658813e-01 5.2798101678490639e-03
+ <_>
+
+ 0 -1 225 1.9260890549048781e-03
+
+ 1.4920340478420258e-01 -3.1059908866882324e-01
+ <_>
+
+ 0 -1 226 2.1118070930242538e-02
+
+ 4.1174301877617836e-03 -5.2401381731033325e-01
+ <_>
+
+ 0 -1 227 -1.1973599903285503e-03
+
+ 2.3353399336338043e-01 -2.0193660259246826e-01
+ <_>
+
+ 0 -1 228 4.5973812229931355e-03
+
+ 5.9917010366916656e-02 -1.1878310143947601e-01
+ <_>
+
+ 0 -1 229 2.8869660571217537e-02
+
+ -9.4110779464244843e-02 4.5966941118240356e-01
+ <_>
+
+ 0 -1 230 -3.7549799308180809e-03
+
+ 1.2161179631948471e-01 -1.4811019599437714e-01
+ <_>
+
+ 0 -1 231 4.2033549398183823e-03
+
+ 1.0903070122003555e-01 -3.8700520992279053e-01
+ <_>
+
+ 0 -1 232 7.2994068264961243e-02
+
+ -3.4046798944473267e-02 3.0610039830207825e-01
+ <_>
+
+ 0 -1 233 1.6667179763317108e-02
+
+ 1.3168589770793915e-01 -3.8485860824584961e-01
+ <_>
+
+ 0 -1 234 -2.8268690221011639e-03
+
+ 6.4782157540321350e-02 -2.2371709346771240e-01
+ <_>
+
+ 0 -1 235 3.7736070808023214e-03
+
+ -1.5592969954013824e-01 2.5413069128990173e-01
+ <_>
+
+ 0 -1 236 -3.6936940159648657e-03
+
+ 2.5576528906822205e-01 -1.5768060088157654e-01
+ <_>
+
+ 0 -1 237 -6.6801063716411591e-02
+
+ -7.4346089363098145e-01 5.4915640503168106e-02
+ <_>
+
+ 0 -1 238 1.5752790495753288e-02
+
+ -9.8638102412223816e-02 4.3119820952415466e-01
+ <_>
+
+ 0 -1 239 9.0647127944976091e-04
+
+ 1.1339239776134491e-01 -4.1574460268020630e-01
+ <_>
+
+ 0 -1 240 -2.1695699542760849e-02
+
+ 4.6949240565299988e-01 -5.5732611566781998e-02
+ <_>
+
+ 0 -1 241 -1.4639029977843165e-03
+
+ -3.0617880821228027e-01 1.4398169517517090e-01
+ <_>
+
+ 0 -1 242 -1.7810560762882233e-02
+
+ 3.0411729216575623e-01 -4.6758800745010376e-02
+ <_>
+
+ 0 -1 243 -5.6027648970484734e-03
+
+ -5.2942901849746704e-01 7.8287117183208466e-02
+ <_>
+
+ 0 -1 244 1.9500569906085730e-03
+
+ -9.5949448645114899e-02 1.9031670689582825e-01
+ <_>
+
+ 0 -1 245 1.0641569644212723e-01
+
+ 4.7288440167903900e-02 -8.6525350809097290e-01
+ <_>
+ 21
+ -1.1566660404205322e+00
+
+ <_>
+
+ 0 -1 246 1.8256990239024162e-02
+
+ -5.5564939975738525e-01 4.3546560406684875e-01
+ <_>
+
+ 0 -1 247 -1.1249440163373947e-01
+
+ 6.1800277233123779e-01 -2.1641810238361359e-01
+ <_>
+
+ 0 -1 248 2.0443440880626440e-03
+
+ -3.1379559636116028e-01 2.6424890756607056e-01
+ <_>
+
+ 0 -1 249 6.2505697133019567e-04
+
+ -2.3659600317478180e-01 2.1169990301132202e-01
+ <_>
+
+ 0 -1 250 1.3297300320118666e-03
+
+ -3.1339448690414429e-01 3.0449068546295166e-01
+ <_>
+
+ 0 -1 251 -4.6840369701385498e-02
+
+ 5.3759092092514038e-01 -1.8081139773130417e-02
+ <_>
+
+ 0 -1 252 -6.4874291419982910e-01
+
+ 6.6768437623977661e-01 -9.1247849166393280e-02
+ <_>
+
+ 0 -1 253 9.6183530986309052e-03
+
+ 1.4733779430389404e-01 -3.2193028926849365e-01
+ <_>
+
+ 0 -1 254 2.2117879707366228e-03
+
+ 1.5755419433116913e-01 -3.6799180507659912e-01
+ <_>
+
+ 0 -1 255 4.9280291423201561e-03
+
+ -8.3405740559101105e-02 6.8260177969932556e-02
+ <_>
+
+ 0 -1 256 1.3977079652249813e-02
+
+ -1.0702060163021088e-01 4.8326531052589417e-01
+ <_>
+
+ 0 -1 257 -1.0333389946026728e-04
+
+ 1.3645449280738831e-01 -3.1777021288871765e-01
+ <_>
+
+ 0 -1 258 -2.2287340834736824e-03
+
+ 2.1791179478168488e-01 -1.9923299551010132e-01
+ <_>
+
+ 0 -1 259 -3.2301511615514755e-02
+
+ 3.3135131001472473e-01 -2.0617039874196053e-02
+ <_>
+
+ 0 -1 260 2.3240039125084877e-02
+
+ 5.9672571718692780e-02 -6.4993959665298462e-01
+ <_>
+
+ 0 -1 261 3.5599120892584324e-03
+
+ -1.4818920195102692e-01 2.9893338680267334e-01
+ <_>
+
+ 0 -1 262 1.5469759702682495e-02
+
+ -7.5569599866867065e-02 5.2314680814743042e-01
+ <_>
+
+ 0 -1 263 -1.6372289974242449e-04
+
+ 1.0446730256080627e-01 -2.0943340659141541e-01
+ <_>
+
+ 0 -1 264 -2.9369019903242588e-03
+
+ -4.3197739124298096e-01 1.0765810310840607e-01
+ <_>
+
+ 0 -1 265 -7.8579207183793187e-04
+
+ -2.4614779651165009e-01 2.1554739773273468e-01
+ <_>
+
+ 0 -1 266 1.1156699620187283e-02
+
+ -8.1820882856845856e-02 6.7338067293167114e-01
+ <_>
+ 49
+ -1.0953630208969116e+00
+
+ <_>
+
+ 0 -1 267 -1.8473519384860992e-01
+
+ 5.4758828878402710e-01 -2.2319069504737854e-01
+ <_>
+
+ 0 -1 268 -2.8615030460059643e-03
+
+ 1.9264279305934906e-01 -2.2989100217819214e-01
+ <_>
+
+ 0 -1 269 1.7970189452171326e-01
+
+ -6.4573682844638824e-02 8.0322009325027466e-01
+ <_>
+
+ 0 -1 270 -5.2812729030847549e-02
+
+ 2.8784981369972229e-01 -8.8289387524127960e-02
+ <_>
+
+ 0 -1 271 6.9000339135527611e-03
+
+ 1.0979209840297699e-01 -4.8886889219284058e-01
+ <_>
+
+ 0 -1 272 4.0469530969858170e-02
+
+ 6.1697468161582947e-02 -7.2907817363739014e-01
+ <_>
+
+ 0 -1 273 4.5191249810159206e-03
+
+ -2.7972379326820374e-01 1.7065159976482391e-01
+ <_>
+
+ 0 -1 274 -3.8400939665734768e-03
+
+ -2.8329300880432129e-01 1.1611709743738174e-01
+ <_>
+
+ 0 -1 275 -7.1505218511447310e-04
+
+ 1.5870480239391327e-01 -2.8253421187400818e-01
+ <_>
+
+ 0 -1 276 3.0127899721264839e-02
+
+ -3.6236338317394257e-02 5.3369390964508057e-01
+ <_>
+
+ 0 -1 277 -1.9907640293240547e-02
+
+ -3.2229989767074585e-01 1.4933170378208160e-01
+ <_>
+
+ 0 -1 278 -3.1435668468475342e-02
+
+ 2.0812889933586121e-01 -9.6762210130691528e-02
+ <_>
+
+ 0 -1 279 -1.9912680611014366e-02
+
+ -3.2928928732872009e-01 1.2732729315757751e-01
+ <_>
+
+ 0 -1 280 4.0626749396324158e-02
+
+ 1.6985720023512840e-02 -5.2226179838180542e-01
+ <_>
+
+ 0 -1 281 1.6589110018685460e-03
+
+ -2.3795670270919800e-01 2.0775599777698517e-01
+ <_>
+
+ 0 -1 282 1.9869199022650719e-03
+
+ -1.3493759930133820e-01 1.2050859630107880e-01
+ <_>
+
+ 0 -1 283 -4.1985820978879929e-02
+
+ 4.4601130485534668e-01 -7.6145969331264496e-02
+ <_>
+
+ 0 -1 284 7.0260182023048401e-02
+
+ 1.5833569690585136e-02 -3.8182300329208374e-01
+ <_>
+
+ 0 -1 285 -1.7992800101637840e-02
+
+ -3.6973980069160461e-01 1.0451599955558777e-01
+ <_>
+
+ 0 -1 286 -1.0420969873666763e-01
+
+ 5.1836878061294556e-01 -2.2372400388121605e-02
+ <_>
+
+ 0 -1 287 5.3277369588613510e-02
+
+ 7.4715927243232727e-02 -5.8489412069320679e-01
+ <_>
+
+ 0 -1 288 9.6819162368774414e-02
+
+ -7.8130746260285378e-03 -9.0531897544860840e-01
+ <_>
+
+ 0 -1 289 -2.2317610681056976e-01
+
+ 4.7848999500274658e-01 -8.9570246636867523e-02
+ <_>
+
+ 0 -1 290 1.3523760251700878e-02
+
+ 6.5158583223819733e-02 -1.4030559360980988e-01
+ <_>
+
+ 0 -1 291 -7.1465343236923218e-02
+
+ -8.8997572660446167e-01 3.8111008703708649e-02
+ <_>
+
+ 0 -1 292 2.4734560400247574e-02
+
+ -3.2858259975910187e-02 3.5368600487709045e-01
+ <_>
+
+ 0 -1 293 -4.2641810141503811e-03
+
+ 1.2885729968547821e-01 -2.7788180112838745e-01
+ <_>
+
+ 0 -1 294 4.3246541172266006e-02
+
+ -2.6344619691371918e-02 3.3333760499954224e-01
+ <_>
+
+ 0 -1 295 5.2720978856086731e-03
+
+ 9.6122108399868011e-02 -3.8203689455986023e-01
+ <_>
+
+ 0 -1 296 -6.4102048054337502e-03
+
+ 1.6924449801445007e-01 -7.5236052274703979e-02
+ <_>
+
+ 0 -1 297 1.7747100442647934e-02
+
+ -6.5126739442348480e-02 5.3720867633819580e-01
+ <_>
+
+ 0 -1 298 1.6466729342937469e-01
+
+ 2.6764029636979103e-02 -6.9506132602691650e-01
+ <_>
+
+ 0 -1 299 -7.6354909688234329e-03
+
+ 1.7261630296707153e-01 -2.0242890715599060e-01
+ <_>
+
+ 0 -1 300 -7.6648168265819550e-02
+
+ 2.2567149996757507e-01 -3.5044141113758087e-02
+ <_>
+
+ 0 -1 301 2.9634330421686172e-03
+
+ 1.0679820179939270e-01 -3.0704519152641296e-01
+ <_>
+
+ 0 -1 302 -1.8968040123581886e-02
+
+ -6.5349531173706055e-01 4.5328449457883835e-02
+ <_>
+
+ 0 -1 303 6.2272930145263672e-01
+
+ 2.9418470337986946e-02 -7.7416032552719116e-01
+ <_>
+
+ 0 -1 304 3.1170540023595095e-03
+
+ -1.9263580441474915e-01 1.0082499682903290e-01
+ <_>
+
+ 0 -1 305 -1.0179740190505981e-01
+
+ 5.0667291879653931e-01 -7.5845532119274139e-02
+ <_>
+
+ 0 -1 306 -8.7539367377758026e-02
+
+ -8.0127829313278198e-01 3.9741981774568558e-02
+ <_>
+
+ 0 -1 307 -4.0089199319481850e-03
+
+ 1.5867359936237335e-01 -2.0390710234642029e-01
+ <_>
+
+ 0 -1 308 -1.7252740263938904e-01
+
+ -4.8556509613990784e-01 6.6162437200546265e-02
+ <_>
+
+ 0 -1 309 2.2747491020709276e-03
+
+ 1.0839290171861649e-01 -2.6120510697364807e-01
+ <_>
+
+ 0 -1 310 8.7025731801986694e-02
+
+ -4.5612849295139313e-02 3.0642318725585938e-01
+ <_>
+
+ 0 -1 311 3.3302091062068939e-02
+
+ 9.8511956632137299e-02 -4.0321010351181030e-01
+ <_>
+
+ 0 -1 312 -5.5495370179414749e-03
+
+ 6.7809469997882843e-02 -1.9448509812355042e-01
+ <_>
+
+ 0 -1 313 -7.5916801579296589e-03
+
+ -3.3229979872703552e-01 1.0552299767732620e-01
+ <_>
+
+ 0 -1 314 -5.4776940494775772e-02
+
+ 3.1344750523567200e-01 -9.2561431229114532e-02
+ <_>
+
+ 0 -1 315 1.7293309792876244e-02
+
+ -1.0366520285606384e-01 4.5732820034027100e-01
+ <_>
+ 40
+ -1.0216970443725586e+00
+
+ <_>
+
+ 0 -1 316 -2.2501630708575249e-02
+
+ 5.2293592691421509e-01 -1.7968380451202393e-01
+ <_>
+
+ 0 -1 317 -1.8166720867156982e-02
+
+ 1.4281089603900909e-01 -3.0268448591232300e-01
+ <_>
+
+ 0 -1 318 3.1680259853601456e-02
+
+ 1.5708820521831512e-01 -3.2303369045257568e-01
+ <_>
+
+ 0 -1 319 -2.3476250469684601e-02
+
+ -4.5576000213623047e-01 1.0300090163946152e-01
+ <_>
+
+ 0 -1 320 4.5688278973102570e-02
+
+ 6.7873537540435791e-02 -7.4623328447341919e-01
+ <_>
+
+ 0 -1 321 -7.4609883129596710e-02
+
+ 2.0548540353775024e-01 -1.0097859799861908e-01
+ <_>
+
+ 0 -1 322 -4.5903101563453674e-02
+
+ 6.6662758588790894e-01 -6.9071657955646515e-02
+ <_>
+
+ 0 -1 323 -5.7763070799410343e-04
+
+ 1.1386449635028839e-01 -1.2278319895267487e-01
+ <_>
+
+ 0 -1 324 -4.1800830513238907e-04
+
+ 1.9999989867210388e-01 -2.2372670471668243e-01
+ <_>
+
+ 0 -1 325 2.4581039324402809e-03
+
+ 1.0073749721050262e-01 -3.6323159933090210e-01
+ <_>
+
+ 0 -1 326 6.7467048764228821e-02
+
+ 5.4200690239667892e-02 -6.0347068309783936e-01
+ <_>
+
+ 0 -1 327 -3.8971859961748123e-02
+
+ 4.0277591347694397e-01 -1.1299470067024231e-01
+ <_>
+
+ 0 -1 328 1.6628159582614899e-01
+
+ 4.8290308564901352e-02 -8.1269222497940063e-01
+ <_>
+
+ 0 -1 329 5.5140322074294090e-03
+
+ 6.0484610497951508e-02 -5.4575890302658081e-01
+ <_>
+
+ 0 -1 330 1.2837080284953117e-03
+
+ -2.8150710463523865e-01 1.2785549461841583e-01
+ <_>
+
+ 0 -1 331 3.3840160816907883e-02
+
+ -6.1925090849399567e-02 5.4461580514907837e-01
+ <_>
+
+ 0 -1 332 1.4224560000002384e-02
+
+ -8.3702072501182556e-02 5.5404889583587646e-01
+ <_>
+
+ 0 -1 333 -1.4315280714072287e-04
+
+ 1.5318620204925537e-01 -2.8312870860099792e-01
+ <_>
+
+ 0 -1 334 -1.3604390434920788e-02
+
+ -6.3229328393936157e-01 5.6792028248310089e-02
+ <_>
+
+ 0 -1 335 -1.7952319979667664e-01
+
+ -7.7471101284027100e-01 -1.2696949997916818e-03
+ <_>
+
+ 0 -1 336 -6.3834888860583305e-03
+
+ 1.2864939868450165e-01 -3.1159159541130066e-01
+ <_>
+
+ 0 -1 337 -1.8140509724617004e-01
+
+ -7.0704931020736694e-01 3.0992519110441208e-02
+ <_>
+
+ 0 -1 338 3.4940429031848907e-03
+
+ 1.0192289948463440e-01 -3.3393231034278870e-01
+ <_>
+
+ 0 -1 339 4.0861740708351135e-02
+
+ 3.1267888844013214e-02 -4.3739050626754761e-01
+ <_>
+
+ 0 -1 340 3.6993999034166336e-02
+
+ -6.2453608959913254e-02 5.7605278491973877e-01
+ <_>
+
+ 0 -1 341 -7.7690118923783302e-03
+
+ -6.0737371444702148e-01 6.9758452475070953e-02
+ <_>
+
+ 0 -1 342 7.1885702200233936e-03
+
+ -1.4034010469913483e-01 2.4509570002555847e-01
+ <_>
+
+ 0 -1 343 -3.0558679252862930e-02
+
+ -2.6109099388122559e-01 2.0893760025501251e-02
+ <_>
+
+ 0 -1 344 -1.3949500396847725e-02
+
+ -4.5984518527984619e-01 7.2996988892555237e-02
+ <_>
+
+ 0 -1 345 -1.7439149320125580e-01
+
+ 2.7917501330375671e-01 -7.0309691131114960e-02
+ <_>
+
+ 0 -1 346 -5.6514460593461990e-03
+
+ -5.8335387706756592e-01 4.8543170094490051e-02
+ <_>
+
+ 0 -1 347 -5.6718150153756142e-03
+
+ -2.0645590126514435e-01 5.9949990361928940e-02
+ <_>
+
+ 0 -1 348 -2.9772339985356666e-05
+
+ 1.6627080738544464e-01 -1.8144470453262329e-01
+ <_>
+
+ 0 -1 349 -6.2705092132091522e-03
+
+ 2.5829210877418518e-01 -1.3548080623149872e-01
+ <_>
+
+ 0 -1 350 -5.2028051577508450e-03
+
+ -2.9585519433021545e-01 1.0223600268363953e-01
+ <_>
+
+ 0 -1 351 -3.6721840500831604e-02
+
+ 1.1443459987640381e-01 -1.5670689940452576e-01
+ <_>
+
+ 0 -1 352 7.8717432916164398e-02
+
+ 2.9407389461994171e-02 -8.9653927087783813e-01
+ <_>
+
+ 0 -1 353 9.0856212377548218e-01
+
+ -5.6400269269943237e-02 6.9543528556823730e-01
+ <_>
+
+ 0 -1 354 -5.2952598780393600e-03
+
+ 1.8282440304756165e-01 -2.0518480241298676e-01
+ <_>
+
+ 0 -1 355 -5.2672341465950012e-02
+
+ -6.8133538961410522e-01 3.6046069115400314e-02
+ <_>
+ 51
+ -1.0450960397720337e+00
+
+ <_>
+
+ 0 -1 356 -2.1731309592723846e-01
+
+ 5.9716808795928955e-01 -2.2432699799537659e-01
+ <_>
+
+ 0 -1 357 -3.4627959132194519e-01
+
+ 5.3741937875747681e-01 -8.7782189249992371e-02
+ <_>
+
+ 0 -1 358 1.0713579831644893e-03
+
+ -3.5920229554176331e-01 1.5685929358005524e-01
+ <_>
+
+ 0 -1 359 -6.1267141252756119e-02
+
+ -7.1003252267837524e-01 2.0527899265289307e-02
+ <_>
+
+ 0 -1 360 3.1281840056180954e-02
+
+ -7.4646763503551483e-02 5.9689122438430786e-01
+ <_>
+
+ 0 -1 361 -1.2337400112301111e-03
+
+ 1.5949830412864685e-01 -2.7181199193000793e-01
+ <_>
+
+ 0 -1 362 -3.4508139360696077e-03
+
+ 2.0255160331726074e-01 -1.9399139285087585e-01
+ <_>
+
+ 0 -1 363 -7.0481761358678341e-03
+
+ -5.5100089311599731e-01 7.0738323032855988e-02
+ <_>
+
+ 0 -1 364 2.2950200736522675e-01
+
+ -8.7573416531085968e-02 6.0446268320083618e-01
+ <_>
+
+ 0 -1 365 -2.2578560747206211e-03
+
+ -8.5306502878665924e-02 1.0997729748487473e-01
+ <_>
+
+ 0 -1 366 -9.7562908194959164e-04
+
+ 9.7412303090095520e-02 -3.6251759529113770e-01
+ <_>
+
+ 0 -1 367 5.3088109940290451e-02
+
+ -3.5328660160303116e-03 -6.0694789886474609e-01
+ <_>
+
+ 0 -1 368 1.5448880149051547e-03
+
+ -2.2419139742851257e-01 1.7832720279693604e-01
+ <_>
+
+ 0 -1 369 1.2375700287520885e-02
+
+ -3.5778950899839401e-02 2.9557931423187256e-01
+ <_>
+
+ 0 -1 370 5.9611927717924118e-03
+
+ -7.3603026568889618e-02 4.8699569702148438e-01
+ <_>
+
+ 0 -1 371 8.3732418715953827e-03
+
+ 9.5786556601524353e-02 -3.9222580194473267e-01
+ <_>
+
+ 0 -1 372 -7.9954452812671661e-03
+
+ -2.9597011208534241e-01 1.3246519863605499e-01
+ <_>
+
+ 0 -1 373 1.7624149098992348e-02
+
+ 1.1629760265350342e-02 -3.7594190239906311e-01
+ <_>
+
+ 0 -1 374 -8.1538967788219452e-04
+
+ 1.8403179943561554e-01 -2.1106949448585510e-01
+ <_>
+
+ 0 -1 375 6.5910838544368744e-02
+
+ 3.8050938397645950e-02 -8.7356221675872803e-01
+ <_>
+
+ 0 -1 376 -8.1749828532338142e-03
+
+ -3.0115619301795959e-01 8.1345446407794952e-02
+ <_>
+
+ 0 -1 377 -3.8275010883808136e-02
+
+ 3.8238960504531860e-01 -5.5969979614019394e-02
+ <_>
+
+ 0 -1 378 3.2501420937478542e-03
+
+ -2.1520890295505524e-01 1.3417840003967285e-01
+ <_>
+
+ 0 -1 379 5.6356219574809074e-03
+
+ -9.1598346829414368e-02 2.6930230855941772e-01
+ <_>
+
+ 0 -1 380 -5.1177428103983402e-03
+
+ -3.0092298984527588e-01 1.0440470278263092e-01
+ <_>
+
+ 0 -1 381 -6.0195129364728928e-02
+
+ 1.8512830138206482e-01 -6.3004150986671448e-02
+ <_>
+
+ 0 -1 382 4.6473558992147446e-02
+
+ 3.7559378892183304e-02 -8.1117790937423706e-01
+ <_>
+
+ 0 -1 383 2.2262150887399912e-03
+
+ -1.2262800335884094e-01 8.3288192749023438e-02
+ <_>
+
+ 0 -1 384 1.6670780256390572e-02
+
+ -5.2774429321289062e-02 5.4887998104095459e-01
+ <_>
+
+ 0 -1 385 -6.3093528151512146e-02
+
+ -7.4702072143554688e-01 2.7049509808421135e-02
+ <_>
+
+ 0 -1 386 -7.7139958739280701e-04
+
+ 9.2177063226699829e-02 -2.9994431138038635e-01
+ <_>
+
+ 0 -1 387 -8.9107893407344818e-02
+
+ -3.8937440514564514e-01 2.9831759631633759e-02
+ <_>
+
+ 0 -1 388 -1.7469590238761157e-04
+
+ 1.6117650270462036e-01 -2.0639100670814514e-01
+ <_>
+
+ 0 -1 389 -2.1986931096762419e-03
+
+ 1.4286069571971893e-01 -1.2366549670696259e-01
+ <_>
+
+ 0 -1 390 2.1864708978682756e-03
+
+ -1.7435190081596375e-01 1.6586010158061981e-01
+ <_>
+
+ 0 -1 391 1.2738450430333614e-02
+
+ 4.8340078443288803e-02 -8.1297926604747772e-02
+ <_>
+
+ 0 -1 392 -1.2383400462567806e-02
+
+ -3.7464460730552673e-01 8.1205978989601135e-02
+ <_>
+
+ 0 -1 393 -1.2094350159168243e-01
+
+ -9.1908979415893555e-01 1.7007840797305107e-02
+ <_>
+
+ 0 -1 394 4.8902980983257294e-02
+
+ -7.0619069039821625e-02 5.1363438367843628e-01
+ <_>
+
+ 0 -1 395 -1.9585320260375738e-03
+
+ 9.9808372557163239e-02 -1.0681519657373428e-01
+ <_>
+
+ 0 -1 396 -2.9645320773124695e-01
+
+ -9.1213762760162354e-01 3.2292358577251434e-02
+ <_>
+
+ 0 -1 397 1.0741979628801346e-01
+
+ -2.3814958985894918e-03 -7.1836417913436890e-01
+ <_>
+
+ 0 -1 398 -4.2040441185235977e-02
+
+ 3.0848339200019836e-01 -9.9647372961044312e-02
+ <_>
+
+ 0 -1 399 6.8270778283476830e-03
+
+ 8.3302132785320282e-02 -3.6433839797973633e-01
+ <_>
+
+ 0 -1 400 -1.1072089895606041e-02
+
+ -2.5886499881744385e-01 1.2579409778118134e-01
+ <_>
+
+ 0 -1 401 -1.6399029642343521e-02
+
+ 3.0191990733146667e-01 -4.9352090805768967e-02
+ <_>
+
+ 0 -1 402 -2.0852450688835233e-04
+
+ 1.2508730590343475e-01 -2.1993610262870789e-01
+ <_>
+
+ 0 -1 403 -3.0174860730767250e-02
+
+ -6.5353047847747803e-01 1.0185699909925461e-02
+ <_>
+
+ 0 -1 404 -3.9148568175733089e-03
+
+ -2.0781719684600830e-01 1.2460950016975403e-01
+ <_>
+
+ 0 -1 405 -2.7260989882051945e-03
+
+ 1.2443950027227402e-01 -1.5540640056133270e-01
+ <_>
+
+ 0 -1 406 1.7432900145649910e-02
+
+ -5.9761889278888702e-02 4.9430638551712036e-01
+ <_>
+ 45
+ -9.2809242010116577e-01
+
+ <_>
+
+ 0 -1 407 -2.1454410254955292e-01
+
+ 5.1646298170089722e-01 -2.2012180089950562e-01
+ <_>
+
+ 0 -1 408 1.3796210289001465e-02
+
+ 5.0541419535875320e-02 -2.3305070400238037e-01
+ <_>
+
+ 0 -1 409 9.6883601509034634e-04
+
+ -2.4793210625648499e-01 2.0536769926548004e-01
+ <_>
+
+ 0 -1 410 -6.6670728847384453e-03
+
+ -2.2546489536762238e-01 6.4493361860513687e-03
+ <_>
+
+ 0 -1 411 2.1733778994530439e-03
+
+ -2.1164029836654663e-01 2.1819859743118286e-01
+ <_>
+
+ 0 -1 412 -1.2321940157562494e-03
+
+ 6.7792296409606934e-02 -1.1661940068006516e-01
+ <_>
+
+ 0 -1 413 -5.9950752183794975e-03
+
+ -4.2384910583496094e-01 1.3204540312290192e-01
+ <_>
+
+ 0 -1 414 2.6942830532789230e-02
+
+ -1.0161910206079483e-01 4.8092079162597656e-01
+ <_>
+
+ 0 -1 415 6.6907003521919250e-02
+
+ -8.4552347660064697e-02 4.9274548888206482e-01
+ <_>
+
+ 0 -1 416 -1.6729519702494144e-03
+
+ 9.2197872698307037e-02 -2.2954310476779938e-01
+ <_>
+
+ 0 -1 417 1.3808730058372021e-02
+
+ -6.0905098915100098e-02 5.8490061759948730e-01
+ <_>
+
+ 0 -1 418 -2.3627160117030144e-02
+
+ -8.8347977399826050e-01 9.7397705540060997e-03
+ <_>
+
+ 0 -1 419 -1.3927640393376350e-02
+
+ -6.5309441089630127e-01 5.2886508405208588e-02
+ <_>
+
+ 0 -1 420 3.6122989840805531e-03
+
+ -2.6369398832321167e-01 1.0595279932022095e-01
+ <_>
+
+ 0 -1 421 -5.2949450910091400e-02
+
+ -7.3409342765808105e-01 4.7014039009809494e-02
+ <_>
+
+ 0 -1 422 1.7414819449186325e-02
+
+ 1.7683740705251694e-02 -5.8782297372817993e-01
+ <_>
+
+ 0 -1 423 -3.2427799305878580e-04
+
+ 1.3886380195617676e-01 -3.0609750747680664e-01
+ <_>
+
+ 0 -1 424 -4.3613791465759277e-02
+
+ 5.4857110977172852e-01 -6.7348852753639221e-02
+ <_>
+
+ 0 -1 425 -9.3427510000765324e-04
+
+ 1.8392640352249146e-01 -1.7492470145225525e-01
+ <_>
+
+ 0 -1 426 7.9606421291828156e-02
+
+ 4.5652151107788086e-02 -6.3910657167434692e-01
+ <_>
+
+ 0 -1 427 -2.5120750069618225e-02
+
+ 1.0046990215778351e-01 -2.7824568748474121e-01
+ <_>
+
+ 0 -1 428 3.2976910471916199e-02
+
+ -5.9311199933290482e-02 6.5328377485275269e-01
+ <_>
+
+ 0 -1 429 -3.7845480255782604e-03
+
+ -2.4190320074558258e-01 1.3097280263900757e-01
+ <_>
+
+ 0 -1 430 9.4495685771107674e-03
+
+ -9.3100033700466156e-02 2.3785820603370667e-01
+ <_>
+
+ 0 -1 431 2.5168890133500099e-03
+
+ 1.3604310154914856e-01 -2.8159540891647339e-01
+ <_>
+
+ 0 -1 432 2.6242460589855909e-03
+
+ 8.9834272861480713e-02 -3.7729039788246155e-01
+ <_>
+
+ 0 -1 433 -4.4626198709011078e-02
+
+ 3.8320839405059814e-01 -9.6285469830036163e-02
+ <_>
+
+ 0 -1 434 1.4027470024302602e-04
+
+ -1.7261759936809540e-01 1.6574309766292572e-01
+ <_>
+
+ 0 -1 435 3.9115909487009048e-02
+
+ 7.8652113676071167e-02 -3.5689839720726013e-01
+ <_>
+
+ 0 -1 436 -6.6682003438472748e-02
+
+ -8.8001507520675659e-01 9.0465601533651352e-03
+ <_>
+
+ 0 -1 437 6.3860351219773293e-03
+
+ -7.5936213135719299e-02 3.8622769713401794e-01
+ <_>
+
+ 0 -1 438 4.3549899011850357e-02
+
+ -2.5680009275674820e-02 7.4085921049118042e-01
+ <_>
+
+ 0 -1 439 1.8360930262133479e-03
+
+ 1.1183869838714600e-01 -3.3362200856208801e-01
+ <_>
+
+ 0 -1 440 1.6189280431717634e-03
+
+ 1.8969060853123665e-02 -1.5130129456520081e-01
+ <_>
+
+ 0 -1 441 2.8807038906961679e-03
+
+ 9.4285592436790466e-02 -3.1100749969482422e-01
+ <_>
+
+ 0 -1 442 -3.2489649951457977e-02
+
+ -2.1908520162105560e-01 1.1370900273323059e-01
+ <_>
+
+ 0 -1 443 -3.8253709673881531e-02
+
+ 3.7908008694648743e-01 -6.8298138678073883e-02
+ <_>
+
+ 0 -1 444 -1.8478769809007645e-02
+
+ 2.9623249173164368e-01 -6.0682911425828934e-02
+ <_>
+
+ 0 -1 445 1.5569750219583511e-02
+
+ 8.5731290280818939e-02 -3.3175340294837952e-01
+ <_>
+
+ 0 -1 446 -1.7486449796706438e-03
+
+ 1.2554299831390381e-01 -1.9797539710998535e-01
+ <_>
+
+ 0 -1 447 9.0995557606220245e-02
+
+ -6.7590013146400452e-02 5.2676147222518921e-01
+ <_>
+
+ 0 -1 448 -6.0815969482064247e-03
+
+ 2.1883159875869751e-01 -1.5794619917869568e-01
+ <_>
+
+ 0 -1 449 1.3633850030601025e-02
+
+ 1.2463530153036118e-01 -2.3396529257297516e-01
+ <_>
+
+ 0 -1 450 -3.2046619057655334e-01
+
+ 4.5808508992195129e-01 -2.7573259547352791e-02
+ <_>
+
+ 0 -1 451 -3.6630940157920122e-03
+
+ -2.4003350734710693e-01 1.2256260216236115e-01
+ <_>
+ 46
+ -8.5974782705307007e-01
+
+ <_>
+
+ 0 -1 452 -1.5901359915733337e-01
+
+ 4.3535038828849792e-01 -1.7064349353313446e-01
+ <_>
+
+ 0 -1 453 -8.1815905869007111e-03
+
+ -4.6280708909034729e-01 8.8514603674411774e-02
+ <_>
+
+ 0 -1 454 -7.1978997766564135e-06
+
+ 1.6246670484542847e-01 -3.1899040937423706e-01
+ <_>
+
+ 0 -1 455 1.4128180220723152e-02
+
+ 4.3259881436824799e-02 -5.9328877925872803e-01
+ <_>
+
+ 0 -1 456 -9.5496661961078644e-03
+
+ -6.3987672328948975e-01 4.6203929930925369e-02
+ <_>
+
+ 0 -1 457 -2.4156800936907530e-03
+
+ 2.6009899377822876e-01 -1.7099030315876007e-01
+ <_>
+
+ 0 -1 458 4.4057718478143215e-03
+
+ -2.2679199278354645e-01 1.6393969953060150e-01
+ <_>
+
+ 0 -1 459 -3.3825438469648361e-02
+
+ -7.2834062576293945e-01 5.1699958741664886e-02
+ <_>
+
+ 0 -1 460 2.9628010466694832e-02
+
+ 3.4399930387735367e-02 -6.9400608539581299e-01
+ <_>
+
+ 0 -1 461 1.2294690310955048e-01
+
+ 3.3281920477747917e-03 -7.6602149009704590e-01
+ <_>
+
+ 0 -1 462 -9.8816171288490295e-02
+
+ 3.1439980864524841e-01 -1.0131180286407471e-01
+ <_>
+
+ 0 -1 463 -3.3952430821955204e-03
+
+ 3.3362209796905518e-02 -1.3168929517269135e-01
+ <_>
+
+ 0 -1 464 2.4586699903011322e-02
+
+ -6.5227553248405457e-02 6.8169701099395752e-01
+ <_>
+
+ 0 -1 465 7.8804800286889076e-03
+
+ 1.2926100194454193e-01 -4.3783390522003174e-01
+ <_>
+
+ 0 -1 466 -9.1016880469396710e-04
+
+ 1.3692790269851685e-01 -1.9827769696712494e-01
+ <_>
+
+ 0 -1 467 1.6178259626030922e-02
+
+ 9.9287502467632294e-02 -3.4090539813041687e-01
+ <_>
+
+ 0 -1 468 -1.0527680069208145e-01
+
+ -9.1738772392272949e-01 3.2674968242645264e-02
+ <_>
+
+ 0 -1 469 -3.7090498954057693e-02
+
+ 4.2047971487045288e-01 -7.1002766489982605e-02
+ <_>
+
+ 0 -1 470 3.8721140474081039e-02
+
+ -7.3284432291984558e-02 4.8204809427261353e-01
+ <_>
+
+ 0 -1 471 -3.4923329949378967e-03
+
+ -2.8713211417198181e-01 1.0397130250930786e-01
+ <_>
+
+ 0 -1 472 -1.1214460246264935e-02
+
+ -5.1632231473922729e-01 5.4384410381317139e-02
+ <_>
+
+ 0 -1 473 -2.2951549908611923e-04
+
+ -1.6355240345001221e-01 7.7216558158397675e-02
+ <_>
+
+ 0 -1 474 2.5744609534740448e-02
+
+ -5.7303100824356079e-02 4.9525278806686401e-01
+ <_>
+
+ 0 -1 475 3.7998620420694351e-02
+
+ 2.7654580771923065e-02 -4.8470789194107056e-01
+ <_>
+
+ 0 -1 476 2.3906941059976816e-03
+
+ -2.0106680691242218e-01 1.6209079325199127e-01
+ <_>
+
+ 0 -1 477 -1.2891319394111633e-01
+
+ -6.9726997613906860e-01 1.7226759344339371e-02
+ <_>
+
+ 0 -1 478 9.4630720559507608e-04
+
+ -2.7104228734970093e-01 1.0894539952278137e-01
+ <_>
+
+ 0 -1 479 3.2807278912514448e-03
+
+ -4.1949510574340820e-02 8.2179002463817596e-02
+ <_>
+
+ 0 -1 480 5.1204498857259750e-02
+
+ 4.8180408775806427e-02 -6.6344922780990601e-01
+ <_>
+
+ 0 -1 481 -4.5751508325338364e-02
+
+ 1.9350789487361908e-01 -3.7223301827907562e-02
+ <_>
+
+ 0 -1 482 1.4391579665243626e-02
+
+ 1.0828830301761627e-01 -2.3524640500545502e-01
+ <_>
+
+ 0 -1 483 -7.6694227755069733e-03
+
+ 7.7429883182048798e-02 -4.6658441424369812e-02
+ <_>
+
+ 0 -1 484 -4.9375209957361221e-02
+
+ 3.5604238510131836e-01 -8.1731930375099182e-02
+ <_>
+
+ 0 -1 485 4.9358978867530823e-02
+
+ 5.0106838345527649e-02 -5.9273171424865723e-01
+ <_>
+
+ 0 -1 486 5.3014289587736130e-02
+
+ 3.3155430108308792e-02 -7.0783668756484985e-01
+ <_>
+
+ 0 -1 487 -1.2086739763617516e-02
+
+ 1.4943680167198181e-01 -1.8973240256309509e-01
+ <_>
+
+ 0 -1 488 -1.3579580187797546e-01
+
+ 4.5863440632820129e-01 -7.1998342871665955e-02
+ <_>
+
+ 0 -1 489 1.9633909687399864e-03
+
+ -1.0420600324869156e-01 1.8465609848499298e-01
+ <_>
+
+ 0 -1 490 9.3589266762137413e-03
+
+ 5.3957458585500717e-02 -4.7337940335273743e-01
+ <_>
+
+ 0 -1 491 4.3361759744584560e-03
+
+ -5.7173401117324829e-02 5.0958871841430664e-01
+ <_>
+
+ 0 -1 492 8.5009206086397171e-03
+
+ 9.4076819717884064e-02 -2.9265969991683960e-01
+ <_>
+
+ 0 -1 493 -1.9089920446276665e-02
+
+ 3.5426521301269531e-01 -5.5876109749078751e-02
+ <_>
+
+ 0 -1 494 -1.6061830101534724e-03
+
+ 1.6634060442447662e-01 -1.5939429402351379e-01
+ <_>
+
+ 0 -1 495 -7.8830653801560402e-03
+
+ -2.6064670085906982e-01 5.5236898362636566e-02
+ <_>
+
+ 0 -1 496 -3.2838371116667986e-03
+
+ -2.4924349784851074e-01 1.4288279414176941e-01
+ <_>
+
+ 0 -1 497 1.9204219803214073e-02
+
+ -2.6132659986615181e-02 3.2939550280570984e-01
+ <_>
+ 55
+ -8.6706262826919556e-01
+
+ <_>
+
+ 0 -1 498 -1.0141430050134659e-01
+
+ 4.7197818756103516e-01 -1.8123960494995117e-01
+ <_>
+
+ 0 -1 499 -7.6708722114562988e-01
+
+ 4.3214419484138489e-01 -1.0705640166997910e-01
+ <_>
+
+ 0 -1 500 8.0198869109153748e-03
+
+ 8.4858916699886322e-02 -5.0163632631301880e-01
+ <_>
+
+ 0 -1 501 4.2173888534307480e-02
+
+ 4.3612729758024216e-02 -6.5135252475738525e-01
+ <_>
+
+ 0 -1 502 4.0101539343595505e-03
+
+ -2.4151140451431274e-01 1.7029179632663727e-01
+ <_>
+
+ 0 -1 503 -1.3389269588515162e-03
+
+ -1.8421310186386108e-01 9.2217013239860535e-02
+ <_>
+
+ 0 -1 504 3.3321550581604242e-03
+
+ -1.6709089279174805e-01 1.9239999353885651e-01
+ <_>
+
+ 0 -1 505 1.5524900518357754e-03
+
+ 1.1113339662551880e-01 -3.1200349330902100e-01
+ <_>
+
+ 0 -1 506 2.3809259757399559e-02
+
+ -6.4096599817276001e-02 5.6162089109420776e-01
+ <_>
+
+ 0 -1 507 2.8085429221391678e-02
+
+ -2.2390459477901459e-01 1.6832110285758972e-01
+ <_>
+
+ 0 -1 508 -4.7726151533424854e-03
+
+ -4.6150028705596924e-01 4.9433000385761261e-02
+ <_>
+
+ 0 -1 509 1.0531850159168243e-01
+
+ 3.4683290868997574e-02 -6.4283651113510132e-01
+ <_>
+
+ 0 -1 510 -7.2594000957906246e-03
+
+ -4.0418758988380432e-01 6.0901068150997162e-02
+ <_>
+
+ 0 -1 511 8.7005542591214180e-03
+
+ -7.5832478702068329e-02 8.9484892785549164e-02
+ <_>
+
+ 0 -1 512 -5.3671520203351974e-02
+
+ 7.3710972070693970e-01 -4.0993150323629379e-02
+ <_>
+
+ 0 -1 513 3.4521210938692093e-02
+
+ -1.3731540180742741e-02 2.7299648523330688e-01
+ <_>
+
+ 0 -1 514 -7.2156880050897598e-03
+
+ 1.2723149359226227e-01 -2.3329609632492065e-01
+ <_>
+
+ 0 -1 515 1.7666360363364220e-03
+
+ 5.7977691292762756e-02 -2.0036549866199493e-01
+ <_>
+
+ 0 -1 516 3.8101759273558855e-03
+
+ 7.3866911232471466e-02 -3.0780071020126343e-01
+ <_>
+
+ 0 -1 517 -2.5019630789756775e-02
+
+ 4.3502670526504517e-01 -4.8294428735971451e-02
+ <_>
+
+ 0 -1 518 9.7328815609216690e-03
+
+ -8.3063952624797821e-02 3.0008700489997864e-01
+ <_>
+
+ 0 -1 519 -3.3074519596993923e-03
+
+ 1.3591299951076508e-01 -2.2476670145988464e-01
+ <_>
+
+ 0 -1 520 -1.9178609549999237e-01
+
+ -8.7936902046203613e-01 2.7915079146623611e-02
+ <_>
+
+ 0 -1 521 6.0892169130966067e-04
+
+ -2.2891379892826080e-01 1.0236170142889023e-01
+ <_>
+
+ 0 -1 522 -7.7072591520845890e-03
+
+ -2.4917750060558319e-01 9.4315156340599060e-02
+ <_>
+
+ 0 -1 523 -1.0916110128164291e-01
+
+ 5.5664068460464478e-01 -4.7419041395187378e-02
+ <_>
+
+ 0 -1 524 -6.3703782856464386e-02
+
+ -2.1503069996833801e-01 1.0655879974365234e-01
+ <_>
+
+ 0 -1 525 -2.6704160496592522e-02
+
+ 3.3017820119857788e-01 -9.3569032847881317e-02
+ <_>
+
+ 0 -1 526 -2.7289129793643951e-03
+
+ 8.6531341075897217e-02 -2.6623091101646423e-01
+ <_>
+
+ 0 -1 527 -1.0575050115585327e-01
+
+ -1. 5.9039499610662460e-03
+ <_>
+
+ 0 -1 528 1.8904829397797585e-02
+
+ -6.2077309936285019e-02 4.7796338796615601e-01
+ <_>
+
+ 0 -1 529 -1.6396720707416534e-01
+
+ -1. 1.0493510402739048e-02
+ <_>
+
+ 0 -1 530 1.0453710332512856e-02
+
+ 1.2688960134983063e-01 -2.0351530611515045e-01
+ <_>
+
+ 0 -1 531 1.3724270462989807e-01
+
+ 9.6491426229476929e-03 -3.7908729910850525e-01
+ <_>
+
+ 0 -1 532 -5.0359591841697693e-03
+
+ -2.5936231017112732e-01 1.1745890229940414e-01
+ <_>
+
+ 0 -1 533 6.5677291713654995e-03
+
+ -6.0465291142463684e-02 1.5637819468975067e-01
+ <_>
+
+ 0 -1 534 -3.0346989631652832e-02
+
+ 3.8403400778770447e-01 -6.1477359384298325e-02
+ <_>
+
+ 0 -1 535 1.7546329647302628e-02
+
+ 2.8643229976296425e-02 -4.7679468989372253e-01
+ <_>
+
+ 0 -1 536 -4.5566740445792675e-03
+
+ -3.1261089444160461e-01 1.0885629802942276e-01
+ <_>
+
+ 0 -1 537 -6.9851092994213104e-02
+
+ -7.0994102954864502e-01 1.8536770716309547e-02
+ <_>
+
+ 0 -1 538 -1.4962710338295437e-05
+
+ 1.0287140309810638e-01 -2.2921159863471985e-01
+ <_>
+
+ 0 -1 539 -7.2705000638961792e-02
+
+ 4.2520120739936829e-01 -2.8236340731382370e-02
+ <_>
+
+ 0 -1 540 3.7338290363550186e-02
+
+ -7.6630033552646637e-02 3.2374149560928345e-01
+ <_>
+
+ 0 -1 541 2.8690960258245468e-02
+
+ 3.0029499903321266e-02 -8.4007978439331055e-01
+ <_>
+
+ 0 -1 542 1.0019769892096519e-02
+
+ -7.9071857035160065e-02 3.4019070863723755e-01
+ <_>
+
+ 0 -1 543 -3.9540659636259079e-03
+
+ -2.4449679255485535e-01 1.1845660209655762e-01
+ <_>
+
+ 0 -1 544 -8.2879550755023956e-03
+
+ 1.0628750175237656e-01 -2.2044150531291962e-01
+ <_>
+
+ 0 -1 545 -3.4582480788230896e-02
+
+ -7.1333628892898560e-01 2.9727920889854431e-02
+ <_>
+
+ 0 -1 546 -1.4701869804412127e-03
+
+ 1.2630669772624969e-01 -1.8260860443115234e-01
+ <_>
+
+ 0 -1 547 -1.8792560324072838e-02
+
+ 4.4159510731697083e-01 -6.2980100512504578e-02
+ <_>
+
+ 0 -1 548 -1.9830280914902687e-02
+
+ -2.8308698534965515e-01 9.2180028557777405e-02
+ <_>
+
+ 0 -1 549 -1.6321459412574768e-01
+
+ -4.1355830430984497e-01 1.1562050320208073e-02
+ <_>
+
+ 0 -1 550 7.5624987483024597e-02
+
+ 2.2105440497398376e-02 -9.1430252790451050e-01
+ <_>
+
+ 0 -1 551 -2.2491789422929287e-03
+
+ 9.1926686465740204e-02 -1.0633769631385803e-01
+ <_>
+
+ 0 -1 552 -6.3310638070106506e-02
+
+ -7.7100628614425659e-01 2.7047479525208473e-02
+ <_>
+ 60
+ -8.9544051885604858e-01
+
+ <_>
+
+ 0 -1 553 -1.7043270170688629e-01
+
+ 4.7425061464309692e-01 -1.8581479787826538e-01
+ <_>
+
+ 0 -1 554 2.7967130765318871e-02
+
+ -8.6291179060935974e-02 5.3257989883422852e-01
+ <_>
+
+ 0 -1 555 2.0941249385941774e-04
+
+ -2.7199700474739075e-01 1.3615070283412933e-01
+ <_>
+
+ 0 -1 556 -3.3637240529060364e-02
+
+ 2.8299760818481445e-01 -2.2356469184160233e-02
+ <_>
+
+ 0 -1 557 -4.5356429181993008e-03
+
+ 1.6135759651660919e-01 -2.0162500441074371e-01
+ <_>
+
+ 0 -1 558 3.3124668989330530e-03
+
+ -7.9677619040012360e-02 1.4375239610671997e-01
+ <_>
+
+ 0 -1 559 -5.4888740181922913e-02
+
+ 6.6563862562179565e-01 -5.3526669740676880e-02
+ <_>
+
+ 0 -1 560 5.3796600550413132e-03
+
+ -9.6400886774063110e-02 9.3223050236701965e-02
+ <_>
+
+ 0 -1 561 -6.0283239930868149e-02
+
+ -5.4325622320175171e-01 5.4515969008207321e-02
+ <_>
+
+ 0 -1 562 8.4590855985879898e-03
+
+ 5.0189521163702011e-02 -3.7638399004936218e-01
+ <_>
+
+ 0 -1 563 2.8549430426210165e-03
+
+ 1.3105809688568115e-01 -2.4903079867362976e-01
+ <_>
+
+ 0 -1 564 -2.0608250051736832e-02
+
+ -4.3393260240554810e-01 6.0918930917978287e-02
+ <_>
+
+ 0 -1 565 -1.0088419541716576e-02
+
+ 2.9433688521385193e-01 -1.0092660039663315e-01
+ <_>
+
+ 0 -1 566 -5.9431340545415878e-02
+
+ -9.0102052688598633e-01 2.7330689132213593e-02
+ <_>
+
+ 0 -1 567 -2.4024050217121840e-03
+
+ 1.2758029997348785e-01 -1.9134059548377991e-01
+ <_>
+
+ 0 -1 568 -2.7372820302844048e-02
+
+ -2.8051578998565674e-01 1.0892979800701141e-01
+ <_>
+
+ 0 -1 569 -7.3817551136016846e-02
+
+ 3.6636620759963989e-01 -7.1261473000049591e-02
+ <_>
+
+ 0 -1 570 -6.9365866482257843e-02
+
+ 4.4759741425514221e-01 -3.5112198442220688e-02
+ <_>
+
+ 0 -1 571 -1.2530760141089559e-03
+
+ 1.0481069982051849e-01 -2.5331568717956543e-01
+ <_>
+
+ 0 -1 572 -3.2429681159555912e-03
+
+ -2.1083809435367584e-01 8.9755013585090637e-02
+ <_>
+
+ 0 -1 573 1.6115259379148483e-02
+
+ -5.8019161224365234e-02 5.5759441852569580e-01
+ <_>
+
+ 0 -1 574 6.2562932725995779e-04
+
+ -2.1611200273036957e-01 1.2215120345354080e-01
+ <_>
+
+ 0 -1 575 -7.6641827821731567e-01
+
+ -6.3647639751434326e-01 3.3915121108293533e-02
+ <_>
+
+ 0 -1 576 -7.4419458542251959e-06
+
+ 9.5346711575984955e-02 -2.3950740694999695e-01
+ <_>
+
+ 0 -1 577 -3.7739300751127303e-04
+
+ 1.4481280744075775e-01 -1.8476490676403046e-01
+ <_>
+
+ 0 -1 578 7.6729603111743927e-02
+
+ 1.1742720380425453e-02 -9.6213918924331665e-01
+ <_>
+
+ 0 -1 579 -4.4697099365293980e-03
+
+ -2.3385390639305115e-01 1.0464339703321457e-01
+ <_>
+
+ 0 -1 580 7.5911812484264374e-02
+
+ 6.7219119518995285e-03 -4.2311188578605652e-01
+ <_>
+
+ 0 -1 581 -8.3202589303255081e-03
+
+ 3.2122060656547546e-01 -8.3661839365959167e-02
+ <_>
+
+ 0 -1 582 -3.7233818322420120e-02
+
+ 1.1662390083074570e-01 -2.3976010084152222e-01
+ <_>
+
+ 0 -1 583 -2.1381198894232512e-03
+
+ 8.4755808115005493e-02 -2.5149530172348022e-01
+ <_>
+
+ 0 -1 584 -4.4315438717603683e-03
+
+ -1.0990399867296219e-01 6.6713362932205200e-02
+ <_>
+
+ 0 -1 585 -1.0959600098431110e-02
+
+ 2.8818470239639282e-01 -7.7696867287158966e-02
+ <_>
+
+ 0 -1 586 3.4907169640064240e-02
+
+ -1.1712339706718922e-02 3.9965820312500000e-01
+ <_>
+
+ 0 -1 587 -1.3335079886019230e-02
+
+ -4.9896249175071716e-01 5.3193040192127228e-02
+ <_>
+
+ 0 -1 588 -3.7070110440254211e-02
+
+ -5.9346628189086914e-01 1.2502389959990978e-02
+ <_>
+
+ 0 -1 589 -9.1118857264518738e-02
+
+ -6.0664188861846924e-01 3.0223639681935310e-02
+ <_>
+
+ 0 -1 590 -6.7527957260608673e-02
+
+ 3.2593071460723877e-01 -3.2810360193252563e-02
+ <_>
+
+ 0 -1 591 -2.6317719370126724e-02
+
+ -7.6599878072738647e-01 2.5263689458370209e-02
+ <_>
+
+ 0 -1 592 3.7877839058637619e-02
+
+ 1.7415969632565975e-03 -9.1090667247772217e-01
+ <_>
+
+ 0 -1 593 1.6833839472383261e-03
+
+ -6.4769007265567780e-02 3.5946249961853027e-01
+ <_>
+
+ 0 -1 594 -4.2451170884305611e-05
+
+ 6.2228899449110031e-02 -8.5069350898265839e-02
+ <_>
+
+ 0 -1 595 2.7713281451724470e-04
+
+ -1.7252549529075623e-01 1.2511169910430908e-01
+ <_>
+
+ 0 -1 596 -3.0400960240513086e-03
+
+ 1.5032739937305450e-01 -1.4423249661922455e-01
+ <_>
+
+ 0 -1 597 -5.4823148995637894e-02
+
+ 3.4711471199989319e-01 -6.3294216990470886e-02
+ <_>
+
+ 0 -1 598 1.4232549583539367e-03
+
+ 7.3755688965320587e-02 -2.7084198594093323e-01
+ <_>
+
+ 0 -1 599 -3.3660030458122492e-03
+
+ -2.3144030570983887e-01 8.8216871023178101e-02
+ <_>
+
+ 0 -1 600 -1.1405759723857045e-03
+
+ 1.5687429904937744e-01 -1.3379560410976410e-01
+ <_>
+
+ 0 -1 601 3.7445020861923695e-03
+
+ -1.2132400274276733e-01 2.2723269462585449e-01
+ <_>
+
+ 0 -1 602 1.6585510224103928e-02
+
+ 5.4631579667329788e-02 -1.0117000341415405e-01
+ <_>
+
+ 0 -1 603 -2.9970710165798664e-03
+
+ 1.7258630692958832e-01 -1.4288370311260223e-01
+ <_>
+
+ 0 -1 604 -3.0509869102388620e-03
+
+ 1.0889530181884766e-01 -1.2865459918975830e-01
+ <_>
+
+ 0 -1 605 -2.7037179097533226e-02
+
+ -2.1809040009975433e-01 1.0335580259561539e-01
+ <_>
+
+ 0 -1 606 -1.4020490460097790e-02
+
+ 1.7013829946517944e-01 -4.6483799815177917e-02
+ <_>
+
+ 0 -1 607 4.0001110173761845e-03
+
+ 6.1452940106391907e-02 -3.5107728838920593e-01
+ <_>
+
+ 0 -1 608 1.1888570152223110e-02
+
+ -6.5659493207931519e-02 3.4128171205520630e-01
+ <_>
+
+ 0 -1 609 1.0041910223662853e-02
+
+ 1.0645069926977158e-01 -2.3905399441719055e-01
+ <_>
+
+ 0 -1 610 -8.3469128003343940e-04
+
+ 1.1359920352697372e-01 -1.2456230074167252e-01
+ <_>
+
+ 0 -1 611 -8.4286198019981384e-02
+
+ 4.4472348690032959e-01 -4.6677689999341965e-02
+ <_>
+
+ 0 -1 612 -1.2084700167179108e-02
+
+ -3.1389999389648438e-01 8.1864818930625916e-02
+ <_>
+ 69
+ -8.5815817117691040e-01
+
+ <_>
+
+ 0 -1 613 -6.6878342628479004e-01
+
+ 4.1411510109901428e-01 -1.8810300529003143e-01
+ <_>
+
+ 0 -1 614 3.4350738860666752e-04
+
+ -1.5680180490016937e-01 1.0782240331172943e-01
+ <_>
+
+ 0 -1 615 2.6565280277282000e-03
+
+ -2.2030730545520782e-01 2.1439610421657562e-01
+ <_>
+
+ 0 -1 616 -1.9296359270811081e-02
+
+ 4.2026680707931519e-01 -6.8671546876430511e-02
+ <_>
+
+ 0 -1 617 -6.6540208645164967e-03
+
+ -2.3488819599151611e-01 1.6749989986419678e-01
+ <_>
+
+ 0 -1 618 1.5521990135312080e-02
+
+ 1.9785670563578606e-02 -3.9180341362953186e-01
+ <_>
+
+ 0 -1 619 8.0317907035350800e-02
+
+ -1.9278699532151222e-02 5.8520817756652832e-01
+ <_>
+
+ 0 -1 620 -1.0220059752464294e-01
+
+ -8.1461167335510254e-01 8.9545976370573044e-03
+ <_>
+
+ 0 -1 621 -1.0618870146572590e-02
+
+ 1.8044769763946533e-01 -2.1122869849205017e-01
+ <_>
+
+ 0 -1 622 9.8658069968223572e-02
+
+ -4.9179349094629288e-02 2.1871259808540344e-01
+ <_>
+
+ 0 -1 623 -6.6758222877979279e-02
+
+ -2.6649540662765503e-01 1.0707940161228180e-01
+ <_>
+
+ 0 -1 624 -2.9256459325551987e-02
+
+ -7.8809207677841187e-01 5.6176739744842052e-03
+ <_>
+
+ 0 -1 625 -1.2126189656555653e-02
+
+ 1.0218500345945358e-01 -2.2899429500102997e-01
+ <_>
+
+ 0 -1 626 -5.4919619113206863e-02
+
+ -5.3647202253341675e-01 1.4213330112397671e-02
+ <_>
+
+ 0 -1 627 -4.0985811501741409e-03
+
+ -3.1650361418724060e-01 7.6794192194938660e-02
+ <_>
+
+ 0 -1 628 -6.2581077218055725e-02
+
+ -4.8726239800453186e-01 9.1610476374626160e-03
+ <_>
+
+ 0 -1 629 4.9834471195936203e-02
+
+ -7.5687482953071594e-02 2.9998108744621277e-01
+ <_>
+
+ 0 -1 630 1.0333029925823212e-01
+
+ 3.3387999981641769e-02 -5.6652718782424927e-01
+ <_>
+
+ 0 -1 631 -2.6153959333896637e-02
+
+ 4.4663658738136292e-01 -5.7146150618791580e-02
+ <_>
+
+ 0 -1 632 6.8949297070503235e-02
+
+ 6.6676470451056957e-03 -9.9968850612640381e-01
+ <_>
+
+ 0 -1 633 2.1299200598150492e-03
+
+ -1.8253549933433533e-01 1.2543450295925140e-01
+ <_>
+
+ 0 -1 634 -4.4991839677095413e-02
+
+ -5.6401151418685913e-01 3.7286750972270966e-02
+ <_>
+
+ 0 -1 635 2.2533860057592392e-02
+
+ -4.2648501694202423e-02 5.9839051961898804e-01
+ <_>
+
+ 0 -1 636 1.9274459779262543e-01
+
+ 3.0479490756988525e-02 -8.4564548730850220e-01
+ <_>
+
+ 0 -1 637 -9.2559499898925424e-04
+
+ -2.0614519715309143e-01 1.1016649752855301e-01
+ <_>
+
+ 0 -1 638 -3.6584408953785896e-03
+
+ 9.1432936489582062e-02 -8.2888223230838776e-02
+ <_>
+
+ 0 -1 639 3.3741090446710587e-03
+
+ 8.0734901130199432e-02 -3.0495160818099976e-01
+ <_>
+
+ 0 -1 640 -5.1757801324129105e-02
+
+ -8.0067127943038940e-01 2.8978339396417141e-03
+ <_>
+
+ 0 -1 641 1.0498389601707458e-03
+
+ -1.8396970629692078e-01 1.3429929316043854e-01
+ <_>
+
+ 0 -1 642 7.5232777744531631e-03
+
+ -3.1206240877509117e-02 1.2124940007925034e-01
+ <_>
+
+ 0 -1 643 -7.1075286541599780e-05
+
+ 8.4017656743526459e-02 -2.5043961405754089e-01
+ <_>
+
+ 0 -1 644 1.1362830176949501e-02
+
+ -7.6280519366264343e-02 2.0559790730476379e-01
+ <_>
+
+ 0 -1 645 -2.4097480345517397e-03
+
+ -1.5042850375175476e-01 1.6493639349937439e-01
+ <_>
+
+ 0 -1 646 2.4056989699602127e-02
+
+ 1.4566550031304359e-02 -9.0886771678924561e-01
+ <_>
+
+ 0 -1 647 -2.3983620107173920e-02
+
+ 3.9107671380043030e-01 -5.4178200662136078e-02
+ <_>
+
+ 0 -1 648 -2.1438319236040115e-02
+
+ -4.8545840382575989e-01 4.0402751415967941e-02
+ <_>
+
+ 0 -1 649 1.5210740268230438e-02
+
+ 3.4481588751077652e-02 -5.4406332969665527e-01
+ <_>
+
+ 0 -1 650 1.1712989769876003e-02
+
+ -6.5206751227378845e-02 4.1007021069526672e-01
+ <_>
+
+ 0 -1 651 6.3996820244938135e-04
+
+ -1.4772899448871613e-01 1.5154249966144562e-01
+ <_>
+
+ 0 -1 652 -3.4567480906844139e-03
+
+ 6.3351117074489594e-02 -1.4297829568386078e-01
+ <_>
+
+ 0 -1 653 -1.2475489638745785e-03
+
+ -1.8521060049533844e-01 1.3410830497741699e-01
+ <_>
+
+ 0 -1 654 6.6904430277645588e-03
+
+ 1.4112530648708344e-01 -1.8778939545154572e-01
+ <_>
+
+ 0 -1 655 -6.9181032478809357e-02
+
+ 3.4451478719711304e-01 -8.4655232727527618e-02
+ <_>
+
+ 0 -1 656 -6.7893281579017639e-02
+
+ -7.0076942443847656e-01 2.3327259346842766e-02
+ <_>
+
+ 0 -1 657 -8.5538747953251004e-04
+
+ 9.2393256723880768e-02 -2.1416470408439636e-01
+ <_>
+
+ 0 -1 658 1.7967769503593445e-01
+
+ 2.9103670269250870e-02 -7.8690862655639648e-01
+ <_>
+
+ 0 -1 659 -2.9843579977750778e-03
+
+ 1.6117380559444427e-01 -1.2868699431419373e-01
+ <_>
+
+ 0 -1 660 1.9973449409008026e-02
+
+ 3.6350231617689133e-02 -5.9400641918182373e-01
+ <_>
+
+ 0 -1 661 -8.3998020272701979e-04
+
+ 1.1332140117883682e-01 -1.9175720214843750e-01
+ <_>
+
+ 0 -1 662 5.0804121419787407e-03
+
+ 5.3663559257984161e-02 -2.7940011024475098e-01
+ <_>
+
+ 0 -1 663 7.3341121897101402e-03
+
+ -1.6792379319667816e-01 1.2119220197200775e-01
+ <_>
+
+ 0 -1 664 7.6924441382288933e-03
+
+ -6.9076187908649445e-02 1.8550349771976471e-01
+ <_>
+
+ 0 -1 665 2.0062309340573847e-04
+
+ -2.0654049515724182e-01 9.7337253391742706e-02
+ <_>
+
+ 0 -1 666 2.6919560506939888e-02
+
+ -2.3648599162697792e-02 6.4873528480529785e-01
+ <_>
+
+ 0 -1 667 -2.7951570227742195e-03
+
+ -2.0725600421428680e-01 1.0188090056180954e-01
+ <_>
+
+ 0 -1 668 7.8026622533798218e-02
+
+ 8.9439805597066879e-03 -3.9990609884262085e-01
+ <_>
+
+ 0 -1 669 -1.0000459849834442e-01
+
+ 3.7361750006675720e-01 -5.5814821273088455e-02
+ <_>
+
+ 0 -1 670 -1.4978240430355072e-01
+
+ 3.8677608966827393e-01 -5.5641401559114456e-02
+ <_>
+
+ 0 -1 671 3.3566348254680634e-02
+
+ 7.5311936438083649e-02 -3.2007390260696411e-01
+ <_>
+
+ 0 -1 672 -2.1213890612125397e-01
+
+ -5.9270721673965454e-01 4.9450621008872986e-03
+ <_>
+
+ 0 -1 673 -1.4402889646589756e-02
+
+ 3.2471069693565369e-01 -5.8492168784141541e-02
+ <_>
+
+ 0 -1 674 -1.8413169309496880e-02
+
+ -9.6801750361919403e-02 1.0343659669160843e-01
+ <_>
+
+ 0 -1 675 1.6228349879384041e-02
+
+ -6.0577668249607086e-02 3.1738010048866272e-01
+ <_>
+
+ 0 -1 676 -6.7683439701795578e-03
+
+ -1.9742150604724884e-01 2.7996420860290527e-02
+ <_>
+
+ 0 -1 677 -1.9165309146046638e-02
+
+ -2.5684070587158203e-01 8.3432748913764954e-02
+ <_>
+
+ 0 -1 678 2.8667549486272037e-04
+
+ -1.5241080522537231e-01 1.4404779672622681e-01
+ <_>
+
+ 0 -1 679 9.4157401472330093e-03
+
+ -7.3207639157772064e-02 3.3655610680580139e-01
+ <_>
+
+ 0 -1 680 2.3321900516748428e-02
+
+ -6.1898268759250641e-02 8.3489909768104553e-02
+ <_>
+
+ 0 -1 681 -1.1910670436918736e-02
+
+ -1.9628530740737915e-01 9.6807330846786499e-02
+ <_>
+ 63
+ -7.2787708044052124e-01
+
+ <_>
+
+ 0 -1 682 -9.4191312789916992e-02
+
+ 4.7028279304504395e-01 -1.4449509978294373e-01
+ <_>
+
+ 0 -1 683 -6.9314462598413229e-04
+
+ 1.7749489843845367e-01 -1.8127989768981934e-01
+ <_>
+
+ 0 -1 684 -1.2782390415668488e-01
+
+ 2.9733940958976746e-01 -1.0098580271005630e-01
+ <_>
+
+ 0 -1 685 -2.5297680404037237e-03
+
+ 1.0854879766702652e-01 -1.3471469283103943e-01
+ <_>
+
+ 0 -1 686 -2.5406670756638050e-03
+
+ -2.7025818824768066e-01 1.0289029777050018e-01
+ <_>
+
+ 0 -1 687 -1.5717690112069249e-03
+
+ 1.7058460414409637e-01 -1.0923519730567932e-01
+ <_>
+
+ 0 -1 688 1.4790190383791924e-02
+
+ 2.3690680041909218e-02 -5.1412177085876465e-01
+ <_>
+
+ 0 -1 689 -1.1837840080261230e-02
+
+ 1.5754750370979309e-01 -2.7252310886979103e-02
+ <_>
+
+ 0 -1 690 -3.8180808769538999e-04
+
+ 1.0274309664964676e-01 -2.1815380454063416e-01
+ <_>
+
+ 0 -1 691 5.0768889486789703e-02
+
+ 7.3335068300366402e-03 -8.5053902864456177e-01
+ <_>
+
+ 0 -1 692 2.2738629952073097e-02
+
+ -4.3974649161100388e-02 5.0167572498321533e-01
+ <_>
+
+ 0 -1 693 7.3323072865605354e-04
+
+ -9.8431721329689026e-02 1.1515360325574875e-01
+ <_>
+
+ 0 -1 694 1.1889509623870254e-03
+
+ -2.2443179786205292e-01 1.0813289880752563e-01
+ <_>
+
+ 0 -1 695 -3.2934029586613178e-03
+
+ 7.1840867400169373e-02 -8.0868020653724670e-02
+ <_>
+
+ 0 -1 696 -3.0113169923424721e-03
+
+ -2.9698678851127625e-01 7.9700268805027008e-02
+ <_>
+
+ 0 -1 697 -1.5521480236202478e-03
+
+ 1.8694180250167847e-01 -1.1467470228672028e-01
+ <_>
+
+ 0 -1 698 -1.0300680063664913e-02
+
+ -2.9109370708465576e-01 6.7836336791515350e-02
+ <_>
+
+ 0 -1 699 -2.6368349790573120e-03
+
+ 1.1284109950065613e-01 -7.3468528687953949e-02
+ <_>
+
+ 0 -1 700 -3.2815459417179227e-04
+
+ 8.1921890377998352e-02 -2.4893359839916229e-01
+ <_>
+
+ 0 -1 701 -3.4514568746089935e-02
+
+ 4.2230990529060364e-01 -3.4608390182256699e-02
+ <_>
+
+ 0 -1 702 2.1102999744471163e-04
+
+ -1.9479750096797943e-01 1.1572039872407913e-01
+ <_>
+
+ 0 -1 703 -4.4254157692193985e-03
+
+ -1.9316120445728302e-01 5.8137431740760803e-02
+ <_>
+
+ 0 -1 704 -1.7686230130493641e-03
+
+ -1.7518809437751770e-01 1.4515039324760437e-01
+ <_>
+
+ 0 -1 705 -3.3355921041220427e-03
+
+ 2.2621470689773560e-01 -1.0195499658584595e-01
+ <_>
+
+ 0 -1 706 4.5241121202707291e-02
+
+ 3.3572640269994736e-02 -6.6535997390747070e-01
+ <_>
+
+ 0 -1 707 -2.7708040550351143e-02
+
+ -4.7514501214027405e-01 1.6605619341135025e-02
+ <_>
+
+ 0 -1 708 -6.0042630881071091e-02
+
+ 2.7002659440040588e-01 -7.5283601880073547e-02
+ <_>
+
+ 0 -1 709 9.3657420948147774e-03
+
+ -5.2090760320425034e-02 3.4359771013259888e-01
+ <_>
+
+ 0 -1 710 2.2545119747519493e-02
+
+ 4.5823760330677032e-02 -5.3111177682876587e-01
+ <_>
+
+ 0 -1 711 -6.6756099462509155e-02
+
+ 5.1867592334747314e-01 -1.0766089893877506e-02
+ <_>
+
+ 0 -1 712 4.3578571639955044e-03
+
+ -1.6680300235748291e-01 1.3410590589046478e-01
+ <_>
+
+ 0 -1 713 -3.6338180303573608e-02
+
+ -5.4825192689895630e-01 1.8291600048542023e-02
+ <_>
+
+ 0 -1 714 -4.5509558171033859e-02
+
+ 3.9119181036949158e-01 -5.4338268935680389e-02
+ <_>
+
+ 0 -1 715 6.2883161008358002e-03
+
+ 9.5495186746120453e-02 -2.4893720448017120e-01
+ <_>
+
+ 0 -1 716 1.5809159958735108e-03
+
+ -1.6792270541191101e-01 1.1553759872913361e-01
+ <_>
+
+ 0 -1 717 -1.5780210494995117e-01
+
+ -6.9598740339279175e-01 3.1015299260616302e-02
+ <_>
+
+ 0 -1 718 -5.0400748848915100e-02
+
+ -6.1013418436050415e-01 2.5600189343094826e-02
+ <_>
+
+ 0 -1 719 -8.3708087913691998e-04
+
+ 6.3689701259136200e-02 -3.2572910189628601e-01
+ <_>
+
+ 0 -1 720 5.2259840071201324e-02
+
+ -5.2639529109001160e-02 4.3018800020217896e-01
+ <_>
+
+ 0 -1 721 6.6796218743547797e-04
+
+ 8.0761440098285675e-02 -2.5092118978500366e-01
+ <_>
+
+ 0 -1 722 -3.6306399852037430e-02
+
+ 7.2837859392166138e-01 -2.8703549876809120e-02
+ <_>
+
+ 0 -1 723 -7.5823411345481873e-02
+
+ -7.6045262813568115e-01 1.3166300021111965e-02
+ <_>
+
+ 0 -1 724 -5.5567082017660141e-03
+
+ 1.1258409917354584e-01 -1.9850979745388031e-01
+ <_>
+
+ 0 -1 725 3.1275521032512188e-03
+
+ -1.0436189919710159e-01 1.0283000022172928e-01
+ <_>
+
+ 0 -1 726 2.7931319549679756e-02
+
+ 4.7023560851812363e-02 -4.7727531194686890e-01
+ <_>
+
+ 0 -1 727 1.5156970359385014e-02
+
+ -4.9909379333257675e-02 2.1705010533332825e-01
+ <_>
+
+ 0 -1 728 6.8009081296622753e-03
+
+ 1.1713290214538574e-01 -2.2082920372486115e-01
+ <_>
+
+ 0 -1 729 -4.3796948157250881e-03
+
+ 1.7191199958324432e-01 -8.9668810367584229e-02
+ <_>
+
+ 0 -1 730 -6.9269728846848011e-03
+
+ 8.8258482515811920e-02 -2.6454809308052063e-01
+ <_>
+
+ 0 -1 731 -2.0586250722408295e-01
+
+ -5.0262999534606934e-01 4.0832251310348511e-02
+ <_>
+
+ 0 -1 732 -1.1398729839129373e-04
+
+ 1.0535170137882233e-01 -1.9488720595836639e-01
+ <_>
+
+ 0 -1 733 3.6993779242038727e-02
+
+ -5.4779630154371262e-02 2.2932989895343781e-01
+ <_>
+
+ 0 -1 734 4.7788480296730995e-03
+
+ 9.1294333338737488e-02 -2.4968950450420380e-01
+ <_>
+
+ 0 -1 735 1.1999059934169054e-03
+
+ -9.2685289680957794e-02 1.1050710082054138e-01
+ <_>
+
+ 0 -1 736 2.0830740686506033e-03
+
+ -1.0583080351352692e-01 1.7405270040035248e-01
+ <_>
+
+ 0 -1 737 2.7166489511728287e-02
+
+ 1.1538780294358730e-02 -1.0000569820404053e+00
+ <_>
+
+ 0 -1 738 -4.3531907722353935e-03
+
+ -2.6105979084968567e-01 7.8109443187713623e-02
+ <_>
+
+ 0 -1 739 -1.6676170751452446e-02
+
+ -6.3766658306121826e-01 1.2807319872081280e-02
+ <_>
+
+ 0 -1 740 -1.7588710179552436e-03
+
+ 1.5328720211982727e-01 -1.4830219745635986e-01
+ <_>
+
+ 0 -1 741 -1.3470610138028860e-03
+
+ 1.1022730171680450e-01 -1.1166580021381378e-01
+ <_>
+
+ 0 -1 742 -7.7226730063557625e-03
+
+ 2.6749759912490845e-01 -8.4375701844692230e-02
+ <_>
+
+ 0 -1 743 2.4557989090681076e-02
+
+ 1.1705229990184307e-02 -6.9936311244964600e-01
+ <_>
+
+ 0 -1 744 -4.1882451623678207e-03
+
+ -2.0845660567283630e-01 1.1073870211839676e-01
+ <_>
+ 67
+ -7.7944219112396240e-01
+
+ <_>
+
+ 0 -1 745 -3.0925211310386658e-01
+
+ 3.1520840525627136e-01 -1.6629250347614288e-01
+ <_>
+
+ 0 -1 746 3.8660250604152679e-02
+
+ -5.7934600859880447e-02 4.5278790593147278e-01
+ <_>
+
+ 0 -1 747 -1.8853870034217834e-01
+
+ -8.2013928890228271e-01 3.0941359698772430e-02
+ <_>
+
+ 0 -1 748 7.1423681220039725e-04
+
+ 1.0280930250883102e-01 -2.4902869760990143e-01
+ <_>
+
+ 0 -1 749 -7.2074443101882935e-02
+
+ 3.3171579241752625e-01 -7.3685511946678162e-02
+ <_>
+
+ 0 -1 750 9.4616664573550224e-03
+
+ 3.2647788524627686e-02 -3.6112511157989502e-01
+ <_>
+
+ 0 -1 751 -4.6513080596923828e-02
+
+ -4.7550851106643677e-01 5.6877400726079941e-02
+ <_>
+
+ 0 -1 752 -3.4777458757162094e-02
+
+ -6.3515567779541016e-01 3.1314119696617126e-02
+ <_>
+
+ 0 -1 753 -1.4840300427749753e-03
+
+ 9.2628233134746552e-02 -2.5283080339431763e-01
+ <_>
+
+ 0 -1 754 8.3039281889796257e-03
+
+ 3.3991388976573944e-02 -1.8357479572296143e-01
+ <_>
+
+ 0 -1 755 2.7342209592461586e-02
+
+ -5.1393941044807434e-02 5.5958998203277588e-01
+ <_>
+
+ 0 -1 756 5.8637421578168869e-02
+
+ -5.7350661605596542e-02 1.4842259883880615e-01
+ <_>
+
+ 0 -1 757 -3.7032511085271835e-02
+
+ -4.0602868795394897e-01 6.6790133714675903e-02
+ <_>
+
+ 0 -1 758 8.9913606643676758e-03
+
+ -1.9094319641590118e-01 5.9438090771436691e-02
+ <_>
+
+ 0 -1 759 -5.9351198375225067e-02
+
+ -8.7097257375717163e-01 2.1483449265360832e-02
+ <_>
+
+ 0 -1 760 3.7055540084838867e-01
+
+ -4.0396090596914291e-02 6.0631322860717773e-01
+ <_>
+
+ 0 -1 761 -8.4517069626599550e-04
+
+ 1.3660719990730286e-01 -1.5541790425777435e-01
+ <_>
+
+ 0 -1 762 1.0664479807019234e-02
+
+ 3.4129761159420013e-02 -2.3508089780807495e-01
+ <_>
+
+ 0 -1 763 3.7040449678897858e-03
+
+ 1.1293920129537582e-01 -1.5596470236778259e-01
+ <_>
+
+ 0 -1 764 2.3328550159931183e-02
+
+ 3.6770980805158615e-02 -1.6631129384040833e-01
+ <_>
+
+ 0 -1 765 2.0906640216708183e-02
+
+ -7.3391966521739960e-02 3.2708668708801270e-01
+ <_>
+
+ 0 -1 766 2.0865180995315313e-03
+
+ 9.6375763416290283e-02 -2.1638840436935425e-01
+ <_>
+
+ 0 -1 767 1.2039430439472198e-03
+
+ -1.7018699645996094e-01 1.0815030336380005e-01
+ <_>
+
+ 0 -1 768 3.3848760649561882e-03
+
+ -1.0820890218019485e-01 9.0751953423023224e-02
+ <_>
+
+ 0 -1 769 -1.5309279784560204e-02
+
+ -6.2071442604064941e-01 3.1353730708360672e-02
+ <_>
+
+ 0 -1 770 2.1820720285177231e-02
+
+ -5.7232249528169632e-02 2.9141768813133240e-01
+ <_>
+
+ 0 -1 771 5.8554150164127350e-03
+
+ 5.5810708552598953e-02 -3.4557789564132690e-01
+ <_>
+
+ 0 -1 772 -8.8380590081214905e-02
+
+ -5.8971607685089111e-01 3.2257869839668274e-02
+ <_>
+
+ 0 -1 773 -3.6303598433732986e-02
+
+ 6.7906290292739868e-01 -3.1298439949750900e-02
+ <_>
+
+ 0 -1 774 6.7714422941207886e-02
+
+ 2.8151830658316612e-02 -7.5963890552520752e-01
+ <_>
+
+ 0 -1 775 -1.7487880541011691e-03
+
+ 1.3521270453929901e-01 -1.4939880371093750e-01
+ <_>
+
+ 0 -1 776 5.7627420872449875e-02
+
+ 1.4716790057718754e-02 -6.4088898897171021e-01
+ <_>
+
+ 0 -1 777 4.8004398122429848e-03
+
+ 5.7510860264301300e-02 -3.0728340148925781e-01
+ <_>
+
+ 0 -1 778 1.5568589791655540e-02
+
+ -2.6860829442739487e-02 3.9390829205513000e-01
+ <_>
+
+ 0 -1 779 -9.9650640040636063e-03
+
+ 3.2090151309967041e-01 -5.8974441140890121e-02
+ <_>
+
+ 0 -1 780 -9.1902203857898712e-03
+
+ -3.8006910681724548e-01 3.5807169973850250e-02
+ <_>
+
+ 0 -1 781 3.0834939330816269e-02
+
+ 4.0354121476411819e-02 -5.0782901048660278e-01
+ <_>
+
+ 0 -1 782 -6.4900278812274337e-04
+
+ 9.5597133040428162e-02 -1.8812850117683411e-01
+ <_>
+
+ 0 -1 783 -3.9334357716143131e-03
+
+ -2.0279949903488159e-01 1.0514850169420242e-01
+ <_>
+
+ 0 -1 784 -2.1477680653333664e-02
+
+ -3.2985571026802063e-01 3.5263378173112869e-02
+ <_>
+
+ 0 -1 785 -2.7516249567270279e-02
+
+ 3.4558650851249695e-01 -7.2544910013675690e-02
+ <_>
+
+ 0 -1 786 -7.2914459742605686e-03
+
+ 1.0051680356264114e-01 -1.3560770452022552e-01
+ <_>
+
+ 0 -1 787 -5.6135728955268860e-02
+
+ 4.0078470110893250e-01 -5.1991838961839676e-02
+ <_>
+
+ 0 -1 788 1.3679620623588562e-01
+
+ -1.6432780772447586e-02 5.6100088357925415e-01
+ <_>
+
+ 0 -1 789 -2.4549920111894608e-02
+
+ -1.8187479674816132e-01 1.4125369489192963e-01
+ <_>
+
+ 0 -1 790 4.6405121684074402e-03
+
+ -1.6500659286975861e-01 1.4912450313568115e-01
+ <_>
+
+ 0 -1 791 -2.1023359149694443e-02
+
+ -1.9611929357051849e-01 9.9226936697959900e-02
+ <_>
+
+ 0 -1 792 -4.8856949433684349e-03
+
+ 1.1330509930849075e-01 -8.0172486603260040e-02
+ <_>
+
+ 0 -1 793 -1.7337809503078461e-01
+
+ -8.3458930253982544e-01 2.3691669106483459e-02
+ <_>
+
+ 0 -1 794 -9.2903972836211324e-04
+
+ 8.5904203355312347e-02 -1.0580120235681534e-01
+ <_>
+
+ 0 -1 795 -1.0562090203166008e-02
+
+ 2.6989871263504028e-01 -6.7542143166065216e-02
+ <_>
+
+ 0 -1 796 1.5071259811520576e-02
+
+ 5.8657489717006683e-02 -3.2436290383338928e-01
+ <_>
+
+ 0 -1 797 -1.8616430461406708e-02
+
+ 3.5660719871520996e-01 -5.3099378943443298e-02
+ <_>
+
+ 0 -1 798 8.4412463009357452e-02
+
+ 1.7715929076075554e-02 -4.5803558826446533e-01
+ <_>
+
+ 0 -1 799 5.1138769835233688e-02
+
+ 1.7407679930329323e-02 -9.4110202789306641e-01
+ <_>
+
+ 0 -1 800 -1.0613460093736649e-02
+
+ -6.0632371902465820e-01 3.0793670564889908e-02
+ <_>
+
+ 0 -1 801 1.8357619643211365e-02
+
+ -7.7268190681934357e-02 2.9780578613281250e-01
+ <_>
+
+ 0 -1 802 -8.4444461390376091e-04
+
+ 7.8023009002208710e-02 -2.5017648935317993e-01
+ <_>
+
+ 0 -1 803 -6.2388968653976917e-03
+
+ -4.8017698526382446e-01 3.9185639470815659e-02
+ <_>
+
+ 0 -1 804 -3.5363171249628067e-02
+
+ -1. 9.3268742784857750e-03
+ <_>
+
+ 0 -1 805 -7.3558121919631958e-02
+
+ -7.7895337343215942e-01 1.8441500142216682e-02
+ <_>
+
+ 0 -1 806 -8.7034203112125397e-02
+
+ 4.3624061346054077e-01 -1.7716599628329277e-02
+ <_>
+
+ 0 -1 807 -8.0721646547317505e-02
+
+ 2.7296718955039978e-01 -6.6346958279609680e-02
+ <_>
+
+ 0 -1 808 1.0344590246677399e-01
+
+ 9.0693607926368713e-03 -6.6438651084899902e-01
+ <_>
+
+ 0 -1 809 9.3807540833950043e-03
+
+ 7.1242772042751312e-02 -2.7381658554077148e-01
+ <_>
+
+ 0 -1 810 -7.1806147694587708e-02
+
+ -9.1222041845321655e-01 8.0809993669390678e-03
+ <_>
+
+ 0 -1 811 -1.9418599549680948e-03
+
+ 1.8472340703010559e-01 -1.1344549804925919e-01
+ <_>
+ 68
+ -7.3019427061080933e-01
+
+ <_>
+
+ 0 -1 812 3.0328959226608276e-02
+
+ -1.7539510130882263e-01 3.6945340037345886e-01
+ <_>
+
+ 0 -1 813 -8.2631781697273254e-02
+
+ 2.2216479480266571e-01 -8.7577551603317261e-02
+ <_>
+
+ 0 -1 814 2.5548380799591541e-03
+
+ -1.5091089904308319e-01 1.4608770608901978e-01
+ <_>
+
+ 0 -1 815 -1.4431839808821678e-03
+
+ 6.2405250966548920e-02 -1.8302099406719208e-01
+ <_>
+
+ 0 -1 816 4.3006289750337601e-02
+
+ 8.5711486637592316e-02 -4.4278779625892639e-01
+ <_>
+
+ 0 -1 817 -1.7748139798641205e-01
+
+ -6.7308551073074341e-01 2.1622380241751671e-02
+ <_>
+
+ 0 -1 818 9.9723696708679199e-02
+
+ -4.2775660753250122e-02 6.9088941812515259e-01
+ <_>
+
+ 0 -1 819 -1.7957199364900589e-02
+
+ 8.8784933090209961e-02 -2.9352998733520508e-01
+ <_>
+
+ 0 -1 820 5.8914110995829105e-03
+
+ 2.6884179562330246e-02 -3.9257821440696716e-01
+ <_>
+
+ 0 -1 821 -1.2439199490472674e-03
+
+ 8.3695329725742340e-02 -1.3524650037288666e-01
+ <_>
+
+ 0 -1 822 -6.3109956681728363e-02
+
+ 6.8365001678466797e-01 -1.1174580082297325e-02
+ <_>
+
+ 0 -1 823 5.3107268176972866e-03
+
+ 7.3095791041851044e-02 -3.3228519558906555e-01
+ <_>
+
+ 0 -1 824 -9.6346868667751551e-04
+
+ 9.3923456966876984e-02 -2.6014220714569092e-01
+ <_>
+
+ 0 -1 825 -2.0377680659294128e-02
+
+ 2.3682409524917603e-01 -5.1811341196298599e-02
+ <_>
+
+ 0 -1 826 -1.5610749833285809e-02
+
+ -4.8465269804000854e-01 4.2128730565309525e-02
+ <_>
+
+ 0 -1 827 4.5497290790081024e-02
+
+ 5.7874252088367939e-03 -5.2637368440628052e-01
+ <_>
+
+ 0 -1 828 -1.2244869954884052e-02
+
+ 3.0523040890693665e-01 -7.9311266541481018e-02
+ <_>
+
+ 0 -1 829 -5.5875871330499649e-03
+
+ 7.2504900395870209e-02 -1.0300940275192261e-01
+ <_>
+
+ 0 -1 830 -1.3237710110843182e-02
+
+ -2.1259979903697968e-01 1.4112070202827454e-01
+ <_>
+
+ 0 -1 831 -1.6236070543527603e-02
+
+ -3.6822131276130676e-01 1.6904499381780624e-02
+ <_>
+
+ 0 -1 832 8.7341741891577840e-04
+
+ -1.7513209581375122e-01 1.1717790365219116e-01
+ <_>
+
+ 0 -1 833 7.8164516016840935e-03
+
+ -4.0935669094324112e-02 3.8136309385299683e-01
+ <_>
+
+ 0 -1 834 1.4803799786022864e-05
+
+ -1.1581300199031830e-01 1.8054120242595673e-01
+ <_>
+
+ 0 -1 835 3.6272540688514709e-02
+
+ 1.5196749940514565e-02 -4.6037960052490234e-01
+ <_>
+
+ 0 -1 836 -3.8026720285415649e-03
+
+ 1.3440360128879547e-01 -1.6124980151653290e-01
+ <_>
+
+ 0 -1 837 -1.4585750177502632e-02
+
+ -2.8331491351127625e-01 7.4682116508483887e-02
+ <_>
+
+ 0 -1 838 1.4677370199933648e-03
+
+ -1.3493220508098602e-01 1.4244909584522247e-01
+ <_>
+
+ 0 -1 839 -1.3981569558382034e-02
+
+ 2.1735540032386780e-01 -5.2886679768562317e-02
+ <_>
+
+ 0 -1 840 -6.3076039077714086e-04
+
+ 1.4901949465274811e-01 -1.3620099425315857e-01
+ <_>
+
+ 0 -1 841 -1.4475540257990360e-02
+
+ -1.9180099666118622e-01 1.0607130080461502e-01
+ <_>
+
+ 0 -1 842 -3.2217580825090408e-02
+
+ 2.8091669082641602e-01 -8.5046291351318359e-02
+ <_>
+
+ 0 -1 843 3.4460560418665409e-03
+
+ 7.4571870267391205e-02 -2.7108609676361084e-01
+ <_>
+
+ 0 -1 844 -4.3949890881776810e-02
+
+ 4.4002100825309753e-01 -4.5509129762649536e-02
+ <_>
+
+ 0 -1 845 -1.1966270394623280e-02
+
+ 6.3286870718002319e-02 -1.9805380702018738e-01
+ <_>
+
+ 0 -1 846 -4.3486028909683228e-01
+
+ -7.6205497980117798e-01 2.1508129313588142e-02
+ <_>
+
+ 0 -1 847 3.9887550473213196e-01
+
+ 8.0703729763627052e-03 -8.4284877777099609e-01
+ <_>
+
+ 0 -1 848 -4.4802378863096237e-02
+
+ -6.8417382240295410e-01 2.2474979981780052e-02
+ <_>
+
+ 0 -1 849 -1.0935150086879730e-01
+
+ 2.1119509637355804e-01 -3.9731640368700027e-02
+ <_>
+
+ 0 -1 850 3.0923409387469292e-02
+
+ 4.4779401272535324e-02 -3.5875031352043152e-01
+ <_>
+
+ 0 -1 851 1.3285979628562927e-02
+
+ -4.8151660710573196e-02 3.7119218707084656e-01
+ <_>
+
+ 0 -1 852 -3.9830091409385204e-03
+
+ 1.2781530618667603e-01 -1.9959120452404022e-01
+ <_>
+
+ 0 -1 853 1.4184620231389999e-02
+
+ -3.9896048605442047e-02 2.4085929989814758e-01
+ <_>
+
+ 0 -1 854 1.6680279513821006e-03
+
+ -1.8107059597969055e-01 9.3981906771659851e-02
+ <_>
+
+ 0 -1 855 -2.2055890411138535e-02
+
+ -2.8798168897628784e-01 3.0038369819521904e-02
+ <_>
+
+ 0 -1 856 -6.0371801257133484e-02
+
+ 2.9529640078544617e-01 -6.4714096486568451e-02
+ <_>
+
+ 0 -1 857 5.9291448444128036e-02
+
+ 8.4209917113184929e-03 -5.8830922842025757e-01
+ <_>
+
+ 0 -1 858 3.2637149095535278e-02
+
+ 3.2118339091539383e-02 -5.1192921400070190e-01
+ <_>
+
+ 0 -1 859 -9.8897633142769337e-04
+
+ 1.3382619619369507e-01 -1.1545710265636444e-01
+ <_>
+
+ 0 -1 860 -3.5560440272092819e-02
+
+ -1.5159629285335541e-01 1.0519140213727951e-01
+ <_>
+
+ 0 -1 861 9.8722549155354500e-03
+
+ 9.3462042510509491e-02 -2.5988951325416565e-01
+ <_>
+
+ 0 -1 862 7.1953269653022289e-03
+
+ -8.6937829852104187e-02 2.8372770547866821e-01
+ <_>
+
+ 0 -1 863 2.4437099695205688e-02
+
+ -3.9930108934640884e-02 3.9243239164352417e-01
+ <_>
+
+ 0 -1 864 5.2195340394973755e-03
+
+ 4.9804110080003738e-02 -3.1846821308135986e-01
+ <_>
+
+ 0 -1 865 2.3442960809916258e-03
+
+ -5.4469950497150421e-02 3.3718121051788330e-01
+ <_>
+
+ 0 -1 866 4.7694300301373005e-03
+
+ 7.1476787328720093e-02 -3.1018280982971191e-01
+ <_>
+
+ 0 -1 867 -1.4517470262944698e-02
+
+ 7.8642480075359344e-02 -1.4538839459419250e-01
+ <_>
+
+ 0 -1 868 4.4710729271173477e-02
+
+ -2.5051780045032501e-02 6.4730519056320190e-01
+ <_>
+
+ 0 -1 869 1.6867399215698242e-02
+
+ 2.9088959097862244e-02 -3.9030238986015320e-01
+ <_>
+
+ 0 -1 870 -9.0343318879604340e-04
+
+ 8.7722577154636383e-02 -1.6588549315929413e-01
+ <_>
+
+ 0 -1 871 -8.2187339663505554e-02
+
+ -8.4238857030868530e-01 9.8376423120498657e-03
+ <_>
+
+ 0 -1 872 1.8525390187278390e-03
+
+ -1.2251490354537964e-01 1.2000189721584320e-01
+ <_>
+
+ 0 -1 873 -9.3228723853826523e-03
+
+ 7.8422851860523224e-02 -1.3231949508190155e-01
+ <_>
+
+ 0 -1 874 2.2730689495801926e-02
+
+ -3.3696789294481277e-02 4.4383940100669861e-01
+ <_>
+
+ 0 -1 875 1.0286659747362137e-01
+
+ 1.7917430028319359e-02 -5.8341610431671143e-01
+ <_>
+
+ 0 -1 876 -9.9547371268272400e-02
+
+ -9.5365560054779053e-01 1.2582040391862392e-02
+ <_>
+
+ 0 -1 877 1.6412759199738503e-02
+
+ 1.6067119315266609e-02 -4.1402378678321838e-01
+ <_>
+
+ 0 -1 878 -2.5932409334927797e-03
+
+ 5.2763499319553375e-02 -3.0404600501060486e-01
+ <_>
+
+ 0 -1 879 9.5953093841671944e-03
+
+ 8.3528086543083191e-02 -1.1780069768428802e-01
+ <_>
+ 66
+ -6.8558442592620850e-01
+
+ <_>
+
+ 0 -1 880 -3.5430109500885010e-01
+
+ 3.1792920827865601e-01 -1.8512800335884094e-01
+ <_>
+
+ 0 -1 881 -1.4761329628527164e-02
+
+ 3.4065079689025879e-01 -8.6621738970279694e-02
+ <_>
+
+ 0 -1 882 -1.1580450087785721e-01
+
+ -7.2353202104568481e-01 3.4404840320348740e-02
+ <_>
+
+ 0 -1 883 -4.4705160689773038e-05
+
+ 8.2497082650661469e-02 -2.1311110258102417e-01
+ <_>
+
+ 0 -1 884 -5.8883379097096622e-05
+
+ 1.0809300094842911e-01 -1.8269860744476318e-01
+ <_>
+
+ 0 -1 885 3.7944849580526352e-02
+
+ -2.4756550788879395e-02 4.5866918563842773e-01
+ <_>
+
+ 0 -1 886 -2.1807940211147070e-03
+
+ 1.5783859789371490e-01 -1.7752459645271301e-01
+ <_>
+
+ 0 -1 887 -4.5430101454257965e-02
+
+ -3.7249541282653809e-01 5.7393261231482029e-03
+ <_>
+
+ 0 -1 888 1.9972559530287981e-03
+
+ -1.9175310432910919e-01 1.1995170265436172e-01
+ <_>
+
+ 0 -1 889 -2.2458820239990018e-05
+
+ 9.1529168188571930e-02 -1.3080990314483643e-01
+ <_>
+
+ 0 -1 890 -3.7994279991835356e-03
+
+ -2.0454970002174377e-01 1.4146579802036285e-01
+ <_>
+
+ 0 -1 891 -2.7970419614575803e-04
+
+ 1.1078160256147385e-01 -1.8713960051536560e-01
+ <_>
+
+ 0 -1 892 -3.9631421677768230e-03
+
+ -3.7749990820884705e-01 5.6935790926218033e-02
+ <_>
+
+ 0 -1 893 -1.4290240360423923e-03
+
+ -1.9449859857559204e-01 9.8834916949272156e-02
+ <_>
+
+ 0 -1 894 2.1182179450988770e-02
+
+ -8.7030410766601562e-02 2.8888610005378723e-01
+ <_>
+
+ 0 -1 895 8.7332521798089147e-04
+
+ -1.1729159951210022e-01 1.2506540119647980e-01
+ <_>
+
+ 0 -1 896 2.6135759428143501e-02
+
+ -3.9572428911924362e-02 6.2252640724182129e-01
+ <_>
+
+ 0 -1 897 4.3046330101788044e-03
+
+ 1.1582309752702713e-01 -1.9618239998817444e-01
+ <_>
+
+ 0 -1 898 1.5224959934130311e-03
+
+ -1.8586060404777527e-01 1.1688389629125595e-01
+ <_>
+
+ 0 -1 899 -7.4201932875439525e-04
+
+ 9.8724737763404846e-02 -2.5791341066360474e-01
+ <_>
+
+ 0 -1 900 -2.5593061000108719e-03
+
+ 1.7307940125465393e-01 -1.2067069858312607e-01
+ <_>
+
+ 0 -1 901 -9.5563217997550964e-02
+
+ 3.4646418690681458e-01 -1.3142139650881290e-02
+ <_>
+
+ 0 -1 902 1.3280790299177170e-02
+
+ 1.2056879699230194e-01 -2.0627740025520325e-01
+ <_>
+
+ 0 -1 903 1.8245529383420944e-02
+
+ -6.7242950201034546e-02 4.6858128160238266e-02
+ <_>
+
+ 0 -1 904 -6.1288971453905106e-02
+
+ -6.6364967823028564e-01 2.9319150373339653e-02
+ <_>
+
+ 0 -1 905 -2.6133419945836067e-02
+
+ 2.0848380029201508e-01 -2.7202930301427841e-02
+ <_>
+
+ 0 -1 906 -3.2300818711519241e-02
+
+ -6.2726408243179321e-01 3.0091879889369011e-02
+ <_>
+
+ 0 -1 907 5.0284489989280701e-02
+
+ 1.5047290362417698e-03 -5.9630411863327026e-01
+ <_>
+
+ 0 -1 908 -1.8137119710445404e-02
+
+ 2.9262909293174744e-01 -6.9213449954986572e-02
+ <_>
+
+ 0 -1 909 1.0980300139635801e-03
+
+ 1.0316859930753708e-01 -1.6558070480823517e-01
+ <_>
+
+ 0 -1 910 3.9596110582351685e-03
+
+ -5.7063579559326172e-02 3.3744910359382629e-01
+ <_>
+
+ 0 -1 911 3.1622028909623623e-03
+
+ 8.8302358984947205e-02 -2.7917590737342834e-01
+ <_>
+
+ 0 -1 912 8.4337368607521057e-03
+
+ 8.6311057209968567e-02 -2.5153660774230957e-01
+ <_>
+
+ 0 -1 913 2.3408479988574982e-02
+
+ -3.7011519074440002e-02 2.5571560859680176e-01
+ <_>
+
+ 0 -1 914 -1.9710899796336889e-03
+
+ 1.4960870146751404e-01 -1.3213759660720825e-01
+ <_>
+
+ 0 -1 915 -3.1434781849384308e-02
+
+ 2.7072909474372864e-01 -2.4784140288829803e-02
+ <_>
+
+ 0 -1 916 -2.0984669681638479e-03
+
+ -2.2842940688133240e-01 9.2392489314079285e-02
+ <_>
+
+ 0 -1 917 -1.0477580130100250e-01
+
+ 1.3740949332714081e-01 -5.8604940772056580e-02
+ <_>
+
+ 0 -1 918 1.2558500282466412e-02
+
+ 9.4428263604640961e-02 -2.3187640309333801e-01
+ <_>
+
+ 0 -1 919 2.6465631090104580e-03
+
+ -2.0493589341640472e-01 9.2889577150344849e-02
+ <_>
+
+ 0 -1 920 2.8069379925727844e-01
+
+ 4.0848400443792343e-02 -4.6177521347999573e-01
+ <_>
+
+ 0 -1 921 -4.5882318168878555e-02
+
+ -7.1715551614761353e-01 9.1696027666330338e-03
+ <_>
+
+ 0 -1 922 -1.3070689747110009e-03
+
+ 1.6250529885292053e-01 -1.1437030136585236e-01
+ <_>
+
+ 0 -1 923 6.8374760448932648e-03
+
+ -6.7564792931079865e-02 2.1927219629287720e-01
+ <_>
+
+ 0 -1 924 -5.8329561725258827e-03
+
+ -3.5843908786773682e-01 5.7467628270387650e-02
+ <_>
+
+ 0 -1 925 -4.0936999022960663e-02
+
+ -5.5129498243331909e-01 1.3819620013237000e-02
+ <_>
+
+ 0 -1 926 1.8727440387010574e-02
+
+ -5.2844639867544174e-02 3.4427130222320557e-01
+ <_>
+
+ 0 -1 927 1.0303989984095097e-03
+
+ -9.4872146844863892e-02 1.1235869675874710e-01
+ <_>
+
+ 0 -1 928 -2.6228028582409024e-04
+
+ 6.3875511288642883e-02 -3.0397358536720276e-01
+ <_>
+
+ 0 -1 929 -2.6861110702157021e-02
+
+ 1.7592920362949371e-01 -6.2506988644599915e-02
+ <_>
+
+ 0 -1 930 3.1061280518770218e-02
+
+ -7.2171129286289215e-02 3.1532520055770874e-01
+ <_>
+
+ 0 -1 931 -7.1269841864705086e-03
+
+ -1.2540310621261597e-01 1.0068179666996002e-01
+ <_>
+
+ 0 -1 932 -2.7709340676665306e-02
+
+ -8.0085551738739014e-01 2.5742180645465851e-02
+ <_>
+
+ 0 -1 933 4.2209450155496597e-02
+
+ 2.7846070006489754e-02 -5.6140202283859253e-01
+ <_>
+
+ 0 -1 934 6.2995860353112221e-03
+
+ 1.0806919634342194e-01 -2.0114520192146301e-01
+ <_>
+
+ 0 -1 935 2.0048789680004120e-02
+
+ -5.8164618909358978e-02 1.8885469436645508e-01
+ <_>
+
+ 0 -1 936 -7.8481709351763129e-05
+
+ 8.2995712757110596e-02 -2.1331989765167236e-01
+ <_>
+
+ 0 -1 937 -8.9945547282695770e-02
+
+ -7.9307717084884644e-01 7.8350491821765900e-03
+ <_>
+
+ 0 -1 938 7.7181761153042316e-03
+
+ 4.1435040533542633e-02 -3.7721860408782959e-01
+ <_>
+
+ 0 -1 939 5.3638177923858166e-03
+
+ -9.3567937612533569e-02 1.4666350185871124e-01
+ <_>
+
+ 0 -1 940 1.4555330388247967e-02
+
+ -5.6989211589097977e-02 3.4367969632148743e-01
+ <_>
+
+ 0 -1 941 1.0583730041980743e-01
+
+ 3.0579300597310066e-02 -5.8684998750686646e-01
+ <_>
+
+ 0 -1 942 2.7123570907860994e-04
+
+ 8.5480518639087677e-02 -2.2808749973773956e-01
+ <_>
+
+ 0 -1 943 -7.3196433484554291e-02
+
+ -5.1212561130523682e-01 9.6583841368556023e-03
+ <_>
+
+ 0 -1 944 8.3729642210528255e-04
+
+ -1.7978319525718689e-01 1.4117470383644104e-01
+ <_>
+
+ 0 -1 945 1.9459549803286791e-03
+
+ 8.7605938315391541e-02 -2.0442050695419312e-01
+ <_>
+ 78
+ -3.0717300415039062e+01
+
+ <_>
+
+ 0 -1 946 -8.5505366325378418e-02
+
+ 2.6714649796485901e-01 -1.8152849376201630e-01
+ <_>
+
+ 0 -1 947 -3.7014279514551163e-02
+
+ 3.7405461072921753e-01 -7.0312701165676117e-02
+ <_>
+
+ 0 -1 948 1.6834780573844910e-02
+
+ 8.9160107076168060e-02 -2.4566100537776947e-01
+ <_>
+
+ 0 -1 949 9.7268886747770011e-05
+
+ -1.9830940663814545e-01 1.4981469511985779e-01
+ <_>
+
+ 0 -1 950 5.2984068170189857e-03
+
+ -1.5779909491539001e-01 1.7095419764518738e-01
+ <_>
+
+ 0 -1 951 -2.3770859465003014e-02
+
+ -2.5096279382705688e-01 3.2790731638669968e-02
+ <_>
+
+ 0 -1 952 -1.4852959662675858e-02
+
+ 2.7263158559799194e-01 -7.2188302874565125e-02
+ <_>
+
+ 0 -1 953 -8.2722969353199005e-02
+
+ -6.6801771521568298e-02 1.3384120166301727e-01
+ <_>
+
+ 0 -1 954 6.4472708618268371e-04
+
+ -1.9309680163860321e-01 1.3628469407558441e-01
+ <_>
+
+ 0 -1 955 -4.3215509504079819e-04
+
+ 5.7426910847425461e-02 -7.2983436286449432e-02
+ <_>
+
+ 0 -1 956 -7.5133621066925116e-06
+
+ 1.2174469977617264e-01 -1.8166640400886536e-01
+ <_>
+
+ 0 -1 957 2.0493609830737114e-02
+
+ -6.1657600104808807e-02 3.8570550084114075e-01
+ <_>
+
+ 0 -1 958 -5.9959441423416138e-03
+
+ -1.8091249465942383e-01 1.1791180074214935e-01
+ <_>
+
+ 0 -1 959 -9.3910521268844604e-01
+
+ 3.1374409794807434e-01 -5.9216298162937164e-02
+ <_>
+
+ 0 -1 960 -2.4341490119695663e-02
+
+ -3.7053358554840088e-01 5.5251110345125198e-02
+ <_>
+
+ 0 -1 961 -7.6796777546405792e-02
+
+ 1.3754889369010925e-01 -5.8201938867568970e-02
+ <_>
+
+ 0 -1 962 -8.2179326564073563e-03
+
+ -2.5679248571395874e-01 9.9195696413516998e-02
+ <_>
+
+ 0 -1 963 -5.1702618598937988e-02
+
+ -5.2937638759613037e-01 2.7275180444121361e-02
+ <_>
+
+ 0 -1 964 6.3065597787499428e-03
+
+ -1.0400679707527161e-01 2.0388899743556976e-01
+ <_>
+
+ 0 -1 965 3.6337040364742279e-02
+
+ 1.3178840279579163e-02 -3.8717061281204224e-01
+ <_>
+
+ 0 -1 966 -2.7929339557886124e-03
+
+ 1.2351000308990479e-01 -2.0460779964923859e-01
+ <_>
+
+ 0 -1 967 -1.4435379765927792e-02
+
+ -5.0111377239227295e-01 3.7262540310621262e-02
+ <_>
+
+ 0 -1 968 6.4411992207169533e-03
+
+ -6.0557190328836441e-02 3.0578470230102539e-01
+ <_>
+
+ 0 -1 969 -1.2598140165209770e-03
+
+ 5.3200751543045044e-02 -1.6916200518608093e-01
+ <_>
+
+ 0 -1 970 -6.9105648435652256e-03
+
+ -3.6398649215698242e-01 4.2843151837587357e-02
+ <_>
+
+ 0 -1 971 -5.2663110196590424e-02
+
+ 4.4169178605079651e-01 -3.2096829265356064e-02
+ <_>
+
+ 0 -1 972 -4.0925059467554092e-02
+
+ -5.5673360824584961e-01 2.9191689565777779e-02
+ <_>
+
+ 0 -1 973 -2.1683140657842159e-03
+
+ 6.6585853695869446e-02 -1.1715179681777954e-01
+ <_>
+
+ 0 -1 974 1.7480919137597084e-02
+
+ -6.7747853696346283e-02 3.4224361181259155e-01
+ <_>
+
+ 0 -1 975 1.3032980263233185e-01
+
+ 1.0853439569473267e-02 -5.9894740581512451e-01
+ <_>
+
+ 0 -1 976 5.1362451631575823e-04
+
+ -1.8810969591140747e-01 1.0938909649848938e-01
+ <_>
+
+ 0 -1 977 -3.8764420896768570e-02
+
+ -2.6928341388702393e-01 2.0156569778919220e-02
+ <_>
+
+ 0 -1 978 -4.8952922224998474e-03
+
+ -2.3670850694179535e-01 7.0693537592887878e-02
+ <_>
+
+ 0 -1 979 8.4380611777305603e-02
+
+ -6.1777111142873764e-02 1.5130819380283356e-01
+ <_>
+
+ 0 -1 980 -5.4832860827445984e-02
+
+ -4.9945160746574402e-01 3.5915810614824295e-02
+ <_>
+
+ 0 -1 981 -5.4148300550878048e-03
+
+ 8.2116909325122833e-02 -1.3672749698162079e-01
+ <_>
+
+ 0 -1 982 1.2813720107078552e-01
+
+ -3.9755281060934067e-02 6.0340911149978638e-01
+ <_>
+
+ 0 -1 983 -4.4217561371624470e-03
+
+ -7.4642613530158997e-02 1.0235700011253357e-01
+ <_>
+
+ 0 -1 984 -7.1978997766564135e-06
+
+ 7.4595592916011810e-02 -2.9046559333801270e-01
+ <_>
+
+ 0 -1 985 7.3321886360645294e-02
+
+ -2.1364469081163406e-02 6.9809699058532715e-01
+ <_>
+
+ 0 -1 986 -2.2566469386219978e-02
+
+ -5.3714770078659058e-01 3.6509968340396881e-02
+ <_>
+
+ 0 -1 987 -2.9338080435991287e-02
+
+ 1.0626199841499329e-01 -3.1652290374040604e-02
+ <_>
+
+ 0 -1 988 1.3684090226888657e-02
+
+ -5.7709541171789169e-02 3.0355650186538696e-01
+ <_>
+
+ 0 -1 989 -8.2646618830040097e-04
+
+ 1.2958580255508423e-01 -1.3603089749813080e-01
+ <_>
+
+ 0 -1 990 3.9828647859394550e-03
+
+ 5.0734668970108032e-02 -3.3896729350090027e-01
+ <_>
+
+ 0 -1 991 -2.0535979419946671e-02
+
+ 2.6028490066528320e-01 -7.2259396314620972e-02
+ <_>
+
+ 0 -1 992 -1.4932189881801605e-01
+
+ -5.4172599315643311e-01 4.4534388929605484e-02
+ <_>
+
+ 0 -1 993 -1.7894789576530457e-02
+
+ 4.7149929404258728e-01 -3.0801070854067802e-02
+ <_>
+
+ 0 -1 994 4.7443818766623735e-04
+
+ -1.9686989486217499e-01 1.2433020025491714e-01
+ <_>
+
+ 0 -1 995 -4.0598851628601551e-03
+
+ 1.4028669893741608e-01 -4.7751329839229584e-02
+ <_>
+
+ 0 -1 996 -1.1755799874663353e-02
+
+ -2.6237910985946655e-01 5.9933070093393326e-02
+ <_>
+
+ 0 -1 997 -1.8559649586677551e-02
+
+ 1.0493250191211700e-01 -3.2159261405467987e-02
+ <_>
+
+ 0 -1 998 3.4838409628719091e-03
+
+ 7.9499892890453339e-02 -2.0486010611057281e-01
+ <_>
+
+ 0 -1 999 -6.2133308500051498e-02
+
+ -3.5091090202331543e-01 1.2265560217201710e-02
+ <_>
+
+ 0 -1 1000 -4.4008668512105942e-02
+
+ 2.6838389039039612e-01 -8.8284887373447418e-02
+ <_>
+
+ 0 -1 1001 3.0750890728086233e-03
+
+ -4.5581929385662079e-02 1.9343300163745880e-01
+ <_>
+
+ 0 -1 1002 -8.9865371584892273e-02
+
+ -4.8605358600616455e-01 4.5101881027221680e-02
+ <_>
+
+ 0 -1 1003 -1.6210540197789669e-03
+
+ 8.7722256779670715e-02 -1.6689349710941315e-01
+ <_>
+
+ 0 -1 1004 -2.9370939359068871e-02
+
+ -4.2794701457023621e-01 4.5566789805889130e-02
+ <_>
+
+ 0 -1 1005 -8.5921816527843475e-02
+
+ -6.9077378511428833e-01 1.5122929587960243e-02
+ <_>
+
+ 0 -1 1006 6.7258282797411084e-04
+
+ -1.1166089773178101e-01 1.5630759298801422e-01
+ <_>
+
+ 0 -1 1007 1.7752440180629492e-03
+
+ -4.5409418642520905e-02 7.7933087944984436e-02
+ <_>
+
+ 0 -1 1008 1.5036190234241076e-05
+
+ -1.6349479556083679e-01 1.0864420235157013e-01
+ <_>
+
+ 0 -1 1009 1.8150300020352006e-03
+
+ 9.6329912543296814e-02 -1.1818060278892517e-01
+ <_>
+
+ 0 -1 1010 -6.7588366568088531e-02
+
+ 2.2657020390033722e-01 -9.0492926537990570e-02
+ <_>
+
+ 0 -1 1011 1.8347490578889847e-02
+
+ 1.6350140795111656e-02 -4.4877880811691284e-01
+ <_>
+
+ 0 -1 1012 -1.0822510346770287e-02
+
+ -4.9622350931167603e-01 4.0703330188989639e-02
+ <_>
+
+ 0 -1 1013 1.7427999526262283e-02
+
+ -3.5475689917802811e-02 3.0856430530548096e-01
+ <_>
+
+ 0 -1 1014 -7.8753121197223663e-02
+
+ -6.7144078016281128e-01 2.6170469820499420e-02
+ <_>
+
+ 0 -1 1015 7.3261657962575555e-04
+
+ -1.0309589654207230e-01 6.4503982663154602e-02
+ <_>
+
+ 0 -1 1016 2.8185009956359863e-02
+
+ -5.5124811828136444e-02 3.1133919954299927e-01
+ <_>
+
+ 0 -1 1017 -1.5536470338702202e-02
+
+ -8.5527300834655762e-02 4.9024209380149841e-02
+ <_>
+
+ 0 -1 1018 -2.6290729641914368e-02
+
+ -6.5267199277877808e-01 2.4495759978890419e-02
+ <_>
+
+ 0 -1 1019 -6.8586082197725773e-03
+
+ -5.8548830449581146e-02 2.8735989332199097e-01
+ <_>
+
+ 0 -1 1020 -3.0750960577279329e-03
+
+ 8.6425736546516418e-02 -2.2627249360084534e-01
+ <_>
+
+ 0 -1 1021 5.6799430400133133e-02
+
+ 2.9048459604382515e-02 -3.6798200011253357e-01
+ <_>
+
+ 0 -1 1022 3.7182599306106567e-02
+
+ -3.5062279552221298e-02 4.5094621181488037e-01
+ <_>
+
+ 0 -1 1023 -3.5590359475463629e-03
+
+ -1.7892469465732574e-01 6.8459518253803253e-02
+ <_>
+ 77
+ -3.0740200042724609e+01
+
+ <_>
+
+ 0 -1 1024 -5.8595160953700542e-03
+
+ 2.0132589340209961e-01 -2.6587140560150146e-01
+ <_>
+
+ 0 -1 1025 -5.9507137537002563e-01
+
+ 3.6134061217308044e-01 -1.2203159928321838e-01
+ <_>
+
+ 0 -1 1026 4.1726600378751755e-02
+
+ -5.2889000624418259e-02 3.9082470536231995e-01
+ <_>
+
+ 0 -1 1027 4.7253750264644623e-02
+
+ 1.4923909679055214e-02 -5.0544148683547974e-01
+ <_>
+
+ 0 -1 1028 9.8612194415181875e-04
+
+ -2.0337739586830139e-01 1.1030670255422592e-01
+ <_>
+
+ 0 -1 1029 -7.2683179751038551e-03
+
+ -2.0899240672588348e-01 1.4733150601387024e-01
+ <_>
+
+ 0 -1 1030 -2.9695410281419754e-02
+
+ 6.6190290451049805e-01 -6.7257620394229889e-02
+ <_>
+
+ 0 -1 1031 -1.3097229599952698e-01
+
+ 1.7485789954662323e-01 -8.1029571592807770e-02
+ <_>
+
+ 0 -1 1032 1.7316760495305061e-02
+
+ -4.8908680677413940e-02 4.6843668818473816e-01
+ <_>
+
+ 0 -1 1033 -1.0221409797668457e-01
+
+ -2.2275149822235107e-01 7.7479638159275055e-02
+ <_>
+
+ 0 -1 1034 2.9453460592776537e-03
+
+ 3.9738278836011887e-02 -2.8107449412345886e-01
+ <_>
+
+ 0 -1 1035 -4.5425590127706528e-02
+
+ 2.4193780124187469e-01 1.3621949590742588e-02
+ <_>
+
+ 0 -1 1036 2.2699350956827402e-03
+
+ -1.6247589886188507e-01 1.6063609719276428e-01
+ <_>
+
+ 0 -1 1037 1.1421869695186615e-01
+
+ 1.5750480815768242e-02 -5.7382887601852417e-01
+ <_>
+
+ 0 -1 1038 -4.1054069995880127e-02
+
+ 3.0522629618644714e-01 -5.5898960679769516e-02
+ <_>
+
+ 0 -1 1039 1.1980540119111538e-02
+
+ 1.7477169632911682e-02 -4.0707069635391235e-01
+ <_>
+
+ 0 -1 1040 1.2105259811505675e-03
+
+ -1.7840960621833801e-01 1.0353209823369980e-01
+ <_>
+
+ 0 -1 1041 -2.2351980209350586e-02
+
+ -4.7567600011825562e-01 3.7311390042304993e-02
+ <_>
+
+ 0 -1 1042 2.2135479375720024e-02
+
+ -5.4137628525495529e-02 4.2861071228981018e-01
+ <_>
+
+ 0 -1 1043 -1.5875579789280891e-02
+
+ 6.6373616456985474e-02 -1.6455489397048950e-01
+ <_>
+
+ 0 -1 1044 6.0371369123458862e-02
+
+ 3.8663931190967560e-02 -4.6496200561523438e-01
+ <_>
+
+ 0 -1 1045 -5.1881238818168640e-02
+
+ -5.6141299009323120e-01 5.4471958428621292e-03
+ <_>
+
+ 0 -1 1046 1.9330360228195786e-03
+
+ -1.3475979864597321e-01 1.3747330009937286e-01
+ <_>
+
+ 0 -1 1047 -4.3940469622612000e-03
+
+ -9.3405917286872864e-02 3.5123821347951889e-02
+ <_>
+
+ 0 -1 1048 -5.2314151078462601e-02
+
+ 7.5311762094497681e-01 -2.9210770502686501e-02
+ <_>
+
+ 0 -1 1049 -5.6897811591625214e-02
+
+ -9.1858989000320435e-01 2.8862420469522476e-02
+ <_>
+
+ 0 -1 1050 -2.1614639461040497e-01
+
+ -1. 6.9490820169448853e-03
+ <_>
+
+ 0 -1 1051 1.8479259312152863e-01
+
+ -8.8357992470264435e-02 1.9002689421176910e-01
+ <_>
+
+ 0 -1 1052 -5.6834658607840538e-03
+
+ -1.7791560292243958e-01 9.8286077380180359e-02
+ <_>
+
+ 0 -1 1053 -8.2448042929172516e-02
+
+ -3.4058651328086853e-01 1.5612719580531120e-02
+ <_>
+
+ 0 -1 1054 -7.5926659628748894e-03
+
+ 2.5929468870162964e-01 -6.9370441138744354e-02
+ <_>
+
+ 0 -1 1055 -2.9748380184173584e-03
+
+ 5.4534178227186203e-02 -1.2630839645862579e-01
+ <_>
+
+ 0 -1 1056 -1.6377970576286316e-01
+
+ -8.3725690841674805e-01 2.2446790710091591e-02
+ <_>
+
+ 0 -1 1057 -3.8845320232212543e-03
+
+ -2.1008059382438660e-01 9.1814376413822174e-02
+ <_>
+
+ 0 -1 1058 -5.5496331304311752e-02
+
+ 5.2739220857620239e-01 -3.8561638444662094e-02
+ <_>
+
+ 0 -1 1059 4.5041809789836407e-03
+
+ 3.8907989859580994e-02 -2.1077489852905273e-01
+ <_>
+
+ 0 -1 1060 5.7516310364007950e-02
+
+ -5.4442461580038071e-02 3.4977319836616516e-01
+ <_>
+
+ 0 -1 1061 -5.4960879497230053e-03
+
+ 1.0459329932928085e-01 -2.2956989705562592e-01
+ <_>
+
+ 0 -1 1062 5.8753142366185784e-04
+
+ 7.4045538902282715e-02 -2.3731130361557007e-01
+ <_>
+
+ 0 -1 1063 1.1216119676828384e-01
+
+ -2.5916000828146935e-02 1.1389470100402832e-01
+ <_>
+
+ 0 -1 1064 2.1753750741481781e-01
+
+ 1.9727870821952820e-02 -9.6220922470092773e-01
+ <_>
+
+ 0 -1 1065 -1.4632700476795435e-03
+
+ -9.4052821397781372e-02 6.4389176666736603e-02
+ <_>
+
+ 0 -1 1066 -8.6313979700207710e-03
+
+ 2.5036060810089111e-01 -7.2234652936458588e-02
+ <_>
+
+ 0 -1 1067 -1.9858509302139282e-02
+
+ -1.2698090076446533e-01 7.9051487147808075e-02
+ <_>
+
+ 0 -1 1068 -1.3804109767079353e-04
+
+ 1.4466640353202820e-01 -1.1444070190191269e-01
+ <_>
+
+ 0 -1 1069 2.6781240478157997e-02
+
+ 1.7647750675678253e-02 -8.3157891035079956e-01
+ <_>
+
+ 0 -1 1070 1.9331119954586029e-02
+
+ -4.5500081032514572e-02 5.0110948085784912e-01
+ <_>
+
+ 0 -1 1071 4.1692070662975311e-02
+
+ 2.2502349689602852e-02 -3.8992220163345337e-01
+ <_>
+
+ 0 -1 1072 1.1296980082988739e-01
+
+ -3.2494839280843735e-02 5.3929620981216431e-01
+ <_>
+
+ 0 -1 1073 3.1683610286563635e-03
+
+ -1.7195589840412140e-01 9.3619801104068756e-02
+ <_>
+
+ 0 -1 1074 5.3966748528182507e-03
+
+ 5.7677630335092545e-02 -3.0436149239540100e-01
+ <_>
+
+ 0 -1 1075 -1.3829180598258972e-01
+
+ -5.2158790826797485e-01 1.8444910645484924e-02
+ <_>
+
+ 0 -1 1076 -1.2594119645655155e-02
+
+ 2.2748909890651703e-01 -6.9325000047683716e-02
+ <_>
+
+ 0 -1 1077 -1.6514480113983154e-02
+
+ 1.6279229521751404e-01 -3.4446150064468384e-02
+ <_>
+
+ 0 -1 1078 -1.6392849385738373e-02
+
+ -1.4277680218219757e-01 1.6290099918842316e-01
+ <_>
+
+ 0 -1 1079 -3.4606490284204483e-02
+
+ -4.0356379747390747e-01 8.3033805713057518e-03
+ <_>
+
+ 0 -1 1080 -6.8894061259925365e-03
+
+ 2.6890090107917786e-01 -6.9450862705707550e-02
+ <_>
+
+ 0 -1 1081 -1.1879400350153446e-02
+
+ 2.1395209431648254e-01 -2.0930450409650803e-02
+ <_>
+
+ 0 -1 1082 -1.9165100529789925e-03
+
+ 6.8464219570159912e-02 -3.1453219056129456e-01
+ <_>
+
+ 0 -1 1083 1.3729350175708532e-03
+
+ -6.0340028256177902e-02 2.7572840452194214e-01
+ <_>
+
+ 0 -1 1084 2.4278028868138790e-03
+
+ -2.3944500088691711e-01 8.4658838808536530e-02
+ <_>
+
+ 0 -1 1085 2.1290169097483158e-03
+
+ 8.6938478052616119e-02 -2.8218480944633484e-01
+ <_>
+
+ 0 -1 1086 -5.2569470426533371e-05
+
+ 1.3682359457015991e-01 -1.1980649828910828e-01
+ <_>
+
+ 0 -1 1087 1.5957899391651154e-02
+
+ -3.9610300213098526e-02 2.4825170636177063e-01
+ <_>
+
+ 0 -1 1088 8.9294081553816795e-03
+
+ 8.1123508512973785e-02 -2.6561570167541504e-01
+ <_>
+
+ 0 -1 1089 4.9925308674573898e-02
+
+ 1.5018629841506481e-02 -3.6647871136665344e-01
+ <_>
+
+ 0 -1 1090 -1.7374839633703232e-02
+
+ 3.3971020579338074e-01 -5.4494149982929230e-02
+ <_>
+
+ 0 -1 1091 -7.8357063233852386e-02
+
+ -4.9435839056968689e-01 8.4990533068776131e-03
+ <_>
+
+ 0 -1 1092 -8.9894477277994156e-03
+
+ -2.3209859430789948e-01 7.1379087865352631e-02
+ <_>
+
+ 0 -1 1093 -1.5932919923216105e-03
+
+ 8.2504719495773315e-02 -9.3123182654380798e-02
+ <_>
+
+ 0 -1 1094 2.6272730901837349e-03
+
+ -1.3213430345058441e-01 1.3099829852581024e-01
+ <_>
+
+ 0 -1 1095 -5.9108160436153412e-02
+
+ -3.7229761481285095e-01 4.5574661344289780e-02
+ <_>
+
+ 0 -1 1096 3.5086690913885832e-03
+
+ 8.9478462934494019e-02 -1.8543410301208496e-01
+ <_>
+
+ 0 -1 1097 1.5465220436453819e-02
+
+ -3.0604820698499680e-02 2.0754580199718475e-01
+ <_>
+
+ 0 -1 1098 -1.1749019846320152e-02
+
+ 3.9200168848037720e-01 -4.1100859642028809e-02
+ <_>
+
+ 0 -1 1099 4.8413608223199844e-02
+
+ 3.7391050718724728e-03 -8.5701841115951538e-01
+ <_>
+
+ 0 -1 1100 -1.1499889660626650e-03
+
+ -2.2441549599170685e-01 7.1305088698863983e-02
+ <_>
+ 89
+ -3.0760700225830078e+01
+
+ <_>
+
+ 0 -1 1101 -3.2420051097869873e-01
+
+ 4.1447758674621582e-01 -1.0684230178594589e-01
+ <_>
+
+ 0 -1 1102 -2.1065689623355865e-01
+
+ 2.3302809894084930e-01 -9.4695799052715302e-02
+ <_>
+
+ 0 -1 1103 -2.1540550515055656e-02
+
+ -2.8891721367835999e-01 7.0666067302227020e-02
+ <_>
+
+ 0 -1 1104 5.9726871550083160e-03
+
+ -9.0559490025043488e-02 2.2989599406719208e-01
+ <_>
+
+ 0 -1 1105 2.6468100026249886e-02
+
+ -5.0254050642251968e-02 3.9346438646316528e-01
+ <_>
+
+ 0 -1 1106 -7.2531126439571381e-02
+
+ -3.9421468973159790e-01 7.5547359883785248e-03
+ <_>
+
+ 0 -1 1107 -4.3684918433427811e-02
+
+ -5.7553547620773315e-01 5.1893319934606552e-02
+ <_>
+
+ 0 -1 1108 1.1670660227537155e-01
+
+ -2.5791339576244354e-03 -8.2597649097442627e-01
+ <_>
+
+ 0 -1 1109 -8.2381166517734528e-02
+
+ 7.5818961858749390e-01 -2.6576930657029152e-02
+ <_>
+
+ 0 -1 1110 -2.3157079704105854e-03
+
+ 6.6858686506748199e-02 -3.0407869815826416e-01
+ <_>
+
+ 0 -1 1111 -1.6678189858794212e-02
+
+ 3.8525319099426270e-01 -4.8842679709196091e-02
+ <_>
+
+ 0 -1 1112 -3.0678999610245228e-03
+
+ -2.7150988578796387e-01 6.4561262726783752e-02
+ <_>
+
+ 0 -1 1113 -8.3884904161095619e-03
+
+ -2.8267300128936768e-01 7.0778891444206238e-02
+ <_>
+
+ 0 -1 1114 2.1357910707592964e-02
+
+ -6.6106483340263367e-02 3.1867539882659912e-01
+ <_>
+
+ 0 -1 1115 -4.0636979974806309e-03
+
+ 1.1739840358495712e-01 -1.5105929970741272e-01
+ <_>
+
+ 0 -1 1116 -1.1475679930299520e-03
+
+ 6.4262896776199341e-02 -7.4472077190876007e-02
+ <_>
+
+ 0 -1 1117 1.8145689740777016e-02
+
+ -5.6946009397506714e-02 4.2107149958610535e-01
+ <_>
+
+ 0 -1 1118 5.0288350321352482e-03
+
+ 8.3866670727729797e-02 -3.3929398655891418e-01
+ <_>
+
+ 0 -1 1119 -5.7916361838579178e-02
+
+ 4.5170179009437561e-01 -4.3198868632316589e-02
+ <_>
+
+ 0 -1 1120 3.1025299802422523e-02
+
+ 2.8000740334391594e-02 -1.6818940639495850e-01
+ <_>
+
+ 0 -1 1121 8.2134291529655457e-02
+
+ 1.9999530166387558e-02 -7.6910507678985596e-01
+ <_>
+
+ 0 -1 1122 7.3666572570800781e-02
+
+ -1.2391459895297885e-03 -1.0004559755325317e+00
+ <_>
+
+ 0 -1 1123 1.5681830700486898e-04
+
+ -1.2154590338468552e-01 1.3561969995498657e-01
+ <_>
+
+ 0 -1 1124 4.5130930840969086e-02
+
+ 4.7123869881033897e-03 -2.9671049118041992e-01
+ <_>
+
+ 0 -1 1125 -5.1468348829075694e-04
+
+ 1.4606890082359314e-01 -1.3600480556488037e-01
+ <_>
+
+ 0 -1 1126 -1.4981119893491268e-02
+
+ -1.7933659255504608e-01 5.3928699344396591e-02
+ <_>
+
+ 0 -1 1127 -2.7151789516210556e-02
+
+ -6.7529010772705078e-01 2.3046780377626419e-02
+ <_>
+
+ 0 -1 1128 -6.6578023135662079e-02
+
+ -6.5586429834365845e-01 4.7667929902672768e-03
+ <_>
+
+ 0 -1 1129 -3.3119178842753172e-03
+
+ 1.2255000323057175e-01 -1.6333930194377899e-01
+ <_>
+
+ 0 -1 1130 -1.5811180695891380e-02
+
+ -4.4731178879737854e-01 8.9029967784881592e-03
+ <_>
+
+ 0 -1 1131 -5.6757620768621564e-05
+
+ 1.4944350719451904e-01 -1.0686829686164856e-01
+ <_>
+
+ 0 -1 1132 1.0602490045130253e-02
+
+ 2.1685829386115074e-02 -3.2208129763603210e-01
+ <_>
+
+ 0 -1 1133 2.1245649550110102e-03
+
+ -2.0425739884376526e-01 8.2330957055091858e-02
+ <_>
+
+ 0 -1 1134 4.7638580203056335e-02
+
+ -3.2728441059589386e-02 4.4726258516311646e-01
+ <_>
+
+ 0 -1 1135 -1.1300199665129185e-02
+
+ 2.5546020269393921e-01 -6.9969899952411652e-02
+ <_>
+
+ 0 -1 1136 -1.1472209589555860e-03
+
+ 4.7467790544033051e-02 -2.2220790386199951e-01
+ <_>
+
+ 0 -1 1137 1.8008640035986900e-02
+
+ -6.0860209167003632e-02 2.9082441329956055e-01
+ <_>
+
+ 0 -1 1138 -1.1634260416030884e-02
+
+ -3.1474921107292175e-01 8.3630897104740143e-02
+ <_>
+
+ 0 -1 1139 6.5580541267991066e-03
+
+ -1.2121830135583878e-01 1.3124500215053558e-01
+ <_>
+
+ 0 -1 1140 -2.3253620602190495e-03
+
+ -8.7138622999191284e-02 7.0476517081260681e-02
+ <_>
+
+ 0 -1 1141 2.1486220881342888e-02
+
+ -3.5936549305915833e-02 4.3737021088600159e-01
+ <_>
+
+ 0 -1 1142 1.2589399516582489e-01
+
+ 1.2443150393664837e-02 -9.2822617292404175e-01
+ <_>
+
+ 0 -1 1143 -2.2191529569681734e-04
+
+ 6.9798342883586884e-02 -3.2106238603591919e-01
+ <_>
+
+ 0 -1 1144 -5.8175198733806610e-02
+
+ -7.7025629580020905e-02 9.6747986972332001e-02
+ <_>
+
+ 0 -1 1145 -4.5887380838394165e-04
+
+ 1.1412449926137924e-01 -1.4719170331954956e-01
+ <_>
+
+ 0 -1 1146 -4.0837019681930542e-02
+
+ 4.7654581069946289e-01 -4.9737568944692612e-02
+ <_>
+
+ 0 -1 1147 -9.7786840051412582e-03
+
+ -2.0513780415058136e-01 8.4468983113765717e-02
+ <_>
+
+ 0 -1 1148 2.7964261174201965e-01
+
+ -3.0034869909286499e-02 6.9526249170303345e-01
+ <_>
+
+ 0 -1 1149 -8.8869117200374603e-02
+
+ 2.4081839621067047e-01 -7.0576377213001251e-02
+ <_>
+
+ 0 -1 1150 -1.4095460064709187e-02
+
+ -1.0456439852714539e-01 4.6604979783296585e-02
+ <_>
+
+ 0 -1 1151 2.6836670003831387e-03
+
+ 6.0495968908071518e-02 -2.5784969329833984e-01
+ <_>
+
+ 0 -1 1152 8.7051279842853546e-02
+
+ -2.4173669517040253e-02 2.4043059349060059e-01
+ <_>
+
+ 0 -1 1153 -1.0178039781749249e-02
+
+ 2.5469788908958435e-01 -9.2890508472919464e-02
+ <_>
+
+ 0 -1 1154 -9.0314531698822975e-03
+
+ -2.6343479752540588e-01 7.0848807692527771e-02
+ <_>
+
+ 0 -1 1155 -6.7082298919558525e-03
+
+ 2.3313470184803009e-01 -7.6271809637546539e-02
+ <_>
+
+ 0 -1 1156 -6.7614473402500153e-02
+
+ -5.2013260126113892e-01 1.3785160146653652e-02
+ <_>
+
+ 0 -1 1157 -3.9636880159378052e-01
+
+ -7.6267188787460327e-01 2.0686520263552666e-02
+ <_>
+
+ 0 -1 1158 1.2813470093533397e-03
+
+ -1.4046239852905273e-01 1.2711919844150543e-01
+ <_>
+
+ 0 -1 1159 8.4416065365076065e-03
+
+ 7.4712827801704407e-02 -2.5663131475448608e-01
+ <_>
+
+ 0 -1 1160 1.4749030015082099e-05
+
+ -1.4015120267868042e-01 1.5210489928722382e-01
+ <_>
+
+ 0 -1 1161 -4.5073211193084717e-02
+
+ -6.4262861013412476e-01 2.5925450026988983e-02
+ <_>
+
+ 0 -1 1162 7.7068619430065155e-03
+
+ 3.2485689967870712e-02 -2.0377029478549957e-01
+ <_>
+
+ 0 -1 1163 5.9383822372183204e-04
+
+ -1.2950329482555389e-01 1.6219380497932434e-01
+ <_>
+
+ 0 -1 1164 -1.3042639475315809e-03
+
+ 8.6318843066692352e-02 -1.9224709272384644e-01
+ <_>
+
+ 0 -1 1165 6.4417850226163864e-03
+
+ -7.1506053209304810e-02 3.0627349019050598e-01
+ <_>
+
+ 0 -1 1166 -1.5630330890417099e-02
+
+ 4.9515549093484879e-02 -1.4840349555015564e-01
+ <_>
+
+ 0 -1 1167 1.1395620182156563e-02
+
+ 6.3355296850204468e-02 -2.5576409697532654e-01
+ <_>
+
+ 0 -1 1168 4.7544430941343307e-02
+
+ 4.8167328350245953e-03 -7.8987777233123779e-01
+ <_>
+
+ 0 -1 1169 8.3856023848056793e-03
+
+ -4.3012011796236038e-02 4.1108319163322449e-01
+ <_>
+
+ 0 -1 1170 -1.6369849909096956e-03
+
+ 8.2473292946815491e-02 -7.8956812620162964e-02
+ <_>
+
+ 0 -1 1171 -1.6513109207153320e-02
+
+ -5.0692492723464966e-01 3.9071910083293915e-02
+ <_>
+
+ 0 -1 1172 1.0358359664678574e-01
+
+ 2.0772270858287811e-02 -6.9371747970581055e-01
+ <_>
+
+ 0 -1 1173 3.3361840993165970e-02
+
+ -4.4479008764028549e-02 4.6392819285392761e-01
+ <_>
+
+ 0 -1 1174 -2.8664430603384972e-02
+
+ -4.5883670449256897e-01 3.5676170140504837e-02
+ <_>
+
+ 0 -1 1175 -1.1209170043002814e-04
+
+ 8.4344513714313507e-02 -2.1555650234222412e-01
+ <_>
+
+ 0 -1 1176 1.7690200358629227e-02
+
+ 9.7461966797709465e-03 -8.5261541604995728e-01
+ <_>
+
+ 0 -1 1177 -2.1878469735383987e-02
+
+ 2.6345950365066528e-01 -7.0220641791820526e-02
+ <_>
+
+ 0 -1 1178 -1.2424430251121521e-01
+
+ -2.8659409284591675e-01 2.1816140040755272e-02
+ <_>
+
+ 0 -1 1179 6.5736092627048492e-02
+
+ 2.3600580170750618e-02 -7.0263791084289551e-01
+ <_>
+
+ 0 -1 1180 -4.4633701443672180e-02
+
+ -9.5776432752609253e-01 3.5877549089491367e-03
+ <_>
+
+ 0 -1 1181 -6.4271576702594757e-02
+
+ 6.0099518299102783e-01 -2.8557619079947472e-02
+ <_>
+
+ 0 -1 1182 5.6516240874771029e-05
+
+ -1.3485489785671234e-01 1.1080929636955261e-01
+ <_>
+
+ 0 -1 1183 1.3419260503724217e-03
+
+ 9.8325006663799286e-02 -1.6883499920368195e-01
+ <_>
+
+ 0 -1 1184 -2.1889729425311089e-02
+
+ -2.1880550682544708e-01 2.9620679095387459e-02
+ <_>
+
+ 0 -1 1185 -1.9670790061354637e-03
+
+ 9.7642809152603149e-02 -1.8062870204448700e-01
+ <_>
+
+ 0 -1 1186 -7.6196521520614624e-02
+
+ -8.6387622356414795e-01 7.3730680160224438e-03
+ <_>
+
+ 0 -1 1187 -7.9841358819976449e-04
+
+ 1.5353679656982422e-01 -1.2105809897184372e-01
+ <_>
+
+ 0 -1 1188 -8.2246732199564576e-04
+
+ 4.0794339030981064e-02 -1.3737790286540985e-01
+ <_>
+
+ 0 -1 1189 -3.0324649997055531e-03
+
+ 1.2088210135698318e-01 -1.4088730514049530e-01
+ <_>
+ 107
+ -3.0838300704956055e+01
+
+ <_>
+
+ 0 -1 1190 -5.2718650549650192e-02
+
+ 2.5985679030418396e-01 -1.5721979737281799e-01
+ <_>
+
+ 0 -1 1191 5.1614670082926750e-03
+
+ -1.0271859914064407e-01 5.9346981346607208e-02
+ <_>
+
+ 0 -1 1192 6.7699067294597626e-02
+
+ -7.7311262488365173e-02 2.8602010011672974e-01
+ <_>
+
+ 0 -1 1193 -3.3822011202573776e-02
+
+ -5.6999057531356812e-01 4.0684528648853302e-02
+ <_>
+
+ 0 -1 1194 -5.3746398538351059e-02
+
+ -4.7421398758888245e-01 6.2751591205596924e-02
+ <_>
+
+ 0 -1 1195 -3.0559560284018517e-02
+
+ 7.1638780832290649e-01 -1.7423950135707855e-02
+ <_>
+
+ 0 -1 1196 -3.3822011202573776e-02
+
+ -6.7283177375793457e-01 -1.2177439639344811e-03
+ <_>
+
+ 0 -1 1197 2.7876009698957205e-04
+
+ -7.0205226540565491e-02 1.1648730188608170e-01
+ <_>
+
+ 0 -1 1198 -2.5016230065375566e-03
+
+ 1.2915210425853729e-01 -1.3576079905033112e-01
+ <_>
+
+ 0 -1 1199 9.0835839509963989e-02
+
+ 4.1303969919681549e-03 4.0111660957336426e-01
+ <_>
+
+ 0 -1 1200 -2.5603260844945908e-02
+
+ -1.0059480369091034e-01 1.8819159269332886e-01
+ <_>
+
+ 0 -1 1201 -5.2134461700916290e-02
+
+ 2.5282728672027588e-01 -1.1447659879922867e-01
+ <_>
+
+ 0 -1 1202 3.8462068885564804e-02
+
+ 5.5828869342803955e-02 -5.7635480165481567e-01
+ <_>
+
+ 0 -1 1203 -1.4195869443938136e-03
+
+ 4.5769099146127701e-02 -1.6001120209693909e-01
+ <_>
+
+ 0 -1 1204 -7.6488167047500610e-02
+
+ -5.2531337738037109e-01 5.2011650055646896e-02
+ <_>
+
+ 0 -1 1205 1.2786199804395437e-03
+
+ 7.6051406562328339e-02 -2.5104090571403503e-01
+ <_>
+
+ 0 -1 1206 -1.2661969522014260e-03
+
+ -1.2411650270223618e-01 1.6375949978828430e-01
+ <_>
+
+ 0 -1 1207 -9.0841390192508698e-03
+
+ 2.2613930702209473e-01 -5.4559618234634399e-02
+ <_>
+
+ 0 -1 1208 7.4418167059775442e-05
+
+ -1.6488799452781677e-01 1.0864400118589401e-01
+ <_>
+
+ 0 -1 1209 -2.5643699336796999e-03
+
+ -1.8933239579200745e-01 1.0298830270767212e-01
+ <_>
+
+ 0 -1 1210 -3.4997228533029556e-02
+
+ 2.3746269941329956e-01 -8.2390688359737396e-02
+ <_>
+
+ 0 -1 1211 -1.9422829151153564e-02
+
+ -9.9691540002822876e-02 4.0376558899879456e-02
+ <_>
+
+ 0 -1 1212 -5.9601478278636932e-02
+
+ -9.1162431240081787e-01 1.8367420881986618e-02
+ <_>
+
+ 0 -1 1213 3.4046408534049988e-01
+
+ 6.0519641265273094e-03 -4.4584161043167114e-01
+ <_>
+
+ 0 -1 1214 6.5878271125257015e-03
+
+ -9.5767751336097717e-02 1.8087559938430786e-01
+ <_>
+
+ 0 -1 1215 5.3841830231249332e-03
+
+ 5.2658561617136002e-02 -4.5202389359474182e-01
+ <_>
+
+ 0 -1 1216 7.9094972461462021e-03
+
+ 3.8064301013946533e-02 -4.5984381437301636e-01
+ <_>
+
+ 0 -1 1217 -1.7566539347171783e-02
+
+ 1.1139140278100967e-01 -2.9564509168267250e-02
+ <_>
+
+ 0 -1 1218 -1.1352599831297994e-03
+
+ 1.0825510323047638e-01 -1.8355409801006317e-01
+ <_>
+
+ 0 -1 1219 1.4237280189990997e-01
+
+ -3.1995229423046112e-02 3.8099318742752075e-01
+ <_>
+
+ 0 -1 1220 -1.0024409741163254e-01
+
+ -7.7461862564086914e-01 2.3992599919438362e-02
+ <_>
+
+ 0 -1 1221 -1.2453799694776535e-01
+
+ 2.1255059540271759e-01 -9.1748759150505066e-02
+ <_>
+
+ 0 -1 1222 1.9641380012035370e-01
+
+ 3.3028271049261093e-02 -6.0223150253295898e-01
+ <_>
+
+ 0 -1 1223 -4.1467338800430298e-02
+
+ -8.8264447450637817e-01 1.3399540446698666e-02
+ <_>
+
+ 0 -1 1224 -3.0020199716091156e-02
+
+ 5.8158951997756958e-01 -3.9801310747861862e-02
+ <_>
+
+ 0 -1 1225 1.9002150744199753e-02
+
+ -2.4508230388164520e-02 3.2259100675582886e-01
+ <_>
+
+ 0 -1 1226 -1.0837280191481113e-02
+
+ -2.5428688526153564e-01 7.3384523391723633e-02
+ <_>
+
+ 0 -1 1227 -2.4493860080838203e-02
+
+ 1.4883559942245483e-01 -3.6729950457811356e-02
+ <_>
+
+ 0 -1 1228 4.7652618959546089e-03
+
+ 1.2693640589714050e-01 -1.9157619774341583e-01
+ <_>
+
+ 0 -1 1229 -1.2438010424375534e-02
+
+ 7.1727007627487183e-02 -2.5421911478042603e-01
+ <_>
+
+ 0 -1 1230 2.1275319159030914e-02
+
+ -4.9392588436603546e-02 5.2715432643890381e-01
+ <_>
+
+ 0 -1 1231 -6.7369833588600159e-02
+
+ -4.6891281008720398e-01 4.2881548404693604e-02
+ <_>
+
+ 0 -1 1232 -1.0925510432571173e-03
+
+ 1.1250150203704834e-01 -1.3688379526138306e-01
+ <_>
+
+ 0 -1 1233 -9.7863428294658661e-02
+
+ -8.5167092084884644e-01 7.9745445400476456e-03
+ <_>
+
+ 0 -1 1234 -2.0980979315936565e-03
+
+ 7.2556197643280029e-02 -2.1253560483455658e-01
+ <_>
+
+ 0 -1 1235 4.4975668191909790e-02
+
+ -6.4254011958837509e-03 6.7334640026092529e-01
+ <_>
+
+ 0 -1 1236 -2.0970530807971954e-02
+
+ -1.5341369807720184e-01 1.1229439824819565e-01
+ <_>
+
+ 0 -1 1237 7.1862142067402601e-04
+
+ -1.3690039515495300e-01 1.2323109805583954e-01
+ <_>
+
+ 0 -1 1238 1.1921999976038933e-02
+
+ -5.2036911249160767e-02 3.5095539689064026e-01
+ <_>
+
+ 0 -1 1239 -1.2956890277564526e-02
+
+ 8.7813578546047211e-02 -2.8173919767141342e-02
+ <_>
+
+ 0 -1 1240 -2.7972649782896042e-02
+
+ -5.9018450975418091e-01 2.4770129472017288e-02
+ <_>
+
+ 0 -1 1241 -6.0088839381933212e-03
+
+ -6.5963357686996460e-02 3.6277290433645248e-02
+ <_>
+
+ 0 -1 1242 -4.0854439139366150e-03
+
+ 1.8211939930915833e-01 -8.9567668735980988e-02
+ <_>
+
+ 0 -1 1243 6.3200960867106915e-03
+
+ 2.3888850584626198e-02 -1.0606460273265839e-01
+ <_>
+
+ 0 -1 1244 2.0633619278669357e-02
+
+ -3.8176801055669785e-02 5.2134162187576294e-01
+ <_>
+
+ 0 -1 1245 -2.5221719406545162e-03
+
+ 4.6510368585586548e-02 -9.3957871198654175e-02
+ <_>
+
+ 0 -1 1246 -4.6648699790239334e-03
+
+ -2.3734979331493378e-01 8.0608420073986053e-02
+ <_>
+
+ 0 -1 1247 2.5844529736787081e-03
+
+ -2.4275559931993484e-02 2.2888250648975372e-01
+ <_>
+
+ 0 -1 1248 -1.4966880371503066e-05
+
+ 9.9380202591419220e-02 -1.9830170273780823e-01
+ <_>
+
+ 0 -1 1249 6.2676537781953812e-03
+
+ -7.4367232620716095e-02 2.2790339589118958e-01
+ <_>
+
+ 0 -1 1250 2.6347549632191658e-02
+
+ 1.9285459071397781e-02 -8.8683319091796875e-01
+ <_>
+
+ 0 -1 1251 -6.0268949717283249e-02
+
+ 1.2562690675258636e-01 -3.3716868609189987e-02
+ <_>
+
+ 0 -1 1252 -3.8371770642697811e-03
+
+ -1.7735309898853302e-01 8.8588736951351166e-02
+ <_>
+
+ 0 -1 1253 -3.5063549876213074e-03
+
+ -8.7100908160209656e-02 5.6650858372449875e-02
+ <_>
+
+ 0 -1 1254 -8.1536881625652313e-03
+
+ 2.5863811373710632e-01 -5.9690609574317932e-02
+ <_>
+
+ 0 -1 1255 3.8574129343032837e-02
+
+ 8.4148198366165161e-03 -4.3409061431884766e-01
+ <_>
+
+ 0 -1 1256 -3.9269659668207169e-02
+
+ 3.5469511151313782e-01 -4.3248169124126434e-02
+ <_>
+
+ 0 -1 1257 -1.7512469785287976e-03
+
+ 8.6816087365150452e-02 -9.6924632787704468e-02
+ <_>
+
+ 0 -1 1258 -8.4061250090599060e-02
+
+ -6.5256571769714355e-01 2.4765320122241974e-02
+ <_>
+
+ 0 -1 1259 -4.3417539447546005e-02
+
+ -5.6205427646636963e-01 9.8713487386703491e-03
+ <_>
+
+ 0 -1 1260 -1.3643169775605202e-02
+
+ 2.4562139809131622e-01 -6.0552708804607391e-02
+ <_>
+
+ 0 -1 1261 1.6490360721945763e-02
+
+ 3.8866888731718063e-02 -2.7715849876403809e-01
+ <_>
+
+ 0 -1 1262 -1.4422900043427944e-02
+
+ -2.2820469737052917e-01 5.9026841074228287e-02
+ <_>
+
+ 0 -1 1263 2.7178740128874779e-03
+
+ -1.1887180060148239e-01 1.2192229926586151e-01
+ <_>
+
+ 0 -1 1264 6.3701239414513111e-03
+
+ -1.7167779803276062e-01 9.9555417895317078e-02
+ <_>
+
+ 0 -1 1265 8.1290200352668762e-02
+
+ -2.2509740665555000e-02 2.4472869932651520e-01
+ <_>
+
+ 0 -1 1266 -1.4793650188948959e-04
+
+ 8.0845691263675690e-02 -2.1680369973182678e-01
+ <_>
+
+ 0 -1 1267 -6.9097941741347313e-04
+
+ 6.2281239777803421e-02 -1.4082409441471100e-01
+ <_>
+
+ 0 -1 1268 -1.1455359868705273e-02
+
+ -1.1722529679536819e-01 1.5948510169982910e-01
+ <_>
+
+ 0 -1 1269 -1.6334399580955505e-01
+
+ -3.4727150201797485e-01 1.1003250256180763e-02
+ <_>
+
+ 0 -1 1270 -6.8652302026748657e-02
+
+ 2.5441581010818481e-01 -7.8778758645057678e-02
+ <_>
+
+ 0 -1 1271 6.9226641207933426e-03
+
+ -2.9800569638609886e-02 2.0455279946327209e-01
+ <_>
+
+ 0 -1 1272 -1.0851600021123886e-01
+
+ -4.7375029325485229e-01 4.0704440325498581e-02
+ <_>
+
+ 0 -1 1273 5.8868151158094406e-02
+
+ 1.3014429714530706e-03 -1.0001180171966553e+00
+ <_>
+
+ 0 -1 1274 1.5332780312746763e-03
+
+ -1.6441990435123444e-01 9.9495269358158112e-02
+ <_>
+
+ 0 -1 1275 -2.5576220359653234e-03
+
+ 8.1458933651447296e-02 -9.0945683419704437e-02
+ <_>
+
+ 0 -1 1276 3.6009950563311577e-03
+
+ 8.6760893464088440e-02 -1.9872209429740906e-01
+ <_>
+
+ 0 -1 1277 1.0986080393195152e-02
+
+ -4.8230320215225220e-02 1.9264499843120575e-01
+ <_>
+
+ 0 -1 1278 -4.4403300853446126e-04
+
+ 2.0115670561790466e-01 -8.3059810101985931e-02
+ <_>
+
+ 0 -1 1279 2.9464240651577711e-04
+
+ -1.2808699905872345e-01 6.6652536392211914e-02
+ <_>
+
+ 0 -1 1280 -4.1320081800222397e-02
+
+ -5.3510922193527222e-01 2.9578590765595436e-02
+ <_>
+
+ 0 -1 1281 8.1929996609687805e-02
+
+ -1.6939610242843628e-02 7.6524221897125244e-01
+ <_>
+
+ 0 -1 1282 1.4758399687707424e-02
+
+ 2.7206780388951302e-02 -6.2607800960540771e-01
+ <_>
+
+ 0 -1 1283 -1.7577099800109863e-01
+
+ 1.0328330099582672e-01 -5.1863618195056915e-02
+ <_>
+
+ 0 -1 1284 -1.0492449626326561e-02
+
+ -1.9424819946289062e-01 8.5835307836532593e-02
+ <_>
+
+ 0 -1 1285 -5.6793028488755226e-03
+
+ 1.6252349317073822e-01 -1.1607410013675690e-01
+ <_>
+
+ 0 -1 1286 -7.7026091516017914e-02
+
+ -1.6585369408130646e-01 1.0487639904022217e-01
+ <_>
+
+ 0 -1 1287 8.8255241513252258e-02
+
+ -4.2857029475271702e-03 1.0002230405807495e+00
+ <_>
+
+ 0 -1 1288 -2.5600788649171591e-04
+
+ 1.3218410313129425e-01 -1.4754749834537506e-01
+ <_>
+
+ 0 -1 1289 3.4532468765974045e-02
+
+ -4.7874059528112411e-02 2.7708581089973450e-01
+ <_>
+
+ 0 -1 1290 1.0978250205516815e-01
+
+ -2.1606300026178360e-02 8.5059100389480591e-01
+ <_>
+
+ 0 -1 1291 3.6717768758535385e-02
+
+ 1.6276430338621140e-02 -8.9000707864761353e-01
+ <_>
+
+ 0 -1 1292 -6.1206728219985962e-02
+
+ 5.4838019609451294e-01 -3.1625121831893921e-02
+ <_>
+
+ 0 -1 1293 2.9046889394521713e-03
+
+ 4.1483800858259201e-02 -8.6054533720016479e-02
+ <_>
+
+ 0 -1 1294 6.9003179669380188e-02
+
+ -2.6552880182862282e-02 6.0647368431091309e-01
+ <_>
+
+ 0 -1 1295 7.0049421628937125e-04
+
+ -1.9934299588203430e-01 7.5443200767040253e-02
+ <_>
+
+ 0 -1 1296 3.4873239696025848e-02
+
+ 3.9036870002746582e-02 -4.2251279950141907e-01
+ <_>
+ 71
+ -3.0640199661254883e+01
+
+ <_>
+
+ 0 -1 1297 5.4466608911752701e-02
+
+ -1.3182820379734039e-01 2.7660441398620605e-01
+ <_>
+
+ 0 -1 1298 -2.1856650710105896e-02
+
+ 2.5475510954856873e-01 -8.4045611321926117e-02
+ <_>
+
+ 0 -1 1299 6.6198781132698059e-03
+
+ 7.1489393711090088e-02 -2.6304081082344055e-01
+ <_>
+
+ 0 -1 1300 8.8211596012115479e-03
+
+ -1.3396710157394409e-01 1.4222930371761322e-01
+ <_>
+
+ 0 -1 1301 -2.3251229524612427e-01
+
+ -3.4628748893737793e-01 5.6767478585243225e-02
+ <_>
+
+ 0 -1 1302 2.8472349047660828e-01
+
+ 8.6089121177792549e-03 -1.0012650489807129e+00
+ <_>
+
+ 0 -1 1303 4.2303521186113358e-02
+
+ -9.1637752950191498e-02 1.9090470671653748e-01
+ <_>
+
+ 0 -1 1304 4.9781981855630875e-02
+
+ 2.9709989205002785e-02 -3.5961869359016418e-01
+ <_>
+
+ 0 -1 1305 -4.8924300819635391e-02
+
+ -3.8387179374694824e-01 5.5182989686727524e-02
+ <_>
+
+ 0 -1 1306 -7.7399803558364511e-05
+
+ -1.2758800387382507e-01 9.4793520867824554e-02
+ <_>
+
+ 0 -1 1307 -2.4455290287733078e-02
+
+ 4.6911829710006714e-01 -5.1782071590423584e-02
+ <_>
+
+ 0 -1 1308 2.5210820138454437e-02
+
+ 4.4035088270902634e-02 -1.7653049528598785e-01
+ <_>
+
+ 0 -1 1309 -4.7570910304784775e-02
+
+ -5.3332722187042236e-01 4.6693909913301468e-02
+ <_>
+
+ 0 -1 1310 -1.4046980440616608e-01
+
+ 3.2798460125923157e-01 -6.5607719123363495e-02
+ <_>
+
+ 0 -1 1311 -1.0932429879903793e-01
+
+ -5.9276747703552246e-01 3.0543249100446701e-02
+ <_>
+
+ 0 -1 1312 -9.8567470908164978e-02
+
+ 3.6753898859024048e-01 -6.6568426787853241e-02
+ <_>
+
+ 0 -1 1313 -7.6861098408699036e-02
+
+ -1.3722559809684753e-01 1.7806069552898407e-01
+ <_>
+
+ 0 -1 1314 -2.1035360172390938e-02
+
+ 4.3632039427757263e-01 -2.9524799436330795e-02
+ <_>
+
+ 0 -1 1315 1.3428479433059692e-03
+
+ -2.4420669674873352e-01 1.1969459801912308e-01
+ <_>
+
+ 0 -1 1316 -3.4433171153068542e-02
+
+ 2.7110278606414795e-01 -7.5950436294078827e-02
+ <_>
+
+ 0 -1 1317 1.7944410210475326e-03
+
+ -1.7997020483016968e-01 1.3508750498294830e-01
+ <_>
+
+ 0 -1 1318 -9.6644267439842224e-02
+
+ -7.6689988374710083e-01 1.5435869805514812e-02
+ <_>
+
+ 0 -1 1319 2.5092919822782278e-03
+
+ -1.2506179511547089e-01 1.8814159929752350e-01
+ <_>
+
+ 0 -1 1320 -2.2511319257318974e-03
+
+ 7.8268818557262421e-02 -7.2636753320693970e-02
+ <_>
+
+ 0 -1 1321 -7.4670952017186210e-06
+
+ 7.6933227479457855e-02 -2.6148709654808044e-01
+ <_>
+
+ 0 -1 1322 2.6573959738016129e-02
+
+ 2.2534679621458054e-02 -1.6299429535865784e-01
+ <_>
+
+ 0 -1 1323 1.7086470499634743e-02
+
+ -5.8232828974723816e-02 3.6095941066741943e-01
+ <_>
+
+ 0 -1 1324 3.0147018842399120e-03
+
+ 1.2817589938640594e-01 -1.8230159580707550e-01
+ <_>
+
+ 0 -1 1325 9.4206426292657852e-03
+
+ 8.9825786650180817e-02 -2.6877298951148987e-01
+ <_>
+
+ 0 -1 1326 7.5143040157854557e-04
+
+ 8.8295407593250275e-02 -2.3304849863052368e-01
+ <_>
+
+ 0 -1 1327 -1.0687969624996185e-02
+
+ 3.0612778663635254e-01 -6.5760366618633270e-02
+ <_>
+
+ 0 -1 1328 7.5001686811447144e-02
+
+ 4.3955240398645401e-03 -7.5094991922378540e-01
+ <_>
+
+ 0 -1 1329 5.0849020481109619e-02
+
+ 2.0524559542536736e-02 -8.3406442403793335e-01
+ <_>
+
+ 0 -1 1330 2.3555630818009377e-02
+
+ 3.6320169456303120e-03 -8.8322782516479492e-01
+ <_>
+
+ 0 -1 1331 -1.6827480867505074e-02
+
+ -6.5697771310806274e-01 2.3138659074902534e-02
+ <_>
+
+ 0 -1 1332 1.9977349787950516e-02
+
+ -2.3847330361604691e-02 3.2636478543281555e-01
+ <_>
+
+ 0 -1 1333 3.1397528946399689e-02
+
+ -3.6343611776828766e-02 4.4792640209197998e-01
+ <_>
+
+ 0 -1 1334 -9.3282759189605713e-02
+
+ -5.2942079305648804e-01 6.3824458047747612e-03
+ <_>
+
+ 0 -1 1335 -7.7012612018734217e-04
+
+ 1.5420450270175934e-01 -1.5751419961452484e-01
+ <_>
+
+ 0 -1 1336 4.6891491860151291e-02
+
+ 1.1802299879491329e-02 -7.3092728853225708e-01
+ <_>
+
+ 0 -1 1337 -3.4607138950377703e-03
+
+ 1.1565960198640823e-01 -1.7568419873714447e-01
+ <_>
+
+ 0 -1 1338 -3.3493418246507645e-02
+
+ -6.8049472570419312e-01 5.1433579064905643e-03
+ <_>
+
+ 0 -1 1339 -5.5793918669223785e-02
+
+ -5.3908890485763550e-01 3.2008830457925797e-02
+ <_>
+
+ 0 -1 1340 5.1339478231966496e-03
+
+ -6.6114626824855804e-02 3.1760030984878540e-01
+ <_>
+
+ 0 -1 1341 3.0386429280042648e-03
+
+ 8.1462718546390533e-02 -2.4291920661926270e-01
+ <_>
+
+ 0 -1 1342 -3.1149981077760458e-04
+
+ 4.6723391860723495e-02 -8.4542676806449890e-02
+ <_>
+
+ 0 -1 1343 1.8326110439375043e-03
+
+ -1.2830300629138947e-01 1.5127150714397430e-01
+ <_>
+
+ 0 -1 1344 -2.5878880172967911e-02
+
+ -2.1160699427127838e-01 2.9811259359121323e-02
+ <_>
+
+ 0 -1 1345 -1.3985199620947242e-03
+
+ 1.9801080226898193e-01 -1.0368689894676208e-01
+ <_>
+
+ 0 -1 1346 2.4663188960403204e-03
+
+ 2.4554869160056114e-02 -1.0830429941415787e-01
+ <_>
+
+ 0 -1 1347 -1.3155230553820729e-03
+
+ -2.1984469890594482e-01 9.3965977430343628e-02
+ <_>
+
+ 0 -1 1348 -1.0562440007925034e-01
+
+ -7.9747790098190308e-01 8.9689819142222404e-03
+ <_>
+
+ 0 -1 1349 -3.0508160125464201e-03
+
+ 1.3266490399837494e-01 -1.3734680414199829e-01
+ <_>
+
+ 0 -1 1350 2.9857279732823372e-02
+
+ 9.6069881692528725e-03 -3.0116540193557739e-01
+ <_>
+
+ 0 -1 1351 3.0972119420766830e-02
+
+ 3.0091350898146629e-02 -5.7279831171035767e-01
+ <_>
+
+ 0 -1 1352 1.0772749781608582e-01
+
+ -1.1804240057244897e-03 -9.9987578392028809e-01
+ <_>
+
+ 0 -1 1353 -5.1501881331205368e-02
+
+ 2.7181380987167358e-01 -6.8161502480506897e-02
+ <_>
+
+ 0 -1 1354 -2.5288289412856102e-02
+
+ 4.5067310333251953e-01 -1.6520980745553970e-02
+ <_>
+
+ 0 -1 1355 -4.2859618552029133e-03
+
+ 3.7213888764381409e-01 -4.9761738628149033e-02
+ <_>
+
+ 0 -1 1356 -2.3194460198283195e-02
+
+ -2.0697650313377380e-01 4.1071210056543350e-02
+ <_>
+
+ 0 -1 1357 1.6878530383110046e-02
+
+ 5.6408129632472992e-02 -3.7614488601684570e-01
+ <_>
+
+ 0 -1 1358 -2.9601169750094414e-02
+
+ 2.7207991480827332e-01 -7.3090076446533203e-02
+ <_>
+
+ 0 -1 1359 -1.0797269642353058e-01
+
+ -4.9193540215492249e-01 3.6118570715188980e-02
+ <_>
+
+ 0 -1 1360 2.5317850708961487e-01
+
+ 8.8794529438018799e-03 -3.4746390581130981e-01
+ <_>
+
+ 0 -1 1361 -7.5927868485450745e-02
+
+ -5.2568101882934570e-01 3.0029149726033211e-02
+ <_>
+
+ 0 -1 1362 3.5496079362928867e-03
+
+ 6.1817318201065063e-02 -2.3450049757957458e-01
+ <_>
+
+ 0 -1 1363 -1.0419470258057117e-02
+
+ 9.5470182597637177e-02 -1.9764930009841919e-01
+ <_>
+
+ 0 -1 1364 -1.6242120414972305e-02
+
+ 3.5856780409812927e-01 -5.2510499954223633e-02
+ <_>
+
+ 0 -1 1365 -1.4503370039165020e-03
+
+ -1.8003490567207336e-01 9.5208331942558289e-02
+ <_>
+
+ 0 -1 1366 1.9696209579706192e-02
+
+ 3.7537660449743271e-02 -4.8065909743309021e-01
+ <_>
+
+ 0 -1 1367 3.4964820370078087e-03
+
+ -9.7187377512454987e-02 1.7569050192832947e-01
+ <_>
+ 96
+ -3.0804899215698242e+01
+
+ <_>
+
+ 0 -1 1368 -1.4011229574680328e-01
+
+ 3.5787770152091980e-01 -1.2125530093908310e-01
+ <_>
+
+ 0 -1 1369 -1.0008949786424637e-02
+
+ 2.6330929994583130e-01 -8.9008018374443054e-02
+ <_>
+
+ 0 -1 1370 -1.1394180357456207e-02
+
+ 4.3228828907012939e-01 -5.0159178674221039e-02
+ <_>
+
+ 0 -1 1371 2.3134359717369080e-01
+
+ 6.3841762021183968e-03 -7.0292097330093384e-01
+ <_>
+
+ 0 -1 1372 1.2646619975566864e-01
+
+ 4.2768001556396484e-02 -4.3919000029563904e-01
+ <_>
+
+ 0 -1 1373 4.6616248786449432e-02
+
+ 1.9250590354204178e-02 5.4499799013137817e-01
+ <_>
+
+ 0 -1 1374 2.2037800401449203e-02
+
+ -8.5108749568462372e-02 3.3848780393600464e-01
+ <_>
+
+ 0 -1 1375 3.1345561146736145e-02
+
+ 2.2690940648317337e-02 -5.1671189069747925e-01
+ <_>
+
+ 0 -1 1376 -2.1140639483928680e-01
+
+ 2.9412490129470825e-01 -4.6479560434818268e-02
+ <_>
+
+ 0 -1 1377 -6.6334113478660583e-02
+
+ -1.3444049656391144e-01 1.2842020392417908e-01
+ <_>
+
+ 0 -1 1378 4.0738668292760849e-02
+
+ 2.3405810818076134e-02 -8.0233561992645264e-01
+ <_>
+
+ 0 -1 1379 -4.1470870375633240e-02
+
+ 1.4620569348335266e-01 -1.9590210169553757e-02
+ <_>
+
+ 0 -1 1380 1.8456790596246719e-02
+
+ -3.6185469478368759e-02 5.1238268613815308e-01
+ <_>
+
+ 0 -1 1381 3.7538509350270033e-03
+
+ -1.5587760508060455e-01 1.0312390327453613e-01
+ <_>
+
+ 0 -1 1382 -2.8798980638384819e-03
+
+ -1.2225770205259323e-01 1.7551769316196442e-01
+ <_>
+
+ 0 -1 1383 -3.2762341201305389e-02
+
+ -4.7169759869575500e-01 3.0380319803953171e-02
+ <_>
+
+ 0 -1 1384 -3.9022210985422134e-02
+
+ 3.5106760263442993e-01 -6.6119261085987091e-02
+ <_>
+
+ 0 -1 1385 -4.4674798846244812e-02
+
+ -3.9958310127258301e-01 2.1066389977931976e-02
+ <_>
+
+ 0 -1 1386 5.3343027830123901e-03
+
+ 7.9137377440929413e-02 -2.1176779270172119e-01
+ <_>
+
+ 0 -1 1387 1.5521169640123844e-02
+
+ 3.4438930451869965e-02 -5.7202047109603882e-01
+ <_>
+
+ 0 -1 1388 -8.0842437455430627e-04
+
+ 1.1951749771833420e-01 -1.4325830340385437e-01
+ <_>
+
+ 0 -1 1389 2.7754740789532661e-02
+
+ -3.2436888664960861e-02 3.0749228596687317e-01
+ <_>
+
+ 0 -1 1390 -3.4786630421876907e-03
+
+ 1.5688750147819519e-01 -1.5649950504302979e-01
+ <_>
+
+ 0 -1 1391 -2.7840979397296906e-02
+
+ -1.2932580709457397e-01 1.5408019721508026e-01
+ <_>
+
+ 0 -1 1392 -2.0033390319440514e-04
+
+ 1.0591139644384384e-01 -2.3829479515552521e-01
+ <_>
+
+ 0 -1 1393 6.3352532684803009e-02
+
+ -3.5057701170444489e-02 1.1119090020656586e-01
+ <_>
+
+ 0 -1 1394 -1.0634259879589081e-01
+
+ -6.7938178777694702e-01 2.7465900406241417e-02
+ <_>
+
+ 0 -1 1395 1.9035820150747895e-04
+
+ -1.1908160150051117e-01 1.1334689706563950e-01
+ <_>
+
+ 0 -1 1396 -1.3564240187406540e-02
+
+ 2.7505800127983093e-01 -6.8315982818603516e-02
+ <_>
+
+ 0 -1 1397 2.1096229553222656e-02
+
+ -1.0987949557602406e-02 3.9935430884361267e-01
+ <_>
+
+ 0 -1 1398 -2.4880920536816120e-03
+
+ -2.1849539875984192e-01 8.9293807744979858e-02
+ <_>
+
+ 0 -1 1399 1.2370670214295387e-02
+
+ -9.5645450055599213e-02 5.6633960455656052e-02
+ <_>
+
+ 0 -1 1400 -1.2036350369453430e-01
+
+ -5.3174102306365967e-01 3.5775080323219299e-02
+ <_>
+
+ 0 -1 1401 -6.7138060927391052e-02
+
+ 2.1456840634346008e-01 -8.7389126420021057e-02
+ <_>
+
+ 0 -1 1402 -1.2161920219659805e-01
+
+ -1.8160809576511383e-01 1.4573550224304199e-01
+ <_>
+
+ 0 -1 1403 2.0479459315538406e-02
+
+ -5.5715341120958328e-02 6.1189219355583191e-02
+ <_>
+
+ 0 -1 1404 2.1847079042345285e-03
+
+ -9.5258213579654694e-02 2.0591090619564056e-01
+ <_>
+
+ 0 -1 1405 4.0952740237116814e-03
+
+ -1.1867360025644302e-01 4.6696461737155914e-02
+ <_>
+
+ 0 -1 1406 -3.5035728942602873e-03
+
+ 2.3321969807147980e-01 -7.5537599623203278e-02
+ <_>
+
+ 0 -1 1407 -1.0467019863426685e-02
+
+ -1.2448009848594666e-01 5.0595261156558990e-02
+ <_>
+
+ 0 -1 1408 -1.5020829625427723e-02
+
+ 9.1991908848285675e-02 -2.2077399492263794e-01
+ <_>
+
+ 0 -1 1409 4.4499050825834274e-02
+
+ 3.4101899713277817e-02 -5.3422772884368896e-01
+ <_>
+
+ 0 -1 1410 8.1879837671294808e-04
+
+ -1.9193440675735474e-01 1.0177730023860931e-01
+ <_>
+
+ 0 -1 1411 -2.9793549329042435e-02
+
+ 4.1442748904228210e-01 -2.0298149436712265e-02
+ <_>
+
+ 0 -1 1412 1.6614329069852829e-02
+
+ 1.0457099974155426e-01 -1.8352369964122772e-01
+ <_>
+
+ 0 -1 1413 -2.2510789334774017e-02
+
+ 1.8911230564117432e-01 -3.3867038786411285e-02
+ <_>
+
+ 0 -1 1414 2.0407250151038170e-02
+
+ -5.8524370193481445e-02 3.5967621207237244e-01
+ <_>
+
+ 0 -1 1415 3.0294319149106741e-03
+
+ -1.4031639695167542e-01 5.4849781095981598e-02
+ <_>
+
+ 0 -1 1416 5.8518280275166035e-04
+
+ 9.5523588359355927e-02 -1.9650359451770782e-01
+ <_>
+
+ 0 -1 1417 1.7756339162588120e-02
+
+ 1.6195869073271751e-02 -5.8534300327301025e-01
+ <_>
+
+ 0 -1 1418 -3.2687620259821415e-03
+
+ -3.0802598595619202e-01 6.5568111836910248e-02
+ <_>
+
+ 0 -1 1419 3.4140530042350292e-03
+
+ -8.2502417266368866e-02 9.9890269339084625e-02
+ <_>
+
+ 0 -1 1420 6.3527207821607590e-03
+
+ -3.5163778811693192e-02 5.4237622022628784e-01
+ <_>
+
+ 0 -1 1421 2.0045090932399035e-03
+
+ -1.0081720352172852e-01 9.6935041248798370e-02
+ <_>
+
+ 0 -1 1422 6.9825910031795502e-03
+
+ -1.6012389957904816e-01 1.1348509788513184e-01
+ <_>
+
+ 0 -1 1423 4.5963011682033539e-02
+
+ 6.1929170042276382e-03 -8.8551759719848633e-01
+ <_>
+
+ 0 -1 1424 3.7062391638755798e-02
+
+ 2.0128250122070312e-02 -8.0933511257171631e-01
+ <_>
+
+ 0 -1 1425 -4.1522808372974396e-02
+
+ 2.0597919821739197e-01 -3.1927939504384995e-02
+ <_>
+
+ 0 -1 1426 1.6521860659122467e-01
+
+ 2.5524839758872986e-02 -6.2951612472534180e-01
+ <_>
+
+ 0 -1 1427 -2.3188880085945129e-01
+
+ 1.3953979313373566e-01 -6.1611790210008621e-02
+ <_>
+
+ 0 -1 1428 -2.8150070458650589e-02
+
+ -1.3676370680332184e-01 1.1677569895982742e-01
+ <_>
+
+ 0 -1 1429 2.0499450620263815e-03
+
+ -1.5855039656162262e-01 1.3511709868907928e-01
+ <_>
+
+ 0 -1 1430 1.2636490282602608e-04
+
+ -1.5024340152740479e-01 1.3739089667797089e-01
+ <_>
+
+ 0 -1 1431 2.4286638945341110e-03
+
+ 7.9247459769248962e-02 -2.5959441065788269e-01
+ <_>
+
+ 0 -1 1432 -2.1873589605093002e-02
+
+ 3.5590508580207825e-01 -6.1835918575525284e-02
+ <_>
+
+ 0 -1 1433 -5.8419788256287575e-03
+
+ -1.0219120234251022e-01 3.9997130632400513e-02
+ <_>
+
+ 0 -1 1434 -2.6236099656671286e-03
+
+ 1.2129990011453629e-01 -1.4861150085926056e-01
+ <_>
+
+ 0 -1 1435 1.4590419828891754e-01
+
+ -3.6884650588035583e-02 4.1484919190406799e-01
+ <_>
+
+ 0 -1 1436 -8.6298510432243347e-03
+
+ 2.5522458553314209e-01 -6.9871626794338226e-02
+ <_>
+
+ 0 -1 1437 -3.9153471589088440e-02
+
+ -8.5533118247985840e-01 1.4639239758253098e-02
+ <_>
+
+ 0 -1 1438 3.8482698798179626e-01
+
+ 1.7361119389533997e-02 -7.9790550470352173e-01
+ <_>
+
+ 0 -1 1439 -6.3598138513043523e-04
+
+ 1.1518269777297974e-01 -1.4216409623622894e-01
+ <_>
+
+ 0 -1 1440 5.9026381932199001e-03
+
+ 7.0523656904697418e-02 -2.3031190037727356e-01
+ <_>
+
+ 0 -1 1441 -1.1841119703603908e-04
+
+ 1.0401789844036102e-01 -1.7126679420471191e-01
+ <_>
+
+ 0 -1 1442 8.1962659955024719e-02
+
+ 2.7799099683761597e-02 -5.8331722021102905e-01
+ <_>
+
+ 0 -1 1443 -7.9551688395440578e-04
+
+ 1.2568520009517670e-01 -1.0317719727754593e-01
+ <_>
+
+ 0 -1 1444 -1.5588940680027008e-01
+
+ 6.2890201807022095e-01 -2.5191979482769966e-02
+ <_>
+
+ 0 -1 1445 -1.3456310145556927e-02
+
+ -3.2471698522567749e-01 5.5486921221017838e-02
+ <_>
+
+ 0 -1 1446 -2.1507199853658676e-02
+
+ 2.8819179534912109e-01 -6.1176139861345291e-02
+ <_>
+
+ 0 -1 1447 -1.9042069092392921e-02
+
+ -6.0552909970283508e-02 8.9629061520099640e-02
+ <_>
+
+ 0 -1 1448 -9.1205362696200609e-04
+
+ 1.2385459989309311e-01 -1.3584870100021362e-01
+ <_>
+
+ 0 -1 1449 3.8202628493309021e-02
+
+ 1.9218420609831810e-02 -8.4488832950592041e-01
+ <_>
+
+ 0 -1 1450 5.1787391304969788e-02
+
+ -5.4830659180879593e-02 3.3352980017662048e-01
+ <_>
+
+ 0 -1 1451 -1.3860349357128143e-01
+
+ -2.7164599299430847e-01 1.0680199600756168e-02
+ <_>
+
+ 0 -1 1452 -3.9325959980487823e-02
+
+ -7.6043432950973511e-01 1.9320670515298843e-02
+ <_>
+
+ 0 -1 1453 -1.1157010449096560e-03
+
+ 6.9478519260883331e-02 -2.0327170193195343e-01
+ <_>
+
+ 0 -1 1454 -4.2068599723279476e-03
+
+ 1.6007219254970551e-01 -1.0982350260019302e-01
+ <_>
+
+ 0 -1 1455 3.7919029127806425e-03
+
+ -8.3800643682479858e-02 2.5154781341552734e-01
+ <_>
+
+ 0 -1 1456 -3.1430590897798538e-02
+
+ -5.0590312480926514e-01 3.7667378783226013e-02
+ <_>
+
+ 0 -1 1457 -4.3412651866674423e-03
+
+ 5.8591969311237335e-02 -1.7271269857883453e-01
+ <_>
+
+ 0 -1 1458 -5.6401407346129417e-04
+
+ 1.0131839662790298e-01 -1.6737550497055054e-01
+ <_>
+
+ 0 -1 1459 -1.7139960080385208e-02
+
+ 4.9619451165199280e-02 -1.1812750250101089e-01
+ <_>
+
+ 0 -1 1460 -2.3868490010499954e-02
+
+ -9.5875509083271027e-02 1.8404319882392883e-01
+ <_>
+
+ 0 -1 1461 -8.7408810853958130e-02
+
+ 1.4144630730152130e-01 -5.7713828980922699e-02
+ <_>
+
+ 0 -1 1462 -3.9170090109109879e-02
+
+ -6.1036241054534912e-01 2.2308109328150749e-02
+ <_>
+
+ 0 -1 1463 5.3361579775810242e-02
+
+ 1.5027640387415886e-02 -6.5409141778945923e-01
+
+ <_>
+
+ <_>
+ 1 5 12 21 -1.
+ <_>
+ 5 5 4 21 3.
+ <_>
+
+ <_>
+ 9 2 3 26 -1.
+ <_>
+ 9 15 3 13 2.
+ <_>
+
+ <_>
+ 1 4 12 23 -1.
+ <_>
+ 5 4 4 23 3.
+ <_>
+
+ <_>
+ 1 7 12 9 -1.
+ <_>
+ 4 7 6 9 2.
+ <_>
+
+ <_>
+ 3 12 3 16 -1.
+ <_>
+ 3 20 3 8 2.
+ <_>
+
+ <_>
+ 4 8 6 6 -1.
+ <_>
+ 4 11 6 3 2.
+ <_>
+
+ <_>
+ 1 25 12 3 -1.
+ <_>
+ 5 25 4 3 3.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 4 2 4 12 -1.
+ <_>
+ 4 2 2 6 2.
+ <_>
+ 6 8 2 6 2.
+ <_>
+
+ <_>
+ 3 15 8 11 -1.
+ <_>
+ 5 15 4 11 2.
+ <_>
+
+ <_>
+ 6 9 6 6 -1.
+ <_>
+ 8 9 2 6 3.
+ <_>
+
+ <_>
+ 2 9 6 6 -1.
+ <_>
+ 4 9 2 6 3.
+ <_>
+
+ <_>
+ 8 0 5 28 -1.
+ <_>
+ 8 14 5 14 2.
+ <_>
+
+ <_>
+ 2 24 10 4 -1.
+ <_>
+ 7 24 5 4 2.
+ <_>
+
+ <_>
+ 3 15 8 11 -1.
+ <_>
+ 5 15 4 11 2.
+ <_>
+
+ <_>
+ 0 25 14 3 -1.
+ <_>
+ 7 25 7 3 2.
+ <_>
+
+ <_>
+ 1 11 12 13 -1.
+ <_>
+ 5 11 4 13 3.
+ <_>
+
+ <_>
+ 1 2 12 21 -1.
+ <_>
+ 5 9 4 7 9.
+ <_>
+
+ <_>
+ 10 0 3 28 -1.
+ <_>
+ 10 14 3 14 2.
+ <_>
+
+ <_>
+ 1 0 3 28 -1.
+ <_>
+ 1 14 3 14 2.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+ 5 9 3 4 2.
+ <_>
+
+ <_>
+ 3 5 6 8 -1.
+ <_>
+ 3 5 3 4 2.
+ <_>
+ 6 9 3 4 2.
+ <_>
+
+ <_>
+ 10 16 4 12 -1.
+ <_>
+ 12 16 2 6 2.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 4 10 6 2 2.
+ <_>
+
+ <_>
+ 3 5 8 21 -1.
+ <_>
+ 5 5 4 21 2.
+ <_>
+
+ <_>
+ 1 15 12 12 -1.
+ <_>
+ 7 15 6 6 2.
+ <_>
+ 1 21 6 6 2.
+ <_>
+
+ <_>
+ 0 25 12 3 -1.
+ <_>
+ 6 25 6 3 2.
+ <_>
+
+ <_>
+ 8 14 3 8 -1.
+ <_>
+ 8 14 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 25 8 3 -1.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 2 24 12 4 -1.
+ <_>
+ 5 24 6 4 2.
+ <_>
+
+ <_>
+ 1 18 4 6 -1.
+ <_>
+ 3 18 2 6 2.
+ <_>
+
+ <_>
+ 8 8 4 7 -1.
+ <_>
+ 8 8 2 7 2.
+ <_>
+
+ <_>
+ 2 8 4 7 -1.
+ <_>
+ 4 8 2 7 2.
+ <_>
+
+ <_>
+ 1 3 12 18 -1.
+ <_>
+ 1 3 6 18 2.
+ <_>
+
+ <_>
+ 1 20 4 8 -1.
+ <_>
+ 3 20 2 8 2.
+ <_>
+
+ <_>
+ 6 10 7 18 -1.
+ <_>
+ 6 19 7 9 2.
+ <_>
+
+ <_>
+ 4 8 3 13 -1.
+ <_>
+ 5 8 1 13 3.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 1 0 12 27 -1.
+ <_>
+ 5 9 4 9 9.
+ <_>
+
+ <_>
+ 2 20 12 7 -1.
+ <_>
+ 5 20 6 7 2.
+ <_>
+
+ <_>
+ 2 25 10 3 -1.
+ <_>
+ 7 25 5 3 2.
+ <_>
+
+ <_>
+ 0 26 14 2 -1.
+ <_>
+ 0 26 7 2 2.
+ <_>
+
+ <_>
+ 3 15 8 9 -1.
+ <_>
+ 5 15 4 9 2.
+ <_>
+
+ <_>
+ 8 23 6 5 -1.
+ <_>
+ 8 23 3 5 2.
+ <_>
+
+ <_>
+ 0 26 14 2 -1.
+ <_>
+ 7 26 7 2 2.
+ <_>
+
+ <_>
+ 8 10 2 18 -1.
+ <_>
+ 8 19 2 9 2.
+ <_>
+
+ <_>
+ 4 4 4 12 -1.
+ <_>
+ 4 4 2 6 2.
+ <_>
+ 6 10 2 6 2.
+ <_>
+
+ <_>
+ 4 24 9 4 -1.
+ <_>
+ 7 24 3 4 3.
+ <_>
+
+ <_>
+ 1 3 12 15 -1.
+ <_>
+ 5 8 4 5 9.
+ <_>
+
+ <_>
+ 11 16 2 12 -1.
+ <_>
+ 11 16 1 12 2.
+ <_>
+
+ <_>
+ 2 4 7 16 -1.
+ <_>
+ 2 12 7 8 2.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 3 8 8 6 -1.
+ <_>
+ 3 11 8 3 2.
+ <_>
+
+ <_>
+ 8 8 6 8 -1.
+ <_>
+ 10 8 2 8 3.
+ <_>
+
+ <_>
+ 0 8 6 7 -1.
+ <_>
+ 2 8 2 7 3.
+ <_>
+
+ <_>
+ 2 25 12 3 -1.
+ <_>
+ 6 25 4 3 3.
+ <_>
+
+ <_>
+ 0 25 12 3 -1.
+ <_>
+ 4 25 4 3 3.
+ <_>
+
+ <_>
+ 1 7 12 4 -1.
+ <_>
+ 1 7 6 4 2.
+ <_>
+
+ <_>
+ 0 2 14 12 -1.
+ <_>
+ 7 2 7 12 2.
+ <_>
+
+ <_>
+ 0 19 14 6 -1.
+ <_>
+ 7 19 7 3 2.
+ <_>
+ 0 22 7 3 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 5 14 4 6 3.
+ <_>
+
+ <_>
+ 2 24 12 4 -1.
+ <_>
+ 5 24 6 4 2.
+ <_>
+
+ <_>
+ 2 1 4 14 -1.
+ <_>
+ 2 1 2 7 2.
+ <_>
+ 4 8 2 7 2.
+ <_>
+
+ <_>
+ 10 3 4 6 -1.
+ <_>
+ 10 3 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 3 6 4 -1.
+ <_>
+ 4 3 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 16 14 8 -1.
+ <_>
+ 0 16 7 8 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 7 15 4 7 -1.
+ <_>
+ 7 15 2 7 2.
+ <_>
+
+ <_>
+ 3 15 4 8 -1.
+ <_>
+ 5 15 2 8 2.
+ <_>
+
+ <_>
+ 9 17 4 8 -1.
+ <_>
+ 9 17 2 8 2.
+ <_>
+
+ <_>
+ 1 17 4 8 -1.
+ <_>
+ 3 17 2 8 2.
+ <_>
+
+ <_>
+ 9 18 4 7 -1.
+ <_>
+ 9 18 2 7 2.
+ <_>
+
+ <_>
+ 1 18 4 7 -1.
+ <_>
+ 3 18 2 7 2.
+ <_>
+
+ <_>
+ 7 5 4 6 -1.
+ <_>
+ 7 5 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 7 5 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 4 7 3 12 -1.
+ <_>
+ 5 7 1 12 3.
+ <_>
+
+ <_>
+ 1 7 12 11 -1.
+ <_>
+ 4 7 6 11 2.
+ <_>
+
+ <_>
+ 6 13 8 4 -1.
+ <_>
+ 6 13 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 22 6 4 -1.
+ <_>
+ 5 22 3 4 2.
+ <_>
+
+ <_>
+ 0 26 14 2 -1.
+ <_>
+ 7 26 7 2 2.
+ <_>
+
+ <_>
+ 1 3 12 18 -1.
+ <_>
+ 5 9 4 6 9.
+ <_>
+
+ <_>
+ 0 6 9 22 -1.
+ <_>
+ 0 17 9 11 2.
+ <_>
+
+ <_>
+ 1 1 12 24 -1.
+ <_>
+ 7 1 6 12 2.
+ <_>
+ 1 13 6 12 2.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 1 4 12 23 -1.
+ <_>
+ 5 4 4 23 3.
+ <_>
+
+ <_>
+ 5 22 6 5 -1.
+ <_>
+ 5 22 3 5 2.
+ <_>
+
+ <_>
+ 3 22 6 5 -1.
+ <_>
+ 6 22 3 5 2.
+ <_>
+
+ <_>
+ 5 1 4 6 -1.
+ <_>
+ 5 4 4 3 2.
+ <_>
+
+ <_>
+ 1 8 12 8 -1.
+ <_>
+ 4 8 6 8 2.
+ <_>
+
+ <_>
+ 6 8 5 12 -1.
+ <_>
+ 6 11 5 6 2.
+ <_>
+
+ <_>
+ 0 20 14 6 -1.
+ <_>
+ 0 20 7 3 2.
+ <_>
+ 7 23 7 3 2.
+ <_>
+
+ <_>
+ 6 9 6 6 -1.
+ <_>
+ 8 9 2 6 3.
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 7 8 2 6 2.
+ <_>
+
+ <_>
+ 2 13 12 15 -1.
+ <_>
+ 2 18 12 5 3.
+ <_>
+
+ <_>
+ 0 16 4 12 -1.
+ <_>
+ 0 16 2 6 2.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 9 2 2 26 -1.
+ <_>
+ 10 2 1 13 2.
+ <_>
+ 9 15 1 13 2.
+ <_>
+
+ <_>
+ 3 2 2 26 -1.
+ <_>
+ 3 2 1 13 2.
+ <_>
+ 4 15 1 13 2.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 0 1 12 12 -1.
+ <_>
+ 4 5 4 4 9.
+ <_>
+
+ <_>
+ 6 15 3 12 -1.
+ <_>
+ 7 15 1 12 3.
+ <_>
+
+ <_>
+ 5 10 3 15 -1.
+ <_>
+ 6 10 1 15 3.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 0 10 8 18 -1.
+ <_>
+ 0 19 8 9 2.
+ <_>
+
+ <_>
+ 5 16 8 12 -1.
+ <_>
+ 9 16 4 6 2.
+ <_>
+ 5 22 4 6 2.
+ <_>
+
+ <_>
+ 0 25 8 3 -1.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 0 17 14 8 -1.
+ <_>
+ 7 17 7 4 2.
+ <_>
+ 0 21 7 4 2.
+ <_>
+
+ <_>
+ 2 15 6 4 -1.
+ <_>
+ 5 15 3 4 2.
+ <_>
+
+ <_>
+ 5 23 9 4 -1.
+ <_>
+ 8 23 3 4 3.
+ <_>
+
+ <_>
+ 0 23 9 5 -1.
+ <_>
+ 3 23 3 5 3.
+ <_>
+
+ <_>
+ 1 4 12 22 -1.
+ <_>
+ 5 4 4 22 3.
+ <_>
+
+ <_>
+ 1 4 5 24 -1.
+ <_>
+ 1 10 5 12 2.
+ <_>
+
+ <_>
+ 2 23 12 4 -1.
+ <_>
+ 5 23 6 4 2.
+ <_>
+
+ <_>
+ 3 16 4 12 -1.
+ <_>
+ 5 16 2 12 2.
+ <_>
+
+ <_>
+ 1 17 12 11 -1.
+ <_>
+ 1 17 6 11 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 8 17 4 6 -1.
+ <_>
+ 8 17 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 16 4 6 -1.
+ <_>
+ 7 16 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 2 2 6 2.
+ <_>
+
+ <_>
+ 2 12 5 16 -1.
+ <_>
+ 2 20 5 8 2.
+ <_>
+
+ <_>
+ 6 13 3 14 -1.
+ <_>
+ 7 13 1 14 3.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 8 14 6 -1.
+ <_>
+ 0 11 14 3 2.
+ <_>
+
+ <_>
+ 2 7 4 7 -1.
+ <_>
+ 4 7 2 7 2.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 3 13 8 13 -1.
+ <_>
+ 5 13 4 13 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 10 2 2 6 2.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 2 2 4 12 -1.
+ <_>
+ 2 2 2 6 2.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 6 24 8 3 -1.
+ <_>
+ 6 24 4 3 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 0 21 14 6 -1.
+ <_>
+ 0 21 7 6 2.
+ <_>
+
+ <_>
+ 0 11 8 4 -1.
+ <_>
+ 4 11 4 4 2.
+ <_>
+
+ <_>
+ 1 2 12 5 -1.
+ <_>
+ 5 2 4 5 3.
+ <_>
+
+ <_>
+ 2 1 6 21 -1.
+ <_>
+ 4 8 2 7 9.
+ <_>
+
+ <_>
+ 11 16 2 12 -1.
+ <_>
+ 11 16 1 12 2.
+ <_>
+
+ <_>
+ 7 17 6 5 -1.
+ <_>
+ 7 17 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 1 16 2 12 -1.
+ <_>
+ 2 16 1 12 2.
+ <_>
+
+ <_>
+ 7 13 3 12 -1.
+ <_>
+ 8 13 1 12 3.
+ <_>
+
+ <_>
+ 6 17 4 6 -1.
+ <_>
+ 6 17 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 8 4 6 -1.
+ <_>
+ 6 11 4 3 2.
+ <_>
+
+ <_>
+ 1 5 8 12 -1.
+ <_>
+ 1 11 8 6 2.
+ <_>
+
+ <_>
+ 7 13 3 12 -1.
+ <_>
+ 8 13 1 12 3.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 14 3 12 -1.
+ <_>
+ 8 14 1 12 3.
+ <_>
+
+ <_>
+ 0 25 12 3 -1.
+ <_>
+ 4 25 4 3 3.
+ <_>
+
+ <_>
+ 7 17 4 8 -1.
+ <_>
+ 7 17 2 8 2.
+ <_>
+
+ <_>
+ 3 17 4 8 -1.
+ <_>
+ 5 17 2 8 2.
+ <_>
+
+ <_>
+ 8 24 6 4 -1.
+ <_>
+ 8 24 3 4 2.
+ <_>
+
+ <_>
+ 2 22 6 6 -1.
+ <_>
+ 4 22 2 6 3.
+ <_>
+
+ <_>
+ 8 15 5 8 -1.
+ <_>
+ 8 15 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 15 8 5 -1.
+ <_>
+ 6 15 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 1 8 12 7 -1.
+ <_>
+ 4 8 6 7 2.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 15 6 5 2.
+ <_>
+
+ <_>
+ 7 4 4 22 -1.
+ <_>
+ 7 15 4 11 2.
+ <_>
+
+ <_>
+ 1 4 12 22 -1.
+ <_>
+ 4 4 6 22 2.
+ <_>
+
+ <_>
+ 6 3 4 12 -1.
+ <_>
+ 8 3 2 6 2.
+ <_>
+ 6 9 2 6 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+ 5 9 3 4 2.
+ <_>
+
+ <_>
+ 3 5 6 8 -1.
+ <_>
+ 3 5 3 4 2.
+ <_>
+ 6 9 3 4 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 3 18 -1.
+ <_>
+ 5 19 3 9 2.
+ <_>
+
+ <_>
+ 7 6 4 6 -1.
+ <_>
+ 7 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 6 4 -1.
+ <_>
+ 7 6 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 24 8 3 -1.
+ <_>
+ 6 24 4 3 2.
+ <_>
+
+ <_>
+ 1 11 12 5 -1.
+ <_>
+ 4 11 6 5 2.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 2 3 4 12 -1.
+ <_>
+ 2 3 2 6 2.
+ <_>
+ 4 9 2 6 2.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 0 22 4 6 -1.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 6 15 3 12 -1.
+ <_>
+ 7 15 1 12 3.
+ <_>
+
+ <_>
+ 7 16 4 6 -1.
+ <_>
+ 7 16 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 6 6 -1.
+ <_>
+ 4 4 6 2 3.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 7 9 2 6 2.
+ <_>
+
+ <_>
+ 7 15 2 12 -1.
+ <_>
+ 7 15 1 12 2.
+ <_>
+
+ <_>
+ 5 15 2 12 -1.
+ <_>
+ 6 15 1 12 2.
+ <_>
+
+ <_>
+ 2 25 12 2 -1.
+ <_>
+ 2 25 6 2 2.
+ <_>
+
+ <_>
+ 3 16 4 12 -1.
+ <_>
+ 3 16 2 6 2.
+ <_>
+ 5 22 2 6 2.
+ <_>
+
+ <_>
+ 6 24 8 3 -1.
+ <_>
+ 6 24 4 3 2.
+ <_>
+
+ <_>
+ 0 25 12 2 -1.
+ <_>
+ 6 25 6 2 2.
+ <_>
+
+ <_>
+ 4 1 6 27 -1.
+ <_>
+ 4 10 6 9 3.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 3 21 6 4 -1.
+ <_>
+ 6 21 3 4 2.
+ <_>
+
+ <_>
+ 4 2 6 12 -1.
+ <_>
+ 4 8 6 6 2.
+ <_>
+
+ <_>
+ 6 0 6 4 -1.
+ <_>
+ 6 0 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 3 14 -1.
+ <_>
+ 7 4 1 14 3.
+ <_>
+
+ <_>
+ 4 8 6 6 -1.
+ <_>
+ 6 8 2 6 3.
+ <_>
+
+ <_>
+ 2 24 12 4 -1.
+ <_>
+ 6 24 4 4 3.
+ <_>
+
+ <_>
+ 0 24 12 4 -1.
+ <_>
+ 4 24 4 4 3.
+ <_>
+
+ <_>
+ 8 13 3 12 -1.
+ <_>
+ 9 13 1 12 3.
+ <_>
+
+ <_>
+ 1 22 4 6 -1.
+ <_>
+ 3 22 2 6 2.
+ <_>
+
+ <_>
+ 7 7 3 12 -1.
+ <_>
+ 8 7 1 12 3.
+ <_>
+
+ <_>
+ 4 7 3 12 -1.
+ <_>
+ 5 7 1 12 3.
+ <_>
+
+ <_>
+ 4 1 8 3 -1.
+ <_>
+ 4 1 4 3 2.
+ <_>
+
+ <_>
+ 4 4 3 23 -1.
+ <_>
+ 5 4 1 23 3.
+ <_>
+
+ <_>
+ 9 21 4 7 -1.
+ <_>
+ 9 21 2 7 2.
+ <_>
+
+ <_>
+ 5 14 3 12 -1.
+ <_>
+ 6 14 1 12 3.
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 8 13 3 12 -1.
+ <_>
+ 9 13 1 12 3.
+ <_>
+
+ <_>
+ 3 13 3 12 -1.
+ <_>
+ 4 13 1 12 3.
+ <_>
+
+ <_>
+ 3 2 8 20 -1.
+ <_>
+ 3 7 8 10 2.
+ <_>
+
+ <_>
+ 2 18 12 8 -1.
+ <_>
+ 5 18 6 8 2.
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 6 9 2 6 3.
+ <_>
+
+ <_>
+ 2 18 12 8 -1.
+ <_>
+ 5 18 6 8 2.
+ <_>
+
+ <_>
+ 0 24 8 4 -1.
+ <_>
+ 4 24 4 4 2.
+ <_>
+
+ <_>
+ 6 2 2 24 -1.
+ <_>
+ 7 2 1 12 2.
+ <_>
+ 6 14 1 12 2.
+ <_>
+
+ <_>
+ 5 8 4 12 -1.
+ <_>
+ 5 8 2 6 2.
+ <_>
+ 7 14 2 6 2.
+ <_>
+
+ <_>
+ 7 3 6 6 -1.
+ <_>
+ 7 3 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 0 8 6 7 -1.
+ <_>
+ 2 8 2 7 3.
+ <_>
+
+ <_>
+ 7 3 6 6 -1.
+ <_>
+ 7 3 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 7 8 3 4 2.
+ <_>
+
+ <_>
+ 2 7 10 19 -1.
+ <_>
+ 2 7 5 19 2.
+ <_>
+
+ <_>
+ 0 4 11 24 -1.
+ <_>
+ 0 16 11 12 2.
+ <_>
+
+ <_>
+ 1 1 12 21 -1.
+ <_>
+ 5 8 4 7 9.
+ <_>
+
+ <_>
+ 0 18 12 8 -1.
+ <_>
+ 3 18 6 8 2.
+ <_>
+
+ <_>
+ 9 17 4 8 -1.
+ <_>
+ 9 17 2 8 2.
+ <_>
+
+ <_>
+ 4 7 4 6 -1.
+ <_>
+ 4 10 4 3 2.
+ <_>
+
+ <_>
+ 7 7 5 9 -1.
+ <_>
+ 7 10 5 3 3.
+ <_>
+
+ <_>
+ 1 17 4 8 -1.
+ <_>
+ 3 17 2 8 2.
+ <_>
+
+ <_>
+ 9 15 3 13 -1.
+ <_>
+ 10 15 1 13 3.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 9 18 4 10 -1.
+ <_>
+ 9 18 2 10 2.
+ <_>
+
+ <_>
+ 1 18 4 10 -1.
+ <_>
+ 3 18 2 10 2.
+ <_>
+
+ <_>
+ 7 22 2 4 -1.
+ <_>
+ 7 22 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 22 4 2 -1.
+ <_>
+ 7 22 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 5 9 -1.
+ <_>
+ 7 10 5 3 3.
+ <_>
+
+ <_>
+ 1 7 12 11 -1.
+ <_>
+ 4 7 6 11 2.
+ <_>
+
+ <_>
+ 8 6 3 8 -1.
+ <_>
+ 8 6 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 3 16 -1.
+ <_>
+ 5 12 3 8 2.
+ <_>
+
+ <_>
+ 8 6 3 8 -1.
+ <_>
+ 8 6 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 24 12 3 -1.
+ <_>
+ 6 24 4 3 3.
+ <_>
+
+ <_>
+ 3 5 6 4 -1.
+ <_>
+ 3 7 6 2 2.
+ <_>
+
+ <_>
+ 4 5 6 4 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+
+ <_>
+ 4 14 6 6 -1.
+ <_>
+ 6 14 2 6 3.
+ <_>
+
+ <_>
+ 6 11 3 13 -1.
+ <_>
+ 7 11 1 13 3.
+ <_>
+
+ <_>
+ 0 24 12 3 -1.
+ <_>
+ 4 24 4 3 3.
+ <_>
+
+ <_>
+ 9 16 2 12 -1.
+ <_>
+ 9 16 1 12 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 0 21 4 6 -1.
+ <_>
+ 2 21 2 6 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 2 3 10 16 -1.
+ <_>
+ 2 3 5 8 2.
+ <_>
+ 7 11 5 8 2.
+ <_>
+
+ <_>
+ 4 12 6 16 -1.
+ <_>
+ 4 20 6 8 2.
+ <_>
+
+ <_>
+ 1 15 12 11 -1.
+ <_>
+ 4 15 6 11 2.
+ <_>
+
+ <_>
+ 3 4 6 10 -1.
+ <_>
+ 3 4 3 5 2.
+ <_>
+ 6 9 3 5 2.
+ <_>
+
+ <_>
+ 2 24 12 4 -1.
+ <_>
+ 8 24 6 2 2.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 0 24 12 4 -1.
+ <_>
+ 0 24 6 2 2.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 2 12 18 -1.
+ <_>
+ 5 8 4 6 9.
+ <_>
+
+ <_>
+ 2 22 10 6 -1.
+ <_>
+ 2 22 5 6 2.
+ <_>
+
+ <_>
+ 1 26 12 2 -1.
+ <_>
+ 7 26 6 2 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 12 10 4 -1.
+ <_>
+ 5 12 5 4 2.
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 4 10 6 2 2.
+ <_>
+
+ <_>
+ 5 1 4 12 -1.
+ <_>
+ 5 4 4 6 2.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 10 4 3 4 2.
+ <_>
+ 7 8 3 4 2.
+ <_>
+
+ <_>
+ 0 18 14 4 -1.
+ <_>
+ 0 18 7 2 2.
+ <_>
+ 7 20 7 2 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 4 15 3 12 -1.
+ <_>
+ 5 15 1 12 3.
+ <_>
+
+ <_>
+ 8 9 2 13 -1.
+ <_>
+ 8 9 1 13 2.
+ <_>
+
+ <_>
+ 5 10 4 6 -1.
+ <_>
+ 7 10 2 6 2.
+ <_>
+
+ <_>
+ 3 11 8 5 -1.
+ <_>
+ 3 11 4 5 2.
+ <_>
+
+ <_>
+ 5 16 2 12 -1.
+ <_>
+ 6 16 1 12 2.
+ <_>
+
+ <_>
+ 0 7 10 17 -1.
+ <_>
+ 5 7 5 17 2.
+ <_>
+
+ <_>
+ 3 7 8 4 -1.
+ <_>
+ 3 9 8 2 2.
+ <_>
+
+ <_>
+ 5 0 4 24 -1.
+ <_>
+ 5 8 4 8 3.
+ <_>
+
+ <_>
+ 3 16 9 4 -1.
+ <_>
+ 6 16 3 4 3.
+ <_>
+
+ <_>
+ 7 14 6 4 -1.
+ <_>
+ 7 14 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 23 9 4 -1.
+ <_>
+ 8 23 3 4 3.
+ <_>
+
+ <_>
+ 0 22 9 4 -1.
+ <_>
+ 3 22 3 4 3.
+ <_>
+
+ <_>
+ 9 22 4 6 -1.
+ <_>
+ 9 22 2 6 2.
+ <_>
+
+ <_>
+ 1 24 6 4 -1.
+ <_>
+ 4 24 3 4 2.
+ <_>
+
+ <_>
+ 4 19 8 9 -1.
+ <_>
+ 6 19 4 9 2.
+ <_>
+
+ <_>
+ 2 19 8 9 -1.
+ <_>
+ 4 19 4 9 2.
+ <_>
+
+ <_>
+ 2 22 12 4 -1.
+ <_>
+ 5 22 6 4 2.
+ <_>
+
+ <_>
+ 0 19 14 7 -1.
+ <_>
+ 7 19 7 7 2.
+ <_>
+
+ <_>
+ 5 20 6 8 -1.
+ <_>
+ 8 20 3 4 2.
+ <_>
+ 5 24 3 4 2.
+ <_>
+
+ <_>
+ 3 20 6 8 -1.
+ <_>
+ 3 20 3 4 2.
+ <_>
+ 6 24 3 4 2.
+ <_>
+
+ <_>
+ 6 1 4 14 -1.
+ <_>
+ 8 1 2 7 2.
+ <_>
+ 6 8 2 7 2.
+ <_>
+
+ <_>
+ 2 2 4 12 -1.
+ <_>
+ 2 2 2 6 2.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 7 4 6 4 -1.
+ <_>
+ 7 4 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 4 6 -1.
+ <_>
+ 7 4 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 6 5 -1.
+ <_>
+ 7 3 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 5 6 -1.
+ <_>
+ 7 3 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 6 4 -1.
+ <_>
+ 7 3 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 2 8 18 -1.
+ <_>
+ 3 8 8 6 3.
+ <_>
+
+ <_>
+ 4 15 9 12 -1.
+ <_>
+ 7 19 3 4 9.
+ <_>
+
+ <_>
+ 1 21 12 6 -1.
+ <_>
+ 7 21 6 6 2.
+ <_>
+
+ <_>
+ 9 18 4 8 -1.
+ <_>
+ 9 18 2 8 2.
+ <_>
+
+ <_>
+ 2 16 9 4 -1.
+ <_>
+ 5 16 3 4 3.
+ <_>
+
+ <_>
+ 4 17 10 6 -1.
+ <_>
+ 4 17 5 6 2.
+ <_>
+
+ <_>
+ 1 18 4 8 -1.
+ <_>
+ 3 18 2 8 2.
+ <_>
+
+ <_>
+ 9 3 5 6 -1.
+ <_>
+ 9 3 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 17 8 6 -1.
+ <_>
+ 5 17 4 6 2.
+ <_>
+
+ <_>
+ 2 19 12 9 -1.
+ <_>
+ 6 22 4 3 9.
+ <_>
+
+ <_>
+ 2 0 4 14 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+ 4 7 2 7 2.
+ <_>
+
+ <_>
+ 4 9 10 14 -1.
+ <_>
+ 9 9 5 7 2.
+ <_>
+ 4 16 5 7 2.
+ <_>
+
+ <_>
+ 0 16 4 12 -1.
+ <_>
+ 0 16 2 6 2.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 3 24 8 4 -1.
+ <_>
+ 3 24 4 4 2.
+ <_>
+
+ <_>
+ 0 5 14 22 -1.
+ <_>
+ 0 16 14 11 2.
+ <_>
+
+ <_>
+ 6 13 6 8 -1.
+ <_>
+ 6 17 6 4 2.
+ <_>
+
+ <_>
+ 0 9 10 14 -1.
+ <_>
+ 0 9 5 7 2.
+ <_>
+ 5 16 5 7 2.
+ <_>
+
+ <_>
+ 3 3 9 9 -1.
+ <_>
+ 3 6 9 3 3.
+ <_>
+
+ <_>
+ 5 1 4 6 -1.
+ <_>
+ 5 4 4 3 2.
+ <_>
+
+ <_>
+ 1 0 12 9 -1.
+ <_>
+ 5 3 4 3 9.
+ <_>
+
+ <_>
+ 4 7 6 12 -1.
+ <_>
+ 4 7 3 6 2.
+ <_>
+ 7 13 3 6 2.
+ <_>
+
+ <_>
+ 6 7 6 18 -1.
+ <_>
+ 8 13 2 6 9.
+ <_>
+
+ <_>
+ 2 7 6 18 -1.
+ <_>
+ 4 13 2 6 9.
+ <_>
+
+ <_>
+ 2 22 12 4 -1.
+ <_>
+ 6 22 4 4 3.
+ <_>
+
+ <_>
+ 3 16 8 8 -1.
+ <_>
+ 3 16 4 4 2.
+ <_>
+ 7 20 4 4 2.
+ <_>
+
+ <_>
+ 7 7 6 10 -1.
+ <_>
+ 7 7 3 10 2.
+ <_>
+
+ <_>
+ 1 8 12 10 -1.
+ <_>
+ 4 8 6 10 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 4 5 10 17 -1.
+ <_>
+ 4 5 5 17 2.
+ <_>
+
+ <_>
+ 0 4 14 24 -1.
+ <_>
+ 7 4 7 24 2.
+ <_>
+
+ <_>
+ 4 9 6 7 -1.
+ <_>
+ 6 9 2 7 3.
+ <_>
+
+ <_>
+ 2 20 10 8 -1.
+ <_>
+ 2 20 5 4 2.
+ <_>
+ 7 24 5 4 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 6 7 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 4 6 -1.
+ <_>
+ 6 4 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 4 6 -1.
+ <_>
+ 6 3 2 6 2.
+ <_>
+
+ <_>
+ 5 4 4 6 -1.
+ <_>
+ 7 4 2 6 2.
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 5 8 2 6 2.
+ <_>
+
+ <_>
+ 7 3 6 6 -1.
+ <_>
+ 7 3 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 5 6 6 -1.
+ <_>
+ 4 8 6 3 2.
+ <_>
+
+ <_>
+ 3 12 6 14 -1.
+ <_>
+ 3 19 6 7 2.
+ <_>
+
+ <_>
+ 11 16 2 12 -1.
+ <_>
+ 11 16 1 12 2.
+ <_>
+
+ <_>
+ 1 22 6 6 -1.
+ <_>
+ 3 22 2 6 3.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 3 9 8 4 -1.
+ <_>
+ 3 11 8 2 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 2 20 12 8 -1.
+ <_>
+ 5 20 6 8 2.
+ <_>
+
+ <_>
+ 0 20 12 8 -1.
+ <_>
+ 3 20 6 8 2.
+ <_>
+
+ <_>
+ 5 4 9 12 -1.
+ <_>
+ 5 10 9 6 2.
+ <_>
+
+ <_>
+ 4 12 10 4 -1.
+ <_>
+ 4 12 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 10 4 -1.
+ <_>
+ 4 2 5 4 2.
+ <_>
+
+ <_>
+ 1 15 12 13 -1.
+ <_>
+ 4 15 6 13 2.
+ <_>
+
+ <_>
+ 11 16 2 12 -1.
+ <_>
+ 11 16 1 12 2.
+ <_>
+
+ <_>
+ 2 3 3 12 -1.
+ <_>
+ 3 3 1 12 3.
+ <_>
+
+ <_>
+ 8 2 4 6 -1.
+ <_>
+ 8 2 2 6 2.
+ <_>
+
+ <_>
+ 2 2 4 6 -1.
+ <_>
+ 4 2 2 6 2.
+ <_>
+
+ <_>
+ 2 13 12 14 -1.
+ <_>
+ 5 13 6 14 2.
+ <_>
+
+ <_>
+ 1 16 2 12 -1.
+ <_>
+ 2 16 1 12 2.
+ <_>
+
+ <_>
+ 9 21 4 6 -1.
+ <_>
+ 9 21 2 6 2.
+ <_>
+
+ <_>
+ 1 21 4 6 -1.
+ <_>
+ 3 21 2 6 2.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 10 0 1 15 3.
+ <_>
+
+ <_>
+ 2 22 4 6 -1.
+ <_>
+ 4 22 2 6 2.
+ <_>
+
+ <_>
+ 2 13 12 14 -1.
+ <_>
+ 5 13 6 14 2.
+ <_>
+
+ <_>
+ 6 3 4 6 -1.
+ <_>
+ 6 3 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 12 24 -1.
+ <_>
+ 5 8 4 8 9.
+ <_>
+
+ <_>
+ 4 2 6 8 -1.
+ <_>
+ 4 6 6 4 2.
+ <_>
+
+ <_>
+ 2 4 12 8 -1.
+ <_>
+ 2 6 12 4 2.
+ <_>
+
+ <_>
+ 1 8 12 18 -1.
+ <_>
+ 4 8 6 18 2.
+ <_>
+
+ <_>
+ 3 0 8 24 -1.
+ <_>
+ 3 8 8 8 3.
+ <_>
+
+ <_>
+ 1 21 6 6 -1.
+ <_>
+ 3 21 2 6 3.
+ <_>
+
+ <_>
+ 5 7 8 3 -1.
+ <_>
+ 5 7 4 3 2.
+ <_>
+
+ <_>
+ 1 7 8 3 -1.
+ <_>
+ 5 7 4 3 2.
+ <_>
+
+ <_>
+ 5 1 4 6 -1.
+ <_>
+ 5 4 4 3 2.
+ <_>
+
+ <_>
+ 4 6 4 6 -1.
+ <_>
+ 4 9 4 3 2.
+ <_>
+
+ <_>
+ 10 20 4 6 -1.
+ <_>
+ 10 20 2 6 2.
+ <_>
+
+ <_>
+ 3 1 8 21 -1.
+ <_>
+ 3 8 8 7 3.
+ <_>
+
+ <_>
+ 7 16 4 12 -1.
+ <_>
+ 9 16 2 6 2.
+ <_>
+ 7 22 2 6 2.
+ <_>
+
+ <_>
+ 1 25 12 3 -1.
+ <_>
+ 5 25 4 3 3.
+ <_>
+
+ <_>
+ 7 16 4 12 -1.
+ <_>
+ 9 16 2 6 2.
+ <_>
+ 7 22 2 6 2.
+ <_>
+
+ <_>
+ 3 16 4 12 -1.
+ <_>
+ 3 16 2 6 2.
+ <_>
+ 5 22 2 6 2.
+ <_>
+
+ <_>
+ 7 17 4 7 -1.
+ <_>
+ 7 17 2 7 2.
+ <_>
+
+ <_>
+ 3 17 4 7 -1.
+ <_>
+ 5 17 2 7 2.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 5 8 4 15 -1.
+ <_>
+ 6 8 2 15 2.
+ <_>
+
+ <_>
+ 7 22 2 4 -1.
+ <_>
+ 7 22 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 22 4 2 -1.
+ <_>
+ 7 22 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 15 12 3 -1.
+ <_>
+ 1 15 6 3 2.
+ <_>
+
+ <_>
+ 4 15 6 12 -1.
+ <_>
+ 4 15 3 6 2.
+ <_>
+ 7 21 3 6 2.
+ <_>
+
+ <_>
+ 7 16 3 12 -1.
+ <_>
+ 8 16 1 12 3.
+ <_>
+
+ <_>
+ 2 9 4 18 -1.
+ <_>
+ 2 9 2 9 2.
+ <_>
+ 4 18 2 9 2.
+ <_>
+
+ <_>
+ 8 10 4 6 -1.
+ <_>
+ 8 10 2 6 2.
+ <_>
+
+ <_>
+ 0 16 4 12 -1.
+ <_>
+ 0 16 2 6 2.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 2 22 12 4 -1.
+ <_>
+ 6 22 4 4 3.
+ <_>
+
+ <_>
+ 0 24 9 4 -1.
+ <_>
+ 3 24 3 4 3.
+ <_>
+
+ <_>
+ 9 13 4 12 -1.
+ <_>
+ 9 17 4 4 3.
+ <_>
+
+ <_>
+ 2 10 4 6 -1.
+ <_>
+ 4 10 2 6 2.
+ <_>
+
+ <_>
+ 4 8 8 6 -1.
+ <_>
+ 4 10 8 2 3.
+ <_>
+
+ <_>
+ 0 22 12 4 -1.
+ <_>
+ 4 22 4 4 3.
+ <_>
+
+ <_>
+ 4 21 9 7 -1.
+ <_>
+ 7 21 3 7 3.
+ <_>
+
+ <_>
+ 5 22 4 6 -1.
+ <_>
+ 7 22 2 6 2.
+ <_>
+
+ <_>
+ 9 2 3 12 -1.
+ <_>
+ 10 2 1 12 3.
+ <_>
+
+ <_>
+ 2 3 3 12 -1.
+ <_>
+ 3 3 1 12 3.
+ <_>
+
+ <_>
+ 8 4 4 6 -1.
+ <_>
+ 8 4 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 6 4 -1.
+ <_>
+ 6 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 8 16 -1.
+ <_>
+ 8 6 4 8 2.
+ <_>
+ 4 14 4 8 2.
+ <_>
+
+ <_>
+ 2 6 8 16 -1.
+ <_>
+ 2 6 4 8 2.
+ <_>
+ 6 14 4 8 2.
+ <_>
+
+ <_>
+ 4 8 8 8 -1.
+ <_>
+ 6 8 4 8 2.
+ <_>
+
+ <_>
+ 0 6 12 10 -1.
+ <_>
+ 4 6 4 10 3.
+ <_>
+
+ <_>
+ 8 10 6 7 -1.
+ <_>
+ 10 12 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 6 10 7 6 -1.
+ <_>
+ 4 12 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 11 4 7 -1.
+ <_>
+ 5 11 2 7 2.
+ <_>
+
+ <_>
+ 1 11 12 16 -1.
+ <_>
+ 1 11 6 8 2.
+ <_>
+ 7 19 6 8 2.
+ <_>
+
+ <_>
+ 6 9 3 13 -1.
+ <_>
+ 7 9 1 13 3.
+ <_>
+
+ <_>
+ 3 9 6 4 -1.
+ <_>
+ 3 11 6 2 2.
+ <_>
+
+ <_>
+ 9 22 4 6 -1.
+ <_>
+ 9 22 2 6 2.
+ <_>
+
+ <_>
+ 2 9 7 4 -1.
+ <_>
+ 2 11 7 2 2.
+ <_>
+
+ <_>
+ 7 15 3 12 -1.
+ <_>
+ 8 15 1 12 3.
+ <_>
+
+ <_>
+ 2 15 8 3 -1.
+ <_>
+ 6 15 4 3 2.
+ <_>
+
+ <_>
+ 1 7 12 19 -1.
+ <_>
+ 4 7 6 19 2.
+ <_>
+
+ <_>
+ 6 9 4 12 -1.
+ <_>
+ 8 9 2 6 2.
+ <_>
+ 6 15 2 6 2.
+ <_>
+
+ <_>
+ 1 12 4 6 -1.
+ <_>
+ 1 15 4 3 2.
+ <_>
+
+ <_>
+ 4 22 8 6 -1.
+ <_>
+ 8 22 4 3 2.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 2 22 8 6 -1.
+ <_>
+ 2 22 4 3 2.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 9 17 4 6 -1.
+ <_>
+ 9 17 2 6 2.
+ <_>
+
+ <_>
+ 1 17 4 6 -1.
+ <_>
+ 3 17 2 6 2.
+ <_>
+
+ <_>
+ 4 5 6 4 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+
+ <_>
+ 7 3 4 6 -1.
+ <_>
+ 7 3 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 24 6 4 -1.
+ <_>
+ 6 24 3 4 2.
+ <_>
+
+ <_>
+ 1 21 12 3 -1.
+ <_>
+ 5 21 4 3 3.
+ <_>
+
+ <_>
+ 7 17 2 7 -1.
+ <_>
+ 7 17 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 17 7 2 -1.
+ <_>
+ 7 17 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 12 3 16 -1.
+ <_>
+ 6 20 3 8 2.
+ <_>
+
+ <_>
+ 2 24 9 4 -1.
+ <_>
+ 5 24 3 4 3.
+ <_>
+
+ <_>
+ 2 25 12 2 -1.
+ <_>
+ 2 25 6 2 2.
+ <_>
+
+ <_>
+ 0 25 12 2 -1.
+ <_>
+ 6 25 6 2 2.
+ <_>
+
+ <_>
+ 4 11 6 8 -1.
+ <_>
+ 4 15 6 4 2.
+ <_>
+
+ <_>
+ 5 0 4 6 -1.
+ <_>
+ 7 0 2 6 2.
+ <_>
+
+ <_>
+ 2 2 10 7 -1.
+ <_>
+ 2 2 5 7 2.
+ <_>
+
+ <_>
+ 0 1 12 25 -1.
+ <_>
+ 3 1 6 25 2.
+ <_>
+
+ <_>
+ 1 14 12 6 -1.
+ <_>
+ 4 14 6 6 2.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 6 15 3 12 -1.
+ <_>
+ 7 15 1 12 3.
+ <_>
+
+ <_>
+ 6 7 2 12 -1.
+ <_>
+ 7 7 1 12 2.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 9 2 6 2.
+ <_>
+
+ <_>
+ 3 20 6 6 -1.
+ <_>
+ 6 20 3 6 2.
+ <_>
+
+ <_>
+ 3 10 8 4 -1.
+ <_>
+ 3 10 4 4 2.
+ <_>
+
+ <_>
+ 0 5 9 18 -1.
+ <_>
+ 3 11 3 6 9.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 2 8 4 6 -1.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 8 8 4 12 -1.
+ <_>
+ 10 8 2 6 2.
+ <_>
+ 8 14 2 6 2.
+ <_>
+
+ <_>
+ 4 10 6 8 -1.
+ <_>
+ 4 10 3 4 2.
+ <_>
+ 7 14 3 4 2.
+ <_>
+
+ <_>
+ 7 15 4 6 -1.
+ <_>
+ 7 15 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 15 6 4 -1.
+ <_>
+ 7 15 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 9 13 15 -1.
+ <_>
+ 1 14 13 5 3.
+ <_>
+
+ <_>
+ 5 1 3 25 -1.
+ <_>
+ 6 1 1 25 3.
+ <_>
+
+ <_>
+ 6 15 3 12 -1.
+ <_>
+ 7 15 1 12 3.
+ <_>
+
+ <_>
+ 0 7 4 16 -1.
+ <_>
+ 0 7 2 8 2.
+ <_>
+ 2 15 2 8 2.
+ <_>
+
+ <_>
+ 4 2 6 4 -1.
+ <_>
+ 4 4 6 2 2.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 5 10 5 2.
+ <_>
+
+ <_>
+ 8 5 6 8 -1.
+ <_>
+ 11 5 3 4 2.
+ <_>
+ 8 9 3 4 2.
+ <_>
+
+ <_>
+ 1 14 12 14 -1.
+ <_>
+ 1 14 6 7 2.
+ <_>
+ 7 21 6 7 2.
+ <_>
+
+ <_>
+ 7 1 6 18 -1.
+ <_>
+ 9 7 2 6 9.
+ <_>
+
+ <_>
+ 0 18 14 8 -1.
+ <_>
+ 0 18 7 4 2.
+ <_>
+ 7 22 7 4 2.
+ <_>
+
+ <_>
+ 2 3 8 23 -1.
+ <_>
+ 6 3 4 23 2.
+ <_>
+
+ <_>
+ 10 18 4 9 -1.
+ <_>
+ 10 18 2 9 2.
+ <_>
+
+ <_>
+ 0 25 8 3 -1.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 1 22 4 6 -1.
+ <_>
+ 3 22 2 6 2.
+ <_>
+
+ <_>
+ 6 16 2 12 -1.
+ <_>
+ 6 16 1 12 2.
+ <_>
+
+ <_>
+ 2 14 6 14 -1.
+ <_>
+ 2 14 3 7 2.
+ <_>
+ 5 21 3 7 2.
+ <_>
+
+ <_>
+ 4 8 6 6 -1.
+ <_>
+ 6 8 2 6 3.
+ <_>
+
+ <_>
+ 0 18 8 6 -1.
+ <_>
+ 0 18 4 3 2.
+ <_>
+ 4 21 4 3 2.
+ <_>
+
+ <_>
+ 7 13 6 11 -1.
+ <_>
+ 9 13 2 11 3.
+ <_>
+
+ <_>
+ 1 16 12 7 -1.
+ <_>
+ 4 16 6 7 2.
+ <_>
+
+ <_>
+ 7 15 4 9 -1.
+ <_>
+ 7 15 2 9 2.
+ <_>
+
+ <_>
+ 3 15 4 9 -1.
+ <_>
+ 5 15 2 9 2.
+ <_>
+
+ <_>
+ 10 18 4 8 -1.
+ <_>
+ 10 18 2 8 2.
+ <_>
+
+ <_>
+ 2 7 9 6 -1.
+ <_>
+ 2 9 9 2 3.
+ <_>
+
+ <_>
+ 1 9 12 6 -1.
+ <_>
+ 1 12 12 3 2.
+ <_>
+
+ <_>
+ 3 5 5 12 -1.
+ <_>
+ 3 11 5 6 2.
+ <_>
+
+ <_>
+ 3 6 8 4 -1.
+ <_>
+ 3 8 8 2 2.
+ <_>
+
+ <_>
+ 4 6 6 6 -1.
+ <_>
+ 4 8 6 2 3.
+ <_>
+
+ <_>
+ 1 26 12 2 -1.
+ <_>
+ 1 26 6 2 2.
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 7 7 2 6 2.
+ <_>
+
+ <_>
+ 7 5 6 5 -1.
+ <_>
+ 7 5 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 3 13 -1.
+ <_>
+ 6 9 1 13 3.
+ <_>
+
+ <_>
+ 5 18 6 10 -1.
+ <_>
+ 8 18 3 5 2.
+ <_>
+ 5 23 3 5 2.
+ <_>
+
+ <_>
+ 3 18 6 10 -1.
+ <_>
+ 3 18 3 5 2.
+ <_>
+ 6 23 3 5 2.
+ <_>
+
+ <_>
+ 7 15 7 6 -1.
+ <_>
+ 7 15 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 23 9 5 -1.
+ <_>
+ 3 23 3 5 3.
+ <_>
+
+ <_>
+ 7 15 7 6 -1.
+ <_>
+ 7 15 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 15 6 7 -1.
+ <_>
+ 7 15 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 6 12 -1.
+ <_>
+ 10 2 3 6 2.
+ <_>
+ 7 8 3 6 2.
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 7 5 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 6 10 -1.
+ <_>
+ 10 3 3 5 2.
+ <_>
+ 7 8 3 5 2.
+ <_>
+
+ <_>
+ 1 3 6 10 -1.
+ <_>
+ 1 3 3 5 2.
+ <_>
+ 4 8 3 5 2.
+ <_>
+
+ <_>
+ 1 7 12 4 -1.
+ <_>
+ 1 7 6 4 2.
+ <_>
+
+ <_>
+ 5 1 6 4 -1.
+ <_>
+ 5 1 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 14 10 -1.
+ <_>
+ 0 5 14 5 2.
+ <_>
+
+ <_>
+ 0 8 10 18 -1.
+ <_>
+ 0 8 5 9 2.
+ <_>
+ 5 17 5 9 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 2 21 8 7 -1.
+ <_>
+ 4 21 4 7 2.
+ <_>
+
+ <_>
+ 3 21 8 6 -1.
+ <_>
+ 5 21 4 6 2.
+ <_>
+
+ <_>
+ 4 10 6 8 -1.
+ <_>
+ 6 10 2 8 3.
+ <_>
+
+ <_>
+ 8 2 3 12 -1.
+ <_>
+ 9 2 1 12 3.
+ <_>
+
+ <_>
+ 3 2 3 12 -1.
+ <_>
+ 4 2 1 12 3.
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 1 25 12 3 -1.
+ <_>
+ 7 25 6 3 2.
+ <_>
+
+ <_>
+ 7 20 3 5 -1.
+ <_>
+ 8 21 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 3 15 8 11 -1.
+ <_>
+ 5 15 4 11 2.
+ <_>
+
+ <_>
+ 1 1 12 21 -1.
+ <_>
+ 5 8 4 7 9.
+ <_>
+
+ <_>
+ 0 22 4 6 -1.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 5 23 9 4 -1.
+ <_>
+ 8 23 3 4 3.
+ <_>
+
+ <_>
+ 0 23 9 4 -1.
+ <_>
+ 3 23 3 4 3.
+ <_>
+
+ <_>
+ 6 3 4 12 -1.
+ <_>
+ 8 3 2 6 2.
+ <_>
+ 6 9 2 6 2.
+ <_>
+
+ <_>
+ 6 4 2 24 -1.
+ <_>
+ 6 4 1 12 2.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 9 2 6 2.
+ <_>
+
+ <_>
+ 2 7 4 6 -1.
+ <_>
+ 4 7 2 6 2.
+ <_>
+
+ <_>
+ 4 8 6 20 -1.
+ <_>
+ 4 18 6 10 2.
+ <_>
+
+ <_>
+ 1 16 3 12 -1.
+ <_>
+ 2 16 1 12 3.
+ <_>
+
+ <_>
+ 8 12 6 16 -1.
+ <_>
+ 8 16 6 8 2.
+ <_>
+
+ <_>
+ 1 17 4 6 -1.
+ <_>
+ 3 17 2 6 2.
+ <_>
+
+ <_>
+ 7 14 6 9 -1.
+ <_>
+ 9 14 2 9 3.
+ <_>
+
+ <_>
+ 1 14 6 9 -1.
+ <_>
+ 3 14 2 9 3.
+ <_>
+
+ <_>
+ 8 0 4 18 -1.
+ <_>
+ 10 0 2 9 2.
+ <_>
+ 8 9 2 9 2.
+ <_>
+
+ <_>
+ 2 0 4 18 -1.
+ <_>
+ 2 0 2 9 2.
+ <_>
+ 4 9 2 9 2.
+ <_>
+
+ <_>
+ 11 14 2 12 -1.
+ <_>
+ 11 14 1 12 2.
+ <_>
+
+ <_>
+ 1 14 2 12 -1.
+ <_>
+ 2 14 1 12 2.
+ <_>
+
+ <_>
+ 8 11 3 12 -1.
+ <_>
+ 9 11 1 12 3.
+ <_>
+
+ <_>
+ 1 7 12 6 -1.
+ <_>
+ 4 7 6 6 2.
+ <_>
+
+ <_>
+ 1 1 12 9 -1.
+ <_>
+ 4 1 6 9 2.
+ <_>
+
+ <_>
+ 1 3 12 20 -1.
+ <_>
+ 1 3 6 10 2.
+ <_>
+ 7 13 6 10 2.
+ <_>
+
+ <_>
+ 4 8 6 10 -1.
+ <_>
+ 7 8 3 5 2.
+ <_>
+ 4 13 3 5 2.
+ <_>
+
+ <_>
+ 6 5 8 3 -1.
+ <_>
+ 6 5 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 15 8 7 -1.
+ <_>
+ 5 15 4 7 2.
+ <_>
+
+ <_>
+ 0 14 12 12 -1.
+ <_>
+ 4 18 4 4 9.
+ <_>
+
+ <_>
+ 5 12 4 16 -1.
+ <_>
+ 5 16 4 8 2.
+ <_>
+
+ <_>
+ 0 21 12 6 -1.
+ <_>
+ 4 21 4 6 3.
+ <_>
+
+ <_>
+ 4 17 8 7 -1.
+ <_>
+ 4 17 4 7 2.
+ <_>
+
+ <_>
+ 2 17 8 7 -1.
+ <_>
+ 6 17 4 7 2.
+ <_>
+
+ <_>
+ 7 4 6 5 -1.
+ <_>
+ 7 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 5 6 -1.
+ <_>
+ 7 4 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 6 7 -1.
+ <_>
+ 8 3 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 7 6 -1.
+ <_>
+ 6 3 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 2 22 -1.
+ <_>
+ 7 4 1 22 2.
+ <_>
+
+ <_>
+ 5 4 2 22 -1.
+ <_>
+ 6 4 1 22 2.
+ <_>
+
+ <_>
+ 7 8 2 12 -1.
+ <_>
+ 7 8 1 12 2.
+ <_>
+
+ <_>
+ 5 8 2 12 -1.
+ <_>
+ 6 8 1 12 2.
+ <_>
+
+ <_>
+ 3 8 10 5 -1.
+ <_>
+ 3 8 5 5 2.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 8 8 4 16 -1.
+ <_>
+ 10 8 2 8 2.
+ <_>
+ 8 16 2 8 2.
+ <_>
+
+ <_>
+ 2 8 4 16 -1.
+ <_>
+ 2 8 2 8 2.
+ <_>
+ 4 16 2 8 2.
+ <_>
+
+ <_>
+ 1 21 12 4 -1.
+ <_>
+ 7 21 6 2 2.
+ <_>
+ 1 23 6 2 2.
+ <_>
+
+ <_>
+ 4 2 2 12 -1.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 4 10 6 4 -1.
+ <_>
+ 4 12 6 2 2.
+ <_>
+
+ <_>
+ 2 8 10 12 -1.
+ <_>
+ 2 12 10 4 3.
+ <_>
+
+ <_>
+ 4 17 6 8 -1.
+ <_>
+ 7 17 3 4 2.
+ <_>
+ 4 21 3 4 2.
+ <_>
+
+ <_>
+ 7 15 4 3 -1.
+ <_>
+ 6 16 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 20 3 5 -1.
+ <_>
+ 10 21 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 0 18 14 6 -1.
+ <_>
+ 7 18 7 6 2.
+ <_>
+
+ <_>
+ 9 0 3 24 -1.
+ <_>
+ 9 6 3 12 2.
+ <_>
+
+ <_>
+ 2 0 3 24 -1.
+ <_>
+ 2 6 3 12 2.
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 2 2 6 2.
+ <_>
+
+ <_>
+ 1 25 12 3 -1.
+ <_>
+ 5 25 4 3 3.
+ <_>
+
+ <_>
+ 1 4 12 14 -1.
+ <_>
+ 4 4 6 14 2.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 7 18 4 6 -1.
+ <_>
+ 7 18 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 7 4 6 4 -1.
+ <_>
+ 7 4 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 7 4 -1.
+ <_>
+ 7 1 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 6 4 -1.
+ <_>
+ 7 2 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 10 8 6 -1.
+ <_>
+ 5 10 4 6 2.
+ <_>
+
+ <_>
+ 5 20 8 8 -1.
+ <_>
+ 7 20 4 8 2.
+ <_>
+
+ <_>
+ 6 15 8 5 -1.
+ <_>
+ 6 15 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 7 10 6 -1.
+ <_>
+ 7 7 5 3 2.
+ <_>
+ 2 10 5 3 2.
+ <_>
+
+ <_>
+ 7 20 4 4 -1.
+ <_>
+ 6 21 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 24 12 4 -1.
+ <_>
+ 4 24 6 4 2.
+ <_>
+
+ <_>
+ 4 4 6 6 -1.
+ <_>
+ 6 4 2 6 3.
+ <_>
+
+ <_>
+ 1 4 12 24 -1.
+ <_>
+ 7 4 6 12 2.
+ <_>
+ 1 16 6 12 2.
+ <_>
+
+ <_>
+ 4 4 3 15 -1.
+ <_>
+ 4 9 3 5 3.
+ <_>
+
+ <_>
+ 11 3 3 8 -1.
+ <_>
+ 11 3 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 2 13 -1.
+ <_>
+ 5 9 1 13 2.
+ <_>
+
+ <_>
+ 6 9 4 6 -1.
+ <_>
+ 6 9 2 6 2.
+ <_>
+
+ <_>
+ 2 17 8 3 -1.
+ <_>
+ 6 17 4 3 2.
+ <_>
+
+ <_>
+ 4 11 6 8 -1.
+ <_>
+ 7 11 3 4 2.
+ <_>
+ 4 15 3 4 2.
+ <_>
+
+ <_>
+ 0 0 14 27 -1.
+ <_>
+ 0 9 14 9 3.
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 5 11 4 3 2.
+ <_>
+
+ <_>
+ 5 2 4 12 -1.
+ <_>
+ 5 5 4 6 2.
+ <_>
+
+ <_>
+ 6 3 4 9 -1.
+ <_>
+ 6 6 4 3 3.
+ <_>
+
+ <_>
+ 4 3 4 9 -1.
+ <_>
+ 4 6 4 3 3.
+ <_>
+
+ <_>
+ 9 5 4 6 -1.
+ <_>
+ 9 5 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 5 5 6 4 -1.
+ <_>
+ 5 5 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 1 12 21 -1.
+ <_>
+ 4 1 6 21 2.
+ <_>
+
+ <_>
+ 1 25 12 3 -1.
+ <_>
+ 5 25 4 3 3.
+ <_>
+
+ <_>
+ 9 18 4 10 -1.
+ <_>
+ 9 18 2 10 2.
+ <_>
+
+ <_>
+ 4 16 9 3 -1.
+ <_>
+ 3 17 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 18 4 10 -1.
+ <_>
+ 9 18 2 10 2.
+ <_>
+
+ <_>
+ 1 18 4 10 -1.
+ <_>
+ 3 18 2 10 2.
+ <_>
+
+ <_>
+ 4 10 9 4 -1.
+ <_>
+ 4 12 9 2 2.
+ <_>
+
+ <_>
+ 1 0 12 5 -1.
+ <_>
+ 5 0 4 5 3.
+ <_>
+
+ <_>
+ 7 9 2 18 -1.
+ <_>
+ 7 15 2 6 3.
+ <_>
+
+ <_>
+ 0 22 6 6 -1.
+ <_>
+ 2 22 2 6 3.
+ <_>
+
+ <_>
+ 5 21 6 5 -1.
+ <_>
+ 5 21 3 5 2.
+ <_>
+
+ <_>
+ 3 21 6 5 -1.
+ <_>
+ 6 21 3 5 2.
+ <_>
+
+ <_>
+ 9 21 2 5 -1.
+ <_>
+ 9 21 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 17 6 8 -1.
+ <_>
+ 0 17 3 4 2.
+ <_>
+ 3 21 3 4 2.
+ <_>
+
+ <_>
+ 4 0 6 6 -1.
+ <_>
+ 6 0 2 6 3.
+ <_>
+
+ <_>
+ 2 1 6 14 -1.
+ <_>
+ 2 1 3 7 2.
+ <_>
+ 5 8 3 7 2.
+ <_>
+
+ <_>
+ 6 8 5 6 -1.
+ <_>
+ 6 11 5 3 2.
+ <_>
+
+ <_>
+ 4 8 4 6 -1.
+ <_>
+ 6 8 2 6 2.
+ <_>
+
+ <_>
+ 4 6 6 6 -1.
+ <_>
+ 4 8 6 2 3.
+ <_>
+
+ <_>
+ 3 5 6 4 -1.
+ <_>
+ 3 7 6 2 2.
+ <_>
+
+ <_>
+ 7 6 4 6 -1.
+ <_>
+ 7 6 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 5 6 4 -1.
+ <_>
+ 4 7 6 2 2.
+ <_>
+
+ <_>
+ 7 1 4 21 -1.
+ <_>
+ 8 1 2 21 2.
+ <_>
+
+ <_>
+ 2 2 6 20 -1.
+ <_>
+ 4 2 2 20 3.
+ <_>
+
+ <_>
+ 9 20 3 5 -1.
+ <_>
+ 10 21 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 0 24 6 4 -1.
+ <_>
+ 3 24 3 4 2.
+ <_>
+
+ <_>
+ 4 2 6 6 -1.
+ <_>
+ 6 2 2 6 3.
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 2 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 4 13 2 -1.
+ <_>
+ 1 5 13 1 2.
+ <_>
+
+ <_>
+ 7 11 6 7 -1.
+ <_>
+ 7 11 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 16 6 4 -1.
+ <_>
+ 8 16 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 3 12 24 -1.
+ <_>
+ 5 11 4 8 9.
+ <_>
+
+ <_>
+ 2 24 12 4 -1.
+ <_>
+ 8 24 6 2 2.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 0 24 12 4 -1.
+ <_>
+ 0 24 6 2 2.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 6 4 2 24 -1.
+ <_>
+ 7 4 1 12 2.
+ <_>
+ 6 16 1 12 2.
+ <_>
+
+ <_>
+ 4 8 6 6 -1.
+ <_>
+ 6 8 2 6 3.
+ <_>
+
+ <_>
+ 6 6 4 9 -1.
+ <_>
+ 6 6 2 9 2.
+ <_>
+
+ <_>
+ 2 8 8 7 -1.
+ <_>
+ 6 8 4 7 2.
+ <_>
+
+ <_>
+ 3 7 10 7 -1.
+ <_>
+ 3 7 5 7 2.
+ <_>
+
+ <_>
+ 1 7 10 7 -1.
+ <_>
+ 6 7 5 7 2.
+ <_>
+
+ <_>
+ 4 1 9 12 -1.
+ <_>
+ 7 5 3 4 9.
+ <_>
+
+ <_>
+ 1 1 9 12 -1.
+ <_>
+ 4 5 3 4 9.
+ <_>
+
+ <_>
+ 4 25 8 3 -1.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 0 16 12 7 -1.
+ <_>
+ 3 16 6 7 2.
+ <_>
+
+ <_>
+ 9 17 4 7 -1.
+ <_>
+ 9 17 2 7 2.
+ <_>
+
+ <_>
+ 1 17 4 7 -1.
+ <_>
+ 3 17 2 7 2.
+ <_>
+
+ <_>
+ 7 0 4 7 -1.
+ <_>
+ 7 0 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 7 4 -1.
+ <_>
+ 7 0 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 3 5 6 -1.
+ <_>
+ 9 3 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 10 6 12 -1.
+ <_>
+ 0 10 3 6 2.
+ <_>
+ 3 16 3 6 2.
+ <_>
+
+ <_>
+ 9 3 4 12 -1.
+ <_>
+ 10 3 2 12 2.
+ <_>
+
+ <_>
+ 1 3 4 12 -1.
+ <_>
+ 2 3 2 12 2.
+ <_>
+
+ <_>
+ 2 7 10 10 -1.
+ <_>
+ 7 7 5 5 2.
+ <_>
+ 2 12 5 5 2.
+ <_>
+
+ <_>
+ 3 16 4 9 -1.
+ <_>
+ 5 16 2 9 2.
+ <_>
+
+ <_>
+ 0 11 14 11 -1.
+ <_>
+ 0 11 7 11 2.
+ <_>
+
+ <_>
+ 6 16 5 6 -1.
+ <_>
+ 4 18 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 20 2 6 -1.
+ <_>
+ 11 20 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 18 4 6 -1.
+ <_>
+ 3 18 2 6 2.
+ <_>
+
+ <_>
+ 10 14 3 6 -1.
+ <_>
+ 11 15 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 4 14 6 3 -1.
+ <_>
+ 3 15 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 20 3 5 -1.
+ <_>
+ 8 21 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 2 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 9 15 3 12 -1.
+ <_>
+ 10 15 1 12 3.
+ <_>
+
+ <_>
+ 5 15 6 2 -1.
+ <_>
+ 5 15 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 18 2 7 -1.
+ <_>
+ 7 18 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 20 5 3 -1.
+ <_>
+ 6 21 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 16 2 10 -1.
+ <_>
+ 10 16 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 4 16 10 2 -1.
+ <_>
+ 4 16 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 17 12 6 -1.
+ <_>
+ 4 17 6 6 2.
+ <_>
+
+ <_>
+ 4 15 6 8 -1.
+ <_>
+ 4 15 3 4 2.
+ <_>
+ 7 19 3 4 2.
+ <_>
+
+ <_>
+ 7 17 6 4 -1.
+ <_>
+ 9 19 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 7 17 4 6 -1.
+ <_>
+ 5 19 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 1 13 12 4 -1.
+ <_>
+ 1 13 6 4 2.
+ <_>
+
+ <_>
+ 0 2 8 12 -1.
+ <_>
+ 0 2 4 6 2.
+ <_>
+ 4 8 4 6 2.
+ <_>
+
+ <_>
+ 6 2 2 16 -1.
+ <_>
+ 6 10 2 8 2.
+ <_>
+
+ <_>
+ 2 8 8 4 -1.
+ <_>
+ 2 10 8 2 2.
+ <_>
+
+ <_>
+ 5 10 4 18 -1.
+ <_>
+ 5 19 4 9 2.
+ <_>
+
+ <_>
+ 0 3 3 12 -1.
+ <_>
+ 0 7 3 4 3.
+ <_>
+
+ <_>
+ 1 22 12 4 -1.
+ <_>
+ 7 22 6 2 2.
+ <_>
+ 1 24 6 2 2.
+ <_>
+
+ <_>
+ 2 19 7 2 -1.
+ <_>
+ 2 19 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 0 11 6 14 -1.
+ <_>
+ 0 11 3 7 2.
+ <_>
+ 3 18 3 7 2.
+ <_>
+
+ <_>
+ 7 3 3 10 -1.
+ <_>
+ 7 8 3 5 2.
+ <_>
+
+ <_>
+ 0 17 6 6 -1.
+ <_>
+ 2 17 2 6 3.
+ <_>
+
+ <_>
+ 9 16 2 12 -1.
+ <_>
+ 9 16 1 12 2.
+ <_>
+
+ <_>
+ 6 16 6 3 -1.
+ <_>
+ 5 17 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 0 6 8 -1.
+ <_>
+ 10 2 2 8 3.
+ 1
+ <_>
+
+ <_>
+ 6 4 8 6 -1.
+ <_>
+ 8 6 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 7 6 21 -1.
+ <_>
+ 4 14 6 7 3.
+ <_>
+
+ <_>
+ 3 0 8 18 -1.
+ <_>
+ 3 0 4 9 2.
+ <_>
+ 7 9 4 9 2.
+ <_>
+
+ <_>
+ 3 6 9 10 -1.
+ <_>
+ 6 6 3 10 3.
+ <_>
+
+ <_>
+ 7 21 4 3 -1.
+ <_>
+ 6 22 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 23 12 5 -1.
+ <_>
+ 6 23 4 5 3.
+ <_>
+
+ <_>
+ 4 16 3 12 -1.
+ <_>
+ 5 16 1 12 3.
+ <_>
+
+ <_>
+ 7 17 2 7 -1.
+ <_>
+ 7 17 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 14 10 -1.
+ <_>
+ 0 5 7 5 2.
+ <_>
+ 7 10 7 5 2.
+ <_>
+
+ <_>
+ 3 10 8 4 -1.
+ <_>
+ 3 10 4 4 2.
+ <_>
+
+ <_>
+ 0 12 10 4 -1.
+ <_>
+ 5 12 5 4 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 7 0 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 3 10 7 -1.
+ <_>
+ 7 3 5 7 2.
+ <_>
+
+ <_>
+ 3 7 4 21 -1.
+ <_>
+ 5 7 2 21 2.
+ <_>
+
+ <_>
+ 6 2 2 24 -1.
+ <_>
+ 7 2 1 12 2.
+ <_>
+ 6 14 1 12 2.
+ <_>
+
+ <_>
+ 3 4 8 16 -1.
+ <_>
+ 3 8 8 8 2.
+ <_>
+
+ <_>
+ 9 16 2 12 -1.
+ <_>
+ 9 16 1 12 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 5 2 6 6 -1.
+ <_>
+ 5 4 6 2 3.
+ <_>
+
+ <_>
+ 1 19 4 9 -1.
+ <_>
+ 3 19 2 9 2.
+ <_>
+
+ <_>
+ 9 10 4 16 -1.
+ <_>
+ 10 10 2 16 2.
+ <_>
+
+ <_>
+ 5 18 5 2 -1.
+ <_>
+ 5 18 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 3 4 6 4 -1.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 5 5 6 8 -1.
+ <_>
+ 8 5 3 4 2.
+ <_>
+ 5 9 3 4 2.
+ <_>
+
+ <_>
+ 3 5 6 8 -1.
+ <_>
+ 3 5 3 4 2.
+ <_>
+ 6 9 3 4 2.
+ <_>
+
+ <_>
+ 6 3 8 12 -1.
+ <_>
+ 10 3 4 6 2.
+ <_>
+ 6 9 4 6 2.
+ <_>
+
+ <_>
+ 1 10 2 12 -1.
+ <_>
+ 2 10 1 12 2.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 2 1 4 7 -1.
+ <_>
+ 4 1 2 7 2.
+ <_>
+
+ <_>
+ 9 21 2 5 -1.
+ <_>
+ 9 21 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 0 15 8 6 -1.
+ <_>
+ 0 15 4 3 2.
+ <_>
+ 4 18 4 3 2.
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 1 1 13 3 -1.
+ <_>
+ 1 2 13 1 3.
+ <_>
+
+ <_>
+ 0 3 14 2 -1.
+ <_>
+ 7 3 7 2 2.
+ <_>
+
+ <_>
+ 2 16 12 4 -1.
+ <_>
+ 8 16 6 2 2.
+ <_>
+ 2 18 6 2 2.
+ <_>
+
+ <_>
+ 0 20 12 6 -1.
+ <_>
+ 3 20 6 6 2.
+ <_>
+
+ <_>
+ 4 15 8 7 -1.
+ <_>
+ 6 15 4 7 2.
+ <_>
+
+ <_>
+ 4 10 6 12 -1.
+ <_>
+ 4 10 3 6 2.
+ <_>
+ 7 16 3 6 2.
+ <_>
+
+ <_>
+ 7 0 4 6 -1.
+ <_>
+ 7 0 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 6 4 -1.
+ <_>
+ 7 0 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 18 8 6 -1.
+ <_>
+ 10 18 4 3 2.
+ <_>
+ 6 21 4 3 2.
+ <_>
+
+ <_>
+ 6 0 8 4 -1.
+ <_>
+ 6 0 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 15 10 6 -1.
+ <_>
+ 7 15 5 3 2.
+ <_>
+ 2 18 5 3 2.
+ <_>
+
+ <_>
+ 0 13 4 8 -1.
+ <_>
+ 0 17 4 4 2.
+ <_>
+
+ <_>
+ 0 9 14 9 -1.
+ <_>
+ 0 12 14 3 3.
+ <_>
+
+ <_>
+ 2 24 9 4 -1.
+ <_>
+ 5 24 3 4 3.
+ <_>
+
+ <_>
+ 1 24 12 4 -1.
+ <_>
+ 4 24 6 4 2.
+ <_>
+
+ <_>
+ 0 11 10 8 -1.
+ <_>
+ 0 11 5 4 2.
+ <_>
+ 5 15 5 4 2.
+ <_>
+
+ <_>
+ 5 9 6 4 -1.
+ <_>
+ 5 11 6 2 2.
+ <_>
+
+ <_>
+ 1 8 4 17 -1.
+ <_>
+ 2 8 2 17 2.
+ <_>
+
+ <_>
+ 8 2 4 12 -1.
+ <_>
+ 10 2 2 6 2.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 2 2 4 12 -1.
+ <_>
+ 2 2 2 6 2.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 10 7 4 14 -1.
+ <_>
+ 12 7 2 7 2.
+ <_>
+ 10 14 2 7 2.
+ <_>
+
+ <_>
+ 0 7 4 14 -1.
+ <_>
+ 0 7 2 7 2.
+ <_>
+ 2 14 2 7 2.
+ <_>
+
+ <_>
+ 4 8 10 6 -1.
+ <_>
+ 4 8 5 6 2.
+ <_>
+
+ <_>
+ 6 6 8 3 -1.
+ <_>
+ 6 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 5 12 3 -1.
+ <_>
+ 2 6 12 1 3.
+ <_>
+
+ <_>
+ 2 15 9 5 -1.
+ <_>
+ 5 15 3 5 3.
+ <_>
+
+ <_>
+ 0 1 14 15 -1.
+ <_>
+ 0 6 14 5 3.
+ <_>
+
+ <_>
+ 1 1 6 18 -1.
+ <_>
+ 3 7 2 6 9.
+ <_>
+
+ <_>
+ 4 2 9 10 -1.
+ <_>
+ 4 7 9 5 2.
+ <_>
+
+ <_>
+ 5 12 4 6 -1.
+ <_>
+ 7 12 2 6 2.
+ <_>
+
+ <_>
+ 6 4 3 21 -1.
+ <_>
+ 7 4 1 21 3.
+ <_>
+
+ <_>
+ 6 17 6 3 -1.
+ <_>
+ 5 18 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 16 2 4 -1.
+ <_>
+ 7 16 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 16 4 2 -1.
+ <_>
+ 7 16 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 20 2 6 -1.
+ <_>
+ 8 20 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 20 6 2 -1.
+ <_>
+ 6 20 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 6 6 -1.
+ <_>
+ 8 4 2 6 3.
+ <_>
+
+ <_>
+ 1 1 3 16 -1.
+ <_>
+ 2 1 1 16 3.
+ <_>
+
+ <_>
+ 12 14 2 10 -1.
+ <_>
+ 12 14 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 2 14 10 2 -1.
+ <_>
+ 2 14 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 1 6 27 -1.
+ <_>
+ 5 10 2 9 9.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 2 6 8 22 -1.
+ <_>
+ 4 6 4 22 2.
+ <_>
+
+ <_>
+ 4 6 6 13 -1.
+ <_>
+ 6 6 2 13 3.
+ <_>
+
+ <_>
+ 7 11 6 6 -1.
+ <_>
+ 5 13 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 26 12 2 -1.
+ <_>
+ 2 26 6 2 2.
+ <_>
+
+ <_>
+ 4 8 6 9 -1.
+ <_>
+ 6 8 2 9 3.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 3 24 6 4 -1.
+ <_>
+ 6 24 3 4 2.
+ <_>
+
+ <_>
+ 4 16 8 9 -1.
+ <_>
+ 4 16 4 9 2.
+ <_>
+
+ <_>
+ 2 16 8 9 -1.
+ <_>
+ 6 16 4 9 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 7 5 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 15 6 6 -1.
+ <_>
+ 7 15 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 10 12 -1.
+ <_>
+ 3 19 10 6 2.
+ <_>
+
+ <_>
+ 2 6 10 3 -1.
+ <_>
+ 7 6 5 3 2.
+ <_>
+
+ <_>
+ 3 1 8 21 -1.
+ <_>
+ 3 8 8 7 3.
+ <_>
+
+ <_>
+ 4 7 6 6 -1.
+ <_>
+ 4 9 6 2 3.
+ <_>
+
+ <_>
+ 4 10 8 4 -1.
+ <_>
+ 4 12 8 2 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 7 5 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 8 12 10 -1.
+ <_>
+ 2 8 6 10 2.
+ <_>
+
+ <_>
+ 1 4 8 10 -1.
+ <_>
+ 5 4 4 10 2.
+ <_>
+
+ <_>
+ 3 16 8 6 -1.
+ <_>
+ 7 16 4 3 2.
+ <_>
+ 3 19 4 3 2.
+ <_>
+
+ <_>
+ 3 3 2 24 -1.
+ <_>
+ 3 3 1 12 2.
+ <_>
+ 4 15 1 12 2.
+ <_>
+
+ <_>
+ 9 16 4 12 -1.
+ <_>
+ 10 16 2 12 2.
+ <_>
+
+ <_>
+ 1 16 4 12 -1.
+ <_>
+ 2 16 2 12 2.
+ <_>
+
+ <_>
+ 8 12 3 12 -1.
+ <_>
+ 9 12 1 12 3.
+ <_>
+
+ <_>
+ 3 8 5 6 -1.
+ <_>
+ 3 11 5 3 2.
+ <_>
+
+ <_>
+ 2 7 10 8 -1.
+ <_>
+ 2 11 10 4 2.
+ <_>
+
+ <_>
+ 3 12 3 12 -1.
+ <_>
+ 4 12 1 12 3.
+ <_>
+
+ <_>
+ 5 16 4 12 -1.
+ <_>
+ 5 16 2 12 2.
+ <_>
+
+ <_>
+ 7 22 4 2 -1.
+ <_>
+ 7 22 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 22 8 6 -1.
+ <_>
+ 10 22 4 3 2.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 1 14 2 14 -1.
+ <_>
+ 2 14 1 14 2.
+ <_>
+
+ <_>
+ 9 20 3 5 -1.
+ <_>
+ 10 21 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 5 20 5 3 -1.
+ <_>
+ 4 21 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 15 2 5 -1.
+ <_>
+ 7 15 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 1 17 10 6 -1.
+ <_>
+ 1 17 5 3 2.
+ <_>
+ 6 20 5 3 2.
+ <_>
+
+ <_>
+ 1 3 12 3 -1.
+ <_>
+ 5 3 4 3 3.
+ <_>
+
+ <_>
+ 7 3 5 6 -1.
+ <_>
+ 7 3 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 3 12 -1.
+ <_>
+ 8 7 1 12 3.
+ <_>
+
+ <_>
+ 4 7 3 12 -1.
+ <_>
+ 5 7 1 12 3.
+ <_>
+
+ <_>
+ 5 11 9 13 -1.
+ <_>
+ 8 11 3 13 3.
+ <_>
+
+ <_>
+ 5 5 3 21 -1.
+ <_>
+ 6 5 1 21 3.
+ <_>
+
+ <_>
+ 4 13 9 11 -1.
+ <_>
+ 7 13 3 11 3.
+ <_>
+
+ <_>
+ 1 13 9 11 -1.
+ <_>
+ 4 13 3 11 3.
+ <_>
+
+ <_>
+ 5 18 8 10 -1.
+ <_>
+ 9 18 4 5 2.
+ <_>
+ 5 23 4 5 2.
+ <_>
+
+ <_>
+ 0 5 14 14 -1.
+ <_>
+ 0 5 7 7 2.
+ <_>
+ 7 12 7 7 2.
+ <_>
+
+ <_>
+ 9 0 3 15 -1.
+ <_>
+ 10 0 1 15 3.
+ <_>
+
+ <_>
+ 3 0 6 20 -1.
+ <_>
+ 5 0 2 20 3.
+ <_>
+
+ <_>
+ 2 4 12 2 -1.
+ <_>
+ 2 5 12 1 2.
+ <_>
+
+ <_>
+ 0 3 12 3 -1.
+ <_>
+ 0 4 12 1 3.
+ <_>
+
+ <_>
+ 0 18 14 6 -1.
+ <_>
+ 7 18 7 3 2.
+ <_>
+ 0 21 7 3 2.
+ <_>
+
+ <_>
+ 2 0 3 15 -1.
+ <_>
+ 3 0 1 15 3.
+ <_>
+
+ <_>
+ 8 1 6 4 -1.
+ <_>
+ 8 1 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 2 7 6 6 -1.
+ <_>
+ 2 9 6 2 3.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 2 7 3 12 -1.
+ <_>
+ 3 7 1 12 3.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 0 22 4 6 -1.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 8 24 6 4 -1.
+ <_>
+ 8 24 3 4 2.
+ <_>
+
+ <_>
+ 4 0 4 9 -1.
+ <_>
+ 4 3 4 3 3.
+ <_>
+
+ <_>
+ 8 3 6 4 -1.
+ <_>
+ 8 3 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 6 22 -1.
+ <_>
+ 2 0 3 11 2.
+ <_>
+ 5 11 3 11 2.
+ <_>
+
+ <_>
+ 6 18 8 10 -1.
+ <_>
+ 10 18 4 5 2.
+ <_>
+ 6 23 4 5 2.
+ <_>
+
+ <_>
+ 0 22 6 6 -1.
+ <_>
+ 2 22 2 6 3.
+ <_>
+
+ <_>
+ 8 13 6 6 -1.
+ <_>
+ 8 15 6 2 3.
+ <_>
+
+ <_>
+ 0 13 6 6 -1.
+ <_>
+ 0 15 6 2 3.
+ <_>
+
+ <_>
+ 1 16 6 6 -1.
+ <_>
+ 3 16 2 6 3.
+ <_>
+
+ <_>
+ 7 2 3 21 -1.
+ <_>
+ 7 9 3 7 3.
+ <_>
+
+ <_>
+ 4 14 6 3 -1.
+ <_>
+ 3 15 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 7 3 4 6 -1.
+ <_>
+ 7 3 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 8 16 -1.
+ <_>
+ 4 9 4 16 2.
+ <_>
+
+ <_>
+ 2 9 8 16 -1.
+ <_>
+ 6 9 4 16 2.
+ <_>
+
+ <_>
+ 4 3 7 24 -1.
+ <_>
+ 4 9 7 12 2.
+ <_>
+
+ <_>
+ 1 17 4 6 -1.
+ <_>
+ 3 17 2 6 2.
+ <_>
+
+ <_>
+ 5 2 6 4 -1.
+ <_>
+ 5 4 6 2 2.
+ <_>
+
+ <_>
+ 7 2 4 6 -1.
+ <_>
+ 7 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 6 4 -1.
+ <_>
+ 4 9 3 4 2.
+ <_>
+
+ <_>
+ 1 24 6 4 -1.
+ <_>
+ 4 24 3 4 2.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 8 0 3 4 2.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 8 0 3 4 2.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 5 4 4 6 -1.
+ <_>
+ 7 4 2 6 2.
+ <_>
+
+ <_>
+ 8 0 6 8 -1.
+ <_>
+ 6 2 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 8 2 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 17 3 4 -1.
+ <_>
+ 8 18 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 1 20 6 8 -1.
+ <_>
+ 1 20 3 4 2.
+ <_>
+ 4 24 3 4 2.
+ <_>
+
+ <_>
+ 9 15 2 12 -1.
+ <_>
+ 9 15 1 12 2.
+ <_>
+
+ <_>
+ 3 15 2 12 -1.
+ <_>
+ 4 15 1 12 2.
+ <_>
+
+ <_>
+ 5 2 6 4 -1.
+ <_>
+ 5 2 3 4 2.
+ <_>
+
+ <_>
+ 3 3 6 4 -1.
+ <_>
+ 6 3 3 4 2.
+ <_>
+
+ <_>
+ 4 4 6 24 -1.
+ <_>
+ 7 4 3 12 2.
+ <_>
+ 4 16 3 12 2.
+ <_>
+
+ <_>
+ 6 13 2 12 -1.
+ <_>
+ 7 13 1 12 2.
+ <_>
+
+ <_>
+ 6 16 3 12 -1.
+ <_>
+ 7 16 1 12 3.
+ <_>
+
+ <_>
+ 6 4 2 14 -1.
+ <_>
+ 7 4 1 14 2.
+ <_>
+
+ <_>
+ 5 3 4 25 -1.
+ <_>
+ 6 3 2 25 2.
+ <_>
+
+ <_>
+ 5 4 3 21 -1.
+ <_>
+ 6 4 1 21 3.
+ <_>
+
+ <_>
+ 7 6 2 12 -1.
+ <_>
+ 7 6 1 12 2.
+ <_>
+
+ <_>
+ 5 4 4 20 -1.
+ <_>
+ 5 4 2 10 2.
+ <_>
+ 7 14 2 10 2.
+ <_>
+
+ <_>
+ 6 4 6 24 -1.
+ <_>
+ 8 12 2 8 9.
+ <_>
+
+ <_>
+ 0 1 12 24 -1.
+ <_>
+ 6 1 6 24 2.
+ <_>
+
+ <_>
+ 7 6 7 22 -1.
+ <_>
+ 7 17 7 11 2.
+ <_>
+
+ <_>
+ 4 3 4 9 -1.
+ <_>
+ 4 6 4 3 3.
+ <_>
+
+ <_>
+ 8 4 6 8 -1.
+ <_>
+ 6 6 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 7 5 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 1 4 6 -1.
+ <_>
+ 5 4 4 3 2.
+ <_>
+
+ <_>
+ 0 0 7 10 -1.
+ <_>
+ 0 5 7 5 2.
+ <_>
+
+ <_>
+ 7 2 3 24 -1.
+ <_>
+ 7 8 3 12 2.
+ <_>
+
+ <_>
+ 1 8 4 15 -1.
+ <_>
+ 2 8 2 15 2.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 1 23 12 3 -1.
+ <_>
+ 5 23 4 3 3.
+ <_>
+
+ <_>
+ 6 22 8 6 -1.
+ <_>
+ 10 22 4 3 2.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 0 22 14 6 -1.
+ <_>
+ 0 22 7 3 2.
+ <_>
+ 7 25 7 3 2.
+ <_>
+
+ <_>
+ 2 3 12 3 -1.
+ <_>
+ 2 4 12 1 3.
+ <_>
+
+ <_>
+ 0 2 12 9 -1.
+ <_>
+ 4 5 4 3 9.
+ <_>
+
+ <_>
+ 1 0 12 12 -1.
+ <_>
+ 5 4 4 4 9.
+ <_>
+
+ <_>
+ 1 3 12 3 -1.
+ <_>
+ 1 4 12 1 3.
+ <_>
+
+ <_>
+ 1 4 12 3 -1.
+ <_>
+ 5 4 4 3 3.
+ <_>
+
+ <_>
+ 1 15 2 12 -1.
+ <_>
+ 2 15 1 12 2.
+ <_>
+
+ <_>
+ 1 20 12 5 -1.
+ <_>
+ 5 20 4 5 3.
+ <_>
+
+ <_>
+ 7 15 5 4 -1.
+ <_>
+ 6 16 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 3 21 -1.
+ <_>
+ 7 9 3 7 3.
+ <_>
+
+ <_>
+ 2 2 4 12 -1.
+ <_>
+ 2 2 2 6 2.
+ <_>
+ 4 8 2 6 2.
+ <_>
+
+ <_>
+ 5 22 8 6 -1.
+ <_>
+ 7 22 4 6 2.
+ <_>
+
+ <_>
+ 0 1 10 6 -1.
+ <_>
+ 0 1 5 3 2.
+ <_>
+ 5 4 5 3 2.
+ <_>
+
+ <_>
+ 3 11 9 6 -1.
+ <_>
+ 3 13 9 2 3.
+ <_>
+
+ <_>
+ 6 7 2 19 -1.
+ <_>
+ 7 7 1 19 2.
+ <_>
+
+ <_>
+ 5 10 8 16 -1.
+ <_>
+ 7 10 4 16 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 10 13 4 15 -1.
+ <_>
+ 10 18 4 5 3.
+ <_>
+
+ <_>
+ 2 1 10 10 -1.
+ <_>
+ 2 1 5 5 2.
+ <_>
+ 7 6 5 5 2.
+ <_>
+
+ <_>
+ 7 19 2 7 -1.
+ <_>
+ 7 19 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 2 14 9 6 -1.
+ <_>
+ 5 14 3 6 3.
+ <_>
+
+ <_>
+ 4 13 10 14 -1.
+ <_>
+ 9 13 5 7 2.
+ <_>
+ 4 20 5 7 2.
+ <_>
+
+ <_>
+ 1 7 12 15 -1.
+ <_>
+ 5 12 4 5 9.
+ <_>
+
+ <_>
+ 6 2 2 24 -1.
+ <_>
+ 7 2 1 12 2.
+ <_>
+ 6 14 1 12 2.
+ <_>
+
+ <_>
+ 5 3 4 12 -1.
+ <_>
+ 5 9 4 6 2.
+ <_>
+
+ <_>
+ 8 24 6 4 -1.
+ <_>
+ 8 24 3 4 2.
+ <_>
+
+ <_>
+ 0 24 6 4 -1.
+ <_>
+ 3 24 3 4 2.
+ <_>
+
+ <_>
+ 1 8 12 4 -1.
+ <_>
+ 4 8 6 4 2.
+ <_>
+
+ <_>
+ 5 5 4 9 -1.
+ <_>
+ 5 8 4 3 3.
+ <_>
+
+ <_>
+ 9 18 4 6 -1.
+ <_>
+ 9 18 2 6 2.
+ <_>
+
+ <_>
+ 2 20 8 8 -1.
+ <_>
+ 2 20 4 4 2.
+ <_>
+ 6 24 4 4 2.
+ <_>
+
+ <_>
+ 11 15 2 8 -1.
+ <_>
+ 11 15 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 3 15 8 2 -1.
+ <_>
+ 3 15 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 9 2 6 2.
+ <_>
+
+ <_>
+ 0 22 4 6 -1.
+ <_>
+ 2 22 2 6 2.
+ <_>
+
+ <_>
+ 0 26 14 2 -1.
+ <_>
+ 0 26 7 2 2.
+ <_>
+
+ <_>
+ 3 20 6 8 -1.
+ <_>
+ 3 20 3 4 2.
+ <_>
+ 6 24 3 4 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 4 13 4 12 -1.
+ <_>
+ 5 13 2 12 2.
+ <_>
+
+ <_>
+ 1 22 12 2 -1.
+ <_>
+ 1 22 6 2 2.
+ <_>
+
+ <_>
+ 0 24 12 4 -1.
+ <_>
+ 0 24 6 2 2.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 5 8 6 4 -1.
+ <_>
+ 5 10 6 2 2.
+ <_>
+
+ <_>
+ 0 3 12 3 -1.
+ <_>
+ 0 4 12 1 3.
+ <_>
+
+ <_>
+ 7 4 6 6 -1.
+ <_>
+ 7 4 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 6 6 -1.
+ <_>
+ 7 4 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 6 8 -1.
+ <_>
+ 8 3 3 8 2.
+ 1
+ <_>
+
+ <_>
+ 0 6 6 5 -1.
+ <_>
+ 3 6 3 5 2.
+ <_>
+
+ <_>
+ 8 3 3 12 -1.
+ <_>
+ 9 3 1 12 3.
+ <_>
+
+ <_>
+ 6 0 2 22 -1.
+ <_>
+ 7 0 1 22 2.
+ <_>
+
+ <_>
+ 8 3 3 12 -1.
+ <_>
+ 9 3 1 12 3.
+ <_>
+
+ <_>
+ 3 3 3 12 -1.
+ <_>
+ 4 3 1 12 3.
+ <_>
+
+ <_>
+ 6 6 3 12 -1.
+ <_>
+ 7 6 1 12 3.
+ <_>
+
+ <_>
+ 5 15 2 12 -1.
+ <_>
+ 6 15 1 12 2.
+ <_>
+
+ <_>
+ 5 8 6 10 -1.
+ <_>
+ 8 8 3 5 2.
+ <_>
+ 5 13 3 5 2.
+ <_>
+
+ <_>
+ 2 8 10 10 -1.
+ <_>
+ 2 8 5 5 2.
+ <_>
+ 7 13 5 5 2.
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+ 7 14 3 5 2.
+ <_>
+
+ <_>
+ 0 4 12 3 -1.
+ <_>
+ 0 5 12 1 3.
+ <_>
+
+ <_>
+ 9 16 2 12 -1.
+ <_>
+ 9 16 1 12 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 2 20 12 6 -1.
+ <_>
+ 6 20 4 6 3.
+ <_>
+
+ <_>
+ 0 10 8 8 -1.
+ <_>
+ 2 10 4 8 2.
+ <_>
+
+ <_>
+ 0 12 14 6 -1.
+ <_>
+ 0 15 14 3 2.
+ <_>
+
+ <_>
+ 1 6 12 16 -1.
+ <_>
+ 1 14 12 8 2.
+ <_>
+
+ <_>
+ 7 7 3 12 -1.
+ <_>
+ 8 7 1 12 3.
+ <_>
+
+ <_>
+ 0 0 14 3 -1.
+ <_>
+ 0 1 14 1 3.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 0 17 6 7 -1.
+ <_>
+ 2 17 2 7 3.
+ <_>
+
+ <_>
+ 6 24 6 4 -1.
+ <_>
+ 6 24 3 4 2.
+ <_>
+
+ <_>
+ 0 9 6 7 -1.
+ <_>
+ 3 9 3 7 2.
+ <_>
+
+ <_>
+ 7 9 6 18 -1.
+ <_>
+ 10 9 3 9 2.
+ <_>
+ 7 18 3 9 2.
+ <_>
+
+ <_>
+ 0 22 12 5 -1.
+ <_>
+ 4 22 4 5 3.
+ <_>
+
+ <_>
+ 7 9 6 10 -1.
+ <_>
+ 10 9 3 5 2.
+ <_>
+ 7 14 3 5 2.
+ <_>
+
+ <_>
+ 1 9 6 10 -1.
+ <_>
+ 1 9 3 5 2.
+ <_>
+ 4 14 3 5 2.
+ <_>
+
+ <_>
+ 8 22 4 6 -1.
+ <_>
+ 8 22 2 6 2.
+ <_>
+
+ <_>
+ 0 16 6 8 -1.
+ <_>
+ 0 16 3 4 2.
+ <_>
+ 3 20 3 4 2.
+ <_>
+
+ <_>
+ 4 0 6 8 -1.
+ <_>
+ 4 2 6 4 2.
+ <_>
+
+ <_>
+ 5 3 4 9 -1.
+ <_>
+ 5 6 4 3 3.
+ <_>
+
+ <_>
+ 9 8 4 19 -1.
+ <_>
+ 10 8 2 19 2.
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 5 11 4 3 2.
+ <_>
+
+ <_>
+ 7 2 7 6 -1.
+ <_>
+ 7 4 7 2 3.
+ <_>
+
+ <_>
+ 0 16 2 12 -1.
+ <_>
+ 1 16 1 12 2.
+ <_>
+
+ <_>
+ 11 0 3 17 -1.
+ <_>
+ 12 0 1 17 3.
+ <_>
+
+ <_>
+ 0 0 3 17 -1.
+ <_>
+ 1 0 1 17 3.
+ <_>
+
+ <_>
+ 5 13 4 14 -1.
+ <_>
+ 5 20 4 7 2.
+ <_>
+
+ <_>
+ 6 15 8 4 -1.
+ <_>
+ 6 15 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 17 8 6 -1.
+ <_>
+ 7 17 4 6 2.
+ <_>
+
+ <_>
+ 1 17 8 6 -1.
+ <_>
+ 3 17 4 6 2.
+ <_>
+
+ <_>
+ 5 11 4 6 -1.
+ <_>
+ 5 11 2 6 2.
+ <_>
+
+ <_>
+ 3 13 8 13 -1.
+ <_>
+ 5 13 4 13 2.
+ <_>
+
+ <_>
+ 3 6 8 4 -1.
+ <_>
+ 3 8 8 2 2.
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 7 5 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 6 8 -1.
+ <_>
+ 7 9 3 4 2.
+ <_>
+ 4 13 3 4 2.
+ <_>
+
+ <_>
+ 6 4 2 24 -1.
+ <_>
+ 6 4 1 12 2.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 7 24 6 4 -1.
+ <_>
+ 7 24 3 4 2.
+ <_>
+
+ <_>
+ 7 20 5 3 -1.
+ <_>
+ 6 21 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 15 9 12 -1.
+ <_>
+ 6 19 3 4 9.
+ <_>
+
+ <_>
+ 1 20 8 7 -1.
+ <_>
+ 3 20 4 7 2.
+ <_>
+
+ <_>
+ 10 12 2 14 -1.
+ <_>
+ 10 12 1 14 2.
+ <_>
+
+ <_>
+ 2 12 2 14 -1.
+ <_>
+ 3 12 1 14 2.
+ <_>
+
+ <_>
+ 3 6 8 4 -1.
+ <_>
+ 3 8 8 2 2.
+ <_>
+
+ <_>
+ 3 9 8 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+ 7 13 4 4 2.
+ <_>
+
+ <_>
+ 1 2 12 24 -1.
+ <_>
+ 5 10 4 8 9.
+ <_>
+
+ <_>
+ 2 8 10 3 -1.
+ <_>
+ 7 8 5 3 2.
+ <_>
+
+ <_>
+ 4 15 8 8 -1.
+ <_>
+ 6 15 4 8 2.
+ <_>
+
+ <_>
+ 7 15 4 4 -1.
+ <_>
+ 6 16 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 4 16 3 12 -1.
+ <_>
+ 5 16 1 12 3.
+ <_>
+
+ <_>
+ 7 8 3 12 -1.
+ <_>
+ 8 8 1 12 3.
+ <_>
+
+ <_>
+ 4 8 3 12 -1.
+ <_>
+ 5 8 1 12 3.
+ <_>
+
+ <_>
+ 10 17 4 6 -1.
+ <_>
+ 10 17 2 6 2.
+ <_>
+
+ <_>
+ 5 4 2 24 -1.
+ <_>
+ 5 4 1 12 2.
+ <_>
+ 6 16 1 12 2.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 0 17 4 6 -1.
+ <_>
+ 2 17 2 6 2.
+ <_>
+
+ <_>
+ 8 11 6 12 -1.
+ <_>
+ 11 11 3 6 2.
+ <_>
+ 8 17 3 6 2.
+ <_>
+
+ <_>
+ 3 7 3 10 -1.
+ <_>
+ 3 12 3 5 2.
+ <_>
+
+ <_>
+ 7 6 4 6 -1.
+ <_>
+ 7 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 7 10 3 -1.
+ <_>
+ 6 7 5 3 2.
+ <_>
+
+ <_>
+ 7 6 4 6 -1.
+ <_>
+ 7 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 6 4 -1.
+ <_>
+ 7 6 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 4 6 -1.
+ <_>
+ 7 3 4 3 2.
+ <_>
+
+ <_>
+ 4 6 6 8 -1.
+ <_>
+ 4 6 3 4 2.
+ <_>
+ 7 10 3 4 2.
+ <_>
+
+ <_>
+ 8 12 6 16 -1.
+ <_>
+ 8 20 6 8 2.
+ <_>
+
+ <_>
+ 0 4 10 3 -1.
+ <_>
+ 5 4 5 3 2.
+ <_>
+
+ <_>
+ 8 2 4 13 -1.
+ <_>
+ 8 2 2 13 2.
+ <_>
+
+ <_>
+ 1 1 10 14 -1.
+ <_>
+ 1 1 5 7 2.
+ <_>
+ 6 8 5 7 2.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 0 25 8 3 -1.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 6 13 3 13 -1.
+ <_>
+ 7 13 1 13 3.
+ <_>
+
+ <_>
+ 1 24 6 4 -1.
+ <_>
+ 4 24 3 4 2.
+ <_>
+
+ <_>
+ 8 8 4 7 -1.
+ <_>
+ 8 8 2 7 2.
+ <_>
+
+ <_>
+ 0 7 12 3 -1.
+ <_>
+ 0 8 12 1 3.
+ <_>
+
+ <_>
+ 4 6 6 6 -1.
+ <_>
+ 4 8 6 2 3.
+ <_>
+
+ <_>
+ 3 9 7 4 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+
+ <_>
+ 5 7 4 18 -1.
+ <_>
+ 5 16 4 9 2.
+ <_>
+
+ <_>
+ 4 1 5 26 -1.
+ <_>
+ 4 14 5 13 2.
+ <_>
+
+ <_>
+ 6 22 8 6 -1.
+ <_>
+ 10 22 4 3 2.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 0 22 8 6 -1.
+ <_>
+ 0 22 4 3 2.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 5 21 8 6 -1.
+ <_>
+ 9 21 4 3 2.
+ <_>
+ 5 24 4 3 2.
+ <_>
+
+ <_>
+ 3 0 6 4 -1.
+ <_>
+ 6 0 3 4 2.
+ <_>
+
+ <_>
+ 6 1 6 5 -1.
+ <_>
+ 6 1 3 5 2.
+ <_>
+
+ <_>
+ 5 6 4 12 -1.
+ <_>
+ 6 6 2 12 2.
+ <_>
+
+ <_>
+ 8 8 4 7 -1.
+ <_>
+ 8 8 2 7 2.
+ <_>
+
+ <_>
+ 2 8 4 7 -1.
+ <_>
+ 4 8 2 7 2.
+ <_>
+
+ <_>
+ 6 12 8 3 -1.
+ <_>
+ 6 12 4 3 2.
+ <_>
+
+ <_>
+ 1 11 9 5 -1.
+ <_>
+ 4 11 3 5 3.
+ <_>
+
+ <_>
+ 10 3 4 14 -1.
+ <_>
+ 12 3 2 7 2.
+ <_>
+ 10 10 2 7 2.
+ <_>
+
+ <_>
+ 0 2 4 14 -1.
+ <_>
+ 0 2 2 7 2.
+ <_>
+ 2 9 2 7 2.
+ <_>
+
+ <_>
+ 1 9 13 6 -1.
+ <_>
+ 1 11 13 2 3.
+ <_>
+
+ <_>
+ 7 17 4 2 -1.
+ <_>
+ 7 17 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 15 3 6 -1.
+ <_>
+ 11 16 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 4 15 6 3 -1.
+ <_>
+ 3 16 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 19 2 7 -1.
+ <_>
+ 7 19 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 0 18 12 9 -1.
+ <_>
+ 3 18 6 9 2.
+ <_>
+
+ <_>
+ 7 19 2 7 -1.
+ <_>
+ 7 19 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 19 7 2 -1.
+ <_>
+ 7 19 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 15 3 13 -1.
+ <_>
+ 8 15 1 13 3.
+ <_>
+
+ <_>
+ 2 16 8 7 -1.
+ <_>
+ 4 16 4 7 2.
+ <_>
+
+ <_>
+ 4 21 10 6 -1.
+ <_>
+ 9 21 5 3 2.
+ <_>
+ 4 24 5 3 2.
+ <_>
+
+ <_>
+ 0 21 10 6 -1.
+ <_>
+ 0 21 5 3 2.
+ <_>
+ 5 24 5 3 2.
+ <_>
+
+ <_>
+ 8 14 6 7 -1.
+ <_>
+ 10 16 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 0 20 12 4 -1.
+ <_>
+ 0 20 6 2 2.
+ <_>
+ 6 22 6 2 2.
+ <_>
+
+ <_>
+ 1 14 12 10 -1.
+ <_>
+ 4 14 6 10 2.
+ <_>
+
+ <_>
+ 3 18 6 4 -1.
+ <_>
+ 6 18 3 4 2.
+ <_>
+
+ <_>
+ 11 11 2 16 -1.
+ <_>
+ 11 19 2 8 2.
+ <_>
+
+ <_>
+ 3 10 6 14 -1.
+ <_>
+ 3 10 3 7 2.
+ <_>
+ 6 17 3 7 2.
+ <_>
+
+ <_>
+ 6 9 4 6 -1.
+ <_>
+ 6 9 2 6 2.
+ <_>
+
+ <_>
+ 5 16 3 12 -1.
+ <_>
+ 6 16 1 12 3.
+ <_>
+
+ <_>
+ 2 3 12 18 -1.
+ <_>
+ 6 9 4 6 9.
+ <_>
+
+ <_>
+ 3 4 6 10 -1.
+ <_>
+ 3 4 3 5 2.
+ <_>
+ 6 9 3 5 2.
+ <_>
+
+ <_>
+ 7 18 6 4 -1.
+ <_>
+ 7 18 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 18 4 6 -1.
+ <_>
+ 7 18 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 4 13 -1.
+ <_>
+ 6 8 2 13 2.
+ <_>
+
+ <_>
+ 2 6 3 12 -1.
+ <_>
+ 3 6 1 12 3.
+ <_>
+
+ <_>
+ 2 15 12 12 -1.
+ <_>
+ 5 15 6 12 2.
+ <_>
+
+ <_>
+ 4 15 4 12 -1.
+ <_>
+ 5 15 2 12 2.
+ <_>
+
+ <_>
+ 4 19 9 9 -1.
+ <_>
+ 7 19 3 9 3.
+ <_>
+
+ <_>
+ 7 16 5 4 -1.
+ <_>
+ 6 17 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 14 6 8 -1.
+ <_>
+ 9 14 3 4 2.
+ <_>
+ 6 18 3 4 2.
+ <_>
+
+ <_>
+ 2 14 6 8 -1.
+ <_>
+ 2 14 3 4 2.
+ <_>
+ 5 18 3 4 2.
+ <_>
+
+ <_>
+ 3 2 10 16 -1.
+ <_>
+ 8 2 5 8 2.
+ <_>
+ 3 10 5 8 2.
+ <_>
+
+ <_>
+ 5 15 3 12 -1.
+ <_>
+ 6 15 1 12 3.
+ <_>
+
+ <_>
+ 8 23 6 4 -1.
+ <_>
+ 8 23 3 4 2.
+ <_>
+
+ <_>
+ 4 2 4 14 -1.
+ <_>
+ 4 2 2 7 2.
+ <_>
+ 6 9 2 7 2.
+ <_>
+
+ <_>
+ 3 7 8 6 -1.
+ <_>
+ 7 7 4 3 2.
+ <_>
+ 3 10 4 3 2.
+ <_>
+
+ <_>
+ 2 4 4 6 -1.
+ <_>
+ 2 7 4 3 2.
+ <_>
+
+ <_>
+ 7 0 6 24 -1.
+ <_>
+ 7 6 6 12 2.
+ <_>
+
+ <_>
+ 0 13 6 14 -1.
+ <_>
+ 0 13 3 7 2.
+ <_>
+ 3 20 3 7 2.
+ <_>
+
+ <_>
+ 4 19 10 6 -1.
+ <_>
+ 9 19 5 3 2.
+ <_>
+ 4 22 5 3 2.
+ <_>
+
+ <_>
+ 0 19 10 6 -1.
+ <_>
+ 0 19 5 3 2.
+ <_>
+ 5 22 5 3 2.
+ <_>
+
+ <_>
+ 4 18 8 10 -1.
+ <_>
+ 8 18 4 5 2.
+ <_>
+ 4 23 4 5 2.
+ <_>
+
+ <_>
+ 2 18 8 10 -1.
+ <_>
+ 2 18 4 5 2.
+ <_>
+ 6 23 4 5 2.
+ <_>
+
+ <_>
+ 5 14 4 14 -1.
+ <_>
+ 5 14 2 14 2.
+ <_>
+
+ <_>
+ 1 2 10 16 -1.
+ <_>
+ 1 2 5 8 2.
+ <_>
+ 6 10 5 8 2.
+ <_>
+
+ <_>
+ 0 12 14 16 -1.
+ <_>
+ 0 20 14 8 2.
+ <_>
+
+ <_>
+ 2 3 10 6 -1.
+ <_>
+ 2 3 5 3 2.
+ <_>
+ 7 6 5 3 2.
+ <_>
+
+ <_>
+ 10 1 3 26 -1.
+ <_>
+ 10 14 3 13 2.
+ <_>
+
+ <_>
+ 0 9 4 18 -1.
+ <_>
+ 0 18 4 9 2.
+ <_>
+
+ <_>
+ 8 21 4 6 -1.
+ <_>
+ 8 21 2 6 2.
+ <_>
+
+ <_>
+ 2 6 9 8 -1.
+ <_>
+ 5 6 3 8 3.
+ <_>
+
+ <_>
+ 9 21 4 6 -1.
+ <_>
+ 9 21 2 6 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 9 20 4 7 -1.
+ <_>
+ 9 20 2 7 2.
+ <_>
+
+ <_>
+ 1 4 10 12 -1.
+ <_>
+ 6 4 5 12 2.
+ <_>
+
+ <_>
+ 6 1 2 24 -1.
+ <_>
+ 6 9 2 8 3.
+ <_>
+
+ <_>
+ 2 21 4 6 -1.
+ <_>
+ 4 21 2 6 2.
+ <_>
+
+ <_>
+ 10 1 3 26 -1.
+ <_>
+ 10 14 3 13 2.
+ <_>
+
+ <_>
+ 1 1 3 26 -1.
+ <_>
+ 1 14 3 13 2.
+ <_>
+
+ <_>
+ 2 9 12 14 -1.
+ <_>
+ 8 9 6 7 2.
+ <_>
+ 2 16 6 7 2.
+ <_>
+
+ <_>
+ 4 11 6 8 -1.
+ <_>
+ 4 15 6 4 2.
+ <_>
+
+ <_>
+ 5 9 9 18 -1.
+ <_>
+ 5 15 9 6 3.
+ <_>
+
+ <_>
+ 1 0 9 4 -1.
+ <_>
+ 4 0 3 4 3.
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 5 10 4 3 2.
+ <_>
+
+ <_>
+ 3 7 8 4 -1.
+ <_>
+ 3 9 8 2 2.
+ <_>
+
+ <_>
+ 2 16 12 6 -1.
+ <_>
+ 8 16 6 3 2.
+ <_>
+ 2 19 6 3 2.
+ <_>
+
+ <_>
+ 1 2 8 22 -1.
+ <_>
+ 1 2 4 11 2.
+ <_>
+ 5 13 4 11 2.
+ <_>
+
+ <_>
+ 7 19 6 7 -1.
+ <_>
+ 9 19 2 7 3.
+ <_>
+
+ <_>
+ 6 7 2 18 -1.
+ <_>
+ 6 13 2 6 3.
+ <_>
+
+ <_>
+ 5 8 8 16 -1.
+ <_>
+ 5 12 8 8 2.
+ <_>
+
+ <_>
+ 5 20 6 2 -1.
+ <_>
+ 5 20 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 19 3 6 -1.
+ <_>
+ 11 20 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 1 22 12 6 -1.
+ <_>
+ 4 22 6 6 2.
+ <_>
+
+ <_>
+ 2 25 12 3 -1.
+ <_>
+ 2 25 6 3 2.
+ <_>
+
+ <_>
+ 4 19 6 3 -1.
+ <_>
+ 3 20 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 20 6 7 -1.
+ <_>
+ 9 20 2 7 3.
+ <_>
+
+ <_>
+ 0 17 12 10 -1.
+ <_>
+ 4 17 4 10 3.
+ <_>
+
+ <_>
+ 1 18 12 4 -1.
+ <_>
+ 4 18 6 4 2.
+ <_>
+
+ <_>
+ 1 19 6 7 -1.
+ <_>
+ 3 19 2 7 3.
+ <_>
+
+ <_>
+ 10 22 4 6 -1.
+ <_>
+ 10 22 2 6 2.
+ <_>
+
+ <_>
+ 1 4 2 24 -1.
+ <_>
+ 1 4 1 12 2.
+ <_>
+ 2 16 1 12 2.
+ <_>
+
+ <_>
+ 10 5 4 10 -1.
+ <_>
+ 10 5 2 10 2.
+ <_>
+
+ <_>
+ 0 5 4 10 -1.
+ <_>
+ 2 5 2 10 2.
+ <_>
+
+ <_>
+ 8 10 3 15 -1.
+ <_>
+ 9 10 1 15 3.
+ <_>
+
+ <_>
+ 3 10 3 15 -1.
+ <_>
+ 4 10 1 15 3.
+ <_>
+
+ <_>
+ 8 7 3 17 -1.
+ <_>
+ 9 7 1 17 3.
+ <_>
+
+ <_>
+ 3 7 3 17 -1.
+ <_>
+ 4 7 1 17 3.
+ <_>
+
+ <_>
+ 9 0 3 13 -1.
+ <_>
+ 10 0 1 13 3.
+ <_>
+
+ <_>
+ 2 0 3 13 -1.
+ <_>
+ 3 0 1 13 3.
+ <_>
+
+ <_>
+ 1 3 12 5 -1.
+ <_>
+ 4 3 6 5 2.
+ <_>
+
+ <_>
+ 6 0 7 6 -1.
+ <_>
+ 4 2 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 2 4 8 -1.
+ <_>
+ 7 2 2 8 2.
+ <_>
+
+ <_>
+ 6 4 2 12 -1.
+ <_>
+ 7 4 1 12 2.
+ <_>
+
+ <_>
+ 9 16 3 6 -1.
+ <_>
+ 10 17 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 7 8 2 6 2.
+ <_>
+
+ <_>
+ 1 5 12 21 -1.
+ <_>
+ 4 5 6 21 2.
+ <_>
+
+ <_>
+ 2 3 12 18 -1.
+ <_>
+ 2 9 12 6 3.
+ <_>
+
+ <_>
+ 1 1 12 4 -1.
+ <_>
+ 4 1 6 4 2.
+ <_>
+
+ <_>
+ 6 13 3 13 -1.
+ <_>
+ 7 13 1 13 3.
+ <_>
+
+ <_>
+ 1 1 6 12 -1.
+ <_>
+ 1 1 3 6 2.
+ <_>
+ 4 7 3 6 2.
+ <_>
+
+ <_>
+ 7 6 6 6 -1.
+ <_>
+ 9 6 2 6 3.
+ <_>
+
+ <_>
+ 1 6 6 6 -1.
+ <_>
+ 3 6 2 6 3.
+ <_>
+
+ <_>
+ 7 2 6 13 -1.
+ <_>
+ 9 2 2 13 3.
+ <_>
+
+ <_>
+ 1 2 6 13 -1.
+ <_>
+ 3 2 2 13 3.
+ <_>
+
+ <_>
+ 4 0 6 28 -1.
+ <_>
+ 6 0 2 28 3.
+ <_>
+
+ <_>
+ 0 13 14 3 -1.
+ <_>
+ 0 14 14 1 3.
+ <_>
+
+ <_>
+ 10 20 4 7 -1.
+ <_>
+ 10 20 2 7 2.
+ <_>
+
+ <_>
+ 5 8 2 12 -1.
+ <_>
+ 6 8 1 12 2.
+ <_>
+
+ <_>
+ 5 16 4 8 -1.
+ <_>
+ 5 16 2 8 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 8 0 3 4 2.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 10 20 4 7 -1.
+ <_>
+ 10 20 2 7 2.
+ <_>
+
+ <_>
+ 4 15 4 12 -1.
+ <_>
+ 5 15 2 12 2.
+ <_>
+
+ <_>
+ 7 16 4 6 -1.
+ <_>
+ 7 16 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 2 6 9 -1.
+ <_>
+ 6 2 3 9 2.
+ <_>
+
+ <_>
+ 2 2 12 2 -1.
+ <_>
+ 2 2 6 2 2.
+ <_>
+
+ <_>
+ 0 2 12 2 -1.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 6 1 6 4 -1.
+ <_>
+ 6 1 3 4 2.
+ <_>
+
+ <_>
+ 0 2 4 6 -1.
+ <_>
+ 0 5 4 3 2.
+ <_>
+
+ <_>
+ 5 4 8 4 -1.
+ <_>
+ 5 6 8 2 2.
+ <_>
+
+ <_>
+ 1 8 12 2 -1.
+ <_>
+ 1 9 12 1 2.
+ <_>
+
+ <_>
+ 8 7 6 8 -1.
+ <_>
+ 8 9 6 4 2.
+ <_>
+
+ <_>
+ 0 7 6 8 -1.
+ <_>
+ 0 9 6 4 2.
+ <_>
+
+ <_>
+ 11 15 2 12 -1.
+ <_>
+ 11 15 1 12 2.
+ <_>
+
+ <_>
+ 2 15 3 12 -1.
+ <_>
+ 3 15 1 12 3.
+ <_>
+
+ <_>
+ 11 15 2 12 -1.
+ <_>
+ 11 15 1 12 2.
+ <_>
+
+ <_>
+ 1 12 6 16 -1.
+ <_>
+ 1 12 3 8 2.
+ <_>
+ 4 20 3 8 2.
+ <_>
+
+ <_>
+ 4 10 10 5 -1.
+ <_>
+ 4 10 5 5 2.
+ <_>
+
+ <_>
+ 4 16 8 3 -1.
+ <_>
+ 3 17 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 25 12 3 -1.
+ <_>
+ 6 25 4 3 3.
+ <_>
+
+ <_>
+ 1 10 10 8 -1.
+ <_>
+ 1 10 5 4 2.
+ <_>
+ 6 14 5 4 2.
+ <_>
+
+ <_>
+ 0 12 14 6 -1.
+ <_>
+ 7 12 7 3 2.
+ <_>
+ 0 15 7 3 2.
+ <_>
+
+ <_>
+ 2 20 8 8 -1.
+ <_>
+ 2 20 4 4 2.
+ <_>
+ 6 24 4 4 2.
+ <_>
+
+ <_>
+ 12 16 2 7 -1.
+ <_>
+ 12 16 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 1 17 12 4 -1.
+ <_>
+ 4 17 6 4 2.
+ <_>
+
+ <_>
+ 5 9 6 14 -1.
+ <_>
+ 7 9 2 14 3.
+ <_>
+
+ <_>
+ 3 9 6 14 -1.
+ <_>
+ 5 9 2 14 3.
+ <_>
+
+ <_>
+ 3 8 9 12 -1.
+ <_>
+ 6 12 3 4 9.
+ <_>
+
+ <_>
+ 5 4 4 19 -1.
+ <_>
+ 7 4 2 19 2.
+ <_>
+
+ <_>
+ 5 5 4 19 -1.
+ <_>
+ 5 5 2 19 2.
+ <_>
+
+ <_>
+ 2 10 10 18 -1.
+ <_>
+ 2 10 5 9 2.
+ <_>
+ 7 19 5 9 2.
+ <_>
+
+ <_>
+ 3 3 9 15 -1.
+ <_>
+ 3 8 9 5 3.
+ <_>
+
+ <_>
+ 3 7 8 12 -1.
+ <_>
+ 3 11 8 4 3.
+ <_>
+
+ <_>
+ 6 9 6 8 -1.
+ <_>
+ 6 11 6 4 2.
+ <_>
+
+ <_>
+ 1 16 2 12 -1.
+ <_>
+ 2 16 1 12 2.
+ <_>
+
+ <_>
+ 11 3 3 18 -1.
+ <_>
+ 11 12 3 9 2.
+ <_>
+
+ <_>
+ 0 3 3 18 -1.
+ <_>
+ 0 12 3 9 2.
+ <_>
+
+ <_>
+ 2 8 10 6 -1.
+ <_>
+ 7 8 5 3 2.
+ <_>
+ 2 11 5 3 2.
+ <_>
+
+ <_>
+ 0 3 3 23 -1.
+ <_>
+ 1 3 1 23 3.
+ <_>
+
+ <_>
+ 7 3 6 5 -1.
+ <_>
+ 7 3 3 5 2.
+ <_>
+
+ <_>
+ 2 0 10 28 -1.
+ <_>
+ 2 14 10 14 2.
+ <_>
+
+ <_>
+ 6 17 8 6 -1.
+ <_>
+ 10 17 4 3 2.
+ <_>
+ 6 20 4 3 2.
+ <_>
+
+ <_>
+ 4 13 4 14 -1.
+ <_>
+ 4 13 2 7 2.
+ <_>
+ 6 20 2 7 2.
+ <_>
+
+ <_>
+ 12 7 2 12 -1.
+ <_>
+ 12 7 1 12 2.
+ <_>
+
+ <_>
+ 1 3 6 5 -1.
+ <_>
+ 4 3 3 5 2.
+ <_>
+
+ <_>
+ 12 7 2 12 -1.
+ <_>
+ 12 7 1 12 2.
+ <_>
+
+ <_>
+ 0 7 2 12 -1.
+ <_>
+ 1 7 1 12 2.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 0 10 10 5 -1.
+ <_>
+ 5 10 5 5 2.
+ <_>
+
+ <_>
+ 2 9 12 8 -1.
+ <_>
+ 5 9 6 8 2.
+ <_>
+
+ <_>
+ 0 7 4 12 -1.
+ <_>
+ 2 7 2 12 2.
+ <_>
+
+ <_>
+ 11 16 3 6 -1.
+ <_>
+ 12 17 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 5 16 2 12 -1.
+ <_>
+ 6 16 1 12 2.
+ <_>
+
+ <_>
+ 11 16 3 6 -1.
+ <_>
+ 12 17 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 6 6 2 14 -1.
+ <_>
+ 7 6 1 14 2.
+ <_>
+
+ <_>
+ 3 2 8 11 -1.
+ <_>
+ 5 2 4 11 2.
+ <_>
+
+ <_>
+ 5 3 3 22 -1.
+ <_>
+ 6 3 1 22 3.
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 5 10 4 3 2.
+ <_>
+
+ <_>
+ 4 9 6 4 -1.
+ <_>
+ 4 11 6 2 2.
+ <_>
+
+ <_>
+ 5 25 8 3 -1.
+ <_>
+ 5 25 4 3 2.
+ <_>
+
+ <_>
+ 4 6 6 4 -1.
+ <_>
+ 4 8 6 2 2.
+ <_>
+
+ <_>
+ 4 5 10 8 -1.
+ <_>
+ 4 9 10 4 2.
+ <_>
+
+ <_>
+ 0 12 6 6 -1.
+ <_>
+ 0 15 6 3 2.
+ <_>
+
+ <_>
+ 5 25 8 3 -1.
+ <_>
+ 5 25 4 3 2.
+ <_>
+
+ <_>
+ 0 13 10 6 -1.
+ <_>
+ 0 13 5 3 2.
+ <_>
+ 5 16 5 3 2.
+ <_>
+
+ <_>
+ 6 7 3 15 -1.
+ <_>
+ 7 7 1 15 3.
+ <_>
+
+ <_>
+ 0 1 14 15 -1.
+ <_>
+ 0 6 14 5 3.
+ <_>
+
+ <_>
+ 6 4 8 8 -1.
+ <_>
+ 6 6 8 4 2.
+ <_>
+
+ <_>
+ 0 10 12 8 -1.
+ <_>
+ 0 12 12 4 2.
+ <_>
+
+ <_>
+ 8 1 6 6 -1.
+ <_>
+ 8 3 6 2 3.
+ <_>
+
+ <_>
+ 0 1 6 6 -1.
+ <_>
+ 0 3 6 2 3.
+ <_>
+
+ <_>
+ 5 25 8 3 -1.
+ <_>
+ 5 25 4 3 2.
+ <_>
+
+ <_>
+ 4 0 6 6 -1.
+ <_>
+ 6 0 2 6 3.
+ <_>
+
+ <_>
+ 1 16 12 4 -1.
+ <_>
+ 4 16 6 4 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 4 6 -1.
+ <_>
+ 6 4 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 4 4 6 4 -1.
+ <_>
+ 4 6 6 2 2.
+ <_>
+
+ <_>
+ 6 15 7 4 -1.
+ <_>
+ 6 15 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 4 6 4 -1.
+ <_>
+ 4 6 6 2 2.
+ <_>
+
+ <_>
+ 4 4 6 4 -1.
+ <_>
+ 4 6 6 2 2.
+ <_>
+
+ <_>
+ 8 2 3 12 -1.
+ <_>
+ 9 2 1 12 3.
+ <_>
+
+ <_>
+ 3 2 3 12 -1.
+ <_>
+ 4 2 1 12 3.
+ <_>
+
+ <_>
+ 4 0 8 28 -1.
+ <_>
+ 6 0 4 28 2.
+ <_>
+
+ <_>
+ 2 0 8 28 -1.
+ <_>
+ 4 0 4 28 2.
+ <_>
+
+ <_>
+ 8 15 4 8 -1.
+ <_>
+ 8 15 2 8 2.
+ <_>
+
+ <_>
+ 0 22 8 6 -1.
+ <_>
+ 0 22 4 3 2.
+ <_>
+ 4 25 4 3 2.
+ <_>
+
+ <_>
+ 7 20 4 4 -1.
+ <_>
+ 8 21 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 15 6 6 -1.
+ <_>
+ 6 15 2 6 3.
+ <_>
+
+ <_>
+ 4 10 6 9 -1.
+ <_>
+ 6 10 2 9 3.
+ <_>
+
+ <_>
+ 5 8 4 17 -1.
+ <_>
+ 6 8 2 17 2.
+ <_>
+
+ <_>
+ 7 16 2 12 -1.
+ <_>
+ 7 16 1 12 2.
+ <_>
+
+ <_>
+ 6 11 2 12 -1.
+ <_>
+ 7 11 1 12 2.
+ <_>
+
+ <_>
+ 0 12 14 12 -1.
+ <_>
+ 0 12 7 12 2.
+ <_>
+
+ <_>
+ 0 4 4 24 -1.
+ <_>
+ 0 10 4 12 2.
+ <_>
+
+ <_>
+ 8 0 4 8 -1.
+ <_>
+ 8 4 4 4 2.
+ <_>
+
+ <_>
+ 1 24 12 4 -1.
+ <_>
+ 4 24 6 4 2.
+ <_>
+
+ <_>
+ 5 9 8 18 -1.
+ <_>
+ 5 18 8 9 2.
+ <_>
+
+ <_>
+ 1 4 3 22 -1.
+ <_>
+ 2 4 1 22 3.
+ <_>
+
+ <_>
+ 11 16 2 12 -1.
+ <_>
+ 11 16 1 12 2.
+ <_>
+
+ <_>
+ 1 16 2 12 -1.
+ <_>
+ 2 16 1 12 2.
+ <_>
+
+ <_>
+ 4 1 8 6 -1.
+ <_>
+ 8 1 4 3 2.
+ <_>
+ 4 4 4 3 2.
+ <_>
+
+ <_>
+ 2 1 8 6 -1.
+ <_>
+ 2 1 4 3 2.
+ <_>
+ 6 4 4 3 2.
+ <_>
+
+ <_>
+ 4 0 8 20 -1.
+ <_>
+ 4 10 8 10 2.
+ <_>
+
+ <_>
+ 0 5 9 6 -1.
+ <_>
+ 0 8 9 3 2.
+ <_>
+
+ <_>
+ 3 4 8 16 -1.
+ <_>
+ 3 8 8 8 2.
+ <_>
+
+ <_>
+ 3 11 6 16 -1.
+ <_>
+ 3 19 6 8 2.
+ <_>
+
+ <_>
+ 4 9 6 12 -1.
+ <_>
+ 7 9 3 6 2.
+ <_>
+ 4 15 3 6 2.
+ <_>
+
+ <_>
+ 7 20 4 3 -1.
+ <_>
+ 6 21 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 6 12 2 -1.
+ <_>
+ 2 7 12 1 2.
+ <_>
+
+ <_>
+ 4 2 6 4 -1.
+ <_>
+ 4 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 1 6 5 -1.
+ <_>
+ 8 1 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 4 6 -1.
+ <_>
+ 7 4 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 5 6 20 -1.
+ <_>
+ 4 10 6 10 2.
+ <_>
+
+ <_>
+ 2 8 4 13 -1.
+ <_>
+ 4 8 2 13 2.
+ <_>
+
+ <_>
+ 0 0 14 8 -1.
+ <_>
+ 7 0 7 4 2.
+ <_>
+ 0 4 7 4 2.
+ <_>
+
+ <_>
+ 5 0 4 6 -1.
+ <_>
+ 7 0 2 6 2.
+ <_>
+
+ <_>
+ 6 2 4 12 -1.
+ <_>
+ 6 6 4 4 3.
+ <_>
+
+ <_>
+ 2 14 4 7 -1.
+ <_>
+ 4 14 2 7 2.
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 3 0 8 19 -1.
+ <_>
+ 7 0 4 19 2.
+ <_>
+
+ <_>
+ 5 5 4 15 -1.
+ <_>
+ 5 5 2 15 2.
+ <_>
+
+ <_>
+ 1 11 12 3 -1.
+ <_>
+ 1 12 12 1 3.
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 1 10 5 6 -1.
+ <_>
+ 1 13 5 3 2.
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 0 13 13 3 -1.
+ <_>
+ 0 14 13 1 3.
+ <_>
+
+ <_>
+ 5 4 6 4 -1.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 3 4 6 4 -1.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 8 22 4 6 -1.
+ <_>
+ 8 22 2 6 2.
+ <_>
+
+ <_>
+ 2 22 4 6 -1.
+ <_>
+ 4 22 2 6 2.
+ <_>
+
+ <_>
+ 8 22 4 6 -1.
+ <_>
+ 8 22 2 6 2.
+ <_>
+
+ <_>
+ 2 22 4 6 -1.
+ <_>
+ 4 22 2 6 2.
+ <_>
+
+ <_>
+ 0 13 14 3 -1.
+ <_>
+ 0 14 14 1 3.
+ <_>
+
+ <_>
+ 7 19 7 2 -1.
+ <_>
+ 7 19 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 6 12 -1.
+ <_>
+ 6 13 6 4 3.
+ <_>
+
+ <_>
+ 0 26 12 2 -1.
+ <_>
+ 6 26 6 2 2.
+ <_>
+
+ <_>
+ 2 25 12 3 -1.
+ <_>
+ 2 25 6 3 2.
+ <_>
+
+ <_>
+ 0 24 14 4 -1.
+ <_>
+ 0 24 7 2 2.
+ <_>
+ 7 26 7 2 2.
+ <_>
+
+ <_>
+ 12 3 2 12 -1.
+ <_>
+ 12 3 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 3 2 4 12 -1.
+ <_>
+ 3 2 2 6 2.
+ <_>
+ 5 8 2 6 2.
+ <_>
+
+ <_>
+ 6 1 3 17 -1.
+ <_>
+ 7 1 1 17 3.
+ <_>
+
+ <_>
+ 3 6 8 7 -1.
+ <_>
+ 5 6 4 7 2.
+ <_>
+
+ <_>
+ 6 0 3 12 -1.
+ <_>
+ 7 0 1 12 3.
+ <_>
+
+ <_>
+ 5 0 3 12 -1.
+ <_>
+ 6 0 1 12 3.
+ <_>
+
+ <_>
+ 6 1 3 17 -1.
+ <_>
+ 7 1 1 17 3.
+ <_>
+
+ <_>
+ 3 8 8 8 -1.
+ <_>
+ 3 8 4 4 2.
+ <_>
+ 7 12 4 4 2.
+ <_>
+
+ <_>
+ 8 15 3 12 -1.
+ <_>
+ 9 15 1 12 3.
+ <_>
+
+ <_>
+ 0 16 10 12 -1.
+ <_>
+ 0 16 5 6 2.
+ <_>
+ 5 22 5 6 2.
+ <_>
+
+ <_>
+ 6 2 8 22 -1.
+ <_>
+ 10 2 4 11 2.
+ <_>
+ 6 13 4 11 2.
+ <_>
+
+ <_>
+ 0 25 12 3 -1.
+ <_>
+ 6 25 6 3 2.
+ <_>
+
+ <_>
+ 2 14 12 14 -1.
+ <_>
+ 2 14 6 14 2.
+ <_>
+
+ <_>
+ 2 14 8 10 -1.
+ <_>
+ 4 14 4 10 2.
+ <_>
+
+ <_>
+ 5 13 6 14 -1.
+ <_>
+ 7 13 2 14 3.
+ <_>
+
+ <_>
+ 3 13 6 14 -1.
+ <_>
+ 5 13 2 14 3.
+ <_>
+
+ <_>
+ 4 12 8 13 -1.
+ <_>
+ 6 12 4 13 2.
+ <_>
+
+ <_>
+ 2 12 8 13 -1.
+ <_>
+ 4 12 4 13 2.
+ <_>
+
+ <_>
+ 3 22 10 6 -1.
+ <_>
+ 8 22 5 3 2.
+ <_>
+ 3 25 5 3 2.
+ <_>
+
+ <_>
+ 1 22 10 6 -1.
+ <_>
+ 1 22 5 3 2.
+ <_>
+ 6 25 5 3 2.
+ <_>
+
+ <_>
+ 8 5 6 9 -1.
+ <_>
+ 8 8 6 3 3.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 0 8 6 3 2.
+ <_>
+ 6 11 6 3 2.
+ <_>
+
+ <_>
+ 9 6 3 13 -1.
+ <_>
+ 10 6 1 13 3.
+ <_>
+
+ <_>
+ 0 2 5 24 -1.
+ <_>
+ 0 14 5 12 2.
+ <_>
+
+ <_>
+ 11 11 3 8 -1.
+ <_>
+ 11 15 3 4 2.
+ <_>
+
+ <_>
+ 5 1 3 17 -1.
+ <_>
+ 6 1 1 17 3.
+ <_>
+
+ <_>
+ 5 5 8 8 -1.
+ <_>
+ 7 5 4 8 2.
+ <_>
+
+ <_>
+ 3 16 2 12 -1.
+ <_>
+ 4 16 1 12 2.
+ <_>
+
+ <_>
+ 6 3 6 18 -1.
+ <_>
+ 8 9 2 6 9.
+ <_>
+
+ <_>
+ 4 2 4 12 -1.
+ <_>
+ 4 6 4 4 3.
+ <_>
+
+ <_>
+ 5 1 4 12 -1.
+ <_>
+ 5 4 4 6 2.
+ <_>
+
+ <_>
+ 1 0 12 12 -1.
+ <_>
+ 5 4 4 4 9.
+ <_>
+
+ <_>
+ 6 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 2 0 6 5 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+
+ <_>
+ 6 5 3 21 -1.
+ <_>
+ 7 5 1 21 3.
+ <_>
+
+ <_>
+ 1 0 6 24 -1.
+ <_>
+ 1 0 3 12 2.
+ <_>
+ 4 12 3 12 2.
+ <_>
+
+ <_>
+ 8 18 4 6 -1.
+ <_>
+ 9 19 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 5 24 9 4 -1.
+ <_>
+ 8 24 3 4 3.
+ <_>
+
+ <_>
+ 0 20 8 6 -1.
+ <_>
+ 2 20 4 6 2.
+ <_>
+
+ <_>
+ 7 22 6 6 -1.
+ <_>
+ 9 22 2 6 3.
+ <_>
+
+ <_>
+ 1 22 6 6 -1.
+ <_>
+ 3 22 2 6 3.
+ <_>
+
+ <_>
+ 1 15 6 11 -1.
+ <_>
+ 3 15 2 11 3.
+ <_>
+
+ <_>
+ 4 6 6 4 -1.
+ <_>
+ 4 8 6 2 2.
+ <_>
+
+ <_>
+ 0 16 4 11 -1.
+ <_>
+ 2 16 2 11 2.
+ <_>
+
+ <_>
+ 8 16 6 6 -1.
+ <_>
+ 10 16 2 6 3.
+ <_>
+
+ <_>
+ 0 16 12 12 -1.
+ <_>
+ 4 20 4 4 9.
+ <_>
+
+ <_>
+ 8 10 6 18 -1.
+ <_>
+ 8 16 6 6 3.
+ <_>
+
+ <_>
+ 0 12 5 16 -1.
+ <_>
+ 0 20 5 8 2.
+ <_>
+
+ <_>
+ 11 12 3 16 -1.
+ <_>
+ 11 16 3 8 2.
+ <_>
+
+ <_>
+ 0 13 14 12 -1.
+ <_>
+ 0 13 7 6 2.
+ <_>
+ 7 19 7 6 2.
+ <_>
+
+ <_>
+ 3 12 10 16 -1.
+ <_>
+ 8 12 5 8 2.
+ <_>
+ 3 20 5 8 2.
+ <_>
+
+ <_>
+ 3 11 5 12 -1.
+ <_>
+ 3 17 5 6 2.
+ <_>
+
+ <_>
+ 6 0 6 18 -1.
+ <_>
+ 8 6 2 6 9.
+ <_>
+
+ <_>
+ 6 4 2 14 -1.
+ <_>
+ 6 11 2 7 2.
+ <_>
+
+ <_>
+ 3 15 8 11 -1.
+ <_>
+ 5 15 4 11 2.
+ <_>
+
+ <_>
+ 3 2 8 11 -1.
+ <_>
+ 5 2 4 11 2.
+ <_>
+
+ <_>
+ 1 4 12 5 -1.
+ <_>
+ 5 4 4 5 3.
+ <_>
+
+ <_>
+ 1 3 8 25 -1.
+ <_>
+ 5 3 4 25 2.
+ <_>
+
+ <_>
+ 8 16 6 6 -1.
+ <_>
+ 10 16 2 6 3.
+ <_>
+
+ <_>
+ 0 16 6 6 -1.
+ <_>
+ 2 16 2 6 3.
+ <_>
+
+ <_>
+ 7 13 3 14 -1.
+ <_>
+ 8 13 1 14 3.
+ <_>
+
+ <_>
+ 2 8 4 12 -1.
+ <_>
+ 2 8 2 6 2.
+ <_>
+ 4 14 2 6 2.
+ <_>
+
+ <_>
+ 7 13 3 14 -1.
+ <_>
+ 8 13 1 14 3.
+ <_>
+
+ <_>
+ 4 13 3 14 -1.
+ <_>
+ 5 13 1 14 3.
+ <_>
+
+ <_>
+ 5 3 9 6 -1.
+ <_>
+ 5 5 9 2 3.
+ <_>
+
+ <_>
+ 3 8 6 4 -1.
+ <_>
+ 3 10 6 2 2.
+ <_>
+
+ <_>
+ 11 3 3 12 -1.
+ <_>
+ 11 7 3 4 3.
+ <_>
+
+ <_>
+ 0 8 8 3 -1.
+ <_>
+ 4 8 4 3 2.
+ <_>
+
+ <_>
+ 1 13 12 8 -1.
+ <_>
+ 7 13 6 4 2.
+ <_>
+ 1 17 6 4 2.
+ <_>
+
+ <_>
+ 2 18 10 10 -1.
+ <_>
+ 7 18 5 10 2.
+ <_>
+
+ <_>
+ 5 8 4 6 -1.
+ <_>
+ 5 8 2 6 2.
+ <_>
+
+ <_>
+ 0 0 13 3 -1.
+ <_>
+ 0 1 13 1 3.
+ <_>
+
+ <_>
+ 8 1 6 8 -1.
+ <_>
+ 11 1 3 4 2.
+ <_>
+ 8 5 3 4 2.
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 0 1 3 4 2.
+ <_>
+ 3 5 3 4 2.
+ <_>
+
+ <_>
+ 7 18 2 7 -1.
+ <_>
+ 7 18 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 18 7 2 -1.
+ <_>
+ 7 18 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 22 9 4 -1.
+ <_>
+ 7 22 3 4 3.
+ <_>
+
+ <_>
+ 0 4 5 6 -1.
+ <_>
+ 0 7 5 3 2.
+ <_>
+
+ <_>
+ 11 3 3 12 -1.
+ <_>
+ 11 7 3 4 3.
+ <_>
+
+ <_>
+ 0 3 3 12 -1.
+ <_>
+ 0 7 3 4 3.
+ <_>
+
+ <_>
+ 5 0 6 8 -1.
+ <_>
+ 8 0 3 4 2.
+ <_>
+ 5 4 3 4 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 8 3 2 12 -1.
+ <_>
+ 8 3 1 12 2.
+ <_>
+
+ <_>
+ 0 6 9 8 -1.
+ <_>
+ 0 8 9 4 2.
+ <_>
+
+ <_>
+ 4 2 6 4 -1.
+ <_>
+ 4 4 6 2 2.
+ <_>
+
+ <_>
+ 1 18 4 10 -1.
+ <_>
+ 3 18 2 10 2.
+ <_>
+
+ <_>
+ 9 18 4 6 -1.
+ <_>
+ 9 18 2 6 2.
+ <_>
+
+ <_>
+ 1 2 12 3 -1.
+ <_>
+ 1 3 12 1 3.
+ <_>
+
+ <_>
+ 9 18 4 6 -1.
+ <_>
+ 9 18 2 6 2.
+ <_>
+
+ <_>
+ 0 2 14 3 -1.
+ <_>
+ 0 3 14 1 3.
+ <_>
+
+ <_>
+ 9 19 4 6 -1.
+ <_>
+ 9 19 2 6 2.
+ <_>
+
+ <_>
+ 1 19 4 6 -1.
+ <_>
+ 3 19 2 6 2.
+ <_>
+
+ <_>
+ 8 7 3 15 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 7 20 4 4 -1.
+ <_>
+ 6 21 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 9 3 2 6 2.
+ <_>
+
+ <_>
+ 1 3 4 6 -1.
+ <_>
+ 3 3 2 6 2.
+ <_>
+
+ <_>
+ 8 7 3 15 -1.
+ <_>
+ 8 12 3 5 3.
+ <_>
+
+ <_>
+ 3 7 3 15 -1.
+ <_>
+ 3 12 3 5 3.
+ <_>
+
+ <_>
+ 9 12 2 12 -1.
+ <_>
+ 9 18 2 6 2.
+ <_>
+
+ <_>
+ 3 12 2 12 -1.
+ <_>
+ 3 18 2 6 2.
+ <_>
+
+ <_>
+ 8 0 5 6 -1.
+ <_>
+ 8 3 5 3 2.
+ <_>
+
+ <_>
+ 1 0 5 6 -1.
+ <_>
+ 1 3 5 3 2.
+ <_>
+
+ <_>
+ 3 6 8 8 -1.
+ <_>
+ 3 8 8 4 2.
+ <_>
+
+ <_>
+ 2 4 6 14 -1.
+ <_>
+ 4 4 2 14 3.
+ <_>
+
+ <_>
+ 5 10 7 16 -1.
+ <_>
+ 5 18 7 8 2.
+ <_>
+
+ <_>
+ 4 10 6 10 -1.
+ <_>
+ 6 10 2 10 3.
+ <_>
+
+ <_>
+ 5 10 4 12 -1.
+ <_>
+ 5 13 4 6 2.
+ <_>
+
+ <_>
+ 2 0 6 18 -1.
+ <_>
+ 4 6 2 6 9.
+ <_>
+
+ <_>
+ 1 11 12 4 -1.
+ <_>
+ 1 12 12 2 2.
+ <_>
+
+ <_>
+ 7 15 5 2 -1.
+ <_>
+ 7 15 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 24 6 4 -1.
+ <_>
+ 4 24 3 4 2.
+ <_>
+
+ <_>
+ 5 18 5 4 -1.
+ <_>
+ 4 19 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 1 6 25 -1.
+ <_>
+ 6 1 3 25 2.
+ <_>
+
+ <_>
+ 6 13 2 12 -1.
+ <_>
+ 6 13 1 12 2.
+ <_>
+
+ <_>
+ 6 4 2 13 -1.
+ <_>
+ 7 4 1 13 2.
+ <_>
+
+ <_>
+ 8 2 6 19 -1.
+ <_>
+ 10 2 2 19 3.
+ <_>
+
+ <_>
+ 0 2 6 19 -1.
+ <_>
+ 2 2 2 19 3.
+ <_>
+
+ <_>
+ 9 1 4 13 -1.
+ <_>
+ 10 1 2 13 2.
+ <_>
+
+ <_>
+ 1 1 4 13 -1.
+ <_>
+ 2 1 2 13 2.
+ <_>
+
+ <_>
+ 3 3 8 3 -1.
+ <_>
+ 3 3 4 3 2.
+ <_>
+
+ <_>
+ 2 5 10 18 -1.
+ <_>
+ 2 11 10 6 3.
+ <_>
+
+ <_>
+ 3 8 9 12 -1.
+ <_>
+ 6 12 3 4 9.
+ <_>
+
+ <_>
+ 4 4 6 4 -1.
+ <_>
+ 4 6 6 2 2.
+ <_>
+
+ <_>
+ 4 8 10 8 -1.
+ <_>
+ 9 8 5 4 2.
+ <_>
+ 4 12 5 4 2.
+ <_>
+
+ <_>
+ 2 8 6 6 -1.
+ <_>
+ 4 8 2 6 3.
+ <_>
+
+ <_>
+ 4 10 6 10 -1.
+ <_>
+ 7 10 3 5 2.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 3 9 8 14 -1.
+ <_>
+ 3 9 4 7 2.
+ <_>
+ 7 16 4 7 2.
+ <_>
+
+ <_>
+ 4 7 6 20 -1.
+ <_>
+ 7 7 3 10 2.
+ <_>
+ 4 17 3 10 2.
+ <_>
+
+ <_>
+ 3 0 6 8 -1.
+ <_>
+ 3 0 3 4 2.
+ <_>
+ 6 4 3 4 2.
+ <_>
+
+ <_>
+ 7 5 4 6 -1.
+ <_>
+ 7 5 2 6 2.
+ <_>
+
+ <_>
+ 3 7 8 8 -1.
+ <_>
+ 3 7 4 4 2.
+ <_>
+ 7 11 4 4 2.
+ <_>
+
+ <_>
+ 5 9 6 4 -1.
+ <_>
+ 5 11 6 2 2.
+ <_>
+
+ <_>
+ 0 9 4 9 -1.
+ <_>
+ 0 12 4 3 3.
+ <_>
+
+ <_>
+ 8 6 4 12 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 1 7 10 6 -1.
+ <_>
+ 1 9 10 2 3.
+ <_>
+
+ <_>
+ 0 7 14 12 -1.
+ <_>
+ 0 10 14 6 2.
+ <_>
+
+ <_>
+ 3 9 6 4 -1.
+ <_>
+ 3 11 6 2 2.
+ <_>
+
+ <_>
+ 8 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 2 6 4 12 -1.
+ <_>
+ 2 10 4 4 3.
+ <_>
+
+ <_>
+ 2 16 12 4 -1.
+ <_>
+ 8 16 6 2 2.
+ <_>
+ 2 18 6 2 2.
+ <_>
+
+ <_>
+ 7 20 4 4 -1.
+ <_>
+ 6 21 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 16 2 12 -1.
+ <_>
+ 9 16 1 12 2.
+ <_>
+
+ <_>
+ 5 18 5 4 -1.
+ <_>
+ 4 19 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 2 6 9 7 -1.
+ <_>
+ 5 6 3 7 3.
+ <_>
+
+ <_>
+ 3 6 8 12 -1.
+ <_>
+ 3 9 8 6 2.
+ <_>
+
+ <_>
+ 0 0 9 21 -1.
+ <_>
+ 3 7 3 7 9.
+ <_>
+
+ <_>
+ 8 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 5 18 -1.
+ <_>
+ 2 10 5 9 2.
+ <_>
+
+ <_>
+ 8 1 6 7 -1.
+ <_>
+ 8 1 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 2 16 -1.
+ <_>
+ 1 3 1 16 2.
+ <_>
+
+ <_>
+ 9 18 4 8 -1.
+ <_>
+ 9 18 2 8 2.
+ <_>
+
+ <_>
+ 0 18 12 9 -1.
+ <_>
+ 3 18 6 9 2.
+ <_>
+
+ <_>
+ 1 2 12 3 -1.
+ <_>
+ 5 2 4 3 3.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 6 1 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 3 13 -1.
+ <_>
+ 7 9 1 13 3.
+ <_>
+
+ <_>
+ 6 1 6 6 -1.
+ <_>
+ 6 1 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 4 11 -1.
+ <_>
+ 6 4 2 11 2.
+ <_>
+
+ <_>
+ 4 4 4 11 -1.
+ <_>
+ 6 4 2 11 2.
+ <_>
+
+ <_>
+ 8 1 4 8 -1.
+ <_>
+ 8 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 1 20 4 8 -1.
+ <_>
+ 3 20 2 8 2.
+ <_>
+
+ <_>
+ 9 22 4 6 -1.
+ <_>
+ 9 22 2 6 2.
+ <_>
+
+ <_>
+ 1 22 4 6 -1.
+ <_>
+ 3 22 2 6 2.
+ <_>
+
+ <_>
+ 9 0 3 22 -1.
+ <_>
+ 10 0 1 22 3.
+ <_>
+
+ <_>
+ 3 21 8 6 -1.
+ <_>
+ 5 21 4 6 2.
+ <_>
+
+ <_>
+ 6 11 3 15 -1.
+ <_>
+ 7 11 1 15 3.
+ <_>
+
+ <_>
+ 6 1 8 4 -1.
+ <_>
+ 6 1 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 16 12 4 -1.
+ <_>
+ 8 16 6 2 2.
+ <_>
+ 2 18 6 2 2.
+ <_>
+
+ <_>
+ 0 16 12 4 -1.
+ <_>
+ 0 16 6 2 2.
+ <_>
+ 6 18 6 2 2.
+ <_>
+
+ <_>
+ 6 10 3 12 -1.
+ <_>
+ 6 14 3 4 3.
+ <_>
+
+ <_>
+ 4 13 6 14 -1.
+ <_>
+ 4 20 6 7 2.
+ <_>
+
+ <_>
+ 3 9 9 15 -1.
+ <_>
+ 6 14 3 5 9.
+ <_>
+
+ <_>
+ 4 10 9 4 -1.
+ <_>
+ 7 13 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 3 7 8 7 -1.
+ <_>
+ 3 7 4 7 2.
+ <_>
+
+ <_>
+ 4 9 4 6 -1.
+ <_>
+ 6 9 2 6 2.
+ <_>
+
+ <_>
+ 4 9 6 11 -1.
+ <_>
+ 6 9 2 11 3.
+ <_>
+
+ <_>
+ 1 11 4 12 -1.
+ <_>
+ 1 15 4 4 3.
+ <_>
+
+ <_>
+ 9 0 2 12 -1.
+ <_>
+ 9 0 1 12 2.
+ <_>
+
+ <_>
+ 2 4 4 16 -1.
+ <_>
+ 2 4 2 8 2.
+ <_>
+ 4 12 2 8 2.
+ <_>
+
+ <_>
+ 5 8 5 14 -1.
+ <_>
+ 5 15 5 7 2.
+ <_>
+
+ <_>
+ 2 0 3 22 -1.
+ <_>
+ 3 0 1 22 3.
+ <_>
+
+ <_>
+ 6 25 8 3 -1.
+ <_>
+ 6 25 4 3 2.
+ <_>
+
+ <_>
+ 1 6 8 22 -1.
+ <_>
+ 1 17 8 11 2.
+ <_>
+
+ <_>
+ 4 15 6 8 -1.
+ <_>
+ 7 15 3 4 2.
+ <_>
+ 4 19 3 4 2.
+ <_>
+
+ <_>
+ 5 13 4 14 -1.
+ <_>
+ 5 13 2 7 2.
+ <_>
+ 7 20 2 7 2.
+ <_>
+
+ <_>
+ 2 16 10 12 -1.
+ <_>
+ 7 16 5 6 2.
+ <_>
+ 2 22 5 6 2.
+ <_>
+
+ <_>
+ 4 15 8 3 -1.
+ <_>
+ 4 15 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 12 3 -1.
+ <_>
+ 2 1 12 1 3.
+ <_>
+
+ <_>
+ 0 5 9 22 -1.
+ <_>
+ 3 5 3 22 3.
+ <_>
+
+ <_>
+ 4 9 6 4 -1.
+ <_>
+ 4 11 6 2 2.
+ <_>
+
+ <_>
+ 4 14 6 2 -1.
+ <_>
+ 4 14 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 12 6 4 -1.
+ <_>
+ 8 12 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 16 8 4 -1.
+ <_>
+ 4 17 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 4 6 -1.
+ <_>
+ 5 15 2 6 2.
+ <_>
+
+ <_>
+ 5 9 2 14 -1.
+ <_>
+ 5 16 2 7 2.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 6 10 6 4 3.
+ <_>
+
+ <_>
+ 1 20 12 6 -1.
+ <_>
+ 1 20 6 3 2.
+ <_>
+ 7 23 6 3 2.
+ <_>
+
+ <_>
+ 4 8 6 4 -1.
+ <_>
+ 4 10 6 2 2.
+ <_>
+
+ <_>
+ 1 6 9 6 -1.
+ <_>
+ 1 8 9 2 3.
+ <_>
+
+ <_>
+ 5 6 6 4 -1.
+ <_>
+ 5 8 6 2 2.
+ <_>
+
+ <_>
+ 3 3 8 6 -1.
+ <_>
+ 3 3 4 3 2.
+ <_>
+ 7 6 4 3 2.
+ <_>
+
+ <_>
+ 6 23 6 5 -1.
+ <_>
+ 6 23 3 5 2.
+ <_>
+
+ <_>
+ 0 3 12 4 -1.
+ <_>
+ 0 3 6 2 2.
+ <_>
+ 6 5 6 2 2.
+ <_>
+
+ <_>
+ 7 4 6 18 -1.
+ <_>
+ 7 10 6 6 3.
+ <_>
+
+ <_>
+ 6 12 4 6 -1.
+ <_>
+ 6 12 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 15 12 6 -1.
+ <_>
+ 5 15 6 6 2.
+ <_>
+
+ <_>
+ 0 5 4 12 -1.
+ <_>
+ 0 5 2 6 2.
+ <_>
+ 2 11 2 6 2.
+ <_>
+
+ <_>
+ 10 4 4 16 -1.
+ <_>
+ 12 4 2 8 2.
+ <_>
+ 10 12 2 8 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lefteye_2splits.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lefteye_2splits.xml
new file mode 100644
index 0000000000000000000000000000000000000000..9a9ef58fb7438c324c373442189a9bc1cadb947b
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lefteye_2splits.xml
@@ -0,0 +1,7390 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 33
+
+ 0
+ 20
+
+ <_>
+ 5
+ -2.3924100399017334e+00
+
+ <_>
+
+ 0 1 0 2.7325989678502083e-02 -1 -2 1 -7.0568458177149296e-03
+
+ -9.0600621700286865e-01 9.3385708332061768e-01
+ -4.5859959721565247e-01
+ <_>
+
+ 0 1 2 -1.2538699805736542e-01 -1 -2 3
+ -1.1487299948930740e-01
+
+ 7.2463721036911011e-01 5.3034168481826782e-01
+ -8.3221220970153809e-01
+ <_>
+
+ 0 1 4 -5.8309938758611679e-02 -1 -2 5
+ -1.7684370279312134e-02
+
+ 6.5408891439437866e-01 2.9482871294021606e-01
+ -7.4809581041336060e-01
+ <_>
+
+ 0 1 6 3.5937170032411814e-03 -1 -2 7 -1.3436110457405448e-03
+
+ -5.0303918123245239e-01 6.5995341539382935e-01
+ -5.5740857124328613e-01
+ <_>
+
+ 1 0 8 -2.1795940119773149e-03 -1 -2 9 1.1514870449900627e-02
+
+ -4.2016351222991943e-01 5.9694331884384155e-01
+ -8.0508047342300415e-01
+ <_>
+ 7
+ -2.6498730182647705e+00
+
+ <_>
+
+ 1 0 10 -2.2485560178756714e-01 -1 -2 11
+ -9.6008004620671272e-03
+
+ -8.1363201141357422e-01 9.0863138437271118e-01
+ -3.2208970189094543e-01
+ <_>
+
+ 0 1 12 7.4219167232513428e-02 -1 -2 13
+ -5.3165741264820099e-03
+
+ -7.5329452753067017e-01 8.6339497566223145e-01
+ -3.3463571220636368e-02
+ <_>
+
+ 1 0 14 -2.1913449745625257e-03 -1 -2 15
+ 1.1800959706306458e-02
+
+ -5.5720347166061401e-01 -3.2359680533409119e-01
+ 6.4163821935653687e-01
+ <_>
+
+ 1 0 16 -7.6179709285497665e-03 -1 -2 17
+ -9.0587511658668518e-03
+
+ -5.3167867660522461e-01 -7.3611450195312500e-01
+ 5.5660772323608398e-01
+ <_>
+
+ 1 0 18 -4.9959779717028141e-03 -1 -2 19
+ 8.0803930759429932e-03
+
+ -4.1476911306381226e-01 5.9278357028961182e-01
+ -6.7384922504425049e-01
+ <_>
+
+ 0 1 20 1.9909010734409094e-03 -1 -2 21
+ 1.6845749923959374e-03
+
+ -4.2145928740501404e-01 5.4679220914840698e-01
+ -7.5099450349807739e-01
+ <_>
+
+ 1 0 22 -5.0781872123479843e-03 -1 -2 23
+ 2.6645609177649021e-03
+
+ -3.9899548888206482e-01 5.8940601348876953e-01
+ -4.6778041124343872e-01
+ <_>
+ 8
+ -2.3828399181365967e+00
+
+ <_>
+
+ 1 0 24 -2.5301438570022583e-01 -1 -2 25
+ 2.9663778841495514e-03
+
+ -7.5402587652206421e-01 -3.5279649496078491e-01
+ 8.7992298603057861e-01
+ <_>
+
+ 1 0 26 -4.7127649188041687e-02 -1 -2 27
+ 1.9500750349834561e-03
+
+ -5.2234899997711182e-01 -3.0379909276962280e-01
+ 7.5204378366470337e-01
+ <_>
+
+ 0 1 28 -7.1481026709079742e-02 -1 -2 29
+ 2.2189730405807495e-01
+
+ 6.5841901302337646e-01 -6.0907202959060669e-01
+ 5.6842160224914551e-01
+ <_>
+
+ 0 1 30 3.3842820674180984e-02 -1 -2 31
+ -5.1714561413973570e-04
+
+ -6.4311647415161133e-01 5.4620361328125000e-01
+ -3.9984148740768433e-01
+ <_>
+
+ 1 0 32 -3.4458211157470942e-03 -1 -2 33
+ 2.4395729415118694e-03
+
+ -4.5636838674545288e-01 4.7798189520835876e-01
+ -9.1247087717056274e-01
+ <_>
+
+ 1 0 34 2.1385070867836475e-03 -1 -2 35
+ 1.8324409611523151e-03
+
+ -8.3617758750915527e-01 3.3462798595428467e-01
+ -7.5008547306060791e-01
+ <_>
+
+ 1 0 36 1.1167610064148903e-03 -1 -2 37
+ 9.9106997367925942e-05
+
+ -6.9083797931671143e-01 -3.4561330080032349e-01
+ 4.1183179616928101e-01
+ <_>
+
+ 1 0 38 1.5447770245373249e-02 -1 -2 39
+ -3.2244939357042313e-02
+
+ 3.6980190873146057e-01 6.1112838983535767e-01
+ -5.5685341358184814e-01
+ <_>
+ 9
+ -2.1312201023101807e+00
+
+ <_>
+
+ 1 0 40 -1.2251129746437073e-01 -1 -2 41
+ -1.4230609871447086e-02
+
+ -6.7026627063751221e-01 8.7802392244338989e-01
+ -1.8784180283546448e-01
+ <_>
+
+ 1 0 42 -5.9833219274878502e-03 -1 -2 43
+ 7.7085137367248535e-02
+
+ -5.8122849464416504e-01 -5.0395351648330688e-01
+ 6.7387360334396362e-01
+ <_>
+
+ 0 1 44 -1.1086189746856689e-01 -1 -2 45
+ 9.4604760408401489e-02
+
+ 6.3432037830352783e-01 -4.9726390838623047e-01
+ 3.8787439465522766e-01
+ <_>
+
+ 0 1 46 1.7696130089461803e-04 -1 -2 47
+ 2.0120320841670036e-03
+
+ -6.3938802480697632e-01 -3.5313910245895386e-01
+ 5.1538437604904175e-01
+ <_>
+
+ 1 0 48 -1.6102839726954699e-03 -1 -2 49
+ 1.6666069859638810e-03
+
+ -5.1915901899337769e-01 4.0478190779685974e-01
+ -6.9496357440948486e-01
+ <_>
+
+ 1 0 50 -7.1480998303741217e-04 -1 -2 51
+ -4.7647571191191673e-03
+
+ -4.8945188522338867e-01 -5.0037759542465210e-01
+ 4.0796059370040894e-01
+ <_>
+
+ 0 1 52 7.8659597784280777e-03 -1 -2 53
+ -1.2938310392200947e-03
+
+ -3.3636429905891418e-01 -6.7621380090713501e-01
+ 4.7010248899459839e-01
+ <_>
+
+ 1 0 54 -3.6533139063976705e-04 -1 -2 55
+ 2.0565679296851158e-03
+
+ -4.7071608901023865e-01 4.1323411464691162e-01
+ -5.5526417493820190e-01
+ <_>
+
+ 0 1 56 7.8385717642959207e-05 -1 -2 57
+ 1.7511800397187471e-03
+
+ -5.1521158218383789e-01 3.3417248725891113e-01
+ -7.9558157920837402e-01
+ <_>
+ 9
+ -2.0176210403442383e+00
+
+ <_>
+
+ 1 0 58 -6.4695239067077637e-02 -1 -2 59
+ 9.5212170854210854e-03
+
+ -6.1326402425765991e-01 -5.4831558465957642e-01
+ 7.8652447462081909e-01
+ <_>
+
+ 0 1 60 -9.8109766840934753e-02 -1 -2 61
+ -8.5938459634780884e-01
+
+ 6.9113308191299438e-01 4.5364680886268616e-01
+ -5.0026148557662964e-01
+ <_>
+
+ 1 0 62 -8.9836172759532928e-02 -1 -2 63
+ 2.6945930439978838e-03
+
+ -5.2928781509399414e-01 -3.8199779391288757e-01
+ 5.7821297645568848e-01
+ <_>
+
+ 1 0 64 2.5973599404096603e-03 -1 -2 65
+ -3.0058110132813454e-03
+
+ -9.1928368806838989e-01 -8.0213797092437744e-01
+ 2.9259279370307922e-01
+ <_>
+
+ 1 0 66 -4.5496290549635887e-03 -1 -2 67
+ 4.7376728616654873e-03
+
+ -4.3678951263427734e-01 4.1010880470275879e-01
+ -7.2692811489105225e-01
+ <_>
+
+ 1 0 68 4.6190437860786915e-03 -1 -2 69
+ 4.5377281494438648e-03
+
+ -8.4895151853561401e-01 3.0124679207801819e-01
+ -7.0301771163940430e-01
+ <_>
+
+ 1 0 70 -2.4952790699899197e-03 -1 -2 71
+ -5.1753767766058445e-03
+
+ -4.6784749627113342e-01 -7.4530351161956787e-01
+ 4.0011820197105408e-01
+ <_>
+
+ 0 1 72 -5.2049742080271244e-03 -1 -2 73
+ -8.7892003357410431e-02
+
+ 4.8669269680976868e-01 8.3493947982788086e-01
+ -3.3827719092369080e-01
+ <_>
+
+ 0 1 74 6.9997250102460384e-03 -1 -2 75
+ -9.0990252792835236e-03
+
+ -2.9039889574050903e-01 6.2315821647644043e-01
+ -3.5424730181694031e-01
+ <_>
+ 11
+ -2.2212049961090088e+00
+
+ <_>
+
+ 1 0 76 -5.5702101439237595e-02 -1 -2 77
+ 3.4033291041851044e-02
+
+ -6.9841581583023071e-01 -3.9509189128875732e-01
+ 8.0313128232955933e-01
+ <_>
+
+ 1 0 78 -4.6199060976505280e-02 -1 -2 79
+ -4.8061669804155827e-03
+
+ -4.8860380053520203e-01 8.0775612592697144e-01
+ -7.4490822851657867e-02
+ <_>
+
+ 0 1 80 1.8170489929616451e-03 -1 -2 81
+ -3.6162370815873146e-03
+
+ -3.8043528795242310e-01 6.0451722145080566e-01
+ -2.2582240402698517e-01
+ <_>
+
+ 1 0 82 -1.5706950798630714e-02 -1 -2 83
+ 4.3929950334131718e-03
+
+ -3.7577998638153076e-01 5.4214221239089966e-01
+ -3.7388241291046143e-01
+ <_>
+
+ 1 0 84 -1.0047219984699041e-04 -1 -2 85
+ -8.6475118994712830e-02
+
+ -4.7433409094810486e-01 5.0186318159103394e-01
+ -2.1136230230331421e-01
+ <_>
+
+ 0 1 86 -7.7960766851902008e-02 -1 -2 87
+ 9.8561286926269531e-02
+
+ 5.7337349653244019e-01 -3.2515558600425720e-01
+ 5.3035980463027954e-01
+ <_>
+
+ 0 1 88 -5.4359167814254761e-01 -1 -2 89
+ -4.4177699834108353e-02
+
+ 5.9464299678802490e-01 2.9671078920364380e-01
+ -3.8474830985069275e-01
+ <_>
+
+ 1 0 90 -8.8016409426927567e-04 -1 -2 91
+ 2.6359390467405319e-03
+
+ -3.2000589370727539e-01 -1.7586140334606171e-01
+ 4.8360350728034973e-01
+ <_>
+
+ 0 1 92 -1.4203689992427826e-02 -1 -2 93
+ -7.3902818257920444e-05
+
+ -7.7882087230682373e-01 3.0619418621063232e-01
+ -3.3196049928665161e-01
+ <_>
+
+ 1 0 94 4.6157240867614746e-03 -1 -2 95
+ 1.1152310296893120e-02
+
+ 4.9689778685569763e-01 -5.3435891866683960e-01
+ 9.7229443490505219e-02
+ <_>
+
+ 0 1 96 -6.0547702014446259e-03 -1 -2 97
+ -2.1118740551173687e-03
+
+ -8.3811217546463013e-01 6.3617032766342163e-01
+ -4.8299189656972885e-02
+ <_>
+ 13
+ -2.1328830718994141e+00
+
+ <_>
+
+ 1 0 98 -1.2956829741597176e-02 -1 -2 99
+ -2.7141019701957703e-02
+
+ -6.4874732494354248e-01 7.6293057203292847e-01
+ -3.3947870135307312e-01
+ <_>
+
+ 0 1 100 4.5119998976588249e-03 -1 -2 101
+ 1.2516690418124199e-02
+
+ -5.0059837102890015e-01 -3.6873328685760498e-01
+ 5.9888631105422974e-01
+ <_>
+
+ 1 0 102 -6.0557941906154156e-03 -1 -2 103
+ -4.6923749148845673e-02
+
+ -3.8940930366516113e-01 6.3268911838531494e-01
+ -2.6270028948783875e-01
+ <_>
+
+ 1 0 104 -2.4018269032239914e-03 -1 -2 105
+ -1.5936089679598808e-02
+
+ -5.0517928600311279e-01 6.5526002645492554e-01
+ -1.7308109998703003e-01
+ <_>
+
+ 0 1 106 1.4000290073454380e-02 -1 -2 107
+ 1.3202779926359653e-02
+
+ -4.1653230786323547e-01 -4.9121969938278198e-01
+ 3.7397938966751099e-01
+ <_>
+
+ 1 0 108 -2.7658580802381039e-04 -1 -2 109
+ -4.8634149134159088e-03
+
+ -4.5382869243621826e-01 -5.9796881675720215e-01
+ 3.1217721104621887e-01
+ <_>
+
+ 1 0 110 2.7654920704662800e-03 -1 -2 111
+ 2.5534769892692566e-01
+
+ -7.6476567983627319e-01 -3.4267220646142960e-02
+ 7.0786577463150024e-01
+ <_>
+
+ 1 0 112 4.6812961809337139e-03 -1 -2 113
+ 6.5162130631506443e-03
+
+ -7.8790861368179321e-01 1.8877579271793365e-01
+ -7.9132258892059326e-01
+ <_>
+
+ 1 0 114 5.7325329631567001e-02 -1 -2 115
+ -1.2718330137431622e-02
+
+ 6.2349188327789307e-01 3.0860608816146851e-01
+ -3.2784330844879150e-01
+ <_>
+
+ 1 0 116 -6.7374261561781168e-04 -1 -2 117
+ 5.6564649567008018e-03
+
+ -4.5451548695564270e-01 2.7431339025497437e-01
+ -7.8447937965393066e-01
+ <_>
+
+ 1 0 118 3.1134090386331081e-03 -1 -2 119
+ 2.4249779526144266e-03
+
+ 3.9738771319389343e-01 -3.5198271274566650e-01
+ 3.0490091443061829e-01
+ <_>
+
+ 0 1 120 -5.5641461163759232e-02 -1 -2 121
+ 4.3548129498958588e-02
+
+ 4.5575490593910217e-01 -3.3370929956436157e-01
+ 2.9501429200172424e-01
+ <_>
+
+ 1 0 122 8.0783379962667823e-04 -1 -2 123
+ 1.8713270546868443e-03
+
+ 2.2460040450096130e-01 -6.6048407554626465e-01
+ 1.5031670033931732e-01
+ <_>
+ 13
+ -1.9884539842605591e+00
+
+ <_>
+
+ 1 0 124 -4.3516629934310913e-01 -1 -2 125
+ 6.2595037743449211e-03
+
+ -4.9959290027618408e-01 -2.3639589548110962e-01
+ 7.9975378513336182e-01
+ <_>
+
+ 1 0 126 -6.6518150269985199e-03 -1 -2 127
+ -5.7092090137302876e-03
+
+ -5.4752808809280396e-01 6.4273327589035034e-01
+ -2.1511809527873993e-01
+ <_>
+
+ 0 1 128 1.9450180232524872e-02 -1 -2 129
+ -5.4476498626172543e-03
+
+ -5.3605002164840698e-01 5.5794501304626465e-01
+ -2.1474960446357727e-01
+ <_>
+
+ 1 0 130 -1.6347589553333819e-04 -1 -2 131
+ 7.1614650078117847e-03
+
+ -5.5962842702865601e-01 -1.6604369878768921e-01
+ 4.6805259585380554e-01
+ <_>
+
+ 1 0 132 -1.3145170174539089e-02 -1 -2 133
+ -1.1436809785664082e-02
+
+ -4.1279909014701843e-01 3.7901800870895386e-01
+ -4.1791579127311707e-01
+ <_>
+
+ 0 1 134 -7.2912001051008701e-03 -1 -2 135
+ -5.2170921117067337e-04
+
+ -7.6089668273925781e-01 3.2527619600296021e-01
+ -3.0110970139503479e-01
+ <_>
+
+ 1 0 136 3.3754010219126940e-03 -1 -2 137
+ 2.5100160855799913e-03
+
+ -7.8373962640762329e-01 1.8525449931621552e-01
+ -5.8084958791732788e-01
+ <_>
+
+ 0 1 138 -1.2884209863841534e-03 -1 -2 139
+ -1.8726480193436146e-03
+
+ 2.7339500188827515e-01 1.6819879412651062e-01
+ -5.1986902952194214e-01
+ <_>
+
+ 1 0 140 2.4010189808905125e-03 -1 -2 141
+ 4.8938081599771976e-03
+
+ -8.2964670658111572e-01 1.6796599328517914e-01
+ -6.5530872344970703e-01
+ <_>
+
+ 0 1 142 3.1223020050674677e-03 -1 -2 143
+ 5.0366491079330444e-02
+
+ -4.3521308898925781e-01 -5.8327801525592804e-03
+ 7.0878309011459351e-01
+ <_>
+
+ 1 0 144 3.6151800304651260e-02 -1 -2 145
+ -1.3426589965820312e-01
+
+ 4.4979161024093628e-01 3.9472430944442749e-01
+ -3.7588629126548767e-01
+ <_>
+
+ 1 0 146 -2.7791369706392288e-02 -1 -2 147
+ -1.2712170369923115e-02
+
+ -2.9488721489906311e-01 -7.2011739015579224e-01
+ 3.6595028638839722e-01
+ <_>
+
+ 1 0 148 -3.8276749546639621e-04 -1 -2 149
+ -6.1330529861152172e-03
+
+ -4.0581339597702026e-01 -5.2725958824157715e-01
+ 3.6040499806404114e-01
+ <_>
+ 16
+ -2.0902318954467773e+00
+
+ <_>
+
+ 1 0 150 -4.7748669981956482e-02 -1 -2 151
+ 4.6201851218938828e-03
+
+ -5.9902387857437134e-01 -2.4887490272521973e-01
+ 6.9201582670211792e-01
+ <_>
+
+ 1 0 152 -8.5353456437587738e-02 -1 -2 153
+ -7.0110969245433807e-03
+
+ -5.1715832948684692e-01 5.6950652599334717e-01
+ -2.4749420583248138e-01
+ <_>
+
+ 1 0 154 -7.6567470096051693e-03 -1 -2 155
+ -3.5919491201639175e-02
+
+ -3.7316519021987915e-01 4.9438580870628357e-01
+ -3.9586681127548218e-01
+ <_>
+
+ 0 1 156 -7.4326626956462860e-02 -1 -2 157
+ 9.0118587017059326e-02
+
+ 5.6755977869033813e-01 -3.8921171426773071e-01
+ 3.1079098582267761e-01
+ <_>
+
+ 0 1 158 1.6736460849642754e-02 -1 -2 159
+ 1.8592580454424024e-03
+
+ -3.6674138903617859e-01 3.4875720739364624e-01
+ -5.7483112812042236e-01
+ <_>
+
+ 1 0 160 7.5264140032231808e-03 -1 -2 161
+ -3.5309391096234322e-03
+
+ 6.7878991365432739e-01 4.8617920279502869e-01
+ -2.5660640001296997e-01
+ <_>
+
+ 1 0 162 -4.9510748795000836e-05 -1 -2 163
+ -6.8923248909413815e-03
+
+ -4.5661240816116333e-01 -5.7134729623794556e-01
+ 3.2921048998832703e-01
+ <_>
+
+ 1 0 164 6.1156069859862328e-03 -1 -2 165
+ -5.5014882236719131e-03
+
+ -7.1315360069274902e-01 -5.9139078855514526e-01
+ 1.9805949926376343e-01
+ <_>
+
+ 1 0 166 -4.2378060519695282e-02 -1 -2 167
+ 2.2011259570717812e-03
+
+ -3.8239300251007080e-01 3.3457010984420776e-01
+ -4.3032339215278625e-01
+ <_>
+
+ 1 0 168 2.1217379253357649e-03 -1 -2 169
+ 6.4385468140244484e-03
+
+ -6.8310022354125977e-01 2.0478610694408417e-01
+ -6.1793941259384155e-01
+ <_>
+
+ 1 0 170 3.1177410855889320e-03 -1 -2 171
+ 4.2230269173160195e-04
+
+ 5.1137161254882812e-01 -3.6440208554267883e-01
+ 2.1073049306869507e-01
+ <_>
+
+ 0 1 172 -6.5657291561365128e-03 -1 -2 173
+ 2.5686610024422407e-03
+
+ -6.4581501483917236e-01 2.7643561363220215e-01
+ -3.4198498725891113e-01
+ <_>
+
+ 1 0 174 -6.2437567976303399e-05 -1 -2 175
+ -3.6269261036068201e-03
+
+ -3.1758078932762146e-01 -8.1051957607269287e-01
+ 2.7218630909919739e-01
+ <_>
+
+ 1 0 176 -3.4638389479368925e-03 -1 -2 177
+ -7.4930191040039062e-02
+
+ -3.9515769481658936e-01 -5.4353868961334229e-01
+ 2.6106119155883789e-01
+ <_>
+
+ 0 1 178 -9.7247250378131866e-03 -1 -2 179
+ 4.5450199395418167e-03
+
+ 4.1124871373176575e-01 -3.1576550006866455e-01
+ 3.9046970009803772e-01
+ <_>
+
+ 0 1 180 -2.7354240883141756e-03 -1 -2 181
+ -1.6969470307230949e-02
+
+ -7.4906748533248901e-01 -6.2437218427658081e-01
+ 1.8387380242347717e-01
+ <_>
+ 15
+ -1.9407310485839844e+00
+
+ <_>
+
+ 1 0 182 -2.4978699162602425e-02 -1 -2 183
+ -5.8007869869470596e-02
+
+ -6.0697889328002930e-01 7.1478021144866943e-01
+ -2.9943239688873291e-01
+ <_>
+
+ 1 0 184 -5.1753749139606953e-03 -1 -2 185
+ -8.9618662605062127e-04
+
+ -3.5297989845275879e-01 5.4417461156845093e-01
+ -3.9789950847625732e-01
+ <_>
+
+ 1 0 186 -2.8718139219563454e-05 -1 -2 187
+ 4.7620530240237713e-03
+
+ -4.8898181319236755e-01 -3.1144559383392334e-01
+ 4.6786791086196899e-01
+ <_>
+
+ 0 1 188 1.9751280546188354e-02 -1 -2 189
+ -1.2683609966188669e-03
+
+ -4.3020489811897278e-01 -5.4090851545333862e-01
+ 3.9797520637512207e-01
+ <_>
+
+ 1 0 190 -4.5749718992738053e-05 -1 -2 191
+ 2.4090509396046400e-03
+
+ -4.4518938660621643e-01 2.8822308778762817e-01
+ -5.4514312744140625e-01
+ <_>
+
+ 0 1 192 -4.5728669501841068e-03 -1 -2 193
+ 8.9018214493989944e-03
+
+ 5.5039870738983154e-01 -4.1598889231681824e-01
+ 1.7468899488449097e-01
+ <_>
+
+ 0 1 194 -1.2056449800729752e-01 -1 -2 195
+ 4.6919930726289749e-02
+
+ 6.8890577554702759e-01 -4.2266309261322021e-01
+ 1.7010940611362457e-01
+ <_>
+
+ 0 1 196 -4.2390259914100170e-03 -1 -2 197
+ 3.2174249645322561e-03
+
+ -6.3045340776443481e-01 -3.6097949743270874e-01
+ 2.4933730065822601e-01
+ <_>
+
+ 0 1 198 -8.5738790221512318e-04 -1 -2 199
+ -1.8432449549436569e-02
+
+ 3.0993479490280151e-01 9.7758449614048004e-02
+ -5.0742352008819580e-01
+ <_>
+
+ 1 0 200 5.8692828752100468e-03 -1 -2 201
+ -6.8751699291169643e-03
+
+ -7.4556058645248413e-01 -6.7458391189575195e-01
+ 1.5918810665607452e-01
+ <_>
+
+ 1 0 202 -6.8542227381840348e-05 -1 -2 203
+ -1.0658579878509045e-02
+
+ -4.1279420256614685e-01 3.7002709507942200e-01
+ -2.1731729805469513e-01
+ <_>
+
+ 0 1 204 -1.8811509944498539e-03 -1 -2 205
+ -2.2309130057692528e-02
+
+ 5.7902830839157104e-01 1.9725680351257324e-01
+ -3.2475191354751587e-01
+ <_>
+
+ 1 0 206 6.5826578065752983e-04 -1 -2 207
+ -5.0781588070094585e-03
+
+ -6.0630238056182861e-01 -7.7123302221298218e-01
+ 1.8186129629611969e-01
+ <_>
+
+ 1 0 208 5.6215081363916397e-02 -1 -2 209
+ -3.7720590829849243e-02
+
+ 5.0561398267745972e-01 3.6052110791206360e-01
+ -3.2743760943412781e-01
+ <_>
+
+ 1 0 210 3.9480631239712238e-03 -1 -2 211
+ -2.4269670248031616e-03
+
+ -7.5788182020187378e-01 5.2076101303100586e-01
+ -6.1021361500024796e-02
+ <_>
+ 19
+ -2.1061589717864990e+00
+
+ <_>
+
+ 1 0 212 -1.6906699165701866e-02 -1 -2 213
+ 2.5327840819954872e-02
+
+ -4.7501268982887268e-01 -4.4016760587692261e-01
+ 6.0885351896286011e-01
+ <_>
+
+ 0 1 214 -1.5663320198655128e-02 -1 -2 215
+ -1.6101899743080139e-01
+
+ 5.7100051641464233e-01 4.0989148616790771e-01
+ -3.8142371177673340e-01
+ <_>
+
+ 0 1 216 1.6885380318854004e-04 -1 -2 217
+ -3.0552360694855452e-03
+
+ -4.7958490252494812e-01 4.2852300405502319e-01
+ -2.8252631425857544e-01
+ <_>
+
+ 1 0 218 4.8042940907180309e-03 -1 -2 219
+ -5.0092511810362339e-03
+
+ -6.8659138679504395e-01 -5.9033542871475220e-01
+ 1.9732500612735748e-01
+ <_>
+
+ 1 0 220 -3.7119518965482712e-02 -1 -2 221
+ 3.7857799325138330e-03
+
+ -4.3130961060523987e-01 3.3596190810203552e-01
+ -3.7401720881462097e-01
+ <_>
+
+ 0 1 222 -1.0869850404560566e-02 -1 -2 223
+ 4.0577541221864522e-04
+
+ 5.4841208457946777e-01 -5.0022697448730469e-01
+ 5.1423858851194382e-02
+ <_>
+
+ 1 0 224 5.0201490521430969e-03 -1 -2 225
+ 2.5601210072636604e-03
+
+ -5.9016227722167969e-01 1.9469800591468811e-01
+ -6.4648360013961792e-01
+ <_>
+
+ 1 0 226 -1.2395749799907207e-03 -1 -2 227
+ -5.1075750961899757e-03
+
+ -2.7762159705162048e-01 -6.1149162054061890e-01
+ 3.5250389575958252e-01
+ <_>
+
+ 1 0 228 -6.4853738876990974e-05 -1 -2 229
+ 2.3282810579985380e-03
+
+ -3.4008860588073730e-01 2.7134749293327332e-01
+ -6.6915398836135864e-01
+ <_>
+
+ 1 0 230 -1.5571110416203737e-03 -1 -2 231
+ 2.3992219939827919e-03
+
+ -4.1144248843193054e-01 2.5939700007438660e-01
+ -4.0380299091339111e-01
+ <_>
+
+ 1 0 232 7.7784422319382429e-04 -1 -2 233
+ 3.2334199640899897e-03
+
+ 2.9523921012878418e-01 -5.8436852693557739e-01
+ -1.7936639487743378e-02
+ <_>
+
+ 1 0 234 -5.6113858590833843e-05 -1 -2 235
+ 1.9111000001430511e-03
+
+ -3.5021650791168213e-01 2.6312610507011414e-01
+ -6.1549347639083862e-01
+ <_>
+
+ 0 1 236 -3.4321150742471218e-03 -1 -2 237
+ -1.4541969634592533e-02
+
+ 3.7493300437927246e-01 4.3788930773735046e-01
+ -3.0131611227989197e-01
+ <_>
+
+ 0 1 238 -2.5027070194482803e-02 -1 -2 239
+ -3.1183639075607061e-03
+
+ -5.2829748392105103e-01 -8.1336849927902222e-01
+ 1.7928420007228851e-01
+ <_>
+
+ 1 0 240 2.9415208846330643e-03 -1 -2 241
+ -2.4807679001241922e-03
+
+ -4.7243058681488037e-01 -6.0058331489562988e-01
+ 2.1497109532356262e-01
+ <_>
+
+ 1 0 242 -4.2498838156461716e-03 -1 -2 243
+ 7.6959328725934029e-03
+
+ -3.3230608701705933e-01 2.1247069537639618e-01
+ -8.1967252492904663e-01
+ <_>
+
+ 0 1 244 -6.1426039785146713e-02 -1 -2 245
+ 5.3176790475845337e-02
+
+ 5.2200448513031006e-01 -2.9851761460304260e-01
+ 2.8654190897941589e-01
+ <_>
+
+ 0 1 246 2.5695779186207801e-05 -1 -2 247
+ 2.4311970919370651e-03
+
+ -3.4719291329383850e-01 -1.2133490294218063e-01
+ 3.8965350389480591e-01
+ <_>
+
+ 1 0 248 5.6956289336085320e-03 -1 -2 249
+ -6.6630227956920862e-04
+
+ -6.6364032030105591e-01 2.7921909093856812e-01
+ -2.1624849736690521e-01
+ <_>
+ 20
+ -2.0051579475402832e+00
+
+ <_>
+
+ 1 0 250 -2.8509549796581268e-02 -1 -2 251
+ -1.6429109498858452e-02
+
+ -5.5133241415023804e-01 6.0328769683837891e-01
+ -3.0009600520133972e-01
+ <_>
+
+ 1 0 252 -5.8078952133655548e-03 -1 -2 253
+ -1.4670349657535553e-02
+
+ -4.8640519380569458e-01 4.4786658883094788e-01
+ -3.5448360443115234e-01
+ <_>
+
+ 1 0 254 -1.0694459779188037e-03 -1 -2 255
+ -5.0697539001703262e-02
+
+ -3.8593119382858276e-01 4.3865600228309631e-01
+ -3.1134051084518433e-01
+ <_>
+
+ 0 1 256 -7.2318017482757568e-02 -1 -2 257
+ -1.6740759834647179e-02
+
+ 5.5695492029190063e-01 3.4036931395530701e-01
+ -3.7713068723678589e-01
+ <_>
+
+ 1 0 258 1.2923260219395161e-02 -1 -2 259
+ -2.0832989830523729e-03
+
+ 2.6987180113792419e-01 7.2217263281345367e-02
+ -5.0617259740829468e-01
+ <_>
+
+ 0 1 260 2.9217539122328162e-04 -1 -2 261
+ 4.6477448195219040e-03
+
+ -4.7199469804763794e-01 -2.0233640074729919e-01
+ 3.6684620380401611e-01
+ <_>
+
+ 0 1 262 1.6355320112779737e-03 -1 -2 263
+ 6.0143060982227325e-03
+
+ -3.3369150757789612e-01 2.6335370540618896e-01
+ -7.5315129756927490e-01
+ <_>
+
+ 0 1 264 -1.9768040627241135e-02 -1 -2 265
+ 5.0995801575481892e-03
+
+ -7.3396641016006470e-01 -1.0626330226659775e-01
+ 3.7877479195594788e-01
+ <_>
+
+ 1 0 266 2.1737320348620415e-03 -1 -2 267
+ 2.3621059954166412e-02
+
+ -4.5873621106147766e-01 -3.7341989576816559e-02
+ 5.0312960147857666e-01
+ <_>
+
+ 1 0 268 4.7070439904928207e-02 -1 -2 269
+ 4.8429161310195923e-02
+
+ 3.9159670472145081e-01 -2.7507638931274414e-01
+ 3.6923450231552124e-01
+ <_>
+
+ 0 1 270 7.1763257437851280e-05 -1 -2 271
+ -4.0031517855823040e-03
+
+ -2.6133701205253601e-01 -4.6118479967117310e-01
+ 3.4101578593254089e-01
+ <_>
+
+ 1 0 272 2.5536299217492342e-03 -1 -2 273
+ -2.5720898993313313e-03
+
+ 4.4237849116325378e-01 4.3066531419754028e-01
+ -2.8360688686370850e-01
+ <_>
+
+ 1 0 274 8.7512210011482239e-03 -1 -2 275
+ 5.7346918620169163e-03
+
+ -7.7647632360458374e-01 1.4551159739494324e-01
+ -7.5074160099029541e-01
+ <_>
+
+ 0 1 276 -6.6438838839530945e-03 -1 -2 277
+ -3.4590701106935740e-03
+
+ 4.0350550413131714e-01 2.8769719600677490e-01
+ -2.8021600842475891e-01
+ <_>
+
+ 1 0 278 9.9742468446493149e-03 -1 -2 279
+ 1.3233659788966179e-02
+
+ -6.0677021741867065e-01 1.5478080511093140e-01
+ -7.0759147405624390e-01
+ <_>
+
+ 0 1 280 -5.0271311774849892e-03 -1 -2 281
+ -1.2092100223526359e-04
+
+ -7.3897778987884521e-01 2.3473000526428223e-01
+ -2.4400579929351807e-01
+ <_>
+
+ 1 0 282 -1.2881499715149403e-03 -1 -2 283
+ 6.2854858115315437e-03
+
+ -2.8901669383049011e-01 2.8100869059562683e-01
+ -5.6933850049972534e-01
+ <_>
+
+ 1 0 284 5.6929360143840313e-03 -1 -2 285
+ -5.3880861960351467e-03
+
+ -7.8456932306289673e-01 2.6201328635215759e-01
+ -2.2232030332088470e-01
+ <_>
+
+ 1 0 286 4.8205819912254810e-03 -1 -2 287
+ 3.4279188513755798e-01
+
+ 5.6795972585678101e-01 -1.8314230442047119e-01
+ 5.4108071327209473e-01
+ <_>
+
+ 0 1 288 5.1370919682085514e-03 -1 -2 289
+ -9.1285221278667450e-03
+
+ -3.9116761088371277e-01 5.3076338768005371e-01
+ -3.0019309371709824e-02
+ <_>
+ 21
+ -2.1121981143951416e+00
+
+ <_>
+
+ 1 0 290 -5.1386129111051559e-02 -1 -2 291
+ 5.1850839518010616e-03
+
+ -5.3148782253265381e-01 -2.4744540452957153e-01
+ 6.1181622743606567e-01
+ <_>
+
+ 1 0 292 -1.5259400010108948e-02 -1 -2 293
+ 2.5995150208473206e-02
+
+ -4.3303629755973816e-01 4.3979901820421219e-02
+ 7.3829138278961182e-01
+ <_>
+
+ 1 0 294 -3.2312370836734772e-02 -1 -2 295
+ 1.3700700365006924e-02
+
+ -3.9609751105308533e-01 -2.7643880248069763e-01
+ 4.2535358667373657e-01
+ <_>
+
+ 1 0 296 -2.2647869773209095e-03 -1 -2 297
+ -6.8290620110929012e-03
+
+ -3.2005569338798523e-01 -5.1682972908020020e-01
+ 3.6975708603858948e-01
+ <_>
+
+ 1 0 298 -2.2481549531221390e-03 -1 -2 299
+ 4.5944549143314362e-02
+
+ -3.6244350671768188e-01 -1.3187309959903359e-03
+ 6.3217681646347046e-01
+ <_>
+
+ 1 0 300 1.8755620112642646e-03 -1 -2 301
+ -1.9700559787452221e-03
+
+ -7.1403390169143677e-01 -5.8730661869049072e-01
+ 1.7592810094356537e-01
+ <_>
+
+ 1 0 302 -6.5721389837563038e-03 -1 -2 303
+ -1.1746180243790150e-02
+
+ -3.6347511410713196e-01 3.1440791487693787e-01
+ -4.0111118555068970e-01
+ <_>
+
+ 1 0 304 -1.6494120063725859e-04 -1 -2 305
+ -7.2169408667832613e-05
+
+ -3.7792590260505676e-01 5.2791112661361694e-01
+ -1.0790319740772247e-01
+ <_>
+
+ 0 1 306 1.9697639800142497e-04 -1 -2 307
+ -1.1423509567975998e-02
+
+ -4.7097641229629517e-01 -8.5209292173385620e-01
+ 1.7662869393825531e-01
+ <_>
+
+ 0 1 308 -4.5562228187918663e-03 -1 -2 309
+ -4.4720191508531570e-03
+
+ -8.0601161718368530e-01 -6.1500209569931030e-01
+ 1.2908309698104858e-01
+ <_>
+
+ 0 1 310 -1.7765410011634231e-03 -1 -2 311
+ -7.8799277544021606e-03
+
+ 3.1382599472999573e-01 3.0394628643989563e-01
+ -3.7204921245574951e-01
+ <_>
+
+ 0 1 312 -1.4284689677879214e-03 -1 -2 313
+ -1.8939910223707557e-03
+
+ 5.0413030385971069e-01 3.4823760390281677e-01
+ -2.3673820495605469e-01
+ <_>
+
+ 0 1 314 -3.1496640294790268e-03 -1 -2 315
+ -1.0716119781136513e-02
+
+ -6.6812378168106079e-01 -4.8515519499778748e-01
+ 1.9036419689655304e-01
+ <_>
+
+ 0 1 316 -6.8033537827432156e-03 -1 -2 317
+ 1.4902319759130478e-02
+
+ -5.6979268789291382e-01 1.3098250329494476e-01
+ -7.1448272466659546e-01
+ <_>
+
+ 0 1 318 -3.4170228987932205e-02 -1 -2 319
+ -1.4779250323772430e-01
+
+ 5.0575131177902222e-01 2.8233268857002258e-01
+ -2.7205321192741394e-01
+ <_>
+
+ 1 0 320 -5.5842810979811475e-05 -1 -2 321
+ 3.9885081350803375e-02
+
+ -2.6936730742454529e-01 5.6696129031479359e-03
+ 6.3975161314010620e-01
+ <_>
+
+ 1 0 322 1.2483130209147930e-02 -1 -2 323
+ -3.2864511013031006e-04
+
+ -7.4533742666244507e-01 3.6449620127677917e-01
+ -9.6498817205429077e-02
+ <_>
+
+ 0 1 324 -1.4710469986312091e-04 -1 -2 325
+ -2.7814340591430664e-01
+
+ 1.4060440659523010e-01 5.7002830505371094e-01
+ -4.8755478858947754e-01
+ <_>
+
+ 0 1 326 -1.3452640268951654e-03 -1 -2 327
+ 9.1500842245295644e-04
+
+ 3.9255830645561218e-01 -3.0215170979499817e-01
+ 3.6698031425476074e-01
+ <_>
+
+ 0 1 328 -3.4133149310946465e-03 -1 -2 329
+ 5.1169008947908878e-03
+
+ -6.4085817337036133e-01 -2.3052580654621124e-01
+ 2.4285919964313507e-01
+ <_>
+
+ 1 0 330 8.8846698403358459e-02 -1 -2 331
+ 6.1080828309059143e-03
+
+ 4.5381888747215271e-01 -3.5880088806152344e-01
+ 1.3209380209445953e-01
+ <_>
+ 23
+ -1.8701590299606323e+00
+
+ <_>
+
+ 1 0 332 -1.5930000692605972e-02 -1 -2 333
+ 2.7407450601458549e-02
+
+ -3.5245341062545776e-01 -6.0236789286136627e-02
+ 7.2715848684310913e-01
+ <_>
+
+ 1 0 334 -8.5037678480148315e-02 -1 -2 335
+ -1.1508919997140765e-03
+
+ -4.3576711416244507e-01 4.6471679210662842e-01
+ -3.5896891355514526e-01
+ <_>
+
+ 1 0 336 -6.4599298639222980e-04 -1 -2 337
+ 5.5495807901024818e-03
+
+ -3.1371060013771057e-01 4.1225919127464294e-01
+ -4.9400448799133301e-01
+ <_>
+
+ 1 0 338 -1.1472150217741728e-03 -1 -2 339
+ -6.4546810463070869e-03
+
+ -3.9192581176757812e-01 -6.9197827577590942e-01
+ 2.6103940606117249e-01
+ <_>
+
+ 0 1 340 -1.1414250358939171e-02 -1 -2 341
+ 1.1582579463720322e-03
+
+ 3.2361420989036560e-01 -3.8304999470710754e-01
+ 2.8015980124473572e-01
+ <_>
+
+ 1 0 342 -6.1077292775735259e-04 -1 -2 343
+ 1.1812780285254121e-03
+
+ -3.7471079826354980e-01 -1.7685219645500183e-01
+ 3.5498109459877014e-01
+ <_>
+
+ 1 0 344 7.9117231070995331e-03 -1 -2 345
+ -9.0904926764778793e-05
+
+ -6.9681918621063232e-01 2.0756739377975464e-01
+ -4.4282090663909912e-01
+ <_>
+
+ 0 1 346 2.8638960793614388e-03 -1 -2 347
+ 1.2769990134984255e-03
+
+ -4.1364789009094238e-01 -2.1157020330429077e-01
+ 3.1919568777084351e-01
+ <_>
+
+ 0 1 348 -7.5440858490765095e-03 -1 -2 349
+ 5.4467269219458103e-03
+
+ -7.5495690107345581e-01 1.3229879736900330e-01
+ -6.7695891857147217e-01
+ <_>
+
+ 1 0 350 1.3641830300912261e-03 -1 -2 351
+ 1.3810779899358749e-02
+
+ -4.2168149352073669e-01 1.5719360113143921e-01
+ -6.7965167760848999e-01
+ <_>
+
+ 1 0 352 5.0265640020370483e-02 -1 -2 353
+ 4.7765119234099984e-05
+
+ 7.4369138479232788e-01 -3.8102349638938904e-01
+ 1.0605350136756897e-01
+ <_>
+
+ 1 0 354 1.4666689932346344e-01 -1 -2 355
+ -3.0426830053329468e-01
+
+ 5.3409832715988159e-01 3.7783610820770264e-01
+ -2.1534620225429535e-01
+ <_>
+
+ 0 1 356 -3.2244708854705095e-03 -1 -2 357
+ -1.7187190242111683e-03
+
+ 2.8274241089820862e-01 1.0677109658718109e-01
+ -4.4204118847846985e-01
+ <_>
+
+ 0 1 358 -8.4115704521536827e-03 -1 -2 359
+ -2.3220919072628021e-02
+
+ -8.3557051420211792e-01 -5.1933908462524414e-01
+ 1.3181640207767487e-01
+ <_>
+
+ 0 1 360 -6.3912221230566502e-03 -1 -2 361
+ -3.0661540222354233e-04
+
+ -6.8552321195602417e-01 2.2192850708961487e-01
+ -2.3945030570030212e-01
+ <_>
+
+ 1 0 362 1.8742750398814678e-03 -1 -2 363
+ -2.8299540281295776e-02
+
+ -4.7218438982963562e-01 -6.8186718225479126e-01
+ 1.5923790633678436e-01
+ <_>
+
+ 1 0 364 7.9352483153343201e-03 -1 -2 365
+ -8.7599940598011017e-03
+
+ -7.3135781288146973e-01 -6.0014718770980835e-01
+ 1.0350330173969269e-01
+ <_>
+
+ 0 1 366 -5.5426149629056454e-03 -1 -2 367
+ -1.8066290067508817e-03
+
+ -5.9360408782958984e-01 2.5533521175384521e-01
+ -1.7036439478397369e-01
+ <_>
+
+ 1 0 368 -8.3993803709745407e-03 -1 -2 369
+ -1.9515500171110034e-03
+
+ -2.3953610658645630e-01 3.7252411246299744e-01
+ -1.2982900440692902e-01
+ <_>
+
+ 0 1 370 -2.2850139066576958e-03 -1 -2 371
+ -6.1910818330943584e-03
+
+ 5.0227212905883789e-01 4.4551658630371094e-01
+ -1.6307780146598816e-01
+ <_>
+
+ 1 0 372 1.1659320443868637e-03 -1 -2 373
+ -2.1016779355704784e-03
+
+ 3.4809079766273499e-01 3.1531378626823425e-01
+ -3.4710261225700378e-01
+ <_>
+
+ 0 1 374 -9.1615924611687660e-03 -1 -2 375
+ -2.0036540925502777e-02
+
+ -6.8623197078704834e-01 -6.8991881608963013e-01
+ 1.2962220609188080e-01
+ <_>
+
+ 1 0 376 2.7148448862135410e-03 -1 -2 377
+ 2.2834159899502993e-03
+
+ 4.7745740413665771e-01 -1.3344570063054562e-02
+ -6.1795878410339355e-01
+ <_>
+ 26
+ -1.9807859659194946e+00
+
+ <_>
+
+ 1 0 378 -3.2838471233844757e-02 -1 -2 379
+ -7.5696408748626709e-03
+
+ -5.1984071731567383e-01 6.3690251111984253e-01
+ -1.1562170088291168e-01
+ <_>
+
+ 1 0 380 5.4125871509313583e-02 -1 -2 381
+ 2.7004599571228027e-01
+
+ 5.0340247154235840e-01 -3.4640678763389587e-01
+ 3.7651509046554565e-01
+ <_>
+
+ 0 1 382 7.0261410437524319e-03 -1 -2 383
+ 3.1245660502463579e-03
+
+ -4.1046440601348877e-01 -4.1382190585136414e-01
+ 3.7550741434097290e-01
+ <_>
+
+ 1 0 384 -1.8708549905568361e-03 -1 -2 385
+ -1.4969009906053543e-02
+
+ -3.7827330827713013e-01 3.9941680431365967e-01
+ -2.2254510223865509e-01
+ <_>
+
+ 1 0 386 3.4136420581489801e-03 -1 -2 387
+ 2.3454260081052780e-03
+
+ -5.4667568206787109e-01 1.6618840396404266e-01
+ -6.3203942775726318e-01
+ <_>
+
+ 1 0 388 -1.1689099483191967e-03 -1 -2 389
+ -7.8206984326243401e-03
+
+ -4.4972181320190430e-01 -5.7166117429733276e-01
+ 1.8599990010261536e-01
+ <_>
+
+ 0 1 390 -2.6324259117245674e-02 -1 -2 391
+ -9.1647548833861947e-04
+
+ -7.8041112422943115e-01 2.3100090026855469e-01
+ -2.1224120259284973e-01
+ <_>
+
+ 0 1 392 -2.3702960461378098e-03 -1 -2 393
+ -9.2874821275472641e-03
+
+ 2.7304211258888245e-01 2.3200799524784088e-01
+ -3.4602558612823486e-01
+ <_>
+
+ 1 0 394 2.9221060685813427e-03 -1 -2 395
+ -1.4097889652475715e-03
+
+ -6.9972628355026245e-01 4.8019358515739441e-01
+ -4.2650200426578522e-02
+ <_>
+
+ 1 0 396 9.3326548812910914e-04 -1 -2 397
+ -5.6837309151887894e-02
+
+ 3.7708479166030884e-01 4.6375161409378052e-01
+ -2.0441579818725586e-01
+ <_>
+
+ 1 0 398 -9.1405760031193495e-05 -1 -2 399
+ -1.1147770099341869e-02
+
+ -2.9447770118713379e-01 3.6579200625419617e-01
+ -1.6106230020523071e-01
+ <_>
+
+ 1 0 400 8.0759642878547311e-04 -1 -2 401
+ 1.7215589759871364e-03
+
+ -3.8769969344139099e-01 1.7790059745311737e-01
+ -5.9673792123794556e-01
+ <_>
+
+ 0 1 402 1.4305640012025833e-02 -1 -2 403
+ -3.8885008543729782e-02
+
+ -2.8887918591499329e-01 3.6497229337692261e-01
+ -1.3762719929218292e-01
+ <_>
+
+ 0 1 404 -3.4479280002415180e-03 -1 -2 405
+ 3.0168178677558899e-01
+
+ 1.8110840022563934e-01 -3.5425490140914917e-01
+ 4.2958360910415649e-01
+ <_>
+
+ 1 0 406 2.8582389932125807e-03 -1 -2 407
+ 1.4091320335865021e-03
+
+ 5.2957808971405029e-01 -2.1234430372714996e-01
+ 3.1428509950637817e-01
+ <_>
+
+ 0 1 408 -1.6597079811617732e-03 -1 -2 409
+ 8.7804382201284170e-04
+
+ -6.3348418474197388e-01 -5.5315300822257996e-02
+ 3.9389958977699280e-01
+ <_>
+
+ 1 0 410 2.0211800001561642e-03 -1 -2 411
+ -6.8409871309995651e-03
+
+ -4.7127309441566467e-01 -6.4065527915954590e-01
+ 1.4861440658569336e-01
+ <_>
+
+ 1 0 412 4.7200761735439301e-02 -1 -2 413
+ 4.9684080295264721e-03
+
+ 4.1216409206390381e-01 -3.2404300570487976e-01
+ 1.5755960345268250e-01
+ <_>
+
+ 1 0 414 3.7529911845922470e-02 -1 -2 415
+ -1.1665089987218380e-02
+
+ 4.1328459978103638e-01 2.5467500090599060e-01
+ -3.1303560733795166e-01
+ <_>
+
+ 1 0 416 -6.8298257247079164e-05 -1 -2 417
+ 1.5325429849326611e-02
+
+ -2.7212071418762207e-01 2.2946609556674957e-01
+ -6.7345708608627319e-01
+ <_>
+
+ 1 0 418 8.5185896605253220e-03 -1 -2 419
+ -2.6828479021787643e-03
+
+ -7.1114671230316162e-01 1.5511700510978699e-01
+ -3.5444891452789307e-01
+ <_>
+
+ 1 0 420 1.3791749952360988e-03 -1 -2 421
+ -3.3968368370551616e-05
+
+ 3.6916270852088928e-01 5.9150930494070053e-02
+ -4.6007719635963440e-01
+ <_>
+
+ 1 0 422 5.8259358629584312e-03 -1 -2 423
+ -8.1688696518540382e-03
+
+ -5.4986697435379028e-01 -5.0567412376403809e-01
+ 1.5189670026302338e-01
+ <_>
+
+ 0 1 424 -2.3251199163496494e-03 -1 -2 425
+ -4.8669208772480488e-03
+
+ 3.4904810786247253e-01 5.3138560056686401e-01
+ -2.1413469314575195e-01
+ <_>
+
+ 1 0 426 4.3380381539463997e-03 -1 -2 427
+ 3.4176679328083992e-03
+
+ -7.8248262405395508e-01 1.2460789829492569e-01
+ -5.5297750234603882e-01
+ <_>
+
+ 1 0 428 5.5309730768203735e-01 -1 -2 429
+ 2.3636389523744583e-03
+
+ 4.6573078632354736e-01 -3.3309051394462585e-01
+ 9.4380050897598267e-02
+ <_>
+ 26
+ -1.9697020053863525e+00
+
+ <_>
+
+ 1 0 430 -2.2934280335903168e-02 -1 -2 431
+ -4.2665850371122360e-02
+
+ -4.4716298580169678e-01 5.4085898399353027e-01
+ -3.3589279651641846e-01
+ <_>
+
+ 0 1 432 -9.8418388515710831e-03 -1 -2 433
+ -1.1932349763810635e-02
+
+ 3.9958000183105469e-01 3.4219118952751160e-01
+ -4.2416951060295105e-01
+ <_>
+
+ 1 0 434 -2.4437010288238525e-02 -1 -2 435
+ -4.9987169913947582e-03
+
+ -3.7337359786033630e-01 4.0358328819274902e-01
+ -3.5199370980262756e-01
+ <_>
+
+ 0 1 436 1.8582950579002500e-03 -1 -2 437
+ 2.7540219016373158e-03
+
+ -4.4158118963241577e-01 -2.8722938895225525e-01
+ 3.3857241272926331e-01
+ <_>
+
+ 1 0 438 -3.4452530089765787e-03 -1 -2 439
+ -5.9277489781379700e-03
+
+ -3.1821981072425842e-01 -6.5073519945144653e-01
+ 2.7109220623970032e-01
+ <_>
+
+ 1 0 440 -1.2391789641696960e-04 -1 -2 441
+ -7.3327139019966125e-02
+
+ -3.3467200398445129e-01 -5.9646248817443848e-01
+ 2.2861810028553009e-01
+ <_>
+
+ 1 0 442 -8.3964750170707703e-02 -1 -2 443
+ -8.1644707825034857e-04
+
+ -2.2525189816951752e-01 3.8213649392127991e-01
+ -3.3410450816154480e-01
+ <_>
+
+ 0 1 444 -1.5207779593765736e-02 -1 -2 445
+ 4.6894788742065430e-02
+
+ 3.0742698907852173e-01 -3.8833889365196228e-01
+ 2.3177519440650940e-01
+ <_>
+
+ 0 1 446 -1.0398440062999725e-01 -1 -2 447
+ 3.9815339259803295e-03
+
+ 7.1321141719818115e-01 -2.3310199379920959e-01
+ 2.9247841238975525e-01
+ <_>
+
+ 1 0 448 2.5737080723047256e-03 -1 -2 449
+ 9.1035291552543640e-04
+
+ -5.5017340183258057e-01 -1.8228930234909058e-01
+ 2.8370320796966553e-01
+ <_>
+
+ 1 0 450 6.4211348071694374e-03 -1 -2 451
+ -5.8243819512426853e-03
+
+ -4.8581978678703308e-01 2.4608190357685089e-01
+ -2.1565020084381104e-01
+ <_>
+
+ 0 1 452 -4.0043629705905914e-02 -1 -2 453
+ 8.4683427121490240e-04
+
+ -6.3880550861358643e-01 -6.0435589402914047e-02
+ 4.3711128830909729e-01
+ <_>
+
+ 1 0 454 1.2964580208063126e-02 -1 -2 455
+ -2.2524749510921538e-04
+
+ 5.9495061635971069e-01 8.6831472814083099e-02
+ -3.6362320184707642e-01
+ <_>
+
+ 0 1 456 -1.7258729785680771e-03 -1 -2 457
+ -7.2289421223104000e-03
+
+ -6.4707720279693604e-01 -6.8775367736816406e-01
+ 1.3838720321655273e-01
+ <_>
+
+ 1 0 458 2.5079259648919106e-03 -1 -2 459
+ -1.9473560387268662e-03
+
+ 3.0659309029579163e-01 2.2967760264873505e-01
+ -3.4737649559974670e-01
+ <_>
+
+ 1 0 460 7.4747111648321152e-03 -1 -2 461
+ 1.0328400094294921e-04
+
+ -6.5191787481307983e-01 -2.0725889503955841e-01
+ 2.2402130067348480e-01
+ <_>
+
+ 0 1 462 -7.8996885567903519e-03 -1 -2 463
+ 4.2833909392356873e-03
+
+ -7.2479170560836792e-01 1.3954970240592957e-01
+ -4.3086060881614685e-01
+ <_>
+
+ 1 0 464 6.3452741596847773e-04 -1 -2 465
+ -5.4966621100902557e-03
+
+ 2.9792639613151550e-01 -5.6205391883850098e-01
+ -2.9608119279146194e-02
+ <_>
+
+ 1 0 466 3.1408690847456455e-03 -1 -2 467
+ -5.0443639047443867e-03
+
+ -6.1322140693664551e-01 -5.3060102462768555e-01
+ 1.2507459521293640e-01
+ <_>
+
+ 1 0 468 4.5964870601892471e-02 -1 -2 469
+ -5.3749699145555496e-03
+
+ 3.8188719749450684e-01 1.4089010655879974e-01
+ -3.5535690188407898e-01
+ <_>
+
+ 1 0 470 2.9262059833854437e-03 -1 -2 471
+ 5.2230368601158261e-04
+
+ -6.0886657238006592e-01 -7.1441568434238434e-02
+ 3.6275258660316467e-01
+ <_>
+
+ 0 1 472 -4.4181118719279766e-03 -1 -2 473
+ 4.3349149636924267e-03
+
+ -7.6458007097244263e-01 1.1246410012245178e-01
+ -5.4553848505020142e-01
+ <_>
+
+ 1 0 474 2.6483018882572651e-03 -1 -2 475
+ -1.0814110282808542e-03
+
+ 2.3542310297489166e-01 1.4422300457954407e-01
+ -3.4401959180831909e-01
+ <_>
+
+ 1 0 476 -5.4296739108394831e-05 -1 -2 477
+ 5.5393581278622150e-03
+
+ -2.8607460856437683e-01 1.9345289468765259e-01
+ -5.0549429655075073e-01
+ <_>
+
+ 1 0 478 3.3703099936246872e-02 -1 -2 479
+ -1.2178930046502501e-04
+
+ 3.8302558660507202e-01 6.6414177417755127e-02
+ -4.8530051112174988e-01
+ <_>
+
+ 0 1 480 -1.7803770024329424e-03 -1 -2 481
+ -5.6019638577708974e-05
+
+ 4.4113549590110779e-01 1.2396749854087830e-01
+ -2.6292270421981812e-01
+ <_>
+ 30
+ -2.0330519676208496e+00
+
+ <_>
+
+ 1 0 482 3.1982790678739548e-03 -1 -2 483
+ -1.5240450156852603e-03
+
+ 5.4208421707153320e-01 8.2784838974475861e-02
+ -5.0164830684661865e-01
+ <_>
+
+ 0 1 484 -1.2284429743885994e-02 -1 -2 485
+ -8.3555448800325394e-03
+
+ 4.4174939393997192e-01 3.5863399505615234e-01
+ -3.6254858970642090e-01
+ <_>
+
+ 1 0 486 4.1357800364494324e-02 -1 -2 487
+ 2.2308749612420797e-03
+
+ 4.7858810424804688e-01 -6.0390347242355347e-01
+ -8.7199418339878321e-04
+ <_>
+
+ 1 0 488 -5.4160541296005249e-01 -1 -2 489
+ 7.9009458422660828e-03
+
+ -3.2536658644676208e-01 -3.6415100097656250e-01
+ 4.0501600503921509e-01
+ <_>
+
+ 1 0 490 -2.7236728928983212e-03 -1 -2 491
+ 2.1041880827397108e-03
+
+ -2.7644181251525879e-01 3.4068119525909424e-01
+ -4.1922488808631897e-01
+ <_>
+
+ 1 0 492 1.2688159476965666e-03 -1 -2 493
+ -4.2881062254309654e-03
+
+ -5.4520767927169800e-01 3.0060088634490967e-01
+ -1.5233190357685089e-01
+ <_>
+
+ 1 0 494 -4.8890449106693268e-03 -1 -2 495
+ 5.0922110676765442e-03
+
+ -3.7665820121765137e-01 2.1803319454193115e-01
+ -5.7126522064208984e-01
+ <_>
+
+ 0 1 496 -7.0944731123745441e-03 -1 -2 497
+ 2.5431890040636063e-02
+
+ 5.1921921968460083e-01 -2.1260249614715576e-01
+ 3.0566200613975525e-01
+ <_>
+
+ 1 0 498 -6.7461907747201622e-05 -1 -2 499
+ -8.5350889712572098e-03
+
+ -3.3406749367713928e-01 3.5043460130691528e-01
+ -9.0384833514690399e-02
+ <_>
+
+ 0 1 500 -4.1117807850241661e-03 -1 -2 501
+ 6.3964081928133965e-03
+
+ -6.9683700799942017e-01 1.1542639881372452e-01
+ -6.6645371913909912e-01
+ <_>
+
+ 1 0 502 9.8322751000523567e-04 -1 -2 503
+ -5.5737968068569899e-04
+
+ 3.5695379972457886e-01 2.3081110417842865e-01
+ -2.8862631320953369e-01
+ <_>
+
+ 1 0 504 2.8798289131373167e-03 -1 -2 505
+ -7.7164517715573311e-03
+
+ -5.9923267364501953e-01 3.6074900627136230e-01
+ -8.1827618181705475e-02
+ <_>
+
+ 0 1 506 3.7285129074007273e-03 -1 -2 507
+ -1.3161109760403633e-02
+
+ -3.7732011079788208e-01 6.7023038864135742e-01
+ 1.5114549547433853e-02
+ <_>
+
+ 1 0 508 -3.8966130465269089e-02 -1 -2 509
+ -5.7413699105381966e-03
+
+ -3.1252211332321167e-01 3.3947479724884033e-01
+ -1.6011409461498260e-01
+ <_>
+
+ 1 0 510 1.2538330256938934e-01 -1 -2 511
+ -9.7243122756481171e-02
+
+ 7.3721152544021606e-01 5.0288981199264526e-01
+ -1.3284370303153992e-01
+ <_>
+
+ 0 1 512 -2.0128490868955851e-03 -1 -2 513
+ 3.5349070094525814e-03
+
+ 4.1367891430854797e-01 -1.5923270583152771e-01
+ 4.4056579470634460e-01
+ <_>
+
+ 1 0 514 4.4846540689468384e-01 -1 -2 515
+ -1.0387780144810677e-02
+
+ 5.9423661231994629e-01 3.0399119853973389e-01
+ -1.8287350237369537e-01
+ <_>
+
+ 0 1 516 -1.4210389927029610e-03 -1 -2 517
+ 3.6446070298552513e-03
+
+ -4.5361068844795227e-01 1.5766820311546326e-01
+ -6.2608838081359863e-01
+ <_>
+
+ 1 0 518 3.2253630924969912e-03 -1 -2 519
+ 9.8893349058926105e-04
+
+ -4.1410240530967712e-01 -1.0757800191640854e-01
+ 3.1156888604164124e-01
+ <_>
+
+ 0 1 520 -2.7107829228043556e-03 -1 -2 521
+ -6.9264871999621391e-03
+
+ -7.5352817773818970e-01 2.7464428544044495e-01
+ -1.1728949844837189e-01
+ <_>
+
+ 0 1 522 -3.7942770868539810e-02 -1 -2 523
+ 1.3486459851264954e-02
+
+ 2.6936548948287964e-01 -3.1532868742942810e-01
+ 2.5785440206527710e-01
+ <_>
+
+ 1 0 524 2.7866458985954523e-03 -1 -2 525
+ 3.2895719632506371e-03
+
+ -6.8431657552719116e-01 1.2949100136756897e-01
+ -4.4475141167640686e-01
+ <_>
+
+ 1 0 526 1.7910100286826491e-03 -1 -2 527
+ 3.3694170415401459e-03
+
+ -5.6237429380416870e-01 -6.1936769634485245e-02
+ 3.6794289946556091e-01
+ <_>
+
+ 0 1 528 6.5897632157430053e-04 -1 -2 529
+ -3.2603838917566463e-05
+
+ -2.7705720067024231e-01 2.7426779270172119e-01
+ -2.2369539737701416e-01
+ <_>
+
+ 0 1 530 -6.0175720602273941e-02 -1 -2 531
+ -2.1217610687017441e-02
+
+ -7.4174910783767700e-01 -4.5034751296043396e-01
+ 1.1426000297069550e-01
+ <_>
+
+ 1 0 532 -2.2632910404354334e-03 -1 -2 533
+ 6.0313078574836254e-03
+
+ -3.0538588762283325e-01 2.0562660694122314e-01
+ -4.0689799189567566e-01
+ <_>
+
+ 1 0 534 5.7578482665121555e-04 -1 -2 535
+ -9.3677162658423185e-04
+
+ 3.5098749399185181e-01 2.1616159379482269e-01
+ -2.4415770173072815e-01
+ <_>
+
+ 0 1 536 -3.7626568228006363e-02 -1 -2 537
+ 4.4729812070727348e-03
+
+ -5.9113681316375732e-01 1.5792270004749298e-01
+ -3.2226279377937317e-01
+ <_>
+
+ 0 1 538 -7.1853301487863064e-03 -1 -2 539
+ 4.0520228445529938e-02
+
+ -5.9519052505493164e-01 -6.6688463091850281e-02
+ 3.4030249714851379e-01
+ <_>
+
+ 0 1 540 -6.1968388035893440e-03 -1 -2 541
+ 1.0311529971659184e-02
+
+ -6.7287462949752808e-01 1.0683239996433258e-01
+ -5.4825967550277710e-01
+ <_>
+ 33
+ -1.9516259431838989e+00
+
+ <_>
+
+ 1 0 542 -1.9320519641041756e-02 -1 -2 543
+ -1.5126460231840611e-02
+
+ -3.8712570071220398e-01 6.4468181133270264e-01
+ -1.2727110087871552e-01
+ <_>
+
+ 1 0 544 -6.0182690620422363e-02 -1 -2 545
+ -1.3576049823313951e-03
+
+ -3.0819109082221985e-01 4.8021888732910156e-01
+ -3.3428680896759033e-01
+ <_>
+
+ 1 0 546 -5.6930771097540855e-03 -1 -2 547
+ -8.0942036584019661e-03
+
+ -3.3166080713272095e-01 4.7517481446266174e-01
+ -7.4761562049388885e-02
+ <_>
+
+ 0 1 548 6.8413332337513566e-04 -1 -2 549
+ -1.1520589888095856e-01
+
+ -3.5741969943046570e-01 2.6105090975761414e-01
+ -3.1773808598518372e-01
+ <_>
+
+ 0 1 550 -9.1124046593904495e-03 -1 -2 551
+ 5.4891068430151790e-05
+
+ -5.8540707826614380e-01 -2.2981899976730347e-01
+ 2.3482909798622131e-01
+ <_>
+
+ 0 1 552 -9.5622539520263672e-03 -1 -2 553
+ -8.2032606005668640e-03
+
+ 3.9155280590057373e-01 4.3179950118064880e-01
+ -2.3173290491104126e-01
+ <_>
+
+ 0 1 554 -4.0035760030150414e-03 -1 -2 555
+ 2.5406230706721544e-03
+
+ -5.8700478076934814e-01 1.7990030348300934e-01
+ -4.1681569814682007e-01
+ <_>
+
+ 1 0 556 1.9435470458120108e-03 -1 -2 557
+ 8.4362342022359371e-04
+
+ 3.0340009927749634e-01 -3.0661040544509888e-01
+ 2.3646999895572662e-01
+ <_>
+
+ 0 1 558 -5.3103519603610039e-03 -1 -2 559
+ -3.5526719875633717e-03
+
+ -5.6304818391799927e-01 -5.5695772171020508e-01
+ 1.5022790431976318e-01
+ <_>
+
+ 1 0 560 7.1414401754736900e-03 -1 -2 561
+ -1.1435860069468617e-03
+
+ -6.7626637220382690e-01 3.7873879075050354e-01
+ -7.4442893266677856e-02
+ <_>
+
+ 0 1 562 -3.1177429482340813e-03 -1 -2 563
+ -7.7415622770786285e-02
+
+ -6.2568587064743042e-01 3.9839410781860352e-01
+ -5.5262319743633270e-02
+ <_>
+
+ 0 1 564 -3.9252988994121552e-02 -1 -2 565
+ 2.2049970924854279e-02
+
+ 3.4094831347465515e-01 -2.4413719773292542e-01
+ 4.3050870299339294e-01
+ <_>
+
+ 0 1 566 -2.2205871064215899e-03 -1 -2 567
+ 2.8649640735238791e-03
+
+ 2.8309720754623413e-01 -3.5401880741119385e-01
+ 2.1054570376873016e-01
+ <_>
+
+ 0 1 568 5.8806730521610007e-05 -1 -2 569
+ -6.6595021635293961e-03
+
+ -2.7014040946960449e-01 -5.9313482046127319e-01
+ 2.1892869472503662e-01
+ <_>
+
+ 0 1 570 1.6931600868701935e-02 -1 -2 571
+ 4.7026639804244041e-03
+
+ -1.1279620230197906e-01 4.9212211370468140e-01
+ -3.9702880382537842e-01
+ <_>
+
+ 0 1 572 1.7478819936513901e-03 -1 -2 573
+ -2.0893230102956295e-03
+
+ -2.2339369356632233e-01 -4.3157818913459778e-01
+ 2.5373139977455139e-01
+ <_>
+
+ 1 0 574 1.1534850113093853e-02 -1 -2 575
+ 8.7350117973983288e-04
+
+ -7.0668542385101318e-01 -7.2509132325649261e-02
+ 3.9975029230117798e-01
+ <_>
+
+ 1 0 576 -7.2836421895772219e-04 -1 -2 577
+ 1.2666890397667885e-03
+
+ -2.3567649722099304e-01 2.2582389414310455e-01
+ -4.2317348718643188e-01
+ <_>
+
+ 1 0 578 -8.4794021677225828e-04 -1 -2 579
+ 3.6212441325187683e-01
+
+ -2.8307029604911804e-01 1.6724239289760590e-01
+ -7.6826947927474976e-01
+ <_>
+
+ 1 0 580 -1.9437649752944708e-03 -1 -2 581
+ -4.1159680113196373e-03
+
+ -2.7229419350624084e-01 -6.4211308956146240e-01
+ 1.8810230493545532e-01
+ <_>
+
+ 1 0 582 2.3254039697349072e-03 -1 -2 583
+ -1.4815620379522443e-03
+
+ 2.8516888618469238e-01 4.2574208974838257e-01
+ -2.1113610267639160e-01
+ <_>
+
+ 1 0 584 -6.6233296820428222e-05 -1 -2 585
+ -3.3756431192159653e-02
+
+ -2.8205850720405579e-01 -8.1803041696548462e-01
+ 1.7053669691085815e-01
+ <_>
+
+ 0 1 586 -9.4350927975028753e-04 -1 -2 587
+ 1.0650219628587365e-03
+
+ 1.5273140370845795e-01 -4.2650490999221802e-01
+ 1.5235939621925354e-01
+ <_>
+
+ 0 1 588 -1.2905279872938991e-03 -1 -2 589
+ 9.6549028530716896e-03
+
+ 1.7365390062332153e-01 -3.9721599221229553e-01
+ 1.7953179776668549e-01
+ <_>
+
+ 1 0 590 1.3434770517051220e-03 -1 -2 591
+ 5.5220007197931409e-04
+
+ -6.9609320163726807e-01 -7.2258770465850830e-02
+ 3.4493291378021240e-01
+ <_>
+
+ 1 0 592 3.5795350559055805e-03 -1 -2 593
+ -1.0585499927401543e-02
+
+ -4.8070669174194336e-01 -3.2975581288337708e-01
+ 1.4686919748783112e-01
+ <_>
+
+ 1 0 594 3.5636040847748518e-03 -1 -2 595
+ -1.0298290103673935e-01
+
+ -6.1415022611618042e-01 -7.2366482019424438e-01
+ 8.4447070956230164e-02
+ <_>
+
+ 0 1 596 -2.9605759307742119e-02 -1 -2 597
+ -3.4580599516630173e-02
+
+ 4.7113609313964844e-01 -4.3128991127014160e-01
+ 2.4623470380902290e-02
+ <_>
+
+ 1 0 598 4.7923368401825428e-03 -1 -2 599
+ 1.7058040248230100e-03
+
+ -4.6270799636840820e-01 1.4738570153713226e-01
+ -3.7818890810012817e-01
+ <_>
+
+ 0 1 600 -3.3174119889736176e-03 -1 -2 601
+ -1.7022279789671302e-03
+
+ 2.7929860353469849e-01 2.6326990127563477e-01
+ -2.5129210948944092e-01
+ <_>
+
+ 1 0 602 -8.1695342669263482e-04 -1 -2 603
+ -1.4184829778969288e-03
+
+ -1.2859649956226349e-01 5.8855402469635010e-01
+ -5.0085168331861496e-02
+ <_>
+
+ 0 1 604 -1.0478599928319454e-02 -1 -2 605
+ 3.1981911510229111e-02
+
+ 1.4732900261878967e-01 -4.1299548745155334e-01
+ 3.4442049264907837e-01
+ <_>
+
+ 1 0 606 4.5543849468231201e-02 -1 -2 607
+ 2.3574009537696838e-02
+
+ 4.8842081427574158e-01 -4.6383219957351685e-01
+ 3.7443768233060837e-02
+ <_>
+ 29
+ -1.7628519535064697e+00
+
+ <_>
+
+ 1 0 608 -3.2347131520509720e-02 -1 -2 609
+ -7.4855431914329529e-02
+
+ -4.1153168678283691e-01 5.4409480094909668e-01
+ -2.1043080091476440e-01
+ <_>
+
+ 0 1 610 -5.9164799749851227e-02 -1 -2 611
+ -5.0734709948301315e-03
+
+ 4.6945521235466003e-01 8.0933347344398499e-02
+ -4.0436869859695435e-01
+ <_>
+
+ 0 1 612 6.6304411739110947e-03 -1 -2 613
+ 2.2804280743002892e-02
+
+ -3.1943950057029724e-01 -3.5277611017227173e-01
+ 3.6358159780502319e-01
+ <_>
+
+ 1 0 614 3.4148059785366058e-03 -1 -2 615
+ -6.0696629807353020e-03
+
+ -4.2139899730682373e-01 2.8190940618515015e-01
+ -2.5727981328964233e-01
+ <_>
+
+ 1 0 616 -3.3271780703216791e-03 -1 -2 617
+ 1.2381239794194698e-02
+
+ -3.3380180597305298e-01 2.5831120088696480e-02
+ 5.8200639486312866e-01
+ <_>
+
+ 0 1 618 -7.8561902046203613e-02 -1 -2 619
+ -7.6863910071551800e-03
+
+ 5.7080817222595215e-01 1.9097380340099335e-01
+ -2.4749469757080078e-01
+ <_>
+
+ 1 0 620 3.9404830895364285e-03 -1 -2 621
+ -7.0624810177832842e-05
+
+ -3.5295888781547546e-01 2.8438061475753784e-01
+ -1.6469420492649078e-01
+ <_>
+
+ 0 1 622 -2.2568539716303349e-03 -1 -2 623
+ -3.5595949739217758e-03
+
+ -4.6189218759536743e-01 2.4525940418243408e-01
+ -1.8984979391098022e-01
+ <_>
+
+ 0 1 624 -3.0113100074231625e-03 -1 -2 625
+ -6.2748990021646023e-03
+
+ 3.0594390630722046e-01 1.4716149866580963e-01
+ -3.3265221118927002e-01
+ <_>
+
+ 1 0 626 2.5835279375314713e-03 -1 -2 627
+ 3.2576550729572773e-03
+
+ -7.4853891134262085e-01 -1.4949619770050049e-01
+ 2.6293671131134033e-01
+ <_>
+
+ 1 0 628 -2.6957978843711317e-04 -1 -2 629
+ -4.4593680649995804e-03
+
+ -2.9468360543251038e-01 -4.5905289053916931e-01
+ 2.2235380113124847e-01
+ <_>
+
+ 1 0 630 2.2841650061309338e-03 -1 -2 631
+ -6.7595718428492546e-04
+
+ -6.3815939426422119e-01 -3.1756940484046936e-01
+ 1.4903070032596588e-01
+ <_>
+
+ 1 0 632 6.1428439803421497e-03 -1 -2 633
+ 2.7392068877816200e-03
+
+ 2.4187029898166656e-01 -3.1487539410591125e-01
+ 2.3589129745960236e-01
+ <_>
+
+ 0 1 634 -2.0209311041980982e-03 -1 -2 635
+ 2.6892140507698059e-02
+
+ 2.5389561057090759e-01 -3.4391039609909058e-01
+ 2.3010760545730591e-01
+ <_>
+
+ 1 0 636 1.4671060256659985e-02 -1 -2 637
+ -1.2444119900465012e-02
+
+ 5.9517538547515869e-01 3.7335929274559021e-01
+ -1.4540639519691467e-01
+ <_>
+
+ 0 1 638 2.0527220331132412e-03 -1 -2 639
+ -1.7088990658521652e-02
+
+ -2.1135020256042480e-01 -7.2516232728958130e-01
+ 2.3358739912509918e-01
+ <_>
+
+ 0 1 640 -9.8585523664951324e-03 -1 -2 641
+ -1.0541190393269062e-02
+
+ 4.5390421152114868e-01 3.5500058531761169e-01
+ -1.7118500173091888e-01
+ <_>
+
+ 1 0 642 4.0034228004515171e-03 -1 -2 643
+ -1.1889140121638775e-02
+
+ -7.0433962345123291e-01 4.0436559915542603e-01
+ -4.6263620257377625e-02
+ <_>
+
+ 0 1 644 -2.0685700699687004e-02 -1 -2 645
+ -7.9243928194046021e-03
+
+ -6.4347600936889648e-01 -5.3632920980453491e-01
+ 1.1002989858388901e-01
+ <_>
+
+ 1 0 646 1.2431150535121560e-03 -1 -2 647
+ -4.2312019504606724e-03
+
+ 4.1220021247863770e-01 7.9887658357620239e-02
+ -3.0926740169525146e-01
+ <_>
+
+ 1 0 648 9.8197339102625847e-03 -1 -2 649
+ 4.5455411076545715e-02
+
+ -6.0976761579513550e-01 1.0621140152215958e-01
+ -6.4687371253967285e-01
+ <_>
+
+ 1 0 650 2.6892758905887604e-03 -1 -2 651
+ -1.5172710409387946e-03
+
+ -4.9122989177703857e-01 1.7578749358654022e-01
+ -2.6818940043449402e-01
+ <_>
+
+ 1 0 652 6.2014168361201882e-04 -1 -2 653
+ -2.0233519899193197e-04
+
+ 2.5500729680061340e-01 7.2745857760310173e-03
+ -5.0815272331237793e-01
+ <_>
+
+ 1 0 654 3.1760020647197962e-03 -1 -2 655
+ -1.2668699491769075e-03
+
+ 4.3849268555641174e-01 1.6349400579929352e-01
+ -2.9128161072731018e-01
+ <_>
+
+ 1 0 656 5.1056100055575371e-03 -1 -2 657
+ -1.5026510227471590e-03
+
+ -7.5001358985900879e-01 2.7198830246925354e-01
+ -9.9486798048019409e-02
+ <_>
+
+ 0 1 658 -3.6238620523363352e-03 -1 -2 659
+ 7.6577658765017986e-03
+
+ -6.0396248102188110e-01 1.0938379913568497e-01
+ -5.3007638454437256e-01
+ <_>
+
+ 0 1 660 -3.1830249354243279e-03 -1 -2 661
+ 1.0931329801678658e-02
+
+ -4.7724890708923340e-01 -4.3065819889307022e-02
+ 3.8945859670639038e-01
+ <_>
+
+ 0 1 662 -1.0047679534181952e-03 -1 -2 663
+ -4.6660430729389191e-02
+
+ 4.1553598642349243e-01 3.0159878730773926e-01
+ -1.6184380650520325e-01
+ <_>
+
+ 1 0 664 3.2002381049096584e-03 -1 -2 665
+ -1.7367519903928041e-03
+
+ -5.4621779918670654e-01 -2.1987779438495636e-01
+ 1.9606420397758484e-01
+ <_>
+ 33
+ -1.8088439702987671e+00
+
+ <_>
+
+ 0 1 666 1.7160519957542419e-02 -1 -2 667
+ 1.4503560028970242e-02
+
+ -3.2273009419441223e-01 -3.9438620209693909e-01
+ 5.7922977209091187e-01
+ <_>
+
+ 1 0 668 -9.0323518961668015e-03 -1 -2 669
+ -6.9836131297051907e-03
+
+ -4.1536870598793030e-01 3.5515859723091125e-01
+ -3.8177150487899780e-01
+ <_>
+
+ 0 1 670 -1.9220909103751183e-02 -1 -2 671
+ -4.0087159723043442e-02
+
+ 4.5315900444984436e-01 1.7228379845619202e-01
+ -3.1110560894012451e-01
+ <_>
+
+ 0 1 672 5.6549701839685440e-03 -1 -2 673
+ -1.1611269786953926e-02
+
+ -4.0461608767509460e-01 2.9034239053726196e-01
+ -2.2078509628772736e-01
+ <_>
+
+ 0 1 674 -1.0576159693300724e-03 -1 -2 675
+ -1.3360800221562386e-03
+
+ 3.5851669311523438e-01 1.5968900173902512e-02
+ -4.1990101337432861e-01
+ <_>
+
+ 1 0 676 5.2302791737020016e-03 -1 -2 677
+ -2.7848479803651571e-03
+
+ -4.9663281440734863e-01 -5.2960211038589478e-01
+ 1.5535449981689453e-01
+ <_>
+
+ 0 1 678 -2.5654129683971405e-02 -1 -2 679
+ -6.8942131474614143e-03
+
+ -5.9309178590774536e-01 2.4318109452724457e-01
+ -1.8231940269470215e-01
+ <_>
+
+ 1 0 680 -6.9622750743292272e-05 -1 -2 681
+ -6.4154611900448799e-03
+
+ -3.2716289162635803e-01 -5.0821667909622192e-01
+ 1.9543349742889404e-01
+ <_>
+
+ 0 1 682 -6.7164386564400047e-05 -1 -2 683
+ 2.2416690364480019e-02
+
+ 1.8602199852466583e-01 -3.9281991124153137e-01
+ 1.3279129564762115e-01
+ <_>
+
+ 1 0 684 8.4287580102682114e-03 -1 -2 685
+ -8.7357551092281938e-04
+
+ -5.5447560548782349e-01 4.7158730030059814e-01
+ -3.8492478430271149e-02
+ <_>
+
+ 1 0 686 -4.7496971092186868e-05 -1 -2 687
+ 4.5816078782081604e-03
+
+ -2.5197029113769531e-01 2.0250399410724640e-01
+ -6.1638081073760986e-01
+ <_>
+
+ 1 0 688 -1.1175150051712990e-02 -1 -2 689
+ -7.4238609522581100e-03
+
+ -2.7771198749542236e-01 -5.0103437900543213e-01
+ 1.9318529963493347e-01
+ <_>
+
+ 0 1 690 -3.0201480258256197e-03 -1 -2 691
+ -3.0343679245561361e-03
+
+ -6.5904247760772705e-01 3.1962481141090393e-01
+ -1.0512910038232803e-01
+ <_>
+
+ 0 1 692 -1.0971290059387684e-02 -1 -2 693
+ 1.2000739661743864e-04
+
+ 3.2707008719444275e-01 -4.1679269075393677e-01
+ 1.1645200103521347e-01
+ <_>
+
+ 1 0 694 2.1552699618041515e-03 -1 -2 695
+ 1.5970800304785371e-03
+
+ 1.5389390289783478e-01 -4.2979270219802856e-01
+ 1.9192950427532196e-01
+ <_>
+
+ 0 1 696 -4.3590939603745937e-03 -1 -2 697
+ -6.5752048976719379e-03
+
+ -8.6613738536834717e-01 3.5298541188240051e-01
+ -7.2624720633029938e-02
+ <_>
+
+ 1 0 698 3.5486191045492887e-03 -1 -2 699
+ 1.7437560018151999e-03
+
+ -3.6141040921211243e-01 -4.0250919759273529e-02
+ 4.1119590401649475e-01
+ <_>
+
+ 1 0 700 6.5892767452169210e-05 -1 -2 701
+ 1.2217169627547264e-02
+
+ 1.5523989498615265e-01 -3.6567229032516479e-01
+ 2.5159689784049988e-01
+ <_>
+
+ 1 0 702 6.0199309140443802e-02 -1 -2 703
+ -9.1684371232986450e-02
+
+ -6.8959599733352661e-01 -6.6311872005462646e-01
+ 9.4827361404895782e-02
+ <_>
+
+ 1 0 704 8.9392811059951782e-04 -1 -2 705
+ -1.1146500473842025e-03
+
+ 2.8731009364128113e-01 3.6127060651779175e-01
+ -2.4054229259490967e-01
+ <_>
+
+ 0 1 706 -1.1042780242860317e-02 -1 -2 707
+ 3.7769351154565811e-02
+
+ -7.1686691045761108e-01 1.1125349998474121e-01
+ -5.6320947408676147e-01
+ <_>
+
+ 1 0 708 5.5979429744184017e-03 -1 -2 709
+ -2.5462140329182148e-03
+
+ -5.6998908519744873e-01 2.6734578609466553e-01
+ -1.0527700185775757e-01
+ <_>
+
+ 0 1 710 -1.7929819878190756e-03 -1 -2 711
+ -8.9686378487385809e-05
+
+ 1.7712120711803436e-01 1.6762410104274750e-01
+ -4.1336658596992493e-01
+ <_>
+
+ 1 0 712 -6.8254990037530661e-04 -1 -2 713
+ 4.0599349886178970e-03
+
+ -3.1327050924301147e-01 2.0312629640102386e-01
+ -4.6360948681831360e-01
+ <_>
+
+ 1 0 714 1.5843180008232594e-03 -1 -2 715
+ -4.6101640909910202e-02
+
+ 2.6413089036941528e-01 2.4587640166282654e-01
+ -3.1151199340820312e-01
+ <_>
+
+ 1 0 716 1.5759950038045645e-03 -1 -2 717
+ 3.5904631018638611e-02
+
+ -3.6593970656394958e-01 -1.3352620415389538e-02
+ 4.9500739574432373e-01
+ <_>
+
+ 1 0 718 1.9230529665946960e-02 -1 -2 719
+ 1.3461830094456673e-02
+
+ 1.8603560328483582e-01 -4.2704311013221741e-01
+ 1.4756950736045837e-01
+ <_>
+
+ 1 0 720 6.3534970395267010e-03 -1 -2 721
+ 4.7998740337789059e-03
+
+ -5.8824592828750610e-01 1.3966129720211029e-01
+ -3.6948320269584656e-01
+ <_>
+
+ 0 1 722 -9.7894563805311918e-04 -1 -2 723
+ 1.8534340197220445e-03
+
+ 4.3156591057777405e-01 -1.9053110480308533e-01
+ 2.6868799328804016e-01
+ <_>
+
+ 1 0 724 5.5962381884455681e-04 -1 -2 725
+ -8.1787789240479469e-03
+
+ -3.0545750260353088e-01 -7.2353351116180420e-01
+ 1.6197769343852997e-01
+ <_>
+
+ 1 0 726 -6.4591833506710827e-05 -1 -2 727
+ -4.2282380163669586e-03
+
+ -1.6121749579906464e-01 4.2441681027412415e-01
+ -1.1488209664821625e-01
+ <_>
+
+ 0 1 728 -3.2379399053752422e-03 -1 -2 729
+ -4.7763898037374020e-03
+
+ -8.2811427116394043e-01 3.9157009124755859e-01
+ -3.7677429616451263e-02
+ <_>
+
+ 0 1 730 -6.1182728968560696e-03 -1 -2 731
+ 3.1565790995955467e-03
+
+ 3.0208829045295715e-01 -1.9045789539813995e-01
+ 3.0219689011573792e-01
+
+ <_>
+
+ <_>
+ 8 12 3 8 -1.
+ <_>
+ 8 16 3 4 2.
+ <_>
+
+ <_>
+ 5 11 8 9 -1.
+ <_>
+ 7 11 4 9 2.
+ <_>
+
+ <_>
+ 8 7 11 12 -1.
+ <_>
+ 8 11 11 4 3.
+ <_>
+
+ <_>
+ 1 0 7 8 -1.
+ <_>
+ 1 4 7 4 2.
+ <_>
+
+ <_>
+ 9 7 6 6 -1.
+ <_>
+ 7 9 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 7 4 -1.
+ <_>
+ 0 2 7 2 2.
+ <_>
+
+ <_>
+ 16 13 4 4 -1.
+ <_>
+ 18 13 2 4 2.
+ <_>
+
+ <_>
+ 17 15 2 3 -1.
+ <_>
+ 17 15 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 13 6 2 -1.
+ <_>
+ 2 13 2 2 3.
+ <_>
+
+ <_>
+ 5 0 6 6 -1.
+ <_>
+ 7 0 2 6 3.
+ <_>
+
+ <_>
+ 5 7 9 12 -1.
+ <_>
+ 8 11 3 4 9.
+ <_>
+
+ <_>
+ 5 6 4 10 -1.
+ <_>
+ 5 6 2 5 2.
+ <_>
+ 7 11 2 5 2.
+ <_>
+
+ <_>
+ 8 12 11 8 -1.
+ <_>
+ 8 16 11 4 2.
+ <_>
+
+ <_>
+ 0 0 1 8 -1.
+ <_>
+ 0 4 1 4 2.
+ <_>
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 3 0 3 6 2.
+ <_>
+
+ <_>
+ 14 14 6 6 -1.
+ <_>
+ 14 17 6 3 2.
+ <_>
+
+ <_>
+ 5 13 9 7 -1.
+ <_>
+ 8 13 3 7 3.
+ <_>
+
+ <_>
+ 6 17 6 3 -1.
+ <_>
+ 8 17 2 3 3.
+ <_>
+
+ <_>
+ 0 0 4 4 -1.
+ <_>
+ 0 2 4 2 2.
+ <_>
+
+ <_>
+ 1 0 3 3 -1.
+ <_>
+ 2 1 1 1 9.
+ <_>
+
+ <_>
+ 3 18 6 2 -1.
+ <_>
+ 3 19 6 1 2.
+ <_>
+
+ <_>
+ 7 18 4 2 -1.
+ <_>
+ 8 18 2 2 2.
+ <_>
+
+ <_>
+ 6 10 12 2 -1.
+ <_>
+ 6 11 12 1 2.
+ <_>
+
+ <_>
+ 15 8 3 1 -1.
+ <_>
+ 16 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 9 12 -1.
+ <_>
+ 8 11 3 4 9.
+ <_>
+
+ <_>
+ 16 13 1 6 -1.
+ <_>
+ 16 16 1 3 2.
+ <_>
+
+ <_>
+ 9 7 5 6 -1.
+ <_>
+ 7 9 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 12 4 6 -1.
+ <_>
+ 18 12 2 6 2.
+ <_>
+
+ <_>
+ 0 0 6 8 -1.
+ <_>
+ 0 4 6 4 2.
+ <_>
+
+ <_>
+ 3 1 15 12 -1.
+ <_>
+ 3 5 15 4 3.
+ <_>
+
+ <_>
+ 11 12 9 8 -1.
+ <_>
+ 11 16 9 4 2.
+ <_>
+
+ <_>
+ 0 0 12 9 -1.
+ <_>
+ 4 0 4 9 3.
+ <_>
+
+ <_>
+ 0 12 6 4 -1.
+ <_>
+ 2 12 2 4 3.
+ <_>
+
+ <_>
+ 10 18 4 2 -1.
+ <_>
+ 11 18 2 2 2.
+ <_>
+
+ <_>
+ 5 2 3 3 -1.
+ <_>
+ 6 2 1 3 3.
+ <_>
+
+ <_>
+ 12 18 3 2 -1.
+ <_>
+ 13 18 1 2 3.
+ <_>
+
+ <_>
+ 0 0 2 8 -1.
+ <_>
+ 1 0 1 8 2.
+ <_>
+
+ <_>
+ 5 18 4 2 -1.
+ <_>
+ 5 19 4 1 2.
+ <_>
+
+ <_>
+ 14 11 6 6 -1.
+ <_>
+ 17 11 3 6 2.
+ <_>
+
+ <_>
+ 6 12 8 4 -1.
+ <_>
+ 8 12 4 4 2.
+ <_>
+
+ <_>
+ 12 6 4 9 -1.
+ <_>
+ 9 9 4 3 3.
+ 1
+ <_>
+
+ <_>
+ 11 9 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 4 8 -1.
+ <_>
+ 5 8 2 4 2.
+ <_>
+ 7 12 2 4 2.
+ <_>
+
+ <_>
+ 8 12 11 8 -1.
+ <_>
+ 8 16 11 4 2.
+ <_>
+
+ <_>
+ 3 0 14 6 -1.
+ <_>
+ 3 3 14 3 2.
+ <_>
+
+ <_>
+ 7 1 6 12 -1.
+ <_>
+ 7 4 6 6 2.
+ <_>
+
+ <_>
+ 0 18 7 2 -1.
+ <_>
+ 0 19 7 1 2.
+ <_>
+
+ <_>
+ 16 12 4 3 -1.
+ <_>
+ 18 12 2 3 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 3 0 4 1 -1.
+ <_>
+ 5 0 2 1 2.
+ <_>
+
+ <_>
+ 3 13 2 2 -1.
+ <_>
+ 3 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 16 19 4 -1.
+ <_>
+ 0 18 19 2 2.
+ <_>
+
+ <_>
+ 7 13 8 2 -1.
+ <_>
+ 11 13 4 2 2.
+ <_>
+
+ <_>
+ 8 8 4 1 -1.
+ <_>
+ 9 8 2 1 2.
+ <_>
+
+ <_>
+ 0 1 1 4 -1.
+ <_>
+ 0 3 1 2 2.
+ <_>
+
+ <_>
+ 0 0 1 4 -1.
+ <_>
+ 0 1 1 2 2.
+ <_>
+
+ <_>
+ 15 15 5 2 -1.
+ <_>
+ 15 16 5 1 2.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 13 7 3 8 -1.
+ <_>
+ 11 9 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 15 12 2 8 -1.
+ <_>
+ 15 16 2 4 2.
+ <_>
+
+ <_>
+ 2 0 10 6 -1.
+ <_>
+ 2 3 10 3 2.
+ <_>
+
+ <_>
+ 0 5 18 15 -1.
+ <_>
+ 6 10 6 5 9.
+ <_>
+
+ <_>
+ 3 11 12 6 -1.
+ <_>
+ 7 13 4 2 9.
+ <_>
+
+ <_>
+ 16 12 4 7 -1.
+ <_>
+ 18 12 2 7 2.
+ <_>
+
+ <_>
+ 8 18 4 2 -1.
+ <_>
+ 9 18 2 2 2.
+ <_>
+
+ <_>
+ 8 17 4 3 -1.
+ <_>
+ 9 17 2 3 2.
+ <_>
+
+ <_>
+ 0 12 6 6 -1.
+ <_>
+ 2 12 2 6 3.
+ <_>
+
+ <_>
+ 4 16 4 4 -1.
+ <_>
+ 5 16 2 4 2.
+ <_>
+
+ <_>
+ 3 0 4 6 -1.
+ <_>
+ 4 0 2 6 2.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+
+ <_>
+ 2 0 8 3 -1.
+ <_>
+ 6 0 4 3 2.
+ <_>
+
+ <_>
+ 8 3 4 6 -1.
+ <_>
+ 9 3 2 6 2.
+ <_>
+
+ <_>
+ 10 10 3 2 -1.
+ <_>
+ 10 11 3 1 2.
+ <_>
+
+ <_>
+ 4 3 7 6 -1.
+ <_>
+ 4 6 7 3 2.
+ <_>
+
+ <_>
+ 10 18 10 2 -1.
+ <_>
+ 15 18 5 2 2.
+ <_>
+
+ <_>
+ 9 13 6 1 -1.
+ <_>
+ 9 13 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 8 4 6 -1.
+ <_>
+ 8 10 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 12 6 8 -1.
+ <_>
+ 14 16 6 4 2.
+ <_>
+
+ <_>
+ 10 8 6 4 -1.
+ <_>
+ 12 10 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 0 12 6 3 -1.
+ <_>
+ 2 12 2 3 3.
+ <_>
+
+ <_>
+ 18 11 2 6 -1.
+ <_>
+ 19 11 1 6 2.
+ <_>
+
+ <_>
+ 0 0 1 10 -1.
+ <_>
+ 0 5 1 5 2.
+ <_>
+
+ <_>
+ 5 4 8 12 -1.
+ <_>
+ 7 4 4 12 2.
+ <_>
+
+ <_>
+ 1 3 9 8 -1.
+ <_>
+ 4 3 3 8 3.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 12 8 6 12 -1.
+ <_>
+ 14 12 2 4 9.
+ <_>
+
+ <_>
+ 4 2 14 6 -1.
+ <_>
+ 4 4 14 2 3.
+ <_>
+
+ <_>
+ 3 0 12 8 -1.
+ <_>
+ 3 4 12 4 2.
+ <_>
+
+ <_>
+ 0 0 17 20 -1.
+ <_>
+ 0 5 17 10 2.
+ <_>
+
+ <_>
+ 4 0 13 6 -1.
+ <_>
+ 4 2 13 2 3.
+ <_>
+
+ <_>
+ 2 10 3 6 -1.
+ <_>
+ 3 10 1 6 3.
+ <_>
+
+ <_>
+ 4 14 6 4 -1.
+ <_>
+ 4 14 3 2 2.
+ <_>
+ 7 16 3 2 2.
+ <_>
+
+ <_>
+ 8 1 6 8 -1.
+ <_>
+ 10 1 2 8 3.
+ <_>
+
+ <_>
+ 0 1 2 6 -1.
+ <_>
+ 1 1 1 6 2.
+ <_>
+
+ <_>
+ 8 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 4 8 4 -1.
+ <_>
+ 5 4 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 4 5 -1.
+ <_>
+ 1 2 2 5 2.
+ <_>
+
+ <_>
+ 5 12 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ <_>
+
+ <_>
+ 5 13 8 2 -1.
+ <_>
+ 7 13 4 2 2.
+ <_>
+
+ <_>
+ 11 9 9 8 -1.
+ <_>
+ 11 11 9 4 2.
+ <_>
+
+ <_>
+ 16 12 4 3 -1.
+ <_>
+ 18 12 2 3 2.
+ <_>
+
+ <_>
+ 16 14 4 6 -1.
+ <_>
+ 16 17 4 3 2.
+ <_>
+
+ <_>
+ 0 12 6 3 -1.
+ <_>
+ 2 12 2 3 3.
+ <_>
+
+ <_>
+ 8 6 7 6 -1.
+ <_>
+ 6 8 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 6 -1.
+ <_>
+ 0 3 1 3 2.
+ <_>
+
+ <_>
+ 0 2 15 5 -1.
+ <_>
+ 5 2 5 5 3.
+ <_>
+
+ <_>
+ 8 11 10 3 -1.
+ <_>
+ 13 11 5 3 2.
+ <_>
+
+ <_>
+ 8 11 2 8 -1.
+ <_>
+ 8 15 2 4 2.
+ <_>
+
+ <_>
+ 0 1 2 6 -1.
+ <_>
+ 1 1 1 6 2.
+ <_>
+
+ <_>
+ 0 1 4 4 -1.
+ <_>
+ 1 1 2 4 2.
+ <_>
+
+ <_>
+ 5 16 3 1 -1.
+ <_>
+ 6 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 0 7 15 -1.
+ <_>
+ 5 5 7 5 3.
+ <_>
+
+ <_>
+ 17 0 3 2 -1.
+ <_>
+ 18 1 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 18 6 2 -1.
+ <_>
+ 6 18 2 2 3.
+ <_>
+
+ <_>
+ 7 1 4 5 -1.
+ <_>
+ 7 1 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 14 0 6 8 -1.
+ <_>
+ 14 0 3 4 2.
+ <_>
+ 17 4 3 4 2.
+ <_>
+
+ <_>
+ 5 2 4 18 -1.
+ <_>
+ 5 2 2 9 2.
+ <_>
+ 7 11 2 9 2.
+ <_>
+
+ <_>
+ 7 18 6 2 -1.
+ <_>
+ 9 18 2 2 3.
+ <_>
+
+ <_>
+ 10 8 2 3 -1.
+ <_>
+ 10 9 2 1 3.
+ <_>
+
+ <_>
+ 10 10 4 2 -1.
+ <_>
+ 10 10 2 1 2.
+ <_>
+ 12 11 2 1 2.
+ <_>
+
+ <_>
+ 4 2 12 6 -1.
+ <_>
+ 4 4 12 2 3.
+ <_>
+
+ <_>
+ 5 1 12 8 -1.
+ <_>
+ 5 3 12 4 2.
+ <_>
+
+ <_>
+ 2 18 4 2 -1.
+ <_>
+ 2 19 4 1 2.
+ <_>
+
+ <_>
+ 0 18 8 1 -1.
+ <_>
+ 4 18 4 1 2.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 8 11 4 4 9.
+ <_>
+
+ <_>
+ 16 11 4 6 -1.
+ <_>
+ 18 11 2 6 2.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 0 0 1 8 -1.
+ <_>
+ 0 4 1 4 2.
+ <_>
+
+ <_>
+ 15 14 5 6 -1.
+ <_>
+ 15 17 5 3 2.
+ <_>
+
+ <_>
+ 0 7 6 9 -1.
+ <_>
+ 2 7 2 9 3.
+ <_>
+
+ <_>
+ 15 11 4 1 -1.
+ <_>
+ 16 12 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 11 8 2 -1.
+ <_>
+ 15 11 4 2 2.
+ <_>
+
+ <_>
+ 0 1 12 11 -1.
+ <_>
+ 3 1 6 11 2.
+ <_>
+
+ <_>
+ 8 8 6 4 -1.
+ <_>
+ 7 9 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 17 6 3 -1.
+ <_>
+ 8 17 2 3 3.
+ <_>
+
+ <_>
+ 0 0 1 4 -1.
+ <_>
+ 0 2 1 2 2.
+ <_>
+
+ <_>
+ 3 1 1 3 -1.
+ <_>
+ 2 2 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 11 2 3 -1.
+ <_>
+ 18 12 2 1 3.
+ <_>
+
+ <_>
+ 3 12 2 8 -1.
+ <_>
+ 3 12 1 4 2.
+ <_>
+ 4 16 1 4 2.
+ <_>
+
+ <_>
+ 3 12 3 3 -1.
+ <_>
+ 4 12 1 3 3.
+ <_>
+
+ <_>
+ 11 18 4 2 -1.
+ <_>
+ 12 18 2 2 2.
+ <_>
+
+ <_>
+ 17 10 3 3 -1.
+ <_>
+ 17 11 3 1 3.
+ <_>
+
+ <_>
+ 7 14 5 2 -1.
+ <_>
+ 7 15 5 1 2.
+ <_>
+
+ <_>
+ 6 0 4 5 -1.
+ <_>
+ 6 0 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 6 1 5 8 -1.
+ <_>
+ 6 5 5 4 2.
+ <_>
+
+ <_>
+ 3 1 9 8 -1.
+ <_>
+ 3 5 9 4 2.
+ <_>
+
+ <_>
+ 2 14 15 6 -1.
+ <_>
+ 7 14 5 6 3.
+ <_>
+
+ <_>
+ 12 3 6 5 -1.
+ <_>
+ 14 3 2 5 3.
+ <_>
+
+ <_>
+ 5 16 2 2 -1.
+ <_>
+ 5 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 16 2 2 -1.
+ <_>
+ 5 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 8 6 4 -1.
+ <_>
+ 11 10 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 4 13 3 2 2.
+ <_>
+
+ <_>
+ 13 8 6 12 -1.
+ <_>
+ 15 12 2 4 9.
+ <_>
+
+ <_>
+ 0 0 1 10 -1.
+ <_>
+ 0 5 1 5 2.
+ <_>
+
+ <_>
+ 0 12 6 4 -1.
+ <_>
+ 2 12 2 4 3.
+ <_>
+
+ <_>
+ 7 5 8 6 -1.
+ <_>
+ 5 7 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 1 16 4 -1.
+ <_>
+ 3 3 16 2 2.
+ <_>
+
+ <_>
+ 6 2 10 9 -1.
+ <_>
+ 6 5 10 3 3.
+ <_>
+
+ <_>
+ 14 10 6 10 -1.
+ <_>
+ 17 10 3 10 2.
+ <_>
+
+ <_>
+ 5 17 4 3 -1.
+ <_>
+ 6 17 2 3 2.
+ <_>
+
+ <_>
+ 5 12 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ <_>
+
+ <_>
+ 5 12 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ <_>
+
+ <_>
+ 0 0 2 9 -1.
+ <_>
+ 1 0 1 9 2.
+ <_>
+
+ <_>
+ 2 6 3 2 -1.
+ <_>
+ 2 6 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 16 6 3 -1.
+ <_>
+ 9 16 2 3 3.
+ <_>
+
+ <_>
+ 7 17 6 2 -1.
+ <_>
+ 9 17 2 2 3.
+ <_>
+
+ <_>
+ 6 3 9 6 -1.
+ <_>
+ 4 5 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 3 3 -1.
+ <_>
+ 7 2 1 3 3.
+ <_>
+
+ <_>
+ 2 1 6 4 -1.
+ <_>
+ 4 1 2 4 3.
+ <_>
+
+ <_>
+ 13 11 4 2 -1.
+ <_>
+ 13 11 2 1 2.
+ <_>
+ 15 12 2 1 2.
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+ 15 11 1 1 2.
+ <_>
+
+ <_>
+ 17 7 3 3 -1.
+ <_>
+ 18 8 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 3 2 -1.
+ <_>
+ 18 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 3 1 2 -1.
+ <_>
+ 0 4 1 1 2.
+ <_>
+
+ <_>
+ 10 1 2 5 -1.
+ <_>
+ 11 1 1 5 2.
+ <_>
+
+ <_>
+ 1 8 3 12 -1.
+ <_>
+ 1 11 3 6 2.
+ <_>
+
+ <_>
+ 2 10 8 2 -1.
+ <_>
+ 2 10 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 7 13 1 1 9.
+ <_>
+
+ <_>
+ 6 11 3 4 -1.
+ <_>
+ 7 11 1 4 3.
+ <_>
+
+ <_>
+ 5 17 4 2 -1.
+ <_>
+ 6 17 2 2 2.
+ <_>
+
+ <_>
+ 0 19 20 1 -1.
+ <_>
+ 10 19 10 1 2.
+ <_>
+
+ <_>
+ 5 11 8 5 -1.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 10 8 8 9 -1.
+ <_>
+ 10 11 8 3 3.
+ <_>
+
+ <_>
+ 0 13 6 2 -1.
+ <_>
+ 2 13 2 2 3.
+ <_>
+
+ <_>
+ 18 14 2 1 -1.
+ <_>
+ 18 14 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 2 2 4 -1.
+ <_>
+ 2 2 1 4 2.
+ <_>
+
+ <_>
+ 5 5 8 5 -1.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 7 13 5 4 -1.
+ <_>
+ 7 15 5 2 2.
+ <_>
+
+ <_>
+ 17 18 3 2 -1.
+ <_>
+ 17 19 3 1 2.
+ <_>
+
+ <_>
+ 0 2 1 2 -1.
+ <_>
+ 0 3 1 1 2.
+ <_>
+
+ <_>
+ 3 0 1 3 -1.
+ <_>
+ 2 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 11 3 4 -1.
+ <_>
+ 11 11 1 4 3.
+ <_>
+
+ <_>
+ 14 11 4 8 -1.
+ <_>
+ 16 11 2 8 2.
+ <_>
+
+ <_>
+ 2 2 9 6 -1.
+ <_>
+ 2 5 9 3 2.
+ <_>
+
+ <_>
+ 0 4 17 8 -1.
+ <_>
+ 0 6 17 4 2.
+ <_>
+
+ <_>
+ 15 17 5 3 -1.
+ <_>
+ 15 18 5 1 3.
+ <_>
+
+ <_>
+ 2 11 2 8 -1.
+ <_>
+ 2 15 2 4 2.
+ <_>
+
+ <_>
+ 3 12 3 3 -1.
+ <_>
+ 4 12 1 3 3.
+ <_>
+
+ <_>
+ 3 12 9 7 -1.
+ <_>
+ 6 12 3 7 3.
+ <_>
+
+ <_>
+ 13 1 4 7 -1.
+ <_>
+ 14 1 2 7 2.
+ <_>
+
+ <_>
+ 3 16 2 2 -1.
+ <_>
+ 3 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 17 2 1 -1.
+ <_>
+ 3 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 6 6 -1.
+ <_>
+ 4 9 3 3 2.
+ <_>
+ 7 12 3 3 2.
+ <_>
+
+ <_>
+ 11 13 3 1 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 0 0 20 3 -1.
+ <_>
+ 5 0 10 3 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 17 0 3 1 -1.
+ <_>
+ 18 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 8 9 -1.
+ <_>
+ 4 3 8 3 3.
+ <_>
+
+ <_>
+ 6 0 6 4 -1.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 18 0 2 1 -1.
+ <_>
+ 18 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 2 6 1 -1.
+ <_>
+ 17 2 3 1 2.
+ <_>
+
+ <_>
+ 5 13 8 2 -1.
+ <_>
+ 7 13 4 2 2.
+ <_>
+
+ <_>
+ 15 12 3 8 -1.
+ <_>
+ 15 16 3 4 2.
+ <_>
+
+ <_>
+ 5 10 8 3 -1.
+ <_>
+ 5 11 8 1 3.
+ <_>
+
+ <_>
+ 5 0 11 9 -1.
+ <_>
+ 5 3 11 3 3.
+ <_>
+
+ <_>
+ 18 14 2 2 -1.
+ <_>
+ 19 14 1 2 2.
+ <_>
+
+ <_>
+ 1 3 9 8 -1.
+ <_>
+ 4 3 3 8 3.
+ <_>
+
+ <_>
+ 3 6 2 3 -1.
+ <_>
+ 2 7 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 6 2 3 -1.
+ <_>
+ 2 7 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 1 12 -1.
+ <_>
+ 13 11 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 15 -1.
+ <_>
+ 0 5 1 5 3.
+ <_>
+
+ <_>
+ 6 9 6 3 -1.
+ <_>
+ 6 10 6 1 3.
+ <_>
+
+ <_>
+ 3 18 3 2 -1.
+ <_>
+ 3 19 3 1 2.
+ <_>
+
+ <_>
+ 16 17 4 3 -1.
+ <_>
+ 16 18 4 1 3.
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 11 17 2 3 2.
+ <_>
+
+ <_>
+ 13 13 4 3 -1.
+ <_>
+ 14 13 2 3 2.
+ <_>
+
+ <_>
+ 4 15 3 2 -1.
+ <_>
+ 5 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 4 2 2 -1.
+ <_>
+ 1 4 1 2 2.
+ <_>
+
+ <_>
+ 4 0 2 5 -1.
+ <_>
+ 5 0 1 5 2.
+ <_>
+
+ <_>
+ 1 9 3 8 -1.
+ <_>
+ 1 11 3 4 2.
+ <_>
+
+ <_>
+ 5 8 1 3 -1.
+ <_>
+ 4 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 13 2 1 -1.
+ <_>
+ 5 13 1 1 2.
+ <_>
+
+ <_>
+ 9 11 4 9 -1.
+ <_>
+ 11 11 2 9 2.
+ <_>
+
+ <_>
+ 0 1 1 2 -1.
+ <_>
+ 0 2 1 1 2.
+ <_>
+
+ <_>
+ 0 0 1 3 -1.
+ <_>
+ 0 1 1 1 3.
+ <_>
+
+ <_>
+ 12 11 1 4 -1.
+ <_>
+ 12 12 1 2 2.
+ <_>
+
+ <_>
+ 16 10 3 3 -1.
+ <_>
+ 15 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 12 1 6 -1.
+ <_>
+ 18 12 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 17 3 2 -1.
+ <_>
+ 5 17 1 2 3.
+ <_>
+
+ <_>
+ 17 7 3 2 -1.
+ <_>
+ 18 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 18 9 2 1 -1.
+ <_>
+ 18 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 11 4 5 -1.
+ <_>
+ 9 12 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 2 7 -1.
+ <_>
+ 8 1 1 7 2.
+ <_>
+
+ <_>
+ 4 4 14 6 -1.
+ <_>
+ 4 6 14 2 3.
+ <_>
+
+ <_>
+ 2 2 11 6 -1.
+ <_>
+ 2 5 11 3 2.
+ <_>
+
+ <_>
+ 18 16 2 2 -1.
+ <_>
+ 18 17 2 1 2.
+ <_>
+
+ <_>
+ 17 11 2 6 -1.
+ <_>
+ 18 11 1 6 2.
+ <_>
+
+ <_>
+ 17 0 3 3 -1.
+ <_>
+ 18 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 6 -1.
+ <_>
+ 18 3 2 3 2.
+ <_>
+
+ <_>
+ 4 7 6 8 -1.
+ <_>
+ 4 7 3 4 2.
+ <_>
+ 7 11 3 4 2.
+ <_>
+
+ <_>
+ 11 11 4 2 -1.
+ <_>
+ 11 11 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 6 7 -1.
+ <_>
+ 3 0 3 7 2.
+ <_>
+
+ <_>
+ 15 10 5 8 -1.
+ <_>
+ 15 12 5 4 2.
+ <_>
+
+ <_>
+ 2 10 3 8 -1.
+ <_>
+ 3 10 1 8 3.
+ <_>
+
+ <_>
+ 9 7 6 6 -1.
+ <_>
+ 7 9 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 1 6 6 -1.
+ <_>
+ 4 4 6 3 2.
+ <_>
+
+ <_>
+ 4 0 16 2 -1.
+ <_>
+ 4 1 16 1 2.
+ <_>
+
+ <_>
+ 14 8 6 6 -1.
+ <_>
+ 14 8 3 3 2.
+ <_>
+ 17 11 3 3 2.
+ <_>
+
+ <_>
+ 4 12 2 8 -1.
+ <_>
+ 4 12 1 4 2.
+ <_>
+ 5 16 1 4 2.
+ <_>
+
+ <_>
+ 0 18 7 2 -1.
+ <_>
+ 0 19 7 1 2.
+ <_>
+
+ <_>
+ 9 13 1 4 -1.
+ <_>
+ 9 15 1 2 2.
+ <_>
+
+ <_>
+ 18 10 2 8 -1.
+ <_>
+ 19 10 1 8 2.
+ <_>
+
+ <_>
+ 6 0 4 8 -1.
+ <_>
+ 7 0 2 8 2.
+ <_>
+
+ <_>
+ 1 2 6 6 -1.
+ <_>
+ 3 2 2 6 3.
+ <_>
+
+ <_>
+ 10 10 8 2 -1.
+ <_>
+ 10 10 4 1 2.
+ <_>
+ 14 11 4 1 2.
+ <_>
+
+ <_>
+ 3 9 2 3 -1.
+ <_>
+ 2 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 1 13 6 -1.
+ <_>
+ 5 3 13 2 3.
+ <_>
+
+ <_>
+ 4 4 13 6 -1.
+ <_>
+ 4 6 13 2 3.
+ <_>
+
+ <_>
+ 8 1 4 5 -1.
+ <_>
+ 8 1 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 2 1 -1.
+ <_>
+ 8 7 1 1 2.
+ <_>
+
+ <_>
+ 5 5 4 4 -1.
+ <_>
+ 6 5 2 4 2.
+ <_>
+
+ <_>
+ 14 12 4 2 -1.
+ <_>
+ 14 12 2 1 2.
+ <_>
+ 16 13 2 1 2.
+ <_>
+
+ <_>
+ 13 11 4 2 -1.
+ <_>
+ 13 11 2 1 2.
+ <_>
+ 15 12 2 1 2.
+ <_>
+
+ <_>
+ 16 10 4 3 -1.
+ <_>
+ 16 11 4 1 3.
+ <_>
+
+ <_>
+ 10 0 4 5 -1.
+ <_>
+ 11 0 2 5 2.
+ <_>
+
+ <_>
+ 8 11 1 3 -1.
+ <_>
+ 7 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 12 3 2 -1.
+ <_>
+ 7 12 1 2 3.
+ <_>
+
+ <_>
+ 17 8 2 3 -1.
+ <_>
+ 17 8 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 6 5 -1.
+ <_>
+ 13 0 2 5 3.
+ <_>
+
+ <_>
+ 0 0 3 3 -1.
+ <_>
+ 0 1 3 1 3.
+ <_>
+
+ <_>
+ 2 0 1 2 -1.
+ <_>
+ 2 1 1 1 2.
+ <_>
+
+ <_>
+ 13 11 7 2 -1.
+ <_>
+ 13 12 7 1 2.
+ <_>
+
+ <_>
+ 17 8 3 3 -1.
+ <_>
+ 18 9 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 15 15 1 3 -1.
+ <_>
+ 14 16 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 13 6 2 -1.
+ <_>
+ 8 13 2 2 3.
+ <_>
+
+ <_>
+ 8 10 3 4 -1.
+ <_>
+ 9 10 1 4 3.
+ <_>
+
+ <_>
+ 7 0 12 19 -1.
+ <_>
+ 13 0 6 19 2.
+ <_>
+
+ <_>
+ 12 16 8 4 -1.
+ <_>
+ 12 18 8 2 2.
+ <_>
+
+ <_>
+ 8 5 12 2 -1.
+ <_>
+ 14 5 6 2 2.
+ <_>
+
+ <_>
+ 10 8 6 4 -1.
+ <_>
+ 12 10 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 4 13 3 2 2.
+ <_>
+
+ <_>
+ 0 2 12 7 -1.
+ <_>
+ 3 2 6 7 2.
+ <_>
+
+ <_>
+ 8 0 4 2 -1.
+ <_>
+ 8 0 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 11 6 6 -1.
+ <_>
+ 15 13 2 2 9.
+ <_>
+
+ <_>
+ 7 11 10 4 -1.
+ <_>
+ 12 11 5 4 2.
+ <_>
+
+ <_>
+ 1 11 4 5 -1.
+ <_>
+ 2 11 2 5 2.
+ <_>
+
+ <_>
+ 2 14 4 2 -1.
+ <_>
+ 3 15 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 6 -1.
+ <_>
+ 0 3 1 3 2.
+ <_>
+
+ <_>
+ 6 2 6 6 -1.
+ <_>
+ 6 5 6 3 2.
+ <_>
+
+ <_>
+ 6 18 4 2 -1.
+ <_>
+ 7 18 2 2 2.
+ <_>
+
+ <_>
+ 6 18 4 2 -1.
+ <_>
+ 7 18 2 2 2.
+ <_>
+
+ <_>
+ 4 4 7 4 -1.
+ <_>
+ 3 5 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 8 12 -1.
+ <_>
+ 7 8 4 12 2.
+ <_>
+
+ <_>
+ 5 17 2 1 -1.
+ <_>
+ 5 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 18 2 1 -1.
+ <_>
+ 5 18 1 1 2.
+ <_>
+
+ <_>
+ 13 16 7 2 -1.
+ <_>
+ 13 17 7 1 2.
+ <_>
+
+ <_>
+ 7 15 2 3 -1.
+ <_>
+ 7 15 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 4 5 -1.
+ <_>
+ 10 2 2 5 2.
+ <_>
+
+ <_>
+ 7 2 4 6 -1.
+ <_>
+ 8 2 2 6 2.
+ <_>
+
+ <_>
+ 3 12 3 3 -1.
+ <_>
+ 4 12 1 3 3.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 6 13 1 1 9.
+ <_>
+
+ <_>
+ 4 12 3 2 -1.
+ <_>
+ 5 12 1 2 3.
+ <_>
+
+ <_>
+ 10 13 3 1 -1.
+ <_>
+ 11 13 1 1 3.
+ <_>
+
+ <_>
+ 11 5 4 3 -1.
+ <_>
+ 12 5 2 3 2.
+ <_>
+
+ <_>
+ 19 7 1 10 -1.
+ <_>
+ 19 12 1 5 2.
+ <_>
+
+ <_>
+ 4 8 2 3 -1.
+ <_>
+ 3 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 6 5 -1.
+ <_>
+ 9 0 2 5 3.
+ <_>
+
+ <_>
+ 5 0 6 2 -1.
+ <_>
+ 5 0 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 13 9 -1.
+ <_>
+ 5 3 13 3 3.
+ <_>
+
+ <_>
+ 0 6 1 2 -1.
+ <_>
+ 0 7 1 1 2.
+ <_>
+
+ <_>
+ 1 0 16 6 -1.
+ <_>
+ 1 2 16 2 3.
+ <_>
+
+ <_>
+ 18 0 2 4 -1.
+ <_>
+ 18 0 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 13 2 2 -1.
+ <_>
+ 4 13 1 1 2.
+ <_>
+ 5 14 1 1 2.
+ <_>
+
+ <_>
+ 0 3 4 1 -1.
+ <_>
+ 2 3 2 1 2.
+ <_>
+
+ <_>
+ 3 0 8 12 -1.
+ <_>
+ 3 6 8 6 2.
+ <_>
+
+ <_>
+ 12 13 4 1 -1.
+ <_>
+ 13 13 2 1 2.
+ <_>
+
+ <_>
+ 12 12 2 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 5 16 3 1 -1.
+ <_>
+ 6 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 13 8 4 -1.
+ <_>
+ 3 13 4 2 2.
+ <_>
+ 7 15 4 2 2.
+ <_>
+
+ <_>
+ 0 8 18 3 -1.
+ <_>
+ 6 9 6 1 9.
+ <_>
+
+ <_>
+ 8 4 6 5 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+
+ <_>
+ 5 14 9 1 -1.
+ <_>
+ 8 14 3 1 3.
+ <_>
+
+ <_>
+ 4 0 4 4 -1.
+ <_>
+ 4 0 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 12 8 -1.
+ <_>
+ 7 11 12 4 2.
+ <_>
+
+ <_>
+ 18 15 2 1 -1.
+ <_>
+ 18 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 2 4 -1.
+ <_>
+ 3 13 1 2 2.
+ <_>
+ 4 15 1 2 2.
+ <_>
+
+ <_>
+ 4 7 3 3 -1.
+ <_>
+ 3 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 1 2 7 -1.
+ <_>
+ 1 1 1 7 2.
+ <_>
+
+ <_>
+ 4 0 3 9 -1.
+ <_>
+ 5 0 1 9 3.
+ <_>
+
+ <_>
+ 15 10 3 3 -1.
+ <_>
+ 14 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 0 0 1 4 -1.
+ <_>
+ 0 2 1 2 2.
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 12 19 8 1 2.
+ <_>
+
+ <_>
+ 17 9 2 2 -1.
+ <_>
+ 17 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 10 4 2 -1.
+ <_>
+ 17 11 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 13 10 1 -1.
+ <_>
+ 12 13 5 1 2.
+ <_>
+
+ <_>
+ 7 7 4 3 -1.
+ <_>
+ 9 7 2 3 2.
+ <_>
+
+ <_>
+ 9 18 6 2 -1.
+ <_>
+ 11 18 2 2 3.
+ <_>
+
+ <_>
+ 8 18 6 2 -1.
+ <_>
+ 10 18 2 2 3.
+ <_>
+
+ <_>
+ 17 9 3 1 -1.
+ <_>
+ 18 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 7 2 11 -1.
+ <_>
+ 18 7 1 11 2.
+ <_>
+
+ <_>
+ 8 2 4 4 -1.
+ <_>
+ 8 2 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 6 2 3 -1.
+ <_>
+ 7 6 1 3 2.
+ <_>
+
+ <_>
+ 7 0 9 5 -1.
+ <_>
+ 10 3 3 5 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 15 9 -1.
+ <_>
+ 6 3 5 3 9.
+ <_>
+
+ <_>
+ 2 12 4 3 -1.
+ <_>
+ 3 12 2 3 2.
+ <_>
+
+ <_>
+ 0 12 4 5 -1.
+ <_>
+ 1 12 2 5 2.
+ <_>
+
+ <_>
+ 3 2 2 3 -1.
+ <_>
+ 2 3 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 13 6 1 -1.
+ <_>
+ 4 13 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 4 6 -1.
+ <_>
+ 6 0 2 6 2.
+ <_>
+
+ <_>
+ 2 17 2 1 -1.
+ <_>
+ 2 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 1 3 -1.
+ <_>
+ 3 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 2 6 9 -1.
+ <_>
+ 2 2 2 9 3.
+ <_>
+
+ <_>
+ 16 7 2 2 -1.
+ <_>
+ 16 7 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 2 6 4 -1.
+ <_>
+ 9 2 2 4 3.
+ <_>
+
+ <_>
+ 7 18 6 2 -1.
+ <_>
+ 9 18 2 2 3.
+ <_>
+
+ <_>
+ 1 14 6 4 -1.
+ <_>
+ 3 14 2 4 3.
+ <_>
+
+ <_>
+ 6 8 7 3 -1.
+ <_>
+ 5 9 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 12 4 1 -1.
+ <_>
+ 15 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 12 3 2 -1.
+ <_>
+ 5 12 1 2 3.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 6 12 1 3 3.
+ <_>
+
+ <_>
+ 18 2 2 2 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 14 0 6 1 -1.
+ <_>
+ 17 0 3 1 2.
+ <_>
+
+ <_>
+ 17 0 3 3 -1.
+ <_>
+ 18 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 6 8 -1.
+ <_>
+ 13 4 2 8 3.
+ <_>
+
+ <_>
+ 7 12 3 2 -1.
+ <_>
+ 8 12 1 2 3.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 16 1 3 1 2.
+ <_>
+
+ <_>
+ 5 11 9 4 -1.
+ <_>
+ 8 11 3 4 3.
+ <_>
+
+ <_>
+ 12 9 1 6 -1.
+ <_>
+ 12 11 1 2 3.
+ <_>
+
+ <_>
+ 4 0 4 4 -1.
+ <_>
+ 4 0 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 1 11 12 -1.
+ <_>
+ 5 5 11 4 3.
+ <_>
+
+ <_>
+ 16 12 4 8 -1.
+ <_>
+ 18 12 2 8 2.
+ <_>
+
+ <_>
+ 18 14 2 6 -1.
+ <_>
+ 18 17 2 3 2.
+ <_>
+
+ <_>
+ 1 12 4 4 -1.
+ <_>
+ 2 12 2 4 2.
+ <_>
+
+ <_>
+ 6 7 6 4 -1.
+ <_>
+ 5 8 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 3 2 -1.
+ <_>
+ 6 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 16 3 1 -1.
+ <_>
+ 7 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 14 1 2 -1.
+ <_>
+ 10 14 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 7 3 3 -1.
+ <_>
+ 3 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 0 6 8 -1.
+ <_>
+ 4 0 2 8 3.
+ <_>
+
+ <_>
+ 2 5 6 3 -1.
+ <_>
+ 4 5 2 3 3.
+ <_>
+
+ <_>
+ 3 11 3 6 -1.
+ <_>
+ 4 11 1 6 3.
+ <_>
+
+ <_>
+ 15 11 2 3 -1.
+ <_>
+ 14 12 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 17 4 3 -1.
+ <_>
+ 12 17 2 3 2.
+ <_>
+
+ <_>
+ 13 11 2 2 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+ 14 12 1 1 2.
+ <_>
+
+ <_>
+ 13 11 2 2 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+ 14 12 1 1 2.
+ <_>
+
+ <_>
+ 8 2 5 6 -1.
+ <_>
+ 8 5 5 3 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 0 8 10 4 -1.
+ <_>
+ 0 10 10 2 2.
+ <_>
+
+ <_>
+ 17 11 3 1 -1.
+ <_>
+ 18 12 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 18 2 2 -1.
+ <_>
+ 8 18 1 2 2.
+ <_>
+
+ <_>
+ 0 6 18 4 -1.
+ <_>
+ 9 6 9 4 2.
+ <_>
+
+ <_>
+ 2 12 12 8 -1.
+ <_>
+ 6 12 4 8 3.
+ <_>
+
+ <_>
+ 1 0 14 1 -1.
+ <_>
+ 8 0 7 1 2.
+ <_>
+
+ <_>
+ 8 0 12 19 -1.
+ <_>
+ 14 0 6 19 2.
+ <_>
+
+ <_>
+ 7 12 3 2 -1.
+ <_>
+ 8 12 1 2 3.
+ <_>
+
+ <_>
+ 8 11 3 5 -1.
+ <_>
+ 9 11 1 5 3.
+ <_>
+
+ <_>
+ 7 18 3 2 -1.
+ <_>
+ 8 18 1 2 3.
+ <_>
+
+ <_>
+ 5 13 2 2 -1.
+ <_>
+ 5 13 1 1 2.
+ <_>
+ 6 14 1 1 2.
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 3 -1.
+ <_>
+ 18 0 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 15 6 -1.
+ <_>
+ 4 4 15 2 3.
+ <_>
+
+ <_>
+ 10 0 10 4 -1.
+ <_>
+ 10 0 5 2 2.
+ <_>
+ 15 2 5 2 2.
+ <_>
+
+ <_>
+ 5 0 12 6 -1.
+ <_>
+ 5 2 12 2 3.
+ <_>
+
+ <_>
+ 12 1 8 6 -1.
+ <_>
+ 12 1 4 3 2.
+ <_>
+ 16 4 4 3 2.
+ <_>
+
+ <_>
+ 0 3 2 1 -1.
+ <_>
+ 1 3 1 1 2.
+ <_>
+
+ <_>
+ 16 7 2 4 -1.
+ <_>
+ 16 7 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 15 17 5 3 -1.
+ <_>
+ 15 18 5 1 3.
+ <_>
+
+ <_>
+ 6 12 6 8 -1.
+ <_>
+ 8 12 2 8 3.
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 6 12 1 2 2.
+ <_>
+
+ <_>
+ 13 12 4 6 -1.
+ <_>
+ 14 12 2 6 2.
+ <_>
+
+ <_>
+ 17 0 3 4 -1.
+ <_>
+ 18 1 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 4 10 -1.
+ <_>
+ 5 0 2 10 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 6 12 1 3 3.
+ <_>
+
+ <_>
+ 11 12 3 3 -1.
+ <_>
+ 12 12 1 3 3.
+ <_>
+
+ <_>
+ 3 2 1 3 -1.
+ <_>
+ 2 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 1 8 1 -1.
+ <_>
+ 4 1 4 1 2.
+ <_>
+
+ <_>
+ 0 3 18 12 -1.
+ <_>
+ 6 7 6 4 9.
+ <_>
+
+ <_>
+ 12 18 6 2 -1.
+ <_>
+ 15 18 3 2 2.
+ <_>
+
+ <_>
+ 11 9 4 7 -1.
+ <_>
+ 12 10 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 15 8 3 12 -1.
+ <_>
+ 16 12 1 4 9.
+ <_>
+
+ <_>
+ 6 10 7 3 -1.
+ <_>
+ 6 11 7 1 3.
+ <_>
+
+ <_>
+ 4 9 10 3 -1.
+ <_>
+ 4 10 10 1 3.
+ <_>
+
+ <_>
+ 0 1 15 7 -1.
+ <_>
+ 5 1 5 7 3.
+ <_>
+
+ <_>
+ 0 0 1 18 -1.
+ <_>
+ 0 6 1 6 3.
+ <_>
+
+ <_>
+ 9 13 2 4 -1.
+ <_>
+ 8 14 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 16 4 4 -1.
+ <_>
+ 16 18 4 2 2.
+ <_>
+
+ <_>
+ 1 10 4 8 -1.
+ <_>
+ 2 10 2 8 2.
+ <_>
+
+ <_>
+ 2 15 3 2 -1.
+ <_>
+ 3 16 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 17 2 1 -1.
+ <_>
+ 2 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 10 2 8 -1.
+ <_>
+ 18 10 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 18 3 -1.
+ <_>
+ 6 12 6 1 9.
+ <_>
+
+ <_>
+ 15 10 4 2 -1.
+ <_>
+ 16 11 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 1 5 4 -1.
+ <_>
+ 9 3 5 2 2.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 6 4 7 3 2.
+ <_>
+
+ <_>
+ 3 3 8 6 -1.
+ <_>
+ 3 6 8 3 2.
+ <_>
+
+ <_>
+ 16 1 4 2 -1.
+ <_>
+ 18 1 2 2 2.
+ <_>
+
+ <_>
+ 18 12 2 3 -1.
+ <_>
+ 18 13 2 1 3.
+ <_>
+
+ <_>
+ 17 6 2 8 -1.
+ <_>
+ 17 6 1 4 2.
+ <_>
+ 18 10 1 4 2.
+ <_>
+
+ <_>
+ 17 5 3 4 -1.
+ <_>
+ 18 6 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 0 9 4 8 -1.
+ <_>
+ 0 11 4 4 2.
+ <_>
+
+ <_>
+ 0 6 3 8 -1.
+ <_>
+ 0 10 3 4 2.
+ <_>
+
+ <_>
+ 14 11 2 2 -1.
+ <_>
+ 14 11 1 1 2.
+ <_>
+ 15 12 1 1 2.
+ <_>
+
+ <_>
+ 15 11 3 3 -1.
+ <_>
+ 14 12 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 12 5 2 -1.
+ <_>
+ 14 13 5 1 2.
+ <_>
+
+ <_>
+ 19 12 1 2 -1.
+ <_>
+ 19 13 1 1 2.
+ <_>
+
+ <_>
+ 6 0 4 7 -1.
+ <_>
+ 7 0 2 7 2.
+ <_>
+
+ <_>
+ 12 12 3 2 -1.
+ <_>
+ 12 13 3 1 2.
+ <_>
+
+ <_>
+ 12 13 4 2 -1.
+ <_>
+ 12 13 2 1 2.
+ <_>
+ 14 14 2 1 2.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 16 19 4 1 2.
+ <_>
+
+ <_>
+ 14 18 1 2 -1.
+ <_>
+ 14 19 1 1 2.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 17 1 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 0 4 2 -1.
+ <_>
+ 17 1 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 13 2 2 -1.
+ <_>
+ 12 13 1 1 2.
+ <_>
+ 13 14 1 1 2.
+ <_>
+
+ <_>
+ 7 10 4 2 -1.
+ <_>
+ 7 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 3 1 3 -1.
+ <_>
+ 2 4 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 4 2 3 -1.
+ <_>
+ 2 5 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 16 6 -1.
+ <_>
+ 3 2 16 2 3.
+ <_>
+
+ <_>
+ 12 2 2 5 -1.
+ <_>
+ 12 2 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 1 3 -1.
+ <_>
+ 3 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 12 2 2 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 5 17 4 3 -1.
+ <_>
+ 6 17 2 3 2.
+ <_>
+
+ <_>
+ 17 13 3 3 -1.
+ <_>
+ 17 14 3 1 3.
+ <_>
+
+ <_>
+ 0 12 2 8 -1.
+ <_>
+ 0 12 1 4 2.
+ <_>
+ 1 16 1 4 2.
+ <_>
+
+ <_>
+ 4 16 1 3 -1.
+ <_>
+ 3 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 2 1 2 -1.
+ <_>
+ 0 3 1 1 2.
+ <_>
+
+ <_>
+ 10 2 4 7 -1.
+ <_>
+ 11 2 2 7 2.
+ <_>
+
+ <_>
+ 2 1 6 9 -1.
+ <_>
+ 2 4 6 3 3.
+ <_>
+
+ <_>
+ 1 4 2 2 -1.
+ <_>
+ 2 4 1 2 2.
+ <_>
+
+ <_>
+ 13 12 2 2 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 18 0 2 1 -1.
+ <_>
+ 19 0 1 1 2.
+ <_>
+
+ <_>
+ 4 13 3 1 -1.
+ <_>
+ 5 13 1 1 3.
+ <_>
+
+ <_>
+ 6 13 4 1 -1.
+ <_>
+ 7 13 2 1 2.
+ <_>
+
+ <_>
+ 6 10 6 3 -1.
+ <_>
+ 6 11 6 1 3.
+ <_>
+
+ <_>
+ 7 9 4 3 -1.
+ <_>
+ 7 10 4 1 3.
+ <_>
+
+ <_>
+ 6 0 4 3 -1.
+ <_>
+ 6 0 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 15 15 5 2 -1.
+ <_>
+ 15 16 5 1 2.
+ <_>
+
+ <_>
+ 0 8 18 12 -1.
+ <_>
+ 6 12 6 4 9.
+ <_>
+
+ <_>
+ 1 6 14 4 -1.
+ <_>
+ 8 6 7 4 2.
+ <_>
+
+ <_>
+ 3 11 6 3 -1.
+ <_>
+ 2 12 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 9 1 3 -1.
+ <_>
+ 4 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 10 3 3 -1.
+ <_>
+ 18 11 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 17 11 1 4 -1.
+ <_>
+ 16 12 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 12 9 -1.
+ <_>
+ 4 0 6 9 2.
+ <_>
+
+ <_>
+ 9 3 4 5 -1.
+ <_>
+ 10 3 2 5 2.
+ <_>
+
+ <_>
+ 7 8 6 3 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 7 1 9 6 -1.
+ <_>
+ 7 3 9 2 3.
+ <_>
+
+ <_>
+ 0 1 2 2 -1.
+ <_>
+ 0 2 2 1 2.
+ <_>
+
+ <_>
+ 13 8 3 5 -1.
+ <_>
+ 14 9 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 4 7 -1.
+ <_>
+ 12 1 2 7 2.
+ <_>
+
+ <_>
+ 11 13 2 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+ 12 14 1 1 2.
+ <_>
+
+ <_>
+ 12 14 3 1 -1.
+ <_>
+ 13 14 1 1 3.
+ <_>
+
+ <_>
+ 17 2 3 1 -1.
+ <_>
+ 18 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 2 6 6 -1.
+ <_>
+ 14 2 3 3 2.
+ <_>
+ 17 5 3 3 2.
+ <_>
+
+ <_>
+ 12 16 8 4 -1.
+ <_>
+ 12 18 8 2 2.
+ <_>
+
+ <_>
+ 7 11 3 3 -1.
+ <_>
+ 6 12 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 4 5 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 1 8 3 8 -1.
+ <_>
+ 1 10 3 4 2.
+ <_>
+
+ <_>
+ 7 0 8 6 -1.
+ <_>
+ 9 2 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 7 6 -1.
+ <_>
+ 5 5 7 3 2.
+ <_>
+
+ <_>
+ 10 13 3 1 -1.
+ <_>
+ 11 13 1 1 3.
+ <_>
+
+ <_>
+ 12 12 4 2 -1.
+ <_>
+ 12 12 2 1 2.
+ <_>
+ 14 13 2 1 2.
+ <_>
+
+ <_>
+ 6 1 14 19 -1.
+ <_>
+ 13 1 7 19 2.
+ <_>
+
+ <_>
+ 6 9 14 1 -1.
+ <_>
+ 13 9 7 1 2.
+ <_>
+
+ <_>
+ 18 0 2 1 -1.
+ <_>
+ 18 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 0 3 1 -1.
+ <_>
+ 16 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 2 3 -1.
+ <_>
+ 4 8 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 12 3 3 -1.
+ <_>
+ 14 13 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 17 4 2 -1.
+ <_>
+ 11 17 2 2 2.
+ <_>
+
+ <_>
+ 8 12 3 3 -1.
+ <_>
+ 9 13 1 1 9.
+ <_>
+
+ <_>
+ 4 1 7 6 -1.
+ <_>
+ 4 3 7 2 3.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 11 2 6 2 3.
+ <_>
+
+ <_>
+ 0 1 1 4 -1.
+ <_>
+ 0 2 1 2 2.
+ <_>
+
+ <_>
+ 7 5 4 4 -1.
+ <_>
+ 8 5 2 4 2.
+ <_>
+
+ <_>
+ 1 0 1 3 -1.
+ <_>
+ 1 1 1 1 3.
+ <_>
+
+ <_>
+ 9 3 4 2 -1.
+ <_>
+ 9 4 4 1 2.
+ <_>
+
+ <_>
+ 18 13 2 5 -1.
+ <_>
+ 19 13 1 5 2.
+ <_>
+
+ <_>
+ 2 11 3 6 -1.
+ <_>
+ 3 11 1 6 3.
+ <_>
+
+ <_>
+ 0 5 2 12 -1.
+ <_>
+ 0 9 2 4 3.
+ <_>
+
+ <_>
+ 11 10 8 5 -1.
+ <_>
+ 15 10 4 5 2.
+ <_>
+
+ <_>
+ 15 11 4 2 -1.
+ <_>
+ 16 12 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 8 4 2 -1.
+ <_>
+ 16 9 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 13 2 1 -1.
+ <_>
+ 6 13 1 1 2.
+ <_>
+
+ <_>
+ 12 13 2 2 -1.
+ <_>
+ 13 13 1 2 2.
+ <_>
+
+ <_>
+ 11 12 8 8 -1.
+ <_>
+ 13 12 4 8 2.
+ <_>
+
+ <_>
+ 3 0 6 10 -1.
+ <_>
+ 5 0 2 10 3.
+ <_>
+
+ <_>
+ 6 14 2 2 -1.
+ <_>
+ 6 14 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 19 4 -1.
+ <_>
+ 0 7 19 2 2.
+ <_>
+
+ <_>
+ 17 4 3 2 -1.
+ <_>
+ 18 5 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 3 3 4 -1.
+ <_>
+ 18 4 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 5 13 8 2 -1.
+ <_>
+ 7 13 4 2 2.
+ <_>
+
+ <_>
+ 0 0 2 8 -1.
+ <_>
+ 0 4 2 4 2.
+ <_>
+
+ <_>
+ 0 9 15 6 -1.
+ <_>
+ 0 11 15 2 3.
+ <_>
+
+ <_>
+ 18 14 2 1 -1.
+ <_>
+ 18 14 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 2 0 2 8 2.
+ <_>
+
+ <_>
+ 0 13 6 2 -1.
+ <_>
+ 2 13 2 2 3.
+ <_>
+
+ <_>
+ 3 18 3 2 -1.
+ <_>
+ 3 19 3 1 2.
+ <_>
+
+ <_>
+ 2 11 15 6 -1.
+ <_>
+ 7 13 5 2 9.
+ <_>
+
+ <_>
+ 7 14 3 3 -1.
+ <_>
+ 8 15 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 8 8 1 2 2.
+ <_>
+
+ <_>
+ 6 9 6 3 -1.
+ <_>
+ 6 10 6 1 3.
+ <_>
+
+ <_>
+ 5 8 7 3 -1.
+ <_>
+ 5 9 7 1 3.
+ <_>
+
+ <_>
+ 17 9 3 1 -1.
+ <_>
+ 18 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 9 3 2 -1.
+ <_>
+ 18 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 9 1 3 -1.
+ <_>
+ 11 10 1 1 3.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 3 6 4 5 -1.
+ <_>
+ 4 6 2 5 2.
+ <_>
+
+ <_>
+ 5 6 4 3 -1.
+ <_>
+ 6 6 2 3 2.
+ <_>
+
+ <_>
+ 0 3 1 6 -1.
+ <_>
+ 0 5 1 2 3.
+ <_>
+
+ <_>
+ 14 12 2 2 -1.
+ <_>
+ 14 12 1 1 2.
+ <_>
+ 15 13 1 1 2.
+ <_>
+
+ <_>
+ 3 16 3 3 -1.
+ <_>
+ 4 16 1 3 3.
+ <_>
+
+ <_>
+ 3 1 14 4 -1.
+ <_>
+ 3 3 14 2 2.
+ <_>
+
+ <_>
+ 6 0 14 8 -1.
+ <_>
+ 6 0 7 4 2.
+ <_>
+ 13 4 7 4 2.
+ <_>
+
+ <_>
+ 4 0 4 8 -1.
+ <_>
+ 4 2 4 4 2.
+ <_>
+
+ <_>
+ 9 0 8 1 -1.
+ <_>
+ 13 0 4 1 2.
+ <_>
+
+ <_>
+ 14 1 6 1 -1.
+ <_>
+ 17 1 3 1 2.
+ <_>
+
+ <_>
+ 18 18 2 2 -1.
+ <_>
+ 18 19 2 1 2.
+ <_>
+
+ <_>
+ 5 16 2 2 -1.
+ <_>
+ 5 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 8 11 3 -1.
+ <_>
+ 2 9 11 1 3.
+ <_>
+
+ <_>
+ 1 8 2 3 -1.
+ <_>
+ 1 9 2 1 3.
+ <_>
+
+ <_>
+ 18 12 2 5 -1.
+ <_>
+ 19 12 1 5 2.
+ <_>
+
+ <_>
+ 19 16 1 3 -1.
+ <_>
+ 18 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 9 2 2 -1.
+ <_>
+ 14 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 11 2 2 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+ 14 12 1 1 2.
+ <_>
+
+ <_>
+ 13 12 4 4 -1.
+ <_>
+ 14 12 2 4 2.
+ <_>
+
+ <_>
+ 19 11 1 3 -1.
+ <_>
+ 19 12 1 1 3.
+ <_>
+
+ <_>
+ 0 1 1 4 -1.
+ <_>
+ 0 3 1 2 2.
+ <_>
+
+ <_>
+ 0 0 20 20 -1.
+ <_>
+ 0 0 10 10 2.
+ <_>
+ 10 10 10 10 2.
+ <_>
+
+ <_>
+ 11 12 3 3 -1.
+ <_>
+ 10 13 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 10 4 2 -1.
+ <_>
+ 13 10 2 1 2.
+ <_>
+ 15 11 2 1 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 11 1 1 2.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 2 10 3 6 -1.
+ <_>
+ 3 10 1 6 3.
+ <_>
+
+ <_>
+ 0 0 6 9 -1.
+ <_>
+ 2 0 2 9 3.
+ <_>
+
+ <_>
+ 8 17 2 1 -1.
+ <_>
+ 8 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 18 8 1 -1.
+ <_>
+ 8 18 4 1 2.
+ <_>
+
+ <_>
+ 4 11 1 4 -1.
+ <_>
+ 3 12 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 11 3 3 -1.
+ <_>
+ 6 12 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 18 4 1 -1.
+ <_>
+ 10 18 2 1 2.
+ <_>
+
+ <_>
+ 0 19 2 1 -1.
+ <_>
+ 1 19 1 1 2.
+ <_>
+
+ <_>
+ 11 6 3 5 -1.
+ <_>
+ 12 6 1 5 3.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 0 6 10 2.
+ <_>
+ 14 10 6 10 2.
+ <_>
+
+ <_>
+ 4 0 1 4 -1.
+ <_>
+ 3 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 14 16 4 -1.
+ <_>
+ 8 14 8 4 2.
+ <_>
+
+ <_>
+ 7 9 5 4 -1.
+ <_>
+ 6 10 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 12 6 2 -1.
+ <_>
+ 5 12 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 14 4 1 -1.
+ <_>
+ 1 14 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 1 3 -1.
+ <_>
+ 3 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 10 3 9 -1.
+ <_>
+ 4 10 1 9 3.
+ <_>
+
+ <_>
+ 4 11 3 4 -1.
+ <_>
+ 5 11 1 4 3.
+ <_>
+
+ <_>
+ 5 12 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ <_>
+
+ <_>
+ 7 12 3 2 -1.
+ <_>
+ 8 12 1 2 3.
+ <_>
+
+ <_>
+ 1 2 12 6 -1.
+ <_>
+ 5 2 4 6 3.
+ <_>
+
+ <_>
+ 9 0 8 3 -1.
+ <_>
+ 11 2 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 1 6 2 -1.
+ <_>
+ 8 1 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 4 15 9 -1.
+ <_>
+ 4 7 15 3 3.
+ <_>
+
+ <_>
+ 5 10 8 6 -1.
+ <_>
+ 7 10 4 6 2.
+ <_>
+
+ <_>
+ 11 8 9 9 -1.
+ <_>
+ 11 11 9 3 3.
+ <_>
+
+ <_>
+ 7 0 6 4 -1.
+ <_>
+ 9 2 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 3 11 6 3 -1.
+ <_>
+ 2 12 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 12 4 3 -1.
+ <_>
+ 18 12 2 3 2.
+ <_>
+
+ <_>
+ 10 10 2 10 -1.
+ <_>
+ 10 15 2 5 2.
+ <_>
+
+ <_>
+ 5 7 3 4 -1.
+ <_>
+ 4 8 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 9 6 1 -1.
+ <_>
+ 3 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 6 -1.
+ <_>
+ 0 3 1 3 2.
+ <_>
+
+ <_>
+ 8 10 10 2 -1.
+ <_>
+ 8 10 5 1 2.
+ <_>
+ 13 11 5 1 2.
+ <_>
+
+ <_>
+ 5 2 5 6 -1.
+ <_>
+ 5 5 5 3 2.
+ <_>
+
+ <_>
+ 6 1 6 1 -1.
+ <_>
+ 6 1 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 1 12 -1.
+ <_>
+ 0 7 1 4 3.
+ <_>
+
+ <_>
+ 0 7 2 1 -1.
+ <_>
+ 1 7 1 1 2.
+ <_>
+
+ <_>
+ 3 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 12 2 3 -1.
+ <_>
+ 10 13 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 12 3 3 -1.
+ <_>
+ 11 12 1 3 3.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 10 12 1 1 9.
+ <_>
+
+ <_>
+ 6 17 4 2 -1.
+ <_>
+ 7 17 2 2 2.
+ <_>
+
+ <_>
+ 12 18 6 2 -1.
+ <_>
+ 15 18 3 2 2.
+ <_>
+
+ <_>
+ 3 17 2 1 -1.
+ <_>
+ 3 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 15 4 1 -1.
+ <_>
+ 2 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 2 -1.
+ <_>
+ 18 1 2 1 2.
+ <_>
+
+ <_>
+ 19 0 1 3 -1.
+ <_>
+ 19 1 1 1 3.
+ <_>
+
+ <_>
+ 16 11 3 2 -1.
+ <_>
+ 16 11 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 12 2 3 -1.
+ <_>
+ 15 13 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 0 8 1 -1.
+ <_>
+ 16 0 4 1 2.
+ <_>
+
+ <_>
+ 2 1 9 6 -1.
+ <_>
+ 2 4 9 3 2.
+ <_>
+
+ <_>
+ 17 1 3 2 -1.
+ <_>
+ 17 1 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 6 4 -1.
+ <_>
+ 7 6 6 2 2.
+ <_>
+
+ <_>
+ 4 6 6 2 -1.
+ <_>
+ 7 6 3 2 2.
+ <_>
+
+ <_>
+ 11 4 6 6 -1.
+ <_>
+ 13 4 2 6 3.
+ <_>
+
+ <_>
+ 5 7 9 3 -1.
+ <_>
+ 5 8 9 1 3.
+ <_>
+
+ <_>
+ 5 8 9 3 -1.
+ <_>
+ 5 9 9 1 3.
+ <_>
+
+ <_>
+ 1 0 4 3 -1.
+ <_>
+ 2 0 2 3 2.
+ <_>
+
+ <_>
+ 9 9 5 4 -1.
+ <_>
+ 9 10 5 2 2.
+ <_>
+
+ <_>
+ 1 0 6 7 -1.
+ <_>
+ 3 0 2 7 3.
+ <_>
+
+ <_>
+ 16 9 3 2 -1.
+ <_>
+ 17 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 12 2 2 -1.
+ <_>
+ 14 12 1 1 2.
+ <_>
+ 15 13 1 1 2.
+ <_>
+
+ <_>
+ 0 0 14 1 -1.
+ <_>
+ 7 0 7 1 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 11 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 14 12 4 -1.
+ <_>
+ 3 14 6 2 2.
+ <_>
+ 9 16 6 2 2.
+ <_>
+
+ <_>
+ 5 2 1 3 -1.
+ <_>
+ 4 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 3 2 -1.
+ <_>
+ 9 13 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 11 2 2 -1.
+ <_>
+ 14 11 1 1 2.
+ <_>
+ 15 12 1 1 2.
+ <_>
+
+ <_>
+ 13 10 7 2 -1.
+ <_>
+ 13 11 7 1 2.
+ <_>
+
+ <_>
+ 7 13 1 2 -1.
+ <_>
+ 7 13 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 6 12 2 3 2.
+ <_>
+
+ <_>
+ 8 2 2 5 -1.
+ <_>
+ 9 2 1 5 2.
+ <_>
+
+ <_>
+ 1 17 4 2 -1.
+ <_>
+ 3 17 2 2 2.
+ <_>
+
+ <_>
+ 12 17 4 3 -1.
+ <_>
+ 13 17 2 3 2.
+ <_>
+
+ <_>
+ 15 16 5 3 -1.
+ <_>
+ 15 17 5 1 3.
+ <_>
+
+ <_>
+ 15 16 4 3 -1.
+ <_>
+ 15 17 4 1 3.
+ <_>
+
+ <_>
+ 0 17 16 3 -1.
+ <_>
+ 4 17 8 3 2.
+ <_>
+
+ <_>
+ 0 14 2 2 -1.
+ <_>
+ 0 14 1 1 2.
+ <_>
+ 1 15 1 1 2.
+ <_>
+
+ <_>
+ 7 2 6 6 -1.
+ <_>
+ 7 4 6 2 3.
+ <_>
+
+ <_>
+ 3 5 1 3 -1.
+ <_>
+ 2 6 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 7 2 2 -1.
+ <_>
+ 2 7 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 11 5 3 -1.
+ <_>
+ 5 12 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 14 4 6 -1.
+ <_>
+ 16 17 4 3 2.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 0 1 12 11 -1.
+ <_>
+ 3 1 6 11 2.
+ <_>
+
+ <_>
+ 6 10 7 3 -1.
+ <_>
+ 6 11 7 1 3.
+ <_>
+
+ <_>
+ 8 0 9 4 -1.
+ <_>
+ 8 2 9 2 2.
+ <_>
+
+ <_>
+ 10 14 10 2 -1.
+ <_>
+ 10 15 10 1 2.
+ <_>
+
+ <_>
+ 0 0 1 18 -1.
+ <_>
+ 0 6 1 6 3.
+ <_>
+
+ <_>
+ 4 13 2 2 -1.
+ <_>
+ 4 13 1 1 2.
+ <_>
+ 5 14 1 1 2.
+ <_>
+
+ <_>
+ 8 11 3 6 -1.
+ <_>
+ 9 12 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 5 8 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 8 3 3 -1.
+ <_>
+ 5 8 1 3 3.
+ <_>
+
+ <_>
+ 1 4 14 1 -1.
+ <_>
+ 1 4 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 13 8 3 -1.
+ <_>
+ 14 13 4 3 2.
+ <_>
+
+ <_>
+ 4 17 2 1 -1.
+ <_>
+ 4 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 16 2 2 -1.
+ <_>
+ 6 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 17 4 2 -1.
+ <_>
+ 4 17 2 2 2.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 5 7 10 2 2.
+ <_>
+
+ <_>
+ 15 9 2 2 -1.
+ <_>
+ 15 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 12 2 2 -1.
+ <_>
+ 3 12 1 1 2.
+ <_>
+ 4 13 1 1 2.
+ <_>
+
+ <_>
+ 0 5 2 1 -1.
+ <_>
+ 1 5 1 1 2.
+ <_>
+
+ <_>
+ 17 0 3 2 -1.
+ <_>
+ 18 1 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 8 3 9 -1.
+ <_>
+ 3 11 1 3 9.
+ <_>
+
+ <_>
+ 15 7 4 2 -1.
+ <_>
+ 16 8 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 16 3 3 -1.
+ <_>
+ 5 16 1 3 3.
+ <_>
+
+ <_>
+ 8 14 6 1 -1.
+ <_>
+ 10 14 2 1 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 3 2.
+ <_>
+ 17 3 3 3 2.
+ <_>
+
+ <_>
+ 17 2 2 1 -1.
+ <_>
+ 17 2 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 19 20 1 -1.
+ <_>
+ 10 19 10 1 2.
+ <_>
+
+ <_>
+ 0 19 6 1 -1.
+ <_>
+ 3 19 3 1 2.
+ <_>
+
+ <_>
+ 9 17 4 3 -1.
+ <_>
+ 10 17 2 3 2.
+ <_>
+
+ <_>
+ 4 11 3 3 -1.
+ <_>
+ 5 12 1 1 9.
+ <_>
+
+ <_>
+ 17 7 3 3 -1.
+ <_>
+ 18 8 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 19 1 1 4 -1.
+ <_>
+ 18 2 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 8 2 1 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 5 4 4 4 -1.
+ <_>
+ 6 5 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 8 7 -1.
+ <_>
+ 9 0 4 7 2.
+ <_>
+
+ <_>
+ 0 7 5 9 -1.
+ <_>
+ 0 10 5 3 3.
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+ 15 11 1 1 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 11 1 1 2.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 9 2 6 4 -1.
+ <_>
+ 11 2 2 4 3.
+ <_>
+
+ <_>
+ 0 12 12 8 -1.
+ <_>
+ 6 12 6 8 2.
+ <_>
+
+ <_>
+ 1 0 6 2 -1.
+ <_>
+ 3 0 2 2 3.
+ <_>
+
+ <_>
+ 0 12 4 5 -1.
+ <_>
+ 1 12 2 5 2.
+ <_>
+
+ <_>
+ 2 12 4 4 -1.
+ <_>
+ 3 12 2 4 2.
+ <_>
+
+ <_>
+ 12 11 2 4 -1.
+ <_>
+ 13 11 1 4 2.
+ <_>
+
+ <_>
+ 2 0 1 4 -1.
+ <_>
+ 2 2 1 2 2.
+ <_>
+
+ <_>
+ 6 1 4 9 -1.
+ <_>
+ 7 1 2 9 2.
+ <_>
+
+ <_>
+ 13 10 2 3 -1.
+ <_>
+ 13 11 2 1 3.
+ <_>
+
+ <_>
+ 3 9 15 3 -1.
+ <_>
+ 8 10 5 1 9.
+ <_>
+
+ <_>
+ 15 10 3 1 -1.
+ <_>
+ 16 11 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 15 8 -1.
+ <_>
+ 1 2 15 4 2.
+ <_>
+
+ <_>
+ 2 3 15 6 -1.
+ <_>
+ 2 6 15 3 2.
+ <_>
+
+ <_>
+ 6 0 6 6 -1.
+ <_>
+ 6 2 6 2 3.
+ <_>
+
+ <_>
+ 16 9 4 3 -1.
+ <_>
+ 16 10 4 1 3.
+ <_>
+
+ <_>
+ 16 7 4 3 -1.
+ <_>
+ 16 8 4 1 3.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+ 16 11 1 1 2.
+ <_>
+
+ <_>
+ 13 11 2 3 -1.
+ <_>
+ 13 12 2 1 3.
+ <_>
+
+ <_>
+ 2 16 2 2 -1.
+ <_>
+ 2 16 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 7 -1.
+ <_>
+ 4 0 2 7 2.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 16 1 1 2.
+ <_>
+ 1 17 1 1 2.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 8 0 6 3 3.
+ <_>
+
+ <_>
+ 0 1 1 3 -1.
+ <_>
+ 0 2 1 1 3.
+ <_>
+
+ <_>
+ 10 6 4 4 -1.
+ <_>
+ 10 7 4 2 2.
+ <_>
+
+ <_>
+ 16 4 4 6 -1.
+ <_>
+ 16 4 2 3 2.
+ <_>
+ 18 7 2 3 2.
+ <_>
+
+ <_>
+ 11 12 4 2 -1.
+ <_>
+ 11 12 2 1 2.
+ <_>
+ 13 13 2 1 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_licence_plate_rus_16stages.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_licence_plate_rus_16stages.xml
new file mode 100644
index 0000000000000000000000000000000000000000..576c9e8202ab8bcef89a406921b96226a522e888
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_licence_plate_rus_16stages.xml
@@ -0,0 +1,1404 @@
+
+
+
+
+
+ 64 16
+
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 32 2 8 6 -1.
+ <_>
+ 32 4 8 2 3.
+ 0
+ 1.6915600746870041e-002
+ -9.5547717809677124e-001
+ 8.9129137992858887e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 4 6 10 -1.
+ <_>
+ 3 4 3 10 2.
+ 0
+ 2.4228349328041077e-002
+ -9.2089319229125977e-001
+ 8.8723921775817871e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 55 0 8 6 -1.
+ <_>
+ 55 0 4 3 2.
+ <_>
+ 59 3 4 3 2.
+ 0
+ -1.0168660432100296e-002
+ 8.8940089941024780e-001
+ -7.7847331762313843e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 44 7 4 9 -1.
+ <_>
+ 44 10 4 3 3.
+ 0
+ 2.0863260142505169e-003
+ -8.7998157739639282e-001
+ 5.8651781082153320e-001
+ -2.0683259963989258e+000
+ -1
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 29 1 16 4 -1.
+ <_>
+ 29 3 16 2 2.
+ 0
+ 2.9062159359455109e-002
+ -8.7765061855316162e-001
+ 8.5373121500015259e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 5 9 8 -1.
+ <_>
+ 3 5 3 8 3.
+ 0
+ 2.3903399705886841e-002
+ -9.2079448699951172e-001
+ 7.5155001878738403e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 44 0 20 14 -1.
+ <_>
+ 44 0 10 7 2.
+ <_>
+ 54 7 10 7 2.
+ 0
+ -3.5404648631811142e-002
+ 6.7834627628326416e-001
+ -9.0937072038650513e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 41 7 6 9 -1.
+ <_>
+ 43 7 2 9 3.
+ 0
+ 6.2988721765577793e-003
+ -8.1054258346557617e-001
+ 5.8985030651092529e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 4 21 4 -1.
+ <_>
+ 7 4 7 4 3.
+ 0
+ 3.4959490876644850e-003
+ -9.7632282972335815e-001
+ 4.5473039150238037e-001
+ -1.6632349491119385e+000
+ 0
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 31 2 11 6 -1.
+ <_>
+ 31 4 11 2 3.
+ 0
+ 2.3864099755883217e-002
+ -9.3137168884277344e-001
+ 8.2478952407836914e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 3 6 11 -1.
+ <_>
+ 59 3 3 11 2.
+ 0
+ -2.5775209069252014e-002
+ 8.5526448488235474e-001
+ -8.7574672698974609e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 32 14 32 2 -1.
+ <_>
+ 32 15 32 1 2.
+ 0
+ -1.0646049864590168e-002
+ 8.5167151689529419e-001
+ -6.7789041996002197e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 2 8 14 -1.
+ <_>
+ 4 2 4 14 2.
+ 0
+ 2.7000989764928818e-002
+ -8.0041092634201050e-001
+ 6.4893317222595215e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 19 0 22 6 -1.
+ <_>
+ 19 0 11 3 2.
+ <_>
+ 30 3 11 3 2.
+ 0
+ 5.2989721298217773e-003
+ -9.5342522859573364e-001
+ 5.0140267610549927e-001
+ -1.3346730470657349e+000
+ 1
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 0 6 6 -1.
+ <_>
+ 56 0 3 3 2.
+ <_>
+ 59 3 3 3 2.
+ 0
+ -6.9233630783855915e-003
+ 8.2654470205307007e-001
+ -8.5396027565002441e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 32 0 14 12 -1.
+ <_>
+ 32 0 7 6 2.
+ <_>
+ 39 6 7 6 2.
+ 0
+ 1.2539249658584595e-001
+ -1.2996139936149120e-002
+ -3.2377028808593750e+003
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 2 1 43 4 -1.
+ <_>
+ 2 3 43 2 2.
+ 0
+ 6.3474893569946289e-002
+ -6.4648061990737915e-001
+ 8.2302427291870117e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 34 10 30 5 -1.
+ <_>
+ 44 10 10 5 3.
+ 0
+ 4.2217150330543518e-002
+ -7.5190877914428711e-001
+ 6.3705182075500488e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 9 9 5 -1.
+ <_>
+ 3 9 3 5 3.
+ 0
+ 2.0000640302896500e-002
+ -6.2077498435974121e-001
+ 6.1317932605743408e-001
+ -1.6521669626235962e+000
+ 2
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 2 1 43 6 -1.
+ <_>
+ 2 3 43 2 3.
+ 0
+ 9.2297486960887909e-002
+ -7.2764229774475098e-001
+ 8.0554759502410889e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 53 4 9 8 -1.
+ <_>
+ 56 4 3 8 3.
+ 0
+ 2.7613969519734383e-002
+ -7.0769268274307251e-001
+ 7.3315787315368652e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 36 4 14 8 -1.
+ <_>
+ 36 4 7 4 2.
+ <_>
+ 43 8 7 4 2.
+ 0
+ 1.2465449981391430e-002
+ -8.4359270334243774e-001
+ 5.7046437263488770e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 14 14 49 2 -1.
+ <_>
+ 14 15 49 1 2.
+ 0
+ -2.3886829614639282e-002
+ 8.2656508684158325e-001
+ -5.2783298492431641e-001
+ -1.4523630142211914e+000
+ 3
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 5 4 9 -1.
+ <_>
+ 2 5 2 9 2.
+ 0
+ 1.8821349367499352e-002
+ -8.1122857332229614e-001
+ 6.9127470254898071e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 21 1 38 4 -1.
+ <_>
+ 21 3 38 2 2.
+ 0
+ 6.1703320592641830e-002
+ -7.6482647657394409e-001
+ 6.4212161302566528e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 44 12 18 3 -1.
+ <_>
+ 53 12 9 3 2.
+ 0
+ -1.6298670321702957e-002
+ 5.0207728147506714e-001
+ -8.4020161628723145e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 10 4 9 3 -1.
+ <_>
+ 13 4 3 3 3.
+ 0
+ -4.9458951689302921e-003
+ 6.1991941928863525e-001
+ -6.1633539199829102e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 40 4 10 4 -1.
+ <_>
+ 45 4 5 4 2.
+ 0
+ -5.1894597709178925e-003
+ 4.4975179433822632e-001
+ -8.0651968717575073e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 17 14 47 2 -1.
+ <_>
+ 17 15 47 1 2.
+ 0
+ -1.8824130296707153e-002
+ 6.1992841958999634e-001
+ -5.5643159151077271e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 8 5 4 7 -1.
+ <_>
+ 10 5 2 7 2.
+ 0
+ 5.6571601890027523e-003
+ -4.8346561193466187e-001
+ 6.8647360801696777e-001
+ -2.2358059883117676e+000
+ 4
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 0 6 6 -1.
+ <_>
+ 56 0 3 3 2.
+ <_>
+ 59 3 3 3 2.
+ 0
+ -9.1503243893384933e-003
+ 6.8174481391906738e-001
+ -7.7866071462631226e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 0 6 6 -1.
+ <_>
+ 0 0 3 3 2.
+ <_>
+ 3 3 3 3 2.
+ 0
+ 7.4933180585503578e-003
+ -6.8696027994155884e-001
+ 6.6913938522338867e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 13 4 48 2 -1.
+ <_>
+ 29 4 16 2 3.
+ 0
+ 4.5296419411897659e-002
+ -7.3576509952545166e-001
+ 5.9453499317169189e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 42 1 6 15 -1.
+ <_>
+ 42 6 6 5 3.
+ 0
+ 1.1669679544866085e-002
+ -8.4733831882476807e-001
+ 4.5461329817771912e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 30 8 3 5 -1.
+ <_>
+ 31 8 1 5 3.
+ 0
+ 2.5769430212676525e-003
+ -5.8270388841629028e-001
+ 7.7900522947311401e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 55 10 8 6 -1.
+ <_>
+ 55 13 8 3 2.
+ 0
+ -1.4139170525595546e-003
+ 4.5126929879188538e-001
+ -9.0696328878402710e-001
+ -1.8782069683074951e+000
+ 5
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 4 6 4 7 -1.
+ <_>
+ 6 6 2 7 2.
+ 0
+ -5.3149578161537647e-003
+ 6.5218788385391235e-001
+ -7.9464268684387207e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 3 6 8 -1.
+ <_>
+ 59 3 3 8 2.
+ 0
+ -2.2906960919499397e-002
+ 6.6433382034301758e-001
+ -7.3633247613906860e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 37 2 4 6 -1.
+ <_>
+ 37 4 4 2 3.
+ 0
+ 9.4887977465987206e-003
+ -8.2612031698226929e-001
+ 4.9333500862121582e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 10 30 6 -1.
+ <_>
+ 0 12 30 2 3.
+ 0
+ 4.5138411223888397e-002
+ -5.4704028367996216e-001
+ 7.6927912235260010e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 4 21 12 -1.
+ <_>
+ 7 4 7 12 3.
+ 0
+ 2.5049019604921341e-002
+ -8.6739641427993774e-001
+ 5.2807968854904175e-001
+ -1.0597369670867920e+000
+ 6
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 44 0 1 14 -1.
+ <_>
+ 44 7 1 7 2.
+ 0
+ 6.6414438188076019e-003
+ -7.7290147542953491e-001
+ 6.9723731279373169e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 54 3 4 3 -1.
+ <_>
+ 56 3 2 3 2.
+ 0
+ 2.4703629314899445e-003
+ -7.4289917945861816e-001
+ 6.6825848817825317e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 32 0 30 6 -1.
+ <_>
+ 32 0 15 3 2.
+ <_>
+ 47 3 15 3 2.
+ 0
+ -2.2910499945282936e-002
+ 4.3986389040946960e-001
+ -9.0588808059692383e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 8 9 7 -1.
+ <_>
+ 3 8 3 7 3.
+ 0
+ 3.4193221479654312e-002
+ -6.9507479667663574e-001
+ 6.2501090764999390e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 30 10 3 3 -1.
+ <_>
+ 31 10 1 3 3.
+ 0
+ 1.5060020377859473e-003
+ -6.8670761585235596e-001
+ 8.2241541147232056e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 21 3 24 4 -1.
+ <_>
+ 29 3 8 4 3.
+ 0
+ 1.9838380467263050e-005
+ -9.2727631330490112e-001
+ 6.4723730087280273e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 42 3 12 6 -1.
+ <_>
+ 46 3 4 6 3.
+ 0
+ -2.2170299416757189e-005
+ 5.6555831432342529e-001
+ -9.6788132190704346e-001
+ -1.4993519783020020e+000
+ 7
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 9 6 6 -1.
+ <_>
+ 59 9 3 6 2.
+ 0
+ -1.1395259760320187e-002
+ 7.1383631229400635e-001
+ -8.7429678440093994e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 6 4 1 6 -1.
+ <_>
+ 6 7 1 3 2.
+ 0
+ -2.1864590235054493e-003
+ 8.5311782360076904e-001
+ -6.4777731895446777e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 0 12 4 -1.
+ <_>
+ 0 0 6 2 2.
+ <_>
+ 6 2 6 2 2.
+ 0
+ 2.3193720262497663e-003
+ -7.6411879062652588e-001
+ 7.1867972612380981e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 43 12 18 2 -1.
+ <_>
+ 52 12 9 2 2.
+ 0
+ -7.9916073009371758e-003
+ 6.6442942619323730e-001
+ -7.9540950059890747e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 9 5 2 8 -1.
+ <_>
+ 10 5 1 8 2.
+ 0
+ 1.4212740352377295e-003
+ -6.3904231786727905e-001
+ 7.5050598382949829e-001
+ -8.4829801321029663e-001
+ 8
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 1 9 6 3 -1.
+ <_>
+ 3 9 2 3 3.
+ 0
+ 6.4091659151017666e-003
+ -8.8425230979919434e-001
+ 9.9953681230545044e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 56 8 2 8 -1.
+ <_>
+ 56 12 2 4 2.
+ 0
+ -6.3316390151157975e-004
+ 8.3822172880172729e-001
+ -9.8322170972824097e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 24 2 6 13 -1.
+ <_>
+ 26 2 2 13 3.
+ 0
+ -6.4947169448714703e-005
+ 1.
+ -9.1822808980941772e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 33 7 24 4 -1.
+ <_>
+ 41 7 8 4 3.
+ 0
+ 5.3404141217470169e-003
+ -9.4317251443862915e-001
+ 9.0425151586532593e-001
+ -6.0007210820913315e-002
+ 9
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 1 1 57 4 -1.
+ <_>
+ 1 3 57 2 2.
+ 0
+ 1.0755469650030136e-001
+ -7.1647202968597412e-001
+ 8.7827038764953613e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 2 6 14 -1.
+ <_>
+ 3 2 3 14 2.
+ 0
+ 3.1668949872255325e-002
+ -8.7051069736480713e-001
+ 5.8807212114334106e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 52 3 6 10 -1.
+ <_>
+ 54 3 2 10 3.
+ 0
+ -1.0572380386292934e-002
+ 6.2438100576400757e-001
+ -7.4027371406555176e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 1 14 61 2 -1.
+ <_>
+ 1 15 61 1 2.
+ 0
+ -2.7396259829401970e-002
+ 8.9776748418807983e-001
+ -5.2986758947372437e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 28 0 11 12 -1.
+ <_>
+ 28 4 11 4 3.
+ 0
+ 2.5918649509549141e-002
+ -8.6482518911361694e-001
+ 5.3121817111968994e-001
+ -9.6125108003616333e-001
+ 10
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 22 1 41 4 -1.
+ <_>
+ 22 3 41 2 2.
+ 0
+ 7.1039132773876190e-002
+ -7.5719678401947021e-001
+ 7.5645631551742554e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 41 6 6 8 -1.
+ <_>
+ 43 6 2 8 3.
+ 0
+ 7.6241148635745049e-003
+ -7.9783838987350464e-001
+ 7.1733069419860840e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 50 9 14 5 -1.
+ <_>
+ 57 9 7 5 2.
+ 0
+ -2.7092639356851578e-002
+ 6.0071170330047607e-001
+ -8.4794402122497559e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 4 1 12 5 -1.
+ <_>
+ 10 1 6 5 2.
+ 0
+ -8.1267888890579343e-004
+ 5.9364068508148193e-001
+ -8.9295238256454468e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 37 9 3 3 -1.
+ <_>
+ 38 9 1 3 3.
+ 0
+ 8.3705072756856680e-004
+ -6.4887362718582153e-001
+ 7.8537952899932861e-001
+ -1.0618970394134521e+000
+ 11
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 54 0 10 6 -1.
+ <_>
+ 54 0 5 3 2.
+ <_>
+ 59 3 5 3 2.
+ 0
+ -9.7556859254837036e-003
+ 7.6982218027114868e-001
+ -8.5293501615524292e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 47 0 6 11 -1.
+ <_>
+ 49 0 2 11 3.
+ 0
+ -8.6617246270179749e-003
+ 8.4029090404510498e-001
+ -7.1949690580368042e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 19 2 20 2 -1.
+ <_>
+ 19 3 20 1 2.
+ 0
+ 1.6897840425372124e-002
+ -5.3601992130279541e-001
+ 9.5484441518783569e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 14 4 6 11 -1.
+ <_>
+ 17 4 3 11 2.
+ 0
+ 4.7526158596156165e-005
+ -7.6412862539291382e-001
+ 7.5398761034011841e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 31 9 33 2 -1.
+ <_>
+ 42 9 11 2 3.
+ 0
+ 6.5607670694589615e-003
+ -9.9346441030502319e-001
+ 6.4864277839660645e-001
+ -7.3307347297668457e-001
+ 12
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 6 1 53 6 -1.
+ <_>
+ 6 3 53 2 3.
+ 0
+ 1.0103269666433334e-001
+ -7.3275578022003174e-001
+ 8.4619927406311035e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 49 9 4 6 -1.
+ <_>
+ 49 9 2 3 2.
+ <_>
+ 51 12 2 3 2.
+ 0
+ -2.8920811018906534e-004
+ 7.1564781665802002e-001
+ -8.8221758604049683e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 9 30 7 -1.
+ <_>
+ 10 9 10 7 3.
+ 0
+ 1.0838840156793594e-002
+ -8.7420248985290527e-001
+ 6.0648679733276367e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 40 4 6 2 -1.
+ <_>
+ 42 4 2 2 3.
+ 0
+ 5.0803890917450190e-004
+ -9.0554022789001465e-001
+ 6.4213967323303223e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 1 9 6 1 -1.
+ <_>
+ 3 9 2 1 3.
+ 0
+ 2.3357039317488670e-003
+ -9.2574918270111084e-001
+ 8.6384928226470947e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 47 3 4 10 -1.
+ <_>
+ 47 8 4 5 2.
+ 0
+ 8.0239427916239947e-005
+ -9.9618428945541382e-001
+ 9.5355111360549927e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 31 5 30 11 -1.
+ <_>
+ 41 5 10 11 3.
+ 0
+ 3.2030208967626095e-003
+ -1.
+ 1.0001050233840942e+000
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ 0
+ 0.
+ 0.
+ -1.
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 21 3 42 5 -1.
+ <_>
+ 35 3 14 5 3.
+ 0
+ 2.6143440045416355e-003
+ -1.
+ 1.0002139806747437e+000
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ 0
+ 0.
+ 0.
+ -1.
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 8 5 30 9 -1.
+ <_>
+ 8 8 30 3 3.
+ 0
+ -7.0475979009643197e-004
+ 1.
+ -9.9976968765258789e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 3 12 33 3 -1.
+ <_>
+ 14 12 11 3 3.
+ 0
+ 2.1271279547363520e-003
+ -9.9694627523422241e-001
+ 1.0002720355987549e+000
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 0 3 2 -1.
+ <_>
+ 1 0 1 2 3.
+ 0
+ -2.4224430671893060e-004
+ 1.
+ -1.
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 46 4 3 8 -1.
+ <_>
+ 47 4 1 8 3.
+ 0
+ 7.4700301047414541e-004
+ -9.9108231067657471e-001
+ 9.9941182136535645e-001
+ -1.0991690158843994e+000
+ 13
+ -1
+ <_>
+
+
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 1 2 6 5 -1.
+ <_>
+ 3 2 2 5 3.
+ 0
+ 1.7227890202775598e-003
+ -9.3608891963958740e-001
+ 8.7251222133636475e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 0 3 18 5 -1.
+ <_>
+ 6 3 6 5 3.
+ 0
+ 2.7599320746958256e-003
+ -9.9757021665573120e-001
+ 1.0000289678573608e+000
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 3 1 6 14 -1.
+ <_>
+ 6 1 3 14 2.
+ 0
+ -8.9444358309265226e-005
+ 1.
+ -9.9264812469482422e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 3 6 2 10 -1.
+ <_>
+ 3 11 2 5 2.
+ 0
+ -2.7962020249105990e-004
+ 8.2833290100097656e-001
+ -9.8444151878356934e-001
+ <_>
+
+ <_>
+
+
+
+ <_>
+ 42 0 4 6 -1.
+ <_>
+ 42 0 2 3 2.
+ <_>
+ 44 3 2 3 2.
+ 0
+ -2.7560539820115082e-005
+ 1.
+ -9.9543339014053345e-001
+ -9.1314977407455444e-001
+ 14
+ -1
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lowerbody.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lowerbody.xml
new file mode 100644
index 0000000000000000000000000000000000000000..7fa27c7e2a082ad035c9f64c815eeb0dd104d544
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_lowerbody.xml
@@ -0,0 +1,14056 @@
+
+
+
+BOOST
+ HAAR
+ 23
+ 19
+
+ 89
+
+ 0
+ 27
+
+ <_>
+ 17
+ -1.4308550357818604e+00
+
+ <_>
+
+ 0 -1 0 -1.6869869083166122e-02
+
+ 5.4657417535781860e-01 -6.3678038120269775e-01
+ <_>
+
+ 0 -1 1 2.5349899660795927e-03
+
+ -3.7605491280555725e-01 3.2378101348876953e-01
+ <_>
+
+ 0 -1 2 -2.4709459394216537e-02
+
+ -6.7979127168655396e-01 2.0501059293746948e-01
+ <_>
+
+ 0 -1 3 8.2436859607696533e-02
+
+ 2.0588639378547668e-01 -8.4938430786132812e-01
+ <_>
+
+ 0 -1 4 -8.2128931535407901e-04
+
+ 3.1891921162605286e-01 -4.6469458937644958e-01
+ <_>
+
+ 0 -1 5 2.3016959428787231e-02
+
+ 1.8670299649238586e-01 -7.0330899953842163e-01
+ <_>
+
+ 0 -1 6 6.6386149264872074e-03
+
+ 1.6370490193367004e-01 -8.4604722261428833e-01
+ <_>
+
+ 0 -1 7 7.6682120561599731e-04
+
+ -3.9852690696716309e-01 2.3113329708576202e-01
+ <_>
+
+ 0 -1 8 1.1731679737567902e-01
+
+ 1.0445039719343185e-01 -8.8510942459106445e-01
+ <_>
+
+ 0 -1 9 1.5421230345964432e-02
+
+ -2.7859508991241455e-01 2.8921920061111450e-01
+ <_>
+
+ 0 -1 10 3.4018948674201965e-02
+
+ -1.4287669956684113e-01 7.7801531553268433e-01
+ <_>
+
+ 0 -1 11 3.4638870507478714e-02
+
+ 1.8644079566001892e-01 -6.0324841737747192e-01
+ <_>
+
+ 0 -1 12 -3.7503659725189209e-01
+
+ 9.2781841754913330e-01 -1.5421600639820099e-01
+ <_>
+
+ 0 -1 13 -5.6011971086263657e-02
+
+ -5.8591067790985107e-01 1.9547510147094727e-01
+ <_>
+
+ 0 -1 14 -1.4878909569233656e-03
+
+ 2.8139349818229675e-01 -4.1853010654449463e-01
+ <_>
+
+ 0 -1 15 -1.4495699666440487e-02
+
+ -7.2273969650268555e-01 9.4288460910320282e-02
+ <_>
+
+ 0 -1 16 -5.6178281083703041e-03
+
+ -5.9551960229873657e-01 1.5202650427818298e-01
+ <_>
+ 13
+ -1.1907930374145508e+00
+
+ <_>
+
+ 0 -1 17 -3.1839120201766491e-03
+
+ 4.0025138854980469e-01 -6.8473160266876221e-01
+ <_>
+
+ 0 -1 18 3.5989920143038034e-03
+
+ -5.1895952224731445e-01 3.0101141333580017e-01
+ <_>
+
+ 0 -1 19 1.8804630264639854e-02
+
+ 1.5554919838905334e-01 -8.0477172136306763e-01
+ <_>
+
+ 0 -1 20 5.2497140131890774e-03
+
+ 1.3780809938907623e-01 -6.0767507553100586e-01
+ <_>
+
+ 0 -1 21 -1.4204799663275480e-03
+
+ 3.2319429516792297e-01 -4.3407461047172546e-01
+ <_>
+
+ 0 -1 22 -2.5174349546432495e-02
+
+ -7.0780879259109497e-01 9.3106329441070557e-02
+ <_>
+
+ 0 -1 23 3.2285219058394432e-03
+
+ -3.2510471343994141e-01 3.3571699261665344e-01
+ <_>
+
+ 0 -1 24 9.4993412494659424e-02
+
+ 8.2439087331295013e-02 -8.7549537420272827e-01
+ <_>
+
+ 0 -1 25 -6.5919090993702412e-03
+
+ -7.3804199695587158e-01 1.3853749632835388e-01
+ <_>
+
+ 0 -1 26 -1.1146620381623507e-03
+
+ 1.7917269468307495e-01 -2.7955859899520874e-01
+ <_>
+
+ 0 -1 27 1.3349019922316074e-02
+
+ 1.3057829439640045e-01 -6.9802671670913696e-01
+ <_>
+
+ 0 -1 28 -3.5181451588869095e-02
+
+ 4.6535360813140869e-01 -1.0698779672384262e-01
+ <_>
+
+ 0 -1 29 3.1874589622020721e-02
+
+ -1.3565389811992645e-01 7.9047888517379761e-01
+ <_>
+ 19
+ -1.3129220008850098e+00
+
+ <_>
+
+ 0 -1 30 -1.0647430084645748e-02
+
+ 3.8079029321670532e-01 -5.8672338724136353e-01
+ <_>
+
+ 0 -1 31 -7.3214493691921234e-02
+
+ -7.9550951719284058e-01 1.7223259806632996e-01
+ <_>
+
+ 0 -1 32 6.0464427806437016e-03
+
+ 1.6532160341739655e-01 -6.9376647472381592e-01
+ <_>
+
+ 0 -1 33 7.3225022060796618e-04
+
+ -3.3247160911560059e-01 2.3669970035552979e-01
+ <_>
+
+ 0 -1 34 -1.0990080423653126e-02
+
+ -6.9136887788772583e-01 2.1058270335197449e-01
+ <_>
+
+ 0 -1 35 -1.5282750246115029e-04
+
+ 2.0305849611759186e-01 -4.6551659703254700e-01
+ <_>
+
+ 0 -1 36 2.4822261184453964e-04
+
+ -4.2122921347618103e-01 2.7335309982299805e-01
+ <_>
+
+ 0 -1 37 -8.4205856546759605e-03
+
+ -4.3744468688964844e-01 5.8831848204135895e-02
+ <_>
+
+ 0 -1 38 -3.6992791295051575e-01
+
+ 9.1070818901062012e-01 -8.7207540869712830e-02
+ <_>
+
+ 0 -1 39 6.1259930953383446e-03
+
+ 1.1886730045080185e-01 -1.8520170450210571e-01
+ <_>
+
+ 0 -1 40 -6.0144090093672276e-03
+
+ -6.3057059049606323e-01 1.4577180147171021e-01
+ <_>
+
+ 0 -1 41 8.5623031482100487e-03
+
+ -2.9369381070137024e-01 3.2411348819732666e-01
+ <_>
+
+ 0 -1 42 -1.3966850005090237e-02
+
+ -8.0650371313095093e-01 1.1267790198326111e-01
+ <_>
+
+ 0 -1 43 -4.1734468191862106e-02
+
+ 7.7495330572128296e-01 -7.8866302967071533e-02
+ <_>
+
+ 0 -1 44 -2.7996799326501787e-04
+
+ 2.7783310413360596e-01 -3.5196089744567871e-01
+ <_>
+
+ 0 -1 45 1.9588569179177284e-02
+
+ -6.5759636461734772e-02 5.2414137125015259e-01
+ <_>
+
+ 0 -1 46 9.2163113877177238e-03
+
+ -1.5525479614734650e-01 5.4835391044616699e-01
+ <_>
+
+ 0 -1 47 -2.1458569914102554e-02
+
+ -5.2255308628082275e-01 8.2208268344402313e-02
+ <_>
+
+ 0 -1 48 3.6805770359933376e-03
+
+ -2.4434129893779755e-01 3.6122488975524902e-01
+ <_>
+ 23
+ -1.3777279853820801e+00
+
+ <_>
+
+ 0 -1 49 -8.3544738590717316e-03
+
+ 2.8173181414604187e-01 -4.9728131294250488e-01
+ <_>
+
+ 0 -1 50 -5.5724289268255234e-03
+
+ -6.5505301952362061e-01 1.9406059384346008e-01
+ <_>
+
+ 0 -1 51 -5.7714767754077911e-03
+
+ -6.2230938673019409e-01 2.7622398734092712e-01
+ <_>
+
+ 0 -1 52 2.2995889186859131e-02
+
+ 1.9798569381237030e-02 -7.8324538469314575e-01
+ <_>
+
+ 0 -1 53 -1.1443760013207793e-03
+
+ 2.8108718991279602e-01 -4.8214849829673767e-01
+ <_>
+
+ 0 -1 54 -2.5917509198188782e-01
+
+ -6.8214958906173706e-01 -3.3729869755916297e-04
+ <_>
+
+ 0 -1 55 -3.0133039690554142e-03
+
+ -6.5704411268234253e-01 1.3693599402904510e-01
+ <_>
+
+ 0 -1 56 5.4540671408176422e-03
+
+ 8.6931817233562469e-02 -7.0567971467971802e-01
+ <_>
+
+ 0 -1 57 6.6230311058461666e-03
+
+ 1.6634289920330048e-01 -5.1772958040237427e-01
+ <_>
+
+ 0 -1 58 -1.2561669573187828e-02
+
+ 9.0290471911430359e-02 -1.6850970685482025e-01
+ <_>
+
+ 0 -1 59 4.2890738695859909e-02
+
+ 1.2977810204029083e-01 -5.8218061923980713e-01
+ <_>
+
+ 0 -1 60 -1.3341030571609735e-03
+
+ 1.3694329559803009e-01 -1.9437809288501740e-01
+ <_>
+
+ 0 -1 61 -4.1247460991144180e-02
+
+ 6.8543851375579834e-01 -1.3039450347423553e-01
+ <_>
+
+ 0 -1 62 -9.1503392904996872e-03
+
+ -1.1895430088043213e-01 6.7576698958873749e-02
+ <_>
+
+ 0 -1 63 -1.7151240026578307e-03
+
+ 2.6475539803504944e-01 -3.0487450957298279e-01
+ <_>
+
+ 0 -1 64 2.0843200385570526e-01
+
+ 1.2401489913463593e-01 -4.7014111280441284e-01
+ <_>
+
+ 0 -1 65 7.2393968701362610e-02
+
+ 9.6924379467964172e-02 -7.7347749471664429e-01
+ <_>
+
+ 0 -1 66 -1.5335980569943786e-03
+
+ 1.7991219460964203e-01 -2.5788331031799316e-01
+ <_>
+
+ 0 -1 67 4.8640500754117966e-03
+
+ 1.1392980068922043e-01 -5.5173867940902710e-01
+ <_>
+
+ 0 -1 68 -1.6523050144314766e-03
+
+ 1.5154689550399780e-01 -2.2901679575443268e-01
+ <_>
+
+ 0 -1 69 7.5348757207393646e-02
+
+ -1.4630889892578125e-01 6.8105882406234741e-01
+ <_>
+
+ 0 -1 70 -8.2630068063735962e-03
+
+ -7.2783601284027100e-01 1.0281019657850266e-01
+ <_>
+
+ 0 -1 71 -5.5124741047620773e-03
+
+ -6.3059347867965698e-01 9.3257799744606018e-02
+ <_>
+ 15
+ -1.0618749856948853e+00
+
+ <_>
+
+ 0 -1 72 -9.3849105760455132e-03
+
+ 5.2500581741333008e-01 -4.3231061100959778e-01
+ <_>
+
+ 0 -1 73 -1.3772470410913229e-03
+
+ 2.0698480308055878e-01 -4.2718759179115295e-01
+ <_>
+
+ 0 -1 74 2.6320109143853188e-02
+
+ 1.5825170278549194e-01 -6.5509521961212158e-01
+ <_>
+
+ 0 -1 75 -4.5488759875297546e-02
+
+ -4.9510109424591064e-01 1.7998820543289185e-01
+ <_>
+
+ 0 -1 76 -4.7006201930344105e-03
+
+ 3.3971160650253296e-01 -3.6917701363563538e-01
+ <_>
+
+ 0 -1 77 -1.3270860072225332e-03
+
+ 3.0907860398292542e-01 -1.9771750271320343e-01
+ <_>
+
+ 0 -1 78 9.3802614137530327e-03
+
+ 9.4488449394702911e-02 -7.3198097944259644e-01
+ <_>
+
+ 0 -1 79 4.3565612286329269e-03
+
+ 1.1520200222730637e-01 -5.4008102416992188e-01
+ <_>
+
+ 0 -1 80 8.1178937107324600e-03
+
+ -1.5956309437751770e-01 5.3777867555618286e-01
+ <_>
+
+ 0 -1 81 -8.7829083204269409e-03
+
+ 5.6634718179702759e-01 -1.3279379904270172e-01
+ <_>
+
+ 0 -1 82 2.1944850683212280e-02
+
+ 1.5901289880275726e-01 -5.1751822233200073e-01
+ <_>
+
+ 0 -1 83 4.9510098993778229e-02
+
+ 1.1067640036344528e-02 -4.9972468614578247e-01
+ <_>
+
+ 0 -1 84 -2.1175360307097435e-03
+
+ 2.6490759849548340e-01 -2.4565629661083221e-01
+ <_>
+
+ 0 -1 85 1.0379469953477383e-02
+
+ 1.2624099850654602e-01 -4.0877240896224976e-01
+ <_>
+
+ 0 -1 86 2.4977258872240782e-03
+
+ -1.9723020493984222e-01 3.8866749405860901e-01
+ <_>
+ 18
+ -9.5461457967758179e-01
+
+ <_>
+
+ 0 -1 87 -6.1489548534154892e-03
+
+ 4.0187481045722961e-01 -5.2397370338439941e-01
+ <_>
+
+ 0 -1 88 5.0464540719985962e-02
+
+ 1.3049679994583130e-01 -5.8651441335678101e-01
+ <_>
+
+ 0 -1 89 -5.5906269699335098e-02
+
+ -5.1229542493820190e-01 2.4392889440059662e-01
+ <_>
+
+ 0 -1 90 1.4281509816646576e-01
+
+ -1.5180160291492939e-02 -6.9593918323516846e-01
+ <_>
+
+ 0 -1 91 4.1162770241498947e-02
+
+ 1.3673730194568634e-01 -6.4158838987350464e-01
+ <_>
+
+ 0 -1 92 -1.6468750312924385e-02
+
+ 2.6339039206504822e-01 -2.2083680331707001e-01
+ <_>
+
+ 0 -1 93 2.4763140827417374e-02
+
+ 1.0897739976644516e-01 -6.5213900804519653e-01
+ <_>
+
+ 0 -1 94 4.3008858337998390e-03
+
+ -1.8299630284309387e-01 4.3614229559898376e-01
+ <_>
+
+ 0 -1 95 3.4035290591418743e-03
+
+ -2.4363580346107483e-01 2.8224369883537292e-01
+ <_>
+
+ 0 -1 96 -2.2210620343685150e-02
+
+ -5.4645758867263794e-01 1.3542969524860382e-01
+ <_>
+
+ 0 -1 97 -2.6968019083142281e-02
+
+ 6.5300947427749634e-01 -1.4297309517860413e-01
+ <_>
+
+ 0 -1 98 -3.4927908331155777e-02
+
+ -5.2346628904342651e-01 1.0084570199251175e-01
+ <_>
+
+ 0 -1 99 3.6263581365346909e-02
+
+ 1.5110149979591370e-01 -5.4185849428176880e-01
+ <_>
+
+ 0 -1 100 -3.8526788353919983e-02
+
+ -8.6942279338836670e-01 3.7176769226789474e-02
+ <_>
+
+ 0 -1 101 2.5399168953299522e-03
+
+ -2.6125881075859070e-01 2.7278441190719604e-01
+ <_>
+
+ 0 -1 102 -1.2931150384247303e-02
+
+ -4.9501579999923706e-01 9.1383516788482666e-02
+ <_>
+
+ 0 -1 103 1.1981350369751453e-02
+
+ -1.2059610337018967e-01 6.3848638534545898e-01
+ <_>
+
+ 0 -1 104 -7.4320413172245026e-02
+
+ 4.6591779589653015e-01 -4.0265668183565140e-02
+ <_>
+ 14
+ -1.1777880191802979e+00
+
+ <_>
+
+ 0 -1 105 -6.9070039317011833e-03
+
+ 4.3197679519653320e-01 -5.1717847585678101e-01
+ <_>
+
+ 0 -1 106 -8.1628039479255676e-03
+
+ 2.7116540074348450e-01 -3.2803410291671753e-01
+ <_>
+
+ 0 -1 107 1.8852509558200836e-02
+
+ 1.5548799932003021e-01 -5.5243927240371704e-01
+ <_>
+
+ 0 -1 108 3.4079391509294510e-02
+
+ 1.5272259712219238e-01 -6.5318012237548828e-01
+ <_>
+
+ 0 -1 109 -3.2038250938057899e-03
+
+ 3.4725460410118103e-01 -2.7734228968620300e-01
+ <_>
+
+ 0 -1 110 2.1410689223557711e-03
+
+ -6.8888276815414429e-02 2.4079489707946777e-01
+ <_>
+
+ 0 -1 111 1.4620450139045715e-01
+
+ 1.5766879916191101e-01 -5.4515862464904785e-01
+ <_>
+
+ 0 -1 112 -6.2386798672378063e-03
+
+ 3.2899579405784607e-01 -1.6970640420913696e-01
+ <_>
+
+ 0 -1 113 7.7623138204216957e-03
+
+ 1.6352510452270508e-01 -5.1879328489303589e-01
+ <_>
+
+ 0 -1 114 3.7800080608576536e-03
+
+ -1.8464370071887970e-01 4.8660078644752502e-01
+ <_>
+
+ 0 -1 115 2.2303969599306583e-03
+
+ -1.7057199776172638e-01 4.7744798660278320e-01
+ <_>
+
+ 0 -1 116 2.4544890038669109e-03
+
+ -3.3550649881362915e-01 2.5369268655776978e-01
+ <_>
+
+ 0 -1 117 -2.1707419306039810e-02
+
+ -4.8321890830993652e-01 1.6075029969215393e-01
+ <_>
+
+ 0 -1 118 1.7421970143914223e-02
+
+ 7.9877912998199463e-02 -7.5137257575988770e-01
+ <_>
+ 34
+ -1.2834340333938599e+00
+
+ <_>
+
+ 0 -1 119 8.8802073150873184e-03
+
+ -4.4682410359382629e-01 2.6062530279159546e-01
+ <_>
+
+ 0 -1 120 -3.0198058811947703e-04
+
+ 1.5258400142192841e-01 -3.5206508636474609e-01
+ <_>
+
+ 0 -1 121 6.7998501472175121e-03
+
+ 1.2259320169687271e-01 -6.8427437543869019e-01
+ <_>
+
+ 0 -1 122 2.7802670374512672e-03
+
+ -3.3681631088256836e-01 1.8518559634685516e-01
+ <_>
+
+ 0 -1 123 -1.1553820222616196e-02
+
+ -6.9871348142623901e-01 1.3079600036144257e-01
+ <_>
+
+ 0 -1 124 -2.6563290506601334e-02
+
+ -7.0277881622314453e-01 1.7791330814361572e-02
+ <_>
+
+ 0 -1 125 -2.5158381322398782e-04
+
+ 2.4779480695724487e-01 -3.9787930250167847e-01
+ <_>
+
+ 0 -1 126 3.5748310387134552e-02
+
+ -3.8043439388275146e-02 4.7976261377334595e-01
+ <_>
+
+ 0 -1 127 -1.9973930902779102e-03
+
+ 2.5774869322776794e-01 -3.1990098953247070e-01
+ <_>
+
+ 0 -1 128 -1.1007110029459000e-01
+
+ -4.9102869629859924e-01 2.3104630410671234e-02
+ <_>
+
+ 0 -1 129 -2.2225650027394295e-03
+
+ 2.3825299739837646e-01 -2.8415530920028687e-01
+ <_>
+
+ 0 -1 130 -7.7874241396784782e-03
+
+ -3.8951370120048523e-01 5.5762890726327896e-02
+ <_>
+
+ 0 -1 131 5.6415859609842300e-02
+
+ -9.3521721661090851e-02 7.2561162710189819e-01
+ <_>
+
+ 0 -1 132 -3.5978010855615139e-03
+
+ 1.9452190399169922e-01 -1.9651280343532562e-01
+ <_>
+
+ 0 -1 133 -7.2716898284852505e-03
+
+ 3.4169870615005493e-01 -2.2851559519767761e-01
+ <_>
+
+ 0 -1 134 7.1941758506000042e-03
+
+ 7.2148866951465607e-02 -4.5313501358032227e-01
+ <_>
+
+ 0 -1 135 -4.1034761816263199e-03
+
+ -5.1336747407913208e-01 1.3323569297790527e-01
+ <_>
+
+ 0 -1 136 -3.4210970625281334e-03
+
+ -4.2383781075477600e-01 8.4852807223796844e-02
+ <_>
+
+ 0 -1 137 4.1890922002494335e-03
+
+ -1.3398550450801849e-01 4.3749558925628662e-01
+ <_>
+
+ 0 -1 138 1.1827970156446099e-03
+
+ -2.9739010334014893e-01 2.2126840054988861e-01
+ <_>
+
+ 0 -1 139 -4.1196551173925400e-02
+
+ -5.0735759735107422e-01 1.3243959844112396e-01
+ <_>
+
+ 0 -1 140 2.9593890067189932e-03
+
+ -1.4052620530128479e-01 6.1360880732536316e-02
+ <_>
+
+ 0 -1 141 -5.0226859748363495e-03
+
+ -4.7495970129966736e-01 1.2069150060415268e-01
+ <_>
+
+ 0 -1 142 -1.5097860246896744e-02
+
+ 2.7555391192436218e-01 -5.3780451416969299e-02
+ <_>
+
+ 0 -1 143 -2.7190970256924629e-02
+
+ 7.5995457172393799e-01 -7.4793189764022827e-02
+ <_>
+
+ 0 -1 144 1.9893879070878029e-02
+
+ -6.7238640040159225e-03 7.3972767591476440e-01
+ <_>
+
+ 0 -1 145 7.7208830043673515e-03
+
+ 9.3071162700653076e-02 -6.5780252218246460e-01
+ <_>
+
+ 0 -1 146 -1.1565990280359983e-03
+
+ 9.4645917415618896e-02 -1.6407909989356995e-01
+ <_>
+
+ 0 -1 147 2.6069190353155136e-03
+
+ -1.3877980411052704e-01 4.7349870204925537e-01
+ <_>
+
+ 0 -1 148 -5.3586110472679138e-02
+
+ -3.7349641323089600e-01 2.5728559121489525e-02
+ <_>
+
+ 0 -1 149 1.5184599906206131e-03
+
+ -2.2478710114955902e-01 2.3574599623680115e-01
+ <_>
+
+ 0 -1 150 -3.7061560899019241e-02
+
+ -6.1827117204666138e-01 8.2348063588142395e-02
+ <_>
+
+ 0 -1 151 -2.6311799883842468e-02
+
+ -6.0057657957077026e-01 7.7768869698047638e-02
+ <_>
+
+ 0 -1 152 -8.7947428226470947e-02
+
+ 3.8841038942337036e-01 -8.1545598804950714e-02
+ <_>
+ 20
+ -1.2891789674758911e+00
+
+ <_>
+
+ 0 -1 153 -2.9038030654191971e-02
+
+ 5.0635957717895508e-01 -4.3462699651718140e-01
+ <_>
+
+ 0 -1 154 3.9044669829308987e-03
+
+ -1.9009789824485779e-01 5.1840317249298096e-01
+ <_>
+
+ 0 -1 155 2.9162769205868244e-03
+
+ -3.4351310133934021e-01 2.4016310274600983e-01
+ <_>
+
+ 0 -1 156 -8.9670084416866302e-03
+
+ -4.2667150497436523e-01 1.2316550314426422e-01
+ <_>
+
+ 0 -1 157 -2.4935540277510881e-03
+
+ 3.6086550354957581e-01 -1.8381460011005402e-01
+ <_>
+
+ 0 -1 158 -4.8912568017840385e-03
+
+ -6.4749848842620850e-01 1.0856709629297256e-01
+ <_>
+
+ 0 -1 159 -4.0970719419419765e-03
+
+ 2.2143830358982086e-01 -3.1505578756332397e-01
+ <_>
+
+ 0 -1 160 4.3956499546766281e-02
+
+ -1.0780169814825058e-01 7.1893501281738281e-01
+ <_>
+
+ 0 -1 161 1.9277370302006602e-03
+
+ 2.0247739553451538e-01 -4.0381088852882385e-01
+ <_>
+
+ 0 -1 162 9.4976946711540222e-03
+
+ 4.3494019657373428e-02 -2.9908061027526855e-01
+ <_>
+
+ 0 -1 163 3.5389279946684837e-03
+
+ -1.5109489858150482e-01 5.1864242553710938e-01
+ <_>
+
+ 0 -1 164 -2.2064079530537128e-03
+
+ 2.3006440699100494e-01 -3.3191001415252686e-01
+ <_>
+
+ 0 -1 165 3.9085410535335541e-03
+
+ -3.4253311157226562e-01 2.2951880097389221e-01
+ <_>
+
+ 0 -1 166 2.6973709464073181e-03
+
+ 1.1976680159568787e-01 -3.5321989655494690e-01
+ <_>
+
+ 0 -1 167 -2.1321459207683802e-03
+
+ 1.8206289410591125e-01 -2.8434100747108459e-01
+ <_>
+
+ 0 -1 168 2.6955150533467531e-03
+
+ 7.4593842029571533e-02 -3.0896648764610291e-01
+ <_>
+
+ 0 -1 169 -6.0222679749131203e-03
+
+ 1.8041500449180603e-01 -2.7531668543815613e-01
+ <_>
+
+ 0 -1 170 -8.9143458753824234e-03
+
+ 2.4166099727153778e-01 -1.4506129920482635e-01
+ <_>
+
+ 0 -1 171 2.3474939167499542e-02
+
+ -1.2354619801044464e-01 6.5625041723251343e-01
+ <_>
+
+ 0 -1 172 -5.6602950207889080e-03
+
+ -3.3785250782966614e-01 1.1194559931755066e-01
+ <_>
+ 20
+ -1.0202569961547852e+00
+
+ <_>
+
+ 0 -1 173 -6.9699093699455261e-02
+
+ 5.0786459445953369e-01 -4.7562688589096069e-01
+ <_>
+
+ 0 -1 174 2.1672779694199562e-02
+
+ -2.9134199023246765e-01 3.4561529755592346e-01
+ <_>
+
+ 0 -1 175 -4.7600260004401207e-03
+
+ 3.6477440595626831e-01 -1.9551509618759155e-01
+ <_>
+
+ 0 -1 176 -4.6418169513344765e-03
+
+ -5.6445592641830444e-01 9.8486669361591339e-02
+ <_>
+
+ 0 -1 177 -6.0006938874721527e-03
+
+ -6.3645982742309570e-01 1.4379170536994934e-01
+ <_>
+
+ 0 -1 178 1.9073469564318657e-02
+
+ -3.4218288958072662e-02 5.5043292045593262e-01
+ <_>
+
+ 0 -1 179 4.7993380576372147e-02
+
+ -8.5889510810375214e-02 7.6790231466293335e-01
+ <_>
+
+ 0 -1 180 -3.6511209327727556e-03
+
+ 2.0186069607734680e-01 -2.9832679033279419e-01
+ <_>
+
+ 0 -1 181 -1.4485770370811224e-03
+
+ -5.1293247938156128e-01 1.3695690035820007e-01
+ <_>
+
+ 0 -1 182 -3.3748829737305641e-03
+
+ -4.0975129604339600e-01 1.1581440269947052e-01
+ <_>
+
+ 0 -1 183 2.3586750030517578e-03
+
+ 1.7582429945468903e-01 -4.5439630746841431e-01
+ <_>
+
+ 0 -1 184 -2.2074829787015915e-02
+
+ 4.6775639057159424e-01 -4.6358831226825714e-02
+ <_>
+
+ 0 -1 185 7.0953248068690300e-03
+
+ -3.2100531458854675e-01 2.2119350731372833e-01
+ <_>
+
+ 0 -1 186 -2.0119780674576759e-03
+
+ 5.4601740092039108e-02 -9.7853101789951324e-02
+ <_>
+
+ 0 -1 187 4.9847508780658245e-03
+
+ -1.3063269853591919e-01 5.2815079689025879e-01
+ <_>
+
+ 0 -1 188 -5.3485459648072720e-03
+
+ -4.2115539312362671e-01 1.1927159875631332e-01
+ <_>
+
+ 0 -1 189 2.5243330746889114e-03
+
+ 1.2105660140514374e-01 -4.5177119970321655e-01
+ <_>
+
+ 0 -1 190 -2.4893151130527258e-03
+
+ 1.2249600142240524e-01 -1.1200980097055435e-01
+ <_>
+
+ 0 -1 191 4.3740491382777691e-03
+
+ -1.0549320280551910e-01 6.0806149244308472e-01
+ <_>
+
+ 0 -1 192 -7.3214988224208355e-03
+
+ 4.7615110874176025e-01 -6.8390920758247375e-02
+ <_>
+ 24
+ -1.0336159467697144e+00
+
+ <_>
+
+ 0 -1 193 -4.2286239564418793e-02
+
+ 3.6749860644340515e-01 -4.3680980801582336e-01
+ <_>
+
+ 0 -1 194 3.8884699344635010e-02
+
+ -3.5438889265060425e-01 2.7009218931198120e-01
+ <_>
+
+ 0 -1 195 1.5983959892764688e-03
+
+ -3.2200628519058228e-01 2.5404900312423706e-01
+ <_>
+
+ 0 -1 196 3.9249849505722523e-03
+
+ 1.6477300226688385e-01 -4.2043879628181458e-01
+ <_>
+
+ 0 -1 197 1.5850430354475975e-03
+
+ -2.5503370165824890e-01 3.1559389829635620e-01
+ <_>
+
+ 0 -1 198 -3.4282119013369083e-03
+
+ -4.0074288845062256e-01 1.1993350088596344e-01
+ <_>
+
+ 0 -1 199 -3.3538821153342724e-03
+
+ 3.0459630489349365e-01 -2.2311030328273773e-01
+ <_>
+
+ 0 -1 200 -6.7664748057723045e-03
+
+ 3.2396519184112549e-01 -9.2932380735874176e-02
+ <_>
+
+ 0 -1 201 -6.7180307814851403e-04
+
+ -3.2457518577575684e-01 2.1808999776840210e-01
+ <_>
+
+ 0 -1 202 2.8931829147040844e-03
+
+ 1.2530609965324402e-01 -4.8582470417022705e-01
+ <_>
+
+ 0 -1 203 -3.3115309197455645e-03
+
+ 4.0534108877182007e-01 -2.2432869672775269e-01
+ <_>
+
+ 0 -1 204 8.8509041815996170e-03
+
+ 1.2155570089817047e-01 -6.0243481397628784e-01
+ <_>
+
+ 0 -1 205 5.4662628099322319e-03
+
+ -1.6978119313716888e-01 4.0752619504928589e-01
+ <_>
+
+ 0 -1 206 4.7559391707181931e-02
+
+ -8.1737041473388672e-02 6.9865119457244873e-01
+ <_>
+
+ 0 -1 207 3.1745019368827343e-03
+
+ 1.7419810593128204e-01 -3.7237030267715454e-01
+ <_>
+
+ 0 -1 208 -5.1520839333534241e-03
+
+ 2.7799358963966370e-01 -2.5311779975891113e-01
+ <_>
+
+ 0 -1 209 -4.8141111619770527e-03
+
+ -5.8466029167175293e-01 1.5894299745559692e-01
+ <_>
+
+ 0 -1 210 2.1967150270938873e-02
+
+ -1.0052759945392609e-01 4.7374871373176575e-01
+ <_>
+
+ 0 -1 211 -6.0128211043775082e-03
+
+ 1.9820199906826019e-01 -4.2172819375991821e-01
+ <_>
+
+ 0 -1 212 4.5052049681544304e-03
+
+ 1.7064809799194336e-02 -4.8947790265083313e-01
+ <_>
+
+ 0 -1 213 -1.3302109437063336e-03
+
+ 1.8670339882373810e-01 -2.9437661170959473e-01
+ <_>
+
+ 0 -1 214 -7.3667510878294706e-04
+
+ -1.4788800477981567e-01 1.0121300071477890e-01
+ <_>
+
+ 0 -1 215 -1.4602739829570055e-03
+
+ -4.3107959628105164e-01 1.2479860335588455e-01
+ <_>
+
+ 0 -1 216 3.4185629338026047e-02
+
+ -5.7933650910854340e-02 5.4917758703231812e-01
+ <_>
+ 33
+ -1.0450899600982666e+00
+
+ <_>
+
+ 0 -1 217 3.0665110796689987e-02
+
+ -3.9953279495239258e-01 3.3617529273033142e-01
+ <_>
+
+ 0 -1 218 2.8893710114061832e-03
+
+ -3.8745269179344177e-01 3.0567520856857300e-01
+ <_>
+
+ 0 -1 219 -1.1876110220327973e-03
+
+ 2.2150239348411560e-01 -2.9632321000099182e-01
+ <_>
+
+ 0 -1 220 4.0173018351197243e-03
+
+ 1.3102529942989349e-01 -4.8803418874740601e-01
+ <_>
+
+ 0 -1 221 4.4870697893202305e-03
+
+ -3.3282509446144104e-01 1.6376070678234100e-01
+ <_>
+
+ 0 -1 222 3.2539520412683487e-02
+
+ -5.9164509177207947e-02 6.9953370094299316e-01
+ <_>
+
+ 0 -1 223 -8.9682880789041519e-03
+
+ -5.6289541721343994e-01 1.1756320297718048e-01
+ <_>
+
+ 0 -1 224 -6.1743397964164615e-04
+
+ 1.5408250689506531e-01 -2.7350011467933655e-01
+ <_>
+
+ 0 -1 225 -3.1031211256049573e-04
+
+ 1.8013550341129303e-01 -3.7572589516639709e-01
+ <_>
+
+ 0 -1 226 2.8775030747056007e-02
+
+ -3.4200929105281830e-02 2.7645361423492432e-01
+ <_>
+
+ 0 -1 227 -6.1647972324863076e-04
+
+ 1.7953120172023773e-01 -3.5178318619728088e-01
+ <_>
+
+ 0 -1 228 2.1818219684064388e-03
+
+ -1.4532999694347382e-01 1.4900140464305878e-01
+ <_>
+
+ 0 -1 229 -2.4263889063149691e-03
+
+ -4.6981298923492432e-01 9.5262229442596436e-02
+ <_>
+
+ 0 -1 230 2.5438209995627403e-02
+
+ -2.1531460806727409e-02 3.3266928791999817e-01
+ <_>
+
+ 0 -1 231 7.9593079863116145e-04
+
+ 1.2254969775676727e-01 -3.5679769515991211e-01
+ <_>
+
+ 0 -1 232 5.6763447355479002e-04
+
+ -1.3694189488887787e-01 1.0818839818239212e-01
+ <_>
+
+ 0 -1 233 8.7481308728456497e-03
+
+ -9.0849868953227997e-02 5.0112378597259521e-01
+ <_>
+
+ 0 -1 234 -4.7468831762671471e-03
+
+ 1.1629249900579453e-01 -1.4651729725301266e-02
+ <_>
+
+ 0 -1 235 3.0644210055470467e-03
+
+ -2.2739639878273010e-01 2.7780678868293762e-01
+ <_>
+
+ 0 -1 236 3.1514191068708897e-03
+
+ 3.5710681229829788e-02 -3.2296779751777649e-01
+ <_>
+
+ 0 -1 237 -3.8335900753736496e-03
+
+ -4.8395419120788574e-01 9.2689603567123413e-02
+ <_>
+
+ 0 -1 238 -3.6972409579902887e-03
+
+ 1.6351610422134399e-01 -1.4657320082187653e-01
+ <_>
+
+ 0 -1 239 6.7644561640918255e-03
+
+ 8.0342940986156464e-02 -5.0272989273071289e-01
+ <_>
+
+ 0 -1 240 5.7455507339909673e-04
+
+ -1.9531010091304779e-01 1.2394949793815613e-01
+ <_>
+
+ 0 -1 241 1.0008309967815876e-02
+
+ -1.5030139684677124e-01 2.7990019321441650e-01
+ <_>
+
+ 0 -1 242 -7.2150952182710171e-03
+
+ 1.6882060468196869e-01 -1.2279219925403595e-01
+ <_>
+
+ 0 -1 243 1.1310850270092487e-02
+
+ -9.6786908805370331e-02 6.4601618051528931e-01
+ <_>
+
+ 0 -1 244 1.0049899667501450e-01
+
+ 2.0610159263014793e-02 -9.9988579750061035e-01
+ <_>
+
+ 0 -1 245 1.3250860385596752e-02
+
+ 9.3147717416286469e-02 -4.8156800866127014e-01
+ <_>
+
+ 0 -1 246 -3.9085310697555542e-01
+
+ 7.1057820320129395e-01 -1.6548840329051018e-02
+ <_>
+
+ 0 -1 247 2.4332199245691299e-02
+
+ 1.4528210461139679e-01 -2.8366720676422119e-01
+ <_>
+
+ 0 -1 248 1.0354409459978342e-03
+
+ -2.0017370581626892e-01 1.8794250488281250e-01
+ <_>
+
+ 0 -1 249 -7.1747899055480957e-01
+
+ 6.6637128591537476e-01 -5.2656259387731552e-02
+ <_>
+ 42
+ -1.0599969625473022e+00
+
+ <_>
+
+ 0 -1 250 1.9620559178292751e-03
+
+ -4.1077700257301331e-01 1.8896859884262085e-01
+ <_>
+
+ 0 -1 251 2.1331369876861572e-02
+
+ 9.2599019408226013e-02 -3.9660450816154480e-01
+ <_>
+
+ 0 -1 252 -2.3037450388073921e-02
+
+ -7.2293937206268311e-01 9.6411719918251038e-02
+ <_>
+
+ 0 -1 253 -5.0521228462457657e-02
+
+ 1.8302009999752045e-01 -1.9482779502868652e-01
+ <_>
+
+ 0 -1 254 2.5330919772386551e-02
+
+ 1.0334759950637817e-01 -5.8018290996551514e-01
+ <_>
+
+ 0 -1 255 -4.3120220652781427e-04
+
+ 1.3374519348144531e-01 -2.1300980448722839e-01
+ <_>
+
+ 0 -1 256 -1.4295669643615838e-05
+
+ 1.8420490622520447e-01 -3.0300238728523254e-01
+ <_>
+
+ 0 -1 257 -2.8645719867199659e-03
+
+ 1.7371790111064911e-01 -2.1612820029258728e-01
+ <_>
+
+ 0 -1 258 1.0322510264813900e-02
+
+ 1.1071330308914185e-01 -4.2402949929237366e-01
+ <_>
+
+ 0 -1 259 1.3879509642720222e-02
+
+ -1.0993299633264542e-01 5.5458897352218628e-01
+ <_>
+
+ 0 -1 260 -1.7010340234264731e-03
+
+ -3.1409528851509094e-01 1.5474779903888702e-01
+ <_>
+
+ 0 -1 261 -2.7375848731026053e-04
+
+ 1.4674690365791321e-01 -1.2817619740962982e-01
+ <_>
+
+ 0 -1 262 3.9977379143238068e-02
+
+ -6.3540339469909668e-02 6.0685801506042480e-01
+ <_>
+
+ 0 -1 263 -1.2663399800658226e-02
+
+ 1.0982260107994080e-01 -1.2707209587097168e-01
+ <_>
+
+ 0 -1 264 1.0186760127544403e-01
+
+ 8.8505871593952179e-02 -5.7165622711181641e-01
+ <_>
+
+ 0 -1 265 -1.0695089586079121e-03
+
+ 3.4594889730215073e-02 -9.9618308246135712e-02
+ <_>
+
+ 0 -1 266 -3.4467370714992285e-03
+
+ 2.2871519625186920e-01 -1.9664469361305237e-01
+ <_>
+
+ 0 -1 267 -1.2329400330781937e-01
+
+ -1.0825649648904800e-01 2.4728389456868172e-02
+ <_>
+
+ 0 -1 268 -5.8832589536905289e-02
+
+ 5.5791580677032471e-01 -7.7630676329135895e-02
+ <_>
+
+ 0 -1 269 9.7795920446515083e-03
+
+ 9.4951488077640533e-02 -5.3767371177673340e-01
+ <_>
+
+ 0 -1 270 1.1116569861769676e-02
+
+ -8.9288607239723206e-02 4.6695429086685181e-01
+ <_>
+
+ 0 -1 271 -1.5398260205984116e-02
+
+ 9.0432487428188324e-02 -1.2233799695968628e-01
+ <_>
+
+ 0 -1 272 5.8570769615471363e-03
+
+ 1.0859709978103638e-01 -4.0961760282516479e-01
+ <_>
+
+ 0 -1 273 6.6174753010272980e-02
+
+ -4.4282642193138599e-03 -8.8055539131164551e-01
+ <_>
+
+ 0 -1 274 -1.0636489838361740e-02
+
+ -4.4541570544242859e-01 1.0953740030527115e-01
+ <_>
+
+ 0 -1 275 -3.1363599002361298e-02
+
+ 8.0546891689300537e-01 -4.9883890897035599e-02
+ <_>
+
+ 0 -1 276 9.8021561279892921e-04
+
+ -2.3428329825401306e-01 1.6934409737586975e-01
+ <_>
+
+ 0 -1 277 5.3463829681277275e-03
+
+ -1.0729180276393890e-01 2.5447541475296021e-01
+ <_>
+
+ 0 -1 278 -5.1919990219175816e-03
+
+ -5.1496618986129761e-01 8.5118137300014496e-02
+ <_>
+
+ 0 -1 279 1.8721649423241615e-02
+
+ -8.4052212536334991e-02 4.7836899757385254e-01
+ <_>
+
+ 0 -1 280 3.7875440903007984e-03
+
+ -2.3145659267902374e-01 1.6052989661693573e-01
+ <_>
+
+ 0 -1 281 6.8765478208661079e-03
+
+ 9.6559382975101471e-02 -2.3832960426807404e-01
+ <_>
+
+ 0 -1 282 -5.4661519825458527e-03
+
+ -3.7871730327606201e-01 8.7851487100124359e-02
+ <_>
+
+ 0 -1 283 -1.5829449519515038e-02
+
+ 5.2159512042999268e-01 -7.3916867375373840e-02
+ <_>
+
+ 0 -1 284 1.2771990150213242e-02
+
+ 1.0658729821443558e-01 -3.2850459218025208e-01
+ <_>
+
+ 0 -1 285 4.7000780701637268e-02
+
+ -2.9548000544309616e-02 4.8469349741935730e-01
+ <_>
+
+ 0 -1 286 1.1224800255149603e-03
+
+ -2.1395659446716309e-01 1.5407760441303253e-01
+ <_>
+
+ 0 -1 287 -1.0136750061064959e-03
+
+ 2.3574739694595337e-01 -1.4536799490451813e-01
+ <_>
+
+ 0 -1 288 5.2841319702565670e-03
+
+ 8.0536216497421265e-02 -3.6417248845100403e-01
+ <_>
+
+ 0 -1 289 -1.7608689144253731e-02
+
+ 5.3858822584152222e-01 -3.5741850733757019e-02
+ <_>
+
+ 0 -1 290 3.4710608422756195e-02
+
+ -4.3261460959911346e-02 7.7817600965499878e-01
+ <_>
+
+ 0 -1 291 1.6450349241495132e-02
+
+ 4.1815090924501419e-02 -3.4912678599357605e-01
+ <_>
+ 45
+ -1.0216469764709473e+00
+
+ <_>
+
+ 0 -1 292 -1.7846419941633940e-03
+
+ 2.2014810144901276e-01 -3.6912658810615540e-01
+ <_>
+
+ 0 -1 293 -6.1350408941507339e-04
+
+ -3.0695998668670654e-01 9.7717791795730591e-02
+ <_>
+
+ 0 -1 294 -2.5726810563355684e-03
+
+ -3.7789058685302734e-01 1.7042149603366852e-01
+ <_>
+
+ 0 -1 295 8.8661757763475180e-04
+
+ -3.7929078936576843e-01 9.3289971351623535e-02
+ <_>
+
+ 0 -1 296 3.5716239362955093e-02
+
+ 7.3169313371181488e-02 -6.1792898178100586e-01
+ <_>
+
+ 0 -1 297 3.5162840038537979e-02
+
+ -1.2328250333666801e-02 4.4894638657569885e-01
+ <_>
+
+ 0 -1 298 -5.8216741308569908e-03
+
+ -4.9501991271972656e-01 8.8005952537059784e-02
+ <_>
+
+ 0 -1 299 -7.7909301035106182e-04
+
+ 1.1154119670391083e-01 -2.8316551446914673e-01
+ <_>
+
+ 0 -1 300 -6.8164491094648838e-03
+
+ 1.8434180319309235e-01 -2.3727069795131683e-01
+ <_>
+
+ 0 -1 301 9.0218139812350273e-03
+
+ -5.3773559629917145e-02 2.6174989342689514e-01
+ <_>
+
+ 0 -1 302 -6.7481878213584423e-03
+
+ -5.0475108623504639e-01 7.6614417135715485e-02
+ <_>
+
+ 0 -1 303 7.5771231204271317e-03
+
+ -1.1926110088825226e-01 3.4210419654846191e-01
+ <_>
+
+ 0 -1 304 -4.6335519291460514e-03
+
+ -4.9088281393051147e-01 6.9542020559310913e-02
+ <_>
+
+ 0 -1 305 4.1346959769725800e-03
+
+ -8.1591427326202393e-02 4.7879660129547119e-01
+ <_>
+
+ 0 -1 306 -9.8444558680057526e-03
+
+ 2.0124210417270660e-01 -2.3769280314445496e-01
+ <_>
+
+ 0 -1 307 -3.4897070378065109e-02
+
+ -9.1024678945541382e-01 1.8579540774226189e-02
+ <_>
+
+ 0 -1 308 -3.5042490344494581e-04
+
+ 1.2479469925165176e-01 -3.0717149376869202e-01
+ <_>
+
+ 0 -1 309 -9.4668623059988022e-03
+
+ 1.1332949995994568e-01 -1.6115890443325043e-01
+ <_>
+
+ 0 -1 310 2.2053409367799759e-02
+
+ -7.9784400761127472e-02 6.0739010572433472e-01
+ <_>
+
+ 0 -1 311 -7.2947797889355570e-05
+
+ 1.4449119567871094e-01 -1.3706150650978088e-01
+ <_>
+
+ 0 -1 312 -7.5134839862585068e-03
+
+ -3.0744421482086182e-01 1.0279080271720886e-01
+ <_>
+
+ 0 -1 313 1.0311939753592014e-02
+
+ -7.0246197283267975e-02 4.8307010531425476e-01
+ <_>
+
+ 0 -1 314 9.4670448452234268e-03
+
+ 7.0281803607940674e-02 -4.7069519758224487e-01
+ <_>
+
+ 0 -1 315 -3.0116239562630653e-02
+
+ 5.2378559112548828e-01 -3.7109669297933578e-02
+ <_>
+
+ 0 -1 316 -1.2667849659919739e-02
+
+ -6.0825890302658081e-01 5.0444670021533966e-02
+ <_>
+
+ 0 -1 317 2.2987429983913898e-03
+
+ -1.1808679997920990e-01 1.7393890023231506e-01
+ <_>
+
+ 0 -1 318 2.5533209554851055e-03
+
+ -1.6625979542732239e-01 1.9768959283828735e-01
+ <_>
+
+ 0 -1 319 -3.3218199014663696e-01
+
+ -9.5407789945602417e-01 4.1291080415248871e-03
+ <_>
+
+ 0 -1 320 5.4485369473695755e-03
+
+ -9.1220542788505554e-02 3.9834749698638916e-01
+ <_>
+
+ 0 -1 321 4.7633191570639610e-03
+
+ -1.2069889903068542e-01 1.6169339418411255e-01
+ <_>
+
+ 0 -1 322 4.4371229596436024e-03
+
+ 8.5928186774253845e-02 -4.4427189230918884e-01
+ <_>
+
+ 0 -1 323 2.7019889093935490e-03
+
+ -1.9511219859123230e-01 7.1141660213470459e-02
+ <_>
+
+ 0 -1 324 -1.4219670556485653e-03
+
+ 1.9089500606060028e-01 -1.8880489468574524e-01
+ <_>
+
+ 0 -1 325 -6.9531630724668503e-03
+
+ -2.6191520690917969e-01 7.7488146722316742e-02
+ <_>
+
+ 0 -1 326 -2.6554360985755920e-01
+
+ 4.7893580794334412e-01 -7.8830257058143616e-02
+ <_>
+
+ 0 -1 327 5.4960828274488449e-03
+
+ 6.4748808741569519e-02 -4.0898790955543518e-01
+ <_>
+
+ 0 -1 328 1.6060929745435715e-02
+
+ 9.4868503510951996e-02 -3.5040768980979919e-01
+ <_>
+
+ 0 -1 329 -3.5279421135783195e-03
+
+ 2.2704540193080902e-01 -1.5011039376258850e-01
+ <_>
+
+ 0 -1 330 1.5189720317721367e-02
+
+ -8.6033642292022705e-02 5.0375241041183472e-01
+ <_>
+
+ 0 -1 331 9.8117031157016754e-03
+
+ 9.1945856809616089e-02 -2.7134710550308228e-01
+ <_>
+
+ 0 -1 332 -8.9835934340953827e-03
+
+ -3.5721930861473083e-01 1.1564330011606216e-01
+ <_>
+
+ 0 -1 333 2.5472430512309074e-02
+
+ -3.8861878216266632e-02 5.0707322359085083e-01
+ <_>
+
+ 0 -1 334 1.3594819465652108e-03
+
+ -1.5127420425415039e-01 2.3332439363002777e-01
+ <_>
+
+ 0 -1 335 1.4673129655420780e-02
+
+ 7.6386481523513794e-02 -4.3126261234283447e-01
+ <_>
+
+ 0 -1 336 -2.1757239475846291e-02
+
+ 6.0306608676910400e-01 -5.7926669716835022e-02
+ <_>
+ 49
+ -1.0149190425872803e+00
+
+ <_>
+
+ 0 -1 337 -1.9122850149869919e-02
+
+ 2.1423059701919556e-01 -4.0178310871124268e-01
+ <_>
+
+ 0 -1 338 -4.0749661275185645e-04
+
+ 1.0837800055742264e-01 -9.7847007215023041e-02
+ <_>
+
+ 0 -1 339 1.8419560045003891e-02
+
+ 9.4817012548446655e-02 -4.4825899600982666e-01
+ <_>
+
+ 0 -1 340 -3.0946850893087685e-04
+
+ 1.1567220091819763e-01 -6.9291338324546814e-02
+ <_>
+
+ 0 -1 341 2.4416830390691757e-02
+
+ -2.6403778791427612e-01 1.4588509500026703e-01
+ <_>
+
+ 0 -1 342 3.9483308792114258e-03
+
+ 7.8703567385673523e-02 -3.9770650863647461e-01
+ <_>
+
+ 0 -1 343 1.5498059801757336e-02
+
+ -6.8623371422290802e-02 6.3598757982254028e-01
+ <_>
+
+ 0 -1 344 1.0397369973361492e-02
+
+ 5.3116258233785629e-02 -2.4757599830627441e-01
+ <_>
+
+ 0 -1 345 1.0350650409236550e-03
+
+ -2.2953610122203827e-01 2.1623679995536804e-01
+ <_>
+
+ 0 -1 346 -6.9717521546408534e-04
+
+ 1.6330949962139130e-01 -2.7930000424385071e-01
+ <_>
+
+ 0 -1 347 1.1055100476369262e-03
+
+ -2.6721170544624329e-01 1.3809490203857422e-01
+ <_>
+
+ 0 -1 348 1.8128760159015656e-02
+
+ 7.8602522611618042e-02 -3.3748328685760498e-01
+ <_>
+
+ 0 -1 349 -1.4303029747679830e-03
+
+ 1.5668049454689026e-01 -2.5422498583793640e-01
+ <_>
+
+ 0 -1 350 1.0650220327079296e-02
+
+ -4.1638601571321487e-02 3.2634070515632629e-01
+ <_>
+
+ 0 -1 351 -1.0680139530450106e-03
+
+ 1.7996980249881744e-01 -2.0673060417175293e-01
+ <_>
+
+ 0 -1 352 -8.0095082521438599e-03
+
+ -2.8778979182243347e-01 7.5492449104785919e-02
+ <_>
+
+ 0 -1 353 -1.1857559904456139e-02
+
+ -5.5485212802886963e-01 4.7465000301599503e-02
+ <_>
+
+ 0 -1 354 -1.9440150260925293e-01
+
+ 4.9564599990844727e-01 -6.8522267043590546e-02
+ <_>
+
+ 0 -1 355 1.2786169536411762e-02
+
+ -5.8201011270284653e-02 5.1194858551025391e-01
+ <_>
+
+ 0 -1 356 1.1360739590600133e-03
+
+ -2.1216529607772827e-01 1.4639540016651154e-01
+ <_>
+
+ 0 -1 357 -3.7541511119343340e-04
+
+ 1.1406060308218002e-01 -2.7936661243438721e-01
+ <_>
+
+ 0 -1 358 6.2142009846866131e-03
+
+ 2.8568789362907410e-02 -3.2485058903694153e-01
+ <_>
+
+ 0 -1 359 4.5166439376771450e-03
+
+ -9.5556378364562988e-02 3.6032339930534363e-01
+ <_>
+
+ 0 -1 360 -1.7354219453409314e-03
+
+ -8.0804876983165741e-02 5.3851570934057236e-02
+ <_>
+
+ 0 -1 361 -6.9608418270945549e-03
+
+ -6.0131508111953735e-01 4.5509491115808487e-02
+ <_>
+
+ 0 -1 362 8.7833311408758163e-03
+
+ -9.4497971236705780e-02 3.1924161314964294e-01
+ <_>
+
+ 0 -1 363 -2.0243569742888212e-03
+
+ 2.6737558841705322e-01 -1.1679279804229736e-01
+ <_>
+
+ 0 -1 364 5.6362948380410671e-03
+
+ 4.6491090208292007e-02 -2.3982259631156921e-01
+ <_>
+
+ 0 -1 365 -2.1751220338046551e-03
+
+ -3.1831741333007812e-01 1.1634550243616104e-01
+ <_>
+
+ 0 -1 366 2.5424890220165253e-02
+
+ 7.5600057840347290e-02 -3.7359631061553955e-01
+ <_>
+
+ 0 -1 367 3.9950129576027393e-04
+
+ -2.6206868886947632e-01 1.4345559477806091e-01
+ <_>
+
+ 0 -1 368 -3.9724060334265232e-03
+
+ 2.0395089685916901e-01 -1.1896310001611710e-01
+ <_>
+
+ 0 -1 369 2.4637179449200630e-03
+
+ -1.3687339425086975e-01 3.4098258614540100e-01
+ <_>
+
+ 0 -1 370 1.4397709630429745e-02
+
+ 2.4846889078617096e-02 -6.5415948629379272e-01
+ <_>
+
+ 0 -1 371 -1.4848919818177819e-05
+
+ 1.3884930312633514e-01 -2.1077479422092438e-01
+ <_>
+
+ 0 -1 372 -3.8339510560035706e-02
+
+ 5.8668392896652222e-01 -3.6245860159397125e-02
+ <_>
+
+ 0 -1 373 -5.4605712648481131e-04
+
+ 2.1259330213069916e-01 -1.3791069388389587e-01
+ <_>
+
+ 0 -1 374 1.3036499731242657e-02
+
+ 5.0619971007108688e-02 -2.3150099813938141e-01
+ <_>
+
+ 0 -1 375 -2.4273560848087072e-03
+
+ 2.4302999675273895e-01 -1.1315950006246567e-01
+ <_>
+
+ 0 -1 376 -6.3351681455969810e-03
+
+ -3.5549488663673401e-01 9.4948403537273407e-02
+ <_>
+
+ 0 -1 377 -5.7510860264301300e-02
+
+ 4.9378138780593872e-01 -6.0664121061563492e-02
+ <_>
+
+ 0 -1 378 6.8376341369003057e-04
+
+ -1.9417250156402588e-01 1.4234590530395508e-01
+ <_>
+
+ 0 -1 379 8.8113872334361076e-03
+
+ 4.7562059015035629e-02 -5.8416491746902466e-01
+ <_>
+
+ 0 -1 380 1.0788169689476490e-02
+
+ -4.6855889260768890e-02 1.6548010706901550e-01
+ <_>
+
+ 0 -1 381 -1.3571690069511533e-03
+
+ -3.2510679960250854e-01 9.4090476632118225e-02
+ <_>
+
+ 0 -1 382 -1.0195979848504066e-02
+
+ -1.4696849882602692e-01 2.6246059685945511e-02
+ <_>
+
+ 0 -1 383 -1.2560819741338491e-03
+
+ 2.2853380441665649e-01 -1.6265660524368286e-01
+ <_>
+
+ 0 -1 384 6.6750420955941081e-04
+
+ -1.3430669903755188e-01 1.3987569510936737e-01
+ <_>
+
+ 0 -1 385 2.0975170191377401e-03
+
+ -1.2987610697746277e-01 1.9978469610214233e-01
+ <_>
+ 53
+ -9.3152678012847900e-01
+
+ <_>
+
+ 0 -1 386 -3.6917610559612513e-03
+
+ 2.2682790458202362e-01 -4.1167381405830383e-01
+ <_>
+
+ 0 -1 387 -9.4609148800373077e-03
+
+ 1.6305020451545715e-01 -2.2949010133743286e-01
+ <_>
+
+ 0 -1 388 3.3874800428748131e-03
+
+ 7.7644690871238708e-02 -4.7465118765830994e-01
+ <_>
+
+ 0 -1 389 3.3596849534660578e-03
+
+ -1.4722810685634613e-01 1.3755659759044647e-01
+ <_>
+
+ 0 -1 390 -2.2649099119007587e-03
+
+ -2.9027861356735229e-01 1.2261869758367538e-01
+ <_>
+
+ 0 -1 391 -5.5420072749257088e-04
+
+ 1.1591990292072296e-01 -2.3066529631614685e-01
+ <_>
+
+ 0 -1 392 1.9706019666045904e-03
+
+ 1.1808300018310547e-01 -3.7879431247711182e-01
+ <_>
+
+ 0 -1 393 1.7503080889582634e-02
+
+ -9.4161599874496460e-02 4.7933238744735718e-01
+ <_>
+
+ 0 -1 394 -2.9575270600616932e-03
+
+ 1.7336699366569519e-01 -3.1673321127891541e-01
+ <_>
+
+ 0 -1 395 -2.6238700747489929e-01
+
+ -7.4405288696289062e-01 8.9512793347239494e-03
+ <_>
+
+ 0 -1 396 5.5493800900876522e-03
+
+ -2.4088740348815918e-01 1.4212040603160858e-01
+ <_>
+
+ 0 -1 397 -1.4842569828033447e-02
+
+ 5.5166311562061310e-02 -8.5363000631332397e-02
+ <_>
+
+ 0 -1 398 -1.8193490803241730e-02
+
+ -7.5389099121093750e-01 4.4062498956918716e-02
+ <_>
+
+ 0 -1 399 -1.9381130114197731e-03
+
+ 1.4762139320373535e-01 -1.4214770495891571e-01
+ <_>
+
+ 0 -1 400 -6.1375028453767300e-03
+
+ -5.4175209999084473e-01 5.2872691303491592e-02
+ <_>
+
+ 0 -1 401 1.6630079597234726e-02
+
+ -6.0005810111761093e-02 5.2294141054153442e-01
+ <_>
+
+ 0 -1 402 -9.7470665350556374e-03
+
+ -3.1776770949363708e-01 9.4077728688716888e-02
+ <_>
+
+ 0 -1 403 -3.9159679412841797e-01
+
+ 5.1550501585006714e-01 -8.6178213357925415e-02
+ <_>
+
+ 0 -1 404 1.0457860305905342e-02
+
+ -5.4442230612039566e-02 5.5086338520050049e-01
+ <_>
+
+ 0 -1 405 9.2479586601257324e-02
+
+ 9.5865959301590919e-03 -7.5205242633819580e-01
+ <_>
+
+ 0 -1 406 -1.3383329845964909e-02
+
+ -2.5909280776977539e-01 1.2255199998617172e-01
+ <_>
+
+ 0 -1 407 -1.9297929480671883e-02
+
+ -1.8686549365520477e-01 4.2670380324125290e-02
+ <_>
+
+ 0 -1 408 -1.1118740076199174e-03
+
+ 1.4586099982261658e-01 -2.2742809355258942e-01
+ <_>
+
+ 0 -1 409 2.3209059610962868e-02
+
+ 2.1769199520349503e-02 -2.4001930654048920e-01
+ <_>
+
+ 0 -1 410 6.9435071200132370e-03
+
+ -8.4814570844173431e-02 3.8388100266456604e-01
+ <_>
+
+ 0 -1 411 -1.0249669849872589e-01
+
+ -7.0618611574172974e-01 1.2580949813127518e-02
+ <_>
+
+ 0 -1 412 -1.4036430045962334e-02
+
+ -3.8427880406379700e-01 8.7678723037242889e-02
+ <_>
+
+ 0 -1 413 6.8071340210735798e-03
+
+ -7.5941346585750580e-02 7.6014332473278046e-02
+ <_>
+
+ 0 -1 414 4.8163239844143391e-03
+
+ -1.6402910649776459e-01 2.0124110579490662e-01
+ <_>
+
+ 0 -1 415 -3.0274710152298212e-03
+
+ -2.8118729591369629e-01 6.8671241402626038e-02
+ <_>
+
+ 0 -1 416 -1.6530510038137436e-03
+
+ 2.1427379548549652e-01 -1.3038359582424164e-01
+ <_>
+
+ 0 -1 417 -3.9757499471306801e-03
+
+ -2.3737999796867371e-01 5.1290549337863922e-02
+ <_>
+
+ 0 -1 418 6.9589749909937382e-03
+
+ -1.3246279954910278e-01 2.3703409731388092e-01
+ <_>
+
+ 0 -1 419 7.2270620148628950e-04
+
+ 5.0478070974349976e-02 -1.3544809818267822e-01
+ <_>
+
+ 0 -1 420 1.5057729557156563e-02
+
+ -6.6954463720321655e-02 4.5368999242782593e-01
+ <_>
+
+ 0 -1 421 6.5838429145514965e-03
+
+ 3.9054669439792633e-02 -1.9516509771347046e-01
+ <_>
+
+ 0 -1 422 -2.9128929600119591e-03
+
+ 1.7604969441890717e-01 -1.5639689564704895e-01
+ <_>
+
+ 0 -1 423 6.4386397600173950e-01
+
+ -1.1777699925005436e-02 1.0000569820404053e+00
+ <_>
+
+ 0 -1 424 5.1160277798771858e-03
+
+ 9.5464669167995453e-02 -3.7832370400428772e-01
+ <_>
+
+ 0 -1 425 6.8325497210025787e-02
+
+ -3.9297499461099505e-04 -9.9986249208450317e-01
+ <_>
+
+ 0 -1 426 4.4071719050407410e-02
+
+ 2.8716549277305603e-02 -9.0306490659713745e-01
+ <_>
+
+ 0 -1 427 -1.5712520107626915e-02
+
+ 2.4888029694557190e-01 -5.3066261112689972e-02
+ <_>
+
+ 0 -1 428 -3.9486829191446304e-03
+
+ -5.0214129686355591e-01 5.2089609205722809e-02
+ <_>
+
+ 0 -1 429 1.1841469677165151e-03
+
+ 6.2122888863086700e-02 -1.6479890048503876e-01
+ <_>
+
+ 0 -1 430 -1.1385709792375565e-01
+
+ 5.6728571653366089e-01 -3.8864318281412125e-02
+ <_>
+
+ 0 -1 431 6.2493737787008286e-03
+
+ 8.7858140468597412e-02 -2.8675949573516846e-01
+ <_>
+
+ 0 -1 432 -2.3781529162079096e-03
+
+ 2.6684141159057617e-01 -9.3291386961936951e-02
+ <_>
+
+ 0 -1 433 -6.3620522618293762e-02
+
+ 1.5153369307518005e-01 -1.5354029834270477e-02
+ <_>
+
+ 0 -1 434 7.9275481402873993e-03
+
+ 8.8268518447875977e-02 -3.1872791051864624e-01
+ <_>
+
+ 0 -1 435 1.0556660126894712e-03
+
+ -1.0226110368967056e-01 6.0546699911355972e-02
+ <_>
+
+ 0 -1 436 9.1879200190305710e-03
+
+ 8.0963402986526489e-02 -3.5031539201736450e-01
+ <_>
+
+ 0 -1 437 3.9727380499243736e-03
+
+ -1.0334850102663040e-01 2.7450188994407654e-01
+ <_>
+
+ 0 -1 438 1.7149309860542417e-03
+
+ -1.2329679727554321e-01 2.1561819314956665e-01
+ <_>
+ 55
+ -9.3984860181808472e-01
+
+ <_>
+
+ 0 -1 439 -1.4547890052199364e-02
+
+ -5.7042872905731201e-01 1.0164090245962143e-01
+ <_>
+
+ 0 -1 440 -1.2570459512062371e-04
+
+ 7.7566891908645630e-02 -2.9524150490760803e-01
+ <_>
+
+ 0 -1 441 9.4022490084171295e-03
+
+ -3.2618519663810730e-01 1.3688039779663086e-01
+ <_>
+
+ 0 -1 442 -5.1469001919031143e-03
+
+ -2.2486360371112823e-01 1.4886389672756195e-01
+ <_>
+
+ 0 -1 443 -3.1212199246510863e-04
+
+ 1.1287149786949158e-01 -3.2888731360435486e-01
+ <_>
+
+ 0 -1 444 1.8742609769105911e-02
+
+ -1.8080070614814758e-02 3.0115321278572083e-01
+ <_>
+
+ 0 -1 445 2.9675778932869434e-03
+
+ -2.5948849320411682e-01 1.3308060169219971e-01
+ <_>
+
+ 0 -1 446 -3.0295079573988914e-02
+
+ -6.0041320323944092e-01 3.3516548573970795e-02
+ <_>
+
+ 0 -1 447 6.4835487864911556e-03
+
+ -7.7768087387084961e-02 4.6268320083618164e-01
+ <_>
+
+ 0 -1 448 2.2889559622853994e-03
+
+ 6.0411829501390457e-02 -1.7498730123043060e-01
+ <_>
+
+ 0 -1 449 -1.6078320331871510e-03
+
+ -2.9557180404663086e-01 1.5449790656566620e-01
+ <_>
+
+ 0 -1 450 -2.3348669707775116e-01
+
+ -6.3751947879791260e-01 1.3748309575021267e-02
+ <_>
+
+ 0 -1 451 5.8999718166887760e-03
+
+ 1.2713789939880371e-01 -3.2689490914344788e-01
+ <_>
+
+ 0 -1 452 1.2073719874024391e-02
+
+ 1.6614260151982307e-02 -2.2707170248031616e-01
+ <_>
+
+ 0 -1 453 -5.6356011191383004e-04
+
+ 1.6879190504550934e-01 -1.9605310261249542e-01
+ <_>
+
+ 0 -1 454 1.7435080371797085e-03
+
+ -1.3831000030040741e-01 2.2103509306907654e-01
+ <_>
+
+ 0 -1 455 6.6066621802747250e-03
+
+ 4.4354528188705444e-02 -6.7365241050720215e-01
+ <_>
+
+ 0 -1 456 -5.9419698081910610e-03
+
+ 1.7569009959697723e-01 -1.3697220385074615e-01
+ <_>
+
+ 0 -1 457 4.9261527601629496e-04
+
+ -2.1035130321979523e-01 1.3241830468177795e-01
+ <_>
+
+ 0 -1 458 -3.6582869943231344e-03
+
+ 1.5420369803905487e-01 -1.0563220083713531e-01
+ <_>
+
+ 0 -1 459 -1.4477679505944252e-03
+
+ -2.8920960426330566e-01 1.4950390160083771e-01
+ <_>
+
+ 0 -1 460 -1.0310580255463719e-03
+
+ 8.8572971522808075e-02 -9.0375833213329315e-02
+ <_>
+
+ 0 -1 461 3.2927519641816616e-03
+
+ -1.1087729781866074e-01 3.0003741383552551e-01
+ <_>
+
+ 0 -1 462 -1.6668019816279411e-03
+
+ -6.2054108828306198e-02 2.2652259469032288e-01
+ <_>
+
+ 0 -1 463 1.3452100101858377e-03
+
+ 9.2012971639633179e-02 -3.5944160819053650e-01
+ <_>
+
+ 0 -1 464 -1.4981569722294807e-02
+
+ 3.6636090278625488e-01 -6.4556807279586792e-02
+ <_>
+
+ 0 -1 465 6.2536462210118771e-03
+
+ 6.9381363689899445e-02 -4.1023838520050049e-01
+ <_>
+
+ 0 -1 466 5.0937399268150330e-02
+
+ 1.7869930714368820e-02 -6.0524070262908936e-01
+ <_>
+
+ 0 -1 467 1.0756580159068108e-03
+
+ -2.3777949810028076e-01 1.4223319292068481e-01
+ <_>
+
+ 0 -1 468 -4.1086040437221527e-03
+
+ 1.4915379881858826e-01 -1.9213069975376129e-01
+ <_>
+
+ 0 -1 469 -1.3338520191609859e-02
+
+ -4.9711030721664429e-01 6.5755158662796021e-02
+ <_>
+
+ 0 -1 470 3.1997971236705780e-02
+
+ -6.4927592873573303e-02 6.6577041149139404e-01
+ <_>
+
+ 0 -1 471 -4.9686059355735779e-02
+
+ 5.0676888227462769e-01 -6.4676910638809204e-02
+ <_>
+
+ 0 -1 472 6.0286428779363632e-03
+
+ 8.8214896619319916e-02 -2.7923619747161865e-01
+ <_>
+
+ 0 -1 473 -6.9053061306476593e-03
+
+ -6.1452347040176392e-01 3.5631489008665085e-02
+ <_>
+
+ 0 -1 474 5.8130919933319092e-03
+
+ -9.3653626739978790e-02 9.9817357957363129e-02
+ <_>
+
+ 0 -1 475 -1.1030419729650021e-02
+
+ 4.5798170566558838e-01 -6.5124973654747009e-02
+ <_>
+
+ 0 -1 476 -1.5703570097684860e-03
+
+ 4.7113660722970963e-02 -1.3347460329532623e-01
+ <_>
+
+ 0 -1 477 4.6482901088893414e-03
+
+ 7.3932677507400513e-02 -4.2145860195159912e-01
+ <_>
+
+ 0 -1 478 5.0479872152209282e-04
+
+ -2.0517270267009735e-01 9.5128253102302551e-02
+ <_>
+
+ 0 -1 479 2.6125760748982430e-02
+
+ -6.8816967308521271e-02 4.2644789814949036e-01
+ <_>
+
+ 0 -1 480 6.4811189658939838e-03
+
+ 1.1302389949560165e-01 -4.7021061182022095e-01
+ <_>
+
+ 0 -1 481 -4.5484181493520737e-02
+
+ 5.4101467132568359e-01 -5.6804839521646500e-02
+ <_>
+
+ 0 -1 482 6.8956136703491211e-02
+
+ 3.4444119781255722e-02 -1.7411549389362335e-01
+ <_>
+
+ 0 -1 483 -2.0358948968350887e-03
+
+ 1.3366940617561340e-01 -2.0985920727252960e-01
+ <_>
+
+ 0 -1 484 1.4390050200745463e-03
+
+ -1.6449619829654694e-01 9.8886348307132721e-02
+ <_>
+
+ 0 -1 485 3.0180480331182480e-02
+
+ 8.7635383009910583e-02 -3.9464119076728821e-01
+ <_>
+
+ 0 -1 486 -3.8663588929921389e-03
+
+ 1.5964619815349579e-01 -1.1840829998254776e-01
+ <_>
+
+ 0 -1 487 1.0753490030765533e-02
+
+ -5.7142060250043869e-02 5.0125277042388916e-01
+ <_>
+
+ 0 -1 488 1.0978150181472301e-02
+
+ 3.5985160619020462e-02 -3.8646480441093445e-01
+ <_>
+
+ 0 -1 489 -7.8152219066396356e-04
+
+ 1.8248090147972107e-01 -1.6435949504375458e-01
+ <_>
+
+ 0 -1 490 -6.9936108775436878e-03
+
+ -2.6556238532066345e-01 9.4436101615428925e-02
+ <_>
+
+ 0 -1 491 2.3125730454921722e-02
+
+ -5.9101939201354980e-02 5.7359057664871216e-01
+ <_>
+
+ 0 -1 492 -1.7055520787835121e-02
+
+ -5.4567247629165649e-01 2.7153130620718002e-02
+ <_>
+
+ 0 -1 493 1.5192289836704731e-02
+
+ 9.2580981552600861e-02 -2.9735139012336731e-01
+ <_>
+ 53
+ -8.2538652420043945e-01
+
+ <_>
+
+ 0 -1 494 -2.1589139476418495e-02
+
+ 3.3779260516166687e-01 -2.6725459098815918e-01
+ <_>
+
+ 0 -1 495 6.3885431736707687e-03
+
+ -2.6759129762649536e-01 2.1438689529895782e-01
+ <_>
+
+ 0 -1 496 -2.4394609499722719e-03
+
+ 1.8841089308261871e-01 -2.3495130240917206e-01
+ <_>
+
+ 0 -1 497 3.9824391715228558e-03
+
+ 4.6689908951520920e-02 -1.7984829843044281e-01
+ <_>
+
+ 0 -1 498 -3.1252959161065519e-04
+
+ 1.7267709970474243e-01 -1.8782779574394226e-01
+ <_>
+
+ 0 -1 499 3.3181109465658665e-03
+
+ 1.2081120163202286e-01 -3.2373869419097900e-01
+ <_>
+
+ 0 -1 500 -7.0711369626224041e-03
+
+ -2.7498379349708557e-01 1.3868269324302673e-01
+ <_>
+
+ 0 -1 501 4.4392608106136322e-03
+
+ -2.2279019653797150e-01 1.7155140638351440e-01
+ <_>
+
+ 0 -1 502 2.1352670155465603e-03
+
+ -1.1322859674692154e-01 2.8428959846496582e-01
+ <_>
+
+ 0 -1 503 -4.0205409750342369e-03
+
+ -2.4542550742626190e-01 9.4957500696182251e-02
+ <_>
+
+ 0 -1 504 -6.5228617750108242e-03
+
+ 3.2106789946556091e-01 -9.7372367978096008e-02
+ <_>
+
+ 0 -1 505 4.4146090658614412e-05
+
+ -1.5269330143928528e-01 8.5128836333751678e-02
+ <_>
+
+ 0 -1 506 4.7606039792299271e-02
+
+ 7.9339757561683655e-02 -2.9599419236183167e-01
+ <_>
+
+ 0 -1 507 4.0928661823272705e-02
+
+ -3.5142261534929276e-02 3.7593579292297363e-01
+ <_>
+
+ 0 -1 508 -1.1161889880895615e-02
+
+ -2.6747810840606689e-01 8.9181788265705109e-02
+ <_>
+
+ 0 -1 509 -2.9888451099395752e-01
+
+ 4.8014399409294128e-01 -7.2485052049160004e-02
+ <_>
+
+ 0 -1 510 1.1514360085129738e-02
+
+ -5.9218250215053558e-02 4.0962639451026917e-01
+ <_>
+
+ 0 -1 511 -2.6182739529758692e-03
+
+ -1.8478739261627197e-01 3.9801560342311859e-02
+ <_>
+
+ 0 -1 512 -1.2829460320062935e-04
+
+ 1.0710919648408890e-01 -2.4155279994010925e-01
+ <_>
+
+ 0 -1 513 -6.9328160025179386e-03
+
+ -2.9845720529556274e-01 4.5657958835363388e-02
+ <_>
+
+ 0 -1 514 -6.3937888480722904e-03
+
+ 1.8363510072231293e-01 -1.4049419760704041e-01
+ <_>
+
+ 0 -1 515 4.1702711023390293e-03
+
+ -5.1890019327402115e-02 1.0211580246686935e-01
+ <_>
+
+ 0 -1 516 1.0390999726951122e-02
+
+ -1.3426989316940308e-01 1.9137309491634369e-01
+ <_>
+
+ 0 -1 517 1.3004739768803120e-02
+
+ -4.5922718942165375e-02 3.0526930093765259e-01
+ <_>
+
+ 0 -1 518 -4.0645021945238113e-03
+
+ -4.8477160930633545e-01 6.9338463246822357e-02
+ <_>
+
+ 0 -1 519 -3.7050418904982507e-04
+
+ 1.0090719908475876e-01 -6.8911276757717133e-02
+ <_>
+
+ 0 -1 520 8.8882551062852144e-04
+
+ -1.6742789745330811e-01 1.8965889513492584e-01
+ <_>
+
+ 0 -1 521 -4.8583559691905975e-03
+
+ -4.0789389610290527e-01 5.1483351737260818e-02
+ <_>
+
+ 0 -1 522 4.4327960349619389e-03
+
+ -1.4262509346008301e-01 1.8987190723419189e-01
+ <_>
+
+ 0 -1 523 2.0999709144234657e-02
+
+ 9.2153772711753845e-02 -3.0773550271987915e-01
+ <_>
+
+ 0 -1 524 -2.2740170825272799e-03
+
+ 1.5176279842853546e-01 -1.6528700292110443e-01
+ <_>
+
+ 0 -1 525 -1.5075540170073509e-02
+
+ -3.1039240956306458e-01 6.5696939826011658e-02
+ <_>
+
+ 0 -1 526 9.5290662720799446e-03
+
+ -6.7693017423152924e-02 4.0692031383514404e-01
+ <_>
+
+ 0 -1 527 1.2057139538228512e-03
+
+ 4.3188188225030899e-02 -1.8454369902610779e-01
+ <_>
+
+ 0 -1 528 -2.4757070466876030e-02
+
+ 6.6890978813171387e-01 -3.4418709576129913e-02
+ <_>
+
+ 0 -1 529 3.0408669263124466e-03
+
+ -1.3256159424781799e-01 9.5131039619445801e-02
+ <_>
+
+ 0 -1 530 -1.5181970084086061e-03
+
+ 1.2939499318599701e-01 -1.8558539450168610e-01
+ <_>
+
+ 0 -1 531 -2.4845359846949577e-02
+
+ -7.3013377189636230e-01 9.4545418396592140e-03
+ <_>
+
+ 0 -1 532 -8.1413304433226585e-03
+
+ 1.1521799862384796e-01 -1.9038149714469910e-01
+ <_>
+
+ 0 -1 533 -4.2350329458713531e-03
+
+ 7.2733633220195770e-02 -1.0841889679431915e-01
+ <_>
+
+ 0 -1 534 9.9135711789131165e-03
+
+ -8.4218956530094147e-02 4.7613239288330078e-01
+ <_>
+
+ 0 -1 535 -2.7879870031028986e-03
+
+ -1.2846939265727997e-01 6.5720662474632263e-02
+ <_>
+
+ 0 -1 536 2.6451589073985815e-03
+
+ 8.9269757270812988e-02 -2.6216679811477661e-01
+ <_>
+
+ 0 -1 537 -2.6683490723371506e-02
+
+ 8.9870773255825043e-02 -9.6914090216159821e-02
+ <_>
+
+ 0 -1 538 3.1197380740195513e-03
+
+ -1.1731740087270737e-01 2.2004860639572144e-01
+ <_>
+
+ 0 -1 539 -2.3388290405273438e-01
+
+ -9.0905857086181641e-01 5.6871720589697361e-03
+ <_>
+
+ 0 -1 540 1.0922820307314396e-02
+
+ 8.5061840713024139e-02 -3.0725648999214172e-01
+ <_>
+
+ 0 -1 541 9.4858808442950249e-03
+
+ -2.2317569702863693e-02 3.3745709061622620e-01
+ <_>
+
+ 0 -1 542 -5.1413412438705564e-04
+
+ 1.4860659837722778e-01 -1.5598359704017639e-01
+ <_>
+
+ 0 -1 543 6.5561588853597641e-03
+
+ 6.6693432629108429e-02 -2.9945740103721619e-01
+ <_>
+
+ 0 -1 544 9.8293996416032314e-04
+
+ -1.9923539459705353e-01 1.4816479384899139e-01
+ <_>
+
+ 0 -1 545 -1.8866109894588590e-03
+
+ 8.6462371051311493e-02 -1.6101740300655365e-01
+ <_>
+
+ 0 -1 546 2.7264489326626062e-03
+
+ -8.2049086689949036e-02 3.8679501414299011e-01
+ <_>
+ 60
+ -8.3464938402175903e-01
+
+ <_>
+
+ 0 -1 547 -1.2602520175278187e-02
+
+ 2.2423070669174194e-01 -3.3462178707122803e-01
+ <_>
+
+ 0 -1 548 2.5659699458628893e-03
+
+ 8.5756540298461914e-02 -3.2376360893249512e-01
+ <_>
+
+ 0 -1 549 -1.2003120500594378e-03
+
+ 1.4650370180606842e-01 -3.0306750535964966e-01
+ <_>
+
+ 0 -1 550 4.7978968359529972e-03
+
+ -2.4725909531116486e-01 5.2705809473991394e-02
+ <_>
+
+ 0 -1 551 -5.9380318270996213e-04
+
+ -1.8883049488067627e-01 1.5490350127220154e-01
+ <_>
+
+ 0 -1 552 8.1017091870307922e-03
+
+ 1.0764879733324051e-01 -2.4738930165767670e-01
+ <_>
+
+ 0 -1 553 -6.8427261430770159e-04
+
+ 1.8282850086688995e-01 -1.6550099849700928e-01
+ <_>
+
+ 0 -1 554 4.5279348269104958e-03
+
+ -5.5668760091066360e-02 4.1382691264152527e-01
+ <_>
+
+ 0 -1 555 3.8289420772343874e-03
+
+ -2.2222219407558441e-01 1.5282329916954041e-01
+ <_>
+
+ 0 -1 556 -6.2229200266301632e-03
+
+ -3.2351690530776978e-01 6.8372547626495361e-02
+ <_>
+
+ 0 -1 557 -6.1763478443026543e-03
+
+ -3.9912268519401550e-01 7.7707469463348389e-02
+ <_>
+
+ 0 -1 558 -8.7820261716842651e-02
+
+ 5.8577078580856323e-01 -5.3584650158882141e-02
+ <_>
+
+ 0 -1 559 -6.8017458543181419e-03
+
+ -4.3307110667228699e-01 6.2693849205970764e-02
+ <_>
+
+ 0 -1 560 1.0741569567471743e-03
+
+ -1.1966490000486374e-01 5.5397849529981613e-02
+ <_>
+
+ 0 -1 561 -3.0490919947624207e-02
+
+ -2.3663240671157837e-01 1.0002999752759933e-01
+ <_>
+
+ 0 -1 562 5.1879119127988815e-02
+
+ -3.6418840289115906e-02 7.3392897844314575e-01
+ <_>
+
+ 0 -1 563 8.6805049795657396e-04
+
+ -1.7705479264259338e-01 1.4985239505767822e-01
+ <_>
+
+ 0 -1 564 4.8424140550196171e-03
+
+ -4.6208251267671585e-02 1.3162529468536377e-01
+ <_>
+
+ 0 -1 565 9.1674225404858589e-03
+
+ 9.9181063473224640e-02 -2.0292450487613678e-01
+ <_>
+
+ 0 -1 566 -5.6356228888034821e-03
+
+ 8.7860167026519775e-02 -3.7438090890645981e-02
+ <_>
+
+ 0 -1 567 -3.8375150412321091e-02
+
+ 4.9721479415893555e-01 -4.3815169483423233e-02
+ <_>
+
+ 0 -1 568 8.9894384145736694e-03
+
+ 9.4126552343368530e-02 -3.0227750539779663e-01
+ <_>
+
+ 0 -1 569 -1.1650560190901160e-04
+
+ 1.3361050188541412e-01 -1.8932069838047028e-01
+ <_>
+
+ 0 -1 570 -6.6462112590670586e-04
+
+ 7.7972702682018280e-02 -1.3508260250091553e-01
+ <_>
+
+ 0 -1 571 -1.2656490318477154e-02
+
+ -3.6913019418716431e-01 6.4613893628120422e-02
+ <_>
+
+ 0 -1 572 -4.3929531238973141e-03
+
+ 2.6696819067001343e-01 -8.8650099933147430e-02
+ <_>
+
+ 0 -1 573 -1.2583639472723007e-03
+
+ 2.0614829659461975e-01 -1.0952439904212952e-01
+ <_>
+
+ 0 -1 574 -1.1131940409541130e-02
+
+ -4.1352048516273499e-01 6.2840126454830170e-02
+ <_>
+
+ 0 -1 575 3.0703889206051826e-03
+
+ -1.5591779351234436e-01 1.5018209815025330e-01
+ <_>
+
+ 0 -1 576 3.5361549817025661e-03
+
+ 6.2573492527008057e-02 -2.1869969367980957e-01
+ <_>
+
+ 0 -1 577 2.8864629566669464e-02
+
+ -6.9561749696731567e-02 4.4892778992652893e-01
+ <_>
+
+ 0 -1 578 -7.1035906672477722e-02
+
+ 2.0991979539394379e-01 -3.6562878638505936e-02
+ <_>
+
+ 0 -1 579 -1.1107679456472397e-03
+
+ -3.3020168542861938e-01 7.9758942127227783e-02
+ <_>
+
+ 0 -1 580 7.9184047877788544e-02
+
+ -1.3226009905338287e-02 3.8603660464286804e-01
+ <_>
+
+ 0 -1 581 1.3353509828448296e-02
+
+ 5.8410558849573135e-02 -3.9250770211219788e-01
+ <_>
+
+ 0 -1 582 5.0049051642417908e-02
+
+ -2.3318229243159294e-02 7.4593770503997803e-01
+ <_>
+
+ 0 -1 583 -2.1859000623226166e-01
+
+ -8.4585267305374146e-01 2.5940530002117157e-02
+ <_>
+
+ 0 -1 584 1.0064110159873962e-02
+
+ -1.0959850251674652e-01 2.1068529784679413e-01
+ <_>
+
+ 0 -1 585 7.5430879369378090e-03
+
+ 5.3567539900541306e-02 -3.3617278933525085e-01
+ <_>
+
+ 0 -1 586 1.5817210078239441e-02
+
+ -1.9042259082198143e-02 2.2196899354457855e-01
+ <_>
+
+ 0 -1 587 -1.7135319649241865e-04
+
+ 1.7667369544506073e-01 -1.2068530172109604e-01
+ <_>
+
+ 0 -1 588 6.6670849919319153e-03
+
+ 7.0071838796138763e-02 -2.2137600183486938e-01
+ <_>
+
+ 0 -1 589 2.7946738991886377e-03
+
+ -1.0509230196475983e-01 1.9277399778366089e-01
+ <_>
+
+ 0 -1 590 -1.5057970304042101e-03
+
+ 6.0012888163328171e-02 -1.2378510087728500e-01
+ <_>
+
+ 0 -1 591 8.5329543799161911e-03
+
+ -4.7611240297555923e-02 3.9985141158103943e-01
+ <_>
+
+ 0 -1 592 4.2939469218254089e-02
+
+ 3.1611390411853790e-02 -1.9731660187244415e-01
+ <_>
+
+ 0 -1 593 2.0308220759034157e-02
+
+ 3.5055190324783325e-02 -5.1969397068023682e-01
+ <_>
+
+ 0 -1 594 -7.7673741616308689e-03
+
+ -1.8817919492721558e-01 5.6889228522777557e-02
+ <_>
+
+ 0 -1 595 2.1762759424746037e-03
+
+ -9.0948157012462616e-02 2.4575869739055634e-01
+ <_>
+
+ 0 -1 596 -1.9813690334558487e-02
+
+ 5.2904421091079712e-01 -3.8754951208829880e-02
+ <_>
+
+ 0 -1 597 1.3035159558057785e-02
+
+ 6.7918822169303894e-02 -3.0413469672203064e-01
+ <_>
+
+ 0 -1 598 -1.9664920400828123e-03
+
+ -2.0626169443130493e-01 9.6140593290328979e-02
+ <_>
+
+ 0 -1 599 -2.6359891053289175e-03
+
+ 2.5085249543190002e-01 -8.3200961351394653e-02
+ <_>
+
+ 0 -1 600 -2.2968810517340899e-03
+
+ 2.9634681344032288e-01 -5.8743689209222794e-02
+ <_>
+
+ 0 -1 601 -3.8644939195364714e-03
+
+ 1.9411550462245941e-01 -1.0827559977769852e-01
+ <_>
+
+ 0 -1 602 4.4517841160995886e-05
+
+ -2.4451869726181030e-01 1.0293029993772507e-01
+ <_>
+
+ 0 -1 603 1.9567341078072786e-03
+
+ -1.0519249737262726e-01 2.2499999403953552e-01
+ <_>
+
+ 0 -1 604 1.4188109897077084e-02
+
+ 3.2100718468427658e-02 -5.9142422676086426e-01
+ <_>
+
+ 0 -1 605 -1.3274629600346088e-04
+
+ 7.4577853083610535e-02 -2.7654591202735901e-01
+ <_>
+
+ 0 -1 606 2.0996380597352982e-02
+
+ -4.5735489577054977e-02 3.2947731018066406e-01
+ <_>
+ 68
+ -7.0352667570114136e-01
+
+ <_>
+
+ 0 -1 607 -3.9841078221797943e-02
+
+ 1.5186519920825958e-01 -2.9055249691009521e-01
+ <_>
+
+ 0 -1 608 1.1327869724482298e-03
+
+ -1.1921630054712296e-01 1.2098889797925949e-01
+ <_>
+
+ 0 -1 609 1.0022070491686463e-03
+
+ 1.2088630348443985e-01 -2.5621330738067627e-01
+ <_>
+
+ 0 -1 610 6.3866227865219116e-02
+
+ 4.7628100961446762e-02 -8.6150348186492920e-01
+ <_>
+
+ 0 -1 611 -3.0986019410192966e-03
+
+ -3.1975808739662170e-01 9.1434687376022339e-02
+ <_>
+
+ 0 -1 612 6.5784230828285217e-03
+
+ -8.0473050475120544e-02 3.6123031377792358e-01
+ <_>
+
+ 0 -1 613 4.5082601718604565e-03
+
+ -1.8215750157833099e-01 1.4672499895095825e-01
+ <_>
+
+ 0 -1 614 -1.6526240855455399e-02
+
+ -1.2954659759998322e-01 6.6522419452667236e-02
+ <_>
+
+ 0 -1 615 -4.1868099942803383e-03
+
+ -2.6552608609199524e-01 1.1237680166959763e-01
+ <_>
+
+ 0 -1 616 5.6613027118146420e-04
+
+ 1.1822649836540222e-01 -1.6119679808616638e-01
+ <_>
+
+ 0 -1 617 2.0279800519347191e-03
+
+ -2.2618439793586731e-01 1.1263699829578400e-01
+ <_>
+
+ 0 -1 618 -1.1969150044023991e-02
+
+ -2.7523440122604370e-01 8.3603866398334503e-02
+ <_>
+
+ 0 -1 619 -2.8411731123924255e-01
+
+ 4.0216109156608582e-01 -7.7971749007701874e-02
+ <_>
+
+ 0 -1 620 -3.6587871145457029e-03
+
+ -2.9723858833312988e-01 6.3484713435173035e-02
+ <_>
+
+ 0 -1 621 9.2046172358095646e-04
+
+ 7.7872820198535919e-02 -2.9539081454277039e-01
+ <_>
+
+ 0 -1 622 1.3571759685873985e-02
+
+ -7.2430767118930817e-02 3.4849750995635986e-01
+ <_>
+
+ 0 -1 623 -3.1399999279528856e-03
+
+ -2.2088779509067535e-01 1.0072159767150879e-01
+ <_>
+
+ 0 -1 624 6.9894008338451385e-03
+
+ 5.9188209474086761e-02 -1.4137220382690430e-01
+ <_>
+
+ 0 -1 625 -5.9609091840684414e-04
+
+ 1.3563929498195648e-01 -1.5081329643726349e-01
+ <_>
+
+ 0 -1 626 1.6805849736556411e-03
+
+ -7.8348256647586823e-02 7.7357366681098938e-02
+ <_>
+
+ 0 -1 627 -5.7250040117651224e-04
+
+ 2.3572799563407898e-01 -1.1594360321760178e-01
+ <_>
+
+ 0 -1 628 4.3474160134792328e-02
+
+ 8.2836961373686790e-03 -3.7428310513496399e-01
+ <_>
+
+ 0 -1 629 6.0316640883684158e-04
+
+ -1.7846900224685669e-01 1.6185760498046875e-01
+ <_>
+
+ 0 -1 630 2.6881720870733261e-02
+
+ 7.2419442236423492e-02 -1.7971959710121155e-01
+ <_>
+
+ 0 -1 631 -4.9273878335952759e-02
+
+ 4.6386399865150452e-01 -5.0276938825845718e-02
+ <_>
+
+ 0 -1 632 -6.7225202918052673e-02
+
+ -1. 1.3532400131225586e-02
+ <_>
+
+ 0 -1 633 2.0203770697116852e-01
+
+ -3.8748100399971008e-02 5.7211977243423462e-01
+ <_>
+
+ 0 -1 634 3.1489748507738113e-02
+
+ 4.5488908886909485e-02 -1.2539370357990265e-01
+ <_>
+
+ 0 -1 635 -5.7097017997875810e-04
+
+ 1.9619710743427277e-01 -1.0944739729166031e-01
+ <_>
+
+ 0 -1 636 -7.8234989196062088e-03
+
+ 6.7954361438751221e-02 -7.2075963020324707e-02
+ <_>
+
+ 0 -1 637 -2.1555390208959579e-02
+
+ -2.8890660405158997e-01 9.9806018173694611e-02
+ <_>
+
+ 0 -1 638 -8.3767198026180267e-02
+
+ -4.3685078620910645e-01 1.0792650282382965e-02
+ <_>
+
+ 0 -1 639 -3.5752300173044205e-03
+
+ 1.1191669851541519e-01 -1.9461460411548615e-01
+ <_>
+
+ 0 -1 640 1.2265419587492943e-02
+
+ -6.5728217363357544e-02 3.2739359140396118e-01
+ <_>
+
+ 0 -1 641 2.8762801084667444e-03
+
+ -1.8723809719085693e-01 1.1246989667415619e-01
+ <_>
+
+ 0 -1 642 7.4190571904182434e-03
+
+ 5.1525920629501343e-02 -2.6615419983863831e-01
+ <_>
+
+ 0 -1 643 -4.9716630019247532e-03
+
+ 1.5384270250797272e-01 -1.5141449868679047e-01
+ <_>
+
+ 0 -1 644 2.0294899120926857e-02
+
+ -1.9532799720764160e-02 3.0571049451828003e-01
+ <_>
+
+ 0 -1 645 1.3469019904732704e-02
+
+ 6.2345318496227264e-02 -3.6343741416931152e-01
+ <_>
+
+ 0 -1 646 6.8610929884016514e-03
+
+ -6.2487348914146423e-02 2.8820911049842834e-01
+ <_>
+
+ 0 -1 647 -5.9594889171421528e-04
+
+ 8.5537739098072052e-02 -2.4081380665302277e-01
+ <_>
+
+ 0 -1 648 -4.0149871259927750e-02
+
+ -1. 1.5480610309168696e-03
+ <_>
+
+ 0 -1 649 -2.7885669842362404e-03
+
+ -2.2338689863681793e-01 1.1001159995794296e-01
+ <_>
+
+ 0 -1 650 -7.9318676143884659e-03
+
+ 1.3043269515037537e-01 -2.8859179466962814e-02
+ <_>
+
+ 0 -1 651 -2.9607459509861656e-05
+
+ 1.1876039952039719e-01 -1.7018820345401764e-01
+ <_>
+
+ 0 -1 652 2.6092668995261192e-03
+
+ -6.9877780973911285e-02 1.5036509931087494e-01
+ <_>
+
+ 0 -1 653 -4.5970208942890167e-02
+
+ 5.6322151422500610e-01 -3.6318130791187286e-02
+ <_>
+
+ 0 -1 654 9.0047682169824839e-04
+
+ 3.2461058348417282e-02 -1.8973889946937561e-01
+ <_>
+
+ 0 -1 655 -5.1712408661842346e-02
+
+ -8.5045510530471802e-01 2.0679740235209465e-02
+ <_>
+
+ 0 -1 656 -1.4172409474849701e-01
+
+ -9.1004508733749390e-01 3.8531969767063856e-03
+ <_>
+
+ 0 -1 657 -6.9771192967891693e-02
+
+ 4.2144781351089478e-01 -5.5162269622087479e-02
+ <_>
+
+ 0 -1 658 -7.5836889445781708e-03
+
+ -4.2189291119575500e-01 6.1964530497789383e-02
+ <_>
+
+ 0 -1 659 -1.2404819717630744e-03
+
+ 1.7558629810810089e-01 -1.3540640473365784e-01
+ <_>
+
+ 0 -1 660 1.0614699684083462e-02
+
+ 4.5083239674568176e-02 -2.5765570998191833e-01
+ <_>
+
+ 0 -1 661 1.7647630302235484e-03
+
+ -1.1009249836206436e-01 2.4041210114955902e-01
+ <_>
+
+ 0 -1 662 3.7170480936765671e-03
+
+ -7.6920822262763977e-02 2.0119519531726837e-01
+ <_>
+
+ 0 -1 663 1.5280679799616337e-02
+
+ 5.8605119585990906e-02 -3.6220121383666992e-01
+ <_>
+
+ 0 -1 664 -8.1635616719722748e-02
+
+ 5.2819788455963135e-01 -4.3608970940113068e-02
+ <_>
+
+ 0 -1 665 -2.4431939236819744e-03
+
+ -2.4369360506534576e-01 8.4384277462959290e-02
+ <_>
+
+ 0 -1 666 -1.2289900332689285e-03
+
+ 1.0332729667425156e-01 -9.7442328929901123e-02
+ <_>
+
+ 0 -1 667 6.9271848769858479e-04
+
+ -1.1367750167846680e-01 1.6121849417686462e-01
+ <_>
+
+ 0 -1 668 9.9380649626255035e-03
+
+ 5.2774678915739059e-02 -1.5222820639610291e-01
+ <_>
+
+ 0 -1 669 -1.8377749249339104e-02
+
+ 4.6800789237022400e-01 -4.2411230504512787e-02
+ <_>
+
+ 0 -1 670 -3.0569550581276417e-03
+
+ 1.2866629660129547e-01 -9.8308563232421875e-02
+ <_>
+
+ 0 -1 671 -1.8440110143274069e-03
+
+ -2.7592489123344421e-01 1.0050299763679504e-01
+ <_>
+
+ 0 -1 672 5.6205368600785732e-03
+
+ -7.0716217160224915e-02 1.6734069585800171e-01
+ <_>
+
+ 0 -1 673 3.4157470799982548e-03
+
+ 5.2378088235855103e-02 -5.0982749462127686e-01
+ <_>
+
+ 0 -1 674 -3.0376210343092680e-03
+
+ 1.4243629574775696e-01 -6.3037060201168060e-02
+ <_>
+ 67
+ -7.4644768238067627e-01
+
+ <_>
+
+ 0 -1 675 1.0126640088856220e-02
+
+ -2.1863789856433868e-01 1.7513489723205566e-01
+ <_>
+
+ 0 -1 676 -2.6893198955804110e-03
+
+ -3.2822969555854797e-01 9.9838256835937500e-02
+ <_>
+
+ 0 -1 677 -1.5573530457913876e-02
+
+ 1.9594019651412964e-01 -2.2535979747772217e-01
+ <_>
+
+ 0 -1 678 4.9326270818710327e-03
+
+ 4.9988470971584320e-02 -5.3175377845764160e-01
+ <_>
+
+ 0 -1 679 -7.6638202881440520e-04
+
+ -2.6926669478416443e-01 1.1751429736614227e-01
+ <_>
+
+ 0 -1 680 -1.2552300177048892e-04
+
+ 6.9110788404941559e-02 -8.1727392971515656e-02
+ <_>
+
+ 0 -1 681 -1.4519299838866573e-05
+
+ 1.1483950167894363e-01 -2.3017129302024841e-01
+ <_>
+
+ 0 -1 682 -1.6113840043544769e-02
+
+ 5.0956588983535767e-01 -3.7494029849767685e-02
+ <_>
+
+ 0 -1 683 5.5138790048658848e-03
+
+ -7.8787550330162048e-02 2.3771439492702484e-01
+ <_>
+
+ 0 -1 684 8.7763823568820953e-02
+
+ 1.3863979838788509e-02 -8.9777380228042603e-01
+ <_>
+
+ 0 -1 685 -1.2825570069253445e-02
+
+ -3.9504998922348022e-01 5.5546328425407410e-02
+ <_>
+
+ 0 -1 686 8.2099979044869542e-04
+
+ -1.2663979828357697e-01 1.9081629812717438e-01
+ <_>
+
+ 0 -1 687 -1.2775770155712962e-03
+
+ 1.1065080016851425e-01 -1.9801099598407745e-01
+ <_>
+
+ 0 -1 688 -2.5229719281196594e-01
+
+ -8.1039828062057495e-01 8.3870543166995049e-03
+ <_>
+
+ 0 -1 689 7.0347747532650828e-04
+
+ -2.1380549669265747e-01 9.8673596978187561e-02
+ <_>
+
+ 0 -1 690 1.0717480443418026e-02
+
+ 8.4470443427562714e-02 -2.6063749194145203e-01
+ <_>
+
+ 0 -1 691 5.1081487908959389e-03
+
+ -5.5732220411300659e-02 4.1447860002517700e-01
+ <_>
+
+ 0 -1 692 -1.9006159156560898e-02
+
+ -3.7475249171257019e-01 7.9524833709001541e-03
+ <_>
+
+ 0 -1 693 1.1136929970234632e-03
+
+ -2.2650149464607239e-01 1.0789389908313751e-01
+ <_>
+
+ 0 -1 694 1.1141769587993622e-02
+
+ -4.2054798454046249e-02 1.3697710633277893e-01
+ <_>
+
+ 0 -1 695 1.2054879916831851e-03
+
+ 9.2105977237224579e-02 -2.3083679378032684e-01
+ <_>
+
+ 0 -1 696 -2.0797130127903074e-04
+
+ 8.4210596978664398e-02 -6.6967681050300598e-02
+ <_>
+
+ 0 -1 697 -1.6412649303674698e-02
+
+ 4.2269191145896912e-01 -4.9638699740171432e-02
+ <_>
+
+ 0 -1 698 7.0363390259444714e-03
+
+ 9.0550661087036133e-02 -2.7322870492935181e-01
+ <_>
+
+ 0 -1 699 -8.4774550050497055e-03
+
+ -1.9004869461059570e-01 1.0416539758443832e-01
+ <_>
+
+ 0 -1 700 -8.7799631059169769e-02
+
+ -1. 4.5551471412181854e-03
+ <_>
+
+ 0 -1 701 -4.6731110662221909e-02
+
+ 4.1607761383056641e-01 -6.7924611270427704e-02
+ <_>
+
+ 0 -1 702 7.4915830045938492e-03
+
+ 4.7516189515590668e-02 -4.4306200742721558e-01
+ <_>
+
+ 0 -1 703 8.6966790258884430e-03
+
+ -3.9423149079084396e-02 5.2188277244567871e-01
+ <_>
+
+ 0 -1 704 -6.4137862063944340e-03
+
+ -2.4749429523944855e-01 1.1350250244140625e-01
+ <_>
+
+ 0 -1 705 6.4909840002655983e-03
+
+ -2.0237590372562408e-01 1.1887309700250626e-01
+ <_>
+
+ 0 -1 706 1.1677639558911324e-03
+
+ -9.8187439143657684e-02 1.4470459520816803e-01
+ <_>
+
+ 0 -1 707 8.0650653690099716e-03
+
+ 3.0806429684162140e-02 -5.7410538196563721e-01
+ <_>
+
+ 0 -1 708 -6.1450549401342869e-03
+
+ 1.4213280379772186e-01 -1.2155479937791824e-01
+ <_>
+
+ 0 -1 709 3.3926900941878557e-03
+
+ -6.9425463676452637e-02 3.7945500016212463e-01
+ <_>
+
+ 0 -1 710 2.5861251354217529e-01
+
+ -8.0964984372258186e-03 5.7324391603469849e-01
+ <_>
+
+ 0 -1 711 4.6327650547027588e-02
+
+ 9.3428269028663635e-02 -2.9274320602416992e-01
+ <_>
+
+ 0 -1 712 -1.4053919585421681e-05
+
+ 5.9584300965070724e-02 -1.2193849682807922e-01
+ <_>
+
+ 0 -1 713 -5.5521689355373383e-03
+
+ -3.0268138647079468e-01 7.9481996595859528e-02
+ <_>
+
+ 0 -1 714 -7.1974180638790131e-02
+
+ 5.9862488508224487e-01 -3.2414238899946213e-02
+ <_>
+
+ 0 -1 715 -1.1097419774159789e-03
+
+ -2.2289000451564789e-01 9.4809576869010925e-02
+ <_>
+
+ 0 -1 716 1.1012280359864235e-02
+
+ -5.0954710692167282e-02 2.1996709704399109e-01
+ <_>
+
+ 0 -1 717 -1.0663530230522156e-01
+
+ -7.8257107734680176e-01 2.3075709119439125e-02
+ <_>
+
+ 0 -1 718 2.6826610788702965e-02
+
+ -3.3334378153085709e-02 3.2825571298599243e-01
+ <_>
+
+ 0 -1 719 1.6480779275298119e-02
+
+ 2.4793079122900963e-02 -7.9102367162704468e-01
+ <_>
+
+ 0 -1 720 1.4533529756590724e-03
+
+ -4.7377821058034897e-02 1.8299889564514160e-01
+ <_>
+
+ 0 -1 721 4.6536721289157867e-02
+
+ -4.2217779904603958e-02 4.7201961278915405e-01
+ <_>
+
+ 0 -1 722 1.3604049570858479e-02
+
+ 7.1543172001838684e-02 -2.8175559639930725e-01
+ <_>
+
+ 0 -1 723 2.9868748970329762e-03
+
+ -1.2019319832324982e-01 1.5165250003337860e-01
+ <_>
+
+ 0 -1 724 7.5455583631992340e-02
+
+ 7.6729329302906990e-03 -3.7560600042343140e-01
+ <_>
+
+ 0 -1 725 -2.1207109093666077e-03
+
+ 1.1624389886856079e-01 -1.5187309682369232e-01
+ <_>
+
+ 0 -1 726 4.6092201955616474e-03
+
+ 5.2315160632133484e-02 -2.3050600290298462e-01
+ <_>
+
+ 0 -1 727 1.0207670275121927e-03
+
+ -1.1380010098218918e-01 1.7626440525054932e-01
+ <_>
+
+ 0 -1 728 6.2532532028853893e-03
+
+ 6.1674360185861588e-02 -3.4915238618850708e-01
+ <_>
+
+ 0 -1 729 2.8322400525212288e-02
+
+ -3.9958149194717407e-02 5.2392977476119995e-01
+ <_>
+
+ 0 -1 730 -1.6342360526323318e-02
+
+ -1.2563559412956238e-01 4.0041740983724594e-02
+ <_>
+
+ 0 -1 731 -1.8282469827681780e-03
+
+ 9.1135032474994659e-02 -1.9224719703197479e-01
+ <_>
+
+ 0 -1 732 4.4616919010877609e-02
+
+ -1.7582910135388374e-02 3.0281931161880493e-01
+ <_>
+
+ 0 -1 733 3.5677649429999292e-04
+
+ -8.7897412478923798e-02 2.2339150309562683e-01
+ <_>
+
+ 0 -1 734 -4.5413200859911740e-04
+
+ 6.5522827208042145e-02 -9.9679380655288696e-02
+ <_>
+
+ 0 -1 735 1.5353029593825340e-03
+
+ 6.8590000271797180e-02 -2.9728370904922485e-01
+ <_>
+
+ 0 -1 736 2.1600390318781137e-03
+
+ -8.9736528694629669e-02 8.0284543335437775e-02
+ <_>
+
+ 0 -1 737 -5.9745612088590860e-04
+
+ 2.1873860061168671e-01 -1.1398520320653915e-01
+ <_>
+
+ 0 -1 738 -1.2356050312519073e-02
+
+ -2.9350760579109192e-01 6.4420320093631744e-02
+ <_>
+
+ 0 -1 739 -3.2670930027961731e-01
+
+ 3.8920149207115173e-01 -4.9165409058332443e-02
+ <_>
+
+ 0 -1 740 8.7828626856207848e-03
+
+ 8.6186192929744720e-02 -2.2631849348545074e-01
+ <_>
+
+ 0 -1 741 3.3569689840078354e-03
+
+ -9.1194286942481995e-02 2.1264100074768066e-01
+ <_>
+ 75
+ -7.8030252456665039e-01
+
+ <_>
+
+ 0 -1 742 -1.5290499664843082e-02
+
+ 1.6011320054531097e-01 -2.1511940658092499e-01
+ <_>
+
+ 0 -1 743 -5.9956451877951622e-03
+
+ -1.8299789726734161e-01 3.7886500358581543e-02
+ <_>
+
+ 0 -1 744 6.2301359139382839e-04
+
+ -1.2199199944734573e-01 2.1163250505924225e-01
+ <_>
+
+ 0 -1 745 5.8087380602955818e-04
+
+ -2.2747389972209930e-01 7.6958037912845612e-02
+ <_>
+
+ 0 -1 746 -2.8277048841118813e-03
+
+ 2.7597460150718689e-01 -7.8942306339740753e-02
+ <_>
+
+ 0 -1 747 2.1096320822834969e-02
+
+ 4.1295919567346573e-02 -3.2933080196380615e-01
+ <_>
+
+ 0 -1 748 -2.2117430344223976e-03
+
+ 2.4672569334506989e-01 -7.3121666908264160e-02
+ <_>
+
+ 0 -1 749 -2.3275949060916901e-03
+
+ -2.2825109958648682e-01 7.9285196959972382e-02
+ <_>
+
+ 0 -1 750 -4.4754869304597378e-03
+
+ 1.1744049936532974e-01 -1.9801409542560577e-01
+ <_>
+
+ 0 -1 751 -2.5716619566082954e-03
+
+ 3.7658710032701492e-02 -1.2148059904575348e-01
+ <_>
+
+ 0 -1 752 1.5387970488518476e-03
+
+ -5.5973250418901443e-02 3.6923429369926453e-01
+ <_>
+
+ 0 -1 753 -3.3066518604755402e-02
+
+ 3.9160001277923584e-01 -7.7862940728664398e-02
+ <_>
+
+ 0 -1 754 -8.5727721452713013e-02
+
+ -2.5174748897552490e-01 1.3543550670146942e-01
+ <_>
+
+ 0 -1 755 -7.0333289913833141e-03
+
+ 1.3328710198402405e-01 -1.5664640069007874e-01
+ <_>
+
+ 0 -1 756 -6.8310517235659063e-05
+
+ 9.9454201757907867e-02 -2.3412980139255524e-01
+ <_>
+
+ 0 -1 757 -6.0546118766069412e-04
+
+ -1.7742669582366943e-01 1.0017810016870499e-01
+ <_>
+
+ 0 -1 758 -2.2480569314211607e-03
+
+ -3.6424639821052551e-01 5.3501259535551071e-02
+ <_>
+
+ 0 -1 759 -1.5090550296008587e-03
+
+ 7.7575050294399261e-02 -9.4920717179775238e-02
+ <_>
+
+ 0 -1 760 -5.8666180848376825e-05
+
+ 1.2585939466953278e-01 -1.4529819786548615e-01
+ <_>
+
+ 0 -1 761 3.5532109905034304e-03
+
+ -9.8626613616943359e-02 7.4326246976852417e-02
+ <_>
+
+ 0 -1 762 -1.4601859729737043e-03
+
+ -3.3026841282844543e-01 6.3813462853431702e-02
+ <_>
+
+ 0 -1 763 -2.3586049792356789e-04
+
+ 1.0846760123968124e-01 -1.0571049898862839e-01
+ <_>
+
+ 0 -1 764 1.4756060205399990e-02
+
+ -5.9472840279340744e-02 3.7792891263961792e-01
+ <_>
+
+ 0 -1 765 -1.6795310378074646e-01
+
+ -6.6773468255996704e-01 1.7404930666089058e-02
+ <_>
+
+ 0 -1 766 3.2017670571804047e-02
+
+ -2.3720450699329376e-01 9.6205927431583405e-02
+ <_>
+
+ 0 -1 767 -6.1111792456358671e-04
+
+ 1.3566890358924866e-01 -6.8121932446956635e-02
+ <_>
+
+ 0 -1 768 -1.1586040258407593e-02
+
+ -2.9761460423469543e-01 6.4853250980377197e-02
+ <_>
+
+ 0 -1 769 -1.1290679685771465e-03
+
+ 1.3520470261573792e-01 -9.0693503618240356e-02
+ <_>
+
+ 0 -1 770 1.8352170009166002e-03
+
+ -9.6694603562355042e-02 1.8725989758968353e-01
+ <_>
+
+ 0 -1 771 -2.7584248781204224e-01
+
+ 2.7460220456123352e-01 -1.6176709905266762e-02
+ <_>
+
+ 0 -1 772 -5.2487280219793320e-02
+
+ -2.6295030117034912e-01 8.4279276430606842e-02
+ <_>
+
+ 0 -1 773 -2.8409080579876900e-02
+
+ 4.4033178687095642e-01 -4.6736340969800949e-02
+ <_>
+
+ 0 -1 774 1.2234229594469070e-02
+
+ 7.1391902863979340e-02 -2.9463478922843933e-01
+ <_>
+
+ 0 -1 775 3.7752088159322739e-02
+
+ -3.2507140189409256e-02 6.2293910980224609e-01
+ <_>
+
+ 0 -1 776 -1.3006339780986309e-02
+
+ -3.5619509220123291e-01 5.7085920125246048e-02
+ <_>
+
+ 0 -1 777 -3.7061918992549181e-03
+
+ 1.7485049366950989e-01 -1.0506869852542877e-01
+ <_>
+
+ 0 -1 778 -4.8177209682762623e-03
+
+ 1.4761090278625488e-01 -1.3700130581855774e-01
+ <_>
+
+ 0 -1 779 -3.0726719647645950e-02
+
+ -2.1432609856128693e-01 3.4535329788923264e-02
+ <_>
+
+ 0 -1 780 1.0044399648904800e-02
+
+ 8.2472868263721466e-02 -2.1329440176486969e-01
+ <_>
+
+ 0 -1 781 3.3808979787863791e-04
+
+ -5.6368399411439896e-02 8.4050692617893219e-02
+ <_>
+
+ 0 -1 782 -3.4935539588332176e-04
+
+ 1.5510140359401703e-01 -1.5465189516544342e-01
+ <_>
+
+ 0 -1 783 8.5416442016139627e-04
+
+ 7.4811212718486786e-02 -2.0761939883232117e-01
+ <_>
+
+ 0 -1 784 -7.4278831016272306e-04
+
+ 2.0695370435714722e-01 -1.1315040290355682e-01
+ <_>
+
+ 0 -1 785 -4.1803911328315735e-02
+
+ 7.7375417947769165e-01 -2.7391599491238594e-02
+ <_>
+
+ 0 -1 786 -8.9303712593391538e-04
+
+ -2.8926849365234375e-01 8.3425313234329224e-02
+ <_>
+
+ 0 -1 787 2.0034189801663160e-03
+
+ 5.7899519801139832e-02 -2.1817860007286072e-01
+ <_>
+
+ 0 -1 788 7.4933562427759171e-04
+
+ -1.3606220483779907e-01 1.6150030493736267e-01
+ <_>
+
+ 0 -1 789 -8.9645422995090485e-02
+
+ -9.5717740058898926e-01 5.8882208541035652e-03
+ <_>
+
+ 0 -1 790 -6.5244808793067932e-03
+
+ 1.4521969854831696e-01 -1.6119849681854248e-01
+ <_>
+
+ 0 -1 791 -2.8723690193146467e-03
+
+ 1.0670810192823410e-01 -3.0505739152431488e-02
+ <_>
+
+ 0 -1 792 2.2762219887226820e-03
+
+ -1.4573380351066589e-01 1.5590649843215942e-01
+ <_>
+
+ 0 -1 793 4.3706637807190418e-03
+
+ -2.4369299411773682e-02 2.0724129676818848e-01
+ <_>
+
+ 0 -1 794 1.1989739723503590e-03
+
+ 8.8461942970752716e-02 -2.2536410391330719e-01
+ <_>
+
+ 0 -1 795 -6.1923090834170580e-04
+
+ 1.5108090639114380e-01 -9.9106341600418091e-02
+ <_>
+
+ 0 -1 796 -1.0555429616943002e-03
+
+ 1.5399299561977386e-01 -1.4410500228404999e-01
+ <_>
+
+ 0 -1 797 2.3101890459656715e-02
+
+ -2.6107529178261757e-02 2.5875169038772583e-01
+ <_>
+
+ 0 -1 798 6.7337458021938801e-03
+
+ 6.4629636704921722e-02 -3.2299819588661194e-01
+ <_>
+
+ 0 -1 799 1.4084229478612542e-03
+
+ 8.5755072534084320e-02 -1.4947549998760223e-01
+ <_>
+
+ 0 -1 800 -2.3923629487399012e-04
+
+ 1.8700890243053436e-01 -1.0941530019044876e-01
+ <_>
+
+ 0 -1 801 2.2198690567165613e-04
+
+ -1.9517560303211212e-01 5.9587858617305756e-02
+ <_>
+
+ 0 -1 802 2.8156230691820383e-03
+
+ -8.9527882635593414e-02 2.2894319891929626e-01
+ <_>
+
+ 0 -1 803 7.8730508685112000e-03
+
+ 6.4139701426029205e-02 -1.7174859344959259e-01
+ <_>
+
+ 0 -1 804 1.0448540560901165e-03
+
+ -2.0927239954471588e-01 1.1022809892892838e-01
+ <_>
+
+ 0 -1 805 -1.8041099607944489e-01
+
+ 2.5460541248321533e-01 -3.1580239534378052e-02
+ <_>
+
+ 0 -1 806 -1.8916819989681244e-01
+
+ -8.1439048051834106e-01 3.0212750658392906e-02
+ <_>
+
+ 0 -1 807 -4.8934340476989746e-02
+
+ 4.8329269886016846e-01 -3.1813390552997589e-02
+ <_>
+
+ 0 -1 808 -6.2278551049530506e-03
+
+ -2.2463080286979675e-01 9.3202292919158936e-02
+ <_>
+
+ 0 -1 809 -3.6263489164412022e-03
+
+ 9.7239963710308075e-02 -2.2094939649105072e-01
+ <_>
+
+ 0 -1 810 2.0688530057668686e-02
+
+ -3.9044689387083054e-02 6.9668918848037720e-01
+ <_>
+
+ 0 -1 811 -6.5703191794455051e-03
+
+ -1.5919350087642670e-01 3.7697389721870422e-02
+ <_>
+
+ 0 -1 812 -2.7691440191119909e-03
+
+ -2.1777799725532532e-01 1.1075550317764282e-01
+ <_>
+
+ 0 -1 813 -2.5391899980604649e-03
+
+ 7.6753303408622742e-02 -1.2121020257472992e-01
+ <_>
+
+ 0 -1 814 1.4522899873554707e-02
+
+ -4.6935468912124634e-02 4.4322049617767334e-01
+ <_>
+
+ 0 -1 815 -4.8549640923738480e-03
+
+ -4.1040301322937012e-01 4.7296289354562759e-02
+ <_>
+
+ 0 -1 816 -3.6202149931341410e-03
+
+ 3.6707898974418640e-01 -5.0583109259605408e-02
+ <_>
+ 79
+ -8.1366151571273804e-01
+
+ <_>
+
+ 0 -1 817 9.7794737666845322e-03
+
+ -1.9873769581317902e-01 1.8754990398883820e-01
+ <_>
+
+ 0 -1 818 2.5764610618352890e-03
+
+ -1.6544049978256226e-01 1.1968299746513367e-01
+ <_>
+
+ 0 -1 819 6.6844018874689937e-04
+
+ 8.1187427043914795e-02 -2.6954218745231628e-01
+ <_>
+
+ 0 -1 820 1.8919180147349834e-03
+
+ 8.2398690283298492e-02 -1.9564670324325562e-01
+ <_>
+
+ 0 -1 821 -8.2977651618421078e-04
+
+ -2.1381169557571411e-01 1.0152959823608398e-01
+ <_>
+
+ 0 -1 822 -2.5124829262495041e-03
+
+ 2.6497021317481995e-01 -8.1728130578994751e-02
+ <_>
+
+ 0 -1 823 4.9220919609069824e-03
+
+ -1.3837899267673492e-01 1.7047420144081116e-01
+ <_>
+
+ 0 -1 824 1.5432259533554316e-03
+
+ -2.3483499884605408e-01 1.2624679505825043e-01
+ <_>
+
+ 0 -1 825 -7.5272549875080585e-03
+
+ -2.1902580559253693e-01 7.8214943408966064e-02
+ <_>
+
+ 0 -1 826 -3.2087319414131343e-04
+
+ 9.9803313612937927e-02 -1.0052630305290222e-01
+ <_>
+
+ 0 -1 827 -5.6291592773050070e-04
+
+ 1.4587800204753876e-01 -1.3194470107555389e-01
+ <_>
+
+ 0 -1 828 -3.4248359501361847e-02
+
+ 7.3179531097412109e-01 -2.5754369795322418e-02
+ <_>
+
+ 0 -1 829 5.5207060649991035e-03
+
+ 7.3829427361488342e-02 -2.4615940451622009e-01
+ <_>
+
+ 0 -1 830 3.3663161098957062e-02
+
+ -5.0750829279422760e-02 5.1054477691650391e-01
+ <_>
+
+ 0 -1 831 1.0605139657855034e-02
+
+ -1.9593380391597748e-01 9.6162728965282440e-02
+ <_>
+
+ 0 -1 832 3.6454470828175545e-03
+
+ -1.0274770110845566e-01 1.8021290004253387e-01
+ <_>
+
+ 0 -1 833 3.1658720225095749e-02
+
+ 7.7415347099304199e-02 -2.3498320579528809e-01
+ <_>
+
+ 0 -1 834 6.0496449470520020e-02
+
+ 7.9810861498117447e-03 -5.8126330375671387e-01
+ <_>
+
+ 0 -1 835 -2.1451190696097910e-04
+
+ -2.7141410112380981e-01 7.2448231279850006e-02
+ <_>
+
+ 0 -1 836 -8.9069753885269165e-03
+
+ 1.0864660143852234e-01 -3.7890978157520294e-02
+ <_>
+
+ 0 -1 837 -3.1367139890789986e-03
+
+ 2.3194080591201782e-01 -8.3242997527122498e-02
+ <_>
+
+ 0 -1 838 -8.2477089017629623e-04
+
+ 1.3757370412349701e-01 -4.0709521621465683e-02
+ <_>
+
+ 0 -1 839 -3.8041090010665357e-04
+
+ 9.9655948579311371e-02 -2.0115250349044800e-01
+ <_>
+
+ 0 -1 840 3.0412159394472837e-03
+
+ 4.8606388270854950e-02 -2.9261159896850586e-01
+ <_>
+
+ 0 -1 841 -2.7135149575769901e-03
+
+ -2.0402909815311432e-01 8.7270192801952362e-02
+ <_>
+
+ 0 -1 842 -1.1454220116138458e-01
+
+ 2.6342248916625977e-01 -2.8976829722523689e-02
+ <_>
+
+ 0 -1 843 -7.9219061881303787e-03
+
+ -2.3954220116138458e-01 7.8425459563732147e-02
+ <_>
+
+ 0 -1 844 -6.4272403717041016e-02
+
+ 3.8651049137115479e-01 -3.4981280565261841e-02
+ <_>
+
+ 0 -1 845 2.0820159465074539e-02
+
+ 3.6676738411188126e-02 -5.0909721851348877e-01
+ <_>
+
+ 0 -1 846 4.7503421083092690e-03
+
+ -4.9171518534421921e-02 1.8542270362377167e-01
+ <_>
+
+ 0 -1 847 -9.3589037656784058e-02
+
+ 6.2822377681732178e-01 -2.5140469893813133e-02
+ <_>
+
+ 0 -1 848 -6.8223377456888556e-04
+
+ 4.0090799331665039e-02 -1.0250650346279144e-01
+ <_>
+
+ 0 -1 849 -8.3058718591928482e-03
+
+ -2.1625949442386627e-01 8.5505023598670959e-02
+ <_>
+
+ 0 -1 850 5.5919620208442211e-03
+
+ -6.5724261105060577e-02 6.1939451843500137e-02
+ <_>
+
+ 0 -1 851 1.8336649518460035e-03
+
+ -1.0324809700250626e-01 2.5134149193763733e-01
+ <_>
+
+ 0 -1 852 -4.4351099058985710e-03
+
+ -1.5100279450416565e-01 3.7323009222745895e-02
+ <_>
+
+ 0 -1 853 -4.7271270304918289e-03
+
+ 1.3500709831714630e-01 -1.5250219404697418e-01
+ <_>
+
+ 0 -1 854 5.3573452169075608e-04
+
+ -6.0964770615100861e-02 7.1996733546257019e-02
+ <_>
+
+ 0 -1 855 -1.3135100016370416e-04
+
+ 1.2902179360389709e-01 -1.3107609748840332e-01
+ <_>
+
+ 0 -1 856 4.0799290873110294e-03
+
+ 4.9433309584856033e-02 -1.9467090070247650e-01
+ <_>
+
+ 0 -1 857 -3.1066180672496557e-03
+
+ 2.3984549939632416e-01 -7.1281567215919495e-02
+ <_>
+
+ 0 -1 858 1.0999400168657303e-02
+
+ 2.9017930850386620e-02 -3.8504680991172791e-01
+ <_>
+
+ 0 -1 859 1.5001590363681316e-03
+
+ -8.3652436733245850e-02 1.8141129612922668e-01
+ <_>
+
+ 0 -1 860 1.3700149953365326e-02
+
+ 3.6753259599208832e-02 -4.5086589455604553e-01
+ <_>
+
+ 0 -1 861 3.9507630281150341e-03
+
+ -6.9417111575603485e-02 2.1540710330009460e-01
+ <_>
+
+ 0 -1 862 -8.5161393508315086e-03
+
+ 1.0704089701175690e-01 -1.4857380092144012e-01
+ <_>
+
+ 0 -1 863 1.7032850300893188e-03
+
+ -8.1896521151065826e-02 3.2398068904876709e-01
+ <_>
+
+ 0 -1 864 -1.0852930136024952e-02
+
+ -1.3142329454421997e-01 9.9990189075469971e-02
+ <_>
+
+ 0 -1 865 -3.7832378875464201e-03
+
+ 9.7596637904644012e-02 -1.6081459820270538e-01
+ <_>
+
+ 0 -1 866 1.3263260014355183e-02
+
+ 6.8189077079296112e-02 -1.4820660650730133e-01
+ <_>
+
+ 0 -1 867 -4.4276300817728043e-02
+
+ 5.3883999586105347e-01 -3.4769881516695023e-02
+ <_>
+
+ 0 -1 868 -1.6476439312100410e-02
+
+ -6.9341838359832764e-01 3.0285930261015892e-02
+ <_>
+
+ 0 -1 869 1.5063960105180740e-02
+
+ 5.0365351140499115e-02 -3.2215261459350586e-01
+ <_>
+
+ 0 -1 870 5.3230069577693939e-02
+
+ 4.0058908052742481e-03 -1.0000929832458496e+00
+ <_>
+
+ 0 -1 871 -1.2282089889049530e-01
+
+ 4.0438568592071533e-01 -5.4661169648170471e-02
+ <_>
+
+ 0 -1 872 -8.0205321311950684e-02
+
+ -1.8915909528732300e-01 3.5704288631677628e-02
+ <_>
+
+ 0 -1 873 -1.1679669842123985e-03
+
+ -2.7641400694847107e-01 5.9974398463964462e-02
+ <_>
+
+ 0 -1 874 -3.1197320204228163e-03
+
+ 1.1307190358638763e-01 -7.2880730032920837e-02
+ <_>
+
+ 0 -1 875 3.6612390540540218e-03
+
+ -4.7828570008277893e-02 3.9067369699478149e-01
+ <_>
+
+ 0 -1 876 4.6034730039536953e-03
+
+ -4.7448419034481049e-02 3.6146968603134155e-01
+ <_>
+
+ 0 -1 877 -1.0733479866757989e-03
+
+ 1.1264870315790176e-01 -2.9074960947036743e-01
+ <_>
+
+ 0 -1 878 -1.8310690298676491e-02
+
+ 9.6729353070259094e-02 -1.0150820016860962e-01
+ <_>
+
+ 0 -1 879 -6.8194739520549774e-02
+
+ -2.2048689424991608e-01 1.0977990180253983e-01
+ <_>
+
+ 0 -1 880 8.9977607131004333e-03
+
+ -2.9652440920472145e-02 1.5059219300746918e-01
+ <_>
+
+ 0 -1 881 2.6954131317324936e-04
+
+ -1.9917850196361542e-01 9.4677992165088654e-02
+ <_>
+
+ 0 -1 882 5.9090729337185621e-04
+
+ -1.3240300118923187e-01 6.3088178634643555e-02
+ <_>
+
+ 0 -1 883 5.5691739544272423e-03
+
+ 1.0318289697170258e-01 -1.9276739656925201e-01
+ <_>
+
+ 0 -1 884 -9.9434129893779755e-02
+
+ 2.5911080837249756e-01 -4.3947871774435043e-02
+ <_>
+
+ 0 -1 885 -9.6295922994613647e-03
+
+ -3.6871969699859619e-01 4.6506170183420181e-02
+ <_>
+
+ 0 -1 886 -1.7397940391674638e-03
+
+ 1.3736039400100708e-01 -6.9822482764720917e-02
+ <_>
+
+ 0 -1 887 -1.3269430026412010e-02
+
+ 4.5216149091720581e-01 -3.8461238145828247e-02
+ <_>
+
+ 0 -1 888 2.5604839902371168e-03
+
+ 5.4858781397342682e-02 -2.4963529407978058e-01
+ <_>
+
+ 0 -1 889 -1.9173050532117486e-03
+
+ -2.5733208656311035e-01 6.7481383681297302e-02
+ <_>
+
+ 0 -1 890 -3.7461649626493454e-02
+
+ 5.9668248891830444e-01 -1.8121080473065376e-02
+ <_>
+
+ 0 -1 891 -1.9658938981592655e-03
+
+ 1.9501520693302155e-01 -9.0026341378688812e-02
+ <_>
+
+ 0 -1 892 -3.2596408855170012e-03
+
+ -3.5647168755531311e-01 4.6495281159877777e-02
+ <_>
+
+ 0 -1 893 -1.2043650262057781e-02
+
+ 3.7508749961853027e-01 -5.3072199225425720e-02
+ <_>
+
+ 0 -1 894 4.1690650396049023e-03
+
+ -4.1845761239528656e-02 1.1177790164947510e-01
+ <_>
+
+ 0 -1 895 1.4214499853551388e-02
+
+ 7.1965761482715607e-02 -2.6777520775794983e-01
+ <_>
+ 81
+ -3.0813199996948242e+01
+
+ <_>
+
+ 0 -1 896 -1.2230969965457916e-02
+
+ 1.4567610621452332e-01 -2.4045179784297943e-01
+ <_>
+
+ 0 -1 897 -5.5717672221362591e-03
+
+ -1.8789610266685486e-01 4.0596708655357361e-02
+ <_>
+
+ 0 -1 898 -5.5606552632525563e-04
+
+ 1.6649569571018219e-01 -1.1817839741706848e-01
+ <_>
+
+ 0 -1 899 8.3173572784289718e-04
+
+ -1.4224030077457428e-01 4.1616160422563553e-02
+ <_>
+
+ 0 -1 900 -8.7869318667799234e-04
+
+ -1.6430449485778809e-01 1.5523290634155273e-01
+ <_>
+
+ 0 -1 901 -1.3641480356454849e-02
+
+ 3.0867528915405273e-01 -2.7172269299626350e-02
+ <_>
+
+ 0 -1 902 1.4917860426066909e-05
+
+ -1.5592050552368164e-01 1.0176579654216766e-01
+ <_>
+
+ 0 -1 903 8.7703643366694450e-03
+
+ 6.1582878232002258e-02 -3.0546051263809204e-01
+ <_>
+
+ 0 -1 904 7.5755198486149311e-03
+
+ -6.8759873509407043e-02 2.9675748944282532e-01
+ <_>
+
+ 0 -1 905 4.9841161817312241e-02
+
+ 1.0127910412847996e-02 -7.9213422536849976e-01
+ <_>
+
+ 0 -1 906 -1.1090819723904133e-02
+
+ 1.8339020013809204e-01 -1.0113699734210968e-01
+ <_>
+
+ 0 -1 907 -8.5937082767486572e-02
+
+ -4.1994568705558777e-01 1.5568479895591736e-02
+ <_>
+
+ 0 -1 908 -1.0151329915970564e-03
+
+ 1.1474460363388062e-01 -1.6091680526733398e-01
+ <_>
+
+ 0 -1 909 -1.3470250181853771e-02
+
+ -3.0626448988914490e-01 5.3186140954494476e-02
+ <_>
+
+ 0 -1 910 1.6635110601782799e-02
+
+ -4.3458938598632812e-02 4.4043311476707458e-01
+ <_>
+
+ 0 -1 911 -2.2650870960205793e-03
+
+ 1.5985119342803955e-01 -1.2725980579853058e-01
+ <_>
+
+ 0 -1 912 7.0288166403770447e-02
+
+ 6.4891628921031952e-02 -2.3496179282665253e-01
+ <_>
+
+ 0 -1 913 2.9186379164457321e-02
+
+ -2.0920279622077942e-01 8.9257873594760895e-02
+ <_>
+
+ 0 -1 914 -5.0624469295144081e-03
+
+ 3.4374091029167175e-01 -6.2093049287796021e-02
+ <_>
+
+ 0 -1 915 2.9356318991631269e-03
+
+ -1.4249369502067566e-01 4.5412261039018631e-02
+ <_>
+
+ 0 -1 916 -6.7740739323198795e-03
+
+ 3.1641799211502075e-01 -4.9601629376411438e-02
+ <_>
+
+ 0 -1 917 -1.4607170305680484e-04
+
+ 1.0752049833536148e-01 -1.1540039628744125e-01
+ <_>
+
+ 0 -1 918 -3.5684450995177031e-03
+
+ -4.1672629117965698e-01 4.2202819138765335e-02
+ <_>
+
+ 0 -1 919 -2.0149808842688799e-03
+
+ 1.0860130190849304e-01 -1.6349700093269348e-01
+ <_>
+
+ 0 -1 920 -8.7240645661950111e-03
+
+ -2.2000640630722046e-01 9.0927027165889740e-02
+ <_>
+
+ 0 -1 921 7.3565947823226452e-03
+
+ -1.0335700213909149e-01 1.6051970422267914e-01
+ <_>
+
+ 0 -1 922 3.4252731129527092e-03
+
+ -6.9635637104511261e-02 3.1490880250930786e-01
+ <_>
+
+ 0 -1 923 -5.7803248055279255e-03
+
+ -4.3639171123504639e-01 3.6127548664808273e-02
+ <_>
+
+ 0 -1 924 -2.9641189612448215e-03
+
+ 2.1797280013561249e-01 -7.7875941991806030e-02
+ <_>
+
+ 0 -1 925 2.4028679355978966e-02
+
+ 2.5940960273146629e-02 -5.7640588283538818e-01
+ <_>
+
+ 0 -1 926 8.1514477729797363e-02
+
+ -3.4380380064249039e-02 5.7957500219345093e-01
+ <_>
+
+ 0 -1 927 6.7858170950785279e-04
+
+ 1.0398740321397781e-01 -2.3831090331077576e-01
+ <_>
+
+ 0 -1 928 4.2639520019292831e-02
+
+ -4.1167970746755600e-02 4.0556749701499939e-01
+ <_>
+
+ 0 -1 929 -4.0414459072053432e-03
+
+ -3.8652890920639038e-01 5.3053580224514008e-02
+ <_>
+
+ 0 -1 930 4.2280308902263641e-02
+
+ 1.5058529563248158e-02 -9.6623957157135010e-01
+ <_>
+
+ 0 -1 931 -7.3401766712777317e-05
+
+ 8.4438636898994446e-02 -1.0468550026416779e-01
+ <_>
+
+ 0 -1 932 4.7503020614385605e-03
+
+ -3.8135491311550140e-02 4.3066629767417908e-01
+ <_>
+
+ 0 -1 933 1.7291309777647257e-03
+
+ 7.5733587145805359e-02 -1.5384200215339661e-01
+ <_>
+
+ 0 -1 934 -4.8985757166519761e-04
+
+ 1.3722479343414307e-01 -1.2631259858608246e-01
+ <_>
+
+ 0 -1 935 -2.2209450253285468e-04
+
+ 5.1139138638973236e-02 -6.6661313176155090e-02
+ <_>
+
+ 0 -1 936 1.1202819878235459e-03
+
+ -1.0968499630689621e-01 1.5611450374126434e-01
+ <_>
+
+ 0 -1 937 -2.0596029236912727e-02
+
+ -4.5425260066986084e-01 5.6112911552190781e-03
+ <_>
+
+ 0 -1 938 -5.1287859678268433e-03
+
+ -3.9422529935836792e-01 4.4144820421934128e-02
+ <_>
+
+ 0 -1 939 -4.3597300536930561e-03
+
+ 1.9391660392284393e-01 -6.5949328243732452e-02
+ <_>
+
+ 0 -1 940 4.7703061136417091e-04
+
+ -1.1900710314512253e-01 1.6375440359115601e-01
+ <_>
+
+ 0 -1 941 -1.0993770323693752e-02
+
+ -2.9915741086006165e-01 2.8793500736355782e-02
+ <_>
+
+ 0 -1 942 8.1108389422297478e-03
+
+ -4.8145949840545654e-02 3.8399958610534668e-01
+ <_>
+
+ 0 -1 943 -3.6698309704661369e-03
+
+ 8.8712036609649658e-02 -3.0650860071182251e-01
+ <_>
+
+ 0 -1 944 1.3895990559831262e-03
+
+ -5.5156201124191284e-02 3.5109901428222656e-01
+ <_>
+
+ 0 -1 945 1.2493750546127558e-03
+
+ -1.8023060262203217e-01 1.3490100204944611e-01
+ <_>
+
+ 0 -1 946 5.5981278419494629e-03
+
+ 7.9764246940612793e-02 -2.7847459912300110e-01
+ <_>
+
+ 0 -1 947 -3.8133479654788971e-02
+
+ 3.5153418779373169e-01 -1.7089430242776871e-02
+ <_>
+
+ 0 -1 948 -4.6064890921115875e-03
+
+ -2.2194199264049530e-01 1.0675799846649170e-01
+ <_>
+
+ 0 -1 949 -2.3793010413646698e-01
+
+ 4.0079510211944580e-01 -6.2151808291673660e-02
+ <_>
+
+ 0 -1 950 1.2010410428047180e-02
+
+ 5.8646921068429947e-02 -3.5234829783439636e-01
+ <_>
+
+ 0 -1 951 8.4618777036666870e-03
+
+ -4.1455499827861786e-02 3.9362218976020813e-01
+ <_>
+
+ 0 -1 952 -1.4482599683105946e-02
+
+ -2.7049958705902100e-01 6.9400496780872345e-02
+ <_>
+
+ 0 -1 953 2.5672810152173042e-03
+
+ -8.2357987761497498e-02 2.2959560155868530e-01
+ <_>
+
+ 0 -1 954 6.8167857825756073e-03
+
+ 8.5212066769599915e-02 -2.2813120484352112e-01
+ <_>
+
+ 0 -1 955 -6.4145028591156006e-04
+
+ 1.3260249793529510e-01 -8.1091962754726410e-02
+ <_>
+
+ 0 -1 956 3.8798429886810482e-04
+
+ -2.1800529956817627e-01 8.2977667450904846e-02
+ <_>
+
+ 0 -1 957 2.6308000087738037e-02
+
+ -2.5558909401297569e-02 5.8989650011062622e-01
+ <_>
+
+ 0 -1 958 2.0907879807054996e-03
+
+ 5.7611741125583649e-02 -3.0286490917205811e-01
+ <_>
+
+ 0 -1 959 -1.1132369749248028e-02
+
+ -1.3822869956493378e-01 4.2258080095052719e-02
+ <_>
+
+ 0 -1 960 -1.5296150231733918e-03
+
+ 9.1749697923660278e-02 -2.2181099653244019e-01
+ <_>
+
+ 0 -1 961 6.7247601691633463e-04
+
+ -6.7084349691867828e-02 7.9762071371078491e-02
+ <_>
+
+ 0 -1 962 1.0386659763753414e-02
+
+ -7.4621170759201050e-02 2.2916689515113831e-01
+ <_>
+
+ 0 -1 963 6.2723900191485882e-04
+
+ -8.6500599980354309e-02 9.7814910113811493e-02
+ <_>
+
+ 0 -1 964 1.5324779786169529e-02
+
+ 8.0094330012798309e-02 -2.2011950612068176e-01
+ <_>
+
+ 0 -1 965 -8.7603963911533356e-03
+
+ 3.1290820240974426e-01 -5.9373341500759125e-02
+ <_>
+
+ 0 -1 966 -2.3745700309518725e-04
+
+ 1.1855959892272949e-01 -1.4514200389385223e-01
+ <_>
+
+ 0 -1 967 -1.0718279518187046e-03
+
+ 1.2567649781703949e-01 -5.3101938217878342e-02
+ <_>
+
+ 0 -1 968 5.3873867727816105e-04
+
+ -1.0715659707784653e-01 1.6037760674953461e-01
+ <_>
+
+ 0 -1 969 -6.9268636405467987e-02
+
+ -7.9294067621231079e-01 8.2057341933250427e-03
+ <_>
+
+ 0 -1 970 1.0430130176246166e-02
+
+ 5.1620200276374817e-02 -3.3472689986228943e-01
+ <_>
+
+ 0 -1 971 7.1888908743858337e-02
+
+ 1.5941270394250751e-03 -8.5840928554534912e-01
+ <_>
+
+ 0 -1 972 2.0217420533299446e-02
+
+ -3.9817400276660919e-02 4.6351060271263123e-01
+ <_>
+
+ 0 -1 973 5.8006029576063156e-03
+
+ -2.1701389923691750e-02 9.9040143191814423e-02
+ <_>
+
+ 0 -1 974 3.5261210054159164e-02
+
+ 1.7082870006561279e-02 -1.0000469684600830e+00
+ <_>
+
+ 0 -1 975 -4.5255878567695618e-01
+
+ -9.1292119026184082e-01 5.2670161239802837e-03
+ <_>
+
+ 0 -1 976 -7.5286221690475941e-03
+
+ -5.2581560611724854e-01 2.2044740617275238e-02
+ <_>
+ 89
+ -3.0780099868774414e+01
+
+ <_>
+
+ 0 -1 977 2.9085609130561352e-03
+
+ -2.0195980370044708e-01 1.6118539869785309e-01
+ <_>
+
+ 0 -1 978 -6.4552230760455132e-03
+
+ -1.8676100671291351e-01 3.5359650850296021e-02
+ <_>
+
+ 0 -1 979 2.7815890498459339e-03
+
+ -1.2228749692440033e-01 2.0362569391727448e-01
+ <_>
+
+ 0 -1 980 -7.6125850901007652e-03
+
+ -3.6965709924697876e-01 3.9566628634929657e-02
+ <_>
+
+ 0 -1 981 -2.5900858640670776e-01
+
+ 6.4312630891799927e-01 3.1312569626607001e-04
+ <_>
+
+ 0 -1 982 4.6097189188003540e-03
+
+ -2.7262160554528236e-02 2.1891650557518005e-01
+ <_>
+
+ 0 -1 983 -1.4135500416159630e-02
+
+ 7.6006792485713959e-02 -2.6031088829040527e-01
+ <_>
+
+ 0 -1 984 -5.9708990156650543e-03
+
+ -1.9146460294723511e-01 1.1078900098800659e-01
+ <_>
+
+ 0 -1 985 -1.0699110571295023e-03
+
+ 9.0127058327198029e-02 -1.9876359403133392e-01
+ <_>
+
+ 0 -1 986 1.5315730124711990e-02
+
+ 5.1883369684219360e-02 -3.1069299578666687e-01
+ <_>
+
+ 0 -1 987 -7.3937349952757359e-05
+
+ 1.0555309802293777e-01 -1.6768750548362732e-01
+ <_>
+
+ 0 -1 988 -8.1876888871192932e-02
+
+ 4.6053099632263184e-01 -3.8276348263025284e-02
+ <_>
+
+ 0 -1 989 -8.8246334344148636e-03
+
+ -3.3107680082321167e-01 6.9674566388130188e-02
+ <_>
+
+ 0 -1 990 -3.7569031119346619e-03
+
+ -2.7566310763359070e-01 6.9375626742839813e-02
+ <_>
+
+ 0 -1 991 -3.6343189422041178e-03
+
+ 1.6658850014209747e-01 -1.2031579762697220e-01
+ <_>
+
+ 0 -1 992 2.1979490295052528e-02
+
+ -2.2316349670290947e-02 3.4402579069137573e-01
+ <_>
+
+ 0 -1 993 6.1386551707983017e-02
+
+ 1.7906000837683678e-02 -8.8129872083663940e-01
+ <_>
+
+ 0 -1 994 2.7061739936470985e-02
+
+ -3.2444350421428680e-02 2.8866448998451233e-01
+ <_>
+
+ 0 -1 995 -9.5964036881923676e-03
+
+ -3.0743318796157837e-01 5.2499480545520782e-02
+ <_>
+
+ 0 -1 996 -1.7550870543345809e-03
+
+ 1.0434249788522720e-01 -1.1126209795475006e-01
+ <_>
+
+ 0 -1 997 1.6808100044727325e-03
+
+ -1.1712419986724854e-01 1.5606869757175446e-01
+ <_>
+
+ 0 -1 998 -1.3623350532725453e-03
+
+ 2.2637459635734558e-01 -8.6454801261425018e-02
+ <_>
+
+ 0 -1 999 -3.6580429878085852e-03
+
+ -3.9829111099243164e-01 4.7143589705228806e-02
+ <_>
+
+ 0 -1 1000 5.2668720483779907e-02
+
+ -1.9696790724992752e-02 4.2998239398002625e-01
+ <_>
+
+ 0 -1 1001 -3.4802549635060132e-04
+
+ 9.1115236282348633e-02 -2.0480670034885406e-01
+ <_>
+
+ 0 -1 1002 1.2204200029373169e-03
+
+ 3.3061511814594269e-02 -1.7324869334697723e-01
+ <_>
+
+ 0 -1 1003 -9.4577670097351074e-03
+
+ 2.9774200916290283e-01 -5.8979131281375885e-02
+ <_>
+
+ 0 -1 1004 -1.7641530139371753e-03
+
+ -9.6304766833782196e-02 6.5304636955261230e-02
+ <_>
+
+ 0 -1 1005 8.1057827919721603e-03
+
+ 5.7158369570970535e-02 -3.1123921275138855e-01
+ <_>
+
+ 0 -1 1006 1.3963400386273861e-02
+
+ -3.5234641283750534e-02 3.5719850659370422e-01
+ <_>
+
+ 0 -1 1007 -3.1854680273681879e-03
+
+ -2.1528400480747223e-01 7.6040878891944885e-02
+ <_>
+
+ 0 -1 1008 -4.3546650558710098e-03
+
+ -8.3892293274402618e-02 2.8290690854191780e-02
+ <_>
+
+ 0 -1 1009 -1.6740639694035053e-03
+
+ 1.5145839750766754e-01 -1.1756320297718048e-01
+ <_>
+
+ 0 -1 1010 -2.7018489781767130e-03
+
+ 1.3833570480346680e-01 -5.0832830369472504e-02
+ <_>
+
+ 0 -1 1011 2.2117499611340463e-04
+
+ -2.3960849642753601e-01 7.5004346668720245e-02
+ <_>
+
+ 0 -1 1012 2.2773200646042824e-02
+
+ -2.2433629259467125e-02 3.7049260735511780e-01
+ <_>
+
+ 0 -1 1013 9.5928199589252472e-03
+
+ 9.7205437719821930e-02 -1.7737109959125519e-01
+ <_>
+
+ 0 -1 1014 3.3168029040098190e-03
+
+ -5.6414358317852020e-02 9.1938421130180359e-02
+ <_>
+
+ 0 -1 1015 -2.3929888848215342e-03
+
+ 2.1076680719852448e-01 -9.2880353331565857e-02
+ <_>
+
+ 0 -1 1016 -1.0766570456326008e-02
+
+ -1.2974379956722260e-01 5.9958908706903458e-02
+ <_>
+
+ 0 -1 1017 9.9714798852801323e-04
+
+ -1.4279229938983917e-01 1.4279709756374359e-01
+ <_>
+
+ 0 -1 1018 -6.6825798712670803e-03
+
+ -2.3819839954376221e-01 4.8119660466909409e-02
+ <_>
+
+ 0 -1 1019 -3.7201410159468651e-03
+
+ 1.9953179359436035e-01 -9.0783573687076569e-02
+ <_>
+
+ 0 -1 1020 -1.8553409725427628e-02
+
+ -2.6621541380882263e-01 2.2872749716043472e-02
+ <_>
+
+ 0 -1 1021 3.0256200116127729e-03
+
+ -9.1106131672859192e-02 2.4559549987316132e-01
+ <_>
+
+ 0 -1 1022 -6.2146309763193130e-02
+
+ -1. 5.2797337993979454e-03
+ <_>
+
+ 0 -1 1023 1.7690609674900770e-03
+
+ -1.9379650056362152e-01 9.5696106553077698e-02
+ <_>
+
+ 0 -1 1024 -4.3277359509374946e-05
+
+ 1.1374049633741379e-01 -1.3504849374294281e-01
+ <_>
+
+ 0 -1 1025 1.2779419776052237e-03
+
+ 7.9606160521507263e-02 -2.3597019910812378e-01
+ <_>
+
+ 0 -1 1026 -4.4742479920387268e-02
+
+ 1.8557150661945343e-01 -3.4167829900979996e-02
+ <_>
+
+ 0 -1 1027 2.7726130792871118e-04
+
+ -5.7937718927860260e-02 2.8903219103813171e-01
+ <_>
+
+ 0 -1 1028 5.6225471198558807e-02
+
+ 1.3840789906680584e-02 -7.7199739217758179e-01
+ <_>
+
+ 0 -1 1029 8.6825769394636154e-03
+
+ -1.8263089656829834e-01 1.1423269659280777e-01
+ <_>
+
+ 0 -1 1030 -2.4038869887590408e-03
+
+ -1.9004139304161072e-01 6.5928563475608826e-02
+ <_>
+
+ 0 -1 1031 1.2840219773352146e-02
+
+ -3.6279100924730301e-02 4.5519340038299561e-01
+ <_>
+
+ 0 -1 1032 1.1061480036005378e-03
+
+ -6.3054688274860382e-02 8.1609472632408142e-02
+ <_>
+
+ 0 -1 1033 -4.6486179344356060e-03
+
+ -2.7108541131019592e-01 8.0167703330516815e-02
+ <_>
+
+ 0 -1 1034 6.4021991565823555e-03
+
+ -6.6946588456630707e-02 1.0634910315275192e-01
+ <_>
+
+ 0 -1 1035 -8.2370378077030182e-02
+
+ 3.4517300128936768e-01 -4.8468429595232010e-02
+ <_>
+
+ 0 -1 1036 -3.7429828196763992e-02
+
+ -6.9630950689315796e-01 1.3054380193352699e-02
+ <_>
+
+ 0 -1 1037 1.0500400327146053e-02
+
+ 9.6028283238410950e-02 -2.6362740993499756e-01
+ <_>
+
+ 0 -1 1038 6.8851239979267120e-02
+
+ 3.7341150455176830e-03 -9.9989157915115356e-01
+ <_>
+
+ 0 -1 1039 1.0171310277655721e-03
+
+ -2.3500110208988190e-01 9.1097183525562286e-02
+ <_>
+
+ 0 -1 1040 -2.9057949781417847e-02
+
+ 5.9977847337722778e-01 -3.6899000406265259e-02
+ <_>
+
+ 0 -1 1041 2.2022729739546776e-02
+
+ 5.8034650981426239e-02 -3.2748758792877197e-01
+ <_>
+
+ 0 -1 1042 -4.3123541399836540e-03
+
+ 2.2153949737548828e-01 -6.1332020908594131e-02
+ <_>
+
+ 0 -1 1043 1.0949710384011269e-02
+
+ 2.1837379783391953e-02 -7.4662190675735474e-01
+ <_>
+
+ 0 -1 1044 4.3610740453004837e-02
+
+ -4.5098949223756790e-02 2.8109139204025269e-01
+ <_>
+
+ 0 -1 1045 7.7252179384231567e-02
+
+ 2.0801780745387077e-02 -8.6648237705230713e-01
+ <_>
+
+ 0 -1 1046 -2.4023890495300293e-02
+
+ 3.9884421229362488e-01 -3.5227119922637939e-02
+ <_>
+
+ 0 -1 1047 1.9559780135750771e-02
+
+ 3.5944730043411255e-02 -5.1469117403030396e-01
+ <_>
+
+ 0 -1 1048 2.5917299091815948e-02
+
+ -1.2942669913172722e-02 4.1695970296859741e-01
+ <_>
+
+ 0 -1 1049 -4.6949301031418145e-04
+
+ 1.6665999591350555e-01 -9.0680040419101715e-02
+ <_>
+
+ 0 -1 1050 -8.4590032696723938e-02
+
+ -5.9283781051635742e-01 7.2113061323761940e-03
+ <_>
+
+ 0 -1 1051 -8.9234940242022276e-04
+
+ 1.7458200454711914e-01 -1.0072509944438934e-01
+ <_>
+
+ 0 -1 1052 -2.4009350687265396e-02
+
+ -3.9131438732147217e-01 2.2361040115356445e-02
+ <_>
+
+ 0 -1 1053 -4.7586968867108226e-04
+
+ 1.8306100368499756e-01 -1.2541130185127258e-01
+ <_>
+
+ 0 -1 1054 2.9483099933713675e-03
+
+ 6.5301053225994110e-02 -2.0387080311775208e-01
+ <_>
+
+ 0 -1 1055 3.6947780754417181e-03
+
+ -6.0878321528434753e-02 3.0403020977973938e-01
+ <_>
+
+ 0 -1 1056 -2.9413169249892235e-03
+
+ -3.0284491181373596e-01 4.7550499439239502e-02
+ <_>
+
+ 0 -1 1057 -7.1274640504270792e-04
+
+ 1.6200789809226990e-01 -1.1822160333395004e-01
+ <_>
+
+ 0 -1 1058 2.4309750646352768e-02
+
+ -1.1442789807915688e-02 2.0453959703445435e-01
+ <_>
+
+ 0 -1 1059 -9.1473112115636468e-04
+
+ -2.0707829296588898e-01 7.5701341032981873e-02
+ <_>
+
+ 0 -1 1060 -3.6473390646278858e-03
+
+ 2.4093860387802124e-01 -8.3565562963485718e-02
+ <_>
+
+ 0 -1 1061 1.2513220310211182e-02
+
+ 4.1536040604114532e-02 -3.7487721443176270e-01
+ <_>
+
+ 0 -1 1062 6.2148571014404297e-03
+
+ 2.0434129983186722e-02 -9.0057849884033203e-02
+ <_>
+
+ 0 -1 1063 -2.0954229403287172e-03
+
+ 1.1625260114669800e-01 -1.8561770021915436e-01
+ <_>
+
+ 0 -1 1064 -2.1173250675201416e-01
+
+ -1. 2.4372090119868517e-03
+ <_>
+
+ 0 -1 1065 1.0188589803874493e-03
+
+ -7.5683966279029846e-02 2.9555431008338928e-01
+ <_>
+ 77
+ -3.0694400787353516e+01
+
+ <_>
+
+ 0 -1 1066 -2.4422600865364075e-02
+
+ 2.0446979999542236e-01 -2.2299669682979584e-01
+ <_>
+
+ 0 -1 1067 1.0574000189080834e-03
+
+ -1.4355170726776123e-01 8.5603542625904083e-02
+ <_>
+
+ 0 -1 1068 2.5123930536210537e-03
+
+ 1.0997679829597473e-01 -2.3044809699058533e-01
+ <_>
+
+ 0 -1 1069 1.2112739682197571e-01
+
+ 3.3267501741647720e-02 -9.9910151958465576e-01
+ <_>
+
+ 0 -1 1070 2.9103590641170740e-03
+
+ -1.0391929745674133e-01 1.9292880594730377e-01
+ <_>
+
+ 0 -1 1071 -8.6717177182435989e-03
+
+ -2.7087220549583435e-01 9.9762901663780212e-02
+ <_>
+
+ 0 -1 1072 6.1140959151089191e-03
+
+ -1.1517100036144257e-01 2.0429219305515289e-01
+ <_>
+
+ 0 -1 1073 2.0590990781784058e-02
+
+ -3.3107578754425049e-02 4.6375459432601929e-01
+ <_>
+
+ 0 -1 1074 1.1507490416988730e-03
+
+ 7.6014623045921326e-02 -2.7485209703445435e-01
+ <_>
+
+ 0 -1 1075 6.5449788235127926e-03
+
+ -1.1266589909791946e-01 5.0031568855047226e-02
+ <_>
+
+ 0 -1 1076 1.6102850204333663e-03
+
+ -1.8794959783554077e-01 1.1234410107135773e-01
+ <_>
+
+ 0 -1 1077 2.8527909889817238e-03
+
+ 4.0457468479871750e-02 -8.4716461598873138e-02
+ <_>
+
+ 0 -1 1078 -4.0883300825953484e-03
+
+ 1.2509189546108246e-01 -1.4850109815597534e-01
+ <_>
+
+ 0 -1 1079 1.6648479504510760e-03
+
+ -1.0346720367670059e-01 5.3585231304168701e-02
+ <_>
+
+ 0 -1 1080 -3.1635090708732605e-03
+
+ -3.3729389309883118e-01 6.1192918568849564e-02
+ <_>
+
+ 0 -1 1081 -1.0922599583864212e-02
+
+ 4.5238488912582397e-01 -5.7903379201889038e-02
+ <_>
+
+ 0 -1 1082 -3.3356929197907448e-03
+
+ 3.3880978822708130e-01 -6.4470112323760986e-02
+ <_>
+
+ 0 -1 1083 -3.0014500021934509e-02
+
+ -8.2835501432418823e-01 2.4696119129657745e-02
+ <_>
+
+ 0 -1 1084 -3.0110439658164978e-01
+
+ -8.3429050445556641e-01 1.4369309879839420e-02
+ <_>
+
+ 0 -1 1085 -4.2447918094694614e-03
+
+ -1.2281739711761475e-01 2.8134100139141083e-02
+ <_>
+
+ 0 -1 1086 7.7825621701776981e-03
+
+ -6.9222308695316315e-02 2.5814509391784668e-01
+ <_>
+
+ 0 -1 1087 -1.2726710177958012e-02
+
+ 1.0745859891176224e-01 -7.6575823128223419e-02
+ <_>
+
+ 0 -1 1088 4.7346940264105797e-03
+
+ 4.4127859175205231e-02 -3.8045680522918701e-01
+ <_>
+
+ 0 -1 1089 3.4512639977037907e-03
+
+ -4.2947210371494293e-02 4.6074831485748291e-01
+ <_>
+
+ 0 -1 1090 5.6996050989255309e-04
+
+ 6.6926121711730957e-02 -2.9685848951339722e-01
+ <_>
+
+ 0 -1 1091 -5.3889099508523941e-02
+
+ -1. 3.9760880172252655e-03
+ <_>
+
+ 0 -1 1092 1.0263220174238086e-03
+
+ -1.1138930171728134e-01 1.7764210700988770e-01
+ <_>
+
+ 0 -1 1093 3.9374440908432007e-02
+
+ 1.2977429665625095e-02 -6.3669937849044800e-01
+ <_>
+
+ 0 -1 1094 1.8777979537844658e-02
+
+ -3.9334569126367569e-02 4.5990169048309326e-01
+ <_>
+
+ 0 -1 1095 1.5851920470595360e-03
+
+ -1.0917869955301285e-01 5.6247789412736893e-02
+ <_>
+
+ 0 -1 1096 -1.0857740417122841e-02
+
+ -2.0176340639591217e-01 9.0685456991195679e-02
+ <_>
+
+ 0 -1 1097 4.4399261474609375e-02
+
+ 1.9891490228474140e-03 -9.9981158971786499e-01
+ <_>
+
+ 0 -1 1098 -1.7311190022155643e-03
+
+ 1.4699029922485352e-01 -1.4069539308547974e-01
+ <_>
+
+ 0 -1 1099 -1.6609770245850086e-03
+
+ 1.6190530359745026e-01 -5.5535599589347839e-02
+ <_>
+
+ 0 -1 1100 -4.3332851491868496e-03
+
+ -3.3971568942070007e-01 4.3209198862314224e-02
+ <_>
+
+ 0 -1 1101 -4.4786658691009507e-05
+
+ 1.0217490047216415e-01 -1.0289809852838516e-01
+ <_>
+
+ 0 -1 1102 -1.2255939655005932e-02
+
+ 4.6331259608268738e-01 -3.8829129189252853e-02
+ <_>
+
+ 0 -1 1103 3.1728390604257584e-02
+
+ -1.0918959975242615e-02 1.9252130389213562e-01
+ <_>
+
+ 0 -1 1104 8.6054168641567230e-03
+
+ 5.3962308913469315e-02 -3.3835870027542114e-01
+ <_>
+
+ 0 -1 1105 2.4249579291790724e-03
+
+ -4.3876059353351593e-02 2.4977789819240570e-01
+ <_>
+
+ 0 -1 1106 -1.9957860931754112e-03
+
+ 1.1398400366306305e-01 -1.7925310134887695e-01
+ <_>
+
+ 0 -1 1107 4.6042509377002716e-02
+
+ 2.0680939778685570e-03 -8.7673932313919067e-01
+ <_>
+
+ 0 -1 1108 2.4898271076381207e-03
+
+ -6.9595612585544586e-02 2.6142540574073792e-01
+ <_>
+
+ 0 -1 1109 1.0052820434793830e-03
+
+ 4.5501660555601120e-02 -1.2399580329656601e-01
+ <_>
+
+ 0 -1 1110 9.0297553688287735e-03
+
+ -7.1272410452365875e-02 2.2919359803199768e-01
+ <_>
+
+ 0 -1 1111 1.2028490193188190e-02
+
+ 2.0230330526828766e-02 -3.4052988886833191e-01
+ <_>
+
+ 0 -1 1112 2.3313730489462614e-03
+
+ 8.7259337306022644e-02 -2.3195190727710724e-01
+ <_>
+
+ 0 -1 1113 9.5184362726286054e-04
+
+ -2.3168809711933136e-01 5.5022191256284714e-02
+ <_>
+
+ 0 -1 1114 9.6378661692142487e-03
+
+ -4.1655559092760086e-02 4.2928260564804077e-01
+ <_>
+
+ 0 -1 1115 1.3566980138421059e-02
+
+ 4.5669659972190857e-02 -2.2501240670681000e-01
+ <_>
+
+ 0 -1 1116 3.3653501421213150e-02
+
+ -6.7861579358577728e-02 3.6967611312866211e-01
+ <_>
+
+ 0 -1 1117 -6.0395020991563797e-02
+
+ -9.0887361764907837e-01 3.8193699438124895e-03
+ <_>
+
+ 0 -1 1118 1.3169209705665708e-03
+
+ -1.5941339731216431e-01 1.4766550064086914e-01
+ <_>
+
+ 0 -1 1119 -9.7704064100980759e-03
+
+ -1.2848410010337830e-01 4.7832399606704712e-02
+ <_>
+
+ 0 -1 1120 -4.5100511051714420e-03
+
+ 1.2574909627437592e-01 -2.1964469552040100e-01
+ <_>
+
+ 0 -1 1121 -2.0346629898995161e-03
+
+ -1.8574400246143341e-01 4.9177091568708420e-02
+ <_>
+
+ 0 -1 1122 1.3294390402734280e-02
+
+ 9.1497242450714111e-02 -2.1343930065631866e-01
+ <_>
+
+ 0 -1 1123 -4.0054250508546829e-02
+
+ 3.1770059466362000e-01 -3.1080769374966621e-02
+ <_>
+
+ 0 -1 1124 2.5492990389466286e-02
+
+ 3.8877040147781372e-02 -4.5658990740776062e-01
+ <_>
+
+ 0 -1 1125 -3.8089688867330551e-02
+
+ 6.6615498065948486e-01 -1.9895339384675026e-02
+ <_>
+
+ 0 -1 1126 -2.1308319270610809e-01
+
+ -8.6534178256988525e-01 2.0898429676890373e-02
+ <_>
+
+ 0 -1 1127 -8.9727543294429779e-02
+
+ 2.5725919008255005e-01 -4.6261668205261230e-02
+ <_>
+
+ 0 -1 1128 2.5075700134038925e-02
+
+ 4.1259508579969406e-02 -3.7666648626327515e-01
+ <_>
+
+ 0 -1 1129 2.3366149514913559e-02
+
+ -7.2202831506729126e-02 2.4737030267715454e-01
+ <_>
+
+ 0 -1 1130 2.8038409072905779e-04
+
+ -7.9473547637462616e-02 2.2478230297565460e-01
+ <_>
+
+ 0 -1 1131 8.2364194095134735e-03
+
+ 5.1211010664701462e-02 -1.3328659534454346e-01
+ <_>
+
+ 0 -1 1132 5.3922779858112335e-02
+
+ 1.7108399420976639e-02 -8.9256042242050171e-01
+ <_>
+
+ 0 -1 1133 2.7015779633074999e-03
+
+ -1.8405599892139435e-01 1.2830390036106110e-01
+ <_>
+
+ 0 -1 1134 -1.6505690291523933e-02
+
+ 6.2239181995391846e-01 -2.6413690298795700e-02
+ <_>
+
+ 0 -1 1135 -1.8418730469420552e-03
+
+ -1.2646800279617310e-01 4.8690851777791977e-02
+ <_>
+
+ 0 -1 1136 5.1953629590570927e-03
+
+ 4.5653700828552246e-02 -3.2519981265068054e-01
+ <_>
+
+ 0 -1 1137 5.0785308703780174e-03
+
+ 4.0703259408473969e-02 -2.0620769262313843e-01
+ <_>
+
+ 0 -1 1138 5.0687040202319622e-03
+
+ -7.6456248760223389e-02 2.5867408514022827e-01
+ <_>
+
+ 0 -1 1139 -1.1892319656908512e-02
+
+ -2.2366219758987427e-01 3.0855409801006317e-02
+ <_>
+
+ 0 -1 1140 2.4257500190287828e-03
+
+ -7.1597889065742493e-02 2.6108819246292114e-01
+ <_>
+
+ 0 -1 1141 -1.1990379542112350e-02
+
+ 2.2678479552268982e-01 -1.0305509716272354e-01
+ <_>
+
+ 0 -1 1142 -2.2772200405597687e-02
+
+ -2.3770140111446381e-01 7.6630853116512299e-02
+ <_>
+ 78
+ -3.0664699554443359e+01
+
+ <_>
+
+ 0 -1 1143 3.3625920768827200e-03
+
+ -1.8268440663814545e-01 1.5935519337654114e-01
+ <_>
+
+ 0 -1 1144 4.4937757775187492e-03
+
+ -8.9438192546367645e-02 2.8422310948371887e-01
+ <_>
+
+ 0 -1 1145 -8.8971032528206706e-04
+
+ 9.5665588974952698e-02 -1.9407069683074951e-01
+ <_>
+
+ 0 -1 1146 2.6789100375026464e-03
+
+ -1.0152669996023178e-01 1.7864160239696503e-01
+ <_>
+
+ 0 -1 1147 -4.0554129518568516e-03
+
+ -2.3337660729885101e-01 1.2279739975929260e-01
+ <_>
+
+ 0 -1 1148 -1.7742250114679337e-02
+
+ 1.9190870225429535e-01 -3.1710729002952576e-02
+ <_>
+
+ 0 -1 1149 3.0996970599517226e-04
+
+ -1.9344709813594818e-01 9.9541679024696350e-02
+ <_>
+
+ 0 -1 1150 -3.7737619131803513e-03
+
+ -2.0298850536346436e-01 7.9316012561321259e-02
+ <_>
+
+ 0 -1 1151 1.4448439469560981e-03
+
+ -5.9811491519212723e-02 4.1375398635864258e-01
+ <_>
+
+ 0 -1 1152 4.1589159518480301e-03
+
+ -9.2934109270572662e-02 7.7575348317623138e-02
+ <_>
+
+ 0 -1 1153 9.7764004021883011e-03
+
+ 5.3027391433715820e-02 -3.6435180902481079e-01
+ <_>
+
+ 0 -1 1154 -2.8739850968122482e-03
+
+ 1.2728120386600494e-01 -3.2182350754737854e-02
+ <_>
+
+ 0 -1 1155 4.3552028946578503e-03
+
+ -1.4472070336341858e-01 1.4171679317951202e-01
+ <_>
+
+ 0 -1 1156 -1.2132039666175842e-01
+
+ 1.5284240245819092e-01 -2.6948520913720131e-02
+ <_>
+
+ 0 -1 1157 7.5531532056629658e-03
+
+ 1.0153439640998840e-01 -1.8715800344944000e-01
+ <_>
+
+ 0 -1 1158 4.8978552222251892e-03
+
+ 2.8034990653395653e-02 -1.4224380254745483e-01
+ <_>
+
+ 0 -1 1159 -1.8711129669100046e-03
+
+ 1.5129889547824860e-01 -1.3912929594516754e-01
+ <_>
+
+ 0 -1 1160 4.1867699474096298e-02
+
+ 1.8230549991130829e-02 -5.6771957874298096e-01
+ <_>
+
+ 0 -1 1161 -8.4031058941036463e-04
+
+ 1.5392039716243744e-01 -1.2112110108137131e-01
+ <_>
+
+ 0 -1 1162 3.6289851414039731e-04
+
+ -7.9913586378097534e-02 7.0097483694553375e-02
+ <_>
+
+ 0 -1 1163 -4.4498889474198222e-04
+
+ 1.6784679889678955e-01 -1.3805930316448212e-01
+ <_>
+
+ 0 -1 1164 2.2194290068000555e-03
+
+ 5.8453138917684555e-02 -1.2374790012836456e-01
+ <_>
+
+ 0 -1 1165 -2.5759059935808182e-03
+
+ 2.2619499266147614e-01 -8.6251437664031982e-02
+ <_>
+
+ 0 -1 1166 5.8989811688661575e-02
+
+ 6.9204131141304970e-03 -7.3367577791213989e-01
+ <_>
+
+ 0 -1 1167 -2.7889141440391541e-01
+
+ 4.6728101372718811e-01 -3.8612861186265945e-02
+ <_>
+
+ 0 -1 1168 -5.3824000060558319e-03
+
+ -1.6939850151538849e-01 6.1394538730382919e-02
+ <_>
+
+ 0 -1 1169 -8.9165568351745605e-04
+
+ -2.4867910146713257e-01 7.6590277254581451e-02
+ <_>
+
+ 0 -1 1170 1.2071889825165272e-02
+
+ 8.9360373094677925e-03 -2.7028709650039673e-01
+ <_>
+
+ 0 -1 1171 3.8453561137430370e-04
+
+ 9.9488303065299988e-02 -2.1522629261016846e-01
+ <_>
+
+ 0 -1 1172 -2.2118990309536457e-03
+
+ 4.0786389261484146e-02 -1.1563809961080551e-01
+ <_>
+
+ 0 -1 1173 2.0960820838809013e-02
+
+ -3.1355928629636765e-02 7.1006178855895996e-01
+ <_>
+
+ 0 -1 1174 -3.9021030534058809e-03
+
+ -1.7460019886493683e-01 4.0775351226329803e-02
+ <_>
+
+ 0 -1 1175 -4.5169141230871901e-05
+
+ 1.2105180323123932e-01 -1.6618220508098602e-01
+ <_>
+
+ 0 -1 1176 6.9195672869682312e-02
+
+ 7.6447450555860996e-03 -5.9211570024490356e-01
+ <_>
+
+ 0 -1 1177 -1.1615910334512591e-03
+
+ 2.2584970295429230e-01 -9.1772772371768951e-02
+ <_>
+
+ 0 -1 1178 4.5347518607741222e-05
+
+ -2.0863719284534454e-01 9.0364061295986176e-02
+ <_>
+
+ 0 -1 1179 -1.9045149907469749e-02
+
+ 4.2344009876251221e-01 -4.6018179506063461e-02
+ <_>
+
+ 0 -1 1180 4.1966438293457031e-03
+
+ -2.8369670733809471e-02 3.0800709128379822e-01
+ <_>
+
+ 0 -1 1181 2.5357000413350761e-04
+
+ -2.8971961140632629e-01 7.5374223291873932e-02
+ <_>
+
+ 0 -1 1182 1.0817909985780716e-01
+
+ -1.4286429621279240e-02 7.2823339700698853e-01
+ <_>
+
+ 0 -1 1183 -5.5140778422355652e-03
+
+ -1.8854649364948273e-01 1.1378549784421921e-01
+ <_>
+
+ 0 -1 1184 5.5264509283006191e-03
+
+ 7.0834018290042877e-02 -1.8397599458694458e-01
+ <_>
+
+ 0 -1 1185 6.4198831096291542e-03
+
+ -1.1449480056762695e-01 1.9120390713214874e-01
+ <_>
+
+ 0 -1 1186 1.9314220547676086e-01
+
+ 1.4066229574382305e-02 -6.9772118330001831e-01
+ <_>
+
+ 0 -1 1187 4.0670208632946014e-02
+
+ -2.4279089644551277e-02 7.8828179836273193e-01
+ <_>
+
+ 0 -1 1188 -2.1965131163597107e-03
+
+ -2.0105579495429993e-01 5.1050510257482529e-02
+ <_>
+
+ 0 -1 1189 -4.7381771728396416e-03
+
+ 2.5222310423851013e-01 -7.3429226875305176e-02
+ <_>
+
+ 0 -1 1190 7.1773640811443329e-02
+
+ -9.0609909966588020e-03 9.2946898937225342e-01
+ <_>
+
+ 0 -1 1191 6.9466611603274941e-04
+
+ 1.0625690221786499e-01 -1.9162459671497345e-01
+ <_>
+
+ 0 -1 1192 2.6388010010123253e-03
+
+ 6.3330717384815216e-02 -2.0404089987277985e-01
+ <_>
+
+ 0 -1 1193 -3.1406691414304078e-04
+
+ 1.7990510165691376e-01 -9.8495960235595703e-02
+ <_>
+
+ 0 -1 1194 -5.8691151207312942e-04
+
+ 8.5071258246898651e-02 -7.6974540948867798e-02
+ <_>
+
+ 0 -1 1195 1.0376359568908811e-03
+
+ -1.1096309870481491e-01 1.5985070168972015e-01
+ <_>
+
+ 0 -1 1196 1.6373570542782545e-03
+
+ 1.1128730326890945e-01 -1.2352730333805084e-01
+ <_>
+
+ 0 -1 1197 -7.3773309122771025e-04
+
+ 1.2890860438346863e-01 -1.4294579625129700e-01
+ <_>
+
+ 0 -1 1198 -1.6841450706124306e-02
+
+ -2.4231070280075073e-01 2.0597470924258232e-02
+ <_>
+
+ 0 -1 1199 -3.0590690672397614e-02
+
+ 3.3513951301574707e-01 -4.7183569520711899e-02
+ <_>
+
+ 0 -1 1200 1.0214540176093578e-02
+
+ 5.5497199296951294e-02 -2.3405939340591431e-01
+ <_>
+
+ 0 -1 1201 -1.1853770120069385e-03
+
+ 9.2074163258075714e-02 -1.7347140610218048e-01
+ <_>
+
+ 0 -1 1202 1.1729650432243943e-03
+
+ -8.4075942635536194e-02 2.0689530670642853e-01
+ <_>
+
+ 0 -1 1203 1.0894170030951500e-02
+
+ 5.6475941091775894e-02 -3.1677180528640747e-01
+ <_>
+
+ 0 -1 1204 -2.0437049679458141e-03
+
+ 1.8796369433403015e-01 -9.8889023065567017e-02
+ <_>
+
+ 0 -1 1205 -5.7676038704812527e-03
+
+ -2.5189259648323059e-01 7.5108267366886139e-02
+ <_>
+
+ 0 -1 1206 6.9624483585357666e-02
+
+ -1.7661379650235176e-02 4.3390399217605591e-01
+ <_>
+
+ 0 -1 1207 -3.1853429391048849e-04
+
+ -2.9378080368041992e-01 5.8162420988082886e-02
+ <_>
+
+ 0 -1 1208 1.7543470021337271e-03
+
+ 2.6858489960432053e-02 -1.5225639939308167e-01
+ <_>
+
+ 0 -1 1209 1.2951970566064119e-03
+
+ -7.1769118309020996e-02 3.8101229071617126e-01
+ <_>
+
+ 0 -1 1210 2.0549140870571136e-02
+
+ -2.3171430453658104e-02 2.7228319644927979e-01
+ <_>
+
+ 0 -1 1211 2.7475480455905199e-03
+
+ 6.7207306623458862e-02 -2.7162951231002808e-01
+ <_>
+
+ 0 -1 1212 5.2633951418101788e-03
+
+ -1.3931609690189362e-01 1.1821229755878448e-01
+ <_>
+
+ 0 -1 1213 -5.2199261263012886e-03
+
+ -3.3213511109352112e-01 4.7329191118478775e-02
+ <_>
+
+ 0 -1 1214 9.9096707999706268e-03
+
+ -6.9706782698631287e-02 1.9954280555248260e-01
+ <_>
+
+ 0 -1 1215 -1.0334379971027374e-01
+
+ 4.2418560385704041e-01 -3.9896268397569656e-02
+ <_>
+
+ 0 -1 1216 -1.3322319835424423e-02
+
+ -2.5508868694305420e-01 4.1351031512022018e-02
+ <_>
+
+ 0 -1 1217 1.7832260346040130e-03
+
+ -1.7664439976215363e-01 1.0336239635944366e-01
+ <_>
+
+ 0 -1 1218 6.3282333314418793e-02
+
+ 1.2395679950714111e-02 -4.6355250477790833e-01
+ <_>
+
+ 0 -1 1219 -5.1022358238697052e-03
+
+ 4.0670639276504517e-01 -5.0193451344966888e-02
+ <_>
+
+ 0 -1 1220 3.9891529828310013e-02
+
+ 3.7219129502773285e-02 -5.5696451663970947e-01
+
+ <_>
+
+ <_>
+ 3 4 12 16 -1.
+ <_>
+ 7 4 4 16 3.
+ <_>
+
+ <_>
+ 11 0 2 20 -1.
+ <_>
+ 11 10 2 10 2.
+ <_>
+
+ <_>
+ 4 1 4 22 -1.
+ <_>
+ 4 12 4 11 2.
+ <_>
+
+ <_>
+ 9 8 7 12 -1.
+ <_>
+ 9 14 7 6 2.
+ <_>
+
+ <_>
+ 6 0 6 10 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 1 18 18 5 -1.
+ <_>
+ 1 18 9 5 2.
+ <_>
+
+ <_>
+ 4 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 6 17 10 6 -1.
+ <_>
+ 6 20 10 3 2.
+ <_>
+
+ <_>
+ 0 0 4 20 -1.
+ <_>
+ 0 10 4 10 2.
+ <_>
+
+ <_>
+ 3 0 16 14 -1.
+ <_>
+ 3 7 16 7 2.
+ <_>
+
+ <_>
+ 5 1 4 13 -1.
+ <_>
+ 7 1 2 13 2.
+ <_>
+
+ <_>
+ 1 8 18 12 -1.
+ <_>
+ 10 8 9 6 2.
+ <_>
+ 1 14 9 6 2.
+ <_>
+
+ <_>
+ 2 0 15 21 -1.
+ <_>
+ 7 0 5 21 3.
+ <_>
+
+ <_>
+ 1 5 18 18 -1.
+ <_>
+ 10 5 9 9 2.
+ <_>
+ 1 14 9 9 2.
+ <_>
+
+ <_>
+ 2 19 15 3 -1.
+ <_>
+ 7 19 5 3 3.
+ <_>
+
+ <_>
+ 7 20 12 3 -1.
+ <_>
+ 7 20 6 3 2.
+ <_>
+
+ <_>
+ 1 21 14 2 -1.
+ <_>
+ 8 21 7 2 2.
+ <_>
+
+ <_>
+ 0 16 18 6 -1.
+ <_>
+ 6 16 6 6 3.
+ <_>
+
+ <_>
+ 8 3 4 20 -1.
+ <_>
+ 8 13 4 10 2.
+ <_>
+
+ <_>
+ 0 19 18 3 -1.
+ <_>
+ 9 19 9 3 2.
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 2 0 9 5 -1.
+ <_>
+ 5 0 3 5 3.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 3 9 6 14 -1.
+ <_>
+ 5 9 2 14 3.
+ <_>
+
+ <_>
+ 12 3 3 18 -1.
+ <_>
+ 12 12 3 9 2.
+ <_>
+
+ <_>
+ 1 14 4 9 -1.
+ <_>
+ 3 14 2 9 2.
+ <_>
+
+ <_>
+ 7 15 11 8 -1.
+ <_>
+ 7 17 11 4 2.
+ <_>
+
+ <_>
+ 0 7 6 10 -1.
+ <_>
+ 0 7 3 5 2.
+ <_>
+ 3 12 3 5 2.
+ <_>
+
+ <_>
+ 10 6 4 13 -1.
+ <_>
+ 10 6 2 13 2.
+ <_>
+
+ <_>
+ 5 6 4 13 -1.
+ <_>
+ 7 6 2 13 2.
+ <_>
+
+ <_>
+ 8 2 6 8 -1.
+ <_>
+ 8 2 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 19 12 -1.
+ <_>
+ 0 17 19 6 2.
+ <_>
+
+ <_>
+ 0 18 6 5 -1.
+ <_>
+ 3 18 3 5 2.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 0 20 15 3 -1.
+ <_>
+ 5 20 5 3 3.
+ <_>
+
+ <_>
+ 9 19 8 4 -1.
+ <_>
+ 9 19 4 4 2.
+ <_>
+
+ <_>
+ 0 17 9 6 -1.
+ <_>
+ 3 17 3 6 3.
+ <_>
+
+ <_>
+ 14 17 5 6 -1.
+ <_>
+ 14 20 5 3 2.
+ <_>
+
+ <_>
+ 2 2 15 14 -1.
+ <_>
+ 7 2 5 14 3.
+ <_>
+
+ <_>
+ 14 17 5 6 -1.
+ <_>
+ 14 20 5 3 2.
+ <_>
+
+ <_>
+ 0 17 5 6 -1.
+ <_>
+ 0 20 5 3 2.
+ <_>
+
+ <_>
+ 3 0 13 8 -1.
+ <_>
+ 3 4 13 4 2.
+ <_>
+
+ <_>
+ 0 21 14 2 -1.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 8 4 4 15 -1.
+ <_>
+ 9 4 2 15 2.
+ <_>
+
+ <_>
+ 1 18 8 5 -1.
+ <_>
+ 5 18 4 5 2.
+ <_>
+
+ <_>
+ 8 4 4 15 -1.
+ <_>
+ 9 4 2 15 2.
+ <_>
+
+ <_>
+ 7 4 4 15 -1.
+ <_>
+ 8 4 2 15 2.
+ <_>
+
+ <_>
+ 11 11 8 8 -1.
+ <_>
+ 15 11 4 4 2.
+ <_>
+ 11 15 4 4 2.
+ <_>
+
+ <_>
+ 4 13 6 7 -1.
+ <_>
+ 6 13 2 7 3.
+ <_>
+
+ <_>
+ 3 1 8 13 -1.
+ <_>
+ 7 1 4 13 2.
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 0 21 18 2 -1.
+ <_>
+ 9 21 9 2 2.
+ <_>
+
+ <_>
+ 7 18 8 5 -1.
+ <_>
+ 7 18 4 5 2.
+ <_>
+
+ <_>
+ 4 17 8 6 -1.
+ <_>
+ 8 17 4 6 2.
+ <_>
+
+ <_>
+ 10 2 7 10 -1.
+ <_>
+ 10 2 7 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 2 14 -1.
+ <_>
+ 3 9 1 14 2.
+ <_>
+
+ <_>
+ 15 7 2 16 -1.
+ <_>
+ 15 7 1 16 2.
+ <_>
+
+ <_>
+ 1 8 4 15 -1.
+ <_>
+ 3 8 2 15 2.
+ <_>
+
+ <_>
+ 14 0 3 14 -1.
+ <_>
+ 14 0 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 9 6 8 9 -1.
+ <_>
+ 9 6 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 8 15 11 8 -1.
+ <_>
+ 8 17 11 4 2.
+ <_>
+
+ <_>
+ 5 7 4 10 -1.
+ <_>
+ 7 7 2 10 2.
+ <_>
+
+ <_>
+ 10 15 9 8 -1.
+ <_>
+ 10 17 9 4 2.
+ <_>
+
+ <_>
+ 0 15 9 8 -1.
+ <_>
+ 0 17 9 4 2.
+ <_>
+
+ <_>
+ 2 1 17 18 -1.
+ <_>
+ 2 10 17 9 2.
+ <_>
+
+ <_>
+ 2 0 16 2 -1.
+ <_>
+ 2 0 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 6 0 6 10 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 10 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 2 4 15 11 -1.
+ <_>
+ 7 4 5 11 3.
+ <_>
+
+ <_>
+ 15 15 4 8 -1.
+ <_>
+ 15 15 2 8 2.
+ <_>
+
+ <_>
+ 0 15 4 8 -1.
+ <_>
+ 2 15 2 8 2.
+ <_>
+
+ <_>
+ 5 6 4 11 -1.
+ <_>
+ 7 6 2 11 2.
+ <_>
+
+ <_>
+ 3 17 16 4 -1.
+ <_>
+ 7 17 8 4 2.
+ <_>
+
+ <_>
+ 9 3 10 8 -1.
+ <_>
+ 9 3 5 8 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 7 10 -1.
+ <_>
+ 12 6 7 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 6 5 -1.
+ <_>
+ 5 0 3 5 2.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 2 20 14 3 -1.
+ <_>
+ 9 20 7 3 2.
+ <_>
+
+ <_>
+ 4 21 14 2 -1.
+ <_>
+ 4 21 7 2 2.
+ <_>
+
+ <_>
+ 8 8 3 14 -1.
+ <_>
+ 9 8 1 14 3.
+ <_>
+
+ <_>
+ 8 9 3 14 -1.
+ <_>
+ 9 9 1 14 3.
+ <_>
+
+ <_>
+ 5 7 9 16 -1.
+ <_>
+ 5 11 9 8 2.
+ <_>
+
+ <_>
+ 11 13 6 8 -1.
+ <_>
+ 11 17 6 4 2.
+ <_>
+
+ <_>
+ 4 17 7 6 -1.
+ <_>
+ 4 19 7 2 3.
+ <_>
+
+ <_>
+ 2 13 16 8 -1.
+ <_>
+ 10 13 8 4 2.
+ <_>
+ 2 17 8 4 2.
+ <_>
+
+ <_>
+ 2 18 15 3 -1.
+ <_>
+ 2 19 15 1 3.
+ <_>
+
+ <_>
+ 2 13 15 3 -1.
+ <_>
+ 7 13 5 3 3.
+ <_>
+
+ <_>
+ 8 0 11 16 -1.
+ <_>
+ 8 4 11 8 2.
+ <_>
+
+ <_>
+ 0 0 19 18 -1.
+ <_>
+ 0 6 19 6 3.
+ <_>
+
+ <_>
+ 8 0 11 16 -1.
+ <_>
+ 8 4 11 8 2.
+ <_>
+
+ <_>
+ 0 1 4 20 -1.
+ <_>
+ 0 6 4 10 2.
+ <_>
+
+ <_>
+ 3 6 15 4 -1.
+ <_>
+ 8 6 5 4 3.
+ <_>
+
+ <_>
+ 0 9 18 6 -1.
+ <_>
+ 0 9 9 3 2.
+ <_>
+ 9 12 9 3 2.
+ <_>
+
+ <_>
+ 8 5 3 14 -1.
+ <_>
+ 9 5 1 14 3.
+ <_>
+
+ <_>
+ 1 0 6 8 -1.
+ <_>
+ 3 0 2 8 3.
+ <_>
+
+ <_>
+ 1 6 18 6 -1.
+ <_>
+ 10 6 9 3 2.
+ <_>
+ 1 9 9 3 2.
+ <_>
+
+ <_>
+ 7 7 4 15 -1.
+ <_>
+ 8 7 2 15 2.
+ <_>
+
+ <_>
+ 11 5 8 10 -1.
+ <_>
+ 11 10 8 5 2.
+ <_>
+
+ <_>
+ 0 5 8 10 -1.
+ <_>
+ 0 10 8 5 2.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 2 16 9 5 -1.
+ <_>
+ 5 16 3 5 3.
+ <_>
+
+ <_>
+ 13 11 6 11 -1.
+ <_>
+ 13 11 3 11 2.
+ <_>
+
+ <_>
+ 5 8 4 11 -1.
+ <_>
+ 7 8 2 11 2.
+ <_>
+
+ <_>
+ 5 7 12 5 -1.
+ <_>
+ 8 7 6 5 2.
+ <_>
+
+ <_>
+ 2 11 15 3 -1.
+ <_>
+ 7 11 5 3 3.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 7 1 6 3 3.
+ <_>
+
+ <_>
+ 5 1 14 4 -1.
+ <_>
+ 5 1 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 9 18 10 -1.
+ <_>
+ 10 9 9 5 2.
+ <_>
+ 1 14 9 5 2.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 8 7 4 14 -1.
+ <_>
+ 9 7 2 14 2.
+ <_>
+
+ <_>
+ 0 1 19 16 -1.
+ <_>
+ 0 9 19 8 2.
+ <_>
+
+ <_>
+ 9 7 3 14 -1.
+ <_>
+ 10 7 1 14 3.
+ <_>
+
+ <_>
+ 2 11 14 6 -1.
+ <_>
+ 2 11 7 3 2.
+ <_>
+ 9 14 7 3 2.
+ <_>
+
+ <_>
+ 9 7 3 14 -1.
+ <_>
+ 10 7 1 14 3.
+ <_>
+
+ <_>
+ 7 7 3 14 -1.
+ <_>
+ 8 7 1 14 3.
+ <_>
+
+ <_>
+ 7 17 5 6 -1.
+ <_>
+ 7 20 5 3 2.
+ <_>
+
+ <_>
+ 2 6 9 15 -1.
+ <_>
+ 5 11 3 5 9.
+ <_>
+
+ <_>
+ 8 0 6 10 -1.
+ <_>
+ 11 0 3 5 2.
+ <_>
+ 8 5 3 5 2.
+ <_>
+
+ <_>
+ 3 2 6 21 -1.
+ <_>
+ 5 9 2 7 9.
+ <_>
+
+ <_>
+ 9 19 10 4 -1.
+ <_>
+ 9 19 5 4 2.
+ <_>
+
+ <_>
+ 2 8 4 8 -1.
+ <_>
+ 4 8 2 8 2.
+ <_>
+
+ <_>
+ 11 1 2 22 -1.
+ <_>
+ 11 12 2 11 2.
+ <_>
+
+ <_>
+ 0 20 15 3 -1.
+ <_>
+ 5 20 5 3 3.
+ <_>
+
+ <_>
+ 10 19 8 4 -1.
+ <_>
+ 10 19 4 4 2.
+ <_>
+
+ <_>
+ 1 19 8 4 -1.
+ <_>
+ 5 19 4 4 2.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 13 2 3 10 -1.
+ <_>
+ 13 2 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 6 9 -1.
+ <_>
+ 9 4 3 9 2.
+ <_>
+
+ <_>
+ 10 7 2 10 -1.
+ <_>
+ 10 7 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 15 9 -1.
+ <_>
+ 7 1 5 9 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 5 5 6 7 -1.
+ <_>
+ 7 5 2 7 3.
+ <_>
+
+ <_>
+ 10 7 2 10 -1.
+ <_>
+ 10 7 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 9 7 10 2 -1.
+ <_>
+ 9 7 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 16 4 7 -1.
+ <_>
+ 13 16 2 7 2.
+ <_>
+
+ <_>
+ 6 9 4 10 -1.
+ <_>
+ 8 9 2 10 2.
+ <_>
+
+ <_>
+ 5 18 14 4 -1.
+ <_>
+ 12 18 7 2 2.
+ <_>
+ 5 20 7 2 2.
+ <_>
+
+ <_>
+ 5 1 12 3 -1.
+ <_>
+ 5 1 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 2 22 -1.
+ <_>
+ 11 11 2 11 2.
+ <_>
+
+ <_>
+ 3 15 4 8 -1.
+ <_>
+ 5 15 2 8 2.
+ <_>
+
+ <_>
+ 11 0 2 14 -1.
+ <_>
+ 11 0 1 14 2.
+ <_>
+
+ <_>
+ 6 0 2 14 -1.
+ <_>
+ 7 0 1 14 2.
+ <_>
+
+ <_>
+ 11 0 2 20 -1.
+ <_>
+ 11 0 1 20 2.
+ <_>
+
+ <_>
+ 1 19 16 4 -1.
+ <_>
+ 5 19 8 4 2.
+ <_>
+
+ <_>
+ 11 0 2 20 -1.
+ <_>
+ 11 0 1 20 2.
+ <_>
+
+ <_>
+ 6 0 2 20 -1.
+ <_>
+ 7 0 1 20 2.
+ <_>
+
+ <_>
+ 11 0 2 22 -1.
+ <_>
+ 11 11 2 11 2.
+ <_>
+
+ <_>
+ 0 18 14 4 -1.
+ <_>
+ 0 18 7 2 2.
+ <_>
+ 7 20 7 2 2.
+ <_>
+
+ <_>
+ 1 1 18 8 -1.
+ <_>
+ 10 1 9 4 2.
+ <_>
+ 1 5 9 4 2.
+ <_>
+
+ <_>
+ 9 8 10 4 -1.
+ <_>
+ 9 8 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 7 15 3 -1.
+ <_>
+ 8 7 5 3 3.
+ <_>
+
+ <_>
+ 8 1 6 8 -1.
+ <_>
+ 8 1 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 3 15 -1.
+ <_>
+ 9 3 1 15 3.
+ <_>
+
+ <_>
+ 1 14 9 6 -1.
+ <_>
+ 4 14 3 6 3.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 0 18 14 3 -1.
+ <_>
+ 0 19 14 1 3.
+ <_>
+
+ <_>
+ 5 20 10 3 -1.
+ <_>
+ 5 20 5 3 2.
+ <_>
+
+ <_>
+ 9 5 10 6 -1.
+ <_>
+ 9 5 5 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 4 15 14 -1.
+ <_>
+ 7 4 5 14 3.
+ <_>
+
+ <_>
+ 0 16 6 7 -1.
+ <_>
+ 3 16 3 7 2.
+ <_>
+
+ <_>
+ 7 18 12 5 -1.
+ <_>
+ 11 18 4 5 3.
+ <_>
+
+ <_>
+ 1 18 15 3 -1.
+ <_>
+ 1 19 15 1 3.
+ <_>
+
+ <_>
+ 4 19 12 4 -1.
+ <_>
+ 8 19 4 4 3.
+ <_>
+
+ <_>
+ 5 0 3 12 -1.
+ <_>
+ 5 6 3 6 2.
+ <_>
+
+ <_>
+ 3 20 16 3 -1.
+ <_>
+ 3 20 8 3 2.
+ <_>
+
+ <_>
+ 0 15 15 8 -1.
+ <_>
+ 0 17 15 4 2.
+ <_>
+
+ <_>
+ 12 14 4 7 -1.
+ <_>
+ 12 14 2 7 2.
+ <_>
+
+ <_>
+ 1 7 15 3 -1.
+ <_>
+ 6 7 5 3 3.
+ <_>
+
+ <_>
+ 10 0 8 4 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+
+ <_>
+ 0 0 18 4 -1.
+ <_>
+ 6 0 6 4 3.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 2 4 15 16 -1.
+ <_>
+ 7 4 5 16 3.
+ <_>
+
+ <_>
+ 4 0 11 12 -1.
+ <_>
+ 4 6 11 6 2.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 4 21 14 2 -1.
+ <_>
+ 4 21 7 2 2.
+ <_>
+
+ <_>
+ 0 21 16 2 -1.
+ <_>
+ 8 21 8 2 2.
+ <_>
+
+ <_>
+ 8 7 4 14 -1.
+ <_>
+ 9 7 2 14 2.
+ <_>
+
+ <_>
+ 1 0 16 12 -1.
+ <_>
+ 5 0 8 12 2.
+ <_>
+
+ <_>
+ 3 17 16 5 -1.
+ <_>
+ 7 17 8 5 2.
+ <_>
+
+ <_>
+ 0 13 6 5 -1.
+ <_>
+ 3 13 3 5 2.
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 13 12 3 6 2.
+ <_>
+
+ <_>
+ 0 12 6 6 -1.
+ <_>
+ 3 12 3 6 2.
+ <_>
+
+ <_>
+ 8 7 4 14 -1.
+ <_>
+ 9 7 2 14 2.
+ <_>
+
+ <_>
+ 7 3 4 20 -1.
+ <_>
+ 7 13 4 10 2.
+ <_>
+
+ <_>
+ 8 6 4 15 -1.
+ <_>
+ 9 6 2 15 2.
+ <_>
+
+ <_>
+ 7 6 4 15 -1.
+ <_>
+ 8 6 2 15 2.
+ <_>
+
+ <_>
+ 13 11 6 12 -1.
+ <_>
+ 16 11 3 6 2.
+ <_>
+ 13 17 3 6 2.
+ <_>
+
+ <_>
+ 0 11 6 12 -1.
+ <_>
+ 0 11 3 6 2.
+ <_>
+ 3 17 3 6 2.
+ <_>
+
+ <_>
+ 11 2 2 14 -1.
+ <_>
+ 11 2 1 14 2.
+ <_>
+
+ <_>
+ 6 2 2 14 -1.
+ <_>
+ 7 2 1 14 2.
+ <_>
+
+ <_>
+ 11 5 3 14 -1.
+ <_>
+ 12 5 1 14 3.
+ <_>
+
+ <_>
+ 2 4 15 10 -1.
+ <_>
+ 7 4 5 10 3.
+ <_>
+
+ <_>
+ 4 0 11 22 -1.
+ <_>
+ 4 11 11 11 2.
+ <_>
+
+ <_>
+ 0 19 14 4 -1.
+ <_>
+ 0 19 7 2 2.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 8 0 4 7 -1.
+ <_>
+ 8 0 2 7 2.
+ <_>
+
+ <_>
+ 7 0 4 15 -1.
+ <_>
+ 8 0 2 15 2.
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 12 9 2 14 -1.
+ <_>
+ 12 9 1 14 2.
+ <_>
+
+ <_>
+ 5 9 2 14 -1.
+ <_>
+ 6 9 1 14 2.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 5 0 3 17 -1.
+ <_>
+ 6 0 1 17 3.
+ <_>
+
+ <_>
+ 4 20 12 3 -1.
+ <_>
+ 4 20 6 3 2.
+ <_>
+
+ <_>
+ 5 2 3 14 -1.
+ <_>
+ 6 2 1 14 3.
+ <_>
+
+ <_>
+ 2 3 15 18 -1.
+ <_>
+ 7 3 5 18 3.
+ <_>
+
+ <_>
+ 7 1 4 7 -1.
+ <_>
+ 9 1 2 7 2.
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 7 0 4 7 -1.
+ <_>
+ 9 0 2 7 2.
+ <_>
+
+ <_>
+ 5 3 12 19 -1.
+ <_>
+ 8 3 6 19 2.
+ <_>
+
+ <_>
+ 2 3 12 19 -1.
+ <_>
+ 5 3 6 19 2.
+ <_>
+
+ <_>
+ 13 8 2 14 -1.
+ <_>
+ 13 8 1 14 2.
+ <_>
+
+ <_>
+ 1 16 12 6 -1.
+ <_>
+ 1 18 12 2 3.
+ <_>
+
+ <_>
+ 13 8 2 14 -1.
+ <_>
+ 13 8 1 14 2.
+ <_>
+
+ <_>
+ 4 8 2 14 -1.
+ <_>
+ 5 8 1 14 2.
+ <_>
+
+ <_>
+ 9 0 10 4 -1.
+ <_>
+ 9 0 5 4 2.
+ <_>
+
+ <_>
+ 6 1 7 22 -1.
+ <_>
+ 6 12 7 11 2.
+ <_>
+
+ <_>
+ 7 17 10 6 -1.
+ <_>
+ 12 17 5 3 2.
+ <_>
+ 7 20 5 3 2.
+ <_>
+
+ <_>
+ 6 6 6 5 -1.
+ <_>
+ 9 6 3 5 2.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 1 0 15 8 -1.
+ <_>
+ 1 4 15 4 2.
+ <_>
+
+ <_>
+ 2 0 16 6 -1.
+ <_>
+ 6 0 8 6 2.
+ <_>
+
+ <_>
+ 2 20 10 3 -1.
+ <_>
+ 7 20 5 3 2.
+ <_>
+
+ <_>
+ 9 19 10 3 -1.
+ <_>
+ 9 19 5 3 2.
+ <_>
+
+ <_>
+ 3 18 6 5 -1.
+ <_>
+ 6 18 3 5 2.
+ <_>
+
+ <_>
+ 9 0 6 9 -1.
+ <_>
+ 11 0 2 9 3.
+ <_>
+
+ <_>
+ 4 0 6 9 -1.
+ <_>
+ 6 0 2 9 3.
+ <_>
+
+ <_>
+ 10 9 4 14 -1.
+ <_>
+ 12 9 2 7 2.
+ <_>
+ 10 16 2 7 2.
+ <_>
+
+ <_>
+ 2 11 4 7 -1.
+ <_>
+ 4 11 2 7 2.
+ <_>
+
+ <_>
+ 12 13 4 9 -1.
+ <_>
+ 12 13 2 9 2.
+ <_>
+
+ <_>
+ 3 13 4 9 -1.
+ <_>
+ 5 13 2 9 2.
+ <_>
+
+ <_>
+ 9 13 10 6 -1.
+ <_>
+ 14 13 5 3 2.
+ <_>
+ 9 16 5 3 2.
+ <_>
+
+ <_>
+ 2 10 15 10 -1.
+ <_>
+ 7 10 5 10 3.
+ <_>
+
+ <_>
+ 10 9 4 14 -1.
+ <_>
+ 12 9 2 7 2.
+ <_>
+ 10 16 2 7 2.
+ <_>
+
+ <_>
+ 5 9 4 14 -1.
+ <_>
+ 5 9 2 7 2.
+ <_>
+ 7 16 2 7 2.
+ <_>
+
+ <_>
+ 12 16 4 7 -1.
+ <_>
+ 12 16 2 7 2.
+ <_>
+
+ <_>
+ 3 16 4 7 -1.
+ <_>
+ 5 16 2 7 2.
+ <_>
+
+ <_>
+ 8 17 7 6 -1.
+ <_>
+ 8 19 7 2 3.
+ <_>
+
+ <_>
+ 0 20 15 3 -1.
+ <_>
+ 5 20 5 3 3.
+ <_>
+
+ <_>
+ 9 15 6 8 -1.
+ <_>
+ 9 19 6 4 2.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 9 0 10 3 -1.
+ <_>
+ 9 0 5 3 2.
+ <_>
+
+ <_>
+ 0 0 10 3 -1.
+ <_>
+ 5 0 5 3 2.
+ <_>
+
+ <_>
+ 10 4 4 10 -1.
+ <_>
+ 10 4 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 10 4 -1.
+ <_>
+ 9 4 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 10 8 4 4 9.
+ <_>
+
+ <_>
+ 1 4 12 12 -1.
+ <_>
+ 5 8 4 4 9.
+ <_>
+
+ <_>
+ 5 6 9 8 -1.
+ <_>
+ 5 8 9 4 2.
+ <_>
+
+ <_>
+ 2 1 15 21 -1.
+ <_>
+ 7 8 5 7 9.
+ <_>
+
+ <_>
+ 1 16 9 7 -1.
+ <_>
+ 4 16 3 7 3.
+ <_>
+
+ <_>
+ 4 5 12 18 -1.
+ <_>
+ 10 5 6 9 2.
+ <_>
+ 4 14 6 9 2.
+ <_>
+
+ <_>
+ 1 20 15 3 -1.
+ <_>
+ 6 20 5 3 3.
+ <_>
+
+ <_>
+ 3 4 16 13 -1.
+ <_>
+ 7 4 8 13 2.
+ <_>
+
+ <_>
+ 9 3 10 8 -1.
+ <_>
+ 9 3 5 8 2.
+ 1
+ <_>
+
+ <_>
+ 11 19 8 4 -1.
+ <_>
+ 11 19 4 4 2.
+ <_>
+
+ <_>
+ 0 19 8 4 -1.
+ <_>
+ 4 19 4 4 2.
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 6 0 6 22 -1.
+ <_>
+ 6 0 3 11 2.
+ <_>
+ 9 11 3 11 2.
+ <_>
+
+ <_>
+ 8 7 3 14 -1.
+ <_>
+ 9 7 1 14 3.
+ <_>
+
+ <_>
+ 5 8 2 14 -1.
+ <_>
+ 6 8 1 14 2.
+ <_>
+
+ <_>
+ 13 11 3 10 -1.
+ <_>
+ 13 16 3 5 2.
+ <_>
+
+ <_>
+ 1 0 16 5 -1.
+ <_>
+ 5 0 8 5 2.
+ <_>
+
+ <_>
+ 9 0 10 7 -1.
+ <_>
+ 9 0 5 7 2.
+ <_>
+
+ <_>
+ 0 0 18 23 -1.
+ <_>
+ 9 0 9 23 2.
+ <_>
+
+ <_>
+ 5 8 12 15 -1.
+ <_>
+ 9 13 4 5 9.
+ <_>
+
+ <_>
+ 3 0 6 7 -1.
+ <_>
+ 5 0 2 7 3.
+ <_>
+
+ <_>
+ 5 8 12 15 -1.
+ <_>
+ 9 13 4 5 9.
+ <_>
+
+ <_>
+ 5 2 4 13 -1.
+ <_>
+ 7 2 2 13 2.
+ <_>
+
+ <_>
+ 3 11 14 2 -1.
+ <_>
+ 3 11 7 2 2.
+ <_>
+
+ <_>
+ 2 12 15 7 -1.
+ <_>
+ 7 12 5 7 3.
+ <_>
+
+ <_>
+ 5 8 12 15 -1.
+ <_>
+ 9 13 4 5 9.
+ <_>
+
+ <_>
+ 0 14 15 9 -1.
+ <_>
+ 5 14 5 9 3.
+ <_>
+
+ <_>
+ 6 15 12 8 -1.
+ <_>
+ 9 15 6 8 2.
+ <_>
+
+ <_>
+ 1 15 12 8 -1.
+ <_>
+ 4 15 6 8 2.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 4 5 4 14 -1.
+ <_>
+ 5 5 2 14 2.
+ <_>
+
+ <_>
+ 11 5 3 14 -1.
+ <_>
+ 12 5 1 14 3.
+ <_>
+
+ <_>
+ 1 10 6 9 -1.
+ <_>
+ 3 10 2 9 3.
+ <_>
+
+ <_>
+ 2 8 16 10 -1.
+ <_>
+ 6 8 8 10 2.
+ <_>
+
+ <_>
+ 6 17 6 6 -1.
+ <_>
+ 6 20 6 3 2.
+ <_>
+
+ <_>
+ 1 10 18 10 -1.
+ <_>
+ 10 10 9 5 2.
+ <_>
+ 1 15 9 5 2.
+ <_>
+
+ <_>
+ 6 0 7 4 -1.
+ <_>
+ 6 2 7 2 2.
+ <_>
+
+ <_>
+ 0 6 19 3 -1.
+ <_>
+ 0 7 19 1 3.
+ <_>
+
+ <_>
+ 9 11 6 6 -1.
+ <_>
+ 9 11 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 9 5 -1.
+ <_>
+ 10 0 3 5 3.
+ <_>
+
+ <_>
+ 0 3 9 4 -1.
+ <_>
+ 0 5 9 2 2.
+ <_>
+
+ <_>
+ 1 18 17 2 -1.
+ <_>
+ 1 19 17 1 2.
+ <_>
+
+ <_>
+ 7 3 4 8 -1.
+ <_>
+ 9 3 2 8 2.
+ <_>
+
+ <_>
+ 9 9 2 14 -1.
+ <_>
+ 9 9 1 14 2.
+ <_>
+
+ <_>
+ 8 8 3 14 -1.
+ <_>
+ 9 8 1 14 3.
+ <_>
+
+ <_>
+ 10 1 9 4 -1.
+ <_>
+ 10 3 9 2 2.
+ <_>
+
+ <_>
+ 0 12 10 3 -1.
+ <_>
+ 5 12 5 3 2.
+ <_>
+
+ <_>
+ 8 6 4 12 -1.
+ <_>
+ 8 12 4 6 2.
+ <_>
+
+ <_>
+ 3 12 4 7 -1.
+ <_>
+ 5 12 2 7 2.
+ <_>
+
+ <_>
+ 6 17 12 6 -1.
+ <_>
+ 12 17 6 3 2.
+ <_>
+ 6 20 6 3 2.
+ <_>
+
+ <_>
+ 0 16 18 6 -1.
+ <_>
+ 9 16 9 6 2.
+ <_>
+
+ <_>
+ 12 0 4 14 -1.
+ <_>
+ 14 0 2 7 2.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 1 21 14 2 -1.
+ <_>
+ 8 21 7 2 2.
+ <_>
+
+ <_>
+ 9 19 8 4 -1.
+ <_>
+ 9 19 4 4 2.
+ <_>
+
+ <_>
+ 1 0 12 4 -1.
+ <_>
+ 5 0 4 4 3.
+ <_>
+
+ <_>
+ 10 1 8 5 -1.
+ <_>
+ 10 1 4 5 2.
+ <_>
+
+ <_>
+ 0 13 6 10 -1.
+ <_>
+ 2 13 2 10 3.
+ <_>
+
+ <_>
+ 8 9 3 14 -1.
+ <_>
+ 9 9 1 14 3.
+ <_>
+
+ <_>
+ 9 7 10 2 -1.
+ <_>
+ 9 7 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 16 15 3 -1.
+ <_>
+ 7 16 5 3 3.
+ <_>
+
+ <_>
+ 5 1 8 17 -1.
+ <_>
+ 9 1 4 17 2.
+ <_>
+
+ <_>
+ 9 19 8 4 -1.
+ <_>
+ 9 19 4 4 2.
+ <_>
+
+ <_>
+ 2 19 8 4 -1.
+ <_>
+ 6 19 4 4 2.
+ <_>
+
+ <_>
+ 10 0 8 7 -1.
+ <_>
+ 10 0 4 7 2.
+ <_>
+
+ <_>
+ 1 0 8 7 -1.
+ <_>
+ 5 0 4 7 2.
+ <_>
+
+ <_>
+ 12 16 7 4 -1.
+ <_>
+ 12 18 7 2 2.
+ <_>
+
+ <_>
+ 7 0 4 14 -1.
+ <_>
+ 9 0 2 14 2.
+ <_>
+
+ <_>
+ 2 18 15 3 -1.
+ <_>
+ 2 19 15 1 3.
+ <_>
+
+ <_>
+ 7 1 4 7 -1.
+ <_>
+ 9 1 2 7 2.
+ <_>
+
+ <_>
+ 11 5 3 15 -1.
+ <_>
+ 12 5 1 15 3.
+ <_>
+
+ <_>
+ 0 10 6 10 -1.
+ <_>
+ 0 10 3 5 2.
+ <_>
+ 3 15 3 5 2.
+ <_>
+
+ <_>
+ 11 5 3 15 -1.
+ <_>
+ 12 5 1 15 3.
+ <_>
+
+ <_>
+ 5 5 3 15 -1.
+ <_>
+ 6 5 1 15 3.
+ <_>
+
+ <_>
+ 6 5 12 12 -1.
+ <_>
+ 6 5 6 12 2.
+ <_>
+
+ <_>
+ 1 4 12 16 -1.
+ <_>
+ 7 4 6 16 2.
+ <_>
+
+ <_>
+ 11 4 6 7 -1.
+ <_>
+ 13 4 2 7 3.
+ <_>
+
+ <_>
+ 1 7 4 16 -1.
+ <_>
+ 1 7 2 8 2.
+ <_>
+ 3 15 2 8 2.
+ <_>
+
+ <_>
+ 11 1 2 22 -1.
+ <_>
+ 11 12 2 11 2.
+ <_>
+
+ <_>
+ 1 18 14 3 -1.
+ <_>
+ 1 19 14 1 3.
+ <_>
+
+ <_>
+ 7 18 12 5 -1.
+ <_>
+ 11 18 4 5 3.
+ <_>
+
+ <_>
+ 1 0 16 19 -1.
+ <_>
+ 5 0 8 19 2.
+ <_>
+
+ <_>
+ 6 17 12 6 -1.
+ <_>
+ 9 17 6 6 2.
+ <_>
+
+ <_>
+ 7 11 8 4 -1.
+ <_>
+ 7 11 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 10 9 3 14 -1.
+ <_>
+ 11 9 1 14 3.
+ <_>
+
+ <_>
+ 2 11 15 8 -1.
+ <_>
+ 7 11 5 8 3.
+ <_>
+
+ <_>
+ 11 6 7 8 -1.
+ <_>
+ 11 6 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 8 7 -1.
+ <_>
+ 8 6 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 9 3 14 -1.
+ <_>
+ 11 9 1 14 3.
+ <_>
+
+ <_>
+ 6 9 3 14 -1.
+ <_>
+ 7 9 1 14 3.
+ <_>
+
+ <_>
+ 7 0 6 12 -1.
+ <_>
+ 7 0 3 12 2.
+ <_>
+
+ <_>
+ 5 2 3 16 -1.
+ <_>
+ 6 2 1 16 3.
+ <_>
+
+ <_>
+ 1 4 15 7 -1.
+ <_>
+ 6 4 5 7 3.
+ <_>
+
+ <_>
+ 12 13 4 8 -1.
+ <_>
+ 12 17 4 4 2.
+ <_>
+
+ <_>
+ 2 11 12 12 -1.
+ <_>
+ 6 15 4 4 9.
+ <_>
+
+ <_>
+ 12 15 5 6 -1.
+ <_>
+ 12 18 5 3 2.
+ <_>
+
+ <_>
+ 0 0 19 16 -1.
+ <_>
+ 0 8 19 8 2.
+ <_>
+
+ <_>
+ 4 20 15 3 -1.
+ <_>
+ 9 20 5 3 3.
+ <_>
+
+ <_>
+ 9 0 4 8 -1.
+ <_>
+ 9 0 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 12 6 -1.
+ <_>
+ 11 15 6 3 2.
+ <_>
+ 5 18 6 3 2.
+ <_>
+
+ <_>
+ 2 15 12 6 -1.
+ <_>
+ 2 15 6 3 2.
+ <_>
+ 8 18 6 3 2.
+ <_>
+
+ <_>
+ 8 0 9 5 -1.
+ <_>
+ 11 0 3 5 3.
+ <_>
+
+ <_>
+ 0 19 14 4 -1.
+ <_>
+ 0 19 7 2 2.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 1 14 18 7 -1.
+ <_>
+ 1 14 9 7 2.
+ <_>
+
+ <_>
+ 5 1 8 8 -1.
+ <_>
+ 5 1 4 4 2.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 9 6 6 12 -1.
+ <_>
+ 9 6 3 12 2.
+ <_>
+
+ <_>
+ 2 0 14 4 -1.
+ <_>
+ 9 0 7 4 2.
+ <_>
+
+ <_>
+ 4 20 15 3 -1.
+ <_>
+ 9 20 5 3 3.
+ <_>
+
+ <_>
+ 0 20 15 3 -1.
+ <_>
+ 5 20 5 3 3.
+ <_>
+
+ <_>
+ 2 6 16 9 -1.
+ <_>
+ 6 6 8 9 2.
+ <_>
+
+ <_>
+ 4 6 6 12 -1.
+ <_>
+ 7 6 3 12 2.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 4 7 4 9 -1.
+ <_>
+ 6 7 2 9 2.
+ <_>
+
+ <_>
+ 13 6 2 16 -1.
+ <_>
+ 13 6 1 16 2.
+ <_>
+
+ <_>
+ 1 5 12 9 -1.
+ <_>
+ 7 5 6 9 2.
+ <_>
+
+ <_>
+ 13 6 2 16 -1.
+ <_>
+ 13 6 1 16 2.
+ <_>
+
+ <_>
+ 4 6 2 16 -1.
+ <_>
+ 5 6 1 16 2.
+ <_>
+
+ <_>
+ 12 0 3 15 -1.
+ <_>
+ 13 0 1 15 3.
+ <_>
+
+ <_>
+ 4 0 3 15 -1.
+ <_>
+ 5 0 1 15 3.
+ <_>
+
+ <_>
+ 6 2 8 8 -1.
+ <_>
+ 8 2 4 8 2.
+ <_>
+
+ <_>
+ 6 0 6 5 -1.
+ <_>
+ 9 0 3 5 2.
+ <_>
+
+ <_>
+ 4 7 11 16 -1.
+ <_>
+ 4 11 11 8 2.
+ <_>
+
+ <_>
+ 7 8 5 8 -1.
+ <_>
+ 7 12 5 4 2.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 1 18 17 3 -1.
+ <_>
+ 1 19 17 1 3.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 1 21 14 2 -1.
+ <_>
+ 8 21 7 2 2.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 2 16 5 6 -1.
+ <_>
+ 2 19 5 3 2.
+ <_>
+
+ <_>
+ 13 11 5 12 -1.
+ <_>
+ 13 15 5 4 3.
+ <_>
+
+ <_>
+ 1 9 16 3 -1.
+ <_>
+ 1 10 16 1 3.
+ <_>
+
+ <_>
+ 7 6 5 9 -1.
+ <_>
+ 7 9 5 3 3.
+ <_>
+
+ <_>
+ 6 0 7 14 -1.
+ <_>
+ 6 7 7 7 2.
+ <_>
+
+ <_>
+ 11 16 6 7 -1.
+ <_>
+ 13 16 2 7 3.
+ <_>
+
+ <_>
+ 1 4 3 15 -1.
+ <_>
+ 2 4 1 15 3.
+ <_>
+
+ <_>
+ 10 0 8 8 -1.
+ <_>
+ 14 0 4 4 2.
+ <_>
+ 10 4 4 4 2.
+ <_>
+
+ <_>
+ 1 9 3 14 -1.
+ <_>
+ 2 9 1 14 3.
+ <_>
+
+ <_>
+ 13 13 5 9 -1.
+ <_>
+ 13 16 5 3 3.
+ <_>
+
+ <_>
+ 1 13 5 9 -1.
+ <_>
+ 1 16 5 3 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 4 14 9 6 -1.
+ <_>
+ 4 17 9 3 2.
+ <_>
+
+ <_>
+ 2 13 10 3 -1.
+ <_>
+ 7 13 5 3 2.
+ <_>
+
+ <_>
+ 9 0 10 5 -1.
+ <_>
+ 9 0 5 5 2.
+ <_>
+
+ <_>
+ 1 8 2 15 -1.
+ <_>
+ 2 8 1 15 2.
+ <_>
+
+ <_>
+ 13 0 6 18 -1.
+ <_>
+ 15 0 2 18 3.
+ <_>
+
+ <_>
+ 0 21 14 2 -1.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 9 19 8 4 -1.
+ <_>
+ 9 19 4 4 2.
+ <_>
+
+ <_>
+ 1 21 16 2 -1.
+ <_>
+ 9 21 8 2 2.
+ <_>
+
+ <_>
+ 2 0 16 4 -1.
+ <_>
+ 6 0 8 4 2.
+ <_>
+
+ <_>
+ 3 0 9 5 -1.
+ <_>
+ 6 0 3 5 3.
+ <_>
+
+ <_>
+ 10 5 8 10 -1.
+ <_>
+ 10 5 8 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 18 8 -1.
+ <_>
+ 0 5 18 4 2.
+ <_>
+
+ <_>
+ 10 5 8 10 -1.
+ <_>
+ 10 5 8 5 2.
+ 1
+ <_>
+
+ <_>
+ 4 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 2 16 6 7 -1.
+ <_>
+ 4 16 2 7 3.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 2 2 15 12 -1.
+ <_>
+ 7 6 5 4 9.
+ <_>
+
+ <_>
+ 5 10 4 9 -1.
+ <_>
+ 7 10 2 9 2.
+ <_>
+
+ <_>
+ 10 7 8 7 -1.
+ <_>
+ 12 9 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 18 18 -1.
+ <_>
+ 0 1 9 9 2.
+ <_>
+ 9 10 9 9 2.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 9 9 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 9 9 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 1 0 8 4 -1.
+ <_>
+ 5 0 4 4 2.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 9 9 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 6 8 -1.
+ <_>
+ 10 9 2 8 3.
+ 1
+ <_>
+
+ <_>
+ 13 0 6 19 -1.
+ <_>
+ 15 0 2 19 3.
+ <_>
+
+ <_>
+ 0 0 6 19 -1.
+ <_>
+ 2 0 2 19 3.
+ <_>
+
+ <_>
+ 13 8 2 14 -1.
+ <_>
+ 13 8 1 14 2.
+ <_>
+
+ <_>
+ 0 4 16 3 -1.
+ <_>
+ 0 5 16 1 3.
+ <_>
+
+ <_>
+ 8 8 4 10 -1.
+ <_>
+ 8 13 4 5 2.
+ <_>
+
+ <_>
+ 3 17 10 6 -1.
+ <_>
+ 3 17 5 3 2.
+ <_>
+ 8 20 5 3 2.
+ <_>
+
+ <_>
+ 13 8 2 14 -1.
+ <_>
+ 13 8 1 14 2.
+ <_>
+
+ <_>
+ 1 7 16 5 -1.
+ <_>
+ 5 7 8 5 2.
+ <_>
+
+ <_>
+ 15 5 4 9 -1.
+ <_>
+ 15 5 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 3 14 -1.
+ <_>
+ 7 0 1 14 3.
+ <_>
+
+ <_>
+ 6 4 12 12 -1.
+ <_>
+ 10 8 4 4 9.
+ <_>
+
+ <_>
+ 7 3 4 9 -1.
+ <_>
+ 9 3 2 9 2.
+ <_>
+
+ <_>
+ 10 4 7 8 -1.
+ <_>
+ 10 6 7 4 2.
+ <_>
+
+ <_>
+ 2 4 7 8 -1.
+ <_>
+ 2 6 7 4 2.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 4 9 2 14 -1.
+ <_>
+ 5 9 1 14 2.
+ <_>
+
+ <_>
+ 12 15 7 8 -1.
+ <_>
+ 12 17 7 4 2.
+ <_>
+
+ <_>
+ 6 0 7 20 -1.
+ <_>
+ 6 5 7 10 2.
+ <_>
+
+ <_>
+ 2 1 16 4 -1.
+ <_>
+ 10 1 8 2 2.
+ <_>
+ 2 3 8 2 2.
+ <_>
+
+ <_>
+ 4 7 3 10 -1.
+ <_>
+ 4 12 3 5 2.
+ <_>
+
+ <_>
+ 10 6 8 8 -1.
+ <_>
+ 12 8 4 8 2.
+ 1
+ <_>
+
+ <_>
+ 3 10 12 8 -1.
+ <_>
+ 3 10 6 4 2.
+ <_>
+ 9 14 6 4 2.
+ <_>
+
+ <_>
+ 8 4 4 10 -1.
+ <_>
+ 8 9 4 5 2.
+ <_>
+
+ <_>
+ 7 7 5 9 -1.
+ <_>
+ 7 10 5 3 3.
+ <_>
+
+ <_>
+ 1 4 17 3 -1.
+ <_>
+ 1 5 17 1 3.
+ <_>
+
+ <_>
+ 2 3 14 3 -1.
+ <_>
+ 2 4 14 1 3.
+ <_>
+
+ <_>
+ 2 7 14 2 -1.
+ <_>
+ 2 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 19 8 4 -1.
+ <_>
+ 10 19 4 4 2.
+ <_>
+
+ <_>
+ 5 0 5 22 -1.
+ <_>
+ 5 11 5 11 2.
+ <_>
+
+ <_>
+ 10 19 8 4 -1.
+ <_>
+ 10 19 4 4 2.
+ <_>
+
+ <_>
+ 1 19 8 4 -1.
+ <_>
+ 5 19 4 4 2.
+ <_>
+
+ <_>
+ 8 12 4 9 -1.
+ <_>
+ 8 12 2 9 2.
+ <_>
+
+ <_>
+ 1 16 9 5 -1.
+ <_>
+ 4 16 3 5 3.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 3 8 10 14 -1.
+ <_>
+ 8 8 5 14 2.
+ <_>
+
+ <_>
+ 10 5 7 6 -1.
+ <_>
+ 10 5 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 9 5 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 4 9 10 -1.
+ <_>
+ 10 4 9 5 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 10 9 -1.
+ <_>
+ 9 4 5 9 2.
+ 1
+ <_>
+
+ <_>
+ 12 15 7 8 -1.
+ <_>
+ 12 17 7 4 2.
+ <_>
+
+ <_>
+ 0 15 7 8 -1.
+ <_>
+ 0 17 7 4 2.
+ <_>
+
+ <_>
+ 0 16 19 4 -1.
+ <_>
+ 0 17 19 2 2.
+ <_>
+
+ <_>
+ 4 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 9 8 4 15 -1.
+ <_>
+ 10 8 2 15 2.
+ <_>
+
+ <_>
+ 4 7 4 14 -1.
+ <_>
+ 4 7 2 7 2.
+ <_>
+ 6 14 2 7 2.
+ <_>
+
+ <_>
+ 12 8 2 15 -1.
+ <_>
+ 12 8 1 15 2.
+ <_>
+
+ <_>
+ 5 8 2 15 -1.
+ <_>
+ 6 8 1 15 2.
+ <_>
+
+ <_>
+ 8 12 4 11 -1.
+ <_>
+ 8 12 2 11 2.
+ <_>
+
+ <_>
+ 7 12 4 11 -1.
+ <_>
+ 9 12 2 11 2.
+ <_>
+
+ <_>
+ 10 4 3 10 -1.
+ <_>
+ 10 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 3 16 4 7 -1.
+ <_>
+ 5 16 2 7 2.
+ <_>
+
+ <_>
+ 3 17 16 3 -1.
+ <_>
+ 3 18 16 1 3.
+ <_>
+
+ <_>
+ 0 12 4 10 -1.
+ <_>
+ 2 12 2 10 2.
+ <_>
+
+ <_>
+ 7 14 12 6 -1.
+ <_>
+ 10 14 6 6 2.
+ <_>
+
+ <_>
+ 0 14 12 6 -1.
+ <_>
+ 3 14 6 6 2.
+ <_>
+
+ <_>
+ 7 0 12 4 -1.
+ <_>
+ 11 0 4 4 3.
+ <_>
+
+ <_>
+ 7 0 4 10 -1.
+ <_>
+ 9 0 2 10 2.
+ <_>
+
+ <_>
+ 9 0 10 3 -1.
+ <_>
+ 9 0 5 3 2.
+ <_>
+
+ <_>
+ 0 0 10 3 -1.
+ <_>
+ 5 0 5 3 2.
+ <_>
+
+ <_>
+ 6 5 8 8 -1.
+ <_>
+ 10 5 4 4 2.
+ <_>
+ 6 9 4 4 2.
+ <_>
+
+ <_>
+ 4 6 2 14 -1.
+ <_>
+ 5 6 1 14 2.
+ <_>
+
+ <_>
+ 10 8 6 10 -1.
+ <_>
+ 12 8 2 10 3.
+ <_>
+
+ <_>
+ 3 8 6 10 -1.
+ <_>
+ 5 8 2 10 3.
+ <_>
+
+ <_>
+ 5 15 12 6 -1.
+ <_>
+ 9 15 4 6 3.
+ <_>
+
+ <_>
+ 2 15 12 6 -1.
+ <_>
+ 6 15 4 6 3.
+ <_>
+
+ <_>
+ 8 5 5 8 -1.
+ <_>
+ 8 9 5 4 2.
+ <_>
+
+ <_>
+ 0 2 14 4 -1.
+ <_>
+ 7 2 7 4 2.
+ <_>
+
+ <_>
+ 7 1 6 7 -1.
+ <_>
+ 9 1 2 7 3.
+ <_>
+
+ <_>
+ 6 2 4 17 -1.
+ <_>
+ 7 2 2 17 2.
+ <_>
+
+ <_>
+ 8 1 9 15 -1.
+ <_>
+ 11 6 3 5 9.
+ <_>
+
+ <_>
+ 0 0 12 4 -1.
+ <_>
+ 4 0 4 4 3.
+ <_>
+
+ <_>
+ 11 1 8 8 -1.
+ <_>
+ 11 5 8 4 2.
+ <_>
+
+ <_>
+ 0 1 8 8 -1.
+ <_>
+ 0 5 8 4 2.
+ <_>
+
+ <_>
+ 10 8 3 14 -1.
+ <_>
+ 11 8 1 14 3.
+ <_>
+
+ <_>
+ 9 4 10 3 -1.
+ <_>
+ 9 4 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 8 2 11 -1.
+ <_>
+ 11 8 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 4 8 -1.
+ <_>
+ 3 17 4 4 2.
+ <_>
+
+ <_>
+ 10 11 8 12 -1.
+ <_>
+ 10 17 8 6 2.
+ <_>
+
+ <_>
+ 6 8 3 14 -1.
+ <_>
+ 7 8 1 14 3.
+ <_>
+
+ <_>
+ 10 9 2 10 -1.
+ <_>
+ 10 9 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 8 11 6 6 -1.
+ <_>
+ 8 11 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 6 16 4 -1.
+ <_>
+ 5 6 8 4 2.
+ <_>
+
+ <_>
+ 12 0 2 14 -1.
+ <_>
+ 12 7 2 7 2.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 11 7 2 11 -1.
+ <_>
+ 11 7 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 11 2 -1.
+ <_>
+ 8 7 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 6 5 -1.
+ <_>
+ 7 0 3 5 2.
+ <_>
+
+ <_>
+ 5 0 9 5 -1.
+ <_>
+ 8 0 3 5 3.
+ <_>
+
+ <_>
+ 7 17 10 6 -1.
+ <_>
+ 12 17 5 3 2.
+ <_>
+ 7 20 5 3 2.
+ <_>
+
+ <_>
+ 7 6 4 15 -1.
+ <_>
+ 8 6 2 15 2.
+ <_>
+
+ <_>
+ 5 11 10 3 -1.
+ <_>
+ 5 11 5 3 2.
+ <_>
+
+ <_>
+ 8 7 3 14 -1.
+ <_>
+ 9 7 1 14 3.
+ <_>
+
+ <_>
+ 10 8 2 10 -1.
+ <_>
+ 10 8 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 3 3 9 18 -1.
+ <_>
+ 6 9 3 6 9.
+ <_>
+
+ <_>
+ 8 0 10 12 -1.
+ <_>
+ 13 0 5 6 2.
+ <_>
+ 8 6 5 6 2.
+ <_>
+
+ <_>
+ 1 12 12 11 -1.
+ <_>
+ 4 12 6 11 2.
+ <_>
+
+ <_>
+ 2 4 15 9 -1.
+ <_>
+ 7 7 5 3 9.
+ <_>
+
+ <_>
+ 3 7 10 10 -1.
+ <_>
+ 8 7 5 10 2.
+ <_>
+
+ <_>
+ 10 8 2 10 -1.
+ <_>
+ 10 8 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 2 18 6 5 -1.
+ <_>
+ 5 18 3 5 2.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 5 0 4 14 -1.
+ <_>
+ 5 0 2 7 2.
+ <_>
+ 7 7 2 7 2.
+ <_>
+
+ <_>
+ 8 0 10 12 -1.
+ <_>
+ 13 0 5 6 2.
+ <_>
+ 8 6 5 6 2.
+ <_>
+
+ <_>
+ 2 0 8 18 -1.
+ <_>
+ 2 0 4 9 2.
+ <_>
+ 6 9 4 9 2.
+ <_>
+
+ <_>
+ 10 0 8 4 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+
+ <_>
+ 9 9 9 2 -1.
+ <_>
+ 9 9 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 7 3 10 -1.
+ <_>
+ 15 12 3 5 2.
+ <_>
+
+ <_>
+ 1 7 3 10 -1.
+ <_>
+ 1 12 3 5 2.
+ <_>
+
+ <_>
+ 15 6 4 7 -1.
+ <_>
+ 15 6 2 7 2.
+ <_>
+
+ <_>
+ 4 15 6 7 -1.
+ <_>
+ 6 15 2 7 3.
+ <_>
+
+ <_>
+ 2 2 16 20 -1.
+ <_>
+ 10 2 8 10 2.
+ <_>
+ 2 12 8 10 2.
+ <_>
+
+ <_>
+ 4 17 7 6 -1.
+ <_>
+ 4 19 7 2 3.
+ <_>
+
+ <_>
+ 3 15 15 6 -1.
+ <_>
+ 3 18 15 3 2.
+ <_>
+
+ <_>
+ 0 18 14 3 -1.
+ <_>
+ 0 19 14 1 3.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 2 0 4 18 -1.
+ <_>
+ 2 0 2 9 2.
+ <_>
+ 4 9 2 9 2.
+ <_>
+
+ <_>
+ 10 2 6 8 -1.
+ <_>
+ 10 6 6 4 2.
+ <_>
+
+ <_>
+ 5 2 8 8 -1.
+ <_>
+ 5 2 4 4 2.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 0 0 18 3 -1.
+ <_>
+ 6 0 6 3 3.
+ <_>
+
+ <_>
+ 10 0 8 4 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+
+ <_>
+ 1 0 8 4 -1.
+ <_>
+ 5 0 4 4 2.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 9 9 8 2 -1.
+ <_>
+ 9 9 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 7 15 9 -1.
+ <_>
+ 9 7 5 9 3.
+ <_>
+
+ <_>
+ 8 8 3 14 -1.
+ <_>
+ 9 8 1 14 3.
+ <_>
+
+ <_>
+ 6 6 12 16 -1.
+ <_>
+ 9 6 6 16 2.
+ <_>
+
+ <_>
+ 1 6 12 16 -1.
+ <_>
+ 4 6 6 16 2.
+ <_>
+
+ <_>
+ 10 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ <_>
+
+ <_>
+ 2 15 5 6 -1.
+ <_>
+ 2 18 5 3 2.
+ <_>
+
+ <_>
+ 7 19 12 4 -1.
+ <_>
+ 11 19 4 4 3.
+ <_>
+
+ <_>
+ 0 19 12 4 -1.
+ <_>
+ 4 19 4 4 3.
+ <_>
+
+ <_>
+ 10 9 4 7 -1.
+ <_>
+ 10 9 2 7 2.
+ <_>
+
+ <_>
+ 5 9 4 9 -1.
+ <_>
+ 7 9 2 9 2.
+ <_>
+
+ <_>
+ 5 3 4 17 -1.
+ <_>
+ 7 3 2 17 2.
+ <_>
+
+ <_>
+ 3 21 14 2 -1.
+ <_>
+ 3 21 7 2 2.
+ <_>
+
+ <_>
+ 0 19 12 3 -1.
+ <_>
+ 6 19 6 3 2.
+ <_>
+
+ <_>
+ 9 0 3 22 -1.
+ <_>
+ 9 11 3 11 2.
+ <_>
+
+ <_>
+ 5 9 2 14 -1.
+ <_>
+ 6 9 1 14 2.
+ <_>
+
+ <_>
+ 7 7 6 16 -1.
+ <_>
+ 7 11 6 8 2.
+ <_>
+
+ <_>
+ 1 12 4 8 -1.
+ <_>
+ 1 16 4 4 2.
+ <_>
+
+ <_>
+ 2 12 15 3 -1.
+ <_>
+ 7 12 5 3 3.
+ <_>
+
+ <_>
+ 1 17 12 6 -1.
+ <_>
+ 1 17 6 3 2.
+ <_>
+ 7 20 6 3 2.
+ <_>
+
+ <_>
+ 8 0 4 9 -1.
+ <_>
+ 8 0 2 9 2.
+ <_>
+
+ <_>
+ 7 0 4 9 -1.
+ <_>
+ 9 0 2 9 2.
+ <_>
+
+ <_>
+ 7 1 5 20 -1.
+ <_>
+ 7 6 5 10 2.
+ <_>
+
+ <_>
+ 1 7 6 16 -1.
+ <_>
+ 3 7 2 16 3.
+ <_>
+
+ <_>
+ 8 7 4 10 -1.
+ <_>
+ 8 12 4 5 2.
+ <_>
+
+ <_>
+ 1 3 12 12 -1.
+ <_>
+ 5 7 4 4 9.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 2 6 6 10 -1.
+ <_>
+ 2 6 3 5 2.
+ <_>
+ 5 11 3 5 2.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 9 6 2 14 2.
+ <_>
+
+ <_>
+ 0 10 18 12 -1.
+ <_>
+ 0 10 9 6 2.
+ <_>
+ 9 16 9 6 2.
+ <_>
+
+ <_>
+ 8 6 4 14 -1.
+ <_>
+ 9 6 2 14 2.
+ <_>
+
+ <_>
+ 7 6 4 14 -1.
+ <_>
+ 8 6 2 14 2.
+ <_>
+
+ <_>
+ 1 15 18 6 -1.
+ <_>
+ 1 15 9 6 2.
+ <_>
+
+ <_>
+ 1 17 6 5 -1.
+ <_>
+ 4 17 3 5 2.
+ <_>
+
+ <_>
+ 6 17 12 6 -1.
+ <_>
+ 9 17 6 6 2.
+ <_>
+
+ <_>
+ 1 15 12 8 -1.
+ <_>
+ 4 15 6 8 2.
+ <_>
+
+ <_>
+ 0 7 19 3 -1.
+ <_>
+ 0 8 19 1 3.
+ <_>
+
+ <_>
+ 1 8 16 3 -1.
+ <_>
+ 1 9 16 1 3.
+ <_>
+
+ <_>
+ 6 6 7 6 -1.
+ <_>
+ 6 8 7 2 3.
+ <_>
+
+ <_>
+ 4 7 10 14 -1.
+ <_>
+ 4 7 5 7 2.
+ <_>
+ 9 14 5 7 2.
+ <_>
+
+ <_>
+ 5 0 12 10 -1.
+ <_>
+ 5 0 6 10 2.
+ <_>
+
+ <_>
+ 2 0 15 13 -1.
+ <_>
+ 7 0 5 13 3.
+ <_>
+
+ <_>
+ 5 6 12 6 -1.
+ <_>
+ 8 6 6 6 2.
+ <_>
+
+ <_>
+ 2 16 6 7 -1.
+ <_>
+ 4 16 2 7 3.
+ <_>
+
+ <_>
+ 10 4 8 8 -1.
+ <_>
+ 12 6 4 8 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 7 6 -1.
+ <_>
+ 7 7 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 1 7 18 3 -1.
+ <_>
+ 1 8 18 1 3.
+ <_>
+
+ <_>
+ 5 4 9 11 -1.
+ <_>
+ 8 4 3 11 3.
+ <_>
+
+ <_>
+ 13 0 6 7 -1.
+ <_>
+ 15 0 2 7 3.
+ <_>
+
+ <_>
+ 3 11 12 6 -1.
+ <_>
+ 3 11 6 3 2.
+ <_>
+ 9 14 6 3 2.
+ <_>
+
+ <_>
+ 13 4 3 16 -1.
+ <_>
+ 14 4 1 16 3.
+ <_>
+
+ <_>
+ 3 4 3 16 -1.
+ <_>
+ 4 4 1 16 3.
+ <_>
+
+ <_>
+ 2 9 16 8 -1.
+ <_>
+ 10 9 8 4 2.
+ <_>
+ 2 13 8 4 2.
+ <_>
+
+ <_>
+ 3 0 3 19 -1.
+ <_>
+ 4 0 1 19 3.
+ <_>
+
+ <_>
+ 6 1 8 10 -1.
+ <_>
+ 8 1 4 10 2.
+ <_>
+
+ <_>
+ 0 14 18 6 -1.
+ <_>
+ 6 14 6 6 3.
+ <_>
+
+ <_>
+ 4 6 15 9 -1.
+ <_>
+ 9 9 5 3 9.
+ <_>
+
+ <_>
+ 0 14 15 8 -1.
+ <_>
+ 5 14 5 8 3.
+ <_>
+
+ <_>
+ 3 20 15 3 -1.
+ <_>
+ 8 20 5 3 3.
+ <_>
+
+ <_>
+ 0 15 18 2 -1.
+ <_>
+ 0 16 18 1 2.
+ <_>
+
+ <_>
+ 2 15 17 3 -1.
+ <_>
+ 2 16 17 1 3.
+ <_>
+
+ <_>
+ 0 0 19 4 -1.
+ <_>
+ 0 2 19 2 2.
+ <_>
+
+ <_>
+ 4 0 12 4 -1.
+ <_>
+ 4 2 12 2 2.
+ <_>
+
+ <_>
+ 3 0 3 21 -1.
+ <_>
+ 4 0 1 21 3.
+ <_>
+
+ <_>
+ 6 18 8 4 -1.
+ <_>
+ 6 20 8 2 2.
+ <_>
+
+ <_>
+ 1 18 14 3 -1.
+ <_>
+ 1 19 14 1 3.
+ <_>
+
+ <_>
+ 9 18 9 5 -1.
+ <_>
+ 12 18 3 5 3.
+ <_>
+
+ <_>
+ 0 18 19 3 -1.
+ <_>
+ 0 19 19 1 3.
+ <_>
+
+ <_>
+ 13 8 3 14 -1.
+ <_>
+ 14 8 1 14 3.
+ <_>
+
+ <_>
+ 2 6 12 7 -1.
+ <_>
+ 5 6 6 7 2.
+ <_>
+
+ <_>
+ 2 6 16 16 -1.
+ <_>
+ 6 6 8 16 2.
+ <_>
+
+ <_>
+ 0 1 16 20 -1.
+ <_>
+ 4 1 8 20 2.
+ <_>
+
+ <_>
+ 12 9 4 14 -1.
+ <_>
+ 14 9 2 7 2.
+ <_>
+ 12 16 2 7 2.
+ <_>
+
+ <_>
+ 3 9 4 14 -1.
+ <_>
+ 3 9 2 7 2.
+ <_>
+ 5 16 2 7 2.
+ <_>
+
+ <_>
+ 11 11 6 10 -1.
+ <_>
+ 14 11 3 5 2.
+ <_>
+ 11 16 3 5 2.
+ <_>
+
+ <_>
+ 2 11 6 10 -1.
+ <_>
+ 2 11 3 5 2.
+ <_>
+ 5 16 3 5 2.
+ <_>
+
+ <_>
+ 2 8 16 9 -1.
+ <_>
+ 6 8 8 9 2.
+ <_>
+
+ <_>
+ 2 17 10 6 -1.
+ <_>
+ 2 17 5 3 2.
+ <_>
+ 7 20 5 3 2.
+ <_>
+
+ <_>
+ 11 7 8 7 -1.
+ <_>
+ 13 9 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 7 8 -1.
+ <_>
+ 6 9 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 6 16 -1.
+ <_>
+ 7 11 6 8 2.
+ <_>
+
+ <_>
+ 7 4 4 10 -1.
+ <_>
+ 7 9 4 5 2.
+ <_>
+
+ <_>
+ 5 0 9 5 -1.
+ <_>
+ 8 0 3 5 3.
+ <_>
+
+ <_>
+ 1 1 16 18 -1.
+ <_>
+ 5 1 8 18 2.
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 0 20 18 3 -1.
+ <_>
+ 6 20 6 3 3.
+ <_>
+
+ <_>
+ 8 9 3 14 -1.
+ <_>
+ 9 9 1 14 3.
+ <_>
+
+ <_>
+ 2 4 13 2 -1.
+ <_>
+ 2 4 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 10 16 -1.
+ <_>
+ 11 0 5 8 2.
+ <_>
+ 6 8 5 8 2.
+ <_>
+
+ <_>
+ 2 14 5 6 -1.
+ <_>
+ 2 17 5 3 2.
+ <_>
+
+ <_>
+ 12 8 4 8 -1.
+ <_>
+ 12 12 4 4 2.
+ <_>
+
+ <_>
+ 3 8 4 8 -1.
+ <_>
+ 3 12 4 4 2.
+ <_>
+
+ <_>
+ 14 6 3 10 -1.
+ <_>
+ 14 11 3 5 2.
+ <_>
+
+ <_>
+ 2 6 3 10 -1.
+ <_>
+ 2 11 3 5 2.
+ <_>
+
+ <_>
+ 7 5 12 16 -1.
+ <_>
+ 7 9 12 8 2.
+ <_>
+
+ <_>
+ 6 11 4 9 -1.
+ <_>
+ 8 11 2 9 2.
+ <_>
+
+ <_>
+ 7 18 10 5 -1.
+ <_>
+ 7 18 5 5 2.
+ <_>
+
+ <_>
+ 4 0 11 14 -1.
+ <_>
+ 4 7 11 7 2.
+ <_>
+
+ <_>
+ 8 1 9 15 -1.
+ <_>
+ 11 6 3 5 9.
+ <_>
+
+ <_>
+ 0 6 5 8 -1.
+ <_>
+ 0 10 5 4 2.
+ <_>
+
+ <_>
+ 15 0 4 13 -1.
+ <_>
+ 15 0 2 13 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 13 4 -1.
+ <_>
+ 4 0 13 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 9 5 -1.
+ <_>
+ 9 3 3 5 3.
+ <_>
+
+ <_>
+ 4 3 9 5 -1.
+ <_>
+ 7 3 3 5 3.
+ <_>
+
+ <_>
+ 7 1 12 4 -1.
+ <_>
+ 7 1 6 4 2.
+ <_>
+
+ <_>
+ 0 2 6 12 -1.
+ <_>
+ 0 8 6 6 2.
+ <_>
+
+ <_>
+ 5 0 12 5 -1.
+ <_>
+ 5 0 6 5 2.
+ <_>
+
+ <_>
+ 2 0 14 5 -1.
+ <_>
+ 9 0 7 5 2.
+ <_>
+
+ <_>
+ 9 1 4 14 -1.
+ <_>
+ 10 1 2 14 2.
+ <_>
+
+ <_>
+ 3 5 9 8 -1.
+ <_>
+ 3 7 9 4 2.
+ <_>
+
+ <_>
+ 2 7 16 9 -1.
+ <_>
+ 6 7 8 9 2.
+ <_>
+
+ <_>
+ 0 19 14 2 -1.
+ <_>
+ 7 19 7 2 2.
+ <_>
+
+ <_>
+ 8 20 10 3 -1.
+ <_>
+ 8 20 5 3 2.
+ <_>
+
+ <_>
+ 1 20 10 3 -1.
+ <_>
+ 6 20 5 3 2.
+ <_>
+
+ <_>
+ 15 8 3 10 -1.
+ <_>
+ 16 9 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 0 21 16 2 -1.
+ <_>
+ 8 21 8 2 2.
+ <_>
+
+ <_>
+ 4 6 15 3 -1.
+ <_>
+ 4 7 15 1 3.
+ <_>
+
+ <_>
+ 6 4 3 14 -1.
+ <_>
+ 7 4 1 14 3.
+ <_>
+
+ <_>
+ 7 18 10 5 -1.
+ <_>
+ 7 18 5 5 2.
+ <_>
+
+ <_>
+ 2 18 10 5 -1.
+ <_>
+ 7 18 5 5 2.
+ <_>
+
+ <_>
+ 6 0 10 16 -1.
+ <_>
+ 11 0 5 8 2.
+ <_>
+ 6 8 5 8 2.
+ <_>
+
+ <_>
+ 3 0 10 16 -1.
+ <_>
+ 3 0 5 8 2.
+ <_>
+ 8 8 5 8 2.
+ <_>
+
+ <_>
+ 6 0 7 4 -1.
+ <_>
+ 6 2 7 2 2.
+ <_>
+
+ <_>
+ 0 2 19 3 -1.
+ <_>
+ 0 3 19 1 3.
+ <_>
+
+ <_>
+ 7 0 12 4 -1.
+ <_>
+ 7 2 12 2 2.
+ <_>
+
+ <_>
+ 0 2 15 3 -1.
+ <_>
+ 0 3 15 1 3.
+ <_>
+
+ <_>
+ 1 5 18 3 -1.
+ <_>
+ 1 6 18 1 3.
+ <_>
+
+ <_>
+ 3 0 12 6 -1.
+ <_>
+ 3 2 12 2 3.
+ <_>
+
+ <_>
+ 5 0 10 10 -1.
+ <_>
+ 5 5 10 5 2.
+ <_>
+
+ <_>
+ 5 1 9 4 -1.
+ <_>
+ 5 3 9 2 2.
+ <_>
+
+ <_>
+ 5 2 12 6 -1.
+ <_>
+ 5 4 12 2 3.
+ <_>
+
+ <_>
+ 1 15 9 6 -1.
+ <_>
+ 1 17 9 2 3.
+ <_>
+
+ <_>
+ 5 13 14 9 -1.
+ <_>
+ 5 16 14 3 3.
+ <_>
+
+ <_>
+ 8 12 8 3 -1.
+ <_>
+ 7 13 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 8 2 15 -1.
+ <_>
+ 12 8 1 15 2.
+ <_>
+
+ <_>
+ 5 8 2 15 -1.
+ <_>
+ 6 8 1 15 2.
+ <_>
+
+ <_>
+ 11 5 3 14 -1.
+ <_>
+ 12 5 1 14 3.
+ <_>
+
+ <_>
+ 5 8 2 14 -1.
+ <_>
+ 6 8 1 14 2.
+ <_>
+
+ <_>
+ 11 6 3 14 -1.
+ <_>
+ 12 6 1 14 3.
+ <_>
+
+ <_>
+ 0 0 8 22 -1.
+ <_>
+ 0 0 4 11 2.
+ <_>
+ 4 11 4 11 2.
+ <_>
+
+ <_>
+ 13 10 4 8 -1.
+ <_>
+ 13 10 2 8 2.
+ <_>
+
+ <_>
+ 1 13 16 7 -1.
+ <_>
+ 5 13 8 7 2.
+ <_>
+
+ <_>
+ 13 10 4 8 -1.
+ <_>
+ 13 10 2 8 2.
+ <_>
+
+ <_>
+ 2 10 4 8 -1.
+ <_>
+ 4 10 2 8 2.
+ <_>
+
+ <_>
+ 5 7 10 6 -1.
+ <_>
+ 10 7 5 3 2.
+ <_>
+ 5 10 5 3 2.
+ <_>
+
+ <_>
+ 0 19 8 4 -1.
+ <_>
+ 4 19 4 4 2.
+ <_>
+
+ <_>
+ 3 15 15 3 -1.
+ <_>
+ 3 16 15 1 3.
+ <_>
+
+ <_>
+ 7 2 4 16 -1.
+ <_>
+ 7 2 2 8 2.
+ <_>
+ 9 10 2 8 2.
+ <_>
+
+ <_>
+ 8 6 4 12 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 7 6 4 12 -1.
+ <_>
+ 7 10 4 4 3.
+ <_>
+
+ <_>
+ 3 15 14 2 -1.
+ <_>
+ 3 16 14 1 2.
+ <_>
+
+ <_>
+ 0 15 17 8 -1.
+ <_>
+ 0 17 17 4 2.
+ <_>
+
+ <_>
+ 10 3 9 10 -1.
+ <_>
+ 10 3 9 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 8 4 10 -1.
+ <_>
+ 7 13 4 5 2.
+ <_>
+
+ <_>
+ 7 8 7 15 -1.
+ <_>
+ 7 13 7 5 3.
+ <_>
+
+ <_>
+ 1 0 16 20 -1.
+ <_>
+ 5 0 8 20 2.
+ <_>
+
+ <_>
+ 9 18 9 5 -1.
+ <_>
+ 12 18 3 5 3.
+ <_>
+
+ <_>
+ 1 18 9 5 -1.
+ <_>
+ 4 18 3 5 3.
+ <_>
+
+ <_>
+ 8 7 8 12 -1.
+ <_>
+ 12 7 4 6 2.
+ <_>
+ 8 13 4 6 2.
+ <_>
+
+ <_>
+ 2 9 4 13 -1.
+ <_>
+ 4 9 2 13 2.
+ <_>
+
+ <_>
+ 12 14 7 4 -1.
+ <_>
+ 12 16 7 2 2.
+ <_>
+
+ <_>
+ 0 6 18 3 -1.
+ <_>
+ 0 7 18 1 3.
+ <_>
+
+ <_>
+ 1 16 18 7 -1.
+ <_>
+ 1 16 9 7 2.
+ <_>
+
+ <_>
+ 0 18 15 5 -1.
+ <_>
+ 5 18 5 5 3.
+ <_>
+
+ <_>
+ 10 5 4 8 -1.
+ <_>
+ 10 5 2 8 2.
+ <_>
+
+ <_>
+ 5 5 4 8 -1.
+ <_>
+ 7 5 2 8 2.
+ <_>
+
+ <_>
+ 7 0 6 5 -1.
+ <_>
+ 7 0 3 5 2.
+ <_>
+
+ <_>
+ 6 2 2 15 -1.
+ <_>
+ 7 2 1 15 2.
+ <_>
+
+ <_>
+ 4 0 12 4 -1.
+ <_>
+ 4 0 6 4 2.
+ <_>
+
+ <_>
+ 5 0 2 14 -1.
+ <_>
+ 5 7 2 7 2.
+ <_>
+
+ <_>
+ 5 16 14 4 -1.
+ <_>
+ 5 17 14 2 2.
+ <_>
+
+ <_>
+ 2 9 2 14 -1.
+ <_>
+ 3 9 1 14 2.
+ <_>
+
+ <_>
+ 12 0 4 7 -1.
+ <_>
+ 12 0 2 7 2.
+ <_>
+
+ <_>
+ 3 0 4 7 -1.
+ <_>
+ 5 0 2 7 2.
+ <_>
+
+ <_>
+ 8 0 9 15 -1.
+ <_>
+ 11 5 3 5 9.
+ <_>
+
+ <_>
+ 2 0 9 15 -1.
+ <_>
+ 5 5 3 5 9.
+ <_>
+
+ <_>
+ 16 5 2 16 -1.
+ <_>
+ 16 5 1 16 2.
+ 1
+ <_>
+
+ <_>
+ 3 5 16 2 -1.
+ <_>
+ 3 5 16 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 11 6 9 -1.
+ <_>
+ 11 11 2 9 3.
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 7 6 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 8 8 -1.
+ <_>
+ 14 0 4 4 2.
+ <_>
+ 10 4 4 4 2.
+ <_>
+
+ <_>
+ 3 0 12 4 -1.
+ <_>
+ 7 0 4 4 3.
+ <_>
+
+ <_>
+ 9 11 6 9 -1.
+ <_>
+ 11 11 2 9 3.
+ <_>
+
+ <_>
+ 3 10 4 10 -1.
+ <_>
+ 5 10 2 10 2.
+ <_>
+
+ <_>
+ 11 12 6 5 -1.
+ <_>
+ 11 12 3 5 2.
+ <_>
+
+ <_>
+ 4 11 6 9 -1.
+ <_>
+ 6 11 2 9 3.
+ <_>
+
+ <_>
+ 12 12 7 4 -1.
+ <_>
+ 12 12 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 8 8 -1.
+ <_>
+ 1 0 4 4 2.
+ <_>
+ 5 4 4 4 2.
+ <_>
+
+ <_>
+ 10 4 9 10 -1.
+ <_>
+ 10 4 9 5 2.
+ 1
+ <_>
+
+ <_>
+ 1 1 12 8 -1.
+ <_>
+ 1 1 6 4 2.
+ <_>
+ 7 5 6 4 2.
+ <_>
+
+ <_>
+ 2 14 16 2 -1.
+ <_>
+ 2 14 8 2 2.
+ <_>
+
+ <_>
+ 7 3 4 14 -1.
+ <_>
+ 8 3 2 14 2.
+ <_>
+
+ <_>
+ 7 1 6 7 -1.
+ <_>
+ 9 1 2 7 3.
+ <_>
+
+ <_>
+ 3 10 4 12 -1.
+ <_>
+ 3 14 4 4 3.
+ <_>
+
+ <_>
+ 8 4 6 7 -1.
+ <_>
+ 10 4 2 7 3.
+ <_>
+
+ <_>
+ 5 4 6 7 -1.
+ <_>
+ 7 4 2 7 3.
+ <_>
+
+ <_>
+ 5 7 14 8 -1.
+ <_>
+ 5 7 7 8 2.
+ <_>
+
+ <_>
+ 2 12 6 5 -1.
+ <_>
+ 5 12 3 5 2.
+ <_>
+
+ <_>
+ 12 9 4 7 -1.
+ <_>
+ 12 9 2 7 2.
+ <_>
+
+ <_>
+ 3 9 4 7 -1.
+ <_>
+ 5 9 2 7 2.
+ <_>
+
+ <_>
+ 13 2 4 12 -1.
+ <_>
+ 13 6 4 4 3.
+ <_>
+
+ <_>
+ 2 2 4 12 -1.
+ <_>
+ 2 6 4 4 3.
+ <_>
+
+ <_>
+ 2 2 16 8 -1.
+ <_>
+ 10 2 8 4 2.
+ <_>
+ 2 6 8 4 2.
+ <_>
+
+ <_>
+ 2 2 15 9 -1.
+ <_>
+ 7 5 5 3 9.
+ <_>
+
+ <_>
+ 8 7 3 12 -1.
+ <_>
+ 8 13 3 6 2.
+ <_>
+
+ <_>
+ 2 0 3 15 -1.
+ <_>
+ 3 0 1 15 3.
+ <_>
+
+ <_>
+ 1 8 16 4 -1.
+ <_>
+ 5 8 8 4 2.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+ 6 4 4 4 2.
+ <_>
+
+ <_>
+ 8 9 2 14 -1.
+ <_>
+ 9 9 1 14 2.
+ <_>
+
+ <_>
+ 8 5 3 10 -1.
+ <_>
+ 8 10 3 5 2.
+ <_>
+
+ <_>
+ 8 9 3 14 -1.
+ <_>
+ 9 9 1 14 3.
+ <_>
+
+ <_>
+ 6 7 12 16 -1.
+ <_>
+ 6 11 12 8 2.
+ <_>
+
+ <_>
+ 4 0 3 16 -1.
+ <_>
+ 5 0 1 16 3.
+ <_>
+
+ <_>
+ 13 9 4 11 -1.
+ <_>
+ 13 9 2 11 2.
+ <_>
+
+ <_>
+ 0 18 14 3 -1.
+ <_>
+ 7 18 7 3 2.
+ <_>
+
+ <_>
+ 6 9 12 11 -1.
+ <_>
+ 9 9 6 11 2.
+ <_>
+
+ <_>
+ 1 7 16 9 -1.
+ <_>
+ 5 7 8 9 2.
+ <_>
+
+ <_>
+ 11 6 4 7 -1.
+ <_>
+ 11 6 2 7 2.
+ <_>
+
+ <_>
+ 3 11 12 12 -1.
+ <_>
+ 7 15 4 4 9.
+ <_>
+
+ <_>
+ 11 6 4 7 -1.
+ <_>
+ 11 6 2 7 2.
+ <_>
+
+ <_>
+ 4 0 6 10 -1.
+ <_>
+ 6 0 2 10 3.
+ <_>
+
+ <_>
+ 13 9 2 14 -1.
+ <_>
+ 13 9 1 14 2.
+ <_>
+
+ <_>
+ 4 9 2 14 -1.
+ <_>
+ 5 9 1 14 2.
+ <_>
+
+ <_>
+ 7 7 6 16 -1.
+ <_>
+ 7 11 6 8 2.
+ <_>
+
+ <_>
+ 2 16 4 7 -1.
+ <_>
+ 4 16 2 7 2.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 2 16 6 7 -1.
+ <_>
+ 4 16 2 7 3.
+ <_>
+
+ <_>
+ 14 13 5 6 -1.
+ <_>
+ 14 16 5 3 2.
+ <_>
+
+ <_>
+ 0 0 12 6 -1.
+ <_>
+ 6 0 6 6 2.
+ <_>
+
+ <_>
+ 4 0 14 7 -1.
+ <_>
+ 4 0 7 7 2.
+ <_>
+
+ <_>
+ 5 0 9 22 -1.
+ <_>
+ 5 11 9 11 2.
+ <_>
+
+ <_>
+ 11 8 8 4 -1.
+ <_>
+ 11 10 8 2 2.
+ <_>
+
+ <_>
+ 9 0 4 8 -1.
+ <_>
+ 9 0 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 5 17 14 2 -1.
+ <_>
+ 5 18 14 1 2.
+ <_>
+
+ <_>
+ 1 17 14 3 -1.
+ <_>
+ 1 18 14 1 3.
+ <_>
+
+ <_>
+ 6 1 12 12 -1.
+ <_>
+ 10 5 4 4 9.
+ <_>
+
+ <_>
+ 1 1 12 12 -1.
+ <_>
+ 5 5 4 4 9.
+ <_>
+
+ <_>
+ 6 0 7 18 -1.
+ <_>
+ 6 9 7 9 2.
+ <_>
+
+ <_>
+ 0 0 12 9 -1.
+ <_>
+ 3 0 6 9 2.
+ <_>
+
+ <_>
+ 9 9 3 14 -1.
+ <_>
+ 10 9 1 14 3.
+ <_>
+
+ <_>
+ 7 5 5 9 -1.
+ <_>
+ 7 8 5 3 3.
+ <_>
+
+ <_>
+ 9 9 3 14 -1.
+ <_>
+ 10 9 1 14 3.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 12 10 5 8 -1.
+ <_>
+ 12 10 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 10 7 -1.
+ <_>
+ 8 6 5 7 2.
+ 1
+ <_>
+
+ <_>
+ 12 15 7 4 -1.
+ <_>
+ 12 17 7 2 2.
+ <_>
+
+ <_>
+ 0 15 7 4 -1.
+ <_>
+ 0 17 7 2 2.
+ <_>
+
+ <_>
+ 15 6 2 16 -1.
+ <_>
+ 15 6 1 16 2.
+ <_>
+
+ <_>
+ 3 9 4 8 -1.
+ <_>
+ 3 13 4 4 2.
+ <_>
+
+ <_>
+ 0 14 19 3 -1.
+ <_>
+ 0 15 19 1 3.
+ <_>
+
+ <_>
+ 1 12 4 7 -1.
+ <_>
+ 3 12 2 7 2.
+ <_>
+
+ <_>
+ 14 12 4 11 -1.
+ <_>
+ 14 12 2 11 2.
+ <_>
+
+ <_>
+ 0 8 5 6 -1.
+ <_>
+ 0 11 5 3 2.
+ <_>
+
+ <_>
+ 4 0 14 3 -1.
+ <_>
+ 4 0 7 3 2.
+ <_>
+
+ <_>
+ 1 0 14 3 -1.
+ <_>
+ 8 0 7 3 2.
+ <_>
+
+ <_>
+ 12 3 7 4 -1.
+ <_>
+ 12 5 7 2 2.
+ <_>
+
+ <_>
+ 0 3 7 4 -1.
+ <_>
+ 0 5 7 2 2.
+ <_>
+
+ <_>
+ 10 8 4 7 -1.
+ <_>
+ 10 8 2 7 2.
+ <_>
+
+ <_>
+ 1 12 4 11 -1.
+ <_>
+ 3 12 2 11 2.
+ <_>
+
+ <_>
+ 2 10 16 4 -1.
+ <_>
+ 2 11 16 2 2.
+ <_>
+
+ <_>
+ 7 11 9 3 -1.
+ <_>
+ 6 12 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 6 12 16 -1.
+ <_>
+ 8 6 6 16 2.
+ <_>
+
+ <_>
+ 2 6 14 4 -1.
+ <_>
+ 2 6 7 2 2.
+ <_>
+ 9 8 7 2 2.
+ <_>
+
+ <_>
+ 5 6 10 6 -1.
+ <_>
+ 10 6 5 3 2.
+ <_>
+ 5 9 5 3 2.
+ <_>
+
+ <_>
+ 0 9 2 14 -1.
+ <_>
+ 1 9 1 14 2.
+ <_>
+
+ <_>
+ 10 18 9 5 -1.
+ <_>
+ 13 18 3 5 3.
+ <_>
+
+ <_>
+ 4 9 10 3 -1.
+ <_>
+ 3 10 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 18 9 5 -1.
+ <_>
+ 13 18 3 5 3.
+ <_>
+
+ <_>
+ 0 18 9 5 -1.
+ <_>
+ 3 18 3 5 3.
+ <_>
+
+ <_>
+ 5 8 12 9 -1.
+ <_>
+ 9 8 4 9 3.
+ <_>
+
+ <_>
+ 2 8 12 9 -1.
+ <_>
+ 6 8 4 9 3.
+ <_>
+
+ <_>
+ 9 6 4 14 -1.
+ <_>
+ 10 6 2 14 2.
+ <_>
+
+ <_>
+ 2 20 15 3 -1.
+ <_>
+ 7 20 5 3 3.
+ <_>
+
+ <_>
+ 5 4 9 5 -1.
+ <_>
+ 8 4 3 5 3.
+ <_>
+
+ <_>
+ 6 6 4 14 -1.
+ <_>
+ 7 6 2 14 2.
+ <_>
+
+ <_>
+ 10 0 2 14 -1.
+ <_>
+ 10 0 1 14 2.
+ <_>
+
+ <_>
+ 7 0 2 14 -1.
+ <_>
+ 8 0 1 14 2.
+ <_>
+
+ <_>
+ 12 0 4 8 -1.
+ <_>
+ 12 0 2 8 2.
+ <_>
+
+ <_>
+ 0 3 14 3 -1.
+ <_>
+ 0 4 14 1 3.
+ <_>
+
+ <_>
+ 5 20 10 3 -1.
+ <_>
+ 5 20 5 3 2.
+ <_>
+
+ <_>
+ 6 18 7 4 -1.
+ <_>
+ 6 20 7 2 2.
+ <_>
+
+ <_>
+ 3 6 6 9 -1.
+ <_>
+ 5 6 2 9 3.
+ <_>
+
+ <_>
+ 13 0 6 7 -1.
+ <_>
+ 15 0 2 7 3.
+ <_>
+
+ <_>
+ 3 13 4 10 -1.
+ <_>
+ 5 13 2 10 2.
+ <_>
+
+ <_>
+ 12 12 4 10 -1.
+ <_>
+ 12 12 2 10 2.
+ <_>
+
+ <_>
+ 3 12 4 7 -1.
+ <_>
+ 5 12 2 7 2.
+ <_>
+
+ <_>
+ 13 0 6 14 -1.
+ <_>
+ 15 0 2 14 3.
+ <_>
+
+ <_>
+ 0 0 6 12 -1.
+ <_>
+ 2 0 2 12 3.
+ <_>
+
+ <_>
+ 5 19 14 4 -1.
+ <_>
+ 12 19 7 2 2.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 0 12 9 10 -1.
+ <_>
+ 0 17 9 5 2.
+ <_>
+
+ <_>
+ 14 13 5 6 -1.
+ <_>
+ 14 16 5 3 2.
+ <_>
+
+ <_>
+ 0 16 8 4 -1.
+ <_>
+ 0 18 8 2 2.
+ <_>
+
+ <_>
+ 3 16 16 3 -1.
+ <_>
+ 3 17 16 1 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 2 0 16 5 -1.
+ <_>
+ 6 0 8 5 2.
+ <_>
+
+ <_>
+ 0 0 17 10 -1.
+ <_>
+ 0 5 17 5 2.
+ <_>
+
+ <_>
+ 8 1 3 15 -1.
+ <_>
+ 9 1 1 15 3.
+ <_>
+
+ <_>
+ 0 2 8 20 -1.
+ <_>
+ 0 7 8 10 2.
+ <_>
+
+ <_>
+ 8 7 4 10 -1.
+ <_>
+ 8 12 4 5 2.
+ <_>
+
+ <_>
+ 7 7 4 10 -1.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 11 0 3 17 -1.
+ <_>
+ 12 0 1 17 3.
+ <_>
+
+ <_>
+ 5 0 3 17 -1.
+ <_>
+ 6 0 1 17 3.
+ <_>
+
+ <_>
+ 12 9 3 14 -1.
+ <_>
+ 13 9 1 14 3.
+ <_>
+
+ <_>
+ 6 2 6 10 -1.
+ <_>
+ 9 2 3 10 2.
+ <_>
+
+ <_>
+ 4 21 14 2 -1.
+ <_>
+ 4 21 7 2 2.
+ <_>
+
+ <_>
+ 5 0 8 4 -1.
+ <_>
+ 9 0 4 4 2.
+ <_>
+
+ <_>
+ 10 0 4 8 -1.
+ <_>
+ 10 0 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 12 6 -1.
+ <_>
+ 3 0 6 3 2.
+ <_>
+ 9 3 6 3 2.
+ <_>
+
+ <_>
+ 8 8 6 8 -1.
+ <_>
+ 10 8 2 8 3.
+ <_>
+
+ <_>
+ 1 13 12 8 -1.
+ <_>
+ 4 13 6 8 2.
+ <_>
+
+ <_>
+ 8 8 6 8 -1.
+ <_>
+ 10 8 2 8 3.
+ <_>
+
+ <_>
+ 5 8 6 8 -1.
+ <_>
+ 7 8 2 8 3.
+ <_>
+
+ <_>
+ 7 13 8 10 -1.
+ <_>
+ 9 13 4 10 2.
+ <_>
+
+ <_>
+ 4 14 8 9 -1.
+ <_>
+ 6 14 4 9 2.
+ <_>
+
+ <_>
+ 9 15 9 5 -1.
+ <_>
+ 12 15 3 5 3.
+ <_>
+
+ <_>
+ 7 15 4 7 -1.
+ <_>
+ 9 15 2 7 2.
+ <_>
+
+ <_>
+ 4 19 12 4 -1.
+ <_>
+ 4 19 6 4 2.
+ <_>
+
+ <_>
+ 6 15 6 8 -1.
+ <_>
+ 8 15 2 8 3.
+ <_>
+
+ <_>
+ 8 5 8 8 -1.
+ <_>
+ 12 5 4 4 2.
+ <_>
+ 8 9 4 4 2.
+ <_>
+
+ <_>
+ 0 14 7 4 -1.
+ <_>
+ 0 16 7 2 2.
+ <_>
+
+ <_>
+ 10 2 4 8 -1.
+ <_>
+ 11 3 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 1 12 17 3 -1.
+ <_>
+ 1 13 17 1 3.
+ <_>
+
+ <_>
+ 13 8 4 15 -1.
+ <_>
+ 14 8 2 15 2.
+ <_>
+
+ <_>
+ 2 12 14 3 -1.
+ <_>
+ 2 13 14 1 3.
+ <_>
+
+ <_>
+ 6 12 7 6 -1.
+ <_>
+ 6 14 7 2 3.
+ <_>
+
+ <_>
+ 2 2 12 6 -1.
+ <_>
+ 2 2 6 3 2.
+ <_>
+ 8 5 6 3 2.
+ <_>
+
+ <_>
+ 11 0 8 5 -1.
+ <_>
+ 11 0 4 5 2.
+ <_>
+
+ <_>
+ 0 0 8 5 -1.
+ <_>
+ 4 0 4 5 2.
+ <_>
+
+ <_>
+ 1 2 18 20 -1.
+ <_>
+ 1 2 9 20 2.
+ <_>
+
+ <_>
+ 9 5 10 8 -1.
+ <_>
+ 9 5 5 8 2.
+ 1
+ <_>
+
+ <_>
+ 7 8 7 10 -1.
+ <_>
+ 7 13 7 5 2.
+ <_>
+
+ <_>
+ 7 7 4 14 -1.
+ <_>
+ 8 7 2 14 2.
+ <_>
+
+ <_>
+ 15 7 4 16 -1.
+ <_>
+ 15 7 2 16 2.
+ <_>
+
+ <_>
+ 0 0 12 7 -1.
+ <_>
+ 4 0 4 7 3.
+ <_>
+
+ <_>
+ 11 7 4 7 -1.
+ <_>
+ 11 7 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 4 4 6 15 -1.
+ <_>
+ 7 4 3 15 2.
+ <_>
+
+ <_>
+ 6 10 9 13 -1.
+ <_>
+ 9 10 3 13 3.
+ <_>
+
+ <_>
+ 1 14 4 7 -1.
+ <_>
+ 3 14 2 7 2.
+ <_>
+
+ <_>
+ 11 1 3 14 -1.
+ <_>
+ 12 1 1 14 3.
+ <_>
+
+ <_>
+ 5 11 4 8 -1.
+ <_>
+ 7 11 2 8 2.
+ <_>
+
+ <_>
+ 11 6 4 7 -1.
+ <_>
+ 11 6 2 7 2.
+ <_>
+
+ <_>
+ 4 6 4 7 -1.
+ <_>
+ 6 6 2 7 2.
+ <_>
+
+ <_>
+ 7 5 9 9 -1.
+ <_>
+ 10 5 3 9 3.
+ <_>
+
+ <_>
+ 2 1 12 12 -1.
+ <_>
+ 6 5 4 4 9.
+ <_>
+
+ <_>
+ 4 19 14 4 -1.
+ <_>
+ 11 19 7 2 2.
+ <_>
+ 4 21 7 2 2.
+ <_>
+
+ <_>
+ 1 19 14 4 -1.
+ <_>
+ 1 19 7 2 2.
+ <_>
+ 8 21 7 2 2.
+ <_>
+
+ <_>
+ 9 18 9 5 -1.
+ <_>
+ 12 18 3 5 3.
+ <_>
+
+ <_>
+ 1 18 9 5 -1.
+ <_>
+ 4 18 3 5 3.
+ <_>
+
+ <_>
+ 11 4 8 6 -1.
+ <_>
+ 11 4 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 8 7 6 -1.
+ <_>
+ 6 10 7 2 3.
+ <_>
+
+ <_>
+ 5 17 14 2 -1.
+ <_>
+ 5 18 14 1 2.
+ <_>
+
+ <_>
+ 6 6 9 3 -1.
+ <_>
+ 5 7 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 9 4 11 -1.
+ <_>
+ 13 9 2 11 2.
+ <_>
+
+ <_>
+ 2 9 4 11 -1.
+ <_>
+ 4 9 2 11 2.
+ <_>
+
+ <_>
+ 12 0 3 14 -1.
+ <_>
+ 13 0 1 14 3.
+ <_>
+
+ <_>
+ 4 0 3 14 -1.
+ <_>
+ 5 0 1 14 3.
+ <_>
+
+ <_>
+ 7 10 5 6 -1.
+ <_>
+ 7 13 5 3 2.
+ <_>
+
+ <_>
+ 0 12 17 4 -1.
+ <_>
+ 0 14 17 2 2.
+ <_>
+
+ <_>
+ 10 5 6 10 -1.
+ <_>
+ 12 7 2 10 3.
+ 1
+ <_>
+
+ <_>
+ 2 9 12 12 -1.
+ <_>
+ 6 13 4 4 9.
+ <_>
+
+ <_>
+ 1 15 12 8 -1.
+ <_>
+ 7 15 6 8 2.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+ 6 4 4 4 2.
+ <_>
+
+ <_>
+ 0 15 7 8 -1.
+ <_>
+ 0 17 7 4 2.
+ <_>
+
+ <_>
+ 8 7 4 8 -1.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 5 8 2 14 -1.
+ <_>
+ 6 8 1 14 2.
+ <_>
+
+ <_>
+ 12 8 7 4 -1.
+ <_>
+ 12 10 7 2 2.
+ <_>
+
+ <_>
+ 0 13 14 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+ 7 15 7 2 2.
+ <_>
+
+ <_>
+ 6 13 7 8 -1.
+ <_>
+ 6 15 7 4 2.
+ <_>
+
+ <_>
+ 7 7 4 15 -1.
+ <_>
+ 8 7 2 15 2.
+ <_>
+
+ <_>
+ 11 16 5 6 -1.
+ <_>
+ 11 19 5 3 2.
+ <_>
+
+ <_>
+ 4 0 6 10 -1.
+ <_>
+ 4 0 3 5 2.
+ <_>
+ 7 5 3 5 2.
+ <_>
+
+ <_>
+ 11 10 7 6 -1.
+ <_>
+ 9 12 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 0 14 2 -1.
+ <_>
+ 9 0 7 2 2.
+ <_>
+
+ <_>
+ 1 10 18 8 -1.
+ <_>
+ 10 10 9 4 2.
+ <_>
+ 1 14 9 4 2.
+ <_>
+
+ <_>
+ 1 18 15 3 -1.
+ <_>
+ 1 19 15 1 3.
+ <_>
+
+ <_>
+ 4 18 14 3 -1.
+ <_>
+ 4 19 14 1 3.
+ <_>
+
+ <_>
+ 0 3 19 18 -1.
+ <_>
+ 0 9 19 6 3.
+ <_>
+
+ <_>
+ 4 0 11 20 -1.
+ <_>
+ 4 10 11 10 2.
+ <_>
+
+ <_>
+ 5 0 9 18 -1.
+ <_>
+ 5 9 9 9 2.
+ <_>
+
+ <_>
+ 9 0 4 20 -1.
+ <_>
+ 9 10 4 10 2.
+ <_>
+
+ <_>
+ 1 11 6 6 -1.
+ <_>
+ 1 14 6 3 2.
+ <_>
+
+ <_>
+ 12 16 6 6 -1.
+ <_>
+ 12 19 6 3 2.
+ <_>
+
+ <_>
+ 3 8 2 14 -1.
+ <_>
+ 4 8 1 14 2.
+ <_>
+
+ <_>
+ 7 11 5 12 -1.
+ <_>
+ 7 15 5 4 3.
+ <_>
+
+ <_>
+ 5 11 5 12 -1.
+ <_>
+ 5 14 5 6 2.
+ <_>
+
+ <_>
+ 13 0 4 16 -1.
+ <_>
+ 15 0 2 8 2.
+ <_>
+ 13 8 2 8 2.
+ <_>
+
+ <_>
+ 1 0 12 8 -1.
+ <_>
+ 7 0 6 8 2.
+ <_>
+
+ <_>
+ 13 11 6 7 -1.
+ <_>
+ 15 11 2 7 3.
+ <_>
+
+ <_>
+ 0 8 7 8 -1.
+ <_>
+ 0 10 7 4 2.
+ <_>
+
+ <_>
+ 6 6 7 6 -1.
+ <_>
+ 6 8 7 2 3.
+ <_>
+
+ <_>
+ 7 1 4 14 -1.
+ <_>
+ 7 8 4 7 2.
+ <_>
+
+ <_>
+ 13 17 6 6 -1.
+ <_>
+ 13 17 3 6 2.
+ <_>
+
+ <_>
+ 5 11 4 12 -1.
+ <_>
+ 5 17 4 6 2.
+ <_>
+
+ <_>
+ 13 17 6 6 -1.
+ <_>
+ 13 17 3 6 2.
+ <_>
+
+ <_>
+ 0 8 2 14 -1.
+ <_>
+ 0 15 2 7 2.
+ <_>
+
+ <_>
+ 13 18 6 5 -1.
+ <_>
+ 13 18 3 5 2.
+ <_>
+
+ <_>
+ 4 0 2 14 -1.
+ <_>
+ 5 0 1 14 2.
+ <_>
+
+ <_>
+ 13 11 6 8 -1.
+ <_>
+ 15 11 2 8 3.
+ <_>
+
+ <_>
+ 1 11 3 12 -1.
+ <_>
+ 1 17 3 6 2.
+ <_>
+
+ <_>
+ 12 18 6 5 -1.
+ <_>
+ 12 18 3 5 2.
+ <_>
+
+ <_>
+ 0 15 4 8 -1.
+ <_>
+ 0 19 4 4 2.
+ <_>
+
+ <_>
+ 13 11 6 8 -1.
+ <_>
+ 15 11 2 8 3.
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 2 11 2 8 3.
+ <_>
+
+ <_>
+ 5 17 14 3 -1.
+ <_>
+ 5 18 14 1 3.
+ <_>
+
+ <_>
+ 0 15 7 6 -1.
+ <_>
+ 0 17 7 2 3.
+ <_>
+
+ <_>
+ 10 8 4 10 -1.
+ <_>
+ 10 8 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 16 7 -1.
+ <_>
+ 5 11 8 7 2.
+ <_>
+
+ <_>
+ 5 0 9 16 -1.
+ <_>
+ 8 0 3 16 3.
+ <_>
+
+ <_>
+ 6 6 2 14 -1.
+ <_>
+ 7 6 1 14 2.
+ <_>
+
+ <_>
+ 11 5 4 15 -1.
+ <_>
+ 12 5 2 15 2.
+ <_>
+
+ <_>
+ 9 8 10 4 -1.
+ <_>
+ 9 8 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 1 4 14 -1.
+ <_>
+ 8 1 2 14 2.
+ <_>
+
+ <_>
+ 7 1 4 14 -1.
+ <_>
+ 9 1 2 14 2.
+ <_>
+
+ <_>
+ 1 14 18 9 -1.
+ <_>
+ 7 17 6 3 9.
+ <_>
+
+ <_>
+ 6 9 7 9 -1.
+ <_>
+ 6 12 7 3 3.
+ <_>
+
+ <_>
+ 1 11 18 2 -1.
+ <_>
+ 1 12 18 1 2.
+ <_>
+
+ <_>
+ 7 7 4 16 -1.
+ <_>
+ 7 11 4 8 2.
+ <_>
+
+ <_>
+ 2 10 15 3 -1.
+ <_>
+ 2 11 15 1 3.
+ <_>
+
+ <_>
+ 6 12 7 9 -1.
+ <_>
+ 6 15 7 3 3.
+ <_>
+
+ <_>
+ 4 10 15 3 -1.
+ <_>
+ 4 11 15 1 3.
+ <_>
+
+ <_>
+ 0 19 14 4 -1.
+ <_>
+ 0 19 7 2 2.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 5 17 14 3 -1.
+ <_>
+ 5 18 14 1 3.
+ <_>
+
+ <_>
+ 1 7 3 14 -1.
+ <_>
+ 2 7 1 14 3.
+ <_>
+
+ <_>
+ 9 0 6 7 -1.
+ <_>
+ 11 0 2 7 3.
+ <_>
+
+ <_>
+ 4 0 6 7 -1.
+ <_>
+ 6 0 2 7 3.
+ <_>
+
+ <_>
+ 6 5 8 6 -1.
+ <_>
+ 6 5 4 6 2.
+ <_>
+
+ <_>
+ 5 2 3 16 -1.
+ <_>
+ 6 2 1 16 3.
+ <_>
+
+ <_>
+ 15 4 4 15 -1.
+ <_>
+ 16 4 2 15 2.
+ <_>
+
+ <_>
+ 6 12 6 5 -1.
+ <_>
+ 6 12 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 9 3 14 -1.
+ <_>
+ 9 9 1 14 3.
+ <_>
+
+ <_>
+ 0 16 7 4 -1.
+ <_>
+ 0 18 7 2 2.
+ <_>
+
+ <_>
+ 5 16 14 3 -1.
+ <_>
+ 5 17 14 1 3.
+ <_>
+
+ <_>
+ 0 4 4 15 -1.
+ <_>
+ 1 4 2 15 2.
+ <_>
+
+ <_>
+ 10 2 8 6 -1.
+ <_>
+ 10 4 8 2 3.
+ <_>
+
+ <_>
+ 1 2 8 6 -1.
+ <_>
+ 1 4 8 2 3.
+ <_>
+
+ <_>
+ 10 6 4 16 -1.
+ <_>
+ 12 6 2 8 2.
+ <_>
+ 10 14 2 8 2.
+ <_>
+
+ <_>
+ 7 1 4 18 -1.
+ <_>
+ 7 1 2 9 2.
+ <_>
+ 9 10 2 9 2.
+ <_>
+
+ <_>
+ 8 4 4 7 -1.
+ <_>
+ 8 4 2 7 2.
+ <_>
+
+ <_>
+ 7 4 4 7 -1.
+ <_>
+ 9 4 2 7 2.
+ <_>
+
+ <_>
+ 7 0 12 14 -1.
+ <_>
+ 7 0 6 14 2.
+ <_>
+
+ <_>
+ 2 1 2 14 -1.
+ <_>
+ 3 1 1 14 2.
+ <_>
+
+ <_>
+ 0 18 14 4 -1.
+ <_>
+ 0 18 7 2 2.
+ <_>
+ 7 20 7 2 2.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+ 6 4 4 4 2.
+ <_>
+
+ <_>
+ 4 9 6 10 -1.
+ <_>
+ 4 9 3 5 2.
+ <_>
+ 7 14 3 5 2.
+ <_>
+
+ <_>
+ 1 17 18 6 -1.
+ <_>
+ 10 17 9 3 2.
+ <_>
+ 1 20 9 3 2.
+ <_>
+
+ <_>
+ 5 0 6 21 -1.
+ <_>
+ 7 7 2 7 9.
+ <_>
+
+ <_>
+ 6 7 12 7 -1.
+ <_>
+ 6 7 6 7 2.
+ <_>
+
+ <_>
+ 7 0 12 3 -1.
+ <_>
+ 7 0 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 9 5 -1.
+ <_>
+ 8 0 3 5 3.
+ <_>
+
+ <_>
+ 7 9 3 14 -1.
+ <_>
+ 8 9 1 14 3.
+ <_>
+
+ <_>
+ 3 14 16 9 -1.
+ <_>
+ 3 17 16 3 3.
+ <_>
+
+ <_>
+ 1 17 6 6 -1.
+ <_>
+ 4 17 3 6 2.
+ <_>
+
+ <_>
+ 5 1 10 20 -1.
+ <_>
+ 5 6 10 10 2.
+ <_>
+
+ <_>
+ 1 16 12 7 -1.
+ <_>
+ 4 16 6 7 2.
+ <_>
+
+ <_>
+ 5 0 9 4 -1.
+ <_>
+ 5 2 9 2 2.
+ <_>
+
+ <_>
+ 3 0 13 6 -1.
+ <_>
+ 3 2 13 2 3.
+ <_>
+
+ <_>
+ 11 13 7 8 -1.
+ <_>
+ 11 15 7 4 2.
+ <_>
+
+ <_>
+ 3 0 4 8 -1.
+ <_>
+ 3 4 4 4 2.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 6 5 7 6 -1.
+ <_>
+ 6 7 7 2 3.
+ <_>
+
+ <_>
+ 8 17 7 6 -1.
+ <_>
+ 8 19 7 2 3.
+ <_>
+
+ <_>
+ 5 12 5 8 -1.
+ <_>
+ 5 16 5 4 2.
+ <_>
+
+ <_>
+ 0 15 19 2 -1.
+ <_>
+ 0 16 19 1 2.
+ <_>
+
+ <_>
+ 6 7 7 4 -1.
+ <_>
+ 6 9 7 2 2.
+ <_>
+
+ <_>
+ 9 0 2 21 -1.
+ <_>
+ 9 7 2 7 3.
+ <_>
+
+ <_>
+ 0 19 15 4 -1.
+ <_>
+ 5 19 5 4 3.
+ <_>
+
+ <_>
+ 9 20 10 3 -1.
+ <_>
+ 9 20 5 3 2.
+ <_>
+
+ <_>
+ 0 17 15 3 -1.
+ <_>
+ 0 18 15 1 3.
+ <_>
+
+ <_>
+ 12 13 6 5 -1.
+ <_>
+ 12 13 3 5 2.
+ <_>
+
+ <_>
+ 6 7 7 6 -1.
+ <_>
+ 6 9 7 2 3.
+ <_>
+
+ <_>
+ 3 15 14 3 -1.
+ <_>
+ 3 16 14 1 3.
+ <_>
+
+ <_>
+ 0 20 10 3 -1.
+ <_>
+ 5 20 5 3 2.
+ <_>
+
+ <_>
+ 6 7 8 4 -1.
+ <_>
+ 6 7 4 4 2.
+ <_>
+
+ <_>
+ 1 17 7 6 -1.
+ <_>
+ 1 19 7 2 3.
+ <_>
+
+ <_>
+ 7 17 12 4 -1.
+ <_>
+ 11 17 4 4 3.
+ <_>
+
+ <_>
+ 3 15 6 7 -1.
+ <_>
+ 5 15 2 7 3.
+ <_>
+
+ <_>
+ 6 7 12 7 -1.
+ <_>
+ 6 7 6 7 2.
+ <_>
+
+ <_>
+ 1 9 12 12 -1.
+ <_>
+ 1 13 12 4 3.
+ <_>
+
+ <_>
+ 12 6 5 9 -1.
+ <_>
+ 12 9 5 3 3.
+ <_>
+
+ <_>
+ 2 6 5 9 -1.
+ <_>
+ 2 9 5 3 3.
+ <_>
+
+ <_>
+ 12 6 6 7 -1.
+ <_>
+ 14 8 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 5 9 8 10 -1.
+ <_>
+ 5 9 4 5 2.
+ <_>
+ 9 14 4 5 2.
+ <_>
+
+ <_>
+ 2 11 16 6 -1.
+ <_>
+ 10 11 8 3 2.
+ <_>
+ 2 14 8 3 2.
+ <_>
+
+ <_>
+ 8 4 3 16 -1.
+ <_>
+ 9 4 1 16 3.
+ <_>
+
+ <_>
+ 8 9 4 14 -1.
+ <_>
+ 9 9 2 14 2.
+ <_>
+
+ <_>
+ 7 9 4 14 -1.
+ <_>
+ 8 9 2 14 2.
+ <_>
+
+ <_>
+ 7 17 12 4 -1.
+ <_>
+ 11 17 4 4 3.
+ <_>
+
+ <_>
+ 0 17 12 4 -1.
+ <_>
+ 4 17 4 4 3.
+ <_>
+
+ <_>
+ 13 12 6 10 -1.
+ <_>
+ 16 12 3 5 2.
+ <_>
+ 13 17 3 5 2.
+ <_>
+
+ <_>
+ 0 17 6 6 -1.
+ <_>
+ 3 17 3 6 2.
+ <_>
+
+ <_>
+ 12 4 6 8 -1.
+ <_>
+ 12 4 3 8 2.
+ 1
+ <_>
+
+ <_>
+ 3 6 10 15 -1.
+ <_>
+ 8 6 5 15 2.
+ <_>
+
+ <_>
+ 10 10 7 4 -1.
+ <_>
+ 10 10 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 9 9 7 -1.
+ <_>
+ 4 9 3 7 3.
+ <_>
+
+ <_>
+ 1 17 18 6 -1.
+ <_>
+ 10 17 9 3 2.
+ <_>
+ 1 20 9 3 2.
+ <_>
+
+ <_>
+ 6 0 13 3 -1.
+ <_>
+ 5 1 13 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 0 3 9 -1.
+ <_>
+ 11 1 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 9 0 9 3 -1.
+ <_>
+ 8 1 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 1 12 12 -1.
+ <_>
+ 13 1 6 6 2.
+ <_>
+ 7 7 6 6 2.
+ <_>
+
+ <_>
+ 7 4 8 6 -1.
+ <_>
+ 7 4 8 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 11 8 4 -1.
+ <_>
+ 11 11 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 11 4 8 -1.
+ <_>
+ 8 11 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 10 10 7 4 -1.
+ <_>
+ 10 10 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 10 4 7 -1.
+ <_>
+ 9 10 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 7 3 14 -1.
+ <_>
+ 9 7 1 14 3.
+ <_>
+
+ <_>
+ 8 6 10 7 -1.
+ <_>
+ 8 6 5 7 2.
+ 1
+ <_>
+
+ <_>
+ 3 6 16 3 -1.
+ <_>
+ 3 7 16 1 3.
+ <_>
+
+ <_>
+ 4 5 2 17 -1.
+ <_>
+ 5 5 1 17 2.
+ <_>
+
+ <_>
+ 12 0 6 18 -1.
+ <_>
+ 15 0 3 9 2.
+ <_>
+ 12 9 3 9 2.
+ <_>
+
+ <_>
+ 3 4 6 16 -1.
+ <_>
+ 3 4 3 8 2.
+ <_>
+ 6 12 3 8 2.
+ <_>
+
+ <_>
+ 12 0 6 18 -1.
+ <_>
+ 15 0 3 9 2.
+ <_>
+ 12 9 3 9 2.
+ <_>
+
+ <_>
+ 0 1 16 4 -1.
+ <_>
+ 0 1 8 2 2.
+ <_>
+ 8 3 8 2 2.
+ <_>
+
+ <_>
+ 6 12 12 5 -1.
+ <_>
+ 6 12 6 5 2.
+ <_>
+
+ <_>
+ 3 7 3 10 -1.
+ <_>
+ 3 12 3 5 2.
+ <_>
+
+ <_>
+ 11 3 7 12 -1.
+ <_>
+ 11 7 7 4 3.
+ <_>
+
+ <_>
+ 0 6 8 6 -1.
+ <_>
+ 0 8 8 2 3.
+ <_>
+
+ <_>
+ 12 3 7 6 -1.
+ <_>
+ 12 5 7 2 3.
+ <_>
+
+ <_>
+ 0 3 7 6 -1.
+ <_>
+ 0 5 7 2 3.
+ <_>
+
+ <_>
+ 13 10 6 8 -1.
+ <_>
+ 15 10 2 8 3.
+ <_>
+
+ <_>
+ 0 17 14 2 -1.
+ <_>
+ 0 18 14 1 2.
+ <_>
+
+ <_>
+ 13 10 6 8 -1.
+ <_>
+ 15 10 2 8 3.
+ <_>
+
+ <_>
+ 0 17 14 2 -1.
+ <_>
+ 0 18 14 1 2.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+ 6 4 4 4 2.
+ <_>
+
+ <_>
+ 0 10 6 8 -1.
+ <_>
+ 2 10 2 8 3.
+ <_>
+
+ <_>
+ 13 0 3 14 -1.
+ <_>
+ 14 0 1 14 3.
+ <_>
+
+ <_>
+ 6 0 6 7 -1.
+ <_>
+ 8 0 2 7 3.
+ <_>
+
+ <_>
+ 6 0 8 8 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+ 6 4 4 4 2.
+ <_>
+
+ <_>
+ 5 0 8 8 -1.
+ <_>
+ 5 0 4 4 2.
+ <_>
+ 9 4 4 4 2.
+ <_>
+
+ <_>
+ 3 7 16 7 -1.
+ <_>
+ 3 7 8 7 2.
+ <_>
+
+ <_>
+ 0 7 16 7 -1.
+ <_>
+ 8 7 8 7 2.
+ <_>
+
+ <_>
+ 2 11 10 8 -1.
+ <_>
+ 7 11 5 8 2.
+ <_>
+
+ <_>
+ 12 8 6 9 -1.
+ <_>
+ 14 8 2 9 3.
+ <_>
+
+ <_>
+ 1 8 6 9 -1.
+ <_>
+ 3 8 2 9 3.
+ <_>
+
+ <_>
+ 4 3 14 11 -1.
+ <_>
+ 4 3 7 11 2.
+ <_>
+
+ <_>
+ 5 5 13 3 -1.
+ <_>
+ 4 6 13 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 6 9 -1.
+ <_>
+ 9 0 2 9 3.
+ <_>
+
+ <_>
+ 1 0 14 12 -1.
+ <_>
+ 1 0 7 6 2.
+ <_>
+ 8 6 7 6 2.
+ <_>
+
+ <_>
+ 10 0 8 4 -1.
+ <_>
+ 10 0 4 4 2.
+ <_>
+
+ <_>
+ 3 10 4 12 -1.
+ <_>
+ 5 10 2 12 2.
+ <_>
+
+ <_>
+ 11 0 2 22 -1.
+ <_>
+ 11 11 2 11 2.
+ <_>
+
+ <_>
+ 0 19 14 4 -1.
+ <_>
+ 0 19 7 2 2.
+ <_>
+ 7 21 7 2 2.
+ <_>
+
+ <_>
+ 10 8 2 8 -1.
+ <_>
+ 10 8 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 4 14 -1.
+ <_>
+ 5 0 2 7 2.
+ <_>
+ 7 7 2 7 2.
+ <_>
+
+ <_>
+ 8 4 4 10 -1.
+ <_>
+ 8 9 4 5 2.
+ <_>
+
+ <_>
+ 9 8 8 2 -1.
+ <_>
+ 9 8 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 7 19 3 -1.
+ <_>
+ 0 8 19 1 3.
+ <_>
+
+ <_>
+ 0 8 19 2 -1.
+ <_>
+ 0 9 19 1 2.
+ <_>
+
+ <_>
+ 1 6 18 4 -1.
+ <_>
+ 10 6 9 2 2.
+ <_>
+ 1 8 9 2 2.
+ <_>
+
+ <_>
+ 2 1 8 18 -1.
+ <_>
+ 6 1 4 18 2.
+ <_>
+
+ <_>
+ 6 11 10 12 -1.
+ <_>
+ 11 11 5 6 2.
+ <_>
+ 6 17 5 6 2.
+ <_>
+
+ <_>
+ 3 7 9 11 -1.
+ <_>
+ 6 7 3 11 3.
+ <_>
+
+ <_>
+ 9 0 6 14 -1.
+ <_>
+ 11 0 2 14 3.
+ <_>
+
+ <_>
+ 2 16 12 7 -1.
+ <_>
+ 6 16 4 7 3.
+ <_>
+
+ <_>
+ 2 15 15 6 -1.
+ <_>
+ 7 15 5 6 3.
+ <_>
+
+ <_>
+ 5 2 8 7 -1.
+ <_>
+ 7 2 4 7 2.
+ <_>
+
+ <_>
+ 8 0 4 14 -1.
+ <_>
+ 9 0 2 14 2.
+ <_>
+
+ <_>
+ 7 0 4 14 -1.
+ <_>
+ 8 0 2 14 2.
+ <_>
+
+ <_>
+ 7 18 12 5 -1.
+ <_>
+ 11 18 4 5 3.
+ <_>
+
+ <_>
+ 1 18 15 3 -1.
+ <_>
+ 1 19 15 1 3.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 5 10 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 10 4 9 -1.
+ <_>
+ 12 11 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 8 10 9 4 -1.
+ <_>
+ 7 11 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 3 2 16 -1.
+ <_>
+ 15 11 2 8 2.
+ <_>
+
+ <_>
+ 1 17 5 6 -1.
+ <_>
+ 1 20 5 3 2.
+ <_>
+
+ <_>
+ 12 16 5 6 -1.
+ <_>
+ 12 19 5 3 2.
+ <_>
+
+ <_>
+ 5 2 3 14 -1.
+ <_>
+ 6 2 1 14 3.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 6 1 6 9 -1.
+ <_>
+ 8 1 2 9 3.
+ <_>
+
+ <_>
+ 7 7 10 5 -1.
+ <_>
+ 7 7 5 5 2.
+ <_>
+
+ <_>
+ 6 0 4 20 -1.
+ <_>
+ 6 0 2 10 2.
+ <_>
+ 8 10 2 10 2.
+ <_>
+
+ <_>
+ 13 10 3 9 -1.
+ <_>
+ 14 11 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 6 10 9 3 -1.
+ <_>
+ 5 11 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 8 6 3 14 -1.
+ <_>
+ 9 6 1 14 3.
+ <_>
+
+ <_>
+ 8 1 4 9 -1.
+ <_>
+ 8 1 2 9 2.
+ <_>
+
+ <_>
+ 7 1 4 9 -1.
+ <_>
+ 9 1 2 9 2.
+ <_>
+
+ <_>
+ 7 17 12 6 -1.
+ <_>
+ 13 17 6 3 2.
+ <_>
+ 7 20 6 3 2.
+ <_>
+
+ <_>
+ 3 4 10 6 -1.
+ <_>
+ 8 4 5 6 2.
+ <_>
+
+ <_>
+ 15 0 4 8 -1.
+ <_>
+ 15 4 4 4 2.
+ <_>
+
+ <_>
+ 3 5 6 8 -1.
+ <_>
+ 5 5 2 8 3.
+ <_>
+
+ <_>
+ 15 0 4 8 -1.
+ <_>
+ 15 4 4 4 2.
+ <_>
+
+ <_>
+ 0 0 4 8 -1.
+ <_>
+ 0 4 4 4 2.
+ <_>
+
+ <_>
+ 7 0 9 5 -1.
+ <_>
+ 10 0 3 5 3.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 5 21 14 2 -1.
+ <_>
+ 5 21 7 2 2.
+ <_>
+
+ <_>
+ 9 3 8 9 -1.
+ <_>
+ 9 3 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 6 1 12 8 -1.
+ <_>
+ 12 1 6 4 2.
+ <_>
+ 6 5 6 4 2.
+ <_>
+
+ <_>
+ 4 10 10 11 -1.
+ <_>
+ 9 10 5 11 2.
+ <_>
+
+ <_>
+ 12 1 3 15 -1.
+ <_>
+ 13 1 1 15 3.
+ <_>
+
+ <_>
+ 4 3 8 12 -1.
+ <_>
+ 8 3 4 12 2.
+ <_>
+
+ <_>
+ 8 2 10 8 -1.
+ <_>
+ 8 2 5 8 2.
+ <_>
+
+ <_>
+ 0 4 19 6 -1.
+ <_>
+ 0 6 19 2 3.
+ <_>
+
+ <_>
+ 4 0 11 16 -1.
+ <_>
+ 4 4 11 8 2.
+ <_>
+
+ <_>
+ 4 1 6 5 -1.
+ <_>
+ 7 1 3 5 2.
+ <_>
+
+ <_>
+ 3 5 14 18 -1.
+ <_>
+ 10 5 7 9 2.
+ <_>
+ 3 14 7 9 2.
+ <_>
+
+ <_>
+ 1 17 5 6 -1.
+ <_>
+ 1 20 5 3 2.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 2 0 4 14 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+ 4 7 2 7 2.
+ <_>
+
+ <_>
+ 10 2 2 10 -1.
+ <_>
+ 10 2 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 9 1 9 3 -1.
+ <_>
+ 8 2 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 10 6 -1.
+ <_>
+ 11 2 5 3 2.
+ <_>
+ 6 5 5 3 2.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 1 14 9 2 3.
+ <_>
+
+ <_>
+ 6 2 10 6 -1.
+ <_>
+ 11 2 5 3 2.
+ <_>
+ 6 5 5 3 2.
+ <_>
+
+ <_>
+ 3 2 10 6 -1.
+ <_>
+ 3 2 5 3 2.
+ <_>
+ 8 5 5 3 2.
+ <_>
+
+ <_>
+ 7 0 5 20 -1.
+ <_>
+ 7 5 5 10 2.
+ <_>
+
+ <_>
+ 2 10 12 7 -1.
+ <_>
+ 5 10 6 7 2.
+ <_>
+
+ <_>
+ 0 18 14 4 -1.
+ <_>
+ 0 18 7 2 2.
+ <_>
+ 7 20 7 2 2.
+ <_>
+
+ <_>
+ 9 7 3 15 -1.
+ <_>
+ 10 7 1 15 3.
+ <_>
+
+ <_>
+ 6 8 6 5 -1.
+ <_>
+ 9 8 3 5 2.
+ <_>
+
+ <_>
+ 9 4 2 17 -1.
+ <_>
+ 9 4 1 17 2.
+ <_>
+
+ <_>
+ 8 4 2 17 -1.
+ <_>
+ 9 4 1 17 2.
+ <_>
+
+ <_>
+ 8 18 9 5 -1.
+ <_>
+ 11 18 3 5 3.
+ <_>
+
+ <_>
+ 2 18 9 5 -1.
+ <_>
+ 5 18 3 5 3.
+ <_>
+
+ <_>
+ 12 18 6 5 -1.
+ <_>
+ 12 18 3 5 2.
+ <_>
+
+ <_>
+ 5 15 6 5 -1.
+ <_>
+ 8 15 3 5 2.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 15 0 2 10 3.
+ <_>
+
+ <_>
+ 2 14 10 9 -1.
+ <_>
+ 2 17 10 3 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 15 0 2 10 3.
+ <_>
+
+ <_>
+ 0 0 6 10 -1.
+ <_>
+ 2 0 2 10 3.
+ <_>
+
+ <_>
+ 12 5 3 12 -1.
+ <_>
+ 12 5 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 18 7 4 -1.
+ <_>
+ 6 20 7 2 2.
+ <_>
+
+ <_>
+ 14 7 4 12 -1.
+ <_>
+ 15 8 2 12 2.
+ 1
+ <_>
+
+ <_>
+ 5 7 12 4 -1.
+ <_>
+ 4 8 12 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 13 5 9 -1.
+ <_>
+ 14 16 5 3 3.
+ <_>
+
+ <_>
+ 0 13 5 9 -1.
+ <_>
+ 0 16 5 3 3.
+ <_>
+
+ <_>
+ 12 14 7 6 -1.
+ <_>
+ 12 16 7 2 3.
+ <_>
+
+ <_>
+ 1 16 6 6 -1.
+ <_>
+ 1 19 6 3 2.
+ <_>
+
+ <_>
+ 7 0 9 4 -1.
+ <_>
+ 7 2 9 2 2.
+ <_>
+
+ <_>
+ 0 9 18 3 -1.
+ <_>
+ 0 10 18 1 3.
+ <_>
+
+ <_>
+ 9 17 9 6 -1.
+ <_>
+ 12 17 3 6 3.
+ <_>
+
+ <_>
+ 2 14 15 9 -1.
+ <_>
+ 7 17 5 3 9.
+ <_>
+
+ <_>
+ 9 13 8 8 -1.
+ <_>
+ 9 17 8 4 2.
+ <_>
+
+ <_>
+ 4 9 2 14 -1.
+ <_>
+ 5 9 1 14 2.
+ <_>
+
+ <_>
+ 12 10 4 13 -1.
+ <_>
+ 12 10 2 13 2.
+ <_>
+
+ <_>
+ 3 10 4 13 -1.
+ <_>
+ 5 10 2 13 2.
+ <_>
+
+ <_>
+ 5 5 14 2 -1.
+ <_>
+ 5 5 7 2 2.
+ <_>
+
+ <_>
+ 0 5 14 2 -1.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 13 12 6 10 -1.
+ <_>
+ 16 12 3 5 2.
+ <_>
+ 13 17 3 5 2.
+ <_>
+
+ <_>
+ 0 12 6 10 -1.
+ <_>
+ 0 12 3 5 2.
+ <_>
+ 3 17 3 5 2.
+ <_>
+
+ <_>
+ 12 8 5 12 -1.
+ <_>
+ 12 11 5 6 2.
+ <_>
+
+ <_>
+ 2 8 5 12 -1.
+ <_>
+ 2 11 5 6 2.
+ <_>
+
+ <_>
+ 6 8 7 4 -1.
+ <_>
+ 6 10 7 2 2.
+ <_>
+
+ <_>
+ 0 17 14 3 -1.
+ <_>
+ 0 18 14 1 3.
+ <_>
+
+ <_>
+ 12 7 2 15 -1.
+ <_>
+ 12 7 1 15 2.
+ <_>
+
+ <_>
+ 1 17 9 6 -1.
+ <_>
+ 4 17 3 6 3.
+ <_>
+
+ <_>
+ 10 6 9 7 -1.
+ <_>
+ 13 9 3 7 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 7 9 -1.
+ <_>
+ 6 9 7 3 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 10 4 -1.
+ <_>
+ 5 10 10 2 2.
+ <_>
+
+ <_>
+ 0 6 6 14 -1.
+ <_>
+ 0 13 6 7 2.
+ <_>
+
+ <_>
+ 1 1 18 22 -1.
+ <_>
+ 10 1 9 11 2.
+ <_>
+ 1 12 9 11 2.
+ <_>
+
+ <_>
+ 1 5 17 3 -1.
+ <_>
+ 1 6 17 1 3.
+ <_>
+
+ <_>
+ 13 12 6 5 -1.
+ <_>
+ 13 12 3 5 2.
+ <_>
+
+ <_>
+ 0 5 16 3 -1.
+ <_>
+ 0 6 16 1 3.
+ <_>
+
+ <_>
+ 12 6 6 17 -1.
+ <_>
+ 12 6 3 17 2.
+ <_>
+
+ <_>
+ 1 6 6 17 -1.
+ <_>
+ 4 6 3 17 2.
+ <_>
+
+ <_>
+ 1 15 18 2 -1.
+ <_>
+ 1 15 9 2 2.
+ <_>
+
+ <_>
+ 0 5 2 16 -1.
+ <_>
+ 1 5 1 16 2.
+ <_>
+
+ <_>
+ 15 12 4 10 -1.
+ <_>
+ 15 17 4 5 2.
+ <_>
+
+ <_>
+ 1 5 16 3 -1.
+ <_>
+ 1 6 16 1 3.
+ <_>
+
+ <_>
+ 6 9 9 12 -1.
+ <_>
+ 6 12 9 6 2.
+ <_>
+
+ <_>
+ 3 13 4 8 -1.
+ <_>
+ 3 17 4 4 2.
+ <_>
+
+ <_>
+ 9 13 8 8 -1.
+ <_>
+ 9 17 8 4 2.
+ <_>
+
+ <_>
+ 5 0 8 10 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+ 9 5 4 5 2.
+ <_>
+
+ <_>
+ 1 4 18 6 -1.
+ <_>
+ 10 4 9 3 2.
+ <_>
+ 1 7 9 3 2.
+ <_>
+
+ <_>
+ 3 16 9 6 -1.
+ <_>
+ 3 18 9 2 3.
+ <_>
+
+ <_>
+ 3 17 14 4 -1.
+ <_>
+ 3 18 14 2 2.
+ <_>
+
+ <_>
+ 2 3 9 6 -1.
+ <_>
+ 2 5 9 2 3.
+ <_>
+
+ <_>
+ 0 3 19 3 -1.
+ <_>
+ 0 4 19 1 3.
+ <_>
+
+ <_>
+ 1 3 16 4 -1.
+ <_>
+ 1 4 16 2 2.
+ <_>
+
+ <_>
+ 11 0 6 14 -1.
+ <_>
+ 14 0 3 7 2.
+ <_>
+ 11 7 3 7 2.
+ <_>
+
+ <_>
+ 0 17 9 6 -1.
+ <_>
+ 3 17 3 6 3.
+ <_>
+
+ <_>
+ 7 16 8 7 -1.
+ <_>
+ 9 16 4 7 2.
+ <_>
+
+ <_>
+ 3 14 10 5 -1.
+ <_>
+ 8 14 5 5 2.
+ <_>
+
+ <_>
+ 12 9 3 14 -1.
+ <_>
+ 13 9 1 14 3.
+ <_>
+
+ <_>
+ 4 9 3 14 -1.
+ <_>
+ 5 9 1 14 3.
+ <_>
+
+ <_>
+ 10 9 6 14 -1.
+ <_>
+ 13 9 3 7 2.
+ <_>
+ 10 16 3 7 2.
+ <_>
+
+ <_>
+ 6 0 6 5 -1.
+ <_>
+ 9 0 3 5 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 7 4 6 4 2.
+ <_>
+
+ <_>
+ 2 0 11 21 -1.
+ <_>
+ 2 7 11 7 3.
+ <_>
+
+ <_>
+ 8 8 4 12 -1.
+ <_>
+ 8 12 4 4 3.
+ <_>
+
+ <_>
+ 3 9 6 14 -1.
+ <_>
+ 3 9 3 7 2.
+ <_>
+ 6 16 3 7 2.
+ <_>
+
+ <_>
+ 10 7 8 7 -1.
+ <_>
+ 12 7 4 7 2.
+ <_>
+
+ <_>
+ 1 7 8 7 -1.
+ <_>
+ 3 7 4 7 2.
+ <_>
+
+ <_>
+ 5 2 9 20 -1.
+ <_>
+ 8 2 3 20 3.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_profileface.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_profileface.xml
new file mode 100644
index 0000000000000000000000000000000000000000..486d8e3d83075578c446be96b75a2414efe75ecb
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_profileface.xml
@@ -0,0 +1,29690 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 195
+
+ 0
+ 26
+
+ <_>
+ 3
+ -1.1856809854507446e+00
+
+ <_>
+
+ 0 -1 0 1.1384399840608239e-03
+
+ -8.3771979808807373e-01 7.3413830995559692e-01
+ <_>
+
+ 0 -1 1 -1.1342350393533707e-02
+
+ 6.2702018022537231e-01 -7.2396302223205566e-01
+ <_>
+
+ 0 -1 2 -1.1023089755326509e-03
+
+ 3.7600189447402954e-01 -6.6088408231735229e-01
+ <_>
+ 12
+ -1.4913179874420166e+00
+
+ <_>
+
+ 0 -1 3 -1.9553869962692261e-02
+
+ 4.9245831370353699e-01 -6.3396167755126953e-01
+ <_>
+
+ 0 -1 4 2.2794529795646667e-03
+
+ -6.4604967832565308e-01 3.5818460583686829e-01
+ <_>
+
+ 0 -1 5 2.4270440917462111e-03
+
+ -4.7253230214118958e-01 2.8494310379028320e-01
+ <_>
+
+ 0 -1 6 1.9644061103463173e-03
+
+ 1.6999539732933044e-01 -7.7868157625198364e-01
+ <_>
+
+ 0 -1 7 2.2895270958542824e-03
+
+ 1.5551710128784180e-01 -6.6725099086761475e-01
+ <_>
+
+ 0 -1 8 -3.0143910553306341e-03
+
+ -6.8721300363540649e-01 1.4604569971561432e-01
+ <_>
+
+ 0 -1 9 -1.7399009317159653e-02
+
+ 7.2524380683898926e-01 -1.6572900116443634e-01
+ <_>
+
+ 0 -1 10 9.0722442837432027e-04
+
+ -4.6388080716133118e-01 2.3604999482631683e-01
+ <_>
+
+ 0 -1 11 -1.5043979510664940e-03
+
+ -7.5959628820419312e-01 1.1436919867992401e-01
+ <_>
+
+ 0 -1 12 1.0804689675569534e-01
+
+ -1.2865519523620605e-01 7.9092341661453247e-01
+ <_>
+
+ 0 -1 13 -1.1923050042241812e-03
+
+ -6.2403547763824463e-01 1.4847490191459656e-01
+ <_>
+
+ 0 -1 14 -2.0571390166878700e-02
+
+ 4.0808489918708801e-01 -2.1287000179290771e-01
+ <_>
+ 27
+ -1.9596290588378906e+00
+
+ <_>
+
+ 0 -1 15 -3.6899209022521973e-02
+
+ 5.3308618068695068e-01 -4.0872651338577271e-01
+ <_>
+
+ 0 -1 16 2.4960909504443407e-03
+
+ -6.9489312171936035e-01 2.7125179767608643e-01
+ <_>
+
+ 0 -1 17 2.4068039783742279e-04
+
+ -5.6208252906799316e-01 2.1930350363254547e-01
+ <_>
+
+ 0 -1 18 -5.8021828532218933e-02
+
+ 6.9060617685317993e-01 -1.5082140266895294e-01
+ <_>
+
+ 0 -1 19 1.1526979506015778e-03
+
+ 1.3925389945507050e-01 -6.6311657428741455e-01
+ <_>
+
+ 0 -1 20 7.4388440698385239e-03
+
+ -3.3333170413970947e-01 3.1699380278587341e-01
+ <_>
+
+ 0 -1 21 -1.4158539706841111e-03
+
+ -6.8007302284240723e-01 1.3243320584297180e-01
+ <_>
+
+ 0 -1 22 8.8562711607664824e-04
+
+ -3.8672161102294922e-01 1.9732959568500519e-01
+ <_>
+
+ 0 -1 23 2.5714060757309198e-03
+
+ 1.2035659700632095e-01 -7.3177069425582886e-01
+ <_>
+
+ 0 -1 24 1.8255549948662519e-03
+
+ 7.7979840338230133e-02 -7.7196091413497925e-01
+ <_>
+
+ 0 -1 25 -1.1993020307272673e-03
+
+ 1.6821229457855225e-01 -4.1479128599166870e-01
+ <_>
+
+ 0 -1 26 2.3179080337285995e-02
+
+ 7.5337320566177368e-02 -7.1047067642211914e-01
+ <_>
+
+ 0 -1 27 4.6539418399333954e-02
+
+ -1.0464839637279510e-01 6.6270697116851807e-01
+ <_>
+
+ 0 -1 28 -1.7157640540972352e-03
+
+ -4.9618211388587952e-01 1.6275240480899811e-01
+ <_>
+
+ 0 -1 29 -1.2778829783201218e-02
+
+ 4.6254539489746094e-01 -1.6027900576591492e-01
+ <_>
+
+ 0 -1 30 -1.5214820206165314e-01
+
+ -7.0592701435089111e-01 1.0022509843111038e-01
+ <_>
+
+ 0 -1 31 3.1789899803698063e-03
+
+ 1.2345749884843826e-01 -3.9093419909477234e-01
+ <_>
+
+ 0 -1 32 -2.2882770281285048e-03
+
+ 3.7081500887870789e-01 -1.6210420429706573e-01
+ <_>
+
+ 0 -1 33 -2.9806189704686403e-03
+
+ 1.8087059259414673e-01 -3.3239859342575073e-01
+ <_>
+
+ 0 -1 34 -1.5072739915922284e-03
+
+ -4.9472311139106750e-01 9.8288856446743011e-02
+ <_>
+
+ 0 -1 35 1.9225040450692177e-03
+
+ -1.7791110277175903e-01 3.0773329734802246e-01
+ <_>
+
+ 0 -1 36 1.9025449873879552e-03
+
+ 8.4794998168945312e-02 -5.9020972251892090e-01
+ <_>
+
+ 0 -1 37 -3.5421559587121010e-03
+
+ 3.1175771355628967e-01 -1.4392930269241333e-01
+ <_>
+
+ 0 -1 38 -2.9751660767942667e-03
+
+ -6.3649141788482666e-01 8.2639887928962708e-02
+ <_>
+
+ 0 -1 39 1.0003290139138699e-02
+
+ -1.1699260026216507e-01 4.2387530207633972e-01
+ <_>
+
+ 0 -1 40 -1.9193530315533280e-03
+
+ -4.7115838527679443e-01 1.1038240045309067e-01
+ <_>
+
+ 0 -1 41 2.5070620700716972e-02
+
+ 4.8775929957628250e-02 -8.0351328849792480e-01
+ <_>
+ 28
+ -1.9849590063095093e+00
+
+ <_>
+
+ 0 -1 42 1.4214799739420414e-02
+
+ -6.3577878475189209e-01 3.3461728692054749e-01
+ <_>
+
+ 0 -1 43 -1.2525909580290318e-02
+
+ 3.2766130566596985e-01 -4.1331529617309570e-01
+ <_>
+
+ 0 -1 44 -2.2514370357384905e-05
+
+ 2.3102630674839020e-01 -5.4282051324844360e-01
+ <_>
+
+ 0 -1 45 1.8600060138851404e-03
+
+ 1.7933349311351776e-01 -6.9131940603256226e-01
+ <_>
+
+ 0 -1 46 7.8344792127609253e-03
+
+ 9.1071300208568573e-02 -7.8126847743988037e-01
+ <_>
+
+ 0 -1 47 -4.2322301305830479e-03
+
+ 2.0658409595489502e-01 -4.2906031012535095e-01
+ <_>
+
+ 0 -1 48 -7.5860600918531418e-04
+
+ 2.0730710029602051e-01 -4.2070311307907104e-01
+ <_>
+
+ 0 -1 49 -3.5626380704343319e-03
+
+ -6.3227087259292603e-01 1.3118620216846466e-01
+ <_>
+
+ 0 -1 50 -4.9960161559283733e-03
+
+ -7.5112378597259521e-01 7.8203327953815460e-02
+ <_>
+
+ 0 -1 51 7.3098740540444851e-03
+
+ 9.3428641557693481e-02 -6.6310107707977295e-01
+ <_>
+
+ 0 -1 52 2.2772040392737836e-04
+
+ -3.4148821234703064e-01 2.0008200407028198e-01
+ <_>
+
+ 0 -1 53 8.3124160300940275e-04
+
+ -2.5448161363601685e-01 2.5857710838317871e-01
+ <_>
+
+ 0 -1 54 -7.5492179021239281e-03
+
+ -6.6138988733291626e-01 8.3004422485828400e-02
+ <_>
+
+ 0 -1 55 -3.8039948791265488e-02
+
+ -8.2163572311401367e-01 5.9231590479612350e-02
+ <_>
+
+ 0 -1 56 2.8484580107033253e-03
+
+ 8.9729957282543182e-02 -5.8333742618560791e-01
+ <_>
+
+ 0 -1 57 4.8181698657572269e-03
+
+ 9.3960560858249664e-02 -5.7619768381118774e-01
+ <_>
+
+ 0 -1 58 -1.1190489865839481e-02
+
+ -6.2544298171997070e-01 7.3608897626399994e-02
+ <_>
+
+ 0 -1 59 -6.4537129364907742e-03
+
+ 5.5123388767242432e-01 -1.0020790249109268e-01
+ <_>
+
+ 0 -1 60 3.3225629013031721e-03
+
+ -1.0797890275716782e-01 5.3664940595626831e-01
+ <_>
+
+ 0 -1 61 4.6705761924386024e-03
+
+ 8.8321126997470856e-02 -6.7683601379394531e-01
+ <_>
+
+ 0 -1 62 -1.1613310314714909e-02
+
+ -5.0711882114410400e-01 7.6556630432605743e-02
+ <_>
+
+ 0 -1 63 -3.7515610456466675e-02
+
+ -7.2936272621154785e-01 5.9448610991239548e-02
+ <_>
+
+ 0 -1 64 2.3086030036211014e-02
+
+ 5.0718959420919418e-02 -7.8459781408309937e-01
+ <_>
+
+ 0 -1 65 -7.1651988946541678e-06
+
+ 1.6686220467090607e-01 -2.5713220238685608e-01
+ <_>
+
+ 0 -1 66 7.1611627936363220e-04
+
+ 1.0636030137538910e-01 -4.2793640494346619e-01
+ <_>
+
+ 0 -1 67 4.1476460173726082e-03
+
+ -1.2069659680128098e-01 4.1993188858032227e-01
+ <_>
+
+ 0 -1 68 -2.5815099943429232e-03
+
+ 4.8718088865280151e-01 -1.0045810043811798e-01
+ <_>
+
+ 0 -1 69 -1.7147070029750466e-03
+
+ -4.6096310019493103e-01 1.0375110059976578e-01
+ <_>
+ 28
+ -1.8260079622268677e+00
+
+ <_>
+
+ 0 -1 70 -6.1202719807624817e-02
+
+ 3.9079108834266663e-01 -3.9401251077651978e-01
+ <_>
+
+ 0 -1 71 -1.4643670292571187e-03
+
+ -7.3697841167449951e-01 1.5660220384597778e-01
+ <_>
+
+ 0 -1 72 7.2080420795828104e-04
+
+ 2.1675530076026917e-01 -5.8012658357620239e-01
+ <_>
+
+ 0 -1 73 6.4895692048594356e-04
+
+ -7.2308099269866943e-01 1.2785249948501587e-01
+ <_>
+
+ 0 -1 74 -1.7158190021291375e-03
+
+ -7.7100431919097900e-01 1.0210309922695160e-01
+ <_>
+
+ 0 -1 75 -2.2490581031888723e-03
+
+ -6.0623127222061157e-01 1.2427269667387009e-01
+ <_>
+
+ 0 -1 76 5.3841978311538696e-02
+
+ -1.7169749736785889e-01 5.3350567817687988e-01
+ <_>
+
+ 0 -1 77 -1.3288970291614532e-01
+
+ 5.5924367904663086e-01 -1.8954899907112122e-01
+ <_>
+
+ 0 -1 78 9.0965389972552657e-04
+
+ -4.7166430950164795e-01 1.6924260556697845e-01
+ <_>
+
+ 0 -1 79 6.0799147468060255e-04
+
+ 1.1347220093011856e-01 -5.9846878051757812e-01
+ <_>
+
+ 0 -1 80 1.6072629392147064e-01
+
+ -1.0295519977807999e-01 6.6487199068069458e-01
+ <_>
+
+ 0 -1 81 -1.7097239615395665e-03
+
+ -4.7276279330253601e-01 1.3392050564289093e-01
+ <_>
+
+ 0 -1 82 1.1734620202332735e-03
+
+ -2.2795589268207550e-01 2.6135650277137756e-01
+ <_>
+
+ 0 -1 83 -1.5138329472392797e-03
+
+ -5.5395001173019409e-01 1.1028339713811874e-01
+ <_>
+
+ 0 -1 84 -2.1774161141365767e-03
+
+ -6.2228900194168091e-01 7.8486673533916473e-02
+ <_>
+
+ 0 -1 85 -2.7727920096367598e-03
+
+ 4.6141120791435242e-01 -1.3496559858322144e-01
+ <_>
+
+ 0 -1 86 9.3199027469381690e-04
+
+ 1.0162770003080368e-01 -5.1631838083267212e-01
+ <_>
+
+ 0 -1 87 2.9746659565716982e-03
+
+ -1.2999209761619568e-01 4.2117300629615784e-01
+ <_>
+
+ 0 -1 88 -5.0399480387568474e-03
+
+ -6.3706171512603760e-01 7.7624127268791199e-02
+ <_>
+
+ 0 -1 89 2.3414850234985352e-02
+
+ 7.2182796895503998e-02 -5.9831130504608154e-01
+ <_>
+
+ 0 -1 90 -1.0927390540018678e-03
+
+ -4.1664880514144897e-01 1.1829990148544312e-01
+ <_>
+
+ 0 -1 91 -1.6441360348835588e-03
+
+ 1.8583069741725922e-01 -2.7551019191741943e-01
+ <_>
+
+ 0 -1 92 -2.5736279785633087e-02
+
+ -7.5146478414535522e-01 6.3907749950885773e-02
+ <_>
+
+ 0 -1 93 -2.8924590442329645e-03
+
+ -5.6780880689620972e-01 7.3297739028930664e-02
+ <_>
+
+ 0 -1 94 -5.2889231592416763e-03
+
+ -6.3738888502120972e-01 6.8686947226524353e-02
+ <_>
+
+ 0 -1 95 3.2964269630610943e-03
+
+ -2.5062951445579529e-01 1.5989780426025391e-01
+ <_>
+
+ 0 -1 96 2.4914439767599106e-02
+
+ 5.5260978639125824e-02 -7.6208770275115967e-01
+ <_>
+
+ 0 -1 97 -1.5088500455021858e-02
+
+ 3.7033379077911377e-01 -1.2003959715366364e-01
+ <_>
+ 53
+ -1.9446740150451660e+00
+
+ <_>
+
+ 0 -1 98 -1.1857179924845695e-02
+
+ 2.9421558976173401e-01 -5.1703310012817383e-01
+ <_>
+
+ 0 -1 99 2.0991980563849211e-03
+
+ -6.1471748352050781e-01 2.0648500323295593e-01
+ <_>
+
+ 0 -1 100 -1.5772449842188507e-04
+
+ 2.2870740294456482e-01 -5.5258047580718994e-01
+ <_>
+
+ 0 -1 101 -2.0669099467340857e-04
+
+ 1.2070009857416153e-01 -5.4926127195358276e-01
+ <_>
+
+ 0 -1 102 2.2675560321658850e-03
+
+ 1.5354810655117035e-01 -4.6074301004409790e-01
+ <_>
+
+ 0 -1 103 1.4469499699771404e-02
+
+ -1.8976309895515442e-01 4.2071411013603210e-01
+ <_>
+
+ 0 -1 104 -1.2127560330554843e-03
+
+ -4.5139861106872559e-01 9.9425867199897766e-02
+ <_>
+
+ 0 -1 105 2.1505509503185749e-03
+
+ 1.0200879722833633e-01 -6.2064242362976074e-01
+ <_>
+
+ 0 -1 106 -1.6638869419693947e-03
+
+ -7.0367491245269775e-01 7.7214680612087250e-02
+ <_>
+
+ 0 -1 107 1.0530210565775633e-03
+
+ -3.2453960180282593e-01 1.7616109549999237e-01
+ <_>
+
+ 0 -1 108 1.1836409568786621e-02
+
+ -1.3507820665836334e-01 4.2641130089759827e-01
+ <_>
+
+ 0 -1 109 9.6512871095910668e-04
+
+ 9.4502769410610199e-02 -4.8544931411743164e-01
+ <_>
+
+ 0 -1 110 7.5651629595085979e-04
+
+ -2.9959529638290405e-01 1.6867619752883911e-01
+ <_>
+
+ 0 -1 111 1.0839150287210941e-02
+
+ -1.1121030151844025e-01 4.6914410591125488e-01
+ <_>
+
+ 0 -1 112 -5.1439419388771057e-02
+
+ 4.1726920008659363e-01 -1.1776400357484818e-01
+ <_>
+
+ 0 -1 113 3.4927250817418098e-03
+
+ 9.2512279748916626e-02 -5.2599352598190308e-01
+ <_>
+
+ 0 -1 114 -1.3926399871706963e-02
+
+ -6.6633498668670654e-01 5.2386458963155746e-02
+ <_>
+
+ 0 -1 115 4.5590959489345551e-03
+
+ -9.3383841216564178e-02 4.3774750828742981e-01
+ <_>
+
+ 0 -1 116 -3.7318699061870575e-02
+
+ -5.9583687782287598e-01 7.2627849876880646e-02
+ <_>
+
+ 0 -1 117 1.2496879789978266e-03
+
+ 6.9537237286567688e-02 -4.8772460222244263e-01
+ <_>
+
+ 0 -1 118 -3.7307639140635729e-03
+
+ 3.2699251174926758e-01 -1.1739090085029602e-01
+ <_>
+
+ 0 -1 119 2.1144179627299309e-03
+
+ 9.2889092862606049e-02 -4.1788020730018616e-01
+ <_>
+
+ 0 -1 120 -6.4239342464134097e-04
+
+ -2.9332190752029419e-01 1.3107809424400330e-01
+ <_>
+
+ 0 -1 121 -3.1379980500787497e-03
+
+ 3.2445520162582397e-01 -1.1506850272417068e-01
+ <_>
+
+ 0 -1 122 -3.9186969399452209e-02
+
+ -7.9360449314117432e-01 5.0053481012582779e-02
+ <_>
+
+ 0 -1 123 4.4646807946264744e-03
+
+ 5.4776020348072052e-02 -5.6535738706588745e-01
+ <_>
+
+ 0 -1 124 8.6451368406414986e-04
+
+ -1.7471200227737427e-01 1.9758160412311554e-01
+ <_>
+
+ 0 -1 125 2.4237011093646288e-03
+
+ -9.5296189188957214e-02 4.0760260820388794e-01
+ <_>
+
+ 0 -1 126 -2.5377490092068911e-03
+
+ -6.2454742193222046e-01 6.9920547306537628e-02
+ <_>
+
+ 0 -1 127 -7.3309220169903710e-06
+
+ 1.2249249964952469e-01 -2.8157269954681396e-01
+ <_>
+
+ 0 -1 128 -1.8882560543715954e-03
+
+ -6.2670397758483887e-01 6.5820932388305664e-02
+ <_>
+
+ 0 -1 129 6.0609861975535750e-04
+
+ -2.5481408834457397e-01 1.2902240455150604e-01
+ <_>
+
+ 0 -1 130 2.3213759995996952e-03
+
+ -9.7430117428302765e-02 3.2456091046333313e-01
+ <_>
+
+ 0 -1 131 -1.8534410046413541e-03
+
+ -4.4065341353416443e-01 8.2968853414058685e-02
+ <_>
+
+ 0 -1 132 2.3999500554054976e-03
+
+ -1.2041269987821579e-01 2.8288060426712036e-01
+ <_>
+
+ 0 -1 133 -8.1356197595596313e-02
+
+ -7.3972231149673462e-01 4.6568300575017929e-02
+ <_>
+
+ 0 -1 134 -2.9865680262446404e-03
+
+ 1.6334620118141174e-01 -1.9834910333156586e-01
+ <_>
+
+ 0 -1 135 2.8128880076110363e-03
+
+ 1.1837379634380341e-01 -2.9398199915885925e-01
+ <_>
+
+ 0 -1 136 -1.0060790181159973e-01
+
+ -7.3717647790908813e-01 4.2510021477937698e-02
+ <_>
+
+ 0 -1 137 1.1854549666168168e-04
+
+ 1.0471060127019882e-01 -2.9139861464500427e-01
+ <_>
+
+ 0 -1 138 2.2375308908522129e-03
+
+ -9.6042059361934662e-02 3.4045928716659546e-01
+ <_>
+
+ 0 -1 139 -4.4986992143094540e-03
+
+ -5.8234661817550659e-01 5.6236840784549713e-02
+ <_>
+
+ 0 -1 140 -3.6484538577497005e-04
+
+ -2.7956131100654602e-01 1.0113990306854248e-01
+ <_>
+
+ 0 -1 141 -7.9940296709537506e-03
+
+ 2.7775949239730835e-01 -1.1941230297088623e-01
+ <_>
+
+ 0 -1 142 -5.1547219045460224e-03
+
+ -6.0229510068893433e-01 4.8917140811681747e-02
+ <_>
+
+ 0 -1 143 -8.1772619159892201e-04
+
+ 1.7660500109195709e-01 -1.6407689452171326e-01
+ <_>
+
+ 0 -1 144 6.7434698343276978e-02
+
+ 4.0761459618806839e-02 -7.1865761280059814e-01
+ <_>
+
+ 0 -1 145 -2.4103289470076561e-03
+
+ 1.7671680450439453e-01 -1.6081850230693817e-01
+ <_>
+
+ 0 -1 146 -3.5183799918740988e-03
+
+ -4.3078601360321045e-01 7.0671632885932922e-02
+ <_>
+
+ 0 -1 147 -1.4561560419679154e-05
+
+ 1.2714700400829315e-01 -2.3387859761714935e-01
+ <_>
+
+ 0 -1 148 -4.7951821237802505e-02
+
+ -7.9085767269134521e-01 3.6803081631660461e-02
+ <_>
+
+ 0 -1 149 2.1735159680247307e-03
+
+ -1.3089279830455780e-01 2.5330349802970886e-01
+ <_>
+
+ 0 -1 150 -3.4542270004749298e-03
+
+ 5.1025247573852539e-01 -7.5337253510951996e-02
+ <_>
+ 54
+ -1.8389279842376709e+00
+
+ <_>
+
+ 0 -1 151 4.5243161730468273e-03
+
+ -3.0485519766807556e-01 5.1908642053604126e-01
+ <_>
+
+ 0 -1 152 2.3372350260615349e-03
+
+ -4.2904540896415710e-01 2.9052159190177917e-01
+ <_>
+
+ 0 -1 153 -4.4243237935006618e-03
+
+ 2.1068570017814636e-01 -4.5954981446266174e-01
+ <_>
+
+ 0 -1 154 -1.2887439690530300e-02
+
+ 1.9138230383396149e-01 -4.5879068970680237e-01
+ <_>
+
+ 0 -1 155 -5.2370920457178727e-05
+
+ 1.4141489565372467e-01 -5.0267368555068970e-01
+ <_>
+
+ 0 -1 156 -4.7738491557538509e-03
+
+ -4.8760831356048584e-01 1.2341009825468063e-01
+ <_>
+
+ 0 -1 157 9.6315861446782947e-04
+
+ 1.3367399573326111e-01 -4.4793748855590820e-01
+ <_>
+
+ 0 -1 158 -8.9140303432941437e-02
+
+ 5.0387668609619141e-01 -1.5923009812831879e-01
+ <_>
+
+ 0 -1 159 1.7201449954882264e-03
+
+ -2.0535360276699066e-01 2.4340680241584778e-01
+ <_>
+
+ 0 -1 160 -2.6712119579315186e-03
+
+ -6.3319712877273560e-01 5.3035650402307510e-02
+ <_>
+
+ 0 -1 161 3.7353280931711197e-02
+
+ -1.1360249668359756e-01 4.6645331382751465e-01
+ <_>
+
+ 0 -1 162 -3.1510960310697556e-02
+
+ -6.8820482492446899e-01 6.9371856749057770e-02
+ <_>
+
+ 0 -1 163 1.5293819829821587e-02
+
+ -1.0043840110301971e-01 4.6267789602279663e-01
+ <_>
+
+ 0 -1 164 5.4966909810900688e-03
+
+ -9.3514643609523773e-02 4.5127061009407043e-01
+ <_>
+
+ 0 -1 165 -4.6311439946293831e-03
+
+ -6.4314597845077515e-01 8.5003547370433807e-02
+ <_>
+
+ 0 -1 166 8.0943357897922397e-04
+
+ 7.9738967120647430e-02 -4.9320799112319946e-01
+ <_>
+
+ 0 -1 167 2.9745940119028091e-02
+
+ 7.8420467674732208e-02 -5.0482439994812012e-01
+ <_>
+
+ 0 -1 168 9.7070122137665749e-04
+
+ 5.8135438710451126e-02 -5.7035177946090698e-01
+ <_>
+
+ 0 -1 169 2.4534659460186958e-03
+
+ -1.1259060353040695e-01 3.6852970719337463e-01
+ <_>
+
+ 0 -1 170 1.9709810148924589e-03
+
+ 7.7185310423374176e-02 -5.2683860063552856e-01
+ <_>
+
+ 0 -1 171 4.8643019981682301e-03
+
+ -1.0479539632797241e-01 4.1474440693855286e-01
+ <_>
+
+ 0 -1 172 1.0143260005861521e-03
+
+ -1.4731560647487640e-01 2.8671079874038696e-01
+ <_>
+
+ 0 -1 173 -9.5099088503047824e-04
+
+ -3.8070049881935120e-01 8.8108353316783905e-02
+ <_>
+
+ 0 -1 174 -5.6730289943516254e-03
+
+ 2.4818900227546692e-01 -1.3696339726448059e-01
+ <_>
+
+ 0 -1 175 1.6987899318337440e-02
+
+ -8.0896042287349701e-02 5.2781671285629272e-01
+ <_>
+
+ 0 -1 176 -7.5278789736330509e-03
+
+ -4.6880009770393372e-01 8.9389666914939880e-02
+ <_>
+
+ 0 -1 177 3.3948529511690140e-02
+
+ 5.0594791769981384e-02 -6.7399561405181885e-01
+ <_>
+
+ 0 -1 178 8.3328841719776392e-04
+
+ -1.8931360542774200e-01 1.9607099890708923e-01
+ <_>
+
+ 0 -1 179 -5.9632491320371628e-04
+
+ -3.6229288578033447e-01 1.0544770210981369e-01
+ <_>
+
+ 0 -1 180 3.0905720777809620e-03
+
+ 5.7209629565477371e-02 -5.5316972732543945e-01
+ <_>
+
+ 0 -1 181 3.5152619238942862e-03
+
+ -1.2211070209741592e-01 2.9369899630546570e-01
+ <_>
+
+ 0 -1 182 7.9333729809150100e-04
+
+ 7.5977906584739685e-02 -4.4539821147918701e-01
+ <_>
+
+ 0 -1 183 -1.1189360171556473e-02
+
+ -5.0596517324447632e-01 5.7438369840383530e-02
+ <_>
+
+ 0 -1 184 -1.1787790572270751e-03
+
+ 3.0799698829650879e-01 -1.0762230306863785e-01
+ <_>
+
+ 0 -1 185 5.4418851505033672e-05
+
+ -2.5997561216354370e-01 1.3138440251350403e-01
+ <_>
+
+ 0 -1 186 -7.2562302193546202e-06
+
+ 1.5439839661121368e-01 -2.1094700694084167e-01
+ <_>
+
+ 0 -1 187 -8.3436258137226105e-04
+
+ 1.3689869642257690e-01 -2.4367660284042358e-01
+ <_>
+
+ 0 -1 188 -3.3380609005689621e-02
+
+ -6.7477357387542725e-01 5.0986740738153458e-02
+ <_>
+
+ 0 -1 189 7.4093497823923826e-04
+
+ 9.1248527169227600e-02 -3.5220760107040405e-01
+ <_>
+
+ 0 -1 190 -2.0966369193047285e-03
+
+ 1.9110049307346344e-01 -1.6380029916763306e-01
+ <_>
+
+ 0 -1 191 -6.9339506328105927e-02
+
+ -8.7700867652893066e-01 3.5726629197597504e-02
+ <_>
+
+ 0 -1 192 -5.7089990004897118e-03
+
+ -6.8067228794097900e-01 3.5545960068702698e-02
+ <_>
+
+ 0 -1 193 6.8668760359287262e-03
+
+ -6.4886868000030518e-02 5.2265900373458862e-01
+ <_>
+
+ 0 -1 194 5.4602831369265914e-04
+
+ 1.0924419760704041e-01 -3.0285251140594482e-01
+ <_>
+
+ 0 -1 195 6.4349039457738400e-03
+
+ -1.6561950743198395e-01 1.9022129476070404e-01
+ <_>
+
+ 0 -1 196 -1.0112419724464417e-02
+
+ 7.4523001909255981e-01 -3.8347329944372177e-02
+ <_>
+
+ 0 -1 197 -7.5152877252548933e-04
+
+ -2.8147280216217041e-01 1.1321689933538437e-01
+ <_>
+
+ 0 -1 198 2.8225290589034557e-03
+
+ -1.2364400178194046e-01 2.5608530640602112e-01
+ <_>
+
+ 0 -1 199 2.2058798931539059e-03
+
+ 5.7334281504154205e-02 -5.6152081489562988e-01
+ <_>
+
+ 0 -1 200 2.8164181113243103e-01
+
+ 4.2092379182577133e-02 -6.4923799037933350e-01
+ <_>
+
+ 0 -1 201 -4.2593148536980152e-03
+
+ -6.4854997396469116e-01 4.3502658605575562e-02
+ <_>
+
+ 0 -1 202 2.6586679741740227e-03
+
+ -9.3526139855384827e-02 3.4158730506896973e-01
+ <_>
+
+ 0 -1 203 2.0971989724785089e-03
+
+ -1.1068929731845856e-01 3.1760269403457642e-01
+ <_>
+
+ 0 -1 204 -1.0267860488966107e-03
+
+ -3.7612101435661316e-01 9.8973110318183899e-02
+ <_>
+ 56
+ -1.8807189464569092e+00
+
+ <_>
+
+ 0 -1 205 2.6354179717600346e-03
+
+ -5.2496808767318726e-01 2.7711030840873718e-01
+ <_>
+
+ 0 -1 206 2.6279650628566742e-03
+
+ -3.2195448875427246e-01 3.7013629078865051e-01
+ <_>
+
+ 0 -1 207 -5.8889109641313553e-03
+
+ 2.3777529597282410e-01 -4.1800329089164734e-01
+ <_>
+
+ 0 -1 208 1.9291159696877003e-03
+
+ -4.7122061252593994e-01 1.3692170381546021e-01
+ <_>
+
+ 0 -1 209 -1.5205480158329010e-02
+
+ -3.9618429541587830e-01 1.7402400076389313e-01
+ <_>
+
+ 0 -1 210 2.3393579758703709e-03
+
+ -3.8508901000022888e-01 1.5659110248088837e-01
+ <_>
+
+ 0 -1 211 4.2395621538162231e-02
+
+ 1.0478709638118744e-01 -6.2164002656936646e-01
+ <_>
+
+ 0 -1 212 -5.6959640234708786e-02
+
+ 5.1225858926773071e-01 -1.2684780359268188e-01
+ <_>
+
+ 0 -1 213 -7.2845568865886889e-06
+
+ 1.5136890113353729e-01 -3.1185621023178101e-01
+ <_>
+
+ 0 -1 214 -7.9633750021457672e-02
+
+ -8.4324747323989868e-01 4.4978428632020950e-02
+ <_>
+
+ 0 -1 215 5.9168688021600246e-03
+
+ -1.0745979845523834e-01 4.7434100508689880e-01
+ <_>
+
+ 0 -1 216 -1.4736950397491455e-03
+
+ 3.6067450046539307e-01 -1.4760640263557434e-01
+ <_>
+
+ 0 -1 217 -3.9630971848964691e-02
+
+ -6.5838980674743652e-01 7.4866786599159241e-02
+ <_>
+
+ 0 -1 218 6.2401412287726998e-04
+
+ -2.6195651292800903e-01 1.5652139484882355e-01
+ <_>
+
+ 0 -1 219 -2.3399210476782173e-05
+
+ 1.2157510221004486e-01 -3.0320811271667480e-01
+ <_>
+
+ 0 -1 220 3.0802030116319656e-02
+
+ 4.4408731162548065e-02 -6.6609877347946167e-01
+ <_>
+
+ 0 -1 221 1.4787449617870152e-04
+
+ -2.4449509382247925e-01 1.4723050594329834e-01
+ <_>
+
+ 0 -1 222 4.8630568198859692e-03
+
+ -1.1267810314893723e-01 3.2596799731254578e-01
+ <_>
+
+ 0 -1 223 6.2191881239414215e-02
+
+ 5.7439960539340973e-02 -6.4031070470809937e-01
+ <_>
+
+ 0 -1 224 1.4668420189991593e-03
+
+ 9.5356643199920654e-02 -3.3727881312370300e-01
+ <_>
+
+ 0 -1 225 -1.4742349776497576e-05
+
+ 1.9759610295295715e-01 -1.7083899676799774e-01
+ <_>
+
+ 0 -1 226 -3.2495670020580292e-02
+
+ -3.6848729848861694e-01 9.0363331139087677e-02
+ <_>
+
+ 0 -1 227 -1.5333830378949642e-03
+
+ 3.2256379723548889e-01 -1.0416819900274277e-01
+ <_>
+
+ 0 -1 228 -2.7998909354209900e-02
+
+ -4.9097910523414612e-01 8.2653783261775970e-02
+ <_>
+
+ 0 -1 229 4.9783890135586262e-03
+
+ 7.3238030076026917e-02 -4.4057780504226685e-01
+ <_>
+
+ 0 -1 230 6.8226028233766556e-03
+
+ 7.6766029000282288e-02 -4.1460910439491272e-01
+ <_>
+
+ 0 -1 231 1.1497880332171917e-02
+
+ -9.1440111398696899e-02 4.0099748969078064e-01
+ <_>
+
+ 0 -1 232 -1.1003069579601288e-02
+
+ -5.7417541742324829e-01 7.2776727378368378e-02
+ <_>
+
+ 0 -1 233 4.9345887964591384e-04
+
+ -1.3353590667247772e-01 2.4575209617614746e-01
+ <_>
+
+ 0 -1 234 2.2130589932203293e-03
+
+ -1.0753840208053589e-01 3.1632119417190552e-01
+ <_>
+
+ 0 -1 235 5.1011620089411736e-03
+
+ 7.8985318541526794e-02 -4.2948201298713684e-01
+ <_>
+
+ 0 -1 236 -3.7305638194084167e-02
+
+ -6.7921191453933716e-01 4.5049939304590225e-02
+ <_>
+
+ 0 -1 237 -6.1271698214113712e-03
+
+ 2.3062059283256531e-01 -1.4559289813041687e-01
+ <_>
+
+ 0 -1 238 7.6517700217664242e-03
+
+ -9.0355172753334045e-02 4.3072968721389771e-01
+ <_>
+
+ 0 -1 239 -1.1280870065093040e-02
+
+ -4.7850719094276428e-01 7.4674449861049652e-02
+ <_>
+
+ 0 -1 240 -1.4724049833603203e-05
+
+ 1.4459890127182007e-01 -2.2535640001296997e-01
+ <_>
+
+ 0 -1 241 -1.9895960576832294e-03
+
+ -6.1527568101882935e-01 5.4905921220779419e-02
+ <_>
+
+ 0 -1 242 1.6876959707587957e-03
+
+ -9.7619786858558655e-02 3.3004701137542725e-01
+ <_>
+
+ 0 -1 243 9.8390737548470497e-03
+
+ 4.0972411632537842e-02 -7.5515109300613403e-01
+ <_>
+
+ 0 -1 244 1.3243829598650336e-03
+
+ -1.0046280175447464e-01 3.0665108561515808e-01
+ <_>
+
+ 0 -1 245 3.1150300055742264e-03
+
+ 8.9804470539093018e-02 -3.3524599671363831e-01
+ <_>
+
+ 0 -1 246 7.3907422120100819e-06
+
+ -2.2410400211811066e-01 1.3288240134716034e-01
+ <_>
+
+ 0 -1 247 3.2559569925069809e-02
+
+ 5.0113398581743240e-02 -5.4240328073501587e-01
+ <_>
+
+ 0 -1 248 -2.9865119140595198e-03
+
+ 2.8385341167449951e-01 -1.1164219677448273e-01
+ <_>
+
+ 0 -1 249 1.6058710170909762e-03
+
+ -1.2024080008268356e-01 2.9032671451568604e-01
+ <_>
+
+ 0 -1 250 2.2018649615347385e-03
+
+ 7.8110128641128540e-02 -4.3846049904823303e-01
+ <_>
+
+ 0 -1 251 -5.7107508182525635e-03
+
+ -3.2608801126480103e-01 9.2941299080848694e-02
+ <_>
+
+ 0 -1 252 8.9503038907423615e-04
+
+ -1.3504159450531006e-01 2.2331899404525757e-01
+ <_>
+
+ 0 -1 253 7.7259249985218048e-02
+
+ 7.3221340775489807e-02 -4.1714018583297729e-01
+ <_>
+
+ 0 -1 254 -1.0145610198378563e-02
+
+ -2.7330970764160156e-01 1.4099189639091492e-01
+ <_>
+
+ 0 -1 255 -7.0878718361200299e-06
+
+ 1.2602959573268890e-01 -2.3253719508647919e-01
+ <_>
+
+ 0 -1 256 -8.0232005566358566e-03
+
+ -6.2682849168777466e-01 4.4199578464031219e-02
+ <_>
+
+ 0 -1 257 -1.5409339684993029e-03
+
+ 3.2154878973960876e-01 -9.5819726586341858e-02
+ <_>
+
+ 0 -1 258 -1.3815560378134251e-03
+
+ 2.3909060657024384e-01 -1.0845059901475906e-01
+ <_>
+
+ 0 -1 259 -8.5559524595737457e-03
+
+ -6.2880992889404297e-01 4.6904459595680237e-02
+ <_>
+
+ 0 -1 260 1.4967939932830632e-05
+
+ -1.7331050336360931e-01 1.6265609860420227e-01
+ <_>
+ 68
+ -1.7268099784851074e+00
+
+ <_>
+
+ 0 -1 261 -9.2911375686526299e-03
+
+ 2.6676508784294128e-01 -4.8681628704071045e-01
+ <_>
+
+ 0 -1 262 -1.0201609693467617e-03
+
+ 2.1469169855117798e-01 -4.2971470952033997e-01
+ <_>
+
+ 0 -1 263 1.8099240260198712e-03
+
+ -4.7085261344909668e-01 1.7293150722980499e-01
+ <_>
+
+ 0 -1 264 -6.3195452094078064e-02
+
+ 5.5868512392044067e-01 -1.1922080069780350e-01
+ <_>
+
+ 0 -1 265 1.5157799934968352e-03
+
+ -3.3087429404258728e-01 1.4256539940834045e-01
+ <_>
+
+ 0 -1 266 -3.1134260352700949e-03
+
+ 3.1897360086441040e-01 -1.5563400089740753e-01
+ <_>
+
+ 0 -1 267 6.7187240347266197e-03
+
+ 1.1308009922504425e-01 -4.6142110228538513e-01
+ <_>
+
+ 0 -1 268 -1.4929190001566894e-05
+
+ 1.1303120106458664e-01 -3.8268089294433594e-01
+ <_>
+
+ 0 -1 269 -1.9974811002612114e-03
+
+ -6.7833811044692993e-01 5.5562671273946762e-02
+ <_>
+
+ 0 -1 270 4.4361899199429899e-05
+
+ -2.1478720009326935e-01 1.7524589598178864e-01
+ <_>
+
+ 0 -1 271 -9.4379335641860962e-03
+
+ -2.9008820652961731e-01 1.0494410246610641e-01
+ <_>
+
+ 0 -1 272 1.0263459989801049e-04
+
+ -3.6809450387954712e-01 1.1580110341310501e-01
+ <_>
+
+ 0 -1 273 -4.3512079864740372e-02
+
+ -5.7967478036880493e-01 4.5160628855228424e-02
+ <_>
+
+ 0 -1 274 2.3894330952316523e-03
+
+ -1.2443830072879791e-01 2.5726899504661560e-01
+ <_>
+
+ 0 -1 275 3.6203579511493444e-03
+
+ 4.8385269939899445e-02 -6.4456540346145630e-01
+ <_>
+
+ 0 -1 276 -4.2086638859473169e-04
+
+ -2.9963639378547668e-01 9.7508132457733154e-02
+ <_>
+
+ 0 -1 277 -3.6320161074399948e-02
+
+ 3.2499030232429504e-01 -1.0373180359601974e-01
+ <_>
+
+ 0 -1 278 5.5678240023553371e-03
+
+ -1.2865519523620605e-01 2.7721390128135681e-01
+ <_>
+
+ 0 -1 279 1.4324679505079985e-03
+
+ 6.3044667243957520e-02 -5.0411659479141235e-01
+ <_>
+
+ 0 -1 280 1.2268769787624478e-03
+
+ -1.7073589563369751e-01 1.7944329977035522e-01
+ <_>
+
+ 0 -1 281 4.0125530213117599e-03
+
+ 7.2100132703781128e-02 -4.1321611404418945e-01
+ <_>
+
+ 0 -1 282 4.7377590090036392e-03
+
+ -9.0100876986980438e-02 3.4303799271583557e-01
+ <_>
+
+ 0 -1 283 4.3965759687125683e-03
+
+ 5.4753091186285019e-02 -5.9175938367843628e-01
+ <_>
+
+ 0 -1 284 1.8952810205519199e-03
+
+ 4.0120709687471390e-02 -6.4907258749008179e-01
+ <_>
+
+ 0 -1 285 -1.3425230281427503e-03
+
+ 3.0321699380874634e-01 -1.1009240150451660e-01
+ <_>
+
+ 0 -1 286 -4.6405740082263947e-02
+
+ -4.6026471257209778e-01 7.0307031273841858e-02
+ <_>
+
+ 0 -1 287 2.5875549763441086e-02
+
+ 3.8987319916486740e-02 -6.4847522974014282e-01
+ <_>
+
+ 0 -1 288 1.0986380511894822e-03
+
+ -1.6458760201931000e-01 1.8133540451526642e-01
+ <_>
+
+ 0 -1 289 -3.9583959733135998e-04
+
+ 9.7805656492710114e-02 -2.7554351091384888e-01
+ <_>
+
+ 0 -1 290 -4.5633990317583084e-02
+
+ -5.4276019334793091e-01 5.4855771362781525e-02
+ <_>
+
+ 0 -1 291 -4.7068470157682896e-03
+
+ 4.0961420536041260e-01 -6.9687090814113617e-02
+ <_>
+
+ 0 -1 292 2.0004810357932001e-04
+
+ 1.2908969819545746e-01 -2.1091359853744507e-01
+ <_>
+
+ 0 -1 293 1.1126570170745254e-03
+
+ -2.2213070094585419e-01 1.2458589673042297e-01
+ <_>
+
+ 0 -1 294 -1.4747029636055231e-03
+
+ 2.9185178875923157e-01 -9.0756237506866455e-02
+ <_>
+
+ 0 -1 295 4.3162931688129902e-03
+
+ 6.1542909592390060e-02 -5.1068651676177979e-01
+ <_>
+
+ 0 -1 296 2.0302709890529513e-04
+
+ -1.5639910101890564e-01 1.6466440260410309e-01
+ <_>
+
+ 0 -1 297 3.4639390651136637e-04
+
+ 1.0773540288209915e-01 -2.5532799959182739e-01
+ <_>
+
+ 0 -1 298 1.5631220303475857e-03
+
+ -9.5428019762039185e-02 2.5450360774993896e-01
+ <_>
+
+ 0 -1 299 5.5476918350905180e-04
+
+ 7.9774253070354462e-02 -3.0791428685188293e-01
+ <_>
+
+ 0 -1 300 2.7690480928868055e-03
+
+ -9.1900892555713654e-02 3.0198639631271362e-01
+ <_>
+
+ 0 -1 301 1.1085179867222905e-03
+
+ 6.2624886631965637e-02 -4.1680490970611572e-01
+ <_>
+
+ 0 -1 302 3.4288389142602682e-03
+
+ -5.7473558932542801e-02 4.7293519973754883e-01
+ <_>
+
+ 0 -1 303 -2.0233790855854750e-03
+
+ -2.4128660559654236e-01 1.0806660354137421e-01
+ <_>
+
+ 0 -1 304 -9.1446418082341552e-04
+
+ 1.7990960180759430e-01 -1.6031919419765472e-01
+ <_>
+
+ 0 -1 305 3.8880690932273865e-02
+
+ 3.9132621139287949e-02 -6.4085322618484497e-01
+ <_>
+
+ 0 -1 306 1.2836069799959660e-03
+
+ 5.2912048995494843e-02 -4.3914559483528137e-01
+ <_>
+
+ 0 -1 307 3.5828219261020422e-03
+
+ -9.7462162375450134e-02 3.0772930383682251e-01
+ <_>
+
+ 0 -1 308 2.3203529417514801e-03
+
+ -1.0929799824953079e-01 2.6735728979110718e-01
+ <_>
+
+ 0 -1 309 1.1978139809798449e-04
+
+ 1.1623129993677139e-01 -2.3586340248584747e-01
+ <_>
+
+ 0 -1 310 -2.8259279206395149e-03
+
+ -4.1935729980468750e-01 5.7008400559425354e-02
+ <_>
+
+ 0 -1 311 2.4410230107605457e-03
+
+ 4.2706880718469620e-02 -5.3362858295440674e-01
+ <_>
+
+ 0 -1 312 2.6899650692939758e-03
+
+ -1.1351829767227173e-01 2.4779020249843597e-01
+ <_>
+
+ 0 -1 313 -3.1081750057637691e-03
+
+ -2.9488921165466309e-01 8.2543209195137024e-02
+ <_>
+
+ 0 -1 314 -6.6210748627781868e-03
+
+ 2.2958689928054810e-01 -1.1443620175123215e-01
+ <_>
+
+ 0 -1 315 4.6786409802734852e-03
+
+ -1.2875209748744965e-01 2.6777699589729309e-01
+ <_>
+
+ 0 -1 316 -1.2973829871043563e-03
+
+ -2.7280429005622864e-01 9.6471726894378662e-02
+ <_>
+
+ 0 -1 317 2.9523740522563457e-03
+
+ -8.7040692567825317e-02 2.9207450151443481e-01
+ <_>
+
+ 0 -1 318 -1.6173559706658125e-03
+
+ -4.0207850933074951e-01 6.5386466681957245e-02
+ <_>
+
+ 0 -1 319 -7.5417757034301758e-02
+
+ -8.9723330736160278e-01 2.4602690711617470e-02
+ <_>
+
+ 0 -1 320 -2.5402200408279896e-03
+
+ 1.5258650481700897e-01 -1.5025460720062256e-01
+ <_>
+
+ 0 -1 321 3.7864660844206810e-03
+
+ 7.6477207243442535e-02 -3.3881941437721252e-01
+ <_>
+
+ 0 -1 322 -1.4005510136485100e-02
+
+ 4.4426390528678894e-01 -5.9003930538892746e-02
+ <_>
+
+ 0 -1 323 5.5956508731469512e-04
+
+ 7.4007123708724976e-02 -3.5604709386825562e-01
+ <_>
+
+ 0 -1 324 2.5946850655600429e-04
+
+ -2.8126189112663269e-01 8.7399207055568695e-02
+ <_>
+
+ 0 -1 325 4.4409232214093208e-03
+
+ 2.8623659163713455e-02 -7.7284187078475952e-01
+ <_>
+
+ 0 -1 326 -2.3343560751527548e-03
+
+ 3.5460600256919861e-01 -7.1207538247108459e-02
+ <_>
+
+ 0 -1 327 9.7654951969161630e-04
+
+ -1.0138420015573502e-01 2.2545370459556580e-01
+ <_>
+
+ 0 -1 328 -4.3227209243923426e-04
+
+ -2.1095879375934601e-01 1.2273149937391281e-01
+ <_>
+ 70
+ -1.6056820154190063e+00
+
+ <_>
+
+ 0 -1 329 -1.2480209581553936e-02
+
+ 2.6112109422683716e-01 -4.7001519799232483e-01
+ <_>
+
+ 0 -1 330 3.5450961440801620e-02
+
+ -2.0008459687232971e-01 4.7718611359596252e-01
+ <_>
+
+ 0 -1 331 2.0369330886751413e-03
+
+ -4.7703158855438232e-01 1.5132640302181244e-01
+ <_>
+
+ 0 -1 332 -4.3946420191787183e-05
+
+ 1.2288480252027512e-01 -5.1796287298202515e-01
+ <_>
+
+ 0 -1 333 -3.8480788934975863e-03
+
+ 4.1113680601119995e-01 -1.4595329761505127e-01
+ <_>
+
+ 0 -1 334 -2.8316550888121128e-03
+
+ 2.8710970282554626e-01 -1.7629599571228027e-01
+ <_>
+
+ 0 -1 335 2.5026081129908562e-03
+
+ 7.9668842256069183e-02 -5.7808011770248413e-01
+ <_>
+
+ 0 -1 336 3.0812958721071482e-04
+
+ 8.2838706672191620e-02 -4.2540180683135986e-01
+ <_>
+
+ 0 -1 337 6.1186961829662323e-04
+
+ 1.3641810417175293e-01 -3.0591419339179993e-01
+ <_>
+
+ 0 -1 338 -1.4354350241774227e-05
+
+ 1.4197489619255066e-01 -2.5681999325752258e-01
+ <_>
+
+ 0 -1 339 1.6148330178111792e-03
+
+ -2.6239329576492310e-01 1.3288390636444092e-01
+ <_>
+
+ 0 -1 340 2.0318101160228252e-03
+
+ 7.5749568641185760e-02 -4.3141460418701172e-01
+ <_>
+
+ 0 -1 341 9.5563679933547974e-03
+
+ -9.1424480080604553e-02 4.0004569292068481e-01
+ <_>
+
+ 0 -1 342 -7.8439561184495687e-04
+
+ -3.6619931459426880e-01 9.1777816414833069e-02
+ <_>
+
+ 0 -1 343 -3.9661130867898464e-03
+
+ 2.3698210716247559e-01 -1.4281649887561798e-01
+ <_>
+
+ 0 -1 344 -2.3194469977170229e-03
+
+ -4.2245340347290039e-01 7.8684106469154358e-02
+ <_>
+
+ 0 -1 345 -7.3490202426910400e-02
+
+ -6.2218552827835083e-01 4.0496870875358582e-02
+ <_>
+
+ 0 -1 346 -3.6803178954869509e-03
+
+ 1.2612029910087585e-01 -2.0990429818630219e-01
+ <_>
+
+ 0 -1 347 -4.1019290685653687e-02
+
+ -8.0316942930221558e-01 2.7993949130177498e-02
+ <_>
+
+ 0 -1 348 -4.8213129048235714e-04
+
+ 1.4825980365276337e-01 -1.7869630455970764e-01
+ <_>
+
+ 0 -1 349 -1.6598250716924667e-02
+
+ 4.1442281007766724e-01 -6.4051687717437744e-02
+ <_>
+
+ 0 -1 350 -1.0631670011207461e-03
+
+ -3.3466520905494690e-01 8.2425996661186218e-02
+ <_>
+
+ 0 -1 351 1.8658409826457500e-03
+
+ -1.3119789958000183e-01 2.3183380067348480e-01
+ <_>
+
+ 0 -1 352 -2.5827190838754177e-03
+
+ 3.8415950536727905e-01 -8.4121666848659515e-02
+ <_>
+
+ 0 -1 353 1.7159619601443410e-03
+
+ 7.6971538364887238e-02 -4.1098991036415100e-01
+ <_>
+
+ 0 -1 354 -3.9140181615948677e-03
+
+ -6.2508618831634521e-01 3.8418460637331009e-02
+ <_>
+
+ 0 -1 355 4.2724498780444264e-04
+
+ 8.6016573011875153e-02 -2.6975229382514954e-01
+ <_>
+
+ 0 -1 356 3.3992920070886612e-03
+
+ -1.0176510363817215e-01 2.7030828595161438e-01
+ <_>
+
+ 0 -1 357 -3.6457281559705734e-02
+
+ -4.9261981248855591e-01 5.5854249745607376e-02
+ <_>
+
+ 0 -1 358 1.6230379696935415e-03
+
+ 5.7567078620195389e-02 -4.2053499817848206e-01
+ <_>
+
+ 0 -1 359 4.6655549667775631e-03
+
+ -9.1158397495746613e-02 3.2095280289649963e-01
+ <_>
+
+ 0 -1 360 3.1331549398601055e-03
+
+ -9.6932657063007355e-02 3.4073451161384583e-01
+ <_>
+
+ 0 -1 361 -1.6835830174386501e-03
+
+ -3.6766248941421509e-01 8.2226082682609558e-02
+ <_>
+
+ 0 -1 362 2.7728650718927383e-02
+
+ 4.0117498487234116e-02 -6.5198391675949097e-01
+ <_>
+
+ 0 -1 363 9.5015309751033783e-02
+
+ 2.3065119981765747e-02 -8.8881981372833252e-01
+ <_>
+
+ 0 -1 364 7.4755616486072540e-02
+
+ -6.3946872949600220e-02 4.7399708628654480e-01
+ <_>
+
+ 0 -1 365 1.6693340614438057e-02
+
+ 4.6477258205413818e-02 -7.1152418851852417e-01
+ <_>
+
+ 0 -1 366 1.2088769581168890e-03
+
+ -1.1359269917011261e-01 2.2424149513244629e-01
+ <_>
+
+ 0 -1 367 -6.1751517932862043e-04
+
+ -3.1268230080604553e-01 8.5018932819366455e-02
+ <_>
+
+ 0 -1 368 8.5786692798137665e-03
+
+ -1.5559460222721100e-01 1.5640939772129059e-01
+ <_>
+
+ 0 -1 369 6.1184767400845885e-04
+
+ 9.4403937458992004e-02 -2.6520138978958130e-01
+ <_>
+
+ 0 -1 370 -3.4570440184324980e-03
+
+ 1.5146060287952423e-01 -1.6220529377460480e-01
+ <_>
+
+ 0 -1 371 1.3953070156276226e-03
+
+ -9.9996216595172882e-02 2.4998310208320618e-01
+ <_>
+
+ 0 -1 372 3.5910680890083313e-03
+
+ 8.1011682748794556e-02 -3.0081549286842346e-01
+ <_>
+
+ 0 -1 373 5.4192831739783287e-03
+
+ 6.7650042474269867e-02 -3.2355660200119019e-01
+ <_>
+
+ 0 -1 374 -1.1379310162737966e-03
+
+ 1.8887449800968170e-01 -1.2729729712009430e-01
+ <_>
+
+ 0 -1 375 9.1047259047627449e-03
+
+ 1.0160540044307709e-01 -2.2280150651931763e-01
+ <_>
+
+ 0 -1 376 6.5050171688199043e-03
+
+ -7.2986416518688202e-02 3.5770270228385925e-01
+ <_>
+
+ 0 -1 377 -1.4676549653813709e-05
+
+ 1.4693109691143036e-01 -1.7403540015220642e-01
+ <_>
+
+ 0 -1 378 -9.4403158873319626e-03
+
+ -2.6536750793457031e-01 9.6619546413421631e-02
+ <_>
+
+ 0 -1 379 -4.2933300137519836e-03
+
+ 2.5656831264495850e-01 -1.0550209879875183e-01
+ <_>
+
+ 0 -1 380 4.3133171275258064e-03
+
+ 6.5936572849750519e-02 -4.5719939470291138e-01
+ <_>
+
+ 0 -1 381 5.8854468166828156e-02
+
+ 6.7918263375759125e-02 -3.3078071475028992e-01
+ <_>
+
+ 0 -1 382 -2.8407620266079903e-03
+
+ 2.3953500390052795e-01 -9.2092156410217285e-02
+ <_>
+
+ 0 -1 383 9.6359942108392715e-04
+
+ -1.0982380062341690e-01 2.6462998986244202e-01
+ <_>
+
+ 0 -1 384 -1.4724590073456056e-05
+
+ 1.1111160367727280e-01 -2.2704580426216125e-01
+ <_>
+
+ 0 -1 385 -8.0675468780100346e-04
+
+ -3.6335140466690063e-01 7.8122653067111969e-02
+ <_>
+
+ 0 -1 386 7.3296198388561606e-04
+
+ -1.5605129301548004e-01 1.5184900164604187e-01
+ <_>
+
+ 0 -1 387 6.3753738068044186e-03
+
+ -7.1957953274250031e-02 2.9723879694938660e-01
+ <_>
+
+ 0 -1 388 4.6390579082071781e-03
+
+ 3.5969600081443787e-02 -6.1132347583770752e-01
+ <_>
+
+ 0 -1 389 -7.1079272311180830e-04
+
+ -2.8806841373443604e-01 6.9314628839492798e-02
+ <_>
+
+ 0 -1 390 2.9162289574742317e-03
+
+ -7.5968459248542786e-02 3.2681688666343689e-01
+ <_>
+
+ 0 -1 391 -1.7853140830993652e-02
+
+ 4.4206309318542480e-01 -4.8174031078815460e-02
+ <_>
+
+ 0 -1 392 8.3874985575675964e-03
+
+ 4.8913899809122086e-02 -5.4415327310562134e-01
+ <_>
+
+ 0 -1 393 2.9458320568664931e-05
+
+ -2.1131239831447601e-01 1.0629370063543320e-01
+ <_>
+
+ 0 -1 394 -9.8192706704139709e-02
+
+ 3.5318240523338318e-01 -6.9296866655349731e-02
+ <_>
+
+ 0 -1 395 4.6140368795022368e-04
+
+ 9.6270777285099030e-02 -2.5811928510665894e-01
+ <_>
+
+ 0 -1 396 -2.4016610404942185e-04
+
+ -2.2976429760456085e-01 9.9984891712665558e-02
+ <_>
+
+ 0 -1 397 3.7882480770349503e-02
+
+ -1.0365439951419830e-01 2.3164770007133484e-01
+ <_>
+
+ 0 -1 398 3.2621581340208650e-04
+
+ 9.7933940589427948e-02 -2.3689700663089752e-01
+ <_>
+ 85
+ -1.5173089504241943e+00
+
+ <_>
+
+ 0 -1 399 -3.6744121462106705e-02
+
+ 3.4079340100288391e-01 -3.1779891252517700e-01
+ <_>
+
+ 0 -1 400 2.1955010015517473e-03
+
+ -2.8729590773582458e-01 2.5869798660278320e-01
+ <_>
+
+ 0 -1 401 8.3034839481115341e-03
+
+ -2.1800449490547180e-01 2.6759269833564758e-01
+ <_>
+
+ 0 -1 402 2.6289420202374458e-03
+
+ -3.6006081104278564e-01 1.4639839529991150e-01
+ <_>
+
+ 0 -1 403 1.9458869937807322e-03
+
+ 1.3677720725536346e-01 -4.2058759927749634e-01
+ <_>
+
+ 0 -1 404 -2.1704390645027161e-02
+
+ 4.8903319239616394e-01 -9.8091572523117065e-02
+ <_>
+
+ 0 -1 405 4.2956420220434666e-03
+
+ -2.7825561165809631e-01 1.5712629258632660e-01
+ <_>
+
+ 0 -1 406 4.9894629046320915e-04
+
+ 1.1003810167312622e-01 -3.3779421448707581e-01
+ <_>
+
+ 0 -1 407 2.4652799591422081e-02
+
+ 4.5820660889148712e-02 -5.4710537195205688e-01
+ <_>
+
+ 0 -1 408 -2.3075740784406662e-02
+
+ -4.9801421165466309e-01 6.7044779658317566e-02
+ <_>
+
+ 0 -1 409 1.1991280131042004e-02
+
+ -7.0877023041248322e-02 4.8294249176979065e-01
+ <_>
+
+ 0 -1 410 1.5430679544806480e-02
+
+ -6.5949738025665283e-02 4.5236849784851074e-01
+ <_>
+
+ 0 -1 411 -4.5555769465863705e-03
+
+ -4.4665691256523132e-01 6.7877657711505890e-02
+ <_>
+
+ 0 -1 412 -4.4582979753613472e-03
+
+ 3.3656919002532959e-01 -9.4792358577251434e-02
+ <_>
+
+ 0 -1 413 1.3494009908754379e-04
+
+ -3.0288851261138916e-01 1.0293830186128616e-01
+ <_>
+
+ 0 -1 414 -4.2500188574194908e-03
+
+ 4.2550128698348999e-01 -7.2956383228302002e-02
+ <_>
+
+ 0 -1 415 -1.4293759595602751e-03
+
+ -3.0116760730743408e-01 9.0039253234863281e-02
+ <_>
+
+ 0 -1 416 -6.3978550024330616e-03
+
+ 4.1943550109863281e-01 -7.9320870339870453e-02
+ <_>
+
+ 0 -1 417 2.6083870325237513e-03
+
+ 8.3598926663398743e-02 -4.1897168755531311e-01
+ <_>
+
+ 0 -1 418 8.6870808154344559e-03
+
+ -6.3015699386596680e-02 5.2644741535186768e-01
+ <_>
+
+ 0 -1 419 -1.0380990570411086e-03
+
+ -3.6220151185989380e-01 8.0301038920879364e-02
+ <_>
+
+ 0 -1 420 4.4070050120353699e-01
+
+ 3.4913059324026108e-02 -7.2764492034912109e-01
+ <_>
+
+ 0 -1 421 3.3689520787447691e-03
+
+ 5.7332780212163925e-02 -4.8633271455764771e-01
+ <_>
+
+ 0 -1 422 1.7443710239604115e-03
+
+ -1.0994660109281540e-01 2.7023580670356750e-01
+ <_>
+
+ 0 -1 423 5.3788698278367519e-04
+
+ -2.7439421415328979e-01 1.0063380002975464e-01
+ <_>
+
+ 0 -1 424 1.0072899749502540e-03
+
+ 1.0756769776344299e-01 -2.3221600055694580e-01
+ <_>
+
+ 0 -1 425 -8.2518812268972397e-03
+
+ -6.5216302871704102e-01 3.5704229027032852e-02
+ <_>
+
+ 0 -1 426 3.5490558948367834e-03
+
+ -8.4254868328571320e-02 3.1767430901527405e-01
+ <_>
+
+ 0 -1 427 -1.1033359915018082e-02
+
+ 4.1271620988845825e-01 -6.2587052583694458e-02
+ <_>
+
+ 0 -1 428 3.2278439030051231e-03
+
+ 7.1266986429691315e-02 -4.1172251105308533e-01
+ <_>
+
+ 0 -1 429 1.7540389299392700e-01
+
+ 3.4958980977535248e-02 -6.3775068521499634e-01
+ <_>
+
+ 0 -1 430 -4.8067080206237733e-04
+
+ -2.4503110349178314e-01 9.8930649459362030e-02
+ <_>
+
+ 0 -1 431 -1.8284550169482827e-03
+
+ 1.3486519455909729e-01 -1.9799900054931641e-01
+ <_>
+
+ 0 -1 432 1.7096720403060317e-03
+
+ -1.0525950044393539e-01 2.1005709469318390e-01
+ <_>
+
+ 0 -1 433 3.9468301110900939e-04
+
+ 8.0952547490596771e-02 -2.7405399084091187e-01
+ <_>
+
+ 0 -1 434 2.3097719531506300e-03
+
+ 1.2338220328092575e-01 -1.9958800077438354e-01
+ <_>
+
+ 0 -1 435 3.1529190018773079e-03
+
+ -1.0612549632787704e-01 2.2089600563049316e-01
+ <_>
+
+ 0 -1 436 -1.9097010372206569e-03
+
+ -2.5094708800315857e-01 8.7022580206394196e-02
+ <_>
+
+ 0 -1 437 -1.2370609911158681e-03
+
+ 3.0760520696640015e-01 -7.5937293469905853e-02
+ <_>
+
+ 0 -1 438 3.7081091431900859e-04
+
+ -1.6065080463886261e-01 1.3480199873447418e-01
+ <_>
+
+ 0 -1 439 3.4268848598003387e-02
+
+ 3.5260949283838272e-02 -6.3547158241271973e-01
+ <_>
+
+ 0 -1 440 4.6664681285619736e-03
+
+ -5.2494861185550690e-02 4.3242320418357849e-01
+ <_>
+
+ 0 -1 441 1.0423569940030575e-02
+
+ 5.1612429320812225e-02 -5.0745230913162231e-01
+ <_>
+
+ 0 -1 442 1.1215180158615112e-02
+
+ -3.8614250719547272e-02 5.7645928859710693e-01
+ <_>
+
+ 0 -1 443 -7.3029109444178175e-06
+
+ 1.2052319943904877e-01 -1.7274369299411774e-01
+ <_>
+
+ 0 -1 444 -4.9072802066802979e-03
+
+ -3.4818550944328308e-01 5.9116441756486893e-02
+ <_>
+
+ 0 -1 445 1.9488829420879483e-03
+
+ -8.8861227035522461e-02 2.4020899832248688e-01
+ <_>
+
+ 0 -1 446 1.3313010276760906e-04
+
+ -1.4657719433307648e-01 1.9929920136928558e-01
+ <_>
+
+ 0 -1 447 -1.4298240421339869e-03
+
+ -3.9005228877067566e-01 5.9909418225288391e-02
+ <_>
+
+ 0 -1 448 -6.4831459894776344e-03
+
+ 1.8141369521617889e-01 -1.1655449867248535e-01
+ <_>
+
+ 0 -1 449 7.2958500823006034e-06
+
+ -1.8219240009784698e-01 1.1812780052423477e-01
+ <_>
+
+ 0 -1 450 4.1690681246109307e-04
+
+ 1.0591679811477661e-01 -2.0353710651397705e-01
+ <_>
+
+ 0 -1 451 5.1982058212161064e-03
+
+ -3.5962641239166260e-02 6.0264211893081665e-01
+ <_>
+
+ 0 -1 452 -4.0649957954883575e-03
+
+ 2.0696419477462769e-01 -9.8599843680858612e-02
+ <_>
+
+ 0 -1 453 -4.7734950203448534e-04
+
+ -2.4629549682140350e-01 9.3174271285533905e-02
+ <_>
+
+ 0 -1 454 5.2415160462260246e-03
+
+ 3.6528520286083221e-02 -5.4934787750244141e-01
+ <_>
+
+ 0 -1 455 3.7873629480600357e-03
+
+ -5.7597089558839798e-02 3.8733980059623718e-01
+ <_>
+
+ 0 -1 456 -1.4434250260819681e-05
+
+ 1.1292859911918640e-01 -1.7447079718112946e-01
+ <_>
+
+ 0 -1 457 4.2011599987745285e-02
+
+ -4.6556860208511353e-02 4.5454800128936768e-01
+ <_>
+
+ 0 -1 458 7.9663433134555817e-03
+
+ 4.2258739471435547e-02 -5.3702521324157715e-01
+ <_>
+
+ 0 -1 459 5.3092982852831483e-04
+
+ -9.7918719053268433e-02 2.1795919537544250e-01
+ <_>
+
+ 0 -1 460 5.2906107157468796e-04
+
+ 7.7961057424545288e-02 -2.8867539763450623e-01
+ <_>
+
+ 0 -1 461 -1.9556249678134918e-01
+
+ -7.6475739479064941e-01 2.7276000007987022e-02
+ <_>
+
+ 0 -1 462 -1.1559950187802315e-02
+
+ 3.3526000380516052e-01 -6.3614986836910248e-02
+ <_>
+
+ 0 -1 463 -1.4005659520626068e-01
+
+ -7.6232051849365234e-01 2.8024470433592796e-02
+ <_>
+
+ 0 -1 464 4.4643289584200829e-05
+
+ -2.0320929586887360e-01 9.9391698837280273e-02
+ <_>
+
+ 0 -1 465 3.9411801844835281e-03
+
+ 4.9936279654502869e-02 -3.7584540247917175e-01
+ <_>
+
+ 0 -1 466 -4.5965691097080708e-03
+
+ 3.3031210303306580e-01 -6.3809931278228760e-02
+ <_>
+
+ 0 -1 467 -6.9790292764082551e-04
+
+ 1.6093710064888000e-01 -1.3192920386791229e-01
+ <_>
+
+ 0 -1 468 6.1886821640655398e-04
+
+ 7.4621193110942841e-02 -3.3021458983421326e-01
+ <_>
+
+ 0 -1 469 -3.2755140215158463e-02
+
+ -4.0643560886383057e-01 4.9308661371469498e-02
+ <_>
+
+ 0 -1 470 3.3697509206831455e-03
+
+ 4.0627099573612213e-02 -4.9757328629493713e-01
+ <_>
+
+ 0 -1 471 3.7391821388155222e-04
+
+ -1.4931799471378326e-01 1.6517969965934753e-01
+ <_>
+
+ 0 -1 472 -4.0217190980911255e-03
+
+ 2.9531970620155334e-01 -7.6642103493213654e-02
+ <_>
+
+ 0 -1 473 -7.2943832492455840e-04
+
+ -2.7355810999870300e-01 7.9243987798690796e-02
+ <_>
+
+ 0 -1 474 -5.7726111263036728e-03
+
+ 3.4741240739822388e-01 -7.6087206602096558e-02
+ <_>
+
+ 0 -1 475 -2.1122458856552839e-03
+
+ 1.7290510237216949e-01 -1.2444470077753067e-01
+ <_>
+
+ 0 -1 476 4.4956691563129425e-03
+
+ 3.0218729749321938e-02 -7.4003338813781738e-01
+ <_>
+
+ 0 -1 477 -1.1419389629736543e-03
+
+ -2.3494489490985870e-01 7.6911546289920807e-02
+ <_>
+
+ 0 -1 478 2.7658098842948675e-03
+
+ -9.1666661202907562e-02 2.1009710431098938e-01
+ <_>
+
+ 0 -1 479 -7.2281848406419158e-04
+
+ -2.5587469339370728e-01 7.5378142297267914e-02
+ <_>
+
+ 0 -1 480 1.8604539800435305e-03
+
+ -9.4511069357395172e-02 1.9726920127868652e-01
+ <_>
+
+ 0 -1 481 -2.8568008565343916e-04
+
+ -2.1073310077190399e-01 9.7290039062500000e-02
+ <_>
+
+ 0 -1 482 -3.8796100765466690e-02
+
+ -7.8724592924118042e-01 2.4410309270024300e-02
+ <_>
+
+ 0 -1 483 -1.2119869701564312e-02
+
+ 3.6466810107231140e-01 -5.7907499372959137e-02
+ <_>
+ 93
+ -1.6563049554824829e+00
+
+ <_>
+
+ 0 -1 484 5.6008538231253624e-03
+
+ -3.8491588830947876e-01 3.3817461133003235e-01
+ <_>
+
+ 0 -1 485 -3.7205789703875780e-03
+
+ 2.4614119529724121e-01 -3.0673781037330627e-01
+ <_>
+
+ 0 -1 486 -2.5333440862596035e-03
+
+ 1.2531200051307678e-01 -4.2720189690589905e-01
+ <_>
+
+ 0 -1 487 -7.3425087612122297e-04
+
+ 1.3314330577850342e-01 -3.5111570358276367e-01
+ <_>
+
+ 0 -1 488 -1.4792960428167135e-04
+
+ 1.2545309960842133e-01 -3.8591191172599792e-01
+ <_>
+
+ 0 -1 489 -4.8976339399814606e-02
+
+ 3.6456748843193054e-01 -1.1494780331850052e-01
+ <_>
+
+ 0 -1 490 1.0917349718511105e-03
+
+ 7.9005338251590729e-02 -4.1399830579757690e-01
+ <_>
+
+ 0 -1 491 5.4457997903227806e-03
+
+ -1.1921840161085129e-01 3.3085560798645020e-01
+ <_>
+
+ 0 -1 492 1.5979419695213437e-03
+
+ 4.1181199252605438e-02 -5.5028229951858521e-01
+ <_>
+
+ 0 -1 493 -1.3023250503465533e-03
+
+ 8.2839436829090118e-02 -3.5719320178031921e-01
+ <_>
+
+ 0 -1 494 4.8810569569468498e-04
+
+ -2.0928630232810974e-01 1.4972810447216034e-01
+ <_>
+
+ 0 -1 495 2.1033850498497486e-03
+
+ 5.1839418709278107e-02 -6.1099958419799805e-01
+ <_>
+
+ 0 -1 496 1.1984360404312611e-02
+
+ 4.1022349148988724e-02 -5.8985722064971924e-01
+ <_>
+
+ 0 -1 497 -1.1898590251803398e-02
+
+ 4.5844998955726624e-01 -6.4714707434177399e-02
+ <_>
+
+ 0 -1 498 5.3713661618530750e-03
+
+ -6.1560470610857010e-02 4.1204369068145752e-01
+ <_>
+
+ 0 -1 499 4.3421140871942043e-03
+
+ 6.0501661151647568e-02 -4.8703390359878540e-01
+ <_>
+
+ 0 -1 500 6.6142519935965538e-03
+
+ 4.6873189508914948e-02 -5.0346171855926514e-01
+ <_>
+
+ 0 -1 501 1.2339729582890868e-03
+
+ -8.1538438796997070e-02 3.0428299307823181e-01
+ <_>
+
+ 0 -1 502 -1.2975660152733326e-02
+
+ -4.7834330797195435e-01 4.8681490123271942e-02
+ <_>
+
+ 0 -1 503 -1.7806360265240073e-03
+
+ 3.7698730826377869e-01 -6.8126037716865540e-02
+ <_>
+
+ 0 -1 504 7.8339744359254837e-03
+
+ 5.4501280188560486e-02 -4.6738588809967041e-01
+ <_>
+
+ 0 -1 505 -6.0113701038062572e-03
+
+ 5.4870051145553589e-01 -4.4434640556573868e-02
+ <_>
+
+ 0 -1 506 -2.0694560371339321e-03
+
+ -3.7755548954010010e-01 6.4383402466773987e-02
+ <_>
+
+ 0 -1 507 4.7843591310083866e-03
+
+ 4.6252150088548660e-02 -5.2633982896804810e-01
+ <_>
+
+ 0 -1 508 -6.2808818183839321e-03
+
+ 3.9451861381530762e-01 -6.9051302969455719e-02
+ <_>
+
+ 0 -1 509 1.6099009662866592e-03
+
+ -1.0316190123558044e-01 2.7321669459342957e-01
+ <_>
+
+ 0 -1 510 -8.2392559852451086e-04
+
+ -2.8039410710334778e-01 8.4601573646068573e-02
+ <_>
+
+ 0 -1 511 -1.0123319923877716e-02
+
+ 3.3635950088500977e-01 -6.1322949826717377e-02
+ <_>
+
+ 0 -1 512 1.0525720193982124e-02
+
+ 4.6165600419044495e-02 -5.1672130823135376e-01
+ <_>
+
+ 0 -1 513 -2.6774499565362930e-02
+
+ -5.0325971841812134e-01 3.9857819676399231e-02
+ <_>
+
+ 0 -1 514 4.0248301811516285e-03
+
+ -6.1501380056142807e-02 3.6659809947013855e-01
+ <_>
+
+ 0 -1 515 -4.6271650353446603e-04
+
+ -2.6439830660820007e-01 8.1311263144016266e-02
+ <_>
+
+ 0 -1 516 -5.1834900659741834e-05
+
+ 1.1154399812221527e-01 -2.0269370079040527e-01
+ <_>
+
+ 0 -1 517 4.8874281346797943e-03
+
+ -6.9644987583160400e-02 3.3612030744552612e-01
+ <_>
+
+ 0 -1 518 1.2638230621814728e-01
+
+ 3.6813639104366302e-02 -6.5849918127059937e-01
+ <_>
+
+ 0 -1 519 -8.0248164013028145e-03
+
+ 4.6601921319961548e-01 -4.8885859549045563e-02
+ <_>
+
+ 0 -1 520 -1.1518909595906734e-03
+
+ -4.0466758608818054e-01 5.8572851121425629e-02
+ <_>
+
+ 0 -1 521 9.8190037533640862e-04
+
+ -1.3197229802608490e-01 1.7744350433349609e-01
+ <_>
+
+ 0 -1 522 -1.9447980448603630e-02
+
+ -6.8489527702331543e-01 3.3834591507911682e-02
+ <_>
+
+ 0 -1 523 -7.2442039709130768e-06
+
+ 1.1553110182285309e-01 -1.8726129829883575e-01
+ <_>
+
+ 0 -1 524 -1.7039060592651367e-02
+
+ -3.5105291008949280e-01 6.7737713456153870e-02
+ <_>
+
+ 0 -1 525 1.1186580173671246e-02
+
+ -9.3420043587684631e-02 2.1077099442481995e-01
+ <_>
+
+ 0 -1 526 7.6585268834605813e-04
+
+ 6.5965756773948669e-02 -3.2127881050109863e-01
+ <_>
+
+ 0 -1 527 1.4231950626708567e-04
+
+ -1.5460130572319031e-01 1.3757640123367310e-01
+ <_>
+
+ 0 -1 528 -5.5553209967911243e-03
+
+ 3.1319350004196167e-01 -6.4753532409667969e-02
+ <_>
+
+ 0 -1 529 1.2308239820413291e-04
+
+ 9.7666621208190918e-02 -2.2251069545745850e-01
+ <_>
+
+ 0 -1 530 -1.6092039877548814e-03
+
+ -3.6215591430664062e-01 6.4452558755874634e-02
+ <_>
+
+ 0 -1 531 -1.5626100357621908e-03
+
+ 2.2588780522346497e-01 -9.5551103353500366e-02
+ <_>
+
+ 0 -1 532 -5.0116342026740313e-04
+
+ -2.2289219498634338e-01 8.9174531400203705e-02
+ <_>
+
+ 0 -1 533 3.7322030402719975e-04
+
+ 9.1969013214111328e-02 -2.1129919588565826e-01
+ <_>
+
+ 0 -1 534 -2.2882660850882530e-03
+
+ 3.8989049196243286e-01 -5.3455859422683716e-02
+ <_>
+
+ 0 -1 535 -4.6884030103683472e-02
+
+ -6.2357091903686523e-01 3.2194521278142929e-02
+ <_>
+
+ 0 -1 536 1.8901260336861014e-03
+
+ -7.2615146636962891e-02 2.7420088648796082e-01
+ <_>
+
+ 0 -1 537 1.5805330127477646e-02
+
+ 2.8601830825209618e-02 -6.9608169794082642e-01
+ <_>
+
+ 0 -1 538 3.2644178718328476e-02
+
+ -4.0772251784801483e-02 5.0873398780822754e-01
+ <_>
+
+ 0 -1 539 6.5482832724228501e-04
+
+ 8.5724912583827972e-02 -2.7580630779266357e-01
+ <_>
+
+ 0 -1 540 -1.1142930015921593e-02
+
+ 8.7326012551784515e-02 -2.0914819836616516e-01
+ <_>
+
+ 0 -1 541 -5.8072229148820043e-04
+
+ -2.9471421241760254e-01 6.6337890923023224e-02
+ <_>
+
+ 0 -1 542 -7.4414577102288604e-04
+
+ 1.8017959594726562e-01 -1.0654629766941071e-01
+ <_>
+
+ 0 -1 543 7.6460661366581917e-03
+
+ -6.3608147203922272e-02 3.1582340598106384e-01
+ <_>
+
+ 0 -1 544 3.2617211341857910e-02
+
+ 3.2606441527605057e-02 -6.0541188716888428e-01
+ <_>
+
+ 0 -1 545 -3.4527231007814407e-02
+
+ -5.9770858287811279e-01 2.7888769283890724e-02
+ <_>
+
+ 0 -1 546 3.2211719080805779e-03
+
+ -4.9183920025825500e-02 4.0305620431900024e-01
+ <_>
+
+ 0 -1 547 -4.1549839079380035e-04
+
+ 1.3533140718936920e-01 -1.5845330059528351e-01
+ <_>
+
+ 0 -1 548 2.5140501093119383e-03
+
+ 6.3218571245670319e-02 -3.0768528580665588e-01
+ <_>
+
+ 0 -1 549 -2.0818209648132324e-01
+
+ -7.5750261545181274e-01 2.2695960476994514e-02
+ <_>
+
+ 0 -1 550 -2.6067279279232025e-02
+
+ -7.4959957599639893e-01 1.9375480711460114e-02
+ <_>
+
+ 0 -1 551 -5.8264029212296009e-04
+
+ 9.4658233225345612e-02 -1.9919820129871368e-01
+ <_>
+
+ 0 -1 552 -3.2769259996712208e-03
+
+ 1.6214330494403839e-01 -1.2322030216455460e-01
+ <_>
+
+ 0 -1 553 1.3998829526826739e-03
+
+ -1.0849200189113617e-01 2.3151659965515137e-01
+ <_>
+
+ 0 -1 554 -1.2055980041623116e-02
+
+ -2.4002850055694580e-01 9.3272961676120758e-02
+ <_>
+
+ 0 -1 555 3.1805539038032293e-03
+
+ 7.6264120638370514e-02 -2.5435069203376770e-01
+ <_>
+
+ 0 -1 556 -1.0693799704313278e-03
+
+ 2.2258889675140381e-01 -9.0730242431163788e-02
+ <_>
+
+ 0 -1 557 -2.9467688873410225e-03
+
+ -3.4242698550224304e-01 6.0581039637327194e-02
+ <_>
+
+ 0 -1 558 8.8108901400119066e-04
+
+ -7.8326202929019928e-02 2.6911988854408264e-01
+ <_>
+
+ 0 -1 559 2.8118939371779561e-04
+
+ 9.8370827734470367e-02 -2.1947909891605377e-01
+ <_>
+
+ 0 -1 560 -1.8574869260191917e-02
+
+ 2.6729720830917358e-01 -7.1240752935409546e-02
+ <_>
+
+ 0 -1 561 -2.4810349568724632e-02
+
+ -6.8322032690048218e-01 2.9446309432387352e-02
+ <_>
+
+ 0 -1 562 2.8904930222779512e-03
+
+ 7.6161012053489685e-02 -2.4025200307369232e-01
+ <_>
+
+ 0 -1 563 3.5410430282354355e-03
+
+ -1.0742089897394180e-01 1.8509419262409210e-01
+ <_>
+
+ 0 -1 564 -8.4244477329775691e-04
+
+ 1.8727229535579681e-01 -1.1407770216464996e-01
+ <_>
+
+ 0 -1 565 -2.5338360574096441e-03
+
+ -3.5870191454887390e-01 5.1251661032438278e-02
+ <_>
+
+ 0 -1 566 1.9654980860650539e-03
+
+ -1.4064720273017883e-01 1.3041019439697266e-01
+ <_>
+
+ 0 -1 567 3.1574100255966187e-01
+
+ 2.9550969600677490e-02 -6.3157892227172852e-01
+ <_>
+
+ 0 -1 568 -2.9846638790331781e-04
+
+ -2.2911080718040466e-01 7.8875422477722168e-02
+ <_>
+
+ 0 -1 569 -1.1545480042695999e-01
+
+ -8.1895941495895386e-01 2.2261450067162514e-02
+ <_>
+
+ 0 -1 570 -3.5817299038171768e-02
+
+ -3.0612939596176147e-01 6.0644190758466721e-02
+ <_>
+
+ 0 -1 571 1.7071690410375595e-02
+
+ -6.1134841293096542e-02 3.2152679562568665e-01
+ <_>
+
+ 0 -1 572 -2.1385080181062222e-03
+
+ -5.4798161983489990e-01 3.8667369633913040e-02
+ <_>
+
+ 0 -1 573 6.5424457192420959e-02
+
+ 1.7884260043501854e-02 -8.5628831386566162e-01
+ <_>
+
+ 0 -1 574 -1.3419929891824722e-02
+
+ 3.0995100736618042e-01 -6.7559666931629181e-02
+ <_>
+
+ 0 -1 575 1.8939709290862083e-02
+
+ 2.8729729354381561e-02 -7.5338190793991089e-01
+ <_>
+
+ 0 -1 576 -2.9120460152626038e-02
+
+ -7.3594617843627930e-01 2.0359549671411514e-02
+ <_>
+ 79
+ -1.5920439958572388e+00
+
+ <_>
+
+ 0 -1 577 -1.3419030234217644e-02
+
+ 3.0538010597229004e-01 -4.1782331466674805e-01
+ <_>
+
+ 0 -1 578 1.7404999816790223e-03
+
+ -2.7101579308509827e-01 3.5409560799598694e-01
+ <_>
+
+ 0 -1 579 7.7174860052764416e-03
+
+ -3.1271371245384216e-01 2.1189980208873749e-01
+ <_>
+
+ 0 -1 580 -1.4514879694615956e-05
+
+ 1.6157090663909912e-01 -3.3522731065750122e-01
+ <_>
+
+ 0 -1 581 -1.4871519852022175e-05
+
+ 1.4571620523929596e-01 -2.9369521141052246e-01
+ <_>
+
+ 0 -1 582 1.5004149463493377e-04
+
+ -4.0149879455566406e-01 1.0407949984073639e-01
+ <_>
+
+ 0 -1 583 1.8634879961609840e-03
+
+ 4.9062840640544891e-02 -6.5208268165588379e-01
+ <_>
+
+ 0 -1 584 -2.9590800404548645e-03
+
+ 2.8804430365562439e-01 -1.3293409347534180e-01
+ <_>
+
+ 0 -1 585 3.3067780896089971e-04
+
+ 3.9615370333194733e-02 -4.1540861129760742e-01
+ <_>
+
+ 0 -1 586 -1.6816710121929646e-03
+
+ 1.3032579421997070e-01 -2.3237510025501251e-01
+ <_>
+
+ 0 -1 587 3.4896740689873695e-03
+
+ 6.8852916359901428e-02 -4.7176009416580200e-01
+ <_>
+
+ 0 -1 588 1.6204500570893288e-03
+
+ -1.0996960103511810e-01 3.4887188673019409e-01
+ <_>
+
+ 0 -1 589 1.9125849939882755e-04
+
+ -2.0317320525646210e-01 1.4775620400905609e-01
+ <_>
+
+ 0 -1 590 2.2485259920358658e-02
+
+ 5.1929730921983719e-02 -5.4815691709518433e-01
+ <_>
+
+ 0 -1 591 1.0035949759185314e-02
+
+ -1.0943319648504257e-01 2.6000571250915527e-01
+ <_>
+
+ 0 -1 592 4.0091630071401596e-02
+
+ 3.8657050579786301e-02 -7.4724602699279785e-01
+ <_>
+
+ 0 -1 593 1.5319019556045532e-02
+
+ 2.8579369187355042e-02 -7.7717798948287964e-01
+ <_>
+
+ 0 -1 594 9.0913427993655205e-04
+
+ -1.5049549937248230e-01 1.7363379895687103e-01
+ <_>
+
+ 0 -1 595 -6.0226190835237503e-03
+
+ -4.7704491019248962e-01 5.8185670524835587e-02
+ <_>
+
+ 0 -1 596 7.8066787682473660e-04
+
+ -1.6349339485168457e-01 1.6236920654773712e-01
+ <_>
+
+ 0 -1 597 -1.1492020450532436e-02
+
+ -5.6185477972030640e-01 4.6009611338376999e-02
+ <_>
+
+ 0 -1 598 8.9691327884793282e-03
+
+ 6.6570483148097992e-02 -3.3824840188026428e-01
+ <_>
+
+ 0 -1 599 7.2241941234096885e-04
+
+ -1.2882669270038605e-01 1.9002969563007355e-01
+ <_>
+
+ 0 -1 600 1.4879239643050823e-05
+
+ -2.1765929460525513e-01 1.3151009380817413e-01
+ <_>
+
+ 0 -1 601 8.7159732356667519e-03
+
+ 4.8188239336013794e-02 -5.2367717027664185e-01
+ <_>
+
+ 0 -1 602 -1.3809900265187025e-03
+
+ -3.1734630465507507e-01 6.7012362182140350e-02
+ <_>
+
+ 0 -1 603 1.4004110358655453e-02
+
+ -7.2155177593231201e-02 3.4900391101837158e-01
+ <_>
+
+ 0 -1 604 -1.2883460149168968e-02
+
+ -5.9674298763275146e-01 3.9219990372657776e-02
+ <_>
+
+ 0 -1 605 9.9220760166645050e-03
+
+ -7.3617048561573029e-02 3.5491651296615601e-01
+ <_>
+
+ 0 -1 606 -1.0360360145568848e-02
+
+ -4.9655780196189880e-01 5.4516721516847610e-02
+ <_>
+
+ 0 -1 607 5.9103948296979070e-04
+
+ -9.1649092733860016e-02 2.3738409578800201e-01
+ <_>
+
+ 0 -1 608 1.4986419955675956e-05
+
+ -1.5624360740184784e-01 1.4216689765453339e-01
+ <_>
+
+ 0 -1 609 6.2526292167603970e-03
+
+ 4.6570941805839539e-02 -4.3861261010169983e-01
+ <_>
+
+ 0 -1 610 9.0722978115081787e-02
+
+ 2.3544119670987129e-02 -7.5557678937911987e-01
+ <_>
+
+ 0 -1 611 1.2880839640274644e-03
+
+ -1.0999819636344910e-01 1.9954189658164978e-01
+ <_>
+
+ 0 -1 612 -5.3202832350507379e-04
+
+ -2.3681020736694336e-01 9.4349831342697144e-02
+ <_>
+
+ 0 -1 613 1.4669039519503713e-03
+
+ -6.0417938977479935e-02 3.5437929630279541e-01
+ <_>
+
+ 0 -1 614 2.5929270312190056e-02
+
+ 3.0205380171537399e-02 -7.1175122261047363e-01
+ <_>
+
+ 0 -1 615 -7.2257839143276215e-02
+
+ -7.6830059289932251e-01 2.2078540176153183e-02
+ <_>
+
+ 0 -1 616 -2.5999830104410648e-03
+
+ 2.2878250479698181e-01 -9.2575646936893463e-02
+ <_>
+
+ 0 -1 617 4.2036110162734985e-01
+
+ 3.4129150211811066e-02 -6.3944667577743530e-01
+ <_>
+
+ 0 -1 618 -2.1722039673477411e-03
+
+ -2.0458799600601196e-01 9.6727348864078522e-02
+ <_>
+
+ 0 -1 619 -1.8573250621557236e-02
+
+ -7.2321742773056030e-01 2.6587400585412979e-02
+ <_>
+
+ 0 -1 620 2.1321140229701996e-03
+
+ -7.9263173043727875e-02 2.9004418849945068e-01
+ <_>
+
+ 0 -1 621 1.4585970347980037e-05
+
+ -1.5812200307846069e-01 1.2857919931411743e-01
+ <_>
+
+ 0 -1 622 -2.5919941067695618e-01
+
+ -8.3206391334533691e-01 2.1327629685401917e-02
+ <_>
+
+ 0 -1 623 -1.2713880278170109e-02
+
+ -4.8670661449432373e-01 3.5282909870147705e-02
+ <_>
+
+ 0 -1 624 2.1182969212532043e-03
+
+ -4.8141859471797943e-02 4.3498820066452026e-01
+ <_>
+
+ 0 -1 625 4.9225408583879471e-03
+
+ 5.9389010071754456e-02 -3.5719910264015198e-01
+ <_>
+
+ 0 -1 626 7.1720690466463566e-03
+
+ -7.2721220552921295e-02 3.1716778874397278e-01
+ <_>
+
+ 0 -1 627 1.5319329686462879e-03
+
+ 7.6105281710624695e-02 -2.9826408624649048e-01
+ <_>
+
+ 0 -1 628 -2.6141680777072906e-02
+
+ -4.8129829764366150e-01 4.1991200298070908e-02
+ <_>
+
+ 0 -1 629 -7.1861818469187710e-06
+
+ 1.0385909676551819e-01 -2.5540891289710999e-01
+ <_>
+
+ 0 -1 630 -5.8513309340924025e-04
+
+ 2.1552430093288422e-01 -1.0446780174970627e-01
+ <_>
+
+ 0 -1 631 7.3564669582992792e-04
+
+ 8.2850307226181030e-02 -2.3229689896106720e-01
+ <_>
+
+ 0 -1 632 -4.4216000242158771e-04
+
+ 1.9849689304828644e-01 -1.1084359884262085e-01
+ <_>
+
+ 0 -1 633 6.6545000299811363e-03
+
+ 2.9844839125871658e-02 -6.3819402456283569e-01
+ <_>
+
+ 0 -1 634 -1.4856060261081439e-05
+
+ 1.0647810250520706e-01 -1.6304740309715271e-01
+ <_>
+
+ 0 -1 635 4.4933347962796688e-03
+
+ -5.8312181383371353e-02 3.2200211286544800e-01
+ <_>
+
+ 0 -1 636 3.8110970053821802e-03
+
+ 7.1237437427043915e-02 -2.7149480581283569e-01
+ <_>
+
+ 0 -1 637 -3.8309019058942795e-02
+
+ -6.2387478351593018e-01 2.9790399596095085e-02
+ <_>
+
+ 0 -1 638 -2.5534629821777344e-03
+
+ 2.0947620272636414e-01 -9.3472570180892944e-02
+ <_>
+
+ 0 -1 639 -2.9908109354437329e-05
+
+ 1.4771899580955505e-01 -1.2858720123767853e-01
+ <_>
+
+ 0 -1 640 2.0549520850181580e-03
+
+ -9.3603983521461487e-02 2.1911169588565826e-01
+ <_>
+
+ 0 -1 641 3.3064800663851202e-04
+
+ -1.4430660009384155e-01 1.6905060410499573e-01
+ <_>
+
+ 0 -1 642 4.0969369001686573e-04
+
+ 8.9844956994056702e-02 -2.1793210506439209e-01
+ <_>
+
+ 0 -1 643 -5.1680381875485182e-04
+
+ -2.7330860495567322e-01 7.2490707039833069e-02
+ <_>
+
+ 0 -1 644 -1.2285299599170685e-02
+
+ -5.7899951934814453e-01 2.8828129172325134e-02
+ <_>
+
+ 0 -1 645 1.4923219569027424e-03
+
+ -8.9748427271842957e-02 2.1315790712833405e-01
+ <_>
+
+ 0 -1 646 3.7809570785611868e-03
+
+ 5.6869130581617355e-02 -3.2580479979515076e-01
+ <_>
+
+ 0 -1 647 -1.3630799949169159e-01
+
+ -5.1958292722702026e-01 3.4014869481325150e-02
+ <_>
+
+ 0 -1 648 2.1192250773310661e-02
+
+ -5.9815749526023865e-02 4.3134000897407532e-01
+ <_>
+
+ 0 -1 649 -2.2501780185848475e-03
+
+ -3.2725110650062561e-01 6.9494038820266724e-02
+ <_>
+
+ 0 -1 650 -1.3309439644217491e-02
+
+ 5.5684721469879150e-01 -3.8055110722780228e-02
+ <_>
+
+ 0 -1 651 -4.8674400895833969e-02
+
+ 3.7503889203071594e-01 -4.8045299947261810e-02
+ <_>
+
+ 0 -1 652 -1.4651560377387796e-05
+
+ 9.3043543398380280e-02 -2.2984559834003448e-01
+ <_>
+
+ 0 -1 653 -7.7605661936104298e-03
+
+ 3.8858211040496826e-01 -5.4669309407472610e-02
+ <_>
+
+ 0 -1 654 2.4429330602288246e-02
+
+ 4.5898649841547012e-02 -5.1061111688613892e-01
+ <_>
+
+ 0 -1 655 -2.1317049686331302e-04
+
+ -2.0513610541820526e-01 1.0507310181856155e-01
+ <_>
+ 105
+ -1.6632529497146606e+00
+
+ <_>
+
+ 0 -1 656 -5.7014292106032372e-03
+
+ 2.7576211094856262e-01 -3.3123719692230225e-01
+ <_>
+
+ 0 -1 657 -4.4359369203448296e-03
+
+ 1.5587480366230011e-01 -5.0288617610931396e-01
+ <_>
+
+ 0 -1 658 -5.0388257950544357e-03
+
+ 1.6109010577201843e-01 -3.5196068882942200e-01
+ <_>
+
+ 0 -1 659 8.0847437493503094e-04
+
+ -3.3315700292587280e-01 1.4446459710597992e-01
+ <_>
+
+ 0 -1 660 2.1605329588055611e-02
+
+ -8.6723573505878448e-02 5.9101939201354980e-01
+ <_>
+
+ 0 -1 661 -1.8266839906573296e-02
+
+ 5.0261861085891724e-01 -8.4620863199234009e-02
+ <_>
+
+ 0 -1 662 -8.3384668687358499e-04
+
+ -3.0832511186599731e-01 1.1352760344743729e-01
+ <_>
+
+ 0 -1 663 -1.5336600132286549e-02
+
+ -6.8610608577728271e-01 3.3057838678359985e-02
+ <_>
+
+ 0 -1 664 -5.0607877783477306e-03
+
+ 3.4399279952049255e-01 -9.2118233442306519e-02
+ <_>
+
+ 0 -1 665 -1.4741700397280511e-05
+
+ 1.1778169870376587e-01 -2.5235179066658020e-01
+ <_>
+
+ 0 -1 666 -1.1485730065032840e-03
+
+ -2.9050019383430481e-01 8.3533048629760742e-02
+ <_>
+
+ 0 -1 667 2.8824089094996452e-03
+
+ -9.0674236416816711e-02 3.1274148821830750e-01
+ <_>
+
+ 0 -1 668 -2.9224360361695290e-02
+
+ -6.9156378507614136e-01 3.3279780298471451e-02
+ <_>
+
+ 0 -1 669 2.1423520520329475e-03
+
+ -1.0087729990482330e-01 2.4603089690208435e-01
+ <_>
+
+ 0 -1 670 -3.3471059054136276e-02
+
+ -5.0953942537307739e-01 5.5052071809768677e-02
+ <_>
+
+ 0 -1 671 1.4763450053578708e-05
+
+ -1.7823149263858795e-01 1.2816399335861206e-01
+ <_>
+
+ 0 -1 672 1.6341559588909149e-02
+
+ -1.3254739344120026e-01 1.9663499295711517e-01
+ <_>
+
+ 0 -1 673 2.2475779987871647e-03
+
+ 7.9048447310924530e-02 -2.9476320743560791e-01
+ <_>
+
+ 0 -1 674 4.6113221906125546e-03
+
+ -7.6338447630405426e-02 3.2394409179687500e-01
+ <_>
+
+ 0 -1 675 2.8979079797863960e-03
+
+ -1.0839050263166428e-01 2.6353389024734497e-01
+ <_>
+
+ 0 -1 676 1.3482819776982069e-03
+
+ 7.9134561121463776e-02 -3.4839859604835510e-01
+ <_>
+
+ 0 -1 677 4.6576592139899731e-03
+
+ 7.6356090605258942e-02 -3.1110540032386780e-01
+ <_>
+
+ 0 -1 678 -3.9915097877383232e-03
+
+ -3.4151628613471985e-01 8.2623466849327087e-02
+ <_>
+
+ 0 -1 679 6.0268798843026161e-03
+
+ -9.6277832984924316e-02 2.6347661018371582e-01
+ <_>
+
+ 0 -1 680 -4.1388701647520065e-03
+
+ 2.3571729660034180e-01 -9.4335287809371948e-02
+ <_>
+
+ 0 -1 681 -1.0371750220656395e-02
+
+ -7.2972798347473145e-01 3.3645220100879669e-02
+ <_>
+
+ 0 -1 682 1.0373629629611969e-01
+
+ 3.1347069889307022e-02 -5.8245128393173218e-01
+ <_>
+
+ 0 -1 683 -1.8832299974747002e-04
+
+ 1.6663299500942230e-01 -1.3723160326480865e-01
+ <_>
+
+ 0 -1 684 -6.0749921249225736e-04
+
+ -2.7257540822029114e-01 8.1483371555805206e-02
+ <_>
+
+ 0 -1 685 2.3499270901083946e-03
+
+ -1.0285440087318420e-01 2.1854889392852783e-01
+ <_>
+
+ 0 -1 686 -3.1354159582406282e-03
+
+ -4.9246039986610413e-01 4.4747360050678253e-02
+ <_>
+
+ 0 -1 687 1.5564589994028211e-03
+
+ 5.3096260875463486e-02 -4.0526211261749268e-01
+ <_>
+
+ 0 -1 688 6.3236099667847157e-03
+
+ -7.9116806387901306e-02 2.8413718938827515e-01
+ <_>
+
+ 0 -1 689 -4.8074051737785339e-03
+
+ 2.9990258812904358e-01 -8.2824081182479858e-02
+ <_>
+
+ 0 -1 690 7.6432302594184875e-02
+
+ 3.9146371185779572e-02 -5.7314342260360718e-01
+ <_>
+
+ 0 -1 691 7.0249952841550112e-04
+
+ 5.2832871675491333e-02 -3.3245471119880676e-01
+ <_>
+
+ 0 -1 692 -8.2157138967886567e-04
+
+ -2.1230019629001617e-01 8.8145829737186432e-02
+ <_>
+
+ 0 -1 693 -1.0148280300199986e-02
+
+ -2.2071610391139984e-01 9.6597403287887573e-02
+ <_>
+
+ 0 -1 694 -1.7348809540271759e-01
+
+ -5.9822201728820801e-01 3.2547060400247574e-02
+ <_>
+
+ 0 -1 695 4.3031540699303150e-03
+
+ -6.8253546953201294e-02 2.8981029987335205e-01
+ <_>
+
+ 0 -1 696 -7.3378678280278109e-06
+
+ 7.5155563652515411e-02 -2.5863590836524963e-01
+ <_>
+
+ 0 -1 697 1.9277239916846156e-03
+
+ 1.0856460034847260e-01 -1.6595140099525452e-01
+ <_>
+
+ 0 -1 698 -4.2054480873048306e-03
+
+ 1.9811309874057770e-01 -9.1941706836223602e-02
+ <_>
+
+ 0 -1 699 1.1466189753264189e-03
+
+ 4.2078729718923569e-02 -4.3991029262542725e-01
+ <_>
+
+ 0 -1 700 -6.7244949750602245e-03
+
+ 3.4456861019134521e-01 -5.7096958160400391e-02
+ <_>
+
+ 0 -1 701 -1.4554189874615986e-05
+
+ 1.1632560193538666e-01 -1.6252210736274719e-01
+ <_>
+
+ 0 -1 702 -2.6114559732377529e-03
+
+ 2.8084969520568848e-01 -6.8243041634559631e-02
+ <_>
+
+ 0 -1 703 -1.9477460591588169e-04
+
+ -1.9368860125541687e-01 9.3413226306438446e-02
+ <_>
+
+ 0 -1 704 2.6438338682055473e-04
+
+ 9.9354371428489685e-02 -2.1586629748344421e-01
+ <_>
+
+ 0 -1 705 2.0134719088673592e-03
+
+ -6.1209201812744141e-02 2.9120978713035583e-01
+ <_>
+
+ 0 -1 706 -2.6024359464645386e-01
+
+ -8.3802181482315063e-01 2.1150760352611542e-02
+ <_>
+
+ 0 -1 707 -1.5944700688123703e-02
+
+ -6.3974797725677490e-01 2.2144839167594910e-02
+ <_>
+
+ 0 -1 708 6.7249889252707362e-04
+
+ -1.4014090597629547e-01 1.2326350063085556e-01
+ <_>
+
+ 0 -1 709 1.3042770326137543e-02
+
+ 2.4306889623403549e-02 -6.6303068399429321e-01
+ <_>
+
+ 0 -1 710 -1.4540290067088790e-05
+
+ 9.0137362480163574e-02 -1.7409169673919678e-01
+ <_>
+
+ 0 -1 711 1.7920829355716705e-02
+
+ 2.5644620880484581e-02 -6.5067142248153687e-01
+ <_>
+
+ 0 -1 712 1.6542300581932068e-03
+
+ -1.0385700315237045e-01 1.6688160598278046e-01
+ <_>
+
+ 0 -1 713 3.5362090915441513e-02
+
+ 2.3093009367585182e-02 -6.9009417295455933e-01
+ <_>
+
+ 0 -1 714 3.3049840567400679e-05
+
+ -1.7408940196037292e-01 9.3873098492622375e-02
+ <_>
+
+ 0 -1 715 3.3775588963180780e-03
+
+ -5.8522459119558334e-02 3.0490559339523315e-01
+ <_>
+
+ 0 -1 716 7.3239738121628761e-03
+
+ 4.0999408811330795e-02 -4.6160981059074402e-01
+ <_>
+
+ 0 -1 717 -2.9797051101922989e-03
+
+ 5.1136761903762817e-01 -3.6246869713068008e-02
+ <_>
+
+ 0 -1 718 2.0306499209254980e-03
+
+ 6.5309353172779083e-02 -2.6698499917984009e-01
+ <_>
+
+ 0 -1 719 -6.8856950383633375e-04
+
+ -1.7604120075702667e-01 9.9361896514892578e-02
+ <_>
+
+ 0 -1 720 1.5746579738333821e-03
+
+ -1.0312269628047943e-01 1.6940550506114960e-01
+ <_>
+
+ 0 -1 721 1.5011089853942394e-03
+
+ -8.8128447532653809e-02 1.8899090588092804e-01
+ <_>
+
+ 0 -1 722 1.3503979425877333e-04
+
+ 9.4145476818084717e-02 -1.8483440577983856e-01
+ <_>
+
+ 0 -1 723 5.5570588447153568e-03
+
+ 2.9959060251712799e-02 -5.5482620000839233e-01
+ <_>
+
+ 0 -1 724 9.4529995694756508e-03
+
+ -5.3136389702558517e-02 4.0138289332389832e-01
+ <_>
+
+ 0 -1 725 -6.1030662618577480e-04
+
+ -2.7060449123382568e-01 6.6881351172924042e-02
+ <_>
+
+ 0 -1 726 -1.1329240351915359e-01
+
+ -6.5178507566452026e-01 2.5042990222573280e-02
+ <_>
+
+ 0 -1 727 -2.0354389562271535e-04
+
+ 1.0892420262098312e-01 -1.5174369513988495e-01
+ <_>
+
+ 0 -1 728 -1.4983189757913351e-03
+
+ 2.7388730645179749e-01 -5.8467049151659012e-02
+ <_>
+
+ 0 -1 729 7.5277159921824932e-03
+
+ 4.0991529822349548e-02 -4.2739889025688171e-01
+ <_>
+
+ 0 -1 730 3.6209179088473320e-03
+
+ -6.7309238016605377e-02 2.6064750552177429e-01
+ <_>
+
+ 0 -1 731 1.2153049930930138e-02
+
+ 5.0768271088600159e-02 -3.8319081068038940e-01
+ <_>
+
+ 0 -1 732 4.6126339584589005e-02
+
+ 2.4232989177107811e-02 -6.5039527416229248e-01
+ <_>
+
+ 0 -1 733 7.1408541407436132e-04
+
+ -1.3476370275020599e-01 1.2208549678325653e-01
+ <_>
+
+ 0 -1 734 -4.4331620447337627e-03
+
+ 1.9939610362052917e-01 -1.0218709707260132e-01
+ <_>
+
+ 0 -1 735 1.3099729549139738e-03
+
+ 7.4517026543617249e-02 -2.4503719806671143e-01
+ <_>
+
+ 0 -1 736 2.6161450659856200e-04
+
+ -8.4287956357002258e-02 1.9924600422382355e-01
+ <_>
+
+ 0 -1 737 -2.7577539440244436e-03
+
+ -6.8734467029571533e-01 2.4851109832525253e-02
+ <_>
+
+ 0 -1 738 6.9469690322875977e-02
+
+ 3.8438729941844940e-02 -3.9717179536819458e-01
+ <_>
+
+ 0 -1 739 -1.3031469425186515e-03
+
+ 2.0089949667453766e-01 -9.1723307967185974e-02
+ <_>
+
+ 0 -1 740 1.3012000126764178e-03
+
+ -9.5305852591991425e-02 1.9248190522193909e-01
+ <_>
+
+ 0 -1 741 -3.9377259090542793e-03
+
+ -3.9224091172218323e-01 4.3738011270761490e-02
+ <_>
+
+ 0 -1 742 9.6125707030296326e-02
+
+ -4.3269440531730652e-02 3.7441849708557129e-01
+ <_>
+
+ 0 -1 743 -1.9181859493255615e-01
+
+ -6.1320561170578003e-01 2.8775539249181747e-02
+ <_>
+
+ 0 -1 744 -3.2945619896054268e-03
+
+ -2.2446820139884949e-01 7.7655017375946045e-02
+ <_>
+
+ 0 -1 745 -8.5190916433930397e-03
+
+ 4.4720551371574402e-01 -4.1310388594865799e-02
+ <_>
+
+ 0 -1 746 -4.9431469291448593e-02
+
+ -5.1819682121276855e-01 3.6863740533590317e-02
+ <_>
+
+ 0 -1 747 2.3110879585146904e-02
+
+ -3.3078420907258987e-02 5.9146630764007568e-01
+ <_>
+
+ 0 -1 748 -4.3400399590609595e-05
+
+ 1.1395029723644257e-01 -1.9526299834251404e-01
+ <_>
+
+ 0 -1 749 5.4926839657127857e-03
+
+ 6.1616070568561554e-02 -2.5591990351676941e-01
+ <_>
+
+ 0 -1 750 1.1886029969900846e-03
+
+ -6.8509116768836975e-02 2.4291250109672546e-01
+ <_>
+
+ 0 -1 751 8.8473428040742874e-03
+
+ 7.6467283070087433e-02 -2.3176389932632446e-01
+ <_>
+
+ 0 -1 752 2.3952820338308811e-03
+
+ -4.4620860368013382e-02 4.5811769366264343e-01
+ <_>
+
+ 0 -1 753 -1.5011220239102840e-04
+
+ -1.6560749709606171e-01 1.0622239857912064e-01
+ <_>
+
+ 0 -1 754 -2.3465899750590324e-02
+
+ -2.4931310117244720e-01 6.6179357469081879e-02
+ <_>
+
+ 0 -1 755 -6.6368370316922665e-03
+
+ 1.4358420670032501e-01 -1.1510509997606277e-01
+ <_>
+
+ 0 -1 756 1.1986029567196965e-03
+
+ -9.8347522318363190e-02 1.7605540156364441e-01
+ <_>
+
+ 0 -1 757 7.9502072185277939e-03
+
+ 3.5481378436088562e-02 -5.0176638364791870e-01
+ <_>
+
+ 0 -1 758 -4.5950649655424058e-04
+
+ -1.6928760707378387e-01 9.3400083482265472e-02
+ <_>
+
+ 0 -1 759 -1.9301069900393486e-02
+
+ 4.1836661100387573e-01 -5.1140110939741135e-02
+ <_>
+
+ 0 -1 760 4.0163499116897583e-01
+
+ 2.9358919709920883e-02 -6.4768058061599731e-01
+ <_>
+ 114
+ -1.5384509563446045e+00
+
+ <_>
+
+ 0 -1 761 -3.6284290254116058e-02
+
+ 4.2841899394989014e-01 -2.5840431451797485e-01
+ <_>
+
+ 0 -1 762 3.0520830303430557e-02
+
+ -2.9715040326118469e-01 2.1756610274314880e-01
+ <_>
+
+ 0 -1 763 3.3444820437580347e-03
+
+ -2.1734359860420227e-01 1.9754439592361450e-01
+ <_>
+
+ 0 -1 764 -1.3315919786691666e-03
+
+ 1.5535929799079895e-01 -2.3133680224418640e-01
+ <_>
+
+ 0 -1 765 -1.9773480016738176e-03
+
+ -4.2001301050186157e-01 8.8554427027702332e-02
+ <_>
+
+ 0 -1 766 -3.7038238951936364e-04
+
+ 1.2769789993762970e-01 -2.3879130184650421e-01
+ <_>
+
+ 0 -1 767 -7.3736459016799927e-03
+
+ -4.0720060467720032e-01 2.9765319079160690e-02
+ <_>
+
+ 0 -1 768 -2.1873020159546286e-05
+
+ 1.2338209897279739e-01 -2.2237089276313782e-01
+ <_>
+
+ 0 -1 769 4.5575048716273159e-05
+
+ -2.3092910647392273e-01 1.2953619658946991e-01
+ <_>
+
+ 0 -1 770 -1.1247170157730579e-02
+
+ -5.4762738943099976e-01 4.1907660663127899e-02
+ <_>
+
+ 0 -1 771 -8.9430268853902817e-03
+
+ 2.7945289015769958e-01 -9.0801216661930084e-02
+ <_>
+
+ 0 -1 772 1.4646670024376363e-05
+
+ -1.6777880489826202e-01 1.4968040585517883e-01
+ <_>
+
+ 0 -1 773 -6.5398351289331913e-03
+
+ 3.3654621243476868e-01 -7.1987256407737732e-02
+ <_>
+
+ 0 -1 774 3.3825531136244535e-03
+
+ 4.9931880086660385e-02 -4.5806300640106201e-01
+ <_>
+
+ 0 -1 775 2.7450500056147575e-03
+
+ 3.6119509488344193e-02 -5.7113862037658691e-01
+ <_>
+
+ 0 -1 776 1.0356379672884941e-02
+
+ -5.3049158304929733e-02 4.2121198773384094e-01
+ <_>
+
+ 0 -1 777 3.1687319278717041e-03
+
+ 6.2849938869476318e-02 -3.4674918651580811e-01
+ <_>
+
+ 0 -1 778 1.3616570504382253e-03
+
+ -9.0661056339740753e-02 2.5257480144500732e-01
+ <_>
+
+ 0 -1 779 -2.2238260135054588e-03
+
+ 2.6595190167427063e-01 -9.6649080514907837e-02
+ <_>
+
+ 0 -1 780 1.1090899817645550e-02
+
+ 8.6638063192367554e-02 -3.0103358626365662e-01
+ <_>
+
+ 0 -1 781 -6.7766150459647179e-04
+
+ 9.4277828931808472e-02 -2.1464149653911591e-01
+ <_>
+
+ 0 -1 782 -3.3104580361396074e-03
+
+ -5.9162640571594238e-01 3.2738488167524338e-02
+ <_>
+
+ 0 -1 783 2.3221869487315416e-03
+
+ -9.5557250082492828e-02 2.0546199381351471e-01
+ <_>
+
+ 0 -1 784 3.0947118648327887e-04
+
+ -1.2992270290851593e-01 1.7704719305038452e-01
+ <_>
+
+ 0 -1 785 -3.2214168459177017e-02
+
+ -6.4662492275238037e-01 3.1749259680509567e-02
+ <_>
+
+ 0 -1 786 -8.3192758029326797e-04
+
+ -3.0666750669479370e-01 6.1040591448545456e-02
+ <_>
+
+ 0 -1 787 3.9188290247693658e-04
+
+ -1.5795469284057617e-01 1.1830350011587143e-01
+ <_>
+
+ 0 -1 788 -3.6203738301992416e-02
+
+ -2.2731229662895203e-01 8.3183012902736664e-02
+ <_>
+
+ 0 -1 789 2.6437509804964066e-03
+
+ -7.6691061258316040e-02 2.3545509576797485e-01
+ <_>
+
+ 0 -1 790 -3.4368310589343309e-03
+
+ 3.6057031154632568e-01 -7.3672987520694733e-02
+ <_>
+
+ 0 -1 791 -5.5921601597219706e-04
+
+ -2.5343179702758789e-01 7.8275643289089203e-02
+ <_>
+
+ 0 -1 792 4.3010139052057639e-05
+
+ -1.8223099410533905e-01 9.7539380192756653e-02
+ <_>
+
+ 0 -1 793 5.3192679770290852e-03
+
+ -7.6901949942111969e-02 2.4221810698509216e-01
+ <_>
+
+ 0 -1 794 -6.9484501145780087e-03
+
+ -5.8275872468948364e-01 3.4601949155330658e-02
+ <_>
+
+ 0 -1 795 1.2447779998183250e-02
+
+ 2.3883659392595291e-02 -6.1712497472763062e-01
+ <_>
+
+ 0 -1 796 1.0083100060001016e-03
+
+ -7.5152181088924408e-02 2.4744270741939545e-01
+ <_>
+
+ 0 -1 797 -2.3544009309262037e-03
+
+ 3.1459400057792664e-01 -6.5026231110095978e-02
+ <_>
+
+ 0 -1 798 4.5676861191168427e-04
+
+ 7.9758197069168091e-02 -2.3777219653129578e-01
+ <_>
+
+ 0 -1 799 6.6723190248012543e-03
+
+ 3.8779199123382568e-02 -4.6045419573783875e-01
+ <_>
+
+ 0 -1 800 7.1861818469187710e-06
+
+ -1.3110539317131042e-01 1.2532530725002289e-01
+ <_>
+
+ 0 -1 801 3.0392590910196304e-02
+
+ 2.9670530930161476e-02 -5.3870928287506104e-01
+ <_>
+
+ 0 -1 802 1.4835850379313342e-05
+
+ -1.5778580307960510e-01 1.0566859692335129e-01
+ <_>
+
+ 0 -1 803 1.4415860176086426e-02
+
+ -7.6271347701549530e-02 3.0597710609436035e-01
+ <_>
+
+ 0 -1 804 3.2787520904093981e-03
+
+ 4.4464308768510818e-02 -3.8928028941154480e-01
+ <_>
+
+ 0 -1 805 1.0770520195364952e-02
+
+ -3.9324011653661728e-02 4.1493979096412659e-01
+ <_>
+
+ 0 -1 806 5.4678268497809768e-04
+
+ 5.8721691370010376e-02 -2.7546930313110352e-01
+ <_>
+
+ 0 -1 807 -1.8106499919667840e-03
+
+ 1.8281750380992889e-01 -9.3675427138805389e-02
+ <_>
+
+ 0 -1 808 1.1771249771118164e-01
+
+ 2.3175759240984917e-02 -7.0696681737899780e-01
+ <_>
+
+ 0 -1 809 -3.1166549888439476e-04
+
+ -2.0585930347442627e-01 7.6573841273784637e-02
+ <_>
+
+ 0 -1 810 -9.7939418628811836e-03
+
+ 4.8732680082321167e-01 -3.4746028482913971e-02
+ <_>
+
+ 0 -1 811 1.0002780472859740e-03
+
+ -1.1003620177507401e-01 1.5490560233592987e-01
+ <_>
+
+ 0 -1 812 6.9929230958223343e-03
+
+ 3.2923609018325806e-02 -5.4326117038726807e-01
+ <_>
+
+ 0 -1 813 3.4163020551204681e-02
+
+ 1.8062820658087730e-02 -7.0809149742126465e-01
+ <_>
+
+ 0 -1 814 -2.0808410644531250e-01
+
+ -6.7879611253738403e-01 2.0255820825695992e-02
+ <_>
+
+ 0 -1 815 2.4889659835025668e-04
+
+ -1.7719520628452301e-01 8.8152356445789337e-02
+ <_>
+
+ 0 -1 816 -9.3355607241392136e-03
+
+ 1.7948059737682343e-01 -9.4474621117115021e-02
+ <_>
+
+ 0 -1 817 2.9192469082772732e-04
+
+ -1.3786169886589050e-01 1.3819259405136108e-01
+ <_>
+
+ 0 -1 818 9.1989226639270782e-03
+
+ -1.0269109904766083e-01 1.7618100345134735e-01
+ <_>
+
+ 0 -1 819 6.8165437551215291e-04
+
+ 7.4821308255195618e-02 -2.3621830344200134e-01
+ <_>
+
+ 0 -1 820 -1.4507620107906405e-05
+
+ 9.5861770212650299e-02 -1.7785739898681641e-01
+ <_>
+
+ 0 -1 821 1.7662490427028388e-04
+
+ -1.3805359601974487e-01 1.3394320011138916e-01
+ <_>
+
+ 0 -1 822 -1.7513500060886145e-03
+
+ 7.7623583376407623e-02 -2.3174029588699341e-01
+ <_>
+
+ 0 -1 823 5.1342020742595196e-03
+
+ 3.0363969504833221e-02 -5.2420848608016968e-01
+ <_>
+
+ 0 -1 824 9.4114318490028381e-03
+
+ -5.8994568884372711e-02 3.0291381478309631e-01
+ <_>
+
+ 0 -1 825 -1.0448819957673550e-03
+
+ -1.7124690115451813e-01 1.0156030207872391e-01
+ <_>
+
+ 0 -1 826 -6.3579198904335499e-03
+
+ 3.1986710429191589e-01 -5.0694450736045837e-02
+ <_>
+
+ 0 -1 827 -6.3502117991447449e-03
+
+ -5.2413272857666016e-01 3.1800068914890289e-02
+ <_>
+
+ 0 -1 828 1.2251759879291058e-02
+
+ 1.6559680923819542e-02 -7.9422187805175781e-01
+ <_>
+
+ 0 -1 829 -1.4000720344483852e-02
+
+ -5.4444402456283569e-01 2.4652559310197830e-02
+ <_>
+
+ 0 -1 830 1.9229920580983162e-03
+
+ -7.6944977045059204e-02 2.1888209879398346e-01
+ <_>
+
+ 0 -1 831 -3.4030789975076914e-03
+
+ 3.0143401026725769e-01 -5.8023329824209213e-02
+ <_>
+
+ 0 -1 832 -2.7728609740734100e-02
+
+ -5.6704998016357422e-01 3.0071720480918884e-02
+ <_>
+
+ 0 -1 833 1.4990579802542925e-04
+
+ 9.1404616832733154e-02 -1.6989429295063019e-01
+ <_>
+
+ 0 -1 834 -1.4532960449287202e-05
+
+ 1.0442660003900528e-01 -1.3983349502086639e-01
+ <_>
+
+ 0 -1 835 2.8315950185060501e-02
+
+ 1.7812129110097885e-02 -8.1201279163360596e-01
+ <_>
+
+ 0 -1 836 -1.7363600200042129e-03
+
+ 1.9688630104064941e-01 -7.6398819684982300e-02
+ <_>
+
+ 0 -1 837 -2.2081490606069565e-02
+
+ 4.4497510790824890e-01 -3.3445868641138077e-02
+ <_>
+
+ 0 -1 838 1.2189210392534733e-03
+
+ 4.9154780805110931e-02 -3.7790310382843018e-01
+ <_>
+
+ 0 -1 839 -5.4838892538100481e-04
+
+ -2.2823029756546021e-01 8.0446496605873108e-02
+ <_>
+
+ 0 -1 840 -9.3702552840113640e-04
+
+ 2.5258961319923401e-01 -6.5389201045036316e-02
+ <_>
+
+ 0 -1 841 1.2496720068156719e-02
+
+ 3.8215879350900650e-02 -4.0465530753135681e-01
+ <_>
+
+ 0 -1 842 -1.6764370724558830e-02
+
+ -1.4508719742298126e-01 1.2119810283184052e-01
+ <_>
+
+ 0 -1 843 5.6504327803850174e-03
+
+ -8.7139137089252472e-02 2.2194419801235199e-01
+ <_>
+
+ 0 -1 844 5.2610319107770920e-04
+
+ 8.7222076952457428e-02 -2.0502470433712006e-01
+ <_>
+
+ 0 -1 845 1.5574200078845024e-03
+
+ -1.7036689817905426e-01 9.4435282051563263e-02
+ <_>
+
+ 0 -1 846 2.5609090924263000e-01
+
+ 1.7790110781788826e-02 -7.4050921201705933e-01
+ <_>
+
+ 0 -1 847 3.3561999443918467e-03
+
+ -4.2667269706726074e-02 3.7573391199111938e-01
+ <_>
+
+ 0 -1 848 4.7072928398847580e-02
+
+ 3.2015219330787659e-02 -6.4522278308868408e-01
+ <_>
+
+ 0 -1 849 -2.2168930154293776e-03
+
+ 2.0757040381431580e-01 -7.7372692525386810e-02
+ <_>
+
+ 0 -1 850 5.0796428695321083e-03
+
+ 4.1829328984022141e-02 -3.7722969055175781e-01
+ <_>
+
+ 0 -1 851 7.0120906457304955e-05
+
+ 8.1031888723373413e-02 -1.8506260216236115e-01
+ <_>
+
+ 0 -1 852 -5.2204862004145980e-04
+
+ 1.2528459727764130e-01 -1.3090319931507111e-01
+ <_>
+
+ 0 -1 853 -6.1609707772731781e-03
+
+ 3.1177788972854614e-01 -5.1252178847789764e-02
+ <_>
+
+ 0 -1 854 -2.8424879908561707e-01
+
+ -7.0340508222579956e-01 2.2811079397797585e-02
+ <_>
+
+ 0 -1 855 -4.1746720671653748e-02
+
+ -7.8914260864257812e-01 1.6686350107192993e-02
+ <_>
+
+ 0 -1 856 -1.0051350109279156e-03
+
+ -2.2181299328804016e-01 6.1887398362159729e-02
+ <_>
+
+ 0 -1 857 -1.3900640187785029e-03
+
+ 1.8797479569911957e-01 -7.6582401990890503e-02
+ <_>
+
+ 0 -1 858 -4.0118378819897771e-04
+
+ -1.7291170358657837e-01 8.6806759238243103e-02
+ <_>
+
+ 0 -1 859 -2.9202610676293261e-05
+
+ 9.2319779098033905e-02 -1.7136460542678833e-01
+ <_>
+
+ 0 -1 860 -2.6532830670475960e-03
+
+ 3.9422848820686340e-01 -3.9826449006795883e-02
+ <_>
+
+ 0 -1 861 -7.8933471813797951e-03
+
+ -4.3326890468597412e-01 3.6603361368179321e-02
+ <_>
+
+ 0 -1 862 8.7933447211980820e-03
+
+ -3.3205948770046234e-02 4.8740789294242859e-01
+ <_>
+
+ 0 -1 863 1.2014759704470634e-02
+
+ 2.2244220599532127e-02 -8.1597268581390381e-01
+ <_>
+
+ 0 -1 864 2.1147020161151886e-03
+
+ 6.4942933619022369e-02 -2.0959229767322540e-01
+ <_>
+
+ 0 -1 865 -9.9916034378111362e-04
+
+ 1.5402349829673767e-01 -1.0149469971656799e-01
+ <_>
+
+ 0 -1 866 -7.6499581336975098e-04
+
+ 2.0236450433731079e-01 -7.1199662983417511e-02
+ <_>
+
+ 0 -1 867 -4.2193511035293341e-04
+
+ 1.1521430313587189e-01 -1.2845459580421448e-01
+ <_>
+
+ 0 -1 868 -4.1548791341483593e-04
+
+ -2.1168529987335205e-01 7.0376142859458923e-02
+ <_>
+
+ 0 -1 869 1.5300279483199120e-03
+
+ 6.1263758689165115e-02 -2.2269320487976074e-01
+ <_>
+
+ 0 -1 870 -2.6573969516903162e-03
+
+ 3.8462328910827637e-01 -3.8276020437479019e-02
+ <_>
+
+ 0 -1 871 -2.1988600492477417e-01
+
+ -5.1546782255172729e-01 2.8099389746785164e-02
+ <_>
+
+ 0 -1 872 -8.7377207819372416e-04
+
+ 1.0149329900741577e-01 -1.3990689814090729e-01
+ <_>
+
+ 0 -1 873 7.5169820338487625e-03
+
+ -6.1671640723943710e-02 2.5486430525779724e-01
+ <_>
+
+ 0 -1 874 -1.3438290625344962e-04
+
+ -1.6618040204048157e-01 8.8938876986503601e-02
+ <_>
+ 117
+ -1.5079799890518188e+00
+
+ <_>
+
+ 0 -1 875 3.5007519181817770e-03
+
+ -2.8256690502166748e-01 3.3628109097480774e-01
+ <_>
+
+ 0 -1 876 4.1042729280889034e-03
+
+ -1.5877629816532135e-01 3.4091961383819580e-01
+ <_>
+
+ 0 -1 877 9.8724407143890858e-04
+
+ -4.6094760298728943e-01 1.1771719902753830e-01
+ <_>
+
+ 0 -1 878 -4.0168981067836285e-03
+
+ 1.3994920253753662e-01 -3.8476601243019104e-01
+ <_>
+
+ 0 -1 879 -4.2784500867128372e-02
+
+ 3.1519949436187744e-01 -1.1673810333013535e-01
+ <_>
+
+ 0 -1 880 -5.6273501832038164e-04
+
+ 8.2315109670162201e-02 -3.3594700694084167e-01
+ <_>
+
+ 0 -1 881 -4.3416650441940874e-05
+
+ 1.0691779851913452e-01 -2.5068029761314392e-01
+ <_>
+
+ 0 -1 882 1.5347570180892944e-02
+
+ 9.7383828833699226e-03 -6.4612430334091187e-01
+ <_>
+
+ 0 -1 883 1.8295480404049158e-03
+
+ 8.9164443314075470e-02 -2.9637640714645386e-01
+ <_>
+
+ 0 -1 884 3.2098879455588758e-04
+
+ -2.3136790096759796e-01 1.1478479951620102e-01
+ <_>
+
+ 0 -1 885 1.0728760389611125e-03
+
+ -1.2982189655303955e-01 1.9653689861297607e-01
+ <_>
+
+ 0 -1 886 -4.9566011875867844e-03
+
+ 3.5313999652862549e-01 -7.6989777386188507e-02
+ <_>
+
+ 0 -1 887 -1.6319400165230036e-03
+
+ -2.3701989650726318e-01 1.0319659858942032e-01
+ <_>
+
+ 0 -1 888 1.9862050190567970e-02
+
+ 5.9187598526477814e-02 -4.0955111384391785e-01
+ <_>
+
+ 0 -1 889 -9.5205483958125114e-03
+
+ 3.9061769843101501e-01 -5.7647578418254852e-02
+ <_>
+
+ 0 -1 890 -1.0885810479521751e-03
+
+ -5.2902680635452271e-01 4.4961001724004745e-02
+ <_>
+
+ 0 -1 891 3.5348529927432537e-03
+
+ -9.2707537114620209e-02 2.4449980258941650e-01
+ <_>
+
+ 0 -1 892 5.7174800895154476e-03
+
+ 5.7306189090013504e-02 -3.9878991246223450e-01
+ <_>
+
+ 0 -1 893 -1.4010589802637696e-03
+
+ 1.0757780075073242e-01 -1.9520820677280426e-01
+ <_>
+
+ 0 -1 894 -2.2306239698082209e-03
+
+ -6.1328327655792236e-01 2.7875339612364769e-02
+ <_>
+
+ 0 -1 895 -5.0583072006702423e-03
+
+ -5.4739731550216675e-01 3.0482530593872070e-02
+ <_>
+
+ 0 -1 896 1.3725720345973969e-01
+
+ 2.8162300586700439e-02 -6.0817748308181763e-01
+ <_>
+
+ 0 -1 897 3.7828299682587385e-03
+
+ -1.2640979886054993e-01 1.3382309675216675e-01
+ <_>
+
+ 0 -1 898 -1.0629029944539070e-02
+
+ -1.7343379557132721e-01 9.9954582750797272e-02
+ <_>
+
+ 0 -1 899 5.6623672135174274e-03
+
+ -5.2419230341911316e-02 3.2940819859504700e-01
+ <_>
+
+ 0 -1 900 -4.5901038683950901e-03
+
+ 1.8784660100936890e-01 -9.2681042850017548e-02
+ <_>
+
+ 0 -1 901 7.1088741533458233e-03
+
+ 3.2605409622192383e-02 -5.7968139648437500e-01
+ <_>
+
+ 0 -1 902 -1.9310249481350183e-03
+
+ -2.8707239031791687e-01 5.8658700436353683e-02
+ <_>
+
+ 0 -1 903 3.5559700336307287e-03
+
+ -6.2841393053531647e-02 3.0232760310173035e-01
+ <_>
+
+ 0 -1 904 2.1007249597460032e-04
+
+ -1.2029449641704559e-01 2.0722889900207520e-01
+ <_>
+
+ 0 -1 905 3.0181880574673414e-03
+
+ 4.2764421552419662e-02 -4.5567208528518677e-01
+ <_>
+
+ 0 -1 906 -2.0919379312545061e-03
+
+ -5.8067041635513306e-01 2.4772390723228455e-02
+ <_>
+
+ 0 -1 907 4.9380292184650898e-03
+
+ -6.7825779318809509e-02 2.6715460419654846e-01
+ <_>
+
+ 0 -1 908 1.0227119782939553e-03
+
+ -1.1050579696893692e-01 1.7136010527610779e-01
+ <_>
+
+ 0 -1 909 -9.1216713190078735e-02
+
+ -5.5617409944534302e-01 3.1176509335637093e-02
+ <_>
+
+ 0 -1 910 1.9377609714865685e-03
+
+ 5.2470069378614426e-02 -3.3402100205421448e-01
+ <_>
+
+ 0 -1 911 -4.5235231518745422e-03
+
+ -3.8628038763999939e-01 4.4883530586957932e-02
+ <_>
+
+ 0 -1 912 1.1070469627156854e-03
+
+ -9.4648011028766632e-02 1.7694370448589325e-01
+ <_>
+
+ 0 -1 913 -1.4522889629006386e-02
+
+ -4.4854640960693359e-01 4.0654070675373077e-02
+ <_>
+
+ 0 -1 914 2.0895639434456825e-02
+
+ 3.5988390445709229e-02 -4.4317048788070679e-01
+ <_>
+
+ 0 -1 915 7.3273790803796146e-06
+
+ -1.9736979901790619e-01 8.8131763041019440e-02
+ <_>
+
+ 0 -1 916 -1.4750339687452652e-05
+
+ 8.8203012943267822e-02 -1.9387699663639069e-01
+ <_>
+
+ 0 -1 917 1.0160019621253014e-02
+
+ -7.3683522641658783e-02 2.7725589275360107e-01
+ <_>
+
+ 0 -1 918 1.4658429790870287e-05
+
+ -1.3514040410518646e-01 1.1165390163660049e-01
+ <_>
+
+ 0 -1 919 2.9789519030600786e-03
+
+ -5.6356389075517654e-02 2.9033899307250977e-01
+ <_>
+
+ 0 -1 920 6.7907930351793766e-03
+
+ -5.5468060076236725e-02 2.9650750756263733e-01
+ <_>
+
+ 0 -1 921 3.5746619105339050e-02
+
+ 4.4232271611690521e-02 -3.7943100929260254e-01
+ <_>
+
+ 0 -1 922 -8.6023868061602116e-04
+
+ -2.5524240732192993e-01 6.3983328640460968e-02
+ <_>
+
+ 0 -1 923 -3.2749359961599112e-03
+
+ 5.1642370223999023e-01 -3.0802410095930099e-02
+ <_>
+
+ 0 -1 924 -1.4287419617176056e-04
+
+ -1.7014829814434052e-01 9.0200550854206085e-02
+ <_>
+
+ 0 -1 925 -5.9252060949802399e-02
+
+ 4.4787400960922241e-01 -3.4802999347448349e-02
+ <_>
+
+ 0 -1 926 4.9169741570949554e-02
+
+ 4.3797228485345840e-02 -3.9337700605392456e-01
+ <_>
+
+ 0 -1 927 2.4047859478741884e-03
+
+ -8.5982158780097961e-02 1.7597770690917969e-01
+ <_>
+
+ 0 -1 928 -8.8569998741149902e-02
+
+ -2.9694429039955139e-01 5.6752521544694901e-02
+ <_>
+
+ 0 -1 929 3.5266599152237177e-03
+
+ -5.4160539060831070e-02 3.2359990477561951e-01
+ <_>
+
+ 0 -1 930 -1.4674359590571839e-05
+
+ 1.0095299780368805e-01 -1.7195940017700195e-01
+ <_>
+
+ 0 -1 931 -1.0672880336642265e-02
+
+ -3.9103358983993530e-01 3.9687499403953552e-02
+ <_>
+
+ 0 -1 932 -1.3177569955587387e-02
+
+ 2.7460250258445740e-01 -5.5524408817291260e-02
+ <_>
+
+ 0 -1 933 -2.0427990239113569e-03
+
+ -3.2616940140724182e-01 5.1151938736438751e-02
+ <_>
+
+ 0 -1 934 2.5430709123611450e-02
+
+ 3.4412149339914322e-02 -3.9120680093765259e-01
+ <_>
+
+ 0 -1 935 6.6575622186064720e-03
+
+ -6.2124639749526978e-02 2.5493910908699036e-01
+ <_>
+
+ 0 -1 936 -2.4922629818320274e-02
+
+ -7.5617647171020508e-01 2.0520050078630447e-02
+ <_>
+
+ 0 -1 937 6.4869478344917297e-02
+
+ 1.3535760343074799e-02 -8.5182607173919678e-01
+ <_>
+
+ 0 -1 938 -1.9129139836877584e-03
+
+ -2.0609579980373383e-01 6.8809613585472107e-02
+ <_>
+
+ 0 -1 939 -2.7280850335955620e-03
+
+ 1.3853220641613007e-01 -1.1308959871530533e-01
+ <_>
+
+ 0 -1 940 3.9647668600082397e-03
+
+ -8.5980050265789032e-02 1.8867929279804230e-01
+ <_>
+
+ 0 -1 941 8.6866566562093794e-05
+
+ -1.3409359753131866e-01 1.1543890088796616e-01
+ <_>
+
+ 0 -1 942 -1.0680439881980419e-03
+
+ 2.4043959379196167e-01 -5.9584230184555054e-02
+ <_>
+
+ 0 -1 943 6.4973197877407074e-03
+
+ 3.5721741616725922e-02 -4.3827891349792480e-01
+ <_>
+
+ 0 -1 944 3.3825050923041999e-04
+
+ 7.5188770890235901e-02 -1.9240869581699371e-01
+ <_>
+
+ 0 -1 945 2.4638089817017317e-03
+
+ -3.8108248263597488e-02 4.1398531198501587e-01
+ <_>
+
+ 0 -1 946 7.1629788726568222e-04
+
+ 6.7675560712814331e-02 -2.3129940032958984e-01
+ <_>
+
+ 0 -1 947 -1.1354340240359306e-03
+
+ 1.6413919627666473e-01 -9.8224140703678131e-02
+ <_>
+
+ 0 -1 948 -4.6024488983675838e-04
+
+ 7.8879103064537048e-02 -1.8191289901733398e-01
+ <_>
+
+ 0 -1 949 -8.1474315375089645e-03
+
+ -1.8627829849720001e-01 7.7696673572063446e-02
+ <_>
+
+ 0 -1 950 -3.3882331103086472e-02
+
+ 4.1818460822105408e-01 -4.0109351277351379e-02
+ <_>
+
+ 0 -1 951 -4.3395790271461010e-03
+
+ 1.8961839377880096e-01 -8.3509556949138641e-02
+ <_>
+
+ 0 -1 952 2.4691419675946236e-03
+
+ 4.3756991624832153e-02 -3.8284140825271606e-01
+ <_>
+
+ 0 -1 953 8.7688177824020386e-02
+
+ 2.3466430604457855e-02 -5.9991317987442017e-01
+ <_>
+
+ 0 -1 954 7.1277258939517196e-06
+
+ -1.4574949443340302e-01 9.4181038439273834e-02
+ <_>
+
+ 0 -1 955 -2.2863550111651421e-03
+
+ 2.2176849842071533e-01 -6.2630541622638702e-02
+ <_>
+
+ 0 -1 956 -1.4718780221301131e-05
+
+ 1.1210440099239349e-01 -1.3407769799232483e-01
+ <_>
+
+ 0 -1 957 2.9124629218131304e-03
+
+ -6.1113931238651276e-02 2.6921069622039795e-01
+ <_>
+
+ 0 -1 958 -7.2532321792095900e-04
+
+ -1.8317590653896332e-01 9.0204723179340363e-02
+ <_>
+
+ 0 -1 959 -1.7109309555962682e-03
+
+ -2.9150980710983276e-01 5.6865800172090530e-02
+ <_>
+
+ 0 -1 960 3.5050138831138611e-02
+
+ 2.4259999394416809e-02 -5.9926068782806396e-01
+ <_>
+
+ 0 -1 961 2.5119259953498840e-02
+
+ -4.6499390155076981e-02 3.3078059554100037e-01
+ <_>
+
+ 0 -1 962 1.3924979604780674e-02
+
+ 5.4394099861383438e-02 -3.2431459426879883e-01
+ <_>
+
+ 0 -1 963 1.2507860083132982e-03
+
+ -8.6275100708007812e-02 1.6083979606628418e-01
+ <_>
+
+ 0 -1 964 3.2347340602427721e-03
+
+ 4.0214668959379196e-02 -3.3414369821548462e-01
+ <_>
+
+ 0 -1 965 2.3993090726435184e-03
+
+ -3.6099448800086975e-02 4.0332961082458496e-01
+ <_>
+
+ 0 -1 966 -6.4468860626220703e-02
+
+ -9.2355471849441528e-01 1.7104439437389374e-02
+ <_>
+
+ 0 -1 967 2.6983879506587982e-02
+
+ -4.1323971003293991e-02 3.8095420598983765e-01
+ <_>
+
+ 0 -1 968 -1.4244250451156404e-05
+
+ 9.8453678190708160e-02 -1.3854749500751495e-01
+ <_>
+
+ 0 -1 969 3.6304299719631672e-03
+
+ 2.2532820701599121e-02 -5.7740187644958496e-01
+ <_>
+
+ 0 -1 970 -2.7509450446814299e-03
+
+ 2.8656649589538574e-01 -4.9012679606676102e-02
+ <_>
+
+ 0 -1 971 3.4084690269082785e-03
+
+ 3.8566160947084427e-02 -3.5187271237373352e-01
+ <_>
+
+ 0 -1 972 -2.0442469976842403e-03
+
+ 1.5499830245971680e-01 -8.1280998885631561e-02
+ <_>
+
+ 0 -1 973 -3.3763761166483164e-04
+
+ -1.8969820439815521e-01 7.3497541248798370e-02
+ <_>
+
+ 0 -1 974 -1.9649739842861891e-03
+
+ 2.4030299484729767e-01 -5.3698450326919556e-02
+ <_>
+
+ 0 -1 975 2.6115038781426847e-04
+
+ -1.0585899651050568e-01 1.4551800489425659e-01
+ <_>
+
+ 0 -1 976 -2.4496200494468212e-03
+
+ -3.3511948585510254e-01 4.3949641287326813e-02
+ <_>
+
+ 0 -1 977 2.5791170075535774e-02
+
+ 1.9443970173597336e-02 -6.3135677576065063e-01
+ <_>
+
+ 0 -1 978 -1.7996380338445306e-03
+
+ 1.5620160102844238e-01 -8.9669622480869293e-02
+ <_>
+
+ 0 -1 979 -5.5190739221870899e-03
+
+ 3.8429600000381470e-01 -3.9308220148086548e-02
+ <_>
+
+ 0 -1 980 9.3076081248000264e-04
+
+ 5.3146060556173325e-02 -2.7482900023460388e-01
+ <_>
+
+ 0 -1 981 2.7754770126193762e-03
+
+ -5.3488280624151230e-02 2.4878840148448944e-01
+ <_>
+
+ 0 -1 982 1.9387940410524607e-03
+
+ 7.5177863240242004e-02 -1.9432419538497925e-01
+ <_>
+
+ 0 -1 983 -4.0069930255413055e-03
+
+ -2.7330648899078369e-01 6.2000360339879990e-02
+ <_>
+
+ 0 -1 984 7.4540930800139904e-03
+
+ -5.0977949053049088e-02 2.7055469155311584e-01
+ <_>
+
+ 0 -1 985 -1.6338729765266180e-03
+
+ 1.0920850187540054e-01 -1.4821110665798187e-01
+ <_>
+
+ 0 -1 986 -1.1626870185136795e-01
+
+ -9.4307368993759155e-01 1.4511439949274063e-02
+ <_>
+
+ 0 -1 987 -1.2051310390233994e-02
+
+ -3.0964991450309753e-01 3.7726309150457382e-02
+ <_>
+
+ 0 -1 988 1.5592000447213650e-02
+
+ -3.8526348769664764e-02 3.6706140637397766e-01
+ <_>
+
+ 0 -1 989 -1.1198739521205425e-03
+
+ -1.4644260704517365e-01 9.6057042479515076e-02
+ <_>
+
+ 0 -1 990 -1.4623399692936800e-05
+
+ 1.0641819983720779e-01 -1.3394460082054138e-01
+ <_>
+
+ 0 -1 991 -1.0319639742374420e-01
+
+ -7.0196557044982910e-01 1.8891770392656326e-02
+ <_>
+ 121
+ -1.4499469995498657e+00
+
+ <_>
+
+ 0 -1 992 -3.7469431757926941e-02
+
+ 2.9079249501228333e-01 -3.5205191373825073e-01
+ <_>
+
+ 0 -1 993 4.0861819870769978e-03
+
+ -2.9098600149154663e-01 1.8445029854774475e-01
+ <_>
+
+ 0 -1 994 -9.2446897178888321e-04
+
+ 1.1087530106306076e-01 -4.1064518690109253e-01
+ <_>
+
+ 0 -1 995 8.5803697584196925e-04
+
+ -2.2129820287227631e-01 1.5465059876441956e-01
+ <_>
+
+ 0 -1 996 2.3659599537495524e-04
+
+ -3.2185178995132446e-01 1.1183690279722214e-01
+ <_>
+
+ 0 -1 997 -3.5021029412746429e-02
+
+ 2.2721460461616516e-01 -1.4156529307365417e-01
+ <_>
+
+ 0 -1 998 -3.4688229206949472e-03
+
+ -4.0247380733489990e-01 4.3791528791189194e-02
+ <_>
+
+ 0 -1 999 5.0372090190649033e-03
+
+ -1.2387280166149139e-01 2.2701320052146912e-01
+ <_>
+
+ 0 -1 1000 -1.1929610045626760e-03
+
+ -4.8692488670349121e-01 5.2568510174751282e-02
+ <_>
+
+ 0 -1 1001 9.5561221241950989e-03
+
+ -4.6204000711441040e-02 5.1149028539657593e-01
+ <_>
+
+ 0 -1 1002 1.1109219631180167e-03
+
+ 4.5496881008148193e-02 -4.5278310775756836e-01
+ <_>
+
+ 0 -1 1003 5.7835641200654209e-05
+
+ -1.5641710162162781e-01 1.3276909291744232e-01
+ <_>
+
+ 0 -1 1004 -9.4595848349854350e-04
+
+ -2.8471308946609497e-01 6.4549557864665985e-02
+ <_>
+
+ 0 -1 1005 8.8587577920407057e-04
+
+ 6.5990276634693146e-02 -3.2505878806114197e-01
+ <_>
+
+ 0 -1 1006 2.1180589683353901e-03
+
+ -7.1820907294750214e-02 3.3132740855216980e-01
+ <_>
+
+ 0 -1 1007 -1.6004469245672226e-02
+
+ -4.9266660213470459e-01 3.5758759826421738e-02
+ <_>
+
+ 0 -1 1008 1.4956319937482476e-03
+
+ -8.3095543086528778e-02 2.7613210678100586e-01
+ <_>
+
+ 0 -1 1009 7.5204619206488132e-03
+
+ 2.6987679302692413e-02 -6.5507948398590088e-01
+ <_>
+
+ 0 -1 1010 -1.4567610378435347e-05
+
+ 1.1181929707527161e-01 -1.8279710412025452e-01
+ <_>
+
+ 0 -1 1011 1.5564640052616596e-03
+
+ -1.5681059658527374e-01 1.1271400004625320e-01
+ <_>
+
+ 0 -1 1012 -3.6522798240184784e-02
+
+ -1.4254869520664215e-01 1.3022269308567047e-01
+ <_>
+
+ 0 -1 1013 9.4677843153476715e-03
+
+ -4.3431900441646576e-02 3.6521318554878235e-01
+ <_>
+
+ 0 -1 1014 -1.4508370441035368e-05
+
+ 8.4056511521339417e-02 -2.0373860001564026e-01
+ <_>
+
+ 0 -1 1015 9.7979931160807610e-04
+
+ -9.2570282518863678e-02 1.9765810668468475e-01
+ <_>
+
+ 0 -1 1016 1.4909260244166944e-05
+
+ -1.4167930185794830e-01 1.2542089819908142e-01
+ <_>
+
+ 0 -1 1017 -2.1510709484573454e-04
+
+ 2.0154480636119843e-01 -8.0978751182556152e-02
+ <_>
+
+ 0 -1 1018 -1.3552160235121846e-03
+
+ -3.9648211002349854e-01 4.5137099921703339e-02
+ <_>
+
+ 0 -1 1019 8.4163509309291840e-03
+
+ -7.5962640345096588e-02 2.2327689826488495e-01
+ <_>
+
+ 0 -1 1020 -3.0116800917312503e-04
+
+ -1.9837650656700134e-01 8.5917882621288300e-02
+ <_>
+
+ 0 -1 1021 9.7665376961231232e-04
+
+ 6.1060719192028046e-02 -3.1315010786056519e-01
+ <_>
+
+ 0 -1 1022 1.9718110561370850e-03
+
+ -5.4124880582094193e-02 3.2931008934974670e-01
+ <_>
+
+ 0 -1 1023 6.4220376312732697e-02
+
+ 3.1034920364618301e-02 -5.8339309692382812e-01
+ <_>
+
+ 0 -1 1024 -4.8852190375328064e-03
+
+ 1.8666909635066986e-01 -8.5492432117462158e-02
+ <_>
+
+ 0 -1 1025 -2.5309080956503749e-04
+
+ -1.6574999690055847e-01 9.2472381889820099e-02
+ <_>
+
+ 0 -1 1026 2.9818940674886107e-05
+
+ -1.4195050299167633e-01 1.0154379904270172e-01
+ <_>
+
+ 0 -1 1027 -1.0288760066032410e-02
+
+ 2.5133699178695679e-01 -5.9286661446094513e-02
+ <_>
+
+ 0 -1 1028 -2.9165179512347095e-05
+
+ 1.2957669794559479e-01 -1.1733850091695786e-01
+ <_>
+
+ 0 -1 1029 -2.0741471089422703e-03
+
+ -2.2633939981460571e-01 6.6792942583560944e-02
+ <_>
+
+ 0 -1 1030 1.1343799997121096e-03
+
+ -6.3913702964782715e-02 2.7956250309944153e-01
+ <_>
+
+ 0 -1 1031 -1.5007710317149758e-05
+
+ 1.3454750180244446e-01 -1.1705060303211212e-01
+ <_>
+
+ 0 -1 1032 4.9826782196760178e-03
+
+ 2.6505010202527046e-02 -6.0010671615600586e-01
+ <_>
+
+ 0 -1 1033 -3.4576859325170517e-03
+
+ 3.1286209821701050e-01 -5.4155170917510986e-02
+ <_>
+
+ 0 -1 1034 5.4344828240573406e-03
+
+ 2.8702750802040100e-02 -5.6824082136154175e-01
+ <_>
+
+ 0 -1 1035 -1.4558049770130310e-05
+
+ 1.0756780207157135e-01 -1.3127699494361877e-01
+ <_>
+
+ 0 -1 1036 1.5321969985961914e-03
+
+ -1.1911620199680328e-01 1.4021439850330353e-01
+ <_>
+
+ 0 -1 1037 -2.2449430078268051e-02
+
+ -3.3376368880271912e-01 4.9373220652341843e-02
+ <_>
+
+ 0 -1 1038 1.1923030018806458e-02
+
+ 6.3558742403984070e-02 -2.4746930599212646e-01
+ <_>
+
+ 0 -1 1039 2.0685950294137001e-02
+
+ -6.1905119568109512e-02 2.6367300748825073e-01
+ <_>
+
+ 0 -1 1040 5.0756777636706829e-04
+
+ -1.2528319656848907e-01 1.4505800604820251e-01
+ <_>
+
+ 0 -1 1041 9.2508539091795683e-04
+
+ 5.9009589254856110e-02 -2.6204380393028259e-01
+ <_>
+
+ 0 -1 1042 8.6694798665121198e-04
+
+ -8.8942721486091614e-02 1.7795750498771667e-01
+ <_>
+
+ 0 -1 1043 4.7340960009023547e-04
+
+ 6.8137630820274353e-02 -2.1880300343036652e-01
+ <_>
+
+ 0 -1 1044 9.0366601943969727e-02
+
+ 1.8516469746828079e-02 -6.5736871957778931e-01
+ <_>
+
+ 0 -1 1045 2.0585930906236172e-03
+
+ -4.5568998903036118e-02 3.2879421114921570e-01
+ <_>
+
+ 0 -1 1046 -4.0761628188192844e-03
+
+ -3.5896709561347961e-01 4.0903490036725998e-02
+ <_>
+
+ 0 -1 1047 3.2309619709849358e-03
+
+ -5.8772470802068710e-02 2.5518509745597839e-01
+ <_>
+
+ 0 -1 1048 2.0424150861799717e-03
+
+ 4.3209441006183624e-02 -3.3393308520317078e-01
+ <_>
+
+ 0 -1 1049 -2.8341729193925858e-04
+
+ -1.6685059666633606e-01 8.1555336713790894e-02
+ <_>
+
+ 0 -1 1050 -1.0859699686989188e-03
+
+ 1.7807449400424957e-01 -9.2171236872673035e-02
+ <_>
+
+ 0 -1 1051 -2.0089520141482353e-02
+
+ -3.5236391425132751e-01 4.4607751071453094e-02
+ <_>
+
+ 0 -1 1052 -1.8073120154440403e-03
+
+ 3.0220940709114075e-01 -5.2047580480575562e-02
+ <_>
+
+ 0 -1 1053 1.0337149724364281e-02
+
+ 2.4787139147520065e-02 -6.8838161230087280e-01
+ <_>
+
+ 0 -1 1054 -2.4023749865591526e-03
+
+ 3.3173340559005737e-01 -4.6199489384889603e-02
+ <_>
+
+ 0 -1 1055 -5.8347097365185618e-04
+
+ -1.8856820464134216e-01 7.7347792685031891e-02
+ <_>
+
+ 0 -1 1056 -2.1759211085736752e-03
+
+ 3.3067348599433899e-01 -4.0855869650840759e-02
+ <_>
+
+ 0 -1 1057 -1.1984390439465642e-03
+
+ -2.1580339968204498e-01 6.8534582853317261e-02
+ <_>
+
+ 0 -1 1058 1.4474330237135291e-03
+
+ -5.8074928820133209e-02 2.3362369835376740e-01
+ <_>
+
+ 0 -1 1059 5.1625841297209263e-04
+
+ 7.5655579566955566e-02 -2.0956470072269440e-01
+ <_>
+
+ 0 -1 1060 -1.4388939598575234e-03
+
+ -3.0948141217231750e-01 5.8159999549388885e-02
+ <_>
+
+ 0 -1 1061 -1.7495449865236878e-03
+
+ 1.0236290097236633e-01 -1.5715239942073822e-01
+ <_>
+
+ 0 -1 1062 1.6774939373135567e-02
+
+ 2.3711699992418289e-02 -5.8594572544097900e-01
+ <_>
+
+ 0 -1 1063 -8.3265192806720734e-03
+
+ 3.0943349003791809e-01 -4.8807561397552490e-02
+ <_>
+
+ 0 -1 1064 -4.4853150029666722e-05
+
+ 1.0615509748458862e-01 -1.3089710474014282e-01
+ <_>
+
+ 0 -1 1065 5.9908269904553890e-03
+
+ 8.0168873071670532e-02 -1.6817809641361237e-01
+ <_>
+
+ 0 -1 1066 1.4110070187598467e-03
+
+ -6.9941587746143341e-02 2.2045080363750458e-01
+ <_>
+
+ 0 -1 1067 4.1205998510122299e-02
+
+ 3.1721431761980057e-02 -4.4176858663558960e-01
+ <_>
+
+ 0 -1 1068 1.5044870087876916e-04
+
+ -1.2152300029993057e-01 1.1241420358419418e-01
+ <_>
+
+ 0 -1 1069 -4.8399530351161957e-03
+
+ 2.8244999051094055e-01 -5.1606610417366028e-02
+ <_>
+
+ 0 -1 1070 -1.0831269901245832e-03
+
+ -1.6978019475936890e-01 8.3731047809123993e-02
+ <_>
+
+ 0 -1 1071 -1.3483200222253799e-02
+
+ 2.8269320726394653e-01 -5.2228599786758423e-02
+ <_>
+
+ 0 -1 1072 5.9854640858247876e-04
+
+ -1.3749149441719055e-01 1.2280890345573425e-01
+ <_>
+
+ 0 -1 1073 -6.4943352481350303e-04
+
+ -1.6931599378585815e-01 8.8171690702438354e-02
+ <_>
+
+ 0 -1 1074 -6.3191158697009087e-03
+
+ 1.6245460510253906e-01 -8.6300060153007507e-02
+ <_>
+
+ 0 -1 1075 -2.5179239455610514e-03
+
+ -3.1853398680686951e-01 5.2688188850879669e-02
+ <_>
+
+ 0 -1 1076 -4.6924971044063568e-02
+
+ -6.5773141384124756e-01 2.0505079999566078e-02
+ <_>
+
+ 0 -1 1077 -9.6446421230211854e-04
+
+ -2.7256599068641663e-01 4.5441299676895142e-02
+ <_>
+
+ 0 -1 1078 1.5073099639266729e-03
+
+ -5.0479460507631302e-02 2.8486481308937073e-01
+ <_>
+
+ 0 -1 1079 1.6149930655956268e-02
+
+ 3.8769058883190155e-02 -3.6149570345878601e-01
+ <_>
+
+ 0 -1 1080 1.9126510247588158e-02
+
+ -3.6233641207218170e-02 4.7573548555374146e-01
+ <_>
+
+ 0 -1 1081 -1.2546279467642307e-03
+
+ 1.1009909957647324e-01 -1.5554140508174896e-01
+ <_>
+
+ 0 -1 1082 -1.4754529729543719e-05
+
+ 9.6549153327941895e-02 -1.3947430253028870e-01
+ <_>
+
+ 0 -1 1083 1.5680169686675072e-02
+
+ 2.3214520886540413e-02 -5.7713180780410767e-01
+ <_>
+
+ 0 -1 1084 1.2293360196053982e-02
+
+ -5.7809889316558838e-02 2.3951390385627747e-01
+ <_>
+
+ 0 -1 1085 -9.6596255898475647e-03
+
+ 2.4098740518093109e-01 -6.5823532640933990e-02
+ <_>
+
+ 0 -1 1086 4.4940081425011158e-03
+
+ 5.4532490670681000e-02 -3.1474688649177551e-01
+ <_>
+
+ 0 -1 1087 1.1480580084025860e-02
+
+ 1.7419299110770226e-02 -7.4722832441329956e-01
+ <_>
+
+ 0 -1 1088 -6.5499639511108398e-01
+
+ -4.5483970642089844e-01 2.6187120005488396e-02
+ <_>
+
+ 0 -1 1089 -1.5746919962111861e-04
+
+ 8.4341458976268768e-02 -1.8240310251712799e-01
+ <_>
+
+ 0 -1 1090 -1.0111900046467781e-03
+
+ -2.0862899720668793e-01 6.7676216363906860e-02
+ <_>
+
+ 0 -1 1091 1.8488839268684387e-02
+
+ -3.5499621182680130e-02 4.1342151165008545e-01
+ <_>
+
+ 0 -1 1092 -3.8888910785317421e-04
+
+ 1.5692460536956787e-01 -8.6299479007720947e-02
+ <_>
+
+ 0 -1 1093 -4.5315301977097988e-03
+
+ -4.3912211060523987e-01 3.4103620797395706e-02
+ <_>
+
+ 0 -1 1094 3.3536020666360855e-02
+
+ -3.2231528311967850e-02 4.7096571326255798e-01
+ <_>
+
+ 0 -1 1095 2.0854349713772535e-03
+
+ -7.6001010835170746e-02 1.7373880743980408e-01
+ <_>
+
+ 0 -1 1096 -1.4060589819564484e-05
+
+ 8.5960999131202698e-02 -1.6348780691623688e-01
+ <_>
+
+ 0 -1 1097 4.2995680123567581e-02
+
+ 2.2033119574189186e-02 -5.9274291992187500e-01
+ <_>
+
+ 0 -1 1098 2.4928380735218525e-03
+
+ -6.3020773231983185e-02 2.1398860216140747e-01
+ <_>
+
+ 0 -1 1099 1.4520809600071516e-05
+
+ -1.1218129843473434e-01 1.1997319757938385e-01
+ <_>
+
+ 0 -1 1100 2.1152360364794731e-02
+
+ 3.0270710587501526e-02 -4.4600808620452881e-01
+ <_>
+
+ 0 -1 1101 2.1028789342381060e-04
+
+ 8.0384418368339539e-02 -1.7209020256996155e-01
+ <_>
+
+ 0 -1 1102 1.0620340472087264e-03
+
+ -6.4051970839500427e-02 2.1304920315742493e-01
+ <_>
+
+ 0 -1 1103 -2.5768030900508165e-03
+
+ -5.2309602499008179e-01 2.6146469637751579e-02
+ <_>
+
+ 0 -1 1104 4.7555579803884029e-03
+
+ 3.6213729530572891e-02 -3.4408730268478394e-01
+ <_>
+
+ 0 -1 1105 -5.9062540531158447e-01
+
+ -9.1701269149780273e-01 1.3416379690170288e-02
+ <_>
+
+ 0 -1 1106 -9.7031831741333008e-02
+
+ 4.8288398981094360e-01 -3.2344181090593338e-02
+ <_>
+
+ 0 -1 1107 1.4890159945935011e-03
+
+ 4.0591750293970108e-02 -3.8898488879203796e-01
+ <_>
+
+ 0 -1 1108 2.4702500086277723e-03
+
+ -6.3159219920635223e-02 2.1322609484195709e-01
+ <_>
+
+ 0 -1 1109 -2.9705299530178308e-03
+
+ 1.4960889518260956e-01 -1.0181649774312973e-01
+ <_>
+
+ 0 -1 1110 1.5555499494075775e-01
+
+ 3.6674879491329193e-02 -3.5983988642692566e-01
+ <_>
+
+ 0 -1 1111 1.4113659970462322e-02
+
+ 1.3834640383720398e-02 -8.7112957239151001e-01
+ <_>
+
+ 0 -1 1112 -9.5594127196818590e-04
+
+ -2.2359329462051392e-01 5.5646751075983047e-02
+ <_>
+ 137
+ -1.4971179962158203e+00
+
+ <_>
+
+ 0 -1 1113 2.3068320006132126e-02
+
+ -3.0734539031982422e-01 2.5758111476898193e-01
+ <_>
+
+ 0 -1 1114 -1.1603030376136303e-02
+
+ 1.7347939312458038e-01 -2.9917559027671814e-01
+ <_>
+
+ 0 -1 1115 -1.0232869535684586e-03
+
+ 1.9289019703865051e-01 -2.4926829338073730e-01
+ <_>
+
+ 0 -1 1116 1.2194960378110409e-02
+
+ 8.7591417133808136e-02 -4.0853890776634216e-01
+ <_>
+
+ 0 -1 1117 -1.2484550243243575e-03
+
+ 1.6345569491386414e-01 -1.8811899423599243e-01
+ <_>
+
+ 0 -1 1118 3.2145460136234760e-04
+
+ 7.9135909676551819e-02 -3.7722501158714294e-01
+ <_>
+
+ 0 -1 1119 -7.9707789700478315e-04
+
+ -2.6377388834953308e-01 9.6936263144016266e-02
+ <_>
+
+ 0 -1 1120 7.0924922823905945e-02
+
+ -1.2538060545921326e-01 2.5267291069030762e-01
+ <_>
+
+ 0 -1 1121 2.5408361107110977e-03
+
+ -1.3923250138759613e-01 1.4974319934844971e-01
+ <_>
+
+ 0 -1 1122 -6.9253891706466675e-04
+
+ -3.1363919377326965e-01 3.9419740438461304e-02
+ <_>
+
+ 0 -1 1123 2.5845640338957310e-03
+
+ -7.0067122578620911e-02 2.8096580505371094e-01
+ <_>
+
+ 0 -1 1124 -1.6803950071334839e-02
+
+ -4.6254080533981323e-01 3.6509469151496887e-02
+ <_>
+
+ 0 -1 1125 -2.1332600153982639e-03
+
+ 2.2691309452056885e-01 -8.4447480738162994e-02
+ <_>
+
+ 0 -1 1126 -5.5397138930857182e-04
+
+ -2.0728160440921783e-01 1.0041700303554535e-01
+ <_>
+
+ 0 -1 1127 -1.4573110092896968e-05
+
+ 8.8534340262413025e-02 -2.0813420414924622e-01
+ <_>
+
+ 0 -1 1128 8.0281507689505816e-04
+
+ -8.8521443307399750e-02 1.9553969800472260e-01
+ <_>
+
+ 0 -1 1129 3.6762449890375137e-03
+
+ -8.3966277539730072e-02 2.4232700467109680e-01
+ <_>
+
+ 0 -1 1130 -1.6549570136703551e-04
+
+ -1.9402000308036804e-01 1.0044509917497635e-01
+ <_>
+
+ 0 -1 1131 5.5225789546966553e-03
+
+ 4.6014141291379929e-02 -4.1095688939094543e-01
+ <_>
+
+ 0 -1 1132 1.1023939587175846e-03
+
+ -2.1053719520568848e-01 8.4169827401638031e-02
+ <_>
+
+ 0 -1 1133 -2.1610360592603683e-02
+
+ -3.4724879264831543e-01 5.1196940243244171e-02
+ <_>
+
+ 0 -1 1134 -1.4869699953123927e-05
+
+ 1.1187150329351425e-01 -1.6249230504035950e-01
+ <_>
+
+ 0 -1 1135 3.1727060675621033e-02
+
+ 3.7546031177043915e-02 -4.5357111096382141e-01
+ <_>
+
+ 0 -1 1136 -6.5588178113102913e-03
+
+ 2.9756790399551392e-01 -6.1539310961961746e-02
+ <_>
+
+ 0 -1 1137 3.7398359272629023e-03
+
+ -6.9362841546535492e-02 2.2881920635700226e-01
+ <_>
+
+ 0 -1 1138 -2.1445790771394968e-03
+
+ -3.0691981315612793e-01 5.7085540145635605e-02
+ <_>
+
+ 0 -1 1139 1.4241340104490519e-03
+
+ 4.7747720032930374e-02 -3.5141488909721375e-01
+ <_>
+
+ 0 -1 1140 1.8902820302173495e-03
+
+ 1.1250650137662888e-01 -1.5074999630451202e-01
+ <_>
+
+ 0 -1 1141 -6.4917900599539280e-03
+
+ 2.8712779283523560e-01 -6.2573678791522980e-02
+ <_>
+
+ 0 -1 1142 -8.7750004604458809e-03
+
+ -5.4141241312026978e-01 2.9559530317783356e-02
+ <_>
+
+ 0 -1 1143 9.3647688627243042e-02
+
+ -5.6943789124488831e-02 2.9638379812240601e-01
+ <_>
+
+ 0 -1 1144 -4.4028809497831389e-05
+
+ 1.0726290196180344e-01 -1.5169329941272736e-01
+ <_>
+
+ 0 -1 1145 7.9690842540003359e-05
+
+ 8.7704338133335114e-02 -1.8157640099525452e-01
+ <_>
+
+ 0 -1 1146 -6.6510448232293129e-03
+
+ 2.1250769495964050e-01 -7.8765399754047394e-02
+ <_>
+
+ 0 -1 1147 2.1358320116996765e-01
+
+ 3.2704930752515793e-02 -4.9895349144935608e-01
+ <_>
+
+ 0 -1 1148 -9.8035410046577454e-02
+
+ -6.3620072603225708e-01 2.4300750344991684e-02
+ <_>
+
+ 0 -1 1149 -3.6894609220325947e-03
+
+ -5.7873171567916870e-01 2.5343220680952072e-02
+ <_>
+
+ 0 -1 1150 4.7867568209767342e-03
+
+ -6.9719798862934113e-02 2.4641029536724091e-01
+ <_>
+
+ 0 -1 1151 4.0250780875794590e-04
+
+ -1.1852599680423737e-01 1.7163689434528351e-01
+ <_>
+
+ 0 -1 1152 -3.8258030544966459e-03
+
+ -3.1708711385726929e-01 5.2796650677919388e-02
+ <_>
+
+ 0 -1 1153 2.9255099434521981e-05
+
+ -1.2157870084047318e-01 1.2443509697914124e-01
+ <_>
+
+ 0 -1 1154 -5.5969221284613013e-04
+
+ -2.3942449688911438e-01 6.1564020812511444e-02
+ <_>
+
+ 0 -1 1155 1.6149280127137899e-03
+
+ -8.9536681771278381e-02 1.9396179914474487e-01
+ <_>
+
+ 0 -1 1156 -5.9165759012103081e-03
+
+ -6.0741347074508667e-01 2.4107500910758972e-02
+ <_>
+
+ 0 -1 1157 4.5592039823532104e-03
+
+ -5.4090119898319244e-02 2.8721129894256592e-01
+ <_>
+
+ 0 -1 1158 -5.1767788827419281e-02
+
+ -6.4853471517562866e-01 2.4329099804162979e-02
+ <_>
+
+ 0 -1 1159 -1.0635569691658020e-02
+
+ 3.2359760999679565e-01 -5.0231788307428360e-02
+ <_>
+
+ 0 -1 1160 2.5121110957115889e-04
+
+ 9.5274448394775391e-02 -1.4859940111637115e-01
+ <_>
+
+ 0 -1 1161 1.3107099803164601e-03
+
+ -1.1612690240144730e-01 1.2647250294685364e-01
+ <_>
+
+ 0 -1 1162 -7.3629721999168396e-02
+
+ -6.2977832555770874e-01 2.4197410792112350e-02
+ <_>
+
+ 0 -1 1163 5.1864539273083210e-04
+
+ 8.0843970179557800e-02 -1.8038350343704224e-01
+ <_>
+
+ 0 -1 1164 -2.0541099365800619e-03
+
+ 2.0690770447254181e-01 -7.1559637784957886e-02
+ <_>
+
+ 0 -1 1165 -7.2738518938422203e-03
+
+ -1.8049220740795135e-01 8.4618158638477325e-02
+ <_>
+
+ 0 -1 1166 -7.0418710820376873e-03
+
+ -5.5255848169326782e-01 2.4243000894784927e-02
+ <_>
+
+ 0 -1 1167 2.3678881116211414e-03
+
+ -7.4315063655376434e-02 2.2013199329376221e-01
+ <_>
+
+ 0 -1 1168 -4.1341409087181091e-03
+
+ -3.1461110711097717e-01 5.7645540684461594e-02
+ <_>
+
+ 0 -1 1169 5.9597631916403770e-03
+
+ 2.1551210433244705e-02 -6.6399222612380981e-01
+ <_>
+
+ 0 -1 1170 -1.4643320355389733e-05
+
+ 1.0325399786233902e-01 -1.4378640055656433e-01
+ <_>
+
+ 0 -1 1171 -8.0324069131165743e-04
+
+ -2.8026849031448364e-01 5.2175540477037430e-02
+ <_>
+
+ 0 -1 1172 -1.7860220745205879e-02
+
+ 3.1547638773918152e-01 -4.7295480966567993e-02
+ <_>
+
+ 0 -1 1173 8.5229711839929223e-04
+
+ -1.0860790312290192e-01 1.6905729472637177e-01
+ <_>
+
+ 0 -1 1174 8.8618341833353043e-03
+
+ 2.0629420876502991e-02 -7.1686798334121704e-01
+ <_>
+
+ 0 -1 1175 4.1418620385229588e-03
+
+ 3.1313210725784302e-02 -3.9753648638725281e-01
+ <_>
+
+ 0 -1 1176 -9.6616581082344055e-02
+
+ 4.2378899455070496e-01 -3.2291099429130554e-02
+ <_>
+
+ 0 -1 1177 -8.4853649139404297e-02
+
+ -4.8360210657119751e-01 3.4420508891344070e-02
+ <_>
+
+ 0 -1 1178 -2.7399489656090736e-02
+
+ -2.8981518745422363e-01 4.6805508434772491e-02
+ <_>
+
+ 0 -1 1179 1.9653420895338058e-03
+
+ -7.6221130788326263e-02 1.8894240260124207e-01
+ <_>
+
+ 0 -1 1180 -9.0222749859094620e-03
+
+ -5.8255058526992798e-01 2.6038780808448792e-02
+ <_>
+
+ 0 -1 1181 1.7859010398387909e-01
+
+ 1.4113079756498337e-02 -7.5876772403717041e-01
+ <_>
+
+ 0 -1 1182 2.6170860510319471e-03
+
+ -4.2011409997940063e-02 3.4582638740539551e-01
+ <_>
+
+ 0 -1 1183 -1.8247140105813742e-03
+
+ -2.5125750899314880e-01 5.4113451391458511e-02
+ <_>
+
+ 0 -1 1184 1.0635840008035302e-03
+
+ -6.9988057017326355e-02 2.1111090481281281e-01
+ <_>
+
+ 0 -1 1185 -8.5794121026992798e-02
+
+ -5.2950221300125122e-01 2.4234309792518616e-02
+ <_>
+
+ 0 -1 1186 -2.4844249710440636e-03
+
+ 2.2798889875411987e-01 -5.7894941419363022e-02
+ <_>
+
+ 0 -1 1187 2.4517390411347151e-03
+
+ 4.7758270055055618e-02 -2.9931840300559998e-01
+ <_>
+
+ 0 -1 1188 7.2088139131665230e-03
+
+ 8.9190460741519928e-02 -1.4663650095462799e-01
+ <_>
+
+ 0 -1 1189 -6.0728411190211773e-03
+
+ 2.9773110151290894e-01 -4.4187791645526886e-02
+ <_>
+
+ 0 -1 1190 2.9379719868302345e-02
+
+ 1.8384920433163643e-02 -7.2799599170684814e-01
+ <_>
+
+ 0 -1 1191 3.5265460610389709e-02
+
+ -4.0345128625631332e-02 3.4369349479675293e-01
+ <_>
+
+ 0 -1 1192 8.0668088048696518e-04
+
+ -1.0171490162611008e-01 1.3324069976806641e-01
+ <_>
+
+ 0 -1 1193 -1.4964640140533447e-03
+
+ -2.3296439647674561e-01 5.9193279594182968e-02
+ <_>
+
+ 0 -1 1194 2.6136979460716248e-02
+
+ 1.7993519082665443e-02 -7.3094600439071655e-01
+ <_>
+
+ 0 -1 1195 1.8663259223103523e-02
+
+ 1.4693800359964371e-02 -7.2105181217193604e-01
+ <_>
+
+ 0 -1 1196 -5.0944439863087609e-05
+
+ 9.8113812506198883e-02 -1.3487009704113007e-01
+ <_>
+
+ 0 -1 1197 -5.5268028518185019e-04
+
+ -1.1313900351524353e-01 1.1931320279836655e-01
+ <_>
+
+ 0 -1 1198 5.4916120134294033e-03
+
+ -6.8996928632259369e-02 2.2312630712985992e-01
+ <_>
+
+ 0 -1 1199 3.1243199482560158e-02
+
+ -3.2394438982009888e-02 3.9250150322914124e-01
+ <_>
+
+ 0 -1 1200 2.7375440113246441e-03
+
+ 3.6713510751724243e-02 -4.0632349252700806e-01
+ <_>
+
+ 0 -1 1201 9.0960890054702759e-02
+
+ 2.7709199115633965e-02 -4.1612899303436279e-01
+ <_>
+
+ 0 -1 1202 -4.2210621177218854e-04
+
+ -1.5993569791316986e-01 7.8440353274345398e-02
+ <_>
+
+ 0 -1 1203 -2.3689800873398781e-03
+
+ 1.4372199773788452e-01 -9.0417243540287018e-02
+ <_>
+
+ 0 -1 1204 4.5116269029676914e-03
+
+ -6.8068206310272217e-02 2.1011069416999817e-01
+ <_>
+
+ 0 -1 1205 -1.4441140228882432e-03
+
+ -1.3376539945602417e-01 1.1816109716892242e-01
+ <_>
+
+ 0 -1 1206 2.1477979607880116e-03
+
+ -9.8067082464694977e-02 1.7571650445461273e-01
+ <_>
+
+ 0 -1 1207 2.2534599527716637e-02
+
+ 5.3246740251779556e-02 -2.8085210919380188e-01
+ <_>
+
+ 0 -1 1208 -1.6165290027856827e-02
+
+ 2.6058629155158997e-01 -5.6349318474531174e-02
+ <_>
+
+ 0 -1 1209 1.3157909736037254e-02
+
+ 4.4960599392652512e-02 -3.1084328889846802e-01
+ <_>
+
+ 0 -1 1210 -2.5218630209565163e-02
+
+ -1.2245389819145203e-01 1.1707650125026703e-01
+ <_>
+
+ 0 -1 1211 -1.0043029760709032e-04
+
+ 6.2668606638908386e-02 -2.3665410280227661e-01
+ <_>
+
+ 0 -1 1212 2.2884309291839600e-02
+
+ -5.6393388658761978e-02 2.6951891183853149e-01
+ <_>
+
+ 0 -1 1213 -3.7653960753232241e-03
+
+ 2.4265049397945404e-01 -6.0327839106321335e-02
+ <_>
+
+ 0 -1 1214 -1.2131360126659274e-03
+
+ -2.2581340372562408e-01 6.3866272568702698e-02
+ <_>
+
+ 0 -1 1215 3.6897920072078705e-03
+
+ -7.5056307017803192e-02 1.7121140658855438e-01
+ <_>
+
+ 0 -1 1216 3.9484380977228284e-04
+
+ 7.2925560176372528e-02 -1.8006080389022827e-01
+ <_>
+
+ 0 -1 1217 -2.8756330721080303e-03
+
+ 2.3332679271697998e-01 -5.8312799781560898e-02
+ <_>
+
+ 0 -1 1218 -1.2939549982547760e-02
+
+ -5.9966820478439331e-01 2.4746209383010864e-02
+ <_>
+
+ 0 -1 1219 4.8920139670372009e-03
+
+ -5.0808548927307129e-02 2.7142828702926636e-01
+ <_>
+
+ 0 -1 1220 -6.3685458153486252e-03
+
+ -1.7759549617767334e-01 7.8720703721046448e-02
+ <_>
+
+ 0 -1 1221 9.1700062155723572e-02
+
+ -2.4316219612956047e-02 5.6610620021820068e-01
+ <_>
+
+ 0 -1 1222 -2.9075080528855324e-03
+
+ -5.3473442792892456e-01 2.6738349348306656e-02
+ <_>
+
+ 0 -1 1223 -3.9782752282917500e-03
+
+ 1.7898949980735779e-01 -7.3634162545204163e-02
+ <_>
+
+ 0 -1 1224 3.8189089391380548e-03
+
+ 9.6640147268772125e-02 -1.2615419924259186e-01
+ <_>
+
+ 0 -1 1225 -6.1400169506669044e-03
+
+ -2.8025910258293152e-01 4.8952069133520126e-02
+ <_>
+
+ 0 -1 1226 4.6048378571867943e-03
+
+ -3.5297919064760208e-02 3.6271721124649048e-01
+ <_>
+
+ 0 -1 1227 6.9598153233528137e-02
+
+ 2.8236450627446175e-02 -4.7523179650306702e-01
+ <_>
+
+ 0 -1 1228 8.2954921526834369e-04
+
+ 6.5010666847229004e-02 -1.9608500599861145e-01
+ <_>
+
+ 0 -1 1229 1.0073450393974781e-02
+
+ 2.4091430008411407e-02 -5.2702528238296509e-01
+ <_>
+
+ 0 -1 1230 -4.9964170902967453e-02
+
+ 2.7060431241989136e-01 -5.2939768880605698e-02
+ <_>
+
+ 0 -1 1231 -2.3425720632076263e-02
+
+ -6.5538042783737183e-01 2.0399950444698334e-02
+ <_>
+
+ 0 -1 1232 4.5370758743956685e-04
+
+ -1.0145729780197144e-01 1.2575489282608032e-01
+ <_>
+
+ 0 -1 1233 -9.4329239800572395e-04
+
+ -2.3677830398082733e-01 5.2147369831800461e-02
+ <_>
+
+ 0 -1 1234 -2.5503130163997412e-03
+
+ 1.8695800006389618e-01 -6.4383536577224731e-02
+ <_>
+
+ 0 -1 1235 -2.1031149663031101e-03
+
+ -4.0381109714508057e-01 2.8763780370354652e-02
+ <_>
+
+ 0 -1 1236 2.3942890111356974e-03
+
+ -5.8961909264326096e-02 2.0151209831237793e-01
+ <_>
+
+ 0 -1 1237 3.4859919105656445e-04
+
+ -1.1594740301370621e-01 1.1559849977493286e-01
+ <_>
+
+ 0 -1 1238 6.5279641421511769e-04
+
+ -9.6583247184753418e-02 1.4546130597591400e-01
+ <_>
+
+ 0 -1 1239 6.6208152566105127e-04
+
+ 5.5666640400886536e-02 -2.3408170044422150e-01
+ <_>
+
+ 0 -1 1240 -1.1246719956398010e-01
+
+ -7.2129100561141968e-01 1.6700809821486473e-02
+ <_>
+
+ 0 -1 1241 2.4760260712355375e-03
+
+ -7.0752441883087158e-02 1.6832010447978973e-01
+ <_>
+
+ 0 -1 1242 -8.7723489850759506e-03
+
+ -4.8666760325431824e-01 2.6006119325757027e-02
+ <_>
+
+ 0 -1 1243 2.8840279206633568e-02
+
+ 3.3308699727058411e-02 -3.4549170732498169e-01
+ <_>
+
+ 0 -1 1244 4.7115320921875536e-04
+
+ 5.8610469102859497e-02 -2.1334120631217957e-01
+ <_>
+
+ 0 -1 1245 -7.5157210230827332e-03
+
+ 3.7866720557212830e-01 -3.6307640373706818e-02
+ <_>
+
+ 0 -1 1246 -1.7479779489804059e-04
+
+ -1.8687920272350311e-01 7.0380441844463348e-02
+ <_>
+
+ 0 -1 1247 6.9826189428567886e-03
+
+ -7.5376212596893311e-02 1.8541449308395386e-01
+ <_>
+
+ 0 -1 1248 -2.5053499266505241e-03
+
+ -4.7345471382141113e-01 2.6765290647745132e-02
+ <_>
+
+ 0 -1 1249 6.5240712137892842e-04
+
+ -1.1398679763078690e-01 1.1460109800100327e-01
+ <_>
+ 153
+ -1.5120370388031006e+00
+
+ <_>
+
+ 0 -1 1250 2.7968829497694969e-02
+
+ -2.4054290354251862e-01 3.3976718783378601e-01
+ <_>
+
+ 0 -1 1251 4.7484100796282291e-03
+
+ -1.8598410487174988e-01 2.6523759961128235e-01
+ <_>
+
+ 0 -1 1252 -9.6774380654096603e-03
+
+ 1.3574579358100891e-01 -3.1734740734100342e-01
+ <_>
+
+ 0 -1 1253 1.0649940231814981e-03
+
+ -5.0356131792068481e-01 7.0383183658123016e-02
+ <_>
+
+ 0 -1 1254 3.0151519458740950e-03
+
+ -1.7585769295692444e-01 1.6750140488147736e-01
+ <_>
+
+ 0 -1 1255 7.6821137918159366e-04
+
+ -2.3158560693264008e-01 1.2748460471630096e-01
+ <_>
+
+ 0 -1 1256 -5.6622780859470367e-02
+
+ 3.0103230476379395e-01 -1.1525429785251617e-01
+ <_>
+
+ 0 -1 1257 4.7889677807688713e-03
+
+ -6.8797349929809570e-02 3.5774651169776917e-01
+ <_>
+
+ 0 -1 1258 3.7908130325376987e-03
+
+ 1.1250580102205276e-01 -2.3389840126037598e-01
+ <_>
+
+ 0 -1 1259 -3.6302749067544937e-03
+
+ -2.7425950765609741e-01 6.0180071741342545e-02
+ <_>
+
+ 0 -1 1260 1.4986160211265087e-02
+
+ 5.8370150625705719e-02 -3.5088211297988892e-01
+ <_>
+
+ 0 -1 1261 6.1338639352470636e-04
+
+ -1.0045500099658966e-01 1.8004140257835388e-01
+ <_>
+
+ 0 -1 1262 1.7827099654823542e-03
+
+ -5.8504570275545120e-02 2.8165730834007263e-01
+ <_>
+
+ 0 -1 1263 1.0279649868607521e-03
+
+ 4.6049151569604874e-02 -4.1633561253547668e-01
+ <_>
+
+ 0 -1 1264 -1.4470520000031684e-05
+
+ 9.7594477236270905e-02 -1.7005239427089691e-01
+ <_>
+
+ 0 -1 1265 7.2919862577691674e-04
+
+ -8.9277692139148712e-02 1.9683800637722015e-01
+ <_>
+
+ 0 -1 1266 -1.2752750189974904e-03
+
+ -2.1324349939823151e-01 7.7781319618225098e-02
+ <_>
+
+ 0 -1 1267 2.7510570362210274e-02
+
+ 9.8059087991714478e-02 -1.8463979661464691e-01
+ <_>
+
+ 0 -1 1268 3.9082998409867287e-03
+
+ -9.8240077495574951e-02 1.7902830243110657e-01
+ <_>
+
+ 0 -1 1269 2.8285238659009337e-04
+
+ 6.4882382750511169e-02 -2.5903809070587158e-01
+ <_>
+
+ 0 -1 1270 5.8698928914964199e-03
+
+ -4.8436500132083893e-02 3.5584059357643127e-01
+ <_>
+
+ 0 -1 1271 5.2106438670307398e-04
+
+ 6.4200893044471741e-02 -2.4268729984760284e-01
+ <_>
+
+ 0 -1 1272 -3.8013618905097246e-03
+
+ 3.1349530816078186e-01 -4.9372490495443344e-02
+ <_>
+
+ 0 -1 1273 -3.5830549895763397e-03
+
+ -1.9015640020370483e-01 8.5928887128829956e-02
+ <_>
+
+ 0 -1 1274 7.3326388373970985e-03
+
+ -8.7244078516960144e-02 1.8596029281616211e-01
+ <_>
+
+ 0 -1 1275 6.8118958733975887e-04
+
+ 9.0353183448314667e-02 -1.7380879819393158e-01
+ <_>
+
+ 0 -1 1276 -2.4127468932420015e-03
+
+ 2.6583871245384216e-01 -6.2018260359764099e-02
+ <_>
+
+ 0 -1 1277 4.4389287941157818e-03
+
+ 3.8672439754009247e-02 -4.4039198756217957e-01
+ <_>
+
+ 0 -1 1278 2.9394390367087908e-05
+
+ -1.3116660714149475e-01 1.2389960139989853e-01
+ <_>
+
+ 0 -1 1279 5.2613918669521809e-03
+
+ -5.4326139390468597e-02 3.1434679031372070e-01
+ <_>
+
+ 0 -1 1280 2.3712380789220333e-03
+
+ 3.5234931856393814e-02 -4.5936021208763123e-01
+ <_>
+
+ 0 -1 1281 -2.4774149060249329e-03
+
+ -3.2579651474952698e-01 4.1676308959722519e-02
+ <_>
+
+ 0 -1 1282 5.1308068213984370e-04
+
+ -9.8032839596271515e-02 1.5209600329399109e-01
+ <_>
+
+ 0 -1 1283 -7.6761870877817273e-04
+
+ -2.0944289863109589e-01 6.9563657045364380e-02
+ <_>
+
+ 0 -1 1284 4.1551832109689713e-03
+
+ -5.9142418205738068e-02 2.4788859486579895e-01
+ <_>
+
+ 0 -1 1285 1.4315149746835232e-02
+
+ 2.4713350459933281e-02 -6.2663692235946655e-01
+ <_>
+
+ 0 -1 1286 8.9347898028790951e-04
+
+ -1.3387380540370941e-01 1.0626660287380219e-01
+ <_>
+
+ 0 -1 1287 -5.8425782481208444e-04
+
+ -2.1583810448646545e-01 6.7552872002124786e-02
+ <_>
+
+ 0 -1 1288 8.9712149929255247e-04
+
+ -1.5998089313507080e-01 9.6859596669673920e-02
+ <_>
+
+ 0 -1 1289 -4.4576660729944706e-03
+
+ -4.6839779615402222e-01 3.4481108188629150e-02
+ <_>
+
+ 0 -1 1290 1.6316650435328484e-02
+
+ 1.6176480799913406e-02 -7.6990699768066406e-01
+ <_>
+
+ 0 -1 1291 -1.9581869710236788e-03
+
+ 2.3423190414905548e-01 -6.3605003058910370e-02
+ <_>
+
+ 0 -1 1292 2.9628631472587585e-01
+
+ 3.8007281720638275e-02 -3.8991358876228333e-01
+ <_>
+
+ 0 -1 1293 -9.1676972806453705e-04
+
+ 1.2086489796638489e-01 -1.0912480205297470e-01
+ <_>
+
+ 0 -1 1294 -2.5543299852870405e-04
+
+ -1.8755780160427094e-01 7.1104221045970917e-02
+ <_>
+
+ 0 -1 1295 8.2945115864276886e-03
+
+ -3.9912570267915726e-02 3.3551681041717529e-01
+ <_>
+
+ 0 -1 1296 -5.8387689292430878e-02
+
+ -3.3475118875503540e-01 4.1011139750480652e-02
+ <_>
+
+ 0 -1 1297 1.0927469702437520e-03
+
+ -8.3243489265441895e-02 1.6046769917011261e-01
+ <_>
+
+ 0 -1 1298 1.0653319768607616e-03
+
+ -1.1920040100812912e-01 1.0561779886484146e-01
+ <_>
+
+ 0 -1 1299 -3.5323720425367355e-02
+
+ 2.8399449586868286e-01 -4.7650910913944244e-02
+ <_>
+
+ 0 -1 1300 6.7976478021591902e-04
+
+ 5.9223521500825882e-02 -2.2741270065307617e-01
+ <_>
+
+ 0 -1 1301 -2.4810519069433212e-02
+
+ -6.5788549184799194e-01 1.8828939646482468e-02
+ <_>
+
+ 0 -1 1302 4.5880349352955818e-03
+
+ -5.0799869000911713e-02 2.6886260509490967e-01
+ <_>
+
+ 0 -1 1303 3.9034360088407993e-03
+
+ -5.9183020144701004e-02 2.2644530236721039e-01
+ <_>
+
+ 0 -1 1304 1.2360659986734390e-01
+
+ 2.2052299231290817e-02 -6.7844098806381226e-01
+ <_>
+
+ 0 -1 1305 -3.7856408744119108e-04
+
+ -2.1715499460697174e-01 5.7522300630807877e-02
+ <_>
+
+ 0 -1 1306 2.8562229126691818e-02
+
+ -3.4095268696546555e-02 4.2474791407585144e-01
+ <_>
+
+ 0 -1 1307 2.2348840720951557e-03
+
+ -3.5655528306961060e-02 3.5050040483474731e-01
+ <_>
+
+ 0 -1 1308 1.9211059436202049e-02
+
+ 2.5078350678086281e-02 -5.9314918518066406e-01
+ <_>
+
+ 0 -1 1309 1.5611639618873596e-01
+
+ 2.3612640798091888e-02 -4.8740550875663757e-01
+ <_>
+
+ 0 -1 1310 -1.2261980446055532e-03
+
+ -3.0421718955039978e-01 3.9526391774415970e-02
+ <_>
+
+ 0 -1 1311 3.6561759188771248e-03
+
+ -7.7627539634704590e-02 2.0262609422206879e-01
+ <_>
+
+ 0 -1 1312 1.1567790061235428e-03
+
+ 5.5682398378849030e-02 -2.4368490278720856e-01
+ <_>
+
+ 0 -1 1313 6.2764538452029228e-03
+
+ -6.4452603459358215e-02 2.1183019876480103e-01
+ <_>
+
+ 0 -1 1314 1.2091239914298058e-02
+
+ 2.0667979493737221e-02 -6.2231677770614624e-01
+ <_>
+
+ 0 -1 1315 3.7568950210697949e-04
+
+ 7.3670476675033569e-02 -1.7809109389781952e-01
+ <_>
+
+ 0 -1 1316 3.8157668896019459e-03
+
+ 3.3845711499452591e-02 -3.6262959241867065e-01
+ <_>
+
+ 0 -1 1317 -1.3252210337668657e-03
+
+ 1.4732490479946136e-01 -8.1727422773838043e-02
+ <_>
+
+ 0 -1 1318 2.1575710270553827e-03
+
+ -6.8624198436737061e-02 1.7562319338321686e-01
+ <_>
+
+ 0 -1 1319 -6.4548188820481300e-03
+
+ -5.8159267902374268e-01 2.3020049557089806e-02
+ <_>
+
+ 0 -1 1320 -8.1042833626270294e-03
+
+ -3.5549208521842957e-01 3.5372331738471985e-02
+ <_>
+
+ 0 -1 1321 1.6489460540469736e-04
+
+ 7.4472688138484955e-02 -1.5718360245227814e-01
+ <_>
+
+ 0 -1 1322 -1.9494029693305492e-03
+
+ 3.5157081484794617e-01 -3.6213818937540054e-02
+ <_>
+
+ 0 -1 1323 -1.5267659910023212e-04
+
+ -1.4115719497203827e-01 8.4802761673927307e-02
+ <_>
+
+ 0 -1 1324 2.3890420794487000e-02
+
+ 1.9317669793963432e-02 -6.3186031579971313e-01
+ <_>
+
+ 0 -1 1325 -4.4950367882847786e-03
+
+ 2.1254129707813263e-01 -5.9143088757991791e-02
+ <_>
+
+ 0 -1 1326 2.8725271113216877e-03
+
+ 3.2794039696455002e-02 -3.9505231380462646e-01
+ <_>
+
+ 0 -1 1327 2.0885460544377565e-03
+
+ -8.5443787276744843e-02 1.4347669482231140e-01
+ <_>
+
+ 0 -1 1328 -4.4343829154968262e-01
+
+ -4.0052318572998047e-01 2.9428049921989441e-02
+ <_>
+
+ 0 -1 1329 2.0199170336127281e-02
+
+ 4.0000550448894501e-02 -3.1763339042663574e-01
+ <_>
+
+ 0 -1 1330 1.4570879749953747e-02
+
+ 1.3662800192832947e-02 -8.6441951990127563e-01
+ <_>
+
+ 0 -1 1331 -3.8080150261521339e-03
+
+ 4.0930721163749695e-01 -3.3838968724012375e-02
+ <_>
+
+ 0 -1 1332 1.0009920224547386e-03
+
+ -8.2600250840187073e-02 1.3928790390491486e-01
+ <_>
+
+ 0 -1 1333 1.1500980472192168e-03
+
+ 6.9677546620368958e-02 -1.7433060705661774e-01
+ <_>
+
+ 0 -1 1334 3.4720861003734171e-04
+
+ 6.6659383475780487e-02 -1.7403809726238251e-01
+ <_>
+
+ 0 -1 1335 2.7565560303628445e-03
+
+ -2.9285680502653122e-02 4.0243569016456604e-01
+ <_>
+
+ 0 -1 1336 -2.4124220013618469e-02
+
+ -3.2424208521842957e-01 3.7330508232116699e-02
+ <_>
+
+ 0 -1 1337 -1.3989120721817017e-01
+
+ -6.5967488288879395e-01 1.7929619178175926e-02
+ <_>
+
+ 0 -1 1338 3.0997680500149727e-02
+
+ 1.4100589789450169e-02 -6.9532638788223267e-01
+ <_>
+
+ 0 -1 1339 4.6191760338842869e-04
+
+ -6.7944146692752838e-02 1.8066139519214630e-01
+ <_>
+
+ 0 -1 1340 3.4264490008354187e-02
+
+ 2.2298639640212059e-02 -5.8638918399810791e-01
+ <_>
+
+ 0 -1 1341 3.9756381884217262e-03
+
+ -4.1803721338510513e-02 3.1669101119041443e-01
+ <_>
+
+ 0 -1 1342 -3.4192908788099885e-04
+
+ -1.5810790657997131e-01 7.7484056353569031e-02
+ <_>
+
+ 0 -1 1343 7.1672953665256500e-02
+
+ -2.3302769288420677e-02 5.2465027570724487e-01
+ <_>
+
+ 0 -1 1344 7.1812322130426764e-04
+
+ 4.8268780112266541e-02 -2.7771729230880737e-01
+ <_>
+
+ 0 -1 1345 -1.8881190335378051e-03
+
+ 8.3184987306594849e-02 -1.4802010357379913e-01
+ <_>
+
+ 0 -1 1346 -1.2498029973357916e-03
+
+ 2.5329118967056274e-01 -4.9769390374422073e-02
+ <_>
+
+ 0 -1 1347 -1.2756100296974182e-01
+
+ -6.7970567941665649e-01 2.0871700718998909e-02
+ <_>
+
+ 0 -1 1348 -1.4621549780713394e-05
+
+ 7.9338513314723969e-02 -1.5043739974498749e-01
+ <_>
+
+ 0 -1 1349 3.5788679961115122e-03
+
+ -5.5469110608100891e-02 2.4075509607791901e-01
+ <_>
+
+ 0 -1 1350 9.4902152195572853e-03
+
+ 2.8637239709496498e-02 -5.3680288791656494e-01
+ <_>
+
+ 0 -1 1351 1.0283050127327442e-02
+
+ 1.1550529859960079e-02 -7.7501267194747925e-01
+ <_>
+
+ 0 -1 1352 -4.2507290840148926e-02
+
+ -8.8770490884780884e-01 9.7261751070618629e-03
+ <_>
+
+ 0 -1 1353 3.6155930138193071e-04
+
+ 6.4407013356685638e-02 -1.7109510302543640e-01
+ <_>
+
+ 0 -1 1354 -3.4245628863573074e-02
+
+ 2.4231609702110291e-01 -4.7188870608806610e-02
+ <_>
+
+ 0 -1 1355 -1.2806710600852966e-01
+
+ -5.4869401454925537e-01 2.1854300051927567e-02
+ <_>
+
+ 0 -1 1356 5.3918339312076569e-02
+
+ -2.5415059179067612e-02 4.8263218998908997e-01
+ <_>
+
+ 0 -1 1357 -3.7711810320615768e-02
+
+ 1.4176939427852631e-01 -8.8871710002422333e-02
+ <_>
+
+ 0 -1 1358 -2.8310909867286682e-01
+
+ -6.4925712347030640e-01 2.0563820376992226e-02
+ <_>
+
+ 0 -1 1359 -1.1926019564270973e-02
+
+ -2.1756759285926819e-01 5.1851660013198853e-02
+ <_>
+
+ 0 -1 1360 3.7750680348835886e-04
+
+ 7.2340622544288635e-02 -1.6360169649124146e-01
+ <_>
+
+ 0 -1 1361 1.5865910798311234e-02
+
+ -7.9940237104892731e-02 1.6453659534454346e-01
+ <_>
+
+ 0 -1 1362 7.1175709366798401e-02
+
+ 3.1589020043611526e-02 -4.1988191008567810e-01
+ <_>
+
+ 0 -1 1363 5.8520520105957985e-03
+
+ 2.3279080167412758e-02 -4.8604270815849304e-01
+ <_>
+
+ 0 -1 1364 -1.3924130471423268e-03
+
+ 1.6908380389213562e-01 -7.3783926665782928e-02
+ <_>
+
+ 0 -1 1365 -1.8412459758110344e-04
+
+ 1.2232059985399246e-01 -1.0313989967107773e-01
+ <_>
+
+ 0 -1 1366 2.2130980505608022e-04
+
+ -8.1976376473903656e-02 1.6332870721817017e-01
+ <_>
+
+ 0 -1 1367 2.0723740453831851e-04
+
+ 9.2730201780796051e-02 -1.3733580708503723e-01
+ <_>
+
+ 0 -1 1368 -3.8736319402232766e-04
+
+ -2.0004619657993317e-01 8.4838382899761200e-02
+ <_>
+
+ 0 -1 1369 3.2468559220433235e-03
+
+ -5.6439258158206940e-02 2.2364979982376099e-01
+ <_>
+
+ 0 -1 1370 9.3086768174543977e-04
+
+ 3.1926579773426056e-02 -3.9701279997825623e-01
+ <_>
+
+ 0 -1 1371 1.0306099429726601e-03
+
+ -6.0154888778924942e-02 2.0189760625362396e-01
+ <_>
+
+ 0 -1 1372 -7.6027261093258858e-04
+
+ 1.4901119470596313e-01 -9.9665373563766479e-02
+ <_>
+
+ 0 -1 1373 -4.0442569297738373e-04
+
+ -1.9113409519195557e-01 7.4125148355960846e-02
+ <_>
+
+ 0 -1 1374 -4.7783120535314083e-03
+
+ -3.5730269551277161e-01 3.6531679332256317e-02
+ <_>
+
+ 0 -1 1375 -7.7672587940469384e-04
+
+ 1.0242869704961777e-01 -1.2974999845027924e-01
+ <_>
+
+ 0 -1 1376 -5.7417969219386578e-03
+
+ -1.6698950529098511e-01 7.0111282169818878e-02
+ <_>
+
+ 0 -1 1377 -1.0879320092499256e-02
+
+ 4.4120571017265320e-01 -2.9255589470267296e-02
+ <_>
+
+ 0 -1 1378 6.4163492061197758e-04
+
+ -1.1195279657840729e-01 1.0681179910898209e-01
+ <_>
+
+ 0 -1 1379 1.8341830000281334e-02
+
+ 1.6387680172920227e-01 -8.0189116299152374e-02
+ <_>
+
+ 0 -1 1380 -1.5051739756017923e-03
+
+ -2.2313259541988373e-01 6.1541710048913956e-02
+ <_>
+
+ 0 -1 1381 4.4345208443701267e-03
+
+ -6.6646136343479156e-02 2.2299060225486755e-01
+ <_>
+
+ 0 -1 1382 -1.4749550246051513e-05
+
+ 1.1597889661788940e-01 -1.0377810150384903e-01
+ <_>
+
+ 0 -1 1383 -2.6539659593254328e-03
+
+ 1.3116030395030975e-01 -8.6488783359527588e-02
+ <_>
+
+ 0 -1 1384 2.7743550017476082e-03
+
+ 4.1064068675041199e-02 -3.1225061416625977e-01
+ <_>
+
+ 0 -1 1385 1.1590829817578197e-03
+
+ 6.4309477806091309e-02 -1.7413079738616943e-01
+ <_>
+
+ 0 -1 1386 9.2315068468451500e-04
+
+ -8.2974001765251160e-02 1.4439080655574799e-01
+ <_>
+
+ 0 -1 1387 -8.2323597744107246e-03
+
+ 3.0380389094352722e-01 -4.1229110211133957e-02
+ <_>
+
+ 0 -1 1388 3.5314110573381186e-03
+
+ 3.9511259645223618e-02 -3.3097168803215027e-01
+ <_>
+
+ 0 -1 1389 5.7490761391818523e-03
+
+ 1.9821660593152046e-02 -5.8780592679977417e-01
+ <_>
+
+ 0 -1 1390 7.8584970906376839e-03
+
+ -4.9952238798141479e-02 2.7249589562416077e-01
+ <_>
+
+ 0 -1 1391 -1.4245980310079176e-05
+
+ 8.8010340929031372e-02 -1.3228349387645721e-01
+ <_>
+
+ 0 -1 1392 6.9364177761599422e-04
+
+ -6.7391887307167053e-02 1.7463630437850952e-01
+ <_>
+
+ 0 -1 1393 -2.9837749898433685e-02
+
+ -5.1709812879562378e-01 2.4871410802006721e-02
+ <_>
+
+ 0 -1 1394 7.1383598260581493e-03
+
+ 6.7430503666400909e-02 -1.9037249684333801e-01
+ <_>
+
+ 0 -1 1395 1.7582569271326065e-02
+
+ -3.6622371524572372e-02 3.5335469245910645e-01
+ <_>
+
+ 0 -1 1396 -1.2527840444818139e-03
+
+ -2.1730649471282959e-01 6.1200018972158432e-02
+ <_>
+
+ 0 -1 1397 7.4575009057298303e-04
+
+ -6.4467661082744598e-02 1.9775040447711945e-01
+ <_>
+
+ 0 -1 1398 -7.2683871258050203e-04
+
+ -1.7233370244503021e-01 7.1719951927661896e-02
+ <_>
+
+ 0 -1 1399 2.6301289908587933e-03
+
+ -3.9274338632822037e-02 3.3066290616989136e-01
+ <_>
+
+ 0 -1 1400 -1.4553769688063767e-05
+
+ 7.9698577523231506e-02 -1.7852419614791870e-01
+ <_>
+
+ 0 -1 1401 -4.5518940896727145e-04
+
+ -1.6662250459194183e-01 7.5660362839698792e-02
+ <_>
+
+ 0 -1 1402 -4.0261688991449773e-04
+
+ -1.4214369654655457e-01 8.1017293035984039e-02
+ <_>
+ 161
+ -1.4741109609603882e+00
+
+ <_>
+
+ 0 -1 1403 -8.3439666777849197e-03
+
+ 3.1942158937454224e-01 -2.6766449213027954e-01
+ <_>
+
+ 0 -1 1404 7.8073277836665511e-04
+
+ -3.4852638840675354e-01 1.3628880679607391e-01
+ <_>
+
+ 0 -1 1405 8.6505862418562174e-04
+
+ -2.5323680043220520e-01 1.7417639493942261e-01
+ <_>
+
+ 0 -1 1406 -2.0879819930996746e-04
+
+ 8.8503703474998474e-02 -3.6038509011268616e-01
+ <_>
+
+ 0 -1 1407 -7.4667241424322128e-03
+
+ 1.6120630502700806e-01 -1.7366449534893036e-01
+ <_>
+
+ 0 -1 1408 -6.9383758818730712e-04
+
+ 9.6873007714748383e-02 -2.6793479919433594e-01
+ <_>
+
+ 0 -1 1409 -4.7926991101121530e-05
+
+ 9.1756246984004974e-02 -2.6212221384048462e-01
+ <_>
+
+ 0 -1 1410 -1.5861799474805593e-03
+
+ -6.1400872468948364e-01 -7.4168378487229347e-03
+ <_>
+
+ 0 -1 1411 4.4573731429409236e-05
+
+ -1.4841860532760620e-01 1.3855740427970886e-01
+ <_>
+
+ 0 -1 1412 5.0104141701012850e-04
+
+ 5.9088941663503647e-02 -2.9596069455146790e-01
+ <_>
+
+ 0 -1 1413 -4.7243628650903702e-03
+
+ 1.7092029750347137e-01 -1.0624700039625168e-01
+ <_>
+
+ 0 -1 1414 3.9171050302684307e-03
+
+ 8.8605202734470367e-02 -2.2775200009346008e-01
+ <_>
+
+ 0 -1 1415 8.8675727602094412e-04
+
+ -1.6839639842510223e-01 1.1958680301904678e-01
+ <_>
+
+ 0 -1 1416 -4.2634559795260429e-03
+
+ -3.3663240075111389e-01 4.7266270965337753e-02
+ <_>
+
+ 0 -1 1417 6.8006501533091068e-03
+
+ -5.9237081557512283e-02 3.1675300002098083e-01
+ <_>
+
+ 0 -1 1418 -1.3168989680707455e-02
+
+ 3.7162569165229797e-01 -4.2714890092611313e-02
+ <_>
+
+ 0 -1 1419 7.3881301796063781e-04
+
+ 5.9158101677894592e-02 -3.0953711271286011e-01
+ <_>
+
+ 0 -1 1420 1.7939460230991244e-03
+
+ -8.4615282714366913e-02 2.0452530682086945e-01
+ <_>
+
+ 0 -1 1421 1.6819390002638102e-03
+
+ -8.6703762412071228e-02 2.0580549538135529e-01
+ <_>
+
+ 0 -1 1422 -2.5033599231392145e-03
+
+ -4.3473190069198608e-01 3.8707830011844635e-02
+ <_>
+
+ 0 -1 1423 3.3658559550531209e-04
+
+ -1.0717310011386871e-01 1.5238380432128906e-01
+ <_>
+
+ 0 -1 1424 1.3037879951298237e-02
+
+ 4.4682659208774567e-02 -4.0395650267601013e-01
+ <_>
+
+ 0 -1 1425 1.3743729505222291e-04
+
+ -2.1432510018348694e-01 6.8643413484096527e-02
+ <_>
+
+ 0 -1 1426 3.7178888916969299e-01
+
+ 3.4502930939197540e-02 -4.5998379588127136e-01
+ <_>
+
+ 0 -1 1427 -7.1649150922894478e-03
+
+ 2.6640880107879639e-01 -5.4557949304580688e-02
+ <_>
+
+ 0 -1 1428 -7.1985478280112147e-04
+
+ -1.4415690302848816e-01 9.8254486918449402e-02
+ <_>
+
+ 0 -1 1429 1.6854539513587952e-02
+
+ 2.8428679332137108e-02 -4.5227599143981934e-01
+ <_>
+
+ 0 -1 1430 1.3624729588627815e-02
+
+ -6.0474298894405365e-02 2.2715990245342255e-01
+ <_>
+
+ 0 -1 1431 1.3620140030980110e-02
+
+ 7.9177603125572205e-02 -1.8104650080204010e-01
+ <_>
+
+ 0 -1 1432 -4.4976719655096531e-03
+
+ 2.1300099790096283e-01 -7.1392573416233063e-02
+ <_>
+
+ 0 -1 1433 7.1611418388783932e-04
+
+ -9.4237379729747772e-02 1.5830449759960175e-01
+ <_>
+
+ 0 -1 1434 7.0651061832904816e-04
+
+ 4.8840671777725220e-02 -2.9152449965476990e-01
+ <_>
+
+ 0 -1 1435 -3.1002271175384521e-01
+
+ -3.8511890172958374e-01 3.4369651228189468e-02
+ <_>
+
+ 0 -1 1436 4.3721711263060570e-03
+
+ -4.6880301088094711e-02 2.9952910542488098e-01
+ <_>
+
+ 0 -1 1437 -1.4383009634912014e-02
+
+ -4.5463728904724121e-01 3.4184519201517105e-02
+ <_>
+
+ 0 -1 1438 -3.7763800937682390e-03
+
+ -5.6709027290344238e-01 2.1684719249606133e-02
+ <_>
+
+ 0 -1 1439 -3.4393940586596727e-03
+
+ 2.8183689713478088e-01 -5.2640009671449661e-02
+ <_>
+
+ 0 -1 1440 -3.5846829414367676e-03
+
+ -2.9227399826049805e-01 5.2231520414352417e-02
+ <_>
+
+ 0 -1 1441 3.6200750619173050e-03
+
+ -5.3378768265247345e-02 2.6364138722419739e-01
+ <_>
+
+ 0 -1 1442 7.6435408554971218e-03
+
+ 3.6897629499435425e-02 -3.9242339134216309e-01
+ <_>
+
+ 0 -1 1443 3.5417820326983929e-03
+
+ 3.5689998418092728e-02 -3.5601079463958740e-01
+ <_>
+
+ 0 -1 1444 -2.4041049182415009e-03
+
+ 1.6313059628009796e-01 -8.9239962399005890e-02
+ <_>
+
+ 0 -1 1445 6.5479031763970852e-03
+
+ 3.6708708852529526e-02 -3.4187689423561096e-01
+ <_>
+
+ 0 -1 1446 -1.2350000441074371e-02
+
+ 2.6157799363136292e-01 -5.2475821226835251e-02
+ <_>
+
+ 0 -1 1447 1.4726500012329780e-05
+
+ -1.7869140207767487e-01 7.7807463705539703e-02
+ <_>
+
+ 0 -1 1448 -2.1563619375228882e-02
+
+ -6.3926118612289429e-01 1.9050199538469315e-02
+ <_>
+
+ 0 -1 1449 5.0762481987476349e-03
+
+ -5.1665481179952621e-02 2.9126250743865967e-01
+ <_>
+
+ 0 -1 1450 -5.9531949460506439e-02
+
+ -7.5291550159454346e-01 2.0238230004906654e-02
+ <_>
+
+ 0 -1 1451 -1.6808489337563515e-02
+
+ -4.2833268642425537e-01 2.5997729972004890e-02
+ <_>
+
+ 0 -1 1452 3.4431689418852329e-03
+
+ -5.4912570863962173e-02 2.4233500659465790e-01
+ <_>
+
+ 0 -1 1453 -1.0451589478179812e-03
+
+ -2.6243540644645691e-01 4.5748569071292877e-02
+ <_>
+
+ 0 -1 1454 -4.8333409358747303e-04
+
+ 8.9791953563690186e-02 -1.2892110645771027e-01
+ <_>
+
+ 0 -1 1455 -4.7575961798429489e-03
+
+ -3.1868740916252136e-01 3.6020528525114059e-02
+ <_>
+
+ 0 -1 1456 -1.0407149791717529e-01
+
+ 5.1398742198944092e-01 -2.3598119616508484e-02
+ <_>
+
+ 0 -1 1457 9.6292654052376747e-03
+
+ -4.7965578734874725e-02 2.1790429949760437e-01
+ <_>
+
+ 0 -1 1458 5.9226430021226406e-03
+
+ 6.4275130629539490e-02 -1.8210859596729279e-01
+ <_>
+
+ 0 -1 1459 1.6943799331784248e-02
+
+ -3.7509348243474960e-02 3.1458830833435059e-01
+ <_>
+
+ 0 -1 1460 -6.5468349494040012e-03
+
+ -1.5812429785728455e-01 9.0520747005939484e-02
+ <_>
+
+ 0 -1 1461 9.4754863530397415e-03
+
+ 4.8995878547430038e-02 -2.7853849530220032e-01
+ <_>
+
+ 0 -1 1462 -4.9254479818046093e-03
+
+ 3.1902191042900085e-01 -4.5609470456838608e-02
+ <_>
+
+ 0 -1 1463 -9.4199541490525007e-04
+
+ -1.6472989320755005e-01 7.3966227471828461e-02
+ <_>
+
+ 0 -1 1464 7.0046652108430862e-03
+
+ -3.6342341452836990e-02 3.3846628665924072e-01
+ <_>
+
+ 0 -1 1465 -9.1483298456296325e-04
+
+ 1.0460989922285080e-01 -1.1206439882516861e-01
+ <_>
+
+ 0 -1 1466 -1.8404760339763016e-04
+
+ 1.4215709269046783e-01 -8.7627373635768890e-02
+ <_>
+
+ 0 -1 1467 -3.1692520133219659e-04
+
+ -1.6067850589752197e-01 7.0096842944622040e-02
+ <_>
+
+ 0 -1 1468 2.3108009248971939e-02
+
+ -5.3784500807523727e-02 2.0780019462108612e-01
+ <_>
+
+ 0 -1 1469 6.3212551176548004e-03
+
+ 2.9342239722609520e-02 -3.8378500938415527e-01
+ <_>
+
+ 0 -1 1470 7.3698158375918865e-03
+
+ -4.1625689715147018e-02 2.6526549458503723e-01
+ <_>
+
+ 0 -1 1471 3.3730969298630953e-03
+
+ 3.7753321230411530e-02 -3.0138298869132996e-01
+ <_>
+
+ 0 -1 1472 -6.4016957767307758e-03
+
+ 2.1839860081672668e-01 -5.4551340639591217e-02
+ <_>
+
+ 0 -1 1473 1.3553920201957226e-02
+
+ 2.8121260926127434e-02 -4.3601170182228088e-01
+ <_>
+
+ 0 -1 1474 -6.7636291496455669e-03
+
+ -1.6322250664234161e-01 6.7339658737182617e-02
+ <_>
+
+ 0 -1 1475 -1.3078070478513837e-03
+
+ 1.2315399944782257e-01 -1.0096319764852524e-01
+ <_>
+
+ 0 -1 1476 -7.6282368972897530e-03
+
+ 2.5165349245071411e-01 -5.0460711121559143e-02
+ <_>
+
+ 0 -1 1477 7.9994397237896919e-03
+
+ 7.3020651936531067e-02 -1.8877799808979034e-01
+ <_>
+
+ 0 -1 1478 -3.1321209389716387e-03
+
+ 2.7653199434280396e-01 -4.3276838958263397e-02
+ <_>
+
+ 0 -1 1479 -4.0931310504674911e-02
+
+ -6.5518248081207275e-01 1.8600920215249062e-02
+ <_>
+
+ 0 -1 1480 7.0344978012144566e-03
+
+ 2.1914770826697350e-02 -4.8595818877220154e-01
+ <_>
+
+ 0 -1 1481 -2.5299859698861837e-03
+
+ 1.4030769467353821e-01 -8.0566473305225372e-02
+ <_>
+
+ 0 -1 1482 3.8867890834808350e-03
+
+ -8.9075699448585510e-02 1.6832409799098969e-01
+ <_>
+
+ 0 -1 1483 3.8210590719245374e-04
+
+ 6.5200872719287872e-02 -1.8599529564380646e-01
+ <_>
+
+ 0 -1 1484 1.0954789817333221e-01
+
+ 1.5036020427942276e-02 -8.6908358335494995e-01
+ <_>
+
+ 0 -1 1485 -1.4177490083966404e-04
+
+ -1.4669269323348999e-01 7.9050153493881226e-02
+ <_>
+
+ 0 -1 1486 2.0990408957004547e-03
+
+ -4.6489678323268890e-02 2.3045249283313751e-01
+ <_>
+
+ 0 -1 1487 -2.3089480237103999e-04
+
+ -1.6784009337425232e-01 6.9773100316524506e-02
+ <_>
+
+ 0 -1 1488 -4.3103471398353577e-04
+
+ 8.1758759915828705e-02 -1.2939240038394928e-01
+ <_>
+
+ 0 -1 1489 -2.9572288622148335e-04
+
+ -1.9068230688571930e-01 5.8420080691576004e-02
+ <_>
+
+ 0 -1 1490 -4.0046018548309803e-03
+
+ 1.2948529422283173e-01 -8.1599622964859009e-02
+ <_>
+
+ 0 -1 1491 1.4935520084691234e-05
+
+ -1.3364720344543457e-01 9.8664022982120514e-02
+ <_>
+
+ 0 -1 1492 5.7824450777843595e-04
+
+ 5.9095639735460281e-02 -1.8318089842796326e-01
+ <_>
+
+ 0 -1 1493 1.3251320458948612e-02
+
+ -7.1488671004772186e-02 1.5635989606380463e-01
+ <_>
+
+ 0 -1 1494 7.1273561843554489e-06
+
+ -1.2283089756965637e-01 9.7752511501312256e-02
+ <_>
+
+ 0 -1 1495 1.4193489914759994e-03
+
+ -8.1696748733520508e-02 1.3701570034027100e-01
+ <_>
+
+ 0 -1 1496 -8.0165416002273560e-03
+
+ 2.4697229266166687e-01 -5.6527040898799896e-02
+ <_>
+
+ 0 -1 1497 -2.3803471121937037e-03
+
+ -3.7901589274406433e-01 3.4532550722360611e-02
+ <_>
+
+ 0 -1 1498 -4.8633730039000511e-03
+
+ 6.5441012382507324e-01 -1.9296199083328247e-02
+ <_>
+
+ 0 -1 1499 -1.4388219824468251e-05
+
+ 7.5101882219314575e-02 -1.4394460618495941e-01
+ <_>
+
+ 0 -1 1500 1.4798780284763779e-05
+
+ -1.0807389765977859e-01 9.6213810145854950e-02
+ <_>
+
+ 0 -1 1501 2.4176139384508133e-02
+
+ 2.6983680203557014e-02 -4.0708479285240173e-01
+ <_>
+
+ 0 -1 1502 -3.9851912297308445e-03
+
+ 2.1786700189113617e-01 -5.4170310497283936e-02
+ <_>
+
+ 0 -1 1503 -2.5377580896019936e-03
+
+ -1.5314599871635437e-01 8.8059239089488983e-02
+ <_>
+
+ 0 -1 1504 2.1663319785147905e-03
+
+ 1.0252720117568970e-01 -1.2039250135421753e-01
+ <_>
+
+ 0 -1 1505 3.5593929351307452e-04
+
+ -8.2267768681049347e-02 1.3228890299797058e-01
+ <_>
+
+ 0 -1 1506 1.1394560569897294e-03
+
+ -8.6393490433692932e-02 1.5693899989128113e-01
+ <_>
+
+ 0 -1 1507 5.5563818663358688e-02
+
+ 1.7108110710978508e-02 -7.0473742485046387e-01
+ <_>
+
+ 0 -1 1508 5.5514591932296753e-01
+
+ 1.3345389626920223e-02 -6.9916892051696777e-01
+ <_>
+
+ 0 -1 1509 -4.6235490590333939e-03
+
+ -2.3983679711818695e-01 3.9515350013971329e-02
+ <_>
+
+ 0 -1 1510 -4.5803869143128395e-03
+
+ 4.2900869250297546e-01 -2.6430539786815643e-02
+ <_>
+
+ 0 -1 1511 7.0851319469511509e-03
+
+ 1.1231079697608948e-01 -1.0711509734392166e-01
+ <_>
+
+ 0 -1 1512 -4.0524810901843011e-04
+
+ -2.5740951299667358e-01 4.6670019626617432e-02
+ <_>
+
+ 0 -1 1513 -4.9121538177132607e-03
+
+ 2.7129280567169189e-01 -4.3966241180896759e-02
+ <_>
+
+ 0 -1 1514 -1.9348099827766418e-02
+
+ -4.0643858909606934e-01 2.9176769778132439e-02
+ <_>
+
+ 0 -1 1515 -1.3842330081388354e-03
+
+ 2.3537209630012512e-01 -5.0227548927068710e-02
+ <_>
+
+ 0 -1 1516 6.2752598896622658e-03
+
+ 2.8113570064306259e-02 -3.9913201332092285e-01
+ <_>
+
+ 0 -1 1517 1.4853129869152326e-05
+
+ -1.0750629752874374e-01 1.0206390172243118e-01
+ <_>
+
+ 0 -1 1518 -1.1780710192397237e-03
+
+ 1.8112790584564209e-01 -5.8998040854930878e-02
+ <_>
+
+ 0 -1 1519 -3.2166391611099243e-02
+
+ -9.8135101795196533e-01 1.1817139573395252e-02
+ <_>
+
+ 0 -1 1520 2.8749080374836922e-03
+
+ 5.0774369388818741e-02 -2.0650039613246918e-01
+ <_>
+
+ 0 -1 1521 -3.5098160151392221e-03
+
+ 1.4354039728641510e-01 -7.8006736934185028e-02
+ <_>
+
+ 0 -1 1522 -7.2203627787530422e-03
+
+ 2.3853950202465057e-01 -4.6176180243492126e-02
+ <_>
+
+ 0 -1 1523 2.0837699994444847e-03
+
+ 2.2801460698246956e-02 -5.0945621728897095e-01
+ <_>
+
+ 0 -1 1524 3.6175400018692017e-02
+
+ 1.4734740369021893e-02 -6.1349362134933472e-01
+ <_>
+
+ 0 -1 1525 7.5545758008956909e-03
+
+ 1.6166130080819130e-02 -5.8863008022308350e-01
+ <_>
+
+ 0 -1 1526 -2.6058950461447239e-03
+
+ 3.6436009407043457e-01 -3.4624300897121429e-02
+ <_>
+
+ 0 -1 1527 6.4669351559132338e-04
+
+ 6.3444733619689941e-02 -1.8953520059585571e-01
+ <_>
+
+ 0 -1 1528 -3.1747641041874886e-03
+
+ 4.2877858877182007e-01 -2.6968790218234062e-02
+ <_>
+
+ 0 -1 1529 -2.3839730769395828e-02
+
+ -3.6871370673179626e-01 3.3688500523567200e-02
+ <_>
+
+ 0 -1 1530 1.1973649961873889e-03
+
+ -6.2898509204387665e-02 1.9179169833660126e-01
+ <_>
+
+ 0 -1 1531 4.4593929487746209e-05
+
+ -1.1022660136222839e-01 1.2159959971904755e-01
+ <_>
+
+ 0 -1 1532 9.1575905680656433e-03
+
+ 2.5353889912366867e-02 -4.9928730726242065e-01
+ <_>
+
+ 0 -1 1533 2.3933469783514738e-03
+
+ 4.8282090574502945e-02 -2.2685450315475464e-01
+ <_>
+
+ 0 -1 1534 -1.1994830565527081e-03
+
+ 1.0886570066213608e-01 -1.0669539868831635e-01
+ <_>
+
+ 0 -1 1535 2.1603968925774097e-03
+
+ -7.6076626777648926e-02 1.6507959365844727e-01
+ <_>
+
+ 0 -1 1536 -1.6556339338421822e-02
+
+ -5.4167211055755615e-01 2.0711649209260941e-02
+ <_>
+
+ 0 -1 1537 -8.8350269943475723e-03
+
+ -3.6710909008979797e-01 2.8870400041341782e-02
+ <_>
+
+ 0 -1 1538 -1.4592399566026870e-05
+
+ 7.8724071383476257e-02 -1.3622610270977020e-01
+ <_>
+
+ 0 -1 1539 -1.4897900400683284e-03
+
+ 1.1436119675636292e-01 -1.0104899853467941e-01
+ <_>
+
+ 0 -1 1540 -3.9764028042554855e-03
+
+ -1.0250560194253922e-01 1.0466060042381287e-01
+ <_>
+
+ 0 -1 1541 -7.2657042182981968e-03
+
+ 2.2982269525527954e-01 -4.5155581086874008e-02
+ <_>
+
+ 0 -1 1542 8.9115025475621223e-03
+
+ 2.9681159183382988e-02 -4.4235008955001831e-01
+ <_>
+
+ 0 -1 1543 -1.8145949579775333e-03
+
+ 2.3911419510841370e-01 -4.6856120228767395e-02
+ <_>
+
+ 0 -1 1544 -3.7546321749687195e-02
+
+ -1.8569689989089966e-01 6.1533749103546143e-02
+ <_>
+
+ 0 -1 1545 -1.0010029654949903e-03
+
+ 1.4361350238323212e-01 -8.6990483105182648e-02
+ <_>
+
+ 0 -1 1546 -3.7357229739427567e-03
+
+ 2.0245459675788879e-01 -6.1167530715465546e-02
+ <_>
+
+ 0 -1 1547 -1.4672010365757160e-05
+
+ 8.8180869817733765e-02 -1.3037009537220001e-01
+ <_>
+
+ 0 -1 1548 9.4379713118541986e-05
+
+ 5.5626530200242996e-02 -2.0025369524955750e-01
+ <_>
+
+ 0 -1 1549 1.5706509293522686e-04
+
+ -9.8335877060890198e-02 1.1518850177526474e-01
+ <_>
+
+ 0 -1 1550 -8.1810058327391744e-04
+
+ -2.1701550483703613e-01 5.2880410104990005e-02
+ <_>
+
+ 0 -1 1551 -5.1689259707927704e-02
+
+ 5.7715278863906860e-01 -1.8761100247502327e-02
+ <_>
+
+ 0 -1 1552 -9.0719409286975861e-02
+
+ -3.6278849840164185e-01 3.6741130053997040e-02
+ <_>
+
+ 0 -1 1553 -1.0959040373563766e-02
+
+ 1.6787180304527283e-01 -6.9725647568702698e-02
+ <_>
+
+ 0 -1 1554 3.7122920621186495e-03
+
+ 6.0360308736562729e-02 -2.0567069947719574e-01
+ <_>
+
+ 0 -1 1555 -1.9315730780363083e-02
+
+ -5.7397401332855225e-01 1.9705319777131081e-02
+ <_>
+
+ 0 -1 1556 -2.7051189914345741e-02
+
+ 3.4983208775520325e-01 -3.6084290593862534e-02
+ <_>
+
+ 0 -1 1557 2.1742910146713257e-02
+
+ 2.2767079994082451e-02 -6.5319198369979858e-01
+ <_>
+
+ 0 -1 1558 9.9608592689037323e-02
+
+ -3.1259559094905853e-02 3.8271111249923706e-01
+ <_>
+
+ 0 -1 1559 4.6517839655280113e-03
+
+ 1.0088030248880386e-01 -1.2396019697189331e-01
+ <_>
+
+ 0 -1 1560 -1.4784580343984999e-05
+
+ 7.9683482646942139e-02 -1.5573020279407501e-01
+ <_>
+
+ 0 -1 1561 -1.6718909610062838e-03
+
+ 1.7077329754829407e-01 -6.7733809351921082e-02
+ <_>
+
+ 0 -1 1562 1.4456630196946207e-05
+
+ -1.0106030106544495e-01 1.1116830259561539e-01
+ <_>
+
+ 0 -1 1563 -2.7084909379482269e-03
+
+ 1.1312720179557800e-01 -1.0880629718303680e-01
+ <_>
+ 159
+ -1.3943890333175659e+00
+
+ <_>
+
+ 0 -1 1564 -2.2686859592795372e-02
+
+ 2.7316910028457642e-01 -2.7358779311180115e-01
+ <_>
+
+ 0 -1 1565 4.2952829971909523e-04
+
+ -2.5107958912849426e-01 1.5740729868412018e-01
+ <_>
+
+ 0 -1 1566 2.5115790776908398e-03
+
+ -2.2002549469470978e-01 1.5660229325294495e-01
+ <_>
+
+ 0 -1 1567 -6.3958892133086920e-04
+
+ 7.2609938681125641e-02 -3.8278979063034058e-01
+ <_>
+
+ 0 -1 1568 2.6575280353426933e-03
+
+ -1.1523439735174179e-01 2.3414239287376404e-01
+ <_>
+
+ 0 -1 1569 -7.5916409492492676e-02
+
+ 3.2517579197883606e-01 -8.2622267305850983e-02
+ <_>
+
+ 0 -1 1570 1.4966350136091933e-05
+
+ -3.5640290379524231e-01 5.2353590726852417e-02
+ <_>
+
+ 0 -1 1571 -1.4678399566037115e-05
+
+ 1.0198219865560532e-01 -2.2452689707279205e-01
+ <_>
+
+ 0 -1 1572 5.2314779168227687e-05
+
+ -1.7757849395275116e-01 1.0107079893350601e-01
+ <_>
+
+ 0 -1 1573 1.4088390162214637e-04
+
+ -1.5139770507812500e-01 1.3872760534286499e-01
+ <_>
+
+ 0 -1 1574 -2.3411789909005165e-02
+
+ -1.6435989737510681e-01 1.0702139884233475e-01
+ <_>
+
+ 0 -1 1575 2.3284659255295992e-03
+
+ -8.0950729548931122e-02 2.2333970665931702e-01
+ <_>
+
+ 0 -1 1576 -3.3611140679568052e-03
+
+ -4.4329941272735596e-01 3.4489039331674576e-02
+ <_>
+
+ 0 -1 1577 5.8458978310227394e-04
+
+ -1.1083470284938812e-01 1.7215029895305634e-01
+ <_>
+
+ 0 -1 1578 -3.3180968603119254e-04
+
+ 6.9152593612670898e-02 -2.6321241259574890e-01
+ <_>
+
+ 0 -1 1579 -8.8515877723693848e-04
+
+ -3.4764730930328369e-01 4.3258201330900192e-02
+ <_>
+
+ 0 -1 1580 1.4169749920256436e-04
+
+ -1.4600689709186554e-01 1.0149820148944855e-01
+ <_>
+
+ 0 -1 1581 1.4851680025458336e-03
+
+ 2.9983170330524445e-02 -4.1786131262779236e-01
+ <_>
+
+ 0 -1 1582 -7.5329327955842018e-04
+
+ -2.1557639539241791e-01 6.4534209668636322e-02
+ <_>
+
+ 0 -1 1583 1.4260539785027504e-02
+
+ -8.0013327300548553e-02 1.9511990249156952e-01
+ <_>
+
+ 0 -1 1584 -1.4687920156575274e-05
+
+ 9.7121663391590118e-02 -1.3502350449562073e-01
+ <_>
+
+ 0 -1 1585 -9.8925074562430382e-03
+
+ -5.1035261154174805e-01 2.9335800558328629e-02
+ <_>
+
+ 0 -1 1586 -1.8316040514037013e-03
+
+ 3.2676079869270325e-01 -4.5014020055532455e-02
+ <_>
+
+ 0 -1 1587 8.6495577124878764e-04
+
+ -7.7836513519287109e-02 1.8764939904212952e-01
+ <_>
+
+ 0 -1 1588 1.4902660250663757e-01
+
+ 1.9568990916013718e-02 -6.2450677156448364e-01
+ <_>
+
+ 0 -1 1589 -1.7126720398664474e-02
+
+ -1.8141449987888336e-01 7.3048681020736694e-02
+ <_>
+
+ 0 -1 1590 -1.7061959952116013e-03
+
+ 3.1236839294433594e-01 -4.4152028858661652e-02
+ <_>
+
+ 0 -1 1591 3.8261809386312962e-03
+
+ 5.1518529653549194e-02 -2.9330030083656311e-01
+ <_>
+
+ 0 -1 1592 3.8093670736998320e-03
+
+ -7.6707206666469574e-02 1.7574439942836761e-01
+ <_>
+
+ 0 -1 1593 -3.4228331060148776e-04
+
+ -2.3458020389080048e-01 6.1726640909910202e-02
+ <_>
+
+ 0 -1 1594 -4.1697870939970016e-02
+
+ 4.3929129838943481e-01 -3.6892820149660110e-02
+ <_>
+
+ 0 -1 1595 1.9080520723946393e-04
+
+ -1.3488939404487610e-01 9.7168661653995514e-02
+ <_>
+
+ 0 -1 1596 2.6400710339657962e-04
+
+ -1.6539520025253296e-01 7.3270231485366821e-02
+ <_>
+
+ 0 -1 1597 7.9839164391160011e-03
+
+ -3.3527340739965439e-02 3.6535859107971191e-01
+ <_>
+
+ 0 -1 1598 -1.4267410151660442e-02
+
+ 4.6739241480827332e-01 -2.7154419571161270e-02
+ <_>
+
+ 0 -1 1599 -9.4726070528849959e-05
+
+ -1.5017749369144440e-01 8.7657302618026733e-02
+ <_>
+
+ 0 -1 1600 -2.9629279742948711e-04
+
+ -1.6194540262222290e-01 7.3863230645656586e-02
+ <_>
+
+ 0 -1 1601 2.3301010951399803e-03
+
+ -7.9925157129764557e-02 1.5778550505638123e-01
+ <_>
+
+ 0 -1 1602 3.6623800406232476e-04
+
+ -8.7019346654415131e-02 2.0495669543743134e-01
+ <_>
+
+ 0 -1 1603 -4.4499669224023819e-02
+
+ -2.9891410470008850e-01 4.5648001134395599e-02
+ <_>
+
+ 0 -1 1604 -6.0768700204789639e-03
+
+ 2.3746150732040405e-01 -5.3580708801746368e-02
+ <_>
+
+ 0 -1 1605 6.6064862767234445e-04
+
+ 5.9221439063549042e-02 -2.3569910228252411e-01
+ <_>
+
+ 0 -1 1606 7.4699260294437408e-03
+
+ 5.1304049789905548e-02 -2.3386649787425995e-01
+ <_>
+
+ 0 -1 1607 -6.7128022201359272e-03
+
+ 2.7061641216278076e-01 -5.0031121820211411e-02
+ <_>
+
+ 0 -1 1608 4.6589970588684082e-03
+
+ 4.4932201504707336e-02 -3.0730488896369934e-01
+ <_>
+
+ 0 -1 1609 4.9815201200544834e-03
+
+ -4.8255410045385361e-02 2.6853010058403015e-01
+ <_>
+
+ 0 -1 1610 9.9244136363267899e-03
+
+ 1.9446769729256630e-02 -7.0352387428283691e-01
+ <_>
+
+ 0 -1 1611 6.1988402158021927e-03
+
+ -3.5107269883155823e-02 3.5460400581359863e-01
+ <_>
+
+ 0 -1 1612 8.8433362543582916e-03
+
+ 4.5328389853239059e-02 -2.7485930919647217e-01
+ <_>
+
+ 0 -1 1613 1.1110560037195683e-02
+
+ 2.2391419857740402e-02 -5.0172042846679688e-01
+ <_>
+
+ 0 -1 1614 -6.9408811395987868e-04
+
+ 1.7079490423202515e-01 -6.3849426805973053e-02
+ <_>
+
+ 0 -1 1615 8.0377031117677689e-03
+
+ 8.8937461376190186e-02 -1.6416129469871521e-01
+ <_>
+
+ 0 -1 1616 1.4750069567526225e-05
+
+ -1.3713030517101288e-01 9.6981123089790344e-02
+ <_>
+
+ 0 -1 1617 1.2381490087136626e-03
+
+ -6.9491222500801086e-02 1.6551379859447479e-01
+ <_>
+
+ 0 -1 1618 2.6584148872643709e-04
+
+ -9.6803613007068634e-02 1.2020370364189148e-01
+ <_>
+
+ 0 -1 1619 -5.4076651576906443e-04
+
+ -2.3185379803180695e-01 4.8987850546836853e-02
+ <_>
+
+ 0 -1 1620 -5.1092808134853840e-03
+
+ 3.0391758680343628e-01 -4.0800470858812332e-02
+ <_>
+
+ 0 -1 1621 1.5575919533148408e-03
+
+ -1.0150980204343796e-01 1.4465929567813873e-01
+ <_>
+
+ 0 -1 1622 2.8396019712090492e-02
+
+ 1.5098540484905243e-01 -8.8314309716224670e-02
+ <_>
+
+ 0 -1 1623 1.5096530551090837e-03
+
+ 5.1589738577604294e-02 -2.6199528574943542e-01
+ <_>
+
+ 0 -1 1624 1.4308419777080417e-03
+
+ -4.5497849583625793e-02 2.7584540843963623e-01
+ <_>
+
+ 0 -1 1625 1.3030369579792023e-01
+
+ 2.0329989492893219e-02 -5.7491821050643921e-01
+ <_>
+
+ 0 -1 1626 -3.3548770006746054e-03
+
+ 1.2289950251579285e-01 -8.9937411248683929e-02
+ <_>
+
+ 0 -1 1627 2.7094839140772820e-02
+
+ 1.4342390000820160e-02 -7.8952521085739136e-01
+ <_>
+
+ 0 -1 1628 -3.6210110783576965e-01
+
+ -6.2560427188873291e-01 1.4021329581737518e-02
+ <_>
+
+ 0 -1 1629 -6.6879601217806339e-04
+
+ 2.1966129541397095e-01 -5.2415199577808380e-02
+ <_>
+
+ 0 -1 1630 -3.7389241158962250e-02
+
+ -4.7313681244850159e-01 2.5704499334096909e-02
+ <_>
+
+ 0 -1 1631 -7.4386061169207096e-03
+
+ -5.2914857864379883e-01 2.0038880407810211e-02
+ <_>
+
+ 0 -1 1632 1.0443119704723358e-01
+
+ -2.2909460589289665e-02 5.1592028141021729e-01
+ <_>
+
+ 0 -1 1633 -6.1161867051851004e-05
+
+ 7.7016606926918030e-02 -1.4625400304794312e-01
+ <_>
+
+ 0 -1 1634 6.5830379026010633e-04
+
+ 7.0015281438827515e-02 -1.5569929778575897e-01
+ <_>
+
+ 0 -1 1635 9.7367232665419579e-03
+
+ -3.1582240015268326e-02 3.2754561305046082e-01
+ <_>
+
+ 0 -1 1636 -2.9574360232800245e-03
+
+ -3.4247711300849915e-01 3.2184720039367676e-02
+ <_>
+
+ 0 -1 1637 1.6319820424541831e-03
+
+ -4.9400478601455688e-02 2.2656440734863281e-01
+ <_>
+
+ 0 -1 1638 1.3844939880073071e-02
+
+ 2.0476659759879112e-02 -5.4600667953491211e-01
+ <_>
+
+ 0 -1 1639 3.1580299139022827e-02
+
+ -4.2422048747539520e-02 2.9091480374336243e-01
+ <_>
+
+ 0 -1 1640 8.6624026298522949e-03
+
+ 5.4432898759841919e-02 -2.1892189979553223e-01
+ <_>
+
+ 0 -1 1641 -4.6714721247553825e-04
+
+ -1.8205730617046356e-01 7.1491912007331848e-02
+ <_>
+
+ 0 -1 1642 4.1834521107375622e-03
+
+ -6.7491203546524048e-02 1.7285770177841187e-01
+ <_>
+
+ 0 -1 1643 -5.3335628472268581e-03
+
+ -8.4681749343872070e-01 1.3804829679429531e-02
+ <_>
+
+ 0 -1 1644 7.8782793134450912e-03
+
+ -4.8166718333959579e-02 2.4242730438709259e-01
+ <_>
+
+ 0 -1 1645 3.8775329012423754e-03
+
+ 2.4311149492859840e-02 -4.9763259291648865e-01
+ <_>
+
+ 0 -1 1646 -1.6564880206715316e-04
+
+ 5.5546380579471588e-02 -1.9554230570793152e-01
+ <_>
+
+ 0 -1 1647 1.8993400037288666e-02
+
+ -3.6479089409112930e-02 2.8472718596458435e-01
+ <_>
+
+ 0 -1 1648 -3.4308759495615959e-03
+
+ -3.2813000679016113e-01 3.6524198949337006e-02
+ <_>
+
+ 0 -1 1649 1.4614370229537599e-05
+
+ -1.0106439888477325e-01 1.0622490197420120e-01
+ <_>
+
+ 0 -1 1650 1.5978919342160225e-02
+
+ 3.0059399083256721e-02 -3.9310181140899658e-01
+ <_>
+
+ 0 -1 1651 -2.2245719446800649e-04
+
+ 1.8586489558219910e-01 -7.2151653468608856e-02
+ <_>
+
+ 0 -1 1652 2.0615909248590469e-02
+
+ 1.5250990167260170e-02 -7.8391200304031372e-01
+ <_>
+
+ 0 -1 1653 2.8645060956478119e-04
+
+ 6.8745598196983337e-02 -1.5308310091495514e-01
+ <_>
+
+ 0 -1 1654 -5.9233439969830215e-05
+
+ -1.2545019388198853e-01 9.8448492586612701e-02
+ <_>
+
+ 0 -1 1655 -7.6257862383499742e-04
+
+ 2.1546240150928497e-01 -5.3760219365358353e-02
+ <_>
+
+ 0 -1 1656 -1.4181639999151230e-03
+
+ -1.9876889884471893e-01 5.1982138305902481e-02
+ <_>
+
+ 0 -1 1657 -4.4716868549585342e-02
+
+ -7.5508397817611694e-01 1.2906449846923351e-02
+ <_>
+
+ 0 -1 1658 -1.3735699467360973e-03
+
+ 2.2003139555454254e-01 -5.1394689828157425e-02
+ <_>
+
+ 0 -1 1659 -1.5352779999375343e-02
+
+ -2.1422849595546722e-01 5.3781170397996902e-02
+ <_>
+
+ 0 -1 1660 1.3817439787089825e-02
+
+ -3.5158120095729828e-02 2.9399091005325317e-01
+ <_>
+
+ 0 -1 1661 8.7981626391410828e-02
+
+ 1.6688749194145203e-02 -7.2053599357604980e-01
+ <_>
+
+ 0 -1 1662 4.0486121177673340e-01
+
+ 9.4695771113038063e-03 -8.2725608348846436e-01
+ <_>
+
+ 0 -1 1663 1.9231239566579461e-03
+
+ -5.8016318827867508e-02 1.7696020007133484e-01
+ <_>
+
+ 0 -1 1664 -4.0756969247013330e-04
+
+ 8.7600946426391602e-02 -1.2633720040321350e-01
+ <_>
+
+ 0 -1 1665 -2.3862780071794987e-03
+
+ -4.0085569024085999e-01 2.7183029800653458e-02
+ <_>
+
+ 0 -1 1666 5.6235089898109436e-02
+
+ -1.7541319131851196e-02 7.3818737268447876e-01
+ <_>
+
+ 0 -1 1667 4.9810402560979128e-04
+
+ -7.6487071812152863e-02 1.2697990238666534e-01
+ <_>
+
+ 0 -1 1668 5.3285917965695262e-04
+
+ 5.9596300125122070e-02 -1.7600339651107788e-01
+ <_>
+
+ 0 -1 1669 5.9949647402390838e-04
+
+ -8.2509063184261322e-02 1.3002809882164001e-01
+ <_>
+
+ 0 -1 1670 -2.0725550712086260e-04
+
+ 9.3374222517013550e-02 -1.1726769804954529e-01
+ <_>
+
+ 0 -1 1671 8.1314949784427881e-04
+
+ -8.0063126981258392e-02 1.4701730012893677e-01
+ <_>
+
+ 0 -1 1672 -3.4973450237885118e-04
+
+ 1.1057929694652557e-01 -1.0881700366735458e-01
+ <_>
+
+ 0 -1 1673 -2.1448899805545807e-01
+
+ -3.1701159477233887e-01 4.1711531579494476e-02
+ <_>
+
+ 0 -1 1674 5.9010740369558334e-04
+
+ 4.6280328184366226e-02 -2.3512250185012817e-01
+ <_>
+
+ 0 -1 1675 -1.2093999981880188e-01
+
+ -6.8957090377807617e-01 1.4982040040194988e-02
+ <_>
+
+ 0 -1 1676 1.0181350260972977e-01
+
+ 1.1298139579594135e-02 -7.1199649572372437e-01
+ <_>
+
+ 0 -1 1677 3.5208329558372498e-01
+
+ 1.2944510206580162e-02 -6.7572408914566040e-01
+ <_>
+
+ 0 -1 1678 -1.4602140254282858e-05
+
+ 6.9550313055515289e-02 -1.4288060367107391e-01
+ <_>
+
+ 0 -1 1679 -2.3212860524654388e-01
+
+ -7.5287401676177979e-01 1.1394330300390720e-02
+ <_>
+
+ 0 -1 1680 -1.4764709630981088e-03
+
+ 1.3547790050506592e-01 -8.5470907390117645e-02
+ <_>
+
+ 0 -1 1681 9.9324379116296768e-03
+
+ -4.8758801072835922e-02 2.4582690000534058e-01
+ <_>
+
+ 0 -1 1682 -2.6857290416955948e-02
+
+ -4.3975710868835449e-01 2.5082239881157875e-02
+ <_>
+
+ 0 -1 1683 -7.3618912138044834e-03
+
+ 1.2384700030088425e-01 -9.7226209938526154e-02
+ <_>
+
+ 0 -1 1684 -1.9785730168223381e-02
+
+ -5.0932317972183228e-01 2.3481979966163635e-02
+ <_>
+
+ 0 -1 1685 -1.4635100342275109e-05
+
+ 9.4043917953968048e-02 -1.2145669758319855e-01
+ <_>
+
+ 0 -1 1686 -5.4067030549049377e-02
+
+ -5.4586207866668701e-01 1.9500140100717545e-02
+ <_>
+
+ 0 -1 1687 1.1532169766724110e-02
+
+ -7.6409153640270233e-02 1.3763970136642456e-01
+ <_>
+
+ 0 -1 1688 -4.4358540326356888e-03
+
+ 1.2359759956598282e-01 -9.1719299554824829e-02
+ <_>
+
+ 0 -1 1689 8.3216017810627818e-04
+
+ 6.3659071922302246e-02 -2.0440760254859924e-01
+ <_>
+
+ 0 -1 1690 -1.2503969669342041e-01
+
+ -4.1524758934974670e-01 2.7199100703001022e-02
+ <_>
+
+ 0 -1 1691 4.9618318676948547e-02
+
+ 1.5955109149217606e-02 -6.1666852235794067e-01
+ <_>
+
+ 0 -1 1692 -3.0613599810749292e-03
+
+ 3.6662209033966064e-01 -3.3449448645114899e-02
+ <_>
+
+ 0 -1 1693 3.5273379180580378e-03
+
+ 3.1757980585098267e-02 -3.8478809595108032e-01
+ <_>
+
+ 0 -1 1694 -6.6726570948958397e-03
+
+ 3.2095840573310852e-01 -3.4408681094646454e-02
+ <_>
+
+ 0 -1 1695 -2.5795500259846449e-03
+
+ -3.7870529294013977e-01 2.8562130406498909e-02
+ <_>
+
+ 0 -1 1696 7.8417789191007614e-03
+
+ -2.0479770377278328e-02 5.1704108715057373e-01
+ <_>
+
+ 0 -1 1697 3.1101319473236799e-04
+
+ -1.0809139907360077e-01 9.7204521298408508e-02
+ <_>
+
+ 0 -1 1698 2.6113479398190975e-03
+
+ -8.1770427525043488e-02 1.4691209793090820e-01
+ <_>
+
+ 0 -1 1699 7.3472261428833008e-03
+
+ 2.5131259113550186e-02 -4.3025061488151550e-01
+ <_>
+
+ 0 -1 1700 1.3528259296435863e-04
+
+ -1.4751060307025909e-01 6.7584678530693054e-02
+ <_>
+
+ 0 -1 1701 -5.1026898290729150e-05
+
+ -1.2161359935998917e-01 8.4333047270774841e-02
+ <_>
+
+ 0 -1 1702 1.1552199721336365e-03
+
+ -5.4663829505443573e-02 1.9773660600185394e-01
+ <_>
+
+ 0 -1 1703 -8.2931712269783020e-02
+
+ -5.1923328638076782e-01 2.0582359284162521e-02
+ <_>
+
+ 0 -1 1704 -4.6260739327408373e-04
+
+ 8.5588268935680389e-02 -1.1725299805402756e-01
+ <_>
+
+ 0 -1 1705 6.7906372714787722e-04
+
+ 4.5980118215084076e-02 -2.2628420591354370e-01
+ <_>
+
+ 0 -1 1706 1.4090019976720214e-03
+
+ -4.7628920525312424e-02 2.2722719609737396e-01
+ <_>
+
+ 0 -1 1707 2.8954911231994629e-01
+
+ 1.6701240092515945e-02 -6.3967019319534302e-01
+ <_>
+
+ 0 -1 1708 1.9376130774617195e-02
+
+ -2.2569410502910614e-02 5.0590497255325317e-01
+ <_>
+
+ 0 -1 1709 4.2641081381589174e-04
+
+ 6.6041722893714905e-02 -1.6666300594806671e-01
+ <_>
+
+ 0 -1 1710 1.7502580303698778e-03
+
+ -5.8077909052371979e-02 1.9512599706649780e-01
+ <_>
+
+ 0 -1 1711 -3.2605750020593405e-03
+
+ -2.9101881384849548e-01 3.8328718394041061e-02
+ <_>
+
+ 0 -1 1712 1.9519040361046791e-03
+
+ 5.9565968811511993e-02 -1.6910600662231445e-01
+ <_>
+
+ 0 -1 1713 -3.2053990289568901e-03
+
+ 1.9927769899368286e-01 -5.6053258478641510e-02
+ <_>
+
+ 0 -1 1714 1.7617279663681984e-03
+
+ 5.0697531551122665e-02 -2.1276649832725525e-01
+ <_>
+
+ 0 -1 1715 -6.0043102130293846e-03
+
+ -1.3699269294738770e-01 8.2275278866291046e-02
+ <_>
+
+ 0 -1 1716 2.4830829352140427e-03
+
+ -5.1561661064624786e-02 2.1684220433235168e-01
+ <_>
+
+ 0 -1 1717 -1.0821930319070816e-01
+
+ -7.8375291824340820e-01 1.4433650299906731e-02
+ <_>
+
+ 0 -1 1718 -7.5229378417134285e-03
+
+ 1.3453729450702667e-01 -9.0582698583602905e-02
+ <_>
+
+ 0 -1 1719 3.0750989913940430e-02
+
+ 1.1081690341234207e-01 -9.9475599825382233e-02
+ <_>
+
+ 0 -1 1720 -2.8948320541530848e-03
+
+ 1.9005739688873291e-01 -5.2639260888099670e-02
+ <_>
+
+ 0 -1 1721 2.7011099737137556e-03
+
+ 5.8573558926582336e-02 -1.9851949810981750e-01
+ <_>
+
+ 0 -1 1722 1.2562989722937346e-03
+
+ -7.3565311729907990e-02 1.5436840057373047e-01
+ <_>
+ 173
+ -1.4785599708557129e+00
+
+ <_>
+
+ 0 -1 1723 -2.1460579708218575e-02
+
+ 3.2505050301551819e-01 -2.0890380442142487e-01
+ <_>
+
+ 0 -1 1724 7.6785432174801826e-03
+
+ -1.3231310248374939e-01 3.0525839328765869e-01
+ <_>
+
+ 0 -1 1725 3.4118059556931257e-03
+
+ -3.0793079733848572e-01 1.1010979861021042e-01
+ <_>
+
+ 0 -1 1726 -1.4710490177094471e-05
+
+ 9.5858857035636902e-02 -2.9641860723495483e-01
+ <_>
+
+ 0 -1 1727 1.0538049973547459e-02
+
+ -7.9252541065216064e-02 3.7234848737716675e-01
+ <_>
+
+ 0 -1 1728 -2.5260078837163746e-04
+
+ 6.7121110856533051e-02 -3.0784338712692261e-01
+ <_>
+
+ 0 -1 1729 -3.5665810573846102e-03
+
+ 1.4667609333992004e-01 -1.7083789408206940e-01
+ <_>
+
+ 0 -1 1730 -1.2677359627559781e-03
+
+ -4.9063721299171448e-01 2.0374119281768799e-02
+ <_>
+
+ 0 -1 1731 -6.7669381387531757e-03
+
+ 2.5767329335212708e-01 -7.4175901710987091e-02
+ <_>
+
+ 0 -1 1732 -6.0447258874773979e-04
+
+ -1.9196410477161407e-01 9.1349847614765167e-02
+ <_>
+
+ 0 -1 1733 -2.5375590194016695e-03
+
+ -3.5663878917694092e-01 5.1547251641750336e-02
+ <_>
+
+ 0 -1 1734 -7.0200557820498943e-03
+
+ 3.9719080924987793e-01 -4.3967988342046738e-02
+ <_>
+
+ 0 -1 1735 -5.7049379684031010e-03
+
+ -5.0015491247177124e-01 2.9825929552316666e-02
+ <_>
+
+ 0 -1 1736 1.4744909713044763e-03
+
+ 5.8546211570501328e-02 -2.6139810681343079e-01
+ <_>
+
+ 0 -1 1737 9.2834811657667160e-03
+
+ -4.2836759239435196e-02 3.3443170785903931e-01
+ <_>
+
+ 0 -1 1738 9.9660153500735760e-04
+
+ -1.0425110161304474e-01 1.6191780567169189e-01
+ <_>
+
+ 0 -1 1739 -7.5932733714580536e-02
+
+ -3.7356320023536682e-01 4.3075688183307648e-02
+ <_>
+
+ 0 -1 1740 5.5370710470015183e-05
+
+ -1.4570540189743042e-01 1.1560150235891342e-01
+ <_>
+
+ 0 -1 1741 1.4746849956281949e-05
+
+ -1.2972679734230042e-01 1.1747740209102631e-01
+ <_>
+
+ 0 -1 1742 -1.4875919441692531e-04
+
+ -1.8002930283546448e-01 7.8782692551612854e-02
+ <_>
+
+ 0 -1 1743 3.3751460723578930e-03
+
+ -7.7242009341716766e-02 1.8596859276294708e-01
+ <_>
+
+ 0 -1 1744 3.4271259210072458e-04
+
+ -1.5393340587615967e-01 1.0472580045461655e-01
+ <_>
+
+ 0 -1 1745 -4.5711229904554784e-04
+
+ -2.2300529479980469e-01 6.1818670481443405e-02
+ <_>
+
+ 0 -1 1746 3.2788628595881164e-04
+
+ 7.9448707401752472e-02 -1.8889829516410828e-01
+ <_>
+
+ 0 -1 1747 -9.6754019614309072e-04
+
+ 1.3137130439281464e-01 -1.0801070183515549e-01
+ <_>
+
+ 0 -1 1748 1.0537009686231613e-02
+
+ 2.2138269618153572e-02 -5.7479751110076904e-01
+ <_>
+
+ 0 -1 1749 5.6796409189701080e-03
+
+ -5.6034579873085022e-02 2.4849580228328705e-01
+ <_>
+
+ 0 -1 1750 -8.8083967566490173e-03
+
+ -3.7167680263519287e-01 4.2726948857307434e-02
+ <_>
+
+ 0 -1 1751 -2.8319710865616798e-02
+
+ -6.2387847900390625e-01 2.0844049751758575e-02
+ <_>
+
+ 0 -1 1752 1.3637860305607319e-02
+
+ 1.4434239827096462e-02 -7.1537137031555176e-01
+ <_>
+
+ 0 -1 1753 1.1822770349681377e-02
+
+ -4.3181091547012329e-02 3.0682548880577087e-01
+ <_>
+
+ 0 -1 1754 -6.1035697581246495e-04
+
+ -2.0418339967727661e-01 6.2115620821714401e-02
+ <_>
+
+ 0 -1 1755 -5.6125568225979805e-03
+
+ 3.6485010385513306e-01 -3.5448960959911346e-02
+ <_>
+
+ 0 -1 1756 1.4603640011046082e-05
+
+ -9.6096910536289215e-02 1.2142290174961090e-01
+ <_>
+
+ 0 -1 1757 1.9061230123043060e-03
+
+ 5.3135868161916733e-02 -2.2978909313678741e-01
+ <_>
+
+ 0 -1 1758 -3.6644220817834139e-03
+
+ 1.9614529609680176e-01 -6.8556912243366241e-02
+ <_>
+
+ 0 -1 1759 1.2336249928921461e-03
+
+ -8.7000347673892975e-02 1.3920229673385620e-01
+ <_>
+
+ 0 -1 1760 5.4660569876432419e-03
+
+ 2.2660890594124794e-02 -4.8329529166221619e-01
+ <_>
+
+ 0 -1 1761 -6.1730947345495224e-04
+
+ -2.1959540247917175e-01 5.5258519947528839e-02
+ <_>
+
+ 0 -1 1762 2.9604700393974781e-03
+
+ -5.0548229366540909e-02 2.7476710081100464e-01
+ <_>
+
+ 0 -1 1763 2.8015000745654106e-02
+
+ 1.8874650821089745e-02 -6.0498368740081787e-01
+ <_>
+
+ 0 -1 1764 -7.1651988946541678e-06
+
+ 1.0836219787597656e-01 -1.0606969892978668e-01
+ <_>
+
+ 0 -1 1765 -1.6367150470614433e-02
+
+ 2.8645038604736328e-01 -3.7137690931558609e-02
+ <_>
+
+ 0 -1 1766 1.0280719725415111e-03
+
+ 5.6318141520023346e-02 -2.1795029938220978e-01
+ <_>
+
+ 0 -1 1767 1.3662660494446754e-03
+
+ -4.6803500503301620e-02 2.3804000020027161e-01
+ <_>
+
+ 0 -1 1768 7.6626739464700222e-03
+
+ 2.1595260128378868e-02 -5.6847488880157471e-01
+ <_>
+
+ 0 -1 1769 -4.5117521658539772e-03
+
+ -3.5794979333877563e-01 3.0485490337014198e-02
+ <_>
+
+ 0 -1 1770 -4.3773967772722244e-03
+
+ 2.3192660510540009e-01 -5.3999818861484528e-02
+ <_>
+
+ 0 -1 1771 -7.2474628686904907e-03
+
+ -4.3440380692481995e-01 2.6374189183115959e-02
+ <_>
+
+ 0 -1 1772 7.9146260395646095e-04
+
+ -9.9924586713314056e-02 1.1088500171899796e-01
+ <_>
+
+ 0 -1 1773 6.4166806638240814e-02
+
+ 1.8938669934868813e-02 -5.7849419116973877e-01
+ <_>
+
+ 0 -1 1774 -1.1797840124927461e-04
+
+ -1.4889569580554962e-01 6.8777203559875488e-02
+ <_>
+
+ 0 -1 1775 1.2801289558410645e-02
+
+ 5.6179329752922058e-02 -2.0865969359874725e-01
+ <_>
+
+ 0 -1 1776 -2.7018740773200989e-02
+
+ 4.5356890559196472e-01 -2.5054579600691795e-02
+ <_>
+
+ 0 -1 1777 -6.9431727752089500e-03
+
+ -5.2916550636291504e-01 2.1800139918923378e-02
+ <_>
+
+ 0 -1 1778 3.3396780490875244e-03
+
+ -3.7295959889888763e-02 3.1198439002037048e-01
+ <_>
+
+ 0 -1 1779 -3.8888349081389606e-04
+
+ -1.5630130469799042e-01 7.0981830358505249e-02
+ <_>
+
+ 0 -1 1780 -7.1400677552446723e-04
+
+ 2.1799430251121521e-01 -5.4069280624389648e-02
+ <_>
+
+ 0 -1 1781 1.2549630366265774e-02
+
+ 1.7357179895043373e-02 -7.8320449590682983e-01
+ <_>
+
+ 0 -1 1782 -1.4623020433646161e-05
+
+ 7.8640103340148926e-02 -1.4212970435619354e-01
+ <_>
+
+ 0 -1 1783 -1.2133170384913683e-03
+
+ -3.1371229887008667e-01 3.4287638962268829e-02
+ <_>
+
+ 0 -1 1784 3.6882720887660980e-03
+
+ -3.8382381200790405e-02 3.0124679207801819e-01
+ <_>
+
+ 0 -1 1785 -1.4818239833402913e-05
+
+ 1.2561169266700745e-01 -9.1703377664089203e-02
+ <_>
+
+ 0 -1 1786 3.0302109662443399e-03
+
+ -2.9543070122599602e-02 3.7889540195465088e-01
+ <_>
+
+ 0 -1 1787 5.9340851294109598e-05
+
+ -1.7745719850063324e-01 7.0102430880069733e-02
+ <_>
+
+ 0 -1 1788 -2.9449560315697454e-05
+
+ 1.2052319943904877e-01 -1.1128979921340942e-01
+ <_>
+
+ 0 -1 1789 -1.7771139740943909e-02
+
+ -4.7108310461044312e-01 2.5600789114832878e-02
+ <_>
+
+ 0 -1 1790 7.6775359921157360e-03
+
+ -4.0757879614830017e-02 2.7021768689155579e-01
+ <_>
+
+ 0 -1 1791 -1.8513019382953644e-01
+
+ -3.0238750576972961e-01 3.8790911436080933e-02
+ <_>
+
+ 0 -1 1792 2.7697190642356873e-02
+
+ 2.6712810620665550e-02 -4.4166600704193115e-01
+ <_>
+
+ 0 -1 1793 -2.0427649840712547e-02
+
+ 2.5086608529090881e-01 -5.5672701448202133e-02
+ <_>
+
+ 0 -1 1794 9.0200370177626610e-03
+
+ 4.7344069927930832e-02 -2.7445980906486511e-01
+ <_>
+
+ 0 -1 1795 -1.2504979968070984e-03
+
+ -1.4971190690994263e-01 7.9667650163173676e-02
+ <_>
+
+ 0 -1 1796 -1.0021160356700420e-02
+
+ 2.4248859286308289e-01 -4.9217909574508667e-02
+ <_>
+
+ 0 -1 1797 2.6042328681796789e-04
+
+ 6.3192427158355713e-02 -1.8544280529022217e-01
+ <_>
+
+ 0 -1 1798 1.1920549441128969e-03
+
+ -8.6547911167144775e-02 1.3552339375019073e-01
+ <_>
+
+ 0 -1 1799 3.0391330365091562e-03
+
+ -7.2965219616889954e-02 1.6479800641536713e-01
+ <_>
+
+ 0 -1 1800 -2.9615699531859718e-05
+
+ 8.2047976553440094e-02 -1.4502969384193420e-01
+ <_>
+
+ 0 -1 1801 -1.2226340360939503e-02
+
+ -5.3014177083969116e-01 2.0405799150466919e-02
+ <_>
+
+ 0 -1 1802 -2.8124889358878136e-02
+
+ -5.5148762464523315e-01 1.7688119783997536e-02
+ <_>
+
+ 0 -1 1803 -4.8307109624147415e-02
+
+ -8.2579791545867920e-01 1.1020540259778500e-02
+ <_>
+
+ 0 -1 1804 4.6184109523892403e-03
+
+ 3.2069969922304153e-02 -3.0115368962287903e-01
+ <_>
+
+ 0 -1 1805 -8.4275740664452314e-04
+
+ 1.7034439742565155e-01 -6.3009433448314667e-02
+ <_>
+
+ 0 -1 1806 6.3863280229270458e-03
+
+ 1.6307299956679344e-02 -7.1346491575241089e-01
+ <_>
+
+ 0 -1 1807 -7.7203067485243082e-04
+
+ 1.6715280711650848e-01 -6.6192783415317535e-02
+ <_>
+
+ 0 -1 1808 -2.2645338904112577e-03
+
+ -3.5107091069221497e-01 2.8168670833110809e-02
+ <_>
+
+ 0 -1 1809 -3.7738790269941092e-03
+
+ 5.2762818336486816e-01 -2.0222609862685204e-02
+ <_>
+
+ 0 -1 1810 5.8204168453812599e-03
+
+ 7.0864066481590271e-02 -1.4675390720367432e-01
+ <_>
+
+ 0 -1 1811 -1.2069250456988811e-02
+
+ 2.3928099870681763e-01 -4.4312968850135803e-02
+ <_>
+
+ 0 -1 1812 3.3203759230673313e-03
+
+ -6.5749533474445343e-02 2.0277680456638336e-01
+ <_>
+
+ 0 -1 1813 2.1621929481625557e-03
+
+ 6.7407980561256409e-02 -1.8125349283218384e-01
+ <_>
+
+ 0 -1 1814 1.2229150161147118e-02
+
+ 2.2559309378266335e-02 -4.9180999398231506e-01
+ <_>
+
+ 0 -1 1815 -6.7253508605062962e-03
+
+ -1.5290050208568573e-01 6.9786652922630310e-02
+ <_>
+
+ 0 -1 1816 2.3579499684274197e-03
+
+ 4.9212101846933365e-02 -2.0838280022144318e-01
+ <_>
+
+ 0 -1 1817 -2.2950689308345318e-03
+
+ 1.2400440126657486e-01 -9.6624918282032013e-02
+ <_>
+
+ 0 -1 1818 1.0958530474454165e-03
+
+ -7.3270753026008606e-02 1.5208619832992554e-01
+ <_>
+
+ 0 -1 1819 -1.3427219819277525e-03
+
+ 1.2233039736747742e-01 -9.5689877867698669e-02
+ <_>
+
+ 0 -1 1820 5.4691417608410120e-04
+
+ -1.3924160599708557e-01 8.4381736814975739e-02
+ <_>
+
+ 0 -1 1821 8.4598818793892860e-03
+
+ 8.9689873158931732e-02 -1.3318899273872375e-01
+ <_>
+
+ 0 -1 1822 -9.1597117483615875e-02
+
+ -6.1854732036590576e-01 2.2867869585752487e-02
+ <_>
+
+ 0 -1 1823 -1.1090439511463046e-03
+
+ 5.8513749390840530e-02 -1.8806450068950653e-01
+ <_>
+
+ 0 -1 1824 2.2256910597207025e-05
+
+ -8.4488280117511749e-02 1.2780910730361938e-01
+ <_>
+
+ 0 -1 1825 -1.5437819820363075e-04
+
+ -1.2228029966354370e-01 8.6046978831291199e-02
+ <_>
+
+ 0 -1 1826 -2.6862788945436478e-03
+
+ -2.4487000703811646e-01 4.4255960732698441e-02
+ <_>
+
+ 0 -1 1827 -4.0478641167283058e-03
+
+ 2.7030688524246216e-01 -4.2200870811939240e-02
+ <_>
+
+ 0 -1 1828 -5.3340241312980652e-02
+
+ -7.6232349872589111e-01 1.4388039708137512e-02
+ <_>
+
+ 0 -1 1829 2.8256059158593416e-03
+
+ -2.9877070337533951e-02 3.9692971110343933e-01
+ <_>
+
+ 0 -1 1830 1.4443730004131794e-02
+
+ 3.0186710879206657e-02 -3.6606648564338684e-01
+ <_>
+
+ 0 -1 1831 1.3111650478094816e-03
+
+ -4.8140369355678558e-02 2.2434459626674652e-01
+ <_>
+
+ 0 -1 1832 1.6730680363252759e-03
+
+ -5.9983398765325546e-02 1.6394190490245819e-01
+ <_>
+
+ 0 -1 1833 2.3517120629549026e-02
+
+ 2.4109700694680214e-02 -4.0492439270019531e-01
+ <_>
+
+ 0 -1 1834 -3.5689130891114473e-03
+
+ 3.1903558969497681e-01 -3.4295879304409027e-02
+ <_>
+
+ 0 -1 1835 -2.8193008620291948e-04
+
+ -1.4874160289764404e-01 7.0669896900653839e-02
+ <_>
+
+ 0 -1 1836 1.0215859860181808e-01
+
+ 1.2840500101447105e-02 -7.7848541736602783e-01
+ <_>
+
+ 0 -1 1837 -1.9175480306148529e-01
+
+ -7.5706577301025391e-01 1.0587760247290134e-02
+ <_>
+
+ 0 -1 1838 5.3162658587098122e-03
+
+ -4.0066570043563843e-02 2.6050180196762085e-01
+ <_>
+
+ 0 -1 1839 -1.1487120063975453e-03
+
+ -1.8017220497131348e-01 6.1610430479049683e-02
+ <_>
+
+ 0 -1 1840 -2.8316730260848999e-01
+
+ -8.4913408756256104e-01 1.1647139675915241e-02
+ <_>
+
+ 0 -1 1841 3.3731758594512939e-02
+
+ 1.2357609719038010e-01 -7.7482230961322784e-02
+ <_>
+
+ 0 -1 1842 9.8635945469141006e-03
+
+ 4.3958030641078949e-02 -2.5541779398918152e-01
+ <_>
+
+ 0 -1 1843 -3.1564768869429827e-03
+
+ 1.8942989408969879e-01 -5.8221038430929184e-02
+ <_>
+
+ 0 -1 1844 1.5572150005027652e-03
+
+ -1.0376139730215073e-01 1.4107349514961243e-01
+ <_>
+
+ 0 -1 1845 6.2360420823097229e-02
+
+ 9.6462322399020195e-03 -8.5804969072341919e-01
+ <_>
+
+ 0 -1 1846 1.1480550165288150e-04
+
+ -8.4419928491115570e-02 1.1312700062990189e-01
+ <_>
+
+ 0 -1 1847 -5.9252730570733547e-03
+
+ -3.1650778651237488e-01 3.2079849392175674e-02
+ <_>
+
+ 0 -1 1848 -2.4660851340740919e-04
+
+ 8.8697679340839386e-02 -1.1085110157728195e-01
+ <_>
+
+ 0 -1 1849 1.6946049872785807e-03
+
+ -5.9657149016857147e-02 2.0904210209846497e-01
+ <_>
+
+ 0 -1 1850 9.0623252617660910e-05
+
+ 7.7441960573196411e-02 -1.2806339561939240e-01
+ <_>
+
+ 0 -1 1851 1.1666920036077499e-03
+
+ -6.1748579144477844e-02 1.5702450275421143e-01
+ <_>
+
+ 0 -1 1852 1.2541549513116479e-03
+
+ 4.4608380645513535e-02 -2.3140360414981842e-01
+ <_>
+
+ 0 -1 1853 -6.0275900177657604e-03
+
+ 9.5281846821308136e-02 -1.0283090174198151e-01
+ <_>
+
+ 0 -1 1854 -2.0472849905490875e-01
+
+ -4.1114759445190430e-01 2.3537550121545792e-02
+ <_>
+
+ 0 -1 1855 1.7691280692815781e-02
+
+ -3.9257150143384933e-02 2.8564441204071045e-01
+ <_>
+
+ 0 -1 1856 -1.2875649333000183e-01
+
+ -8.2030779123306274e-01 1.1735290288925171e-02
+ <_>
+
+ 0 -1 1857 1.2868089834228158e-03
+
+ 5.0858870148658752e-02 -1.7848010361194611e-01
+ <_>
+
+ 0 -1 1858 -4.5859832316637039e-03
+
+ 1.6802109777927399e-01 -6.1582598835229874e-02
+ <_>
+
+ 0 -1 1859 4.6391240903176367e-04
+
+ 6.6747047007083893e-02 -1.4237800240516663e-01
+ <_>
+
+ 0 -1 1860 -4.4439961202442646e-03
+
+ 4.5714980363845825e-01 -2.1746810525655746e-02
+ <_>
+
+ 0 -1 1861 3.8220020942389965e-03
+
+ 1.8094329163432121e-02 -6.0244542360305786e-01
+ <_>
+
+ 0 -1 1862 1.3894500443711877e-03
+
+ 3.4007851034402847e-02 -2.7153480052947998e-01
+ <_>
+
+ 0 -1 1863 -7.2111929766833782e-03
+
+ 2.7312570810317993e-01 -3.6855131387710571e-02
+ <_>
+
+ 0 -1 1864 1.6509749693796039e-03
+
+ -8.4407016634941101e-02 1.3134449720382690e-01
+ <_>
+
+ 0 -1 1865 -5.0506892148405313e-04
+
+ -1.4193339645862579e-01 7.3628053069114685e-02
+ <_>
+
+ 0 -1 1866 -1.1205329559743404e-02
+
+ 3.0093750357627869e-01 -3.4171391278505325e-02
+ <_>
+
+ 0 -1 1867 -3.4860160667449236e-04
+
+ -2.4538309872150421e-01 5.9823978692293167e-02
+ <_>
+
+ 0 -1 1868 7.3347258148714900e-04
+
+ -6.1770260334014893e-02 1.6367949545383453e-01
+ <_>
+
+ 0 -1 1869 -9.2969406396150589e-03
+
+ -3.0236640572547913e-01 3.9257898926734924e-02
+ <_>
+
+ 0 -1 1870 2.3957120254635811e-02
+
+ -2.3900719359517097e-02 4.8340830206871033e-01
+ <_>
+
+ 0 -1 1871 3.6422210541786626e-05
+
+ -1.2283039838075638e-01 9.1258950531482697e-02
+ <_>
+
+ 0 -1 1872 5.0458200275897980e-02
+
+ 1.3529149815440178e-02 -7.7827727794647217e-01
+ <_>
+
+ 0 -1 1873 -9.8683983087539673e-03
+
+ -4.4060459733009338e-01 2.0404359325766563e-02
+ <_>
+
+ 0 -1 1874 -1.0851239785552025e-02
+
+ 2.0165500044822693e-01 -5.2248589694499969e-02
+ <_>
+
+ 0 -1 1875 1.7670930537860841e-04
+
+ -1.3691440224647522e-01 8.3170592784881592e-02
+ <_>
+
+ 0 -1 1876 1.2582179624587297e-04
+
+ 6.1275351792573929e-02 -1.6542710363864899e-01
+ <_>
+
+ 0 -1 1877 -7.0588971721008420e-04
+
+ 1.5219129621982574e-01 -6.6164620220661163e-02
+ <_>
+
+ 0 -1 1878 1.1355109745636582e-03
+
+ -5.4115369915962219e-02 2.1311099827289581e-01
+ <_>
+
+ 0 -1 1879 -3.7436310667544603e-03
+
+ -2.3469850420951843e-01 4.9591001123189926e-02
+ <_>
+
+ 0 -1 1880 1.2309269513934851e-03
+
+ -7.5196012854576111e-02 1.4646540582180023e-01
+ <_>
+
+ 0 -1 1881 3.6228948738425970e-04
+
+ -9.7789406776428223e-02 1.2091729789972305e-01
+ <_>
+
+ 0 -1 1882 7.5996189843863249e-04
+
+ 6.9713920354843140e-02 -1.6278789937496185e-01
+ <_>
+
+ 0 -1 1883 -1.8509250367060304e-03
+
+ -1.8382890522480011e-01 5.7501520961523056e-02
+ <_>
+
+ 0 -1 1884 7.9539678990840912e-03
+
+ -5.8848708868026733e-02 1.8846440315246582e-01
+ <_>
+
+ 0 -1 1885 -3.1013600528240204e-04
+
+ -1.4575460553169250e-01 7.2403199970722198e-02
+ <_>
+
+ 0 -1 1886 1.6956350300461054e-03
+
+ 7.0550262928009033e-02 -1.6740930080413818e-01
+ <_>
+
+ 0 -1 1887 2.9058079235255718e-05
+
+ -1.0341589897871017e-01 9.5376282930374146e-02
+ <_>
+
+ 0 -1 1888 1.4466919936239719e-02
+
+ -1.7532069236040115e-02 5.4767167568206787e-01
+ <_>
+
+ 0 -1 1889 -5.7156499475240707e-02
+
+ -7.4789309501647949e-01 1.6394419595599174e-02
+ <_>
+
+ 0 -1 1890 3.0681469943374395e-03
+
+ 3.8702819496393204e-02 -2.4164369702339172e-01
+ <_>
+
+ 0 -1 1891 3.7490210961550474e-03
+
+ -5.6555431336164474e-02 2.0308320224285126e-01
+ <_>
+
+ 0 -1 1892 -1.0643450077623129e-03
+
+ -2.8211921453475952e-01 3.5207509994506836e-02
+ <_>
+
+ 0 -1 1893 -8.9807435870170593e-03
+
+ 2.1754769980907440e-01 -5.0628181546926498e-02
+ <_>
+
+ 0 -1 1894 2.4643479264341295e-04
+
+ 7.2727531194686890e-02 -1.4768819510936737e-01
+ <_>
+
+ 0 -1 1895 2.2197801154106855e-03
+
+ -3.6754861474037170e-02 2.6939278841018677e-01
+ <_>
+ 169
+ -1.3372850418090820e+00
+
+ <_>
+
+ 0 -1 1896 -3.5328421741724014e-02
+
+ 2.4123990535736084e-01 -2.7961900830268860e-01
+ <_>
+
+ 0 -1 1897 2.6829841081053019e-03
+
+ -1.6362559795379639e-01 2.3433500528335571e-01
+ <_>
+
+ 0 -1 1898 2.1330378949642181e-03
+
+ -2.0100639760494232e-01 1.5679529309272766e-01
+ <_>
+
+ 0 -1 1899 4.2972870869562030e-04
+
+ -3.7790980935096741e-01 7.4083693325519562e-02
+ <_>
+
+ 0 -1 1900 -3.4645918756723404e-02
+
+ 3.0556240677833557e-01 -8.3546526730060577e-02
+ <_>
+
+ 0 -1 1901 -1.4237920368032064e-05
+
+ 8.2699142396450043e-02 -2.3583950102329254e-01
+ <_>
+
+ 0 -1 1902 4.9165110103785992e-03
+
+ -1.9556050002574921e-01 9.6965387463569641e-02
+ <_>
+
+ 0 -1 1903 6.0989488847553730e-03
+
+ 7.8470550477504730e-02 -2.3209640383720398e-01
+ <_>
+
+ 0 -1 1904 7.4874181300401688e-03
+
+ 7.1725919842720032e-03 -5.1566261053085327e-01
+ <_>
+
+ 0 -1 1905 4.2871991172432899e-03
+
+ 4.0530510246753693e-02 -4.1086289286613464e-01
+ <_>
+
+ 0 -1 1906 1.6856180503964424e-02
+
+ -7.7506266534328461e-02 2.3657779395580292e-01
+ <_>
+
+ 0 -1 1907 -1.0347689967602491e-03
+
+ -4.6704441308975220e-01 3.4468568861484528e-02
+ <_>
+
+ 0 -1 1908 1.6820980235934258e-03
+
+ -6.7206740379333496e-02 2.3671430349349976e-01
+ <_>
+
+ 0 -1 1909 -1.2018240056931973e-02
+
+ -2.2372600436210632e-01 7.4281953275203705e-02
+ <_>
+
+ 0 -1 1910 1.3802549801766872e-03
+
+ -9.9990189075469971e-02 1.5270860493183136e-01
+ <_>
+
+ 0 -1 1911 -1.4281070232391357e-01
+
+ -2.8344118595123291e-01 6.2299348413944244e-02
+ <_>
+
+ 0 -1 1912 -1.5463490039110184e-02
+
+ 2.9084190726280212e-01 -5.3395688533782959e-02
+ <_>
+
+ 0 -1 1913 -9.9617196246981621e-04
+
+ -3.6011821031570435e-01 4.1922971606254578e-02
+ <_>
+
+ 0 -1 1914 -2.6956679299473763e-02
+
+ -4.3736729025840759e-01 3.1731128692626953e-02
+ <_>
+
+ 0 -1 1915 -8.7780617177486420e-03
+
+ -5.0374472141265869e-01 2.5146849453449249e-02
+ <_>
+
+ 0 -1 1916 4.2969950300175697e-05
+
+ -1.5406499803066254e-01 8.8478356599807739e-02
+ <_>
+
+ 0 -1 1917 -6.2619051896035671e-03
+
+ 2.2435919940471649e-01 -5.9849821031093597e-02
+ <_>
+
+ 0 -1 1918 -6.4296770142391324e-04
+
+ -2.4377089738845825e-01 5.9389740228652954e-02
+ <_>
+
+ 0 -1 1919 -1.5573870041407645e-04
+
+ -1.6867999732494354e-01 7.8476317226886749e-02
+ <_>
+
+ 0 -1 1920 4.1139780660159886e-04
+
+ -8.9017570018768311e-02 1.4019380509853363e-01
+ <_>
+
+ 0 -1 1921 1.8635790329426527e-03
+
+ 3.8603689521551132e-02 -3.2118970155715942e-01
+ <_>
+
+ 0 -1 1922 1.6059159534052014e-03
+
+ -7.8801520168781281e-02 1.5801469981670380e-01
+ <_>
+
+ 0 -1 1923 8.6740078404545784e-04
+
+ 5.4134480655193329e-02 -2.3538430035114288e-01
+ <_>
+
+ 0 -1 1924 -7.9801032552495599e-04
+
+ 1.3330009579658508e-01 -9.5731817185878754e-02
+ <_>
+
+ 0 -1 1925 -4.8548211343586445e-03
+
+ -2.0736059546470642e-01 6.1038620769977570e-02
+ <_>
+
+ 0 -1 1926 -1.1426740325987339e-02
+
+ 1.7201809585094452e-01 -7.1152277290821075e-02
+ <_>
+
+ 0 -1 1927 8.7062492966651917e-03
+
+ -7.2185672819614410e-02 1.9082969427108765e-01
+ <_>
+
+ 0 -1 1928 -1.1634400580078363e-03
+
+ -1.3751690089702606e-01 9.1818131506443024e-02
+ <_>
+
+ 0 -1 1929 6.8914610892534256e-03
+
+ 9.6225969493389130e-02 -1.3246159255504608e-01
+ <_>
+
+ 0 -1 1930 -2.2426620125770569e-03
+
+ 3.5683241486549377e-01 -3.6280050873756409e-02
+ <_>
+
+ 0 -1 1931 1.2301520444452763e-02
+
+ 4.6940989792346954e-02 -3.0623328685760498e-01
+ <_>
+
+ 0 -1 1932 3.9963610470294952e-03
+
+ -8.2999393343925476e-02 1.5486459434032440e-01
+ <_>
+
+ 0 -1 1933 -2.2026189981261268e-05
+
+ 1.1778099834918976e-01 -1.1899650096893311e-01
+ <_>
+
+ 0 -1 1934 5.8708270080387592e-04
+
+ 5.6864660233259201e-02 -2.2509899735450745e-01
+ <_>
+
+ 0 -1 1935 -5.8760121464729309e-03
+
+ 2.6625269651412964e-01 -4.4570129364728928e-02
+ <_>
+
+ 0 -1 1936 4.3262130930088460e-04
+
+ 5.8049838989973068e-02 -2.1173800528049469e-01
+ <_>
+
+ 0 -1 1937 4.7852578572928905e-03
+
+ -4.0710568428039551e-02 2.9509121179580688e-01
+ <_>
+
+ 0 -1 1938 4.5480159315047786e-05
+
+ -1.8201610445976257e-01 6.0179539024829865e-02
+ <_>
+
+ 0 -1 1939 2.5633929762989283e-03
+
+ -8.7039761245250702e-02 1.2692840397357941e-01
+ <_>
+
+ 0 -1 1940 -4.7383471392095089e-03
+
+ 2.3961830139160156e-01 -4.9914900213479996e-02
+ <_>
+
+ 0 -1 1941 4.4647231698036194e-03
+
+ 4.0540020912885666e-02 -3.2467570900917053e-01
+ <_>
+
+ 0 -1 1942 -6.7061209119856358e-03
+
+ -3.2789680361747742e-01 3.2299648970365524e-02
+ <_>
+
+ 0 -1 1943 7.1761049330234528e-02
+
+ -2.3713670670986176e-02 4.7772058844566345e-01
+ <_>
+
+ 0 -1 1944 3.0584860593080521e-02
+
+ 1.6793910413980484e-02 -7.8061228990554810e-01
+ <_>
+
+ 0 -1 1945 3.8672669325023890e-03
+
+ -2.4876890704035759e-02 5.1260662078857422e-01
+ <_>
+
+ 0 -1 1946 -5.2802208811044693e-02
+
+ -5.0759661197662354e-01 2.3873040452599525e-02
+ <_>
+
+ 0 -1 1947 -6.5651582553982735e-04
+
+ -2.0122329890727997e-01 4.9672801047563553e-02
+ <_>
+
+ 0 -1 1948 8.5785267874598503e-03
+
+ -4.5007020235061646e-02 2.3518909513950348e-01
+ <_>
+
+ 0 -1 1949 -1.2620680499821901e-03
+
+ -1.9962050020694733e-01 5.5564209818840027e-02
+ <_>
+
+ 0 -1 1950 1.4215289615094662e-02
+
+ -4.6983979642391205e-02 2.0781150460243225e-01
+ <_>
+
+ 0 -1 1951 1.6393810510635376e-01
+
+ 1.4973269775509834e-02 -6.5025687217712402e-01
+ <_>
+
+ 0 -1 1952 1.4837640523910522e-01
+
+ 8.1885885447263718e-03 -9.4296187162399292e-01
+ <_>
+
+ 0 -1 1953 1.4631190424552187e-05
+
+ -1.2383759766817093e-01 8.2489579916000366e-02
+ <_>
+
+ 0 -1 1954 -3.3909391611814499e-02
+
+ -2.2818760573863983e-01 4.3302498757839203e-02
+ <_>
+
+ 0 -1 1955 3.8288589566946030e-03
+
+ -3.7276919931173325e-02 2.7613049745559692e-01
+ <_>
+
+ 0 -1 1956 8.0947913229465485e-03
+
+ 2.8445359319448471e-02 -3.9388808608055115e-01
+ <_>
+
+ 0 -1 1957 -7.0019601844251156e-04
+
+ 1.2199380248785019e-01 -9.2714257538318634e-02
+ <_>
+
+ 0 -1 1958 3.4412490203976631e-03
+
+ -4.8972681164741516e-02 2.0617230236530304e-01
+ <_>
+
+ 0 -1 1959 -1.6337490081787109e-01
+
+ -6.1850237846374512e-01 1.6467820852994919e-02
+ <_>
+
+ 0 -1 1960 6.5640709362924099e-03
+
+ 1.1007189750671387e-01 -9.2340007424354553e-02
+ <_>
+
+ 0 -1 1961 4.4708838686347008e-04
+
+ -1.3933309912681580e-01 7.7039696276187897e-02
+ <_>
+
+ 0 -1 1962 1.7568700015544891e-02
+
+ 9.7569692879915237e-03 -8.0032902956008911e-01
+ <_>
+
+ 0 -1 1963 -1.9571769516915083e-03
+
+ 2.8000330924987793e-01 -3.6428239196538925e-02
+ <_>
+
+ 0 -1 1964 5.1913037896156311e-04
+
+ 5.3515341132879257e-02 -1.9425579905509949e-01
+ <_>
+
+ 0 -1 1965 9.6273031085729599e-03
+
+ 3.1317751854658127e-02 -3.1802541017532349e-01
+ <_>
+
+ 0 -1 1966 -5.0332810729742050e-02
+
+ 5.6659060716629028e-01 -1.8494980409741402e-02
+ <_>
+
+ 0 -1 1967 -6.4624901860952377e-03
+
+ -4.1894671320915222e-01 2.7350850403308868e-02
+ <_>
+
+ 0 -1 1968 -5.2857249975204468e-03
+
+ 1.7756509780883789e-01 -5.8377739042043686e-02
+ <_>
+
+ 0 -1 1969 9.9454462528228760e-02
+
+ 1.6487719491124153e-02 -5.8526170253753662e-01
+ <_>
+
+ 0 -1 1970 2.1917840058449656e-04
+
+ -1.0714250057935715e-01 9.1884173452854156e-02
+ <_>
+
+ 0 -1 1971 -4.3873358663404360e-05
+
+ 7.8036926686763763e-02 -1.2723919749259949e-01
+ <_>
+
+ 0 -1 1972 -6.7227642284706235e-04
+
+ -2.5709420442581177e-01 3.8843378424644470e-02
+ <_>
+
+ 0 -1 1973 1.1754270235542208e-04
+
+ -7.9695962369441986e-02 1.2093970179557800e-01
+ <_>
+
+ 0 -1 1974 4.6061190962791443e-01
+
+ 1.3886069878935814e-02 -6.5241271257400513e-01
+ <_>
+
+ 0 -1 1975 1.1115600354969501e-02
+
+ 1.3871660456061363e-02 -6.0222518444061279e-01
+ <_>
+
+ 0 -1 1976 9.0776477009057999e-03
+
+ -3.6118660122156143e-02 2.5702419877052307e-01
+ <_>
+
+ 0 -1 1977 -4.9597548786550760e-04
+
+ 1.1017049849033356e-01 -8.9249506592750549e-02
+ <_>
+
+ 0 -1 1978 1.5807070303708315e-03
+
+ 4.8131279647350311e-02 -2.0215910673141479e-01
+ <_>
+
+ 0 -1 1979 -6.9012932479381561e-02
+
+ -8.1536060571670532e-01 1.0660010389983654e-02
+ <_>
+
+ 0 -1 1980 1.9330780196469277e-04
+
+ -1.1231829971075058e-01 8.5046432912349701e-02
+ <_>
+
+ 0 -1 1981 7.8813207801431417e-04
+
+ -5.5200818926095963e-02 1.7654439806938171e-01
+ <_>
+
+ 0 -1 1982 9.5367128960788250e-04
+
+ 5.4411198943853378e-02 -1.8674199283123016e-01
+ <_>
+
+ 0 -1 1983 -2.3191540967673063e-03
+
+ -2.7544409036636353e-01 3.8513321429491043e-02
+ <_>
+
+ 0 -1 1984 9.5087959198281169e-04
+
+ -6.8218901753425598e-02 1.6082139313220978e-01
+ <_>
+
+ 0 -1 1985 9.5385108143091202e-03
+
+ -3.8826879113912582e-02 3.0370831489562988e-01
+ <_>
+
+ 0 -1 1986 -1.4489189721643925e-02
+
+ -4.6989730000495911e-01 2.3550020530819893e-02
+ <_>
+
+ 0 -1 1987 1.0756050236523151e-02
+
+ 2.0565100014209747e-02 -4.7243130207061768e-01
+ <_>
+
+ 0 -1 1988 -2.0074830390512943e-03
+
+ -2.7946698665618896e-01 3.6021549254655838e-02
+ <_>
+
+ 0 -1 1989 -1.7316909506917000e-03
+
+ 2.0902790129184723e-01 -4.6300981193780899e-02
+ <_>
+
+ 0 -1 1990 1.5234799683094025e-01
+
+ 1.4934250153601170e-02 -6.0461127758026123e-01
+ <_>
+
+ 0 -1 1991 6.3340878114104271e-04
+
+ 5.0307150930166245e-02 -1.8277199566364288e-01
+ <_>
+
+ 0 -1 1992 -8.2793915644288063e-03
+
+ 3.6463031172752380e-01 -2.6474289596080780e-02
+ <_>
+
+ 0 -1 1993 1.3667670078575611e-02
+
+ 1.2511620298027992e-02 -8.9023828506469727e-01
+ <_>
+
+ 0 -1 1994 2.0979309920221567e-03
+
+ -8.0247193574905396e-02 1.2989950180053711e-01
+ <_>
+
+ 0 -1 1995 -8.9776562526822090e-03
+
+ 1.7411080002784729e-01 -6.1771109700202942e-02
+ <_>
+
+ 0 -1 1996 1.2094390112906694e-03
+
+ 6.8711720407009125e-02 -1.6561290621757507e-01
+ <_>
+
+ 0 -1 1997 6.8200258538126945e-03
+
+ 5.7795759290456772e-02 -1.8231619894504547e-01
+ <_>
+
+ 0 -1 1998 -1.8268059939146042e-03
+
+ 1.3340330123901367e-01 -7.5343966484069824e-02
+ <_>
+
+ 0 -1 1999 7.9908408224582672e-03
+
+ -4.5094471424818039e-02 2.4594159424304962e-01
+ <_>
+
+ 0 -1 2000 -2.5262041017413139e-03
+
+ -2.0763960480690002e-01 5.2334129810333252e-02
+ <_>
+
+ 0 -1 2001 -7.4825510382652283e-02
+
+ -5.4688757658004761e-01 1.7803389579057693e-02
+ <_>
+
+ 0 -1 2002 -3.3099399879574776e-03
+
+ 3.3455818891525269e-01 -2.8966419398784637e-02
+ <_>
+
+ 0 -1 2003 8.2276277244091034e-03
+
+ 4.1579861193895340e-02 -2.6652270555496216e-01
+ <_>
+
+ 0 -1 2004 3.1686299480497837e-03
+
+ -4.1817110031843185e-02 2.9769781231880188e-01
+ <_>
+
+ 0 -1 2005 1.5170290134847164e-02
+
+ 4.3392360210418701e-02 -2.4617969989776611e-01
+ <_>
+
+ 0 -1 2006 -1.5946379862725735e-03
+
+ 1.5057189762592316e-01 -7.3017738759517670e-02
+ <_>
+
+ 0 -1 2007 -8.5226353257894516e-03
+
+ -1.5050080418586731e-01 6.9656036794185638e-02
+ <_>
+
+ 0 -1 2008 -1.1418120004236698e-02
+
+ 1.2974749505519867e-01 -9.5122329890727997e-02
+ <_>
+
+ 0 -1 2009 -2.8856399655342102e-01
+
+ -2.1124540269374847e-01 4.7410819679498672e-02
+ <_>
+
+ 0 -1 2010 -3.9014229550957680e-03
+
+ -2.6843780279159546e-01 3.8698658347129822e-02
+ <_>
+
+ 0 -1 2011 -3.5567739978432655e-03
+
+ 2.3385030031204224e-01 -4.5723881572484970e-02
+ <_>
+
+ 0 -1 2012 -6.4394129440188408e-03
+
+ -6.0463881492614746e-01 1.6156049445271492e-02
+ <_>
+
+ 0 -1 2013 -7.4861319735646248e-03
+
+ 1.6867969930171967e-01 -5.5975880473852158e-02
+ <_>
+
+ 0 -1 2014 2.3621210129931569e-04
+
+ 5.3596749901771545e-02 -2.1872919797897339e-01
+ <_>
+
+ 0 -1 2015 2.6099249720573425e-02
+
+ -5.3937491029500961e-02 2.2728930413722992e-01
+ <_>
+
+ 0 -1 2016 -1.7809759592637420e-03
+
+ 8.6759522557258606e-02 -1.2009979784488678e-01
+ <_>
+
+ 0 -1 2017 -1.1987469770247117e-04
+
+ -1.5347549319267273e-01 7.0707783102989197e-02
+ <_>
+
+ 0 -1 2018 -6.8248361349105835e-03
+
+ -3.7341019511222839e-01 2.6779960840940475e-02
+ <_>
+
+ 0 -1 2019 -1.3119089999236166e-04
+
+ -1.1640869826078415e-01 8.7211161851882935e-02
+ <_>
+
+ 0 -1 2020 -1.8228540429845452e-03
+
+ 1.5664499998092651e-01 -6.8006090819835663e-02
+ <_>
+
+ 0 -1 2021 2.6267999783158302e-03
+
+ -3.6987219005823135e-02 2.6393121480941772e-01
+ <_>
+
+ 0 -1 2022 -7.0677183568477631e-02
+
+ -2.8295999765396118e-01 3.5035520792007446e-02
+ <_>
+
+ 0 -1 2023 1.8061319366097450e-02
+
+ -2.8041649609804153e-02 3.5313779115676880e-01
+ <_>
+
+ 0 -1 2024 9.2649407451972365e-04
+
+ 4.4600278139114380e-02 -2.2788539528846741e-01
+ <_>
+
+ 0 -1 2025 -5.3023721557110548e-04
+
+ -2.0866680145263672e-01 6.2718503177165985e-02
+ <_>
+
+ 0 -1 2026 3.6058931145817041e-03
+
+ -6.7796908318996429e-02 1.4900009334087372e-01
+ <_>
+
+ 0 -1 2027 8.5915643721818924e-03
+
+ -4.5626759529113770e-02 2.3078480362892151e-01
+ <_>
+
+ 0 -1 2028 -8.8329352438449860e-03
+
+ -4.1117089986801147e-01 2.8230689465999603e-02
+ <_>
+
+ 0 -1 2029 4.0959479520097375e-04
+
+ 5.3656630218029022e-02 -1.8243549764156342e-01
+ <_>
+
+ 0 -1 2030 -2.5011589750647545e-03
+
+ 1.6313549876213074e-01 -6.0954701155424118e-02
+ <_>
+
+ 0 -1 2031 -1.4622169546782970e-02
+
+ -4.9988400936126709e-01 1.8572760745882988e-02
+ <_>
+
+ 0 -1 2032 -6.3790678977966309e-02
+
+ -4.8329600691795349e-01 1.7903389409184456e-02
+ <_>
+
+ 0 -1 2033 -1.6671139746904373e-02
+
+ -2.6661589741706848e-01 3.4886009991168976e-02
+ <_>
+
+ 0 -1 2034 -1.2526069767773151e-02
+
+ 3.4061339497566223e-01 -2.8094800189137459e-02
+ <_>
+
+ 0 -1 2035 4.8325158655643463e-02
+
+ -3.3176191151142120e-02 2.9025658965110779e-01
+ <_>
+
+ 0 -1 2036 1.3246550224721432e-03
+
+ 3.7181440740823746e-02 -2.6850658655166626e-01
+ <_>
+
+ 0 -1 2037 -2.2221319377422333e-01
+
+ -8.9892768859863281e-01 1.0064439848065376e-02
+ <_>
+
+ 0 -1 2038 1.2954319827258587e-03
+
+ -1.0161759704351425e-01 9.0588621795177460e-02
+ <_>
+
+ 0 -1 2039 1.3794669881463051e-02
+
+ -7.4244648218154907e-02 1.4314259588718414e-01
+ <_>
+
+ 0 -1 2040 8.5643801139667630e-04
+
+ 5.9753969311714172e-02 -1.8660190701484680e-01
+ <_>
+
+ 0 -1 2041 -2.3317540064454079e-02
+
+ -6.9259917736053467e-01 1.3667319901287556e-02
+ <_>
+
+ 0 -1 2042 1.6281680436804891e-03
+
+ -6.1060748994350433e-02 1.5505290031433105e-01
+ <_>
+
+ 0 -1 2043 -1.2380329892039299e-02
+
+ -1.5146850049495697e-01 6.1767600476741791e-02
+ <_>
+
+ 0 -1 2044 1.8393599893897772e-03
+
+ -3.7167988717556000e-02 2.4822179973125458e-01
+ <_>
+
+ 0 -1 2045 3.5529870074242353e-03
+
+ -2.9200790449976921e-02 3.3592289686203003e-01
+ <_>
+
+ 0 -1 2046 1.0305979521945119e-03
+
+ 3.7694081664085388e-02 -2.9085698723793030e-01
+ <_>
+
+ 0 -1 2047 2.9916960556874983e-05
+
+ -8.8014192879199982e-02 1.0515210032463074e-01
+ <_>
+
+ 0 -1 2048 -4.1505339322611690e-04
+
+ 6.5726242959499359e-02 -1.5021100640296936e-01
+ <_>
+
+ 0 -1 2049 -1.4631619706051424e-05
+
+ 7.8170351684093475e-02 -1.1962439864873886e-01
+ <_>
+
+ 0 -1 2050 -4.3779090046882629e-03
+
+ 2.0752459764480591e-01 -5.2089329808950424e-02
+ <_>
+
+ 0 -1 2051 4.7036199248395860e-04
+
+ 6.3348479568958282e-02 -1.8767729401588440e-01
+ <_>
+
+ 0 -1 2052 1.4788640328333713e-05
+
+ -9.5828853547573090e-02 1.1213099956512451e-01
+ <_>
+
+ 0 -1 2053 3.7048431113362312e-04
+
+ -9.8723009228706360e-02 9.8647676408290863e-02
+ <_>
+
+ 0 -1 2054 -1.8590339459478855e-03
+
+ -2.6873630285263062e-01 3.8352578878402710e-02
+ <_>
+
+ 0 -1 2055 -7.0764529518783092e-03
+
+ -1.5984000265598297e-01 5.7841330766677856e-02
+ <_>
+
+ 0 -1 2056 1.4920010231435299e-02
+
+ -5.1178149878978729e-02 1.9242909550666809e-01
+ <_>
+
+ 0 -1 2057 -5.0713191740214825e-03
+
+ 1.3863259553909302e-01 -1.1121229827404022e-01
+ <_>
+
+ 0 -1 2058 -1.5005500055849552e-02
+
+ 4.8583930730819702e-01 -1.8811760470271111e-02
+ <_>
+
+ 0 -1 2059 -2.0439480431377888e-03
+
+ -3.2754859328269958e-01 2.7816310524940491e-02
+ <_>
+
+ 0 -1 2060 -1.3060690253041685e-04
+
+ 9.8868042230606079e-02 -8.4957577288150787e-02
+ <_>
+
+ 0 -1 2061 8.8742617517709732e-03
+
+ -2.5235600769519806e-02 3.2389879226684570e-01
+ <_>
+
+ 0 -1 2062 7.0397509261965752e-04
+
+ 5.6327521800994873e-02 -1.7392079532146454e-01
+ <_>
+
+ 0 -1 2063 -2.5402469560503960e-02
+
+ 1.9675390422344208e-01 -4.7362301498651505e-02
+ <_>
+
+ 0 -1 2064 -9.3743661418557167e-03
+
+ -1.5204219520092010e-01 5.9932630509138107e-02
+ <_>
+ 178
+ -1.3418790102005005e+00
+
+ <_>
+
+ 0 -1 2065 4.0453020483255386e-02
+
+ -2.3637829720973969e-01 2.8865531086921692e-01
+ <_>
+
+ 0 -1 2066 -1.1056049726903439e-02
+
+ 1.6062900424003601e-01 -2.6259741187095642e-01
+ <_>
+
+ 0 -1 2067 -3.9778949576430023e-04
+
+ 1.1591099947690964e-01 -2.7081018686294556e-01
+ <_>
+
+ 0 -1 2068 1.0191530454903841e-03
+
+ -2.0969370007514954e-01 1.3642899692058563e-01
+ <_>
+
+ 0 -1 2069 3.6101979203522205e-03
+
+ -2.1725459396839142e-01 1.2617790699005127e-01
+ <_>
+
+ 0 -1 2070 4.4545531272888184e-04
+
+ -1.5974539518356323e-01 1.2596489489078522e-01
+ <_>
+
+ 0 -1 2071 5.8226222172379494e-03
+
+ -1.5484449267387390e-01 9.7783811390399933e-02
+ <_>
+
+ 0 -1 2072 -2.1416260860860348e-03
+
+ -3.6377671360969543e-01 4.0103349834680557e-02
+ <_>
+
+ 0 -1 2073 -2.6691620587371290e-04
+
+ 8.4470756351947784e-02 -1.7496100068092346e-01
+ <_>
+
+ 0 -1 2074 -5.4352330043911934e-03
+
+ -3.1830930709838867e-01 4.9786038696765900e-02
+ <_>
+
+ 0 -1 2075 -1.5426309546455741e-03
+
+ -2.1333709359169006e-01 6.4884513616561890e-02
+ <_>
+
+ 0 -1 2076 -2.7932289522141218e-03
+
+ 2.5483250617980957e-01 -6.5170928835868835e-02
+ <_>
+
+ 0 -1 2077 1.3845940120518208e-03
+
+ 3.9304580539464951e-02 -3.7404829263687134e-01
+ <_>
+
+ 0 -1 2078 -3.2193479128181934e-03
+
+ 2.6290428638458252e-01 -5.6396361440420151e-02
+ <_>
+
+ 0 -1 2079 -9.7977351397275925e-03
+
+ 3.2044389843940735e-01 -4.6382289379835129e-02
+ <_>
+
+ 0 -1 2080 -1.7625789623707533e-03
+
+ 1.5050819516181946e-01 -8.8892437517642975e-02
+ <_>
+
+ 0 -1 2081 -3.6096889525651932e-02
+
+ -4.3137839436531067e-01 3.1785801053047180e-02
+ <_>
+
+ 0 -1 2082 2.0813369192183018e-03
+
+ -6.5957918763160706e-02 1.9275289773941040e-01
+ <_>
+
+ 0 -1 2083 -6.0533690266311169e-03
+
+ -3.1374609470367432e-01 5.1007431000471115e-02
+ <_>
+
+ 0 -1 2084 3.7253410555422306e-03
+
+ -6.1402589082717896e-02 2.5631371140480042e-01
+ <_>
+
+ 0 -1 2085 5.0668260082602501e-03
+
+ 5.7962730526924133e-02 -2.4340160191059113e-01
+ <_>
+
+ 0 -1 2086 2.8038739692419767e-03
+
+ -7.0329703390598297e-02 2.1375860273838043e-01
+ <_>
+
+ 0 -1 2087 1.5925259795039892e-03
+
+ 2.6637760922312737e-02 -5.1129138469696045e-01
+ <_>
+
+ 0 -1 2088 2.9422679290291853e-05
+
+ -2.1710200607776642e-01 6.4985051751136780e-02
+ <_>
+
+ 0 -1 2089 -2.2399190129362978e-05
+
+ 8.1582568585872650e-02 -1.5135610103607178e-01
+ <_>
+
+ 0 -1 2090 6.7072827368974686e-04
+
+ 1.0502190142869949e-01 -1.1787360161542892e-01
+ <_>
+
+ 0 -1 2091 -1.5262300148606300e-03
+
+ -3.4620371460914612e-01 3.9244089275598526e-02
+ <_>
+
+ 0 -1 2092 1.8151829717680812e-03
+
+ -7.4669457972049713e-02 1.6847759485244751e-01
+ <_>
+
+ 0 -1 2093 5.8078771689906716e-04
+
+ -9.7952410578727722e-02 1.4192749559879303e-01
+ <_>
+
+ 0 -1 2094 -8.9623313397169113e-03
+
+ -1.9601620733737946e-01 6.6268041729927063e-02
+ <_>
+
+ 0 -1 2095 1.1146809905767441e-01
+
+ 1.7000140622258186e-02 -6.4917707443237305e-01
+ <_>
+
+ 0 -1 2096 -1.7872039461508393e-04
+
+ -1.4053599536418915e-01 8.0108702182769775e-02
+ <_>
+
+ 0 -1 2097 -4.6587768010795116e-03
+
+ 1.9530229270458221e-01 -5.8602340519428253e-02
+ <_>
+
+ 0 -1 2098 3.4576000180095434e-03
+
+ 5.9805799275636673e-02 -2.1990789473056793e-01
+ <_>
+
+ 0 -1 2099 -1.9979270291514695e-04
+
+ -1.3726149499416351e-01 8.3430230617523193e-02
+ <_>
+
+ 0 -1 2100 -4.8079751431941986e-03
+
+ 5.5041921138763428e-01 -2.0715299993753433e-02
+ <_>
+
+ 0 -1 2101 -7.3389292083447799e-06
+
+ 7.5302027165889740e-02 -1.4486590027809143e-01
+ <_>
+
+ 0 -1 2102 -3.5799799952656031e-03
+
+ 2.6277220249176025e-01 -4.2550459504127502e-02
+ <_>
+
+ 0 -1 2103 1.1689850362017751e-03
+
+ -1.0984169691801071e-01 1.2971849739551544e-01
+ <_>
+
+ 0 -1 2104 3.2639548182487488e-02
+
+ 3.1038379296660423e-02 -3.9474260807037354e-01
+ <_>
+
+ 0 -1 2105 1.1596709955483675e-03
+
+ 5.2021898329257965e-02 -2.2035829722881317e-01
+ <_>
+
+ 0 -1 2106 -1.4262240147218108e-03
+
+ 1.0745699703693390e-01 -1.0067079961299896e-01
+ <_>
+
+ 0 -1 2107 -2.3668329417705536e-01
+
+ -7.3174351453781128e-01 1.6999609768390656e-02
+ <_>
+
+ 0 -1 2108 1.9279429398011416e-04
+
+ -1.3248440623283386e-01 7.8186027705669403e-02
+ <_>
+
+ 0 -1 2109 -1.7292149364948273e-02
+
+ -9.7199842333793640e-02 1.1069560050964355e-01
+ <_>
+
+ 0 -1 2110 -1.2431619688868523e-03
+
+ 1.7741470038890839e-01 -7.2548337280750275e-02
+ <_>
+
+ 0 -1 2111 2.1754560293629766e-05
+
+ -9.6952050924301147e-02 1.0899409651756287e-01
+ <_>
+
+ 0 -1 2112 3.0975879053585231e-04
+
+ 6.2249891459941864e-02 -1.7384719848632812e-01
+ <_>
+
+ 0 -1 2113 -1.1590570211410522e-02
+
+ 2.6162809133529663e-01 -4.1994079947471619e-02
+ <_>
+
+ 0 -1 2114 1.8150920048356056e-02
+
+ 2.6353549212217331e-02 -4.4685411453247070e-01
+ <_>
+
+ 0 -1 2115 8.0223509576171637e-04
+
+ -1.2143869698047638e-01 8.7092787027359009e-02
+ <_>
+
+ 0 -1 2116 -1.4258639421314001e-03
+
+ 1.9236080348491669e-01 -5.2987430244684219e-02
+ <_>
+
+ 0 -1 2117 -2.4536260752938688e-04
+
+ -1.6683700680732727e-01 6.5604820847511292e-02
+ <_>
+
+ 0 -1 2118 2.2050029656384140e-05
+
+ -9.3477472662925720e-02 1.0711719840764999e-01
+ <_>
+
+ 0 -1 2119 4.7658861149102449e-04
+
+ -8.0596633255481720e-02 1.2512689828872681e-01
+ <_>
+
+ 0 -1 2120 4.0533850551582873e-04
+
+ 6.8990617990493774e-02 -1.5740759670734406e-01
+ <_>
+
+ 0 -1 2121 -1.6471749171614647e-02
+
+ -5.9667861461639404e-01 1.8876109272241592e-02
+ <_>
+
+ 0 -1 2122 2.2267159074544907e-03
+
+ -4.5803830027580261e-02 2.3071089386940002e-01
+ <_>
+
+ 0 -1 2123 4.9383189529180527e-02
+
+ 1.9837729632854462e-02 -5.9306108951568604e-01
+ <_>
+
+ 0 -1 2124 8.6411498486995697e-03
+
+ 2.8697369620203972e-02 -3.5161119699478149e-01
+ <_>
+
+ 0 -1 2125 -4.8241391777992249e-03
+
+ 2.2474339604377747e-01 -4.8463210463523865e-02
+ <_>
+
+ 0 -1 2126 -8.6174849420785904e-03
+
+ -5.7088959217071533e-01 1.9183190539479256e-02
+ <_>
+
+ 0 -1 2127 -5.7220697635784745e-04
+
+ 1.1697269976139069e-01 -8.8938057422637939e-02
+ <_>
+
+ 0 -1 2128 1.1997730471193790e-03
+
+ 8.4181122481822968e-02 -1.2565499544143677e-01
+ <_>
+
+ 0 -1 2129 2.6049909647554159e-03
+
+ 5.9500031173229218e-02 -2.0638149976730347e-01
+ <_>
+
+ 0 -1 2130 -1.4789920533075929e-03
+
+ 2.5114980340003967e-01 -4.7535050660371780e-02
+ <_>
+
+ 0 -1 2131 -2.5746721029281616e-01
+
+ -7.3038768768310547e-01 1.5440680086612701e-02
+ <_>
+
+ 0 -1 2132 -1.2104290071874857e-03
+
+ 1.8646970391273499e-01 -5.5789809674024582e-02
+ <_>
+
+ 0 -1 2133 3.4140399657189846e-04
+
+ 6.7707672715187073e-02 -1.5597160160541534e-01
+ <_>
+
+ 0 -1 2134 3.1749058980494738e-03
+
+ 3.5003460943698883e-02 -2.9529309272766113e-01
+ <_>
+
+ 0 -1 2135 4.4338819384574890e-01
+
+ 1.4550019986927509e-02 -6.1034661531448364e-01
+ <_>
+
+ 0 -1 2136 3.9458259940147400e-02
+
+ -4.5779328793287277e-02 2.2927519679069519e-01
+ <_>
+
+ 0 -1 2137 3.0410829931497574e-03
+
+ 1.6304129734635353e-02 -5.7491117715835571e-01
+ <_>
+
+ 0 -1 2138 -1.4853020012378693e-01
+
+ -5.6220901012420654e-01 1.5771050006151199e-02
+ <_>
+
+ 0 -1 2139 4.4339009036775678e-05
+
+ -9.1284371912479401e-02 1.0920979827642441e-01
+ <_>
+
+ 0 -1 2140 2.2139810025691986e-03
+
+ -4.7668289393186569e-02 2.2291789948940277e-01
+ <_>
+
+ 0 -1 2141 8.7831966578960419e-02
+
+ 2.6718059554696083e-02 -4.0396329760551453e-01
+ <_>
+
+ 0 -1 2142 -2.2798930294811726e-03
+
+ -1.6160930693149567e-01 6.6071107983589172e-02
+ <_>
+
+ 0 -1 2143 -1.4653969628852792e-05
+
+ 8.5298359394073486e-02 -1.2724019587039948e-01
+ <_>
+
+ 0 -1 2144 1.2313240440562367e-03
+
+ -6.5917477011680603e-02 1.6606420278549194e-01
+ <_>
+
+ 0 -1 2145 4.5110988616943359e-01
+
+ 1.3457960449159145e-02 -7.1525502204895020e-01
+ <_>
+
+ 0 -1 2146 -2.4518640711903572e-02
+
+ -4.3282639980316162e-01 2.0400719717144966e-02
+ <_>
+
+ 0 -1 2147 -1.1901959805982187e-04
+
+ 8.9420333504676819e-02 -1.1834760010242462e-01
+ <_>
+
+ 0 -1 2148 -1.3584910193458200e-03
+
+ 2.4722290039062500e-01 -4.3907400220632553e-02
+ <_>
+
+ 0 -1 2149 6.9289728999137878e-03
+
+ -5.6832619011402130e-02 1.6665740311145782e-01
+ <_>
+
+ 0 -1 2150 -6.9041848182678223e-03
+
+ -1.2742209434509277e-01 7.9310603439807892e-02
+ <_>
+
+ 0 -1 2151 1.2964820489287376e-03
+
+ 7.2462439537048340e-02 -1.6863870620727539e-01
+ <_>
+
+ 0 -1 2152 2.3060059174895287e-02
+
+ -5.0913080573081970e-02 2.1664789319038391e-01
+ <_>
+
+ 0 -1 2153 -4.0960568934679031e-02
+
+ -5.6479138135910034e-01 1.9609550014138222e-02
+ <_>
+
+ 0 -1 2154 7.4867479270324111e-05
+
+ -6.9450333714485168e-02 1.4615139365196228e-01
+ <_>
+
+ 0 -1 2155 -6.8458272144198418e-03
+
+ 6.6049978137016296e-02 -2.0840729773044586e-01
+ <_>
+
+ 0 -1 2156 1.9395649433135986e-02
+
+ 1.6168899834156036e-02 -5.6396162509918213e-01
+ <_>
+
+ 0 -1 2157 -1.6121419321279973e-04
+
+ -1.3194569945335388e-01 7.4094116687774658e-02
+ <_>
+
+ 0 -1 2158 6.6511691547930241e-03
+
+ -5.5261820554733276e-02 1.9894389808177948e-01
+ <_>
+
+ 0 -1 2159 4.5172171667218208e-03
+
+ 3.2863661646842957e-02 -3.0980890989303589e-01
+ <_>
+
+ 0 -1 2160 -4.0247041732072830e-02
+
+ -6.8980348110198975e-01 1.2438739649951458e-02
+ <_>
+
+ 0 -1 2161 7.2544030444987584e-06
+
+ -9.5949873328208923e-02 9.7919799387454987e-02
+ <_>
+
+ 0 -1 2162 -1.6025650501251221e-01
+
+ 4.9472638964653015e-01 -1.8643429502844810e-02
+ <_>
+
+ 0 -1 2163 5.0598900998011231e-04
+
+ -1.2216579914093018e-01 8.6699098348617554e-02
+ <_>
+
+ 0 -1 2164 -1.0506899654865265e-01
+
+ -8.5855627059936523e-01 8.2870386540889740e-03
+ <_>
+
+ 0 -1 2165 -1.8218380212783813e-01
+
+ -5.8477312326431274e-01 1.3160600326955318e-02
+ <_>
+
+ 0 -1 2166 1.6435410827398300e-02
+
+ 1.6296360641717911e-02 -5.5137562751770020e-01
+ <_>
+
+ 0 -1 2167 1.9282519817352295e-02
+
+ -2.5027479976415634e-02 4.3645161390304565e-01
+ <_>
+
+ 0 -1 2168 3.4772949293255806e-03
+
+ 3.1632781028747559e-02 -2.9246759414672852e-01
+ <_>
+
+ 0 -1 2169 2.2620869800448418e-02
+
+ -2.3985739797353745e-02 4.3105301260948181e-01
+ <_>
+
+ 0 -1 2170 -1.8172320723533630e-01
+
+ -1.8037860095500946e-01 5.1903489977121353e-02
+ <_>
+
+ 0 -1 2171 -4.3819830752909184e-03
+
+ -2.8302851319313049e-01 3.3024039119482040e-02
+ <_>
+
+ 0 -1 2172 -1.5246120281517506e-02
+
+ 2.3519919812679291e-01 -4.1242249310016632e-02
+ <_>
+
+ 0 -1 2173 3.9043289422988892e-01
+
+ 2.8530629351735115e-02 -3.5845771431922913e-01
+ <_>
+
+ 0 -1 2174 3.9103450253605843e-03
+
+ -5.1523748785257339e-02 1.7829769849777222e-01
+ <_>
+
+ 0 -1 2175 -1.0847560130059719e-02
+
+ -4.8355281352996826e-01 1.8765790387988091e-02
+ <_>
+
+ 0 -1 2176 5.7015339843928814e-03
+
+ 1.2250830419361591e-02 -7.0457488298416138e-01
+ <_>
+
+ 0 -1 2177 -1.1917110532522202e-03
+
+ 1.8404430150985718e-01 -5.0144620239734650e-02
+ <_>
+
+ 0 -1 2178 4.0988530963659286e-04
+
+ -9.7399666905403137e-02 1.0874579846858978e-01
+ <_>
+
+ 0 -1 2179 4.5295488089323044e-03
+
+ 4.5356839895248413e-02 -2.1069140732288361e-01
+ <_>
+
+ 0 -1 2180 -5.4893731139600277e-03
+
+ 2.9642790555953979e-01 -3.5870831459760666e-02
+ <_>
+
+ 0 -1 2181 1.9906361121684313e-03
+
+ 3.4332871437072754e-02 -3.1506469845771790e-01
+ <_>
+
+ 0 -1 2182 8.3358466625213623e-02
+
+ 1.9684519618749619e-02 -4.4279980659484863e-01
+ <_>
+
+ 0 -1 2183 3.0363420955836773e-03
+
+ -3.3693831413984299e-02 2.6669681072235107e-01
+ <_>
+
+ 0 -1 2184 5.7799968868494034e-02
+
+ 8.5875885561108589e-03 -9.8965817689895630e-01
+ <_>
+
+ 0 -1 2185 -7.8585641458630562e-03
+
+ 2.0088459551334381e-01 -4.6583641320466995e-02
+ <_>
+
+ 0 -1 2186 1.9253200152888894e-03
+
+ 4.7922369092702866e-02 -2.2640110552310944e-01
+ <_>
+
+ 0 -1 2187 1.0996909812092781e-02
+
+ 1.6258660703897476e-02 -5.4048168659210205e-01
+ <_>
+
+ 0 -1 2188 1.6405170026700944e-04
+
+ -1.1542510241270065e-01 7.6001413166522980e-02
+ <_>
+
+ 0 -1 2189 5.3780381567776203e-03
+
+ 1.1179029941558838e-01 -8.4179848432540894e-02
+ <_>
+
+ 0 -1 2190 2.2905960213392973e-03
+
+ -5.7969480752944946e-02 1.6899429261684418e-01
+ <_>
+
+ 0 -1 2191 6.3102580606937408e-03
+
+ 4.1471399366855621e-02 -2.0478209853172302e-01
+ <_>
+
+ 0 -1 2192 -1.4342570304870605e-01
+
+ -7.8573477268218994e-01 1.1634309776127338e-02
+ <_>
+
+ 0 -1 2193 1.2364640133455396e-03
+
+ -5.1800731569528580e-02 1.7734350264072418e-01
+ <_>
+
+ 0 -1 2194 -2.0046550780534744e-02
+
+ -3.1420910358428955e-01 2.8849070891737938e-02
+ <_>
+
+ 0 -1 2195 1.0868109762668610e-01
+
+ 1.6183530911803246e-02 -5.1956307888031006e-01
+ <_>
+
+ 0 -1 2196 5.1173489540815353e-02
+
+ -3.2460309565067291e-02 3.1230181455612183e-01
+ <_>
+
+ 0 -1 2197 1.3251069933176041e-02
+
+ 2.3655060678720474e-02 -4.4210249185562134e-01
+ <_>
+
+ 0 -1 2198 -2.0110961049795151e-03
+
+ 1.0359399765729904e-01 -9.3961462378501892e-02
+ <_>
+
+ 0 -1 2199 -3.2843051012605429e-03
+
+ 3.3196929097175598e-01 -2.9921280220150948e-02
+ <_>
+
+ 0 -1 2200 8.8341237278655171e-04
+
+ 5.9891819953918457e-02 -1.6192750632762909e-01
+ <_>
+
+ 0 -1 2201 8.4265992045402527e-03
+
+ -3.6928750574588776e-02 2.3691199719905853e-01
+ <_>
+
+ 0 -1 2202 -1.4503750207950361e-05
+
+ 7.7373847365379333e-02 -1.3290609419345856e-01
+ <_>
+
+ 0 -1 2203 8.0891689285635948e-03
+
+ 2.8817569836974144e-02 -3.0961230397224426e-01
+ <_>
+
+ 0 -1 2204 1.0339939966797829e-02
+
+ -2.4850569665431976e-02 3.7060049176216125e-01
+ <_>
+
+ 0 -1 2205 -2.2790539078414440e-03
+
+ -2.2051370143890381e-01 4.1877530515193939e-02
+ <_>
+
+ 0 -1 2206 -1.7716860165819526e-03
+
+ 1.4205080270767212e-01 -6.5252363681793213e-02
+ <_>
+
+ 0 -1 2207 -6.9317207671701908e-03
+
+ -3.3556079864501953e-01 2.7605969458818436e-02
+ <_>
+
+ 0 -1 2208 -4.2506060563027859e-03
+
+ 2.3591980338096619e-01 -3.7345319986343384e-02
+ <_>
+
+ 0 -1 2209 1.5317599754780531e-03
+
+ 3.9657011628150940e-02 -2.3438200354576111e-01
+ <_>
+
+ 0 -1 2210 1.4941049739718437e-03
+
+ -6.0311999171972275e-02 1.4468440413475037e-01
+ <_>
+
+ 0 -1 2211 -5.2249869331717491e-03
+
+ -4.0660250186920166e-01 2.3257270455360413e-02
+ <_>
+
+ 0 -1 2212 6.4759532688185573e-04
+
+ 6.4828239381313324e-02 -1.2987309694290161e-01
+ <_>
+
+ 0 -1 2213 3.2836120226420462e-04
+
+ 6.1917629092931747e-02 -1.4835810661315918e-01
+ <_>
+
+ 0 -1 2214 -3.4691279288381338e-03
+
+ 1.5662840008735657e-01 -5.7200349867343903e-02
+ <_>
+
+ 0 -1 2215 4.5903379213996232e-04
+
+ 5.2517898380756378e-02 -1.9093179702758789e-01
+ <_>
+
+ 0 -1 2216 -2.6641879230737686e-03
+
+ 1.5235909819602966e-01 -6.8154700100421906e-02
+ <_>
+
+ 0 -1 2217 -8.2513149827718735e-03
+
+ 3.6680310964584351e-01 -2.8480609878897667e-02
+ <_>
+
+ 0 -1 2218 7.1076201274991035e-03
+
+ 1.5445350110530853e-01 -6.7992970347404480e-02
+ <_>
+
+ 0 -1 2219 -4.3808001279830933e-01
+
+ -2.8871530294418335e-01 3.6639489233493805e-02
+ <_>
+
+ 0 -1 2220 6.3719082390889525e-04
+
+ -1.5995030105113983e-01 5.9860341250896454e-02
+ <_>
+
+ 0 -1 2221 -1.9303169392514974e-04
+
+ 8.6703971028327942e-02 -1.0924819856882095e-01
+ <_>
+
+ 0 -1 2222 3.0723758973181248e-03
+
+ 4.8543959856033325e-02 -1.7700059711933136e-01
+ <_>
+
+ 0 -1 2223 1.8341860268265009e-03
+
+ -5.1901239901781082e-02 1.8232129514217377e-01
+ <_>
+
+ 0 -1 2224 6.3172310590744019e-02
+
+ 2.3308899253606796e-02 -4.2870610952377319e-01
+ <_>
+
+ 0 -1 2225 2.4458649568259716e-03
+
+ -8.6425289511680603e-02 1.1974500119686127e-01
+ <_>
+
+ 0 -1 2226 1.1953969951719046e-03
+
+ 1.1685889959335327e-01 -1.0430490225553513e-01
+ <_>
+
+ 0 -1 2227 3.1024610507301986e-04
+
+ 6.2281988561153412e-02 -1.9196020066738129e-01
+ <_>
+
+ 0 -1 2228 -3.1970158219337463e-02
+
+ -6.4184898138046265e-01 1.3087569735944271e-02
+ <_>
+
+ 0 -1 2229 -1.0163170518353581e-03
+
+ -2.5210660696029663e-01 3.4096211194992065e-02
+ <_>
+
+ 0 -1 2230 -5.1776540931314230e-04
+
+ 1.1874090135097504e-01 -8.2813777029514313e-02
+ <_>
+
+ 0 -1 2231 -4.0794219821691513e-03
+
+ -1.6135309636592865e-01 6.5708972513675690e-02
+ <_>
+
+ 0 -1 2232 9.9409874528646469e-03
+
+ -3.0160220339894295e-02 3.5104531049728394e-01
+ <_>
+
+ 0 -1 2233 1.9788760691881180e-03
+
+ -4.4945359230041504e-02 2.3295649886131287e-01
+ <_>
+
+ 0 -1 2234 1.0975249856710434e-01
+
+ 1.6620220616459846e-02 -6.0423362255096436e-01
+ <_>
+
+ 0 -1 2235 -9.2024728655815125e-03
+
+ -5.6000357866287231e-01 1.4122909866273403e-02
+ <_>
+
+ 0 -1 2236 5.8626191457733512e-04
+
+ -1.0622119903564453e-01 8.4198087453842163e-02
+ <_>
+
+ 0 -1 2237 3.3601750619709492e-03
+
+ -2.1583529189229012e-02 4.1820129752159119e-01
+ <_>
+
+ 0 -1 2238 -4.8143669962882996e-02
+
+ -7.2092157602310181e-01 1.4954459853470325e-02
+ <_>
+
+ 0 -1 2239 1.2209859676659107e-02
+
+ 2.1544290706515312e-02 -3.5482150316238403e-01
+ <_>
+
+ 0 -1 2240 -3.9961449801921844e-02
+
+ -8.8848268985748291e-01 9.4328429549932480e-03
+ <_>
+
+ 0 -1 2241 1.5312479808926582e-03
+
+ -6.4070880413055420e-02 1.3569630682468414e-01
+ <_>
+
+ 0 -1 2242 8.9791123173199594e-05
+
+ 5.0932768732309341e-02 -1.8393670022487640e-01
+ <_>
+ 195
+ -1.3934370279312134e+00
+
+ <_>
+
+ 0 -1 2243 -3.8741368800401688e-02
+
+ 2.8778830170631409e-01 -2.3312190175056458e-01
+ <_>
+
+ 0 -1 2244 -2.5511500425636768e-03
+
+ 2.5108599662780762e-01 -2.1116070449352264e-01
+ <_>
+
+ 0 -1 2245 -2.7973129181191325e-04
+
+ 8.9916922152042389e-02 -3.4069269895553589e-01
+ <_>
+
+ 0 -1 2246 1.1981100542470813e-03
+
+ -2.2542229294776917e-01 1.3602660596370697e-01
+ <_>
+
+ 0 -1 2247 -5.6686070747673512e-03
+
+ 8.2847259938716888e-02 -2.8080710768699646e-01
+ <_>
+
+ 0 -1 2248 -2.7642669738270342e-04
+
+ 1.0485479980707169e-01 -1.8848650157451630e-01
+ <_>
+
+ 0 -1 2249 2.0516710355877876e-03
+
+ 3.4714280627667904e-03 -4.8608478903770447e-01
+ <_>
+
+ 0 -1 2250 -1.4435249795496929e-05
+
+ 8.4275819361209869e-02 -1.9356100261211395e-01
+ <_>
+
+ 0 -1 2251 7.4418791336938739e-04
+
+ -1.2526750564575195e-01 1.1769519746303558e-01
+ <_>
+
+ 0 -1 2252 -4.9923241138458252e-02
+
+ -4.0080299973487854e-01 2.7910390868782997e-02
+ <_>
+
+ 0 -1 2253 9.2694535851478577e-03
+
+ -9.1088913381099701e-02 1.7550450563430786e-01
+ <_>
+
+ 0 -1 2254 -7.4646030552685261e-03
+
+ 1.6380469501018524e-01 -1.0385499894618988e-01
+ <_>
+
+ 0 -1 2255 -8.1985909491777420e-03
+
+ -1.9168980419635773e-01 8.5415020585060120e-02
+ <_>
+
+ 0 -1 2256 -8.1690691877156496e-04
+
+ -3.0793309211730957e-01 4.0833581238985062e-02
+ <_>
+
+ 0 -1 2257 2.8902110643684864e-03
+
+ -5.0324201583862305e-02 2.9259419441223145e-01
+ <_>
+
+ 0 -1 2258 8.0008199438452721e-03
+
+ -4.6863578259944916e-02 3.1964871287345886e-01
+ <_>
+
+ 0 -1 2259 -5.8349180035293102e-03
+
+ -1.5489180386066437e-01 8.8137261569499969e-02
+ <_>
+
+ 0 -1 2260 -1.2492289533838630e-03
+
+ -3.6294621229171753e-01 3.6120988428592682e-02
+ <_>
+
+ 0 -1 2261 2.2950479760766029e-02
+
+ -4.7119770199060440e-02 2.8532719612121582e-01
+ <_>
+
+ 0 -1 2262 -6.9193239323794842e-03
+
+ 1.7873649299144745e-01 -7.3547556996345520e-02
+ <_>
+
+ 0 -1 2263 -1.9392240210436285e-04
+
+ 1.3911420106887817e-01 -9.2489100992679596e-02
+ <_>
+
+ 0 -1 2264 1.9811228848993778e-03
+
+ 4.3448008596897125e-02 -3.0942690372467041e-01
+ <_>
+
+ 0 -1 2265 1.6018489375710487e-02
+
+ -3.9718918502330780e-02 3.4248939156532288e-01
+ <_>
+
+ 0 -1 2266 9.3541406095027924e-03
+
+ 3.2482650130987167e-02 -4.4502100348472595e-01
+ <_>
+
+ 0 -1 2267 -1.3822780456393957e-03
+
+ 2.1627070009708405e-01 -5.6410200893878937e-02
+ <_>
+
+ 0 -1 2268 2.5065820664167404e-02
+
+ 2.3123230785131454e-02 -5.3954011201858521e-01
+ <_>
+
+ 0 -1 2269 5.9798579663038254e-02
+
+ 2.8747579082846642e-02 -3.6572590470314026e-01
+ <_>
+
+ 0 -1 2270 -2.7519159484654665e-03
+
+ 1.7491349577903748e-01 -6.3990972936153412e-02
+ <_>
+
+ 0 -1 2271 -3.2093640416860580e-02
+
+ -2.5695550441741943e-01 4.0945108979940414e-02
+ <_>
+
+ 0 -1 2272 -2.3349749390035868e-03
+
+ 1.5433880686759949e-01 -7.2836689651012421e-02
+ <_>
+
+ 0 -1 2273 2.6897678617388010e-04
+
+ 7.2721242904663086e-02 -1.5513220429420471e-01
+ <_>
+
+ 0 -1 2274 -8.9813407976180315e-04
+
+ -2.0699620246887207e-01 5.3738221526145935e-02
+ <_>
+
+ 0 -1 2275 3.8521869573742151e-03
+
+ 3.6562010645866394e-02 -2.8075969219207764e-01
+ <_>
+
+ 0 -1 2276 1.3440090231597424e-02
+
+ -3.6046478897333145e-02 3.1876960396766663e-01
+ <_>
+
+ 0 -1 2277 7.7129118144512177e-03
+
+ 9.5960013568401337e-02 -1.1787489801645279e-01
+ <_>
+
+ 0 -1 2278 2.1991880203131586e-04
+
+ -1.3249869644641876e-01 8.4939576685428619e-02
+ <_>
+
+ 0 -1 2279 -7.4781170114874840e-03
+
+ -2.3073039948940277e-01 5.0310928374528885e-02
+ <_>
+
+ 0 -1 2280 8.9175272732973099e-03
+
+ -5.3924769163131714e-02 2.0320640504360199e-01
+ <_>
+
+ 0 -1 2281 2.2819850128144026e-03
+
+ 3.5264909267425537e-02 -3.0841338634490967e-01
+ <_>
+
+ 0 -1 2282 2.6413009036332369e-03
+
+ -3.2939229160547256e-02 3.1721460819244385e-01
+ <_>
+
+ 0 -1 2283 -1.4605689793825150e-03
+
+ -1.7154279351234436e-01 6.3374556601047516e-02
+ <_>
+
+ 0 -1 2284 -3.1993410084396601e-03
+
+ 3.4501680731773376e-01 -3.0717490240931511e-02
+ <_>
+
+ 0 -1 2285 2.3919229861348867e-03
+
+ 2.0887520164251328e-02 -4.8564168810844421e-01
+ <_>
+
+ 0 -1 2286 -3.5997610539197922e-03
+
+ 2.8900530934333801e-01 -3.5605821758508682e-02
+ <_>
+
+ 0 -1 2287 -1.4754279618500732e-05
+
+ 7.2744622826576233e-02 -1.4580619335174561e-01
+ <_>
+
+ 0 -1 2288 1.5968360006809235e-02
+
+ 1.2548550032079220e-02 -6.7445451021194458e-01
+ <_>
+
+ 0 -1 2289 -4.0752082131803036e-03
+
+ 3.1447470188140869e-01 -3.2155450433492661e-02
+ <_>
+
+ 0 -1 2290 7.5432872108649462e-05
+
+ -9.9738657474517822e-02 8.9665092527866364e-02
+ <_>
+
+ 0 -1 2291 -3.9632249623537064e-02
+
+ 2.7617400884628296e-01 -3.4800730645656586e-02
+ <_>
+
+ 0 -1 2292 2.9354610887821764e-05
+
+ -1.4023000001907349e-01 8.8519610464572906e-02
+ <_>
+
+ 0 -1 2293 3.1818989664316177e-02
+
+ 2.9925649985671043e-02 -3.3958339691162109e-01
+ <_>
+
+ 0 -1 2294 1.2690100073814392e-01
+
+ 1.1263390071690083e-02 -8.9932328462600708e-01
+ <_>
+
+ 0 -1 2295 -3.5952320322394371e-03
+
+ 1.7751759290695190e-01 -5.8113489300012589e-02
+ <_>
+
+ 0 -1 2296 -1.9231259822845459e-02
+
+ -3.3173981308937073e-01 4.0587101131677628e-02
+ <_>
+
+ 0 -1 2297 2.2836721036583185e-03
+
+ 3.7206009030342102e-02 -2.8370648622512817e-01
+ <_>
+
+ 0 -1 2298 -1.6381660243496299e-03
+
+ 1.4629170298576355e-01 -6.7781522870063782e-02
+ <_>
+
+ 0 -1 2299 2.1173330023884773e-03
+
+ 2.0773969590663910e-02 -4.3928679823875427e-01
+ <_>
+
+ 0 -1 2300 6.4710620790719986e-03
+
+ -7.2133928537368774e-02 1.3981610536575317e-01
+ <_>
+
+ 0 -1 2301 -3.1431620009243488e-03
+
+ -1.9903449714183807e-01 4.7544669359922409e-02
+ <_>
+
+ 0 -1 2302 1.6056640306487679e-03
+
+ -3.9751898497343063e-02 2.5931739807128906e-01
+ <_>
+
+ 0 -1 2303 4.8740832135081291e-03
+
+ 3.4082379192113876e-02 -2.7611988782882690e-01
+ <_>
+
+ 0 -1 2304 -9.6354109700769186e-05
+
+ -1.0709609836339951e-01 8.3503186702728271e-02
+ <_>
+
+ 0 -1 2305 7.7706458978354931e-03
+
+ -3.0095349997282028e-02 2.9493871331214905e-01
+ <_>
+
+ 0 -1 2306 1.3028859393671155e-04
+
+ -1.1232890188694000e-01 9.4578683376312256e-02
+ <_>
+
+ 0 -1 2307 1.2239719508215785e-03
+
+ 5.1999621093273163e-02 -1.8106269836425781e-01
+ <_>
+
+ 0 -1 2308 -8.7549741147086024e-04
+
+ 1.4276699721813202e-01 -7.5098946690559387e-02
+ <_>
+
+ 0 -1 2309 -8.8081993162631989e-02
+
+ -7.0848828554153442e-01 1.4353640377521515e-02
+ <_>
+
+ 0 -1 2310 -3.2854160666465759e-01
+
+ -4.9687421321868896e-01 1.6604600474238396e-02
+ <_>
+
+ 0 -1 2311 9.8696127533912659e-03
+
+ 1.9364370033144951e-02 -4.9978300929069519e-01
+ <_>
+
+ 0 -1 2312 -2.7273639570921659e-03
+
+ 2.9612520337104797e-01 -3.2831400632858276e-02
+ <_>
+
+ 0 -1 2313 9.9100142717361450e-02
+
+ 1.9799079746007919e-02 -4.7344958782196045e-01
+ <_>
+
+ 0 -1 2314 -6.3501899130642414e-03
+
+ -5.1504719257354736e-01 1.6986010596156120e-02
+ <_>
+
+ 0 -1 2315 2.9596920285257511e-05
+
+ -1.0923019796609879e-01 8.9656107127666473e-02
+ <_>
+
+ 0 -1 2316 2.1247670054435730e-02
+
+ -4.1462190449237823e-02 2.2684270143508911e-01
+ <_>
+
+ 0 -1 2317 -7.2977989912033081e-02
+
+ -6.3227838277816772e-01 1.6678869724273682e-02
+ <_>
+
+ 0 -1 2318 1.6230919957160950e-01
+
+ -2.5661909952759743e-02 3.7533140182495117e-01
+ <_>
+
+ 0 -1 2319 -1.4590819773729891e-05
+
+ 8.5613600909709930e-02 -1.1900989711284637e-01
+ <_>
+
+ 0 -1 2320 2.7719149366021156e-03
+
+ -5.4649248719215393e-02 2.0311379432678223e-01
+ <_>
+
+ 0 -1 2321 -8.7484354153275490e-03
+
+ -7.3674517869949341e-01 1.5571890398859978e-02
+ <_>
+
+ 0 -1 2322 1.3679199852049351e-02
+
+ 7.8902930021286011e-02 -1.1590500175952911e-01
+ <_>
+
+ 0 -1 2323 -1.1001150123775005e-02
+
+ 3.1690821051597595e-01 -3.2384991645812988e-02
+ <_>
+
+ 0 -1 2324 3.2964799902401865e-04
+
+ 5.0016529858112335e-02 -2.0451450347900391e-01
+ <_>
+
+ 0 -1 2325 2.7753270696848631e-03
+
+ -6.7407429218292236e-02 1.5935909748077393e-01
+ <_>
+
+ 0 -1 2326 -2.8740249108523130e-03
+
+ 2.2455960512161255e-01 -5.1031488925218582e-02
+ <_>
+
+ 0 -1 2327 8.1631669308990240e-04
+
+ 6.9849550724029541e-02 -1.4791619777679443e-01
+ <_>
+
+ 0 -1 2328 3.7573580630123615e-03
+
+ 3.1594600528478622e-02 -3.1387978792190552e-01
+ <_>
+
+ 0 -1 2329 -3.4902389161288738e-03
+
+ 1.1638429760932922e-01 -8.5947930812835693e-02
+ <_>
+
+ 0 -1 2330 -2.9415320605039597e-02
+
+ 6.8403428792953491e-01 -1.6140609979629517e-02
+ <_>
+
+ 0 -1 2331 -8.8095385581254959e-03
+
+ -2.0775319635868073e-01 4.9950890243053436e-02
+ <_>
+
+ 0 -1 2332 -1.5459939837455750e-02
+
+ -4.8748460412025452e-01 2.0065559074282646e-02
+ <_>
+
+ 0 -1 2333 -3.6481369286775589e-02
+
+ -5.2395141124725342e-01 1.5850989148020744e-02
+ <_>
+
+ 0 -1 2334 -8.8937362306751311e-05
+
+ -1.3299320638179779e-01 6.6926807165145874e-02
+ <_>
+
+ 0 -1 2335 1.4536709932144731e-04
+
+ 8.7170369923114777e-02 -1.0435820370912552e-01
+ <_>
+
+ 0 -1 2336 1.5216879546642303e-01
+
+ 1.6140580177307129e-02 -6.4970171451568604e-01
+ <_>
+
+ 0 -1 2337 -4.2344830580987036e-04
+
+ 1.8045839667320251e-01 -5.2974540740251541e-02
+ <_>
+
+ 0 -1 2338 1.0672640055418015e-03
+
+ 2.0548380911350250e-02 -4.8242041468620300e-01
+ <_>
+
+ 0 -1 2339 1.5491680242121220e-02
+
+ -5.1540851593017578e-02 1.8363960087299347e-01
+ <_>
+
+ 0 -1 2340 6.1393307987600565e-04
+
+ 2.9983729124069214e-02 -3.1031700968742371e-01
+ <_>
+
+ 0 -1 2341 -1.4619939975091256e-05
+
+ 1.0368499904870987e-01 -9.1634131968021393e-02
+ <_>
+
+ 0 -1 2342 6.9900648668408394e-03
+
+ 1.4683909714221954e-02 -5.9485381841659546e-01
+ <_>
+
+ 0 -1 2343 -5.3000110201537609e-03
+
+ -1.2457770109176636e-01 7.0542782545089722e-02
+ <_>
+
+ 0 -1 2344 5.0289987120777369e-04
+
+ -7.7135689556598663e-02 1.2228710204362869e-01
+ <_>
+
+ 0 -1 2345 1.1190979741513729e-02
+
+ 5.0308059900999069e-02 -1.8091809749603271e-01
+ <_>
+
+ 0 -1 2346 1.7019819468259811e-02
+
+ -3.8816768676042557e-02 3.0851981043815613e-01
+ <_>
+
+ 0 -1 2347 -5.8241572696715593e-04
+
+ 1.2537799775600433e-01 -7.6115481555461884e-02
+ <_>
+
+ 0 -1 2348 2.0036669448018074e-02
+
+ 4.9899481236934662e-02 -1.8082989752292633e-01
+ <_>
+
+ 0 -1 2349 -5.4328818805515766e-03
+
+ 2.3409770429134369e-01 -4.2385410517454147e-02
+ <_>
+
+ 0 -1 2350 -2.9535360226873308e-05
+
+ 5.7630240917205811e-02 -1.5753529965877533e-01
+ <_>
+
+ 0 -1 2351 -1.0352370142936707e-01
+
+ 7.1587741374969482e-01 -1.2989929877221584e-02
+ <_>
+
+ 0 -1 2352 -1.2122269719839096e-02
+
+ -1.4788970351219177e-01 6.6566437482833862e-02
+ <_>
+
+ 0 -1 2353 3.0254870653152466e-03
+
+ -5.4378628730773926e-02 1.7140829563140869e-01
+ <_>
+
+ 0 -1 2354 -5.8111078105866909e-03
+
+ 2.4422149360179901e-01 -5.7652641087770462e-02
+ <_>
+
+ 0 -1 2355 8.2830740138888359e-03
+
+ 2.2720400243997574e-02 -4.2961999773979187e-01
+ <_>
+
+ 0 -1 2356 1.2375120073556900e-02
+
+ 2.2810289636254311e-02 -3.7505629658699036e-01
+ <_>
+
+ 0 -1 2357 1.9211210310459137e-02
+
+ 1.1791059747338295e-02 -6.5529459714889526e-01
+ <_>
+
+ 0 -1 2358 3.1843129545450211e-04
+
+ 6.4130060374736786e-02 -1.3995569944381714e-01
+ <_>
+
+ 0 -1 2359 8.4224628517404199e-04
+
+ -5.4134279489517212e-02 1.7525580525398254e-01
+ <_>
+
+ 0 -1 2360 -1.6085049510002136e-01
+
+ -9.4571417570114136e-01 7.8549478203058243e-03
+ <_>
+
+ 0 -1 2361 -1.6774870455265045e-03
+
+ -1.9166129827499390e-01 4.5787028968334198e-02
+ <_>
+
+ 0 -1 2362 -1.8989649834111333e-03
+
+ 1.5783150494098663e-01 -6.5896913409233093e-02
+ <_>
+
+ 0 -1 2363 4.0205760160461068e-04
+
+ -7.3599092662334442e-02 1.3118380308151245e-01
+ <_>
+
+ 0 -1 2364 2.4369959719479084e-03
+
+ 2.3522870615124702e-02 -4.2745968699455261e-01
+ <_>
+
+ 0 -1 2365 -2.8488409952842630e-05
+
+ 6.3280619680881500e-02 -1.3599009811878204e-01
+ <_>
+
+ 0 -1 2366 1.9538639113306999e-02
+
+ -2.1458270028233528e-02 4.7534748911857605e-01
+ <_>
+
+ 0 -1 2367 -1.6530340071767569e-03
+
+ -1.5323260426521301e-01 5.9455979615449905e-02
+ <_>
+
+ 0 -1 2368 -2.1052840165793896e-03
+
+ 1.1017639935016632e-01 -8.3118103444576263e-02
+ <_>
+
+ 0 -1 2369 -4.5266482047736645e-03
+
+ 2.5815379619598389e-01 -3.5743940621614456e-02
+ <_>
+
+ 0 -1 2370 -1.6275560483336449e-04
+
+ -1.3548290729522705e-01 6.9295726716518402e-02
+ <_>
+
+ 0 -1 2371 -3.3048219047486782e-03
+
+ 1.7806029319763184e-01 -5.2156440913677216e-02
+ <_>
+
+ 0 -1 2372 -5.1905210129916668e-03
+
+ -3.4897321462631226e-01 2.5990990921854973e-02
+ <_>
+
+ 0 -1 2373 1.1190810054540634e-01
+
+ 2.9962029308080673e-02 -2.9597550630569458e-01
+ <_>
+
+ 0 -1 2374 -5.2873138338327408e-03
+
+ 1.8564499914646149e-01 -5.0216298550367355e-02
+ <_>
+
+ 0 -1 2375 2.6098049711436033e-03
+
+ -7.3559276759624481e-02 1.4365130662918091e-01
+ <_>
+
+ 0 -1 2376 -2.8581928927451372e-03
+
+ -1.2605139613151550e-01 7.5433082878589630e-02
+ <_>
+
+ 0 -1 2377 -2.9555680157500319e-05
+
+ 1.0733310133218765e-01 -1.0386200249195099e-01
+ <_>
+
+ 0 -1 2378 5.9023561334470287e-05
+
+ -1.3029119372367859e-01 7.6478391885757446e-02
+ <_>
+
+ 0 -1 2379 -4.3344721198081970e-02
+
+ -6.9299221038818359e-01 1.4173300005495548e-02
+ <_>
+
+ 0 -1 2380 -4.6946998685598373e-02
+
+ -5.5803751945495605e-01 1.2422920204699039e-02
+ <_>
+
+ 0 -1 2381 -1.5189060010015965e-02
+
+ 3.7049770355224609e-01 -2.5564119219779968e-02
+ <_>
+
+ 0 -1 2382 1.6361879184842110e-02
+
+ 2.7049979194998741e-02 -3.4278920292854309e-01
+ <_>
+
+ 0 -1 2383 4.0752839297056198e-02
+
+ 9.3995258212089539e-03 -8.8683712482452393e-01
+ <_>
+
+ 0 -1 2384 -1.0879869572818279e-02
+
+ 5.3260582685470581e-01 -1.9450860098004341e-02
+ <_>
+
+ 0 -1 2385 -7.7538257755804807e-05
+
+ -1.1696249991655350e-01 7.7288232743740082e-02
+ <_>
+
+ 0 -1 2386 -4.0953079587779939e-04
+
+ 1.6214360296726227e-01 -5.3711488842964172e-02
+ <_>
+
+ 0 -1 2387 -1.8464239314198494e-02
+
+ -5.0844788551330566e-01 1.9838189706206322e-02
+ <_>
+
+ 0 -1 2388 -5.6788129732012749e-03
+
+ 3.0203920602798462e-01 -3.0203990638256073e-02
+ <_>
+
+ 0 -1 2389 3.8324110209941864e-04
+
+ -1.6841089725494385e-01 5.4902028292417526e-02
+ <_>
+
+ 0 -1 2390 6.4761550165712833e-03
+
+ 9.5140263438224792e-02 -1.0746160149574280e-01
+ <_>
+
+ 0 -1 2391 -2.4377859663218260e-03
+
+ -1.5647719800472260e-01 6.3407607376575470e-02
+ <_>
+
+ 0 -1 2392 5.4156291298568249e-04
+
+ -6.5962299704551697e-02 1.8441629409790039e-01
+ <_>
+
+ 0 -1 2393 2.7917029336094856e-02
+
+ -2.7590230107307434e-02 3.5032740235328674e-01
+ <_>
+
+ 0 -1 2394 4.6622849185951054e-04
+
+ 4.9628820270299911e-02 -2.2624179720878601e-01
+ <_>
+
+ 0 -1 2395 -3.7316799163818359e-02
+
+ -4.2978170514106750e-01 2.1337680518627167e-02
+ <_>
+
+ 0 -1 2396 -2.6047111023217440e-03
+
+ 3.6650991439819336e-01 -2.5405049324035645e-02
+ <_>
+
+ 0 -1 2397 5.1927138119935989e-03
+
+ 2.6877930387854576e-02 -3.3478578925132751e-01
+ <_>
+
+ 0 -1 2398 3.0462879221886396e-03
+
+ -3.0848290771245956e-02 2.9788359999656677e-01
+ <_>
+
+ 0 -1 2399 -4.1325599886476994e-04
+
+ 7.2986789047718048e-02 -1.2147530168294907e-01
+ <_>
+
+ 0 -1 2400 -1.1456120014190674e-01
+
+ 3.1955468654632568e-01 -3.3379800617694855e-02
+ <_>
+
+ 0 -1 2401 -1.3044059742242098e-03
+
+ -2.0625290274620056e-01 5.4634369909763336e-02
+ <_>
+
+ 0 -1 2402 4.5045089791528881e-05
+
+ -1.1376550048589706e-01 7.8123383224010468e-02
+ <_>
+
+ 0 -1 2403 1.8890319624915719e-03
+
+ -6.5578728914260864e-02 1.7001299560070038e-01
+ <_>
+
+ 0 -1 2404 -5.4107961477711797e-04
+
+ -1.8184140324592590e-01 5.1611810922622681e-02
+ <_>
+
+ 0 -1 2405 4.4150161556899548e-03
+
+ -3.6324780434370041e-02 2.4938449263572693e-01
+ <_>
+
+ 0 -1 2406 -2.1878050640225410e-02
+
+ -1.7643679678440094e-01 5.4811108857393265e-02
+ <_>
+
+ 0 -1 2407 -2.0328219980001450e-03
+
+ 9.4266183674335480e-02 -9.7129411995410919e-02
+ <_>
+
+ 0 -1 2408 2.6754371356219053e-04
+
+ 5.7487931102514267e-02 -1.5442019701004028e-01
+ <_>
+
+ 0 -1 2409 1.4061420224606991e-03
+
+ -5.0268959254026413e-02 1.8814170360565186e-01
+ <_>
+
+ 0 -1 2410 2.0725419744849205e-04
+
+ 7.7659189701080322e-02 -1.2538130581378937e-01
+ <_>
+
+ 0 -1 2411 1.8001600401476026e-03
+
+ -4.2675640434026718e-02 2.2430649399757385e-01
+ <_>
+
+ 0 -1 2412 -4.6744230203330517e-03
+
+ -3.3480471372604370e-01 2.9364420101046562e-02
+ <_>
+
+ 0 -1 2413 7.2110369801521301e-03
+
+ -5.2441328763961792e-02 1.8891569972038269e-01
+ <_>
+
+ 0 -1 2414 2.3627521004527807e-03
+
+ 3.4400060772895813e-02 -2.7200448513031006e-01
+ <_>
+
+ 0 -1 2415 -1.3181479880586267e-03
+
+ 1.7767719924449921e-01 -5.6363631039857864e-02
+ <_>
+
+ 0 -1 2416 -1.7586319881957024e-04
+
+ 9.1534242033958435e-02 -1.0412310063838959e-01
+ <_>
+
+ 0 -1 2417 -2.5801590527407825e-04
+
+ -1.1226779967546463e-01 8.1381812691688538e-02
+ <_>
+
+ 0 -1 2418 9.6790950919967145e-05
+
+ -1.1881929636001587e-01 7.1883186697959900e-02
+ <_>
+
+ 0 -1 2419 8.2001117989420891e-03
+
+ -4.0254529565572739e-02 2.2790899872779846e-01
+ <_>
+
+ 0 -1 2420 -6.7277951166033745e-04
+
+ -7.0979103446006775e-02 1.2775769829750061e-01
+ <_>
+
+ 0 -1 2421 3.7424470065161586e-04
+
+ 6.7096449434757233e-02 -1.3645760715007782e-01
+ <_>
+
+ 0 -1 2422 2.5741120334714651e-03
+
+ -5.4319828748703003e-02 1.6720260679721832e-01
+ <_>
+
+ 0 -1 2423 4.3884690967388451e-04
+
+ 8.2114033401012421e-02 -1.1024679988622665e-01
+ <_>
+
+ 0 -1 2424 -4.8180628567934036e-02
+
+ -7.2217732667922974e-01 1.2223210185766220e-02
+ <_>
+
+ 0 -1 2425 9.9836904555559158e-03
+
+ 1.2195640243589878e-02 -6.7448061704635620e-01
+ <_>
+
+ 0 -1 2426 -1.2344559654593468e-03
+
+ 1.7145380377769470e-01 -5.5381339043378830e-02
+ <_>
+
+ 0 -1 2427 -2.7302911039441824e-03
+
+ -1.3044339418411255e-01 7.4266709387302399e-02
+ <_>
+
+ 0 -1 2428 5.5562541820108891e-04
+
+ -1.0187319666147232e-01 1.0454159975051880e-01
+ <_>
+
+ 0 -1 2429 1.5140359755605459e-03
+
+ 8.2843840122222900e-02 -1.1898560076951981e-01
+ <_>
+
+ 0 -1 2430 -7.2555973019916564e-05
+
+ -1.2512299418449402e-01 7.1132406592369080e-02
+ <_>
+
+ 0 -1 2431 -2.4981278693303466e-04
+
+ -1.3125610351562500e-01 6.8963102996349335e-02
+ <_>
+
+ 0 -1 2432 -6.0206428170204163e-03
+
+ 2.1284450590610504e-01 -4.7603111714124680e-02
+ <_>
+
+ 0 -1 2433 -7.2469102451577783e-04
+
+ 1.0499659925699234e-01 -8.5549630224704742e-02
+ <_>
+
+ 0 -1 2434 6.3740357290953398e-04
+
+ 5.4655481129884720e-02 -1.7353290319442749e-01
+ <_>
+
+ 0 -1 2435 1.0901190340518951e-02
+
+ -5.2832279354333878e-02 1.8752649426460266e-01
+ <_>
+
+ 0 -1 2436 7.0734010078012943e-03
+
+ 6.2958806753158569e-02 -1.6468439996242523e-01
+ <_>
+
+ 0 -1 2437 1.3333789538592100e-03
+
+ -1.2590870261192322e-01 9.4716809689998627e-02
+ <_>
+ 171
+ -1.2739679813385010e+00
+
+ <_>
+
+ 0 -1 2438 6.2053989619016647e-02
+
+ -2.5427028536796570e-01 2.3591099679470062e-01
+ <_>
+
+ 0 -1 2439 5.9534627944231033e-03
+
+ -2.2544360160827637e-01 1.7751939594745636e-01
+ <_>
+
+ 0 -1 2440 7.2477371431887150e-03
+
+ -1.1398050189018250e-01 2.7556711435317993e-01
+ <_>
+
+ 0 -1 2441 -2.2824530024081469e-03
+
+ 8.6277678608894348e-02 -3.1412398815155029e-01
+ <_>
+
+ 0 -1 2442 1.1776019819080830e-02
+
+ -6.2360338866710663e-02 3.4443479776382446e-01
+ <_>
+
+ 0 -1 2443 4.3855342082679272e-03
+
+ 1.8105769529938698e-02 -5.0128728151321411e-01
+ <_>
+
+ 0 -1 2444 1.5859069302678108e-02
+
+ -7.8765146434307098e-02 2.6402598619461060e-01
+ <_>
+
+ 0 -1 2445 3.0654110014438629e-03
+
+ 3.3250238746404648e-02 -4.3427819013595581e-01
+ <_>
+
+ 0 -1 2446 2.5912460405379534e-03
+
+ 4.0578570216894150e-02 -4.9658200144767761e-01
+ <_>
+
+ 0 -1 2447 3.0834769131615758e-04
+
+ -1.4615769684314728e-01 1.2339019775390625e-01
+ <_>
+
+ 0 -1 2448 -2.4314899928867817e-03
+
+ 7.2739332914352417e-02 -1.9999310374259949e-01
+ <_>
+
+ 0 -1 2449 -1.8934230320155621e-03
+
+ -2.3373599350452423e-01 5.6464370340108871e-02
+ <_>
+
+ 0 -1 2450 4.4724289327859879e-03
+
+ 4.7042880207300186e-02 -3.1258741021156311e-01
+ <_>
+
+ 0 -1 2451 1.5810050535947084e-04
+
+ -1.3098309934139252e-01 1.0137090086936951e-01
+ <_>
+
+ 0 -1 2452 1.8755989149212837e-02
+
+ -3.8183789700269699e-02 3.7149110436439514e-01
+ <_>
+
+ 0 -1 2453 -7.4876967119053006e-04
+
+ 1.9981959462165833e-01 -6.0278389602899551e-02
+ <_>
+
+ 0 -1 2454 -9.3861011555418372e-04
+
+ 8.7467707693576813e-02 -1.6001270711421967e-01
+ <_>
+
+ 0 -1 2455 -1.3442989438772202e-03
+
+ -3.3072051405906677e-01 3.6564111709594727e-02
+ <_>
+
+ 0 -1 2456 -1.1384190293028951e-03
+
+ -2.0630060136318207e-01 5.6614480912685394e-02
+ <_>
+
+ 0 -1 2457 2.5966269895434380e-03
+
+ -6.2676019966602325e-02 1.9195850193500519e-01
+ <_>
+
+ 0 -1 2458 1.2499650474637747e-03
+
+ 5.7390280067920685e-02 -1.9605259597301483e-01
+ <_>
+
+ 0 -1 2459 1.1832700110971928e-03
+
+ -8.5788756608963013e-02 1.3682979345321655e-01
+ <_>
+
+ 0 -1 2460 -5.1836138591170311e-03
+
+ 3.1635698676109314e-01 -4.6736460179090500e-02
+ <_>
+
+ 0 -1 2461 -1.3185790181159973e-01
+
+ -6.2279629707336426e-01 1.8798090517520905e-02
+ <_>
+
+ 0 -1 2462 1.8653980223461986e-03
+
+ 3.8837268948554993e-02 -3.0104321241378784e-01
+ <_>
+
+ 0 -1 2463 7.3482480365782976e-04
+
+ -7.6612047851085663e-02 1.5002079308032990e-01
+ <_>
+
+ 0 -1 2464 -1.5738410002086312e-04
+
+ -1.6588360071182251e-01 7.0020452141761780e-02
+ <_>
+
+ 0 -1 2465 5.1779212662950158e-04
+
+ 7.4801079928874969e-02 -1.6358199715614319e-01
+ <_>
+
+ 0 -1 2466 7.5904270634055138e-03
+
+ -5.1050990819931030e-02 2.4487720429897308e-01
+ <_>
+
+ 0 -1 2467 -1.1010250076651573e-02
+
+ -5.8380401134490967e-01 2.0622009411454201e-02
+ <_>
+
+ 0 -1 2468 1.1621849983930588e-01
+
+ 2.5175059214234352e-02 -4.1262671351432800e-01
+ <_>
+
+ 0 -1 2469 -7.4468040838837624e-04
+
+ 1.2729789316654205e-01 -8.9675500988960266e-02
+ <_>
+
+ 0 -1 2470 1.1765309609472752e-02
+
+ 2.0906679332256317e-02 -5.3172761201858521e-01
+ <_>
+
+ 0 -1 2471 -4.4441698119044304e-03
+
+ 1.4282639324665070e-01 -7.8762412071228027e-02
+ <_>
+
+ 0 -1 2472 -4.3369788909330964e-04
+
+ -2.2131459414958954e-01 5.4554950445890427e-02
+ <_>
+
+ 0 -1 2473 -1.9204010022804141e-03
+
+ -2.5610721111297607e-01 4.0600918233394623e-02
+ <_>
+
+ 0 -1 2474 -2.9081690590828657e-03
+
+ 2.0206320285797119e-01 -5.6222829967737198e-02
+ <_>
+
+ 0 -1 2475 -1.4549949810316321e-05
+
+ 9.0000502765178680e-02 -1.1770520359277725e-01
+ <_>
+
+ 0 -1 2476 -5.3217669483274221e-04
+
+ -1.5299430489540100e-01 6.8925492465496063e-02
+ <_>
+
+ 0 -1 2477 -1.4590179547667503e-02
+
+ 2.1776519715785980e-01 -5.1850430667400360e-02
+ <_>
+
+ 0 -1 2478 -4.0213059401139617e-04
+
+ 9.4017893075942993e-02 -1.1027640104293823e-01
+ <_>
+
+ 0 -1 2479 -2.3089889436960220e-03
+
+ 2.4792349338531494e-01 -5.7857040315866470e-02
+ <_>
+
+ 0 -1 2480 3.1196139752864838e-04
+
+ -1.4021940529346466e-01 7.7247492969036102e-02
+ <_>
+
+ 0 -1 2481 -9.1317007318139076e-03
+
+ 4.0242809057235718e-01 -2.8953509405255318e-02
+ <_>
+
+ 0 -1 2482 4.2655199649743736e-04
+
+ 5.3114388138055801e-02 -2.1355339884757996e-01
+ <_>
+
+ 0 -1 2483 3.9956220425665379e-03
+
+ 4.4066920876502991e-02 -2.2994419932365417e-01
+ <_>
+
+ 0 -1 2484 -1.4012040337547660e-03
+
+ 2.7106899023056030e-01 -4.5171830803155899e-02
+ <_>
+
+ 0 -1 2485 3.6064770072698593e-02
+
+ 3.3628080040216446e-02 -3.2830131053924561e-01
+ <_>
+
+ 0 -1 2486 -1.3408949598670006e-04
+
+ -1.3888040184974670e-01 8.0078050494194031e-02
+ <_>
+
+ 0 -1 2487 -6.9480319507420063e-03
+
+ -3.9315450191497803e-01 2.7302930131554604e-02
+ <_>
+
+ 0 -1 2488 -1.4855440240353346e-03
+
+ 1.9761669635772705e-01 -5.1562070846557617e-02
+ <_>
+
+ 0 -1 2489 -1.3757539913058281e-02
+
+ -5.5620980262756348e-01 1.8301570788025856e-02
+ <_>
+
+ 0 -1 2490 8.4021147340536118e-03
+
+ 1.3690480031073093e-02 -6.3171321153640747e-01
+ <_>
+
+ 0 -1 2491 -1.7845979891717434e-04
+
+ -1.4535990357398987e-01 6.3921131193637848e-02
+ <_>
+
+ 0 -1 2492 -1.1326850391924381e-02
+
+ 6.5870612859725952e-01 -1.6460629180073738e-02
+ <_>
+
+ 0 -1 2493 1.5268150018528104e-03
+
+ -6.0389541089534760e-02 1.5454010665416718e-01
+ <_>
+
+ 0 -1 2494 -6.0069989413022995e-03
+
+ 2.5859731435775757e-01 -4.9466971307992935e-02
+ <_>
+
+ 0 -1 2495 -7.4241221882402897e-03
+
+ -3.8806110620498657e-01 2.9393190518021584e-02
+ <_>
+
+ 0 -1 2496 -3.9992430247366428e-03
+
+ -1.3788199424743652e-01 7.7991880476474762e-02
+ <_>
+
+ 0 -1 2497 1.0202969860984012e-04
+
+ 7.2710737586021423e-02 -1.7032580077648163e-01
+ <_>
+
+ 0 -1 2498 4.0135599556379020e-04
+
+ -9.2788018286228180e-02 1.2305440008640289e-01
+ <_>
+
+ 0 -1 2499 -9.7611807286739349e-03
+
+ -3.6630520224571228e-01 2.9748899862170219e-02
+ <_>
+
+ 0 -1 2500 -3.0745539069175720e-01
+
+ -7.8651821613311768e-01 1.3058690354228020e-02
+ <_>
+
+ 0 -1 2501 -6.0231718234717846e-03
+
+ -5.0900238752365112e-01 1.8171619623899460e-02
+ <_>
+
+ 0 -1 2502 -2.3784159566275775e-04
+
+ -9.9822521209716797e-02 1.0530869662761688e-01
+ <_>
+
+ 0 -1 2503 1.3516229810193181e-03
+
+ -6.6444016993045807e-02 1.5425109863281250e-01
+ <_>
+
+ 0 -1 2504 -1.6924949595704675e-03
+
+ -4.4133850932121277e-01 2.5100700557231903e-02
+ <_>
+
+ 0 -1 2505 1.0610929457470775e-03
+
+ -6.0577899217605591e-02 1.7217910289764404e-01
+ <_>
+
+ 0 -1 2506 5.6644581491127610e-04
+
+ -7.8687779605388641e-02 1.6784669458866119e-01
+ <_>
+
+ 0 -1 2507 -1.3955390080809593e-02
+
+ -5.7841098308563232e-01 1.9087139517068863e-02
+ <_>
+
+ 0 -1 2508 -1.8862909637391567e-03
+
+ 6.2118150293827057e-02 -1.6523399949073792e-01
+ <_>
+
+ 0 -1 2509 1.6784170642495155e-02
+
+ -3.0380919575691223e-02 3.6105319857597351e-01
+ <_>
+
+ 0 -1 2510 -1.4158519661577884e-05
+
+ 7.2182632982730865e-02 -1.4407490193843842e-01
+ <_>
+
+ 0 -1 2511 7.3750452138483524e-03
+
+ 2.9791580513119698e-02 -2.9277870059013367e-01
+ <_>
+
+ 0 -1 2512 8.0517530441284180e-03
+
+ -4.4681299477815628e-02 2.1760399639606476e-01
+ <_>
+
+ 0 -1 2513 -7.9519696533679962e-02
+
+ -6.5208691358566284e-01 1.4618909917771816e-02
+ <_>
+
+ 0 -1 2514 1.2065700255334377e-02
+
+ 2.9202880337834358e-02 -2.9454120993614197e-01
+ <_>
+
+ 0 -1 2515 -1.0122699663043022e-02
+
+ 2.7746239304542542e-01 -4.3713569641113281e-02
+ <_>
+
+ 0 -1 2516 -1.8515810370445251e-01
+
+ -4.6136859059333801e-01 2.4093240499496460e-02
+ <_>
+
+ 0 -1 2517 -8.0726131796836853e-02
+
+ -4.4673430919647217e-01 2.0845459774136543e-02
+ <_>
+
+ 0 -1 2518 1.5173270367085934e-03
+
+ -5.1575969904661179e-02 1.8063379824161530e-01
+ <_>
+
+ 0 -1 2519 -1.1184819974005222e-02
+
+ -3.5373958945274353e-01 2.7059540152549744e-02
+ <_>
+
+ 0 -1 2520 -3.5008399281650782e-03
+
+ 2.0548710227012634e-01 -4.6032059937715530e-02
+ <_>
+
+ 0 -1 2521 1.4720410108566284e-03
+
+ -6.3871711492538452e-02 1.8168300390243530e-01
+ <_>
+
+ 0 -1 2522 -4.5021830010227859e-04
+
+ -1.6353920102119446e-01 5.9327740222215652e-02
+ <_>
+
+ 0 -1 2523 6.1653478769585490e-04
+
+ 6.9089323282241821e-02 -1.9156040251255035e-01
+ <_>
+
+ 0 -1 2524 1.4797239564359188e-03
+
+ -5.2241999655961990e-02 1.8631340563297272e-01
+ <_>
+
+ 0 -1 2525 -1.4754989933862817e-05
+
+ 7.3586143553256989e-02 -1.5092320740222931e-01
+ <_>
+
+ 0 -1 2526 8.6423632455989718e-04
+
+ 6.6930077970027924e-02 -1.3976100087165833e-01
+ <_>
+
+ 0 -1 2527 -4.1005611419677734e-03
+
+ 2.0946699380874634e-01 -4.7175008803606033e-02
+ <_>
+
+ 0 -1 2528 -2.1505339536815882e-03
+
+ -5.2753841876983643e-01 1.7665250226855278e-02
+ <_>
+
+ 0 -1 2529 7.8334724530577660e-03
+
+ -4.5125011354684830e-02 2.0374919474124908e-01
+ <_>
+
+ 0 -1 2530 -3.2690390944480896e-03
+
+ -1.3836699724197388e-01 7.0653162896633148e-02
+ <_>
+
+ 0 -1 2531 3.9274748414754868e-03
+
+ 6.8428598344326019e-02 -1.6210170090198517e-01
+ <_>
+
+ 0 -1 2532 7.6534547843039036e-03
+
+ -9.3162156641483307e-02 9.9912680685520172e-02
+ <_>
+
+ 0 -1 2533 -3.2620150595903397e-02
+
+ 3.5453549027442932e-01 -3.0765339732170105e-02
+ <_>
+
+ 0 -1 2534 -1.8247209489345551e-02
+
+ -3.8171181082725525e-01 2.7764180675148964e-02
+ <_>
+
+ 0 -1 2535 -8.0104079097509384e-04
+
+ -1.4329099655151367e-01 6.4936630427837372e-02
+ <_>
+
+ 0 -1 2536 -1.0993109643459320e-01
+
+ 8.7319427728652954e-01 -1.1242670007050037e-02
+ <_>
+
+ 0 -1 2537 -3.0508199706673622e-02
+
+ -6.1269849538803101e-01 1.9372699782252312e-02
+ <_>
+
+ 0 -1 2538 -1.9187819212675095e-02
+
+ 2.8533020615577698e-01 -3.6832328885793686e-02
+ <_>
+
+ 0 -1 2539 2.3266570642590523e-03
+
+ 4.7289360314607620e-02 -2.1252959966659546e-01
+ <_>
+
+ 0 -1 2540 -1.4535760274156928e-03
+
+ 1.3778920471668243e-01 -7.4501492083072662e-02
+ <_>
+
+ 0 -1 2541 -1.0573640465736389e-03
+
+ -2.2186830639839172e-01 4.2039170861244202e-02
+ <_>
+
+ 0 -1 2542 1.7203199677169323e-03
+
+ -6.9299750030040741e-02 1.3794890046119690e-01
+ <_>
+
+ 0 -1 2543 -1.4716150471940637e-03
+
+ 2.4296709895133972e-01 -4.0795009583234787e-02
+ <_>
+
+ 0 -1 2544 -5.2822660654783249e-03
+
+ -3.1959480047225952e-01 3.4215260297060013e-02
+ <_>
+
+ 0 -1 2545 -4.7165742143988609e-03
+
+ 3.0581191182136536e-01 -3.1772918999195099e-02
+ <_>
+
+ 0 -1 2546 7.3668370023369789e-03
+
+ 6.1085078865289688e-02 -1.6390019655227661e-01
+ <_>
+
+ 0 -1 2547 -7.6594999991357327e-03
+
+ -4.6472349762916565e-01 1.8869750201702118e-02
+ <_>
+
+ 0 -1 2548 7.6969028450548649e-03
+
+ -1.8191590905189514e-02 5.5395811796188354e-01
+ <_>
+
+ 0 -1 2549 -5.6195858633145690e-04
+
+ 9.7618483006954193e-02 -1.0844089835882187e-01
+ <_>
+
+ 0 -1 2550 -1.4587530131393578e-05
+
+ 7.4585132300853729e-02 -1.2353610247373581e-01
+ <_>
+
+ 0 -1 2551 -9.5779378898441792e-04
+
+ 1.6370140016078949e-01 -5.8610081672668457e-02
+ <_>
+
+ 0 -1 2552 8.0253500491380692e-03
+
+ 2.6857670396566391e-02 -4.1507768630981445e-01
+ <_>
+
+ 0 -1 2553 1.6938529442995787e-03
+
+ 4.8536270856857300e-02 -1.7888469994068146e-01
+ <_>
+
+ 0 -1 2554 -4.3334178626537323e-03
+
+ 1.9798220694065094e-01 -4.8085059970617294e-02
+ <_>
+
+ 0 -1 2555 -2.2440029715653509e-04
+
+ -1.5113249421119690e-01 6.0428649187088013e-02
+ <_>
+
+ 0 -1 2556 -1.1392509564757347e-02
+
+ 3.2737928628921509e-01 -2.9751259833574295e-02
+ <_>
+
+ 0 -1 2557 -9.3984175473451614e-03
+
+ -1.2912990152835846e-01 7.6302282512187958e-02
+ <_>
+
+ 0 -1 2558 8.7430170970037580e-04
+
+ -9.7556166350841522e-02 9.7808010876178741e-02
+ <_>
+
+ 0 -1 2559 7.5171617791056633e-03
+
+ 6.5084353089332581e-02 -1.5419410169124603e-01
+ <_>
+
+ 0 -1 2560 -2.7937069535255432e-03
+
+ 1.5009529888629913e-01 -6.3355393707752228e-02
+ <_>
+
+ 0 -1 2561 -3.4385098842903972e-04
+
+ 1.2404289841651917e-01 -7.5780630111694336e-02
+ <_>
+
+ 0 -1 2562 8.7557926774024963e-02
+
+ -1.5905940905213356e-02 5.6607347726821899e-01
+ <_>
+
+ 0 -1 2563 -9.3594435602426529e-03
+
+ -3.3039200305938721e-01 3.0874710530042648e-02
+ <_>
+
+ 0 -1 2564 -6.7703737877309322e-03
+
+ 1.7960870265960693e-01 -5.1310319453477859e-02
+ <_>
+
+ 0 -1 2565 -6.2513751909136772e-03
+
+ -5.7952338457107544e-01 1.5425769612193108e-02
+ <_>
+
+ 0 -1 2566 -2.5206409394741058e-02
+
+ -6.3777071237564087e-01 1.3051119633018970e-02
+ <_>
+
+ 0 -1 2567 -1.1819769861176610e-03
+
+ -2.0478110015392303e-01 4.0494531393051147e-02
+ <_>
+
+ 0 -1 2568 -1.0458839824423194e-03
+
+ 1.4812879264354706e-01 -6.2631592154502869e-02
+ <_>
+
+ 0 -1 2569 -2.5445020291954279e-03
+
+ 1.3021010160446167e-01 -6.9430023431777954e-02
+ <_>
+
+ 0 -1 2570 -8.0673627555370331e-02
+
+ -2.8054219484329224e-01 3.8956280797719955e-02
+ <_>
+
+ 0 -1 2571 -1.4390920114237815e-04
+
+ 1.0780519992113113e-01 -9.6550762653350830e-02
+ <_>
+
+ 0 -1 2572 7.6481432188302279e-04
+
+ 6.0667239129543304e-02 -1.5742610394954681e-01
+ <_>
+
+ 0 -1 2573 -3.4516688901931047e-04
+
+ 1.1415769904851913e-01 -8.8832370936870575e-02
+ <_>
+
+ 0 -1 2574 -2.2118249908089638e-03
+
+ 2.2988039255142212e-01 -5.0498738884925842e-02
+ <_>
+
+ 0 -1 2575 9.4616543501615524e-03
+
+ 1.9827060401439667e-02 -5.0633531808853149e-01
+ <_>
+
+ 0 -1 2576 1.0567939607426524e-03
+
+ 3.8744639605283737e-02 -2.3509359359741211e-01
+ <_>
+
+ 0 -1 2577 2.9194469098001719e-03
+
+ -6.1895478516817093e-02 1.5313319861888885e-01
+ <_>
+
+ 0 -1 2578 -1.0768010281026363e-02
+
+ -5.5298101902008057e-01 1.7847239971160889e-02
+ <_>
+
+ 0 -1 2579 -1.0197740048170090e-03
+
+ 1.1559300124645233e-01 -8.0185852944850922e-02
+ <_>
+
+ 0 -1 2580 1.8127029761672020e-04
+
+ 5.6652870029211044e-02 -1.6549369692802429e-01
+ <_>
+
+ 0 -1 2581 7.1620188464294188e-06
+
+ -9.1480091214179993e-02 9.7915090620517731e-02
+ <_>
+
+ 0 -1 2582 5.2910070866346359e-02
+
+ -1.3591200113296509e-02 6.6090220212936401e-01
+ <_>
+
+ 0 -1 2583 4.0185371041297913e-01
+
+ 1.9574489444494247e-02 -4.9015858769416809e-01
+ <_>
+
+ 0 -1 2584 -1.7914770171046257e-02
+
+ -8.8317036628723145e-02 1.0532960295677185e-01
+ <_>
+
+ 0 -1 2585 -1.4578569789591711e-05
+
+ 7.8513152897357941e-02 -1.2300349771976471e-01
+ <_>
+
+ 0 -1 2586 6.4994548447430134e-03
+
+ -4.0843468159437180e-02 2.9337158799171448e-01
+ <_>
+
+ 0 -1 2587 9.5762982964515686e-02
+
+ 1.9332479685544968e-02 -5.3444057703018188e-01
+ <_>
+
+ 0 -1 2588 1.4263469893194269e-05
+
+ -8.8897533714771271e-02 1.0632789880037308e-01
+ <_>
+
+ 0 -1 2589 2.2215039934962988e-03
+
+ -4.0777951478958130e-02 2.6405128836631775e-01
+ <_>
+
+ 0 -1 2590 3.1875250861048698e-03
+
+ 5.9725038707256317e-02 -1.6202959418296814e-01
+ <_>
+
+ 0 -1 2591 9.6069589257240295e-02
+
+ 1.1318460106849670e-02 -7.9110687971115112e-01
+ <_>
+
+ 0 -1 2592 1.9584870897233486e-03
+
+ -3.9252020418643951e-02 2.3639929294586182e-01
+ <_>
+
+ 0 -1 2593 -1.8468469381332397e-01
+
+ -5.8974397182464600e-01 1.5758410096168518e-02
+ <_>
+
+ 0 -1 2594 2.1685050160158426e-04
+
+ 4.6320449560880661e-02 -1.8274679780006409e-01
+ <_>
+
+ 0 -1 2595 1.8809709697961807e-02
+
+ -4.3357118964195251e-02 2.7832600474357605e-01
+ <_>
+
+ 0 -1 2596 -6.2639699317514896e-03
+
+ -1.3891190290451050e-01 7.7115900814533234e-02
+ <_>
+
+ 0 -1 2597 3.2622940489090979e-04
+
+ -9.1803021728992462e-02 1.0588289797306061e-01
+ <_>
+
+ 0 -1 2598 5.3745559416711330e-03
+
+ 1.0803489945828915e-02 -7.6716458797454834e-01
+ <_>
+
+ 0 -1 2599 2.8126770630478859e-03
+
+ -5.9618860483169556e-02 1.6133050620555878e-01
+ <_>
+
+ 0 -1 2600 -6.5314618404954672e-04
+
+ -8.5690811276435852e-02 1.1540769785642624e-01
+ <_>
+
+ 0 -1 2601 -1.7845110269263387e-03
+
+ 8.1831991672515869e-02 -1.2700800597667694e-01
+ <_>
+
+ 0 -1 2602 3.0969830695539713e-03
+
+ 6.8366639316082001e-02 -1.4475439488887787e-01
+ <_>
+
+ 0 -1 2603 -4.1442047804594040e-03
+
+ 1.8632030487060547e-01 -5.4030310362577438e-02
+ <_>
+
+ 0 -1 2604 -4.9972519278526306e-02
+
+ -1.2800359725952148e-01 8.5049159824848175e-02
+ <_>
+
+ 0 -1 2605 -1.0743910446763039e-02
+
+ 1.3701729476451874e-01 -7.7366456389427185e-02
+ <_>
+
+ 0 -1 2606 -3.0474149389192462e-04
+
+ -1.6938340663909912e-01 5.7971168309450150e-02
+ <_>
+
+ 0 -1 2607 3.6023318767547607e-02
+
+ 1.3561300002038479e-02 -6.3279747962951660e-01
+ <_>
+
+ 0 -1 2608 2.5479190517216921e-03
+
+ -4.3824359774589539e-02 2.2150419652462006e-01
+
+ <_>
+
+ <_>
+ 8 7 2 6 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+
+ <_>
+ 8 3 10 7 -1.
+ <_>
+ 13 3 5 7 2.
+ <_>
+
+ <_>
+ 10 11 3 6 -1.
+ <_>
+ 10 14 3 3 2.
+ <_>
+
+ <_>
+ 10 4 8 8 -1.
+ <_>
+ 14 4 4 8 2.
+ <_>
+
+ <_>
+ 5 7 5 4 -1.
+ <_>
+ 5 9 5 2 2.
+ <_>
+
+ <_>
+ 8 4 6 6 -1.
+ <_>
+ 8 4 3 3 2.
+ <_>
+ 11 7 3 3 2.
+ <_>
+
+ <_>
+ 10 14 5 2 -1.
+ <_>
+ 10 15 5 1 2.
+ <_>
+
+ <_>
+ 7 11 8 4 -1.
+ <_>
+ 7 13 8 2 2.
+ <_>
+
+ <_>
+ 11 14 3 3 -1.
+ <_>
+ 11 15 3 1 3.
+ <_>
+
+ <_>
+ 3 5 3 11 -1.
+ <_>
+ 4 5 1 11 3.
+ <_>
+
+ <_>
+ 8 7 9 6 -1.
+ <_>
+ 8 10 9 3 2.
+ <_>
+
+ <_>
+ 13 12 1 2 -1.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 1 3 6 17 -1.
+ <_>
+ 4 3 3 17 2.
+ <_>
+
+ <_>
+ 11 12 1 3 -1.
+ <_>
+ 11 13 1 1 3.
+ <_>
+
+ <_>
+ 1 9 6 9 -1.
+ <_>
+ 4 9 3 9 2.
+ <_>
+
+ <_>
+ 10 5 8 6 -1.
+ <_>
+ 14 5 4 6 2.
+ <_>
+
+ <_>
+ 7 8 9 6 -1.
+ <_>
+ 7 10 9 2 3.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 5 8 3 3 2.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 2 0 4 18 -1.
+ <_>
+ 4 0 2 18 2.
+ <_>
+
+ <_>
+ 10 12 3 4 -1.
+ <_>
+ 10 14 3 2 2.
+ <_>
+
+ <_>
+ 7 0 3 9 -1.
+ <_>
+ 7 3 3 3 3.
+ <_>
+
+ <_>
+ 11 13 1 3 -1.
+ <_>
+ 11 14 1 1 3.
+ <_>
+
+ <_>
+ 4 8 5 2 -1.
+ <_>
+ 4 9 5 1 2.
+ <_>
+
+ <_>
+ 11 13 2 3 -1.
+ <_>
+ 11 14 2 1 3.
+ <_>
+
+ <_>
+ 12 12 1 3 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 9 12 2 8 -1.
+ <_>
+ 9 16 2 4 2.
+ <_>
+
+ <_>
+ 6 3 4 13 -1.
+ <_>
+ 8 3 2 13 2.
+ <_>
+
+ <_>
+ 2 6 4 12 -1.
+ <_>
+ 4 6 2 12 2.
+ <_>
+
+ <_>
+ 11 13 3 2 -1.
+ <_>
+ 12 13 1 2 3.
+ <_>
+
+ <_>
+ 3 5 3 11 -1.
+ <_>
+ 4 5 1 11 3.
+ <_>
+
+ <_>
+ 3 6 13 12 -1.
+ <_>
+ 3 12 13 6 2.
+ <_>
+
+ <_>
+ 7 7 6 6 -1.
+ <_>
+ 7 7 3 3 2.
+ <_>
+ 10 10 3 3 2.
+ <_>
+
+ <_>
+ 4 7 3 2 -1.
+ <_>
+ 5 7 1 2 3.
+ <_>
+
+ <_>
+ 5 4 14 3 -1.
+ <_>
+ 12 4 7 3 2.
+ <_>
+
+ <_>
+ 10 12 3 2 -1.
+ <_>
+ 11 12 1 2 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 12 14 1 3 -1.
+ <_>
+ 12 15 1 1 3.
+ <_>
+
+ <_>
+ 3 6 3 3 -1.
+ <_>
+ 4 6 1 3 3.
+ <_>
+
+ <_>
+ 8 4 3 2 -1.
+ <_>
+ 9 4 1 2 3.
+ <_>
+
+ <_>
+ 3 3 3 13 -1.
+ <_>
+ 4 3 1 13 3.
+ <_>
+
+ <_>
+ 15 4 2 3 -1.
+ <_>
+ 15 5 2 1 3.
+ <_>
+
+ <_>
+ 12 8 4 4 -1.
+ <_>
+ 12 10 4 2 2.
+ <_>
+
+ <_>
+ 8 7 8 9 -1.
+ <_>
+ 8 10 8 3 3.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 0 6 3 2.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 5 9 3 6 -1.
+ <_>
+ 5 12 3 3 2.
+ <_>
+
+ <_>
+ 11 12 2 4 -1.
+ <_>
+ 12 12 1 4 2.
+ <_>
+
+ <_>
+ 10 11 3 8 -1.
+ <_>
+ 11 11 1 8 3.
+ <_>
+
+ <_>
+ 5 5 5 6 -1.
+ <_>
+ 5 7 5 2 3.
+ <_>
+
+ <_>
+ 10 13 2 6 -1.
+ <_>
+ 10 16 2 3 2.
+ <_>
+
+ <_>
+ 10 15 3 4 -1.
+ <_>
+ 11 15 1 4 3.
+ <_>
+
+ <_>
+ 7 3 3 3 -1.
+ <_>
+ 8 3 1 3 3.
+ <_>
+
+ <_>
+ 5 8 6 2 -1.
+ <_>
+ 8 8 3 2 2.
+ <_>
+
+ <_>
+ 8 7 4 2 -1.
+ <_>
+ 10 7 2 2 2.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 6 6 1 3 2.
+ <_>
+
+ <_>
+ 8 0 3 8 -1.
+ <_>
+ 9 0 1 8 3.
+ <_>
+
+ <_>
+ 5 10 3 8 -1.
+ <_>
+ 5 14 3 4 2.
+ <_>
+
+ <_>
+ 12 3 3 2 -1.
+ <_>
+ 13 3 1 2 3.
+ <_>
+
+ <_>
+ 8 2 3 4 -1.
+ <_>
+ 9 2 1 4 3.
+ <_>
+
+ <_>
+ 14 10 1 8 -1.
+ <_>
+ 14 14 1 4 2.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 10 12 1 2 3.
+ <_>
+
+ <_>
+ 12 2 1 12 -1.
+ <_>
+ 12 6 1 4 3.
+ <_>
+
+ <_>
+ 2 8 14 6 -1.
+ <_>
+ 2 8 7 3 2.
+ <_>
+ 9 11 7 3 2.
+ <_>
+
+ <_>
+ 11 3 3 17 -1.
+ <_>
+ 12 3 1 17 3.
+ <_>
+
+ <_>
+ 12 12 1 2 -1.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 13 1 2 1 -1.
+ <_>
+ 14 1 1 1 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 12 12 2 3 -1.
+ <_>
+ 12 13 2 1 3.
+ <_>
+
+ <_>
+ 8 2 10 10 -1.
+ <_>
+ 13 2 5 10 2.
+ <_>
+
+ <_>
+ 11 13 3 1 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 12 10 1 4 -1.
+ <_>
+ 12 12 1 2 2.
+ <_>
+
+ <_>
+ 8 7 2 6 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+
+ <_>
+ 12 11 1 3 -1.
+ <_>
+ 12 12 1 1 3.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 10 12 1 3 3.
+ <_>
+
+ <_>
+ 6 0 8 6 -1.
+ <_>
+ 6 3 8 3 2.
+ <_>
+
+ <_>
+ 0 0 8 19 -1.
+ <_>
+ 4 0 4 19 2.
+ <_>
+
+ <_>
+ 5 6 4 9 -1.
+ <_>
+ 5 9 4 3 3.
+ <_>
+
+ <_>
+ 13 14 1 2 -1.
+ <_>
+ 13 15 1 1 2.
+ <_>
+
+ <_>
+ 1 3 8 15 -1.
+ <_>
+ 5 3 4 15 2.
+ <_>
+
+ <_>
+ 13 14 2 3 -1.
+ <_>
+ 13 15 2 1 3.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 6 7 1 2 3.
+ <_>
+
+ <_>
+ 8 5 3 1 -1.
+ <_>
+ 9 5 1 1 3.
+ <_>
+
+ <_>
+ 9 5 3 1 -1.
+ <_>
+ 10 5 1 1 3.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 18 4 1 2 -1.
+ <_>
+ 18 5 1 1 2.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 10 10 3 4 -1.
+ <_>
+ 11 10 1 4 3.
+ <_>
+
+ <_>
+ 6 5 2 14 -1.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 14 8 3 4 -1.
+ <_>
+ 14 10 3 2 2.
+ <_>
+
+ <_>
+ 4 5 3 6 -1.
+ <_>
+ 4 7 3 2 3.
+ <_>
+
+ <_>
+ 5 10 2 8 -1.
+ <_>
+ 5 14 2 4 2.
+ <_>
+
+ <_>
+ 9 1 3 2 -1.
+ <_>
+ 10 1 1 2 3.
+ <_>
+
+ <_>
+ 10 1 3 3 -1.
+ <_>
+ 11 1 1 3 3.
+ <_>
+
+ <_>
+ 9 12 8 8 -1.
+ <_>
+ 9 12 4 4 2.
+ <_>
+ 13 16 4 4 2.
+ <_>
+
+ <_>
+ 8 13 6 4 -1.
+ <_>
+ 10 13 2 4 3.
+ <_>
+
+ <_>
+ 3 6 3 12 -1.
+ <_>
+ 4 6 1 12 3.
+ <_>
+
+ <_>
+ 9 3 8 5 -1.
+ <_>
+ 13 3 4 5 2.
+ <_>
+
+ <_>
+ 7 7 3 6 -1.
+ <_>
+ 7 10 3 3 2.
+ <_>
+
+ <_>
+ 5 10 10 4 -1.
+ <_>
+ 5 12 10 2 2.
+ <_>
+
+ <_>
+ 11 12 1 6 -1.
+ <_>
+ 11 15 1 3 2.
+ <_>
+
+ <_>
+ 5 8 6 2 -1.
+ <_>
+ 8 8 3 2 2.
+ <_>
+
+ <_>
+ 2 0 8 4 -1.
+ <_>
+ 2 0 4 2 2.
+ <_>
+ 6 2 4 2 2.
+ <_>
+
+ <_>
+ 11 7 3 5 -1.
+ <_>
+ 12 7 1 5 3.
+ <_>
+
+ <_>
+ 12 13 2 3 -1.
+ <_>
+ 12 14 2 1 3.
+ <_>
+
+ <_>
+ 12 12 1 2 -1.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 2 6 3 9 -1.
+ <_>
+ 3 6 1 9 3.
+ <_>
+
+ <_>
+ 12 12 1 3 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 5 8 4 2 -1.
+ <_>
+ 5 9 4 1 2.
+ <_>
+
+ <_>
+ 3 8 3 7 -1.
+ <_>
+ 4 8 1 7 3.
+ <_>
+
+ <_>
+ 1 3 6 15 -1.
+ <_>
+ 3 3 2 15 3.
+ <_>
+
+ <_>
+ 12 14 4 3 -1.
+ <_>
+ 12 15 4 1 3.
+ <_>
+
+ <_>
+ 9 0 2 20 -1.
+ <_>
+ 9 0 1 10 2.
+ <_>
+ 10 10 1 10 2.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 6 13 3 1 3.
+ <_>
+
+ <_>
+ 5 7 3 10 -1.
+ <_>
+ 5 12 3 5 2.
+ <_>
+
+ <_>
+ 8 5 2 1 -1.
+ <_>
+ 9 5 1 1 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ <_>
+
+ <_>
+ 15 5 4 2 -1.
+ <_>
+ 15 6 4 1 2.
+ <_>
+
+ <_>
+ 15 5 3 2 -1.
+ <_>
+ 15 6 3 1 2.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 6 5 4 12 -1.
+ <_>
+ 8 5 2 12 2.
+ <_>
+
+ <_>
+ 7 4 3 3 -1.
+ <_>
+ 8 4 1 3 3.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 6 6 1 3 2.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 12 10 2 1 -1.
+ <_>
+ 13 10 1 1 2.
+ <_>
+
+ <_>
+ 10 13 5 2 -1.
+ <_>
+ 10 14 5 1 2.
+ <_>
+
+ <_>
+ 11 13 1 3 -1.
+ <_>
+ 11 14 1 1 3.
+ <_>
+
+ <_>
+ 7 2 3 6 -1.
+ <_>
+ 7 4 3 2 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 12 14 2 3 -1.
+ <_>
+ 12 15 2 1 3.
+ <_>
+
+ <_>
+ 8 5 3 3 -1.
+ <_>
+ 8 6 3 1 3.
+ <_>
+
+ <_>
+ 7 6 9 10 -1.
+ <_>
+ 7 11 9 5 2.
+ <_>
+
+ <_>
+ 0 18 18 2 -1.
+ <_>
+ 6 18 6 2 3.
+ <_>
+
+ <_>
+ 0 5 1 8 -1.
+ <_>
+ 0 9 1 4 2.
+ <_>
+
+ <_>
+ 1 3 8 10 -1.
+ <_>
+ 1 8 8 5 2.
+ <_>
+
+ <_>
+ 9 12 6 2 -1.
+ <_>
+ 9 13 6 1 2.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 9 4 3 3 -1.
+ <_>
+ 10 4 1 3 3.
+ <_>
+
+ <_>
+ 13 13 1 3 -1.
+ <_>
+ 13 14 1 1 3.
+ <_>
+
+ <_>
+ 2 6 13 3 -1.
+ <_>
+ 2 7 13 1 3.
+ <_>
+
+ <_>
+ 10 15 2 4 -1.
+ <_>
+ 11 15 1 4 2.
+ <_>
+
+ <_>
+ 7 7 2 3 -1.
+ <_>
+ 8 7 1 3 2.
+ <_>
+
+ <_>
+ 3 6 12 8 -1.
+ <_>
+ 3 6 6 4 2.
+ <_>
+ 9 10 6 4 2.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 0 4 2 2.
+ <_>
+ 16 2 4 2 2.
+ <_>
+
+ <_>
+ 9 15 3 3 -1.
+ <_>
+ 10 15 1 3 3.
+ <_>
+
+ <_>
+ 10 14 1 2 -1.
+ <_>
+ 10 15 1 1 2.
+ <_>
+
+ <_>
+ 6 11 5 6 -1.
+ <_>
+ 6 14 5 3 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 6 1 4 3.
+ <_>
+
+ <_>
+ 9 6 6 4 -1.
+ <_>
+ 11 6 2 4 3.
+ <_>
+
+ <_>
+ 6 5 12 6 -1.
+ <_>
+ 6 7 12 2 3.
+ <_>
+
+ <_>
+ 3 1 16 7 -1.
+ <_>
+ 11 1 8 7 2.
+ <_>
+
+ <_>
+ 12 11 1 6 -1.
+ <_>
+ 12 14 1 3 2.
+ <_>
+
+ <_>
+ 6 6 9 8 -1.
+ <_>
+ 6 10 9 4 2.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 12 4 3 2.
+ <_>
+
+ <_>
+ 1 0 6 14 -1.
+ <_>
+ 4 0 3 14 2.
+ <_>
+
+ <_>
+ 8 1 1 9 -1.
+ <_>
+ 8 4 1 3 3.
+ <_>
+
+ <_>
+ 11 13 2 2 -1.
+ <_>
+ 11 14 2 1 2.
+ <_>
+
+ <_>
+ 2 7 4 13 -1.
+ <_>
+ 4 7 2 13 2.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 18 0 2 20 -1.
+ <_>
+ 19 0 1 20 2.
+ <_>
+
+ <_>
+ 6 7 3 3 -1.
+ <_>
+ 7 7 1 3 3.
+ <_>
+
+ <_>
+ 13 10 1 4 -1.
+ <_>
+ 13 12 1 2 2.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 12 12 2 1 2.
+ <_>
+
+ <_>
+ 3 6 12 6 -1.
+ <_>
+ 3 6 6 3 2.
+ <_>
+ 9 9 6 3 2.
+ <_>
+
+ <_>
+ 10 13 2 2 -1.
+ <_>
+ 10 14 2 1 2.
+ <_>
+
+ <_>
+ 6 13 2 3 -1.
+ <_>
+ 6 14 2 1 3.
+ <_>
+
+ <_>
+ 13 5 1 3 -1.
+ <_>
+ 13 6 1 1 3.
+ <_>
+
+ <_>
+ 6 14 3 3 -1.
+ <_>
+ 6 15 3 1 3.
+ <_>
+
+ <_>
+ 5 15 3 3 -1.
+ <_>
+ 5 16 3 1 3.
+ <_>
+
+ <_>
+ 15 3 1 3 -1.
+ <_>
+ 15 4 1 1 3.
+ <_>
+
+ <_>
+ 3 8 3 12 -1.
+ <_>
+ 4 8 1 12 3.
+ <_>
+
+ <_>
+ 3 4 3 14 -1.
+ <_>
+ 4 4 1 14 3.
+ <_>
+
+ <_>
+ 6 11 6 2 -1.
+ <_>
+ 9 11 3 2 2.
+ <_>
+
+ <_>
+ 4 8 8 4 -1.
+ <_>
+ 8 8 4 4 2.
+ <_>
+
+ <_>
+ 4 5 2 4 -1.
+ <_>
+ 5 5 1 4 2.
+ <_>
+
+ <_>
+ 7 3 2 1 -1.
+ <_>
+ 8 3 1 1 2.
+ <_>
+
+ <_>
+ 12 16 2 3 -1.
+ <_>
+ 12 17 2 1 3.
+ <_>
+
+ <_>
+ 3 16 6 3 -1.
+ <_>
+ 3 17 6 1 3.
+ <_>
+
+ <_>
+ 13 4 2 1 -1.
+ <_>
+ 14 4 1 1 2.
+ <_>
+
+ <_>
+ 9 16 4 4 -1.
+ <_>
+ 11 16 2 4 2.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 6 9 2 1 2.
+ <_>
+
+ <_>
+ 12 13 2 1 -1.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 6 7 6 3 -1.
+ <_>
+ 8 7 2 3 3.
+ <_>
+
+ <_>
+ 5 8 2 10 -1.
+ <_>
+ 5 13 2 5 2.
+ <_>
+
+ <_>
+ 0 8 1 2 -1.
+ <_>
+ 0 9 1 1 2.
+ <_>
+
+ <_>
+ 2 11 4 4 -1.
+ <_>
+ 4 11 2 4 2.
+ <_>
+
+ <_>
+ 1 9 12 3 -1.
+ <_>
+ 5 9 4 3 3.
+ <_>
+
+ <_>
+ 8 15 2 3 -1.
+ <_>
+ 9 15 1 3 2.
+ <_>
+
+ <_>
+ 8 6 3 3 -1.
+ <_>
+ 8 7 3 1 3.
+ <_>
+
+ <_>
+ 1 2 1 2 -1.
+ <_>
+ 1 3 1 1 2.
+ <_>
+
+ <_>
+ 5 1 7 6 -1.
+ <_>
+ 5 3 7 2 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 13 7 3 4 -1.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 5 10 3 3 -1.
+ <_>
+ 5 11 3 1 3.
+ <_>
+
+ <_>
+ 7 5 3 1 -1.
+ <_>
+ 8 5 1 1 3.
+ <_>
+
+ <_>
+ 0 0 11 16 -1.
+ <_>
+ 0 8 11 8 2.
+ <_>
+
+ <_>
+ 7 4 3 2 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 13 5 2 2 -1.
+ <_>
+ 13 6 2 1 2.
+ <_>
+
+ <_>
+ 8 8 2 6 -1.
+ <_>
+ 8 10 2 2 3.
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 6 1 4 3.
+ <_>
+
+ <_>
+ 10 0 10 8 -1.
+ <_>
+ 10 0 5 4 2.
+ <_>
+ 15 4 5 4 2.
+ <_>
+
+ <_>
+ 9 7 2 12 -1.
+ <_>
+ 9 11 2 4 3.
+ <_>
+
+ <_>
+ 6 3 12 12 -1.
+ <_>
+ 6 3 6 6 2.
+ <_>
+ 12 9 6 6 2.
+ <_>
+
+ <_>
+ 5 7 4 6 -1.
+ <_>
+ 5 9 4 2 3.
+ <_>
+
+ <_>
+ 5 7 10 10 -1.
+ <_>
+ 5 7 5 5 2.
+ <_>
+ 10 12 5 5 2.
+ <_>
+
+ <_>
+ 2 1 4 15 -1.
+ <_>
+ 4 1 2 15 2.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 13 11 1 2 2.
+ <_>
+
+ <_>
+ 6 11 10 6 -1.
+ <_>
+ 6 14 10 3 2.
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 5 13 4 1 3.
+ <_>
+
+ <_>
+ 6 12 1 3 -1.
+ <_>
+ 6 13 1 1 3.
+ <_>
+
+ <_>
+ 3 7 12 8 -1.
+ <_>
+ 3 7 6 4 2.
+ <_>
+ 9 11 6 4 2.
+ <_>
+
+ <_>
+ 6 2 2 6 -1.
+ <_>
+ 6 4 2 2 3.
+ <_>
+
+ <_>
+ 11 11 5 4 -1.
+ <_>
+ 11 13 5 2 2.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 5 12 4 2 -1.
+ <_>
+ 7 12 2 2 2.
+ <_>
+
+ <_>
+ 3 13 3 7 -1.
+ <_>
+ 4 13 1 7 3.
+ <_>
+
+ <_>
+ 11 7 5 9 -1.
+ <_>
+ 11 10 5 3 3.
+ <_>
+
+ <_>
+ 4 3 15 9 -1.
+ <_>
+ 4 6 15 3 3.
+ <_>
+
+ <_>
+ 15 13 2 2 -1.
+ <_>
+ 15 13 1 1 2.
+ <_>
+ 16 14 1 1 2.
+ <_>
+
+ <_>
+ 6 5 6 13 -1.
+ <_>
+ 9 5 3 13 2.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 6 1 2 15 -1.
+ <_>
+ 6 6 2 5 3.
+ <_>
+
+ <_>
+ 11 0 4 3 -1.
+ <_>
+ 13 0 2 3 2.
+ <_>
+
+ <_>
+ 0 0 2 4 -1.
+ <_>
+ 0 2 2 2 2.
+ <_>
+
+ <_>
+ 4 8 9 3 -1.
+ <_>
+ 4 9 9 1 3.
+ <_>
+
+ <_>
+ 6 5 6 2 -1.
+ <_>
+ 8 5 2 2 3.
+ <_>
+
+ <_>
+ 4 15 2 2 -1.
+ <_>
+ 4 15 1 1 2.
+ <_>
+ 5 16 1 1 2.
+ <_>
+
+ <_>
+ 6 14 2 3 -1.
+ <_>
+ 6 15 2 1 3.
+ <_>
+
+ <_>
+ 6 12 1 6 -1.
+ <_>
+ 6 15 1 3 2.
+ <_>
+
+ <_>
+ 5 9 2 10 -1.
+ <_>
+ 5 14 2 5 2.
+ <_>
+
+ <_>
+ 3 6 3 10 -1.
+ <_>
+ 4 6 1 10 3.
+ <_>
+
+ <_>
+ 3 7 3 5 -1.
+ <_>
+ 4 7 1 5 3.
+ <_>
+
+ <_>
+ 11 0 6 2 -1.
+ <_>
+ 13 0 2 2 3.
+ <_>
+
+ <_>
+ 11 12 2 1 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 11 12 2 1 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 6 16 1 3 -1.
+ <_>
+ 6 17 1 1 3.
+ <_>
+
+ <_>
+ 10 16 5 3 -1.
+ <_>
+ 10 17 5 1 3.
+ <_>
+
+ <_>
+ 7 13 1 3 -1.
+ <_>
+ 7 14 1 1 3.
+ <_>
+
+ <_>
+ 12 4 8 2 -1.
+ <_>
+ 12 5 8 1 2.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 10 7 2 3 2.
+ <_>
+
+ <_>
+ 12 10 5 9 -1.
+ <_>
+ 12 13 5 3 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 11 0 2 4 -1.
+ <_>
+ 12 0 1 4 2.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 6 13 3 1 3.
+ <_>
+
+ <_>
+ 1 3 6 12 -1.
+ <_>
+ 1 9 6 6 2.
+ <_>
+
+ <_>
+ 1 5 5 10 -1.
+ <_>
+ 1 10 5 5 2.
+ <_>
+
+ <_>
+ 10 14 1 2 -1.
+ <_>
+ 10 15 1 1 2.
+ <_>
+
+ <_>
+ 9 5 2 8 -1.
+ <_>
+ 9 5 1 4 2.
+ <_>
+ 10 9 1 4 2.
+ <_>
+
+ <_>
+ 17 12 3 1 -1.
+ <_>
+ 18 12 1 1 3.
+ <_>
+
+ <_>
+ 5 16 2 3 -1.
+ <_>
+ 5 17 2 1 3.
+ <_>
+
+ <_>
+ 11 18 7 2 -1.
+ <_>
+ 11 19 7 1 2.
+ <_>
+
+ <_>
+ 12 6 3 8 -1.
+ <_>
+ 13 6 1 8 3.
+ <_>
+
+ <_>
+ 11 6 6 5 -1.
+ <_>
+ 14 6 3 5 2.
+ <_>
+
+ <_>
+ 9 7 4 6 -1.
+ <_>
+ 9 7 2 3 2.
+ <_>
+ 11 10 2 3 2.
+ <_>
+
+ <_>
+ 10 8 6 6 -1.
+ <_>
+ 10 10 6 2 3.
+ <_>
+
+ <_>
+ 2 1 4 17 -1.
+ <_>
+ 4 1 2 17 2.
+ <_>
+
+ <_>
+ 7 1 9 4 -1.
+ <_>
+ 7 3 9 2 2.
+ <_>
+
+ <_>
+ 7 6 3 4 -1.
+ <_>
+ 8 6 1 4 3.
+ <_>
+
+ <_>
+ 5 9 8 2 -1.
+ <_>
+ 9 9 4 2 2.
+ <_>
+
+ <_>
+ 11 12 1 4 -1.
+ <_>
+ 11 14 1 2 2.
+ <_>
+
+ <_>
+ 13 11 1 3 -1.
+ <_>
+ 13 12 1 1 3.
+ <_>
+
+ <_>
+ 10 19 4 1 -1.
+ <_>
+ 12 19 2 1 2.
+ <_>
+
+ <_>
+ 5 4 10 12 -1.
+ <_>
+ 5 4 5 6 2.
+ <_>
+ 10 10 5 6 2.
+ <_>
+
+ <_>
+ 4 6 5 6 -1.
+ <_>
+ 4 9 5 3 2.
+ <_>
+
+ <_>
+ 5 10 4 8 -1.
+ <_>
+ 5 14 4 4 2.
+ <_>
+
+ <_>
+ 7 5 3 3 -1.
+ <_>
+ 7 6 3 1 3.
+ <_>
+
+ <_>
+ 7 4 2 2 -1.
+ <_>
+ 8 4 1 2 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 0 3 6 16 -1.
+ <_>
+ 2 3 2 16 3.
+ <_>
+
+ <_>
+ 2 6 3 12 -1.
+ <_>
+ 3 6 1 12 3.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 12 12 2 1 2.
+ <_>
+
+ <_>
+ 18 0 2 13 -1.
+ <_>
+ 19 0 1 13 2.
+ <_>
+
+ <_>
+ 9 14 5 4 -1.
+ <_>
+ 9 16 5 2 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 10 14 4 3 -1.
+ <_>
+ 10 15 4 1 3.
+ <_>
+
+ <_>
+ 12 13 1 3 -1.
+ <_>
+ 12 14 1 1 3.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 6 6 6 14 -1.
+ <_>
+ 9 6 3 14 2.
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 5 7 2 4 -1.
+ <_>
+ 6 7 1 4 2.
+ <_>
+
+ <_>
+ 7 3 11 9 -1.
+ <_>
+ 7 6 11 3 3.
+ <_>
+
+ <_>
+ 10 4 9 6 -1.
+ <_>
+ 10 6 9 2 3.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 0 0 3 1 -1.
+ <_>
+ 1 0 1 1 3.
+ <_>
+
+ <_>
+ 9 4 4 6 -1.
+ <_>
+ 9 4 2 3 2.
+ <_>
+ 11 7 2 3 2.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 6 4 3 2 -1.
+ <_>
+ 7 4 1 2 3.
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ <_>
+
+ <_>
+ 1 3 1 2 -1.
+ <_>
+ 1 4 1 1 2.
+ <_>
+
+ <_>
+ 7 16 2 3 -1.
+ <_>
+ 7 17 2 1 3.
+ <_>
+
+ <_>
+ 19 6 1 2 -1.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 6 15 2 3 -1.
+ <_>
+ 6 16 2 1 3.
+ <_>
+
+ <_>
+ 11 13 1 3 -1.
+ <_>
+ 11 14 1 1 3.
+ <_>
+
+ <_>
+ 17 10 3 1 -1.
+ <_>
+ 18 10 1 1 3.
+ <_>
+
+ <_>
+ 10 0 6 1 -1.
+ <_>
+ 13 0 3 1 2.
+ <_>
+
+ <_>
+ 14 0 6 4 -1.
+ <_>
+ 14 0 3 2 2.
+ <_>
+ 17 2 3 2 2.
+ <_>
+
+ <_>
+ 12 7 4 6 -1.
+ <_>
+ 12 10 4 3 2.
+ <_>
+
+ <_>
+ 14 5 1 2 -1.
+ <_>
+ 14 6 1 1 2.
+ <_>
+
+ <_>
+ 6 13 4 3 -1.
+ <_>
+ 6 14 4 1 3.
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 5 13 4 1 3.
+ <_>
+
+ <_>
+ 9 3 2 1 -1.
+ <_>
+ 10 3 1 1 2.
+ <_>
+
+ <_>
+ 9 3 3 3 -1.
+ <_>
+ 10 3 1 3 3.
+ <_>
+
+ <_>
+ 9 5 3 1 -1.
+ <_>
+ 10 5 1 1 3.
+ <_>
+
+ <_>
+ 7 8 4 3 -1.
+ <_>
+ 7 9 4 1 3.
+ <_>
+
+ <_>
+ 1 4 1 6 -1.
+ <_>
+ 1 6 1 2 3.
+ <_>
+
+ <_>
+ 3 2 3 11 -1.
+ <_>
+ 4 2 1 11 3.
+ <_>
+
+ <_>
+ 3 2 3 18 -1.
+ <_>
+ 4 2 1 18 3.
+ <_>
+
+ <_>
+ 5 12 6 2 -1.
+ <_>
+ 8 12 3 2 2.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 7 17 3 1 -1.
+ <_>
+ 8 17 1 1 3.
+ <_>
+
+ <_>
+ 3 10 8 6 -1.
+ <_>
+ 3 13 8 3 2.
+ <_>
+
+ <_>
+ 3 2 3 17 -1.
+ <_>
+ 4 2 1 17 3.
+ <_>
+
+ <_>
+ 4 9 8 1 -1.
+ <_>
+ 8 9 4 1 2.
+ <_>
+
+ <_>
+ 2 7 3 6 -1.
+ <_>
+ 3 7 1 6 3.
+ <_>
+
+ <_>
+ 18 4 1 2 -1.
+ <_>
+ 18 5 1 1 2.
+ <_>
+
+ <_>
+ 7 8 2 6 -1.
+ <_>
+ 7 10 2 2 3.
+ <_>
+
+ <_>
+ 11 12 2 3 -1.
+ <_>
+ 11 13 2 1 3.
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ <_>
+
+ <_>
+ 16 11 3 2 -1.
+ <_>
+ 17 11 1 2 3.
+ <_>
+
+ <_>
+ 15 3 1 4 -1.
+ <_>
+ 15 5 1 2 2.
+ <_>
+
+ <_>
+ 11 0 9 11 -1.
+ <_>
+ 14 0 3 11 3.
+ <_>
+
+ <_>
+ 7 0 5 6 -1.
+ <_>
+ 7 3 5 3 2.
+ <_>
+
+ <_>
+ 8 7 2 6 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+
+ <_>
+ 11 11 4 6 -1.
+ <_>
+ 11 14 4 3 2.
+ <_>
+
+ <_>
+ 4 7 3 2 -1.
+ <_>
+ 5 7 1 2 3.
+ <_>
+
+ <_>
+ 3 7 3 2 -1.
+ <_>
+ 4 7 1 2 3.
+ <_>
+
+ <_>
+ 11 11 2 3 -1.
+ <_>
+ 11 12 2 1 3.
+ <_>
+
+ <_>
+ 5 9 4 6 -1.
+ <_>
+ 5 12 4 3 2.
+ <_>
+
+ <_>
+ 16 4 2 3 -1.
+ <_>
+ 17 4 1 3 2.
+ <_>
+
+ <_>
+ 12 12 2 1 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 8 5 6 4 -1.
+ <_>
+ 8 5 3 2 2.
+ <_>
+ 11 7 3 2 2.
+ <_>
+
+ <_>
+ 10 15 3 3 -1.
+ <_>
+ 11 15 1 3 3.
+ <_>
+
+ <_>
+ 3 7 3 7 -1.
+ <_>
+ 4 7 1 7 3.
+ <_>
+
+ <_>
+ 11 4 1 2 -1.
+ <_>
+ 11 5 1 1 2.
+ <_>
+
+ <_>
+ 3 9 3 5 -1.
+ <_>
+ 4 9 1 5 3.
+ <_>
+
+ <_>
+ 10 15 3 3 -1.
+ <_>
+ 11 15 1 3 3.
+ <_>
+
+ <_>
+ 3 3 6 12 -1.
+ <_>
+ 3 9 6 6 2.
+ <_>
+
+ <_>
+ 3 5 5 6 -1.
+ <_>
+ 3 7 5 2 3.
+ <_>
+
+ <_>
+ 6 6 4 11 -1.
+ <_>
+ 8 6 2 11 2.
+ <_>
+
+ <_>
+ 6 5 2 6 -1.
+ <_>
+ 7 5 1 6 2.
+ <_>
+
+ <_>
+ 2 6 3 8 -1.
+ <_>
+ 3 6 1 8 3.
+ <_>
+
+ <_>
+ 6 4 3 1 -1.
+ <_>
+ 7 4 1 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 13 14 2 3 -1.
+ <_>
+ 13 15 2 1 3.
+ <_>
+
+ <_>
+ 10 11 2 3 -1.
+ <_>
+ 10 12 2 1 3.
+ <_>
+
+ <_>
+ 19 5 1 3 -1.
+ <_>
+ 19 6 1 1 3.
+ <_>
+
+ <_>
+ 5 14 5 3 -1.
+ <_>
+ 5 15 5 1 3.
+ <_>
+
+ <_>
+ 4 10 10 4 -1.
+ <_>
+ 9 10 5 4 2.
+ <_>
+
+ <_>
+ 12 12 2 3 -1.
+ <_>
+ 12 13 2 1 3.
+ <_>
+
+ <_>
+ 5 13 4 3 -1.
+ <_>
+ 5 14 4 1 3.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 6 13 3 1 3.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 15 1 2 3.
+ <_>
+
+ <_>
+ 4 11 8 2 -1.
+ <_>
+ 8 11 4 2 2.
+ <_>
+
+ <_>
+ 14 3 6 8 -1.
+ <_>
+ 14 7 6 4 2.
+ <_>
+
+ <_>
+ 8 5 12 5 -1.
+ <_>
+ 12 5 4 5 3.
+ <_>
+
+ <_>
+ 5 14 6 2 -1.
+ <_>
+ 7 14 2 2 3.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 13 12 1 3 -1.
+ <_>
+ 13 13 1 1 3.
+ <_>
+
+ <_>
+ 6 3 14 12 -1.
+ <_>
+ 6 3 7 6 2.
+ <_>
+ 13 9 7 6 2.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 7 2 1 2.
+ <_>
+
+ <_>
+ 14 7 6 10 -1.
+ <_>
+ 16 7 2 10 3.
+ <_>
+
+ <_>
+ 9 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ <_>
+
+ <_>
+ 0 6 2 4 -1.
+ <_>
+ 0 8 2 2 2.
+ <_>
+
+ <_>
+ 9 0 6 2 -1.
+ <_>
+ 11 0 2 2 3.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+ 16 1 4 1 2.
+ <_>
+
+ <_>
+ 3 10 14 6 -1.
+ <_>
+ 3 12 14 2 3.
+ <_>
+
+ <_>
+ 6 7 3 4 -1.
+ <_>
+ 7 7 1 4 3.
+ <_>
+
+ <_>
+ 10 13 2 1 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 11 6 5 10 -1.
+ <_>
+ 11 11 5 5 2.
+ <_>
+
+ <_>
+ 3 16 4 4 -1.
+ <_>
+ 3 16 2 2 2.
+ <_>
+ 5 18 2 2 2.
+ <_>
+
+ <_>
+ 6 2 3 3 -1.
+ <_>
+ 7 2 1 3 3.
+ <_>
+
+ <_>
+ 4 0 8 20 -1.
+ <_>
+ 4 0 4 10 2.
+ <_>
+ 8 10 4 10 2.
+ <_>
+
+ <_>
+ 3 16 3 4 -1.
+ <_>
+ 4 16 1 4 3.
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 16 1 1 3.
+ <_>
+
+ <_>
+ 11 13 1 2 -1.
+ <_>
+ 11 14 1 1 2.
+ <_>
+
+ <_>
+ 11 13 1 3 -1.
+ <_>
+ 11 14 1 1 3.
+ <_>
+
+ <_>
+ 6 19 14 1 -1.
+ <_>
+ 13 19 7 1 2.
+ <_>
+
+ <_>
+ 5 7 3 3 -1.
+ <_>
+ 6 7 1 3 3.
+ <_>
+
+ <_>
+ 7 4 3 2 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 9 18 2 1 -1.
+ <_>
+ 10 18 1 1 2.
+ <_>
+
+ <_>
+ 6 17 2 3 -1.
+ <_>
+ 6 18 2 1 3.
+ <_>
+
+ <_>
+ 9 7 3 6 -1.
+ <_>
+ 9 9 3 2 3.
+ <_>
+
+ <_>
+ 9 12 3 7 -1.
+ <_>
+ 10 12 1 7 3.
+ <_>
+
+ <_>
+ 8 9 1 3 -1.
+ <_>
+ 8 10 1 1 3.
+ <_>
+
+ <_>
+ 8 5 12 11 -1.
+ <_>
+ 12 5 4 11 3.
+ <_>
+
+ <_>
+ 2 0 1 2 -1.
+ <_>
+ 2 1 1 1 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 8 0 12 16 -1.
+ <_>
+ 12 0 4 16 3.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 11 0 9 11 -1.
+ <_>
+ 14 0 3 11 3.
+ <_>
+
+ <_>
+ 5 5 3 6 -1.
+ <_>
+ 6 5 1 6 3.
+ <_>
+
+ <_>
+ 8 8 3 4 -1.
+ <_>
+ 8 10 3 2 2.
+ <_>
+
+ <_>
+ 13 2 6 12 -1.
+ <_>
+ 13 8 6 6 2.
+ <_>
+
+ <_>
+ 10 6 4 14 -1.
+ <_>
+ 10 13 4 7 2.
+ <_>
+
+ <_>
+ 1 1 10 1 -1.
+ <_>
+ 6 1 5 1 2.
+ <_>
+
+ <_>
+ 4 2 13 6 -1.
+ <_>
+ 4 4 13 2 3.
+ <_>
+
+ <_>
+ 11 13 2 3 -1.
+ <_>
+ 12 13 1 3 2.
+ <_>
+
+ <_>
+ 6 9 4 9 -1.
+ <_>
+ 6 12 4 3 3.
+ <_>
+
+ <_>
+ 6 6 3 10 -1.
+ <_>
+ 6 11 3 5 2.
+ <_>
+
+ <_>
+ 2 10 3 4 -1.
+ <_>
+ 3 10 1 4 3.
+ <_>
+
+ <_>
+ 3 8 3 6 -1.
+ <_>
+ 4 8 1 6 3.
+ <_>
+
+ <_>
+ 11 12 3 6 -1.
+ <_>
+ 12 12 1 6 3.
+ <_>
+
+ <_>
+ 8 6 2 3 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 5 8 3 3 2.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 3 7 3 1 -1.
+ <_>
+ 4 7 1 1 3.
+ <_>
+
+ <_>
+ 10 12 3 3 -1.
+ <_>
+ 10 13 3 1 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 10 12 4 3 -1.
+ <_>
+ 10 13 4 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 9 2 3 1 -1.
+ <_>
+ 10 2 1 1 3.
+ <_>
+
+ <_>
+ 2 0 18 14 -1.
+ <_>
+ 2 7 18 7 2.
+ <_>
+
+ <_>
+ 9 2 3 2 -1.
+ <_>
+ 10 2 1 2 3.
+ <_>
+
+ <_>
+ 8 6 4 3 -1.
+ <_>
+ 8 7 4 1 3.
+ <_>
+
+ <_>
+ 4 8 5 2 -1.
+ <_>
+ 4 9 5 1 2.
+ <_>
+
+ <_>
+ 0 3 1 6 -1.
+ <_>
+ 0 5 1 2 3.
+ <_>
+
+ <_>
+ 13 9 1 6 -1.
+ <_>
+ 13 12 1 3 2.
+ <_>
+
+ <_>
+ 6 16 3 3 -1.
+ <_>
+ 6 17 3 1 3.
+ <_>
+
+ <_>
+ 3 16 7 3 -1.
+ <_>
+ 3 17 7 1 3.
+ <_>
+
+ <_>
+ 10 15 5 3 -1.
+ <_>
+ 10 16 5 1 3.
+ <_>
+
+ <_>
+ 4 0 5 20 -1.
+ <_>
+ 4 10 5 10 2.
+ <_>
+
+ <_>
+ 6 2 2 2 -1.
+ <_>
+ 7 2 1 2 2.
+ <_>
+
+ <_>
+ 18 0 2 15 -1.
+ <_>
+ 18 5 2 5 3.
+ <_>
+
+ <_>
+ 6 15 7 3 -1.
+ <_>
+ 6 16 7 1 3.
+ <_>
+
+ <_>
+ 10 13 6 2 -1.
+ <_>
+ 10 14 6 1 2.
+ <_>
+
+ <_>
+ 13 8 1 9 -1.
+ <_>
+ 13 11 1 3 3.
+ <_>
+
+ <_>
+ 3 0 4 4 -1.
+ <_>
+ 3 0 2 2 2.
+ <_>
+ 5 2 2 2 2.
+ <_>
+
+ <_>
+ 0 3 1 6 -1.
+ <_>
+ 0 5 1 2 3.
+ <_>
+
+ <_>
+ 5 8 3 1 -1.
+ <_>
+ 6 8 1 1 3.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 6 6 1 3 2.
+ <_>
+
+ <_>
+ 6 11 6 7 -1.
+ <_>
+ 8 11 2 7 3.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 8 8 4 1 3.
+ <_>
+
+ <_>
+ 3 8 8 1 -1.
+ <_>
+ 7 8 4 1 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ <_>
+
+ <_>
+ 9 7 2 8 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+ 10 11 1 4 2.
+ <_>
+
+ <_>
+ 14 2 3 5 -1.
+ <_>
+ 15 2 1 5 3.
+ <_>
+
+ <_>
+ 6 13 2 3 -1.
+ <_>
+ 6 14 2 1 3.
+ <_>
+
+ <_>
+ 6 14 1 2 -1.
+ <_>
+ 6 15 1 1 2.
+ <_>
+
+ <_>
+ 12 10 2 3 -1.
+ <_>
+ 12 11 2 1 3.
+ <_>
+
+ <_>
+ 1 14 12 3 -1.
+ <_>
+ 5 14 4 3 3.
+ <_>
+
+ <_>
+ 11 8 3 1 -1.
+ <_>
+ 12 8 1 1 3.
+ <_>
+
+ <_>
+ 14 4 2 3 -1.
+ <_>
+ 14 5 2 1 3.
+ <_>
+
+ <_>
+ 7 8 3 2 -1.
+ <_>
+ 8 8 1 2 3.
+ <_>
+
+ <_>
+ 2 7 3 11 -1.
+ <_>
+ 3 7 1 11 3.
+ <_>
+
+ <_>
+ 0 14 2 1 -1.
+ <_>
+ 1 14 1 1 2.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 15 1 2 3.
+ <_>
+
+ <_>
+ 18 10 2 4 -1.
+ <_>
+ 18 10 1 2 2.
+ <_>
+ 19 12 1 2 2.
+ <_>
+
+ <_>
+ 13 12 2 2 -1.
+ <_>
+ 14 12 1 2 2.
+ <_>
+
+ <_>
+ 9 5 8 12 -1.
+ <_>
+ 13 5 4 12 2.
+ <_>
+
+ <_>
+ 11 5 3 3 -1.
+ <_>
+ 12 5 1 3 3.
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 14 5 1 2 -1.
+ <_>
+ 14 6 1 1 2.
+ <_>
+
+ <_>
+ 3 0 8 16 -1.
+ <_>
+ 3 8 8 8 2.
+ <_>
+
+ <_>
+ 3 11 3 5 -1.
+ <_>
+ 4 11 1 5 3.
+ <_>
+
+ <_>
+ 0 8 12 6 -1.
+ <_>
+ 4 8 4 6 3.
+ <_>
+
+ <_>
+ 6 9 4 2 -1.
+ <_>
+ 6 9 2 1 2.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 11 15 3 5 -1.
+ <_>
+ 12 15 1 5 3.
+ <_>
+
+ <_>
+ 18 10 2 6 -1.
+ <_>
+ 18 10 1 3 2.
+ <_>
+ 19 13 1 3 2.
+ <_>
+
+ <_>
+ 13 15 6 1 -1.
+ <_>
+ 16 15 3 1 2.
+ <_>
+
+ <_>
+ 5 10 7 6 -1.
+ <_>
+ 5 13 7 3 2.
+ <_>
+
+ <_>
+ 2 11 6 6 -1.
+ <_>
+ 2 14 6 3 2.
+ <_>
+
+ <_>
+ 11 14 3 3 -1.
+ <_>
+ 11 15 3 1 3.
+ <_>
+
+ <_>
+ 7 14 6 3 -1.
+ <_>
+ 7 15 6 1 3.
+ <_>
+
+ <_>
+ 5 14 5 3 -1.
+ <_>
+ 5 15 5 1 3.
+ <_>
+
+ <_>
+ 6 16 3 1 -1.
+ <_>
+ 7 16 1 1 3.
+ <_>
+
+ <_>
+ 4 15 4 3 -1.
+ <_>
+ 4 16 4 1 3.
+ <_>
+
+ <_>
+ 2 2 4 8 -1.
+ <_>
+ 2 2 2 4 2.
+ <_>
+ 4 6 2 4 2.
+ <_>
+
+ <_>
+ 12 13 2 3 -1.
+ <_>
+ 12 14 2 1 3.
+ <_>
+
+ <_>
+ 9 13 4 3 -1.
+ <_>
+ 9 14 4 1 3.
+ <_>
+
+ <_>
+ 8 8 5 3 -1.
+ <_>
+ 8 9 5 1 3.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 10 12 1 2 3.
+ <_>
+
+ <_>
+ 4 0 8 2 -1.
+ <_>
+ 4 0 4 1 2.
+ <_>
+ 8 1 4 1 2.
+ <_>
+
+ <_>
+ 0 12 1 2 -1.
+ <_>
+ 0 13 1 1 2.
+ <_>
+
+ <_>
+ 8 14 8 4 -1.
+ <_>
+ 8 16 8 2 2.
+ <_>
+
+ <_>
+ 4 17 9 3 -1.
+ <_>
+ 4 18 9 1 3.
+ <_>
+
+ <_>
+ 10 0 2 8 -1.
+ <_>
+ 10 4 2 4 2.
+ <_>
+
+ <_>
+ 10 13 2 6 -1.
+ <_>
+ 10 16 2 3 2.
+ <_>
+
+ <_>
+ 7 2 10 5 -1.
+ <_>
+ 12 2 5 5 2.
+ <_>
+
+ <_>
+ 9 7 4 6 -1.
+ <_>
+ 9 7 2 3 2.
+ <_>
+ 11 10 2 3 2.
+ <_>
+
+ <_>
+ 12 10 1 6 -1.
+ <_>
+ 12 13 1 3 2.
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 4 2 3 8 2.
+ <_>
+
+ <_>
+ 10 12 1 3 -1.
+ <_>
+ 10 13 1 1 3.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 6 7 1 2 3.
+ <_>
+
+ <_>
+ 10 13 1 3 -1.
+ <_>
+ 10 14 1 1 3.
+ <_>
+
+ <_>
+ 4 3 16 9 -1.
+ <_>
+ 4 6 16 3 3.
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 7 12 2 3 2.
+ <_>
+
+ <_>
+ 10 14 1 3 -1.
+ <_>
+ 10 15 1 1 3.
+ <_>
+
+ <_>
+ 10 6 3 8 -1.
+ <_>
+ 11 6 1 8 3.
+ <_>
+
+ <_>
+ 1 8 3 5 -1.
+ <_>
+ 2 8 1 5 3.
+ <_>
+
+ <_>
+ 6 7 3 2 -1.
+ <_>
+ 7 7 1 2 3.
+ <_>
+
+ <_>
+ 9 10 3 3 -1.
+ <_>
+ 10 10 1 3 3.
+ <_>
+
+ <_>
+ 11 4 4 3 -1.
+ <_>
+ 11 5 4 1 3.
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ <_>
+
+ <_>
+ 8 0 6 3 -1.
+ <_>
+ 10 0 2 3 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 11 3 7 3 -1.
+ <_>
+ 11 4 7 1 3.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 7 4 3 2 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 7 3 3 3 -1.
+ <_>
+ 8 3 1 3 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 10 12 2 3 -1.
+ <_>
+ 10 13 2 1 3.
+ <_>
+
+ <_>
+ 5 0 12 2 -1.
+ <_>
+ 5 1 12 1 2.
+ <_>
+
+ <_>
+ 4 11 8 4 -1.
+ <_>
+ 4 13 8 2 2.
+ <_>
+
+ <_>
+ 6 12 8 4 -1.
+ <_>
+ 6 14 8 2 2.
+ <_>
+
+ <_>
+ 4 0 4 2 -1.
+ <_>
+ 4 0 2 1 2.
+ <_>
+ 6 1 2 1 2.
+ <_>
+
+ <_>
+ 13 9 4 2 -1.
+ <_>
+ 13 10 4 1 2.
+ <_>
+
+ <_>
+ 12 10 2 2 -1.
+ <_>
+ 13 10 1 2 2.
+ <_>
+
+ <_>
+ 9 9 6 1 -1.
+ <_>
+ 12 9 3 1 2.
+ <_>
+
+ <_>
+ 6 6 14 6 -1.
+ <_>
+ 6 9 14 3 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 11 11 1 3 -1.
+ <_>
+ 11 12 1 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 12 11 6 2 -1.
+ <_>
+ 14 11 2 2 3.
+ <_>
+
+ <_>
+ 11 11 2 1 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+
+ <_>
+ 3 11 14 1 -1.
+ <_>
+ 10 11 7 1 2.
+ <_>
+
+ <_>
+ 1 13 6 5 -1.
+ <_>
+ 3 13 2 5 3.
+ <_>
+
+ <_>
+ 14 0 2 1 -1.
+ <_>
+ 15 0 1 1 2.
+ <_>
+
+ <_>
+ 10 0 10 1 -1.
+ <_>
+ 15 0 5 1 2.
+ <_>
+
+ <_>
+ 5 15 3 3 -1.
+ <_>
+ 5 16 3 1 3.
+ <_>
+
+ <_>
+ 12 14 2 2 -1.
+ <_>
+ 12 15 2 1 2.
+ <_>
+
+ <_>
+ 12 14 2 3 -1.
+ <_>
+ 12 15 2 1 3.
+ <_>
+
+ <_>
+ 8 6 1 3 -1.
+ <_>
+ 8 7 1 1 3.
+ <_>
+
+ <_>
+ 0 2 1 3 -1.
+ <_>
+ 0 3 1 1 3.
+ <_>
+
+ <_>
+ 0 2 1 3 -1.
+ <_>
+ 0 3 1 1 3.
+ <_>
+
+ <_>
+ 4 8 2 2 -1.
+ <_>
+ 4 8 1 1 2.
+ <_>
+ 5 9 1 1 2.
+ <_>
+
+ <_>
+ 3 6 8 10 -1.
+ <_>
+ 3 6 4 5 2.
+ <_>
+ 7 11 4 5 2.
+ <_>
+
+ <_>
+ 6 15 1 3 -1.
+ <_>
+ 6 16 1 1 3.
+ <_>
+
+ <_>
+ 12 0 3 8 -1.
+ <_>
+ 13 0 1 8 3.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 10 0 5 3 2.
+ <_>
+ 15 3 5 3 2.
+ <_>
+
+ <_>
+ 17 2 2 2 -1.
+ <_>
+ 17 3 2 1 2.
+ <_>
+
+ <_>
+ 8 0 12 14 -1.
+ <_>
+ 14 0 6 14 2.
+ <_>
+
+ <_>
+ 10 18 2 1 -1.
+ <_>
+ 11 18 1 1 2.
+ <_>
+
+ <_>
+ 18 9 2 6 -1.
+ <_>
+ 18 9 1 3 2.
+ <_>
+ 19 12 1 3 2.
+ <_>
+
+ <_>
+ 18 4 2 16 -1.
+ <_>
+ 18 4 1 8 2.
+ <_>
+ 19 12 1 8 2.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 6 5 4 11 -1.
+ <_>
+ 8 5 2 11 2.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 7 8 1 2 2.
+ <_>
+
+ <_>
+ 6 5 2 5 -1.
+ <_>
+ 7 5 1 5 2.
+ <_>
+
+ <_>
+ 10 16 3 4 -1.
+ <_>
+ 11 16 1 4 3.
+ <_>
+
+ <_>
+ 3 0 8 18 -1.
+ <_>
+ 3 9 8 9 2.
+ <_>
+
+ <_>
+ 1 7 7 3 -1.
+ <_>
+ 1 8 7 1 3.
+ <_>
+
+ <_>
+ 5 5 2 6 -1.
+ <_>
+ 5 7 2 2 3.
+ <_>
+
+ <_>
+ 3 8 3 10 -1.
+ <_>
+ 4 8 1 10 3.
+ <_>
+
+ <_>
+ 3 12 3 2 -1.
+ <_>
+ 4 12 1 2 3.
+ <_>
+
+ <_>
+ 3 9 10 3 -1.
+ <_>
+ 8 9 5 3 2.
+ <_>
+
+ <_>
+ 6 15 6 2 -1.
+ <_>
+ 8 15 2 2 3.
+ <_>
+
+ <_>
+ 5 9 3 2 -1.
+ <_>
+ 6 9 1 2 3.
+ <_>
+
+ <_>
+ 17 5 3 3 -1.
+ <_>
+ 17 6 3 1 3.
+ <_>
+
+ <_>
+ 8 6 1 3 -1.
+ <_>
+ 8 7 1 1 3.
+ <_>
+
+ <_>
+ 18 5 1 3 -1.
+ <_>
+ 18 6 1 1 3.
+ <_>
+
+ <_>
+ 5 2 5 6 -1.
+ <_>
+ 5 5 5 3 2.
+ <_>
+
+ <_>
+ 11 1 6 3 -1.
+ <_>
+ 13 1 2 3 3.
+ <_>
+
+ <_>
+ 6 7 2 10 -1.
+ <_>
+ 6 12 2 5 2.
+ <_>
+
+ <_>
+ 3 14 4 4 -1.
+ <_>
+ 5 14 2 4 2.
+ <_>
+
+ <_>
+ 2 11 4 1 -1.
+ <_>
+ 4 11 2 1 2.
+ <_>
+
+ <_>
+ 6 4 3 2 -1.
+ <_>
+ 7 4 1 2 3.
+ <_>
+
+ <_>
+ 8 3 2 6 -1.
+ <_>
+ 8 5 2 2 3.
+ <_>
+
+ <_>
+ 0 10 20 10 -1.
+ <_>
+ 10 10 10 10 2.
+ <_>
+
+ <_>
+ 13 7 2 2 -1.
+ <_>
+ 13 8 2 1 2.
+ <_>
+
+ <_>
+ 10 8 10 4 -1.
+ <_>
+ 15 8 5 4 2.
+ <_>
+
+ <_>
+ 0 10 16 2 -1.
+ <_>
+ 8 10 8 2 2.
+ <_>
+
+ <_>
+ 10 14 6 6 -1.
+ <_>
+ 10 14 3 3 2.
+ <_>
+ 13 17 3 3 2.
+ <_>
+
+ <_>
+ 13 10 1 3 -1.
+ <_>
+ 13 11 1 1 3.
+ <_>
+
+ <_>
+ 4 4 10 8 -1.
+ <_>
+ 4 4 5 4 2.
+ <_>
+ 9 8 5 4 2.
+ <_>
+
+ <_>
+ 5 1 6 6 -1.
+ <_>
+ 5 1 3 3 2.
+ <_>
+ 8 4 3 3 2.
+ <_>
+
+ <_>
+ 11 10 8 3 -1.
+ <_>
+ 11 11 8 1 3.
+ <_>
+
+ <_>
+ 3 11 3 6 -1.
+ <_>
+ 3 13 3 2 3.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 0 6 3 2.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 7 8 2 4 -1.
+ <_>
+ 7 8 1 2 2.
+ <_>
+ 8 10 1 2 2.
+ <_>
+
+ <_>
+ 11 1 7 10 -1.
+ <_>
+ 11 6 7 5 2.
+ <_>
+
+ <_>
+ 10 15 3 2 -1.
+ <_>
+ 10 16 3 1 2.
+ <_>
+
+ <_>
+ 11 11 2 3 -1.
+ <_>
+ 12 11 1 3 2.
+ <_>
+
+ <_>
+ 6 8 3 2 -1.
+ <_>
+ 6 9 3 1 2.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 12 12 2 2 -1.
+ <_>
+ 12 13 2 1 2.
+ <_>
+
+ <_>
+ 11 3 8 9 -1.
+ <_>
+ 11 6 8 3 3.
+ <_>
+
+ <_>
+ 10 11 3 3 -1.
+ <_>
+ 11 11 1 3 3.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 10 6 1 3 2.
+ <_>
+
+ <_>
+ 7 8 2 6 -1.
+ <_>
+ 7 10 2 2 3.
+ <_>
+
+ <_>
+ 3 0 4 6 -1.
+ <_>
+ 3 0 2 3 2.
+ <_>
+ 5 3 2 3 2.
+ <_>
+
+ <_>
+ 5 0 3 17 -1.
+ <_>
+ 6 0 1 17 3.
+ <_>
+
+ <_>
+ 12 9 6 3 -1.
+ <_>
+ 12 10 6 1 3.
+ <_>
+
+ <_>
+ 10 19 8 1 -1.
+ <_>
+ 14 19 4 1 2.
+ <_>
+
+ <_>
+ 13 3 5 3 -1.
+ <_>
+ 13 4 5 1 3.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 6 7 1 2 2.
+ <_>
+
+ <_>
+ 12 10 3 10 -1.
+ <_>
+ 13 10 1 10 3.
+ <_>
+
+ <_>
+ 4 7 6 3 -1.
+ <_>
+ 7 7 3 3 2.
+ <_>
+
+ <_>
+ 6 10 1 3 -1.
+ <_>
+ 6 11 1 1 3.
+ <_>
+
+ <_>
+ 6 9 2 3 -1.
+ <_>
+ 6 10 2 1 3.
+ <_>
+
+ <_>
+ 11 3 6 3 -1.
+ <_>
+ 11 4 6 1 3.
+ <_>
+
+ <_>
+ 13 14 2 3 -1.
+ <_>
+ 13 15 2 1 3.
+ <_>
+
+ <_>
+ 6 16 8 4 -1.
+ <_>
+ 6 16 4 2 2.
+ <_>
+ 10 18 4 2 2.
+ <_>
+
+ <_>
+ 10 5 3 15 -1.
+ <_>
+ 11 5 1 15 3.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 10 0 5 3 2.
+ <_>
+ 15 3 5 3 2.
+ <_>
+
+ <_>
+ 11 2 3 16 -1.
+ <_>
+ 12 2 1 16 3.
+ <_>
+
+ <_>
+ 7 12 2 2 -1.
+ <_>
+ 7 12 1 1 2.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 6 4 2 1 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 6 3 3 4 -1.
+ <_>
+ 7 3 1 4 3.
+ <_>
+
+ <_>
+ 0 13 16 6 -1.
+ <_>
+ 0 15 16 2 3.
+ <_>
+
+ <_>
+ 7 14 2 3 -1.
+ <_>
+ 7 15 2 1 3.
+ <_>
+
+ <_>
+ 15 17 2 2 -1.
+ <_>
+ 15 18 2 1 2.
+ <_>
+
+ <_>
+ 17 12 2 2 -1.
+ <_>
+ 17 12 1 1 2.
+ <_>
+ 18 13 1 1 2.
+ <_>
+
+ <_>
+ 11 1 3 19 -1.
+ <_>
+ 12 1 1 19 3.
+ <_>
+
+ <_>
+ 1 11 19 4 -1.
+ <_>
+ 1 13 19 2 2.
+ <_>
+
+ <_>
+ 17 8 2 10 -1.
+ <_>
+ 17 8 1 5 2.
+ <_>
+ 18 13 1 5 2.
+ <_>
+
+ <_>
+ 9 0 11 20 -1.
+ <_>
+ 9 10 11 10 2.
+ <_>
+
+ <_>
+ 4 1 12 12 -1.
+ <_>
+ 4 1 6 6 2.
+ <_>
+ 10 7 6 6 2.
+ <_>
+
+ <_>
+ 5 11 3 6 -1.
+ <_>
+ 6 11 1 6 3.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 18 1 2 4 -1.
+ <_>
+ 19 1 1 4 2.
+ <_>
+
+ <_>
+ 11 0 8 15 -1.
+ <_>
+ 15 0 4 15 2.
+ <_>
+
+ <_>
+ 5 5 6 2 -1.
+ <_>
+ 7 5 2 2 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 6 8 2 8 -1.
+ <_>
+ 6 12 2 4 2.
+ <_>
+
+ <_>
+ 9 9 2 4 -1.
+ <_>
+ 9 11 2 2 2.
+ <_>
+
+ <_>
+ 0 8 2 2 -1.
+ <_>
+ 0 9 2 1 2.
+ <_>
+
+ <_>
+ 7 12 8 4 -1.
+ <_>
+ 7 14 8 2 2.
+ <_>
+
+ <_>
+ 11 13 3 2 -1.
+ <_>
+ 11 14 3 1 2.
+ <_>
+
+ <_>
+ 5 8 2 2 -1.
+ <_>
+ 5 8 1 1 2.
+ <_>
+ 6 9 1 1 2.
+ <_>
+
+ <_>
+ 12 11 2 3 -1.
+ <_>
+ 12 12 2 1 3.
+ <_>
+
+ <_>
+ 10 8 2 2 -1.
+ <_>
+ 10 8 1 1 2.
+ <_>
+ 11 9 1 1 2.
+ <_>
+
+ <_>
+ 6 16 3 2 -1.
+ <_>
+ 7 16 1 2 3.
+ <_>
+
+ <_>
+ 13 12 2 1 -1.
+ <_>
+ 14 12 1 1 2.
+ <_>
+
+ <_>
+ 16 9 2 6 -1.
+ <_>
+ 16 9 1 3 2.
+ <_>
+ 17 12 1 3 2.
+ <_>
+
+ <_>
+ 17 2 2 6 -1.
+ <_>
+ 17 4 2 2 3.
+ <_>
+
+ <_>
+ 13 2 7 6 -1.
+ <_>
+ 13 4 7 2 3.
+ <_>
+
+ <_>
+ 16 10 4 4 -1.
+ <_>
+ 16 10 2 2 2.
+ <_>
+ 18 12 2 2 2.
+ <_>
+
+ <_>
+ 11 10 2 2 -1.
+ <_>
+ 11 11 2 1 2.
+ <_>
+
+ <_>
+ 6 13 3 3 -1.
+ <_>
+ 6 14 3 1 3.
+ <_>
+
+ <_>
+ 4 14 4 2 -1.
+ <_>
+ 4 15 4 1 2.
+ <_>
+
+ <_>
+ 0 9 2 1 -1.
+ <_>
+ 1 9 1 1 2.
+ <_>
+
+ <_>
+ 7 6 4 8 -1.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 9 17 7 3 -1.
+ <_>
+ 9 18 7 1 3.
+ <_>
+
+ <_>
+ 7 12 2 3 -1.
+ <_>
+ 7 13 2 1 3.
+ <_>
+
+ <_>
+ 12 17 4 3 -1.
+ <_>
+ 12 18 4 1 3.
+ <_>
+
+ <_>
+ 11 7 9 11 -1.
+ <_>
+ 14 7 3 11 3.
+ <_>
+
+ <_>
+ 16 14 4 5 -1.
+ <_>
+ 18 14 2 5 2.
+ <_>
+
+ <_>
+ 9 2 3 4 -1.
+ <_>
+ 10 2 1 4 3.
+ <_>
+
+ <_>
+ 3 11 2 8 -1.
+ <_>
+ 3 11 1 4 2.
+ <_>
+ 4 15 1 4 2.
+ <_>
+
+ <_>
+ 13 2 6 18 -1.
+ <_>
+ 13 2 3 9 2.
+ <_>
+ 16 11 3 9 2.
+ <_>
+
+ <_>
+ 9 12 5 2 -1.
+ <_>
+ 9 13 5 1 2.
+ <_>
+
+ <_>
+ 11 8 4 10 -1.
+ <_>
+ 11 8 2 5 2.
+ <_>
+ 13 13 2 5 2.
+ <_>
+
+ <_>
+ 0 11 20 1 -1.
+ <_>
+ 10 11 10 1 2.
+ <_>
+
+ <_>
+ 1 12 1 2 -1.
+ <_>
+ 1 13 1 1 2.
+ <_>
+
+ <_>
+ 6 7 6 3 -1.
+ <_>
+ 8 7 2 3 3.
+ <_>
+
+ <_>
+ 8 5 10 3 -1.
+ <_>
+ 13 5 5 3 2.
+ <_>
+
+ <_>
+ 5 5 4 6 -1.
+ <_>
+ 5 7 4 2 3.
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 2 8 3 7 -1.
+ <_>
+ 3 8 1 7 3.
+ <_>
+
+ <_>
+ 2 10 3 6 -1.
+ <_>
+ 3 10 1 6 3.
+ <_>
+
+ <_>
+ 14 0 2 2 -1.
+ <_>
+ 15 0 1 2 2.
+ <_>
+
+ <_>
+ 8 7 4 4 -1.
+ <_>
+ 8 7 2 2 2.
+ <_>
+ 10 9 2 2 2.
+ <_>
+
+ <_>
+ 4 13 4 3 -1.
+ <_>
+ 4 14 4 1 3.
+ <_>
+
+ <_>
+ 8 11 6 2 -1.
+ <_>
+ 8 12 6 1 2.
+ <_>
+
+ <_>
+ 17 3 1 4 -1.
+ <_>
+ 17 5 1 2 2.
+ <_>
+
+ <_>
+ 6 13 2 3 -1.
+ <_>
+ 6 14 2 1 3.
+ <_>
+
+ <_>
+ 7 9 6 8 -1.
+ <_>
+ 7 9 3 4 2.
+ <_>
+ 10 13 3 4 2.
+ <_>
+
+ <_>
+ 5 15 2 3 -1.
+ <_>
+ 5 16 2 1 3.
+ <_>
+
+ <_>
+ 7 10 4 9 -1.
+ <_>
+ 7 13 4 3 3.
+ <_>
+
+ <_>
+ 5 4 2 1 -1.
+ <_>
+ 6 4 1 1 2.
+ <_>
+
+ <_>
+ 0 1 6 19 -1.
+ <_>
+ 2 1 2 19 3.
+ <_>
+
+ <_>
+ 5 8 6 2 -1.
+ <_>
+ 8 8 3 2 2.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 9 12 2 4 -1.
+ <_>
+ 9 12 1 2 2.
+ <_>
+ 10 14 1 2 2.
+ <_>
+
+ <_>
+ 12 7 2 10 -1.
+ <_>
+ 12 12 2 5 2.
+ <_>
+
+ <_>
+ 10 6 6 8 -1.
+ <_>
+ 10 10 6 4 2.
+ <_>
+
+ <_>
+ 4 3 2 6 -1.
+ <_>
+ 5 3 1 6 2.
+ <_>
+
+ <_>
+ 4 6 3 3 -1.
+ <_>
+ 5 6 1 3 3.
+ <_>
+
+ <_>
+ 10 7 2 8 -1.
+ <_>
+ 10 7 1 4 2.
+ <_>
+ 11 11 1 4 2.
+ <_>
+
+ <_>
+ 2 0 6 10 -1.
+ <_>
+ 2 5 6 5 2.
+ <_>
+
+ <_>
+ 8 10 6 2 -1.
+ <_>
+ 8 11 6 1 2.
+ <_>
+
+ <_>
+ 10 0 2 1 -1.
+ <_>
+ 11 0 1 1 2.
+ <_>
+
+ <_>
+ 4 16 4 3 -1.
+ <_>
+ 4 17 4 1 3.
+ <_>
+
+ <_>
+ 7 4 3 2 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 7 5 3 1 -1.
+ <_>
+ 8 5 1 1 3.
+ <_>
+
+ <_>
+ 5 5 6 3 -1.
+ <_>
+ 5 6 6 1 3.
+ <_>
+
+ <_>
+ 5 5 5 3 -1.
+ <_>
+ 5 6 5 1 3.
+ <_>
+
+ <_>
+ 10 7 6 9 -1.
+ <_>
+ 10 10 6 3 3.
+ <_>
+
+ <_>
+ 17 4 1 2 -1.
+ <_>
+ 17 5 1 1 2.
+ <_>
+
+ <_>
+ 4 9 10 4 -1.
+ <_>
+ 4 9 5 2 2.
+ <_>
+ 9 11 5 2 2.
+ <_>
+
+ <_>
+ 5 6 3 10 -1.
+ <_>
+ 5 11 3 5 2.
+ <_>
+
+ <_>
+ 2 13 18 5 -1.
+ <_>
+ 11 13 9 5 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ <_>
+
+ <_>
+ 9 12 2 4 -1.
+ <_>
+ 9 14 2 2 2.
+ <_>
+
+ <_>
+ 5 11 15 6 -1.
+ <_>
+ 5 13 15 2 3.
+ <_>
+
+ <_>
+ 16 0 4 6 -1.
+ <_>
+ 16 0 2 3 2.
+ <_>
+ 18 3 2 3 2.
+ <_>
+
+ <_>
+ 11 12 2 2 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 6 6 3 5 -1.
+ <_>
+ 7 6 1 5 3.
+ <_>
+
+ <_>
+ 13 13 2 1 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 5 8 3 2 -1.
+ <_>
+ 6 8 1 2 3.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 16 12 3 1 -1.
+ <_>
+ 17 12 1 1 3.
+ <_>
+
+ <_>
+ 8 5 12 8 -1.
+ <_>
+ 14 5 6 8 2.
+ <_>
+
+ <_>
+ 5 13 4 4 -1.
+ <_>
+ 5 13 2 2 2.
+ <_>
+ 7 15 2 2 2.
+ <_>
+
+ <_>
+ 5 7 2 3 -1.
+ <_>
+ 6 7 1 3 2.
+ <_>
+
+ <_>
+ 9 2 2 10 -1.
+ <_>
+ 9 2 1 5 2.
+ <_>
+ 10 7 1 5 2.
+ <_>
+
+ <_>
+ 9 14 1 2 -1.
+ <_>
+ 9 15 1 1 2.
+ <_>
+
+ <_>
+ 15 7 2 4 -1.
+ <_>
+ 15 9 2 2 2.
+ <_>
+
+ <_>
+ 7 5 4 3 -1.
+ <_>
+ 7 6 4 1 3.
+ <_>
+
+ <_>
+ 3 10 8 2 -1.
+ <_>
+ 7 10 4 2 2.
+ <_>
+
+ <_>
+ 13 8 2 2 -1.
+ <_>
+ 13 9 2 1 2.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 13 10 5 2 -1.
+ <_>
+ 13 11 5 1 2.
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 0 10 2 4 -1.
+ <_>
+ 0 10 1 2 2.
+ <_>
+ 1 12 1 2 2.
+ <_>
+
+ <_>
+ 0 8 2 8 -1.
+ <_>
+ 0 8 1 4 2.
+ <_>
+ 1 12 1 4 2.
+ <_>
+
+ <_>
+ 6 14 5 3 -1.
+ <_>
+ 6 15 5 1 3.
+ <_>
+
+ <_>
+ 18 8 2 4 -1.
+ <_>
+ 19 8 1 4 2.
+ <_>
+
+ <_>
+ 14 2 3 1 -1.
+ <_>
+ 15 2 1 1 3.
+ <_>
+
+ <_>
+ 9 13 3 3 -1.
+ <_>
+ 9 14 3 1 3.
+ <_>
+
+ <_>
+ 5 13 6 3 -1.
+ <_>
+ 5 14 6 1 3.
+ <_>
+
+ <_>
+ 12 12 1 3 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 2 14 14 6 -1.
+ <_>
+ 2 17 14 3 2.
+ <_>
+
+ <_>
+ 7 5 2 4 -1.
+ <_>
+ 7 5 1 2 2.
+ <_>
+ 8 7 1 2 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 17 1 1 2.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 9 3 3 5 -1.
+ <_>
+ 10 3 1 5 3.
+ <_>
+
+ <_>
+ 6 17 4 3 -1.
+ <_>
+ 6 18 4 1 3.
+ <_>
+
+ <_>
+ 10 0 6 4 -1.
+ <_>
+ 12 0 2 4 3.
+ <_>
+
+ <_>
+ 4 8 6 10 -1.
+ <_>
+ 4 8 3 5 2.
+ <_>
+ 7 13 3 5 2.
+ <_>
+
+ <_>
+ 4 3 2 6 -1.
+ <_>
+ 5 3 1 6 2.
+ <_>
+
+ <_>
+ 3 4 6 6 -1.
+ <_>
+ 5 4 2 6 3.
+ <_>
+
+ <_>
+ 5 8 2 8 -1.
+ <_>
+ 5 12 2 4 2.
+ <_>
+
+ <_>
+ 5 11 2 2 -1.
+ <_>
+ 5 12 2 1 2.
+ <_>
+
+ <_>
+ 12 13 1 3 -1.
+ <_>
+ 12 14 1 1 3.
+ <_>
+
+ <_>
+ 5 1 4 15 -1.
+ <_>
+ 5 6 4 5 3.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 6 11 3 3 -1.
+ <_>
+ 6 12 3 1 3.
+ <_>
+
+ <_>
+ 11 0 3 3 -1.
+ <_>
+ 12 0 1 3 3.
+ <_>
+
+ <_>
+ 2 2 15 3 -1.
+ <_>
+ 7 2 5 3 3.
+ <_>
+
+ <_>
+ 4 0 16 5 -1.
+ <_>
+ 12 0 8 5 2.
+ <_>
+
+ <_>
+ 13 7 6 8 -1.
+ <_>
+ 13 11 6 4 2.
+ <_>
+
+ <_>
+ 9 9 3 4 -1.
+ <_>
+ 9 11 3 2 2.
+ <_>
+
+ <_>
+ 5 2 6 16 -1.
+ <_>
+ 5 2 3 8 2.
+ <_>
+ 8 10 3 8 2.
+ <_>
+
+ <_>
+ 10 7 6 3 -1.
+ <_>
+ 13 7 3 3 2.
+ <_>
+
+ <_>
+ 12 11 2 1 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+
+ <_>
+ 0 0 1 8 -1.
+ <_>
+ 0 4 1 4 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 6 5 4 15 -1.
+ <_>
+ 8 5 2 15 2.
+ <_>
+
+ <_>
+ 7 7 2 2 -1.
+ <_>
+ 8 7 1 2 2.
+ <_>
+
+ <_>
+ 1 3 1 2 -1.
+ <_>
+ 1 4 1 1 2.
+ <_>
+
+ <_>
+ 6 2 6 11 -1.
+ <_>
+ 9 2 3 11 2.
+ <_>
+
+ <_>
+ 9 6 9 6 -1.
+ <_>
+ 9 8 9 2 3.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 6 9 2 1 3.
+ <_>
+
+ <_>
+ 13 1 2 8 -1.
+ <_>
+ 13 5 2 4 2.
+ <_>
+
+ <_>
+ 6 0 6 4 -1.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 0 6 20 14 -1.
+ <_>
+ 10 6 10 14 2.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 0 6 3 2.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 8 7 9 9 -1.
+ <_>
+ 8 10 9 3 3.
+ <_>
+
+ <_>
+ 10 14 6 6 -1.
+ <_>
+ 10 14 3 3 2.
+ <_>
+ 13 17 3 3 2.
+ <_>
+
+ <_>
+ 8 7 4 10 -1.
+ <_>
+ 8 7 2 5 2.
+ <_>
+ 10 12 2 5 2.
+ <_>
+
+ <_>
+ 15 4 3 3 -1.
+ <_>
+ 15 5 3 1 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 16 0 2 6 3.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 11 12 2 1 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 11 7 3 7 -1.
+ <_>
+ 12 7 1 7 3.
+ <_>
+
+ <_>
+ 9 0 2 18 -1.
+ <_>
+ 9 0 1 9 2.
+ <_>
+ 10 9 1 9 2.
+ <_>
+
+ <_>
+ 3 6 3 4 -1.
+ <_>
+ 4 6 1 4 3.
+ <_>
+
+ <_>
+ 14 10 2 2 -1.
+ <_>
+ 14 10 1 1 2.
+ <_>
+ 15 11 1 1 2.
+ <_>
+
+ <_>
+ 4 7 3 2 -1.
+ <_>
+ 5 7 1 2 3.
+ <_>
+
+ <_>
+ 10 14 4 3 -1.
+ <_>
+ 10 15 4 1 3.
+ <_>
+
+ <_>
+ 12 12 2 3 -1.
+ <_>
+ 12 13 2 1 3.
+ <_>
+
+ <_>
+ 3 0 2 8 -1.
+ <_>
+ 3 0 1 4 2.
+ <_>
+ 4 4 1 4 2.
+ <_>
+
+ <_>
+ 14 4 5 3 -1.
+ <_>
+ 14 5 5 1 3.
+ <_>
+
+ <_>
+ 6 16 1 3 -1.
+ <_>
+ 6 17 1 1 3.
+ <_>
+
+ <_>
+ 5 16 2 3 -1.
+ <_>
+ 5 17 2 1 3.
+ <_>
+
+ <_>
+ 4 6 10 6 -1.
+ <_>
+ 4 6 5 3 2.
+ <_>
+ 9 9 5 3 2.
+ <_>
+
+ <_>
+ 9 14 7 4 -1.
+ <_>
+ 9 16 7 2 2.
+ <_>
+
+ <_>
+ 10 11 2 4 -1.
+ <_>
+ 10 11 1 2 2.
+ <_>
+ 11 13 1 2 2.
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 5 13 4 1 3.
+ <_>
+
+ <_>
+ 5 13 3 2 -1.
+ <_>
+ 5 14 3 1 2.
+ <_>
+
+ <_>
+ 7 13 8 4 -1.
+ <_>
+ 7 15 8 2 2.
+ <_>
+
+ <_>
+ 8 4 3 1 -1.
+ <_>
+ 9 4 1 1 3.
+ <_>
+
+ <_>
+ 6 1 1 4 -1.
+ <_>
+ 6 3 1 2 2.
+ <_>
+
+ <_>
+ 8 0 12 6 -1.
+ <_>
+ 8 0 6 3 2.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 7 4 3 1 -1.
+ <_>
+ 8 4 1 1 3.
+ <_>
+
+ <_>
+ 7 9 2 2 -1.
+ <_>
+ 7 9 1 1 2.
+ <_>
+ 8 10 1 1 2.
+ <_>
+
+ <_>
+ 15 14 4 6 -1.
+ <_>
+ 15 14 2 3 2.
+ <_>
+ 17 17 2 3 2.
+ <_>
+
+ <_>
+ 7 9 1 4 -1.
+ <_>
+ 7 11 1 2 2.
+ <_>
+
+ <_>
+ 10 11 3 9 -1.
+ <_>
+ 11 11 1 9 3.
+ <_>
+
+ <_>
+ 17 11 3 1 -1.
+ <_>
+ 18 11 1 1 3.
+ <_>
+
+ <_>
+ 17 11 3 1 -1.
+ <_>
+ 18 11 1 1 3.
+ <_>
+
+ <_>
+ 0 1 1 2 -1.
+ <_>
+ 0 2 1 1 2.
+ <_>
+
+ <_>
+ 9 15 7 3 -1.
+ <_>
+ 9 16 7 1 3.
+ <_>
+
+ <_>
+ 15 0 2 2 -1.
+ <_>
+ 16 0 1 2 2.
+ <_>
+
+ <_>
+ 5 0 1 14 -1.
+ <_>
+ 5 7 1 7 2.
+ <_>
+
+ <_>
+ 7 3 1 2 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 7 0 4 6 -1.
+ <_>
+ 7 2 4 2 3.
+ <_>
+
+ <_>
+ 7 2 3 2 -1.
+ <_>
+ 8 2 1 2 3.
+ <_>
+
+ <_>
+ 5 12 4 3 -1.
+ <_>
+ 5 13 4 1 3.
+ <_>
+
+ <_>
+ 18 5 1 2 -1.
+ <_>
+ 18 6 1 1 2.
+ <_>
+
+ <_>
+ 18 0 2 10 -1.
+ <_>
+ 18 0 1 5 2.
+ <_>
+ 19 5 1 5 2.
+ <_>
+
+ <_>
+ 0 2 13 6 -1.
+ <_>
+ 0 4 13 2 3.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 0 1 1 2.
+ <_>
+ 1 1 1 1 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 6 12 2 4 -1.
+ <_>
+ 7 12 1 4 2.
+ <_>
+
+ <_>
+ 7 9 4 10 -1.
+ <_>
+ 9 9 2 10 2.
+ <_>
+
+ <_>
+ 2 0 9 16 -1.
+ <_>
+ 2 8 9 8 2.
+ <_>
+
+ <_>
+ 10 3 2 8 -1.
+ <_>
+ 10 3 1 4 2.
+ <_>
+ 11 7 1 4 2.
+ <_>
+
+ <_>
+ 1 2 12 3 -1.
+ <_>
+ 5 2 4 3 3.
+ <_>
+
+ <_>
+ 4 6 2 3 -1.
+ <_>
+ 5 6 1 3 2.
+ <_>
+
+ <_>
+ 1 7 6 10 -1.
+ <_>
+ 3 7 2 10 3.
+ <_>
+
+ <_>
+ 1 14 2 1 -1.
+ <_>
+ 2 14 1 1 2.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 12 8 3 5 -1.
+ <_>
+ 13 8 1 5 3.
+ <_>
+
+ <_>
+ 6 5 9 6 -1.
+ <_>
+ 6 7 9 2 3.
+ <_>
+
+ <_>
+ 13 8 2 3 -1.
+ <_>
+ 13 9 2 1 3.
+ <_>
+
+ <_>
+ 7 15 6 4 -1.
+ <_>
+ 7 15 3 2 2.
+ <_>
+ 10 17 3 2 2.
+ <_>
+
+ <_>
+ 10 15 6 3 -1.
+ <_>
+ 10 16 6 1 3.
+ <_>
+
+ <_>
+ 3 2 2 6 -1.
+ <_>
+ 3 2 1 3 2.
+ <_>
+ 4 5 1 3 2.
+ <_>
+
+ <_>
+ 10 15 3 5 -1.
+ <_>
+ 11 15 1 5 3.
+ <_>
+
+ <_>
+ 12 9 5 2 -1.
+ <_>
+ 12 10 5 1 2.
+ <_>
+
+ <_>
+ 4 11 10 1 -1.
+ <_>
+ 9 11 5 1 2.
+ <_>
+
+ <_>
+ 6 12 6 2 -1.
+ <_>
+ 6 12 3 1 2.
+ <_>
+ 9 13 3 1 2.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 3 12 8 4 -1.
+ <_>
+ 3 12 4 2 2.
+ <_>
+ 7 14 4 2 2.
+ <_>
+
+ <_>
+ 0 3 1 3 -1.
+ <_>
+ 0 4 1 1 3.
+ <_>
+
+ <_>
+ 10 12 2 1 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 3 10 3 6 -1.
+ <_>
+ 3 12 3 2 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 8 7 4 6 -1.
+ <_>
+ 8 9 4 2 3.
+ <_>
+
+ <_>
+ 12 11 1 3 -1.
+ <_>
+ 12 12 1 1 3.
+ <_>
+
+ <_>
+ 12 11 2 3 -1.
+ <_>
+ 12 12 2 1 3.
+ <_>
+
+ <_>
+ 6 10 2 2 -1.
+ <_>
+ 6 10 1 1 2.
+ <_>
+ 7 11 1 1 2.
+ <_>
+
+ <_>
+ 3 10 9 6 -1.
+ <_>
+ 3 13 9 3 2.
+ <_>
+
+ <_>
+ 4 8 7 10 -1.
+ <_>
+ 4 13 7 5 2.
+ <_>
+
+ <_>
+ 6 8 11 3 -1.
+ <_>
+ 6 9 11 1 3.
+ <_>
+
+ <_>
+ 6 5 1 14 -1.
+ <_>
+ 6 12 1 7 2.
+ <_>
+
+ <_>
+ 13 6 5 10 -1.
+ <_>
+ 13 11 5 5 2.
+ <_>
+
+ <_>
+ 2 0 13 15 -1.
+ <_>
+ 2 5 13 5 3.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 7 7 1 2 2.
+ <_>
+
+ <_>
+ 4 5 9 4 -1.
+ <_>
+ 7 5 3 4 3.
+ <_>
+
+ <_>
+ 6 7 3 3 -1.
+ <_>
+ 7 7 1 3 3.
+ <_>
+
+ <_>
+ 8 1 3 4 -1.
+ <_>
+ 9 1 1 4 3.
+ <_>
+
+ <_>
+ 8 11 7 2 -1.
+ <_>
+ 8 12 7 1 2.
+ <_>
+
+ <_>
+ 4 7 3 2 -1.
+ <_>
+ 5 7 1 2 3.
+ <_>
+
+ <_>
+ 4 14 2 6 -1.
+ <_>
+ 4 14 1 3 2.
+ <_>
+ 5 17 1 3 2.
+ <_>
+
+ <_>
+ 0 7 8 13 -1.
+ <_>
+ 4 7 4 13 2.
+ <_>
+
+ <_>
+ 6 3 4 9 -1.
+ <_>
+ 8 3 2 9 2.
+ <_>
+
+ <_>
+ 9 12 2 3 -1.
+ <_>
+ 9 13 2 1 3.
+ <_>
+
+ <_>
+ 16 14 2 6 -1.
+ <_>
+ 16 14 1 3 2.
+ <_>
+ 17 17 1 3 2.
+ <_>
+
+ <_>
+ 11 14 2 3 -1.
+ <_>
+ 11 15 2 1 3.
+ <_>
+
+ <_>
+ 11 14 1 2 -1.
+ <_>
+ 11 15 1 1 2.
+ <_>
+
+ <_>
+ 8 8 3 2 -1.
+ <_>
+ 8 9 3 1 2.
+ <_>
+
+ <_>
+ 13 1 3 5 -1.
+ <_>
+ 14 1 1 5 3.
+ <_>
+
+ <_>
+ 6 15 8 2 -1.
+ <_>
+ 6 15 4 1 2.
+ <_>
+ 10 16 4 1 2.
+ <_>
+
+ <_>
+ 13 2 3 4 -1.
+ <_>
+ 14 2 1 4 3.
+ <_>
+
+ <_>
+ 1 8 1 6 -1.
+ <_>
+ 1 10 1 2 3.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+ 16 1 4 1 2.
+ <_>
+
+ <_>
+ 5 8 3 1 -1.
+ <_>
+ 6 8 1 1 3.
+ <_>
+
+ <_>
+ 7 5 2 4 -1.
+ <_>
+ 8 5 1 4 2.
+ <_>
+
+ <_>
+ 7 2 2 1 -1.
+ <_>
+ 8 2 1 1 2.
+ <_>
+
+ <_>
+ 0 4 2 3 -1.
+ <_>
+ 0 5 2 1 3.
+ <_>
+
+ <_>
+ 3 17 2 2 -1.
+ <_>
+ 3 17 1 1 2.
+ <_>
+ 4 18 1 1 2.
+ <_>
+
+ <_>
+ 6 0 12 9 -1.
+ <_>
+ 12 0 6 9 2.
+ <_>
+
+ <_>
+ 7 0 12 3 -1.
+ <_>
+ 11 0 4 3 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 3 2.
+ <_>
+ 17 3 3 3 2.
+ <_>
+
+ <_>
+ 15 2 1 2 -1.
+ <_>
+ 15 3 1 1 2.
+ <_>
+
+ <_>
+ 8 2 1 6 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 6 7 1 2 3.
+ <_>
+
+ <_>
+ 6 7 4 6 -1.
+ <_>
+ 6 10 4 3 2.
+ <_>
+
+ <_>
+ 8 6 10 2 -1.
+ <_>
+ 13 6 5 2 2.
+ <_>
+
+ <_>
+ 2 1 4 15 -1.
+ <_>
+ 4 1 2 15 2.
+ <_>
+
+ <_>
+ 5 9 3 6 -1.
+ <_>
+ 5 12 3 3 2.
+ <_>
+
+ <_>
+ 12 11 2 1 -1.
+ <_>
+ 13 11 1 1 2.
+ <_>
+
+ <_>
+ 6 4 6 2 -1.
+ <_>
+ 8 4 2 2 3.
+ <_>
+
+ <_>
+ 12 9 4 8 -1.
+ <_>
+ 12 13 4 4 2.
+ <_>
+
+ <_>
+ 15 8 2 4 -1.
+ <_>
+ 15 10 2 2 2.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 6 13 3 1 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 5 10 4 6 -1.
+ <_>
+ 7 10 2 6 2.
+ <_>
+
+ <_>
+ 7 8 2 9 -1.
+ <_>
+ 7 11 2 3 3.
+ <_>
+
+ <_>
+ 5 13 4 3 -1.
+ <_>
+ 5 14 4 1 3.
+ <_>
+
+ <_>
+ 11 12 2 2 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 5 13 5 3 -1.
+ <_>
+ 5 14 5 1 3.
+ <_>
+
+ <_>
+ 4 9 8 1 -1.
+ <_>
+ 8 9 4 1 2.
+ <_>
+
+ <_>
+ 12 0 8 6 -1.
+ <_>
+ 12 0 4 3 2.
+ <_>
+ 16 3 4 3 2.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 8 4 3 3 -1.
+ <_>
+ 9 4 1 3 3.
+ <_>
+
+ <_>
+ 8 0 7 15 -1.
+ <_>
+ 8 5 7 5 3.
+ <_>
+
+ <_>
+ 3 0 8 4 -1.
+ <_>
+ 3 0 4 2 2.
+ <_>
+ 7 2 4 2 2.
+ <_>
+
+ <_>
+ 0 11 20 1 -1.
+ <_>
+ 10 11 10 1 2.
+ <_>
+
+ <_>
+ 3 14 3 2 -1.
+ <_>
+ 4 14 1 2 3.
+ <_>
+
+ <_>
+ 3 11 3 8 -1.
+ <_>
+ 4 11 1 8 3.
+ <_>
+
+ <_>
+ 7 13 2 5 -1.
+ <_>
+ 8 13 1 5 2.
+ <_>
+
+ <_>
+ 14 4 3 3 -1.
+ <_>
+ 14 5 3 1 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 6 12 1 2 -1.
+ <_>
+ 6 13 1 1 2.
+ <_>
+
+ <_>
+ 5 13 3 1 -1.
+ <_>
+ 6 13 1 1 3.
+ <_>
+
+ <_>
+ 12 11 1 3 -1.
+ <_>
+ 12 12 1 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 9 1 3 -1.
+ <_>
+ 5 10 1 1 3.
+ <_>
+
+ <_>
+ 1 9 12 9 -1.
+ <_>
+ 1 12 12 3 3.
+ <_>
+
+ <_>
+ 12 14 3 3 -1.
+ <_>
+ 12 15 3 1 3.
+ <_>
+
+ <_>
+ 10 14 5 3 -1.
+ <_>
+ 10 15 5 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 5 11 2 6 -1.
+ <_>
+ 5 14 2 3 2.
+ <_>
+
+ <_>
+ 6 5 2 14 -1.
+ <_>
+ 6 12 2 7 2.
+ <_>
+
+ <_>
+ 2 8 5 2 -1.
+ <_>
+ 2 9 5 1 2.
+ <_>
+
+ <_>
+ 10 14 1 2 -1.
+ <_>
+ 10 15 1 1 2.
+ <_>
+
+ <_>
+ 7 14 4 6 -1.
+ <_>
+ 7 16 4 2 3.
+ <_>
+
+ <_>
+ 8 12 3 1 -1.
+ <_>
+ 9 12 1 1 3.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 3 6 3 4 -1.
+ <_>
+ 4 6 1 4 3.
+ <_>
+
+ <_>
+ 4 4 3 8 -1.
+ <_>
+ 4 8 3 4 2.
+ <_>
+
+ <_>
+ 12 5 2 2 -1.
+ <_>
+ 12 6 2 1 2.
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+ 17 11 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 7 0 5 8 -1.
+ <_>
+ 7 4 5 4 2.
+ <_>
+
+ <_>
+ 4 5 8 10 -1.
+ <_>
+ 4 5 4 5 2.
+ <_>
+ 8 10 4 5 2.
+ <_>
+
+ <_>
+ 7 5 3 3 -1.
+ <_>
+ 7 6 3 1 3.
+ <_>
+
+ <_>
+ 10 6 10 14 -1.
+ <_>
+ 10 13 10 7 2.
+ <_>
+
+ <_>
+ 8 6 2 3 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 13 10 1 4 -1.
+ <_>
+ 13 12 1 2 2.
+ <_>
+
+ <_>
+ 3 9 12 4 -1.
+ <_>
+ 3 9 6 2 2.
+ <_>
+ 9 11 6 2 2.
+ <_>
+
+ <_>
+ 7 14 3 6 -1.
+ <_>
+ 7 16 3 2 3.
+ <_>
+
+ <_>
+ 10 10 3 2 -1.
+ <_>
+ 11 10 1 2 3.
+ <_>
+
+ <_>
+ 3 4 10 4 -1.
+ <_>
+ 3 4 5 2 2.
+ <_>
+ 8 6 5 2 2.
+ <_>
+
+ <_>
+ 4 10 4 3 -1.
+ <_>
+ 4 11 4 1 3.
+ <_>
+
+ <_>
+ 5 3 6 4 -1.
+ <_>
+ 5 3 3 2 2.
+ <_>
+ 8 5 3 2 2.
+ <_>
+
+ <_>
+ 6 8 6 10 -1.
+ <_>
+ 9 8 3 10 2.
+ <_>
+
+ <_>
+ 10 15 6 3 -1.
+ <_>
+ 10 16 6 1 3.
+ <_>
+
+ <_>
+ 3 4 3 7 -1.
+ <_>
+ 4 4 1 7 3.
+ <_>
+
+ <_>
+ 3 3 3 11 -1.
+ <_>
+ 4 3 1 11 3.
+ <_>
+
+ <_>
+ 7 14 5 3 -1.
+ <_>
+ 7 15 5 1 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 9 0 3 4 -1.
+ <_>
+ 10 0 1 4 3.
+ <_>
+
+ <_>
+ 11 1 3 1 -1.
+ <_>
+ 12 1 1 1 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 0 10 2 1 -1.
+ <_>
+ 1 10 1 1 2.
+ <_>
+
+ <_>
+ 17 0 2 8 -1.
+ <_>
+ 17 0 1 4 2.
+ <_>
+ 18 4 1 4 2.
+ <_>
+
+ <_>
+ 6 7 6 2 -1.
+ <_>
+ 8 7 2 2 3.
+ <_>
+
+ <_>
+ 5 7 6 9 -1.
+ <_>
+ 8 7 3 9 2.
+ <_>
+
+ <_>
+ 6 8 9 3 -1.
+ <_>
+ 9 8 3 3 3.
+ <_>
+
+ <_>
+ 11 7 6 4 -1.
+ <_>
+ 13 7 2 4 3.
+ <_>
+
+ <_>
+ 8 5 2 2 -1.
+ <_>
+ 9 5 1 2 2.
+ <_>
+
+ <_>
+ 15 3 4 10 -1.
+ <_>
+ 15 8 4 5 2.
+ <_>
+
+ <_>
+ 9 2 1 2 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+
+ <_>
+ 7 15 8 2 -1.
+ <_>
+ 7 15 4 1 2.
+ <_>
+ 11 16 4 1 2.
+ <_>
+
+ <_>
+ 6 5 2 9 -1.
+ <_>
+ 7 5 1 9 2.
+ <_>
+
+ <_>
+ 6 6 2 4 -1.
+ <_>
+ 7 6 1 4 2.
+ <_>
+
+ <_>
+ 10 15 2 4 -1.
+ <_>
+ 11 15 1 4 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 12 9 7 4 -1.
+ <_>
+ 12 11 7 2 2.
+ <_>
+
+ <_>
+ 5 9 9 3 -1.
+ <_>
+ 8 9 3 3 3.
+ <_>
+
+ <_>
+ 5 8 6 5 -1.
+ <_>
+ 8 8 3 5 2.
+ <_>
+
+ <_>
+ 7 16 4 3 -1.
+ <_>
+ 7 17 4 1 3.
+ <_>
+
+ <_>
+ 15 4 4 3 -1.
+ <_>
+ 15 5 4 1 3.
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+ 17 11 1 1 2.
+ <_>
+
+ <_>
+ 5 6 6 9 -1.
+ <_>
+ 8 6 3 9 2.
+ <_>
+
+ <_>
+ 10 0 10 6 -1.
+ <_>
+ 10 0 5 3 2.
+ <_>
+ 15 3 5 3 2.
+ <_>
+
+ <_>
+ 13 14 1 2 -1.
+ <_>
+ 13 15 1 1 2.
+ <_>
+
+ <_>
+ 10 4 3 1 -1.
+ <_>
+ 11 4 1 1 3.
+ <_>
+
+ <_>
+ 6 16 1 3 -1.
+ <_>
+ 6 17 1 1 3.
+ <_>
+
+ <_>
+ 11 13 4 3 -1.
+ <_>
+ 11 14 4 1 3.
+ <_>
+
+ <_>
+ 14 10 6 6 -1.
+ <_>
+ 14 10 3 3 2.
+ <_>
+ 17 13 3 3 2.
+ <_>
+
+ <_>
+ 1 1 1 2 -1.
+ <_>
+ 1 2 1 1 2.
+ <_>
+
+ <_>
+ 6 15 1 3 -1.
+ <_>
+ 6 16 1 1 3.
+ <_>
+
+ <_>
+ 7 15 1 3 -1.
+ <_>
+ 7 16 1 1 3.
+ <_>
+
+ <_>
+ 8 16 3 2 -1.
+ <_>
+ 9 16 1 2 3.
+ <_>
+
+ <_>
+ 5 8 3 9 -1.
+ <_>
+ 6 8 1 9 3.
+ <_>
+
+ <_>
+ 3 3 2 10 -1.
+ <_>
+ 3 3 1 5 2.
+ <_>
+ 4 8 1 5 2.
+ <_>
+
+ <_>
+ 3 6 3 1 -1.
+ <_>
+ 4 6 1 1 3.
+ <_>
+
+ <_>
+ 2 0 2 1 -1.
+ <_>
+ 3 0 1 1 2.
+ <_>
+
+ <_>
+ 7 13 2 3 -1.
+ <_>
+ 7 14 2 1 3.
+ <_>
+
+ <_>
+ 7 9 1 9 -1.
+ <_>
+ 7 12 1 3 3.
+ <_>
+
+ <_>
+ 7 8 1 9 -1.
+ <_>
+ 7 11 1 3 3.
+ <_>
+
+ <_>
+ 15 7 3 10 -1.
+ <_>
+ 16 7 1 10 3.
+ <_>
+
+ <_>
+ 14 7 6 10 -1.
+ <_>
+ 16 7 2 10 3.
+ <_>
+
+ <_>
+ 2 12 18 6 -1.
+ <_>
+ 2 14 18 2 3.
+ <_>
+
+ <_>
+ 0 9 12 1 -1.
+ <_>
+ 4 9 4 1 3.
+ <_>
+
+ <_>
+ 1 7 3 6 -1.
+ <_>
+ 2 7 1 6 3.
+ <_>
+
+ <_>
+ 5 6 8 1 -1.
+ <_>
+ 9 6 4 1 2.
+ <_>
+
+ <_>
+ 10 14 2 1 -1.
+ <_>
+ 11 14 1 1 2.
+ <_>
+
+ <_>
+ 14 8 6 10 -1.
+ <_>
+ 16 8 2 10 3.
+ <_>
+
+ <_>
+ 10 5 8 7 -1.
+ <_>
+ 14 5 4 7 2.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 5 4 2 2.
+ <_>
+ 12 7 4 2 2.
+ <_>
+
+ <_>
+ 11 11 1 8 -1.
+ <_>
+ 11 15 1 4 2.
+ <_>
+
+ <_>
+ 5 6 2 4 -1.
+ <_>
+ 6 6 1 4 2.
+ <_>
+
+ <_>
+ 7 8 2 2 -1.
+ <_>
+ 7 9 2 1 2.
+ <_>
+
+ <_>
+ 0 2 8 11 -1.
+ <_>
+ 4 2 4 11 2.
+ <_>
+
+ <_>
+ 8 6 8 8 -1.
+ <_>
+ 8 10 8 4 2.
+ <_>
+
+ <_>
+ 4 4 2 6 -1.
+ <_>
+ 5 4 1 6 2.
+ <_>
+
+ <_>
+ 13 12 1 2 -1.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 3 8 3 2 -1.
+ <_>
+ 4 8 1 2 3.
+ <_>
+
+ <_>
+ 13 12 1 3 -1.
+ <_>
+ 13 13 1 1 3.
+ <_>
+
+ <_>
+ 9 19 4 1 -1.
+ <_>
+ 11 19 2 1 2.
+ <_>
+
+ <_>
+ 15 4 2 3 -1.
+ <_>
+ 15 5 2 1 3.
+ <_>
+
+ <_>
+ 5 11 11 4 -1.
+ <_>
+ 5 13 11 2 2.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 6 12 4 4 -1.
+ <_>
+ 6 14 4 2 2.
+ <_>
+
+ <_>
+ 7 11 1 3 -1.
+ <_>
+ 7 12 1 1 3.
+ <_>
+
+ <_>
+ 9 10 3 3 -1.
+ <_>
+ 10 10 1 3 3.
+ <_>
+
+ <_>
+ 10 12 2 1 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 7 1 12 16 -1.
+ <_>
+ 7 1 6 8 2.
+ <_>
+ 13 9 6 8 2.
+ <_>
+
+ <_>
+ 10 5 8 7 -1.
+ <_>
+ 14 5 4 7 2.
+ <_>
+
+ <_>
+ 18 8 2 10 -1.
+ <_>
+ 18 8 1 5 2.
+ <_>
+ 19 13 1 5 2.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 13 11 1 2 2.
+ <_>
+
+ <_>
+ 3 15 3 1 -1.
+ <_>
+ 4 15 1 1 3.
+ <_>
+
+ <_>
+ 5 14 2 1 -1.
+ <_>
+ 6 14 1 1 2.
+ <_>
+
+ <_>
+ 11 9 1 2 -1.
+ <_>
+ 11 10 1 1 2.
+ <_>
+
+ <_>
+ 10 12 3 1 -1.
+ <_>
+ 11 12 1 1 3.
+ <_>
+
+ <_>
+ 5 9 7 2 -1.
+ <_>
+ 5 10 7 1 2.
+ <_>
+
+ <_>
+ 11 0 2 1 -1.
+ <_>
+ 12 0 1 1 2.
+ <_>
+
+ <_>
+ 11 0 2 2 -1.
+ <_>
+ 12 0 1 2 2.
+ <_>
+
+ <_>
+ 5 0 2 2 -1.
+ <_>
+ 5 0 1 1 2.
+ <_>
+ 6 1 1 1 2.
+ <_>
+
+ <_>
+ 8 3 12 6 -1.
+ <_>
+ 8 5 12 2 3.
+ <_>
+
+ <_>
+ 17 0 3 12 -1.
+ <_>
+ 18 0 1 12 3.
+ <_>
+
+ <_>
+ 11 1 2 1 -1.
+ <_>
+ 12 1 1 1 2.
+ <_>
+
+ <_>
+ 5 5 2 1 -1.
+ <_>
+ 6 5 1 1 2.
+ <_>
+
+ <_>
+ 7 14 6 6 -1.
+ <_>
+ 7 14 3 3 2.
+ <_>
+ 10 17 3 3 2.
+ <_>
+
+ <_>
+ 11 10 1 2 -1.
+ <_>
+ 11 11 1 1 2.
+ <_>
+
+ <_>
+ 3 9 12 4 -1.
+ <_>
+ 3 9 6 2 2.
+ <_>
+ 9 11 6 2 2.
+ <_>
+
+ <_>
+ 5 10 1 2 -1.
+ <_>
+ 5 11 1 1 2.
+ <_>
+
+ <_>
+ 6 10 2 1 -1.
+ <_>
+ 7 10 1 1 2.
+ <_>
+
+ <_>
+ 8 16 3 2 -1.
+ <_>
+ 9 16 1 2 3.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 7 15 3 2 -1.
+ <_>
+ 8 15 1 2 3.
+ <_>
+
+ <_>
+ 8 15 2 1 -1.
+ <_>
+ 9 15 1 1 2.
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 5 11 4 1 3.
+ <_>
+
+ <_>
+ 6 7 4 12 -1.
+ <_>
+ 8 7 2 12 2.
+ <_>
+
+ <_>
+ 5 6 6 7 -1.
+ <_>
+ 8 6 3 7 2.
+ <_>
+
+ <_>
+ 8 4 6 11 -1.
+ <_>
+ 11 4 3 11 2.
+ <_>
+
+ <_>
+ 7 9 6 3 -1.
+ <_>
+ 9 9 2 3 3.
+ <_>
+
+ <_>
+ 0 5 1 2 -1.
+ <_>
+ 0 6 1 1 2.
+ <_>
+
+ <_>
+ 6 8 3 1 -1.
+ <_>
+ 7 8 1 1 3.
+ <_>
+
+ <_>
+ 12 1 2 2 -1.
+ <_>
+ 13 1 1 2 2.
+ <_>
+
+ <_>
+ 4 4 10 12 -1.
+ <_>
+ 4 4 5 6 2.
+ <_>
+ 9 10 5 6 2.
+ <_>
+
+ <_>
+ 5 18 2 2 -1.
+ <_>
+ 5 18 1 1 2.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 6 3 3 3 -1.
+ <_>
+ 7 3 1 3 3.
+ <_>
+
+ <_>
+ 5 12 2 3 -1.
+ <_>
+ 5 13 2 1 3.
+ <_>
+
+ <_>
+ 11 15 2 3 -1.
+ <_>
+ 11 16 2 1 3.
+ <_>
+
+ <_>
+ 11 15 1 3 -1.
+ <_>
+ 11 16 1 1 3.
+ <_>
+
+ <_>
+ 6 7 3 2 -1.
+ <_>
+ 7 7 1 2 3.
+ <_>
+
+ <_>
+ 3 11 14 1 -1.
+ <_>
+ 10 11 7 1 2.
+ <_>
+
+ <_>
+ 5 7 3 1 -1.
+ <_>
+ 6 7 1 1 3.
+ <_>
+
+ <_>
+ 14 9 3 3 -1.
+ <_>
+ 14 10 3 1 3.
+ <_>
+
+ <_>
+ 4 17 2 2 -1.
+ <_>
+ 4 17 1 1 2.
+ <_>
+ 5 18 1 1 2.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 17 2 1 2.
+ <_>
+
+ <_>
+ 18 12 2 2 -1.
+ <_>
+ 18 12 1 1 2.
+ <_>
+ 19 13 1 1 2.
+ <_>
+
+ <_>
+ 5 11 4 3 -1.
+ <_>
+ 7 11 2 3 2.
+ <_>
+
+ <_>
+ 9 7 2 3 -1.
+ <_>
+ 9 8 2 1 3.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 7 2 1 2.
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 7 2 1 2.
+ <_>
+
+ <_>
+ 4 5 2 6 -1.
+ <_>
+ 4 7 2 2 3.
+ <_>
+
+ <_>
+ 3 11 6 4 -1.
+ <_>
+ 3 11 3 2 2.
+ <_>
+ 6 13 3 2 2.
+ <_>
+
+ <_>
+ 1 10 3 3 -1.
+ <_>
+ 2 10 1 3 3.
+ <_>
+
+ <_>
+ 15 0 4 4 -1.
+ <_>
+ 15 0 2 2 2.
+ <_>
+ 17 2 2 2 2.
+ <_>
+
+ <_>
+ 5 6 4 10 -1.
+ <_>
+ 5 11 4 5 2.
+ <_>
+
+ <_>
+ 7 13 1 3 -1.
+ <_>
+ 7 14 1 1 3.
+ <_>
+
+ <_>
+ 3 10 16 4 -1.
+ <_>
+ 3 10 8 2 2.
+ <_>
+ 11 12 8 2 2.
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ <_>
+
+ <_>
+ 5 14 3 3 -1.
+ <_>
+ 5 15 3 1 3.
+ <_>
+
+ <_>
+ 9 9 3 8 -1.
+ <_>
+ 10 9 1 8 3.
+ <_>
+
+ <_>
+ 6 0 7 4 -1.
+ <_>
+ 6 2 7 2 2.
+ <_>
+
+ <_>
+ 8 0 1 4 -1.
+ <_>
+ 8 2 1 2 2.
+ <_>
+
+ <_>
+ 1 4 1 6 -1.
+ <_>
+ 1 6 1 2 3.
+ <_>
+
+ <_>
+ 0 2 15 3 -1.
+ <_>
+ 5 2 5 3 3.
+ <_>
+
+ <_>
+ 0 8 2 2 -1.
+ <_>
+ 0 9 2 1 2.
+ <_>
+
+ <_>
+ 3 10 6 4 -1.
+ <_>
+ 5 10 2 4 3.
+ <_>
+
+ <_>
+ 8 5 3 1 -1.
+ <_>
+ 9 5 1 1 3.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 11 1 1 2.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 4 11 6 2 -1.
+ <_>
+ 7 11 3 2 2.
+ <_>
+
+ <_>
+ 6 8 6 4 -1.
+ <_>
+ 8 8 2 4 3.
+ <_>
+
+ <_>
+ 6 5 6 6 -1.
+ <_>
+ 8 5 2 6 3.
+ <_>
+
+ <_>
+ 14 12 2 3 -1.
+ <_>
+ 15 12 1 3 2.
+ <_>
+
+ <_>
+ 11 5 3 7 -1.
+ <_>
+ 12 5 1 7 3.
+ <_>
+
+ <_>
+ 7 16 8 4 -1.
+ <_>
+ 7 16 4 2 2.
+ <_>
+ 11 18 4 2 2.
+ <_>
+
+ <_>
+ 5 16 12 4 -1.
+ <_>
+ 5 16 6 2 2.
+ <_>
+ 11 18 6 2 2.
+ <_>
+
+ <_>
+ 10 17 6 3 -1.
+ <_>
+ 10 18 6 1 3.
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 6 9 2 1 3.
+ <_>
+
+ <_>
+ 0 0 20 18 -1.
+ <_>
+ 10 0 10 18 2.
+ <_>
+
+ <_>
+ 8 0 6 5 -1.
+ <_>
+ 11 0 3 5 2.
+ <_>
+
+ <_>
+ 13 5 4 2 -1.
+ <_>
+ 13 5 2 1 2.
+ <_>
+ 15 6 2 1 2.
+ <_>
+
+ <_>
+ 10 4 4 11 -1.
+ <_>
+ 12 4 2 11 2.
+ <_>
+
+ <_>
+ 5 10 3 1 -1.
+ <_>
+ 6 10 1 1 3.
+ <_>
+
+ <_>
+ 17 4 2 3 -1.
+ <_>
+ 17 5 2 1 3.
+ <_>
+
+ <_>
+ 6 13 8 6 -1.
+ <_>
+ 6 13 4 3 2.
+ <_>
+ 10 16 4 3 2.
+ <_>
+
+ <_>
+ 17 5 3 10 -1.
+ <_>
+ 18 5 1 10 3.
+ <_>
+
+ <_>
+ 13 11 2 2 -1.
+ <_>
+ 14 11 1 2 2.
+ <_>
+
+ <_>
+ 5 9 4 9 -1.
+ <_>
+ 5 12 4 3 3.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 15 15 2 2 -1.
+ <_>
+ 15 15 1 1 2.
+ <_>
+ 16 16 1 1 2.
+ <_>
+
+ <_>
+ 6 13 6 5 -1.
+ <_>
+ 8 13 2 5 3.
+ <_>
+
+ <_>
+ 9 7 2 8 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+ 10 11 1 4 2.
+ <_>
+
+ <_>
+ 4 12 2 2 -1.
+ <_>
+ 4 12 1 1 2.
+ <_>
+ 5 13 1 1 2.
+ <_>
+
+ <_>
+ 7 4 3 1 -1.
+ <_>
+ 8 4 1 1 3.
+ <_>
+
+ <_>
+ 12 3 3 4 -1.
+ <_>
+ 13 3 1 4 3.
+ <_>
+
+ <_>
+ 2 0 18 20 -1.
+ <_>
+ 2 10 18 10 2.
+ <_>
+
+ <_>
+ 11 2 7 12 -1.
+ <_>
+ 11 8 7 6 2.
+ <_>
+
+ <_>
+ 13 5 2 2 -1.
+ <_>
+ 14 5 1 2 2.
+ <_>
+
+ <_>
+ 4 17 4 1 -1.
+ <_>
+ 6 17 2 1 2.
+ <_>
+
+ <_>
+ 3 14 4 4 -1.
+ <_>
+ 5 14 2 4 2.
+ <_>
+
+ <_>
+ 0 2 8 18 -1.
+ <_>
+ 0 11 8 9 2.
+ <_>
+
+ <_>
+ 5 7 3 3 -1.
+ <_>
+ 5 8 3 1 3.
+ <_>
+
+ <_>
+ 8 2 3 2 -1.
+ <_>
+ 9 2 1 2 3.
+ <_>
+
+ <_>
+ 5 7 15 4 -1.
+ <_>
+ 5 9 15 2 2.
+ <_>
+
+ <_>
+ 10 0 10 8 -1.
+ <_>
+ 10 0 5 4 2.
+ <_>
+ 15 4 5 4 2.
+ <_>
+
+ <_>
+ 10 8 4 4 -1.
+ <_>
+ 10 8 2 2 2.
+ <_>
+ 12 10 2 2 2.
+ <_>
+
+ <_>
+ 5 6 3 10 -1.
+ <_>
+ 5 11 3 5 2.
+ <_>
+
+ <_>
+ 7 6 3 4 -1.
+ <_>
+ 8 6 1 4 3.
+ <_>
+
+ <_>
+ 12 13 2 2 -1.
+ <_>
+ 12 14 2 1 2.
+ <_>
+
+ <_>
+ 7 8 4 12 -1.
+ <_>
+ 7 12 4 4 3.
+ <_>
+
+ <_>
+ 0 0 6 18 -1.
+ <_>
+ 2 0 2 18 3.
+ <_>
+
+ <_>
+ 6 1 10 6 -1.
+ <_>
+ 6 3 10 2 3.
+ <_>
+
+ <_>
+ 13 9 3 2 -1.
+ <_>
+ 13 10 3 1 2.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 6 10 1 10 -1.
+ <_>
+ 6 15 1 5 2.
+ <_>
+
+ <_>
+ 9 9 3 4 -1.
+ <_>
+ 9 11 3 2 2.
+ <_>
+
+ <_>
+ 7 4 2 2 -1.
+ <_>
+ 7 5 2 1 2.
+ <_>
+
+ <_>
+ 12 12 2 1 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 1 0 1 2 -1.
+ <_>
+ 1 1 1 1 2.
+ <_>
+
+ <_>
+ 10 16 6 3 -1.
+ <_>
+ 10 17 6 1 3.
+ <_>
+
+ <_>
+ 9 4 4 6 -1.
+ <_>
+ 9 4 2 3 2.
+ <_>
+ 11 7 2 3 2.
+ <_>
+
+ <_>
+ 10 9 10 1 -1.
+ <_>
+ 15 9 5 1 2.
+ <_>
+
+ <_>
+ 9 11 1 2 -1.
+ <_>
+ 9 12 1 1 2.
+ <_>
+
+ <_>
+ 7 8 3 6 -1.
+ <_>
+ 7 10 3 2 3.
+ <_>
+
+ <_>
+ 1 18 8 2 -1.
+ <_>
+ 1 18 4 1 2.
+ <_>
+ 5 19 4 1 2.
+ <_>
+
+ <_>
+ 5 13 3 3 -1.
+ <_>
+ 5 14 3 1 3.
+ <_>
+
+ <_>
+ 4 6 5 6 -1.
+ <_>
+ 4 9 5 3 2.
+ <_>
+
+ <_>
+ 6 5 2 1 -1.
+ <_>
+ 7 5 1 1 2.
+ <_>
+
+ <_>
+ 11 6 1 6 -1.
+ <_>
+ 11 9 1 3 2.
+ <_>
+
+ <_>
+ 6 17 4 3 -1.
+ <_>
+ 6 18 4 1 3.
+ <_>
+
+ <_>
+ 10 4 2 10 -1.
+ <_>
+ 10 4 1 5 2.
+ <_>
+ 11 9 1 5 2.
+ <_>
+
+ <_>
+ 8 4 9 13 -1.
+ <_>
+ 11 4 3 13 3.
+ <_>
+
+ <_>
+ 10 11 2 2 -1.
+ <_>
+ 11 11 1 2 2.
+ <_>
+
+ <_>
+ 13 15 1 2 -1.
+ <_>
+ 13 16 1 1 2.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 0 0 14 10 -1.
+ <_>
+ 0 5 14 5 2.
+ <_>
+
+ <_>
+ 12 5 6 15 -1.
+ <_>
+ 14 5 2 15 3.
+ <_>
+
+ <_>
+ 11 10 2 3 -1.
+ <_>
+ 11 11 2 1 3.
+ <_>
+
+ <_>
+ 5 14 3 3 -1.
+ <_>
+ 5 15 3 1 3.
+ <_>
+
+ <_>
+ 5 15 3 2 -1.
+ <_>
+ 5 16 3 1 2.
+ <_>
+
+ <_>
+ 11 14 3 6 -1.
+ <_>
+ 12 14 1 6 3.
+ <_>
+
+ <_>
+ 12 18 2 1 -1.
+ <_>
+ 13 18 1 1 2.
+ <_>
+
+ <_>
+ 16 5 1 2 -1.
+ <_>
+ 16 6 1 1 2.
+ <_>
+
+ <_>
+ 17 8 3 4 -1.
+ <_>
+ 18 8 1 4 3.
+ <_>
+
+ <_>
+ 8 15 2 3 -1.
+ <_>
+ 9 15 1 3 2.
+ <_>
+
+ <_>
+ 6 7 2 4 -1.
+ <_>
+ 6 7 1 2 2.
+ <_>
+ 7 9 1 2 2.
+ <_>
+
+ <_>
+ 3 7 12 2 -1.
+ <_>
+ 7 7 4 2 3.
+ <_>
+
+ <_>
+ 4 7 3 3 -1.
+ <_>
+ 5 7 1 3 3.
+ <_>
+
+ <_>
+ 1 10 2 1 -1.
+ <_>
+ 2 10 1 1 2.
+ <_>
+
+ <_>
+ 4 4 2 5 -1.
+ <_>
+ 5 4 1 5 2.
+ <_>
+
+ <_>
+ 6 7 14 2 -1.
+ <_>
+ 13 7 7 2 2.
+ <_>
+
+ <_>
+ 14 17 2 3 -1.
+ <_>
+ 14 18 2 1 3.
+ <_>
+
+ <_>
+ 6 11 1 3 -1.
+ <_>
+ 6 12 1 1 3.
+ <_>
+
+ <_>
+ 11 3 8 16 -1.
+ <_>
+ 11 11 8 8 2.
+ <_>
+
+ <_>
+ 9 12 5 3 -1.
+ <_>
+ 9 13 5 1 3.
+ <_>
+
+ <_>
+ 5 9 1 3 -1.
+ <_>
+ 5 10 1 1 3.
+ <_>
+
+ <_>
+ 3 8 8 4 -1.
+ <_>
+ 3 8 4 2 2.
+ <_>
+ 7 10 4 2 2.
+ <_>
+
+ <_>
+ 10 15 2 3 -1.
+ <_>
+ 10 16 2 1 3.
+ <_>
+
+ <_>
+ 14 9 1 6 -1.
+ <_>
+ 14 12 1 3 2.
+ <_>
+
+ <_>
+ 13 11 1 3 -1.
+ <_>
+ 13 12 1 1 3.
+ <_>
+
+ <_>
+ 8 7 6 6 -1.
+ <_>
+ 8 9 6 2 3.
+ <_>
+
+ <_>
+ 9 8 4 3 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 8 2 2 5 -1.
+ <_>
+ 9 2 1 5 2.
+ <_>
+
+ <_>
+ 13 6 3 3 -1.
+ <_>
+ 13 7 3 1 3.
+ <_>
+
+ <_>
+ 12 0 5 14 -1.
+ <_>
+ 12 7 5 7 2.
+ <_>
+
+ <_>
+ 2 2 7 10 -1.
+ <_>
+ 2 7 7 5 2.
+ <_>
+
+ <_>
+ 5 5 6 11 -1.
+ <_>
+ 8 5 3 11 2.
+ <_>
+
+ <_>
+ 6 17 3 3 -1.
+ <_>
+ 6 18 3 1 3.
+ <_>
+
+ <_>
+ 9 5 2 8 -1.
+ <_>
+ 9 5 1 4 2.
+ <_>
+ 10 9 1 4 2.
+ <_>
+
+ <_>
+ 14 0 4 16 -1.
+ <_>
+ 14 8 4 8 2.
+ <_>
+
+ <_>
+ 10 7 1 3 -1.
+ <_>
+ 10 8 1 1 3.
+ <_>
+
+ <_>
+ 7 16 3 2 -1.
+ <_>
+ 8 16 1 2 3.
+ <_>
+
+ <_>
+ 10 6 1 3 -1.
+ <_>
+ 10 7 1 1 3.
+ <_>
+
+ <_>
+ 5 11 14 6 -1.
+ <_>
+ 5 14 14 3 2.
+ <_>
+
+ <_>
+ 9 6 1 3 -1.
+ <_>
+ 9 7 1 1 3.
+ <_>
+
+ <_>
+ 6 11 5 4 -1.
+ <_>
+ 6 13 5 2 2.
+ <_>
+
+ <_>
+ 6 9 10 8 -1.
+ <_>
+ 6 9 5 4 2.
+ <_>
+ 11 13 5 4 2.
+ <_>
+
+ <_>
+ 18 9 2 6 -1.
+ <_>
+ 18 9 1 3 2.
+ <_>
+ 19 12 1 3 2.
+ <_>
+
+ <_>
+ 5 12 8 2 -1.
+ <_>
+ 9 12 4 2 2.
+ <_>
+
+ <_>
+ 8 8 6 12 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+ 11 14 3 6 2.
+ <_>
+
+ <_>
+ 12 7 3 5 -1.
+ <_>
+ 13 7 1 5 3.
+ <_>
+
+ <_>
+ 10 13 4 3 -1.
+ <_>
+ 10 14 4 1 3.
+ <_>
+
+ <_>
+ 12 4 3 15 -1.
+ <_>
+ 13 4 1 15 3.
+ <_>
+
+ <_>
+ 4 12 4 2 -1.
+ <_>
+ 6 12 2 2 2.
+ <_>
+
+ <_>
+ 14 1 6 1 -1.
+ <_>
+ 16 1 2 1 3.
+ <_>
+
+ <_>
+ 15 3 2 8 -1.
+ <_>
+ 16 3 1 8 2.
+ <_>
+
+ <_>
+ 13 16 6 4 -1.
+ <_>
+ 13 16 3 2 2.
+ <_>
+ 16 18 3 2 2.
+ <_>
+
+ <_>
+ 9 5 6 7 -1.
+ <_>
+ 12 5 3 7 2.
+ <_>
+
+ <_>
+ 18 3 2 2 -1.
+ <_>
+ 18 4 2 1 2.
+ <_>
+
+ <_>
+ 2 0 18 4 -1.
+ <_>
+ 11 0 9 4 2.
+ <_>
+
+ <_>
+ 0 8 2 2 -1.
+ <_>
+ 1 8 1 2 2.
+ <_>
+
+ <_>
+ 4 12 3 6 -1.
+ <_>
+ 5 12 1 6 3.
+ <_>
+
+ <_>
+ 3 13 4 2 -1.
+ <_>
+ 5 13 2 2 2.
+ <_>
+
+ <_>
+ 4 14 11 2 -1.
+ <_>
+ 4 15 11 1 2.
+ <_>
+
+ <_>
+ 4 13 8 3 -1.
+ <_>
+ 4 14 8 1 3.
+ <_>
+
+ <_>
+ 3 7 6 10 -1.
+ <_>
+ 3 7 3 5 2.
+ <_>
+ 6 12 3 5 2.
+ <_>
+
+ <_>
+ 5 7 6 4 -1.
+ <_>
+ 7 7 2 4 3.
+ <_>
+
+ <_>
+ 2 11 10 6 -1.
+ <_>
+ 2 14 10 3 2.
+ <_>
+
+ <_>
+ 5 7 9 12 -1.
+ <_>
+ 5 13 9 6 2.
+ <_>
+
+ <_>
+ 9 12 7 4 -1.
+ <_>
+ 9 14 7 2 2.
+ <_>
+
+ <_>
+ 2 0 8 4 -1.
+ <_>
+ 2 0 4 2 2.
+ <_>
+ 6 2 4 2 2.
+ <_>
+
+ <_>
+ 4 0 4 4 -1.
+ <_>
+ 4 0 2 2 2.
+ <_>
+ 6 2 2 2 2.
+ <_>
+
+ <_>
+ 6 2 3 2 -1.
+ <_>
+ 7 2 1 2 3.
+ <_>
+
+ <_>
+ 2 11 3 4 -1.
+ <_>
+ 3 11 1 4 3.
+ <_>
+
+ <_>
+ 1 17 2 1 -1.
+ <_>
+ 2 17 1 1 2.
+ <_>
+
+ <_>
+ 15 12 4 3 -1.
+ <_>
+ 15 13 4 1 3.
+ <_>
+
+ <_>
+ 9 15 7 3 -1.
+ <_>
+ 9 16 7 1 3.
+ <_>
+
+ <_>
+ 6 7 3 2 -1.
+ <_>
+ 7 7 1 2 3.
+ <_>
+
+ <_>
+ 3 5 12 10 -1.
+ <_>
+ 3 5 6 5 2.
+ <_>
+ 9 10 6 5 2.
+ <_>
+
+ <_>
+ 4 2 12 5 -1.
+ <_>
+ 10 2 6 5 2.
+ <_>
+
+ <_>
+ 9 5 3 1 -1.
+ <_>
+ 10 5 1 1 3.
+ <_>
+
+ <_>
+ 2 10 3 4 -1.
+ <_>
+ 3 10 1 4 3.
+ <_>
+
+ <_>
+ 11 5 2 10 -1.
+ <_>
+ 11 10 2 5 2.
+ <_>
+
+ <_>
+ 8 6 7 8 -1.
+ <_>
+ 8 10 7 4 2.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 2 8 8 4 -1.
+ <_>
+ 6 8 4 4 2.
+ <_>
+
+ <_>
+ 0 9 2 2 -1.
+ <_>
+ 1 9 1 2 2.
+ <_>
+
+ <_>
+ 13 11 4 2 -1.
+ <_>
+ 15 11 2 2 2.
+ <_>
+
+ <_>
+ 8 6 12 5 -1.
+ <_>
+ 12 6 4 5 3.
+ <_>
+
+ <_>
+ 11 11 9 1 -1.
+ <_>
+ 14 11 3 1 3.
+ <_>
+
+ <_>
+ 15 10 2 4 -1.
+ <_>
+ 15 10 1 2 2.
+ <_>
+ 16 12 1 2 2.
+ <_>
+
+ <_>
+ 18 5 1 3 -1.
+ <_>
+ 18 6 1 1 3.
+ <_>
+
+ <_>
+ 4 10 7 3 -1.
+ <_>
+ 4 11 7 1 3.
+ <_>
+
+ <_>
+ 8 5 3 1 -1.
+ <_>
+ 9 5 1 1 3.
+ <_>
+
+ <_>
+ 7 13 2 3 -1.
+ <_>
+ 7 14 2 1 3.
+ <_>
+
+ <_>
+ 7 14 3 3 -1.
+ <_>
+ 7 15 3 1 3.
+ <_>
+
+ <_>
+ 7 15 3 3 -1.
+ <_>
+ 7 16 3 1 3.
+ <_>
+
+ <_>
+ 14 15 1 3 -1.
+ <_>
+ 14 16 1 1 3.
+ <_>
+
+ <_>
+ 2 14 10 6 -1.
+ <_>
+ 2 17 10 3 2.
+ <_>
+
+ <_>
+ 5 12 5 3 -1.
+ <_>
+ 5 13 5 1 3.
+ <_>
+
+ <_>
+ 7 9 1 6 -1.
+ <_>
+ 7 11 1 2 3.
+ <_>
+
+ <_>
+ 0 6 5 6 -1.
+ <_>
+ 0 8 5 2 3.
+ <_>
+
+ <_>
+ 6 10 3 4 -1.
+ <_>
+ 6 12 3 2 2.
+ <_>
+
+ <_>
+ 4 9 9 2 -1.
+ <_>
+ 4 10 9 1 2.
+ <_>
+
+ <_>
+ 7 3 1 2 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 8 9 4 4 -1.
+ <_>
+ 8 11 4 2 2.
+ <_>
+
+ <_>
+ 11 10 3 1 -1.
+ <_>
+ 12 10 1 1 3.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 5 8 3 1 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 6 1 4 3.
+ <_>
+
+ <_>
+ 11 1 9 12 -1.
+ <_>
+ 14 1 3 12 3.
+ <_>
+
+ <_>
+ 6 7 4 9 -1.
+ <_>
+ 6 10 4 3 3.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 11 7 4 3 2.
+ <_>
+ 15 10 4 3 2.
+ <_>
+
+ <_>
+ 8 9 7 3 -1.
+ <_>
+ 8 10 7 1 3.
+ <_>
+
+ <_>
+ 3 2 4 18 -1.
+ <_>
+ 5 2 2 18 2.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 6 11 8 6 -1.
+ <_>
+ 6 11 4 3 2.
+ <_>
+ 10 14 4 3 2.
+ <_>
+
+ <_>
+ 5 9 4 7 -1.
+ <_>
+ 7 9 2 7 2.
+ <_>
+
+ <_>
+ 5 8 6 5 -1.
+ <_>
+ 8 8 3 5 2.
+ <_>
+
+ <_>
+ 7 11 1 3 -1.
+ <_>
+ 7 12 1 1 3.
+ <_>
+
+ <_>
+ 15 10 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ <_>
+
+ <_>
+ 10 12 2 2 -1.
+ <_>
+ 10 13 2 1 2.
+ <_>
+
+ <_>
+ 11 13 2 1 -1.
+ <_>
+ 12 13 1 1 2.
+ <_>
+
+ <_>
+ 6 12 2 2 -1.
+ <_>
+ 6 13 2 1 2.
+ <_>
+
+ <_>
+ 11 2 2 12 -1.
+ <_>
+ 11 2 1 6 2.
+ <_>
+ 12 8 1 6 2.
+ <_>
+
+ <_>
+ 7 0 6 6 -1.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 4 8 4 2 -1.
+ <_>
+ 4 9 4 1 2.
+ <_>
+
+ <_>
+ 14 12 1 2 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 4 0 2 4 -1.
+ <_>
+ 4 0 1 2 2.
+ <_>
+ 5 2 1 2 2.
+ <_>
+
+ <_>
+ 15 2 2 1 -1.
+ <_>
+ 16 2 1 1 2.
+ <_>
+
+ <_>
+ 3 14 3 1 -1.
+ <_>
+ 4 14 1 1 3.
+ <_>
+
+ <_>
+ 5 11 10 4 -1.
+ <_>
+ 5 11 5 2 2.
+ <_>
+ 10 13 5 2 2.
+ <_>
+
+ <_>
+ 4 10 12 3 -1.
+ <_>
+ 4 11 12 1 3.
+ <_>
+
+ <_>
+ 15 2 4 6 -1.
+ <_>
+ 15 2 2 3 2.
+ <_>
+ 17 5 2 3 2.
+ <_>
+
+ <_>
+ 5 8 1 4 -1.
+ <_>
+ 5 10 1 2 2.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 15 1 2 3.
+ <_>
+
+ <_>
+ 11 19 2 1 -1.
+ <_>
+ 12 19 1 1 2.
+ <_>
+
+ <_>
+ 6 7 3 2 -1.
+ <_>
+ 7 7 1 2 3.
+ <_>
+
+ <_>
+ 6 4 2 1 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 6 4 3 2 -1.
+ <_>
+ 7 4 1 2 3.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 6 8 1 1 2.
+ <_>
+ 7 9 1 1 2.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 15 1 2 3.
+ <_>
+
+ <_>
+ 4 8 2 4 -1.
+ <_>
+ 4 8 1 2 2.
+ <_>
+ 5 10 1 2 2.
+ <_>
+
+ <_>
+ 10 4 7 3 -1.
+ <_>
+ 10 5 7 1 3.
+ <_>
+
+ <_>
+ 4 5 2 6 -1.
+ <_>
+ 5 5 1 6 2.
+ <_>
+
+ <_>
+ 10 13 1 3 -1.
+ <_>
+ 10 14 1 1 3.
+ <_>
+
+ <_>
+ 6 11 6 3 -1.
+ <_>
+ 9 11 3 3 2.
+ <_>
+
+ <_>
+ 10 14 3 2 -1.
+ <_>
+ 10 15 3 1 2.
+ <_>
+
+ <_>
+ 8 8 4 2 -1.
+ <_>
+ 10 8 2 2 2.
+ <_>
+
+ <_>
+ 17 12 3 1 -1.
+ <_>
+ 18 12 1 1 3.
+ <_>
+
+ <_>
+ 9 0 11 16 -1.
+ <_>
+ 9 8 11 8 2.
+ <_>
+
+ <_>
+ 17 0 3 6 -1.
+ <_>
+ 17 2 3 2 3.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 4 10 10 9 -1.
+ <_>
+ 4 13 10 3 3.
+ <_>
+
+ <_>
+ 3 3 3 5 -1.
+ <_>
+ 4 3 1 5 3.
+ <_>
+
+ <_>
+ 6 1 2 6 -1.
+ <_>
+ 6 3 2 2 3.
+ <_>
+
+ <_>
+ 5 0 8 6 -1.
+ <_>
+ 5 2 8 2 3.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 6 3 6 4 -1.
+ <_>
+ 8 3 2 4 3.
+ <_>
+
+ <_>
+ 8 6 3 3 -1.
+ <_>
+ 8 7 3 1 3.
+ <_>
+
+ <_>
+ 9 6 3 6 -1.
+ <_>
+ 9 8 3 2 3.
+ <_>
+
+ <_>
+ 4 3 12 12 -1.
+ <_>
+ 4 3 6 6 2.
+ <_>
+ 10 9 6 6 2.
+ <_>
+
+ <_>
+ 13 8 3 2 -1.
+ <_>
+ 13 9 3 1 2.
+ <_>
+
+ <_>
+ 4 3 10 2 -1.
+ <_>
+ 9 3 5 2 2.
+ <_>
+
+ <_>
+ 18 14 2 2 -1.
+ <_>
+ 18 14 1 1 2.
+ <_>
+ 19 15 1 1 2.
+ <_>
+
+ <_>
+ 5 6 6 2 -1.
+ <_>
+ 8 6 3 2 2.
+ <_>
+
+ <_>
+ 0 14 20 5 -1.
+ <_>
+ 10 14 10 5 2.
+ <_>
+
+ <_>
+ 9 17 2 1 -1.
+ <_>
+ 10 17 1 1 2.
+ <_>
+
+ <_>
+ 5 16 5 3 -1.
+ <_>
+ 5 17 5 1 3.
+ <_>
+
+ <_>
+ 9 16 3 2 -1.
+ <_>
+ 10 16 1 2 3.
+ <_>
+
+ <_>
+ 6 5 5 3 -1.
+ <_>
+ 6 6 5 1 3.
+ <_>
+
+ <_>
+ 11 12 3 8 -1.
+ <_>
+ 12 12 1 8 3.
+ <_>
+
+ <_>
+ 4 3 3 9 -1.
+ <_>
+ 4 6 3 3 3.
+ <_>
+
+ <_>
+ 11 0 3 3 -1.
+ <_>
+ 12 0 1 3 3.
+ <_>
+
+ <_>
+ 5 17 10 2 -1.
+ <_>
+ 5 17 5 1 2.
+ <_>
+ 10 18 5 1 2.
+ <_>
+
+ <_>
+ 5 15 2 3 -1.
+ <_>
+ 5 16 2 1 3.
+ <_>
+
+ <_>
+ 6 14 2 4 -1.
+ <_>
+ 6 14 1 2 2.
+ <_>
+ 7 16 1 2 2.
+ <_>
+
+ <_>
+ 10 17 6 3 -1.
+ <_>
+ 10 18 6 1 3.
+ <_>
+
+ <_>
+ 19 5 1 3 -1.
+ <_>
+ 19 6 1 1 3.
+ <_>
+
+ <_>
+ 16 13 2 2 -1.
+ <_>
+ 16 13 1 1 2.
+ <_>
+ 17 14 1 1 2.
+ <_>
+
+ <_>
+ 0 11 2 1 -1.
+ <_>
+ 1 11 1 1 2.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 4 12 3 3 2.
+ <_>
+ 7 15 3 3 2.
+ <_>
+
+ <_>
+ 5 15 4 3 -1.
+ <_>
+ 5 16 4 1 3.
+ <_>
+
+ <_>
+ 10 16 3 2 -1.
+ <_>
+ 11 16 1 2 3.
+ <_>
+
+ <_>
+ 1 0 10 2 -1.
+ <_>
+ 1 0 5 1 2.
+ <_>
+ 6 1 5 1 2.
+ <_>
+
+ <_>
+ 2 0 18 14 -1.
+ <_>
+ 11 0 9 14 2.
+ <_>
+
+ <_>
+ 15 7 4 7 -1.
+ <_>
+ 17 7 2 7 2.
+ <_>
+
+ <_>
+ 5 10 2 4 -1.
+ <_>
+ 6 10 1 4 2.
+ <_>
+
+ <_>
+ 15 16 3 1 -1.
+ <_>
+ 16 16 1 1 3.
+ <_>
+
+ <_>
+ 7 15 5 3 -1.
+ <_>
+ 7 16 5 1 3.
+ <_>
+
+ <_>
+ 12 1 6 3 -1.
+ <_>
+ 14 1 2 3 3.
+ <_>
+
+ <_>
+ 16 2 2 1 -1.
+ <_>
+ 17 2 1 1 2.
+ <_>
+
+ <_>
+ 17 0 2 2 -1.
+ <_>
+ 17 0 1 1 2.
+ <_>
+ 18 1 1 1 2.
+ <_>
+
+ <_>
+ 1 0 4 6 -1.
+ <_>
+ 1 2 4 2 3.
+ <_>
+
+ <_>
+ 3 1 6 18 -1.
+ <_>
+ 3 7 6 6 3.
+ <_>
+
+ <_>
+ 5 1 1 12 -1.
+ <_>
+ 5 7 1 6 2.
+ <_>
+
+ <_>
+ 16 9 2 2 -1.
+ <_>
+ 16 9 1 1 2.
+ <_>
+ 17 10 1 1 2.
+ <_>
+
+ <_>
+ 4 2 2 11 -1.
+ <_>
+ 5 2 1 11 2.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 14 18 2 2 -1.
+ <_>
+ 14 19 2 1 2.
+ <_>
+
+ <_>
+ 10 0 10 10 -1.
+ <_>
+ 10 0 5 5 2.
+ <_>
+ 15 5 5 5 2.
+ <_>
+
+ <_>
+ 19 6 1 2 -1.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 11 0 6 8 -1.
+ <_>
+ 11 0 3 4 2.
+ <_>
+ 14 4 3 4 2.
+ <_>
+
+ <_>
+ 5 0 2 2 -1.
+ <_>
+ 5 0 1 1 2.
+ <_>
+ 6 1 1 1 2.
+ <_>
+
+ <_>
+ 3 1 9 11 -1.
+ <_>
+ 6 1 3 11 3.
+ <_>
+
+ <_>
+ 10 11 3 2 -1.
+ <_>
+ 10 12 3 1 2.
+ <_>
+
+ <_>
+ 10 9 4 2 -1.
+ <_>
+ 12 9 2 2 2.
+ <_>
+
+ <_>
+ 13 7 1 6 -1.
+ <_>
+ 13 9 1 2 3.
+ <_>
+
+ <_>
+ 8 10 6 2 -1.
+ <_>
+ 8 10 3 1 2.
+ <_>
+ 11 11 3 1 2.
+ <_>
+
+ <_>
+ 4 11 4 6 -1.
+ <_>
+ 4 14 4 3 2.
+ <_>
+
+ <_>
+ 17 4 2 3 -1.
+ <_>
+ 17 5 2 1 3.
+ <_>
+
+ <_>
+ 10 2 8 14 -1.
+ <_>
+ 10 2 4 7 2.
+ <_>
+ 14 9 4 7 2.
+ <_>
+
+ <_>
+ 12 8 8 7 -1.
+ <_>
+ 16 8 4 7 2.
+ <_>
+
+ <_>
+ 1 2 18 1 -1.
+ <_>
+ 7 2 6 1 3.
+ <_>
+
+ <_>
+ 0 1 8 19 -1.
+ <_>
+ 4 1 4 19 2.
+ <_>
+
+ <_>
+ 0 0 8 12 -1.
+ <_>
+ 4 0 4 12 2.
+ <_>
+
+ <_>
+ 13 5 5 12 -1.
+ <_>
+ 13 11 5 6 2.
+ <_>
+
+ <_>
+ 7 9 1 4 -1.
+ <_>
+ 7 11 1 2 2.
+ <_>
+
+ <_>
+ 0 13 10 3 -1.
+ <_>
+ 5 13 5 3 2.
+ <_>
+
+ <_>
+ 2 7 12 4 -1.
+ <_>
+ 6 7 4 4 3.
+ <_>
+
+ <_>
+ 9 1 2 6 -1.
+ <_>
+ 9 1 1 3 2.
+ <_>
+ 10 4 1 3 2.
+ <_>
+
+ <_>
+ 6 8 3 3 -1.
+ <_>
+ 7 8 1 3 3.
+ <_>
+
+ <_>
+ 4 11 3 1 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 5 10 1 2 -1.
+ <_>
+ 5 11 1 1 2.
+ <_>
+
+ <_>
+ 0 17 4 1 -1.
+ <_>
+ 2 17 2 1 2.
+ <_>
+
+ <_>
+ 1 16 2 1 -1.
+ <_>
+ 2 16 1 1 2.
+ <_>
+
+ <_>
+ 7 14 2 3 -1.
+ <_>
+ 7 15 2 1 3.
+ <_>
+
+ <_>
+ 10 13 2 2 -1.
+ <_>
+ 10 14 2 1 2.
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ <_>
+
+ <_>
+ 16 10 3 2 -1.
+ <_>
+ 17 10 1 2 3.
+ <_>
+
+ <_>
+ 7 2 3 1 -1.
+ <_>
+ 8 2 1 1 3.
+ <_>
+
+ <_>
+ 14 4 5 3 -1.
+ <_>
+ 14 5 5 1 3.
+ <_>
+
+ <_>
+ 7 7 2 3 -1.
+ <_>
+ 8 7 1 3 2.
+ <_>
+
+ <_>
+ 5 7 6 7 -1.
+ <_>
+ 8 7 3 7 2.
+ <_>
+
+ <_>
+ 4 2 2 6 -1.
+ <_>
+ 4 2 1 3 2.
+ <_>
+ 5 5 1 3 2.
+ <_>
+
+ <_>
+ 4 9 2 3 -1.
+ <_>
+ 4 10 2 1 3.
+ <_>
+
+ <_>
+ 8 6 7 12 -1.
+ <_>
+ 8 10 7 4 3.
+ <_>
+
+ <_>
+ 8 5 2 10 -1.
+ <_>
+ 8 10 2 5 2.
+ <_>
+
+ <_>
+ 4 3 3 5 -1.
+ <_>
+ 5 3 1 5 3.
+ <_>
+
+ <_>
+ 9 12 2 1 -1.
+ <_>
+ 10 12 1 1 2.
+ <_>
+
+ <_>
+ 3 8 3 4 -1.
+ <_>
+ 4 8 1 4 3.
+ <_>
+
+ <_>
+ 13 14 3 3 -1.
+ <_>
+ 13 15 3 1 3.
+ <_>
+
+ <_>
+ 1 14 2 3 -1.
+ <_>
+ 2 14 1 3 2.
+ <_>
+
+ <_>
+ 5 0 2 4 -1.
+ <_>
+ 5 0 1 2 2.
+ <_>
+ 6 2 1 2 2.
+ <_>
+
+ <_>
+ 5 14 4 3 -1.
+ <_>
+ 5 15 4 1 3.
+ <_>
+
+ <_>
+ 6 12 2 6 -1.
+ <_>
+ 6 12 1 3 2.
+ <_>
+ 7 15 1 3 2.
+ <_>
+
+ <_>
+ 6 13 2 2 -1.
+ <_>
+ 7 13 1 2 2.
+ <_>
+
+ <_>
+ 9 10 4 5 -1.
+ <_>
+ 11 10 2 5 2.
+ <_>
+
+ <_>
+ 11 3 2 1 -1.
+ <_>
+ 12 3 1 1 2.
+ <_>
+
+ <_>
+ 6 7 2 2 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 5 3 6 5 -1.
+ <_>
+ 7 3 2 5 3.
+ <_>
+
+ <_>
+ 5 6 4 8 -1.
+ <_>
+ 7 6 2 8 2.
+ <_>
+
+ <_>
+ 5 7 6 3 -1.
+ <_>
+ 7 7 2 3 3.
+ <_>
+
+ <_>
+ 9 12 3 4 -1.
+ <_>
+ 10 12 1 4 3.
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 9 1 1 3.
+ <_>
+
+ <_>
+ 13 14 3 3 -1.
+ <_>
+ 13 15 3 1 3.
+ <_>
+
+ <_>
+ 7 13 4 2 -1.
+ <_>
+ 7 13 2 1 2.
+ <_>
+ 9 14 2 1 2.
+ <_>
+
+ <_>
+ 10 13 1 2 -1.
+ <_>
+ 10 14 1 1 2.
+ <_>
+
+ <_>
+ 9 13 2 3 -1.
+ <_>
+ 9 14 2 1 3.
+ <_>
+
+ <_>
+ 9 14 2 3 -1.
+ <_>
+ 9 15 2 1 3.
+ <_>
+
+ <_>
+ 9 6 8 1 -1.
+ <_>
+ 13 6 4 1 2.
+ <_>
+
+ <_>
+ 6 8 3 2 -1.
+ <_>
+ 6 9 3 1 2.
+ <_>
+
+ <_>
+ 5 6 2 3 -1.
+ <_>
+ 6 6 1 3 2.
+ <_>
+
+ <_>
+ 12 10 2 6 -1.
+ <_>
+ 12 13 2 3 2.
+ <_>
+
+ <_>
+ 1 0 18 2 -1.
+ <_>
+ 7 0 6 2 3.
+ <_>
+
+ <_>
+ 9 7 4 6 -1.
+ <_>
+ 9 7 2 3 2.
+ <_>
+ 11 10 2 3 2.
+ <_>
+
+ <_>
+ 12 10 2 4 -1.
+ <_>
+ 13 10 1 4 2.
+ <_>
+
+ <_>
+ 13 12 1 2 -1.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 13 18 2 2 -1.
+ <_>
+ 14 18 1 2 2.
+ <_>
+
+ <_>
+ 15 4 2 1 -1.
+ <_>
+ 16 4 1 1 2.
+ <_>
+
+ <_>
+ 5 7 6 3 -1.
+ <_>
+ 7 7 2 3 3.
+ <_>
+
+ <_>
+ 5 8 8 3 -1.
+ <_>
+ 9 8 4 3 2.
+ <_>
+
+ <_>
+ 6 12 6 3 -1.
+ <_>
+ 9 12 3 3 2.
+ <_>
+
+ <_>
+ 12 14 3 6 -1.
+ <_>
+ 13 14 1 6 3.
+ <_>
+
+ <_>
+ 18 9 2 8 -1.
+ <_>
+ 18 9 1 4 2.
+ <_>
+ 19 13 1 4 2.
+ <_>
+
+ <_>
+ 5 5 7 3 -1.
+ <_>
+ 5 6 7 1 3.
+ <_>
+
+ <_>
+ 10 13 2 2 -1.
+ <_>
+ 10 13 1 1 2.
+ <_>
+ 11 14 1 1 2.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 9 13 4 2 -1.
+ <_>
+ 9 13 2 1 2.
+ <_>
+ 11 14 2 1 2.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 7 10 3 6 -1.
+ <_>
+ 7 12 3 2 3.
+ <_>
+
+ <_>
+ 13 8 4 4 -1.
+ <_>
+ 13 10 4 2 2.
+ <_>
+
+ <_>
+ 8 0 12 18 -1.
+ <_>
+ 8 9 12 9 2.
+ <_>
+
+ <_>
+ 18 9 2 10 -1.
+ <_>
+ 18 9 1 5 2.
+ <_>
+ 19 14 1 5 2.
+ <_>
+
+ <_>
+ 14 2 3 6 -1.
+ <_>
+ 14 5 3 3 2.
+ <_>
+
+ <_>
+ 10 0 3 14 -1.
+ <_>
+ 11 0 1 14 3.
+ <_>
+
+ <_>
+ 6 16 8 4 -1.
+ <_>
+ 6 16 4 2 2.
+ <_>
+ 10 18 4 2 2.
+ <_>
+
+ <_>
+ 5 3 5 12 -1.
+ <_>
+ 5 7 5 4 3.
+ <_>
+
+ <_>
+ 4 15 6 3 -1.
+ <_>
+ 4 16 6 1 3.
+ <_>
+
+ <_>
+ 6 15 1 3 -1.
+ <_>
+ 6 16 1 1 3.
+ <_>
+
+ <_>
+ 13 1 2 1 -1.
+ <_>
+ 14 1 1 1 2.
+ <_>
+
+ <_>
+ 2 2 18 9 -1.
+ <_>
+ 11 2 9 9 2.
+ <_>
+
+ <_>
+ 4 16 2 4 -1.
+ <_>
+ 4 16 1 2 2.
+ <_>
+ 5 18 1 2 2.
+ <_>
+
+ <_>
+ 15 1 3 8 -1.
+ <_>
+ 16 1 1 8 3.
+ <_>
+
+ <_>
+ 11 11 2 3 -1.
+ <_>
+ 11 12 2 1 3.
+ <_>
+
+ <_>
+ 9 9 2 4 -1.
+ <_>
+ 9 11 2 2 2.
+ <_>
+
+ <_>
+ 5 9 8 4 -1.
+ <_>
+ 5 9 4 2 2.
+ <_>
+ 9 11 4 2 2.
+ <_>
+
+ <_>
+ 9 6 2 3 -1.
+ <_>
+ 9 7 2 1 3.
+ <_>
+
+ <_>
+ 7 9 2 3 -1.
+ <_>
+ 7 10 2 1 3.
+ <_>
+
+ <_>
+ 11 15 4 3 -1.
+ <_>
+ 11 16 4 1 3.
+ <_>
+
+ <_>
+ 8 6 2 3 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 6 9 2 1 3.
+ <_>
+
+ <_>
+ 6 9 6 3 -1.
+ <_>
+ 8 9 2 3 3.
+ <_>
+
+ <_>
+ 6 9 4 2 -1.
+ <_>
+ 6 9 2 1 2.
+ <_>
+ 8 10 2 1 2.
+ <_>
+
+ <_>
+ 4 7 9 1 -1.
+ <_>
+ 7 7 3 1 3.
+ <_>
+
+ <_>
+ 5 7 2 6 -1.
+ <_>
+ 5 7 1 3 2.
+ <_>
+ 6 10 1 3 2.
+ <_>
+
+ <_>
+ 4 8 4 8 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+
+ <_>
+ 7 0 2 19 -1.
+ <_>
+ 8 0 1 19 2.
+ <_>
+
+ <_>
+ 5 9 1 3 -1.
+ <_>
+ 5 10 1 1 3.
+ <_>
+
+ <_>
+ 9 5 3 1 -1.
+ <_>
+ 10 5 1 1 3.
+ <_>
+
+ <_>
+ 16 4 3 6 -1.
+ <_>
+ 16 6 3 2 3.
+ <_>
+
+ <_>
+ 10 15 5 3 -1.
+ <_>
+ 10 16 5 1 3.
+ <_>
+
+ <_>
+ 13 1 5 14 -1.
+ <_>
+ 13 8 5 7 2.
+ <_>
+
+ <_>
+ 3 0 4 4 -1.
+ <_>
+ 3 0 2 2 2.
+ <_>
+ 5 2 2 2 2.
+ <_>
+
+ <_>
+ 6 5 4 13 -1.
+ <_>
+ 8 5 2 13 2.
+ <_>
+
+ <_>
+ 4 2 2 16 -1.
+ <_>
+ 4 2 1 8 2.
+ <_>
+ 5 10 1 8 2.
+ <_>
+
+ <_>
+ 4 8 8 3 -1.
+ <_>
+ 8 8 4 3 2.
+ <_>
+
+ <_>
+ 5 6 2 12 -1.
+ <_>
+ 5 12 2 6 2.
+ <_>
+
+ <_>
+ 8 7 2 4 -1.
+ <_>
+ 9 7 1 4 2.
+ <_>
+
+ <_>
+ 13 9 5 4 -1.
+ <_>
+ 13 11 5 2 2.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+ 16 1 4 1 2.
+ <_>
+
+ <_>
+ 14 0 6 4 -1.
+ <_>
+ 14 0 3 2 2.
+ <_>
+ 17 2 3 2 2.
+ <_>
+
+ <_>
+ 4 9 6 2 -1.
+ <_>
+ 6 9 2 2 3.
+ <_>
+
+ <_>
+ 13 1 2 1 -1.
+ <_>
+ 14 1 1 1 2.
+ <_>
+
+ <_>
+ 0 0 12 3 -1.
+ <_>
+ 6 0 6 3 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 6 12 1 3 3.
+ <_>
+
+ <_>
+ 5 11 4 3 -1.
+ <_>
+ 5 12 4 1 3.
+ <_>
+
+ <_>
+ 5 13 2 4 -1.
+ <_>
+ 5 13 1 2 2.
+ <_>
+ 6 15 1 2 2.
+ <_>
+
+ <_>
+ 4 11 3 3 -1.
+ <_>
+ 4 12 3 1 3.
+ <_>
+
+ <_>
+ 1 8 6 2 -1.
+ <_>
+ 1 9 6 1 2.
+ <_>
+
+ <_>
+ 6 8 4 12 -1.
+ <_>
+ 6 12 4 4 3.
+ <_>
+
+ <_>
+ 7 14 6 4 -1.
+ <_>
+ 7 14 3 2 2.
+ <_>
+ 10 16 3 2 2.
+ <_>
+
+ <_>
+ 8 16 8 4 -1.
+ <_>
+ 8 16 4 2 2.
+ <_>
+ 12 18 4 2 2.
+ <_>
+
+ <_>
+ 5 10 10 6 -1.
+ <_>
+ 5 12 10 2 3.
+ <_>
+
+ <_>
+ 6 13 1 3 -1.
+ <_>
+ 6 14 1 1 3.
+ <_>
+
+ <_>
+ 3 11 4 6 -1.
+ <_>
+ 3 13 4 2 3.
+ <_>
+
+ <_>
+ 10 14 6 3 -1.
+ <_>
+ 10 15 6 1 3.
+ <_>
+
+ <_>
+ 3 15 4 2 -1.
+ <_>
+ 5 15 2 2 2.
+ <_>
+
+ <_>
+ 3 14 4 3 -1.
+ <_>
+ 5 14 2 3 2.
+ <_>
+
+ <_>
+ 1 2 1 2 -1.
+ <_>
+ 1 3 1 1 2.
+ <_>
+
+ <_>
+ 0 12 8 4 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+
+ <_>
+ 1 2 1 2 -1.
+ <_>
+ 1 3 1 1 2.
+ <_>
+
+ <_>
+ 5 11 1 3 -1.
+ <_>
+ 5 12 1 1 3.
+ <_>
+
+ <_>
+ 10 19 2 1 -1.
+ <_>
+ 11 19 1 1 2.
+ <_>
+
+ <_>
+ 6 6 4 4 -1.
+ <_>
+ 6 6 2 2 2.
+ <_>
+ 8 8 2 2 2.
+ <_>
+
+ <_>
+ 6 3 1 2 -1.
+ <_>
+ 6 4 1 1 2.
+ <_>
+
+ <_>
+ 0 4 10 2 -1.
+ <_>
+ 5 4 5 2 2.
+ <_>
+
+ <_>
+ 4 5 2 1 -1.
+ <_>
+ 5 5 1 1 2.
+ <_>
+
+ <_>
+ 0 12 2 1 -1.
+ <_>
+ 1 12 1 1 2.
+ <_>
+
+ <_>
+ 1 4 6 11 -1.
+ <_>
+ 3 4 2 11 3.
+ <_>
+
+ <_>
+ 6 4 2 1 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 7 0 1 6 -1.
+ <_>
+ 7 2 1 2 3.
+ <_>
+
+ <_>
+ 7 0 8 4 -1.
+ <_>
+ 7 2 8 2 2.
+ <_>
+
+ <_>
+ 13 6 2 2 -1.
+ <_>
+ 13 7 2 1 2.
+ <_>
+
+ <_>
+ 16 15 2 2 -1.
+ <_>
+ 16 15 1 1 2.
+ <_>
+ 17 16 1 1 2.
+ <_>
+
+ <_>
+ 11 12 1 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 4 4 5 2 -1.
+ <_>
+ 4 5 5 1 2.
+ <_>
+
+ <_>
+ 4 3 3 9 -1.
+ <_>
+ 4 6 3 3 3.
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 7 7 1 3 2.
+ <_>
+
+ <_>
+ 4 8 6 1 -1.
+ <_>
+ 7 8 3 1 2.
+ <_>
+
+ <_>
+ 3 8 12 5 -1.
+ <_>
+ 9 8 6 5 2.
+ <_>
+
+ <_>
+ 9 8 1 3 -1.
+ <_>
+ 9 9 1 1 3.
+ <_>
+
+ <_>
+ 9 9 6 1 -1.
+ <_>
+ 12 9 3 1 2.
+ <_>
+
+ <_>
+ 13 7 7 6 -1.
+ <_>
+ 13 9 7 2 3.
+ <_>
+
+ <_>
+ 0 2 20 18 -1.
+ <_>
+ 10 2 10 18 2.
+ <_>
+
+ <_>
+ 12 5 6 3 -1.
+ <_>
+ 12 6 6 1 3.
+ <_>
+
+ <_>
+ 8 8 3 2 -1.
+ <_>
+ 8 9 3 1 2.
+ <_>
+
+ <_>
+ 4 9 11 6 -1.
+ <_>
+ 4 11 11 2 3.
+ <_>
+
+ <_>
+ 7 7 7 6 -1.
+ <_>
+ 7 10 7 3 2.
+ <_>
+
+ <_>
+ 15 7 2 8 -1.
+ <_>
+ 15 7 1 4 2.
+ <_>
+ 16 11 1 4 2.
+ <_>
+
+ <_>
+ 4 10 2 6 -1.
+ <_>
+ 4 12 2 2 3.
+ <_>
+
+ <_>
+ 7 13 2 2 -1.
+ <_>
+ 7 13 1 1 2.
+ <_>
+ 8 14 1 1 2.
+ <_>
+
+ <_>
+ 7 2 3 4 -1.
+ <_>
+ 8 2 1 4 3.
+ <_>
+
+ <_>
+ 7 3 2 3 -1.
+ <_>
+ 8 3 1 3 2.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 14 6 3 8 -1.
+ <_>
+ 15 6 1 8 3.
+ <_>
+
+ <_>
+ 4 10 2 6 -1.
+ <_>
+ 4 13 2 3 2.
+ <_>
+
+ <_>
+ 0 17 10 3 -1.
+ <_>
+ 0 18 10 1 3.
+ <_>
+
+ <_>
+ 5 18 7 2 -1.
+ <_>
+ 5 19 7 1 2.
+ <_>
+
+ <_>
+ 13 12 1 3 -1.
+ <_>
+ 13 13 1 1 3.
+ <_>
+
+ <_>
+ 9 2 4 16 -1.
+ <_>
+ 9 2 2 8 2.
+ <_>
+ 11 10 2 8 2.
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 6 8 2 1 3.
+ <_>
+
+ <_>
+ 9 8 2 4 -1.
+ <_>
+ 9 10 2 2 2.
+ <_>
+
+ <_>
+ 18 4 2 3 -1.
+ <_>
+ 18 5 2 1 3.
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+ 17 11 1 1 2.
+ <_>
+
+ <_>
+ 14 2 6 6 -1.
+ <_>
+ 14 4 6 2 3.
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ <_>
+
+ <_>
+ 17 10 2 1 -1.
+ <_>
+ 18 10 1 1 2.
+ <_>
+
+ <_>
+ 16 8 2 4 -1.
+ <_>
+ 17 8 1 4 2.
+ <_>
+
+ <_>
+ 11 15 6 3 -1.
+ <_>
+ 11 16 6 1 3.
+ <_>
+
+ <_>
+ 3 7 3 4 -1.
+ <_>
+ 4 7 1 4 3.
+ <_>
+
+ <_>
+ 3 5 3 5 -1.
+ <_>
+ 4 5 1 5 3.
+ <_>
+
+ <_>
+ 2 10 6 1 -1.
+ <_>
+ 5 10 3 1 2.
+ <_>
+
+ <_>
+ 12 0 4 2 -1.
+ <_>
+ 14 0 2 2 2.
+ <_>
+
+ <_>
+ 9 14 1 2 -1.
+ <_>
+ 9 15 1 1 2.
+ <_>
+
+ <_>
+ 15 12 5 6 -1.
+ <_>
+ 15 14 5 2 3.
+ <_>
+
+ <_>
+ 4 13 10 4 -1.
+ <_>
+ 4 15 10 2 2.
+ <_>
+
+ <_>
+ 7 16 6 4 -1.
+ <_>
+ 7 16 3 2 2.
+ <_>
+ 10 18 3 2 2.
+ <_>
+
+ <_>
+ 9 16 7 3 -1.
+ <_>
+ 9 17 7 1 3.
+ <_>
+
+ <_>
+ 4 8 2 2 -1.
+ <_>
+ 4 8 1 1 2.
+ <_>
+ 5 9 1 1 2.
+ <_>
+
+ <_>
+ 0 17 20 2 -1.
+ <_>
+ 10 17 10 2 2.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 4 7 2 6 -1.
+ <_>
+ 4 7 1 3 2.
+ <_>
+ 5 10 1 3 2.
+ <_>
+
+ <_>
+ 11 11 1 2 -1.
+ <_>
+ 11 12 1 1 2.
+ <_>
+
+ <_>
+ 10 13 5 2 -1.
+ <_>
+ 10 14 5 1 2.
+ <_>
+
+ <_>
+ 8 16 3 3 -1.
+ <_>
+ 8 17 3 1 3.
+ <_>
+
+ <_>
+ 9 18 3 1 -1.
+ <_>
+ 10 18 1 1 3.
+ <_>
+
+ <_>
+ 8 6 11 12 -1.
+ <_>
+ 8 10 11 4 3.
+ <_>
+
+ <_>
+ 2 4 13 12 -1.
+ <_>
+ 2 10 13 6 2.
+ <_>
+
+ <_>
+ 0 15 10 4 -1.
+ <_>
+ 0 15 5 2 2.
+ <_>
+ 5 17 5 2 2.
+ <_>
+
+ <_>
+ 4 8 6 2 -1.
+ <_>
+ 7 8 3 2 2.
+ <_>
+
+ <_>
+ 10 1 6 2 -1.
+ <_>
+ 12 1 2 2 3.
+ <_>
+
+ <_>
+ 7 8 6 7 -1.
+ <_>
+ 9 8 2 7 3.
+ <_>
+
+ <_>
+ 9 9 6 2 -1.
+ <_>
+ 11 9 2 2 3.
+ <_>
+
+ <_>
+ 3 14 15 4 -1.
+ <_>
+ 8 14 5 4 3.
+ <_>
+
+ <_>
+ 7 3 2 14 -1.
+ <_>
+ 7 10 2 7 2.
+ <_>
+
+ <_>
+ 11 14 1 2 -1.
+ <_>
+ 11 15 1 1 2.
+ <_>
+
+ <_>
+ 5 11 1 3 -1.
+ <_>
+ 5 12 1 1 3.
+ <_>
+
+ <_>
+ 11 14 3 3 -1.
+ <_>
+ 11 15 3 1 3.
+ <_>
+
+ <_>
+ 10 7 9 4 -1.
+ <_>
+ 13 7 3 4 3.
+ <_>
+
+ <_>
+ 11 6 6 5 -1.
+ <_>
+ 14 6 3 5 2.
+ <_>
+
+ <_>
+ 8 9 1 2 -1.
+ <_>
+ 8 10 1 1 2.
+ <_>
+
+ <_>
+ 16 3 1 10 -1.
+ <_>
+ 16 8 1 5 2.
+ <_>
+
+ <_>
+ 6 11 10 4 -1.
+ <_>
+ 6 13 10 2 2.
+ <_>
+
+ <_>
+ 5 7 2 2 -1.
+ <_>
+ 6 7 1 2 2.
+ <_>
+
+ <_>
+ 1 6 6 11 -1.
+ <_>
+ 4 6 3 11 2.
+ <_>
+
+ <_>
+ 6 8 3 2 -1.
+ <_>
+ 6 9 3 1 2.
+ <_>
+
+ <_>
+ 10 15 1 2 -1.
+ <_>
+ 10 16 1 1 2.
+ <_>
+
+ <_>
+ 8 0 12 1 -1.
+ <_>
+ 14 0 6 1 2.
+ <_>
+
+ <_>
+ 5 3 2 2 -1.
+ <_>
+ 6 3 1 2 2.
+ <_>
+
+ <_>
+ 11 6 6 5 -1.
+ <_>
+ 14 6 3 5 2.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 6 13 3 1 3.
+ <_>
+
+ <_>
+ 10 10 3 3 -1.
+ <_>
+ 11 10 1 3 3.
+ <_>
+
+ <_>
+ 6 13 2 2 -1.
+ <_>
+ 6 14 2 1 2.
+ <_>
+
+ <_>
+ 4 2 16 8 -1.
+ <_>
+ 12 2 8 8 2.
+ <_>
+
+ <_>
+ 10 12 2 2 -1.
+ <_>
+ 10 12 1 1 2.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 10 7 2 2 -1.
+ <_>
+ 11 7 1 2 2.
+ <_>
+
+ <_>
+ 13 13 1 3 -1.
+ <_>
+ 13 14 1 1 3.
+ <_>
+
+ <_>
+ 13 13 2 3 -1.
+ <_>
+ 13 14 2 1 3.
+ <_>
+
+ <_>
+ 1 13 6 4 -1.
+ <_>
+ 4 13 3 4 2.
+ <_>
+
+ <_>
+ 10 13 2 1 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+
+ <_>
+ 10 6 2 10 -1.
+ <_>
+ 10 6 1 5 2.
+ <_>
+ 11 11 1 5 2.
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 16 12 3 1 -1.
+ <_>
+ 17 12 1 1 3.
+ <_>
+
+ <_>
+ 9 5 7 12 -1.
+ <_>
+ 9 9 7 4 3.
+ <_>
+
+ <_>
+ 4 1 10 18 -1.
+ <_>
+ 4 1 5 9 2.
+ <_>
+ 9 10 5 9 2.
+ <_>
+
+ <_>
+ 17 12 2 2 -1.
+ <_>
+ 17 12 1 1 2.
+ <_>
+ 18 13 1 1 2.
+ <_>
+
+ <_>
+ 12 5 6 2 -1.
+ <_>
+ 12 6 6 1 2.
+ <_>
+
+ <_>
+ 4 7 5 2 -1.
+ <_>
+ 4 8 5 1 2.
+ <_>
+
+ <_>
+ 7 3 1 2 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 6 0 7 6 -1.
+ <_>
+ 6 3 7 3 2.
+ <_>
+
+ <_>
+ 13 11 2 8 -1.
+ <_>
+ 13 11 1 4 2.
+ <_>
+ 14 15 1 4 2.
+ <_>
+
+ <_>
+ 8 7 4 2 -1.
+ <_>
+ 10 7 2 2 2.
+ <_>
+
+ <_>
+ 4 1 2 4 -1.
+ <_>
+ 4 1 1 2 2.
+ <_>
+ 5 3 1 2 2.
+ <_>
+
+ <_>
+ 4 0 2 8 -1.
+ <_>
+ 4 0 1 4 2.
+ <_>
+ 5 4 1 4 2.
+ <_>
+
+ <_>
+ 6 3 2 1 -1.
+ <_>
+ 7 3 1 1 2.
+ <_>
+
+ <_>
+ 14 12 1 3 -1.
+ <_>
+ 14 13 1 1 3.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 11 2 2 -1.
+ <_>
+ 5 12 2 1 2.
+ <_>
+
+ <_>
+ 5 1 4 15 -1.
+ <_>
+ 5 6 4 5 3.
+ <_>
+
+ <_>
+ 11 5 4 14 -1.
+ <_>
+ 11 5 2 7 2.
+ <_>
+ 13 12 2 7 2.
+ <_>
+
+ <_>
+ 9 18 3 1 -1.
+ <_>
+ 10 18 1 1 3.
+ <_>
+
+ <_>
+ 4 10 5 6 -1.
+ <_>
+ 4 12 5 2 3.
+ <_>
+
+ <_>
+ 5 13 3 3 -1.
+ <_>
+ 5 14 3 1 3.
+ <_>
+
+ <_>
+ 8 1 3 5 -1.
+ <_>
+ 9 1 1 5 3.
+ <_>
+
+ <_>
+ 4 7 3 2 -1.
+ <_>
+ 5 7 1 2 3.
+ <_>
+
+ <_>
+ 6 14 3 3 -1.
+ <_>
+ 7 14 1 3 3.
+ <_>
+
+ <_>
+ 7 13 2 3 -1.
+ <_>
+ 7 14 2 1 3.
+ <_>
+
+ <_>
+ 4 3 2 9 -1.
+ <_>
+ 4 6 2 3 3.
+ <_>
+
+ <_>
+ 4 8 3 2 -1.
+ <_>
+ 4 9 3 1 2.
+ <_>
+
+ <_>
+ 10 10 2 2 -1.
+ <_>
+ 10 11 2 1 2.
+ <_>
+
+ <_>
+ 7 8 12 6 -1.
+ <_>
+ 7 8 6 3 2.
+ <_>
+ 13 11 6 3 2.
+ <_>
+
+ <_>
+ 14 10 3 2 -1.
+ <_>
+ 14 11 3 1 2.
+ <_>
+
+ <_>
+ 5 16 6 2 -1.
+ <_>
+ 5 17 6 1 2.
+ <_>
+
+ <_>
+ 8 15 4 3 -1.
+ <_>
+ 8 16 4 1 3.
+ <_>
+
+ <_>
+ 14 9 2 2 -1.
+ <_>
+ 14 10 2 1 2.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 8 5 3 3 -1.
+ <_>
+ 8 6 3 1 3.
+ <_>
+
+ <_>
+ 1 7 17 9 -1.
+ <_>
+ 1 10 17 3 3.
+ <_>
+
+ <_>
+ 5 10 6 8 -1.
+ <_>
+ 5 14 6 4 2.
+ <_>
+
+ <_>
+ 18 1 2 2 -1.
+ <_>
+ 18 1 1 1 2.
+ <_>
+ 19 2 1 1 2.
+ <_>
+
+ <_>
+ 0 0 11 6 -1.
+ <_>
+ 0 3 11 3 2.
+ <_>
+
+ <_>
+ 3 0 16 3 -1.
+ <_>
+ 3 1 16 1 3.
+ <_>
+
+ <_>
+ 10 10 10 3 -1.
+ <_>
+ 10 11 10 1 3.
+ <_>
+
+ <_>
+ 0 0 15 18 -1.
+ <_>
+ 0 9 15 9 2.
+ <_>
+
+ <_>
+ 15 11 2 2 -1.
+ <_>
+ 15 11 1 1 2.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 14 12 6 3 -1.
+ <_>
+ 17 12 3 3 2.
+ <_>
+
+ <_>
+ 8 4 3 4 -1.
+ <_>
+ 9 4 1 4 3.
+ <_>
+
+ <_>
+ 8 6 12 4 -1.
+ <_>
+ 12 6 4 4 3.
+ <_>
+
+ <_>
+ 9 12 2 2 -1.
+ <_>
+ 9 13 2 1 2.
+ <_>
+
+ <_>
+ 6 3 1 2 -1.
+ <_>
+ 6 4 1 1 2.
+ <_>
+
+ <_>
+ 4 7 2 8 -1.
+ <_>
+ 4 7 1 4 2.
+ <_>
+ 5 11 1 4 2.
+ <_>
+
+ <_>
+ 9 17 3 2 -1.
+ <_>
+ 10 17 1 2 3.
+ <_>
+
+ <_>
+ 9 6 1 3 -1.
+ <_>
+ 9 7 1 1 3.
+ <_>
+
+ <_>
+ 6 4 1 6 -1.
+ <_>
+ 6 7 1 3 2.
+ <_>
+
+ <_>
+ 5 6 13 6 -1.
+ <_>
+ 5 8 13 2 3.
+ <_>
+
+ <_>
+ 6 7 4 12 -1.
+ <_>
+ 8 7 2 12 2.
+ <_>
+
+ <_>
+ 6 12 2 4 -1.
+ <_>
+ 7 12 1 4 2.
+ <_>
+
+ <_>
+ 5 14 4 3 -1.
+ <_>
+ 5 15 4 1 3.
+ <_>
+
+ <_>
+ 10 5 3 1 -1.
+ <_>
+ 11 5 1 1 3.
+ <_>
+
+ <_>
+ 4 15 4 3 -1.
+ <_>
+ 4 16 4 1 3.
+ <_>
+
+ <_>
+ 11 12 3 2 -1.
+ <_>
+ 12 12 1 2 3.
+ <_>
+
+ <_>
+ 11 10 8 2 -1.
+ <_>
+ 15 10 4 2 2.
+ <_>
+
+ <_>
+ 14 18 6 2 -1.
+ <_>
+ 17 18 3 2 2.
+ <_>
+
+ <_>
+ 7 5 3 2 -1.
+ <_>
+ 8 5 1 2 3.
+ <_>
+
+ <_>
+ 11 8 2 1 -1.
+ <_>
+ 12 8 1 1 2.
+ <_>
+
+ <_>
+ 12 6 3 6 -1.
+ <_>
+ 12 8 3 2 3.
+ <_>
+
+ <_>
+ 11 9 1 2 -1.
+ <_>
+ 11 10 1 1 2.
+ <_>
+
+ <_>
+ 12 9 3 9 -1.
+ <_>
+ 13 9 1 9 3.
+ <_>
+
+ <_>
+ 0 8 1 3 -1.
+ <_>
+ 0 9 1 1 3.
+ <_>
+
+ <_>
+ 0 8 1 3 -1.
+ <_>
+ 0 9 1 1 3.
+ <_>
+
+ <_>
+ 3 8 2 2 -1.
+ <_>
+ 3 8 1 1 2.
+ <_>
+ 4 9 1 1 2.
+ <_>
+
+ <_>
+ 4 6 2 6 -1.
+ <_>
+ 4 9 2 3 2.
+ <_>
+
+ <_>
+ 4 9 2 9 -1.
+ <_>
+ 4 12 2 3 3.
+ <_>
+
+ <_>
+ 7 13 2 2 -1.
+ <_>
+ 7 13 1 1 2.
+ <_>
+ 8 14 1 1 2.
+ <_>
+
+ <_>
+ 3 6 10 6 -1.
+ <_>
+ 3 6 5 3 2.
+ <_>
+ 8 9 5 3 2.
+ <_>
+
+ <_>
+ 9 9 4 6 -1.
+ <_>
+ 11 9 2 6 2.
+ <_>
+
+ <_>
+ 2 12 14 3 -1.
+ <_>
+ 9 12 7 3 2.
+ <_>
+
+ <_>
+ 0 0 11 18 -1.
+ <_>
+ 0 9 11 9 2.
+ <_>
+
+ <_>
+ 4 18 4 2 -1.
+ <_>
+ 4 18 2 1 2.
+ <_>
+ 6 19 2 1 2.
+ <_>
+
+ <_>
+ 7 13 4 6 -1.
+ <_>
+ 7 13 2 3 2.
+ <_>
+ 9 16 2 3 2.
+ <_>
+
+ <_>
+ 8 17 3 1 -1.
+ <_>
+ 9 17 1 1 3.
+ <_>
+
+ <_>
+ 5 14 8 6 -1.
+ <_>
+ 5 14 4 3 2.
+ <_>
+ 9 17 4 3 2.
+ <_>
+
+ <_>
+ 7 12 2 3 -1.
+ <_>
+ 7 13 2 1 3.
+ <_>
+
+ <_>
+ 14 4 4 2 -1.
+ <_>
+ 14 4 2 1 2.
+ <_>
+ 16 5 2 1 2.
+ <_>
+
+ <_>
+ 7 13 2 3 -1.
+ <_>
+ 7 14 2 1 3.
+ <_>
+
+ <_>
+ 7 14 4 2 -1.
+ <_>
+ 7 14 2 1 2.
+ <_>
+ 9 15 2 1 2.
+ <_>
+
+ <_>
+ 10 14 2 6 -1.
+ <_>
+ 10 16 2 2 3.
+ <_>
+
+ <_>
+ 9 6 9 1 -1.
+ <_>
+ 12 6 3 1 3.
+ <_>
+
+ <_>
+ 2 5 18 7 -1.
+ <_>
+ 11 5 9 7 2.
+ <_>
+
+ <_>
+ 18 6 1 2 -1.
+ <_>
+ 18 7 1 1 2.
+ <_>
+
+ <_>
+ 4 14 14 6 -1.
+ <_>
+ 4 17 14 3 2.
+ <_>
+
+ <_>
+ 8 0 6 20 -1.
+ <_>
+ 10 0 2 20 3.
+ <_>
+
+ <_>
+ 12 0 8 18 -1.
+ <_>
+ 12 9 8 9 2.
+ <_>
+
+ <_>
+ 12 5 2 1 -1.
+ <_>
+ 13 5 1 1 2.
+ <_>
+
+ <_>
+ 0 6 6 13 -1.
+ <_>
+ 3 6 3 13 2.
+ <_>
+
+ <_>
+ 3 15 3 4 -1.
+ <_>
+ 4 15 1 4 3.
+ <_>
+
+ <_>
+ 3 13 3 6 -1.
+ <_>
+ 4 13 1 6 3.
+ <_>
+
+ <_>
+ 3 11 9 2 -1.
+ <_>
+ 6 11 3 2 3.
+ <_>
+
+ <_>
+ 0 11 6 8 -1.
+ <_>
+ 3 11 3 8 2.
+ <_>
+
+ <_>
+ 16 0 3 7 -1.
+ <_>
+ 17 0 1 7 3.
+ <_>
+
+ <_>
+ 16 1 2 6 -1.
+ <_>
+ 16 1 1 3 2.
+ <_>
+ 17 4 1 3 2.
+ <_>
+
+ <_>
+ 3 7 6 10 -1.
+ <_>
+ 3 7 3 5 2.
+ <_>
+ 6 12 3 5 2.
+ <_>
+
+ <_>
+ 2 0 6 7 -1.
+ <_>
+ 5 0 3 7 2.
+ <_>
+
+ <_>
+ 1 2 12 2 -1.
+ <_>
+ 5 2 4 2 3.
+ <_>
+
+ <_>
+ 6 4 1 2 -1.
+ <_>
+ 6 5 1 1 2.
+ <_>
+
+ <_>
+ 0 14 8 6 -1.
+ <_>
+ 4 14 4 6 2.
+ <_>
+
+ <_>
+ 3 11 9 3 -1.
+ <_>
+ 6 11 3 3 3.
+ <_>
+
+ <_>
+ 4 14 2 2 -1.
+ <_>
+ 4 14 1 1 2.
+ <_>
+ 5 15 1 1 2.
+ <_>
+
+ <_>
+ 11 2 3 2 -1.
+ <_>
+ 12 2 1 2 3.
+ <_>
+
+ <_>
+ 18 5 2 6 -1.
+ <_>
+ 18 5 1 3 2.
+ <_>
+ 19 8 1 3 2.
+ <_>
+
+ <_>
+ 0 5 1 2 -1.
+ <_>
+ 0 6 1 1 2.
+ <_>
+
+ <_>
+ 8 4 6 1 -1.
+ <_>
+ 11 4 3 1 2.
+ <_>
+
+ <_>
+ 4 5 2 3 -1.
+ <_>
+ 5 5 1 3 2.
+ <_>
+
+ <_>
+ 1 3 6 4 -1.
+ <_>
+ 3 3 2 4 3.
+ <_>
+
+ <_>
+ 12 5 6 1 -1.
+ <_>
+ 14 5 2 1 3.
+ <_>
+
+ <_>
+ 6 9 3 3 -1.
+ <_>
+ 6 10 3 1 3.
+ <_>
+
+ <_>
+ 4 3 2 2 -1.
+ <_>
+ 4 4 2 1 2.
+ <_>
+
+ <_>
+ 8 7 3 3 -1.
+ <_>
+ 8 8 3 1 3.
+ <_>
+
+ <_>
+ 5 5 10 14 -1.
+ <_>
+ 5 5 5 7 2.
+ <_>
+ 10 12 5 7 2.
+ <_>
+
+ <_>
+ 16 5 2 6 -1.
+ <_>
+ 16 7 2 2 3.
+ <_>
+
+ <_>
+ 19 5 1 3 -1.
+ <_>
+ 19 6 1 1 3.
+ <_>
+
+ <_>
+ 3 6 2 2 -1.
+ <_>
+ 3 6 1 1 2.
+ <_>
+ 4 7 1 1 2.
+ <_>
+
+ <_>
+ 0 1 10 10 -1.
+ <_>
+ 5 1 5 10 2.
+ <_>
+
+ <_>
+ 3 0 8 1 -1.
+ <_>
+ 7 0 4 1 2.
+ <_>
+
+ <_>
+ 14 5 6 1 -1.
+ <_>
+ 16 5 2 1 3.
+ <_>
+
+ <_>
+ 6 16 1 3 -1.
+ <_>
+ 6 17 1 1 3.
+ <_>
+
+ <_>
+ 6 14 2 4 -1.
+ <_>
+ 6 14 1 2 2.
+ <_>
+ 7 16 1 2 2.
+ <_>
+
+ <_>
+ 0 7 2 5 -1.
+ <_>
+ 1 7 1 5 2.
+ <_>
+
+ <_>
+ 18 0 2 8 -1.
+ <_>
+ 18 0 1 4 2.
+ <_>
+ 19 4 1 4 2.
+ <_>
+
+ <_>
+ 5 8 6 2 -1.
+ <_>
+ 8 8 3 2 2.
+ <_>
+
+ <_>
+ 4 8 8 3 -1.
+ <_>
+ 8 8 4 3 2.
+ <_>
+
+ <_>
+ 8 0 2 2 -1.
+ <_>
+ 8 1 2 1 2.
+ <_>
+
+ <_>
+ 13 8 6 11 -1.
+ <_>
+ 15 8 2 11 3.
+ <_>
+
+ <_>
+ 11 15 9 5 -1.
+ <_>
+ 14 15 3 5 3.
+ <_>
+
+ <_>
+ 5 4 12 15 -1.
+ <_>
+ 9 4 4 15 3.
+ <_>
+
+ <_>
+ 16 12 2 8 -1.
+ <_>
+ 16 12 1 4 2.
+ <_>
+ 17 16 1 4 2.
+ <_>
+
+ <_>
+ 7 13 10 6 -1.
+ <_>
+ 7 16 10 3 2.
+ <_>
+
+ <_>
+ 6 15 3 4 -1.
+ <_>
+ 6 17 3 2 2.
+ <_>
+
+ <_>
+ 9 5 8 2 -1.
+ <_>
+ 13 5 4 2 2.
+ <_>
+
+ <_>
+ 5 6 3 4 -1.
+ <_>
+ 6 6 1 4 3.
+ <_>
+
+ <_>
+ 10 8 7 6 -1.
+ <_>
+ 10 10 7 2 3.
+ <_>
+
+ <_>
+ 12 13 1 4 -1.
+ <_>
+ 12 15 1 2 2.
+ <_>
+
+ <_>
+ 2 10 3 4 -1.
+ <_>
+ 3 10 1 4 3.
+ <_>
+
+ <_>
+ 8 7 6 6 -1.
+ <_>
+ 8 7 3 3 2.
+ <_>
+ 11 10 3 3 2.
+ <_>
+
+ <_>
+ 2 0 15 2 -1.
+ <_>
+ 7 0 5 2 3.
+ <_>
+
+ <_>
+ 13 10 1 3 -1.
+ <_>
+ 13 11 1 1 3.
+ <_>
+
+ <_>
+ 2 9 3 4 -1.
+ <_>
+ 3 9 1 4 3.
+ <_>
+
+ <_>
+ 6 4 3 2 -1.
+ <_>
+ 6 5 3 1 2.
+ <_>
+
+ <_>
+ 10 16 2 3 -1.
+ <_>
+ 11 16 1 3 2.
+ <_>
+
+ <_>
+ 7 13 2 3 -1.
+ <_>
+ 7 14 2 1 3.
+ <_>
+
+ <_>
+ 6 12 2 4 -1.
+ <_>
+ 6 12 1 2 2.
+ <_>
+ 7 14 1 2 2.
+ <_>
+
+ <_>
+ 9 1 6 1 -1.
+ <_>
+ 12 1 3 1 2.
+ <_>
+
+ <_>
+ 6 6 3 4 -1.
+ <_>
+ 7 6 1 4 3.
+ <_>
+
+ <_>
+ 9 8 3 3 -1.
+ <_>
+ 9 9 3 1 3.
+ <_>
+
+ <_>
+ 8 7 12 3 -1.
+ <_>
+ 14 7 6 3 2.
+ <_>
+
+ <_>
+ 12 10 4 2 -1.
+ <_>
+ 12 10 2 1 2.
+ <_>
+ 14 11 2 1 2.
+ <_>
+
+ <_>
+ 16 11 1 2 -1.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 6 2 1 2 -1.
+ <_>
+ 6 3 1 1 2.
+ <_>
+
+ <_>
+ 5 10 2 3 -1.
+ <_>
+ 5 11 2 1 3.
+ <_>
+
+ <_>
+ 5 9 2 3 -1.
+ <_>
+ 5 10 2 1 3.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+ 16 1 4 1 2.
+ <_>
+
+ <_>
+ 10 11 3 8 -1.
+ <_>
+ 11 11 1 8 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 5 10 1 6 -1.
+ <_>
+ 5 13 1 3 2.
+ <_>
+
+ <_>
+ 6 2 6 6 -1.
+ <_>
+ 6 2 3 3 2.
+ <_>
+ 9 5 3 3 2.
+ <_>
+
+ <_>
+ 11 4 1 6 -1.
+ <_>
+ 11 6 1 2 3.
+ <_>
+
+ <_>
+ 18 3 2 16 -1.
+ <_>
+ 18 3 1 8 2.
+ <_>
+ 19 11 1 8 2.
+ <_>
+
+ <_>
+ 10 12 3 2 -1.
+ <_>
+ 11 12 1 2 3.
+ <_>
+
+ <_>
+ 7 14 2 3 -1.
+ <_>
+ 7 15 2 1 3.
+ <_>
+
+ <_>
+ 16 12 2 1 -1.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 15 6 4 2 -1.
+ <_>
+ 15 7 4 1 2.
+ <_>
+
+ <_>
+ 4 6 2 3 -1.
+ <_>
+ 4 7 2 1 3.
+ <_>
+
+ <_>
+ 8 19 6 1 -1.
+ <_>
+ 11 19 3 1 2.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 10 12 1 3 -1.
+ <_>
+ 10 13 1 1 3.
+ <_>
+
+ <_>
+ 8 6 2 3 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 5 7 6 5 -1.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 14 10 1 2 -1.
+ <_>
+ 14 11 1 1 2.
+ <_>
+
+ <_>
+ 11 7 6 3 -1.
+ <_>
+ 13 7 2 3 3.
+ <_>
+
+ <_>
+ 14 6 6 1 -1.
+ <_>
+ 16 6 2 1 3.
+ <_>
+
+ <_>
+ 9 7 1 3 -1.
+ <_>
+ 9 8 1 1 3.
+ <_>
+
+ <_>
+ 9 5 2 8 -1.
+ <_>
+ 9 5 1 4 2.
+ <_>
+ 10 9 1 4 2.
+ <_>
+
+ <_>
+ 6 12 1 4 -1.
+ <_>
+ 6 14 1 2 2.
+ <_>
+
+ <_>
+ 5 13 4 2 -1.
+ <_>
+ 5 14 4 1 2.
+ <_>
+
+ <_>
+ 12 9 2 4 -1.
+ <_>
+ 12 11 2 2 2.
+ <_>
+
+ <_>
+ 12 7 3 6 -1.
+ <_>
+ 13 7 1 6 3.
+ <_>
+
+ <_>
+ 5 0 2 14 -1.
+ <_>
+ 5 7 2 7 2.
+ <_>
+
+ <_>
+ 9 3 1 2 -1.
+ <_>
+ 9 4 1 1 2.
+ <_>
+
+ <_>
+ 6 1 14 12 -1.
+ <_>
+ 6 5 14 4 3.
+ <_>
+
+ <_>
+ 13 6 7 6 -1.
+ <_>
+ 13 9 7 3 2.
+ <_>
+
+ <_>
+ 14 9 3 3 -1.
+ <_>
+ 14 10 3 1 3.
+ <_>
+
+ <_>
+ 17 12 3 1 -1.
+ <_>
+ 18 12 1 1 3.
+ <_>
+
+ <_>
+ 8 2 3 2 -1.
+ <_>
+ 9 2 1 2 3.
+ <_>
+
+ <_>
+ 7 11 2 1 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 5 7 3 2 -1.
+ <_>
+ 5 8 3 1 2.
+ <_>
+
+ <_>
+ 11 11 2 1 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+
+ <_>
+ 11 11 3 1 -1.
+ <_>
+ 12 11 1 1 3.
+ <_>
+
+ <_>
+ 9 5 1 3 -1.
+ <_>
+ 9 6 1 1 3.
+ <_>
+
+ <_>
+ 12 9 1 2 -1.
+ <_>
+ 12 10 1 1 2.
+ <_>
+
+ <_>
+ 12 7 2 3 -1.
+ <_>
+ 13 7 1 3 2.
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 6 10 2 2 -1.
+ <_>
+ 6 10 1 1 2.
+ <_>
+ 7 11 1 1 2.
+ <_>
+
+ <_>
+ 17 2 1 9 -1.
+ <_>
+ 17 5 1 3 3.
+ <_>
+
+ <_>
+ 4 7 2 6 -1.
+ <_>
+ 4 7 1 3 2.
+ <_>
+ 5 10 1 3 2.
+ <_>
+
+ <_>
+ 0 1 11 18 -1.
+ <_>
+ 0 10 11 9 2.
+ <_>
+
+ <_>
+ 7 6 2 8 -1.
+ <_>
+ 7 10 2 4 2.
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 5 4 3 2.
+ <_>
+
+ <_>
+ 2 12 12 4 -1.
+ <_>
+ 2 14 12 2 2.
+ <_>
+
+ <_>
+ 9 0 6 1 -1.
+ <_>
+ 12 0 3 1 2.
+ <_>
+
+ <_>
+ 5 0 12 2 -1.
+ <_>
+ 5 1 12 1 2.
+ <_>
+
+ <_>
+ 10 0 2 1 -1.
+ <_>
+ 11 0 1 1 2.
+ <_>
+
+ <_>
+ 7 14 3 3 -1.
+ <_>
+ 7 15 3 1 3.
+ <_>
+
+ <_>
+ 4 13 5 3 -1.
+ <_>
+ 4 14 5 1 3.
+ <_>
+
+ <_>
+ 9 16 6 2 -1.
+ <_>
+ 9 17 6 1 2.
+ <_>
+
+ <_>
+ 11 16 5 3 -1.
+ <_>
+ 11 17 5 1 3.
+ <_>
+
+ <_>
+ 5 0 3 15 -1.
+ <_>
+ 6 0 1 15 3.
+ <_>
+
+ <_>
+ 9 16 8 4 -1.
+ <_>
+ 9 18 8 2 2.
+ <_>
+
+ <_>
+ 0 6 3 2 -1.
+ <_>
+ 0 7 3 1 2.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 9 11 4 2 -1.
+ <_>
+ 9 11 2 1 2.
+ <_>
+ 11 12 2 1 2.
+ <_>
+
+ <_>
+ 4 13 2 2 -1.
+ <_>
+ 4 13 1 1 2.
+ <_>
+ 5 14 1 1 2.
+ <_>
+
+ <_>
+ 6 4 1 2 -1.
+ <_>
+ 6 5 1 1 2.
+ <_>
+
+ <_>
+ 14 18 2 2 -1.
+ <_>
+ 14 18 1 1 2.
+ <_>
+ 15 19 1 1 2.
+ <_>
+
+ <_>
+ 7 10 5 6 -1.
+ <_>
+ 7 12 5 2 3.
+ <_>
+
+ <_>
+ 8 7 4 6 -1.
+ <_>
+ 8 9 4 2 3.
+ <_>
+
+ <_>
+ 7 9 6 2 -1.
+ <_>
+ 9 9 2 2 3.
+ <_>
+
+ <_>
+ 6 6 6 4 -1.
+ <_>
+ 6 6 3 2 2.
+ <_>
+ 9 8 3 2 2.
+ <_>
+
+ <_>
+ 10 3 1 6 -1.
+ <_>
+ 10 5 1 2 3.
+ <_>
+
+ <_>
+ 5 2 12 14 -1.
+ <_>
+ 5 2 6 7 2.
+ <_>
+ 11 9 6 7 2.
+ <_>
+
+ <_>
+ 13 5 6 2 -1.
+ <_>
+ 13 6 6 1 2.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 16 0 2 4 2.
+ <_>
+ 18 4 2 4 2.
+ <_>
+
+ <_>
+ 3 12 3 1 -1.
+ <_>
+ 4 12 1 1 3.
+ <_>
+
+ <_>
+ 3 10 3 4 -1.
+ <_>
+ 4 10 1 4 3.
+ <_>
+
+ <_>
+ 4 6 1 6 -1.
+ <_>
+ 4 9 1 3 2.
+ <_>
+
+ <_>
+ 3 7 15 1 -1.
+ <_>
+ 8 7 5 1 3.
+ <_>
+
+ <_>
+ 1 15 6 5 -1.
+ <_>
+ 4 15 3 5 2.
+ <_>
+
+ <_>
+ 11 9 8 4 -1.
+ <_>
+ 15 9 4 4 2.
+ <_>
+
+ <_>
+ 15 7 2 4 -1.
+ <_>
+ 16 7 1 4 2.
+ <_>
+
+ <_>
+ 19 1 1 2 -1.
+ <_>
+ 19 2 1 1 2.
+ <_>
+
+ <_>
+ 6 15 3 3 -1.
+ <_>
+ 7 15 1 3 3.
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 16 1 1 3.
+ <_>
+
+ <_>
+ 3 10 3 10 -1.
+ <_>
+ 4 10 1 10 3.
+ <_>
+
+ <_>
+ 18 17 2 2 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+ 19 18 1 1 2.
+ <_>
+
+ <_>
+ 3 12 6 4 -1.
+ <_>
+ 3 12 3 2 2.
+ <_>
+ 6 14 3 2 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 5 17 1 1 2.
+ <_>
+ 6 18 1 1 2.
+ <_>
+
+ <_>
+ 7 16 2 3 -1.
+ <_>
+ 7 17 2 1 3.
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 7 16 1 3 -1.
+ <_>
+ 7 17 1 1 3.
+ <_>
+
+ <_>
+ 0 16 2 1 -1.
+ <_>
+ 1 16 1 1 2.
+ <_>
+
+ <_>
+ 11 7 9 6 -1.
+ <_>
+ 11 10 9 3 2.
+ <_>
+
+ <_>
+ 9 4 9 16 -1.
+ <_>
+ 12 4 3 16 3.
+ <_>
+
+ <_>
+ 14 12 5 3 -1.
+ <_>
+ 14 13 5 1 3.
+ <_>
+
+ <_>
+ 8 18 3 2 -1.
+ <_>
+ 9 18 1 2 3.
+ <_>
+
+ <_>
+ 4 0 11 16 -1.
+ <_>
+ 4 8 11 8 2.
+ <_>
+
+ <_>
+ 2 4 12 15 -1.
+ <_>
+ 2 9 12 5 3.
+ <_>
+
+ <_>
+ 3 13 11 4 -1.
+ <_>
+ 3 15 11 2 2.
+ <_>
+
+ <_>
+ 7 5 4 3 -1.
+ <_>
+ 7 6 4 1 3.
+ <_>
+
+ <_>
+ 6 5 4 3 -1.
+ <_>
+ 6 6 4 1 3.
+ <_>
+
+ <_>
+ 5 0 2 9 -1.
+ <_>
+ 5 3 2 3 3.
+ <_>
+
+ <_>
+ 16 8 2 2 -1.
+ <_>
+ 16 8 1 1 2.
+ <_>
+ 17 9 1 1 2.
+ <_>
+
+ <_>
+ 12 10 8 2 -1.
+ <_>
+ 12 10 4 1 2.
+ <_>
+ 16 11 4 1 2.
+ <_>
+
+ <_>
+ 6 2 2 8 -1.
+ <_>
+ 7 2 1 8 2.
+ <_>
+
+ <_>
+ 6 6 2 3 -1.
+ <_>
+ 7 6 1 3 2.
+ <_>
+
+ <_>
+ 17 4 1 3 -1.
+ <_>
+ 17 5 1 1 3.
+ <_>
+
+ <_>
+ 15 13 3 2 -1.
+ <_>
+ 16 13 1 2 3.
+ <_>
+
+ <_>
+ 11 13 2 3 -1.
+ <_>
+ 11 14 2 1 3.
+ <_>
+
+ <_>
+ 14 5 6 11 -1.
+ <_>
+ 16 5 2 11 3.
+ <_>
+
+ <_>
+ 6 0 12 8 -1.
+ <_>
+ 12 0 6 8 2.
+ <_>
+
+ <_>
+ 7 15 8 4 -1.
+ <_>
+ 7 15 4 2 2.
+ <_>
+ 11 17 4 2 2.
+ <_>
+
+ <_>
+ 4 14 16 6 -1.
+ <_>
+ 4 16 16 2 3.
+ <_>
+
+ <_>
+ 6 12 2 6 -1.
+ <_>
+ 6 12 1 3 2.
+ <_>
+ 7 15 1 3 2.
+ <_>
+
+ <_>
+ 7 14 6 4 -1.
+ <_>
+ 7 14 3 2 2.
+ <_>
+ 10 16 3 2 2.
+ <_>
+
+ <_>
+ 0 0 2 4 -1.
+ <_>
+ 0 0 1 2 2.
+ <_>
+ 1 2 1 2 2.
+ <_>
+
+ <_>
+ 15 12 1 3 -1.
+ <_>
+ 15 13 1 1 3.
+ <_>
+
+ <_>
+ 7 16 3 1 -1.
+ <_>
+ 8 16 1 1 3.
+ <_>
+
+ <_>
+ 1 8 1 2 -1.
+ <_>
+ 1 9 1 1 2.
+ <_>
+
+ <_>
+ 3 14 3 2 -1.
+ <_>
+ 4 14 1 2 3.
+ <_>
+
+ <_>
+ 3 13 3 5 -1.
+ <_>
+ 4 13 1 5 3.
+ <_>
+
+ <_>
+ 7 2 3 4 -1.
+ <_>
+ 8 2 1 4 3.
+ <_>
+
+ <_>
+ 10 1 4 4 -1.
+ <_>
+ 10 3 4 2 2.
+ <_>
+
+ <_>
+ 9 2 1 2 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+
+ <_>
+ 7 12 2 2 -1.
+ <_>
+ 7 12 1 1 2.
+ <_>
+ 8 13 1 1 2.
+ <_>
+
+ <_>
+ 4 11 4 4 -1.
+ <_>
+ 4 11 2 2 2.
+ <_>
+ 6 13 2 2 2.
+ <_>
+
+ <_>
+ 9 10 6 4 -1.
+ <_>
+ 12 10 3 4 2.
+ <_>
+
+ <_>
+ 8 12 3 2 -1.
+ <_>
+ 9 12 1 2 3.
+ <_>
+
+ <_>
+ 13 9 6 6 -1.
+ <_>
+ 13 9 3 3 2.
+ <_>
+ 16 12 3 3 2.
+ <_>
+
+ <_>
+ 14 0 3 5 -1.
+ <_>
+ 15 0 1 5 3.
+ <_>
+
+ <_>
+ 9 8 6 4 -1.
+ <_>
+ 9 8 3 2 2.
+ <_>
+ 12 10 3 2 2.
+ <_>
+
+ <_>
+ 10 6 3 3 -1.
+ <_>
+ 11 6 1 3 3.
+ <_>
+
+ <_>
+ 13 3 2 1 -1.
+ <_>
+ 14 3 1 1 2.
+ <_>
+
+ <_>
+ 4 5 2 2 -1.
+ <_>
+ 4 5 1 1 2.
+ <_>
+ 5 6 1 1 2.
+ <_>
+
+ <_>
+ 4 5 2 2 -1.
+ <_>
+ 4 5 1 1 2.
+ <_>
+ 5 6 1 1 2.
+ <_>
+
+ <_>
+ 7 9 2 6 -1.
+ <_>
+ 7 11 2 2 3.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 6 13 2 3 -1.
+ <_>
+ 6 14 2 1 3.
+ <_>
+
+ <_>
+ 7 4 3 2 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 13 1 3 4 -1.
+ <_>
+ 14 1 1 4 3.
+ <_>
+
+ <_>
+ 6 8 11 3 -1.
+ <_>
+ 6 9 11 1 3.
+ <_>
+
+ <_>
+ 13 10 5 2 -1.
+ <_>
+ 13 11 5 1 2.
+ <_>
+
+ <_>
+ 13 9 3 6 -1.
+ <_>
+ 13 12 3 3 2.
+ <_>
+
+ <_>
+ 3 14 5 2 -1.
+ <_>
+ 3 15 5 1 2.
+ <_>
+
+ <_>
+ 11 0 8 2 -1.
+ <_>
+ 11 0 4 1 2.
+ <_>
+ 15 1 4 1 2.
+ <_>
+
+ <_>
+ 13 1 7 6 -1.
+ <_>
+ 13 3 7 2 3.
+ <_>
+
+ <_>
+ 11 0 6 1 -1.
+ <_>
+ 13 0 2 1 3.
+ <_>
+
+ <_>
+ 8 1 5 3 -1.
+ <_>
+ 8 2 5 1 3.
+ <_>
+
+ <_>
+ 12 11 1 3 -1.
+ <_>
+ 12 12 1 1 3.
+ <_>
+
+ <_>
+ 17 13 3 6 -1.
+ <_>
+ 17 15 3 2 3.
+ <_>
+
+ <_>
+ 12 11 1 3 -1.
+ <_>
+ 12 12 1 1 3.
+ <_>
+
+ <_>
+ 15 9 3 1 -1.
+ <_>
+ 16 9 1 1 3.
+ <_>
+
+ <_>
+ 10 4 6 11 -1.
+ <_>
+ 13 4 3 11 2.
+ <_>
+
+ <_>
+ 13 9 4 4 -1.
+ <_>
+ 13 9 2 2 2.
+ <_>
+ 15 11 2 2 2.
+ <_>
+
+ <_>
+ 8 2 1 6 -1.
+ <_>
+ 8 4 1 2 3.
+ <_>
+
+ <_>
+ 5 6 4 6 -1.
+ <_>
+ 5 9 4 3 2.
+ <_>
+
+ <_>
+ 2 6 4 8 -1.
+ <_>
+ 4 6 2 8 2.
+ <_>
+
+ <_>
+ 11 15 1 2 -1.
+ <_>
+ 11 16 1 1 2.
+ <_>
+
+ <_>
+ 11 1 7 10 -1.
+ <_>
+ 11 6 7 5 2.
+ <_>
+
+ <_>
+ 7 11 9 6 -1.
+ <_>
+ 7 13 9 2 3.
+ <_>
+
+ <_>
+ 4 9 8 1 -1.
+ <_>
+ 8 9 4 1 2.
+ <_>
+
+ <_>
+ 10 10 3 3 -1.
+ <_>
+ 11 10 1 3 3.
+ <_>
+
+ <_>
+ 8 0 7 6 -1.
+ <_>
+ 8 2 7 2 3.
+ <_>
+
+ <_>
+ 11 13 2 2 -1.
+ <_>
+ 11 13 1 1 2.
+ <_>
+ 12 14 1 1 2.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 7 10 3 9 -1.
+ <_>
+ 7 13 3 3 3.
+ <_>
+
+ <_>
+ 5 9 1 3 -1.
+ <_>
+ 5 10 1 1 3.
+ <_>
+
+ <_>
+ 2 8 18 6 -1.
+ <_>
+ 11 8 9 6 2.
+ <_>
+
+ <_>
+ 11 7 6 4 -1.
+ <_>
+ 13 7 2 4 3.
+ <_>
+
+ <_>
+ 7 8 4 6 -1.
+ <_>
+ 7 10 4 2 3.
+ <_>
+
+ <_>
+ 10 4 4 6 -1.
+ <_>
+ 10 6 4 2 3.
+ <_>
+
+ <_>
+ 11 12 6 1 -1.
+ <_>
+ 13 12 2 1 3.
+ <_>
+
+ <_>
+ 5 7 2 1 -1.
+ <_>
+ 6 7 1 1 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 18 1 1 2.
+ <_>
+
+ <_>
+ 1 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 5 13 2 1 2.
+ <_>
+
+ <_>
+ 12 13 2 3 -1.
+ <_>
+ 12 14 2 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 1 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ <_>
+
+ <_>
+ 16 0 4 4 -1.
+ <_>
+ 16 0 2 2 2.
+ <_>
+ 18 2 2 2 2.
+ <_>
+
+ <_>
+ 4 5 8 10 -1.
+ <_>
+ 4 5 4 5 2.
+ <_>
+ 8 10 4 5 2.
+ <_>
+
+ <_>
+ 3 14 4 5 -1.
+ <_>
+ 5 14 2 5 2.
+ <_>
+
+ <_>
+ 2 16 6 2 -1.
+ <_>
+ 5 16 3 2 2.
+ <_>
+
+ <_>
+ 8 0 8 1 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+
+ <_>
+ 0 4 15 6 -1.
+ <_>
+ 0 7 15 3 2.
+ <_>
+
+ <_>
+ 9 9 3 2 -1.
+ <_>
+ 9 10 3 1 2.
+ <_>
+
+ <_>
+ 7 9 2 6 -1.
+ <_>
+ 7 11 2 2 3.
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 5 11 4 1 3.
+ <_>
+
+ <_>
+ 12 10 1 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+
+ <_>
+ 17 3 1 3 -1.
+ <_>
+ 17 4 1 1 3.
+ <_>
+
+ <_>
+ 11 9 4 4 -1.
+ <_>
+ 11 9 2 2 2.
+ <_>
+ 13 11 2 2 2.
+ <_>
+
+ <_>
+ 10 14 6 2 -1.
+ <_>
+ 10 15 6 1 2.
+ <_>
+
+ <_>
+ 11 12 2 8 -1.
+ <_>
+ 11 16 2 4 2.
+ <_>
+
+ <_>
+ 11 7 5 6 -1.
+ <_>
+ 11 10 5 3 2.
+ <_>
+
+ <_>
+ 4 2 2 6 -1.
+ <_>
+ 5 2 1 6 2.
+ <_>
+
+ <_>
+ 6 0 5 2 -1.
+ <_>
+ 6 1 5 1 2.
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 10 18 4 1 3.
+ <_>
+
+ <_>
+ 12 3 7 3 -1.
+ <_>
+ 12 4 7 1 3.
+ <_>
+
+ <_>
+ 8 1 12 8 -1.
+ <_>
+ 8 1 6 4 2.
+ <_>
+ 14 5 6 4 2.
+ <_>
+
+ <_>
+ 11 0 3 20 -1.
+ <_>
+ 12 0 1 20 3.
+ <_>
+
+ <_>
+ 17 1 2 2 -1.
+ <_>
+ 17 1 1 1 2.
+ <_>
+ 18 2 1 1 2.
+ <_>
+
+ <_>
+ 2 10 7 6 -1.
+ <_>
+ 2 12 7 2 3.
+ <_>
+
+ <_>
+ 7 3 3 1 -1.
+ <_>
+ 8 3 1 1 3.
+ <_>
+
+ <_>
+ 4 17 11 3 -1.
+ <_>
+ 4 18 11 1 3.
+ <_>
+
+ <_>
+ 7 15 3 2 -1.
+ <_>
+ 8 15 1 2 3.
+ <_>
+
+ <_>
+ 3 4 3 13 -1.
+ <_>
+ 4 4 1 13 3.
+ <_>
+
+ <_>
+ 5 2 12 14 -1.
+ <_>
+ 5 2 6 7 2.
+ <_>
+ 11 9 6 7 2.
+ <_>
+
+ <_>
+ 0 0 10 6 -1.
+ <_>
+ 0 3 10 3 2.
+ <_>
+
+ <_>
+ 5 4 2 1 -1.
+ <_>
+ 6 4 1 1 2.
+ <_>
+
+ <_>
+ 7 7 6 13 -1.
+ <_>
+ 10 7 3 13 2.
+ <_>
+
+ <_>
+ 7 2 2 8 -1.
+ <_>
+ 7 2 1 4 2.
+ <_>
+ 8 6 1 4 2.
+ <_>
+
+ <_>
+ 6 1 3 4 -1.
+ <_>
+ 7 1 1 4 3.
+ <_>
+
+ <_>
+ 7 8 2 1 -1.
+ <_>
+ 8 8 1 1 2.
+ <_>
+
+ <_>
+ 4 0 4 2 -1.
+ <_>
+ 4 0 2 1 2.
+ <_>
+ 6 1 2 1 2.
+ <_>
+
+ <_>
+ 3 10 16 8 -1.
+ <_>
+ 3 14 16 4 2.
+ <_>
+
+ <_>
+ 10 5 5 10 -1.
+ <_>
+ 10 10 5 5 2.
+ <_>
+
+ <_>
+ 13 6 3 4 -1.
+ <_>
+ 13 8 3 2 2.
+ <_>
+
+ <_>
+ 13 10 5 3 -1.
+ <_>
+ 13 11 5 1 3.
+ <_>
+
+ <_>
+ 16 12 2 2 -1.
+ <_>
+ 16 12 1 1 2.
+ <_>
+ 17 13 1 1 2.
+ <_>
+
+ <_>
+ 16 3 2 1 -1.
+ <_>
+ 17 3 1 1 2.
+ <_>
+
+ <_>
+ 5 1 3 5 -1.
+ <_>
+ 6 1 1 5 3.
+ <_>
+
+ <_>
+ 5 7 8 6 -1.
+ <_>
+ 5 9 8 2 3.
+ <_>
+
+ <_>
+ 6 10 8 2 -1.
+ <_>
+ 6 10 4 1 2.
+ <_>
+ 10 11 4 1 2.
+ <_>
+
+ <_>
+ 6 9 4 8 -1.
+ <_>
+ 6 9 2 4 2.
+ <_>
+ 8 13 2 4 2.
+ <_>
+
+ <_>
+ 0 7 8 4 -1.
+ <_>
+ 4 7 4 4 2.
+ <_>
+
+ <_>
+ 14 13 2 6 -1.
+ <_>
+ 14 13 1 3 2.
+ <_>
+ 15 16 1 3 2.
+ <_>
+
+ <_>
+ 12 13 2 1 -1.
+ <_>
+ 13 13 1 1 2.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 6 9 2 1 2.
+ <_>
+
+ <_>
+ 15 12 2 1 -1.
+ <_>
+ 16 12 1 1 2.
+ <_>
+
+ <_>
+ 0 0 18 14 -1.
+ <_>
+ 0 7 18 7 2.
+ <_>
+
+ <_>
+ 11 5 3 3 -1.
+ <_>
+ 12 5 1 3 3.
+ <_>
+
+ <_>
+ 4 7 3 3 -1.
+ <_>
+ 5 7 1 3 3.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 5 9 1 8 -1.
+ <_>
+ 5 13 1 4 2.
+ <_>
+
+ <_>
+ 4 2 3 15 -1.
+ <_>
+ 5 2 1 15 3.
+ <_>
+
+ <_>
+ 15 0 4 4 -1.
+ <_>
+ 17 0 2 4 2.
+ <_>
+
+ <_>
+ 10 7 1 3 -1.
+ <_>
+ 10 8 1 1 3.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 8 17 3 2 -1.
+ <_>
+ 9 17 1 2 3.
+ <_>
+
+ <_>
+ 10 6 1 3 -1.
+ <_>
+ 10 7 1 1 3.
+ <_>
+
+ <_>
+ 6 7 4 4 -1.
+ <_>
+ 6 7 2 2 2.
+ <_>
+ 8 9 2 2 2.
+ <_>
+
+ <_>
+ 8 7 4 4 -1.
+ <_>
+ 8 7 2 2 2.
+ <_>
+ 10 9 2 2 2.
+ <_>
+
+ <_>
+ 15 8 2 7 -1.
+ <_>
+ 16 8 1 7 2.
+ <_>
+
+ <_>
+ 8 3 3 2 -1.
+ <_>
+ 9 3 1 2 3.
+ <_>
+
+ <_>
+ 16 17 3 1 -1.
+ <_>
+ 17 17 1 1 3.
+ <_>
+
+ <_>
+ 3 2 12 14 -1.
+ <_>
+ 3 2 6 7 2.
+ <_>
+ 9 9 6 7 2.
+ <_>
+
+ <_>
+ 16 16 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 7 12 2 3 -1.
+ <_>
+ 7 13 2 1 3.
+ <_>
+
+ <_>
+ 7 13 2 6 -1.
+ <_>
+ 8 13 1 6 2.
+ <_>
+
+ <_>
+ 8 14 2 6 -1.
+ <_>
+ 8 16 2 2 3.
+ <_>
+
+ <_>
+ 6 14 4 6 -1.
+ <_>
+ 6 16 4 2 3.
+ <_>
+
+ <_>
+ 11 12 3 6 -1.
+ <_>
+ 12 12 1 6 3.
+ <_>
+
+ <_>
+ 0 6 1 12 -1.
+ <_>
+ 0 10 1 4 3.
+ <_>
+
+ <_>
+ 3 3 2 10 -1.
+ <_>
+ 3 3 1 5 2.
+ <_>
+ 4 8 1 5 2.
+ <_>
+
+ <_>
+ 3 3 2 8 -1.
+ <_>
+ 3 3 1 4 2.
+ <_>
+ 4 7 1 4 2.
+ <_>
+
+ <_>
+ 9 4 1 12 -1.
+ <_>
+ 9 10 1 6 2.
+ <_>
+
+ <_>
+ 0 5 6 4 -1.
+ <_>
+ 3 5 3 4 2.
+ <_>
+
+ <_>
+ 9 9 1 4 -1.
+ <_>
+ 9 11 1 2 2.
+ <_>
+
+ <_>
+ 4 6 6 4 -1.
+ <_>
+ 4 6 3 2 2.
+ <_>
+ 7 8 3 2 2.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 7 8 1 2 2.
+ <_>
+
+ <_>
+ 6 4 4 14 -1.
+ <_>
+ 8 4 2 14 2.
+ <_>
+
+ <_>
+ 6 7 3 3 -1.
+ <_>
+ 7 7 1 3 3.
+ <_>
+
+ <_>
+ 4 7 6 5 -1.
+ <_>
+ 7 7 3 5 2.
+ <_>
+
+ <_>
+ 0 4 8 10 -1.
+ <_>
+ 4 4 4 10 2.
+ <_>
+
+ <_>
+ 0 6 18 14 -1.
+ <_>
+ 9 6 9 14 2.
+ <_>
+
+ <_>
+ 11 15 3 5 -1.
+ <_>
+ 12 15 1 5 3.
+ <_>
+
+ <_>
+ 3 18 4 2 -1.
+ <_>
+ 3 18 2 1 2.
+ <_>
+ 5 19 2 1 2.
+ <_>
+
+ <_>
+ 7 10 2 2 -1.
+ <_>
+ 7 11 2 1 2.
+ <_>
+
+ <_>
+ 10 1 3 10 -1.
+ <_>
+ 10 6 3 5 2.
+ <_>
+
+ <_>
+ 9 0 8 10 -1.
+ <_>
+ 13 0 4 10 2.
+ <_>
+
+ <_>
+ 7 2 8 13 -1.
+ <_>
+ 11 2 4 13 2.
+ <_>
+
+ <_>
+ 3 3 12 7 -1.
+ <_>
+ 9 3 6 7 2.
+ <_>
+
+ <_>
+ 11 8 3 2 -1.
+ <_>
+ 12 8 1 2 3.
+ <_>
+
+ <_>
+ 11 7 2 8 -1.
+ <_>
+ 11 7 1 4 2.
+ <_>
+ 12 11 1 4 2.
+ <_>
+
+ <_>
+ 0 6 3 2 -1.
+ <_>
+ 0 7 3 1 2.
+ <_>
+
+ <_>
+ 6 17 2 3 -1.
+ <_>
+ 6 18 2 1 3.
+ <_>
+
+ <_>
+ 4 7 2 2 -1.
+ <_>
+ 4 7 1 1 2.
+ <_>
+ 5 8 1 1 2.
+ <_>
+
+ <_>
+ 9 2 10 9 -1.
+ <_>
+ 9 5 10 3 3.
+ <_>
+
+ <_>
+ 9 0 10 4 -1.
+ <_>
+ 9 0 5 2 2.
+ <_>
+ 14 2 5 2 2.
+ <_>
+
+ <_>
+ 7 5 2 1 -1.
+ <_>
+ 8 5 1 1 2.
+ <_>
+
+ <_>
+ 7 5 2 1 -1.
+ <_>
+ 8 5 1 1 2.
+ <_>
+
+ <_>
+ 4 9 3 3 -1.
+ <_>
+ 4 10 3 1 3.
+ <_>
+
+ <_>
+ 4 10 4 3 -1.
+ <_>
+ 4 11 4 1 3.
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 6 8 2 1 3.
+ <_>
+
+ <_>
+ 18 4 1 3 -1.
+ <_>
+ 18 5 1 1 3.
+ <_>
+
+ <_>
+ 17 0 3 5 -1.
+ <_>
+ 18 0 1 5 3.
+ <_>
+
+ <_>
+ 11 2 8 3 -1.
+ <_>
+ 11 3 8 1 3.
+ <_>
+
+ <_>
+ 14 9 6 5 -1.
+ <_>
+ 17 9 3 5 2.
+ <_>
+
+ <_>
+ 0 7 4 6 -1.
+ <_>
+ 0 9 4 2 3.
+ <_>
+
+ <_>
+ 12 7 4 12 -1.
+ <_>
+ 12 7 2 6 2.
+ <_>
+ 14 13 2 6 2.
+ <_>
+
+ <_>
+ 8 7 9 3 -1.
+ <_>
+ 11 7 3 3 3.
+ <_>
+
+ <_>
+ 12 12 2 3 -1.
+ <_>
+ 12 13 2 1 3.
+ <_>
+
+ <_>
+ 11 0 6 20 -1.
+ <_>
+ 14 0 3 20 2.
+ <_>
+
+ <_>
+ 4 5 2 6 -1.
+ <_>
+ 5 5 1 6 2.
+ <_>
+
+ <_>
+ 1 7 6 11 -1.
+ <_>
+ 3 7 2 11 3.
+ <_>
+
+ <_>
+ 2 15 2 1 -1.
+ <_>
+ 3 15 1 1 2.
+ <_>
+
+ <_>
+ 5 11 2 6 -1.
+ <_>
+ 5 14 2 3 2.
+ <_>
+
+ <_>
+ 6 17 2 3 -1.
+ <_>
+ 6 18 2 1 3.
+ <_>
+
+ <_>
+ 5 8 11 12 -1.
+ <_>
+ 5 12 11 4 3.
+ <_>
+
+ <_>
+ 16 10 2 2 -1.
+ <_>
+ 16 10 1 1 2.
+ <_>
+ 17 11 1 1 2.
+ <_>
+
+ <_>
+ 15 11 3 1 -1.
+ <_>
+ 16 11 1 1 3.
+ <_>
+
+ <_>
+ 13 14 1 3 -1.
+ <_>
+ 13 15 1 1 3.
+ <_>
+
+ <_>
+ 6 14 3 4 -1.
+ <_>
+ 6 16 3 2 2.
+ <_>
+
+ <_>
+ 6 6 2 14 -1.
+ <_>
+ 6 13 2 7 2.
+ <_>
+
+ <_>
+ 11 14 2 1 -1.
+ <_>
+ 12 14 1 1 2.
+ <_>
+
+ <_>
+ 9 13 6 6 -1.
+ <_>
+ 9 13 3 3 2.
+ <_>
+ 12 16 3 3 2.
+ <_>
+
+ <_>
+ 10 17 3 1 -1.
+ <_>
+ 11 17 1 1 3.
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 9 13 1 3 2.
+ <_>
+ 10 16 1 3 2.
+ <_>
+
+ <_>
+ 11 18 4 2 -1.
+ <_>
+ 13 18 2 2 2.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 10 12 1 3 3.
+ <_>
+
+ <_>
+ 5 6 1 12 -1.
+ <_>
+ 5 12 1 6 2.
+ <_>
+
+ <_>
+ 2 4 6 6 -1.
+ <_>
+ 4 4 2 6 3.
+ <_>
+
+ <_>
+ 1 4 9 3 -1.
+ <_>
+ 4 4 3 3 3.
+ <_>
+
+ <_>
+ 5 10 3 3 -1.
+ <_>
+ 5 11 3 1 3.
+ <_>
+
+ <_>
+ 8 9 1 3 -1.
+ <_>
+ 8 10 1 1 3.
+ <_>
+
+ <_>
+ 11 19 6 1 -1.
+ <_>
+ 13 19 2 1 3.
+ <_>
+
+ <_>
+ 18 4 2 8 -1.
+ <_>
+ 18 4 1 4 2.
+ <_>
+ 19 8 1 4 2.
+ <_>
+
+ <_>
+ 17 5 2 3 -1.
+ <_>
+ 17 6 2 1 3.
+ <_>
+
+ <_>
+ 12 15 8 4 -1.
+ <_>
+ 16 15 4 4 2.
+ <_>
+
+ <_>
+ 14 8 4 10 -1.
+ <_>
+ 14 13 4 5 2.
+ <_>
+
+ <_>
+ 11 0 3 18 -1.
+ <_>
+ 11 6 3 6 3.
+ <_>
+
+ <_>
+ 8 5 12 6 -1.
+ <_>
+ 8 7 12 2 3.
+ <_>
+
+ <_>
+ 10 11 4 2 -1.
+ <_>
+ 12 11 2 2 2.
+ <_>
+
+ <_>
+ 5 7 2 8 -1.
+ <_>
+ 6 7 1 8 2.
+ <_>
+
+ <_>
+ 6 3 12 12 -1.
+ <_>
+ 6 3 6 6 2.
+ <_>
+ 12 9 6 6 2.
+ <_>
+
+ <_>
+ 6 10 4 2 -1.
+ <_>
+ 6 10 2 1 2.
+ <_>
+ 8 11 2 1 2.
+ <_>
+
+ <_>
+ 0 2 6 10 -1.
+ <_>
+ 2 2 2 10 3.
+ <_>
+
+ <_>
+ 10 15 3 2 -1.
+ <_>
+ 11 15 1 2 3.
+ <_>
+
+ <_>
+ 6 8 10 2 -1.
+ <_>
+ 6 8 5 1 2.
+ <_>
+ 11 9 5 1 2.
+ <_>
+
+ <_>
+ 6 12 1 6 -1.
+ <_>
+ 6 15 1 3 2.
+ <_>
+
+ <_>
+ 9 0 4 1 -1.
+ <_>
+ 11 0 2 1 2.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 7 4 2 1 -1.
+ <_>
+ 8 4 1 1 2.
+ <_>
+
+ <_>
+ 2 11 3 1 -1.
+ <_>
+ 3 11 1 1 3.
+ <_>
+
+ <_>
+ 1 10 3 3 -1.
+ <_>
+ 2 10 1 3 3.
+ <_>
+
+ <_>
+ 12 0 8 2 -1.
+ <_>
+ 12 0 4 1 2.
+ <_>
+ 16 1 4 1 2.
+ <_>
+
+ <_>
+ 6 6 6 8 -1.
+ <_>
+ 9 6 3 8 2.
+ <_>
+
+ <_>
+ 6 10 1 3 -1.
+ <_>
+ 6 11 1 1 3.
+ <_>
+
+ <_>
+ 8 12 7 2 -1.
+ <_>
+ 8 13 7 1 2.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 6 6 2 12 -1.
+ <_>
+ 6 12 2 6 2.
+ <_>
+
+ <_>
+ 6 12 2 3 -1.
+ <_>
+ 6 13 2 1 3.
+ <_>
+
+ <_>
+ 12 12 1 3 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 8 9 1 2 -1.
+ <_>
+ 8 10 1 1 2.
+ <_>
+
+ <_>
+ 7 11 4 6 -1.
+ <_>
+ 7 11 2 3 2.
+ <_>
+ 9 14 2 3 2.
+ <_>
+
+ <_>
+ 10 10 4 3 -1.
+ <_>
+ 10 11 4 1 3.
+ <_>
+
+ <_>
+ 12 10 2 3 -1.
+ <_>
+ 12 11 2 1 3.
+ <_>
+
+ <_>
+ 6 13 2 3 -1.
+ <_>
+ 6 14 2 1 3.
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ <_>
+
+ <_>
+ 6 10 8 6 -1.
+ <_>
+ 6 12 8 2 3.
+ <_>
+
+ <_>
+ 5 8 6 12 -1.
+ <_>
+ 5 12 6 4 3.
+ <_>
+
+ <_>
+ 1 14 2 1 -1.
+ <_>
+ 2 14 1 1 2.
+ <_>
+
+ <_>
+ 8 6 2 3 -1.
+ <_>
+ 8 7 2 1 3.
+ <_>
+
+ <_>
+ 4 6 8 4 -1.
+ <_>
+ 4 6 4 2 2.
+ <_>
+ 8 8 4 2 2.
+ <_>
+
+ <_>
+ 0 14 3 1 -1.
+ <_>
+ 1 14 1 1 3.
+ <_>
+
+ <_>
+ 4 1 2 2 -1.
+ <_>
+ 4 1 1 1 2.
+ <_>
+ 5 2 1 1 2.
+ <_>
+
+ <_>
+ 14 10 1 6 -1.
+ <_>
+ 14 13 1 3 2.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 5 10 3 3 -1.
+ <_>
+ 5 11 3 1 3.
+ <_>
+
+ <_>
+ 2 3 12 4 -1.
+ <_>
+ 2 3 6 2 2.
+ <_>
+ 8 5 6 2 2.
+ <_>
+
+ <_>
+ 10 15 3 2 -1.
+ <_>
+ 11 15 1 2 3.
+ <_>
+
+ <_>
+ 12 14 8 1 -1.
+ <_>
+ 16 14 4 1 2.
+ <_>
+
+ <_>
+ 11 0 8 13 -1.
+ <_>
+ 15 0 4 13 2.
+ <_>
+
+ <_>
+ 12 12 2 8 -1.
+ <_>
+ 12 12 1 4 2.
+ <_>
+ 13 16 1 4 2.
+ <_>
+
+ <_>
+ 4 7 8 12 -1.
+ <_>
+ 4 13 8 6 2.
+ <_>
+
+ <_>
+ 10 9 2 4 -1.
+ <_>
+ 10 11 2 2 2.
+ <_>
+
+ <_>
+ 4 4 3 1 -1.
+ <_>
+ 5 4 1 1 3.
+ <_>
+
+ <_>
+ 18 5 1 3 -1.
+ <_>
+ 18 6 1 1 3.
+ <_>
+
+ <_>
+ 6 9 9 1 -1.
+ <_>
+ 9 9 3 1 3.
+ <_>
+
+ <_>
+ 12 5 4 6 -1.
+ <_>
+ 12 7 4 2 3.
+ <_>
+
+ <_>
+ 16 0 4 4 -1.
+ <_>
+ 18 0 2 4 2.
+ <_>
+
+ <_>
+ 3 10 2 2 -1.
+ <_>
+ 3 10 1 1 2.
+ <_>
+ 4 11 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 17 4 2 8 -1.
+ <_>
+ 17 4 1 4 2.
+ <_>
+ 18 8 1 4 2.
+ <_>
+
+ <_>
+ 7 15 1 3 -1.
+ <_>
+ 7 16 1 1 3.
+ <_>
+
+ <_>
+ 0 15 2 1 -1.
+ <_>
+ 1 15 1 1 2.
+ <_>
+
+ <_>
+ 7 10 2 4 -1.
+ <_>
+ 7 12 2 2 2.
+ <_>
+
+ <_>
+ 4 19 3 1 -1.
+ <_>
+ 5 19 1 1 3.
+ <_>
+
+ <_>
+ 2 14 4 5 -1.
+ <_>
+ 4 14 2 5 2.
+ <_>
+
+ <_>
+ 4 11 4 4 -1.
+ <_>
+ 4 11 2 2 2.
+ <_>
+ 6 13 2 2 2.
+ <_>
+
+ <_>
+ 4 13 2 6 -1.
+ <_>
+ 4 13 1 3 2.
+ <_>
+ 5 16 1 3 2.
+ <_>
+
+ <_>
+ 7 3 3 4 -1.
+ <_>
+ 8 3 1 4 3.
+ <_>
+
+ <_>
+ 17 11 3 2 -1.
+ <_>
+ 18 11 1 2 3.
+ <_>
+
+ <_>
+ 10 4 6 2 -1.
+ <_>
+ 10 5 6 1 2.
+ <_>
+
+ <_>
+ 12 3 6 3 -1.
+ <_>
+ 12 4 6 1 3.
+ <_>
+
+ <_>
+ 17 12 2 2 -1.
+ <_>
+ 17 12 1 1 2.
+ <_>
+ 18 13 1 1 2.
+ <_>
+
+ <_>
+ 5 12 15 8 -1.
+ <_>
+ 10 12 5 8 3.
+ <_>
+
+ <_>
+ 4 18 2 2 -1.
+ <_>
+ 4 18 1 1 2.
+ <_>
+ 5 19 1 1 2.
+ <_>
+
+ <_>
+ 0 15 2 2 -1.
+ <_>
+ 0 15 1 1 2.
+ <_>
+ 1 16 1 1 2.
+ <_>
+
+ <_>
+ 5 9 1 6 -1.
+ <_>
+ 5 12 1 3 2.
+ <_>
+
+ <_>
+ 1 0 18 14 -1.
+ <_>
+ 1 7 18 7 2.
+ <_>
+
+ <_>
+ 6 2 7 6 -1.
+ <_>
+ 6 5 7 3 2.
+ <_>
+
+ <_>
+ 6 16 2 1 -1.
+ <_>
+ 7 16 1 1 2.
+ <_>
+
+ <_>
+ 4 11 16 9 -1.
+ <_>
+ 4 14 16 3 3.
+ <_>
+
+ <_>
+ 16 9 2 2 -1.
+ <_>
+ 17 9 1 2 2.
+ <_>
+
+ <_>
+ 6 8 2 2 -1.
+ <_>
+ 7 8 1 2 2.
+ <_>
+
+ <_>
+ 0 14 12 3 -1.
+ <_>
+ 6 14 6 3 2.
+ <_>
+
+ <_>
+ 7 6 3 10 -1.
+ <_>
+ 7 11 3 5 2.
+ <_>
+
+ <_>
+ 10 11 1 2 -1.
+ <_>
+ 10 12 1 1 2.
+ <_>
+
+ <_>
+ 5 17 2 2 -1.
+ <_>
+ 6 17 1 2 2.
+ <_>
+
+ <_>
+ 2 0 18 18 -1.
+ <_>
+ 11 0 9 18 2.
+ <_>
+
+ <_>
+ 12 11 6 3 -1.
+ <_>
+ 14 11 2 3 3.
+ <_>
+
+ <_>
+ 12 12 6 1 -1.
+ <_>
+ 14 12 2 1 3.
+ <_>
+
+ <_>
+ 15 10 2 2 -1.
+ <_>
+ 15 10 1 1 2.
+ <_>
+ 16 11 1 1 2.
+ <_>
+
+ <_>
+ 3 11 3 8 -1.
+ <_>
+ 4 11 1 8 3.
+ <_>
+
+ <_>
+ 6 1 4 12 -1.
+ <_>
+ 8 1 2 12 2.
+ <_>
+
+ <_>
+ 6 3 4 8 -1.
+ <_>
+ 8 3 2 8 2.
+ <_>
+
+ <_>
+ 8 4 6 12 -1.
+ <_>
+ 11 4 3 12 2.
+ <_>
+
+ <_>
+ 16 12 4 5 -1.
+ <_>
+ 18 12 2 5 2.
+ <_>
+
+ <_>
+ 14 9 2 3 -1.
+ <_>
+ 15 9 1 3 2.
+ <_>
+
+ <_>
+ 9 7 10 6 -1.
+ <_>
+ 14 7 5 6 2.
+ <_>
+
+ <_>
+ 12 7 3 11 -1.
+ <_>
+ 13 7 1 11 3.
+ <_>
+
+ <_>
+ 19 16 1 2 -1.
+ <_>
+ 19 17 1 1 2.
+ <_>
+
+ <_>
+ 8 15 12 1 -1.
+ <_>
+ 14 15 6 1 2.
+ <_>
+
+ <_>
+ 10 15 6 3 -1.
+ <_>
+ 10 16 6 1 3.
+ <_>
+
+ <_>
+ 6 8 10 4 -1.
+ <_>
+ 6 8 5 2 2.
+ <_>
+ 11 10 5 2 2.
+ <_>
+
+ <_>
+ 10 15 1 3 -1.
+ <_>
+ 10 16 1 1 3.
+ <_>
+
+ <_>
+ 10 1 9 12 -1.
+ <_>
+ 10 7 9 6 2.
+ <_>
+
+ <_>
+ 10 1 1 4 -1.
+ <_>
+ 10 3 1 2 2.
+ <_>
+
+ <_>
+ 1 5 18 4 -1.
+ <_>
+ 1 7 18 2 2.
+ <_>
+
+ <_>
+ 6 4 12 6 -1.
+ <_>
+ 12 4 6 6 2.
+ <_>
+
+ <_>
+ 13 1 7 3 -1.
+ <_>
+ 13 2 7 1 3.
+ <_>
+
+ <_>
+ 14 0 6 4 -1.
+ <_>
+ 14 0 3 2 2.
+ <_>
+ 17 2 3 2 2.
+ <_>
+
+ <_>
+ 9 12 3 3 -1.
+ <_>
+ 9 13 3 1 3.
+ <_>
+
+ <_>
+ 5 14 8 4 -1.
+ <_>
+ 5 14 4 2 2.
+ <_>
+ 9 16 4 2 2.
+ <_>
+
+ <_>
+ 1 6 14 14 -1.
+ <_>
+ 8 6 7 14 2.
+ <_>
+
+ <_>
+ 13 4 6 2 -1.
+ <_>
+ 13 4 3 1 2.
+ <_>
+ 16 5 3 1 2.
+ <_>
+
+ <_>
+ 8 7 6 6 -1.
+ <_>
+ 8 9 6 2 3.
+ <_>
+
+ <_>
+ 8 0 12 20 -1.
+ <_>
+ 8 10 12 10 2.
+ <_>
+
+ <_>
+ 9 8 4 3 -1.
+ <_>
+ 9 9 4 1 3.
+ <_>
+
+ <_>
+ 10 18 8 2 -1.
+ <_>
+ 10 19 8 1 2.
+ <_>
+
+ <_>
+ 9 12 4 2 -1.
+ <_>
+ 9 12 2 1 2.
+ <_>
+ 11 13 2 1 2.
+ <_>
+
+ <_>
+ 4 14 2 2 -1.
+ <_>
+ 4 14 1 1 2.
+ <_>
+ 5 15 1 1 2.
+ <_>
+
+ <_>
+ 5 14 3 2 -1.
+ <_>
+ 5 15 3 1 2.
+ <_>
+
+ <_>
+ 11 1 6 3 -1.
+ <_>
+ 13 1 2 3 3.
+ <_>
+
+ <_>
+ 6 14 2 3 -1.
+ <_>
+ 6 15 2 1 3.
+ <_>
+
+ <_>
+ 14 1 2 2 -1.
+ <_>
+ 15 1 1 2 2.
+ <_>
+
+ <_>
+ 0 13 6 7 -1.
+ <_>
+ 3 13 3 7 2.
+ <_>
+
+ <_>
+ 17 11 3 1 -1.
+ <_>
+ 18 11 1 1 3.
+ <_>
+
+ <_>
+ 5 10 8 4 -1.
+ <_>
+ 9 10 4 4 2.
+ <_>
+
+ <_>
+ 7 16 8 4 -1.
+ <_>
+ 7 16 4 2 2.
+ <_>
+ 11 18 4 2 2.
+ <_>
+
+ <_>
+ 11 16 4 3 -1.
+ <_>
+ 11 17 4 1 3.
+ <_>
+
+ <_>
+ 3 10 6 2 -1.
+ <_>
+ 3 10 3 1 2.
+ <_>
+ 6 11 3 1 2.
+ <_>
+
+ <_>
+ 11 7 3 2 -1.
+ <_>
+ 12 7 1 2 3.
+ <_>
+
+ <_>
+ 8 7 9 2 -1.
+ <_>
+ 11 7 3 2 3.
+ <_>
+
+ <_>
+ 13 6 3 10 -1.
+ <_>
+ 14 6 1 10 3.
+ <_>
+
+ <_>
+ 15 10 4 3 -1.
+ <_>
+ 17 10 2 3 2.
+ <_>
+
+ <_>
+ 1 10 6 10 -1.
+ <_>
+ 3 10 2 10 3.
+ <_>
+
+ <_>
+ 5 0 2 2 -1.
+ <_>
+ 5 0 1 1 2.
+ <_>
+ 6 1 1 1 2.
+ <_>
+
+ <_>
+ 3 11 3 6 -1.
+ <_>
+ 3 13 3 2 3.
+ <_>
+
+ <_>
+ 4 6 9 10 -1.
+ <_>
+ 7 6 3 10 3.
+ <_>
+
+ <_>
+ 6 10 9 5 -1.
+ <_>
+ 9 10 3 5 3.
+ <_>
+
+ <_>
+ 10 5 3 9 -1.
+ <_>
+ 11 5 1 9 3.
+ <_>
+
+ <_>
+ 3 7 3 4 -1.
+ <_>
+ 4 7 1 4 3.
+ <_>
+
+ <_>
+ 4 6 2 2 -1.
+ <_>
+ 4 6 1 1 2.
+ <_>
+ 5 7 1 1 2.
+ <_>
+
+ <_>
+ 0 2 2 3 -1.
+ <_>
+ 0 3 2 1 3.
+ <_>
+
+ <_>
+ 12 0 8 4 -1.
+ <_>
+ 12 0 4 2 2.
+ <_>
+ 16 2 4 2 2.
+ <_>
+
+ <_>
+ 11 1 8 2 -1.
+ <_>
+ 11 1 4 1 2.
+ <_>
+ 15 2 4 1 2.
+ <_>
+
+ <_>
+ 12 2 7 3 -1.
+ <_>
+ 12 3 7 1 3.
+ <_>
+
+ <_>
+ 3 6 3 2 -1.
+ <_>
+ 4 6 1 2 3.
+ <_>
+
+ <_>
+ 4 6 4 6 -1.
+ <_>
+ 4 9 4 3 2.
+ <_>
+
+ <_>
+ 13 12 6 4 -1.
+ <_>
+ 13 12 3 2 2.
+ <_>
+ 16 14 3 2 2.
+ <_>
+
+ <_>
+ 13 10 2 4 -1.
+ <_>
+ 13 12 2 2 2.
+ <_>
+
+ <_>
+ 15 12 3 3 -1.
+ <_>
+ 15 13 3 1 3.
+ <_>
+
+ <_>
+ 14 14 2 3 -1.
+ <_>
+ 14 15 2 1 3.
+ <_>
+
+ <_>
+ 18 4 2 8 -1.
+ <_>
+ 18 4 1 4 2.
+ <_>
+ 19 8 1 4 2.
+ <_>
+
+ <_>
+ 7 14 2 4 -1.
+ <_>
+ 7 14 1 2 2.
+ <_>
+ 8 16 1 2 2.
+ <_>
+
+ <_>
+ 14 3 6 6 -1.
+ <_>
+ 14 5 6 2 3.
+ <_>
+
+ <_>
+ 19 7 1 2 -1.
+ <_>
+ 19 8 1 1 2.
+ <_>
+
+ <_>
+ 8 8 6 2 -1.
+ <_>
+ 8 8 3 1 2.
+ <_>
+ 11 9 3 1 2.
+ <_>
+
+ <_>
+ 19 6 1 3 -1.
+ <_>
+ 19 7 1 1 3.
+ <_>
+
+ <_>
+ 7 8 7 3 -1.
+ <_>
+ 7 9 7 1 3.
+ <_>
+
+ <_>
+ 18 6 2 6 -1.
+ <_>
+ 18 6 1 3 2.
+ <_>
+ 19 9 1 3 2.
+ <_>
+
+ <_>
+ 5 8 8 6 -1.
+ <_>
+ 5 10 8 2 3.
+ <_>
+
+ <_>
+ 1 1 18 15 -1.
+ <_>
+ 10 1 9 15 2.
+ <_>
+
+ <_>
+ 11 7 5 4 -1.
+ <_>
+ 11 9 5 2 2.
+ <_>
+
+ <_>
+ 10 12 2 3 -1.
+ <_>
+ 11 12 1 3 2.
+ <_>
+
+ <_>
+ 0 7 2 4 -1.
+ <_>
+ 0 9 2 2 2.
+ <_>
+
+ <_>
+ 6 12 4 2 -1.
+ <_>
+ 6 12 2 1 2.
+ <_>
+ 8 13 2 1 2.
+ <_>
+
+ <_>
+ 7 7 6 8 -1.
+ <_>
+ 7 11 6 4 2.
+ <_>
+
+ <_>
+ 9 9 2 4 -1.
+ <_>
+ 9 11 2 2 2.
+ <_>
+
+ <_>
+ 9 10 6 6 -1.
+ <_>
+ 9 12 6 2 3.
+ <_>
+
+ <_>
+ 12 13 4 2 -1.
+ <_>
+ 12 14 4 1 2.
+ <_>
+
+ <_>
+ 0 4 8 1 -1.
+ <_>
+ 4 4 4 1 2.
+ <_>
+
+ <_>
+ 14 13 1 2 -1.
+ <_>
+ 14 14 1 1 2.
+ <_>
+
+ <_>
+ 8 7 2 6 -1.
+ <_>
+ 8 7 1 3 2.
+ <_>
+ 9 10 1 3 2.
+ <_>
+
+ <_>
+ 5 8 10 6 -1.
+ <_>
+ 5 8 5 3 2.
+ <_>
+ 10 11 5 3 2.
+ <_>
+
+ <_>
+ 5 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 5 11 2 1 2.
+ <_>
+
+ <_>
+ 6 2 4 15 -1.
+ <_>
+ 6 7 4 5 3.
+ <_>
+
+ <_>
+ 7 6 2 4 -1.
+ <_>
+ 7 6 1 2 2.
+ <_>
+ 8 8 1 2 2.
+ <_>
+
+ <_>
+ 5 9 2 3 -1.
+ <_>
+ 5 10 2 1 3.
+ <_>
+
+ <_>
+ 15 16 2 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+ 16 17 1 1 2.
+ <_>
+
+ <_>
+ 4 11 4 6 -1.
+ <_>
+ 4 13 4 2 3.
+ <_>
+
+ <_>
+ 5 0 3 6 -1.
+ <_>
+ 6 0 1 6 3.
+ <_>
+
+ <_>
+ 4 11 12 4 -1.
+ <_>
+ 4 11 6 2 2.
+ <_>
+ 10 13 6 2 2.
+ <_>
+
+ <_>
+ 7 13 3 3 -1.
+ <_>
+ 7 14 3 1 3.
+ <_>
+
+ <_>
+ 9 12 6 2 -1.
+ <_>
+ 9 13 6 1 2.
+ <_>
+
+ <_>
+ 8 0 12 8 -1.
+ <_>
+ 8 0 6 4 2.
+ <_>
+ 14 4 6 4 2.
+ <_>
+
+ <_>
+ 10 8 4 4 -1.
+ <_>
+ 10 8 2 2 2.
+ <_>
+ 12 10 2 2 2.
+ <_>
+
+ <_>
+ 12 10 1 6 -1.
+ <_>
+ 12 13 1 3 2.
+ <_>
+
+ <_>
+ 5 5 3 10 -1.
+ <_>
+ 6 5 1 10 3.
+ <_>
+
+ <_>
+ 4 0 14 6 -1.
+ <_>
+ 11 0 7 6 2.
+ <_>
+
+ <_>
+ 9 7 2 6 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+ 10 10 1 3 2.
+ <_>
+
+ <_>
+ 8 4 3 1 -1.
+ <_>
+ 9 4 1 1 3.
+ <_>
+
+ <_>
+ 11 14 2 2 -1.
+ <_>
+ 11 15 2 1 2.
+ <_>
+
+ <_>
+ 9 18 6 2 -1.
+ <_>
+ 12 18 3 2 2.
+ <_>
+
+ <_>
+ 8 12 8 6 -1.
+ <_>
+ 8 15 8 3 2.
+ <_>
+
+ <_>
+ 7 0 8 6 -1.
+ <_>
+ 7 2 8 2 3.
+ <_>
+
+ <_>
+ 1 2 12 3 -1.
+ <_>
+ 5 2 4 3 3.
+ <_>
+
+ <_>
+ 5 4 10 12 -1.
+ <_>
+ 5 4 5 6 2.
+ <_>
+ 10 10 5 6 2.
+ <_>
+
+ <_>
+ 5 8 3 2 -1.
+ <_>
+ 5 9 3 1 2.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 5 12 3 1 3.
+ <_>
+
+ <_>
+ 8 10 6 9 -1.
+ <_>
+ 8 13 6 3 3.
+ <_>
+
+ <_>
+ 7 8 3 6 -1.
+ <_>
+ 7 10 3 2 3.
+ <_>
+
+ <_>
+ 3 4 3 14 -1.
+ <_>
+ 4 4 1 14 3.
+ <_>
+
+ <_>
+ 3 10 3 6 -1.
+ <_>
+ 4 10 1 6 3.
+ <_>
+
+ <_>
+ 4 8 2 2 -1.
+ <_>
+ 4 8 1 1 2.
+ <_>
+ 5 9 1 1 2.
+ <_>
+
+ <_>
+ 10 13 2 3 -1.
+ <_>
+ 10 14 2 1 3.
+ <_>
+
+ <_>
+ 6 14 8 4 -1.
+ <_>
+ 6 14 4 2 2.
+ <_>
+ 10 16 4 2 2.
+ <_>
+
+ <_>
+ 5 12 3 4 -1.
+ <_>
+ 6 12 1 4 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 15 6 1 10 -1.
+ <_>
+ 15 11 1 5 2.
+ <_>
+
+ <_>
+ 7 1 12 6 -1.
+ <_>
+ 7 3 12 2 3.
+ <_>
+
+ <_>
+ 4 9 2 4 -1.
+ <_>
+ 4 9 1 2 2.
+ <_>
+ 5 11 1 2 2.
+ <_>
+
+ <_>
+ 6 7 6 12 -1.
+ <_>
+ 9 7 3 12 2.
+ <_>
+
+ <_>
+ 7 6 2 3 -1.
+ <_>
+ 8 6 1 3 2.
+ <_>
+
+ <_>
+ 0 1 1 3 -1.
+ <_>
+ 0 2 1 1 3.
+ <_>
+
+ <_>
+ 0 1 1 3 -1.
+ <_>
+ 0 2 1 1 3.
+ <_>
+
+ <_>
+ 11 15 3 5 -1.
+ <_>
+ 12 15 1 5 3.
+ <_>
+
+ <_>
+ 8 6 4 6 -1.
+ <_>
+ 8 8 4 2 3.
+ <_>
+
+ <_>
+ 5 3 3 12 -1.
+ <_>
+ 5 7 3 4 3.
+ <_>
+
+ <_>
+ 7 9 2 2 -1.
+ <_>
+ 7 9 1 1 2.
+ <_>
+ 8 10 1 1 2.
+ <_>
+
+ <_>
+ 4 4 2 12 -1.
+ <_>
+ 4 8 2 4 3.
+ <_>
+
+ <_>
+ 4 5 7 3 -1.
+ <_>
+ 4 6 7 1 3.
+ <_>
+
+ <_>
+ 13 5 2 3 -1.
+ <_>
+ 13 6 2 1 3.
+ <_>
+
+ <_>
+ 4 0 2 2 -1.
+ <_>
+ 4 0 1 1 2.
+ <_>
+ 5 1 1 1 2.
+ <_>
+
+ <_>
+ 11 8 3 11 -1.
+ <_>
+ 12 8 1 11 3.
+ <_>
+
+ <_>
+ 4 0 2 2 -1.
+ <_>
+ 4 0 1 1 2.
+ <_>
+ 5 1 1 1 2.
+ <_>
+
+ <_>
+ 9 3 2 2 -1.
+ <_>
+ 9 3 1 1 2.
+ <_>
+ 10 4 1 1 2.
+ <_>
+
+ <_>
+ 7 11 3 2 -1.
+ <_>
+ 8 11 1 2 3.
+ <_>
+
+ <_>
+ 11 12 2 1 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 8 8 4 2 -1.
+ <_>
+ 10 8 2 2 2.
+ <_>
+
+ <_>
+ 17 15 3 1 -1.
+ <_>
+ 18 15 1 1 3.
+ <_>
+
+ <_>
+ 12 6 2 4 -1.
+ <_>
+ 12 6 1 2 2.
+ <_>
+ 13 8 1 2 2.
+ <_>
+
+ <_>
+ 8 3 9 11 -1.
+ <_>
+ 11 3 3 11 3.
+ <_>
+
+ <_>
+ 10 8 2 2 -1.
+ <_>
+ 11 8 1 2 2.
+ <_>
+
+ <_>
+ 12 5 3 9 -1.
+ <_>
+ 12 8 3 3 3.
+ <_>
+
+ <_>
+ 13 0 6 17 -1.
+ <_>
+ 15 0 2 17 3.
+ <_>
+
+ <_>
+ 6 6 3 4 -1.
+ <_>
+ 7 6 1 4 3.
+ <_>
+
+ <_>
+ 5 6 4 7 -1.
+ <_>
+ 7 6 2 7 2.
+ <_>
+
+ <_>
+ 7 5 3 2 -1.
+ <_>
+ 8 5 1 2 3.
+ <_>
+
+ <_>
+ 7 15 6 2 -1.
+ <_>
+ 7 15 3 1 2.
+ <_>
+ 10 16 3 1 2.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 2 12 6 7 -1.
+ <_>
+ 4 12 2 7 3.
+ <_>
+
+ <_>
+ 11 17 5 3 -1.
+ <_>
+ 11 18 5 1 3.
+ <_>
+
+ <_>
+ 17 11 2 2 -1.
+ <_>
+ 17 11 1 1 2.
+ <_>
+ 18 12 1 1 2.
+ <_>
+
+ <_>
+ 10 17 6 3 -1.
+ <_>
+ 10 18 6 1 3.
+ <_>
+
+ <_>
+ 2 15 1 2 -1.
+ <_>
+ 2 16 1 1 2.
+ <_>
+
+ <_>
+ 8 6 3 3 -1.
+ <_>
+ 8 7 3 1 3.
+ <_>
+
+ <_>
+ 7 7 1 2 -1.
+ <_>
+ 7 8 1 1 2.
+ <_>
+
+ <_>
+ 2 15 2 2 -1.
+ <_>
+ 2 16 2 1 2.
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 16 1 1 3.
+ <_>
+
+ <_>
+ 3 0 3 20 -1.
+ <_>
+ 4 0 1 20 3.
+ <_>
+
+ <_>
+ 8 2 12 12 -1.
+ <_>
+ 14 2 6 12 2.
+ <_>
+
+ <_>
+ 5 3 2 3 -1.
+ <_>
+ 5 4 2 1 3.
+ <_>
+
+ <_>
+ 3 4 2 2 -1.
+ <_>
+ 3 4 1 1 2.
+ <_>
+ 4 5 1 1 2.
+ <_>
+
+ <_>
+ 0 15 20 3 -1.
+ <_>
+ 10 15 10 3 2.
+ <_>
+
+ <_>
+ 6 13 2 4 -1.
+ <_>
+ 6 13 1 2 2.
+ <_>
+ 7 15 1 2 2.
+ <_>
+
+ <_>
+ 12 8 3 7 -1.
+ <_>
+ 13 8 1 7 3.
+ <_>
+
+ <_>
+ 8 9 6 10 -1.
+ <_>
+ 8 9 3 5 2.
+ <_>
+ 11 14 3 5 2.
+ <_>
+
+ <_>
+ 2 10 16 2 -1.
+ <_>
+ 10 10 8 2 2.
+ <_>
+
+ <_>
+ 5 3 15 6 -1.
+ <_>
+ 10 3 5 6 3.
+ <_>
+
+ <_>
+ 10 14 2 1 -1.
+ <_>
+ 11 14 1 1 2.
+ <_>
+
+ <_>
+ 9 11 4 4 -1.
+ <_>
+ 11 11 2 4 2.
+ <_>
+
+ <_>
+ 12 8 2 4 -1.
+ <_>
+ 12 10 2 2 2.
+ <_>
+
+ <_>
+ 1 3 10 14 -1.
+ <_>
+ 1 3 5 7 2.
+ <_>
+ 6 10 5 7 2.
+ <_>
+
+ <_>
+ 8 0 3 4 -1.
+ <_>
+ 8 2 3 2 2.
+ <_>
+
+ <_>
+ 10 2 2 1 -1.
+ <_>
+ 11 2 1 1 2.
+ <_>
+
+ <_>
+ 5 12 5 3 -1.
+ <_>
+ 5 13 5 1 3.
+ <_>
+
+ <_>
+ 7 12 1 3 -1.
+ <_>
+ 7 13 1 1 3.
+ <_>
+
+ <_>
+ 10 12 6 3 -1.
+ <_>
+ 10 13 6 1 3.
+ <_>
+
+ <_>
+ 6 4 1 3 -1.
+ <_>
+ 6 5 1 1 3.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 2 1 18 1 3.
+ <_>
+
+ <_>
+ 8 8 11 6 -1.
+ <_>
+ 8 10 11 2 3.
+ <_>
+
+ <_>
+ 2 6 10 8 -1.
+ <_>
+ 2 6 5 4 2.
+ <_>
+ 7 10 5 4 2.
+ <_>
+
+ <_>
+ 9 2 6 2 -1.
+ <_>
+ 11 2 2 2 3.
+ <_>
+
+ <_>
+ 13 9 6 3 -1.
+ <_>
+ 15 9 2 3 3.
+ <_>
+
+ <_>
+ 5 3 1 2 -1.
+ <_>
+ 5 4 1 1 2.
+ <_>
+
+ <_>
+ 1 7 3 1 -1.
+ <_>
+ 2 7 1 1 3.
+ <_>
+
+ <_>
+ 0 6 8 6 -1.
+ <_>
+ 4 6 4 6 2.
+ <_>
+
+ <_>
+ 11 9 1 2 -1.
+ <_>
+ 11 10 1 1 2.
+ <_>
+
+ <_>
+ 12 13 1 2 -1.
+ <_>
+ 12 14 1 1 2.
+ <_>
+
+ <_>
+ 10 15 10 4 -1.
+ <_>
+ 10 15 5 2 2.
+ <_>
+ 15 17 5 2 2.
+ <_>
+
+ <_>
+ 12 11 1 2 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 6 11 2 1 -1.
+ <_>
+ 7 11 1 1 2.
+ <_>
+
+ <_>
+ 11 3 3 2 -1.
+ <_>
+ 12 3 1 2 3.
+ <_>
+
+ <_>
+ 4 7 6 5 -1.
+ <_>
+ 7 7 3 5 2.
+ <_>
+
+ <_>
+ 3 16 3 1 -1.
+ <_>
+ 4 16 1 1 3.
+ <_>
+
+ <_>
+ 4 7 6 5 -1.
+ <_>
+ 7 7 3 5 2.
+ <_>
+
+ <_>
+ 5 7 6 3 -1.
+ <_>
+ 7 7 2 3 3.
+ <_>
+
+ <_>
+ 7 8 4 8 -1.
+ <_>
+ 7 8 2 4 2.
+ <_>
+ 9 12 2 4 2.
+ <_>
+
+ <_>
+ 4 2 14 12 -1.
+ <_>
+ 4 6 14 4 3.
+ <_>
+
+ <_>
+ 4 14 2 6 -1.
+ <_>
+ 4 14 1 3 2.
+ <_>
+ 5 17 1 3 2.
+ <_>
+
+ <_>
+ 7 11 2 4 -1.
+ <_>
+ 7 13 2 2 2.
+ <_>
+
+ <_>
+ 6 4 10 15 -1.
+ <_>
+ 6 9 10 5 3.
+ <_>
+
+ <_>
+ 6 11 12 6 -1.
+ <_>
+ 6 13 12 2 3.
+ <_>
+
+ <_>
+ 6 17 4 3 -1.
+ <_>
+ 6 18 4 1 3.
+ <_>
+
+ <_>
+ 6 17 4 3 -1.
+ <_>
+ 6 18 4 1 3.
+ <_>
+
+ <_>
+ 9 13 3 7 -1.
+ <_>
+ 10 13 1 7 3.
+ <_>
+
+ <_>
+ 2 8 5 2 -1.
+ <_>
+ 2 9 5 1 2.
+ <_>
+
+ <_>
+ 14 1 3 8 -1.
+ <_>
+ 15 1 1 8 3.
+ <_>
+
+ <_>
+ 2 12 1 2 -1.
+ <_>
+ 2 13 1 1 2.
+ <_>
+
+ <_>
+ 8 6 2 2 -1.
+ <_>
+ 8 6 1 1 2.
+ <_>
+ 9 7 1 1 2.
+ <_>
+
+ <_>
+ 4 3 10 12 -1.
+ <_>
+ 4 9 10 6 2.
+ <_>
+
+ <_>
+ 5 9 8 4 -1.
+ <_>
+ 5 9 4 2 2.
+ <_>
+ 9 11 4 2 2.
+ <_>
+
+ <_>
+ 9 9 4 4 -1.
+ <_>
+ 9 11 4 2 2.
+ <_>
+
+ <_>
+ 5 10 4 2 -1.
+ <_>
+ 5 11 4 1 2.
+ <_>
+
+ <_>
+ 6 17 2 1 -1.
+ <_>
+ 7 17 1 1 2.
+ <_>
+
+ <_>
+ 12 12 2 1 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 11 6 4 8 -1.
+ <_>
+ 13 6 2 8 2.
+ <_>
+
+ <_>
+ 9 4 3 10 -1.
+ <_>
+ 10 4 1 10 3.
+ <_>
+
+ <_>
+ 0 18 9 2 -1.
+ <_>
+ 3 18 3 2 3.
+ <_>
+
+ <_>
+ 15 13 3 3 -1.
+ <_>
+ 15 14 3 1 3.
+ <_>
+
+ <_>
+ 9 12 2 2 -1.
+ <_>
+ 9 12 1 1 2.
+ <_>
+ 10 13 1 1 2.
+ <_>
+
+ <_>
+ 13 12 7 3 -1.
+ <_>
+ 13 13 7 1 3.
+ <_>
+
+ <_>
+ 14 10 6 2 -1.
+ <_>
+ 14 11 6 1 2.
+ <_>
+
+ <_>
+ 14 5 5 14 -1.
+ <_>
+ 14 12 5 7 2.
+ <_>
+
+ <_>
+ 4 16 5 3 -1.
+ <_>
+ 4 17 5 1 3.
+ <_>
+
+ <_>
+ 5 16 5 3 -1.
+ <_>
+ 5 17 5 1 3.
+ <_>
+
+ <_>
+ 8 14 4 5 -1.
+ <_>
+ 10 14 2 5 2.
+ <_>
+
+ <_>
+ 9 14 2 1 -1.
+ <_>
+ 10 14 1 1 2.
+ <_>
+
+ <_>
+ 6 10 6 2 -1.
+ <_>
+ 6 10 3 1 2.
+ <_>
+ 9 11 3 1 2.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 10 13 7 6 -1.
+ <_>
+ 10 15 7 2 3.
+ <_>
+
+ <_>
+ 4 1 2 8 -1.
+ <_>
+ 4 1 1 4 2.
+ <_>
+ 5 5 1 4 2.
+ <_>
+
+ <_>
+ 3 6 6 4 -1.
+ <_>
+ 3 6 3 2 2.
+ <_>
+ 6 8 3 2 2.
+ <_>
+
+ <_>
+ 15 2 3 13 -1.
+ <_>
+ 16 2 1 13 3.
+ <_>
+
+ <_>
+ 16 10 2 6 -1.
+ <_>
+ 16 10 1 3 2.
+ <_>
+ 17 13 1 3 2.
+ <_>
+
+ <_>
+ 13 19 2 1 -1.
+ <_>
+ 14 19 1 1 2.
+ <_>
+
+ <_>
+ 7 11 2 1 -1.
+ <_>
+ 8 11 1 1 2.
+ <_>
+
+ <_>
+ 4 10 3 4 -1.
+ <_>
+ 5 10 1 4 3.
+ <_>
+
+ <_>
+ 4 7 2 4 -1.
+ <_>
+ 4 7 1 2 2.
+ <_>
+ 5 9 1 2 2.
+ <_>
+
+ <_>
+ 10 7 5 4 -1.
+ <_>
+ 10 9 5 2 2.
+ <_>
+
+ <_>
+ 7 4 8 16 -1.
+ <_>
+ 7 4 4 8 2.
+ <_>
+ 11 12 4 8 2.
+ <_>
+
+ <_>
+ 5 9 10 6 -1.
+ <_>
+ 5 9 5 3 2.
+ <_>
+ 10 12 5 3 2.
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 5 12 3 1 2.
+ <_>
+
+ <_>
+ 12 12 4 8 -1.
+ <_>
+ 12 16 4 4 2.
+ <_>
+
+ <_>
+ 8 13 6 2 -1.
+ <_>
+ 8 14 6 1 2.
+ <_>
+
+ <_>
+ 3 12 5 6 -1.
+ <_>
+ 3 14 5 2 3.
+ <_>
+
+ <_>
+ 16 0 2 2 -1.
+ <_>
+ 16 0 1 1 2.
+ <_>
+ 17 1 1 1 2.
+ <_>
+
+ <_>
+ 13 3 3 4 -1.
+ <_>
+ 14 3 1 4 3.
+ <_>
+
+ <_>
+ 15 11 3 1 -1.
+ <_>
+ 16 11 1 1 3.
+ <_>
+
+ <_>
+ 14 0 6 5 -1.
+ <_>
+ 16 0 2 5 3.
+ <_>
+
+ <_>
+ 10 1 8 18 -1.
+ <_>
+ 10 10 8 9 2.
+ <_>
+
+ <_>
+ 11 5 3 2 -1.
+ <_>
+ 11 6 3 1 2.
+ <_>
+
+ <_>
+ 5 5 2 1 -1.
+ <_>
+ 6 5 1 1 2.
+ <_>
+
+ <_>
+ 3 4 3 3 -1.
+ <_>
+ 4 4 1 3 3.
+ <_>
+
+ <_>
+ 11 14 1 3 -1.
+ <_>
+ 11 15 1 1 3.
+ <_>
+
+ <_>
+ 16 13 3 3 -1.
+ <_>
+ 16 14 3 1 3.
+ <_>
+
+ <_>
+ 15 8 5 12 -1.
+ <_>
+ 15 14 5 6 2.
+ <_>
+
+ <_>
+ 3 0 3 10 -1.
+ <_>
+ 4 0 1 10 3.
+ <_>
+
+ <_>
+ 15 15 1 2 -1.
+ <_>
+ 15 16 1 1 2.
+ <_>
+
+ <_>
+ 15 0 4 2 -1.
+ <_>
+ 15 0 2 1 2.
+ <_>
+ 17 1 2 1 2.
+ <_>
+
+ <_>
+ 17 2 2 1 -1.
+ <_>
+ 18 2 1 1 2.
+ <_>
+
+ <_>
+ 8 13 1 3 -1.
+ <_>
+ 8 14 1 1 3.
+ <_>
+
+ <_>
+ 9 1 2 6 -1.
+ <_>
+ 9 1 1 3 2.
+ <_>
+ 10 4 1 3 2.
+ <_>
+
+ <_>
+ 1 12 9 3 -1.
+ <_>
+ 1 13 9 1 3.
+ <_>
+
+ <_>
+ 12 14 3 3 -1.
+ <_>
+ 12 15 3 1 3.
+ <_>
+
+ <_>
+ 15 10 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ <_>
+
+ <_>
+ 9 6 9 1 -1.
+ <_>
+ 12 6 3 1 3.
+ <_>
+
+ <_>
+ 12 5 3 7 -1.
+ <_>
+ 13 5 1 7 3.
+ <_>
+
+ <_>
+ 8 2 2 2 -1.
+ <_>
+ 8 3 2 1 2.
+ <_>
+
+ <_>
+ 7 0 9 2 -1.
+ <_>
+ 7 1 9 1 2.
+ <_>
+
+ <_>
+ 13 5 2 5 -1.
+ <_>
+ 14 5 1 5 2.
+ <_>
+
+ <_>
+ 14 2 3 6 -1.
+ <_>
+ 15 2 1 6 3.
+ <_>
+
+ <_>
+ 8 6 4 3 -1.
+ <_>
+ 8 7 4 1 3.
+ <_>
+
+ <_>
+ 6 8 1 9 -1.
+ <_>
+ 6 11 1 3 3.
+ <_>
+
+ <_>
+ 3 9 7 6 -1.
+ <_>
+ 3 11 7 2 3.
+ <_>
+
+ <_>
+ 6 6 2 3 -1.
+ <_>
+ 6 7 2 1 3.
+ <_>
+
+ <_>
+ 5 9 3 1 -1.
+ <_>
+ 6 9 1 1 3.
+ <_>
+
+ <_>
+ 4 5 4 4 -1.
+ <_>
+ 4 5 2 2 2.
+ <_>
+ 6 7 2 2 2.
+ <_>
+
+ <_>
+ 8 5 2 3 -1.
+ <_>
+ 8 6 2 1 3.
+ <_>
+
+ <_>
+ 5 6 4 7 -1.
+ <_>
+ 7 6 2 7 2.
+ <_>
+
+ <_>
+ 10 8 3 5 -1.
+ <_>
+ 11 8 1 5 3.
+ <_>
+
+ <_>
+ 11 4 3 13 -1.
+ <_>
+ 12 4 1 13 3.
+ <_>
+
+ <_>
+ 2 13 3 3 -1.
+ <_>
+ 3 13 1 3 3.
+ <_>
+
+ <_>
+ 4 8 3 2 -1.
+ <_>
+ 5 8 1 2 3.
+ <_>
+
+ <_>
+ 0 4 1 3 -1.
+ <_>
+ 0 5 1 1 3.
+ <_>
+
+ <_>
+ 7 6 6 6 -1.
+ <_>
+ 9 6 2 6 3.
+ <_>
+
+ <_>
+ 7 7 4 12 -1.
+ <_>
+ 9 7 2 12 2.
+ <_>
+
+ <_>
+ 6 12 6 3 -1.
+ <_>
+ 9 12 3 3 2.
+ <_>
+
+ <_>
+ 8 6 9 12 -1.
+ <_>
+ 8 10 9 4 3.
+ <_>
+
+ <_>
+ 11 0 3 15 -1.
+ <_>
+ 11 5 3 5 3.
+ <_>
+
+ <_>
+ 8 16 6 4 -1.
+ <_>
+ 8 16 3 2 2.
+ <_>
+ 11 18 3 2 2.
+ <_>
+
+ <_>
+ 6 5 10 6 -1.
+ <_>
+ 6 7 10 2 3.
+ <_>
+
+ <_>
+ 2 12 3 4 -1.
+ <_>
+ 3 12 1 4 3.
+ <_>
+
+ <_>
+ 9 13 4 3 -1.
+ <_>
+ 9 14 4 1 3.
+ <_>
+
+ <_>
+ 3 0 4 6 -1.
+ <_>
+ 3 0 2 3 2.
+ <_>
+ 5 3 2 3 2.
+ <_>
+
+ <_>
+ 5 9 6 1 -1.
+ <_>
+ 8 9 3 1 2.
+ <_>
+
+ <_>
+ 11 14 2 3 -1.
+ <_>
+ 11 15 2 1 3.
+ <_>
+
+ <_>
+ 5 8 2 1 -1.
+ <_>
+ 6 8 1 1 2.
+ <_>
+
+ <_>
+ 17 0 3 12 -1.
+ <_>
+ 17 4 3 4 3.
+ <_>
+
+ <_>
+ 10 13 3 6 -1.
+ <_>
+ 11 13 1 6 3.
+ <_>
+
+ <_>
+ 10 13 3 7 -1.
+ <_>
+ 11 13 1 7 3.
+ <_>
+
+ <_>
+ 6 5 6 1 -1.
+ <_>
+ 8 5 2 1 3.
+ <_>
+
+ <_>
+ 18 2 2 8 -1.
+ <_>
+ 19 2 1 8 2.
+ <_>
+
+ <_>
+ 5 8 3 1 -1.
+ <_>
+ 6 8 1 1 3.
+ <_>
+
+ <_>
+ 8 7 4 6 -1.
+ <_>
+ 8 7 2 3 2.
+ <_>
+ 10 10 2 3 2.
+ <_>
+
+ <_>
+ 8 3 2 2 -1.
+ <_>
+ 8 3 1 1 2.
+ <_>
+ 9 4 1 1 2.
+ <_>
+
+ <_>
+ 18 5 2 3 -1.
+ <_>
+ 18 6 2 1 3.
+ <_>
+
+ <_>
+ 17 7 3 4 -1.
+ <_>
+ 18 7 1 4 3.
+ <_>
+
+ <_>
+ 8 2 2 4 -1.
+ <_>
+ 8 2 1 2 2.
+ <_>
+ 9 4 1 2 2.
+ <_>
+
+ <_>
+ 4 6 2 2 -1.
+ <_>
+ 5 6 1 2 2.
+ <_>
+
+ <_>
+ 4 8 3 1 -1.
+ <_>
+ 5 8 1 1 3.
+ <_>
+
+ <_>
+ 10 9 9 10 -1.
+ <_>
+ 10 14 9 5 2.
+ <_>
+
+ <_>
+ 6 4 3 1 -1.
+ <_>
+ 7 4 1 1 3.
+ <_>
+
+ <_>
+ 8 14 1 3 -1.
+ <_>
+ 8 15 1 1 3.
+ <_>
+
+ <_>
+ 6 4 2 1 -1.
+ <_>
+ 7 4 1 1 2.
+ <_>
+
+ <_>
+ 5 9 3 9 -1.
+ <_>
+ 5 12 3 3 3.
+ <_>
+
+ <_>
+ 5 13 7 3 -1.
+ <_>
+ 5 14 7 1 3.
+ <_>
+
+ <_>
+ 9 6 2 10 -1.
+ <_>
+ 9 6 1 5 2.
+ <_>
+ 10 11 1 5 2.
+ <_>
+
+ <_>
+ 13 1 3 18 -1.
+ <_>
+ 13 10 3 9 2.
+ <_>
+
+ <_>
+ 5 13 2 3 -1.
+ <_>
+ 5 14 2 1 3.
+ <_>
+
+ <_>
+ 9 10 3 7 -1.
+ <_>
+ 10 10 1 7 3.
+ <_>
+
+ <_>
+ 17 0 3 13 -1.
+ <_>
+ 18 0 1 13 3.
+ <_>
+
+ <_>
+ 13 6 1 2 -1.
+ <_>
+ 13 7 1 1 2.
+ <_>
+
+ <_>
+ 6 15 3 2 -1.
+ <_>
+ 7 15 1 2 3.
+ <_>
+
+ <_>
+ 5 14 2 3 -1.
+ <_>
+ 5 15 2 1 3.
+ <_>
+
+ <_>
+ 16 6 1 6 -1.
+ <_>
+ 16 8 1 2 3.
+ <_>
+
+ <_>
+ 0 6 2 2 -1.
+ <_>
+ 1 6 1 2 2.
+ <_>
+
+ <_>
+ 3 12 4 8 -1.
+ <_>
+ 3 12 2 4 2.
+ <_>
+ 5 16 2 4 2.
+ <_>
+
+ <_>
+ 6 2 2 8 -1.
+ <_>
+ 7 2 1 8 2.
+ <_>
+
+ <_>
+ 6 7 2 6 -1.
+ <_>
+ 6 7 1 3 2.
+ <_>
+ 7 10 1 3 2.
+ <_>
+
+ <_>
+ 5 12 4 2 -1.
+ <_>
+ 7 12 2 2 2.
+ <_>
+
+ <_>
+ 4 9 13 2 -1.
+ <_>
+ 4 10 13 1 2.
+ <_>
+
+ <_>
+ 19 5 1 2 -1.
+ <_>
+ 19 6 1 1 2.
+ <_>
+
+ <_>
+ 4 8 9 1 -1.
+ <_>
+ 7 8 3 1 3.
+ <_>
+
+ <_>
+ 8 8 2 1 -1.
+ <_>
+ 9 8 1 1 2.
+ <_>
+
+ <_>
+ 3 0 2 10 -1.
+ <_>
+ 3 5 2 5 2.
+ <_>
+
+ <_>
+ 6 2 2 1 -1.
+ <_>
+ 7 2 1 1 2.
+ <_>
+
+ <_>
+ 14 5 3 3 -1.
+ <_>
+ 15 5 1 3 3.
+ <_>
+
+ <_>
+ 4 8 2 2 -1.
+ <_>
+ 4 8 1 1 2.
+ <_>
+ 5 9 1 1 2.
+ <_>
+
+ <_>
+ 8 16 9 2 -1.
+ <_>
+ 8 17 9 1 2.
+ <_>
+
+ <_>
+ 6 7 2 3 -1.
+ <_>
+ 6 8 2 1 3.
+ <_>
+
+ <_>
+ 12 11 2 2 -1.
+ <_>
+ 12 11 1 1 2.
+ <_>
+ 13 12 1 1 2.
+ <_>
+
+ <_>
+ 15 9 2 4 -1.
+ <_>
+ 15 11 2 2 2.
+ <_>
+
+ <_>
+ 5 11 2 3 -1.
+ <_>
+ 5 12 2 1 3.
+ <_>
+
+ <_>
+ 6 11 2 3 -1.
+ <_>
+ 6 12 2 1 3.
+ <_>
+
+ <_>
+ 6 12 1 6 -1.
+ <_>
+ 6 15 1 3 2.
+ <_>
+
+ <_>
+ 6 9 5 9 -1.
+ <_>
+ 6 12 5 3 3.
+ <_>
+
+ <_>
+ 8 11 2 2 -1.
+ <_>
+ 8 12 2 1 2.
+ <_>
+
+ <_>
+ 8 10 4 2 -1.
+ <_>
+ 10 10 2 2 2.
+ <_>
+
+ <_>
+ 8 10 4 6 -1.
+ <_>
+ 8 10 2 3 2.
+ <_>
+ 10 13 2 3 2.
+ <_>
+
+ <_>
+ 2 0 9 20 -1.
+ <_>
+ 5 0 3 20 3.
+ <_>
+
+ <_>
+ 12 3 2 4 -1.
+ <_>
+ 12 3 1 2 2.
+ <_>
+ 13 5 1 2 2.
+ <_>
+
+ <_>
+ 15 0 2 10 -1.
+ <_>
+ 16 0 1 10 2.
+ <_>
+
+ <_>
+ 13 7 3 4 -1.
+ <_>
+ 14 7 1 4 3.
+ <_>
+
+ <_>
+ 14 10 1 2 -1.
+ <_>
+ 14 11 1 1 2.
+ <_>
+
+ <_>
+ 16 11 3 1 -1.
+ <_>
+ 17 11 1 1 3.
+ <_>
+
+ <_>
+ 16 11 2 2 -1.
+ <_>
+ 16 11 1 1 2.
+ <_>
+ 17 12 1 1 2.
+ <_>
+
+ <_>
+ 13 12 6 1 -1.
+ <_>
+ 15 12 2 1 3.
+ <_>
+
+ <_>
+ 3 2 14 9 -1.
+ <_>
+ 10 2 7 9 2.
+ <_>
+
+ <_>
+ 5 4 12 2 -1.
+ <_>
+ 11 4 6 2 2.
+ <_>
+
+ <_>
+ 13 6 2 1 -1.
+ <_>
+ 14 6 1 1 2.
+ <_>
+
+ <_>
+ 7 10 3 3 -1.
+ <_>
+ 7 11 3 1 3.
+ <_>
+
+ <_>
+ 16 17 4 2 -1.
+ <_>
+ 18 17 2 2 2.
+ <_>
+
+ <_>
+ 4 12 8 8 -1.
+ <_>
+ 4 12 4 4 2.
+ <_>
+ 8 16 4 4 2.
+ <_>
+
+ <_>
+ 14 8 4 5 -1.
+ <_>
+ 16 8 2 5 2.
+ <_>
+
+ <_>
+ 11 8 6 2 -1.
+ <_>
+ 13 8 2 2 3.
+ <_>
+
+ <_>
+ 4 5 16 5 -1.
+ <_>
+ 12 5 8 5 2.
+ <_>
+
+ <_>
+ 14 9 6 10 -1.
+ <_>
+ 16 9 2 10 3.
+ <_>
+
+ <_>
+ 4 18 3 1 -1.
+ <_>
+ 5 18 1 1 3.
+ <_>
+
+ <_>
+ 4 13 4 4 -1.
+ <_>
+ 4 13 2 2 2.
+ <_>
+ 6 15 2 2 2.
+ <_>
+
+ <_>
+ 6 15 2 3 -1.
+ <_>
+ 6 16 2 1 3.
+ <_>
+
+ <_>
+ 6 15 1 3 -1.
+ <_>
+ 6 16 1 1 3.
+ <_>
+
+ <_>
+ 7 17 3 1 -1.
+ <_>
+ 8 17 1 1 3.
+ <_>
+
+ <_>
+ 7 17 3 1 -1.
+ <_>
+ 8 17 1 1 3.
+ <_>
+
+ <_>
+ 9 10 4 1 -1.
+ <_>
+ 11 10 2 1 2.
+ <_>
+
+ <_>
+ 11 12 2 1 -1.
+ <_>
+ 12 12 1 1 2.
+ <_>
+
+ <_>
+ 7 8 1 6 -1.
+ <_>
+ 7 11 1 3 2.
+ <_>
+
+ <_>
+ 6 7 3 3 -1.
+ <_>
+ 7 7 1 3 3.
+ <_>
+
+ <_>
+ 13 10 1 3 -1.
+ <_>
+ 13 11 1 1 3.
+ <_>
+
+ <_>
+ 5 8 2 4 -1.
+ <_>
+ 5 10 2 2 2.
+ <_>
+
+ <_>
+ 5 8 6 6 -1.
+ <_>
+ 8 8 3 6 2.
+ <_>
+
+ <_>
+ 6 5 4 13 -1.
+ <_>
+ 8 5 2 13 2.
+ <_>
+
+ <_>
+ 8 4 10 8 -1.
+ <_>
+ 8 4 5 4 2.
+ <_>
+ 13 8 5 4 2.
+ <_>
+
+ <_>
+ 8 3 9 6 -1.
+ <_>
+ 11 3 3 6 3.
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 13 0 2 3 3.
+ <_>
+
+ <_>
+ 11 1 3 15 -1.
+ <_>
+ 12 1 1 15 3.
+ <_>
+
+ <_>
+ 4 8 14 9 -1.
+ <_>
+ 4 11 14 3 3.
+ <_>
+
+ <_>
+ 11 2 1 16 -1.
+ <_>
+ 11 10 1 8 2.
+ <_>
+
+ <_>
+ 12 1 2 14 -1.
+ <_>
+ 12 8 2 7 2.
+ <_>
+
+ <_>
+ 11 1 3 4 -1.
+ <_>
+ 12 1 1 4 3.
+ <_>
+
+ <_>
+ 9 8 4 2 -1.
+ <_>
+ 9 8 2 1 2.
+ <_>
+ 11 9 2 1 2.
+ <_>
+
+ <_>
+ 17 3 2 2 -1.
+ <_>
+ 18 3 1 2 2.
+ <_>
+
+ <_>
+ 2 6 3 2 -1.
+ <_>
+ 3 6 1 2 3.
+ <_>
+
+ <_>
+ 9 8 2 2 -1.
+ <_>
+ 9 9 2 1 2.
+ <_>
+
+ <_>
+ 6 15 6 1 -1.
+ <_>
+ 8 15 2 1 3.
+ <_>
+
+ <_>
+ 16 10 2 4 -1.
+ <_>
+ 16 10 1 2 2.
+ <_>
+ 17 12 1 2 2.
+ <_>
+
+ <_>
+ 6 6 10 6 -1.
+ <_>
+ 6 6 5 3 2.
+ <_>
+ 11 9 5 3 2.
+ <_>
+
+ <_>
+ 13 8 3 3 -1.
+ <_>
+ 13 9 3 1 3.
+ <_>
+
+ <_>
+ 13 0 4 2 -1.
+ <_>
+ 13 0 2 1 2.
+ <_>
+ 15 1 2 1 2.
+ <_>
+
+ <_>
+ 10 0 10 2 -1.
+ <_>
+ 10 0 5 1 2.
+ <_>
+ 15 1 5 1 2.
+ <_>
+
+ <_>
+ 13 13 2 1 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 4 9 1 1 2.
+ <_>
+ 5 10 1 1 2.
+ <_>
+
+ <_>
+ 6 8 2 3 -1.
+ <_>
+ 6 9 2 1 3.
+ <_>
+
+ <_>
+ 2 12 2 3 -1.
+ <_>
+ 2 13 2 1 3.
+ <_>
+
+ <_>
+ 2 0 10 2 -1.
+ <_>
+ 2 0 5 1 2.
+ <_>
+ 7 1 5 1 2.
+ <_>
+
+ <_>
+ 6 2 2 2 -1.
+ <_>
+ 6 3 2 1 2.
+ <_>
+
+ <_>
+ 5 10 8 2 -1.
+ <_>
+ 5 11 8 1 2.
+ <_>
+
+ <_>
+ 11 7 5 10 -1.
+ <_>
+ 11 12 5 5 2.
+ <_>
+
+ <_>
+ 5 10 4 3 -1.
+ <_>
+ 5 11 4 1 3.
+ <_>
+
+ <_>
+ 9 6 6 12 -1.
+ <_>
+ 9 12 6 6 2.
+ <_>
+
+ <_>
+ 16 10 3 5 -1.
+ <_>
+ 17 10 1 5 3.
+ <_>
+
+ <_>
+ 15 12 2 4 -1.
+ <_>
+ 15 12 1 2 2.
+ <_>
+ 16 14 1 2 2.
+ <_>
+
+ <_>
+ 8 0 12 8 -1.
+ <_>
+ 8 0 6 4 2.
+ <_>
+ 14 4 6 4 2.
+ <_>
+
+ <_>
+ 14 1 5 3 -1.
+ <_>
+ 14 2 5 1 3.
+ <_>
+
+ <_>
+ 2 2 3 6 -1.
+ <_>
+ 3 2 1 6 3.
+ <_>
+
+ <_>
+ 6 5 2 2 -1.
+ <_>
+ 7 5 1 2 2.
+ <_>
+
+ <_>
+ 7 12 12 1 -1.
+ <_>
+ 11 12 4 1 3.
+ <_>
+
+ <_>
+ 13 9 7 2 -1.
+ <_>
+ 13 10 7 1 2.
+ <_>
+
+ <_>
+ 5 10 1 3 -1.
+ <_>
+ 5 11 1 1 3.
+ <_>
+
+ <_>
+ 0 4 15 2 -1.
+ <_>
+ 5 4 5 2 3.
+ <_>
+
+ <_>
+ 3 0 9 13 -1.
+ <_>
+ 6 0 3 13 3.
+ <_>
+
+ <_>
+ 5 10 6 2 -1.
+ <_>
+ 7 10 2 2 3.
+ <_>
+
+ <_>
+ 8 3 4 2 -1.
+ <_>
+ 8 3 2 1 2.
+ <_>
+ 10 4 2 1 2.
+ <_>
+
+ <_>
+ 8 7 2 6 -1.
+ <_>
+ 8 7 1 3 2.
+ <_>
+ 9 10 1 3 2.
+ <_>
+
+ <_>
+ 8 7 2 3 -1.
+ <_>
+ 9 7 1 3 2.
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 6 11 1 3 3.
+ <_>
+
+ <_>
+ 0 1 1 2 -1.
+ <_>
+ 0 2 1 1 2.
+ <_>
+
+ <_>
+ 7 0 1 6 -1.
+ <_>
+ 7 2 1 2 3.
+ <_>
+
+ <_>
+ 14 0 2 5 -1.
+ <_>
+ 15 0 1 5 2.
+ <_>
+
+ <_>
+ 3 2 12 1 -1.
+ <_>
+ 7 2 4 1 3.
+ <_>
+
+ <_>
+ 11 13 5 2 -1.
+ <_>
+ 11 14 5 1 2.
+ <_>
+
+ <_>
+ 13 14 1 3 -1.
+ <_>
+ 13 15 1 1 3.
+ <_>
+
+ <_>
+ 7 17 12 2 -1.
+ <_>
+ 11 17 4 2 3.
+ <_>
+
+ <_>
+ 0 0 13 20 -1.
+ <_>
+ 0 10 13 10 2.
+ <_>
+
+ <_>
+ 4 7 10 12 -1.
+ <_>
+ 4 13 10 6 2.
+ <_>
+
+ <_>
+ 10 12 2 2 -1.
+ <_>
+ 11 12 1 2 2.
+ <_>
+
+ <_>
+ 9 11 4 4 -1.
+ <_>
+ 11 11 2 4 2.
+ <_>
+
+ <_>
+ 4 9 16 5 -1.
+ <_>
+ 12 9 8 5 2.
+ <_>
+
+ <_>
+ 16 9 2 4 -1.
+ <_>
+ 17 9 1 4 2.
+ <_>
+
+ <_>
+ 15 9 3 1 -1.
+ <_>
+ 16 9 1 1 3.
+ <_>
+
+ <_>
+ 14 3 4 11 -1.
+ <_>
+ 16 3 2 11 2.
+ <_>
+
+ <_>
+ 4 3 10 10 -1.
+ <_>
+ 4 3 5 5 2.
+ <_>
+ 9 8 5 5 2.
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 9 1 1 3.
+ <_>
+
+ <_>
+ 6 4 14 9 -1.
+ <_>
+ 6 7 14 3 3.
+ <_>
+
+ <_>
+ 8 11 2 4 -1.
+ <_>
+ 8 13 2 2 2.
+ <_>
+
+ <_>
+ 5 9 6 8 -1.
+ <_>
+ 5 9 3 4 2.
+ <_>
+ 8 13 3 4 2.
+ <_>
+
+ <_>
+ 5 11 4 4 -1.
+ <_>
+ 5 13 4 2 2.
+ <_>
+
+ <_>
+ 7 14 1 3 -1.
+ <_>
+ 7 15 1 1 3.
+ <_>
+
+ <_>
+ 9 10 3 1 -1.
+ <_>
+ 10 10 1 1 3.
+ <_>
+
+ <_>
+ 4 8 2 4 -1.
+ <_>
+ 4 8 1 2 2.
+ <_>
+ 5 10 1 2 2.
+ <_>
+
+ <_>
+ 14 6 2 5 -1.
+ <_>
+ 15 6 1 5 2.
+ <_>
+
+ <_>
+ 13 7 6 7 -1.
+ <_>
+ 15 7 2 7 3.
+ <_>
+
+ <_>
+ 15 6 4 7 -1.
+ <_>
+ 17 6 2 7 2.
+ <_>
+
+ <_>
+ 9 11 6 5 -1.
+ <_>
+ 11 11 2 5 3.
+ <_>
+
+ <_>
+ 0 8 20 4 -1.
+ <_>
+ 10 8 10 4 2.
+ <_>
+
+ <_>
+ 1 2 8 14 -1.
+ <_>
+ 1 2 4 7 2.
+ <_>
+ 5 9 4 7 2.
+ <_>
+
+ <_>
+ 10 13 3 1 -1.
+ <_>
+ 11 13 1 1 3.
+ <_>
+
+ <_>
+ 7 0 6 4 -1.
+ <_>
+ 9 0 2 4 3.
+ <_>
+
+ <_>
+ 7 14 6 2 -1.
+ <_>
+ 7 14 3 1 2.
+ <_>
+ 10 15 3 1 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_righteye_2splits.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_righteye_2splits.xml
new file mode 100644
index 0000000000000000000000000000000000000000..db4571cde604f8089dc563a5d5652b79e246483d
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_righteye_2splits.xml
@@ -0,0 +1,7407 @@
+
+
+
+BOOST
+ HAAR
+ 20
+ 20
+
+ 34
+
+ 0
+ 20
+
+ <_>
+ 5
+ -2.2325520515441895e+00
+
+ <_>
+
+ 1 0 0 -4.8210550099611282e-02 -1 -2 1
+ -4.1576199233531952e-02
+
+ -8.6140447854995728e-01 9.1769057512283325e-01
+ -2.1284009516239166e-01
+ <_>
+
+ 0 1 2 9.3528684228658676e-03 -1 -2 3 -2.2144919785205275e-04
+
+ -6.9785767793655396e-01 7.9523372650146484e-01
+ -4.8948091268539429e-01
+ <_>
+
+ 0 1 4 -2.1853350102901459e-02 -1 -2 5 9.9672928452491760e-02
+
+ 7.0574641227722168e-01 -7.0666241645812988e-01
+ 7.9210978746414185e-01
+ <_>
+
+ 1 0 6 -2.1664820611476898e-02 -1 -2 7
+ -7.5680727604776621e-04
+
+ -6.0898607969284058e-01 7.1685701608657837e-01
+ -3.0464568734169006e-01
+ <_>
+
+ 1 0 8 -1.3333049602806568e-02 -1 -2 9 9.2925298959016800e-03
+
+ -4.6844691038131714e-01 6.4235931634902954e-01
+ -5.1180428266525269e-01
+ <_>
+ 5
+ -2.1598019599914551e+00
+
+ <_>
+
+ 0 1 10 -3.3948719501495361e-01 -1 -2 11
+ -1.3672479987144470e-01
+
+ 7.7913260459899902e-01 2.6421278715133667e-01
+ -8.7910091876983643e-01
+ <_>
+
+ 0 1 12 3.1394500285387039e-02 -1 -2 13
+ -1.0828140191733837e-02
+
+ -6.9956701993942261e-01 7.6504492759704590e-01
+ -4.3719211220741272e-01
+ <_>
+
+ 1 0 14 -4.2506768368184566e-03 -1 -2 15
+ -2.2675469517707825e-02
+
+ -5.7561582326889038e-01 7.4080592393875122e-01
+ -3.6677250266075134e-01
+ <_>
+
+ 1 0 16 3.9161480963230133e-02 -1 -2 17
+ -3.1934089493006468e-03
+
+ 6.4045161008834839e-01 1.6047589480876923e-01
+ -7.1010977029800415e-01
+ <_>
+
+ 1 0 18 2.5321990251541138e-02 -1 -2 19
+ 7.7583367237821221e-04
+
+ 4.9574860930442810e-01 -7.1737897396087646e-01
+ -1.8581770360469818e-02
+ <_>
+ 8
+ -2.3451159000396729e+00
+
+ <_>
+
+ 1 0 20 -2.6554059982299805e-01 -1 -2 21
+ -2.2532779723405838e-02
+
+ -8.4712451696395874e-01 8.7977188825607300e-01
+ -3.3394691348075867e-01
+ <_>
+
+ 0 1 22 8.5310067515820265e-04 -1 -2 23
+ 1.5820249973330647e-04
+
+ -8.2032448053359985e-01 -7.5176358222961426e-01
+ 6.7769712209701538e-01
+ <_>
+
+ 1 0 24 -1.0837490117410198e-04 -1 -2 25
+ 2.6810260023921728e-03
+
+ -8.3314001560211182e-01 5.3844749927520752e-01
+ -7.6534157991409302e-01
+ <_>
+
+ 0 1 26 8.5202371701598167e-04 -1 -2 27
+ -1.2241739779710770e-02
+
+ -7.7514898777008057e-01 6.3240152597427368e-01
+ -6.3395208120346069e-01
+ <_>
+
+ 1 0 28 6.2314196838997304e-05 -1 -2 29
+ -7.1911108493804932e-01
+
+ 4.4290411472320557e-01 8.0135929584503174e-01
+ -5.3431099653244019e-01
+ <_>
+
+ 1 0 30 -2.4280339479446411e-02 -1 -2 31
+ 3.4558640327304602e-03
+
+ -6.7797917127609253e-01 4.9030610918998718e-01
+ -8.8447982072830200e-01
+ <_>
+
+ 1 0 32 -6.2993327446747571e-05 -1 -2 33
+ -4.6443562023341656e-03
+
+ -5.7883417606353760e-01 -8.5878807306289673e-01
+ 5.2454602718353271e-01
+ <_>
+
+ 1 0 34 -4.0299328247783706e-05 -1 -2 35
+ -3.7485519424080849e-03
+
+ -5.2713459730148315e-01 -8.5626190900802612e-01
+ 4.8944610357284546e-01
+ <_>
+ 10
+ -2.3431489467620850e+00
+
+ <_>
+
+ 0 1 36 -3.8377079367637634e-01 -1 -2 37
+ -1.3837030529975891e-01
+
+ 7.1715021133422852e-01 3.4392359852790833e-01
+ -7.9931277036666870e-01
+ <_>
+
+ 0 1 38 3.3107071067206562e-04 -1 -2 39
+ -5.1273438148200512e-03
+
+ -6.8352431058883667e-01 5.8250617980957031e-01
+ -4.0955001115798950e-01
+ <_>
+
+ 1 0 40 -2.6100680232048035e-02 -1 -2 41
+ -1.0628979653120041e-03
+
+ -4.3713301420211792e-01 7.0680737495422363e-01
+ -2.6817938685417175e-01
+ <_>
+
+ 0 1 42 -9.7854852676391602e-02 -1 -2 43
+ -1.1829820275306702e-01
+
+ 7.3940038681030273e-01 6.3814181089401245e-01
+ -3.8721871376037598e-01
+ <_>
+
+ 1 0 44 -7.5409049168229103e-03 -1 -2 45
+ 2.6851659640669823e-03
+
+ -4.8803019523620605e-01 3.9083468914031982e-01
+ -6.5561538934707642e-01
+ <_>
+
+ 0 1 46 1.6870240215212107e-03 -1 -2 47
+ -3.8136160001158714e-03
+
+ -4.9891749024391174e-01 -6.6405588388442993e-01
+ 4.0650749206542969e-01
+ <_>
+
+ 1 0 48 2.0289309322834015e-03 -1 -2 49
+ -7.6308869756758213e-03
+
+ -6.9989210367202759e-01 4.3206840753555298e-01
+ -2.9664969444274902e-01
+ <_>
+
+ 1 0 50 -3.3815231290645897e-04 -1 -2 51
+ 7.5163291767239571e-03
+
+ -4.6808540821075439e-01 3.6521491408348083e-01
+ -7.6014542579650879e-01
+ <_>
+
+ 1 0 52 6.1479508876800537e-02 -1 -2 53
+ -4.6286579221487045e-02
+
+ 5.6990629434585571e-01 2.2625060379505157e-01
+ -4.5330780744552612e-01
+ <_>
+
+ 1 0 54 4.6903551556169987e-03 -1 -2 55
+ 1.8803169950842857e-03
+
+ -7.7286708354949951e-01 2.7349120378494263e-01
+ -6.6667830944061279e-01
+ <_>
+ 8
+ -2.1268370151519775e+00
+
+ <_>
+
+ 1 0 56 -5.5420672893524170e-01 -1 -2 57
+ -6.9329799152910709e-03
+
+ -6.0620260238647461e-01 7.8542029857635498e-01
+ -3.5522121191024780e-01
+ <_>
+
+ 0 1 58 -2.1169960498809814e-02 -1 -2 59
+ -6.7428398132324219e-01
+
+ 5.2947688102722168e-01 4.6065220236778259e-01
+ -7.0058208703994751e-01
+ <_>
+
+ 1 0 60 -4.2725078761577606e-02 -1 -2 61
+ -1.0109329596161842e-02
+
+ -5.9904807806015015e-01 6.8109220266342163e-01
+ -2.0731879770755768e-01
+ <_>
+
+ 0 1 62 6.5861130133271217e-03 -1 -2 63
+ -7.6380418613553047e-03
+
+ -5.2420848608016968e-01 -7.0169782638549805e-01
+ 4.4100138545036316e-01
+ <_>
+
+ 0 1 64 -9.7681581974029541e-02 -1 -2 65
+ 1.0197360068559647e-02
+
+ 5.7708740234375000e-01 -9.8518550395965576e-02
+ -8.8111698627471924e-01
+ <_>
+
+ 0 1 66 -2.5724549777805805e-03 -1 -2 67
+ 2.6594230439513922e-03
+
+ -8.3233338594436646e-01 3.0995351076126099e-01
+ -8.1609177589416504e-01
+ <_>
+
+ 1 0 68 -1.0042720241472125e-03 -1 -2 69
+ 2.6080000679939985e-03
+
+ -4.3558520078659058e-01 3.3566600084304810e-01
+ -8.1889331340789795e-01
+ <_>
+
+ 1 0 70 4.9724509008228779e-03 -1 -2 71
+ 1.2243240140378475e-02
+
+ -7.7048182487487793e-01 2.2534200549125671e-01
+ -6.8695551156997681e-01
+ <_>
+ 10
+ -2.0604379177093506e+00
+
+ <_>
+
+ 1 0 72 -5.7784929871559143e-02 -1 -2 73
+ -1.7517809756100178e-03
+
+ -7.0516008138656616e-01 8.5655921697616577e-01
+ -9.2403419315814972e-02
+ <_>
+
+ 1 0 74 -1.1522379703819752e-02 -1 -2 75
+ -3.8323760963976383e-03
+
+ -4.2749640345573425e-01 7.5913530588150024e-01
+ -1.0894049704074860e-01
+ <_>
+
+ 1 0 76 -8.0922387540340424e-02 -1 -2 77
+ -6.2537011690437794e-03
+
+ -3.1364768743515015e-01 6.9995921850204468e-01
+ -1.1805690079927444e-01
+ <_>
+
+ 0 1 78 -1.2227860093116760e-01 -1 -2 79
+ -6.4168110489845276e-02
+
+ 5.2072501182556152e-01 3.9272749423980713e-01
+ -4.2194411158561707e-01
+ <_>
+
+ 1 0 80 -5.3712888620793819e-04 -1 -2 81
+ -2.8175620827823877e-03
+
+ -4.9524548649787903e-01 4.1350141167640686e-01
+ -3.8919278979301453e-01
+ <_>
+
+ 0 1 82 -3.6368549335747957e-03 -1 -2 83
+ -1.3223909772932529e-03
+
+ 6.7615020275115967e-01 4.3426999449729919e-01
+ -3.7642130255699158e-01
+ <_>
+
+ 0 1 84 3.7143539520911872e-04 -1 -2 85
+ -5.0255712121725082e-03
+
+ -5.5630880594253540e-01 -5.2328592538833618e-01
+ 3.4646821022033691e-01
+ <_>
+
+ 1 0 86 -9.2711612523999065e-05 -1 -2 87
+ 1.9847028888761997e-03
+
+ -4.9652668833732605e-01 3.3401641249656677e-01
+ -6.2446892261505127e-01
+ <_>
+
+ 1 0 88 4.7203440219163895e-02 -1 -2 89
+ -6.8562600063160062e-05
+
+ 5.7562619447708130e-01 2.6172660291194916e-02
+ -6.0849070549011230e-01
+ <_>
+
+ 1 0 90 7.5034219771623611e-03 -1 -2 91
+ 6.3834791071712971e-03
+
+ -6.8576759099960327e-01 -1.7312510311603546e-01
+ 3.8560429215431213e-01
+ <_>
+ 12
+ -2.3187489509582520e+00
+
+ <_>
+
+ 1 0 92 -1.5584450215101242e-02 -1 -2 93
+ 1.4557019807398319e-02
+
+ -6.6648960113525391e-01 -4.3745130300521851e-01
+ 7.2227817773818970e-01
+ <_>
+
+ 1 0 94 -5.7889888994395733e-03 -1 -2 95
+ -8.1936769187450409e-02
+
+ -4.3183240294456482e-01 6.8467652797698975e-01
+ -2.2546729445457458e-01
+ <_>
+
+ 1 0 96 -4.2995368130505085e-03 -1 -2 97
+ -1.3736640103161335e-02
+
+ -5.2409631013870239e-01 6.1626207828521729e-01
+ -3.5893160104751587e-01
+ <_>
+
+ 1 0 98 -4.8069912008941174e-03 -1 -2 99
+ -7.7131099998950958e-02
+
+ -4.2382389307022095e-01 6.0599362850189209e-01
+ -3.1555330753326416e-01
+ <_>
+
+ 0 1 100 4.4640208943746984e-04 -1 -2 101
+ 3.4841578453779221e-02
+
+ -4.9206110835075378e-01 -4.1017889976501465e-02
+ 6.1330878734588623e-01
+ <_>
+
+ 0 1 102 8.2969048526138067e-04 -1 -2 103
+ -7.8510129242204130e-05
+
+ -4.5479419827461243e-01 4.0007328987121582e-01
+ -2.0888769626617432e-01
+ <_>
+
+ 1 0 104 4.6054688282310963e-03 -1 -2 105
+ -7.1904482319951057e-03
+
+ -6.7931377887725830e-01 4.7060671448707581e-01
+ -1.4138610661029816e-01
+ <_>
+
+ 0 1 106 -5.5724480189383030e-03 -1 -2 107
+ -7.0458237314596772e-04
+
+ -7.0525509119033813e-01 3.6097851395606995e-01
+ -1.8361540138721466e-01
+ <_>
+
+ 1 0 108 1.8595060333609581e-02 -1 -2 109
+ 5.0072550773620605e-02
+
+ 4.1765761375427246e-01 -4.1869449615478516e-01
+ 2.8186509013175964e-01
+ <_>
+
+ 1 0 110 -2.0355919376015663e-02 -1 -2 111
+ -2.8686519712209702e-02
+
+ -3.6494150757789612e-01 -5.3867787122726440e-01
+ 3.4767881035804749e-01
+ <_>
+
+ 1 0 112 -7.1101690991781652e-05 -1 -2 113
+ 2.0686469506472349e-03
+
+ -4.0156790614128113e-01 3.2963660359382629e-01
+ -7.0951050519943237e-01
+ <_>
+
+ 1 0 114 1.1430920567363501e-03 -1 -2 115
+ -8.8636036962270737e-03
+
+ 4.4172981381416321e-01 1.8426130712032318e-01
+ -4.1275170445442200e-01
+ <_>
+ 15
+ -2.2203750610351562e+00
+
+ <_>
+
+ 1 0 116 -7.7637642621994019e-02 -1 -2 117
+ -8.4830820560455322e-03
+
+ -4.9321529269218445e-01 7.8138542175292969e-01
+ -3.6062291264533997e-01
+ <_>
+
+ 1 0 118 -1.7180460272356868e-03 -1 -2 119
+ 2.4740949273109436e-02
+
+ -4.7690048813819885e-01 -3.2420080900192261e-01
+ 5.9280002117156982e-01
+ <_>
+
+ 0 1 120 3.3028100151568651e-03 -1 -2 121
+ -3.4622039645910263e-02
+
+ -5.3991597890853882e-01 5.2076727151870728e-01
+ -3.3530798554420471e-01
+ <_>
+
+ 1 0 122 -7.1505777304992080e-04 -1 -2 123
+ -9.0145105496048927e-03
+
+ -4.8981699347496033e-01 -7.7969801425933838e-01
+ 3.6586359143257141e-01
+ <_>
+
+ 1 0 124 -1.0250939521938562e-03 -1 -2 125
+ -5.5693178437650204e-03
+
+ -4.6970510482788086e-01 -6.9695621728897095e-01
+ 3.5025438666343689e-01
+ <_>
+
+ 0 1 126 1.3235070509836078e-03 -1 -2 127
+ -3.3737940248101950e-03
+
+ -4.4707980751991272e-01 -5.6195151805877686e-01
+ 3.1833809614181519e-01
+ <_>
+
+ 1 0 128 -6.4095242123585194e-05 -1 -2 129
+ -2.7294119354337454e-03
+
+ -3.5473638772964478e-01 4.1285240650177002e-01
+ -3.1416821479797363e-01
+ <_>
+
+ 0 1 130 6.3087652961257845e-05 -1 -2 131
+ -1.5436099842190742e-02
+
+ -3.5946568846702576e-01 -6.1329078674316406e-01
+ 3.4301999211311340e-01
+ <_>
+
+ 0 1 132 -2.1025019232183695e-03 -1 -2 133
+ -1.6849569976329803e-02
+
+ -7.6962250471115112e-01 3.6569809913635254e-01
+ -2.1210379898548126e-01
+ <_>
+
+ 0 1 134 5.6847798987291753e-05 -1 -2 135
+ 5.9984489344060421e-03
+
+ -4.0466558933258057e-01 2.8503778576850891e-01
+ -5.8756178617477417e-01
+ <_>
+
+ 1 0 136 6.1389962211251259e-03 -1 -2 137
+ -2.8117469628341496e-04
+
+ -8.7189829349517822e-01 2.5182509422302246e-01
+ -3.1868219375610352e-01
+ <_>
+
+ 1 0 138 -4.5429798774421215e-03 -1 -2 139
+ -3.2167110592126846e-02
+
+ -3.6724218726158142e-01 -7.9481202363967896e-01
+ 2.8887200355529785e-01
+ <_>
+
+ 1 0 140 5.0912089645862579e-03 -1 -2 141
+ -1.5173070132732391e-03
+
+ -7.1477490663528442e-01 4.4514629244804382e-01
+ -9.5207341015338898e-02
+ <_>
+
+ 1 0 142 -6.0079508693888783e-04 -1 -2 143
+ 4.4868541881442070e-03
+
+ -3.6021450161933899e-01 2.8276360034942627e-01
+ -7.2084128856658936e-01
+ <_>
+
+ 1 0 144 -3.7957848981022835e-03 -1 -2 145
+ -9.1829998418688774e-03
+
+ -2.8717440366744995e-01 5.0479042530059814e-01
+ -7.0781037211418152e-02
+ <_>
+ 17
+ -2.1757249832153320e+00
+
+ <_>
+
+ 1 0 146 -5.5760249495506287e-02 -1 -2 147
+ -5.9436690062284470e-02
+
+ -5.5854648351669312e-01 6.8943697214126587e-01
+ -3.7195080518722534e-01
+ <_>
+
+ 0 1 148 -5.4637178778648376e-02 -1 -2 149
+ 2.3608359694480896e-01
+
+ 5.3040331602096558e-01 -4.7355309128761292e-01
+ 4.6322488784790039e-01
+ <_>
+
+ 1 0 150 -9.4560505822300911e-03 -1 -2 151
+ -5.3182709962129593e-02
+
+ -3.2544779777526855e-01 6.3468569517135620e-01
+ -2.8268361091613770e-01
+ <_>
+
+ 1 0 152 -1.0638199746608734e-02 -1 -2 153
+ -2.1207019686698914e-02
+
+ -5.5776351690292358e-01 3.9049190282821655e-01
+ -4.2111930251121521e-01
+ <_>
+
+ 1 0 154 -5.6731878430582583e-05 -1 -2 155
+ -4.4976451317779720e-04
+
+ -4.1803309321403503e-01 3.7355789542198181e-01
+ -3.9199641346931458e-01
+ <_>
+
+ 1 0 156 2.7574670966714621e-03 -1 -2 157
+ 2.5649419985711575e-03
+
+ -7.9104632139205933e-01 1.9258180260658264e-01
+ -7.5344461202621460e-01
+ <_>
+
+ 0 1 158 -9.4359368085861206e-03 -1 -2 159
+ 1.4136210083961487e-03
+
+ 4.4834750890731812e-01 -3.3878430724143982e-01
+ 4.4291919469833374e-01
+ <_>
+
+ 1 0 160 3.9976350963115692e-03 -1 -2 161
+ -1.5278969658538699e-03
+
+ -6.6637581586837769e-01 3.1292399764060974e-01
+ -2.8027990460395813e-01
+ <_>
+
+ 1 0 162 -3.2376639865105972e-05 -1 -2 163
+ 1.6323389718309045e-03
+
+ -4.6672090888023376e-01 2.7995559573173523e-01
+ -6.1321508884429932e-01
+ <_>
+
+ 1 0 164 7.7096219174563885e-03 -1 -2 165
+ -7.8599318861961365e-02
+
+ 2.0352549850940704e-01 7.2726912796497345e-02
+ -6.8677097558975220e-01
+ <_>
+
+ 0 1 166 -3.6581400781869888e-03 -1 -2 167
+ -4.2612198740243912e-02
+
+ -6.8079459667205811e-01 -8.4551781415939331e-01
+ 1.5990570187568665e-01
+ <_>
+
+ 1 0 168 -4.8822778626345098e-04 -1 -2 169
+ -4.6951142139732838e-03
+
+ -4.7945699095726013e-01 -8.2234281301498413e-01
+ 2.0431579649448395e-01
+ <_>
+
+ 0 1 170 6.1706348787993193e-05 -1 -2 171
+ 1.3809910044074059e-02
+
+ -3.1742820143699646e-01 3.0769300460815430e-01
+ -4.3544968962669373e-01
+ <_>
+
+ 0 1 172 -4.2187729850411415e-03 -1 -2 173
+ -3.9540808647871017e-03
+
+ 6.2499982118606567e-01 1.3225209712982178e-01
+ -3.9745101332664490e-01
+ <_>
+
+ 1 0 174 2.2203531116247177e-03 -1 -2 175
+ 6.2806582718621939e-05
+
+ -6.0045331716537476e-01 -2.2429980337619781e-01
+ 2.9768520593643188e-01
+ <_>
+
+ 1 0 176 2.3292789701372385e-03 -1 -2 177
+ -5.3711822256445885e-03
+
+ -7.5982081890106201e-01 2.6484918594360352e-01
+ -2.6005539298057556e-01
+ <_>
+
+ 0 1 178 6.4782587287481874e-05 -1 -2 179
+ 7.6606678776443005e-03
+
+ -3.2119300961494446e-01 2.4176409840583801e-01
+ -8.3822727203369141e-01
+ <_>
+ 19
+ -2.2618789672851562e+00
+
+ <_>
+
+ 1 0 180 -1.4848279766738415e-02 -1 -2 181
+ -1.6066679963842034e-03
+
+ -5.3391128778457642e-01 7.6002711057662964e-01
+ -2.1091739833354950e-01
+ <_>
+
+ 1 0 182 -1.5651920437812805e-01 -1 -2 183
+ -5.5439779534935951e-03
+
+ -4.2818549275398254e-01 6.5620750188827515e-01
+ -2.2949840128421783e-01
+ <_>
+
+ 1 0 184 -1.9448339939117432e-02 -1 -2 185
+ 7.6653067953884602e-03
+
+ -4.4212520122528076e-01 -3.3950591087341309e-01
+ 4.6587219834327698e-01
+ <_>
+
+ 0 1 186 -2.1142010390758514e-01 -1 -2 187
+ -1.0628429800271988e-01
+
+ 5.5007970333099365e-01 6.8280947208404541e-01
+ -3.0987739562988281e-01
+ <_>
+
+ 1 0 188 -5.2653599530458450e-02 -1 -2 189
+ -5.3522300731856376e-05
+
+ -3.4818819165229797e-01 5.0566762685775757e-01
+ -2.5229519605636597e-01
+ <_>
+
+ 0 1 190 -5.7972650974988937e-03 -1 -2 191
+ -3.7428899668157101e-03
+
+ 3.0238011479377747e-01 2.2873230278491974e-01
+ -4.8366579413414001e-01
+ <_>
+
+ 1 0 192 -5.2694038458866999e-05 -1 -2 193
+ -1.1983739677816629e-03
+
+ -3.7988960742950439e-01 -6.7442452907562256e-01
+ 2.8611260652542114e-01
+ <_>
+
+ 1 0 194 2.2544799372553825e-02 -1 -2 195
+ 3.1783939339220524e-03
+
+ 4.7565719485282898e-01 -2.8893348574638367e-01
+ 5.5509638786315918e-01
+ <_>
+
+ 1 0 196 3.4742769785225391e-03 -1 -2 197
+ -8.1408787518739700e-03
+
+ -5.9826552867889404e-01 -5.5933791399002075e-01
+ 2.2349210083484650e-01
+ <_>
+
+ 0 1 198 -3.0238809995353222e-03 -1 -2 199
+ -5.9159598313271999e-03
+
+ 4.5917978882789612e-01 6.2234902381896973e-01
+ -2.4468150734901428e-01
+ <_>
+
+ 1 0 200 2.3184430319815874e-03 -1 -2 201
+ 7.7198208309710026e-03
+
+ -6.0478079319000244e-01 2.1004509925842285e-01
+ -6.4331281185150146e-01
+ <_>
+
+ 0 1 202 -5.5973320268094540e-03 -1 -2 203
+ 2.0320380281191319e-04
+
+ -7.1625810861587524e-01 -3.8018029928207397e-01
+ 2.1336899697780609e-01
+ <_>
+
+ 1 0 204 -3.8205389864742756e-03 -1 -2 205
+ 4.8883338458836079e-03
+
+ -3.5957258939743042e-01 2.6471930742263794e-01
+ -5.8996689319610596e-01
+ <_>
+
+ 0 1 206 -1.3334590476006269e-03 -1 -2 207
+ -1.5447080368176103e-03
+
+ 3.2258489727973938e-01 3.6971050500869751e-01
+ -3.1308570504188538e-01
+ <_>
+
+ 0 1 208 7.5150746852159500e-05 -1 -2 209
+ -1.1108840117231011e-03
+
+ -3.4674531221389771e-01 -5.7477539777755737e-01
+ 2.9201140999794006e-01
+ <_>
+
+ 1 0 210 -1.6881119518075138e-04 -1 -2 211
+ -1.2814450019504875e-04
+
+ -3.6041781306266785e-01 3.5043209791183472e-01
+ -2.2014050185680389e-01
+ <_>
+
+ 1 0 212 1.9546970725059509e-02 -1 -2 213
+ -1.1061180382966995e-02
+
+ 4.1295918822288513e-01 2.5962719321250916e-01
+ -3.4875950217247009e-01
+ <_>
+
+ 1 0 214 1.8147419905290008e-03 -1 -2 215
+ -7.1724010631442070e-03
+
+ -5.2019888162612915e-01 2.7452668547630310e-01
+ -2.6828849315643311e-01
+ <_>
+
+ 1 0 216 2.2158189676702023e-03 -1 -2 217
+ -9.6856858581304550e-03
+
+ -5.7340908050537109e-01 -5.8028572797775269e-01
+ 1.8564410507678986e-01
+ <_>
+ 19
+ -2.0994780063629150e+00
+
+ <_>
+
+ 0 1 218 -1.2065219692885876e-02 -1 -2 219
+ -4.9067771434783936e-01
+
+ 6.1679571866989136e-01 1.4063939452171326e-01
+ -5.5357742309570312e-01
+ <_>
+
+ 1 0 220 -6.6585717722773552e-03 -1 -2 221
+ 1.5827560797333717e-02
+
+ -5.1332288980484009e-01 -3.6301520466804504e-01
+ 4.3343341350555420e-01
+ <_>
+
+ 0 1 222 -1.4081180095672607e-02 -1 -2 223
+ -1.2139449827373028e-02
+
+ 5.4223722219467163e-01 4.4281288981437683e-01
+ -3.4171119332313538e-01
+ <_>
+
+ 0 1 224 7.8055798076093197e-03 -1 -2 225
+ -7.0759910158813000e-05
+
+ -4.8659759759902954e-01 3.4818679094314575e-01
+ -3.2806739211082458e-01
+ <_>
+
+ 0 1 226 -1.8199630081653595e-02 -1 -2 227
+ -2.5289389304816723e-03
+
+ 5.6594151258468628e-01 1.1310060322284698e-01
+ -4.0772381424903870e-01
+ <_>
+
+ 1 0 228 1.0156990028917789e-03 -1 -2 229
+ 2.9432660085149109e-04
+
+ -5.9842979907989502e-01 2.8439450263977051e-01
+ -3.2190230488777161e-01
+ <_>
+
+ 1 0 230 2.0865290425717831e-03 -1 -2 231
+ -1.7371569992974401e-03
+
+ -7.8285712003707886e-01 3.3585301041603088e-01
+ -2.0582370460033417e-01
+ <_>
+
+ 1 0 232 -7.0026202592998743e-05 -1 -2 233
+ -1.4891549944877625e-03
+
+ -3.9109349250793457e-01 -4.6953418850898743e-01
+ 2.7609241008758545e-01
+ <_>
+
+ 1 0 234 -1.1788429692387581e-02 -1 -2 235
+ -1.5155089786276221e-03
+
+ -4.0114149451255798e-01 -7.4290478229522705e-01
+ 2.7695629000663757e-01
+ <_>
+
+ 1 0 236 6.8396717309951782e-02 -1 -2 237
+ -7.6441407203674316e-02
+
+ 4.5235648751258850e-01 4.2848169803619385e-01
+ -3.1636309623718262e-01
+ <_>
+
+ 1 0 238 6.8310201168060303e-02 -1 -2 239
+ -6.4508013427257538e-02
+
+ 5.1404279470443726e-01 1.8081870675086975e-01
+ -3.4217950701713562e-01
+ <_>
+
+ 0 1 240 -2.8335719835013151e-03 -1 -2 241
+ -9.9732237868010998e-04
+
+ -6.9509768486022949e-01 -4.3724590539932251e-01
+ 2.0226080715656281e-01
+ <_>
+
+ 0 1 242 -2.2869910299777985e-01 -1 -2 243
+ 2.9855249449610710e-03
+
+ 6.4662200212478638e-01 8.1149758771061897e-03
+ -6.0210299491882324e-01
+ <_>
+
+ 0 1 244 -2.9535989742726088e-03 -1 -2 245
+ -2.1225619129836559e-03
+
+ -7.2013127803802490e-01 5.0875622034072876e-01
+ -5.9366609901189804e-02
+ <_>
+
+ 0 1 246 -2.9382819775491953e-03 -1 -2 247
+ -5.8961478061974049e-03
+
+ 3.9287531375885010e-01 4.1866040229797363e-01
+ -2.5405511260032654e-01
+ <_>
+
+ 1 0 248 2.5730929337441921e-03 -1 -2 249
+ 1.6647739335894585e-02
+
+ -5.8707278966903687e-01 1.9208480417728424e-01
+ -6.0388940572738647e-01
+ <_>
+
+ 1 0 250 2.4041840806603432e-03 -1 -2 251
+ -9.0452830772846937e-04
+
+ -5.7192337512969971e-01 3.4860768914222717e-01
+ -1.3049240410327911e-01
+ <_>
+
+ 1 0 252 4.0814210660755634e-03 -1 -2 253
+ 3.3811479806900024e-03
+
+ 5.1778018474578857e-01 -6.3828541897237301e-03
+ -6.1447817087173462e-01
+ <_>
+
+ 0 1 254 -2.7499340940266848e-03 -1 -2 255
+ -4.8207710497081280e-03
+
+ -6.5407788753509521e-01 -6.0029619932174683e-01
+ 1.4374589920043945e-01
+ <_>
+ 21
+ -2.1254189014434814e+00
+
+ <_>
+
+ 0 1 256 7.9710120335221291e-03 -1 -2 257
+ -9.7160867881029844e-04
+
+ -6.1992239952087402e-01 5.4877161979675293e-01
+ -4.0606960654258728e-01
+ <_>
+
+ 0 1 258 -1.0945869609713554e-02 -1 -2 259
+ -6.1174821108579636e-02
+
+ 4.6936869621276855e-01 3.0570849776268005e-01
+ -4.4459891319274902e-01
+ <_>
+
+ 1 0 260 -2.3100150283426046e-03 -1 -2 261
+ -4.7585051506757736e-02
+
+ -3.7816441059112549e-01 4.8865839838981628e-01
+ -2.9728868603706360e-01
+ <_>
+
+ 1 0 262 -2.5944279041141272e-03 -1 -2 263
+ -3.9469371549785137e-03
+
+ -5.4405367374420166e-01 3.6382490396499634e-01
+ -3.0469849705696106e-01
+ <_>
+
+ 0 1 264 3.1871569808572531e-04 -1 -2 265
+ -2.6655721012502909e-03
+
+ -4.6822971105575562e-01 3.3131968975067139e-01
+ -2.9918238520622253e-01
+ <_>
+
+ 1 0 266 -3.9534650743007660e-02 -1 -2 267
+ -9.4085611635819077e-04
+
+ -3.5316830873489380e-01 4.4447100162506104e-01
+ -1.1088660359382629e-01
+ <_>
+
+ 0 1 268 6.9526307925116271e-05 -1 -2 269
+ -9.6976682543754578e-03
+
+ -3.9403268694877625e-01 5.7181888818740845e-01
+ -1.6370950266718864e-02
+ <_>
+
+ 1 0 270 3.9469040930271149e-02 -1 -2 271
+ -8.2811042666435242e-03
+
+ 6.9152122735977173e-01 1.3349990546703339e-01
+ -4.7064480185508728e-01
+ <_>
+
+ 0 1 272 -4.3219728395342827e-03 -1 -2 273
+ -5.5436040274798870e-03
+
+ 3.8239258527755737e-01 1.5645879507064819e-01
+ -4.1088208556175232e-01
+ <_>
+
+ 1 0 274 -5.9953341406071559e-05 -1 -2 275
+ -5.9089371934533119e-03
+
+ -3.9221799373626709e-01 -5.9083867073059082e-01
+ 2.7924481034278870e-01
+ <_>
+
+ 0 1 276 -4.4721391052007675e-02 -1 -2 277
+ 4.1267018765211105e-02
+
+ 4.1454491019248962e-01 -3.2242009043693542e-01
+ 3.7849879264831543e-01
+ <_>
+
+ 0 1 278 5.6728709751041606e-05 -1 -2 279
+ -6.2427870929241180e-02
+
+ -3.2228040695190430e-01 -5.9666448831558228e-01
+ 2.8915780782699585e-01
+ <_>
+
+ 0 1 280 -5.6994128972291946e-03 -1 -2 281
+ 7.5202910229563713e-03
+
+ 3.7499341368675232e-01 -2.8132459521293640e-01
+ 5.0988858938217163e-01
+ <_>
+
+ 0 1 282 -3.3640549518167973e-03 -1 -2 283
+ -6.8076648749411106e-03
+
+ -6.3978207111358643e-01 -7.3105818033218384e-01
+ 1.4475250244140625e-01
+ <_>
+
+ 1 0 284 1.2633459642529488e-02 -1 -2 285
+ -2.9199919663369656e-03
+
+ -7.7725297212600708e-01 2.3258599638938904e-01
+ -2.0490600168704987e-01
+ <_>
+
+ 0 1 286 -3.0582249164581299e-02 -1 -2 287
+ -2.7796169742941856e-03
+
+ -6.5738821029663086e-01 -5.4888349771499634e-01
+ 1.3837890326976776e-01
+ <_>
+
+ 0 1 288 -7.6163080520927906e-03 -1 -2 289
+ -1.8409560434520245e-03
+
+ -3.5912349820137024e-01 2.2404469549655914e-01
+ -3.7881860136985779e-01
+ <_>
+
+ 0 1 290 -3.9200261235237122e-02 -1 -2 291
+ -2.2543789818882942e-03
+
+ 5.0090551376342773e-01 3.1364008784294128e-01
+ -2.2131860256195068e-01
+ <_>
+
+ 1 0 292 2.3894659243524075e-03 -1 -2 293
+ -1.0725490283221006e-03
+
+ -5.8699512481689453e-01 4.7141209244728088e-01
+ -3.2570488750934601e-02
+ <_>
+
+ 0 1 294 8.9095337898470461e-05 -1 -2 295
+ 1.6920049674808979e-03
+
+ -3.0444309115409851e-01 3.0280891060829163e-01
+ -3.8902729749679565e-01
+ <_>
+
+ 1 0 296 1.1784000322222710e-02 -1 -2 297
+ 3.9335917681455612e-03
+
+ -6.8993437290191650e-01 -6.7763939499855042e-02
+ 4.6499788761138916e-01
+ <_>
+ 22
+ -2.0614759922027588e+00
+
+ <_>
+
+ 0 1 298 1.1430840007960796e-02 -1 -2 299
+ -3.2242920249700546e-02
+
+ -3.9274570345878601e-01 6.5568798780441284e-01
+ -3.1068810820579529e-01
+ <_>
+
+ 1 0 300 -1.8382760463282466e-03 -1 -2 301
+ -1.0764399915933609e-01
+
+ -4.0825068950653076e-01 4.3280079960823059e-01
+ -4.2263451218605042e-01
+ <_>
+
+ 1 0 302 -2.3866090923547745e-03 -1 -2 303
+ 8.6586214601993561e-03
+
+ -4.6435201168060303e-01 -4.0673071146011353e-01
+ 4.1267868876457214e-01
+ <_>
+
+ 1 0 304 -1.6437229933217168e-03 -1 -2 305
+ -9.8511137068271637e-02
+
+ -2.1344049274921417e-01 6.8432319164276123e-01
+ -9.7035013139247894e-02
+ <_>
+
+ 0 1 306 4.4292360544204712e-03 -1 -2 307
+ 4.6966210938990116e-03
+
+ -3.9498910307884216e-01 -1.1345980316400528e-01
+ 4.9681991338729858e-01
+ <_>
+
+ 1 0 308 -8.8480701670050621e-03 -1 -2 309
+ -6.7258379422128201e-03
+
+ -3.1293100118637085e-01 -6.1635792255401611e-01
+ 3.1764769554138184e-01
+ <_>
+
+ 1 0 310 2.0052040927112103e-03 -1 -2 311
+ -1.3407340273261070e-02
+
+ 3.1724271178245544e-01 1.9735060632228851e-01
+ -3.7199181318283081e-01
+ <_>
+
+ 0 1 312 -4.4199679978191853e-03 -1 -2 313
+ -3.2800938934087753e-02
+
+ -5.7164478302001953e-01 3.0599930882453918e-01
+ -1.7397969961166382e-01
+ <_>
+
+ 0 1 314 4.9407979531679302e-05 -1 -2 315
+ 4.1550169698894024e-03
+
+ -2.8270530700683594e-01 2.9686808586120605e-01
+ -4.8494309186935425e-01
+ <_>
+
+ 1 0 316 -7.5589967309497297e-05 -1 -2 317
+ -3.2147730235010386e-03
+
+ -3.8531139492988586e-01 -6.3306808471679688e-01
+ 2.3434750735759735e-01
+ <_>
+
+ 0 1 318 1.6021779738366604e-03 -1 -2 319
+ -1.9478019326925278e-02
+
+ -2.9579049348831177e-01 -4.9625208973884583e-01
+ 2.6092579960823059e-01
+ <_>
+
+ 0 1 320 -2.5193750858306885e-02 -1 -2 321
+ -4.6487729996442795e-02
+
+ 3.9384880661964417e-01 2.2168830037117004e-01
+ -2.9691740870475769e-01
+ <_>
+
+ 1 0 322 4.3414267711341381e-03 -1 -2 323
+ -2.4886759929358959e-03
+
+ -6.7661178112030029e-01 2.0509929955005646e-01
+ -2.9771140217781067e-01
+ <_>
+
+ 0 1 324 -5.8827269822359085e-03 -1 -2 325
+ 9.0498890494927764e-04
+
+ -6.1301797628402710e-01 -3.4023219347000122e-01
+ 1.8168209493160248e-01
+ <_>
+
+ 0 1 326 -9.8338901996612549e-02 -1 -2 327
+ 5.6141808629035950e-02
+
+ 4.7729569673538208e-01 -2.2904439270496368e-01
+ 3.4410089254379272e-01
+ <_>
+
+ 1 0 328 -5.5787130258977413e-03 -1 -2 329
+ 1.5108759980648756e-03
+
+ -3.5910171270370483e-01 2.4900430440902710e-01
+ -4.3798071146011353e-01
+ <_>
+
+ 0 1 330 -6.0129738412797451e-03 -1 -2 331
+ -7.9341192031279206e-04
+
+ 3.1164181232452393e-01 2.6759660243988037e-01
+ -3.6802908778190613e-01
+ <_>
+
+ 1 0 332 6.1855330131947994e-03 -1 -2 333
+ -7.3785060085356236e-03
+
+ -7.2153317928314209e-01 -5.3714382648468018e-01
+ 1.3824890553951263e-01
+ <_>
+
+ 0 1 334 -6.7488732747733593e-04 -1 -2 335
+ -1.3102099765092134e-03
+
+ 3.7406051158905029e-01 1.9003790616989136e-01
+ -3.1632271409034729e-01
+ <_>
+
+ 0 1 336 4.9453211249783635e-04 -1 -2 337
+ 1.2824690202251077e-03
+
+ -2.3283170163631439e-01 3.0463808774948120e-01
+ -4.8092108964920044e-01
+ <_>
+
+ 0 1 338 -2.2624820470809937e-02 -1 -2 339
+ 4.3685249984264374e-03
+
+ -6.8783479928970337e-01 1.2403090298175812e-01
+ -7.9220730066299438e-01
+ <_>
+
+ 1 0 340 5.6756488047540188e-03 -1 -2 341
+ -8.1769213080406189e-02
+
+ 1.7611420154571533e-01 3.8942161202430725e-01
+ -4.5094010233879089e-01
+ <_>
+ 24
+ -1.9795049428939819e+00
+
+ <_>
+
+ 1 0 342 -2.0003549754619598e-02 -1 -2 343
+ -3.2621208578348160e-02
+
+ -5.6650751829147339e-01 5.0807082653045654e-01
+ -4.5345708727836609e-01
+ <_>
+
+ 0 1 344 1.0668139904737473e-02 -1 -2 345
+ -1.6276689246296883e-02
+
+ -3.2316839694976807e-01 6.0189497470855713e-01
+ -2.4059510231018066e-01
+ <_>
+
+ 1 0 346 -2.8211208991706371e-03 -1 -2 347
+ -1.4291180297732353e-02
+
+ -4.7181150317192078e-01 5.1280087232589722e-01
+ -1.0744000226259232e-01
+ <_>
+
+ 0 1 348 1.0120410006493330e-03 -1 -2 349
+ -5.9822672046720982e-03
+
+ -3.8844698667526245e-01 4.6928858757019043e-01
+ -9.1355919837951660e-02
+ <_>
+
+ 1 0 350 -2.4705699179321527e-03 -1 -2 351
+ 2.4079859722405672e-03
+
+ -4.5964410901069641e-01 2.1830670535564423e-01
+ -5.9373402595520020e-01
+ <_>
+
+ 1 0 352 -1.4312269631773233e-03 -1 -2 353
+ 2.9141810955479741e-04
+
+ -2.4731670320034027e-01 -2.5972241163253784e-01
+ 3.8206368684768677e-01
+ <_>
+
+ 0 1 354 -3.2818811014294624e-03 -1 -2 355
+ -1.0365940397605300e-03
+
+ -7.7180129289627075e-01 2.3569859564304352e-01
+ -2.2067700326442719e-01
+ <_>
+
+ 0 1 356 -2.2078400943428278e-03 -1 -2 357
+ 3.5239339340478182e-03
+
+ 3.0886119604110718e-01 -2.8496000170707703e-01
+ 4.7544300556182861e-01
+ <_>
+
+ 0 1 358 -6.1774807982146740e-03 -1 -2 359
+ -3.2023619860410690e-03
+
+ -7.0318382978439331e-01 -5.1361310482025146e-01
+ 1.5656259655952454e-01
+ <_>
+
+ 1 0 360 -8.7003601947799325e-04 -1 -2 361
+ -3.8079950027167797e-03
+
+ -2.9925128817558289e-01 5.5215638875961304e-01
+ -8.0608041025698185e-04
+ <_>
+
+ 1 0 362 4.9994210712611675e-03 -1 -2 363
+ -1.0323170572519302e-03
+
+ -4.3541741371154785e-01 5.4992151260375977e-01
+ -5.0770761445164680e-03
+ <_>
+
+ 1 0 364 6.9215619005262852e-03 -1 -2 365
+ -8.1578325480222702e-03
+
+ 3.3900010585784912e-01 3.4354889392852783e-01
+ -2.4483889341354370e-01
+ <_>
+
+ 0 1 366 -1.6159559600055218e-03 -1 -2 367
+ 4.7165839932858944e-03
+
+ -7.4653702974319458e-01 1.1855059862136841e-01
+ -7.1803867816925049e-01
+ <_>
+
+ 1 0 368 -1.6093119978904724e-02 -1 -2 369
+ -5.9861610643565655e-03
+
+ -3.2987210154533386e-01 3.1263980269432068e-01
+ -2.3194029927253723e-01
+ <_>
+
+ 1 0 370 6.4122617244720459e-02 -1 -2 371
+ 2.1518159657716751e-02
+
+ 4.6239149570465088e-01 -2.4277320504188538e-01
+ 4.0963909029960632e-01
+ <_>
+
+ 0 1 372 -2.8541380167007446e-01 -1 -2 373
+ 2.7372559998184443e-04
+
+ 4.4521799683570862e-01 -4.7307610511779785e-01
+ 7.6739721000194550e-02
+ <_>
+
+ 0 1 374 -6.4039281569421291e-03 -1 -2 375
+ 1.4279670082032681e-02
+
+ -5.6167787313461304e-01 -6.7311890423297882e-02
+ 4.3806758522987366e-01
+ <_>
+
+ 0 1 376 -1.3179860077798367e-02 -1 -2 377
+ 6.6828072071075439e-02
+
+ -6.7672669887542725e-01 -3.2182909548282623e-02
+ 5.1308721303939819e-01
+ <_>
+
+ 0 1 378 6.3021448440849781e-03 -1 -2 379
+ -1.6806010389700532e-03
+
+ -2.0082660019397736e-01 -5.1767241954803467e-01
+ 3.8576510548591614e-01
+ <_>
+
+ 0 1 380 -1.5057720011100173e-03 -1 -2 381
+ 1.1699240421876311e-03
+
+ 3.9358091354370117e-01 -2.5579568743705750e-01
+ 3.1927299499511719e-01
+ <_>
+
+ 1 0 382 7.2735180146992207e-03 -1 -2 383
+ 7.8693883551750332e-05
+
+ -7.1667242050170898e-01 -1.8908829987049103e-01
+ 2.3849080502986908e-01
+ <_>
+
+ 1 0 384 1.9624589476734400e-03 -1 -2 385
+ -3.1472831033170223e-03
+
+ -5.1583772897720337e-01 4.8033049702644348e-01
+ -3.6237910389900208e-02
+ <_>
+
+ 1 0 386 5.0133569166064262e-03 -1 -2 387
+ -6.5994369797408581e-03
+
+ -5.2729338407516479e-01 -6.9400531053543091e-01
+ 1.2275890260934830e-01
+ <_>
+
+ 0 1 388 -4.2700361460447311e-02 -1 -2 389
+ -3.5096149076707661e-05
+
+ -6.8218547105789185e-01 1.2160310149192810e-01
+ -4.2142289876937866e-01
+ <_>
+ 24
+ -1.9048260450363159e+00
+
+ <_>
+
+ 0 1 390 8.7128365412354469e-03 -1 -2 391
+ -4.0675927884876728e-03
+
+ -4.4048839807510376e-01 6.0030102729797363e-01
+ -2.6042649149894714e-01
+ <_>
+
+ 1 0 392 -8.3933398127555847e-02 -1 -2 393
+ -2.2626180201768875e-02
+
+ -3.7943989038467407e-01 5.2529489994049072e-01
+ -3.2733321189880371e-01
+ <_>
+
+ 1 0 394 -3.5725389607250690e-03 -1 -2 395
+ -1.6297569964081049e-03
+
+ -2.6030939817428589e-01 4.8434230685234070e-01
+ -3.8363268971443176e-01
+ <_>
+
+ 0 1 396 -8.0011576414108276e-02 -1 -2 397
+ -9.6061453223228455e-02
+
+ 3.9579561352729797e-01 4.2874181270599365e-01
+ -2.9096639156341553e-01
+ <_>
+
+ 1 0 398 -9.3183852732181549e-03 -1 -2 399
+ 9.2205153778195381e-03
+
+ -3.9325499534606934e-01 -2.9857379198074341e-01
+ 3.1733301281929016e-01
+ <_>
+
+ 1 0 400 2.3208750411868095e-02 -1 -2 401
+ 1.6389730153605342e-03
+
+ 3.9295229315757751e-01 -5.4035997390747070e-01
+ -2.1836880594491959e-02
+ <_>
+
+ 1 0 402 2.8872499242424965e-03 -1 -2 403
+ 4.7465260140597820e-03
+
+ -7.8172737360000610e-01 1.4474189281463623e-01
+ -6.4237701892852783e-01
+ <_>
+
+ 0 1 404 -5.7432148605585098e-03 -1 -2 405
+ -8.5324952378869057e-03
+
+ -6.5556287765502930e-01 2.2090309858322144e-01
+ -2.5790300965309143e-01
+ <_>
+
+ 0 1 406 -8.8752172887325287e-03 -1 -2 407
+ -7.7129527926445007e-03
+
+ 4.6596860885620117e-01 2.5279781222343445e-01
+ -2.6170450448989868e-01
+ <_>
+
+ 1 0 408 7.6909800991415977e-03 -1 -2 409
+ 2.6657560374587774e-03
+
+ -5.9350818395614624e-01 1.6969729959964752e-01
+ -5.4123950004577637e-01
+ <_>
+
+ 1 0 410 -4.4685939792543650e-04 -1 -2 411
+ -1.5998890157788992e-03
+
+ -3.0383870005607605e-01 -5.4817748069763184e-01
+ 2.4971559643745422e-01
+ <_>
+
+ 1 0 412 1.9368670182302594e-03 -1 -2 413
+ -2.4878541007637978e-03
+
+ -6.3200348615646362e-01 4.7051379084587097e-01
+ -4.5187219977378845e-02
+ <_>
+
+ 0 1 414 -2.8134910389780998e-03 -1 -2 415
+ -1.4107710449025035e-03
+
+ 3.9270851016044617e-01 1.8017080426216125e-01
+ -2.5714579224586487e-01
+ <_>
+
+ 0 1 416 -6.9013070315122604e-03 -1 -2 417
+ -1.1458620429039001e-03
+
+ -5.3386241197586060e-01 2.8174358606338501e-01
+ -1.6080249845981598e-01
+ <_>
+
+ 0 1 418 9.2800445854663849e-03 -1 -2 419
+ -4.1281301528215408e-02
+
+ -3.0028960108757019e-01 -6.2409067153930664e-01
+ 2.0549909770488739e-01
+ <_>
+
+ 0 1 420 -3.5625360906124115e-02 -1 -2 421
+ -4.1647539474070072e-03
+
+ -5.2529340982437134e-01 -6.3538008928298950e-01
+ 1.2846650183200836e-01
+ <_>
+
+ 0 1 422 -9.5598259940743446e-04 -1 -2 423
+ -8.9347851462662220e-04
+
+ 2.6505509018898010e-01 1.8266810476779938e-01
+ -3.7531790137290955e-01
+ <_>
+
+ 1 0 424 2.5431478861719370e-03 -1 -2 425
+ -1.5853889286518097e-02
+
+ -6.1057221889495850e-01 3.0754768848419189e-01
+ -9.8143920302391052e-02
+ <_>
+
+ 0 1 426 -4.1315760463476181e-02 -1 -2 427
+ -6.8226549774408340e-04
+
+ 4.9247589707374573e-01 6.2975943088531494e-02
+ -4.2634299397468567e-01
+ <_>
+
+ 1 0 428 6.3098431564867496e-04 -1 -2 429
+ -2.8946860693395138e-03
+
+ 3.1397339701652527e-01 2.8590971231460571e-01
+ -2.5623229146003723e-01
+ <_>
+
+ 0 1 430 -1.0244140401482582e-02 -1 -2 431
+ -1.6979850828647614e-02
+
+ -6.9737482070922852e-01 -7.3125731945037842e-01
+ 1.0389179736375809e-01
+ <_>
+
+ 1 0 432 -7.0198569446802139e-03 -1 -2 433
+ -6.0688778758049011e-03
+
+ -3.5070639848709106e-01 -5.3395807743072510e-01
+ 1.7334850132465363e-01
+ <_>
+
+ 0 1 434 -9.6911415457725525e-03 -1 -2 435
+ 8.5460003465414047e-03
+
+ 5.6399798393249512e-01 -2.4716490507125854e-01
+ 1.8216520547866821e-01
+ <_>
+
+ 1 0 436 -4.9479231238365173e-03 -1 -2 437
+ 1.9269150216132402e-03
+
+ -2.8333988785743713e-01 -6.8196073174476624e-02
+ 3.7787199020385742e-01
+ <_>
+ 28
+ -1.9407349824905396e+00
+
+ <_>
+
+ 1 0 438 -2.8639819473028183e-02 -1 -2 439
+ -4.2176660150289536e-02
+
+ -3.7718260288238525e-01 7.2298699617385864e-01
+ -7.6141163706779480e-02
+ <_>
+
+ 1 0 440 -2.2537210024893284e-03 -1 -2 441
+ -3.0683329328894615e-02
+
+ -3.2727459073066711e-01 5.1505237817764282e-01
+ -2.2235199809074402e-01
+ <_>
+
+ 0 1 442 -1.2341269850730896e-01 -1 -2 443
+ -2.3674150928854942e-02
+
+ 4.4699010252952576e-01 3.4708538651466370e-01
+ -3.1773900985717773e-01
+ <_>
+
+ 0 1 444 3.1951239798218012e-03 -1 -2 445
+ -1.4915530337020755e-03
+
+ -4.9775049090385437e-01 2.6384419202804565e-01
+ -3.8912549614906311e-01
+ <_>
+
+ 0 1 446 8.8097527623176575e-04 -1 -2 447
+ -5.8355771005153656e-02
+
+ -4.0939790010452271e-01 3.2287618517875671e-01
+ -2.3045599460601807e-01
+ <_>
+
+ 1 0 448 5.1132370717823505e-03 -1 -2 449
+ -4.5418320223689079e-03
+
+ -5.1353681087493896e-01 5.3011757135391235e-01
+ -3.0649330466985703e-02
+ <_>
+
+ 1 0 450 1.6811339883133769e-03 -1 -2 451
+ 2.8129699639976025e-03
+
+ -5.3161472082138062e-01 -6.7524053156375885e-02
+ 3.8542249798774719e-01
+ <_>
+
+ 1 0 452 2.1835418883711100e-03 -1 -2 453
+ -2.4335379712283611e-03
+
+ -6.4298832416534424e-01 -6.6313308477401733e-01
+ 1.3882370293140411e-01
+ <_>
+
+ 1 0 454 3.0736608896404505e-03 -1 -2 455
+ -9.6425544470548630e-03
+
+ -6.3433158397674561e-01 3.8696160912513733e-01
+ -6.8737797439098358e-02
+ <_>
+
+ 0 1 456 -7.2082108817994595e-03 -1 -2 457
+ -8.0191977322101593e-03
+
+ 1.6121250391006470e-01 3.8011130690574646e-01
+ -4.1397979855537415e-01
+ <_>
+
+ 0 1 458 -7.2479159571230412e-03 -1 -2 459
+ -2.2631640732288361e-01
+
+ 2.4351879954338074e-01 6.0667949914932251e-01
+ -2.2521880269050598e-01
+ <_>
+
+ 0 1 460 -7.0091613451950252e-05 -1 -2 461
+ -1.8161399662494659e-01
+
+ 1.7115320265293121e-01 5.2725982666015625e-01
+ -3.5247540473937988e-01
+ <_>
+
+ 0 1 462 -9.4038434326648712e-03 -1 -2 463
+ -2.1289030555635691e-03
+
+ 3.4970518946647644e-01 5.5878698825836182e-02
+ -4.9816590547561646e-01
+ <_>
+
+ 0 1 464 -5.1798550412058830e-03 -1 -2 465
+ -6.5030192490667105e-04
+
+ -6.3095641136169434e-01 3.5856458544731140e-01
+ -7.8281052410602570e-02
+ <_>
+
+ 0 1 466 -1.0555930435657501e-02 -1 -2 467
+ -5.1852981559932232e-03
+
+ -5.5502831935882568e-01 3.5548681020736694e-01
+ -6.8892292678356171e-02
+ <_>
+
+ 0 1 468 -7.8725479543209076e-03 -1 -2 469
+ -6.5342970192432404e-03
+
+ -4.8596179485321045e-01 2.1178959310054779e-01
+ -2.3174080252647400e-01
+ <_>
+
+ 0 1 470 -1.3909920118749142e-02 -1 -2 471
+ 1.5418450348079205e-03
+
+ 5.9936982393264771e-01 -9.5086917281150818e-03
+ -6.4796131849288940e-01
+ <_>
+
+ 1 0 472 -1.1549900518730283e-03 -1 -2 473
+ -3.2687030732631683e-02
+
+ -2.7501720190048218e-01 -6.7336207628250122e-01
+ 1.9520400464534760e-01
+ <_>
+
+ 0 1 474 -2.6422590017318726e-01 -1 -2 475
+ 6.9438670761883259e-03
+
+ 3.6986869573593140e-01 -3.0029740929603577e-01
+ 1.4998969435691833e-01
+ <_>
+
+ 0 1 476 -1.2077920138835907e-02 -1 -2 477
+ -1.3986700214445591e-03
+
+ 4.1644129157066345e-01 4.1248729825019836e-01
+ -1.9533659517765045e-01
+ <_>
+
+ 1 0 478 1.3138339854776859e-02 -1 -2 479
+ 7.2417110204696655e-03
+
+ -6.4204931259155273e-01 1.1359360069036484e-01
+ -7.3838871717453003e-01
+ <_>
+
+ 0 1 480 -7.4837901629507542e-03 -1 -2 481
+ 6.8022231571376324e-03
+
+ -6.9246298074722290e-01 9.2873439192771912e-02
+ -6.0047471523284912e-01
+ <_>
+
+ 1 0 482 4.5322909951210022e-01 -1 -2 483
+ -5.5721630342304707e-03
+
+ 5.6260532140731812e-01 7.7820159494876862e-02
+ -3.3990600705146790e-01
+ <_>
+
+ 1 0 484 3.1583961099386215e-02 -1 -2 485
+ -5.7926177978515625e-03
+
+ 3.2292670011520386e-01 1.5534450113773346e-01
+ -3.5717839002609253e-01
+ <_>
+
+ 0 1 486 -7.6025379821658134e-03 -1 -2 487
+ 9.5151038840413094e-04
+
+ -5.1859498023986816e-01 -2.9570670798420906e-02
+ 4.6027511358261108e-01
+ <_>
+
+ 1 0 488 1.9723300356417894e-03 -1 -2 489
+ 2.3158260155469179e-03
+
+ 3.6926651000976562e-01 -2.1299740672111511e-01
+ 2.6948541402816772e-01
+ <_>
+
+ 1 0 490 2.1179600153118372e-03 -1 -2 491
+ -2.6946600992232561e-03
+
+ -4.8369500041007996e-01 1.8545660376548767e-01
+ -2.9411968588829041e-01
+ <_>
+
+ 1 0 492 5.8865409344434738e-02 -1 -2 493
+ -6.8408921360969543e-03
+
+ -4.6770378947257996e-01 -6.6371321678161621e-01
+ 1.2721349298954010e-01
+ <_>
+ 26
+ -1.8931059837341309e+00
+
+ <_>
+
+ 1 0 494 -1.2766489759087563e-02 -1 -2 495
+ 3.7821640726178885e-03
+
+ -3.7968099117279053e-01 -1.6001829504966736e-01
+ 6.1953288316726685e-01
+ <_>
+
+ 1 0 496 -3.3049881458282471e-02 -1 -2 497
+ 4.5050241053104401e-02
+
+ -3.6825481057167053e-01 9.3770343810319901e-03
+ 7.1570581197738647e-01
+ <_>
+
+ 1 0 498 -3.5275409463793039e-03 -1 -2 499
+ 2.2250709589570761e-03
+
+ -3.7336608767509460e-01 -6.6712491214275360e-02
+ 4.9906119704246521e-01
+ <_>
+
+ 1 0 500 1.3609490124508739e-03 -1 -2 501
+ -2.9087859392166138e-01
+
+ 1.7162929475307465e-01 3.6158901453018188e-01
+ -5.0871372222900391e-01
+ <_>
+
+ 1 0 502 3.3148950897157192e-03 -1 -2 503
+ -8.8641437469050288e-04
+
+ -7.1788138151168823e-01 2.5713619589805603e-01
+ -1.7978949844837189e-01
+ <_>
+
+ 1 0 504 1.1313590221107006e-03 -1 -2 505
+ -3.0621800106018782e-03
+
+ 3.5387420654296875e-01 3.0790808796882629e-01
+ -3.1217241287231445e-01
+ <_>
+
+ 1 0 506 2.5443620979785919e-03 -1 -2 507
+ -6.7088878713548183e-03
+
+ -5.6788551807403564e-01 2.1222899854183197e-01
+ -2.6821109652519226e-01
+ <_>
+
+ 0 1 508 -1.6446809470653534e-01 -1 -2 509
+ 4.0828108787536621e-02
+
+ 4.9016961455345154e-01 -3.1217470765113831e-01
+ 2.4748149514198303e-01
+ <_>
+
+ 0 1 510 -3.6051510833203793e-03 -1 -2 511
+ -2.3608640767633915e-03
+
+ 3.4355860948562622e-01 2.6566460728645325e-01
+ -2.8644719719886780e-01
+ <_>
+
+ 0 1 512 1.2965350179001689e-03 -1 -2 513
+ 6.0111000202596188e-03
+
+ -2.9317760467529297e-01 2.1941700577735901e-01
+ -6.0014218091964722e-01
+ <_>
+
+ 1 0 514 -6.1628420371562243e-04 -1 -2 515
+ 2.0573718938976526e-03
+
+ -3.1292331218719482e-01 2.8763169050216675e-01
+ -3.7320709228515625e-01
+ <_>
+
+ 0 1 516 -7.7166007831692696e-03 -1 -2 517
+ -2.8222459368407726e-03
+
+ -7.1683251857757568e-01 4.2501831054687500e-01
+ -5.3294889628887177e-02
+ <_>
+
+ 0 1 518 -7.3861207056324929e-05 -1 -2 519
+ 5.8680498041212559e-03
+
+ 1.4903450012207031e-01 -5.8436650037765503e-01
+ 1.0724759846925735e-01
+ <_>
+
+ 1 0 520 -7.9013723880052567e-03 -1 -2 521
+ 2.7825690340250731e-03
+
+ -3.4319949150085449e-01 1.7655360698699951e-01
+ -6.1473757028579712e-01
+ <_>
+
+ 0 1 522 3.2751538674347103e-04 -1 -2 523
+ 3.0700899660587311e-02
+
+ -3.3837568759918213e-01 1.8566130101680756e-01
+ -5.3450268507003784e-01
+ <_>
+
+ 1 0 524 5.6932470761239529e-03 -1 -2 525
+ 2.1375140547752380e-01
+
+ -5.1750451326370239e-01 1.2332399934530258e-01
+ -6.4288139343261719e-01
+ <_>
+
+ 0 1 526 -4.4024959206581116e-03 -1 -2 527
+ -4.5719969784840941e-04
+
+ 5.8535677194595337e-01 2.3368820548057556e-01
+ -1.9039009511470795e-01
+ <_>
+
+ 0 1 528 -4.2587839998304844e-03 -1 -2 529
+ -2.3462621029466391e-03
+
+ -5.1190847158432007e-01 -4.7164770960807800e-01
+ 1.4783400297164917e-01
+ <_>
+
+ 1 0 530 -6.5065571106970310e-05 -1 -2 531
+ -5.5082160979509354e-03
+
+ -2.9886341094970703e-01 -4.8508960008621216e-01
+ 2.0014910399913788e-01
+ <_>
+
+ 1 0 532 1.8942790105938911e-02 -1 -2 533
+ 6.9123771972954273e-03
+
+ 3.1028950214385986e-01 -2.8701239824295044e-01
+ 2.0534069836139679e-01
+ <_>
+
+ 1 0 534 8.1696882843971252e-03 -1 -2 535
+ 1.0069769807159901e-02
+
+ 4.5810830593109131e-01 -2.4175919592380524e-01
+ 1.7593820393085480e-01
+ <_>
+
+ 1 0 536 2.1663580555468798e-03 -1 -2 537
+ 1.0505730286240578e-02
+
+ -4.9877908825874329e-01 1.6231280565261841e-01
+ -4.2988869547843933e-01
+ <_>
+
+ 1 0 538 5.7576788822188973e-04 -1 -2 539
+ -3.0608899891376495e-02
+
+ -3.1012570858001709e-01 -7.4064302444458008e-01
+ 1.6217179596424103e-01
+ <_>
+
+ 0 1 540 -1.3430659659206867e-02 -1 -2 541
+ 1.1859040241688490e-03
+
+ 4.5505639910697937e-01 -2.7227258682250977e-01
+ 2.2475010156631470e-01
+ <_>
+
+ 0 1 542 -4.9311347538605332e-04 -1 -2 543
+ -2.4509918875992298e-03
+
+ -3.9598318934440613e-01 2.5004211068153381e-01
+ -1.6140510141849518e-01
+ <_>
+
+ 1 0 544 1.3641949743032455e-02 -1 -2 545
+ -3.6733329296112061e-02
+
+ -6.4525490999221802e-01 3.4197059273719788e-01
+ -6.5968327224254608e-02
+ <_>
+ 29
+ -1.9677840471267700e+00
+
+ <_>
+
+ 0 1 546 1.3613830087706447e-03 -1 -2 547
+ 1.2211060151457787e-02
+
+ -3.4383928775787354e-01 -4.0358600020408630e-01
+ 5.7873630523681641e-01
+ <_>
+
+ 0 1 548 3.2929528970271349e-03 -1 -2 549
+ -2.4831980466842651e-02
+
+ -2.2164349257946014e-01 5.4256910085678101e-01
+ -4.7585600614547729e-01
+ <_>
+
+ 0 1 550 -3.4081530570983887e-01 -1 -2 551
+ 6.0929641127586365e-02
+
+ 5.3438740968704224e-01 -2.6015359163284302e-01
+ 3.7626558542251587e-01
+ <_>
+
+ 1 0 552 -1.4399300562217832e-03 -1 -2 553
+ -7.5711178779602051e-01
+
+ -4.1635149717330933e-01 4.7764539718627930e-01
+ -1.2374229729175568e-01
+ <_>
+
+ 0 1 554 -5.9891431592404842e-03 -1 -2 555
+ -8.9398561976850033e-04
+
+ 2.1848620474338531e-01 1.7726029455661774e-01
+ -5.4815018177032471e-01
+ <_>
+
+ 1 0 556 2.9013510793447495e-03 -1 -2 557
+ 4.4361278414726257e-03
+
+ -5.6709182262420654e-01 1.4183780550956726e-01
+ -5.8784419298171997e-01
+ <_>
+
+ 1 0 558 -5.3319290600484237e-05 -1 -2 559
+ 2.5481029879301786e-03
+
+ -3.4821888804435730e-01 1.9745320081710815e-01
+ -5.5979222059249878e-01
+ <_>
+
+ 1 0 560 7.4882939457893372e-02 -1 -2 561
+ 4.8816308379173279e-02
+
+ 4.6647951006889343e-01 -2.2575210034847260e-01
+ 3.2325819134712219e-01
+ <_>
+
+ 0 1 562 -3.9128339849412441e-03 -1 -2 563
+ -1.3820629566907883e-02
+
+ -5.9772872924804688e-01 2.6031211018562317e-01
+ -2.0211410522460938e-01
+ <_>
+
+ 0 1 564 9.4047200400382280e-04 -1 -2 565
+ -4.6419431455433369e-03
+
+ -3.4005248546600342e-01 -4.5187801122665405e-01
+ 2.1054859459400177e-01
+ <_>
+
+ 1 0 566 -3.1960941851139069e-02 -1 -2 567
+ -1.2651160068344325e-04
+
+ -2.0826019346714020e-01 3.8553190231323242e-01
+ -2.3116420209407806e-01
+ <_>
+
+ 0 1 568 -5.0413709133863449e-02 -1 -2 569
+ -2.0950778853148222e-03
+
+ 2.2846159338951111e-01 3.2639551162719727e-01
+ -3.4385430812835693e-01
+ <_>
+
+ 0 1 570 -1.1017880402505398e-02 -1 -2 571
+ -9.7415763884782791e-03
+
+ -7.7388781309127808e-01 3.6731991171836853e-01
+ -6.5746001899242401e-02
+ <_>
+
+ 0 1 572 5.3386680519906804e-05 -1 -2 573
+ 5.9820311143994331e-03
+
+ -3.5571750998497009e-01 1.7653119564056396e-01
+ -4.6110078692436218e-01
+ <_>
+
+ 1 0 574 -1.9558269996196032e-03 -1 -2 575
+ 7.6739699579775333e-03
+
+ -3.6172690987586975e-01 1.8038579821586609e-01
+ -4.0452030301094055e-01
+ <_>
+
+ 1 0 576 4.2935381643474102e-03 -1 -2 577
+ 1.4181300066411495e-03
+
+ 5.2086359262466431e-01 -2.2085809707641602e-01
+ 2.7357560396194458e-01
+ <_>
+
+ 0 1 578 -2.8263099491596222e-02 -1 -2 579
+ 6.3434068579226732e-04
+
+ -6.3833731412887573e-01 1.5636380016803741e-01
+ -3.2148900628089905e-01
+ <_>
+
+ 0 1 580 -7.2387307882308960e-03 -1 -2 581
+ -9.9928081035614014e-03
+
+ 2.3126259446144104e-01 3.0397319793701172e-01
+ -2.4478439986705780e-01
+ <_>
+
+ 1 0 582 6.4995248976629227e-05 -1 -2 583
+ -5.3049270063638687e-03
+
+ 1.5132980048656464e-01 2.0417870581150055e-01
+ -4.6260431408882141e-01
+ <_>
+
+ 0 1 584 -1.6613099724054337e-02 -1 -2 585
+ -1.1630290187895298e-02
+
+ 3.3399769663810730e-01 3.7053430080413818e-01
+ -1.9361549615859985e-01
+ <_>
+
+ 1 0 586 1.9068180117756128e-03 -1 -2 587
+ -5.6926468387246132e-03
+
+ -3.8105058670043945e-01 5.0645208358764648e-01
+ 6.5170922316610813e-03
+ <_>
+
+ 1 0 588 -2.2453670680988580e-04 -1 -2 589
+ 9.5565039664506912e-03
+
+ -3.1526011228561401e-01 -5.3035598993301392e-01
+ 2.0532760024070740e-01
+ <_>
+
+ 1 0 590 3.1540619675070047e-03 -1 -2 591
+ -3.0681329965591431e-01
+
+ -4.5928329229354858e-01 5.0717717409133911e-01
+ -1.4439250342547894e-02
+ <_>
+
+ 0 1 592 2.8239809907972813e-03 -1 -2 593
+ -3.3063529990613461e-03
+
+ -1.5437939763069153e-01 -4.3571388721466064e-01
+ 3.9342719316482544e-01
+ <_>
+
+ 1 0 594 3.7848789361305535e-04 -1 -2 595
+ -3.0488630291074514e-03
+
+ 2.5212600827217102e-01 4.6662339568138123e-01
+ -2.2792230546474457e-01
+ <_>
+
+ 0 1 596 -1.4724380336701870e-02 -1 -2 597
+ 3.6062300205230713e-02
+
+ -7.8602111339569092e-01 -6.8571321666240692e-02
+ 3.6698839068412781e-01
+ <_>
+
+ 0 1 598 -2.2327410988509655e-03 -1 -2 599
+ -7.8541820403188467e-04
+
+ -5.9740197658538818e-01 2.0273469388484955e-01
+ -1.7221680283546448e-01
+ <_>
+
+ 1 0 600 7.8553898492828012e-04 -1 -2 601
+ 1.0078109800815582e-02
+
+ -4.3407449126243591e-01 1.2464140355587006e-01
+ -4.8391419649124146e-01
+ <_>
+
+ 1 0 602 2.0928790792822838e-02 -1 -2 603
+ 1.3340089935809374e-03
+
+ 5.6864207983016968e-01 1.4524639584124088e-02
+ -4.6003210544586182e-01
+ <_>
+ 34
+ -1.9657919406890869e+00
+
+ <_>
+
+ 1 0 604 -1.5313959680497646e-02 -1 -2 605
+ -1.4265860430896282e-02
+
+ -3.4347689151763916e-01 5.8209532499313354e-01
+ -3.5527399182319641e-01
+ <_>
+
+ 0 1 606 1.2652979930862784e-03 -1 -2 607
+ -7.3807648732326925e-05
+
+ -3.1498318910598755e-01 4.7249591350555420e-01
+ -2.6380801200866699e-01
+ <_>
+
+ 0 1 608 -3.8527030497789383e-02 -1 -2 609
+ -1.4758770354092121e-02
+
+ 4.1556850075721741e-01 1.5677249431610107e-01
+ -3.7650239467620850e-01
+ <_>
+
+ 1 0 610 -1.5448270132765174e-03 -1 -2 611
+ 6.4564580097794533e-03
+
+ -3.5932019352912903e-01 2.1276639401912689e-01
+ -7.2287178039550781e-01
+ <_>
+
+ 0 1 612 1.0267349891364574e-02 -1 -2 613
+ -8.6422899039462209e-04
+
+ -4.6045809984207153e-01 2.4920259416103363e-01
+ -2.6721361279487610e-01
+ <_>
+
+ 0 1 614 3.2311889808624983e-03 -1 -2 615
+ 1.3676529750227928e-02
+
+ -4.0939199924468994e-01 -2.7391690760850906e-02
+ 4.5259070396423340e-01
+ <_>
+
+ 1 0 616 3.2787120435386896e-03 -1 -2 617
+ -1.4256529975682497e-03
+
+ -7.0025652647018433e-01 2.5787800550460815e-01
+ -1.5093439817428589e-01
+ <_>
+
+ 0 1 618 -2.2095029707998037e-03 -1 -2 619
+ -8.7701372802257538e-02
+
+ 3.5148110985755920e-01 4.1978740692138672e-01
+ -2.3600180447101593e-01
+ <_>
+
+ 0 1 620 -2.8805620968341827e-03 -1 -2 621
+ -2.5028509553521872e-03
+
+ 3.0479869246482849e-01 1.3316699862480164e-01
+ -3.1691300868988037e-01
+ <_>
+
+ 1 0 622 -5.1710562547668815e-04 -1 -2 623
+ 6.7088729701936245e-03
+
+ -3.5199090838432312e-01 2.0163150131702423e-01
+ -6.0948008298873901e-01
+ <_>
+
+ 0 1 624 -7.6058752834796906e-02 -1 -2 625
+ -3.0889140907675028e-03
+
+ -6.3694208860397339e-01 -7.9025340080261230e-01
+ 1.0366079956293106e-01
+ <_>
+
+ 1 0 626 2.5740528944879770e-03 -1 -2 627
+ -5.4877097718417645e-03
+
+ -4.5424199104309082e-01 2.1481299400329590e-01
+ -1.9329510629177094e-01
+ <_>
+
+ 1 0 628 -1.2507289648056030e-03 -1 -2 629
+ -4.3231048621237278e-03
+
+ -2.1651449799537659e-01 -6.2799078226089478e-01
+ 2.4270740151405334e-01
+ <_>
+
+ 1 0 630 4.3724630959331989e-03 -1 -2 631
+ 7.4632692849263549e-04
+
+ -5.1889377832412720e-01 -1.1378680169582367e-01
+ 2.8224378824234009e-01
+ <_>
+
+ 0 1 632 -1.3375070411711931e-03 -1 -2 633
+ -2.9367550741881132e-03
+
+ 2.4589119851589203e-01 2.4335819482803345e-01
+ -2.9112818837165833e-01
+ <_>
+
+ 0 1 634 6.3193867390509695e-05 -1 -2 635
+ -5.1338938064873219e-03
+
+ -2.5806590914726257e-01 -4.6110409498214722e-01
+ 2.4333980679512024e-01
+ <_>
+
+ 1 0 636 4.9400608986616135e-03 -1 -2 637
+ -5.6112580932676792e-03
+
+ -3.9632990956306458e-01 2.4502380192279816e-01
+ -1.5639010071754456e-01
+ <_>
+
+ 1 0 638 4.2950599454343319e-03 -1 -2 639
+ 4.5142881572246552e-03
+
+ -4.7671678662300110e-01 1.0698430240154266e-01
+ -9.0471321344375610e-01
+ <_>
+
+ 1 0 640 7.5297639705240726e-03 -1 -2 641
+ -1.2225280515849590e-03
+
+ 4.1239809989929199e-01 2.8488171100616455e-01
+ -1.9815699756145477e-01
+ <_>
+
+ 0 1 642 -3.4703810233622789e-03 -1 -2 643
+ 8.3724651485681534e-03
+
+ -4.4967961311340332e-01 1.5324249863624573e-01
+ -3.8666850328445435e-01
+ <_>
+
+ 1 0 644 -3.3934618841158226e-05 -1 -2 645
+ -2.7241709828376770e-01
+
+ -3.1429070234298706e-01 -5.5842101573944092e-01
+ 1.6627819836139679e-01
+ <_>
+
+ 0 1 646 -2.7582740876823664e-03 -1 -2 647
+ 2.5530489161610603e-02
+
+ 2.7189570665359497e-01 -1.9172009825706482e-01
+ 4.3780499696731567e-01
+ <_>
+
+ 1 0 648 4.2080380953848362e-03 -1 -2 649
+ -8.2151442766189575e-03
+
+ -4.4684138894081116e-01 2.2786709666252136e-01
+ -1.7441789805889130e-01
+ <_>
+
+ 0 1 650 -2.9405429959297180e-03 -1 -2 651
+ -9.4840265810489655e-03
+
+ -7.2643548250198364e-01 2.0794290304183960e-01
+ -1.5239919722080231e-01
+ <_>
+
+ 1 0 652 4.2596450075507164e-03 -1 -2 653
+ -1.7117479583248496e-03
+
+ 6.1772680282592773e-01 -7.1106612682342529e-01
+ -6.1875251121819019e-03
+ <_>
+
+ 0 1 654 -1.3266160385683179e-03 -1 -2 655
+ 9.1314306482672691e-03
+
+ 1.7181269824504852e-01 -4.1138759255409241e-01
+ 1.8124279379844666e-01
+ <_>
+
+ 1 0 656 6.8382360041141510e-03 -1 -2 657
+ 7.5181988067924976e-03
+
+ -5.7601082324981689e-01 -1.0819079726934433e-01
+ 2.9561421275138855e-01
+ <_>
+
+ 0 1 658 -7.2788819670677185e-03 -1 -2 659
+ -1.8039470538496971e-02
+
+ -5.8113521337509155e-01 4.5183068513870239e-01
+ -2.7083089575171471e-02
+ <_>
+
+ 0 1 660 -1.0126599809154868e-03 -1 -2 661
+ -6.7263199016451836e-03
+
+ 2.4344119429588318e-01 1.6870440542697906e-01
+ -2.7007728815078735e-01
+ <_>
+
+ 0 1 662 -3.2334970310330391e-03 -1 -2 663
+ -7.7852200774941593e-05
+
+ -6.0048222541809082e-01 2.4241769313812256e-01
+ -1.2413249909877777e-01
+ <_>
+
+ 0 1 664 -6.7774722992908210e-05 -1 -2 665
+ 7.1789676439948380e-05
+
+ 1.5729150176048279e-01 -5.2893507480621338e-01
+ -3.1665571033954620e-02
+ <_>
+
+ 1 0 666 1.0024299845099449e-02 -1 -2 667
+ 9.4298496842384338e-03
+
+ -4.8646959662437439e-01 1.1240869760513306e-01
+ -4.2570489645004272e-01
+ <_>
+
+ 0 1 668 -7.4433721601963043e-04 -1 -2 669
+ 1.1660560034215450e-02
+
+ 2.7540761232376099e-01 -2.3117260634899139e-01
+ 2.2442330420017242e-01
+ <_>
+
+ 1 0 670 3.9079408161342144e-03 -1 -2 671
+ 1.6550149768590927e-02
+
+ -6.3519638776779175e-01 1.0619100183248520e-01
+ -4.7654989361763000e-01
+ <_>
+ 32
+ -1.7649420499801636e+00
+
+ <_>
+
+ 1 0 672 -1.8439030274748802e-02 -1 -2 673
+ -5.3364519029855728e-02
+
+ -4.8745709657669067e-01 5.1037812232971191e-01
+ -2.2670130431652069e-01
+ <_>
+
+ 0 1 674 -7.5706318020820618e-02 -1 -2 675
+ -1.5329009620472789e-03
+
+ 4.1487750411033630e-01 8.5764937102794647e-02
+ -4.3470910191535950e-01
+ <_>
+
+ 1 0 676 -2.4494890123605728e-02 -1 -2 677
+ -3.8144161226227880e-04
+
+ -2.7532699704170227e-01 3.8043969869613647e-01
+ -4.3967849016189575e-01
+ <_>
+
+ 1 0 678 -8.8816778734326363e-03 -1 -2 679
+ -3.9625130593776703e-02
+
+ -4.3258818984031677e-01 2.4481220543384552e-01
+ -2.6193639636039734e-01
+ <_>
+
+ 1 0 680 -3.5907390993088484e-03 -1 -2 681
+ 3.7008870393037796e-02
+
+ -3.6199480295181274e-01 2.2637460380792618e-02
+ 5.5778437852859497e-01
+ <_>
+
+ 0 1 682 7.8503930126316845e-05 -1 -2 683
+ -4.7969701699912548e-03
+
+ -3.3861130475997925e-01 3.1856098771095276e-01
+ -1.6600249707698822e-01
+ <_>
+
+ 0 1 684 -1.1298010125756264e-02 -1 -2 685
+ -4.4886539690196514e-03
+
+ 3.7305471301078796e-01 2.9692959785461426e-01
+ -2.5235760211944580e-01
+ <_>
+
+ 0 1 686 -2.2497780155390501e-03 -1 -2 687
+ 2.9247230850160122e-03
+
+ 3.4263029694557190e-01 -5.6593239307403564e-02
+ -7.0626032352447510e-01
+ <_>
+
+ 1 0 688 1.7976630479097366e-03 -1 -2 689
+ 1.9808609504252672e-03
+
+ -5.4180228710174561e-01 -2.5643008947372437e-01
+ 1.8446870148181915e-01
+ <_>
+
+ 0 1 690 -4.7688339836895466e-03 -1 -2 691
+ -1.5755610540509224e-02
+
+ -2.9698228836059570e-01 2.8959378600120544e-01
+ -1.6480749845504761e-01
+ <_>
+
+ 0 1 692 -1.1919640004634857e-02 -1 -2 693
+ 4.2308131232857704e-03
+
+ -5.8567219972610474e-01 1.3601270318031311e-01
+ -4.8162451386451721e-01
+ <_>
+
+ 1 0 694 2.0548550412058830e-02 -1 -2 695
+ -7.3943338356912136e-03
+
+ 3.0143499374389648e-01 4.6367760747671127e-02
+ -4.2379519343376160e-01
+ <_>
+
+ 0 1 696 -6.2137800268828869e-03 -1 -2 697
+ 1.4182809973135591e-03
+
+ 4.5724278688430786e-01 -3.0143639445304871e-01
+ 1.8204510211944580e-01
+ <_>
+
+ 1 0 698 4.1609420441091061e-03 -1 -2 699
+ -3.7915320135653019e-03
+
+ -5.2654838562011719e-01 -5.8677071332931519e-01
+ 1.1703660339117050e-01
+ <_>
+
+ 1 0 700 2.0879150833934546e-03 -1 -2 701
+ 1.5018540434539318e-03
+
+ -3.5307729244232178e-01 1.8624800443649292e-01
+ -3.2729730010032654e-01
+ <_>
+
+ 1 0 702 2.1248809993267059e-02 -1 -2 703
+ -5.5249751312658191e-04
+
+ -3.1979259848594666e-01 2.3370230197906494e-01
+ -1.7386199533939362e-01
+ <_>
+
+ 0 1 704 -3.0085169710218906e-03 -1 -2 705
+ -1.1611919617280364e-03
+
+ 1.7596049606800079e-01 1.6033430397510529e-01
+ -3.9680978655815125e-01
+ <_>
+
+ 0 1 706 -3.9655580185353756e-03 -1 -2 707
+ -6.5836100839078426e-03
+
+ 3.6691769957542419e-01 -6.2966358661651611e-01
+ -2.4926450103521347e-02
+ <_>
+
+ 0 1 708 -9.0950471349060535e-04 -1 -2 709
+ -5.7984529994428158e-03
+
+ 3.9574980735778809e-01 1.7492240667343140e-01
+ -2.6837408542633057e-01
+ <_>
+
+ 0 1 710 -5.7758802175521851e-01 -1 -2 711
+ -1.5161310322582722e-02
+
+ 5.9611392021179199e-01 -6.6131639480590820e-01
+ 3.3608361263759434e-04
+ <_>
+
+ 1 0 712 7.6604672358371317e-05 -1 -2 713
+ 2.7769979089498520e-02
+
+ 2.0401589572429657e-01 -3.2097330689430237e-01
+ 2.2317400574684143e-01
+ <_>
+
+ 0 1 714 -2.6336179580539465e-03 -1 -2 715
+ 8.3722146227955818e-03
+
+ -3.9656499028205872e-01 1.3883970677852631e-01
+ -5.8006221055984497e-01
+ <_>
+
+ 0 1 716 -7.0203031646087766e-04 -1 -2 717
+ -4.8448870074935257e-04
+
+ 2.7777281403541565e-01 2.1628519892692566e-01
+ -2.9692250490188599e-01
+ <_>
+
+ 0 1 718 -3.3638171851634979e-02 -1 -2 719
+ 4.4241230934858322e-03
+
+ 3.5791969299316406e-01 -8.6632027523592114e-04
+ -5.5872720479965210e-01
+ <_>
+
+ 1 0 720 1.1545260436832905e-02 -1 -2 721
+ -1.5816639643162489e-03
+
+ 3.3837619423866272e-01 2.8660699725151062e-02
+ -3.5041970014572144e-01
+ <_>
+
+ 1 0 722 1.3838140293955803e-02 -1 -2 723
+ 2.8327409178018570e-02
+
+ -7.7886807918548584e-01 -1.8604910001158714e-02
+ 6.2147867679595947e-01
+ <_>
+
+ 0 1 724 -8.8482163846492767e-03 -1 -2 725
+ -1.1661020107567310e-03
+
+ 2.6369819045066833e-01 1.0302580147981644e-01
+ -3.2680010795593262e-01
+ <_>
+
+ 0 1 726 -3.2252211123704910e-02 -1 -2 727
+ -9.4921119511127472e-02
+
+ -5.0046241283416748e-01 -7.2761011123657227e-01
+ 1.0330100357532501e-01
+ <_>
+
+ 1 0 728 2.5177269708365202e-03 -1 -2 729
+ -4.0892168879508972e-02
+
+ -6.3938027620315552e-01 -5.7345229387283325e-01
+ 8.1502526998519897e-02
+ <_>
+
+ 0 1 730 -1.9293189980089664e-03 -1 -2 731
+ -1.4116390375420451e-03
+
+ 2.4177229404449463e-01 8.0363817512989044e-02
+ -3.6146539449691772e-01
+ <_>
+
+ 0 1 732 -3.8812779821455479e-03 -1 -2 733
+ 4.4630360789597034e-03
+
+ -5.7638782262802124e-01 9.1835789382457733e-02
+ -6.8039101362228394e-01
+ <_>
+
+ 0 1 734 2.9870839789509773e-03 -1 -2 735
+ 9.4975335523486137e-03
+
+ -1.0236640274524689e-01 4.9150609970092773e-01
+ -3.8011389970779419e-01
+
+ <_>
+
+ <_>
+ 8 7 3 12 -1.
+ <_>
+ 8 11 3 4 3.
+ <_>
+
+ <_>
+ 8 7 8 3 -1.
+ <_>
+ 10 9 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 13 2 6 -1.
+ <_>
+ 9 16 2 3 2.
+ <_>
+
+ <_>
+ 8 2 12 8 -1.
+ <_>
+ 11 2 6 8 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 3 6 3 2.
+ <_>
+
+ <_>
+ 8 1 5 12 -1.
+ <_>
+ 8 4 5 6 2.
+ <_>
+
+ <_>
+ 1 8 3 12 -1.
+ <_>
+ 1 12 3 4 3.
+ <_>
+
+ <_>
+ 0 11 2 7 -1.
+ <_>
+ 1 11 1 7 2.
+ <_>
+
+ <_>
+ 6 12 9 7 -1.
+ <_>
+ 9 12 3 7 3.
+ <_>
+
+ <_>
+ 13 4 6 9 -1.
+ <_>
+ 15 4 2 9 3.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 8 11 4 4 9.
+ <_>
+
+ <_>
+ 15 0 4 20 -1.
+ <_>
+ 15 5 4 10 2.
+ <_>
+
+ <_>
+ 0 12 5 8 -1.
+ <_>
+ 0 16 5 4 2.
+ <_>
+
+ <_>
+ 8 2 12 8 -1.
+ <_>
+ 12 2 4 8 3.
+ <_>
+
+ <_>
+ 19 0 1 8 -1.
+ <_>
+ 19 4 1 4 2.
+ <_>
+
+ <_>
+ 9 7 3 12 -1.
+ <_>
+ 9 11 3 4 3.
+ <_>
+
+ <_>
+ 1 2 8 8 -1.
+ <_>
+ 1 6 8 4 2.
+ <_>
+
+ <_>
+ 0 12 4 4 -1.
+ <_>
+ 2 12 2 4 2.
+ <_>
+
+ <_>
+ 9 7 6 8 -1.
+ <_>
+ 9 7 3 4 2.
+ <_>
+ 12 11 3 4 2.
+ <_>
+
+ <_>
+ 13 18 7 2 -1.
+ <_>
+ 13 19 7 1 2.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 8 11 4 4 9.
+ <_>
+
+ <_>
+ 0 8 5 12 -1.
+ <_>
+ 0 12 5 4 3.
+ <_>
+
+ <_>
+ 16 0 4 8 -1.
+ <_>
+ 18 0 2 8 2.
+ <_>
+
+ <_>
+ 16 12 1 8 -1.
+ <_>
+ 16 16 1 4 2.
+ <_>
+
+ <_>
+ 9 1 9 9 -1.
+ <_>
+ 12 1 3 9 3.
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 15 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 14 2 4 -1.
+ <_>
+ 2 16 2 2 2.
+ <_>
+
+ <_>
+ 6 12 9 3 -1.
+ <_>
+ 9 12 3 3 3.
+ <_>
+
+ <_>
+ 0 18 5 2 -1.
+ <_>
+ 0 19 5 1 2.
+ <_>
+
+ <_>
+ 1 7 18 12 -1.
+ <_>
+ 7 11 6 4 9.
+ <_>
+
+ <_>
+ 4 0 16 12 -1.
+ <_>
+ 4 0 8 6 2.
+ <_>
+ 12 6 8 6 2.
+ <_>
+
+ <_>
+ 8 3 2 5 -1.
+ <_>
+ 9 3 1 5 2.
+ <_>
+
+ <_>
+ 17 17 1 2 -1.
+ <_>
+ 17 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 16 1 3 -1.
+ <_>
+ 17 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 9 2 6 -1.
+ <_>
+ 1 9 1 6 2.
+ <_>
+
+ <_>
+ 3 3 3 4 -1.
+ <_>
+ 4 3 1 4 3.
+ <_>
+
+ <_>
+ 4 7 12 12 -1.
+ <_>
+ 8 11 4 4 9.
+ <_>
+
+ <_>
+ 10 0 7 8 -1.
+ <_>
+ 10 4 7 4 2.
+ <_>
+
+ <_>
+ 18 0 2 9 -1.
+ <_>
+ 19 0 1 9 2.
+ <_>
+
+ <_>
+ 4 13 1 4 -1.
+ <_>
+ 4 13 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 8 6 2 -1.
+ <_>
+ 12 10 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 11 4 7 -1.
+ <_>
+ 15 11 2 7 2.
+ <_>
+
+ <_>
+ 4 0 13 8 -1.
+ <_>
+ 4 2 13 4 2.
+ <_>
+
+ <_>
+ 9 1 7 8 -1.
+ <_>
+ 9 5 7 4 2.
+ <_>
+
+ <_>
+ 7 0 12 9 -1.
+ <_>
+ 10 0 6 9 2.
+ <_>
+
+ <_>
+ 14 3 4 4 -1.
+ <_>
+ 15 3 2 4 2.
+ <_>
+
+ <_>
+ 0 16 4 4 -1.
+ <_>
+ 0 18 4 2 2.
+ <_>
+
+ <_>
+ 3 17 2 1 -1.
+ <_>
+ 3 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 1 3 -1.
+ <_>
+ 16 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 10 6 4 -1.
+ <_>
+ 10 11 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 17 0 3 3 -1.
+ <_>
+ 18 1 1 1 9.
+ <_>
+
+ <_>
+ 2 1 12 6 -1.
+ <_>
+ 2 4 12 3 2.
+ <_>
+
+ <_>
+ 19 2 1 16 -1.
+ <_>
+ 15 6 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 12 2 4 6 -1.
+ <_>
+ 13 2 2 6 2.
+ <_>
+
+ <_>
+ 11 3 3 3 -1.
+ <_>
+ 12 3 1 3 3.
+ <_>
+
+ <_>
+ 1 7 18 12 -1.
+ <_>
+ 7 11 6 4 9.
+ <_>
+
+ <_>
+ 8 1 12 9 -1.
+ <_>
+ 12 1 4 9 3.
+ <_>
+
+ <_>
+ 18 0 2 10 -1.
+ <_>
+ 18 5 2 5 2.
+ <_>
+
+ <_>
+ 4 5 12 15 -1.
+ <_>
+ 8 10 4 5 9.
+ <_>
+
+ <_>
+ 1 8 4 12 -1.
+ <_>
+ 1 12 4 4 3.
+ <_>
+
+ <_>
+ 6 13 8 2 -1.
+ <_>
+ 8 13 4 2 2.
+ <_>
+
+ <_>
+ 16 0 4 15 -1.
+ <_>
+ 18 0 2 15 2.
+ <_>
+
+ <_>
+ 14 0 4 8 -1.
+ <_>
+ 15 0 2 8 2.
+ <_>
+
+ <_>
+ 5 0 8 9 -1.
+ <_>
+ 5 3 8 3 3.
+ <_>
+
+ <_>
+ 8 0 6 6 -1.
+ <_>
+ 10 0 2 6 3.
+ <_>
+
+ <_>
+ 10 17 3 3 -1.
+ <_>
+ 11 17 1 3 3.
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 11 17 2 3 2.
+ <_>
+
+ <_>
+ 14 12 4 4 -1.
+ <_>
+ 15 12 2 4 2.
+ <_>
+
+ <_>
+ 8 18 4 2 -1.
+ <_>
+ 9 18 2 2 2.
+ <_>
+
+ <_>
+ 6 1 4 5 -1.
+ <_>
+ 7 1 2 5 2.
+ <_>
+
+ <_>
+ 2 0 6 5 -1.
+ <_>
+ 4 0 2 5 3.
+ <_>
+
+ <_>
+ 8 7 8 3 -1.
+ <_>
+ 10 9 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 12 4 3 -1.
+ <_>
+ 15 12 2 3 2.
+ <_>
+
+ <_>
+ 10 10 3 4 -1.
+ <_>
+ 9 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 0 2 6 -1.
+ <_>
+ 17 3 2 3 2.
+ <_>
+
+ <_>
+ 1 9 6 9 -1.
+ <_>
+ 3 12 2 3 9.
+ <_>
+
+ <_>
+ 5 11 8 4 -1.
+ <_>
+ 9 11 4 4 2.
+ <_>
+
+ <_>
+ 1 0 16 6 -1.
+ <_>
+ 1 3 16 3 2.
+ <_>
+
+ <_>
+ 2 0 14 6 -1.
+ <_>
+ 2 2 14 2 3.
+ <_>
+
+ <_>
+ 0 11 2 9 -1.
+ <_>
+ 1 11 1 9 2.
+ <_>
+
+ <_>
+ 18 11 1 8 -1.
+ <_>
+ 18 11 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 10 12 3 2 -1.
+ <_>
+ 11 12 1 2 3.
+ <_>
+
+ <_>
+ 11 13 3 1 -1.
+ <_>
+ 12 13 1 1 3.
+ <_>
+
+ <_>
+ 15 0 4 8 -1.
+ <_>
+ 17 0 2 8 2.
+ <_>
+
+ <_>
+ 12 17 4 3 -1.
+ <_>
+ 14 17 2 3 2.
+ <_>
+
+ <_>
+ 15 17 1 2 -1.
+ <_>
+ 15 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 16 1 3 -1.
+ <_>
+ 14 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 14 8 -1.
+ <_>
+ 3 2 14 4 2.
+ <_>
+
+ <_>
+ 18 1 1 2 -1.
+ <_>
+ 18 2 1 1 2.
+ <_>
+
+ <_>
+ 6 0 8 3 -1.
+ <_>
+ 8 0 4 3 2.
+ <_>
+
+ <_>
+ 9 4 1 9 -1.
+ <_>
+ 9 7 1 3 3.
+ <_>
+
+ <_>
+ 6 13 9 2 -1.
+ <_>
+ 9 13 3 2 3.
+ <_>
+
+ <_>
+ 0 13 5 6 -1.
+ <_>
+ 0 16 5 3 2.
+ <_>
+
+ <_>
+ 13 12 6 4 -1.
+ <_>
+ 15 12 2 4 3.
+ <_>
+
+ <_>
+ 4 6 12 2 -1.
+ <_>
+ 8 10 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 19 0 1 8 -1.
+ <_>
+ 19 4 1 4 2.
+ <_>
+
+ <_>
+ 8 2 12 8 -1.
+ <_>
+ 11 2 6 8 2.
+ <_>
+
+ <_>
+ 0 12 4 4 -1.
+ <_>
+ 2 12 2 4 2.
+ <_>
+
+ <_>
+ 7 8 13 9 -1.
+ <_>
+ 7 11 13 3 3.
+ <_>
+
+ <_>
+ 18 1 2 6 -1.
+ <_>
+ 19 1 1 6 2.
+ <_>
+
+ <_>
+ 7 4 5 8 -1.
+ <_>
+ 7 6 5 4 2.
+ <_>
+
+ <_>
+ 11 18 9 2 -1.
+ <_>
+ 11 19 9 1 2.
+ <_>
+
+ <_>
+ 10 7 2 3 -1.
+ <_>
+ 11 7 1 3 2.
+ <_>
+
+ <_>
+ 4 18 6 2 -1.
+ <_>
+ 6 18 2 2 3.
+ <_>
+
+ <_>
+ 6 13 6 7 -1.
+ <_>
+ 8 13 2 7 3.
+ <_>
+
+ <_>
+ 5 18 6 2 -1.
+ <_>
+ 7 18 2 2 3.
+ <_>
+
+ <_>
+ 18 5 2 2 -1.
+ <_>
+ 18 6 2 1 2.
+ <_>
+
+ <_>
+ 6 2 9 4 -1.
+ <_>
+ 6 4 9 2 2.
+ <_>
+
+ <_>
+ 13 0 7 4 -1.
+ <_>
+ 13 0 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 9 3 6 -1.
+ <_>
+ 11 11 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 8 4 6 -1.
+ <_>
+ 16 11 4 3 2.
+ <_>
+
+ <_>
+ 19 2 1 2 -1.
+ <_>
+ 19 3 1 1 2.
+ <_>
+
+ <_>
+ 19 1 1 3 -1.
+ <_>
+ 19 2 1 1 3.
+ <_>
+
+ <_>
+ 13 12 2 4 -1.
+ <_>
+ 13 12 1 2 2.
+ <_>
+ 14 14 1 2 2.
+ <_>
+
+ <_>
+ 14 9 3 5 -1.
+ <_>
+ 15 10 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 8 3 -1.
+ <_>
+ 10 9 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 7 9 4 -1.
+ <_>
+ 6 8 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 2 6 -1.
+ <_>
+ 1 11 1 6 2.
+ <_>
+
+ <_>
+ 0 13 5 6 -1.
+ <_>
+ 0 16 5 3 2.
+ <_>
+
+ <_>
+ 16 2 4 6 -1.
+ <_>
+ 18 2 2 6 2.
+ <_>
+
+ <_>
+ 13 5 6 7 -1.
+ <_>
+ 15 7 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 19 2 1 4 -1.
+ <_>
+ 19 4 1 2 2.
+ <_>
+
+ <_>
+ 14 1 6 2 -1.
+ <_>
+ 16 1 2 2 3.
+ <_>
+
+ <_>
+ 14 12 4 5 -1.
+ <_>
+ 15 12 2 5 2.
+ <_>
+
+ <_>
+ 18 15 2 3 -1.
+ <_>
+ 17 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 16 3 4 -1.
+ <_>
+ 14 18 3 2 2.
+ <_>
+
+ <_>
+ 16 16 1 2 -1.
+ <_>
+ 16 16 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 0 1 2 -1.
+ <_>
+ 18 1 1 1 2.
+ <_>
+
+ <_>
+ 9 8 1 6 -1.
+ <_>
+ 9 11 1 3 2.
+ <_>
+
+ <_>
+ 18 5 2 1 -1.
+ <_>
+ 19 5 1 1 2.
+ <_>
+
+ <_>
+ 14 3 6 4 -1.
+ <_>
+ 16 3 2 4 3.
+ <_>
+
+ <_>
+ 8 18 4 2 -1.
+ <_>
+ 9 18 2 2 2.
+ <_>
+
+ <_>
+ 6 13 9 7 -1.
+ <_>
+ 9 13 3 7 3.
+ <_>
+
+ <_>
+ 1 16 2 2 -1.
+ <_>
+ 1 17 2 1 2.
+ <_>
+
+ <_>
+ 0 16 3 4 -1.
+ <_>
+ 0 17 3 2 2.
+ <_>
+
+ <_>
+ 8 1 4 5 -1.
+ <_>
+ 9 1 2 5 2.
+ <_>
+
+ <_>
+ 10 1 6 9 -1.
+ <_>
+ 12 1 2 9 3.
+ <_>
+
+ <_>
+ 10 8 10 4 -1.
+ <_>
+ 10 10 10 2 2.
+ <_>
+
+ <_>
+ 15 8 5 4 -1.
+ <_>
+ 15 10 5 2 2.
+ <_>
+
+ <_>
+ 17 1 3 2 -1.
+ <_>
+ 18 2 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 13 11 3 5 -1.
+ <_>
+ 14 11 1 5 3.
+ <_>
+
+ <_>
+ 8 7 4 3 -1.
+ <_>
+ 10 7 2 3 2.
+ <_>
+
+ <_>
+ 3 0 8 1 -1.
+ <_>
+ 5 0 4 1 2.
+ <_>
+
+ <_>
+ 1 13 6 5 -1.
+ <_>
+ 3 13 2 5 3.
+ <_>
+
+ <_>
+ 13 9 3 5 -1.
+ <_>
+ 14 10 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 11 8 4 6 -1.
+ <_>
+ 9 10 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 7 6 6 -1.
+ <_>
+ 13 9 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 7 6 -1.
+ <_>
+ 7 3 7 3 2.
+ <_>
+
+ <_>
+ 3 1 10 12 -1.
+ <_>
+ 3 5 10 4 3.
+ <_>
+
+ <_>
+ 13 12 6 4 -1.
+ <_>
+ 15 12 2 4 3.
+ <_>
+
+ <_>
+ 0 9 6 9 -1.
+ <_>
+ 2 12 2 3 9.
+ <_>
+
+ <_>
+ 8 0 12 11 -1.
+ <_>
+ 12 0 4 11 3.
+ <_>
+
+ <_>
+ 13 11 1 8 -1.
+ <_>
+ 13 11 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 19 4 1 2 -1.
+ <_>
+ 19 5 1 1 2.
+ <_>
+
+ <_>
+ 2 15 1 2 -1.
+ <_>
+ 2 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 16 1 3 -1.
+ <_>
+ 15 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 11 3 2 -1.
+ <_>
+ 6 12 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 2 2 -1.
+ <_>
+ 4 11 1 1 2.
+ <_>
+ 5 12 1 1 2.
+ <_>
+
+ <_>
+ 17 7 3 2 -1.
+ <_>
+ 18 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 9 3 8 -1.
+ <_>
+ 16 11 3 4 2.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 19 0 1 3 -1.
+ <_>
+ 19 1 1 1 3.
+ <_>
+
+ <_>
+ 9 0 10 3 -1.
+ <_>
+ 14 0 5 3 2.
+ <_>
+
+ <_>
+ 3 3 15 17 -1.
+ <_>
+ 8 3 5 17 3.
+ <_>
+
+ <_>
+ 8 0 4 4 -1.
+ <_>
+ 9 0 2 4 2.
+ <_>
+
+ <_>
+ 1 11 8 1 -1.
+ <_>
+ 1 11 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 2 4 -1.
+ <_>
+ 3 11 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 17 4 3 -1.
+ <_>
+ 5 17 2 3 2.
+ <_>
+
+ <_>
+ 18 7 2 1 -1.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 2 7 18 3 -1.
+ <_>
+ 11 7 9 3 2.
+ <_>
+
+ <_>
+ 4 11 4 2 -1.
+ <_>
+ 4 11 2 1 2.
+ <_>
+ 6 12 2 1 2.
+ <_>
+
+ <_>
+ 4 9 2 4 -1.
+ <_>
+ 4 11 2 2 2.
+ <_>
+
+ <_>
+ 16 1 3 1 -1.
+ <_>
+ 17 2 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 18 1 2 -1.
+ <_>
+ 4 19 1 1 2.
+ <_>
+
+ <_>
+ 9 18 4 2 -1.
+ <_>
+ 10 18 2 2 2.
+ <_>
+
+ <_>
+ 12 11 5 4 -1.
+ <_>
+ 11 12 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 2 2 1 -1.
+ <_>
+ 19 2 1 1 2.
+ <_>
+
+ <_>
+ 7 0 6 2 -1.
+ <_>
+ 9 0 2 2 3.
+ <_>
+
+ <_>
+ 6 13 8 2 -1.
+ <_>
+ 8 13 4 2 2.
+ <_>
+
+ <_>
+ 14 12 4 4 -1.
+ <_>
+ 15 12 2 4 2.
+ <_>
+
+ <_>
+ 3 8 17 9 -1.
+ <_>
+ 3 11 17 3 3.
+ <_>
+
+ <_>
+ 0 12 4 3 -1.
+ <_>
+ 2 12 2 3 2.
+ <_>
+
+ <_>
+ 8 3 12 6 -1.
+ <_>
+ 12 3 4 6 3.
+ <_>
+
+ <_>
+ 0 14 3 6 -1.
+ <_>
+ 0 17 3 3 2.
+ <_>
+
+ <_>
+ 3 0 13 9 -1.
+ <_>
+ 3 3 13 3 3.
+ <_>
+
+ <_>
+ 8 2 8 6 -1.
+ <_>
+ 8 5 8 3 2.
+ <_>
+
+ <_>
+ 1 11 18 3 -1.
+ <_>
+ 7 11 6 3 3.
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 12 6 4 -1.
+ <_>
+ 16 12 2 4 3.
+ <_>
+
+ <_>
+ 13 11 4 5 -1.
+ <_>
+ 14 11 2 5 2.
+ <_>
+
+ <_>
+ 19 3 1 2 -1.
+ <_>
+ 19 4 1 1 2.
+ <_>
+
+ <_>
+ 19 0 1 3 -1.
+ <_>
+ 19 1 1 1 3.
+ <_>
+
+ <_>
+ 7 2 8 4 -1.
+ <_>
+ 7 4 8 2 2.
+ <_>
+
+ <_>
+ 9 12 3 2 -1.
+ <_>
+ 10 12 1 2 3.
+ <_>
+
+ <_>
+ 15 8 3 2 -1.
+ <_>
+ 16 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 15 3 2 -1.
+ <_>
+ 16 15 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 7 12 1 3 3.
+ <_>
+
+ <_>
+ 13 12 3 1 -1.
+ <_>
+ 14 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 1 3 -1.
+ <_>
+ 3 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 2 6 4 -1.
+ <_>
+ 10 2 2 4 3.
+ <_>
+
+ <_>
+ 15 15 2 3 -1.
+ <_>
+ 14 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 18 8 2 -1.
+ <_>
+ 12 19 8 1 2.
+ <_>
+
+ <_>
+ 7 12 6 7 -1.
+ <_>
+ 9 12 2 7 3.
+ <_>
+
+ <_>
+ 4 18 6 2 -1.
+ <_>
+ 6 18 2 2 3.
+ <_>
+
+ <_>
+ 11 12 3 3 -1.
+ <_>
+ 12 12 1 3 3.
+ <_>
+
+ <_>
+ 12 12 2 2 -1.
+ <_>
+ 13 12 1 2 2.
+ <_>
+
+ <_>
+ 18 5 2 1 -1.
+ <_>
+ 19 5 1 1 2.
+ <_>
+
+ <_>
+ 5 19 4 1 -1.
+ <_>
+ 6 19 2 1 2.
+ <_>
+
+ <_>
+ 0 11 5 2 -1.
+ <_>
+ 0 12 5 1 2.
+ <_>
+
+ <_>
+ 18 0 2 2 -1.
+ <_>
+ 18 1 2 1 2.
+ <_>
+
+ <_>
+ 1 0 12 6 -1.
+ <_>
+ 1 2 12 2 3.
+ <_>
+
+ <_>
+ 1 1 6 1 -1.
+ <_>
+ 3 3 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 9 3 1 -1.
+ <_>
+ 17 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 10 1 6 -1.
+ <_>
+ 12 12 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 3 1 1 3 -1.
+ <_>
+ 2 2 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 3 -1.
+ <_>
+ 2 1 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 14 8 1 -1.
+ <_>
+ 8 14 4 1 2.
+ <_>
+
+ <_>
+ 1 8 18 9 -1.
+ <_>
+ 7 11 6 3 9.
+ <_>
+
+ <_>
+ 19 0 1 18 -1.
+ <_>
+ 19 6 1 6 3.
+ <_>
+
+ <_>
+ 1 13 3 6 -1.
+ <_>
+ 1 16 3 3 2.
+ <_>
+
+ <_>
+ 6 10 7 3 -1.
+ <_>
+ 6 11 7 1 3.
+ <_>
+
+ <_>
+ 6 9 7 3 -1.
+ <_>
+ 6 10 7 1 3.
+ <_>
+
+ <_>
+ 14 1 6 8 -1.
+ <_>
+ 17 1 3 8 2.
+ <_>
+
+ <_>
+ 9 6 2 4 -1.
+ <_>
+ 10 6 1 4 2.
+ <_>
+
+ <_>
+ 6 11 7 2 -1.
+ <_>
+ 6 12 7 1 2.
+ <_>
+
+ <_>
+ 17 11 3 6 -1.
+ <_>
+ 18 12 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 19 17 1 2 -1.
+ <_>
+ 19 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 9 4 2 -1.
+ <_>
+ 17 10 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 18 4 2 -1.
+ <_>
+ 7 18 2 2 2.
+ <_>
+
+ <_>
+ 2 12 4 4 -1.
+ <_>
+ 3 12 2 4 2.
+ <_>
+
+ <_>
+ 19 2 1 2 -1.
+ <_>
+ 19 3 1 1 2.
+ <_>
+
+ <_>
+ 19 2 1 3 -1.
+ <_>
+ 19 3 1 1 3.
+ <_>
+
+ <_>
+ 1 12 12 3 -1.
+ <_>
+ 7 12 6 3 2.
+ <_>
+
+ <_>
+ 6 18 4 1 -1.
+ <_>
+ 7 18 2 1 2.
+ <_>
+
+ <_>
+ 5 2 12 6 -1.
+ <_>
+ 5 5 12 3 2.
+ <_>
+
+ <_>
+ 9 1 6 6 -1.
+ <_>
+ 9 4 6 3 2.
+ <_>
+
+ <_>
+ 7 0 11 9 -1.
+ <_>
+ 7 3 11 3 3.
+ <_>
+
+ <_>
+ 2 0 8 9 -1.
+ <_>
+ 2 3 8 3 3.
+ <_>
+
+ <_>
+ 5 3 4 3 -1.
+ <_>
+ 6 3 2 3 2.
+ <_>
+
+ <_>
+ 0 18 3 2 -1.
+ <_>
+ 0 19 3 1 2.
+ <_>
+
+ <_>
+ 1 0 10 19 -1.
+ <_>
+ 6 0 5 19 2.
+ <_>
+
+ <_>
+ 3 8 2 3 -1.
+ <_>
+ 2 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 11 17 2 3 2.
+ <_>
+
+ <_>
+ 11 13 3 2 -1.
+ <_>
+ 12 13 1 2 3.
+ <_>
+
+ <_>
+ 10 12 3 2 -1.
+ <_>
+ 11 12 1 2 3.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 10 11 1 3 3.
+ <_>
+
+ <_>
+ 17 2 3 1 -1.
+ <_>
+ 18 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 0 6 13 -1.
+ <_>
+ 14 0 2 13 3.
+ <_>
+
+ <_>
+ 16 0 3 1 -1.
+ <_>
+ 17 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 11 1 2 -1.
+ <_>
+ 5 12 1 1 2.
+ <_>
+
+ <_>
+ 2 11 4 2 -1.
+ <_>
+ 2 11 2 1 2.
+ <_>
+ 4 12 2 1 2.
+ <_>
+
+ <_>
+ 16 15 2 3 -1.
+ <_>
+ 15 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 17 4 2 -1.
+ <_>
+ 9 17 2 2 2.
+ <_>
+
+ <_>
+ 0 16 4 3 -1.
+ <_>
+ 0 17 4 1 3.
+ <_>
+
+ <_>
+ 9 13 6 2 -1.
+ <_>
+ 12 13 3 2 2.
+ <_>
+
+ <_>
+ 2 14 1 2 -1.
+ <_>
+ 2 14 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 8 3 -1.
+ <_>
+ 5 11 8 1 3.
+ <_>
+
+ <_>
+ 15 0 3 8 -1.
+ <_>
+ 13 2 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 14 11 4 7 -1.
+ <_>
+ 15 11 2 7 2.
+ <_>
+
+ <_>
+ 3 11 15 4 -1.
+ <_>
+ 8 11 5 4 3.
+ <_>
+
+ <_>
+ 9 1 9 9 -1.
+ <_>
+ 12 1 3 9 3.
+ <_>
+
+ <_>
+ 0 11 4 7 -1.
+ <_>
+ 2 11 2 7 2.
+ <_>
+
+ <_>
+ 0 16 1 4 -1.
+ <_>
+ 0 18 1 2 2.
+ <_>
+
+ <_>
+ 19 0 1 6 -1.
+ <_>
+ 19 3 1 3 2.
+ <_>
+
+ <_>
+ 11 8 9 9 -1.
+ <_>
+ 11 11 9 3 3.
+ <_>
+
+ <_>
+ 9 17 8 3 -1.
+ <_>
+ 11 17 4 3 2.
+ <_>
+
+ <_>
+ 18 4 2 2 -1.
+ <_>
+ 19 4 1 2 2.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 9 12 1 1 9.
+ <_>
+
+ <_>
+ 13 2 3 4 -1.
+ <_>
+ 13 2 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 16 3 -1.
+ <_>
+ 12 6 8 3 2.
+ <_>
+
+ <_>
+ 10 12 1 3 -1.
+ <_>
+ 9 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 3 3 -1.
+ <_>
+ 9 13 1 1 9.
+ <_>
+
+ <_>
+ 17 17 1 2 -1.
+ <_>
+ 17 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 16 2 2 -1.
+ <_>
+ 16 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 9 6 -1.
+ <_>
+ 6 2 9 2 3.
+ <_>
+
+ <_>
+ 5 0 10 8 -1.
+ <_>
+ 5 2 10 4 2.
+ <_>
+
+ <_>
+ 17 5 2 1 -1.
+ <_>
+ 18 5 1 1 2.
+ <_>
+
+ <_>
+ 11 0 9 9 -1.
+ <_>
+ 14 0 3 9 3.
+ <_>
+
+ <_>
+ 6 9 7 3 -1.
+ <_>
+ 6 10 7 1 3.
+ <_>
+
+ <_>
+ 3 12 6 2 -1.
+ <_>
+ 3 12 3 1 2.
+ <_>
+ 6 13 3 1 2.
+ <_>
+
+ <_>
+ 2 10 1 2 -1.
+ <_>
+ 2 10 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 15 2 3 -1.
+ <_>
+ 12 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 2 6 5 -1.
+ <_>
+ 9 2 2 5 3.
+ <_>
+
+ <_>
+ 13 13 6 3 -1.
+ <_>
+ 15 13 2 3 3.
+ <_>
+
+ <_>
+ 17 9 3 8 -1.
+ <_>
+ 17 11 3 4 2.
+ <_>
+
+ <_>
+ 8 3 4 3 -1.
+ <_>
+ 9 3 2 3 2.
+ <_>
+
+ <_>
+ 15 6 2 12 -1.
+ <_>
+ 15 6 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 11 14 4 2 -1.
+ <_>
+ 11 14 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 5 4 -1.
+ <_>
+ 9 4 5 2 2.
+ <_>
+
+ <_>
+ 13 12 3 3 -1.
+ <_>
+ 14 12 1 3 3.
+ <_>
+
+ <_>
+ 18 1 2 3 -1.
+ <_>
+ 18 2 2 1 3.
+ <_>
+
+ <_>
+ 5 13 4 1 -1.
+ <_>
+ 6 13 2 1 2.
+ <_>
+
+ <_>
+ 5 10 2 2 -1.
+ <_>
+ 5 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 11 1 2 -1.
+ <_>
+ 2 11 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 3 2 6 -1.
+ <_>
+ 18 5 2 2 3.
+ <_>
+
+ <_>
+ 10 4 6 2 -1.
+ <_>
+ 10 5 6 1 2.
+ <_>
+
+ <_>
+ 11 13 6 2 -1.
+ <_>
+ 13 13 2 2 3.
+ <_>
+
+ <_>
+ 9 11 3 4 -1.
+ <_>
+ 9 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 2 5 -1.
+ <_>
+ 1 11 1 5 2.
+ <_>
+
+ <_>
+ 0 8 20 9 -1.
+ <_>
+ 0 11 20 3 3.
+ <_>
+
+ <_>
+ 18 0 1 6 -1.
+ <_>
+ 18 3 1 3 2.
+ <_>
+
+ <_>
+ 14 1 6 7 -1.
+ <_>
+ 17 1 3 7 2.
+ <_>
+
+ <_>
+ 4 13 2 4 -1.
+ <_>
+ 4 13 1 2 2.
+ <_>
+ 5 15 1 2 2.
+ <_>
+
+ <_>
+ 1 9 18 6 -1.
+ <_>
+ 7 9 6 6 3.
+ <_>
+
+ <_>
+ 0 16 5 4 -1.
+ <_>
+ 0 18 5 2 2.
+ <_>
+
+ <_>
+ 8 14 3 4 -1.
+ <_>
+ 8 15 3 2 2.
+ <_>
+
+ <_>
+ 7 7 8 3 -1.
+ <_>
+ 11 7 4 3 2.
+ <_>
+
+ <_>
+ 12 3 4 7 -1.
+ <_>
+ 13 3 2 7 2.
+ <_>
+
+ <_>
+ 13 12 2 8 -1.
+ <_>
+ 13 12 1 4 2.
+ <_>
+ 14 16 1 4 2.
+ <_>
+
+ <_>
+ 13 10 3 5 -1.
+ <_>
+ 14 11 1 5 3.
+ 1
+ <_>
+
+ <_>
+ 10 5 4 5 -1.
+ <_>
+ 11 5 2 5 2.
+ <_>
+
+ <_>
+ 2 11 18 2 -1.
+ <_>
+ 8 11 6 2 3.
+ <_>
+
+ <_>
+ 2 0 1 2 -1.
+ <_>
+ 2 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 1 2 -1.
+ <_>
+ 2 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 17 1 2 -1.
+ <_>
+ 15 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 1 3 -1.
+ <_>
+ 16 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 10 -1.
+ <_>
+ 19 0 1 10 2.
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 16 2 2 7 3.
+ <_>
+
+ <_>
+ 12 0 4 4 -1.
+ <_>
+ 12 0 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 15 6 -1.
+ <_>
+ 0 5 15 2 3.
+ <_>
+
+ <_>
+ 5 1 4 4 -1.
+ <_>
+ 6 1 2 4 2.
+ <_>
+
+ <_>
+ 7 13 6 7 -1.
+ <_>
+ 9 13 2 7 3.
+ <_>
+
+ <_>
+ 6 18 6 2 -1.
+ <_>
+ 8 18 2 2 3.
+ <_>
+
+ <_>
+ 0 15 5 2 -1.
+ <_>
+ 0 16 5 1 2.
+ <_>
+
+ <_>
+ 4 1 12 6 -1.
+ <_>
+ 4 3 12 2 3.
+ <_>
+
+ <_>
+ 5 0 13 8 -1.
+ <_>
+ 5 2 13 4 2.
+ <_>
+
+ <_>
+ 13 10 6 6 -1.
+ <_>
+ 15 12 2 2 9.
+ <_>
+
+ <_>
+ 15 9 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 6 12 1 1 9.
+ <_>
+
+ <_>
+ 6 11 2 2 -1.
+ <_>
+ 6 11 1 1 2.
+ <_>
+ 7 12 1 1 2.
+ <_>
+
+ <_>
+ 17 3 3 2 -1.
+ <_>
+ 18 4 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 3 3 3 -1.
+ <_>
+ 17 4 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 12 13 3 1 -1.
+ <_>
+ 13 13 1 1 3.
+ <_>
+
+ <_>
+ 11 12 3 2 -1.
+ <_>
+ 12 12 1 2 3.
+ <_>
+
+ <_>
+ 10 0 1 2 -1.
+ <_>
+ 10 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 13 1 6 -1.
+ <_>
+ 17 13 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 14 2 4 -1.
+ <_>
+ 16 14 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 4 3 -1.
+ <_>
+ 4 0 2 3 2.
+ <_>
+
+ <_>
+ 6 0 14 1 -1.
+ <_>
+ 13 0 7 1 2.
+ <_>
+
+ <_>
+ 2 15 18 5 -1.
+ <_>
+ 8 15 6 5 3.
+ <_>
+
+ <_>
+ 6 11 8 5 -1.
+ <_>
+ 8 11 4 5 2.
+ <_>
+
+ <_>
+ 0 8 5 12 -1.
+ <_>
+ 0 11 5 6 2.
+ <_>
+
+ <_>
+ 14 0 6 2 -1.
+ <_>
+ 14 0 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 8 4 5 -1.
+ <_>
+ 14 9 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 4 9 -1.
+ <_>
+ 2 11 2 9 2.
+ <_>
+
+ <_>
+ 6 9 2 6 -1.
+ <_>
+ 6 11 2 2 3.
+ <_>
+
+ <_>
+ 12 18 4 2 -1.
+ <_>
+ 12 19 4 1 2.
+ <_>
+
+ <_>
+ 14 13 6 2 -1.
+ <_>
+ 16 13 2 2 3.
+ <_>
+
+ <_>
+ 19 9 1 10 -1.
+ <_>
+ 19 9 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 4 4 -1.
+ <_>
+ 12 5 2 4 2.
+ <_>
+
+ <_>
+ 14 12 3 5 -1.
+ <_>
+ 15 12 1 5 3.
+ <_>
+
+ <_>
+ 17 0 2 6 -1.
+ <_>
+ 18 0 1 6 2.
+ <_>
+
+ <_>
+ 13 16 3 3 -1.
+ <_>
+ 14 16 1 3 3.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 6 13 4 2 -1.
+ <_>
+ 7 13 2 2 2.
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 10 11 1 3 3.
+ <_>
+
+ <_>
+ 14 15 2 3 -1.
+ <_>
+ 13 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 7 3 4 -1.
+ <_>
+ 12 7 1 4 3.
+ <_>
+
+ <_>
+ 5 12 1 3 -1.
+ <_>
+ 4 13 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 1 11 6 2 -1.
+ <_>
+ 1 11 3 1 2.
+ <_>
+ 4 12 3 1 2.
+ <_>
+
+ <_>
+ 5 7 2 3 -1.
+ <_>
+ 4 8 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 5 12 1 1 2.
+ <_>
+ 6 13 1 1 2.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 8 9 4 1 3.
+ <_>
+
+ <_>
+ 7 8 5 3 -1.
+ <_>
+ 7 9 5 1 3.
+ <_>
+
+ <_>
+ 6 19 4 1 -1.
+ <_>
+ 7 19 2 1 2.
+ <_>
+
+ <_>
+ 5 0 4 4 -1.
+ <_>
+ 6 0 2 4 2.
+ <_>
+
+ <_>
+ 4 0 16 8 -1.
+ <_>
+ 8 0 8 8 2.
+ <_>
+
+ <_>
+ 12 11 3 4 -1.
+ <_>
+ 11 12 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 4 20 6 -1.
+ <_>
+ 5 4 10 6 2.
+ <_>
+
+ <_>
+ 13 2 2 4 -1.
+ <_>
+ 13 2 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 14 15 -1.
+ <_>
+ 7 5 7 15 2.
+ <_>
+
+ <_>
+ 1 18 3 2 -1.
+ <_>
+ 1 19 3 1 2.
+ <_>
+
+ <_>
+ 3 6 3 3 -1.
+ <_>
+ 2 7 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 0 1 3 4 2.
+ <_>
+ 3 5 3 4 2.
+ <_>
+
+ <_>
+ 5 0 6 6 -1.
+ <_>
+ 7 0 2 6 3.
+ <_>
+
+ <_>
+ 1 1 15 8 -1.
+ <_>
+ 1 3 15 4 2.
+ <_>
+
+ <_>
+ 0 0 16 1 -1.
+ <_>
+ 8 0 8 1 2.
+ <_>
+
+ <_>
+ 3 0 1 2 -1.
+ <_>
+ 3 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 4 1 -1.
+ <_>
+ 4 13 2 1 2.
+ <_>
+
+ <_>
+ 4 11 2 2 -1.
+ <_>
+ 4 11 1 1 2.
+ <_>
+ 5 12 1 1 2.
+ <_>
+
+ <_>
+ 17 2 3 3 -1.
+ <_>
+ 18 3 1 1 9.
+ <_>
+
+ <_>
+ 16 3 2 1 -1.
+ <_>
+ 17 3 1 1 2.
+ <_>
+
+ <_>
+ 0 11 3 2 -1.
+ <_>
+ 0 12 3 1 2.
+ <_>
+
+ <_>
+ 4 11 4 2 -1.
+ <_>
+ 4 11 2 1 2.
+ <_>
+ 6 12 2 1 2.
+ <_>
+
+ <_>
+ 10 0 4 11 -1.
+ <_>
+ 11 0 2 11 2.
+ <_>
+
+ <_>
+ 18 15 2 3 -1.
+ <_>
+ 17 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 11 8 1 -1.
+ <_>
+ 2 11 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 13 1 6 -1.
+ <_>
+ 17 13 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 13 6 2 -1.
+ <_>
+ 13 13 2 2 3.
+ <_>
+
+ <_>
+ 19 0 1 10 -1.
+ <_>
+ 19 5 1 5 2.
+ <_>
+
+ <_>
+ 2 8 7 9 -1.
+ <_>
+ 2 11 7 3 3.
+ <_>
+
+ <_>
+ 0 11 20 2 -1.
+ <_>
+ 5 11 10 2 2.
+ <_>
+
+ <_>
+ 6 14 6 1 -1.
+ <_>
+ 8 14 2 1 3.
+ <_>
+
+ <_>
+ 10 3 8 7 -1.
+ <_>
+ 12 3 4 7 2.
+ <_>
+
+ <_>
+ 7 0 5 9 -1.
+ <_>
+ 7 3 5 3 3.
+ <_>
+
+ <_>
+ 0 0 16 6 -1.
+ <_>
+ 0 2 16 2 3.
+ <_>
+
+ <_>
+ 6 10 2 6 -1.
+ <_>
+ 4 12 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 0 4 14 -1.
+ <_>
+ 18 0 2 14 2.
+ <_>
+
+ <_>
+ 6 0 9 6 -1.
+ <_>
+ 6 2 9 2 3.
+ <_>
+
+ <_>
+ 8 18 12 2 -1.
+ <_>
+ 8 19 12 1 2.
+ <_>
+
+ <_>
+ 10 17 4 3 -1.
+ <_>
+ 11 17 2 3 2.
+ <_>
+
+ <_>
+ 5 0 1 4 -1.
+ <_>
+ 4 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 6 2 2 -1.
+ <_>
+ 18 6 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 10 3 4 -1.
+ <_>
+ 11 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 9 4 3 -1.
+ <_>
+ 9 10 4 1 3.
+ <_>
+
+ <_>
+ 9 10 4 3 -1.
+ <_>
+ 9 11 4 1 3.
+ <_>
+
+ <_>
+ 17 4 3 4 -1.
+ <_>
+ 18 5 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 18 0 2 3 -1.
+ <_>
+ 18 1 2 1 3.
+ <_>
+
+ <_>
+ 18 1 2 2 -1.
+ <_>
+ 18 2 2 1 2.
+ <_>
+
+ <_>
+ 19 1 1 3 -1.
+ <_>
+ 19 2 1 1 3.
+ <_>
+
+ <_>
+ 8 18 4 2 -1.
+ <_>
+ 9 18 2 2 2.
+ <_>
+
+ <_>
+ 2 13 4 2 -1.
+ <_>
+ 2 13 2 1 2.
+ <_>
+ 4 14 2 1 2.
+ <_>
+
+ <_>
+ 3 11 4 2 -1.
+ <_>
+ 3 11 2 1 2.
+ <_>
+ 5 12 2 1 2.
+ <_>
+
+ <_>
+ 2 10 4 2 -1.
+ <_>
+ 2 10 2 1 2.
+ <_>
+ 4 11 2 1 2.
+ <_>
+
+ <_>
+ 5 9 2 3 -1.
+ <_>
+ 4 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 10 4 6 -1.
+ <_>
+ 3 10 2 6 2.
+ <_>
+
+ <_>
+ 13 0 6 8 -1.
+ <_>
+ 16 0 3 8 2.
+ <_>
+
+ <_>
+ 10 0 8 9 -1.
+ <_>
+ 12 0 4 9 2.
+ <_>
+
+ <_>
+ 1 11 8 1 -1.
+ <_>
+ 1 11 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 1 3 -1.
+ <_>
+ 2 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 13 2 2 -1.
+ <_>
+ 14 13 1 2 2.
+ <_>
+
+ <_>
+ 4 12 3 4 -1.
+ <_>
+ 5 12 1 4 3.
+ <_>
+
+ <_>
+ 6 17 4 3 -1.
+ <_>
+ 7 17 2 3 2.
+ <_>
+
+ <_>
+ 14 1 2 6 -1.
+ <_>
+ 14 1 2 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 4 8 4 -1.
+ <_>
+ 8 6 8 2 2.
+ <_>
+
+ <_>
+ 8 3 4 5 -1.
+ <_>
+ 10 3 2 5 2.
+ <_>
+
+ <_>
+ 13 12 2 2 -1.
+ <_>
+ 13 12 1 1 2.
+ <_>
+ 14 13 1 1 2.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 7 12 1 3 3.
+ <_>
+
+ <_>
+ 5 7 3 3 -1.
+ <_>
+ 4 8 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 10 5 4 -1.
+ <_>
+ 15 11 5 2 2.
+ <_>
+
+ <_>
+ 14 8 4 9 -1.
+ <_>
+ 14 11 4 3 3.
+ <_>
+
+ <_>
+ 16 9 4 3 -1.
+ <_>
+ 16 10 4 1 3.
+ <_>
+
+ <_>
+ 18 7 2 13 -1.
+ <_>
+ 19 7 1 13 2.
+ <_>
+
+ <_>
+ 0 0 16 1 -1.
+ <_>
+ 8 0 8 1 2.
+ <_>
+
+ <_>
+ 12 11 5 4 -1.
+ <_>
+ 11 12 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 13 2 4 -1.
+ <_>
+ 18 13 1 4 2.
+ <_>
+
+ <_>
+ 6 13 9 2 -1.
+ <_>
+ 9 13 3 2 3.
+ <_>
+
+ <_>
+ 3 8 6 8 -1.
+ <_>
+ 3 10 6 4 2.
+ <_>
+
+ <_>
+ 14 12 4 3 -1.
+ <_>
+ 15 12 2 3 2.
+ <_>
+
+ <_>
+ 12 6 6 4 -1.
+ <_>
+ 14 8 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 12 6 -1.
+ <_>
+ 4 3 12 3 2.
+ <_>
+
+ <_>
+ 0 0 17 2 -1.
+ <_>
+ 0 1 17 1 2.
+ <_>
+
+ <_>
+ 2 14 1 6 -1.
+ <_>
+ 2 17 1 3 2.
+ <_>
+
+ <_>
+ 3 10 3 3 -1.
+ <_>
+ 2 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 2 2 9 -1.
+ <_>
+ 19 2 1 9 2.
+ <_>
+
+ <_>
+ 7 9 13 8 -1.
+ <_>
+ 7 11 13 4 2.
+ <_>
+
+ <_>
+ 17 6 3 4 -1.
+ <_>
+ 18 7 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 6 13 2 2 -1.
+ <_>
+ 7 13 1 2 2.
+ <_>
+
+ <_>
+ 15 16 1 3 -1.
+ <_>
+ 14 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 16 6 4 -1.
+ <_>
+ 11 16 3 2 2.
+ <_>
+ 14 18 3 2 2.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 1 1 2 2.
+ <_>
+
+ <_>
+ 19 0 1 2 -1.
+ <_>
+ 19 1 1 1 2.
+ <_>
+
+ <_>
+ 12 3 3 6 -1.
+ <_>
+ 13 3 1 6 3.
+ <_>
+
+ <_>
+ 8 10 4 3 -1.
+ <_>
+ 8 11 4 1 3.
+ <_>
+
+ <_>
+ 19 0 1 8 -1.
+ <_>
+ 19 4 1 4 2.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 0 3 3 2.
+ <_>
+ 17 3 3 3 2.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 9 12 1 1 9.
+ <_>
+
+ <_>
+ 1 6 10 12 -1.
+ <_>
+ 6 6 5 12 2.
+ <_>
+
+ <_>
+ 10 6 2 1 -1.
+ <_>
+ 11 6 1 1 2.
+ <_>
+
+ <_>
+ 8 1 7 10 -1.
+ <_>
+ 8 6 7 5 2.
+ <_>
+
+ <_>
+ 13 11 3 3 -1.
+ <_>
+ 14 12 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 10 13 4 4 -1.
+ <_>
+ 10 13 2 2 2.
+ <_>
+ 12 15 2 2 2.
+ <_>
+
+ <_>
+ 15 15 2 3 -1.
+ <_>
+ 14 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 13 3 1 -1.
+ <_>
+ 14 13 1 1 3.
+ <_>
+
+ <_>
+ 10 4 6 3 -1.
+ <_>
+ 12 4 2 3 3.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 7 3 2 2.
+ <_>
+ 4 9 3 2 2.
+ <_>
+
+ <_>
+ 15 7 4 2 -1.
+ <_>
+ 16 8 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 4 9 6 -1.
+ <_>
+ 13 4 3 6 3.
+ <_>
+
+ <_>
+ 14 2 6 2 -1.
+ <_>
+ 14 2 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 18 4 2 -1.
+ <_>
+ 6 18 2 2 2.
+ <_>
+
+ <_>
+ 0 12 2 8 -1.
+ <_>
+ 1 12 1 8 2.
+ <_>
+
+ <_>
+ 1 19 18 1 -1.
+ <_>
+ 10 19 9 1 2.
+ <_>
+
+ <_>
+ 2 0 12 20 -1.
+ <_>
+ 8 0 6 20 2.
+ <_>
+
+ <_>
+ 2 0 14 1 -1.
+ <_>
+ 9 0 7 1 2.
+ <_>
+
+ <_>
+ 7 9 8 3 -1.
+ <_>
+ 7 10 8 1 3.
+ <_>
+
+ <_>
+ 3 11 2 2 -1.
+ <_>
+ 3 11 1 1 2.
+ <_>
+ 4 12 1 1 2.
+ <_>
+
+ <_>
+ 11 0 9 2 -1.
+ <_>
+ 14 0 3 2 3.
+ <_>
+
+ <_>
+ 6 0 9 1 -1.
+ <_>
+ 9 0 3 1 3.
+ <_>
+
+ <_>
+ 4 8 1 4 -1.
+ <_>
+ 3 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 9 3 3 -1.
+ <_>
+ 0 10 3 1 3.
+ <_>
+
+ <_>
+ 3 4 15 12 -1.
+ <_>
+ 8 8 5 4 9.
+ <_>
+
+ <_>
+ 7 13 6 6 -1.
+ <_>
+ 9 13 2 6 3.
+ <_>
+
+ <_>
+ 2 1 12 6 -1.
+ <_>
+ 2 3 12 2 3.
+ <_>
+
+ <_>
+ 1 1 6 1 -1.
+ <_>
+ 3 3 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 4 5 3 -1.
+ <_>
+ 2 5 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 12 2 2 -1.
+ <_>
+ 2 12 1 1 2.
+ <_>
+ 3 13 1 1 2.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 9 11 1 3 3.
+ <_>
+
+ <_>
+ 9 11 3 4 -1.
+ <_>
+ 10 11 1 4 3.
+ <_>
+
+ <_>
+ 17 2 3 1 -1.
+ <_>
+ 18 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 11 6 3 -1.
+ <_>
+ 8 11 3 3 2.
+ <_>
+
+ <_>
+ 2 12 12 8 -1.
+ <_>
+ 2 12 6 4 2.
+ <_>
+ 8 16 6 4 2.
+ <_>
+
+ <_>
+ 13 15 2 3 -1.
+ <_>
+ 12 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 14 9 1 -1.
+ <_>
+ 8 14 3 1 3.
+ <_>
+
+ <_>
+ 13 13 4 6 -1.
+ <_>
+ 13 13 2 3 2.
+ <_>
+ 15 16 2 3 2.
+ <_>
+
+ <_>
+ 8 7 9 1 -1.
+ <_>
+ 11 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 16 0 4 4 -1.
+ <_>
+ 16 0 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 13 2 2 -1.
+ <_>
+ 2 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 5 13 2 1 2.
+ <_>
+
+ <_>
+ 0 16 2 4 -1.
+ <_>
+ 0 18 2 2 2.
+ <_>
+
+ <_>
+ 0 8 14 11 -1.
+ <_>
+ 7 8 7 11 2.
+ <_>
+
+ <_>
+ 4 17 4 3 -1.
+ <_>
+ 5 17 2 3 2.
+ <_>
+
+ <_>
+ 3 12 3 5 -1.
+ <_>
+ 4 12 1 5 3.
+ <_>
+
+ <_>
+ 5 11 1 3 -1.
+ <_>
+ 5 12 1 1 3.
+ <_>
+
+ <_>
+ 4 10 4 2 -1.
+ <_>
+ 4 10 2 1 2.
+ <_>
+ 6 11 2 1 2.
+ <_>
+
+ <_>
+ 15 9 3 1 -1.
+ <_>
+ 16 10 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 16 7 -1.
+ <_>
+ 7 0 8 7 2.
+ <_>
+
+ <_>
+ 2 2 17 6 -1.
+ <_>
+ 2 5 17 3 2.
+ <_>
+
+ <_>
+ 2 4 14 6 -1.
+ <_>
+ 2 6 14 2 3.
+ <_>
+
+ <_>
+ 2 9 6 2 -1.
+ <_>
+ 2 9 3 1 2.
+ <_>
+ 5 10 3 1 2.
+ <_>
+
+ <_>
+ 3 11 4 2 -1.
+ <_>
+ 3 11 2 1 2.
+ <_>
+ 5 12 2 1 2.
+ <_>
+
+ <_>
+ 16 13 4 2 -1.
+ <_>
+ 18 13 2 2 2.
+ <_>
+
+ <_>
+ 15 7 3 2 -1.
+ <_>
+ 16 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 11 4 2 -1.
+ <_>
+ 0 12 4 1 2.
+ <_>
+
+ <_>
+ 4 9 2 3 -1.
+ <_>
+ 3 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 18 6 2 -1.
+ <_>
+ 5 18 2 2 3.
+ <_>
+
+ <_>
+ 11 12 3 2 -1.
+ <_>
+ 12 12 1 2 3.
+ <_>
+
+ <_>
+ 19 0 1 2 -1.
+ <_>
+ 19 1 1 1 2.
+ <_>
+
+ <_>
+ 0 0 14 1 -1.
+ <_>
+ 7 0 7 1 2.
+ <_>
+
+ <_>
+ 11 10 3 4 -1.
+ <_>
+ 10 11 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 16 1 3 -1.
+ <_>
+ 13 17 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 1 2 4 -1.
+ <_>
+ 19 1 1 4 2.
+ <_>
+
+ <_>
+ 15 13 5 6 -1.
+ <_>
+ 15 15 5 2 3.
+ <_>
+
+ <_>
+ 16 4 3 3 -1.
+ <_>
+ 17 5 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 4 6 16 14 -1.
+ <_>
+ 12 6 8 14 2.
+ <_>
+
+ <_>
+ 10 12 3 1 -1.
+ <_>
+ 11 12 1 1 3.
+ <_>
+
+ <_>
+ 5 12 2 2 -1.
+ <_>
+ 5 12 1 1 2.
+ <_>
+ 6 13 1 1 2.
+ <_>
+
+ <_>
+ 9 3 4 5 -1.
+ <_>
+ 10 3 2 5 2.
+ <_>
+
+ <_>
+ 18 1 2 3 -1.
+ <_>
+ 18 2 2 1 3.
+ <_>
+
+ <_>
+ 19 17 1 2 -1.
+ <_>
+ 19 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 2 7 6 -1.
+ <_>
+ 10 4 7 2 3.
+ <_>
+
+ <_>
+ 2 0 13 4 -1.
+ <_>
+ 2 1 13 2 2.
+ <_>
+
+ <_>
+ 2 0 2 2 -1.
+ <_>
+ 2 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 6 8 -1.
+ <_>
+ 3 3 3 8 2.
+ <_>
+
+ <_>
+ 3 0 1 3 -1.
+ <_>
+ 2 1 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 10 0 2 9 3.
+ <_>
+
+ <_>
+ 17 9 3 2 -1.
+ <_>
+ 18 10 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 8 4 6 -1.
+ <_>
+ 16 10 4 2 3.
+ <_>
+
+ <_>
+ 6 9 7 3 -1.
+ <_>
+ 6 10 7 1 3.
+ <_>
+
+ <_>
+ 2 10 3 4 -1.
+ <_>
+ 2 11 3 2 2.
+ <_>
+
+ <_>
+ 15 8 1 6 -1.
+ <_>
+ 15 8 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 19 3 1 12 -1.
+ <_>
+ 19 7 1 4 3.
+ <_>
+
+ <_>
+ 2 0 5 2 -1.
+ <_>
+ 2 0 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 3 11 6 -1.
+ <_>
+ 1 5 11 2 3.
+ <_>
+
+ <_>
+ 14 13 2 4 -1.
+ <_>
+ 14 13 1 2 2.
+ <_>
+ 15 15 1 2 2.
+ <_>
+
+ <_>
+ 8 11 10 3 -1.
+ <_>
+ 13 11 5 3 2.
+ <_>
+
+ <_>
+ 6 11 1 4 -1.
+ <_>
+ 6 13 1 2 2.
+ <_>
+
+ <_>
+ 2 9 3 9 -1.
+ <_>
+ 3 12 1 3 9.
+ <_>
+
+ <_>
+ 4 0 15 9 -1.
+ <_>
+ 9 3 5 3 9.
+ <_>
+
+ <_>
+ 12 0 6 4 -1.
+ <_>
+ 12 0 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 5 4 5 -1.
+ <_>
+ 12 5 2 5 2.
+ <_>
+
+ <_>
+ 1 7 18 12 -1.
+ <_>
+ 7 11 6 4 9.
+ <_>
+
+ <_>
+ 14 12 6 4 -1.
+ <_>
+ 16 12 2 4 3.
+ <_>
+
+ <_>
+ 13 12 3 3 -1.
+ <_>
+ 14 12 1 3 3.
+ <_>
+
+ <_>
+ 14 9 4 1 -1.
+ <_>
+ 15 10 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 7 3 2 -1.
+ <_>
+ 18 8 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 19 3 1 2 -1.
+ <_>
+ 19 4 1 1 2.
+ <_>
+
+ <_>
+ 19 1 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 3 2 12 8 -1.
+ <_>
+ 3 4 12 4 2.
+ <_>
+
+ <_>
+ 1 0 16 6 -1.
+ <_>
+ 1 2 16 2 3.
+ <_>
+
+ <_>
+ 16 8 3 1 -1.
+ <_>
+ 17 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 13 6 3 -1.
+ <_>
+ 9 14 2 1 9.
+ <_>
+
+ <_>
+ 11 18 6 2 -1.
+ <_>
+ 11 19 6 1 2.
+ <_>
+
+ <_>
+ 15 17 5 3 -1.
+ <_>
+ 15 18 5 1 3.
+ <_>
+
+ <_>
+ 2 1 18 4 -1.
+ <_>
+ 8 1 6 4 3.
+ <_>
+
+ <_>
+ 5 0 1 2 -1.
+ <_>
+ 5 1 1 1 2.
+ <_>
+
+ <_>
+ 1 11 6 6 -1.
+ <_>
+ 3 13 2 2 9.
+ <_>
+
+ <_>
+ 3 12 4 2 -1.
+ <_>
+ 3 12 2 1 2.
+ <_>
+ 5 13 2 1 2.
+ <_>
+
+ <_>
+ 3 0 3 3 -1.
+ <_>
+ 2 1 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 10 3 3 -1.
+ <_>
+ 9 11 1 1 9.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 17 2 1 2.
+ <_>
+
+ <_>
+ 0 16 4 3 -1.
+ <_>
+ 0 17 4 1 3.
+ <_>
+
+ <_>
+ 0 13 12 1 -1.
+ <_>
+ 6 13 6 1 2.
+ <_>
+
+ <_>
+ 13 2 6 9 -1.
+ <_>
+ 15 2 2 9 3.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 9 11 1 3 3.
+ <_>
+
+ <_>
+ 9 11 3 4 -1.
+ <_>
+ 10 11 1 4 3.
+ <_>
+
+ <_>
+ 13 0 6 10 -1.
+ <_>
+ 15 0 2 10 3.
+ <_>
+
+ <_>
+ 4 10 1 4 -1.
+ <_>
+ 3 11 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 11 3 3 -1.
+ <_>
+ 10 12 1 1 9.
+ <_>
+
+ <_>
+ 6 12 3 3 -1.
+ <_>
+ 5 13 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 6 2 1 -1.
+ <_>
+ 18 6 1 1 2.
+ <_>
+
+ <_>
+ 16 2 1 4 -1.
+ <_>
+ 16 2 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 5 13 4 -1.
+ <_>
+ 2 6 13 2 2.
+ <_>
+
+ <_>
+ 14 4 6 2 -1.
+ <_>
+ 14 4 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 8 1 3 -1.
+ <_>
+ 2 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 7 8 3 -1.
+ <_>
+ 7 8 8 1 3.
+ <_>
+
+ <_>
+ 8 8 4 3 -1.
+ <_>
+ 10 8 2 3 2.
+ <_>
+
+ <_>
+ 10 11 3 8 -1.
+ <_>
+ 10 15 3 4 2.
+ <_>
+
+ <_>
+ 13 15 2 3 -1.
+ <_>
+ 12 16 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 12 20 -1.
+ <_>
+ 6 0 6 20 2.
+ <_>
+
+ <_>
+ 0 0 10 1 -1.
+ <_>
+ 5 0 5 1 2.
+ <_>
+
+ <_>
+ 0 0 6 3 -1.
+ <_>
+ 0 1 6 1 3.
+ <_>
+
+ <_>
+ 14 13 2 2 -1.
+ <_>
+ 14 13 1 1 2.
+ <_>
+ 15 14 1 1 2.
+ <_>
+
+ <_>
+ 12 10 4 2 -1.
+ <_>
+ 12 10 2 1 2.
+ <_>
+ 14 11 2 1 2.
+ <_>
+
+ <_>
+ 7 0 6 4 -1.
+ <_>
+ 9 0 2 4 3.
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ <_>
+
+ <_>
+ 6 3 4 2 -1.
+ <_>
+ 7 3 2 2 2.
+ <_>
+
+ <_>
+ 1 5 4 11 -1.
+ <_>
+ 2 5 2 11 2.
+ <_>
+
+ <_>
+ 12 8 3 1 -1.
+ <_>
+ 13 8 1 1 3.
+ <_>
+
+ <_>
+ 2 2 6 2 -1.
+ <_>
+ 2 2 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 5 7 3 -1.
+ <_>
+ 12 6 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 7 3 4 -1.
+ <_>
+ 14 7 1 4 3.
+ <_>
+
+ <_>
+ 8 12 3 2 -1.
+ <_>
+ 8 12 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 10 4 8 -1.
+ <_>
+ 0 12 4 4 2.
+ <_>
+
+ <_>
+ 14 13 2 6 -1.
+ <_>
+ 14 13 1 3 2.
+ <_>
+ 15 16 1 3 2.
+ <_>
+
+ <_>
+ 16 17 1 2 -1.
+ <_>
+ 16 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 0 3 6 -1.
+ <_>
+ 10 2 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 4 10 14 3 -1.
+ <_>
+ 4 11 14 1 3.
+ <_>
+
+ <_>
+ 19 4 1 12 -1.
+ <_>
+ 19 8 1 4 3.
+ <_>
+
+ <_>
+ 19 2 1 6 -1.
+ <_>
+ 19 4 1 2 3.
+ <_>
+
+ <_>
+ 8 12 12 3 -1.
+ <_>
+ 14 12 6 3 2.
+ <_>
+
+ <_>
+ 0 13 2 3 -1.
+ <_>
+ 1 13 1 3 2.
+ <_>
+
+ <_>
+ 16 0 4 9 -1.
+ <_>
+ 18 0 2 9 2.
+ <_>
+
+ <_>
+ 9 2 6 4 -1.
+ <_>
+ 9 4 6 2 2.
+ <_>
+
+ <_>
+ 16 2 3 1 -1.
+ <_>
+ 17 3 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 12 3 6 -1.
+ <_>
+ 16 12 1 6 3.
+ <_>
+
+ <_>
+ 13 12 3 3 -1.
+ <_>
+ 14 12 1 3 3.
+ <_>
+
+ <_>
+ 3 3 15 4 -1.
+ <_>
+ 3 5 15 2 2.
+ <_>
+
+ <_>
+ 11 11 3 4 -1.
+ <_>
+ 12 11 1 4 3.
+ <_>
+
+ <_>
+ 10 11 3 3 -1.
+ <_>
+ 11 11 1 3 3.
+ <_>
+
+ <_>
+ 19 0 1 4 -1.
+ <_>
+ 19 2 1 2 2.
+ <_>
+
+ <_>
+ 14 0 3 3 -1.
+ <_>
+ 15 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 2 10 8 2 -1.
+ <_>
+ 2 10 4 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 18 4 2 -1.
+ <_>
+ 10 18 2 2 2.
+ <_>
+
+ <_>
+ 10 0 4 9 -1.
+ <_>
+ 11 0 2 9 2.
+ <_>
+
+ <_>
+ 15 10 5 6 -1.
+ <_>
+ 15 12 5 2 3.
+ <_>
+
+ <_>
+ 2 13 4 2 -1.
+ <_>
+ 3 13 2 2 2.
+ <_>
+
+ <_>
+ 2 15 4 1 -1.
+ <_>
+ 3 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 8 3 2 -1.
+ <_>
+ 16 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 6 4 2 -1.
+ <_>
+ 2 6 2 2 2.
+ <_>
+
+ <_>
+ 9 17 6 1 -1.
+ <_>
+ 12 17 3 1 2.
+ <_>
+
+ <_>
+ 14 19 6 1 -1.
+ <_>
+ 17 19 3 1 2.
+ <_>
+
+ <_>
+ 17 18 1 2 -1.
+ <_>
+ 17 19 1 1 2.
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 19 3 1 9 -1.
+ <_>
+ 19 6 1 3 3.
+ <_>
+
+ <_>
+ 10 10 3 3 -1.
+ <_>
+ 9 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 3 3 -1.
+ <_>
+ 2 1 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 16 2 2 -1.
+ <_>
+ 17 16 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 11 3 3 -1.
+ <_>
+ 6 12 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 11 2 2 -1.
+ <_>
+ 3 11 1 1 2.
+ <_>
+ 4 12 1 1 2.
+ <_>
+
+ <_>
+ 16 9 2 2 -1.
+ <_>
+ 16 9 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 2 2 -1.
+ <_>
+ 4 9 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 10 2 3 -1.
+ <_>
+ 2 11 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 20 20 -1.
+ <_>
+ 0 0 10 10 2.
+ <_>
+ 10 10 10 10 2.
+ <_>
+
+ <_>
+ 7 16 5 3 -1.
+ <_>
+ 7 17 5 1 3.
+ <_>
+
+ <_>
+ 14 1 3 6 -1.
+ <_>
+ 12 3 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 0 4 7 -1.
+ <_>
+ 7 0 2 7 2.
+ <_>
+
+ <_>
+ 9 5 9 6 -1.
+ <_>
+ 12 5 3 6 3.
+ <_>
+
+ <_>
+ 5 18 4 2 -1.
+ <_>
+ 6 18 2 2 2.
+ <_>
+
+ <_>
+ 7 7 6 8 -1.
+ <_>
+ 9 7 2 8 3.
+ <_>
+
+ <_>
+ 18 16 2 4 -1.
+ <_>
+ 18 16 1 2 2.
+ <_>
+ 19 18 1 2 2.
+ <_>
+
+ <_>
+ 11 18 2 2 -1.
+ <_>
+ 12 18 1 2 2.
+ <_>
+
+ <_>
+ 3 2 5 2 -1.
+ <_>
+ 3 3 5 1 2.
+ <_>
+
+ <_>
+ 7 1 6 4 -1.
+ <_>
+ 7 3 6 2 2.
+ <_>
+
+ <_>
+ 2 0 2 2 -1.
+ <_>
+ 2 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 16 1 -1.
+ <_>
+ 8 1 8 1 2.
+ <_>
+
+ <_>
+ 11 1 3 10 -1.
+ <_>
+ 12 1 1 10 3.
+ <_>
+
+ <_>
+ 4 0 4 4 -1.
+ <_>
+ 5 1 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 13 3 2 -1.
+ <_>
+ 5 13 1 2 3.
+ <_>
+
+ <_>
+ 8 11 4 3 -1.
+ <_>
+ 7 12 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 17 4 3 -1.
+ <_>
+ 8 17 2 3 2.
+ <_>
+
+ <_>
+ 5 19 2 1 -1.
+ <_>
+ 6 19 1 1 2.
+ <_>
+
+ <_>
+ 0 9 2 2 -1.
+ <_>
+ 0 9 1 1 2.
+ <_>
+ 1 10 1 1 2.
+ <_>
+
+ <_>
+ 0 9 2 2 -1.
+ <_>
+ 0 9 1 1 2.
+ <_>
+ 1 10 1 1 2.
+ <_>
+
+ <_>
+ 6 9 2 2 -1.
+ <_>
+ 6 9 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 10 5 3 -1.
+ <_>
+ 0 11 5 1 3.
+ <_>
+
+ <_>
+ 3 10 2 2 -1.
+ <_>
+ 3 10 1 1 2.
+ <_>
+ 4 11 1 1 2.
+ <_>
+
+ <_>
+ 0 10 18 1 -1.
+ <_>
+ 6 10 6 1 3.
+ <_>
+
+ <_>
+ 17 4 3 1 -1.
+ <_>
+ 18 5 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 1 2 7 -1.
+ <_>
+ 17 1 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 6 13 9 2 -1.
+ <_>
+ 9 13 3 2 3.
+ <_>
+
+ <_>
+ 4 9 16 6 -1.
+ <_>
+ 4 11 16 2 3.
+ <_>
+
+ <_>
+ 1 1 16 4 -1.
+ <_>
+ 1 3 16 2 2.
+ <_>
+
+ <_>
+ 14 12 3 3 -1.
+ <_>
+ 15 12 1 3 3.
+ <_>
+
+ <_>
+ 2 9 6 2 -1.
+ <_>
+ 4 11 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 0 8 10 -1.
+ <_>
+ 12 0 4 10 2.
+ <_>
+
+ <_>
+ 1 12 16 4 -1.
+ <_>
+ 5 12 8 4 2.
+ <_>
+
+ <_>
+ 13 8 6 9 -1.
+ <_>
+ 15 11 2 3 9.
+ <_>
+
+ <_>
+ 19 0 1 8 -1.
+ <_>
+ 19 4 1 4 2.
+ <_>
+
+ <_>
+ 8 2 10 6 -1.
+ <_>
+ 8 5 10 3 2.
+ <_>
+
+ <_>
+ 18 7 2 1 -1.
+ <_>
+ 19 7 1 1 2.
+ <_>
+
+ <_>
+ 19 4 1 12 -1.
+ <_>
+ 19 7 1 6 2.
+ <_>
+
+ <_>
+ 8 11 3 3 -1.
+ <_>
+ 9 12 1 1 9.
+ <_>
+
+ <_>
+ 7 12 3 3 -1.
+ <_>
+ 8 12 1 3 3.
+ <_>
+
+ <_>
+ 6 13 3 2 -1.
+ <_>
+ 7 13 1 2 3.
+ <_>
+
+ <_>
+ 17 15 3 2 -1.
+ <_>
+ 17 15 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 6 3 3 -1.
+ <_>
+ 12 6 1 3 3.
+ <_>
+
+ <_>
+ 0 15 2 4 -1.
+ <_>
+ 0 17 2 2 2.
+ <_>
+
+ <_>
+ 12 9 7 2 -1.
+ <_>
+ 12 9 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 8 7 -1.
+ <_>
+ 10 5 4 7 2.
+ <_>
+
+ <_>
+ 6 17 8 3 -1.
+ <_>
+ 8 17 4 3 2.
+ <_>
+
+ <_>
+ 0 17 4 3 -1.
+ <_>
+ 0 18 4 1 3.
+ <_>
+
+ <_>
+ 5 1 10 6 -1.
+ <_>
+ 5 3 10 2 3.
+ <_>
+
+ <_>
+ 0 2 18 2 -1.
+ <_>
+ 6 2 6 2 3.
+ <_>
+
+ <_>
+ 7 8 6 3 -1.
+ <_>
+ 7 9 6 1 3.
+ <_>
+
+ <_>
+ 10 8 1 3 -1.
+ <_>
+ 10 9 1 1 3.
+ <_>
+
+ <_>
+ 16 1 3 2 -1.
+ <_>
+ 17 2 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 10 1 2 -1.
+ <_>
+ 2 10 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 1 2 -1.
+ <_>
+ 2 9 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 9 2 3 -1.
+ <_>
+ 2 10 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 14 12 6 -1.
+ <_>
+ 2 14 6 3 2.
+ <_>
+ 8 17 6 3 2.
+ <_>
+
+ <_>
+ 15 17 1 2 -1.
+ <_>
+ 15 17 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 11 3 3 -1.
+ <_>
+ 18 12 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 13 12 3 2 -1.
+ <_>
+ 14 12 1 2 3.
+ <_>
+
+ <_>
+ 16 18 4 2 -1.
+ <_>
+ 18 18 2 2 2.
+ <_>
+
+ <_>
+ 18 14 2 4 -1.
+ <_>
+ 17 15 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 13 3 1 -1.
+ <_>
+ 13 13 1 1 3.
+ <_>
+
+ <_>
+ 11 12 3 3 -1.
+ <_>
+ 12 13 1 1 9.
+ <_>
+
+ <_>
+ 0 0 16 20 -1.
+ <_>
+ 8 0 8 20 2.
+ <_>
+
+ <_>
+ 3 0 8 5 -1.
+ <_>
+ 5 0 4 5 2.
+ <_>
+
+ <_>
+ 0 0 2 1 -1.
+ <_>
+ 1 0 1 1 2.
+ <_>
+
+ <_>
+ 1 2 19 4 -1.
+ <_>
+ 1 4 19 2 2.
+ <_>
+
+ <_>
+ 12 7 3 4 -1.
+ <_>
+ 13 7 1 4 3.
+ <_>
+
+ <_>
+ 15 6 3 3 -1.
+ <_>
+ 16 7 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 3 13 2 2 -1.
+ <_>
+ 3 13 1 1 2.
+ <_>
+ 4 14 1 1 2.
+ <_>
+
+ <_>
+ 2 12 2 2 -1.
+ <_>
+ 2 12 1 1 2.
+ <_>
+ 3 13 1 1 2.
+ <_>
+
+ <_>
+ 0 3 19 4 -1.
+ <_>
+ 0 4 19 2 2.
+ <_>
+
+ <_>
+ 17 7 3 4 -1.
+ <_>
+ 18 8 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 8 3 4 -1.
+ <_>
+ 5 9 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 14 11 4 6 -1.
+ <_>
+ 15 11 2 6 2.
+ <_>
+
+ <_>
+ 18 3 2 6 -1.
+ <_>
+ 18 5 2 2 3.
+ <_>
+
+ <_>
+ 14 3 2 4 -1.
+ <_>
+ 14 3 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 5 4 -1.
+ <_>
+ 7 10 5 2 2.
+ <_>
+
+ <_>
+ 12 11 8 2 -1.
+ <_>
+ 12 12 8 1 2.
+ <_>
+
+ <_>
+ 16 13 3 4 -1.
+ <_>
+ 16 13 3 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 7 5 9 -1.
+ <_>
+ 14 10 5 3 3.
+ <_>
+
+ <_>
+ 0 12 1 3 -1.
+ <_>
+ 0 13 1 1 3.
+ <_>
+
+ <_>
+ 6 6 3 6 -1.
+ <_>
+ 4 8 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 0 9 9 1 -1.
+ <_>
+ 3 9 3 1 3.
+ <_>
+
+ <_>
+ 0 9 6 2 -1.
+ <_>
+ 0 9 3 1 2.
+ <_>
+ 3 10 3 1 2.
+ <_>
+
+ <_>
+ 3 2 4 4 -1.
+ <_>
+ 4 2 2 4 2.
+ <_>
+
+ <_>
+ 18 3 2 3 -1.
+ <_>
+ 18 4 2 1 3.
+ <_>
+
+ <_>
+ 6 16 3 3 -1.
+ <_>
+ 6 17 3 1 3.
+ <_>
+
+ <_>
+ 1 16 6 3 -1.
+ <_>
+ 1 17 6 1 3.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_russian_plate_number.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_russian_plate_number.xml
new file mode 100644
index 0000000000000000000000000000000000000000..39f5fcdd8b0de656af7d21ca20dc9cefa3906af1
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_russian_plate_number.xml
@@ -0,0 +1,2656 @@
+
+
+
+ BOOST
+ HAAR
+ 20
+ 60
+
+ GAB
+ 9.9500000476837158e-001
+ 5.0000000000000000e-001
+ 9.4999999999999996e-001
+ 1
+ 100
+
+ 0
+ 1
+ ALL
+ 20
+
+
+ <_>
+ 6
+ -1.3110191822052002e+000
+
+ <_>
+
+ 0 -1 193 1.0079263709485531e-002
+
+ -8.1339186429977417e-001 5.0277775526046753e-001
+ <_>
+
+ 0 -1 94 -2.2060684859752655e-002
+
+ 7.9418992996215820e-001 -5.0896102190017700e-001
+ <_>
+
+ 0 -1 18 -4.8777908086776733e-002
+
+ 7.1656656265258789e-001 -4.1640335321426392e-001
+ <_>
+
+ 0 -1 35 1.0387318208813667e-002
+
+ 3.7618312239646912e-001 -8.5504144430160522e-001
+ <_>
+
+ 0 -1 191 -9.4083719886839390e-004
+
+ 4.2658549547195435e-001 -5.7729166746139526e-001
+ <_>
+
+ 0 -1 48 -8.2391249015927315e-003
+
+ 8.2346975803375244e-001 -3.7503159046173096e-001
+
+ <_>
+ 6
+ -1.1759783029556274e+000
+
+ <_>
+
+ 0 -1 21 1.7386786639690399e-001
+
+ -6.8139964342117310e-001 6.0767590999603271e-001
+ <_>
+
+ 0 -1 28 -1.9797295331954956e-002
+
+ 7.8072130680084229e-001 -4.4399836659431458e-001
+ <_>
+
+ 0 -1 46 -1.0154811898246408e-003
+
+ 3.3383268117904663e-001 -7.6357340812683105e-001
+ <_>
+
+ 0 -1 138 2.4954911321401596e-002
+
+ -3.9979115128517151e-001 6.8620890378952026e-001
+ <_>
+
+ 0 -1 25 2.8837744612246752e-003
+
+ -2.7928480505943298e-001 7.9980146884918213e-001
+ <_>
+
+ 0 -1 26 -3.8839362561702728e-002
+
+ -7.8442335128784180e-001 3.4929576516151428e-001
+
+ <_>
+ 6
+ -1.7856997251510620e+000
+
+ <_>
+
+ 0 -1 34 2.7977079153060913e-002
+
+ -5.8424139022827148e-001 6.6850829124450684e-001
+ <_>
+
+ 0 -1 171 1.9148588180541992e-002
+
+ -6.5457659959793091e-001 4.0804430842399597e-001
+ <_>
+
+ 0 -1 7 1.1955041438341141e-002
+
+ -4.2002618312835693e-001 5.6217432022094727e-001
+ <_>
+
+ 0 -1 45 -2.1218564361333847e-002
+
+ 7.1812576055526733e-001 -3.0354043841362000e-001
+ <_>
+
+ 0 -1 108 2.0117280655540526e-004
+
+ -6.1749500036239624e-001 3.5549193620681763e-001
+ <_>
+
+ 0 -1 122 3.9725980604998767e-004
+
+ -2.6844096183776855e-001 7.6771658658981323e-001
+
+ <_>
+ 9
+ -1.1837021112442017e+000
+
+ <_>
+
+ 0 -1 202 -1.3291766867041588e-002
+
+ 4.5248869061470032e-001 -5.8849954605102539e-001
+ <_>
+
+ 0 -1 79 -4.8353265970945358e-002
+
+ 7.0951640605926514e-001 -3.2546108961105347e-001
+ <_>
+
+ 0 -1 22 2.6532993651926517e-003
+
+ -2.5343564152717590e-001 7.6588714122772217e-001
+ <_>
+
+ 0 -1 66 -3.8548894226551056e-002
+
+ 5.8126109838485718e-001 -3.0813106894493103e-001
+ <_>
+
+ 0 -1 41 -6.8602780811488628e-004
+
+ 2.6361095905303955e-001 -7.2226840257644653e-001
+ <_>
+
+ 0 -1 69 -2.5726919993758202e-002
+
+ -8.7153857946395874e-001 1.9438524544239044e-001
+ <_>
+
+ 0 -1 24 8.4192806389182806e-004
+
+ -3.6150649189949036e-001 5.2065432071685791e-001
+ <_>
+
+ 0 -1 62 -2.6956878136843443e-003
+
+ 5.9945529699325562e-001 -2.8344830870628357e-001
+ <_>
+
+ 0 -1 112 3.0572075396776199e-002
+
+ -3.0688971281051636e-001 5.7261526584625244e-001
+
+ <_>
+ 8
+ -1.4687808752059937e+000
+
+ <_>
+
+ 0 -1 5 3.1486168503761292e-002
+
+ -5.7836848497390747e-001 3.7931033968925476e-001
+ <_>
+
+ 0 -1 150 2.8311354108154774e-003
+
+ -5.7888329029083252e-001 3.2841828465461731e-001
+ <_>
+
+ 0 -1 76 -4.2060948908329010e-002
+
+ 5.5578106641769409e-001 -3.2662427425384521e-001
+ <_>
+
+ 0 -1 115 6.2936875037848949e-003
+
+ -2.1032968163490295e-001 7.8646916151046753e-001
+ <_>
+
+ 0 -1 51 7.0570126175880432e-002
+
+ -4.3683132529258728e-001 4.0298295021057129e-001
+ <_>
+
+ 0 -1 135 2.5173835456371307e-003
+
+ -2.0461565256118774e-001 8.2858163118362427e-001
+ <_>
+
+ 0 -1 102 1.5648975968360901e-003
+
+ -2.4848082661628723e-001 6.0209411382675171e-001
+ <_>
+
+ 0 -1 177 -3.5970686003565788e-003
+
+ 2.3294737935066223e-001 -6.5612471103668213e-001
+
+ <_>
+ 9
+ -1.1029583215713501e+000
+
+ <_>
+
+ 0 -1 27 -1.1257569491863251e-001
+
+ 3.3181819319725037e-001 -5.3901344537734985e-001
+ <_>
+
+ 0 -1 142 3.8014666642993689e-003
+
+ -3.6430206894874573e-001 4.5984184741973877e-001
+ <_>
+
+ 0 -1 57 9.8789634648710489e-004
+
+ -2.6661416888237000e-001 5.6971323490142822e-001
+ <_>
+
+ 0 -1 55 2.1719809621572495e-002
+
+ 1.8432702124118805e-001 -8.2999354600906372e-001
+ <_>
+
+ 0 -1 111 5.1051773130893707e-002
+
+ 1.4391148090362549e-001 -9.4541704654693604e-001
+ <_>
+
+ 0 -1 164 1.8956036074087024e-003
+
+ -6.0830104351043701e-001 2.6091885566711426e-001
+ <_>
+
+ 0 -1 81 -5.8700828813016415e-003
+
+ 6.9104760885238647e-001 -2.6916843652725220e-001
+ <_>
+
+ 0 -1 116 -1.1522199492901564e-003
+
+ -6.9503885507583618e-001 2.4749211966991425e-001
+ <_>
+
+ 0 -1 90 -5.1933946087956429e-003
+
+ 5.8551025390625000e-001 -3.0389472842216492e-001
+
+ <_>
+ 9
+ -9.0274518728256226e-001
+
+ <_>
+
+ 0 -1 205 -1.4383997768163681e-002
+
+ 4.5400592684745789e-001 -4.9917897582054138e-001
+ <_>
+
+ 0 -1 114 -3.3369414508342743e-002
+
+ -9.3247985839843750e-001 1.4586758613586426e-001
+ <_>
+
+ 0 -1 128 5.2380945999175310e-004
+
+ -2.8349643945693970e-001 6.4983856678009033e-001
+ <_>
+
+ 0 -1 143 6.1231426661834121e-004
+
+ -1.8502233922481537e-001 6.5052211284637451e-001
+ <_>
+
+ 0 -1 49 1.7017847858369350e-003
+
+ 2.2008989751338959e-001 -7.2277534008026123e-001
+ <_>
+
+ 0 -1 133 2.6139442343264818e-003
+
+ 1.8238025903701782e-001 -7.6262325048446655e-001
+ <_>
+
+ 0 -1 43 -2.0020073279738426e-003
+
+ 5.6799399852752686e-001 -2.8219676017761230e-001
+ <_>
+
+ 0 -1 119 1.9273828947916627e-003
+
+ -2.0913636684417725e-001 7.9203850030899048e-001
+ <_>
+
+ 0 -1 134 -9.4476283993571997e-004
+
+ -8.2361942529678345e-001 2.4256958067417145e-001
+
+ <_>
+ 10
+ -1.4518526792526245e+000
+
+ <_>
+
+ 0 -1 162 1.6756314784288406e-002
+
+ -6.9359332323074341e-001 5.1373954862356186e-002
+ <_>
+
+ 0 -1 16 2.4082964286208153e-002
+
+ -3.3989402651786804e-001 4.5332714915275574e-001
+ <_>
+
+ 0 -1 186 1.2284796684980392e-003
+
+ -2.2297365963459015e-001 6.1439812183380127e-001
+ <_>
+
+ 0 -1 59 -1.4379122294485569e-003
+
+ -6.9444245100021362e-001 2.0446482300758362e-001
+ <_>
+
+ 0 -1 185 -1.8713285680860281e-003
+
+ 6.7942184209823608e-001 -2.7580419182777405e-001
+ <_>
+
+ 0 -1 190 -4.7389674000442028e-003
+
+ -7.0437240600585938e-001 2.6915156841278076e-001
+ <_>
+
+ 0 -1 156 7.4071279959753156e-004
+
+ -2.9220902919769287e-001 5.3538239002227783e-001
+ <_>
+
+ 0 -1 11 -2.2739455103874207e-001
+
+ 6.6916191577911377e-001 -2.1987228095531464e-001
+ <_>
+
+ 0 -1 155 -1.0255509987473488e-003
+
+ 6.3346290588378906e-001 -2.2717863321304321e-001
+ <_>
+
+ 0 -1 167 2.4775355122983456e-003
+
+ -5.4297816753387451e-001 3.1877547502517700e-001
+
+ <_>
+ 11
+ -1.3153649568557739e+000
+
+ <_>
+
+ 0 -1 6 1.9131936132907867e-002
+
+ -6.0168600082397461e-001 1.9141913950443268e-001
+ <_>
+
+ 0 -1 42 -4.5855185016989708e-003
+
+ 2.1901632845401764e-001 -5.7136750221252441e-001
+ <_>
+
+ 0 -1 53 -1.9026801455765963e-003
+
+ -8.0075079202651978e-001 1.6502076387405396e-001
+ <_>
+
+ 0 -1 19 -3.2767035067081451e-002
+
+ 5.1496404409408569e-001 -2.5474679470062256e-001
+ <_>
+
+ 0 -1 129 6.3941581174731255e-004
+
+ -1.9851709902286530e-001 6.7218667268753052e-001
+ <_>
+
+ 0 -1 201 1.5573646873235703e-002
+
+ -1.7564551532268524e-001 7.0536541938781738e-001
+ <_>
+
+ 0 -1 200 9.5508026424795389e-004
+
+ -1.9691802561283112e-001 6.1125624179840088e-001
+ <_>
+
+ 0 -1 67 9.0427603572607040e-003
+
+ 1.6518253087997437e-001 -8.7012130022048950e-001
+ <_>
+
+ 0 -1 77 8.1576988101005554e-002
+
+ 1.4075902104377747e-001 -8.4871828556060791e-001
+ <_>
+
+ 0 -1 166 -5.1994959358125925e-004
+
+ 2.1803210675716400e-001 -5.4628211259841919e-001
+ <_>
+
+ 0 -1 70 -2.3009868338704109e-002
+
+ -7.9586231708526611e-001 1.5989699959754944e-001
+
+ <_>
+ 13
+ -1.4625015258789063e+000
+
+ <_>
+
+ 0 -1 1 2.6759501546621323e-002
+
+ -6.0482984781265259e-001 1.4906832575798035e-001
+ <_>
+
+ 0 -1 165 3.0343931168317795e-002
+
+ -4.7357541322708130e-001 2.6279065012931824e-001
+ <_>
+
+ 0 -1 161 1.2678599450737238e-003
+
+ -1.9493983685970306e-001 6.9734728336334229e-001
+ <_>
+
+ 0 -1 30 1.8607920501381159e-003
+
+ 1.5611934661865234e-001 -9.0542370080947876e-001
+ <_>
+
+ 0 -1 157 -1.3872641138732433e-003
+
+ 5.3263407945632935e-001 -3.0192303657531738e-001
+ <_>
+
+ 0 -1 180 -6.9969398900866508e-003
+
+ -9.4549953937530518e-001 1.5575224161148071e-001
+ <_>
+
+ 0 -1 158 1.1245720088481903e-003
+
+ -2.6688691973686218e-001 5.5608308315277100e-001
+ <_>
+
+ 0 -1 160 -2.8279949910938740e-003
+
+ -9.1861122846603394e-001 1.3309663534164429e-001
+ <_>
+
+ 0 -1 58 7.1019242750480771e-004
+
+ -3.0977895855903625e-001 4.3846300244331360e-001
+ <_>
+
+ 0 -1 8 -4.1933014988899231e-002
+
+ -8.9102542400360107e-001 1.5866196155548096e-001
+ <_>
+
+ 0 -1 87 1.6568358987569809e-002
+
+ 1.2731756269931793e-001 -8.5553413629531860e-001
+ <_>
+
+ 0 -1 64 2.0309074316173792e-003
+
+ -2.3260365426540375e-001 6.7330485582351685e-001
+ <_>
+
+ 0 -1 159 -1.7069760942831635e-003
+
+ -7.1925789117813110e-001 1.9108834862709045e-001
+
+ <_>
+ 14
+ -1.4959813356399536e+000
+
+ <_>
+
+ 0 -1 4 1.4695923775434494e-002
+
+ -6.2167906761169434e-001 2.1172638237476349e-001
+ <_>
+
+ 0 -1 50 -1.6501215286552906e-003
+
+ 1.9353884458541870e-001 -5.7780367136001587e-001
+ <_>
+
+ 0 -1 123 7.0121872704476118e-004
+
+ -2.2979106009006500e-001 5.3033334016799927e-001
+ <_>
+
+ 0 -1 52 9.4158272258937359e-004
+
+ 1.6849038004875183e-001 -7.4897718429565430e-001
+ <_>
+
+ 0 -1 124 -2.0684124901890755e-003
+
+ 6.7936712503433228e-001 -1.9317412376403809e-001
+ <_>
+
+ 0 -1 23 -1.8305826233699918e-004
+
+ -7.0275229215621948e-001 1.7971208691596985e-001
+ <_>
+
+ 0 -1 198 5.5587477982044220e-004
+
+ -2.4448128044605255e-001 5.0703984498977661e-001
+ <_>
+
+ 0 -1 152 4.3448276119306684e-004
+
+ 1.3497908413410187e-001 -8.5621362924575806e-001
+ <_>
+
+ 0 -1 197 -1.2359691318124533e-003
+
+ 6.1710417270660400e-001 -2.2301279008388519e-001
+ <_>
+
+ 0 -1 153 -6.9627340417355299e-004
+
+ -6.4706987142562866e-001 2.3951497673988342e-001
+ <_>
+
+ 0 -1 175 1.0683680884540081e-003
+
+ -2.8343605995178223e-001 4.9318629503250122e-001
+ <_>
+
+ 0 -1 168 1.7104238213505596e-004
+
+ -2.7171039581298828e-001 4.2520308494567871e-001
+ <_>
+
+ 0 -1 144 8.2368971779942513e-003
+
+ 1.6359315812587738e-001 -7.3864609003067017e-001
+ <_>
+
+ 0 -1 131 -5.9884190559387207e-003
+
+ 3.8030940294265747e-001 -3.0763563513755798e-001
+
+ <_>
+ 9
+ -1.1183819770812988e+000
+
+ <_>
+
+ 0 -1 187 -1.4863962307572365e-002
+
+ 1.1989101022481918e-001 -6.6138857603073120e-001
+ <_>
+
+ 0 -1 117 2.4736612103879452e-003
+
+ -5.2778661251068115e-001 2.3012125492095947e-001
+ <_>
+
+ 0 -1 71 -4.8899287357926369e-003
+
+ 6.0186779499053955e-001 -2.0681641995906830e-001
+ <_>
+
+ 0 -1 174 1.5796069055795670e-002
+
+ 1.4610521495342255e-001 -8.2099527120590210e-001
+ <_>
+
+ 0 -1 104 5.9720675926655531e-004
+
+ -2.3587301373481750e-001 4.8323699831962585e-001
+ <_>
+
+ 0 -1 103 -1.9448818638920784e-003
+
+ 6.4417767524719238e-001 -2.0953170955181122e-001
+ <_>
+
+ 0 -1 154 1.9433414854574949e-004
+
+ 2.0600238442420959e-001 -7.2418999671936035e-001
+ <_>
+
+ 0 -1 163 -1.5097535215318203e-002
+
+ -8.7151485681533813e-001 1.2594890594482422e-001
+ <_>
+
+ 0 -1 82 -3.9843879640102386e-003
+
+ 4.3801131844520569e-001 -2.9676589369773865e-001
+
+ <_>
+ 12
+ -1.5434337854385376e+000
+
+ <_>
+
+ 0 -1 105 1.1273270938545465e-003
+
+ -4.7976878285408020e-001 3.6627906560897827e-001
+ <_>
+
+ 0 -1 95 9.7806821577250957e-004
+
+ -2.7689707279205322e-001 5.1295894384384155e-001
+ <_>
+
+ 0 -1 15 1.6528377309441566e-002
+
+ -4.5259797573089600e-001 2.4290211498737335e-001
+ <_>
+
+ 0 -1 137 1.1040373938158154e-003
+
+ -3.2714816927909851e-001 3.4566244482994080e-001
+ <_>
+
+ 0 -1 109 -1.7780361231416464e-003
+
+ -6.9511681795120239e-001 1.8829824030399323e-001
+ <_>
+
+ 0 -1 92 4.6280334936454892e-004
+
+ -2.3864887654781342e-001 5.3136289119720459e-001
+ <_>
+
+ 0 -1 100 -1.4975425438024104e-004
+
+ -6.6509884595870972e-001 2.1483559906482697e-001
+ <_>
+
+ 0 -1 83 -1.4625370968133211e-003
+
+ 2.6556470990180969e-001 -4.9002227187156677e-001
+ <_>
+
+ 0 -1 14 -2.6019819779321551e-004
+
+ -7.0160359144210815e-001 1.6359129548072815e-001
+ <_>
+
+ 0 -1 14 2.2371641534846276e-004
+
+ 1.2919521331787109e-001 -6.9767206907272339e-001
+ <_>
+
+ 0 -1 194 -1.0447315871715546e-002
+
+ 2.1837629377841949e-001 -4.6482038497924805e-001
+ <_>
+
+ 0 -1 20 -9.2897024005651474e-003
+
+ 6.4918082952499390e-001 -2.0495061576366425e-001
+
+ <_>
+ 12
+ -1.4440233707427979e+000
+
+ <_>
+
+ 0 -1 9 8.5356216877698898e-003
+
+ -5.3151458501815796e-001 2.2357723116874695e-001
+ <_>
+
+ 0 -1 182 1.5294685726985335e-003
+
+ -6.0895460844039917e-001 1.7429886758327484e-001
+ <_>
+
+ 0 -1 40 1.8610086990520358e-003
+
+ -2.5480428338050842e-001 4.2150071263313293e-001
+ <_>
+
+ 0 -1 176 1.5735558699816465e-003
+
+ -1.6832062602043152e-001 4.8567819595336914e-001
+ <_>
+
+ 0 -1 179 -6.7992787808179855e-004
+
+ 3.9894598722457886e-001 -3.0744269490242004e-001
+ <_>
+
+ 0 -1 151 4.9857296049594879e-002
+
+ -1.5370152890682220e-001 6.7523348331451416e-001
+ <_>
+
+ 0 -1 139 -2.8339058160781860e-002
+
+ 5.0540882349014282e-001 -2.9473617672920227e-001
+ <_>
+
+ 0 -1 72 -7.7956825494766235e-002
+
+ 4.0387043356895447e-001 -3.0287107825279236e-001
+ <_>
+
+ 0 -1 89 -3.6115488037467003e-003
+
+ 6.3856112957000732e-001 -1.6917882859706879e-001
+ <_>
+
+ 0 -1 207 3.3940275898203254e-004
+
+ 1.3713537156581879e-001 -7.8120291233062744e-001
+ <_>
+
+ 0 -1 39 4.0043061599135399e-003
+
+ 1.5233094990253448e-001 -6.3939732313156128e-001
+ <_>
+
+ 0 -1 65 -4.4601649278774858e-004
+
+ 2.1333815157413483e-001 -4.7728902101516724e-001
+
+ <_>
+ 13
+ -1.2532578706741333e+000
+
+ <_>
+
+ 0 -1 204 -2.0341124385595322e-002
+
+ 2.4170616269111633e-001 -4.9161517620086670e-001
+ <_>
+
+ 0 -1 169 8.9040049351751804e-004
+
+ -2.8570893406867981e-001 4.2666998505592346e-001
+ <_>
+
+ 0 -1 60 -3.3259526826441288e-003
+
+ 4.2626520991325378e-001 -2.3811897635459900e-001
+ <_>
+
+ 0 -1 38 -3.1714607030153275e-002
+
+ -8.5494768619537354e-001 1.1712870001792908e-001
+ <_>
+
+ 0 -1 31 -1.1553820222616196e-002
+
+ 2.2675493359565735e-001 -4.9640509486198425e-001
+ <_>
+
+ 0 -1 80 -6.7727260291576385e-002
+
+ -8.6705064773559570e-001 9.8765812814235687e-002
+ <_>
+
+ 0 -1 63 -3.1611192971467972e-003
+
+ 3.9449846744537354e-001 -2.8210711479187012e-001
+ <_>
+
+ 0 -1 149 4.3221906526014209e-004
+
+ 1.1805476248264313e-001 -9.0178310871124268e-001
+ <_>
+
+ 0 -1 188 -2.2296360111795366e-004
+
+ 1.7324598133563995e-001 -5.2877873182296753e-001
+ <_>
+
+ 0 -1 120 -2.1440195851027966e-003
+
+ 5.5513423681259155e-001 -1.9791823625564575e-001
+ <_>
+
+ 0 -1 113 -4.5122690498828888e-003
+
+ 5.5083745718002319e-001 -1.8810540437698364e-001
+ <_>
+
+ 0 -1 130 -3.5149464383721352e-003
+
+ 5.5467557907104492e-001 -2.2856147587299347e-001
+ <_>
+
+ 0 -1 121 -4.4786706566810608e-003
+
+ -7.9106998443603516e-001 1.7836479842662811e-001
+
+ <_>
+ 15
+ -1.1898330450057983e+000
+
+ <_>
+
+ 0 -1 0 1.5206767246127129e-002
+
+ -4.9173194169998169e-001 2.7093595266342163e-001
+ <_>
+
+ 0 -1 125 6.9564773002639413e-004
+
+ -2.3066598176956177e-001 5.4028344154357910e-001
+ <_>
+
+ 0 -1 125 -8.3668017759919167e-004
+
+ 4.4658055901527405e-001 -2.7778497338294983e-001
+ <_>
+
+ 0 -1 91 -3.8321319967508316e-002
+
+ -7.9069298505783081e-001 1.8700349330902100e-001
+ <_>
+
+ 0 -1 207 -2.1063965687062591e-004
+
+ -6.3163763284683228e-001 1.8656146526336670e-001
+ <_>
+
+ 0 -1 61 3.6907330155372620e-002
+
+ 9.9319733679294586e-002 -7.6762360334396362e-001
+ <_>
+
+ 0 -1 85 8.1071127206087112e-003
+
+ -2.8561261296272278e-001 3.4748569130897522e-001
+ <_>
+
+ 0 -1 189 6.2815943965688348e-004
+
+ 1.6656193137168884e-001 -5.4635977745056152e-001
+ <_>
+
+ 0 -1 86 2.8582263621501625e-004
+
+ -2.4100163578987122e-001 4.5410770177841187e-001
+ <_>
+
+ 0 -1 173 -1.9862279295921326e-002
+
+ -9.4317340850830078e-001 1.2513674795627594e-001
+ <_>
+
+ 0 -1 96 1.1506280861794949e-003
+
+ -2.4514634907245636e-001 4.6452957391738892e-001
+ <_>
+
+ 0 -1 29 2.3451185552403331e-004
+
+ 1.2489952147006989e-001 -8.0278074741363525e-001
+ <_>
+
+ 0 -1 101 6.7837134702131152e-004
+
+ -2.5017899274826050e-001 4.3841627240180969e-001
+ <_>
+
+ 0 -1 17 3.1583159579895437e-004
+
+ 1.5951988101005554e-001 -7.4524724483489990e-001
+ <_>
+
+ 0 -1 110 7.2623658925294876e-003
+
+ 1.2511830031871796e-001 -6.5659755468368530e-001
+
+ <_>
+ 15
+ -1.2416906356811523e+000
+
+ <_>
+
+ 0 -1 2 7.5144092552363873e-003
+
+ -5.9518074989318848e-001 5.3793102502822876e-002
+ <_>
+
+ 0 -1 98 -6.4494344405829906e-004
+
+ 2.0429474115371704e-001 -4.3661779165267944e-001
+ <_>
+
+ 0 -1 196 3.3831471228040755e-004
+
+ -2.1566553413867950e-001 4.7118204832077026e-001
+ <_>
+
+ 0 -1 73 2.8320802375674248e-003
+
+ 1.3322307169437408e-001 -8.3729231357574463e-001
+ <_>
+
+ 0 -1 199 1.6218879027292132e-003
+
+ -2.0889574289321899e-001 4.7114694118499756e-001
+ <_>
+
+ 0 -1 10 2.7122153551317751e-004
+
+ 1.1475630849599838e-001 -7.8029519319534302e-001
+ <_>
+
+ 0 -1 170 8.8358242064714432e-003
+
+ 1.2460929155349731e-001 -7.6791721582412720e-001
+ <_>
+
+ 0 -1 106 9.7634072881191969e-004
+
+ -2.0806105434894562e-001 5.1318311691284180e-001
+ <_>
+
+ 0 -1 107 -2.1239042282104492e-002
+
+ -8.7171542644500732e-001 1.2721680104732513e-001
+ <_>
+
+ 0 -1 97 7.1797124110162258e-004
+
+ -3.0763280391693115e-001 3.7504923343658447e-001
+ <_>
+
+ 0 -1 32 2.7504155412316322e-002
+
+ 1.5651945769786835e-001 -7.9516488313674927e-001
+ <_>
+
+ 0 -1 178 1.0624636197462678e-003
+
+ 1.3473348319530487e-001 -6.9174814224243164e-001
+ <_>
+
+ 0 -1 33 -8.1248432397842407e-002
+
+ -8.5117286443710327e-001 1.0601779073476791e-001
+ <_>
+
+ 0 -1 140 -2.2936165332794189e-002
+
+ 3.9202499389648438e-001 -2.9867398738861084e-001
+ <_>
+
+ 0 -1 146 -1.3326616026461124e-003
+
+ 4.7240665555000305e-001 -2.6287403702735901e-001
+
+ <_>
+ 13
+ -1.3383979797363281e+000
+
+ <_>
+
+ 0 -1 3 3.2254494726657867e-002
+
+ -6.5151512622833252e-001 7.9947575926780701e-002
+ <_>
+
+ 0 -1 172 -1.1810796568170190e-003
+
+ 2.5173431634902954e-001 -4.5536977052688599e-001
+ <_>
+
+ 0 -1 88 8.0361258005723357e-004
+
+ -2.1178695559501648e-001 4.9318632483482361e-001
+ <_>
+
+ 0 -1 93 6.6201295703649521e-004
+
+ -1.9441033899784088e-001 4.6225026249885559e-001
+ <_>
+
+ 0 -1 84 3.4565184614621103e-004
+
+ -2.1175089478492737e-001 4.6985754370689392e-001
+ <_>
+
+ 0 -1 132 -5.6433549616485834e-004
+
+ -7.9713624715805054e-001 1.8714086711406708e-001
+ <_>
+
+ 0 -1 56 5.8492692187428474e-004
+
+ -3.9330720901489258e-001 2.4242231249809265e-001
+ <_>
+
+ 0 -1 13 2.5043603032827377e-002
+
+ 1.3490234315395355e-001 -7.5923883914947510e-001
+ <_>
+
+ 0 -1 37 -1.8510785885155201e-003
+
+ 4.1279399394989014e-001 -2.7271771430969238e-001
+ <_>
+
+ 0 -1 68 -2.5741360150277615e-004
+
+ -6.3662034273147583e-001 1.8135882914066315e-001
+ <_>
+
+ 0 -1 184 -1.5121832489967346e-002
+
+ 2.5249326229095459e-001 -3.8438034057617188e-001
+ <_>
+
+ 0 -1 203 -1.5006031841039658e-002
+
+ -8.4878319501876831e-001 1.1718367785215378e-001
+ <_>
+
+ 0 -1 74 4.9880752339959145e-004
+
+ -2.6755046844482422e-001 4.5769825577735901e-001
+
+ <_>
+ 12
+ -1.2097512483596802e+000
+
+ <_>
+
+ 0 -1 195 -1.1614991351962090e-002
+
+ 1.4465409517288208e-001 -5.9521216154098511e-001
+ <_>
+
+ 0 -1 75 3.9767110138200223e-004
+
+ -4.2697989940643311e-001 2.4382311105728149e-001
+ <_>
+
+ 0 -1 47 -4.6969857066869736e-002
+
+ -9.3969690799713135e-001 1.2196484953165054e-001
+ <_>
+
+ 0 -1 136 5.5550434626638889e-004
+
+ -1.8246935307979584e-001 6.5156191587448120e-001
+ <_>
+
+ 0 -1 99 2.9468833236023784e-004
+
+ 1.5099152922630310e-001 -7.8840750455856323e-001
+ <_>
+
+ 0 -1 44 1.2439775280654430e-002
+
+ 1.4981375634670258e-001 -7.5917595624923706e-001
+ <_>
+
+ 0 -1 147 6.6337559837847948e-004
+
+ -2.5185841321945190e-001 5.9387433528900146e-001
+ <_>
+
+ 0 -1 148 -6.8454549182206392e-004
+
+ 5.1199448108673096e-001 -2.5247576832771301e-001
+ <_>
+
+ 0 -1 141 1.4808592386543751e-003
+
+ 2.2439701855182648e-001 -5.8184891939163208e-001
+ <_>
+
+ 0 -1 12 6.0307271778583527e-003
+
+ -4.3553912639617920e-001 2.8183382749557495e-001
+ <_>
+
+ 0 -1 78 -1.9170897081494331e-002
+
+ -8.5707378387451172e-001 1.4850790798664093e-001
+ <_>
+
+ 0 -1 122 3.0278289341367781e-004
+
+ -3.1547480821609497e-001 4.1798374056816101e-001
+
+ <_>
+ 10
+ -1.2253109216690063e+000
+
+ <_>
+
+ 0 -1 181 4.6847470104694366e-002
+
+ -4.9239391088485718e-001 5.2287584543228149e-001
+ <_>
+
+ 0 -1 118 2.2181579843163490e-003
+
+ -4.2569425702095032e-001 3.6892616748809814e-001
+ <_>
+
+ 0 -1 145 6.1082182219251990e-004
+
+ 1.7654621601104736e-001 -8.2656937837600708e-001
+ <_>
+
+ 0 -1 127 1.7401995137333870e-002
+
+ 2.7770876884460449e-001 -5.6393522024154663e-001
+ <_>
+
+ 0 -1 54 5.2314018830657005e-004
+
+ -3.6257097125053406e-001 4.6126455068588257e-001
+ <_>
+
+ 0 -1 206 2.1581796463578939e-003
+
+ 1.9110183417797089e-001 -6.8012320995330811e-001
+ <_>
+
+ 0 -1 192 -1.3209994649514556e-003
+
+ 6.7618584632873535e-001 -2.6087108254432678e-001
+ <_>
+
+ 0 -1 126 -1.2237254530191422e-002
+
+ -5.7184767723083496e-001 3.0778104066848755e-001
+ <_>
+
+ 0 -1 36 8.7829465046525002e-003
+
+ 1.6890920698642731e-001 -7.8835797309875488e-001
+ <_>
+
+ 0 -1 183 7.5588272884488106e-003
+
+ 1.5143942832946777e-001 -8.2572847604751587e-001
+
+ <_>
+
+ <_>
+ 0 0 10 10 -1.
+ <_>
+ 0 0 5 5 2.
+ <_>
+ 5 5 5 5 2.
+ 0
+ <_>
+
+ <_>
+ 0 0 12 16 -1.
+ <_>
+ 6 0 6 16 2.
+ 0
+ <_>
+
+ <_>
+ 0 3 10 6 -1.
+ <_>
+ 5 3 5 6 2.
+ 0
+ <_>
+
+ <_>
+ 0 3 21 16 -1.
+ <_>
+ 7 3 7 16 3.
+ 0
+ <_>
+
+ <_>
+ 0 4 16 9 -1.
+ <_>
+ 4 4 8 9 2.
+ 0
+ <_>
+
+ <_>
+ 0 4 10 12 -1.
+ <_>
+ 5 4 5 12 2.
+ 0
+ <_>
+
+ <_>
+ 0 7 14 7 -1.
+ <_>
+ 7 7 7 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 12 7 -1.
+ <_>
+ 6 9 6 7 2.
+ 0
+ <_>
+
+ <_>
+ 0 9 60 3 -1.
+ <_>
+ 30 9 30 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 10 8 3 -1.
+ <_>
+ 4 10 4 3 2.
+ 0
+ <_>
+
+ <_>
+ 0 11 1 2 -1.
+ <_>
+ 0 12 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 1 0 51 12 -1.
+ <_>
+ 1 4 51 4 3.
+ 0
+ <_>
+
+ <_>
+ 1 3 15 7 -1.
+ <_>
+ 6 3 5 7 3.
+ 0
+ <_>
+
+ <_>
+ 1 7 30 6 -1.
+ <_>
+ 1 7 15 3 2.
+ <_>
+ 16 10 15 3 2.
+ 0
+ <_>
+
+ <_>
+ 1 12 1 2 -1.
+ <_>
+ 1 13 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 2 18 16 -1.
+ <_>
+ 2 6 18 8 2.
+ 0
+ <_>
+
+ <_>
+ 2 3 29 4 -1.
+ <_>
+ 2 5 29 2 2.
+ 0
+ <_>
+
+ <_>
+ 2 9 1 2 -1.
+ <_>
+ 2 10 1 1 2.
+ 0
+ <_>
+
+ <_>
+ 2 14 40 6 -1.
+ <_>
+ 2 17 40 3 2.
+ 0
+ <_>
+
+ <_>
+ 3 0 22 6 -1.
+ <_>
+ 3 2 22 2 3.
+ 0
+ <_>
+
+ <_>
+ 3 2 38 2 -1.
+ <_>
+ 3 2 19 1 2.
+ <_>
+ 22 3 19 1 2.
+ 0
+ <_>
+
+ <_>
+ 3 4 51 16 -1.
+ <_>
+ 3 8 51 8 2.
+ 0
+ <_>
+
+ <_>
+ 3 7 3 8 -1.
+ <_>
+ 4 7 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 3 9 1 3 -1.
+ <_>
+ 3 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 4 8 3 5 -1.
+ <_>
+ 5 8 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 4 8 4 9 -1.
+ <_>
+ 5 8 2 9 2.
+ 0
+ <_>
+
+ <_>
+ 4 11 36 9 -1.
+ <_>
+ 16 11 12 9 3.
+ 0
+ <_>
+
+ <_>
+ 4 14 49 6 -1.
+ <_>
+ 4 17 49 3 2.
+ 0
+ <_>
+
+ <_>
+ 5 0 17 6 -1.
+ <_>
+ 5 2 17 2 3.
+ 0
+ <_>
+
+ <_>
+ 5 1 3 1 -1.
+ <_>
+ 6 1 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 5 1 8 2 -1.
+ <_>
+ 7 1 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 5 2 36 9 -1.
+ <_>
+ 17 2 12 9 3.
+ 0
+ <_>
+
+ <_>
+ 5 3 33 17 -1.
+ <_>
+ 16 3 11 17 3.
+ 0
+ <_>
+
+ <_>
+ 6 0 30 19 -1.
+ <_>
+ 16 0 10 19 3.
+ 0
+ <_>
+
+ <_>
+ 6 3 29 4 -1.
+ <_>
+ 6 5 29 2 2.
+ 0
+ <_>
+
+ <_>
+ 6 4 16 16 -1.
+ <_>
+ 14 4 8 16 2.
+ 0
+ <_>
+
+ <_>
+ 6 9 54 1 -1.
+ <_>
+ 33 9 27 1 2.
+ 0
+ <_>
+
+ <_>
+ 7 0 4 18 -1.
+ <_>
+ 8 0 2 18 2.
+ 0
+ <_>
+
+ <_>
+ 7 3 12 15 -1.
+ <_>
+ 13 3 6 15 2.
+ 0
+ <_>
+
+ <_>
+ 7 4 20 5 -1.
+ <_>
+ 12 4 10 5 2.
+ 0
+ <_>
+
+ <_>
+ 7 4 6 3 -1.
+ <_>
+ 7 5 6 1 3.
+ 0
+ <_>
+
+ <_>
+ 7 4 36 6 -1.
+ <_>
+ 19 4 12 6 3.
+ 0
+ <_>
+
+ <_>
+ 7 5 28 4 -1.
+ <_>
+ 14 5 14 4 2.
+ 0
+ <_>
+
+ <_>
+ 7 7 4 11 -1.
+ <_>
+ 8 7 2 11 2.
+ 0
+ <_>
+
+ <_>
+ 7 9 12 7 -1.
+ <_>
+ 13 9 6 7 2.
+ 0
+ <_>
+
+ <_>
+ 8 1 21 4 -1.
+ <_>
+ 8 3 21 2 2.
+ 0
+ <_>
+
+ <_>
+ 8 4 28 6 -1.
+ <_>
+ 15 4 14 6 2.
+ 0
+ <_>
+
+ <_>
+ 8 8 38 6 -1.
+ <_>
+ 8 10 38 2 3.
+ 0
+ <_>
+
+ <_>
+ 8 14 25 4 -1.
+ <_>
+ 8 15 25 2 2.
+ 0
+ <_>
+
+ <_>
+ 9 2 12 4 -1.
+ <_>
+ 12 2 6 4 2.
+ 0
+ <_>
+
+ <_>
+ 9 5 24 3 -1.
+ <_>
+ 15 5 12 3 2.
+ 0
+ <_>
+
+ <_>
+ 9 8 40 12 -1.
+ <_>
+ 9 12 40 4 3.
+ 0
+ <_>
+
+ <_>
+ 10 2 8 2 -1.
+ <_>
+ 12 2 4 2 2.
+ 0
+ <_>
+
+ <_>
+ 10 2 9 2 -1.
+ <_>
+ 13 2 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 10 5 3 3 -1.
+ <_>
+ 11 6 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 11 0 32 20 -1.
+ <_>
+ 19 0 16 20 2.
+ 0
+ <_>
+
+ <_>
+ 11 3 1 4 -1.
+ <_>
+ 11 5 1 2 2.
+ 0
+ <_>
+
+ <_>
+ 11 9 4 3 -1.
+ <_>
+ 12 9 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 11 9 3 7 -1.
+ <_>
+ 12 9 1 7 3.
+ 0
+ <_>
+
+ <_>
+ 12 3 9 2 -1.
+ <_>
+ 15 3 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 12 6 6 6 -1.
+ <_>
+ 14 6 2 6 3.
+ 0
+ <_>
+
+ <_>
+ 12 10 42 10 -1.
+ <_>
+ 26 10 14 10 3.
+ 0
+ <_>
+
+ <_>
+ 12 14 11 3 -1.
+ <_>
+ 12 15 11 1 3.
+ 0
+ <_>
+
+ <_>
+ 13 4 6 14 -1.
+ <_>
+ 15 4 2 14 3.
+ 0
+ <_>
+
+ <_>
+ 13 8 3 6 -1.
+ <_>
+ 14 8 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 13 11 32 2 -1.
+ <_>
+ 21 11 16 2 2.
+ 0
+ <_>
+
+ <_>
+ 13 13 25 6 -1.
+ <_>
+ 13 16 25 3 2.
+ 0
+ <_>
+
+ <_>
+ 13 16 21 3 -1.
+ <_>
+ 20 16 7 3 3.
+ 0
+ <_>
+
+ <_>
+ 14 2 3 2 -1.
+ <_>
+ 15 2 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 14 2 24 8 -1.
+ <_>
+ 20 2 12 8 2.
+ 0
+ <_>
+
+ <_>
+ 14 13 36 6 -1.
+ <_>
+ 23 13 18 6 2.
+ 0
+ <_>
+
+ <_>
+ 14 14 8 3 -1.
+ <_>
+ 14 15 8 1 3.
+ 0
+ <_>
+
+ <_>
+ 14 14 45 6 -1.
+ <_>
+ 14 17 45 3 2.
+ 0
+ <_>
+
+ <_>
+ 14 18 9 2 -1.
+ <_>
+ 17 18 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 15 9 4 1 -1.
+ <_>
+ 16 9 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 15 10 19 4 -1.
+ <_>
+ 15 12 19 2 2.
+ 0
+ <_>
+
+ <_>
+ 16 0 28 8 -1.
+ <_>
+ 16 2 28 4 2.
+ 0
+ <_>
+
+ <_>
+ 16 2 36 18 -1.
+ <_>
+ 28 2 12 18 3.
+ 0
+ <_>
+
+ <_>
+ 16 6 24 6 -1.
+ <_>
+ 22 6 12 6 2.
+ 0
+ <_>
+
+ <_>
+ 17 1 24 6 -1.
+ <_>
+ 17 3 24 2 3.
+ 0
+ <_>
+
+ <_>
+ 17 3 15 12 -1.
+ <_>
+ 22 7 5 4 9.
+ 0
+ <_>
+
+ <_>
+ 17 15 11 3 -1.
+ <_>
+ 17 16 11 1 3.
+ 0
+ <_>
+
+ <_>
+ 18 5 6 10 -1.
+ <_>
+ 20 5 2 10 3.
+ 0
+ <_>
+
+ <_>
+ 18 6 18 3 -1.
+ <_>
+ 24 6 6 3 3.
+ 0
+ <_>
+
+ <_>
+ 18 11 3 1 -1.
+ <_>
+ 19 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 6 32 2 -1.
+ <_>
+ 27 6 16 2 2.
+ 0
+ <_>
+
+ <_>
+ 19 8 3 1 -1.
+ <_>
+ 20 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 9 14 11 -1.
+ <_>
+ 26 9 7 11 2.
+ 0
+ <_>
+
+ <_>
+ 19 10 3 3 -1.
+ <_>
+ 20 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 19 13 7 3 -1.
+ <_>
+ 19 14 7 1 3.
+ 0
+ <_>
+
+ <_>
+ 19 14 13 3 -1.
+ <_>
+ 19 15 13 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 0 15 20 -1.
+ <_>
+ 25 0 5 20 3.
+ 0
+ <_>
+
+ <_>
+ 20 9 3 1 -1.
+ <_>
+ 21 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 20 10 3 2 -1.
+ <_>
+ 21 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 21 1 21 6 -1.
+ <_>
+ 21 3 21 2 3.
+ 0
+ <_>
+
+ <_>
+ 21 8 4 3 -1.
+ <_>
+ 22 8 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 21 9 3 4 -1.
+ <_>
+ 22 9 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 21 10 4 2 -1.
+ <_>
+ 22 10 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 21 11 24 2 -1.
+ <_>
+ 27 11 12 2 2.
+ 0
+ <_>
+
+ <_>
+ 21 18 4 1 -1.
+ <_>
+ 22 18 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 22 3 4 1 -1.
+ <_>
+ 23 3 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 22 6 2 6 -1.
+ <_>
+ 22 6 1 3 2.
+ <_>
+ 23 9 1 3 2.
+ 0
+ <_>
+
+ <_>
+ 22 7 3 3 -1.
+ <_>
+ 23 8 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 22 8 3 5 -1.
+ <_>
+ 23 8 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 22 9 3 2 -1.
+ <_>
+ 23 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 23 8 3 3 -1.
+ <_>
+ 24 8 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 23 10 3 2 -1.
+ <_>
+ 24 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 24 3 20 17 -1.
+ <_>
+ 29 3 10 17 2.
+ 0
+ <_>
+
+ <_>
+ 24 4 14 6 -1.
+ <_>
+ 31 4 7 6 2.
+ 0
+ <_>
+
+ <_>
+ 24 18 9 2 -1.
+ <_>
+ 27 18 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 25 5 8 4 -1.
+ <_>
+ 25 5 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 25 6 22 14 -1.
+ <_>
+ 36 6 11 14 2.
+ 0
+ <_>
+
+ <_>
+ 25 12 28 8 -1.
+ <_>
+ 25 14 28 4 2.
+ 0
+ <_>
+
+ <_>
+ 25 14 9 3 -1.
+ <_>
+ 25 15 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 26 2 27 18 -1.
+ <_>
+ 35 2 9 18 3.
+ 0
+ <_>
+
+ <_>
+ 26 3 22 3 -1.
+ <_>
+ 26 4 22 1 3.
+ 0
+ <_>
+
+ <_>
+ 26 4 8 4 -1.
+ <_>
+ 30 4 4 4 2.
+ 0
+ <_>
+
+ <_>
+ 26 4 20 6 -1.
+ <_>
+ 31 4 10 6 2.
+ 0
+ <_>
+
+ <_>
+ 26 7 1 12 -1.
+ <_>
+ 22 11 1 4 3.
+ 1
+ <_>
+
+ <_>
+ 26 9 3 3 -1.
+ <_>
+ 27 9 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 26 13 9 3 -1.
+ <_>
+ 26 14 9 1 3.
+ 0
+ <_>
+
+ <_>
+ 27 3 15 6 -1.
+ <_>
+ 32 3 5 6 3.
+ 0
+ <_>
+
+ <_>
+ 27 9 3 1 -1.
+ <_>
+ 28 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 27 9 3 2 -1.
+ <_>
+ 28 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 27 10 3 3 -1.
+ <_>
+ 28 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 27 11 3 2 -1.
+ <_>
+ 28 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 28 2 10 4 -1.
+ <_>
+ 28 2 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 28 8 32 6 -1.
+ <_>
+ 28 10 32 2 3.
+ 0
+ <_>
+
+ <_>
+ 28 10 3 1 -1.
+ <_>
+ 29 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 28 11 3 1 -1.
+ <_>
+ 29 11 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 28 15 5 4 -1.
+ <_>
+ 28 16 5 2 2.
+ 0
+ <_>
+
+ <_>
+ 28 16 23 4 -1.
+ <_>
+ 28 17 23 2 2.
+ 0
+ <_>
+
+ <_>
+ 28 19 6 1 -1.
+ <_>
+ 30 19 2 1 3.
+ 0
+ <_>
+
+ <_>
+ 29 3 9 4 -1.
+ <_>
+ 32 3 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 29 5 9 1 -1.
+ <_>
+ 32 5 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 29 8 3 6 -1.
+ <_>
+ 30 8 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 29 9 3 1 -1.
+ <_>
+ 30 9 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 29 11 10 4 -1.
+ <_>
+ 29 13 10 2 2.
+ 0
+ <_>
+
+ <_>
+ 29 11 26 8 -1.
+ <_>
+ 29 13 26 4 2.
+ 0
+ <_>
+
+ <_>
+ 30 0 16 6 -1.
+ <_>
+ 30 3 16 3 2.
+ 0
+ <_>
+
+ <_>
+ 30 2 30 6 -1.
+ <_>
+ 30 2 15 3 2.
+ <_>
+ 45 5 15 3 2.
+ 0
+ <_>
+
+ <_>
+ 30 3 9 4 -1.
+ <_>
+ 33 3 3 4 3.
+ 0
+ <_>
+
+ <_>
+ 30 5 9 4 -1.
+ <_>
+ 30 6 9 2 2.
+ 0
+ <_>
+
+ <_>
+ 30 10 3 2 -1.
+ <_>
+ 31 10 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 30 14 18 6 -1.
+ <_>
+ 36 14 6 6 3.
+ 0
+ <_>
+
+ <_>
+ 31 3 4 3 -1.
+ <_>
+ 32 3 2 3 2.
+ 0
+ <_>
+
+ <_>
+ 31 7 4 9 -1.
+ <_>
+ 32 7 2 9 2.
+ 0
+ <_>
+
+ <_>
+ 31 11 3 2 -1.
+ <_>
+ 32 11 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 31 11 3 3 -1.
+ <_>
+ 32 11 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 32 4 3 2 -1.
+ <_>
+ 33 4 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 32 6 18 6 -1.
+ <_>
+ 32 6 9 3 2.
+ <_>
+ 41 9 9 3 2.
+ 0
+ <_>
+
+ <_>
+ 33 1 22 6 -1.
+ <_>
+ 33 4 22 3 2.
+ 0
+ <_>
+
+ <_>
+ 33 3 4 2 -1.
+ <_>
+ 34 3 2 2 2.
+ 0
+ <_>
+
+ <_>
+ 33 3 4 4 -1.
+ <_>
+ 34 3 2 4 2.
+ 0
+ <_>
+
+ <_>
+ 33 5 4 1 -1.
+ <_>
+ 34 5 2 1 2.
+ 0
+ <_>
+
+ <_>
+ 33 9 3 6 -1.
+ <_>
+ 34 9 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 33 10 3 3 -1.
+ <_>
+ 34 10 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 34 8 4 7 -1.
+ <_>
+ 35 8 2 7 2.
+ 0
+ <_>
+
+ <_>
+ 34 9 3 5 -1.
+ <_>
+ 35 9 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 34 18 9 2 -1.
+ <_>
+ 37 18 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 35 0 8 6 -1.
+ <_>
+ 37 0 4 6 2.
+ 0
+ <_>
+
+ <_>
+ 35 9 3 2 -1.
+ <_>
+ 36 9 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 36 9 24 9 -1.
+ <_>
+ 42 9 12 9 2.
+ 0
+ <_>
+
+ <_>
+ 37 1 16 18 -1.
+ <_>
+ 41 1 8 18 2.
+ 0
+ <_>
+
+ <_>
+ 37 11 20 8 -1.
+ <_>
+ 42 11 10 8 2.
+ 0
+ <_>
+
+ <_>
+ 38 8 15 12 -1.
+ <_>
+ 38 12 15 4 3.
+ 0
+ <_>
+
+ <_>
+ 39 6 12 8 -1.
+ <_>
+ 45 6 6 8 2.
+ 0
+ <_>
+
+ <_>
+ 40 8 8 4 -1.
+ <_>
+ 40 8 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 40 10 3 1 -1.
+ <_>
+ 41 10 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 40 10 3 5 -1.
+ <_>
+ 41 10 1 5 3.
+ 0
+ <_>
+
+ <_>
+ 40 13 12 6 -1.
+ <_>
+ 43 13 6 6 2.
+ 0
+ <_>
+
+ <_>
+ 41 5 7 15 -1.
+ <_>
+ 41 10 7 5 3.
+ 0
+ <_>
+
+ <_>
+ 41 6 12 6 -1.
+ <_>
+ 45 6 4 6 3.
+ 0
+ <_>
+
+ <_>
+ 41 7 12 7 -1.
+ <_>
+ 45 7 4 7 3.
+ 0
+ <_>
+
+ <_>
+ 41 8 12 12 -1.
+ <_>
+ 45 8 4 12 3.
+ 0
+ <_>
+
+ <_>
+ 41 9 3 6 -1.
+ <_>
+ 42 9 1 6 3.
+ 0
+ <_>
+
+ <_>
+ 42 2 3 13 -1.
+ <_>
+ 43 2 1 13 3.
+ 0
+ <_>
+
+ <_>
+ 42 4 18 10 -1.
+ <_>
+ 42 4 9 5 2.
+ <_>
+ 51 9 9 5 2.
+ 0
+ <_>
+
+ <_>
+ 42 5 18 8 -1.
+ <_>
+ 42 5 9 4 2.
+ <_>
+ 51 9 9 4 2.
+ 0
+ <_>
+
+ <_>
+ 42 7 2 7 -1.
+ <_>
+ 43 7 1 7 2.
+ 0
+ <_>
+
+ <_>
+ 42 14 12 5 -1.
+ <_>
+ 46 14 4 5 3.
+ 0
+ <_>
+
+ <_>
+ 43 1 10 9 -1.
+ <_>
+ 40 4 10 3 3.
+ 1
+ <_>
+
+ <_>
+ 43 6 6 6 -1.
+ <_>
+ 43 9 6 3 2.
+ 0
+ <_>
+
+ <_>
+ 44 0 8 20 -1.
+ <_>
+ 46 0 4 20 2.
+ 0
+ <_>
+
+ <_>
+ 44 2 16 12 -1.
+ <_>
+ 44 2 8 6 2.
+ <_>
+ 52 8 8 6 2.
+ 0
+ <_>
+
+ <_>
+ 44 5 3 8 -1.
+ <_>
+ 45 5 1 8 3.
+ 0
+ <_>
+
+ <_>
+ 44 8 3 4 -1.
+ <_>
+ 45 8 1 4 3.
+ 0
+ <_>
+
+ <_>
+ 44 12 16 4 -1.
+ <_>
+ 52 12 8 4 2.
+ 0
+ <_>
+
+ <_>
+ 44 13 10 3 -1.
+ <_>
+ 49 13 5 3 2.
+ 0
+ <_>
+
+ <_>
+ 45 19 9 1 -1.
+ <_>
+ 48 19 3 1 3.
+ 0
+ <_>
+
+ <_>
+ 46 3 8 8 -1.
+ <_>
+ 50 3 4 8 2.
+ 0
+ <_>
+
+ <_>
+ 47 12 10 6 -1.
+ <_>
+ 52 12 5 6 2.
+ 0
+ <_>
+
+ <_>
+ 48 0 4 13 -1.
+ <_>
+ 49 0 2 13 2.
+ 0
+ <_>
+
+ <_>
+ 48 5 3 12 -1.
+ <_>
+ 45 8 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 48 9 12 8 -1.
+ <_>
+ 54 9 6 8 2.
+ 0
+ <_>
+
+ <_>
+ 48 13 12 4 -1.
+ <_>
+ 54 13 6 4 2.
+ 0
+ <_>
+
+ <_>
+ 49 8 3 1 -1.
+ <_>
+ 50 8 1 1 3.
+ 0
+ <_>
+
+ <_>
+ 49 8 3 2 -1.
+ <_>
+ 50 8 1 2 3.
+ 0
+ <_>
+
+ <_>
+ 49 8 3 3 -1.
+ <_>
+ 50 8 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 50 9 3 3 -1.
+ <_>
+ 51 10 1 1 9.
+ 0
+ <_>
+
+ <_>
+ 51 8 3 3 -1.
+ <_>
+ 52 8 1 3 3.
+ 0
+ <_>
+
+ <_>
+ 52 6 6 10 -1.
+ <_>
+ 54 6 2 10 3.
+ 0
+ <_>
+
+ <_>
+ 52 7 8 7 -1.
+ <_>
+ 56 7 4 7 2.
+ 0
+ <_>
+
+ <_>
+ 52 8 8 4 -1.
+ <_>
+ 52 8 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 54 3 6 15 -1.
+ <_>
+ 57 3 3 15 2.
+ 0
+ <_>
+
+ <_>
+ 54 8 6 7 -1.
+ <_>
+ 57 8 3 7 2.
+ 0
+ <_>
+
+ <_>
+ 57 11 3 6 -1.
+ <_>
+ 57 13 3 2 3.
+ 0
+ <_>
+
+ <_>
+ 59 8 1 3 -1.
+ <_>
+ 59 9 1 1 3.
+ 0
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_smile.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_smile.xml
new file mode 100644
index 0000000000000000000000000000000000000000..bbdd896add956536207a3183311a6b6ba1d0ba29
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_smile.xml
@@ -0,0 +1,6729 @@
+
+
+
+BOOST
+ HAAR
+ 18
+ 36
+
+ 53
+
+ 0
+ 20
+
+ <_>
+ 11
+ -1.2678639888763428e+00
+
+ <_>
+
+ 0 -1 0 -4.8783610691316426e-04
+
+ 5.9219348430633545e-01 -4.4163608551025391e-01
+ <_>
+
+ 0 -1 1 -4.2209611274302006e-04
+
+ 3.0318650603294373e-01 -3.2912918925285339e-01
+ <_>
+
+ 0 -1 2 -4.9940118333324790e-04
+
+ 4.8563310503959656e-01 -4.2923060059547424e-01
+ <_>
+
+ 0 -1 3 3.7289198487997055e-02
+
+ -2.8667300939559937e-01 5.9979999065399170e-01
+ <_>
+
+ 0 -1 4 1.4334049774333835e-03
+
+ -3.4893131256103516e-01 4.0482750535011292e-01
+ <_>
+
+ 0 -1 5 -7.7213020995259285e-03
+
+ 7.5714188814163208e-01 -1.2225949764251709e-01
+ <_>
+
+ 0 -1 6 8.1067271530628204e-03
+
+ -1.6657720506191254e-01 7.5096148252487183e-01
+ <_>
+
+ 0 -1 7 -7.7238711528480053e-03
+
+ 6.2662792205810547e-01 -1.9127459824085236e-01
+ <_>
+
+ 0 -1 8 4.4225031160749495e-04
+
+ -2.3944470286369324e-01 4.4840618968009949e-01
+ <_>
+
+ 0 -1 9 -1.6867710510268807e-03
+
+ -1.8439069390296936e-01 9.1782413423061371e-02
+ <_>
+
+ 0 -1 10 1.4625620096921921e-02
+
+ 1.6168059408664703e-01 -8.1501179933547974e-01
+ <_>
+ 11
+ -1.5844069719314575e+00
+
+ <_>
+
+ 0 -1 11 3.8141138851642609e-02
+
+ -3.3275881409645081e-01 7.7833342552185059e-01
+ <_>
+
+ 0 -1 12 -1.3136120105627924e-04
+
+ 3.6353090405464172e-01 -3.2043468952178955e-01
+ <_>
+
+ 0 -1 13 -3.8757019210606813e-03
+
+ 7.1352392435073853e-01 -3.5185989737510681e-01
+ <_>
+
+ 0 -1 14 1.4266290236264467e-03
+
+ 6.8100847303867340e-02 -6.1727327108383179e-01
+ <_>
+
+ 0 -1 15 -2.4605958606116474e-04
+
+ 5.7271498441696167e-01 -3.7860998511314392e-01
+ <_>
+
+ 0 -1 16 -3.1822640448808670e-02
+
+ -6.3484561443328857e-01 1.1641839891672134e-01
+ <_>
+
+ 0 -1 17 -1.7130950465798378e-02
+
+ -6.2793147563934326e-01 3.2479470968246460e-01
+ <_>
+
+ 0 -1 18 -9.3903783708810806e-03
+
+ -2.7578958868980408e-01 2.2330729663372040e-01
+ <_>
+
+ 0 -1 19 2.2802520543336868e-03
+
+ 1.8977640569210052e-01 -6.8817621469497681e-01
+ <_>
+
+ 0 -1 20 2.6840099599212408e-03
+
+ -2.2350500524044037e-01 1.3725799322128296e-01
+ <_>
+
+ 0 -1 21 1.0604639537632465e-02
+
+ -2.1426230669021606e-01 5.6207871437072754e-01
+ <_>
+ 17
+ -1.3820559978485107e+00
+
+ <_>
+
+ 0 -1 22 -3.1677199876867235e-04
+
+ 4.6595481038093567e-01 -3.7425819039344788e-01
+ <_>
+
+ 0 -1 23 -5.5120628327131271e-02
+
+ 5.4179787635803223e-01 -2.2657650709152222e-01
+ <_>
+
+ 0 -1 24 -6.4742640824988484e-04
+
+ 3.7703070044517517e-01 -3.3486440777778625e-01
+ <_>
+
+ 0 -1 25 3.9507839083671570e-01
+
+ -1.8144419789314270e-01 8.1325918436050415e-01
+ <_>
+
+ 0 -1 26 4.0509410202503204e-02
+
+ -9.5369413495063782e-02 8.0595618486404419e-01
+ <_>
+
+ 0 -1 27 4.8735421150922775e-03
+
+ -1.4023660123348236e-01 6.1643028259277344e-01
+ <_>
+
+ 0 -1 28 1.0578040033578873e-02
+
+ 1.2932670116424561e-01 -7.4823349714279175e-01
+ <_>
+
+ 0 -1 29 9.2986393719911575e-03
+
+ 5.8940600603818893e-02 -4.4107300043106079e-01
+ <_>
+
+ 0 -1 30 -5.0301607698202133e-03
+
+ -6.6309732198715210e-01 1.8104769289493561e-01
+ <_>
+
+ 0 -1 31 -1.0947990085696802e-04
+
+ 2.2112590074539185e-01 -2.7309039235115051e-01
+ <_>
+
+ 0 -1 32 -1.1685509979724884e-01
+
+ -7.7205967903137207e-01 1.2481659650802612e-01
+ <_>
+
+ 0 -1 33 -4.3603649828583002e-05
+
+ 1.3670609891414642e-01 -1.6127939522266388e-01
+ <_>
+
+ 0 -1 34 -1.5056360280141234e-04
+
+ 4.4860461354255676e-01 -2.1711289882659912e-01
+ <_>
+
+ 0 -1 35 -1.6394609585404396e-02
+
+ -6.5827351808547974e-01 1.6745500266551971e-01
+ <_>
+
+ 0 -1 36 -1.4482860453426838e-02
+
+ -6.8345147371292114e-01 1.3456159830093384e-01
+ <_>
+
+ 0 -1 37 3.9269471017178148e-05
+
+ -1.4998139441013336e-01 1.6017720103263855e-01
+ <_>
+
+ 0 -1 38 7.4323131702840328e-03
+
+ -1.6848459839820862e-01 5.3963989019393921e-01
+ <_>
+ 18
+ -1.3879380226135254e+00
+
+ <_>
+
+ 0 -1 39 -4.3472499237395823e-04
+
+ 4.3949240446090698e-01 -4.2248758673667908e-01
+ <_>
+
+ 0 -1 40 3.2995320856571198e-02
+
+ -1.9798250496387482e-01 5.9534871578216553e-01
+ <_>
+
+ 0 -1 41 -4.1011828579939902e-04
+
+ 4.4403061270713806e-01 -3.0748468637466431e-01
+ <_>
+
+ 0 -1 42 -8.1969738006591797e-02
+
+ -5.3334367275238037e-01 1.6718100011348724e-01
+ <_>
+
+ 0 -1 43 1.7778700217604637e-02
+
+ -2.0450179278850555e-01 5.1444131135940552e-01
+ <_>
+
+ 0 -1 44 2.2834699600934982e-02
+
+ -1.4846070110797882e-01 5.6242787837982178e-01
+ <_>
+
+ 0 -1 45 3.8604341447353363e-02
+
+ -1.2731470167636871e-01 8.1494480371475220e-01
+ <_>
+
+ 0 -1 46 -7.3286908445879817e-04
+
+ -3.7193441390991211e-01 6.7616499960422516e-02
+ <_>
+
+ 0 -1 47 -2.3229040205478668e-02
+
+ 7.1232062578201294e-01 -1.1589390039443970e-01
+ <_>
+
+ 0 -1 48 -1.9575359299778938e-02
+
+ -6.8990731239318848e-01 1.3999509811401367e-01
+ <_>
+
+ 0 -1 49 4.1991271427832544e-04
+
+ -1.8354649841785431e-01 4.9435558915138245e-01
+ <_>
+
+ 0 -1 50 -5.7089749723672867e-02
+
+ 6.2607848644256592e-01 -7.8576847910881042e-02
+ <_>
+
+ 0 -1 51 2.5699699297547340e-02
+
+ 1.1557140201330185e-01 -8.1935191154479980e-01
+ <_>
+
+ 0 -1 52 3.2579619437456131e-02
+
+ -1.1767739802598953e-01 4.2776221036911011e-01
+ <_>
+
+ 0 -1 53 -2.0592249929904938e-02
+
+ 4.8685240745544434e-01 -2.1318539977073669e-01
+ <_>
+
+ 0 -1 54 -1.7485279589891434e-02
+
+ -5.2287340164184570e-01 1.3397049903869629e-01
+ <_>
+
+ 0 -1 55 8.9153228327631950e-04
+
+ 9.6304491162300110e-02 -6.8863070011138916e-01
+ <_>
+
+ 0 -1 56 5.7533901184797287e-02
+
+ -8.7080523371696472e-02 4.0480649471282959e-01
+ <_>
+ 25
+ -1.3538850545883179e+00
+
+ <_>
+
+ 0 -1 57 -4.6606198884546757e-04
+
+ 4.2773741483688354e-01 -3.5420769453048706e-01
+ <_>
+
+ 0 -1 58 3.0554559826850891e-01
+
+ -1.6392810642719269e-01 8.6065232753753662e-01
+ <_>
+
+ 0 -1 59 -1.1449400335550308e-02
+
+ 5.9727329015731812e-01 -2.3234340548515320e-01
+ <_>
+
+ 0 -1 60 6.3891541212797165e-03
+
+ -1.2915410101413727e-01 6.1052042245864868e-01
+ <_>
+
+ 0 -1 61 -8.4334248676896095e-03
+
+ 4.7928538918495178e-01 -1.9002729654312134e-01
+ <_>
+
+ 0 -1 62 5.3808931261301041e-02
+
+ -1.1493770033121109e-01 5.3394538164138794e-01
+ <_>
+
+ 0 -1 63 -4.7580219688825309e-04
+
+ -3.4598541259765625e-01 2.5488048791885376e-01
+ <_>
+
+ 0 -1 64 -1.3450840197037905e-04
+
+ 2.2414590418338776e-01 -1.9550070166587830e-01
+ <_>
+
+ 0 -1 65 5.0016911700367928e-04
+
+ -1.9720549881458282e-01 4.9677640199661255e-01
+ <_>
+
+ 0 -1 66 1.5063269995152950e-02
+
+ 1.0630770027637482e-01 -4.1138210892677307e-01
+ <_>
+
+ 0 -1 67 7.7588870190083981e-03
+
+ -1.5373119711875916e-01 4.8931619524955750e-01
+ <_>
+
+ 0 -1 68 4.5410118997097015e-02
+
+ -7.3559306561946869e-02 2.7737921476364136e-01
+ <_>
+
+ 0 -1 69 -1.4599669724702835e-02
+
+ -7.0966827869415283e-01 9.7515560686588287e-02
+ <_>
+
+ 0 -1 70 1.7236070707440376e-02
+
+ 1.6869539394974709e-02 -5.7388329505920410e-01
+ <_>
+
+ 0 -1 71 1.4230710454285145e-02
+
+ 9.4714500010013580e-02 -7.8395259380340576e-01
+ <_>
+
+ 0 -1 72 -4.3706860393285751e-02
+
+ 6.0979652404785156e-01 -1.5601889789104462e-01
+ <_>
+
+ 0 -1 73 -6.2343222089111805e-04
+
+ 3.4851190447807312e-01 -2.1704910695552826e-01
+ <_>
+
+ 0 -1 74 1.9245050847530365e-02
+
+ -1.1710979789495468e-01 3.0701160430908203e-01
+ <_>
+
+ 0 -1 75 2.7035778760910034e-01
+
+ -9.0096436440944672e-02 7.6656961441040039e-01
+ <_>
+
+ 0 -1 76 -3.5394480801187456e-04
+
+ -2.0024789869785309e-01 1.2493360042572021e-01
+ <_>
+
+ 0 -1 77 -3.6013960838317871e-02
+
+ 6.7028558254241943e-01 -1.0571879893541336e-01
+ <_>
+
+ 0 -1 78 9.2952791601419449e-03
+
+ -1.0574710369110107e-01 4.5093879103660583e-01
+ <_>
+
+ 0 -1 79 -3.3304709359072149e-04
+
+ 2.7933821082115173e-01 -2.4576769769191742e-01
+ <_>
+
+ 0 -1 80 -2.9147620807634667e-05
+
+ 8.5813812911510468e-02 -9.5469586551189423e-02
+ <_>
+
+ 0 -1 81 4.4382669148035347e-04
+
+ -2.0220080018043518e-01 5.4543578624725342e-01
+ <_>
+ 23
+ -1.3707510232925415e+00
+
+ <_>
+
+ 0 -1 82 7.9610757529735565e-03
+
+ -3.6722078919410706e-01 4.3154349923133850e-01
+ <_>
+
+ 0 -1 83 6.3394829630851746e-02
+
+ -2.0739710330963135e-01 5.7426017522811890e-01
+ <_>
+
+ 0 -1 84 -5.3193349391222000e-02
+
+ 7.2550922632217407e-01 -1.4342020452022552e-01
+ <_>
+
+ 0 -1 85 1.5460769645869732e-02
+
+ -9.6053816378116608e-02 7.5785237550735474e-01
+ <_>
+
+ 0 -1 86 -1.7643140628933907e-02
+
+ 6.6815620660781860e-01 -1.4176729321479797e-01
+ <_>
+
+ 0 -1 87 9.5065636560320854e-03
+
+ -9.6259742975234985e-02 4.6996331214904785e-01
+ <_>
+
+ 0 -1 88 4.0446049533784389e-03
+
+ -1.9732519984245300e-01 4.2838010191917419e-01
+ <_>
+
+ 0 -1 89 3.2312041148543358e-03
+
+ 1.1861690133810043e-01 -6.1039632558822632e-01
+ <_>
+
+ 0 -1 90 -4.0159050375223160e-02
+
+ -4.1664341092109680e-01 2.1672329306602478e-01
+ <_>
+
+ 0 -1 91 2.8524258732795715e-01
+
+ -1.0435750335454941e-01 8.5733968019485474e-01
+ <_>
+
+ 0 -1 92 -4.9264221452176571e-03
+
+ 4.7060468792915344e-01 -1.3997459411621094e-01
+ <_>
+
+ 0 -1 93 1.3781700283288956e-02
+
+ -1.2713569402694702e-01 4.4618919491767883e-01
+ <_>
+
+ 0 -1 94 -4.9873598618432879e-04
+
+ 4.7026631236076355e-01 -1.5483739972114563e-01
+ <_>
+
+ 0 -1 95 -1.5621389320585877e-04
+
+ 1.8854810297489166e-01 -7.7839776873588562e-02
+ <_>
+
+ 0 -1 96 -3.7597760092467070e-04
+
+ 5.7697701454162598e-01 -1.3356220722198486e-01
+ <_>
+
+ 0 -1 97 -1.0665910318493843e-02
+
+ -4.1065299510955811e-01 1.5562120079994202e-01
+ <_>
+
+ 0 -1 98 -3.4135230816900730e-03
+
+ -7.6363432407379150e-01 1.0209649801254272e-01
+ <_>
+
+ 0 -1 99 5.6471868447260931e-05
+
+ -1.6443930566310883e-01 2.2908419370651245e-01
+ <_>
+
+ 0 -1 100 2.1611599368043244e-04
+
+ -1.6290329396724701e-01 4.5756360888481140e-01
+ <_>
+
+ 0 -1 101 -1.0822719894349575e-02
+
+ -2.4462530016899109e-01 1.3888940215110779e-01
+ <_>
+
+ 0 -1 102 -1.5084910206496716e-02
+
+ -5.7813477516174316e-01 1.1564119905233383e-01
+ <_>
+
+ 0 -1 103 2.5715960189700127e-02
+
+ 3.9631199091672897e-02 -6.5270012617111206e-01
+ <_>
+
+ 0 -1 104 2.6093570049852133e-03
+
+ 1.1421889811754227e-01 -5.6801080703735352e-01
+ <_>
+ 26
+ -1.3303329944610596e+00
+
+ <_>
+
+ 0 -1 105 -5.1861900836229324e-02
+
+ 7.0431172847747803e-01 -2.2143700718879700e-01
+ <_>
+
+ 0 -1 106 -5.0341628491878510e-02
+
+ -4.6397829055786133e-01 2.8047460317611694e-01
+ <_>
+
+ 0 -1 107 2.5709730386734009e-01
+
+ -1.3124279677867889e-01 8.2395941019058228e-01
+ <_>
+
+ 0 -1 108 1.1031899601221085e-02
+
+ -1.4258140325546265e-01 6.3823902606964111e-01
+ <_>
+
+ 0 -1 109 1.8565090373158455e-02
+
+ -1.5123879909515381e-01 5.9881192445755005e-01
+ <_>
+
+ 0 -1 110 1.7502350732684135e-02
+
+ -1.2619799375534058e-01 3.8178038597106934e-01
+ <_>
+
+ 0 -1 111 7.2723729535937309e-03
+
+ -1.5103289484977722e-01 5.8128422498703003e-01
+ <_>
+
+ 0 -1 112 8.1504750996828079e-03
+
+ -6.5464757382869720e-02 5.6397551298141479e-01
+ <_>
+
+ 0 -1 113 -1.8552739173173904e-02
+
+ 5.3157097101211548e-01 -1.2526570260524750e-01
+ <_>
+
+ 0 -1 114 -2.3101480677723885e-02
+
+ -6.7949390411376953e-01 1.1046259850263596e-01
+ <_>
+
+ 0 -1 115 -1.8539339362177998e-04
+
+ 3.0100038647651672e-01 -2.1206699311733246e-01
+ <_>
+
+ 0 -1 116 1.7319120466709137e-02
+
+ -9.3738131225109100e-02 2.1008560061454773e-01
+ <_>
+
+ 0 -1 117 1.4305620454251766e-02
+
+ 1.8005949258804321e-01 -3.9776718616485596e-01
+ <_>
+
+ 0 -1 118 2.5763340294361115e-02
+
+ 8.7056998163461685e-03 -6.2894952297210693e-01
+ <_>
+
+ 0 -1 119 -1.5383340418338776e-02
+
+ -5.3415471315383911e-01 1.0380730032920837e-01
+ <_>
+
+ 0 -1 120 1.0605469578877091e-03
+
+ -9.0128518640995026e-02 1.6792120039463043e-01
+ <_>
+
+ 0 -1 121 3.5230729263275862e-03
+
+ -1.7110690474510193e-01 3.2596540451049805e-01
+ <_>
+
+ 0 -1 122 -1.0789279825985432e-02
+
+ 3.6109921336174011e-01 -6.6339150071144104e-02
+ <_>
+
+ 0 -1 123 2.7950939536094666e-01
+
+ -7.4605897068977356e-02 7.3369878530502319e-01
+ <_>
+
+ 0 -1 124 3.8369540125131607e-03
+
+ 4.4873539358377457e-02 -1.8602700531482697e-01
+ <_>
+
+ 0 -1 125 1.6195949865505099e-03
+
+ -1.3922490179538727e-01 4.3437001109123230e-01
+ <_>
+
+ 0 -1 126 1.1647949926555157e-02
+
+ -7.4357591569423676e-02 5.4201442003250122e-01
+ <_>
+
+ 0 -1 127 -5.9066400863230228e-03
+
+ -7.0557588338851929e-01 8.6433619260787964e-02
+ <_>
+
+ 0 -1 128 3.9686840772628784e-01
+
+ -7.4898369610309601e-02 9.4062858819961548e-01
+ <_>
+
+ 0 -1 129 5.7663779705762863e-02
+
+ -9.6558406949043274e-02 5.4182428121566772e-01
+ <_>
+
+ 0 -1 130 6.0319568961858749e-02
+
+ -6.6501073539257050e-02 6.4023548364639282e-01
+ <_>
+ 37
+ -1.5300060510635376e+00
+
+ <_>
+
+ 0 -1 131 1.9050249829888344e-02
+
+ -4.4433408975601196e-01 4.3948569893836975e-01
+ <_>
+
+ 0 -1 132 -2.0198300480842590e-02
+
+ -3.1706219911575317e-01 1.0432930290699005e-01
+ <_>
+
+ 0 -1 133 2.1478030830621719e-02
+
+ -3.5024839639663696e-01 2.6355370879173279e-01
+ <_>
+
+ 0 -1 134 -1.0187759995460510e-01
+
+ -5.9889578819274902e-01 1.7685799300670624e-01
+ <_>
+
+ 0 -1 135 1.0974160395562649e-02
+
+ -1.4895239472389221e-01 6.0115218162536621e-01
+ <_>
+
+ 0 -1 136 -1.1476710438728333e-02
+
+ 4.0665709972381592e-01 -1.2404689937829971e-01
+ <_>
+
+ 0 -1 137 -2.3431150242686272e-02
+
+ -7.1487832069396973e-01 1.4278119802474976e-01
+ <_>
+
+ 0 -1 138 1.4963559806346893e-03
+
+ -1.7045859992504120e-01 1.7193080484867096e-01
+ <_>
+
+ 0 -1 139 -5.4855772759765387e-04
+
+ 3.1553238630294800e-01 -2.1444450318813324e-01
+ <_>
+
+ 0 -1 140 7.4912630021572113e-02
+
+ 9.1240562498569489e-02 -6.3951212167739868e-01
+ <_>
+
+ 0 -1 141 6.8816398270428181e-03
+
+ -1.4904409646987915e-01 4.7952368855476379e-01
+ <_>
+
+ 0 -1 142 -3.8212578743696213e-02
+
+ 5.2887737751007080e-01 -6.1894729733467102e-02
+ <_>
+
+ 0 -1 143 4.4051730073988438e-03
+
+ -1.1934129893779755e-01 5.0613421201705933e-01
+ <_>
+
+ 0 -1 144 2.3966899141669273e-02
+
+ -8.9720509946346283e-02 3.3152779936790466e-01
+ <_>
+
+ 0 -1 145 -3.4162990748882294e-02
+
+ 5.3134781122207642e-01 -1.4666500687599182e-01
+ <_>
+
+ 0 -1 146 1.9642219413071871e-03
+
+ 9.0783588588237762e-02 -4.3032559752464294e-01
+ <_>
+
+ 0 -1 147 9.6757910796441138e-05
+
+ 2.2552539408206940e-01 -2.8220710158348083e-01
+ <_>
+
+ 0 -1 148 -3.2862399239093065e-03
+
+ 4.0515020489692688e-01 -1.1776199936866760e-01
+ <_>
+
+ 0 -1 149 1.1688309721648693e-02
+
+ -9.1857127845287323e-02 6.2834888696670532e-01
+ <_>
+
+ 0 -1 150 -6.0287420637905598e-03
+
+ 3.9261808991432190e-01 -1.2287150323390961e-01
+ <_>
+
+ 0 -1 151 -1.3721340335905552e-02
+
+ -5.5298799276351929e-01 9.1041281819343567e-02
+ <_>
+
+ 0 -1 152 7.5626641511917114e-02
+
+ -4.4929590076208115e-02 1.7442759871482849e-01
+ <_>
+
+ 0 -1 153 9.3434482812881470e-02
+
+ -8.4593951702117920e-02 6.0131162405014038e-01
+ <_>
+
+ 0 -1 154 5.8748829178512096e-03
+
+ -4.4131498783826828e-02 3.9565709233283997e-01
+ <_>
+
+ 0 -1 155 4.0064537897706032e-03
+
+ -1.1414399743080139e-01 3.7925380468368530e-01
+ <_>
+
+ 0 -1 156 2.2945459932088852e-02
+
+ 2.4673189967870712e-02 -4.1521999239921570e-01
+ <_>
+
+ 0 -1 157 -1.2810460291802883e-02
+
+ -5.1557427644729614e-01 9.1319613158702850e-02
+ <_>
+
+ 0 -1 158 2.0425529778003693e-01
+
+ -6.5927542746067047e-02 7.5942492485046387e-01
+ <_>
+
+ 0 -1 159 4.9796327948570251e-03
+
+ 1.0806279629468918e-01 -5.0016272068023682e-01
+ <_>
+
+ 0 -1 160 2.8397630900144577e-02
+
+ -3.7152960896492004e-02 5.4010647535324097e-01
+ <_>
+
+ 0 -1 161 6.0867150314152241e-03
+
+ -1.1978609859943390e-01 3.5692268610000610e-01
+ <_>
+
+ 0 -1 162 -2.1456899412441999e-04
+
+ 1.8740150332450867e-01 -8.8417202234268188e-02
+ <_>
+
+ 0 -1 163 2.8941858909092844e-04
+
+ -1.2597979605197906e-01 3.9982271194458008e-01
+ <_>
+
+ 0 -1 164 -1.3047619722783566e-03
+
+ 1.5499970316886902e-01 -7.5386047363281250e-02
+ <_>
+
+ 0 -1 165 -1.2975010089576244e-02
+
+ -5.5344110727310181e-01 8.2354247570037842e-02
+ <_>
+
+ 0 -1 166 7.7442410401999950e-03
+
+ 2.7699800208210945e-02 -3.4835991263389587e-01
+ <_>
+
+ 0 -1 167 2.4850629270076752e-03
+
+ -1.2976129353046417e-01 3.7908831238746643e-01
+ <_>
+ 21
+ -1.4114329814910889e+00
+
+ <_>
+
+ 0 -1 168 -4.0386881679296494e-02
+
+ 5.9603548049926758e-01 -3.5741761326789856e-01
+ <_>
+
+ 0 -1 169 -6.6068649175576866e-05
+
+ 4.4628980755805969e-01 -3.5959470272064209e-01
+ <_>
+
+ 0 -1 170 3.7622239906340837e-03
+
+ 1.7947019636631012e-01 -7.5631511211395264e-01
+ <_>
+
+ 0 -1 171 -3.0967719852924347e-02
+
+ -2.8847050666809082e-01 7.6870530843734741e-02
+ <_>
+
+ 0 -1 172 3.0566560104489326e-02
+
+ 1.4003600180149078e-01 -7.1755367517471313e-01
+ <_>
+
+ 0 -1 173 9.9054910242557526e-04
+
+ 8.2915589213371277e-02 -2.9197171330451965e-01
+ <_>
+
+ 0 -1 174 1.2577700428664684e-02
+
+ 1.5380719304084778e-01 -4.6882930397987366e-01
+ <_>
+
+ 0 -1 175 1.2392920255661011e-01
+
+ -9.0823858976364136e-02 7.3837572336196899e-01
+ <_>
+
+ 0 -1 176 3.7737488746643066e-01
+
+ -5.4232951253652573e-02 9.2291218042373657e-01
+ <_>
+
+ 0 -1 177 1.0996370017528534e-01
+
+ 9.1596268117427826e-02 -6.5977168083190918e-01
+ <_>
+
+ 0 -1 178 -1.2721329694613814e-03
+
+ 3.3475750684738159e-01 -1.8290689587593079e-01
+ <_>
+
+ 0 -1 179 4.6906251460313797e-02
+
+ -8.3971053361892700e-02 6.9847589731216431e-01
+ <_>
+
+ 0 -1 180 3.2869930146262050e-04
+
+ 1.8794630467891693e-01 -2.9290059208869934e-01
+ <_>
+
+ 0 -1 181 1.7333080177195370e-04
+
+ -2.6964160799980164e-01 3.4947571158409119e-01
+ <_>
+
+ 0 -1 182 1.9800959154963493e-02
+
+ -1.4679229259490967e-01 4.3995618820190430e-01
+ <_>
+
+ 0 -1 183 2.0056760695297271e-04
+
+ -1.3727410137653351e-01 2.2213310003280640e-01
+ <_>
+
+ 0 -1 184 -1.4923149719834328e-03
+
+ 3.4735259413719177e-01 -1.5948210656642914e-01
+ <_>
+
+ 0 -1 185 -4.2736999603221193e-05
+
+ 3.1527870893478394e-01 -2.3066949844360352e-01
+ <_>
+
+ 0 -1 186 6.6625140607357025e-04
+
+ -2.0131100714206696e-01 2.8691890835762024e-01
+ <_>
+
+ 0 -1 187 1.3850460163666867e-05
+
+ -2.0219239592552185e-01 2.3073309659957886e-01
+ <_>
+
+ 0 -1 188 4.0972631424665451e-02
+
+ 7.9543180763721466e-02 -8.0795639753341675e-01
+ <_>
+ 23
+ -1.3777890205383301e+00
+
+ <_>
+
+ 0 -1 189 -4.6982929110527039e-02
+
+ 7.0822530984878540e-01 -3.7034240365028381e-01
+ <_>
+
+ 0 -1 190 -7.5753079727292061e-04
+
+ -1.2550309300422668e-01 1.3944420218467712e-01
+ <_>
+
+ 0 -1 191 1.5327299945056438e-02
+
+ 2.1613539755344391e-01 -5.6293952465057373e-01
+ <_>
+
+ 0 -1 192 1.8147040158510208e-02
+
+ -3.2079648226499557e-02 3.2347559928894043e-01
+ <_>
+
+ 0 -1 193 4.7347191721200943e-02
+
+ -1.7381580173969269e-01 5.7580447196960449e-01
+ <_>
+
+ 0 -1 194 -5.9837941080331802e-02
+
+ 4.7797870635986328e-01 -1.0260280221700668e-01
+ <_>
+
+ 0 -1 195 -5.2796799689531326e-02
+
+ -4.7988489270210266e-01 1.8787759542465210e-01
+ <_>
+
+ 0 -1 196 -2.4385429918766022e-02
+
+ -3.0841669440269470e-01 8.7605630978941917e-03
+ <_>
+
+ 0 -1 197 2.5288300588726997e-02
+
+ 1.3914039731025696e-01 -7.1094942092895508e-01
+ <_>
+
+ 0 -1 198 -2.1612450480461121e-02
+
+ -2.3282539844512939e-01 8.0994680523872375e-02
+ <_>
+
+ 0 -1 199 3.4023479092866182e-03
+
+ -2.2989900410175323e-01 3.7889510393142700e-01
+ <_>
+
+ 0 -1 200 1.1274600028991699e-01
+
+ -1.5474709682166576e-02 5.7030540704727173e-01
+ <_>
+
+ 0 -1 201 3.4516870975494385e-02
+
+ -1.2300080060958862e-01 5.6775367259979248e-01
+ <_>
+
+ 0 -1 202 7.8984811902046204e-02
+
+ -1.4242169260978699e-01 4.6941858530044556e-01
+ <_>
+
+ 0 -1 203 -1.5377859584987164e-02
+
+ 6.3946861028671265e-01 -1.1236190050840378e-01
+ <_>
+
+ 0 -1 204 -2.2373620595317334e-04
+
+ 5.5583298206329346e-01 -2.7247580885887146e-01
+ <_>
+
+ 0 -1 205 -2.4762390181422234e-02
+
+ -5.0404858589172363e-01 1.4077790081501007e-01
+ <_>
+
+ 0 -1 206 -9.4061157142277807e-05
+
+ 3.7195280194282532e-01 -2.2502990067005157e-01
+ <_>
+
+ 0 -1 207 -2.0256359130144119e-02
+
+ 5.1051008701324463e-01 -1.4298759400844574e-01
+ <_>
+
+ 0 -1 208 4.8122879117727280e-02
+
+ -6.6979512572288513e-02 3.6622309684753418e-01
+ <_>
+
+ 0 -1 209 -2.3787800222635269e-02
+
+ 5.0813251733779907e-01 -1.2908150255680084e-01
+ <_>
+
+ 0 -1 210 -1.0520319920033216e-03
+
+ -1.5604670345783234e-01 6.6213317215442657e-02
+ <_>
+
+ 0 -1 211 -2.6640200521796942e-03
+
+ -7.2545582056045532e-01 8.2365453243255615e-02
+ <_>
+ 25
+ -1.3266400098800659e+00
+
+ <_>
+
+ 0 -1 212 -5.0224620848894119e-02
+
+ 7.0845657587051392e-01 -2.5585499405860901e-01
+ <_>
+
+ 0 -1 213 1.4072869904339314e-02
+
+ 6.3033178448677063e-02 -5.9838529676198959e-02
+ <_>
+
+ 0 -1 214 1.7804009839892387e-02
+
+ 1.9414719939231873e-01 -5.8444267511367798e-01
+ <_>
+
+ 0 -1 215 1.3046739995479584e-01
+
+ -1.1516980081796646e-01 8.5040301084518433e-01
+ <_>
+
+ 0 -1 216 1.7506800591945648e-02
+
+ -2.0718969404697418e-01 4.6438288688659668e-01
+ <_>
+
+ 0 -1 217 -7.4240020476281643e-03
+
+ -6.6565167903900146e-01 1.4034989476203918e-01
+ <_>
+
+ 0 -1 218 -3.4571118652820587e-02
+
+ 6.5112978219985962e-01 -1.4901919662952423e-01
+ <_>
+
+ 0 -1 219 4.2270249687135220e-03
+
+ -1.6027219826355577e-03 3.8956061005592346e-01
+ <_>
+
+ 0 -1 220 -5.0662040710449219e-02
+
+ 5.8035767078399658e-01 -1.5141439437866211e-01
+ <_>
+
+ 0 -1 221 -7.0715770125389099e-03
+
+ 5.3008967638015747e-01 -1.4498309791088104e-01
+ <_>
+
+ 0 -1 222 -1.1863510124385357e-02
+
+ 6.7297422885894775e-01 -1.1063549667596817e-01
+ <_>
+
+ 0 -1 223 -6.0520030558109283e-02
+
+ -3.3164489269256592e-01 2.1195560693740845e-01
+ <_>
+
+ 0 -1 224 -7.7340779826045036e-03
+
+ -6.9414401054382324e-01 7.2705313563346863e-02
+ <_>
+
+ 0 -1 225 -3.2486140727996826e-02
+
+ -5.1850819587707520e-01 5.9212621301412582e-02
+ <_>
+
+ 0 -1 226 8.3279706537723541e-02
+
+ 1.2067940086126328e-01 -5.3095632791519165e-01
+ <_>
+
+ 0 -1 227 7.8782817581668496e-04
+
+ -2.7376559376716614e-01 2.7162519097328186e-01
+ <_>
+
+ 0 -1 228 -1.7539180815219879e-02
+
+ -5.6902301311492920e-01 1.2287370115518570e-01
+ <_>
+
+ 0 -1 229 -5.8226347900927067e-03
+
+ 4.3865859508514404e-01 -1.4937420189380646e-01
+ <_>
+
+ 0 -1 230 -1.0057560168206692e-02
+
+ -6.6168862581253052e-01 1.1445429921150208e-01
+ <_>
+
+ 0 -1 231 9.0345427393913269e-02
+
+ -6.6665247082710266e-02 2.8706479072570801e-01
+ <_>
+
+ 0 -1 232 -6.7587293684482574e-02
+
+ -5.3637611865997314e-01 1.1237519979476929e-01
+ <_>
+
+ 0 -1 233 -8.1747528165578842e-03
+
+ 4.4342419505119324e-01 -1.2977659702301025e-01
+ <_>
+
+ 0 -1 234 -1.1550550349056721e-02
+
+ 3.2731580734252930e-01 -1.7007610201835632e-01
+ <_>
+
+ 0 -1 235 -1.7406829283572733e-04
+
+ 1.3278679549694061e-01 -1.0812939703464508e-01
+ <_>
+
+ 0 -1 236 4.6040047891438007e-03
+
+ -1.2265820056200027e-01 4.4125801324844360e-01
+ <_>
+ 17
+ -1.4497200250625610e+00
+
+ <_>
+
+ 0 -1 237 -4.6943280845880508e-02
+
+ 6.0943442583084106e-01 -2.6378008723258972e-01
+ <_>
+
+ 0 -1 238 -1.6899159527383745e-04
+
+ 1.6658750176429749e-01 -1.2541960179805756e-01
+ <_>
+
+ 0 -1 239 2.7983370237052441e-03
+
+ 1.9057449698448181e-01 -6.5680772066116333e-01
+ <_>
+
+ 0 -1 240 4.0413960814476013e-03
+
+ -1.7317469418048859e-01 6.3620752096176147e-01
+ <_>
+
+ 0 -1 241 -8.6033362895250320e-03
+
+ 6.0258418321609497e-01 -2.3169369995594025e-01
+ <_>
+
+ 0 -1 242 8.8247945532202721e-03
+
+ -1.7565830051898956e-01 7.1041667461395264e-01
+ <_>
+
+ 0 -1 243 -9.2786159366369247e-03
+
+ -6.8908572196960449e-01 1.7896500229835510e-01
+ <_>
+
+ 0 -1 244 6.0826768167316914e-03
+
+ -1.7063720524311066e-01 5.3757482767105103e-01
+ <_>
+
+ 0 -1 245 -3.9007369428873062e-02
+
+ -6.8346357345581055e-01 1.4417080581188202e-01
+ <_>
+
+ 0 -1 246 -7.0337951183319092e-02
+
+ -6.5085667371749878e-01 1.0085479915142059e-01
+ <_>
+
+ 0 -1 247 3.3166699111461639e-02
+
+ -1.9325719773769379e-01 4.7798651456832886e-01
+ <_>
+
+ 0 -1 248 7.5288906693458557e-02
+
+ -6.9567732512950897e-02 4.1250649094581604e-01
+ <_>
+
+ 0 -1 249 -7.0501729846000671e-02
+
+ 7.1573007106781006e-01 -1.0222700238227844e-01
+ <_>
+
+ 0 -1 250 1.2249490246176720e-02
+
+ -1.0612429678440094e-01 6.2959581613540649e-01
+ <_>
+
+ 0 -1 251 7.0644676685333252e-02
+
+ -9.7374632954597473e-02 6.7622041702270508e-01
+ <_>
+
+ 0 -1 252 1.6248880326747894e-01
+
+ 5.2713360637426376e-02 -8.4946572780609131e-01
+ <_>
+
+ 0 -1 253 1.3808250427246094e-01
+
+ 1.4064790308475494e-01 -4.7647210955619812e-01
+ <_>
+ 20
+ -1.4622910022735596e+00
+
+ <_>
+
+ 0 -1 254 -4.1882339864969254e-02
+
+ -8.0774527788162231e-01 2.6409670710563660e-01
+ <_>
+
+ 0 -1 255 -5.3622990846633911e-02
+
+ 5.5807042121887207e-01 -2.4989689886569977e-01
+ <_>
+
+ 0 -1 256 9.3709938228130341e-03
+
+ 2.6501700282096863e-01 -5.9906947612762451e-01
+ <_>
+
+ 0 -1 257 1.3909730128943920e-02
+
+ -1.4709180593490601e-01 7.3546671867370605e-01
+ <_>
+
+ 0 -1 258 1.9003570079803467e-02
+
+ -1.8875110149383545e-01 7.4874222278594971e-01
+ <_>
+
+ 0 -1 259 5.9199850074946880e-03
+
+ -1.5995639562606812e-01 5.6735777854919434e-01
+ <_>
+
+ 0 -1 260 -2.4705139920115471e-02
+
+ 7.5569921731948853e-01 -1.2350880354642868e-01
+ <_>
+
+ 0 -1 261 1.6058359295129776e-02
+
+ -1.2824609875679016e-01 5.1294547319412231e-01
+ <_>
+
+ 0 -1 262 8.8288700208067894e-03
+
+ -1.6866639256477356e-01 6.1521852016448975e-01
+ <_>
+
+ 0 -1 263 1.7556339502334595e-02
+
+ -1.0901699960231781e-01 5.8031761646270752e-01
+ <_>
+
+ 0 -1 264 4.2188119143247604e-02
+
+ 1.4866240322589874e-01 -6.9222331047058105e-01
+ <_>
+
+ 0 -1 265 5.0687207840383053e-04
+
+ 3.1580869108438492e-02 -3.7009951472282410e-01
+ <_>
+
+ 0 -1 266 2.7651190757751465e-03
+
+ -2.1337540447711945e-01 4.7043010592460632e-01
+ <_>
+
+ 0 -1 267 -1.2231520377099514e-03
+
+ -7.8189671039581299e-01 2.0954260602593422e-02
+ <_>
+
+ 0 -1 268 8.5432287305593491e-03
+
+ -1.4553520083427429e-01 6.7895042896270752e-01
+ <_>
+
+ 0 -1 269 -2.0657219283748418e-04
+
+ 2.4376240372657776e-01 -6.7558802664279938e-02
+ <_>
+
+ 0 -1 270 -4.6798270195722580e-03
+
+ 6.6841697692871094e-01 -1.3887880742549896e-01
+ <_>
+
+ 0 -1 271 1.2201759964227676e-01
+
+ 1.1028160154819489e-01 -7.5307422876358032e-01
+ <_>
+
+ 0 -1 272 2.0404340699315071e-02
+
+ 1.6453839838504791e-01 -5.2231621742248535e-01
+ <_>
+
+ 0 -1 273 8.0343370791524649e-04
+
+ -1.3012850284576416e-01 2.6358529925346375e-01
+ <_>
+ 28
+ -1.3885619640350342e+00
+
+ <_>
+
+ 0 -1 274 7.2791710495948792e-02
+
+ -1.3727900385856628e-01 8.2915747165679932e-01
+ <_>
+
+ 0 -1 275 7.5939209200441837e-03
+
+ -1.6780120134353638e-01 5.6839722394943237e-01
+ <_>
+
+ 0 -1 276 -2.3562390357255936e-02
+
+ 6.5005600452423096e-01 -1.4245350658893585e-01
+ <_>
+
+ 0 -1 277 1.7392950132489204e-02
+
+ -1.5291449427604675e-01 3.4253540635108948e-01
+ <_>
+
+ 0 -1 278 7.1825802326202393e-02
+
+ -9.9131137132644653e-02 8.2796788215637207e-01
+ <_>
+
+ 0 -1 279 1.3673800043761730e-02
+
+ -4.1787270456552505e-02 5.0781482458114624e-01
+ <_>
+
+ 0 -1 280 -2.8585959225893021e-02
+
+ 7.0115321874618530e-01 -1.3144710659980774e-01
+ <_>
+
+ 0 -1 281 -4.1845720261335373e-04
+
+ 2.8454670310020447e-01 -3.1232029199600220e-01
+ <_>
+
+ 0 -1 282 -5.2095681428909302e-02
+
+ 4.1812941431999207e-01 -1.6993130743503571e-01
+ <_>
+
+ 0 -1 283 3.2256329432129860e-03
+
+ -9.0466208755970001e-02 3.0086231231689453e-01
+ <_>
+
+ 0 -1 284 3.4771639853715897e-02
+
+ -8.4216788411140442e-02 7.8016638755798340e-01
+ <_>
+
+ 0 -1 285 -1.3356630224734545e-03
+
+ 3.3164530992507935e-01 -1.6960920393466949e-01
+ <_>
+
+ 0 -1 286 2.5101980566978455e-01
+
+ -1.3920469582080841e-01 6.6338932514190674e-01
+ <_>
+
+ 0 -1 287 -9.9689997732639313e-03
+
+ -3.7138170003890991e-01 1.2900120019912720e-01
+ <_>
+
+ 0 -1 288 1.4303729869425297e-02
+
+ 1.5729199349880219e-01 -5.0938212871551514e-01
+ <_>
+
+ 0 -1 289 -7.0856059901416302e-03
+
+ 4.6567910909652710e-01 -6.6270820796489716e-02
+ <_>
+
+ 0 -1 290 -4.6260809176601470e-04
+
+ 2.9337310791015625e-01 -2.3339860141277313e-01
+ <_>
+
+ 0 -1 291 -3.4435480833053589e-02
+
+ 7.0024740695953369e-01 -1.0133510082960129e-01
+ <_>
+
+ 0 -1 292 -7.2570890188217163e-03
+
+ -5.6286412477493286e-01 1.3148620724678040e-01
+ <_>
+
+ 0 -1 293 4.8352940939366817e-04
+
+ 2.6227489113807678e-02 -2.6050800085067749e-01
+ <_>
+
+ 0 -1 294 -1.2999939732253551e-02
+
+ 5.3117001056671143e-01 -1.2023050338029861e-01
+ <_>
+
+ 0 -1 295 -1.0009329998865724e-03
+
+ 3.9641299843788147e-01 -1.5995159745216370e-01
+ <_>
+
+ 0 -1 296 4.1314200498163700e-03
+
+ -1.4929920434951782e-01 4.2959120869636536e-01
+ <_>
+
+ 0 -1 297 8.7364455685019493e-03
+
+ -1.1271020025014877e-01 4.9456471204757690e-01
+ <_>
+
+ 0 -1 298 2.6352869463153183e-04
+
+ -1.2124919891357422e-01 4.9439379572868347e-01
+ <_>
+
+ 0 -1 299 -5.3885959088802338e-02
+
+ 7.0355987548828125e-01 -1.3230550102889538e-02
+ <_>
+
+ 0 -1 300 4.2885672301054001e-03
+
+ -1.7540550231933594e-01 3.5679468512535095e-01
+ <_>
+
+ 0 -1 301 7.9539399594068527e-03
+
+ -9.9884003400802612e-02 3.1371670961380005e-01
+ <_>
+ 53
+ -1.2766569852828979e+00
+
+ <_>
+
+ 0 -1 302 5.6752368807792664e-02
+
+ -3.2576480507850647e-01 3.7375938892364502e-01
+ <_>
+
+ 0 -1 303 7.0906039327383041e-03
+
+ -1.3918629288673401e-01 1.5039840340614319e-01
+ <_>
+
+ 0 -1 304 -4.1298821568489075e-02
+
+ 4.7026079893112183e-01 -1.6179360449314117e-01
+ <_>
+
+ 0 -1 305 4.7750189900398254e-01
+
+ -1.0061579942703247e-01 7.6350742578506470e-01
+ <_>
+
+ 0 -1 306 4.2266491055488586e-01
+
+ -3.5190910100936890e-02 8.3031260967254639e-01
+ <_>
+
+ 0 -1 307 -3.3031899482011795e-02
+
+ -3.7505549192428589e-01 4.8902619630098343e-02
+ <_>
+
+ 0 -1 308 1.1923770216526464e-04
+
+ -2.6614668965339661e-01 2.2346520423889160e-01
+ <_>
+
+ 0 -1 309 4.2101400904357433e-03
+
+ 8.7575968354940414e-03 -5.9383517503738403e-01
+ <_>
+
+ 0 -1 310 3.3337279455736279e-04
+
+ -2.1227659285068512e-01 2.4735039472579956e-01
+ <_>
+
+ 0 -1 311 1.1793890036642551e-02
+
+ -6.8997949361801147e-02 5.8980828523635864e-01
+ <_>
+
+ 0 -1 312 -1.1432079970836639e-01
+
+ -7.7333682775497437e-01 6.2862291932106018e-02
+ <_>
+
+ 0 -1 313 8.2401007413864136e-02
+
+ 1.6825279220938683e-02 -6.1700117588043213e-01
+ <_>
+
+ 0 -1 314 1.8126150593161583e-02
+
+ 9.9533468484878540e-02 -3.8309159874916077e-01
+ <_>
+
+ 0 -1 315 8.9282449334859848e-03
+
+ -1.0109739750623703e-01 2.9483050107955933e-01
+ <_>
+
+ 0 -1 316 -1.7437100410461426e-02
+
+ 4.6149870753288269e-01 -1.0506360232830048e-01
+ <_>
+
+ 0 -1 317 -1.1280310340225697e-02
+
+ 4.5611649751663208e-01 -1.0131160169839859e-01
+ <_>
+
+ 0 -1 318 7.0190089754760265e-03
+
+ -1.3686269521713257e-01 4.1732659935951233e-01
+ <_>
+
+ 0 -1 319 -3.2439709175378084e-03
+
+ 2.3216480016708374e-01 -1.7915369570255280e-01
+ <_>
+
+ 0 -1 320 3.5615891218185425e-01
+
+ -4.8626810312271118e-02 9.5373457670211792e-01
+ <_>
+
+ 0 -1 321 3.8440749049186707e-03
+
+ -1.0288280248641968e-01 3.6717781424522400e-01
+ <_>
+
+ 0 -1 322 6.0950029641389847e-02
+
+ 5.6141741573810577e-02 -6.4585697650909424e-01
+ <_>
+
+ 0 -1 323 1.8149229884147644e-01
+
+ 3.0806390568614006e-02 -4.6048960089683533e-01
+ <_>
+
+ 0 -1 324 -9.2359259724617004e-02
+
+ -4.5248210430145264e-01 8.8152237236499786e-02
+ <_>
+
+ 0 -1 325 7.6072998344898224e-03
+
+ -9.7122326493263245e-02 2.1552249789237976e-01
+ <_>
+
+ 0 -1 326 -4.6946710790507495e-04
+
+ -4.0893718600273132e-01 8.0042190849781036e-02
+ <_>
+
+ 0 -1 327 1.0301820293534547e-04
+
+ -1.1530359834432602e-01 2.7955350279808044e-01
+ <_>
+
+ 0 -1 328 2.7936851256527007e-04
+
+ -1.1396100372076035e-01 2.9316601157188416e-01
+ <_>
+
+ 0 -1 329 2.4675959348678589e-01
+
+ -3.8595631718635559e-02 8.2649981975555420e-01
+ <_>
+
+ 0 -1 330 -8.4232958033680916e-03
+
+ 3.2995969057083130e-01 -1.1645369976758957e-01
+ <_>
+
+ 0 -1 331 -4.2311567813158035e-03
+
+ 2.7142119407653809e-01 -1.0811480134725571e-01
+ <_>
+
+ 0 -1 332 1.5653009759262204e-03
+
+ 7.8253783285617828e-02 -5.2097660303115845e-01
+ <_>
+
+ 0 -1 333 -5.0341398455202579e-03
+
+ 2.9488059878349304e-01 -4.6960510313510895e-02
+ <_>
+
+ 0 -1 334 1.4283140189945698e-03
+
+ -1.3794599473476410e-01 2.4323709309101105e-01
+ <_>
+
+ 0 -1 335 1.9031369686126709e-01
+
+ -5.2093509584665298e-02 6.8708032369613647e-01
+ <_>
+
+ 0 -1 336 8.1368777900934219e-03
+
+ -5.3311519324779510e-02 5.8272719383239746e-01
+ <_>
+
+ 0 -1 337 -4.6728368848562241e-02
+
+ 3.5525360703468323e-01 -1.7806259915232658e-02
+ <_>
+
+ 0 -1 338 1.4317169785499573e-02
+
+ -1.2626640498638153e-01 2.6961010694503784e-01
+ <_>
+
+ 0 -1 339 -9.6109732985496521e-02
+
+ 3.4117481112480164e-01 -3.9217609912157059e-02
+ <_>
+
+ 0 -1 340 7.4878811836242676e-02
+
+ -6.4819902181625366e-02 5.6711381673812866e-01
+ <_>
+
+ 0 -1 341 -5.1972299843328074e-05
+
+ 2.8742098808288574e-01 -1.6428899765014648e-01
+ <_>
+
+ 0 -1 342 -2.0099039829801768e-04
+
+ 2.6590210199356079e-01 -1.2990359961986542e-01
+ <_>
+
+ 0 -1 343 1.5583490021526814e-02
+
+ 3.6322619765996933e-02 -8.8743317127227783e-01
+ <_>
+
+ 0 -1 344 6.7313341423869133e-03
+
+ 1.6281859576702118e-01 -1.9716200232505798e-01
+ <_>
+
+ 0 -1 345 -4.5251410454511642e-02
+
+ -2.0315009355545044e-01 1.5734089910984039e-01
+ <_>
+
+ 0 -1 346 2.8729529003612697e-04
+
+ -1.2449590116739273e-01 2.5658228993415833e-01
+ <_>
+
+ 0 -1 347 -2.1028579212725163e-03
+
+ -5.0887292623519897e-01 3.4083180129528046e-02
+ <_>
+
+ 0 -1 348 -3.9328099228441715e-03
+
+ -3.3933758735656738e-01 9.3055568635463715e-02
+ <_>
+
+ 0 -1 349 3.1205590348690748e-03
+
+ -2.2794060409069061e-02 2.3793530464172363e-01
+ <_>
+
+ 0 -1 350 7.8028678894042969e-02
+
+ -4.4503621757030487e-02 6.7763942480087280e-01
+ <_>
+
+ 0 -1 351 4.2476978152990341e-02
+
+ 9.2582106590270996e-02 -3.5363018512725830e-01
+ <_>
+
+ 0 -1 352 -2.5768300518393517e-02
+
+ -9.0919911861419678e-01 2.6692839339375496e-02
+ <_>
+
+ 0 -1 353 6.1444669961929321e-02
+
+ -2.4954399093985558e-02 7.2120499610900879e-01
+ <_>
+
+ 0 -1 354 3.5776318982243538e-03
+
+ 1.7728990316390991e-01 -1.9723449647426605e-01
+ <_>
+ 38
+ -1.4061349630355835e+00
+
+ <_>
+
+ 0 -1 355 2.8585961461067200e-01
+
+ -1.5396049618721008e-01 6.6246771812438965e-01
+ <_>
+
+ 0 -1 356 9.2271259054541588e-03
+
+ -1.0746339708566666e-01 4.3118068575859070e-01
+ <_>
+
+ 0 -1 357 2.2924109362065792e-03
+
+ -1.9830130040645599e-01 3.8422289490699768e-01
+ <_>
+
+ 0 -1 358 1.4004509896039963e-02
+
+ -1.9249489903450012e-01 3.4424918889999390e-01
+ <_>
+
+ 0 -1 359 9.6023201942443848e-02
+
+ 1.2990599870681763e-01 -6.0653048753738403e-01
+ <_>
+
+ 0 -1 360 6.1803720891475677e-03
+
+ -1.9046460092067719e-01 1.8918620049953461e-01
+ <_>
+
+ 0 -1 361 8.2172285765409470e-03
+
+ -2.5182679295539856e-01 2.6644590497016907e-01
+ <_>
+
+ 0 -1 362 -1.4542760327458382e-03
+
+ 2.7102690935134888e-01 -1.2041489779949188e-01
+ <_>
+
+ 0 -1 363 3.0185449868440628e-03
+
+ -1.3538609445095062e-01 4.7336030006408691e-01
+ <_>
+
+ 0 -1 364 -3.4214779734611511e-03
+
+ -5.0499719381332397e-01 1.0424809902906418e-01
+ <_>
+
+ 0 -1 365 9.5980763435363770e-03
+
+ -1.0347290337085724e-01 5.8372837305068970e-01
+ <_>
+
+ 0 -1 366 4.1849957779049873e-03
+
+ 5.8896709233522415e-02 -4.6232289075851440e-01
+ <_>
+
+ 0 -1 367 -4.6107750385999680e-03
+
+ 3.7835618853569031e-01 -1.2590229511260986e-01
+ <_>
+
+ 0 -1 368 2.8978679329156876e-03
+
+ -1.3699549436569214e-01 2.5951480865478516e-01
+ <_>
+
+ 0 -1 369 4.2606070637702942e-03
+
+ 8.8233962655067444e-02 -6.3902848958969116e-01
+ <_>
+
+ 0 -1 370 -4.2996238917112350e-03
+
+ -7.9539728164672852e-01 1.7093559727072716e-02
+ <_>
+
+ 0 -1 371 3.5423618555068970e-01
+
+ -5.9345040470361710e-02 8.5579198598861694e-01
+ <_>
+
+ 0 -1 372 -3.0245838570408523e-04
+
+ 3.1470650434494019e-01 -1.4486099779605865e-01
+ <_>
+
+ 0 -1 373 2.7169490233063698e-02
+
+ -1.2492950260639191e-01 4.2809039354324341e-01
+ <_>
+
+ 0 -1 374 3.4571529831737280e-03
+
+ 3.9709329605102539e-02 -7.0891571044921875e-01
+ <_>
+
+ 0 -1 375 2.1742798853665590e-03
+
+ 6.5872453153133392e-02 -6.9496941566467285e-01
+ <_>
+
+ 0 -1 376 2.5263810530304909e-02
+
+ -1.1693959683179855e-01 1.9049769639968872e-01
+ <_>
+
+ 0 -1 377 -2.4720989167690277e-02
+
+ -4.9657958745956421e-01 1.0175380110740662e-01
+ <_>
+
+ 0 -1 378 1.0384880006313324e-02
+
+ -1.1486739665269852e-01 3.3741530776023865e-01
+ <_>
+
+ 0 -1 379 5.0045028328895569e-03
+
+ -1.0963550209999084e-01 3.9255198836326599e-01
+ <_>
+
+ 0 -1 380 7.1279620751738548e-03
+
+ -6.4908191561698914e-02 4.0420401096343994e-01
+ <_>
+
+ 0 -1 381 1.9700419157743454e-02
+
+ -7.9375877976417542e-02 5.3082340955734253e-01
+ <_>
+
+ 0 -1 382 4.2097331024706364e-03
+
+ 4.0797021239995956e-02 -6.0440987348556519e-01
+ <_>
+
+ 0 -1 383 4.4459570199251175e-03
+
+ -1.0386230051517487e-01 4.0935981273651123e-01
+ <_>
+
+ 0 -1 384 -5.9610428288578987e-03
+
+ -5.2914947271347046e-01 8.0539450049400330e-02
+ <_>
+
+ 0 -1 385 5.7519221445545554e-04
+
+ 6.3804402947425842e-02 -5.8636617660522461e-01
+ <_>
+
+ 0 -1 386 6.0524851083755493e-02
+
+ -3.3712800592184067e-02 2.6311159133911133e-01
+ <_>
+
+ 0 -1 387 -1.0353810153901577e-02
+
+ -4.7920021414756775e-01 8.0043956637382507e-02
+ <_>
+
+ 0 -1 388 -2.2777510806918144e-02
+
+ -3.1162750720977783e-01 1.1899980157613754e-01
+ <_>
+
+ 0 -1 389 -2.2468879818916321e-02
+
+ -6.6083461046218872e-01 5.2234489470720291e-02
+ <_>
+
+ 0 -1 390 5.8432162040844560e-04
+
+ 5.4630339145660400e-02 -4.6395659446716309e-01
+ <_>
+
+ 0 -1 391 -3.6177870351821184e-03
+
+ 6.7447042465209961e-01 -5.8789528906345367e-02
+ <_>
+
+ 0 -1 392 3.0088860541582108e-02
+
+ 3.3133521676063538e-02 -4.6461370587348938e-01
+ <_>
+ 40
+ -1.3384460210800171e+00
+
+ <_>
+
+ 0 -1 393 -7.2600990533828735e-02
+
+ 6.3907092809677124e-01 -1.5124550461769104e-01
+ <_>
+
+ 0 -1 394 3.4712558984756470e-01
+
+ -7.9024657607078552e-02 7.9550421237945557e-01
+ <_>
+
+ 0 -1 395 3.4297230839729309e-01
+
+ -1.2300959974527359e-01 6.5728098154067993e-01
+ <_>
+
+ 0 -1 396 3.5616940259933472e-01
+
+ -5.3733438253402710e-02 8.2851082086563110e-01
+ <_>
+
+ 0 -1 397 6.0840700753033161e-03
+
+ -1.2847210466861725e-01 3.3822679519653320e-01
+ <_>
+
+ 0 -1 398 -1.6281309945043176e-04
+
+ 3.0356609821319580e-01 -2.5182029604911804e-01
+ <_>
+
+ 0 -1 399 1.1281900107860565e-02
+
+ -8.3914346992969513e-02 4.3475928902626038e-01
+ <_>
+
+ 0 -1 400 7.4357059784233570e-03
+
+ -6.7088037729263306e-02 3.7227979302406311e-01
+ <_>
+
+ 0 -1 401 -9.0576216578483582e-02
+
+ -5.8319610357284546e-01 8.0146759748458862e-02
+ <_>
+
+ 0 -1 402 8.8247694075107574e-03
+
+ 1.2901930510997772e-01 -4.7603130340576172e-01
+ <_>
+
+ 0 -1 403 -2.6147770695388317e-03
+
+ -4.0002208948135376e-01 1.1246310174465179e-01
+ <_>
+
+ 0 -1 404 -2.5541300419718027e-04
+
+ 3.2386159896850586e-01 -2.3331870138645172e-01
+ <_>
+
+ 0 -1 405 2.6547629386186600e-02
+
+ 7.2333872318267822e-02 -5.8378398418426514e-01
+ <_>
+
+ 0 -1 406 -5.1383141428232193e-02
+
+ -2.2446189820766449e-01 4.0949739515781403e-02
+ <_>
+
+ 0 -1 407 3.3701129723340273e-03
+
+ -1.6717089712619781e-01 2.5526970624923706e-01
+ <_>
+
+ 0 -1 408 -2.2581920493394136e-03
+
+ -9.2079228162765503e-01 3.4371060319244862e-03
+ <_>
+
+ 0 -1 409 -1.3282749569043517e-04
+
+ 1.8573220074176788e-01 -2.2498969733715057e-01
+ <_>
+
+ 0 -1 410 -2.8032590635120869e-03
+
+ -8.5897541046142578e-01 4.6384520828723907e-02
+ <_>
+
+ 0 -1 411 1.3141379458829761e-03
+
+ 7.9627066850662231e-02 -4.6105968952178955e-01
+ <_>
+
+ 0 -1 412 6.3884541392326355e-02
+
+ -5.3440149873495102e-02 8.1045001745223999e-01
+ <_>
+
+ 0 -1 413 -1.9811019301414490e-03
+
+ -6.3825148344039917e-01 7.6643556356430054e-02
+ <_>
+
+ 0 -1 414 1.3359859585762024e-02
+
+ -9.5037549734115601e-02 6.2533348798751831e-02
+ <_>
+
+ 0 -1 415 -1.0935300088021904e-04
+
+ 1.7479540407657623e-01 -2.2876030206680298e-01
+ <_>
+
+ 0 -1 416 1.1910630390048027e-02
+
+ -7.7041983604431152e-02 5.0458377599716187e-01
+ <_>
+
+ 0 -1 417 2.3951700329780579e-01
+
+ -6.5122887492179871e-02 5.0420749187469482e-01
+ <_>
+
+ 0 -1 418 3.9831408858299255e-01
+
+ -2.9999820515513420e-02 7.9685479402542114e-01
+ <_>
+
+ 0 -1 419 6.1875800602138042e-03
+
+ -8.5339173674583435e-02 3.9451768994331360e-01
+ <_>
+
+ 0 -1 420 -9.4047123566269875e-03
+
+ -4.3441331386566162e-01 8.2619100809097290e-02
+ <_>
+
+ 0 -1 421 1.1736630462110043e-02
+
+ 6.9483160972595215e-02 -4.8706498742103577e-01
+ <_>
+
+ 0 -1 422 -1.5176770277321339e-02
+
+ -5.8541208505630493e-01 3.2879561185836792e-02
+ <_>
+
+ 0 -1 423 3.0744259711354971e-03
+
+ -1.3146080076694489e-01 2.5466740131378174e-01
+ <_>
+
+ 0 -1 424 2.9391339048743248e-03
+
+ -1.0860230028629303e-01 2.7834960818290710e-01
+ <_>
+
+ 0 -1 425 2.1510310471057892e-03
+
+ -1.5750579535961151e-01 2.0877860486507416e-01
+ <_>
+
+ 0 -1 426 5.3775361739099026e-03
+
+ -1.3207030296325684e-01 3.7672939896583557e-01
+ <_>
+
+ 0 -1 427 2.2174179553985596e-02
+
+ -9.0180292725563049e-02 4.1575270891189575e-01
+ <_>
+
+ 0 -1 428 -1.9948610570281744e-03
+
+ 2.5608581304550171e-01 -9.9084928631782532e-02
+ <_>
+
+ 0 -1 429 3.1557559967041016e-02
+
+ 7.4188999831676483e-02 -5.4940229654312134e-01
+ <_>
+
+ 0 -1 430 -4.3111158447572961e-05
+
+ 3.0324628949165344e-01 -1.7781810462474823e-01
+ <_>
+
+ 0 -1 431 -3.2675920519977808e-03
+
+ -6.7212432622909546e-01 5.9188328683376312e-02
+ <_>
+
+ 0 -1 432 4.2293380829505622e-04
+
+ -1.1034099757671356e-01 1.2573179602622986e-01
+ <_>
+ 45
+ -1.2722699642181396e+00
+
+ <_>
+
+ 0 -1 433 -4.2562019079923630e-02
+
+ 3.3346658945083618e-01 -2.9861980676651001e-01
+ <_>
+
+ 0 -1 434 4.1827198863029480e-01
+
+ -9.5138698816299438e-02 7.5709921121597290e-01
+ <_>
+
+ 0 -1 435 -2.0256379619240761e-02
+
+ 4.7783890366554260e-01 -1.4592100679874420e-01
+ <_>
+
+ 0 -1 436 -1.8948309123516083e-02
+
+ -3.8727501034736633e-01 5.2479889243841171e-02
+ <_>
+
+ 0 -1 437 -4.0550589561462402e-02
+
+ 5.4646247625350952e-01 -8.1399857997894287e-02
+ <_>
+
+ 0 -1 438 5.1872748136520386e-01
+
+ -2.7930539101362228e-02 8.4580981731414795e-01
+ <_>
+
+ 0 -1 439 2.0713619887828827e-01
+
+ -5.8850869536399841e-02 7.9601562023162842e-01
+ <_>
+
+ 0 -1 440 8.1972572952508926e-03
+
+ -9.9966369569301605e-02 4.9831560254096985e-01
+ <_>
+
+ 0 -1 441 1.7445389181375504e-02
+
+ 6.8040959537029266e-02 -5.6699818372726440e-01
+ <_>
+
+ 0 -1 442 -5.6310281157493591e-02
+
+ -6.8628042936325073e-01 7.4222557246685028e-02
+ <_>
+
+ 0 -1 443 1.8095560371875763e-01
+
+ -5.2808128297328949e-02 8.4483182430267334e-01
+ <_>
+
+ 0 -1 444 -2.3450690787285566e-03
+
+ 2.8396940231323242e-01 -1.1123369634151459e-01
+ <_>
+
+ 0 -1 445 3.8937770295888186e-03
+
+ 6.5499313175678253e-02 -5.7920962572097778e-01
+ <_>
+
+ 0 -1 446 3.9383721741614863e-05
+
+ -3.0930471420288086e-01 4.2237108945846558e-01
+ <_>
+
+ 0 -1 447 3.3899158239364624e-02
+
+ 3.0707539990544319e-02 -7.2299808263778687e-01
+ <_>
+
+ 0 -1 448 -3.3644389361143112e-02
+
+ 4.2664441466331482e-01 -7.2005778551101685e-02
+ <_>
+
+ 0 -1 449 3.8807760924100876e-02
+
+ -4.1713520884513855e-02 6.5995568037033081e-01
+ <_>
+
+ 0 -1 450 -3.9149548683781177e-05
+
+ 4.9335500597953796e-01 -2.4260109663009644e-01
+ <_>
+
+ 0 -1 451 -2.7580570895224810e-04
+
+ 1.7910109460353851e-01 -2.1925190091133118e-01
+ <_>
+
+ 0 -1 452 1.2636659666895866e-02
+
+ -7.1233622729778290e-02 2.5342619419097900e-01
+ <_>
+
+ 0 -1 453 -3.3681739587336779e-03
+
+ 3.3100861310958862e-01 -1.0207779705524445e-01
+ <_>
+
+ 0 -1 454 -4.1184529662132263e-02
+
+ -4.7871989011764526e-01 2.7444809675216675e-02
+ <_>
+
+ 0 -1 455 1.7285279929637909e-02
+
+ -2.3733820021152496e-01 1.5414300560951233e-01
+ <_>
+
+ 0 -1 456 -5.8373320847749710e-02
+
+ 3.6355251073837280e-01 -6.2911927700042725e-02
+ <_>
+
+ 0 -1 457 2.5229319930076599e-02
+
+ -9.4345822930335999e-02 4.3224421143531799e-01
+ <_>
+
+ 0 -1 458 4.7925519756972790e-03
+
+ 4.8664271831512451e-02 -4.7046890854835510e-01
+ <_>
+
+ 0 -1 459 -1.3549529830925167e-04
+
+ 1.9361880421638489e-01 -1.9338470697402954e-01
+ <_>
+
+ 0 -1 460 -1.7969410866498947e-02
+
+ 2.9000860452651978e-01 -5.4545279592275620e-02
+ <_>
+
+ 0 -1 461 1.1141040362417698e-02
+
+ -1.0802250355482101e-01 3.3327960968017578e-01
+ <_>
+
+ 0 -1 462 3.9759509265422821e-02
+
+ 1.9240869209170341e-02 -4.8899960517883301e-01
+ <_>
+
+ 0 -1 463 -2.2652709856629372e-02
+
+ -5.0369280576705933e-01 8.0773733556270599e-02
+ <_>
+
+ 0 -1 464 1.0915650054812431e-03
+
+ 6.5554052591323853e-02 -2.4443879723548889e-01
+ <_>
+
+ 0 -1 465 6.8754747509956360e-02
+
+ 8.9196808636188507e-02 -3.5653901100158691e-01
+ <_>
+
+ 0 -1 466 -3.3071058988571167e-01
+
+ 4.6495699882507324e-01 -5.8183699846267700e-02
+ <_>
+
+ 0 -1 467 -1.9307229667901993e-02
+
+ -4.4157180190086365e-01 8.3050116896629333e-02
+ <_>
+
+ 0 -1 468 3.4808758646249771e-02
+
+ 5.3480580449104309e-02 -5.0377398729324341e-01
+ <_>
+
+ 0 -1 469 -3.8908151327632368e-04
+
+ 3.4271261096000671e-01 -8.9923180639743805e-02
+ <_>
+
+ 0 -1 470 -2.1421869751065969e-03
+
+ -6.0642802715301514e-01 5.5589240044355392e-02
+ <_>
+
+ 0 -1 471 1.1015810072422028e-01
+
+ -5.4774720221757889e-02 6.8780910968780518e-01
+ <_>
+
+ 0 -1 472 3.0875208904035389e-04
+
+ -5.5834218859672546e-02 9.3168236315250397e-02
+ <_>
+
+ 0 -1 473 2.1960400044918060e-03
+
+ 5.3955748677253723e-02 -6.0503059625625610e-01
+ <_>
+
+ 0 -1 474 -1.2606250122189522e-02
+
+ -4.6864029765129089e-01 5.9943869709968567e-02
+ <_>
+
+ 0 -1 475 -2.7497899718582630e-03
+
+ 2.8942531347274780e-01 -1.1297850310802460e-01
+ <_>
+
+ 0 -1 476 6.0962641239166260e-01
+
+ -4.7885991632938385e-02 5.9465491771697998e-01
+ <_>
+
+ 0 -1 477 4.5023251324892044e-02
+
+ 6.3831068575382233e-02 -5.2956801652908325e-01
+ <_>
+ 44
+ -1.3022350072860718e+00
+
+ <_>
+
+ 0 -1 478 1.5907280147075653e-02
+
+ -3.8192328810691833e-01 2.9411768913269043e-01
+ <_>
+
+ 0 -1 479 -3.0483009293675423e-02
+
+ 6.4014548063278198e-01 -1.1338239908218384e-01
+ <_>
+
+ 0 -1 480 2.5841239839792252e-02
+
+ -1.7654690146446228e-01 2.5563400983810425e-01
+ <_>
+
+ 0 -1 481 1.2160619720816612e-02
+
+ -4.9461990594863892e-02 3.4733989834785461e-01
+ <_>
+
+ 0 -1 482 -1.5910159796476364e-02
+
+ 4.7966769337654114e-01 -1.3009509444236755e-01
+ <_>
+
+ 0 -1 483 3.5282061435282230e-04
+
+ -3.4184929728507996e-01 2.3091129958629608e-01
+ <_>
+
+ 0 -1 484 6.7633582511916757e-04
+
+ -1.5432509779930115e-01 2.6687300205230713e-01
+ <_>
+
+ 0 -1 485 -5.9936139732599258e-02
+
+ -4.8802581429481506e-01 9.3327447772026062e-02
+ <_>
+
+ 0 -1 486 -1.1342409998178482e-01
+
+ -6.5771442651748657e-01 5.9166818857192993e-02
+ <_>
+
+ 0 -1 487 -4.3361280113458633e-03
+
+ -1.5936520695686340e-01 5.0237040966749191e-02
+ <_>
+
+ 0 -1 488 -1.8627740209922194e-03
+
+ 3.0730259418487549e-01 -1.2540669739246368e-01
+ <_>
+
+ 0 -1 489 1.2653009966015816e-02
+
+ -1.0044930130243301e-01 3.7496179342269897e-01
+ <_>
+
+ 0 -1 490 6.9118577241897583e-01
+
+ -4.7146409749984741e-02 8.3212441205978394e-01
+ <_>
+
+ 0 -1 491 -2.6093868655152619e-04
+
+ 3.1987738609313965e-01 -2.7183309197425842e-01
+ <_>
+
+ 0 -1 492 -7.6345056295394897e-02
+
+ 4.3091300129890442e-01 -9.0888269245624542e-02
+ <_>
+
+ 0 -1 493 2.8098300099372864e-03
+
+ 5.8731120079755783e-02 -6.1996752023696899e-01
+ <_>
+
+ 0 -1 494 -1.3322039740160108e-04
+
+ 2.0000059902667999e-01 -2.0120109617710114e-01
+ <_>
+
+ 0 -1 495 -1.3717629946768284e-02
+
+ -7.3095452785491943e-01 2.7178529649972916e-02
+ <_>
+
+ 0 -1 496 -6.2303808517754078e-03
+
+ -5.4780989885330200e-01 6.8749949336051941e-02
+ <_>
+
+ 0 -1 497 4.9922719597816467e-02
+
+ -4.7304309904575348e-02 8.2423102855682373e-01
+ <_>
+
+ 0 -1 498 -1.9126719562336802e-03
+
+ -5.3940171003341675e-01 7.7447593212127686e-02
+ <_>
+
+ 0 -1 499 1.1384560493752360e-03
+
+ -9.6537686884403229e-02 1.5485690534114838e-01
+ <_>
+
+ 0 -1 500 -2.4732090532779694e-03
+
+ 3.5590788722038269e-01 -9.3169830739498138e-02
+ <_>
+
+ 0 -1 501 -7.1464257780462503e-04
+
+ 1.4520190656185150e-01 -7.4194207787513733e-02
+ <_>
+
+ 0 -1 502 -2.0437149330973625e-02
+
+ 4.4163769483566284e-01 -8.0942437052726746e-02
+ <_>
+
+ 0 -1 503 -4.0483791381120682e-03
+
+ -5.9992778301239014e-01 3.3025380223989487e-02
+ <_>
+
+ 0 -1 504 1.1148050427436829e-02
+
+ -1.1358329653739929e-01 3.2644999027252197e-01
+ <_>
+
+ 0 -1 505 9.8842009902000427e-03
+
+ 5.5404480546712875e-02 -3.2730978727340698e-01
+ <_>
+
+ 0 -1 506 3.1296359375119209e-03
+
+ 7.7408656477928162e-02 -4.5953071117401123e-01
+ <_>
+
+ 0 -1 507 2.9721839819103479e-03
+
+ -1.2917269766330719e-01 1.5523110330104828e-01
+ <_>
+
+ 0 -1 508 2.0554479211568832e-02
+
+ 8.7600469589233398e-02 -4.5774188637733459e-01
+ <_>
+
+ 0 -1 509 -2.3027280345559120e-02
+
+ 3.5488089919090271e-01 -2.0566919818520546e-02
+ <_>
+
+ 0 -1 510 -8.3903772756457329e-03
+
+ -4.3240728974342346e-01 9.2067979276180267e-02
+ <_>
+
+ 0 -1 511 -1.1431539896875620e-03
+
+ 3.9591339230537415e-01 -2.3192889988422394e-02
+ <_>
+
+ 0 -1 512 -4.9133709399029613e-04
+
+ 4.2749640345573425e-01 -8.5524216294288635e-02
+ <_>
+
+ 0 -1 513 5.1292928401380777e-04
+
+ -1.6196739673614502e-01 1.9614970684051514e-01
+ <_>
+
+ 0 -1 514 -5.8478871360421181e-03
+
+ -5.9116369485855103e-01 6.2448240816593170e-02
+ <_>
+
+ 0 -1 515 -9.4133049249649048e-02
+
+ 4.7701609134674072e-01 -5.6710161268711090e-02
+ <_>
+
+ 0 -1 516 1.0079269850393757e-04
+
+ -1.6257099807262421e-01 2.1402290463447571e-01
+ <_>
+
+ 0 -1 517 3.2930231100181118e-05
+
+ -1.8596050143241882e-01 1.9647690653800964e-01
+ <_>
+
+ 0 -1 518 -1.1743210052372888e-04
+
+ 3.1821349263191223e-01 -1.3287380337715149e-01
+ <_>
+
+ 0 -1 519 1.2751810252666473e-01
+
+ 3.0140079557895660e-02 -7.4110358953475952e-01
+ <_>
+
+ 0 -1 520 8.0326296389102936e-02
+
+ 4.1555039584636688e-02 -8.2636839151382446e-01
+ <_>
+
+ 0 -1 521 1.6904190415516496e-03
+
+ -1.0290619730949402e-01 2.9724180698394775e-01
+ <_>
+ 47
+ -1.1933319568634033e+00
+
+ <_>
+
+ 0 -1 522 -4.6122789382934570e-02
+
+ 4.4252589344978333e-01 -2.9913198947906494e-01
+ <_>
+
+ 0 -1 523 3.6723318696022034e-01
+
+ -6.3011750578880310e-02 7.7125382423400879e-01
+ <_>
+
+ 0 -1 524 -3.0962929595261812e-03
+
+ 3.5142418742179871e-01 -1.7306439578533173e-01
+ <_>
+
+ 0 -1 525 9.2647131532430649e-03
+
+ -1.6072809696197510e-01 1.8532909452915192e-01
+ <_>
+
+ 0 -1 526 3.1748649198561907e-03
+
+ -1.9688999652862549e-01 2.4097280204296112e-01
+ <_>
+
+ 0 -1 527 8.0439839512109756e-03
+
+ 8.9862972497940063e-02 -3.6552259325981140e-01
+ <_>
+
+ 0 -1 528 3.2752490043640137e-01
+
+ -5.6879680603742599e-02 7.7493369579315186e-01
+ <_>
+
+ 0 -1 529 -1.9074430689215660e-02
+
+ -2.8953808546066284e-01 6.2291670590639114e-02
+ <_>
+
+ 0 -1 530 -2.0501749590039253e-02
+
+ -6.2625300884246826e-01 6.8276971578598022e-02
+ <_>
+
+ 0 -1 531 5.3187010053079575e-05
+
+ -2.5149559974670410e-01 2.6131960749626160e-01
+ <_>
+
+ 0 -1 532 3.3275580499321222e-03
+
+ -1.1990779638290405e-01 3.6519300937652588e-01
+ <_>
+
+ 0 -1 533 5.8408430777490139e-03
+
+ -8.2748517394065857e-02 2.3650820553302765e-01
+ <_>
+
+ 0 -1 534 -4.6462330967187881e-02
+
+ -6.9285649061203003e-01 7.8197672963142395e-02
+ <_>
+
+ 0 -1 535 -3.7785700988024473e-03
+
+ 3.4372571110725403e-01 -1.0275450348854065e-01
+ <_>
+
+ 0 -1 536 1.6655459767207503e-03
+
+ -1.1605279892683029e-01 3.7162029743194580e-01
+ <_>
+
+ 0 -1 537 -5.7107670727418736e-05
+
+ 4.5893669128417969e-01 -2.1236430108547211e-01
+ <_>
+
+ 0 -1 538 -9.0066380798816681e-03
+
+ -5.9533411264419556e-01 8.0876402556896210e-02
+ <_>
+
+ 0 -1 539 -1.3789710402488708e-01
+
+ 3.9570671319961548e-01 -8.9885376393795013e-02
+ <_>
+
+ 0 -1 540 5.7599872350692749e-01
+
+ -5.3810819983482361e-02 8.1703948974609375e-01
+ <_>
+
+ 0 -1 541 -2.3918158840388060e-03
+
+ 1.3933740556240082e-01 -4.2155928909778595e-02
+ <_>
+
+ 0 -1 542 2.4896071408875287e-04
+
+ -1.4858660101890564e-01 2.6263329386711121e-01
+ <_>
+
+ 0 -1 543 3.3062491565942764e-02
+
+ 3.0659910291433334e-02 -3.2318601012229919e-01
+ <_>
+
+ 0 -1 544 4.4321879744529724e-02
+
+ 4.7853820025920868e-02 -7.8135901689529419e-01
+ <_>
+
+ 0 -1 545 -1.8718190491199493e-02
+
+ 1.2012620270252228e-01 -1.1211469769477844e-01
+ <_>
+
+ 0 -1 546 9.2309370636940002e-02
+
+ 4.2463079094886780e-02 -8.0097001791000366e-01
+ <_>
+
+ 0 -1 547 9.0665437281131744e-02
+
+ -2.2304529324173927e-02 1.2847979366779327e-01
+ <_>
+
+ 0 -1 548 -5.8294929563999176e-02
+
+ -3.9368540048599243e-01 9.5482140779495239e-02
+ <_>
+
+ 0 -1 549 4.6649780124425888e-03
+
+ -6.5641947090625763e-02 3.6407178640365601e-01
+ <_>
+
+ 0 -1 550 5.2480432204902172e-03
+
+ 6.8765781819820404e-02 -5.0508302450180054e-01
+ <_>
+
+ 0 -1 551 2.5315659586340189e-03
+
+ -9.3347169458866119e-02 1.6496129333972931e-01
+ <_>
+
+ 0 -1 552 2.4391160695813596e-04
+
+ -1.8885439634323120e-01 1.6956700384616852e-01
+ <_>
+
+ 0 -1 553 -6.3037211075425148e-03
+
+ 3.8263529539108276e-01 -5.9042099863290787e-02
+ <_>
+
+ 0 -1 554 2.2754059173166752e-03
+
+ -1.2248820066452026e-01 2.8283658623695374e-01
+ <_>
+
+ 0 -1 555 -2.7694869041442871e-01
+
+ 4.8514971137046814e-01 -4.0482539683580399e-02
+ <_>
+
+ 0 -1 556 5.8051547966897488e-03
+
+ -8.3558417856693268e-02 4.2151498794555664e-01
+ <_>
+
+ 0 -1 557 2.4654529988765717e-03
+
+ -1.2816859781742096e-01 2.0776629447937012e-01
+ <_>
+
+ 0 -1 558 7.8863510861992836e-03
+
+ -1.7197540402412415e-01 2.0790819823741913e-01
+ <_>
+
+ 0 -1 559 -1.1817130260169506e-02
+
+ -5.7880669832229614e-01 5.8959141373634338e-02
+ <_>
+
+ 0 -1 560 -6.4139917492866516e-02
+
+ -6.3689261674880981e-01 4.1797500103712082e-02
+ <_>
+
+ 0 -1 561 -1.2179970508441329e-03
+
+ 2.3568700253963470e-01 -8.0515258014202118e-02
+ <_>
+
+ 0 -1 562 2.8652620967477560e-03
+
+ -9.3137197196483612e-02 3.9025950431823730e-01
+ <_>
+
+ 0 -1 563 -5.7746102102100849e-03
+
+ -5.7539868354797363e-01 5.9677690267562866e-02
+ <_>
+
+ 0 -1 564 6.5377086400985718e-02
+
+ 3.4166071563959122e-02 -7.4253422021865845e-01
+ <_>
+
+ 0 -1 565 1.6265710815787315e-02
+
+ 5.3654260933399200e-02 -2.3658609390258789e-01
+ <_>
+
+ 0 -1 566 2.2717609535902739e-03
+
+ 5.3359109908342361e-02 -5.4940742254257202e-01
+ <_>
+
+ 0 -1 567 2.2626020014286041e-01
+
+ -4.2046058923006058e-02 7.7912521362304688e-01
+ <_>
+
+ 0 -1 568 -2.9377460479736328e-02
+
+ -5.9470587968826294e-01 5.4817870259284973e-02
+
+ <_>
+
+ <_>
+ 0 0 2 4 -1.
+ <_>
+ 0 2 2 2 2.
+ <_>
+
+ <_>
+ 34 10 2 8 -1.
+ <_>
+ 34 14 2 4 2.
+ <_>
+
+ <_>
+ 0 10 2 8 -1.
+ <_>
+ 0 14 2 4 2.
+ <_>
+
+ <_>
+ 15 0 18 10 -1.
+ <_>
+ 24 0 9 5 2.
+ <_>
+ 15 5 9 5 2.
+ <_>
+
+ <_>
+ 7 0 4 4 -1.
+ <_>
+ 7 0 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 15 5 6 4 -1.
+ <_>
+ 15 6 6 2 2.
+ <_>
+
+ <_>
+ 13 6 8 3 -1.
+ <_>
+ 13 7 8 1 3.
+ <_>
+
+ <_>
+ 14 6 8 4 -1.
+ <_>
+ 14 7 8 2 2.
+ <_>
+
+ <_>
+ 0 10 2 8 -1.
+ <_>
+ 0 14 2 4 2.
+ <_>
+
+ <_>
+ 34 0 2 16 -1.
+ <_>
+ 35 0 1 8 2.
+ <_>
+ 34 8 1 8 2.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+
+ <_>
+ 4 7 28 3 -1.
+ <_>
+ 11 7 14 3 2.
+ <_>
+
+ <_>
+ 34 0 2 2 -1.
+ <_>
+ 34 1 2 1 2.
+ <_>
+
+ <_>
+ 0 12 4 6 -1.
+ <_>
+ 0 15 4 3 2.
+ <_>
+
+ <_>
+ 34 0 2 2 -1.
+ <_>
+ 34 1 2 1 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 17 5 9 12 -1.
+ <_>
+ 20 5 3 12 3.
+ <_>
+
+ <_>
+ 10 5 9 12 -1.
+ <_>
+ 13 5 3 12 3.
+ <_>
+
+ <_>
+ 4 0 32 1 -1.
+ <_>
+ 4 0 16 1 2.
+ <_>
+
+ <_>
+ 0 0 3 3 -1.
+ <_>
+ 1 0 1 3 3.
+ <_>
+
+ <_>
+ 32 7 4 7 -1.
+ <_>
+ 33 8 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 8 6 -1.
+ <_>
+ 7 0 4 3 2.
+ <_>
+ 11 3 4 3 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 27 1 8 9 -1.
+ <_>
+ 29 3 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 1 10 1 8 -1.
+ <_>
+ 1 14 1 4 2.
+ <_>
+
+ <_>
+ 3 6 30 9 -1.
+ <_>
+ 13 9 10 3 9.
+ <_>
+
+ <_>
+ 12 5 8 6 -1.
+ <_>
+ 12 7 8 2 3.
+ <_>
+
+ <_>
+ 16 4 6 3 -1.
+ <_>
+ 16 5 6 1 3.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 0 0 1 9 2.
+ <_>
+ 1 9 1 9 2.
+ <_>
+
+ <_>
+ 34 2 2 14 -1.
+ <_>
+ 35 2 1 7 2.
+ <_>
+ 34 9 1 7 2.
+ <_>
+
+ <_>
+ 0 2 2 14 -1.
+ <_>
+ 0 2 1 7 2.
+ <_>
+ 1 9 1 7 2.
+ <_>
+
+ <_>
+ 35 0 1 4 -1.
+ <_>
+ 35 2 1 2 2.
+ <_>
+
+ <_>
+ 5 0 24 18 -1.
+ <_>
+ 5 0 12 9 2.
+ <_>
+ 17 9 12 9 2.
+ <_>
+
+ <_>
+ 35 16 1 2 -1.
+ <_>
+ 35 17 1 1 2.
+ <_>
+
+ <_>
+ 0 16 1 2 -1.
+ <_>
+ 0 17 1 1 2.
+ <_>
+
+ <_>
+ 17 6 8 12 -1.
+ <_>
+ 19 6 4 12 2.
+ <_>
+
+ <_>
+ 11 5 8 13 -1.
+ <_>
+ 13 5 4 13 2.
+ <_>
+
+ <_>
+ 35 16 1 2 -1.
+ <_>
+ 35 17 1 1 2.
+ <_>
+
+ <_>
+ 10 9 12 3 -1.
+ <_>
+ 10 10 12 1 3.
+ <_>
+
+ <_>
+ 0 10 1 8 -1.
+ <_>
+ 0 14 1 4 2.
+ <_>
+
+ <_>
+ 20 0 10 10 -1.
+ <_>
+ 25 0 5 5 2.
+ <_>
+ 20 5 5 5 2.
+ <_>
+
+ <_>
+ 0 0 1 4 -1.
+ <_>
+ 0 2 1 2 2.
+ <_>
+
+ <_>
+ 19 0 13 18 -1.
+ <_>
+ 19 9 13 9 2.
+ <_>
+
+ <_>
+ 4 0 14 6 -1.
+ <_>
+ 4 0 7 3 2.
+ <_>
+ 11 3 7 3 2.
+ <_>
+
+ <_>
+ 16 5 6 6 -1.
+ <_>
+ 16 7 6 2 3.
+ <_>
+
+ <_>
+ 13 7 7 8 -1.
+ <_>
+ 13 9 7 4 2.
+ <_>
+
+ <_>
+ 33 0 3 1 -1.
+ <_>
+ 34 0 1 1 3.
+ <_>
+
+ <_>
+ 7 1 10 4 -1.
+ <_>
+ 6 2 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 2 6 16 -1.
+ <_>
+ 18 2 3 8 2.
+ <_>
+ 15 10 3 8 2.
+ <_>
+
+ <_>
+ 0 10 1 8 -1.
+ <_>
+ 0 14 1 4 2.
+ <_>
+
+ <_>
+ 27 4 6 6 -1.
+ <_>
+ 29 6 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 14 5 8 8 -1.
+ <_>
+ 16 5 4 8 2.
+ <_>
+
+ <_>
+ 27 5 6 6 -1.
+ <_>
+ 29 7 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 7 7 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 12 5 12 9 -1.
+ <_>
+ 15 5 6 9 2.
+ <_>
+
+ <_>
+ 0 0 3 1 -1.
+ <_>
+ 1 0 1 1 3.
+ <_>
+
+ <_>
+ 15 4 18 6 -1.
+ <_>
+ 15 6 18 2 3.
+ <_>
+
+ <_>
+ 0 10 1 6 -1.
+ <_>
+ 0 13 1 3 2.
+ <_>
+
+ <_>
+ 3 6 30 6 -1.
+ <_>
+ 13 8 10 2 9.
+ <_>
+
+ <_>
+ 11 7 12 4 -1.
+ <_>
+ 11 8 12 2 2.
+ <_>
+
+ <_>
+ 14 8 9 3 -1.
+ <_>
+ 14 9 9 1 3.
+ <_>
+
+ <_>
+ 14 8 7 4 -1.
+ <_>
+ 14 9 7 2 2.
+ <_>
+
+ <_>
+ 12 7 18 6 -1.
+ <_>
+ 12 9 18 2 3.
+ <_>
+
+ <_>
+ 7 8 3 10 -1.
+ <_>
+ 7 13 3 5 2.
+ <_>
+
+ <_>
+ 35 10 1 6 -1.
+ <_>
+ 35 13 1 3 2.
+ <_>
+
+ <_>
+ 0 10 1 6 -1.
+ <_>
+ 0 13 1 3 2.
+ <_>
+
+ <_>
+ 18 13 9 5 -1.
+ <_>
+ 21 13 3 5 3.
+ <_>
+
+ <_>
+ 15 9 6 4 -1.
+ <_>
+ 15 10 6 2 2.
+ <_>
+
+ <_>
+ 16 4 18 8 -1.
+ <_>
+ 16 6 18 4 2.
+ <_>
+
+ <_>
+ 9 14 9 3 -1.
+ <_>
+ 12 14 3 3 3.
+ <_>
+
+ <_>
+ 32 0 4 6 -1.
+ <_>
+ 32 0 2 6 2.
+ <_>
+
+ <_>
+ 0 0 4 6 -1.
+ <_>
+ 2 0 2 6 2.
+ <_>
+
+ <_>
+ 27 0 6 7 -1.
+ <_>
+ 29 2 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 0 0 1 4 -1.
+ <_>
+ 0 2 1 2 2.
+ <_>
+
+ <_>
+ 27 8 6 4 -1.
+ <_>
+ 29 10 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 9 27 6 -1.
+ <_>
+ 13 11 9 2 9.
+ <_>
+
+ <_>
+ 31 14 2 3 -1.
+ <_>
+ 31 14 1 3 2.
+ <_>
+
+ <_>
+ 10 0 5 6 -1.
+ <_>
+ 8 2 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 7 11 3 -1.
+ <_>
+ 14 8 11 1 3.
+ <_>
+
+ <_>
+ 0 12 2 6 -1.
+ <_>
+ 0 15 2 3 2.
+ <_>
+
+ <_>
+ 34 13 2 4 -1.
+ <_>
+ 34 15 2 2 2.
+ <_>
+
+ <_>
+ 0 13 2 4 -1.
+ <_>
+ 0 15 2 2 2.
+ <_>
+
+ <_>
+ 3 6 4 12 -1.
+ <_>
+ 3 10 4 4 3.
+ <_>
+
+ <_>
+ 14 0 22 12 -1.
+ <_>
+ 25 0 11 6 2.
+ <_>
+ 14 6 11 6 2.
+ <_>
+
+ <_>
+ 8 1 7 6 -1.
+ <_>
+ 6 3 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 12 5 14 3 -1.
+ <_>
+ 12 6 14 1 3.
+ <_>
+
+ <_>
+ 7 6 7 4 -1.
+ <_>
+ 6 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 3 6 4 -1.
+ <_>
+ 18 4 6 2 2.
+ <_>
+
+ <_>
+ 4 5 5 6 -1.
+ <_>
+ 4 7 5 2 3.
+ <_>
+
+ <_>
+ 33 0 3 4 -1.
+ <_>
+ 34 0 1 4 3.
+ <_>
+
+ <_>
+ 9 0 6 18 -1.
+ <_>
+ 9 9 6 9 2.
+ <_>
+
+ <_>
+ 6 6 24 6 -1.
+ <_>
+ 14 8 8 2 9.
+ <_>
+
+ <_>
+ 16 8 4 4 -1.
+ <_>
+ 16 9 4 2 2.
+ <_>
+
+ <_>
+ 13 8 13 4 -1.
+ <_>
+ 13 9 13 2 2.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 17 2 1 2.
+ <_>
+
+ <_>
+ 35 14 1 4 -1.
+ <_>
+ 35 15 1 2 2.
+ <_>
+
+ <_>
+ 0 14 1 4 -1.
+ <_>
+ 0 15 1 2 2.
+ <_>
+
+ <_>
+ 15 6 9 7 -1.
+ <_>
+ 18 6 3 7 3.
+ <_>
+
+ <_>
+ 0 0 3 4 -1.
+ <_>
+ 1 0 1 4 3.
+ <_>
+
+ <_>
+ 34 16 2 2 -1.
+ <_>
+ 35 16 1 1 2.
+ <_>
+ 34 17 1 1 2.
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 16 1 1 2.
+ <_>
+ 1 17 1 1 2.
+ <_>
+
+ <_>
+ 22 0 10 4 -1.
+ <_>
+ 22 0 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 15 4 6 14 -1.
+ <_>
+ 15 4 3 7 2.
+ <_>
+ 18 11 3 7 2.
+ <_>
+
+ <_>
+ 15 3 8 10 -1.
+ <_>
+ 17 3 4 10 2.
+ <_>
+
+ <_>
+ 0 0 2 5 -1.
+ <_>
+ 1 0 1 5 2.
+ <_>
+
+ <_>
+ 7 1 8 6 -1.
+ <_>
+ 5 3 8 2 3.
+ 1
+ <_>
+
+ <_>
+ 19 0 11 18 -1.
+ <_>
+ 19 9 11 9 2.
+ <_>
+
+ <_>
+ 6 8 24 6 -1.
+ <_>
+ 14 10 8 2 9.
+ <_>
+
+ <_>
+ 14 6 10 3 -1.
+ <_>
+ 14 7 10 1 3.
+ <_>
+
+ <_>
+ 12 7 11 4 -1.
+ <_>
+ 12 8 11 2 2.
+ <_>
+
+ <_>
+ 18 0 16 6 -1.
+ <_>
+ 26 0 8 3 2.
+ <_>
+ 18 3 8 3 2.
+ <_>
+
+ <_>
+ 5 3 7 3 -1.
+ <_>
+ 4 4 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 4 4 4 -1.
+ <_>
+ 18 5 4 2 2.
+ <_>
+
+ <_>
+ 5 3 10 4 -1.
+ <_>
+ 4 4 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 8 10 -1.
+ <_>
+ 18 8 4 5 2.
+ <_>
+ 14 13 4 5 2.
+ <_>
+
+ <_>
+ 3 0 4 1 -1.
+ <_>
+ 5 0 2 1 2.
+ <_>
+
+ <_>
+ 20 0 10 8 -1.
+ <_>
+ 25 0 5 4 2.
+ <_>
+ 20 4 5 4 2.
+ <_>
+
+ <_>
+ 13 0 10 8 -1.
+ <_>
+ 13 0 5 4 2.
+ <_>
+ 18 4 5 4 2.
+ <_>
+
+ <_>
+ 21 5 6 13 -1.
+ <_>
+ 23 5 2 13 3.
+ <_>
+
+ <_>
+ 9 5 6 13 -1.
+ <_>
+ 11 5 2 13 3.
+ <_>
+
+ <_>
+ 27 5 5 3 -1.
+ <_>
+ 27 6 5 1 3.
+ <_>
+
+ <_>
+ 10 0 3 6 -1.
+ <_>
+ 10 2 3 2 3.
+ <_>
+
+ <_>
+ 26 6 3 6 -1.
+ <_>
+ 26 8 3 2 3.
+ <_>
+
+ <_>
+ 0 11 36 7 -1.
+ <_>
+ 18 11 18 7 2.
+ <_>
+
+ <_>
+ 27 5 5 3 -1.
+ <_>
+ 27 6 5 1 3.
+ <_>
+
+ <_>
+ 4 5 5 3 -1.
+ <_>
+ 4 6 5 1 3.
+ <_>
+
+ <_>
+ 28 6 4 4 -1.
+ <_>
+ 29 7 2 4 2.
+ 1
+ <_>
+
+ <_>
+ 14 15 8 2 -1.
+ <_>
+ 16 15 4 2 2.
+ <_>
+
+ <_>
+ 3 5 30 6 -1.
+ <_>
+ 13 7 10 2 9.
+ <_>
+
+ <_>
+ 6 7 16 6 -1.
+ <_>
+ 6 9 16 2 3.
+ <_>
+
+ <_>
+ 14 10 12 6 -1.
+ <_>
+ 14 12 12 2 3.
+ <_>
+
+ <_>
+ 6 0 12 10 -1.
+ <_>
+ 6 0 6 5 2.
+ <_>
+ 12 5 6 5 2.
+ <_>
+
+ <_>
+ 25 2 7 16 -1.
+ <_>
+ 25 10 7 8 2.
+ <_>
+
+ <_>
+ 9 6 18 7 -1.
+ <_>
+ 15 6 6 7 3.
+ <_>
+
+ <_>
+ 5 0 26 18 -1.
+ <_>
+ 18 0 13 9 2.
+ <_>
+ 5 9 13 9 2.
+ <_>
+
+ <_>
+ 10 6 10 3 -1.
+ <_>
+ 10 7 10 1 3.
+ <_>
+
+ <_>
+ 17 6 6 4 -1.
+ <_>
+ 17 7 6 2 2.
+ <_>
+
+ <_>
+ 15 6 6 7 -1.
+ <_>
+ 18 6 3 7 2.
+ <_>
+
+ <_>
+ 26 6 5 4 -1.
+ <_>
+ 26 7 5 2 2.
+ <_>
+
+ <_>
+ 0 12 1 6 -1.
+ <_>
+ 0 15 1 3 2.
+ <_>
+
+ <_>
+ 9 4 18 14 -1.
+ <_>
+ 18 4 9 7 2.
+ <_>
+ 9 11 9 7 2.
+ <_>
+
+ <_>
+ 7 5 6 3 -1.
+ <_>
+ 6 6 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 27 5 6 3 -1.
+ <_>
+ 29 7 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 7 8 3 3 -1.
+ <_>
+ 6 9 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 28 5 6 5 -1.
+ <_>
+ 30 7 2 5 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 5 6 -1.
+ <_>
+ 6 7 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 31 0 4 1 -1.
+ <_>
+ 31 0 2 1 2.
+ <_>
+
+ <_>
+ 1 0 4 1 -1.
+ <_>
+ 3 0 2 1 2.
+ <_>
+
+ <_>
+ 17 11 4 3 -1.
+ <_>
+ 17 12 4 1 3.
+ <_>
+
+ <_>
+ 12 3 7 4 -1.
+ <_>
+ 12 4 7 2 2.
+ <_>
+
+ <_>
+ 14 9 9 3 -1.
+ <_>
+ 14 10 9 1 3.
+ <_>
+
+ <_>
+ 1 17 21 1 -1.
+ <_>
+ 8 17 7 1 3.
+ <_>
+
+ <_>
+ 12 9 20 4 -1.
+ <_>
+ 12 9 10 4 2.
+ <_>
+
+ <_>
+ 3 9 22 4 -1.
+ <_>
+ 14 9 11 4 2.
+ <_>
+
+ <_>
+ 25 0 3 3 -1.
+ <_>
+ 26 1 1 3 3.
+ 1
+ <_>
+
+ <_>
+ 14 9 4 3 -1.
+ <_>
+ 14 10 4 1 3.
+ <_>
+
+ <_>
+ 19 4 9 3 -1.
+ <_>
+ 22 4 3 3 3.
+ <_>
+
+ <_>
+ 8 4 9 3 -1.
+ <_>
+ 11 4 3 3 3.
+ <_>
+
+ <_>
+ 0 15 36 3 -1.
+ <_>
+ 12 16 12 1 9.
+ <_>
+
+ <_>
+ 2 0 4 2 -1.
+ <_>
+ 2 0 4 1 2.
+ 1
+ <_>
+
+ <_>
+ 19 9 2 9 -1.
+ <_>
+ 19 12 2 3 3.
+ <_>
+
+ <_>
+ 13 7 8 3 -1.
+ <_>
+ 13 8 8 1 3.
+ <_>
+
+ <_>
+ 30 4 2 2 -1.
+ <_>
+ 31 4 1 1 2.
+ <_>
+ 30 5 1 1 2.
+ <_>
+
+ <_>
+ 4 4 2 2 -1.
+ <_>
+ 4 4 1 1 2.
+ <_>
+ 5 5 1 1 2.
+ <_>
+
+ <_>
+ 18 7 4 3 -1.
+ <_>
+ 18 8 4 1 3.
+ <_>
+
+ <_>
+ 9 0 1 8 -1.
+ <_>
+ 9 0 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 25 6 10 3 -1.
+ <_>
+ 25 7 10 1 3.
+ <_>
+
+ <_>
+ 1 6 10 3 -1.
+ <_>
+ 1 7 10 1 3.
+ <_>
+
+ <_>
+ 6 6 14 12 -1.
+ <_>
+ 6 6 7 6 2.
+ <_>
+ 13 12 7 6 2.
+ <_>
+
+ <_>
+ 31 14 3 4 -1.
+ <_>
+ 31 16 3 2 2.
+ <_>
+
+ <_>
+ 1 12 2 4 -1.
+ <_>
+ 1 14 2 2 2.
+ <_>
+
+ <_>
+ 15 0 12 5 -1.
+ <_>
+ 19 0 4 5 3.
+ <_>
+
+ <_>
+ 10 0 8 14 -1.
+ <_>
+ 12 0 4 14 2.
+ <_>
+
+ <_>
+ 28 1 8 7 -1.
+ <_>
+ 30 3 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 14 20 4 -1.
+ <_>
+ 8 14 10 2 2.
+ <_>
+ 18 16 10 2 2.
+ <_>
+
+ <_>
+ 6 11 24 3 -1.
+ <_>
+ 14 12 8 1 9.
+ <_>
+
+ <_>
+ 4 5 27 6 -1.
+ <_>
+ 13 7 9 2 9.
+ <_>
+
+ <_>
+ 7 0 22 18 -1.
+ <_>
+ 18 0 11 9 2.
+ <_>
+ 7 9 11 9 2.
+ <_>
+
+ <_>
+ 16 0 3 2 -1.
+ <_>
+ 16 1 3 1 2.
+ <_>
+
+ <_>
+ 0 17 36 1 -1.
+ <_>
+ 9 17 18 1 2.
+ <_>
+
+ <_>
+ 5 5 12 1 -1.
+ <_>
+ 5 5 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 34 15 2 1 -1.
+ <_>
+ 34 15 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 8 16 4 -1.
+ <_>
+ 7 9 16 2 2.
+ <_>
+
+ <_>
+ 35 10 1 6 -1.
+ <_>
+ 35 12 1 2 3.
+ <_>
+
+ <_>
+ 13 8 3 4 -1.
+ <_>
+ 13 9 3 2 2.
+ <_>
+
+ <_>
+ 35 10 1 6 -1.
+ <_>
+ 35 12 1 2 3.
+ <_>
+
+ <_>
+ 12 0 1 4 -1.
+ <_>
+ 11 1 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 35 10 1 6 -1.
+ <_>
+ 35 12 1 2 3.
+ <_>
+
+ <_>
+ 18 0 1 14 -1.
+ <_>
+ 18 0 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 6 16 12 -1.
+ <_>
+ 5 6 8 6 2.
+ <_>
+ 13 12 8 6 2.
+ <_>
+
+ <_>
+ 18 1 7 8 -1.
+ <_>
+ 16 3 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 14 4 8 10 -1.
+ <_>
+ 14 4 4 5 2.
+ <_>
+ 18 9 4 5 2.
+ <_>
+
+ <_>
+ 22 0 9 3 -1.
+ <_>
+ 25 0 3 3 3.
+ <_>
+
+ <_>
+ 0 10 26 8 -1.
+ <_>
+ 0 10 13 4 2.
+ <_>
+ 13 14 13 4 2.
+ <_>
+
+ <_>
+ 15 10 16 8 -1.
+ <_>
+ 23 10 8 4 2.
+ <_>
+ 15 14 8 4 2.
+ <_>
+
+ <_>
+ 6 0 24 18 -1.
+ <_>
+ 6 0 12 9 2.
+ <_>
+ 18 9 12 9 2.
+ <_>
+
+ <_>
+ 18 0 9 6 -1.
+ <_>
+ 21 0 3 6 3.
+ <_>
+
+ <_>
+ 9 0 9 6 -1.
+ <_>
+ 12 0 3 6 3.
+ <_>
+
+ <_>
+ 30 1 5 14 -1.
+ <_>
+ 30 8 5 7 2.
+ <_>
+
+ <_>
+ 1 1 5 14 -1.
+ <_>
+ 1 8 5 7 2.
+ <_>
+
+ <_>
+ 10 8 26 6 -1.
+ <_>
+ 23 8 13 3 2.
+ <_>
+ 10 11 13 3 2.
+ <_>
+
+ <_>
+ 0 8 28 6 -1.
+ <_>
+ 0 8 14 3 2.
+ <_>
+ 14 11 14 3 2.
+ <_>
+
+ <_>
+ 12 0 24 12 -1.
+ <_>
+ 24 0 12 6 2.
+ <_>
+ 12 6 12 6 2.
+ <_>
+
+ <_>
+ 3 1 14 2 -1.
+ <_>
+ 3 1 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 33 16 3 2 -1.
+ <_>
+ 33 17 3 1 2.
+ <_>
+
+ <_>
+ 12 0 9 14 -1.
+ <_>
+ 15 0 3 14 3.
+ <_>
+
+ <_>
+ 28 16 8 2 -1.
+ <_>
+ 32 16 4 1 2.
+ <_>
+ 28 17 4 1 2.
+ <_>
+
+ <_>
+ 15 8 6 6 -1.
+ <_>
+ 15 10 6 2 3.
+ <_>
+
+ <_>
+ 13 6 22 6 -1.
+ <_>
+ 24 6 11 3 2.
+ <_>
+ 13 9 11 3 2.
+ <_>
+
+ <_>
+ 0 10 26 4 -1.
+ <_>
+ 0 10 13 2 2.
+ <_>
+ 13 12 13 2 2.
+ <_>
+
+ <_>
+ 24 16 4 2 -1.
+ <_>
+ 24 17 4 1 2.
+ <_>
+
+ <_>
+ 9 16 3 2 -1.
+ <_>
+ 9 17 3 1 2.
+ <_>
+
+ <_>
+ 3 7 18 8 -1.
+ <_>
+ 3 7 9 4 2.
+ <_>
+ 12 11 9 4 2.
+ <_>
+
+ <_>
+ 23 0 8 4 -1.
+ <_>
+ 23 0 4 4 2.
+ <_>
+
+ <_>
+ 5 0 8 4 -1.
+ <_>
+ 9 0 4 4 2.
+ <_>
+
+ <_>
+ 6 10 24 3 -1.
+ <_>
+ 14 11 8 1 9.
+ <_>
+
+ <_>
+ 7 5 5 6 -1.
+ <_>
+ 5 7 5 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 16 26 2 -1.
+ <_>
+ 18 16 13 1 2.
+ <_>
+ 5 17 13 1 2.
+ <_>
+
+ <_>
+ 0 7 24 4 -1.
+ <_>
+ 0 7 12 2 2.
+ <_>
+ 12 9 12 2 2.
+ <_>
+
+ <_>
+ 23 14 13 4 -1.
+ <_>
+ 23 15 13 2 2.
+ <_>
+
+ <_>
+ 2 10 18 8 -1.
+ <_>
+ 2 10 9 4 2.
+ <_>
+ 11 14 9 4 2.
+ <_>
+
+ <_>
+ 15 10 6 4 -1.
+ <_>
+ 15 11 6 2 2.
+ <_>
+
+ <_>
+ 0 6 24 2 -1.
+ <_>
+ 0 6 12 1 2.
+ <_>
+ 12 7 12 1 2.
+ <_>
+
+ <_>
+ 17 0 18 18 -1.
+ <_>
+ 17 9 18 9 2.
+ <_>
+
+ <_>
+ 1 0 11 2 -1.
+ <_>
+ 1 1 11 1 2.
+ <_>
+
+ <_>
+ 15 6 8 12 -1.
+ <_>
+ 19 6 4 6 2.
+ <_>
+ 15 12 4 6 2.
+ <_>
+
+ <_>
+ 2 1 32 12 -1.
+ <_>
+ 2 1 16 6 2.
+ <_>
+ 18 7 16 6 2.
+ <_>
+
+ <_>
+ 29 10 7 8 -1.
+ <_>
+ 29 12 7 4 2.
+ <_>
+
+ <_>
+ 12 2 8 10 -1.
+ <_>
+ 12 2 4 5 2.
+ <_>
+ 16 7 4 5 2.
+ <_>
+
+ <_>
+ 15 12 6 4 -1.
+ <_>
+ 15 13 6 2 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 10 9 26 8 -1.
+ <_>
+ 23 9 13 4 2.
+ <_>
+ 10 13 13 4 2.
+ <_>
+
+ <_>
+ 7 8 22 10 -1.
+ <_>
+ 7 8 11 5 2.
+ <_>
+ 18 13 11 5 2.
+ <_>
+
+ <_>
+ 14 9 8 3 -1.
+ <_>
+ 14 10 8 1 3.
+ <_>
+
+ <_>
+ 11 3 4 9 -1.
+ <_>
+ 11 6 4 3 3.
+ <_>
+
+ <_>
+ 29 14 2 2 -1.
+ <_>
+ 29 14 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 13 8 3 -1.
+ <_>
+ 14 14 8 1 3.
+ <_>
+
+ <_>
+ 11 3 7 8 -1.
+ <_>
+ 9 5 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 28 13 1 4 -1.
+ <_>
+ 28 13 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 13 4 1 -1.
+ <_>
+ 8 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 9 4 3 -1.
+ <_>
+ 16 10 4 1 3.
+ <_>
+
+ <_>
+ 13 8 10 4 -1.
+ <_>
+ 13 9 10 2 2.
+ <_>
+
+ <_>
+ 14 8 8 3 -1.
+ <_>
+ 14 9 8 1 3.
+ <_>
+
+ <_>
+ 2 10 6 2 -1.
+ <_>
+ 4 12 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 16 10 6 3 -1.
+ <_>
+ 16 11 6 1 3.
+ <_>
+
+ <_>
+ 8 5 8 13 -1.
+ <_>
+ 12 5 4 13 2.
+ <_>
+
+ <_>
+ 0 0 36 8 -1.
+ <_>
+ 18 0 18 4 2.
+ <_>
+ 0 4 18 4 2.
+ <_>
+
+ <_>
+ 1 5 8 12 -1.
+ <_>
+ 1 5 4 6 2.
+ <_>
+ 5 11 4 6 2.
+ <_>
+
+ <_>
+ 18 8 18 10 -1.
+ <_>
+ 27 8 9 5 2.
+ <_>
+ 18 13 9 5 2.
+ <_>
+
+ <_>
+ 0 8 18 10 -1.
+ <_>
+ 0 8 9 5 2.
+ <_>
+ 9 13 9 5 2.
+ <_>
+
+ <_>
+ 11 5 14 3 -1.
+ <_>
+ 11 6 14 1 3.
+ <_>
+
+ <_>
+ 10 6 16 6 -1.
+ <_>
+ 10 8 16 2 3.
+ <_>
+
+ <_>
+ 7 2 24 16 -1.
+ <_>
+ 19 2 12 8 2.
+ <_>
+ 7 10 12 8 2.
+ <_>
+
+ <_>
+ 0 1 18 15 -1.
+ <_>
+ 6 6 6 5 9.
+ <_>
+
+ <_>
+ 4 5 16 6 -1.
+ <_>
+ 12 5 8 6 2.
+ <_>
+
+ <_>
+ 29 0 6 11 -1.
+ <_>
+ 31 2 2 11 3.
+ 1
+ <_>
+
+ <_>
+ 2 8 9 1 -1.
+ <_>
+ 5 11 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 6 17 3 -1.
+ <_>
+ 10 7 17 1 3.
+ <_>
+
+ <_>
+ 18 6 6 2 -1.
+ <_>
+ 20 8 2 2 3.
+ 1
+ <_>
+
+ <_>
+ 13 11 12 3 -1.
+ <_>
+ 13 12 12 1 3.
+ <_>
+
+ <_>
+ 2 3 8 8 -1.
+ <_>
+ 2 3 4 4 2.
+ <_>
+ 6 7 4 4 2.
+ <_>
+
+ <_>
+ 18 12 18 4 -1.
+ <_>
+ 27 12 9 2 2.
+ <_>
+ 18 14 9 2 2.
+ <_>
+
+ <_>
+ 11 5 11 3 -1.
+ <_>
+ 11 6 11 1 3.
+ <_>
+
+ <_>
+ 14 7 14 4 -1.
+ <_>
+ 14 8 14 2 2.
+ <_>
+
+ <_>
+ 9 8 16 10 -1.
+ <_>
+ 9 8 8 5 2.
+ <_>
+ 17 13 8 5 2.
+ <_>
+
+ <_>
+ 18 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 13 10 5 3 -1.
+ <_>
+ 13 11 5 1 3.
+ <_>
+
+ <_>
+ 18 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 7 5 8 3 -1.
+ <_>
+ 6 6 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 10 5 5 3 -1.
+ <_>
+ 10 6 5 1 3.
+ <_>
+
+ <_>
+ 2 5 34 10 -1.
+ <_>
+ 19 5 17 5 2.
+ <_>
+ 2 10 17 5 2.
+ <_>
+
+ <_>
+ 3 2 12 3 -1.
+ <_>
+ 6 5 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 35 6 1 6 -1.
+ <_>
+ 35 8 1 2 3.
+ <_>
+
+ <_>
+ 10 6 13 6 -1.
+ <_>
+ 10 8 13 2 3.
+ <_>
+
+ <_>
+ 15 5 6 4 -1.
+ <_>
+ 15 6 6 2 2.
+ <_>
+
+ <_>
+ 5 2 11 4 -1.
+ <_>
+ 4 3 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 26 6 10 6 -1.
+ <_>
+ 31 6 5 3 2.
+ <_>
+ 26 9 5 3 2.
+ <_>
+
+ <_>
+ 10 7 11 8 -1.
+ <_>
+ 10 9 11 4 2.
+ <_>
+
+ <_>
+ 28 2 4 9 -1.
+ <_>
+ 29 3 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 8 2 10 4 -1.
+ <_>
+ 7 3 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 31 0 5 2 -1.
+ <_>
+ 31 1 5 1 2.
+ <_>
+
+ <_>
+ 10 6 16 12 -1.
+ <_>
+ 10 10 16 4 3.
+ <_>
+
+ <_>
+ 18 4 4 3 -1.
+ <_>
+ 18 5 4 1 3.
+ <_>
+
+ <_>
+ 11 10 6 6 -1.
+ <_>
+ 11 12 6 2 3.
+ <_>
+
+ <_>
+ 35 8 1 10 -1.
+ <_>
+ 35 13 1 5 2.
+ <_>
+
+ <_>
+ 0 10 36 8 -1.
+ <_>
+ 18 10 18 8 2.
+ <_>
+
+ <_>
+ 16 7 6 8 -1.
+ <_>
+ 19 7 3 4 2.
+ <_>
+ 16 11 3 4 2.
+ <_>
+
+ <_>
+ 7 6 8 4 -1.
+ <_>
+ 7 6 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 21 11 4 3 -1.
+ <_>
+ 21 12 4 1 3.
+ <_>
+
+ <_>
+ 0 9 1 8 -1.
+ <_>
+ 0 13 1 4 2.
+ <_>
+
+ <_>
+ 27 7 6 4 -1.
+ <_>
+ 29 9 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 10 14 8 4 -1.
+ <_>
+ 12 14 4 4 2.
+ <_>
+
+ <_>
+ 18 17 2 1 -1.
+ <_>
+ 18 17 1 1 2.
+ <_>
+
+ <_>
+ 10 4 11 4 -1.
+ <_>
+ 10 5 11 2 2.
+ <_>
+
+ <_>
+ 17 12 2 4 -1.
+ <_>
+ 17 13 2 2 2.
+ <_>
+
+ <_>
+ 13 4 5 3 -1.
+ <_>
+ 13 5 5 1 3.
+ <_>
+
+ <_>
+ 13 12 11 2 -1.
+ <_>
+ 13 13 11 1 2.
+ <_>
+
+ <_>
+ 1 16 2 2 -1.
+ <_>
+ 1 16 1 1 2.
+ <_>
+ 2 17 1 1 2.
+ <_>
+
+ <_>
+ 27 7 6 4 -1.
+ <_>
+ 29 9 2 4 3.
+ 1
+ <_>
+
+ <_>
+ 4 7 6 6 -1.
+ <_>
+ 4 9 6 2 3.
+ <_>
+
+ <_>
+ 30 6 4 5 -1.
+ <_>
+ 31 7 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 5 20 7 -1.
+ <_>
+ 13 5 10 7 2.
+ <_>
+
+ <_>
+ 30 2 3 12 -1.
+ <_>
+ 30 8 3 6 2.
+ <_>
+
+ <_>
+ 4 2 12 4 -1.
+ <_>
+ 4 2 12 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 8 36 6 -1.
+ <_>
+ 12 10 12 2 9.
+ <_>
+
+ <_>
+ 3 5 30 6 -1.
+ <_>
+ 13 7 10 2 9.
+ <_>
+
+ <_>
+ 14 4 12 9 -1.
+ <_>
+ 18 4 4 9 3.
+ <_>
+
+ <_>
+ 0 17 6 1 -1.
+ <_>
+ 3 17 3 1 2.
+ <_>
+
+ <_>
+ 34 0 1 2 -1.
+ <_>
+ 34 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 2 1 -1.
+ <_>
+ 2 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 31 3 3 8 -1.
+ <_>
+ 32 4 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 5 6 26 12 -1.
+ <_>
+ 5 6 13 6 2.
+ <_>
+ 18 12 13 6 2.
+ <_>
+
+ <_>
+ 14 4 12 9 -1.
+ <_>
+ 18 4 4 9 3.
+ <_>
+
+ <_>
+ 13 7 10 10 -1.
+ <_>
+ 13 7 5 5 2.
+ <_>
+ 18 12 5 5 2.
+ <_>
+
+ <_>
+ 30 5 4 6 -1.
+ <_>
+ 31 6 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 6 4 -1.
+ <_>
+ 5 6 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 29 5 4 5 -1.
+ <_>
+ 30 6 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 5 4 -1.
+ <_>
+ 6 6 5 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 36 1 -1.
+ <_>
+ 12 0 12 1 3.
+ <_>
+
+ <_>
+ 6 3 24 6 -1.
+ <_>
+ 14 5 8 2 9.
+ <_>
+
+ <_>
+ 15 12 6 3 -1.
+ <_>
+ 15 13 6 1 3.
+ <_>
+
+ <_>
+ 11 1 9 17 -1.
+ <_>
+ 14 1 3 17 3.
+ <_>
+
+ <_>
+ 18 1 18 10 -1.
+ <_>
+ 18 1 9 10 2.
+ <_>
+
+ <_>
+ 0 1 18 10 -1.
+ <_>
+ 9 1 9 10 2.
+ <_>
+
+ <_>
+ 30 7 4 5 -1.
+ <_>
+ 31 8 2 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 10 1 3 -1.
+ <_>
+ 0 11 1 1 3.
+ <_>
+
+ <_>
+ 33 16 2 2 -1.
+ <_>
+ 34 16 1 1 2.
+ <_>
+ 33 17 1 1 2.
+ <_>
+
+ <_>
+ 1 16 2 2 -1.
+ <_>
+ 1 16 1 1 2.
+ <_>
+ 2 17 1 1 2.
+ <_>
+
+ <_>
+ 0 8 36 3 -1.
+ <_>
+ 12 9 12 1 9.
+ <_>
+
+ <_>
+ 14 7 8 4 -1.
+ <_>
+ 14 8 8 2 2.
+ <_>
+
+ <_>
+ 17 9 5 3 -1.
+ <_>
+ 17 10 5 1 3.
+ <_>
+
+ <_>
+ 4 0 1 2 -1.
+ <_>
+ 4 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 31 0 3 2 -1.
+ <_>
+ 31 0 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 2 3 -1.
+ <_>
+ 5 0 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 13 36 5 -1.
+ <_>
+ 0 13 18 5 2.
+ <_>
+
+ <_>
+ 6 3 4 3 -1.
+ <_>
+ 5 4 4 1 3.
+ 1
+ <_>
+
+ <_>
+ 28 7 6 3 -1.
+ <_>
+ 30 9 2 3 3.
+ 1
+ <_>
+
+ <_>
+ 8 7 3 6 -1.
+ <_>
+ 6 9 3 2 3.
+ 1
+ <_>
+
+ <_>
+ 14 5 18 10 -1.
+ <_>
+ 23 5 9 5 2.
+ <_>
+ 14 10 9 5 2.
+ <_>
+
+ <_>
+ 4 5 18 10 -1.
+ <_>
+ 4 5 9 5 2.
+ <_>
+ 13 10 9 5 2.
+ <_>
+
+ <_>
+ 32 17 3 1 -1.
+ <_>
+ 33 17 1 1 3.
+ <_>
+
+ <_>
+ 1 17 3 1 -1.
+ <_>
+ 2 17 1 1 3.
+ <_>
+
+ <_>
+ 5 0 26 2 -1.
+ <_>
+ 18 0 13 1 2.
+ <_>
+ 5 1 13 1 2.
+ <_>
+
+ <_>
+ 0 3 27 9 -1.
+ <_>
+ 9 6 9 3 9.
+ <_>
+
+ <_>
+ 13 0 18 12 -1.
+ <_>
+ 13 6 18 6 2.
+ <_>
+
+ <_>
+ 0 17 4 1 -1.
+ <_>
+ 1 17 2 1 2.
+ <_>
+
+ <_>
+ 29 13 1 3 -1.
+ <_>
+ 28 14 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 14 8 2 3.
+ <_>
+
+ <_>
+ 23 7 3 3 -1.
+ <_>
+ 24 7 1 3 3.
+ <_>
+
+ <_>
+ 11 1 12 6 -1.
+ <_>
+ 11 3 12 2 3.
+ <_>
+
+ <_>
+ 5 10 26 8 -1.
+ <_>
+ 18 10 13 4 2.
+ <_>
+ 5 14 13 4 2.
+ <_>
+
+ <_>
+ 11 12 9 6 -1.
+ <_>
+ 14 12 3 6 3.
+ <_>
+
+ <_>
+ 14 12 12 3 -1.
+ <_>
+ 18 13 4 1 9.
+ <_>
+
+ <_>
+ 10 12 12 3 -1.
+ <_>
+ 14 13 4 1 9.
+ <_>
+
+ <_>
+ 4 6 27 6 -1.
+ <_>
+ 13 8 9 2 9.
+ <_>
+
+ <_>
+ 17 9 5 4 -1.
+ <_>
+ 17 10 5 2 2.
+ <_>
+
+ <_>
+ 0 0 16 2 -1.
+ <_>
+ 0 0 8 1 2.
+ <_>
+ 8 1 8 1 2.
+ <_>
+
+ <_>
+ 22 0 8 8 -1.
+ <_>
+ 26 0 4 4 2.
+ <_>
+ 22 4 4 4 2.
+ <_>
+
+ <_>
+ 1 0 32 12 -1.
+ <_>
+ 1 0 16 6 2.
+ <_>
+ 17 6 16 6 2.
+ <_>
+
+ <_>
+ 28 7 6 10 -1.
+ <_>
+ 31 7 3 5 2.
+ <_>
+ 28 12 3 5 2.
+ <_>
+
+ <_>
+ 2 7 6 10 -1.
+ <_>
+ 2 7 3 5 2.
+ <_>
+ 5 12 3 5 2.
+ <_>
+
+ <_>
+ 20 10 3 3 -1.
+ <_>
+ 20 11 3 1 3.
+ <_>
+
+ <_>
+ 13 10 3 3 -1.
+ <_>
+ 13 11 3 1 3.
+ <_>
+
+ <_>
+ 17 16 6 2 -1.
+ <_>
+ 19 16 2 2 3.
+ <_>
+
+ <_>
+ 13 11 7 3 -1.
+ <_>
+ 13 12 7 1 3.
+ <_>
+
+ <_>
+ 25 13 3 2 -1.
+ <_>
+ 25 13 3 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 10 4 4 -1.
+ <_>
+ 13 11 4 2 2.
+ <_>
+
+ <_>
+ 17 16 18 2 -1.
+ <_>
+ 26 16 9 1 2.
+ <_>
+ 17 17 9 1 2.
+ <_>
+
+ <_>
+ 9 13 4 1 -1.
+ <_>
+ 9 13 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 34 1 2 1 -1.
+ <_>
+ 34 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 24 6 -1.
+ <_>
+ 13 6 8 2 9.
+ <_>
+
+ <_>
+ 33 16 3 2 -1.
+ <_>
+ 33 17 3 1 2.
+ <_>
+
+ <_>
+ 0 17 36 1 -1.
+ <_>
+ 18 17 18 1 2.
+ <_>
+
+ <_>
+ 34 1 2 1 -1.
+ <_>
+ 34 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 1 1 2 -1.
+ <_>
+ 2 1 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 22 0 8 10 -1.
+ <_>
+ 24 2 4 10 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 8 12 -1.
+ <_>
+ 12 4 4 6 2.
+ <_>
+ 16 10 4 6 2.
+ <_>
+
+ <_>
+ 26 6 6 6 -1.
+ <_>
+ 29 6 3 3 2.
+ <_>
+ 26 9 3 3 2.
+ <_>
+
+ <_>
+ 5 6 4 6 -1.
+ <_>
+ 5 6 2 3 2.
+ <_>
+ 7 9 2 3 2.
+ <_>
+
+ <_>
+ 29 5 2 4 -1.
+ <_>
+ 29 5 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 18 3 -1.
+ <_>
+ 7 5 18 1 3.
+ <_>
+
+ <_>
+ 29 13 2 3 -1.
+ <_>
+ 28 14 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 5 3 3 -1.
+ <_>
+ 8 6 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 16 22 2 -1.
+ <_>
+ 18 16 11 1 2.
+ <_>
+ 7 17 11 1 2.
+ <_>
+
+ <_>
+ 0 2 1 3 -1.
+ <_>
+ 0 3 1 1 3.
+ <_>
+
+ <_>
+ 16 3 20 6 -1.
+ <_>
+ 26 3 10 3 2.
+ <_>
+ 16 6 10 3 2.
+ <_>
+
+ <_>
+ 10 5 8 6 -1.
+ <_>
+ 12 5 4 6 2.
+ <_>
+
+ <_>
+ 1 8 34 8 -1.
+ <_>
+ 18 8 17 4 2.
+ <_>
+ 1 12 17 4 2.
+ <_>
+
+ <_>
+ 14 9 8 8 -1.
+ <_>
+ 14 9 4 4 2.
+ <_>
+ 18 13 4 4 2.
+ <_>
+
+ <_>
+ 35 0 1 3 -1.
+ <_>
+ 35 1 1 1 3.
+ <_>
+
+ <_>
+ 15 8 3 5 -1.
+ <_>
+ 16 8 1 5 3.
+ <_>
+
+ <_>
+ 19 0 10 1 -1.
+ <_>
+ 19 0 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 3 9 6 -1.
+ <_>
+ 7 5 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 6 24 6 -1.
+ <_>
+ 14 8 8 2 9.
+ <_>
+
+ <_>
+ 4 8 27 6 -1.
+ <_>
+ 13 10 9 2 9.
+ <_>
+
+ <_>
+ 5 4 27 6 -1.
+ <_>
+ 14 6 9 2 9.
+ <_>
+
+ <_>
+ 5 6 5 6 -1.
+ <_>
+ 5 8 5 2 3.
+ <_>
+
+ <_>
+ 35 0 1 2 -1.
+ <_>
+ 35 1 1 1 2.
+ <_>
+
+ <_>
+ 4 3 10 3 -1.
+ <_>
+ 3 4 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 29 5 2 4 -1.
+ <_>
+ 29 5 1 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 28 16 -1.
+ <_>
+ 3 0 14 8 2.
+ <_>
+ 17 8 14 8 2.
+ <_>
+
+ <_>
+ 31 0 4 2 -1.
+ <_>
+ 31 0 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 3 9 -1.
+ <_>
+ 4 12 3 3 3.
+ <_>
+
+ <_>
+ 32 16 4 2 -1.
+ <_>
+ 32 17 4 1 2.
+ <_>
+
+ <_>
+ 17 0 1 10 -1.
+ <_>
+ 17 0 1 5 2.
+ 1
+ <_>
+
+ <_>
+ 17 4 14 8 -1.
+ <_>
+ 17 4 7 8 2.
+ <_>
+
+ <_>
+ 6 0 11 4 -1.
+ <_>
+ 6 2 11 2 2.
+ <_>
+
+ <_>
+ 35 0 1 2 -1.
+ <_>
+ 35 1 1 1 2.
+ <_>
+
+ <_>
+ 0 0 1 2 -1.
+ <_>
+ 0 1 1 1 2.
+ <_>
+
+ <_>
+ 33 0 2 1 -1.
+ <_>
+ 33 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 1 2 -1.
+ <_>
+ 3 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 17 36 1 -1.
+ <_>
+ 9 17 18 1 2.
+ <_>
+
+ <_>
+ 7 13 3 1 -1.
+ <_>
+ 8 14 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 4 14 8 -1.
+ <_>
+ 17 4 7 8 2.
+ <_>
+
+ <_>
+ 0 16 4 2 -1.
+ <_>
+ 0 17 4 1 2.
+ <_>
+
+ <_>
+ 13 12 10 3 -1.
+ <_>
+ 13 13 10 1 3.
+ <_>
+
+ <_>
+ 0 12 36 6 -1.
+ <_>
+ 18 12 18 6 2.
+ <_>
+
+ <_>
+ 5 3 27 6 -1.
+ <_>
+ 14 5 9 2 9.
+ <_>
+
+ <_>
+ 9 5 5 3 -1.
+ <_>
+ 8 6 5 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 7 12 4 -1.
+ <_>
+ 15 7 6 4 2.
+ <_>
+
+ <_>
+ 13 5 8 4 -1.
+ <_>
+ 15 5 4 4 2.
+ <_>
+
+ <_>
+ 16 14 6 4 -1.
+ <_>
+ 16 14 3 4 2.
+ <_>
+
+ <_>
+ 14 10 5 3 -1.
+ <_>
+ 14 11 5 1 3.
+ <_>
+
+ <_>
+ 25 3 6 4 -1.
+ <_>
+ 25 4 6 2 2.
+ <_>
+
+ <_>
+ 3 6 6 8 -1.
+ <_>
+ 3 8 6 4 2.
+ <_>
+
+ <_>
+ 27 4 5 6 -1.
+ <_>
+ 27 6 5 2 3.
+ <_>
+
+ <_>
+ 4 1 6 9 -1.
+ <_>
+ 4 4 6 3 3.
+ <_>
+
+ <_>
+ 21 9 2 4 -1.
+ <_>
+ 21 10 2 2 2.
+ <_>
+
+ <_>
+ 1 10 34 4 -1.
+ <_>
+ 1 10 17 2 2.
+ <_>
+ 18 12 17 2 2.
+ <_>
+
+ <_>
+ 34 15 2 3 -1.
+ <_>
+ 34 16 2 1 3.
+ <_>
+
+ <_>
+ 3 0 2 2 -1.
+ <_>
+ 3 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 33 0 1 2 -1.
+ <_>
+ 33 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 10 8 -1.
+ <_>
+ 6 2 10 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 6 30 6 -1.
+ <_>
+ 13 8 10 2 9.
+ <_>
+
+ <_>
+ 13 7 10 4 -1.
+ <_>
+ 13 8 10 2 2.
+ <_>
+
+ <_>
+ 16 5 6 12 -1.
+ <_>
+ 19 5 3 6 2.
+ <_>
+ 16 11 3 6 2.
+ <_>
+
+ <_>
+ 10 1 4 6 -1.
+ <_>
+ 8 3 4 2 3.
+ 1
+ <_>
+
+ <_>
+ 2 7 33 6 -1.
+ <_>
+ 13 9 11 2 9.
+ <_>
+
+ <_>
+ 3 6 30 3 -1.
+ <_>
+ 13 7 10 1 9.
+ <_>
+
+ <_>
+ 15 11 6 3 -1.
+ <_>
+ 15 12 6 1 3.
+ <_>
+
+ <_>
+ 14 5 6 12 -1.
+ <_>
+ 14 5 3 6 2.
+ <_>
+ 17 11 3 6 2.
+ <_>
+
+ <_>
+ 5 12 26 6 -1.
+ <_>
+ 18 12 13 3 2.
+ <_>
+ 5 15 13 3 2.
+ <_>
+
+ <_>
+ 4 12 27 3 -1.
+ <_>
+ 13 13 9 1 9.
+ <_>
+
+ <_>
+ 16 11 4 3 -1.
+ <_>
+ 16 12 4 1 3.
+ <_>
+
+ <_>
+ 5 12 4 2 -1.
+ <_>
+ 6 13 2 2 2.
+ 1
+ <_>
+
+ <_>
+ 34 17 2 1 -1.
+ <_>
+ 34 17 1 1 2.
+ <_>
+
+ <_>
+ 16 0 1 12 -1.
+ <_>
+ 16 0 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 17 34 1 -1.
+ <_>
+ 2 17 17 1 2.
+ <_>
+
+ <_>
+ 5 3 18 4 -1.
+ <_>
+ 5 4 18 2 2.
+ <_>
+
+ <_>
+ 34 17 2 1 -1.
+ <_>
+ 34 17 1 1 2.
+ <_>
+
+ <_>
+ 0 0 2 2 -1.
+ <_>
+ 0 1 2 1 2.
+ <_>
+
+ <_>
+ 15 5 16 3 -1.
+ <_>
+ 15 6 16 1 3.
+ <_>
+
+ <_>
+ 13 9 3 3 -1.
+ <_>
+ 13 10 3 1 3.
+ <_>
+
+ <_>
+ 20 4 8 14 -1.
+ <_>
+ 22 4 4 14 2.
+ <_>
+
+ <_>
+ 7 5 20 6 -1.
+ <_>
+ 12 5 10 6 2.
+ <_>
+
+ <_>
+ 26 3 6 6 -1.
+ <_>
+ 28 5 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 10 3 6 6 -1.
+ <_>
+ 8 5 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 34 0 2 3 -1.
+ <_>
+ 34 0 1 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 16 2 2 -1.
+ <_>
+ 0 17 2 1 2.
+ <_>
+
+ <_>
+ 30 6 4 8 -1.
+ <_>
+ 31 7 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 6 6 7 4 -1.
+ <_>
+ 5 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 20 4 8 14 -1.
+ <_>
+ 22 4 4 14 2.
+ <_>
+
+ <_>
+ 8 4 8 14 -1.
+ <_>
+ 10 4 4 14 2.
+ <_>
+
+ <_>
+ 17 17 6 1 -1.
+ <_>
+ 19 17 2 1 3.
+ <_>
+
+ <_>
+ 0 0 20 6 -1.
+ <_>
+ 10 0 10 6 2.
+ <_>
+
+ <_>
+ 8 0 22 18 -1.
+ <_>
+ 8 0 11 18 2.
+ <_>
+
+ <_>
+ 13 2 8 12 -1.
+ <_>
+ 13 2 4 6 2.
+ <_>
+ 17 8 4 6 2.
+ <_>
+
+ <_>
+ 11 10 14 8 -1.
+ <_>
+ 18 10 7 4 2.
+ <_>
+ 11 14 7 4 2.
+ <_>
+
+ <_>
+ 1 16 2 2 -1.
+ <_>
+ 1 16 1 1 2.
+ <_>
+ 2 17 1 1 2.
+ <_>
+
+ <_>
+ 34 0 2 1 -1.
+ <_>
+ 34 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 24 4 -1.
+ <_>
+ 12 3 12 4 2.
+ <_>
+
+ <_>
+ 19 1 2 3 -1.
+ <_>
+ 19 2 2 1 3.
+ <_>
+
+ <_>
+ 2 0 1 2 -1.
+ <_>
+ 2 0 1 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 3 6 8 -1.
+ <_>
+ 18 3 3 4 2.
+ <_>
+ 15 7 3 4 2.
+ <_>
+
+ <_>
+ 14 5 4 2 -1.
+ <_>
+ 14 6 4 1 2.
+ <_>
+
+ <_>
+ 3 7 30 9 -1.
+ <_>
+ 13 10 10 3 9.
+ <_>
+
+ <_>
+ 9 8 12 9 -1.
+ <_>
+ 12 8 6 9 2.
+ <_>
+
+ <_>
+ 10 8 16 5 -1.
+ <_>
+ 14 8 8 5 2.
+ <_>
+
+ <_>
+ 30 1 4 10 -1.
+ <_>
+ 31 2 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 13 0 10 8 -1.
+ <_>
+ 11 2 10 4 2.
+ 1
+ <_>
+
+ <_>
+ 32 2 2 14 -1.
+ <_>
+ 32 2 1 14 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 14 2 -1.
+ <_>
+ 4 2 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 30 14 6 4 -1.
+ <_>
+ 30 14 3 4 2.
+ <_>
+
+ <_>
+ 11 13 1 4 -1.
+ <_>
+ 11 15 1 2 2.
+ <_>
+
+ <_>
+ 11 0 14 18 -1.
+ <_>
+ 18 0 7 9 2.
+ <_>
+ 11 9 7 9 2.
+ <_>
+
+ <_>
+ 0 1 20 9 -1.
+ <_>
+ 10 1 10 9 2.
+ <_>
+
+ <_>
+ 21 3 8 3 -1.
+ <_>
+ 23 3 4 3 2.
+ <_>
+
+ <_>
+ 13 9 2 4 -1.
+ <_>
+ 13 10 2 2 2.
+ <_>
+
+ <_>
+ 14 9 11 2 -1.
+ <_>
+ 14 10 11 1 2.
+ <_>
+
+ <_>
+ 0 2 36 9 -1.
+ <_>
+ 12 5 12 3 9.
+ <_>
+
+ <_>
+ 34 12 2 6 -1.
+ <_>
+ 34 15 2 3 2.
+ <_>
+
+ <_>
+ 11 4 14 6 -1.
+ <_>
+ 11 6 14 2 3.
+ <_>
+
+ <_>
+ 31 0 4 1 -1.
+ <_>
+ 31 0 2 1 2.
+ <_>
+
+ <_>
+ 1 0 4 1 -1.
+ <_>
+ 3 0 2 1 2.
+ <_>
+
+ <_>
+ 19 14 6 4 -1.
+ <_>
+ 21 14 2 4 3.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 13 14 2 4 3.
+ <_>
+
+ <_>
+ 0 14 36 1 -1.
+ <_>
+ 9 14 18 1 2.
+ <_>
+
+ <_>
+ 5 0 2 2 -1.
+ <_>
+ 5 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 26 3 5 3 -1.
+ <_>
+ 26 4 5 1 3.
+ <_>
+
+ <_>
+ 16 8 1 3 -1.
+ <_>
+ 15 9 1 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 11 2 3 -1.
+ <_>
+ 21 12 2 1 3.
+ <_>
+
+ <_>
+ 9 5 6 4 -1.
+ <_>
+ 8 6 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 31 0 2 2 -1.
+ <_>
+ 31 0 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 4 3 9 -1.
+ <_>
+ 6 7 3 3 3.
+ <_>
+
+ <_>
+ 19 0 11 2 -1.
+ <_>
+ 19 0 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 2 2 -1.
+ <_>
+ 5 0 2 1 2.
+ 1
+ <_>
+
+ <_>
+ 22 0 14 4 -1.
+ <_>
+ 29 0 7 2 2.
+ <_>
+ 22 2 7 2 2.
+ <_>
+
+ <_>
+ 15 1 4 13 -1.
+ <_>
+ 15 1 2 13 2.
+ 1
+ <_>
+
+ <_>
+ 21 3 8 4 -1.
+ <_>
+ 23 3 4 4 2.
+ <_>
+
+ <_>
+ 7 3 8 4 -1.
+ <_>
+ 9 3 4 4 2.
+ <_>
+
+ <_>
+ 32 14 2 2 -1.
+ <_>
+ 33 14 1 1 2.
+ <_>
+ 32 15 1 1 2.
+ <_>
+
+ <_>
+ 2 14 2 2 -1.
+ <_>
+ 2 14 1 1 2.
+ <_>
+ 3 15 1 1 2.
+ <_>
+
+ <_>
+ 35 5 1 12 -1.
+ <_>
+ 35 9 1 4 3.
+ <_>
+
+ <_>
+ 0 7 1 9 -1.
+ <_>
+ 0 10 1 3 3.
+ <_>
+
+ <_>
+ 12 2 15 6 -1.
+ <_>
+ 12 4 15 2 3.
+ <_>
+
+ <_>
+ 0 17 2 1 -1.
+ <_>
+ 1 17 1 1 2.
+ <_>
+
+ <_>
+ 34 17 2 1 -1.
+ <_>
+ 34 17 1 1 2.
+ <_>
+
+ <_>
+ 0 17 2 1 -1.
+ <_>
+ 1 17 1 1 2.
+ <_>
+
+ <_>
+ 11 0 16 10 -1.
+ <_>
+ 15 0 8 10 2.
+ <_>
+
+ <_>
+ 5 10 24 8 -1.
+ <_>
+ 5 10 12 4 2.
+ <_>
+ 17 14 12 4 2.
+ <_>
+
+ <_>
+ 27 4 3 3 -1.
+ <_>
+ 27 5 3 1 3.
+ <_>
+
+ <_>
+ 6 6 14 12 -1.
+ <_>
+ 6 6 7 6 2.
+ <_>
+ 13 12 7 6 2.
+ <_>
+
+ <_>
+ 6 5 24 6 -1.
+ <_>
+ 14 7 8 2 9.
+ <_>
+
+ <_>
+ 12 6 3 4 -1.
+ <_>
+ 12 7 3 2 2.
+ <_>
+
+ <_>
+ 30 7 6 10 -1.
+ <_>
+ 33 7 3 5 2.
+ <_>
+ 30 12 3 5 2.
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 3 12 3 3 2.
+ <_>
+ 6 15 3 3 2.
+ <_>
+
+ <_>
+ 20 0 13 2 -1.
+ <_>
+ 20 0 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 10 24 6 -1.
+ <_>
+ 14 12 8 2 9.
+ <_>
+
+ <_>
+ 15 4 8 8 -1.
+ <_>
+ 19 4 4 4 2.
+ <_>
+ 15 8 4 4 2.
+ <_>
+
+ <_>
+ 13 4 8 8 -1.
+ <_>
+ 13 4 4 4 2.
+ <_>
+ 17 8 4 4 2.
+ <_>
+
+ <_>
+ 34 16 2 2 -1.
+ <_>
+ 34 16 1 2 2.
+ <_>
+
+ <_>
+ 12 6 3 3 -1.
+ <_>
+ 12 7 3 1 3.
+ <_>
+
+ <_>
+ 21 7 4 4 -1.
+ <_>
+ 21 8 4 2 2.
+ <_>
+
+ <_>
+ 2 8 30 4 -1.
+ <_>
+ 2 8 15 2 2.
+ <_>
+ 17 10 15 2 2.
+ <_>
+
+ <_>
+ 27 4 3 4 -1.
+ <_>
+ 27 5 3 2 2.
+ <_>
+
+ <_>
+ 5 4 3 4 -1.
+ <_>
+ 5 5 3 2 2.
+ <_>
+
+ <_>
+ 34 16 2 2 -1.
+ <_>
+ 34 16 1 2 2.
+ <_>
+
+ <_>
+ 0 16 34 2 -1.
+ <_>
+ 0 16 17 1 2.
+ <_>
+ 17 17 17 1 2.
+ <_>
+
+ <_>
+ 12 5 15 12 -1.
+ <_>
+ 12 9 15 4 3.
+ <_>
+
+ <_>
+ 0 8 36 6 -1.
+ <_>
+ 12 10 12 2 9.
+ <_>
+
+ <_>
+ 25 4 6 2 -1.
+ <_>
+ 25 5 6 1 2.
+ <_>
+
+ <_>
+ 0 17 2 1 -1.
+ <_>
+ 1 17 1 1 2.
+ <_>
+
+ <_>
+ 16 0 9 9 -1.
+ <_>
+ 19 0 3 9 3.
+ <_>
+
+ <_>
+ 11 0 9 9 -1.
+ <_>
+ 14 0 3 9 3.
+ <_>
+
+ <_>
+ 20 5 16 5 -1.
+ <_>
+ 24 5 8 5 2.
+ <_>
+
+ <_>
+ 0 3 16 9 -1.
+ <_>
+ 4 3 8 9 2.
+ <_>
+
+ <_>
+ 7 6 26 12 -1.
+ <_>
+ 20 6 13 6 2.
+ <_>
+ 7 12 13 6 2.
+ <_>
+
+ <_>
+ 5 6 24 12 -1.
+ <_>
+ 5 6 12 6 2.
+ <_>
+ 17 12 12 6 2.
+ <_>
+
+ <_>
+ 17 4 3 12 -1.
+ <_>
+ 18 4 1 12 3.
+ <_>
+
+ <_>
+ 1 11 6 1 -1.
+ <_>
+ 3 13 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 21 12 14 2 -1.
+ <_>
+ 28 12 7 1 2.
+ <_>
+ 21 13 7 1 2.
+ <_>
+
+ <_>
+ 1 13 2 3 -1.
+ <_>
+ 2 13 1 3 2.
+ <_>
+
+ <_>
+ 26 8 3 2 -1.
+ <_>
+ 27 9 1 2 3.
+ 1
+ <_>
+
+ <_>
+ 10 8 2 3 -1.
+ <_>
+ 9 9 2 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 0 18 18 -1.
+ <_>
+ 12 0 9 18 2.
+ <_>
+
+ <_>
+ 8 9 3 3 -1.
+ <_>
+ 7 10 3 1 3.
+ 1
+ <_>
+
+ <_>
+ 28 5 5 6 -1.
+ <_>
+ 28 7 5 2 3.
+ <_>
+
+ <_>
+ 9 1 9 8 -1.
+ <_>
+ 9 1 9 4 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 36 2 -1.
+ <_>
+ 18 0 18 1 2.
+ <_>
+ 0 1 18 1 2.
+ <_>
+
+ <_>
+ 5 0 26 6 -1.
+ <_>
+ 5 0 13 3 2.
+ <_>
+ 18 3 13 3 2.
+ <_>
+
+ <_>
+ 28 3 3 3 -1.
+ <_>
+ 28 4 3 1 3.
+ <_>
+
+ <_>
+ 5 3 5 3 -1.
+ <_>
+ 5 4 5 1 3.
+ <_>
+
+ <_>
+ 14 12 8 2 -1.
+ <_>
+ 16 12 4 2 2.
+ <_>
+
+ <_>
+ 13 0 9 14 -1.
+ <_>
+ 16 0 3 14 3.
+ <_>
+
+ <_>
+ 23 0 10 1 -1.
+ <_>
+ 23 0 5 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 14 2 2 -1.
+ <_>
+ 8 14 1 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 12 36 3 -1.
+ <_>
+ 12 13 12 1 9.
+ <_>
+
+ <_>
+ 0 13 34 4 -1.
+ <_>
+ 0 13 17 2 2.
+ <_>
+ 17 15 17 2 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_upperbody.xml b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_upperbody.xml
new file mode 100644
index 0000000000000000000000000000000000000000..3c75aa6927762b1a54a104c9926cd0a8d4891e17
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/data/haarcascade_upperbody.xml
@@ -0,0 +1,28134 @@
+
+
+
+BOOST
+ HAAR
+ 18
+ 22
+
+ 152
+
+ 0
+ 30
+
+ <_>
+ 20
+ -1.1264339685440063e+00
+
+ <_>
+
+ 0 -1 0 -1.3696029782295227e-02
+
+ 4.5076468586921692e-01 -4.2179030179977417e-01
+ <_>
+
+ 0 -1 1 1.2441449798643589e-02
+
+ 1.6493250429630280e-01 -7.4793487787246704e-01
+ <_>
+
+ 0 -1 2 -2.7094660326838493e-03
+
+ 3.1004700064659119e-01 -3.7617141008377075e-01
+ <_>
+
+ 0 -1 3 -1.0008010268211365e-01
+
+ 7.6182198524475098e-01 -7.4556976556777954e-02
+ <_>
+
+ 0 -1 4 -2.5114119052886963e-01
+
+ -6.4154028892517090e-01 1.5139220654964447e-01
+ <_>
+
+ 0 -1 5 -1.0510650277137756e-01
+
+ 7.1459370851516724e-01 -1.4498579502105713e-01
+ <_>
+
+ 0 -1 6 -8.8448017835617065e-02
+
+ 7.5773179531097412e-01 -6.8586893379688263e-02
+ <_>
+
+ 0 -1 7 1.0874910280108452e-02
+
+ 1.4610609412193298e-01 -5.4263710975646973e-01
+ <_>
+
+ 0 -1 8 1.2690570205450058e-02
+
+ 1.1674589663743973e-01 -4.9649459123611450e-01
+ <_>
+
+ 0 -1 9 -3.2198399305343628e-02
+
+ -3.8529390096664429e-01 9.8437972366809845e-02
+ <_>
+
+ 0 -1 10 -3.4077179152518511e-03
+
+ 2.5200870633125305e-01 -2.2382549941539764e-01
+ <_>
+
+ 0 -1 11 3.0324390158057213e-02
+
+ -1.0534449666738510e-01 6.5735417604446411e-01
+ <_>
+
+ 0 -1 12 4.1930507868528366e-03
+
+ 1.2872399389743805e-01 -5.3160661458969116e-01
+ <_>
+
+ 0 -1 13 8.0501407384872437e-02
+
+ 4.1696660220623016e-02 -7.2123032808303833e-01
+ <_>
+
+ 0 -1 14 -3.4822080284357071e-02
+
+ -4.9751108884811401e-01 1.3959939777851105e-01
+ <_>
+
+ 0 -1 15 7.5519368983805180e-03
+
+ -9.2147678136825562e-02 1.1294340342283249e-01
+ <_>
+
+ 0 -1 16 -1.7572140321135521e-02
+
+ -5.6784427165985107e-01 9.3572810292243958e-02
+ <_>
+
+ 0 -1 17 5.2012042142450809e-03
+
+ -7.9238079488277435e-02 6.1878960579633713e-02
+ <_>
+
+ 0 -1 18 -3.0798919498920441e-02
+
+ -5.6658512353897095e-01 9.5271490514278412e-02
+ <_>
+
+ 0 -1 19 -1.3465429656207561e-03
+
+ 2.4011470377445221e-01 -2.6026639342308044e-01
+ <_>
+ 33
+ -1.1226719617843628e+00
+
+ <_>
+
+ 0 -1 20 1.9108939450234175e-03
+
+ -4.6240958571434021e-01 3.0612170696258545e-01
+ <_>
+
+ 0 -1 21 9.5464065670967102e-03
+
+ 9.1956138610839844e-02 -5.3501170873641968e-01
+ <_>
+
+ 0 -1 22 -4.3402809649705887e-02
+
+ 5.6817841529846191e-01 -1.1284930258989334e-01
+ <_>
+
+ 0 -1 23 5.0386030226945877e-02
+
+ -8.0316931009292603e-02 7.3521858453750610e-01
+ <_>
+
+ 0 -1 24 -6.8480317713692784e-04
+
+ 2.5798648595809937e-01 -2.8049409389495850e-01
+ <_>
+
+ 0 -1 25 1.1548049747943878e-01
+
+ 9.2065572738647461e-02 -7.5556892156600952e-01
+ <_>
+
+ 0 -1 26 -1.9348369678482413e-03
+
+ 2.9440790414810181e-01 -2.4102710187435150e-01
+ <_>
+
+ 0 -1 27 -4.3528810143470764e-02
+
+ 4.9202969670295715e-01 -3.9650101214647293e-02
+ <_>
+
+ 0 -1 28 -3.0218150466680527e-02
+
+ 7.7227920293807983e-01 -8.6786523461341858e-02
+ <_>
+
+ 0 -1 29 2.4536589160561562e-02
+
+ 9.5944821834564209e-02 -4.8642969131469727e-01
+ <_>
+
+ 0 -1 30 2.3958990350365639e-02
+
+ 1.0437840223312378e-01 -5.1219838857650757e-01
+ <_>
+
+ 0 -1 31 -2.5370830669999123e-02
+
+ -3.1981548666954041e-01 9.1486573219299316e-02
+ <_>
+
+ 0 -1 32 -1.8606419907882810e-03
+
+ 2.2783969342708588e-01 -2.4307970702648163e-01
+ <_>
+
+ 0 -1 33 2.2550800815224648e-02
+
+ 6.9207556545734406e-02 -3.0054280161857605e-01
+ <_>
+
+ 0 -1 34 -4.9752090126276016e-02
+
+ -6.1078047752380371e-01 9.4472773373126984e-02
+ <_>
+
+ 0 -1 35 -2.6602389290928841e-02
+
+ 5.9581768512725830e-01 -9.2046052217483521e-02
+ <_>
+
+ 0 -1 36 1.0760000348091125e-01
+
+ 1.0278519988059998e-01 -5.4303371906280518e-01
+ <_>
+
+ 0 -1 37 1.7690699547529221e-02
+
+ 6.6057138144969940e-02 -6.3213908672332764e-01
+ <_>
+
+ 0 -1 38 -6.2409918755292892e-02
+
+ 6.8724197149276733e-01 -6.7070558667182922e-02
+ <_>
+
+ 0 -1 39 -1.9801619928330183e-03
+
+ 9.4411551952362061e-02 -8.7819486856460571e-02
+ <_>
+
+ 0 -1 40 6.3668429851531982e-02
+
+ 1.1531739681959152e-01 -4.8129761219024658e-01
+ <_>
+
+ 0 -1 41 -3.0797829851508141e-02
+
+ 3.5854768753051758e-01 -1.2593799829483032e-01
+ <_>
+
+ 0 -1 42 -1.8353419727645814e-04
+
+ 1.4788399636745453e-01 -2.8546810150146484e-01
+ <_>
+
+ 0 -1 43 1.7074620118364692e-03
+
+ 7.9929657280445099e-02 -2.5233370065689087e-01
+ <_>
+
+ 0 -1 44 -1.5325199812650681e-02
+
+ -5.7711857557296753e-01 9.8908327519893646e-02
+ <_>
+
+ 0 -1 45 4.1389189660549164e-02
+
+ -6.5550796687602997e-02 5.7363802194595337e-01
+ <_>
+
+ 0 -1 46 -4.5577771379612386e-04
+
+ 2.2593089938163757e-01 -1.9105580449104309e-01
+ <_>
+
+ 0 -1 47 -1.3455689884722233e-02
+
+ -4.0233930945396423e-01 8.6477622389793396e-02
+ <_>
+
+ 0 -1 48 -3.7978399544954300e-02
+
+ 5.5257588624954224e-01 -8.1541016697883606e-02
+ <_>
+
+ 0 -1 49 -1.7197500914335251e-02
+
+ -1.8363009393215179e-01 5.1999870687723160e-02
+ <_>
+
+ 0 -1 50 -1.2581580085679889e-03
+
+ 1.8830040097236633e-01 -2.5726661086082458e-01
+ <_>
+
+ 0 -1 51 6.7725107073783875e-02
+
+ -8.0956451594829559e-02 7.1803241968154907e-01
+ <_>
+
+ 0 -1 52 3.5489428788423538e-02
+
+ 1.0068070143461227e-01 -5.3774142265319824e-01
+ <_>
+ 29
+ -1.0127470493316650e+00
+
+ <_>
+
+ 0 -1 53 -5.3695798851549625e-03
+
+ 2.7479499578475952e-01 -3.4178960323333740e-01
+ <_>
+
+ 0 -1 54 6.2695867381989956e-04
+
+ -9.8646633327007294e-02 1.0728420317173004e-01
+ <_>
+
+ 0 -1 55 -1.6484269872307777e-02
+
+ -6.4972907304763794e-01 9.6037752926349640e-02
+ <_>
+
+ 0 -1 56 -2.2104099392890930e-02
+
+ -4.5984488725662231e-01 1.6304630041122437e-01
+ <_>
+
+ 0 -1 57 1.1904139816761017e-01
+
+ -9.9600397050380707e-02 7.3729759454727173e-01
+ <_>
+
+ 0 -1 58 -2.0222070161253214e-03
+
+ 2.1029269695281982e-01 -2.4577130377292633e-01
+ <_>
+
+ 0 -1 59 6.7500352859497070e-02
+
+ -1.2467789649963379e-01 5.7654231786727905e-01
+ <_>
+
+ 0 -1 60 -1.9655939936637878e-01
+
+ -6.0891747474670410e-01 9.9672056734561920e-02
+ <_>
+
+ 0 -1 61 4.9431171268224716e-02
+
+ 1.3752749562263489e-01 -4.5580869913101196e-01
+ <_>
+
+ 0 -1 62 2.3380089551210403e-02
+
+ 4.7141890972852707e-02 -3.5027709603309631e-01
+ <_>
+
+ 0 -1 63 1.3998650247231126e-03
+
+ -2.0643049478530884e-01 2.4322299659252167e-01
+ <_>
+
+ 0 -1 64 1.1432689614593983e-02
+
+ 5.5187370628118515e-02 -3.2619899511337280e-01
+ <_>
+
+ 0 -1 65 4.8775069415569305e-02
+
+ -6.8992510437965393e-02 7.1171808242797852e-01
+ <_>
+
+ 0 -1 66 6.5284021198749542e-02
+
+ 3.7155740428715944e-03 5.9318971633911133e-01
+ <_>
+
+ 0 -1 67 6.1603228095918894e-04
+
+ -2.3272520303726196e-01 2.0441530644893646e-01
+ <_>
+
+ 0 -1 68 -1.0527499951422215e-02
+
+ -3.1773790717124939e-01 1.0171309858560562e-01
+ <_>
+
+ 0 -1 69 1.6231339424848557e-02
+
+ 9.1734193265438080e-02 -4.7143009305000305e-01
+ <_>
+
+ 0 -1 70 3.8958500954322517e-04
+
+ -1.2997549772262573e-01 1.3475489616394043e-01
+ <_>
+
+ 0 -1 71 -4.4165689498186111e-02
+
+ -6.0331028699874878e-01 6.4766876399517059e-02
+ <_>
+
+ 0 -1 72 -1.3663209974765778e-02
+
+ -5.2762842178344727e-01 6.3485741615295410e-02
+ <_>
+
+ 0 -1 73 -8.8231859263032675e-04
+
+ 1.4510250091552734e-01 -2.7845200896263123e-01
+ <_>
+
+ 0 -1 74 -2.7819190174341202e-02
+
+ 4.3640869855880737e-01 -8.5191860795021057e-02
+ <_>
+
+ 0 -1 75 6.2560990452766418e-02
+
+ 1.0027889907360077e-01 -4.2235919833183289e-01
+ <_>
+
+ 0 -1 76 -4.4808178790844977e-04
+
+ 1.4851489663124084e-01 -1.7731289565563202e-01
+ <_>
+
+ 0 -1 77 -2.1363180130720139e-02
+
+ -6.1334460973739624e-01 6.0539398342370987e-02
+ <_>
+
+ 0 -1 78 -6.9122329354286194e-02
+
+ -8.6845761537551880e-01 3.9347749203443527e-02
+ <_>
+
+ 0 -1 79 -3.0542839318513870e-02
+
+ -6.4021718502044678e-01 4.9593821167945862e-02
+ <_>
+
+ 0 -1 80 -1.0101160034537315e-02
+
+ -1.6199150681495667e-01 5.7256899774074554e-02
+ <_>
+
+ 0 -1 81 -2.2010109387338161e-04
+
+ 2.1350930631160736e-01 -2.0198999345302582e-01
+ <_>
+ 42
+ -1.0684469938278198e+00
+
+ <_>
+
+ 0 -1 82 5.7967850007116795e-03
+
+ -3.3844178915023804e-01 2.5066271424293518e-01
+ <_>
+
+ 0 -1 83 6.3795179128646851e-02
+
+ -4.2111620306968689e-02 3.5746571421623230e-01
+ <_>
+
+ 0 -1 84 -6.4332038164138794e-02
+
+ -5.0660789012908936e-01 1.1717739701271057e-01
+ <_>
+
+ 0 -1 85 -1.1574289947748184e-01
+
+ -5.6678497791290283e-01 9.5880903303623199e-02
+ <_>
+
+ 0 -1 86 -3.9005130529403687e-03
+
+ -4.1498228907585144e-01 1.4858320355415344e-01
+ <_>
+
+ 0 -1 87 1.2512929737567902e-02
+
+ 5.3696669638156891e-02 -1.4163960516452789e-01
+ <_>
+
+ 0 -1 88 1.5871099894866347e-03
+
+ -2.5962340831756592e-01 1.9418330490589142e-01
+ <_>
+
+ 0 -1 89 1.6291120648384094e-01
+
+ -6.1243768781423569e-02 7.8567212820053101e-01
+ <_>
+
+ 0 -1 90 -3.3258220553398132e-01
+
+ 7.8020131587982178e-01 -4.4036459177732468e-02
+ <_>
+
+ 0 -1 91 -1.0288899764418602e-02
+
+ -1.5289680659770966e-01 6.2096230685710907e-02
+ <_>
+
+ 0 -1 92 2.8956029564142227e-02
+
+ 8.4707796573638916e-02 -4.7820711135864258e-01
+ <_>
+
+ 0 -1 93 -3.2221511355601251e-04
+
+ 1.3951259851455688e-01 -1.8819390237331390e-01
+ <_>
+
+ 0 -1 94 1.5835289657115936e-01
+
+ 6.6667810082435608e-02 -5.4572361707687378e-01
+ <_>
+
+ 0 -1 95 -4.2584311217069626e-02
+
+ 2.7040338516235352e-01 -5.6654509156942368e-02
+ <_>
+
+ 0 -1 96 2.7505140751600266e-02
+
+ 4.9271158874034882e-02 -7.3157638311386108e-01
+ <_>
+
+ 0 -1 97 8.6879700422286987e-02
+
+ -1.7532400786876678e-02 8.6782652139663696e-01
+ <_>
+
+ 0 -1 98 -2.0130439661443233e-03
+
+ 1.6593940556049347e-01 -2.5266230106353760e-01
+ <_>
+
+ 0 -1 99 4.2330170981585979e-04
+
+ 9.4223551452159882e-02 -2.4629700183868408e-01
+ <_>
+
+ 0 -1 100 1.5194499865174294e-02
+
+ 7.3695637285709381e-02 -5.0068622827529907e-01
+ <_>
+
+ 0 -1 101 -6.1203669756650925e-03
+
+ 2.1381899714469910e-01 -1.6738100349903107e-01
+ <_>
+
+ 0 -1 102 2.0660240203142166e-02
+
+ -8.0636158585548401e-02 5.7828348875045776e-01
+ <_>
+
+ 0 -1 103 -6.0398250818252563e-02
+
+ -6.3411772251129150e-01 5.0899010151624680e-02
+ <_>
+
+ 0 -1 104 3.5386480391025543e-02
+
+ 7.3191151022911072e-02 -5.6426662206649780e-01
+ <_>
+
+ 0 -1 105 -6.5997838973999023e-02
+
+ 3.2833808660507202e-01 -2.6310259476304054e-02
+ <_>
+
+ 0 -1 106 1.1004590196534991e-03
+
+ -2.3114609718322754e-01 2.0206519961357117e-01
+ <_>
+
+ 0 -1 107 8.4488153457641602e-02
+
+ 7.4589841067790985e-02 -4.3710339069366455e-01
+ <_>
+
+ 0 -1 108 -2.9235990718007088e-02
+
+ 6.5064769983291626e-01 -5.4531838744878769e-02
+ <_>
+
+ 0 -1 109 -3.3916950225830078e-02
+
+ -2.8804349899291992e-01 3.2172881066799164e-02
+ <_>
+
+ 0 -1 110 -7.9108700156211853e-03
+
+ -3.3660379052162170e-01 1.0100690275430679e-01
+ <_>
+
+ 0 -1 111 5.1930431276559830e-02
+
+ 3.2920960336923599e-02 -1.3176530599594116e-01
+ <_>
+
+ 0 -1 112 -6.8586103618144989e-02
+
+ 5.2153557538986206e-01 -6.6718578338623047e-02
+ <_>
+
+ 0 -1 113 -1.9451669650152326e-03
+
+ 1.5396790206432343e-01 -1.9895760715007782e-01
+ <_>
+
+ 0 -1 114 7.1366228163242340e-02
+
+ -8.2927159965038300e-02 4.5292338728904724e-01
+ <_>
+
+ 0 -1 115 -2.6624239981174469e-02
+
+ -4.4009739160537720e-01 1.0267119854688644e-01
+ <_>
+
+ 0 -1 116 2.5266060605645180e-02
+
+ 5.5799201130867004e-02 -5.5569338798522949e-01
+ <_>
+
+ 0 -1 117 5.5255689658224583e-03
+
+ -1.3640299439430237e-01 2.8255200386047363e-01
+ <_>
+
+ 0 -1 118 -2.9929999727755785e-03
+
+ -3.2421571016311646e-01 1.2122060358524323e-01
+ <_>
+
+ 0 -1 119 2.2192109376192093e-02
+
+ -6.0741018503904343e-02 4.3473160266876221e-01
+ <_>
+
+ 0 -1 120 -9.4268741086125374e-03
+
+ -3.3458408713340759e-01 1.0029699653387070e-01
+ <_>
+
+ 0 -1 121 3.4395330585539341e-03
+
+ -8.3829909563064575e-02 1.7925940454006195e-01
+ <_>
+
+ 0 -1 122 -3.2996390946209431e-03
+
+ 1.9990429282188416e-01 -2.1068470180034637e-01
+ <_>
+
+ 0 -1 123 2.6152150705456734e-02
+
+ -8.0667406320571899e-02 3.5581269860267639e-01
+ <_>
+ 45
+ -1.1520069837570190e+00
+
+ <_>
+
+ 0 -1 124 -2.2792650386691093e-02
+
+ 4.0725260972976685e-01 -3.3609920740127563e-01
+ <_>
+
+ 0 -1 125 -5.7334620505571365e-03
+
+ 2.6882189512252808e-01 -2.2775350511074066e-01
+ <_>
+
+ 0 -1 126 9.6941202878952026e-02
+
+ -8.0905012786388397e-02 7.4328738451004028e-01
+ <_>
+
+ 0 -1 127 -2.8288999572396278e-02
+
+ 4.5610108971595764e-01 -6.1096340417861938e-02
+ <_>
+
+ 0 -1 128 3.8522849790751934e-03
+
+ -2.5241801142692566e-01 2.0907109975814819e-01
+ <_>
+
+ 0 -1 129 2.3100129328668118e-03
+
+ -1.4713400602340698e-01 1.5460389852523804e-01
+ <_>
+
+ 0 -1 130 1.1361920041963458e-03
+
+ 1.7680479586124420e-01 -3.0537289381027222e-01
+ <_>
+
+ 0 -1 131 2.4962890893220901e-02
+
+ -1.2652909755706787e-01 3.7442651391029358e-01
+ <_>
+
+ 0 -1 132 -5.8984099887311459e-03
+
+ 2.6738989353179932e-01 -1.7762570083141327e-01
+ <_>
+
+ 0 -1 133 1.1804900132119656e-02
+
+ 6.6077977418899536e-02 -3.3482131361961365e-01
+ <_>
+
+ 0 -1 134 6.4400159753859043e-03
+
+ 1.0994800180196762e-01 -3.6303481459617615e-01
+ <_>
+
+ 0 -1 135 -8.9407369494438171e-02
+
+ -4.3580460548400879e-01 1.4944310300052166e-02
+ <_>
+
+ 0 -1 136 -3.1404230743646622e-02
+
+ 6.9523447751998901e-01 -5.4854288697242737e-02
+ <_>
+
+ 0 -1 137 -1.4607949554920197e-01
+
+ -2.5650060176849365e-01 5.6956540793180466e-02
+ <_>
+
+ 0 -1 138 2.1142649929970503e-03
+
+ -2.4987550079822540e-01 1.6792559623718262e-01
+ <_>
+
+ 0 -1 139 -1.5119359828531742e-02
+
+ -3.0179870128631592e-01 1.0393589735031128e-01
+ <_>
+
+ 0 -1 140 2.5620959699153900e-02
+
+ -7.4821300804615021e-02 5.3600782155990601e-01
+ <_>
+
+ 0 -1 141 -1.4417800307273865e-01
+
+ -2.0490899682044983e-01 7.4457786977291107e-02
+ <_>
+
+ 0 -1 142 2.5954779237508774e-02
+
+ -9.0574868023395538e-02 4.8442208766937256e-01
+ <_>
+
+ 0 -1 143 -2.1130720153450966e-02
+
+ -2.2689810395240784e-01 6.4876057207584381e-02
+ <_>
+
+ 0 -1 144 1.6474459320306778e-02
+
+ 1.0768000036478043e-01 -3.6570599675178528e-01
+ <_>
+
+ 0 -1 145 1.0922150313854218e-01
+
+ 5.6827351450920105e-02 -3.4728559851646423e-01
+ <_>
+
+ 0 -1 146 -7.4581061198841780e-05
+
+ 1.3904270529747009e-01 -2.5942608714103699e-01
+ <_>
+
+ 0 -1 147 -2.7753600850701332e-02
+
+ 3.8111299276351929e-01 -4.2896129190921783e-02
+ <_>
+
+ 0 -1 148 3.2721430063247681e-02
+
+ -9.0872153639793396e-02 3.9289179444313049e-01
+ <_>
+
+ 0 -1 149 5.5606258101761341e-03
+
+ 8.4002248942852020e-02 -1.9396039843559265e-01
+ <_>
+
+ 0 -1 150 -1.0710290074348450e-01
+
+ -5.8981472253799438e-01 5.6862760335206985e-02
+ <_>
+
+ 0 -1 151 -8.0517623573541641e-03
+
+ 1.1790599673986435e-01 -1.1595659703016281e-01
+ <_>
+
+ 0 -1 152 -1.3850019872188568e-01
+
+ -9.0805321931838989e-01 4.1411358863115311e-02
+ <_>
+
+ 0 -1 153 2.8620919212698936e-02
+
+ 1.9928589463233948e-02 -7.3697662353515625e-01
+ <_>
+
+ 0 -1 154 2.6208970695734024e-02
+
+ -6.1577551066875458e-02 6.0899931192398071e-01
+ <_>
+
+ 0 -1 155 2.6527039706707001e-02
+
+ 5.7193860411643982e-02 -6.2992326915264130e-02
+ <_>
+
+ 0 -1 156 -4.4622488319873810e-02
+
+ -3.3318150043487549e-01 9.3214571475982666e-02
+ <_>
+
+ 0 -1 157 -1.4283119700849056e-02
+
+ 1.9125230610370636e-01 -1.1530569940805435e-01
+ <_>
+
+ 0 -1 158 -1.9681209232658148e-03
+
+ -3.1295120716094971e-01 9.9682807922363281e-02
+ <_>
+
+ 0 -1 159 5.2851080894470215e-02
+
+ -5.8919548988342285e-02 5.7887911796569824e-01
+ <_>
+
+ 0 -1 160 -6.3711861148476601e-03
+
+ 1.9182190299034119e-01 -1.9094540178775787e-01
+ <_>
+
+ 0 -1 161 -6.4727910794317722e-03
+
+ -2.4721039831638336e-01 1.2252929806709290e-01
+ <_>
+
+ 0 -1 162 -1.6690989956259727e-02
+
+ -4.9174660444259644e-01 5.0315100699663162e-02
+ <_>
+
+ 0 -1 163 -1.4882409945130348e-02
+
+ 1.9646610319614410e-01 -5.8250389993190765e-02
+ <_>
+
+ 0 -1 164 1.7529709264636040e-02
+
+ 7.6357498764991760e-02 -3.6559268832206726e-01
+ <_>
+
+ 0 -1 165 4.2221389710903168e-02
+
+ -3.1560491770505905e-02 3.6011269688606262e-01
+ <_>
+
+ 0 -1 166 -6.5581746399402618e-02
+
+ 3.4334710240364075e-01 -8.8556960225105286e-02
+ <_>
+
+ 0 -1 167 1.6703210771083832e-02
+
+ 4.8210039734840393e-02 -1.5273620188236237e-01
+ <_>
+
+ 0 -1 168 -6.9328742101788521e-03
+
+ -3.0573639273643494e-01 1.1821140348911285e-01
+ <_>
+ 46
+ -1.0648390054702759e+00
+
+ <_>
+
+ 0 -1 169 -6.3434438779950142e-03
+
+ 3.3840280771255493e-01 -3.3474850654602051e-01
+ <_>
+
+ 0 -1 170 5.2472548559308052e-03
+
+ -9.3596532940864563e-02 1.6791179776191711e-01
+ <_>
+
+ 0 -1 171 -3.6585088819265366e-02
+
+ 5.3676098585128784e-01 -8.5433527827262878e-02
+ <_>
+
+ 0 -1 172 5.3153699263930321e-03
+
+ -1.2804119288921356e-01 1.4443910121917725e-01
+ <_>
+
+ 0 -1 173 -3.9569609798491001e-03
+
+ 1.8605449795722961e-01 -2.2311410307884216e-01
+ <_>
+
+ 0 -1 174 3.3965419977903366e-02
+
+ 2.7835709974169731e-02 -5.1203387975692749e-01
+ <_>
+
+ 0 -1 175 -1.4852879568934441e-02
+
+ -4.6814951300621033e-01 1.1351560056209564e-01
+ <_>
+
+ 0 -1 176 -2.9641329310834408e-03
+
+ 2.6591798663139343e-01 -2.8183770179748535e-01
+ <_>
+
+ 0 -1 177 -1.0795590281486511e-01
+
+ -5.7527697086334229e-01 1.0991639643907547e-01
+ <_>
+
+ 0 -1 178 2.1237600594758987e-02
+
+ -1.0451590269804001e-01 4.6613770723342896e-01
+ <_>
+
+ 0 -1 179 -2.6189640164375305e-02
+
+ 4.2544820904731750e-01 -9.2278912663459778e-02
+ <_>
+
+ 0 -1 180 -3.5010561347007751e-02
+
+ -7.1801197528839111e-01 7.2877250611782074e-02
+ <_>
+
+ 0 -1 181 1.5026619621494319e-05
+
+ -2.7199760079383850e-01 1.0682159662246704e-01
+ <_>
+
+ 0 -1 182 -2.7760250493884087e-02
+
+ -5.0185692310333252e-01 1.0118210315704346e-01
+ <_>
+
+ 0 -1 183 -3.7439178675413132e-02
+
+ -3.7141519784927368e-01 8.3709038794040680e-02
+ <_>
+
+ 0 -1 184 -1.4152259565889835e-02
+
+ 3.0982801318168640e-01 -7.3767662048339844e-02
+ <_>
+
+ 0 -1 185 -1.2331079691648483e-02
+
+ -3.9507681131362915e-01 8.3215177059173584e-02
+ <_>
+
+ 0 -1 186 2.6666349731385708e-03
+
+ -1.3776129484176636e-01 2.4245689809322357e-01
+ <_>
+
+ 0 -1 187 -2.9443199746310711e-03
+
+ 2.4460780620574951e-01 -1.3937890529632568e-01
+ <_>
+
+ 0 -1 188 -1.5788920223712921e-01
+
+ -5.6832242012023926e-01 3.6140721291303635e-02
+ <_>
+
+ 0 -1 189 2.1553030237555504e-03
+
+ 8.3660557866096497e-02 -4.1380259394645691e-01
+ <_>
+
+ 0 -1 190 -8.5367091000080109e-02
+
+ -5.7053291797637939e-01 5.2995659410953522e-02
+ <_>
+
+ 0 -1 191 3.4761740826070309e-03
+
+ -1.2189819663763046e-01 2.6553291082382202e-01
+ <_>
+
+ 0 -1 192 -2.4104220792651176e-02
+
+ -5.2315437793731689e-01 2.5505660101771355e-02
+ <_>
+
+ 0 -1 193 -3.0729150399565697e-02
+
+ -4.6735408902168274e-01 7.0844426751136780e-02
+ <_>
+
+ 0 -1 194 -1.1937420349568129e-03
+
+ 1.4596860110759735e-01 -2.3086270689964294e-01
+ <_>
+
+ 0 -1 195 3.2304100692272186e-02
+
+ -6.5350927412509918e-02 5.5091381072998047e-01
+ <_>
+
+ 0 -1 196 1.4955499768257141e-01
+
+ 1.5002089552581310e-02 -8.9400452375411987e-01
+ <_>
+
+ 0 -1 197 -4.7254669480025768e-03
+
+ 1.4857460558414459e-01 -2.1019940078258514e-01
+ <_>
+
+ 0 -1 198 3.6360718309879303e-02
+
+ 2.8547950088977814e-02 -6.3668930530548096e-01
+ <_>
+
+ 0 -1 199 -2.7109999209642410e-02
+
+ 4.9661910533905029e-01 -7.3661573231220245e-02
+ <_>
+
+ 0 -1 200 -9.5398407429456711e-03
+
+ -1.9384680688381195e-01 5.8507081121206284e-02
+ <_>
+
+ 0 -1 201 1.0541989654302597e-01
+
+ -7.4785731732845306e-02 4.3781110644340515e-01
+ <_>
+
+ 0 -1 202 6.3801761716604233e-03
+
+ 5.3971529006958008e-02 -3.3829790353775024e-01
+ <_>
+
+ 0 -1 203 -2.2759849205613136e-02
+
+ -5.9374898672103882e-01 4.8046529293060303e-02
+ <_>
+
+ 0 -1 204 -1.7323749139904976e-02
+
+ -1.6034699976444244e-01 1.5187160111963749e-02
+ <_>
+
+ 0 -1 205 2.9854409396648407e-02
+
+ -6.5698243677616119e-02 4.5057341456413269e-01
+ <_>
+
+ 0 -1 206 2.3269839584827423e-02
+
+ 3.8805499672889709e-02 -3.5354879498481750e-01
+ <_>
+
+ 0 -1 207 4.0833871811628342e-02
+
+ 4.9404840916395187e-02 -5.6222450733184814e-01
+ <_>
+
+ 0 -1 208 -1.2498889863491058e-01
+
+ 6.7763668298721313e-01 -1.5484940260648727e-02
+ <_>
+
+ 0 -1 209 -6.5579377114772797e-02
+
+ 6.7363232374191284e-01 -4.5269690454006195e-02
+ <_>
+
+ 0 -1 210 -3.7901759147644043e-01
+
+ -4.9853721261024475e-01 2.3955229669809341e-02
+ <_>
+
+ 0 -1 211 2.9792459681630135e-03
+
+ -1.8436419963836670e-01 1.6265830397605896e-01
+ <_>
+
+ 0 -1 212 1.3803659938275814e-02
+
+ 6.3698217272758484e-02 -4.3389800190925598e-01
+ <_>
+
+ 0 -1 213 3.5606899764388800e-03
+
+ -1.1455070227384567e-01 2.3618610203266144e-01
+ <_>
+
+ 0 -1 214 8.8772783055901527e-03
+
+ 8.6416840553283691e-02 -1.7590980231761932e-01
+ <_>
+ 45
+ -9.5069932937622070e-01
+
+ <_>
+
+ 0 -1 215 -6.7344820126891136e-03
+
+ 3.0758589506149292e-01 -2.9761791229248047e-01
+ <_>
+
+ 0 -1 216 -1.3902880251407623e-02
+
+ 2.0400699973106384e-01 -2.2967250645160675e-01
+ <_>
+
+ 0 -1 217 -4.1963551193475723e-02
+
+ -5.6575411558151245e-01 8.6745493113994598e-02
+ <_>
+
+ 0 -1 218 -5.9794791013700888e-05
+
+ 1.5832610428333282e-01 -2.3109050095081329e-01
+ <_>
+
+ 0 -1 219 8.4739532321691513e-03
+
+ -1.1501230299472809e-01 3.9758589863777161e-01
+ <_>
+
+ 0 -1 220 -6.5317057073116302e-02
+
+ -2.3887279629707336e-01 1.1391709744930267e-01
+ <_>
+
+ 0 -1 221 -4.2358501814305782e-03
+
+ 2.2337220609188080e-01 -2.4218839406967163e-01
+ <_>
+
+ 0 -1 222 4.6229299157857895e-02
+
+ 9.6837401390075684e-02 -5.3427702188491821e-01
+ <_>
+
+ 0 -1 223 5.2246701670810580e-05
+
+ -2.4189360439777374e-01 1.5932360291481018e-01
+ <_>
+
+ 0 -1 224 -4.1420090943574905e-02
+
+ -3.4044981002807617e-01 4.3712481856346130e-02
+ <_>
+
+ 0 -1 225 -1.0224279947578907e-02
+
+ -2.4752390384674072e-01 1.5512530505657196e-01
+ <_>
+
+ 0 -1 226 6.8581208586692810e-02
+
+ 9.7173796966671944e-03 -6.1821222305297852e-01
+ <_>
+
+ 0 -1 227 -4.0700301527976990e-02
+
+ -6.0284787416458130e-01 7.0963069796562195e-02
+ <_>
+
+ 0 -1 228 -8.9998699724674225e-02
+
+ 4.6664720773696899e-01 -4.8549890518188477e-02
+ <_>
+
+ 0 -1 229 1.5307360328733921e-02
+
+ 1.4783670008182526e-01 -2.7114608883857727e-01
+ <_>
+
+ 0 -1 230 3.7016849964857101e-03
+
+ -1.5153409540653229e-01 2.0931409299373627e-01
+ <_>
+
+ 0 -1 231 -3.1937099993228912e-02
+
+ -7.2332257032394409e-01 3.7420161068439484e-02
+ <_>
+
+ 0 -1 232 4.7493908554315567e-02
+
+ 4.9000091850757599e-02 -4.8303189873695374e-01
+ <_>
+
+ 0 -1 233 4.4620381668210030e-03
+
+ -1.7698319256305695e-01 1.9820910692214966e-01
+ <_>
+
+ 0 -1 234 -8.1284176558256149e-03
+
+ 1.1222189664840698e-01 -5.0805520266294479e-02
+ <_>
+
+ 0 -1 235 -1.2596019543707371e-02
+
+ 4.3889060616493225e-01 -8.2898952066898346e-02
+ <_>
+
+ 0 -1 236 -1.0689930059015751e-03
+
+ 6.8766087293624878e-02 -8.2667008042335510e-02
+ <_>
+
+ 0 -1 237 -4.8213090747594833e-02
+
+ -4.6671348810195923e-01 7.4310712516307831e-02
+ <_>
+
+ 0 -1 238 -2.3418650380335748e-04
+
+ 8.8725142180919647e-02 -1.0919640213251114e-01
+ <_>
+
+ 0 -1 239 1.0095000267028809e-01
+
+ 5.5444270372390747e-02 -5.5205368995666504e-01
+ <_>
+
+ 0 -1 240 3.2340411096811295e-02
+
+ 4.9762740731239319e-02 -3.6636400222778320e-01
+ <_>
+
+ 0 -1 241 1.7699210345745087e-01
+
+ -7.3765642940998077e-02 5.4300791025161743e-01
+ <_>
+
+ 0 -1 242 -1.8634319712873548e-04
+
+ 9.5718666911125183e-02 -1.8214109539985657e-01
+ <_>
+
+ 0 -1 243 6.6473139449954033e-03
+
+ -1.2173130363225937e-01 3.0331039428710938e-01
+ <_>
+
+ 0 -1 244 -9.9276658147573471e-03
+
+ 3.2638520002365112e-01 -8.8533706963062286e-02
+ <_>
+
+ 0 -1 245 5.2587099373340607e-02
+
+ 1.1303950101137161e-01 -3.3436870574951172e-01
+ <_>
+
+ 0 -1 246 4.9553681164979935e-03
+
+ -1.3183289766311646e-01 9.7614809870719910e-02
+ <_>
+
+ 0 -1 247 -2.3817660287022591e-02
+
+ -4.1027650237083435e-01 8.4849812090396881e-02
+ <_>
+
+ 0 -1 248 -1.1363780125975609e-02
+
+ 1.8874420225620270e-01 -8.3536416292190552e-02
+ <_>
+
+ 0 -1 249 -1.9515539752319455e-03
+
+ 1.8985089659690857e-01 -1.7776779830455780e-01
+ <_>
+
+ 0 -1 250 -1.3576669618487358e-02
+
+ 2.0975759625434875e-01 -3.7115450948476791e-02
+ <_>
+
+ 0 -1 251 1.6466820612549782e-02
+
+ -8.2349412143230438e-02 3.8047221302986145e-01
+ <_>
+
+ 0 -1 252 -1.0136260092258453e-01
+
+ -1.1633230000734329e-01 6.7804910242557526e-02
+ <_>
+
+ 0 -1 253 -1.0248430073261261e-01
+
+ -2.8850209712982178e-01 1.2139680236577988e-01
+ <_>
+
+ 0 -1 254 -2.8717568516731262e-01
+
+ 4.6935141086578369e-01 -8.2954309880733490e-02
+ <_>
+
+ 0 -1 255 5.0812978297472000e-02
+
+ 5.5393878370523453e-02 -6.2383282184600830e-01
+ <_>
+
+ 0 -1 256 9.1063417494297028e-02
+
+ -2.3379560559988022e-02 4.7155299782752991e-01
+ <_>
+
+ 0 -1 257 -5.1845338195562363e-02
+
+ -6.9031542539596558e-01 4.5454118400812149e-02
+ <_>
+
+ 0 -1 258 1.5031239390373230e-01
+
+ 4.5906711369752884e-02 -5.2067738771438599e-01
+ <_>
+
+ 0 -1 259 4.1596319526433945e-02
+
+ 5.3706299513578415e-02 -4.8782169818878174e-01
+ <_>
+ 43
+ -8.5045951604843140e-01
+
+ <_>
+
+ 0 -1 260 -5.9847710654139519e-03
+
+ 2.7858960628509521e-01 -3.0923390388488770e-01
+ <_>
+
+ 0 -1 261 -3.9032639469951391e-03
+
+ 2.2257049381732941e-01 -2.8928229212760925e-01
+ <_>
+
+ 0 -1 262 -2.2362179151969030e-05
+
+ 1.4084370434284210e-01 -3.0143168568611145e-01
+ <_>
+
+ 0 -1 263 -9.1167002916336060e-02
+
+ -6.7608010768890381e-01 5.6040819734334946e-02
+ <_>
+
+ 0 -1 264 5.2755638957023621e-02
+
+ 7.4688747525215149e-02 -6.3256257772445679e-01
+ <_>
+
+ 0 -1 265 6.9458536803722382e-02
+
+ -1.1754920333623886e-01 6.3863641023635864e-01
+ <_>
+
+ 0 -1 266 -4.8209438100457191e-03
+
+ 2.9225930571556091e-01 -1.3872410356998444e-01
+ <_>
+
+ 0 -1 267 3.2156750559806824e-02
+
+ 7.5575239956378937e-02 -5.7927912473678589e-01
+ <_>
+
+ 0 -1 268 -4.4298470020294189e-02
+
+ 4.0226811170578003e-01 -1.0264609754085541e-01
+ <_>
+
+ 0 -1 269 -7.0452108047902584e-03
+
+ 1.5128499269485474e-01 -5.6725870817899704e-02
+ <_>
+
+ 0 -1 270 5.1606830675154924e-04
+
+ -2.3022100329399109e-01 1.6343879699707031e-01
+ <_>
+
+ 0 -1 271 -6.1528358608484268e-02
+
+ 2.5559040904045105e-01 -4.6751510351896286e-02
+ <_>
+
+ 0 -1 272 -5.1367811858654022e-02
+
+ -2.4755829572677612e-01 1.4305450022220612e-01
+ <_>
+
+ 0 -1 273 9.0107098221778870e-03
+
+ -1.0648769885301590e-01 3.1271860003471375e-01
+ <_>
+
+ 0 -1 274 2.2352259606122971e-02
+
+ 1.5494219958782196e-01 -3.1736290454864502e-01
+ <_>
+
+ 0 -1 275 3.1493891030550003e-02
+
+ 7.2037532925605774e-02 -2.8946670889854431e-01
+ <_>
+
+ 0 -1 276 -5.2064459770917892e-02
+
+ -2.7082020044326782e-01 1.2260189652442932e-01
+ <_>
+
+ 0 -1 277 -6.1549381352961063e-03
+
+ 1.6442950069904327e-01 -1.0657779872417450e-01
+ <_>
+
+ 0 -1 278 3.0305041000247002e-03
+
+ -1.5234139561653137e-01 2.0446379482746124e-01
+ <_>
+
+ 0 -1 279 -6.8027540110051632e-03
+
+ 7.1448147296905518e-02 -4.1458301246166229e-02
+ <_>
+
+ 0 -1 280 6.8647533655166626e-02
+
+ -5.2833538502454758e-02 5.7638901472091675e-01
+ <_>
+
+ 0 -1 281 -9.2883080244064331e-02
+
+ -2.6236709952354431e-01 8.2425810396671295e-02
+ <_>
+
+ 0 -1 282 -5.2907038480043411e-03
+
+ 1.4090450108051300e-01 -2.2050650417804718e-01
+ <_>
+
+ 0 -1 283 1.5640209894627333e-03
+
+ -1.0143549740314484e-01 1.3026970624923706e-01
+ <_>
+
+ 0 -1 284 1.0752620175480843e-02
+
+ 9.1515362262725830e-02 -3.2133978605270386e-01
+ <_>
+
+ 0 -1 285 -2.1106360480189323e-02
+
+ -2.7410230040550232e-01 9.1773197054862976e-03
+ <_>
+
+ 0 -1 286 4.8663117922842503e-03
+
+ -1.5258720517158508e-01 1.9711069762706757e-01
+ <_>
+
+ 0 -1 287 6.5396472811698914e-02
+
+ 6.5921088680624962e-03 -6.4343088865280151e-01
+ <_>
+
+ 0 -1 288 4.4902609661221504e-03
+
+ -1.0377249866724014e-01 2.8005209565162659e-01
+ <_>
+
+ 0 -1 289 4.6614840626716614e-02
+
+ 5.4715849459171295e-02 -5.2179151773452759e-01
+ <_>
+
+ 0 -1 290 1.1597450077533722e-01
+
+ 3.9613999426364899e-02 -6.4784902334213257e-01
+ <_>
+
+ 0 -1 291 5.7222661562263966e-03
+
+ -5.4838169366121292e-02 1.2828019261360168e-01
+ <_>
+
+ 0 -1 292 -4.1633259505033493e-02
+
+ -8.0665838718414307e-01 3.5942289978265762e-02
+ <_>
+
+ 0 -1 293 -4.7252390533685684e-02
+
+ -7.9193192720413208e-01 1.2737370096147060e-02
+ <_>
+
+ 0 -1 294 -1.6451090341433883e-03
+
+ 2.0376729965209961e-01 -1.3230639696121216e-01
+ <_>
+
+ 0 -1 295 2.5758889969438314e-03
+
+ -6.3503406941890717e-02 1.3530080020427704e-01
+ <_>
+
+ 0 -1 296 2.0758589729666710e-02
+
+ 4.7286979854106903e-02 -5.8212000131607056e-01
+ <_>
+
+ 0 -1 297 -2.8601480647921562e-02
+
+ -4.1221970319747925e-01 2.4210980162024498e-02
+ <_>
+
+ 0 -1 298 -2.8691580519080162e-02
+
+ -5.5404680967330933e-01 4.5068629086017609e-02
+ <_>
+
+ 0 -1 299 -2.6637869887053967e-03
+
+ 1.2570230662822723e-01 -1.6319499909877777e-01
+ <_>
+
+ 0 -1 300 -4.4750720262527466e-03
+
+ -2.7138069272041321e-01 1.0293100029230118e-01
+ <_>
+
+ 0 -1 301 4.0937099605798721e-02
+
+ -3.2065469771623611e-02 1.3092640042304993e-01
+ <_>
+
+ 0 -1 302 7.5827181339263916e-02
+
+ -5.1221519708633423e-02 5.6596297025680542e-01
+ <_>
+ 58
+ -9.1252201795578003e-01
+
+ <_>
+
+ 0 -1 303 -4.2669968679547310e-03
+
+ 1.7704419791698456e-01 -2.8265419602394104e-01
+ <_>
+
+ 0 -1 304 -2.2577939555048943e-02
+
+ 2.3657959699630737e-01 -4.2326368391513824e-02
+ <_>
+
+ 0 -1 305 -9.8107997328042984e-03
+
+ -3.8568308949470520e-01 9.0982303023338318e-02
+ <_>
+
+ 0 -1 306 3.8510379381477833e-03
+
+ -1.0270400345325470e-01 1.9267590343952179e-01
+ <_>
+
+ 0 -1 307 -2.0688450895249844e-03
+
+ 1.6656570136547089e-01 -2.1394389867782593e-01
+ <_>
+
+ 0 -1 308 -5.8368500322103500e-02
+
+ 3.4833571314811707e-01 -8.0605462193489075e-02
+ <_>
+
+ 0 -1 309 5.6290920823812485e-02
+
+ -6.1617989093065262e-02 6.9421827793121338e-01
+ <_>
+
+ 0 -1 310 5.5776340886950493e-03
+
+ 7.8374862670898438e-02 -4.0764930844306946e-01
+ <_>
+
+ 0 -1 311 5.0974669866263866e-03
+
+ 1.5001790225505829e-01 -2.7620849013328552e-01
+ <_>
+
+ 0 -1 312 2.4134019389748573e-02
+
+ -3.7685971707105637e-02 4.0111309289932251e-01
+ <_>
+
+ 0 -1 313 2.6251180097460747e-03
+
+ -1.8986889719963074e-01 1.6666570305824280e-01
+ <_>
+
+ 0 -1 314 -2.3179719224572182e-02
+
+ -6.0807460546493530e-01 3.3016931265592575e-02
+ <_>
+
+ 0 -1 315 -1.7960369586944580e-03
+
+ 1.8328389525413513e-01 -1.6300560534000397e-01
+ <_>
+
+ 0 -1 316 1.1327250301837921e-01
+
+ 1.6392359510064125e-02 -3.8521450757980347e-01
+ <_>
+
+ 0 -1 317 -1.1120930314064026e-02
+
+ -2.6789391040802002e-01 1.2030880153179169e-01
+ <_>
+
+ 0 -1 318 8.9298561215400696e-03
+
+ -6.4766243100166321e-02 5.2446700632572174e-02
+ <_>
+
+ 0 -1 319 3.0264519155025482e-02
+
+ -5.3343709558248520e-02 4.9170601367950439e-01
+ <_>
+
+ 0 -1 320 1.3036240637302399e-01
+
+ 9.9123492836952209e-03 -8.0775249004364014e-01
+ <_>
+
+ 0 -1 321 -4.8941900022327900e-03
+
+ 1.4153289794921875e-01 -2.4222679436206818e-01
+ <_>
+
+ 0 -1 322 -1.8009349703788757e-02
+
+ -1.8352709710597992e-01 5.3784269839525223e-02
+ <_>
+
+ 0 -1 323 6.3028637669049203e-05
+
+ -2.0836220681667328e-01 1.3861179351806641e-01
+ <_>
+
+ 0 -1 324 -3.8127291202545166e-01
+
+ -7.6527822017669678e-01 3.4578099846839905e-02
+ <_>
+
+ 0 -1 325 1.6168570145964622e-02
+
+ -7.8577049076557159e-02 3.6086350679397583e-01
+ <_>
+
+ 0 -1 326 -2.0725380629301071e-02
+
+ -3.2905191183090210e-01 8.1693336367607117e-02
+ <_>
+
+ 0 -1 327 -1.4763489889446646e-04
+
+ 1.0449170321226120e-01 -2.7624139189720154e-01
+ <_>
+
+ 0 -1 328 -1.6959169879555702e-02
+
+ -2.4150790274143219e-01 5.4569680243730545e-02
+ <_>
+
+ 0 -1 329 -1.5221100300550461e-02
+
+ 4.1033148765563965e-01 -6.8333253264427185e-02
+ <_>
+
+ 0 -1 330 -9.6041243523359299e-03
+
+ -3.3569648861885071e-01 8.6250491440296173e-02
+ <_>
+
+ 0 -1 331 -1.6476860037073493e-03
+
+ 1.6236330568790436e-01 -1.9044490158557892e-01
+ <_>
+
+ 0 -1 332 -1.0705839842557907e-01
+
+ -8.6767107248306274e-01 7.3941340669989586e-03
+ <_>
+
+ 0 -1 333 -1.8818160519003868e-02
+
+ -3.6879110336303711e-01 6.8846642971038818e-02
+ <_>
+
+ 0 -1 334 -5.6142187677323818e-03
+
+ 1.7322039604187012e-01 -1.2514470517635345e-01
+ <_>
+
+ 0 -1 335 7.3969298973679543e-03
+
+ -8.5467368364334106e-02 3.2027161121368408e-01
+ <_>
+
+ 0 -1 336 9.4870915636420250e-03
+
+ 6.3168406486511230e-02 -2.0918910205364227e-01
+ <_>
+
+ 0 -1 337 1.8458140548318624e-03
+
+ -1.5436279773712158e-01 1.8517020344734192e-01
+ <_>
+
+ 0 -1 338 -1.9747359678149223e-02
+
+ 3.3071118593215942e-01 -7.6775848865509033e-02
+ <_>
+
+ 0 -1 339 3.2421160489320755e-02
+
+ 8.2021132111549377e-02 -4.0147501230239868e-01
+ <_>
+
+ 0 -1 340 2.9075390193611383e-03
+
+ -7.7174037694931030e-02 1.0620699822902679e-01
+ <_>
+
+ 0 -1 341 1.5189359895884991e-02
+
+ 6.0363899916410446e-02 -4.1365239024162292e-01
+ <_>
+
+ 0 -1 342 -3.0683739110827446e-02
+
+ 4.3470621109008789e-01 -5.9381321072578430e-02
+ <_>
+
+ 0 -1 343 -1.0973449796438217e-02
+
+ -2.9535230994224548e-01 8.5516467690467834e-02
+ <_>
+
+ 0 -1 344 -3.9540361613035202e-02
+
+ -2.8765881061553955e-01 3.4472968429327011e-02
+ <_>
+
+ 0 -1 345 -3.7935871630907059e-02
+
+ 3.8199868798255920e-01 -8.5364766418933868e-02
+ <_>
+
+ 0 -1 346 3.0669810250401497e-02
+
+ 4.4738098978996277e-02 -1.7703640460968018e-01
+ <_>
+
+ 0 -1 347 1.7194509506225586e-01
+
+ -5.9214178472757339e-02 4.9291038513183594e-01
+ <_>
+
+ 0 -1 348 -6.7055500112473965e-03
+
+ 1.6410259902477264e-01 -2.1826469898223877e-01
+ <_>
+
+ 0 -1 349 -3.8577869534492493e-01
+
+ -6.7176771163940430e-01 4.2349591851234436e-02
+ <_>
+
+ 0 -1 350 2.7213040739297867e-02
+
+ 1.2266149744391441e-02 -2.2954210638999939e-01
+ <_>
+
+ 0 -1 351 -1.9294980913400650e-02
+
+ -5.8373439311981201e-01 3.8380999118089676e-02
+ <_>
+
+ 0 -1 352 7.6792249456048012e-03
+
+ -4.7490350902080536e-02 1.5964460372924805e-01
+ <_>
+
+ 0 -1 353 6.0242269682930782e-05
+
+ -1.1734239757061005e-01 1.8236650526523590e-01
+ <_>
+
+ 0 -1 354 -6.6498141677584499e-05
+
+ 7.4745140969753265e-02 -1.6989439725875854e-01
+ <_>
+
+ 0 -1 355 4.3275849893689156e-03
+
+ 7.3789797723293304e-02 -2.8444349765777588e-01
+ <_>
+
+ 0 -1 356 -3.3140469342470169e-02
+
+ -4.0606608986854553e-01 1.0028730146586895e-02
+ <_>
+
+ 0 -1 357 9.9181402474641800e-03
+
+ -7.9339787364006042e-02 2.8190010786056519e-01
+ <_>
+
+ 0 -1 358 -2.3577339015901089e-03
+
+ 1.5301220118999481e-01 -1.0475979745388031e-01
+ <_>
+
+ 0 -1 359 -2.6200819760560989e-02
+
+ -5.4185032844543457e-01 4.4369250535964966e-02
+ <_>
+
+ 0 -1 360 4.7328658401966095e-02
+
+ 1.8897749483585358e-02 -8.2665932178497314e-01
+ <_>
+ 44
+ -1.1653599739074707e+00
+
+ <_>
+
+ 0 -1 361 2.9921719804406166e-02
+
+ -3.2315000891685486e-01 5.1092821359634399e-01
+ <_>
+
+ 0 -1 362 5.6147608906030655e-02
+
+ -1.2574400007724762e-01 6.6749179363250732e-01
+ <_>
+
+ 0 -1 363 -1.3759849593043327e-02
+
+ 4.0691190958023071e-01 -2.1075299382209778e-01
+ <_>
+
+ 0 -1 364 -4.3788701295852661e-03
+
+ 2.7940139174461365e-01 -2.0955459773540497e-01
+ <_>
+
+ 0 -1 365 1.9208889454603195e-02
+
+ -8.9800693094730377e-02 5.0936561822891235e-01
+ <_>
+
+ 0 -1 366 -8.9393591042608023e-04
+
+ 1.0703620314598083e-01 -1.2294200062751770e-01
+ <_>
+
+ 0 -1 367 -6.2918022740632296e-04
+
+ -3.7847930192947388e-01 1.3008819520473480e-01
+ <_>
+
+ 0 -1 368 -1.6248769825324416e-03
+
+ 1.7750020325183868e-01 -2.7811211347579956e-01
+ <_>
+
+ 0 -1 369 -4.6151960268616676e-03
+
+ 2.4071510136127472e-01 -1.4269010722637177e-01
+ <_>
+
+ 0 -1 370 5.7162828743457794e-02
+
+ -1.8474869430065155e-02 4.5086058974266052e-01
+ <_>
+
+ 0 -1 371 -3.8265369366854429e-03
+
+ 2.5951761007308960e-01 -1.1455159634351730e-01
+ <_>
+
+ 0 -1 372 -4.5235190540552139e-02
+
+ -3.3849009871482849e-01 3.4538950771093369e-02
+ <_>
+
+ 0 -1 373 3.8135750219225883e-03
+
+ 1.1333999782800674e-01 -2.7620390057563782e-01
+ <_>
+
+ 0 -1 374 4.5108258724212646e-02
+
+ 2.8602050617337227e-02 -1.5837669372558594e-01
+ <_>
+
+ 0 -1 375 -2.7794970665127039e-03
+
+ 2.8897428512573242e-01 -1.0822720080614090e-01
+ <_>
+
+ 0 -1 376 5.6366869248449802e-03
+
+ -1.0184790194034576e-01 7.8787103295326233e-02
+ <_>
+
+ 0 -1 377 -5.2986819297075272e-02
+
+ 5.2964997291564941e-01 -6.5543353557586670e-02
+ <_>
+
+ 0 -1 378 7.4737891554832458e-02
+
+ 2.6320660486817360e-02 -3.0487209558486938e-01
+ <_>
+
+ 0 -1 379 4.1559520177543163e-03
+
+ -2.2977170348167419e-01 1.5662179887294769e-01
+ <_>
+
+ 0 -1 380 -2.9388200491666794e-03
+
+ -1.6916410624980927e-01 9.6996672451496124e-02
+ <_>
+
+ 0 -1 381 -1.3065510429441929e-02
+
+ 4.0258568525314331e-01 -7.1614369750022888e-02
+ <_>
+
+ 0 -1 382 -3.4928251057863235e-02
+
+ -4.9449989199638367e-01 2.2547820582985878e-02
+ <_>
+
+ 0 -1 383 2.1728971041738987e-03
+
+ -1.5552569925785065e-01 2.0136219263076782e-01
+ <_>
+
+ 0 -1 384 1.4387349598109722e-02
+
+ 3.6348100751638412e-02 -2.9468619823455811e-01
+ <_>
+
+ 0 -1 385 6.7830132320523262e-03
+
+ -8.2248352468013763e-02 3.3857500553131104e-01
+ <_>
+
+ 0 -1 386 -7.2883836925029755e-02
+
+ -3.4577670693397522e-01 1.9601320847868919e-02
+ <_>
+
+ 0 -1 387 -4.5158518478274345e-03
+
+ 1.7059490084648132e-01 -1.9742819666862488e-01
+ <_>
+
+ 0 -1 388 -1.3742079958319664e-02
+
+ -2.1214349567890167e-01 3.3953689038753510e-02
+ <_>
+
+ 0 -1 389 7.8056701458990574e-03
+
+ 7.1426697075366974e-02 -3.4223988652229309e-01
+ <_>
+
+ 0 -1 390 2.1649990230798721e-02
+
+ -6.1925049871206284e-02 3.7267661094665527e-01
+ <_>
+
+ 0 -1 391 -6.7706637084484100e-02
+
+ -3.0304160714149475e-01 9.4357587397098541e-02
+ <_>
+
+ 0 -1 392 -2.1855749655514956e-03
+
+ 1.0831770300865173e-01 -1.5530540049076080e-01
+ <_>
+
+ 0 -1 393 -2.5483060162514448e-03
+
+ -2.4103440344333649e-01 9.2916287481784821e-02
+ <_>
+
+ 0 -1 394 -6.7207813262939453e-02
+
+ -6.6259348392486572e-01 1.6074649989604950e-02
+ <_>
+
+ 0 -1 395 4.7799371182918549e-02
+
+ -4.4412638992071152e-02 6.0569787025451660e-01
+ <_>
+
+ 0 -1 396 -9.1178417205810547e-02
+
+ 2.4761490523815155e-01 -3.4762401133775711e-02
+ <_>
+
+ 0 -1 397 -3.8592480123043060e-03
+
+ -2.5366741418838501e-01 1.0194999724626541e-01
+ <_>
+
+ 0 -1 398 2.4100970476865768e-03
+
+ -1.2133970111608505e-01 1.9767910242080688e-01
+ <_>
+
+ 0 -1 399 -5.3831469267606735e-03
+
+ 1.7103940248489380e-01 -1.6189830005168915e-01
+ <_>
+
+ 0 -1 400 9.1004222631454468e-03
+
+ -6.0921549797058105e-02 1.7695249617099762e-01
+ <_>
+
+ 0 -1 401 2.2724110167473555e-03
+
+ -9.0476967394351959e-02 2.7440631389617920e-01
+ <_>
+
+ 0 -1 402 -8.0621562898159027e-02
+
+ -8.8045567274093628e-01 1.7193239182233810e-02
+ <_>
+
+ 0 -1 403 3.8965709973126650e-03
+
+ -1.7037920653820038e-01 1.7979580163955688e-01
+ <_>
+
+ 0 -1 404 -4.3093641288578510e-03
+
+ -2.9382050037384033e-01 8.6317472159862518e-02
+ <_>
+ 44
+ -9.4284927845001221e-01
+
+ <_>
+
+ 0 -1 405 -6.3116192817687988e-02
+
+ 5.5512517690658569e-01 -3.5997709631919861e-01
+ <_>
+
+ 0 -1 406 8.4350287914276123e-02
+
+ -1.2531270086765289e-01 5.3567689657211304e-01
+ <_>
+
+ 0 -1 407 -2.1390730142593384e-01
+
+ 7.5156861543655396e-01 -8.8270872831344604e-02
+ <_>
+
+ 0 -1 408 -2.9744980856776237e-02
+
+ 2.0106209814548492e-01 -1.2106689810752869e-01
+ <_>
+
+ 0 -1 409 -1.1987680196762085e-01
+
+ 6.4692199230194092e-01 -7.7747613191604614e-02
+ <_>
+
+ 0 -1 410 3.0843529384583235e-03
+
+ -6.3067637383937836e-02 7.7889077365398407e-02
+ <_>
+
+ 0 -1 411 -4.5560211874544621e-03
+
+ 1.8972270190715790e-01 -1.9929079711437225e-01
+ <_>
+
+ 0 -1 412 4.4629329931922257e-04
+
+ 1.4051589369773865e-01 -3.0292418599128723e-01
+ <_>
+
+ 0 -1 413 -6.4954371191561222e-03
+
+ 3.1942290067672729e-01 -1.1072000116109848e-01
+ <_>
+
+ 0 -1 414 -2.1751760505139828e-03
+
+ 1.6477259993553162e-01 -8.0424778163433075e-02
+ <_>
+
+ 0 -1 415 6.5875840373337269e-03
+
+ 1.4716550707817078e-01 -3.0198150873184204e-01
+ <_>
+
+ 0 -1 416 2.0701209083199501e-02
+
+ -4.2996689677238464e-02 4.0123820304870605e-01
+ <_>
+
+ 0 -1 417 2.5877119041979313e-03
+
+ 1.2630540132522583e-01 -2.7518120408058167e-01
+ <_>
+
+ 0 -1 418 -1.0545079596340656e-02
+
+ 1.9637629389762878e-01 -3.9772778749465942e-02
+ <_>
+
+ 0 -1 419 6.2396968714892864e-03
+
+ -8.3563409745693207e-02 3.6655488610267639e-01
+ <_>
+
+ 0 -1 420 1.4458670280873775e-02
+
+ 6.3301697373390198e-02 -5.8498907089233398e-01
+ <_>
+
+ 0 -1 421 3.1263440847396851e-02
+
+ -1.0675270110368729e-01 3.4852859377861023e-01
+ <_>
+
+ 0 -1 422 1.4865349512547255e-03
+
+ 1.3709670305252075e-01 -1.3731659948825836e-01
+ <_>
+
+ 0 -1 423 -1.7898039368446916e-04
+
+ 1.7839649319648743e-01 -2.5751718878746033e-01
+ <_>
+
+ 0 -1 424 7.7714473009109497e-02
+
+ 5.7081848382949829e-02 -2.4273400008678436e-01
+ <_>
+
+ 0 -1 425 2.2228270769119263e-02
+
+ 1.4593790471553802e-01 -2.0994609594345093e-01
+ <_>
+
+ 0 -1 426 1.6969949938356876e-03
+
+ -1.4418889582157135e-01 2.7375409007072449e-01
+ <_>
+
+ 0 -1 427 -2.0023470744490623e-02
+
+ -3.7556248903274536e-01 8.1627696752548218e-02
+ <_>
+
+ 0 -1 428 3.8644319865852594e-03
+
+ -6.4490430057048798e-02 1.5921689569950104e-01
+ <_>
+
+ 0 -1 429 -3.0527650378644466e-03
+
+ 2.6751521229743958e-01 -1.0531850159168243e-01
+ <_>
+
+ 0 -1 430 5.6112320162355900e-03
+
+ -6.8567730486392975e-02 2.1234990656375885e-01
+ <_>
+
+ 0 -1 431 4.6622268855571747e-03
+
+ 1.4254149794578552e-01 -2.0892719924449921e-01
+ <_>
+
+ 0 -1 432 2.4710448924452066e-03
+
+ 7.2614386677742004e-02 -1.8833909928798676e-01
+ <_>
+
+ 0 -1 433 1.2655000202357769e-02
+
+ -8.3605259656906128e-02 4.3262240290641785e-01
+ <_>
+
+ 0 -1 434 -1.7724519595503807e-02
+
+ 1.7432230710983276e-01 -2.8479820117354393e-02
+ <_>
+
+ 0 -1 435 -7.2321272455155849e-04
+
+ 1.5343970060348511e-01 -2.4012179672718048e-01
+ <_>
+
+ 0 -1 436 -6.2155709601938725e-03
+
+ 2.5166681408882141e-01 -8.5519887506961823e-02
+ <_>
+
+ 0 -1 437 4.1632771492004395e-02
+
+ 5.0593800842761993e-02 -6.0965442657470703e-01
+ <_>
+
+ 0 -1 438 2.3918300867080688e-02
+
+ -3.6809660494327545e-02 3.9055478572845459e-01
+ <_>
+
+ 0 -1 439 -7.4353138916194439e-03
+
+ 1.5018579363822937e-01 -1.8627819418907166e-01
+ <_>
+
+ 0 -1 440 -2.0571449771523476e-02
+
+ -2.8574559092521667e-01 4.8302378505468369e-02
+ <_>
+
+ 0 -1 441 -7.3831980116665363e-03
+
+ 3.6680561304092407e-01 -9.6067756414413452e-02
+ <_>
+
+ 0 -1 442 9.7222924232482910e-03
+
+ 6.3898019492626190e-02 -1.7262579500675201e-01
+ <_>
+
+ 0 -1 443 -2.1807629615068436e-02
+
+ 1.8027269840240479e-01 -1.9109119474887848e-01
+ <_>
+
+ 0 -1 444 5.8147668838500977e-02
+
+ 8.5709961131215096e-03 -4.6250829100608826e-01
+ <_>
+
+ 0 -1 445 -9.4539504498243332e-03
+
+ -2.8908729553222656e-01 1.1421570181846619e-01
+ <_>
+
+ 0 -1 446 -2.1080709993839264e-02
+
+ 3.7570050358772278e-01 -2.5591030716896057e-02
+ <_>
+
+ 0 -1 447 -4.0629571303725243e-03
+
+ 2.7146670222282410e-01 -1.0845380276441574e-01
+ <_>
+
+ 0 -1 448 -1.2826620042324066e-01
+
+ 1. -1.0962430387735367e-03
+ <_>
+ 61
+ -9.5620310306549072e-01
+
+ <_>
+
+ 0 -1 449 -1.2662290036678314e-01
+
+ 6.2268221378326416e-01 -1.4810459315776825e-01
+ <_>
+
+ 0 -1 450 -7.0846290327608585e-03
+
+ 2.0133779942989349e-01 -1.7728950083255768e-01
+ <_>
+
+ 0 -1 451 1.1459200084209442e-01
+
+ -8.8975846767425537e-02 5.7395541667938232e-01
+ <_>
+
+ 0 -1 452 3.3472150098532438e-03
+
+ 7.5708203017711639e-02 -2.8222179412841797e-01
+ <_>
+
+ 0 -1 453 5.1924228668212891e-02
+
+ -1.3948489725589752e-01 2.5681090354919434e-01
+ <_>
+
+ 0 -1 454 -4.1343908756971359e-02
+
+ 2.2414180636405945e-01 -4.3653670698404312e-02
+ <_>
+
+ 0 -1 455 -3.2056469470262527e-02
+
+ -5.9409761428833008e-01 5.1891159266233444e-02
+ <_>
+
+ 0 -1 456 -4.0590870194137096e-03
+
+ 1.6402080655097961e-01 -1.5528389811515808e-01
+ <_>
+
+ 0 -1 457 -9.1876718215644360e-05
+
+ 1.0587870329618454e-01 -2.8261598944664001e-01
+ <_>
+
+ 0 -1 458 2.8358219191431999e-02
+
+ 5.7384029030799866e-02 -6.7094147205352783e-02
+ <_>
+
+ 0 -1 459 -7.4662521481513977e-02
+
+ 5.6916707754135132e-01 -4.8785641789436340e-02
+ <_>
+
+ 0 -1 460 -3.6556490231305361e-03
+
+ 2.2369490563869476e-01 -1.2202149629592896e-01
+ <_>
+
+ 0 -1 461 3.1778779812157154e-03
+
+ 1.2240319699048996e-01 -2.7681729197502136e-01
+ <_>
+
+ 0 -1 462 3.8044340908527374e-02
+
+ 2.3216400295495987e-02 -5.3732901811599731e-01
+ <_>
+
+ 0 -1 463 8.7831392884254456e-03
+
+ -7.4337556958198547e-02 3.2851231098175049e-01
+ <_>
+
+ 0 -1 464 -5.9818099252879620e-03
+
+ -1.9504779577255249e-01 6.6976852715015411e-02
+ <_>
+
+ 0 -1 465 -1.6369449440389872e-03
+
+ 1.4674800634384155e-01 -1.8024149537086487e-01
+ <_>
+
+ 0 -1 466 -9.9193133413791656e-02
+
+ 6.8363517522811890e-01 -2.9652720317244530e-02
+ <_>
+
+ 0 -1 467 -1.0352009907364845e-02
+
+ 3.4225308895111084e-01 -8.1141538918018341e-02
+ <_>
+
+ 0 -1 468 2.5637909770011902e-02
+
+ 5.1416900008916855e-02 -1.6697999835014343e-01
+ <_>
+
+ 0 -1 469 -1.2416959507390857e-03
+
+ 1.2488900125026703e-01 -2.1346220374107361e-01
+ <_>
+
+ 0 -1 470 1.5018839621916413e-03
+
+ 9.7934387624263763e-02 -2.6385021209716797e-01
+ <_>
+
+ 0 -1 471 -3.2703679054975510e-02
+
+ 5.7504880428314209e-01 -4.5875400304794312e-02
+ <_>
+
+ 0 -1 472 2.1297169849276543e-02
+
+ 6.1069380491971970e-02 -2.2480219602584839e-01
+ <_>
+
+ 0 -1 473 -8.8358018547296524e-04
+
+ 9.5625787973403931e-02 -2.7564591169357300e-01
+ <_>
+
+ 0 -1 474 -3.6556860432028770e-03
+
+ 2.4107089638710022e-01 -1.0359519720077515e-01
+ <_>
+
+ 0 -1 475 3.4300461411476135e-02
+
+ 3.9062701165676117e-02 -6.2445348501205444e-01
+ <_>
+
+ 0 -1 476 1.1492350138723850e-02
+
+ -6.9246053695678711e-02 3.8258171081542969e-01
+ <_>
+
+ 0 -1 477 -3.1294790096580982e-03
+
+ 1.1273369938135147e-01 -2.3122510313987732e-01
+ <_>
+
+ 0 -1 478 -4.0945871733129025e-03
+
+ -1.7195980250835419e-01 1.3112659752368927e-01
+ <_>
+
+ 0 -1 479 -3.0921408906579018e-03
+
+ -2.5460389256477356e-01 9.6659161150455475e-02
+ <_>
+
+ 0 -1 480 -4.1672129184007645e-02
+
+ 2.7327769994735718e-01 -6.3094623386859894e-02
+ <_>
+
+ 0 -1 481 1.1384460143744946e-02
+
+ -7.1872517466545105e-02 4.1160398721694946e-01
+ <_>
+
+ 0 -1 482 -2.3934150114655495e-02
+
+ 1.3192340731620789e-01 -1.7954839766025543e-01
+ <_>
+
+ 0 -1 483 -3.1554169952869415e-02
+
+ -5.8792132139205933e-01 4.1782889515161514e-02
+ <_>
+
+ 0 -1 484 -2.4033859372138977e-02
+
+ -1.5534760057926178e-01 2.7700260281562805e-02
+ <_>
+
+ 0 -1 485 3.1589470803737640e-02
+
+ -3.9150279015302658e-02 6.0951721668243408e-01
+ <_>
+
+ 0 -1 486 -2.4214860051870346e-02
+
+ -2.4587619304656982e-01 9.1133296489715576e-02
+ <_>
+
+ 0 -1 487 1.9322870066389441e-03
+
+ -1.1647839844226837e-01 1.8819290399551392e-01
+ <_>
+
+ 0 -1 488 -3.6017759703099728e-03
+
+ 9.7600512206554413e-02 -4.8918090760707855e-02
+ <_>
+
+ 0 -1 489 3.1516118906438351e-03
+
+ 6.5808869898319244e-02 -3.1577658653259277e-01
+ <_>
+
+ 0 -1 490 -6.3677072525024414e-02
+
+ -8.6415481567382812e-01 -9.9097320344299078e-04
+ <_>
+
+ 0 -1 491 -3.9085028693079948e-03
+
+ 2.0826210081577301e-01 -1.0560230165719986e-01
+ <_>
+
+ 0 -1 492 -2.6837719604372978e-02
+
+ -1.8375129997730255e-01 2.9545329511165619e-02
+ <_>
+
+ 0 -1 493 3.1312298960983753e-03
+
+ -1.2626689672470093e-01 1.6888590157032013e-01
+ <_>
+
+ 0 -1 494 -7.3491871356964111e-02
+
+ -1. 5.6774187833070755e-03
+ <_>
+
+ 0 -1 495 1.8034819513559341e-02
+
+ -6.8617410957813263e-02 3.3438131213188171e-01
+ <_>
+
+ 0 -1 496 6.8655997514724731e-02
+
+ 4.6462309546768665e-03 -8.0664628744125366e-01
+ <_>
+
+ 0 -1 497 -4.6970890834927559e-03
+
+ -2.0121769607067108e-01 1.1580040305852890e-01
+ <_>
+
+ 0 -1 498 4.6783890575170517e-02
+
+ -3.5802699625492096e-02 4.1625639796257019e-01
+ <_>
+
+ 0 -1 499 4.5946058817207813e-03
+
+ 8.8457576930522919e-02 -2.6894488930702209e-01
+ <_>
+
+ 0 -1 500 -1.3852829579263926e-03
+
+ 8.1391222774982452e-02 -1.4880420267581940e-01
+ <_>
+
+ 0 -1 501 2.1788759157061577e-02
+
+ -9.1640457510948181e-02 2.1261249482631683e-01
+ <_>
+
+ 0 -1 502 -1.3380090240389109e-04
+
+ 9.6424743533134460e-02 -1.4717370271682739e-01
+ <_>
+
+ 0 -1 503 -4.7990411520004272e-02
+
+ -6.1987131834030151e-01 3.8760710507631302e-02
+ <_>
+
+ 0 -1 504 2.0026009529829025e-02
+
+ -3.5972420126199722e-02 1.9393420219421387e-01
+ <_>
+
+ 0 -1 505 1.0723130544647574e-03
+
+ -1.9447499513626099e-01 1.2064950168132782e-01
+ <_>
+
+ 0 -1 506 2.2665090858936310e-02
+
+ 4.8719439655542374e-02 -2.3640799522399902e-01
+ <_>
+
+ 0 -1 507 -1.1042109690606594e-02
+
+ -2.6107341051101685e-01 1.0075490176677704e-01
+ <_>
+
+ 0 -1 508 -1.2811049818992615e-02
+
+ 1.5199629962444305e-01 -8.8552959263324738e-02
+ <_>
+
+ 0 -1 509 -3.6628648638725281e-02
+
+ 3.8858860731124878e-01 -7.7304549515247345e-02
+ <_>
+ 72
+ -8.7708407640457153e-01
+
+ <_>
+
+ 0 -1 510 -5.4606638848781586e-02
+
+ 5.5801349878311157e-01 -1.4168889820575714e-01
+ <_>
+
+ 0 -1 511 3.3533740788698196e-02
+
+ -2.7386279776692390e-02 4.4381770491600037e-01
+ <_>
+
+ 0 -1 512 -9.9635301157832146e-03
+
+ 2.5193908810615540e-01 -1.4647540450096130e-01
+ <_>
+
+ 0 -1 513 1.8188880058005452e-03
+
+ -1.1264120042324066e-01 1.1523260176181793e-01
+ <_>
+
+ 0 -1 514 -4.8793829977512360e-02
+
+ 5.1317107677459717e-01 -7.8665018081665039e-02
+ <_>
+
+ 0 -1 515 -1.3357769697904587e-02
+
+ -1.4197979867458344e-01 1.1862599849700928e-01
+ <_>
+
+ 0 -1 516 1.1562240542843938e-03
+
+ -2.0949220657348633e-01 1.5693040192127228e-01
+ <_>
+
+ 0 -1 517 -6.2384512275457382e-03
+
+ -1.4336450397968292e-01 1.1303550004959106e-01
+ <_>
+
+ 0 -1 518 4.4234818778932095e-03
+
+ -1.0358580201864243e-01 2.4589489400386810e-01
+ <_>
+
+ 0 -1 519 5.2964448928833008e-02
+
+ 1.2561550363898277e-02 -6.2551808357238770e-01
+ <_>
+
+ 0 -1 520 5.5844681337475777e-03
+
+ 8.3967886865139008e-02 -2.4653799831867218e-01
+ <_>
+
+ 0 -1 521 -4.1809541289694607e-04
+
+ 6.9588072597980499e-02 -1.3558819890022278e-01
+ <_>
+
+ 0 -1 522 -8.9637134224176407e-03
+
+ -3.0442738533020020e-01 6.9894723594188690e-02
+ <_>
+
+ 0 -1 523 2.4479050189256668e-02
+
+ -3.1651828438043594e-02 2.0308789610862732e-01
+ <_>
+
+ 0 -1 524 -2.5842329487204552e-02
+
+ 5.0401061773300171e-01 -6.3922062516212463e-02
+ <_>
+
+ 0 -1 525 -2.0785620436072350e-03
+
+ 1.0980220139026642e-01 -1.1839559674263000e-01
+ <_>
+
+ 0 -1 526 6.8030342459678650e-02
+
+ 4.2290739715099335e-02 -5.1855510473251343e-01
+ <_>
+
+ 0 -1 527 -7.0639760233461857e-03
+
+ -2.0031100511550903e-01 2.4955609813332558e-02
+ <_>
+
+ 0 -1 528 -3.4848200157284737e-03
+
+ 2.3135329782962799e-01 -9.6989557147026062e-02
+ <_>
+
+ 0 -1 529 1.3147160410881042e-02
+
+ -3.7450950592756271e-02 2.5842788815498352e-01
+ <_>
+
+ 0 -1 530 -1.4271659776568413e-02
+
+ -3.0110171437263489e-01 7.9672336578369141e-02
+ <_>
+
+ 0 -1 531 1.2653480283915997e-02
+
+ 4.9039140343666077e-02 -1.4988109469413757e-01
+ <_>
+
+ 0 -1 532 -4.4893440790474415e-03
+
+ 1.7208859324455261e-01 -1.5355649590492249e-01
+ <_>
+
+ 0 -1 533 3.2365400344133377e-02
+
+ -9.0493112802505493e-02 3.5779160261154175e-01
+ <_>
+
+ 0 -1 534 4.6125808730721474e-03
+
+ 1.1445190012454987e-01 -2.6519489288330078e-01
+ <_>
+
+ 0 -1 535 2.8645930811762810e-02
+
+ -3.5988539457321167e-02 3.0025520920753479e-01
+ <_>
+
+ 0 -1 536 -2.3571979254484177e-02
+
+ -2.4872820079326630e-01 9.1967120766639709e-02
+ <_>
+
+ 0 -1 537 -1.0739799588918686e-02
+
+ -2.1367760002613068e-01 9.6477411687374115e-02
+ <_>
+
+ 0 -1 538 2.3728659376502037e-02
+
+ -7.0916198194026947e-02 4.3828758597373962e-01
+ <_>
+
+ 0 -1 539 -3.2800701260566711e-01
+
+ 5.8840030431747437e-01 -3.1756788492202759e-02
+ <_>
+
+ 0 -1 540 7.5008560997957829e-06
+
+ -1.8288560211658478e-01 1.2022940069437027e-01
+ <_>
+
+ 0 -1 541 3.0071409419178963e-02
+
+ 2.7802020311355591e-02 -4.3224281072616577e-01
+ <_>
+
+ 0 -1 542 -2.1936609409749508e-03
+
+ 1.3592420518398285e-01 -1.4038629829883575e-01
+ <_>
+
+ 0 -1 543 2.0174339413642883e-02
+
+ -6.1628919094800949e-02 3.1579768657684326e-01
+ <_>
+
+ 0 -1 544 9.7460206598043442e-03
+
+ 8.8958032429218292e-02 -2.2594009339809418e-01
+ <_>
+
+ 0 -1 545 -1.2958340346813202e-02
+
+ -1.2200850248336792e-01 8.6518086493015289e-02
+ <_>
+
+ 0 -1 546 1.1445499956607819e-02
+
+ -6.4182333648204803e-02 3.0279749631881714e-01
+ <_>
+
+ 0 -1 547 -3.3802569378167391e-03
+
+ 1.1177670210599899e-01 -1.2922379374504089e-01
+ <_>
+
+ 0 -1 548 2.0366210490465164e-02
+
+ 1.0104539990425110e-01 -2.5991159677505493e-01
+ <_>
+
+ 0 -1 549 3.8058649748563766e-02
+
+ 1.3168349862098694e-02 -7.5580632686614990e-01
+ <_>
+
+ 0 -1 550 2.3050000891089439e-03
+
+ -1.0766649991273880e-01 1.8757669627666473e-01
+ <_>
+
+ 0 -1 551 5.1847118884325027e-02
+
+ -2.2320529446005821e-02 1.8795830011367798e-01
+ <_>
+
+ 0 -1 552 1.1383029632270336e-02
+
+ 6.0226161032915115e-02 -3.5961788892745972e-01
+ <_>
+
+ 0 -1 553 8.2553178071975708e-03
+
+ -8.5131391882896423e-02 2.3493440449237823e-01
+ <_>
+
+ 0 -1 554 -2.6984339579939842e-02
+
+ -2.1479399502277374e-01 9.3656733632087708e-02
+ <_>
+
+ 0 -1 555 -1.0289980098605156e-02
+
+ 5.8254890143871307e-02 -8.3950929343700409e-02
+ <_>
+
+ 0 -1 556 -1.4419780200114474e-05
+
+ 1.0392870008945465e-01 -1.7317299544811249e-01
+ <_>
+
+ 0 -1 557 1.0065140202641487e-02
+
+ -4.1311118751764297e-02 1.7616020143032074e-01
+ <_>
+
+ 0 -1 558 -1.4870229642838240e-04
+
+ 1.5657539665699005e-01 -1.2030059844255447e-01
+ <_>
+
+ 0 -1 559 -3.1059589236974716e-03
+
+ 1.1674880236387253e-01 -9.1372460126876831e-02
+ <_>
+
+ 0 -1 560 1.0708030313253403e-02
+
+ -7.7608227729797363e-02 2.7916100621223450e-01
+ <_>
+
+ 0 -1 561 -9.7792129963636398e-03
+
+ -2.9060921072959900e-01 7.1562640368938446e-02
+ <_>
+
+ 0 -1 562 2.0121980458498001e-02
+
+ 4.3994959443807602e-02 -4.2539501190185547e-01
+ <_>
+
+ 0 -1 563 -6.3295163214206696e-02
+
+ 3.7034231424331665e-01 -5.2549809217453003e-02
+ <_>
+
+ 0 -1 564 -8.7289556860923767e-02
+
+ -6.4299279451370239e-01 3.1952869147062302e-02
+ <_>
+
+ 0 -1 565 2.0398540422320366e-02
+
+ -4.5955598354339600e-02 4.6266159415245056e-01
+ <_>
+
+ 0 -1 566 -4.0313000790774822e-03
+
+ 1.3840849697589874e-01 -1.7980839312076569e-01
+ <_>
+
+ 0 -1 567 -1.5734519809484482e-02
+
+ -1.8477180600166321e-01 6.9983080029487610e-02
+ <_>
+
+ 0 -1 568 3.3332880120724440e-03
+
+ 1.1277650296688080e-01 -1.9513790309429169e-01
+ <_>
+
+ 0 -1 569 4.3689161539077759e-02
+
+ 5.9510939754545689e-03 -5.5423438549041748e-01
+ <_>
+
+ 0 -1 570 -2.0920610986649990e-03
+
+ 1.9163469970226288e-01 -9.7136110067367554e-02
+ <_>
+
+ 0 -1 571 2.0574270747601986e-03
+
+ -1.0197430104017258e-01 1.4083810150623322e-01
+ <_>
+
+ 0 -1 572 8.8018123060464859e-03
+
+ 1.1987809836864471e-01 -1.5638549625873566e-01
+ <_>
+
+ 0 -1 573 -1.6882529482245445e-02
+
+ -1.8438099324703217e-01 1.9492870196700096e-02
+ <_>
+
+ 0 -1 574 -6.1647890834137797e-04
+
+ 1.0665109753608704e-01 -2.2164009511470795e-01
+ <_>
+
+ 0 -1 575 1.0317339911125600e-04
+
+ -1.1228899657726288e-01 1.3858650624752045e-01
+ <_>
+
+ 0 -1 576 1.5316329896450043e-02
+
+ -5.0639409571886063e-02 4.1119828820228577e-01
+ <_>
+
+ 0 -1 577 1.0660690255463123e-02
+
+ 5.8820810168981552e-02 -1.6454669833183289e-01
+ <_>
+
+ 0 -1 578 -1.9296869635581970e-02
+
+ 3.9260959625244141e-01 -5.2761189639568329e-02
+ <_>
+
+ 0 -1 579 1.0018110275268555e-02
+
+ 1.0068470239639282e-01 -1.9756269454956055e-01
+ <_>
+
+ 0 -1 580 -2.7263790369033813e-02
+
+ 3.5332089662551880e-01 -5.5305551737546921e-02
+ <_>
+
+ 0 -1 581 5.4494310170412064e-03
+
+ 6.7253768444061279e-02 -1.8384470045566559e-01
+ <_>
+ 75
+ -8.5267168283462524e-01
+
+ <_>
+
+ 0 -1 582 -5.7434860616922379e-02
+
+ 5.0582551956176758e-01 -1.2274570018053055e-01
+ <_>
+
+ 0 -1 583 -1.2750659883022308e-01
+
+ 5.7605969905853271e-01 -4.3710928410291672e-02
+ <_>
+
+ 0 -1 584 -6.3675642013549805e-02
+
+ 5.7122522592544556e-01 -4.9968320876359940e-02
+ <_>
+
+ 0 -1 585 -1.1928480118513107e-02
+
+ 2.1641939878463745e-01 -1.8480269610881805e-01
+ <_>
+
+ 0 -1 586 1.3247699826024473e-04
+
+ -2.2685679793357849e-01 1.0648279637098312e-01
+ <_>
+
+ 0 -1 587 6.4140267204493284e-04
+
+ 9.4751678407192230e-02 -2.6892009377479553e-01
+ <_>
+
+ 0 -1 588 -2.9463530518114567e-03
+
+ 1.3910910487174988e-01 -1.7091070115566254e-01
+ <_>
+
+ 0 -1 589 5.3384741768240929e-03
+
+ 8.3969242870807648e-02 -9.5441989600658417e-02
+ <_>
+
+ 0 -1 590 5.8703150600194931e-02
+
+ -6.9647520780563354e-02 3.3629441261291504e-01
+ <_>
+
+ 0 -1 591 -2.5406300555914640e-03
+
+ 9.6176013350486755e-02 -1.5758140385150909e-01
+ <_>
+
+ 0 -1 592 -3.1899519264698029e-02
+
+ -2.7956488728523254e-01 7.0359513163566589e-02
+ <_>
+
+ 0 -1 593 -3.2022708654403687e-01
+
+ -9.0805047750473022e-01 7.5922380201518536e-03
+ <_>
+
+ 0 -1 594 3.5796251147985458e-02
+
+ -5.0070770084857941e-02 4.2101579904556274e-01
+ <_>
+
+ 0 -1 595 -1.9079160690307617e-01
+
+ -2.2061030566692352e-01 6.5184786915779114e-02
+ <_>
+
+ 0 -1 596 -1.2181829661130905e-02
+
+ 1.3479439914226532e-01 -1.6667750477790833e-01
+ <_>
+
+ 0 -1 597 -3.2165799289941788e-02
+
+ -2.5105410814285278e-01 1.9344560801982880e-02
+ <_>
+
+ 0 -1 598 3.6299630999565125e-02
+
+ -5.9490781277418137e-02 4.0007731318473816e-01
+ <_>
+
+ 0 -1 599 2.0224580541253090e-02
+
+ 5.6489799171686172e-02 -1.3418239355087280e-01
+ <_>
+
+ 0 -1 600 -2.5393130257725716e-02
+
+ 3.6507838964462280e-01 -6.6002182662487030e-02
+ <_>
+
+ 0 -1 601 -1.2022369541227818e-02
+
+ -1.7655059695243835e-01 7.3997639119625092e-02
+ <_>
+
+ 0 -1 602 4.7965139150619507e-02
+
+ 4.4668558984994888e-02 -4.4584980607032776e-01
+ <_>
+
+ 0 -1 603 -2.0564019680023193e-01
+
+ -7.3254501819610596e-01 1.9955230876803398e-02
+ <_>
+
+ 0 -1 604 -1.6601709648966789e-03
+
+ 1.1633270233869553e-01 -1.5488509833812714e-01
+ <_>
+
+ 0 -1 605 8.6899623274803162e-02
+
+ -5.4107550531625748e-02 2.6952400803565979e-01
+ <_>
+
+ 0 -1 606 -1.1374129680916667e-03
+
+ -1.4314429461956024e-01 1.2444330006837845e-01
+ <_>
+
+ 0 -1 607 3.0976340174674988e-02
+
+ 2.9864860698580742e-02 -3.2607930898666382e-01
+ <_>
+
+ 0 -1 608 2.6978010311722755e-02
+
+ -4.5098248869180679e-02 3.6128848791122437e-01
+ <_>
+
+ 0 -1 609 1.9421820342540741e-01
+
+ 3.2255191355943680e-02 -6.8981701135635376e-01
+ <_>
+
+ 0 -1 610 -2.0443359389901161e-02
+
+ 2.9300108551979065e-01 -6.4483217895030975e-02
+ <_>
+
+ 0 -1 611 -4.0420450270175934e-02
+
+ -7.6823359727859497e-01 1.2281980365514755e-02
+ <_>
+
+ 0 -1 612 -1.2641429901123047e-02
+
+ -2.7573791146278381e-01 6.1901118606328964e-02
+ <_>
+
+ 0 -1 613 -3.9670299738645554e-02
+
+ 3.2828390598297119e-01 -2.0364999771118164e-02
+ <_>
+
+ 0 -1 614 2.0246729254722595e-02
+
+ -5.8393601328134537e-02 3.3060538768768311e-01
+ <_>
+
+ 0 -1 615 8.9611168950796127e-03
+
+ 9.0096317231655121e-02 -2.2343009710311890e-01
+ <_>
+
+ 0 -1 616 -8.3055719733238220e-03
+
+ 1.4175349473953247e-01 -1.2607260048389435e-01
+ <_>
+
+ 0 -1 617 -2.8248139642528258e-05
+
+ 9.4516962766647339e-02 -2.1810370683670044e-01
+ <_>
+
+ 0 -1 618 -5.1939398981630802e-03
+
+ 1.3304319977760315e-01 -1.3341580331325531e-01
+ <_>
+
+ 0 -1 619 1.1773110181093216e-01
+
+ 2.9586199671030045e-02 -2.4020829796791077e-01
+ <_>
+
+ 0 -1 620 6.7896701395511627e-02
+
+ 8.0913707613945007e-02 -2.3454460501670837e-01
+ <_>
+
+ 0 -1 621 -2.6683699339628220e-02
+
+ 3.0590981245040894e-01 -6.4152047038078308e-02
+ <_>
+
+ 0 -1 622 3.5058211069554090e-03
+
+ 8.9341968297958374e-02 -2.2773680090904236e-01
+ <_>
+
+ 0 -1 623 -6.5844372147694230e-04
+
+ 1.2458139657974243e-01 -9.1352440416812897e-02
+ <_>
+
+ 0 -1 624 7.2530400939285755e-03
+
+ -6.9285176694393158e-02 2.5482881069183350e-01
+ <_>
+
+ 0 -1 625 -2.8056129813194275e-02
+
+ -2.0867039263248444e-01 3.3539578318595886e-02
+ <_>
+
+ 0 -1 626 -5.1205180585384369e-02
+
+ -2.4107429385185242e-01 6.4439408481121063e-02
+ <_>
+
+ 0 -1 627 2.9234649613499641e-02
+
+ -5.0803840160369873e-02 3.6485049128532410e-01
+ <_>
+
+ 0 -1 628 -1.0219520330429077e-01
+
+ 4.0123480558395386e-01 -4.2902119457721710e-02
+ <_>
+
+ 0 -1 629 1.5104969963431358e-02
+
+ 1.0481490194797516e-01 -1.8472430109977722e-01
+ <_>
+
+ 0 -1 630 -1.2570650316774845e-02
+
+ -2.0540939271450043e-01 9.3013197183609009e-02
+ <_>
+
+ 0 -1 631 1.2253070250153542e-02
+
+ -5.9285100549459457e-02 2.3927310109138489e-01
+ <_>
+
+ 0 -1 632 -2.6166990399360657e-02
+
+ -6.9966787099838257e-01 2.4906709790229797e-02
+ <_>
+
+ 0 -1 633 7.0817661471664906e-03
+
+ 2.4173120036721230e-02 -5.5144792795181274e-01
+ <_>
+
+ 0 -1 634 2.1426850929856300e-02
+
+ 6.4168840646743774e-02 -2.5997900962829590e-01
+ <_>
+
+ 0 -1 635 1.8189709633588791e-02
+
+ 3.5838250070810318e-02 -1.8020580708980560e-01
+ <_>
+
+ 0 -1 636 1.7415799200534821e-02
+
+ -8.3862036466598511e-02 3.3338528871536255e-01
+ <_>
+
+ 0 -1 637 -1.4878029469400644e-03
+
+ 1.2078859657049179e-01 -1.2769320607185364e-01
+ <_>
+
+ 0 -1 638 7.5296638533473015e-03
+
+ -7.0014707744121552e-02 3.2181090116500854e-01
+ <_>
+
+ 0 -1 639 -6.1499018222093582e-02
+
+ 4.6469798684120178e-01 -1.0073710232973099e-02
+ <_>
+
+ 0 -1 640 -1.9133290334139019e-04
+
+ -1.4094290137290955e-01 1.3830110430717468e-01
+ <_>
+
+ 0 -1 641 -2.4422289803624153e-02
+
+ -2.5292310118675232e-01 6.7684173583984375e-02
+ <_>
+
+ 0 -1 642 -2.6136320829391479e-01
+
+ 3.4003540873527527e-01 -5.8462549000978470e-02
+ <_>
+
+ 0 -1 643 -7.6046779751777649e-02
+
+ -7.8514158725738525e-01 5.2708541043102741e-03
+ <_>
+
+ 0 -1 644 -3.0279329512268305e-03
+
+ 1.8527059257030487e-01 -9.0691961348056793e-02
+ <_>
+
+ 0 -1 645 -8.0219199880957603e-03
+
+ -1.2540580332279205e-01 3.0594889074563980e-02
+ <_>
+
+ 0 -1 646 -2.0705960690975189e-01
+
+ -7.5411921739578247e-01 2.1201130002737045e-02
+ <_>
+
+ 0 -1 647 -9.5322817564010620e-02
+
+ -2.9623070359230042e-01 1.3138709589838982e-02
+ <_>
+
+ 0 -1 648 9.5921624451875687e-03
+
+ 8.4324322640895844e-02 -2.1746580302715302e-01
+ <_>
+
+ 0 -1 649 -1.3089469633996487e-02
+
+ 9.3607500195503235e-02 -6.5754130482673645e-02
+ <_>
+
+ 0 -1 650 1.1732880026102066e-02
+
+ -8.0039046704769135e-02 2.3291939496994019e-01
+ <_>
+
+ 0 -1 651 1.5239049494266510e-01
+
+ 9.9299130961298943e-03 -6.5196067094802856e-01
+ <_>
+
+ 0 -1 652 -6.4591512084007263e-02
+
+ 2.8372219204902649e-01 -6.0058828443288803e-02
+ <_>
+
+ 0 -1 653 -5.5493030697107315e-02
+
+ 2.6659101247787476e-01 -1.0336419567465782e-02
+ <_>
+
+ 0 -1 654 -5.0287410616874695e-02
+
+ -6.9501471519470215e-01 2.7849879115819931e-02
+ <_>
+
+ 0 -1 655 -4.7794249653816223e-01
+
+ -9.2871952056884766e-01 5.9050112031400204e-03
+ <_>
+
+ 0 -1 656 -1.4398519881069660e-02
+
+ -4.5541068911552429e-01 3.6409981548786163e-02
+ <_>
+ 67
+ -7.4186658859252930e-01
+
+ <_>
+
+ 0 -1 657 1.9511899445205927e-03
+
+ -2.4936990439891815e-01 1.4111639559268951e-01
+ <_>
+
+ 0 -1 658 -4.6634670346975327e-02
+
+ 3.7840589880943298e-01 -7.8401736915111542e-02
+ <_>
+
+ 0 -1 659 1.6193749383091927e-02
+
+ 7.5213313102722168e-02 -4.1991469264030457e-01
+ <_>
+
+ 0 -1 660 -1.2459639401640743e-04
+
+ 6.8576186895370483e-02 -1.7935420572757721e-01
+ <_>
+
+ 0 -1 661 7.3257791809737682e-03
+
+ 1.0322099924087524e-01 -2.6099279522895813e-01
+ <_>
+
+ 0 -1 662 -1.5020779756014235e-05
+
+ 7.3122598230838776e-02 -1.6718889772891998e-01
+ <_>
+
+ 0 -1 663 -3.4522008150815964e-02
+
+ -3.9326989650726318e-01 7.6727166771888733e-02
+ <_>
+
+ 0 -1 664 -8.2679510116577148e-02
+
+ -7.4677819013595581e-01 1.5530600212514400e-02
+ <_>
+
+ 0 -1 665 8.2162402570247650e-02
+
+ -6.9249503314495087e-02 3.7914600968360901e-01
+ <_>
+
+ 0 -1 666 3.4187830984592438e-02
+
+ 4.2608659714460373e-02 -1.5429890155792236e-01
+ <_>
+
+ 0 -1 667 -1.7891369760036469e-02
+
+ -3.0639570951461792e-01 7.8118398785591125e-02
+ <_>
+
+ 0 -1 668 3.3130999654531479e-02
+
+ -5.6183800101280212e-02 3.7405240535736084e-01
+ <_>
+
+ 0 -1 669 -5.7486710138618946e-03
+
+ 1.2490350008010864e-01 -2.0527860522270203e-01
+ <_>
+
+ 0 -1 670 3.3536829054355621e-02
+
+ -4.8344220966100693e-02 2.6724401116371155e-01
+ <_>
+
+ 0 -1 671 2.4723829701542854e-02
+
+ 8.3678968250751495e-02 -3.3730649948120117e-01
+ <_>
+
+ 0 -1 672 2.2355809342116117e-03
+
+ 1.0374590009450912e-01 -1.3071919977664948e-01
+ <_>
+
+ 0 -1 673 -2.4322168901562691e-03
+
+ 1.5645089745521545e-01 -1.3284459710121155e-01
+ <_>
+
+ 0 -1 674 2.5999119505286217e-02
+
+ -8.0343127250671387e-02 2.1610119938850403e-01
+ <_>
+
+ 0 -1 675 3.6965688195778057e-05
+
+ -1.7871010303497314e-01 1.0563120245933533e-01
+ <_>
+
+ 0 -1 676 -1.6291500627994537e-01
+
+ -6.9141697883605957e-01 2.2374730557203293e-02
+ <_>
+
+ 0 -1 677 1.3008140027523041e-01
+
+ -4.2769040912389755e-02 4.6373569965362549e-01
+ <_>
+
+ 0 -1 678 2.7658540755510330e-02
+
+ -3.7108600139617920e-02 3.8386580348014832e-01
+ <_>
+
+ 0 -1 679 -1.0020419955253601e-02
+
+ -2.6328051090240479e-01 7.4858680367469788e-02
+ <_>
+
+ 0 -1 680 -3.0459940433502197e-02
+
+ 3.2300901412963867e-01 -2.5858370587229729e-02
+ <_>
+
+ 0 -1 681 1.3251040363684297e-03
+
+ 1.4447669684886932e-01 -2.1082170307636261e-01
+ <_>
+
+ 0 -1 682 -2.7931010350584984e-02
+
+ 1.4374519884586334e-01 -1.6162300109863281e-01
+ <_>
+
+ 0 -1 683 -8.8642723858356476e-03
+
+ 2.3000620305538177e-01 -9.5095098018646240e-02
+ <_>
+
+ 0 -1 684 -1.2213969603180885e-02
+
+ -2.4646399915218353e-01 6.5522022545337677e-02
+ <_>
+
+ 0 -1 685 -4.8737529665231705e-02
+
+ -7.9127711057662964e-01 2.5416409596800804e-02
+ <_>
+
+ 0 -1 686 6.1185289174318314e-02
+
+ -1.2226430408190936e-04 -9.0545868873596191e-01
+ <_>
+
+ 0 -1 687 2.6453679427504539e-02
+
+ 2.6562800630927086e-02 -6.3954341411590576e-01
+ <_>
+
+ 0 -1 688 8.8589917868375778e-03
+
+ 5.4145850241184235e-02 -2.1601280570030212e-01
+ <_>
+
+ 0 -1 689 3.4847941249608994e-02
+
+ -4.5749358832836151e-02 4.3935400247573853e-01
+ <_>
+
+ 0 -1 690 -1.4598210155963898e-01
+
+ -5.5561769008636475e-01 9.5249973237514496e-03
+ <_>
+
+ 0 -1 691 -5.0456568598747253e-02
+
+ -7.5287848711013794e-01 2.0214710384607315e-02
+ <_>
+
+ 0 -1 692 -8.5443779826164246e-02
+
+ -1. -1.3681349810212851e-03
+ <_>
+
+ 0 -1 693 1.3248980045318604e-02
+
+ 6.3400700688362122e-02 -2.5411811470985413e-01
+ <_>
+
+ 0 -1 694 -6.5935611724853516e-01
+
+ -1. 7.7378489077091217e-03
+ <_>
+
+ 0 -1 695 5.0879311747848988e-03
+
+ -8.3207741379737854e-02 1.8876290321350098e-01
+ <_>
+
+ 0 -1 696 -3.4071630798280239e-03
+
+ 1.4578290283679962e-01 -9.1960333287715912e-02
+ <_>
+
+ 0 -1 697 -2.1656269207596779e-02
+
+ -6.5364891290664673e-01 2.7129750698804855e-02
+ <_>
+
+ 0 -1 698 9.4357347115874290e-03
+
+ 6.4360111951828003e-02 -2.3885479569435120e-01
+ <_>
+
+ 0 -1 699 -7.5177568942308426e-03
+
+ 2.4519060552120209e-01 -6.8221837282180786e-02
+ <_>
+
+ 0 -1 700 1.6067629680037498e-02
+
+ 7.6069780625402927e-03 -3.1668719649314880e-01
+ <_>
+
+ 0 -1 701 -1.8057749839499593e-03
+
+ 1.2710370123386383e-01 -1.2145719677209854e-01
+ <_>
+
+ 0 -1 702 -4.4154901057481766e-02
+
+ -4.8579609394073486e-01 2.3444859310984612e-02
+ <_>
+
+ 0 -1 703 7.5462698005139828e-03
+
+ 6.8430766463279724e-02 -2.3316520452499390e-01
+ <_>
+
+ 0 -1 704 1.0868260264396667e-01
+
+ -4.1663911193609238e-02 3.9452219009399414e-01
+ <_>
+
+ 0 -1 705 6.1248701810836792e-01
+
+ 2.0702170208096504e-02 -9.8494791984558105e-01
+ <_>
+
+ 0 -1 706 4.9828290939331055e-02
+
+ 2.7304550167173147e-03 -4.0181699395179749e-01
+ <_>
+
+ 0 -1 707 -7.2768718004226685e-02
+
+ 3.2676479220390320e-01 -4.9144338816404343e-02
+ <_>
+
+ 0 -1 708 2.4314310401678085e-02
+
+ -7.8135710209608078e-03 5.8223301172256470e-01
+ <_>
+
+ 0 -1 709 -1.7177179688587785e-04
+
+ 8.1669911742210388e-02 -2.0376220345497131e-01
+ <_>
+
+ 0 -1 710 -4.0095269680023193e-02
+
+ 5.4681521654129028e-01 -1.7179539427161217e-02
+ <_>
+
+ 0 -1 711 -8.9634567499160767e-02
+
+ -8.1614011526107788e-01 2.1283889189362526e-02
+ <_>
+
+ 0 -1 712 1.8692140281200409e-01
+
+ 8.3980746567249298e-03 -6.0185301303863525e-01
+ <_>
+
+ 0 -1 713 -4.3038379400968552e-02
+
+ -8.7898987531661987e-01 1.4930729754269123e-02
+ <_>
+
+ 0 -1 714 -1.8602630007080734e-04
+
+ 4.0156241506338120e-02 -8.2604438066482544e-02
+ <_>
+
+ 0 -1 715 -1.4392189914360642e-03
+
+ -1.7102399468421936e-01 9.1203540563583374e-02
+ <_>
+
+ 0 -1 716 4.2160619050264359e-02
+
+ -3.5861019045114517e-02 1.5174309909343719e-01
+ <_>
+
+ 0 -1 717 7.5991409830749035e-03
+
+ 1.0874529927968979e-01 -1.6147160530090332e-01
+ <_>
+
+ 0 -1 718 -5.7539329864084721e-03
+
+ -2.5677061080932617e-01 5.8457151055335999e-02
+ <_>
+
+ 0 -1 719 -2.7736749500036240e-02
+
+ 2.2325170040130615e-01 -7.4071511626243591e-02
+ <_>
+
+ 0 -1 720 -2.5676110759377480e-02
+
+ 1.8831080198287964e-01 -5.3860381245613098e-02
+ <_>
+
+ 0 -1 721 1.5890730544924736e-02
+
+ 5.1709540188312531e-02 -3.8476571440696716e-01
+ <_>
+
+ 0 -1 722 -8.6374267935752869e-02
+
+ -5.5680698156356812e-01 9.4922119751572609e-03
+ <_>
+
+ 0 -1 723 1.9480630289763212e-03
+
+ -1.0807219892740250e-01 1.4771680533885956e-01
+ <_>
+ 88
+ -8.3640968799591064e-01
+
+ <_>
+
+ 0 -1 724 -6.8531660363078117e-03
+
+ 2.8935509920120239e-01 -2.7689141035079956e-01
+ <_>
+
+ 0 -1 725 -6.9217637181282043e-02
+
+ 3.4909790754318237e-01 -4.9741089344024658e-02
+ <_>
+
+ 0 -1 726 -1.3092979788780212e-01
+
+ 4.2791560292243958e-01 -9.6156008541584015e-02
+ <_>
+
+ 0 -1 727 -2.9759139579255134e-05
+
+ 1.1675780266523361e-01 -2.4678389728069305e-01
+ <_>
+
+ 0 -1 728 -4.7100789844989777e-02
+
+ 3.7259110808372498e-01 -5.9072919189929962e-02
+ <_>
+
+ 0 -1 729 4.4124510139226913e-02
+
+ 7.8904099762439728e-02 -2.5528541207313538e-01
+ <_>
+
+ 0 -1 730 4.2540309950709343e-03
+
+ -2.3612380027770996e-01 1.2856779992580414e-01
+ <_>
+
+ 0 -1 731 -1.0833570268005133e-03
+
+ 1.4347310364246368e-01 -1.4203630387783051e-01
+ <_>
+
+ 0 -1 732 5.9925230743829161e-05
+
+ -1.9927270710468292e-01 8.8502913713455200e-02
+ <_>
+
+ 0 -1 733 -7.3021486401557922e-02
+
+ -8.0666261911392212e-01 3.2041858881711960e-02
+ <_>
+
+ 0 -1 734 7.9495050013065338e-03
+
+ -6.5878443419933319e-02 2.7071261405944824e-01
+ <_>
+
+ 0 -1 735 -3.3911041100509465e-04
+
+ 1.3490739464759827e-01 -1.3354760408401489e-01
+ <_>
+
+ 0 -1 736 -2.6010179892182350e-02
+
+ -2.8074580430984497e-01 7.7902659773826599e-02
+ <_>
+
+ 0 -1 737 -3.1153090298175812e-02
+
+ 2.7022659778594971e-01 -2.6994340121746063e-02
+ <_>
+
+ 0 -1 738 1.0946249589323997e-02
+
+ -1.5993720293045044e-01 1.0350699722766876e-01
+ <_>
+
+ 0 -1 739 7.3101207613945007e-02
+
+ -4.1365791112184525e-03 5.2339828014373779e-01
+ <_>
+
+ 0 -1 740 3.0207149684429169e-02
+
+ -4.9229420721530914e-02 4.2848989367485046e-01
+ <_>
+
+ 0 -1 741 6.4985260367393494e-02
+
+ 3.9118612185120583e-03 -1.0003379583358765e+00
+ <_>
+
+ 0 -1 742 -2.9119249433279037e-02
+
+ -7.7025991678237915e-01 2.3930810391902924e-02
+ <_>
+
+ 0 -1 743 5.0458308309316635e-02
+
+ 6.9283558987081051e-03 -5.1854777336120605e-01
+ <_>
+
+ 0 -1 744 -3.8890179246664047e-02
+
+ -4.8176848888397217e-01 3.0270289629697800e-02
+ <_>
+
+ 0 -1 745 5.8319371193647385e-02
+
+ -2.2101389244198799e-02 2.8393501043319702e-01
+ <_>
+
+ 0 -1 746 -1.0803690180182457e-02
+
+ 1.2842060625553131e-01 -1.3849779963493347e-01
+ <_>
+
+ 0 -1 747 9.4525264576077461e-03
+
+ -5.7194419205188751e-02 1.7759050428867340e-01
+ <_>
+
+ 0 -1 748 1.5229170210659504e-02
+
+ 1.0501170158386230e-01 -2.0518389344215393e-01
+ <_>
+
+ 0 -1 749 -8.9435698464512825e-04
+
+ 6.8668253719806671e-02 -1.4666010439395905e-01
+ <_>
+
+ 0 -1 750 -1.8322499468922615e-02
+
+ -2.3613719642162323e-01 8.3538331091403961e-02
+ <_>
+
+ 0 -1 751 2.5474189314991236e-03
+
+ -8.4731526672840118e-02 1.7211520671844482e-01
+ <_>
+
+ 0 -1 752 -1.4951790217310190e-03
+
+ 1.8642990291118622e-01 -1.2753330171108246e-01
+ <_>
+
+ 0 -1 753 2.4796150624752045e-02
+
+ 3.2923560589551926e-02 -4.0954729914665222e-01
+ <_>
+
+ 0 -1 754 -2.8976860921829939e-03
+
+ 1.4480039477348328e-01 -1.0404679924249649e-01
+ <_>
+
+ 0 -1 755 7.0361169055104256e-03
+
+ -6.7916557192802429e-02 2.1544350683689117e-01
+ <_>
+
+ 0 -1 756 -1.1870389804244041e-02
+
+ -2.5537449121475220e-01 7.4443407356739044e-02
+ <_>
+
+ 0 -1 757 2.4765899870544672e-03
+
+ 6.8313367664813995e-02 -1.6111320257186890e-01
+ <_>
+
+ 0 -1 758 2.1284550428390503e-02
+
+ 3.7090871483087540e-02 -4.6916520595550537e-01
+ <_>
+
+ 0 -1 759 -1.0369479656219482e-02
+
+ 1.0807839781045914e-01 -6.0489870607852936e-02
+ <_>
+
+ 0 -1 760 1.0732480324804783e-02
+
+ -5.8582380414009094e-02 3.1958609819412231e-01
+ <_>
+
+ 0 -1 761 -2.3235160112380981e-01
+
+ -1. 8.2511743530631065e-03
+ <_>
+
+ 0 -1 762 -6.0572529037017375e-05
+
+ 8.0201767385005951e-02 -2.3583050072193146e-01
+ <_>
+
+ 0 -1 763 -2.7367009315639734e-03
+
+ 1.5369090437889099e-01 -7.8800879418849945e-02
+ <_>
+
+ 0 -1 764 3.1168010085821152e-02
+
+ -4.1852951049804688e-02 3.7374469637870789e-01
+ <_>
+
+ 0 -1 765 4.5415129512548447e-02
+
+ 6.6594500094652176e-03 -9.9975287914276123e-01
+ <_>
+
+ 0 -1 766 -1.3742819428443909e-03
+
+ 1.0587850213050842e-01 -1.9234779477119446e-01
+ <_>
+
+ 0 -1 767 3.0089360661804676e-03
+
+ 9.4038642942905426e-02 -1.5442730486392975e-01
+ <_>
+
+ 0 -1 768 -7.1071386337280273e-02
+
+ -5.4955267906188965e-01 2.5523129850625992e-02
+ <_>
+
+ 0 -1 769 1.0958979837596416e-03
+
+ -6.1327658593654633e-02 5.7677619159221649e-02
+ <_>
+
+ 0 -1 770 -2.3706799373030663e-02
+
+ 2.9486098885536194e-01 -6.6553473472595215e-02
+ <_>
+
+ 0 -1 771 6.8882037885487080e-03
+
+ 7.3861703276634216e-02 -2.5727730989456177e-01
+ <_>
+
+ 0 -1 772 -4.9158040434122086e-02
+
+ 3.2406309247016907e-01 -5.2785839885473251e-02
+ <_>
+
+ 0 -1 773 7.1369417011737823e-02
+
+ 1.3209920376539230e-02 -7.4821132421493530e-01
+ <_>
+
+ 0 -1 774 -8.4517486393451691e-03
+
+ -2.0652799308300018e-01 9.3139596283435822e-02
+ <_>
+
+ 0 -1 775 -1.5554410219192505e-01
+
+ -5.0736141204833984e-01 1.1575420387089252e-02
+ <_>
+
+ 0 -1 776 -4.5976821333169937e-02
+
+ 3.3433321118354797e-01 -5.6558281183242798e-02
+ <_>
+
+ 0 -1 777 1.7900219187140465e-02
+
+ 3.4091990441083908e-02 -2.8565031290054321e-01
+ <_>
+
+ 0 -1 778 6.7351139150559902e-03
+
+ -6.6538818180561066e-02 2.3322120308876038e-01
+ <_>
+
+ 0 -1 779 6.4544100314378738e-03
+
+ 4.7224499285221100e-02 -1.4422370493412018e-01
+ <_>
+
+ 0 -1 780 -1.1029049754142761e-02
+
+ -2.6442399621009827e-01 6.2542691826820374e-02
+ <_>
+
+ 0 -1 781 -3.3727919217199087e-03
+
+ 1.2575919926166534e-01 -6.8357646465301514e-02
+ <_>
+
+ 0 -1 782 -2.2960419300943613e-03
+
+ -1.5573309361934662e-01 9.4681970775127411e-02
+ <_>
+
+ 0 -1 783 -7.9503163695335388e-02
+
+ -3.8246139883995056e-01 1.7201259732246399e-02
+ <_>
+
+ 0 -1 784 -2.5240880250930786e-01
+
+ 3.0139809846878052e-01 -5.8942809700965881e-02
+ <_>
+
+ 0 -1 785 3.6313079297542572e-02
+
+ 2.1105870604515076e-02 -2.0811690390110016e-01
+ <_>
+
+ 0 -1 786 6.8737521767616272e-02
+
+ -3.2400298863649368e-02 5.1345300674438477e-01
+ <_>
+
+ 0 -1 787 -2.1814550459384918e-01
+
+ -7.0093291997909546e-01 1.6260979697108269e-02
+ <_>
+
+ 0 -1 788 -1.9770899415016174e-01
+
+ -6.7817360162734985e-01 1.7937550321221352e-02
+ <_>
+
+ 0 -1 789 -1.0131119936704636e-01
+
+ 3.6470630764961243e-01 -4.9969438463449478e-02
+ <_>
+
+ 0 -1 790 5.4146698676049709e-03
+
+ 6.6086590290069580e-02 -2.3327399790287018e-01
+ <_>
+
+ 0 -1 791 -4.0590178221464157e-02
+
+ 2.1464720368385315e-01 -4.3033309280872345e-02
+ <_>
+
+ 0 -1 792 -1.3324919855222106e-03
+
+ 1.2975679337978363e-01 -1.2794280052185059e-01
+ <_>
+
+ 0 -1 793 5.7570589706301689e-03
+
+ 4.3469998985528946e-02 -1.1977300047874451e-01
+ <_>
+
+ 0 -1 794 -4.0872758254408836e-03
+
+ -2.0180100202560425e-01 9.2624872922897339e-02
+ <_>
+
+ 0 -1 795 2.1345280110836029e-02
+
+ -2.6310870423913002e-02 2.9142528772354126e-01
+ <_>
+
+ 0 -1 796 -2.4241849314421415e-03
+
+ 1.7131569981575012e-01 -1.1723010241985321e-01
+ <_>
+
+ 0 -1 797 6.0677550733089447e-02
+
+ -4.8347217962145805e-03 5.6577122211456299e-01
+ <_>
+
+ 0 -1 798 3.1573011074215174e-04
+
+ -1.1499550193548203e-01 1.3094860315322876e-01
+ <_>
+
+ 0 -1 799 -1.4639530563727021e-03
+
+ 1.0708429664373398e-01 -8.2188747823238373e-02
+ <_>
+
+ 0 -1 800 -8.1629276275634766e-02
+
+ -7.0090162754058838e-01 2.1318640559911728e-02
+ <_>
+
+ 0 -1 801 -2.2923630604054779e-04
+
+ 5.2449010312557220e-02 -5.7273399084806442e-02
+ <_>
+
+ 0 -1 802 8.6732655763626099e-03
+
+ -1.0944409668445587e-01 1.4530800282955170e-01
+ <_>
+
+ 0 -1 803 -9.5603411318734288e-04
+
+ 5.4728660732507706e-02 -7.6677009463310242e-02
+ <_>
+
+ 0 -1 804 -5.6814689189195633e-02
+
+ -7.2493737936019897e-01 1.7791330814361572e-02
+ <_>
+
+ 0 -1 805 6.4268838614225388e-03
+
+ -3.7768699228763580e-02 8.3454750478267670e-02
+ <_>
+
+ 0 -1 806 5.2451258525252342e-03
+
+ -7.5806751847267151e-02 2.1549069881439209e-01
+ <_>
+
+ 0 -1 807 6.7577441222965717e-03
+
+ 7.7163867652416229e-02 -2.4957199394702911e-01
+ <_>
+
+ 0 -1 808 -5.7494179345667362e-03
+
+ 1.4245559275150299e-01 -1.2740920484066010e-01
+ <_>
+
+ 0 -1 809 -6.7760650999844074e-03
+
+ -2.3316009342670441e-01 3.9975211024284363e-02
+ <_>
+
+ 0 -1 810 3.5247279447503388e-04
+
+ -1.3083159923553467e-01 1.1577410250902176e-01
+ <_>
+
+ 0 -1 811 1.4523849822580814e-03
+
+ -9.2724457383155823e-02 6.5486960113048553e-02
+ <_>
+ 80
+ -7.2322398424148560e-01
+
+ <_>
+
+ 0 -1 812 -3.1163799762725830e-01
+
+ 3.8062000274658203e-01 -1.1115840077400208e-01
+ <_>
+
+ 0 -1 813 -3.0338248610496521e-01
+
+ 5.1236808300018311e-01 -5.0459731370210648e-02
+ <_>
+
+ 0 -1 814 -1.0945170186460018e-02
+
+ -2.2292029857635498e-01 1.0548099875450134e-01
+ <_>
+
+ 0 -1 815 -2.8011079877614975e-02
+
+ 7.0687793195247650e-02 -8.6478509008884430e-02
+ <_>
+
+ 0 -1 816 -5.2256159484386444e-02
+
+ 5.7856267690658569e-01 -8.7944902479648590e-03
+ <_>
+
+ 0 -1 817 -5.9455442242324352e-03
+
+ -2.5641980767250061e-01 9.4584532082080841e-02
+ <_>
+
+ 0 -1 818 2.5594399776309729e-03
+
+ -2.5718480348587036e-01 1.2882429361343384e-01
+ <_>
+
+ 0 -1 819 -1.2099260091781616e-01
+
+ -1.2293220311403275e-01 2.5829430669546127e-02
+ <_>
+
+ 0 -1 820 -4.4208219647407532e-01
+
+ -7.4546551704406738e-01 4.2586710304021835e-02
+ <_>
+
+ 0 -1 821 -6.6842641681432724e-03
+
+ 1.3515649735927582e-01 -1.6409300267696381e-01
+ <_>
+
+ 0 -1 822 9.8270708695054054e-03
+
+ -8.0305352807044983e-02 2.9853299260139465e-01
+ <_>
+
+ 0 -1 823 5.8638598769903183e-02
+
+ 2.7556419372558594e-02 -8.2242500782012939e-01
+ <_>
+
+ 0 -1 824 -3.0546959023922682e-03
+
+ -1.9292749464511871e-01 1.1082729697227478e-01
+ <_>
+
+ 0 -1 825 -7.3340102098882198e-03
+
+ -2.4307939410209656e-01 6.6744603216648102e-02
+ <_>
+
+ 0 -1 826 -1.0526229627430439e-02
+
+ -3.1136021018028259e-01 6.2850847840309143e-02
+ <_>
+
+ 0 -1 827 1.0481160134077072e-01
+
+ 1.2621720321476460e-02 -6.7376089096069336e-01
+ <_>
+
+ 0 -1 828 9.4269379042088985e-04
+
+ -1.7071670293807983e-01 1.0280650109052658e-01
+ <_>
+
+ 0 -1 829 8.4397383034229279e-03
+
+ -5.3014568984508514e-02 8.8599078357219696e-02
+ <_>
+
+ 0 -1 830 -3.0551670119166374e-02
+
+ 3.5264891386032104e-01 -6.9148473441600800e-02
+ <_>
+
+ 0 -1 831 -4.9112379550933838e-02
+
+ -5.8219379186630249e-01 1.4043220318853855e-02
+ <_>
+
+ 0 -1 832 5.8098030276596546e-03
+
+ 7.0872433483600616e-02 -2.5362819433212280e-01
+ <_>
+
+ 0 -1 833 2.5541070848703384e-02
+
+ -4.5136939734220505e-02 4.0674450993537903e-01
+ <_>
+
+ 0 -1 834 -4.8711288720369339e-02
+
+ -7.0240157842636108e-01 2.4317869916558266e-02
+ <_>
+
+ 0 -1 835 -3.2624390721321106e-01
+
+ -5.0619047880172729e-01 5.5445302277803421e-03
+ <_>
+
+ 0 -1 836 -1.8120040476787835e-04
+
+ 1.3132590055465698e-01 -1.2139549851417542e-01
+ <_>
+
+ 0 -1 837 -1.2980769574642181e-01
+
+ -6.8208992481231689e-01 1.6414549201726913e-02
+ <_>
+
+ 0 -1 838 8.3528067916631699e-03
+
+ 3.0040390789508820e-02 -5.0909137725830078e-01
+ <_>
+
+ 0 -1 839 5.4547088220715523e-03
+
+ -8.2402072846889496e-02 1.8007980287075043e-01
+ <_>
+
+ 0 -1 840 -3.1699541211128235e-01
+
+ -8.6613011360168457e-01 1.8229139968752861e-02
+ <_>
+
+ 0 -1 841 5.8424862800166011e-04
+
+ 4.2409729212522507e-02 -1.3118089735507965e-01
+ <_>
+
+ 0 -1 842 -9.7046848386526108e-03
+
+ -2.7432689070701599e-01 5.5920429527759552e-02
+ <_>
+
+ 0 -1 843 1.6834320500493050e-02
+
+ -8.3306416869163513e-02 6.7792758345603943e-02
+ <_>
+
+ 0 -1 844 -3.0685380101203918e-02
+
+ 4.2126908898353577e-01 -4.5339331030845642e-02
+ <_>
+
+ 0 -1 845 4.1394919157028198e-02
+
+ 1.9971750676631927e-02 -1.9722190499305725e-01
+ <_>
+
+ 0 -1 846 3.4910149872303009e-02
+
+ -5.3826879709959030e-02 3.5040271282196045e-01
+ <_>
+
+ 0 -1 847 -5.2495039999485016e-03
+
+ -1.1363890022039413e-01 5.5080570280551910e-02
+ <_>
+
+ 0 -1 848 1.2045619636774063e-01
+
+ 1.7451599240303040e-02 -9.3958032131195068e-01
+ <_>
+
+ 0 -1 849 4.2130421847105026e-02
+
+ -1.4343280345201492e-02 6.0059851408004761e-01
+ <_>
+
+ 0 -1 850 1.9120849668979645e-02
+
+ 8.5864506661891937e-02 -1.8586499989032745e-01
+ <_>
+
+ 0 -1 851 8.4470612928271294e-03
+
+ -6.9452181458473206e-02 7.3461420834064484e-02
+ <_>
+
+ 0 -1 852 1.7696130089461803e-03
+
+ -7.9996660351753235e-02 1.9479809701442719e-01
+ <_>
+
+ 0 -1 853 5.7995948940515518e-02
+
+ 2.7633000165224075e-02 -5.4097008705139160e-01
+ <_>
+
+ 0 -1 854 -7.9884022474288940e-02
+
+ -5.4307681322097778e-01 2.3219829425215721e-02
+ <_>
+
+ 0 -1 855 6.6576242446899414e-02
+
+ 6.8416809663176537e-03 -8.1224560737609863e-01
+ <_>
+
+ 0 -1 856 6.4169943332672119e-02
+
+ -2.4846689775586128e-02 6.0798132419586182e-01
+ <_>
+
+ 0 -1 857 -2.9404780268669128e-01
+
+ -1. 4.6440181322395802e-03
+ <_>
+
+ 0 -1 858 -9.5727723091840744e-03
+
+ -1.4157359302043915e-01 1.0121650248765945e-01
+ <_>
+
+ 0 -1 859 -2.3574449121952057e-02
+
+ 1.1715450137853622e-01 -1.3184690475463867e-01
+ <_>
+
+ 0 -1 860 -5.1256217993795872e-03
+
+ -1.7623250186443329e-01 1.0177359730005264e-01
+ <_>
+
+ 0 -1 861 9.7663059830665588e-02
+
+ 4.4896239414811134e-03 -8.0415552854537964e-01
+ <_>
+
+ 0 -1 862 3.2088689506053925e-02
+
+ -5.8048430830240250e-02 3.0194890499114990e-01
+ <_>
+
+ 0 -1 863 -8.6517207324504852e-02
+
+ -7.5529891252517700e-01 2.8089359402656555e-03
+ <_>
+
+ 0 -1 864 -2.8540970757603645e-02
+
+ -3.5085019469261169e-01 4.4081591069698334e-02
+ <_>
+
+ 0 -1 865 -5.3844689391553402e-03
+
+ 9.2348903417587280e-02 -7.0033848285675049e-02
+ <_>
+
+ 0 -1 866 -2.2280439734458923e-02
+
+ 2.4949419498443604e-01 -7.0658676326274872e-02
+ <_>
+
+ 0 -1 867 5.1025422289967537e-03
+
+ 6.0899689793586731e-02 -1.5473949909210205e-01
+ <_>
+
+ 0 -1 868 3.7133800797164440e-03
+
+ -8.7124302983283997e-02 1.7195260524749756e-01
+ <_>
+
+ 0 -1 869 -4.0405280888080597e-03
+
+ 1.5054519474506378e-01 -9.9685050547122955e-02
+ <_>
+
+ 0 -1 870 4.8944901674985886e-02
+
+ 2.0637780427932739e-02 -7.1113997697830200e-01
+ <_>
+
+ 0 -1 871 -4.0832208469510078e-03
+
+ -1.6104909777641296e-01 8.8675007224082947e-02
+ <_>
+
+ 0 -1 872 -2.2145630791783333e-03
+
+ -2.1901540458202362e-01 1.0045240074396133e-01
+ <_>
+
+ 0 -1 873 -6.4257450401782990e-02
+
+ -5.7694709300994873e-01 1.0253880172967911e-02
+ <_>
+
+ 0 -1 874 1.1895420029759407e-02
+
+ -7.0560596883296967e-02 2.6147291064262390e-01
+ <_>
+
+ 0 -1 875 -4.4988259673118591e-02
+
+ -6.8440282344818115e-01 9.9674779921770096e-03
+ <_>
+
+ 0 -1 876 6.3484339043498039e-03
+
+ 8.4738656878471375e-02 -1.6299989819526672e-01
+ <_>
+
+ 0 -1 877 -5.6587439030408859e-02
+
+ 4.8960050940513611e-01 -1.9641140475869179e-02
+ <_>
+
+ 0 -1 878 3.5853400826454163e-02
+
+ 1.9695440307259560e-02 -6.8108338117599487e-01
+ <_>
+
+ 0 -1 879 -4.5450981706380844e-03
+
+ 6.9072656333446503e-02 -9.1276638209819794e-02
+ <_>
+
+ 0 -1 880 1.0608570277690887e-01
+
+ -4.9993991851806641e-02 3.2139471173286438e-01
+ <_>
+
+ 0 -1 881 -4.5924410223960876e-02
+
+ -8.2744181156158447e-01 1.2149419635534286e-02
+ <_>
+
+ 0 -1 882 -1.2273239903151989e-02
+
+ -3.0669289827346802e-01 5.1693398505449295e-02
+ <_>
+
+ 0 -1 883 8.0667391419410706e-02
+
+ 2.1730009466409683e-03 -1.0002529621124268e+00
+ <_>
+
+ 0 -1 884 -2.3044859990477562e-02
+
+ 4.5085349678993225e-01 -3.6273978650569916e-02
+ <_>
+
+ 0 -1 885 1.8702909350395203e-02
+
+ 4.6945460140705109e-02 -2.1796269714832306e-01
+ <_>
+
+ 0 -1 886 -9.6820026636123657e-02
+
+ 4.0398910641670227e-01 -3.7819091230630875e-02
+ <_>
+
+ 0 -1 887 6.0525789856910706e-02
+
+ 1.5727160498499870e-02 -4.5661678910255432e-01
+ <_>
+
+ 0 -1 888 1.0418569669127464e-02
+
+ 6.2726646661758423e-02 -2.4441179633140564e-01
+ <_>
+
+ 0 -1 889 1.0726209729909897e-02
+
+ -7.1968853473663330e-02 2.2099970281124115e-01
+ <_>
+
+ 0 -1 890 -2.7160700410604477e-03
+
+ 1.2882749736309052e-01 -1.4629630744457245e-01
+ <_>
+
+ 0 -1 891 8.5867568850517273e-03
+
+ -6.8645663559436798e-02 2.5840589404106140e-01
+ <_>
+ 103
+ -7.6886308193206787e-01
+
+ <_>
+
+ 0 -1 892 -2.5851670652627945e-02
+
+ 1.8011799454689026e-01 -2.4745930731296539e-01
+ <_>
+
+ 0 -1 893 1.4054620265960693e-01
+
+ -5.1319289952516556e-02 4.0766909718513489e-01
+ <_>
+
+ 0 -1 894 -2.7255079150199890e-01
+
+ 4.9941259622573853e-01 -4.5033931732177734e-02
+ <_>
+
+ 0 -1 895 1.3978329952806234e-03
+
+ 5.3600508719682693e-02 -2.1793389320373535e-01
+ <_>
+
+ 0 -1 896 -3.5059880465269089e-02
+
+ -2.9943290352821350e-01 8.9991323649883270e-02
+ <_>
+
+ 0 -1 897 -3.2894399482756853e-03
+
+ 1.0264199972152710e-01 -9.4711251556873322e-02
+ <_>
+
+ 0 -1 898 1.8242290616035461e-01
+
+ 2.5626670569181442e-02 -6.8765729665756226e-01
+ <_>
+
+ 0 -1 899 -7.8741081058979034e-02
+
+ 1.0810419917106628e-01 -1.4497520029544830e-01
+ <_>
+
+ 0 -1 900 1.3945129700005054e-02
+
+ -7.1371912956237793e-02 3.1315749883651733e-01
+ <_>
+
+ 0 -1 901 4.4680278748273849e-02
+
+ -3.0446149408817291e-02 3.9263629913330078e-01
+ <_>
+
+ 0 -1 902 -2.6441770605742931e-03
+
+ 1.1596699804067612e-01 -1.7800450325012207e-01
+ <_>
+
+ 0 -1 903 -5.1071979105472565e-03
+
+ -1.1739940196275711e-01 6.7823447287082672e-02
+ <_>
+
+ 0 -1 904 -3.2582178711891174e-02
+
+ -5.9129017591476440e-01 3.3352021127939224e-02
+ <_>
+
+ 0 -1 905 -2.7755839750170708e-02
+
+ -7.0649361610412598e-01 1.6761489212512970e-02
+ <_>
+
+ 0 -1 906 -6.0038521041860804e-05
+
+ 7.3832668364048004e-02 -2.2933359444141388e-01
+ <_>
+
+ 0 -1 907 3.0506180599331856e-02
+
+ -3.8056060671806335e-02 4.4115358591079712e-01
+ <_>
+
+ 0 -1 908 -6.2056961469352245e-03
+
+ -1.7757239937782288e-01 9.3707472085952759e-02
+ <_>
+
+ 0 -1 909 -8.0766230821609497e-03
+
+ -2.0256699621677399e-01 7.4059642851352692e-02
+ <_>
+
+ 0 -1 910 -3.3209908753633499e-02
+
+ 4.6372228860855103e-01 -3.4903008490800858e-02
+ <_>
+
+ 0 -1 911 3.5530608147382736e-02
+
+ -3.1679518520832062e-02 4.5202499628067017e-01
+ <_>
+
+ 0 -1 912 1.6297640278935432e-02
+
+ 4.4189039617776871e-02 -3.4845370054244995e-01
+ <_>
+
+ 0 -1 913 9.9985357373952866e-03
+
+ -4.8255320638418198e-02 1.6078050434589386e-01
+ <_>
+
+ 0 -1 914 -5.2390778437256813e-03
+
+ 2.3236599564552307e-01 -7.6032742857933044e-02
+ <_>
+
+ 0 -1 915 -3.2508899457752705e-03
+
+ 5.4369390010833740e-02 -9.1040253639221191e-02
+ <_>
+
+ 0 -1 916 5.5640790611505508e-02
+
+ -3.8811128586530685e-02 4.2034021019935608e-01
+ <_>
+
+ 0 -1 917 3.3998981118202209e-02
+
+ 2.2251330316066742e-02 -3.5615360736846924e-01
+ <_>
+
+ 0 -1 918 -4.3103890493512154e-03
+
+ 1.1287429928779602e-01 -1.7630730569362640e-01
+ <_>
+
+ 0 -1 919 -7.9246461391448975e-03
+
+ -1.0992339998483658e-01 3.5099629312753677e-02
+ <_>
+
+ 0 -1 920 4.4273380190134048e-02
+
+ 2.8094569221138954e-02 -6.0921418666839600e-01
+ <_>
+
+ 0 -1 921 5.9907328337430954e-02
+
+ 9.7544339951127768e-04 -9.0523207187652588e-01
+ <_>
+
+ 0 -1 922 3.3378869295120239e-02
+
+ 1.7723279073834419e-02 -8.5254609584808350e-01
+ <_>
+
+ 0 -1 923 1.4694170095026493e-02
+
+ -4.9031510949134827e-02 2.7998331189155579e-01
+ <_>
+
+ 0 -1 924 -5.3877499885857105e-03
+
+ 1.8219049274921417e-01 -8.2382522523403168e-02
+ <_>
+
+ 0 -1 925 -1.7976889386773109e-02
+
+ -1.9384689629077911e-01 8.4984757006168365e-02
+ <_>
+
+ 0 -1 926 -4.4651641510426998e-03
+
+ 1.7632910609245300e-01 -9.5075771212577820e-02
+ <_>
+
+ 0 -1 927 6.9372296333312988e-02
+
+ 3.1770321074873209e-03 -6.7554402351379395e-01
+ <_>
+
+ 0 -1 928 -1.7002269625663757e-02
+
+ -3.3827948570251465e-01 4.4731728732585907e-02
+ <_>
+
+ 0 -1 929 1.7274240031838417e-02
+
+ -2.4769710376858711e-02 1.1852029711008072e-01
+ <_>
+
+ 0 -1 930 4.0388729423284531e-02
+
+ -3.2967679202556610e-02 4.7323140501976013e-01
+ <_>
+
+ 0 -1 931 1.4215400442481041e-02
+
+ 2.9846860095858574e-02 -4.4157060980796814e-01
+ <_>
+
+ 0 -1 932 4.1627719998359680e-02
+
+ -4.5953918248414993e-02 3.2978388667106628e-01
+ <_>
+
+ 0 -1 933 -1.7416840419173241e-03
+
+ 8.7286308407783508e-02 -8.8862203061580658e-02
+ <_>
+
+ 0 -1 934 -9.8077040165662766e-03
+
+ -2.1026679873466492e-01 7.7401876449584961e-02
+ <_>
+
+ 0 -1 935 2.1836649626493454e-02
+
+ 4.3211769312620163e-02 -1.5330420434474945e-01
+ <_>
+
+ 0 -1 936 -7.0743098855018616e-02
+
+ 3.3019039034843445e-01 -5.2747949957847595e-02
+ <_>
+
+ 0 -1 937 -1.1181020177900791e-02
+
+ -1.1493939906358719e-01 2.7858460322022438e-02
+ <_>
+
+ 0 -1 938 -1.4623560011386871e-02
+
+ 3.2327070832252502e-01 -4.4166058301925659e-02
+ <_>
+
+ 0 -1 939 -9.6702557057142258e-03
+
+ -1.8157319724559784e-01 3.6154530942440033e-02
+ <_>
+
+ 0 -1 940 8.3439601585268974e-03
+
+ -5.2473910152912140e-02 2.7444839477539062e-01
+ <_>
+
+ 0 -1 941 2.2970559075474739e-02
+
+ 3.4930050373077393e-02 -1.5773670375347137e-01
+ <_>
+
+ 0 -1 942 -8.2734245806932449e-03
+
+ 1.1612790077924728e-01 -1.1965770274400711e-01
+ <_>
+
+ 0 -1 943 8.7074404582381248e-03
+
+ -4.0829788893461227e-02 1.0481330007314682e-01
+ <_>
+
+ 0 -1 944 -1.8825819715857506e-02
+
+ -3.8794550299644470e-01 4.7350700944662094e-02
+ <_>
+
+ 0 -1 945 -7.2092940099537373e-03
+
+ -1.9886960089206696e-01 7.5952850282192230e-02
+ <_>
+
+ 0 -1 946 1.6543369565624744e-04
+
+ -1.0674829781055450e-01 1.5510599315166473e-01
+ <_>
+
+ 0 -1 947 8.9294537901878357e-03
+
+ -6.7059643566608429e-02 9.0206786990165710e-02
+ <_>
+
+ 0 -1 948 3.1991640571504831e-03
+
+ 7.4445746839046478e-02 -1.9682839512825012e-01
+ <_>
+
+ 0 -1 949 -1.1280879698460922e-04
+
+ 7.9703390598297119e-02 -1.3661189377307892e-01
+ <_>
+
+ 0 -1 950 -6.9613799452781677e-02
+
+ -2.1010529994964600e-01 6.5771616995334625e-02
+ <_>
+
+ 0 -1 951 -2.6066679507493973e-02
+
+ 2.8696510195732117e-01 -5.7495791465044022e-02
+ <_>
+
+ 0 -1 952 1.2050740420818329e-02
+
+ -4.6820510178804398e-02 2.7994769811630249e-01
+ <_>
+
+ 0 -1 953 -3.9625849574804306e-02
+
+ -3.7054508924484253e-01 1.1476139537990093e-02
+ <_>
+
+ 0 -1 954 -2.7379901148378849e-03
+
+ 9.4371132552623749e-02 -1.6203230619430542e-01
+ <_>
+
+ 0 -1 955 -6.5262563526630402e-02
+
+ -6.7808389663696289e-01 1.9430469721555710e-02
+ <_>
+
+ 0 -1 956 2.3191619664430618e-02
+
+ 2.6134310290217400e-02 -4.6664249897003174e-01
+ <_>
+
+ 0 -1 957 4.7741930931806564e-02
+
+ -2.5291189551353455e-02 2.9092490673065186e-01
+ <_>
+
+ 0 -1 958 -1.2830020487308502e-01
+
+ -8.7187117338180542e-01 1.3883540406823158e-02
+ <_>
+
+ 0 -1 959 -4.2689260095357895e-02
+
+ -6.7644822597503662e-01 6.8771280348300934e-03
+ <_>
+
+ 0 -1 960 6.2811248935759068e-03
+
+ -6.4803749322891235e-02 2.0994420349597931e-01
+ <_>
+
+ 0 -1 961 2.7532080188393593e-02
+
+ 1.5366540290415287e-02 -2.1457369625568390e-01
+ <_>
+
+ 0 -1 962 -3.4494648571126163e-04
+
+ 1.1829499900341034e-01 -1.0641119629144669e-01
+ <_>
+
+ 0 -1 963 -3.2187011092901230e-02
+
+ 2.0676319301128387e-01 -2.7804749086499214e-02
+ <_>
+
+ 0 -1 964 -2.4451729841530323e-03
+
+ -1.8970219790935516e-01 7.6612837612628937e-02
+ <_>
+
+ 0 -1 965 3.9631120860576630e-02
+
+ 1.1457280255854130e-02 -4.4112280011177063e-01
+ <_>
+
+ 0 -1 966 -9.0082110837101936e-03
+
+ -2.0329099893569946e-01 7.1997888386249542e-02
+ <_>
+
+ 0 -1 967 -6.0594908893108368e-02
+
+ 2.5831830501556396e-01 -3.2274000346660614e-02
+ <_>
+
+ 0 -1 968 3.3678639680147171e-02
+
+ 3.6565639078617096e-02 -3.3233150839805603e-01
+ <_>
+
+ 0 -1 969 1.4565410092473030e-02
+
+ -4.9269210547208786e-02 1.8280670046806335e-01
+ <_>
+
+ 0 -1 970 4.0103439241647720e-03
+
+ -1.2435600161552429e-01 1.1247640103101730e-01
+ <_>
+
+ 0 -1 971 1.7989509506151080e-03
+
+ -5.4675988852977753e-02 1.0701840370893478e-01
+ <_>
+
+ 0 -1 972 -1.6359580331481993e-04
+
+ 8.1755228340625763e-02 -1.6235500574111938e-01
+ <_>
+
+ 0 -1 973 -3.1993899494409561e-02
+
+ 1.8631230294704437e-01 -1.7350630834698677e-02
+ <_>
+
+ 0 -1 974 -8.1737667322158813e-02
+
+ -7.5961482524871826e-01 1.4419900253415108e-02
+ <_>
+
+ 0 -1 975 -8.8262550532817841e-02
+
+ -1. 5.3146481513977051e-04
+ <_>
+
+ 0 -1 976 -5.7997900992631912e-02
+
+ -8.9391511678695679e-01 1.2495099566876888e-02
+ <_>
+
+ 0 -1 977 2.0691409707069397e-02
+
+ -3.7167508155107498e-02 9.7208552062511444e-02
+ <_>
+
+ 0 -1 978 -6.0336058959364891e-03
+
+ 1.7547790706157684e-01 -8.6916856467723846e-02
+ <_>
+
+ 0 -1 979 1.5789760649204254e-01
+
+ 3.0604960396885872e-02 -2.2199299931526184e-01
+ <_>
+
+ 0 -1 980 3.3271119464188814e-03
+
+ 1.1201520264148712e-01 -1.6384710371494293e-01
+ <_>
+
+ 0 -1 981 1.1383239924907684e-01
+
+ 1.8078039865940809e-03 -9.9981439113616943e-01
+ <_>
+
+ 0 -1 982 3.9188969880342484e-02
+
+ -3.9494428783655167e-02 3.4139481186866760e-01
+ <_>
+
+ 0 -1 983 -4.7382968477904797e-03
+
+ -8.1601403653621674e-02 3.5498451441526413e-02
+ <_>
+
+ 0 -1 984 2.3458160459995270e-02
+
+ -4.0767479687929153e-02 3.4792768955230713e-01
+ <_>
+
+ 0 -1 985 1.6505220904946327e-02
+
+ 2.0170280709862709e-02 -1.5532009303569794e-01
+ <_>
+
+ 0 -1 986 2.0262949168682098e-02
+
+ 2.1292379125952721e-02 -6.2611502408981323e-01
+ <_>
+
+ 0 -1 987 -9.1393236070871353e-03
+
+ -1.3637480139732361e-01 6.3891842961311340e-02
+ <_>
+
+ 0 -1 988 -5.6207980960607529e-02
+
+ 4.0671119093894958e-01 -3.3258218318223953e-02
+ <_>
+
+ 0 -1 989 6.6868839785456657e-03
+
+ 6.4174309372901917e-02 -9.3966238200664520e-02
+ <_>
+
+ 0 -1 990 5.8862278237938881e-03
+
+ -6.5789960324764252e-02 2.0181339979171753e-01
+ <_>
+
+ 0 -1 991 -1.1517380177974701e-01
+
+ -1. 2.5347759947180748e-03
+ <_>
+
+ 0 -1 992 5.5793710052967072e-03
+
+ 7.0642203092575073e-02 -1.9637429714202881e-01
+ <_>
+
+ 0 -1 993 3.2180000096559525e-02
+
+ -1.4737719669938087e-02 2.2420160472393036e-01
+ <_>
+
+ 0 -1 994 -9.1598782455548644e-04
+
+ 1.1478749662637711e-01 -1.1767079681158066e-01
+ <_>
+ 83
+ -7.7573090791702271e-01
+
+ <_>
+
+ 0 -1 995 9.1346232220530510e-03
+
+ 8.8698662817478180e-02 -3.8595649600028992e-01
+ <_>
+
+ 0 -1 996 -2.4696369655430317e-03
+
+ 1.6772060096263885e-01 -1.4649170637130737e-01
+ <_>
+
+ 0 -1 997 5.8935020118951797e-02
+
+ -1.3394000008702278e-02 6.1832672357559204e-01
+ <_>
+
+ 0 -1 998 -8.9100059121847153e-03
+
+ -2.6950231194496155e-01 7.2939813137054443e-02
+ <_>
+
+ 0 -1 999 1.7743879929184914e-02
+
+ -5.0217188894748688e-02 4.3166020512580872e-01
+ <_>
+
+ 0 -1 1000 1.1056650429964066e-02
+
+ 3.9155859500169754e-02 -5.2860772609710693e-01
+ <_>
+
+ 0 -1 1001 1.6161320731043816e-02
+
+ 6.9581039249897003e-02 -3.7610140442848206e-01
+ <_>
+
+ 0 -1 1002 -2.7879089117050171e-02
+
+ 2.3220659792423248e-01 -5.5979579687118530e-02
+ <_>
+
+ 0 -1 1003 -1.1556839570403099e-02
+
+ -3.1231081485748291e-01 7.4339963495731354e-02
+ <_>
+
+ 0 -1 1004 -6.9651477038860321e-02
+
+ -4.1905689239501953e-01 6.9694789126515388e-03
+ <_>
+
+ 0 -1 1005 -5.0344727933406830e-03
+
+ 1.3183620572090149e-01 -1.9702030718326569e-01
+ <_>
+
+ 0 -1 1006 -8.6098119616508484e-02
+
+ 6.5727752447128296e-01 -9.5664570108056068e-03
+ <_>
+
+ 0 -1 1007 2.5546319782733917e-02
+
+ -4.0136341005563736e-02 5.4847037792205811e-01
+ <_>
+
+ 0 -1 1008 -2.6870880275964737e-02
+
+ -2.5306650996208191e-01 4.4181719422340393e-02
+ <_>
+
+ 0 -1 1009 9.5859682187438011e-03
+
+ -8.1882461905479431e-02 2.6894670724868774e-01
+ <_>
+
+ 0 -1 1010 2.6683809235692024e-02
+
+ 2.6593349874019623e-02 -4.4127041101455688e-01
+ <_>
+
+ 0 -1 1011 -1.4490840025246143e-02
+
+ -3.5697469115257263e-01 7.0072941482067108e-02
+ <_>
+
+ 0 -1 1012 -2.2448399104177952e-03
+
+ 2.0088230073451996e-01 -1.2228170037269592e-01
+ <_>
+
+ 0 -1 1013 4.8795710317790508e-03
+
+ 4.5820981264114380e-02 -3.9498189091682434e-01
+ <_>
+
+ 0 -1 1014 -6.1262990348041058e-03
+
+ -1.8826089799404144e-01 7.8812077641487122e-02
+ <_>
+
+ 0 -1 1015 1.6952969133853912e-02
+
+ -6.1684221029281616e-02 3.3603700995445251e-01
+ <_>
+
+ 0 -1 1016 -4.5547191984951496e-03
+
+ -1.9471390545368195e-01 5.3147189319133759e-02
+ <_>
+
+ 0 -1 1017 -1.2753040064126253e-03
+
+ 1.4800879359245300e-01 -1.4244349300861359e-01
+ <_>
+
+ 0 -1 1018 2.2060280665755272e-02
+
+ -3.5406738519668579e-02 3.3775308728218079e-01
+ <_>
+
+ 0 -1 1019 2.1050389856100082e-02
+
+ 4.2289130389690399e-02 -4.5886451005935669e-01
+ <_>
+
+ 0 -1 1020 9.5637209713459015e-02
+
+ -1.3171649537980556e-02 5.5534982681274414e-01
+ <_>
+
+ 0 -1 1021 -3.6728319246321917e-03
+
+ -1.8842899799346924e-01 9.5458142459392548e-02
+ <_>
+
+ 0 -1 1022 1.6345079347956926e-04
+
+ -6.0444809496402740e-02 1.0536730289459229e-01
+ <_>
+
+ 0 -1 1023 2.5338289141654968e-01
+
+ 1.6026260331273079e-02 -9.9994468688964844e-01
+ <_>
+
+ 0 -1 1024 -4.6113330870866776e-02
+
+ 5.4247987270355225e-01 -2.7890209108591080e-02
+ <_>
+
+ 0 -1 1025 5.2588270045816898e-03
+
+ 7.9867303371429443e-02 -2.0700709521770477e-01
+ <_>
+
+ 0 -1 1026 -1.3449570536613464e-01
+
+ -4.1270101070404053e-01 8.1500215455889702e-03
+ <_>
+
+ 0 -1 1027 1.6953679732978344e-03
+
+ 1.1035349965095520e-01 -1.6802120208740234e-01
+ <_>
+
+ 0 -1 1028 3.9492141455411911e-02
+
+ -1.3410010375082493e-02 3.8447639346122742e-01
+ <_>
+
+ 0 -1 1029 -9.3634781660512090e-04
+
+ 1.0986819863319397e-01 -1.7310489714145660e-01
+ <_>
+
+ 0 -1 1030 -4.4495709240436554e-02
+
+ 1.9471199810504913e-01 -4.0768899023532867e-02
+ <_>
+
+ 0 -1 1031 6.0630109161138535e-02
+
+ -4.2252369225025177e-02 5.1412987709045410e-01
+ <_>
+
+ 0 -1 1032 7.5067640282213688e-03
+
+ 4.2086970061063766e-02 -1.6080400347709656e-01
+ <_>
+
+ 0 -1 1033 9.9260415881872177e-03
+
+ 6.4119532704353333e-02 -2.6215308904647827e-01
+ <_>
+
+ 0 -1 1034 6.0528520494699478e-02
+
+ 2.4189969524741173e-02 -3.6608389019966125e-01
+ <_>
+
+ 0 -1 1035 -6.8054231815040112e-03
+
+ 1.2508389353752136e-01 -1.3889710605144501e-01
+ <_>
+
+ 0 -1 1036 -2.0940289832651615e-03
+
+ 1.3996599614620209e-01 -8.2706399261951447e-02
+ <_>
+
+ 0 -1 1037 -9.6904346719384193e-03
+
+ 2.6681360602378845e-01 -7.1576990187168121e-02
+ <_>
+
+ 0 -1 1038 1.8320349976420403e-02
+
+ 3.1321980059146881e-02 -2.3460610210895538e-01
+ <_>
+
+ 0 -1 1039 5.0429959082975984e-04
+
+ -1.1669719964265823e-01 1.6514649987220764e-01
+ <_>
+
+ 0 -1 1040 -4.7016288153827190e-03
+
+ -1.2006150186061859e-01 5.9200428426265717e-02
+ <_>
+
+ 0 -1 1041 -1.9926870241761208e-02
+
+ -3.9485099911689758e-01 4.1143018752336502e-02
+ <_>
+
+ 0 -1 1042 7.4013080447912216e-03
+
+ -7.6331257820129395e-02 2.1065360307693481e-01
+ <_>
+
+ 0 -1 1043 1.4879629947245121e-02
+
+ 4.7979071736335754e-02 -3.4014761447906494e-01
+ <_>
+
+ 0 -1 1044 1.5527559816837311e-01
+
+ 3.2225880771875381e-02 -4.6938079595565796e-01
+ <_>
+
+ 0 -1 1045 -7.0786331780254841e-03
+
+ 1.2199480086565018e-01 -1.2004940211772919e-01
+ <_>
+
+ 0 -1 1046 2.9872169718146324e-02
+
+ -4.3677508831024170e-02 2.3529820144176483e-01
+ <_>
+
+ 0 -1 1047 3.0555170029401779e-02
+
+ 3.1775880604982376e-02 -5.7825452089309692e-01
+ <_>
+
+ 0 -1 1048 1.0284570045769215e-02
+
+ 4.7202810645103455e-02 -2.9566499590873718e-01
+ <_>
+
+ 0 -1 1049 1.9808709621429443e-02
+
+ -4.5775938779115677e-02 3.3231019973754883e-01
+ <_>
+
+ 0 -1 1050 2.7218880131840706e-02
+
+ 2.5577219203114510e-02 -3.3180880546569824e-01
+ <_>
+
+ 0 -1 1051 1.4097680337727070e-02
+
+ 5.2157420665025711e-02 -2.9358381032943726e-01
+ <_>
+
+ 0 -1 1052 2.4286569654941559e-01
+
+ 1.4692460186779499e-02 -6.9854879379272461e-01
+ <_>
+
+ 0 -1 1053 1.2419570237398148e-02
+
+ -4.7105878591537476e-02 3.6695051193237305e-01
+ <_>
+
+ 0 -1 1054 1.3503880472853780e-03
+
+ 5.3791359066963196e-02 -2.0953659713268280e-01
+ <_>
+
+ 0 -1 1055 -1.5626290813088417e-02
+
+ 2.7888458967208862e-01 -6.0053750872612000e-02
+ <_>
+
+ 0 -1 1056 1.5850139781832695e-02
+
+ -3.0324909836053848e-02 1.0287520289421082e-01
+ <_>
+
+ 0 -1 1057 -4.0868919342756271e-02
+
+ -8.0402207374572754e-01 1.7601499333977699e-02
+ <_>
+
+ 0 -1 1058 6.4108639955520630e-02
+
+ 2.5845379568636417e-03 -5.3854942321777344e-01
+ <_>
+
+ 0 -1 1059 4.9927100539207458e-02
+
+ 2.1863300353288651e-02 -6.1780720949172974e-01
+ <_>
+
+ 0 -1 1060 1.4655419625341892e-02
+
+ 1.9663369283080101e-02 -2.0426170527935028e-01
+ <_>
+
+ 0 -1 1061 -2.4094810709357262e-02
+
+ 3.7609130144119263e-01 -4.0954101830720901e-02
+ <_>
+
+ 0 -1 1062 2.9417769983410835e-02
+
+ -8.6903842166066170e-03 4.0447419881820679e-01
+ <_>
+
+ 0 -1 1063 -1.4158640056848526e-02
+
+ 3.7811711430549622e-01 -4.0321640670299530e-02
+ <_>
+
+ 0 -1 1064 -4.6754989773035049e-02
+
+ 2.2104309499263763e-01 -2.8996109962463379e-02
+ <_>
+
+ 0 -1 1065 -1.1437949724495411e-02
+
+ -2.5033089518547058e-01 5.8214288204908371e-02
+ <_>
+
+ 0 -1 1066 -4.2598780244588852e-02
+
+ 3.7562200427055359e-01 -1.6349090263247490e-02
+ <_>
+
+ 0 -1 1067 -1.5201159752905369e-02
+
+ -3.5637819766998291e-01 3.8690369576215744e-02
+ <_>
+
+ 0 -1 1068 4.3378848582506180e-02
+
+ 3.3045639283955097e-03 -4.6729469299316406e-01
+ <_>
+
+ 0 -1 1069 5.5153011344373226e-03
+
+ -8.3583608269691467e-02 1.8793170154094696e-01
+ <_>
+
+ 0 -1 1070 -7.8126927837729454e-03
+
+ -1.6586859524250031e-01 4.3801128864288330e-02
+ <_>
+
+ 0 -1 1071 4.1652601212263107e-02
+
+ -3.1804520636796951e-02 4.3517521023750305e-01
+ <_>
+
+ 0 -1 1072 3.4417589195072651e-03
+
+ 4.2282279580831528e-02 -1.3088959455490112e-01
+ <_>
+
+ 0 -1 1073 1.3004569336771965e-04
+
+ -1.1260010302066803e-01 1.3964599370956421e-01
+ <_>
+
+ 0 -1 1074 -7.7347733080387115e-02
+
+ 7.0750647783279419e-01 -5.4134069941937923e-03
+ <_>
+
+ 0 -1 1075 -1.6143550164997578e-03
+
+ 1.1920420080423355e-01 -1.1884269863367081e-01
+ <_>
+
+ 0 -1 1076 -9.8279246594756842e-04
+
+ 6.3156276941299438e-02 -5.2781101316213608e-02
+ <_>
+
+ 0 -1 1077 -4.5667469501495361e-02
+
+ -3.4500870108604431e-01 4.4600728899240494e-02
+ <_>
+ 101
+ -6.9763368368148804e-01
+
+ <_>
+
+ 0 -1 1078 7.3315978050231934e-02
+
+ -1.1410109698772430e-01 4.0035811066627502e-01
+ <_>
+
+ 0 -1 1079 2.5275669991970062e-02
+
+ -7.2013877332210541e-02 3.6095780134201050e-01
+ <_>
+
+ 0 -1 1080 1.8873859196901321e-02
+
+ -1.7234370112419128e-01 1.8223220109939575e-01
+ <_>
+
+ 0 -1 1081 7.4607720307540148e-05
+
+ -8.1627286970615387e-02 8.8888503611087799e-02
+ <_>
+
+ 0 -1 1082 4.2250280966982245e-04
+
+ -1.2840239703655243e-01 1.1791419982910156e-01
+ <_>
+
+ 0 -1 1083 1.4402460306882858e-02
+
+ 2.0960340276360512e-02 1.9024699926376343e-01
+ <_>
+
+ 0 -1 1084 -2.0460959058254957e-03
+
+ 9.5712497830390930e-02 -2.1517060697078705e-01
+ <_>
+
+ 0 -1 1085 7.1128448471426964e-03
+
+ -5.6100480258464813e-02 2.0984320342540741e-01
+ <_>
+
+ 0 -1 1086 -6.5832170657813549e-03
+
+ -2.1138189733028412e-01 7.6094150543212891e-02
+ <_>
+
+ 0 -1 1087 -4.1252959636040032e-04
+
+ 1.3107340037822723e-01 -1.5670859813690186e-01
+ <_>
+
+ 0 -1 1088 -4.4330831617116928e-02
+
+ 5.4048037528991699e-01 -1.9059479236602783e-02
+ <_>
+
+ 0 -1 1089 1.1700130067765713e-02
+
+ 5.1712401211261749e-02 -1.7216169834136963e-01
+ <_>
+
+ 0 -1 1090 3.5091140307486057e-03
+
+ -7.6767951250076294e-02 1.7776259779930115e-01
+ <_>
+
+ 0 -1 1091 1.5597569756209850e-02
+
+ 3.8307890295982361e-02 -1.4730019867420197e-01
+ <_>
+
+ 0 -1 1092 -3.6285370588302612e-02
+
+ 3.5347661375999451e-01 -4.5018490403890610e-02
+ <_>
+
+ 0 -1 1093 -4.5118298381567001e-02
+
+ -5.7074141502380371e-01 1.0646710172295570e-02
+ <_>
+
+ 0 -1 1094 1.3734580017626286e-02
+
+ 6.6018357872962952e-02 -2.0480890572071075e-01
+ <_>
+
+ 0 -1 1095 -2.7120979502797127e-02
+
+ 4.8094209283590317e-02 -5.1394961774349213e-02
+ <_>
+
+ 0 -1 1096 -1.5354059869423509e-03
+
+ -2.3548009991645813e-01 5.3074609488248825e-02
+ <_>
+
+ 0 -1 1097 3.6000818945467472e-03
+
+ -5.8944340795278549e-02 1.1825410276651382e-01
+ <_>
+
+ 0 -1 1098 6.8916529417037964e-03
+
+ -5.0014488399028778e-02 2.6909399032592773e-01
+ <_>
+
+ 0 -1 1099 3.5373449791222811e-03
+
+ -1.2947039306163788e-01 8.8697038590908051e-02
+ <_>
+
+ 0 -1 1100 -4.1431561112403870e-03
+
+ -1.7883630096912384e-01 6.9098107516765594e-02
+ <_>
+
+ 0 -1 1101 -1.0762579739093781e-01
+
+ -1. 4.7263409942388535e-03
+ <_>
+
+ 0 -1 1102 9.7946207970380783e-03
+
+ -5.4038770496845245e-02 2.4115470051765442e-01
+ <_>
+
+ 0 -1 1103 1.0054280050098896e-02
+
+ -8.0624893307685852e-02 1.1627560108900070e-01
+ <_>
+
+ 0 -1 1104 -8.7350717512890697e-04
+
+ -1.8193979561328888e-01 7.7468506991863251e-02
+ <_>
+
+ 0 -1 1105 9.4283261569216847e-04
+
+ 4.6265050768852234e-02 -2.2732029855251312e-01
+ <_>
+
+ 0 -1 1106 3.5424059024080634e-04
+
+ -1.1824289709329605e-01 1.1095699667930603e-01
+ <_>
+
+ 0 -1 1107 -3.8587789982557297e-02
+
+ -3.0286869406700134e-01 3.1856179703027010e-03
+ <_>
+
+ 0 -1 1108 -4.9504679627716541e-03
+
+ 1.3758100569248199e-01 -9.1690346598625183e-02
+ <_>
+
+ 0 -1 1109 -2.5453630834817886e-02
+
+ -2.3013520240783691e-01 1.9747929647564888e-02
+ <_>
+
+ 0 -1 1110 1.5836700797080994e-02
+
+ -4.5252159237861633e-02 2.9337081313133240e-01
+ <_>
+
+ 0 -1 1111 1.0379879735410213e-02
+
+ 5.9706691652536392e-02 -1.6415530443191528e-01
+ <_>
+
+ 0 -1 1112 4.3178450316190720e-02
+
+ 6.3460536301136017e-02 -2.1360489726066589e-01
+ <_>
+
+ 0 -1 1113 -2.2508678957819939e-03
+
+ 1.0645110160112381e-01 -5.9539180248975754e-02
+ <_>
+
+ 0 -1 1114 5.0743711180984974e-03
+
+ -9.4377033412456512e-02 2.2999720275402069e-01
+ <_>
+
+ 0 -1 1115 -3.0670650303363800e-02
+
+ 2.5975760817527771e-01 -2.3188209161162376e-02
+ <_>
+
+ 0 -1 1116 2.4162670597434044e-03
+
+ 8.7919056415557861e-02 -1.9287380576133728e-01
+ <_>
+
+ 0 -1 1117 -9.3405842781066895e-03
+
+ -1.0935559868812561e-01 2.9358500614762306e-02
+ <_>
+
+ 0 -1 1118 2.0513730123639107e-02
+
+ -5.2511349320411682e-02 3.0545449256896973e-01
+ <_>
+
+ 0 -1 1119 -4.3630380183458328e-02
+
+ -4.5310449600219727e-01 1.8261570483446121e-02
+ <_>
+
+ 0 -1 1120 3.4857920836657286e-03
+
+ -9.7093120217323303e-02 1.4877100288867950e-01
+ <_>
+
+ 0 -1 1121 1.0411609895527363e-02
+
+ 4.2915731668472290e-02 -2.4849639832973480e-01
+ <_>
+
+ 0 -1 1122 -7.5155291706323624e-03
+
+ -2.6623341441154480e-01 5.1602318882942200e-02
+ <_>
+
+ 0 -1 1123 7.2157550603151321e-03
+
+ -6.1878159642219543e-02 1.8314969539642334e-01
+ <_>
+
+ 0 -1 1124 9.1090862406417727e-04
+
+ -9.7420282661914825e-02 1.2223699688911438e-01
+ <_>
+
+ 0 -1 1125 -4.0069910883903503e-01
+
+ -8.1831091642379761e-01 4.7453590668737888e-03
+ <_>
+
+ 0 -1 1126 -4.8033627681434155e-03
+
+ 9.4193987548351288e-02 -1.4436510205268860e-01
+ <_>
+
+ 0 -1 1127 -2.1147429943084717e-02
+
+ 2.9532408714294434e-01 -4.4751271605491638e-02
+ <_>
+
+ 0 -1 1128 1.8602259457111359e-02
+
+ -4.2993780225515366e-02 2.9706719517707825e-01
+ <_>
+
+ 0 -1 1129 -8.1051718443632126e-03
+
+ 1.2369229644536972e-01 -1.3246449828147888e-01
+ <_>
+
+ 0 -1 1130 -8.3215925842523575e-03
+
+ -1.9022589921951294e-01 8.9151017367839813e-02
+ <_>
+
+ 0 -1 1131 3.1376329716295004e-03
+
+ 4.1584819555282593e-02 -7.9552896320819855e-02
+ <_>
+
+ 0 -1 1132 1.6556069254875183e-02
+
+ 4.4908858835697174e-02 -3.6947301030158997e-01
+ <_>
+
+ 0 -1 1133 2.9919730499386787e-02
+
+ -3.7720259279012680e-02 2.4280619621276855e-01
+ <_>
+
+ 0 -1 1134 -5.1988288760185242e-02
+
+ -6.9372260570526123e-01 1.8926780670881271e-02
+ <_>
+
+ 0 -1 1135 7.5528107583522797e-02
+
+ -1.2611350044608116e-02 2.5732690095901489e-01
+ <_>
+
+ 0 -1 1136 -2.5031189434230328e-03
+
+ 1.3807280361652374e-01 -9.1662466526031494e-02
+ <_>
+
+ 0 -1 1137 -5.9646938461810350e-04
+
+ -6.3654616475105286e-02 2.5937270373106003e-02
+ <_>
+
+ 0 -1 1138 1.0319340042769909e-02
+
+ 8.3791837096214294e-02 -1.7408309876918793e-01
+ <_>
+
+ 0 -1 1139 9.3816686421632767e-03
+
+ 2.7871530503034592e-02 -1.1141580343246460e-01
+ <_>
+
+ 0 -1 1140 1.0023410432040691e-02
+
+ -6.9966249167919159e-02 2.1900640428066254e-01
+ <_>
+
+ 0 -1 1141 -8.3700200775638223e-04
+
+ 1.0097689926624298e-01 -1.4261360466480255e-01
+ <_>
+
+ 0 -1 1142 2.2468710318207741e-02
+
+ 9.4028212130069733e-02 -1.3807420432567596e-01
+ <_>
+
+ 0 -1 1143 3.9115209132432938e-02
+
+ -5.3969398140907288e-03 6.5187507867813110e-01
+ <_>
+
+ 0 -1 1144 -1.5670569846406579e-03
+
+ 7.0886030793190002e-02 -2.0010609924793243e-01
+ <_>
+
+ 0 -1 1145 6.0749892145395279e-03
+
+ 3.5395938903093338e-02 -4.3918590992689133e-02
+ <_>
+
+ 0 -1 1146 -4.3166890740394592e-02
+
+ 5.9881848096847534e-01 -2.3480180650949478e-02
+ <_>
+
+ 0 -1 1147 2.3302088957279921e-03
+
+ -7.2818689048290253e-02 4.3940208852291107e-02
+ <_>
+
+ 0 -1 1148 5.5236589163541794e-02
+
+ -3.5117920488119125e-02 3.6355149745941162e-01
+ <_>
+
+ 0 -1 1149 2.7774399146437645e-02
+
+ 3.0074290931224823e-02 -1.0026770085096359e-01
+ <_>
+
+ 0 -1 1150 8.4784086793661118e-03
+
+ -5.6243300437927246e-02 2.1711349487304688e-01
+ <_>
+
+ 0 -1 1151 1.3269360177218914e-02
+
+ 4.3138369917869568e-02 -1.6429780423641205e-01
+ <_>
+
+ 0 -1 1152 -3.4072279930114746e-02
+
+ 3.9418798685073853e-01 -3.2914638519287109e-02
+ <_>
+
+ 0 -1 1153 -5.9365970082581043e-03
+
+ 6.4854122698307037e-02 -8.6971588432788849e-02
+ <_>
+
+ 0 -1 1154 -5.1997308619320393e-03
+
+ -2.1710740029811859e-01 6.5441012382507324e-02
+ <_>
+
+ 0 -1 1155 3.0441130511462688e-03
+
+ -4.7171641141176224e-02 9.4662867486476898e-02
+ <_>
+
+ 0 -1 1156 -2.2375459957402200e-04
+
+ 1.1739899963140488e-01 -1.0451590269804001e-01
+ <_>
+
+ 0 -1 1157 4.9494139850139618e-02
+
+ 9.9552040919661522e-03 -8.8205021619796753e-01
+ <_>
+
+ 0 -1 1158 7.7127031981945038e-02
+
+ -3.6638759076595306e-02 3.7156999111175537e-01
+ <_>
+
+ 0 -1 1159 -3.7054829299449921e-03
+
+ 4.6213079243898392e-02 -7.9498499631881714e-02
+ <_>
+
+ 0 -1 1160 1.3655430078506470e-01
+
+ 2.0802579820156097e-02 -6.4692282676696777e-01
+ <_>
+
+ 0 -1 1161 -1.6919399797916412e-01
+
+ -9.0144991874694824e-01 4.3158119660802186e-04
+ <_>
+
+ 0 -1 1162 5.2525149658322334e-03
+
+ 8.6686216294765472e-02 -1.5751640498638153e-01
+ <_>
+
+ 0 -1 1163 5.7952258735895157e-02
+
+ 1.3485850067809224e-03 -1.0001620054244995e+00
+ <_>
+
+ 0 -1 1164 -3.0681459233164787e-02
+
+ -6.7346888780593872e-01 1.7730809748172760e-02
+ <_>
+
+ 0 -1 1165 -2.8556400910019875e-02
+
+ 2.4913530051708221e-01 -2.1807359531521797e-02
+ <_>
+
+ 0 -1 1166 5.8311191387474537e-03
+
+ 1.0109650343656540e-01 -1.2586539983749390e-01
+ <_>
+
+ 0 -1 1167 2.8870739042758942e-03
+
+ -4.5462280511856079e-02 1.4794190227985382e-01
+ <_>
+
+ 0 -1 1168 -5.3575891070067883e-03
+
+ 1.0845459997653961e-01 -2.0636059343814850e-01
+ <_>
+
+ 0 -1 1169 2.0851830020546913e-02
+
+ -2.5641430169343948e-02 1.2000799924135208e-01
+ <_>
+
+ 0 -1 1170 2.9372319113463163e-03
+
+ -5.8832980692386627e-02 2.3967139422893524e-01
+ <_>
+
+ 0 -1 1171 1.0109069757163525e-02
+
+ 4.4724740087985992e-02 -2.5024959444999695e-01
+ <_>
+
+ 0 -1 1172 6.2002640217542648e-02
+
+ 3.1236680224537849e-02 -3.8775479793548584e-01
+ <_>
+
+ 0 -1 1173 1.7331680282950401e-03
+
+ -7.6642520725727081e-02 5.8738309890031815e-02
+ <_>
+
+ 0 -1 1174 -4.6648900955915451e-02
+
+ 4.7800371050834656e-01 -2.8223259374499321e-02
+ <_>
+
+ 0 -1 1175 -4.0585011243820190e-02
+
+ 1.9591329991817474e-01 -2.9608549550175667e-02
+ <_>
+
+ 0 -1 1176 1.4297359623014927e-02
+
+ 8.0422781407833099e-02 -2.0024399459362030e-01
+ <_>
+
+ 0 -1 1177 -1.4215649571269751e-03
+
+ 9.7693942487239838e-02 -1.3090120255947113e-01
+ <_>
+
+ 0 -1 1178 5.2683628164231777e-03
+
+ -5.8376371860504150e-02 2.4378040432929993e-01
+ <_>
+ 104
+ -6.8976742029190063e-01
+
+ <_>
+
+ 0 -1 1179 -2.6198190171271563e-03
+
+ 1.8673700094223022e-01 -1.9126529991626740e-01
+ <_>
+
+ 0 -1 1180 -2.8629099950194359e-02
+
+ 1.2887109816074371e-01 -2.6186849921941757e-02
+ <_>
+
+ 0 -1 1181 7.1718869730830193e-03
+
+ 8.8158592581748962e-02 -2.0327340066432953e-01
+ <_>
+
+ 0 -1 1182 1.1641040444374084e-02
+
+ -2.1058250218629837e-02 1.7591789364814758e-01
+ <_>
+
+ 0 -1 1183 5.6764329783618450e-03
+
+ 4.9941159784793854e-02 -2.7329298853874207e-01
+ <_>
+
+ 0 -1 1184 -4.4392690062522888e-02
+
+ 5.6766128540039062e-01 -1.8674779683351517e-02
+ <_>
+
+ 0 -1 1185 1.3367610517889261e-04
+
+ -1.2990309298038483e-01 1.3542290031909943e-01
+ <_>
+
+ 0 -1 1186 -4.4111948460340500e-02
+
+ 2.2684830427169800e-01 -1.3318399898707867e-02
+ <_>
+
+ 0 -1 1187 2.9443150851875544e-03
+
+ 4.3161459267139435e-02 -2.9311171174049377e-01
+ <_>
+
+ 0 -1 1188 3.5300010349601507e-03
+
+ 7.7193722128868103e-02 -2.6324981451034546e-01
+ <_>
+
+ 0 -1 1189 1.0119210183620453e-01
+
+ -5.4924260824918747e-02 3.2430219650268555e-01
+ <_>
+
+ 0 -1 1190 -2.2348569706082344e-02
+
+ 3.0803111195564270e-01 -2.2518489509820938e-02
+ <_>
+
+ 0 -1 1191 6.4755380153656006e-03
+
+ -1.2045770138502121e-01 1.3186110556125641e-01
+ <_>
+
+ 0 -1 1192 1.0904319584369659e-02
+
+ 1.0217989981174469e-01 -1.8308849632740021e-01
+ <_>
+
+ 0 -1 1193 -1.1256629601120949e-02
+
+ -2.9186639189720154e-01 5.5491220206022263e-02
+ <_>
+
+ 0 -1 1194 3.6791800521314144e-03
+
+ -5.0614688545465469e-02 8.2663312554359436e-02
+ <_>
+
+ 0 -1 1195 -9.1721288859844208e-02
+
+ -7.7127552032470703e-01 1.9312959164381027e-02
+ <_>
+
+ 0 -1 1196 4.0099889039993286e-02
+
+ 7.8663527965545654e-03 -8.1302827596664429e-01
+ <_>
+
+ 0 -1 1197 -5.4956428706645966e-02
+
+ 2.9059520363807678e-01 -5.9825580567121506e-02
+ <_>
+
+ 0 -1 1198 2.4804650247097015e-01
+
+ 1.1665189638733864e-02 -6.9121950864791870e-01
+ <_>
+
+ 0 -1 1199 -3.4284800291061401e-02
+
+ 4.5358398556709290e-01 -3.2071251422166824e-02
+ <_>
+
+ 0 -1 1200 2.5439230725169182e-02
+
+ 1.9467150792479515e-02 -3.7927991151809692e-01
+ <_>
+
+ 0 -1 1201 -1.2720660306513309e-02
+
+ -2.1211430430412292e-01 6.1533831059932709e-02
+ <_>
+
+ 0 -1 1202 1.0831000283360481e-02
+
+ -5.1443681120872498e-02 1.6947689652442932e-01
+ <_>
+
+ 0 -1 1203 -2.1931570023298264e-02
+
+ 2.4839389324188232e-01 -5.6636359542608261e-02
+ <_>
+
+ 0 -1 1204 2.9397898912429810e-01
+
+ 1.1411529965698719e-02 -9.3696069717407227e-01
+ <_>
+
+ 0 -1 1205 -1.6342259943485260e-02
+
+ -3.1589549779891968e-01 4.4371981173753738e-02
+ <_>
+
+ 0 -1 1206 -4.4280499219894409e-02
+
+ 2.0337340235710144e-01 -2.1462319418787956e-02
+ <_>
+
+ 0 -1 1207 2.6503309607505798e-01
+
+ 1.1633150279521942e-02 -9.1220170259475708e-01
+ <_>
+
+ 0 -1 1208 -7.6378479599952698e-02
+
+ 1.8688270449638367e-01 -1.9672080874443054e-02
+ <_>
+
+ 0 -1 1209 -1.0061570443212986e-02
+
+ -2.6462039351463318e-01 4.6620260924100876e-02
+ <_>
+
+ 0 -1 1210 2.4921730160713196e-02
+
+ -1.9131390377879143e-02 2.0154500007629395e-01
+ <_>
+
+ 0 -1 1211 1.5098409676284064e-05
+
+ -1.6241690516471863e-01 7.6183967292308807e-02
+ <_>
+
+ 0 -1 1212 -1.0081910341978073e-01
+
+ -1. 7.4751500505954027e-04
+ <_>
+
+ 0 -1 1213 6.5058596432209015e-02
+
+ -4.0468640625476837e-02 3.5160079598426819e-01
+ <_>
+
+ 0 -1 1214 -1.2190239876508713e-01
+
+ -5.3624558448791504e-01 1.8637020140886307e-02
+ <_>
+
+ 0 -1 1215 -9.8520738538354635e-04
+
+ 1.1398199945688248e-01 -1.1298830062150955e-01
+ <_>
+
+ 0 -1 1216 -2.5300619006156921e-01
+
+ -4.3375909328460693e-01 1.2367400340735912e-02
+ <_>
+
+ 0 -1 1217 7.5246659107506275e-03
+
+ 6.7355476319789886e-02 -1.8583969771862030e-01
+ <_>
+
+ 0 -1 1218 4.8102210275828838e-03
+
+ -6.5870061516761780e-02 1.2848910689353943e-01
+ <_>
+
+ 0 -1 1219 -1.4562129508703947e-03
+
+ 1.8110689520835876e-01 -1.1248459666967392e-01
+ <_>
+
+ 0 -1 1220 -5.6546321138739586e-03
+
+ 1.0369840264320374e-01 -1.4115570485591888e-01
+ <_>
+
+ 0 -1 1221 -3.1951289623975754e-02
+
+ -3.2971608638763428e-01 4.8281811177730560e-02
+ <_>
+
+ 0 -1 1222 4.2190380394458771e-02
+
+ -1.1644810438156128e-02 1.3701300323009491e-01
+ <_>
+
+ 0 -1 1223 1.2606659904122353e-02
+
+ -6.0395881533622742e-02 2.4210059642791748e-01
+ <_>
+
+ 0 -1 1224 -6.0083861462771893e-03
+
+ 9.5677606761455536e-02 -2.0248259603977203e-01
+ <_>
+
+ 0 -1 1225 4.0676388889551163e-02
+
+ -3.8506429642438889e-02 3.9824029803276062e-01
+ <_>
+
+ 0 -1 1226 -1.3010219670832157e-02
+
+ -7.7870443463325500e-02 3.2533310353755951e-02
+ <_>
+
+ 0 -1 1227 -5.6646969169378281e-02
+
+ -9.5293551683425903e-01 1.7375659197568893e-02
+ <_>
+
+ 0 -1 1228 3.7307970225811005e-02
+
+ -3.3261440694332123e-02 4.6856319904327393e-01
+ <_>
+
+ 0 -1 1229 -2.7986379340291023e-02
+
+ -4.6356698870658875e-01 2.8524029999971390e-02
+ <_>
+
+ 0 -1 1230 -7.5014896690845490e-02
+
+ 2.4519899487495422e-01 -1.5830159187316895e-02
+ <_>
+
+ 0 -1 1231 2.7673080563545227e-02
+
+ -3.6458358168601990e-02 3.7215578556060791e-01
+ <_>
+
+ 0 -1 1232 -1.7312960699200630e-02
+
+ -2.2117659449577332e-01 4.3232619762420654e-02
+ <_>
+
+ 0 -1 1233 -5.8893948793411255e-02
+
+ 3.9726749062538147e-01 -3.7632528692483902e-02
+ <_>
+
+ 0 -1 1234 1.3193679973483086e-02
+
+ 2.4857729673385620e-02 -1.7514359951019287e-01
+ <_>
+
+ 0 -1 1235 3.8230679929256439e-02
+
+ 2.9635110870003700e-02 -4.3452748656272888e-01
+ <_>
+
+ 0 -1 1236 1.6845399513840675e-02
+
+ 3.9338748902082443e-02 -2.3765720427036285e-01
+ <_>
+
+ 0 -1 1237 -1.1559460312128067e-01
+
+ -4.0006878972053528e-01 3.2390538603067398e-02
+ <_>
+
+ 0 -1 1238 -1.7385910032317042e-03
+
+ 4.8545818775892258e-02 -6.1474680900573730e-02
+ <_>
+
+ 0 -1 1239 -3.3697668462991714e-02
+
+ 2.4345000088214874e-01 -6.5504603087902069e-02
+ <_>
+
+ 0 -1 1240 -3.4722799062728882e-01
+
+ -3.3612060546875000e-01 1.5501200221478939e-02
+ <_>
+
+ 0 -1 1241 5.8668039739131927e-02
+
+ 6.8068057298660278e-02 -2.2104929387569427e-01
+ <_>
+
+ 0 -1 1242 2.3718189448118210e-02
+
+ -1.4779569581151009e-02 4.7328341007232666e-01
+ <_>
+
+ 0 -1 1243 2.8812700882554054e-02
+
+ 3.3309880644083023e-02 -4.6797698736190796e-01
+ <_>
+
+ 0 -1 1244 4.1023749858140945e-02
+
+ -2.8293000534176826e-02 4.9427551031112671e-01
+ <_>
+
+ 0 -1 1245 -1.2017590051982552e-04
+
+ 1.0363650321960449e-01 -1.2107490003108978e-01
+ <_>
+
+ 0 -1 1246 -1.0908070206642151e-01
+
+ -1. 3.2971999607980251e-03
+ <_>
+
+ 0 -1 1247 -4.5967359095811844e-02
+
+ 6.4819461107254028e-01 -1.9233519211411476e-02
+ <_>
+
+ 0 -1 1248 -1.9345719367265701e-02
+
+ -3.3145549893379211e-01 3.9008539170026779e-02
+ <_>
+
+ 0 -1 1249 1.2312790378928185e-02
+
+ 4.1029628366231918e-02 -2.7943921089172363e-01
+ <_>
+
+ 0 -1 1250 2.1535221021622419e-03
+
+ -6.7545056343078613e-02 1.1647740006446838e-01
+ <_>
+
+ 0 -1 1251 -3.2158788293600082e-02
+
+ 5.4741638898849487e-01 -2.3730229586362839e-02
+ <_>
+
+ 0 -1 1252 -2.7592359110713005e-02
+
+ -7.5319421291351318e-01 8.4066214039921761e-03
+ <_>
+
+ 0 -1 1253 2.2264510393142700e-02
+
+ 1.2146740220487118e-02 -9.0291297435760498e-01
+ <_>
+
+ 0 -1 1254 1.5361379832029343e-02
+
+ -3.1641189008951187e-02 3.2132801413536072e-01
+ <_>
+
+ 0 -1 1255 -1.2360660359263420e-02
+
+ 2.9248631000518799e-01 -4.5303758233785629e-02
+ <_>
+
+ 0 -1 1256 2.2978749126195908e-02
+
+ -1.2054479680955410e-02 1.9060949981212616e-01
+ <_>
+
+ 0 -1 1257 2.3296380415558815e-02
+
+ 3.1409051269292831e-02 -5.1856082677841187e-01
+ <_>
+
+ 0 -1 1258 5.7384249521419406e-04
+
+ -1.0293489694595337e-01 8.1548452377319336e-02
+ <_>
+
+ 0 -1 1259 -3.3020470291376114e-02
+
+ 4.2470559477806091e-01 -4.4794678688049316e-02
+ <_>
+
+ 0 -1 1260 -2.1713029593229294e-02
+
+ -1.4825260639190674e-01 1.2959879823029041e-02
+ <_>
+
+ 0 -1 1261 -9.7430922323837876e-05
+
+ 1.1899639666080475e-01 -1.4753970503807068e-01
+ <_>
+
+ 0 -1 1262 -9.2907734215259552e-03
+
+ -1.1635430157184601e-01 5.4104641079902649e-02
+ <_>
+
+ 0 -1 1263 3.7244848906993866e-02
+
+ -3.4421201795339584e-02 3.7943929433822632e-01
+ <_>
+
+ 0 -1 1264 1.5277029573917389e-01
+
+ 7.2725401259958744e-03 -3.4155088663101196e-01
+ <_>
+
+ 0 -1 1265 -1.2663450092077255e-02
+
+ -3.0596670508384705e-01 3.8231261074542999e-02
+ <_>
+
+ 0 -1 1266 -7.4888423085212708e-02
+
+ -3.4658950567245483e-01 1.5501650050282478e-02
+ <_>
+
+ 0 -1 1267 -4.0114589035511017e-02
+
+ 3.2629820704460144e-01 -4.1313670575618744e-02
+ <_>
+
+ 0 -1 1268 -9.6492111682891846e-02
+
+ 1.0172849893569946e-01 -1.7156010493636131e-02
+ <_>
+
+ 0 -1 1269 -1.6712839901447296e-01
+
+ -7.7655118703842163e-01 1.8029559403657913e-02
+ <_>
+
+ 0 -1 1270 -8.2981940358877182e-03
+
+ -1.4397139847278595e-01 5.8948140591382980e-02
+ <_>
+
+ 0 -1 1271 -3.7844169419258833e-03
+
+ 1.7095179855823517e-01 -7.8256443142890930e-02
+ <_>
+
+ 0 -1 1272 -1.6076420247554779e-01
+
+ 2.3138229548931122e-01 -1.3428050093352795e-02
+ <_>
+
+ 0 -1 1273 6.4544437918812037e-04
+
+ -1.4424400031566620e-01 8.3287820219993591e-02
+ <_>
+
+ 0 -1 1274 2.2737309336662292e-02
+
+ -3.4155819565057755e-02 3.5519808530807495e-01
+ <_>
+
+ 0 -1 1275 -3.9030050393193960e-03
+
+ -1.8736769258975983e-01 6.4628012478351593e-02
+ <_>
+
+ 0 -1 1276 -5.1145430654287338e-02
+
+ 6.6892707347869873e-01 -1.1180049739778042e-02
+ <_>
+
+ 0 -1 1277 -6.0482369735836983e-03
+
+ 1.8622750043869019e-01 -6.3018701970577240e-02
+ <_>
+
+ 0 -1 1278 1.1743569746613503e-02
+
+ 2.5449279695749283e-02 -1.3331249356269836e-01
+ <_>
+
+ 0 -1 1279 8.4120890824124217e-04
+
+ -9.3333467841148376e-02 1.3315880298614502e-01
+ <_>
+
+ 0 -1 1280 -3.7756171077489853e-02
+
+ -2.3138800263404846e-01 4.0569789707660675e-02
+ <_>
+
+ 0 -1 1281 -2.0867560058832169e-02
+
+ 1.0056090354919434e-01 -1.1744190007448196e-01
+ <_>
+
+ 0 -1 1282 -3.9802178740501404e-02
+
+ -1.1585719883441925e-01 1.2668189406394958e-01
+ <_>
+ 111
+ -6.8169009685516357e-01
+
+ <_>
+
+ 0 -1 1283 8.4546189755201340e-03
+
+ -1.6289660334587097e-01 1.9834390282630920e-01
+ <_>
+
+ 0 -1 1284 5.1610451191663742e-02
+
+ -3.0827090144157410e-02 3.3742550015449524e-01
+ <_>
+
+ 0 -1 1285 -6.4909443259239197e-02
+
+ 2.8602281212806702e-01 -5.9848651289939880e-02
+ <_>
+
+ 0 -1 1286 -4.3951408006250858e-03
+
+ 1.1302659660577774e-01 -1.2632089853286743e-01
+ <_>
+
+ 0 -1 1287 -8.2756802439689636e-02
+
+ -6.0790950059890747e-01 2.1967180073261261e-02
+ <_>
+
+ 0 -1 1288 -4.8698862083256245e-03
+
+ 8.5866190493106842e-02 -8.9009523391723633e-02
+ <_>
+
+ 0 -1 1289 9.1512441635131836e-02
+
+ -5.3345348685979843e-02 2.6732870936393738e-01
+ <_>
+
+ 0 -1 1290 3.6815661005675793e-03
+
+ 7.0915699005126953e-02 -1.7941209673881531e-01
+ <_>
+
+ 0 -1 1291 6.3032708130776882e-03
+
+ 1.2378150224685669e-01 -1.2391480058431625e-01
+ <_>
+
+ 0 -1 1292 5.8764131972566247e-04
+
+ -6.3813656568527222e-02 9.5545768737792969e-02
+ <_>
+
+ 0 -1 1293 1.4680320397019386e-02
+
+ -4.9183528870344162e-02 2.9040598869323730e-01
+ <_>
+
+ 0 -1 1294 3.5624930169433355e-03
+
+ -9.7563147544860840e-02 4.8932831734418869e-02
+ <_>
+
+ 0 -1 1295 -7.4473340064287186e-03
+
+ -1.5952460467815399e-01 8.4772646427154541e-02
+ <_>
+
+ 0 -1 1296 5.4010991007089615e-02
+
+ -2.0565150305628777e-02 5.7340717315673828e-01
+ <_>
+
+ 0 -1 1297 -2.3613919038325548e-03
+
+ 1.4957650005817413e-01 -7.5148113071918488e-02
+ <_>
+
+ 0 -1 1298 4.0665458887815475e-02
+
+ 1.4762399718165398e-02 -5.9685671329498291e-01
+ <_>
+
+ 0 -1 1299 9.3258380889892578e-02
+
+ 1.3036210089921951e-02 -6.8643862009048462e-01
+ <_>
+
+ 0 -1 1300 2.8593749739229679e-03
+
+ -5.4904639720916748e-02 9.8074667155742645e-02
+ <_>
+
+ 0 -1 1301 -4.9756402149796486e-03
+
+ 1.6751970350742340e-01 -8.2563832402229309e-02
+ <_>
+
+ 0 -1 1302 -2.2061138879507780e-03
+
+ 7.1486182510852814e-02 -8.4684796631336212e-02
+ <_>
+
+ 0 -1 1303 4.3787518516182899e-03
+
+ 7.5296439230442047e-02 -1.6988970339298248e-01
+ <_>
+
+ 0 -1 1304 -4.9143321812152863e-03
+
+ 1.6274330019950867e-01 -5.7579189538955688e-02
+ <_>
+
+ 0 -1 1305 -3.0191219411790371e-03
+
+ -1.2450099736452103e-01 1.1526980251073837e-01
+ <_>
+
+ 0 -1 1306 6.8227178417146206e-03
+
+ 3.7166971713304520e-02 -1.0093449801206589e-01
+ <_>
+
+ 0 -1 1307 3.5116981714963913e-02
+
+ -4.2997431010007858e-02 3.2959198951721191e-01
+ <_>
+
+ 0 -1 1308 -1.4400649815797806e-03
+
+ -9.8922260105609894e-02 6.7108891904354095e-02
+ <_>
+
+ 0 -1 1309 -4.6699359081685543e-03
+
+ -1.8003439903259277e-01 6.8038396537303925e-02
+ <_>
+
+ 0 -1 1310 3.7647720426321030e-02
+
+ -2.1031750366091728e-02 1.6627119481563568e-01
+ <_>
+
+ 0 -1 1311 5.1745469681918621e-03
+
+ -1.1846090108156204e-01 1.0919190198183060e-01
+ <_>
+
+ 0 -1 1312 7.7274879440665245e-03
+
+ -5.5097330361604691e-02 2.2752280533313751e-01
+ <_>
+
+ 0 -1 1313 2.9158849269151688e-02
+
+ 7.7885583043098450e-02 -1.7775520682334900e-01
+ <_>
+
+ 0 -1 1314 2.9885378899052739e-04
+
+ -7.8875280916690826e-02 5.1163110882043839e-02
+ <_>
+
+ 0 -1 1315 1.4456070493906736e-04
+
+ -1.6097649931907654e-01 8.1574030220508575e-02
+ <_>
+
+ 0 -1 1316 4.7840740531682968e-02
+
+ 1.4210550114512444e-02 -3.1316679716110229e-01
+ <_>
+
+ 0 -1 1317 4.3943468481302261e-02
+
+ -3.1002480536699295e-02 4.2450350522994995e-01
+ <_>
+
+ 0 -1 1318 -1.7603389918804169e-01
+
+ -2.1625219285488129e-01 1.3710640370845795e-02
+ <_>
+
+ 0 -1 1319 -2.7010550722479820e-02
+
+ 4.5448291301727295e-01 -2.8507620096206665e-02
+ <_>
+
+ 0 -1 1320 6.4534661360085011e-03
+
+ -4.9660708755254745e-02 8.3071723580360413e-02
+ <_>
+
+ 0 -1 1321 -7.1115070022642612e-03
+
+ -2.2509810328483582e-01 6.5033361315727234e-02
+ <_>
+
+ 0 -1 1322 -2.5184849277138710e-02
+
+ -1.7480330169200897e-01 1.8751099705696106e-02
+ <_>
+
+ 0 -1 1323 -8.8047432655002922e-05
+
+ 1.2677890062332153e-01 -1.0704579949378967e-01
+ <_>
+
+ 0 -1 1324 -3.6020219326019287e-02
+
+ 2.4649600684642792e-01 -4.9772080034017563e-02
+ <_>
+
+ 0 -1 1325 7.6084570027887821e-03
+
+ 1.0041440278291702e-01 -1.3673840463161469e-01
+ <_>
+
+ 0 -1 1326 -8.2404967397451401e-03
+
+ 1.1703260242938995e-01 -5.2781961858272552e-02
+ <_>
+
+ 0 -1 1327 -7.2474818443879485e-04
+
+ -1.1650030314922333e-01 1.1333490163087845e-01
+ <_>
+
+ 0 -1 1328 -7.8272278187796474e-05
+
+ 6.4425677061080933e-02 -1.5894609689712524e-01
+ <_>
+
+ 0 -1 1329 -2.0254699047654867e-03
+
+ -1.7027080059051514e-01 7.1216866374015808e-02
+ <_>
+
+ 0 -1 1330 -1.1882030218839645e-01
+
+ 3.2878550887107849e-01 -1.5325210057199001e-02
+ <_>
+
+ 0 -1 1331 -1.6258429735898972e-02
+
+ 2.1848890185356140e-01 -5.6253198534250259e-02
+ <_>
+
+ 0 -1 1332 -6.8429792299866676e-03
+
+ -2.3313499987125397e-01 5.7107821106910706e-02
+ <_>
+
+ 0 -1 1333 3.4939710050821304e-02
+
+ -2.7333829551935196e-02 4.5651969313621521e-01
+ <_>
+
+ 0 -1 1334 2.2979779541492462e-01
+
+ 1.4508989639580250e-02 -8.7165087461471558e-01
+ <_>
+
+ 0 -1 1335 4.3360598385334015e-02
+
+ 8.4467595443129539e-03 -8.7500327825546265e-01
+ <_>
+
+ 0 -1 1336 -1.1806190013885498e-03
+
+ 7.8186698257923126e-02 -5.2834209054708481e-02
+ <_>
+
+ 0 -1 1337 -4.1772681474685669e-01
+
+ -8.0729222297668457e-01 1.3048130087554455e-02
+ <_>
+
+ 0 -1 1338 -4.6315230429172516e-02
+
+ 2.9375079274177551e-01 -3.5192389041185379e-02
+ <_>
+
+ 0 -1 1339 -4.0271300822496414e-02
+
+ -5.8174532651901245e-01 1.9768500700592995e-02
+ <_>
+
+ 0 -1 1340 -4.3012440204620361e-02
+
+ 1.0882510244846344e-01 -2.6977609843015671e-02
+ <_>
+
+ 0 -1 1341 2.8285770677030087e-03
+
+ 7.6837047934532166e-02 -1.5720550715923309e-01
+ <_>
+
+ 0 -1 1342 -3.3204611390829086e-02
+
+ -2.3152589797973633e-01 1.5932539477944374e-02
+ <_>
+
+ 0 -1 1343 -4.8097351100295782e-04
+
+ 1.1043740063905716e-01 -1.1589460074901581e-01
+ <_>
+
+ 0 -1 1344 2.9704240150749683e-03
+
+ -3.4243740141391754e-02 6.9107398390769958e-02
+ <_>
+
+ 0 -1 1345 1.1893190443515778e-02
+
+ 8.0122880637645721e-02 -2.0503090322017670e-01
+ <_>
+
+ 0 -1 1346 -6.3963606953620911e-02
+
+ -8.5530751943588257e-01 6.4783529378473759e-03
+ <_>
+
+ 0 -1 1347 -5.6093540042638779e-03
+
+ 1.6278949379920959e-01 -1.0079070180654526e-01
+ <_>
+
+ 0 -1 1348 7.5979339890182018e-03
+
+ 5.4123409092426300e-02 -1.2431269884109497e-01
+ <_>
+
+ 0 -1 1349 1.3480819761753082e-02
+
+ -6.3751302659511566e-02 2.5250628590583801e-01
+ <_>
+
+ 0 -1 1350 -9.4613758847117424e-04
+
+ 4.2835868895053864e-02 -7.6837100088596344e-02
+ <_>
+
+ 0 -1 1351 -3.8062490522861481e-02
+
+ 1.9252179563045502e-01 -6.3947133719921112e-02
+ <_>
+
+ 0 -1 1352 1.2410899996757507e-01
+
+ 7.9416595399379730e-03 -4.2653021216392517e-01
+ <_>
+
+ 0 -1 1353 -9.2228442430496216e-02
+
+ -5.5210620164871216e-01 2.8964910656213760e-02
+ <_>
+
+ 0 -1 1354 1.5106770209968090e-02
+
+ 2.7609340846538544e-02 -1.6688449680805206e-01
+ <_>
+
+ 0 -1 1355 -2.3654250428080559e-02
+
+ -3.4379678964614868e-01 3.9513330906629562e-02
+ <_>
+
+ 0 -1 1356 4.7881390899419785e-02
+
+ 8.0661084502935410e-03 -1.8185199797153473e-01
+ <_>
+
+ 0 -1 1357 8.5415288805961609e-02
+
+ -4.6752408146858215e-02 2.7169001102447510e-01
+ <_>
+
+ 0 -1 1358 3.1524940859526396e-03
+
+ -8.6421400308609009e-02 6.8336002528667450e-02
+ <_>
+
+ 0 -1 1359 -3.0099870637059212e-03
+
+ 8.9336208999156952e-02 -1.3626849651336670e-01
+ <_>
+
+ 0 -1 1360 -5.8112520724534988e-02
+
+ -1.9748120009899139e-01 2.6536440476775169e-02
+ <_>
+
+ 0 -1 1361 1.2775669991970062e-01
+
+ -4.9838040024042130e-02 3.4896400570869446e-01
+ <_>
+
+ 0 -1 1362 1.2011290341615677e-01
+
+ -6.3313432037830353e-03 3.7937548756599426e-01
+ <_>
+
+ 0 -1 1363 4.7567482106387615e-03
+
+ 1.0490419715642929e-01 -1.3542570173740387e-01
+ <_>
+
+ 0 -1 1364 -1.5902349725365639e-02
+
+ 6.1786301434040070e-02 -9.8376080393791199e-02
+ <_>
+
+ 0 -1 1365 -5.6423708796501160e-02
+
+ -6.3371032476425171e-01 2.0224599167704582e-02
+ <_>
+
+ 0 -1 1366 -7.9641327261924744e-02
+
+ -1. 8.7428308324888349e-04
+ <_>
+
+ 0 -1 1367 -2.0731301046907902e-03
+
+ 1.3846459984779358e-01 -9.5865301787853241e-02
+ <_>
+
+ 0 -1 1368 5.8470368385314941e-03
+
+ -5.7033840566873550e-02 1.1691799759864807e-01
+ <_>
+
+ 0 -1 1369 -2.6138950139284134e-02
+
+ -2.2362439334392548e-01 5.5546630173921585e-02
+ <_>
+
+ 0 -1 1370 -6.5781630109995604e-04
+
+ 9.2999227344989777e-02 -8.4152117371559143e-02
+ <_>
+
+ 0 -1 1371 -5.6041389703750610e-02
+
+ 3.5072851181030273e-01 -3.1472280621528625e-02
+ <_>
+
+ 0 -1 1372 9.7799800336360931e-02
+
+ 1.0124430060386658e-02 -3.7714061141014099e-01
+ <_>
+
+ 0 -1 1373 4.5515140518546104e-03
+
+ -7.8311361372470856e-02 1.4166970551013947e-01
+ <_>
+
+ 0 -1 1374 1.0168380104005337e-02
+
+ 5.2113991230726242e-02 -2.4422790110111237e-01
+ <_>
+
+ 0 -1 1375 6.2885403633117676e-02
+
+ -1.8255509436130524e-02 6.2847292423248291e-01
+ <_>
+
+ 0 -1 1376 -4.8064131289720535e-02
+
+ -8.6817431449890137e-01 6.6064838320016861e-03
+ <_>
+
+ 0 -1 1377 1.8479900434613228e-02
+
+ 6.9977812469005585e-02 -1.5929399430751801e-01
+ <_>
+
+ 0 -1 1378 2.4549840018153191e-02
+
+ -1.7519120126962662e-02 1.7961919307708740e-01
+ <_>
+
+ 0 -1 1379 3.9227470755577087e-02
+
+ -4.7417990863323212e-02 2.7945789694786072e-01
+ <_>
+
+ 0 -1 1380 4.1248198598623276e-02
+
+ 1.1459370143711567e-02 -4.3477478623390198e-01
+ <_>
+
+ 0 -1 1381 -8.4321142639964819e-04
+
+ 1.2758859992027283e-01 -9.7010560333728790e-02
+ <_>
+
+ 0 -1 1382 -1.3688740320503712e-02
+
+ -1.6236190497875214e-01 4.3290950357913971e-02
+ <_>
+
+ 0 -1 1383 -5.5982511490583420e-02
+
+ -7.5431138277053833e-01 1.5797710046172142e-02
+ <_>
+
+ 0 -1 1384 7.3578268289566040e-02
+
+ -1.4777439646422863e-03 -1.0000350475311279e+00
+ <_>
+
+ 0 -1 1385 3.7084969226270914e-03
+
+ -9.7184643149375916e-02 1.2435329705476761e-01
+ <_>
+
+ 0 -1 1386 -1.4889879821566865e-05
+
+ 7.1465343236923218e-02 -1.6840849816799164e-01
+ <_>
+
+ 0 -1 1387 1.0487560182809830e-01
+
+ 1.5076650306582451e-02 -7.1159482002258301e-01
+ <_>
+
+ 0 -1 1388 1.2587489560246468e-02
+
+ -2.0771300420165062e-02 1.7468680441379547e-01
+ <_>
+
+ 0 -1 1389 -2.2228389570955187e-04
+
+ 1.1781640350818634e-01 -9.2627458274364471e-02
+ <_>
+
+ 0 -1 1390 -7.7760413289070129e-02
+
+ -7.4605411291122437e-01 3.6328181158751249e-03
+ <_>
+
+ 0 -1 1391 4.5043420046567917e-02
+
+ 2.2217869758605957e-02 -5.0052911043167114e-01
+ <_>
+
+ 0 -1 1392 3.5614410880953074e-03
+
+ -5.1213219761848450e-02 8.9986503124237061e-02
+ <_>
+
+ 0 -1 1393 -7.4102368671447039e-04
+
+ 1.3938049972057343e-01 -1.0272219777107239e-01
+ <_>
+ 107
+ -6.0689288377761841e-01
+
+ <_>
+
+ 0 -1 1394 -8.5600130259990692e-03
+
+ 1.6578909754753113e-01 -1.6412919759750366e-01
+ <_>
+
+ 0 -1 1395 3.0798809602856636e-02
+
+ -3.3495649695396423e-02 2.8578650951385498e-01
+ <_>
+
+ 0 -1 1396 -3.7319411057978868e-04
+
+ 1.2523449957370758e-01 -1.2115170061588287e-01
+ <_>
+
+ 0 -1 1397 -1.9253849983215332e-02
+
+ -8.7740883231163025e-02 3.9066571742296219e-02
+ <_>
+
+ 0 -1 1398 -8.5401646792888641e-03
+
+ 1.3152270019054413e-01 -1.3007740676403046e-01
+ <_>
+
+ 0 -1 1399 1.2424349784851074e-01
+
+ 1.9019979983568192e-02 -7.8247052431106567e-01
+ <_>
+
+ 0 -1 1400 4.0093418210744858e-02
+
+ -4.0743768215179443e-02 3.8851749897003174e-01
+ <_>
+
+ 0 -1 1401 -4.4169559259898961e-05
+
+ 4.5526970177888870e-02 -8.8063806295394897e-02
+ <_>
+
+ 0 -1 1402 -1.7662849277257919e-02
+
+ -3.1371811032295227e-01 5.1794338971376419e-02
+ <_>
+
+ 0 -1 1403 5.2368510514497757e-02
+
+ -3.5845998674631119e-02 1.5009739995002747e-01
+ <_>
+
+ 0 -1 1404 -2.8719279915094376e-02
+
+ -1.9849379360675812e-01 7.8099071979522705e-02
+ <_>
+
+ 0 -1 1405 6.9435790181159973e-02
+
+ -5.5073730647563934e-02 2.1780849993228912e-01
+ <_>
+
+ 0 -1 1406 5.4794438183307648e-02
+
+ -3.0223689973354340e-02 6.2993967533111572e-01
+ <_>
+
+ 0 -1 1407 -1.5315500088036060e-02
+
+ -1.5052799880504608e-01 2.0194370299577713e-02
+ <_>
+
+ 0 -1 1408 2.9001969844102859e-02
+
+ -2.0738989114761353e-02 4.5645099878311157e-01
+ <_>
+
+ 0 -1 1409 -2.3264769464731216e-02
+
+ 1.4672529697418213e-01 -3.8081351667642593e-02
+ <_>
+
+ 0 -1 1410 1.9063109531998634e-02
+
+ 7.2921238839626312e-02 -2.2723700106143951e-01
+ <_>
+
+ 0 -1 1411 1.2208239641040564e-03
+
+ 7.3471322655677795e-02 -1.9122929871082306e-01
+ <_>
+
+ 0 -1 1412 -1.7565910518169403e-01
+
+ 2.5924688577651978e-01 -5.6015118956565857e-02
+ <_>
+
+ 0 -1 1413 -3.8042131811380386e-02
+
+ 1.6113610565662384e-01 -4.3758820742368698e-02
+ <_>
+
+ 0 -1 1414 3.0130259692668915e-02
+
+ 5.7830829173326492e-02 -2.9774171113967896e-01
+ <_>
+
+ 0 -1 1415 2.0089220255613327e-02
+
+ -6.0509629547595978e-02 3.3441681414842606e-02
+ <_>
+
+ 0 -1 1416 2.6193389203399420e-04
+
+ -1.5175449848175049e-01 1.1094109714031219e-01
+ <_>
+
+ 0 -1 1417 4.0310628712177277e-02
+
+ 1.7477119341492653e-02 -1.4185379445552826e-01
+ <_>
+
+ 0 -1 1418 -2.9343019705265760e-03
+
+ -1.6960139572620392e-01 9.3530252575874329e-02
+ <_>
+
+ 0 -1 1419 1.4554520137608051e-02
+
+ -7.5844526290893555e-02 2.7771660685539246e-01
+ <_>
+
+ 0 -1 1420 3.4086001105606556e-03
+
+ 7.3933310806751251e-02 -1.9626590609550476e-01
+ <_>
+
+ 0 -1 1421 -6.7988429218530655e-03
+
+ -2.0132480561733246e-01 5.8276038616895676e-02
+ <_>
+
+ 0 -1 1422 -5.0457930192351341e-03
+
+ 1.9446060061454773e-01 -7.1691580116748810e-02
+ <_>
+
+ 0 -1 1423 1.0465010069310665e-02
+
+ -4.7314591705799103e-02 1.9316110014915466e-01
+ <_>
+
+ 0 -1 1424 -1.6713530058041215e-03
+
+ 9.2915147542953491e-02 -1.1890129745006561e-01
+ <_>
+
+ 0 -1 1425 -4.2704358696937561e-02
+
+ 1.6961039602756500e-01 -2.0632650703191757e-02
+ <_>
+
+ 0 -1 1426 2.0367829501628876e-01
+
+ 2.3246899247169495e-02 -4.9420261383056641e-01
+ <_>
+
+ 0 -1 1427 -8.3379482384771109e-04
+
+ 5.0001069903373718e-02 -7.3779806494712830e-02
+ <_>
+
+ 0 -1 1428 1.7854769527912140e-01
+
+ 1.5588290058076382e-02 -7.7650082111358643e-01
+ <_>
+
+ 0 -1 1429 -1.3535289466381073e-01
+
+ -5.2299112081527710e-01 3.1595760956406593e-03
+ <_>
+
+ 0 -1 1430 4.6555269509553909e-02
+
+ -4.1891060769557953e-02 3.0324798822402954e-01
+ <_>
+
+ 0 -1 1431 2.2663649171590805e-02
+
+ 3.8851160556077957e-02 -8.5196226835250854e-02
+ <_>
+
+ 0 -1 1432 -2.3027729988098145e-01
+
+ -9.3503099679946899e-01 1.3942349702119827e-02
+ <_>
+
+ 0 -1 1433 2.5714140385389328e-02
+
+ -9.1460775583982468e-03 7.8063201904296875e-01
+ <_>
+
+ 0 -1 1434 -7.3728510869841557e-06
+
+ 6.2730923295021057e-02 -2.0042170584201813e-01
+ <_>
+
+ 0 -1 1435 -1.9757889211177826e-02
+
+ -2.3434729874134064e-01 1.4600900001823902e-02
+ <_>
+
+ 0 -1 1436 -4.1893101297318935e-03
+
+ 1.4971399307250977e-01 -6.9368869066238403e-02
+ <_>
+
+ 0 -1 1437 1.1314969742670655e-03
+
+ -6.9203592836856842e-02 1.0447440296411514e-01
+ <_>
+
+ 0 -1 1438 6.3914088532328606e-03
+
+ 5.6134030222892761e-02 -1.9862769544124603e-01
+ <_>
+
+ 0 -1 1439 -3.7047569639980793e-03
+
+ 9.6817292273044586e-02 -9.5282286405563354e-02
+ <_>
+
+ 0 -1 1440 3.0627459287643433e-02
+
+ -5.0079640001058578e-02 2.6023888587951660e-01
+ <_>
+
+ 0 -1 1441 3.2444439828395844e-02
+
+ 3.1099939718842506e-02 -2.0788609981536865e-01
+ <_>
+
+ 0 -1 1442 1.1651559732854366e-02
+
+ -5.8311950415372849e-02 2.5374108552932739e-01
+ <_>
+
+ 0 -1 1443 -3.6515220999717712e-02
+
+ -2.6749190688133240e-01 2.0536249503493309e-02
+ <_>
+
+ 0 -1 1444 1.7474630847573280e-02
+
+ 4.7416981309652328e-02 -3.3719009160995483e-01
+ <_>
+
+ 0 -1 1445 -1.5204170485958457e-03
+
+ 5.8933809399604797e-02 -9.5844946801662445e-02
+ <_>
+
+ 0 -1 1446 4.7761179506778717e-02
+
+ 1.0849700309336185e-02 -8.6635017395019531e-01
+ <_>
+
+ 0 -1 1447 -6.3569113612174988e-02
+
+ 2.5858598947525024e-01 -1.8156580626964569e-02
+ <_>
+
+ 0 -1 1448 -1.7476839711889625e-03
+
+ 7.5750246644020081e-02 -1.4295279979705811e-01
+ <_>
+
+ 0 -1 1449 -4.6762558631598949e-03
+
+ -9.1223396360874176e-02 1.3135279715061188e-01
+ <_>
+
+ 0 -1 1450 2.2202100604772568e-02
+
+ -5.3397450596094131e-02 2.0743979513645172e-01
+ <_>
+
+ 0 -1 1451 -2.4647359549999237e-01
+
+ -4.5610219240188599e-01 3.5777890589088202e-03
+ <_>
+
+ 0 -1 1452 5.0148782320320606e-03
+
+ 8.8871829211711884e-02 -1.6236490011215210e-01
+ <_>
+
+ 0 -1 1453 -4.2023971676826477e-02
+
+ 1.2805579602718353e-01 -1.1926759965717793e-02
+ <_>
+
+ 0 -1 1454 -1.0895519703626633e-01
+
+ -6.6466122865676880e-01 1.5905549749732018e-02
+ <_>
+
+ 0 -1 1455 -3.6672928929328918e-01
+
+ 3.6374801397323608e-01 -3.1206229701638222e-02
+ <_>
+
+ 0 -1 1456 9.5884501934051514e-03
+
+ 9.1073550283908844e-02 -1.2492360174655914e-01
+ <_>
+
+ 0 -1 1457 1.6124530229717493e-03
+
+ 3.3751979470252991e-02 -5.8749239891767502e-02
+ <_>
+
+ 0 -1 1458 -1.7882430925965309e-02
+
+ 2.0992769300937653e-01 -6.3215233385562897e-02
+ <_>
+
+ 0 -1 1459 -6.6655018599703908e-05
+
+ 5.5020030587911606e-02 -1.7908810079097748e-01
+ <_>
+
+ 0 -1 1460 -1.0912610217928886e-02
+
+ -1.7878860235214233e-01 6.4088903367519379e-02
+ <_>
+
+ 0 -1 1461 -1.9031569827347994e-03
+
+ 1.1012560129165649e-01 -6.2576442956924438e-02
+ <_>
+
+ 0 -1 1462 4.7322059981524944e-03
+
+ 6.0611810535192490e-02 -1.7521250247955322e-01
+ <_>
+
+ 0 -1 1463 1.7955000698566437e-01
+
+ -2.6413710787892342e-02 5.1463198661804199e-01
+ <_>
+
+ 0 -1 1464 -1.8869279883801937e-03
+
+ 7.0732869207859039e-02 -1.8977560102939606e-01
+ <_>
+
+ 0 -1 1465 -3.5322420299053192e-03
+
+ 9.5800288021564484e-02 -4.9251660704612732e-02
+ <_>
+
+ 0 -1 1466 1.0818409500643611e-03
+
+ -9.7082488238811493e-02 1.4092449843883514e-01
+ <_>
+
+ 0 -1 1467 -9.5455259084701538e-02
+
+ -6.8376517295837402e-01 8.8187018409371376e-03
+ <_>
+
+ 0 -1 1468 1.6179149970412254e-03
+
+ -9.5129579305648804e-02 1.1351480334997177e-01
+ <_>
+
+ 0 -1 1469 6.5547877550125122e-01
+
+ 9.7635984420776367e-03 -5.6581187248229980e-01
+ <_>
+
+ 0 -1 1470 -7.7973723411560059e-02
+
+ 3.5573729872703552e-01 -3.3126130700111389e-02
+ <_>
+
+ 0 -1 1471 2.0209029316902161e-02
+
+ 3.9301611483097076e-02 -1.3580250740051270e-01
+ <_>
+
+ 0 -1 1472 9.0323589742183685e-02
+
+ -1.5932930633425713e-02 6.9409132003784180e-01
+ <_>
+
+ 0 -1 1473 -6.2048831023275852e-03
+
+ -1.7037659883499146e-01 6.8090677261352539e-02
+ <_>
+
+ 0 -1 1474 -1.5737250447273254e-02
+
+ 1.6250109672546387e-01 -6.6528938710689545e-02
+ <_>
+
+ 0 -1 1475 -3.5397041589021683e-02
+
+ -8.9766547083854675e-02 4.9135740846395493e-02
+ <_>
+
+ 0 -1 1476 3.2850861549377441e-02
+
+ 8.5158139467239380e-02 -1.3002319633960724e-01
+ <_>
+
+ 0 -1 1477 -8.4024056792259216e-02
+
+ 3.0658489465713501e-01 -3.9313621819019318e-02
+ <_>
+
+ 0 -1 1478 2.1347659640014172e-03
+
+ 8.3386950194835663e-02 -1.2239480018615723e-01
+ <_>
+
+ 0 -1 1479 1.7922610044479370e-01
+
+ 2.6004109531641006e-03 -9.9989092350006104e-01
+ <_>
+
+ 0 -1 1480 1.1854390054941177e-01
+
+ 1.1098369956016541e-02 -8.9629507064819336e-01
+ <_>
+
+ 0 -1 1481 -2.7351840399205685e-03
+
+ 1.1589130014181137e-01 -6.3589207828044891e-02
+ <_>
+
+ 0 -1 1482 6.6092880442738533e-03
+
+ -7.9491429030895233e-02 1.8501229584217072e-01
+ <_>
+
+ 0 -1 1483 -2.1072009578347206e-02
+
+ -1.4708499610424042e-01 2.6071280241012573e-02
+ <_>
+
+ 0 -1 1484 1.3411619700491428e-02
+
+ 4.8645589500665665e-02 -2.2041800618171692e-01
+ <_>
+
+ 0 -1 1485 -2.0661540329456329e-02
+
+ 2.1374049782752991e-01 -2.2243229672312737e-02
+ <_>
+
+ 0 -1 1486 -1.0939250141382217e-01
+
+ -7.9235088825225830e-01 1.1932499706745148e-02
+ <_>
+
+ 0 -1 1487 5.4573271423578262e-02
+
+ -8.7064085528254509e-03 3.8226109743118286e-01
+ <_>
+
+ 0 -1 1488 -2.7845989912748337e-02
+
+ 4.2096340656280518e-01 -3.4300819039344788e-02
+ <_>
+
+ 0 -1 1489 1.4973179996013641e-01
+
+ 5.5857440456748009e-03 -7.1027070283889771e-01
+ <_>
+
+ 0 -1 1490 5.4548021405935287e-02
+
+ 1.9289769232273102e-02 -5.5061852931976318e-01
+ <_>
+
+ 0 -1 1491 5.4990737698972225e-03
+
+ 4.3643891811370850e-02 -1.2233699858188629e-01
+ <_>
+
+ 0 -1 1492 3.5988059244118631e-04
+
+ -9.5005020499229431e-02 1.2501640617847443e-01
+ <_>
+
+ 0 -1 1493 -5.1003068685531616e-02
+
+ -3.4648188948631287e-01 1.4124399982392788e-02
+ <_>
+
+ 0 -1 1494 -5.9379130601882935e-02
+
+ 6.8840432167053223e-01 -2.0780999213457108e-02
+ <_>
+
+ 0 -1 1495 6.8976037204265594e-02
+
+ 8.5678137838840485e-03 -6.9098550081253052e-01
+ <_>
+
+ 0 -1 1496 -4.3954830616712570e-03
+
+ -1.7382889986038208e-01 6.9105990231037140e-02
+ <_>
+
+ 0 -1 1497 1.3838030397891998e-02
+
+ -2.9398119077086449e-02 1.9685789942741394e-01
+ <_>
+
+ 0 -1 1498 -7.5316978618502617e-03
+
+ -3.5790848731994629e-01 3.9685450494289398e-02
+ <_>
+
+ 0 -1 1499 -8.8299706578254700e-02
+
+ -2.3770420253276825e-01 3.0232321005314589e-03
+ <_>
+
+ 0 -1 1500 -4.4138759374618530e-02
+
+ 2.6541408896446228e-01 -5.1865179091691971e-02
+ <_>
+ 107
+ -5.6881058216094971e-01
+
+ <_>
+
+ 0 -1 1501 -9.2582583427429199e-02
+
+ 3.6183288693428040e-01 -7.8275963664054871e-02
+ <_>
+
+ 0 -1 1502 -4.8143980093300343e-03
+
+ -1.2681719660758972e-01 6.7723788321018219e-02
+ <_>
+
+ 0 -1 1503 3.2365128397941589e-02
+
+ -4.6087108552455902e-02 3.2692021131515503e-01
+ <_>
+
+ 0 -1 1504 -1.7028570175170898e-02
+
+ 9.1306403279304504e-02 -1.1660590022802353e-01
+ <_>
+
+ 0 -1 1505 -1.1308620125055313e-01
+
+ -7.9631358385086060e-01 5.8426991105079651e-02
+ <_>
+
+ 0 -1 1506 -3.5633759107440710e-03
+
+ -8.2610622048377991e-02 1.0166700184345245e-01
+ <_>
+
+ 0 -1 1507 -2.4109560251235962e-01
+
+ 2.7927228808403015e-01 -8.0744966864585876e-02
+ <_>
+
+ 0 -1 1508 2.2599289193749428e-02
+
+ 5.1744598895311356e-02 -2.8865408897399902e-01
+ <_>
+
+ 0 -1 1509 2.0002270117402077e-02
+
+ -5.7962361723184586e-02 2.9044789075851440e-01
+ <_>
+
+ 0 -1 1510 -1.9348099594935775e-03
+
+ 9.8808683454990387e-02 -1.2368459999561310e-01
+ <_>
+
+ 0 -1 1511 -7.5757717713713646e-03
+
+ -2.0071910321712494e-01 9.2741288244724274e-02
+ <_>
+
+ 0 -1 1512 3.3381819725036621e-02
+
+ -3.4530758857727051e-02 3.0876499414443970e-01
+ <_>
+
+ 0 -1 1513 4.7418981790542603e-02
+
+ -1.3563269376754761e-01 1.1016750335693359e-01
+ <_>
+
+ 0 -1 1514 -5.4173129610717297e-03
+
+ -1.6050089895725250e-01 7.2612293064594269e-02
+ <_>
+
+ 0 -1 1515 -9.6942558884620667e-03
+
+ -1.6376489400863647e-01 8.4426470100879669e-02
+ <_>
+
+ 0 -1 1516 -6.0632169246673584e-02
+
+ 1.6474419832229614e-01 -2.6981400325894356e-02
+ <_>
+
+ 0 -1 1517 5.0302860327064991e-03
+
+ -1.0996829718351364e-01 1.3480730354785919e-01
+ <_>
+
+ 0 -1 1518 -8.7792202830314636e-02
+
+ -6.8317967653274536e-01 1.0834610089659691e-02
+ <_>
+
+ 0 -1 1519 3.0390409752726555e-02
+
+ -4.2450569570064545e-02 3.0770599842071533e-01
+ <_>
+
+ 0 -1 1520 -5.1566340029239655e-02
+
+ -6.2840008735656738e-01 9.7069833427667618e-03
+ <_>
+
+ 0 -1 1521 -4.2446999577805400e-04
+
+ 8.4595613181591034e-02 -1.8075129389762878e-01
+ <_>
+
+ 0 -1 1522 -1.2135359644889832e-01
+
+ -1.2717489898204803e-01 9.6575058996677399e-02
+ <_>
+
+ 0 -1 1523 -1.5150560066103935e-02
+
+ 9.3037553131580353e-02 -1.3127900660037994e-01
+ <_>
+
+ 0 -1 1524 3.9446409791707993e-02
+
+ 2.5543639436364174e-02 -1.1460640281438828e-01
+ <_>
+
+ 0 -1 1525 -8.2465475425124168e-03
+
+ 2.4008710682392120e-01 -5.1680248230695724e-02
+ <_>
+
+ 0 -1 1526 3.5262361168861389e-02
+
+ -3.3555049449205399e-02 2.0575499534606934e-01
+ <_>
+
+ 0 -1 1527 1.1703060008585453e-02
+
+ 2.3529250174760818e-02 -4.9983900785446167e-01
+ <_>
+
+ 0 -1 1528 4.2969968169927597e-02
+
+ -1.2683330103754997e-02 5.4043388366699219e-01
+ <_>
+
+ 0 -1 1529 -1.5811799094080925e-02
+
+ 3.9564150571823120e-01 -3.5568390041589737e-02
+ <_>
+
+ 0 -1 1530 4.6253358013927937e-03
+
+ 5.2370540797710419e-02 -2.2989930212497711e-01
+ <_>
+
+ 0 -1 1531 -1.5898230485618114e-03
+
+ 1.3792009651660919e-01 -8.6783193051815033e-02
+ <_>
+
+ 0 -1 1532 6.2329089269042015e-04
+
+ -8.6643829941749573e-02 5.7710029184818268e-02
+ <_>
+
+ 0 -1 1533 7.0994929410517216e-03
+
+ 7.5797617435455322e-02 -1.6898870468139648e-01
+ <_>
+
+ 0 -1 1534 6.9608777761459351e-02
+
+ -1.2454699724912643e-02 2.0845200121402740e-01
+ <_>
+
+ 0 -1 1535 -1.8759520724415779e-02
+
+ -5.5008620023727417e-01 2.1040279418230057e-02
+ <_>
+
+ 0 -1 1536 4.6513788402080536e-02
+
+ -2.5904009118676186e-02 1.8322019279003143e-01
+ <_>
+
+ 0 -1 1537 2.1638579666614532e-02
+
+ -3.8873910903930664e-02 2.9919698834419250e-01
+ <_>
+
+ 0 -1 1538 -7.6772570610046387e-02
+
+ -1. 3.9020550902932882e-03
+ <_>
+
+ 0 -1 1539 4.0535528212785721e-02
+
+ 1.8880680203437805e-02 -6.6033887863159180e-01
+ <_>
+
+ 0 -1 1540 4.0338758379220963e-02
+
+ 9.2877401039004326e-03 -3.4422031044960022e-01
+ <_>
+
+ 0 -1 1541 4.3404240161180496e-02
+
+ -2.2111779078841209e-02 5.1227712631225586e-01
+ <_>
+
+ 0 -1 1542 1.6895130276679993e-02
+
+ 3.0058480799198151e-02 -1.8648600578308105e-01
+ <_>
+
+ 0 -1 1543 3.0269259586930275e-03
+
+ -1.3979099690914154e-01 8.7544560432434082e-02
+ <_>
+
+ 0 -1 1544 -3.7171840667724609e-01
+
+ -2.9676678776741028e-01 1.6241550445556641e-02
+ <_>
+
+ 0 -1 1545 -2.5798739865422249e-02
+
+ -4.3713501095771790e-01 2.6768149808049202e-02
+ <_>
+
+ 0 -1 1546 -9.0826600790023804e-03
+
+ 9.9548496305942535e-02 -3.8500539958477020e-02
+ <_>
+
+ 0 -1 1547 -1.7977179959416389e-03
+
+ 1.3810199499130249e-01 -7.5387232005596161e-02
+ <_>
+
+ 0 -1 1548 1.2435699999332428e-01
+
+ 4.6064029447734356e-03 -3.6909800767898560e-01
+ <_>
+
+ 0 -1 1549 -1.2901489622890949e-02
+
+ -2.0433300733566284e-01 5.3133610635995865e-02
+ <_>
+
+ 0 -1 1550 -1.3352099806070328e-02
+
+ -1.0512170195579529e-01 5.9746239334344864e-02
+ <_>
+
+ 0 -1 1551 -3.0650520697236061e-02
+
+ 3.4366500377655029e-01 -3.9617810398340225e-02
+ <_>
+
+ 0 -1 1552 2.0778391044586897e-03
+
+ -5.0755288451910019e-02 7.2930753231048584e-02
+ <_>
+
+ 0 -1 1553 -6.1161179095506668e-02
+
+ 7.8371667861938477e-01 -1.3940130360424519e-02
+ <_>
+
+ 0 -1 1554 -6.6681973636150360e-02
+
+ -6.7010307312011719e-01 4.2770858854055405e-03
+ <_>
+
+ 0 -1 1555 2.7359850704669952e-02
+
+ 2.4253180250525475e-02 -4.2671859264373779e-01
+ <_>
+
+ 0 -1 1556 -2.4731201119720936e-03
+
+ 9.6493236720561981e-02 -5.7433839887380600e-02
+ <_>
+
+ 0 -1 1557 -1.0721489787101746e-02
+
+ -2.1575610339641571e-01 4.4256970286369324e-02
+ <_>
+
+ 0 -1 1558 -1.3936980068683624e-01
+
+ -3.6377531290054321e-01 1.0005139745771885e-02
+ <_>
+
+ 0 -1 1559 -5.6867711246013641e-02
+
+ 3.0327269434928894e-01 -3.7230789661407471e-02
+ <_>
+
+ 0 -1 1560 -6.5776512026786804e-02
+
+ -1. 1.2443619780242443e-03
+ <_>
+
+ 0 -1 1561 -1.5500129666179419e-03
+
+ 1.2898580729961395e-01 -8.5528247058391571e-02
+ <_>
+
+ 0 -1 1562 8.7909551803022623e-04
+
+ -7.9906381666660309e-02 1.2847130000591278e-01
+ <_>
+
+ 0 -1 1563 2.9614660888910294e-03
+
+ 8.9433841407299042e-02 -1.7047980427742004e-01
+ <_>
+
+ 0 -1 1564 -5.0735038518905640e-01
+
+ -8.4197628498077393e-01 2.3592109791934490e-03
+ <_>
+
+ 0 -1 1565 3.5409200936555862e-02
+
+ 1.7137490212917328e-02 -5.9052079916000366e-01
+ <_>
+
+ 0 -1 1566 -4.6220239251852036e-02
+
+ 4.7383689880371094e-01 -1.1423089541494846e-02
+ <_>
+
+ 0 -1 1567 4.0875099599361420e-02
+
+ -2.6714079082012177e-02 4.2139878869056702e-01
+ <_>
+
+ 0 -1 1568 -5.7651810348033905e-02
+
+ 5.6021291017532349e-01 -9.5757292583584785e-03
+ <_>
+
+ 0 -1 1569 3.3733060117810965e-03
+
+ 7.2323620319366455e-02 -1.5510480105876923e-01
+ <_>
+
+ 0 -1 1570 -3.4096160531044006e-01
+
+ -1. -3.1605950789526105e-04
+ <_>
+
+ 0 -1 1571 -5.5850511416792870e-03
+
+ -1.5768070518970490e-01 7.3625743389129639e-02
+ <_>
+
+ 0 -1 1572 -1.1067239940166473e-01
+
+ 2.3640440404415131e-01 -1.2670779600739479e-02
+ <_>
+
+ 0 -1 1573 4.3246410787105560e-02
+
+ -4.9346420913934708e-02 3.0113101005554199e-01
+ <_>
+
+ 0 -1 1574 -5.8916499838232994e-03
+
+ -1.4727650582790375e-01 6.1345700174570084e-02
+ <_>
+
+ 0 -1 1575 -2.8674090572167188e-05
+
+ 1.1539240181446075e-01 -1.4692650735378265e-01
+ <_>
+
+ 0 -1 1576 2.6174910366535187e-02
+
+ -2.2960580885410309e-02 2.1004410088062286e-01
+ <_>
+
+ 0 -1 1577 -1.9902619533240795e-03
+
+ 9.7250632941722870e-02 -1.3244929909706116e-01
+ <_>
+
+ 0 -1 1578 -1.6960840672254562e-02
+
+ -3.1949061155319214e-01 3.6188289523124695e-02
+ <_>
+
+ 0 -1 1579 -1.5634739398956299e-01
+
+ 3.1934529542922974e-01 -4.1917070746421814e-02
+ <_>
+
+ 0 -1 1580 -2.3863950371742249e-01
+
+ 3.8183578848838806e-01 -8.6567532271146774e-03
+ <_>
+
+ 0 -1 1581 -7.7641502022743225e-02
+
+ -3.3156651258468628e-01 3.3491149544715881e-02
+ <_>
+
+ 0 -1 1582 -4.5257899910211563e-02
+
+ 4.6058529615402222e-01 -3.1354859471321106e-02
+ <_>
+
+ 0 -1 1583 -3.3390790224075317e-02
+
+ -7.2974747419357300e-01 1.6206990927457809e-02
+ <_>
+
+ 0 -1 1584 7.3079466819763184e-02
+
+ -1.9201450049877167e-02 3.4011909365653992e-01
+ <_>
+
+ 0 -1 1585 -5.4536230862140656e-02
+
+ 3.3227160573005676e-01 -3.3163428306579590e-02
+ <_>
+
+ 0 -1 1586 3.9552688598632812e-02
+
+ 1.1817559599876404e-02 -3.2131719589233398e-01
+ <_>
+
+ 0 -1 1587 5.9160130331292748e-04
+
+ -1.1766350269317627e-01 8.8002361357212067e-02
+ <_>
+
+ 0 -1 1588 3.5379730165004730e-02
+
+ 1.8286190927028656e-02 -1.6206890344619751e-01
+ <_>
+
+ 0 -1 1589 2.0152490586042404e-02
+
+ 2.2825939580798149e-02 -4.3034788966178894e-01
+ <_>
+
+ 0 -1 1590 -2.9185289517045021e-02
+
+ 1.8256959319114685e-01 -1.6376309096813202e-02
+ <_>
+
+ 0 -1 1591 -2.1705780178308487e-02
+
+ -6.6977721452713013e-01 1.6782360151410103e-02
+ <_>
+
+ 0 -1 1592 4.2584270238876343e-02
+
+ -1.6852499917149544e-02 3.4360399842262268e-01
+ <_>
+
+ 0 -1 1593 -1.2663739919662476e-01
+
+ 2.6748588681221008e-01 -3.6107789725065231e-02
+ <_>
+
+ 0 -1 1594 1.4260070025920868e-01
+
+ 1.4445270411670208e-02 -1.9729509949684143e-01
+ <_>
+
+ 0 -1 1595 5.3560931235551834e-02
+
+ 1.7324799671769142e-02 -5.9609222412109375e-01
+ <_>
+
+ 0 -1 1596 -5.9380959719419479e-03
+
+ -6.5156273543834686e-02 5.9645600616931915e-02
+ <_>
+
+ 0 -1 1597 -6.6497321240603924e-03
+
+ 1.4270019531250000e-01 -7.9669818282127380e-02
+ <_>
+
+ 0 -1 1598 -3.0137640424072742e-03
+
+ 1.3996289670467377e-01 -9.4831757247447968e-02
+ <_>
+
+ 0 -1 1599 -1.7213050276041031e-02
+
+ -1.7265740036964417e-01 6.9451652467250824e-02
+ <_>
+
+ 0 -1 1600 1.0775709897279739e-01
+
+ -4.6757548116147518e-03 9.2161870002746582e-01
+ <_>
+
+ 0 -1 1601 5.8738540858030319e-02
+
+ -4.2458981275558472e-02 2.8832349181175232e-01
+ <_>
+
+ 0 -1 1602 -3.0475479364395142e-01
+
+ -1. 2.6918480216409080e-05
+ <_>
+
+ 0 -1 1603 2.0395779609680176e-01
+
+ 2.5317989289760590e-02 -5.0275158882141113e-01
+ <_>
+
+ 0 -1 1604 -9.7794281318783760e-03
+
+ -1.9060879945755005e-01 3.0577139928936958e-02
+ <_>
+
+ 0 -1 1605 -2.2775499150156975e-02
+
+ 2.7048370242118835e-01 -5.1001209765672684e-02
+ <_>
+
+ 0 -1 1606 9.8080374300479889e-03
+
+ 2.4180250242352486e-02 -7.5000837445259094e-02
+ <_>
+
+ 0 -1 1607 -1.1130969971418381e-02
+
+ -2.3825749754905701e-01 6.4388722181320190e-02
+ <_>
+ 123
+ -6.5824240446090698e-01
+
+ <_>
+
+ 0 -1 1608 -2.1380689740180969e-01
+
+ 2.7686640620231628e-01 -9.2777818441390991e-02
+ <_>
+
+ 0 -1 1609 -3.3374479971826077e-03
+
+ 1.4119230210781097e-01 -5.1907159388065338e-02
+ <_>
+
+ 0 -1 1610 -2.8738550841808319e-02
+
+ -3.6243250966072083e-01 3.1938020139932632e-02
+ <_>
+
+ 0 -1 1611 -3.5554158966988325e-03
+
+ 1.1969120055437088e-01 -5.2306748926639557e-02
+ <_>
+
+ 0 -1 1612 -1.0732459835708141e-02
+
+ 2.8602668642997742e-01 -6.0555059462785721e-02
+ <_>
+
+ 0 -1 1613 8.7310239672660828e-02
+
+ -3.3613391220569611e-02 4.7786781191825867e-01
+ <_>
+
+ 0 -1 1614 2.1971999667584896e-03
+
+ 6.0207970440387726e-02 -2.1543750166893005e-01
+ <_>
+
+ 0 -1 1615 -7.4302748544141650e-05
+
+ 1.4141289889812469e-01 -1.2711560726165771e-01
+ <_>
+
+ 0 -1 1616 -2.9314011335372925e-01
+
+ -5.5598288774490356e-01 7.8105749562382698e-03
+ <_>
+
+ 0 -1 1617 7.7996537089347839e-02
+
+ -2.0238140597939491e-02 2.2233769297599792e-01
+ <_>
+
+ 0 -1 1618 4.9733570776879787e-03
+
+ -1.5410329401493073e-01 9.8874516785144806e-02
+ <_>
+
+ 0 -1 1619 -6.2232650816440582e-02
+
+ -2.5253909826278687e-01 2.5864329189062119e-02
+ <_>
+
+ 0 -1 1620 -7.4750548228621483e-03
+
+ -1.9071790575981140e-01 8.4528200328350067e-02
+ <_>
+
+ 0 -1 1621 2.2246010601520538e-02
+
+ -3.1024629250168800e-02 1.5289239585399628e-01
+ <_>
+
+ 0 -1 1622 -1.2305259704589844e-02
+
+ 1.1693249642848969e-01 -1.1092559993267059e-01
+ <_>
+
+ 0 -1 1623 -1.3985290424898267e-03
+
+ -2.0435670018196106e-01 8.7592259049415588e-02
+ <_>
+
+ 0 -1 1624 3.6361250281333923e-01
+
+ -1.8750319257378578e-02 8.5054528713226318e-01
+ <_>
+
+ 0 -1 1625 -3.8815739098936319e-03
+
+ 8.0643877387046814e-02 -1.0520999878644943e-01
+ <_>
+
+ 0 -1 1626 -5.2500631660223007e-02
+
+ 3.8002520799636841e-01 -3.6049079149961472e-02
+ <_>
+
+ 0 -1 1627 -7.9602311598137021e-04
+
+ 3.3794969320297241e-02 -7.5603879988193512e-02
+ <_>
+
+ 0 -1 1628 -2.0066089928150177e-02
+
+ -4.3842989206314087e-01 3.3389199525117874e-02
+ <_>
+
+ 0 -1 1629 -2.4233239237219095e-03
+
+ -9.3005247414112091e-02 4.9772828817367554e-02
+ <_>
+
+ 0 -1 1630 -6.8737422116100788e-03
+
+ 2.0374830067157745e-01 -5.8165848255157471e-02
+ <_>
+
+ 0 -1 1631 6.5535600297152996e-03
+
+ -7.0293396711349487e-02 1.4400149881839752e-01
+ <_>
+
+ 0 -1 1632 -1.6780680045485497e-02
+
+ -3.2226520776748657e-01 4.3717250227928162e-02
+ <_>
+
+ 0 -1 1633 2.5448070839047432e-02
+
+ 4.3461918830871582e-02 -1.5376989543437958e-01
+ <_>
+
+ 0 -1 1634 3.4656568896025419e-03
+
+ -6.3119992613792419e-02 2.1394529938697815e-01
+ <_>
+
+ 0 -1 1635 1.0132250189781189e-01
+
+ -1.7095830291509628e-02 1.8853299319744110e-01
+ <_>
+
+ 0 -1 1636 1.0714309662580490e-01
+
+ 3.5406891256570816e-02 -3.4869039058685303e-01
+ <_>
+
+ 0 -1 1637 -1.4500999823212624e-02
+
+ 3.7903580814599991e-02 -4.9169208854436874e-02
+ <_>
+
+ 0 -1 1638 -1.5354759991168976e-01
+
+ 3.5048320889472961e-01 -3.2774008810520172e-02
+ <_>
+
+ 0 -1 1639 -6.5137587487697601e-02
+
+ -4.1380020976066589e-01 7.3137627914547920e-03
+ <_>
+
+ 0 -1 1640 -2.9204839374870062e-03
+
+ -1.3756680488586426e-01 9.0795390307903290e-02
+ <_>
+
+ 0 -1 1641 -3.4104570746421814e-01
+
+ -6.7252027988433838e-01 1.5200230292975903e-02
+ <_>
+
+ 0 -1 1642 -4.4478259951574728e-05
+
+ 9.6579946577548981e-02 -1.0403420031070709e-01
+ <_>
+
+ 0 -1 1643 -1.1172229796648026e-01
+
+ -4.2234420776367188e-01 4.9457307904958725e-03
+ <_>
+
+ 0 -1 1644 2.0429869182407856e-03
+
+ 9.9474698305130005e-02 -1.0384540259838104e-01
+ <_>
+
+ 0 -1 1645 -7.2571309283375740e-03
+
+ -1.5049630403518677e-01 2.9724840074777603e-02
+ <_>
+
+ 0 -1 1646 -8.4451176226139069e-03
+
+ 9.5648579299449921e-02 -1.1805369704961777e-01
+ <_>
+
+ 0 -1 1647 -3.0194969847798347e-02
+
+ 4.6570628881454468e-01 -1.4386899769306183e-02
+ <_>
+
+ 0 -1 1648 5.7423918042331934e-04
+
+ -1.0382310301065445e-01 1.5052829682826996e-01
+ <_>
+
+ 0 -1 1649 8.2014611689373851e-04
+
+ -7.5132526457309723e-02 1.0363759845495224e-01
+ <_>
+
+ 0 -1 1650 7.0748180150985718e-03
+
+ 6.6062167286872864e-02 -1.7638419568538666e-01
+ <_>
+
+ 0 -1 1651 4.8304669559001923e-02
+
+ -1.7767660319805145e-02 2.6820158958435059e-01
+ <_>
+
+ 0 -1 1652 7.9041812568902969e-03
+
+ 5.1522739231586456e-02 -2.0632369816303253e-01
+ <_>
+
+ 0 -1 1653 8.4705486893653870e-02
+
+ 7.2250380180776119e-03 -5.9514737129211426e-01
+ <_>
+
+ 0 -1 1654 3.9120440487749875e-04
+
+ -1.0663530230522156e-01 1.1103810369968414e-01
+ <_>
+
+ 0 -1 1655 1.5959320589900017e-02
+
+ -4.8573691397905350e-02 2.5832009315490723e-01
+ <_>
+
+ 0 -1 1656 -1.8649259582161903e-03
+
+ 1.1551269888877869e-01 -1.5048590302467346e-01
+ <_>
+
+ 0 -1 1657 1.2727979570627213e-02
+
+ 4.7930240631103516e-02 -3.0310231447219849e-01
+ <_>
+
+ 0 -1 1658 -1.5954229747876525e-03
+
+ -1.5537570416927338e-01 8.3214886486530304e-02
+ <_>
+
+ 0 -1 1659 2.0234890282154083e-01
+
+ 1.1625860352069139e-03 -1.0000209808349609e+00
+ <_>
+
+ 0 -1 1660 -3.9196871221065521e-02
+
+ 3.0884549021720886e-01 -4.4524021446704865e-02
+ <_>
+
+ 0 -1 1661 1.5810640528798103e-02
+
+ -1.5927329659461975e-02 1.0144449770450592e-01
+ <_>
+
+ 0 -1 1662 -2.1568681113421917e-03
+
+ 9.5205381512641907e-02 -1.2910960614681244e-01
+ <_>
+
+ 0 -1 1663 -3.4604359418153763e-02
+
+ 2.7843558788299561e-01 -1.0775060392916203e-02
+ <_>
+
+ 0 -1 1664 -2.6206790935248137e-03
+
+ -1.3744530081748962e-01 9.2945456504821777e-02
+ <_>
+
+ 0 -1 1665 4.6692821197211742e-03
+
+ -5.8331821113824844e-02 1.5733839571475983e-01
+ <_>
+
+ 0 -1 1666 7.8623533248901367e-02
+
+ 1.1130830273032188e-02 -9.7138148546218872e-01
+ <_>
+
+ 0 -1 1667 3.9556730538606644e-02
+
+ 2.1708509884774685e-03 -4.3425449728965759e-01
+ <_>
+
+ 0 -1 1668 4.0571438148617744e-03
+
+ 8.6120717227458954e-02 -1.5579399466514587e-01
+ <_>
+
+ 0 -1 1669 -1.5014669857919216e-02
+
+ 1.3523979485034943e-01 -2.5724019855260849e-02
+ <_>
+
+ 0 -1 1670 4.6183250378817320e-04
+
+ -1.0766889899969101e-01 1.3633869588375092e-01
+ <_>
+
+ 0 -1 1671 5.2875209599733353e-02
+
+ 5.4555749520659447e-03 -3.9382910728454590e-01
+ <_>
+
+ 0 -1 1672 -5.9510860592126846e-02
+
+ 2.8690820932388306e-01 -4.2876079678535461e-02
+ <_>
+
+ 0 -1 1673 1.6650360077619553e-02
+
+ 2.8605299070477486e-02 -3.0349490046501160e-01
+ <_>
+
+ 0 -1 1674 1.4959629625082016e-02
+
+ -5.2699029445648193e-02 2.1825259923934937e-01
+ <_>
+
+ 0 -1 1675 -9.6224267035722733e-03
+
+ -2.1431450545787811e-01 4.8350628465414047e-02
+ <_>
+
+ 0 -1 1676 -4.5304261147975922e-02
+
+ -8.7308478355407715e-01 1.2449770234525204e-02
+ <_>
+
+ 0 -1 1677 -7.4465242214500904e-03
+
+ -1.3586209714412689e-01 3.3087320625782013e-02
+ <_>
+
+ 0 -1 1678 -1.1953880311921239e-03
+
+ 1.4848570525646210e-01 -8.5291646420955658e-02
+ <_>
+
+ 0 -1 1679 5.6622507981956005e-03
+
+ -5.3212448954582214e-02 1.2967950105667114e-01
+ <_>
+
+ 0 -1 1680 1.3971360400319099e-02
+
+ 2.5338830426335335e-02 -4.2097410559654236e-01
+ <_>
+
+ 0 -1 1681 -4.5216218568384647e-03
+
+ 1.2621529400348663e-01 -6.3135430216789246e-02
+ <_>
+
+ 0 -1 1682 4.7776158899068832e-03
+
+ -6.2899917364120483e-02 1.7724449932575226e-01
+ <_>
+
+ 0 -1 1683 -5.8305878192186356e-03
+
+ 8.7906002998352051e-02 -1.5553380548954010e-01
+ <_>
+
+ 0 -1 1684 -1.5879280865192413e-02
+
+ -1.2694430351257324e-01 1.0280299931764603e-01
+ <_>
+
+ 0 -1 1685 1.9526369869709015e-03
+
+ -7.6803453266620636e-02 4.7297749668359756e-02
+ <_>
+
+ 0 -1 1686 2.4521650746464729e-02
+
+ -2.7714680880308151e-02 4.0350469946861267e-01
+ <_>
+
+ 0 -1 1687 -8.4529399871826172e-02
+
+ 1. -2.1367999725043774e-03
+ <_>
+
+ 0 -1 1688 1.6844070050865412e-03
+
+ 7.4043400585651398e-02 -1.6334819793701172e-01
+ <_>
+
+ 0 -1 1689 1.3399059884250164e-02
+
+ -4.2453180998563766e-02 2.4164129793643951e-01
+ <_>
+
+ 0 -1 1690 4.4182639569044113e-02
+
+ 1.8039569258689880e-02 -6.4396840333938599e-01
+ <_>
+
+ 0 -1 1691 3.8327239453792572e-02
+
+ 7.5849238783121109e-03 -3.6534211039543152e-01
+ <_>
+
+ 0 -1 1692 2.5997089687734842e-03
+
+ -8.8553480803966522e-02 1.3763660192489624e-01
+ <_>
+
+ 0 -1 1693 1.0775480419397354e-02
+
+ 4.5753169804811478e-02 -1.1956000328063965e-01
+ <_>
+
+ 0 -1 1694 -2.0433649420738220e-02
+
+ 2.2020170092582703e-01 -5.1925841718912125e-02
+ <_>
+
+ 0 -1 1695 -1.2402729690074921e-01
+
+ 8.8846582174301147e-01 -5.1234480924904346e-03
+ <_>
+
+ 0 -1 1696 4.7838478349149227e-03
+
+ 5.3047031164169312e-02 -2.1085900068283081e-01
+ <_>
+
+ 0 -1 1697 -4.5895349234342575e-02
+
+ 4.4482690095901489e-01 -1.5117119997739792e-02
+ <_>
+
+ 0 -1 1698 1.4473790302872658e-02
+
+ -4.5201409608125687e-02 2.3556250333786011e-01
+ <_>
+
+ 0 -1 1699 1.8887920305132866e-03
+
+ 7.6443381607532501e-02 -1.6385370492935181e-01
+ <_>
+
+ 0 -1 1700 -1.9082069396972656e-01
+
+ 6.4662021398544312e-01 -1.8242619931697845e-02
+ <_>
+
+ 0 -1 1701 7.2158463299274445e-02
+
+ 6.2836478464305401e-03 -7.4822348356246948e-01
+ <_>
+
+ 0 -1 1702 9.7802944947034121e-04
+
+ 7.9063102602958679e-02 -1.3163650035858154e-01
+ <_>
+
+ 0 -1 1703 4.8602250171825290e-04
+
+ -4.2594909667968750e-02 6.9462761282920837e-02
+ <_>
+
+ 0 -1 1704 -1.0882800444960594e-02
+
+ -2.4503070116043091e-01 5.2326161414384842e-02
+ <_>
+
+ 0 -1 1705 1.1573769734241068e-04
+
+ -6.6729307174682617e-02 8.7088912725448608e-02
+ <_>
+
+ 0 -1 1706 2.0960739348083735e-03
+
+ -7.6154567301273346e-02 1.3598169386386871e-01
+ <_>
+
+ 0 -1 1707 4.3664351105690002e-02
+
+ 8.4812156856060028e-03 -8.1097167730331421e-01
+ <_>
+
+ 0 -1 1708 -1.1464370181784034e-03
+
+ 1.2721230089664459e-01 -8.4783419966697693e-02
+ <_>
+
+ 0 -1 1709 -5.5613541044294834e-03
+
+ -1.9722530245780945e-01 5.4411068558692932e-02
+ <_>
+
+ 0 -1 1710 3.4083850681781769e-02
+
+ -3.2338548451662064e-02 3.4062281250953674e-01
+ <_>
+
+ 0 -1 1711 5.1227081567049026e-02
+
+ -1.3262039981782436e-02 2.3953630030155182e-01
+ <_>
+
+ 0 -1 1712 3.3531729131937027e-02
+
+ 2.0279919728636742e-02 -4.8339051008224487e-01
+ <_>
+
+ 0 -1 1713 1.5396219678223133e-02
+
+ -2.9320189729332924e-02 1.5866099298000336e-01
+ <_>
+
+ 0 -1 1714 -1.7550770193338394e-02
+
+ 2.7488970756530762e-01 -3.7798319011926651e-02
+ <_>
+
+ 0 -1 1715 -7.5705647468566895e-02
+
+ -8.2214397192001343e-01 3.8814740255475044e-03
+ <_>
+
+ 0 -1 1716 -5.3475350141525269e-03
+
+ -1.6710759699344635e-01 7.7180616557598114e-02
+ <_>
+
+ 0 -1 1717 -3.3435279037803411e-03
+
+ -1.0673490166664124e-01 4.7575470060110092e-02
+ <_>
+
+ 0 -1 1718 1.9328270107507706e-02
+
+ -4.6563290059566498e-02 2.4716560542583466e-01
+ <_>
+
+ 0 -1 1719 8.5368983447551727e-02
+
+ 2.3296920582652092e-02 -5.0002247095108032e-01
+ <_>
+
+ 0 -1 1720 2.5927850510925055e-03
+
+ -1.1182250082492828e-01 1.1046089977025986e-01
+ <_>
+
+ 0 -1 1721 -9.1061238199472427e-03
+
+ 4.7107011079788208e-02 -5.5807661265134811e-02
+ <_>
+
+ 0 -1 1722 1.0170699656009674e-01
+
+ -1.5966609120368958e-02 6.9857317209243774e-01
+ <_>
+
+ 0 -1 1723 2.2854980081319809e-02
+
+ -1.7226219177246094e-02 1.2225689738988876e-01
+ <_>
+
+ 0 -1 1724 -1.6577079892158508e-02
+
+ -2.2225829958915710e-01 5.6578300893306732e-02
+ <_>
+
+ 0 -1 1725 -2.3641420528292656e-02
+
+ -2.7734050154685974e-01 1.6076890751719475e-02
+ <_>
+
+ 0 -1 1726 5.6385230273008347e-03
+
+ 4.5439280569553375e-02 -2.2549630701541901e-01
+ <_>
+
+ 0 -1 1727 5.7422029785811901e-03
+
+ -7.8568778932094574e-02 1.5234960615634918e-01
+ <_>
+
+ 0 -1 1728 -4.3363519944250584e-04
+
+ 9.5920950174331665e-02 -1.1274240165948868e-01
+ <_>
+
+ 0 -1 1729 1.0267919860780239e-02
+
+ -4.9332991242408752e-02 2.4810829758644104e-01
+ <_>
+
+ 0 -1 1730 1.3865719549357891e-02
+
+ 7.0547938346862793e-02 -1.8594330549240112e-01
+ <_>
+ 127
+ -3.0620599746704102e+01
+
+ <_>
+
+ 0 -1 1731 -4.6980630606412888e-02
+
+ 1.7078550159931183e-01 -1.5687310695648193e-01
+ <_>
+
+ 0 -1 1732 -1.1967960000038147e-01
+
+ 5.1738417148590088e-01 -1.1747590266168118e-02
+ <_>
+
+ 0 -1 1733 -2.8477180749177933e-02
+
+ 2.3505200445652008e-01 -5.7424411177635193e-02
+ <_>
+
+ 0 -1 1734 1.9697479903697968e-01
+
+ -9.3123828992247581e-04 1.0037239789962769e+00
+ <_>
+
+ 0 -1 1735 7.9039083793759346e-03
+
+ 8.3357498049736023e-02 -1.6527499258518219e-01
+ <_>
+
+ 0 -1 1736 3.9338979870080948e-02
+
+ -6.5605872077867389e-04 3.2361468672752380e-01
+ <_>
+
+ 0 -1 1737 -1.5762429684400558e-03
+
+ 9.1129466891288757e-02 -1.4164330065250397e-01
+ <_>
+
+ 0 -1 1738 2.0851049339398742e-04
+
+ -1.3802680373191833e-01 7.7212989330291748e-02
+ <_>
+
+ 0 -1 1739 -2.6843539671972394e-04
+
+ 1.3646720349788666e-01 -9.4255752861499786e-02
+ <_>
+
+ 0 -1 1740 8.8506387546658516e-03
+
+ 2.4603420868515968e-02 -1.6884680092334747e-01
+ <_>
+
+ 0 -1 1741 -8.4813922876492143e-04
+
+ -1.3972400128841400e-01 1.1566729843616486e-01
+ <_>
+
+ 0 -1 1742 -3.7090150726726279e-05
+
+ 7.5284272432327271e-02 -1.7708149552345276e-01
+ <_>
+
+ 0 -1 1743 -2.1533910185098648e-02
+
+ 2.0233030617237091e-01 -6.6978476941585541e-02
+ <_>
+
+ 0 -1 1744 1.1713660322129726e-02
+
+ 8.6853489279747009e-02 -1.1251810193061829e-01
+ <_>
+
+ 0 -1 1745 -9.8365638405084610e-03
+
+ 3.0164790153503418e-01 -5.0179660320281982e-02
+ <_>
+
+ 0 -1 1746 -6.2104999087750912e-03
+
+ 6.8224228918552399e-02 -9.4441823661327362e-02
+ <_>
+
+ 0 -1 1747 -2.0034300163388252e-02
+
+ -2.8657549619674683e-01 4.5728500932455063e-02
+ <_>
+
+ 0 -1 1748 -2.2154829639475793e-04
+
+ 7.1603760123252869e-02 -8.7115049362182617e-02
+ <_>
+
+ 0 -1 1749 -5.2436119876801968e-03
+
+ 1.3439500331878662e-01 -9.0288907289505005e-02
+ <_>
+
+ 0 -1 1750 -1.1711229570209980e-02
+
+ 1.4874699711799622e-01 -2.5951780378818512e-02
+ <_>
+
+ 0 -1 1751 5.8587929233908653e-03
+
+ -6.6982023417949677e-02 1.8096329271793365e-01
+ <_>
+
+ 0 -1 1752 1.0432569682598114e-01
+
+ 1.0209330357611179e-02 -7.9540812969207764e-01
+ <_>
+
+ 0 -1 1753 -1.7049130052328110e-02
+
+ -2.0516310632228851e-01 6.4470991492271423e-02
+ <_>
+
+ 0 -1 1754 2.5877699255943298e-02
+
+ -3.0079720541834831e-02 1.6041970252990723e-01
+ <_>
+
+ 0 -1 1755 -4.0637338533997536e-03
+
+ 1.0870960354804993e-01 -1.1665400117635727e-01
+ <_>
+
+ 0 -1 1756 -1.9286720082163811e-02
+
+ -1.2503950297832489e-01 2.8055189177393913e-02
+ <_>
+
+ 0 -1 1757 -7.2130301305151079e-06
+
+ 1.1845260113477707e-01 -1.2367019802331924e-01
+ <_>
+
+ 0 -1 1758 -2.6098350062966347e-03
+
+ -1.4498670399188995e-01 8.2318760454654694e-02
+ <_>
+
+ 0 -1 1759 3.2303779153153300e-04
+
+ -9.5855496823787689e-02 1.1992660164833069e-01
+ <_>
+
+ 0 -1 1760 -1.1308960383757949e-03
+
+ 1.2882959842681885e-01 -8.2697473466396332e-02
+ <_>
+
+ 0 -1 1761 1.7176469787955284e-02
+
+ 3.6024659872055054e-02 -3.0873811244964600e-01
+ <_>
+
+ 0 -1 1762 -1.0515330359339714e-02
+
+ 9.6330337226390839e-02 -1.0785780102014542e-01
+ <_>
+
+ 0 -1 1763 5.0583500415086746e-02
+
+ -3.4715801477432251e-02 4.5134508609771729e-01
+ <_>
+
+ 0 -1 1764 8.7582931155338883e-04
+
+ -9.5677152276039124e-02 7.3631688952445984e-02
+ <_>
+
+ 0 -1 1765 -3.1957220286130905e-02
+
+ -3.1473490595817566e-01 3.6329280585050583e-02
+ <_>
+
+ 0 -1 1766 5.9863331262022257e-04
+
+ -4.2676690965890884e-02 5.4342899471521378e-02
+ <_>
+
+ 0 -1 1767 -6.6270949319005013e-03
+
+ 7.3510922491550446e-02 -1.7309080064296722e-01
+ <_>
+
+ 0 -1 1768 -7.3186516761779785e-02
+
+ 6.8777692317962646e-01 -5.6781149469316006e-03
+ <_>
+
+ 0 -1 1769 2.0290840417146683e-02
+
+ -4.0720541030168533e-02 3.0450868606567383e-01
+ <_>
+
+ 0 -1 1770 -3.0989840161055326e-03
+
+ -1.2787370383739471e-01 5.4329689592123032e-02
+ <_>
+
+ 0 -1 1771 -1.1258859885856509e-03
+
+ 1.1980079859495163e-01 -8.3477236330509186e-02
+ <_>
+
+ 0 -1 1772 3.9993048994801939e-04
+
+ -9.5427073538303375e-02 7.6952911913394928e-02
+ <_>
+
+ 0 -1 1773 1.1202540248632431e-02
+
+ 2.5125309824943542e-02 -4.0314701199531555e-01
+ <_>
+
+ 0 -1 1774 -2.1753970533609390e-02
+
+ -2.3042400181293488e-01 1.5338519588112831e-02
+ <_>
+
+ 0 -1 1775 7.6912459917366505e-05
+
+ -9.5581486821174622e-02 1.0388170182704926e-01
+ <_>
+
+ 0 -1 1776 9.1011539101600647e-02
+
+ -8.7168300524353981e-03 7.5593751668930054e-01
+ <_>
+
+ 0 -1 1777 -4.3160789646208286e-03
+
+ 1.3494439423084259e-01 -7.0152096450328827e-02
+ <_>
+
+ 0 -1 1778 -5.0581190735101700e-02
+
+ -6.6112691164016724e-01 2.2676400840282440e-03
+ <_>
+
+ 0 -1 1779 -8.3926003426313400e-03
+
+ -1.2883609533309937e-01 7.7920481562614441e-02
+ <_>
+
+ 0 -1 1780 5.5040661245584488e-02
+
+ 7.7853789553046227e-03 -2.7820050716400146e-01
+ <_>
+
+ 0 -1 1781 -4.1862551122903824e-02
+
+ 4.3335449695587158e-01 -2.9194639995694160e-02
+ <_>
+
+ 0 -1 1782 -7.4230520986020565e-03
+
+ 1.3154500722885132e-01 -3.2047510147094727e-02
+ <_>
+
+ 0 -1 1783 1.9948489498347044e-03
+
+ 8.3299688994884491e-02 -1.1662559956312180e-01
+ <_>
+
+ 0 -1 1784 4.1851431131362915e-02
+
+ 4.1461169719696045e-02 -1.2815159559249878e-01
+ <_>
+
+ 0 -1 1785 2.7844381332397461e-01
+
+ -2.2612810134887695e-02 5.2236318588256836e-01
+ <_>
+
+ 0 -1 1786 -7.1095931343734264e-03
+
+ 1.2902510166168213e-01 -2.7944799512624741e-02
+ <_>
+
+ 0 -1 1787 1.1175610125064850e-02
+
+ 5.1366660743951797e-02 -1.9559539854526520e-01
+ <_>
+
+ 0 -1 1788 -1.0364210233092308e-02
+
+ -7.2631381452083588e-02 1.5199509263038635e-01
+ <_>
+
+ 0 -1 1789 -9.4094304367899895e-03
+
+ -2.0993369817733765e-01 5.3346861153841019e-02
+ <_>
+
+ 0 -1 1790 -1.0375010222196579e-01
+
+ -3.3693191409111023e-01 3.9442018605768681e-03
+ <_>
+
+ 0 -1 1791 -9.5977628370746970e-04
+
+ 1.0307610034942627e-01 -1.0574100166559219e-01
+ <_>
+
+ 0 -1 1792 -5.5816810578107834e-02
+
+ 2.6074001193046570e-01 -4.4885180890560150e-02
+ <_>
+
+ 0 -1 1793 -1.3430939614772797e-01
+
+ -8.1660747528076172e-01 1.5410860069096088e-02
+ <_>
+
+ 0 -1 1794 6.0456950217485428e-02
+
+ -3.0265029054135084e-03 -9.9991780519485474e-01
+ <_>
+
+ 0 -1 1795 2.4359079077839851e-02
+
+ 2.4191310629248619e-02 -4.6632158756256104e-01
+ <_>
+
+ 0 -1 1796 5.2735779434442520e-02
+
+ -2.4266760796308517e-02 2.1460479497909546e-01
+ <_>
+
+ 0 -1 1797 -5.5626039393246174e-03
+
+ 1.0879939794540405e-01 -1.2120909988880157e-01
+ <_>
+
+ 0 -1 1798 9.0855263173580170e-02
+
+ 1.0956900223391131e-04 -9.9975770711898804e-01
+ <_>
+
+ 0 -1 1799 -3.4681189805269241e-02
+
+ -4.5409980416297913e-01 2.3691149428486824e-02
+ <_>
+
+ 0 -1 1800 -2.9579090551123954e-05
+
+ 4.8031318932771683e-02 -4.9872968345880508e-02
+ <_>
+
+ 0 -1 1801 2.6277130469679832e-02
+
+ -2.9456760734319687e-02 3.3974370360374451e-01
+ <_>
+
+ 0 -1 1802 -4.6276021748781204e-02
+
+ 4.5496609807014465e-01 -1.0359579697251320e-02
+ <_>
+
+ 0 -1 1803 1.2048200005665421e-04
+
+ -1.0575199872255325e-01 1.0096730291843414e-01
+ <_>
+
+ 0 -1 1804 6.8154390901327133e-03
+
+ 2.8495609760284424e-02 -9.9765069782733917e-02
+ <_>
+
+ 0 -1 1805 1.6169620212167501e-03
+
+ -1.3256169855594635e-01 8.7828978896141052e-02
+ <_>
+
+ 0 -1 1806 1.4563379809260368e-02
+
+ -4.3079901486635208e-02 2.5113260746002197e-01
+ <_>
+
+ 0 -1 1807 2.0352909341454506e-02
+
+ 3.9463639259338379e-02 -3.2518970966339111e-01
+ <_>
+
+ 0 -1 1808 -2.0789269357919693e-02
+
+ 1.8993359804153442e-01 -2.1271999925374985e-02
+ <_>
+
+ 0 -1 1809 3.1780101358890533e-02
+
+ -2.3768220096826553e-02 4.3957829475402832e-01
+ <_>
+
+ 0 -1 1810 1.2459229677915573e-01
+
+ 6.5275398083031178e-03 -9.9991798400878906e-01
+ <_>
+
+ 0 -1 1811 -8.4007039666175842e-02
+
+ -3.5620281100273132e-01 2.8916560113430023e-02
+ <_>
+
+ 0 -1 1812 9.6772145479917526e-03
+
+ 6.4073942601680756e-02 -1.5482710301876068e-01
+ <_>
+
+ 0 -1 1813 1.0405039787292480e-01
+
+ -2.2652050480246544e-02 5.7623207569122314e-01
+ <_>
+
+ 0 -1 1814 4.0814410895109177e-02
+
+ -3.7368569523096085e-02 7.7298507094383240e-02
+ <_>
+
+ 0 -1 1815 -4.6916189789772034e-01
+
+ -7.7304631471633911e-01 1.3607080094516277e-02
+ <_>
+
+ 0 -1 1816 -1.3723419606685638e-01
+
+ -1. -1.7328710528090596e-03
+ <_>
+
+ 0 -1 1817 3.7569448351860046e-02
+
+ 3.1412709504365921e-02 -3.5512429475784302e-01
+ <_>
+
+ 0 -1 1818 -1.2645379640161991e-02
+
+ -7.1322880685329437e-02 4.1889548301696777e-02
+ <_>
+
+ 0 -1 1819 3.9933860301971436e-02
+
+ -3.3447001129388809e-02 3.5932940244674683e-01
+ <_>
+
+ 0 -1 1820 1.7207439988851547e-02
+
+ 2.6126530021429062e-02 -7.7634379267692566e-02
+ <_>
+
+ 0 -1 1821 5.9702228754758835e-02
+
+ -2.3717980831861496e-02 5.7321798801422119e-01
+ <_>
+
+ 0 -1 1822 7.9917803406715393e-02
+
+ -9.7547564655542374e-03 4.3467441201210022e-01
+ <_>
+
+ 0 -1 1823 1.1351720243692398e-01
+
+ -3.8921970874071121e-02 2.6120808720588684e-01
+ <_>
+
+ 0 -1 1824 4.8379451036453247e-01
+
+ 7.8452667221426964e-03 -6.5024161338806152e-01
+ <_>
+
+ 0 -1 1825 -1.0045070201158524e-01
+
+ -8.0072021484375000e-01 1.2250199913978577e-02
+ <_>
+
+ 0 -1 1826 2.7176019549369812e-01
+
+ 4.4636582024395466e-03 -6.9393122196197510e-01
+ <_>
+
+ 0 -1 1827 -1.2301249802112579e-01
+
+ 3.2483839988708496e-01 -3.3841550350189209e-02
+ <_>
+
+ 0 -1 1828 6.1188749969005585e-02
+
+ 7.1536018513143063e-03 -7.7817517518997192e-01
+ <_>
+
+ 0 -1 1829 -7.8828241676092148e-03
+
+ -1.9754239916801453e-01 6.7795433104038239e-02
+ <_>
+
+ 0 -1 1830 -2.5584879517555237e-01
+
+ -1. 1.4300020411610603e-03
+ <_>
+
+ 0 -1 1831 1.3098469376564026e-01
+
+ -1.6668310388922691e-02 7.4547207355499268e-01
+ <_>
+
+ 0 -1 1832 -8.4553077816963196e-02
+
+ -6.3423901796340942e-01 8.3142798393964767e-03
+ <_>
+
+ 0 -1 1833 -8.8297717273235321e-02
+
+ -8.5705971717834473e-01 1.0549940168857574e-02
+ <_>
+
+ 0 -1 1834 -1.0374879837036133e-01
+
+ 1.2073180079460144e-01 -2.2488579154014587e-02
+ <_>
+
+ 0 -1 1835 1.4872249448671937e-03
+
+ -1.1096440255641937e-01 1.0405410081148148e-01
+ <_>
+
+ 0 -1 1836 2.1364030241966248e-01
+
+ 7.3841079138219357e-03 -4.9760338664054871e-01
+ <_>
+
+ 0 -1 1837 2.6294309645891190e-02
+
+ -6.3212700188159943e-02 2.6284760236740112e-01
+ <_>
+
+ 0 -1 1838 -2.6777000166475773e-03
+
+ 5.6488350033760071e-02 -1.0174310207366943e-01
+ <_>
+
+ 0 -1 1839 -2.1261540241539478e-03
+
+ -1.6442880034446716e-01 6.6159963607788086e-02
+ <_>
+
+ 0 -1 1840 -8.2200914621353149e-03
+
+ -1.6132779419422150e-01 8.3515472710132599e-02
+ <_>
+
+ 0 -1 1841 -1.1701880022883415e-02
+
+ 2.1516199409961700e-01 -5.9116050601005554e-02
+ <_>
+
+ 0 -1 1842 -7.0460740244016051e-04
+
+ 9.6142299473285675e-02 -1.3008759915828705e-01
+ <_>
+
+ 0 -1 1843 -1.9671309273689985e-03
+
+ 1.2605039775371552e-01 -8.8542640209197998e-02
+ <_>
+
+ 0 -1 1844 -9.5004076138138771e-03
+
+ -2.3604579269886017e-01 4.5922629535198212e-02
+ <_>
+
+ 0 -1 1845 2.6802370324730873e-02
+
+ -4.8966769129037857e-02 2.3887130618095398e-01
+ <_>
+
+ 0 -1 1846 2.2177420556545258e-02
+
+ -1.2560590170323849e-02 2.7084270119667053e-01
+ <_>
+
+ 0 -1 1847 9.3382880091667175e-02
+
+ 3.3835850656032562e-02 -3.9707890152931213e-01
+ <_>
+
+ 0 -1 1848 -1.3151080347597599e-02
+
+ -1.1364260315895081e-01 2.5930739939212799e-02
+ <_>
+
+ 0 -1 1849 2.6929581072181463e-03
+
+ 6.8202346563339233e-02 -1.6290910542011261e-01
+ <_>
+
+ 0 -1 1850 -5.7519129477441311e-03
+
+ 1.3197720050811768e-01 -5.7711899280548096e-02
+ <_>
+
+ 0 -1 1851 -1.1071159970015287e-03
+
+ 1.4550089836120605e-01 -7.7300041913986206e-02
+ <_>
+
+ 0 -1 1852 3.1805180013179779e-02
+
+ 1.4181279577314854e-02 -2.1803429722785950e-01
+ <_>
+
+ 0 -1 1853 4.0729498863220215e-01
+
+ -1.3772940263152122e-02 7.4853348731994629e-01
+ <_>
+
+ 0 -1 1854 7.0173077285289764e-02
+
+ 1.1535810306668282e-02 -8.6094629764556885e-01
+ <_>
+
+ 0 -1 1855 -1.9437450100667775e-04
+
+ 6.3009992241859436e-02 -1.5111440420150757e-01
+ <_>
+
+ 0 -1 1856 3.9425559341907501e-02
+
+ 2.4115329608321190e-02 -4.7253820300102234e-01
+ <_>
+
+ 0 -1 1857 2.6128459721803665e-03
+
+ 5.3963150829076767e-02 -1.7429760098457336e-01
+ <_>
+ 152
+ -3.0691600799560547e+01
+
+ <_>
+
+ 0 -1 1858 1.0468430072069168e-01
+
+ -4.7570109367370605e-02 4.2454048991203308e-01
+ <_>
+
+ 0 -1 1859 -4.2946420609951019e-02
+
+ 1.6328890621662140e-01 -1.2655169703066349e-02
+ <_>
+
+ 0 -1 1860 -8.1577729433774948e-03
+
+ 1.0235799849033356e-01 -1.0876630246639252e-01
+ <_>
+
+ 0 -1 1861 2.1813691128045321e-03
+
+ 8.7985247373580933e-02 -5.5899761617183685e-02
+ <_>
+
+ 0 -1 1862 -6.5157511271536350e-03
+
+ 8.2863852381706238e-02 -1.3736319541931152e-01
+ <_>
+
+ 0 -1 1863 2.4716500192880630e-02
+
+ 1.6755210235714912e-02 1.3371250033378601e-01
+ <_>
+
+ 0 -1 1864 -5.9396267170086503e-04
+
+ -1.3771370053291321e-01 1.0501290112733841e-01
+ <_>
+
+ 0 -1 1865 2.9373820871114731e-02
+
+ -4.4581398367881775e-02 4.2731860280036926e-01
+ <_>
+
+ 0 -1 1866 -1.6576919704675674e-02
+
+ -2.9827460646629333e-01 2.9718369245529175e-02
+ <_>
+
+ 0 -1 1867 9.4569493085145950e-03
+
+ 5.3616948425769806e-02 -7.6675526797771454e-02
+ <_>
+
+ 0 -1 1868 7.4581913650035858e-02
+
+ -4.6554408967494965e-02 3.0179610848426819e-01
+ <_>
+
+ 0 -1 1869 -3.8055621087551117e-02
+
+ -2.8255119919776917e-01 2.0355690270662308e-02
+ <_>
+
+ 0 -1 1870 1.1065539903938770e-02
+
+ -5.3942598402500153e-02 2.3132629692554474e-01
+ <_>
+
+ 0 -1 1871 1.3538219965994358e-02
+
+ 2.8102980926632881e-02 -2.1802890300750732e-01
+ <_>
+
+ 0 -1 1872 4.6914750710129738e-03
+
+ 6.3617020845413208e-02 -1.7460820078849792e-01
+ <_>
+
+ 0 -1 1873 4.3054440617561340e-01
+
+ -2.1062379702925682e-02 5.7197797298431396e-01
+ <_>
+
+ 0 -1 1874 1.4298999449238181e-03
+
+ -1.6780039668083191e-01 7.6851062476634979e-02
+ <_>
+
+ 0 -1 1875 2.7855230495333672e-02
+
+ -3.5647969692945480e-02 2.8956910967826843e-01
+ <_>
+
+ 0 -1 1876 1.4391670003533363e-02
+
+ 8.3300426602363586e-02 -1.2951320409774780e-01
+ <_>
+
+ 0 -1 1877 -7.7637381851673126e-02
+
+ -1. 8.1426621181890368e-04
+ <_>
+
+ 0 -1 1878 1.6051199287176132e-02
+
+ -5.4008588194847107e-02 2.1967799961566925e-01
+ <_>
+
+ 0 -1 1879 -7.0988729596138000e-02
+
+ 6.1602139472961426e-01 -1.6476400196552277e-02
+ <_>
+
+ 0 -1 1880 -5.8310989290475845e-02
+
+ -9.5955359935760498e-01 1.2517100200057030e-02
+ <_>
+
+ 0 -1 1881 -7.9547446221113205e-03
+
+ -9.3684002757072449e-02 3.3896960318088531e-02
+ <_>
+
+ 0 -1 1882 -4.9685798585414886e-02
+
+ 3.1466799974441528e-01 -2.9716050252318382e-02
+ <_>
+
+ 0 -1 1883 9.7751528024673462e-02
+
+ 7.5905729318037629e-04 -6.7009872198104858e-01
+ <_>
+
+ 0 -1 1884 7.5908802449703217e-02
+
+ 1.6073329374194145e-02 -6.6251361370086670e-01
+ <_>
+
+ 0 -1 1885 1.3333460083231330e-03
+
+ 5.2241399884223938e-02 -1.8808710575103760e-01
+ <_>
+
+ 0 -1 1886 6.9728610105812550e-04
+
+ -8.9044801890850067e-02 1.6642339527606964e-01
+ <_>
+
+ 0 -1 1887 2.0889509469270706e-02
+
+ 2.1368719637393951e-02 -1.6083440184593201e-01
+ <_>
+
+ 0 -1 1888 -1.7649700166657567e-03
+
+ 1.2398529797792435e-01 -8.5922397673130035e-02
+ <_>
+
+ 0 -1 1889 2.7779850643128157e-03
+
+ -4.4366151094436646e-02 2.9322549700737000e-02
+ <_>
+
+ 0 -1 1890 7.9974532127380371e-04
+
+ -1.2351520359516144e-01 8.8818296790122986e-02
+ <_>
+
+ 0 -1 1891 7.0215959567576647e-04
+
+ -8.0154180526733398e-02 1.4544290304183960e-01
+ <_>
+
+ 0 -1 1892 -4.0604420006275177e-02
+
+ -3.6047580838203430e-01 3.4314859658479691e-02
+ <_>
+
+ 0 -1 1893 -4.1686851531267166e-02
+
+ -2.0927760004997253e-01 8.5808392614126205e-03
+ <_>
+
+ 0 -1 1894 -4.6390198171138763e-02
+
+ 5.3768527507781982e-01 -2.2632500156760216e-02
+ <_>
+
+ 0 -1 1895 -1.5822030603885651e-01
+
+ -1. 1.4312319690361619e-03
+ <_>
+
+ 0 -1 1896 -7.5683370232582092e-02
+
+ -8.0503028631210327e-01 1.2843839824199677e-02
+ <_>
+
+ 0 -1 1897 -5.7808328419923782e-02
+
+ 3.8675680756568909e-01 -1.2630320154130459e-02
+ <_>
+
+ 0 -1 1898 -4.5112581574358046e-05
+
+ 7.4958987534046173e-02 -1.3433749973773956e-01
+ <_>
+
+ 0 -1 1899 3.9205480366945267e-02
+
+ 2.1980579942464828e-02 -4.5748621225357056e-01
+ <_>
+
+ 0 -1 1900 4.4945240020751953e-02
+
+ -2.3763459175825119e-02 4.8715281486511230e-01
+ <_>
+
+ 0 -1 1901 -5.7849191129207611e-02
+
+ 3.5563638806343079e-01 -6.2380530871450901e-03
+ <_>
+
+ 0 -1 1902 -1.0397239774465561e-01
+
+ -6.2262791395187378e-01 1.5022880397737026e-02
+ <_>
+
+ 0 -1 1903 -2.5238281488418579e-01
+
+ -5.9059482812881470e-01 -1.9238379900343716e-04
+ <_>
+
+ 0 -1 1904 1.9675880670547485e-01
+
+ 1.2625159695744514e-02 -7.2753208875656128e-01
+ <_>
+
+ 0 -1 1905 3.7412419915199280e-02
+
+ -2.3478340357542038e-02 1.2147639691829681e-01
+ <_>
+
+ 0 -1 1906 -8.0470675602555275e-03
+
+ -1.8167789280414581e-01 4.9743499606847763e-02
+ <_>
+
+ 0 -1 1907 4.1297491639852524e-02
+
+ 1.0259049944579601e-02 -1.4679500460624695e-01
+ <_>
+
+ 0 -1 1908 -5.0735730677843094e-02
+
+ 2.2679640352725983e-01 -4.9807049334049225e-02
+ <_>
+
+ 0 -1 1909 -3.6145109334029257e-04
+
+ 4.1798278689384460e-02 -7.0410832762718201e-02
+ <_>
+
+ 0 -1 1910 -1.2359450012445450e-01
+
+ 5.8283501863479614e-01 -1.6822429373860359e-02
+ <_>
+
+ 0 -1 1911 5.7071618735790253e-02
+
+ -4.0532071143388748e-02 1.7078270018100739e-01
+ <_>
+
+ 0 -1 1912 5.8561540208756924e-03
+
+ -1.3827900588512421e-01 8.2565233111381531e-02
+ <_>
+
+ 0 -1 1913 -1.1472850292921066e-01
+
+ -4.6754041314125061e-01 3.4348990302532911e-03
+ <_>
+
+ 0 -1 1914 2.0518699660897255e-02
+
+ 8.1507943570613861e-02 -1.6894109547138214e-01
+ <_>
+
+ 0 -1 1915 5.4629769176244736e-02
+
+ -7.4763749726116657e-03 2.3640379309654236e-01
+ <_>
+
+ 0 -1 1916 -6.9312967360019684e-02
+
+ 3.0071571469306946e-01 -3.4785300493240356e-02
+ <_>
+
+ 0 -1 1917 -7.4176848866045475e-03
+
+ -2.8766560554504395e-01 4.7531820833683014e-02
+ <_>
+
+ 0 -1 1918 1.0223260149359703e-02
+
+ -3.0834799632430077e-02 3.9249539375305176e-01
+ <_>
+
+ 0 -1 1919 -2.7346659451723099e-02
+
+ -1.5695489943027496e-01 1.3967529870569706e-02
+ <_>
+
+ 0 -1 1920 3.3875100314617157e-02
+
+ 2.6063309982419014e-02 -3.9006409049034119e-01
+ <_>
+
+ 0 -1 1921 4.5174721628427505e-02
+
+ 8.9199207723140717e-03 -5.6769150495529175e-01
+ <_>
+
+ 0 -1 1922 1.1488229967653751e-02
+
+ -4.5491419732570648e-02 2.5109928846359253e-01
+ <_>
+
+ 0 -1 1923 -1.0496149770915508e-02
+
+ 6.4895443618297577e-02 -1.0623539984226227e-01
+ <_>
+
+ 0 -1 1924 6.0881208628416061e-03
+
+ 8.0929182469844818e-02 -1.4776149392127991e-01
+ <_>
+
+ 0 -1 1925 -2.6524660643190145e-03
+
+ 1.2062519788742065e-01 -7.2674863040447235e-02
+ <_>
+
+ 0 -1 1926 2.3559860419481993e-03
+
+ -8.1811271607875824e-02 1.4126540720462799e-01
+ <_>
+
+ 0 -1 1927 -2.6777219772338867e-01
+
+ -7.8083831071853638e-01 4.4526048004627228e-03
+ <_>
+
+ 0 -1 1928 1.5965799987316132e-01
+
+ 2.8381649404764175e-02 -3.8967838883399963e-01
+ <_>
+
+ 0 -1 1929 5.1899369806051254e-02
+
+ -3.4305319190025330e-02 1.5921010076999664e-01
+ <_>
+
+ 0 -1 1930 -1.3652780326083302e-03
+
+ -1.3755479454994202e-01 7.2719998657703400e-02
+ <_>
+
+ 0 -1 1931 2.2497299313545227e-01
+
+ -4.8017292283475399e-03 9.9994850158691406e-01
+ <_>
+
+ 0 -1 1932 3.1434150878340006e-03
+
+ 5.5151570588350296e-02 -1.6643160581588745e-01
+ <_>
+
+ 0 -1 1933 -6.2940339557826519e-03
+
+ 6.2896028161048889e-02 -6.0436379164457321e-02
+ <_>
+
+ 0 -1 1934 5.1301911473274231e-02
+
+ -3.1671810895204544e-02 3.8534939289093018e-01
+ <_>
+
+ 0 -1 1935 -6.6980808973312378e-02
+
+ -1.0925900191068649e-01 8.9958757162094116e-03
+ <_>
+
+ 0 -1 1936 5.1464758813381195e-02
+
+ 2.6210019364953041e-02 -4.2159339785575867e-01
+ <_>
+
+ 0 -1 1937 -9.0982139110565186e-02
+
+ 3.2760378718376160e-01 -7.8134387731552124e-03
+ <_>
+
+ 0 -1 1938 5.2848970517516136e-03
+
+ -7.9399570822715759e-02 1.4998179674148560e-01
+ <_>
+
+ 0 -1 1939 -1.5017699915915728e-03
+
+ 9.7703106701374054e-02 -7.3532037436962128e-02
+ <_>
+
+ 0 -1 1940 -2.5415199343115091e-03
+
+ 6.7801132798194885e-02 -1.4883249998092651e-01
+ <_>
+
+ 0 -1 1941 4.4252820312976837e-02
+
+ 1.6475830227136612e-02 -2.2880180180072784e-01
+ <_>
+
+ 0 -1 1942 -3.3457159996032715e-02
+
+ 4.1966789960861206e-01 -3.2553531229496002e-02
+ <_>
+
+ 0 -1 1943 1.3529899716377258e-01
+
+ 9.0894084423780441e-03 -7.3839122056961060e-01
+ <_>
+
+ 0 -1 1944 -3.7440970540046692e-02
+
+ -4.2613020539283752e-01 2.3972390219569206e-02
+ <_>
+
+ 0 -1 1945 -1.4479730452876538e-05
+
+ 5.6783780455589294e-02 -1.5888829529285431e-01
+ <_>
+
+ 0 -1 1946 -1.1839280277490616e-01
+
+ 5.0500631332397461e-01 -2.1859649568796158e-02
+ <_>
+
+ 0 -1 1947 -8.5000684484839439e-03
+
+ 5.2339930087327957e-02 -4.5925021171569824e-02
+ <_>
+
+ 0 -1 1948 -1.4189509674906731e-02
+
+ -2.3597060143947601e-01 4.0358349680900574e-02
+ <_>
+
+ 0 -1 1949 7.3599420487880707e-02
+
+ 3.2680039294064045e-03 -5.8853602409362793e-01
+ <_>
+
+ 0 -1 1950 5.4971270263195038e-02
+
+ -2.0196519792079926e-02 5.5482727289199829e-01
+ <_>
+
+ 0 -1 1951 -2.2816160693764687e-02
+
+ -1.7589579522609711e-01 1.7851740121841431e-02
+ <_>
+
+ 0 -1 1952 2.3204670287668705e-03
+
+ -8.1749923527240753e-02 1.2833079695701599e-01
+ <_>
+
+ 0 -1 1953 -1.0797909647226334e-01
+
+ -1. 1.7423679819330573e-03
+ <_>
+
+ 0 -1 1954 -4.1111931204795837e-02
+
+ 5.8432698249816895e-01 -1.8878869712352753e-02
+ <_>
+
+ 0 -1 1955 -3.5695650149136782e-03
+
+ -1.7558470368385315e-01 6.4731426537036896e-02
+ <_>
+
+ 0 -1 1956 -6.6358670592308044e-02
+
+ -1. 9.2067662626504898e-03
+ <_>
+
+ 0 -1 1957 -1.8944580107927322e-02
+
+ 2.5783088803291321e-01 -1.8944939598441124e-02
+ <_>
+
+ 0 -1 1958 -1.2871269881725311e-01
+
+ -5.8477258682250977e-01 1.4466489665210247e-02
+ <_>
+
+ 0 -1 1959 2.4218629114329815e-03
+
+ -7.3590897023677826e-02 7.0332102477550507e-02
+ <_>
+
+ 0 -1 1960 2.9718460515141487e-02
+
+ -2.3011969402432442e-02 4.0542769432067871e-01
+ <_>
+
+ 0 -1 1961 1.7555029690265656e-01
+
+ 2.0808730274438858e-02 -3.7285649776458740e-01
+ <_>
+
+ 0 -1 1962 3.7122450768947601e-02
+
+ -2.7959629893302917e-02 3.5908779501914978e-01
+ <_>
+
+ 0 -1 1963 -3.8044541142880917e-03
+
+ -1.3337990641593933e-01 9.2061348259449005e-02
+ <_>
+
+ 0 -1 1964 -1.0930700227618217e-02
+
+ 2.3196309804916382e-01 -4.4535879045724869e-02
+ <_>
+
+ 0 -1 1965 1.6103629767894745e-01
+
+ -8.7691349908709526e-03 2.2045169770717621e-01
+ <_>
+
+ 0 -1 1966 2.5971230119466782e-02
+
+ 6.4421012997627258e-02 -1.8919080495834351e-01
+ <_>
+
+ 0 -1 1967 1.2638209760189056e-01
+
+ -1.0362179949879646e-02 1.7057189345359802e-01
+ <_>
+
+ 0 -1 1968 -9.1393403708934784e-03
+
+ -1.3828249275684357e-01 8.6790062487125397e-02
+ <_>
+
+ 0 -1 1969 1.7722090706229210e-02
+
+ 3.9719890803098679e-02 -1.2294259667396545e-01
+ <_>
+
+ 0 -1 1970 -8.2425750792026520e-02
+
+ 3.0023100972175598e-01 -3.3165920525789261e-02
+ <_>
+
+ 0 -1 1971 4.3892528861761093e-02
+
+ -1.3056339696049690e-02 9.8728686571121216e-02
+ <_>
+
+ 0 -1 1972 3.5575369838625193e-03
+
+ 1.1186280101537704e-01 -9.2797823250293732e-02
+ <_>
+
+ 0 -1 1973 -1.5298820100724697e-02
+
+ -1.3007879257202148e-01 2.3159010335803032e-02
+ <_>
+
+ 0 -1 1974 -2.6504450943320990e-03
+
+ 1.3526280224323273e-01 -7.3355458676815033e-02
+ <_>
+
+ 0 -1 1975 4.1636861860752106e-02
+
+ -1.9068980589509010e-02 3.5857999324798584e-01
+ <_>
+
+ 0 -1 1976 -7.5290258973836899e-03
+
+ -1.8672360479831696e-01 5.8248449116945267e-02
+ <_>
+
+ 0 -1 1977 -4.0031488984823227e-02
+
+ 2.2969779372215271e-01 -1.4608230441808701e-02
+ <_>
+
+ 0 -1 1978 -1.3624709844589233e-01
+
+ -8.7086462974548340e-01 1.1211199685931206e-02
+ <_>
+
+ 0 -1 1979 4.5124008320271969e-03
+
+ -3.5644959658384323e-02 1.0103099793195724e-01
+ <_>
+
+ 0 -1 1980 5.4118070751428604e-02
+
+ -1.4689410105347633e-02 6.7652267217636108e-01
+ <_>
+
+ 0 -1 1981 -3.4553959965705872e-02
+
+ 2.1854560077190399e-01 -9.7846649587154388e-03
+ <_>
+
+ 0 -1 1982 -2.5520840659737587e-02
+
+ -4.6898001432418823e-01 2.4060370400547981e-02
+ <_>
+
+ 0 -1 1983 -3.5473700612783432e-02
+
+ 1.3427549600601196e-01 -2.1438699215650558e-02
+ <_>
+
+ 0 -1 1984 2.8683411073870957e-04
+
+ -9.7300283610820770e-02 1.0760939866304398e-01
+ <_>
+
+ 0 -1 1985 -7.8717589378356934e-02
+
+ -1. 2.7187850791960955e-03
+ <_>
+
+ 0 -1 1986 -1.5701749362051487e-04
+
+ 1.1199659854173660e-01 -9.9441379308700562e-02
+ <_>
+
+ 0 -1 1987 1.6026569530367851e-02
+
+ 3.4198261797428131e-02 -1.9100490212440491e-01
+ <_>
+
+ 0 -1 1988 -1.9164729863405228e-02
+
+ 8.9024826884269714e-02 -1.1919700354337692e-01
+ <_>
+
+ 0 -1 1989 -3.9445150643587112e-02
+
+ -1.0717990249395370e-01 3.7615209817886353e-02
+ <_>
+
+ 0 -1 1990 2.2417430300265551e-03
+
+ -9.0581007301807404e-02 1.7547470331192017e-01
+ <_>
+
+ 0 -1 1991 -3.8842540234327316e-03
+
+ 9.2697329819202423e-02 -4.2431369423866272e-02
+ <_>
+
+ 0 -1 1992 -2.1914629265666008e-02
+
+ -2.8017508983612061e-01 3.7537671625614166e-02
+ <_>
+
+ 0 -1 1993 -3.7512119859457016e-02
+
+ 3.6218520998954773e-01 -1.7507450655102730e-02
+ <_>
+
+ 0 -1 1994 -8.4374047582969069e-04
+
+ 1.2348400056362152e-01 -8.0245867371559143e-02
+ <_>
+
+ 0 -1 1995 -2.6424999814480543e-03
+
+ 5.2565738558769226e-02 -8.3335436880588531e-02
+ <_>
+
+ 0 -1 1996 -9.2836812138557434e-02
+
+ -4.2060381174087524e-01 2.3360429331660271e-02
+ <_>
+
+ 0 -1 1997 8.2463070750236511e-02
+
+ -2.9815400484949350e-03 7.8999197483062744e-01
+ <_>
+
+ 0 -1 1998 -6.9864951074123383e-02
+
+ 7.3802971839904785e-01 -1.4021299779415131e-02
+ <_>
+
+ 0 -1 1999 4.5439340174198151e-02
+
+ -1.1321160010993481e-02 1.9973699748516083e-01
+ <_>
+
+ 0 -1 2000 -5.0297789275646210e-02
+
+ 6.0764670372009277e-01 -1.7632890492677689e-02
+ <_>
+
+ 0 -1 2001 6.0456149280071259e-02
+
+ -5.9354598633944988e-03 3.1622889637947083e-01
+ <_>
+
+ 0 -1 2002 -4.6769347973167896e-03
+
+ -1.8090610206127167e-01 5.9660188853740692e-02
+ <_>
+
+ 0 -1 2003 3.6530068609863520e-04
+
+ -9.1220043599605560e-02 1.1092729866504669e-01
+ <_>
+
+ 0 -1 2004 -1.9491260871291161e-02
+
+ -3.7075570225715637e-01 2.8416309505701065e-02
+ <_>
+
+ 0 -1 2005 2.0056450739502907e-02
+
+ -5.8159679174423218e-02 7.8105233609676361e-02
+ <_>
+
+ 0 -1 2006 -3.9371181279420853e-02
+
+ 2.9012489318847656e-01 -4.1875660419464111e-02
+ <_>
+
+ 0 -1 2007 2.1523650735616684e-02
+
+ 1.6573080793023109e-02 -2.3614850640296936e-01
+ <_>
+
+ 0 -1 2008 -3.1294699292629957e-03
+
+ -1.6466400027275085e-01 6.2233809381723404e-02
+ <_>
+
+ 0 -1 2009 2.8589619323611259e-03
+
+ -3.8098409771919250e-02 5.5751629173755646e-02
+ <_>
+ 135
+ -3.0609300613403320e+01
+
+ <_>
+
+ 0 -1 2010 -2.0576130598783493e-02
+
+ 1.7351129651069641e-01 -1.5058030188083649e-01
+ <_>
+
+ 0 -1 2011 1.6125949099659920e-02
+
+ -4.1612371802330017e-02 2.3984450101852417e-01
+ <_>
+
+ 0 -1 2012 -1.2352580204606056e-02
+
+ 9.7780853509902954e-02 -1.2391830235719681e-01
+ <_>
+
+ 0 -1 2013 -5.7473899796605110e-03
+
+ 7.7615208923816681e-02 -9.6236728131771088e-02
+ <_>
+
+ 0 -1 2014 2.9579061083495617e-03
+
+ -6.7683719098567963e-02 2.6594209671020508e-01
+ <_>
+
+ 0 -1 2015 -8.3472225815057755e-03
+
+ -1.1188179999589920e-01 1.3736370205879211e-01
+ <_>
+
+ 0 -1 2016 -5.8408780023455620e-04
+
+ 4.5943111181259155e-02 -1.6486530005931854e-01
+ <_>
+
+ 0 -1 2017 -3.5136839142069221e-04
+
+ 9.7791008651256561e-02 -6.4357861876487732e-02
+ <_>
+
+ 0 -1 2018 8.4126877482049167e-05
+
+ -1.3847629725933075e-01 8.8727742433547974e-02
+ <_>
+
+ 0 -1 2019 -2.6592490077018738e-01
+
+ -6.7525398731231689e-01 1.6188669949769974e-02
+ <_>
+
+ 0 -1 2020 4.3727741576731205e-03
+
+ 7.2884798049926758e-02 -1.2560360133647919e-01
+ <_>
+
+ 0 -1 2021 -2.2660531103610992e-03
+
+ 8.7269246578216553e-02 -6.8355433642864227e-02
+ <_>
+
+ 0 -1 2022 -6.5290732309222221e-03
+
+ -1.2197560071945190e-01 8.0927930772304535e-02
+ <_>
+
+ 0 -1 2023 9.6436247229576111e-02
+
+ -8.2637304440140724e-03 4.9127399921417236e-01
+ <_>
+
+ 0 -1 2024 -4.3594818562269211e-02
+
+ 4.5575308799743652e-01 -2.5600390508770943e-02
+ <_>
+
+ 0 -1 2025 -2.1098319441080093e-02
+
+ -1.1892750114202499e-01 2.3539589717984200e-02
+ <_>
+
+ 0 -1 2026 -2.5200019590556622e-03
+
+ 1.2724469602108002e-01 -9.0751722455024719e-02
+ <_>
+
+ 0 -1 2027 -8.9241685345768929e-03
+
+ -1.1514320224523544e-01 4.3497029691934586e-02
+ <_>
+
+ 0 -1 2028 3.4590170253068209e-03
+
+ 6.3537172973155975e-02 -1.8261429667472839e-01
+ <_>
+
+ 0 -1 2029 -3.6076800897717476e-03
+
+ 1.2005910277366638e-01 -5.2449110895395279e-02
+ <_>
+
+ 0 -1 2030 5.3778890520334244e-02
+
+ -1.8675789237022400e-02 5.2313017845153809e-01
+ <_>
+
+ 0 -1 2031 4.5245189219713211e-02
+
+ -1.7504919320344925e-02 2.1871849894523621e-01
+ <_>
+
+ 0 -1 2032 1.3272929936647415e-03
+
+ 7.8659959137439728e-02 -1.3551670312881470e-01
+ <_>
+
+ 0 -1 2033 1.2393640354275703e-02
+
+ 2.8952300548553467e-02 -7.2149537503719330e-02
+ <_>
+
+ 0 -1 2034 -3.7702780216932297e-02
+
+ 4.1850051283836365e-01 -3.0355349183082581e-02
+ <_>
+
+ 0 -1 2035 -4.8910409212112427e-02
+
+ 3.7365001440048218e-01 -5.6771109811961651e-03
+ <_>
+
+ 0 -1 2036 -5.9961699880659580e-03
+
+ -2.0756420493125916e-01 7.0438846945762634e-02
+ <_>
+
+ 0 -1 2037 5.6631930172443390e-02
+
+ -1.7292939126491547e-02 2.5498399138450623e-01
+ <_>
+
+ 0 -1 2038 3.1650230288505554e-02
+
+ -2.0658250898122787e-02 4.8398271203041077e-01
+ <_>
+
+ 0 -1 2039 -2.1152989938855171e-02
+
+ 2.0028789341449738e-01 -2.4872610345482826e-02
+ <_>
+
+ 0 -1 2040 8.7676532566547394e-02
+
+ -2.4999700486660004e-02 4.1126599907875061e-01
+ <_>
+
+ 0 -1 2041 5.3299881517887115e-02
+
+ -8.6766229942440987e-03 3.7446591258049011e-01
+ <_>
+
+ 0 -1 2042 -2.6251509552821517e-04
+
+ 9.9231846630573273e-02 -1.1989200115203857e-01
+ <_>
+
+ 0 -1 2043 -8.5897604003548622e-03
+
+ -1.8593010306358337e-01 3.4370779991149902e-02
+ <_>
+
+ 0 -1 2044 1.6940470784902573e-02
+
+ -3.4768261015415192e-02 2.7288261055946350e-01
+ <_>
+
+ 0 -1 2045 5.0596110522747040e-02
+
+ 3.6170349922031164e-03 -3.9460760354995728e-01
+ <_>
+
+ 0 -1 2046 -8.3048436790704727e-03
+
+ 9.8577797412872314e-02 -1.1666280031204224e-01
+ <_>
+
+ 0 -1 2047 1.0586270131170750e-02
+
+ 3.9117150008678436e-02 -8.5843667387962341e-02
+ <_>
+
+ 0 -1 2048 -3.2558601349592209e-02
+
+ -3.7352150678634644e-01 2.5410100817680359e-02
+ <_>
+
+ 0 -1 2049 -3.2352130860090256e-02
+
+ 2.6129978895187378e-01 -2.8631040826439857e-02
+ <_>
+
+ 0 -1 2050 2.5547049939632416e-02
+
+ 3.3884890377521515e-02 -3.0452328920364380e-01
+ <_>
+
+ 0 -1 2051 4.2252440005540848e-02
+
+ 8.9510334655642509e-03 -2.4091260135173798e-01
+ <_>
+
+ 0 -1 2052 3.8109479937702417e-03
+
+ -7.2638936340808868e-02 1.4634390175342560e-01
+ <_>
+
+ 0 -1 2053 2.0821709185838699e-02
+
+ -3.6271940916776657e-02 1.8324719369411469e-01
+ <_>
+
+ 0 -1 2054 2.6497790589928627e-02
+
+ 2.8160110116004944e-02 -3.9517199993133545e-01
+ <_>
+
+ 0 -1 2055 2.0283530652523041e-01
+
+ -9.3782292678952217e-03 4.4868949055671692e-01
+ <_>
+
+ 0 -1 2056 -1.7996610701084137e-01
+
+ -7.9595959186553955e-01 1.2027840130031109e-02
+ <_>
+
+ 0 -1 2057 -7.0968091487884521e-02
+
+ -7.6951277256011963e-01 1.0918079642578959e-03
+ <_>
+
+ 0 -1 2058 2.7555041015148163e-03
+
+ 7.0150263607501984e-02 -1.2915180623531342e-01
+ <_>
+
+ 0 -1 2059 -7.7004402875900269e-02
+
+ -4.9155071377754211e-01 2.8067480307072401e-03
+ <_>
+
+ 0 -1 2060 -2.0257910713553429e-02
+
+ 2.3568239808082581e-01 -4.3432798236608505e-02
+ <_>
+
+ 0 -1 2061 -8.6421817541122437e-02
+
+ -3.4541681408882141e-01 1.1248850263655186e-02
+ <_>
+
+ 0 -1 2062 -6.7245952785015106e-02
+
+ -6.8752902746200562e-01 1.1868669651448727e-02
+ <_>
+
+ 0 -1 2063 -1.2990389764308929e-01
+
+ -7.9069268703460693e-01 2.5537670589983463e-03
+ <_>
+
+ 0 -1 2064 -3.0394670367240906e-01
+
+ -8.9989352226257324e-01 8.1501724198460579e-03
+ <_>
+
+ 0 -1 2065 -4.1988548636436462e-01
+
+ -7.7303320169448853e-01 1.3665149454027414e-03
+ <_>
+
+ 0 -1 2066 -1.6851289570331573e-01
+
+ 2.4319399893283844e-01 -4.1280739009380341e-02
+ <_>
+
+ 0 -1 2067 2.8788880445063114e-03
+
+ 2.0577169954776764e-02 -1.8590900301933289e-01
+ <_>
+
+ 0 -1 2068 -4.0223840624094009e-02
+
+ 4.3099269270896912e-01 -2.3104710504412651e-02
+ <_>
+
+ 0 -1 2069 3.9687040261924267e-03
+
+ 4.3601520359516144e-02 -9.2233568429946899e-02
+ <_>
+
+ 0 -1 2070 -2.7650719508528709e-02
+
+ -6.1707872152328491e-01 1.4680569991469383e-02
+ <_>
+
+ 0 -1 2071 -2.3034301120787859e-03
+
+ 9.0349592268466949e-02 -6.1664551496505737e-02
+ <_>
+
+ 0 -1 2072 -2.9040789231657982e-02
+
+ 2.7737939357757568e-01 -3.9218869060277939e-02
+ <_>
+
+ 0 -1 2073 1.3288260437548161e-02
+
+ 3.1138259917497635e-02 -1.3558749854564667e-01
+ <_>
+
+ 0 -1 2074 3.3968928619287908e-05
+
+ -1.3562929630279541e-01 7.6467581093311310e-02
+ <_>
+
+ 0 -1 2075 -6.8583860993385315e-03
+
+ -1.0365810245275497e-01 2.5939159095287323e-02
+ <_>
+
+ 0 -1 2076 -1.4360919594764709e-02
+
+ -2.1136499941349030e-01 5.2973140031099319e-02
+ <_>
+
+ 0 -1 2077 -1.7468679696321487e-02
+
+ -1.0518109798431396e-01 1.7715079709887505e-02
+ <_>
+
+ 0 -1 2078 -9.8544567823410034e-02
+
+ 2.5649461150169373e-01 -4.4229641556739807e-02
+ <_>
+
+ 0 -1 2079 -2.8123459778726101e-03
+
+ -7.3800362646579742e-02 1.5400940179824829e-01
+ <_>
+
+ 0 -1 2080 2.1941340528428555e-03
+
+ -1.4216299355030060e-01 8.9139223098754883e-02
+ <_>
+
+ 0 -1 2081 4.6820759773254395e-02
+
+ 2.9364090412855148e-02 -6.2754891812801361e-02
+ <_>
+
+ 0 -1 2082 3.2891759276390076e-01
+
+ 1.3015690259635448e-02 -7.8347128629684448e-01
+ <_>
+
+ 0 -1 2083 -2.0470520481467247e-02
+
+ -7.6814353466033936e-02 3.9800468832254410e-02
+ <_>
+
+ 0 -1 2084 8.8677026331424713e-02
+
+ -4.0312368422746658e-02 2.8453868627548218e-01
+ <_>
+
+ 0 -1 2085 -1.1557979742065072e-03
+
+ 4.2199321091175079e-02 -4.1446208953857422e-02
+ <_>
+
+ 0 -1 2086 6.0524538159370422e-02
+
+ -1.6918700188398361e-02 6.7237138748168945e-01
+ <_>
+
+ 0 -1 2087 4.0830459445714951e-02
+
+ 1.3364840298891068e-02 -3.1113299727439880e-01
+ <_>
+
+ 0 -1 2088 -3.1132870353758335e-03
+
+ -1.7262780666351318e-01 5.9382218867540359e-02
+ <_>
+
+ 0 -1 2089 -4.3638627976179123e-03
+
+ 1.7265330255031586e-01 -6.2423970550298691e-02
+ <_>
+
+ 0 -1 2090 -3.2834090292453766e-02
+
+ 4.0275371074676514e-01 -2.5799039751291275e-02
+ <_>
+
+ 0 -1 2091 6.4377002418041229e-02
+
+ -4.7380630858242512e-03 7.5221067667007446e-01
+ <_>
+
+ 0 -1 2092 2.7642730623483658e-02
+
+ 3.7644479423761368e-02 -2.9220271110534668e-01
+ <_>
+
+ 0 -1 2093 2.2171199321746826e-02
+
+ -2.4654069915413857e-02 2.0533810555934906e-01
+ <_>
+
+ 0 -1 2094 1.5859310515224934e-03
+
+ 8.9463792741298676e-02 -1.2611730396747589e-01
+ <_>
+
+ 0 -1 2095 -1.8872050568461418e-02
+
+ 1.3072650134563446e-01 -3.6953710019588470e-02
+ <_>
+
+ 0 -1 2096 -1.3306169770658016e-02
+
+ -2.2963209450244904e-01 4.2687188833951950e-02
+ <_>
+
+ 0 -1 2097 -7.0407122373580933e-02
+
+ -7.1117508411407471e-01 6.6957580856978893e-03
+ <_>
+
+ 0 -1 2098 4.1748929768800735e-02
+
+ -3.2927870750427246e-02 3.0035281181335449e-01
+ <_>
+
+ 0 -1 2099 5.3282231092453003e-03
+
+ 5.1811750978231430e-02 -1.9069090485572815e-01
+ <_>
+
+ 0 -1 2100 2.4094989057630301e-03
+
+ -8.0687969923019409e-02 1.2510129809379578e-01
+ <_>
+
+ 0 -1 2101 -6.2405979260802269e-03
+
+ 1.0740630328655243e-01 -3.9979010820388794e-02
+ <_>
+
+ 0 -1 2102 -6.7312467098236084e-01
+
+ -1. 1.0070810094475746e-02
+ <_>
+
+ 0 -1 2103 -9.2983558773994446e-02
+
+ -1. -2.4261360522359610e-03
+ <_>
+
+ 0 -1 2104 3.3629760146141052e-02
+
+ 2.4122869595885277e-02 -4.1387900710105896e-01
+ <_>
+
+ 0 -1 2105 2.3880619555711746e-02
+
+ 9.6614202484488487e-03 -2.1973779797554016e-01
+ <_>
+
+ 0 -1 2106 1.2738780351355672e-03
+
+ -8.3555117249488831e-02 1.2269689887762070e-01
+ <_>
+
+ 0 -1 2107 1.8414139747619629e-02
+
+ 3.0798140913248062e-02 -3.5609170794487000e-01
+ <_>
+
+ 0 -1 2108 -5.6469578295946121e-02
+
+ 8.8631778955459595e-01 -1.2698300182819366e-02
+ <_>
+
+ 0 -1 2109 -4.6219761134125292e-04
+
+ 3.4681901335716248e-02 -8.2850828766822815e-02
+ <_>
+
+ 0 -1 2110 -1.9060859456658363e-02
+
+ 3.5369411110877991e-01 -2.7611760422587395e-02
+ <_>
+
+ 0 -1 2111 1.5762279508635402e-03
+
+ 4.0939908474683762e-02 -2.2517409920692444e-01
+ <_>
+
+ 0 -1 2112 2.0101880654692650e-02
+
+ -2.3995550349354744e-02 4.1091251373291016e-01
+ <_>
+
+ 0 -1 2113 2.7211669366806746e-03
+
+ 2.8122449293732643e-02 -1.4200119674205780e-01
+ <_>
+
+ 0 -1 2114 -1.0944429785013199e-01
+
+ 9.5085740089416504e-01 -9.4355372712016106e-03
+ <_>
+
+ 0 -1 2115 -1.2755279894918203e-03
+
+ 5.6902900338172913e-02 -8.3429783582687378e-02
+ <_>
+
+ 0 -1 2116 -8.0578401684761047e-02
+
+ -9.5139288902282715e-01 8.2268668338656425e-03
+ <_>
+
+ 0 -1 2117 -1.2047989666461945e-01
+
+ -3.0273869633674622e-01 2.8489340096712112e-02
+ <_>
+
+ 0 -1 2118 -1.8294970691204071e-01
+
+ 2.3866130411624908e-01 -6.2773942947387695e-02
+ <_>
+
+ 0 -1 2119 -1.7106409370899200e-01
+
+ -5.9394681453704834e-01 3.1515269074589014e-03
+ <_>
+
+ 0 -1 2120 -7.3414877057075500e-02
+
+ -8.6933082342147827e-01 1.0084389708936214e-02
+ <_>
+
+ 0 -1 2121 2.4238299578428268e-02
+
+ -2.1756110712885857e-02 1.6218559443950653e-01
+ <_>
+
+ 0 -1 2122 -7.1713668294250965e-03
+
+ -9.7345590591430664e-02 9.2148497700691223e-02
+ <_>
+
+ 0 -1 2123 -3.3344399183988571e-02
+
+ 7.4645392596721649e-02 -2.2160679101943970e-02
+ <_>
+
+ 0 -1 2124 7.2907900903373957e-04
+
+ -9.4971813261508942e-02 1.1826740205287933e-01
+ <_>
+
+ 0 -1 2125 -1.0217289673164487e-03
+
+ 5.6426230818033218e-02 -3.7573829293251038e-02
+ <_>
+
+ 0 -1 2126 -8.4900937508791685e-04
+
+ -1.3883149623870850e-01 7.0047326385974884e-02
+ <_>
+
+ 0 -1 2127 9.9850513041019440e-02
+
+ -1.4011589810252190e-02 2.6115679740905762e-01
+ <_>
+
+ 0 -1 2128 -1.3090069591999054e-01
+
+ 7.1379351615905762e-01 -1.1643799953162670e-02
+ <_>
+
+ 0 -1 2129 9.1210529208183289e-03
+
+ 4.5402809977531433e-02 -2.1830010414123535e-01
+ <_>
+
+ 0 -1 2130 2.0106479525566101e-01
+
+ -2.0753270015120506e-02 5.1230221986770630e-01
+ <_>
+
+ 0 -1 2131 4.7389309853315353e-02
+
+ 9.4779124483466148e-03 -4.7942391037940979e-01
+ <_>
+
+ 0 -1 2132 -5.7118538767099380e-02
+
+ 3.9166051149368286e-01 -2.6703910902142525e-02
+ <_>
+
+ 0 -1 2133 -8.3700623363256454e-03
+
+ -1.3399459421634674e-01 4.8460900783538818e-02
+ <_>
+
+ 0 -1 2134 4.0913890115916729e-03
+
+ -5.9489779174327850e-02 1.7438539862632751e-01
+ <_>
+
+ 0 -1 2135 7.1899488568305969e-02
+
+ 1.1723180301487446e-02 -3.6274778842926025e-01
+ <_>
+
+ 0 -1 2136 -3.6888250615447760e-03
+
+ 7.5763627886772156e-02 -1.5033599734306335e-01
+ <_>
+
+ 0 -1 2137 -7.4795219115912914e-03
+
+ 1.5027859807014465e-01 -4.5870490372180939e-02
+ <_>
+
+ 0 -1 2138 -1.2582589872181416e-02
+
+ -1.9915549457073212e-01 6.3917450606822968e-02
+ <_>
+
+ 0 -1 2139 3.5687079653143883e-03
+
+ -1.2117239832878113e-01 1.0956080257892609e-01
+ <_>
+
+ 0 -1 2140 1.7363800434395671e-03
+
+ 1.2258529663085938e-01 -9.3556262552738190e-02
+ <_>
+
+ 0 -1 2141 -1.4523629797622561e-03
+
+ 9.6722528338432312e-02 -8.0739699304103851e-02
+ <_>
+
+ 0 -1 2142 3.1017749570310116e-03
+
+ -6.9076471030712128e-02 1.5396459400653839e-01
+ <_>
+
+ 0 -1 2143 -8.5509587079286575e-03
+
+ -1.5186290442943573e-01 4.0346920490264893e-02
+ <_>
+
+ 0 -1 2144 -1.8966189818456769e-03
+
+ 1.2172549962997437e-01 -9.8543442785739899e-02
+ <_>
+ 135
+ -3.0601499557495117e+01
+
+ <_>
+
+ 0 -1 2145 -2.3754740133881569e-02
+
+ 1.7095300555229187e-01 -1.1534280329942703e-01
+ <_>
+
+ 0 -1 2146 -7.3806629516184330e-03
+
+ 8.8067196309566498e-02 -4.0317770093679428e-02
+ <_>
+
+ 0 -1 2147 1.1198900174349546e-03
+
+ -7.9895302653312683e-02 1.3448899984359741e-01
+ <_>
+
+ 0 -1 2148 3.3718731254339218e-02
+
+ -1.5220030210912228e-02 2.9914170503616333e-01
+ <_>
+
+ 0 -1 2149 -2.8022660990245640e-04
+
+ 6.3599728047847748e-02 -1.5619190037250519e-01
+ <_>
+
+ 0 -1 2150 -3.9523928426206112e-03
+
+ -9.7961323335766792e-03 1.0571649670600891e-01
+ <_>
+
+ 0 -1 2151 2.1397129166871309e-03
+
+ 8.9953586459159851e-02 -1.4483779668807983e-01
+ <_>
+
+ 0 -1 2152 -6.7521296441555023e-02
+
+ 2.0932430028915405e-01 -5.3923811763525009e-02
+ <_>
+
+ 0 -1 2153 1.0378950275480747e-02
+
+ -6.4177162945270538e-02 2.7814629673957825e-01
+ <_>
+
+ 0 -1 2154 6.2903137877583504e-03
+
+ -4.9253720790147781e-02 8.2168422639369965e-02
+ <_>
+
+ 0 -1 2155 9.3974275514483452e-03
+
+ 8.4537737071514130e-02 -2.2885300219058990e-01
+ <_>
+
+ 0 -1 2156 1.0120930150151253e-02
+
+ 3.3337119966745377e-02 -8.1664256751537323e-02
+ <_>
+
+ 0 -1 2157 3.1531939748674631e-03
+
+ -1.0220990329980850e-01 1.1837360262870789e-01
+ <_>
+
+ 0 -1 2158 7.5137287378311157e-02
+
+ 2.7504051104187965e-03 -1.0000959634780884e+00
+ <_>
+
+ 0 -1 2159 -2.3692219983786345e-03
+
+ 9.9092483520507812e-02 -1.1425189673900604e-01
+ <_>
+
+ 0 -1 2160 -2.4510379880666733e-02
+
+ 2.8708320856094360e-01 -1.6148800030350685e-02
+ <_>
+
+ 0 -1 2161 -1.9670750480145216e-03
+
+ -1.1531370133161545e-01 8.6816556751728058e-02
+ <_>
+
+ 0 -1 2162 3.0845379456877708e-02
+
+ -2.4090610444545746e-02 1.9607549905776978e-01
+ <_>
+
+ 0 -1 2163 2.3816309869289398e-02
+
+ 3.2824039459228516e-02 -3.5710439085960388e-01
+ <_>
+
+ 0 -1 2164 -4.0199130773544312e-02
+
+ -5.2850788831710815e-01 6.0749719850718975e-03
+ <_>
+
+ 0 -1 2165 -6.8876100704073906e-03
+
+ 2.2058850526809692e-01 -5.9151489287614822e-02
+ <_>
+
+ 0 -1 2166 -2.5466730585321784e-04
+
+ 7.1897879242897034e-02 -8.4962032735347748e-02
+ <_>
+
+ 0 -1 2167 9.8468195647001266e-03
+
+ 4.1366759687662125e-02 -2.3984520137310028e-01
+ <_>
+
+ 0 -1 2168 2.7934400364756584e-02
+
+ -2.3647159337997437e-02 2.4738009274005890e-01
+ <_>
+
+ 0 -1 2169 -2.2960390895605087e-02
+
+ -4.5187929272651672e-01 2.2305779159069061e-02
+ <_>
+
+ 0 -1 2170 3.2323438790626824e-04
+
+ -8.7536007165908813e-02 7.8490957617759705e-02
+ <_>
+
+ 0 -1 2171 3.1954899430274963e-02
+
+ -2.6202389970421791e-02 3.9204901456832886e-01
+ <_>
+
+ 0 -1 2172 1.9027979578822851e-03
+
+ 6.2762781977653503e-02 -1.6107350587844849e-01
+ <_>
+
+ 0 -1 2173 -3.2691629603505135e-03
+
+ 1.0168000310659409e-01 -1.0432480275630951e-01
+ <_>
+
+ 0 -1 2174 1.0040200315415859e-02
+
+ -2.8046580031514168e-02 1.2117899954319000e-01
+ <_>
+
+ 0 -1 2175 -3.4158680588006973e-02
+
+ -2.8974449634552002e-01 3.5282660275697708e-02
+ <_>
+
+ 0 -1 2176 1.7615250544622540e-03
+
+ -5.5583070963621140e-02 7.4158452451229095e-02
+ <_>
+
+ 0 -1 2177 -2.1134650334715843e-02
+
+ 2.5130590796470642e-01 -4.0354639291763306e-02
+ <_>
+
+ 0 -1 2178 2.9759369790554047e-02
+
+ 3.8029540330171585e-02 -1.4226369559764862e-01
+ <_>
+
+ 0 -1 2179 1.4866080135107040e-02
+
+ -3.9721690118312836e-02 2.7522540092468262e-01
+ <_>
+
+ 0 -1 2180 -3.5829428583383560e-02
+
+ -3.3451971411705017e-01 9.6839247271418571e-03
+ <_>
+
+ 0 -1 2181 -3.2887340057641268e-03
+
+ -1.4258219301700592e-01 6.8576209247112274e-02
+ <_>
+
+ 0 -1 2182 4.2714878916740417e-02
+
+ -1.4240439981222153e-02 3.8765299320220947e-01
+ <_>
+
+ 0 -1 2183 1.2328879674896598e-03
+
+ 7.8623853623867035e-02 -1.1869420111179352e-01
+ <_>
+
+ 0 -1 2184 -1.0447620414197445e-02
+
+ -1.4882990717887878e-01 3.1571168452501297e-02
+ <_>
+
+ 0 -1 2185 1.2656359933316708e-02
+
+ -4.6572461724281311e-02 2.6212608814239502e-01
+ <_>
+
+ 0 -1 2186 4.9849718809127808e-02
+
+ 1.7015339806675911e-02 -1.4268730580806732e-01
+ <_>
+
+ 0 -1 2187 -1.8607240170240402e-02
+
+ 2.3338650166988373e-01 -4.7094941139221191e-02
+ <_>
+
+ 0 -1 2188 -5.4397370666265488e-02
+
+ -4.0511301159858704e-01 8.1606470048427582e-03
+ <_>
+
+ 0 -1 2189 2.9153900686651468e-03
+
+ -8.9313946664333344e-02 1.3335379958152771e-01
+ <_>
+
+ 0 -1 2190 -5.9154080227017403e-03
+
+ -2.0414529740810394e-01 4.8475701361894608e-02
+ <_>
+
+ 0 -1 2191 -1.9841329194605350e-03
+
+ 1.3428109884262085e-01 -7.5892791152000427e-02
+ <_>
+
+ 0 -1 2192 -4.4047520495951176e-03
+
+ 4.1852138936519623e-02 -1.0119090229272842e-01
+ <_>
+
+ 0 -1 2193 1.7982879653573036e-02
+
+ 4.3978679925203323e-02 -2.5054019689559937e-01
+ <_>
+
+ 0 -1 2194 -7.8059501945972443e-02
+
+ -3.3025071024894714e-01 6.3089421018958092e-03
+ <_>
+
+ 0 -1 2195 7.2548650205135345e-03
+
+ -1.0872170329093933e-01 9.9411018192768097e-02
+ <_>
+
+ 0 -1 2196 -2.7871869970113039e-03
+
+ 1.3659299910068512e-01 -8.4799639880657196e-02
+ <_>
+
+ 0 -1 2197 -9.3798413872718811e-03
+
+ -1.1872450262308121e-01 7.9108059406280518e-02
+ <_>
+
+ 0 -1 2198 -5.4926410317420959e-02
+
+ 1.4382070302963257e-01 -3.0072269961237907e-02
+ <_>
+
+ 0 -1 2199 -4.4219079427421093e-03
+
+ 1.0666429996490479e-01 -1.0838100314140320e-01
+ <_>
+
+ 0 -1 2200 1.0763059835880995e-03
+
+ 2.7380989864468575e-02 -5.5446051061153412e-02
+ <_>
+
+ 0 -1 2201 -7.2514012455940247e-02
+
+ -1.0893449932336807e-01 1.0097540169954300e-01
+ <_>
+
+ 0 -1 2202 -1.6472190618515015e-01
+
+ 3.0365368723869324e-01 -4.3666210025548935e-02
+ <_>
+
+ 0 -1 2203 7.9837806522846222e-02
+
+ -1.0828680358827114e-02 8.9977437257766724e-01
+ <_>
+
+ 0 -1 2204 -5.2413612138479948e-04
+
+ 8.5230633616447449e-02 -1.2053979933261871e-01
+ <_>
+
+ 0 -1 2205 -2.1632270887494087e-02
+
+ -2.1092039346694946e-01 6.5582543611526489e-02
+ <_>
+
+ 0 -1 2206 1.2691530585289001e-01
+
+ -4.5935749076306820e-03 4.5089641213417053e-01
+ <_>
+
+ 0 -1 2207 9.5472350716590881e-02
+
+ -2.0798899233341217e-02 5.2474659681320190e-01
+ <_>
+
+ 0 -1 2208 -8.2936078310012817e-02
+
+ 8.4976738691329956e-01 -5.0510508008301258e-03
+ <_>
+
+ 0 -1 2209 7.7482969500124454e-03
+
+ -5.5318288505077362e-02 1.7145830392837524e-01
+ <_>
+
+ 0 -1 2210 -2.1768439561128616e-02
+
+ -1.5947930514812469e-01 6.0873799026012421e-02
+ <_>
+
+ 0 -1 2211 -1.1072609777329490e-04
+
+ 7.8877292573451996e-02 -1.3177630305290222e-01
+ <_>
+
+ 0 -1 2212 3.1122909858822823e-03
+
+ -4.3046839535236359e-02 6.2392581254243851e-02
+ <_>
+
+ 0 -1 2213 -2.8692940250039101e-03
+
+ 1.3746979832649231e-01 -8.0494217574596405e-02
+ <_>
+
+ 0 -1 2214 1.0575760155916214e-01
+
+ 1.0569440200924873e-03 -9.9993818998336792e-01
+ <_>
+
+ 0 -1 2215 4.6192679554224014e-02
+
+ 1.7228020355105400e-02 -5.2604919672012329e-01
+ <_>
+
+ 0 -1 2216 -2.5476190447807312e-01
+
+ -6.2927299737930298e-01 1.3698619790375233e-02
+ <_>
+
+ 0 -1 2217 -2.7374029159545898e-03
+
+ 1.2747539579868317e-01 -6.9591522216796875e-02
+ <_>
+
+ 0 -1 2218 2.1854760125279427e-03
+
+ 4.1854761540889740e-02 -2.6481458544731140e-01
+ <_>
+
+ 0 -1 2219 -2.4050710722804070e-02
+
+ -2.6191109418869019e-01 3.4489940851926804e-02
+ <_>
+
+ 0 -1 2220 1.0211429744958878e-01
+
+ -1.5302860178053379e-02 3.9992758631706238e-01
+ <_>
+
+ 0 -1 2221 1.0281659662723541e-01
+
+ -2.9020670801401138e-02 3.6887159943580627e-01
+ <_>
+
+ 0 -1 2222 3.9206489920616150e-02
+
+ 8.9045017957687378e-03 -4.3242999911308289e-01
+ <_>
+
+ 0 -1 2223 -3.7830859422683716e-02
+
+ -6.2731212377548218e-01 1.4882829971611500e-02
+ <_>
+
+ 0 -1 2224 1.2507890351116657e-02
+
+ -1.7865059897303581e-02 1.4156140387058258e-01
+ <_>
+
+ 0 -1 2225 -1.5477590262889862e-02
+
+ 3.1676650047302246e-01 -3.3510830253362656e-02
+ <_>
+
+ 0 -1 2226 -4.5885699801146984e-03
+
+ -1.5222150087356567e-01 7.3211863636970520e-02
+ <_>
+
+ 0 -1 2227 -2.0505970343947411e-02
+
+ 1.1725380271673203e-01 -9.7457922995090485e-02
+ <_>
+
+ 0 -1 2228 -1.3098320364952087e-01
+
+ 5.4338067770004272e-01 -5.8803129941225052e-03
+ <_>
+
+ 0 -1 2229 4.7888278961181641e-02
+
+ -2.7120810002088547e-02 3.5723638534545898e-01
+ <_>
+
+ 0 -1 2230 2.5441530346870422e-01
+
+ 2.5680949911475182e-03 -9.9988257884979248e-01
+ <_>
+
+ 0 -1 2231 2.0652529783546925e-03
+
+ -9.4255000352859497e-02 1.0068359971046448e-01
+ <_>
+
+ 0 -1 2232 3.0141780152916908e-02
+
+ -1.5984520316123962e-02 2.4209509789943695e-01
+ <_>
+
+ 0 -1 2233 1.2305500358343124e-01
+
+ 4.3902460485696793e-02 -2.9046860337257385e-01
+ <_>
+
+ 0 -1 2234 1.1436889879405499e-02
+
+ 3.1826701015233994e-02 -1.0569609701633453e-01
+ <_>
+
+ 0 -1 2235 1.4229659922420979e-02
+
+ -6.4518727362155914e-02 1.6178989410400391e-01
+ <_>
+
+ 0 -1 2236 -1.9808039069175720e-02
+
+ 2.0909899473190308e-01 -2.7245460078120232e-02
+ <_>
+
+ 0 -1 2237 -3.2634709030389786e-02
+
+ -4.6265149116516113e-01 2.3877989500761032e-02
+ <_>
+
+ 0 -1 2238 8.1568211317062378e-02
+
+ -1.0983820073306561e-02 7.4517530202865601e-01
+ <_>
+
+ 0 -1 2239 1.7331159906461835e-03
+
+ 6.2832579016685486e-02 -1.5800160169601440e-01
+ <_>
+
+ 0 -1 2240 4.1524558328092098e-03
+
+ 2.8520949184894562e-02 -8.3923816680908203e-02
+ <_>
+
+ 0 -1 2241 2.0917340589221567e-04
+
+ -1.6536650061607361e-01 8.3170376718044281e-02
+ <_>
+
+ 0 -1 2242 -6.9550168700516224e-04
+
+ 5.7298898696899414e-02 -9.8668128252029419e-02
+ <_>
+
+ 0 -1 2243 1.0114730149507523e-01
+
+ -2.7031859382987022e-02 5.0937288999557495e-01
+ <_>
+
+ 0 -1 2244 2.0371530205011368e-02
+
+ -1.5991339460015297e-02 2.1110190451145172e-01
+ <_>
+
+ 0 -1 2245 1.9490359723567963e-01
+
+ 1.1169149540364742e-02 -8.0626577138900757e-01
+ <_>
+
+ 0 -1 2246 -1.5187750104814768e-03
+
+ 8.8670432567596436e-02 -6.5779693424701691e-02
+ <_>
+
+ 0 -1 2247 -2.2300280761555769e-05
+
+ 7.0237100124359131e-02 -1.3656799495220184e-01
+ <_>
+
+ 0 -1 2248 7.0241810753941536e-03
+
+ 4.5264270156621933e-02 -1.2246630340814590e-01
+ <_>
+
+ 0 -1 2249 -5.8513730764389038e-03
+
+ 1.4548699557781219e-01 -7.7512867748737335e-02
+ <_>
+
+ 0 -1 2250 -1.2228869833052158e-02
+
+ -1.5762320160865784e-01 3.3091600984334946e-02
+ <_>
+
+ 0 -1 2251 -2.7475339174270630e-01
+
+ 4.1415899991989136e-01 -2.3306179791688919e-02
+ <_>
+
+ 0 -1 2252 -8.3073312416672707e-03
+
+ -6.6158972680568695e-02 4.5423369854688644e-02
+ <_>
+
+ 0 -1 2253 1.4967099763453007e-02
+
+ 3.9580021053552628e-02 -2.4474979937076569e-01
+ <_>
+
+ 0 -1 2254 3.5121920518577099e-03
+
+ -3.2608591020107269e-02 7.2080552577972412e-02
+ <_>
+
+ 0 -1 2255 6.0676191933453083e-03
+
+ -6.6284246742725372e-02 1.6455779969692230e-01
+ <_>
+
+ 0 -1 2256 -6.0948841273784637e-03
+
+ -1.6784119606018066e-01 6.8097747862339020e-02
+ <_>
+
+ 0 -1 2257 -4.4710501097142696e-03
+
+ 1.4348860085010529e-01 -7.5286053121089935e-02
+ <_>
+
+ 0 -1 2258 2.7629999443888664e-02
+
+ -6.0715568251907825e-03 4.6235299110412598e-01
+ <_>
+
+ 0 -1 2259 -4.1778348386287689e-03
+
+ -9.4480186700820923e-02 1.0268689692020416e-01
+ <_>
+
+ 0 -1 2260 -1.4997010293882340e-04
+
+ 4.5903969556093216e-02 -1.2689989805221558e-01
+ <_>
+
+ 0 -1 2261 9.3421656638383865e-03
+
+ -4.7851350158452988e-02 2.3776920139789581e-01
+ <_>
+
+ 0 -1 2262 -9.0454798191785812e-03
+
+ -1.4881759881973267e-01 2.5717660784721375e-02
+ <_>
+
+ 0 -1 2263 -1.0563050163909793e-03
+
+ -1.2465219944715500e-01 8.2118943333625793e-02
+ <_>
+
+ 0 -1 2264 -1.5602169558405876e-02
+
+ 3.0471551418304443e-01 -2.4503290653228760e-02
+ <_>
+
+ 0 -1 2265 -8.9588612318038940e-03
+
+ -2.3624059557914734e-01 4.6290140599012375e-02
+ <_>
+
+ 0 -1 2266 -7.6452922075986862e-03
+
+ 1.1393140256404877e-01 -2.6573060080409050e-02
+ <_>
+
+ 0 -1 2267 -1.9294900819659233e-02
+
+ 2.8820019960403442e-01 -3.5906881093978882e-02
+ <_>
+
+ 0 -1 2268 8.6250286549329758e-03
+
+ 6.1006020754575729e-02 -1.6832630336284637e-01
+ <_>
+
+ 0 -1 2269 2.5883490219712257e-02
+
+ -4.0142849087715149e-02 2.3263120651245117e-01
+ <_>
+
+ 0 -1 2270 -7.4946112930774689e-02
+
+ 7.1168798208236694e-01 -6.0237408615648746e-03
+ <_>
+
+ 0 -1 2271 -2.6808120310306549e-04
+
+ 7.7717900276184082e-02 -1.5358750522136688e-01
+ <_>
+
+ 0 -1 2272 6.1041440814733505e-02
+
+ -3.4070160239934921e-02 2.5833290815353394e-01
+ <_>
+
+ 0 -1 2273 -4.7920648939907551e-03
+
+ -1.5077829360961914e-01 8.4577240049839020e-02
+ <_>
+
+ 0 -1 2274 -1.2610630691051483e-01
+
+ -4.8404538631439209e-01 8.6965439841151237e-03
+ <_>
+
+ 0 -1 2275 -2.2879270836710930e-02
+
+ 6.7734187841415405e-01 -1.4856100082397461e-02
+ <_>
+
+ 0 -1 2276 -6.2760512810200453e-04
+
+ 5.0910349935293198e-02 -1.4076440036296844e-01
+ <_>
+
+ 0 -1 2277 -1.0543179698288441e-02
+
+ -9.0707249939441681e-02 1.1281900107860565e-01
+ <_>
+
+ 0 -1 2278 -2.4953829124569893e-03
+
+ 8.9523762464523315e-02 -7.5541287660598755e-02
+ <_>
+
+ 0 -1 2279 6.0986150056123734e-02
+
+ -3.2006978988647461e-02 3.3000910282135010e-01
+ <_>
+ 143
+ -3.0555000305175781e+01
+
+ <_>
+
+ 0 -1 2280 -4.1241809725761414e-02
+
+ 2.4841840565204620e-01 -6.9879129528999329e-02
+ <_>
+
+ 0 -1 2281 -7.4663497507572174e-02
+
+ -7.5433689355850220e-01 4.0493709966540337e-03
+ <_>
+
+ 0 -1 2282 -2.3803679272532463e-02
+
+ 2.4313099682331085e-01 -4.5283928513526917e-02
+ <_>
+
+ 0 -1 2283 3.2028619199991226e-02
+
+ -1.2230539694428444e-02 3.9811220765113831e-01
+ <_>
+
+ 0 -1 2284 3.8454410969279706e-04
+
+ 6.9244839251041412e-02 -1.7288799583911896e-01
+ <_>
+
+ 0 -1 2285 -2.0599530544131994e-03
+
+ 4.5083250850439072e-02 -6.3824482262134552e-02
+ <_>
+
+ 0 -1 2286 5.9174500405788422e-02
+
+ 1.3756089843809605e-02 5.8063977956771851e-01
+ <_>
+
+ 0 -1 2287 -8.1204501911997795e-03
+
+ -7.9060196876525879e-02 3.2097879797220230e-02
+ <_>
+
+ 0 -1 2288 -5.4362448863685131e-03
+
+ 8.0285012722015381e-02 -1.3880789279937744e-01
+ <_>
+
+ 0 -1 2289 4.0768779814243317e-02
+
+ 3.5265129059553146e-02 -1.6821040213108063e-01
+ <_>
+
+ 0 -1 2290 -1.0705769993364811e-02
+
+ -1.3227799534797668e-01 9.7147703170776367e-02
+ <_>
+
+ 0 -1 2291 -2.1374409552663565e-03
+
+ -1.1135129630565643e-01 1.0501199960708618e-01
+ <_>
+
+ 0 -1 2292 -6.0069030150771141e-03
+
+ 7.9701423645019531e-02 -1.4503550529479980e-01
+ <_>
+
+ 0 -1 2293 6.8584359250962734e-03
+
+ -2.8629170730710030e-02 1.5494349598884583e-01
+ <_>
+
+ 0 -1 2294 8.4308702498674393e-03
+
+ -6.8725876510143280e-02 1.3571439683437347e-01
+ <_>
+
+ 0 -1 2295 -3.1918209046125412e-02
+
+ -9.0021647512912750e-02 7.0172756910324097e-02
+ <_>
+
+ 0 -1 2296 1.4346960186958313e-01
+
+ 3.7936199456453323e-02 -3.3849731087684631e-01
+ <_>
+
+ 0 -1 2297 -5.3501531481742859e-02
+
+ -1. -1.3069049455225468e-03
+ <_>
+
+ 0 -1 2298 -4.3198501225560904e-04
+
+ 6.3140459358692169e-02 -1.4891080558300018e-01
+ <_>
+
+ 0 -1 2299 -3.6825511604547501e-02
+
+ 1.6418960690498352e-01 -3.6547198891639709e-02
+ <_>
+
+ 0 -1 2300 -9.3230612576007843e-02
+
+ -8.1855481863021851e-01 1.0488729923963547e-02
+ <_>
+
+ 0 -1 2301 -7.5886500999331474e-03
+
+ 9.6189923584461212e-02 -3.2392729073762894e-02
+ <_>
+
+ 0 -1 2302 1.9316580146551132e-03
+
+ -9.7133457660675049e-02 9.6836537122726440e-02
+ <_>
+
+ 0 -1 2303 -1.7610849440097809e-01
+
+ -1. 3.9064860902726650e-04
+ <_>
+
+ 0 -1 2304 -4.5753358863294125e-03
+
+ -1.4245940744876862e-01 7.2629533708095551e-02
+ <_>
+
+ 0 -1 2305 -7.1555696427822113e-02
+
+ 7.0124769210815430e-01 -8.1192785874009132e-03
+ <_>
+
+ 0 -1 2306 -5.1939189434051514e-03
+
+ -1.7593400180339813e-01 6.6920258104801178e-02
+ <_>
+
+ 0 -1 2307 9.7410175949335098e-03
+
+ -4.0632858872413635e-02 1.5366269648075104e-01
+ <_>
+
+ 0 -1 2308 -1.9197730347514153e-02
+
+ 8.8404722511768341e-02 -1.1119589954614639e-01
+ <_>
+
+ 0 -1 2309 7.7713979408144951e-03
+
+ -5.1531080156564713e-02 2.3341870307922363e-01
+ <_>
+
+ 0 -1 2310 4.6741779893636703e-02
+
+ 5.8658950030803680e-02 -2.1825340390205383e-01
+ <_>
+
+ 0 -1 2311 -6.7051820456981659e-02
+
+ -7.6968950033187866e-01 2.2733330260962248e-03
+ <_>
+
+ 0 -1 2312 1.0403609834611416e-02
+
+ -5.7208269834518433e-02 1.9874769449234009e-01
+ <_>
+
+ 0 -1 2313 6.8136617541313171e-02
+
+ 1.0924750007688999e-02 -2.3514769971370697e-01
+ <_>
+
+ 0 -1 2314 5.5462731979787350e-03
+
+ 7.6430208981037140e-02 -1.5048150718212128e-01
+ <_>
+
+ 0 -1 2315 3.5827890038490295e-02
+
+ 5.2330200560390949e-03 -9.0509557723999023e-01
+ <_>
+
+ 0 -1 2316 1.0099080391228199e-02
+
+ -4.9438349902629852e-02 1.9236649572849274e-01
+ <_>
+
+ 0 -1 2317 -7.3000352131202817e-04
+
+ 8.0038689076900482e-02 -5.9875860810279846e-02
+ <_>
+
+ 0 -1 2318 -6.2627308070659637e-02
+
+ -6.8771952390670776e-01 1.4409339986741543e-02
+ <_>
+
+ 0 -1 2319 4.1463607922196388e-03
+
+ 6.2068879604339600e-02 -1.4138600230216980e-01
+ <_>
+
+ 0 -1 2320 -1.4136059582233429e-01
+
+ 5.9439867734909058e-01 -1.6910530626773834e-02
+ <_>
+
+ 0 -1 2321 7.0147067308425903e-02
+
+ 3.5781029146164656e-03 -8.4541380405426025e-01
+ <_>
+
+ 0 -1 2322 1.8181180348619819e-03
+
+ -5.9031128883361816e-02 1.7709979414939880e-01
+ <_>
+
+ 0 -1 2323 6.3149541616439819e-02
+
+ -7.9691512510180473e-03 2.4575470387935638e-01
+ <_>
+
+ 0 -1 2324 1.7065559513866901e-03
+
+ -1.3776679337024689e-01 7.2286598384380341e-02
+ <_>
+
+ 0 -1 2325 -4.1844159364700317e-02
+
+ -1.0204549878835678e-01 1.9412880763411522e-02
+ <_>
+
+ 0 -1 2326 6.1876028776168823e-02
+
+ 1.7572570592164993e-02 -5.9611201286315918e-01
+ <_>
+
+ 0 -1 2327 8.6206607520580292e-02
+
+ -8.3246696740388870e-03 5.9274739027023315e-01
+ <_>
+
+ 0 -1 2328 1.5561250038444996e-02
+
+ 5.5908791720867157e-02 -2.0174680650234222e-01
+ <_>
+
+ 0 -1 2329 1.9683360587805510e-03
+
+ 8.4109783172607422e-02 -9.5114283263683319e-02
+ <_>
+
+ 0 -1 2330 -3.2295130658894777e-03
+
+ 1.9859789311885834e-01 -6.0371041297912598e-02
+ <_>
+
+ 0 -1 2331 4.3861459940671921e-02
+
+ -7.5495638884603977e-03 2.7785310149192810e-01
+ <_>
+
+ 0 -1 2332 -7.1588042192161083e-04
+
+ 1.0671679675579071e-01 -1.1605340242385864e-01
+ <_>
+
+ 0 -1 2333 -1.1585080064833164e-02
+
+ 1.3923209905624390e-01 -7.2681717574596405e-02
+ <_>
+
+ 0 -1 2334 -2.4132030084729195e-02
+
+ -3.4343299269676208e-01 2.8587639331817627e-02
+ <_>
+
+ 0 -1 2335 -5.9670167975127697e-03
+
+ 6.2854968011379242e-02 -6.3237912952899933e-02
+ <_>
+
+ 0 -1 2336 -5.7298261672258377e-02
+
+ 3.3512100577354431e-01 -3.4425679594278336e-02
+ <_>
+
+ 0 -1 2337 -1.4440530538558960e-01
+
+ -1. -2.0486500579863787e-04
+ <_>
+
+ 0 -1 2338 -1.6152009367942810e-02
+
+ -1.8017260730266571e-01 6.0698080807924271e-02
+ <_>
+
+ 0 -1 2339 3.1132341246120632e-04
+
+ -8.7393969297409058e-02 1.0814479738473892e-01
+ <_>
+
+ 0 -1 2340 -3.4905138891190290e-03
+
+ 1.3089099526405334e-01 -8.2502506673336029e-02
+ <_>
+
+ 0 -1 2341 -5.1078200340270996e-02
+
+ -6.6744989156723022e-01 9.7670806571841240e-03
+ <_>
+
+ 0 -1 2342 2.3027899861335754e-01
+
+ 8.9318687096238136e-03 -8.8892549276351929e-01
+ <_>
+
+ 0 -1 2343 3.3260289579629898e-02
+
+ -3.8846820592880249e-02 1.1871550232172012e-01
+ <_>
+
+ 0 -1 2344 3.6332090385258198e-03
+
+ -8.1865288317203522e-02 1.2006369978189468e-01
+ <_>
+
+ 0 -1 2345 -1.3659459364134818e-04
+
+ 2.9094040393829346e-02 -8.6412712931632996e-02
+ <_>
+
+ 0 -1 2346 4.2663831263780594e-03
+
+ 5.9642590582370758e-02 -1.6777870059013367e-01
+ <_>
+
+ 0 -1 2347 -3.7726368755102158e-02
+
+ 2.5201418995857239e-01 -1.1480459943413734e-02
+ <_>
+
+ 0 -1 2348 -3.7723951041698456e-02
+
+ 3.6150801181793213e-01 -2.5164980441331863e-02
+ <_>
+
+ 0 -1 2349 -3.5217531025409698e-02
+
+ -2.0768259465694427e-01 1.5659499913454056e-02
+ <_>
+
+ 0 -1 2350 -2.6250150054693222e-02
+
+ 6.4363038539886475e-01 -1.3971080072224140e-02
+ <_>
+
+ 0 -1 2351 7.1132831275463104e-02
+
+ 5.0701410509645939e-03 -8.1053668260574341e-01
+ <_>
+
+ 0 -1 2352 2.8358760755509138e-03
+
+ 8.0034732818603516e-02 -1.1766050010919571e-01
+ <_>
+
+ 0 -1 2353 3.4837881103157997e-03
+
+ 6.9709457457065582e-02 -1.2136720120906830e-01
+ <_>
+
+ 0 -1 2354 2.9538539820350707e-05
+
+ -1.7090520262718201e-01 7.0092067122459412e-02
+ <_>
+
+ 0 -1 2355 2.6345230638980865e-02
+
+ -1.1046449653804302e-02 3.5467839241027832e-01
+ <_>
+
+ 0 -1 2356 3.3180779428221285e-04
+
+ -8.9763849973678589e-02 1.0402739793062210e-01
+ <_>
+
+ 0 -1 2357 9.9607985466718674e-03
+
+ -1.0574670135974884e-01 8.7481163442134857e-02
+ <_>
+
+ 0 -1 2358 6.9068476557731628e-02
+
+ -2.3135760799050331e-02 3.7765979766845703e-01
+ <_>
+
+ 0 -1 2359 -3.3804871141910553e-02
+
+ -8.0052927136421204e-02 6.6171988844871521e-02
+ <_>
+
+ 0 -1 2360 -2.1103899925947189e-03
+
+ 7.2913236916065216e-02 -1.6986669600009918e-01
+ <_>
+
+ 0 -1 2361 7.1675583720207214e-02
+
+ -2.2668020799756050e-02 4.3757459521293640e-01
+ <_>
+
+ 0 -1 2362 -1.7637129873037338e-02
+
+ 1.4710550010204315e-01 -7.7648147940635681e-02
+ <_>
+
+ 0 -1 2363 2.1559430751949549e-03
+
+ -4.4561479240655899e-02 8.0616250634193420e-02
+ <_>
+
+ 0 -1 2364 -2.9923371039330959e-03
+
+ 1.6013230383396149e-01 -7.2628170251846313e-02
+ <_>
+
+ 0 -1 2365 -2.8351619839668274e-02
+
+ -2.4835529923439026e-01 7.8493626788258553e-03
+ <_>
+
+ 0 -1 2366 -5.3842412307858467e-03
+
+ -1.3290390372276306e-01 7.8615352511405945e-02
+ <_>
+
+ 0 -1 2367 1.6513720154762268e-02
+
+ -3.0867580324411392e-02 2.2910499572753906e-01
+ <_>
+
+ 0 -1 2368 -2.3480059579014778e-02
+
+ -3.4656900167465210e-01 2.8477910906076431e-02
+ <_>
+
+ 0 -1 2369 6.4804457128047943e-02
+
+ 3.2681180164217949e-03 -8.1848317384719849e-01
+ <_>
+
+ 0 -1 2370 2.9363438952714205e-03
+
+ 6.8371996283531189e-02 -1.6038259863853455e-01
+ <_>
+
+ 0 -1 2371 1.9352639093995094e-02
+
+ 1.2330809608101845e-02 -1.7751510441303253e-01
+ <_>
+
+ 0 -1 2372 -1.4157049590721726e-03
+
+ 1.6248740255832672e-01 -8.4821969270706177e-02
+ <_>
+
+ 0 -1 2373 -3.2165680080652237e-02
+
+ 2.5495579838752747e-01 -1.5387820079922676e-02
+ <_>
+
+ 0 -1 2374 9.9883928894996643e-02
+
+ 1.1630980297923088e-02 -8.6939221620559692e-01
+ <_>
+
+ 0 -1 2375 -8.5509859491139650e-04
+
+ 3.7509139627218246e-02 -4.1315130889415741e-02
+ <_>
+
+ 0 -1 2376 1.9948679953813553e-02
+
+ -3.3211439847946167e-02 2.6546698808670044e-01
+ <_>
+
+ 0 -1 2377 -1.6821360215544701e-02
+
+ -1.9504530727863312e-01 4.5578271150588989e-02
+ <_>
+
+ 0 -1 2378 -8.1685081124305725e-02
+
+ 8.0823719501495361e-01 -1.0028379969298840e-02
+ <_>
+
+ 0 -1 2379 -3.9467110764235258e-04
+
+ 3.7868868559598923e-02 -7.4321702122688293e-02
+ <_>
+
+ 0 -1 2380 -4.1939578950405121e-02
+
+ -7.5310271978378296e-01 1.2494780123233795e-02
+ <_>
+
+ 0 -1 2381 1.2319780141115189e-01
+
+ 1.5212129801511765e-03 -8.7456828355789185e-01
+ <_>
+
+ 0 -1 2382 4.3162349611520767e-03
+
+ 9.5917366445064545e-02 -9.8286882042884827e-02
+ <_>
+
+ 0 -1 2383 1.7064419807866216e-03
+
+ -6.7283846437931061e-02 5.8372668921947479e-02
+ <_>
+
+ 0 -1 2384 6.8853497505187988e-02
+
+ 3.9853271096944809e-02 -2.7014040946960449e-01
+ <_>
+
+ 0 -1 2385 1.5133110573515296e-03
+
+ 3.6803830415010452e-02 -7.8638777136802673e-02
+ <_>
+
+ 0 -1 2386 1.6671700403094292e-02
+
+ -5.2208479493856430e-02 2.5476139783859253e-01
+ <_>
+
+ 0 -1 2387 -2.4927379563450813e-03
+
+ -6.8352922797203064e-02 3.9182528853416443e-02
+ <_>
+
+ 0 -1 2388 1.7946650041267276e-03
+
+ 7.5641617178916931e-02 -1.8443019688129425e-01
+ <_>
+
+ 0 -1 2389 6.5764516592025757e-02
+
+ -2.7957379817962646e-02 1.3770729303359985e-01
+ <_>
+
+ 0 -1 2390 -3.2415628433227539e-02
+
+ 2.4957719445228577e-01 -3.8401741534471512e-02
+ <_>
+
+ 0 -1 2391 1.5985220670700073e-01
+
+ 2.3139530792832375e-02 -4.5876979827880859e-01
+ <_>
+
+ 0 -1 2392 3.3003050833940506e-02
+
+ -2.8549650683999062e-02 3.6482268571853638e-01
+ <_>
+
+ 0 -1 2393 8.3292415365576744e-03
+
+ 2.3422110825777054e-02 -1.2992739677429199e-01
+ <_>
+
+ 0 -1 2394 -1.4707380533218384e-01
+
+ -1. 1.0342770256102085e-02
+ <_>
+
+ 0 -1 2395 1.0625930130481720e-01
+
+ 2.8901589103043079e-03 -6.2105101346969604e-01
+ <_>
+
+ 0 -1 2396 4.7905001789331436e-02
+
+ -2.5437310338020325e-02 3.8595038652420044e-01
+ <_>
+
+ 0 -1 2397 4.3562948703765869e-02
+
+ 1.2963670305907726e-02 -3.1574508547782898e-01
+ <_>
+
+ 0 -1 2398 -6.6401511430740356e-02
+
+ 3.7184339761734009e-01 -2.4248229339718819e-02
+ <_>
+
+ 0 -1 2399 1.0357169667258859e-03
+
+ -3.3857159316539764e-02 7.2818137705326080e-02
+ <_>
+
+ 0 -1 2400 -1.0010260343551636e-01
+
+ -2.6162430644035339e-01 4.0561348199844360e-02
+ <_>
+
+ 0 -1 2401 -1.4029429852962494e-01
+
+ 1.6186380386352539e-01 -3.7463869899511337e-02
+ <_>
+
+ 0 -1 2402 -3.6629181355237961e-02
+
+ -3.7988689541816711e-01 2.2493759170174599e-02
+ <_>
+
+ 0 -1 2403 1.8527939915657043e-01
+
+ -3.4648380242288113e-03 9.9972921609878540e-01
+ <_>
+
+ 0 -1 2404 1.3452930375933647e-02
+
+ 6.6191017627716064e-02 -1.5208050608634949e-01
+ <_>
+
+ 0 -1 2405 8.4628060460090637e-02
+
+ -3.2134260982275009e-02 2.2877800464630127e-01
+ <_>
+
+ 0 -1 2406 -8.7568372488021851e-02
+
+ 4.3229681253433228e-01 -2.4735029786825180e-02
+ <_>
+
+ 0 -1 2407 2.6502339169383049e-02
+
+ 2.3526629433035851e-02 -2.9849499464035034e-01
+ <_>
+
+ 0 -1 2408 -1.8273059278726578e-02
+
+ 5.0878030061721802e-01 -1.9735949113965034e-02
+ <_>
+
+ 0 -1 2409 -1.1995369568467140e-03
+
+ 7.4867762625217438e-02 -7.3861390352249146e-02
+ <_>
+
+ 0 -1 2410 3.1381230801343918e-02
+
+ -2.6280479505658150e-02 3.6583951115608215e-01
+ <_>
+
+ 0 -1 2411 2.3178670555353165e-02
+
+ 3.7155259400606155e-02 -2.5468569993972778e-01
+ <_>
+
+ 0 -1 2412 -1.3644699938595295e-02
+
+ 2.0717699825763702e-01 -4.2792771011590958e-02
+ <_>
+
+ 0 -1 2413 7.8315278515219688e-03
+
+ 3.6028519272804260e-02 -8.0337040126323700e-02
+ <_>
+
+ 0 -1 2414 -1.0035780258476734e-02
+
+ -2.2253769636154175e-01 4.2950030416250229e-02
+ <_>
+
+ 0 -1 2415 -5.1132131367921829e-02
+
+ 3.0586650967597961e-01 -2.7054589241743088e-02
+ <_>
+
+ 0 -1 2416 -6.9544702768325806e-02
+
+ 3.4688460826873779e-01 -3.1736221164464951e-02
+ <_>
+
+ 0 -1 2417 -2.4079360067844391e-02
+
+ 1.3291560113430023e-01 -3.0277779325842857e-02
+ <_>
+
+ 0 -1 2418 -6.6630518995225430e-03
+
+ -1.8473480641841888e-01 7.8750252723693848e-02
+ <_>
+
+ 0 -1 2419 4.3147690594196320e-02
+
+ -9.1566536575555801e-03 2.9485818743705750e-01
+ <_>
+
+ 0 -1 2420 -1.3808339834213257e-02
+
+ -2.8479158878326416e-01 3.2622188329696655e-02
+ <_>
+
+ 0 -1 2421 1.6351899504661560e-01
+
+ -3.7377059925347567e-03 5.6042182445526123e-01
+ <_>
+
+ 0 -1 2422 -2.4086149409413338e-02
+
+ 1.5841430425643921e-01 -6.6294513642787933e-02
+
+ <_>
+
+ <_>
+ 5 5 12 6 -1.
+ <_>
+ 9 5 4 6 3.
+ <_>
+
+ <_>
+ 7 13 10 4 -1.
+ <_>
+ 7 15 10 2 2.
+ <_>
+
+ <_>
+ 3 14 9 4 -1.
+ <_>
+ 6 14 3 4 3.
+ <_>
+
+ <_>
+ 15 6 5 6 -1.
+ <_>
+ 15 6 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 0 1 22 14 -1.
+ <_>
+ 11 1 11 14 2.
+ <_>
+
+ <_>
+ 1 11 20 4 -1.
+ <_>
+ 6 11 10 4 2.
+ <_>
+
+ <_>
+ 7 6 6 5 -1.
+ <_>
+ 7 6 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+ 5 15 6 2 2.
+ <_>
+
+ <_>
+ 7 12 8 6 -1.
+ <_>
+ 7 12 4 3 2.
+ <_>
+ 11 15 4 3 2.
+ <_>
+
+ <_>
+ 20 0 2 18 -1.
+ <_>
+ 20 9 2 9 2.
+ <_>
+
+ <_>
+ 8 6 6 12 -1.
+ <_>
+ 10 6 2 12 3.
+ <_>
+
+ <_>
+ 8 5 6 6 -1.
+ <_>
+ 10 5 2 6 3.
+ <_>
+
+ <_>
+ 5 15 12 2 -1.
+ <_>
+ 5 16 12 1 2.
+ <_>
+
+ <_>
+ 20 0 2 18 -1.
+ <_>
+ 20 9 2 9 2.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 0 9 2 9 2.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 13 7 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 14 7 4 -1.
+ <_>
+ 2 16 7 2 2.
+ <_>
+
+ <_>
+ 13 7 7 4 -1.
+ <_>
+ 13 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 4 12 -1.
+ <_>
+ 4 10 4 4 3.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 6 8 6 10 -1.
+ <_>
+ 6 8 3 5 2.
+ <_>
+ 9 13 3 5 2.
+ <_>
+
+ <_>
+ 11 12 6 6 -1.
+ <_>
+ 11 15 6 3 2.
+ <_>
+
+ <_>
+ 1 15 8 3 -1.
+ <_>
+ 5 15 4 3 2.
+ <_>
+
+ <_>
+ 6 9 10 4 -1.
+ <_>
+ 6 11 10 2 2.
+ <_>
+
+ <_>
+ 11 5 8 3 -1.
+ <_>
+ 10 6 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 0 13 22 5 -1.
+ <_>
+ 0 13 11 5 2.
+ <_>
+
+ <_>
+ 2 13 14 3 -1.
+ <_>
+ 9 13 7 3 2.
+ <_>
+
+ <_>
+ 11 5 2 10 -1.
+ <_>
+ 11 5 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 10 2 -1.
+ <_>
+ 11 5 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 0 8 8 -1.
+ <_>
+ 18 0 4 4 2.
+ <_>
+ 14 4 4 4 2.
+ <_>
+
+ <_>
+ 5 0 3 10 -1.
+ <_>
+ 5 5 3 5 2.
+ <_>
+
+ <_>
+ 16 0 3 12 -1.
+ <_>
+ 16 6 3 6 2.
+ <_>
+
+ <_>
+ 3 3 12 4 -1.
+ <_>
+ 3 3 6 2 2.
+ <_>
+ 9 5 6 2 2.
+ <_>
+
+ <_>
+ 2 2 20 3 -1.
+ <_>
+ 7 2 10 3 2.
+ <_>
+
+ <_>
+ 11 7 3 8 -1.
+ <_>
+ 11 7 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 9 18 3 -1.
+ <_>
+ 4 10 18 1 3.
+ <_>
+
+ <_>
+ 3 3 16 14 -1.
+ <_>
+ 3 3 8 7 2.
+ <_>
+ 11 10 8 7 2.
+ <_>
+
+ <_>
+ 7 14 8 4 -1.
+ <_>
+ 7 14 4 4 2.
+ <_>
+
+ <_>
+ 10 7 4 7 -1.
+ <_>
+ 10 7 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 11 9 6 5 -1.
+ <_>
+ 11 9 3 5 2.
+ <_>
+
+ <_>
+ 0 6 22 4 -1.
+ <_>
+ 11 6 11 4 2.
+ <_>
+
+ <_>
+ 14 6 6 12 -1.
+ <_>
+ 17 6 3 6 2.
+ <_>
+ 14 12 3 6 2.
+ <_>
+
+ <_>
+ 4 14 6 4 -1.
+ <_>
+ 4 16 6 2 2.
+ <_>
+
+ <_>
+ 12 14 6 4 -1.
+ <_>
+ 12 16 6 2 2.
+ <_>
+
+ <_>
+ 4 14 6 4 -1.
+ <_>
+ 4 16 6 2 2.
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 12 6 2 6 3.
+ <_>
+
+ <_>
+ 9 0 11 3 -1.
+ <_>
+ 8 1 11 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 12 4 -1.
+ <_>
+ 13 0 6 2 2.
+ <_>
+ 7 2 6 2 2.
+ <_>
+
+ <_>
+ 6 6 6 6 -1.
+ <_>
+ 8 6 2 6 3.
+ <_>
+
+ <_>
+ 15 5 3 8 -1.
+ <_>
+ 15 9 3 4 2.
+ <_>
+
+ <_>
+ 5 2 12 7 -1.
+ <_>
+ 9 2 4 7 3.
+ <_>
+
+ <_>
+ 5 5 12 4 -1.
+ <_>
+ 9 5 4 4 3.
+ <_>
+
+ <_>
+ 7 3 4 7 -1.
+ <_>
+ 7 3 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 2 14 6 4 -1.
+ <_>
+ 5 14 3 4 2.
+ <_>
+
+ <_>
+ 11 4 6 6 -1.
+ <_>
+ 13 4 2 6 3.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 14 6 2 2.
+ <_>
+ 11 16 6 2 2.
+ <_>
+
+ <_>
+ 3 12 16 6 -1.
+ <_>
+ 11 12 8 3 2.
+ <_>
+ 3 15 8 3 2.
+ <_>
+
+ <_>
+ 1 11 20 4 -1.
+ <_>
+ 6 11 10 4 2.
+ <_>
+
+ <_>
+ 9 0 10 10 -1.
+ <_>
+ 14 0 5 5 2.
+ <_>
+ 9 5 5 5 2.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 7 20 11 -1.
+ <_>
+ 1 7 10 11 2.
+ <_>
+
+ <_>
+ 9 0 12 3 -1.
+ <_>
+ 9 0 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 13 0 6 6 -1.
+ <_>
+ 13 0 3 6 2.
+ <_>
+
+ <_>
+ 5 0 12 8 -1.
+ <_>
+ 5 2 12 4 2.
+ <_>
+
+ <_>
+ 14 0 8 6 -1.
+ <_>
+ 18 0 4 3 2.
+ <_>
+ 14 3 4 3 2.
+ <_>
+
+ <_>
+ 7 6 8 6 -1.
+ <_>
+ 9 6 4 6 2.
+ <_>
+
+ <_>
+ 11 3 6 6 -1.
+ <_>
+ 13 3 2 6 3.
+ <_>
+
+ <_>
+ 5 3 6 6 -1.
+ <_>
+ 7 3 2 6 3.
+ <_>
+
+ <_>
+ 13 0 8 6 -1.
+ <_>
+ 17 0 4 3 2.
+ <_>
+ 13 3 4 3 2.
+ <_>
+
+ <_>
+ 0 0 8 6 -1.
+ <_>
+ 0 0 4 3 2.
+ <_>
+ 4 3 4 3 2.
+ <_>
+
+ <_>
+ 7 0 10 6 -1.
+ <_>
+ 12 0 5 3 2.
+ <_>
+ 7 3 5 3 2.
+ <_>
+
+ <_>
+ 0 15 22 2 -1.
+ <_>
+ 11 15 11 2 2.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 15 12 2 2.
+ <_>
+
+ <_>
+ 5 13 6 4 -1.
+ <_>
+ 5 15 6 2 2.
+ <_>
+
+ <_>
+ 3 9 17 3 -1.
+ <_>
+ 3 10 17 1 3.
+ <_>
+
+ <_>
+ 3 8 16 10 -1.
+ <_>
+ 3 8 8 5 2.
+ <_>
+ 11 13 8 5 2.
+ <_>
+
+ <_>
+ 9 0 10 6 -1.
+ <_>
+ 14 0 5 3 2.
+ <_>
+ 9 3 5 3 2.
+ <_>
+
+ <_>
+ 3 0 12 4 -1.
+ <_>
+ 3 0 6 2 2.
+ <_>
+ 9 2 6 2 2.
+ <_>
+
+ <_>
+ 4 10 14 3 -1.
+ <_>
+ 4 10 7 3 2.
+ <_>
+
+ <_>
+ 1 14 11 4 -1.
+ <_>
+ 1 16 11 2 2.
+ <_>
+
+ <_>
+ 7 0 12 6 -1.
+ <_>
+ 13 0 6 3 2.
+ <_>
+ 7 3 6 3 2.
+ <_>
+
+ <_>
+ 3 0 10 6 -1.
+ <_>
+ 3 0 5 3 2.
+ <_>
+ 8 3 5 3 2.
+ <_>
+
+ <_>
+ 6 0 10 3 -1.
+ <_>
+ 6 0 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 6 4 -1.
+ <_>
+ 14 8 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 5 16 -1.
+ <_>
+ 0 10 5 8 2.
+ <_>
+
+ <_>
+ 0 3 22 5 -1.
+ <_>
+ 0 3 11 5 2.
+ <_>
+
+ <_>
+ 6 15 8 3 -1.
+ <_>
+ 10 15 4 3 2.
+ <_>
+
+ <_>
+ 15 0 2 14 -1.
+ <_>
+ 15 0 1 14 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 14 2 -1.
+ <_>
+ 7 0 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 20 5 -1.
+ <_>
+ 6 11 10 5 2.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 14 1 4 3 3.
+ <_>
+
+ <_>
+ 0 1 12 3 -1.
+ <_>
+ 4 1 4 3 3.
+ <_>
+
+ <_>
+ 14 12 4 6 -1.
+ <_>
+ 14 12 2 6 2.
+ <_>
+
+ <_>
+ 0 10 22 7 -1.
+ <_>
+ 11 10 11 7 2.
+ <_>
+
+ <_>
+ 11 2 4 11 -1.
+ <_>
+ 11 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 3 14 16 4 -1.
+ <_>
+ 3 14 8 2 2.
+ <_>
+ 11 16 8 2 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 14 12 2 6 3.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 11 16 6 2 2.
+ <_>
+
+ <_>
+ 0 0 12 4 -1.
+ <_>
+ 0 0 6 2 2.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 15 11 4 6 -1.
+ <_>
+ 15 11 2 6 2.
+ <_>
+
+ <_>
+ 3 11 4 6 -1.
+ <_>
+ 5 11 2 6 2.
+ <_>
+
+ <_>
+ 18 5 4 7 -1.
+ <_>
+ 18 5 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 4 5 7 4 -1.
+ <_>
+ 4 5 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 6 12 3 -1.
+ <_>
+ 13 6 4 3 3.
+ <_>
+
+ <_>
+ 1 6 12 3 -1.
+ <_>
+ 5 6 4 3 3.
+ <_>
+
+ <_>
+ 0 0 22 10 -1.
+ <_>
+ 11 0 11 5 2.
+ <_>
+ 0 5 11 5 2.
+ <_>
+
+ <_>
+ 2 4 14 3 -1.
+ <_>
+ 2 5 14 1 3.
+ <_>
+
+ <_>
+ 13 3 8 6 -1.
+ <_>
+ 17 3 4 3 2.
+ <_>
+ 13 6 4 3 2.
+ <_>
+
+ <_>
+ 4 14 14 4 -1.
+ <_>
+ 4 14 7 2 2.
+ <_>
+ 11 16 7 2 2.
+ <_>
+
+ <_>
+ 11 2 4 11 -1.
+ <_>
+ 11 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 11 4 -1.
+ <_>
+ 11 2 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 12 3 -1.
+ <_>
+ 10 7 6 3 2.
+ <_>
+
+ <_>
+ 9 7 4 6 -1.
+ <_>
+ 9 7 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 11 16 6 -1.
+ <_>
+ 11 11 8 3 2.
+ <_>
+ 3 14 8 3 2.
+ <_>
+
+ <_>
+ 1 3 8 6 -1.
+ <_>
+ 1 3 4 3 2.
+ <_>
+ 5 6 4 3 2.
+ <_>
+
+ <_>
+ 5 4 12 3 -1.
+ <_>
+ 5 5 12 1 3.
+ <_>
+
+ <_>
+ 7 14 8 4 -1.
+ <_>
+ 11 14 4 4 2.
+ <_>
+
+ <_>
+ 7 3 15 3 -1.
+ <_>
+ 7 4 15 1 3.
+ <_>
+
+ <_>
+ 6 8 6 4 -1.
+ <_>
+ 6 8 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 12 3 -1.
+ <_>
+ 10 7 6 3 2.
+ <_>
+
+ <_>
+ 0 7 12 3 -1.
+ <_>
+ 6 7 6 3 2.
+ <_>
+
+ <_>
+ 7 7 9 4 -1.
+ <_>
+ 10 7 3 4 3.
+ <_>
+
+ <_>
+ 6 2 4 16 -1.
+ <_>
+ 6 10 4 8 2.
+ <_>
+
+ <_>
+ 8 4 6 6 -1.
+ <_>
+ 10 4 2 6 3.
+ <_>
+
+ <_>
+ 1 11 20 3 -1.
+ <_>
+ 6 11 10 3 2.
+ <_>
+
+ <_>
+ 14 9 6 8 -1.
+ <_>
+ 17 9 3 4 2.
+ <_>
+ 14 13 3 4 2.
+ <_>
+
+ <_>
+ 11 0 9 4 -1.
+ <_>
+ 11 0 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 10 6 8 -1.
+ <_>
+ 14 10 3 4 2.
+ <_>
+ 11 14 3 4 2.
+ <_>
+
+ <_>
+ 5 16 12 2 -1.
+ <_>
+ 5 17 12 1 2.
+ <_>
+
+ <_>
+ 5 9 14 4 -1.
+ <_>
+ 5 11 14 2 2.
+ <_>
+
+ <_>
+ 2 9 6 8 -1.
+ <_>
+ 2 9 3 4 2.
+ <_>
+ 5 13 3 4 2.
+ <_>
+
+ <_>
+ 15 8 6 4 -1.
+ <_>
+ 15 8 3 4 2.
+ <_>
+
+ <_>
+ 1 8 6 4 -1.
+ <_>
+ 4 8 3 4 2.
+ <_>
+
+ <_>
+ 13 5 8 5 -1.
+ <_>
+ 13 5 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 9 2 -1.
+ <_>
+ 11 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 9 12 -1.
+ <_>
+ 15 10 3 4 9.
+ <_>
+
+ <_>
+ 5 10 6 8 -1.
+ <_>
+ 5 10 3 4 2.
+ <_>
+ 8 14 3 4 2.
+ <_>
+
+ <_>
+ 9 5 5 12 -1.
+ <_>
+ 9 8 5 6 2.
+ <_>
+
+ <_>
+ 11 5 9 2 -1.
+ <_>
+ 11 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 15 12 -1.
+ <_>
+ 10 4 5 4 9.
+ <_>
+
+ <_>
+ 1 13 8 5 -1.
+ <_>
+ 5 13 4 5 2.
+ <_>
+
+ <_>
+ 14 8 6 4 -1.
+ <_>
+ 14 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 12 9 -1.
+ <_>
+ 11 3 4 3 9.
+ <_>
+
+ <_>
+ 7 13 6 4 -1.
+ <_>
+ 7 15 6 2 2.
+ <_>
+
+ <_>
+ 10 7 6 10 -1.
+ <_>
+ 13 7 3 5 2.
+ <_>
+ 10 12 3 5 2.
+ <_>
+
+ <_>
+ 6 7 6 10 -1.
+ <_>
+ 6 7 3 5 2.
+ <_>
+ 9 12 3 5 2.
+ <_>
+
+ <_>
+ 7 0 12 2 -1.
+ <_>
+ 7 0 6 2 2.
+ <_>
+
+ <_>
+ 2 0 18 9 -1.
+ <_>
+ 2 3 18 3 3.
+ <_>
+
+ <_>
+ 12 2 6 15 -1.
+ <_>
+ 12 2 3 15 2.
+ <_>
+
+ <_>
+ 4 2 6 15 -1.
+ <_>
+ 7 2 3 15 2.
+ <_>
+
+ <_>
+ 7 12 12 4 -1.
+ <_>
+ 7 13 12 2 2.
+ <_>
+
+ <_>
+ 4 4 4 14 -1.
+ <_>
+ 4 4 2 7 2.
+ <_>
+ 6 11 2 7 2.
+ <_>
+
+ <_>
+ 12 6 9 12 -1.
+ <_>
+ 15 10 3 4 9.
+ <_>
+
+ <_>
+ 1 6 9 12 -1.
+ <_>
+ 4 10 3 4 9.
+ <_>
+
+ <_>
+ 13 6 8 12 -1.
+ <_>
+ 17 6 4 6 2.
+ <_>
+ 13 12 4 6 2.
+ <_>
+
+ <_>
+ 7 14 8 3 -1.
+ <_>
+ 11 14 4 3 2.
+ <_>
+
+ <_>
+ 5 5 12 3 -1.
+ <_>
+ 9 5 4 3 3.
+ <_>
+
+ <_>
+ 10 0 2 18 -1.
+ <_>
+ 10 6 2 6 3.
+ <_>
+
+ <_>
+ 4 14 14 2 -1.
+ <_>
+ 4 14 7 2 2.
+ <_>
+
+ <_>
+ 3 0 6 4 -1.
+ <_>
+ 6 0 3 4 2.
+ <_>
+
+ <_>
+ 13 12 6 4 -1.
+ <_>
+ 13 12 3 4 2.
+ <_>
+
+ <_>
+ 1 0 8 4 -1.
+ <_>
+ 5 0 4 4 2.
+ <_>
+
+ <_>
+ 7 9 14 4 -1.
+ <_>
+ 14 9 7 2 2.
+ <_>
+ 7 11 7 2 2.
+ <_>
+
+ <_>
+ 1 0 8 18 -1.
+ <_>
+ 1 0 4 9 2.
+ <_>
+ 5 9 4 9 2.
+ <_>
+
+ <_>
+ 13 8 6 4 -1.
+ <_>
+ 13 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 9 8 4 6 -1.
+ <_>
+ 9 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 6 4 -1.
+ <_>
+ 6 13 3 4 2.
+ <_>
+
+ <_>
+ 11 4 6 7 -1.
+ <_>
+ 13 4 2 7 3.
+ <_>
+
+ <_>
+ 6 8 6 4 -1.
+ <_>
+ 6 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 12 5 -1.
+ <_>
+ 13 7 6 5 2.
+ <_>
+
+ <_>
+ 3 5 12 3 -1.
+ <_>
+ 9 5 6 3 2.
+ <_>
+
+ <_>
+ 13 5 4 6 -1.
+ <_>
+ 13 8 4 3 2.
+ <_>
+
+ <_>
+ 5 5 4 6 -1.
+ <_>
+ 5 8 4 3 2.
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 15 12 2 6 3.
+ <_>
+
+ <_>
+ 10 2 4 10 -1.
+ <_>
+ 10 2 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 15 12 2 6 3.
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 5 12 2 6 3.
+ <_>
+
+ <_>
+ 11 12 6 6 -1.
+ <_>
+ 11 14 6 2 3.
+ <_>
+
+ <_>
+ 5 12 8 6 -1.
+ <_>
+ 5 12 4 3 2.
+ <_>
+ 9 15 4 3 2.
+ <_>
+
+ <_>
+ 5 11 12 6 -1.
+ <_>
+ 11 11 6 3 2.
+ <_>
+ 5 14 6 3 2.
+ <_>
+
+ <_>
+ 0 9 22 8 -1.
+ <_>
+ 0 9 11 4 2.
+ <_>
+ 11 13 11 4 2.
+ <_>
+
+ <_>
+ 6 9 13 3 -1.
+ <_>
+ 6 10 13 1 3.
+ <_>
+
+ <_>
+ 0 2 8 6 -1.
+ <_>
+ 0 2 4 3 2.
+ <_>
+ 4 5 4 3 2.
+ <_>
+
+ <_>
+ 4 9 16 3 -1.
+ <_>
+ 4 10 16 1 3.
+ <_>
+
+ <_>
+ 4 9 12 3 -1.
+ <_>
+ 4 10 12 1 3.
+ <_>
+
+ <_>
+ 16 2 5 16 -1.
+ <_>
+ 16 10 5 8 2.
+ <_>
+
+ <_>
+ 6 13 7 4 -1.
+ <_>
+ 6 15 7 2 2.
+ <_>
+
+ <_>
+ 1 7 20 8 -1.
+ <_>
+ 11 7 10 4 2.
+ <_>
+ 1 11 10 4 2.
+ <_>
+
+ <_>
+ 5 2 12 3 -1.
+ <_>
+ 5 3 12 1 3.
+ <_>
+
+ <_>
+ 13 13 6 4 -1.
+ <_>
+ 13 15 6 2 2.
+ <_>
+
+ <_>
+ 1 0 5 8 -1.
+ <_>
+ 1 4 5 4 2.
+ <_>
+
+ <_>
+ 5 0 13 8 -1.
+ <_>
+ 5 4 13 4 2.
+ <_>
+
+ <_>
+ 9 1 4 8 -1.
+ <_>
+ 9 5 4 4 2.
+ <_>
+
+ <_>
+ 11 2 8 8 -1.
+ <_>
+ 9 4 8 4 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 8 8 -1.
+ <_>
+ 13 4 4 8 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 14 4 -1.
+ <_>
+ 15 0 7 2 2.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 0 10 12 4 -1.
+ <_>
+ 0 10 6 2 2.
+ <_>
+ 6 12 6 2 2.
+ <_>
+
+ <_>
+ 8 0 14 4 -1.
+ <_>
+ 15 0 7 2 2.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 3 4 16 14 -1.
+ <_>
+ 7 4 8 14 2.
+ <_>
+
+ <_>
+ 13 13 6 4 -1.
+ <_>
+ 13 15 6 2 2.
+ <_>
+
+ <_>
+ 3 13 6 4 -1.
+ <_>
+ 3 15 6 2 2.
+ <_>
+
+ <_>
+ 11 5 2 10 -1.
+ <_>
+ 11 5 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 10 2 -1.
+ <_>
+ 11 5 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 18 4 -1.
+ <_>
+ 13 0 9 2 2.
+ <_>
+ 4 2 9 2 2.
+ <_>
+
+ <_>
+ 6 5 4 6 -1.
+ <_>
+ 6 5 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 16 6 6 6 -1.
+ <_>
+ 14 8 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 6 6 6 -1.
+ <_>
+ 8 8 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 18 12 -1.
+ <_>
+ 4 0 9 12 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 2 12 4 6 2.
+ <_>
+
+ <_>
+ 7 12 8 6 -1.
+ <_>
+ 7 12 4 6 2.
+ <_>
+
+ <_>
+ 7 6 3 12 -1.
+ <_>
+ 8 6 1 12 3.
+ <_>
+
+ <_>
+ 15 5 6 6 -1.
+ <_>
+ 15 5 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 12 8 3 -1.
+ <_>
+ 6 12 4 3 2.
+ <_>
+
+ <_>
+ 2 6 18 3 -1.
+ <_>
+ 8 6 6 3 3.
+ <_>
+
+ <_>
+ 0 11 22 2 -1.
+ <_>
+ 11 11 11 2 2.
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 3 12 6 4 -1.
+ <_>
+ 6 12 3 4 2.
+ <_>
+
+ <_>
+ 14 0 4 12 -1.
+ <_>
+ 14 0 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 5 10 6 4 -1.
+ <_>
+ 8 10 3 4 2.
+ <_>
+
+ <_>
+ 1 12 20 6 -1.
+ <_>
+ 11 12 10 3 2.
+ <_>
+ 1 15 10 3 2.
+ <_>
+
+ <_>
+ 5 15 12 3 -1.
+ <_>
+ 9 15 4 3 3.
+ <_>
+
+ <_>
+ 13 1 3 10 -1.
+ <_>
+ 13 6 3 5 2.
+ <_>
+
+ <_>
+ 9 0 10 4 -1.
+ <_>
+ 9 0 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 3 10 -1.
+ <_>
+ 13 6 3 5 2.
+ <_>
+
+ <_>
+ 6 1 3 10 -1.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 11 4 10 4 -1.
+ <_>
+ 11 4 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 10 20 8 -1.
+ <_>
+ 0 10 10 4 2.
+ <_>
+ 10 14 10 4 2.
+ <_>
+
+ <_>
+ 15 11 6 7 -1.
+ <_>
+ 17 11 2 7 3.
+ <_>
+
+ <_>
+ 4 14 9 4 -1.
+ <_>
+ 4 16 9 2 2.
+ <_>
+
+ <_>
+ 15 0 6 8 -1.
+ <_>
+ 15 4 6 4 2.
+ <_>
+
+ <_>
+ 1 11 6 7 -1.
+ <_>
+ 3 11 2 7 3.
+ <_>
+
+ <_>
+ 12 6 8 4 -1.
+ <_>
+ 12 6 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 6 2 -1.
+ <_>
+ 11 2 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 11 8 -1.
+ <_>
+ 11 4 11 4 2.
+ <_>
+
+ <_>
+ 0 1 22 6 -1.
+ <_>
+ 0 1 11 3 2.
+ <_>
+ 11 4 11 3 2.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 0 1 14 7 -1.
+ <_>
+ 7 1 7 7 2.
+ <_>
+
+ <_>
+ 16 8 4 6 -1.
+ <_>
+ 16 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 20 7 -1.
+ <_>
+ 6 11 10 7 2.
+ <_>
+
+ <_>
+ 13 12 4 6 -1.
+ <_>
+ 13 15 4 3 2.
+ <_>
+
+ <_>
+ 0 3 13 3 -1.
+ <_>
+ 0 4 13 1 3.
+ <_>
+
+ <_>
+ 6 3 12 3 -1.
+ <_>
+ 6 4 12 1 3.
+ <_>
+
+ <_>
+ 0 4 22 10 -1.
+ <_>
+ 0 4 11 5 2.
+ <_>
+ 11 9 11 5 2.
+ <_>
+
+ <_>
+ 14 3 8 4 -1.
+ <_>
+ 14 3 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 5 12 6 -1.
+ <_>
+ 5 5 6 3 2.
+ <_>
+ 11 8 6 3 2.
+ <_>
+
+ <_>
+ 11 6 6 6 -1.
+ <_>
+ 13 6 2 6 3.
+ <_>
+
+ <_>
+ 9 4 4 13 -1.
+ <_>
+ 10 4 2 13 2.
+ <_>
+
+ <_>
+ 11 3 3 13 -1.
+ <_>
+ 12 3 1 13 3.
+ <_>
+
+ <_>
+ 9 5 4 6 -1.
+ <_>
+ 11 5 2 6 2.
+ <_>
+
+ <_>
+ 7 2 12 15 -1.
+ <_>
+ 11 7 4 5 9.
+ <_>
+
+ <_>
+ 3 2 12 15 -1.
+ <_>
+ 7 7 4 5 9.
+ <_>
+
+ <_>
+ 5 2 12 12 -1.
+ <_>
+ 9 6 4 4 9.
+ <_>
+
+ <_>
+ 8 5 4 12 -1.
+ <_>
+ 8 8 4 6 2.
+ <_>
+
+ <_>
+ 8 9 8 7 -1.
+ <_>
+ 10 9 4 7 2.
+ <_>
+
+ <_>
+ 6 9 8 7 -1.
+ <_>
+ 8 9 4 7 2.
+ <_>
+
+ <_>
+ 0 4 22 14 -1.
+ <_>
+ 11 4 11 7 2.
+ <_>
+ 0 11 11 7 2.
+ <_>
+
+ <_>
+ 2 12 18 6 -1.
+ <_>
+ 2 14 18 2 3.
+ <_>
+
+ <_>
+ 6 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 11 14 9 4 -1.
+ <_>
+ 14 14 3 4 3.
+ <_>
+
+ <_>
+ 6 14 6 4 -1.
+ <_>
+ 6 16 6 2 2.
+ <_>
+
+ <_>
+ 15 6 6 5 -1.
+ <_>
+ 15 6 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 5 6 -1.
+ <_>
+ 7 6 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 13 12 8 6 -1.
+ <_>
+ 13 12 4 6 2.
+ <_>
+
+ <_>
+ 6 10 10 8 -1.
+ <_>
+ 6 12 10 4 2.
+ <_>
+
+ <_>
+ 2 13 18 2 -1.
+ <_>
+ 2 13 9 2 2.
+ <_>
+
+ <_>
+ 1 15 8 3 -1.
+ <_>
+ 5 15 4 3 2.
+ <_>
+
+ <_>
+ 14 7 6 4 -1.
+ <_>
+ 14 7 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 7 2 -1.
+ <_>
+ 10 0 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 8 4 6 -1.
+ <_>
+ 17 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 15 9 -1.
+ <_>
+ 7 3 5 3 9.
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 3 0 16 12 -1.
+ <_>
+ 3 6 16 6 2.
+ <_>
+
+ <_>
+ 11 0 3 10 -1.
+ <_>
+ 11 0 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 22 14 -1.
+ <_>
+ 11 3 11 14 2.
+ <_>
+
+ <_>
+ 10 3 6 7 -1.
+ <_>
+ 12 3 2 7 3.
+ <_>
+
+ <_>
+ 11 1 11 4 -1.
+ <_>
+ 10 2 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 7 6 4 -1.
+ <_>
+ 14 7 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 5 4 12 -1.
+ <_>
+ 5 11 4 6 2.
+ <_>
+
+ <_>
+ 2 6 20 9 -1.
+ <_>
+ 2 6 10 9 2.
+ <_>
+
+ <_>
+ 1 9 18 3 -1.
+ <_>
+ 7 9 6 3 3.
+ <_>
+
+ <_>
+ 11 6 6 6 -1.
+ <_>
+ 13 6 2 6 3.
+ <_>
+
+ <_>
+ 8 13 6 4 -1.
+ <_>
+ 11 13 3 4 2.
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 5 6 6 6 -1.
+ <_>
+ 7 6 2 6 3.
+ <_>
+
+ <_>
+ 15 0 3 8 -1.
+ <_>
+ 16 1 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 5 8 12 3 -1.
+ <_>
+ 9 8 4 3 3.
+ <_>
+
+ <_>
+ 2 7 18 4 -1.
+ <_>
+ 2 9 18 2 2.
+ <_>
+
+ <_>
+ 11 1 10 4 -1.
+ <_>
+ 11 1 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 15 0 3 8 -1.
+ <_>
+ 16 1 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 8 3 -1.
+ <_>
+ 6 1 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 0 12 4 -1.
+ <_>
+ 16 0 6 2 2.
+ <_>
+ 10 2 6 2 2.
+ <_>
+
+ <_>
+ 5 2 12 3 -1.
+ <_>
+ 5 3 12 1 3.
+ <_>
+
+ <_>
+ 8 2 14 3 -1.
+ <_>
+ 8 3 14 1 3.
+ <_>
+
+ <_>
+ 0 0 12 4 -1.
+ <_>
+ 0 0 6 2 2.
+ <_>
+ 6 2 6 2 2.
+ <_>
+
+ <_>
+ 8 0 14 4 -1.
+ <_>
+ 15 0 7 2 2.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 0 5 8 6 -1.
+ <_>
+ 0 5 4 3 2.
+ <_>
+ 4 8 4 3 2.
+ <_>
+
+ <_>
+ 14 14 6 4 -1.
+ <_>
+ 14 14 3 4 2.
+ <_>
+
+ <_>
+ 6 12 10 4 -1.
+ <_>
+ 11 12 5 4 2.
+ <_>
+
+ <_>
+ 14 6 6 6 -1.
+ <_>
+ 12 8 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 6 6 6 -1.
+ <_>
+ 10 8 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 2 8 6 10 -1.
+ <_>
+ 2 8 3 5 2.
+ <_>
+ 5 13 3 5 2.
+ <_>
+
+ <_>
+ 11 3 4 9 -1.
+ <_>
+ 12 4 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 2 0 12 4 -1.
+ <_>
+ 2 0 6 2 2.
+ <_>
+ 8 2 6 2 2.
+ <_>
+
+ <_>
+ 11 5 3 9 -1.
+ <_>
+ 12 6 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 11 3 9 4 -1.
+ <_>
+ 10 4 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 13 8 5 -1.
+ <_>
+ 13 13 4 5 2.
+ <_>
+
+ <_>
+ 1 13 8 5 -1.
+ <_>
+ 5 13 4 5 2.
+ <_>
+
+ <_>
+ 7 13 8 3 -1.
+ <_>
+ 7 13 4 3 2.
+ <_>
+
+ <_>
+ 8 13 6 4 -1.
+ <_>
+ 11 13 3 4 2.
+ <_>
+
+ <_>
+ 11 7 3 8 -1.
+ <_>
+ 12 8 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 5 1 6 8 -1.
+ <_>
+ 7 1 2 8 3.
+ <_>
+
+ <_>
+ 14 14 6 4 -1.
+ <_>
+ 14 16 6 2 2.
+ <_>
+
+ <_>
+ 11 7 8 3 -1.
+ <_>
+ 10 8 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 3 3 12 -1.
+ <_>
+ 8 7 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 8 5 5 6 -1.
+ <_>
+ 8 8 5 3 2.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 3 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 8 6 -1.
+ <_>
+ 9 5 4 6 2.
+ <_>
+
+ <_>
+ 11 4 6 6 -1.
+ <_>
+ 9 6 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 6 6 -1.
+ <_>
+ 13 6 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 12 8 6 4 -1.
+ <_>
+ 12 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 8 3 -1.
+ <_>
+ 9 15 4 3 2.
+ <_>
+
+ <_>
+ 0 5 22 13 -1.
+ <_>
+ 0 5 11 13 2.
+ <_>
+
+ <_>
+ 2 12 9 6 -1.
+ <_>
+ 5 12 3 6 3.
+ <_>
+
+ <_>
+ 19 1 3 10 -1.
+ <_>
+ 19 6 3 5 2.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 16 12 2 2.
+ <_>
+
+ <_>
+ 10 14 10 4 -1.
+ <_>
+ 10 16 10 2 2.
+ <_>
+
+ <_>
+ 1 3 14 3 -1.
+ <_>
+ 1 4 14 1 3.
+ <_>
+
+ <_>
+ 3 14 16 4 -1.
+ <_>
+ 11 14 8 2 2.
+ <_>
+ 3 16 8 2 2.
+ <_>
+
+ <_>
+ 0 14 6 4 -1.
+ <_>
+ 3 14 3 4 2.
+ <_>
+
+ <_>
+ 10 1 11 4 -1.
+ <_>
+ 10 3 11 2 2.
+ <_>
+
+ <_>
+ 1 1 11 4 -1.
+ <_>
+ 1 3 11 2 2.
+ <_>
+
+ <_>
+ 9 3 6 6 -1.
+ <_>
+ 9 5 6 2 3.
+ <_>
+
+ <_>
+ 4 5 12 3 -1.
+ <_>
+ 4 6 12 1 3.
+ <_>
+
+ <_>
+ 12 0 7 6 -1.
+ <_>
+ 12 3 7 3 2.
+ <_>
+
+ <_>
+ 1 3 16 4 -1.
+ <_>
+ 1 4 16 2 2.
+ <_>
+
+ <_>
+ 4 9 15 3 -1.
+ <_>
+ 4 10 15 1 3.
+ <_>
+
+ <_>
+ 2 4 18 6 -1.
+ <_>
+ 2 4 9 3 2.
+ <_>
+ 11 7 9 3 2.
+ <_>
+
+ <_>
+ 13 5 4 13 -1.
+ <_>
+ 14 5 2 13 2.
+ <_>
+
+ <_>
+ 4 6 6 4 -1.
+ <_>
+ 4 8 6 2 2.
+ <_>
+
+ <_>
+ 8 7 6 5 -1.
+ <_>
+ 8 7 3 5 2.
+ <_>
+
+ <_>
+ 10 8 4 6 -1.
+ <_>
+ 10 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 12 12 4 -1.
+ <_>
+ 6 12 6 4 2.
+ <_>
+
+ <_>
+ 3 11 10 3 -1.
+ <_>
+ 8 11 5 3 2.
+ <_>
+
+ <_>
+ 12 2 3 12 -1.
+ <_>
+ 12 2 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 0 2 14 16 -1.
+ <_>
+ 7 2 7 16 2.
+ <_>
+
+ <_>
+ 1 5 20 4 -1.
+ <_>
+ 6 5 10 4 2.
+ <_>
+
+ <_>
+ 0 1 18 15 -1.
+ <_>
+ 9 1 9 15 2.
+ <_>
+
+ <_>
+ 15 2 6 8 -1.
+ <_>
+ 15 4 6 4 2.
+ <_>
+
+ <_>
+ 4 14 13 4 -1.
+ <_>
+ 4 15 13 2 2.
+ <_>
+
+ <_>
+ 11 2 3 12 -1.
+ <_>
+ 12 2 1 12 3.
+ <_>
+
+ <_>
+ 0 16 15 2 -1.
+ <_>
+ 0 17 15 1 2.
+ <_>
+
+ <_>
+ 12 14 6 4 -1.
+ <_>
+ 12 16 6 2 2.
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 5 14 12 2 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 12 14 6 2 3.
+ <_>
+
+ <_>
+ 0 9 15 3 -1.
+ <_>
+ 0 10 15 1 3.
+ <_>
+
+ <_>
+ 6 9 14 3 -1.
+ <_>
+ 6 10 14 1 3.
+ <_>
+
+ <_>
+ 4 12 7 6 -1.
+ <_>
+ 4 14 7 2 3.
+ <_>
+
+ <_>
+ 6 6 10 6 -1.
+ <_>
+ 11 6 5 3 2.
+ <_>
+ 6 9 5 3 2.
+ <_>
+
+ <_>
+ 3 0 16 2 -1.
+ <_>
+ 3 0 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 12 9 -1.
+ <_>
+ 5 12 12 3 3.
+ <_>
+
+ <_>
+ 6 9 10 6 -1.
+ <_>
+ 6 12 10 3 2.
+ <_>
+
+ <_>
+ 7 4 8 6 -1.
+ <_>
+ 7 6 8 2 3.
+ <_>
+
+ <_>
+ 6 5 3 12 -1.
+ <_>
+ 6 11 3 6 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 14 12 2 6 3.
+ <_>
+
+ <_>
+ 6 15 8 3 -1.
+ <_>
+ 10 15 4 3 2.
+ <_>
+
+ <_>
+ 4 13 14 4 -1.
+ <_>
+ 4 15 14 2 2.
+ <_>
+
+ <_>
+ 10 4 11 3 -1.
+ <_>
+ 9 5 11 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 4 9 -1.
+ <_>
+ 12 5 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 0 8 13 3 -1.
+ <_>
+ 0 9 13 1 3.
+ <_>
+
+ <_>
+ 13 2 6 10 -1.
+ <_>
+ 16 2 3 5 2.
+ <_>
+ 13 7 3 5 2.
+ <_>
+
+ <_>
+ 3 2 6 10 -1.
+ <_>
+ 3 2 3 5 2.
+ <_>
+ 6 7 3 5 2.
+ <_>
+
+ <_>
+ 11 2 4 11 -1.
+ <_>
+ 11 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 4 2 12 3 -1.
+ <_>
+ 4 3 12 1 3.
+ <_>
+
+ <_>
+ 12 1 4 12 -1.
+ <_>
+ 12 1 2 12 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 11 4 -1.
+ <_>
+ 11 2 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 4 9 -1.
+ <_>
+ 11 0 2 9 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 9 4 -1.
+ <_>
+ 11 0 9 2 2.
+ 1
+ <_>
+
+ <_>
+ 16 2 6 10 -1.
+ <_>
+ 19 2 3 5 2.
+ <_>
+ 16 7 3 5 2.
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 10 1 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 0 3 8 -1.
+ <_>
+ 12 1 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 11 0 8 3 -1.
+ <_>
+ 10 1 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 1 4 12 -1.
+ <_>
+ 19 1 2 6 2.
+ <_>
+ 17 7 2 6 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 8 5 8 5 -1.
+ <_>
+ 8 5 4 5 2.
+ <_>
+
+ <_>
+ 8 4 6 13 -1.
+ <_>
+ 10 4 2 13 3.
+ <_>
+
+ <_>
+ 16 3 6 8 -1.
+ <_>
+ 19 3 3 4 2.
+ <_>
+ 16 7 3 4 2.
+ <_>
+
+ <_>
+ 0 3 6 8 -1.
+ <_>
+ 0 3 3 4 2.
+ <_>
+ 3 7 3 4 2.
+ <_>
+
+ <_>
+ 10 9 12 4 -1.
+ <_>
+ 16 9 6 2 2.
+ <_>
+ 10 11 6 2 2.
+ <_>
+
+ <_>
+ 1 2 9 12 -1.
+ <_>
+ 4 6 3 4 9.
+ <_>
+
+ <_>
+ 15 12 4 6 -1.
+ <_>
+ 15 12 2 6 2.
+ <_>
+
+ <_>
+ 5 15 12 3 -1.
+ <_>
+ 11 15 6 3 2.
+ <_>
+
+ <_>
+ 2 16 20 2 -1.
+ <_>
+ 2 16 10 2 2.
+ <_>
+
+ <_>
+ 1 8 10 6 -1.
+ <_>
+ 1 8 5 3 2.
+ <_>
+ 6 11 5 3 2.
+ <_>
+
+ <_>
+ 6 3 16 14 -1.
+ <_>
+ 14 3 8 7 2.
+ <_>
+ 6 10 8 7 2.
+ <_>
+
+ <_>
+ 1 4 6 8 -1.
+ <_>
+ 1 4 3 4 2.
+ <_>
+ 4 8 3 4 2.
+ <_>
+
+ <_>
+ 7 2 12 4 -1.
+ <_>
+ 7 3 12 2 2.
+ <_>
+
+ <_>
+ 1 9 6 9 -1.
+ <_>
+ 4 9 3 9 2.
+ <_>
+
+ <_>
+ 12 14 10 4 -1.
+ <_>
+ 12 14 5 4 2.
+ <_>
+
+ <_>
+ 2 12 12 5 -1.
+ <_>
+ 5 12 6 5 2.
+ <_>
+
+ <_>
+ 15 12 6 6 -1.
+ <_>
+ 17 12 2 6 3.
+ <_>
+
+ <_>
+ 1 12 6 6 -1.
+ <_>
+ 3 12 2 6 3.
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 10 12 2 6 3.
+ <_>
+
+ <_>
+ 5 2 12 16 -1.
+ <_>
+ 5 10 12 8 2.
+ <_>
+
+ <_>
+ 4 2 18 14 -1.
+ <_>
+ 4 9 18 7 2.
+ <_>
+
+ <_>
+ 5 4 12 14 -1.
+ <_>
+ 5 11 12 7 2.
+ <_>
+
+ <_>
+ 2 5 20 8 -1.
+ <_>
+ 7 5 10 8 2.
+ <_>
+
+ <_>
+ 8 0 10 7 -1.
+ <_>
+ 8 0 5 7 2.
+ 1
+ <_>
+
+ <_>
+ 12 0 5 8 -1.
+ <_>
+ 12 0 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 6 13 -1.
+ <_>
+ 10 4 3 13 2.
+ <_>
+
+ <_>
+ 7 14 8 4 -1.
+ <_>
+ 7 16 8 2 2.
+ <_>
+
+ <_>
+ 8 0 3 12 -1.
+ <_>
+ 9 0 1 12 3.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 4 0 3 12 -1.
+ <_>
+ 4 4 3 4 3.
+ <_>
+
+ <_>
+ 11 3 3 15 -1.
+ <_>
+ 12 3 1 15 3.
+ <_>
+
+ <_>
+ 5 12 7 6 -1.
+ <_>
+ 5 14 7 2 3.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 9 6 1 12 3.
+ <_>
+
+ <_>
+ 5 16 12 2 -1.
+ <_>
+ 5 16 6 2 2.
+ <_>
+
+ <_>
+ 1 12 20 6 -1.
+ <_>
+ 6 12 10 6 2.
+ <_>
+
+ <_>
+ 8 11 9 4 -1.
+ <_>
+ 11 11 3 4 3.
+ <_>
+
+ <_>
+ 5 11 9 4 -1.
+ <_>
+ 8 11 3 4 3.
+ <_>
+
+ <_>
+ 11 6 9 12 -1.
+ <_>
+ 14 10 3 4 9.
+ <_>
+
+ <_>
+ 2 6 9 12 -1.
+ <_>
+ 5 10 3 4 9.
+ <_>
+
+ <_>
+ 5 9 12 2 -1.
+ <_>
+ 5 10 12 1 2.
+ <_>
+
+ <_>
+ 0 3 16 3 -1.
+ <_>
+ 4 3 8 3 2.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 0 2 14 3 -1.
+ <_>
+ 0 3 14 1 3.
+ <_>
+
+ <_>
+ 10 2 12 3 -1.
+ <_>
+ 10 3 12 1 3.
+ <_>
+
+ <_>
+ 5 14 12 3 -1.
+ <_>
+ 11 14 6 3 2.
+ <_>
+
+ <_>
+ 8 13 8 3 -1.
+ <_>
+ 8 13 4 3 2.
+ <_>
+
+ <_>
+ 9 2 4 8 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 15 1 3 11 -1.
+ <_>
+ 16 2 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 8 1 10 4 -1.
+ <_>
+ 7 2 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 5 15 3 -1.
+ <_>
+ 5 6 15 1 3.
+ <_>
+
+ <_>
+ 5 1 9 5 -1.
+ <_>
+ 8 1 3 5 3.
+ <_>
+
+ <_>
+ 14 0 4 18 -1.
+ <_>
+ 15 0 2 18 2.
+ <_>
+
+ <_>
+ 6 0 5 16 -1.
+ <_>
+ 6 8 5 8 2.
+ <_>
+
+ <_>
+ 12 4 4 8 -1.
+ <_>
+ 12 8 4 4 2.
+ <_>
+
+ <_>
+ 11 4 10 2 -1.
+ <_>
+ 11 4 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 12 3 -1.
+ <_>
+ 14 0 4 3 3.
+ <_>
+
+ <_>
+ 0 2 20 13 -1.
+ <_>
+ 5 2 10 13 2.
+ <_>
+
+ <_>
+ 12 4 4 8 -1.
+ <_>
+ 12 8 4 4 2.
+ <_>
+
+ <_>
+ 6 4 4 8 -1.
+ <_>
+ 6 8 4 4 2.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 9 6 1 12 3.
+ <_>
+
+ <_>
+ 7 1 14 2 -1.
+ <_>
+ 7 1 7 2 2.
+ <_>
+
+ <_>
+ 4 8 14 10 -1.
+ <_>
+ 4 13 14 5 2.
+ <_>
+
+ <_>
+ 11 14 9 4 -1.
+ <_>
+ 14 14 3 4 3.
+ <_>
+
+ <_>
+ 1 7 17 8 -1.
+ <_>
+ 1 11 17 4 2.
+ <_>
+
+ <_>
+ 10 12 7 6 -1.
+ <_>
+ 10 15 7 3 2.
+ <_>
+
+ <_>
+ 10 1 8 9 -1.
+ <_>
+ 10 1 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 4 11 -1.
+ <_>
+ 11 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 6 9 4 9 -1.
+ <_>
+ 8 9 2 9 2.
+ <_>
+
+ <_>
+ 8 3 12 4 -1.
+ <_>
+ 14 3 6 2 2.
+ <_>
+ 8 5 6 2 2.
+ <_>
+
+ <_>
+ 5 14 7 4 -1.
+ <_>
+ 5 16 7 2 2.
+ <_>
+
+ <_>
+ 13 0 4 13 -1.
+ <_>
+ 13 0 2 13 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 13 4 -1.
+ <_>
+ 9 0 13 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 9 4 9 -1.
+ <_>
+ 12 12 4 3 3.
+ <_>
+
+ <_>
+ 7 4 12 2 -1.
+ <_>
+ 7 4 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 5 10 6 -1.
+ <_>
+ 17 5 5 3 2.
+ <_>
+ 12 8 5 3 2.
+ <_>
+
+ <_>
+ 1 0 17 3 -1.
+ <_>
+ 1 1 17 1 3.
+ <_>
+
+ <_>
+ 15 4 6 8 -1.
+ <_>
+ 18 4 3 4 2.
+ <_>
+ 15 8 3 4 2.
+ <_>
+
+ <_>
+ 3 2 4 14 -1.
+ <_>
+ 3 2 2 7 2.
+ <_>
+ 5 9 2 7 2.
+ <_>
+
+ <_>
+ 14 8 6 4 -1.
+ <_>
+ 14 8 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 12 1 4 16 -1.
+ <_>
+ 14 1 2 8 2.
+ <_>
+ 12 9 2 8 2.
+ <_>
+
+ <_>
+ 7 0 6 8 -1.
+ <_>
+ 7 0 3 4 2.
+ <_>
+ 10 4 3 4 2.
+ <_>
+
+ <_>
+ 8 12 6 5 -1.
+ <_>
+ 8 12 3 5 2.
+ <_>
+
+ <_>
+ 7 5 6 12 -1.
+ <_>
+ 7 5 3 6 2.
+ <_>
+ 10 11 3 6 2.
+ <_>
+
+ <_>
+ 15 5 6 6 -1.
+ <_>
+ 15 5 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 6 10 3 8 -1.
+ <_>
+ 6 14 3 4 2.
+ <_>
+
+ <_>
+ 4 0 14 3 -1.
+ <_>
+ 4 1 14 1 3.
+ <_>
+
+ <_>
+ 0 9 8 3 -1.
+ <_>
+ 4 9 4 3 2.
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 3 0 10 10 -1.
+ <_>
+ 3 0 5 5 2.
+ <_>
+ 8 5 5 5 2.
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 5 13 6 4 2.
+ <_>
+
+ <_>
+ 6 12 10 3 -1.
+ <_>
+ 11 12 5 3 2.
+ <_>
+
+ <_>
+ 12 15 10 3 -1.
+ <_>
+ 12 15 5 3 2.
+ <_>
+
+ <_>
+ 0 15 10 3 -1.
+ <_>
+ 5 15 5 3 2.
+ <_>
+
+ <_>
+ 3 0 17 14 -1.
+ <_>
+ 3 7 17 7 2.
+ <_>
+
+ <_>
+ 9 0 4 16 -1.
+ <_>
+ 9 0 2 8 2.
+ <_>
+ 11 8 2 8 2.
+ <_>
+
+ <_>
+ 11 4 6 8 -1.
+ <_>
+ 11 8 6 4 2.
+ <_>
+
+ <_>
+ 0 9 12 3 -1.
+ <_>
+ 0 10 12 1 3.
+ <_>
+
+ <_>
+ 1 5 20 8 -1.
+ <_>
+ 11 5 10 4 2.
+ <_>
+ 1 9 10 4 2.
+ <_>
+
+ <_>
+ 1 8 13 3 -1.
+ <_>
+ 1 9 13 1 3.
+ <_>
+
+ <_>
+ 8 8 14 3 -1.
+ <_>
+ 8 9 14 1 3.
+ <_>
+
+ <_>
+ 4 16 14 2 -1.
+ <_>
+ 4 17 14 1 2.
+ <_>
+
+ <_>
+ 11 1 3 6 -1.
+ <_>
+ 12 2 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 6 3 -1.
+ <_>
+ 10 2 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 1 6 10 -1.
+ <_>
+ 16 1 3 5 2.
+ <_>
+ 13 6 3 5 2.
+ <_>
+
+ <_>
+ 11 0 10 3 -1.
+ <_>
+ 10 1 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 13 2 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 9 2 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 1 6 10 -1.
+ <_>
+ 16 1 3 5 2.
+ <_>
+ 13 6 3 5 2.
+ <_>
+
+ <_>
+ 3 1 6 10 -1.
+ <_>
+ 3 1 3 5 2.
+ <_>
+ 6 6 3 5 2.
+ <_>
+
+ <_>
+ 14 7 6 10 -1.
+ <_>
+ 17 7 3 5 2.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 3 2 6 8 -1.
+ <_>
+ 3 2 3 4 2.
+ <_>
+ 6 6 3 4 2.
+ <_>
+
+ <_>
+ 11 14 9 4 -1.
+ <_>
+ 14 14 3 4 3.
+ <_>
+
+ <_>
+ 1 8 15 8 -1.
+ <_>
+ 1 12 15 4 2.
+ <_>
+
+ <_>
+ 9 12 8 4 -1.
+ <_>
+ 9 14 8 2 2.
+ <_>
+
+ <_>
+ 6 5 7 6 -1.
+ <_>
+ 6 7 7 2 3.
+ <_>
+
+ <_>
+ 9 5 6 5 -1.
+ <_>
+ 9 5 3 5 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 2 12 4 6 2.
+ <_>
+
+ <_>
+ 14 8 6 4 -1.
+ <_>
+ 14 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 6 8 -1.
+ <_>
+ 11 4 2 8 3.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 9 4 2 8 3.
+ <_>
+
+ <_>
+ 0 15 10 3 -1.
+ <_>
+ 5 15 5 3 2.
+ <_>
+
+ <_>
+ 11 5 3 9 -1.
+ <_>
+ 12 6 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 11 5 9 3 -1.
+ <_>
+ 10 6 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 6 8 4 -1.
+ <_>
+ 12 6 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 6 4 8 -1.
+ <_>
+ 10 6 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 13 0 5 12 -1.
+ <_>
+ 13 0 5 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 3 12 4 -1.
+ <_>
+ 4 3 6 4 2.
+ <_>
+
+ <_>
+ 15 7 6 5 -1.
+ <_>
+ 15 7 3 5 2.
+ <_>
+
+ <_>
+ 1 7 12 3 -1.
+ <_>
+ 1 8 12 1 3.
+ <_>
+
+ <_>
+ 15 7 6 5 -1.
+ <_>
+ 15 7 3 5 2.
+ <_>
+
+ <_>
+ 1 7 6 5 -1.
+ <_>
+ 4 7 3 5 2.
+ <_>
+
+ <_>
+ 12 13 6 4 -1.
+ <_>
+ 12 15 6 2 2.
+ <_>
+
+ <_>
+ 5 12 12 6 -1.
+ <_>
+ 5 12 6 3 2.
+ <_>
+ 11 15 6 3 2.
+ <_>
+
+ <_>
+ 11 5 2 9 -1.
+ <_>
+ 11 5 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 9 2 -1.
+ <_>
+ 11 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 12 9 4 -1.
+ <_>
+ 13 12 3 4 3.
+ <_>
+
+ <_>
+ 8 6 6 6 -1.
+ <_>
+ 8 6 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 0 2 14 3 -1.
+ <_>
+ 0 3 14 1 3.
+ <_>
+
+ <_>
+ 8 2 12 3 -1.
+ <_>
+ 8 3 12 1 3.
+ <_>
+
+ <_>
+ 8 7 5 6 -1.
+ <_>
+ 8 7 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 8 3 -1.
+ <_>
+ 12 6 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 4 6 -1.
+ <_>
+ 6 10 2 6 2.
+ <_>
+
+ <_>
+ 1 11 20 4 -1.
+ <_>
+ 6 11 10 4 2.
+ <_>
+
+ <_>
+ 6 10 8 7 -1.
+ <_>
+ 8 10 4 7 2.
+ <_>
+
+ <_>
+ 11 3 3 9 -1.
+ <_>
+ 12 4 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 0 8 22 4 -1.
+ <_>
+ 11 8 11 4 2.
+ <_>
+
+ <_>
+ 3 10 16 3 -1.
+ <_>
+ 3 10 8 3 2.
+ <_>
+
+ <_>
+ 11 3 9 3 -1.
+ <_>
+ 10 4 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 7 12 4 6 -1.
+ <_>
+ 9 12 2 6 2.
+ <_>
+
+ <_>
+ 9 12 6 6 -1.
+ <_>
+ 9 12 3 6 2.
+ <_>
+
+ <_>
+ 2 13 16 5 -1.
+ <_>
+ 10 13 8 5 2.
+ <_>
+
+ <_>
+ 12 12 8 3 -1.
+ <_>
+ 12 12 4 3 2.
+ <_>
+
+ <_>
+ 10 4 12 2 -1.
+ <_>
+ 10 4 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 3 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 10 3 -1.
+ <_>
+ 9 6 5 3 2.
+ <_>
+
+ <_>
+ 10 1 6 8 -1.
+ <_>
+ 13 1 3 4 2.
+ <_>
+ 10 5 3 4 2.
+ <_>
+
+ <_>
+ 11 1 6 6 -1.
+ <_>
+ 11 1 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 6 6 4 -1.
+ <_>
+ 11 8 6 2 2.
+ <_>
+
+ <_>
+ 2 2 12 3 -1.
+ <_>
+ 2 3 12 1 3.
+ <_>
+
+ <_>
+ 11 3 8 4 -1.
+ <_>
+ 11 3 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 8 6 -1.
+ <_>
+ 1 0 4 3 2.
+ <_>
+ 5 3 4 3 2.
+ <_>
+
+ <_>
+ 8 3 14 3 -1.
+ <_>
+ 8 4 14 1 3.
+ <_>
+
+ <_>
+ 11 3 4 8 -1.
+ <_>
+ 11 3 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 12 10 -1.
+ <_>
+ 9 0 6 10 2.
+ <_>
+
+ <_>
+ 4 16 14 2 -1.
+ <_>
+ 4 17 14 1 2.
+ <_>
+
+ <_>
+ 10 11 12 3 -1.
+ <_>
+ 10 12 12 1 3.
+ <_>
+
+ <_>
+ 3 0 4 6 -1.
+ <_>
+ 5 0 2 6 2.
+ <_>
+
+ <_>
+ 16 12 6 4 -1.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 0 13 10 4 -1.
+ <_>
+ 5 13 5 4 2.
+ <_>
+
+ <_>
+ 3 1 16 4 -1.
+ <_>
+ 11 1 8 2 2.
+ <_>
+ 3 3 8 2 2.
+ <_>
+
+ <_>
+ 0 1 11 4 -1.
+ <_>
+ 0 3 11 2 2.
+ <_>
+
+ <_>
+ 6 8 11 6 -1.
+ <_>
+ 6 11 11 3 2.
+ <_>
+
+ <_>
+ 8 5 5 10 -1.
+ <_>
+ 8 10 5 5 2.
+ <_>
+
+ <_>
+ 9 2 4 6 -1.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 2 3 12 6 -1.
+ <_>
+ 2 3 6 3 2.
+ <_>
+ 8 6 6 3 2.
+ <_>
+
+ <_>
+ 13 3 7 9 -1.
+ <_>
+ 13 6 7 3 3.
+ <_>
+
+ <_>
+ 2 3 7 9 -1.
+ <_>
+ 2 6 7 3 3.
+ <_>
+
+ <_>
+ 11 0 3 6 -1.
+ <_>
+ 12 1 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 3 3 13 3 -1.
+ <_>
+ 3 4 13 1 3.
+ <_>
+
+ <_>
+ 8 3 14 3 -1.
+ <_>
+ 8 4 14 1 3.
+ <_>
+
+ <_>
+ 3 6 7 12 -1.
+ <_>
+ 3 9 7 6 2.
+ <_>
+
+ <_>
+ 12 13 6 4 -1.
+ <_>
+ 12 15 6 2 2.
+ <_>
+
+ <_>
+ 4 13 6 4 -1.
+ <_>
+ 4 15 6 2 2.
+ <_>
+
+ <_>
+ 6 1 15 2 -1.
+ <_>
+ 6 2 15 1 2.
+ <_>
+
+ <_>
+ 4 3 3 12 -1.
+ <_>
+ 5 3 1 12 3.
+ <_>
+
+ <_>
+ 14 4 2 12 -1.
+ <_>
+ 14 4 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 10 1 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 9 14 5 -1.
+ <_>
+ 4 9 7 5 2.
+ <_>
+
+ <_>
+ 11 2 10 3 -1.
+ <_>
+ 10 3 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 12 7 6 -1.
+ <_>
+ 9 14 7 2 3.
+ <_>
+
+ <_>
+ 1 8 8 10 -1.
+ <_>
+ 1 8 4 5 2.
+ <_>
+ 5 13 4 5 2.
+ <_>
+
+ <_>
+ 5 5 12 5 -1.
+ <_>
+ 9 5 4 5 3.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 6 8 10 -1.
+ <_>
+ 7 11 8 5 2.
+ <_>
+
+ <_>
+ 6 14 6 4 -1.
+ <_>
+ 9 14 3 4 2.
+ <_>
+
+ <_>
+ 5 15 12 2 -1.
+ <_>
+ 5 16 12 1 2.
+ <_>
+
+ <_>
+ 6 4 10 6 -1.
+ <_>
+ 6 6 10 2 3.
+ <_>
+
+ <_>
+ 9 12 8 6 -1.
+ <_>
+ 9 14 8 2 3.
+ <_>
+
+ <_>
+ 1 11 20 5 -1.
+ <_>
+ 6 11 10 5 2.
+ <_>
+
+ <_>
+ 10 8 8 4 -1.
+ <_>
+ 10 8 4 4 2.
+ <_>
+
+ <_>
+ 2 4 18 6 -1.
+ <_>
+ 2 6 18 2 3.
+ <_>
+
+ <_>
+ 8 4 12 11 -1.
+ <_>
+ 8 4 6 11 2.
+ <_>
+
+ <_>
+ 11 5 11 2 -1.
+ <_>
+ 11 5 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 3 6 18 9 -1.
+ <_>
+ 9 9 6 3 9.
+ <_>
+
+ <_>
+ 3 2 10 9 -1.
+ <_>
+ 8 2 5 9 2.
+ <_>
+
+ <_>
+ 14 5 6 6 -1.
+ <_>
+ 16 5 2 6 3.
+ <_>
+
+ <_>
+ 5 5 12 6 -1.
+ <_>
+ 8 5 6 6 2.
+ <_>
+
+ <_>
+ 11 3 10 4 -1.
+ <_>
+ 11 3 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 8 6 -1.
+ <_>
+ 6 3 4 3 2.
+ <_>
+ 10 6 4 3 2.
+ <_>
+
+ <_>
+ 16 0 3 15 -1.
+ <_>
+ 16 5 3 5 3.
+ <_>
+
+ <_>
+ 3 0 3 15 -1.
+ <_>
+ 3 5 3 5 3.
+ <_>
+
+ <_>
+ 5 2 12 16 -1.
+ <_>
+ 8 2 6 16 2.
+ <_>
+
+ <_>
+ 6 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 5 9 13 9 -1.
+ <_>
+ 5 12 13 3 3.
+ <_>
+
+ <_>
+ 11 7 8 3 -1.
+ <_>
+ 11 7 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 9 4 -1.
+ <_>
+ 10 0 3 4 3.
+ <_>
+
+ <_>
+ 7 6 6 5 -1.
+ <_>
+ 10 6 3 5 2.
+ <_>
+
+ <_>
+ 2 7 18 6 -1.
+ <_>
+ 8 9 6 2 9.
+ <_>
+
+ <_>
+ 11 4 10 3 -1.
+ <_>
+ 10 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 14 8 4 -1.
+ <_>
+ 13 16 8 2 2.
+ <_>
+
+ <_>
+ 1 14 8 4 -1.
+ <_>
+ 1 16 8 2 2.
+ <_>
+
+ <_>
+ 11 4 3 10 -1.
+ <_>
+ 12 5 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 10 3 -1.
+ <_>
+ 10 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 2 12 18 6 -1.
+ <_>
+ 11 12 9 3 2.
+ <_>
+ 2 15 9 3 2.
+ <_>
+
+ <_>
+ 5 2 8 6 -1.
+ <_>
+ 5 2 4 3 2.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 8 14 6 4 -1.
+ <_>
+ 8 16 6 2 2.
+ <_>
+
+ <_>
+ 1 10 6 8 -1.
+ <_>
+ 1 10 3 4 2.
+ <_>
+ 4 14 3 4 2.
+ <_>
+
+ <_>
+ 7 2 15 9 -1.
+ <_>
+ 12 5 5 3 9.
+ <_>
+
+ <_>
+ 0 2 15 9 -1.
+ <_>
+ 5 5 5 3 9.
+ <_>
+
+ <_>
+ 10 5 6 7 -1.
+ <_>
+ 12 5 2 7 3.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 14 6 2 2.
+ <_>
+ 11 16 6 2 2.
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 10 2 12 1 3.
+ <_>
+
+ <_>
+ 8 1 3 12 -1.
+ <_>
+ 9 1 1 12 3.
+ <_>
+
+ <_>
+ 14 2 6 7 -1.
+ <_>
+ 14 2 3 7 2.
+ <_>
+
+ <_>
+ 1 0 12 9 -1.
+ <_>
+ 5 3 4 3 9.
+ <_>
+
+ <_>
+ 8 3 7 6 -1.
+ <_>
+ 8 6 7 3 2.
+ <_>
+
+ <_>
+ 1 12 20 3 -1.
+ <_>
+ 6 12 10 3 2.
+ <_>
+
+ <_>
+ 5 2 12 16 -1.
+ <_>
+ 5 6 12 8 2.
+ <_>
+
+ <_>
+ 4 3 7 6 -1.
+ <_>
+ 4 6 7 3 2.
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 11 5 2 6 3.
+ <_>
+
+ <_>
+ 7 0 8 2 -1.
+ <_>
+ 7 0 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 14 12 2 -1.
+ <_>
+ 5 15 12 1 2.
+ <_>
+
+ <_>
+ 3 11 16 6 -1.
+ <_>
+ 3 13 16 2 3.
+ <_>
+
+ <_>
+ 11 5 3 8 -1.
+ <_>
+ 11 5 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 2 15 12 3 -1.
+ <_>
+ 8 15 6 3 2.
+ <_>
+
+ <_>
+ 4 13 15 3 -1.
+ <_>
+ 9 13 5 3 3.
+ <_>
+
+ <_>
+ 2 3 12 4 -1.
+ <_>
+ 2 3 6 2 2.
+ <_>
+ 8 5 6 2 2.
+ <_>
+
+ <_>
+ 17 5 4 7 -1.
+ <_>
+ 17 5 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 7 4 -1.
+ <_>
+ 5 4 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 2 2 18 3 -1.
+ <_>
+ 8 2 6 3 3.
+ <_>
+
+ <_>
+ 2 2 18 9 -1.
+ <_>
+ 8 5 6 3 9.
+ <_>
+
+ <_>
+ 15 6 6 4 -1.
+ <_>
+ 15 6 3 4 2.
+ <_>
+
+ <_>
+ 0 1 12 3 -1.
+ <_>
+ 0 2 12 1 3.
+ <_>
+
+ <_>
+ 16 2 6 4 -1.
+ <_>
+ 16 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 9 14 6 -1.
+ <_>
+ 7 9 7 6 2.
+ <_>
+
+ <_>
+ 13 5 8 4 -1.
+ <_>
+ 13 5 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 4 8 -1.
+ <_>
+ 9 5 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 3 14 -1.
+ <_>
+ 12 11 3 7 2.
+ <_>
+
+ <_>
+ 1 13 20 5 -1.
+ <_>
+ 6 13 10 5 2.
+ <_>
+
+ <_>
+ 12 4 3 14 -1.
+ <_>
+ 12 11 3 7 2.
+ <_>
+
+ <_>
+ 7 4 3 14 -1.
+ <_>
+ 7 11 3 7 2.
+ <_>
+
+ <_>
+ 16 2 6 4 -1.
+ <_>
+ 16 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 2 4 6 -1.
+ <_>
+ 6 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 15 14 -1.
+ <_>
+ 7 11 15 7 2.
+ <_>
+
+ <_>
+ 1 16 16 2 -1.
+ <_>
+ 1 17 16 1 2.
+ <_>
+
+ <_>
+ 0 6 12 4 -1.
+ <_>
+ 3 6 6 4 2.
+ <_>
+
+ <_>
+ 6 9 10 9 -1.
+ <_>
+ 6 12 10 3 3.
+ <_>
+
+ <_>
+ 0 6 6 5 -1.
+ <_>
+ 3 6 3 5 2.
+ <_>
+
+ <_>
+ 11 14 7 4 -1.
+ <_>
+ 11 16 7 2 2.
+ <_>
+
+ <_>
+ 7 8 8 2 -1.
+ <_>
+ 7 8 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 13 7 4 -1.
+ <_>
+ 10 15 7 2 2.
+ <_>
+
+ <_>
+ 1 16 20 2 -1.
+ <_>
+ 11 16 10 2 2.
+ <_>
+
+ <_>
+ 5 12 14 4 -1.
+ <_>
+ 5 12 7 4 2.
+ <_>
+
+ <_>
+ 8 8 4 6 -1.
+ <_>
+ 8 8 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 17 2 2 14 -1.
+ <_>
+ 17 2 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 8 4 -1.
+ <_>
+ 11 1 4 4 2.
+ <_>
+
+ <_>
+ 5 7 12 3 -1.
+ <_>
+ 9 7 4 3 3.
+ <_>
+
+ <_>
+ 2 14 6 4 -1.
+ <_>
+ 5 14 3 4 2.
+ <_>
+
+ <_>
+ 10 9 12 4 -1.
+ <_>
+ 16 9 6 2 2.
+ <_>
+ 10 11 6 2 2.
+ <_>
+
+ <_>
+ 6 14 9 4 -1.
+ <_>
+ 9 14 3 4 3.
+ <_>
+
+ <_>
+ 11 9 2 6 -1.
+ <_>
+ 11 9 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 9 14 9 -1.
+ <_>
+ 3 12 14 3 3.
+ <_>
+
+ <_>
+ 5 10 16 6 -1.
+ <_>
+ 5 12 16 2 3.
+ <_>
+
+ <_>
+ 5 12 10 6 -1.
+ <_>
+ 5 12 5 3 2.
+ <_>
+ 10 15 5 3 2.
+ <_>
+
+ <_>
+ 4 13 18 5 -1.
+ <_>
+ 4 13 9 5 2.
+ <_>
+
+ <_>
+ 0 13 18 5 -1.
+ <_>
+ 9 13 9 5 2.
+ <_>
+
+ <_>
+ 4 9 16 3 -1.
+ <_>
+ 4 10 16 1 3.
+ <_>
+
+ <_>
+ 5 1 15 2 -1.
+ <_>
+ 5 1 15 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 5 2 9 -1.
+ <_>
+ 13 5 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 9 2 -1.
+ <_>
+ 9 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 20 5 -1.
+ <_>
+ 6 11 10 5 2.
+ <_>
+
+ <_>
+ 3 9 13 3 -1.
+ <_>
+ 3 10 13 1 3.
+ <_>
+
+ <_>
+ 18 5 4 12 -1.
+ <_>
+ 20 5 2 6 2.
+ <_>
+ 18 11 2 6 2.
+ <_>
+
+ <_>
+ 4 12 5 6 -1.
+ <_>
+ 4 15 5 3 2.
+ <_>
+
+ <_>
+ 15 1 2 8 -1.
+ <_>
+ 15 1 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 8 2 -1.
+ <_>
+ 7 1 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 18 5 4 12 -1.
+ <_>
+ 20 5 2 6 2.
+ <_>
+ 18 11 2 6 2.
+ <_>
+
+ <_>
+ 10 4 10 2 -1.
+ <_>
+ 10 4 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 4 20 4 -1.
+ <_>
+ 7 4 10 4 2.
+ <_>
+
+ <_>
+ 1 9 8 3 -1.
+ <_>
+ 5 9 4 3 2.
+ <_>
+
+ <_>
+ 18 5 4 12 -1.
+ <_>
+ 20 5 2 6 2.
+ <_>
+ 18 11 2 6 2.
+ <_>
+
+ <_>
+ 0 5 4 12 -1.
+ <_>
+ 0 5 2 6 2.
+ <_>
+ 2 11 2 6 2.
+ <_>
+
+ <_>
+ 6 0 14 18 -1.
+ <_>
+ 6 9 14 9 2.
+ <_>
+
+ <_>
+ 4 4 12 3 -1.
+ <_>
+ 4 5 12 1 3.
+ <_>
+
+ <_>
+ 8 4 14 3 -1.
+ <_>
+ 8 5 14 1 3.
+ <_>
+
+ <_>
+ 4 13 14 3 -1.
+ <_>
+ 4 14 14 1 3.
+ <_>
+
+ <_>
+ 8 2 6 14 -1.
+ <_>
+ 11 2 3 7 2.
+ <_>
+ 8 9 3 7 2.
+ <_>
+
+ <_>
+ 0 13 15 4 -1.
+ <_>
+ 0 14 15 2 2.
+ <_>
+
+ <_>
+ 11 14 7 4 -1.
+ <_>
+ 11 16 7 2 2.
+ <_>
+
+ <_>
+ 11 7 7 3 -1.
+ <_>
+ 10 8 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 10 9 6 3 2.
+ <_>
+
+ <_>
+ 2 0 4 14 -1.
+ <_>
+ 2 0 2 7 2.
+ <_>
+ 4 7 2 7 2.
+ <_>
+
+ <_>
+ 2 6 18 5 -1.
+ <_>
+ 8 6 6 5 3.
+ <_>
+
+ <_>
+ 2 0 18 18 -1.
+ <_>
+ 8 0 6 18 3.
+ <_>
+
+ <_>
+ 13 1 4 8 -1.
+ <_>
+ 14 2 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 12 18 -1.
+ <_>
+ 4 0 6 9 2.
+ <_>
+ 10 9 6 9 2.
+ <_>
+
+ <_>
+ 12 14 6 4 -1.
+ <_>
+ 12 16 6 2 2.
+ <_>
+
+ <_>
+ 4 14 6 4 -1.
+ <_>
+ 4 16 6 2 2.
+ <_>
+
+ <_>
+ 11 8 2 6 -1.
+ <_>
+ 11 8 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 1 10 20 6 -1.
+ <_>
+ 1 10 10 3 2.
+ <_>
+ 11 13 10 3 2.
+ <_>
+
+ <_>
+ 13 1 7 9 -1.
+ <_>
+ 10 4 7 3 3.
+ 1
+ <_>
+
+ <_>
+ 5 3 4 6 -1.
+ <_>
+ 5 6 4 3 2.
+ <_>
+
+ <_>
+ 13 0 2 12 -1.
+ <_>
+ 13 6 2 6 2.
+ <_>
+
+ <_>
+ 7 11 8 3 -1.
+ <_>
+ 11 11 4 3 2.
+ <_>
+
+ <_>
+ 9 6 12 11 -1.
+ <_>
+ 12 6 6 11 2.
+ <_>
+
+ <_>
+ 6 8 10 9 -1.
+ <_>
+ 11 8 5 9 2.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 11 14 3 4 2.
+ <_>
+
+ <_>
+ 3 6 12 4 -1.
+ <_>
+ 7 6 4 4 3.
+ <_>
+
+ <_>
+ 10 5 6 7 -1.
+ <_>
+ 12 5 2 7 3.
+ <_>
+
+ <_>
+ 8 0 6 4 -1.
+ <_>
+ 11 0 3 4 2.
+ <_>
+
+ <_>
+ 10 6 6 12 -1.
+ <_>
+ 12 6 2 12 3.
+ <_>
+
+ <_>
+ 6 6 6 12 -1.
+ <_>
+ 8 6 2 12 3.
+ <_>
+
+ <_>
+ 6 9 9 6 -1.
+ <_>
+ 6 12 9 3 2.
+ <_>
+
+ <_>
+ 14 6 6 6 -1.
+ <_>
+ 14 6 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 13 20 5 -1.
+ <_>
+ 6 13 10 5 2.
+ <_>
+
+ <_>
+ 8 14 6 4 -1.
+ <_>
+ 8 16 6 2 2.
+ <_>
+
+ <_>
+ 4 7 8 3 -1.
+ <_>
+ 4 7 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 2 15 -1.
+ <_>
+ 16 0 1 15 2.
+ 1
+ <_>
+
+ <_>
+ 9 3 12 2 -1.
+ <_>
+ 9 3 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 8 6 -1.
+ <_>
+ 9 1 4 6 2.
+ <_>
+
+ <_>
+ 6 15 8 3 -1.
+ <_>
+ 10 15 4 3 2.
+ <_>
+
+ <_>
+ 8 3 6 6 -1.
+ <_>
+ 10 3 2 6 3.
+ <_>
+
+ <_>
+ 1 1 16 3 -1.
+ <_>
+ 1 2 16 1 3.
+ <_>
+
+ <_>
+ 9 1 12 3 -1.
+ <_>
+ 9 2 12 1 3.
+ <_>
+
+ <_>
+ 0 0 22 6 -1.
+ <_>
+ 0 0 11 3 2.
+ <_>
+ 11 3 11 3 2.
+ <_>
+
+ <_>
+ 10 5 4 6 -1.
+ <_>
+ 10 5 2 6 2.
+ <_>
+
+ <_>
+ 10 0 8 5 -1.
+ <_>
+ 10 0 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 4 10 -1.
+ <_>
+ 13 5 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 10 4 10 4 -1.
+ <_>
+ 9 5 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 15 1 2 8 -1.
+ <_>
+ 15 1 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 8 2 -1.
+ <_>
+ 7 1 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 0 3 11 -1.
+ <_>
+ 18 1 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 9 8 4 6 -1.
+ <_>
+ 9 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 6 6 12 -1.
+ <_>
+ 17 6 3 6 2.
+ <_>
+ 14 12 3 6 2.
+ <_>
+
+ <_>
+ 2 12 18 6 -1.
+ <_>
+ 8 14 6 2 9.
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 3 8 16 10 -1.
+ <_>
+ 3 8 8 5 2.
+ <_>
+ 11 13 8 5 2.
+ <_>
+
+ <_>
+ 15 12 4 6 -1.
+ <_>
+ 15 15 4 3 2.
+ <_>
+
+ <_>
+ 2 8 18 10 -1.
+ <_>
+ 2 8 9 5 2.
+ <_>
+ 11 13 9 5 2.
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 10 2 12 1 3.
+ <_>
+
+ <_>
+ 1 1 12 3 -1.
+ <_>
+ 1 2 12 1 3.
+ <_>
+
+ <_>
+ 8 0 14 4 -1.
+ <_>
+ 15 0 7 2 2.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 2 4 14 4 -1.
+ <_>
+ 2 5 14 2 2.
+ <_>
+
+ <_>
+ 8 4 12 3 -1.
+ <_>
+ 8 5 12 1 3.
+ <_>
+
+ <_>
+ 1 0 8 8 -1.
+ <_>
+ 1 0 4 4 2.
+ <_>
+ 5 4 4 4 2.
+ <_>
+
+ <_>
+ 13 0 8 6 -1.
+ <_>
+ 17 0 4 3 2.
+ <_>
+ 13 3 4 3 2.
+ <_>
+
+ <_>
+ 1 0 8 6 -1.
+ <_>
+ 1 0 4 3 2.
+ <_>
+ 5 3 4 3 2.
+ <_>
+
+ <_>
+ 9 6 6 5 -1.
+ <_>
+ 9 6 3 5 2.
+ <_>
+
+ <_>
+ 5 6 8 3 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 13 3 6 9 -1.
+ <_>
+ 10 6 6 3 3.
+ 1
+ <_>
+
+ <_>
+ 9 3 9 6 -1.
+ <_>
+ 12 6 3 6 3.
+ 1
+ <_>
+
+ <_>
+ 4 11 18 3 -1.
+ <_>
+ 4 12 18 1 3.
+ <_>
+
+ <_>
+ 0 13 15 4 -1.
+ <_>
+ 5 13 5 4 3.
+ <_>
+
+ <_>
+ 15 12 4 6 -1.
+ <_>
+ 15 15 4 3 2.
+ <_>
+
+ <_>
+ 3 12 4 6 -1.
+ <_>
+ 3 15 4 3 2.
+ <_>
+
+ <_>
+ 9 12 6 6 -1.
+ <_>
+ 11 12 2 6 3.
+ <_>
+
+ <_>
+ 6 9 9 7 -1.
+ <_>
+ 9 9 3 7 3.
+ <_>
+
+ <_>
+ 13 10 6 8 -1.
+ <_>
+ 16 10 3 4 2.
+ <_>
+ 13 14 3 4 2.
+ <_>
+
+ <_>
+ 3 10 6 8 -1.
+ <_>
+ 3 10 3 4 2.
+ <_>
+ 6 14 3 4 2.
+ <_>
+
+ <_>
+ 7 10 8 4 -1.
+ <_>
+ 7 10 4 4 2.
+ <_>
+
+ <_>
+ 7 5 6 11 -1.
+ <_>
+ 10 5 3 11 2.
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 10 9 6 3 2.
+ <_>
+
+ <_>
+ 6 6 6 6 -1.
+ <_>
+ 6 9 6 3 2.
+ <_>
+
+ <_>
+ 8 6 12 8 -1.
+ <_>
+ 12 6 4 8 3.
+ <_>
+
+ <_>
+ 2 11 12 3 -1.
+ <_>
+ 6 11 4 3 3.
+ <_>
+
+ <_>
+ 14 3 6 8 -1.
+ <_>
+ 17 3 3 4 2.
+ <_>
+ 14 7 3 4 2.
+ <_>
+
+ <_>
+ 0 5 13 3 -1.
+ <_>
+ 0 6 13 1 3.
+ <_>
+
+ <_>
+ 14 0 6 6 -1.
+ <_>
+ 14 2 6 2 3.
+ <_>
+
+ <_>
+ 3 0 6 6 -1.
+ <_>
+ 3 2 6 2 3.
+ <_>
+
+ <_>
+ 8 8 14 3 -1.
+ <_>
+ 8 9 14 1 3.
+ <_>
+
+ <_>
+ 7 2 2 15 -1.
+ <_>
+ 8 2 1 15 2.
+ <_>
+
+ <_>
+ 4 14 16 4 -1.
+ <_>
+ 4 14 8 4 2.
+ <_>
+
+ <_>
+ 1 6 20 12 -1.
+ <_>
+ 6 6 10 12 2.
+ <_>
+
+ <_>
+ 5 10 16 6 -1.
+ <_>
+ 13 10 8 3 2.
+ <_>
+ 5 13 8 3 2.
+ <_>
+
+ <_>
+ 1 10 16 6 -1.
+ <_>
+ 1 10 8 3 2.
+ <_>
+ 9 13 8 3 2.
+ <_>
+
+ <_>
+ 8 8 14 6 -1.
+ <_>
+ 8 8 7 6 2.
+ <_>
+
+ <_>
+ 0 8 14 6 -1.
+ <_>
+ 7 8 7 6 2.
+ <_>
+
+ <_>
+ 5 6 12 11 -1.
+ <_>
+ 8 6 6 11 2.
+ <_>
+
+ <_>
+ 1 3 8 6 -1.
+ <_>
+ 1 3 4 3 2.
+ <_>
+ 5 6 4 3 2.
+ <_>
+
+ <_>
+ 13 1 7 6 -1.
+ <_>
+ 13 1 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 4 5 10 -1.
+ <_>
+ 1 9 5 5 2.
+ <_>
+
+ <_>
+ 18 6 3 8 -1.
+ <_>
+ 18 10 3 4 2.
+ <_>
+
+ <_>
+ 1 6 3 8 -1.
+ <_>
+ 1 10 3 4 2.
+ <_>
+
+ <_>
+ 8 5 13 3 -1.
+ <_>
+ 8 6 13 1 3.
+ <_>
+
+ <_>
+ 1 5 13 3 -1.
+ <_>
+ 1 6 13 1 3.
+ <_>
+
+ <_>
+ 18 0 3 12 -1.
+ <_>
+ 19 0 1 12 3.
+ <_>
+
+ <_>
+ 1 0 3 12 -1.
+ <_>
+ 2 0 1 12 3.
+ <_>
+
+ <_>
+ 4 2 18 2 -1.
+ <_>
+ 4 2 9 2 2.
+ <_>
+
+ <_>
+ 6 3 6 6 -1.
+ <_>
+ 9 3 3 6 2.
+ <_>
+
+ <_>
+ 9 5 12 11 -1.
+ <_>
+ 12 5 6 11 2.
+ <_>
+
+ <_>
+ 1 5 12 11 -1.
+ <_>
+ 4 5 6 11 2.
+ <_>
+
+ <_>
+ 8 4 8 8 -1.
+ <_>
+ 8 4 4 8 2.
+ <_>
+
+ <_>
+ 0 8 22 4 -1.
+ <_>
+ 0 8 11 2 2.
+ <_>
+ 11 10 11 2 2.
+ <_>
+
+ <_>
+ 8 6 8 4 -1.
+ <_>
+ 8 6 4 4 2.
+ <_>
+
+ <_>
+ 6 3 8 8 -1.
+ <_>
+ 10 3 4 8 2.
+ <_>
+
+ <_>
+ 3 6 16 4 -1.
+ <_>
+ 11 6 8 2 2.
+ <_>
+ 3 8 8 2 2.
+ <_>
+
+ <_>
+ 2 14 16 4 -1.
+ <_>
+ 10 14 8 4 2.
+ <_>
+
+ <_>
+ 11 13 6 5 -1.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 5 13 6 5 -1.
+ <_>
+ 8 13 3 5 2.
+ <_>
+
+ <_>
+ 12 2 2 7 -1.
+ <_>
+ 12 2 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 0 9 21 9 -1.
+ <_>
+ 7 12 7 3 9.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 3 9 16 8 -1.
+ <_>
+ 3 9 8 4 2.
+ <_>
+ 11 13 8 4 2.
+ <_>
+
+ <_>
+ 7 0 14 18 -1.
+ <_>
+ 7 0 7 18 2.
+ <_>
+
+ <_>
+ 5 8 6 4 -1.
+ <_>
+ 5 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 11 16 4 -1.
+ <_>
+ 11 11 8 2 2.
+ <_>
+ 3 13 8 2 2.
+ <_>
+
+ <_>
+ 6 9 6 8 -1.
+ <_>
+ 6 9 3 4 2.
+ <_>
+ 9 13 3 4 2.
+ <_>
+
+ <_>
+ 7 0 14 18 -1.
+ <_>
+ 7 0 7 18 2.
+ <_>
+
+ <_>
+ 1 0 14 18 -1.
+ <_>
+ 8 0 7 18 2.
+ <_>
+
+ <_>
+ 13 14 8 3 -1.
+ <_>
+ 13 14 4 3 2.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 6 6 14 4 -1.
+ <_>
+ 13 6 7 2 2.
+ <_>
+ 6 8 7 2 2.
+ <_>
+
+ <_>
+ 7 3 11 4 -1.
+ <_>
+ 6 4 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 12 4 -1.
+ <_>
+ 13 0 6 2 2.
+ <_>
+ 7 2 6 2 2.
+ <_>
+
+ <_>
+ 4 0 14 4 -1.
+ <_>
+ 4 0 7 2 2.
+ <_>
+ 11 2 7 2 2.
+ <_>
+
+ <_>
+ 15 8 6 9 -1.
+ <_>
+ 17 8 2 9 3.
+ <_>
+
+ <_>
+ 1 8 6 9 -1.
+ <_>
+ 3 8 2 9 3.
+ <_>
+
+ <_>
+ 12 5 5 9 -1.
+ <_>
+ 12 8 5 3 3.
+ <_>
+
+ <_>
+ 5 5 5 9 -1.
+ <_>
+ 5 8 5 3 3.
+ <_>
+
+ <_>
+ 17 9 4 6 -1.
+ <_>
+ 17 9 2 6 2.
+ <_>
+
+ <_>
+ 1 9 4 6 -1.
+ <_>
+ 3 9 2 6 2.
+ <_>
+
+ <_>
+ 4 3 14 3 -1.
+ <_>
+ 4 4 14 1 3.
+ <_>
+
+ <_>
+ 6 0 10 3 -1.
+ <_>
+ 5 1 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 4 11 14 -1.
+ <_>
+ 10 11 11 7 2.
+ <_>
+
+ <_>
+ 2 5 6 6 -1.
+ <_>
+ 2 7 6 2 3.
+ <_>
+
+ <_>
+ 12 2 5 12 -1.
+ <_>
+ 12 6 5 4 3.
+ <_>
+
+ <_>
+ 5 16 12 2 -1.
+ <_>
+ 5 17 12 1 2.
+ <_>
+
+ <_>
+ 3 4 18 3 -1.
+ <_>
+ 3 5 18 1 3.
+ <_>
+
+ <_>
+ 1 4 11 14 -1.
+ <_>
+ 1 11 11 7 2.
+ <_>
+
+ <_>
+ 8 12 11 4 -1.
+ <_>
+ 8 14 11 2 2.
+ <_>
+
+ <_>
+ 7 11 8 7 -1.
+ <_>
+ 11 11 4 7 2.
+ <_>
+
+ <_>
+ 12 2 4 11 -1.
+ <_>
+ 12 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 10 4 11 2 -1.
+ <_>
+ 10 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 2 14 -1.
+ <_>
+ 16 0 1 14 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 14 2 -1.
+ <_>
+ 6 0 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 19 4 2 12 -1.
+ <_>
+ 19 4 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 8 2 6 10 -1.
+ <_>
+ 8 7 6 5 2.
+ <_>
+
+ <_>
+ 19 4 2 12 -1.
+ <_>
+ 19 4 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 11 3 6 8 -1.
+ <_>
+ 11 3 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 10 6 -1.
+ <_>
+ 11 2 5 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 5 13 2 -1.
+ <_>
+ 3 6 13 1 2.
+ <_>
+
+ <_>
+ 5 4 12 6 -1.
+ <_>
+ 5 6 12 2 3.
+ <_>
+
+ <_>
+ 6 9 9 9 -1.
+ <_>
+ 9 9 3 9 3.
+ <_>
+
+ <_>
+ 19 1 3 12 -1.
+ <_>
+ 20 2 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 2 13 9 5 -1.
+ <_>
+ 5 13 3 5 3.
+ <_>
+
+ <_>
+ 11 2 10 6 -1.
+ <_>
+ 11 2 5 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 6 10 -1.
+ <_>
+ 11 2 6 5 2.
+ 1
+ <_>
+
+ <_>
+ 1 6 21 3 -1.
+ <_>
+ 8 6 7 3 3.
+ <_>
+
+ <_>
+ 5 5 3 8 -1.
+ <_>
+ 5 9 3 4 2.
+ <_>
+
+ <_>
+ 10 5 7 6 -1.
+ <_>
+ 10 7 7 2 3.
+ <_>
+
+ <_>
+ 10 0 7 6 -1.
+ <_>
+ 8 2 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 13 5 6 6 -1.
+ <_>
+ 13 7 6 2 3.
+ <_>
+
+ <_>
+ 5 5 7 6 -1.
+ <_>
+ 5 7 7 2 3.
+ <_>
+
+ <_>
+ 9 1 6 8 -1.
+ <_>
+ 12 1 3 4 2.
+ <_>
+ 9 5 3 4 2.
+ <_>
+
+ <_>
+ 7 1 6 8 -1.
+ <_>
+ 7 1 3 4 2.
+ <_>
+ 10 5 3 4 2.
+ <_>
+
+ <_>
+ 7 0 9 4 -1.
+ <_>
+ 10 0 3 4 3.
+ <_>
+
+ <_>
+ 1 9 14 3 -1.
+ <_>
+ 1 10 14 1 3.
+ <_>
+
+ <_>
+ 5 9 15 3 -1.
+ <_>
+ 5 10 15 1 3.
+ <_>
+
+ <_>
+ 3 1 12 3 -1.
+ <_>
+ 2 2 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 12 12 6 -1.
+ <_>
+ 11 12 6 3 2.
+ <_>
+ 5 15 6 3 2.
+ <_>
+
+ <_>
+ 5 12 12 4 -1.
+ <_>
+ 5 12 6 2 2.
+ <_>
+ 11 14 6 2 2.
+ <_>
+
+ <_>
+ 15 4 3 9 -1.
+ <_>
+ 16 5 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 7 4 9 3 -1.
+ <_>
+ 6 5 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 3 7 4 -1.
+ <_>
+ 13 5 7 2 2.
+ <_>
+
+ <_>
+ 4 0 9 5 -1.
+ <_>
+ 7 0 3 5 3.
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 12 6 2 6 3.
+ <_>
+
+ <_>
+ 0 6 12 4 -1.
+ <_>
+ 0 6 6 2 2.
+ <_>
+ 6 8 6 2 2.
+ <_>
+
+ <_>
+ 10 11 9 6 -1.
+ <_>
+ 13 11 3 6 3.
+ <_>
+
+ <_>
+ 2 6 16 8 -1.
+ <_>
+ 2 10 16 4 2.
+ <_>
+
+ <_>
+ 17 0 2 10 -1.
+ <_>
+ 17 0 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 10 2 -1.
+ <_>
+ 5 0 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 11 13 3 -1.
+ <_>
+ 9 12 13 1 3.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 18 6 4 12 -1.
+ <_>
+ 18 9 4 6 2.
+ <_>
+
+ <_>
+ 6 4 9 7 -1.
+ <_>
+ 9 4 3 7 3.
+ <_>
+
+ <_>
+ 11 9 6 7 -1.
+ <_>
+ 13 9 2 7 3.
+ <_>
+
+ <_>
+ 5 9 6 7 -1.
+ <_>
+ 7 9 2 7 3.
+ <_>
+
+ <_>
+ 1 13 20 5 -1.
+ <_>
+ 6 13 10 5 2.
+ <_>
+
+ <_>
+ 7 9 8 6 -1.
+ <_>
+ 9 9 4 6 2.
+ <_>
+
+ <_>
+ 5 5 12 4 -1.
+ <_>
+ 8 5 6 4 2.
+ <_>
+
+ <_>
+ 1 11 20 6 -1.
+ <_>
+ 6 11 10 6 2.
+ <_>
+
+ <_>
+ 1 8 20 7 -1.
+ <_>
+ 6 8 10 7 2.
+ <_>
+
+ <_>
+ 2 9 18 6 -1.
+ <_>
+ 8 11 6 2 9.
+ <_>
+
+ <_>
+ 8 13 9 4 -1.
+ <_>
+ 8 15 9 2 2.
+ <_>
+
+ <_>
+ 1 12 9 6 -1.
+ <_>
+ 1 15 9 3 2.
+ <_>
+
+ <_>
+ 9 2 8 6 -1.
+ <_>
+ 13 2 4 3 2.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 0 5 22 5 -1.
+ <_>
+ 11 5 11 5 2.
+ <_>
+
+ <_>
+ 2 0 18 18 -1.
+ <_>
+ 2 9 18 9 2.
+ <_>
+
+ <_>
+ 6 7 3 8 -1.
+ <_>
+ 6 11 3 4 2.
+ <_>
+
+ <_>
+ 11 12 8 6 -1.
+ <_>
+ 13 12 4 6 2.
+ <_>
+
+ <_>
+ 3 8 6 8 -1.
+ <_>
+ 3 8 3 4 2.
+ <_>
+ 6 12 3 4 2.
+ <_>
+
+ <_>
+ 11 6 7 4 -1.
+ <_>
+ 11 8 7 2 2.
+ <_>
+
+ <_>
+ 9 2 4 6 -1.
+ <_>
+ 11 2 2 6 2.
+ <_>
+
+ <_>
+ 3 14 16 4 -1.
+ <_>
+ 11 14 8 2 2.
+ <_>
+ 3 16 8 2 2.
+ <_>
+
+ <_>
+ 5 14 6 4 -1.
+ <_>
+ 5 16 6 2 2.
+ <_>
+
+ <_>
+ 9 5 4 6 -1.
+ <_>
+ 9 5 2 6 2.
+ <_>
+
+ <_>
+ 5 12 12 6 -1.
+ <_>
+ 8 12 6 6 2.
+ <_>
+
+ <_>
+ 7 14 8 4 -1.
+ <_>
+ 7 16 8 2 2.
+ <_>
+
+ <_>
+ 1 3 18 3 -1.
+ <_>
+ 1 4 18 1 3.
+ <_>
+
+ <_>
+ 8 3 14 3 -1.
+ <_>
+ 8 4 14 1 3.
+ <_>
+
+ <_>
+ 1 0 14 4 -1.
+ <_>
+ 1 0 7 2 2.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 10 10 12 3 -1.
+ <_>
+ 10 11 12 1 3.
+ <_>
+
+ <_>
+ 1 10 12 3 -1.
+ <_>
+ 1 11 12 1 3.
+ <_>
+
+ <_>
+ 10 7 8 3 -1.
+ <_>
+ 10 7 4 3 2.
+ <_>
+
+ <_>
+ 11 0 6 6 -1.
+ <_>
+ 9 2 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 17 0 2 10 -1.
+ <_>
+ 17 0 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 4 7 8 3 -1.
+ <_>
+ 8 7 4 3 2.
+ <_>
+
+ <_>
+ 13 0 8 6 -1.
+ <_>
+ 13 2 8 2 3.
+ <_>
+
+ <_>
+ 1 0 8 6 -1.
+ <_>
+ 1 2 8 2 3.
+ <_>
+
+ <_>
+ 17 0 2 10 -1.
+ <_>
+ 17 0 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 10 2 -1.
+ <_>
+ 5 0 10 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 6 6 4 -1.
+ <_>
+ 10 6 3 4 2.
+ <_>
+
+ <_>
+ 0 4 14 3 -1.
+ <_>
+ 0 5 14 1 3.
+ <_>
+
+ <_>
+ 3 3 16 10 -1.
+ <_>
+ 11 3 8 5 2.
+ <_>
+ 3 8 8 5 2.
+ <_>
+
+ <_>
+ 1 5 12 3 -1.
+ <_>
+ 1 6 12 1 3.
+ <_>
+
+ <_>
+ 9 6 13 4 -1.
+ <_>
+ 9 8 13 2 2.
+ <_>
+
+ <_>
+ 7 5 8 6 -1.
+ <_>
+ 7 5 4 3 2.
+ <_>
+ 11 8 4 3 2.
+ <_>
+
+ <_>
+ 13 3 4 11 -1.
+ <_>
+ 14 4 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 11 2 -1.
+ <_>
+ 9 2 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 5 14 12 2 2.
+ <_>
+
+ <_>
+ 0 9 16 4 -1.
+ <_>
+ 0 9 8 2 2.
+ <_>
+ 8 11 8 2 2.
+ <_>
+
+ <_>
+ 7 10 9 7 -1.
+ <_>
+ 10 10 3 7 3.
+ <_>
+
+ <_>
+ 10 7 5 6 -1.
+ <_>
+ 10 7 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 5 10 3 -1.
+ <_>
+ 11 5 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 2 13 12 5 -1.
+ <_>
+ 5 13 6 5 2.
+ <_>
+
+ <_>
+ 17 9 4 7 -1.
+ <_>
+ 17 9 2 7 2.
+ <_>
+
+ <_>
+ 0 6 12 3 -1.
+ <_>
+ 0 7 12 1 3.
+ <_>
+
+ <_>
+ 18 6 2 10 -1.
+ <_>
+ 18 6 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 1 14 8 3 -1.
+ <_>
+ 5 14 4 3 2.
+ <_>
+
+ <_>
+ 6 11 12 3 -1.
+ <_>
+ 10 11 4 3 3.
+ <_>
+
+ <_>
+ 0 14 8 3 -1.
+ <_>
+ 4 14 4 3 2.
+ <_>
+
+ <_>
+ 5 11 16 3 -1.
+ <_>
+ 9 11 8 3 2.
+ <_>
+
+ <_>
+ 1 9 4 7 -1.
+ <_>
+ 3 9 2 7 2.
+ <_>
+
+ <_>
+ 6 12 10 6 -1.
+ <_>
+ 6 14 10 2 3.
+ <_>
+
+ <_>
+ 0 16 12 2 -1.
+ <_>
+ 0 17 12 1 2.
+ <_>
+
+ <_>
+ 12 5 4 12 -1.
+ <_>
+ 14 5 2 6 2.
+ <_>
+ 12 11 2 6 2.
+ <_>
+
+ <_>
+ 6 11 6 6 -1.
+ <_>
+ 8 11 2 6 3.
+ <_>
+
+ <_>
+ 4 16 15 2 -1.
+ <_>
+ 4 17 15 1 2.
+ <_>
+
+ <_>
+ 5 0 12 9 -1.
+ <_>
+ 9 3 4 3 9.
+ <_>
+
+ <_>
+ 8 0 6 9 -1.
+ <_>
+ 8 3 6 3 3.
+ <_>
+
+ <_>
+ 1 0 3 13 -1.
+ <_>
+ 2 0 1 13 3.
+ <_>
+
+ <_>
+ 10 1 6 4 -1.
+ <_>
+ 10 1 3 4 2.
+ <_>
+
+ <_>
+ 8 1 6 9 -1.
+ <_>
+ 10 1 2 9 3.
+ <_>
+
+ <_>
+ 8 3 6 6 -1.
+ <_>
+ 10 3 2 6 3.
+ <_>
+
+ <_>
+ 3 5 11 2 -1.
+ <_>
+ 3 5 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 6 6 -1.
+ <_>
+ 11 5 2 6 3.
+ <_>
+
+ <_>
+ 6 4 6 10 -1.
+ <_>
+ 6 9 6 5 2.
+ <_>
+
+ <_>
+ 11 2 3 12 -1.
+ <_>
+ 12 2 1 12 3.
+ <_>
+
+ <_>
+ 8 2 3 12 -1.
+ <_>
+ 9 2 1 12 3.
+ <_>
+
+ <_>
+ 18 9 4 9 -1.
+ <_>
+ 18 9 2 9 2.
+ <_>
+
+ <_>
+ 1 5 6 6 -1.
+ <_>
+ 1 8 6 3 2.
+ <_>
+
+ <_>
+ 10 6 6 6 -1.
+ <_>
+ 12 6 2 6 3.
+ <_>
+
+ <_>
+ 10 2 2 12 -1.
+ <_>
+ 11 2 1 12 2.
+ <_>
+
+ <_>
+ 11 0 5 6 -1.
+ <_>
+ 11 3 5 3 2.
+ <_>
+
+ <_>
+ 6 0 5 6 -1.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 13 9 5 8 -1.
+ <_>
+ 13 13 5 4 2.
+ <_>
+
+ <_>
+ 0 9 20 2 -1.
+ <_>
+ 10 9 10 2 2.
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 11 5 11 2 -1.
+ <_>
+ 11 5 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 5 13 12 2 -1.
+ <_>
+ 5 14 12 1 2.
+ <_>
+
+ <_>
+ 11 8 4 9 -1.
+ <_>
+ 11 11 4 3 3.
+ <_>
+
+ <_>
+ 1 8 12 6 -1.
+ <_>
+ 1 10 12 2 3.
+ <_>
+
+ <_>
+ 16 8 3 8 -1.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 3 8 3 8 -1.
+ <_>
+ 3 12 3 4 2.
+ <_>
+
+ <_>
+ 11 8 4 9 -1.
+ <_>
+ 11 11 4 3 3.
+ <_>
+
+ <_>
+ 7 8 4 9 -1.
+ <_>
+ 7 11 4 3 3.
+ <_>
+
+ <_>
+ 7 3 15 12 -1.
+ <_>
+ 12 7 5 4 9.
+ <_>
+
+ <_>
+ 4 10 14 4 -1.
+ <_>
+ 4 10 7 2 2.
+ <_>
+ 11 12 7 2 2.
+ <_>
+
+ <_>
+ 9 10 10 6 -1.
+ <_>
+ 14 10 5 3 2.
+ <_>
+ 9 13 5 3 2.
+ <_>
+
+ <_>
+ 3 10 10 6 -1.
+ <_>
+ 3 10 5 3 2.
+ <_>
+ 8 13 5 3 2.
+ <_>
+
+ <_>
+ 16 7 6 6 -1.
+ <_>
+ 18 7 2 6 3.
+ <_>
+
+ <_>
+ 3 5 14 2 -1.
+ <_>
+ 10 5 7 2 2.
+ <_>
+
+ <_>
+ 18 2 4 12 -1.
+ <_>
+ 20 2 2 6 2.
+ <_>
+ 18 8 2 6 2.
+ <_>
+
+ <_>
+ 3 14 12 4 -1.
+ <_>
+ 3 15 12 2 2.
+ <_>
+
+ <_>
+ 7 6 9 6 -1.
+ <_>
+ 7 9 9 3 2.
+ <_>
+
+ <_>
+ 1 14 6 4 -1.
+ <_>
+ 4 14 3 4 2.
+ <_>
+
+ <_>
+ 12 5 5 12 -1.
+ <_>
+ 12 8 5 6 2.
+ <_>
+
+ <_>
+ 5 0 3 17 -1.
+ <_>
+ 6 0 1 17 3.
+ <_>
+
+ <_>
+ 16 7 6 6 -1.
+ <_>
+ 18 7 2 6 3.
+ <_>
+
+ <_>
+ 0 7 6 6 -1.
+ <_>
+ 2 7 2 6 3.
+ <_>
+
+ <_>
+ 14 0 3 18 -1.
+ <_>
+ 15 0 1 18 3.
+ <_>
+
+ <_>
+ 0 5 5 10 -1.
+ <_>
+ 0 10 5 5 2.
+ <_>
+
+ <_>
+ 5 12 12 4 -1.
+ <_>
+ 5 13 12 2 2.
+ <_>
+
+ <_>
+ 7 9 8 6 -1.
+ <_>
+ 7 11 8 2 3.
+ <_>
+
+ <_>
+ 2 10 15 4 -1.
+ <_>
+ 2 12 15 2 2.
+ <_>
+
+ <_>
+ 5 15 12 3 -1.
+ <_>
+ 5 15 6 3 2.
+ <_>
+
+ <_>
+ 7 4 3 14 -1.
+ <_>
+ 8 4 1 14 3.
+ <_>
+
+ <_>
+ 7 15 8 3 -1.
+ <_>
+ 7 15 4 3 2.
+ <_>
+
+ <_>
+ 1 2 8 6 -1.
+ <_>
+ 1 2 4 3 2.
+ <_>
+ 5 5 4 3 2.
+ <_>
+
+ <_>
+ 14 9 6 8 -1.
+ <_>
+ 17 9 3 4 2.
+ <_>
+ 14 13 3 4 2.
+ <_>
+
+ <_>
+ 0 0 6 8 -1.
+ <_>
+ 0 0 3 4 2.
+ <_>
+ 3 4 3 4 2.
+ <_>
+
+ <_>
+ 14 9 6 8 -1.
+ <_>
+ 17 9 3 4 2.
+ <_>
+ 14 13 3 4 2.
+ <_>
+
+ <_>
+ 2 9 6 8 -1.
+ <_>
+ 2 9 3 4 2.
+ <_>
+ 5 13 3 4 2.
+ <_>
+
+ <_>
+ 14 10 6 8 -1.
+ <_>
+ 17 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ <_>
+
+ <_>
+ 2 10 6 8 -1.
+ <_>
+ 2 10 3 4 2.
+ <_>
+ 5 14 3 4 2.
+ <_>
+
+ <_>
+ 13 1 6 8 -1.
+ <_>
+ 16 1 3 4 2.
+ <_>
+ 13 5 3 4 2.
+ <_>
+
+ <_>
+ 3 3 12 3 -1.
+ <_>
+ 3 4 12 1 3.
+ <_>
+
+ <_>
+ 13 1 6 8 -1.
+ <_>
+ 16 1 3 4 2.
+ <_>
+ 13 5 3 4 2.
+ <_>
+
+ <_>
+ 3 1 6 8 -1.
+ <_>
+ 3 1 3 4 2.
+ <_>
+ 6 5 3 4 2.
+ <_>
+
+ <_>
+ 3 3 16 3 -1.
+ <_>
+ 3 4 16 1 3.
+ <_>
+
+ <_>
+ 7 13 6 4 -1.
+ <_>
+ 7 15 6 2 2.
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 2 10 15 3 -1.
+ <_>
+ 2 11 15 1 3.
+ <_>
+
+ <_>
+ 8 12 8 6 -1.
+ <_>
+ 10 12 4 6 2.
+ <_>
+
+ <_>
+ 2 4 13 4 -1.
+ <_>
+ 2 5 13 2 2.
+ <_>
+
+ <_>
+ 9 9 12 3 -1.
+ <_>
+ 9 10 12 1 3.
+ <_>
+
+ <_>
+ 3 13 16 4 -1.
+ <_>
+ 3 13 8 2 2.
+ <_>
+ 11 15 8 2 2.
+ <_>
+
+ <_>
+ 8 12 8 6 -1.
+ <_>
+ 10 12 4 6 2.
+ <_>
+
+ <_>
+ 6 12 8 6 -1.
+ <_>
+ 8 12 4 6 2.
+ <_>
+
+ <_>
+ 9 4 13 2 -1.
+ <_>
+ 9 5 13 1 2.
+ <_>
+
+ <_>
+ 7 3 8 12 -1.
+ <_>
+ 7 9 8 6 2.
+ <_>
+
+ <_>
+ 3 6 17 3 -1.
+ <_>
+ 3 7 17 1 3.
+ <_>
+
+ <_>
+ 3 0 14 4 -1.
+ <_>
+ 3 0 7 2 2.
+ <_>
+ 10 2 7 2 2.
+ <_>
+
+ <_>
+ 11 4 6 5 -1.
+ <_>
+ 11 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 11 4 5 6 -1.
+ <_>
+ 11 4 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 10 5 4 6 -1.
+ <_>
+ 10 5 2 6 2.
+ <_>
+
+ <_>
+ 4 12 12 3 -1.
+ <_>
+ 8 12 4 3 3.
+ <_>
+
+ <_>
+ 8 6 8 7 -1.
+ <_>
+ 8 6 4 7 2.
+ <_>
+
+ <_>
+ 5 0 8 12 -1.
+ <_>
+ 5 0 4 6 2.
+ <_>
+ 9 6 4 6 2.
+ <_>
+
+ <_>
+ 7 0 12 4 -1.
+ <_>
+ 13 0 6 2 2.
+ <_>
+ 7 2 6 2 2.
+ <_>
+
+ <_>
+ 1 4 6 5 -1.
+ <_>
+ 4 4 3 5 2.
+ <_>
+
+ <_>
+ 15 0 7 4 -1.
+ <_>
+ 15 0 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 8 6 -1.
+ <_>
+ 5 2 4 3 2.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 4 2 15 3 -1.
+ <_>
+ 4 3 15 1 3.
+ <_>
+
+ <_>
+ 4 1 14 3 -1.
+ <_>
+ 4 2 14 1 3.
+ <_>
+
+ <_>
+ 15 5 4 6 -1.
+ <_>
+ 15 8 4 3 2.
+ <_>
+
+ <_>
+ 0 1 17 2 -1.
+ <_>
+ 0 2 17 1 2.
+ <_>
+
+ <_>
+ 15 5 4 6 -1.
+ <_>
+ 15 8 4 3 2.
+ <_>
+
+ <_>
+ 3 5 4 6 -1.
+ <_>
+ 3 8 4 3 2.
+ <_>
+
+ <_>
+ 3 0 18 3 -1.
+ <_>
+ 3 1 18 1 3.
+ <_>
+
+ <_>
+ 7 1 6 4 -1.
+ <_>
+ 10 1 3 4 2.
+ <_>
+
+ <_>
+ 0 11 22 7 -1.
+ <_>
+ 0 11 11 7 2.
+ <_>
+
+ <_>
+ 3 5 4 12 -1.
+ <_>
+ 3 5 2 6 2.
+ <_>
+ 5 11 2 6 2.
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 4 11 14 4 -1.
+ <_>
+ 4 11 7 2 2.
+ <_>
+ 11 13 7 2 2.
+ <_>
+
+ <_>
+ 7 11 8 6 -1.
+ <_>
+ 11 11 4 3 2.
+ <_>
+ 7 14 4 3 2.
+ <_>
+
+ <_>
+ 3 5 3 13 -1.
+ <_>
+ 4 5 1 13 3.
+ <_>
+
+ <_>
+ 17 1 4 12 -1.
+ <_>
+ 19 1 2 6 2.
+ <_>
+ 17 7 2 6 2.
+ <_>
+
+ <_>
+ 1 1 4 12 -1.
+ <_>
+ 1 1 2 6 2.
+ <_>
+ 3 7 2 6 2.
+ <_>
+
+ <_>
+ 7 0 13 16 -1.
+ <_>
+ 7 4 13 8 2.
+ <_>
+
+ <_>
+ 1 4 13 2 -1.
+ <_>
+ 1 5 13 1 2.
+ <_>
+
+ <_>
+ 9 14 6 4 -1.
+ <_>
+ 9 16 6 2 2.
+ <_>
+
+ <_>
+ 2 4 17 3 -1.
+ <_>
+ 2 5 17 1 3.
+ <_>
+
+ <_>
+ 14 0 3 10 -1.
+ <_>
+ 15 1 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 8 3 -1.
+ <_>
+ 6 1 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 0 3 10 -1.
+ <_>
+ 15 1 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 8 0 10 3 -1.
+ <_>
+ 7 1 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 2 7 -1.
+ <_>
+ 11 1 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 0 3 14 -1.
+ <_>
+ 9 0 1 14 3.
+ <_>
+
+ <_>
+ 11 1 2 7 -1.
+ <_>
+ 11 1 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 7 2 -1.
+ <_>
+ 11 1 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 9 8 -1.
+ <_>
+ 10 9 3 8 3.
+ <_>
+
+ <_>
+ 1 7 4 8 -1.
+ <_>
+ 3 7 2 8 2.
+ <_>
+
+ <_>
+ 17 11 4 6 -1.
+ <_>
+ 17 11 2 6 2.
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 10 12 2 6 3.
+ <_>
+
+ <_>
+ 11 0 3 6 -1.
+ <_>
+ 12 1 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 10 1 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 14 9 4 -1.
+ <_>
+ 12 14 3 4 3.
+ <_>
+
+ <_>
+ 8 2 6 4 -1.
+ <_>
+ 8 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 10 4 6 -1.
+ <_>
+ 10 10 2 6 2.
+ <_>
+
+ <_>
+ 1 8 18 2 -1.
+ <_>
+ 1 9 18 1 2.
+ <_>
+
+ <_>
+ 8 8 14 3 -1.
+ <_>
+ 8 9 14 1 3.
+ <_>
+
+ <_>
+ 3 15 14 3 -1.
+ <_>
+ 10 15 7 3 2.
+ <_>
+
+ <_>
+ 8 8 14 3 -1.
+ <_>
+ 8 9 14 1 3.
+ <_>
+
+ <_>
+ 4 14 9 4 -1.
+ <_>
+ 7 14 3 4 3.
+ <_>
+
+ <_>
+ 10 6 4 8 -1.
+ <_>
+ 10 6 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 2 11 18 3 -1.
+ <_>
+ 8 11 6 3 3.
+ <_>
+
+ <_>
+ 10 0 12 4 -1.
+ <_>
+ 10 0 12 2 2.
+ 1
+ <_>
+
+ <_>
+ 6 6 16 4 -1.
+ <_>
+ 14 6 8 2 2.
+ <_>
+ 6 8 8 2 2.
+ <_>
+
+ <_>
+ 6 3 4 14 -1.
+ <_>
+ 7 3 2 14 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 14 12 2 6 3.
+ <_>
+
+ <_>
+ 4 12 6 6 -1.
+ <_>
+ 6 12 2 6 3.
+ <_>
+
+ <_>
+ 14 8 3 8 -1.
+ <_>
+ 14 12 3 4 2.
+ <_>
+
+ <_>
+ 0 6 16 4 -1.
+ <_>
+ 0 6 8 2 2.
+ <_>
+ 8 8 8 2 2.
+ <_>
+
+ <_>
+ 9 10 5 6 -1.
+ <_>
+ 9 13 5 3 2.
+ <_>
+
+ <_>
+ 7 5 6 12 -1.
+ <_>
+ 7 5 3 6 2.
+ <_>
+ 10 11 3 6 2.
+ <_>
+
+ <_>
+ 1 5 21 9 -1.
+ <_>
+ 8 8 7 3 9.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 9 6 1 12 3.
+ <_>
+
+ <_>
+ 11 3 3 11 -1.
+ <_>
+ 12 4 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 11 5 9 3 -1.
+ <_>
+ 10 6 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 11 6 6 -1.
+ <_>
+ 12 13 6 2 3.
+ <_>
+
+ <_>
+ 0 1 9 9 -1.
+ <_>
+ 3 1 3 9 3.
+ <_>
+
+ <_>
+ 6 0 12 12 -1.
+ <_>
+ 9 0 6 12 2.
+ <_>
+
+ <_>
+ 7 14 6 4 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 8 7 13 3 -1.
+ <_>
+ 8 8 13 1 3.
+ <_>
+
+ <_>
+ 2 13 12 4 -1.
+ <_>
+ 5 13 6 4 2.
+ <_>
+
+ <_>
+ 15 3 2 13 -1.
+ <_>
+ 15 3 1 13 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 11 2 -1.
+ <_>
+ 9 5 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 2 2 16 -1.
+ <_>
+ 13 10 2 8 2.
+ <_>
+
+ <_>
+ 7 2 2 16 -1.
+ <_>
+ 7 10 2 8 2.
+ <_>
+
+ <_>
+ 14 0 7 6 -1.
+ <_>
+ 12 2 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 3 6 12 -1.
+ <_>
+ 7 3 3 6 2.
+ <_>
+ 10 9 3 6 2.
+ <_>
+
+ <_>
+ 9 14 8 4 -1.
+ <_>
+ 9 16 8 2 2.
+ <_>
+
+ <_>
+ 11 3 11 3 -1.
+ <_>
+ 10 4 11 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 1 4 6 -1.
+ <_>
+ 12 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 6 4 -1.
+ <_>
+ 10 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 10 6 8 -1.
+ <_>
+ 12 10 2 8 3.
+ <_>
+
+ <_>
+ 2 4 12 4 -1.
+ <_>
+ 2 4 6 2 2.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 14 1 3 10 -1.
+ <_>
+ 15 2 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 0 7 22 7 -1.
+ <_>
+ 11 7 11 7 2.
+ <_>
+
+ <_>
+ 8 2 14 3 -1.
+ <_>
+ 8 3 14 1 3.
+ <_>
+
+ <_>
+ 0 2 14 3 -1.
+ <_>
+ 0 3 14 1 3.
+ <_>
+
+ <_>
+ 14 1 3 10 -1.
+ <_>
+ 15 2 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 8 1 10 3 -1.
+ <_>
+ 7 2 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 3 3 10 -1.
+ <_>
+ 13 4 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 10 3 -1.
+ <_>
+ 10 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 1 7 6 -1.
+ <_>
+ 12 3 7 2 3.
+ <_>
+
+ <_>
+ 0 3 14 3 -1.
+ <_>
+ 0 4 14 1 3.
+ <_>
+
+ <_>
+ 8 0 12 4 -1.
+ <_>
+ 14 0 6 2 2.
+ <_>
+ 8 2 6 2 2.
+ <_>
+
+ <_>
+ 2 0 12 4 -1.
+ <_>
+ 2 0 6 2 2.
+ <_>
+ 8 2 6 2 2.
+ <_>
+
+ <_>
+ 8 4 12 3 -1.
+ <_>
+ 8 5 12 1 3.
+ <_>
+
+ <_>
+ 0 1 14 2 -1.
+ <_>
+ 7 1 7 2 2.
+ <_>
+
+ <_>
+ 5 0 15 11 -1.
+ <_>
+ 10 0 5 11 3.
+ <_>
+
+ <_>
+ 2 0 15 11 -1.
+ <_>
+ 7 0 5 11 3.
+ <_>
+
+ <_>
+ 11 6 6 12 -1.
+ <_>
+ 14 6 3 6 2.
+ <_>
+ 11 12 3 6 2.
+ <_>
+
+ <_>
+ 7 5 6 6 -1.
+ <_>
+ 9 5 2 6 3.
+ <_>
+
+ <_>
+ 14 13 6 5 -1.
+ <_>
+ 14 13 3 5 2.
+ <_>
+
+ <_>
+ 6 10 6 8 -1.
+ <_>
+ 8 10 2 8 3.
+ <_>
+
+ <_>
+ 10 10 6 6 -1.
+ <_>
+ 12 10 2 6 3.
+ <_>
+
+ <_>
+ 6 10 6 6 -1.
+ <_>
+ 8 10 2 6 3.
+ <_>
+
+ <_>
+ 6 11 14 3 -1.
+ <_>
+ 6 11 7 3 2.
+ <_>
+
+ <_>
+ 3 1 7 6 -1.
+ <_>
+ 3 3 7 2 3.
+ <_>
+
+ <_>
+ 11 8 6 10 -1.
+ <_>
+ 14 8 3 5 2.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 8 5 3 13 -1.
+ <_>
+ 9 5 1 13 3.
+ <_>
+
+ <_>
+ 11 0 6 4 -1.
+ <_>
+ 11 0 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 4 6 -1.
+ <_>
+ 11 0 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 3 2 12 -1.
+ <_>
+ 14 3 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 10 7 -1.
+ <_>
+ 10 4 5 7 2.
+ <_>
+
+ <_>
+ 8 9 6 6 -1.
+ <_>
+ 10 9 2 6 3.
+ <_>
+
+ <_>
+ 0 8 12 9 -1.
+ <_>
+ 4 11 4 3 9.
+ <_>
+
+ <_>
+ 13 12 4 6 -1.
+ <_>
+ 13 15 4 3 2.
+ <_>
+
+ <_>
+ 5 12 5 6 -1.
+ <_>
+ 5 15 5 3 2.
+ <_>
+
+ <_>
+ 12 4 2 11 -1.
+ <_>
+ 12 4 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 9 4 11 2 -1.
+ <_>
+ 9 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 8 6 10 -1.
+ <_>
+ 14 8 3 5 2.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 5 8 6 10 -1.
+ <_>
+ 5 8 3 5 2.
+ <_>
+ 8 13 3 5 2.
+ <_>
+
+ <_>
+ 11 7 6 10 -1.
+ <_>
+ 14 7 3 5 2.
+ <_>
+ 11 12 3 5 2.
+ <_>
+
+ <_>
+ 2 1 18 3 -1.
+ <_>
+ 2 2 18 1 3.
+ <_>
+
+ <_>
+ 16 4 6 7 -1.
+ <_>
+ 16 4 3 7 2.
+ <_>
+
+ <_>
+ 5 7 6 10 -1.
+ <_>
+ 5 7 3 5 2.
+ <_>
+ 8 12 3 5 2.
+ <_>
+
+ <_>
+ 12 0 3 14 -1.
+ <_>
+ 12 7 3 7 2.
+ <_>
+
+ <_>
+ 7 10 8 7 -1.
+ <_>
+ 11 10 4 7 2.
+ <_>
+
+ <_>
+ 8 0 12 3 -1.
+ <_>
+ 8 1 12 1 3.
+ <_>
+
+ <_>
+ 3 0 13 4 -1.
+ <_>
+ 3 1 13 2 2.
+ <_>
+
+ <_>
+ 7 11 12 4 -1.
+ <_>
+ 7 12 12 2 2.
+ <_>
+
+ <_>
+ 0 0 8 18 -1.
+ <_>
+ 4 0 4 18 2.
+ <_>
+
+ <_>
+ 14 13 6 5 -1.
+ <_>
+ 14 13 3 5 2.
+ <_>
+
+ <_>
+ 0 5 22 4 -1.
+ <_>
+ 11 5 11 4 2.
+ <_>
+
+ <_>
+ 11 2 10 9 -1.
+ <_>
+ 11 5 10 3 3.
+ <_>
+
+ <_>
+ 1 2 10 9 -1.
+ <_>
+ 1 5 10 3 3.
+ <_>
+
+ <_>
+ 18 6 2 12 -1.
+ <_>
+ 18 6 1 12 2.
+ <_>
+
+ <_>
+ 2 6 2 12 -1.
+ <_>
+ 3 6 1 12 2.
+ <_>
+
+ <_>
+ 15 6 4 12 -1.
+ <_>
+ 15 9 4 6 2.
+ <_>
+
+ <_>
+ 3 6 4 12 -1.
+ <_>
+ 3 9 4 6 2.
+ <_>
+
+ <_>
+ 14 13 6 5 -1.
+ <_>
+ 14 13 3 5 2.
+ <_>
+
+ <_>
+ 2 13 6 5 -1.
+ <_>
+ 5 13 3 5 2.
+ <_>
+
+ <_>
+ 8 12 12 5 -1.
+ <_>
+ 11 12 6 5 2.
+ <_>
+
+ <_>
+ 2 12 12 5 -1.
+ <_>
+ 5 12 6 5 2.
+ <_>
+
+ <_>
+ 12 12 6 6 -1.
+ <_>
+ 12 14 6 2 3.
+ <_>
+
+ <_>
+ 0 10 16 8 -1.
+ <_>
+ 4 10 8 8 2.
+ <_>
+
+ <_>
+ 13 1 8 8 -1.
+ <_>
+ 15 1 4 8 2.
+ <_>
+
+ <_>
+ 1 1 8 8 -1.
+ <_>
+ 3 1 4 8 2.
+ <_>
+
+ <_>
+ 14 8 3 8 -1.
+ <_>
+ 14 12 3 4 2.
+ <_>
+
+ <_>
+ 10 4 7 6 -1.
+ <_>
+ 10 4 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 9 10 4 8 -1.
+ <_>
+ 9 14 4 4 2.
+ <_>
+
+ <_>
+ 5 8 3 8 -1.
+ <_>
+ 5 12 3 4 2.
+ <_>
+
+ <_>
+ 6 9 4 9 -1.
+ <_>
+ 6 12 4 3 3.
+ <_>
+
+ <_>
+ 6 3 16 4 -1.
+ <_>
+ 14 3 8 2 2.
+ <_>
+ 6 5 8 2 2.
+ <_>
+
+ <_>
+ 1 3 20 4 -1.
+ <_>
+ 1 3 10 2 2.
+ <_>
+ 11 5 10 2 2.
+ <_>
+
+ <_>
+ 9 5 6 12 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 1 6 2 12 -1.
+ <_>
+ 2 6 1 12 2.
+ <_>
+
+ <_>
+ 19 0 2 16 -1.
+ <_>
+ 19 0 1 16 2.
+ <_>
+
+ <_>
+ 1 0 2 16 -1.
+ <_>
+ 2 0 1 16 2.
+ <_>
+
+ <_>
+ 13 5 5 9 -1.
+ <_>
+ 13 8 5 3 3.
+ <_>
+
+ <_>
+ 5 16 12 2 -1.
+ <_>
+ 5 17 12 1 2.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 15 12 2 2.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 7 5 13 2 -1.
+ <_>
+ 7 6 13 1 2.
+ <_>
+
+ <_>
+ 8 1 12 2 -1.
+ <_>
+ 8 1 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 0 4 22 8 -1.
+ <_>
+ 11 4 11 4 2.
+ <_>
+ 0 8 11 4 2.
+ <_>
+
+ <_>
+ 2 3 6 4 -1.
+ <_>
+ 5 3 3 4 2.
+ <_>
+
+ <_>
+ 7 11 15 3 -1.
+ <_>
+ 7 12 15 1 3.
+ <_>
+
+ <_>
+ 5 7 6 7 -1.
+ <_>
+ 8 7 3 7 2.
+ <_>
+
+ <_>
+ 7 12 12 4 -1.
+ <_>
+ 13 12 6 2 2.
+ <_>
+ 7 14 6 2 2.
+ <_>
+
+ <_>
+ 0 11 16 2 -1.
+ <_>
+ 8 11 8 2 2.
+ <_>
+
+ <_>
+ 18 3 4 10 -1.
+ <_>
+ 18 3 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 2 2 17 3 -1.
+ <_>
+ 2 3 17 1 3.
+ <_>
+
+ <_>
+ 10 14 12 4 -1.
+ <_>
+ 16 14 6 2 2.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 1 9 11 6 -1.
+ <_>
+ 1 11 11 2 3.
+ <_>
+
+ <_>
+ 4 9 18 3 -1.
+ <_>
+ 4 10 18 1 3.
+ <_>
+
+ <_>
+ 0 9 18 3 -1.
+ <_>
+ 0 10 18 1 3.
+ <_>
+
+ <_>
+ 11 5 11 12 -1.
+ <_>
+ 11 11 11 6 2.
+ <_>
+
+ <_>
+ 5 12 6 6 -1.
+ <_>
+ 5 14 6 2 3.
+ <_>
+
+ <_>
+ 14 10 6 8 -1.
+ <_>
+ 17 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ <_>
+
+ <_>
+ 0 5 11 12 -1.
+ <_>
+ 0 11 11 6 2.
+ <_>
+
+ <_>
+ 15 3 2 12 -1.
+ <_>
+ 15 3 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 3 0 12 4 -1.
+ <_>
+ 3 0 6 2 2.
+ <_>
+ 9 2 6 2 2.
+ <_>
+
+ <_>
+ 14 10 6 8 -1.
+ <_>
+ 17 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ <_>
+
+ <_>
+ 5 12 8 6 -1.
+ <_>
+ 5 12 4 3 2.
+ <_>
+ 9 15 4 3 2.
+ <_>
+
+ <_>
+ 8 11 10 5 -1.
+ <_>
+ 8 11 5 5 2.
+ <_>
+
+ <_>
+ 4 11 10 5 -1.
+ <_>
+ 9 11 5 5 2.
+ <_>
+
+ <_>
+ 6 6 12 12 -1.
+ <_>
+ 12 6 6 6 2.
+ <_>
+ 6 12 6 6 2.
+ <_>
+
+ <_>
+ 7 10 6 8 -1.
+ <_>
+ 7 12 6 4 2.
+ <_>
+
+ <_>
+ 7 8 15 10 -1.
+ <_>
+ 7 13 15 5 2.
+ <_>
+
+ <_>
+ 0 0 22 4 -1.
+ <_>
+ 0 0 11 2 2.
+ <_>
+ 11 2 11 2 2.
+ <_>
+
+ <_>
+ 10 3 12 3 -1.
+ <_>
+ 10 4 12 1 3.
+ <_>
+
+ <_>
+ 0 3 13 3 -1.
+ <_>
+ 0 4 13 1 3.
+ <_>
+
+ <_>
+ 9 3 4 12 -1.
+ <_>
+ 9 6 4 6 2.
+ <_>
+
+ <_>
+ 4 5 9 6 -1.
+ <_>
+ 4 8 9 3 2.
+ <_>
+
+ <_>
+ 11 6 2 9 -1.
+ <_>
+ 11 6 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 4 8 -1.
+ <_>
+ 9 6 4 4 2.
+ <_>
+
+ <_>
+ 7 0 8 10 -1.
+ <_>
+ 7 5 8 5 2.
+ <_>
+
+ <_>
+ 11 5 9 2 -1.
+ <_>
+ 11 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 0 3 11 -1.
+ <_>
+ 18 1 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 5 0 11 3 -1.
+ <_>
+ 4 1 11 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 6 4 7 -1.
+ <_>
+ 9 6 2 7 2.
+ <_>
+
+ <_>
+ 3 11 6 6 -1.
+ <_>
+ 3 13 6 2 3.
+ <_>
+
+ <_>
+ 6 10 16 8 -1.
+ <_>
+ 6 12 16 4 2.
+ <_>
+
+ <_>
+ 11 6 9 3 -1.
+ <_>
+ 10 7 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 11 8 6 -1.
+ <_>
+ 12 13 8 2 3.
+ <_>
+
+ <_>
+ 0 10 16 8 -1.
+ <_>
+ 0 12 16 4 2.
+ <_>
+
+ <_>
+ 10 14 12 4 -1.
+ <_>
+ 16 14 6 2 2.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 2 11 8 6 -1.
+ <_>
+ 2 13 8 2 3.
+ <_>
+
+ <_>
+ 6 11 16 4 -1.
+ <_>
+ 14 11 8 2 2.
+ <_>
+ 6 13 8 2 2.
+ <_>
+
+ <_>
+ 0 11 22 6 -1.
+ <_>
+ 11 11 11 6 2.
+ <_>
+
+ <_>
+ 14 10 6 8 -1.
+ <_>
+ 17 10 3 4 2.
+ <_>
+ 14 14 3 4 2.
+ <_>
+
+ <_>
+ 2 10 6 8 -1.
+ <_>
+ 2 10 3 4 2.
+ <_>
+ 5 14 3 4 2.
+ <_>
+
+ <_>
+ 6 4 15 12 -1.
+ <_>
+ 11 8 5 4 9.
+ <_>
+
+ <_>
+ 0 4 18 12 -1.
+ <_>
+ 6 8 6 4 9.
+ <_>
+
+ <_>
+ 15 7 2 8 -1.
+ <_>
+ 15 7 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 3 3 10 3 -1.
+ <_>
+ 2 4 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 2 14 3 -1.
+ <_>
+ 4 3 14 1 3.
+ <_>
+
+ <_>
+ 10 8 8 2 -1.
+ <_>
+ 10 8 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 15 5 4 7 -1.
+ <_>
+ 15 5 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 3 6 5 6 -1.
+ <_>
+ 3 9 5 3 2.
+ <_>
+
+ <_>
+ 14 1 8 6 -1.
+ <_>
+ 18 1 4 3 2.
+ <_>
+ 14 4 4 3 2.
+ <_>
+
+ <_>
+ 0 1 8 6 -1.
+ <_>
+ 0 1 4 3 2.
+ <_>
+ 4 4 4 3 2.
+ <_>
+
+ <_>
+ 17 0 4 12 -1.
+ <_>
+ 18 0 2 12 2.
+ <_>
+
+ <_>
+ 1 0 4 12 -1.
+ <_>
+ 2 0 2 12 2.
+ <_>
+
+ <_>
+ 9 16 12 2 -1.
+ <_>
+ 9 17 12 1 2.
+ <_>
+
+ <_>
+ 1 16 12 2 -1.
+ <_>
+ 1 17 12 1 2.
+ <_>
+
+ <_>
+ 10 15 12 3 -1.
+ <_>
+ 10 16 12 1 3.
+ <_>
+
+ <_>
+ 0 15 12 3 -1.
+ <_>
+ 0 16 12 1 3.
+ <_>
+
+ <_>
+ 10 14 12 4 -1.
+ <_>
+ 16 14 6 2 2.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 0 14 12 4 -1.
+ <_>
+ 0 14 6 2 2.
+ <_>
+ 6 16 6 2 2.
+ <_>
+
+ <_>
+ 9 11 12 4 -1.
+ <_>
+ 15 11 6 2 2.
+ <_>
+ 9 13 6 2 2.
+ <_>
+
+ <_>
+ 0 11 16 4 -1.
+ <_>
+ 0 11 8 2 2.
+ <_>
+ 8 13 8 2 2.
+ <_>
+
+ <_>
+ 8 12 9 6 -1.
+ <_>
+ 8 14 9 2 3.
+ <_>
+
+ <_>
+ 5 12 9 6 -1.
+ <_>
+ 5 14 9 2 3.
+ <_>
+
+ <_>
+ 4 5 16 2 -1.
+ <_>
+ 4 5 8 2 2.
+ <_>
+
+ <_>
+ 1 10 10 8 -1.
+ <_>
+ 1 10 5 4 2.
+ <_>
+ 6 14 5 4 2.
+ <_>
+
+ <_>
+ 16 2 5 9 -1.
+ <_>
+ 13 5 5 3 3.
+ 1
+ <_>
+
+ <_>
+ 4 4 4 6 -1.
+ <_>
+ 6 4 2 6 2.
+ <_>
+
+ <_>
+ 9 2 9 7 -1.
+ <_>
+ 12 2 3 7 3.
+ <_>
+
+ <_>
+ 4 2 9 7 -1.
+ <_>
+ 7 2 3 7 3.
+ <_>
+
+ <_>
+ 16 2 5 9 -1.
+ <_>
+ 13 5 5 3 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 9 5 -1.
+ <_>
+ 9 5 3 5 3.
+ 1
+ <_>
+
+ <_>
+ 5 12 14 6 -1.
+ <_>
+ 5 14 14 2 3.
+ <_>
+
+ <_>
+ 6 4 4 12 -1.
+ <_>
+ 6 4 2 6 2.
+ <_>
+ 8 10 2 6 2.
+ <_>
+
+ <_>
+ 9 4 10 8 -1.
+ <_>
+ 9 4 5 8 2.
+ <_>
+
+ <_>
+ 7 5 6 8 -1.
+ <_>
+ 7 5 3 4 2.
+ <_>
+ 10 9 3 4 2.
+ <_>
+
+ <_>
+ 8 7 6 8 -1.
+ <_>
+ 11 7 3 4 2.
+ <_>
+ 8 11 3 4 2.
+ <_>
+
+ <_>
+ 2 4 11 2 -1.
+ <_>
+ 2 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 3 13 -1.
+ <_>
+ 17 0 1 13 3.
+ <_>
+
+ <_>
+ 2 0 18 3 -1.
+ <_>
+ 2 1 18 1 3.
+ <_>
+
+ <_>
+ 15 8 6 4 -1.
+ <_>
+ 15 8 3 4 2.
+ <_>
+
+ <_>
+ 2 0 13 3 -1.
+ <_>
+ 2 1 13 1 3.
+ <_>
+
+ <_>
+ 4 4 18 4 -1.
+ <_>
+ 4 6 18 2 2.
+ <_>
+
+ <_>
+ 3 3 10 9 -1.
+ <_>
+ 8 3 5 9 2.
+ <_>
+
+ <_>
+ 2 7 18 6 -1.
+ <_>
+ 8 9 6 2 9.
+ <_>
+
+ <_>
+ 10 4 11 2 -1.
+ <_>
+ 10 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 6 6 12 -1.
+ <_>
+ 17 6 3 6 2.
+ <_>
+ 14 12 3 6 2.
+ <_>
+
+ <_>
+ 2 6 6 12 -1.
+ <_>
+ 2 6 3 6 2.
+ <_>
+ 5 12 3 6 2.
+ <_>
+
+ <_>
+ 3 4 16 6 -1.
+ <_>
+ 3 6 16 2 3.
+ <_>
+
+ <_>
+ 1 11 16 3 -1.
+ <_>
+ 5 11 8 3 2.
+ <_>
+
+ <_>
+ 12 10 8 3 -1.
+ <_>
+ 12 10 4 3 2.
+ <_>
+
+ <_>
+ 0 9 17 9 -1.
+ <_>
+ 0 12 17 3 3.
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 11 4 3 5 2.
+ <_>
+ 8 9 3 5 2.
+ <_>
+
+ <_>
+ 2 4 16 8 -1.
+ <_>
+ 2 4 8 4 2.
+ <_>
+ 10 8 8 4 2.
+ <_>
+
+ <_>
+ 9 6 12 4 -1.
+ <_>
+ 15 6 6 2 2.
+ <_>
+ 9 8 6 2 2.
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 15 5 7 4 -1.
+ <_>
+ 15 5 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 6 18 6 -1.
+ <_>
+ 0 6 9 3 2.
+ <_>
+ 9 9 9 3 2.
+ <_>
+
+ <_>
+ 4 2 15 3 -1.
+ <_>
+ 4 3 15 1 3.
+ <_>
+
+ <_>
+ 2 0 6 6 -1.
+ <_>
+ 5 0 3 6 2.
+ <_>
+
+ <_>
+ 13 4 8 6 -1.
+ <_>
+ 17 4 4 3 2.
+ <_>
+ 13 7 4 3 2.
+ <_>
+
+ <_>
+ 4 2 13 6 -1.
+ <_>
+ 4 4 13 2 3.
+ <_>
+
+ <_>
+ 9 8 12 3 -1.
+ <_>
+ 9 9 12 1 3.
+ <_>
+
+ <_>
+ 1 8 16 3 -1.
+ <_>
+ 1 9 16 1 3.
+ <_>
+
+ <_>
+ 11 4 5 8 -1.
+ <_>
+ 11 8 5 4 2.
+ <_>
+
+ <_>
+ 3 4 11 2 -1.
+ <_>
+ 3 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 12 3 -1.
+ <_>
+ 10 8 12 1 3.
+ <_>
+
+ <_>
+ 9 3 7 8 -1.
+ <_>
+ 9 3 7 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 2 2 12 -1.
+ <_>
+ 13 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 0 9 12 4 -1.
+ <_>
+ 0 9 6 2 2.
+ <_>
+ 6 11 6 2 2.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 13 7 4 6 2.
+ <_>
+
+ <_>
+ 0 8 6 6 -1.
+ <_>
+ 2 8 2 6 3.
+ <_>
+
+ <_>
+ 11 7 8 6 -1.
+ <_>
+ 13 7 4 6 2.
+ <_>
+
+ <_>
+ 3 7 8 6 -1.
+ <_>
+ 5 7 4 6 2.
+ <_>
+
+ <_>
+ 10 6 6 4 -1.
+ <_>
+ 10 6 3 4 2.
+ <_>
+
+ <_>
+ 4 8 12 10 -1.
+ <_>
+ 4 8 6 5 2.
+ <_>
+ 10 13 6 5 2.
+ <_>
+
+ <_>
+ 15 7 6 10 -1.
+ <_>
+ 17 7 2 10 3.
+ <_>
+
+ <_>
+ 6 14 6 4 -1.
+ <_>
+ 9 14 3 4 2.
+ <_>
+
+ <_>
+ 8 13 10 4 -1.
+ <_>
+ 8 13 5 4 2.
+ <_>
+
+ <_>
+ 2 0 4 18 -1.
+ <_>
+ 4 0 2 18 2.
+ <_>
+
+ <_>
+ 11 0 8 10 -1.
+ <_>
+ 11 0 8 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 7 12 3 -1.
+ <_>
+ 0 8 12 1 3.
+ <_>
+
+ <_>
+ 17 0 2 10 -1.
+ <_>
+ 17 0 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 5 6 6 4 -1.
+ <_>
+ 5 8 6 2 2.
+ <_>
+
+ <_>
+ 15 10 7 6 -1.
+ <_>
+ 15 12 7 2 3.
+ <_>
+
+ <_>
+ 0 10 7 6 -1.
+ <_>
+ 0 12 7 2 3.
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 15 12 2 6 3.
+ <_>
+
+ <_>
+ 1 11 20 7 -1.
+ <_>
+ 11 11 10 7 2.
+ <_>
+
+ <_>
+ 13 5 4 9 -1.
+ <_>
+ 13 8 4 3 3.
+ <_>
+
+ <_>
+ 2 12 8 6 -1.
+ <_>
+ 2 12 4 3 2.
+ <_>
+ 6 15 4 3 2.
+ <_>
+
+ <_>
+ 9 14 6 4 -1.
+ <_>
+ 9 16 6 2 2.
+ <_>
+
+ <_>
+ 7 12 8 6 -1.
+ <_>
+ 7 12 4 3 2.
+ <_>
+ 11 15 4 3 2.
+ <_>
+
+ <_>
+ 6 1 12 14 -1.
+ <_>
+ 12 1 6 7 2.
+ <_>
+ 6 8 6 7 2.
+ <_>
+
+ <_>
+ 5 5 4 9 -1.
+ <_>
+ 5 8 4 3 3.
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+ 5 15 6 2 2.
+ <_>
+
+ <_>
+ 9 7 8 3 -1.
+ <_>
+ 8 8 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 5 8 10 -1.
+ <_>
+ 7 10 8 5 2.
+ <_>
+
+ <_>
+ 7 1 8 3 -1.
+ <_>
+ 6 2 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 14 12 3 -1.
+ <_>
+ 10 15 12 1 3.
+ <_>
+
+ <_>
+ 0 6 18 12 -1.
+ <_>
+ 0 12 18 6 2.
+ <_>
+
+ <_>
+ 9 8 6 6 -1.
+ <_>
+ 9 11 6 3 2.
+ <_>
+
+ <_>
+ 3 2 4 12 -1.
+ <_>
+ 3 2 2 6 2.
+ <_>
+ 5 8 2 6 2.
+ <_>
+
+ <_>
+ 13 2 2 12 -1.
+ <_>
+ 13 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 4 6 8 -1.
+ <_>
+ 2 4 3 4 2.
+ <_>
+ 5 8 3 4 2.
+ <_>
+
+ <_>
+ 14 10 4 6 -1.
+ <_>
+ 14 10 2 6 2.
+ <_>
+
+ <_>
+ 0 0 2 12 -1.
+ <_>
+ 0 6 2 6 2.
+ <_>
+
+ <_>
+ 13 2 2 12 -1.
+ <_>
+ 13 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 12 2 -1.
+ <_>
+ 9 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 9 12 4 -1.
+ <_>
+ 16 9 6 2 2.
+ <_>
+ 10 11 6 2 2.
+ <_>
+
+ <_>
+ 0 9 12 4 -1.
+ <_>
+ 0 9 6 2 2.
+ <_>
+ 6 11 6 2 2.
+ <_>
+
+ <_>
+ 17 9 4 9 -1.
+ <_>
+ 17 12 4 3 3.
+ <_>
+
+ <_>
+ 1 9 10 6 -1.
+ <_>
+ 1 9 5 3 2.
+ <_>
+ 6 12 5 3 2.
+ <_>
+
+ <_>
+ 8 12 9 4 -1.
+ <_>
+ 8 14 9 2 2.
+ <_>
+
+ <_>
+ 2 8 6 10 -1.
+ <_>
+ 2 8 3 5 2.
+ <_>
+ 5 13 3 5 2.
+ <_>
+
+ <_>
+ 7 10 12 6 -1.
+ <_>
+ 10 10 6 6 2.
+ <_>
+
+ <_>
+ 3 10 12 6 -1.
+ <_>
+ 6 10 6 6 2.
+ <_>
+
+ <_>
+ 20 0 2 12 -1.
+ <_>
+ 20 6 2 6 2.
+ <_>
+
+ <_>
+ 0 0 2 12 -1.
+ <_>
+ 0 6 2 6 2.
+ <_>
+
+ <_>
+ 14 3 4 15 -1.
+ <_>
+ 14 3 2 15 2.
+ <_>
+
+ <_>
+ 0 1 16 14 -1.
+ <_>
+ 0 1 8 7 2.
+ <_>
+ 8 8 8 7 2.
+ <_>
+
+ <_>
+ 11 0 8 10 -1.
+ <_>
+ 11 0 8 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 16 4 -1.
+ <_>
+ 0 3 8 2 2.
+ <_>
+ 8 5 8 2 2.
+ <_>
+
+ <_>
+ 13 0 7 12 -1.
+ <_>
+ 13 4 7 4 3.
+ <_>
+
+ <_>
+ 5 3 11 15 -1.
+ <_>
+ 5 8 11 5 3.
+ <_>
+
+ <_>
+ 13 0 7 12 -1.
+ <_>
+ 13 4 7 4 3.
+ <_>
+
+ <_>
+ 2 0 7 12 -1.
+ <_>
+ 2 4 7 4 3.
+ <_>
+
+ <_>
+ 4 5 18 12 -1.
+ <_>
+ 10 9 6 4 9.
+ <_>
+
+ <_>
+ 4 7 14 6 -1.
+ <_>
+ 4 7 7 3 2.
+ <_>
+ 11 10 7 3 2.
+ <_>
+
+ <_>
+ 7 9 13 3 -1.
+ <_>
+ 7 10 13 1 3.
+ <_>
+
+ <_>
+ 2 9 13 3 -1.
+ <_>
+ 2 10 13 1 3.
+ <_>
+
+ <_>
+ 5 9 17 3 -1.
+ <_>
+ 5 10 17 1 3.
+ <_>
+
+ <_>
+ 1 1 10 9 -1.
+ <_>
+ 1 4 10 3 3.
+ <_>
+
+ <_>
+ 4 1 16 8 -1.
+ <_>
+ 4 3 16 4 2.
+ <_>
+
+ <_>
+ 6 5 6 12 -1.
+ <_>
+ 8 5 2 12 3.
+ <_>
+
+ <_>
+ 11 7 6 5 -1.
+ <_>
+ 11 7 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 9 5 -1.
+ <_>
+ 8 4 3 5 3.
+ <_>
+
+ <_>
+ 2 12 18 4 -1.
+ <_>
+ 11 12 9 2 2.
+ <_>
+ 2 14 9 2 2.
+ <_>
+
+ <_>
+ 11 4 9 3 -1.
+ <_>
+ 10 5 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 15 0 2 10 -1.
+ <_>
+ 15 0 1 10 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 18 12 -1.
+ <_>
+ 6 9 6 4 9.
+ <_>
+
+ <_>
+ 14 9 4 6 -1.
+ <_>
+ 14 9 2 6 2.
+ <_>
+
+ <_>
+ 5 6 3 12 -1.
+ <_>
+ 5 10 3 4 3.
+ <_>
+
+ <_>
+ 11 0 3 9 -1.
+ <_>
+ 12 1 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 1 9 4 9 -1.
+ <_>
+ 1 12 4 3 3.
+ <_>
+
+ <_>
+ 18 9 4 9 -1.
+ <_>
+ 18 12 4 3 3.
+ <_>
+
+ <_>
+ 6 9 6 4 -1.
+ <_>
+ 9 9 3 4 2.
+ <_>
+
+ <_>
+ 11 0 3 9 -1.
+ <_>
+ 12 1 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 11 0 9 3 -1.
+ <_>
+ 10 1 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 5 15 12 2 -1.
+ <_>
+ 5 16 12 1 2.
+ <_>
+
+ <_>
+ 0 0 22 2 -1.
+ <_>
+ 11 0 11 2 2.
+ <_>
+
+ <_>
+ 20 0 2 13 -1.
+ <_>
+ 20 0 1 13 2.
+ <_>
+
+ <_>
+ 0 0 2 13 -1.
+ <_>
+ 1 0 1 13 2.
+ <_>
+
+ <_>
+ 10 1 6 6 -1.
+ <_>
+ 12 1 2 6 3.
+ <_>
+
+ <_>
+ 6 1 6 6 -1.
+ <_>
+ 8 1 2 6 3.
+ <_>
+
+ <_>
+ 10 7 12 3 -1.
+ <_>
+ 10 8 12 1 3.
+ <_>
+
+ <_>
+ 0 7 12 3 -1.
+ <_>
+ 0 8 12 1 3.
+ <_>
+
+ <_>
+ 1 9 8 6 -1.
+ <_>
+ 1 9 4 3 2.
+ <_>
+ 5 12 4 3 2.
+ <_>
+
+ <_>
+ 10 10 7 4 -1.
+ <_>
+ 10 12 7 2 2.
+ <_>
+
+ <_>
+ 8 10 4 6 -1.
+ <_>
+ 10 10 2 6 2.
+ <_>
+
+ <_>
+ 13 6 8 4 -1.
+ <_>
+ 13 6 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 10 1 8 7 -1.
+ <_>
+ 12 3 4 7 2.
+ 1
+ <_>
+
+ <_>
+ 8 5 8 7 -1.
+ <_>
+ 8 5 4 7 2.
+ <_>
+
+ <_>
+ 6 5 8 7 -1.
+ <_>
+ 10 5 4 7 2.
+ <_>
+
+ <_>
+ 6 3 16 12 -1.
+ <_>
+ 14 3 8 6 2.
+ <_>
+ 6 9 8 6 2.
+ <_>
+
+ <_>
+ 4 11 6 6 -1.
+ <_>
+ 4 13 6 2 3.
+ <_>
+
+ <_>
+ 4 2 18 14 -1.
+ <_>
+ 13 2 9 7 2.
+ <_>
+ 4 9 9 7 2.
+ <_>
+
+ <_>
+ 5 0 11 12 -1.
+ <_>
+ 5 3 11 6 2.
+ <_>
+
+ <_>
+ 4 7 16 9 -1.
+ <_>
+ 4 10 16 3 3.
+ <_>
+
+ <_>
+ 0 1 18 3 -1.
+ <_>
+ 0 2 18 1 3.
+ <_>
+
+ <_>
+ 12 13 6 4 -1.
+ <_>
+ 12 15 6 2 2.
+ <_>
+
+ <_>
+ 1 10 6 8 -1.
+ <_>
+ 1 10 3 4 2.
+ <_>
+ 4 14 3 4 2.
+ <_>
+
+ <_>
+ 14 12 8 6 -1.
+ <_>
+ 18 12 4 3 2.
+ <_>
+ 14 15 4 3 2.
+ <_>
+
+ <_>
+ 9 3 12 3 -1.
+ <_>
+ 13 7 4 3 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 8 12 3 6 2.
+ <_>
+
+ <_>
+ 4 8 14 10 -1.
+ <_>
+ 4 13 14 5 2.
+ <_>
+
+ <_>
+ 11 2 8 8 -1.
+ <_>
+ 11 2 4 8 2.
+ 1
+ <_>
+
+ <_>
+ 9 6 4 8 -1.
+ <_>
+ 9 6 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 18 3 4 10 -1.
+ <_>
+ 18 3 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 5 15 12 3 -1.
+ <_>
+ 9 15 4 3 3.
+ <_>
+
+ <_>
+ 11 8 4 6 -1.
+ <_>
+ 11 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 8 6 4 -1.
+ <_>
+ 11 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 3 13 16 5 -1.
+ <_>
+ 7 13 8 5 2.
+ <_>
+
+ <_>
+ 6 2 4 12 -1.
+ <_>
+ 6 2 2 6 2.
+ <_>
+ 8 8 2 6 2.
+ <_>
+
+ <_>
+ 2 14 18 4 -1.
+ <_>
+ 11 14 9 2 2.
+ <_>
+ 2 16 9 2 2.
+ <_>
+
+ <_>
+ 3 1 12 3 -1.
+ <_>
+ 3 2 12 1 3.
+ <_>
+
+ <_>
+ 6 1 16 3 -1.
+ <_>
+ 6 2 16 1 3.
+ <_>
+
+ <_>
+ 5 3 8 3 -1.
+ <_>
+ 9 3 4 3 2.
+ <_>
+
+ <_>
+ 16 3 4 6 -1.
+ <_>
+ 16 3 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 3 10 4 -1.
+ <_>
+ 4 3 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 14 5 6 8 -1.
+ <_>
+ 17 5 3 4 2.
+ <_>
+ 14 9 3 4 2.
+ <_>
+
+ <_>
+ 1 2 14 12 -1.
+ <_>
+ 1 5 14 6 2.
+ <_>
+
+ <_>
+ 11 2 6 12 -1.
+ <_>
+ 11 5 6 6 2.
+ <_>
+
+ <_>
+ 5 2 6 12 -1.
+ <_>
+ 5 5 6 6 2.
+ <_>
+
+ <_>
+ 11 5 8 5 -1.
+ <_>
+ 11 5 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 4 0 9 18 -1.
+ <_>
+ 7 0 3 18 3.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 11 16 6 2 2.
+ <_>
+
+ <_>
+ 5 14 6 4 -1.
+ <_>
+ 5 16 6 2 2.
+ <_>
+
+ <_>
+ 12 13 6 4 -1.
+ <_>
+ 12 15 6 2 2.
+ <_>
+
+ <_>
+ 1 6 13 3 -1.
+ <_>
+ 1 7 13 1 3.
+ <_>
+
+ <_>
+ 10 6 12 3 -1.
+ <_>
+ 10 7 12 1 3.
+ <_>
+
+ <_>
+ 1 8 6 4 -1.
+ <_>
+ 4 8 3 4 2.
+ <_>
+
+ <_>
+ 14 12 6 6 -1.
+ <_>
+ 16 12 2 6 3.
+ <_>
+
+ <_>
+ 2 12 6 6 -1.
+ <_>
+ 4 12 2 6 3.
+ <_>
+
+ <_>
+ 7 15 12 3 -1.
+ <_>
+ 11 15 4 3 3.
+ <_>
+
+ <_>
+ 1 12 8 5 -1.
+ <_>
+ 5 12 4 5 2.
+ <_>
+
+ <_>
+ 14 5 6 8 -1.
+ <_>
+ 17 5 3 4 2.
+ <_>
+ 14 9 3 4 2.
+ <_>
+
+ <_>
+ 2 5 6 8 -1.
+ <_>
+ 2 5 3 4 2.
+ <_>
+ 5 9 3 4 2.
+ <_>
+
+ <_>
+ 14 11 8 6 -1.
+ <_>
+ 18 11 4 3 2.
+ <_>
+ 14 14 4 3 2.
+ <_>
+
+ <_>
+ 4 0 8 6 -1.
+ <_>
+ 4 0 4 3 2.
+ <_>
+ 8 3 4 3 2.
+ <_>
+
+ <_>
+ 14 3 7 4 -1.
+ <_>
+ 14 3 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 11 8 6 -1.
+ <_>
+ 0 11 4 3 2.
+ <_>
+ 4 14 4 3 2.
+ <_>
+
+ <_>
+ 4 13 14 4 -1.
+ <_>
+ 4 15 14 2 2.
+ <_>
+
+ <_>
+ 5 3 9 8 -1.
+ <_>
+ 8 3 3 8 3.
+ <_>
+
+ <_>
+ 5 0 15 8 -1.
+ <_>
+ 10 0 5 8 3.
+ <_>
+
+ <_>
+ 2 0 15 8 -1.
+ <_>
+ 7 0 5 8 3.
+ <_>
+
+ <_>
+ 14 0 6 11 -1.
+ <_>
+ 16 0 2 11 3.
+ <_>
+
+ <_>
+ 0 16 18 2 -1.
+ <_>
+ 6 16 6 2 3.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 8 3 4 7 -1.
+ <_>
+ 8 3 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 3 6 8 -1.
+ <_>
+ 12 3 2 8 3.
+ <_>
+
+ <_>
+ 6 3 6 8 -1.
+ <_>
+ 8 3 2 8 3.
+ <_>
+
+ <_>
+ 7 13 12 4 -1.
+ <_>
+ 7 15 12 2 2.
+ <_>
+
+ <_>
+ 3 9 16 8 -1.
+ <_>
+ 3 9 8 4 2.
+ <_>
+ 11 13 8 4 2.
+ <_>
+
+ <_>
+ 9 0 13 3 -1.
+ <_>
+ 9 1 13 1 3.
+ <_>
+
+ <_>
+ 4 0 4 12 -1.
+ <_>
+ 4 0 2 6 2.
+ <_>
+ 6 6 2 6 2.
+ <_>
+
+ <_>
+ 1 11 20 4 -1.
+ <_>
+ 6 11 10 4 2.
+ <_>
+
+ <_>
+ 3 14 6 4 -1.
+ <_>
+ 6 14 3 4 2.
+ <_>
+
+ <_>
+ 10 6 12 3 -1.
+ <_>
+ 10 7 12 1 3.
+ <_>
+
+ <_>
+ 0 6 12 3 -1.
+ <_>
+ 0 7 12 1 3.
+ <_>
+
+ <_>
+ 6 2 14 6 -1.
+ <_>
+ 6 4 14 2 3.
+ <_>
+
+ <_>
+ 4 1 6 4 -1.
+ <_>
+ 4 1 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 1 0 21 18 -1.
+ <_>
+ 8 0 7 18 3.
+ <_>
+
+ <_>
+ 5 0 14 2 -1.
+ <_>
+ 5 0 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 8 4 9 -1.
+ <_>
+ 14 11 4 3 3.
+ <_>
+
+ <_>
+ 2 0 6 10 -1.
+ <_>
+ 4 0 2 10 3.
+ <_>
+
+ <_>
+ 5 11 12 4 -1.
+ <_>
+ 11 11 6 2 2.
+ <_>
+ 5 13 6 2 2.
+ <_>
+
+ <_>
+ 8 5 4 6 -1.
+ <_>
+ 10 5 2 6 2.
+ <_>
+
+ <_>
+ 7 1 15 9 -1.
+ <_>
+ 12 4 5 3 9.
+ <_>
+
+ <_>
+ 0 1 15 9 -1.
+ <_>
+ 5 4 5 3 9.
+ <_>
+
+ <_>
+ 5 0 12 16 -1.
+ <_>
+ 11 0 6 8 2.
+ <_>
+ 5 8 6 8 2.
+ <_>
+
+ <_>
+ 8 10 6 5 -1.
+ <_>
+ 11 10 3 5 2.
+ <_>
+
+ <_>
+ 10 4 8 9 -1.
+ <_>
+ 10 7 8 3 3.
+ <_>
+
+ <_>
+ 4 4 8 9 -1.
+ <_>
+ 4 7 8 3 3.
+ <_>
+
+ <_>
+ 8 3 12 3 -1.
+ <_>
+ 8 4 12 1 3.
+ <_>
+
+ <_>
+ 0 3 13 3 -1.
+ <_>
+ 0 4 13 1 3.
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 14 1 4 3 3.
+ <_>
+
+ <_>
+ 0 1 12 3 -1.
+ <_>
+ 4 1 4 3 3.
+ <_>
+
+ <_>
+ 8 3 12 3 -1.
+ <_>
+ 8 4 12 1 3.
+ <_>
+
+ <_>
+ 8 4 6 4 -1.
+ <_>
+ 8 4 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 2 2 11 -1.
+ <_>
+ 13 2 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 11 2 -1.
+ <_>
+ 9 2 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 3 16 -1.
+ <_>
+ 11 9 3 8 2.
+ <_>
+
+ <_>
+ 7 1 4 9 -1.
+ <_>
+ 7 4 4 3 3.
+ <_>
+
+ <_>
+ 12 4 4 8 -1.
+ <_>
+ 12 8 4 4 2.
+ <_>
+
+ <_>
+ 1 7 6 4 -1.
+ <_>
+ 1 9 6 2 2.
+ <_>
+
+ <_>
+ 12 4 4 8 -1.
+ <_>
+ 12 8 4 4 2.
+ <_>
+
+ <_>
+ 6 4 4 8 -1.
+ <_>
+ 6 8 4 4 2.
+ <_>
+
+ <_>
+ 19 3 3 12 -1.
+ <_>
+ 20 4 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 3 3 12 3 -1.
+ <_>
+ 2 4 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 6 3 7 -1.
+ <_>
+ 14 7 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 8 12 6 4 -1.
+ <_>
+ 11 12 3 4 2.
+ <_>
+
+ <_>
+ 10 8 10 10 -1.
+ <_>
+ 15 8 5 5 2.
+ <_>
+ 10 13 5 5 2.
+ <_>
+
+ <_>
+ 2 8 10 10 -1.
+ <_>
+ 2 8 5 5 2.
+ <_>
+ 7 13 5 5 2.
+ <_>
+
+ <_>
+ 1 11 20 3 -1.
+ <_>
+ 6 11 10 3 2.
+ <_>
+
+ <_>
+ 13 8 6 4 -1.
+ <_>
+ 13 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 4 11 8 4 -1.
+ <_>
+ 8 11 4 4 2.
+ <_>
+
+ <_>
+ 9 5 10 6 -1.
+ <_>
+ 9 5 5 6 2.
+ <_>
+
+ <_>
+ 4 8 6 9 -1.
+ <_>
+ 7 8 3 9 2.
+ <_>
+
+ <_>
+ 4 5 16 4 -1.
+ <_>
+ 4 5 8 4 2.
+ <_>
+
+ <_>
+ 2 4 18 6 -1.
+ <_>
+ 8 6 6 2 9.
+ <_>
+
+ <_>
+ 11 1 2 11 -1.
+ <_>
+ 11 1 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 7 1 6 8 -1.
+ <_>
+ 7 1 3 4 2.
+ <_>
+ 10 5 3 4 2.
+ <_>
+
+ <_>
+ 7 10 8 6 -1.
+ <_>
+ 9 10 4 6 2.
+ <_>
+
+ <_>
+ 6 12 9 4 -1.
+ <_>
+ 9 12 3 4 3.
+ <_>
+
+ <_>
+ 10 12 9 4 -1.
+ <_>
+ 13 12 3 4 3.
+ <_>
+
+ <_>
+ 8 0 10 8 -1.
+ <_>
+ 8 0 5 8 2.
+ 1
+ <_>
+
+ <_>
+ 9 6 12 4 -1.
+ <_>
+ 15 6 6 2 2.
+ <_>
+ 9 8 6 2 2.
+ <_>
+
+ <_>
+ 4 9 14 5 -1.
+ <_>
+ 11 9 7 5 2.
+ <_>
+
+ <_>
+ 14 6 6 6 -1.
+ <_>
+ 12 8 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 6 4 6 7 -1.
+ <_>
+ 8 4 2 7 3.
+ <_>
+
+ <_>
+ 14 9 6 6 -1.
+ <_>
+ 14 12 6 3 2.
+ <_>
+
+ <_>
+ 2 9 6 6 -1.
+ <_>
+ 2 12 6 3 2.
+ <_>
+
+ <_>
+ 13 8 4 8 -1.
+ <_>
+ 13 8 2 8 2.
+ <_>
+
+ <_>
+ 5 8 4 9 -1.
+ <_>
+ 7 8 2 9 2.
+ <_>
+
+ <_>
+ 2 4 18 12 -1.
+ <_>
+ 8 8 6 4 9.
+ <_>
+
+ <_>
+ 3 5 10 6 -1.
+ <_>
+ 8 5 5 6 2.
+ <_>
+
+ <_>
+ 6 0 12 8 -1.
+ <_>
+ 6 0 6 8 2.
+ <_>
+
+ <_>
+ 0 11 8 7 -1.
+ <_>
+ 2 11 4 7 2.
+ <_>
+
+ <_>
+ 15 11 6 7 -1.
+ <_>
+ 17 11 2 7 3.
+ <_>
+
+ <_>
+ 3 16 14 2 -1.
+ <_>
+ 3 17 14 1 2.
+ <_>
+
+ <_>
+ 9 15 13 3 -1.
+ <_>
+ 9 16 13 1 3.
+ <_>
+
+ <_>
+ 0 15 13 3 -1.
+ <_>
+ 0 16 13 1 3.
+ <_>
+
+ <_>
+ 5 13 12 3 -1.
+ <_>
+ 5 14 12 1 3.
+ <_>
+
+ <_>
+ 0 14 14 3 -1.
+ <_>
+ 0 15 14 1 3.
+ <_>
+
+ <_>
+ 13 5 6 6 -1.
+ <_>
+ 15 5 2 6 3.
+ <_>
+
+ <_>
+ 3 5 6 6 -1.
+ <_>
+ 5 5 2 6 3.
+ <_>
+
+ <_>
+ 2 3 20 4 -1.
+ <_>
+ 7 3 10 4 2.
+ <_>
+
+ <_>
+ 4 13 12 2 -1.
+ <_>
+ 4 14 12 1 2.
+ <_>
+
+ <_>
+ 9 6 9 6 -1.
+ <_>
+ 12 6 3 6 3.
+ <_>
+
+ <_>
+ 8 5 6 7 -1.
+ <_>
+ 10 5 2 7 3.
+ <_>
+
+ <_>
+ 15 0 3 10 -1.
+ <_>
+ 16 1 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 7 0 10 3 -1.
+ <_>
+ 6 1 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 11 4 8 6 -1.
+ <_>
+ 15 4 4 3 2.
+ <_>
+ 11 7 4 3 2.
+ <_>
+
+ <_>
+ 7 0 12 3 -1.
+ <_>
+ 6 1 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 19 4 3 11 -1.
+ <_>
+ 20 5 1 11 3.
+ 1
+ <_>
+
+ <_>
+ 1 11 6 7 -1.
+ <_>
+ 3 11 2 7 3.
+ <_>
+
+ <_>
+ 7 4 15 14 -1.
+ <_>
+ 7 11 15 7 2.
+ <_>
+
+ <_>
+ 3 4 11 3 -1.
+ <_>
+ 2 5 11 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 6 3 8 -1.
+ <_>
+ 15 7 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 3 18 -1.
+ <_>
+ 4 0 1 18 3.
+ <_>
+
+ <_>
+ 14 3 8 4 -1.
+ <_>
+ 14 3 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 4 8 -1.
+ <_>
+ 8 3 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 18 2 4 12 -1.
+ <_>
+ 15 5 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 2 9 17 3 -1.
+ <_>
+ 2 10 17 1 3.
+ <_>
+
+ <_>
+ 7 9 14 3 -1.
+ <_>
+ 7 10 14 1 3.
+ <_>
+
+ <_>
+ 8 2 6 8 -1.
+ <_>
+ 8 2 3 4 2.
+ <_>
+ 11 6 3 4 2.
+ <_>
+
+ <_>
+ 11 4 8 6 -1.
+ <_>
+ 15 4 4 3 2.
+ <_>
+ 11 7 4 3 2.
+ <_>
+
+ <_>
+ 3 4 8 6 -1.
+ <_>
+ 3 4 4 3 2.
+ <_>
+ 7 7 4 3 2.
+ <_>
+
+ <_>
+ 3 1 18 3 -1.
+ <_>
+ 3 2 18 1 3.
+ <_>
+
+ <_>
+ 0 9 8 3 -1.
+ <_>
+ 4 9 4 3 2.
+ <_>
+
+ <_>
+ 13 2 9 10 -1.
+ <_>
+ 13 7 9 5 2.
+ <_>
+
+ <_>
+ 1 2 8 12 -1.
+ <_>
+ 1 2 4 6 2.
+ <_>
+ 5 8 4 6 2.
+ <_>
+
+ <_>
+ 12 5 8 6 -1.
+ <_>
+ 16 5 4 3 2.
+ <_>
+ 12 8 4 3 2.
+ <_>
+
+ <_>
+ 1 0 17 3 -1.
+ <_>
+ 1 1 17 1 3.
+ <_>
+
+ <_>
+ 4 0 15 2 -1.
+ <_>
+ 4 1 15 1 2.
+ <_>
+
+ <_>
+ 5 0 12 4 -1.
+ <_>
+ 5 2 12 2 2.
+ <_>
+
+ <_>
+ 7 4 15 14 -1.
+ <_>
+ 7 11 15 7 2.
+ <_>
+
+ <_>
+ 8 2 9 2 -1.
+ <_>
+ 8 2 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 16 0 2 13 -1.
+ <_>
+ 16 0 1 13 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 13 2 -1.
+ <_>
+ 6 0 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 2 9 -1.
+ <_>
+ 12 7 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 9 2 -1.
+ <_>
+ 10 7 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 11 10 -1.
+ <_>
+ 9 5 11 5 2.
+ <_>
+
+ <_>
+ 8 5 9 2 -1.
+ <_>
+ 8 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 2 9 10 -1.
+ <_>
+ 13 7 9 5 2.
+ <_>
+
+ <_>
+ 0 2 9 10 -1.
+ <_>
+ 0 7 9 5 2.
+ <_>
+
+ <_>
+ 17 2 3 8 -1.
+ <_>
+ 17 6 3 4 2.
+ <_>
+
+ <_>
+ 2 2 3 8 -1.
+ <_>
+ 2 6 3 4 2.
+ <_>
+
+ <_>
+ 4 4 18 4 -1.
+ <_>
+ 13 4 9 2 2.
+ <_>
+ 4 6 9 2 2.
+ <_>
+
+ <_>
+ 0 4 18 4 -1.
+ <_>
+ 0 4 9 2 2.
+ <_>
+ 9 6 9 2 2.
+ <_>
+
+ <_>
+ 4 1 14 4 -1.
+ <_>
+ 11 1 7 2 2.
+ <_>
+ 4 3 7 2 2.
+ <_>
+
+ <_>
+ 0 0 21 8 -1.
+ <_>
+ 7 0 7 8 3.
+ <_>
+
+ <_>
+ 5 0 14 18 -1.
+ <_>
+ 12 0 7 9 2.
+ <_>
+ 5 9 7 9 2.
+ <_>
+
+ <_>
+ 1 11 16 4 -1.
+ <_>
+ 5 11 8 4 2.
+ <_>
+
+ <_>
+ 6 9 10 6 -1.
+ <_>
+ 6 11 10 2 3.
+ <_>
+
+ <_>
+ 5 10 12 4 -1.
+ <_>
+ 5 11 12 2 2.
+ <_>
+
+ <_>
+ 15 4 6 6 -1.
+ <_>
+ 15 4 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 7 4 6 6 -1.
+ <_>
+ 7 4 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 12 5 8 6 -1.
+ <_>
+ 16 5 4 3 2.
+ <_>
+ 12 8 4 3 2.
+ <_>
+
+ <_>
+ 5 5 8 4 -1.
+ <_>
+ 5 5 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 17 6 3 12 -1.
+ <_>
+ 17 10 3 4 3.
+ <_>
+
+ <_>
+ 5 7 9 2 -1.
+ <_>
+ 5 7 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 14 6 3 8 -1.
+ <_>
+ 15 7 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 12 2 -1.
+ <_>
+ 5 8 12 1 2.
+ <_>
+
+ <_>
+ 4 5 18 3 -1.
+ <_>
+ 4 6 18 1 3.
+ <_>
+
+ <_>
+ 1 6 15 9 -1.
+ <_>
+ 6 6 5 9 3.
+ <_>
+
+ <_>
+ 19 4 3 10 -1.
+ <_>
+ 19 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 12 18 6 -1.
+ <_>
+ 0 15 18 3 2.
+ <_>
+
+ <_>
+ 6 13 13 4 -1.
+ <_>
+ 6 15 13 2 2.
+ <_>
+
+ <_>
+ 3 5 8 9 -1.
+ <_>
+ 3 8 8 3 3.
+ <_>
+
+ <_>
+ 6 8 10 8 -1.
+ <_>
+ 6 10 10 4 2.
+ <_>
+
+ <_>
+ 4 6 13 6 -1.
+ <_>
+ 4 9 13 3 2.
+ <_>
+
+ <_>
+ 14 3 2 12 -1.
+ <_>
+ 14 3 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 12 2 -1.
+ <_>
+ 8 3 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 5 12 -1.
+ <_>
+ 13 1 5 6 2.
+ 1
+ <_>
+
+ <_>
+ 9 1 12 5 -1.
+ <_>
+ 9 1 6 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 12 8 3 -1.
+ <_>
+ 8 12 4 3 2.
+ <_>
+
+ <_>
+ 5 12 12 4 -1.
+ <_>
+ 8 12 6 4 2.
+ <_>
+
+ <_>
+ 13 8 6 4 -1.
+ <_>
+ 13 8 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 9 8 4 6 -1.
+ <_>
+ 9 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 1 7 20 11 -1.
+ <_>
+ 6 7 10 11 2.
+ <_>
+
+ <_>
+ 10 13 12 3 -1.
+ <_>
+ 10 14 12 1 3.
+ <_>
+
+ <_>
+ 1 10 6 4 -1.
+ <_>
+ 4 10 3 4 2.
+ <_>
+
+ <_>
+ 15 10 6 4 -1.
+ <_>
+ 15 10 3 4 2.
+ <_>
+
+ <_>
+ 0 13 12 3 -1.
+ <_>
+ 0 14 12 1 3.
+ <_>
+
+ <_>
+ 4 10 14 8 -1.
+ <_>
+ 4 14 14 4 2.
+ <_>
+
+ <_>
+ 5 14 12 4 -1.
+ <_>
+ 5 15 12 2 2.
+ <_>
+
+ <_>
+ 5 16 12 2 -1.
+ <_>
+ 5 17 12 1 2.
+ <_>
+
+ <_>
+ 1 0 20 12 -1.
+ <_>
+ 6 0 10 12 2.
+ <_>
+
+ <_>
+ 7 12 15 5 -1.
+ <_>
+ 12 12 5 5 3.
+ <_>
+
+ <_>
+ 6 0 15 2 -1.
+ <_>
+ 6 0 15 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 5 12 8 -1.
+ <_>
+ 12 5 6 4 2.
+ <_>
+ 6 9 6 4 2.
+ <_>
+
+ <_>
+ 4 5 12 8 -1.
+ <_>
+ 4 5 6 4 2.
+ <_>
+ 10 9 6 4 2.
+ <_>
+
+ <_>
+ 6 2 16 6 -1.
+ <_>
+ 14 2 8 3 2.
+ <_>
+ 6 5 8 3 2.
+ <_>
+
+ <_>
+ 1 2 16 14 -1.
+ <_>
+ 1 2 8 7 2.
+ <_>
+ 9 9 8 7 2.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 11 14 3 4 2.
+ <_>
+
+ <_>
+ 3 8 12 9 -1.
+ <_>
+ 7 11 4 3 9.
+ <_>
+
+ <_>
+ 8 3 14 4 -1.
+ <_>
+ 15 3 7 2 2.
+ <_>
+ 8 5 7 2 2.
+ <_>
+
+ <_>
+ 9 0 6 8 -1.
+ <_>
+ 11 2 2 8 3.
+ 1
+ <_>
+
+ <_>
+ 12 13 6 4 -1.
+ <_>
+ 12 15 6 2 2.
+ <_>
+
+ <_>
+ 4 13 6 4 -1.
+ <_>
+ 4 15 6 2 2.
+ <_>
+
+ <_>
+ 6 16 16 2 -1.
+ <_>
+ 6 17 16 1 2.
+ <_>
+
+ <_>
+ 0 3 12 3 -1.
+ <_>
+ 0 4 12 1 3.
+ <_>
+
+ <_>
+ 8 3 14 3 -1.
+ <_>
+ 8 4 14 1 3.
+ <_>
+
+ <_>
+ 6 2 3 16 -1.
+ <_>
+ 6 6 3 8 2.
+ <_>
+
+ <_>
+ 5 2 14 14 -1.
+ <_>
+ 12 2 7 7 2.
+ <_>
+ 5 9 7 7 2.
+ <_>
+
+ <_>
+ 5 8 3 8 -1.
+ <_>
+ 5 12 3 4 2.
+ <_>
+
+ <_>
+ 14 7 7 4 -1.
+ <_>
+ 14 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 4 6 12 9 -1.
+ <_>
+ 8 9 4 3 9.
+ <_>
+
+ <_>
+ 7 11 15 6 -1.
+ <_>
+ 12 11 5 6 3.
+ <_>
+
+ <_>
+ 0 11 15 6 -1.
+ <_>
+ 5 11 5 6 3.
+ <_>
+
+ <_>
+ 15 7 6 8 -1.
+ <_>
+ 18 7 3 4 2.
+ <_>
+ 15 11 3 4 2.
+ <_>
+
+ <_>
+ 0 7 22 10 -1.
+ <_>
+ 0 7 11 5 2.
+ <_>
+ 11 12 11 5 2.
+ <_>
+
+ <_>
+ 1 8 20 8 -1.
+ <_>
+ 6 8 10 8 2.
+ <_>
+
+ <_>
+ 2 5 7 6 -1.
+ <_>
+ 2 7 7 2 3.
+ <_>
+
+ <_>
+ 7 2 15 8 -1.
+ <_>
+ 7 4 15 4 2.
+ <_>
+
+ <_>
+ 3 1 14 8 -1.
+ <_>
+ 3 3 14 4 2.
+ <_>
+
+ <_>
+ 9 2 13 2 -1.
+ <_>
+ 9 3 13 1 2.
+ <_>
+
+ <_>
+ 8 3 6 8 -1.
+ <_>
+ 10 3 2 8 3.
+ <_>
+
+ <_>
+ 7 1 15 2 -1.
+ <_>
+ 7 2 15 1 2.
+ <_>
+
+ <_>
+ 0 1 15 2 -1.
+ <_>
+ 0 2 15 1 2.
+ <_>
+
+ <_>
+ 6 0 12 3 -1.
+ <_>
+ 6 1 12 1 3.
+ <_>
+
+ <_>
+ 4 0 9 4 -1.
+ <_>
+ 7 0 3 4 3.
+ <_>
+
+ <_>
+ 12 3 8 3 -1.
+ <_>
+ 12 3 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 8 12 6 4 -1.
+ <_>
+ 11 12 3 4 2.
+ <_>
+
+ <_>
+ 12 1 10 4 -1.
+ <_>
+ 12 1 5 4 2.
+ <_>
+
+ <_>
+ 0 1 10 4 -1.
+ <_>
+ 5 1 5 4 2.
+ <_>
+
+ <_>
+ 16 13 6 5 -1.
+ <_>
+ 16 13 3 5 2.
+ <_>
+
+ <_>
+ 0 13 6 5 -1.
+ <_>
+ 3 13 3 5 2.
+ <_>
+
+ <_>
+ 18 11 4 7 -1.
+ <_>
+ 18 11 2 7 2.
+ <_>
+
+ <_>
+ 0 11 4 7 -1.
+ <_>
+ 2 11 2 7 2.
+ <_>
+
+ <_>
+ 15 0 6 14 -1.
+ <_>
+ 17 0 2 14 3.
+ <_>
+
+ <_>
+ 1 0 6 14 -1.
+ <_>
+ 3 0 2 14 3.
+ <_>
+
+ <_>
+ 13 0 4 14 -1.
+ <_>
+ 15 0 2 7 2.
+ <_>
+ 13 7 2 7 2.
+ <_>
+
+ <_>
+ 5 0 4 14 -1.
+ <_>
+ 5 0 2 7 2.
+ <_>
+ 7 7 2 7 2.
+ <_>
+
+ <_>
+ 13 2 6 4 -1.
+ <_>
+ 13 2 3 4 2.
+ <_>
+
+ <_>
+ 1 7 12 4 -1.
+ <_>
+ 1 7 6 2 2.
+ <_>
+ 7 9 6 2 2.
+ <_>
+
+ <_>
+ 4 13 18 3 -1.
+ <_>
+ 4 14 18 1 3.
+ <_>
+
+ <_>
+ 2 6 2 12 -1.
+ <_>
+ 2 12 2 6 2.
+ <_>
+
+ <_>
+ 4 11 16 4 -1.
+ <_>
+ 12 11 8 2 2.
+ <_>
+ 4 13 8 2 2.
+ <_>
+
+ <_>
+ 2 11 16 4 -1.
+ <_>
+ 2 11 8 2 2.
+ <_>
+ 10 13 8 2 2.
+ <_>
+
+ <_>
+ 10 12 12 4 -1.
+ <_>
+ 16 12 6 2 2.
+ <_>
+ 10 14 6 2 2.
+ <_>
+
+ <_>
+ 0 12 12 4 -1.
+ <_>
+ 0 12 6 2 2.
+ <_>
+ 6 14 6 2 2.
+ <_>
+
+ <_>
+ 12 12 10 6 -1.
+ <_>
+ 17 12 5 3 2.
+ <_>
+ 12 15 5 3 2.
+ <_>
+
+ <_>
+ 0 10 10 8 -1.
+ <_>
+ 0 10 5 4 2.
+ <_>
+ 5 14 5 4 2.
+ <_>
+
+ <_>
+ 8 0 7 4 -1.
+ <_>
+ 8 2 7 2 2.
+ <_>
+
+ <_>
+ 0 3 14 3 -1.
+ <_>
+ 0 4 14 1 3.
+ <_>
+
+ <_>
+ 15 1 6 8 -1.
+ <_>
+ 18 1 3 4 2.
+ <_>
+ 15 5 3 4 2.
+ <_>
+
+ <_>
+ 2 3 7 4 -1.
+ <_>
+ 2 5 7 2 2.
+ <_>
+
+ <_>
+ 13 2 6 4 -1.
+ <_>
+ 13 2 3 4 2.
+ <_>
+
+ <_>
+ 3 2 6 4 -1.
+ <_>
+ 6 2 3 4 2.
+ <_>
+
+ <_>
+ 5 1 16 4 -1.
+ <_>
+ 5 2 16 2 2.
+ <_>
+
+ <_>
+ 4 15 13 3 -1.
+ <_>
+ 4 16 13 1 3.
+ <_>
+
+ <_>
+ 12 6 3 12 -1.
+ <_>
+ 13 6 1 12 3.
+ <_>
+
+ <_>
+ 0 16 16 2 -1.
+ <_>
+ 8 16 8 2 2.
+ <_>
+
+ <_>
+ 3 2 16 10 -1.
+ <_>
+ 3 7 16 5 2.
+ <_>
+
+ <_>
+ 7 1 12 4 -1.
+ <_>
+ 10 4 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 14 1 2 9 -1.
+ <_>
+ 14 1 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 4 10 3 8 -1.
+ <_>
+ 4 14 3 4 2.
+ <_>
+
+ <_>
+ 11 12 6 6 -1.
+ <_>
+ 11 14 6 2 3.
+ <_>
+
+ <_>
+ 5 12 6 6 -1.
+ <_>
+ 5 14 6 2 3.
+ <_>
+
+ <_>
+ 12 6 3 12 -1.
+ <_>
+ 13 6 1 12 3.
+ <_>
+
+ <_>
+ 10 6 8 3 -1.
+ <_>
+ 9 7 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 6 3 12 -1.
+ <_>
+ 13 6 1 12 3.
+ <_>
+
+ <_>
+ 7 6 3 12 -1.
+ <_>
+ 8 6 1 12 3.
+ <_>
+
+ <_>
+ 14 1 2 9 -1.
+ <_>
+ 14 1 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 11 4 10 3 -1.
+ <_>
+ 10 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 8 11 9 4 -1.
+ <_>
+ 11 11 3 4 3.
+ <_>
+
+ <_>
+ 7 5 2 12 -1.
+ <_>
+ 8 5 1 12 2.
+ <_>
+
+ <_>
+ 13 1 3 16 -1.
+ <_>
+ 14 1 1 16 3.
+ <_>
+
+ <_>
+ 7 4 6 6 -1.
+ <_>
+ 9 4 2 6 3.
+ <_>
+
+ <_>
+ 10 4 2 12 -1.
+ <_>
+ 10 4 1 12 2.
+ <_>
+
+ <_>
+ 0 0 18 5 -1.
+ <_>
+ 9 0 9 5 2.
+ <_>
+
+ <_>
+ 16 3 2 12 -1.
+ <_>
+ 16 3 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 6 3 12 2 -1.
+ <_>
+ 6 3 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 6 4 7 -1.
+ <_>
+ 14 7 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 7 3 13 2 -1.
+ <_>
+ 7 3 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 14 17 4 -1.
+ <_>
+ 5 15 17 2 2.
+ <_>
+
+ <_>
+ 0 13 18 3 -1.
+ <_>
+ 0 14 18 1 3.
+ <_>
+
+ <_>
+ 6 13 14 3 -1.
+ <_>
+ 6 14 14 1 3.
+ <_>
+
+ <_>
+ 2 13 14 3 -1.
+ <_>
+ 2 14 14 1 3.
+ <_>
+
+ <_>
+ 5 13 12 2 -1.
+ <_>
+ 5 14 12 1 2.
+ <_>
+
+ <_>
+ 0 5 4 8 -1.
+ <_>
+ 0 9 4 4 2.
+ <_>
+
+ <_>
+ 15 7 6 8 -1.
+ <_>
+ 18 7 3 4 2.
+ <_>
+ 15 11 3 4 2.
+ <_>
+
+ <_>
+ 9 2 4 7 -1.
+ <_>
+ 11 2 2 7 2.
+ <_>
+
+ <_>
+ 8 4 14 3 -1.
+ <_>
+ 8 5 14 1 3.
+ <_>
+
+ <_>
+ 0 4 12 3 -1.
+ <_>
+ 0 5 12 1 3.
+ <_>
+
+ <_>
+ 13 2 4 9 -1.
+ <_>
+ 13 5 4 3 3.
+ <_>
+
+ <_>
+ 5 2 4 9 -1.
+ <_>
+ 5 5 4 3 3.
+ <_>
+
+ <_>
+ 12 6 6 4 -1.
+ <_>
+ 12 8 6 2 2.
+ <_>
+
+ <_>
+ 5 5 12 3 -1.
+ <_>
+ 11 5 6 3 2.
+ <_>
+
+ <_>
+ 7 1 8 12 -1.
+ <_>
+ 7 4 8 6 2.
+ <_>
+
+ <_>
+ 9 3 6 7 -1.
+ <_>
+ 11 5 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 12 1 9 6 -1.
+ <_>
+ 10 3 9 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 7 8 3 -1.
+ <_>
+ 11 7 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 14 1 2 9 -1.
+ <_>
+ 14 1 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 1 7 6 8 -1.
+ <_>
+ 1 7 3 4 2.
+ <_>
+ 4 11 3 4 2.
+ <_>
+
+ <_>
+ 11 0 4 6 -1.
+ <_>
+ 11 0 2 6 2.
+ <_>
+
+ <_>
+ 7 0 4 6 -1.
+ <_>
+ 9 0 2 6 2.
+ <_>
+
+ <_>
+ 0 7 22 4 -1.
+ <_>
+ 11 7 11 2 2.
+ <_>
+ 0 9 11 2 2.
+ <_>
+
+ <_>
+ 3 5 4 8 -1.
+ <_>
+ 3 9 4 4 2.
+ <_>
+
+ <_>
+ 5 4 12 3 -1.
+ <_>
+ 9 4 4 3 3.
+ <_>
+
+ <_>
+ 10 2 12 3 -1.
+ <_>
+ 10 2 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 6 16 -1.
+ <_>
+ 5 10 6 8 2.
+ <_>
+
+ <_>
+ 12 6 8 4 -1.
+ <_>
+ 12 6 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 5 12 2 6 3.
+ <_>
+
+ <_>
+ 12 1 3 12 -1.
+ <_>
+ 12 1 3 6 2.
+ 1
+ <_>
+
+ <_>
+ 10 1 12 3 -1.
+ <_>
+ 10 1 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 4 8 16 4 -1.
+ <_>
+ 8 8 8 4 2.
+ <_>
+
+ <_>
+ 6 10 4 6 -1.
+ <_>
+ 8 10 2 6 2.
+ <_>
+
+ <_>
+ 7 14 9 4 -1.
+ <_>
+ 10 14 3 4 3.
+ <_>
+
+ <_>
+ 8 10 4 7 -1.
+ <_>
+ 10 10 2 7 2.
+ <_>
+
+ <_>
+ 12 12 4 6 -1.
+ <_>
+ 12 12 2 6 2.
+ <_>
+
+ <_>
+ 6 12 4 6 -1.
+ <_>
+ 8 12 2 6 2.
+ <_>
+
+ <_>
+ 9 12 4 6 -1.
+ <_>
+ 9 15 4 3 2.
+ <_>
+
+ <_>
+ 5 12 6 6 -1.
+ <_>
+ 7 12 2 6 3.
+ <_>
+
+ <_>
+ 6 2 11 16 -1.
+ <_>
+ 6 6 11 8 2.
+ <_>
+
+ <_>
+ 11 2 6 2 -1.
+ <_>
+ 11 2 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 10 1 6 8 -1.
+ <_>
+ 13 1 3 4 2.
+ <_>
+ 10 5 3 4 2.
+ <_>
+
+ <_>
+ 5 2 12 2 -1.
+ <_>
+ 11 2 6 2 2.
+ <_>
+
+ <_>
+ 10 13 8 3 -1.
+ <_>
+ 10 13 4 3 2.
+ <_>
+
+ <_>
+ 5 0 12 6 -1.
+ <_>
+ 11 0 6 6 2.
+ <_>
+
+ <_>
+ 10 7 12 3 -1.
+ <_>
+ 10 8 12 1 3.
+ <_>
+
+ <_>
+ 0 7 12 3 -1.
+ <_>
+ 0 8 12 1 3.
+ <_>
+
+ <_>
+ 20 0 2 18 -1.
+ <_>
+ 20 9 2 9 2.
+ <_>
+
+ <_>
+ 0 0 2 18 -1.
+ <_>
+ 0 9 2 9 2.
+ <_>
+
+ <_>
+ 14 6 6 12 -1.
+ <_>
+ 17 6 3 6 2.
+ <_>
+ 14 12 3 6 2.
+ <_>
+
+ <_>
+ 1 5 6 10 -1.
+ <_>
+ 1 10 6 5 2.
+ <_>
+
+ <_>
+ 16 1 4 12 -1.
+ <_>
+ 16 5 4 4 3.
+ <_>
+
+ <_>
+ 2 1 4 12 -1.
+ <_>
+ 2 5 4 4 3.
+ <_>
+
+ <_>
+ 3 12 16 4 -1.
+ <_>
+ 11 12 8 2 2.
+ <_>
+ 3 14 8 2 2.
+ <_>
+
+ <_>
+ 0 2 12 2 -1.
+ <_>
+ 0 3 12 1 2.
+ <_>
+
+ <_>
+ 6 2 13 3 -1.
+ <_>
+ 6 3 13 1 3.
+ <_>
+
+ <_>
+ 1 0 10 6 -1.
+ <_>
+ 1 0 5 3 2.
+ <_>
+ 6 3 5 3 2.
+ <_>
+
+ <_>
+ 9 11 12 5 -1.
+ <_>
+ 13 11 4 5 3.
+ <_>
+
+ <_>
+ 2 6 6 12 -1.
+ <_>
+ 2 6 3 6 2.
+ <_>
+ 5 12 3 6 2.
+ <_>
+
+ <_>
+ 9 12 8 6 -1.
+ <_>
+ 13 12 4 3 2.
+ <_>
+ 9 15 4 3 2.
+ <_>
+
+ <_>
+ 1 7 6 8 -1.
+ <_>
+ 1 7 3 4 2.
+ <_>
+ 4 11 3 4 2.
+ <_>
+
+ <_>
+ 14 6 3 8 -1.
+ <_>
+ 15 7 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 2 14 12 4 -1.
+ <_>
+ 6 14 4 4 3.
+ <_>
+
+ <_>
+ 14 4 2 11 -1.
+ <_>
+ 14 4 1 11 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 8 3 -1.
+ <_>
+ 7 7 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 6 12 12 3 -1.
+ <_>
+ 6 13 12 1 3.
+ <_>
+
+ <_>
+ 2 3 18 3 -1.
+ <_>
+ 2 4 18 1 3.
+ <_>
+
+ <_>
+ 11 6 9 9 -1.
+ <_>
+ 14 6 3 9 3.
+ <_>
+
+ <_>
+ 3 13 11 4 -1.
+ <_>
+ 3 15 11 2 2.
+ <_>
+
+ <_>
+ 17 5 4 6 -1.
+ <_>
+ 17 5 2 6 2.
+ <_>
+
+ <_>
+ 1 5 4 6 -1.
+ <_>
+ 3 5 2 6 2.
+ <_>
+
+ <_>
+ 6 0 16 3 -1.
+ <_>
+ 10 0 8 3 2.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 9 6 1 12 3.
+ <_>
+
+ <_>
+ 14 2 2 8 -1.
+ <_>
+ 14 2 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 9 0 12 3 -1.
+ <_>
+ 9 0 6 3 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 16 3 -1.
+ <_>
+ 10 0 8 3 2.
+ <_>
+
+ <_>
+ 0 0 16 3 -1.
+ <_>
+ 4 0 8 3 2.
+ <_>
+
+ <_>
+ 8 12 14 3 -1.
+ <_>
+ 8 13 14 1 3.
+ <_>
+
+ <_>
+ 8 4 11 2 -1.
+ <_>
+ 8 4 11 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 5 20 13 -1.
+ <_>
+ 2 5 10 13 2.
+ <_>
+
+ <_>
+ 0 2 18 9 -1.
+ <_>
+ 6 5 6 3 9.
+ <_>
+
+ <_>
+ 10 13 12 3 -1.
+ <_>
+ 10 14 12 1 3.
+ <_>
+
+ <_>
+ 8 11 6 7 -1.
+ <_>
+ 10 11 2 7 3.
+ <_>
+
+ <_>
+ 5 6 12 11 -1.
+ <_>
+ 9 6 4 11 3.
+ <_>
+
+ <_>
+ 3 6 6 6 -1.
+ <_>
+ 5 6 2 6 3.
+ <_>
+
+ <_>
+ 13 4 6 13 -1.
+ <_>
+ 15 4 2 13 3.
+ <_>
+
+ <_>
+ 3 4 6 13 -1.
+ <_>
+ 5 4 2 13 3.
+ <_>
+
+ <_>
+ 5 10 12 3 -1.
+ <_>
+ 9 10 4 3 3.
+ <_>
+
+ <_>
+ 5 8 12 6 -1.
+ <_>
+ 8 8 6 6 2.
+ <_>
+
+ <_>
+ 14 2 2 8 -1.
+ <_>
+ 14 2 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 8 2 8 2 -1.
+ <_>
+ 8 2 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 6 9 5 -1.
+ <_>
+ 11 6 3 5 3.
+ <_>
+
+ <_>
+ 0 3 14 4 -1.
+ <_>
+ 0 3 7 2 2.
+ <_>
+ 7 5 7 2 2.
+ <_>
+
+ <_>
+ 12 1 3 8 -1.
+ <_>
+ 13 2 1 8 3.
+ 1
+ <_>
+
+ <_>
+ 10 1 8 3 -1.
+ <_>
+ 9 2 8 1 3.
+ 1
+ <_>
+
+ <_>
+ 14 3 6 6 -1.
+ <_>
+ 14 5 6 2 3.
+ <_>
+
+ <_>
+ 4 1 6 10 -1.
+ <_>
+ 4 1 3 5 2.
+ <_>
+ 7 6 3 5 2.
+ <_>
+
+ <_>
+ 18 1 3 13 -1.
+ <_>
+ 19 1 1 13 3.
+ <_>
+
+ <_>
+ 1 1 3 13 -1.
+ <_>
+ 2 1 1 13 3.
+ <_>
+
+ <_>
+ 11 1 2 8 -1.
+ <_>
+ 11 1 1 8 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 8 2 -1.
+ <_>
+ 11 1 8 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 4 6 6 -1.
+ <_>
+ 8 6 6 2 3.
+ <_>
+
+ <_>
+ 5 4 7 6 -1.
+ <_>
+ 5 6 7 2 3.
+ <_>
+
+ <_>
+ 9 11 13 3 -1.
+ <_>
+ 9 12 13 1 3.
+ <_>
+
+ <_>
+ 0 11 13 3 -1.
+ <_>
+ 0 12 13 1 3.
+ <_>
+
+ <_>
+ 12 10 9 8 -1.
+ <_>
+ 12 14 9 4 2.
+ <_>
+
+ <_>
+ 1 10 9 8 -1.
+ <_>
+ 1 14 9 4 2.
+ <_>
+
+ <_>
+ 4 10 18 8 -1.
+ <_>
+ 13 10 9 4 2.
+ <_>
+ 4 14 9 4 2.
+ <_>
+
+ <_>
+ 0 10 18 8 -1.
+ <_>
+ 0 10 9 4 2.
+ <_>
+ 9 14 9 4 2.
+ <_>
+
+ <_>
+ 12 2 4 12 -1.
+ <_>
+ 12 2 2 12 2.
+ 1
+ <_>
+
+ <_>
+ 0 5 20 13 -1.
+ <_>
+ 10 5 10 13 2.
+ <_>
+
+ <_>
+ 10 6 9 6 -1.
+ <_>
+ 10 8 9 2 3.
+ <_>
+
+ <_>
+ 3 6 9 6 -1.
+ <_>
+ 3 8 9 2 3.
+ <_>
+
+ <_>
+ 7 4 15 8 -1.
+ <_>
+ 7 6 15 4 2.
+ <_>
+
+ <_>
+ 9 2 12 2 -1.
+ <_>
+ 9 2 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 6 4 -1.
+ <_>
+ 12 6 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 0 13 3 -1.
+ <_>
+ 6 1 13 1 3.
+ 1
+ <_>
+
+ <_>
+ 3 0 18 2 -1.
+ <_>
+ 3 0 9 2 2.
+ <_>
+
+ <_>
+ 4 5 13 12 -1.
+ <_>
+ 4 9 13 4 3.
+ <_>
+
+ <_>
+ 4 6 18 9 -1.
+ <_>
+ 10 9 6 3 9.
+ <_>
+
+ <_>
+ 8 5 6 11 -1.
+ <_>
+ 10 5 2 11 3.
+ <_>
+
+ <_>
+ 6 2 16 16 -1.
+ <_>
+ 6 6 16 8 2.
+ <_>
+
+ <_>
+ 0 2 16 16 -1.
+ <_>
+ 0 6 16 8 2.
+ <_>
+
+ <_>
+ 18 1 2 12 -1.
+ <_>
+ 18 7 2 6 2.
+ <_>
+
+ <_>
+ 2 1 2 12 -1.
+ <_>
+ 2 7 2 6 2.
+ <_>
+
+ <_>
+ 8 3 14 9 -1.
+ <_>
+ 8 6 14 3 3.
+ <_>
+
+ <_>
+ 0 3 14 9 -1.
+ <_>
+ 0 6 14 3 3.
+ <_>
+
+ <_>
+ 10 6 4 9 -1.
+ <_>
+ 10 9 4 3 3.
+ <_>
+
+ <_>
+ 0 6 3 12 -1.
+ <_>
+ 0 12 3 6 2.
+ <_>
+
+ <_>
+ 16 2 6 9 -1.
+ <_>
+ 13 5 6 3 3.
+ 1
+ <_>
+
+ <_>
+ 10 0 12 4 -1.
+ <_>
+ 9 1 12 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 10 18 -1.
+ <_>
+ 16 0 5 9 2.
+ <_>
+ 11 9 5 9 2.
+ <_>
+
+ <_>
+ 1 0 10 18 -1.
+ <_>
+ 1 0 5 9 2.
+ <_>
+ 6 9 5 9 2.
+ <_>
+
+ <_>
+ 7 12 14 3 -1.
+ <_>
+ 7 12 7 3 2.
+ <_>
+
+ <_>
+ 7 11 8 3 -1.
+ <_>
+ 11 11 4 3 2.
+ <_>
+
+ <_>
+ 2 13 18 4 -1.
+ <_>
+ 2 13 9 4 2.
+ <_>
+
+ <_>
+ 10 6 4 6 -1.
+ <_>
+ 10 6 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 8 9 6 9 -1.
+ <_>
+ 10 9 2 9 3.
+ <_>
+
+ <_>
+ 3 11 13 3 -1.
+ <_>
+ 3 12 13 1 3.
+ <_>
+
+ <_>
+ 18 10 4 6 -1.
+ <_>
+ 18 10 2 6 2.
+ <_>
+
+ <_>
+ 5 5 9 5 -1.
+ <_>
+ 8 5 3 5 3.
+ <_>
+
+ <_>
+ 13 0 2 14 -1.
+ <_>
+ 13 0 1 14 2.
+ <_>
+
+ <_>
+ 2 0 18 7 -1.
+ <_>
+ 8 0 6 7 3.
+ <_>
+
+ <_>
+ 13 4 6 8 -1.
+ <_>
+ 16 4 3 4 2.
+ <_>
+ 13 8 3 4 2.
+ <_>
+
+ <_>
+ 3 4 6 8 -1.
+ <_>
+ 3 4 3 4 2.
+ <_>
+ 6 8 3 4 2.
+ <_>
+
+ <_>
+ 8 5 12 2 -1.
+ <_>
+ 8 6 12 1 2.
+ <_>
+
+ <_>
+ 7 0 3 12 -1.
+ <_>
+ 8 0 1 12 3.
+ <_>
+
+ <_>
+ 15 0 3 10 -1.
+ <_>
+ 16 1 1 10 3.
+ 1
+ <_>
+
+ <_>
+ 2 4 12 12 -1.
+ <_>
+ 6 8 4 4 9.
+ <_>
+
+ <_>
+ 5 10 13 3 -1.
+ <_>
+ 5 11 13 1 3.
+ <_>
+
+ <_>
+ 5 15 12 2 -1.
+ <_>
+ 5 16 12 1 2.
+ <_>
+
+ <_>
+ 17 8 5 6 -1.
+ <_>
+ 17 11 5 3 2.
+ <_>
+
+ <_>
+ 5 12 6 6 -1.
+ <_>
+ 5 14 6 2 3.
+ <_>
+
+ <_>
+ 10 6 4 7 -1.
+ <_>
+ 10 6 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 12 3 4 10 -1.
+ <_>
+ 13 4 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 10 3 10 4 -1.
+ <_>
+ 9 4 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 2 12 -1.
+ <_>
+ 12 4 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 1 11 15 3 -1.
+ <_>
+ 6 11 5 3 3.
+ <_>
+
+ <_>
+ 11 6 6 9 -1.
+ <_>
+ 13 6 2 9 3.
+ <_>
+
+ <_>
+ 5 6 6 9 -1.
+ <_>
+ 7 6 2 9 3.
+ <_>
+
+ <_>
+ 8 5 6 6 -1.
+ <_>
+ 10 5 2 6 3.
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 1 2 3 4 2.
+ <_>
+ 4 6 3 4 2.
+ <_>
+
+ <_>
+ 14 0 4 9 -1.
+ <_>
+ 14 3 4 3 3.
+ <_>
+
+ <_>
+ 0 0 18 9 -1.
+ <_>
+ 0 3 18 3 3.
+ <_>
+
+ <_>
+ 9 5 5 12 -1.
+ <_>
+ 9 8 5 6 2.
+ <_>
+
+ <_>
+ 3 5 16 3 -1.
+ <_>
+ 3 6 16 1 3.
+ <_>
+
+ <_>
+ 16 2 6 8 -1.
+ <_>
+ 19 2 3 4 2.
+ <_>
+ 16 6 3 4 2.
+ <_>
+
+ <_>
+ 0 2 6 8 -1.
+ <_>
+ 0 2 3 4 2.
+ <_>
+ 3 6 3 4 2.
+ <_>
+
+ <_>
+ 5 2 12 16 -1.
+ <_>
+ 5 10 12 8 2.
+ <_>
+
+ <_>
+ 5 11 8 6 -1.
+ <_>
+ 5 11 4 3 2.
+ <_>
+ 9 14 4 3 2.
+ <_>
+
+ <_>
+ 8 2 6 8 -1.
+ <_>
+ 11 2 3 4 2.
+ <_>
+ 8 6 3 4 2.
+ <_>
+
+ <_>
+ 0 6 7 12 -1.
+ <_>
+ 0 10 7 4 3.
+ <_>
+
+ <_>
+ 16 8 6 8 -1.
+ <_>
+ 16 10 6 4 2.
+ <_>
+
+ <_>
+ 0 8 6 8 -1.
+ <_>
+ 0 10 6 4 2.
+ <_>
+
+ <_>
+ 4 0 17 3 -1.
+ <_>
+ 4 1 17 1 3.
+ <_>
+
+ <_>
+ 7 4 4 14 -1.
+ <_>
+ 8 4 2 14 2.
+ <_>
+
+ <_>
+ 9 5 5 12 -1.
+ <_>
+ 9 8 5 6 2.
+ <_>
+
+ <_>
+ 10 4 10 4 -1.
+ <_>
+ 9 5 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 3 13 -1.
+ <_>
+ 14 2 1 13 3.
+ 1
+ <_>
+
+ <_>
+ 9 1 13 3 -1.
+ <_>
+ 8 2 13 1 3.
+ 1
+ <_>
+
+ <_>
+ 4 16 14 2 -1.
+ <_>
+ 4 17 14 1 2.
+ <_>
+
+ <_>
+ 0 16 15 2 -1.
+ <_>
+ 0 17 15 1 2.
+ <_>
+
+ <_>
+ 11 4 2 6 -1.
+ <_>
+ 11 4 1 6 2.
+ 1
+ <_>
+
+ <_>
+ 0 6 4 9 -1.
+ <_>
+ 0 9 4 3 3.
+ <_>
+
+ <_>
+ 14 0 7 6 -1.
+ <_>
+ 12 2 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 8 4 6 10 -1.
+ <_>
+ 8 4 3 5 2.
+ <_>
+ 11 9 3 5 2.
+ <_>
+
+ <_>
+ 7 7 8 10 -1.
+ <_>
+ 11 7 4 5 2.
+ <_>
+ 7 12 4 5 2.
+ <_>
+
+ <_>
+ 5 6 12 8 -1.
+ <_>
+ 5 6 6 4 2.
+ <_>
+ 11 10 6 4 2.
+ <_>
+
+ <_>
+ 8 6 8 8 -1.
+ <_>
+ 12 6 4 4 2.
+ <_>
+ 8 10 4 4 2.
+ <_>
+
+ <_>
+ 6 6 8 8 -1.
+ <_>
+ 6 6 4 4 2.
+ <_>
+ 10 10 4 4 2.
+ <_>
+
+ <_>
+ 12 4 6 6 -1.
+ <_>
+ 10 6 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 5 7 10 8 -1.
+ <_>
+ 5 7 5 4 2.
+ <_>
+ 10 11 5 4 2.
+ <_>
+
+ <_>
+ 4 5 18 3 -1.
+ <_>
+ 4 6 18 1 3.
+ <_>
+
+ <_>
+ 3 16 15 2 -1.
+ <_>
+ 3 17 15 1 2.
+ <_>
+
+ <_>
+ 3 10 16 2 -1.
+ <_>
+ 3 11 16 1 2.
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 5 12 2 6 3.
+ <_>
+
+ <_>
+ 18 2 3 13 -1.
+ <_>
+ 19 2 1 13 3.
+ <_>
+
+ <_>
+ 4 10 12 4 -1.
+ <_>
+ 8 10 4 4 3.
+ <_>
+
+ <_>
+ 7 7 14 7 -1.
+ <_>
+ 7 7 7 7 2.
+ <_>
+
+ <_>
+ 1 7 14 7 -1.
+ <_>
+ 8 7 7 7 2.
+ <_>
+
+ <_>
+ 11 0 8 13 -1.
+ <_>
+ 11 0 4 13 2.
+ <_>
+
+ <_>
+ 0 6 4 12 -1.
+ <_>
+ 0 6 2 6 2.
+ <_>
+ 2 12 2 6 2.
+ <_>
+
+ <_>
+ 14 2 2 12 -1.
+ <_>
+ 14 2 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 2 2 8 12 -1.
+ <_>
+ 2 2 4 6 2.
+ <_>
+ 6 8 4 6 2.
+ <_>
+
+ <_>
+ 17 0 4 16 -1.
+ <_>
+ 17 8 4 8 2.
+ <_>
+
+ <_>
+ 1 0 4 16 -1.
+ <_>
+ 1 8 4 8 2.
+ <_>
+
+ <_>
+ 6 1 16 16 -1.
+ <_>
+ 6 9 16 8 2.
+ <_>
+
+ <_>
+ 8 0 6 7 -1.
+ <_>
+ 10 2 2 7 3.
+ 1
+ <_>
+
+ <_>
+ 15 1 6 6 -1.
+ <_>
+ 13 3 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 1 6 6 -1.
+ <_>
+ 9 3 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 14 2 2 12 -1.
+ <_>
+ 14 2 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 5 11 12 6 -1.
+ <_>
+ 5 14 12 3 2.
+ <_>
+
+ <_>
+ 5 13 12 4 -1.
+ <_>
+ 5 14 12 2 2.
+ <_>
+
+ <_>
+ 2 15 18 2 -1.
+ <_>
+ 2 16 18 1 2.
+ <_>
+
+ <_>
+ 18 4 4 14 -1.
+ <_>
+ 20 4 2 7 2.
+ <_>
+ 18 11 2 7 2.
+ <_>
+
+ <_>
+ 0 4 4 14 -1.
+ <_>
+ 0 4 2 7 2.
+ <_>
+ 2 11 2 7 2.
+ <_>
+
+ <_>
+ 11 0 3 12 -1.
+ <_>
+ 12 0 1 12 3.
+ <_>
+
+ <_>
+ 9 3 4 6 -1.
+ <_>
+ 9 6 4 3 2.
+ <_>
+
+ <_>
+ 7 4 15 10 -1.
+ <_>
+ 7 9 15 5 2.
+ <_>
+
+ <_>
+ 4 2 9 12 -1.
+ <_>
+ 4 6 9 4 3.
+ <_>
+
+ <_>
+ 3 1 17 3 -1.
+ <_>
+ 3 2 17 1 3.
+ <_>
+
+ <_>
+ 0 1 16 3 -1.
+ <_>
+ 0 2 16 1 3.
+ <_>
+
+ <_>
+ 7 4 15 10 -1.
+ <_>
+ 7 9 15 5 2.
+ <_>
+
+ <_>
+ 0 4 15 10 -1.
+ <_>
+ 0 9 15 5 2.
+ <_>
+
+ <_>
+ 15 0 6 18 -1.
+ <_>
+ 15 9 6 9 2.
+ <_>
+
+ <_>
+ 3 14 12 4 -1.
+ <_>
+ 3 14 6 2 2.
+ <_>
+ 9 16 6 2 2.
+ <_>
+
+ <_>
+ 13 0 9 5 -1.
+ <_>
+ 16 3 3 5 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 9 2 -1.
+ <_>
+ 9 7 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 6 3 7 -1.
+ <_>
+ 13 7 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 3 4 8 8 -1.
+ <_>
+ 7 4 4 8 2.
+ <_>
+
+ <_>
+ 7 8 12 3 -1.
+ <_>
+ 11 8 4 3 3.
+ <_>
+
+ <_>
+ 8 6 5 6 -1.
+ <_>
+ 8 6 5 3 2.
+ 1
+ <_>
+
+ <_>
+ 10 7 10 6 -1.
+ <_>
+ 10 10 10 3 2.
+ <_>
+
+ <_>
+ 0 9 16 3 -1.
+ <_>
+ 0 10 16 1 3.
+ <_>
+
+ <_>
+ 7 9 12 3 -1.
+ <_>
+ 7 10 12 1 3.
+ <_>
+
+ <_>
+ 2 10 8 6 -1.
+ <_>
+ 2 13 8 3 2.
+ <_>
+
+ <_>
+ 16 6 4 12 -1.
+ <_>
+ 16 9 4 6 2.
+ <_>
+
+ <_>
+ 3 11 8 6 -1.
+ <_>
+ 3 11 4 3 2.
+ <_>
+ 7 14 4 3 2.
+ <_>
+
+ <_>
+ 4 5 16 10 -1.
+ <_>
+ 12 5 8 5 2.
+ <_>
+ 4 10 8 5 2.
+ <_>
+
+ <_>
+ 7 10 3 8 -1.
+ <_>
+ 7 14 3 4 2.
+ <_>
+
+ <_>
+ 9 14 6 4 -1.
+ <_>
+ 9 16 6 2 2.
+ <_>
+
+ <_>
+ 2 9 15 9 -1.
+ <_>
+ 2 12 15 3 3.
+ <_>
+
+ <_>
+ 11 2 8 6 -1.
+ <_>
+ 15 2 4 3 2.
+ <_>
+ 11 5 4 3 2.
+ <_>
+
+ <_>
+ 4 11 8 6 -1.
+ <_>
+ 4 13 8 2 3.
+ <_>
+
+ <_>
+ 16 0 2 14 -1.
+ <_>
+ 16 0 1 14 2.
+ 1
+ <_>
+
+ <_>
+ 6 0 14 2 -1.
+ <_>
+ 6 0 14 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 9 7 6 -1.
+ <_>
+ 13 11 7 2 3.
+ <_>
+
+ <_>
+ 10 6 7 3 -1.
+ <_>
+ 9 7 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 18 2 3 13 -1.
+ <_>
+ 19 2 1 13 3.
+ <_>
+
+ <_>
+ 1 2 3 13 -1.
+ <_>
+ 2 2 1 13 3.
+ <_>
+
+ <_>
+ 5 1 12 4 -1.
+ <_>
+ 11 1 6 2 2.
+ <_>
+ 5 3 6 2 2.
+ <_>
+
+ <_>
+ 7 8 6 6 -1.
+ <_>
+ 7 10 6 2 3.
+ <_>
+
+ <_>
+ 8 13 14 3 -1.
+ <_>
+ 8 14 14 1 3.
+ <_>
+
+ <_>
+ 10 5 6 6 -1.
+ <_>
+ 12 7 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 15 6 4 8 -1.
+ <_>
+ 16 7 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 0 13 14 4 -1.
+ <_>
+ 0 13 7 2 2.
+ <_>
+ 7 15 7 2 2.
+ <_>
+
+ <_>
+ 1 7 21 6 -1.
+ <_>
+ 8 9 7 2 9.
+ <_>
+
+ <_>
+ 7 4 6 8 -1.
+ <_>
+ 7 4 3 4 2.
+ <_>
+ 10 8 3 4 2.
+ <_>
+
+ <_>
+ 7 4 8 8 -1.
+ <_>
+ 11 4 4 4 2.
+ <_>
+ 7 8 4 4 2.
+ <_>
+
+ <_>
+ 10 6 7 4 -1.
+ <_>
+ 9 7 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 6 7 -1.
+ <_>
+ 11 2 3 7 2.
+ 1
+ <_>
+
+ <_>
+ 11 2 7 6 -1.
+ <_>
+ 11 2 7 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 4 8 6 -1.
+ <_>
+ 11 4 4 6 2.
+ 1
+ <_>
+
+ <_>
+ 11 4 6 8 -1.
+ <_>
+ 11 4 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 12 3 8 5 -1.
+ <_>
+ 12 3 4 5 2.
+ 1
+ <_>
+
+ <_>
+ 10 3 5 8 -1.
+ <_>
+ 10 3 5 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 0 9 5 -1.
+ <_>
+ 16 3 3 5 3.
+ 1
+ <_>
+
+ <_>
+ 2 6 10 12 -1.
+ <_>
+ 2 9 10 6 2.
+ <_>
+
+ <_>
+ 15 6 5 12 -1.
+ <_>
+ 15 9 5 6 2.
+ <_>
+
+ <_>
+ 3 7 13 3 -1.
+ <_>
+ 3 8 13 1 3.
+ <_>
+
+ <_>
+ 4 7 17 3 -1.
+ <_>
+ 4 8 17 1 3.
+ <_>
+
+ <_>
+ 2 9 7 6 -1.
+ <_>
+ 2 11 7 2 3.
+ <_>
+
+ <_>
+ 13 9 9 4 -1.
+ <_>
+ 13 11 9 2 2.
+ <_>
+
+ <_>
+ 9 0 5 9 -1.
+ <_>
+ 6 3 5 3 3.
+ 1
+ <_>
+
+ <_>
+ 9 3 8 3 -1.
+ <_>
+ 9 3 4 3 2.
+ <_>
+
+ <_>
+ 3 0 4 13 -1.
+ <_>
+ 4 0 2 13 2.
+ <_>
+
+ <_>
+ 13 0 8 6 -1.
+ <_>
+ 15 0 4 6 2.
+ <_>
+
+ <_>
+ 3 0 6 5 -1.
+ <_>
+ 6 0 3 5 2.
+ <_>
+
+ <_>
+ 9 0 12 5 -1.
+ <_>
+ 9 0 6 5 2.
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 3 2 2 8 3.
+ <_>
+
+ <_>
+ 18 2 4 6 -1.
+ <_>
+ 18 2 2 6 2.
+ <_>
+
+ <_>
+ 0 2 4 6 -1.
+ <_>
+ 2 2 2 6 2.
+ <_>
+
+ <_>
+ 16 9 6 6 -1.
+ <_>
+ 16 11 6 2 3.
+ <_>
+
+ <_>
+ 10 0 12 6 -1.
+ <_>
+ 13 3 6 6 2.
+ 1
+ <_>
+
+ <_>
+ 14 2 3 12 -1.
+ <_>
+ 10 6 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 8 3 6 7 -1.
+ <_>
+ 11 3 3 7 2.
+ <_>
+
+ <_>
+ 16 1 3 15 -1.
+ <_>
+ 17 1 1 15 3.
+ <_>
+
+ <_>
+ 0 1 6 8 -1.
+ <_>
+ 2 1 2 8 3.
+ <_>
+
+ <_>
+ 13 0 3 14 -1.
+ <_>
+ 14 0 1 14 3.
+ <_>
+
+ <_>
+ 6 0 3 14 -1.
+ <_>
+ 7 0 1 14 3.
+ <_>
+
+ <_>
+ 4 13 18 2 -1.
+ <_>
+ 4 13 9 2 2.
+ <_>
+
+ <_>
+ 2 9 15 3 -1.
+ <_>
+ 7 9 5 3 3.
+ <_>
+
+ <_>
+ 9 5 10 6 -1.
+ <_>
+ 14 5 5 3 2.
+ <_>
+ 9 8 5 3 2.
+ <_>
+
+ <_>
+ 3 5 10 6 -1.
+ <_>
+ 3 5 5 3 2.
+ <_>
+ 8 8 5 3 2.
+ <_>
+
+ <_>
+ 14 3 2 12 -1.
+ <_>
+ 14 3 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 12 2 -1.
+ <_>
+ 8 3 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 7 6 6 -1.
+ <_>
+ 14 7 2 6 3.
+ <_>
+
+ <_>
+ 4 7 6 6 -1.
+ <_>
+ 6 7 2 6 3.
+ <_>
+
+ <_>
+ 7 0 8 3 -1.
+ <_>
+ 7 0 4 3 2.
+ <_>
+
+ <_>
+ 9 0 4 6 -1.
+ <_>
+ 11 0 2 6 2.
+ <_>
+
+ <_>
+ 10 0 12 12 -1.
+ <_>
+ 13 0 6 12 2.
+ <_>
+
+ <_>
+ 0 0 12 12 -1.
+ <_>
+ 3 0 6 12 2.
+ <_>
+
+ <_>
+ 16 5 6 4 -1.
+ <_>
+ 16 5 3 4 2.
+ <_>
+
+ <_>
+ 0 5 6 4 -1.
+ <_>
+ 3 5 3 4 2.
+ <_>
+
+ <_>
+ 9 0 12 5 -1.
+ <_>
+ 9 0 6 5 2.
+ <_>
+
+ <_>
+ 1 8 8 10 -1.
+ <_>
+ 1 8 4 5 2.
+ <_>
+ 5 13 4 5 2.
+ <_>
+
+ <_>
+ 8 16 14 2 -1.
+ <_>
+ 8 16 7 2 2.
+ <_>
+
+ <_>
+ 0 11 16 3 -1.
+ <_>
+ 8 11 8 3 2.
+ <_>
+
+ <_>
+ 10 16 12 2 -1.
+ <_>
+ 10 16 6 2 2.
+ <_>
+
+ <_>
+ 0 16 12 2 -1.
+ <_>
+ 6 16 6 2 2.
+ <_>
+
+ <_>
+ 3 11 18 6 -1.
+ <_>
+ 12 11 9 3 2.
+ <_>
+ 3 14 9 3 2.
+ <_>
+
+ <_>
+ 7 13 6 4 -1.
+ <_>
+ 7 15 6 2 2.
+ <_>
+
+ <_>
+ 10 11 6 6 -1.
+ <_>
+ 10 13 6 2 3.
+ <_>
+
+ <_>
+ 6 14 9 4 -1.
+ <_>
+ 9 14 3 4 3.
+ <_>
+
+ <_>
+ 5 4 16 10 -1.
+ <_>
+ 5 9 16 5 2.
+ <_>
+
+ <_>
+ 11 7 3 8 -1.
+ <_>
+ 11 7 3 4 2.
+ 1
+ <_>
+
+ <_>
+ 13 10 6 6 -1.
+ <_>
+ 13 12 6 2 3.
+ <_>
+
+ <_>
+ 0 6 22 12 -1.
+ <_>
+ 0 6 11 6 2.
+ <_>
+ 11 12 11 6 2.
+ <_>
+
+ <_>
+ 9 5 6 12 -1.
+ <_>
+ 12 5 3 6 2.
+ <_>
+ 9 11 3 6 2.
+ <_>
+
+ <_>
+ 7 5 6 12 -1.
+ <_>
+ 7 5 3 6 2.
+ <_>
+ 10 11 3 6 2.
+ <_>
+
+ <_>
+ 14 1 6 9 -1.
+ <_>
+ 14 4 6 3 3.
+ <_>
+
+ <_>
+ 2 1 6 9 -1.
+ <_>
+ 2 4 6 3 3.
+ <_>
+
+ <_>
+ 13 4 4 6 -1.
+ <_>
+ 13 7 4 3 2.
+ <_>
+
+ <_>
+ 5 4 4 6 -1.
+ <_>
+ 5 7 4 3 2.
+ <_>
+
+ <_>
+ 10 13 12 3 -1.
+ <_>
+ 10 14 12 1 3.
+ <_>
+
+ <_>
+ 3 3 15 3 -1.
+ <_>
+ 3 4 15 1 3.
+ <_>
+
+ <_>
+ 13 5 2 9 -1.
+ <_>
+ 13 5 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 9 5 9 2 -1.
+ <_>
+ 9 5 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 6 2 14 10 -1.
+ <_>
+ 6 2 7 10 2.
+ <_>
+
+ <_>
+ 8 2 12 2 -1.
+ <_>
+ 8 2 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 17 0 2 13 -1.
+ <_>
+ 17 0 1 13 2.
+ 1
+ <_>
+
+ <_>
+ 5 0 13 2 -1.
+ <_>
+ 5 0 13 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 3 10 -1.
+ <_>
+ 12 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 0 6 12 3 -1.
+ <_>
+ 0 7 12 1 3.
+ <_>
+
+ <_>
+ 6 6 15 3 -1.
+ <_>
+ 6 7 15 1 3.
+ <_>
+
+ <_>
+ 8 8 5 9 -1.
+ <_>
+ 8 11 5 3 3.
+ <_>
+
+ <_>
+ 10 11 7 6 -1.
+ <_>
+ 10 13 7 2 3.
+ <_>
+
+ <_>
+ 5 11 7 6 -1.
+ <_>
+ 5 13 7 2 3.
+ <_>
+
+ <_>
+ 5 12 13 4 -1.
+ <_>
+ 5 13 13 2 2.
+ <_>
+
+ <_>
+ 9 4 4 6 -1.
+ <_>
+ 9 7 4 3 2.
+ <_>
+
+ <_>
+ 13 1 2 9 -1.
+ <_>
+ 13 1 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 5 2 8 6 -1.
+ <_>
+ 5 2 4 3 2.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 11 0 4 8 -1.
+ <_>
+ 12 1 2 8 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 8 4 -1.
+ <_>
+ 10 1 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 9 15 3 -1.
+ <_>
+ 7 10 15 1 3.
+ <_>
+
+ <_>
+ 5 10 12 3 -1.
+ <_>
+ 5 11 12 1 3.
+ <_>
+
+ <_>
+ 15 2 7 6 -1.
+ <_>
+ 15 4 7 2 3.
+ <_>
+
+ <_>
+ 0 2 7 6 -1.
+ <_>
+ 0 4 7 2 3.
+ <_>
+
+ <_>
+ 12 3 2 7 -1.
+ <_>
+ 12 3 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 3 7 2 -1.
+ <_>
+ 10 3 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 2 3 20 14 -1.
+ <_>
+ 12 3 10 7 2.
+ <_>
+ 2 10 10 7 2.
+ <_>
+
+ <_>
+ 5 2 12 8 -1.
+ <_>
+ 11 2 6 8 2.
+ <_>
+
+ <_>
+ 18 4 4 8 -1.
+ <_>
+ 18 8 4 4 2.
+ <_>
+
+ <_>
+ 6 4 6 8 -1.
+ <_>
+ 6 4 3 4 2.
+ <_>
+ 9 8 3 4 2.
+ <_>
+
+ <_>
+ 12 2 4 6 -1.
+ <_>
+ 12 2 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 10 2 6 4 -1.
+ <_>
+ 10 2 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 9 3 8 15 -1.
+ <_>
+ 11 3 4 15 2.
+ <_>
+
+ <_>
+ 1 11 8 7 -1.
+ <_>
+ 3 11 4 7 2.
+ <_>
+
+ <_>
+ 13 7 6 10 -1.
+ <_>
+ 15 7 2 10 3.
+ <_>
+
+ <_>
+ 2 3 10 14 -1.
+ <_>
+ 7 3 5 14 2.
+ <_>
+
+ <_>
+ 6 5 15 12 -1.
+ <_>
+ 11 5 5 12 3.
+ <_>
+
+ <_>
+ 1 5 15 12 -1.
+ <_>
+ 6 5 5 12 3.
+ <_>
+
+ <_>
+ 9 14 8 4 -1.
+ <_>
+ 9 16 8 2 2.
+ <_>
+
+ <_>
+ 9 6 4 10 -1.
+ <_>
+ 11 6 2 10 2.
+ <_>
+
+ <_>
+ 8 6 10 4 -1.
+ <_>
+ 8 8 10 2 2.
+ <_>
+
+ <_>
+ 2 14 7 4 -1.
+ <_>
+ 2 16 7 2 2.
+ <_>
+
+ <_>
+ 7 9 15 3 -1.
+ <_>
+ 7 10 15 1 3.
+ <_>
+
+ <_>
+ 0 10 16 4 -1.
+ <_>
+ 0 10 8 2 2.
+ <_>
+ 8 12 8 2 2.
+ <_>
+
+ <_>
+ 10 11 6 7 -1.
+ <_>
+ 12 11 2 7 3.
+ <_>
+
+ <_>
+ 8 13 6 5 -1.
+ <_>
+ 11 13 3 5 2.
+ <_>
+
+ <_>
+ 10 11 6 7 -1.
+ <_>
+ 12 11 2 7 3.
+ <_>
+
+ <_>
+ 6 11 6 7 -1.
+ <_>
+ 8 11 2 7 3.
+ <_>
+
+ <_>
+ 18 4 4 8 -1.
+ <_>
+ 18 8 4 4 2.
+ <_>
+
+ <_>
+ 4 6 8 11 -1.
+ <_>
+ 8 6 4 11 2.
+ <_>
+
+ <_>
+ 7 5 8 12 -1.
+ <_>
+ 9 5 4 12 2.
+ <_>
+
+ <_>
+ 5 3 6 6 -1.
+ <_>
+ 7 3 2 6 3.
+ <_>
+
+ <_>
+ 11 2 10 6 -1.
+ <_>
+ 11 2 10 3 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 8 9 -1.
+ <_>
+ 11 1 4 9 2.
+ 1
+ <_>
+
+ <_>
+ 12 4 3 10 -1.
+ <_>
+ 12 4 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 11 4 -1.
+ <_>
+ 11 1 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 18 4 4 8 -1.
+ <_>
+ 18 8 4 4 2.
+ <_>
+
+ <_>
+ 0 4 4 8 -1.
+ <_>
+ 0 8 4 4 2.
+ <_>
+
+ <_>
+ 12 2 2 12 -1.
+ <_>
+ 12 2 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 4 12 12 3 -1.
+ <_>
+ 4 13 12 1 3.
+ <_>
+
+ <_>
+ 2 12 18 3 -1.
+ <_>
+ 2 13 18 1 3.
+ <_>
+
+ <_>
+ 0 0 16 3 -1.
+ <_>
+ 0 1 16 1 3.
+ <_>
+
+ <_>
+ 12 2 2 12 -1.
+ <_>
+ 12 2 1 12 2.
+ 1
+ <_>
+
+ <_>
+ 10 2 12 2 -1.
+ <_>
+ 10 2 12 1 2.
+ 1
+ <_>
+
+ <_>
+ 13 10 6 7 -1.
+ <_>
+ 15 10 2 7 3.
+ <_>
+
+ <_>
+ 5 13 12 2 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 16 8 6 8 -1.
+ <_>
+ 19 8 3 4 2.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 4 1 8 6 -1.
+ <_>
+ 4 3 8 2 3.
+ <_>
+
+ <_>
+ 18 0 4 9 -1.
+ <_>
+ 18 3 4 3 3.
+ <_>
+
+ <_>
+ 8 2 6 8 -1.
+ <_>
+ 8 6 6 4 2.
+ <_>
+
+ <_>
+ 8 1 6 4 -1.
+ <_>
+ 8 3 6 2 2.
+ <_>
+
+ <_>
+ 1 2 12 3 -1.
+ <_>
+ 1 3 12 1 3.
+ <_>
+
+ <_>
+ 7 2 12 3 -1.
+ <_>
+ 7 3 12 1 3.
+ <_>
+
+ <_>
+ 1 0 16 18 -1.
+ <_>
+ 1 9 16 9 2.
+ <_>
+
+ <_>
+ 16 8 6 8 -1.
+ <_>
+ 19 8 3 4 2.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 0 8 6 8 -1.
+ <_>
+ 0 8 3 4 2.
+ <_>
+ 3 12 3 4 2.
+ <_>
+
+ <_>
+ 18 4 4 6 -1.
+ <_>
+ 18 7 4 3 2.
+ <_>
+
+ <_>
+ 0 12 14 3 -1.
+ <_>
+ 0 13 14 1 3.
+ <_>
+
+ <_>
+ 3 12 16 3 -1.
+ <_>
+ 3 13 16 1 3.
+ <_>
+
+ <_>
+ 0 4 4 6 -1.
+ <_>
+ 0 7 4 3 2.
+ <_>
+
+ <_>
+ 9 14 8 4 -1.
+ <_>
+ 9 16 8 2 2.
+ <_>
+
+ <_>
+ 0 13 14 3 -1.
+ <_>
+ 0 14 14 1 3.
+ <_>
+
+ <_>
+ 4 14 14 2 -1.
+ <_>
+ 4 15 14 1 2.
+ <_>
+
+ <_>
+ 3 12 15 6 -1.
+ <_>
+ 3 15 15 3 2.
+ <_>
+
+ <_>
+ 7 12 14 6 -1.
+ <_>
+ 7 15 14 3 2.
+ <_>
+
+ <_>
+ 0 0 14 4 -1.
+ <_>
+ 0 2 14 2 2.
+ <_>
+
+ <_>
+ 13 10 6 7 -1.
+ <_>
+ 15 10 2 7 3.
+ <_>
+
+ <_>
+ 3 10 6 7 -1.
+ <_>
+ 5 10 2 7 3.
+ <_>
+
+ <_>
+ 2 4 18 4 -1.
+ <_>
+ 8 4 6 4 3.
+ <_>
+
+ <_>
+ 5 3 12 9 -1.
+ <_>
+ 9 6 4 3 9.
+ <_>
+
+ <_>
+ 10 8 10 7 -1.
+ <_>
+ 10 8 5 7 2.
+ <_>
+
+ <_>
+ 5 2 4 16 -1.
+ <_>
+ 5 6 4 8 2.
+ <_>
+
+ <_>
+ 16 8 6 8 -1.
+ <_>
+ 19 8 3 4 2.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 0 12 17 4 -1.
+ <_>
+ 0 14 17 2 2.
+ <_>
+
+ <_>
+ 7 12 14 6 -1.
+ <_>
+ 7 15 14 3 2.
+ <_>
+
+ <_>
+ 0 13 12 4 -1.
+ <_>
+ 0 13 6 2 2.
+ <_>
+ 6 15 6 2 2.
+ <_>
+
+ <_>
+ 10 13 12 3 -1.
+ <_>
+ 10 14 12 1 3.
+ <_>
+
+ <_>
+ 7 11 8 6 -1.
+ <_>
+ 7 11 4 3 2.
+ <_>
+ 11 14 4 3 2.
+ <_>
+
+ <_>
+ 9 6 12 9 -1.
+ <_>
+ 12 6 6 9 2.
+ <_>
+
+ <_>
+ 1 6 12 8 -1.
+ <_>
+ 4 6 6 8 2.
+ <_>
+
+ <_>
+ 8 12 6 6 -1.
+ <_>
+ 8 14 6 2 3.
+ <_>
+
+ <_>
+ 1 4 20 14 -1.
+ <_>
+ 1 4 10 7 2.
+ <_>
+ 11 11 10 7 2.
+ <_>
+
+ <_>
+ 18 0 4 10 -1.
+ <_>
+ 19 1 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 2 2 6 12 -1.
+ <_>
+ 2 5 6 6 2.
+ <_>
+
+ <_>
+ 16 5 4 9 -1.
+ <_>
+ 16 8 4 3 3.
+ <_>
+
+ <_>
+ 6 9 8 4 -1.
+ <_>
+ 10 9 4 4 2.
+ <_>
+
+ <_>
+ 7 8 14 3 -1.
+ <_>
+ 7 8 7 3 2.
+ <_>
+
+ <_>
+ 0 8 18 3 -1.
+ <_>
+ 9 8 9 3 2.
+ <_>
+
+ <_>
+ 14 6 8 4 -1.
+ <_>
+ 14 6 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 0 3 18 2 -1.
+ <_>
+ 9 3 9 2 2.
+ <_>
+
+ <_>
+ 6 6 10 8 -1.
+ <_>
+ 6 8 10 4 2.
+ <_>
+
+ <_>
+ 1 5 10 12 -1.
+ <_>
+ 1 8 10 6 2.
+ <_>
+
+ <_>
+ 11 6 3 12 -1.
+ <_>
+ 12 6 1 12 3.
+ <_>
+
+ <_>
+ 8 6 3 12 -1.
+ <_>
+ 9 6 1 12 3.
+ <_>
+
+ <_>
+ 11 1 3 13 -1.
+ <_>
+ 12 1 1 13 3.
+ <_>
+
+ <_>
+ 8 2 3 13 -1.
+ <_>
+ 9 2 1 13 3.
+ <_>
+
+ <_>
+ 6 6 2 12 -1.
+ <_>
+ 6 12 2 6 2.
+ <_>
+
+ <_>
+ 17 4 2 9 -1.
+ <_>
+ 17 4 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 0 0 12 4 -1.
+ <_>
+ 0 1 12 2 2.
+ <_>
+
+ <_>
+ 8 4 12 4 -1.
+ <_>
+ 14 4 6 2 2.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 6 13 6 4 -1.
+ <_>
+ 6 15 6 2 2.
+ <_>
+
+ <_>
+ 7 13 12 4 -1.
+ <_>
+ 7 15 12 2 2.
+ <_>
+
+ <_>
+ 1 8 6 4 -1.
+ <_>
+ 4 8 3 4 2.
+ <_>
+
+ <_>
+ 15 8 6 10 -1.
+ <_>
+ 15 8 3 10 2.
+ <_>
+
+ <_>
+ 1 8 6 10 -1.
+ <_>
+ 4 8 3 10 2.
+ <_>
+
+ <_>
+ 16 12 6 4 -1.
+ <_>
+ 16 12 3 4 2.
+ <_>
+
+ <_>
+ 1 6 6 8 -1.
+ <_>
+ 1 6 3 4 2.
+ <_>
+ 4 10 3 4 2.
+ <_>
+
+ <_>
+ 11 1 4 11 -1.
+ <_>
+ 12 2 2 11 2.
+ 1
+ <_>
+
+ <_>
+ 11 1 11 4 -1.
+ <_>
+ 10 2 11 2 2.
+ 1
+ <_>
+
+ <_>
+ 12 0 4 7 -1.
+ <_>
+ 13 1 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 0 7 4 -1.
+ <_>
+ 9 1 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 5 2 12 -1.
+ <_>
+ 13 5 1 12 2.
+ <_>
+
+ <_>
+ 7 5 2 12 -1.
+ <_>
+ 8 5 1 12 2.
+ <_>
+
+ <_>
+ 8 5 9 4 -1.
+ <_>
+ 11 5 3 4 3.
+ <_>
+
+ <_>
+ 7 0 10 3 -1.
+ <_>
+ 6 1 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 17 4 2 9 -1.
+ <_>
+ 17 4 1 9 2.
+ 1
+ <_>
+
+ <_>
+ 5 4 9 2 -1.
+ <_>
+ 5 4 9 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 10 4 8 -1.
+ <_>
+ 12 10 2 8 2.
+ <_>
+
+ <_>
+ 2 0 12 4 -1.
+ <_>
+ 2 0 6 2 2.
+ <_>
+ 8 2 6 2 2.
+ <_>
+
+ <_>
+ 7 7 15 3 -1.
+ <_>
+ 7 8 15 1 3.
+ <_>
+
+ <_>
+ 2 0 12 4 -1.
+ <_>
+ 2 0 6 2 2.
+ <_>
+ 8 2 6 2 2.
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 0 8 17 3 -1.
+ <_>
+ 0 9 17 1 3.
+ <_>
+
+ <_>
+ 6 13 10 5 -1.
+ <_>
+ 6 13 5 5 2.
+ <_>
+
+ <_>
+ 5 11 8 5 -1.
+ <_>
+ 9 11 4 5 2.
+ <_>
+
+ <_>
+ 14 8 4 6 -1.
+ <_>
+ 14 8 2 6 2.
+ <_>
+
+ <_>
+ 0 10 5 8 -1.
+ <_>
+ 0 14 5 4 2.
+ <_>
+
+ <_>
+ 7 7 15 3 -1.
+ <_>
+ 7 8 15 1 3.
+ <_>
+
+ <_>
+ 2 11 7 4 -1.
+ <_>
+ 2 13 7 2 2.
+ <_>
+
+ <_>
+ 8 3 11 12 -1.
+ <_>
+ 8 6 11 6 2.
+ <_>
+
+ <_>
+ 2 4 12 4 -1.
+ <_>
+ 2 4 6 2 2.
+ <_>
+ 8 6 6 2 2.
+ <_>
+
+ <_>
+ 19 2 3 12 -1.
+ <_>
+ 20 3 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 1 6 12 4 -1.
+ <_>
+ 1 6 6 2 2.
+ <_>
+ 7 8 6 2 2.
+ <_>
+
+ <_>
+ 9 9 13 3 -1.
+ <_>
+ 9 10 13 1 3.
+ <_>
+
+ <_>
+ 0 5 12 6 -1.
+ <_>
+ 0 5 6 3 2.
+ <_>
+ 6 8 6 3 2.
+ <_>
+
+ <_>
+ 11 0 3 13 -1.
+ <_>
+ 12 0 1 13 3.
+ <_>
+
+ <_>
+ 8 0 3 13 -1.
+ <_>
+ 9 0 1 13 3.
+ <_>
+
+ <_>
+ 14 6 8 8 -1.
+ <_>
+ 14 10 8 4 2.
+ <_>
+
+ <_>
+ 0 8 8 6 -1.
+ <_>
+ 0 10 8 2 3.
+ <_>
+
+ <_>
+ 9 9 13 3 -1.
+ <_>
+ 9 10 13 1 3.
+ <_>
+
+ <_>
+ 0 9 13 3 -1.
+ <_>
+ 0 10 13 1 3.
+ <_>
+
+ <_>
+ 4 14 14 4 -1.
+ <_>
+ 11 14 7 2 2.
+ <_>
+ 4 16 7 2 2.
+ <_>
+
+ <_>
+ 0 3 6 6 -1.
+ <_>
+ 2 3 2 6 3.
+ <_>
+
+ <_>
+ 2 6 20 4 -1.
+ <_>
+ 7 6 10 4 2.
+ <_>
+
+ <_>
+ 2 7 6 6 -1.
+ <_>
+ 4 7 2 6 3.
+ <_>
+
+ <_>
+ 15 8 6 10 -1.
+ <_>
+ 17 8 2 10 3.
+ <_>
+
+ <_>
+ 1 8 6 10 -1.
+ <_>
+ 3 8 2 10 3.
+ <_>
+
+ <_>
+ 9 9 13 3 -1.
+ <_>
+ 9 10 13 1 3.
+ <_>
+
+ <_>
+ 6 8 4 6 -1.
+ <_>
+ 6 8 4 3 2.
+ 1
+ <_>
+
+ <_>
+ 16 5 6 13 -1.
+ <_>
+ 16 5 3 13 2.
+ <_>
+
+ <_>
+ 0 5 6 13 -1.
+ <_>
+ 3 5 3 13 2.
+ <_>
+
+ <_>
+ 4 10 18 2 -1.
+ <_>
+ 4 10 9 2 2.
+ <_>
+
+ <_>
+ 0 7 21 7 -1.
+ <_>
+ 7 7 7 7 3.
+ <_>
+
+ <_>
+ 5 6 12 12 -1.
+ <_>
+ 9 6 4 12 3.
+ <_>
+
+ <_>
+ 10 4 10 3 -1.
+ <_>
+ 9 5 10 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 9 9 7 -1.
+ <_>
+ 12 9 3 7 3.
+ <_>
+
+ <_>
+ 11 5 9 4 -1.
+ <_>
+ 14 8 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 12 3 3 10 -1.
+ <_>
+ 12 3 3 5 2.
+ 1
+ <_>
+
+ <_>
+ 8 3 12 2 -1.
+ <_>
+ 8 3 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 14 6 4 8 -1.
+ <_>
+ 14 10 4 4 2.
+ <_>
+
+ <_>
+ 4 6 4 8 -1.
+ <_>
+ 4 10 4 4 2.
+ <_>
+
+ <_>
+ 6 0 11 12 -1.
+ <_>
+ 6 3 11 6 2.
+ <_>
+
+ <_>
+ 8 0 6 6 -1.
+ <_>
+ 8 3 6 3 2.
+ <_>
+
+ <_>
+ 10 0 10 4 -1.
+ <_>
+ 10 0 5 4 2.
+ <_>
+
+ <_>
+ 2 0 10 4 -1.
+ <_>
+ 7 0 5 4 2.
+ <_>
+
+ <_>
+ 10 3 8 8 -1.
+ <_>
+ 14 3 4 4 2.
+ <_>
+ 10 7 4 4 2.
+ <_>
+
+ <_>
+ 4 3 8 8 -1.
+ <_>
+ 4 3 4 4 2.
+ <_>
+ 8 7 4 4 2.
+ <_>
+
+ <_>
+ 2 9 18 5 -1.
+ <_>
+ 8 9 6 5 3.
+ <_>
+
+ <_>
+ 0 15 16 3 -1.
+ <_>
+ 0 16 16 1 3.
+ <_>
+
+ <_>
+ 6 16 12 2 -1.
+ <_>
+ 6 17 12 1 2.
+ <_>
+
+ <_>
+ 3 0 4 8 -1.
+ <_>
+ 3 4 4 4 2.
+ <_>
+
+ <_>
+ 15 6 6 6 -1.
+ <_>
+ 13 8 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 7 6 6 6 -1.
+ <_>
+ 9 8 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 13 12 6 6 -1.
+ <_>
+ 13 14 6 2 3.
+ <_>
+
+ <_>
+ 3 12 6 6 -1.
+ <_>
+ 3 14 6 2 3.
+ <_>
+
+ <_>
+ 8 13 14 4 -1.
+ <_>
+ 8 14 14 2 2.
+ <_>
+
+ <_>
+ 0 13 14 4 -1.
+ <_>
+ 0 14 14 2 2.
+ <_>
+
+ <_>
+ 3 13 17 2 -1.
+ <_>
+ 3 14 17 1 2.
+ <_>
+
+ <_>
+ 4 6 12 4 -1.
+ <_>
+ 8 6 4 4 3.
+ <_>
+
+ <_>
+ 8 7 9 4 -1.
+ <_>
+ 11 7 3 4 3.
+ <_>
+
+ <_>
+ 10 0 6 8 -1.
+ <_>
+ 8 2 6 4 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 12 12 -1.
+ <_>
+ 9 6 12 4 3.
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 10 1 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 13 1 3 7 -1.
+ <_>
+ 14 2 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 2 3 12 9 -1.
+ <_>
+ 6 6 4 3 9.
+ <_>
+
+ <_>
+ 19 2 3 12 -1.
+ <_>
+ 20 3 1 12 3.
+ 1
+ <_>
+
+ <_>
+ 3 5 12 5 -1.
+ <_>
+ 7 5 4 5 3.
+ <_>
+
+ <_>
+ 13 1 3 7 -1.
+ <_>
+ 14 2 1 7 3.
+ 1
+ <_>
+
+ <_>
+ 9 1 7 3 -1.
+ <_>
+ 8 2 7 1 3.
+ 1
+ <_>
+
+ <_>
+ 9 7 8 6 -1.
+ <_>
+ 13 7 4 3 2.
+ <_>
+ 9 10 4 3 2.
+ <_>
+
+ <_>
+ 4 14 14 4 -1.
+ <_>
+ 4 15 14 2 2.
+ <_>
+
+ <_>
+ 10 14 6 4 -1.
+ <_>
+ 10 14 3 4 2.
+ <_>
+
+ <_>
+ 6 14 6 4 -1.
+ <_>
+ 9 14 3 4 2.
+ <_>
+
+ <_>
+ 14 0 4 16 -1.
+ <_>
+ 16 0 2 8 2.
+ <_>
+ 14 8 2 8 2.
+ <_>
+
+ <_>
+ 0 15 20 3 -1.
+ <_>
+ 5 15 10 3 2.
+ <_>
+
+ <_>
+ 16 5 3 13 -1.
+ <_>
+ 17 5 1 13 3.
+ <_>
+
+ <_>
+ 2 6 13 8 -1.
+ <_>
+ 2 10 13 4 2.
+ <_>
+
+ <_>
+ 16 5 3 13 -1.
+ <_>
+ 17 5 1 13 3.
+ <_>
+
+ <_>
+ 7 12 7 4 -1.
+ <_>
+ 7 14 7 2 2.
+ <_>
+
+ <_>
+ 15 1 4 9 -1.
+ <_>
+ 15 4 4 3 3.
+ <_>
+
+ <_>
+ 0 4 16 2 -1.
+ <_>
+ 0 5 16 1 2.
+ <_>
+
+ <_>
+ 8 4 12 2 -1.
+ <_>
+ 8 5 12 1 2.
+ <_>
+
+ <_>
+ 6 3 9 15 -1.
+ <_>
+ 9 8 3 5 9.
+ <_>
+
+ <_>
+ 12 3 3 8 -1.
+ <_>
+ 12 7 3 4 2.
+ <_>
+
+ <_>
+ 5 6 12 4 -1.
+ <_>
+ 5 6 6 2 2.
+ <_>
+ 11 8 6 2 2.
+ <_>
+
+ <_>
+ 16 3 3 14 -1.
+ <_>
+ 17 3 1 14 3.
+ <_>
+
+ <_>
+ 3 3 3 14 -1.
+ <_>
+ 4 3 1 14 3.
+ <_>
+
+ <_>
+ 0 4 22 4 -1.
+ <_>
+ 11 4 11 2 2.
+ <_>
+ 0 6 11 2 2.
+ <_>
+
+ <_>
+ 1 4 4 9 -1.
+ <_>
+ 1 7 4 3 3.
+ <_>
+
+ <_>
+ 7 13 12 4 -1.
+ <_>
+ 7 15 12 2 2.
+ <_>
+
+ <_>
+ 3 13 12 4 -1.
+ <_>
+ 3 15 12 2 2.
+ <_>
+
+ <_>
+ 11 14 6 4 -1.
+ <_>
+ 11 16 6 2 2.
+ <_>
+
+ <_>
+ 1 0 13 3 -1.
+ <_>
+ 1 1 13 1 3.
+ <_>
+
+ <_>
+ 11 0 6 4 -1.
+ <_>
+ 11 2 6 2 2.
+ <_>
+
+ <_>
+ 4 14 14 4 -1.
+ <_>
+ 4 14 7 2 2.
+ <_>
+ 11 16 7 2 2.
+ <_>
+
+ <_>
+ 6 0 12 2 -1.
+ <_>
+ 6 1 12 1 2.
+ <_>
+
+ <_>
+ 5 0 6 4 -1.
+ <_>
+ 5 2 6 2 2.
+ <_>
+
+ <_>
+ 11 0 3 6 -1.
+ <_>
+ 12 1 1 6 3.
+ 1
+ <_>
+
+ <_>
+ 11 0 6 3 -1.
+ <_>
+ 10 1 6 1 3.
+ 1
+ <_>
+
+ <_>
+ 7 12 8 6 -1.
+ <_>
+ 9 12 4 6 2.
+ <_>
+
+ <_>
+ 1 1 5 10 -1.
+ <_>
+ 1 6 5 5 2.
+ <_>
+
+ <_>
+ 13 0 2 12 -1.
+ <_>
+ 13 6 2 6 2.
+ <_>
+
+ <_>
+ 7 0 2 12 -1.
+ <_>
+ 7 6 2 6 2.
+ <_>
+
+ <_>
+ 12 1 8 14 -1.
+ <_>
+ 16 1 4 7 2.
+ <_>
+ 12 8 4 7 2.
+ <_>
+
+ <_>
+ 1 0 8 10 -1.
+ <_>
+ 1 0 4 5 2.
+ <_>
+ 5 5 4 5 2.
+ <_>
+
+ <_>
+ 6 6 16 4 -1.
+ <_>
+ 10 6 8 4 2.
+ <_>
+
+ <_>
+ 1 14 13 2 -1.
+ <_>
+ 1 15 13 1 2.
+ <_>
+
+ <_>
+ 2 7 20 3 -1.
+ <_>
+ 7 7 10 3 2.
+ <_>
+
+ <_>
+ 11 2 9 4 -1.
+ <_>
+ 14 5 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 6 5 13 2 -1.
+ <_>
+ 6 6 13 1 2.
+ <_>
+
+ <_>
+ 3 0 6 15 -1.
+ <_>
+ 6 0 3 15 2.
+ <_>
+
+ <_>
+ 3 12 8 6 -1.
+ <_>
+ 5 12 4 6 2.
+ <_>
+
+ <_>
+ 13 1 4 7 -1.
+ <_>
+ 14 2 2 7 2.
+ 1
+ <_>
+
+ <_>
+ 9 1 7 4 -1.
+ <_>
+ 8 2 7 2 2.
+ 1
+ <_>
+
+ <_>
+ 11 11 6 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 0 12 8 6 -1.
+ <_>
+ 0 12 4 3 2.
+ <_>
+ 4 15 4 3 2.
+ <_>
+
+ <_>
+ 11 11 6 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 2 6 6 12 -1.
+ <_>
+ 2 6 3 6 2.
+ <_>
+ 5 12 3 6 2.
+ <_>
+
+ <_>
+ 11 11 6 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 5 11 9 4 -1.
+ <_>
+ 8 11 3 4 3.
+ <_>
+
+ <_>
+ 8 13 9 5 -1.
+ <_>
+ 11 13 3 5 3.
+ <_>
+
+ <_>
+ 3 15 8 3 -1.
+ <_>
+ 7 15 4 3 2.
+ <_>
+
+ <_>
+ 4 12 14 6 -1.
+ <_>
+ 11 12 7 3 2.
+ <_>
+ 4 15 7 3 2.
+ <_>
+
+ <_>
+ 2 15 8 3 -1.
+ <_>
+ 6 15 4 3 2.
+ <_>
+
+ <_>
+ 11 11 6 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 6 5 6 7 -1.
+ <_>
+ 8 5 2 7 3.
+ <_>
+
+ <_>
+ 8 4 9 12 -1.
+ <_>
+ 11 8 3 4 9.
+ <_>
+
+ <_>
+ 5 4 9 12 -1.
+ <_>
+ 8 8 3 4 9.
+ <_>
+
+ <_>
+ 14 12 6 4 -1.
+ <_>
+ 14 14 6 2 2.
+ <_>
+
+ <_>
+ 2 12 6 4 -1.
+ <_>
+ 2 14 6 2 2.
+ <_>
+
+ <_>
+ 9 6 6 8 -1.
+ <_>
+ 11 6 2 8 3.
+ <_>
+
+ <_>
+ 7 4 8 6 -1.
+ <_>
+ 7 6 8 2 3.
+ <_>
+
+ <_>
+ 13 7 6 4 -1.
+ <_>
+ 13 7 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 10 2 12 3 -1.
+ <_>
+ 9 3 12 1 3.
+ 1
+ <_>
+
+ <_>
+ 12 4 6 6 -1.
+ <_>
+ 14 6 2 6 3.
+ 1
+ <_>
+
+ <_>
+ 10 4 6 6 -1.
+ <_>
+ 8 6 6 2 3.
+ 1
+ <_>
+
+ <_>
+ 11 5 3 9 -1.
+ <_>
+ 12 6 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 4 0 16 2 -1.
+ <_>
+ 4 0 16 1 2.
+ 1
+ <_>
+
+ <_>
+ 12 12 8 3 -1.
+ <_>
+ 12 12 4 3 2.
+ <_>
+
+ <_>
+ 10 0 12 6 -1.
+ <_>
+ 13 3 6 6 2.
+ 1
+ <_>
+
+ <_>
+ 9 2 4 6 -1.
+ <_>
+ 9 5 4 3 2.
+ <_>
+
+ <_>
+ 0 2 18 9 -1.
+ <_>
+ 6 5 6 3 9.
+ <_>
+
+ <_>
+ 16 2 3 9 -1.
+ <_>
+ 17 3 1 9 3.
+ 1
+ <_>
+
+ <_>
+ 6 2 9 3 -1.
+ <_>
+ 5 3 9 1 3.
+ 1
+ <_>
+
+ <_>
+ 10 1 12 4 -1.
+ <_>
+ 14 1 4 4 3.
+ <_>
+
+ <_>
+ 0 1 12 4 -1.
+ <_>
+ 4 1 4 4 3.
+ <_>
+
+ <_>
+ 6 14 12 4 -1.
+ <_>
+ 12 14 6 2 2.
+ <_>
+ 6 16 6 2 2.
+ <_>
+
+ <_>
+ 4 2 13 3 -1.
+ <_>
+ 4 3 13 1 3.
+ <_>
+
+ <_>
+ 7 2 13 3 -1.
+ <_>
+ 7 3 13 1 3.
+ <_>
+
+ <_>
+ 1 12 20 2 -1.
+ <_>
+ 11 12 10 2 2.
+ <_>
+
+ <_>
+ 5 2 12 3 -1.
+ <_>
+ 9 2 4 3 3.
+ <_>
+
+ <_>
+ 4 8 14 9 -1.
+ <_>
+ 11 8 7 9 2.
+ <_>
+
+ <_>
+ 10 2 4 8 -1.
+ <_>
+ 10 2 2 8 2.
+ <_>
+
+ <_>
+ 8 2 4 8 -1.
+ <_>
+ 10 2 2 8 2.
+ <_>
+
+ <_>
+ 16 1 2 16 -1.
+ <_>
+ 16 9 2 8 2.
+ <_>
+
+ <_>
+ 2 8 9 4 -1.
+ <_>
+ 5 8 3 4 3.
+ <_>
+
+ <_>
+ 16 1 2 16 -1.
+ <_>
+ 16 9 2 8 2.
+ <_>
+
+ <_>
+ 4 1 2 16 -1.
+ <_>
+ 4 9 2 8 2.
+ <_>
+
+ <_>
+ 10 7 8 6 -1.
+ <_>
+ 14 7 4 3 2.
+ <_>
+ 10 10 4 3 2.
+ <_>
+
+ <_>
+ 4 7 8 6 -1.
+ <_>
+ 4 7 4 3 2.
+ <_>
+ 8 10 4 3 2.
+ <_>
+
+ <_>
+ 12 8 2 7 -1.
+ <_>
+ 12 8 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 6 8 -1.
+ <_>
+ 5 8 3 4 2.
+ <_>
+ 8 12 3 4 2.
+ <_>
+
+ <_>
+ 12 8 2 7 -1.
+ <_>
+ 12 8 1 7 2.
+ 1
+ <_>
+
+ <_>
+ 10 8 7 2 -1.
+ <_>
+ 10 8 7 1 2.
+ 1
+ <_>
+
+ <_>
+ 5 9 13 8 -1.
+ <_>
+ 5 11 13 4 2.
+ <_>
+
+ <_>
+ 7 9 4 9 -1.
+ <_>
+ 9 9 2 9 2.
+ <_>
+
+ <_>
+ 9 6 6 10 -1.
+ <_>
+ 11 6 2 10 3.
+ <_>
+
+ <_>
+ 7 6 6 10 -1.
+ <_>
+ 9 6 2 10 3.
+ <_>
+
+ <_>
+ 6 0 14 6 -1.
+ <_>
+ 13 0 7 3 2.
+ <_>
+ 6 3 7 3 2.
+ <_>
+
+ <_>
+ 2 0 14 6 -1.
+ <_>
+ 2 0 7 3 2.
+ <_>
+ 9 3 7 3 2.
+ <_>
+
+ <_>
+ 3 6 16 3 -1.
+ <_>
+ 3 7 16 1 3.
+ <_>
+
+ <_>
+ 1 6 15 3 -1.
+ <_>
+ 1 7 15 1 3.
+ <_>
+
+ <_>
+ 8 5 8 4 -1.
+ <_>
+ 8 7 8 2 2.
+ <_>
+
+ <_>
+ 2 4 12 10 -1.
+ <_>
+ 8 4 6 10 2.
+ <_>
+
+ <_>
+ 7 0 14 16 -1.
+ <_>
+ 7 0 7 16 2.
+ <_>
+
+ <_>
+ 1 1 18 3 -1.
+ <_>
+ 10 1 9 3 2.
+ <_>
+
+ <_>
+ 8 8 12 2 -1.
+ <_>
+ 8 8 6 2 2.
+ <_>
+
+ <_>
+ 8 1 6 4 -1.
+ <_>
+ 11 1 3 4 2.
+ <_>
+
+ <_>
+ 11 0 4 10 -1.
+ <_>
+ 12 1 2 10 2.
+ 1
+ <_>
+
+ <_>
+ 11 0 10 4 -1.
+ <_>
+ 10 1 10 2 2.
+ 1
+ <_>
+
+ <_>
+ 13 7 9 4 -1.
+ <_>
+ 16 7 3 4 3.
+ <_>
+
+ <_>
+ 11 1 6 2 -1.
+ <_>
+ 11 1 6 1 2.
+ 1
+ <_>
+
+ <_>
+ 8 8 12 2 -1.
+ <_>
+ 8 8 6 2 2.
+ <_>
+
+ <_>
+ 7 12 6 5 -1.
+ <_>
+ 10 12 3 5 2.
+ <_>
+
+ <_>
+ 10 7 9 11 -1.
+ <_>
+ 13 7 3 11 3.
+ <_>
+
+ <_>
+ 6 15 8 3 -1.
+ <_>
+ 10 15 4 3 2.
+ <_>
+
+ <_>
+ 19 3 2 12 -1.
+ <_>
+ 19 3 1 12 2.
+ <_>
+
+ <_>
+ 1 3 2 12 -1.
+ <_>
+ 2 3 1 12 2.
+ <_>
+
+ <_>
+ 11 1 9 10 -1.
+ <_>
+ 14 1 3 10 3.
+ <_>
+
+ <_>
+ 1 3 16 6 -1.
+ <_>
+ 5 3 8 6 2.
+ <_>
+
+ <_>
+ 7 1 12 12 -1.
+ <_>
+ 11 1 4 12 3.
+ <_>
+
+ <_>
+ 2 8 12 2 -1.
+ <_>
+ 8 8 6 2 2.
+ <_>
+
+ <_>
+ 14 7 3 10 -1.
+ <_>
+ 14 12 3 5 2.
+ <_>
+
+ <_>
+ 1 15 18 3 -1.
+ <_>
+ 10 15 9 3 2.
+ <_>
+
+ <_>
+ 9 0 13 3 -1.
+ <_>
+ 9 1 13 1 3.
+ <_>
+
+ <_>
+ 5 0 12 3 -1.
+ <_>
+ 5 1 12 1 3.
+ <_>
+
+ <_>
+ 12 1 2 15 -1.
+ <_>
+ 12 1 1 15 2.
+ <_>
+
+ <_>
+ 8 1 2 15 -1.
+ <_>
+ 9 1 1 15 2.
+ <_>
+
+ <_>
+ 12 2 3 13 -1.
+ <_>
+ 13 2 1 13 3.
+ <_>
+
+ <_>
+ 1 6 4 8 -1.
+ <_>
+ 3 6 2 8 2.
+ <_>
+
+ <_>
+ 17 1 4 12 -1.
+ <_>
+ 19 1 2 6 2.
+ <_>
+ 17 7 2 6 2.
+ <_>
+
+ <_>
+ 1 1 4 12 -1.
+ <_>
+ 1 1 2 6 2.
+ <_>
+ 3 7 2 6 2.
+ <_>
+
+ <_>
+ 17 0 4 7 -1.
+ <_>
+ 17 0 2 7 2.
+ <_>
+
+ <_>
+ 1 0 4 7 -1.
+ <_>
+ 3 0 2 7 2.
+ <_>
+
+ <_>
+ 12 2 3 13 -1.
+ <_>
+ 13 2 1 13 3.
+ <_>
+
+ <_>
+ 7 4 5 9 -1.
+ <_>
+ 7 7 5 3 3.
+ <_>
+
+ <_>
+ 12 2 3 13 -1.
+ <_>
+ 13 2 1 13 3.
+ <_>
+
+ <_>
+ 7 2 3 13 -1.
+ <_>
+ 8 2 1 13 3.
+ <_>
+
+ <_>
+ 3 5 17 4 -1.
+ <_>
+ 3 6 17 2 2.
+ <_>
+
+ <_>
+ 2 3 18 3 -1.
+ <_>
+ 2 4 18 1 3.
+ <_>
+
+ <_>
+ 11 11 6 4 -1.
+ <_>
+ 11 13 6 2 2.
+ <_>
+
+ <_>
+ 5 11 6 4 -1.
+ <_>
+ 5 13 6 2 2.
+ <_>
+
+ <_>
+ 15 5 6 4 -1.
+ <_>
+ 15 5 6 2 2.
+ 1
+ <_>
+
+ <_>
+ 7 5 4 6 -1.
+ <_>
+ 7 5 2 6 2.
+ 1
+ <_>
+
+ <_>
+ 13 1 8 8 -1.
+ <_>
+ 15 1 4 8 2.
+ <_>
+
+ <_>
+ 3 1 12 12 -1.
+ <_>
+ 7 1 4 12 3.
+ <_>
+
+ <_>
+ 14 2 4 12 -1.
+ <_>
+ 14 2 2 12 2.
+ <_>
+
+ <_>
+ 4 2 4 12 -1.
+ <_>
+ 6 2 2 12 2.
+ <_>
+
+ <_>
+ 15 0 2 14 -1.
+ <_>
+ 15 0 1 14 2.
+ <_>
+
+ <_>
+ 5 0 2 14 -1.
+ <_>
+ 6 0 1 14 2.
+ <_>
+
+ <_>
+ 15 1 7 15 -1.
+ <_>
+ 15 6 7 5 3.
+ <_>
+
+ <_>
+ 6 1 7 6 -1.
+ <_>
+ 4 3 7 2 3.
+ 1
+ <_>
+
+ <_>
+ 1 4 20 14 -1.
+ <_>
+ 11 4 10 7 2.
+ <_>
+ 1 11 10 7 2.
+ <_>
+
+ <_>
+ 1 2 6 8 -1.
+ <_>
+ 3 2 2 8 3.
+ <_>
+
+ <_>
+ 15 0 2 13 -1.
+ <_>
+ 15 0 1 13 2.
+ <_>
+
+ <_>
+ 2 1 9 10 -1.
+ <_>
+ 5 1 3 10 3.
+ <_>
+
+ <_>
+ 9 9 6 6 -1.
+ <_>
+ 11 9 2 6 3.
+ <_>
+
+ <_>
+ 5 5 8 4 -1.
+ <_>
+ 5 5 8 2 2.
+ 1
+ <_>
+
+ <_>
+ 5 8 14 4 -1.
+ <_>
+ 5 9 14 2 2.
+ <_>
+
+ <_>
+ 0 7 20 2 -1.
+ <_>
+ 10 7 10 2 2.
+ <_>
+
+ <_>
+ 8 0 10 10 -1.
+ <_>
+ 8 0 5 10 2.
+ <_>
+
+ <_>
+ 4 0 10 10 -1.
+ <_>
+ 9 0 5 10 2.
+ <_>
+
+ <_>
+ 5 1 15 10 -1.
+ <_>
+ 10 1 5 10 3.
+ <_>
+
+ <_>
+ 0 9 18 4 -1.
+ <_>
+ 0 10 18 2 2.
+ <_>
+
+ <_>
+ 8 8 10 6 -1.
+ <_>
+ 8 10 10 2 3.
+ <_>
+
+ <_>
+ 4 8 10 6 -1.
+ <_>
+ 4 10 10 2 3.
+ <_>
+
+ <_>
+ 11 6 10 12 -1.
+ <_>
+ 11 10 10 4 3.
+ <_>
+
+ <_>
+ 8 5 4 8 -1.
+ <_>
+ 8 5 4 4 2.
+ 1
+ <_>
+
+ <_>
+ 17 8 5 6 -1.
+ <_>
+ 17 11 5 3 2.
+ <_>
+
+ <_>
+ 8 11 4 7 -1.
+ <_>
+ 10 11 2 7 2.
+ <_>
+
+ <_>
+ 9 5 12 3 -1.
+ <_>
+ 9 6 12 1 3.
+ <_>
+
+ <_>
+ 2 9 13 3 -1.
+ <_>
+ 2 10 13 1 3.
+ <_>
+
+ <_>
+ 3 13 16 3 -1.
+ <_>
+ 3 13 8 3 2.
+ <_>
+
+ <_>
+ 5 12 8 4 -1.
+ <_>
+ 9 12 4 4 2.
+ <_>
+
+ <_>
+ 14 8 6 9 -1.
+ <_>
+ 14 11 6 3 3.
+ <_>
+
+ <_>
+ 4 10 12 3 -1.
+ <_>
+ 4 11 12 1 3.
+ <_>
+
+ <_>
+ 6 7 11 9 -1.
+ <_>
+ 6 10 11 3 3.
+ <_>
+
+ <_>
+ 4 1 9 4 -1.
+ <_>
+ 7 4 3 4 3.
+ 1
+ <_>
+
+ <_>
+ 12 1 9 9 -1.
+ <_>
+ 15 1 3 9 3.
+ <_>
+
+ <_>
+ 1 1 9 9 -1.
+ <_>
+ 4 1 3 9 3.
+ <_>
+
+ <_>
+ 14 1 6 6 -1.
+ <_>
+ 16 1 2 6 3.
+ <_>
+
+ <_>
+ 4 6 4 6 -1.
+ <_>
+ 6 6 2 6 2.
+ <_>
+
+ <_>
+ 7 5 12 7 -1.
+ <_>
+ 10 5 6 7 2.
+ <_>
+
+ <_>
+ 3 5 12 7 -1.
+ <_>
+ 6 5 6 7 2.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/cv2/version.py b/celestial-mini/venv/lib/python3.7/site-packages/cv2/version.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d23d7ccd72440ad60e2e85031687218b8bee4c5
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/cv2/version.py
@@ -0,0 +1,4 @@
+opencv_version = "3.4.11.41"
+contrib = False
+headless = False
+ci_build = False
\ No newline at end of file
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/easy_install.py b/celestial-mini/venv/lib/python3.7/site-packages/easy_install.py
new file mode 100644
index 0000000000000000000000000000000000000000..d87e984034b6e6e9eb456ebcb2b3f420c07a48bc
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/easy_install.py
@@ -0,0 +1,5 @@
+"""Run the EasyInstall command"""
+
+if __name__ == '__main__':
+ from setuptools.command.easy_install import main
+ main()
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/INSTALLER b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/INSTALLER
new file mode 100644
index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/INSTALLER
@@ -0,0 +1 @@
+pip
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/LICENSE.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3dd3d252e694b09933b63651e0994b3dfa95cb68
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/LICENSE.txt
@@ -0,0 +1,54 @@
+Copyright (c) 2005-2021, NumPy Developers.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following
+ disclaimer in the documentation and/or other materials provided
+ with the distribution.
+
+ * Neither the name of the NumPy Developers nor the names of any
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+The NumPy repository and source distributions bundle several libraries that are
+compatibly licensed. We list these here.
+
+Name: lapack-lite
+Files: numpy/linalg/lapack_lite/*
+License: BSD-3-Clause
+ For details, see numpy/linalg/lapack_lite/LICENSE.txt
+
+Name: tempita
+Files: tools/npy_tempita/*
+License: MIT
+ For details, see tools/npy_tempita/license.txt
+
+Name: dragon4
+Files: numpy/core/src/multiarray/dragon4.c
+License: MIT
+ For license text, see numpy/core/src/multiarray/dragon4.c
+
+Name: libdivide
+Files: numpy/core/include/numpy/libdivide/*
+License: Zlib
+ For license text, see numpy/core/include/numpy/libdivide/LICENSE.txt
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/METADATA b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/METADATA
new file mode 100644
index 0000000000000000000000000000000000000000..2aa9c60b0a5bdf0aed8dbfb32e7f57c77cef0242
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/METADATA
@@ -0,0 +1,58 @@
+Metadata-Version: 2.1
+Name: numpy
+Version: 1.21.6
+Summary: NumPy is the fundamental package for array computing with Python.
+Home-page: https://www.numpy.org
+Author: Travis E. Oliphant et al.
+Maintainer: NumPy Developers
+Maintainer-email: numpy-discussion@python.org
+License: BSD
+Download-URL: https://pypi.python.org/pypi/numpy
+Project-URL: Bug Tracker, https://github.com/numpy/numpy/issues
+Project-URL: Documentation, https://numpy.org/doc/1.21
+Project-URL: Source Code, https://github.com/numpy/numpy
+Platform: Windows
+Platform: Linux
+Platform: Solaris
+Platform: Mac OS-X
+Platform: Unix
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Science/Research
+Classifier: Intended Audience :: Developers
+Classifier: License :: OSI Approved :: BSD License
+Classifier: Programming Language :: C
+Classifier: Programming Language :: Python
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.7
+Classifier: Programming Language :: Python :: 3.8
+Classifier: Programming Language :: Python :: 3.9
+Classifier: Programming Language :: Python :: 3.10
+Classifier: Programming Language :: Python :: 3 :: Only
+Classifier: Programming Language :: Python :: Implementation :: CPython
+Classifier: Topic :: Software Development
+Classifier: Topic :: Scientific/Engineering
+Classifier: Typing :: Typed
+Classifier: Operating System :: Microsoft :: Windows
+Classifier: Operating System :: POSIX
+Classifier: Operating System :: Unix
+Classifier: Operating System :: MacOS
+Requires-Python: >=3.7,<3.11
+License-File: LICENSE.txt
+
+It provides:
+
+- a powerful N-dimensional array object
+- sophisticated (broadcasting) functions
+- tools for integrating C/C++ and Fortran code
+- useful linear algebra, Fourier transform, and random number capabilities
+- and much more
+
+Besides its obvious scientific uses, NumPy can also be used as an efficient
+multi-dimensional container of generic data. Arbitrary data-types can be
+defined. This allows NumPy to seamlessly and speedily integrate with a wide
+variety of databases.
+
+All NumPy wheels distributed on PyPI are BSD licensed.
+
+
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/RECORD b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/RECORD
new file mode 100644
index 0000000000000000000000000000000000000000..2ffa965532f6c01d8081dd9ea4ce4c968b21a351
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/RECORD
@@ -0,0 +1,1197 @@
+../../../bin/f2py,sha256=Y7brpcyq0UeOyLoB22ug0zfy8oUfgaW7GYHw6G3WFL8,236
+../../../bin/f2py3,sha256=Y7brpcyq0UeOyLoB22ug0zfy8oUfgaW7GYHw6G3WFL8,236
+../../../bin/f2py3.7,sha256=Y7brpcyq0UeOyLoB22ug0zfy8oUfgaW7GYHw6G3WFL8,236
+numpy-1.21.6.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
+numpy-1.21.6.dist-info/LICENSE.txt,sha256=vBsK8VzclBXqJsXx3zUsImrIZCXsD7mrONERAYvxxvI,2179
+numpy-1.21.6.dist-info/METADATA,sha256=VsgNn6Kb6XgXDoe9c3E-BZXTnRCbbraOrG1ycAbh2Y0,2126
+numpy-1.21.6.dist-info/RECORD,,
+numpy-1.21.6.dist-info/WHEEL,sha256=UQzuFpp7UtaL4Yy4z9wcUMYcmSjtUeITJHpvwjCE4n0,104
+numpy-1.21.6.dist-info/entry_points.txt,sha256=MA6o_IjpQrpZlNNxq1yxwYV0u_I689RuoWedrJLsZnk,113
+numpy-1.21.6.dist-info/top_level.txt,sha256=4J9lbBMLnAiyxatxh8iRKV5Entd_6-oqbO7pzJjMsPw,6
+numpy/LICENSE.txt,sha256=vBsK8VzclBXqJsXx3zUsImrIZCXsD7mrONERAYvxxvI,2179
+numpy/__config__.py,sha256=HmuPVQnBL0TIxgwW7o6jW4viH_H8HMFkeVd4g29m_Co,4075
+numpy/__init__.cython-30.pxd,sha256=cLPmeF01XBH1NkFxsCkvDHexKV4MD1_qT8Lc0LVqrMA,36238
+numpy/__init__.pxd,sha256=YaJdc2H7uEybO8u9atqKzyS6qZJILO48f4yi1LzZA_I,34606
+numpy/__init__.py,sha256=AuVLOaWCWl65XHRjmyJZOor4FiEvm7H9y3jxcRKl0n8,15899
+numpy/__init__.pyi,sha256=wKFxkqFTabjqX4U_CiJMQxBh1Ikf9Cir1oumbNYpJ8M,133925
+numpy/__pycache__/__config__.cpython-37.pyc,,
+numpy/__pycache__/__init__.cpython-37.pyc,,
+numpy/__pycache__/_distributor_init.cpython-37.pyc,,
+numpy/__pycache__/_globals.cpython-37.pyc,,
+numpy/__pycache__/_pytesttester.cpython-37.pyc,,
+numpy/__pycache__/_version.cpython-37.pyc,,
+numpy/__pycache__/conftest.cpython-37.pyc,,
+numpy/__pycache__/ctypeslib.cpython-37.pyc,,
+numpy/__pycache__/dual.cpython-37.pyc,,
+numpy/__pycache__/matlib.cpython-37.pyc,,
+numpy/__pycache__/setup.cpython-37.pyc,,
+numpy/__pycache__/version.cpython-37.pyc,,
+numpy/_distributor_init.py,sha256=IgPkSK3H9bgjFeUfWuXhjKrgetQl5ztUW-rTyjGHK3c,331
+numpy/_globals.py,sha256=XcWzT4OYb74yO7Y2XrdjchKm041Xk_uEwtCljMnv9yM,2949
+numpy/_pytesttester.py,sha256=a2mYgX93ZyE91xVCava5UwUyEWGfCZUDO4TnVrBq2dQ,6302
+numpy/_version.py,sha256=Ubf_t1282f4ZbSFBM9V68qBOFoUrsGxmk1L7XaxzkJY,498
+numpy/char.pyi,sha256=BwaCJLUh2hiNClbBDEYSmxL6vAUrrj28Mh62B6-0g8A,1715
+numpy/compat/__init__.py,sha256=vDaDPwY2qBEKixsIfjwPjyKeWiyWg0kPJdgcSxua8R8,432
+numpy/compat/__pycache__/__init__.cpython-37.pyc,,
+numpy/compat/__pycache__/_inspect.cpython-37.pyc,,
+numpy/compat/__pycache__/py3k.cpython-37.pyc,,
+numpy/compat/__pycache__/setup.cpython-37.pyc,,
+numpy/compat/_inspect.py,sha256=8Ma7QBRwfSWKeK1ShJpFNc7CDhE6fkIE_wr1FxrG1A8,7447
+numpy/compat/py3k.py,sha256=L9hQw7Qp4K54kTfsV4fBAEGxDVDOOO0suxTFtymdT8k,3651
+numpy/compat/setup.py,sha256=36X1kF0C_NVROXfJ7w3SQeBm5AIDBuJbM5qT7cvSDgU,335
+numpy/compat/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/compat/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/compat/tests/__pycache__/test_compat.cpython-37.pyc,,
+numpy/compat/tests/test_compat.py,sha256=IB6xDjzHwWRmxKHwnFbESXul2ms2XjT6Hj-Dywdu2oM,476
+numpy/conftest.py,sha256=2WEzdC0jJEPsGOZoVfyGk7V-5JNTvl0FcjQed5JOsWE,4031
+numpy/core/__init__.py,sha256=r7XGNjbeYSAQrfEXIZmIo0kuzFg1SnR58jemQPN77Ao,5362
+numpy/core/__init__.pyi,sha256=xtd9OFYza-ZG3jyEJrlzRPT-SkVoB_qYmVCe6FxRks0,126
+numpy/core/__pycache__/__init__.cpython-37.pyc,,
+numpy/core/__pycache__/_add_newdocs.cpython-37.pyc,,
+numpy/core/__pycache__/_add_newdocs_scalars.cpython-37.pyc,,
+numpy/core/__pycache__/_asarray.cpython-37.pyc,,
+numpy/core/__pycache__/_dtype.cpython-37.pyc,,
+numpy/core/__pycache__/_dtype_ctypes.cpython-37.pyc,,
+numpy/core/__pycache__/_exceptions.cpython-37.pyc,,
+numpy/core/__pycache__/_internal.cpython-37.pyc,,
+numpy/core/__pycache__/_methods.cpython-37.pyc,,
+numpy/core/__pycache__/_string_helpers.cpython-37.pyc,,
+numpy/core/__pycache__/_type_aliases.cpython-37.pyc,,
+numpy/core/__pycache__/_ufunc_config.cpython-37.pyc,,
+numpy/core/__pycache__/arrayprint.cpython-37.pyc,,
+numpy/core/__pycache__/cversions.cpython-37.pyc,,
+numpy/core/__pycache__/defchararray.cpython-37.pyc,,
+numpy/core/__pycache__/einsumfunc.cpython-37.pyc,,
+numpy/core/__pycache__/fromnumeric.cpython-37.pyc,,
+numpy/core/__pycache__/function_base.cpython-37.pyc,,
+numpy/core/__pycache__/generate_numpy_api.cpython-37.pyc,,
+numpy/core/__pycache__/getlimits.cpython-37.pyc,,
+numpy/core/__pycache__/machar.cpython-37.pyc,,
+numpy/core/__pycache__/memmap.cpython-37.pyc,,
+numpy/core/__pycache__/multiarray.cpython-37.pyc,,
+numpy/core/__pycache__/numeric.cpython-37.pyc,,
+numpy/core/__pycache__/numerictypes.cpython-37.pyc,,
+numpy/core/__pycache__/overrides.cpython-37.pyc,,
+numpy/core/__pycache__/records.cpython-37.pyc,,
+numpy/core/__pycache__/setup.cpython-37.pyc,,
+numpy/core/__pycache__/setup_common.cpython-37.pyc,,
+numpy/core/__pycache__/shape_base.cpython-37.pyc,,
+numpy/core/__pycache__/umath.cpython-37.pyc,,
+numpy/core/__pycache__/umath_tests.cpython-37.pyc,,
+numpy/core/_add_newdocs.py,sha256=OBJoa6i9PY3rzwyRt4QoNYfzHuz4kVmXiJKkWiwwcWE,191910
+numpy/core/_add_newdocs_scalars.py,sha256=pWS_5PnWBkuxgj6emdL2NZko1MPWuIznJTjJm5pelkY,8800
+numpy/core/_asarray.py,sha256=vdQAHeC_3IUhoWP-kZq5YdjWIZV_DahOyEfByzVdTfc,4175
+numpy/core/_asarray.pyi,sha256=lNDxEakn-EFXxI9CSYKtMImUAh6mZ0crqtQm_WS0TfY,1940
+numpy/core/_dtype.py,sha256=N_S_jALZRInaIkhEGTNkqNoDIhdgIwhqeEyEz7NPYhc,9843
+numpy/core/_dtype_ctypes.py,sha256=Vug4i7xKhznK2tdIjmn4ebclClpaCJwSZUlvEoYl0Eg,3673
+numpy/core/_exceptions.py,sha256=e8kfyZsjlOIBhih9iX0dhZ6RwqDOCZjt4w6K2w5uXqM,6130
+numpy/core/_internal.py,sha256=e1R_61cYemdolqiT7sl6sOMuqNrjsayGm6edMIkm3JU,27373
+numpy/core/_internal.pyi,sha256=59Frmg-40HmVHdSjCicbn64ZrxZmb4QzKrUiTlHZzzA,1373
+numpy/core/_methods.py,sha256=cSqry3GxAlkGB7lDl4PuN23w612HuY_2eBtfANWtWrY,10794
+numpy/core/_multiarray_tests.cpython-37m-arm-linux-gnueabihf.so,sha256=1qLNx5sM4afWTkGW0ZwkZtRQwwKD_sP38ZumUILF2Jw,528872
+numpy/core/_multiarray_umath.cpython-37m-arm-linux-gnueabihf.so,sha256=aSI9vmDQ0LQzGrc5aRK1dX2IiGRPqtjCvJUFko1Pms4,14022316
+numpy/core/_operand_flag_tests.cpython-37m-arm-linux-gnueabihf.so,sha256=8Q3csXJQwFtWLjc45DxRpyHViYWE62OBawLL-62SMz4,42376
+numpy/core/_rational_tests.cpython-37m-arm-linux-gnueabihf.so,sha256=gUxNT7Cb-ZZI3FQipHNRC_-qk1Sy37HNmC6e_yJZwJ0,205680
+numpy/core/_simd.cpython-37m-arm-linux-gnueabihf.so,sha256=zQkdyfmeV9WRZDbe1EzXwuCrHlPPhLcepolYQG6zhfo,2765736
+numpy/core/_string_helpers.py,sha256=NGGGhaFdU5eGiUAj3GTIBoOgWs4r9aTNlsE2r9NgX6Q,2855
+numpy/core/_struct_ufunc_tests.cpython-37m-arm-linux-gnueabihf.so,sha256=NdNJhmbeA1Q3E4kAmbEznrkIBhqxUyDvascfj_l1cdY,44776
+numpy/core/_type_aliases.py,sha256=1HKFLGDYWSHAoiUkxk0aezjINwGP8r8xjcbajjMba4I,7839
+numpy/core/_type_aliases.pyi,sha256=kBzC1FwJjUHor7Llzz-XJm-Vs3wORFCQerx4dTXjtFI,520
+numpy/core/_ufunc_config.py,sha256=lgyCN1I_6rdDpYC0Dl0LfJGFijFvMs77CLcgD86MYLI,13387
+numpy/core/_ufunc_config.pyi,sha256=gp0jv25Lv_X8nqpFSIMnTLAwlKo3kwpkFVwHnMKfC1o,1250
+numpy/core/_umath_tests.cpython-37m-arm-linux-gnueabihf.so,sha256=6yFtK1oA51xm2Mmo5O5I_VRtYJty_r-Oj5ib3-44jxE,182544
+numpy/core/arrayprint.py,sha256=IJLMzrIaaX6T5fkf2DeGBHPwayJ6LdrbZI4b0REQb6g,61625
+numpy/core/arrayprint.pyi,sha256=w75A1YGh371pKxY8yERexZ0kmubLL5Og1aMs6EZs2zc,4674
+numpy/core/cversions.py,sha256=H_iNIpx9-hY1cQNxqjT2d_5SXZhJbMo_caq4_q6LB7I,347
+numpy/core/defchararray.py,sha256=psAB_6Wwt3Trus2xtW30dok0dfLAmc76COD3GNP5Q7g,69735
+numpy/core/einsumfunc.py,sha256=Wj_f4yonh5Q75_1GuxO3di4CdcWaWFyqW6k4UpJA5X4,51445
+numpy/core/einsumfunc.pyi,sha256=kqZHtWwAA4eec46YjwLdnBxMnKQkFKOc6jGgqYmx-3c,3705
+numpy/core/fromnumeric.py,sha256=qcSXKcAiZB1xAoEayfIiLjLJ0SmT7IpDgUWvovjMNdc,122777
+numpy/core/fromnumeric.pyi,sha256=_8X8sNGOvQvYzHrH1PzBbruyMDgWweG-uTUENigEdIw,8022
+numpy/core/function_base.py,sha256=0aknBH-SwxLjc7f-3hmhxv0HxqTln9Ixa86Z9tOxLgc,19019
+numpy/core/function_base.pyi,sha256=AI9N4ZkXeaC9VOnGOzu31SFFp6z8FnCK2hmc8f3_0kg,1473
+numpy/core/generate_numpy_api.py,sha256=CicF_LVcU4qQDB9H8vYe14J8WlQrLAymMqeNRUU_2HI,7109
+numpy/core/getlimits.py,sha256=EnoGSxK43HldchgQSePOVFhhOb_IkljxscLZ1hXeCUg,19774
+numpy/core/include/numpy/__multiarray_api.h,sha256=PMhPj-LHP4L844FBeaOL3M0e1WaXX0IHBZLdodyl2tM,62032
+numpy/core/include/numpy/__ufunc_api.h,sha256=kOT0I320xLGHnuE8XSaomEiCmFaup8fTOTied514XiM,12614
+numpy/core/include/numpy/_neighborhood_iterator_imp.h,sha256=hNiUJ3gmJRxdjByk5R5jmLeBKpNfaP_29KLHFuTrSIA,1861
+numpy/core/include/numpy/_numpyconfig.h,sha256=GN8RpfsJXT7fi4m_U6rfn8t0-TrYF0fYFRxMSpnbUWE,1009
+numpy/core/include/numpy/arrayobject.h,sha256=SXj-2avTHV8mNWvv7sOYHLKkRKcafDG7_HNpQNot1GE,164
+numpy/core/include/numpy/arrayscalars.h,sha256=PFyMnWgFoR-ptBuN4Q8S1qSH1O9NKtAYHH3ED6Lyi9k,3730
+numpy/core/include/numpy/halffloat.h,sha256=ohvyl3Kz3mB1hW3MRzxwPDH-0L9WWM_eKhvYLjtT_2w,1878
+numpy/core/include/numpy/libdivide/LICENSE.txt,sha256=-8U59H0M-DvGE3gID7hz1cFGMBJsrL_nVANcOSbapew,1018
+numpy/core/include/numpy/libdivide/libdivide.h,sha256=gLrr_-wyoROpVBYX9g6QZIMSGXFBSugB8P3PJ4ZSR94,80027
+numpy/core/include/numpy/multiarray_api.txt,sha256=3iJrNaiRzPL91e5kfbzfX0LcdqJE5m80V0s4Xl-uCEc,56873
+numpy/core/include/numpy/ndarrayobject.h,sha256=XrGHZCg64dfX8ZBLYovGQs2bM79PDgMOycO8chXFjto,10688
+numpy/core/include/numpy/ndarraytypes.h,sha256=ToPXzUV5uVqptn0Bb5ejO8HfVWYBfoQ-AOFXJxNgqoo,70506
+numpy/core/include/numpy/noprefix.h,sha256=YE-lWegAdZKI5lf44AW5jiWbnmO6hircWzj_WMFrLT4,6786
+numpy/core/include/numpy/npy_1_7_deprecated_api.h,sha256=QwQGDNkDaYXeXJOb4SIDoslYNlUC5JNDdtlA0Q_yWs0,4269
+numpy/core/include/numpy/npy_3kcompat.h,sha256=LJMRnOCkT8U7vUXaZNFeDpGnYZpVSGVx3xT_KOKlhV8,15831
+numpy/core/include/numpy/npy_common.h,sha256=scPMlJOpgosfjyHdMRBHs4IJkXRRvLuVWmVWOjZextE,39036
+numpy/core/include/numpy/npy_cpu.h,sha256=q9Ah0qmiS8F8H8oN-IGfi-MhKlLTOxeRkKtddOvI6MU,4428
+numpy/core/include/numpy/npy_endian.h,sha256=BXIPw6288OW_8SjzyiBcFRXlfBockrS2lTTDBELfixQ,2641
+numpy/core/include/numpy/npy_interrupt.h,sha256=DPlq0WghBzBcX9AUfG1W_LlZbn1UuIuXKNI2f6Q5I3Y,1867
+numpy/core/include/numpy/npy_math.h,sha256=Vwj4rfvyP88xTNtRGbM500Y10_Qpki_rNLwy_rFOZgM,20797
+numpy/core/include/numpy/npy_no_deprecated_api.h,sha256=X-wRYdpuwIuerTnBblKjR7Dqsv8rqxn01RFLVWUHvi8,567
+numpy/core/include/numpy/npy_os.h,sha256=cEvEvpD92EeFjsjRelw1dXJaHYL-0yPJDuz3VeSJs4E,817
+numpy/core/include/numpy/numpyconfig.h,sha256=8Pttt1Ba4QYw05QhKNAHEIKtBwbuFNlZ2tiAovHNLfY,1826
+numpy/core/include/numpy/old_defines.h,sha256=7eiZoi7JrdVT9LXKCoeta5AoIncGa98GcVlWqDrLjwk,6306
+numpy/core/include/numpy/oldnumeric.h,sha256=Yo-LiSzVfDK2YyhlH41ff4gS0m-lv8XjI4JcAzpdy94,708
+numpy/core/include/numpy/random/bitgen.h,sha256=Gfrwd0M0odkpRJXw7QXJgVxb5XCw3iDXacWE_h-F_uM,389
+numpy/core/include/numpy/random/distributions.h,sha256=MmzoQ-vPldzGHObRKenuY0in7k9RmPcrQZiPkQcd9Ow,9771
+numpy/core/include/numpy/ufunc_api.txt,sha256=CMYRT5Wl36VufbEnjRR_yLg1vf0R3ydcNODyJY3WPCw,7198
+numpy/core/include/numpy/ufuncobject.h,sha256=okOd7CkIDzyQhStq6sHprfCKJBQ4EPLB_z5ZD-nGiPI,12851
+numpy/core/include/numpy/utils.h,sha256=C3xM2CqBQLvfTlLAKY_T1y8yExP6SsDYhlh9Av3Y4ww,1124
+numpy/core/lib/libnpymath.a,sha256=zYiWCz-I2BULcmWE-hFnx8pi3NpsivO2MNgA-7oN4iI,262616
+numpy/core/lib/npy-pkg-config/mlib.ini,sha256=_LsWV1eStNqwhdiYPa2538GL46dnfVwT4MrI1zbsoFw,147
+numpy/core/lib/npy-pkg-config/npymath.ini,sha256=kamUNrYKAmXqQa8BcNv7D5sLqHh6bnChM0_5rZCsTfY,360
+numpy/core/machar.py,sha256=3ASn23qrCEoddnmLesVL1e_ycDBXXfal_jk6TKId14k,10815
+numpy/core/memmap.py,sha256=tIDygBke18_QnYw2mZNw5pBilnDhydFoJS8alv8KmP8,11688
+numpy/core/multiarray.py,sha256=6Kv1y6AmYHo7ZR8OJ7f1cl_awkx3h_G0SFXLA-3cTUA,55305
+numpy/core/numeric.py,sha256=cZU_OEiDWW8AJ7lo1o6ZRVOy-3YdwCnXMr_Q-jnktno,76727
+numpy/core/numeric.pyi,sha256=iSr6YgjkDnsiRz7QuGZLaGxvoiGc5g485Un3KARux9k,4870
+numpy/core/numerictypes.py,sha256=NxjMjvYqetaCLc7omIw9OKc1IAybTtP9I4dzpVfLeac,17317
+numpy/core/numerictypes.pyi,sha256=bsN2G1smgShiKb-oLde3XY4SotMAwOjRY8a4Ov9GVyo,2923
+numpy/core/overrides.py,sha256=lt__7Kk6uZ6EVGb-_2EQ_NZN5i3DAMSExztOurOCCcc,8134
+numpy/core/records.py,sha256=ImRDfkrCEvmv0K6ZNvU_xzVg-DFr0xfyiKc8Zv3n_6w,37456
+numpy/core/setup.py,sha256=edJUECUqeWoWlYcDfzv0z1Tc3FC8Xd-Fxgy4Q_TyEjE,44795
+numpy/core/setup_common.py,sha256=sTVeAxAF9JtjlU-tMHmHXjW-7zSL4mtQr4sMNTsU1dU,19717
+numpy/core/shape_base.py,sha256=UywGdxNfoeuCdddBwRGdJzgf3fBnP7V3ZTwHDM7kSYY,29001
+numpy/core/shape_base.pyi,sha256=mat8aDK-2wHgH-7OBF9RQYTzTqBvq2DsVQA8f8i7pJ0,1069
+numpy/core/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/core/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/core/tests/__pycache__/_locales.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test__exceptions.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_abc.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_api.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_argparse.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_array_coercion.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_arraymethod.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_arrayprint.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_casting_unittests.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_conversion_utils.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_cpu_dispatcher.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_cpu_features.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_cython.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_datetime.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_defchararray.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_deprecations.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_dtype.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_einsum.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_errstate.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_extint128.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_function_base.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_getlimits.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_half.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_indexerrors.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_indexing.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_item_selection.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_longdouble.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_machar.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_mem_overlap.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_memmap.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_multiarray.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_nditer.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_numeric.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_numerictypes.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_overrides.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_print.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_protocols.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_records.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalar_ctors.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalar_methods.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalarbuffer.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalarinherit.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalarmath.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_scalarprint.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_shape_base.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_simd.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_simd_module.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_ufunc.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_umath.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_umath_accuracy.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_umath_complex.cpython-37.pyc,,
+numpy/core/tests/__pycache__/test_unicode.cpython-37.pyc,,
+numpy/core/tests/_locales.py,sha256=R2tNBiBzY6h7zHqexpGsuM1QNd_2CR-JfqEXc4pFXYI,2192
+numpy/core/tests/data/astype_copy.pkl,sha256=lWSzCcvzRB_wpuRGj92spGIw-rNPFcd9hwJaRVvfWdk,716
+numpy/core/tests/data/recarray_from_file.fits,sha256=NA0kliz31FlLnYxv3ppzeruONqNYkuEvts5wzXEeIc4,8640
+numpy/core/tests/data/umath-validation-set-README.txt,sha256=pxWwOaGGahaRd-AlAidDfocLyrAiDp0whf5hC7hYwqM,967
+numpy/core/tests/data/umath-validation-set-cos.csv,sha256=kmzQ9yzvUz6jay8EfdzDV-nBhDLYOtI-7_PXbi4gujs,23233
+numpy/core/tests/data/umath-validation-set-exp.csv,sha256=rUAWIbvyeKh9rPfp2n0Zq7AKq_nvHpgbgzLjAllhsek,17491
+numpy/core/tests/data/umath-validation-set-log.csv,sha256=ynzbVbKxFzxWFwxHnxX7Fpm-va09oI3oK1_lTe19g4w,11692
+numpy/core/tests/data/umath-validation-set-sin.csv,sha256=FIeEATdvfWG47s5ImpMuyzo9wEEjZV2cVsn2dmoDvQ4,23045
+numpy/core/tests/examples/__pycache__/setup.cpython-37.pyc,,
+numpy/core/tests/examples/checks.pyx,sha256=yQYhpWZLnJ5GCqCnsSvT1UOmCL0CGsFwBDeBnjm2f9U,588
+numpy/core/tests/examples/setup.py,sha256=aAR-TvQabUabnCzuB6UdWdmRXaaPfIG7MzTIfMF-0tk,496
+numpy/core/tests/test__exceptions.py,sha256=XJtUJzHOCcfAn4jtU_9GVIXLzn1TwSFdQis_9c6PYLk,2005
+numpy/core/tests/test_abc.py,sha256=k4zkrHjoRr4TXiVTCu34B8ZyRP5XJ7N8tPKKdPudOS0,2328
+numpy/core/tests/test_api.py,sha256=2gsDTlnonOKmQS7aal47OK9RriYlxqmk1d1JSftjmG4,22285
+numpy/core/tests/test_argparse.py,sha256=rkbQloOqMiIGIdUsaZb20oHyBO3y9JFqSYr7FawdtDk,1977
+numpy/core/tests/test_array_coercion.py,sha256=Ta02AJqYmE-QttD8Jb41rCCLytr2yU9obFg0dNYYP8g,27922
+numpy/core/tests/test_arraymethod.py,sha256=9R-iZCFkde3X749mE6f6h8EiP-qq7LjQ2ki9WzoACyI,2399
+numpy/core/tests/test_arrayprint.py,sha256=IXYnKfRVDM9pONjulpES4B_QJcLFAHMjTnK1eEcwI_I,37176
+numpy/core/tests/test_casting_unittests.py,sha256=BB4kjYNGsDUn1kie5vU9WHaCKyTZbl_IzfTa_k6SHgU,27838
+numpy/core/tests/test_conversion_utils.py,sha256=6db716kfa8F4JNdJmqD6SVmpYMqFtZpD1Wj9ayVzjWY,6411
+numpy/core/tests/test_cpu_dispatcher.py,sha256=XGDYfme-2FDg8J8eYtN0UWMd5hUrchwNwRqAoynJbEU,1519
+numpy/core/tests/test_cpu_features.py,sha256=O27DXi9SROCwtpOpXSgIPhFIHvckADdOv-4GSzYZCZ8,6777
+numpy/core/tests/test_cython.py,sha256=YJ3NPZDLwoln360aSTZD1Ag3fQucm4Lo4tJr-HDnt-U,3529
+numpy/core/tests/test_datetime.py,sha256=zfEDhjBbbjciMCLNyldv4hiLnFt8Se8meSQYvYnSlzg,112565
+numpy/core/tests/test_defchararray.py,sha256=Lz7lE3-wzmdWK0wQp-uAInKsmda9IIhOixFq3AiTvq8,24583
+numpy/core/tests/test_deprecations.py,sha256=UmYhQqy5UVGSdQ70an6_p6gABNaLWsFFtjXDuyCoQzg,46139
+numpy/core/tests/test_dtype.py,sha256=Opq9CSgsRlki6A6Pt4l5AOl8oMgqqcqDrLxRJE-Kpk4,60473
+numpy/core/tests/test_einsum.py,sha256=Y61VfxQxB0oDtTsk9vnU0wW3pgaNHllgFrEhANBplfU,49052
+numpy/core/tests/test_errstate.py,sha256=19uzW3PSyQiQD-sGnaIcVle3h7P2LbzxCEZKt3tS678,2066
+numpy/core/tests/test_extint128.py,sha256=gCZfAwPOb-F1TLsEEeDI0amQYwHk-60-OXi0ccZrrZ8,5643
+numpy/core/tests/test_function_base.py,sha256=MyX8TSOh251NfC6M8LHFpc-ooVj_jfP-V6l00F5wb7M,14411
+numpy/core/tests/test_getlimits.py,sha256=WWv1LKdktDC1L-uai6omh6NF5AAh8-teXQIgcQRhw7c,4297
+numpy/core/tests/test_half.py,sha256=H91ZNjGPENPQNuDuXH0GnJlX2CG5z-KA0bA52ee177k,23816
+numpy/core/tests/test_indexerrors.py,sha256=kN9xLl6FVTzmI7fumn_cuZ3k0omXnTetgtCnPY44cvw,5130
+numpy/core/tests/test_indexing.py,sha256=S12n93u7YONz-z5WppRcaoG72rydv-MzXz7eZp60ei0,53972
+numpy/core/tests/test_item_selection.py,sha256=DGJNZRtyOxXoyY67EFwUqmLhQ04v0Kqy_QAOpEL42M0,3579
+numpy/core/tests/test_longdouble.py,sha256=sFF-hvknbSJugajUUKrgkQUecOfWc9KP0V6p3fgu-1k,13041
+numpy/core/tests/test_machar.py,sha256=K4nLIwvl4lPtzr1SzVpDVr4X1Ebdgg885GHI_QYJR0Q,1066
+numpy/core/tests/test_mem_overlap.py,sha256=_oscEzTKRFVoV9Yl-XX1-NFu4a6ThX_fCEZa90R4TKs,29084
+numpy/core/tests/test_memmap.py,sha256=Szhfp-XCO-IFZIvfL4-h9hTxjnl7rg9c9vsiehmEEck,7469
+numpy/core/tests/test_multiarray.py,sha256=9fKziYtAIgUehqGQLgMmRjZmmiILedu7EHiGxfvuAX8,336622
+numpy/core/tests/test_nditer.py,sha256=tkFf0QqdxrdrMwygo-3zMQGA8vmfe_zTKjJCk5THnu8,127744
+numpy/core/tests/test_numeric.py,sha256=vWU1llWEYNEMEjMkg7KYBhXP6m4m5WoO9_EEktg2acw,135240
+numpy/core/tests/test_numerictypes.py,sha256=NjWqk0mprYrn8J3yfPBKNNSZ0nprKaCpB1TrlzSkFgg,20846
+numpy/core/tests/test_overrides.py,sha256=VHkY5bOFTk7xAkzYYybjATL6DUBQAPWx5154OZByzxU,20135
+numpy/core/tests/test_print.py,sha256=URYIP2BX0uTkkCH_-YwYp6hhyYENaV4sarPaD2rRbZc,6737
+numpy/core/tests/test_protocols.py,sha256=fEXE9K9s22oiVWkX92BY-g00-uXCK-HxjZhZxxYAKFc,1168
+numpy/core/tests/test_records.py,sha256=Ffznf9-_C9qAvBhcE8_sdbMP8oWUFv5PC6ory0LC2rg,20262
+numpy/core/tests/test_regression.py,sha256=zQIWShzf9Ew0lLB8BmDD6vec_tXBtTweTXCXPpARMrA,91110
+numpy/core/tests/test_scalar_ctors.py,sha256=J0PGDHD6a6dCW1Wg4q-_C5FEccXcYgqLNTnh7AC1iB8,3688
+numpy/core/tests/test_scalar_methods.py,sha256=KIRtg76CCJkamEZX5vEkQG49vwKHDsRkAytTUhoDjwo,4093
+numpy/core/tests/test_scalarbuffer.py,sha256=OEMZ9IkD1qhUqHOWkl5uzMcVs00WM9GV2xJInMP-HGs,5637
+numpy/core/tests/test_scalarinherit.py,sha256=OCvQ9hKpOXsoeI6g7-A-XeNtse2HF_iJ8cRG343p9dU,2405
+numpy/core/tests/test_scalarmath.py,sha256=C3ljP8T3wsbyEp-vUS_AiI5qzEuREdeahfrTIBffNCY,32691
+numpy/core/tests/test_scalarprint.py,sha256=bf9m9rDrVWc5aUbfVayAkyIv4VjQ7ezuxkiELaA_IaM,18646
+numpy/core/tests/test_shape_base.py,sha256=Xq9XrA55m-qhqi02GuEpn_uINsfGJh7sCnuMulvM9eU,27248
+numpy/core/tests/test_simd.py,sha256=de6Q2YIIaL5uANd33HhLi9aQUetC2-RM_M17eXkWr0Q,35378
+numpy/core/tests/test_simd_module.py,sha256=EBJbHm9GchVD_hkQvVQfC-A0GZrIUX-zZEx8jiZUQe8,3758
+numpy/core/tests/test_ufunc.py,sha256=Epmn7CERPdYZQRqkGeQODc2usTMk7RCou5kyIhx192g,94463
+numpy/core/tests/test_umath.py,sha256=RGlBYGWX9Rejmzi5ke0Qmv766OOZCYoP5AN0gCXYnCk,140544
+numpy/core/tests/test_umath_accuracy.py,sha256=tQXk2uvdv8MQhj-Kqjzzb6kZWgSj7zHqW0tveGWqlnE,3114
+numpy/core/tests/test_umath_complex.py,sha256=1LEj_TrEScciTOsp-Nmo6_nCQep0dCDzc39Jiiv6Kpg,23306
+numpy/core/tests/test_unicode.py,sha256=bBqQCQk_UZATySI4HdiWTgfenmgQCm5ynLc6SLvKiiw,12553
+numpy/core/umath.py,sha256=JbT_SxnZ_3MEmjOI9UtX3CcAzX5Q-4RDlnnhDAEJ5Vo,2040
+numpy/core/umath_tests.py,sha256=TIzaDfrEHHgSc2J5kxFEibq8MOPhwSuyOZOUBsZNVSM,389
+numpy/ctypeslib.py,sha256=Fr5ky0mWwsLj4xDqBqugsIDWhnl4IDRGFMaGFrou-IU,17221
+numpy/ctypeslib.pyi,sha256=Okd45WVfU2PSUd5HexR5vjzQ530lfuM1Xmv40dH8344,451
+numpy/distutils/__config__.py,sha256=HmuPVQnBL0TIxgwW7o6jW4viH_H8HMFkeVd4g29m_Co,4075
+numpy/distutils/__init__.py,sha256=KGgmy0CLo0kUE2DqWyiAotDMWyrB7jahrHK2pT5CKDk,1559
+numpy/distutils/__init__.pyi,sha256=D8LRE6BNOmuBGO-oakJGnjT9UJTk9zSR5rxMfZzlX64,119
+numpy/distutils/__pycache__/__config__.cpython-37.pyc,,
+numpy/distutils/__pycache__/__init__.cpython-37.pyc,,
+numpy/distutils/__pycache__/_shell_utils.cpython-37.pyc,,
+numpy/distutils/__pycache__/ccompiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/ccompiler_opt.cpython-37.pyc,,
+numpy/distutils/__pycache__/conv_template.cpython-37.pyc,,
+numpy/distutils/__pycache__/core.cpython-37.pyc,,
+numpy/distutils/__pycache__/cpuinfo.cpython-37.pyc,,
+numpy/distutils/__pycache__/exec_command.cpython-37.pyc,,
+numpy/distutils/__pycache__/extension.cpython-37.pyc,,
+numpy/distutils/__pycache__/from_template.cpython-37.pyc,,
+numpy/distutils/__pycache__/intelccompiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/lib2def.cpython-37.pyc,,
+numpy/distutils/__pycache__/line_endings.cpython-37.pyc,,
+numpy/distutils/__pycache__/log.cpython-37.pyc,,
+numpy/distutils/__pycache__/mingw32ccompiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/misc_util.cpython-37.pyc,,
+numpy/distutils/__pycache__/msvc9compiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/msvccompiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/npy_pkg_config.cpython-37.pyc,,
+numpy/distutils/__pycache__/numpy_distribution.cpython-37.pyc,,
+numpy/distutils/__pycache__/pathccompiler.cpython-37.pyc,,
+numpy/distutils/__pycache__/setup.cpython-37.pyc,,
+numpy/distutils/__pycache__/system_info.cpython-37.pyc,,
+numpy/distutils/__pycache__/unixccompiler.cpython-37.pyc,,
+numpy/distutils/_shell_utils.py,sha256=kMLOIoimB7PdFRgoVxCIyCFsIl1pP3d0hkm_s3E9XdA,2613
+numpy/distutils/ccompiler.py,sha256=dNgAemOQP8usLQJRCEzhSmzMKx2ytCMRJI39pj9_Bls,27560
+numpy/distutils/ccompiler_opt.py,sha256=OX7cv6UkGVOXKW2L-OKc0Bmc4BgRtpoCa4JE_2WSqQk,96814
+numpy/distutils/checks/cpu_asimd.c,sha256=1H5MJ9RlKII09G7Ajdo0vGgjfou0SkNNwSJbazKrviQ,704
+numpy/distutils/checks/cpu_asimddp.c,sha256=Sl0_cXoqKLsf9mYF4p228KrC8YKZZLznLwW0FMq3Omw,380
+numpy/distutils/checks/cpu_asimdfhm.c,sha256=sfEkry38tgBFVzyNXOBG_F8Xh0XzoJ0-ycRjlRZdW8A,431
+numpy/distutils/checks/cpu_asimdhp.c,sha256=MaooZyDGO1LTU7RQSG_0hwqL-NxbTNwM0xSRcVauhig,329
+numpy/distutils/checks/cpu_avx.c,sha256=LuZW8o93VZZi7cYEP30dvKWTm7Mw1TLmCt5UaXDxCJg,779
+numpy/distutils/checks/cpu_avx2.c,sha256=jlDlea393op0JOiMJgmmPyKmyAXztLcObPOp9F9FaS0,749
+numpy/distutils/checks/cpu_avx512_clx.c,sha256=P-YHjj2XE4SithBkPwDgShOxGWnVSNUXg72h8O3kpbs,842
+numpy/distutils/checks/cpu_avx512_cnl.c,sha256=f_c2Z0xwAKTJeK3RYMIp1dgXYV8QyeOxUgKkMht4qko,948
+numpy/distutils/checks/cpu_avx512_icl.c,sha256=isI35-gm7Hqn2Qink5hP1XHWlh52a5vwKhEdW_CRviE,1004
+numpy/distutils/checks/cpu_avx512_knl.c,sha256=Veq4zNRDDqABV1dPyYdpyPzqZnEBrRsPsTZU1ebPi_Y,956
+numpy/distutils/checks/cpu_avx512_knm.c,sha256=eszPGr3XC9Js7mQUB0gFxlrNjQwfucQFz_UwFyNLjes,1132
+numpy/distutils/checks/cpu_avx512_skx.c,sha256=59VD8ebEJJHLlbY-4dakZV34bmq_lr9mBKz8BAcsdYc,1010
+numpy/distutils/checks/cpu_avx512cd.c,sha256=Qfh5FJUv9ZWd_P5zxkvYYIkvqsPptgaDuKkeX_F8vyA,759
+numpy/distutils/checks/cpu_avx512f.c,sha256=d97NRcbJhqpvURnw7zyG0TOuEijKXvU0g4qOTWHbwxY,755
+numpy/distutils/checks/cpu_f16c.c,sha256=nzZzpUc8AfTtw-INR3KOxcjx9pyzVUM8OhsrdH2dO_w,868
+numpy/distutils/checks/cpu_fma3.c,sha256=YN6IDwuZALJHVVmpQ2tj-14HI_PcxH_giV8-XjzlmkU,817
+numpy/distutils/checks/cpu_fma4.c,sha256=qKdgTNNFg-n8vSB1Txco60HBLCcOi1aH23gZOX7yKqs,301
+numpy/distutils/checks/cpu_neon.c,sha256=CRi7PYp3rlUOADBO3jC6n48S6NIh1NeDH8GZ8J2nWpw,372
+numpy/distutils/checks/cpu_neon_fp16.c,sha256=OHO5dv9ziEARtX2w2VPDoBHzUrN7DoPFElte09R9K9c,251
+numpy/distutils/checks/cpu_neon_vfpv4.c,sha256=AzQwBN23hMKjT8qi9CHJPQwVUmYpSascJ_T6jY7BmBw,493
+numpy/distutils/checks/cpu_popcnt.c,sha256=vRcXHVw2j1F9I_07eIZ_xzDX3fd3mqgiQXL1w3pULJk,1049
+numpy/distutils/checks/cpu_sse.c,sha256=6MHITtC76UpSR9uh0SiURpnkpPkLzT5tbrcXT4xBFxo,686
+numpy/distutils/checks/cpu_sse2.c,sha256=yUZzdjDtBS-vYlhfP-pEzj3m0UPmgZs-hA99TZAEACU,697
+numpy/distutils/checks/cpu_sse3.c,sha256=j5XRHumUuccgN9XPZyjWUUqkq8Nu8XCSWmvUhmJTJ08,689
+numpy/distutils/checks/cpu_sse41.c,sha256=y_k81P-1b-Hx8OeRVDE9V1O9JakS0zPvlFKJ3VbSmEw,675
+numpy/distutils/checks/cpu_sse42.c,sha256=3PXucdI2mII-txO7zFN99TlVveT_QUAETTGvRk-_hYw,692
+numpy/distutils/checks/cpu_ssse3.c,sha256=X6VWxIXMRpdSCBsHPXvot3yTZ4d5yK9Bi1ScQP3WC-Q,705
+numpy/distutils/checks/cpu_vsx.c,sha256=FVmR4iliKjcihzMCwloR1F2JYwSZK9P4f_hvIRLHSDQ,478
+numpy/distutils/checks/cpu_vsx2.c,sha256=yESs25Rt5ztb5-stuYbu3TbiyJKmllMpMLu01GOAHqE,263
+numpy/distutils/checks/cpu_vsx3.c,sha256=omC50tbEZNigsKMFPtE3zGRlIS2VuDTm3vZ9TBZWo4U,250
+numpy/distutils/checks/cpu_xop.c,sha256=7uabsGeqvmVJQvuSEjs8-Sm8kpmvl6uZ9YHMF5h2opQ,234
+numpy/distutils/checks/extra_avx512bw_mask.c,sha256=pVPOhcu80yJVnIhOcHHXOlZ2proJ1MUf0XgccqhPoNk,636
+numpy/distutils/checks/extra_avx512dq_mask.c,sha256=nMfIvepISGFDexPrMYl5LWtdmt6Uy9TKPzF4BVayw2I,504
+numpy/distutils/checks/extra_avx512f_reduce.c,sha256=_NfbtfSAkm_A67umjR1oEb9yRnBL5EnTA76fvQIuNVk,1595
+numpy/distutils/checks/extra_vsx_asm.c,sha256=BngiMVS9nyr22z6zMrOrHLeCloe_5luXhf5T5mYucgI,945
+numpy/distutils/checks/test_flags.c,sha256=uAIbhfAhyGe4nTdK_mZmoCefj9P0TGHNF9AUv_Cdx5A,16
+numpy/distutils/command/__init__.py,sha256=fW49zUB3syMFsKpf1oRBO0h8tmnTwRP3zUPrsB0R22M,1032
+numpy/distutils/command/__pycache__/__init__.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/autodist.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/bdist_rpm.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build_clib.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build_ext.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build_py.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build_scripts.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/build_src.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/config.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/config_compiler.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/develop.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/egg_info.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/install.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/install_clib.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/install_data.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/install_headers.cpython-37.pyc,,
+numpy/distutils/command/__pycache__/sdist.cpython-37.pyc,,
+numpy/distutils/command/autodist.py,sha256=8KWwr5mnjX20UpY4ITRDx-PreApyh9M7B92IwsEtTsQ,3718
+numpy/distutils/command/bdist_rpm.py,sha256=-tkZupIJr_jLqeX7xbRhE8-COXHRI0GoRpAKchVte54,709
+numpy/distutils/command/build.py,sha256=6klC3va_oXRglJ00Emv3rt5xTgk0T-Kk1HLEOHKDbNw,2566
+numpy/distutils/command/build_clib.py,sha256=HTCMZRXhUK4KzPt4s6H9u3hJjQxSt8pL0ZVhXgsmMzo,18522
+numpy/distutils/command/build_ext.py,sha256=jA6WvOPjaos_RwRXr0Nu5slPNLRXtaFU0EHAZ_SHni8,31568
+numpy/distutils/command/build_py.py,sha256=XiLZ2d_tmCE8uG5VAU5OK2zlzQayBfeY4l8FFEltbig,1144
+numpy/distutils/command/build_scripts.py,sha256=P2ytmZb3UpwfmbMXkFB2iMQk15tNUCynzMATllmp-Gs,1665
+numpy/distutils/command/build_src.py,sha256=Lw3JsmSdi_DpWCtCxU4X5iYC6da5vkOhXzCrnlrgS98,31172
+numpy/distutils/command/config.py,sha256=v-nHMY-3gL7Q6PkM4K2XDVZM_GyUrAjpjNtsRT5-Y68,20724
+numpy/distutils/command/config_compiler.py,sha256=Cp9RTpW72gg8XC_3-9dCTlLYr352pBfBRZA8YBWvOoY,4369
+numpy/distutils/command/develop.py,sha256=9SbbnFnVbSJVZxTFoV9pwlOcM1D30GnOWm2QonQDvHI,575
+numpy/distutils/command/egg_info.py,sha256=i-Zk4sftK5cMQVQ2jqSxTMpVI-gYyXN16-p5TvmjURc,921
+numpy/distutils/command/install.py,sha256=wZfVabAMw-Y3tiAKcXTxC-So65RHo3zCy1ucoTmyECw,3078
+numpy/distutils/command/install_clib.py,sha256=1xv0_lPVu3g16GgICjjlh7T8zQ6PSlevCuq8Bocx5YM,1399
+numpy/distutils/command/install_data.py,sha256=Y59EBG61MWP_5C8XJvSCVfzYpMNVNVcH_Z6c0qgr9KA,848
+numpy/distutils/command/install_headers.py,sha256=tVpOGqkmh8AA_tam0K0SeCd4kvZj3UqSOjWKm6Kz4jY,919
+numpy/distutils/command/sdist.py,sha256=8Tsju1RwXNbPyQcjv8GRMFveFQqYlbNdSZh2X1OV-VU,733
+numpy/distutils/conv_template.py,sha256=F-4vkkfAjCb-fN79WYrXX3BMHMoiQO-W2u09q12OPuI,9536
+numpy/distutils/core.py,sha256=Ete0msq2_-WjID5-vHMJz3R4moWA4GXvTIvPe-eSYHw,8159
+numpy/distutils/cpuinfo.py,sha256=bBxhWJLYQlLi4IDrIN1oY8EGBP6QRiOBw65tEvbOJUc,22657
+numpy/distutils/exec_command.py,sha256=JMIw79rjjqH4z5zQiygsxBwqaTN900zjKxuMIgwc4Dw,10352
+numpy/distutils/extension.py,sha256=1tpdXgwJJGTKkWdIu3XVZ-jB9S6ArzIxatxE5OyFr7Y,3358
+numpy/distutils/fcompiler/__init__.py,sha256=hCrzWSjfkEF9ly8dnD8Mt54X3v-3VwzP-sBb4z6Oz5Y,40101
+numpy/distutils/fcompiler/__pycache__/__init__.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/absoft.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/compaq.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/environment.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/fujitsu.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/g95.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/gnu.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/hpux.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/ibm.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/intel.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/lahey.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/mips.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/nag.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/none.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/nv.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/pathf95.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/pg.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/sun.cpython-37.pyc,,
+numpy/distutils/fcompiler/__pycache__/vast.cpython-37.pyc,,
+numpy/distutils/fcompiler/absoft.py,sha256=NJxm5Qpiv9F1Z5VClIXwXKGmJoCCEDSZmZthJQZS2Rs,5499
+numpy/distutils/fcompiler/compaq.py,sha256=zfjoBvgOjE5yWGXJ1LxTbemHBNK6i8EFfyP5Vc6JGjo,3903
+numpy/distutils/fcompiler/environment.py,sha256=DOD2FtKDk6O9k6U0h9UKWQ-65wU8z1tSPn3gUlRwCso,3080
+numpy/distutils/fcompiler/fujitsu.py,sha256=yK3wdHoF5qq25UcnIM6FzTXsJGJxdfKa_f__t04Ne7M,1333
+numpy/distutils/fcompiler/g95.py,sha256=FH4uww6re50OUT_BfdoWSLCDUqk8LvmQ2_j5RhF5nLQ,1330
+numpy/distutils/fcompiler/gnu.py,sha256=3a84orXLPSqUiUvvDk-PRAEd_n4BowO3qyqprs4bt7c,20251
+numpy/distutils/fcompiler/hpux.py,sha256=gloUjWGo7MgJmukorDq7ZxDnnUKXx-C6AQfryQshVM4,1353
+numpy/distutils/fcompiler/ibm.py,sha256=W7r6W7kvGPBuWsrv-VsDHEUTq7bS73l4dVIU1ipm-IA,3539
+numpy/distutils/fcompiler/intel.py,sha256=lUQsavh2t-Jt5WusYYLAEyXjXHt8PHW5lKaxjvO-qwA,6546
+numpy/distutils/fcompiler/lahey.py,sha256=U63KMfN8zDAd_jnvMkS2N-dvP4UiSRB9Ces290qLNXw,1327
+numpy/distutils/fcompiler/mips.py,sha256=LAwT0DY5yqlYh20hNMYR1-OKu8A9GNw-TbUfI8pvglM,1714
+numpy/distutils/fcompiler/nag.py,sha256=L4Xqf5kXfoYv4LllvSo7_2ZNP6hnWLTXpqiqxD3Io-w,2540
+numpy/distutils/fcompiler/none.py,sha256=6RX2X-mV1HuhJZnVfQmDmLVhIUWseIT4P5wf3rdLq9Y,758
+numpy/distutils/fcompiler/nv.py,sha256=hbhTnSdz0kISYGx_CCeYaiygOQvBEa4CJzdvFhyxFRs,1572
+numpy/distutils/fcompiler/pathf95.py,sha256=MiHVar6-beUEYVEpqXORIX4f8G29I47D36kreltdfoQ,1061
+numpy/distutils/fcompiler/pg.py,sha256=NOB1stzrjvQMZS7bIPTgWTcAFe3cjNveA5-SztUZqD0,3568
+numpy/distutils/fcompiler/sun.py,sha256=mfS3RTj9uYT6K9Ikp8RjmsEPIWAtUTzMhX9sGjEyF6I,1577
+numpy/distutils/fcompiler/vast.py,sha256=Xuxa4sNraUPcQmt45SogAfN0kDHFb6C73uNZNmX3RBE,1667
+numpy/distutils/from_template.py,sha256=hpoFQortsLZdMSr_fJILzXzrIwFlZoFjsDSo6jNtvWs,7913
+numpy/distutils/intelccompiler.py,sha256=N_pvWjlLORdlH34cs97oU4LBNr_s9r5ddsmme7XEvs4,4234
+numpy/distutils/lib2def.py,sha256=NlfwSfYfUkW3bY4fRvvSgjUF7c6Gs99B6GoRsOrH6gI,3644
+numpy/distutils/line_endings.py,sha256=a8ZZECrPRffsbs0UygeR47_fOUlZppnx-QPssrIXtB0,2032
+numpy/distutils/log.py,sha256=2nY_SEfFpNf7rWL5gtX1ml9UsyKEyWAXZ0ch5h88B60,2563
+numpy/distutils/mingw/gfortran_vs2003_hack.c,sha256=cbsN3Lk9Hkwzr9c-yOP2xEBg1_ml1X7nwAMDWxGjzc8,77
+numpy/distutils/mingw32ccompiler.py,sha256=LqWdo5xBBQiBLYmKXqkaxRIOnsU40RBvct8LNdb2ZtI,25418
+numpy/distutils/misc_util.py,sha256=m2bE8KW3PzINVPLK-SRR48Ed1mNn-r0H3LUWQ4LIuS8,87228
+numpy/distutils/msvc9compiler.py,sha256=FCtP7g34AVuMIaqQlH8AV1ZBdIUXbk5G7eBeeTSr1zE,2192
+numpy/distutils/msvccompiler.py,sha256=tvTGpdK41L6yJe5W_o_TOFZV3p5IXtjSxmnVFaR52uU,1928
+numpy/distutils/npy_pkg_config.py,sha256=gpZ0PDgjtnDbR8JiBRh3uzF20s0vP1JRyLVO1yBMI-E,12972
+numpy/distutils/numpy_distribution.py,sha256=10Urolg1aDAG0EHYfcvObzOgqRV0ARh2GhDklEg4vS0,634
+numpy/distutils/pathccompiler.py,sha256=KnJEA5H4cXg7SLrMjwWtidD24VSvOdu72d17votiY9E,713
+numpy/distutils/setup.py,sha256=l9ke_Bws431UdBfysaq7ZeGtZ8dix76oh9Huq5qqbkU,634
+numpy/distutils/system_info.py,sha256=VSZe9T9EDA2Hooadpf4QQ-mbL4NtkQDaMmx2FR1m_Rg,109557
+numpy/distutils/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/distutils/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_build_ext.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_ccompiler_opt.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_ccompiler_opt_conf.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_exec_command.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_fcompiler.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_fcompiler_gnu.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_fcompiler_intel.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_fcompiler_nagfor.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_from_template.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_mingw32ccompiler.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_misc_util.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_npy_pkg_config.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_shell_utils.cpython-37.pyc,,
+numpy/distutils/tests/__pycache__/test_system_info.cpython-37.pyc,,
+numpy/distutils/tests/test_build_ext.py,sha256=qX-j6UBmpigiwwZ9RMMkTcHXBrEB0QXYfejDlM2J-zc,2664
+numpy/distutils/tests/test_ccompiler_opt.py,sha256=Y4a_1gYJeWWDCKNxixoz9-ijBhsZ4rciq-XUKycf258,27896
+numpy/distutils/tests/test_ccompiler_opt_conf.py,sha256=vwUllmhwwgP6fyMqGUbIfDfUf2cLpQW4vudI6oWyuco,6345
+numpy/distutils/tests/test_exec_command.py,sha256=b2Vv5zCRnkH72vhQQRSeC3zWqJPdDBa1gcOzTyWnJ_g,7301
+numpy/distutils/tests/test_fcompiler.py,sha256=mJXezTXDUbduhCwVGAfABHpEARWhnj8hLW9EOU3rn84,1277
+numpy/distutils/tests/test_fcompiler_gnu.py,sha256=nmfaFCVzbViIOQ2-MjgXt-bN8Uj674hCgiwr5Iol-_U,2136
+numpy/distutils/tests/test_fcompiler_intel.py,sha256=mxkfFD2rNfg8nn1pp_413S0uCdYXydPWBcz9ilgGkA0,1058
+numpy/distutils/tests/test_fcompiler_nagfor.py,sha256=CKEjik7YVfSJGL4abuctkmlkIUhAhv-x2aUcXiTR9b0,1102
+numpy/distutils/tests/test_from_template.py,sha256=SDYoe0XUpAayyEQDq7ZhrvEEz7U9upJDLYzhcdoVifc,1103
+numpy/distutils/tests/test_mingw32ccompiler.py,sha256=rMC8-IyBOiuZVfAoklV_KnD9qVeB_hFVvb5dStxfk08,1609
+numpy/distutils/tests/test_misc_util.py,sha256=Qs96vTr8GZSyVCWuamzcNlVMRa15vt0Y-T2yZSUm_QA,3218
+numpy/distutils/tests/test_npy_pkg_config.py,sha256=apGrmViPcXoPCEOgDthJgL13C9N0qQMs392QjZDxJd4,2557
+numpy/distutils/tests/test_shell_utils.py,sha256=OqwJrX9DsBjm4kXq2cBaioXle8FXEB70Ka8hk9sqfho,1954
+numpy/distutils/tests/test_system_info.py,sha256=ctziruXn3QlSg8J2PlBCaAGoKp7Z7c3aDBIqEyHnCzE,10759
+numpy/distutils/unixccompiler.py,sha256=hbxe7VlYCMj7oJ-RUu0MnZJIZb__Vzcfmy2acxIVQps,5397
+numpy/doc/__init__.py,sha256=OYmE-F6x0CD05PCDY2MiW1HLlwB6i9vhDpk-a3r4lHY,508
+numpy/doc/__pycache__/__init__.cpython-37.pyc,,
+numpy/doc/__pycache__/constants.cpython-37.pyc,,
+numpy/doc/__pycache__/ufuncs.cpython-37.pyc,,
+numpy/doc/constants.py,sha256=KB2RRJMpHhBdMMjFQFoznFnYfzaXlbuZtUcPUnOVyoU,9179
+numpy/doc/ufuncs.py,sha256=u9bbNmVClSJvykPk1Jwd9ZYeD9M7CaKdQyoWt3qCfQw,5360
+numpy/dual.py,sha256=aWZFc7rFVWLoWs9M4-nhf_S131RvsLRUdZrMIag_AzU,2214
+numpy/f2py/__init__.py,sha256=dKiBSkThw9pNu0N-NVotymyB1iFvv28t5zx_sQv4CZQ,5764
+numpy/f2py/__init__.pyi,sha256=KNWqMhcj-2FM9-A18YTT7Xq2aQ9zQgFRugdv_Pt7Z24,292
+numpy/f2py/__main__.py,sha256=SMsJiV_0XCArEXw_WEWh06g8cIua9oEIb6EeR3XYDEU,85
+numpy/f2py/__pycache__/__init__.cpython-37.pyc,,
+numpy/f2py/__pycache__/__main__.cpython-37.pyc,,
+numpy/f2py/__pycache__/__version__.cpython-37.pyc,,
+numpy/f2py/__pycache__/auxfuncs.cpython-37.pyc,,
+numpy/f2py/__pycache__/capi_maps.cpython-37.pyc,,
+numpy/f2py/__pycache__/cb_rules.cpython-37.pyc,,
+numpy/f2py/__pycache__/cfuncs.cpython-37.pyc,,
+numpy/f2py/__pycache__/common_rules.cpython-37.pyc,,
+numpy/f2py/__pycache__/crackfortran.cpython-37.pyc,,
+numpy/f2py/__pycache__/diagnose.cpython-37.pyc,,
+numpy/f2py/__pycache__/f2py2e.cpython-37.pyc,,
+numpy/f2py/__pycache__/f2py_testing.cpython-37.pyc,,
+numpy/f2py/__pycache__/f90mod_rules.cpython-37.pyc,,
+numpy/f2py/__pycache__/func2subr.cpython-37.pyc,,
+numpy/f2py/__pycache__/rules.cpython-37.pyc,,
+numpy/f2py/__pycache__/setup.cpython-37.pyc,,
+numpy/f2py/__pycache__/use_rules.cpython-37.pyc,,
+numpy/f2py/__version__.py,sha256=7HHdjR82FCBmftwMRyrlhcEj-8mGQb6oCH-wlUPH4Nw,34
+numpy/f2py/auxfuncs.py,sha256=k_Xq7GASE2yZOTPyf402Daeab0laUHpxKCaFUanHIxY,21844
+numpy/f2py/capi_maps.py,sha256=9tY0HXp57AQuWHP9YjJc4BINnnD3FCzCpkUzj8Ekb5s,31409
+numpy/f2py/cb_rules.py,sha256=LZ-Hv-RvrEsYlUgBEsVfjc3jWYA1TFcrovdlD15IsBs,24246
+numpy/f2py/cfuncs.py,sha256=fF8XTmN-WM6Wv4B0B7XdqbZdEg_AEfp5Qoc1qVazWnA,46947
+numpy/f2py/common_rules.py,sha256=IWfRQfhlSCziDn-3hGoIpIHGQ7yC-EaC0WKx9YrXs6I,4925
+numpy/f2py/crackfortran.py,sha256=88gohaQRJoPOShrD2_Stun_SpuNT5OAo5_5QfdPIEJM,131987
+numpy/f2py/diagnose.py,sha256=W59xcrGVf-1ed9FkQgCxgW0d9a2lENaxHUpYVAZ2w00,5230
+numpy/f2py/f2py2e.py,sha256=eNVhMX-eBMmePWD6GSWGv06GgOgzoOWfA_Tx9JBvWb4,24341
+numpy/f2py/f2py_testing.py,sha256=1K5kdU9EFi-K6yTU6wzxr7m5Prk3AOS3SJJzrE6MjDo,1457
+numpy/f2py/f90mod_rules.py,sha256=oLZtJ_T1QNCra3CACW8oULmQioYU4bOVchWtgQp1zL8,9811
+numpy/f2py/func2subr.py,sha256=7Gg17NbMA8TooCEv-4_XBnfkg6Jjt1TAYkFIl0y--e4,9355
+numpy/f2py/rules.py,sha256=BQRk5zyYfd4qHlspWr8QkMyPK8W6y9HPeBeMIJ83v6A,58765
+numpy/f2py/setup.py,sha256=r7S_vOm75eRp1aHTUv_HPswJtU8FpQBedelKLlT_OHA,2460
+numpy/f2py/src/fortranobject.c,sha256=Yze2Av-bYoh7zsRH9g_f3gStLvFsyYEA9fQb6IbuQ24,36452
+numpy/f2py/src/fortranobject.h,sha256=XJYqC0zH78-YJSpyH7sZCY4DkS_ah0ojbxCJ2Cprvmc,4524
+numpy/f2py/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/f2py/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_block_docstring.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_callback.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_common.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_compile_function.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_crackfortran.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_kind.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_mixed.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_module_doc.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_parameter.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_quoted_character.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_return_character.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_return_complex.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_return_integer.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_return_logical.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_return_real.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_size.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/test_string.cpython-37.pyc,,
+numpy/f2py/tests/__pycache__/util.cpython-37.pyc,,
+numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c,sha256=g9w3FFC5vcXsZVmnB97rX-NmBUKlf4a9uW9_1xS_ndY,7283
+numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap,sha256=But9r9m4iL7EGq_haMW8IiQ4VivH0TgUozxX4pPvdpE,29
+numpy/f2py/tests/src/assumed_shape/foo_free.f90,sha256=oBwbGSlbr9MkFyhVO2aldjc01dr9GHrMrSiRQek8U64,460
+numpy/f2py/tests/src/assumed_shape/foo_mod.f90,sha256=rfzw3QdI-eaDSl-hslCgGpd5tHftJOVhXvb21Y9Gf6M,499
+numpy/f2py/tests/src/assumed_shape/foo_use.f90,sha256=rmT9k4jP9Ru1PLcGqepw9Jc6P9XNXM0axY7o4hi9lUw,269
+numpy/f2py/tests/src/assumed_shape/precision.f90,sha256=r08JeTVmTTExA-hYZ6HzaxVwBn1GMbPAuuwBhBDtJUk,130
+numpy/f2py/tests/src/common/block.f,sha256=GQ0Pd-VMX3H3a-__f2SuosSdwNXHpBqoGnQDjf8aG9g,224
+numpy/f2py/tests/src/kind/foo.f90,sha256=zIHpw1KdkWbTzbXb73hPbCg4N2Htj3XL8DIwM7seXpo,347
+numpy/f2py/tests/src/mixed/foo.f,sha256=90zmbSHloY1XQYcPb8B5d9bv9mCZx8Z8AMTtgDwJDz8,85
+numpy/f2py/tests/src/mixed/foo_fixed.f90,sha256=pxKuPzxF3Kn5khyFq9ayCsQiolxB3SaNtcWaK5j6Rv4,179
+numpy/f2py/tests/src/mixed/foo_free.f90,sha256=fIQ71wrBc00JUAVUj_r3QF9SdeNniBiMw6Ly7CGgPWU,139
+numpy/f2py/tests/src/module_data/mod.mod,sha256=EkjrU7NTZrOH68yKrz6C_eyJMSFSxGgC2yMQT9Zscek,412
+numpy/f2py/tests/src/module_data/module_data_docstring.f90,sha256=tDZ3fUlazLL8ThJm3VwNGJ75QIlLcW70NnMFv-JA4W0,224
+numpy/f2py/tests/src/parameter/constant_both.f90,sha256=-bBf2eqHb-uFxgo6Q7iAtVUUQzrGFqzhHDNaxwSICfQ,1939
+numpy/f2py/tests/src/parameter/constant_compound.f90,sha256=re7pfzcuaquiOia53UT7qNNrTYu2euGKOF4IhoLmT6g,469
+numpy/f2py/tests/src/parameter/constant_integer.f90,sha256=nEmMLitKoSAG7gBBEQLWumogN-KS3DBZOAZJWcSDnFw,612
+numpy/f2py/tests/src/parameter/constant_non_compound.f90,sha256=IcxESVLKJUZ1k9uYKoSb8Hfm9-O_4rVnlkiUU2diy8Q,609
+numpy/f2py/tests/src/parameter/constant_real.f90,sha256=quNbDsM1Ts2rN4WtPO67S9Xi_8l2cXabWRO00CPQSSQ,610
+numpy/f2py/tests/src/regression/inout.f90,sha256=CpHpgMrf0bqA1W3Ozo3vInDz0RP904S7LkpdAH6ODck,277
+numpy/f2py/tests/src/size/foo.f90,sha256=IlFAQazwBRr3zyT7v36-tV0-fXtB1d7WFp6S1JVMstg,815
+numpy/f2py/tests/src/string/char.f90,sha256=ihr_BH9lY7eXcQpHHDQhFoKcbu7VMOX5QP2Tlr7xlaM,618
+numpy/f2py/tests/test_abstract_interface.py,sha256=NUW9mZn8z6iYjkIqk5Cgjv8bz3Z8K47_nUooelRIE2I,1817
+numpy/f2py/tests/test_array_from_pyobj.py,sha256=vm2yEyLXk9_8bIkkKAUGBzkM_mDvTo1js5fE9ZqChDA,22810
+numpy/f2py/tests/test_assumed_shape.py,sha256=rANgW9P3tpEUdw67qeCOWRK9PzwjWu2MyFViSCqW-kI,1562
+numpy/f2py/tests/test_block_docstring.py,sha256=dBurBjOp4IXoSJIbCD0klgEv3zz_DpfZE8xz-WW2skQ,627
+numpy/f2py/tests/test_callback.py,sha256=oHnQCFe2_YYQBQLoTK8XmrxktAYIhrTilyLki2SJMSg,8187
+numpy/f2py/tests/test_common.py,sha256=kxqAUUE0wfDfp8BuKeUcG207uFRsQBLlWiJIhcxQVog,802
+numpy/f2py/tests/test_compile_function.py,sha256=sNqLV4-OCMMFSeDhrbt_cQyEGGaqZqsrgVo0CThW_hM,4309
+numpy/f2py/tests/test_crackfortran.py,sha256=nebldCzSsZmR9IpGxPSALhgpDO0IsisFGSaN-oMD84k,4059
+numpy/f2py/tests/test_kind.py,sha256=OfC4q2V_e8vTPSf_zekzl29_MPmx_Hfv9R8rKQvvLYA,1012
+numpy/f2py/tests/test_mixed.py,sha256=xj399eAqSDD6KuArLjJz4NJgpPkZnJfk0OL3CAEDOlY,911
+numpy/f2py/tests/test_module_doc.py,sha256=sVeHZFZ-R88a1Oh33Uzi_12Wp68in41THWeN6nuiIsw,950
+numpy/f2py/tests/test_parameter.py,sha256=mbIxGbiHdBL_YfW7ODD4TKZgF2gSg_GmT64wl-Y4-yI,3910
+numpy/f2py/tests/test_quoted_character.py,sha256=vNTSGaKM5GcQCLPDxbsUzynnSWetMrYJdJseA3sl6iM,927
+numpy/f2py/tests/test_regression.py,sha256=1yxgvpfhXoex6SYp78b4EkFSqnh_pOmPTiMPFjgidL8,1810
+numpy/f2py/tests/test_return_character.py,sha256=FKDFfpFC9C5Z1ifFO-iFROfOfe0KGhRiA-B2k0NhtdY,3919
+numpy/f2py/tests/test_return_complex.py,sha256=-7tB3Ifc-fjxI7cbxLOYI9NEqGFXtXzDbMS74aCuAbE,4615
+numpy/f2py/tests/test_return_integer.py,sha256=0h_QAxMr55NNv-_my6hnBOvMOX9gpQYmiEIayWLebuQ,4576
+numpy/f2py/tests/test_return_logical.py,sha256=iyllQcXmD54akl1bUrCLP7CP1Vz7o9bMC6eIV_5zoEk,4843
+numpy/f2py/tests/test_return_real.py,sha256=EXyuK1v0cRp1azCrozlCJ-8y3iDUC8j8xo8Eik7bgWE,5402
+numpy/f2py/tests/test_semicolon_split.py,sha256=ZG3CzQGXrODUd9wFeKL4pSKJtWm5KwyEujaHWsTugeI,1514
+numpy/f2py/tests/test_size.py,sha256=kcOYJtLtYA11GK37JCGJcAz1Raz55hBLsSzR0yVXHFU,1286
+numpy/f2py/tests/test_string.py,sha256=qjjzOBdQR8eQm8KqPfivGxjOsp-2rRNbh1u8ElPehA0,610
+numpy/f2py/tests/util.py,sha256=vd3syG8tet-TsaNB3cYA65tQwh10jJ8nAv-kT8dvDeQ,9588
+numpy/f2py/use_rules.py,sha256=5t6X17rF6y42SwuUYe1LtNihJJEIgCU7f9jPqKphfgA,3587
+numpy/fft/__init__.py,sha256=HqjmF6s_dh0Ri4UZzUDtOKbNUyfAfJAWew3e3EL_KUk,8175
+numpy/fft/__init__.pyi,sha256=qomgsMst7v3VYETRRLCHY5mccI3Z2s6I-4NsiYOnrII,793
+numpy/fft/__pycache__/__init__.cpython-37.pyc,,
+numpy/fft/__pycache__/_pocketfft.cpython-37.pyc,,
+numpy/fft/__pycache__/helper.cpython-37.pyc,,
+numpy/fft/__pycache__/setup.cpython-37.pyc,,
+numpy/fft/_pocketfft.py,sha256=Xkm8wcP4JyBNMbp0ZoHIWhNDlgliX24RzrDuo29uRks,52897
+numpy/fft/_pocketfft_internal.cpython-37m-arm-linux-gnueabihf.so,sha256=GmieelESQPO1wGgvolRr7m7rNuV1DZOLTTrBlsD9bRI,394460
+numpy/fft/helper.py,sha256=aNj1AcLvtfoX26RiLOwcR-k2QSMuBZkGj2Fu0CeFPJs,6154
+numpy/fft/setup.py,sha256=OJPeJK4PuEtWRw_yVTZj4dKxfu2y-w3ZtQ6EUaQjQyk,728
+numpy/fft/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/fft/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/fft/tests/__pycache__/test_helper.cpython-37.pyc,,
+numpy/fft/tests/__pycache__/test_pocketfft.cpython-37.pyc,,
+numpy/fft/tests/test_helper.py,sha256=whgeaQ8PzFf3B1wkbXobGZ5sF4WxPp4gf1UPUVZest8,6148
+numpy/fft/tests/test_pocketfft.py,sha256=_mwzMldfO5MpEfxJw7vilpBnNWNL6Zz64lZqsqLBPV8,12828
+numpy/lib/__init__.py,sha256=FbFTdqaeZW-euF0vebpg1jE3MYEjB8tS9eoYIRtnUHg,1779
+numpy/lib/__init__.pyi,sha256=tRvBiB6AEY-tH_5Uk76Dx8-xS-rHEr-BaSg8QwpOgDc,5317
+numpy/lib/__pycache__/__init__.cpython-37.pyc,,
+numpy/lib/__pycache__/_datasource.cpython-37.pyc,,
+numpy/lib/__pycache__/_iotools.cpython-37.pyc,,
+numpy/lib/__pycache__/_version.cpython-37.pyc,,
+numpy/lib/__pycache__/arraypad.cpython-37.pyc,,
+numpy/lib/__pycache__/arraysetops.cpython-37.pyc,,
+numpy/lib/__pycache__/arrayterator.cpython-37.pyc,,
+numpy/lib/__pycache__/format.cpython-37.pyc,,
+numpy/lib/__pycache__/function_base.cpython-37.pyc,,
+numpy/lib/__pycache__/histograms.cpython-37.pyc,,
+numpy/lib/__pycache__/index_tricks.cpython-37.pyc,,
+numpy/lib/__pycache__/mixins.cpython-37.pyc,,
+numpy/lib/__pycache__/nanfunctions.cpython-37.pyc,,
+numpy/lib/__pycache__/npyio.cpython-37.pyc,,
+numpy/lib/__pycache__/polynomial.cpython-37.pyc,,
+numpy/lib/__pycache__/recfunctions.cpython-37.pyc,,
+numpy/lib/__pycache__/scimath.cpython-37.pyc,,
+numpy/lib/__pycache__/setup.cpython-37.pyc,,
+numpy/lib/__pycache__/shape_base.cpython-37.pyc,,
+numpy/lib/__pycache__/stride_tricks.cpython-37.pyc,,
+numpy/lib/__pycache__/twodim_base.cpython-37.pyc,,
+numpy/lib/__pycache__/type_check.cpython-37.pyc,,
+numpy/lib/__pycache__/ufunclike.cpython-37.pyc,,
+numpy/lib/__pycache__/user_array.cpython-37.pyc,,
+numpy/lib/__pycache__/utils.cpython-37.pyc,,
+numpy/lib/_datasource.py,sha256=8QgOtk3h4CTv1shczDPj5WQE_NyzInqI0aBy7BneIac,22668
+numpy/lib/_iotools.py,sha256=pI3R5FtYnehwM7bZUhoDGcFIbyOHShf3LT66oLl-yhM,30936
+numpy/lib/_version.py,sha256=6vK7czNSB_KrWx2rZJzJ1pyOc73Q07hAgfLB5ItUCnU,4855
+numpy/lib/_version.pyi,sha256=oHxx3k74f6WB1WJpMcUXc9mp3PYZRaKUHJzc1Xop-z8,701
+numpy/lib/arraypad.py,sha256=PoLrImHYFt_V17_r0lDfDlYViZHOPbLEiqtomFAdlxU,31226
+numpy/lib/arraypad.pyi,sha256=_u_2KrQStJuWoVGyUu-vI2D1F5U-DYK2ezCaq3GP8tA,96
+numpy/lib/arraysetops.py,sha256=vptiGIIKUBfX0WplpnBEeBwIVKJ3X2GwOiYOjOTAAlM,26476
+numpy/lib/arraysetops.pyi,sha256=rUsak-pTrXVEhG9-yXsnPrL_kGQnbTNELDx4V-3h-QA,496
+numpy/lib/arrayterator.py,sha256=BQ97S00zvfURUZfes0GZo-5hydYNRuvwX1I1bLzeRik,7063
+numpy/lib/arrayterator.pyi,sha256=Qsvbq2dRFEX7lMbRFUIjLrhle1U-bA1FuxNyAiD_D4U,1555
+numpy/lib/format.py,sha256=4-63K30hJedfq6ghuAHd2i4ex3tdfZHwLmvzwISELGI,31449
+numpy/lib/format.pyi,sha256=acqcvW6xFCJhoqHRI3dr_sihQMJkmFN-oKbSpPxKiCA,879
+numpy/lib/function_base.py,sha256=Beh5jbB6HXpytTMW3mgNIUXpQ4YrA0FoWY5Sr07ggC4,162009
+numpy/lib/function_base.pyi,sha256=XDVpHgubEkSKOMGJwPs2lmJ6klpWd6XCpAIOerZsN-I,1991
+numpy/lib/histograms.py,sha256=SiXrfkdGqOyjRoLVIebs5i-1HbsiI29XtjS9OFto0EY,40215
+numpy/lib/histograms.pyi,sha256=QV7drqgxvOsfOwf_fHTSiTSSa1xL-9mHlR3xjwyTflY,280
+numpy/lib/index_tricks.py,sha256=KGk4b0DfCsNrFfW9ynuUByRsH_iEeMZsEuTU9WZ66Cg,30638
+numpy/lib/index_tricks.pyi,sha256=Bg9sNnTAa5h7z2sI2J0zN9EeoOjcu7tSYqf9hLppfe4,5028
+numpy/lib/mixins.py,sha256=awJWn-wXkA6fg3TaPvMtXzUWaJVXKAn8fOt3XLPJ690,7052
+numpy/lib/mixins.pyi,sha256=Gu-HDVTxQFnVJ2wm03w9aJ09mAlBo-NZJF9jQZYejsw,2153
+numpy/lib/nanfunctions.py,sha256=gbK5xerlhr9tyeLyOVZQZdUx0FmRNX6nw4Woelx2hRw,59146
+numpy/lib/nanfunctions.pyi,sha256=jbAbYnBxybj6weokPYgekmxP14PArTZ8g-MxV9TtZvI,1072
+numpy/lib/npyio.py,sha256=E4TU0JxXnTx_8kf04UKpQ-zUwNkdnUrG3rX7tBCpbGI,89490
+numpy/lib/npyio.pyi,sha256=bR-V1GV8NxHL7mN3Pg2rKP3fujO_5gBB7j2uYhYbnWg,2225
+numpy/lib/polynomial.py,sha256=a8_EQZAOK3FNDkYM9rF4I8_gNSrYj9HQnnRYKe0wSgg,43813
+numpy/lib/polynomial.pyi,sha256=H6rCh26pZOF6qinxDkch1qkclb3tXSH7bHc4IS28Hjs,415
+numpy/lib/recfunctions.py,sha256=1qwNE0qhpaM8D2_IKHUvTr-JweSBb8vOTg5iVLDj0yI,56525
+numpy/lib/scimath.py,sha256=mNRO9MpNFEtJ-D3y_2DqeH36cgBcPLNQ5Rk65iItrbU,14875
+numpy/lib/scimath.pyi,sha256=CP4ztgUrmM9TE5Uh98EnlumtnCwCgaRfG1prIYp1eGE,212
+numpy/lib/setup.py,sha256=0K5NJKuvKvNEWp-EX7j0ODi3ZQQgIMHobzSFJq3G7yM,405
+numpy/lib/shape_base.py,sha256=kOvw_bH3Z1OqNpm1OPNVgZhae-HBmwKz4pdYgYdEXlQ,38371
+numpy/lib/shape_base.pyi,sha256=9RtQDKu6wLzoLh5dPnQR7HlZwabY70GEwYR0U77A6yA,726
+numpy/lib/stride_tricks.py,sha256=U_ewH7OPPdB4oZC5uHQ8BxaLlxPll2SMrf6vqUUIEnA,17844
+numpy/lib/stride_tricks.pyi,sha256=NrCuxQR_eLummGaXyEN3-Pa6GuSrABgcL2TVTxM1xXU,510
+numpy/lib/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/lib/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test__datasource.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test__iotools.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test__version.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_arraypad.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_arraysetops.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_arrayterator.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_financial_expired.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_format.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_function_base.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_histograms.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_index_tricks.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_io.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_mixins.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_nanfunctions.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_packbits.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_polynomial.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_recfunctions.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_shape_base.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_stride_tricks.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_twodim_base.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_type_check.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_ufunclike.cpython-37.pyc,,
+numpy/lib/tests/__pycache__/test_utils.cpython-37.pyc,,
+numpy/lib/tests/data/py2-objarr.npy,sha256=F4cyUC-_TB9QSFLAo2c7c44rC6NUYIgrfGx9PqWPSKk,258
+numpy/lib/tests/data/py2-objarr.npz,sha256=xo13HBT0FbFZ2qvZz0LWGDb3SuQASSaXh7rKfVcJjx4,366
+numpy/lib/tests/data/py3-objarr.npy,sha256=pTTVh8ezp-lwAK3fkgvdKU8Arp5NMKznVD-M6Ex_uA0,341
+numpy/lib/tests/data/py3-objarr.npz,sha256=qQR0gS57e9ta16d_vCQjaaKM74gPdlwCPkp55P-qrdw,449
+numpy/lib/tests/data/python3.npy,sha256=X0ad3hAaLGXig9LtSHAo-BgOvLlFfPYMnZuVIxRmj-0,96
+numpy/lib/tests/data/win64python2.npy,sha256=agOcgHVYFJrV-nrRJDbGnUnF4ZTPYXuSeF-Mtg7GMpc,96
+numpy/lib/tests/test__datasource.py,sha256=sSFD80WaqII1KGzPATSzUMlOAK1H-MHQIPJIBPoiApA,10487
+numpy/lib/tests/test__iotools.py,sha256=HerCqvDE07JxjFQlWEfpZO7lC9z0Sbr3z20GSutoCPs,13743
+numpy/lib/tests/test__version.py,sha256=aO3YgkAohLsLzCNQ7vjIwdpFUMz0cPLbcuuxIkjuN74,1999
+numpy/lib/tests/test_arraypad.py,sha256=2Kucf5lR10QmZXt7s4YdWvMXLQDfZi9JI21TNYyp4a0,54283
+numpy/lib/tests/test_arraysetops.py,sha256=i6KnuCrobU4re9K2Pe4ikRVuHlWmwoLcDjBYjWwBOv0,28429
+numpy/lib/tests/test_arrayterator.py,sha256=AYs2SwV5ankgwnvKI9RSO1jZck118nu3SyZ4ngzZNso,1291
+numpy/lib/tests/test_financial_expired.py,sha256=llvcsFc-Ixm8esrmx45l463nWbp_PXogWSwKHfPTniA,358
+numpy/lib/tests/test_format.py,sha256=fRnBqfQH6bP4qPXGh96Tq6MWPw-h1fxp7jRzMWL1oAg,38237
+numpy/lib/tests/test_function_base.py,sha256=yeTz9HBQcTIRqQiyb-f8mdcptz1uu24YLLuclymaTnc,135872
+numpy/lib/tests/test_histograms.py,sha256=HFCgnxK_UsiHyq1gSZPNYvDorMou2LDXDXndpe9589o,33672
+numpy/lib/tests/test_index_tricks.py,sha256=a3eQff24LjLrTSA4gyUWSadCS01yvEj4TtzeSq5GAdE,18972
+numpy/lib/tests/test_io.py,sha256=kErBz0BjXxIRMUVB1pjQk19XgxTwTPhckYREGnNBbME,102939
+numpy/lib/tests/test_mixins.py,sha256=Wivwz3XBWsEozGzrzsyyvL3qAuE14t1BHk2LPm9Z9Zc,7030
+numpy/lib/tests/test_nanfunctions.py,sha256=ZgSRwrCtuXwTWg4Z8xim68ZF0hGJKm1O42UoGQuGe_k,38580
+numpy/lib/tests/test_packbits.py,sha256=OWGAd5g5GG0gl7WHqNfwkZ7G-2rrtLt2sI854PG4nnw,17546
+numpy/lib/tests/test_polynomial.py,sha256=oY71vDRowkrI9LnTdUvFtcfA39kaWAxOOsOkgI5wMAE,10713
+numpy/lib/tests/test_recfunctions.py,sha256=qQjRHtICZwOP4wv5R9iJq1i4GpB3LkOxyYJiz0rZU34,41155
+numpy/lib/tests/test_regression.py,sha256=5cI2mbPZdBKYzASiiUppTGxILlLj1MjI6BJ7LNpA8Qc,8272
+numpy/lib/tests/test_shape_base.py,sha256=Mly30-EIDLJq6FoQplLrpP0JmmGuaPbGHxaSF-v82to,24303
+numpy/lib/tests/test_stride_tricks.py,sha256=wprpWWH5eq07DY7rzG0WDv5fMtLxzRQz6fm6TZWlScQ,22849
+numpy/lib/tests/test_twodim_base.py,sha256=xRSeK_SVvO6v-M11n7ckbECz7KecV652ME8srGuT6sc,18358
+numpy/lib/tests/test_type_check.py,sha256=akjNP3V7IGIdvoA73cxrx6XdaNRTaUaKdAR-XPYm9tw,15119
+numpy/lib/tests/test_ufunclike.py,sha256=8umwt73iT_zIbk20MxQSoK5LWD6Bvv9gBUkaPXiRNEw,3278
+numpy/lib/tests/test_utils.py,sha256=XJH5jKw9VvX0iYeIZKwmAWSXKB_kxMU2xGDLet3i3Kc,4560
+numpy/lib/twodim_base.py,sha256=YSliZWM7MYJma7h4TQENTnc53xLwSifu5qCIC-DP5-U,28941
+numpy/lib/twodim_base.pyi,sha256=r11IWI3t3r7N6xbI8f7WGoVhOkSvfAM2EBQjsWSLlks,859
+numpy/lib/type_check.py,sha256=WM3QgzS7dgSOMFbx0R8RyXdWW8-ajF93Z-5e-Pv-UxM,20778
+numpy/lib/type_check.pyi,sha256=LKeXt1qDW4LK_jceHrfV58vAercayuxj0rFYVxQwbwU,461
+numpy/lib/ufunclike.py,sha256=8WVNpHtt5kOkPYDhvlmHql-Swg5zV0f09bJwnVJNpm0,8031
+numpy/lib/ufunclike.pyi,sha256=FnLkam3fm_OvMpNPIzB6eLvx-TpUTl32itoTjVFOG7Y,1311
+numpy/lib/user_array.py,sha256=LE958--CMkBI2r3l1SQxmCHdCSw6HY6-RhWCnduzGA4,7721
+numpy/lib/utils.py,sha256=sGfSdiE9FNGbrbf66-E0ZEfsg-DRU8tU0JYwa3PtxRo,33140
+numpy/lib/utils.pyi,sha256=_0_yHoa7HwQTiu9uT7oTdzXv42_reAazTKu6sVMZl00,2530
+numpy/linalg/__init__.py,sha256=mpdlEXWtTvpF7In776ONLwp6RIyo4U_GLPT1L1eIJnw,1813
+numpy/linalg/__init__.pyi,sha256=Go6_O2VSKkgIKNe1yeoZrF0o9lXnpDGnakliRPf6IwM,696
+numpy/linalg/__pycache__/__init__.cpython-37.pyc,,
+numpy/linalg/__pycache__/linalg.cpython-37.pyc,,
+numpy/linalg/__pycache__/setup.cpython-37.pyc,,
+numpy/linalg/_umath_linalg.cpython-37m-arm-linux-gnueabihf.so,sha256=mwX4twAxChrlnQqAEqAbvARip0eqs0bs4ev606kHEos,642744
+numpy/linalg/lapack_lite.cpython-37m-arm-linux-gnueabihf.so,sha256=xHYAbBVzOmZ1jVB4bzfNV4KXaJAi5p_umcwfJk1jIoQ,66012
+numpy/linalg/linalg.py,sha256=IxpAtsn6wHgCFMK4ak5Sikys3bZuXf1YwQdnCJOyb9I,89606
+numpy/linalg/setup.py,sha256=MHr_3J4xBIdjZIgB3mlckv2f6I5q532LSKdWyh5amC4,2868
+numpy/linalg/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/linalg/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/linalg/tests/__pycache__/test_build.cpython-37.pyc,,
+numpy/linalg/tests/__pycache__/test_deprecations.cpython-37.pyc,,
+numpy/linalg/tests/__pycache__/test_linalg.cpython-37.pyc,,
+numpy/linalg/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/linalg/tests/test_build.py,sha256=H5JB4hVQ5LlFw8ziRA2laGpMIQ7-WuXnv7aNLEddSAI,1630
+numpy/linalg/tests/test_deprecations.py,sha256=9p_SRmtxj2zc1doY9Ie3dyy5JzWy-tCQWFoajcAJUmM,640
+numpy/linalg/tests/test_linalg.py,sha256=UF5PL4sRdYXkZgV5I295dOEd8mU-spI2S3gvK0_ha0s,74497
+numpy/linalg/tests/test_regression.py,sha256=wfJx2G8SeApiIta80xN2hzot-wvXSw-TF8TXXIYZwyE,5597
+numpy/ma/__init__.py,sha256=dgP0WdnOpph28Fd6UiqoyDKhfrct0H6QWqbCcETsk6M,1404
+numpy/ma/__init__.pyi,sha256=ZLeiK0xj0zYUMRjII_IORm9w9-V4hGeiURcrXI96Qw0,5998
+numpy/ma/__pycache__/__init__.cpython-37.pyc,,
+numpy/ma/__pycache__/bench.cpython-37.pyc,,
+numpy/ma/__pycache__/core.cpython-37.pyc,,
+numpy/ma/__pycache__/extras.cpython-37.pyc,,
+numpy/ma/__pycache__/mrecords.cpython-37.pyc,,
+numpy/ma/__pycache__/setup.cpython-37.pyc,,
+numpy/ma/__pycache__/testutils.cpython-37.pyc,,
+numpy/ma/__pycache__/timer_comparison.cpython-37.pyc,,
+numpy/ma/bench.py,sha256=CqE59_Hs9YAqxq_32TzHjIcOVu9U6HJmNt8s4eCFHhY,4883
+numpy/ma/core.py,sha256=M4DqALXRSmfe-gDuE7zwfAyhVBamjdbybEgUqsXEW9k,264334
+numpy/ma/core.pyi,sha256=J22nvQmtYV7C_ROK3ELg3LiKQovqru2IgGHNOtS8unc,14126
+numpy/ma/extras.py,sha256=fZiMtx2wSy9rwXcPAmwljQr3md7SfIfsOF3g0qP94cU,58314
+numpy/ma/extras.pyi,sha256=6K9yvcqpsh39bjhYqqd8KILTC-ycLk6sRMSbVC6a-lw,2598
+numpy/ma/mrecords.py,sha256=FcWNOlsjHtmSW0i3G1nHcWaBkuGtKMLMpPuETAPOQmI,26686
+numpy/ma/mrecords.pyi,sha256=Kwo8zrcUe3fPU9xXYJ-wNU-rcu66V6E1ew0vUuAawm0,1870
+numpy/ma/setup.py,sha256=MqmMicr_xHkAGoG-T7NJ4YdUZIJLO4ZFp6AmEJDlyhw,418
+numpy/ma/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/ma/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_core.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_deprecations.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_extras.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_mrecords.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_old_ma.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/ma/tests/__pycache__/test_subclassing.cpython-37.pyc,,
+numpy/ma/tests/test_core.py,sha256=4516E6R3i0OXc9GKa9eC1vqRufJJr3-g9oMcVhOBs4c,202009
+numpy/ma/tests/test_deprecations.py,sha256=w0pSZVYqdmw2fQhx66YRItFZWcWhwQ0ftLM7JPAqmw0,2258
+numpy/ma/tests/test_extras.py,sha256=xfSzwBS3Wc2D25JgCdcKJZ91BsaXj0KQmFx5m-yTrls,67795
+numpy/ma/tests/test_mrecords.py,sha256=ayfULpWZuhZbzoukO02JWdaQ_iwZN2kbdK-jC5v08AA,19883
+numpy/ma/tests/test_old_ma.py,sha256=-G2LP_nvAF-_OtJiUOQ7Digi0Fm8vNzzTZbxCJe6lEE,32265
+numpy/ma/tests/test_regression.py,sha256=Gr5p91SxeKK3jA3Kl7OGKOLdg40nSSHaMSjeVqIuvMM,3079
+numpy/ma/tests/test_subclassing.py,sha256=GuE-rwNZCcrD8EBx_GW5A78cpCacTEv8dgqAgyY_4p8,12643
+numpy/ma/testutils.py,sha256=KOD9yEe6rUTZ_nMDcZyXphBP1vpfV1vzvbmIhVaJrsg,10239
+numpy/ma/timer_comparison.py,sha256=pIGSZG-qYYYlRWSTgzPlyCAINbGKhXrZrDZBBjiM080,15658
+numpy/matlib.py,sha256=0tYjeI3dLL0-zpuavuiXkdnewfnhQ_3Pxsz-CI1hl98,10365
+numpy/matrixlib/__init__.py,sha256=L4GDL_3Z8Tf-s8v5hgFbnCzCMNSzvnZydENoSZBkWI4,218
+numpy/matrixlib/__init__.pyi,sha256=sVG0WZLRLpPIdsjgNl-qbBlyL3w_uHaWcX7lk2JSpSs,186
+numpy/matrixlib/__pycache__/__init__.cpython-37.pyc,,
+numpy/matrixlib/__pycache__/defmatrix.cpython-37.pyc,,
+numpy/matrixlib/__pycache__/setup.cpython-37.pyc,,
+numpy/matrixlib/defmatrix.py,sha256=K9ecSTjVAETfgpCLPEALKn5CvT-QynDDFQvMn_3gmv0,30667
+numpy/matrixlib/setup.py,sha256=1r7JRkSM4HyVorgtjoKJGWLcOcPO3wmvivpeEsVtAEg,426
+numpy/matrixlib/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/matrixlib/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_interaction.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_numeric.cpython-37.pyc,,
+numpy/matrixlib/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/matrixlib/tests/test_defmatrix.py,sha256=8E_-y7VD2vsq1y8CcI8km37pp5qcAtkciO16xqf2UIs,14982
+numpy/matrixlib/tests/test_interaction.py,sha256=PpjmgjEKighDXvt38labKE6L7f2jP74UEmp3JRb_iOY,11875
+numpy/matrixlib/tests/test_masked_matrix.py,sha256=RyL5DfLJoNUe-ZgQndMvpP8Jp_XKlreyhWjR1sfU-9A,8925
+numpy/matrixlib/tests/test_matrix_linalg.py,sha256=ObbSUXU4R2pWajH__xAdizADrU2kBKDDCxkDV-oVBXc,2059
+numpy/matrixlib/tests/test_multiarray.py,sha256=jB3XCBmAtcqf-Wb9PwBW6uIykPpMPthuXLJ0giTKzZE,554
+numpy/matrixlib/tests/test_numeric.py,sha256=MP70qUwgshTtThKZaZDp7_6U-Z66NIV1geVhasGXejQ,441
+numpy/matrixlib/tests/test_regression.py,sha256=8sHDtO8Zi8p3a1eQKEWxtCmKrXmHoD3qxlIokg2AIAU,927
+numpy/polynomial/__init__.py,sha256=B5UcJcT_3uOtxt0QP1bdHLJ2_SZmAswVXx8O2usvPyU,6788
+numpy/polynomial/__init__.pyi,sha256=I_JctOrZj8zgXv1QWRAk6Vk7YsHmoPbRfR8RQHCSB-c,641
+numpy/polynomial/__pycache__/__init__.cpython-37.pyc,,
+numpy/polynomial/__pycache__/_polybase.cpython-37.pyc,,
+numpy/polynomial/__pycache__/chebyshev.cpython-37.pyc,,
+numpy/polynomial/__pycache__/hermite.cpython-37.pyc,,
+numpy/polynomial/__pycache__/hermite_e.cpython-37.pyc,,
+numpy/polynomial/__pycache__/laguerre.cpython-37.pyc,,
+numpy/polynomial/__pycache__/legendre.cpython-37.pyc,,
+numpy/polynomial/__pycache__/polynomial.cpython-37.pyc,,
+numpy/polynomial/__pycache__/polyutils.cpython-37.pyc,,
+numpy/polynomial/__pycache__/setup.cpython-37.pyc,,
+numpy/polynomial/_polybase.py,sha256=FvgM55p6kqbYIpW5OGxwMAqVxW3mte4E3NW_eEtIe6c,36398
+numpy/polynomial/_polybase.pyi,sha256=igkkGznfNyQ3o_9CblNxp4sp10BOuqUxKONs0_D3qqg,2253
+numpy/polynomial/chebyshev.py,sha256=jXNsuja2ciyx75C5j4kVOwwhJtgtogeoV0UnlrtDO9s,62380
+numpy/polynomial/chebyshev.pyi,sha256=ItHTUfbs2flT1ohIuLMX_ay8_ztheS4zgSZuslIGe_0,1393
+numpy/polynomial/hermite.py,sha256=iojbij_vHnm3GLav7FeLAf5w20t9bGusU-PHsXR_wsA,52126
+numpy/polynomial/hermite.pyi,sha256=uBbITtQXp1eSrlLVfx2UvZwMa3q37stME-VfI4rEDo0,1223
+numpy/polynomial/hermite_e.py,sha256=C9brTH4HlgMoZ9GubGPqOL_aM6ruCE6xzOXGiDJnXns,52250
+numpy/polynomial/hermite_e.pyi,sha256=VRuGIdPEZd_o22SKaqbTm8PBQdEig4JTL8WttofWJ5o,1244
+numpy/polynomial/laguerre.py,sha256=9k4lpMzLFuACnjY3fu2gtbpJVF-0BqBJRS9cpuyIGGQ,50454
+numpy/polynomial/laguerre.pyi,sha256=VB3H5VijGgXRw8CkC7QCP_fxfYHWg8mRc5sqHNMvdfU,1184
+numpy/polynomial/legendre.py,sha256=yOxmUCc9EwQ2Z9uk7c5_kqpZL9jaRka3CDxuWIRpO7I,51165
+numpy/polynomial/legendre.pyi,sha256=fU8Awg2jiynXlykrQfDYuu8lfmjvw3wDquOdvyV1hTA,1184
+numpy/polynomial/polynomial.py,sha256=jmnDvwySQguH8xw9gT1WDNkAjMdWjoWdbtfczQE4DYE,48579
+numpy/polynomial/polynomial.pyi,sha256=6_sIcbIXKCAfwenfdYjuLFr80mOWbIofd6GfAa3hPgQ,1138
+numpy/polynomial/polyutils.py,sha256=UxN2i0O0tqEC6x15SEeM50KMYNm5kW7Pp6YjYPy29OY,22107
+numpy/polynomial/polyutils.pyi,sha256=vLdXONDuSzbj9GmtB5X4fpbAVW1PwQ84PVKa0Z7498s,252
+numpy/polynomial/setup.py,sha256=dXQfzVUMP9OcB6iKv5yo1GLEwFB3gJ48phIgo4N-eM0,373
+numpy/polynomial/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/polynomial/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_classes.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_hermite.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_laguerre.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_legendre.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_polynomial.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_polyutils.cpython-37.pyc,,
+numpy/polynomial/tests/__pycache__/test_printing.cpython-37.pyc,,
+numpy/polynomial/tests/test_chebyshev.py,sha256=6tMsFP1h7K8Zf72mNOta6Tv52_fVTlXknseuffj080c,20522
+numpy/polynomial/tests/test_classes.py,sha256=8gC9HQUvcaDu28OGewXccgLsVQav4UaMmZ2pTOg7G0s,18331
+numpy/polynomial/tests/test_hermite.py,sha256=N9b2dx2UWPyja5v02dSoWYPnKvb6H-Ozgtrx-xjWz2k,18577
+numpy/polynomial/tests/test_hermite_e.py,sha256=_A3ohAWS4HXrQG06S8L47dImdZGTwYosCXnoyw7L45o,18911
+numpy/polynomial/tests/test_laguerre.py,sha256=BZOgs49VBXOFBepHopxuEDkIROHEvFBfWe4X73UZhn8,17511
+numpy/polynomial/tests/test_legendre.py,sha256=b_bblHs0F_BWw9ESuSq52ZsLKcQKFR5eqPf_SppWFqo,18673
+numpy/polynomial/tests/test_polynomial.py,sha256=OjoRocjhPfEd1tOW6J5LwUan3SdWTLwzHOzLU9umcI8,20238
+numpy/polynomial/tests/test_polyutils.py,sha256=IxkbVfpcBqe5lOZluHFUPbLATLu1rwVg7ghLASpfYrY,3579
+numpy/polynomial/tests/test_printing.py,sha256=Txe4Ac_P5w07avL_2Wr7niF7U8yPBqSLJkgMpGa3Va0,15786
+numpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/random/__init__.pxd,sha256=9JbnX540aJNSothGs-7e23ozhilG6U8tINOUEp08M_k,431
+numpy/random/__init__.py,sha256=81Thnexg5umN5WZwD5TRyzNc2Yp-d14B6UC7NBgVKh8,7506
+numpy/random/__init__.pyi,sha256=p0tBKXs7z9epI3h-PyiDp2ZQICo0J5ZNNDK03icXPcY,1995
+numpy/random/__pycache__/__init__.cpython-37.pyc,,
+numpy/random/__pycache__/_pickle.cpython-37.pyc,,
+numpy/random/__pycache__/setup.cpython-37.pyc,,
+numpy/random/_bounded_integers.cpython-37m-arm-linux-gnueabihf.so,sha256=Hn6gEuJmU4TL-zFmzjZ-tZFsLLKtVJj7PMDic5euxn4,1649408
+numpy/random/_bounded_integers.pxd,sha256=hcoucPH5hkFEM2nm12zYO-5O_Rt8RujEXT5YWuAzl1Q,1669
+numpy/random/_common.cpython-37m-arm-linux-gnueabihf.so,sha256=PucnBmWEk3e_AEdjInvQgb1rl2QSUI1nlYo1t40GUvE,1291072
+numpy/random/_common.pxd,sha256=zHhnwWHPXwShPQoqgJtZ948HzOWnGAObx7OmtbPgLV0,4747
+numpy/random/_examples/cffi/__pycache__/extending.cpython-37.pyc,,
+numpy/random/_examples/cffi/__pycache__/parse.cpython-37.pyc,,
+numpy/random/_examples/cffi/extending.py,sha256=xSla3zWqxi6Hj48EvnYfD3WHfE189VvC4XsKu4_T_Iw,880
+numpy/random/_examples/cffi/parse.py,sha256=o41aw7pB_nA8RfLDUlaP0DNDO_bDo__B0XM5pGLxtY0,1829
+numpy/random/_examples/cython/__pycache__/setup.cpython-37.pyc,,
+numpy/random/_examples/cython/extending.pyx,sha256=iUZ9tceTZ2nynXtkzAe0UOnZfWN8FCZcawT2lKwZkGk,2293
+numpy/random/_examples/cython/extending_distributions.pyx,sha256=oazFVWeemfE0eDzax7r7MMHNL1_Yofws2m-c_KT2Hbo,3870
+numpy/random/_examples/cython/setup.py,sha256=YYOXQEtlPGU_1N2DYan2KIiGRS2XZkEfW9HB-x4K3X8,1393
+numpy/random/_examples/numba/__pycache__/extending.cpython-37.pyc,,
+numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-37.pyc,,
+numpy/random/_examples/numba/extending.py,sha256=Ipyzel_h5iU_DMJ_vnXUgQC38uMDMn7adUpWSeEQLFE,1957
+numpy/random/_examples/numba/extending_distributions.py,sha256=Jnr9aWkHyIWygNbdae32GVURK-5T9BTGhuExRpvve98,2034
+numpy/random/_generator.cpython-37m-arm-linux-gnueabihf.so,sha256=nBJZ3nCW6dZbe_rAROYx08TRlpcY-TNHkHp0Ye0cic4,2800236
+numpy/random/_generator.pyi,sha256=GHU3lsJ52L2a09F2jzyHO3qBseyCItvvxN7ad9c-0zE,22208
+numpy/random/_mt19937.cpython-37m-arm-linux-gnueabihf.so,sha256=aJ7RPu5hsFxC9kHby_4ZwqvTa0jM0xSZTmZ5hQAw6wQ,446744
+numpy/random/_mt19937.pyi,sha256=ORw193vKO__OfEFjLR4zjWttcNSBcU75XakDnweQwaI,850
+numpy/random/_pcg64.cpython-37m-arm-linux-gnueabihf.so,sha256=bmK4eKZRnI7y48eX1wXQU7DoPya2w9IBSOGpzwIvwgo,464024
+numpy/random/_pcg64.pyi,sha256=X_7l_uroLCoxdghFAfLp2PA04CeF8BjqATlK0PSM3Ac,1222
+numpy/random/_philox.cpython-37m-arm-linux-gnueabihf.so,sha256=Wf2wwXS-3PVIJZDrpKxCeSB0HuAfnJrmAooMVcF1iys,424548
+numpy/random/_philox.pyi,sha256=g63ifq_q07LDU7KSyKFQZFml_hyPWS5nAXFIHSTv5x0,1116
+numpy/random/_pickle.py,sha256=-edKbAJgOUXo4hZvmRSgFwHK6H2-AD6wdfFHUOzqrkg,2302
+numpy/random/_sfc64.cpython-37m-arm-linux-gnueabihf.so,sha256=cCWbiOWsGMj5b2tT6-uNnPGMa236GQZi3JZrfNAtE2k,252152
+numpy/random/_sfc64.pyi,sha256=uk_oxPUUsc1I700JogWH6xmPsKNgV6mZJmFSxTwvlkI,835
+numpy/random/bit_generator.cpython-37m-arm-linux-gnueabihf.so,sha256=MkrM5vOTF7Jq6AFJNp_86d3CL5C2--mMnqctqGOPLWw,742536
+numpy/random/bit_generator.pxd,sha256=lArpIXSgTwVnJMYc4XX0NGxegXq3h_QsUDK6qeZKbNc,1007
+numpy/random/bit_generator.pyi,sha256=n4zHmzdJLY5LpVQYYmGarR8p6hScx0GN77l1lqsiTqg,3593
+numpy/random/c_distributions.pxd,sha256=FrGMrxWXGD8tc4HUWnzLpzUU8codNR-alXk1hjIAjmI,6033
+numpy/random/lib/libnpyrandom.a,sha256=g3CpD5f9ztscxs9cEBfTtnrSKaWOYO1Ulf9JCgTKBxM,271310
+numpy/random/mtrand.cpython-37m-arm-linux-gnueabihf.so,sha256=sInsGrnf8kqhxV1uFK4dKkobmFIV1D6Oqy6sdDtfLnk,2085960
+numpy/random/mtrand.pyi,sha256=5F8SlOc8Gc5DviMUHOGuHwsuJpNrGYrN4XASQ_0LLNs,20117
+numpy/random/setup.py,sha256=91oP5Qns7EMCM89opCpS8ve3MM8f4qwrjRJGWMzH9i0,6175
+numpy/random/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/random/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_direct.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_extending.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_generator_mt19937.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_random.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_randomstate.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_randomstate_regression.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_regression.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_seed_sequence.cpython-37.pyc,,
+numpy/random/tests/__pycache__/test_smoke.cpython-37.pyc,,
+numpy/random/tests/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/random/tests/data/__pycache__/__init__.cpython-37.pyc,,
+numpy/random/tests/data/mt19937-testset-1.csv,sha256=Xkef402AVB-eZgYQkVtoxERHkxffCA9Jyt_oMbtJGwY,15844
+numpy/random/tests/data/mt19937-testset-2.csv,sha256=nsBEQNnff-aFjHYK4thjvUK4xSXDSfv5aTbcE59pOkE,15825
+numpy/random/tests/data/pcg64-testset-1.csv,sha256=xB00DpknGUTTCxDr9L6aNo9Hs-sfzEMbUSS4t11TTfE,23839
+numpy/random/tests/data/pcg64-testset-2.csv,sha256=NTdzTKvG2U7_WyU_IoQUtMzU3kEvDH39CgnR6VzhTkw,23845
+numpy/random/tests/data/pcg64dxsm-testset-1.csv,sha256=vNSUT-gXS_oEw_awR3O30ziVO4seNPUv1UIZ01SfVnI,23833
+numpy/random/tests/data/pcg64dxsm-testset-2.csv,sha256=uylS8PU2AIKZ185OC04RBr_OePweGRtvn-dE4YN0yYA,23839
+numpy/random/tests/data/philox-testset-1.csv,sha256=SedRaIy5zFadmk71nKrGxCFZ6BwKz8g1A9-OZp3IkkY,23852
+numpy/random/tests/data/philox-testset-2.csv,sha256=dWECt-sbfvaSiK8-Ygp5AqyjoN5i26VEOrXqg01rk3g,23838
+numpy/random/tests/data/sfc64-testset-1.csv,sha256=iHs6iX6KR8bxGwKk-3tedAdMPz6ZW8slDSUECkAqC8Q,23840
+numpy/random/tests/data/sfc64-testset-2.csv,sha256=FIDIDFCaPZfWUSxsJMAe58hPNmMrU27kCd9FhCEYt_k,23833
+numpy/random/tests/test_direct.py,sha256=xUGRePF1izYpEY-nCX8j7WxFhZ2eL2bTnjNogqr1C68,16449
+numpy/random/tests/test_extending.py,sha256=I9PCw6sWQg7FKsasX6FJjdDxk3AG4YlmBmzUKAJB7IQ,3493
+numpy/random/tests/test_generator_mt19937.py,sha256=NeAZxtu1tsFi1RAWeIzt-ckT4JJZ2Ktwb0zmuwEKm90,109478
+numpy/random/tests/test_generator_mt19937_regressions.py,sha256=vkPigyUxYdnq33L2TOgJJ6DM0ZGYIC6ktBXvquwAjbw,5666
+numpy/random/tests/test_random.py,sha256=ZdL0iL99rP7U47IsXNkWM8LRWSHzkhgOWVmY3QjxzKE,69760
+numpy/random/tests/test_randomstate.py,sha256=vHRYMUDrR192QhQyVN8g0g5Wbv5igzP56d9TZ3WkNhM,81516
+numpy/random/tests/test_randomstate_regression.py,sha256=Gm_IOpg7EnNXRbLyp7g0U8LuoNTNUsyrCI-U1t1gmh4,7555
+numpy/random/tests/test_regression.py,sha256=y-SLHqkQcR32s5Zb-UejH21JRQETFlBplK-8WaJoDIY,5453
+numpy/random/tests/test_seed_sequence.py,sha256=GNRJ4jyzrtfolOND3gUWamnbvK6-b_p1bBK_RIG0sfU,3311
+numpy/random/tests/test_smoke.py,sha256=jjNz0aEGD1_oQl9a9UWt6Mz_298alG7KryLT1pgHljw,28183
+numpy/rec.pyi,sha256=KFdAM0g6_f4EM8kIUaa1-IjkX3Tjn9hTnkDUuu42lZ0,971
+numpy/setup.py,sha256=pF7Badg93kjxlqGfYV6cuNcdkAxPnrE4zk93Q4SzYjo,983
+numpy/testing/__init__.py,sha256=PlCnETu6T9w8z_KGPBWzCg05m2Nfl00HXaQ3Wpswmak,566
+numpy/testing/__init__.pyi,sha256=t8BzdiLSWz7LzDycQfL1QHa96AbcYv3kStQI-ML8RS4,3058
+numpy/testing/__pycache__/__init__.cpython-37.pyc,,
+numpy/testing/__pycache__/print_coercion_tables.cpython-37.pyc,,
+numpy/testing/__pycache__/setup.cpython-37.pyc,,
+numpy/testing/__pycache__/utils.cpython-37.pyc,,
+numpy/testing/_private/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/testing/_private/__pycache__/__init__.cpython-37.pyc,,
+numpy/testing/_private/__pycache__/decorators.cpython-37.pyc,,
+numpy/testing/_private/__pycache__/noseclasses.cpython-37.pyc,,
+numpy/testing/_private/__pycache__/nosetester.cpython-37.pyc,,
+numpy/testing/_private/__pycache__/parameterized.cpython-37.pyc,,
+numpy/testing/_private/__pycache__/utils.cpython-37.pyc,,
+numpy/testing/_private/decorators.py,sha256=amFUfIH86_F8qvD-jqky59GYVtqMLs7uSxZ6euHblh8,11401
+numpy/testing/_private/noseclasses.py,sha256=0wuRHsQVkz1c5bX1F0v2C4QEJWdhCuAdVOwo8uOefP8,14516
+numpy/testing/_private/nosetester.py,sha256=wKjN3dagwDInzGdeN6wO9JnLe6IoTxGqF_idSL0qpCQ,19435
+numpy/testing/_private/parameterized.py,sha256=37gdWTVRN6Jd7na44NeHvj5erwjX67-V_14uFGPgoIM,16161
+numpy/testing/_private/utils.py,sha256=mG5mRR41Iwf7DT7iEI9a6muj2bCPmi837fcHvoVEF1c,85280
+numpy/testing/print_coercion_tables.py,sha256=rZHlR2szrjbTq5zdBBBlbxYS9H0Gr2nyo5vNIK2aceM,6168
+numpy/testing/setup.py,sha256=fZrvpb3KE2TicbGweLjafwQk5y0GwBpWYQ0iaUbHs2M,665
+numpy/testing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/testing/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/testing/tests/__pycache__/test_doctesting.cpython-37.pyc,,
+numpy/testing/tests/__pycache__/test_utils.cpython-37.pyc,,
+numpy/testing/tests/test_doctesting.py,sha256=84GCZsWBQ3gqKrRI5NzmH_PmFHMShaVpZ4m0b_T1qNA,1347
+numpy/testing/tests/test_utils.py,sha256=Ja4DWzSE3FWOZaLqEDNV_aJqpBkQagZHNilrCsm7Qlw,55645
+numpy/testing/utils.py,sha256=cbbNaL9L37ExDx0wjrKIYWzzWa5LFRLgN6BsIuiaQSs,1232
+numpy/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/tests/__pycache__/test_ctypeslib.cpython-37.pyc,,
+numpy/tests/__pycache__/test_matlib.cpython-37.pyc,,
+numpy/tests/__pycache__/test_numpy_version.cpython-37.pyc,,
+numpy/tests/__pycache__/test_public_api.cpython-37.pyc,,
+numpy/tests/__pycache__/test_reloading.cpython-37.pyc,,
+numpy/tests/__pycache__/test_scripts.cpython-37.pyc,,
+numpy/tests/__pycache__/test_warnings.cpython-37.pyc,,
+numpy/tests/test_ctypeslib.py,sha256=8824a162QH8Ox6DjkHrmQ1QY_et3sBVyx73D2JMdQDE,12170
+numpy/tests/test_matlib.py,sha256=gwhIXrJJo9DiecaGLCHLJBjhx2nVGl6yHq80AOUQSRM,1852
+numpy/tests/test_numpy_version.py,sha256=87imE8sJR6w16YYiTAfHxBSq7IFLnmgNpL6DUgqjKTs,1575
+numpy/tests/test_public_api.py,sha256=F8rTRAziI_-c-2nbpLFHJLhLFBCuP_BdlViFgcHkYhw,15018
+numpy/tests/test_reloading.py,sha256=AiDUfonxteomIoo45UgMbQxroho7h9OYEp_ZQuD8p4s,2086
+numpy/tests/test_scripts.py,sha256=mmuhhijxr9PmiEph72ahLNnsoJJ_VNnt9r54-QE67ts,1573
+numpy/tests/test_warnings.py,sha256=b7x4zdms9sNJkO9FJ-LTzYI4BWhbeLGy2oFMC6Z85ig,2280
+numpy/typing/__init__.py,sha256=OX6Hjk6x4cDvknoMpU2gbA5CUewT6zMOGGLyyBrhlCQ,11289
+numpy/typing/__pycache__/__init__.cpython-37.pyc,,
+numpy/typing/__pycache__/_add_docstring.cpython-37.pyc,,
+numpy/typing/__pycache__/_array_like.cpython-37.pyc,,
+numpy/typing/__pycache__/_callable.cpython-37.pyc,,
+numpy/typing/__pycache__/_char_codes.cpython-37.pyc,,
+numpy/typing/__pycache__/_dtype_like.cpython-37.pyc,,
+numpy/typing/__pycache__/_extended_precision.cpython-37.pyc,,
+numpy/typing/__pycache__/_generic_alias.cpython-37.pyc,,
+numpy/typing/__pycache__/_nbit.cpython-37.pyc,,
+numpy/typing/__pycache__/_scalars.cpython-37.pyc,,
+numpy/typing/__pycache__/_shape.cpython-37.pyc,,
+numpy/typing/__pycache__/mypy_plugin.cpython-37.pyc,,
+numpy/typing/__pycache__/setup.cpython-37.pyc,,
+numpy/typing/_add_docstring.py,sha256=HgYhslnwvlsUC98zgVC21-2yZGA1do1mhJu-ovoAXpU,3815
+numpy/typing/_array_like.py,sha256=iXo2uKNd0D0kioNng-GexJKVIhxoBN8kWSmKvOcV7pc,3467
+numpy/typing/_callable.py,sha256=fOCsH6QPMPZxs5dWc6K9zyeyws_XNkuuBVlL3z-DxJE,12737
+numpy/typing/_char_codes.py,sha256=c5SSMg5iGqVu5chlZkV4BKfZhMGDc3CpOrs1mVSlsao,7503
+numpy/typing/_dtype_like.py,sha256=n4TnY8cHVHOLwRZptVZ11_FtJnwLiTuwFwlQTgNXpxU,5857
+numpy/typing/_extended_precision.py,sha256=AFZG9browmZcDbofwcaCuJeEFWIRm8V0ybBe1aV8Ve4,1116
+numpy/typing/_generic_alias.py,sha256=ObSxg7zeHiC0-AC8FtscjXxgPBy45CIe5kjBVY4alys,6378
+numpy/typing/_nbit.py,sha256=-EQOShHpB3r30b4RVEcruQRTcTaFAZwtqCJ4BsvpEzA,345
+numpy/typing/_scalars.py,sha256=CRoiNAYZqELubR2hbplA5qom-k4kUpWLNX4GgX8Hli0,957
+numpy/typing/_shape.py,sha256=vCK4mZWje4gl6OnPIUZphLnPs6-BVDrN6yMr0jnbx9M,380
+numpy/typing/_ufunc.pyi,sha256=9MuPSZWFtofZKUR0GoStBrZ8L96D-i0XhWiVpPNE5eE,11495
+numpy/typing/mypy_plugin.py,sha256=uYfoKK4CayKbtl2Xq2aDfc14qZQbteDsI56_zhV_AXc,4408
+numpy/typing/setup.py,sha256=OZt9ln8rNHMROBi6CDnkIMo2X2tySHdPsk5--OmmJ78,409
+numpy/typing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+numpy/typing/tests/__pycache__/__init__.cpython-37.pyc,,
+numpy/typing/tests/__pycache__/test_generic_alias.cpython-37.pyc,,
+numpy/typing/tests/__pycache__/test_isfile.cpython-37.pyc,,
+numpy/typing/tests/__pycache__/test_runtime.cpython-37.pyc,,
+numpy/typing/tests/__pycache__/test_typing.cpython-37.pyc,,
+numpy/typing/tests/__pycache__/test_typing_extensions.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/arithmetic.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/array_constructors.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/array_like.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/arrayprint.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/arrayterator.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/bitwise_ops.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/comparisons.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/constants.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/datasource.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/dtype.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/einsumfunc.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/flatiter.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/fromnumeric.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/index_tricks.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/lib_utils.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/lib_version.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/modules.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/ndarray.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/ndarray_misc.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/numerictypes.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/random.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/scalars.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/ufunc_config.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/ufunclike.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/ufuncs.cpython-37.pyc,,
+numpy/typing/tests/data/fail/__pycache__/warnings_and_errors.cpython-37.pyc,,
+numpy/typing/tests/data/fail/arithmetic.py,sha256=rbnx1phmMMlEE2eBuckwmZQwbiDA4uCIlKPnFc22ZGc,3795
+numpy/typing/tests/data/fail/array_constructors.py,sha256=rIIBYg7EAyvSM8z4GgDurTue2yKkBff7zvz_BJcAO-g,1010
+numpy/typing/tests/data/fail/array_like.py,sha256=YIxl8igSMHGLQlhBFjZTNVXmymbDnDovY91-cRBhsK4,454
+numpy/typing/tests/data/fail/arrayprint.py,sha256=Pbx1_bHtuohCQ6oisGnLI9DehnMn5FQCFKVBxSiolw8,522
+numpy/typing/tests/data/fail/arrayterator.py,sha256=FoU4ahHkJZ67dwWXer5FXLjjjesKKg-w2Jq1X1bHymA,480
+numpy/typing/tests/data/fail/bitwise_ops.py,sha256=Xqfn0sR913O0jusum7fYO_QaI0gBEAQ1sT54a98BUHc,514
+numpy/typing/tests/data/fail/comparisons.py,sha256=fF7C7oAKAlGI91V7QHNoO3awpNm-Z2oUZD7jc01fIaQ,963
+numpy/typing/tests/data/fail/constants.py,sha256=SEmnU_BdUOjws0Lz62Tqh4H6k3cngU-m9d6-i63reaQ,268
+numpy/typing/tests/data/fail/datasource.py,sha256=PRT2hixR-mVxr2UILvHa99Dr54EF2h3snJXE-v3rWcc,395
+numpy/typing/tests/data/fail/dtype.py,sha256=OAGABqdXNB8gClJFEGMckoycuZcIasMaAlS2RkiKROI,334
+numpy/typing/tests/data/fail/einsumfunc.py,sha256=XJrNgP5gcdotaCN17J2fofwAlKWvgVkis9LHWQeKOeA,743
+numpy/typing/tests/data/fail/flatiter.py,sha256=cgQGVetcYlurJial06dZPbKF_bBvzDnM5zticSJFhcQ,842
+numpy/typing/tests/data/fail/fromnumeric.py,sha256=sjpHFTQvuzDDOS_1ibs8swer1mFjPVN7KFxGdV0xNZs,5992
+numpy/typing/tests/data/fail/index_tricks.py,sha256=-zWjk8eRR3aPBWwkM0XZbj4xYuQsSbCADaQDWvCkXyM,485
+numpy/typing/tests/data/fail/lib_utils.py,sha256=VFpE6_DisvlDByyp1PiNPJEe5IcZp8cH0FlAJyoZipo,276
+numpy/typing/tests/data/fail/lib_version.py,sha256=7-ZJDZwDcB-wzpMN8TeYtZAgaqc7xnQ8Dnx2ISiX2Ts,158
+numpy/typing/tests/data/fail/modules.py,sha256=xDC-bqWB1CLSI737kIchCnUqmtllT4yeplILZADr0xI,697
+numpy/typing/tests/data/fail/ndarray.py,sha256=YnjXy16RHs_esKelMjB07865CQ7gLyQnXhnitq5Kv5c,405
+numpy/typing/tests/data/fail/ndarray_misc.py,sha256=PQREuXHCK6bZMdWf0ExNs8vd7O_kCVNOP2q9lm_2cWE,1176
+numpy/typing/tests/data/fail/numerictypes.py,sha256=UtD4eU-gfGanJ414gEpMUBL6tpgzILqnzJm4ADt4tbc,384
+numpy/typing/tests/data/fail/random.py,sha256=SfNNG3K9SQ61HM_vWlr6xy8951xnr3HwXbaPkK8w1S4,2836
+numpy/typing/tests/data/fail/scalars.py,sha256=JzJnx040E0II8q_QCsV8tWI548CVZtGroPrK9eyurjE,3001
+numpy/typing/tests/data/fail/ufunc_config.py,sha256=ukA0xwfJHLoGfoOIpWIN-91wj-DG8oaIjYbO72ymjg4,733
+numpy/typing/tests/data/fail/ufunclike.py,sha256=ZJyZN2aQqQyyDc2VA4xIPzuhg2cZuNPNGPlE9igxZkw,685
+numpy/typing/tests/data/fail/ufuncs.py,sha256=YaDTL7QLmGSUxE6JVMzpOlZTjHWrgbOo0UIlkX-6ZQk,1347
+numpy/typing/tests/data/fail/warnings_and_errors.py,sha256=Brcuf0yN1I4WvaUvFgFq0RSLIz3YULWv4CgFxIxYBo4,280
+numpy/typing/tests/data/misc/__pycache__/extended_precision.cpython-37.pyc,,
+numpy/typing/tests/data/misc/extended_precision.py,sha256=XJE_Qjaou-yzhww8K_3ypc4WTPudW0b3g0-T82aB8QE,347
+numpy/typing/tests/data/mypy.ini,sha256=JIakONhNdxet8PX6ETuCY2YSkYx-vvUoVNbB40xZ0zE,140
+numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/array_like.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/dtype.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/literal.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/mod.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/modules.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/numeric.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/random.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/scalars.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/simple.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-37.pyc,,
+numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-37.pyc,,
+numpy/typing/tests/data/pass/arithmetic.py,sha256=waxbJouEaomarBraqlVebXSxdIfVsBiliKerqqApbAU,7661
+numpy/typing/tests/data/pass/array_constructors.py,sha256=ohARW99CetV3qN5HmAcm900fEC3TRlhx9UdHw79r1cs,2464
+numpy/typing/tests/data/pass/array_like.py,sha256=hdxILN-GkcnFRRQ1npI1hjfeZq5a2Q33oZ_jttPUEVo,893
+numpy/typing/tests/data/pass/arrayprint.py,sha256=y_KkuLz1uM7pv53qfq7GQOuud4LoXE3apK1wtARdVyM,766
+numpy/typing/tests/data/pass/arrayterator.py,sha256=FqcpKdUQBQ0FazHFxr9MsLEZG-jnJVGKWZX2owRr4DQ,393
+numpy/typing/tests/data/pass/bitwise_ops.py,sha256=UnmxVr9HwI8ifdrutGm_u3EZU4iOOPQhrOku7hTaH0c,970
+numpy/typing/tests/data/pass/comparisons.py,sha256=nTE-fvraLK6xTZcP4uPV02wOShzYKWDaoapx35AeDOY,2992
+numpy/typing/tests/data/pass/dtype.py,sha256=lI_5QlB7_20TyC1Urxr0No9MbrhpBHQxs-F_v7UyPmo,1073
+numpy/typing/tests/data/pass/einsumfunc.py,sha256=ZZeVEyewAccUoVZvyLXmPCyrDu7XOOxwHMcRpWg2StY,1376
+numpy/typing/tests/data/pass/flatiter.py,sha256=0BnbuLMBC7MQlprNZ0QhNSscfYwPhEhXOhWoyiRACWU,174
+numpy/typing/tests/data/pass/fromnumeric.py,sha256=Xd_nJVVDoONdztUX8ddgo7EXJ2FD8AX51MO_Yujnmog,3742
+numpy/typing/tests/data/pass/index_tricks.py,sha256=oaFD9vY01_RI5OkrXt-xTk1n_dd-SpuPp-eZ58XR3c8,1492
+numpy/typing/tests/data/pass/lib_utils.py,sha256=uQLq8B0fmM75iYIsNvOlMOmLhZMfzvC2-62Ms3BJbdQ,483
+numpy/typing/tests/data/pass/lib_version.py,sha256=HnuGOx7tQA_bcxFIJ3dRoMAR0fockxg4lGqQ4g7LGIw,299
+numpy/typing/tests/data/pass/literal.py,sha256=10nLzgoY5VxQKO0VR8RC12fgRAzHIOXGuLaj2DWFZBM,1299
+numpy/typing/tests/data/pass/mod.py,sha256=HB9aK4_wGJbc44tomaoroNy0foIL5cI9KIjknvMTbkk,1578
+numpy/typing/tests/data/pass/modules.py,sha256=f-6R2TbqrLX7F8A3Z9VgSyPAlOwvOy1zZyvUgivD250,595
+numpy/typing/tests/data/pass/multiarray.py,sha256=vsS_t37Rburliqi4J7SmhA9N4l7NQfmG7YMD-KaoXyI,534
+numpy/typing/tests/data/pass/ndarray_conversion.py,sha256=yPgzXG6paY1uF_z-QyHYrcmrZvhX7qtvTUh7ANLseCA,1626
+numpy/typing/tests/data/pass/ndarray_misc.py,sha256=Rtb4uJ3oDGo8ke3H0qbKLLIPZ2_3xsNgxLsfHYWVo3k,2716
+numpy/typing/tests/data/pass/ndarray_shape_manipulation.py,sha256=37eYwMNqMLwanIW9-63hrokacnSz2K_qtPUlkdpsTjo,640
+numpy/typing/tests/data/pass/numeric.py,sha256=IsjGnWztX531RewuVi_vAwoA6LD28tFn-0n6S71nAd4,1478
+numpy/typing/tests/data/pass/numerictypes.py,sha256=fdpGtUNDOxjc_ZdezBiiW6ohBYErrw7cC9v644kOHfI,973
+numpy/typing/tests/data/pass/random.py,sha256=brm8o9S86imBigbOMxThXMePZuIzQjrOIdcLWM9N2hc,61823
+numpy/typing/tests/data/pass/scalars.py,sha256=PttbwlHTYjBFXTNgwe4Zm9dJDLSjjEGbDMwvR9ByXSM,3507
+numpy/typing/tests/data/pass/simple.py,sha256=uUCND4Y0vrxum_H4MJ3DU95VtlJWJ7fktHy3xjeuK9M,2690
+numpy/typing/tests/data/pass/simple_py3.py,sha256=HuLrc5aphThQkLjU2_19KgGFaXwKOfSzXe0p2xMm8ZI,96
+numpy/typing/tests/data/pass/ufunc_config.py,sha256=b0nWLyq0V2H4mKZXrNM0kT-GM-x8ig9tv3al50_YAWM,1120
+numpy/typing/tests/data/pass/ufunclike.py,sha256=Gve6cJ2AT3TAwOjUOQQDIUnqsRCGYq70_tv_sgODiiA,1039
+numpy/typing/tests/data/pass/ufuncs.py,sha256=xGuKuqPetUTS4io5YDHaki5nbYRu-wC29SGU32tzVIg,462
+numpy/typing/tests/data/pass/warnings_and_errors.py,sha256=DSkGKsH-CwjYntjgYwwRmq4UtzE9NYh0VQ48LW9bkoA,172
+numpy/typing/tests/data/reveal/__pycache__/arithmetic.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/array_constructors.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/arrayprint.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/arrayterator.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/bitwise_ops.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/comparisons.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/constants.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/datasource.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/dtype.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/einsumfunc.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/flatiter.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/fromnumeric.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/index_tricks.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/lib_utils.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/lib_version.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/mod.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/modules.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/multiarray.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/nbit_base_example.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ndarray_conversion.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ndarray_misc.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ndarray_shape_manipulation.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/nditer.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/numeric.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/numerictypes.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/random.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/scalars.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ufunc_config.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ufunclike.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/ufuncs.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/__pycache__/warnings_and_errors.cpython-37.pyc,,
+numpy/typing/tests/data/reveal/arithmetic.py,sha256=QcMACGRWWhnBYgQsp9zQ9F2IPUwFkWlU8w7wGCeSBjo,24844
+numpy/typing/tests/data/reveal/array_constructors.py,sha256=JEQ_6GBAcctrWLv-BpjiqwvEqys8qjGMWvIUU6CCTOk,4487
+numpy/typing/tests/data/reveal/arrayprint.py,sha256=sKa0cWK058LZNB5RfIeqxaxZzj6JtjvsMCdgCWKYjJc,659
+numpy/typing/tests/data/reveal/arrayterator.py,sha256=zYN1wQmlLdI_8lPg8NU_FJYE2XYV4t_VhBnEtGiVSak,1219
+numpy/typing/tests/data/reveal/bitwise_ops.py,sha256=Bv5C5hJeGgoFE4AJcjKx_v1oWgjI9_pgR7SRNPC8r4k,3709
+numpy/typing/tests/data/reveal/comparisons.py,sha256=E1Aysf5YCJN3A8SLPIwtYXVmQG2Qg0ufkBw2Rn7qmFw,9402
+numpy/typing/tests/data/reveal/constants.py,sha256=guSigA1m2qQeRyNdqfLTh9RJxGTMTgFxNUtBjZKu_qs,1742
+numpy/typing/tests/data/reveal/datasource.py,sha256=melhwwltIDET_oudcv-skR8jKrGeVF5UOZVqfSKjXBw,557
+numpy/typing/tests/data/reveal/dtype.py,sha256=DAPI7rdKtp_9wYn20hSlrBHPb1fbx2gQQLdv2F5Wbuw,2754
+numpy/typing/tests/data/reveal/einsumfunc.py,sha256=a7WNGNGdwG9L_eUYCcyovwRhs1bNZXXTW2aHqzV88mU,1917
+numpy/typing/tests/data/reveal/flatiter.py,sha256=T7-nxNJxULavGzsJ3Z8X_dbSbjDdcmK8gTnexg_QaNw,824
+numpy/typing/tests/data/reveal/fromnumeric.py,sha256=xcWVcED9dJsSsF6L5X51yMpPtXxjCBiRe4XcPb7dNmA,10131
+numpy/typing/tests/data/reveal/index_tricks.py,sha256=F2EmzrojgBNKzv4vntW4RoH-kvb_xRjb-XBl5EdBTR0,3705
+numpy/typing/tests/data/reveal/lib_utils.py,sha256=2SESkewf-uje-a009lcRKInfIjTPTSta4c6iujpX65w,923
+numpy/typing/tests/data/reveal/lib_version.py,sha256=SEo2pRemac1XnmhNDOKEEM0oHf8E0BTJR4rqJekI3fI,605
+numpy/typing/tests/data/reveal/mod.py,sha256=S8gbyCZrddfOL8zRucrRXoJdvYVhPwjqpRiOiYEfGHo,6373
+numpy/typing/tests/data/reveal/modules.py,sha256=bpd_jGkBMhI9HYEG9Hp3BrjUzMd4_d2DQBMFpaZK1v4,1938
+numpy/typing/tests/data/reveal/multiarray.py,sha256=LEVyNvs9ABoSPA9dVhhONNDvs1YURS4iJa-rvnAI8iA,973
+numpy/typing/tests/data/reveal/nbit_base_example.py,sha256=7kOuNXehsUek82F0knKkLNGINmReabCv6e_U_Tl1AM8,477
+numpy/typing/tests/data/reveal/ndarray_conversion.py,sha256=xszuiKls6qawao7XyYNz_3A4LcnNhXtdEzY5MHdS71c,2135
+numpy/typing/tests/data/reveal/ndarray_misc.py,sha256=TTVpsgNjPKtlvNwybfTllEXUP-QFbdMQfCAgTUova3c,6909
+numpy/typing/tests/data/reveal/ndarray_shape_manipulation.py,sha256=rXwVAS9RhBhgm6ObAzKpYNDAZpBWsk-0BTwjRxRDMQg,1006
+numpy/typing/tests/data/reveal/nditer.py,sha256=CnhSH_yLZpBvRsTJ2VJORhTJkbHWLYHPefJ_-jKKiY8,481
+numpy/typing/tests/data/reveal/numeric.py,sha256=7cGnqXNzAsrqDv4ZpluLflVawuogQn6AzpDYxnIfYUk,3061
+numpy/typing/tests/data/reveal/numerictypes.py,sha256=p3xcmVgtpEGedsia5D7MscG1PFxpdcH74MjsHwdJJX4,1356
+numpy/typing/tests/data/reveal/random.py,sha256=gY7thpy_9xSvJ-WlImDKC2HybN3t7Z6YgNYbsfu-gWM,149572
+numpy/typing/tests/data/reveal/scalars.py,sha256=bz6jcG3Azaybanbb2lmTDc5oqZQ80ngMzce45ukC0R0,5884
+numpy/typing/tests/data/reveal/ufunc_config.py,sha256=PZ4sqP99GRlYgMEou06Esoc1chdPlVVvvNswOqodYG0,1391
+numpy/typing/tests/data/reveal/ufunclike.py,sha256=remhYWP_FOhQH6Lb6qC1gnWsLjxaJLWs13_7fSvAzhM,1595
+numpy/typing/tests/data/reveal/ufuncs.py,sha256=hXVFudJb9meyHpUXO9QDcLYTFY-gWgQ6Wwy-qQ1N8YQ,2997
+numpy/typing/tests/data/reveal/warnings_and_errors.py,sha256=5Z9RwEodoSBPBJ19xLvtI8i9U5k8jXCZyNK-e5WHveY,428
+numpy/typing/tests/test_generic_alias.py,sha256=aCoW0zpPkoIehlZqLNqma6YuJz9WRuSoPVh3NtLu8e0,4990
+numpy/typing/tests/test_isfile.py,sha256=gGrt9SPtc2lb12oQ3oAOkjru97tCdJDzGZUPCGukNvU,857
+numpy/typing/tests/test_runtime.py,sha256=ZWzhB0MASJGRzSvcm-A9UJ_BZ4tpaGxhI3KaY3Wf5mk,2676
+numpy/typing/tests/test_typing.py,sha256=FFakYAikCAhPMQtfMQDM192XfEdonl-l-5mgNTmgtE0,12100
+numpy/typing/tests/test_typing_extensions.py,sha256=cAAtj8vI9UQONSb1koozmyTd8QMyj8uYCFhcO9Mx-j8,1002
+numpy/version.py,sha256=-Jxz3dBy6w6xZglfK4I4v7CnuuxvGmNUXo5CrVW6IxQ,371
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/WHEEL b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/WHEEL
new file mode 100644
index 0000000000000000000000000000000000000000..34e48a32d4c0b08831540f6d6aa4b14b71c62f11
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/WHEEL
@@ -0,0 +1,5 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.37.0)
+Root-Is-Purelib: false
+Tag: cp37-cp37m-linux_armv7l
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/entry_points.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/entry_points.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b6bb53a8823b8e29f3be0ce6e94568baed0cb27e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/entry_points.txt
@@ -0,0 +1,5 @@
+[console_scripts]
+f2py = numpy.f2py.f2py2e:main
+f2py3 = numpy.f2py.f2py2e:main
+f2py3.7 = numpy.f2py.f2py2e:main
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/top_level.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/top_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..24ce15ab7ead32f98c7ac3edcd34bb2010ff4326
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy-1.21.6.dist-info/top_level.txt
@@ -0,0 +1 @@
+numpy
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/LICENSE.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3dd3d252e694b09933b63651e0994b3dfa95cb68
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/LICENSE.txt
@@ -0,0 +1,54 @@
+Copyright (c) 2005-2021, NumPy Developers.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are
+met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following
+ disclaimer in the documentation and/or other materials provided
+ with the distribution.
+
+ * Neither the name of the NumPy Developers nor the names of any
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+The NumPy repository and source distributions bundle several libraries that are
+compatibly licensed. We list these here.
+
+Name: lapack-lite
+Files: numpy/linalg/lapack_lite/*
+License: BSD-3-Clause
+ For details, see numpy/linalg/lapack_lite/LICENSE.txt
+
+Name: tempita
+Files: tools/npy_tempita/*
+License: MIT
+ For details, see tools/npy_tempita/license.txt
+
+Name: dragon4
+Files: numpy/core/src/multiarray/dragon4.c
+License: MIT
+ For license text, see numpy/core/src/multiarray/dragon4.c
+
+Name: libdivide
+Files: numpy/core/include/numpy/libdivide/*
+License: Zlib
+ For license text, see numpy/core/include/numpy/libdivide/LICENSE.txt
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__config__.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__config__.py
new file mode 100644
index 0000000000000000000000000000000000000000..561d4bc4a39ac0f1fde719b4a137a5e05e0f6ce5
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__config__.py
@@ -0,0 +1,109 @@
+# This file is generated by numpy's -c
+# It contains system_info results at the time of building this package.
+__all__ = ["get_info","show"]
+
+
+import os
+import sys
+
+extra_dll_dir = os.path.join(os.path.dirname(__file__), '.libs')
+
+if sys.platform == 'win32' and os.path.isdir(extra_dll_dir):
+ if sys.version_info >= (3, 8):
+ os.add_dll_directory(extra_dll_dir)
+ else:
+ os.environ.setdefault('PATH', '')
+ os.environ['PATH'] += os.pathsep + extra_dll_dir
+
+blas_mkl_info={}
+blis_info={}
+openblas_info={}
+accelerate_info={}
+atlas_3_10_blas_threads_info={}
+atlas_3_10_blas_info={}
+atlas_blas_threads_info={}
+atlas_blas_info={'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('NO_ATLAS_INFO', -1)], 'libraries': ['f77blas', 'cblas', 'atlas', 'f77blas', 'cblas'], 'library_dirs': ['/usr/lib/arm-linux-gnueabihf']}
+blas_opt_info={'language': 'c', 'define_macros': [('HAVE_CBLAS', None), ('NO_ATLAS_INFO', -1)], 'libraries': ['f77blas', 'cblas', 'atlas', 'f77blas', 'cblas'], 'library_dirs': ['/usr/lib/arm-linux-gnueabihf']}
+lapack_mkl_info={}
+openblas_lapack_info={}
+openblas_clapack_info={}
+flame_info={}
+atlas_3_10_threads_info={}
+atlas_3_10_info={}
+atlas_threads_info={}
+atlas_info={'language': 'f77', 'libraries': ['lapack', 'f77blas', 'cblas', 'atlas', 'f77blas', 'cblas'], 'library_dirs': ['/usr/lib/arm-linux-gnueabihf'], 'define_macros': [('NO_ATLAS_INFO', -1)]}
+lapack_opt_info={'language': 'f77', 'libraries': ['lapack', 'f77blas', 'cblas', 'atlas', 'f77blas', 'cblas'], 'library_dirs': ['/usr/lib/arm-linux-gnueabihf'], 'define_macros': [('NO_ATLAS_INFO', -1)]}
+
+def get_info(name):
+ g = globals()
+ return g.get(name, g.get(name + "_info", {}))
+
+def show():
+ """
+ Show libraries in the system on which NumPy was built.
+
+ Print information about various resources (libraries, library
+ directories, include directories, etc.) in the system on which
+ NumPy was built.
+
+ See Also
+ --------
+ get_include : Returns the directory containing NumPy C
+ header files.
+
+ Notes
+ -----
+ Classes specifying the information to be printed are defined
+ in the `numpy.distutils.system_info` module.
+
+ Information may include:
+
+ * ``language``: language used to write the libraries (mostly
+ C or f77)
+ * ``libraries``: names of libraries found in the system
+ * ``library_dirs``: directories containing the libraries
+ * ``include_dirs``: directories containing library header files
+ * ``src_dirs``: directories containing library source files
+ * ``define_macros``: preprocessor macros used by
+ ``distutils.setup``
+ * ``baseline``: minimum CPU features required
+ * ``found``: dispatched features supported in the system
+ * ``not found``: dispatched features that are not supported
+ in the system
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> np.show_config()
+ blas_opt_info:
+ language = c
+ define_macros = [('HAVE_CBLAS', None)]
+ libraries = ['openblas', 'openblas']
+ library_dirs = ['/usr/local/lib']
+ """
+ from numpy.core._multiarray_umath import (
+ __cpu_features__, __cpu_baseline__, __cpu_dispatch__
+ )
+ for name,info_dict in globals().items():
+ if name[0] == "_" or type(info_dict) is not type({}): continue
+ print(name + ":")
+ if not info_dict:
+ print(" NOT AVAILABLE")
+ for k,v in info_dict.items():
+ v = str(v)
+ if k == "sources" and len(v) > 200:
+ v = v[:60] + " ...\n... " + v[-60:]
+ print(" %s = %s" % (k,v))
+
+ features_found, features_not_found = [], []
+ for feature in __cpu_dispatch__:
+ if __cpu_features__[feature]:
+ features_found.append(feature)
+ else:
+ features_not_found.append(feature)
+
+ print("Supported SIMD extensions in this NumPy install:")
+ print(" baseline = %s" % (','.join(__cpu_baseline__)))
+ print(" found = %s" % (','.join(features_found)))
+ print(" not found = %s" % (','.join(features_not_found)))
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.cython-30.pxd b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.cython-30.pxd
new file mode 100644
index 0000000000000000000000000000000000000000..42a46d0b832b8e3c0a176512c59a2463ae416124
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.cython-30.pxd
@@ -0,0 +1,1053 @@
+# NumPy static imports for Cython >= 3.0
+#
+# If any of the PyArray_* functions are called, import_array must be
+# called first. This is done automatically by Cython 3.0+ if a call
+# is not detected inside of the module.
+#
+# Author: Dag Sverre Seljebotn
+#
+
+from cpython.ref cimport Py_INCREF
+from cpython.object cimport PyObject, PyTypeObject, PyObject_TypeCheck
+cimport libc.stdio as stdio
+
+
+cdef extern from *:
+ # Leave a marker that the NumPy declarations came from NumPy itself and not from Cython.
+ # See https://github.com/cython/cython/issues/3573
+ """
+ /* Using NumPy API declarations from "numpy/__init__.cython-30.pxd" */
+ """
+
+
+cdef extern from "Python.h":
+ ctypedef Py_ssize_t Py_intptr_t
+
+cdef extern from "numpy/arrayobject.h":
+ ctypedef Py_intptr_t npy_intp
+ ctypedef size_t npy_uintp
+
+ cdef enum NPY_TYPES:
+ NPY_BOOL
+ NPY_BYTE
+ NPY_UBYTE
+ NPY_SHORT
+ NPY_USHORT
+ NPY_INT
+ NPY_UINT
+ NPY_LONG
+ NPY_ULONG
+ NPY_LONGLONG
+ NPY_ULONGLONG
+ NPY_FLOAT
+ NPY_DOUBLE
+ NPY_LONGDOUBLE
+ NPY_CFLOAT
+ NPY_CDOUBLE
+ NPY_CLONGDOUBLE
+ NPY_OBJECT
+ NPY_STRING
+ NPY_UNICODE
+ NPY_VOID
+ NPY_DATETIME
+ NPY_TIMEDELTA
+ NPY_NTYPES
+ NPY_NOTYPE
+
+ NPY_INT8
+ NPY_INT16
+ NPY_INT32
+ NPY_INT64
+ NPY_INT128
+ NPY_INT256
+ NPY_UINT8
+ NPY_UINT16
+ NPY_UINT32
+ NPY_UINT64
+ NPY_UINT128
+ NPY_UINT256
+ NPY_FLOAT16
+ NPY_FLOAT32
+ NPY_FLOAT64
+ NPY_FLOAT80
+ NPY_FLOAT96
+ NPY_FLOAT128
+ NPY_FLOAT256
+ NPY_COMPLEX32
+ NPY_COMPLEX64
+ NPY_COMPLEX128
+ NPY_COMPLEX160
+ NPY_COMPLEX192
+ NPY_COMPLEX256
+ NPY_COMPLEX512
+
+ NPY_INTP
+
+ ctypedef enum NPY_ORDER:
+ NPY_ANYORDER
+ NPY_CORDER
+ NPY_FORTRANORDER
+ NPY_KEEPORDER
+
+ ctypedef enum NPY_CASTING:
+ NPY_NO_CASTING
+ NPY_EQUIV_CASTING
+ NPY_SAFE_CASTING
+ NPY_SAME_KIND_CASTING
+ NPY_UNSAFE_CASTING
+
+ ctypedef enum NPY_CLIPMODE:
+ NPY_CLIP
+ NPY_WRAP
+ NPY_RAISE
+
+ ctypedef enum NPY_SCALARKIND:
+ NPY_NOSCALAR,
+ NPY_BOOL_SCALAR,
+ NPY_INTPOS_SCALAR,
+ NPY_INTNEG_SCALAR,
+ NPY_FLOAT_SCALAR,
+ NPY_COMPLEX_SCALAR,
+ NPY_OBJECT_SCALAR
+
+ ctypedef enum NPY_SORTKIND:
+ NPY_QUICKSORT
+ NPY_HEAPSORT
+ NPY_MERGESORT
+
+ ctypedef enum NPY_SEARCHSIDE:
+ NPY_SEARCHLEFT
+ NPY_SEARCHRIGHT
+
+ enum:
+ # DEPRECATED since NumPy 1.7 ! Do not use in new code!
+ NPY_C_CONTIGUOUS
+ NPY_F_CONTIGUOUS
+ NPY_CONTIGUOUS
+ NPY_FORTRAN
+ NPY_OWNDATA
+ NPY_FORCECAST
+ NPY_ENSURECOPY
+ NPY_ENSUREARRAY
+ NPY_ELEMENTSTRIDES
+ NPY_ALIGNED
+ NPY_NOTSWAPPED
+ NPY_WRITEABLE
+ NPY_UPDATEIFCOPY
+ NPY_ARR_HAS_DESCR
+
+ NPY_BEHAVED
+ NPY_BEHAVED_NS
+ NPY_CARRAY
+ NPY_CARRAY_RO
+ NPY_FARRAY
+ NPY_FARRAY_RO
+ NPY_DEFAULT
+
+ NPY_IN_ARRAY
+ NPY_OUT_ARRAY
+ NPY_INOUT_ARRAY
+ NPY_IN_FARRAY
+ NPY_OUT_FARRAY
+ NPY_INOUT_FARRAY
+
+ NPY_UPDATE_ALL
+
+ enum:
+ # Added in NumPy 1.7 to replace the deprecated enums above.
+ NPY_ARRAY_C_CONTIGUOUS
+ NPY_ARRAY_F_CONTIGUOUS
+ NPY_ARRAY_OWNDATA
+ NPY_ARRAY_FORCECAST
+ NPY_ARRAY_ENSURECOPY
+ NPY_ARRAY_ENSUREARRAY
+ NPY_ARRAY_ELEMENTSTRIDES
+ NPY_ARRAY_ALIGNED
+ NPY_ARRAY_NOTSWAPPED
+ NPY_ARRAY_WRITEABLE
+ NPY_ARRAY_UPDATEIFCOPY
+
+ NPY_ARRAY_BEHAVED
+ NPY_ARRAY_BEHAVED_NS
+ NPY_ARRAY_CARRAY
+ NPY_ARRAY_CARRAY_RO
+ NPY_ARRAY_FARRAY
+ NPY_ARRAY_FARRAY_RO
+ NPY_ARRAY_DEFAULT
+
+ NPY_ARRAY_IN_ARRAY
+ NPY_ARRAY_OUT_ARRAY
+ NPY_ARRAY_INOUT_ARRAY
+ NPY_ARRAY_IN_FARRAY
+ NPY_ARRAY_OUT_FARRAY
+ NPY_ARRAY_INOUT_FARRAY
+
+ NPY_ARRAY_UPDATE_ALL
+
+ cdef enum:
+ NPY_MAXDIMS
+
+ npy_intp NPY_MAX_ELSIZE
+
+ ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *)
+
+ ctypedef struct PyArray_ArrayDescr:
+ # shape is a tuple, but Cython doesn't support "tuple shape"
+ # inside a non-PyObject declaration, so we have to declare it
+ # as just a PyObject*.
+ PyObject* shape
+
+ ctypedef struct PyArray_Descr:
+ pass
+
+ ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]:
+ # Use PyDataType_* macros when possible, however there are no macros
+ # for accessing some of the fields, so some are defined.
+ cdef PyTypeObject* typeobj
+ cdef char kind
+ cdef char type
+ # Numpy sometimes mutates this without warning (e.g. it'll
+ # sometimes change "|" to "<" in shared dtype objects on
+ # little-endian machines). If this matters to you, use
+ # PyArray_IsNativeByteOrder(dtype.byteorder) instead of
+ # directly accessing this field.
+ cdef char byteorder
+ cdef char flags
+ cdef int type_num
+ cdef int itemsize "elsize"
+ cdef int alignment
+ cdef object fields
+ cdef tuple names
+ # Use PyDataType_HASSUBARRAY to test whether this field is
+ # valid (the pointer can be NULL). Most users should access
+ # this field via the inline helper method PyDataType_SHAPE.
+ cdef PyArray_ArrayDescr* subarray
+
+ ctypedef class numpy.flatiter [object PyArrayIterObject, check_size ignore]:
+ # Use through macros
+ pass
+
+ ctypedef class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]:
+ # Use through macros
+ pass
+
+ ctypedef struct PyArrayObject:
+ # For use in situations where ndarray can't replace PyArrayObject*,
+ # like PyArrayObject**.
+ pass
+
+ ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]:
+ cdef __cythonbufferdefaults__ = {"mode": "strided"}
+
+ # NOTE: no field declarations since direct access is deprecated since NumPy 1.7
+ # Instead, we use properties that map to the corresponding C-API functions.
+
+ @property
+ cdef inline PyObject* base(self) nogil:
+ """Returns a borrowed reference to the object owning the data/memory.
+ """
+ return PyArray_BASE(self)
+
+ @property
+ cdef inline dtype descr(self):
+ """Returns an owned reference to the dtype of the array.
+ """
+ return PyArray_DESCR(self)
+
+ @property
+ cdef inline int ndim(self) nogil:
+ """Returns the number of dimensions in the array.
+ """
+ return PyArray_NDIM(self)
+
+ @property
+ cdef inline npy_intp *shape(self) nogil:
+ """Returns a pointer to the dimensions/shape of the array.
+ The number of elements matches the number of dimensions of the array (ndim).
+ Can return NULL for 0-dimensional arrays.
+ """
+ return PyArray_DIMS(self)
+
+ @property
+ cdef inline npy_intp *strides(self) nogil:
+ """Returns a pointer to the strides of the array.
+ The number of elements matches the number of dimensions of the array (ndim).
+ """
+ return PyArray_STRIDES(self)
+
+ @property
+ cdef inline npy_intp size(self) nogil:
+ """Returns the total size (in number of elements) of the array.
+ """
+ return PyArray_SIZE(self)
+
+ @property
+ cdef inline char* data(self) nogil:
+ """The pointer to the data buffer as a char*.
+ This is provided for legacy reasons to avoid direct struct field access.
+ For new code that needs this access, you probably want to cast the result
+ of `PyArray_DATA()` instead, which returns a 'void*'.
+ """
+ return PyArray_BYTES(self)
+
+ ctypedef unsigned char npy_bool
+
+ ctypedef signed char npy_byte
+ ctypedef signed short npy_short
+ ctypedef signed int npy_int
+ ctypedef signed long npy_long
+ ctypedef signed long long npy_longlong
+
+ ctypedef unsigned char npy_ubyte
+ ctypedef unsigned short npy_ushort
+ ctypedef unsigned int npy_uint
+ ctypedef unsigned long npy_ulong
+ ctypedef unsigned long long npy_ulonglong
+
+ ctypedef float npy_float
+ ctypedef double npy_double
+ ctypedef long double npy_longdouble
+
+ ctypedef signed char npy_int8
+ ctypedef signed short npy_int16
+ ctypedef signed int npy_int32
+ ctypedef signed long long npy_int64
+ ctypedef signed long long npy_int96
+ ctypedef signed long long npy_int128
+
+ ctypedef unsigned char npy_uint8
+ ctypedef unsigned short npy_uint16
+ ctypedef unsigned int npy_uint32
+ ctypedef unsigned long long npy_uint64
+ ctypedef unsigned long long npy_uint96
+ ctypedef unsigned long long npy_uint128
+
+ ctypedef float npy_float32
+ ctypedef double npy_float64
+ ctypedef long double npy_float80
+ ctypedef long double npy_float96
+ ctypedef long double npy_float128
+
+ ctypedef struct npy_cfloat:
+ float real
+ float imag
+
+ ctypedef struct npy_cdouble:
+ double real
+ double imag
+
+ ctypedef struct npy_clongdouble:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex64:
+ float real
+ float imag
+
+ ctypedef struct npy_complex128:
+ double real
+ double imag
+
+ ctypedef struct npy_complex160:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex192:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex256:
+ long double real
+ long double imag
+
+ ctypedef struct PyArray_Dims:
+ npy_intp *ptr
+ int len
+
+ int _import_array() except -1
+ # A second definition so _import_array isn't marked as used when we use it here.
+ # Do not use - subject to change any time.
+ int __pyx_import_array "_import_array"() except -1
+
+ #
+ # Macros from ndarrayobject.h
+ #
+ bint PyArray_CHKFLAGS(ndarray m, int flags) nogil
+ bint PyArray_IS_C_CONTIGUOUS(ndarray arr) nogil
+ bint PyArray_IS_F_CONTIGUOUS(ndarray arr) nogil
+ bint PyArray_ISCONTIGUOUS(ndarray m) nogil
+ bint PyArray_ISWRITEABLE(ndarray m) nogil
+ bint PyArray_ISALIGNED(ndarray m) nogil
+
+ int PyArray_NDIM(ndarray) nogil
+ bint PyArray_ISONESEGMENT(ndarray) nogil
+ bint PyArray_ISFORTRAN(ndarray) nogil
+ int PyArray_FORTRANIF(ndarray) nogil
+
+ void* PyArray_DATA(ndarray) nogil
+ char* PyArray_BYTES(ndarray) nogil
+
+ npy_intp* PyArray_DIMS(ndarray) nogil
+ npy_intp* PyArray_STRIDES(ndarray) nogil
+ npy_intp PyArray_DIM(ndarray, size_t) nogil
+ npy_intp PyArray_STRIDE(ndarray, size_t) nogil
+
+ PyObject *PyArray_BASE(ndarray) nogil # returns borrowed reference!
+ PyArray_Descr *PyArray_DESCR(ndarray) nogil # returns borrowed reference to dtype!
+ PyArray_Descr *PyArray_DTYPE(ndarray) nogil # returns borrowed reference to dtype! NP 1.7+ alias for descr.
+ int PyArray_FLAGS(ndarray) nogil
+ void PyArray_CLEARFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7
+ void PyArray_ENABLEFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7
+ npy_intp PyArray_ITEMSIZE(ndarray) nogil
+ int PyArray_TYPE(ndarray arr) nogil
+
+ object PyArray_GETITEM(ndarray arr, void *itemptr)
+ int PyArray_SETITEM(ndarray arr, void *itemptr, object obj)
+
+ bint PyTypeNum_ISBOOL(int) nogil
+ bint PyTypeNum_ISUNSIGNED(int) nogil
+ bint PyTypeNum_ISSIGNED(int) nogil
+ bint PyTypeNum_ISINTEGER(int) nogil
+ bint PyTypeNum_ISFLOAT(int) nogil
+ bint PyTypeNum_ISNUMBER(int) nogil
+ bint PyTypeNum_ISSTRING(int) nogil
+ bint PyTypeNum_ISCOMPLEX(int) nogil
+ bint PyTypeNum_ISPYTHON(int) nogil
+ bint PyTypeNum_ISFLEXIBLE(int) nogil
+ bint PyTypeNum_ISUSERDEF(int) nogil
+ bint PyTypeNum_ISEXTENDED(int) nogil
+ bint PyTypeNum_ISOBJECT(int) nogil
+
+ bint PyDataType_ISBOOL(dtype) nogil
+ bint PyDataType_ISUNSIGNED(dtype) nogil
+ bint PyDataType_ISSIGNED(dtype) nogil
+ bint PyDataType_ISINTEGER(dtype) nogil
+ bint PyDataType_ISFLOAT(dtype) nogil
+ bint PyDataType_ISNUMBER(dtype) nogil
+ bint PyDataType_ISSTRING(dtype) nogil
+ bint PyDataType_ISCOMPLEX(dtype) nogil
+ bint PyDataType_ISPYTHON(dtype) nogil
+ bint PyDataType_ISFLEXIBLE(dtype) nogil
+ bint PyDataType_ISUSERDEF(dtype) nogil
+ bint PyDataType_ISEXTENDED(dtype) nogil
+ bint PyDataType_ISOBJECT(dtype) nogil
+ bint PyDataType_HASFIELDS(dtype) nogil
+ bint PyDataType_HASSUBARRAY(dtype) nogil
+
+ bint PyArray_ISBOOL(ndarray) nogil
+ bint PyArray_ISUNSIGNED(ndarray) nogil
+ bint PyArray_ISSIGNED(ndarray) nogil
+ bint PyArray_ISINTEGER(ndarray) nogil
+ bint PyArray_ISFLOAT(ndarray) nogil
+ bint PyArray_ISNUMBER(ndarray) nogil
+ bint PyArray_ISSTRING(ndarray) nogil
+ bint PyArray_ISCOMPLEX(ndarray) nogil
+ bint PyArray_ISPYTHON(ndarray) nogil
+ bint PyArray_ISFLEXIBLE(ndarray) nogil
+ bint PyArray_ISUSERDEF(ndarray) nogil
+ bint PyArray_ISEXTENDED(ndarray) nogil
+ bint PyArray_ISOBJECT(ndarray) nogil
+ bint PyArray_HASFIELDS(ndarray) nogil
+
+ bint PyArray_ISVARIABLE(ndarray) nogil
+
+ bint PyArray_SAFEALIGNEDCOPY(ndarray) nogil
+ bint PyArray_ISNBO(char) nogil # works on ndarray.byteorder
+ bint PyArray_IsNativeByteOrder(char) nogil # works on ndarray.byteorder
+ bint PyArray_ISNOTSWAPPED(ndarray) nogil
+ bint PyArray_ISBYTESWAPPED(ndarray) nogil
+
+ bint PyArray_FLAGSWAP(ndarray, int) nogil
+
+ bint PyArray_ISCARRAY(ndarray) nogil
+ bint PyArray_ISCARRAY_RO(ndarray) nogil
+ bint PyArray_ISFARRAY(ndarray) nogil
+ bint PyArray_ISFARRAY_RO(ndarray) nogil
+ bint PyArray_ISBEHAVED(ndarray) nogil
+ bint PyArray_ISBEHAVED_RO(ndarray) nogil
+
+
+ bint PyDataType_ISNOTSWAPPED(dtype) nogil
+ bint PyDataType_ISBYTESWAPPED(dtype) nogil
+
+ bint PyArray_DescrCheck(object)
+
+ bint PyArray_Check(object)
+ bint PyArray_CheckExact(object)
+
+ # Cannot be supported due to out arg:
+ # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
+ # bint PyArray_HasArrayInterface(op, out)
+
+
+ bint PyArray_IsZeroDim(object)
+ # Cannot be supported due to ## ## in macro:
+ # bint PyArray_IsScalar(object, verbatim work)
+ bint PyArray_CheckScalar(object)
+ bint PyArray_IsPythonNumber(object)
+ bint PyArray_IsPythonScalar(object)
+ bint PyArray_IsAnyScalar(object)
+ bint PyArray_CheckAnyScalar(object)
+
+ ndarray PyArray_GETCONTIGUOUS(ndarray)
+ bint PyArray_SAMESHAPE(ndarray, ndarray) nogil
+ npy_intp PyArray_SIZE(ndarray) nogil
+ npy_intp PyArray_NBYTES(ndarray) nogil
+
+ object PyArray_FROM_O(object)
+ object PyArray_FROM_OF(object m, int flags)
+ object PyArray_FROM_OT(object m, int type)
+ object PyArray_FROM_OTF(object m, int type, int flags)
+ object PyArray_FROMANY(object m, int type, int min, int max, int flags)
+ object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran)
+ object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran)
+ void PyArray_FILLWBYTE(object, int val)
+ npy_intp PyArray_REFCOUNT(object)
+ object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
+ unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
+ bint PyArray_EquivByteorders(int b1, int b2) nogil
+ object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
+ object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
+ #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
+ object PyArray_ToScalar(void* data, ndarray arr)
+
+ void* PyArray_GETPTR1(ndarray m, npy_intp i) nogil
+ void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j) nogil
+ void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k) nogil
+ void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l) nogil
+
+ void PyArray_XDECREF_ERR(ndarray)
+ # Cannot be supported due to out arg
+ # void PyArray_DESCR_REPLACE(descr)
+
+
+ object PyArray_Copy(ndarray)
+ object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth)
+
+ object PyArray_Cast(ndarray mp, int type_num)
+ object PyArray_Take(ndarray ap, object items, int axis)
+ object PyArray_Put(ndarray ap, object items, object values)
+
+ void PyArray_ITER_RESET(flatiter it) nogil
+ void PyArray_ITER_NEXT(flatiter it) nogil
+ void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil
+ void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil
+ void* PyArray_ITER_DATA(flatiter it) nogil
+ bint PyArray_ITER_NOTDONE(flatiter it) nogil
+
+ void PyArray_MultiIter_RESET(broadcast multi) nogil
+ void PyArray_MultiIter_NEXT(broadcast multi) nogil
+ void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
+ void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
+ void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
+ void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
+ bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil
+
+ # Functions from __multiarray_api.h
+
+ # Functions taking dtype and returning object/ndarray are disabled
+ # for now as they steal dtype references. I'm conservative and disable
+ # more than is probably needed until it can be checked further.
+ int PyArray_SetNumericOps (object)
+ object PyArray_GetNumericOps ()
+ int PyArray_INCREF (ndarray)
+ int PyArray_XDECREF (ndarray)
+ void PyArray_SetStringFunction (object, int)
+ dtype PyArray_DescrFromType (int)
+ object PyArray_TypeObjectFromType (int)
+ char * PyArray_Zero (ndarray)
+ char * PyArray_One (ndarray)
+ #object PyArray_CastToType (ndarray, dtype, int)
+ int PyArray_CastTo (ndarray, ndarray)
+ int PyArray_CastAnyTo (ndarray, ndarray)
+ int PyArray_CanCastSafely (int, int)
+ npy_bool PyArray_CanCastTo (dtype, dtype)
+ int PyArray_ObjectType (object, int)
+ dtype PyArray_DescrFromObject (object, dtype)
+ #ndarray* PyArray_ConvertToCommonType (object, int *)
+ dtype PyArray_DescrFromScalar (object)
+ dtype PyArray_DescrFromTypeObject (object)
+ npy_intp PyArray_Size (object)
+ #object PyArray_Scalar (void *, dtype, object)
+ #object PyArray_FromScalar (object, dtype)
+ void PyArray_ScalarAsCtype (object, void *)
+ #int PyArray_CastScalarToCtype (object, void *, dtype)
+ #int PyArray_CastScalarDirect (object, dtype, void *, int)
+ object PyArray_ScalarFromObject (object)
+ #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
+ object PyArray_FromDims (int, int *, int)
+ #object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
+ #object PyArray_FromAny (object, dtype, int, int, int, object)
+ object PyArray_EnsureArray (object)
+ object PyArray_EnsureAnyArray (object)
+ #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
+ #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
+ #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
+ #object PyArray_FromIter (object, dtype, npy_intp)
+ object PyArray_Return (ndarray)
+ #object PyArray_GetField (ndarray, dtype, int)
+ #int PyArray_SetField (ndarray, dtype, int, object)
+ object PyArray_Byteswap (ndarray, npy_bool)
+ object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
+ int PyArray_MoveInto (ndarray, ndarray)
+ int PyArray_CopyInto (ndarray, ndarray)
+ int PyArray_CopyAnyInto (ndarray, ndarray)
+ int PyArray_CopyObject (ndarray, object)
+ object PyArray_NewCopy (ndarray, NPY_ORDER)
+ object PyArray_ToList (ndarray)
+ object PyArray_ToString (ndarray, NPY_ORDER)
+ int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *)
+ int PyArray_Dump (object, object, int)
+ object PyArray_Dumps (object, int)
+ int PyArray_ValidType (int)
+ void PyArray_UpdateFlags (ndarray, int)
+ object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object)
+ #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object)
+ #dtype PyArray_DescrNew (dtype)
+ dtype PyArray_DescrNewFromType (int)
+ double PyArray_GetPriority (object, double)
+ object PyArray_IterNew (object)
+ object PyArray_MultiIterNew (int, ...)
+
+ int PyArray_PyIntAsInt (object)
+ npy_intp PyArray_PyIntAsIntp (object)
+ int PyArray_Broadcast (broadcast)
+ void PyArray_FillObjectArray (ndarray, object)
+ int PyArray_FillWithScalar (ndarray, object)
+ npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *)
+ dtype PyArray_DescrNewByteorder (dtype, char)
+ object PyArray_IterAllButAxis (object, int *)
+ #object PyArray_CheckFromAny (object, dtype, int, int, int, object)
+ #object PyArray_FromArray (ndarray, dtype, int)
+ object PyArray_FromInterface (object)
+ object PyArray_FromStructInterface (object)
+ #object PyArray_FromArrayAttr (object, dtype, object)
+ #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
+ int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
+ object PyArray_NewFlagsObject (object)
+ npy_bool PyArray_CanCastScalar (type, type)
+ #int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
+ int PyArray_RemoveSmallest (broadcast)
+ int PyArray_ElementStrides (object)
+ void PyArray_Item_INCREF (char *, dtype)
+ void PyArray_Item_XDECREF (char *, dtype)
+ object PyArray_FieldNames (object)
+ object PyArray_Transpose (ndarray, PyArray_Dims *)
+ object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
+ object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
+ object PyArray_PutMask (ndarray, object, object)
+ object PyArray_Repeat (ndarray, object, int)
+ object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
+ int PyArray_Sort (ndarray, int, NPY_SORTKIND)
+ object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
+ object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE, PyObject *)
+ object PyArray_ArgMax (ndarray, int, ndarray)
+ object PyArray_ArgMin (ndarray, int, ndarray)
+ object PyArray_Reshape (ndarray, object)
+ object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
+ object PyArray_Squeeze (ndarray)
+ #object PyArray_View (ndarray, dtype, type)
+ object PyArray_SwapAxes (ndarray, int, int)
+ object PyArray_Max (ndarray, int, ndarray)
+ object PyArray_Min (ndarray, int, ndarray)
+ object PyArray_Ptp (ndarray, int, ndarray)
+ object PyArray_Mean (ndarray, int, int, ndarray)
+ object PyArray_Trace (ndarray, int, int, int, int, ndarray)
+ object PyArray_Diagonal (ndarray, int, int, int)
+ object PyArray_Clip (ndarray, object, object, ndarray)
+ object PyArray_Conjugate (ndarray, ndarray)
+ object PyArray_Nonzero (ndarray)
+ object PyArray_Std (ndarray, int, int, ndarray, int)
+ object PyArray_Sum (ndarray, int, int, ndarray)
+ object PyArray_CumSum (ndarray, int, int, ndarray)
+ object PyArray_Prod (ndarray, int, int, ndarray)
+ object PyArray_CumProd (ndarray, int, int, ndarray)
+ object PyArray_All (ndarray, int, ndarray)
+ object PyArray_Any (ndarray, int, ndarray)
+ object PyArray_Compress (ndarray, object, int, ndarray)
+ object PyArray_Flatten (ndarray, NPY_ORDER)
+ object PyArray_Ravel (ndarray, NPY_ORDER)
+ npy_intp PyArray_MultiplyList (npy_intp *, int)
+ int PyArray_MultiplyIntList (int *, int)
+ void * PyArray_GetPtr (ndarray, npy_intp*)
+ int PyArray_CompareLists (npy_intp *, npy_intp *, int)
+ #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
+ #int PyArray_As1D (object*, char **, int *, int)
+ #int PyArray_As2D (object*, char ***, int *, int *, int)
+ int PyArray_Free (object, void *)
+ #int PyArray_Converter (object, object*)
+ int PyArray_IntpFromSequence (object, npy_intp *, int)
+ object PyArray_Concatenate (object, int)
+ object PyArray_InnerProduct (object, object)
+ object PyArray_MatrixProduct (object, object)
+ object PyArray_CopyAndTranspose (object)
+ object PyArray_Correlate (object, object, int)
+ int PyArray_TypestrConvert (int, int)
+ #int PyArray_DescrConverter (object, dtype*)
+ #int PyArray_DescrConverter2 (object, dtype*)
+ int PyArray_IntpConverter (object, PyArray_Dims *)
+ #int PyArray_BufferConverter (object, chunk)
+ int PyArray_AxisConverter (object, int *)
+ int PyArray_BoolConverter (object, npy_bool *)
+ int PyArray_ByteorderConverter (object, char *)
+ int PyArray_OrderConverter (object, NPY_ORDER *)
+ unsigned char PyArray_EquivTypes (dtype, dtype)
+ #object PyArray_Zeros (int, npy_intp *, dtype, int)
+ #object PyArray_Empty (int, npy_intp *, dtype, int)
+ object PyArray_Where (object, object, object)
+ object PyArray_Arange (double, double, double, int)
+ #object PyArray_ArangeObj (object, object, object, dtype)
+ int PyArray_SortkindConverter (object, NPY_SORTKIND *)
+ object PyArray_LexSort (object, int)
+ object PyArray_Round (ndarray, int, ndarray)
+ unsigned char PyArray_EquivTypenums (int, int)
+ int PyArray_RegisterDataType (dtype)
+ int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *)
+ int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND)
+ #void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
+ object PyArray_IntTupleFromIntp (int, npy_intp *)
+ int PyArray_TypeNumFromName (char *)
+ int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *)
+ #int PyArray_OutputConverter (object, ndarray*)
+ object PyArray_BroadcastToShape (object, npy_intp *, int)
+ void _PyArray_SigintHandler (int)
+ void* _PyArray_GetSigintBuf ()
+ #int PyArray_DescrAlignConverter (object, dtype*)
+ #int PyArray_DescrAlignConverter2 (object, dtype*)
+ int PyArray_SearchsideConverter (object, void *)
+ object PyArray_CheckAxis (ndarray, int *, int)
+ npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
+ int PyArray_CompareString (char *, char *, size_t)
+ int PyArray_SetBaseObject(ndarray, base) # NOTE: steals a reference to base! Use "set_array_base()" instead.
+
+
+# Typedefs that matches the runtime dtype objects in
+# the numpy module.
+
+# The ones that are commented out needs an IFDEF function
+# in Cython to enable them only on the right systems.
+
+ctypedef npy_int8 int8_t
+ctypedef npy_int16 int16_t
+ctypedef npy_int32 int32_t
+ctypedef npy_int64 int64_t
+#ctypedef npy_int96 int96_t
+#ctypedef npy_int128 int128_t
+
+ctypedef npy_uint8 uint8_t
+ctypedef npy_uint16 uint16_t
+ctypedef npy_uint32 uint32_t
+ctypedef npy_uint64 uint64_t
+#ctypedef npy_uint96 uint96_t
+#ctypedef npy_uint128 uint128_t
+
+ctypedef npy_float32 float32_t
+ctypedef npy_float64 float64_t
+#ctypedef npy_float80 float80_t
+#ctypedef npy_float128 float128_t
+
+ctypedef float complex complex64_t
+ctypedef double complex complex128_t
+
+# The int types are mapped a bit surprising --
+# numpy.int corresponds to 'l' and numpy.long to 'q'
+ctypedef npy_long int_t
+ctypedef npy_longlong long_t
+ctypedef npy_longlong longlong_t
+
+ctypedef npy_ulong uint_t
+ctypedef npy_ulonglong ulong_t
+ctypedef npy_ulonglong ulonglong_t
+
+ctypedef npy_intp intp_t
+ctypedef npy_uintp uintp_t
+
+ctypedef npy_double float_t
+ctypedef npy_double double_t
+ctypedef npy_longdouble longdouble_t
+
+ctypedef npy_cfloat cfloat_t
+ctypedef npy_cdouble cdouble_t
+ctypedef npy_clongdouble clongdouble_t
+
+ctypedef npy_cdouble complex_t
+
+cdef inline object PyArray_MultiIterNew1(a):
+ return PyArray_MultiIterNew(1, a)
+
+cdef inline object PyArray_MultiIterNew2(a, b):
+ return PyArray_MultiIterNew(2, a, b)
+
+cdef inline object PyArray_MultiIterNew3(a, b, c):
+ return PyArray_MultiIterNew(3, a, b, c)
+
+cdef inline object PyArray_MultiIterNew4(a, b, c, d):
+ return PyArray_MultiIterNew(4, a, b, c, d)
+
+cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
+ return PyArray_MultiIterNew(5, a, b, c, d, e)
+
+cdef inline tuple PyDataType_SHAPE(dtype d):
+ if PyDataType_HASSUBARRAY(d):
+ return d.subarray.shape
+ else:
+ return ()
+
+
+cdef extern from "numpy/ndarrayobject.h":
+ PyTypeObject PyTimedeltaArrType_Type
+ PyTypeObject PyDatetimeArrType_Type
+ ctypedef int64_t npy_timedelta
+ ctypedef int64_t npy_datetime
+
+cdef extern from "numpy/ndarraytypes.h":
+ ctypedef struct PyArray_DatetimeMetaData:
+ NPY_DATETIMEUNIT base
+ int64_t num
+
+cdef extern from "numpy/arrayscalars.h":
+
+ # abstract types
+ ctypedef class numpy.generic [object PyObject]:
+ pass
+ ctypedef class numpy.number [object PyObject]:
+ pass
+ ctypedef class numpy.integer [object PyObject]:
+ pass
+ ctypedef class numpy.signedinteger [object PyObject]:
+ pass
+ ctypedef class numpy.unsignedinteger [object PyObject]:
+ pass
+ ctypedef class numpy.inexact [object PyObject]:
+ pass
+ ctypedef class numpy.floating [object PyObject]:
+ pass
+ ctypedef class numpy.complexfloating [object PyObject]:
+ pass
+ ctypedef class numpy.flexible [object PyObject]:
+ pass
+ ctypedef class numpy.character [object PyObject]:
+ pass
+
+ ctypedef struct PyDatetimeScalarObject:
+ # PyObject_HEAD
+ npy_datetime obval
+ PyArray_DatetimeMetaData obmeta
+
+ ctypedef struct PyTimedeltaScalarObject:
+ # PyObject_HEAD
+ npy_timedelta obval
+ PyArray_DatetimeMetaData obmeta
+
+ ctypedef enum NPY_DATETIMEUNIT:
+ NPY_FR_Y
+ NPY_FR_M
+ NPY_FR_W
+ NPY_FR_D
+ NPY_FR_B
+ NPY_FR_h
+ NPY_FR_m
+ NPY_FR_s
+ NPY_FR_ms
+ NPY_FR_us
+ NPY_FR_ns
+ NPY_FR_ps
+ NPY_FR_fs
+ NPY_FR_as
+
+
+#
+# ufunc API
+#
+
+cdef extern from "numpy/ufuncobject.h":
+
+ ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *)
+
+ ctypedef class numpy.ufunc [object PyUFuncObject, check_size ignore]:
+ cdef:
+ int nin, nout, nargs
+ int identity
+ PyUFuncGenericFunction *functions
+ void **data
+ int ntypes
+ int check_return
+ char *name
+ char *types
+ char *doc
+ void *ptr
+ PyObject *obj
+ PyObject *userloops
+
+ cdef enum:
+ PyUFunc_Zero
+ PyUFunc_One
+ PyUFunc_None
+ UFUNC_ERR_IGNORE
+ UFUNC_ERR_WARN
+ UFUNC_ERR_RAISE
+ UFUNC_ERR_CALL
+ UFUNC_ERR_PRINT
+ UFUNC_ERR_LOG
+ UFUNC_MASK_DIVIDEBYZERO
+ UFUNC_MASK_OVERFLOW
+ UFUNC_MASK_UNDERFLOW
+ UFUNC_MASK_INVALID
+ UFUNC_SHIFT_DIVIDEBYZERO
+ UFUNC_SHIFT_OVERFLOW
+ UFUNC_SHIFT_UNDERFLOW
+ UFUNC_SHIFT_INVALID
+ UFUNC_FPE_DIVIDEBYZERO
+ UFUNC_FPE_OVERFLOW
+ UFUNC_FPE_UNDERFLOW
+ UFUNC_FPE_INVALID
+ UFUNC_ERR_DEFAULT
+ UFUNC_ERR_DEFAULT2
+
+ object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
+ void **, char *, int, int, int, int, char *, char *, int)
+ int PyUFunc_RegisterLoopForType(ufunc, int,
+ PyUFuncGenericFunction, int *, void *)
+ void PyUFunc_f_f_As_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_f_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_g_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F_As_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_G_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f_As_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_gg_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F_As_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_GG_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_On_Om \
+ (char **, npy_intp *, npy_intp *, void *)
+ int PyUFunc_GetPyValues \
+ (char *, int *, int *, PyObject **)
+ int PyUFunc_checkfperr \
+ (int, PyObject *, int *)
+ void PyUFunc_clearfperr()
+ int PyUFunc_getfperr()
+ int PyUFunc_handlefperr \
+ (int, PyObject *, int, int *)
+ int PyUFunc_ReplaceLoopBySignature \
+ (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
+ object PyUFunc_FromFuncAndDataAndSignature \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int,
+ int, char *, char *, int, char *)
+
+ int _import_umath() except -1
+
+cdef inline void set_array_base(ndarray arr, object base):
+ Py_INCREF(base) # important to do this before stealing the reference below!
+ PyArray_SetBaseObject(arr, base)
+
+cdef inline object get_array_base(ndarray arr):
+ base = PyArray_BASE(arr)
+ if base is NULL:
+ return None
+ return base
+
+# Versions of the import_* functions which are more suitable for
+# Cython code.
+cdef inline int import_array() except -1:
+ try:
+ __pyx_import_array()
+ except Exception:
+ raise ImportError("numpy.core.multiarray failed to import")
+
+cdef inline int import_umath() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
+
+cdef inline int import_ufunc() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
+
+
+cdef inline bint is_timedelta64_object(object obj):
+ """
+ Cython equivalent of `isinstance(obj, np.timedelta64)`
+
+ Parameters
+ ----------
+ obj : object
+
+ Returns
+ -------
+ bool
+ """
+ return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type)
+
+
+cdef inline bint is_datetime64_object(object obj):
+ """
+ Cython equivalent of `isinstance(obj, np.datetime64)`
+
+ Parameters
+ ----------
+ obj : object
+
+ Returns
+ -------
+ bool
+ """
+ return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type)
+
+
+cdef inline npy_datetime get_datetime64_value(object obj) nogil:
+ """
+ returns the int64 value underlying scalar numpy datetime64 object
+
+ Note that to interpret this as a datetime, the corresponding unit is
+ also needed. That can be found using `get_datetime64_unit`.
+ """
+ return (obj).obval
+
+
+cdef inline npy_timedelta get_timedelta64_value(object obj) nogil:
+ """
+ returns the int64 value underlying scalar numpy timedelta64 object
+ """
+ return (obj).obval
+
+
+cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil:
+ """
+ returns the unit part of the dtype for a numpy datetime64 object.
+ """
+ return (obj).obmeta.base
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pxd b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pxd
new file mode 100644
index 0000000000000000000000000000000000000000..97f3da2e5673c33f9e5c3c14bee2a6e1b0a82411
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pxd
@@ -0,0 +1,1018 @@
+# NumPy static imports for Cython < 3.0
+#
+# If any of the PyArray_* functions are called, import_array must be
+# called first.
+#
+# Author: Dag Sverre Seljebotn
+#
+
+DEF _buffer_format_string_len = 255
+
+cimport cpython.buffer as pybuf
+from cpython.ref cimport Py_INCREF
+from cpython.mem cimport PyObject_Malloc, PyObject_Free
+from cpython.object cimport PyObject, PyTypeObject
+from cpython.buffer cimport PyObject_GetBuffer
+from cpython.type cimport type
+cimport libc.stdio as stdio
+
+cdef extern from "Python.h":
+ ctypedef int Py_intptr_t
+ bint PyObject_TypeCheck(object obj, PyTypeObject* type)
+
+cdef extern from "numpy/arrayobject.h":
+ ctypedef Py_intptr_t npy_intp
+ ctypedef size_t npy_uintp
+
+ cdef enum NPY_TYPES:
+ NPY_BOOL
+ NPY_BYTE
+ NPY_UBYTE
+ NPY_SHORT
+ NPY_USHORT
+ NPY_INT
+ NPY_UINT
+ NPY_LONG
+ NPY_ULONG
+ NPY_LONGLONG
+ NPY_ULONGLONG
+ NPY_FLOAT
+ NPY_DOUBLE
+ NPY_LONGDOUBLE
+ NPY_CFLOAT
+ NPY_CDOUBLE
+ NPY_CLONGDOUBLE
+ NPY_OBJECT
+ NPY_STRING
+ NPY_UNICODE
+ NPY_VOID
+ NPY_DATETIME
+ NPY_TIMEDELTA
+ NPY_NTYPES
+ NPY_NOTYPE
+
+ NPY_INT8
+ NPY_INT16
+ NPY_INT32
+ NPY_INT64
+ NPY_INT128
+ NPY_INT256
+ NPY_UINT8
+ NPY_UINT16
+ NPY_UINT32
+ NPY_UINT64
+ NPY_UINT128
+ NPY_UINT256
+ NPY_FLOAT16
+ NPY_FLOAT32
+ NPY_FLOAT64
+ NPY_FLOAT80
+ NPY_FLOAT96
+ NPY_FLOAT128
+ NPY_FLOAT256
+ NPY_COMPLEX32
+ NPY_COMPLEX64
+ NPY_COMPLEX128
+ NPY_COMPLEX160
+ NPY_COMPLEX192
+ NPY_COMPLEX256
+ NPY_COMPLEX512
+
+ NPY_INTP
+
+ ctypedef enum NPY_ORDER:
+ NPY_ANYORDER
+ NPY_CORDER
+ NPY_FORTRANORDER
+ NPY_KEEPORDER
+
+ ctypedef enum NPY_CASTING:
+ NPY_NO_CASTING
+ NPY_EQUIV_CASTING
+ NPY_SAFE_CASTING
+ NPY_SAME_KIND_CASTING
+ NPY_UNSAFE_CASTING
+
+ ctypedef enum NPY_CLIPMODE:
+ NPY_CLIP
+ NPY_WRAP
+ NPY_RAISE
+
+ ctypedef enum NPY_SCALARKIND:
+ NPY_NOSCALAR,
+ NPY_BOOL_SCALAR,
+ NPY_INTPOS_SCALAR,
+ NPY_INTNEG_SCALAR,
+ NPY_FLOAT_SCALAR,
+ NPY_COMPLEX_SCALAR,
+ NPY_OBJECT_SCALAR
+
+ ctypedef enum NPY_SORTKIND:
+ NPY_QUICKSORT
+ NPY_HEAPSORT
+ NPY_MERGESORT
+
+ ctypedef enum NPY_SEARCHSIDE:
+ NPY_SEARCHLEFT
+ NPY_SEARCHRIGHT
+
+ enum:
+ # DEPRECATED since NumPy 1.7 ! Do not use in new code!
+ NPY_C_CONTIGUOUS
+ NPY_F_CONTIGUOUS
+ NPY_CONTIGUOUS
+ NPY_FORTRAN
+ NPY_OWNDATA
+ NPY_FORCECAST
+ NPY_ENSURECOPY
+ NPY_ENSUREARRAY
+ NPY_ELEMENTSTRIDES
+ NPY_ALIGNED
+ NPY_NOTSWAPPED
+ NPY_WRITEABLE
+ NPY_UPDATEIFCOPY
+ NPY_ARR_HAS_DESCR
+
+ NPY_BEHAVED
+ NPY_BEHAVED_NS
+ NPY_CARRAY
+ NPY_CARRAY_RO
+ NPY_FARRAY
+ NPY_FARRAY_RO
+ NPY_DEFAULT
+
+ NPY_IN_ARRAY
+ NPY_OUT_ARRAY
+ NPY_INOUT_ARRAY
+ NPY_IN_FARRAY
+ NPY_OUT_FARRAY
+ NPY_INOUT_FARRAY
+
+ NPY_UPDATE_ALL
+
+ enum:
+ # Added in NumPy 1.7 to replace the deprecated enums above.
+ NPY_ARRAY_C_CONTIGUOUS
+ NPY_ARRAY_F_CONTIGUOUS
+ NPY_ARRAY_OWNDATA
+ NPY_ARRAY_FORCECAST
+ NPY_ARRAY_ENSURECOPY
+ NPY_ARRAY_ENSUREARRAY
+ NPY_ARRAY_ELEMENTSTRIDES
+ NPY_ARRAY_ALIGNED
+ NPY_ARRAY_NOTSWAPPED
+ NPY_ARRAY_WRITEABLE
+ NPY_ARRAY_UPDATEIFCOPY
+
+ NPY_ARRAY_BEHAVED
+ NPY_ARRAY_BEHAVED_NS
+ NPY_ARRAY_CARRAY
+ NPY_ARRAY_CARRAY_RO
+ NPY_ARRAY_FARRAY
+ NPY_ARRAY_FARRAY_RO
+ NPY_ARRAY_DEFAULT
+
+ NPY_ARRAY_IN_ARRAY
+ NPY_ARRAY_OUT_ARRAY
+ NPY_ARRAY_INOUT_ARRAY
+ NPY_ARRAY_IN_FARRAY
+ NPY_ARRAY_OUT_FARRAY
+ NPY_ARRAY_INOUT_FARRAY
+
+ NPY_ARRAY_UPDATE_ALL
+
+ cdef enum:
+ NPY_MAXDIMS
+
+ npy_intp NPY_MAX_ELSIZE
+
+ ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *)
+
+ ctypedef struct PyArray_ArrayDescr:
+ # shape is a tuple, but Cython doesn't support "tuple shape"
+ # inside a non-PyObject declaration, so we have to declare it
+ # as just a PyObject*.
+ PyObject* shape
+
+ ctypedef struct PyArray_Descr:
+ pass
+
+ ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]:
+ # Use PyDataType_* macros when possible, however there are no macros
+ # for accessing some of the fields, so some are defined.
+ cdef PyTypeObject* typeobj
+ cdef char kind
+ cdef char type
+ # Numpy sometimes mutates this without warning (e.g. it'll
+ # sometimes change "|" to "<" in shared dtype objects on
+ # little-endian machines). If this matters to you, use
+ # PyArray_IsNativeByteOrder(dtype.byteorder) instead of
+ # directly accessing this field.
+ cdef char byteorder
+ cdef char flags
+ cdef int type_num
+ cdef int itemsize "elsize"
+ cdef int alignment
+ cdef object fields
+ cdef tuple names
+ # Use PyDataType_HASSUBARRAY to test whether this field is
+ # valid (the pointer can be NULL). Most users should access
+ # this field via the inline helper method PyDataType_SHAPE.
+ cdef PyArray_ArrayDescr* subarray
+
+ ctypedef class numpy.flatiter [object PyArrayIterObject, check_size ignore]:
+ # Use through macros
+ pass
+
+ ctypedef class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]:
+ cdef int numiter
+ cdef npy_intp size, index
+ cdef int nd
+ cdef npy_intp *dimensions
+ cdef void **iters
+
+ ctypedef struct PyArrayObject:
+ # For use in situations where ndarray can't replace PyArrayObject*,
+ # like PyArrayObject**.
+ pass
+
+ ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]:
+ cdef __cythonbufferdefaults__ = {"mode": "strided"}
+
+ cdef:
+ # Only taking a few of the most commonly used and stable fields.
+ # One should use PyArray_* macros instead to access the C fields.
+ char *data
+ int ndim "nd"
+ npy_intp *shape "dimensions"
+ npy_intp *strides
+ dtype descr # deprecated since NumPy 1.7 !
+ PyObject* base # NOT PUBLIC, DO NOT USE !
+
+
+
+ ctypedef unsigned char npy_bool
+
+ ctypedef signed char npy_byte
+ ctypedef signed short npy_short
+ ctypedef signed int npy_int
+ ctypedef signed long npy_long
+ ctypedef signed long long npy_longlong
+
+ ctypedef unsigned char npy_ubyte
+ ctypedef unsigned short npy_ushort
+ ctypedef unsigned int npy_uint
+ ctypedef unsigned long npy_ulong
+ ctypedef unsigned long long npy_ulonglong
+
+ ctypedef float npy_float
+ ctypedef double npy_double
+ ctypedef long double npy_longdouble
+
+ ctypedef signed char npy_int8
+ ctypedef signed short npy_int16
+ ctypedef signed int npy_int32
+ ctypedef signed long long npy_int64
+ ctypedef signed long long npy_int96
+ ctypedef signed long long npy_int128
+
+ ctypedef unsigned char npy_uint8
+ ctypedef unsigned short npy_uint16
+ ctypedef unsigned int npy_uint32
+ ctypedef unsigned long long npy_uint64
+ ctypedef unsigned long long npy_uint96
+ ctypedef unsigned long long npy_uint128
+
+ ctypedef float npy_float32
+ ctypedef double npy_float64
+ ctypedef long double npy_float80
+ ctypedef long double npy_float96
+ ctypedef long double npy_float128
+
+ ctypedef struct npy_cfloat:
+ float real
+ float imag
+
+ ctypedef struct npy_cdouble:
+ double real
+ double imag
+
+ ctypedef struct npy_clongdouble:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex64:
+ float real
+ float imag
+
+ ctypedef struct npy_complex128:
+ double real
+ double imag
+
+ ctypedef struct npy_complex160:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex192:
+ long double real
+ long double imag
+
+ ctypedef struct npy_complex256:
+ long double real
+ long double imag
+
+ ctypedef struct PyArray_Dims:
+ npy_intp *ptr
+ int len
+
+ int _import_array() except -1
+ # A second definition so _import_array isn't marked as used when we use it here.
+ # Do not use - subject to change any time.
+ int __pyx_import_array "_import_array"() except -1
+
+ #
+ # Macros from ndarrayobject.h
+ #
+ bint PyArray_CHKFLAGS(ndarray m, int flags) nogil
+ bint PyArray_IS_C_CONTIGUOUS(ndarray arr) nogil
+ bint PyArray_IS_F_CONTIGUOUS(ndarray arr) nogil
+ bint PyArray_ISCONTIGUOUS(ndarray m) nogil
+ bint PyArray_ISWRITEABLE(ndarray m) nogil
+ bint PyArray_ISALIGNED(ndarray m) nogil
+
+ int PyArray_NDIM(ndarray) nogil
+ bint PyArray_ISONESEGMENT(ndarray) nogil
+ bint PyArray_ISFORTRAN(ndarray) nogil
+ int PyArray_FORTRANIF(ndarray) nogil
+
+ void* PyArray_DATA(ndarray) nogil
+ char* PyArray_BYTES(ndarray) nogil
+
+ npy_intp* PyArray_DIMS(ndarray) nogil
+ npy_intp* PyArray_STRIDES(ndarray) nogil
+ npy_intp PyArray_DIM(ndarray, size_t) nogil
+ npy_intp PyArray_STRIDE(ndarray, size_t) nogil
+
+ PyObject *PyArray_BASE(ndarray) nogil # returns borrowed reference!
+ PyArray_Descr *PyArray_DESCR(ndarray) nogil # returns borrowed reference to dtype!
+ int PyArray_FLAGS(ndarray) nogil
+ npy_intp PyArray_ITEMSIZE(ndarray) nogil
+ int PyArray_TYPE(ndarray arr) nogil
+
+ object PyArray_GETITEM(ndarray arr, void *itemptr)
+ int PyArray_SETITEM(ndarray arr, void *itemptr, object obj)
+
+ bint PyTypeNum_ISBOOL(int) nogil
+ bint PyTypeNum_ISUNSIGNED(int) nogil
+ bint PyTypeNum_ISSIGNED(int) nogil
+ bint PyTypeNum_ISINTEGER(int) nogil
+ bint PyTypeNum_ISFLOAT(int) nogil
+ bint PyTypeNum_ISNUMBER(int) nogil
+ bint PyTypeNum_ISSTRING(int) nogil
+ bint PyTypeNum_ISCOMPLEX(int) nogil
+ bint PyTypeNum_ISPYTHON(int) nogil
+ bint PyTypeNum_ISFLEXIBLE(int) nogil
+ bint PyTypeNum_ISUSERDEF(int) nogil
+ bint PyTypeNum_ISEXTENDED(int) nogil
+ bint PyTypeNum_ISOBJECT(int) nogil
+
+ bint PyDataType_ISBOOL(dtype) nogil
+ bint PyDataType_ISUNSIGNED(dtype) nogil
+ bint PyDataType_ISSIGNED(dtype) nogil
+ bint PyDataType_ISINTEGER(dtype) nogil
+ bint PyDataType_ISFLOAT(dtype) nogil
+ bint PyDataType_ISNUMBER(dtype) nogil
+ bint PyDataType_ISSTRING(dtype) nogil
+ bint PyDataType_ISCOMPLEX(dtype) nogil
+ bint PyDataType_ISPYTHON(dtype) nogil
+ bint PyDataType_ISFLEXIBLE(dtype) nogil
+ bint PyDataType_ISUSERDEF(dtype) nogil
+ bint PyDataType_ISEXTENDED(dtype) nogil
+ bint PyDataType_ISOBJECT(dtype) nogil
+ bint PyDataType_HASFIELDS(dtype) nogil
+ bint PyDataType_HASSUBARRAY(dtype) nogil
+
+ bint PyArray_ISBOOL(ndarray) nogil
+ bint PyArray_ISUNSIGNED(ndarray) nogil
+ bint PyArray_ISSIGNED(ndarray) nogil
+ bint PyArray_ISINTEGER(ndarray) nogil
+ bint PyArray_ISFLOAT(ndarray) nogil
+ bint PyArray_ISNUMBER(ndarray) nogil
+ bint PyArray_ISSTRING(ndarray) nogil
+ bint PyArray_ISCOMPLEX(ndarray) nogil
+ bint PyArray_ISPYTHON(ndarray) nogil
+ bint PyArray_ISFLEXIBLE(ndarray) nogil
+ bint PyArray_ISUSERDEF(ndarray) nogil
+ bint PyArray_ISEXTENDED(ndarray) nogil
+ bint PyArray_ISOBJECT(ndarray) nogil
+ bint PyArray_HASFIELDS(ndarray) nogil
+
+ bint PyArray_ISVARIABLE(ndarray) nogil
+
+ bint PyArray_SAFEALIGNEDCOPY(ndarray) nogil
+ bint PyArray_ISNBO(char) nogil # works on ndarray.byteorder
+ bint PyArray_IsNativeByteOrder(char) nogil # works on ndarray.byteorder
+ bint PyArray_ISNOTSWAPPED(ndarray) nogil
+ bint PyArray_ISBYTESWAPPED(ndarray) nogil
+
+ bint PyArray_FLAGSWAP(ndarray, int) nogil
+
+ bint PyArray_ISCARRAY(ndarray) nogil
+ bint PyArray_ISCARRAY_RO(ndarray) nogil
+ bint PyArray_ISFARRAY(ndarray) nogil
+ bint PyArray_ISFARRAY_RO(ndarray) nogil
+ bint PyArray_ISBEHAVED(ndarray) nogil
+ bint PyArray_ISBEHAVED_RO(ndarray) nogil
+
+
+ bint PyDataType_ISNOTSWAPPED(dtype) nogil
+ bint PyDataType_ISBYTESWAPPED(dtype) nogil
+
+ bint PyArray_DescrCheck(object)
+
+ bint PyArray_Check(object)
+ bint PyArray_CheckExact(object)
+
+ # Cannot be supported due to out arg:
+ # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&)
+ # bint PyArray_HasArrayInterface(op, out)
+
+
+ bint PyArray_IsZeroDim(object)
+ # Cannot be supported due to ## ## in macro:
+ # bint PyArray_IsScalar(object, verbatim work)
+ bint PyArray_CheckScalar(object)
+ bint PyArray_IsPythonNumber(object)
+ bint PyArray_IsPythonScalar(object)
+ bint PyArray_IsAnyScalar(object)
+ bint PyArray_CheckAnyScalar(object)
+
+ ndarray PyArray_GETCONTIGUOUS(ndarray)
+ bint PyArray_SAMESHAPE(ndarray, ndarray) nogil
+ npy_intp PyArray_SIZE(ndarray) nogil
+ npy_intp PyArray_NBYTES(ndarray) nogil
+
+ object PyArray_FROM_O(object)
+ object PyArray_FROM_OF(object m, int flags)
+ object PyArray_FROM_OT(object m, int type)
+ object PyArray_FROM_OTF(object m, int type, int flags)
+ object PyArray_FROMANY(object m, int type, int min, int max, int flags)
+ object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran)
+ object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran)
+ void PyArray_FILLWBYTE(object, int val)
+ npy_intp PyArray_REFCOUNT(object)
+ object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth)
+ unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2)
+ bint PyArray_EquivByteorders(int b1, int b2) nogil
+ object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum)
+ object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data)
+ #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr)
+ object PyArray_ToScalar(void* data, ndarray arr)
+
+ void* PyArray_GETPTR1(ndarray m, npy_intp i) nogil
+ void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j) nogil
+ void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k) nogil
+ void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l) nogil
+
+ void PyArray_XDECREF_ERR(ndarray)
+ # Cannot be supported due to out arg
+ # void PyArray_DESCR_REPLACE(descr)
+
+
+ object PyArray_Copy(ndarray)
+ object PyArray_FromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth)
+ object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth)
+
+ object PyArray_Cast(ndarray mp, int type_num)
+ object PyArray_Take(ndarray ap, object items, int axis)
+ object PyArray_Put(ndarray ap, object items, object values)
+
+ void PyArray_ITER_RESET(flatiter it) nogil
+ void PyArray_ITER_NEXT(flatiter it) nogil
+ void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil
+ void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil
+ void* PyArray_ITER_DATA(flatiter it) nogil
+ bint PyArray_ITER_NOTDONE(flatiter it) nogil
+
+ void PyArray_MultiIter_RESET(broadcast multi) nogil
+ void PyArray_MultiIter_NEXT(broadcast multi) nogil
+ void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil
+ void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil
+ void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil
+ void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil
+ bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil
+
+ # Functions from __multiarray_api.h
+
+ # Functions taking dtype and returning object/ndarray are disabled
+ # for now as they steal dtype references. I'm conservative and disable
+ # more than is probably needed until it can be checked further.
+ int PyArray_SetNumericOps (object)
+ object PyArray_GetNumericOps ()
+ int PyArray_INCREF (ndarray)
+ int PyArray_XDECREF (ndarray)
+ void PyArray_SetStringFunction (object, int)
+ dtype PyArray_DescrFromType (int)
+ object PyArray_TypeObjectFromType (int)
+ char * PyArray_Zero (ndarray)
+ char * PyArray_One (ndarray)
+ #object PyArray_CastToType (ndarray, dtype, int)
+ int PyArray_CastTo (ndarray, ndarray)
+ int PyArray_CastAnyTo (ndarray, ndarray)
+ int PyArray_CanCastSafely (int, int)
+ npy_bool PyArray_CanCastTo (dtype, dtype)
+ int PyArray_ObjectType (object, int)
+ dtype PyArray_DescrFromObject (object, dtype)
+ #ndarray* PyArray_ConvertToCommonType (object, int *)
+ dtype PyArray_DescrFromScalar (object)
+ dtype PyArray_DescrFromTypeObject (object)
+ npy_intp PyArray_Size (object)
+ #object PyArray_Scalar (void *, dtype, object)
+ #object PyArray_FromScalar (object, dtype)
+ void PyArray_ScalarAsCtype (object, void *)
+ #int PyArray_CastScalarToCtype (object, void *, dtype)
+ #int PyArray_CastScalarDirect (object, dtype, void *, int)
+ object PyArray_ScalarFromObject (object)
+ #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int)
+ object PyArray_FromDims (int, int *, int)
+ #object PyArray_FromDimsAndDataAndDescr (int, int *, dtype, char *)
+ #object PyArray_FromAny (object, dtype, int, int, int, object)
+ object PyArray_EnsureArray (object)
+ object PyArray_EnsureAnyArray (object)
+ #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *)
+ #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *)
+ #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp)
+ #object PyArray_FromIter (object, dtype, npy_intp)
+ object PyArray_Return (ndarray)
+ #object PyArray_GetField (ndarray, dtype, int)
+ #int PyArray_SetField (ndarray, dtype, int, object)
+ object PyArray_Byteswap (ndarray, npy_bool)
+ object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER)
+ int PyArray_MoveInto (ndarray, ndarray)
+ int PyArray_CopyInto (ndarray, ndarray)
+ int PyArray_CopyAnyInto (ndarray, ndarray)
+ int PyArray_CopyObject (ndarray, object)
+ object PyArray_NewCopy (ndarray, NPY_ORDER)
+ object PyArray_ToList (ndarray)
+ object PyArray_ToString (ndarray, NPY_ORDER)
+ int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *)
+ int PyArray_Dump (object, object, int)
+ object PyArray_Dumps (object, int)
+ int PyArray_ValidType (int)
+ void PyArray_UpdateFlags (ndarray, int)
+ object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object)
+ #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object)
+ #dtype PyArray_DescrNew (dtype)
+ dtype PyArray_DescrNewFromType (int)
+ double PyArray_GetPriority (object, double)
+ object PyArray_IterNew (object)
+ object PyArray_MultiIterNew (int, ...)
+
+ int PyArray_PyIntAsInt (object)
+ npy_intp PyArray_PyIntAsIntp (object)
+ int PyArray_Broadcast (broadcast)
+ void PyArray_FillObjectArray (ndarray, object)
+ int PyArray_FillWithScalar (ndarray, object)
+ npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *)
+ dtype PyArray_DescrNewByteorder (dtype, char)
+ object PyArray_IterAllButAxis (object, int *)
+ #object PyArray_CheckFromAny (object, dtype, int, int, int, object)
+ #object PyArray_FromArray (ndarray, dtype, int)
+ object PyArray_FromInterface (object)
+ object PyArray_FromStructInterface (object)
+ #object PyArray_FromArrayAttr (object, dtype, object)
+ #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*)
+ int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND)
+ object PyArray_NewFlagsObject (object)
+ npy_bool PyArray_CanCastScalar (type, type)
+ #int PyArray_CompareUCS4 (npy_ucs4 *, npy_ucs4 *, register size_t)
+ int PyArray_RemoveSmallest (broadcast)
+ int PyArray_ElementStrides (object)
+ void PyArray_Item_INCREF (char *, dtype)
+ void PyArray_Item_XDECREF (char *, dtype)
+ object PyArray_FieldNames (object)
+ object PyArray_Transpose (ndarray, PyArray_Dims *)
+ object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE)
+ object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE)
+ object PyArray_PutMask (ndarray, object, object)
+ object PyArray_Repeat (ndarray, object, int)
+ object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE)
+ int PyArray_Sort (ndarray, int, NPY_SORTKIND)
+ object PyArray_ArgSort (ndarray, int, NPY_SORTKIND)
+ object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE, PyObject *)
+ object PyArray_ArgMax (ndarray, int, ndarray)
+ object PyArray_ArgMin (ndarray, int, ndarray)
+ object PyArray_Reshape (ndarray, object)
+ object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER)
+ object PyArray_Squeeze (ndarray)
+ #object PyArray_View (ndarray, dtype, type)
+ object PyArray_SwapAxes (ndarray, int, int)
+ object PyArray_Max (ndarray, int, ndarray)
+ object PyArray_Min (ndarray, int, ndarray)
+ object PyArray_Ptp (ndarray, int, ndarray)
+ object PyArray_Mean (ndarray, int, int, ndarray)
+ object PyArray_Trace (ndarray, int, int, int, int, ndarray)
+ object PyArray_Diagonal (ndarray, int, int, int)
+ object PyArray_Clip (ndarray, object, object, ndarray)
+ object PyArray_Conjugate (ndarray, ndarray)
+ object PyArray_Nonzero (ndarray)
+ object PyArray_Std (ndarray, int, int, ndarray, int)
+ object PyArray_Sum (ndarray, int, int, ndarray)
+ object PyArray_CumSum (ndarray, int, int, ndarray)
+ object PyArray_Prod (ndarray, int, int, ndarray)
+ object PyArray_CumProd (ndarray, int, int, ndarray)
+ object PyArray_All (ndarray, int, ndarray)
+ object PyArray_Any (ndarray, int, ndarray)
+ object PyArray_Compress (ndarray, object, int, ndarray)
+ object PyArray_Flatten (ndarray, NPY_ORDER)
+ object PyArray_Ravel (ndarray, NPY_ORDER)
+ npy_intp PyArray_MultiplyList (npy_intp *, int)
+ int PyArray_MultiplyIntList (int *, int)
+ void * PyArray_GetPtr (ndarray, npy_intp*)
+ int PyArray_CompareLists (npy_intp *, npy_intp *, int)
+ #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype)
+ #int PyArray_As1D (object*, char **, int *, int)
+ #int PyArray_As2D (object*, char ***, int *, int *, int)
+ int PyArray_Free (object, void *)
+ #int PyArray_Converter (object, object*)
+ int PyArray_IntpFromSequence (object, npy_intp *, int)
+ object PyArray_Concatenate (object, int)
+ object PyArray_InnerProduct (object, object)
+ object PyArray_MatrixProduct (object, object)
+ object PyArray_CopyAndTranspose (object)
+ object PyArray_Correlate (object, object, int)
+ int PyArray_TypestrConvert (int, int)
+ #int PyArray_DescrConverter (object, dtype*)
+ #int PyArray_DescrConverter2 (object, dtype*)
+ int PyArray_IntpConverter (object, PyArray_Dims *)
+ #int PyArray_BufferConverter (object, chunk)
+ int PyArray_AxisConverter (object, int *)
+ int PyArray_BoolConverter (object, npy_bool *)
+ int PyArray_ByteorderConverter (object, char *)
+ int PyArray_OrderConverter (object, NPY_ORDER *)
+ unsigned char PyArray_EquivTypes (dtype, dtype)
+ #object PyArray_Zeros (int, npy_intp *, dtype, int)
+ #object PyArray_Empty (int, npy_intp *, dtype, int)
+ object PyArray_Where (object, object, object)
+ object PyArray_Arange (double, double, double, int)
+ #object PyArray_ArangeObj (object, object, object, dtype)
+ int PyArray_SortkindConverter (object, NPY_SORTKIND *)
+ object PyArray_LexSort (object, int)
+ object PyArray_Round (ndarray, int, ndarray)
+ unsigned char PyArray_EquivTypenums (int, int)
+ int PyArray_RegisterDataType (dtype)
+ int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *)
+ int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND)
+ #void PyArray_InitArrFuncs (PyArray_ArrFuncs *)
+ object PyArray_IntTupleFromIntp (int, npy_intp *)
+ int PyArray_TypeNumFromName (char *)
+ int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *)
+ #int PyArray_OutputConverter (object, ndarray*)
+ object PyArray_BroadcastToShape (object, npy_intp *, int)
+ void _PyArray_SigintHandler (int)
+ void* _PyArray_GetSigintBuf ()
+ #int PyArray_DescrAlignConverter (object, dtype*)
+ #int PyArray_DescrAlignConverter2 (object, dtype*)
+ int PyArray_SearchsideConverter (object, void *)
+ object PyArray_CheckAxis (ndarray, int *, int)
+ npy_intp PyArray_OverflowMultiplyList (npy_intp *, int)
+ int PyArray_CompareString (char *, char *, size_t)
+ int PyArray_SetBaseObject(ndarray, base) # NOTE: steals a reference to base! Use "set_array_base()" instead.
+
+
+# Typedefs that matches the runtime dtype objects in
+# the numpy module.
+
+# The ones that are commented out needs an IFDEF function
+# in Cython to enable them only on the right systems.
+
+ctypedef npy_int8 int8_t
+ctypedef npy_int16 int16_t
+ctypedef npy_int32 int32_t
+ctypedef npy_int64 int64_t
+#ctypedef npy_int96 int96_t
+#ctypedef npy_int128 int128_t
+
+ctypedef npy_uint8 uint8_t
+ctypedef npy_uint16 uint16_t
+ctypedef npy_uint32 uint32_t
+ctypedef npy_uint64 uint64_t
+#ctypedef npy_uint96 uint96_t
+#ctypedef npy_uint128 uint128_t
+
+ctypedef npy_float32 float32_t
+ctypedef npy_float64 float64_t
+#ctypedef npy_float80 float80_t
+#ctypedef npy_float128 float128_t
+
+ctypedef float complex complex64_t
+ctypedef double complex complex128_t
+
+# The int types are mapped a bit surprising --
+# numpy.int corresponds to 'l' and numpy.long to 'q'
+ctypedef npy_long int_t
+ctypedef npy_longlong long_t
+ctypedef npy_longlong longlong_t
+
+ctypedef npy_ulong uint_t
+ctypedef npy_ulonglong ulong_t
+ctypedef npy_ulonglong ulonglong_t
+
+ctypedef npy_intp intp_t
+ctypedef npy_uintp uintp_t
+
+ctypedef npy_double float_t
+ctypedef npy_double double_t
+ctypedef npy_longdouble longdouble_t
+
+ctypedef npy_cfloat cfloat_t
+ctypedef npy_cdouble cdouble_t
+ctypedef npy_clongdouble clongdouble_t
+
+ctypedef npy_cdouble complex_t
+
+cdef inline object PyArray_MultiIterNew1(a):
+ return PyArray_MultiIterNew(1, a)
+
+cdef inline object PyArray_MultiIterNew2(a, b):
+ return PyArray_MultiIterNew(2, a, b)
+
+cdef inline object PyArray_MultiIterNew3(a, b, c):
+ return PyArray_MultiIterNew(3, a, b, c)
+
+cdef inline object PyArray_MultiIterNew4(a, b, c, d):
+ return PyArray_MultiIterNew(4, a, b, c, d)
+
+cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
+ return PyArray_MultiIterNew(5, a, b, c, d, e)
+
+cdef inline tuple PyDataType_SHAPE(dtype d):
+ if PyDataType_HASSUBARRAY(d):
+ return d.subarray.shape
+ else:
+ return ()
+
+
+cdef extern from "numpy/ndarrayobject.h":
+ PyTypeObject PyTimedeltaArrType_Type
+ PyTypeObject PyDatetimeArrType_Type
+ ctypedef int64_t npy_timedelta
+ ctypedef int64_t npy_datetime
+
+cdef extern from "numpy/ndarraytypes.h":
+ ctypedef struct PyArray_DatetimeMetaData:
+ NPY_DATETIMEUNIT base
+ int64_t num
+
+cdef extern from "numpy/arrayscalars.h":
+
+ # abstract types
+ ctypedef class numpy.generic [object PyObject]:
+ pass
+ ctypedef class numpy.number [object PyObject]:
+ pass
+ ctypedef class numpy.integer [object PyObject]:
+ pass
+ ctypedef class numpy.signedinteger [object PyObject]:
+ pass
+ ctypedef class numpy.unsignedinteger [object PyObject]:
+ pass
+ ctypedef class numpy.inexact [object PyObject]:
+ pass
+ ctypedef class numpy.floating [object PyObject]:
+ pass
+ ctypedef class numpy.complexfloating [object PyObject]:
+ pass
+ ctypedef class numpy.flexible [object PyObject]:
+ pass
+ ctypedef class numpy.character [object PyObject]:
+ pass
+
+ ctypedef struct PyDatetimeScalarObject:
+ # PyObject_HEAD
+ npy_datetime obval
+ PyArray_DatetimeMetaData obmeta
+
+ ctypedef struct PyTimedeltaScalarObject:
+ # PyObject_HEAD
+ npy_timedelta obval
+ PyArray_DatetimeMetaData obmeta
+
+ ctypedef enum NPY_DATETIMEUNIT:
+ NPY_FR_Y
+ NPY_FR_M
+ NPY_FR_W
+ NPY_FR_D
+ NPY_FR_B
+ NPY_FR_h
+ NPY_FR_m
+ NPY_FR_s
+ NPY_FR_ms
+ NPY_FR_us
+ NPY_FR_ns
+ NPY_FR_ps
+ NPY_FR_fs
+ NPY_FR_as
+
+
+#
+# ufunc API
+#
+
+cdef extern from "numpy/ufuncobject.h":
+
+ ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *)
+
+ ctypedef class numpy.ufunc [object PyUFuncObject, check_size ignore]:
+ cdef:
+ int nin, nout, nargs
+ int identity
+ PyUFuncGenericFunction *functions
+ void **data
+ int ntypes
+ int check_return
+ char *name
+ char *types
+ char *doc
+ void *ptr
+ PyObject *obj
+ PyObject *userloops
+
+ cdef enum:
+ PyUFunc_Zero
+ PyUFunc_One
+ PyUFunc_None
+ UFUNC_ERR_IGNORE
+ UFUNC_ERR_WARN
+ UFUNC_ERR_RAISE
+ UFUNC_ERR_CALL
+ UFUNC_ERR_PRINT
+ UFUNC_ERR_LOG
+ UFUNC_MASK_DIVIDEBYZERO
+ UFUNC_MASK_OVERFLOW
+ UFUNC_MASK_UNDERFLOW
+ UFUNC_MASK_INVALID
+ UFUNC_SHIFT_DIVIDEBYZERO
+ UFUNC_SHIFT_OVERFLOW
+ UFUNC_SHIFT_UNDERFLOW
+ UFUNC_SHIFT_INVALID
+ UFUNC_FPE_DIVIDEBYZERO
+ UFUNC_FPE_OVERFLOW
+ UFUNC_FPE_UNDERFLOW
+ UFUNC_FPE_INVALID
+ UFUNC_ERR_DEFAULT
+ UFUNC_ERR_DEFAULT2
+
+ object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *,
+ void **, char *, int, int, int, int, char *, char *, int)
+ int PyUFunc_RegisterLoopForType(ufunc, int,
+ PyUFuncGenericFunction, int *, void *)
+ void PyUFunc_f_f_As_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_d_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_f_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_g_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F_As_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_F_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_D_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_G_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f_As_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_ff_f \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_dd_d \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_gg_g \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F_As_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_DD_D \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_FF_F \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_GG_G \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_O_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_OO_O_method \
+ (char **, npy_intp *, npy_intp *, void *)
+ void PyUFunc_On_Om \
+ (char **, npy_intp *, npy_intp *, void *)
+ int PyUFunc_GetPyValues \
+ (char *, int *, int *, PyObject **)
+ int PyUFunc_checkfperr \
+ (int, PyObject *, int *)
+ void PyUFunc_clearfperr()
+ int PyUFunc_getfperr()
+ int PyUFunc_handlefperr \
+ (int, PyObject *, int, int *)
+ int PyUFunc_ReplaceLoopBySignature \
+ (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)
+ object PyUFunc_FromFuncAndDataAndSignature \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int,
+ int, char *, char *, int, char *)
+
+ int _import_umath() except -1
+
+cdef inline void set_array_base(ndarray arr, object base):
+ Py_INCREF(base) # important to do this before stealing the reference below!
+ PyArray_SetBaseObject(arr, base)
+
+cdef inline object get_array_base(ndarray arr):
+ base = PyArray_BASE(arr)
+ if base is NULL:
+ return None
+ return base
+
+# Versions of the import_* functions which are more suitable for
+# Cython code.
+cdef inline int import_array() except -1:
+ try:
+ __pyx_import_array()
+ except Exception:
+ raise ImportError("numpy.core.multiarray failed to import")
+
+cdef inline int import_umath() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
+
+cdef inline int import_ufunc() except -1:
+ try:
+ _import_umath()
+ except Exception:
+ raise ImportError("numpy.core.umath failed to import")
+
+cdef extern from *:
+ # Leave a marker that the NumPy declarations came from this file
+ # See https://github.com/cython/cython/issues/3573
+ """
+ /* NumPy API declarations from "numpy/__init__.pxd" */
+ """
+
+
+cdef inline bint is_timedelta64_object(object obj):
+ """
+ Cython equivalent of `isinstance(obj, np.timedelta64)`
+
+ Parameters
+ ----------
+ obj : object
+
+ Returns
+ -------
+ bool
+ """
+ return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type)
+
+
+cdef inline bint is_datetime64_object(object obj):
+ """
+ Cython equivalent of `isinstance(obj, np.datetime64)`
+
+ Parameters
+ ----------
+ obj : object
+
+ Returns
+ -------
+ bool
+ """
+ return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type)
+
+
+cdef inline npy_datetime get_datetime64_value(object obj) nogil:
+ """
+ returns the int64 value underlying scalar numpy datetime64 object
+
+ Note that to interpret this as a datetime, the corresponding unit is
+ also needed. That can be found using `get_datetime64_unit`.
+ """
+ return (obj).obval
+
+
+cdef inline npy_timedelta get_timedelta64_value(object obj) nogil:
+ """
+ returns the int64 value underlying scalar numpy timedelta64 object
+ """
+ return (obj).obval
+
+
+cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil:
+ """
+ returns the unit part of the dtype for a numpy datetime64 object.
+ """
+ return (obj).obmeta.base
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..baff5e1417e653d87a3857cc462e0f2492610ef6
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.py
@@ -0,0 +1,429 @@
+"""
+NumPy
+=====
+
+Provides
+ 1. An array object of arbitrary homogeneous items
+ 2. Fast mathematical operations over arrays
+ 3. Linear Algebra, Fourier Transforms, Random Number Generation
+
+How to use the documentation
+----------------------------
+Documentation is available in two forms: docstrings provided
+with the code, and a loose standing reference guide, available from
+`the NumPy homepage `_.
+
+We recommend exploring the docstrings using
+`IPython `_, an advanced Python shell with
+TAB-completion and introspection capabilities. See below for further
+instructions.
+
+The docstring examples assume that `numpy` has been imported as `np`::
+
+ >>> import numpy as np
+
+Code snippets are indicated by three greater-than signs::
+
+ >>> x = 42
+ >>> x = x + 1
+
+Use the built-in ``help`` function to view a function's docstring::
+
+ >>> help(np.sort)
+ ... # doctest: +SKIP
+
+For some objects, ``np.info(obj)`` may provide additional help. This is
+particularly true if you see the line "Help on ufunc object:" at the top
+of the help() page. Ufuncs are implemented in C, not Python, for speed.
+The native Python help() does not know how to view their help, but our
+np.info() function does.
+
+To search for documents containing a keyword, do::
+
+ >>> np.lookfor('keyword')
+ ... # doctest: +SKIP
+
+General-purpose documents like a glossary and help on the basic concepts
+of numpy are available under the ``doc`` sub-module::
+
+ >>> from numpy import doc
+ >>> help(doc)
+ ... # doctest: +SKIP
+
+Available subpackages
+---------------------
+doc
+ Topical documentation on broadcasting, indexing, etc.
+lib
+ Basic functions used by several sub-packages.
+random
+ Core Random Tools
+linalg
+ Core Linear Algebra Tools
+fft
+ Core FFT routines
+polynomial
+ Polynomial tools
+testing
+ NumPy testing tools
+f2py
+ Fortran to Python Interface Generator.
+distutils
+ Enhancements to distutils with support for
+ Fortran compilers support and more.
+
+Utilities
+---------
+test
+ Run numpy unittests
+show_config
+ Show numpy build configuration
+dual
+ Overwrite certain functions with high-performance SciPy tools.
+ Note: `numpy.dual` is deprecated. Use the functions from NumPy or Scipy
+ directly instead of importing them from `numpy.dual`.
+matlib
+ Make everything matrices.
+__version__
+ NumPy version string
+
+Viewing documentation using IPython
+-----------------------------------
+Start IPython with the NumPy profile (``ipython -p numpy``), which will
+import `numpy` under the alias `np`. Then, use the ``cpaste`` command to
+paste examples into the shell. To see which functions are available in
+`numpy`, type ``np.`` (where ```` refers to the TAB key), or use
+``np.*cos*?`` (where ```` refers to the ENTER key) to narrow
+down the list. To view the docstring for a function, use
+``np.cos?`` (to view the docstring) and ``np.cos??`` (to view
+the source code).
+
+Copies vs. in-place operation
+-----------------------------
+Most of the functions in `numpy` return a copy of the array argument
+(e.g., `np.sort`). In-place versions of these functions are often
+available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
+Exceptions to this rule are documented.
+
+"""
+import sys
+import warnings
+
+from ._globals import (
+ ModuleDeprecationWarning, VisibleDeprecationWarning, _NoValue
+)
+
+# We first need to detect if we're being called as part of the numpy setup
+# procedure itself in a reliable manner.
+try:
+ __NUMPY_SETUP__
+except NameError:
+ __NUMPY_SETUP__ = False
+
+if __NUMPY_SETUP__:
+ sys.stderr.write('Running from numpy source directory.\n')
+else:
+ try:
+ from numpy.__config__ import show as show_config
+ except ImportError as e:
+ msg = """Error importing numpy: you should not try to import numpy from
+ its source directory; please exit the numpy source tree, and relaunch
+ your python interpreter from there."""
+ raise ImportError(msg) from e
+
+ __all__ = ['ModuleDeprecationWarning',
+ 'VisibleDeprecationWarning']
+
+ # get the version using versioneer
+ from ._version import get_versions
+ vinfo = get_versions()
+ __version__ = vinfo.get("closest-tag", vinfo["version"])
+ __git_version__ = vinfo.get("full-revisionid")
+ del get_versions, vinfo
+
+ # mapping of {name: (value, deprecation_msg)}
+ __deprecated_attrs__ = {}
+
+ # Allow distributors to run custom init code
+ from . import _distributor_init
+
+ from . import core
+ from .core import *
+ from . import compat
+ from . import lib
+ # NOTE: to be revisited following future namespace cleanup.
+ # See gh-14454 and gh-15672 for discussion.
+ from .lib import *
+
+ from . import linalg
+ from . import fft
+ from . import polynomial
+ from . import random
+ from . import ctypeslib
+ from . import ma
+ from . import matrixlib as _mat
+ from .matrixlib import *
+
+ # Deprecations introduced in NumPy 1.20.0, 2020-06-06
+ import builtins as _builtins
+
+ _msg = (
+ "`np.{n}` is a deprecated alias for the builtin `{n}`. "
+ "To silence this warning, use `{n}` by itself. Doing this will not "
+ "modify any behavior and is safe. {extended_msg}\n"
+ "Deprecated in NumPy 1.20; for more details and guidance: "
+ "https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
+
+ _specific_msg = (
+ "If you specifically wanted the numpy scalar type, use `np.{}` here.")
+
+ _int_extended_msg = (
+ "When replacing `np.{}`, you may wish to use e.g. `np.int64` "
+ "or `np.int32` to specify the precision. If you wish to review "
+ "your current use, check the release note link for "
+ "additional information.")
+
+ _type_info = [
+ ("object", ""), # The NumPy scalar only exists by name.
+ ("bool", _specific_msg.format("bool_")),
+ ("float", _specific_msg.format("float64")),
+ ("complex", _specific_msg.format("complex128")),
+ ("str", _specific_msg.format("str_")),
+ ("int", _int_extended_msg.format("int"))]
+
+ __deprecated_attrs__.update({
+ n: (getattr(_builtins, n), _msg.format(n=n, extended_msg=extended_msg))
+ for n, extended_msg in _type_info
+ })
+ # Numpy 1.20.0, 2020-10-19
+ __deprecated_attrs__["typeDict"] = (
+ core.numerictypes.typeDict,
+ "`np.typeDict` is a deprecated alias for `np.sctypeDict`."
+ )
+
+ _msg = (
+ "`np.{n}` is a deprecated alias for `np.compat.{n}`. "
+ "To silence this warning, use `np.compat.{n}` by itself. "
+ "In the likely event your code does not need to work on Python 2 "
+ "you can use the builtin `{n2}` for which `np.compat.{n}` is itself "
+ "an alias. Doing this will not modify any behaviour and is safe. "
+ "{extended_msg}\n"
+ "Deprecated in NumPy 1.20; for more details and guidance: "
+ "https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations")
+
+ __deprecated_attrs__["long"] = (
+ getattr(compat, "long"),
+ _msg.format(n="long", n2="int",
+ extended_msg=_int_extended_msg.format("long")))
+
+ __deprecated_attrs__["unicode"] = (
+ getattr(compat, "unicode"),
+ _msg.format(n="unicode", n2="str",
+ extended_msg=_specific_msg.format("str_")))
+
+ del _msg, _specific_msg, _int_extended_msg, _type_info, _builtins
+
+ from .core import round, abs, max, min
+ # now that numpy modules are imported, can initialize limits
+ core.getlimits._register_known_types()
+
+ __all__.extend(['__version__', 'show_config'])
+ __all__.extend(core.__all__)
+ __all__.extend(_mat.__all__)
+ __all__.extend(lib.__all__)
+ __all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
+
+ # These are exported by np.core, but are replaced by the builtins below
+ # remove them to ensure that we don't end up with `np.long == np.int_`,
+ # which would be a breaking change.
+ del long, unicode
+ __all__.remove('long')
+ __all__.remove('unicode')
+
+ # Remove things that are in the numpy.lib but not in the numpy namespace
+ # Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
+ # that prevents adding more things to the main namespace by accident.
+ # The list below will grow until the `from .lib import *` fixme above is
+ # taken care of
+ __all__.remove('Arrayterator')
+ del Arrayterator
+
+ # These names were removed in NumPy 1.20. For at least one release,
+ # attempts to access these names in the numpy namespace will trigger
+ # a warning, and calling the function will raise an exception.
+ _financial_names = ['fv', 'ipmt', 'irr', 'mirr', 'nper', 'npv', 'pmt',
+ 'ppmt', 'pv', 'rate']
+ __expired_functions__ = {
+ name: (f'In accordance with NEP 32, the function {name} was removed '
+ 'from NumPy version 1.20. A replacement for this function '
+ 'is available in the numpy_financial library: '
+ 'https://pypi.org/project/numpy-financial')
+ for name in _financial_names}
+
+ # Filter out Cython harmless warnings
+ warnings.filterwarnings("ignore", message="numpy.dtype size changed")
+ warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
+ warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
+
+ # oldnumeric and numarray were removed in 1.9. In case some packages import
+ # but do not use them, we define them here for backward compatibility.
+ oldnumeric = 'removed'
+ numarray = 'removed'
+
+ if sys.version_info[:2] >= (3, 7):
+ # module level getattr is only supported in 3.7 onwards
+ # https://www.python.org/dev/peps/pep-0562/
+ def __getattr__(attr):
+ # Warn for expired attributes, and return a dummy function
+ # that always raises an exception.
+ try:
+ msg = __expired_functions__[attr]
+ except KeyError:
+ pass
+ else:
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
+
+ def _expired(*args, **kwds):
+ raise RuntimeError(msg)
+
+ return _expired
+
+ # Emit warnings for deprecated attributes
+ try:
+ val, msg = __deprecated_attrs__[attr]
+ except KeyError:
+ pass
+ else:
+ warnings.warn(msg, DeprecationWarning, stacklevel=2)
+ return val
+
+ # Importing Tester requires importing all of UnitTest which is not a
+ # cheap import Since it is mainly used in test suits, we lazy import it
+ # here to save on the order of 10 ms of import time for most users
+ #
+ # The previous way Tester was imported also had a side effect of adding
+ # the full `numpy.testing` namespace
+ if attr == 'testing':
+ import numpy.testing as testing
+ return testing
+ elif attr == 'Tester':
+ from .testing import Tester
+ return Tester
+
+ raise AttributeError("module {!r} has no attribute "
+ "{!r}".format(__name__, attr))
+
+ def __dir__():
+ return list(globals().keys() | {'Tester', 'testing'})
+
+ else:
+ # We don't actually use this ourselves anymore, but I'm not 100% sure that
+ # no-one else in the world is using it (though I hope not)
+ from .testing import Tester
+
+ # We weren't able to emit a warning about these, so keep them around
+ globals().update({
+ k: v
+ for k, (v, msg) in __deprecated_attrs__.items()
+ })
+
+
+ # Pytest testing
+ from numpy._pytesttester import PytestTester
+ test = PytestTester(__name__)
+ del PytestTester
+
+
+ def _sanity_check():
+ """
+ Quick sanity checks for common bugs caused by environment.
+ There are some cases e.g. with wrong BLAS ABI that cause wrong
+ results under specific runtime conditions that are not necessarily
+ achieved during test suite runs, and it is useful to catch those early.
+
+ See https://github.com/numpy/numpy/issues/8577 and other
+ similar bug reports.
+
+ """
+ try:
+ x = ones(2, dtype=float32)
+ if not abs(x.dot(x) - 2.0) < 1e-5:
+ raise AssertionError()
+ except AssertionError:
+ msg = ("The current Numpy installation ({!r}) fails to "
+ "pass simple sanity checks. This can be caused for example "
+ "by incorrect BLAS library being linked in, or by mixing "
+ "package managers (pip, conda, apt, ...). Search closed "
+ "numpy issues for similar problems.")
+ raise RuntimeError(msg.format(__file__)) from None
+
+ _sanity_check()
+ del _sanity_check
+
+ def _mac_os_check():
+ """
+ Quick Sanity check for Mac OS look for accelerate build bugs.
+ Testing numpy polyfit calls init_dgelsd(LAPACK)
+ """
+ try:
+ c = array([3., 2., 1.])
+ x = linspace(0, 2, 5)
+ y = polyval(c, x)
+ _ = polyfit(x, y, 2, cov=True)
+ except ValueError:
+ pass
+
+ import sys
+ if sys.platform == "darwin":
+ with warnings.catch_warnings(record=True) as w:
+ _mac_os_check()
+ # Throw runtime error, if the test failed Check for warning and error_message
+ error_message = ""
+ if len(w) > 0:
+ error_message = "{}: {}".format(w[-1].category.__name__, str(w[-1].message))
+ msg = (
+ "Polyfit sanity test emitted a warning, most likely due "
+ "to using a buggy Accelerate backend. If you compiled "
+ "yourself, more information is available at "
+ "https://numpy.org/doc/stable/user/building.html#accelerated-blas-lapack-libraries "
+ "Otherwise report this to the vendor "
+ "that provided NumPy.\n{}\n".format(error_message))
+ raise RuntimeError(msg)
+ del _mac_os_check
+
+ # We usually use madvise hugepages support, but on some old kernels it
+ # is slow and thus better avoided.
+ # Specifically kernel version 4.6 had a bug fix which probably fixed this:
+ # https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
+ import os
+ use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
+ if sys.platform == "linux" and use_hugepage is None:
+ # If there is an issue with parsing the kernel version,
+ # set use_hugepages to 0. Usage of LooseVersion will handle
+ # the kernel version parsing better, but avoided since it
+ # will increase the import time. See: #16679 for related discussion.
+ try:
+ use_hugepage = 1
+ kernel_version = os.uname().release.split(".")[:2]
+ kernel_version = tuple(int(v) for v in kernel_version)
+ if kernel_version < (4, 6):
+ use_hugepage = 0
+ except ValueError:
+ use_hugepages = 0
+ elif use_hugepage is None:
+ # This is not Linux, so it should not matter, just enable anyway
+ use_hugepage = 1
+ else:
+ use_hugepage = int(use_hugepage)
+
+ # Note that this will currently only make a difference on Linux
+ core.multiarray._set_madvise_hugepage(use_hugepage)
+
+ # Give a warning if NumPy is reloaded or imported on a sub-interpreter
+ # We do this from python, since the C-module may not be reloaded and
+ # it is tidier organized.
+ core.multiarray._multiarray_umath._reload_guard()
+
+from ._version import get_versions
+__version__ = get_versions()['version']
+del get_versions
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..b97ea5316185e3abb3f803da80b80055d8b26390
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__init__.pyi
@@ -0,0 +1,3829 @@
+import builtins
+import os
+import sys
+import mmap
+import ctypes as ct
+import array as _array
+import datetime as dt
+from abc import abstractmethod
+from types import TracebackType
+from contextlib import ContextDecorator
+
+from numpy.core._internal import _ctypes
+from numpy.typing import (
+ # Arrays
+ ArrayLike,
+ NDArray,
+ _SupportsArray,
+ _NestedSequence,
+ _RecursiveSequence,
+ _SupportsArray,
+ _ArrayLikeBool_co,
+ _ArrayLikeUInt_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeNumber_co,
+ _ArrayLikeTD64_co,
+ _ArrayLikeDT64_co,
+ _ArrayLikeObject_co,
+
+ # DTypes
+ DTypeLike,
+ _SupportsDType,
+ _VoidDTypeLike,
+
+ # Shapes
+ _Shape,
+ _ShapeLike,
+
+ # Scalars
+ _CharLike_co,
+ _BoolLike_co,
+ _IntLike_co,
+ _FloatLike_co,
+ _ComplexLike_co,
+ _TD64Like_co,
+ _NumberLike_co,
+ _ScalarLike_co,
+
+ # `number` precision
+ NBitBase,
+ _256Bit,
+ _128Bit,
+ _96Bit,
+ _80Bit,
+ _64Bit,
+ _32Bit,
+ _16Bit,
+ _8Bit,
+ _NBitByte,
+ _NBitShort,
+ _NBitIntC,
+ _NBitIntP,
+ _NBitInt,
+ _NBitLongLong,
+ _NBitHalf,
+ _NBitSingle,
+ _NBitDouble,
+ _NBitLongDouble,
+
+ # Character codes
+ _BoolCodes,
+ _UInt8Codes,
+ _UInt16Codes,
+ _UInt32Codes,
+ _UInt64Codes,
+ _Int8Codes,
+ _Int16Codes,
+ _Int32Codes,
+ _Int64Codes,
+ _Float16Codes,
+ _Float32Codes,
+ _Float64Codes,
+ _Complex64Codes,
+ _Complex128Codes,
+ _ByteCodes,
+ _ShortCodes,
+ _IntCCodes,
+ _IntPCodes,
+ _IntCodes,
+ _LongLongCodes,
+ _UByteCodes,
+ _UShortCodes,
+ _UIntCCodes,
+ _UIntPCodes,
+ _UIntCodes,
+ _ULongLongCodes,
+ _HalfCodes,
+ _SingleCodes,
+ _DoubleCodes,
+ _LongDoubleCodes,
+ _CSingleCodes,
+ _CDoubleCodes,
+ _CLongDoubleCodes,
+ _DT64Codes,
+ _TD64Codes,
+ _StrCodes,
+ _BytesCodes,
+ _VoidCodes,
+ _ObjectCodes,
+
+ # Ufuncs
+ _UFunc_Nin1_Nout1,
+ _UFunc_Nin2_Nout1,
+ _UFunc_Nin1_Nout2,
+ _UFunc_Nin2_Nout2,
+ _GUFunc_Nin2_Nout1,
+)
+
+from numpy.typing._callable import (
+ _BoolOp,
+ _BoolBitOp,
+ _BoolSub,
+ _BoolTrueDiv,
+ _BoolMod,
+ _BoolDivMod,
+ _TD64Div,
+ _IntTrueDiv,
+ _UnsignedIntOp,
+ _UnsignedIntBitOp,
+ _UnsignedIntMod,
+ _UnsignedIntDivMod,
+ _SignedIntOp,
+ _SignedIntBitOp,
+ _SignedIntMod,
+ _SignedIntDivMod,
+ _FloatOp,
+ _FloatMod,
+ _FloatDivMod,
+ _ComplexOp,
+ _NumberOp,
+ _ComparisonOp,
+)
+
+# NOTE: Numpy's mypy plugin is used for removing the types unavailable
+# to the specific platform
+from numpy.typing._extended_precision import (
+ uint128 as uint128,
+ uint256 as uint256,
+ int128 as int128,
+ int256 as int256,
+ float80 as float80,
+ float96 as float96,
+ float128 as float128,
+ float256 as float256,
+ complex160 as complex160,
+ complex192 as complex192,
+ complex256 as complex256,
+ complex512 as complex512,
+)
+
+from typing import (
+ Any,
+ ByteString,
+ Callable,
+ Container,
+ Callable,
+ Dict,
+ Generic,
+ IO,
+ Iterable,
+ Iterator,
+ List,
+ Mapping,
+ NoReturn,
+ Optional,
+ overload,
+ Sequence,
+ Sized,
+ SupportsComplex,
+ SupportsFloat,
+ SupportsInt,
+ Text,
+ Tuple,
+ Type,
+ TypeVar,
+ Union,
+)
+
+if sys.version_info >= (3, 8):
+ from typing import Literal as L, Protocol, SupportsIndex, Final
+else:
+ from typing_extensions import Literal as L, Protocol, SupportsIndex, Final
+
+# Ensures that the stubs are picked up
+from numpy import (
+ char as char,
+ ctypeslib as ctypeslib,
+ fft as fft,
+ lib as lib,
+ linalg as linalg,
+ ma as ma,
+ matrixlib as matrixlib,
+ polynomial as polynomial,
+ random as random,
+ rec as rec,
+ testing as testing,
+ version as version,
+)
+
+from numpy.core.function_base import (
+ linspace as linspace,
+ logspace as logspace,
+ geomspace as geomspace,
+)
+
+from numpy.core.fromnumeric import (
+ take as take,
+ reshape as reshape,
+ choose as choose,
+ repeat as repeat,
+ put as put,
+ swapaxes as swapaxes,
+ transpose as transpose,
+ partition as partition,
+ argpartition as argpartition,
+ sort as sort,
+ argsort as argsort,
+ argmax as argmax,
+ argmin as argmin,
+ searchsorted as searchsorted,
+ resize as resize,
+ squeeze as squeeze,
+ diagonal as diagonal,
+ trace as trace,
+ ravel as ravel,
+ nonzero as nonzero,
+ shape as shape,
+ compress as compress,
+ clip as clip,
+ sum as sum,
+ all as all,
+ any as any,
+ cumsum as cumsum,
+ ptp as ptp,
+ amax as amax,
+ amin as amin,
+ prod as prod,
+ cumprod as cumprod,
+ ndim as ndim,
+ size as size,
+ around as around,
+ mean as mean,
+ std as std,
+ var as var,
+)
+
+from numpy.core._asarray import (
+ asarray as asarray,
+ asanyarray as asanyarray,
+ ascontiguousarray as ascontiguousarray,
+ asfortranarray as asfortranarray,
+ require as require,
+)
+
+from numpy.core._type_aliases import (
+ sctypes as sctypes,
+ sctypeDict as sctypeDict,
+)
+
+from numpy.core._ufunc_config import (
+ seterr as seterr,
+ geterr as geterr,
+ setbufsize as setbufsize,
+ getbufsize as getbufsize,
+ seterrcall as seterrcall,
+ geterrcall as geterrcall,
+ _SupportsWrite,
+ _ErrKind,
+ _ErrFunc,
+ _ErrDictOptional,
+)
+
+from numpy.core.arrayprint import (
+ set_printoptions as set_printoptions,
+ get_printoptions as get_printoptions,
+ array2string as array2string,
+ format_float_scientific as format_float_scientific,
+ format_float_positional as format_float_positional,
+ array_repr as array_repr,
+ array_str as array_str,
+ set_string_function as set_string_function,
+ printoptions as printoptions,
+)
+
+from numpy.core.einsumfunc import (
+ einsum as einsum,
+ einsum_path as einsum_path,
+)
+
+from numpy.core.numeric import (
+ zeros_like as zeros_like,
+ ones as ones,
+ ones_like as ones_like,
+ empty_like as empty_like,
+ full as full,
+ full_like as full_like,
+ count_nonzero as count_nonzero,
+ isfortran as isfortran,
+ argwhere as argwhere,
+ flatnonzero as flatnonzero,
+ correlate as correlate,
+ convolve as convolve,
+ outer as outer,
+ tensordot as tensordot,
+ roll as roll,
+ rollaxis as rollaxis,
+ moveaxis as moveaxis,
+ cross as cross,
+ indices as indices,
+ fromfunction as fromfunction,
+ isscalar as isscalar,
+ binary_repr as binary_repr,
+ base_repr as base_repr,
+ identity as identity,
+ allclose as allclose,
+ isclose as isclose,
+ array_equal as array_equal,
+ array_equiv as array_equiv,
+)
+
+from numpy.core.numerictypes import (
+ maximum_sctype as maximum_sctype,
+ issctype as issctype,
+ obj2sctype as obj2sctype,
+ issubclass_ as issubclass_,
+ issubsctype as issubsctype,
+ issubdtype as issubdtype,
+ sctype2char as sctype2char,
+ find_common_type as find_common_type,
+ nbytes as nbytes,
+ cast as cast,
+ ScalarType as ScalarType,
+ typecodes as typecodes,
+)
+
+from numpy.core.shape_base import (
+ atleast_1d as atleast_1d,
+ atleast_2d as atleast_2d,
+ atleast_3d as atleast_3d,
+ block as block,
+ hstack as hstack,
+ stack as stack,
+ vstack as vstack,
+)
+
+from numpy.lib import (
+ emath as emath,
+)
+
+from numpy.lib.arraypad import (
+ pad as pad,
+)
+
+from numpy.lib.arraysetops import (
+ ediff1d as ediff1d,
+ intersect1d as intersect1d,
+ setxor1d as setxor1d,
+ union1d as union1d,
+ setdiff1d as setdiff1d,
+ unique as unique,
+ in1d as in1d,
+ isin as isin,
+)
+
+from numpy.lib.arrayterator import (
+ Arrayterator as Arrayterator,
+)
+
+from numpy.lib.function_base import (
+ select as select,
+ piecewise as piecewise,
+ trim_zeros as trim_zeros,
+ copy as copy,
+ iterable as iterable,
+ percentile as percentile,
+ diff as diff,
+ gradient as gradient,
+ angle as angle,
+ unwrap as unwrap,
+ sort_complex as sort_complex,
+ disp as disp,
+ flip as flip,
+ rot90 as rot90,
+ extract as extract,
+ place as place,
+ asarray_chkfinite as asarray_chkfinite,
+ average as average,
+ bincount as bincount,
+ digitize as digitize,
+ cov as cov,
+ corrcoef as corrcoef,
+ msort as msort,
+ median as median,
+ sinc as sinc,
+ hamming as hamming,
+ hanning as hanning,
+ bartlett as bartlett,
+ blackman as blackman,
+ kaiser as kaiser,
+ trapz as trapz,
+ i0 as i0,
+ add_newdoc as add_newdoc,
+ add_docstring as add_docstring,
+ meshgrid as meshgrid,
+ delete as delete,
+ insert as insert,
+ append as append,
+ interp as interp,
+ add_newdoc_ufunc as add_newdoc_ufunc,
+ quantile as quantile,
+)
+
+from numpy.lib.index_tricks import (
+ ravel_multi_index as ravel_multi_index,
+ unravel_index as unravel_index,
+ mgrid as mgrid,
+ ogrid as ogrid,
+ r_ as r_,
+ c_ as c_,
+ s_ as s_,
+ index_exp as index_exp,
+ ix_ as ix_,
+ fill_diagonal as fill_diagonal,
+ diag_indices as diag_indices,
+ diag_indices_from as diag_indices_from,
+)
+
+from numpy.lib.nanfunctions import (
+ nansum as nansum,
+ nanmax as nanmax,
+ nanmin as nanmin,
+ nanargmax as nanargmax,
+ nanargmin as nanargmin,
+ nanmean as nanmean,
+ nanmedian as nanmedian,
+ nanpercentile as nanpercentile,
+ nanvar as nanvar,
+ nanstd as nanstd,
+ nanprod as nanprod,
+ nancumsum as nancumsum,
+ nancumprod as nancumprod,
+ nanquantile as nanquantile,
+)
+
+from numpy.lib.npyio import (
+ savetxt as savetxt,
+ loadtxt as loadtxt,
+ genfromtxt as genfromtxt,
+ recfromtxt as recfromtxt,
+ recfromcsv as recfromcsv,
+ load as load,
+ loads as loads,
+ save as save,
+ savez as savez,
+ savez_compressed as savez_compressed,
+ packbits as packbits,
+ unpackbits as unpackbits,
+ fromregex as fromregex,
+)
+
+from numpy.lib.polynomial import (
+ poly as poly,
+ roots as roots,
+ polyint as polyint,
+ polyder as polyder,
+ polyadd as polyadd,
+ polysub as polysub,
+ polymul as polymul,
+ polydiv as polydiv,
+ polyval as polyval,
+ polyfit as polyfit,
+)
+
+from numpy.lib.shape_base import (
+ column_stack as column_stack,
+ row_stack as row_stack,
+ dstack as dstack,
+ array_split as array_split,
+ split as split,
+ hsplit as hsplit,
+ vsplit as vsplit,
+ dsplit as dsplit,
+ apply_over_axes as apply_over_axes,
+ expand_dims as expand_dims,
+ apply_along_axis as apply_along_axis,
+ kron as kron,
+ tile as tile,
+ get_array_wrap as get_array_wrap,
+ take_along_axis as take_along_axis,
+ put_along_axis as put_along_axis,
+)
+
+from numpy.lib.stride_tricks import (
+ broadcast_to as broadcast_to,
+ broadcast_arrays as broadcast_arrays,
+ broadcast_shapes as broadcast_shapes,
+)
+
+from numpy.lib.twodim_base import (
+ diag as diag,
+ diagflat as diagflat,
+ eye as eye,
+ fliplr as fliplr,
+ flipud as flipud,
+ tri as tri,
+ triu as triu,
+ tril as tril,
+ vander as vander,
+ histogram2d as histogram2d,
+ mask_indices as mask_indices,
+ tril_indices as tril_indices,
+ tril_indices_from as tril_indices_from,
+ triu_indices as triu_indices,
+ triu_indices_from as triu_indices_from,
+)
+
+from numpy.lib.type_check import (
+ mintypecode as mintypecode,
+ asfarray as asfarray,
+ real as real,
+ imag as imag,
+ iscomplex as iscomplex,
+ isreal as isreal,
+ iscomplexobj as iscomplexobj,
+ isrealobj as isrealobj,
+ nan_to_num as nan_to_num,
+ real_if_close as real_if_close,
+ typename as typename,
+ common_type as common_type,
+)
+
+from numpy.lib.ufunclike import (
+ fix as fix,
+ isposinf as isposinf,
+ isneginf as isneginf,
+)
+
+from numpy.lib.utils import (
+ issubclass_ as issubclass_,
+ issubsctype as issubsctype,
+ issubdtype as issubdtype,
+ deprecate as deprecate,
+ deprecate_with_doc as deprecate_with_doc,
+ get_include as get_include,
+ info as info,
+ source as source,
+ who as who,
+ lookfor as lookfor,
+ byte_bounds as byte_bounds,
+ safe_eval as safe_eval,
+)
+
+__all__: List[str]
+__path__: List[str]
+__version__: str
+__git_version__: str
+
+# TODO: Move placeholders to their respective module once
+# their annotations are properly implemented
+#
+# Placeholders for classes
+# TODO: Remove `__getattr__` once the classes are stubbed out
+class MachAr:
+ def __init__(
+ self,
+ float_conv: Any = ...,
+ int_conv: Any = ...,
+ float_to_float: Any = ...,
+ float_to_str: Any = ...,
+ title: Any = ...,
+ ) -> None: ...
+ def __getattr__(self, key: str) -> Any: ...
+
+class busdaycalendar:
+ def __new__(cls, weekmask: Any = ..., holidays: Any = ...) -> Any: ...
+ def __getattr__(self, key: str) -> Any: ...
+
+class chararray(ndarray[_ShapeType, _DType_co]):
+ def __new__(
+ subtype,
+ shape: Any,
+ itemsize: Any = ...,
+ unicode: Any = ...,
+ buffer: Any = ...,
+ offset: Any = ...,
+ strides: Any = ...,
+ order: Any = ...,
+ ) -> Any: ...
+ def __array_finalize__(self, obj): ...
+ def argsort(self, axis=..., kind=..., order=...): ...
+ def capitalize(self): ...
+ def center(self, width, fillchar=...): ...
+ def count(self, sub, start=..., end=...): ...
+ def decode(self, encoding=..., errors=...): ...
+ def encode(self, encoding=..., errors=...): ...
+ def endswith(self, suffix, start=..., end=...): ...
+ def expandtabs(self, tabsize=...): ...
+ def find(self, sub, start=..., end=...): ...
+ def index(self, sub, start=..., end=...): ...
+ def isalnum(self): ...
+ def isalpha(self): ...
+ def isdigit(self): ...
+ def islower(self): ...
+ def isspace(self): ...
+ def istitle(self): ...
+ def isupper(self): ...
+ def join(self, seq): ...
+ def ljust(self, width, fillchar=...): ...
+ def lower(self): ...
+ def lstrip(self, chars=...): ...
+ def partition(self, sep): ...
+ def replace(self, old, new, count=...): ...
+ def rfind(self, sub, start=..., end=...): ...
+ def rindex(self, sub, start=..., end=...): ...
+ def rjust(self, width, fillchar=...): ...
+ def rpartition(self, sep): ...
+ def rsplit(self, sep=..., maxsplit=...): ...
+ def rstrip(self, chars=...): ...
+ def split(self, sep=..., maxsplit=...): ...
+ def splitlines(self, keepends=...): ...
+ def startswith(self, prefix, start=..., end=...): ...
+ def strip(self, chars=...): ...
+ def swapcase(self): ...
+ def title(self): ...
+ def translate(self, table, deletechars=...): ...
+ def upper(self): ...
+ def zfill(self, width): ...
+ def isnumeric(self): ...
+ def isdecimal(self): ...
+
+class finfo:
+ def __new__(cls, dtype: Any) -> Any: ...
+ def __getattr__(self, key: str) -> Any: ...
+
+class format_parser:
+ def __init__(
+ self,
+ formats: Any,
+ names: Any,
+ titles: Any,
+ aligned: Any = ...,
+ byteorder: Any = ...,
+ ) -> None: ...
+
+class iinfo:
+ def __init__(self, int_type: Any) -> None: ...
+ def __getattr__(self, key: str) -> Any: ...
+
+class matrix(ndarray[_ShapeType, _DType_co]):
+ def __new__(
+ subtype,
+ data: Any,
+ dtype: Any = ...,
+ copy: Any = ...,
+ ) -> Any: ...
+ def __array_finalize__(self, obj): ...
+ def __getitem__(self, index): ...
+ def __mul__(self, other): ...
+ def __rmul__(self, other): ...
+ def __imul__(self, other): ...
+ def __pow__(self, other): ...
+ def __ipow__(self, other): ...
+ def __rpow__(self, other): ...
+ def tolist(self): ...
+ def sum(self, axis=..., dtype=..., out=...): ...
+ def squeeze(self, axis=...): ...
+ def flatten(self, order=...): ...
+ def mean(self, axis=..., dtype=..., out=...): ...
+ def std(self, axis=..., dtype=..., out=..., ddof=...): ...
+ def var(self, axis=..., dtype=..., out=..., ddof=...): ...
+ def prod(self, axis=..., dtype=..., out=...): ...
+ def any(self, axis=..., out=...): ...
+ def all(self, axis=..., out=...): ...
+ def max(self, axis=..., out=...): ...
+ def argmax(self, axis=..., out=...): ...
+ def min(self, axis=..., out=...): ...
+ def argmin(self, axis=..., out=...): ...
+ def ptp(self, axis=..., out=...): ...
+ def ravel(self, order=...): ...
+ @property
+ def T(self): ...
+ @property
+ def I(self): ...
+ @property
+ def A(self): ...
+ @property
+ def A1(self): ...
+ @property
+ def H(self): ...
+ def getT(self): ...
+ def getA(self): ...
+ def getA1(self): ...
+ def getH(self): ...
+ def getI(self): ...
+
+class memmap(ndarray[_ShapeType, _DType_co]):
+ def __new__(
+ subtype,
+ filename: Any,
+ dtype: Any = ...,
+ mode: Any = ...,
+ offset: Any = ...,
+ shape: Any = ...,
+ order: Any = ...,
+ ) -> Any: ...
+ def __getattr__(self, key: str) -> Any: ...
+
+class nditer:
+ def __new__(
+ cls,
+ op: Any,
+ flags: Any = ...,
+ op_flags: Any = ...,
+ op_dtypes: Any = ...,
+ order: Any = ...,
+ casting: Any = ...,
+ op_axes: Any = ...,
+ itershape: Any = ...,
+ buffersize: Any = ...,
+ ) -> Any: ...
+ def __getattr__(self, key: str) -> Any: ...
+ def __enter__(self) -> nditer: ...
+ def __exit__(
+ self,
+ exc_type: None | Type[BaseException],
+ exc_value: None | BaseException,
+ traceback: None | TracebackType,
+ ) -> None: ...
+ def __iter__(self) -> Iterator[Any]: ...
+ def __next__(self) -> Any: ...
+ def __len__(self) -> int: ...
+ def __copy__(self) -> nditer: ...
+ def __getitem__(self, index: SupportsIndex | slice) -> Any: ...
+ def __setitem__(self, index: SupportsIndex | slice, value: Any) -> None: ...
+ def __delitem__(self, key: SupportsIndex | slice) -> None: ...
+
+
+class poly1d:
+ def __init__(
+ self,
+ c_or_r: Any,
+ r: Any = ...,
+ variable: Any = ...,
+ ) -> None: ...
+ def __call__(self, val: Any) -> Any: ...
+ __hash__: Any
+ @property
+ def coeffs(self): ...
+ @coeffs.setter
+ def coeffs(self, value): ...
+ @property
+ def c(self): ...
+ @c.setter
+ def c(self, value): ...
+ @property
+ def coef(self): ...
+ @coef.setter
+ def coef(self, value): ...
+ @property
+ def coefficients(self): ...
+ @coefficients.setter
+ def coefficients(self, value): ...
+ @property
+ def variable(self): ...
+ @property
+ def order(self): ...
+ @property
+ def o(self): ...
+ @property
+ def roots(self): ...
+ @property
+ def r(self): ...
+ def __array__(self, t=...): ...
+ def __len__(self): ...
+ def __neg__(self): ...
+ def __pos__(self): ...
+ def __mul__(self, other): ...
+ def __rmul__(self, other): ...
+ def __add__(self, other): ...
+ def __radd__(self, other): ...
+ def __pow__(self, val): ...
+ def __sub__(self, other): ...
+ def __rsub__(self, other): ...
+ def __div__(self, other): ...
+ def __truediv__(self, other): ...
+ def __rdiv__(self, other): ...
+ def __rtruediv__(self, other): ...
+ def __eq__(self, other): ...
+ def __ne__(self, other): ...
+ def __getitem__(self, val): ...
+ def __setitem__(self, key, val): ...
+ def __iter__(self): ...
+ def integ(self, m=..., k=...): ...
+ def deriv(self, m=...): ...
+
+class recarray(ndarray[_ShapeType, _DType_co]):
+ def __new__(
+ subtype,
+ shape: Any,
+ dtype: Any = ...,
+ buf: Any = ...,
+ offset: Any = ...,
+ strides: Any = ...,
+ formats: Any = ...,
+ names: Any = ...,
+ titles: Any = ...,
+ byteorder: Any = ...,
+ aligned: Any = ...,
+ order: Any = ...,
+ ) -> Any: ...
+ def __array_finalize__(self, obj): ...
+ def __getattribute__(self, attr): ...
+ def __setattr__(self, attr, val): ...
+ def __getitem__(self, indx): ...
+ def field(self, attr, val=...): ...
+
+class record(void):
+ def __getattribute__(self, attr): ...
+ def __setattr__(self, attr, val): ...
+ def __getitem__(self, indx): ...
+ def pprint(self): ...
+
+class vectorize:
+ pyfunc: Any
+ cache: Any
+ signature: Any
+ otypes: Any
+ excluded: Any
+ __doc__: Any
+ def __init__(
+ self,
+ pyfunc,
+ otypes: Any = ...,
+ doc: Any = ...,
+ excluded: Any = ...,
+ cache: Any = ...,
+ signature: Any = ...,
+ ) -> None: ...
+ def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
+
+# Placeholders for Python-based functions
+def asmatrix(data, dtype=...): ...
+def asscalar(a): ...
+def cumproduct(*args, **kwargs): ...
+def histogram(a, bins=..., range=..., normed=..., weights=..., density=...): ...
+def histogram_bin_edges(a, bins=..., range=..., weights=...): ...
+def histogramdd(sample, bins=..., range=..., normed=..., weights=..., density=...): ...
+def mat(data, dtype=...): ...
+def max(a, axis=..., out=..., keepdims=..., initial=..., where=...): ...
+def min(a, axis=..., out=..., keepdims=..., initial=..., where=...): ...
+def product(*args, **kwargs): ...
+def round(a, decimals=..., out=...): ...
+def round_(a, decimals=..., out=...): ...
+def show_config(): ...
+
+# Placeholders for C-based functions
+# TODO: Sort out which parameters are positional-only
+@overload
+def arange(stop, dtype=..., *, like=...): ...
+@overload
+def arange(start, stop, step=..., dtype=..., *, like=...): ...
+def busday_count(
+ begindates,
+ enddates,
+ weekmask=...,
+ holidays=...,
+ busdaycal=...,
+ out=...,
+): ...
+def busday_offset(
+ dates,
+ offsets,
+ roll=...,
+ weekmask=...,
+ holidays=...,
+ busdaycal=...,
+ out=...,
+): ...
+def can_cast(from_, to, casting=...): ...
+def compare_chararrays(a, b, cmp_op, rstrip): ...
+def concatenate(__a, axis=..., out=..., dtype=..., casting=...): ...
+def copyto(dst, src, casting=..., where=...): ...
+def datetime_as_string(arr, unit=..., timezone=..., casting=...): ...
+def datetime_data(__dtype): ...
+def dot(a, b, out=...): ...
+def frombuffer(buffer, dtype=..., count=..., offset=..., *, like=...): ...
+def fromfile(
+ file, dtype=..., count=..., sep=..., offset=..., *, like=...
+): ...
+def fromiter(iter, dtype, count=..., *, like=...): ...
+def frompyfunc(func, nin, nout, * identity): ...
+def fromstring(string, dtype=..., count=..., sep=..., *, like=...): ...
+def geterrobj(): ...
+def inner(a, b): ...
+def is_busday(
+ dates, weekmask=..., holidays=..., busdaycal=..., out=...
+): ...
+def lexsort(keys, axis=...): ...
+def may_share_memory(a, b, max_work=...): ...
+def min_scalar_type(a): ...
+def nested_iters(*args, **kwargs): ... # TODO: Sort out parameters
+def promote_types(type1, type2): ...
+def putmask(a, mask, values): ...
+def result_type(*arrays_and_dtypes): ...
+def seterrobj(errobj): ...
+def shares_memory(a, b, max_work=...): ...
+def vdot(a, b): ...
+@overload
+def where(__condition): ...
+@overload
+def where(__condition, __x, __y): ...
+
+_NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray)
+_DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic)
+_ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"]
+
+class dtype(Generic[_DTypeScalar_co]):
+ names: Optional[Tuple[builtins.str, ...]]
+ # Overload for subclass of generic
+ @overload
+ def __new__(
+ cls,
+ dtype: Type[_DTypeScalar_co],
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ # Overloads for string aliases, Python types, and some assorted
+ # other special cases. Order is sometimes important because of the
+ # subtype relationships
+ #
+ # bool < int < float < complex < object
+ #
+ # so we have to make sure the overloads for the narrowest type is
+ # first.
+ # Builtin types
+ @overload
+ def __new__(cls, dtype: Type[bool], align: bool = ..., copy: bool = ...) -> dtype[bool_]: ...
+ @overload
+ def __new__(cls, dtype: Type[int], align: bool = ..., copy: bool = ...) -> dtype[int_]: ...
+ @overload
+ def __new__(cls, dtype: Optional[Type[float]], align: bool = ..., copy: bool = ...) -> dtype[float_]: ...
+ @overload
+ def __new__(cls, dtype: Type[complex], align: bool = ..., copy: bool = ...) -> dtype[complex_]: ...
+ @overload
+ def __new__(cls, dtype: Type[builtins.str], align: bool = ..., copy: bool = ...) -> dtype[str_]: ...
+ @overload
+ def __new__(cls, dtype: Type[bytes], align: bool = ..., copy: bool = ...) -> dtype[bytes_]: ...
+
+ # `unsignedinteger` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _UInt8Codes | Type[ct.c_uint8], align: bool = ..., copy: bool = ...) -> dtype[uint8]: ...
+ @overload
+ def __new__(cls, dtype: _UInt16Codes | Type[ct.c_uint16], align: bool = ..., copy: bool = ...) -> dtype[uint16]: ...
+ @overload
+ def __new__(cls, dtype: _UInt32Codes | Type[ct.c_uint32], align: bool = ..., copy: bool = ...) -> dtype[uint32]: ...
+ @overload
+ def __new__(cls, dtype: _UInt64Codes | Type[ct.c_uint64], align: bool = ..., copy: bool = ...) -> dtype[uint64]: ...
+ @overload
+ def __new__(cls, dtype: _UByteCodes | Type[ct.c_ubyte], align: bool = ..., copy: bool = ...) -> dtype[ubyte]: ...
+ @overload
+ def __new__(cls, dtype: _UShortCodes | Type[ct.c_ushort], align: bool = ..., copy: bool = ...) -> dtype[ushort]: ...
+ @overload
+ def __new__(cls, dtype: _UIntCCodes | Type[ct.c_uint], align: bool = ..., copy: bool = ...) -> dtype[uintc]: ...
+
+ # NOTE: We're assuming here that `uint_ptr_t == size_t`,
+ # an assumption that does not hold in rare cases (same for `ssize_t`)
+ @overload
+ def __new__(cls, dtype: _UIntPCodes | Type[ct.c_void_p] | Type[ct.c_size_t], align: bool = ..., copy: bool = ...) -> dtype[uintp]: ...
+ @overload
+ def __new__(cls, dtype: _UIntCodes | Type[ct.c_ulong], align: bool = ..., copy: bool = ...) -> dtype[uint]: ...
+ @overload
+ def __new__(cls, dtype: _ULongLongCodes | Type[ct.c_ulonglong], align: bool = ..., copy: bool = ...) -> dtype[ulonglong]: ...
+
+ # `signedinteger` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _Int8Codes | Type[ct.c_int8], align: bool = ..., copy: bool = ...) -> dtype[int8]: ...
+ @overload
+ def __new__(cls, dtype: _Int16Codes | Type[ct.c_int16], align: bool = ..., copy: bool = ...) -> dtype[int16]: ...
+ @overload
+ def __new__(cls, dtype: _Int32Codes | Type[ct.c_int32], align: bool = ..., copy: bool = ...) -> dtype[int32]: ...
+ @overload
+ def __new__(cls, dtype: _Int64Codes | Type[ct.c_int64], align: bool = ..., copy: bool = ...) -> dtype[int64]: ...
+ @overload
+ def __new__(cls, dtype: _ByteCodes | Type[ct.c_byte], align: bool = ..., copy: bool = ...) -> dtype[byte]: ...
+ @overload
+ def __new__(cls, dtype: _ShortCodes | Type[ct.c_short], align: bool = ..., copy: bool = ...) -> dtype[short]: ...
+ @overload
+ def __new__(cls, dtype: _IntCCodes | Type[ct.c_int], align: bool = ..., copy: bool = ...) -> dtype[intc]: ...
+ @overload
+ def __new__(cls, dtype: _IntPCodes | Type[ct.c_ssize_t], align: bool = ..., copy: bool = ...) -> dtype[intp]: ...
+ @overload
+ def __new__(cls, dtype: _IntCodes | Type[ct.c_long], align: bool = ..., copy: bool = ...) -> dtype[int_]: ...
+ @overload
+ def __new__(cls, dtype: _LongLongCodes | Type[ct.c_longlong], align: bool = ..., copy: bool = ...) -> dtype[longlong]: ...
+
+ # `floating` string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _Float16Codes, align: bool = ..., copy: bool = ...) -> dtype[float16]: ...
+ @overload
+ def __new__(cls, dtype: _Float32Codes, align: bool = ..., copy: bool = ...) -> dtype[float32]: ...
+ @overload
+ def __new__(cls, dtype: _Float64Codes, align: bool = ..., copy: bool = ...) -> dtype[float64]: ...
+ @overload
+ def __new__(cls, dtype: _HalfCodes, align: bool = ..., copy: bool = ...) -> dtype[half]: ...
+ @overload
+ def __new__(cls, dtype: _SingleCodes | Type[ct.c_float], align: bool = ..., copy: bool = ...) -> dtype[single]: ...
+ @overload
+ def __new__(cls, dtype: _DoubleCodes | Type[ct.c_double], align: bool = ..., copy: bool = ...) -> dtype[double]: ...
+ @overload
+ def __new__(cls, dtype: _LongDoubleCodes | Type[ct.c_longdouble], align: bool = ..., copy: bool = ...) -> dtype[longdouble]: ...
+
+ # `complexfloating` string-based representations
+ @overload
+ def __new__(cls, dtype: _Complex64Codes, align: bool = ..., copy: bool = ...) -> dtype[complex64]: ...
+ @overload
+ def __new__(cls, dtype: _Complex128Codes, align: bool = ..., copy: bool = ...) -> dtype[complex128]: ...
+ @overload
+ def __new__(cls, dtype: _CSingleCodes, align: bool = ..., copy: bool = ...) -> dtype[csingle]: ...
+ @overload
+ def __new__(cls, dtype: _CDoubleCodes, align: bool = ..., copy: bool = ...) -> dtype[cdouble]: ...
+ @overload
+ def __new__(cls, dtype: _CLongDoubleCodes, align: bool = ..., copy: bool = ...) -> dtype[clongdouble]: ...
+
+ # Miscellaneous string-based representations and ctypes
+ @overload
+ def __new__(cls, dtype: _BoolCodes | Type[ct.c_bool], align: bool = ..., copy: bool = ...) -> dtype[bool_]: ...
+ @overload
+ def __new__(cls, dtype: _TD64Codes, align: bool = ..., copy: bool = ...) -> dtype[timedelta64]: ...
+ @overload
+ def __new__(cls, dtype: _DT64Codes, align: bool = ..., copy: bool = ...) -> dtype[datetime64]: ...
+ @overload
+ def __new__(cls, dtype: _StrCodes, align: bool = ..., copy: bool = ...) -> dtype[str_]: ...
+ @overload
+ def __new__(cls, dtype: _BytesCodes | Type[ct.c_char], align: bool = ..., copy: bool = ...) -> dtype[bytes_]: ...
+ @overload
+ def __new__(cls, dtype: _VoidCodes, align: bool = ..., copy: bool = ...) -> dtype[void]: ...
+ @overload
+ def __new__(cls, dtype: _ObjectCodes | Type[ct.py_object], align: bool = ..., copy: bool = ...) -> dtype[object_]: ...
+
+ # dtype of a dtype is the same dtype
+ @overload
+ def __new__(
+ cls,
+ dtype: dtype[_DTypeScalar_co],
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ @overload
+ def __new__(
+ cls,
+ dtype: _SupportsDType[dtype[_DTypeScalar_co]],
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[_DTypeScalar_co]: ...
+ # Handle strings that can't be expressed as literals; i.e. s1, s2, ...
+ @overload
+ def __new__(
+ cls,
+ dtype: builtins.str,
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[Any]: ...
+ # Catchall overload for void-likes
+ @overload
+ def __new__(
+ cls,
+ dtype: _VoidDTypeLike,
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[void]: ...
+ # Catchall overload for object-likes
+ @overload
+ def __new__(
+ cls,
+ dtype: Type[object],
+ align: bool = ...,
+ copy: bool = ...,
+ ) -> dtype[object_]: ...
+
+ @overload
+ def __getitem__(self: dtype[void], key: List[builtins.str]) -> dtype[void]: ...
+ @overload
+ def __getitem__(self: dtype[void], key: Union[builtins.str, int]) -> dtype[Any]: ...
+
+ # NOTE: In the future 1-based multiplications will also yield `void` dtypes
+ @overload
+ def __mul__(self, value: L[0]) -> None: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _DType, value: L[1]) -> _DType: ...
+ @overload
+ def __mul__(self, value: int) -> dtype[void]: ...
+
+ # NOTE: `__rmul__` seems to be broken when used in combination with
+ # literals as of mypy 0.800. Set the return-type to `Any` for now.
+ def __rmul__(self, value: int) -> Any: ...
+
+ def __gt__(self, other: DTypeLike) -> bool: ...
+ def __ge__(self, other: DTypeLike) -> bool: ...
+ def __lt__(self, other: DTypeLike) -> bool: ...
+ def __le__(self, other: DTypeLike) -> bool: ...
+ @property
+ def alignment(self) -> int: ...
+ @property
+ def base(self: _DType) -> _DType: ...
+ @property
+ def byteorder(self) -> builtins.str: ...
+ @property
+ def char(self) -> builtins.str: ...
+ @property
+ def descr(self) -> List[Union[Tuple[builtins.str, builtins.str], Tuple[builtins.str, builtins.str, _Shape]]]: ...
+ @property
+ def fields(
+ self,
+ ) -> Optional[Mapping[builtins.str, Union[Tuple[dtype[Any], int], Tuple[dtype[Any], int, Any]]]]: ...
+ @property
+ def flags(self) -> int: ...
+ @property
+ def hasobject(self) -> bool: ...
+ @property
+ def isbuiltin(self) -> int: ...
+ @property
+ def isnative(self) -> bool: ...
+ @property
+ def isalignedstruct(self) -> bool: ...
+ @property
+ def itemsize(self) -> int: ...
+ @property
+ def kind(self) -> builtins.str: ...
+ @property
+ def metadata(self) -> Optional[Mapping[builtins.str, Any]]: ...
+ @property
+ def name(self) -> builtins.str: ...
+ @property
+ def names(self) -> Optional[Tuple[str, ...]]: ...
+ @property
+ def num(self) -> int: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def subdtype(self: _DType) -> Optional[Tuple[_DType, _Shape]]: ...
+ def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ...
+ @property
+ def str(self) -> builtins.str: ...
+ @property
+ def type(self) -> Type[_DTypeScalar_co]: ...
+
+class _flagsobj:
+ aligned: bool
+ updateifcopy: bool
+ writeable: bool
+ writebackifcopy: bool
+ @property
+ def behaved(self) -> bool: ...
+ @property
+ def c_contiguous(self) -> bool: ...
+ @property
+ def carray(self) -> bool: ...
+ @property
+ def contiguous(self) -> bool: ...
+ @property
+ def f_contiguous(self) -> bool: ...
+ @property
+ def farray(self) -> bool: ...
+ @property
+ def fnc(self) -> bool: ...
+ @property
+ def forc(self) -> bool: ...
+ @property
+ def fortran(self) -> bool: ...
+ @property
+ def num(self) -> int: ...
+ @property
+ def owndata(self) -> bool: ...
+ def __getitem__(self, key: str) -> bool: ...
+ def __setitem__(self, key: str, value: bool) -> None: ...
+
+_ArrayLikeInt = Union[
+ int,
+ integer,
+ Sequence[Union[int, integer]],
+ Sequence[Sequence[Any]], # TODO: wait for support for recursive types
+ ndarray
+]
+
+_FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter)
+
+class flatiter(Generic[_NdArraySubClass]):
+ @property
+ def base(self) -> _NdArraySubClass: ...
+ @property
+ def coords(self) -> _Shape: ...
+ @property
+ def index(self) -> int: ...
+ def copy(self) -> _NdArraySubClass: ...
+ def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ...
+ def __next__(self: flatiter[ndarray[Any, dtype[_ScalarType]]]) -> _ScalarType: ...
+ def __len__(self) -> int: ...
+ @overload
+ def __getitem__(
+ self: flatiter[ndarray[Any, dtype[_ScalarType]]],
+ key: Union[int, integer],
+ ) -> _ScalarType: ...
+ @overload
+ def __getitem__(
+ self, key: Union[_ArrayLikeInt, slice, ellipsis],
+ ) -> _NdArraySubClass: ...
+ @overload
+ def __array__(self: flatiter[ndarray[Any, _DType]], __dtype: None = ...) -> ndarray[Any, _DType]: ...
+ @overload
+ def __array__(self, __dtype: _DType) -> ndarray[Any, _DType]: ...
+
+_OrderKACF = Optional[L["K", "A", "C", "F"]]
+_OrderACF = Optional[L["A", "C", "F"]]
+_OrderCF = Optional[L["C", "F"]]
+
+_ModeKind = L["raise", "wrap", "clip"]
+_PartitionKind = L["introselect"]
+_SortKind = L["quicksort", "mergesort", "heapsort", "stable"]
+_SortSide = L["left", "right"]
+
+_ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon)
+
+class _ArrayOrScalarCommon:
+ @property
+ def T(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def data(self) -> memoryview: ...
+ @property
+ def flags(self) -> _flagsobj: ...
+ @property
+ def itemsize(self) -> int: ...
+ @property
+ def nbytes(self) -> int: ...
+ def __bool__(self) -> bool: ...
+ def __bytes__(self) -> bytes: ...
+ def __str__(self) -> str: ...
+ def __repr__(self) -> str: ...
+ def __copy__(self: _ArraySelf) -> _ArraySelf: ...
+ def __deepcopy__(self: _ArraySelf, __memo: Optional[dict] = ...) -> _ArraySelf: ...
+ def __eq__(self, other): ...
+ def __ne__(self, other): ...
+ def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ...
+ def dump(self, file: str) -> None: ...
+ def dumps(self) -> bytes: ...
+ def tobytes(self, order: _OrderKACF = ...) -> bytes: ...
+ # NOTE: `tostring()` is deprecated and therefore excluded
+ # def tostring(self, order=...): ...
+ def tofile(
+ self, fid: Union[IO[bytes], str, bytes, os.PathLike[Any]], sep: str = ..., format: str = ...
+ ) -> None: ...
+ # generics and 0d arrays return builtin scalars
+ def tolist(self) -> Any: ...
+
+ # TODO: Add proper signatures
+ def __getitem__(self, key) -> Any: ...
+ @property
+ def __array_interface__(self): ...
+ @property
+ def __array_priority__(self): ...
+ @property
+ def __array_struct__(self): ...
+ def __array_wrap__(array, context=...): ...
+ def __setstate__(self, __state): ...
+ # a `bool_` is returned when `keepdims=True` and `self` is a 0d array
+
+ @overload
+ def all(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: L[False] = ...,
+ ) -> bool_: ...
+ @overload
+ def all(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def all(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def any(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: L[False] = ...,
+ ) -> bool_: ...
+ @overload
+ def any(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def any(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def argmax(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ ) -> intp: ...
+ @overload
+ def argmax(
+ self,
+ axis: _ShapeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
+ @overload
+ def argmax(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def argmin(
+ self,
+ axis: None = ...,
+ out: None = ...,
+ ) -> intp: ...
+ @overload
+ def argmin(
+ self,
+ axis: _ShapeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
+ @overload
+ def argmin(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ def argsort(
+ self,
+ axis: Optional[SupportsIndex] = ...,
+ kind: Optional[_SortKind] = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+ ) -> ndarray: ...
+
+ @overload
+ def choose(
+ self,
+ choices: ArrayLike,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray: ...
+ @overload
+ def choose(
+ self,
+ choices: ArrayLike,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def clip(
+ self,
+ min: ArrayLike = ...,
+ max: Optional[ArrayLike] = ...,
+ out: None = ...,
+ **kwargs: Any,
+ ) -> ndarray: ...
+ @overload
+ def clip(
+ self,
+ min: None = ...,
+ max: ArrayLike = ...,
+ out: None = ...,
+ **kwargs: Any,
+ ) -> ndarray: ...
+ @overload
+ def clip(
+ self,
+ min: ArrayLike = ...,
+ max: Optional[ArrayLike] = ...,
+ out: _NdArraySubClass = ...,
+ **kwargs: Any,
+ ) -> _NdArraySubClass: ...
+ @overload
+ def clip(
+ self,
+ min: None = ...,
+ max: ArrayLike = ...,
+ out: _NdArraySubClass = ...,
+ **kwargs: Any,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def compress(
+ self,
+ a: ArrayLike,
+ axis: Optional[SupportsIndex] = ...,
+ out: None = ...,
+ ) -> ndarray: ...
+ @overload
+ def compress(
+ self,
+ a: ArrayLike,
+ axis: Optional[SupportsIndex] = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ def conj(self: _ArraySelf) -> _ArraySelf: ...
+
+ def conjugate(self: _ArraySelf) -> _ArraySelf: ...
+
+ @overload
+ def cumprod(
+ self,
+ axis: Optional[SupportsIndex] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> ndarray: ...
+ @overload
+ def cumprod(
+ self,
+ axis: Optional[SupportsIndex] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def cumsum(
+ self,
+ axis: Optional[SupportsIndex] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> ndarray: ...
+ @overload
+ def cumsum(
+ self,
+ axis: Optional[SupportsIndex] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def max(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def max(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def mean(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def mean(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def min(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def min(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ def newbyteorder(
+ self: _ArraySelf,
+ __new_order: _ByteOrder = ...,
+ ) -> _ArraySelf: ...
+
+ @overload
+ def prod(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def prod(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def ptp(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def ptp(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def round(
+ self: _ArraySelf,
+ decimals: SupportsIndex = ...,
+ out: None = ...,
+ ) -> _ArraySelf: ...
+ @overload
+ def round(
+ self,
+ decimals: SupportsIndex = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def std(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def std(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def sum(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> Any: ...
+ @overload
+ def sum(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def var(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+ ) -> Any: ...
+ @overload
+ def var(
+ self,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+ ) -> _NdArraySubClass: ...
+
+_DType = TypeVar("_DType", bound=dtype[Any])
+_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
+
+# TODO: Set the `bound` to something more suitable once we
+# have proper shape support
+_ShapeType = TypeVar("_ShapeType", bound=Any)
+_NumberType = TypeVar("_NumberType", bound=number[Any])
+_BufferType = Union[ndarray, bytes, bytearray, memoryview]
+
+_T = TypeVar("_T")
+_T_co = TypeVar("_T_co", covariant=True)
+_2Tuple = Tuple[_T, _T]
+_Casting = L["no", "equiv", "safe", "same_kind", "unsafe"]
+
+_DTypeLike = Union[
+ dtype[_ScalarType],
+ Type[_ScalarType],
+ _SupportsDType[dtype[_ScalarType]],
+]
+
+_ArrayUInt_co = NDArray[Union[bool_, unsignedinteger[Any]]]
+_ArrayInt_co = NDArray[Union[bool_, integer[Any]]]
+_ArrayFloat_co = NDArray[Union[bool_, integer[Any], floating[Any]]]
+_ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]]
+_ArrayNumber_co = NDArray[Union[bool_, number[Any]]]
+_ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]]
+
+# Introduce an alias for `dtype` to avoid naming conflicts.
+_dtype = dtype
+
+class _SupportsItem(Protocol[_T_co]):
+ def item(self, __args: Any) -> _T_co: ...
+
+class _SupportsReal(Protocol[_T_co]):
+ @property
+ def real(self) -> _T_co: ...
+
+class _SupportsImag(Protocol[_T_co]):
+ @property
+ def imag(self) -> _T_co: ...
+
+class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]):
+ @property
+ def base(self) -> Optional[ndarray]: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def size(self) -> int: ...
+ @property
+ def real(
+ self: NDArray[_SupportsReal[_ScalarType]], # type: ignore[type-var]
+ ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
+ @real.setter
+ def real(self, value: ArrayLike) -> None: ...
+ @property
+ def imag(
+ self: NDArray[_SupportsImag[_ScalarType]], # type: ignore[type-var]
+ ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ...
+ @imag.setter
+ def imag(self, value: ArrayLike) -> None: ...
+ def __new__(
+ cls: Type[_ArraySelf],
+ shape: _ShapeLike,
+ dtype: DTypeLike = ...,
+ buffer: _BufferType = ...,
+ offset: int = ...,
+ strides: _ShapeLike = ...,
+ order: _OrderKACF = ...,
+ ) -> _ArraySelf: ...
+ @overload
+ def __array__(self, __dtype: None = ...) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def __array__(self, __dtype: _DType) -> ndarray[Any, _DType]: ...
+ @property
+ def ctypes(self) -> _ctypes[int]: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @shape.setter
+ def shape(self, value: _ShapeLike) -> None: ...
+ @property
+ def strides(self) -> _Shape: ...
+ @strides.setter
+ def strides(self, value: _ShapeLike) -> None: ...
+ def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ...
+ def fill(self, value: Any) -> None: ...
+ @property
+ def flat(self: _NdArraySubClass) -> flatiter[_NdArraySubClass]: ...
+
+ # Use the same output type as that of the underlying `generic`
+ @overload
+ def item(
+ self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
+ *args: SupportsIndex,
+ ) -> _T: ...
+ @overload
+ def item(
+ self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var]
+ __args: Tuple[SupportsIndex, ...],
+ ) -> _T: ...
+
+ @overload
+ def itemset(self, __value: Any) -> None: ...
+ @overload
+ def itemset(self, __item: _ShapeLike, __value: Any) -> None: ...
+
+ @overload
+ def resize(self, __new_shape: _ShapeLike, *, refcheck: bool = ...) -> None: ...
+ @overload
+ def resize(self, *new_shape: SupportsIndex, refcheck: bool = ...) -> None: ...
+
+ def setflags(
+ self, write: bool = ..., align: bool = ..., uic: bool = ...
+ ) -> None: ...
+
+ def squeeze(
+ self,
+ axis: Union[SupportsIndex, Tuple[SupportsIndex, ...]] = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def swapaxes(
+ self,
+ axis1: SupportsIndex,
+ axis2: SupportsIndex,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def transpose(self: _ArraySelf, __axes: _ShapeLike) -> _ArraySelf: ...
+ @overload
+ def transpose(self: _ArraySelf, *axes: SupportsIndex) -> _ArraySelf: ...
+
+ def argpartition(
+ self,
+ kth: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ kind: _PartitionKind = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+ ) -> ndarray[Any, _dtype[intp]]: ...
+
+ def diagonal(
+ self,
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ # 1D + 1D returns a scalar;
+ # all other with at least 1 non-0D array return an ndarray.
+ @overload
+ def dot(self, b: _ScalarLike_co, out: None = ...) -> ndarray: ...
+ @overload
+ def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc]
+ @overload
+ def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ...
+
+ # `nonzero()` is deprecated for 0d arrays/generics
+ def nonzero(self) -> Tuple[ndarray[Any, _dtype[intp]], ...]: ...
+
+ def partition(
+ self,
+ kth: _ArrayLikeInt_co,
+ axis: SupportsIndex = ...,
+ kind: _PartitionKind = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+ ) -> None: ...
+
+ # `put` is technically available to `generic`,
+ # but is pointless as `generic`s are immutable
+ def put(
+ self,
+ ind: _ArrayLikeInt_co,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
+ ) -> None: ...
+
+ @overload
+ def searchsorted( # type: ignore[misc]
+ self, # >= 1D array
+ v: _ScalarLike_co, # 0D array-like
+ side: _SortSide = ...,
+ sorter: Optional[_ArrayLikeInt_co] = ...,
+ ) -> intp: ...
+ @overload
+ def searchsorted(
+ self, # >= 1D array
+ v: ArrayLike,
+ side: _SortSide = ...,
+ sorter: Optional[_ArrayLikeInt_co] = ...,
+ ) -> ndarray[Any, _dtype[intp]]: ...
+
+ def setfield(
+ self,
+ val: ArrayLike,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...,
+ ) -> None: ...
+
+ def sort(
+ self,
+ axis: SupportsIndex = ...,
+ kind: Optional[_SortKind] = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+ ) -> None: ...
+
+ @overload
+ def trace(
+ self, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: None = ...,
+ ) -> Any: ...
+ @overload
+ def trace(
+ self, # >= 2D array
+ offset: SupportsIndex = ...,
+ axis1: SupportsIndex = ...,
+ axis2: SupportsIndex = ...,
+ dtype: DTypeLike = ...,
+ out: _NdArraySubClass = ...,
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def take( # type: ignore[misc]
+ self: ndarray[Any, _dtype[_ScalarType]],
+ indices: _IntLike_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def take( # type: ignore[misc]
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def take(
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ def repeat(
+ self,
+ repeats: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def flatten(
+ self,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ def ravel(
+ self,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def reshape(
+ self, __shape: _ShapeLike, *, order: _OrderACF = ...
+ ) -> ndarray[Any, _DType_co]: ...
+ @overload
+ def reshape(
+ self, *shape: SupportsIndex, order: _OrderACF = ...
+ ) -> ndarray[Any, _DType_co]: ...
+
+ @overload
+ def astype(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ order: _OrderKACF = ...,
+ casting: _Casting = ...,
+ subok: bool = ...,
+ copy: bool = ...,
+ ) -> NDArray[_ScalarType]: ...
+ @overload
+ def astype(
+ self,
+ dtype: DTypeLike,
+ order: _OrderKACF = ...,
+ casting: _Casting = ...,
+ subok: bool = ...,
+ copy: bool = ...,
+ ) -> NDArray[Any]: ...
+
+ @overload
+ def view(self: _ArraySelf) -> _ArraySelf: ...
+ @overload
+ def view(self, type: Type[_NdArraySubClass]) -> _NdArraySubClass: ...
+ @overload
+ def view(self, dtype: _DTypeLike[_ScalarType]) -> NDArray[_ScalarType]: ...
+ @overload
+ def view(self, dtype: DTypeLike) -> NDArray[Any]: ...
+ @overload
+ def view(
+ self,
+ dtype: DTypeLike,
+ type: Type[_NdArraySubClass],
+ ) -> _NdArraySubClass: ...
+
+ @overload
+ def getfield(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ offset: SupportsIndex = ...
+ ) -> NDArray[_ScalarType]: ...
+ @overload
+ def getfield(
+ self,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...
+ ) -> NDArray[Any]: ...
+
+ # Dispatch to the underlying `generic` via protocols
+ def __int__(
+ self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var]
+ ) -> int: ...
+
+ def __float__(
+ self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var]
+ ) -> float: ...
+
+ def __complex__(
+ self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var]
+ ) -> complex: ...
+
+ def __index__(
+ self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var]
+ ) -> int: ...
+
+ def __len__(self) -> int: ...
+ def __setitem__(self, key, value): ...
+ def __iter__(self) -> Any: ...
+ def __contains__(self, key) -> bool: ...
+
+ # The last overload is for catching recursive objects whose
+ # nesting is too deep.
+ # The first overload is for catching `bytes` (as they are a subtype of
+ # `Sequence[int]`) and `str`. As `str` is a recusive sequence of
+ # strings, it will pass through the final overload otherwise
+
+ @overload
+ def __lt__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+ @overload
+ def __lt__(
+ self: NDArray[Union[number[Any], datetime64, timedelta64, bool_]],
+ other: _RecursiveSequence,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __le__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __le__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+ @overload
+ def __le__(
+ self: NDArray[Union[number[Any], datetime64, timedelta64, bool_]],
+ other: _RecursiveSequence,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __gt__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+ @overload
+ def __gt__(
+ self: NDArray[Union[number[Any], datetime64, timedelta64, bool_]],
+ other: _RecursiveSequence,
+ ) -> NDArray[bool_]: ...
+
+ @overload
+ def __ge__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ...
+ @overload
+ def __ge__(
+ self: NDArray[Union[number[Any], datetime64, timedelta64, bool_]],
+ other: _RecursiveSequence,
+ ) -> NDArray[bool_]: ...
+
+ # Unary ops
+ @overload
+ def __abs__(self: NDArray[bool_]) -> NDArray[bool_]: ...
+ @overload
+ def __abs__(self: NDArray[complexfloating[_NBit1, _NBit1]]) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __abs__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __abs__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __abs__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __invert__(self: NDArray[bool_]) -> NDArray[bool_]: ...
+ @overload
+ def __invert__(self: NDArray[_IntType]) -> NDArray[_IntType]: ...
+ @overload
+ def __invert__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __pos__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __pos__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __pos__(self: NDArray[object_]) -> Any: ...
+
+ @overload
+ def __neg__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ...
+ @overload
+ def __neg__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ...
+ @overload
+ def __neg__(self: NDArray[object_]) -> Any: ...
+
+ # Binary ops
+ # NOTE: `ndarray` does not implement `__imatmul__`
+ @overload
+ def __matmul__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __matmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __matmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __matmul__(
+ self: _ArrayNumber_co,
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rmatmul__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rmatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __rmatmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rmatmul__(
+ self: _ArrayNumber_co,
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __mod__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __mod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __mod__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __mod__(
+ self: NDArray[Union[bool_, integer[Any], floating[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rmod__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmod__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rmod__(
+ self: NDArray[Union[bool_, integer[Any], floating[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __divmod__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __divmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __divmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ...
+ @overload
+ def __divmod__(
+ self: NDArray[Union[bool_, integer[Any], floating[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> _2Tuple[Any]: ...
+
+ @overload
+ def __rdivmod__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
+ @overload
+ def __rdivmod__(self: _ArrayTD64_co, other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ...
+ @overload
+ def __rdivmod__(
+ self: NDArray[Union[bool_, integer[Any], floating[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> _2Tuple[Any]: ...
+
+ @overload
+ def __add__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __add__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __add__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __add__(
+ self: NDArray[Union[bool_, number[Any], timedelta64, datetime64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __radd__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __radd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __radd__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __radd__(
+ self: NDArray[Union[bool_, number[Any], timedelta64, datetime64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __sub__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __sub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __sub__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __sub__(
+ self: NDArray[Union[bool_, number[Any], timedelta64, datetime64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rsub__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rsub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... # type: ignore[misc]
+ @overload
+ def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rsub__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rsub__(
+ self: NDArray[Union[bool_, number[Any], timedelta64, datetime64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __mul__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __mul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __mul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __mul__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rmul__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rmul__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rmul__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __floordiv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __floordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __floordiv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __floordiv__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rfloordiv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rfloordiv__(self: NDArray[timedelta64], other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ...
+ @overload
+ def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
+ @overload
+ def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rfloordiv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rfloordiv__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __pow__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __pow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __pow__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __pow__(
+ self: NDArray[Union[bool_, number[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rpow__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rpow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
+ @overload
+ def __rpow__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rpow__(
+ self: NDArray[Union[bool_, number[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __truediv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __truediv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __truediv__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rtruediv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
+ @overload
+ def __rtruediv__(self: NDArray[timedelta64], other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ...
+ @overload
+ def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ...
+ @overload
+ def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __rtruediv__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rtruediv__(
+ self: NDArray[Union[bool_, number[Any], timedelta64]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __lshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __lshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __lshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __lshift__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rlshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rlshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rlshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rlshift__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rshift__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rrshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rrshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc]
+ @overload
+ def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rrshift__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rrshift__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __and__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __and__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __and__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __and__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __and__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rand__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rand__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rand__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __xor__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __xor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __xor__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __xor__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __rxor__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __rxor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __rxor__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __rxor__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __or__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __or__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __or__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __or__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __or__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ @overload
+ def __ror__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ror__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc]
+ @overload
+ def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
+ @overload
+ def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ...
+ @overload
+ def __ror__(self: NDArray[object_], other: Any) -> Any: ...
+ @overload
+ def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ...
+ @overload
+ def __ror__(
+ self: NDArray[Union[bool_, integer[Any]]],
+ other: _RecursiveSequence,
+ ) -> Any: ...
+
+ # `np.generic` does not support inplace operations
+ @overload # type: ignore[misc]
+ def __iadd__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __iadd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __iadd__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __iadd__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __iadd__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __isub__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __isub__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ...
+ @overload
+ def __isub__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __isub__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __imul__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __imul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __imul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __imul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __imul__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __itruediv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __itruediv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __itruediv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __itruediv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __itruediv__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __ifloordiv__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ifloordiv__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ...
+ @overload
+ def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __ifloordiv__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __ipow__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ipow__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ...
+ @overload
+ def __ipow__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __ipow__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __imod__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __imod__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ...
+ @overload
+ def __imod__(self: NDArray[timedelta64], other: _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ...
+ @overload
+ def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __imod__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __ilshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ilshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ilshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ilshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __ilshift__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __irshift__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __irshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __irshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __irshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __irshift__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __iand__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __iand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __iand__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __iand__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __iand__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __iand__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __ixor__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ixor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __ixor__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ixor__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ixor__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __ixor__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ @overload # type: ignore[misc]
+ def __ior__(self: NDArray[Any], other: _NestedSequence[Union[str, bytes]]) -> NoReturn: ...
+ @overload
+ def __ior__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ...
+ @overload
+ def __ior__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ...
+ @overload
+ def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ...
+ @overload
+ def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ...
+ @overload
+ def __ior__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ...
+
+ # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
+ @property
+ def dtype(self) -> _DType_co: ...
+
+# NOTE: while `np.generic` is not technically an instance of `ABCMeta`,
+# the `@abstractmethod` decorator is herein used to (forcefully) deny
+# the creation of `np.generic` instances.
+# The `# type: ignore` comments are necessary to silence mypy errors regarding
+# the missing `ABCMeta` metaclass.
+
+# See https://github.com/numpy/numpy-stubs/pull/80 for more details.
+
+_ScalarType = TypeVar("_ScalarType", bound=generic)
+_NBit1 = TypeVar("_NBit1", bound=NBitBase)
+_NBit2 = TypeVar("_NBit2", bound=NBitBase)
+
+class generic(_ArrayOrScalarCommon):
+ @abstractmethod
+ def __init__(self, *args: Any, **kwargs: Any) -> None: ...
+ @overload
+ def __array__(self: _ScalarType, __dtype: None = ...) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def __array__(self, __dtype: _DType) -> ndarray[Any, _DType]: ...
+ @property
+ def base(self) -> None: ...
+ @property
+ def ndim(self) -> L[0]: ...
+ @property
+ def size(self) -> L[1]: ...
+ @property
+ def shape(self) -> Tuple[()]: ...
+ @property
+ def strides(self) -> Tuple[()]: ...
+ def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ...
+ @property
+ def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ...
+
+ @overload
+ def astype(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ order: _OrderKACF = ...,
+ casting: _Casting = ...,
+ subok: bool = ...,
+ copy: bool = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def astype(
+ self,
+ dtype: DTypeLike,
+ order: _OrderKACF = ...,
+ casting: _Casting = ...,
+ subok: bool = ...,
+ copy: bool = ...,
+ ) -> Any: ...
+
+ # NOTE: `view` will perform a 0D->scalar cast,
+ # thus the array `type` is irrelevant to the output type
+ @overload
+ def view(
+ self: _ScalarType,
+ type: Type[ndarray[Any, Any]] = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def view(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ type: Type[ndarray[Any, Any]] = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def view(
+ self,
+ dtype: DTypeLike,
+ type: Type[ndarray[Any, Any]] = ...,
+ ) -> Any: ...
+
+ @overload
+ def getfield(
+ self,
+ dtype: _DTypeLike[_ScalarType],
+ offset: SupportsIndex = ...
+ ) -> _ScalarType: ...
+ @overload
+ def getfield(
+ self,
+ dtype: DTypeLike,
+ offset: SupportsIndex = ...
+ ) -> Any: ...
+
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> Any: ...
+
+ @overload
+ def take( # type: ignore[misc]
+ self: _ScalarType,
+ indices: _IntLike_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> _ScalarType: ...
+ @overload
+ def take( # type: ignore[misc]
+ self: _ScalarType,
+ indices: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: None = ...,
+ mode: _ModeKind = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def take(
+ self,
+ indices: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ out: _NdArraySubClass = ...,
+ mode: _ModeKind = ...,
+ ) -> _NdArraySubClass: ...
+
+ def repeat(
+ self: _ScalarType,
+ repeats: _ArrayLikeInt_co,
+ axis: Optional[SupportsIndex] = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def flatten(
+ self: _ScalarType,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def ravel(
+ self: _ScalarType,
+ order: _OrderKACF = ...,
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ @overload
+ def reshape(
+ self: _ScalarType, __shape: _ShapeLike, *, order: _OrderACF = ...
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+ @overload
+ def reshape(
+ self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ...
+ ) -> ndarray[Any, _dtype[_ScalarType]]: ...
+
+ def squeeze(
+ self: _ScalarType, axis: Union[L[0], Tuple[()]] = ...
+ ) -> _ScalarType: ...
+ def transpose(self: _ScalarType, __axes: Tuple[()] = ...) -> _ScalarType: ...
+ # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
+ @property
+ def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ...
+
+class number(generic, Generic[_NBit1]): # type: ignore
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __neg__(self: _ArraySelf) -> _ArraySelf: ...
+ def __pos__(self: _ArraySelf) -> _ArraySelf: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ # Ensure that objects annotated as `number` support arithmetic operations
+ __add__: _NumberOp
+ __radd__: _NumberOp
+ __sub__: _NumberOp
+ __rsub__: _NumberOp
+ __mul__: _NumberOp
+ __rmul__: _NumberOp
+ __floordiv__: _NumberOp
+ __rfloordiv__: _NumberOp
+ __pow__: _NumberOp
+ __rpow__: _NumberOp
+ __truediv__: _NumberOp
+ __rtruediv__: _NumberOp
+ __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+
+class bool_(generic):
+ def __init__(self, __value: object = ...) -> None: ...
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> bool: ...
+ def tolist(self) -> bool: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ __add__: _BoolOp[bool_]
+ __radd__: _BoolOp[bool_]
+ __sub__: _BoolSub
+ __rsub__: _BoolSub
+ __mul__: _BoolOp[bool_]
+ __rmul__: _BoolOp[bool_]
+ __floordiv__: _BoolOp[int8]
+ __rfloordiv__: _BoolOp[int8]
+ __pow__: _BoolOp[int8]
+ __rpow__: _BoolOp[int8]
+ __truediv__: _BoolTrueDiv
+ __rtruediv__: _BoolTrueDiv
+ def __invert__(self) -> bool_: ...
+ __lshift__: _BoolBitOp[int8]
+ __rlshift__: _BoolBitOp[int8]
+ __rshift__: _BoolBitOp[int8]
+ __rrshift__: _BoolBitOp[int8]
+ __and__: _BoolBitOp[bool_]
+ __rand__: _BoolBitOp[bool_]
+ __xor__: _BoolBitOp[bool_]
+ __rxor__: _BoolBitOp[bool_]
+ __or__: _BoolBitOp[bool_]
+ __ror__: _BoolBitOp[bool_]
+ __mod__: _BoolMod
+ __rmod__: _BoolMod
+ __divmod__: _BoolDivMod
+ __rdivmod__: _BoolDivMod
+ __lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+ __ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co]
+
+bool8 = bool_
+
+class object_(generic):
+ def __init__(self, __value: object = ...) -> None: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ # The 3 protocols below may or may not raise,
+ # depending on the underlying object
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+
+object0 = object_
+
+# The `datetime64` constructors requires an object with the three attributes below,
+# and thus supports datetime duck typing
+class _DatetimeScalar(Protocol):
+ @property
+ def day(self) -> int: ...
+ @property
+ def month(self) -> int: ...
+ @property
+ def year(self) -> int: ...
+
+# TODO: `item`/`tolist` returns either `dt.date`, `dt.datetime` or `int`
+# depending on the unit
+class datetime64(generic):
+ @overload
+ def __init__(
+ self,
+ __value: Union[None, datetime64, _CharLike_co, _DatetimeScalar] = ...,
+ __format: Union[_CharLike_co, Tuple[_CharLike_co, _IntLike_co]] = ...,
+ ) -> None: ...
+ @overload
+ def __init__(
+ self,
+ __value: int,
+ __format: Union[_CharLike_co, Tuple[_CharLike_co, _IntLike_co]]
+ ) -> None: ...
+ def __add__(self, other: _TD64Like_co) -> datetime64: ...
+ def __radd__(self, other: _TD64Like_co) -> datetime64: ...
+ @overload
+ def __sub__(self, other: datetime64) -> timedelta64: ...
+ @overload
+ def __sub__(self, other: _TD64Like_co) -> datetime64: ...
+ def __rsub__(self, other: datetime64) -> timedelta64: ...
+ __lt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __le__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __gt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+ __ge__: _ComparisonOp[datetime64, _ArrayLikeDT64_co]
+
+# Support for `__index__` was added in python 3.8 (bpo-20092)
+if sys.version_info >= (3, 8):
+ _IntValue = Union[SupportsInt, _CharLike_co, SupportsIndex]
+ _FloatValue = Union[None, _CharLike_co, SupportsFloat, SupportsIndex]
+ _ComplexValue = Union[
+ None,
+ _CharLike_co,
+ SupportsFloat,
+ SupportsComplex,
+ SupportsIndex,
+ complex, # `complex` is not a subtype of `SupportsComplex`
+ ]
+else:
+ _IntValue = Union[SupportsInt, _CharLike_co]
+ _FloatValue = Union[None, _CharLike_co, SupportsFloat]
+ _ComplexValue = Union[
+ None,
+ _CharLike_co,
+ SupportsFloat,
+ SupportsComplex,
+ complex,
+ ]
+
+class integer(number[_NBit1]): # type: ignore
+ @property
+ def numerator(self: _ScalarType) -> _ScalarType: ...
+ @property
+ def denominator(self) -> L[1]: ...
+ @overload
+ def __round__(self, ndigits: None = ...) -> int: ...
+ @overload
+ def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
+
+ # NOTE: `__index__` is technically defined in the bottom-most
+ # sub-classes (`int64`, `uint32`, etc)
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> int: ...
+ def tolist(self) -> int: ...
+ def __index__(self) -> int: ...
+ __truediv__: _IntTrueDiv[_NBit1]
+ __rtruediv__: _IntTrueDiv[_NBit1]
+ def __mod__(self, value: _IntLike_co) -> integer: ...
+ def __rmod__(self, value: _IntLike_co) -> integer: ...
+ def __invert__(self: _IntType) -> _IntType: ...
+ # Ensure that objects annotated as `integer` support bit-wise operations
+ def __lshift__(self, other: _IntLike_co) -> integer: ...
+ def __rlshift__(self, other: _IntLike_co) -> integer: ...
+ def __rshift__(self, other: _IntLike_co) -> integer: ...
+ def __rrshift__(self, other: _IntLike_co) -> integer: ...
+ def __and__(self, other: _IntLike_co) -> integer: ...
+ def __rand__(self, other: _IntLike_co) -> integer: ...
+ def __or__(self, other: _IntLike_co) -> integer: ...
+ def __ror__(self, other: _IntLike_co) -> integer: ...
+ def __xor__(self, other: _IntLike_co) -> integer: ...
+ def __rxor__(self, other: _IntLike_co) -> integer: ...
+
+class signedinteger(integer[_NBit1]):
+ def __init__(self, __value: _IntValue = ...) -> None: ...
+ __add__: _SignedIntOp[_NBit1]
+ __radd__: _SignedIntOp[_NBit1]
+ __sub__: _SignedIntOp[_NBit1]
+ __rsub__: _SignedIntOp[_NBit1]
+ __mul__: _SignedIntOp[_NBit1]
+ __rmul__: _SignedIntOp[_NBit1]
+ __floordiv__: _SignedIntOp[_NBit1]
+ __rfloordiv__: _SignedIntOp[_NBit1]
+ __pow__: _SignedIntOp[_NBit1]
+ __rpow__: _SignedIntOp[_NBit1]
+ __lshift__: _SignedIntBitOp[_NBit1]
+ __rlshift__: _SignedIntBitOp[_NBit1]
+ __rshift__: _SignedIntBitOp[_NBit1]
+ __rrshift__: _SignedIntBitOp[_NBit1]
+ __and__: _SignedIntBitOp[_NBit1]
+ __rand__: _SignedIntBitOp[_NBit1]
+ __xor__: _SignedIntBitOp[_NBit1]
+ __rxor__: _SignedIntBitOp[_NBit1]
+ __or__: _SignedIntBitOp[_NBit1]
+ __ror__: _SignedIntBitOp[_NBit1]
+ __mod__: _SignedIntMod[_NBit1]
+ __rmod__: _SignedIntMod[_NBit1]
+ __divmod__: _SignedIntDivMod[_NBit1]
+ __rdivmod__: _SignedIntDivMod[_NBit1]
+
+int8 = signedinteger[_8Bit]
+int16 = signedinteger[_16Bit]
+int32 = signedinteger[_32Bit]
+int64 = signedinteger[_64Bit]
+
+byte = signedinteger[_NBitByte]
+short = signedinteger[_NBitShort]
+intc = signedinteger[_NBitIntC]
+intp = signedinteger[_NBitIntP]
+int0 = signedinteger[_NBitIntP]
+int_ = signedinteger[_NBitInt]
+longlong = signedinteger[_NBitLongLong]
+
+# TODO: `item`/`tolist` returns either `dt.timedelta` or `int`
+# depending on the unit
+class timedelta64(generic):
+ def __init__(
+ self,
+ __value: Union[None, int, _CharLike_co, dt.timedelta, timedelta64] = ...,
+ __format: Union[_CharLike_co, Tuple[_CharLike_co, _IntLike_co]] = ...,
+ ) -> None: ...
+ @property
+ def numerator(self: _ScalarType) -> _ScalarType: ...
+ @property
+ def denominator(self) -> L[1]: ...
+
+ # NOTE: Only a limited number of units support conversion
+ # to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as`
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+ def __complex__(self) -> complex: ...
+ def __neg__(self: _ArraySelf) -> _ArraySelf: ...
+ def __pos__(self: _ArraySelf) -> _ArraySelf: ...
+ def __abs__(self: _ArraySelf) -> _ArraySelf: ...
+ def __add__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __radd__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __sub__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __rsub__(self, other: _TD64Like_co) -> timedelta64: ...
+ def __mul__(self, other: _FloatLike_co) -> timedelta64: ...
+ def __rmul__(self, other: _FloatLike_co) -> timedelta64: ...
+ __truediv__: _TD64Div[float64]
+ __floordiv__: _TD64Div[int64]
+ def __rtruediv__(self, other: timedelta64) -> float64: ...
+ def __rfloordiv__(self, other: timedelta64) -> int64: ...
+ def __mod__(self, other: timedelta64) -> timedelta64: ...
+ def __rmod__(self, other: timedelta64) -> timedelta64: ...
+ def __divmod__(self, other: timedelta64) -> Tuple[int64, timedelta64]: ...
+ def __rdivmod__(self, other: timedelta64) -> Tuple[int64, timedelta64]: ...
+ __lt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __le__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __gt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+ __ge__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co]
+
+class unsignedinteger(integer[_NBit1]):
+ # NOTE: `uint64 + signedinteger -> float64`
+ def __init__(self, __value: _IntValue = ...) -> None: ...
+ __add__: _UnsignedIntOp[_NBit1]
+ __radd__: _UnsignedIntOp[_NBit1]
+ __sub__: _UnsignedIntOp[_NBit1]
+ __rsub__: _UnsignedIntOp[_NBit1]
+ __mul__: _UnsignedIntOp[_NBit1]
+ __rmul__: _UnsignedIntOp[_NBit1]
+ __floordiv__: _UnsignedIntOp[_NBit1]
+ __rfloordiv__: _UnsignedIntOp[_NBit1]
+ __pow__: _UnsignedIntOp[_NBit1]
+ __rpow__: _UnsignedIntOp[_NBit1]
+ __lshift__: _UnsignedIntBitOp[_NBit1]
+ __rlshift__: _UnsignedIntBitOp[_NBit1]
+ __rshift__: _UnsignedIntBitOp[_NBit1]
+ __rrshift__: _UnsignedIntBitOp[_NBit1]
+ __and__: _UnsignedIntBitOp[_NBit1]
+ __rand__: _UnsignedIntBitOp[_NBit1]
+ __xor__: _UnsignedIntBitOp[_NBit1]
+ __rxor__: _UnsignedIntBitOp[_NBit1]
+ __or__: _UnsignedIntBitOp[_NBit1]
+ __ror__: _UnsignedIntBitOp[_NBit1]
+ __mod__: _UnsignedIntMod[_NBit1]
+ __rmod__: _UnsignedIntMod[_NBit1]
+ __divmod__: _UnsignedIntDivMod[_NBit1]
+ __rdivmod__: _UnsignedIntDivMod[_NBit1]
+
+uint8 = unsignedinteger[_8Bit]
+uint16 = unsignedinteger[_16Bit]
+uint32 = unsignedinteger[_32Bit]
+uint64 = unsignedinteger[_64Bit]
+
+ubyte = unsignedinteger[_NBitByte]
+ushort = unsignedinteger[_NBitShort]
+uintc = unsignedinteger[_NBitIntC]
+uintp = unsignedinteger[_NBitIntP]
+uint0 = unsignedinteger[_NBitIntP]
+uint = unsignedinteger[_NBitInt]
+ulonglong = unsignedinteger[_NBitLongLong]
+
+class inexact(number[_NBit1]): # type: ignore
+ def __getnewargs__(self: inexact[_64Bit]) -> Tuple[float, ...]: ...
+
+_IntType = TypeVar("_IntType", bound=integer)
+_FloatType = TypeVar('_FloatType', bound=floating)
+
+class floating(inexact[_NBit1]):
+ def __init__(self, __value: _FloatValue = ...) -> None: ...
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> float: ...
+ def tolist(self) -> float: ...
+ def is_integer(self: float64) -> bool: ...
+ def hex(self: float64) -> str: ...
+ @classmethod
+ def fromhex(cls: Type[float64], __string: str) -> float64: ...
+ def as_integer_ratio(self) -> Tuple[int, int]: ...
+ if sys.version_info >= (3, 9):
+ def __ceil__(self: float64) -> int: ...
+ def __floor__(self: float64) -> int: ...
+ def __trunc__(self: float64) -> int: ...
+ def __getnewargs__(self: float64) -> Tuple[float]: ...
+ def __getformat__(self: float64, __typestr: L["double", "float"]) -> str: ...
+ @overload
+ def __round__(self, ndigits: None = ...) -> int: ...
+ @overload
+ def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ...
+ __add__: _FloatOp[_NBit1]
+ __radd__: _FloatOp[_NBit1]
+ __sub__: _FloatOp[_NBit1]
+ __rsub__: _FloatOp[_NBit1]
+ __mul__: _FloatOp[_NBit1]
+ __rmul__: _FloatOp[_NBit1]
+ __truediv__: _FloatOp[_NBit1]
+ __rtruediv__: _FloatOp[_NBit1]
+ __floordiv__: _FloatOp[_NBit1]
+ __rfloordiv__: _FloatOp[_NBit1]
+ __pow__: _FloatOp[_NBit1]
+ __rpow__: _FloatOp[_NBit1]
+ __mod__: _FloatMod[_NBit1]
+ __rmod__: _FloatMod[_NBit1]
+ __divmod__: _FloatDivMod[_NBit1]
+ __rdivmod__: _FloatDivMod[_NBit1]
+
+float16 = floating[_16Bit]
+float32 = floating[_32Bit]
+float64 = floating[_64Bit]
+
+half = floating[_NBitHalf]
+single = floating[_NBitSingle]
+double = floating[_NBitDouble]
+float_ = floating[_NBitDouble]
+longdouble = floating[_NBitLongDouble]
+longfloat = floating[_NBitLongDouble]
+
+# The main reason for `complexfloating` having two typevars is cosmetic.
+# It is used to clarify why `complex128`s precision is `_64Bit`, the latter
+# describing the two 64 bit floats representing its real and imaginary component
+
+class complexfloating(inexact[_NBit1], Generic[_NBit1, _NBit2]):
+ def __init__(self, __value: _ComplexValue = ...) -> None: ...
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> complex: ...
+ def tolist(self) -> complex: ...
+ @property
+ def real(self) -> floating[_NBit1]: ... # type: ignore[override]
+ @property
+ def imag(self) -> floating[_NBit2]: ... # type: ignore[override]
+ def __abs__(self) -> floating[_NBit1]: ... # type: ignore[override]
+ def __getnewargs__(self: complex128) -> Tuple[float, float]: ...
+ # NOTE: Deprecated
+ # def __round__(self, ndigits=...): ...
+ __add__: _ComplexOp[_NBit1]
+ __radd__: _ComplexOp[_NBit1]
+ __sub__: _ComplexOp[_NBit1]
+ __rsub__: _ComplexOp[_NBit1]
+ __mul__: _ComplexOp[_NBit1]
+ __rmul__: _ComplexOp[_NBit1]
+ __truediv__: _ComplexOp[_NBit1]
+ __rtruediv__: _ComplexOp[_NBit1]
+ __floordiv__: _ComplexOp[_NBit1]
+ __rfloordiv__: _ComplexOp[_NBit1]
+ __pow__: _ComplexOp[_NBit1]
+ __rpow__: _ComplexOp[_NBit1]
+
+complex64 = complexfloating[_32Bit, _32Bit]
+complex128 = complexfloating[_64Bit, _64Bit]
+
+csingle = complexfloating[_NBitSingle, _NBitSingle]
+singlecomplex = complexfloating[_NBitSingle, _NBitSingle]
+cdouble = complexfloating[_NBitDouble, _NBitDouble]
+complex_ = complexfloating[_NBitDouble, _NBitDouble]
+cfloat = complexfloating[_NBitDouble, _NBitDouble]
+clongdouble = complexfloating[_NBitLongDouble, _NBitLongDouble]
+clongfloat = complexfloating[_NBitLongDouble, _NBitLongDouble]
+longcomplex = complexfloating[_NBitLongDouble, _NBitLongDouble]
+
+class flexible(generic): ... # type: ignore
+
+# TODO: `item`/`tolist` returns either `bytes` or `tuple`
+# depending on whether or not it's used as an opaque bytes sequence
+# or a structure
+class void(flexible):
+ def __init__(self, __value: Union[_IntLike_co, bytes]) -> None: ...
+ @property
+ def real(self: _ArraySelf) -> _ArraySelf: ...
+ @property
+ def imag(self: _ArraySelf) -> _ArraySelf: ...
+ def setfield(
+ self, val: ArrayLike, dtype: DTypeLike, offset: int = ...
+ ) -> None: ...
+ def __getitem__(self, key: SupportsIndex) -> Any: ...
+ def __setitem__(self, key: SupportsIndex, value: ArrayLike) -> None: ...
+
+void0 = void
+
+class character(flexible): # type: ignore
+ def __int__(self) -> int: ...
+ def __float__(self) -> float: ...
+
+# NOTE: Most `np.bytes_` / `np.str_` methods return their
+# builtin `bytes` / `str` counterpart
+
+class bytes_(character, bytes):
+ @overload
+ def __init__(self, __value: object = ...) -> None: ...
+ @overload
+ def __init__(
+ self, __value: str, encoding: str = ..., errors: str = ...
+ ) -> None: ...
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> bytes: ...
+ def tolist(self) -> bytes: ...
+
+string_ = bytes_
+bytes0 = bytes_
+
+class str_(character, str):
+ @overload
+ def __init__(self, __value: object = ...) -> None: ...
+ @overload
+ def __init__(
+ self, __value: bytes, encoding: str = ..., errors: str = ...
+ ) -> None: ...
+ def item(
+ self,
+ __args: Union[L[0], Tuple[()], Tuple[L[0]]] = ...,
+ ) -> str: ...
+ def tolist(self) -> str: ...
+
+unicode_ = str_
+str0 = str_
+
+def array(
+ object: object,
+ dtype: DTypeLike = ...,
+ *,
+ copy: bool = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ ndmin: int = ...,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+def zeros(
+ shape: _ShapeLike,
+ dtype: DTypeLike = ...,
+ order: _OrderCF = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+def empty(
+ shape: _ShapeLike,
+ dtype: DTypeLike = ...,
+ order: _OrderCF = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+
+#
+# Constants
+#
+
+Inf: Final[float]
+Infinity: Final[float]
+NAN: Final[float]
+NINF: Final[float]
+NZERO: Final[float]
+NaN: Final[float]
+PINF: Final[float]
+PZERO: Final[float]
+e: Final[float]
+euler_gamma: Final[float]
+inf: Final[float]
+infty: Final[float]
+nan: Final[float]
+pi: Final[float]
+ALLOW_THREADS: Final[int]
+BUFSIZE: Final[int]
+CLIP: Final[int]
+ERR_CALL: Final[int]
+ERR_DEFAULT: Final[int]
+ERR_IGNORE: Final[int]
+ERR_LOG: Final[int]
+ERR_PRINT: Final[int]
+ERR_RAISE: Final[int]
+ERR_WARN: Final[int]
+FLOATING_POINT_SUPPORT: Final[int]
+FPE_DIVIDEBYZERO: Final[int]
+FPE_INVALID: Final[int]
+FPE_OVERFLOW: Final[int]
+FPE_UNDERFLOW: Final[int]
+MAXDIMS: Final[int]
+MAY_SHARE_BOUNDS: Final[int]
+MAY_SHARE_EXACT: Final[int]
+RAISE: Final[int]
+SHIFT_DIVIDEBYZERO: Final[int]
+SHIFT_INVALID: Final[int]
+SHIFT_OVERFLOW: Final[int]
+SHIFT_UNDERFLOW: Final[int]
+UFUNC_BUFSIZE_DEFAULT: Final[int]
+WRAP: Final[int]
+tracemalloc_domain: Final[int]
+
+little_endian: Final[bool]
+True_: Final[bool_]
+False_: Final[bool_]
+
+UFUNC_PYVALS_NAME: Final[str]
+
+newaxis: None
+
+# See `npt._ufunc` for more concrete nin-/nout-specific stubs
+class ufunc:
+ @property
+ def __name__(self) -> str: ...
+ @property
+ def __doc__(self) -> str: ...
+ __call__: Callable[..., Any]
+ @property
+ def nin(self) -> int: ...
+ @property
+ def nout(self) -> int: ...
+ @property
+ def nargs(self) -> int: ...
+ @property
+ def ntypes(self) -> int: ...
+ @property
+ def types(self) -> List[str]: ...
+ # Broad return type because it has to encompass things like
+ #
+ # >>> np.logical_and.identity is True
+ # True
+ # >>> np.add.identity is 0
+ # True
+ # >>> np.sin.identity is None
+ # True
+ #
+ # and any user-defined ufuncs.
+ @property
+ def identity(self) -> Any: ...
+ # This is None for ufuncs and a string for gufuncs.
+ @property
+ def signature(self) -> Optional[str]: ...
+ # The next four methods will always exist, but they will just
+ # raise a ValueError ufuncs with that don't accept two input
+ # arguments and return one output argument. Because of that we
+ # can't type them very precisely.
+ reduce: Any
+ accumulate: Any
+ reduce: Any
+ outer: Any
+ # Similarly at won't be defined for ufuncs that return multiple
+ # outputs, so we can't type it very precisely.
+ at: Any
+
+# Parameters: `__name__`, `ntypes` and `identity`
+absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None]
+add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]]
+arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None]
+arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None]
+arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None]
+arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None]
+arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None]
+arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None]
+arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None]
+bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]]
+bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
+bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]]
+bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]]
+cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None]
+ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None]
+conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
+conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
+copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None]
+cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None]
+cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None]
+deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None]
+degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None]
+divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
+divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None]
+equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None]
+exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None]
+exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None]
+expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None]
+fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None]
+float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None]
+floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None]
+floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None]
+fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None]
+fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None]
+fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None]
+frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None]
+gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]]
+greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None]
+greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None]
+heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None]
+hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]]
+invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
+isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None]
+isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None]
+isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None]
+isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None]
+lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None]
+ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None]
+left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None]
+less: _UFunc_Nin2_Nout1[L['less'], L[23], None]
+less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None]
+log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None]
+log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None]
+log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None]
+log: _UFunc_Nin1_Nout1[L['log'], L[10], None]
+logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float]
+logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float]
+logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]]
+logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None]
+logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]]
+logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]]
+matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None]
+maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None]
+minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None]
+mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
+modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None]
+multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]]
+negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None]
+nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None]
+not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None]
+positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None]
+power: _UFunc_Nin2_Nout1[L['power'], L[18], None]
+rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None]
+radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None]
+reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None]
+remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
+right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None]
+rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None]
+sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None]
+signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None]
+sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None]
+sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None]
+spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None]
+sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None]
+square: _UFunc_Nin1_Nout1[L['square'], L[18], None]
+subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None]
+tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None]
+tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None]
+true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
+trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None]
+
+abs = absolute
+
+# Warnings
+class ModuleDeprecationWarning(DeprecationWarning): ...
+class VisibleDeprecationWarning(UserWarning): ...
+class ComplexWarning(RuntimeWarning): ...
+class RankWarning(UserWarning): ...
+
+# Errors
+class TooHardError(RuntimeError): ...
+
+class AxisError(ValueError, IndexError):
+ def __init__(
+ self, axis: int, ndim: Optional[int] = ..., msg_prefix: Optional[str] = ...
+ ) -> None: ...
+
+_CallType = TypeVar("_CallType", bound=Union[_ErrFunc, _SupportsWrite])
+
+class errstate(Generic[_CallType], ContextDecorator):
+ call: _CallType
+ kwargs: _ErrDictOptional
+
+ # Expand `**kwargs` into explicit keyword-only arguments
+ def __init__(
+ self,
+ *,
+ call: _CallType = ...,
+ all: Optional[_ErrKind] = ...,
+ divide: Optional[_ErrKind] = ...,
+ over: Optional[_ErrKind] = ...,
+ under: Optional[_ErrKind] = ...,
+ invalid: Optional[_ErrKind] = ...,
+ ) -> None: ...
+ def __enter__(self) -> None: ...
+ def __exit__(
+ self,
+ __exc_type: Optional[Type[BaseException]],
+ __exc_value: Optional[BaseException],
+ __traceback: Optional[TracebackType],
+ ) -> None: ...
+
+class ndenumerate(Generic[_ScalarType]):
+ iter: flatiter[NDArray[_ScalarType]]
+ @overload
+ def __new__(
+ cls, arr: _NestedSequence[_SupportsArray[dtype[_ScalarType]]],
+ ) -> ndenumerate[_ScalarType]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[str]) -> ndenumerate[str_]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[bytes]) -> ndenumerate[bytes_]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[bool]) -> ndenumerate[bool_]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[int]) -> ndenumerate[int_]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[float]) -> ndenumerate[float_]: ...
+ @overload
+ def __new__(cls, arr: _NestedSequence[complex]) -> ndenumerate[complex_]: ...
+ @overload
+ def __new__(cls, arr: _RecursiveSequence) -> ndenumerate[Any]: ...
+ def __next__(self: ndenumerate[_ScalarType]) -> Tuple[_Shape, _ScalarType]: ...
+ def __iter__(self: _T) -> _T: ...
+
+class ndindex:
+ def __init__(self, *shape: SupportsIndex) -> None: ...
+ def __iter__(self: _T) -> _T: ...
+ def __next__(self) -> _Shape: ...
+
+class DataSource:
+ def __init__(
+ self,
+ destpath: Union[None, str, os.PathLike[str]] = ...,
+ ) -> None: ...
+ def __del__(self) -> None: ...
+ def abspath(self, path: str) -> str: ...
+ def exists(self, path: str) -> bool: ...
+
+ # Whether the file-object is opened in string or bytes mode (by default)
+ # depends on the file-extension of `path`
+ def open(
+ self,
+ path: str,
+ mode: str = ...,
+ encoding: Optional[str] = ...,
+ newline: Optional[str] = ...,
+ ) -> IO[Any]: ...
+
+# TODO: The type of each `__next__` and `iters` return-type depends
+# on the length and dtype of `args`; we can't describe this behavior yet
+# as we lack variadics (PEP 646).
+class broadcast:
+ def __new__(cls, *args: ArrayLike) -> broadcast: ...
+ @property
+ def index(self) -> int: ...
+ @property
+ def iters(self) -> Tuple[flatiter[Any], ...]: ...
+ @property
+ def nd(self) -> int: ...
+ @property
+ def ndim(self) -> int: ...
+ @property
+ def numiter(self) -> int: ...
+ @property
+ def shape(self) -> _Shape: ...
+ @property
+ def size(self) -> int: ...
+ def __next__(self) -> Tuple[Any, ...]: ...
+ def __iter__(self: _T) -> _T: ...
+ def reset(self) -> None: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__config__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__config__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d40558c623a7efc1ffab8c8ae6c1ac07c5f09fb2
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__config__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9996826acf3b6a6f941eebcf960a686887f0293c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_distributor_init.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_distributor_init.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..008c8eaa7397ab65846d9a8bbbce710db455b223
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_distributor_init.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_globals.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_globals.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fd4668265615a201654efd28b9bc7e7a4279624f
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_globals.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_pytesttester.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_pytesttester.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f9a0f24d29d412093daeb007aca0bb925571f1ff
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_pytesttester.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_version.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_version.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ca9d2aa53284467cf2917411ed92b99a4cd79c58
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/_version.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/conftest.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/conftest.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..51eddfb67df50d93f01379567eac53c5f4c21f0b
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/conftest.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/ctypeslib.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/ctypeslib.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5dcf6b906a6d3cbfcf9208315c11e7bc9ebbc16f
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/ctypeslib.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/dual.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/dual.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b21d81012eb96a884cdba4cded7f0a7f7c777429
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/dual.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/matlib.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/matlib.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d1c43d37361f8b5cc737b5cf27bc0242165c5b18
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/matlib.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/setup.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/setup.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..880ab303d4c55a7031bb5aa20e78815175600bfb
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/setup.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/version.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/version.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0223ea4376b445717e088daf411adc9452a7bd5e
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/__pycache__/version.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/_distributor_init.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_distributor_init.py
new file mode 100644
index 0000000000000000000000000000000000000000..d893ba37719b8dbab2ac34d35ae2b9cc2d331027
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_distributor_init.py
@@ -0,0 +1,10 @@
+""" Distributor init file
+
+Distributors: you can add custom code here to support particular distributions
+of numpy.
+
+For example, this is a good place to put any checks for hardware requirements.
+
+The numpy standard source distribution will not put code in this file, so you
+can safely replace this file with your own version.
+"""
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/_globals.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_globals.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b715c8708700fc992329c251812993012a9728d
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_globals.py
@@ -0,0 +1,91 @@
+"""
+Module defining global singleton classes.
+
+This module raises a RuntimeError if an attempt to reload it is made. In that
+way the identities of the classes defined here are fixed and will remain so
+even if numpy itself is reloaded. In particular, a function like the following
+will still work correctly after numpy is reloaded::
+
+ def foo(arg=np._NoValue):
+ if arg is np._NoValue:
+ ...
+
+That was not the case when the singleton classes were defined in the numpy
+``__init__.py`` file. See gh-7844 for a discussion of the reload problem that
+motivated this module.
+
+"""
+__ALL__ = [
+ 'ModuleDeprecationWarning', 'VisibleDeprecationWarning', '_NoValue'
+ ]
+
+
+# Disallow reloading this module so as to preserve the identities of the
+# classes defined here.
+if '_is_loaded' in globals():
+ raise RuntimeError('Reloading numpy._globals is not allowed')
+_is_loaded = True
+
+
+class ModuleDeprecationWarning(DeprecationWarning):
+ """Module deprecation warning.
+
+ The nose tester turns ordinary Deprecation warnings into test failures.
+ That makes it hard to deprecate whole modules, because they get
+ imported by default. So this is a special Deprecation warning that the
+ nose tester will let pass without making tests fail.
+
+ """
+
+
+ModuleDeprecationWarning.__module__ = 'numpy'
+
+
+class VisibleDeprecationWarning(UserWarning):
+ """Visible deprecation warning.
+
+ By default, python will not show deprecation warnings, so this class
+ can be used when a very visible warning is helpful, for example because
+ the usage is most likely a user bug.
+
+ """
+
+
+VisibleDeprecationWarning.__module__ = 'numpy'
+
+
+class _NoValueType:
+ """Special keyword value.
+
+ The instance of this class may be used as the default value assigned to a
+ keyword if no other obvious default (e.g., `None`) is suitable,
+
+ Common reasons for using this keyword are:
+
+ - A new keyword is added to a function, and that function forwards its
+ inputs to another function or method which can be defined outside of
+ NumPy. For example, ``np.std(x)`` calls ``x.std``, so when a ``keepdims``
+ keyword was added that could only be forwarded if the user explicitly
+ specified ``keepdims``; downstream array libraries may not have added
+ the same keyword, so adding ``x.std(..., keepdims=keepdims)``
+ unconditionally could have broken previously working code.
+ - A keyword is being deprecated, and a deprecation warning must only be
+ emitted when the keyword is used.
+
+ """
+ __instance = None
+ def __new__(cls):
+ # ensure that only one instance exists
+ if not cls.__instance:
+ cls.__instance = super().__new__(cls)
+ return cls.__instance
+
+ # needed for python 2 to preserve identity through a pickle
+ def __reduce__(self):
+ return (self.__class__, ())
+
+ def __repr__(self):
+ return ""
+
+
+_NoValue = _NoValueType()
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/_pytesttester.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_pytesttester.py
new file mode 100644
index 0000000000000000000000000000000000000000..acfaa1ca54a15a9c963ea0308048fa5d8af49f9d
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_pytesttester.py
@@ -0,0 +1,201 @@
+"""
+Pytest test running.
+
+This module implements the ``test()`` function for NumPy modules. The usual
+boiler plate for doing that is to put the following in the module
+``__init__.py`` file::
+
+ from numpy._pytesttester import PytestTester
+ test = PytestTester(__name__)
+ del PytestTester
+
+
+Warnings filtering and other runtime settings should be dealt with in the
+``pytest.ini`` file in the numpy repo root. The behavior of the test depends on
+whether or not that file is found as follows:
+
+* ``pytest.ini`` is present (develop mode)
+ All warnings except those explicitly filtered out are raised as error.
+* ``pytest.ini`` is absent (release mode)
+ DeprecationWarnings and PendingDeprecationWarnings are ignored, other
+ warnings are passed through.
+
+In practice, tests run from the numpy repo are run in develop mode. That
+includes the standard ``python runtests.py`` invocation.
+
+This module is imported by every numpy subpackage, so lies at the top level to
+simplify circular import issues. For the same reason, it contains no numpy
+imports at module scope, instead importing numpy within function calls.
+"""
+import sys
+import os
+
+__all__ = ['PytestTester']
+
+
+
+def _show_numpy_info():
+ import numpy as np
+
+ print("NumPy version %s" % np.__version__)
+ relaxed_strides = np.ones((10, 1), order="C").flags.f_contiguous
+ print("NumPy relaxed strides checking option:", relaxed_strides)
+ info = np.lib.utils._opt_info()
+ print("NumPy CPU features: ", (info if info else 'nothing enabled'))
+
+
+
+class PytestTester:
+ """
+ Pytest test runner.
+
+ A test function is typically added to a package's __init__.py like so::
+
+ from numpy._pytesttester import PytestTester
+ test = PytestTester(__name__).test
+ del PytestTester
+
+ Calling this test function finds and runs all tests associated with the
+ module and all its sub-modules.
+
+ Attributes
+ ----------
+ module_name : str
+ Full path to the package to test.
+
+ Parameters
+ ----------
+ module_name : module name
+ The name of the module to test.
+
+ Notes
+ -----
+ Unlike the previous ``nose``-based implementation, this class is not
+ publicly exposed as it performs some ``numpy``-specific warning
+ suppression.
+
+ """
+ def __init__(self, module_name):
+ self.module_name = module_name
+
+ def __call__(self, label='fast', verbose=1, extra_argv=None,
+ doctests=False, coverage=False, durations=-1, tests=None):
+ """
+ Run tests for module using pytest.
+
+ Parameters
+ ----------
+ label : {'fast', 'full'}, optional
+ Identifies the tests to run. When set to 'fast', tests decorated
+ with `pytest.mark.slow` are skipped, when 'full', the slow marker
+ is ignored.
+ verbose : int, optional
+ Verbosity value for test outputs, in the range 1-3. Default is 1.
+ extra_argv : list, optional
+ List with any extra arguments to pass to pytests.
+ doctests : bool, optional
+ .. note:: Not supported
+ coverage : bool, optional
+ If True, report coverage of NumPy code. Default is False.
+ Requires installation of (pip) pytest-cov.
+ durations : int, optional
+ If < 0, do nothing, If 0, report time of all tests, if > 0,
+ report the time of the slowest `timer` tests. Default is -1.
+ tests : test or list of tests
+ Tests to be executed with pytest '--pyargs'
+
+ Returns
+ -------
+ result : bool
+ Return True on success, false otherwise.
+
+ Notes
+ -----
+ Each NumPy module exposes `test` in its namespace to run all tests for
+ it. For example, to run all tests for numpy.lib:
+
+ >>> np.lib.test() #doctest: +SKIP
+
+ Examples
+ --------
+ >>> result = np.lib.test() #doctest: +SKIP
+ ...
+ 1023 passed, 2 skipped, 6 deselected, 1 xfailed in 10.39 seconds
+ >>> result
+ True
+
+ """
+ import pytest
+ import warnings
+
+ module = sys.modules[self.module_name]
+ module_path = os.path.abspath(module.__path__[0])
+
+ # setup the pytest arguments
+ pytest_args = ["-l"]
+
+ # offset verbosity. The "-q" cancels a "-v".
+ pytest_args += ["-q"]
+
+ # Filter out distutils cpu warnings (could be localized to
+ # distutils tests). ASV has problems with top level import,
+ # so fetch module for suppression here.
+ with warnings.catch_warnings():
+ warnings.simplefilter("always")
+ from numpy.distutils import cpuinfo
+
+ # Filter out annoying import messages. Want these in both develop and
+ # release mode.
+ pytest_args += [
+ "-W ignore:Not importing directory",
+ "-W ignore:numpy.dtype size changed",
+ "-W ignore:numpy.ufunc size changed",
+ "-W ignore::UserWarning:cpuinfo",
+ ]
+
+ # When testing matrices, ignore their PendingDeprecationWarnings
+ pytest_args += [
+ "-W ignore:the matrix subclass is not",
+ "-W ignore:Importing from numpy.matlib is",
+ ]
+
+ if doctests:
+ raise ValueError("Doctests not supported")
+
+ if extra_argv:
+ pytest_args += list(extra_argv)
+
+ if verbose > 1:
+ pytest_args += ["-" + "v"*(verbose - 1)]
+
+ if coverage:
+ pytest_args += ["--cov=" + module_path]
+
+ if label == "fast":
+ # not importing at the top level to avoid circular import of module
+ from numpy.testing import IS_PYPY
+ if IS_PYPY:
+ pytest_args += ["-m", "not slow and not slow_pypy"]
+ else:
+ pytest_args += ["-m", "not slow"]
+
+ elif label != "full":
+ pytest_args += ["-m", label]
+
+ if durations >= 0:
+ pytest_args += ["--durations=%s" % durations]
+
+ if tests is None:
+ tests = [self.module_name]
+
+ pytest_args += ["--pyargs"] + list(tests)
+
+ # run tests.
+ _show_numpy_info()
+
+ try:
+ code = pytest.main(pytest_args)
+ except SystemExit as exc:
+ code = exc.code
+
+ return code == 0
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/_version.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_version.py
new file mode 100644
index 0000000000000000000000000000000000000000..755c992f98c6b85213bf11f71ccd92760906bbad
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/_version.py
@@ -0,0 +1,21 @@
+
+# This file was generated by 'versioneer.py' (0.19) from
+# revision-control system data, or from the parent directory name of an
+# unpacked source archive. Distribution tarballs contain a pre-generated copy
+# of this file.
+
+import json
+
+version_json = '''
+{
+ "date": "2022-04-11T17:43:10-0600",
+ "dirty": false,
+ "error": null,
+ "full-revisionid": "ef0ec786fd4c7622ad2fa0e54d3881f3b9bbd792",
+ "version": "1.21.6"
+}
+''' # END VERSION_JSON
+
+
+def get_versions():
+ return json.loads(version_json)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/char.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/char.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..4904aa27a3e0f21e3f4015c732c168eac0728ef3
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/char.pyi
@@ -0,0 +1,59 @@
+from typing import Any, List
+
+from numpy import (
+ chararray as chararray,
+)
+
+__all__: List[str]
+
+def equal(x1, x2): ...
+def not_equal(x1, x2): ...
+def greater_equal(x1, x2): ...
+def less_equal(x1, x2): ...
+def greater(x1, x2): ...
+def less(x1, x2): ...
+def str_len(a): ...
+def add(x1, x2): ...
+def multiply(a, i): ...
+def mod(a, values): ...
+def capitalize(a): ...
+def center(a, width, fillchar=...): ...
+def count(a, sub, start=..., end=...): ...
+def decode(a, encoding=..., errors=...): ...
+def encode(a, encoding=..., errors=...): ...
+def endswith(a, suffix, start=..., end=...): ...
+def expandtabs(a, tabsize=...): ...
+def find(a, sub, start=..., end=...): ...
+def index(a, sub, start=..., end=...): ...
+def isalnum(a): ...
+def isalpha(a): ...
+def isdigit(a): ...
+def islower(a): ...
+def isspace(a): ...
+def istitle(a): ...
+def isupper(a): ...
+def join(sep, seq): ...
+def ljust(a, width, fillchar=...): ...
+def lower(a): ...
+def lstrip(a, chars=...): ...
+def partition(a, sep): ...
+def replace(a, old, new, count=...): ...
+def rfind(a, sub, start=..., end=...): ...
+def rindex(a, sub, start=..., end=...): ...
+def rjust(a, width, fillchar=...): ...
+def rpartition(a, sep): ...
+def rsplit(a, sep=..., maxsplit=...): ...
+def rstrip(a, chars=...): ...
+def split(a, sep=..., maxsplit=...): ...
+def splitlines(a, keepends=...): ...
+def startswith(a, prefix, start=..., end=...): ...
+def strip(a, chars=...): ...
+def swapcase(a): ...
+def title(a): ...
+def translate(a, table, deletechars=...): ...
+def upper(a): ...
+def zfill(a, width): ...
+def isnumeric(a): ...
+def isdecimal(a): ...
+def array(obj, itemsize=..., copy=..., unicode=..., order=...): ...
+def asarray(obj, itemsize=..., unicode=..., order=...): ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..afee621b87264f13bf2f70cd5d115e7adc9d397a
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__init__.py
@@ -0,0 +1,18 @@
+"""
+Compatibility module.
+
+This module contains duplicated code from Python itself or 3rd party
+extensions, which may be included for the following reasons:
+
+ * compatibility
+ * we may only need a small subset of the copied library/module
+
+"""
+from . import _inspect
+from . import py3k
+from ._inspect import getargspec, formatargspec
+from .py3k import *
+
+__all__ = []
+__all__.extend(_inspect.__all__)
+__all__.extend(py3k.__all__)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e6532257aa742b86163bdbbfc2fd0fd9e148e24
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/_inspect.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/_inspect.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..868aa50399ac9e0c0e43fa200fa84e69969dcb2a
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/_inspect.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/py3k.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/py3k.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93a4c59ffdb1f8d8aad319bcd9dea7fa6af13582
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/py3k.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/setup.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/setup.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6a917797750542134439cda577d2438df8b7cedb
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/__pycache__/setup.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/_inspect.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/_inspect.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a874a71dd0a53e25a671c51bfdceec850702bfe
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/_inspect.py
@@ -0,0 +1,191 @@
+"""Subset of inspect module from upstream python
+
+We use this instead of upstream because upstream inspect is slow to import, and
+significantly contributes to numpy import times. Importing this copy has almost
+no overhead.
+
+"""
+import types
+
+__all__ = ['getargspec', 'formatargspec']
+
+# ----------------------------------------------------------- type-checking
+def ismethod(object):
+ """Return true if the object is an instance method.
+
+ Instance method objects provide these attributes:
+ __doc__ documentation string
+ __name__ name with which this method was defined
+ im_class class object in which this method belongs
+ im_func function object containing implementation of method
+ im_self instance to which this method is bound, or None
+
+ """
+ return isinstance(object, types.MethodType)
+
+def isfunction(object):
+ """Return true if the object is a user-defined function.
+
+ Function objects provide these attributes:
+ __doc__ documentation string
+ __name__ name with which this function was defined
+ func_code code object containing compiled function bytecode
+ func_defaults tuple of any default values for arguments
+ func_doc (same as __doc__)
+ func_globals global namespace in which this function was defined
+ func_name (same as __name__)
+
+ """
+ return isinstance(object, types.FunctionType)
+
+def iscode(object):
+ """Return true if the object is a code object.
+
+ Code objects provide these attributes:
+ co_argcount number of arguments (not including * or ** args)
+ co_code string of raw compiled bytecode
+ co_consts tuple of constants used in the bytecode
+ co_filename name of file in which this code object was created
+ co_firstlineno number of first line in Python source code
+ co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
+ co_lnotab encoded mapping of line numbers to bytecode indices
+ co_name name with which this code object was defined
+ co_names tuple of names of local variables
+ co_nlocals number of local variables
+ co_stacksize virtual machine stack space required
+ co_varnames tuple of names of arguments and local variables
+
+ """
+ return isinstance(object, types.CodeType)
+
+# ------------------------------------------------ argument list extraction
+# These constants are from Python's compile.h.
+CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8
+
+def getargs(co):
+ """Get information about the arguments accepted by a code object.
+
+ Three things are returned: (args, varargs, varkw), where 'args' is
+ a list of argument names (possibly containing nested lists), and
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
+
+ """
+
+ if not iscode(co):
+ raise TypeError('arg is not a code object')
+
+ nargs = co.co_argcount
+ names = co.co_varnames
+ args = list(names[:nargs])
+
+ # The following acrobatics are for anonymous (tuple) arguments.
+ # Which we do not need to support, so remove to avoid importing
+ # the dis module.
+ for i in range(nargs):
+ if args[i][:1] in ['', '.']:
+ raise TypeError("tuple function arguments are not supported")
+ varargs = None
+ if co.co_flags & CO_VARARGS:
+ varargs = co.co_varnames[nargs]
+ nargs = nargs + 1
+ varkw = None
+ if co.co_flags & CO_VARKEYWORDS:
+ varkw = co.co_varnames[nargs]
+ return args, varargs, varkw
+
+def getargspec(func):
+ """Get the names and default values of a function's arguments.
+
+ A tuple of four things is returned: (args, varargs, varkw, defaults).
+ 'args' is a list of the argument names (it may contain nested lists).
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
+ 'defaults' is an n-tuple of the default values of the last n arguments.
+
+ """
+
+ if ismethod(func):
+ func = func.__func__
+ if not isfunction(func):
+ raise TypeError('arg is not a Python function')
+ args, varargs, varkw = getargs(func.__code__)
+ return args, varargs, varkw, func.__defaults__
+
+def getargvalues(frame):
+ """Get information about arguments passed into a particular frame.
+
+ A tuple of four things is returned: (args, varargs, varkw, locals).
+ 'args' is a list of the argument names (it may contain nested lists).
+ 'varargs' and 'varkw' are the names of the * and ** arguments or None.
+ 'locals' is the locals dictionary of the given frame.
+
+ """
+ args, varargs, varkw = getargs(frame.f_code)
+ return args, varargs, varkw, frame.f_locals
+
+def joinseq(seq):
+ if len(seq) == 1:
+ return '(' + seq[0] + ',)'
+ else:
+ return '(' + ', '.join(seq) + ')'
+
+def strseq(object, convert, join=joinseq):
+ """Recursively walk a sequence, stringifying each element.
+
+ """
+ if type(object) in [list, tuple]:
+ return join([strseq(_o, convert, join) for _o in object])
+ else:
+ return convert(object)
+
+def formatargspec(args, varargs=None, varkw=None, defaults=None,
+ formatarg=str,
+ formatvarargs=lambda name: '*' + name,
+ formatvarkw=lambda name: '**' + name,
+ formatvalue=lambda value: '=' + repr(value),
+ join=joinseq):
+ """Format an argument spec from the 4 values returned by getargspec.
+
+ The first four arguments are (args, varargs, varkw, defaults). The
+ other four arguments are the corresponding optional formatting functions
+ that are called to turn names and values into strings. The ninth
+ argument is an optional function to format the sequence of arguments.
+
+ """
+ specs = []
+ if defaults:
+ firstdefault = len(args) - len(defaults)
+ for i in range(len(args)):
+ spec = strseq(args[i], formatarg, join)
+ if defaults and i >= firstdefault:
+ spec = spec + formatvalue(defaults[i - firstdefault])
+ specs.append(spec)
+ if varargs is not None:
+ specs.append(formatvarargs(varargs))
+ if varkw is not None:
+ specs.append(formatvarkw(varkw))
+ return '(' + ', '.join(specs) + ')'
+
+def formatargvalues(args, varargs, varkw, locals,
+ formatarg=str,
+ formatvarargs=lambda name: '*' + name,
+ formatvarkw=lambda name: '**' + name,
+ formatvalue=lambda value: '=' + repr(value),
+ join=joinseq):
+ """Format an argument spec from the 4 values returned by getargvalues.
+
+ The first four arguments are (args, varargs, varkw, locals). The
+ next four arguments are the corresponding optional formatting functions
+ that are called to turn names and values into strings. The ninth
+ argument is an optional function to format the sequence of arguments.
+
+ """
+ def convert(name, locals=locals,
+ formatarg=formatarg, formatvalue=formatvalue):
+ return formatarg(name) + formatvalue(locals[name])
+ specs = [strseq(arg, convert, join) for arg in args]
+
+ if varargs:
+ specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
+ if varkw:
+ specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
+ return '(' + ', '.join(specs) + ')'
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/py3k.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/py3k.py
new file mode 100644
index 0000000000000000000000000000000000000000..5704610711fd07af4c39200e14f49fac5d462792
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/py3k.py
@@ -0,0 +1,141 @@
+"""
+Python 3.X compatibility tools.
+
+While this file was originally intended for Python 2 -> 3 transition,
+it is now used to create a compatibility layer between different
+minor versions of Python 3.
+
+While the active version of numpy may not support a given version of python, we
+allow downstream libraries to continue to use these shims for forward
+compatibility with numpy while they transition their code to newer versions of
+Python.
+"""
+__all__ = ['bytes', 'asbytes', 'isfileobj', 'getexception', 'strchar',
+ 'unicode', 'asunicode', 'asbytes_nested', 'asunicode_nested',
+ 'asstr', 'open_latin1', 'long', 'basestring', 'sixu',
+ 'integer_types', 'is_pathlib_path', 'npy_load_module', 'Path',
+ 'pickle', 'contextlib_nullcontext', 'os_fspath', 'os_PathLike']
+
+import sys
+import os
+from pathlib import Path
+import io
+
+import abc
+from abc import ABC as abc_ABC
+
+try:
+ import pickle5 as pickle
+except ImportError:
+ import pickle
+
+long = int
+integer_types = (int,)
+basestring = str
+unicode = str
+bytes = bytes
+
+def asunicode(s):
+ if isinstance(s, bytes):
+ return s.decode('latin1')
+ return str(s)
+
+def asbytes(s):
+ if isinstance(s, bytes):
+ return s
+ return str(s).encode('latin1')
+
+def asstr(s):
+ if isinstance(s, bytes):
+ return s.decode('latin1')
+ return str(s)
+
+def isfileobj(f):
+ return isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter))
+
+def open_latin1(filename, mode='r'):
+ return open(filename, mode=mode, encoding='iso-8859-1')
+
+def sixu(s):
+ return s
+
+strchar = 'U'
+
+def getexception():
+ return sys.exc_info()[1]
+
+def asbytes_nested(x):
+ if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
+ return [asbytes_nested(y) for y in x]
+ else:
+ return asbytes(x)
+
+def asunicode_nested(x):
+ if hasattr(x, '__iter__') and not isinstance(x, (bytes, unicode)):
+ return [asunicode_nested(y) for y in x]
+ else:
+ return asunicode(x)
+
+def is_pathlib_path(obj):
+ """
+ Check whether obj is a `pathlib.Path` object.
+
+ Prefer using ``isinstance(obj, os.PathLike)`` instead of this function.
+ """
+ return isinstance(obj, Path)
+
+# from Python 3.7
+class contextlib_nullcontext:
+ """Context manager that does no additional processing.
+
+ Used as a stand-in for a normal context manager, when a particular
+ block of code is only sometimes used with a normal context manager:
+
+ cm = optional_cm if condition else nullcontext()
+ with cm:
+ # Perform operation, using optional_cm if condition is True
+
+ .. note::
+ Prefer using `contextlib.nullcontext` instead of this context manager.
+ """
+
+ def __init__(self, enter_result=None):
+ self.enter_result = enter_result
+
+ def __enter__(self):
+ return self.enter_result
+
+ def __exit__(self, *excinfo):
+ pass
+
+
+def npy_load_module(name, fn, info=None):
+ """
+ Load a module. Uses ``load_module`` which will be deprecated in python
+ 3.12. An alternative that uses ``exec_module`` is in
+ numpy.distutils.misc_util.exec_mod_from_location
+
+ .. versionadded:: 1.11.2
+
+ Parameters
+ ----------
+ name : str
+ Full module name.
+ fn : str
+ Path to module file.
+ info : tuple, optional
+ Only here for backward compatibility with Python 2.*.
+
+ Returns
+ -------
+ mod : module
+
+ """
+ # Explicitly lazy import this to avoid paying the cost
+ # of importing importlib at startup
+ from importlib.machinery import SourceFileLoader
+ return SourceFileLoader(name, fn).load_module()
+
+
+os_fspath = os.fspath
+os_PathLike = os.PathLike
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/setup.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..c1b34a2cc9528b859e9f40d4eaee8eb35dbf64d6
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/setup.py
@@ -0,0 +1,10 @@
+def configuration(parent_package='',top_path=None):
+ from numpy.distutils.misc_util import Configuration
+
+ config = Configuration('compat', parent_package, top_path)
+ config.add_subpackage('tests')
+ return config
+
+if __name__ == '__main__':
+ from numpy.distutils.core import setup
+ setup(configuration=configuration)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..55fdf6ab83356bda86fd26674de3b6bc6cd3f76c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/test_compat.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/test_compat.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..be2ac17db502b88fdacfc1c516f32751b18b0ca2
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/__pycache__/test_compat.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/test_compat.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/test_compat.py
new file mode 100644
index 0000000000000000000000000000000000000000..2b8acbaa06626695db51c2d82e46506beaf0297a
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/compat/tests/test_compat.py
@@ -0,0 +1,19 @@
+from os.path import join
+
+from numpy.compat import isfileobj
+from numpy.testing import assert_
+from numpy.testing import tempdir
+
+
+def test_isfileobj():
+ with tempdir(prefix="numpy_test_compat_") as folder:
+ filename = join(folder, 'a.bin')
+
+ with open(filename, 'wb') as f:
+ assert_(isfileobj(f))
+
+ with open(filename, 'ab') as f:
+ assert_(isfileobj(f))
+
+ with open(filename, 'rb') as f:
+ assert_(isfileobj(f))
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/conftest.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/conftest.py
new file mode 100644
index 0000000000000000000000000000000000000000..e15ee08451e784c3fedd9a4e2a8276ea5ea7e7dd
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/conftest.py
@@ -0,0 +1,119 @@
+"""
+Pytest configuration and fixtures for the Numpy test suite.
+"""
+import os
+import tempfile
+
+import hypothesis
+import pytest
+import numpy
+
+from numpy.core._multiarray_tests import get_fpu_mode
+
+
+_old_fpu_mode = None
+_collect_results = {}
+
+# Use a known and persistent tmpdir for hypothesis' caches, which
+# can be automatically cleared by the OS or user.
+hypothesis.configuration.set_hypothesis_home_dir(
+ os.path.join(tempfile.gettempdir(), ".hypothesis")
+)
+
+# We register two custom profiles for Numpy - for details see
+# https://hypothesis.readthedocs.io/en/latest/settings.html
+# The first is designed for our own CI runs; the latter also
+# forces determinism and is designed for use via np.test()
+hypothesis.settings.register_profile(
+ name="numpy-profile", deadline=None, print_blob=True,
+)
+hypothesis.settings.register_profile(
+ name="np.test() profile",
+ deadline=None, print_blob=True, database=None, derandomize=True,
+ suppress_health_check=hypothesis.HealthCheck.all(),
+)
+# Note that the default profile is chosen based on the presence
+# of pytest.ini, but can be overriden by passing the
+# --hypothesis-profile=NAME argument to pytest.
+_pytest_ini = os.path.join(os.path.dirname(__file__), "..", "pytest.ini")
+hypothesis.settings.load_profile(
+ "numpy-profile" if os.path.isfile(_pytest_ini) else "np.test() profile"
+)
+
+
+def pytest_configure(config):
+ config.addinivalue_line("markers",
+ "valgrind_error: Tests that are known to error under valgrind.")
+ config.addinivalue_line("markers",
+ "leaks_references: Tests that are known to leak references.")
+ config.addinivalue_line("markers",
+ "slow: Tests that are very slow.")
+ config.addinivalue_line("markers",
+ "slow_pypy: Tests that are very slow on pypy.")
+
+
+def pytest_addoption(parser):
+ parser.addoption("--available-memory", action="store", default=None,
+ help=("Set amount of memory available for running the "
+ "test suite. This can result to tests requiring "
+ "especially large amounts of memory to be skipped. "
+ "Equivalent to setting environment variable "
+ "NPY_AVAILABLE_MEM. Default: determined"
+ "automatically."))
+
+
+def pytest_sessionstart(session):
+ available_mem = session.config.getoption('available_memory')
+ if available_mem is not None:
+ os.environ['NPY_AVAILABLE_MEM'] = available_mem
+
+
+#FIXME when yield tests are gone.
+@pytest.hookimpl()
+def pytest_itemcollected(item):
+ """
+ Check FPU precision mode was not changed during test collection.
+
+ The clumsy way we do it here is mainly necessary because numpy
+ still uses yield tests, which can execute code at test collection
+ time.
+ """
+ global _old_fpu_mode
+
+ mode = get_fpu_mode()
+
+ if _old_fpu_mode is None:
+ _old_fpu_mode = mode
+ elif mode != _old_fpu_mode:
+ _collect_results[item] = (_old_fpu_mode, mode)
+ _old_fpu_mode = mode
+
+
+@pytest.fixture(scope="function", autouse=True)
+def check_fpu_mode(request):
+ """
+ Check FPU precision mode was not changed during the test.
+ """
+ old_mode = get_fpu_mode()
+ yield
+ new_mode = get_fpu_mode()
+
+ if old_mode != new_mode:
+ raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
+ " during the test".format(old_mode, new_mode))
+
+ collect_result = _collect_results.get(request.node)
+ if collect_result is not None:
+ old_mode, new_mode = collect_result
+ raise AssertionError("FPU precision mode changed from {0:#x} to {1:#x}"
+ " when collecting the test".format(old_mode,
+ new_mode))
+
+
+@pytest.fixture(autouse=True)
+def add_np(doctest_namespace):
+ doctest_namespace['np'] = numpy
+
+@pytest.fixture(autouse=True)
+def env_setup(monkeypatch):
+ monkeypatch.setenv('PYTHONHASHSEED', '0')
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..dad9293e1a19e8cae141e14fbfb23acc0f0f7ff6
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.py
@@ -0,0 +1,166 @@
+"""
+Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
+
+Please note that this module is private. All functions and objects
+are available in the main ``numpy`` namespace - use that instead.
+
+"""
+
+from numpy.version import version as __version__
+
+import os
+
+# disables OpenBLAS affinity setting of the main thread that limits
+# python threads or processes to one core
+env_added = []
+for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
+ if envkey not in os.environ:
+ os.environ[envkey] = '1'
+ env_added.append(envkey)
+
+try:
+ from . import multiarray
+except ImportError as exc:
+ import sys
+ msg = """
+
+IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
+
+Importing the numpy C-extensions failed. This error can happen for
+many reasons, often due to issues with your setup or how NumPy was
+installed.
+
+We have compiled some common reasons and troubleshooting tips at:
+
+ https://numpy.org/devdocs/user/troubleshooting-importerror.html
+
+Please note and check the following:
+
+ * The Python version is: Python%d.%d from "%s"
+ * The NumPy version is: "%s"
+
+and make sure that they are the versions you expect.
+Please carefully study the documentation linked above for further help.
+
+Original error was: %s
+""" % (sys.version_info[0], sys.version_info[1], sys.executable,
+ __version__, exc)
+ raise ImportError(msg)
+finally:
+ for envkey in env_added:
+ del os.environ[envkey]
+del envkey
+del env_added
+del os
+
+from . import umath
+
+# Check that multiarray,umath are pure python modules wrapping
+# _multiarray_umath and not either of the old c-extension modules
+if not (hasattr(multiarray, '_multiarray_umath') and
+ hasattr(umath, '_multiarray_umath')):
+ import sys
+ path = sys.modules['numpy'].__path__
+ msg = ("Something is wrong with the numpy installation. "
+ "While importing we detected an older version of "
+ "numpy in {}. One method of fixing this is to repeatedly uninstall "
+ "numpy until none is found, then reinstall this version.")
+ raise ImportError(msg.format(path))
+
+from . import numerictypes as nt
+multiarray.set_typeDict(nt.sctypeDict)
+from . import numeric
+from .numeric import *
+from . import fromnumeric
+from .fromnumeric import *
+from . import defchararray as char
+from . import records as rec
+from .records import record, recarray, format_parser
+from .memmap import *
+from .defchararray import chararray
+from . import function_base
+from .function_base import *
+from . import machar
+from .machar import *
+from . import getlimits
+from .getlimits import *
+from . import shape_base
+from .shape_base import *
+from . import einsumfunc
+from .einsumfunc import *
+del nt
+
+from .fromnumeric import amax as max, amin as min, round_ as round
+from .numeric import absolute as abs
+
+# do this after everything else, to minimize the chance of this misleadingly
+# appearing in an import-time traceback
+from . import _add_newdocs
+from . import _add_newdocs_scalars
+# add these for module-freeze analysis (like PyInstaller)
+from . import _dtype_ctypes
+from . import _internal
+from . import _dtype
+from . import _methods
+
+__all__ = ['char', 'rec', 'memmap']
+__all__ += numeric.__all__
+__all__ += fromnumeric.__all__
+__all__ += ['record', 'recarray', 'format_parser']
+__all__ += ['chararray']
+__all__ += function_base.__all__
+__all__ += machar.__all__
+__all__ += getlimits.__all__
+__all__ += shape_base.__all__
+__all__ += einsumfunc.__all__
+
+# We used to use `np.core._ufunc_reconstruct` to unpickle. This is unnecessary,
+# but old pickles saved before 1.20 will be using it, and there is no reason
+# to break loading them.
+def _ufunc_reconstruct(module, name):
+ # The `fromlist` kwarg is required to ensure that `mod` points to the
+ # inner-most module rather than the parent package when module name is
+ # nested. This makes it possible to pickle non-toplevel ufuncs such as
+ # scipy.special.expit for instance.
+ mod = __import__(module, fromlist=[name])
+ return getattr(mod, name)
+
+
+def _ufunc_reduce(func):
+ # Report the `__name__`. pickle will try to find the module. Note that
+ # pickle supports for this `__name__` to be a `__qualname__`. It may
+ # make sense to add a `__qualname__` to ufuncs, to allow this more
+ # explicitly (Numba has ufuncs as attributes).
+ # See also: https://github.com/dask/distributed/issues/3450
+ return func.__name__
+
+
+def _DType_reconstruct(scalar_type):
+ # This is a work-around to pickle type(np.dtype(np.float64)), etc.
+ # and it should eventually be replaced with a better solution, e.g. when
+ # DTypes become HeapTypes.
+ return type(dtype(scalar_type))
+
+
+def _DType_reduce(DType):
+ # To pickle a DType without having to add top-level names, pickle the
+ # scalar type for now (and assume that reconstruction will be possible).
+ if DType is dtype:
+ return "dtype" # must pickle `np.dtype` as a singleton.
+ scalar_type = DType.type # pickle the scalar type for reconstruction
+ return _DType_reconstruct, (scalar_type,)
+
+
+import copyreg
+
+copyreg.pickle(ufunc, _ufunc_reduce)
+copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
+
+# Unclutter namespace (must keep _*_reconstruct for unpickling)
+del copyreg
+del _ufunc_reduce
+del _DType_reduce
+
+from numpy._pytesttester import PytestTester
+test = PytestTester(__name__)
+del PytestTester
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..4c7a42bf3db4dd62fccf927ff0f20169bdfa5746
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__init__.pyi
@@ -0,0 +1,2 @@
+# NOTE: The `np.core` namespace is deliberately kept empty due to it
+# being private (despite the lack of leading underscore)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/__init__.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/__init__.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b117da22de3fd6edcf2a6f9c25ed4e9b0290bffc
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/__init__.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..67f6cd3b8b520f8b5322316a18da991ad2b26f7e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs.cpython-37.pyc
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4dd2a78fb170c254c1a27ef8671123417394179c6a5812e17686f9da64679b86
+size 175576
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs_scalars.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs_scalars.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dd47d23982ef8fa56cc6c23e8605c1104d2ec4f2
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_add_newdocs_scalars.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_asarray.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_asarray.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..72605b2e76f5ea73f32eebf0a4fb7450a1f39788
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_asarray.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..90274ea82c18313bfcf276e1991d67835eb71d90
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..439d58a67985762b8c346d3cc9ce5e2b8edc4fc9
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_exceptions.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_exceptions.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..61b9af129265ec3416754706b644a18728cefe7c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_exceptions.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_internal.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_internal.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c3681a2ce75ce4737032ab4a218f4b1d42401db7
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_internal.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_methods.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_methods.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3e8a73bc512eba3a8913213cadfb6477ee590e4d
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_methods.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_string_helpers.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_string_helpers.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..17f5c4c6b25d3da3252aa1d757dab28cb22e05b8
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_string_helpers.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_type_aliases.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_type_aliases.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..252a5b1cd764f8d84b997575627586cd699b84c7
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_type_aliases.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_ufunc_config.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_ufunc_config.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..27cd5cfd3a1e97f5a1969728c25a7de8c1360abf
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/_ufunc_config.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/arrayprint.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/arrayprint.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..db582adadf533ed214c0f6b37e8fee4afcf2592c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/arrayprint.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/cversions.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/cversions.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a3b78dfa8aa766d21f0edb4b7a210ef1ea12d874
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/cversions.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/defchararray.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/defchararray.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e11b6b445dc33b359e3ebd71f35f85d6b3f14aab
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/defchararray.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/einsumfunc.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/einsumfunc.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ef04857ec4290b386ef03ae46a1d1a2ddefcdb0
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/einsumfunc.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/fromnumeric.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/fromnumeric.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..df051c2b56a0ebf9297a5fea79f4d85b15581fcb
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/fromnumeric.cpython-37.pyc
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c179d300a01e5682d0702bb9972ea74deb9561a296f7c77efc806b341741b367
+size 121609
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/function_base.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/function_base.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..458e96e57a6bf16839e79b0c016ac3cdb80d9803
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/function_base.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/generate_numpy_api.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/generate_numpy_api.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bde992a815dbe02988a2ae0690f39baa7a1a2071
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/generate_numpy_api.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/getlimits.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/getlimits.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..34f05da16ed531d695cb9d307a59d8f4aaed5a13
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/getlimits.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/machar.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/machar.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1f60bf7f75d3f24672a751bb2afe626518907c7c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/machar.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/memmap.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/memmap.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56d33c98ba62975ba4d5af79c20f062b493ba04c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/memmap.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/multiarray.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/multiarray.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3a34174b51a943f5c2efae6da2b2a674f2706d4b
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/multiarray.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numeric.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numeric.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ac4771e2d770446b28dff35dc575cb2982f37b01
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numeric.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numerictypes.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numerictypes.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7a8d3d8828239938403589f036754ac6ff7df43c
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/numerictypes.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/overrides.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/overrides.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..011996e6b0e4ddccaa3e5a6aaf95e8c6c18d3218
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/overrides.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/records.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/records.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fd9e8f0cb6809c42d2e498cfb877e16e92729903
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/records.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..60c08f906230d31c237c0cd5997d35e9b35d26fe
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup_common.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup_common.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bb721de6a9bfbc4135d075dbcfc2b39e908de636
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/setup_common.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/shape_base.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/shape_base.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e7bd665665b060d0027a784da66a381234c12ae9
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/shape_base.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e18b07c730c2904117cf8f9a706cc1e08a4e4763
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath_tests.cpython-37.pyc b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath_tests.cpython-37.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73b4dc4b955047182479e3dfae26b35293c69d95
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/__pycache__/umath_tests.cpython-37.pyc differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs.py
new file mode 100644
index 0000000000000000000000000000000000000000..b8f0ee907b4b2166d6afaa022cbc5133de94a440
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs.py
@@ -0,0 +1,6530 @@
+"""
+This is only meant to add docs to objects defined in C-extension modules.
+The purpose is to allow easier editing of the docstrings without
+requiring a re-compile.
+
+NOTE: Many of the methods of ndarray have corresponding functions.
+ If you update these docstrings, please keep also the ones in
+ core/fromnumeric.py, core/defmatrix.py up-to-date.
+
+"""
+
+from numpy.core.function_base import add_newdoc
+from numpy.core.overrides import array_function_like_doc
+
+###############################################################################
+#
+# flatiter
+#
+# flatiter needs a toplevel description
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'flatiter',
+ """
+ Flat iterator object to iterate over arrays.
+
+ A `flatiter` iterator is returned by ``x.flat`` for any array `x`.
+ It allows iterating over the array as if it were a 1-D array,
+ either in a for-loop or by calling its `next` method.
+
+ Iteration is done in row-major, C-style order (the last
+ index varying the fastest). The iterator can also be indexed using
+ basic slicing or advanced indexing.
+
+ See Also
+ --------
+ ndarray.flat : Return a flat iterator over an array.
+ ndarray.flatten : Returns a flattened copy of an array.
+
+ Notes
+ -----
+ A `flatiter` iterator can not be constructed directly from Python code
+ by calling the `flatiter` constructor.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> type(fl)
+
+ >>> for item in fl:
+ ... print(item)
+ ...
+ 0
+ 1
+ 2
+ 3
+ 4
+ 5
+
+ >>> fl[2:4]
+ array([2, 3])
+
+ """)
+
+# flatiter attributes
+
+add_newdoc('numpy.core', 'flatiter', ('base',
+ """
+ A reference to the array that is iterated over.
+
+ Examples
+ --------
+ >>> x = np.arange(5)
+ >>> fl = x.flat
+ >>> fl.base is x
+ True
+
+ """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('coords',
+ """
+ An N-dimensional tuple of current coordinates.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> fl.coords
+ (0, 0)
+ >>> next(fl)
+ 0
+ >>> fl.coords
+ (0, 1)
+
+ """))
+
+
+
+add_newdoc('numpy.core', 'flatiter', ('index',
+ """
+ Current flat index into the array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> fl = x.flat
+ >>> fl.index
+ 0
+ >>> next(fl)
+ 0
+ >>> fl.index
+ 1
+
+ """))
+
+# flatiter functions
+
+add_newdoc('numpy.core', 'flatiter', ('__array__',
+ """__array__(type=None) Get array from iterator
+
+ """))
+
+
+add_newdoc('numpy.core', 'flatiter', ('copy',
+ """
+ copy()
+
+ Get a copy of the iterator as a 1-D array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> fl = x.flat
+ >>> fl.copy()
+ array([0, 1, 2, 3, 4, 5])
+
+ """))
+
+
+###############################################################################
+#
+# nditer
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'nditer',
+ """
+ nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe', op_axes=None, itershape=None, buffersize=0)
+
+ Efficient multi-dimensional iterator object to iterate over arrays.
+ To get started using this object, see the
+ :ref:`introductory guide to array iteration `.
+
+ Parameters
+ ----------
+ op : ndarray or sequence of array_like
+ The array(s) to iterate over.
+
+ flags : sequence of str, optional
+ Flags to control the behavior of the iterator.
+
+ * ``buffered`` enables buffering when required.
+ * ``c_index`` causes a C-order index to be tracked.
+ * ``f_index`` causes a Fortran-order index to be tracked.
+ * ``multi_index`` causes a multi-index, or a tuple of indices
+ with one per iteration dimension, to be tracked.
+ * ``common_dtype`` causes all the operands to be converted to
+ a common data type, with copying or buffering as necessary.
+ * ``copy_if_overlap`` causes the iterator to determine if read
+ operands have overlap with write operands, and make temporary
+ copies as necessary to avoid overlap. False positives (needless
+ copying) are possible in some cases.
+ * ``delay_bufalloc`` delays allocation of the buffers until
+ a reset() call is made. Allows ``allocate`` operands to
+ be initialized before their values are copied into the buffers.
+ * ``external_loop`` causes the ``values`` given to be
+ one-dimensional arrays with multiple values instead of
+ zero-dimensional arrays.
+ * ``grow_inner`` allows the ``value`` array sizes to be made
+ larger than the buffer size when both ``buffered`` and
+ ``external_loop`` is used.
+ * ``ranged`` allows the iterator to be restricted to a sub-range
+ of the iterindex values.
+ * ``refs_ok`` enables iteration of reference types, such as
+ object arrays.
+ * ``reduce_ok`` enables iteration of ``readwrite`` operands
+ which are broadcasted, also known as reduction operands.
+ * ``zerosize_ok`` allows `itersize` to be zero.
+ op_flags : list of list of str, optional
+ This is a list of flags for each operand. At minimum, one of
+ ``readonly``, ``readwrite``, or ``writeonly`` must be specified.
+
+ * ``readonly`` indicates the operand will only be read from.
+ * ``readwrite`` indicates the operand will be read from and written to.
+ * ``writeonly`` indicates the operand will only be written to.
+ * ``no_broadcast`` prevents the operand from being broadcasted.
+ * ``contig`` forces the operand data to be contiguous.
+ * ``aligned`` forces the operand data to be aligned.
+ * ``nbo`` forces the operand data to be in native byte order.
+ * ``copy`` allows a temporary read-only copy if required.
+ * ``updateifcopy`` allows a temporary read-write copy if required.
+ * ``allocate`` causes the array to be allocated if it is None
+ in the ``op`` parameter.
+ * ``no_subtype`` prevents an ``allocate`` operand from using a subtype.
+ * ``arraymask`` indicates that this operand is the mask to use
+ for selecting elements when writing to operands with the
+ 'writemasked' flag set. The iterator does not enforce this,
+ but when writing from a buffer back to the array, it only
+ copies those elements indicated by this mask.
+ * ``writemasked`` indicates that only elements where the chosen
+ ``arraymask`` operand is True will be written to.
+ * ``overlap_assume_elementwise`` can be used to mark operands that are
+ accessed only in the iterator order, to allow less conservative
+ copying when ``copy_if_overlap`` is present.
+ op_dtypes : dtype or tuple of dtype(s), optional
+ The required data type(s) of the operands. If copying or buffering
+ is enabled, the data will be converted to/from their original types.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the iteration order. 'C' means C order, 'F' means
+ Fortran order, 'A' means 'F' order if all the arrays are Fortran
+ contiguous, 'C' order otherwise, and 'K' means as close to the
+ order the array elements appear in memory as possible. This also
+ affects the element memory order of ``allocate`` operands, as they
+ are allocated to be compatible with iteration order.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur when making a copy
+ or buffering. Setting this to 'unsafe' is not recommended,
+ as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ op_axes : list of list of ints, optional
+ If provided, is a list of ints or None for each operands.
+ The list of axes for an operand is a mapping from the dimensions
+ of the iterator to the dimensions of the operand. A value of
+ -1 can be placed for entries, causing that dimension to be
+ treated as `newaxis`.
+ itershape : tuple of ints, optional
+ The desired shape of the iterator. This allows ``allocate`` operands
+ with a dimension mapped by op_axes not corresponding to a dimension
+ of a different operand to get a value not equal to 1 for that
+ dimension.
+ buffersize : int, optional
+ When buffering is enabled, controls the size of the temporary
+ buffers. Set to 0 for the default value.
+
+ Attributes
+ ----------
+ dtypes : tuple of dtype(s)
+ The data types of the values provided in `value`. This may be
+ different from the operand data types if buffering is enabled.
+ Valid only before the iterator is closed.
+ finished : bool
+ Whether the iteration over the operands is finished or not.
+ has_delayed_bufalloc : bool
+ If True, the iterator was created with the ``delay_bufalloc`` flag,
+ and no reset() function was called on it yet.
+ has_index : bool
+ If True, the iterator was created with either the ``c_index`` or
+ the ``f_index`` flag, and the property `index` can be used to
+ retrieve it.
+ has_multi_index : bool
+ If True, the iterator was created with the ``multi_index`` flag,
+ and the property `multi_index` can be used to retrieve it.
+ index
+ When the ``c_index`` or ``f_index`` flag was used, this property
+ provides access to the index. Raises a ValueError if accessed
+ and ``has_index`` is False.
+ iterationneedsapi : bool
+ Whether iteration requires access to the Python API, for example
+ if one of the operands is an object array.
+ iterindex : int
+ An index which matches the order of iteration.
+ itersize : int
+ Size of the iterator.
+ itviews
+ Structured view(s) of `operands` in memory, matching the reordered
+ and optimized iterator access pattern. Valid only before the iterator
+ is closed.
+ multi_index
+ When the ``multi_index`` flag was used, this property
+ provides access to the index. Raises a ValueError if accessed
+ accessed and ``has_multi_index`` is False.
+ ndim : int
+ The dimensions of the iterator.
+ nop : int
+ The number of iterator operands.
+ operands : tuple of operand(s)
+ The array(s) to be iterated over. Valid only before the iterator is
+ closed.
+ shape : tuple of ints
+ Shape tuple, the shape of the iterator.
+ value
+ Value of ``operands`` at current iteration. Normally, this is a
+ tuple of array scalars, but if the flag ``external_loop`` is used,
+ it is a tuple of one dimensional arrays.
+
+ Notes
+ -----
+ `nditer` supersedes `flatiter`. The iterator implementation behind
+ `nditer` is also exposed by the NumPy C API.
+
+ The Python exposure supplies two iteration interfaces, one which follows
+ the Python iterator protocol, and another which mirrors the C-style
+ do-while pattern. The native Python approach is better in most cases, but
+ if you need the coordinates or index of an iterator, use the C-style pattern.
+
+ Examples
+ --------
+ Here is how we might write an ``iter_add`` function, using the
+ Python iterator protocol:
+
+ >>> def iter_add_py(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... addop(a, b, out=c)
+ ... return it.operands[2]
+
+ Here is the same function, but following the C-style pattern:
+
+ >>> def iter_add(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... while not it.finished:
+ ... addop(it[0], it[1], out=it[2])
+ ... it.iternext()
+ ... return it.operands[2]
+
+ Here is an example outer product function:
+
+ >>> def outer_it(x, y, out=None):
+ ... mulop = np.multiply
+ ... it = np.nditer([x, y, out], ['external_loop'],
+ ... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
+ ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
+ ... [-1] * x.ndim + list(range(y.ndim)),
+ ... None])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... mulop(a, b, out=c)
+ ... return it.operands[2]
+
+ >>> a = np.arange(2)+1
+ >>> b = np.arange(3)+1
+ >>> outer_it(a,b)
+ array([[1, 2, 3],
+ [2, 4, 6]])
+
+ Here is an example function which operates like a "lambda" ufunc:
+
+ >>> def luf(lamdaexpr, *args, **kwargs):
+ ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
+ ... nargs = len(args)
+ ... op = (kwargs.get('out',None),) + args
+ ... it = np.nditer(op, ['buffered','external_loop'],
+ ... [['writeonly','allocate','no_broadcast']] +
+ ... [['readonly','nbo','aligned']]*nargs,
+ ... order=kwargs.get('order','K'),
+ ... casting=kwargs.get('casting','safe'),
+ ... buffersize=kwargs.get('buffersize',0))
+ ... while not it.finished:
+ ... it[0] = lamdaexpr(*it[1:])
+ ... it.iternext()
+ ... return it.operands[0]
+
+ >>> a = np.arange(5)
+ >>> b = np.ones(5)
+ >>> luf(lambda i,j:i*i + j/2, a, b)
+ array([ 0.5, 1.5, 4.5, 9.5, 16.5])
+
+ If operand flags `"writeonly"` or `"readwrite"` are used the
+ operands may be views into the original data with the
+ `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a
+ context manager or the `nditer.close` method must be called before
+ using the result. The temporary data will be written back to the
+ original data when the `__exit__` function is called but not before:
+
+ >>> a = np.arange(6, dtype='i4')[::-2]
+ >>> with np.nditer(a, [],
+ ... [['writeonly', 'updateifcopy']],
+ ... casting='unsafe',
+ ... op_dtypes=[np.dtype('f4')]) as i:
+ ... x = i.operands[0]
+ ... x[:] = [-1, -2, -3]
+ ... # a still unchanged here
+ >>> a, x
+ (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
+
+ It is important to note that once the iterator is exited, dangling
+ references (like `x` in the example) may or may not share data with
+ the original data `a`. If writeback semantics were active, i.e. if
+ `x.base.flags.writebackifcopy` is `True`, then exiting the iterator
+ will sever the connection between `x` and `a`, writing to `x` will
+ no longer write to `a`. If writeback semantics are not active, then
+ `x.data` will still point at some part of `a.data`, and writing to
+ one will affect the other.
+
+ Context management and the `close` method appeared in version 1.15.0.
+
+ """)
+
+# nditer methods
+
+add_newdoc('numpy.core', 'nditer', ('copy',
+ """
+ copy()
+
+ Get a copy of the iterator in its current state.
+
+ Examples
+ --------
+ >>> x = np.arange(10)
+ >>> y = x + 1
+ >>> it = np.nditer([x, y])
+ >>> next(it)
+ (array(0), array(1))
+ >>> it2 = it.copy()
+ >>> next(it2)
+ (array(1), array(2))
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('operands',
+ """
+ operands[`Slice`]
+
+ The array(s) to be iterated over. Valid only before the iterator is closed.
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('debug_print',
+ """
+ debug_print()
+
+ Print the current state of the `nditer` instance and debug info to stdout.
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('enable_external_loop',
+ """
+ enable_external_loop()
+
+ When the "external_loop" was not used during construction, but
+ is desired, this modifies the iterator to behave as if the flag
+ was specified.
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('iternext',
+ """
+ iternext()
+
+ Check whether iterations are left, and perform a single internal iteration
+ without returning the result. Used in the C-style pattern do-while
+ pattern. For an example, see `nditer`.
+
+ Returns
+ -------
+ iternext : bool
+ Whether or not there are iterations left.
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('remove_axis',
+ """
+ remove_axis(i)
+
+ Removes axis `i` from the iterator. Requires that the flag "multi_index"
+ be enabled.
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('remove_multi_index',
+ """
+ remove_multi_index()
+
+ When the "multi_index" flag was specified, this removes it, allowing
+ the internal iteration structure to be optimized further.
+
+ """))
+
+add_newdoc('numpy.core', 'nditer', ('reset',
+ """
+ reset()
+
+ Reset the iterator to its initial state.
+
+ """))
+
+add_newdoc('numpy.core', 'nested_iters',
+ """
+ Create nditers for use in nested loops
+
+ Create a tuple of `nditer` objects which iterate in nested loops over
+ different axes of the op argument. The first iterator is used in the
+ outermost loop, the last in the innermost loop. Advancing one will change
+ the subsequent iterators to point at its new element.
+
+ Parameters
+ ----------
+ op : ndarray or sequence of array_like
+ The array(s) to iterate over.
+
+ axes : list of list of int
+ Each item is used as an "op_axes" argument to an nditer
+
+ flags, op_flags, op_dtypes, order, casting, buffersize (optional)
+ See `nditer` parameters of the same name
+
+ Returns
+ -------
+ iters : tuple of nditer
+ An nditer for each item in `axes`, outermost first
+
+ See Also
+ --------
+ nditer
+
+ Examples
+ --------
+
+ Basic usage. Note how y is the "flattened" version of
+ [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified
+ the first iter's axes as [1]
+
+ >>> a = np.arange(12).reshape(2, 3, 2)
+ >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
+ >>> for x in i:
+ ... print(i.multi_index)
+ ... for y in j:
+ ... print('', j.multi_index, y)
+ (0,)
+ (0, 0) 0
+ (0, 1) 1
+ (1, 0) 6
+ (1, 1) 7
+ (1,)
+ (0, 0) 2
+ (0, 1) 3
+ (1, 0) 8
+ (1, 1) 9
+ (2,)
+ (0, 0) 4
+ (0, 1) 5
+ (1, 0) 10
+ (1, 1) 11
+
+ """)
+
+add_newdoc('numpy.core', 'nditer', ('close',
+ """
+ close()
+
+ Resolve all writeback semantics in writeable operands.
+
+ .. versionadded:: 1.15.0
+
+ See Also
+ --------
+
+ :ref:`nditer-context-manager`
+
+ """))
+
+
+###############################################################################
+#
+# broadcast
+#
+###############################################################################
+
+add_newdoc('numpy.core', 'broadcast',
+ """
+ Produce an object that mimics broadcasting.
+
+ Parameters
+ ----------
+ in1, in2, ... : array_like
+ Input parameters.
+
+ Returns
+ -------
+ b : broadcast object
+ Broadcast the input parameters against one another, and
+ return an object that encapsulates the result.
+ Amongst others, it has ``shape`` and ``nd`` properties, and
+ may be used as an iterator.
+
+ See Also
+ --------
+ broadcast_arrays
+ broadcast_to
+ broadcast_shapes
+
+ Examples
+ --------
+
+ Manually adding two vectors, using broadcasting:
+
+ >>> x = np.array([[1], [2], [3]])
+ >>> y = np.array([4, 5, 6])
+ >>> b = np.broadcast(x, y)
+
+ >>> out = np.empty(b.shape)
+ >>> out.flat = [u+v for (u,v) in b]
+ >>> out
+ array([[5., 6., 7.],
+ [6., 7., 8.],
+ [7., 8., 9.]])
+
+ Compare against built-in broadcasting:
+
+ >>> x + y
+ array([[5, 6, 7],
+ [6, 7, 8],
+ [7, 8, 9]])
+
+ """)
+
+# attributes
+
+add_newdoc('numpy.core', 'broadcast', ('index',
+ """
+ current index in broadcasted result
+
+ Examples
+ --------
+ >>> x = np.array([[1], [2], [3]])
+ >>> y = np.array([4, 5, 6])
+ >>> b = np.broadcast(x, y)
+ >>> b.index
+ 0
+ >>> next(b), next(b), next(b)
+ ((1, 4), (1, 5), (1, 6))
+ >>> b.index
+ 3
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('iters',
+ """
+ tuple of iterators along ``self``'s "components."
+
+ Returns a tuple of `numpy.flatiter` objects, one for each "component"
+ of ``self``.
+
+ See Also
+ --------
+ numpy.flatiter
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> row, col = b.iters
+ >>> next(row), next(col)
+ (1, 4)
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('ndim',
+ """
+ Number of dimensions of broadcasted result. Alias for `nd`.
+
+ .. versionadded:: 1.12.0
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.ndim
+ 2
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('nd',
+ """
+ Number of dimensions of broadcasted result. For code intended for NumPy
+ 1.12.0 and later the more consistent `ndim` is preferred.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.nd
+ 2
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('numiter',
+ """
+ Number of iterators possessed by the broadcasted result.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.numiter
+ 2
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('shape',
+ """
+ Shape of broadcasted result.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.shape
+ (3, 3)
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('size',
+ """
+ Total size of broadcasted result.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.size
+ 9
+
+ """))
+
+add_newdoc('numpy.core', 'broadcast', ('reset',
+ """
+ reset()
+
+ Reset the broadcasted result's iterator(s).
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ None
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> y = np.array([[4], [5], [6]])
+ >>> b = np.broadcast(x, y)
+ >>> b.index
+ 0
+ >>> next(b), next(b), next(b)
+ ((1, 4), (2, 4), (3, 4))
+ >>> b.index
+ 3
+ >>> b.reset()
+ >>> b.index
+ 0
+
+ """))
+
+###############################################################################
+#
+# numpy functions
+#
+###############################################################################
+
+add_newdoc('numpy.core.multiarray', 'array',
+ """
+ array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0,
+ like=None)
+
+ Create an array.
+
+ Parameters
+ ----------
+ object : array_like
+ An array, any object exposing the array interface, an object whose
+ __array__ method returns an array, or any (nested) sequence.
+ dtype : data-type, optional
+ The desired data-type for the array. If not given, then the type will
+ be determined as the minimum type required to hold the objects in the
+ sequence.
+ copy : bool, optional
+ If true (default), then the object is copied. Otherwise, a copy will
+ only be made if __array__ returns a copy, if obj is a nested sequence,
+ or if a copy is needed to satisfy any of the other requirements
+ (`dtype`, `order`, etc.).
+ order : {'K', 'A', 'C', 'F'}, optional
+ Specify the memory layout of the array. If object is not an array, the
+ newly created array will be in C order (row major) unless 'F' is
+ specified, in which case it will be in Fortran order (column major).
+ If object is an array the following holds.
+
+ ===== ========= ===================================================
+ order no copy copy=True
+ ===== ========= ===================================================
+ 'K' unchanged F & C order preserved, otherwise most similar order
+ 'A' unchanged F order if input is F and not C, otherwise C order
+ 'C' C order C order
+ 'F' F order F order
+ ===== ========= ===================================================
+
+ When ``copy=False`` and a copy is made for other reasons, the result is
+ the same as if ``copy=True``, with some exceptions for 'A', see the
+ Notes section. The default order is 'K'.
+ subok : bool, optional
+ If True, then sub-classes will be passed-through, otherwise
+ the returned array will be forced to be a base-class array (default).
+ ndmin : int, optional
+ Specifies the minimum number of dimensions that the resulting
+ array should have. Ones will be pre-pended to the shape as
+ needed to meet this requirement.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ An array object satisfying the specified requirements.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+
+
+ Notes
+ -----
+ When order is 'A' and `object` is an array in neither 'C' nor 'F' order,
+ and a copy is forced by a change in dtype, then the order of the result is
+ not necessarily 'C' as expected. This is likely a bug.
+
+ Examples
+ --------
+ >>> np.array([1, 2, 3])
+ array([1, 2, 3])
+
+ Upcasting:
+
+ >>> np.array([1, 2, 3.0])
+ array([ 1., 2., 3.])
+
+ More than one dimension:
+
+ >>> np.array([[1, 2], [3, 4]])
+ array([[1, 2],
+ [3, 4]])
+
+ Minimum dimensions 2:
+
+ >>> np.array([1, 2, 3], ndmin=2)
+ array([[1, 2, 3]])
+
+ Type provided:
+
+ >>> np.array([1, 2, 3], dtype=complex)
+ array([ 1.+0.j, 2.+0.j, 3.+0.j])
+
+ Data-type consisting of more than one element:
+
+ >>> x = np.array([(1,2),(3,4)],dtype=[('a','>> x['a']
+ array([1, 3])
+
+ Creating an array from sub-classes:
+
+ >>> np.array(np.mat('1 2; 3 4'))
+ array([[1, 2],
+ [3, 4]])
+
+ >>> np.array(np.mat('1 2; 3 4'), subok=True)
+ matrix([[1, 2],
+ [3, 4]])
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'asarray',
+ """
+ asarray(a, dtype=None, order=None, *, like=None)
+
+ Convert the input to an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes lists, lists of tuples, tuples, tuples of tuples, tuples
+ of lists and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Memory layout. 'A' and 'K' depend on the order of input array a.
+ 'C' row-major (C-style),
+ 'F' column-major (Fortran-style) memory representation.
+ 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+ 'K' (keep) preserve input order
+ Defaults to 'C'.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array interpretation of `a`. No copy is performed if the input
+ is already an ndarray with matching dtype and order. If `a` is a
+ subclass of ndarray, a base class ndarray is returned.
+
+ See Also
+ --------
+ asanyarray : Similar function which passes through subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfarray : Convert input to a floating point ndarray.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> np.asarray(a)
+ array([1, 2])
+
+ Existing arrays are not copied:
+
+ >>> a = np.array([1, 2])
+ >>> np.asarray(a) is a
+ True
+
+ If `dtype` is set, array is copied only if dtype does not match:
+
+ >>> a = np.array([1, 2], dtype=np.float32)
+ >>> np.asarray(a, dtype=np.float32) is a
+ True
+ >>> np.asarray(a, dtype=np.float64) is a
+ False
+
+ Contrary to `asanyarray`, ndarray subclasses are not passed through:
+
+ >>> issubclass(np.recarray, np.ndarray)
+ True
+ >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asarray(a) is a
+ False
+ >>> np.asanyarray(a) is a
+ True
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'asanyarray',
+ """
+ asanyarray(a, dtype=None, order=None, *, like=None)
+
+ Convert the input to an ndarray, but pass ndarray subclasses through.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes scalars, lists, lists of tuples, tuples, tuples of tuples,
+ tuples of lists, and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Memory layout. 'A' and 'K' depend on the order of input array a.
+ 'C' row-major (C-style),
+ 'F' column-major (Fortran-style) memory representation.
+ 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise
+ 'K' (keep) preserve input order
+ Defaults to 'C'.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray or an ndarray subclass
+ Array interpretation of `a`. If `a` is an ndarray or a subclass
+ of ndarray, it is returned as-is and no copy is performed.
+
+ See Also
+ --------
+ asarray : Similar function which always returns ndarrays.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfarray : Convert input to a floating point ndarray.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and
+ Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> np.asanyarray(a)
+ array([1, 2])
+
+ Instances of `ndarray` subclasses are passed through as-is:
+
+ >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asanyarray(a) is a
+ True
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'ascontiguousarray',
+ """
+ ascontiguousarray(a, dtype=None, *, like=None)
+
+ Return a contiguous array (ndim >= 1) in memory (C order).
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ Data-type of returned array.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Contiguous array of same shape and content as `a`, with type `dtype`
+ if specified.
+
+ See Also
+ --------
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> np.ascontiguousarray(x, dtype=np.float32)
+ array([[0., 1., 2.],
+ [3., 4., 5.]], dtype=float32)
+ >>> x.flags['C_CONTIGUOUS']
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'asfortranarray',
+ """
+ asfortranarray(a, dtype=None, *, like=None)
+
+ Return an array (ndim >= 1) laid out in Fortran order in memory.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ By default, the data-type is inferred from the input data.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ The input `a` in Fortran, or column-major, order.
+
+ See Also
+ --------
+ ascontiguousarray : Convert input to a contiguous (C order) array.
+ asanyarray : Convert input to an ndarray with either row or
+ column-major memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> y = np.asfortranarray(x)
+ >>> x.flags['F_CONTIGUOUS']
+ False
+ >>> y.flags['F_CONTIGUOUS']
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'empty',
+ """
+ empty(shape, dtype=float, order='C', *, like=None)
+
+ Return a new array of given shape and type, without initializing entries.
+
+ Parameters
+ ----------
+ shape : int or tuple of int
+ Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ Desired output data-type for the array, e.g, `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: 'C'
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data of the given shape, dtype, and
+ order. Object arrays will be initialized to None.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+
+
+ Notes
+ -----
+ `empty`, unlike `zeros`, does not set the array values to zero,
+ and may therefore be marginally faster. On the other hand, it requires
+ the user to manually set all the values in the array, and should be
+ used with caution.
+
+ Examples
+ --------
+ >>> np.empty([2, 2])
+ array([[ -9.74499359e+001, 6.69583040e-309],
+ [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized
+
+ >>> np.empty([2, 2], dtype=int)
+ array([[-1073741821, -1067949133],
+ [ 496041986, 19249760]]) #uninitialized
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'scalar',
+ """
+ scalar(dtype, obj)
+
+ Return a new scalar array of the given type initialized with obj.
+
+ This function is meant mainly for pickle support. `dtype` must be a
+ valid data-type descriptor. If `dtype` corresponds to an object
+ descriptor, then `obj` can be any object, otherwise `obj` must be a
+ string. If `obj` is not given, it will be interpreted as None for object
+ type and as zeros for all other types.
+
+ """)
+
+add_newdoc('numpy.core.multiarray', 'zeros',
+ """
+ zeros(shape, dtype=float, order='C', *, like=None)
+
+ Return a new array of given shape and type, filled with zeros.
+
+ Parameters
+ ----------
+ shape : int or tuple of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ The desired data-type for the array, e.g., `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: 'C'
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of zeros with the given shape, dtype, and order.
+
+ See Also
+ --------
+ zeros_like : Return an array of zeros with shape and type of input.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ full : Return a new array of given shape filled with value.
+
+ Examples
+ --------
+ >>> np.zeros(5)
+ array([ 0., 0., 0., 0., 0.])
+
+ >>> np.zeros((5,), dtype=int)
+ array([0, 0, 0, 0, 0])
+
+ >>> np.zeros((2, 1))
+ array([[ 0.],
+ [ 0.]])
+
+ >>> s = (2,2)
+ >>> np.zeros(s)
+ array([[ 0., 0.],
+ [ 0., 0.]])
+
+ >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
+ array([(0, 0), (0, 0)],
+ dtype=[('x', '>> np.fromstring('1 2', dtype=int, sep=' ')
+ array([1, 2])
+ >>> np.fromstring('1, 2', dtype=int, sep=',')
+ array([1, 2])
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'compare_chararrays',
+ """
+ compare_chararrays(a, b, cmp_op, rstrip)
+
+ Performs element-wise comparison of two string arrays using the
+ comparison operator specified by `cmp_op`.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Arrays to be compared.
+ cmp_op : {"<", "<=", "==", ">=", ">", "!="}
+ Type of comparison.
+ rstrip : Boolean
+ If True, the spaces at the end of Strings are removed before the comparison.
+
+ Returns
+ -------
+ out : ndarray
+ The output array of type Boolean with the same shape as a and b.
+
+ Raises
+ ------
+ ValueError
+ If `cmp_op` is not valid.
+ TypeError
+ If at least one of `a` or `b` is a non-string array
+
+ Examples
+ --------
+ >>> a = np.array(["a", "b", "cde"])
+ >>> b = np.array(["a", "a", "dec"])
+ >>> np.compare_chararrays(a, b, ">", True)
+ array([False, True, False])
+
+ """)
+
+add_newdoc('numpy.core.multiarray', 'fromiter',
+ """
+ fromiter(iter, dtype, count=-1, *, like=None)
+
+ Create a new 1-dimensional array from an iterable object.
+
+ Parameters
+ ----------
+ iter : iterable object
+ An iterable object providing data for the array.
+ dtype : data-type
+ The data-type of the returned array.
+ count : int, optional
+ The number of items to read from *iterable*. The default is -1,
+ which means all data is read.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ The output array.
+
+ Notes
+ -----
+ Specify `count` to improve performance. It allows ``fromiter`` to
+ pre-allocate the output array, instead of resizing it on demand.
+
+ Examples
+ --------
+ >>> iterable = (x*x for x in range(5))
+ >>> np.fromiter(iterable, float)
+ array([ 0., 1., 4., 9., 16.])
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', 'fromfile',
+ """
+ fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)
+
+ Construct an array from data in a text or binary file.
+
+ A highly efficient way of reading binary data with a known data-type,
+ as well as parsing simply formatted text files. Data written using the
+ `tofile` method can be read using this function.
+
+ Parameters
+ ----------
+ file : file or str or Path
+ Open file object or filename.
+
+ .. versionchanged:: 1.17.0
+ `pathlib.Path` objects are now accepted.
+
+ dtype : data-type
+ Data type of the returned array.
+ For binary files, it is used to determine the size and byte-order
+ of the items in the file.
+ Most builtin numeric types are supported and extension types may be supported.
+
+ .. versionadded:: 1.18.0
+ Complex dtypes.
+
+ count : int
+ Number of items to read. ``-1`` means all items (i.e., the complete
+ file).
+ sep : str
+ Separator between items if file is a text file.
+ Empty ("") separator means the file should be treated as binary.
+ Spaces (" ") in the separator match zero or more whitespace characters.
+ A separator consisting only of spaces must match at least one
+ whitespace.
+ offset : int
+ The offset (in bytes) from the file's current position. Defaults to 0.
+ Only permitted for binary files.
+
+ .. versionadded:: 1.17.0
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ See also
+ --------
+ load, save
+ ndarray.tofile
+ loadtxt : More flexible way of loading data from a text file.
+
+ Notes
+ -----
+ Do not rely on the combination of `tofile` and `fromfile` for
+ data storage, as the binary files generated are not platform
+ independent. In particular, no byte-order or data-type information is
+ saved. Data can be stored in the platform independent ``.npy`` format
+ using `save` and `load` instead.
+
+ Examples
+ --------
+ Construct an ndarray:
+
+ >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
+ ... ('temp', float)])
+ >>> x = np.zeros((1,), dtype=dt)
+ >>> x['time']['min'] = 10; x['temp'] = 98.25
+ >>> x
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '>> import tempfile
+ >>> fname = tempfile.mkstemp()[1]
+ >>> x.tofile(fname)
+
+ Read the raw data from disk:
+
+ >>> np.fromfile(fname, dtype=dt)
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '>> np.save(fname, x)
+ >>> np.load(fname + '.npy')
+ array([((10, 0), 98.25)],
+ dtype=[('time', [('min', '>> dt = np.dtype(int)
+ >>> dt = dt.newbyteorder('>')
+ >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP
+
+ The data of the resulting array will not be byteswapped, but will be
+ interpreted correctly.
+
+ Examples
+ --------
+ >>> s = b'hello world'
+ >>> np.frombuffer(s, dtype='S1', count=5, offset=6)
+ array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
+
+ >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
+ array([1, 2], dtype=uint8)
+ >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3)
+ array([1, 2, 3], dtype=uint8)
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core', 'fastCopyAndTranspose',
+ """_fastCopyAndTranspose(a)""")
+
+add_newdoc('numpy.core.multiarray', 'correlate',
+ """cross_correlate(a,v, mode=0)""")
+
+add_newdoc('numpy.core.multiarray', 'arange',
+ """
+ arange([start,] stop[, step,], dtype=None, *, like=None)
+
+ Return evenly spaced values within a given interval.
+
+ Values are generated within the half-open interval ``[start, stop)``
+ (in other words, the interval including `start` but excluding `stop`).
+ For integer arguments the function is equivalent to the Python built-in
+ `range` function, but returns an ndarray rather than a list.
+
+ When using a non-integer step, such as 0.1, the results will often not
+ be consistent. It is better to use `numpy.linspace` for these cases.
+
+ Parameters
+ ----------
+ start : integer or real, optional
+ Start of interval. The interval includes this value. The default
+ start value is 0.
+ stop : integer or real
+ End of interval. The interval does not include this value, except
+ in some cases where `step` is not an integer and floating point
+ round-off affects the length of `out`.
+ step : integer or real, optional
+ Spacing between values. For any output `out`, this is the distance
+ between two adjacent values, ``out[i+1] - out[i]``. The default
+ step size is 1. If `step` is specified as a position argument,
+ `start` must also be given.
+ dtype : dtype
+ The type of the output array. If `dtype` is not given, infer the data
+ type from the other input arguments.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ arange : ndarray
+ Array of evenly spaced values.
+
+ For floating point arguments, the length of the result is
+ ``ceil((stop - start)/step)``. Because of floating point overflow,
+ this rule may result in the last element of `out` being greater
+ than `stop`.
+
+ See Also
+ --------
+ numpy.linspace : Evenly spaced numbers with careful handling of endpoints.
+ numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions.
+ numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions.
+
+ Examples
+ --------
+ >>> np.arange(3)
+ array([0, 1, 2])
+ >>> np.arange(3.0)
+ array([ 0., 1., 2.])
+ >>> np.arange(3,7)
+ array([3, 4, 5, 6])
+ >>> np.arange(3,7,2)
+ array([3, 5])
+
+ """.replace(
+ "${ARRAY_FUNCTION_LIKE}",
+ array_function_like_doc,
+ ))
+
+add_newdoc('numpy.core.multiarray', '_get_ndarray_c_version',
+ """_get_ndarray_c_version()
+
+ Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number.
+
+ """)
+
+add_newdoc('numpy.core.multiarray', '_reconstruct',
+ """_reconstruct(subtype, shape, dtype)
+
+ Construct an empty array. Used by Pickles.
+
+ """)
+
+
+add_newdoc('numpy.core.multiarray', 'set_string_function',
+ """
+ set_string_function(f, repr=1)
+
+ Internal method to set a function to be used when pretty printing arrays.
+
+ """)
+
+add_newdoc('numpy.core.multiarray', 'set_numeric_ops',
+ """
+ set_numeric_ops(op1=func1, op2=func2, ...)
+
+ Set numerical operators for array objects.
+
+ .. deprecated:: 1.16
+
+ For the general case, use :c:func:`PyUFunc_ReplaceLoopBySignature`.
+ For ndarray subclasses, define the ``__array_ufunc__`` method and
+ override the relevant ufunc.
+
+ Parameters
+ ----------
+ op1, op2, ... : callable
+ Each ``op = func`` pair describes an operator to be replaced.
+ For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
+ addition by modulus 5 addition.
+
+ Returns
+ -------
+ saved_ops : list of callables
+ A list of all operators, stored before making replacements.
+
+ Notes
+ -----
+ .. WARNING::
+ Use with care! Incorrect usage may lead to memory errors.
+
+ A function replacing an operator cannot make use of that operator.
+ For example, when replacing add, you may not use ``+``. Instead,
+ directly call ufuncs.
+
+ Examples
+ --------
+ >>> def add_mod5(x, y):
+ ... return np.add(x, y) % 5
+ ...
+ >>> old_funcs = np.set_numeric_ops(add=add_mod5)
+
+ >>> x = np.arange(12).reshape((3, 4))
+ >>> x + x
+ array([[0, 2, 4, 1],
+ [3, 0, 2, 4],
+ [1, 3, 0, 2]])
+
+ >>> ignore = np.set_numeric_ops(**old_funcs) # restore operators
+
+ """)
+
+add_newdoc('numpy.core.multiarray', 'promote_types',
+ """
+ promote_types(type1, type2)
+
+ Returns the data type with the smallest size and smallest scalar
+ kind to which both ``type1`` and ``type2`` may be safely cast.
+ The returned data type is always in native byte order.
+
+ This function is symmetric, but rarely associative.
+
+ Parameters
+ ----------
+ type1 : dtype or dtype specifier
+ First data type.
+ type2 : dtype or dtype specifier
+ Second data type.
+
+ Returns
+ -------
+ out : dtype
+ The promoted data type.
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ Starting in NumPy 1.9, promote_types function now returns a valid string
+ length when given an integer or float dtype as one argument and a string
+ dtype as another argument. Previously it always returned the input string
+ dtype, even if it wasn't long enough to store the max integer/float value
+ converted to a string.
+
+ See Also
+ --------
+ result_type, dtype, can_cast
+
+ Examples
+ --------
+ >>> np.promote_types('f4', 'f8')
+ dtype('float64')
+
+ >>> np.promote_types('i8', 'f4')
+ dtype('float64')
+
+ >>> np.promote_types('>i8', '>> np.promote_types('i4', 'S8')
+ dtype('S11')
+
+ An example of a non-associative case:
+
+ >>> p = np.promote_types
+ >>> p('S', p('i1', 'u1'))
+ dtype('S6')
+ >>> p(p('S', 'i1'), 'u1')
+ dtype('S4')
+
+ """)
+
+add_newdoc('numpy.core.multiarray', 'c_einsum',
+ """
+ c_einsum(subscripts, *operands, out=None, dtype=None, order='K',
+ casting='safe')
+
+ *This documentation shadows that of the native python implementation of the `einsum` function,
+ except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.*
+
+ Evaluates the Einstein summation convention on the operands.
+
+ Using the Einstein summation convention, many common multi-dimensional,
+ linear algebraic array operations can be represented in a simple fashion.
+ In *implicit* mode `einsum` computes these values.
+
+ In *explicit* mode, `einsum` provides further flexibility to compute
+ other array operations that might not be considered classical Einstein
+ summation operations, by disabling, or forcing summation over specified
+ subscript labels.
+
+ See the notes and examples for clarification.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation as comma separated list of
+ subscript labels. An implicit (classical Einstein summation)
+ calculation is performed unless the explicit indicator '->' is
+ included as well as subscript labels of the precise output form.
+ operands : list of array_like
+ These are the arrays for the operation.
+ out : ndarray, optional
+ If provided, the calculation is done into this array.
+ dtype : {data-type, None}, optional
+ If provided, forces the calculation to use the data type specified.
+ Note that you may have to also give a more liberal `casting`
+ parameter to allow the conversions. Default is None.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the output. 'C' means it should
+ be C contiguous. 'F' means it should be Fortran contiguous,
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+ 'K' means it should be as close to the layout of the inputs as
+ is possible, including arbitrarily permuted axes.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Setting this to
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Default is 'safe'.
+ optimize : {False, True, 'greedy', 'optimal'}, optional
+ Controls if intermediate optimization should occur. No optimization
+ will occur if False and True will default to the 'greedy' algorithm.
+ Also accepts an explicit contraction list from the ``np.einsum_path``
+ function. See ``np.einsum_path`` for more details. Defaults to False.
+
+ Returns
+ -------
+ output : ndarray
+ The calculation based on the Einstein summation convention.
+
+ See Also
+ --------
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ The Einstein summation convention can be used to compute
+ many multi-dimensional, linear algebraic array operations. `einsum`
+ provides a succinct way of representing these.
+
+ A non-exhaustive list of these operations,
+ which can be computed by `einsum`, is shown below along with examples:
+
+ * Trace of an array, :py:func:`numpy.trace`.
+ * Return a diagonal, :py:func:`numpy.diag`.
+ * Array axis summations, :py:func:`numpy.sum`.
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
+ * Tensor contractions, :py:func:`numpy.tensordot`.
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
+
+ The subscripts string is a comma-separated list of subscript labels,
+ where each label refers to a dimension of the corresponding operand.
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+ is equivalent to :py:func:`np.inner(a,b) `. If a label
+ appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
+ view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
+ describes traditional matrix multiplication and is equivalent to
+ :py:func:`np.matmul(a,b) `. Repeated subscript labels in one
+ operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
+ to :py:func:`np.trace(a) `.
+
+ In *implicit mode*, the chosen subscripts are important
+ since the axes of the output are reordered alphabetically. This
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+ multiplication since subscript 'h' precedes subscript 'i'.
+
+ In *explicit mode* the output can be directly controlled by
+ specifying output subscript labels. This requires the
+ identifier '->' as well as the list of output subscript labels.
+ This feature increases the flexibility of the function since
+ summing can be disabled or forced when required. The call
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) `,
+ and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) `.
+ The difference is that `einsum` does not allow broadcasting by default.
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+ order of the output subscript labels and therefore returns matrix
+ multiplication, unlike the example above in implicit mode.
+
+ To enable and control broadcasting, use an ellipsis. Default
+ NumPy-style broadcasting is done by adding an ellipsis
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
+ To take the trace along the first and last axes,
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+ product with the left-most indices instead of rightmost, one can do
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+ When there is only one operand, no axes are summed, and no output
+ parameter is provided, a view into the operand is returned instead
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+ produces a view (changed in version 1.10.0).
+
+ `einsum` also provides an alternative way to provide the subscripts
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+ If the output shape is not provided in this format `einsum` will be
+ calculated in implicit mode, otherwise it will be performed explicitly.
+ The examples below have corresponding `einsum` calls with the two
+ parameter methods.
+
+ .. versionadded:: 1.10.0
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) `
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
+ Examples
+ --------
+ >>> a = np.arange(25).reshape(5,5)
+ >>> b = np.arange(5)
+ >>> c = np.arange(6).reshape(2,3)
+
+ Trace of a matrix:
+
+ >>> np.einsum('ii', a)
+ 60
+ >>> np.einsum(a, [0,0])
+ 60
+ >>> np.trace(a)
+ 60
+
+ Extract the diagonal (requires explicit form):
+
+ >>> np.einsum('ii->i', a)
+ array([ 0, 6, 12, 18, 24])
+ >>> np.einsum(a, [0,0], [0])
+ array([ 0, 6, 12, 18, 24])
+ >>> np.diag(a)
+ array([ 0, 6, 12, 18, 24])
+
+ Sum over an axis (requires explicit form):
+
+ >>> np.einsum('ij->i', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [0,1], [0])
+ array([ 10, 35, 60, 85, 110])
+ >>> np.sum(a, axis=1)
+ array([ 10, 35, 60, 85, 110])
+
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
+
+ >>> np.einsum('...j->...', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+ array([ 10, 35, 60, 85, 110])
+
+ Compute a matrix transpose, or reorder any number of axes:
+
+ >>> np.einsum('ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum('ij->ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum(c, [1,0])
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.transpose(c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+
+ Vector inner products:
+
+ >>> np.einsum('i,i', b, b)
+ 30
+ >>> np.einsum(b, [0], b, [0])
+ 30
+ >>> np.inner(b,b)
+ 30
+
+ Matrix vector multiplication:
+
+ >>> np.einsum('ij,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum(a, [0,1], b, [1])
+ array([ 30, 80, 130, 180, 230])
+ >>> np.dot(a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum('...j,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+
+ Broadcasting and scalar multiplication:
+
+ >>> np.einsum('..., ...', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(',ij', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.multiply(3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+
+ Vector outer product:
+
+ >>> np.einsum('i,j', np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.outer(np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+
+ Tensor contraction:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> np.einsum('ijk,jil->kl', a, b)
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+ array([[ 4400., 4730.],
+ [ 4532., 4874.],
+ [ 4664., 5018.],
+ [ 4796., 5162.],
+ [ 4928., 5306.]])
+
+ Writeable returned arrays (since version 1.10.0):
+
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[ 1., 0., 0.],
+ [ 0., 1., 0.],
+ [ 0., 0., 1.]])
+
+ Example of ellipsis use:
+
+ >>> a = np.arange(6).reshape((3,2))
+ >>> b = np.arange(12).reshape((4,3))
+ >>> np.einsum('ki,jk->ij', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('ki,...k->i...', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('k...,jk', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+
+ """)
+
+
+##############################################################################
+#
+# Documentation for ndarray attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ndarray object
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray',
+ """
+ ndarray(shape, dtype=float, buffer=None, offset=0,
+ strides=None, order=None)
+
+ An array object represents a multidimensional, homogeneous array
+ of fixed-size items. An associated data-type object describes the
+ format of each element in the array (its byte-order, how many bytes it
+ occupies in memory, whether it is an integer, a floating point number,
+ or something else, etc.)
+
+ Arrays should be constructed using `array`, `zeros` or `empty` (refer
+ to the See Also section below). The parameters given here refer to
+ a low-level method (`ndarray(...)`) for instantiating an array.
+
+ For more information, refer to the `numpy` module and examine the
+ methods and attributes of an array.
+
+ Parameters
+ ----------
+ (for the __new__ method; see Notes below)
+
+ shape : tuple of ints
+ Shape of created array.
+ dtype : data-type, optional
+ Any object that can be interpreted as a numpy data type.
+ buffer : object exposing buffer interface, optional
+ Used to fill the array with data.
+ offset : int, optional
+ Offset of array data in buffer.
+ strides : tuple of ints, optional
+ Strides of data in memory.
+ order : {'C', 'F'}, optional
+ Row-major (C-style) or column-major (Fortran-style) order.
+
+ Attributes
+ ----------
+ T : ndarray
+ Transpose of the array.
+ data : buffer
+ The array's elements, in memory.
+ dtype : dtype object
+ Describes the format of the elements in the array.
+ flags : dict
+ Dictionary containing information related to memory use, e.g.,
+ 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
+ flat : numpy.flatiter object
+ Flattened version of the array as an iterator. The iterator
+ allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
+ assignment examples; TODO).
+ imag : ndarray
+ Imaginary part of the array.
+ real : ndarray
+ Real part of the array.
+ size : int
+ Number of elements in the array.
+ itemsize : int
+ The memory use of each array element in bytes.
+ nbytes : int
+ The total number of bytes required to store the array data,
+ i.e., ``itemsize * size``.
+ ndim : int
+ The array's number of dimensions.
+ shape : tuple of ints
+ Shape of the array.
+ strides : tuple of ints
+ The step-size required to move from one element to the next in
+ memory. For example, a contiguous ``(3, 4)`` array of type
+ ``int16`` in C-order has strides ``(8, 2)``. This implies that
+ to move from element to element in memory requires jumps of 2 bytes.
+ To move from row-to-row, one needs to jump 8 bytes at a time
+ (``2 * 4``).
+ ctypes : ctypes object
+ Class containing properties of the array needed for interaction
+ with ctypes.
+ base : ndarray
+ If the array is a view into another array, that array is its `base`
+ (unless that array is also a view). The `base` array is where the
+ array data is actually stored.
+
+ See Also
+ --------
+ array : Construct an array.
+ zeros : Create an array, each element of which is zero.
+ empty : Create an array, but leave its allocated memory unchanged (i.e.,
+ it contains "garbage").
+ dtype : Create a data-type.
+ numpy.typing.NDArray : A :term:`generic ` version
+ of ndarray.
+
+ Notes
+ -----
+ There are two modes of creating an array using ``__new__``:
+
+ 1. If `buffer` is None, then only `shape`, `dtype`, and `order`
+ are used.
+ 2. If `buffer` is an object exposing the buffer interface, then
+ all keywords are interpreted.
+
+ No ``__init__`` method is needed because the array is fully initialized
+ after the ``__new__`` method.
+
+ Examples
+ --------
+ These examples illustrate the low-level `ndarray` constructor. Refer
+ to the `See Also` section above for easier ways of constructing an
+ ndarray.
+
+ First mode, `buffer` is None:
+
+ >>> np.ndarray(shape=(2,2), dtype=float, order='F')
+ array([[0.0e+000, 0.0e+000], # random
+ [ nan, 2.5e-323]])
+
+ Second mode:
+
+ >>> np.ndarray((2,), buffer=np.array([1,2,3]),
+ ... offset=np.int_().itemsize,
+ ... dtype=int) # offset = 1*itemsize, i.e. skip first element
+ array([2, 3])
+
+ """)
+
+
+##############################################################################
+#
+# ndarray attributes
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_interface__',
+ """Array protocol: Python side."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_finalize__',
+ """None."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__',
+ """Array priority."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__',
+ """Array protocol: C-struct side."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('base',
+ """
+ Base object if memory is from some other object.
+
+ Examples
+ --------
+ The base of an array that owns its memory is None:
+
+ >>> x = np.array([1,2,3,4])
+ >>> x.base is None
+ True
+
+ Slicing creates a view, whose memory is shared with x:
+
+ >>> y = x[2:]
+ >>> y.base is x
+ True
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
+ """
+ An object to simplify the interaction of the array with the ctypes
+ module.
+
+ This attribute creates an object that makes it easier to use arrays
+ when calling shared libraries with the ctypes module. The returned
+ object has, among others, data, shape, and strides attributes (see
+ Notes below) which themselves return ctypes objects that can be used
+ as arguments to a shared library.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ c : Python object
+ Possessing attributes data, shape, strides, etc.
+
+ See Also
+ --------
+ numpy.ctypeslib
+
+ Notes
+ -----
+ Below are the public attributes of this object which were documented
+ in "Guide to NumPy" (we have omitted undocumented public attributes,
+ as well as documented private attributes):
+
+ .. autoattribute:: numpy.core._internal._ctypes.data
+ :noindex:
+
+ .. autoattribute:: numpy.core._internal._ctypes.shape
+ :noindex:
+
+ .. autoattribute:: numpy.core._internal._ctypes.strides
+ :noindex:
+
+ .. automethod:: numpy.core._internal._ctypes.data_as
+ :noindex:
+
+ .. automethod:: numpy.core._internal._ctypes.shape_as
+ :noindex:
+
+ .. automethod:: numpy.core._internal._ctypes.strides_as
+ :noindex:
+
+ If the ctypes module is not available, then the ctypes attribute
+ of array objects still returns something useful, but ctypes objects
+ are not returned and errors may be raised instead. In particular,
+ the object will still have the ``as_parameter`` attribute which will
+ return an integer equal to the data attribute.
+
+ Examples
+ --------
+ >>> import ctypes
+ >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
+ >>> x
+ array([[0, 1],
+ [2, 3]], dtype=int32)
+ >>> x.ctypes.data
+ 31962608 # may vary
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
+ <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
+ c_uint(0)
+ >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
+ c_ulong(4294967296)
+ >>> x.ctypes.shape
+ # may vary
+ >>> x.ctypes.strides
+ # may vary
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('data',
+ """Python buffer object pointing to the start of the array's data."""))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dtype',
+ """
+ Data-type of the array's elements.
+
+ Parameters
+ ----------
+ None
+
+ Returns
+ -------
+ d : numpy dtype object
+
+ See Also
+ --------
+ numpy.dtype
+
+ Examples
+ --------
+ >>> x
+ array([[0, 1],
+ [2, 3]])
+ >>> x.dtype
+ dtype('int32')
+ >>> type(x.dtype)
+
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('imag',
+ """
+ The imaginary part of the array.
+
+ Examples
+ --------
+ >>> x = np.sqrt([1+0j, 0+1j])
+ >>> x.imag
+ array([ 0. , 0.70710678])
+ >>> x.imag.dtype
+ dtype('float64')
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('itemsize',
+ """
+ Length of one array element in bytes.
+
+ Examples
+ --------
+ >>> x = np.array([1,2,3], dtype=np.float64)
+ >>> x.itemsize
+ 8
+ >>> x = np.array([1,2,3], dtype=np.complex128)
+ >>> x.itemsize
+ 16
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flags',
+ """
+ Information about the memory layout of the array.
+
+ Attributes
+ ----------
+ C_CONTIGUOUS (C)
+ The data is in a single, C-style contiguous segment.
+ F_CONTIGUOUS (F)
+ The data is in a single, Fortran-style contiguous segment.
+ OWNDATA (O)
+ The array owns the memory it uses or borrows it from another object.
+ WRITEABLE (W)
+ The data area can be written to. Setting this to False locks
+ the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
+ from its base array at creation time, but a view of a writeable
+ array may be subsequently locked while the base array remains writeable.
+ (The opposite is not true, in that a view of a locked array may not
+ be made writeable. However, currently, locking a base object does not
+ lock any views that already reference it, so under that circumstance it
+ is possible to alter the contents of a locked array via a previously
+ created writeable view onto it.) Attempting to change a non-writeable
+ array raises a RuntimeError exception.
+ ALIGNED (A)
+ The data and all elements are aligned appropriately for the hardware.
+ WRITEBACKIFCOPY (X)
+ This array is a copy of some other array. The C-API function
+ PyArray_ResolveWritebackIfCopy must be called before deallocating
+ to the base array will be updated with the contents of this array.
+ UPDATEIFCOPY (U)
+ (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
+ When this array is
+ deallocated, the base array will be updated with the contents of
+ this array.
+ FNC
+ F_CONTIGUOUS and not C_CONTIGUOUS.
+ FORC
+ F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).
+ BEHAVED (B)
+ ALIGNED and WRITEABLE.
+ CARRAY (CA)
+ BEHAVED and C_CONTIGUOUS.
+ FARRAY (FA)
+ BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
+
+ Notes
+ -----
+ The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),
+ or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag
+ names are only supported in dictionary access.
+
+ Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
+ changed by the user, via direct assignment to the attribute or dictionary
+ entry, or by calling `ndarray.setflags`.
+
+ The array flags cannot be set arbitrarily:
+
+ - UPDATEIFCOPY can only be set ``False``.
+ - WRITEBACKIFCOPY can only be set ``False``.
+ - ALIGNED can only be set ``True`` if the data is truly aligned.
+ - WRITEABLE can only be set ``True`` if the array owns its own memory
+ or the ultimate owner of the memory exposes a writeable buffer
+ interface or is a string.
+
+ Arrays can be both C-style and Fortran-style contiguous simultaneously.
+ This is clear for 1-dimensional arrays, but can also be true for higher
+ dimensional arrays.
+
+ Even for contiguous arrays a stride for a given dimension
+ ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
+ or the array has no elements.
+ It does *not* generally hold that ``self.strides[-1] == self.itemsize``
+ for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
+ Fortran-style contiguous arrays is true.
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
+ """
+ A 1-D iterator over the array.
+
+ This is a `numpy.flatiter` instance, which acts similarly to, but is not
+ a subclass of, Python's built-in iterator object.
+
+ See Also
+ --------
+ flatten : Return a copy of the array collapsed into one dimension.
+
+ flatiter
+
+ Examples
+ --------
+ >>> x = np.arange(1, 7).reshape(2, 3)
+ >>> x
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> x.flat[3]
+ 4
+ >>> x.T
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+ >>> x.T.flat[3]
+ 5
+ >>> type(x.flat)
+
+
+ An assignment example:
+
+ >>> x.flat = 3; x
+ array([[3, 3, 3],
+ [3, 3, 3]])
+ >>> x.flat[[1,4]] = 1; x
+ array([[3, 1, 3],
+ [3, 1, 3]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nbytes',
+ """
+ Total bytes consumed by the elements of the array.
+
+ Notes
+ -----
+ Does not include memory consumed by non-element attributes of the
+ array object.
+
+ Examples
+ --------
+ >>> x = np.zeros((3,5,2), dtype=np.complex128)
+ >>> x.nbytes
+ 480
+ >>> np.prod(x.shape) * x.itemsize
+ 480
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ndim',
+ """
+ Number of array dimensions.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3])
+ >>> x.ndim
+ 1
+ >>> y = np.zeros((2, 3, 4))
+ >>> y.ndim
+ 3
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('real',
+ """
+ The real part of the array.
+
+ Examples
+ --------
+ >>> x = np.sqrt([1+0j, 0+1j])
+ >>> x.real
+ array([ 1. , 0.70710678])
+ >>> x.real.dtype
+ dtype('float64')
+
+ See Also
+ --------
+ numpy.real : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('shape',
+ """
+ Tuple of array dimensions.
+
+ The shape property is usually used to get the current shape of an array,
+ but may also be used to reshape the array in-place by assigning a tuple of
+ array dimensions to it. As with `numpy.reshape`, one of the new shape
+ dimensions can be -1, in which case its value is inferred from the size of
+ the array and the remaining dimensions. Reshaping an array in-place will
+ fail if a copy is required.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3, 4])
+ >>> x.shape
+ (4,)
+ >>> y = np.zeros((2, 3, 4))
+ >>> y.shape
+ (2, 3, 4)
+ >>> y.shape = (3, 8)
+ >>> y
+ array([[ 0., 0., 0., 0., 0., 0., 0., 0.],
+ [ 0., 0., 0., 0., 0., 0., 0., 0.],
+ [ 0., 0., 0., 0., 0., 0., 0., 0.]])
+ >>> y.shape = (3, 6)
+ Traceback (most recent call last):
+ File "", line 1, in
+ ValueError: total size of new array must be unchanged
+ >>> np.zeros((4,2))[::2].shape = (-1,)
+ Traceback (most recent call last):
+ File "", line 1, in
+ AttributeError: Incompatible shape for in-place modification. Use
+ `.reshape()` to make a copy with the desired shape.
+
+ See Also
+ --------
+ numpy.reshape : similar function
+ ndarray.reshape : similar method
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('size',
+ """
+ Number of elements in the array.
+
+ Equal to ``np.prod(a.shape)``, i.e., the product of the array's
+ dimensions.
+
+ Notes
+ -----
+ `a.size` returns a standard arbitrary precision Python integer. This
+ may not be the case with other methods of obtaining the same value
+ (like the suggested ``np.prod(a.shape)``, which returns an instance
+ of ``np.int_``), and may be relevant if the value is used further in
+ calculations that may overflow a fixed size integer type.
+
+ Examples
+ --------
+ >>> x = np.zeros((3, 5, 2), dtype=np.complex128)
+ >>> x.size
+ 30
+ >>> np.prod(x.shape)
+ 30
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('strides',
+ """
+ Tuple of bytes to step in each dimension when traversing an array.
+
+ The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`
+ is::
+
+ offset = sum(np.array(i) * a.strides)
+
+ A more detailed explanation of strides can be found in the
+ "ndarray.rst" file in the NumPy reference guide.
+
+ Notes
+ -----
+ Imagine an array of 32-bit integers (each 4 bytes)::
+
+ x = np.array([[0, 1, 2, 3, 4],
+ [5, 6, 7, 8, 9]], dtype=np.int32)
+
+ This array is stored in memory as 40 bytes, one after the other
+ (known as a contiguous block of memory). The strides of an array tell
+ us how many bytes we have to skip in memory to move to the next position
+ along a certain axis. For example, we have to skip 4 bytes (1 value) to
+ move to the next column, but 20 bytes (5 values) to get to the same
+ position in the next row. As such, the strides for the array `x` will be
+ ``(20, 4)``.
+
+ See Also
+ --------
+ numpy.lib.stride_tricks.as_strided
+
+ Examples
+ --------
+ >>> y = np.reshape(np.arange(2*3*4), (2,3,4))
+ >>> y
+ array([[[ 0, 1, 2, 3],
+ [ 4, 5, 6, 7],
+ [ 8, 9, 10, 11]],
+ [[12, 13, 14, 15],
+ [16, 17, 18, 19],
+ [20, 21, 22, 23]]])
+ >>> y.strides
+ (48, 16, 4)
+ >>> y[1,1,1]
+ 17
+ >>> offset=sum(y.strides * np.array((1,1,1)))
+ >>> offset/y.itemsize
+ 17
+
+ >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
+ >>> x.strides
+ (32, 4, 224, 1344)
+ >>> i = np.array([3,5,2,2])
+ >>> offset = sum(i * x.strides)
+ >>> x[3,5,2,2]
+ 813
+ >>> offset / x.itemsize
+ 813
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('T',
+ """
+ The transposed array.
+
+ Same as ``self.transpose()``.
+
+ Examples
+ --------
+ >>> x = np.array([[1.,2.],[3.,4.]])
+ >>> x
+ array([[ 1., 2.],
+ [ 3., 4.]])
+ >>> x.T
+ array([[ 1., 3.],
+ [ 2., 4.]])
+ >>> x = np.array([1.,2.,3.,4.])
+ >>> x
+ array([ 1., 2., 3., 4.])
+ >>> x.T
+ array([ 1., 2., 3., 4.])
+
+ See Also
+ --------
+ transpose
+
+ """))
+
+
+##############################################################################
+#
+# ndarray methods
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array__',
+ """ a.__array__([dtype], /) -> reference if type unchanged, copy otherwise.
+
+ Returns either a new reference to self if dtype is not given or a new array
+ of provided data type if dtype is different from the current dtype of the
+ array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_prepare__',
+ """a.__array_prepare__(obj) -> Object of same type as ndarray object obj.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_wrap__',
+ """a.__array_wrap__(obj) -> Object of same type as ndarray object a.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__copy__',
+ """a.__copy__()
+
+ Used if :func:`copy.copy` is called on an array. Returns a copy of the array.
+
+ Equivalent to ``a.copy(order='K')``.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__deepcopy__',
+ """a.__deepcopy__(memo, /) -> Deep copy of array.
+
+ Used if :func:`copy.deepcopy` is called on an array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__reduce__',
+ """a.__reduce__()
+
+ For pickling.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('__setstate__',
+ """a.__setstate__(state, /)
+
+ For unpickling.
+
+ The `state` argument must be a sequence that contains the following
+ elements:
+
+ Parameters
+ ----------
+ version : int
+ optional pickle version. If omitted defaults to 0.
+ shape : tuple
+ dtype : data-type
+ isFortran : bool
+ rawdata : string or list
+ a binary string with the data (or a list if 'a' is an object array)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('all',
+ """
+ a.all(axis=None, out=None, keepdims=False, *, where=True)
+
+ Returns True if all elements evaluate to True.
+
+ Refer to `numpy.all` for full documentation.
+
+ See Also
+ --------
+ numpy.all : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('any',
+ """
+ a.any(axis=None, out=None, keepdims=False, *, where=True)
+
+ Returns True if any of the elements of `a` evaluate to True.
+
+ Refer to `numpy.any` for full documentation.
+
+ See Also
+ --------
+ numpy.any : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmax',
+ """
+ a.argmax(axis=None, out=None)
+
+ Return indices of the maximum values along the given axis.
+
+ Refer to `numpy.argmax` for full documentation.
+
+ See Also
+ --------
+ numpy.argmax : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argmin',
+ """
+ a.argmin(axis=None, out=None)
+
+ Return indices of the minimum values along the given axis.
+
+ Refer to `numpy.argmin` for detailed documentation.
+
+ See Also
+ --------
+ numpy.argmin : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argsort',
+ """
+ a.argsort(axis=-1, kind=None, order=None)
+
+ Returns the indices that would sort this array.
+
+ Refer to `numpy.argsort` for full documentation.
+
+ See Also
+ --------
+ numpy.argsort : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('argpartition',
+ """
+ a.argpartition(kth, axis=-1, kind='introselect', order=None)
+
+ Returns the indices that would partition this array.
+
+ Refer to `numpy.argpartition` for full documentation.
+
+ .. versionadded:: 1.8.0
+
+ See Also
+ --------
+ numpy.argpartition : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
+ """
+ a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
+
+ Copy of the array, cast to a specified type.
+
+ Parameters
+ ----------
+ dtype : str or dtype
+ Typecode or data-type to which the array is cast.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout order of the result.
+ 'C' means C order, 'F' means Fortran order, 'A'
+ means 'F' order if all the arrays are Fortran contiguous,
+ 'C' order otherwise, and 'K' means as close to the
+ order the array elements appear in memory as possible.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'unsafe'
+ for backwards compatibility.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ subok : bool, optional
+ If True, then sub-classes will be passed-through (default), otherwise
+ the returned array will be forced to be a base-class array.
+ copy : bool, optional
+ By default, astype always returns a newly allocated array. If this
+ is set to false, and the `dtype`, `order`, and `subok`
+ requirements are satisfied, the input array is returned instead
+ of a copy.
+
+ Returns
+ -------
+ arr_t : ndarray
+ Unless `copy` is False and the other conditions for returning the input
+ array are satisfied (see description for `copy` input parameter), `arr_t`
+ is a new array of the same shape as the input array, with dtype, order
+ given by `dtype`, `order`.
+
+ Notes
+ -----
+ .. versionchanged:: 1.17.0
+ Casting between a simple data type and a structured one is possible only
+ for "unsafe" casting. Casting to multiple fields is allowed, but
+ casting from multiple fields is not.
+
+ .. versionchanged:: 1.9.0
+ Casting from numeric to string types in 'safe' casting mode requires
+ that the string dtype length is long enough to store the max
+ integer/float value converted.
+
+ Raises
+ ------
+ ComplexWarning
+ When casting from complex to float or int. To avoid this,
+ one should use ``a.real.astype(t)``.
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 2.5])
+ >>> x
+ array([1. , 2. , 2.5])
+
+ >>> x.astype(int)
+ array([1, 2, 2])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
+ """
+ a.byteswap(inplace=False)
+
+ Swap the bytes of the array elements
+
+ Toggle between low-endian and big-endian data representation by
+ returning a byteswapped array, optionally swapped in-place.
+ Arrays of byte-strings are not swapped. The real and imaginary
+ parts of a complex number are swapped individually.
+
+ Parameters
+ ----------
+ inplace : bool, optional
+ If ``True``, swap bytes in-place, default is ``False``.
+
+ Returns
+ -------
+ out : ndarray
+ The byteswapped array. If `inplace` is ``True``, this is
+ a view to self.
+
+ Examples
+ --------
+ >>> A = np.array([1, 256, 8755], dtype=np.int16)
+ >>> list(map(hex, A))
+ ['0x1', '0x100', '0x2233']
+ >>> A.byteswap(inplace=True)
+ array([ 256, 1, 13090], dtype=int16)
+ >>> list(map(hex, A))
+ ['0x100', '0x1', '0x3322']
+
+ Arrays of byte-strings are not swapped
+
+ >>> A = np.array([b'ceg', b'fac'])
+ >>> A.byteswap()
+ array([b'ceg', b'fac'], dtype='|S3')
+
+ ``A.newbyteorder().byteswap()`` produces an array with the same values
+ but different representation in memory
+
+ >>> A = np.array([1, 2, 3])
+ >>> A.view(np.uint8)
+ array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
+ 0, 0], dtype=uint8)
+ >>> A.newbyteorder().byteswap(inplace=True)
+ array([1, 2, 3])
+ >>> A.view(np.uint8)
+ array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
+ 0, 3], dtype=uint8)
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('choose',
+ """
+ a.choose(choices, out=None, mode='raise')
+
+ Use an index array to construct a new array from a set of choices.
+
+ Refer to `numpy.choose` for full documentation.
+
+ See Also
+ --------
+ numpy.choose : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('clip',
+ """
+ a.clip(min=None, max=None, out=None, **kwargs)
+
+ Return an array whose values are limited to ``[min, max]``.
+ One of max or min must be given.
+
+ Refer to `numpy.clip` for full documentation.
+
+ See Also
+ --------
+ numpy.clip : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('compress',
+ """
+ a.compress(condition, axis=None, out=None)
+
+ Return selected slices of this array along given axis.
+
+ Refer to `numpy.compress` for full documentation.
+
+ See Also
+ --------
+ numpy.compress : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conj',
+ """
+ a.conj()
+
+ Complex-conjugate all elements.
+
+ Refer to `numpy.conjugate` for full documentation.
+
+ See Also
+ --------
+ numpy.conjugate : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('conjugate',
+ """
+ a.conjugate()
+
+ Return the complex conjugate, element-wise.
+
+ Refer to `numpy.conjugate` for full documentation.
+
+ See Also
+ --------
+ numpy.conjugate : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('copy',
+ """
+ a.copy(order='C')
+
+ Return a copy of the array.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the copy. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible. (Note that this function and :func:`numpy.copy` are very
+ similar but have different default values for their order=
+ arguments, and this function always passes sub-classes through.)
+
+ See also
+ --------
+ numpy.copy : Similar function with different default behavior
+ numpy.copyto
+
+ Notes
+ -----
+ This function is the preferred method for creating an array copy. The
+ function :func:`numpy.copy` is similar, but it defaults to using order 'K',
+ and will not pass sub-classes through by default.
+
+ Examples
+ --------
+ >>> x = np.array([[1,2,3],[4,5,6]], order='F')
+
+ >>> y = x.copy()
+
+ >>> x.fill(0)
+
+ >>> x
+ array([[0, 0, 0],
+ [0, 0, 0]])
+
+ >>> y
+ array([[1, 2, 3],
+ [4, 5, 6]])
+
+ >>> y.flags['C_CONTIGUOUS']
+ True
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumprod',
+ """
+ a.cumprod(axis=None, dtype=None, out=None)
+
+ Return the cumulative product of the elements along the given axis.
+
+ Refer to `numpy.cumprod` for full documentation.
+
+ See Also
+ --------
+ numpy.cumprod : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('cumsum',
+ """
+ a.cumsum(axis=None, dtype=None, out=None)
+
+ Return the cumulative sum of the elements along the given axis.
+
+ Refer to `numpy.cumsum` for full documentation.
+
+ See Also
+ --------
+ numpy.cumsum : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('diagonal',
+ """
+ a.diagonal(offset=0, axis1=0, axis2=1)
+
+ Return specified diagonals. In NumPy 1.9 the returned array is a
+ read-only view instead of a copy as in previous NumPy versions. In
+ a future version the read-only restriction will be removed.
+
+ Refer to :func:`numpy.diagonal` for full documentation.
+
+ See Also
+ --------
+ numpy.diagonal : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dot',
+ """
+ a.dot(b, out=None)
+
+ Dot product of two arrays.
+
+ Refer to `numpy.dot` for full documentation.
+
+ See Also
+ --------
+ numpy.dot : equivalent function
+
+ Examples
+ --------
+ >>> a = np.eye(2)
+ >>> b = np.ones((2, 2)) * 2
+ >>> a.dot(b)
+ array([[2., 2.],
+ [2., 2.]])
+
+ This array method can be conveniently chained:
+
+ >>> a.dot(b).dot(b)
+ array([[8., 8.],
+ [8., 8.]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dump',
+ """a.dump(file)
+
+ Dump a pickle of the array to the specified file.
+ The array can be read back with pickle.load or numpy.load.
+
+ Parameters
+ ----------
+ file : str or Path
+ A string naming the dump file.
+
+ .. versionchanged:: 1.17.0
+ `pathlib.Path` objects are now accepted.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('dumps',
+ """
+ a.dumps()
+
+ Returns the pickle of the array as a string.
+ pickle.loads or numpy.loads will convert the string back to an array.
+
+ Parameters
+ ----------
+ None
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
+ """
+ a.fill(value)
+
+ Fill the array with a scalar value.
+
+ Parameters
+ ----------
+ value : scalar
+ All elements of `a` will be assigned this value.
+
+ Examples
+ --------
+ >>> a = np.array([1, 2])
+ >>> a.fill(0)
+ >>> a
+ array([0, 0])
+ >>> a = np.empty(2)
+ >>> a.fill(1)
+ >>> a
+ array([1., 1.])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('flatten',
+ """
+ a.flatten(order='C')
+
+ Return a copy of the array collapsed into one dimension.
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A', 'K'}, optional
+ 'C' means to flatten in row-major (C-style) order.
+ 'F' means to flatten in column-major (Fortran-
+ style) order. 'A' means to flatten in column-major
+ order if `a` is Fortran *contiguous* in memory,
+ row-major order otherwise. 'K' means to flatten
+ `a` in the order the elements occur in memory.
+ The default is 'C'.
+
+ Returns
+ -------
+ y : ndarray
+ A copy of the input array, flattened to one dimension.
+
+ See Also
+ --------
+ ravel : Return a flattened array.
+ flat : A 1-D flat iterator over the array.
+
+ Examples
+ --------
+ >>> a = np.array([[1,2], [3,4]])
+ >>> a.flatten()
+ array([1, 2, 3, 4])
+ >>> a.flatten('F')
+ array([1, 3, 2, 4])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
+ """
+ a.getfield(dtype, offset=0)
+
+ Returns a field of the given array as a certain type.
+
+ A field is a view of the array data with a given data-type. The values in
+ the view are determined by the given type and the offset into the current
+ array in bytes. The offset needs to be such that the view dtype fits in the
+ array dtype; for example an array of dtype complex128 has 16-byte elements.
+ If taking a view with a 32-bit integer (4 bytes), the offset needs to be
+ between 0 and 12 bytes.
+
+ Parameters
+ ----------
+ dtype : str or dtype
+ The data type of the view. The dtype size of the view can not be larger
+ than that of the array itself.
+ offset : int
+ Number of bytes to skip before beginning the element view.
+
+ Examples
+ --------
+ >>> x = np.diag([1.+1.j]*2)
+ >>> x[1, 1] = 2 + 4.j
+ >>> x
+ array([[1.+1.j, 0.+0.j],
+ [0.+0.j, 2.+4.j]])
+ >>> x.getfield(np.float64)
+ array([[1., 0.],
+ [0., 2.]])
+
+ By choosing an offset of 8 bytes we can select the complex part of the
+ array for our view:
+
+ >>> x.getfield(np.float64, offset=8)
+ array([[1., 0.],
+ [0., 4.]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
+ """
+ a.item(*args)
+
+ Copy an element of an array to a standard Python scalar and return it.
+
+ Parameters
+ ----------
+ \\*args : Arguments (variable number and type)
+
+ * none: in this case, the method only works for arrays
+ with one element (`a.size == 1`), which element is
+ copied into a standard Python scalar object and returned.
+
+ * int_type: this argument is interpreted as a flat index into
+ the array, specifying which element to copy and return.
+
+ * tuple of int_types: functions as does a single int_type argument,
+ except that the argument is interpreted as an nd-index into the
+ array.
+
+ Returns
+ -------
+ z : Standard Python scalar object
+ A copy of the specified element of the array as a suitable
+ Python scalar
+
+ Notes
+ -----
+ When the data type of `a` is longdouble or clongdouble, item() returns
+ a scalar array object because there is no available Python scalar that
+ would not lose information. Void arrays return a buffer object for item(),
+ unless fields are defined, in which case a tuple is returned.
+
+ `item` is very similar to a[args], except, instead of an array scalar,
+ a standard Python scalar is returned. This can be useful for speeding up
+ access to elements of the array and doing arithmetic on elements of the
+ array using Python's optimized math.
+
+ Examples
+ --------
+ >>> np.random.seed(123)
+ >>> x = np.random.randint(9, size=(3, 3))
+ >>> x
+ array([[2, 2, 6],
+ [1, 3, 6],
+ [1, 0, 1]])
+ >>> x.item(3)
+ 1
+ >>> x.item(7)
+ 0
+ >>> x.item((0, 1))
+ 2
+ >>> x.item((2, 2))
+ 1
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
+ """
+ a.itemset(*args)
+
+ Insert scalar into an array (scalar is cast to array's dtype, if possible)
+
+ There must be at least 1 argument, and define the last argument
+ as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster
+ than ``a[args] = item``. The item should be a scalar value and `args`
+ must select a single item in the array `a`.
+
+ Parameters
+ ----------
+ \\*args : Arguments
+ If one argument: a scalar, only used in case `a` is of size 1.
+ If two arguments: the last argument is the value to be set
+ and must be a scalar, the first argument specifies a single array
+ element location. It is either an int or a tuple.
+
+ Notes
+ -----
+ Compared to indexing syntax, `itemset` provides some speed increase
+ for placing a scalar into a particular location in an `ndarray`,
+ if you must do this. However, generally this is discouraged:
+ among other problems, it complicates the appearance of the code.
+ Also, when using `itemset` (and `item`) inside a loop, be sure
+ to assign the methods to a local variable to avoid the attribute
+ look-up at each loop iteration.
+
+ Examples
+ --------
+ >>> np.random.seed(123)
+ >>> x = np.random.randint(9, size=(3, 3))
+ >>> x
+ array([[2, 2, 6],
+ [1, 3, 6],
+ [1, 0, 1]])
+ >>> x.itemset(4, 0)
+ >>> x.itemset((2, 2), 9)
+ >>> x
+ array([[2, 2, 6],
+ [1, 0, 6],
+ [1, 0, 9]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('max',
+ """
+ a.max(axis=None, out=None, keepdims=False, initial=, where=True)
+
+ Return the maximum along a given axis.
+
+ Refer to `numpy.amax` for full documentation.
+
+ See Also
+ --------
+ numpy.amax : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('mean',
+ """
+ a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
+
+ Returns the average of the array elements along given axis.
+
+ Refer to `numpy.mean` for full documentation.
+
+ See Also
+ --------
+ numpy.mean : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
+ """
+ a.min(axis=None, out=None, keepdims=False, initial=, where=True)
+
+ Return the minimum along a given axis.
+
+ Refer to `numpy.amin` for full documentation.
+
+ See Also
+ --------
+ numpy.amin : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
+ """
+ arr.newbyteorder(new_order='S', /)
+
+ Return the array with the same data viewed with a different byte order.
+
+ Equivalent to::
+
+ arr.view(arr.dtype.newbytorder(new_order))
+
+ Changes are also made in all fields and sub-arrays of the array data
+ type.
+
+
+
+ Parameters
+ ----------
+ new_order : string, optional
+ Byte order to force; a value from the byte order specifications
+ below. `new_order` codes can be any of:
+
+ * 'S' - swap dtype from current to opposite endian
+ * {'<', 'little'} - little endian
+ * {'>', 'big'} - big endian
+ * '=' - native order, equivalent to `sys.byteorder`
+ * {'|', 'I'} - ignore (no change to byte order)
+
+ The default value ('S') results in swapping the current
+ byte order.
+
+
+ Returns
+ -------
+ new_arr : array
+ New array object with the dtype reflecting given change to the
+ byte order.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('nonzero',
+ """
+ a.nonzero()
+
+ Return the indices of the elements that are non-zero.
+
+ Refer to `numpy.nonzero` for full documentation.
+
+ See Also
+ --------
+ numpy.nonzero : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('prod',
+ """
+ a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
+
+ Return the product of the array elements over the given axis
+
+ Refer to `numpy.prod` for full documentation.
+
+ See Also
+ --------
+ numpy.prod : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ptp',
+ """
+ a.ptp(axis=None, out=None, keepdims=False)
+
+ Peak to peak (maximum - minimum) value along a given axis.
+
+ Refer to `numpy.ptp` for full documentation.
+
+ See Also
+ --------
+ numpy.ptp : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
+ """
+ a.put(indices, values, mode='raise')
+
+ Set ``a.flat[n] = values[n]`` for all `n` in indices.
+
+ Refer to `numpy.put` for full documentation.
+
+ See Also
+ --------
+ numpy.put : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
+ """
+ a.ravel([order])
+
+ Return a flattened array.
+
+ Refer to `numpy.ravel` for full documentation.
+
+ See Also
+ --------
+ numpy.ravel : equivalent function
+
+ ndarray.flat : a flat iterator on the array.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('repeat',
+ """
+ a.repeat(repeats, axis=None)
+
+ Repeat elements of an array.
+
+ Refer to `numpy.repeat` for full documentation.
+
+ See Also
+ --------
+ numpy.repeat : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('reshape',
+ """
+ a.reshape(shape, order='C')
+
+ Returns an array containing the same data with a new shape.
+
+ Refer to `numpy.reshape` for full documentation.
+
+ See Also
+ --------
+ numpy.reshape : equivalent function
+
+ Notes
+ -----
+ Unlike the free function `numpy.reshape`, this method on `ndarray` allows
+ the elements of the shape parameter to be passed in as separate arguments.
+ For example, ``a.reshape(10, 11)`` is equivalent to
+ ``a.reshape((10, 11))``.
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
+ """
+ a.resize(new_shape, refcheck=True)
+
+ Change shape and size of array in-place.
+
+ Parameters
+ ----------
+ new_shape : tuple of ints, or `n` ints
+ Shape of resized array.
+ refcheck : bool, optional
+ If False, reference count will not be checked. Default is True.
+
+ Returns
+ -------
+ None
+
+ Raises
+ ------
+ ValueError
+ If `a` does not own its own data or references or views to it exist,
+ and the data memory must be changed.
+ PyPy only: will always raise if the data memory must be changed, since
+ there is no reliable way to determine if references or views to it
+ exist.
+
+ SystemError
+ If the `order` keyword argument is specified. This behaviour is a
+ bug in NumPy.
+
+ See Also
+ --------
+ resize : Return a new array with the specified shape.
+
+ Notes
+ -----
+ This reallocates space for the data area if necessary.
+
+ Only contiguous arrays (data elements consecutive in memory) can be
+ resized.
+
+ The purpose of the reference count check is to make sure you
+ do not use this array as a buffer for another Python object and then
+ reallocate the memory. However, reference counts can increase in
+ other ways so if you are sure that you have not shared the memory
+ for this array with another Python object, then you may safely set
+ `refcheck` to False.
+
+ Examples
+ --------
+ Shrinking an array: array is flattened (in the order that the data are
+ stored in memory), resized, and reshaped:
+
+ >>> a = np.array([[0, 1], [2, 3]], order='C')
+ >>> a.resize((2, 1))
+ >>> a
+ array([[0],
+ [1]])
+
+ >>> a = np.array([[0, 1], [2, 3]], order='F')
+ >>> a.resize((2, 1))
+ >>> a
+ array([[0],
+ [2]])
+
+ Enlarging an array: as above, but missing entries are filled with zeros:
+
+ >>> b = np.array([[0, 1], [2, 3]])
+ >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
+ >>> b
+ array([[0, 1, 2],
+ [3, 0, 0]])
+
+ Referencing an array prevents resizing...
+
+ >>> c = a
+ >>> a.resize((1, 1))
+ Traceback (most recent call last):
+ ...
+ ValueError: cannot resize an array that references or is referenced ...
+
+ Unless `refcheck` is False:
+
+ >>> a.resize((1, 1), refcheck=False)
+ >>> a
+ array([[0]])
+ >>> c
+ array([[0]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('round',
+ """
+ a.round(decimals=0, out=None)
+
+ Return `a` with each element rounded to the given number of decimals.
+
+ Refer to `numpy.around` for full documentation.
+
+ See Also
+ --------
+ numpy.around : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('searchsorted',
+ """
+ a.searchsorted(v, side='left', sorter=None)
+
+ Find indices where elements of v should be inserted in a to maintain order.
+
+ For full documentation, see `numpy.searchsorted`
+
+ See Also
+ --------
+ numpy.searchsorted : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
+ """
+ a.setfield(val, dtype, offset=0)
+
+ Put a value into a specified place in a field defined by a data-type.
+
+ Place `val` into `a`'s field defined by `dtype` and beginning `offset`
+ bytes into the field.
+
+ Parameters
+ ----------
+ val : object
+ Value to be placed in field.
+ dtype : dtype object
+ Data-type of the field in which to place `val`.
+ offset : int, optional
+ The number of bytes into the field at which to place `val`.
+
+ Returns
+ -------
+ None
+
+ See Also
+ --------
+ getfield
+
+ Examples
+ --------
+ >>> x = np.eye(3)
+ >>> x.getfield(np.float64)
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+ >>> x.setfield(3, np.int32)
+ >>> x.getfield(np.int32)
+ array([[3, 3, 3],
+ [3, 3, 3],
+ [3, 3, 3]], dtype=int32)
+ >>> x
+ array([[1.0e+000, 1.5e-323, 1.5e-323],
+ [1.5e-323, 1.0e+000, 1.5e-323],
+ [1.5e-323, 1.5e-323, 1.0e+000]])
+ >>> x.setfield(np.eye(3), np.int32)
+ >>> x
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
+ """
+ a.setflags(write=None, align=None, uic=None)
+
+ Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
+ respectively.
+
+ These Boolean-valued flags affect how numpy interprets the memory
+ area used by `a` (see Notes below). The ALIGNED flag can only
+ be set to True if the data is actually aligned according to the type.
+ The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
+ to True. The flag WRITEABLE can only be set to True if the array owns its
+ own memory, or the ultimate owner of the memory exposes a writeable buffer
+ interface, or is a string. (The exception for string is made so that
+ unpickling can be done without copying memory.)
+
+ Parameters
+ ----------
+ write : bool, optional
+ Describes whether or not `a` can be written to.
+ align : bool, optional
+ Describes whether or not `a` is aligned properly for its type.
+ uic : bool, optional
+ Describes whether or not `a` is a copy of another "base" array.
+
+ Notes
+ -----
+ Array flags provide information about how the memory area used
+ for the array is to be interpreted. There are 7 Boolean flags
+ in use, only four of which can be changed by the user:
+ WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.
+
+ WRITEABLE (W) the data area can be written to;
+
+ ALIGNED (A) the data and strides are aligned appropriately for the hardware
+ (as determined by the compiler);
+
+ UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;
+
+ WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
+ by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
+ called, the base array will be updated with the contents of this array.
+
+ All flags can be accessed using the single (upper case) letter as well
+ as the full name.
+
+ Examples
+ --------
+ >>> y = np.array([[3, 1, 7],
+ ... [2, 0, 0],
+ ... [8, 5, 9]])
+ >>> y
+ array([[3, 1, 7],
+ [2, 0, 0],
+ [8, 5, 9]])
+ >>> y.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : True
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+ >>> y.setflags(write=0, align=0)
+ >>> y.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : True
+ WRITEABLE : False
+ ALIGNED : False
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+ >>> y.setflags(uic=1)
+ Traceback (most recent call last):
+ File "", line 1, in
+ ValueError: cannot set WRITEBACKIFCOPY flag to True
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
+ """
+ a.sort(axis=-1, kind=None, order=None)
+
+ Sort an array in-place. Refer to `numpy.sort` for full documentation.
+
+ Parameters
+ ----------
+ axis : int, optional
+ Axis along which to sort. Default is -1, which means sort along the
+ last axis.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+ and 'mergesort' use timsort under the covers and, in general, the
+ actual implementation will vary with datatype. The 'mergesort' option
+ is retained for backwards compatibility.
+
+ .. versionchanged:: 1.15.0
+ The 'stable' option was added.
+
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+
+ See Also
+ --------
+ numpy.sort : Return a sorted copy of an array.
+ numpy.argsort : Indirect sort.
+ numpy.lexsort : Indirect stable sort on multiple keys.
+ numpy.searchsorted : Find elements in sorted array.
+ numpy.partition: Partial sort.
+
+ Notes
+ -----
+ See `numpy.sort` for notes on the different sorting algorithms.
+
+ Examples
+ --------
+ >>> a = np.array([[1,4], [3,1]])
+ >>> a.sort(axis=1)
+ >>> a
+ array([[1, 4],
+ [1, 3]])
+ >>> a.sort(axis=0)
+ >>> a
+ array([[1, 3],
+ [1, 4]])
+
+ Use the `order` keyword to specify a field to use when sorting a
+ structured array:
+
+ >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
+ >>> a.sort(order='y')
+ >>> a
+ array([(b'c', 1), (b'a', 2)],
+ dtype=[('x', 'S1'), ('y', '>> a = np.array([3, 4, 2, 1])
+ >>> a.partition(3)
+ >>> a
+ array([2, 1, 3, 4])
+
+ >>> a.partition((1, 3))
+ >>> a
+ array([1, 2, 3, 4])
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('squeeze',
+ """
+ a.squeeze(axis=None)
+
+ Remove axes of length one from `a`.
+
+ Refer to `numpy.squeeze` for full documentation.
+
+ See Also
+ --------
+ numpy.squeeze : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('std',
+ """
+ a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+ Returns the standard deviation of the array elements along given axis.
+
+ Refer to `numpy.std` for full documentation.
+
+ See Also
+ --------
+ numpy.std : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('sum',
+ """
+ a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
+
+ Return the sum of the array elements over the given axis.
+
+ Refer to `numpy.sum` for full documentation.
+
+ See Also
+ --------
+ numpy.sum : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('swapaxes',
+ """
+ a.swapaxes(axis1, axis2)
+
+ Return a view of the array with `axis1` and `axis2` interchanged.
+
+ Refer to `numpy.swapaxes` for full documentation.
+
+ See Also
+ --------
+ numpy.swapaxes : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('take',
+ """
+ a.take(indices, axis=None, out=None, mode='raise')
+
+ Return an array formed from the elements of `a` at the given indices.
+
+ Refer to `numpy.take` for full documentation.
+
+ See Also
+ --------
+ numpy.take : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tofile',
+ """
+ a.tofile(fid, sep="", format="%s")
+
+ Write array to a file as text or binary (default).
+
+ Data is always written in 'C' order, independent of the order of `a`.
+ The data produced by this method can be recovered using the function
+ fromfile().
+
+ Parameters
+ ----------
+ fid : file or str or Path
+ An open file object, or a string containing a filename.
+
+ .. versionchanged:: 1.17.0
+ `pathlib.Path` objects are now accepted.
+
+ sep : str
+ Separator between array items for text output.
+ If "" (empty), a binary file is written, equivalent to
+ ``file.write(a.tobytes())``.
+ format : str
+ Format string for text file output.
+ Each entry in the array is formatted to text by first converting
+ it to the closest Python type, and then using "format" % item.
+
+ Notes
+ -----
+ This is a convenience function for quick storage of array data.
+ Information on endianness and precision is lost, so this method is not a
+ good choice for files intended to archive data or transport data between
+ machines with different endianness. Some of these problems can be overcome
+ by outputting the data as text files, at the expense of speed and file
+ size.
+
+ When fid is a file object, array contents are directly written to the
+ file, bypassing the file object's ``write`` method. As a result, tofile
+ cannot be used with files objects supporting compression (e.g., GzipFile)
+ or file-like objects that do not support ``fileno()`` (e.g., BytesIO).
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tolist',
+ """
+ a.tolist()
+
+ Return the array as an ``a.ndim``-levels deep nested list of Python scalars.
+
+ Return a copy of the array data as a (nested) Python list.
+ Data items are converted to the nearest compatible builtin Python type, via
+ the `~numpy.ndarray.item` function.
+
+ If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will
+ not be a list at all, but a simple Python scalar.
+
+ Parameters
+ ----------
+ none
+
+ Returns
+ -------
+ y : object, or list of object, or list of list of object, or ...
+ The possibly nested list of array elements.
+
+ Notes
+ -----
+ The array may be recreated via ``a = np.array(a.tolist())``, although this
+ may sometimes lose precision.
+
+ Examples
+ --------
+ For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``,
+ except that ``tolist`` changes numpy scalars to Python scalars:
+
+ >>> a = np.uint32([1, 2])
+ >>> a_list = list(a)
+ >>> a_list
+ [1, 2]
+ >>> type(a_list[0])
+
+ >>> a_tolist = a.tolist()
+ >>> a_tolist
+ [1, 2]
+ >>> type(a_tolist[0])
+
+
+ Additionally, for a 2D array, ``tolist`` applies recursively:
+
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> list(a)
+ [array([1, 2]), array([3, 4])]
+ >>> a.tolist()
+ [[1, 2], [3, 4]]
+
+ The base case for this recursion is a 0D array:
+
+ >>> a = np.array(1)
+ >>> list(a)
+ Traceback (most recent call last):
+ ...
+ TypeError: iteration over a 0-d array
+ >>> a.tolist()
+ 1
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tobytes', """
+ a.tobytes(order='C')
+
+ Construct Python bytes containing the raw data bytes in the array.
+
+ Constructs Python bytes showing a copy of the raw contents of
+ data memory. The bytes object is produced in C-order by default.
+ This behavior is controlled by the ``order`` parameter.
+
+ .. versionadded:: 1.9.0
+
+ Parameters
+ ----------
+ order : {'C', 'F', 'A'}, optional
+ Controls the memory layout of the bytes object. 'C' means C-order,
+ 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is
+ Fortran contiguous, 'C' otherwise. Default is 'C'.
+
+ Returns
+ -------
+ s : bytes
+ Python bytes exhibiting a copy of `a`'s raw data.
+
+ Examples
+ --------
+ >>> x = np.array([[0, 1], [2, 3]], dtype='>> x.tobytes()
+ b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00'
+ >>> x.tobytes('C') == x.tobytes()
+ True
+ >>> x.tobytes('F')
+ b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00'
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('tostring', r"""
+ a.tostring(order='C')
+
+ A compatibility alias for `tobytes`, with exactly the same behavior.
+
+ Despite its name, it returns `bytes` not `str`\ s.
+
+ .. deprecated:: 1.19.0
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('trace',
+ """
+ a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
+
+ Return the sum along diagonals of the array.
+
+ Refer to `numpy.trace` for full documentation.
+
+ See Also
+ --------
+ numpy.trace : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('transpose',
+ """
+ a.transpose(*axes)
+
+ Returns a view of the array with axes transposed.
+
+ For a 1-D array this has no effect, as a transposed vector is simply the
+ same vector. To convert a 1-D array into a 2D column vector, an additional
+ dimension must be added. `np.atleast2d(a).T` achieves this, as does
+ `a[:, np.newaxis]`.
+ For a 2-D array, this is a standard matrix transpose.
+ For an n-D array, if axes are given, their order indicates how the
+ axes are permuted (see Examples). If axes are not provided and
+ ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then
+ ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``.
+
+ Parameters
+ ----------
+ axes : None, tuple of ints, or `n` ints
+
+ * None or no argument: reverses the order of the axes.
+
+ * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s
+ `i`-th axis becomes `a.transpose()`'s `j`-th axis.
+
+ * `n` ints: same as an n-tuple of the same ints (this form is
+ intended simply as a "convenience" alternative to the tuple form)
+
+ Returns
+ -------
+ out : ndarray
+ View of `a`, with axes suitably permuted.
+
+ See Also
+ --------
+ transpose : Equivalent function
+ ndarray.T : Array property returning the array transposed.
+ ndarray.reshape : Give a new shape to an array without changing its data.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> a
+ array([[1, 2],
+ [3, 4]])
+ >>> a.transpose()
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose((1, 0))
+ array([[1, 3],
+ [2, 4]])
+ >>> a.transpose(1, 0)
+ array([[1, 3],
+ [2, 4]])
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('var',
+ """
+ a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
+
+ Returns the variance of the array elements, along given axis.
+
+ Refer to `numpy.var` for full documentation.
+
+ See Also
+ --------
+ numpy.var : equivalent function
+
+ """))
+
+
+add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
+ """
+ a.view([dtype][, type])
+
+ New view of array with the same data.
+
+ .. note::
+ Passing None for ``dtype`` is different from omitting the parameter,
+ since the former invokes ``dtype(None)`` which is an alias for
+ ``dtype('float_')``.
+
+ Parameters
+ ----------
+ dtype : data-type or ndarray sub-class, optional
+ Data-type descriptor of the returned view, e.g., float32 or int16.
+ Omitting it results in the view having the same data-type as `a`.
+ This argument can also be specified as an ndarray sub-class, which
+ then specifies the type of the returned object (this is equivalent to
+ setting the ``type`` parameter).
+ type : Python type, optional
+ Type of the returned view, e.g., ndarray or matrix. Again, omission
+ of the parameter results in type preservation.
+
+ Notes
+ -----
+ ``a.view()`` is used two different ways:
+
+ ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
+ of the array's memory with a different data-type. This can cause a
+ reinterpretation of the bytes of memory.
+
+ ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
+ returns an instance of `ndarray_subclass` that looks at the same array
+ (same shape, dtype, etc.) This does not cause a reinterpretation of the
+ memory.
+
+ For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
+ bytes per entry than the previous dtype (for example, converting a
+ regular array to a structured array), then the behavior of the view
+ cannot be predicted just from the superficial appearance of ``a`` (shown
+ by ``print(a)``). It also depends on exactly how ``a`` is stored in
+ memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
+ defined as a slice or transpose, etc., the view may give different
+ results.
+
+
+ Examples
+ --------
+ >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
+
+ Viewing array data using a different type and dtype:
+
+ >>> y = x.view(dtype=np.int16, type=np.matrix)
+ >>> y
+ matrix([[513]], dtype=int16)
+ >>> print(type(y))
+
+
+ Creating a view on a structured array so it can be used in calculations
+
+ >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
+ >>> xv = x.view(dtype=np.int8).reshape(-1,2)
+ >>> xv
+ array([[1, 2],
+ [3, 4]], dtype=int8)
+ >>> xv.mean(0)
+ array([2., 3.])
+
+ Making changes to the view changes the underlying array
+
+ >>> xv[0,1] = 20
+ >>> x
+ array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
+
+ Using a view to convert an array to a recarray:
+
+ >>> z = x.view(np.recarray)
+ >>> z.a
+ array([1, 3], dtype=int8)
+
+ Views share data:
+
+ >>> x[0] = (9, 10)
+ >>> z[0]
+ (9, 10)
+
+ Views that change the dtype size (bytes per entry) should normally be
+ avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
+
+ >>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
+ >>> y = x[:, 0:2]
+ >>> y
+ array([[1, 2],
+ [4, 5]], dtype=int16)
+ >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
+ Traceback (most recent call last):
+ ...
+ ValueError: To change to a dtype of a different size, the array must be C-contiguous
+ >>> z = y.copy()
+ >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
+ array([[(1, 2)],
+ [(4, 5)]], dtype=[('width', '>> oct_array = np.frompyfunc(oct, 1, 1)
+ >>> oct_array(np.array((10, 30, 100)))
+ array(['0o12', '0o36', '0o144'], dtype=object)
+ >>> np.array((oct(10), oct(30), oct(100))) # for comparison
+ array(['0o12', '0o36', '0o144'], dtype='>> np.geterrobj() # first get the defaults
+ [8192, 521, None]
+
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ ...
+ >>> old_bufsize = np.setbufsize(20000)
+ >>> old_err = np.seterr(divide='raise')
+ >>> old_handler = np.seterrcall(err_handler)
+ >>> np.geterrobj()
+ [8192, 521, ]
+
+ >>> old_err = np.seterr(all='ignore')
+ >>> np.base_repr(np.geterrobj()[1], 8)
+ '0'
+ >>> old_err = np.seterr(divide='warn', over='log', under='call',
+ ... invalid='print')
+ >>> np.base_repr(np.geterrobj()[1], 8)
+ '4351'
+
+ """)
+
+add_newdoc('numpy.core.umath', 'seterrobj',
+ """
+ seterrobj(errobj)
+
+ Set the object that defines floating-point error handling.
+
+ The error object contains all information that defines the error handling
+ behavior in NumPy. `seterrobj` is used internally by the other
+ functions that set error handling behavior (`seterr`, `seterrcall`).
+
+ Parameters
+ ----------
+ errobj : list
+ The error object, a list containing three elements:
+ [internal numpy buffer size, error mask, error callback function].
+
+ The error mask is a single integer that holds the treatment information
+ on all four floating point errors. The information for each error type
+ is contained in three bits of the integer. If we print it in base 8, we
+ can see what treatment is set for "invalid", "under", "over", and
+ "divide" (in that order). The printed string can be interpreted with
+
+ * 0 : 'ignore'
+ * 1 : 'warn'
+ * 2 : 'raise'
+ * 3 : 'call'
+ * 4 : 'print'
+ * 5 : 'log'
+
+ See Also
+ --------
+ geterrobj, seterr, geterr, seterrcall, geterrcall
+ getbufsize, setbufsize
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> old_errobj = np.geterrobj() # first get the defaults
+ >>> old_errobj
+ [8192, 521, None]
+
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ ...
+ >>> new_errobj = [20000, 12, err_handler]
+ >>> np.seterrobj(new_errobj)
+ >>> np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn')
+ '14'
+ >>> np.geterr()
+ {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'}
+ >>> np.geterrcall() is err_handler
+ True
+
+ """)
+
+
+##############################################################################
+#
+# compiled_base functions
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'add_docstring',
+ """
+ add_docstring(obj, docstring)
+
+ Add a docstring to a built-in obj if possible.
+ If the obj already has a docstring raise a RuntimeError
+ If this routine does not know how to add a docstring to the object
+ raise a TypeError
+ """)
+
+add_newdoc('numpy.core.umath', '_add_newdoc_ufunc',
+ """
+ add_ufunc_docstring(ufunc, new_docstring)
+
+ Replace the docstring for a ufunc with new_docstring.
+ This method will only work if the current docstring for
+ the ufunc is NULL. (At the C level, i.e. when ufunc->doc is NULL.)
+
+ Parameters
+ ----------
+ ufunc : numpy.ufunc
+ A ufunc whose current doc is NULL.
+ new_docstring : string
+ The new docstring for the ufunc.
+
+ Notes
+ -----
+ This method allocates memory for new_docstring on
+ the heap. Technically this creates a mempory leak, since this
+ memory will not be reclaimed until the end of the program
+ even if the ufunc itself is removed. However this will only
+ be a problem if the user is repeatedly creating ufuncs with
+ no documentation, adding documentation via add_newdoc_ufunc,
+ and then throwing away the ufunc.
+ """)
+
+add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage',
+ """
+ _set_madvise_hugepage(enabled: bool) -> bool
+
+ Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when
+ allocating the array data. Returns the previously set value.
+ See `global_state` for more information.
+ """)
+
+add_newdoc('numpy.core._multiarray_tests', 'format_float_OSprintf_g',
+ """
+ format_float_OSprintf_g(val, precision)
+
+ Print a floating point scalar using the system's printf function,
+ equivalent to:
+
+ printf("%.*g", precision, val);
+
+ for half/float/double, or replacing 'g' by 'Lg' for longdouble. This
+ method is designed to help cross-validate the format_float_* methods.
+
+ Parameters
+ ----------
+ val : python float or numpy floating scalar
+ Value to format.
+
+ precision : non-negative integer, optional
+ Precision given to printf.
+
+ Returns
+ -------
+ rep : string
+ The string representation of the floating point value
+
+ See Also
+ --------
+ format_float_scientific
+ format_float_positional
+ """)
+
+
+##############################################################################
+#
+# Documentation for ufunc attributes and methods
+#
+##############################################################################
+
+
+##############################################################################
+#
+# ufunc object
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc',
+ """
+ Functions that operate element by element on whole arrays.
+
+ To see the documentation for a specific ufunc, use `info`. For
+ example, ``np.info(np.sin)``. Because ufuncs are written in C
+ (for speed) and linked into Python with NumPy's ufunc facility,
+ Python's help() function finds this page whenever help() is called
+ on a ufunc.
+
+ A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`.
+
+ **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)``
+
+ Apply `op` to the arguments `*x` elementwise, broadcasting the arguments.
+
+ The broadcasting rules are:
+
+ * Dimensions of length 1 may be prepended to either array.
+ * Arrays may be repeated along dimensions of length 1.
+
+ Parameters
+ ----------
+ *x : array_like
+ Input arrays.
+ out : ndarray, None, or tuple of ndarray and None, optional
+ Alternate array object(s) in which to put the result; if provided, it
+ must have a shape that the inputs broadcast to. A tuple of arrays
+ (possible only as a keyword argument) must have length equal to the
+ number of outputs; use None for uninitialized outputs to be
+ allocated by the ufunc.
+ where : array_like, optional
+ This condition is broadcast over the input. At locations where the
+ condition is True, the `out` array will be set to the ufunc result.
+ Elsewhere, the `out` array will retain its original value.
+ Note that if an uninitialized `out` array is created via the default
+ ``out=None``, locations within it where the condition is False will
+ remain uninitialized.
+ **kwargs
+ For other keyword-only arguments, see the :ref:`ufunc docs `.
+
+ Returns
+ -------
+ r : ndarray or tuple of ndarray
+ `r` will have the shape that the arrays in `x` broadcast to; if `out` is
+ provided, it will be returned. If not, `r` will be allocated and
+ may contain uninitialized values. If the function has more than one
+ output, then the result will be a tuple of arrays.
+
+ """)
+
+
+##############################################################################
+#
+# ufunc attributes
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc', ('identity',
+ """
+ The identity value.
+
+ Data attribute containing the identity element for the ufunc, if it has one.
+ If it does not, the attribute value is None.
+
+ Examples
+ --------
+ >>> np.add.identity
+ 0
+ >>> np.multiply.identity
+ 1
+ >>> np.power.identity
+ 1
+ >>> print(np.exp.identity)
+ None
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('nargs',
+ """
+ The number of arguments.
+
+ Data attribute containing the number of arguments the ufunc takes, including
+ optional ones.
+
+ Notes
+ -----
+ Typically this value will be one more than what you might expect because all
+ ufuncs take the optional "out" argument.
+
+ Examples
+ --------
+ >>> np.add.nargs
+ 3
+ >>> np.multiply.nargs
+ 3
+ >>> np.power.nargs
+ 3
+ >>> np.exp.nargs
+ 2
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('nin',
+ """
+ The number of inputs.
+
+ Data attribute containing the number of arguments the ufunc treats as input.
+
+ Examples
+ --------
+ >>> np.add.nin
+ 2
+ >>> np.multiply.nin
+ 2
+ >>> np.power.nin
+ 2
+ >>> np.exp.nin
+ 1
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('nout',
+ """
+ The number of outputs.
+
+ Data attribute containing the number of arguments the ufunc treats as output.
+
+ Notes
+ -----
+ Since all ufuncs can take output arguments, this will always be (at least) 1.
+
+ Examples
+ --------
+ >>> np.add.nout
+ 1
+ >>> np.multiply.nout
+ 1
+ >>> np.power.nout
+ 1
+ >>> np.exp.nout
+ 1
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('ntypes',
+ """
+ The number of types.
+
+ The number of numerical NumPy types - of which there are 18 total - on which
+ the ufunc can operate.
+
+ See Also
+ --------
+ numpy.ufunc.types
+
+ Examples
+ --------
+ >>> np.add.ntypes
+ 18
+ >>> np.multiply.ntypes
+ 18
+ >>> np.power.ntypes
+ 17
+ >>> np.exp.ntypes
+ 7
+ >>> np.remainder.ntypes
+ 14
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('types',
+ """
+ Returns a list with types grouped input->output.
+
+ Data attribute listing the data-type "Domain-Range" groupings the ufunc can
+ deliver. The data-types are given using the character codes.
+
+ See Also
+ --------
+ numpy.ufunc.ntypes
+
+ Examples
+ --------
+ >>> np.add.types
+ ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
+ 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
+ 'GG->G', 'OO->O']
+
+ >>> np.multiply.types
+ ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
+ 'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
+ 'GG->G', 'OO->O']
+
+ >>> np.power.types
+ ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
+ 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
+ 'OO->O']
+
+ >>> np.exp.types
+ ['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']
+
+ >>> np.remainder.types
+ ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
+ 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('signature',
+ """
+ Definition of the core elements a generalized ufunc operates on.
+
+ The signature determines how the dimensions of each input/output array
+ are split into core and loop dimensions:
+
+ 1. Each dimension in the signature is matched to a dimension of the
+ corresponding passed-in array, starting from the end of the shape tuple.
+ 2. Core dimensions assigned to the same label in the signature must have
+ exactly matching sizes, no broadcasting is performed.
+ 3. The core dimensions are removed from all inputs and the remaining
+ dimensions are broadcast together, defining the loop dimensions.
+
+ Notes
+ -----
+ Generalized ufuncs are used internally in many linalg functions, and in
+ the testing suite; the examples below are taken from these.
+ For ufuncs that operate on scalars, the signature is None, which is
+ equivalent to '()' for every argument.
+
+ Examples
+ --------
+ >>> np.core.umath_tests.matrix_multiply.signature
+ '(m,n),(n,p)->(m,p)'
+ >>> np.linalg._umath_linalg.det.signature
+ '(m,m)->()'
+ >>> np.add.signature is None
+ True # equivalent to '(),()->()'
+ """))
+
+##############################################################################
+#
+# ufunc methods
+#
+##############################################################################
+
+add_newdoc('numpy.core', 'ufunc', ('reduce',
+ """
+ reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=, where=True)
+
+ Reduces `array`'s dimension by one, by applying ufunc along one axis.
+
+ Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then
+ :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` =
+ the result of iterating `j` over :math:`range(N_i)`, cumulatively applying
+ ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`.
+ For a one-dimensional array, reduce produces results equivalent to:
+ ::
+
+ r = op.identity # op = ufunc
+ for i in range(len(A)):
+ r = op(r, A[i])
+ return r
+
+ For example, add.reduce() is equivalent to sum().
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a reduction is performed.
+ The default (`axis` = 0) is perform a reduction over the first
+ dimension of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ .. versionadded:: 1.7.0
+
+ If this is None, a reduction is performed over all the axes.
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+
+ For operations which are either not commutative or not associative,
+ doing a reduction over multiple axes is not well-defined. The
+ ufuncs do not currently raise an exception in this case, but will
+ likely do so in the future.
+ dtype : data-type code, optional
+ The type used to represent the intermediate results. Defaults
+ to the data-type of the output array if this is provided, or
+ the data-type of the input array if no output array is provided.
+ out : ndarray, None, or tuple of ndarray and None, optional
+ A location into which the result is stored. If not provided or None,
+ a freshly-allocated array is returned. For consistency with
+ ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+ 1-element tuple.
+
+ .. versionchanged:: 1.13.0
+ Tuples are allowed for keyword argument.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the original `array`.
+
+ .. versionadded:: 1.7.0
+ initial : scalar, optional
+ The value with which to start the reduction.
+ If the ufunc has no identity or the dtype is object, this defaults
+ to None - otherwise it defaults to ufunc.identity.
+ If ``None`` is given, the first element of the reduction is used,
+ and an error is thrown if the reduction is empty.
+
+ .. versionadded:: 1.15.0
+
+ where : array_like of bool, optional
+ A boolean array which is broadcasted to match the dimensions
+ of `array`, and selects elements to include in the reduction. Note
+ that for ufuncs like ``minimum`` that do not have an identity
+ defined, one has to pass in also ``initial``.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ r : ndarray
+ The reduced array. If `out` was supplied, `r` is a reference to it.
+
+ Examples
+ --------
+ >>> np.multiply.reduce([2,3,5])
+ 30
+
+ A multi-dimensional array example:
+
+ >>> X = np.arange(8).reshape((2,2,2))
+ >>> X
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+ >>> np.add.reduce(X, 0)
+ array([[ 4, 6],
+ [ 8, 10]])
+ >>> np.add.reduce(X) # confirm: default axis value is 0
+ array([[ 4, 6],
+ [ 8, 10]])
+ >>> np.add.reduce(X, 1)
+ array([[ 2, 4],
+ [10, 12]])
+ >>> np.add.reduce(X, 2)
+ array([[ 1, 5],
+ [ 9, 13]])
+
+ You can use the ``initial`` keyword argument to initialize the reduction
+ with a different value, and ``where`` to select specific elements to include:
+
+ >>> np.add.reduce([10], initial=5)
+ 15
+ >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
+ array([14., 14.])
+ >>> a = np.array([10., np.nan, 10])
+ >>> np.add.reduce(a, where=~np.isnan(a))
+ 20.0
+
+ Allows reductions of empty arrays where they would normally fail, i.e.
+ for ufuncs without an identity.
+
+ >>> np.minimum.reduce([], initial=np.inf)
+ inf
+ >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
+ array([ 1., 10.])
+ >>> np.minimum.reduce([])
+ Traceback (most recent call last):
+ ...
+ ValueError: zero-size array to reduction operation minimum which has no identity
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('accumulate',
+ """
+ accumulate(array, axis=0, dtype=None, out=None)
+
+ Accumulate the result of applying the operator to all elements.
+
+ For a one-dimensional array, accumulate produces results equivalent to::
+
+ r = np.empty(len(A))
+ t = op.identity # op = the ufunc being applied to A's elements
+ for i in range(len(A)):
+ t = op(t, A[i])
+ r[i] = t
+ return r
+
+ For example, add.accumulate() is equivalent to np.cumsum().
+
+ For a multi-dimensional array, accumulate is applied along only one
+ axis (axis zero by default; see Examples below) so repeated use is
+ necessary if one wants to accumulate over multiple axes.
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ axis : int, optional
+ The axis along which to apply the accumulation; default is zero.
+ dtype : data-type code, optional
+ The data-type used to represent the intermediate results. Defaults
+ to the data-type of the output array if such is provided, or the
+ the data-type of the input array if no output array is provided.
+ out : ndarray, None, or tuple of ndarray and None, optional
+ A location into which the result is stored. If not provided or None,
+ a freshly-allocated array is returned. For consistency with
+ ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+ 1-element tuple.
+
+ .. versionchanged:: 1.13.0
+ Tuples are allowed for keyword argument.
+
+ Returns
+ -------
+ r : ndarray
+ The accumulated values. If `out` was supplied, `r` is a reference to
+ `out`.
+
+ Examples
+ --------
+ 1-D array examples:
+
+ >>> np.add.accumulate([2, 3, 5])
+ array([ 2, 5, 10])
+ >>> np.multiply.accumulate([2, 3, 5])
+ array([ 2, 6, 30])
+
+ 2-D array examples:
+
+ >>> I = np.eye(2)
+ >>> I
+ array([[1., 0.],
+ [0., 1.]])
+
+ Accumulate along axis 0 (rows), down columns:
+
+ >>> np.add.accumulate(I, 0)
+ array([[1., 0.],
+ [1., 1.]])
+ >>> np.add.accumulate(I) # no axis specified = axis zero
+ array([[1., 0.],
+ [1., 1.]])
+
+ Accumulate along axis 1 (columns), through rows:
+
+ >>> np.add.accumulate(I, 1)
+ array([[1., 1.],
+ [0., 1.]])
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('reduceat',
+ """
+ reduceat(array, indices, axis=0, dtype=None, out=None)
+
+ Performs a (local) reduce with specified slices over a single axis.
+
+ For i in ``range(len(indices))``, `reduceat` computes
+ ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th
+ generalized "row" parallel to `axis` in the final result (i.e., in a
+ 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if
+ `axis = 1`, it becomes the i-th column). There are three exceptions to this:
+
+ * when ``i = len(indices) - 1`` (so for the last index),
+ ``indices[i+1] = array.shape[axis]``.
+ * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is
+ simply ``array[indices[i]]``.
+ * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised.
+
+ The shape of the output depends on the size of `indices`, and may be
+ larger than `array` (this happens if ``len(indices) > array.shape[axis]``).
+
+ Parameters
+ ----------
+ array : array_like
+ The array to act on.
+ indices : array_like
+ Paired indices, comma separated (not colon), specifying slices to
+ reduce.
+ axis : int, optional
+ The axis along which to apply the reduceat.
+ dtype : data-type code, optional
+ The type used to represent the intermediate results. Defaults
+ to the data type of the output array if this is provided, or
+ the data type of the input array if no output array is provided.
+ out : ndarray, None, or tuple of ndarray and None, optional
+ A location into which the result is stored. If not provided or None,
+ a freshly-allocated array is returned. For consistency with
+ ``ufunc.__call__``, if given as a keyword, this may be wrapped in a
+ 1-element tuple.
+
+ .. versionchanged:: 1.13.0
+ Tuples are allowed for keyword argument.
+
+ Returns
+ -------
+ r : ndarray
+ The reduced values. If `out` was supplied, `r` is a reference to
+ `out`.
+
+ Notes
+ -----
+ A descriptive example:
+
+ If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as
+ ``ufunc.reduceat(array, indices)[::2]`` where `indices` is
+ ``range(len(array) - 1)`` with a zero placed
+ in every other element:
+ ``indices = zeros(2 * len(array) - 1)``,
+ ``indices[1::2] = range(1, len(array))``.
+
+ Don't be fooled by this attribute's name: `reduceat(array)` is not
+ necessarily smaller than `array`.
+
+ Examples
+ --------
+ To take the running sum of four successive values:
+
+ >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
+ array([ 6, 10, 14, 18])
+
+ A 2-D example:
+
+ >>> x = np.linspace(0, 15, 16).reshape(4,4)
+ >>> x
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
+
+ ::
+
+ # reduce such that the result has the following five rows:
+ # [row1 + row2 + row3]
+ # [row4]
+ # [row2]
+ # [row3]
+ # [row1 + row2 + row3 + row4]
+
+ >>> np.add.reduceat(x, [0, 3, 1, 2, 0])
+ array([[12., 15., 18., 21.],
+ [12., 13., 14., 15.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [24., 28., 32., 36.]])
+
+ ::
+
+ # reduce such that result has the following two columns:
+ # [col1 * col2 * col3, col4]
+
+ >>> np.multiply.reduceat(x, [0, 3], 1)
+ array([[ 0., 3.],
+ [ 120., 7.],
+ [ 720., 11.],
+ [2184., 15.]])
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('outer',
+ r"""
+ outer(A, B, /, **kwargs)
+
+ Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`.
+
+ Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of
+ ``op.outer(A, B)`` is an array of dimension M + N such that:
+
+ .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] =
+ op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}])
+
+ For `A` and `B` one-dimensional, this is equivalent to::
+
+ r = empty(len(A),len(B))
+ for i in range(len(A)):
+ for j in range(len(B)):
+ r[i,j] = op(A[i], B[j]) # op = ufunc in question
+
+ Parameters
+ ----------
+ A : array_like
+ First array
+ B : array_like
+ Second array
+ kwargs : any
+ Arguments to pass on to the ufunc. Typically `dtype` or `out`.
+ See `ufunc` for a comprehensive overview of all available arguments.
+
+ Returns
+ -------
+ r : ndarray
+ Output array
+
+ See Also
+ --------
+ numpy.outer : A less powerful version of ``np.multiply.outer``
+ that `ravel`\ s all inputs to 1D. This exists
+ primarily for compatibility with old code.
+
+ tensordot : ``np.tensordot(a, b, axes=((), ()))`` and
+ ``np.multiply.outer(a, b)`` behave same for all
+ dimensions of a and b.
+
+ Examples
+ --------
+ >>> np.multiply.outer([1, 2, 3], [4, 5, 6])
+ array([[ 4, 5, 6],
+ [ 8, 10, 12],
+ [12, 15, 18]])
+
+ A multi-dimensional example:
+
+ >>> A = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> A.shape
+ (2, 3)
+ >>> B = np.array([[1, 2, 3, 4]])
+ >>> B.shape
+ (1, 4)
+ >>> C = np.multiply.outer(A, B)
+ >>> C.shape; C
+ (2, 3, 1, 4)
+ array([[[[ 1, 2, 3, 4]],
+ [[ 2, 4, 6, 8]],
+ [[ 3, 6, 9, 12]]],
+ [[[ 4, 8, 12, 16]],
+ [[ 5, 10, 15, 20]],
+ [[ 6, 12, 18, 24]]]])
+
+ """))
+
+add_newdoc('numpy.core', 'ufunc', ('at',
+ """
+ at(a, indices, b=None, /)
+
+ Performs unbuffered in place operation on operand 'a' for elements
+ specified by 'indices'. For addition ufunc, this method is equivalent to
+ ``a[indices] += b``, except that results are accumulated for elements that
+ are indexed more than once. For example, ``a[[0,0]] += 1`` will only
+ increment the first element once because of buffering, whereas
+ ``add.at(a, [0,0], 1)`` will increment the first element twice.
+
+ .. versionadded:: 1.8.0
+
+ Parameters
+ ----------
+ a : array_like
+ The array to perform in place operation on.
+ indices : array_like or tuple
+ Array like index object or slice object for indexing into first
+ operand. If first operand has multiple dimensions, indices can be a
+ tuple of array like index objects or slice objects.
+ b : array_like
+ Second operand for ufuncs requiring two operands. Operand must be
+ broadcastable over first operand after indexing or slicing.
+
+ Examples
+ --------
+ Set items 0 and 1 to their negative values:
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> np.negative.at(a, [0, 1])
+ >>> a
+ array([-1, -2, 3, 4])
+
+ Increment items 0 and 1, and increment item 2 twice:
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> np.add.at(a, [0, 1, 2, 2], 1)
+ >>> a
+ array([2, 3, 5, 4])
+
+ Add items 0 and 1 in first array to second array,
+ and store results in first array:
+
+ >>> a = np.array([1, 2, 3, 4])
+ >>> b = np.array([1, 2])
+ >>> np.add.at(a, [0, 1], b)
+ >>> a
+ array([2, 4, 3, 4])
+
+ """))
+
+##############################################################################
+#
+# Documentation for dtype attributes and methods
+#
+##############################################################################
+
+##############################################################################
+#
+# dtype object
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype',
+ """
+ dtype(dtype, align=False, copy=False)
+
+ Create a data type object.
+
+ A numpy array is homogeneous, and contains elements described by a
+ dtype object. A dtype object can be constructed from different
+ combinations of fundamental numeric types.
+
+ Parameters
+ ----------
+ dtype
+ Object to be converted to a data type object.
+ align : bool, optional
+ Add padding to the fields to match what a C compiler would output
+ for a similar C-struct. Can be ``True`` only if `obj` is a dictionary
+ or a comma-separated string. If a struct dtype is being created,
+ this also sets a sticky alignment flag ``isalignedstruct``.
+ copy : bool, optional
+ Make a new copy of the data-type object. If ``False``, the result
+ may just be a reference to a built-in data-type object.
+
+ See also
+ --------
+ result_type
+
+ Examples
+ --------
+ Using array-scalar type:
+
+ >>> np.dtype(np.int16)
+ dtype('int16')
+
+ Structured type, one field name 'f1', containing int16:
+
+ >>> np.dtype([('f1', np.int16)])
+ dtype([('f1', '>> np.dtype([('f1', [('f1', np.int16)])])
+ dtype([('f1', [('f1', '>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
+ dtype([('f1', '>> np.dtype([('a','f8'),('b','S10')])
+ dtype([('a', '>> np.dtype("i4, (2,3)f8")
+ dtype([('f0', '>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
+ dtype([('hello', '>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
+ dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))
+
+ Using dictionaries. Two fields named 'gender' and 'age':
+
+ >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
+ dtype([('gender', 'S1'), ('age', 'u1')])
+
+ Offsets in bytes, here 0 and 25:
+
+ >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
+ dtype([('surname', 'S25'), ('age', 'u1')])
+
+ """)
+
+##############################################################################
+#
+# dtype attributes
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('alignment',
+ """
+ The required alignment (bytes) of this data-type according to the compiler.
+
+ More information is available in the C-API section of the manual.
+
+ Examples
+ --------
+
+ >>> x = np.dtype('i4')
+ >>> x.alignment
+ 4
+
+ >>> x = np.dtype(float)
+ >>> x.alignment
+ 8
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('byteorder',
+ """
+ A character indicating the byte-order of this data-type object.
+
+ One of:
+
+ === ==============
+ '=' native
+ '<' little-endian
+ '>' big-endian
+ '|' not applicable
+ === ==============
+
+ All built-in data-type objects have byteorder either '=' or '|'.
+
+ Examples
+ --------
+
+ >>> dt = np.dtype('i2')
+ >>> dt.byteorder
+ '='
+ >>> # endian is not relevant for 8 bit numbers
+ >>> np.dtype('i1').byteorder
+ '|'
+ >>> # or ASCII strings
+ >>> np.dtype('S2').byteorder
+ '|'
+ >>> # Even if specific code is given, and it is native
+ >>> # '=' is the byteorder
+ >>> import sys
+ >>> sys_is_le = sys.byteorder == 'little'
+ >>> native_code = sys_is_le and '<' or '>'
+ >>> swapped_code = sys_is_le and '>' or '<'
+ >>> dt = np.dtype(native_code + 'i2')
+ >>> dt.byteorder
+ '='
+ >>> # Swapped code shows up as itself
+ >>> dt = np.dtype(swapped_code + 'i2')
+ >>> dt.byteorder == swapped_code
+ True
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('char',
+ """A unique character code for each of the 21 different built-in types.
+
+ Examples
+ --------
+
+ >>> x = np.dtype(float)
+ >>> x.char
+ 'd'
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('descr',
+ """
+ `__array_interface__` description of the data-type.
+
+ The format is that required by the 'descr' key in the
+ `__array_interface__` attribute.
+
+ Warning: This attribute exists specifically for `__array_interface__`,
+ and passing it directly to `np.dtype` will not accurately reconstruct
+ some dtypes (e.g., scalar and subarray dtypes).
+
+ Examples
+ --------
+
+ >>> x = np.dtype(float)
+ >>> x.descr
+ [('', '>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.descr
+ [('name', '>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> print(dt.fields)
+ {'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('flags',
+ """
+ Bit-flags describing how this data type is to be interpreted.
+
+ Bit-masks are in `numpy.core.multiarray` as the constants
+ `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`,
+ `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation
+ of these flags is in C-API documentation; they are largely useful
+ for user-defined data-types.
+
+ The following example demonstrates that operations on this particular
+ dtype requires Python C-API.
+
+ Examples
+ --------
+
+ >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+ >>> x.flags
+ 16
+ >>> np.core.multiarray.NEEDS_PYAPI
+ 16
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('hasobject',
+ """
+ Boolean indicating whether this dtype contains any reference-counted
+ objects in any fields or sub-dtypes.
+
+ Recall that what is actually in the ndarray memory representing
+ the Python object is the memory address of that object (a pointer).
+ Special handling may be required, and this attribute is useful for
+ distinguishing data types that may contain arbitrary Python objects
+ and data-types that won't.
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isbuiltin',
+ """
+ Integer indicating how this dtype relates to the built-in dtypes.
+
+ Read-only.
+
+ = ========================================================================
+ 0 if this is a structured array type, with fields
+ 1 if this is a dtype compiled into numpy (such as ints, floats etc)
+ 2 if the dtype is for a user-defined numpy type
+ A user-defined type uses the numpy C-API machinery to extend
+ numpy to handle a new array type. See
+ :ref:`user.user-defined-data-types` in the NumPy manual.
+ = ========================================================================
+
+ Examples
+ --------
+ >>> dt = np.dtype('i2')
+ >>> dt.isbuiltin
+ 1
+ >>> dt = np.dtype('f8')
+ >>> dt.isbuiltin
+ 1
+ >>> dt = np.dtype([('field1', 'f8')])
+ >>> dt.isbuiltin
+ 0
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isnative',
+ """
+ Boolean indicating whether the byte order of this dtype is native
+ to the platform.
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('isalignedstruct',
+ """
+ Boolean indicating whether the dtype is a struct which maintains
+ field alignment. This flag is sticky, so when combining multiple
+ structs together, it is preserved and produces new dtypes which
+ are also aligned.
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('itemsize',
+ """
+ The element size of this data-type object.
+
+ For 18 of the 21 types this number is fixed by the data-type.
+ For the flexible data-types, this number can be anything.
+
+ Examples
+ --------
+
+ >>> arr = np.array([[1, 2], [3, 4]])
+ >>> arr.dtype
+ dtype('int64')
+ >>> arr.itemsize
+ 8
+
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.itemsize
+ 80
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('kind',
+ """
+ A character code (one of 'biufcmMOSUV') identifying the general kind of data.
+
+ = ======================
+ b boolean
+ i signed integer
+ u unsigned integer
+ f floating-point
+ c complex floating-point
+ m timedelta
+ M datetime
+ O object
+ S (byte-)string
+ U Unicode
+ V void
+ = ======================
+
+ Examples
+ --------
+
+ >>> dt = np.dtype('i4')
+ >>> dt.kind
+ 'i'
+ >>> dt = np.dtype('f8')
+ >>> dt.kind
+ 'f'
+ >>> dt = np.dtype([('field1', 'f8')])
+ >>> dt.kind
+ 'V'
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('metadata',
+ """
+ Either ``None`` or a readonly dictionary of metadata (mappingproxy).
+
+ The metadata field can be set using any dictionary at data-type
+ creation. NumPy currently has no uniform approach to propagating
+ metadata; although some array operations preserve it, there is no
+ guarantee that others will.
+
+ .. warning::
+
+ Although used in certain projects, this feature was long undocumented
+ and is not well supported. Some aspects of metadata propagation
+ are expected to change in the future.
+
+ Examples
+ --------
+
+ >>> dt = np.dtype(float, metadata={"key": "value"})
+ >>> dt.metadata["key"]
+ 'value'
+ >>> arr = np.array([1, 2, 3], dtype=dt)
+ >>> arr.dtype.metadata
+ mappingproxy({'key': 'value'})
+
+ Adding arrays with identical datatypes currently preserves the metadata:
+
+ >>> (arr + arr).dtype.metadata
+ mappingproxy({'key': 'value'})
+
+ But if the arrays have different dtype metadata, the metadata may be
+ dropped:
+
+ >>> dt2 = np.dtype(float, metadata={"key2": "value2"})
+ >>> arr2 = np.array([3, 2, 1], dtype=dt2)
+ >>> (arr + arr2).dtype.metadata is None
+ True # The metadata field is cleared so None is returned
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('name',
+ """
+ A bit-width name for this data-type.
+
+ Un-sized flexible data-type objects do not have this attribute.
+
+ Examples
+ --------
+
+ >>> x = np.dtype(float)
+ >>> x.name
+ 'float64'
+ >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
+ >>> x.name
+ 'void640'
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('names',
+ """
+ Ordered list of field names, or ``None`` if there are no fields.
+
+ The names are ordered according to increasing byte offset. This can be
+ used, for example, to walk through all of the named fields in offset order.
+
+ Examples
+ --------
+ >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
+ >>> dt.names
+ ('name', 'grades')
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('num',
+ """
+ A unique number for each of the 21 different built-in types.
+
+ These are roughly ordered from least-to-most precision.
+
+ Examples
+ --------
+
+ >>> dt = np.dtype(str)
+ >>> dt.num
+ 19
+
+ >>> dt = np.dtype(float)
+ >>> dt.num
+ 12
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('shape',
+ """
+ Shape tuple of the sub-array if this data type describes a sub-array,
+ and ``()`` otherwise.
+
+ Examples
+ --------
+
+ >>> dt = np.dtype(('i4', 4))
+ >>> dt.shape
+ (4,)
+
+ >>> dt = np.dtype(('i4', (2, 3)))
+ >>> dt.shape
+ (2, 3)
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('ndim',
+ """
+ Number of dimensions of the sub-array if this data type describes a
+ sub-array, and ``0`` otherwise.
+
+ .. versionadded:: 1.13.0
+
+ Examples
+ --------
+ >>> x = np.dtype(float)
+ >>> x.ndim
+ 0
+
+ >>> x = np.dtype((float, 8))
+ >>> x.ndim
+ 1
+
+ >>> x = np.dtype(('i4', (3, 4)))
+ >>> x.ndim
+ 2
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('str',
+ """The array-protocol typestring of this data-type object."""))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('subdtype',
+ """
+ Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and
+ None otherwise.
+
+ The *shape* is the fixed shape of the sub-array described by this
+ data type, and *item_dtype* the data type of the array.
+
+ If a field whose dtype object has this attribute is retrieved,
+ then the extra dimensions implied by *shape* are tacked on to
+ the end of the retrieved array.
+
+ See Also
+ --------
+ dtype.base
+
+ Examples
+ --------
+ >>> x = numpy.dtype('8f')
+ >>> x.subdtype
+ (dtype('float32'), (8,))
+
+ >>> x = numpy.dtype('i2')
+ >>> x.subdtype
+ >>>
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('base',
+ """
+ Returns dtype for the base element of the subarrays,
+ regardless of their dimension or shape.
+
+ See Also
+ --------
+ dtype.subdtype
+
+ Examples
+ --------
+ >>> x = numpy.dtype('8f')
+ >>> x.base
+ dtype('float32')
+
+ >>> x = numpy.dtype('i2')
+ >>> x.base
+ dtype('int16')
+
+ """))
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('type',
+ """The type object used to instantiate a scalar of this data-type."""))
+
+##############################################################################
+#
+# dtype methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'dtype', ('newbyteorder',
+ """
+ newbyteorder(new_order='S', /)
+
+ Return a new dtype with a different byte order.
+
+ Changes are also made in all fields and sub-arrays of the data type.
+
+ Parameters
+ ----------
+ new_order : string, optional
+ Byte order to force; a value from the byte order specifications
+ below. The default value ('S') results in swapping the current
+ byte order. `new_order` codes can be any of:
+
+ * 'S' - swap dtype from current to opposite endian
+ * {'<', 'little'} - little endian
+ * {'>', 'big'} - big endian
+ * '=' - native order
+ * {'|', 'I'} - ignore (no change to byte order)
+
+ Returns
+ -------
+ new_dtype : dtype
+ New dtype object with the given change to the byte order.
+
+ Notes
+ -----
+ Changes are also made in all fields and sub-arrays of the data type.
+
+ Examples
+ --------
+ >>> import sys
+ >>> sys_is_le = sys.byteorder == 'little'
+ >>> native_code = sys_is_le and '<' or '>'
+ >>> swapped_code = sys_is_le and '>' or '<'
+ >>> native_dt = np.dtype(native_code+'i2')
+ >>> swapped_dt = np.dtype(swapped_code+'i2')
+ >>> native_dt.newbyteorder('S') == swapped_dt
+ True
+ >>> native_dt.newbyteorder() == swapped_dt
+ True
+ >>> native_dt == swapped_dt.newbyteorder('S')
+ True
+ >>> native_dt == swapped_dt.newbyteorder('=')
+ True
+ >>> native_dt == swapped_dt.newbyteorder('N')
+ True
+ >>> native_dt == native_dt.newbyteorder('|')
+ True
+ >>> np.dtype('>> np.dtype('>> np.dtype('>i2') == native_dt.newbyteorder('>')
+ True
+ >>> np.dtype('>i2') == native_dt.newbyteorder('B')
+ True
+
+ """))
+
+
+##############################################################################
+#
+# Datetime-related Methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar',
+ """
+ busdaycalendar(weekmask='1111100', holidays=None)
+
+ A business day calendar object that efficiently stores information
+ defining valid days for the busday family of functions.
+
+ The default valid days are Monday through Friday ("business days").
+ A busdaycalendar object can be specified with any set of weekly
+ valid days, plus an optional "holiday" dates that always will be invalid.
+
+ Once a busdaycalendar object is created, the weekmask and holidays
+ cannot be modified.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates, no matter which
+ weekday they fall upon. Holiday dates may be specified in any
+ order, and NaT (not-a-time) dates are ignored. This list is
+ saved in a normalized form that is suited for fast calculations
+ of valid days.
+
+ Returns
+ -------
+ out : busdaycalendar
+ A business day calendar object containing the specified
+ weekmask and holidays values.
+
+ See Also
+ --------
+ is_busday : Returns a boolean array indicating valid days.
+ busday_offset : Applies an offset counted in valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Attributes
+ ----------
+ Note: once a busdaycalendar object is created, you cannot modify the
+ weekmask or holidays. The attributes return copies of internal data.
+ weekmask : (copy) seven-element array of bool
+ holidays : (copy) sorted array of datetime64[D]
+
+ Examples
+ --------
+ >>> # Some important days in July
+ ... bdd = np.busdaycalendar(
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+ >>> # Default is Monday to Friday weekdays
+ ... bdd.weekmask
+ array([ True, True, True, True, True, False, False])
+ >>> # Any holidays already on the weekend are removed
+ ... bdd.holidays
+ array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
+ """)
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('weekmask',
+ """A copy of the seven-element boolean mask indicating valid days."""))
+
+add_newdoc('numpy.core.multiarray', 'busdaycalendar', ('holidays',
+ """A copy of the holiday array indicating additional invalid days."""))
+
+add_newdoc('numpy.core.multiarray', 'normalize_axis_index',
+ """
+ normalize_axis_index(axis, ndim, msg_prefix=None)
+
+ Normalizes an axis index, `axis`, such that is a valid positive index into
+ the shape of array with `ndim` dimensions. Raises an AxisError with an
+ appropriate message if this is not possible.
+
+ Used internally by all axis-checking logic.
+
+ .. versionadded:: 1.13.0
+
+ Parameters
+ ----------
+ axis : int
+ The un-normalized index of the axis. Can be negative
+ ndim : int
+ The number of dimensions of the array that `axis` should be normalized
+ against
+ msg_prefix : str
+ A prefix to put before the message, typically the name of the argument
+
+ Returns
+ -------
+ normalized_axis : int
+ The normalized axis index, such that `0 <= normalized_axis < ndim`
+
+ Raises
+ ------
+ AxisError
+ If the axis index is invalid, when `-ndim <= axis < ndim` is false.
+
+ Examples
+ --------
+ >>> normalize_axis_index(0, ndim=3)
+ 0
+ >>> normalize_axis_index(1, ndim=3)
+ 1
+ >>> normalize_axis_index(-1, ndim=3)
+ 2
+
+ >>> normalize_axis_index(3, ndim=3)
+ Traceback (most recent call last):
+ ...
+ AxisError: axis 3 is out of bounds for array of dimension 3
+ >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
+ Traceback (most recent call last):
+ ...
+ AxisError: axes_arg: axis -4 is out of bounds for array of dimension 3
+ """)
+
+add_newdoc('numpy.core.multiarray', 'datetime_data',
+ """
+ datetime_data(dtype, /)
+
+ Get information about the step size of a date or time type.
+
+ The returned tuple can be passed as the second argument of `numpy.datetime64` and
+ `numpy.timedelta64`.
+
+ Parameters
+ ----------
+ dtype : dtype
+ The dtype object, which must be a `datetime64` or `timedelta64` type.
+
+ Returns
+ -------
+ unit : str
+ The :ref:`datetime unit ` on which this dtype
+ is based.
+ count : int
+ The number of base units in a step.
+
+ Examples
+ --------
+ >>> dt_25s = np.dtype('timedelta64[25s]')
+ >>> np.datetime_data(dt_25s)
+ ('s', 25)
+ >>> np.array(10, dt_25s).astype('timedelta64[s]')
+ array(250, dtype='timedelta64[s]')
+
+ The result can be used to construct a datetime that uses the same units
+ as a timedelta
+
+ >>> np.datetime64('2010', np.datetime_data(dt_25s))
+ numpy.datetime64('2010-01-01T00:00:00','25s')
+ """)
+
+
+##############################################################################
+#
+# Documentation for `generic` attributes and methods
+#
+##############################################################################
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ """
+ Base class for numpy scalar types.
+
+ Class from which most (all?) numpy scalar types are derived. For
+ consistency, exposes the same API as `ndarray`, despite many
+ consequent attributes being either "get-only," or completely irrelevant.
+ This is the class from which it is strongly suggested users should derive
+ custom scalar types.
+
+ """)
+
+# Attributes
+
+def refer_to_array_attribute(attr, method=True):
+ docstring = """
+ Scalar {} identical to the corresponding array attribute.
+
+ Please see `ndarray.{}`.
+ """
+
+ return attr, docstring.format("method" if method else "attribute", attr)
+
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('T', method=False))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('base', method=False))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('data',
+ """Pointer to start of data."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('dtype',
+ """Get array data-descriptor."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flags',
+ """The integer value of flags."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('flat',
+ """A 1-D view of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('imag',
+ """The imaginary part of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('itemsize',
+ """The length of one element in bytes."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('nbytes',
+ """The length of the scalar in bytes."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('ndim',
+ """The number of array dimensions."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('real',
+ """The real part of the scalar."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('shape',
+ """Tuple of array dimensions."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('size',
+ """The number of elements in the gentype."""))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('strides',
+ """Tuple of bytes steps in each dimension."""))
+
+# Methods
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('all'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('any'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('argmax'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('argmin'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('argsort'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('astype'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('byteswap'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('choose'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('clip'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('compress'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('conjugate'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('copy'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('cumprod'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('cumsum'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('diagonal'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('dump'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('dumps'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('fill'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('flatten'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('getfield'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('item'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('itemset'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('max'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('mean'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('min'))
+
+add_newdoc('numpy.core.numerictypes', 'generic', ('newbyteorder',
+ """
+ newbyteorder(new_order='S', /)
+
+ Return a new `dtype` with a different byte order.
+
+ Changes are also made in all fields and sub-arrays of the data type.
+
+ The `new_order` code can be any from the following:
+
+ * 'S' - swap dtype from current to opposite endian
+ * {'<', 'little'} - little endian
+ * {'>', 'big'} - big endian
+ * '=' - native order
+ * {'|', 'I'} - ignore (no change to byte order)
+
+ Parameters
+ ----------
+ new_order : str, optional
+ Byte order to force; a value from the byte order specifications
+ above. The default value ('S') results in swapping the current
+ byte order.
+
+
+ Returns
+ -------
+ new_dtype : dtype
+ New `dtype` object with the given change to the byte order.
+
+ """))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('nonzero'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('prod'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('ptp'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('put'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('ravel'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('repeat'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('reshape'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('resize'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('round'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('searchsorted'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('setfield'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('setflags'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('sort'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('squeeze'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('std'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('sum'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('swapaxes'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('take'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('tofile'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('tolist'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('tostring'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('trace'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('transpose'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('var'))
+
+add_newdoc('numpy.core.numerictypes', 'generic',
+ refer_to_array_attribute('view'))
+
+
+##############################################################################
+#
+# Documentation for scalar type abstract base classes in type hierarchy
+#
+##############################################################################
+
+
+add_newdoc('numpy.core.numerictypes', 'number',
+ """
+ Abstract base class of all numeric scalar types.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'integer',
+ """
+ Abstract base class of all integer scalar types.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'signedinteger',
+ """
+ Abstract base class of all signed integer scalar types.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'unsignedinteger',
+ """
+ Abstract base class of all unsigned integer scalar types.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'inexact',
+ """
+ Abstract base class of all numeric scalar types with a (potentially)
+ inexact representation of the values in its range, such as
+ floating-point numbers.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'floating',
+ """
+ Abstract base class of all floating-point scalar types.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'complexfloating',
+ """
+ Abstract base class of all complex number scalar types that are made up of
+ floating-point numbers.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'flexible',
+ """
+ Abstract base class of all scalar types without predefined length.
+ The actual size of these types depends on the specific `np.dtype`
+ instantiation.
+
+ """)
+
+add_newdoc('numpy.core.numerictypes', 'character',
+ """
+ Abstract base class of all character string scalar types.
+
+ """)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs_scalars.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs_scalars.py
new file mode 100644
index 0000000000000000000000000000000000000000..602b1db6e64adf17fb4fb164956bbd34ad949be3
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_add_newdocs_scalars.py
@@ -0,0 +1,259 @@
+"""
+This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
+our sphinx ``conf.py`` during doc builds, where we want to avoid showing
+platform-dependent information.
+"""
+from numpy.core import dtype
+from numpy.core import numerictypes as _numerictypes
+from numpy.core.function_base import add_newdoc
+import platform
+
+##############################################################################
+#
+# Documentation for concrete scalar classes
+#
+##############################################################################
+
+def numeric_type_aliases(aliases):
+ def type_aliases_gen():
+ for alias, doc in aliases:
+ try:
+ alias_type = getattr(_numerictypes, alias)
+ except AttributeError:
+ # The set of aliases that actually exist varies between platforms
+ pass
+ else:
+ yield (alias_type, alias, doc)
+ return list(type_aliases_gen())
+
+
+possible_aliases = numeric_type_aliases([
+ ('int8', '8-bit signed integer (``-128`` to ``127``)'),
+ ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
+ ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
+ ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
+ ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
+ ('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
+ ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
+ ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
+ ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
+ ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
+ ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
+ ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
+ ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
+ ('float96', '96-bit extended-precision floating-point number type'),
+ ('float128', '128-bit extended-precision floating-point number type'),
+ ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
+ ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
+ ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
+ ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
+ ])
+
+
+
+
+def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
+ # note: `:field: value` is rST syntax which renders as field lists.
+ o = getattr(_numerictypes, obj)
+
+ character_code = dtype(o).char
+ canonical_name_doc = "" if obj == o.__name__ else ":Canonical name: `numpy.{}`\n ".format(obj)
+ alias_doc = ''.join(":Alias: `numpy.{}`\n ".format(alias) for alias in fixed_aliases)
+ alias_doc += ''.join(":Alias on this platform ({} {}): `numpy.{}`: {}.\n ".format(platform.system(), platform.machine(), alias, doc)
+ for (alias_type, alias, doc) in possible_aliases if alias_type is o)
+ docstring = """
+ {doc}
+
+ :Character code: ``'{character_code}'``
+ {canonical_name_doc}{alias_doc}
+ """.format(doc=doc.strip(), character_code=character_code,
+ canonical_name_doc=canonical_name_doc, alias_doc=alias_doc)
+
+ add_newdoc('numpy.core.numerictypes', obj, docstring)
+
+
+add_newdoc_for_scalar_type('bool_', ['bool8'],
+ """
+ Boolean type (True or False), stored as a byte.
+
+ .. warning::
+
+ The :class:`bool_` type is not a subclass of the :class:`int_` type
+ (the :class:`bool_` is not even a number type). This is different
+ than Python's default implementation of :class:`bool` as a
+ sub-class of :class:`int`.
+ """)
+
+add_newdoc_for_scalar_type('byte', [],
+ """
+ Signed integer type, compatible with C ``char``.
+ """)
+
+add_newdoc_for_scalar_type('short', [],
+ """
+ Signed integer type, compatible with C ``short``.
+ """)
+
+add_newdoc_for_scalar_type('intc', [],
+ """
+ Signed integer type, compatible with C ``int``.
+ """)
+
+add_newdoc_for_scalar_type('int_', [],
+ """
+ Signed integer type, compatible with Python `int` and C ``long``.
+ """)
+
+add_newdoc_for_scalar_type('longlong', [],
+ """
+ Signed integer type, compatible with C ``long long``.
+ """)
+
+add_newdoc_for_scalar_type('ubyte', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned char``.
+ """)
+
+add_newdoc_for_scalar_type('ushort', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned short``.
+ """)
+
+add_newdoc_for_scalar_type('uintc', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned int``.
+ """)
+
+add_newdoc_for_scalar_type('uint', [],
+ """
+ Unsigned integer type, compatible with C ``unsigned long``.
+ """)
+
+add_newdoc_for_scalar_type('ulonglong', [],
+ """
+ Signed integer type, compatible with C ``unsigned long long``.
+ """)
+
+add_newdoc_for_scalar_type('half', [],
+ """
+ Half-precision floating-point number type.
+ """)
+
+add_newdoc_for_scalar_type('single', [],
+ """
+ Single-precision floating-point number type, compatible with C ``float``.
+ """)
+
+add_newdoc_for_scalar_type('double', ['float_'],
+ """
+ Double-precision floating-point number type, compatible with Python `float`
+ and C ``double``.
+ """)
+
+add_newdoc_for_scalar_type('longdouble', ['longfloat'],
+ """
+ Extended-precision floating-point number type, compatible with C
+ ``long double`` but not necessarily with IEEE 754 quadruple-precision.
+ """)
+
+add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
+ """
+ Complex number type composed of two single-precision floating-point
+ numbers.
+ """)
+
+add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
+ """
+ Complex number type composed of two double-precision floating-point
+ numbers, compatible with Python `complex`.
+ """)
+
+add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
+ """
+ Complex number type composed of two extended-precision floating-point
+ numbers.
+ """)
+
+add_newdoc_for_scalar_type('object_', [],
+ """
+ Any Python object.
+ """)
+
+add_newdoc_for_scalar_type('str_', ['unicode_'],
+ r"""
+ A unicode string.
+
+ When used in arrays, this type strips trailing null codepoints.
+
+ Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
+ contents as UCS4:
+
+ >>> m = memoryview(np.str_("abc"))
+ >>> m.format
+ '3w'
+ >>> m.tobytes()
+ b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
+ """)
+
+add_newdoc_for_scalar_type('bytes_', ['string_'],
+ r"""
+ A byte string.
+
+ When used in arrays, this type strips trailing null bytes.
+ """)
+
+add_newdoc_for_scalar_type('void', [],
+ r"""
+ Either an opaque sequence of bytes, or a structure.
+
+ >>> np.void(b'abcd')
+ void(b'\x61\x62\x63\x64')
+
+ Structured `void` scalars can only be constructed via extraction from :ref:`structured_arrays`:
+
+ >>> arr = np.array((1, 2), dtype=[('x', np.int8), ('y', np.int8)])
+ >>> arr[()]
+ (1, 2) # looks like a tuple, but is `np.void`
+ """)
+
+add_newdoc_for_scalar_type('datetime64', [],
+ """
+ If created from a 64-bit integer, it represents an offset from
+ ``1970-01-01T00:00:00``.
+ If created from string, the string can be in ISO 8601 date
+ or datetime format.
+
+ >>> np.datetime64(10, 'Y')
+ numpy.datetime64('1980')
+ >>> np.datetime64('1980', 'Y')
+ numpy.datetime64('1980')
+ >>> np.datetime64(10, 'D')
+ numpy.datetime64('1970-01-11')
+
+ See :ref:`arrays.datetime` for more information.
+ """)
+
+add_newdoc_for_scalar_type('timedelta64', [],
+ """
+ A timedelta stored as a 64-bit integer.
+
+ See :ref:`arrays.datetime` for more information.
+ """)
+
+# TODO: work out how to put this on the base class, np.floating
+for float_name in ('half', 'single', 'double', 'longdouble'):
+ add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
+ """
+ {ftype}.as_integer_ratio() -> (int, int)
+
+ Return a pair of integers, whose ratio is exactly equal to the original
+ floating point number, and with a positive denominator.
+ Raise `OverflowError` on infinities and a `ValueError` on NaNs.
+
+ >>> np.{ftype}(10.0).as_integer_ratio()
+ (10, 1)
+ >>> np.{ftype}(0.0).as_integer_ratio()
+ (0, 1)
+ >>> np.{ftype}(-.25).as_integer_ratio()
+ (-1, 4)
+ """.format(ftype=float_name)))
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.py
new file mode 100644
index 0000000000000000000000000000000000000000..ecb4e7c39d0cebb33fc7677592d0f50c80cf9b97
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.py
@@ -0,0 +1,140 @@
+"""
+Functions in the ``as*array`` family that promote array-likes into arrays.
+
+`require` fits this category despite its name not matching this pattern.
+"""
+from .overrides import (
+ array_function_dispatch,
+ set_array_function_like_doc,
+ set_module,
+)
+from .multiarray import array, asanyarray
+
+
+__all__ = ["require"]
+
+
+
+def _require_dispatcher(a, dtype=None, requirements=None, *, like=None):
+ return (like,)
+
+
+@set_array_function_like_doc
+@set_module('numpy')
+def require(a, dtype=None, requirements=None, *, like=None):
+ """
+ Return an ndarray of the provided type that satisfies requirements.
+
+ This function is useful to be sure that an array with the correct flags
+ is returned for passing to compiled code (perhaps through ctypes).
+
+ Parameters
+ ----------
+ a : array_like
+ The object to be converted to a type-and-requirement-satisfying array.
+ dtype : data-type
+ The required data-type. If None preserve the current dtype. If your
+ application requires the data to be in native byteorder, include
+ a byteorder specification as a part of the dtype specification.
+ requirements : str or list of str
+ The requirements list can be any of the following
+
+ * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
+ * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
+ * 'ALIGNED' ('A') - ensure a data-type aligned array
+ * 'WRITEABLE' ('W') - ensure a writable array
+ * 'OWNDATA' ('O') - ensure an array that owns its own data
+ * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array with specified requirements and type if given.
+
+ See Also
+ --------
+ asarray : Convert input to an ndarray.
+ asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Notes
+ -----
+ The returned array will be guaranteed to have the listed requirements
+ by making a copy if needed.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> x.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : False
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+
+ >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
+ >>> y.flags
+ C_CONTIGUOUS : False
+ F_CONTIGUOUS : True
+ OWNDATA : True
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+
+ """
+ if like is not None:
+ return _require_with_like(
+ a,
+ dtype=dtype,
+ requirements=requirements,
+ like=like,
+ )
+
+ possible_flags = {'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
+ 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
+ 'A': 'A', 'ALIGNED': 'A',
+ 'W': 'W', 'WRITEABLE': 'W',
+ 'O': 'O', 'OWNDATA': 'O',
+ 'E': 'E', 'ENSUREARRAY': 'E'}
+ if not requirements:
+ return asanyarray(a, dtype=dtype)
+ else:
+ requirements = {possible_flags[x.upper()] for x in requirements}
+
+ if 'E' in requirements:
+ requirements.remove('E')
+ subok = False
+ else:
+ subok = True
+
+ order = 'A'
+ if requirements >= {'C', 'F'}:
+ raise ValueError('Cannot specify both "C" and "F" order')
+ elif 'F' in requirements:
+ order = 'F'
+ requirements.remove('F')
+ elif 'C' in requirements:
+ order = 'C'
+ requirements.remove('C')
+
+ arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
+
+ for prop in requirements:
+ if not arr.flags[prop]:
+ arr = arr.copy(order)
+ break
+ return arr
+
+
+_require_with_like = array_function_dispatch(
+ _require_dispatcher
+)(require)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..ee21fc0f1492f906927501f7f879cd4d1b4ec70a
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_asarray.pyi
@@ -0,0 +1,81 @@
+import sys
+from typing import TypeVar, Union, Iterable, overload
+
+from numpy import ndarray, _OrderKACF
+from numpy.typing import ArrayLike, DTypeLike
+
+if sys.version_info >= (3, 8):
+ from typing import Literal
+else:
+ from typing_extensions import Literal
+
+_ArrayType = TypeVar("_ArrayType", bound=ndarray)
+
+# TODO: The following functions are now defined in C, so should be defined
+# in a (not yet existing) `multiarray.pyi`.
+# (with the exception of `require`)
+
+def asarray(
+ a: object,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ *,
+ like: ArrayLike = ...
+) -> ndarray: ...
+@overload
+def asanyarray(
+ a: _ArrayType,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ *,
+ like: ArrayLike = ...
+) -> _ArrayType: ...
+@overload
+def asanyarray(
+ a: object,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ *,
+ like: ArrayLike = ...
+) -> ndarray: ...
+def ascontiguousarray(
+ a: object, dtype: DTypeLike = ..., *, like: ArrayLike = ...
+) -> ndarray: ...
+def asfortranarray(
+ a: object, dtype: DTypeLike = ..., *, like: ArrayLike = ...
+) -> ndarray: ...
+
+_Requirements = Literal[
+ "C", "C_CONTIGUOUS", "CONTIGUOUS",
+ "F", "F_CONTIGUOUS", "FORTRAN",
+ "A", "ALIGNED",
+ "W", "WRITEABLE",
+ "O", "OWNDATA"
+]
+_E = Literal["E", "ENSUREARRAY"]
+_RequirementsWithE = Union[_Requirements, _E]
+
+@overload
+def require(
+ a: _ArrayType,
+ dtype: None = ...,
+ requirements: Union[None, _Requirements, Iterable[_Requirements]] = ...,
+ *,
+ like: ArrayLike = ...
+) -> _ArrayType: ...
+@overload
+def require(
+ a: object,
+ dtype: DTypeLike = ...,
+ requirements: Union[_E, Iterable[_RequirementsWithE]] = ...,
+ *,
+ like: ArrayLike = ...
+) -> ndarray: ...
+@overload
+def require(
+ a: object,
+ dtype: DTypeLike = ...,
+ requirements: Union[None, _Requirements, Iterable[_Requirements]] = ...,
+ *,
+ like: ArrayLike = ...
+) -> ndarray: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype.py
new file mode 100644
index 0000000000000000000000000000000000000000..4249071ffe9878477d2e21b90b2889b055a7ec87
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype.py
@@ -0,0 +1,342 @@
+"""
+A place for code to be called from the implementation of np.dtype
+
+String handling is much easier to do correctly in python.
+"""
+import numpy as np
+
+
+_kind_to_stem = {
+ 'u': 'uint',
+ 'i': 'int',
+ 'c': 'complex',
+ 'f': 'float',
+ 'b': 'bool',
+ 'V': 'void',
+ 'O': 'object',
+ 'M': 'datetime',
+ 'm': 'timedelta',
+ 'S': 'bytes',
+ 'U': 'str',
+}
+
+
+def _kind_name(dtype):
+ try:
+ return _kind_to_stem[dtype.kind]
+ except KeyError as e:
+ raise RuntimeError(
+ "internal dtype error, unknown kind {!r}"
+ .format(dtype.kind)
+ ) from None
+
+
+def __str__(dtype):
+ if dtype.fields is not None:
+ return _struct_str(dtype, include_align=True)
+ elif dtype.subdtype:
+ return _subarray_str(dtype)
+ elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
+ return dtype.str
+ else:
+ return dtype.name
+
+
+def __repr__(dtype):
+ arg_str = _construction_repr(dtype, include_align=False)
+ if dtype.isalignedstruct:
+ arg_str = arg_str + ", align=True"
+ return "dtype({})".format(arg_str)
+
+
+def _unpack_field(dtype, offset, title=None):
+ """
+ Helper function to normalize the items in dtype.fields.
+
+ Call as:
+
+ dtype, offset, title = _unpack_field(*dtype.fields[name])
+ """
+ return dtype, offset, title
+
+
+def _isunsized(dtype):
+ # PyDataType_ISUNSIZED
+ return dtype.itemsize == 0
+
+
+def _construction_repr(dtype, include_align=False, short=False):
+ """
+ Creates a string repr of the dtype, excluding the 'dtype()' part
+ surrounding the object. This object may be a string, a list, or
+ a dict depending on the nature of the dtype. This
+ is the object passed as the first parameter to the dtype
+ constructor, and if no additional constructor parameters are
+ given, will reproduce the exact memory layout.
+
+ Parameters
+ ----------
+ short : bool
+ If true, this creates a shorter repr using 'kind' and 'itemsize', instead
+ of the longer type name.
+
+ include_align : bool
+ If true, this includes the 'align=True' parameter
+ inside the struct dtype construction dict when needed. Use this flag
+ if you want a proper repr string without the 'dtype()' part around it.
+
+ If false, this does not preserve the
+ 'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
+ struct arrays like the regular repr does, because the 'align'
+ flag is not part of first dtype constructor parameter. This
+ mode is intended for a full 'repr', where the 'align=True' is
+ provided as the second parameter.
+ """
+ if dtype.fields is not None:
+ return _struct_str(dtype, include_align=include_align)
+ elif dtype.subdtype:
+ return _subarray_str(dtype)
+ else:
+ return _scalar_str(dtype, short=short)
+
+
+def _scalar_str(dtype, short):
+ byteorder = _byte_order_str(dtype)
+
+ if dtype.type == np.bool_:
+ if short:
+ return "'?'"
+ else:
+ return "'bool'"
+
+ elif dtype.type == np.object_:
+ # The object reference may be different sizes on different
+ # platforms, so it should never include the itemsize here.
+ return "'O'"
+
+ elif dtype.type == np.string_:
+ if _isunsized(dtype):
+ return "'S'"
+ else:
+ return "'S%d'" % dtype.itemsize
+
+ elif dtype.type == np.unicode_:
+ if _isunsized(dtype):
+ return "'%sU'" % byteorder
+ else:
+ return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
+
+ # unlike the other types, subclasses of void are preserved - but
+ # historically the repr does not actually reveal the subclass
+ elif issubclass(dtype.type, np.void):
+ if _isunsized(dtype):
+ return "'V'"
+ else:
+ return "'V%d'" % dtype.itemsize
+
+ elif dtype.type == np.datetime64:
+ return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
+
+ elif dtype.type == np.timedelta64:
+ return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
+
+ elif np.issubdtype(dtype, np.number):
+ # Short repr with endianness, like '' """
+ # hack to obtain the native and swapped byte order characters
+ swapped = np.dtype(int).newbyteorder('S')
+ native = swapped.newbyteorder('S')
+
+ byteorder = dtype.byteorder
+ if byteorder == '=':
+ return native.byteorder
+ if byteorder == 'S':
+ # TODO: this path can never be reached
+ return swapped.byteorder
+ elif byteorder == '|':
+ return ''
+ else:
+ return byteorder
+
+
+def _datetime_metadata_str(dtype):
+ # TODO: this duplicates the C metastr_to_unicode functionality
+ unit, count = np.datetime_data(dtype)
+ if unit == 'generic':
+ return ''
+ elif count == 1:
+ return '[{}]'.format(unit)
+ else:
+ return '[{}{}]'.format(count, unit)
+
+
+def _struct_dict_str(dtype, includealignedflag):
+ # unpack the fields dictionary into ls
+ names = dtype.names
+ fld_dtypes = []
+ offsets = []
+ titles = []
+ for name in names:
+ fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
+ fld_dtypes.append(fld_dtype)
+ offsets.append(offset)
+ titles.append(title)
+
+ # Build up a string to make the dictionary
+
+ # First, the names
+ ret = "{'names':["
+ ret += ",".join(repr(name) for name in names)
+
+ # Second, the formats
+ ret += "], 'formats':["
+ ret += ",".join(
+ _construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
+
+ # Third, the offsets
+ ret += "], 'offsets':["
+ ret += ",".join("%d" % offset for offset in offsets)
+
+ # Fourth, the titles
+ if any(title is not None for title in titles):
+ ret += "], 'titles':["
+ ret += ",".join(repr(title) for title in titles)
+
+ # Fifth, the itemsize
+ ret += "], 'itemsize':%d" % dtype.itemsize
+
+ if (includealignedflag and dtype.isalignedstruct):
+ # Finally, the aligned flag
+ ret += ", 'aligned':True}"
+ else:
+ ret += "}"
+
+ return ret
+
+
+def _is_packed(dtype):
+ """
+ Checks whether the structured data type in 'dtype'
+ has a simple layout, where all the fields are in order,
+ and follow each other with no alignment padding.
+
+ When this returns true, the dtype can be reconstructed
+ from a list of the field names and dtypes with no additional
+ dtype parameters.
+
+ Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
+ """
+ total_offset = 0
+ for name in dtype.names:
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
+ if fld_offset != total_offset:
+ return False
+ total_offset += fld_dtype.itemsize
+ if total_offset != dtype.itemsize:
+ return False
+ return True
+
+
+def _struct_list_str(dtype):
+ items = []
+ for name in dtype.names:
+ fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
+
+ item = "("
+ if title is not None:
+ item += "({!r}, {!r}), ".format(title, name)
+ else:
+ item += "{!r}, ".format(name)
+ # Special case subarray handling here
+ if fld_dtype.subdtype is not None:
+ base, shape = fld_dtype.subdtype
+ item += "{}, {}".format(
+ _construction_repr(base, short=True),
+ shape
+ )
+ else:
+ item += _construction_repr(fld_dtype, short=True)
+
+ item += ")"
+ items.append(item)
+
+ return "[" + ", ".join(items) + "]"
+
+
+def _struct_str(dtype, include_align):
+ # The list str representation can't include the 'align=' flag,
+ # so if it is requested and the struct has the aligned flag set,
+ # we must use the dict str instead.
+ if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
+ sub = _struct_list_str(dtype)
+
+ else:
+ sub = _struct_dict_str(dtype, include_align)
+
+ # If the data type isn't the default, void, show it
+ if dtype.type != np.void:
+ return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
+ else:
+ return sub
+
+
+def _subarray_str(dtype):
+ base, shape = dtype.subdtype
+ return "({}, {})".format(
+ _construction_repr(base, short=True),
+ shape
+ )
+
+
+def _name_includes_bit_suffix(dtype):
+ if dtype.type == np.object_:
+ # pointer size varies by system, best to omit it
+ return False
+ elif dtype.type == np.bool_:
+ # implied
+ return False
+ elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
+ # unspecified
+ return False
+ else:
+ return True
+
+
+def _name_get(dtype):
+ # provides dtype.name.__get__, documented as returning a "bit name"
+
+ if dtype.isbuiltin == 2:
+ # user dtypes don't promise to do anything special
+ return dtype.type.__name__
+
+ if issubclass(dtype.type, np.void):
+ # historically, void subclasses preserve their name, eg `record64`
+ name = dtype.type.__name__
+ else:
+ name = _kind_name(dtype)
+
+ # append bit counts
+ if _name_includes_bit_suffix(dtype):
+ name += "{}".format(dtype.itemsize * 8)
+
+ # append metadata to datetimes
+ if dtype.type in (np.datetime64, np.timedelta64):
+ name += _datetime_metadata_str(dtype)
+
+ return name
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype_ctypes.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype_ctypes.py
new file mode 100644
index 0000000000000000000000000000000000000000..6d7cbb244215e03b4140a679b76be46f8e724ea5
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_dtype_ctypes.py
@@ -0,0 +1,117 @@
+"""
+Conversion from ctypes to dtype.
+
+In an ideal world, we could achieve this through the PEP3118 buffer protocol,
+something like::
+
+ def dtype_from_ctypes_type(t):
+ # needed to ensure that the shape of `t` is within memoryview.format
+ class DummyStruct(ctypes.Structure):
+ _fields_ = [('a', t)]
+
+ # empty to avoid memory allocation
+ ctype_0 = (DummyStruct * 0)()
+ mv = memoryview(ctype_0)
+
+ # convert the struct, and slice back out the field
+ return _dtype_from_pep3118(mv.format)['a']
+
+Unfortunately, this fails because:
+
+* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
+* PEP3118 cannot represent unions, but both numpy and ctypes can
+* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
+"""
+
+# We delay-import ctypes for distributions that do not include it.
+# While this module is not used unless the user passes in ctypes
+# members, it is eagerly imported from numpy/core/__init__.py.
+import numpy as np
+
+
+def _from_ctypes_array(t):
+ return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
+
+
+def _from_ctypes_structure(t):
+ for item in t._fields_:
+ if len(item) > 2:
+ raise TypeError(
+ "ctypes bitfields have no dtype equivalent")
+
+ if hasattr(t, "_pack_"):
+ import ctypes
+ formats = []
+ offsets = []
+ names = []
+ current_offset = 0
+ for fname, ftyp in t._fields_:
+ names.append(fname)
+ formats.append(dtype_from_ctypes_type(ftyp))
+ # Each type has a default offset, this is platform dependent for some types.
+ effective_pack = min(t._pack_, ctypes.alignment(ftyp))
+ current_offset = ((current_offset + effective_pack - 1) // effective_pack) * effective_pack
+ offsets.append(current_offset)
+ current_offset += ctypes.sizeof(ftyp)
+
+ return np.dtype(dict(
+ formats=formats,
+ offsets=offsets,
+ names=names,
+ itemsize=ctypes.sizeof(t)))
+ else:
+ fields = []
+ for fname, ftyp in t._fields_:
+ fields.append((fname, dtype_from_ctypes_type(ftyp)))
+
+ # by default, ctypes structs are aligned
+ return np.dtype(fields, align=True)
+
+
+def _from_ctypes_scalar(t):
+ """
+ Return the dtype type with endianness included if it's the case
+ """
+ if getattr(t, '__ctype_be__', None) is t:
+ return np.dtype('>' + t._type_)
+ elif getattr(t, '__ctype_le__', None) is t:
+ return np.dtype('<' + t._type_)
+ else:
+ return np.dtype(t._type_)
+
+
+def _from_ctypes_union(t):
+ import ctypes
+ formats = []
+ offsets = []
+ names = []
+ for fname, ftyp in t._fields_:
+ names.append(fname)
+ formats.append(dtype_from_ctypes_type(ftyp))
+ offsets.append(0) # Union fields are offset to 0
+
+ return np.dtype(dict(
+ formats=formats,
+ offsets=offsets,
+ names=names,
+ itemsize=ctypes.sizeof(t)))
+
+
+def dtype_from_ctypes_type(t):
+ """
+ Construct a dtype object from a ctypes type
+ """
+ import _ctypes
+ if issubclass(t, _ctypes.Array):
+ return _from_ctypes_array(t)
+ elif issubclass(t, _ctypes._Pointer):
+ raise TypeError("ctypes pointers have no dtype equivalent")
+ elif issubclass(t, _ctypes.Structure):
+ return _from_ctypes_structure(t)
+ elif issubclass(t, _ctypes.Union):
+ return _from_ctypes_union(t)
+ elif isinstance(getattr(t, '_type_', None), str):
+ return _from_ctypes_scalar(t)
+ else:
+ raise NotImplementedError(
+ "Unknown ctypes type {}".format(t.__name__))
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_exceptions.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_exceptions.py
new file mode 100644
index 0000000000000000000000000000000000000000..77aa2f6e19260fb7444f4fe95e1fd7439d0837a4
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_exceptions.py
@@ -0,0 +1,197 @@
+"""
+Various richly-typed exceptions, that also help us deal with string formatting
+in python where it's easier.
+
+By putting the formatting in `__str__`, we also avoid paying the cost for
+users who silence the exceptions.
+"""
+from numpy.core.overrides import set_module
+
+def _unpack_tuple(tup):
+ if len(tup) == 1:
+ return tup[0]
+ else:
+ return tup
+
+
+def _display_as_base(cls):
+ """
+ A decorator that makes an exception class look like its base.
+
+ We use this to hide subclasses that are implementation details - the user
+ should catch the base type, which is what the traceback will show them.
+
+ Classes decorated with this decorator are subject to removal without a
+ deprecation warning.
+ """
+ assert issubclass(cls, Exception)
+ cls.__name__ = cls.__base__.__name__
+ return cls
+
+
+class UFuncTypeError(TypeError):
+ """ Base class for all ufunc exceptions """
+ def __init__(self, ufunc):
+ self.ufunc = ufunc
+
+
+@_display_as_base
+class _UFuncBinaryResolutionError(UFuncTypeError):
+ """ Thrown when a binary resolution fails """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc)
+ self.dtypes = tuple(dtypes)
+ assert len(self.dtypes) == 2
+
+ def __str__(self):
+ return (
+ "ufunc {!r} cannot use operands with types {!r} and {!r}"
+ ).format(
+ self.ufunc.__name__, *self.dtypes
+ )
+
+
+@_display_as_base
+class _UFuncNoLoopError(UFuncTypeError):
+ """ Thrown when a ufunc loop cannot be found """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc)
+ self.dtypes = tuple(dtypes)
+
+ def __str__(self):
+ return (
+ "ufunc {!r} did not contain a loop with signature matching types "
+ "{!r} -> {!r}"
+ ).format(
+ self.ufunc.__name__,
+ _unpack_tuple(self.dtypes[:self.ufunc.nin]),
+ _unpack_tuple(self.dtypes[self.ufunc.nin:])
+ )
+
+
+@_display_as_base
+class _UFuncCastingError(UFuncTypeError):
+ def __init__(self, ufunc, casting, from_, to):
+ super().__init__(ufunc)
+ self.casting = casting
+ self.from_ = from_
+ self.to = to
+
+
+@_display_as_base
+class _UFuncInputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc input cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.in_i = i
+
+ def __str__(self):
+ # only show the number if more than one input exists
+ i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
+ return (
+ "Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
+ "rule {!r}"
+ ).format(
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
+ )
+
+
+@_display_as_base
+class _UFuncOutputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc output cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.out_i = i
+
+ def __str__(self):
+ # only show the number if more than one output exists
+ i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
+ return (
+ "Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
+ "rule {!r}"
+ ).format(
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
+ )
+
+
+# Exception used in shares_memory()
+@set_module('numpy')
+class TooHardError(RuntimeError):
+ pass
+
+
+@set_module('numpy')
+class AxisError(ValueError, IndexError):
+ """ Axis supplied was invalid. """
+ def __init__(self, axis, ndim=None, msg_prefix=None):
+ # single-argument form just delegates to base class
+ if ndim is None and msg_prefix is None:
+ msg = axis
+
+ # do the string formatting here, to save work in the C code
+ else:
+ msg = ("axis {} is out of bounds for array of dimension {}"
+ .format(axis, ndim))
+ if msg_prefix is not None:
+ msg = "{}: {}".format(msg_prefix, msg)
+
+ super().__init__(msg)
+
+
+@_display_as_base
+class _ArrayMemoryError(MemoryError):
+ """ Thrown when an array cannot be allocated"""
+ def __init__(self, shape, dtype):
+ self.shape = shape
+ self.dtype = dtype
+
+ @property
+ def _total_size(self):
+ num_bytes = self.dtype.itemsize
+ for dim in self.shape:
+ num_bytes *= dim
+ return num_bytes
+
+ @staticmethod
+ def _size_to_string(num_bytes):
+ """ Convert a number of bytes into a binary size string """
+
+ # https://en.wikipedia.org/wiki/Binary_prefix
+ LOG2_STEP = 10
+ STEP = 1024
+ units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
+
+ unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
+ unit_val = 1 << (unit_i * LOG2_STEP)
+ n_units = num_bytes / unit_val
+ del unit_val
+
+ # ensure we pick a unit that is correct after rounding
+ if round(n_units) == STEP:
+ unit_i += 1
+ n_units /= STEP
+
+ # deal with sizes so large that we don't have units for them
+ if unit_i >= len(units):
+ new_unit_i = len(units) - 1
+ n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
+ unit_i = new_unit_i
+
+ unit_name = units[unit_i]
+ # format with a sensible number of digits
+ if unit_i == 0:
+ # no decimal point on bytes
+ return '{:.0f} {}'.format(n_units, unit_name)
+ elif round(n_units) < 1000:
+ # 3 significant figures, if none are dropped to the left of the .
+ return '{:#.3g} {}'.format(n_units, unit_name)
+ else:
+ # just give all the digits otherwise
+ return '{:#.0f} {}'.format(n_units, unit_name)
+
+ def __str__(self):
+ size_str = self._size_to_string(self._total_size)
+ return (
+ "Unable to allocate {} for an array with shape {} and data type {}"
+ .format(size_str, self.shape, self.dtype)
+ )
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b0c464674b6ec5c50ad60d724613c666b881721
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.py
@@ -0,0 +1,910 @@
+"""
+A place for internal code
+
+Some things are more easily handled Python.
+
+"""
+import ast
+import re
+import sys
+import platform
+import warnings
+
+from .multiarray import dtype, array, ndarray
+try:
+ import ctypes
+except ImportError:
+ ctypes = None
+
+IS_PYPY = platform.python_implementation() == 'PyPy'
+
+if sys.byteorder == 'little':
+ _nbo = '<'
+else:
+ _nbo = '>'
+
+def _makenames_list(adict, align):
+ allfields = []
+
+ for fname, obj in adict.items():
+ n = len(obj)
+ if not isinstance(obj, tuple) or n not in (2, 3):
+ raise ValueError("entry not a 2- or 3- tuple")
+ if n > 2 and obj[2] == fname:
+ continue
+ num = int(obj[1])
+ if num < 0:
+ raise ValueError("invalid offset.")
+ format = dtype(obj[0], align=align)
+ if n > 2:
+ title = obj[2]
+ else:
+ title = None
+ allfields.append((fname, format, num, title))
+ # sort by offsets
+ allfields.sort(key=lambda x: x[2])
+ names = [x[0] for x in allfields]
+ formats = [x[1] for x in allfields]
+ offsets = [x[2] for x in allfields]
+ titles = [x[3] for x in allfields]
+
+ return names, formats, offsets, titles
+
+# Called in PyArray_DescrConverter function when
+# a dictionary without "names" and "formats"
+# fields is used as a data-type descriptor.
+def _usefields(adict, align):
+ try:
+ names = adict[-1]
+ except KeyError:
+ names = None
+ if names is None:
+ names, formats, offsets, titles = _makenames_list(adict, align)
+ else:
+ formats = []
+ offsets = []
+ titles = []
+ for name in names:
+ res = adict[name]
+ formats.append(res[0])
+ offsets.append(res[1])
+ if len(res) > 2:
+ titles.append(res[2])
+ else:
+ titles.append(None)
+
+ return dtype({"names": names,
+ "formats": formats,
+ "offsets": offsets,
+ "titles": titles}, align)
+
+
+# construct an array_protocol descriptor list
+# from the fields attribute of a descriptor
+# This calls itself recursively but should eventually hit
+# a descriptor that has no fields and then return
+# a simple typestring
+
+def _array_descr(descriptor):
+ fields = descriptor.fields
+ if fields is None:
+ subdtype = descriptor.subdtype
+ if subdtype is None:
+ if descriptor.metadata is None:
+ return descriptor.str
+ else:
+ new = descriptor.metadata.copy()
+ if new:
+ return (descriptor.str, new)
+ else:
+ return descriptor.str
+ else:
+ return (_array_descr(subdtype[0]), subdtype[1])
+
+ names = descriptor.names
+ ordered_fields = [fields[x] + (x,) for x in names]
+ result = []
+ offset = 0
+ for field in ordered_fields:
+ if field[1] > offset:
+ num = field[1] - offset
+ result.append(('', f'|V{num}'))
+ offset += num
+ elif field[1] < offset:
+ raise ValueError(
+ "dtype.descr is not defined for types with overlapping or "
+ "out-of-order fields")
+ if len(field) > 3:
+ name = (field[2], field[3])
+ else:
+ name = field[2]
+ if field[0].subdtype:
+ tup = (name, _array_descr(field[0].subdtype[0]),
+ field[0].subdtype[1])
+ else:
+ tup = (name, _array_descr(field[0]))
+ offset += field[0].itemsize
+ result.append(tup)
+
+ if descriptor.itemsize > offset:
+ num = descriptor.itemsize - offset
+ result.append(('', f'|V{num}'))
+
+ return result
+
+# Build a new array from the information in a pickle.
+# Note that the name numpy.core._internal._reconstruct is embedded in
+# pickles of ndarrays made with NumPy before release 1.0
+# so don't remove the name here, or you'll
+# break backward compatibility.
+def _reconstruct(subtype, shape, dtype):
+ return ndarray.__new__(subtype, shape, dtype)
+
+
+# format_re was originally from numarray by J. Todd Miller
+
+format_re = re.compile(r'(?P[<>|=]?)'
+ r'(?P *[(]?[ ,0-9]*[)]? *)'
+ r'(?P[<>|=]?)'
+ r'(?P[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
+sep_re = re.compile(r'\s*,\s*')
+space_re = re.compile(r'\s+$')
+
+# astr is a string (perhaps comma separated)
+
+_convorder = {'=': _nbo}
+
+def _commastring(astr):
+ startindex = 0
+ result = []
+ while startindex < len(astr):
+ mo = format_re.match(astr, pos=startindex)
+ try:
+ (order1, repeats, order2, dtype) = mo.groups()
+ except (TypeError, AttributeError):
+ raise ValueError(
+ f'format number {len(result)+1} of "{astr}" is not recognized'
+ ) from None
+ startindex = mo.end()
+ # Separator or ending padding
+ if startindex < len(astr):
+ if space_re.match(astr, pos=startindex):
+ startindex = len(astr)
+ else:
+ mo = sep_re.match(astr, pos=startindex)
+ if not mo:
+ raise ValueError(
+ 'format number %d of "%s" is not recognized' %
+ (len(result)+1, astr))
+ startindex = mo.end()
+
+ if order2 == '':
+ order = order1
+ elif order1 == '':
+ order = order2
+ else:
+ order1 = _convorder.get(order1, order1)
+ order2 = _convorder.get(order2, order2)
+ if (order1 != order2):
+ raise ValueError(
+ 'inconsistent byte-order specification %s and %s' %
+ (order1, order2))
+ order = order1
+
+ if order in ('|', '=', _nbo):
+ order = ''
+ dtype = order + dtype
+ if (repeats == ''):
+ newitem = dtype
+ else:
+ newitem = (dtype, ast.literal_eval(repeats))
+ result.append(newitem)
+
+ return result
+
+class dummy_ctype:
+ def __init__(self, cls):
+ self._cls = cls
+ def __mul__(self, other):
+ return self
+ def __call__(self, *other):
+ return self._cls(other)
+ def __eq__(self, other):
+ return self._cls == other._cls
+ def __ne__(self, other):
+ return self._cls != other._cls
+
+def _getintp_ctype():
+ val = _getintp_ctype.cache
+ if val is not None:
+ return val
+ if ctypes is None:
+ import numpy as np
+ val = dummy_ctype(np.intp)
+ else:
+ char = dtype('p').char
+ if char == 'i':
+ val = ctypes.c_int
+ elif char == 'l':
+ val = ctypes.c_long
+ elif char == 'q':
+ val = ctypes.c_longlong
+ else:
+ val = ctypes.c_long
+ _getintp_ctype.cache = val
+ return val
+_getintp_ctype.cache = None
+
+# Used for .ctypes attribute of ndarray
+
+class _missing_ctypes:
+ def cast(self, num, obj):
+ return num.value
+
+ class c_void_p:
+ def __init__(self, ptr):
+ self.value = ptr
+
+
+class _ctypes:
+ def __init__(self, array, ptr=None):
+ self._arr = array
+
+ if ctypes:
+ self._ctypes = ctypes
+ self._data = self._ctypes.c_void_p(ptr)
+ else:
+ # fake a pointer-like object that holds onto the reference
+ self._ctypes = _missing_ctypes()
+ self._data = self._ctypes.c_void_p(ptr)
+ self._data._objects = array
+
+ if self._arr.ndim == 0:
+ self._zerod = True
+ else:
+ self._zerod = False
+
+ def data_as(self, obj):
+ """
+ Return the data pointer cast to a particular c-types object.
+ For example, calling ``self._as_parameter_`` is equivalent to
+ ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
+ pointer to a ctypes array of floating-point data:
+ ``self.data_as(ctypes.POINTER(ctypes.c_double))``.
+
+ The returned pointer will keep a reference to the array.
+ """
+ # _ctypes.cast function causes a circular reference of self._data in
+ # self._data._objects. Attributes of self._data cannot be released
+ # until gc.collect is called. Make a copy of the pointer first then let
+ # it hold the array reference. This is a workaround to circumvent the
+ # CPython bug https://bugs.python.org/issue12836
+ ptr = self._ctypes.cast(self._data, obj)
+ ptr._arr = self._arr
+ return ptr
+
+ def shape_as(self, obj):
+ """
+ Return the shape tuple as an array of some other c-types
+ type. For example: ``self.shape_as(ctypes.c_short)``.
+ """
+ if self._zerod:
+ return None
+ return (obj*self._arr.ndim)(*self._arr.shape)
+
+ def strides_as(self, obj):
+ """
+ Return the strides tuple as an array of some other
+ c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
+ """
+ if self._zerod:
+ return None
+ return (obj*self._arr.ndim)(*self._arr.strides)
+
+ @property
+ def data(self):
+ """
+ A pointer to the memory area of the array as a Python integer.
+ This memory area may contain data that is not aligned, or not in correct
+ byte-order. The memory area may not even be writeable. The array
+ flags and data-type of this array should be respected when passing this
+ attribute to arbitrary C-code to avoid trouble that can include Python
+ crashing. User Beware! The value of this attribute is exactly the same
+ as ``self._array_interface_['data'][0]``.
+
+ Note that unlike ``data_as``, a reference will not be kept to the array:
+ code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
+ pointer to a deallocated array, and should be spelt
+ ``(a + b).ctypes.data_as(ctypes.c_void_p)``
+ """
+ return self._data.value
+
+ @property
+ def shape(self):
+ """
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
+ the basetype is the C-integer corresponding to ``dtype('p')`` on this
+ platform. This base-type could be `ctypes.c_int`, `ctypes.c_long`, or
+ `ctypes.c_longlong` depending on the platform.
+ The c_intp type is defined accordingly in `numpy.ctypeslib`.
+ The ctypes array contains the shape of the underlying array.
+ """
+ return self.shape_as(_getintp_ctype())
+
+ @property
+ def strides(self):
+ """
+ (c_intp*self.ndim): A ctypes array of length self.ndim where
+ the basetype is the same as for the shape attribute. This ctypes array
+ contains the strides information from the underlying array. This strides
+ information is important for showing how many bytes must be jumped to
+ get to the next element in the array.
+ """
+ return self.strides_as(_getintp_ctype())
+
+ @property
+ def _as_parameter_(self):
+ """
+ Overrides the ctypes semi-magic method
+
+ Enables `c_func(some_array.ctypes)`
+ """
+ return self.data_as(ctypes.c_void_p)
+
+ # Numpy 1.21.0, 2021-05-18
+
+ def get_data(self):
+ """Deprecated getter for the `_ctypes.data` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_data" is deprecated. Use "data" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.data
+
+ def get_shape(self):
+ """Deprecated getter for the `_ctypes.shape` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_shape" is deprecated. Use "shape" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.shape
+
+ def get_strides(self):
+ """Deprecated getter for the `_ctypes.strides` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn('"get_strides" is deprecated. Use "strides" instead',
+ DeprecationWarning, stacklevel=2)
+ return self.strides
+
+ def get_as_parameter(self):
+ """Deprecated getter for the `_ctypes._as_parameter_` property.
+
+ .. deprecated:: 1.21
+ """
+ warnings.warn(
+ '"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
+ DeprecationWarning, stacklevel=2,
+ )
+ return self._as_parameter_
+
+
+def _newnames(datatype, order):
+ """
+ Given a datatype and an order object, return a new names tuple, with the
+ order indicated
+ """
+ oldnames = datatype.names
+ nameslist = list(oldnames)
+ if isinstance(order, str):
+ order = [order]
+ seen = set()
+ if isinstance(order, (list, tuple)):
+ for name in order:
+ try:
+ nameslist.remove(name)
+ except ValueError:
+ if name in seen:
+ raise ValueError(f"duplicate field name: {name}") from None
+ else:
+ raise ValueError(f"unknown field name: {name}") from None
+ seen.add(name)
+ return tuple(list(order) + nameslist)
+ raise ValueError(f"unsupported order value: {order}")
+
+def _copy_fields(ary):
+ """Return copy of structured array with padding between fields removed.
+
+ Parameters
+ ----------
+ ary : ndarray
+ Structured array from which to remove padding bytes
+
+ Returns
+ -------
+ ary_copy : ndarray
+ Copy of ary with padding bytes removed
+ """
+ dt = ary.dtype
+ copy_dtype = {'names': dt.names,
+ 'formats': [dt.fields[name][0] for name in dt.names]}
+ return array(ary, dtype=copy_dtype, copy=True)
+
+def _getfield_is_safe(oldtype, newtype, offset):
+ """ Checks safety of getfield for object arrays.
+
+ As in _view_is_safe, we need to check that memory containing objects is not
+ reinterpreted as a non-object datatype and vice versa.
+
+ Parameters
+ ----------
+ oldtype : data-type
+ Data type of the original ndarray.
+ newtype : data-type
+ Data type of the field being accessed by ndarray.getfield
+ offset : int
+ Offset of the field being accessed by ndarray.getfield
+
+ Raises
+ ------
+ TypeError
+ If the field access is invalid
+
+ """
+ if newtype.hasobject or oldtype.hasobject:
+ if offset == 0 and newtype == oldtype:
+ return
+ if oldtype.names is not None:
+ for name in oldtype.names:
+ if (oldtype.fields[name][1] == offset and
+ oldtype.fields[name][0] == newtype):
+ return
+ raise TypeError("Cannot get/set field of an object array")
+ return
+
+def _view_is_safe(oldtype, newtype):
+ """ Checks safety of a view involving object arrays, for example when
+ doing::
+
+ np.zeros(10, dtype=oldtype).view(newtype)
+
+ Parameters
+ ----------
+ oldtype : data-type
+ Data type of original ndarray
+ newtype : data-type
+ Data type of the view
+
+ Raises
+ ------
+ TypeError
+ If the new type is incompatible with the old type.
+
+ """
+
+ # if the types are equivalent, there is no problem.
+ # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
+ if oldtype == newtype:
+ return
+
+ if newtype.hasobject or oldtype.hasobject:
+ raise TypeError("Cannot change data-type for object array.")
+ return
+
+# Given a string containing a PEP 3118 format specifier,
+# construct a NumPy dtype
+
+_pep3118_native_map = {
+ '?': '?',
+ 'c': 'S1',
+ 'b': 'b',
+ 'B': 'B',
+ 'h': 'h',
+ 'H': 'H',
+ 'i': 'i',
+ 'I': 'I',
+ 'l': 'l',
+ 'L': 'L',
+ 'q': 'q',
+ 'Q': 'Q',
+ 'e': 'e',
+ 'f': 'f',
+ 'd': 'd',
+ 'g': 'g',
+ 'Zf': 'F',
+ 'Zd': 'D',
+ 'Zg': 'G',
+ 's': 'S',
+ 'w': 'U',
+ 'O': 'O',
+ 'x': 'V', # padding
+}
+_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
+
+_pep3118_standard_map = {
+ '?': '?',
+ 'c': 'S1',
+ 'b': 'b',
+ 'B': 'B',
+ 'h': 'i2',
+ 'H': 'u2',
+ 'i': 'i4',
+ 'I': 'u4',
+ 'l': 'i4',
+ 'L': 'u4',
+ 'q': 'i8',
+ 'Q': 'u8',
+ 'e': 'f2',
+ 'f': 'f',
+ 'd': 'd',
+ 'Zf': 'F',
+ 'Zd': 'D',
+ 's': 'S',
+ 'w': 'U',
+ 'O': 'O',
+ 'x': 'V', # padding
+}
+_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
+
+_pep3118_unsupported_map = {
+ 'u': 'UCS-2 strings',
+ '&': 'pointers',
+ 't': 'bitfields',
+ 'X': 'function pointers',
+}
+
+class _Stream:
+ def __init__(self, s):
+ self.s = s
+ self.byteorder = '@'
+
+ def advance(self, n):
+ res = self.s[:n]
+ self.s = self.s[n:]
+ return res
+
+ def consume(self, c):
+ if self.s[:len(c)] == c:
+ self.advance(len(c))
+ return True
+ return False
+
+ def consume_until(self, c):
+ if callable(c):
+ i = 0
+ while i < len(self.s) and not c(self.s[i]):
+ i = i + 1
+ return self.advance(i)
+ else:
+ i = self.s.index(c)
+ res = self.advance(i)
+ self.advance(len(c))
+ return res
+
+ @property
+ def next(self):
+ return self.s[0]
+
+ def __bool__(self):
+ return bool(self.s)
+
+
+def _dtype_from_pep3118(spec):
+ stream = _Stream(spec)
+ dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
+ return dtype
+
+def __dtype_from_pep3118(stream, is_subdtype):
+ field_spec = dict(
+ names=[],
+ formats=[],
+ offsets=[],
+ itemsize=0
+ )
+ offset = 0
+ common_alignment = 1
+ is_padding = False
+
+ # Parse spec
+ while stream:
+ value = None
+
+ # End of structure, bail out to upper level
+ if stream.consume('}'):
+ break
+
+ # Sub-arrays (1)
+ shape = None
+ if stream.consume('('):
+ shape = stream.consume_until(')')
+ shape = tuple(map(int, shape.split(',')))
+
+ # Byte order
+ if stream.next in ('@', '=', '<', '>', '^', '!'):
+ byteorder = stream.advance(1)
+ if byteorder == '!':
+ byteorder = '>'
+ stream.byteorder = byteorder
+
+ # Byte order characters also control native vs. standard type sizes
+ if stream.byteorder in ('@', '^'):
+ type_map = _pep3118_native_map
+ type_map_chars = _pep3118_native_typechars
+ else:
+ type_map = _pep3118_standard_map
+ type_map_chars = _pep3118_standard_typechars
+
+ # Item sizes
+ itemsize_str = stream.consume_until(lambda c: not c.isdigit())
+ if itemsize_str:
+ itemsize = int(itemsize_str)
+ else:
+ itemsize = 1
+
+ # Data types
+ is_padding = False
+
+ if stream.consume('T{'):
+ value, align = __dtype_from_pep3118(
+ stream, is_subdtype=True)
+ elif stream.next in type_map_chars:
+ if stream.next == 'Z':
+ typechar = stream.advance(2)
+ else:
+ typechar = stream.advance(1)
+
+ is_padding = (typechar == 'x')
+ dtypechar = type_map[typechar]
+ if dtypechar in 'USV':
+ dtypechar += '%d' % itemsize
+ itemsize = 1
+ numpy_byteorder = {'@': '=', '^': '='}.get(
+ stream.byteorder, stream.byteorder)
+ value = dtype(numpy_byteorder + dtypechar)
+ align = value.alignment
+ elif stream.next in _pep3118_unsupported_map:
+ desc = _pep3118_unsupported_map[stream.next]
+ raise NotImplementedError(
+ "Unrepresentable PEP 3118 data type {!r} ({})"
+ .format(stream.next, desc))
+ else:
+ raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
+
+ #
+ # Native alignment may require padding
+ #
+ # Here we assume that the presence of a '@' character implicitly implies
+ # that the start of the array is *already* aligned.
+ #
+ extra_offset = 0
+ if stream.byteorder == '@':
+ start_padding = (-offset) % align
+ intra_padding = (-value.itemsize) % align
+
+ offset += start_padding
+
+ if intra_padding != 0:
+ if itemsize > 1 or (shape is not None and _prod(shape) > 1):
+ # Inject internal padding to the end of the sub-item
+ value = _add_trailing_padding(value, intra_padding)
+ else:
+ # We can postpone the injection of internal padding,
+ # as the item appears at most once
+ extra_offset += intra_padding
+
+ # Update common alignment
+ common_alignment = _lcm(align, common_alignment)
+
+ # Convert itemsize to sub-array
+ if itemsize != 1:
+ value = dtype((value, (itemsize,)))
+
+ # Sub-arrays (2)
+ if shape is not None:
+ value = dtype((value, shape))
+
+ # Field name
+ if stream.consume(':'):
+ name = stream.consume_until(':')
+ else:
+ name = None
+
+ if not (is_padding and name is None):
+ if name is not None and name in field_spec['names']:
+ raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format")
+ field_spec['names'].append(name)
+ field_spec['formats'].append(value)
+ field_spec['offsets'].append(offset)
+
+ offset += value.itemsize
+ offset += extra_offset
+
+ field_spec['itemsize'] = offset
+
+ # extra final padding for aligned types
+ if stream.byteorder == '@':
+ field_spec['itemsize'] += (-offset) % common_alignment
+
+ # Check if this was a simple 1-item type, and unwrap it
+ if (field_spec['names'] == [None]
+ and field_spec['offsets'][0] == 0
+ and field_spec['itemsize'] == field_spec['formats'][0].itemsize
+ and not is_subdtype):
+ ret = field_spec['formats'][0]
+ else:
+ _fix_names(field_spec)
+ ret = dtype(field_spec)
+
+ # Finished
+ return ret, common_alignment
+
+def _fix_names(field_spec):
+ """ Replace names which are None with the next unused f%d name """
+ names = field_spec['names']
+ for i, name in enumerate(names):
+ if name is not None:
+ continue
+
+ j = 0
+ while True:
+ name = f'f{j}'
+ if name not in names:
+ break
+ j = j + 1
+ names[i] = name
+
+def _add_trailing_padding(value, padding):
+ """Inject the specified number of padding bytes at the end of a dtype"""
+ if value.fields is None:
+ field_spec = dict(
+ names=['f0'],
+ formats=[value],
+ offsets=[0],
+ itemsize=value.itemsize
+ )
+ else:
+ fields = value.fields
+ names = value.names
+ field_spec = dict(
+ names=names,
+ formats=[fields[name][0] for name in names],
+ offsets=[fields[name][1] for name in names],
+ itemsize=value.itemsize
+ )
+
+ field_spec['itemsize'] += padding
+ return dtype(field_spec)
+
+def _prod(a):
+ p = 1
+ for x in a:
+ p *= x
+ return p
+
+def _gcd(a, b):
+ """Calculate the greatest common divisor of a and b"""
+ while b:
+ a, b = b, a % b
+ return a
+
+def _lcm(a, b):
+ return a // _gcd(a, b) * b
+
+def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
+ """ Format the error message for when __array_ufunc__ gives up. """
+ args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
+ ['{}={!r}'.format(k, v)
+ for k, v in kwargs.items()])
+ args = inputs + kwargs.get('out', ())
+ types_string = ', '.join(repr(type(arg).__name__) for arg in args)
+ return ('operand type(s) all returned NotImplemented from '
+ '__array_ufunc__({!r}, {!r}, {}): {}'
+ .format(ufunc, method, args_string, types_string))
+
+
+def array_function_errmsg_formatter(public_api, types):
+ """ Format the error message for when __array_ufunc__ gives up. """
+ func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
+ return ("no implementation found for '{}' on types that implement "
+ '__array_function__: {}'.format(func_name, list(types)))
+
+
+def _ufunc_doc_signature_formatter(ufunc):
+ """
+ Builds a signature string which resembles PEP 457
+
+ This is used to construct the first line of the docstring
+ """
+
+ # input arguments are simple
+ if ufunc.nin == 1:
+ in_args = 'x'
+ else:
+ in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
+
+ # output arguments are both keyword or positional
+ if ufunc.nout == 0:
+ out_args = ', /, out=()'
+ elif ufunc.nout == 1:
+ out_args = ', /, out=None'
+ else:
+ out_args = '[, {positional}], / [, out={default}]'.format(
+ positional=', '.join(
+ 'out{}'.format(i+1) for i in range(ufunc.nout)),
+ default=repr((None,)*ufunc.nout)
+ )
+
+ # keyword only args depend on whether this is a gufunc
+ kwargs = (
+ ", casting='same_kind'"
+ ", order='K'"
+ ", dtype=None"
+ ", subok=True"
+ )
+
+ # NOTE: gufuncs may or may not support the `axis` parameter
+ if ufunc.signature is None:
+ kwargs = f", where=True{kwargs}[, signature, extobj]"
+ else:
+ kwargs += "[, signature, extobj, axes, axis]"
+
+ # join all the parts together
+ return '{name}({in_args}{out_args}, *{kwargs})'.format(
+ name=ufunc.__name__,
+ in_args=in_args,
+ out_args=out_args,
+ kwargs=kwargs
+ )
+
+
+def npy_ctypes_check(cls):
+ # determine if a class comes from ctypes, in order to work around
+ # a bug in the buffer protocol for those objects, bpo-10746
+ try:
+ # ctypes class are new-style, so have an __mro__. This probably fails
+ # for ctypes classes with multiple inheritance.
+ if IS_PYPY:
+ # (..., _ctypes.basics._CData, Bufferable, object)
+ ctype_base = cls.__mro__[-3]
+ else:
+ # # (..., _ctypes._CData, object)
+ ctype_base = cls.__mro__[-2]
+ # right now, they're part of the _ctypes module
+ return '_ctypes' in ctype_base.__module__
+ except Exception:
+ return False
+
+
+class recursive:
+ '''
+ A decorator class for recursive nested functions.
+ Naive recursive nested functions hold a reference to themselves:
+
+ def outer(*args):
+ def stringify_leaky(arg0, *arg1):
+ if len(arg1) > 0:
+ return stringify_leaky(*arg1) # <- HERE
+ return str(arg0)
+ stringify_leaky(*args)
+
+ This design pattern creates a reference cycle that is difficult for a
+ garbage collector to resolve. The decorator class prevents the
+ cycle by passing the nested function in as an argument `self`:
+
+ def outer(*args):
+ @recursive
+ def stringify(self, arg0, *arg1):
+ if len(arg1) > 0:
+ return self(*arg1)
+ return str(arg0)
+ stringify(*args)
+
+ '''
+ def __init__(self, func):
+ self.func = func
+ def __call__(self, *args, **kwargs):
+ return self.func(self, *args, **kwargs)
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..1ef1c9fa156411e836d6c0030feaa040267cecad
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_internal.pyi
@@ -0,0 +1,35 @@
+from typing import Any, TypeVar, Type, overload, Optional, Generic
+import ctypes as ct
+
+from numpy import ndarray
+
+_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
+_CT = TypeVar("_CT", bound=ct._CData)
+_PT = TypeVar("_PT", bound=Optional[int])
+
+# TODO: Let the likes of `shape_as` and `strides_as` return `None`
+# for 0D arrays once we've got shape-support
+
+class _ctypes(Generic[_PT]):
+ @overload
+ def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
+ @overload
+ def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
+
+ # NOTE: In practice `shape` and `strides` return one of the concrete
+ # platform dependant array-types (`c_int`, `c_long` or `c_longlong`)
+ # corresponding to C's `int_ptr_t`, as determined by `_getintp_ctype`
+ # TODO: Hook this in to the mypy plugin so that a more appropiate
+ # `ctypes._SimpleCData[int]` sub-type can be returned
+ @property
+ def data(self) -> _PT: ...
+ @property
+ def shape(self) -> ct.Array[ct.c_int64]: ...
+ @property
+ def strides(self) -> ct.Array[ct.c_int64]: ...
+ @property
+ def _as_parameter_(self) -> ct.c_void_p: ...
+
+ def data_as(self, obj: Type[_CastT]) -> _CastT: ...
+ def shape_as(self, obj: Type[_CT]) -> ct.Array[_CT]: ...
+ def strides_as(self, obj: Type[_CT]) -> ct.Array[_CT]: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_methods.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_methods.py
new file mode 100644
index 0000000000000000000000000000000000000000..e475b94dfb4e3d708b1b09cb231a9061f1607bb8
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_methods.py
@@ -0,0 +1,290 @@
+"""
+Array methods which are called by both the C-code for the method
+and the Python code for the NumPy-namespace function
+
+"""
+import warnings
+from contextlib import nullcontext
+
+from numpy.core import multiarray as mu
+from numpy.core import umath as um
+from numpy.core.multiarray import asanyarray
+from numpy.core import numerictypes as nt
+from numpy.core import _exceptions
+from numpy._globals import _NoValue
+from numpy.compat import pickle, os_fspath
+
+# save those O(100) nanoseconds!
+umr_maximum = um.maximum.reduce
+umr_minimum = um.minimum.reduce
+umr_sum = um.add.reduce
+umr_prod = um.multiply.reduce
+umr_any = um.logical_or.reduce
+umr_all = um.logical_and.reduce
+
+# Complex types to -> (2,)float view for fast-path computation in _var()
+_complex_to_float = {
+ nt.dtype(nt.csingle) : nt.dtype(nt.single),
+ nt.dtype(nt.cdouble) : nt.dtype(nt.double),
+}
+# Special case for windows: ensure double takes precedence
+if nt.dtype(nt.longdouble) != nt.dtype(nt.double):
+ _complex_to_float.update({
+ nt.dtype(nt.clongdouble) : nt.dtype(nt.longdouble),
+ })
+
+# avoid keyword arguments to speed up parsing, saves about 15%-20% for very
+# small reductions
+def _amax(a, axis=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_maximum(a, axis, None, out, keepdims, initial, where)
+
+def _amin(a, axis=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_minimum(a, axis, None, out, keepdims, initial, where)
+
+def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_sum(a, axis, dtype, out, keepdims, initial, where)
+
+def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
+ initial=_NoValue, where=True):
+ return umr_prod(a, axis, dtype, out, keepdims, initial, where)
+
+def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
+ if where is True:
+ return umr_any(a, axis, dtype, out, keepdims)
+ return umr_any(a, axis, dtype, out, keepdims, where=where)
+
+def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ # Parsing keyword arguments is currently fairly slow, so avoid it for now
+ if where is True:
+ return umr_all(a, axis, dtype, out, keepdims)
+ return umr_all(a, axis, dtype, out, keepdims, where=where)
+
+def _count_reduce_items(arr, axis, keepdims=False, where=True):
+ # fast-path for the default case
+ if where is True:
+ # no boolean mask given, calculate items according to axis
+ if axis is None:
+ axis = tuple(range(arr.ndim))
+ elif not isinstance(axis, tuple):
+ axis = (axis,)
+ items = nt.intp(1)
+ for ax in axis:
+ items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)]
+ else:
+ # TODO: Optimize case when `where` is broadcast along a non-reduction
+ # axis and full sum is more excessive than needed.
+
+ # guarded to protect circular imports
+ from numpy.lib.stride_tricks import broadcast_to
+ # count True values in (potentially broadcasted) boolean mask
+ items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None,
+ keepdims)
+ return items
+
+# Numpy 1.17.0, 2019-02-24
+# Various clip behavior deprecations, marked with _clip_dep as a prefix.
+
+def _clip_dep_is_scalar_nan(a):
+ # guarded to protect circular imports
+ from numpy.core.fromnumeric import ndim
+ if ndim(a) != 0:
+ return False
+ try:
+ return um.isnan(a)
+ except TypeError:
+ return False
+
+def _clip_dep_is_byte_swapped(a):
+ if isinstance(a, mu.ndarray):
+ return not a.dtype.isnative
+ return False
+
+def _clip_dep_invoke_with_casting(ufunc, *args, out=None, casting=None, **kwargs):
+ # normal path
+ if casting is not None:
+ return ufunc(*args, out=out, casting=casting, **kwargs)
+
+ # try to deal with broken casting rules
+ try:
+ return ufunc(*args, out=out, **kwargs)
+ except _exceptions._UFuncOutputCastingError as e:
+ # Numpy 1.17.0, 2019-02-24
+ warnings.warn(
+ "Converting the output of clip from {!r} to {!r} is deprecated. "
+ "Pass `casting=\"unsafe\"` explicitly to silence this warning, or "
+ "correct the type of the variables.".format(e.from_, e.to),
+ DeprecationWarning,
+ stacklevel=2
+ )
+ return ufunc(*args, out=out, casting="unsafe", **kwargs)
+
+def _clip(a, min=None, max=None, out=None, *, casting=None, **kwargs):
+ if min is None and max is None:
+ raise ValueError("One of max or min must be given")
+
+ # Numpy 1.17.0, 2019-02-24
+ # This deprecation probably incurs a substantial slowdown for small arrays,
+ # it will be good to get rid of it.
+ if not _clip_dep_is_byte_swapped(a) and not _clip_dep_is_byte_swapped(out):
+ using_deprecated_nan = False
+ if _clip_dep_is_scalar_nan(min):
+ min = -float('inf')
+ using_deprecated_nan = True
+ if _clip_dep_is_scalar_nan(max):
+ max = float('inf')
+ using_deprecated_nan = True
+ if using_deprecated_nan:
+ warnings.warn(
+ "Passing `np.nan` to mean no clipping in np.clip has always "
+ "been unreliable, and is now deprecated. "
+ "In future, this will always return nan, like it already does "
+ "when min or max are arrays that contain nan. "
+ "To skip a bound, pass either None or an np.inf of an "
+ "appropriate sign.",
+ DeprecationWarning,
+ stacklevel=2
+ )
+
+ if min is None:
+ return _clip_dep_invoke_with_casting(
+ um.minimum, a, max, out=out, casting=casting, **kwargs)
+ elif max is None:
+ return _clip_dep_invoke_with_casting(
+ um.maximum, a, min, out=out, casting=casting, **kwargs)
+ else:
+ return _clip_dep_invoke_with_casting(
+ um.clip, a, min, max, out=out, casting=casting, **kwargs)
+
+def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True):
+ arr = asanyarray(a)
+
+ is_float16_result = False
+
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
+ if rcount == 0 if where is True else umr_any(rcount == 0, axis=None):
+ warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
+
+ # Cast bool, unsigned int, and int to float64 by default
+ if dtype is None:
+ if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
+ dtype = mu.dtype('f8')
+ elif issubclass(arr.dtype.type, nt.float16):
+ dtype = mu.dtype('f4')
+ is_float16_result = True
+
+ ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
+ if isinstance(ret, mu.ndarray):
+ ret = um.true_divide(
+ ret, rcount, out=ret, casting='unsafe', subok=False)
+ if is_float16_result and out is None:
+ ret = arr.dtype.type(ret)
+ elif hasattr(ret, 'dtype'):
+ if is_float16_result:
+ ret = arr.dtype.type(ret / rcount)
+ else:
+ ret = ret.dtype.type(ret / rcount)
+ else:
+ ret = ret / rcount
+
+ return ret
+
+def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
+ where=True):
+ arr = asanyarray(a)
+
+ rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where)
+ # Make this warning show up on top.
+ if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None):
+ warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
+ stacklevel=2)
+
+ # Cast bool, unsigned int, and int to float64 by default
+ if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
+ dtype = mu.dtype('f8')
+
+ # Compute the mean.
+ # Note that if dtype is not of inexact type then arraymean will
+ # not be either.
+ arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where)
+ # The shape of rcount has to match arrmean to not change the shape of out
+ # in broadcasting. Otherwise, it cannot be stored back to arrmean.
+ if rcount.ndim == 0:
+ # fast-path for default case when where is True
+ div = rcount
+ else:
+ # matching rcount to arrmean when where is specified as array
+ div = rcount.reshape(arrmean.shape)
+ if isinstance(arrmean, mu.ndarray):
+ arrmean = um.true_divide(arrmean, div, out=arrmean, casting='unsafe',
+ subok=False)
+ else:
+ arrmean = arrmean.dtype.type(arrmean / rcount)
+
+ # Compute sum of squared deviations from mean
+ # Note that x may not be inexact and that we need it to be an array,
+ # not a scalar.
+ x = asanyarray(arr - arrmean)
+
+ if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
+ x = um.multiply(x, x, out=x)
+ # Fast-paths for built-in complex types
+ elif x.dtype in _complex_to_float:
+ xv = x.view(dtype=(_complex_to_float[x.dtype], (2,)))
+ um.multiply(xv, xv, out=xv)
+ x = um.add(xv[..., 0], xv[..., 1], out=x.real).real
+ # Most general case; includes handling object arrays containing imaginary
+ # numbers and complex types with non-native byteorder
+ else:
+ x = um.multiply(x, um.conjugate(x), out=x).real
+
+ ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where)
+
+ # Compute degrees of freedom and make sure it is not negative.
+ rcount = um.maximum(rcount - ddof, 0)
+
+ # divide by degrees of freedom
+ if isinstance(ret, mu.ndarray):
+ ret = um.true_divide(
+ ret, rcount, out=ret, casting='unsafe', subok=False)
+ elif hasattr(ret, 'dtype'):
+ ret = ret.dtype.type(ret / rcount)
+ else:
+ ret = ret / rcount
+
+ return ret
+
+def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *,
+ where=True):
+ ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ keepdims=keepdims, where=where)
+
+ if isinstance(ret, mu.ndarray):
+ ret = um.sqrt(ret, out=ret)
+ elif hasattr(ret, 'dtype'):
+ ret = ret.dtype.type(um.sqrt(ret))
+ else:
+ ret = um.sqrt(ret)
+
+ return ret
+
+def _ptp(a, axis=None, out=None, keepdims=False):
+ return um.subtract(
+ umr_maximum(a, axis, None, out, keepdims),
+ umr_minimum(a, axis, None, None, keepdims),
+ out
+ )
+
+def _dump(self, file, protocol=2):
+ if hasattr(file, 'write'):
+ ctx = nullcontext(file)
+ else:
+ ctx = open(os_fspath(file), "wb")
+ with ctx as f:
+ pickle.dump(self, f, protocol=protocol)
+
+def _dumps(self, protocol=2):
+ return pickle.dumps(self, protocol=protocol)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_tests.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_tests.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..1c3741ae9ae746695c8b51ee175f8c5c2c804648
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_tests.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d6a2cdc79b0ce1a7d64e4196d19c2466d450c30283fec3f7f19ba65082c5d89c
+size 528872
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_umath.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_umath.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..d9865704b29a51a838dc600f8a3e0dddeb55b143
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_multiarray_umath.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:69223dbe60d0d0b4331ab7396912b5757d8888644faad8c2bc9505928d4f9ace
+size 14022316
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_operand_flag_tests.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_operand_flag_tests.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..0f5e29a44741ea0cbd96c1bc031165d60fc81056
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_operand_flag_tests.cpython-37m-arm-linux-gnueabihf.so differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_rational_tests.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_rational_tests.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..fb14e28496a2909a9582409021909f8ae248fe42
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_rational_tests.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:814c4d4fb09bf99648dc5422a473510bffaa9354b2dfb1cd982e9eff2259c09d
+size 205680
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_simd.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_simd.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..22ee5ec5662e04999b8e9bdc91fc397d2c9a1701
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_simd.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd091dc9f99e57d5916436ded44cd7c2e0ab1e53cf84b71ea68958406eb385fa
+size 2765736
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_string_helpers.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_string_helpers.py
new file mode 100644
index 0000000000000000000000000000000000000000..45e6a739ee50a8ae987502ae39b20ce524147b10
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_string_helpers.py
@@ -0,0 +1,100 @@
+"""
+String-handling utilities to avoid locale-dependence.
+
+Used primarily to generate type name aliases.
+"""
+# "import string" is costly to import!
+# Construct the translation tables directly
+# "A" = chr(65), "a" = chr(97)
+_all_chars = [chr(_m) for _m in range(256)]
+_ascii_upper = _all_chars[65:65+26]
+_ascii_lower = _all_chars[97:97+26]
+LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:])
+UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:])
+
+
+def english_lower(s):
+ """ Apply English case rules to convert ASCII strings to all lower case.
+
+ This is an internal utility function to replace calls to str.lower() such
+ that we can avoid changing behavior with changing locales. In particular,
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
+ both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ lowered : str
+
+ Examples
+ --------
+ >>> from numpy.core.numerictypes import english_lower
+ >>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
+ 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
+ >>> english_lower('')
+ ''
+ """
+ lowered = s.translate(LOWER_TABLE)
+ return lowered
+
+
+def english_upper(s):
+ """ Apply English case rules to convert ASCII strings to all upper case.
+
+ This is an internal utility function to replace calls to str.upper() such
+ that we can avoid changing behavior with changing locales. In particular,
+ Turkish has distinct dotted and dotless variants of the Latin letter "I" in
+ both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ uppered : str
+
+ Examples
+ --------
+ >>> from numpy.core.numerictypes import english_upper
+ >>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
+ 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
+ >>> english_upper('')
+ ''
+ """
+ uppered = s.translate(UPPER_TABLE)
+ return uppered
+
+
+def english_capitalize(s):
+ """ Apply English case rules to convert the first character of an ASCII
+ string to upper case.
+
+ This is an internal utility function to replace calls to str.capitalize()
+ such that we can avoid changing behavior with changing locales.
+
+ Parameters
+ ----------
+ s : str
+
+ Returns
+ -------
+ capitalized : str
+
+ Examples
+ --------
+ >>> from numpy.core.numerictypes import english_capitalize
+ >>> english_capitalize('int8')
+ 'Int8'
+ >>> english_capitalize('Int8')
+ 'Int8'
+ >>> english_capitalize('')
+ ''
+ """
+ if s:
+ return english_upper(s[0]) + s[1:]
+ else:
+ return s
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_struct_ufunc_tests.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_struct_ufunc_tests.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..7230ecae415e5db14257bb3582a8dda67f0ffc48
Binary files /dev/null and b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_struct_ufunc_tests.cpython-37m-arm-linux-gnueabihf.so differ
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.py
new file mode 100644
index 0000000000000000000000000000000000000000..67addef483f6f97b9b3b3aaae544345ceb91c4b7
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.py
@@ -0,0 +1,244 @@
+"""
+Due to compatibility, numpy has a very large number of different naming
+conventions for the scalar types (those subclassing from `numpy.generic`).
+This file produces a convoluted set of dictionaries mapping names to types,
+and sometimes other mappings too.
+
+.. data:: allTypes
+ A dictionary of names to types that will be exposed as attributes through
+ ``np.core.numerictypes.*``
+
+.. data:: sctypeDict
+ Similar to `allTypes`, but maps a broader set of aliases to their types.
+
+.. data:: sctypes
+ A dictionary keyed by a "type group" string, providing a list of types
+ under that group.
+
+"""
+
+from numpy.compat import unicode
+from numpy.core._string_helpers import english_lower
+from numpy.core.multiarray import typeinfo, dtype
+from numpy.core._dtype import _kind_name
+
+
+sctypeDict = {} # Contains all leaf-node scalar types with aliases
+allTypes = {} # Collect the types we will add to the module
+
+
+# separate the actual type info from the abstract base classes
+_abstract_types = {}
+_concrete_typeinfo = {}
+for k, v in typeinfo.items():
+ # make all the keys lowercase too
+ k = english_lower(k)
+ if isinstance(v, type):
+ _abstract_types[k] = v
+ else:
+ _concrete_typeinfo[k] = v
+
+_concrete_types = {v.type for k, v in _concrete_typeinfo.items()}
+
+
+def _bits_of(obj):
+ try:
+ info = next(v for v in _concrete_typeinfo.values() if v.type is obj)
+ except StopIteration:
+ if obj in _abstract_types.values():
+ msg = "Cannot count the bits of an abstract type"
+ raise ValueError(msg) from None
+
+ # some third-party type - make a best-guess
+ return dtype(obj).itemsize * 8
+ else:
+ return info.bits
+
+
+def bitname(obj):
+ """Return a bit-width name for a given type object"""
+ bits = _bits_of(obj)
+ dt = dtype(obj)
+ char = dt.kind
+ base = _kind_name(dt)
+
+ if base == 'object':
+ bits = 0
+
+ if bits != 0:
+ char = "%s%d" % (char, bits // 8)
+
+ return base, bits, char
+
+
+def _add_types():
+ for name, info in _concrete_typeinfo.items():
+ # define C-name and insert typenum and typechar references also
+ allTypes[name] = info.type
+ sctypeDict[name] = info.type
+ sctypeDict[info.char] = info.type
+ sctypeDict[info.num] = info.type
+
+ for name, cls in _abstract_types.items():
+ allTypes[name] = cls
+_add_types()
+
+# This is the priority order used to assign the bit-sized NPY_INTxx names, which
+# must match the order in npy_common.h in order for NPY_INTxx and np.intxx to be
+# consistent.
+# If two C types have the same size, then the earliest one in this list is used
+# as the sized name.
+_int_ctypes = ['long', 'longlong', 'int', 'short', 'byte']
+_uint_ctypes = list('u' + t for t in _int_ctypes)
+
+def _add_aliases():
+ for name, info in _concrete_typeinfo.items():
+ # these are handled by _add_integer_aliases
+ if name in _int_ctypes or name in _uint_ctypes:
+ continue
+
+ # insert bit-width version for this class (if relevant)
+ base, bit, char = bitname(info.type)
+
+ myname = "%s%d" % (base, bit)
+
+ # ensure that (c)longdouble does not overwrite the aliases assigned to
+ # (c)double
+ if name in ('longdouble', 'clongdouble') and myname in allTypes:
+ continue
+
+ allTypes[myname] = info.type
+
+ # add mapping for both the bit name and the numarray name
+ sctypeDict[myname] = info.type
+
+ # add forward, reverse, and string mapping to numarray
+ sctypeDict[char] = info.type
+
+ # Add deprecated numeric-style type aliases manually, at some point
+ # we may want to deprecate the lower case "bytes0" version as well.
+ for name in ["Bytes0", "Datetime64", "Str0", "Uint32", "Uint64"]:
+ if english_lower(name) not in allTypes:
+ # Only one of Uint32 or Uint64, aliases of `np.uintp`, was (and is) defined, note that this
+ # is not UInt32/UInt64 (capital i), which is removed.
+ continue
+ allTypes[name] = allTypes[english_lower(name)]
+ sctypeDict[name] = sctypeDict[english_lower(name)]
+
+_add_aliases()
+
+def _add_integer_aliases():
+ seen_bits = set()
+ for i_ctype, u_ctype in zip(_int_ctypes, _uint_ctypes):
+ i_info = _concrete_typeinfo[i_ctype]
+ u_info = _concrete_typeinfo[u_ctype]
+ bits = i_info.bits # same for both
+
+ for info, charname, intname in [
+ (i_info,'i%d' % (bits//8,), 'int%d' % bits),
+ (u_info,'u%d' % (bits//8,), 'uint%d' % bits)]:
+ if bits not in seen_bits:
+ # sometimes two different types have the same number of bits
+ # if so, the one iterated over first takes precedence
+ allTypes[intname] = info.type
+ sctypeDict[intname] = info.type
+ sctypeDict[charname] = info.type
+
+ seen_bits.add(bits)
+
+_add_integer_aliases()
+
+# We use these later
+void = allTypes['void']
+
+#
+# Rework the Python names (so that float and complex and int are consistent
+# with Python usage)
+#
+def _set_up_aliases():
+ type_pairs = [('complex_', 'cdouble'),
+ ('int0', 'intp'),
+ ('uint0', 'uintp'),
+ ('single', 'float'),
+ ('csingle', 'cfloat'),
+ ('singlecomplex', 'cfloat'),
+ ('float_', 'double'),
+ ('intc', 'int'),
+ ('uintc', 'uint'),
+ ('int_', 'long'),
+ ('uint', 'ulong'),
+ ('cfloat', 'cdouble'),
+ ('longfloat', 'longdouble'),
+ ('clongfloat', 'clongdouble'),
+ ('longcomplex', 'clongdouble'),
+ ('bool_', 'bool'),
+ ('bytes_', 'string'),
+ ('string_', 'string'),
+ ('str_', 'unicode'),
+ ('unicode_', 'unicode'),
+ ('object_', 'object')]
+ for alias, t in type_pairs:
+ allTypes[alias] = allTypes[t]
+ sctypeDict[alias] = sctypeDict[t]
+ # Remove aliases overriding python types and modules
+ to_remove = ['ulong', 'object', 'int', 'float',
+ 'complex', 'bool', 'string', 'datetime', 'timedelta',
+ 'bytes', 'str']
+
+ for t in to_remove:
+ try:
+ del allTypes[t]
+ del sctypeDict[t]
+ except KeyError:
+ pass
+_set_up_aliases()
+
+
+sctypes = {'int': [],
+ 'uint':[],
+ 'float':[],
+ 'complex':[],
+ 'others':[bool, object, bytes, unicode, void]}
+
+def _add_array_type(typename, bits):
+ try:
+ t = allTypes['%s%d' % (typename, bits)]
+ except KeyError:
+ pass
+ else:
+ sctypes[typename].append(t)
+
+def _set_array_types():
+ ibytes = [1, 2, 4, 8, 16, 32, 64]
+ fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
+ for bytes in ibytes:
+ bits = 8*bytes
+ _add_array_type('int', bits)
+ _add_array_type('uint', bits)
+ for bytes in fbytes:
+ bits = 8*bytes
+ _add_array_type('float', bits)
+ _add_array_type('complex', 2*bits)
+ _gi = dtype('p')
+ if _gi.type not in sctypes['int']:
+ indx = 0
+ sz = _gi.itemsize
+ _lst = sctypes['int']
+ while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
+ indx += 1
+ sctypes['int'].insert(indx, _gi.type)
+ sctypes['uint'].insert(indx, dtype('P').type)
+_set_array_types()
+
+
+# Add additional strings to the sctypeDict
+_toadd = ['int', 'float', 'complex', 'bool', 'object',
+ 'str', 'bytes', ('a', 'bytes_')]
+
+for name in _toadd:
+ if isinstance(name, tuple):
+ sctypeDict[name[0]] = allTypes[name[1]]
+ else:
+ sctypeDict[name] = allTypes['%s_' % name]
+
+del _toadd, name
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..6a1099cd3fada48bd150f0a1858f3da7efa05c3a
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_type_aliases.pyi
@@ -0,0 +1,19 @@
+import sys
+from typing import Dict, Union, Type, List
+
+from numpy import generic, signedinteger, unsignedinteger, floating, complexfloating
+
+if sys.version_info >= (3, 8):
+ from typing import TypedDict
+else:
+ from typing_extensions import TypedDict
+
+class _SCTypes(TypedDict):
+ int: List[Type[signedinteger]]
+ uint: List[Type[unsignedinteger]]
+ float: List[Type[floating]]
+ complex: List[Type[complexfloating]]
+ others: List[type]
+
+sctypeDict: Dict[Union[int, str], Type[generic]]
+sctypes: _SCTypes
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..b40e7445ec5b21693a9c41cd4cc123c10623658b
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.py
@@ -0,0 +1,446 @@
+"""
+Functions for changing global ufunc configuration
+
+This provides helpers which wrap `umath.geterrobj` and `umath.seterrobj`
+"""
+import collections.abc
+import contextlib
+
+from .overrides import set_module
+from .umath import (
+ UFUNC_BUFSIZE_DEFAULT,
+ ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG, ERR_DEFAULT,
+ SHIFT_DIVIDEBYZERO, SHIFT_OVERFLOW, SHIFT_UNDERFLOW, SHIFT_INVALID,
+)
+from . import umath
+
+__all__ = [
+ "seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
+ "errstate",
+]
+
+_errdict = {"ignore": ERR_IGNORE,
+ "warn": ERR_WARN,
+ "raise": ERR_RAISE,
+ "call": ERR_CALL,
+ "print": ERR_PRINT,
+ "log": ERR_LOG}
+
+_errdict_rev = {value: key for key, value in _errdict.items()}
+
+
+@set_module('numpy')
+def seterr(all=None, divide=None, over=None, under=None, invalid=None):
+ """
+ Set how floating-point errors are handled.
+
+ Note that operations on integer scalar types (such as `int16`) are
+ handled like floating point, and are affected by these settings.
+
+ Parameters
+ ----------
+ all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Set treatment for all types of floating-point errors at once:
+
+ - ignore: Take no action when the exception occurs.
+ - warn: Print a `RuntimeWarning` (via the Python `warnings` module).
+ - raise: Raise a `FloatingPointError`.
+ - call: Call a function specified using the `seterrcall` function.
+ - print: Print a warning directly to ``stdout``.
+ - log: Record error in a Log object specified by `seterrcall`.
+
+ The default is not to change the current behavior.
+ divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for division by zero.
+ over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for floating-point overflow.
+ under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for floating-point underflow.
+ invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
+ Treatment for invalid floating-point operation.
+
+ Returns
+ -------
+ old_settings : dict
+ Dictionary containing the old settings.
+
+ See also
+ --------
+ seterrcall : Set a callback function for the 'call' mode.
+ geterr, geterrcall, errstate
+
+ Notes
+ -----
+ The floating-point exceptions are defined in the IEEE 754 standard [1]_:
+
+ - Division by zero: infinite result obtained from finite numbers.
+ - Overflow: result too large to be expressed.
+ - Underflow: result so close to zero that some precision
+ was lost.
+ - Invalid operation: result is not an expressible number, typically
+ indicates that a NaN was produced.
+
+ .. [1] https://en.wikipedia.org/wiki/IEEE_754
+
+ Examples
+ --------
+ >>> old_settings = np.seterr(all='ignore') #seterr to known value
+ >>> np.seterr(over='raise')
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
+ >>> np.seterr(**old_settings) # reset to default
+ {'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
+
+ >>> np.int16(32000) * np.int16(3)
+ 30464
+ >>> old_settings = np.seterr(all='warn', over='raise')
+ >>> np.int16(32000) * np.int16(3)
+ Traceback (most recent call last):
+ File "", line 1, in
+ FloatingPointError: overflow encountered in short_scalars
+
+ >>> old_settings = np.seterr(all='print')
+ >>> np.geterr()
+ {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
+ >>> np.int16(32000) * np.int16(3)
+ 30464
+
+ """
+
+ pyvals = umath.geterrobj()
+ old = geterr()
+
+ if divide is None:
+ divide = all or old['divide']
+ if over is None:
+ over = all or old['over']
+ if under is None:
+ under = all or old['under']
+ if invalid is None:
+ invalid = all or old['invalid']
+
+ maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
+ (_errdict[over] << SHIFT_OVERFLOW) +
+ (_errdict[under] << SHIFT_UNDERFLOW) +
+ (_errdict[invalid] << SHIFT_INVALID))
+
+ pyvals[1] = maskvalue
+ umath.seterrobj(pyvals)
+ return old
+
+
+@set_module('numpy')
+def geterr():
+ """
+ Get the current way of handling floating-point errors.
+
+ Returns
+ -------
+ res : dict
+ A dictionary with keys "divide", "over", "under", and "invalid",
+ whose values are from the strings "ignore", "print", "log", "warn",
+ "raise", and "call". The keys represent possible floating-point
+ exceptions, and the values define how these exceptions are handled.
+
+ See Also
+ --------
+ geterrcall, seterr, seterrcall
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> np.geterr()
+ {'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
+ >>> np.arange(3.) / np.arange(3.)
+ array([nan, 1., 1.])
+
+ >>> oldsettings = np.seterr(all='warn', over='raise')
+ >>> np.geterr()
+ {'divide': 'warn', 'over': 'raise', 'under': 'warn', 'invalid': 'warn'}
+ >>> np.arange(3.) / np.arange(3.)
+ array([nan, 1., 1.])
+
+ """
+ maskvalue = umath.geterrobj()[1]
+ mask = 7
+ res = {}
+ val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
+ res['divide'] = _errdict_rev[val]
+ val = (maskvalue >> SHIFT_OVERFLOW) & mask
+ res['over'] = _errdict_rev[val]
+ val = (maskvalue >> SHIFT_UNDERFLOW) & mask
+ res['under'] = _errdict_rev[val]
+ val = (maskvalue >> SHIFT_INVALID) & mask
+ res['invalid'] = _errdict_rev[val]
+ return res
+
+
+@set_module('numpy')
+def setbufsize(size):
+ """
+ Set the size of the buffer used in ufuncs.
+
+ Parameters
+ ----------
+ size : int
+ Size of buffer.
+
+ """
+ if size > 10e6:
+ raise ValueError("Buffer size, %s, is too big." % size)
+ if size < 5:
+ raise ValueError("Buffer size, %s, is too small." % size)
+ if size % 16 != 0:
+ raise ValueError("Buffer size, %s, is not a multiple of 16." % size)
+
+ pyvals = umath.geterrobj()
+ old = getbufsize()
+ pyvals[0] = size
+ umath.seterrobj(pyvals)
+ return old
+
+
+@set_module('numpy')
+def getbufsize():
+ """
+ Return the size of the buffer used in ufuncs.
+
+ Returns
+ -------
+ getbufsize : int
+ Size of ufunc buffer in bytes.
+
+ """
+ return umath.geterrobj()[0]
+
+
+@set_module('numpy')
+def seterrcall(func):
+ """
+ Set the floating-point error callback function or log object.
+
+ There are two ways to capture floating-point error messages. The first
+ is to set the error-handler to 'call', using `seterr`. Then, set
+ the function to call using this function.
+
+ The second is to set the error-handler to 'log', using `seterr`.
+ Floating-point errors then trigger a call to the 'write' method of
+ the provided object.
+
+ Parameters
+ ----------
+ func : callable f(err, flag) or object with write method
+ Function to call upon floating-point errors ('call'-mode) or
+ object whose 'write' method is used to log such message ('log'-mode).
+
+ The call function takes two arguments. The first is a string describing
+ the type of error (such as "divide by zero", "overflow", "underflow",
+ or "invalid value"), and the second is the status flag. The flag is a
+ byte, whose four least-significant bits indicate the type of error, one
+ of "divide", "over", "under", "invalid"::
+
+ [0 0 0 0 divide over under invalid]
+
+ In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
+
+ If an object is provided, its write method should take one argument,
+ a string.
+
+ Returns
+ -------
+ h : callable, log instance or None
+ The old error handler.
+
+ See Also
+ --------
+ seterr, geterr, geterrcall
+
+ Examples
+ --------
+ Callback upon error:
+
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ ...
+
+ >>> saved_handler = np.seterrcall(err_handler)
+ >>> save_err = np.seterr(all='call')
+
+ >>> np.array([1, 2, 3]) / 0.0
+ Floating point error (divide by zero), with flag 1
+ array([inf, inf, inf])
+
+ >>> np.seterrcall(saved_handler)
+
+ >>> np.seterr(**save_err)
+ {'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
+
+ Log error message:
+
+ >>> class Log:
+ ... def write(self, msg):
+ ... print("LOG: %s" % msg)
+ ...
+
+ >>> log = Log()
+ >>> saved_handler = np.seterrcall(log)
+ >>> save_err = np.seterr(all='log')
+
+ >>> np.array([1, 2, 3]) / 0.0
+ LOG: Warning: divide by zero encountered in true_divide
+ array([inf, inf, inf])
+
+ >>> np.seterrcall(saved_handler)
+
+ >>> np.seterr(**save_err)
+ {'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
+
+ """
+ if func is not None and not isinstance(func, collections.abc.Callable):
+ if (not hasattr(func, 'write') or
+ not isinstance(func.write, collections.abc.Callable)):
+ raise ValueError("Only callable can be used as callback")
+ pyvals = umath.geterrobj()
+ old = geterrcall()
+ pyvals[2] = func
+ umath.seterrobj(pyvals)
+ return old
+
+
+@set_module('numpy')
+def geterrcall():
+ """
+ Return the current callback function used on floating-point errors.
+
+ When the error handling for a floating-point error (one of "divide",
+ "over", "under", or "invalid") is set to 'call' or 'log', the function
+ that is called or the log instance that is written to is returned by
+ `geterrcall`. This function or log instance has been set with
+ `seterrcall`.
+
+ Returns
+ -------
+ errobj : callable, log instance or None
+ The current error handler. If no handler was set through `seterrcall`,
+ ``None`` is returned.
+
+ See Also
+ --------
+ seterrcall, seterr, geterr
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> np.geterrcall() # we did not yet set a handler, returns None
+
+ >>> oldsettings = np.seterr(all='call')
+ >>> def err_handler(type, flag):
+ ... print("Floating point error (%s), with flag %s" % (type, flag))
+ >>> oldhandler = np.seterrcall(err_handler)
+ >>> np.array([1, 2, 3]) / 0.0
+ Floating point error (divide by zero), with flag 1
+ array([inf, inf, inf])
+
+ >>> cur_handler = np.geterrcall()
+ >>> cur_handler is err_handler
+ True
+
+ """
+ return umath.geterrobj()[2]
+
+
+class _unspecified:
+ pass
+
+
+_Unspecified = _unspecified()
+
+
+@set_module('numpy')
+class errstate(contextlib.ContextDecorator):
+ """
+ errstate(**kwargs)
+
+ Context manager for floating-point error handling.
+
+ Using an instance of `errstate` as a context manager allows statements in
+ that context to execute with a known error handling behavior. Upon entering
+ the context the error handling is set with `seterr` and `seterrcall`, and
+ upon exiting it is reset to what it was before.
+
+ .. versionchanged:: 1.17.0
+ `errstate` is also usable as a function decorator, saving
+ a level of indentation if an entire function is wrapped.
+ See :py:class:`contextlib.ContextDecorator` for more information.
+
+ Parameters
+ ----------
+ kwargs : {divide, over, under, invalid}
+ Keyword arguments. The valid keywords are the possible floating-point
+ exceptions. Each keyword should have a string value that defines the
+ treatment for the particular error. Possible values are
+ {'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
+
+ See Also
+ --------
+ seterr, geterr, seterrcall, geterrcall
+
+ Notes
+ -----
+ For complete documentation of the types of floating-point exceptions and
+ treatment options, see `seterr`.
+
+ Examples
+ --------
+ >>> olderr = np.seterr(all='ignore') # Set error handling to known state.
+
+ >>> np.arange(3) / 0.
+ array([nan, inf, inf])
+ >>> with np.errstate(divide='warn'):
+ ... np.arange(3) / 0.
+ array([nan, inf, inf])
+
+ >>> np.sqrt(-1)
+ nan
+ >>> with np.errstate(invalid='raise'):
+ ... np.sqrt(-1)
+ Traceback (most recent call last):
+ File "", line 2, in
+ FloatingPointError: invalid value encountered in sqrt
+
+ Outside the context the error handling behavior has not changed:
+
+ >>> np.geterr()
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
+
+ """
+
+ def __init__(self, *, call=_Unspecified, **kwargs):
+ self.call = call
+ self.kwargs = kwargs
+
+ def __enter__(self):
+ self.oldstate = seterr(**self.kwargs)
+ if self.call is not _Unspecified:
+ self.oldcall = seterrcall(self.call)
+
+ def __exit__(self, *exc_info):
+ seterr(**self.oldstate)
+ if self.call is not _Unspecified:
+ seterrcall(self.oldcall)
+
+
+def _setdef():
+ defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
+ umath.seterrobj(defval)
+
+
+# set the default values
+_setdef()
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..e90f1c510ad4139aaa3713306002c989819693bd
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_ufunc_config.pyi
@@ -0,0 +1,43 @@
+import sys
+from typing import Optional, Union, Callable, Any
+
+if sys.version_info >= (3, 8):
+ from typing import Literal, Protocol, TypedDict
+else:
+ from typing_extensions import Literal, Protocol, TypedDict
+
+_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
+_ErrFunc = Callable[[str, int], Any]
+
+class _SupportsWrite(Protocol):
+ def write(self, __msg: str) -> Any: ...
+
+class _ErrDict(TypedDict):
+ divide: _ErrKind
+ over: _ErrKind
+ under: _ErrKind
+ invalid: _ErrKind
+
+class _ErrDictOptional(TypedDict, total=False):
+ all: Optional[_ErrKind]
+ divide: Optional[_ErrKind]
+ over: Optional[_ErrKind]
+ under: Optional[_ErrKind]
+ invalid: Optional[_ErrKind]
+
+def seterr(
+ all: Optional[_ErrKind] = ...,
+ divide: Optional[_ErrKind] = ...,
+ over: Optional[_ErrKind] = ...,
+ under: Optional[_ErrKind] = ...,
+ invalid: Optional[_ErrKind] = ...,
+) -> _ErrDict: ...
+def geterr() -> _ErrDict: ...
+def setbufsize(size: int) -> int: ...
+def getbufsize() -> int: ...
+def seterrcall(
+ func: Union[None, _ErrFunc, _SupportsWrite]
+) -> Union[None, _ErrFunc, _SupportsWrite]: ...
+def geterrcall() -> Union[None, _ErrFunc, _SupportsWrite]: ...
+
+# See `numpy/__init__.pyi` for the `errstate` class
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_umath_tests.cpython-37m-arm-linux-gnueabihf.so b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_umath_tests.cpython-37m-arm-linux-gnueabihf.so
new file mode 100644
index 0000000000000000000000000000000000000000..0af5011683936399ae00faf9e39bcf62e0c4e2bd
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/_umath_tests.cpython-37m-arm-linux-gnueabihf.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eb216d2b5a00e75c66d8c9a8e4ee48fd546d609b72febf8e8f989bdfee388f11
+size 182544
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.py
new file mode 100644
index 0000000000000000000000000000000000000000..f16bcfd39e57aadf66fa615678c7c8d3050ff1b2
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.py
@@ -0,0 +1,1664 @@
+"""Array printing function
+
+$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $
+
+"""
+__all__ = ["array2string", "array_str", "array_repr", "set_string_function",
+ "set_printoptions", "get_printoptions", "printoptions",
+ "format_float_positional", "format_float_scientific"]
+__docformat__ = 'restructuredtext'
+
+#
+# Written by Konrad Hinsen
+# last revision: 1996-3-13
+# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details)
+# and by Perry Greenfield 2000-4-1 for numarray
+# and by Travis Oliphant 2005-8-22 for numpy
+
+
+# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy
+# scalars but for different purposes. scalartypes.c.src has str/reprs for when
+# the scalar is printed on its own, while arrayprint.py has strs for when
+# scalars are printed inside an ndarray. Only the latter strs are currently
+# user-customizable.
+
+import functools
+import numbers
+try:
+ from _thread import get_ident
+except ImportError:
+ from _dummy_thread import get_ident
+
+import numpy as np
+from . import numerictypes as _nt
+from .umath import absolute, isinf, isfinite, isnat
+from . import multiarray
+from .multiarray import (array, dragon4_positional, dragon4_scientific,
+ datetime_as_string, datetime_data, ndarray,
+ set_legacy_print_mode)
+from .fromnumeric import any
+from .numeric import concatenate, asarray, errstate
+from .numerictypes import (longlong, intc, int_, float_, complex_, bool_,
+ flexible)
+from .overrides import array_function_dispatch, set_module
+import operator
+import warnings
+import contextlib
+
+_format_options = {
+ 'edgeitems': 3, # repr N leading and trailing items of each dimension
+ 'threshold': 1000, # total items > triggers array summarization
+ 'floatmode': 'maxprec',
+ 'precision': 8, # precision of floating point representations
+ 'suppress': False, # suppress printing small floating values in exp format
+ 'linewidth': 75,
+ 'nanstr': 'nan',
+ 'infstr': 'inf',
+ 'sign': '-',
+ 'formatter': None,
+ 'legacy': False}
+
+def _make_options_dict(precision=None, threshold=None, edgeitems=None,
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
+ sign=None, formatter=None, floatmode=None, legacy=None):
+ """ make a dictionary out of the non-None arguments, plus sanity checks """
+
+ options = {k: v for k, v in locals().items() if v is not None}
+
+ if suppress is not None:
+ options['suppress'] = bool(suppress)
+
+ modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal']
+ if floatmode not in modes + [None]:
+ raise ValueError("floatmode option must be one of " +
+ ", ".join('"{}"'.format(m) for m in modes))
+
+ if sign not in [None, '-', '+', ' ']:
+ raise ValueError("sign option must be one of ' ', '+', or '-'")
+
+ if legacy not in [None, False, '1.13']:
+ warnings.warn("legacy printing option can currently only be '1.13' or "
+ "`False`", stacklevel=3)
+
+ if threshold is not None:
+ # forbid the bad threshold arg suggested by stack overflow, gh-12351
+ if not isinstance(threshold, numbers.Number):
+ raise TypeError("threshold must be numeric")
+ if np.isnan(threshold):
+ raise ValueError("threshold must be non-NAN, try "
+ "sys.maxsize for untruncated representation")
+
+ if precision is not None:
+ # forbid the bad precision arg as suggested by issue #18254
+ try:
+ options['precision'] = operator.index(precision)
+ except TypeError as e:
+ raise TypeError('precision must be an integer') from e
+
+ return options
+
+
+@set_module('numpy')
+def set_printoptions(precision=None, threshold=None, edgeitems=None,
+ linewidth=None, suppress=None, nanstr=None, infstr=None,
+ formatter=None, sign=None, floatmode=None, *, legacy=None):
+ """
+ Set printing options.
+
+ These options determine the way floating point numbers, arrays and
+ other NumPy objects are displayed.
+
+ Parameters
+ ----------
+ precision : int or None, optional
+ Number of digits of precision for floating point output (default 8).
+ May be None if `floatmode` is not `fixed`, to print as many digits as
+ necessary to uniquely specify the value.
+ threshold : int, optional
+ Total number of array elements which trigger summarization
+ rather than full repr (default 1000).
+ To always use the full repr without summarization, pass `sys.maxsize`.
+ edgeitems : int, optional
+ Number of array items in summary at beginning and end of
+ each dimension (default 3).
+ linewidth : int, optional
+ The number of characters per line for the purpose of inserting
+ line breaks (default 75).
+ suppress : bool, optional
+ If True, always print floating point numbers using fixed point
+ notation, in which case numbers equal to zero in the current precision
+ will print as zero. If False, then scientific notation is used when
+ absolute value of the smallest number is < 1e-4 or the ratio of the
+ maximum absolute value to the minimum is > 1e3. The default is False.
+ nanstr : str, optional
+ String representation of floating point not-a-number (default nan).
+ infstr : str, optional
+ String representation of floating point infinity (default inf).
+ sign : string, either '-', '+', or ' ', optional
+ Controls printing of the sign of floating-point types. If '+', always
+ print the sign of positive values. If ' ', always prints a space
+ (whitespace character) in the sign position of positive values. If
+ '-', omit the sign character of positive values. (default '-')
+ formatter : dict of callables, optional
+ If not None, the keys should indicate the type(s) that the respective
+ formatting function applies to. Callables should return a string.
+ Types that are not specified (by their corresponding keys) are handled
+ by the default formatters. Individual types for which a formatter
+ can be set are:
+
+ - 'bool'
+ - 'int'
+ - 'timedelta' : a `numpy.timedelta64`
+ - 'datetime' : a `numpy.datetime64`
+ - 'float'
+ - 'longfloat' : 128-bit floats
+ - 'complexfloat'
+ - 'longcomplexfloat' : composed of two 128-bit floats
+ - 'numpystr' : types `numpy.string_` and `numpy.unicode_`
+ - 'object' : `np.object_` arrays
+
+ Other keys that can be used to set a group of types at once are:
+
+ - 'all' : sets all types
+ - 'int_kind' : sets 'int'
+ - 'float_kind' : sets 'float' and 'longfloat'
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
+ - 'str_kind' : sets 'numpystr'
+ floatmode : str, optional
+ Controls the interpretation of the `precision` option for
+ floating-point types. Can take the following values
+ (default maxprec_equal):
+
+ * 'fixed': Always print exactly `precision` fractional digits,
+ even if this would print more or fewer digits than
+ necessary to specify the value uniquely.
+ * 'unique': Print the minimum number of fractional digits necessary
+ to represent each value uniquely. Different elements may
+ have a different number of digits. The value of the
+ `precision` option is ignored.
+ * 'maxprec': Print at most `precision` fractional digits, but if
+ an element can be uniquely represented with fewer digits
+ only print it with that many.
+ * 'maxprec_equal': Print at most `precision` fractional digits,
+ but if every element in the array can be uniquely
+ represented with an equal number of fewer digits, use that
+ many digits for all elements.
+ legacy : string or `False`, optional
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
+ approximates numpy 1.13 print output by including a space in the sign
+ position of floats and different behavior for 0d arrays. If set to
+ `False`, disables legacy mode. Unrecognized strings will be ignored
+ with a warning for forward compatibility.
+
+ .. versionadded:: 1.14.0
+
+ See Also
+ --------
+ get_printoptions, printoptions, set_string_function, array2string
+
+ Notes
+ -----
+ `formatter` is always reset with a call to `set_printoptions`.
+
+ Use `printoptions` as a context manager to set the values temporarily.
+
+ Examples
+ --------
+ Floating point precision can be set:
+
+ >>> np.set_printoptions(precision=4)
+ >>> np.array([1.123456789])
+ [1.1235]
+
+ Long arrays can be summarised:
+
+ >>> np.set_printoptions(threshold=5)
+ >>> np.arange(10)
+ array([0, 1, 2, ..., 7, 8, 9])
+
+ Small results can be suppressed:
+
+ >>> eps = np.finfo(float).eps
+ >>> x = np.arange(4.)
+ >>> x**2 - (x + eps)**2
+ array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
+ >>> np.set_printoptions(suppress=True)
+ >>> x**2 - (x + eps)**2
+ array([-0., -0., 0., 0.])
+
+ A custom formatter can be used to display array elements as desired:
+
+ >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
+ >>> x = np.arange(3)
+ >>> x
+ array([int: 0, int: -1, int: -2])
+ >>> np.set_printoptions() # formatter gets reset
+ >>> x
+ array([0, 1, 2])
+
+ To put back the default options, you can use:
+
+ >>> np.set_printoptions(edgeitems=3, infstr='inf',
+ ... linewidth=75, nanstr='nan', precision=8,
+ ... suppress=False, threshold=1000, formatter=None)
+
+ Also to temporarily override options, use `printoptions` as a context manager:
+
+ >>> with np.printoptions(precision=2, suppress=True, threshold=5):
+ ... np.linspace(0, 10, 10)
+ array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ])
+
+ """
+ opt = _make_options_dict(precision, threshold, edgeitems, linewidth,
+ suppress, nanstr, infstr, sign, formatter,
+ floatmode, legacy)
+ # formatter is always reset
+ opt['formatter'] = formatter
+ _format_options.update(opt)
+
+ # set the C variable for legacy mode
+ if _format_options['legacy'] == '1.13':
+ set_legacy_print_mode(113)
+ # reset the sign option in legacy mode to avoid confusion
+ _format_options['sign'] = '-'
+ elif _format_options['legacy'] is False:
+ set_legacy_print_mode(0)
+
+
+@set_module('numpy')
+def get_printoptions():
+ """
+ Return the current print options.
+
+ Returns
+ -------
+ print_opts : dict
+ Dictionary of current print options with keys
+
+ - precision : int
+ - threshold : int
+ - edgeitems : int
+ - linewidth : int
+ - suppress : bool
+ - nanstr : str
+ - infstr : str
+ - formatter : dict of callables
+ - sign : str
+
+ For a full description of these options, see `set_printoptions`.
+
+ See Also
+ --------
+ set_printoptions, printoptions, set_string_function
+
+ """
+ return _format_options.copy()
+
+
+@set_module('numpy')
+@contextlib.contextmanager
+def printoptions(*args, **kwargs):
+ """Context manager for setting print options.
+
+ Set print options for the scope of the `with` block, and restore the old
+ options at the end. See `set_printoptions` for the full description of
+ available options.
+
+ Examples
+ --------
+
+ >>> from numpy.testing import assert_equal
+ >>> with np.printoptions(precision=2):
+ ... np.array([2.0]) / 3
+ array([0.67])
+
+ The `as`-clause of the `with`-statement gives the current print options:
+
+ >>> with np.printoptions(precision=2) as opts:
+ ... assert_equal(opts, np.get_printoptions())
+
+ See Also
+ --------
+ set_printoptions, get_printoptions
+
+ """
+ opts = np.get_printoptions()
+ try:
+ np.set_printoptions(*args, **kwargs)
+ yield np.get_printoptions()
+ finally:
+ np.set_printoptions(**opts)
+
+
+def _leading_trailing(a, edgeitems, index=()):
+ """
+ Keep only the N-D corners (leading and trailing edges) of an array.
+
+ Should be passed a base-class ndarray, since it makes no guarantees about
+ preserving subclasses.
+ """
+ axis = len(index)
+ if axis == a.ndim:
+ return a[index]
+
+ if a.shape[axis] > 2*edgeitems:
+ return concatenate((
+ _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]),
+ _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:])
+ ), axis=axis)
+ else:
+ return _leading_trailing(a, edgeitems, index + np.index_exp[:])
+
+
+def _object_format(o):
+ """ Object arrays containing lists should be printed unambiguously """
+ if type(o) is list:
+ fmt = 'list({!r})'
+ else:
+ fmt = '{!r}'
+ return fmt.format(o)
+
+def repr_format(x):
+ return repr(x)
+
+def str_format(x):
+ return str(x)
+
+def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy,
+ formatter, **kwargs):
+ # note: extra arguments in kwargs are ignored
+
+ # wrapped in lambdas to avoid taking a code path with the wrong type of data
+ formatdict = {
+ 'bool': lambda: BoolFormat(data),
+ 'int': lambda: IntegerFormat(data),
+ 'float': lambda: FloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'longfloat': lambda: FloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'complexfloat': lambda: ComplexFloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'longcomplexfloat': lambda: ComplexFloatingFormat(
+ data, precision, floatmode, suppress, sign, legacy=legacy),
+ 'datetime': lambda: DatetimeFormat(data, legacy=legacy),
+ 'timedelta': lambda: TimedeltaFormat(data),
+ 'object': lambda: _object_format,
+ 'void': lambda: str_format,
+ 'numpystr': lambda: repr_format}
+
+ # we need to wrap values in `formatter` in a lambda, so that the interface
+ # is the same as the above values.
+ def indirect(x):
+ return lambda: x
+
+ if formatter is not None:
+ fkeys = [k for k in formatter.keys() if formatter[k] is not None]
+ if 'all' in fkeys:
+ for key in formatdict.keys():
+ formatdict[key] = indirect(formatter['all'])
+ if 'int_kind' in fkeys:
+ for key in ['int']:
+ formatdict[key] = indirect(formatter['int_kind'])
+ if 'float_kind' in fkeys:
+ for key in ['float', 'longfloat']:
+ formatdict[key] = indirect(formatter['float_kind'])
+ if 'complex_kind' in fkeys:
+ for key in ['complexfloat', 'longcomplexfloat']:
+ formatdict[key] = indirect(formatter['complex_kind'])
+ if 'str_kind' in fkeys:
+ formatdict['numpystr'] = indirect(formatter['str_kind'])
+ for key in formatdict.keys():
+ if key in fkeys:
+ formatdict[key] = indirect(formatter[key])
+
+ return formatdict
+
+def _get_format_function(data, **options):
+ """
+ find the right formatting function for the dtype_
+ """
+ dtype_ = data.dtype
+ dtypeobj = dtype_.type
+ formatdict = _get_formatdict(data, **options)
+ if issubclass(dtypeobj, _nt.bool_):
+ return formatdict['bool']()
+ elif issubclass(dtypeobj, _nt.integer):
+ if issubclass(dtypeobj, _nt.timedelta64):
+ return formatdict['timedelta']()
+ else:
+ return formatdict['int']()
+ elif issubclass(dtypeobj, _nt.floating):
+ if issubclass(dtypeobj, _nt.longfloat):
+ return formatdict['longfloat']()
+ else:
+ return formatdict['float']()
+ elif issubclass(dtypeobj, _nt.complexfloating):
+ if issubclass(dtypeobj, _nt.clongfloat):
+ return formatdict['longcomplexfloat']()
+ else:
+ return formatdict['complexfloat']()
+ elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
+ return formatdict['numpystr']()
+ elif issubclass(dtypeobj, _nt.datetime64):
+ return formatdict['datetime']()
+ elif issubclass(dtypeobj, _nt.object_):
+ return formatdict['object']()
+ elif issubclass(dtypeobj, _nt.void):
+ if dtype_.names is not None:
+ return StructuredVoidFormat.from_data(data, **options)
+ else:
+ return formatdict['void']()
+ else:
+ return formatdict['numpystr']()
+
+
+def _recursive_guard(fillvalue='...'):
+ """
+ Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs
+
+ Decorates a function such that if it calls itself with the same first
+ argument, it returns `fillvalue` instead of recursing.
+
+ Largely copied from reprlib.recursive_repr
+ """
+
+ def decorating_function(f):
+ repr_running = set()
+
+ @functools.wraps(f)
+ def wrapper(self, *args, **kwargs):
+ key = id(self), get_ident()
+ if key in repr_running:
+ return fillvalue
+ repr_running.add(key)
+ try:
+ return f(self, *args, **kwargs)
+ finally:
+ repr_running.discard(key)
+
+ return wrapper
+
+ return decorating_function
+
+
+# gracefully handle recursive calls, when object arrays contain themselves
+@_recursive_guard()
+def _array2string(a, options, separator=' ', prefix=""):
+ # The formatter __init__s in _get_format_function cannot deal with
+ # subclasses yet, and we also need to avoid recursion issues in
+ # _formatArray with subclasses which return 0d arrays in place of scalars
+ data = asarray(a)
+ if a.shape == ():
+ a = data
+
+ if a.size > options['threshold']:
+ summary_insert = "..."
+ data = _leading_trailing(data, options['edgeitems'])
+ else:
+ summary_insert = ""
+
+ # find the right formatting function for the array
+ format_function = _get_format_function(data, **options)
+
+ # skip over "["
+ next_line_prefix = " "
+ # skip over array(
+ next_line_prefix += " "*len(prefix)
+
+ lst = _formatArray(a, format_function, options['linewidth'],
+ next_line_prefix, separator, options['edgeitems'],
+ summary_insert, options['legacy'])
+ return lst
+
+
+def _array2string_dispatcher(
+ a, max_line_width=None, precision=None,
+ suppress_small=None, separator=None, prefix=None,
+ style=None, formatter=None, threshold=None,
+ edgeitems=None, sign=None, floatmode=None, suffix=None,
+ *, legacy=None):
+ return (a,)
+
+
+@array_function_dispatch(_array2string_dispatcher, module='numpy')
+def array2string(a, max_line_width=None, precision=None,
+ suppress_small=None, separator=' ', prefix="",
+ style=np._NoValue, formatter=None, threshold=None,
+ edgeitems=None, sign=None, floatmode=None, suffix="",
+ *, legacy=None):
+ """
+ Return a string representation of an array.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int or None, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+ separator : str, optional
+ Inserted between elements.
+ prefix : str, optional
+ suffix : str, optional
+ The length of the prefix and suffix strings are used to respectively
+ align and wrap the output. An array is typically printed as::
+
+ prefix + array2string(a) + suffix
+
+ The output is left-padded by the length of the prefix string, and
+ wrapping is forced at the column ``max_line_width - len(suffix)``.
+ It should be noted that the content of prefix and suffix strings are
+ not included in the output.
+ style : _NoValue, optional
+ Has no effect, do not use.
+
+ .. deprecated:: 1.14.0
+ formatter : dict of callables, optional
+ If not None, the keys should indicate the type(s) that the respective
+ formatting function applies to. Callables should return a string.
+ Types that are not specified (by their corresponding keys) are handled
+ by the default formatters. Individual types for which a formatter
+ can be set are:
+
+ - 'bool'
+ - 'int'
+ - 'timedelta' : a `numpy.timedelta64`
+ - 'datetime' : a `numpy.datetime64`
+ - 'float'
+ - 'longfloat' : 128-bit floats
+ - 'complexfloat'
+ - 'longcomplexfloat' : composed of two 128-bit floats
+ - 'void' : type `numpy.void`
+ - 'numpystr' : types `numpy.string_` and `numpy.unicode_`
+
+ Other keys that can be used to set a group of types at once are:
+
+ - 'all' : sets all types
+ - 'int_kind' : sets 'int'
+ - 'float_kind' : sets 'float' and 'longfloat'
+ - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
+ - 'str_kind' : sets 'numpystr'
+ threshold : int, optional
+ Total number of array elements which trigger summarization
+ rather than full repr.
+ Defaults to ``numpy.get_printoptions()['threshold']``.
+ edgeitems : int, optional
+ Number of array items in summary at beginning and end of
+ each dimension.
+ Defaults to ``numpy.get_printoptions()['edgeitems']``.
+ sign : string, either '-', '+', or ' ', optional
+ Controls printing of the sign of floating-point types. If '+', always
+ print the sign of positive values. If ' ', always prints a space
+ (whitespace character) in the sign position of positive values. If
+ '-', omit the sign character of positive values.
+ Defaults to ``numpy.get_printoptions()['sign']``.
+ floatmode : str, optional
+ Controls the interpretation of the `precision` option for
+ floating-point types.
+ Defaults to ``numpy.get_printoptions()['floatmode']``.
+ Can take the following values:
+
+ - 'fixed': Always print exactly `precision` fractional digits,
+ even if this would print more or fewer digits than
+ necessary to specify the value uniquely.
+ - 'unique': Print the minimum number of fractional digits necessary
+ to represent each value uniquely. Different elements may
+ have a different number of digits. The value of the
+ `precision` option is ignored.
+ - 'maxprec': Print at most `precision` fractional digits, but if
+ an element can be uniquely represented with fewer digits
+ only print it with that many.
+ - 'maxprec_equal': Print at most `precision` fractional digits,
+ but if every element in the array can be uniquely
+ represented with an equal number of fewer digits, use that
+ many digits for all elements.
+ legacy : string or `False`, optional
+ If set to the string `'1.13'` enables 1.13 legacy printing mode. This
+ approximates numpy 1.13 print output by including a space in the sign
+ position of floats and different behavior for 0d arrays. If set to
+ `False`, disables legacy mode. Unrecognized strings will be ignored
+ with a warning for forward compatibility.
+
+ .. versionadded:: 1.14.0
+
+ Returns
+ -------
+ array_str : str
+ String representation of the array.
+
+ Raises
+ ------
+ TypeError
+ if a callable in `formatter` does not return a string.
+
+ See Also
+ --------
+ array_str, array_repr, set_printoptions, get_printoptions
+
+ Notes
+ -----
+ If a formatter is specified for a certain type, the `precision` keyword is
+ ignored for that type.
+
+ This is a very flexible function; `array_repr` and `array_str` are using
+ `array2string` internally so keywords with the same name should work
+ identically in all three functions.
+
+ Examples
+ --------
+ >>> x = np.array([1e-16,1,2,3])
+ >>> np.array2string(x, precision=2, separator=',',
+ ... suppress_small=True)
+ '[0.,1.,2.,3.]'
+
+ >>> x = np.arange(3.)
+ >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
+ '[0.00 1.00 2.00]'
+
+ >>> x = np.arange(3)
+ >>> np.array2string(x, formatter={'int':lambda x: hex(x)})
+ '[0x0 0x1 0x2]'
+
+ """
+
+ overrides = _make_options_dict(precision, threshold, edgeitems,
+ max_line_width, suppress_small, None, None,
+ sign, formatter, floatmode, legacy)
+ options = _format_options.copy()
+ options.update(overrides)
+
+ if options['legacy'] == '1.13':
+ if style is np._NoValue:
+ style = repr
+
+ if a.shape == () and a.dtype.names is None:
+ return style(a.item())
+ elif style is not np._NoValue:
+ # Deprecation 11-9-2017 v1.14
+ warnings.warn("'style' argument is deprecated and no longer functional"
+ " except in 1.13 'legacy' mode",
+ DeprecationWarning, stacklevel=3)
+
+ if options['legacy'] != '1.13':
+ options['linewidth'] -= len(suffix)
+
+ # treat as a null array if any of shape elements == 0
+ if a.size == 0:
+ return "[]"
+
+ return _array2string(a, options, separator, prefix)
+
+
+def _extendLine(s, line, word, line_width, next_line_prefix, legacy):
+ needs_wrap = len(line) + len(word) > line_width
+ if legacy != '1.13':
+ # don't wrap lines if it won't help
+ if len(line) <= len(next_line_prefix):
+ needs_wrap = False
+
+ if needs_wrap:
+ s += line.rstrip() + "\n"
+ line = next_line_prefix
+ line += word
+ return s, line
+
+
+def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy):
+ """
+ Extends line with nicely formatted (possibly multi-line) string ``word``.
+ """
+ words = word.splitlines()
+ if len(words) == 1 or legacy == '1.13':
+ return _extendLine(s, line, word, line_width, next_line_prefix, legacy)
+
+ max_word_length = max(len(word) for word in words)
+ if (len(line) + max_word_length > line_width and
+ len(line) > len(next_line_prefix)):
+ s += line.rstrip() + '\n'
+ line = next_line_prefix + words[0]
+ indent = next_line_prefix
+ else:
+ indent = len(line)*' '
+ line += words[0]
+
+ for word in words[1::]:
+ s += line.rstrip() + '\n'
+ line = indent + word
+
+ suffix_length = max_word_length - len(words[-1])
+ line += suffix_length*' '
+
+ return s, line
+
+def _formatArray(a, format_function, line_width, next_line_prefix,
+ separator, edge_items, summary_insert, legacy):
+ """formatArray is designed for two modes of operation:
+
+ 1. Full output
+
+ 2. Summarized output
+
+ """
+ def recurser(index, hanging_indent, curr_width):
+ """
+ By using this local function, we don't need to recurse with all the
+ arguments. Since this function is not created recursively, the cost is
+ not significant
+ """
+ axis = len(index)
+ axes_left = a.ndim - axis
+
+ if axes_left == 0:
+ return format_function(a[index])
+
+ # when recursing, add a space to align with the [ added, and reduce the
+ # length of the line by 1
+ next_hanging_indent = hanging_indent + ' '
+ if legacy == '1.13':
+ next_width = curr_width
+ else:
+ next_width = curr_width - len(']')
+
+ a_len = a.shape[axis]
+ show_summary = summary_insert and 2*edge_items < a_len
+ if show_summary:
+ leading_items = edge_items
+ trailing_items = edge_items
+ else:
+ leading_items = 0
+ trailing_items = a_len
+
+ # stringify the array with the hanging indent on the first line too
+ s = ''
+
+ # last axis (rows) - wrap elements if they would not fit on one line
+ if axes_left == 1:
+ # the length up until the beginning of the separator / bracket
+ if legacy == '1.13':
+ elem_width = curr_width - len(separator.rstrip())
+ else:
+ elem_width = curr_width - max(len(separator.rstrip()), len(']'))
+
+ line = hanging_indent
+ for i in range(leading_items):
+ word = recurser(index + (i,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+ line += separator
+
+ if show_summary:
+ s, line = _extendLine(
+ s, line, summary_insert, elem_width, hanging_indent, legacy)
+ if legacy == '1.13':
+ line += ", "
+ else:
+ line += separator
+
+ for i in range(trailing_items, 1, -1):
+ word = recurser(index + (-i,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+ line += separator
+
+ if legacy == '1.13':
+ # width of the separator is not considered on 1.13
+ elem_width = curr_width
+ word = recurser(index + (-1,), next_hanging_indent, next_width)
+ s, line = _extendLine_pretty(
+ s, line, word, elem_width, hanging_indent, legacy)
+
+ s += line
+
+ # other axes - insert newlines between rows
+ else:
+ s = ''
+ line_sep = separator.rstrip() + '\n'*(axes_left - 1)
+
+ for i in range(leading_items):
+ nested = recurser(index + (i,), next_hanging_indent, next_width)
+ s += hanging_indent + nested + line_sep
+
+ if show_summary:
+ if legacy == '1.13':
+ # trailing space, fixed nbr of newlines, and fixed separator
+ s += hanging_indent + summary_insert + ", \n"
+ else:
+ s += hanging_indent + summary_insert + line_sep
+
+ for i in range(trailing_items, 1, -1):
+ nested = recurser(index + (-i,), next_hanging_indent,
+ next_width)
+ s += hanging_indent + nested + line_sep
+
+ nested = recurser(index + (-1,), next_hanging_indent, next_width)
+ s += hanging_indent + nested
+
+ # remove the hanging indent, and wrap in []
+ s = '[' + s[len(hanging_indent):] + ']'
+ return s
+
+ try:
+ # invoke the recursive part with an initial index and prefix
+ return recurser(index=(),
+ hanging_indent=next_line_prefix,
+ curr_width=line_width)
+ finally:
+ # recursive closures have a cyclic reference to themselves, which
+ # requires gc to collect (gh-10620). To avoid this problem, for
+ # performance and PyPy friendliness, we break the cycle:
+ recurser = None
+
+def _none_or_positive_arg(x, name):
+ if x is None:
+ return -1
+ if x < 0:
+ raise ValueError("{} must be >= 0".format(name))
+ return x
+
+class FloatingFormat:
+ """ Formatter for subtypes of np.floating """
+ def __init__(self, data, precision, floatmode, suppress_small, sign=False,
+ *, legacy=None):
+ # for backcompatibility, accept bools
+ if isinstance(sign, bool):
+ sign = '+' if sign else '-'
+
+ self._legacy = legacy
+ if self._legacy == '1.13':
+ # when not 0d, legacy does not support '-'
+ if data.shape != () and sign == '-':
+ sign = ' '
+
+ self.floatmode = floatmode
+ if floatmode == 'unique':
+ self.precision = None
+ else:
+ self.precision = precision
+
+ self.precision = _none_or_positive_arg(self.precision, 'precision')
+
+ self.suppress_small = suppress_small
+ self.sign = sign
+ self.exp_format = False
+ self.large_exponent = False
+
+ self.fillFormat(data)
+
+ def fillFormat(self, data):
+ # only the finite values are used to compute the number of digits
+ finite_vals = data[isfinite(data)]
+
+ # choose exponential mode based on the non-zero finite values:
+ abs_non_zero = absolute(finite_vals[finite_vals != 0])
+ if len(abs_non_zero) != 0:
+ max_val = np.max(abs_non_zero)
+ min_val = np.min(abs_non_zero)
+ with errstate(over='ignore'): # division can overflow
+ if max_val >= 1.e8 or (not self.suppress_small and
+ (min_val < 0.0001 or max_val/min_val > 1000.)):
+ self.exp_format = True
+
+ # do a first pass of printing all the numbers, to determine sizes
+ if len(finite_vals) == 0:
+ self.pad_left = 0
+ self.pad_right = 0
+ self.trim = '.'
+ self.exp_size = -1
+ self.unique = True
+ self.min_digits = None
+ elif self.exp_format:
+ trim, unique = '.', True
+ if self.floatmode == 'fixed' or self._legacy == '1.13':
+ trim, unique = 'k', False
+ strs = (dragon4_scientific(x, precision=self.precision,
+ unique=unique, trim=trim, sign=self.sign == '+')
+ for x in finite_vals)
+ frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs))
+ int_part, frac_part = zip(*(s.split('.') for s in frac_strs))
+ self.exp_size = max(len(s) for s in exp_strs) - 1
+
+ self.trim = 'k'
+ self.precision = max(len(s) for s in frac_part)
+ self.min_digits = self.precision
+ self.unique = unique
+
+ # for back-compat with np 1.13, use 2 spaces & sign and full prec
+ if self._legacy == '1.13':
+ self.pad_left = 3
+ else:
+ # this should be only 1 or 2. Can be calculated from sign.
+ self.pad_left = max(len(s) for s in int_part)
+ # pad_right is only needed for nan length calculation
+ self.pad_right = self.exp_size + 2 + self.precision
+ else:
+ trim, unique = '.', True
+ if self.floatmode == 'fixed':
+ trim, unique = 'k', False
+ strs = (dragon4_positional(x, precision=self.precision,
+ fractional=True,
+ unique=unique, trim=trim,
+ sign=self.sign == '+')
+ for x in finite_vals)
+ int_part, frac_part = zip(*(s.split('.') for s in strs))
+ if self._legacy == '1.13':
+ self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part)
+ else:
+ self.pad_left = max(len(s) for s in int_part)
+ self.pad_right = max(len(s) for s in frac_part)
+ self.exp_size = -1
+ self.unique = unique
+
+ if self.floatmode in ['fixed', 'maxprec_equal']:
+ self.precision = self.min_digits = self.pad_right
+ self.trim = 'k'
+ else:
+ self.trim = '.'
+ self.min_digits = 0
+
+ if self._legacy != '1.13':
+ # account for sign = ' ' by adding one to pad_left
+ if self.sign == ' ' and not any(np.signbit(finite_vals)):
+ self.pad_left += 1
+
+ # if there are non-finite values, may need to increase pad_left
+ if data.size != finite_vals.size:
+ neginf = self.sign != '-' or any(data[isinf(data)] < 0)
+ nanlen = len(_format_options['nanstr'])
+ inflen = len(_format_options['infstr']) + neginf
+ offset = self.pad_right + 1 # +1 for decimal pt
+ self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset)
+
+ def __call__(self, x):
+ if not np.isfinite(x):
+ with errstate(invalid='ignore'):
+ if np.isnan(x):
+ sign = '+' if self.sign == '+' else ''
+ ret = sign + _format_options['nanstr']
+ else: # isinf
+ sign = '-' if x < 0 else '+' if self.sign == '+' else ''
+ ret = sign + _format_options['infstr']
+ return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret
+
+ if self.exp_format:
+ return dragon4_scientific(x,
+ precision=self.precision,
+ min_digits=self.min_digits,
+ unique=self.unique,
+ trim=self.trim,
+ sign=self.sign == '+',
+ pad_left=self.pad_left,
+ exp_digits=self.exp_size)
+ else:
+ return dragon4_positional(x,
+ precision=self.precision,
+ min_digits=self.min_digits,
+ unique=self.unique,
+ fractional=True,
+ trim=self.trim,
+ sign=self.sign == '+',
+ pad_left=self.pad_left,
+ pad_right=self.pad_right)
+
+
+@set_module('numpy')
+def format_float_scientific(x, precision=None, unique=True, trim='k',
+ sign=False, pad_left=None, exp_digits=None,
+ min_digits=None):
+ """
+ Format a floating-point scalar as a decimal string in scientific notation.
+
+ Provides control over rounding, trimming and padding. Uses and assumes
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
+
+ Parameters
+ ----------
+ x : python float or numpy floating scalar
+ Value to format.
+ precision : non-negative integer or None, optional
+ Maximum number of digits to print. May be None if `unique` is
+ `True`, but must be an integer if unique is `False`.
+ unique : boolean, optional
+ If `True`, use a digit-generation strategy which gives the shortest
+ representation which uniquely identifies the floating-point number from
+ other values of the same type, by judicious rounding. If `precision`
+ is given fewer digits than necessary can be printed. If `min_digits`
+ is given more can be printed, in which cases the last digit is rounded
+ with unbiased rounding.
+ If `False`, digits are generated as if printing an infinite-precision
+ value and stopping after `precision` digits, rounding the remaining
+ value with unbiased rounding
+ trim : one of 'k', '.', '0', '-', optional
+ Controls post-processing trimming of trailing digits, as follows:
+
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
+ * '.' : trim all trailing zeros, leave decimal point
+ * '0' : trim all but the zero before the decimal point. Insert the
+ zero if it is missing.
+ * '-' : trim trailing zeros and any trailing decimal point
+ sign : boolean, optional
+ Whether to show the sign for positive values.
+ pad_left : non-negative integer, optional
+ Pad the left side of the string with whitespace until at least that
+ many characters are to the left of the decimal point.
+ exp_digits : non-negative integer, optional
+ Pad the exponent with zeros until it contains at least this many digits.
+ If omitted, the exponent will be at least 2 digits.
+ min_digits : non-negative integer or None, optional
+ Minimum number of digits to print. This only has an effect for
+ `unique=True`. In that case more digits than necessary to uniquely
+ identify the value may be printed and rounded unbiased.
+
+ -- versionadded:: 1.21.0
+
+ Returns
+ -------
+ rep : string
+ The string representation of the floating point value
+
+ See Also
+ --------
+ format_float_positional
+
+ Examples
+ --------
+ >>> np.format_float_scientific(np.float32(np.pi))
+ '3.1415927e+00'
+ >>> s = np.float32(1.23e24)
+ >>> np.format_float_scientific(s, unique=False, precision=15)
+ '1.230000071797338e+24'
+ >>> np.format_float_scientific(s, exp_digits=4)
+ '1.23e+0024'
+ """
+ precision = _none_or_positive_arg(precision, 'precision')
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
+ exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits')
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
+ if min_digits > 0 and precision > 0 and min_digits > precision:
+ raise ValueError("min_digits must be less than or equal to precision")
+ return dragon4_scientific(x, precision=precision, unique=unique,
+ trim=trim, sign=sign, pad_left=pad_left,
+ exp_digits=exp_digits, min_digits=min_digits)
+
+
+@set_module('numpy')
+def format_float_positional(x, precision=None, unique=True,
+ fractional=True, trim='k', sign=False,
+ pad_left=None, pad_right=None, min_digits=None):
+ """
+ Format a floating-point scalar as a decimal string in positional notation.
+
+ Provides control over rounding, trimming and padding. Uses and assumes
+ IEEE unbiased rounding. Uses the "Dragon4" algorithm.
+
+ Parameters
+ ----------
+ x : python float or numpy floating scalar
+ Value to format.
+ precision : non-negative integer or None, optional
+ Maximum number of digits to print. May be None if `unique` is
+ `True`, but must be an integer if unique is `False`.
+ unique : boolean, optional
+ If `True`, use a digit-generation strategy which gives the shortest
+ representation which uniquely identifies the floating-point number from
+ other values of the same type, by judicious rounding. If `precision`
+ is given fewer digits than necessary can be printed, or if `min_digits`
+ is given more can be printed, in which cases the last digit is rounded
+ with unbiased rounding.
+ If `False`, digits are generated as if printing an infinite-precision
+ value and stopping after `precision` digits, rounding the remaining
+ value with unbiased rounding
+ fractional : boolean, optional
+ If `True`, the cutoffs of `precision` and `min_digits` refer to the
+ total number of digits after the decimal point, including leading
+ zeros.
+ If `False`, `precision` and `min_digits` refer to the total number of
+ significant digits, before or after the decimal point, ignoring leading
+ zeros.
+ trim : one of 'k', '.', '0', '-', optional
+ Controls post-processing trimming of trailing digits, as follows:
+
+ * 'k' : keep trailing zeros, keep decimal point (no trimming)
+ * '.' : trim all trailing zeros, leave decimal point
+ * '0' : trim all but the zero before the decimal point. Insert the
+ zero if it is missing.
+ * '-' : trim trailing zeros and any trailing decimal point
+ sign : boolean, optional
+ Whether to show the sign for positive values.
+ pad_left : non-negative integer, optional
+ Pad the left side of the string with whitespace until at least that
+ many characters are to the left of the decimal point.
+ pad_right : non-negative integer, optional
+ Pad the right side of the string with whitespace until at least that
+ many characters are to the right of the decimal point.
+ min_digits : non-negative integer or None, optional
+ Minimum number of digits to print. Only has an effect if `unique=True`
+ in which case additional digits past those necessary to uniquely
+ identify the value may be printed, rounding the last additional digit.
+
+ -- versionadded:: 1.21.0
+
+ Returns
+ -------
+ rep : string
+ The string representation of the floating point value
+
+ See Also
+ --------
+ format_float_scientific
+
+ Examples
+ --------
+ >>> np.format_float_positional(np.float32(np.pi))
+ '3.1415927'
+ >>> np.format_float_positional(np.float16(np.pi))
+ '3.14'
+ >>> np.format_float_positional(np.float16(0.3))
+ '0.3'
+ >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
+ '0.3000488281'
+ """
+ precision = _none_or_positive_arg(precision, 'precision')
+ pad_left = _none_or_positive_arg(pad_left, 'pad_left')
+ pad_right = _none_or_positive_arg(pad_right, 'pad_right')
+ min_digits = _none_or_positive_arg(min_digits, 'min_digits')
+ if not fractional and precision == 0:
+ raise ValueError("precision must be greater than 0 if "
+ "fractional=False")
+ if min_digits > 0 and precision > 0 and min_digits > precision:
+ raise ValueError("min_digits must be less than or equal to precision")
+ return dragon4_positional(x, precision=precision, unique=unique,
+ fractional=fractional, trim=trim,
+ sign=sign, pad_left=pad_left,
+ pad_right=pad_right, min_digits=min_digits)
+
+
+class IntegerFormat:
+ def __init__(self, data):
+ if data.size > 0:
+ max_str_len = max(len(str(np.max(data))),
+ len(str(np.min(data))))
+ else:
+ max_str_len = 0
+ self.format = '%{}d'.format(max_str_len)
+
+ def __call__(self, x):
+ return self.format % x
+
+
+class BoolFormat:
+ def __init__(self, data, **kwargs):
+ # add an extra space so " True" and "False" have the same length and
+ # array elements align nicely when printed, except in 0d arrays
+ self.truestr = ' True' if data.shape != () else 'True'
+
+ def __call__(self, x):
+ return self.truestr if x else "False"
+
+
+class ComplexFloatingFormat:
+ """ Formatter for subtypes of np.complexfloating """
+ def __init__(self, x, precision, floatmode, suppress_small,
+ sign=False, *, legacy=None):
+ # for backcompatibility, accept bools
+ if isinstance(sign, bool):
+ sign = '+' if sign else '-'
+
+ floatmode_real = floatmode_imag = floatmode
+ if legacy == '1.13':
+ floatmode_real = 'maxprec_equal'
+ floatmode_imag = 'maxprec'
+
+ self.real_format = FloatingFormat(
+ x.real, precision, floatmode_real, suppress_small,
+ sign=sign, legacy=legacy
+ )
+ self.imag_format = FloatingFormat(
+ x.imag, precision, floatmode_imag, suppress_small,
+ sign='+', legacy=legacy
+ )
+
+ def __call__(self, x):
+ r = self.real_format(x.real)
+ i = self.imag_format(x.imag)
+
+ # add the 'j' before the terminal whitespace in i
+ sp = len(i.rstrip())
+ i = i[:sp] + 'j' + i[sp:]
+
+ return r + i
+
+
+class _TimelikeFormat:
+ def __init__(self, data):
+ non_nat = data[~isnat(data)]
+ if len(non_nat) > 0:
+ # Max str length of non-NaT elements
+ max_str_len = max(len(self._format_non_nat(np.max(non_nat))),
+ len(self._format_non_nat(np.min(non_nat))))
+ else:
+ max_str_len = 0
+ if len(non_nat) < data.size:
+ # data contains a NaT
+ max_str_len = max(max_str_len, 5)
+ self._format = '%{}s'.format(max_str_len)
+ self._nat = "'NaT'".rjust(max_str_len)
+
+ def _format_non_nat(self, x):
+ # override in subclass
+ raise NotImplementedError
+
+ def __call__(self, x):
+ if isnat(x):
+ return self._nat
+ else:
+ return self._format % self._format_non_nat(x)
+
+
+class DatetimeFormat(_TimelikeFormat):
+ def __init__(self, x, unit=None, timezone=None, casting='same_kind',
+ legacy=False):
+ # Get the unit from the dtype
+ if unit is None:
+ if x.dtype.kind == 'M':
+ unit = datetime_data(x.dtype)[0]
+ else:
+ unit = 's'
+
+ if timezone is None:
+ timezone = 'naive'
+ self.timezone = timezone
+ self.unit = unit
+ self.casting = casting
+ self.legacy = legacy
+
+ # must be called after the above are configured
+ super().__init__(x)
+
+ def __call__(self, x):
+ if self.legacy == '1.13':
+ return self._format_non_nat(x)
+ return super().__call__(x)
+
+ def _format_non_nat(self, x):
+ return "'%s'" % datetime_as_string(x,
+ unit=self.unit,
+ timezone=self.timezone,
+ casting=self.casting)
+
+
+class TimedeltaFormat(_TimelikeFormat):
+ def _format_non_nat(self, x):
+ return str(x.astype('i8'))
+
+
+class SubArrayFormat:
+ def __init__(self, format_function):
+ self.format_function = format_function
+
+ def __call__(self, arr):
+ if arr.ndim <= 1:
+ return "[" + ", ".join(self.format_function(a) for a in arr) + "]"
+ return "[" + ", ".join(self.__call__(a) for a in arr) + "]"
+
+
+class StructuredVoidFormat:
+ """
+ Formatter for structured np.void objects.
+
+ This does not work on structured alias types like np.dtype(('i4', 'i2,i2')),
+ as alias scalars lose their field information, and the implementation
+ relies upon np.void.__getitem__.
+ """
+ def __init__(self, format_functions):
+ self.format_functions = format_functions
+
+ @classmethod
+ def from_data(cls, data, **options):
+ """
+ This is a second way to initialize StructuredVoidFormat, using the raw data
+ as input. Added to avoid changing the signature of __init__.
+ """
+ format_functions = []
+ for field_name in data.dtype.names:
+ format_function = _get_format_function(data[field_name], **options)
+ if data.dtype[field_name].shape != ():
+ format_function = SubArrayFormat(format_function)
+ format_functions.append(format_function)
+ return cls(format_functions)
+
+ def __call__(self, x):
+ str_fields = [
+ format_function(field)
+ for field, format_function in zip(x, self.format_functions)
+ ]
+ if len(str_fields) == 1:
+ return "({},)".format(str_fields[0])
+ else:
+ return "({})".format(", ".join(str_fields))
+
+
+def _void_scalar_repr(x):
+ """
+ Implements the repr for structured-void scalars. It is called from the
+ scalartypes.c.src code, and is placed here because it uses the elementwise
+ formatters defined above.
+ """
+ return StructuredVoidFormat.from_data(array(x), **_format_options)(x)
+
+
+_typelessdata = [int_, float_, complex_, bool_]
+if issubclass(intc, int):
+ _typelessdata.append(intc)
+if issubclass(longlong, int):
+ _typelessdata.append(longlong)
+
+
+def dtype_is_implied(dtype):
+ """
+ Determine if the given dtype is implied by the representation of its values.
+
+ Parameters
+ ----------
+ dtype : dtype
+ Data type
+
+ Returns
+ -------
+ implied : bool
+ True if the dtype is implied by the representation of its values.
+
+ Examples
+ --------
+ >>> np.core.arrayprint.dtype_is_implied(int)
+ True
+ >>> np.array([1, 2, 3], int)
+ array([1, 2, 3])
+ >>> np.core.arrayprint.dtype_is_implied(np.int8)
+ False
+ >>> np.array([1, 2, 3], np.int8)
+ array([1, 2, 3], dtype=int8)
+ """
+ dtype = np.dtype(dtype)
+ if _format_options['legacy'] == '1.13' and dtype.type == bool_:
+ return False
+
+ # not just void types can be structured, and names are not part of the repr
+ if dtype.names is not None:
+ return False
+
+ return dtype.type in _typelessdata
+
+
+def dtype_short_repr(dtype):
+ """
+ Convert a dtype to a short form which evaluates to the same dtype.
+
+ The intent is roughly that the following holds
+
+ >>> from numpy import *
+ >>> dt = np.int64([1, 2]).dtype
+ >>> assert eval(dtype_short_repr(dt)) == dt
+ """
+ if dtype.names is not None:
+ # structured dtypes give a list or tuple repr
+ return str(dtype)
+ elif issubclass(dtype.type, flexible):
+ # handle these separately so they don't give garbage like str256
+ return "'%s'" % str(dtype)
+
+ typename = dtype.name
+ # quote typenames which can't be represented as python variable names
+ if typename and not (typename[0].isalpha() and typename.isalnum()):
+ typename = repr(typename)
+
+ return typename
+
+
+def _array_repr_implementation(
+ arr, max_line_width=None, precision=None, suppress_small=None,
+ array2string=array2string):
+ """Internal version of array_repr() that allows overriding array2string."""
+ if max_line_width is None:
+ max_line_width = _format_options['linewidth']
+
+ if type(arr) is not ndarray:
+ class_name = type(arr).__name__
+ else:
+ class_name = "array"
+
+ skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0
+
+ prefix = class_name + "("
+ suffix = ")" if skipdtype else ","
+
+ if (_format_options['legacy'] == '1.13' and
+ arr.shape == () and not arr.dtype.names):
+ lst = repr(arr.item())
+ elif arr.size > 0 or arr.shape == (0,):
+ lst = array2string(arr, max_line_width, precision, suppress_small,
+ ', ', prefix, suffix=suffix)
+ else: # show zero-length shape unless it is (0,)
+ lst = "[], shape=%s" % (repr(arr.shape),)
+
+ arr_str = prefix + lst + suffix
+
+ if skipdtype:
+ return arr_str
+
+ dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype))
+
+ # compute whether we should put dtype on a new line: Do so if adding the
+ # dtype would extend the last line past max_line_width.
+ # Note: This line gives the correct result even when rfind returns -1.
+ last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1)
+ spacer = " "
+ if _format_options['legacy'] == '1.13':
+ if issubclass(arr.dtype.type, flexible):
+ spacer = '\n' + ' '*len(class_name + "(")
+ elif last_line_len + len(dtype_str) + 1 > max_line_width:
+ spacer = '\n' + ' '*len(class_name + "(")
+
+ return arr_str + spacer + dtype_str
+
+
+def _array_repr_dispatcher(
+ arr, max_line_width=None, precision=None, suppress_small=None):
+ return (arr,)
+
+
+@array_function_dispatch(_array_repr_dispatcher, module='numpy')
+def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
+ """
+ Return the string representation of an array.
+
+ Parameters
+ ----------
+ arr : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+
+ Returns
+ -------
+ string : str
+ The string representation of an array.
+
+ See Also
+ --------
+ array_str, array2string, set_printoptions
+
+ Examples
+ --------
+ >>> np.array_repr(np.array([1,2]))
+ 'array([1, 2])'
+ >>> np.array_repr(np.ma.array([0.]))
+ 'MaskedArray([0.])'
+ >>> np.array_repr(np.array([], np.int32))
+ 'array([], dtype=int32)'
+
+ >>> x = np.array([1e-6, 4e-7, 2, 3])
+ >>> np.array_repr(x, precision=6, suppress_small=True)
+ 'array([0.000001, 0. , 2. , 3. ])'
+
+ """
+ return _array_repr_implementation(
+ arr, max_line_width, precision, suppress_small)
+
+
+@_recursive_guard()
+def _guarded_repr_or_str(v):
+ if isinstance(v, bytes):
+ return repr(v)
+ return str(v)
+
+
+def _array_str_implementation(
+ a, max_line_width=None, precision=None, suppress_small=None,
+ array2string=array2string):
+ """Internal version of array_str() that allows overriding array2string."""
+ if (_format_options['legacy'] == '1.13' and
+ a.shape == () and not a.dtype.names):
+ return str(a.item())
+
+ # the str of 0d arrays is a special case: It should appear like a scalar,
+ # so floats are not truncated by `precision`, and strings are not wrapped
+ # in quotes. So we return the str of the scalar value.
+ if a.shape == ():
+ # obtain a scalar and call str on it, avoiding problems for subclasses
+ # for which indexing with () returns a 0d instead of a scalar by using
+ # ndarray's getindex. Also guard against recursive 0d object arrays.
+ return _guarded_repr_or_str(np.ndarray.__getitem__(a, ()))
+
+ return array2string(a, max_line_width, precision, suppress_small, ' ', "")
+
+
+def _array_str_dispatcher(
+ a, max_line_width=None, precision=None, suppress_small=None):
+ return (a,)
+
+
+@array_function_dispatch(_array_str_dispatcher, module='numpy')
+def array_str(a, max_line_width=None, precision=None, suppress_small=None):
+ """
+ Return a string representation of the data in an array.
+
+ The data in the array is returned as a single string. This function is
+ similar to `array_repr`, the difference being that `array_repr` also
+ returns information on the kind of array and its data type.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ max_line_width : int, optional
+ Inserts newlines if text is longer than `max_line_width`.
+ Defaults to ``numpy.get_printoptions()['linewidth']``.
+ precision : int, optional
+ Floating point precision.
+ Defaults to ``numpy.get_printoptions()['precision']``.
+ suppress_small : bool, optional
+ Represent numbers "very close" to zero as zero; default is False.
+ Very close is defined by precision: if the precision is 8, e.g.,
+ numbers smaller (in absolute value) than 5e-9 are represented as
+ zero.
+ Defaults to ``numpy.get_printoptions()['suppress']``.
+
+ See Also
+ --------
+ array2string, array_repr, set_printoptions
+
+ Examples
+ --------
+ >>> np.array_str(np.arange(3))
+ '[0 1 2]'
+
+ """
+ return _array_str_implementation(
+ a, max_line_width, precision, suppress_small)
+
+
+# needed if __array_function__ is disabled
+_array2string_impl = getattr(array2string, '__wrapped__', array2string)
+_default_array_str = functools.partial(_array_str_implementation,
+ array2string=_array2string_impl)
+_default_array_repr = functools.partial(_array_repr_implementation,
+ array2string=_array2string_impl)
+
+
+def set_string_function(f, repr=True):
+ """
+ Set a Python function to be used when pretty printing arrays.
+
+ Parameters
+ ----------
+ f : function or None
+ Function to be used to pretty print arrays. The function should expect
+ a single array argument and return a string of the representation of
+ the array. If None, the function is reset to the default NumPy function
+ to print arrays.
+ repr : bool, optional
+ If True (default), the function for pretty printing (``__repr__``)
+ is set, if False the function that returns the default string
+ representation (``__str__``) is set.
+
+ See Also
+ --------
+ set_printoptions, get_printoptions
+
+ Examples
+ --------
+ >>> def pprint(arr):
+ ... return 'HA! - What are you going to do now?'
+ ...
+ >>> np.set_string_function(pprint)
+ >>> a = np.arange(10)
+ >>> a
+ HA! - What are you going to do now?
+ >>> _ = a
+ >>> # [0 1 2 3 4 5 6 7 8 9]
+
+ We can reset the function to the default:
+
+ >>> np.set_string_function(None)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+
+ `repr` affects either pretty printing or normal string representation.
+ Note that ``__repr__`` is still affected by setting ``__str__``
+ because the width of each array element in the returned string becomes
+ equal to the length of the result of ``__str__()``.
+
+ >>> x = np.arange(4)
+ >>> np.set_string_function(lambda x:'random', repr=False)
+ >>> x.__str__()
+ 'random'
+ >>> x.__repr__()
+ 'array([0, 1, 2, 3])'
+
+ """
+ if f is None:
+ if repr:
+ return multiarray.set_string_function(_default_array_repr, 1)
+ else:
+ return multiarray.set_string_function(_default_array_str, 0)
+ else:
+ return multiarray.set_string_function(f, repr)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..ac2b6f5a8abbe53663666f32b4f0744dae116ee1
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/arrayprint.pyi
@@ -0,0 +1,147 @@
+import sys
+from types import TracebackType
+from typing import Any, Optional, Callable, Union, Type
+
+# Using a private class is by no means ideal, but it is simply a consquence
+# of a `contextlib.context` returning an instance of aformentioned class
+from contextlib import _GeneratorContextManager
+
+from numpy import (
+ ndarray,
+ generic,
+ bool_,
+ integer,
+ timedelta64,
+ datetime64,
+ floating,
+ complexfloating,
+ void,
+ str_,
+ bytes_,
+ longdouble,
+ clongdouble,
+)
+from numpy.typing import ArrayLike, _CharLike_co, _FloatLike_co
+
+if sys.version_info > (3, 8):
+ from typing import Literal, TypedDict, SupportsIndex
+else:
+ from typing_extensions import Literal, TypedDict, SupportsIndex
+
+_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
+
+class _FormatDict(TypedDict, total=False):
+ bool: Callable[[bool_], str]
+ int: Callable[[integer[Any]], str]
+ timedelta: Callable[[timedelta64], str]
+ datetime: Callable[[datetime64], str]
+ float: Callable[[floating[Any]], str]
+ longfloat: Callable[[longdouble], str]
+ complexfloat: Callable[[complexfloating[Any, Any]], str]
+ longcomplexfloat: Callable[[clongdouble], str]
+ void: Callable[[void], str]
+ numpystr: Callable[[_CharLike_co], str]
+ object: Callable[[object], str]
+ all: Callable[[object], str]
+ int_kind: Callable[[integer[Any]], str]
+ float_kind: Callable[[floating[Any]], str]
+ complex_kind: Callable[[complexfloating[Any, Any]], str]
+ str_kind: Callable[[_CharLike_co], str]
+
+class _FormatOptions(TypedDict):
+ precision: int
+ threshold: int
+ edgeitems: int
+ linewidth: int
+ suppress: bool
+ nanstr: str
+ infstr: str
+ formatter: Optional[_FormatDict]
+ sign: Literal["-", "+", " "]
+ floatmode: _FloatMode
+ legacy: Literal[False, "1.13"]
+
+def set_printoptions(
+ precision: Optional[SupportsIndex] = ...,
+ threshold: Optional[int] = ...,
+ edgeitems: Optional[int] = ...,
+ linewidth: Optional[int] = ...,
+ suppress: Optional[bool] = ...,
+ nanstr: Optional[str] = ...,
+ infstr: Optional[str] = ...,
+ formatter: Optional[_FormatDict] = ...,
+ sign: Optional[Literal["-", "+", " "]] = ...,
+ floatmode: Optional[_FloatMode] = ...,
+ *,
+ legacy: Optional[Literal[False, "1.13"]] = ...
+) -> None: ...
+def get_printoptions() -> _FormatOptions: ...
+def array2string(
+ a: ndarray[Any, Any],
+ max_line_width: Optional[int] = ...,
+ precision: Optional[SupportsIndex] = ...,
+ suppress_small: Optional[bool] = ...,
+ separator: str = ...,
+ prefix: str = ...,
+ # NOTE: With the `style` argument being deprecated,
+ # all arguments between `formatter` and `suffix` are de facto
+ # keyworld-only arguments
+ *,
+ formatter: Optional[_FormatDict] = ...,
+ threshold: Optional[int] = ...,
+ edgeitems: Optional[int] = ...,
+ sign: Optional[Literal["-", "+", " "]] = ...,
+ floatmode: Optional[_FloatMode] = ...,
+ suffix: str = ...,
+ legacy: Optional[Literal[False, "1.13"]] = ...,
+) -> str: ...
+def format_float_scientific(
+ x: _FloatLike_co,
+ precision: Optional[int] = ...,
+ unique: bool = ...,
+ trim: Literal["k", ".", "0", "-"] = ...,
+ sign: bool = ...,
+ pad_left: Optional[int] = ...,
+ exp_digits: Optional[int] = ...,
+ min_digits: Optional[int] = ...,
+) -> str: ...
+def format_float_positional(
+ x: _FloatLike_co,
+ precision: Optional[int] = ...,
+ unique: bool = ...,
+ fractional: bool = ...,
+ trim: Literal["k", ".", "0", "-"] = ...,
+ sign: bool = ...,
+ pad_left: Optional[int] = ...,
+ pad_right: Optional[int] = ...,
+ min_digits: Optional[int] = ...,
+) -> str: ...
+def array_repr(
+ arr: ndarray[Any, Any],
+ max_line_width: Optional[int] = ...,
+ precision: Optional[SupportsIndex] = ...,
+ suppress_small: Optional[bool] = ...,
+) -> str: ...
+def array_str(
+ a: ndarray[Any, Any],
+ max_line_width: Optional[int] = ...,
+ precision: Optional[SupportsIndex] = ...,
+ suppress_small: Optional[bool] = ...,
+) -> str: ...
+def set_string_function(
+ f: Optional[Callable[[ndarray[Any, Any]], str]], repr: bool = ...
+) -> None: ...
+def printoptions(
+ precision: Optional[SupportsIndex] = ...,
+ threshold: Optional[int] = ...,
+ edgeitems: Optional[int] = ...,
+ linewidth: Optional[int] = ...,
+ suppress: Optional[bool] = ...,
+ nanstr: Optional[str] = ...,
+ infstr: Optional[str] = ...,
+ formatter: Optional[_FormatDict] = ...,
+ sign: Optional[Literal["-", "+", " "]] = ...,
+ floatmode: Optional[_FloatMode] = ...,
+ *,
+ legacy: Optional[Literal[False, "1.13"]] = ...
+) -> _GeneratorContextManager[_FormatOptions]: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/cversions.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/cversions.py
new file mode 100644
index 0000000000000000000000000000000000000000..00159c3a8031d8ccd44b226db42090f97014cd9f
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/cversions.py
@@ -0,0 +1,13 @@
+"""Simple script to compute the api hash of the current API.
+
+The API has is defined by numpy_api_order and ufunc_api_order.
+
+"""
+from os.path import dirname
+
+from code_generators.genapi import fullapi_hash
+from code_generators.numpy_api import full_api
+
+if __name__ == '__main__':
+ curdir = dirname(__file__)
+ print(fullapi_hash(full_api))
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/defchararray.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/defchararray.py
new file mode 100644
index 0000000000000000000000000000000000000000..ab1166ad263f22eddf0cb207ac6c0a8d936ba0b1
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/defchararray.py
@@ -0,0 +1,2795 @@
+"""
+This module contains a set of functions for vectorized string
+operations and methods.
+
+.. note::
+ The `chararray` class exists for backwards compatibility with
+ Numarray, it is not recommended for new development. Starting from numpy
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
+ `dtype` `object_`, `string_` or `unicode_`, and use the free functions
+ in the `numpy.char` module for fast vectorized string operations.
+
+Some methods will only be available if the corresponding string method is
+available in your version of Python.
+
+The preferred alias for `defchararray` is `numpy.char`.
+
+"""
+import functools
+import sys
+from .numerictypes import (
+ string_, unicode_, integer, int_, object_, bool_, character)
+from .numeric import ndarray, compare_chararrays
+from .numeric import array as narray
+from numpy.core.multiarray import _vec_string
+from numpy.core.overrides import set_module
+from numpy.core import overrides
+from numpy.compat import asbytes
+import numpy
+
+__all__ = [
+ 'equal', 'not_equal', 'greater_equal', 'less_equal',
+ 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize',
+ 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs',
+ 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
+ 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',
+ 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
+ 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase',
+ 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal',
+ 'array', 'asarray'
+ ]
+
+
+_globalvar = 0
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy.char')
+
+
+def _use_unicode(*args):
+ """
+ Helper function for determining the output type of some string
+ operations.
+
+ For an operation on two ndarrays, if at least one is unicode, the
+ result should be unicode.
+ """
+ for x in args:
+ if (isinstance(x, str) or
+ issubclass(numpy.asarray(x).dtype.type, unicode_)):
+ return unicode_
+ return string_
+
+def _to_string_or_unicode_array(result):
+ """
+ Helper function to cast a result back into a string or unicode array
+ if an object array must be used as an intermediary.
+ """
+ return numpy.asarray(result.tolist())
+
+def _clean_args(*args):
+ """
+ Helper function for delegating arguments to Python string
+ functions.
+
+ Many of the Python string operations that have optional arguments
+ do not use 'None' to indicate a default value. In these cases,
+ we need to remove all None arguments, and those following them.
+ """
+ newargs = []
+ for chk in args:
+ if chk is None:
+ break
+ newargs.append(chk)
+ return newargs
+
+def _get_num_chars(a):
+ """
+ Helper function that returns the number of characters per field in
+ a string or unicode array. This is to abstract out the fact that
+ for a unicode array this is itemsize / 4.
+ """
+ if issubclass(a.dtype.type, unicode_):
+ return a.itemsize // 4
+ return a.itemsize
+
+
+def _binary_op_dispatcher(x1, x2):
+ return (x1, x2)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def equal(x1, x2):
+ """
+ Return (x1 == x2) element-wise.
+
+ Unlike `numpy.equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ not_equal, greater_equal, less_equal, greater, less
+ """
+ return compare_chararrays(x1, x2, '==', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def not_equal(x1, x2):
+ """
+ Return (x1 != x2) element-wise.
+
+ Unlike `numpy.not_equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, greater_equal, less_equal, greater, less
+ """
+ return compare_chararrays(x1, x2, '!=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def greater_equal(x1, x2):
+ """
+ Return (x1 >= x2) element-wise.
+
+ Unlike `numpy.greater_equal`, this comparison is performed by
+ first stripping whitespace characters from the end of the string.
+ This behavior is provided for backward-compatibility with
+ numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, less_equal, greater, less
+ """
+ return compare_chararrays(x1, x2, '>=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def less_equal(x1, x2):
+ """
+ Return (x1 <= x2) element-wise.
+
+ Unlike `numpy.less_equal`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, greater, less
+ """
+ return compare_chararrays(x1, x2, '<=', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def greater(x1, x2):
+ """
+ Return (x1 > x2) element-wise.
+
+ Unlike `numpy.greater`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, less_equal, less
+ """
+ return compare_chararrays(x1, x2, '>', True)
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def less(x1, x2):
+ """
+ Return (x1 < x2) element-wise.
+
+ Unlike `numpy.greater`, this comparison is performed by first
+ stripping whitespace characters from the end of the string. This
+ behavior is provided for backward-compatibility with numarray.
+
+ Parameters
+ ----------
+ x1, x2 : array_like of str or unicode
+ Input arrays of the same shape.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools.
+
+ See Also
+ --------
+ equal, not_equal, greater_equal, less_equal, greater
+ """
+ return compare_chararrays(x1, x2, '<', True)
+
+
+def _unary_op_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def str_len(a):
+ """
+ Return len(a) element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of integers
+
+ See Also
+ --------
+ builtins.len
+ """
+ # Note: __len__, etc. currently return ints, which are not C-integers.
+ # Generally intp would be expected for lengths, although int is sufficient
+ # due to the dtype itemsize limitation.
+ return _vec_string(a, int_, '__len__')
+
+
+@array_function_dispatch(_binary_op_dispatcher)
+def add(x1, x2):
+ """
+ Return element-wise string concatenation for two arrays of str or unicode.
+
+ Arrays `x1` and `x2` must have the same shape.
+
+ Parameters
+ ----------
+ x1 : array_like of str or unicode
+ Input array.
+ x2 : array_like of str or unicode
+ Input array.
+
+ Returns
+ -------
+ add : ndarray
+ Output array of `string_` or `unicode_`, depending on input types
+ of the same shape as `x1` and `x2`.
+
+ """
+ arr1 = numpy.asarray(x1)
+ arr2 = numpy.asarray(x2)
+ out_size = _get_num_chars(arr1) + _get_num_chars(arr2)
+ dtype = _use_unicode(arr1, arr2)
+ return _vec_string(arr1, (dtype, out_size), '__add__', (arr2,))
+
+
+def _multiply_dispatcher(a, i):
+ return (a,)
+
+
+@array_function_dispatch(_multiply_dispatcher)
+def multiply(a, i):
+ """
+ Return (a * i), that is string multiple concatenation,
+ element-wise.
+
+ Values in `i` of less than 0 are treated as 0 (which yields an
+ empty string).
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ i : array_like of ints
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input types
+
+ """
+ a_arr = numpy.asarray(a)
+ i_arr = numpy.asarray(i)
+ if not issubclass(i_arr.dtype.type, integer):
+ raise ValueError("Can only multiply by integers")
+ out_size = _get_num_chars(a_arr) * max(int(i_arr.max()), 0)
+ return _vec_string(
+ a_arr, (a_arr.dtype.type, out_size), '__mul__', (i_arr,))
+
+
+def _mod_dispatcher(a, values):
+ return (a, values)
+
+
+@array_function_dispatch(_mod_dispatcher)
+def mod(a, values):
+ """
+ Return (a % i), that is pre-Python 2.6 string formatting
+ (interpolation), element-wise for a pair of array_likes of str
+ or unicode.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ values : array_like of values
+ These values will be element-wise interpolated into the string.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input types
+
+ See Also
+ --------
+ str.__mod__
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, '__mod__', (values,)))
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def capitalize(a):
+ """
+ Return a copy of `a` with only the first character of each element
+ capitalized.
+
+ Calls `str.capitalize` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+ Input array of strings to capitalize.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input
+ types
+
+ See Also
+ --------
+ str.capitalize
+
+ Examples
+ --------
+ >>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
+ array(['a1b2', '1b2a', 'b2a1', '2a1b'],
+ dtype='|S4')
+ >>> np.char.capitalize(c)
+ array(['A1b2', '1b2a', 'B2a1', '2a1b'],
+ dtype='|S4')
+
+ """
+ a_arr = numpy.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'capitalize')
+
+
+def _center_dispatcher(a, width, fillchar=None):
+ return (a,)
+
+
+@array_function_dispatch(_center_dispatcher)
+def center(a, width, fillchar=' '):
+ """
+ Return a copy of `a` with its elements centered in a string of
+ length `width`.
+
+ Calls `str.center` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ width : int
+ The length of the resulting strings
+ fillchar : str or unicode, optional
+ The padding character to use (default is space).
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input
+ types
+
+ See Also
+ --------
+ str.center
+
+ """
+ a_arr = numpy.asarray(a)
+ width_arr = numpy.asarray(width)
+ size = int(numpy.max(width_arr.flat))
+ if numpy.issubdtype(a_arr.dtype, numpy.string_):
+ fillchar = asbytes(fillchar)
+ return _vec_string(
+ a_arr, (a_arr.dtype.type, size), 'center', (width_arr, fillchar))
+
+
+def _count_dispatcher(a, sub, start=None, end=None):
+ return (a,)
+
+
+@array_function_dispatch(_count_dispatcher)
+def count(a, sub, start=0, end=None):
+ """
+ Returns an array with the number of non-overlapping occurrences of
+ substring `sub` in the range [`start`, `end`].
+
+ Calls `str.count` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ sub : str or unicode
+ The substring to search for.
+
+ start, end : int, optional
+ Optional arguments `start` and `end` are interpreted as slice
+ notation to specify the range in which to count.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints.
+
+ See Also
+ --------
+ str.count
+
+ Examples
+ --------
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.char.count(c, 'A')
+ array([3, 1, 1])
+ >>> np.char.count(c, 'aA')
+ array([3, 1, 0])
+ >>> np.char.count(c, 'A', start=1, end=4)
+ array([2, 1, 1])
+ >>> np.char.count(c, 'A', start=1, end=3)
+ array([1, 0, 0])
+
+ """
+ return _vec_string(a, int_, 'count', [sub, start] + _clean_args(end))
+
+
+def _code_dispatcher(a, encoding=None, errors=None):
+ return (a,)
+
+
+@array_function_dispatch(_code_dispatcher)
+def decode(a, encoding=None, errors=None):
+ """
+ Calls `str.decode` element-wise.
+
+ The set of available codecs comes from the Python standard library,
+ and may be extended at runtime. For more information, see the
+ :mod:`codecs` module.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ encoding : str, optional
+ The name of an encoding
+
+ errors : str, optional
+ Specifies how to handle encoding errors
+
+ Returns
+ -------
+ out : ndarray
+
+ See Also
+ --------
+ str.decode
+
+ Notes
+ -----
+ The type of the result will depend on the encoding specified.
+
+ Examples
+ --------
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.char.encode(c, encoding='cp037')
+ array(['\\x81\\xc1\\x81\\xc1\\x81\\xc1', '@@\\x81\\xc1@@',
+ '\\x81\\x82\\xc2\\xc1\\xc2\\x82\\x81'],
+ dtype='|S7')
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, 'decode', _clean_args(encoding, errors)))
+
+
+@array_function_dispatch(_code_dispatcher)
+def encode(a, encoding=None, errors=None):
+ """
+ Calls `str.encode` element-wise.
+
+ The set of available codecs comes from the Python standard library,
+ and may be extended at runtime. For more information, see the codecs
+ module.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ encoding : str, optional
+ The name of an encoding
+
+ errors : str, optional
+ Specifies how to handle encoding errors
+
+ Returns
+ -------
+ out : ndarray
+
+ See Also
+ --------
+ str.encode
+
+ Notes
+ -----
+ The type of the result will depend on the encoding specified.
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, 'encode', _clean_args(encoding, errors)))
+
+
+def _endswith_dispatcher(a, suffix, start=None, end=None):
+ return (a,)
+
+
+@array_function_dispatch(_endswith_dispatcher)
+def endswith(a, suffix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `a` ends with `suffix`, otherwise `False`.
+
+ Calls `str.endswith` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ suffix : str
+
+ start, end : int, optional
+ With optional `start`, test beginning at that position. With
+ optional `end`, stop comparing at that position.
+
+ Returns
+ -------
+ out : ndarray
+ Outputs an array of bools.
+
+ See Also
+ --------
+ str.endswith
+
+ Examples
+ --------
+ >>> s = np.array(['foo', 'bar'])
+ >>> s[0] = 'foo'
+ >>> s[1] = 'bar'
+ >>> s
+ array(['foo', 'bar'], dtype='>> np.char.endswith(s, 'ar')
+ array([False, True])
+ >>> np.char.endswith(s, 'a', start=1, end=2)
+ array([False, True])
+
+ """
+ return _vec_string(
+ a, bool_, 'endswith', [suffix, start] + _clean_args(end))
+
+
+def _expandtabs_dispatcher(a, tabsize=None):
+ return (a,)
+
+
+@array_function_dispatch(_expandtabs_dispatcher)
+def expandtabs(a, tabsize=8):
+ """
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces.
+
+ Calls `str.expandtabs` element-wise.
+
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces, depending on the current column
+ and the given `tabsize`. The column number is reset to zero after
+ each newline occurring in the string. This doesn't understand other
+ non-printing characters or escape sequences.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+ Input array
+ tabsize : int, optional
+ Replace tabs with `tabsize` number of spaces. If not given defaults
+ to 8 spaces.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.expandtabs
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, 'expandtabs', (tabsize,)))
+
+
+@array_function_dispatch(_count_dispatcher)
+def find(a, sub, start=0, end=None):
+ """
+ For each element, return the lowest index in the string where
+ substring `sub` is found.
+
+ Calls `str.find` element-wise.
+
+ For each element, return the lowest index in the string where
+ substring `sub` is found, such that `sub` is contained in the
+ range [`start`, `end`].
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ sub : str or unicode
+
+ start, end : int, optional
+ Optional arguments `start` and `end` are interpreted as in
+ slice notation.
+
+ Returns
+ -------
+ out : ndarray or int
+ Output array of ints. Returns -1 if `sub` is not found.
+
+ See Also
+ --------
+ str.find
+
+ """
+ return _vec_string(
+ a, int_, 'find', [sub, start] + _clean_args(end))
+
+
+@array_function_dispatch(_count_dispatcher)
+def index(a, sub, start=0, end=None):
+ """
+ Like `find`, but raises `ValueError` when the substring is not found.
+
+ Calls `str.index` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ sub : str or unicode
+
+ start, end : int, optional
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints. Returns -1 if `sub` is not found.
+
+ See Also
+ --------
+ find, str.find
+
+ """
+ return _vec_string(
+ a, int_, 'index', [sub, start] + _clean_args(end))
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def isalnum(a):
+ """
+ Returns true for each element if all characters in the string are
+ alphanumeric and there is at least one character, false otherwise.
+
+ Calls `str.isalnum` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.isalnum
+ """
+ return _vec_string(a, bool_, 'isalnum')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def isalpha(a):
+ """
+ Returns true for each element if all characters in the string are
+ alphabetic and there is at least one character, false otherwise.
+
+ Calls `str.isalpha` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.isalpha
+ """
+ return _vec_string(a, bool_, 'isalpha')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def isdigit(a):
+ """
+ Returns true for each element if all characters in the string are
+ digits and there is at least one character, false otherwise.
+
+ Calls `str.isdigit` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.isdigit
+ """
+ return _vec_string(a, bool_, 'isdigit')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def islower(a):
+ """
+ Returns true for each element if all cased characters in the
+ string are lowercase and there is at least one cased character,
+ false otherwise.
+
+ Calls `str.islower` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.islower
+ """
+ return _vec_string(a, bool_, 'islower')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def isspace(a):
+ """
+ Returns true for each element if there are only whitespace
+ characters in the string and there is at least one character,
+ false otherwise.
+
+ Calls `str.isspace` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.isspace
+ """
+ return _vec_string(a, bool_, 'isspace')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def istitle(a):
+ """
+ Returns true for each element if the element is a titlecased
+ string and there is at least one character, false otherwise.
+
+ Call `str.istitle` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.istitle
+ """
+ return _vec_string(a, bool_, 'istitle')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def isupper(a):
+ """
+ Returns true for each element if all cased characters in the
+ string are uppercase and there is at least one character, false
+ otherwise.
+
+ Call `str.isupper` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of bools
+
+ See Also
+ --------
+ str.isupper
+ """
+ return _vec_string(a, bool_, 'isupper')
+
+
+def _join_dispatcher(sep, seq):
+ return (sep, seq)
+
+
+@array_function_dispatch(_join_dispatcher)
+def join(sep, seq):
+ """
+ Return a string which is the concatenation of the strings in the
+ sequence `seq`.
+
+ Calls `str.join` element-wise.
+
+ Parameters
+ ----------
+ sep : array_like of str or unicode
+ seq : array_like of str or unicode
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input types
+
+ See Also
+ --------
+ str.join
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(sep, object_, 'join', (seq,)))
+
+
+
+def _just_dispatcher(a, width, fillchar=None):
+ return (a,)
+
+
+@array_function_dispatch(_just_dispatcher)
+def ljust(a, width, fillchar=' '):
+ """
+ Return an array with the elements of `a` left-justified in a
+ string of length `width`.
+
+ Calls `str.ljust` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ width : int
+ The length of the resulting strings
+ fillchar : str or unicode, optional
+ The character to use for padding
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.ljust
+
+ """
+ a_arr = numpy.asarray(a)
+ width_arr = numpy.asarray(width)
+ size = int(numpy.max(width_arr.flat))
+ if numpy.issubdtype(a_arr.dtype, numpy.string_):
+ fillchar = asbytes(fillchar)
+ return _vec_string(
+ a_arr, (a_arr.dtype.type, size), 'ljust', (width_arr, fillchar))
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def lower(a):
+ """
+ Return an array with the elements converted to lowercase.
+
+ Call `str.lower` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like, {str, unicode}
+ Input array.
+
+ Returns
+ -------
+ out : ndarray, {str, unicode}
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.lower
+
+ Examples
+ --------
+ >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
+ array(['A1B C', '1BCA', 'BCA1'], dtype='>> np.char.lower(c)
+ array(['a1b c', '1bca', 'bca1'], dtype='>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.char.lstrip(c, 'a')
+ array(['AaAaA', ' aA ', 'bBABba'], dtype='>> np.char.lstrip(c, 'A') # leaves c unchanged
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
+ ... # XXX: is this a regression? This used to return True
+ ... # np.char.lstrip(c,'') does not modify c at all.
+ False
+ >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
+ True
+
+ """
+ a_arr = numpy.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'lstrip', (chars,))
+
+
+def _partition_dispatcher(a, sep):
+ return (a,)
+
+
+@array_function_dispatch(_partition_dispatcher)
+def partition(a, sep):
+ """
+ Partition each element in `a` around `sep`.
+
+ Calls `str.partition` element-wise.
+
+ For each element in `a`, split the element as the first
+ occurrence of `sep`, and return 3 strings containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, return 3 strings
+ containing the string itself, followed by two empty strings.
+
+ Parameters
+ ----------
+ a : array_like, {str, unicode}
+ Input array
+ sep : {str, unicode}
+ Separator to split each string element in `a`.
+
+ Returns
+ -------
+ out : ndarray, {str, unicode}
+ Output array of str or unicode, depending on input type.
+ The output array will have an extra dimension with 3
+ elements per input element.
+
+ See Also
+ --------
+ str.partition
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, 'partition', (sep,)))
+
+
+def _replace_dispatcher(a, old, new, count=None):
+ return (a,)
+
+
+@array_function_dispatch(_replace_dispatcher)
+def replace(a, old, new, count=None):
+ """
+ For each element in `a`, return a copy of the string with all
+ occurrences of substring `old` replaced by `new`.
+
+ Calls `str.replace` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ old, new : str or unicode
+
+ count : int, optional
+ If the optional argument `count` is given, only the first
+ `count` occurrences are replaced.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.replace
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(
+ a, object_, 'replace', [old, new] + _clean_args(count)))
+
+
+@array_function_dispatch(_count_dispatcher)
+def rfind(a, sub, start=0, end=None):
+ """
+ For each element in `a`, return the highest index in the string
+ where substring `sub` is found, such that `sub` is contained
+ within [`start`, `end`].
+
+ Calls `str.rfind` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ sub : str or unicode
+
+ start, end : int, optional
+ Optional arguments `start` and `end` are interpreted as in
+ slice notation.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints. Return -1 on failure.
+
+ See Also
+ --------
+ str.rfind
+
+ """
+ return _vec_string(
+ a, int_, 'rfind', [sub, start] + _clean_args(end))
+
+
+@array_function_dispatch(_count_dispatcher)
+def rindex(a, sub, start=0, end=None):
+ """
+ Like `rfind`, but raises `ValueError` when the substring `sub` is
+ not found.
+
+ Calls `str.rindex` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ sub : str or unicode
+
+ start, end : int, optional
+
+ Returns
+ -------
+ out : ndarray
+ Output array of ints.
+
+ See Also
+ --------
+ rfind, str.rindex
+
+ """
+ return _vec_string(
+ a, int_, 'rindex', [sub, start] + _clean_args(end))
+
+
+@array_function_dispatch(_just_dispatcher)
+def rjust(a, width, fillchar=' '):
+ """
+ Return an array with the elements of `a` right-justified in a
+ string of length `width`.
+
+ Calls `str.rjust` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ width : int
+ The length of the resulting strings
+ fillchar : str or unicode, optional
+ The character to use for padding
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.rjust
+
+ """
+ a_arr = numpy.asarray(a)
+ width_arr = numpy.asarray(width)
+ size = int(numpy.max(width_arr.flat))
+ if numpy.issubdtype(a_arr.dtype, numpy.string_):
+ fillchar = asbytes(fillchar)
+ return _vec_string(
+ a_arr, (a_arr.dtype.type, size), 'rjust', (width_arr, fillchar))
+
+
+@array_function_dispatch(_partition_dispatcher)
+def rpartition(a, sep):
+ """
+ Partition (split) each element around the right-most separator.
+
+ Calls `str.rpartition` element-wise.
+
+ For each element in `a`, split the element as the last
+ occurrence of `sep`, and return 3 strings containing the part
+ before the separator, the separator itself, and the part after
+ the separator. If the separator is not found, return 3 strings
+ containing the string itself, followed by two empty strings.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+ Input array
+ sep : str or unicode
+ Right-most separator to split each element in array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of string or unicode, depending on input
+ type. The output array will have an extra dimension with
+ 3 elements per input element.
+
+ See Also
+ --------
+ str.rpartition
+
+ """
+ return _to_string_or_unicode_array(
+ _vec_string(a, object_, 'rpartition', (sep,)))
+
+
+def _split_dispatcher(a, sep=None, maxsplit=None):
+ return (a,)
+
+
+@array_function_dispatch(_split_dispatcher)
+def rsplit(a, sep=None, maxsplit=None):
+ """
+ For each element in `a`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ Calls `str.rsplit` element-wise.
+
+ Except for splitting from the right, `rsplit`
+ behaves like `split`.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ sep : str or unicode, optional
+ If `sep` is not specified or None, any whitespace string
+ is a separator.
+ maxsplit : int, optional
+ If `maxsplit` is given, at most `maxsplit` splits are done,
+ the rightmost ones.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ See Also
+ --------
+ str.rsplit, split
+
+ """
+ # This will return an array of lists of different sizes, so we
+ # leave it as an object array
+ return _vec_string(
+ a, object_, 'rsplit', [sep] + _clean_args(maxsplit))
+
+
+def _strip_dispatcher(a, chars=None):
+ return (a,)
+
+
+@array_function_dispatch(_strip_dispatcher)
+def rstrip(a, chars=None):
+ """
+ For each element in `a`, return a copy with the trailing
+ characters removed.
+
+ Calls `str.rstrip` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ chars : str or unicode, optional
+ The `chars` argument is a string specifying the set of
+ characters to be removed. If omitted or None, the `chars`
+ argument defaults to removing whitespace. The `chars` argument
+ is not a suffix; rather, all combinations of its values are
+ stripped.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.rstrip
+
+ Examples
+ --------
+ >>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
+ array(['aAaAaA', 'abBABba'],
+ dtype='|S7')
+ >>> np.char.rstrip(c, b'a')
+ array(['aAaAaA', 'abBABb'],
+ dtype='|S7')
+ >>> np.char.rstrip(c, b'A')
+ array(['aAaAa', 'abBABba'],
+ dtype='|S7')
+
+ """
+ a_arr = numpy.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'rstrip', (chars,))
+
+
+@array_function_dispatch(_split_dispatcher)
+def split(a, sep=None, maxsplit=None):
+ """
+ For each element in `a`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ Calls `str.split` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ sep : str or unicode, optional
+ If `sep` is not specified or None, any whitespace string is a
+ separator.
+
+ maxsplit : int, optional
+ If `maxsplit` is given, at most `maxsplit` splits are done.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ See Also
+ --------
+ str.split, rsplit
+
+ """
+ # This will return an array of lists of different sizes, so we
+ # leave it as an object array
+ return _vec_string(
+ a, object_, 'split', [sep] + _clean_args(maxsplit))
+
+
+def _splitlines_dispatcher(a, keepends=None):
+ return (a,)
+
+
+@array_function_dispatch(_splitlines_dispatcher)
+def splitlines(a, keepends=None):
+ """
+ For each element in `a`, return a list of the lines in the
+ element, breaking at line boundaries.
+
+ Calls `str.splitlines` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ keepends : bool, optional
+ Line breaks are not included in the resulting list unless
+ keepends is given and true.
+
+ Returns
+ -------
+ out : ndarray
+ Array of list objects
+
+ See Also
+ --------
+ str.splitlines
+
+ """
+ return _vec_string(
+ a, object_, 'splitlines', _clean_args(keepends))
+
+
+def _startswith_dispatcher(a, prefix, start=None, end=None):
+ return (a,)
+
+
+@array_function_dispatch(_startswith_dispatcher)
+def startswith(a, prefix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `a` starts with `prefix`, otherwise `False`.
+
+ Calls `str.startswith` element-wise.
+
+ Parameters
+ ----------
+ a : array_like of str or unicode
+
+ prefix : str
+
+ start, end : int, optional
+ With optional `start`, test beginning at that position. With
+ optional `end`, stop comparing at that position.
+
+ Returns
+ -------
+ out : ndarray
+ Array of booleans
+
+ See Also
+ --------
+ str.startswith
+
+ """
+ return _vec_string(
+ a, bool_, 'startswith', [prefix, start] + _clean_args(end))
+
+
+@array_function_dispatch(_strip_dispatcher)
+def strip(a, chars=None):
+ """
+ For each element in `a`, return a copy with the leading and
+ trailing characters removed.
+
+ Calls `str.strip` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ chars : str or unicode, optional
+ The `chars` argument is a string specifying the set of
+ characters to be removed. If omitted or None, the `chars`
+ argument defaults to removing whitespace. The `chars` argument
+ is not a prefix or suffix; rather, all combinations of its
+ values are stripped.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.strip
+
+ Examples
+ --------
+ >>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
+ >>> c
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.char.strip(c)
+ array(['aAaAaA', 'aA', 'abBABba'], dtype='>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
+ array(['AaAaA', ' aA ', 'bBABb'], dtype='>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
+ array(['aAaAa', ' aA ', 'abBABba'], dtype='>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
+ array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],
+ dtype='|S5')
+ >>> np.char.swapcase(c)
+ array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],
+ dtype='|S5')
+
+ """
+ a_arr = numpy.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'swapcase')
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def title(a):
+ """
+ Return element-wise title cased version of string or unicode.
+
+ Title case words start with uppercase characters, all remaining cased
+ characters are lowercase.
+
+ Calls `str.title` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like, {str, unicode}
+ Input array.
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.title
+
+ Examples
+ --------
+ >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
+ array(['a1b c', '1b ca', 'b ca1', 'ca1b'],
+ dtype='|S5')
+ >>> np.char.title(c)
+ array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],
+ dtype='|S5')
+
+ """
+ a_arr = numpy.asarray(a)
+ return _vec_string(a_arr, a_arr.dtype, 'title')
+
+
+def _translate_dispatcher(a, table, deletechars=None):
+ return (a,)
+
+
+@array_function_dispatch(_translate_dispatcher)
+def translate(a, table, deletechars=None):
+ """
+ For each element in `a`, return a copy of the string where all
+ characters occurring in the optional argument `deletechars` are
+ removed, and the remaining characters have been mapped through the
+ given translation table.
+
+ Calls `str.translate` element-wise.
+
+ Parameters
+ ----------
+ a : array-like of str or unicode
+
+ table : str of length 256
+
+ deletechars : str
+
+ Returns
+ -------
+ out : ndarray
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.translate
+
+ """
+ a_arr = numpy.asarray(a)
+ if issubclass(a_arr.dtype.type, unicode_):
+ return _vec_string(
+ a_arr, a_arr.dtype, 'translate', (table,))
+ else:
+ return _vec_string(
+ a_arr, a_arr.dtype, 'translate', [table] + _clean_args(deletechars))
+
+
+@array_function_dispatch(_unary_op_dispatcher)
+def upper(a):
+ """
+ Return an array with the elements converted to uppercase.
+
+ Calls `str.upper` element-wise.
+
+ For 8-bit strings, this method is locale-dependent.
+
+ Parameters
+ ----------
+ a : array_like, {str, unicode}
+ Input array.
+
+ Returns
+ -------
+ out : ndarray, {str, unicode}
+ Output array of str or unicode, depending on input type
+
+ See Also
+ --------
+ str.upper
+
+ Examples
+ --------
+ >>> c = np.array(['a1b c', '1bca', 'bca1']); c
+ array(['a1b c', '1bca', 'bca1'], dtype='>> np.char.upper(c)
+ array(['A1B C', '1BCA', 'BCA1'], dtype='= 2`` and ``order='F'``, in which case `strides`
+ is in "Fortran order".
+
+ Methods
+ -------
+ astype
+ argsort
+ copy
+ count
+ decode
+ dump
+ dumps
+ encode
+ endswith
+ expandtabs
+ fill
+ find
+ flatten
+ getfield
+ index
+ isalnum
+ isalpha
+ isdecimal
+ isdigit
+ islower
+ isnumeric
+ isspace
+ istitle
+ isupper
+ item
+ join
+ ljust
+ lower
+ lstrip
+ nonzero
+ put
+ ravel
+ repeat
+ replace
+ reshape
+ resize
+ rfind
+ rindex
+ rjust
+ rsplit
+ rstrip
+ searchsorted
+ setfield
+ setflags
+ sort
+ split
+ splitlines
+ squeeze
+ startswith
+ strip
+ swapaxes
+ swapcase
+ take
+ title
+ tofile
+ tolist
+ tostring
+ translate
+ transpose
+ upper
+ view
+ zfill
+
+ Parameters
+ ----------
+ shape : tuple
+ Shape of the array.
+ itemsize : int, optional
+ Length of each array element, in number of characters. Default is 1.
+ unicode : bool, optional
+ Are the array elements of type unicode (True) or string (False).
+ Default is False.
+ buffer : object exposing the buffer interface or str, optional
+ Memory address of the start of the array data. Default is None,
+ in which case a new array is created.
+ offset : int, optional
+ Fixed stride displacement from the beginning of an axis?
+ Default is 0. Needs to be >=0.
+ strides : array_like of ints, optional
+ Strides for the array (see `ndarray.strides` for full description).
+ Default is None.
+ order : {'C', 'F'}, optional
+ The order in which the array data is stored in memory: 'C' ->
+ "row major" order (the default), 'F' -> "column major"
+ (Fortran) order.
+
+ Examples
+ --------
+ >>> charar = np.chararray((3, 3))
+ >>> charar[:] = 'a'
+ >>> charar
+ chararray([[b'a', b'a', b'a'],
+ [b'a', b'a', b'a'],
+ [b'a', b'a', b'a']], dtype='|S1')
+
+ >>> charar = np.chararray(charar.shape, itemsize=5)
+ >>> charar[:] = 'abc'
+ >>> charar
+ chararray([[b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc']], dtype='|S5')
+
+ """
+ def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None,
+ offset=0, strides=None, order='C'):
+ global _globalvar
+
+ if unicode:
+ dtype = unicode_
+ else:
+ dtype = string_
+
+ # force itemsize to be a Python int, since using NumPy integer
+ # types results in itemsize.itemsize being used as the size of
+ # strings in the new array.
+ itemsize = int(itemsize)
+
+ if isinstance(buffer, str):
+ # unicode objects do not have the buffer interface
+ filler = buffer
+ buffer = None
+ else:
+ filler = None
+
+ _globalvar = 1
+ if buffer is None:
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
+ order=order)
+ else:
+ self = ndarray.__new__(subtype, shape, (dtype, itemsize),
+ buffer=buffer,
+ offset=offset, strides=strides,
+ order=order)
+ if filler is not None:
+ self[...] = filler
+ _globalvar = 0
+ return self
+
+ def __array_finalize__(self, obj):
+ # The b is a special case because it is used for reconstructing.
+ if not _globalvar and self.dtype.char not in 'SUbc':
+ raise ValueError("Can only create a chararray from string data.")
+
+ def __getitem__(self, obj):
+ val = ndarray.__getitem__(self, obj)
+
+ if isinstance(val, character):
+ temp = val.rstrip()
+ if len(temp) == 0:
+ val = ''
+ else:
+ val = temp
+
+ return val
+
+ # IMPLEMENTATION NOTE: Most of the methods of this class are
+ # direct delegations to the free functions in this module.
+ # However, those that return an array of strings should instead
+ # return a chararray, so some extra wrapping is required.
+
+ def __eq__(self, other):
+ """
+ Return (self == other) element-wise.
+
+ See Also
+ --------
+ equal
+ """
+ return equal(self, other)
+
+ def __ne__(self, other):
+ """
+ Return (self != other) element-wise.
+
+ See Also
+ --------
+ not_equal
+ """
+ return not_equal(self, other)
+
+ def __ge__(self, other):
+ """
+ Return (self >= other) element-wise.
+
+ See Also
+ --------
+ greater_equal
+ """
+ return greater_equal(self, other)
+
+ def __le__(self, other):
+ """
+ Return (self <= other) element-wise.
+
+ See Also
+ --------
+ less_equal
+ """
+ return less_equal(self, other)
+
+ def __gt__(self, other):
+ """
+ Return (self > other) element-wise.
+
+ See Also
+ --------
+ greater
+ """
+ return greater(self, other)
+
+ def __lt__(self, other):
+ """
+ Return (self < other) element-wise.
+
+ See Also
+ --------
+ less
+ """
+ return less(self, other)
+
+ def __add__(self, other):
+ """
+ Return (self + other), that is string concatenation,
+ element-wise for a pair of array_likes of str or unicode.
+
+ See Also
+ --------
+ add
+ """
+ return asarray(add(self, other))
+
+ def __radd__(self, other):
+ """
+ Return (other + self), that is string concatenation,
+ element-wise for a pair of array_likes of `string_` or `unicode_`.
+
+ See Also
+ --------
+ add
+ """
+ return asarray(add(numpy.asarray(other), self))
+
+ def __mul__(self, i):
+ """
+ Return (self * i), that is string multiple concatenation,
+ element-wise.
+
+ See Also
+ --------
+ multiply
+ """
+ return asarray(multiply(self, i))
+
+ def __rmul__(self, i):
+ """
+ Return (self * i), that is string multiple concatenation,
+ element-wise.
+
+ See Also
+ --------
+ multiply
+ """
+ return asarray(multiply(self, i))
+
+ def __mod__(self, i):
+ """
+ Return (self % i), that is pre-Python 2.6 string formatting
+ (interpolation), element-wise for a pair of array_likes of `string_`
+ or `unicode_`.
+
+ See Also
+ --------
+ mod
+ """
+ return asarray(mod(self, i))
+
+ def __rmod__(self, other):
+ return NotImplemented
+
+ def argsort(self, axis=-1, kind=None, order=None):
+ """
+ Return the indices that sort the array lexicographically.
+
+ For full documentation see `numpy.argsort`, for which this method is
+ in fact merely a "thin wrapper."
+
+ Examples
+ --------
+ >>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5')
+ >>> c = c.view(np.chararray); c
+ chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'],
+ dtype='|S5')
+ >>> c[c.argsort()]
+ chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'],
+ dtype='|S5')
+
+ """
+ return self.__array__().argsort(axis, kind, order)
+ argsort.__doc__ = ndarray.argsort.__doc__
+
+ def capitalize(self):
+ """
+ Return a copy of `self` with only the first character of each element
+ capitalized.
+
+ See Also
+ --------
+ char.capitalize
+
+ """
+ return asarray(capitalize(self))
+
+ def center(self, width, fillchar=' '):
+ """
+ Return a copy of `self` with its elements centered in a
+ string of length `width`.
+
+ See Also
+ --------
+ center
+ """
+ return asarray(center(self, width, fillchar))
+
+ def count(self, sub, start=0, end=None):
+ """
+ Returns an array with the number of non-overlapping occurrences of
+ substring `sub` in the range [`start`, `end`].
+
+ See Also
+ --------
+ char.count
+
+ """
+ return count(self, sub, start, end)
+
+ def decode(self, encoding=None, errors=None):
+ """
+ Calls `str.decode` element-wise.
+
+ See Also
+ --------
+ char.decode
+
+ """
+ return decode(self, encoding, errors)
+
+ def encode(self, encoding=None, errors=None):
+ """
+ Calls `str.encode` element-wise.
+
+ See Also
+ --------
+ char.encode
+
+ """
+ return encode(self, encoding, errors)
+
+ def endswith(self, suffix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `self` ends with `suffix`, otherwise `False`.
+
+ See Also
+ --------
+ char.endswith
+
+ """
+ return endswith(self, suffix, start, end)
+
+ def expandtabs(self, tabsize=8):
+ """
+ Return a copy of each string element where all tab characters are
+ replaced by one or more spaces.
+
+ See Also
+ --------
+ char.expandtabs
+
+ """
+ return asarray(expandtabs(self, tabsize))
+
+ def find(self, sub, start=0, end=None):
+ """
+ For each element, return the lowest index in the string where
+ substring `sub` is found.
+
+ See Also
+ --------
+ char.find
+
+ """
+ return find(self, sub, start, end)
+
+ def index(self, sub, start=0, end=None):
+ """
+ Like `find`, but raises `ValueError` when the substring is not found.
+
+ See Also
+ --------
+ char.index
+
+ """
+ return index(self, sub, start, end)
+
+ def isalnum(self):
+ """
+ Returns true for each element if all characters in the string
+ are alphanumeric and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isalnum
+
+ """
+ return isalnum(self)
+
+ def isalpha(self):
+ """
+ Returns true for each element if all characters in the string
+ are alphabetic and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isalpha
+
+ """
+ return isalpha(self)
+
+ def isdigit(self):
+ """
+ Returns true for each element if all characters in the string are
+ digits and there is at least one character, false otherwise.
+
+ See Also
+ --------
+ char.isdigit
+
+ """
+ return isdigit(self)
+
+ def islower(self):
+ """
+ Returns true for each element if all cased characters in the
+ string are lowercase and there is at least one cased character,
+ false otherwise.
+
+ See Also
+ --------
+ char.islower
+
+ """
+ return islower(self)
+
+ def isspace(self):
+ """
+ Returns true for each element if there are only whitespace
+ characters in the string and there is at least one character,
+ false otherwise.
+
+ See Also
+ --------
+ char.isspace
+
+ """
+ return isspace(self)
+
+ def istitle(self):
+ """
+ Returns true for each element if the element is a titlecased
+ string and there is at least one character, false otherwise.
+
+ See Also
+ --------
+ char.istitle
+
+ """
+ return istitle(self)
+
+ def isupper(self):
+ """
+ Returns true for each element if all cased characters in the
+ string are uppercase and there is at least one character, false
+ otherwise.
+
+ See Also
+ --------
+ char.isupper
+
+ """
+ return isupper(self)
+
+ def join(self, seq):
+ """
+ Return a string which is the concatenation of the strings in the
+ sequence `seq`.
+
+ See Also
+ --------
+ char.join
+
+ """
+ return join(self, seq)
+
+ def ljust(self, width, fillchar=' '):
+ """
+ Return an array with the elements of `self` left-justified in a
+ string of length `width`.
+
+ See Also
+ --------
+ char.ljust
+
+ """
+ return asarray(ljust(self, width, fillchar))
+
+ def lower(self):
+ """
+ Return an array with the elements of `self` converted to
+ lowercase.
+
+ See Also
+ --------
+ char.lower
+
+ """
+ return asarray(lower(self))
+
+ def lstrip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the leading characters
+ removed.
+
+ See Also
+ --------
+ char.lstrip
+
+ """
+ return asarray(lstrip(self, chars))
+
+ def partition(self, sep):
+ """
+ Partition each element in `self` around `sep`.
+
+ See Also
+ --------
+ partition
+ """
+ return asarray(partition(self, sep))
+
+ def replace(self, old, new, count=None):
+ """
+ For each element in `self`, return a copy of the string with all
+ occurrences of substring `old` replaced by `new`.
+
+ See Also
+ --------
+ char.replace
+
+ """
+ return asarray(replace(self, old, new, count))
+
+ def rfind(self, sub, start=0, end=None):
+ """
+ For each element in `self`, return the highest index in the string
+ where substring `sub` is found, such that `sub` is contained
+ within [`start`, `end`].
+
+ See Also
+ --------
+ char.rfind
+
+ """
+ return rfind(self, sub, start, end)
+
+ def rindex(self, sub, start=0, end=None):
+ """
+ Like `rfind`, but raises `ValueError` when the substring `sub` is
+ not found.
+
+ See Also
+ --------
+ char.rindex
+
+ """
+ return rindex(self, sub, start, end)
+
+ def rjust(self, width, fillchar=' '):
+ """
+ Return an array with the elements of `self`
+ right-justified in a string of length `width`.
+
+ See Also
+ --------
+ char.rjust
+
+ """
+ return asarray(rjust(self, width, fillchar))
+
+ def rpartition(self, sep):
+ """
+ Partition each element in `self` around `sep`.
+
+ See Also
+ --------
+ rpartition
+ """
+ return asarray(rpartition(self, sep))
+
+ def rsplit(self, sep=None, maxsplit=None):
+ """
+ For each element in `self`, return a list of the words in
+ the string, using `sep` as the delimiter string.
+
+ See Also
+ --------
+ char.rsplit
+
+ """
+ return rsplit(self, sep, maxsplit)
+
+ def rstrip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the trailing
+ characters removed.
+
+ See Also
+ --------
+ char.rstrip
+
+ """
+ return asarray(rstrip(self, chars))
+
+ def split(self, sep=None, maxsplit=None):
+ """
+ For each element in `self`, return a list of the words in the
+ string, using `sep` as the delimiter string.
+
+ See Also
+ --------
+ char.split
+
+ """
+ return split(self, sep, maxsplit)
+
+ def splitlines(self, keepends=None):
+ """
+ For each element in `self`, return a list of the lines in the
+ element, breaking at line boundaries.
+
+ See Also
+ --------
+ char.splitlines
+
+ """
+ return splitlines(self, keepends)
+
+ def startswith(self, prefix, start=0, end=None):
+ """
+ Returns a boolean array which is `True` where the string element
+ in `self` starts with `prefix`, otherwise `False`.
+
+ See Also
+ --------
+ char.startswith
+
+ """
+ return startswith(self, prefix, start, end)
+
+ def strip(self, chars=None):
+ """
+ For each element in `self`, return a copy with the leading and
+ trailing characters removed.
+
+ See Also
+ --------
+ char.strip
+
+ """
+ return asarray(strip(self, chars))
+
+ def swapcase(self):
+ """
+ For each element in `self`, return a copy of the string with
+ uppercase characters converted to lowercase and vice versa.
+
+ See Also
+ --------
+ char.swapcase
+
+ """
+ return asarray(swapcase(self))
+
+ def title(self):
+ """
+ For each element in `self`, return a titlecased version of the
+ string: words start with uppercase characters, all remaining cased
+ characters are lowercase.
+
+ See Also
+ --------
+ char.title
+
+ """
+ return asarray(title(self))
+
+ def translate(self, table, deletechars=None):
+ """
+ For each element in `self`, return a copy of the string where
+ all characters occurring in the optional argument
+ `deletechars` are removed, and the remaining characters have
+ been mapped through the given translation table.
+
+ See Also
+ --------
+ char.translate
+
+ """
+ return asarray(translate(self, table, deletechars))
+
+ def upper(self):
+ """
+ Return an array with the elements of `self` converted to
+ uppercase.
+
+ See Also
+ --------
+ char.upper
+
+ """
+ return asarray(upper(self))
+
+ def zfill(self, width):
+ """
+ Return the numeric string left-filled with zeros in a string of
+ length `width`.
+
+ See Also
+ --------
+ char.zfill
+
+ """
+ return asarray(zfill(self, width))
+
+ def isnumeric(self):
+ """
+ For each element in `self`, return True if there are only
+ numeric characters in the element.
+
+ See Also
+ --------
+ char.isnumeric
+
+ """
+ return isnumeric(self)
+
+ def isdecimal(self):
+ """
+ For each element in `self`, return True if there are only
+ decimal characters in the element.
+
+ See Also
+ --------
+ char.isdecimal
+
+ """
+ return isdecimal(self)
+
+
+def array(obj, itemsize=None, copy=True, unicode=None, order=None):
+ """
+ Create a `chararray`.
+
+ .. note::
+ This class is provided for numarray backward-compatibility.
+ New code (not concerned with numarray compatibility) should use
+ arrays of type `string_` or `unicode_` and use the free functions
+ in :mod:`numpy.char ` for fast
+ vectorized string operations instead.
+
+ Versus a regular NumPy array of type `str` or `unicode`, this
+ class adds the following functionality:
+
+ 1) values automatically have whitespace removed from the end
+ when indexed
+
+ 2) comparison operators automatically remove whitespace from the
+ end when comparing values
+
+ 3) vectorized string operations are provided as methods
+ (e.g. `str.endswith`) and infix operators (e.g. ``+, *, %``)
+
+ Parameters
+ ----------
+ obj : array of str or unicode-like
+
+ itemsize : int, optional
+ `itemsize` is the number of characters per scalar in the
+ resulting array. If `itemsize` is None, and `obj` is an
+ object array or a Python list, the `itemsize` will be
+ automatically determined. If `itemsize` is provided and `obj`
+ is of type str or unicode, then the `obj` string will be
+ chunked into `itemsize` pieces.
+
+ copy : bool, optional
+ If true (default), then the object is copied. Otherwise, a copy
+ will only be made if __array__ returns a copy, if obj is a
+ nested sequence, or if a copy is needed to satisfy any of the other
+ requirements (`itemsize`, unicode, `order`, etc.).
+
+ unicode : bool, optional
+ When true, the resulting `chararray` can contain Unicode
+ characters, when false only 8-bit characters. If unicode is
+ None and `obj` is one of the following:
+
+ - a `chararray`,
+ - an ndarray of type `str` or `unicode`
+ - a Python str or unicode object,
+
+ then the unicode setting of the output array will be
+ automatically determined.
+
+ order : {'C', 'F', 'A'}, optional
+ Specify the order of the array. If order is 'C' (default), then the
+ array will be in C-contiguous order (last-index varies the
+ fastest). If order is 'F', then the returned array
+ will be in Fortran-contiguous order (first-index varies the
+ fastest). If order is 'A', then the returned array may
+ be in any order (either C-, Fortran-contiguous, or even
+ discontiguous).
+ """
+ if isinstance(obj, (bytes, str)):
+ if unicode is None:
+ if isinstance(obj, str):
+ unicode = True
+ else:
+ unicode = False
+
+ if itemsize is None:
+ itemsize = len(obj)
+ shape = len(obj) // itemsize
+
+ return chararray(shape, itemsize=itemsize, unicode=unicode,
+ buffer=obj, order=order)
+
+ if isinstance(obj, (list, tuple)):
+ obj = numpy.asarray(obj)
+
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, character):
+ # If we just have a vanilla chararray, create a chararray
+ # view around it.
+ if not isinstance(obj, chararray):
+ obj = obj.view(chararray)
+
+ if itemsize is None:
+ itemsize = obj.itemsize
+ # itemsize is in 8-bit chars, so for Unicode, we need
+ # to divide by the size of a single Unicode character,
+ # which for NumPy is always 4
+ if issubclass(obj.dtype.type, unicode_):
+ itemsize //= 4
+
+ if unicode is None:
+ if issubclass(obj.dtype.type, unicode_):
+ unicode = True
+ else:
+ unicode = False
+
+ if unicode:
+ dtype = unicode_
+ else:
+ dtype = string_
+
+ if order is not None:
+ obj = numpy.asarray(obj, order=order)
+ if (copy or
+ (itemsize != obj.itemsize) or
+ (not unicode and isinstance(obj, unicode_)) or
+ (unicode and isinstance(obj, string_))):
+ obj = obj.astype((dtype, int(itemsize)))
+ return obj
+
+ if isinstance(obj, ndarray) and issubclass(obj.dtype.type, object):
+ if itemsize is None:
+ # Since no itemsize was specified, convert the input array to
+ # a list so the ndarray constructor will automatically
+ # determine the itemsize for us.
+ obj = obj.tolist()
+ # Fall through to the default case
+
+ if unicode:
+ dtype = unicode_
+ else:
+ dtype = string_
+
+ if itemsize is None:
+ val = narray(obj, dtype=dtype, order=order, subok=True)
+ else:
+ val = narray(obj, dtype=(dtype, itemsize), order=order, subok=True)
+ return val.view(chararray)
+
+
+def asarray(obj, itemsize=None, unicode=None, order=None):
+ """
+ Convert the input to a `chararray`, copying the data only if
+ necessary.
+
+ Versus a regular NumPy array of type `str` or `unicode`, this
+ class adds the following functionality:
+
+ 1) values automatically have whitespace removed from the end
+ when indexed
+
+ 2) comparison operators automatically remove whitespace from the
+ end when comparing values
+
+ 3) vectorized string operations are provided as methods
+ (e.g. `str.endswith`) and infix operators (e.g. ``+``, ``*``,``%``)
+
+ Parameters
+ ----------
+ obj : array of str or unicode-like
+
+ itemsize : int, optional
+ `itemsize` is the number of characters per scalar in the
+ resulting array. If `itemsize` is None, and `obj` is an
+ object array or a Python list, the `itemsize` will be
+ automatically determined. If `itemsize` is provided and `obj`
+ is of type str or unicode, then the `obj` string will be
+ chunked into `itemsize` pieces.
+
+ unicode : bool, optional
+ When true, the resulting `chararray` can contain Unicode
+ characters, when false only 8-bit characters. If unicode is
+ None and `obj` is one of the following:
+
+ - a `chararray`,
+ - an ndarray of type `str` or 'unicode`
+ - a Python str or unicode object,
+
+ then the unicode setting of the output array will be
+ automatically determined.
+
+ order : {'C', 'F'}, optional
+ Specify the order of the array. If order is 'C' (default), then the
+ array will be in C-contiguous order (last-index varies the
+ fastest). If order is 'F', then the returned array
+ will be in Fortran-contiguous order (first-index varies the
+ fastest).
+ """
+ return array(obj, itemsize, copy=False,
+ unicode=unicode, order=order)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.py
new file mode 100644
index 0000000000000000000000000000000000000000..18157641aaf4d6805c3cec19814295388bebb5e0
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.py
@@ -0,0 +1,1431 @@
+"""
+Implementation of optimized einsum.
+
+"""
+import itertools
+import operator
+
+from numpy.core.multiarray import c_einsum
+from numpy.core.numeric import asanyarray, tensordot
+from numpy.core.overrides import array_function_dispatch
+
+__all__ = ['einsum', 'einsum_path']
+
+einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
+einsum_symbols_set = set(einsum_symbols)
+
+
+def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
+ """
+ Computes the number of FLOPS in the contraction.
+
+ Parameters
+ ----------
+ idx_contraction : iterable
+ The indices involved in the contraction
+ inner : bool
+ Does this contraction require an inner product?
+ num_terms : int
+ The number of terms in a contraction
+ size_dictionary : dict
+ The size of each of the indices in idx_contraction
+
+ Returns
+ -------
+ flop_count : int
+ The total number of FLOPS required for the contraction.
+
+ Examples
+ --------
+
+ >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
+ 30
+
+ >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
+ 60
+
+ """
+
+ overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
+ op_factor = max(1, num_terms - 1)
+ if inner:
+ op_factor += 1
+
+ return overall_size * op_factor
+
+def _compute_size_by_dict(indices, idx_dict):
+ """
+ Computes the product of the elements in indices based on the dictionary
+ idx_dict.
+
+ Parameters
+ ----------
+ indices : iterable
+ Indices to base the product on.
+ idx_dict : dictionary
+ Dictionary of index sizes
+
+ Returns
+ -------
+ ret : int
+ The resulting product.
+
+ Examples
+ --------
+ >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
+ 90
+
+ """
+ ret = 1
+ for i in indices:
+ ret *= idx_dict[i]
+ return ret
+
+
+def _find_contraction(positions, input_sets, output_set):
+ """
+ Finds the contraction for a given set of input and output sets.
+
+ Parameters
+ ----------
+ positions : iterable
+ Integer positions of terms used in the contraction.
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+
+ Returns
+ -------
+ new_result : set
+ The indices of the resulting contraction
+ remaining : list
+ List of sets that have not been contracted, the new set is appended to
+ the end of this list
+ idx_removed : set
+ Indices removed from the entire contraction
+ idx_contraction : set
+ The indices used in the current contraction
+
+ Examples
+ --------
+
+ # A simple dot product test case
+ >>> pos = (0, 1)
+ >>> isets = [set('ab'), set('bc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
+
+ # A more complex case with additional terms in the contraction
+ >>> pos = (0, 2)
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
+ """
+
+ idx_contract = set()
+ idx_remain = output_set.copy()
+ remaining = []
+ for ind, value in enumerate(input_sets):
+ if ind in positions:
+ idx_contract |= value
+ else:
+ remaining.append(value)
+ idx_remain |= value
+
+ new_result = idx_remain & idx_contract
+ idx_removed = (idx_contract - new_result)
+ remaining.append(new_result)
+
+ return (new_result, remaining, idx_removed, idx_contract)
+
+
+def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Computes all possible pair contractions, sieves the results based
+ on ``memory_limit`` and returns the lowest cost path. This algorithm
+ scales factorial with respect to the elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The optimal contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _optimal_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ full_results = [(0, [], input_sets)]
+ for iteration in range(len(input_sets) - 1):
+ iter_results = []
+
+ # Compute all unique pairs
+ for curr in full_results:
+ cost, positions, remaining = curr
+ for con in itertools.combinations(range(len(input_sets) - iteration), 2):
+
+ # Find the contraction
+ cont = _find_contraction(con, remaining, output_set)
+ new_result, new_input_sets, idx_removed, idx_contract = cont
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(new_result, idx_dict)
+ if new_size > memory_limit:
+ continue
+
+ # Build (total_cost, positions, indices_remaining)
+ total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict)
+ new_pos = positions + [con]
+ iter_results.append((total_cost, new_pos, new_input_sets))
+
+ # Update combinatorial list, if we did not find anything return best
+ # path + remaining contractions
+ if iter_results:
+ full_results = iter_results
+ else:
+ path = min(full_results, key=lambda x: x[0])[1]
+ path += [tuple(range(len(input_sets) - iteration))]
+ return path
+
+ # If we have not found anything return single einsum contraction
+ if len(full_results) == 0:
+ return [tuple(range(len(input_sets)))]
+
+ path = min(full_results, key=lambda x: x[0])[1]
+ return path
+
+def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost):
+ """Compute the cost (removed size + flops) and resultant indices for
+ performing the contraction specified by ``positions``.
+
+ Parameters
+ ----------
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ input_sets : list of sets
+ The indices found on each tensors.
+ output_set : set
+ The output indices of the expression.
+ idx_dict : dict
+ Mapping of each index to its size.
+ memory_limit : int
+ The total allowed size for an intermediary tensor.
+ path_cost : int
+ The contraction cost so far.
+ naive_cost : int
+ The cost of the unoptimized expression.
+
+ Returns
+ -------
+ cost : (int, int)
+ A tuple containing the size of any indices removed, and the flop cost.
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ new_input_sets : list of sets
+ The resulting new list of indices if this proposed contraction is performed.
+
+ """
+
+ # Find the contraction
+ contract = _find_contraction(positions, input_sets, output_set)
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(idx_result, idx_dict)
+ if new_size > memory_limit:
+ return None
+
+ # Build sort tuple
+ old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions)
+ removed_size = sum(old_sizes) - new_size
+
+ # NB: removed_size used to be just the size of any removed indices i.e.:
+ # helpers.compute_size_by_dict(idx_removed, idx_dict)
+ cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
+ sort = (-removed_size, cost)
+
+ # Sieve based on total cost as well
+ if (path_cost + cost) > naive_cost:
+ return None
+
+ # Add contraction to possible choices
+ return [sort, positions, new_input_sets]
+
+
+def _update_other_results(results, best):
+ """Update the positions and provisional input_sets of ``results`` based on
+ performing the contraction result ``best``. Remove any involving the tensors
+ contracted.
+
+ Parameters
+ ----------
+ results : list
+ List of contraction results produced by ``_parse_possible_contraction``.
+ best : list
+ The best contraction of ``results`` i.e. the one that will be performed.
+
+ Returns
+ -------
+ mod_results : list
+ The list of modified results, updated with outcome of ``best`` contraction.
+ """
+
+ best_con = best[1]
+ bx, by = best_con
+ mod_results = []
+
+ for cost, (x, y), con_sets in results:
+
+ # Ignore results involving tensors just contracted
+ if x in best_con or y in best_con:
+ continue
+
+ # Update the input_sets
+ del con_sets[by - int(by > x) - int(by > y)]
+ del con_sets[bx - int(bx > x) - int(bx > y)]
+ con_sets.insert(-1, best[2][-1])
+
+ # Update the position indices
+ mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
+ mod_results.append((cost, mod_con, con_sets))
+
+ return mod_results
+
+def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Finds the path by contracting the best pair until the input list is
+ exhausted. The best pair is found by minimizing the tuple
+ ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
+ matrix multiplication or inner product operations, then Hadamard like
+ operations, and finally outer operations. Outer products are limited by
+ ``memory_limit``. This algorithm scales cubically with respect to the
+ number of elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The greedy contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _greedy_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ # Handle trivial cases that leaked through
+ if len(input_sets) == 1:
+ return [(0,)]
+ elif len(input_sets) == 2:
+ return [(0, 1)]
+
+ # Build up a naive cost
+ contract = _find_contraction(range(len(input_sets)), input_sets, output_set)
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+ naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict)
+
+ # Initially iterate over all pairs
+ comb_iter = itertools.combinations(range(len(input_sets)), 2)
+ known_contractions = []
+
+ path_cost = 0
+ path = []
+
+ for iteration in range(len(input_sets) - 1):
+
+ # Iterate over all pairs on first step, only previously found pairs on subsequent steps
+ for positions in comb_iter:
+
+ # Always initially ignore outer products
+ if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
+ continue
+
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost,
+ naive_cost)
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we do not have a inner contraction, rescan pairs including outer products
+ if len(known_contractions) == 0:
+
+ # Then check the outer products
+ for positions in itertools.combinations(range(len(input_sets)), 2):
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit,
+ path_cost, naive_cost)
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we still did not find any remaining contractions, default back to einsum like behavior
+ if len(known_contractions) == 0:
+ path.append(tuple(range(len(input_sets))))
+ break
+
+ # Sort based on first index
+ best = min(known_contractions, key=lambda x: x[0])
+
+ # Now propagate as many unused contractions as possible to next iteration
+ known_contractions = _update_other_results(known_contractions, best)
+
+ # Next iteration only compute contractions with the new tensor
+ # All other contractions have been accounted for
+ input_sets = best[2]
+ new_tensor_pos = len(input_sets) - 1
+ comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
+
+ # Update path and total cost
+ path.append(best[1])
+ path_cost += best[0][1]
+
+ return path
+
+
+def _can_dot(inputs, result, idx_removed):
+ """
+ Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
+
+ Parameters
+ ----------
+ inputs : list of str
+ Specifies the subscripts for summation.
+ result : str
+ Resulting summation.
+ idx_removed : set
+ Indices that are removed in the summation
+
+
+ Returns
+ -------
+ type : bool
+ Returns true if BLAS should and can be used, else False
+
+ Notes
+ -----
+ If the operations is BLAS level 1 or 2 and is not already aligned
+ we default back to einsum as the memory movement to copy is more
+ costly than the operation itself.
+
+
+ Examples
+ --------
+
+ # Standard GEMM operation
+ >>> _can_dot(['ij', 'jk'], 'ik', set('j'))
+ True
+
+ # Can use the standard BLAS, but requires odd data movement
+ >>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
+ False
+
+ # DDOT where the memory is not aligned
+ >>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
+ False
+
+ """
+
+ # All `dot` calls remove indices
+ if len(idx_removed) == 0:
+ return False
+
+ # BLAS can only handle two operands
+ if len(inputs) != 2:
+ return False
+
+ input_left, input_right = inputs
+
+ for c in set(input_left + input_right):
+ # can't deal with repeated indices on same input or more than 2 total
+ nl, nr = input_left.count(c), input_right.count(c)
+ if (nl > 1) or (nr > 1) or (nl + nr > 2):
+ return False
+
+ # can't do implicit summation or dimension collapse e.g.
+ # "ab,bc->c" (implicitly sum over 'a')
+ # "ab,ca->ca" (take diagonal of 'a')
+ if nl + nr - 1 == int(c in result):
+ return False
+
+ # Build a few temporaries
+ set_left = set(input_left)
+ set_right = set(input_right)
+ keep_left = set_left - idx_removed
+ keep_right = set_right - idx_removed
+ rs = len(idx_removed)
+
+ # At this point we are a DOT, GEMV, or GEMM operation
+
+ # Handle inner products
+
+ # DDOT with aligned data
+ if input_left == input_right:
+ return True
+
+ # DDOT without aligned data (better to use einsum)
+ if set_left == set_right:
+ return False
+
+ # Handle the 4 possible (aligned) GEMV or GEMM cases
+
+ # GEMM or GEMV no transpose
+ if input_left[-rs:] == input_right[:rs]:
+ return True
+
+ # GEMM or GEMV transpose both
+ if input_left[:rs] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose right
+ if input_left[-rs:] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose left
+ if input_left[:rs] == input_right[:rs]:
+ return True
+
+ # Einsum is faster than GEMV if we have to copy data
+ if not keep_left or not keep_right:
+ return False
+
+ # We are a matrix-matrix product, but we need to copy data
+ return True
+
+
+def _parse_einsum_input(operands):
+ """
+ A reproduction of einsum c side einsum parsing in python.
+
+ Returns
+ -------
+ input_strings : str
+ Parsed input strings
+ output_string : str
+ Parsed output string
+ operands : list of array_like
+ The operands to use in the numpy contraction
+
+ Examples
+ --------
+ The operand list is simplified to reduce printing:
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(4, 4)
+ >>> b = np.random.rand(4, 4, 4)
+ >>> _parse_einsum_input(('...a,...a->...', a, b))
+ ('za,xza', 'xz', [a, b]) # may vary
+
+ >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
+ ('za,xza', 'xz', [a, b]) # may vary
+ """
+
+ if len(operands) == 0:
+ raise ValueError("No input operands")
+
+ if isinstance(operands[0], str):
+ subscripts = operands[0].replace(" ", "")
+ operands = [asanyarray(v) for v in operands[1:]]
+
+ # Ensure all characters are valid
+ for s in subscripts:
+ if s in '.,->':
+ continue
+ if s not in einsum_symbols:
+ raise ValueError("Character %s is not a valid symbol." % s)
+
+ else:
+ tmp_operands = list(operands)
+ operand_list = []
+ subscript_list = []
+ for p in range(len(operands) // 2):
+ operand_list.append(tmp_operands.pop(0))
+ subscript_list.append(tmp_operands.pop(0))
+
+ output_list = tmp_operands[-1] if len(tmp_operands) else None
+ operands = [asanyarray(v) for v in operand_list]
+ subscripts = ""
+ last = len(subscript_list) - 1
+ for num, sub in enumerate(subscript_list):
+ for s in sub:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError("For this input type lists must contain "
+ "either int or Ellipsis") from e
+ subscripts += einsum_symbols[s]
+ if num != last:
+ subscripts += ","
+
+ if output_list is not None:
+ subscripts += "->"
+ for s in output_list:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError("For this input type lists must contain "
+ "either int or Ellipsis") from e
+ subscripts += einsum_symbols[s]
+ # Check for proper "->"
+ if ("-" in subscripts) or (">" in subscripts):
+ invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
+ if invalid or (subscripts.count("->") != 1):
+ raise ValueError("Subscripts can only contain one '->'.")
+
+ # Parse ellipses
+ if "." in subscripts:
+ used = subscripts.replace(".", "").replace(",", "").replace("->", "")
+ unused = list(einsum_symbols_set - set(used))
+ ellipse_inds = "".join(unused)
+ longest = 0
+
+ if "->" in subscripts:
+ input_tmp, output_sub = subscripts.split("->")
+ split_subscripts = input_tmp.split(",")
+ out_sub = True
+ else:
+ split_subscripts = subscripts.split(',')
+ out_sub = False
+
+ for num, sub in enumerate(split_subscripts):
+ if "." in sub:
+ if (sub.count(".") != 3) or (sub.count("...") != 1):
+ raise ValueError("Invalid Ellipses.")
+
+ # Take into account numerical values
+ if operands[num].shape == ():
+ ellipse_count = 0
+ else:
+ ellipse_count = max(operands[num].ndim, 1)
+ ellipse_count -= (len(sub) - 3)
+
+ if ellipse_count > longest:
+ longest = ellipse_count
+
+ if ellipse_count < 0:
+ raise ValueError("Ellipses lengths do not match.")
+ elif ellipse_count == 0:
+ split_subscripts[num] = sub.replace('...', '')
+ else:
+ rep_inds = ellipse_inds[-ellipse_count:]
+ split_subscripts[num] = sub.replace('...', rep_inds)
+
+ subscripts = ",".join(split_subscripts)
+ if longest == 0:
+ out_ellipse = ""
+ else:
+ out_ellipse = ellipse_inds[-longest:]
+
+ if out_sub:
+ subscripts += "->" + output_sub.replace("...", out_ellipse)
+ else:
+ # Special care for outputless ellipses
+ output_subscript = ""
+ tmp_subscripts = subscripts.replace(",", "")
+ for s in sorted(set(tmp_subscripts)):
+ if s not in (einsum_symbols):
+ raise ValueError("Character %s is not a valid symbol." % s)
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+ normal_inds = ''.join(sorted(set(output_subscript) -
+ set(out_ellipse)))
+
+ subscripts += "->" + out_ellipse + normal_inds
+
+ # Build output string if does not exist
+ if "->" in subscripts:
+ input_subscripts, output_subscript = subscripts.split("->")
+ else:
+ input_subscripts = subscripts
+ # Build output subscripts
+ tmp_subscripts = subscripts.replace(",", "")
+ output_subscript = ""
+ for s in sorted(set(tmp_subscripts)):
+ if s not in einsum_symbols:
+ raise ValueError("Character %s is not a valid symbol." % s)
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+
+ # Make sure output subscripts are in the input
+ for char in output_subscript:
+ if char not in input_subscripts:
+ raise ValueError("Output character %s did not appear in the input"
+ % char)
+
+ # Make sure number operands is equivalent to the number of terms
+ if len(input_subscripts.split(',')) != len(operands):
+ raise ValueError("Number of einsum subscripts must be equal to the "
+ "number of operands.")
+
+ return (input_subscripts, output_subscript, operands)
+
+
+def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
+ # NOTE: technically, we should only dispatch on array-like arguments, not
+ # subscripts (given as strings). But separating operands into
+ # arrays/subscripts is a little tricky/slow (given einsum's two supported
+ # signatures), so as a practical shortcut we dispatch on everything.
+ # Strings will be ignored for dispatching since they don't define
+ # __array_function__.
+ return operands
+
+
+@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
+def einsum_path(*operands, optimize='greedy', einsum_call=False):
+ """
+ einsum_path(subscripts, *operands, optimize='greedy')
+
+ Evaluates the lowest cost contraction order for an einsum expression by
+ considering the creation of intermediate arrays.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation.
+ *operands : list of array_like
+ These are the arrays for the operation.
+ optimize : {bool, list, tuple, 'greedy', 'optimal'}
+ Choose the type of path. If a tuple is provided, the second argument is
+ assumed to be the maximum intermediate size created. If only a single
+ argument is provided the largest input or output array size is used
+ as a maximum intermediate size.
+
+ * if a list is given that starts with ``einsum_path``, uses this as the
+ contraction path
+ * if False no optimization is taken
+ * if True defaults to the 'greedy' algorithm
+ * 'optimal' An algorithm that combinatorially explores all possible
+ ways of contracting the listed tensors and choosest the least costly
+ path. Scales exponentially with the number of terms in the
+ contraction.
+ * 'greedy' An algorithm that chooses the best pair contraction
+ at each step. Effectively, this algorithm searches the largest inner,
+ Hadamard, and then outer products at each step. Scales cubically with
+ the number of terms in the contraction. Equivalent to the 'optimal'
+ path for most contractions.
+
+ Default is 'greedy'.
+
+ Returns
+ -------
+ path : list of tuples
+ A list representation of the einsum path.
+ string_repr : str
+ A printable representation of the einsum path.
+
+ Notes
+ -----
+ The resulting path indicates which terms of the input contraction should be
+ contracted first, the result of this contraction is then appended to the
+ end of the contraction list. This list can then be iterated over until all
+ intermediate contractions are complete.
+
+ See Also
+ --------
+ einsum, linalg.multi_dot
+
+ Examples
+ --------
+
+ We can begin with a chain dot example. In this case, it is optimal to
+ contract the ``b`` and ``c`` tensors first as represented by the first
+ element of the path ``(1, 2)``. The resulting tensor is added to the end
+ of the contraction and the remaining contraction ``(0, 1)`` is then
+ completed.
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(2, 2)
+ >>> b = np.random.rand(2, 5)
+ >>> c = np.random.rand(5, 2)
+ >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
+ >>> print(path_info[0])
+ ['einsum_path', (1, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ij,jk,kl->il # may vary
+ Naive scaling: 4
+ Optimized scaling: 3
+ Naive FLOP count: 1.600e+02
+ Optimized FLOP count: 5.600e+01
+ Theoretical speedup: 2.857
+ Largest intermediate: 4.000e+00 elements
+ -------------------------------------------------------------------------
+ scaling current remaining
+ -------------------------------------------------------------------------
+ 3 kl,jk->jl ij,jl->il
+ 3 jl,ij->il il->il
+
+
+ A more complex index transformation example.
+
+ >>> I = np.random.rand(10, 10, 10, 10)
+ >>> C = np.random.rand(10, 10)
+ >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
+ ... optimize='greedy')
+
+ >>> print(path_info[0])
+ ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
+ Naive scaling: 8
+ Optimized scaling: 5
+ Naive FLOP count: 8.000e+08
+ Optimized FLOP count: 8.000e+05
+ Theoretical speedup: 1000.000
+ Largest intermediate: 1.000e+04 elements
+ --------------------------------------------------------------------------
+ scaling current remaining
+ --------------------------------------------------------------------------
+ 5 abcd,ea->bcde fb,gc,hd,bcde->efgh
+ 5 bcde,fb->cdef gc,hd,cdef->efgh
+ 5 cdef,gc->defg hd,defg->efgh
+ 5 defg,hd->efgh efgh->efgh
+ """
+
+ # Figure out what the path really is
+ path_type = optimize
+ if path_type is True:
+ path_type = 'greedy'
+ if path_type is None:
+ path_type = False
+
+ memory_limit = None
+
+ # No optimization or a named path algorithm
+ if (path_type is False) or isinstance(path_type, str):
+ pass
+
+ # Given an explicit path
+ elif len(path_type) and (path_type[0] == 'einsum_path'):
+ pass
+
+ # Path tuple with memory limit
+ elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
+ isinstance(path_type[1], (int, float))):
+ memory_limit = int(path_type[1])
+ path_type = path_type[0]
+
+ else:
+ raise TypeError("Did not understand the path: %s" % str(path_type))
+
+ # Hidden option, only einsum should call this
+ einsum_call_arg = einsum_call
+
+ # Python side parsing
+ input_subscripts, output_subscript, operands = _parse_einsum_input(operands)
+
+ # Build a few useful list and sets
+ input_list = input_subscripts.split(',')
+ input_sets = [set(x) for x in input_list]
+ output_set = set(output_subscript)
+ indices = set(input_subscripts.replace(',', ''))
+
+ # Get length of each unique dimension and ensure all dimensions are correct
+ dimension_dict = {}
+ broadcast_indices = [[] for x in range(len(input_list))]
+ for tnum, term in enumerate(input_list):
+ sh = operands[tnum].shape
+ if len(sh) != len(term):
+ raise ValueError("Einstein sum subscript %s does not contain the "
+ "correct number of indices for operand %d."
+ % (input_subscripts[tnum], tnum))
+ for cnum, char in enumerate(term):
+ dim = sh[cnum]
+
+ # Build out broadcast indices
+ if dim == 1:
+ broadcast_indices[tnum].append(char)
+
+ if char in dimension_dict.keys():
+ # For broadcasting cases we always want the largest dim size
+ if dimension_dict[char] == 1:
+ dimension_dict[char] = dim
+ elif dim not in (1, dimension_dict[char]):
+ raise ValueError("Size of label '%s' for operand %d (%d) "
+ "does not match previous terms (%d)."
+ % (char, tnum, dimension_dict[char], dim))
+ else:
+ dimension_dict[char] = dim
+
+ # Convert broadcast inds to sets
+ broadcast_indices = [set(x) for x in broadcast_indices]
+
+ # Compute size of each input array plus the output array
+ size_list = [_compute_size_by_dict(term, dimension_dict)
+ for term in input_list + [output_subscript]]
+ max_size = max(size_list)
+
+ if memory_limit is None:
+ memory_arg = max_size
+ else:
+ memory_arg = memory_limit
+
+ # Compute naive cost
+ # This isn't quite right, need to look into exactly how einsum does this
+ inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
+ naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict)
+
+ # Compute the path
+ if (path_type is False) or (len(input_list) in [1, 2]) or (indices == output_set):
+ # Nothing to be optimized, leave it to einsum
+ path = [tuple(range(len(input_list)))]
+ elif path_type == "greedy":
+ path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg)
+ elif path_type == "optimal":
+ path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg)
+ elif path_type[0] == 'einsum_path':
+ path = path_type[1:]
+ else:
+ raise KeyError("Path name %s not found", path_type)
+
+ cost_list, scale_list, size_list, contraction_list = [], [], [], []
+
+ # Build contraction tuple (positions, gemm, einsum_str, remaining)
+ for cnum, contract_inds in enumerate(path):
+ # Make sure we remove inds from right to left
+ contract_inds = tuple(sorted(list(contract_inds), reverse=True))
+
+ contract = _find_contraction(contract_inds, input_sets, output_set)
+ out_inds, input_sets, idx_removed, idx_contract = contract
+
+ cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict)
+ cost_list.append(cost)
+ scale_list.append(len(idx_contract))
+ size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
+
+ bcast = set()
+ tmp_inputs = []
+ for x in contract_inds:
+ tmp_inputs.append(input_list.pop(x))
+ bcast |= broadcast_indices.pop(x)
+
+ new_bcast_inds = bcast - idx_removed
+
+ # If we're broadcasting, nix blas
+ if not len(idx_removed & bcast):
+ do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
+ else:
+ do_blas = False
+
+ # Last contraction
+ if (cnum - len(path)) == -1:
+ idx_result = output_subscript
+ else:
+ sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
+ idx_result = "".join([x[1] for x in sorted(sort_result)])
+
+ input_list.append(idx_result)
+ broadcast_indices.append(new_bcast_inds)
+ einsum_str = ",".join(tmp_inputs) + "->" + idx_result
+
+ contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas)
+ contraction_list.append(contraction)
+
+ opt_cost = sum(cost_list) + 1
+
+ if einsum_call_arg:
+ return (operands, contraction_list)
+
+ # Return the path along with a nice string representation
+ overall_contraction = input_subscripts + "->" + output_subscript
+ header = ("scaling", "current", "remaining")
+
+ speedup = naive_cost / opt_cost
+ max_i = max(size_list)
+
+ path_print = " Complete contraction: %s\n" % overall_contraction
+ path_print += " Naive scaling: %d\n" % len(indices)
+ path_print += " Optimized scaling: %d\n" % max(scale_list)
+ path_print += " Naive FLOP count: %.3e\n" % naive_cost
+ path_print += " Optimized FLOP count: %.3e\n" % opt_cost
+ path_print += " Theoretical speedup: %3.3f\n" % speedup
+ path_print += " Largest intermediate: %.3e elements\n" % max_i
+ path_print += "-" * 74 + "\n"
+ path_print += "%6s %24s %40s\n" % header
+ path_print += "-" * 74
+
+ for n, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ remaining_str = ",".join(remaining) + "->" + output_subscript
+ path_run = (scale_list[n], einsum_str, remaining_str)
+ path_print += "\n%4d %24s %40s" % path_run
+
+ path = ['einsum_path'] + path
+ return (path, path_print)
+
+
+def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
+ # Arguably we dispatch on more arguments that we really should; see note in
+ # _einsum_path_dispatcher for why.
+ yield from operands
+ yield out
+
+
+# Rewrite einsum to handle different cases
+@array_function_dispatch(_einsum_dispatcher, module='numpy')
+def einsum(*operands, out=None, optimize=False, **kwargs):
+ """
+ einsum(subscripts, *operands, out=None, dtype=None, order='K',
+ casting='safe', optimize=False)
+
+ Evaluates the Einstein summation convention on the operands.
+
+ Using the Einstein summation convention, many common multi-dimensional,
+ linear algebraic array operations can be represented in a simple fashion.
+ In *implicit* mode `einsum` computes these values.
+
+ In *explicit* mode, `einsum` provides further flexibility to compute
+ other array operations that might not be considered classical Einstein
+ summation operations, by disabling, or forcing summation over specified
+ subscript labels.
+
+ See the notes and examples for clarification.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation as comma separated list of
+ subscript labels. An implicit (classical Einstein summation)
+ calculation is performed unless the explicit indicator '->' is
+ included as well as subscript labels of the precise output form.
+ operands : list of array_like
+ These are the arrays for the operation.
+ out : ndarray, optional
+ If provided, the calculation is done into this array.
+ dtype : {data-type, None}, optional
+ If provided, forces the calculation to use the data type specified.
+ Note that you may have to also give a more liberal `casting`
+ parameter to allow the conversions. Default is None.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the output. 'C' means it should
+ be C contiguous. 'F' means it should be Fortran contiguous,
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+ 'K' means it should be as close to the layout as the inputs as
+ is possible, including arbitrarily permuted axes.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Setting this to
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Default is 'safe'.
+ optimize : {False, True, 'greedy', 'optimal'}, optional
+ Controls if intermediate optimization should occur. No optimization
+ will occur if False and True will default to the 'greedy' algorithm.
+ Also accepts an explicit contraction list from the ``np.einsum_path``
+ function. See ``np.einsum_path`` for more details. Defaults to False.
+
+ Returns
+ -------
+ output : ndarray
+ The calculation based on the Einstein summation convention.
+
+ See Also
+ --------
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+ einops :
+ similar verbose interface is provided by
+ `einops `_ package to cover
+ additional operations: transpose, reshape/flatten, repeat/tile,
+ squeeze/unsqueeze and reductions.
+ opt_einsum :
+ `opt_einsum `_
+ optimizes contraction order for einsum-like expressions
+ in backend-agnostic manner.
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ The Einstein summation convention can be used to compute
+ many multi-dimensional, linear algebraic array operations. `einsum`
+ provides a succinct way of representing these.
+
+ A non-exhaustive list of these operations,
+ which can be computed by `einsum`, is shown below along with examples:
+
+ * Trace of an array, :py:func:`numpy.trace`.
+ * Return a diagonal, :py:func:`numpy.diag`.
+ * Array axis summations, :py:func:`numpy.sum`.
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
+ * Tensor contractions, :py:func:`numpy.tensordot`.
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
+
+ The subscripts string is a comma-separated list of subscript labels,
+ where each label refers to a dimension of the corresponding operand.
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+ is equivalent to :py:func:`np.inner(a,b) `. If a label
+ appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
+ view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
+ describes traditional matrix multiplication and is equivalent to
+ :py:func:`np.matmul(a,b) `. Repeated subscript labels in one
+ operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
+ to :py:func:`np.trace(a) `.
+
+ In *implicit mode*, the chosen subscripts are important
+ since the axes of the output are reordered alphabetically. This
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+ multiplication since subscript 'h' precedes subscript 'i'.
+
+ In *explicit mode* the output can be directly controlled by
+ specifying output subscript labels. This requires the
+ identifier '->' as well as the list of output subscript labels.
+ This feature increases the flexibility of the function since
+ summing can be disabled or forced when required. The call
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) `,
+ and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) `.
+ The difference is that `einsum` does not allow broadcasting by default.
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+ order of the output subscript labels and therefore returns matrix
+ multiplication, unlike the example above in implicit mode.
+
+ To enable and control broadcasting, use an ellipsis. Default
+ NumPy-style broadcasting is done by adding an ellipsis
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
+ To take the trace along the first and last axes,
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+ product with the left-most indices instead of rightmost, one can do
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+ When there is only one operand, no axes are summed, and no output
+ parameter is provided, a view into the operand is returned instead
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+ produces a view (changed in version 1.10.0).
+
+ `einsum` also provides an alternative way to provide the subscripts
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+ If the output shape is not provided in this format `einsum` will be
+ calculated in implicit mode, otherwise it will be performed explicitly.
+ The examples below have corresponding `einsum` calls with the two
+ parameter methods.
+
+ .. versionadded:: 1.10.0
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) `
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
+ .. versionadded:: 1.12.0
+
+ Added the ``optimize`` argument which will optimize the contraction order
+ of an einsum expression. For a contraction with three or more operands this
+ can greatly increase the computational efficiency at the cost of a larger
+ memory footprint during computation.
+
+ Typically a 'greedy' algorithm is applied which empirical tests have shown
+ returns the optimal path in the majority of cases. In some cases 'optimal'
+ will return the superlative path through a more expensive, exhaustive search.
+ For iterative calculations it may be advisable to calculate the optimal path
+ once and reuse that path by supplying it as an argument. An example is given
+ below.
+
+ See :py:func:`numpy.einsum_path` for more details.
+
+ Examples
+ --------
+ >>> a = np.arange(25).reshape(5,5)
+ >>> b = np.arange(5)
+ >>> c = np.arange(6).reshape(2,3)
+
+ Trace of a matrix:
+
+ >>> np.einsum('ii', a)
+ 60
+ >>> np.einsum(a, [0,0])
+ 60
+ >>> np.trace(a)
+ 60
+
+ Extract the diagonal (requires explicit form):
+
+ >>> np.einsum('ii->i', a)
+ array([ 0, 6, 12, 18, 24])
+ >>> np.einsum(a, [0,0], [0])
+ array([ 0, 6, 12, 18, 24])
+ >>> np.diag(a)
+ array([ 0, 6, 12, 18, 24])
+
+ Sum over an axis (requires explicit form):
+
+ >>> np.einsum('ij->i', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [0,1], [0])
+ array([ 10, 35, 60, 85, 110])
+ >>> np.sum(a, axis=1)
+ array([ 10, 35, 60, 85, 110])
+
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
+
+ >>> np.einsum('...j->...', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+ array([ 10, 35, 60, 85, 110])
+
+ Compute a matrix transpose, or reorder any number of axes:
+
+ >>> np.einsum('ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum('ij->ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum(c, [1,0])
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.transpose(c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+
+ Vector inner products:
+
+ >>> np.einsum('i,i', b, b)
+ 30
+ >>> np.einsum(b, [0], b, [0])
+ 30
+ >>> np.inner(b,b)
+ 30
+
+ Matrix vector multiplication:
+
+ >>> np.einsum('ij,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum(a, [0,1], b, [1])
+ array([ 30, 80, 130, 180, 230])
+ >>> np.dot(a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum('...j,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+
+ Broadcasting and scalar multiplication:
+
+ >>> np.einsum('..., ...', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(',ij', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.multiply(3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+
+ Vector outer product:
+
+ >>> np.einsum('i,j', np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.outer(np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+
+ Tensor contraction:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> np.einsum('ijk,jil->kl', a, b)
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+
+ Writeable returned arrays (since version 1.10.0):
+
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ Example of ellipsis use:
+
+ >>> a = np.arange(6).reshape((3,2))
+ >>> b = np.arange(12).reshape((4,3))
+ >>> np.einsum('ki,jk->ij', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('ki,...k->i...', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('k...,jk', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+
+ Chained array operations. For more complicated contractions, speed ups
+ might be achieved by repeatedly computing a 'greedy' path or pre-computing the
+ 'optimal' path and repeatedly applying it, using an
+ `einsum_path` insertion (since version 1.12.0). Performance improvements can be
+ particularly significant with larger arrays:
+
+ >>> a = np.ones(64).reshape(2,4,8)
+
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
+
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
+
+ Greedy `einsum` (faster optimal path approximation): ~160ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
+
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
+ >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
+
+ """
+ # Special handling if out is specified
+ specified_out = out is not None
+
+ # If no optimization, run pure einsum
+ if optimize is False:
+ if specified_out:
+ kwargs['out'] = out
+ return c_einsum(*operands, **kwargs)
+
+ # Check the kwargs to avoid a more cryptic error later, without having to
+ # repeat default values here
+ valid_einsum_kwargs = ['dtype', 'order', 'casting']
+ unknown_kwargs = [k for (k, v) in kwargs.items() if
+ k not in valid_einsum_kwargs]
+ if len(unknown_kwargs):
+ raise TypeError("Did not understand the following kwargs: %s"
+ % unknown_kwargs)
+
+ # Build the contraction list and operand
+ operands, contraction_list = einsum_path(*operands, optimize=optimize,
+ einsum_call=True)
+
+ # Handle order kwarg for output array, c_einsum allows mixed case
+ output_order = kwargs.pop('order', 'K')
+ if output_order.upper() == 'A':
+ if all(arr.flags.f_contiguous for arr in operands):
+ output_order = 'F'
+ else:
+ output_order = 'C'
+
+ # Start contraction loop
+ for num, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ tmp_operands = [operands.pop(x) for x in inds]
+
+ # Do we need to deal with the output?
+ handle_out = specified_out and ((num + 1) == len(contraction_list))
+
+ # Call tensordot if still possible
+ if blas:
+ # Checks have already been handled
+ input_str, results_index = einsum_str.split('->')
+ input_left, input_right = input_str.split(',')
+
+ tensor_result = input_left + input_right
+ for s in idx_rm:
+ tensor_result = tensor_result.replace(s, "")
+
+ # Find indices to contract over
+ left_pos, right_pos = [], []
+ for s in sorted(idx_rm):
+ left_pos.append(input_left.find(s))
+ right_pos.append(input_right.find(s))
+
+ # Contract!
+ new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos)))
+
+ # Build a new view if needed
+ if (tensor_result != results_index) or handle_out:
+ if handle_out:
+ kwargs["out"] = out
+ new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs)
+
+ # Call einsum
+ else:
+ # If out was specified
+ if handle_out:
+ kwargs["out"] = out
+
+ # Do the contraction
+ new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
+
+ # Append new items and dereference what we can
+ operands.append(new_view)
+ del tmp_operands, new_view
+
+ if specified_out:
+ return out
+ else:
+ return asanyarray(operands[0], order=output_order)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..2457e8719df43385d8a08240d7c8113c376ea342
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/einsumfunc.pyi
@@ -0,0 +1,142 @@
+import sys
+from typing import List, TypeVar, Optional, Any, overload, Union, Tuple, Sequence
+
+from numpy import (
+ ndarray,
+ dtype,
+ bool_,
+ unsignedinteger,
+ signedinteger,
+ floating,
+ complexfloating,
+ number,
+ _OrderKACF,
+)
+from numpy.typing import (
+ _ArrayLikeBool_co,
+ _ArrayLikeUInt_co,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _DTypeLikeBool,
+ _DTypeLikeUInt,
+ _DTypeLikeInt,
+ _DTypeLikeFloat,
+ _DTypeLikeComplex,
+ _DTypeLikeComplex_co,
+)
+
+if sys.version_info >= (3, 8):
+ from typing import Literal
+else:
+ from typing_extensions import Literal
+
+_ArrayType = TypeVar(
+ "_ArrayType",
+ bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
+)
+
+_OptimizeKind = Union[
+ None, bool, Literal["greedy", "optimal"], Sequence[Any]
+]
+_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
+_CastingUnsafe = Literal["unsafe"]
+
+__all__: List[str]
+
+# TODO: Properly handle the `casting`-based combinatorics
+# TODO: We need to evaluate the content `__subscripts` in order
+# to identify whether or an array or scalar is returned. At a cursory
+# glance this seems like something that can quite easilly be done with
+# a mypy plugin.
+# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeBool_co,
+ out: None = ...,
+ dtype: Optional[_DTypeLikeBool] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeUInt_co,
+ out: None = ...,
+ dtype: Optional[_DTypeLikeUInt] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeInt_co,
+ out: None = ...,
+ dtype: Optional[_DTypeLikeInt] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeFloat_co,
+ out: None = ...,
+ dtype: Optional[_DTypeLikeFloat] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeComplex_co,
+ out: None = ...,
+ dtype: Optional[_DTypeLikeComplex] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: Any,
+ casting: _CastingUnsafe,
+ dtype: Optional[_DTypeLikeComplex_co] = ...,
+ out: None = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> Any: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: _ArrayLikeComplex_co,
+ out: _ArrayType,
+ dtype: Optional[_DTypeLikeComplex_co] = ...,
+ order: _OrderKACF = ...,
+ casting: _CastingSafe = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayType: ...
+@overload
+def einsum(
+ __subscripts: str,
+ *operands: Any,
+ out: _ArrayType,
+ casting: _CastingUnsafe,
+ dtype: Optional[_DTypeLikeComplex_co] = ...,
+ order: _OrderKACF = ...,
+ optimize: _OptimizeKind = ...,
+) -> _ArrayType: ...
+
+# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
+# It is therefore excluded from the signatures below.
+# NOTE: In practice the list consists of a `str` (first element)
+# and a variable number of integer tuples.
+def einsum_path(
+ __subscripts: str,
+ *operands: _ArrayLikeComplex_co,
+ optimize: _OptimizeKind = ...,
+) -> Tuple[List[Any], str]: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.py
new file mode 100644
index 0000000000000000000000000000000000000000..65a42eb1ee72c7843efbf8a2cf8f8c47d0b17644
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.py
@@ -0,0 +1,3789 @@
+"""Module containing non-deprecated functions borrowed from Numeric.
+
+"""
+import functools
+import types
+import warnings
+
+import numpy as np
+from . import multiarray as mu
+from . import overrides
+from . import umath as um
+from . import numerictypes as nt
+from .multiarray import asarray, array, asanyarray, concatenate
+from . import _methods
+
+_dt_ = nt.sctype2char
+
+# functions that are methods
+__all__ = [
+ 'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax',
+ 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
+ 'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean',
+ 'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put',
+ 'ravel', 'repeat', 'reshape', 'resize', 'round_',
+ 'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze',
+ 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
+]
+
+_gentype = types.GeneratorType
+# save away Python sum
+_sum_ = sum
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+# functions that are now methods
+def _wrapit(obj, method, *args, **kwds):
+ try:
+ wrap = obj.__array_wrap__
+ except AttributeError:
+ wrap = None
+ result = getattr(asarray(obj), method)(*args, **kwds)
+ if wrap:
+ if not isinstance(result, mu.ndarray):
+ result = asarray(result)
+ result = wrap(result)
+ return result
+
+
+def _wrapfunc(obj, method, *args, **kwds):
+ bound = getattr(obj, method, None)
+ if bound is None:
+ return _wrapit(obj, method, *args, **kwds)
+
+ try:
+ return bound(*args, **kwds)
+ except TypeError:
+ # A TypeError occurs if the object does have such a method in its
+ # class, but its signature is not identical to that of NumPy's. This
+ # situation has occurred in the case of a downstream library like
+ # 'pandas'.
+ #
+ # Call _wrapit from within the except clause to ensure a potential
+ # exception has a traceback chain.
+ return _wrapit(obj, method, *args, **kwds)
+
+
+def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs):
+ passkwargs = {k: v for k, v in kwargs.items()
+ if v is not np._NoValue}
+
+ if type(obj) is not mu.ndarray:
+ try:
+ reduction = getattr(obj, method)
+ except AttributeError:
+ pass
+ else:
+ # This branch is needed for reductions like any which don't
+ # support a dtype.
+ if dtype is not None:
+ return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
+ else:
+ return reduction(axis=axis, out=out, **passkwargs)
+
+ return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
+
+
+def _take_dispatcher(a, indices, axis=None, out=None, mode=None):
+ return (a, out)
+
+
+@array_function_dispatch(_take_dispatcher)
+def take(a, indices, axis=None, out=None, mode='raise'):
+ """
+ Take elements from an array along an axis.
+
+ When axis is not None, this function does the same thing as "fancy"
+ indexing (indexing arrays using arrays); however, it can be easier to use
+ if you need elements along a given axis. A call such as
+ ``np.take(arr, indices, axis=3)`` is equivalent to
+ ``arr[:,:,:,indices,...]``.
+
+ Explained without fancy indexing, this is equivalent to the following use
+ of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of
+ indices::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ Nj = indices.shape
+ for ii in ndindex(Ni):
+ for jj in ndindex(Nj):
+ for kk in ndindex(Nk):
+ out[ii + jj + kk] = a[ii + (indices[jj],) + kk]
+
+ Parameters
+ ----------
+ a : array_like (Ni..., M, Nk...)
+ The source array.
+ indices : array_like (Nj...)
+ The indices of the values to extract.
+
+ .. versionadded:: 1.8.0
+
+ Also allow scalars for indices.
+ axis : int, optional
+ The axis over which to select values. By default, the flattened
+ input array is used.
+ out : ndarray, optional (Ni..., Nj..., Nk...)
+ If provided, the result will be placed in this array. It should
+ be of the appropriate shape and dtype. Note that `out` is always
+ buffered if `mode='raise'`; use other modes for better performance.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ 'clip' mode means that all indices that are too large are replaced
+ by the index that addresses the last element along that axis. Note
+ that this disables indexing with negative numbers.
+
+ Returns
+ -------
+ out : ndarray (Ni..., Nj..., Nk...)
+ The returned array has the same type as `a`.
+
+ See Also
+ --------
+ compress : Take elements using a boolean mask
+ ndarray.take : equivalent method
+ take_along_axis : Take elements by matching the array and the index arrays
+
+ Notes
+ -----
+
+ By eliminating the inner loop in the description above, and using `s_` to
+ build simple slice objects, `take` can be expressed in terms of applying
+ fancy indexing to each 1-d slice::
+
+ Ni, Nk = a.shape[:axis], a.shape[axis+1:]
+ for ii in ndindex(Ni):
+ for kk in ndindex(Nj):
+ out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]
+
+ For this reason, it is equivalent to (but faster than) the following use
+ of `apply_along_axis`::
+
+ out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)
+
+ Examples
+ --------
+ >>> a = [4, 3, 5, 7, 6, 8]
+ >>> indices = [0, 1, 4]
+ >>> np.take(a, indices)
+ array([4, 3, 6])
+
+ In this example if `a` is an ndarray, "fancy" indexing can be used.
+
+ >>> a = np.array(a)
+ >>> a[indices]
+ array([4, 3, 6])
+
+ If `indices` is not one dimensional, the output also has these dimensions.
+
+ >>> np.take(a, [[0, 1], [2, 3]])
+ array([[4, 3],
+ [5, 7]])
+ """
+ return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode)
+
+
+def _reshape_dispatcher(a, newshape, order=None):
+ return (a,)
+
+
+# not deprecated --- copy if necessary, view otherwise
+@array_function_dispatch(_reshape_dispatcher)
+def reshape(a, newshape, order='C'):
+ """
+ Gives a new shape to an array without changing its data.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be reshaped.
+ newshape : int or tuple of ints
+ The new shape should be compatible with the original shape. If
+ an integer, then the result will be a 1-D array of that length.
+ One shape dimension can be -1. In this case, the value is
+ inferred from the length of the array and remaining dimensions.
+ order : {'C', 'F', 'A'}, optional
+ Read the elements of `a` using this index order, and place the
+ elements into the reshaped array using this index order. 'C'
+ means to read / write the elements using C-like index order,
+ with the last axis index changing fastest, back to the first
+ axis index changing slowest. 'F' means to read / write the
+ elements using Fortran-like index order, with the first index
+ changing fastest, and the last index changing slowest. Note that
+ the 'C' and 'F' options take no account of the memory layout of
+ the underlying array, and only refer to the order of indexing.
+ 'A' means to read / write the elements in Fortran-like index
+ order if `a` is Fortran *contiguous* in memory, C-like order
+ otherwise.
+
+ Returns
+ -------
+ reshaped_array : ndarray
+ This will be a new view object if possible; otherwise, it will
+ be a copy. Note there is no guarantee of the *memory layout* (C- or
+ Fortran- contiguous) of the returned array.
+
+ See Also
+ --------
+ ndarray.reshape : Equivalent method.
+
+ Notes
+ -----
+ It is not always possible to change the shape of an array without
+ copying the data. If you want an error to be raised when the data is copied,
+ you should assign the new shape to the shape attribute of the array::
+
+ >>> a = np.zeros((10, 2))
+
+ # A transpose makes the array non-contiguous
+ >>> b = a.T
+
+ # Taking a view makes it possible to modify the shape without modifying
+ # the initial object.
+ >>> c = b.view()
+ >>> c.shape = (20)
+ Traceback (most recent call last):
+ ...
+ AttributeError: Incompatible shape for in-place modification. Use
+ `.reshape()` to make a copy with the desired shape.
+
+ The `order` keyword gives the index ordering both for *fetching* the values
+ from `a`, and then *placing* the values into the output array.
+ For example, let's say you have an array:
+
+ >>> a = np.arange(6).reshape((3, 2))
+ >>> a
+ array([[0, 1],
+ [2, 3],
+ [4, 5]])
+
+ You can think of reshaping as first raveling the array (using the given
+ index order), then inserting the elements from the raveled array into the
+ new array using the same kind of index ordering as was used for the
+ raveling.
+
+ >>> np.reshape(a, (2, 3)) # C-like index ordering
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
+ array([[0, 4, 3],
+ [2, 1, 5]])
+ >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
+ array([[0, 4, 3],
+ [2, 1, 5]])
+
+ Examples
+ --------
+ >>> a = np.array([[1,2,3], [4,5,6]])
+ >>> np.reshape(a, 6)
+ array([1, 2, 3, 4, 5, 6])
+ >>> np.reshape(a, 6, order='F')
+ array([1, 4, 2, 5, 3, 6])
+
+ >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ """
+ return _wrapfunc(a, 'reshape', newshape, order=order)
+
+
+def _choose_dispatcher(a, choices, out=None, mode=None):
+ yield a
+ yield from choices
+ yield out
+
+
+@array_function_dispatch(_choose_dispatcher)
+def choose(a, choices, out=None, mode='raise'):
+ """
+ Construct an array from an index array and a list of arrays to choose from.
+
+ First of all, if confused or uncertain, definitely look at the Examples -
+ in its full generality, this function is less simple than it might
+ seem from the following code description (below ndi =
+ `numpy.lib.index_tricks`):
+
+ ``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``.
+
+ But this omits some subtleties. Here is a fully general summary:
+
+ Given an "index" array (`a`) of integers and a sequence of ``n`` arrays
+ (`choices`), `a` and each choice array are first broadcast, as necessary,
+ to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =
+ 0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape``
+ for each ``i``. Then, a new array with shape ``Ba.shape`` is created as
+ follows:
+
+ * if ``mode='raise'`` (the default), then, first of all, each element of
+ ``a`` (and thus ``Ba``) must be in the range ``[0, n-1]``; now, suppose
+ that ``i`` (in that range) is the value at the ``(j0, j1, ..., jm)``
+ position in ``Ba`` - then the value at the same position in the new array
+ is the value in ``Bchoices[i]`` at that same position;
+
+ * if ``mode='wrap'``, values in `a` (and thus `Ba`) may be any (signed)
+ integer; modular arithmetic is used to map integers outside the range
+ `[0, n-1]` back into that range; and then the new array is constructed
+ as above;
+
+ * if ``mode='clip'``, values in `a` (and thus ``Ba``) may be any (signed)
+ integer; negative integers are mapped to 0; values greater than ``n-1``
+ are mapped to ``n-1``; and then the new array is constructed as above.
+
+ Parameters
+ ----------
+ a : int array
+ This array must contain integers in ``[0, n-1]``, where ``n`` is the
+ number of choices, unless ``mode=wrap`` or ``mode=clip``, in which
+ cases any integers are permissible.
+ choices : sequence of arrays
+ Choice arrays. `a` and all of the choices must be broadcastable to the
+ same shape. If `choices` is itself an array (not recommended), then
+ its outermost dimension (i.e., the one corresponding to
+ ``choices.shape[0]``) is taken as defining the "sequence".
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype. Note that `out` is always
+ buffered if ``mode='raise'``; use other modes for better performance.
+ mode : {'raise' (default), 'wrap', 'clip'}, optional
+ Specifies how indices outside ``[0, n-1]`` will be treated:
+
+ * 'raise' : an exception is raised
+ * 'wrap' : value becomes value mod ``n``
+ * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1
+
+ Returns
+ -------
+ merged_array : array
+ The merged result.
+
+ Raises
+ ------
+ ValueError: shape mismatch
+ If `a` and each choice array are not all broadcastable to the same
+ shape.
+
+ See Also
+ --------
+ ndarray.choose : equivalent method
+ numpy.take_along_axis : Preferable if `choices` is an array
+
+ Notes
+ -----
+ To reduce the chance of misinterpretation, even though the following
+ "abuse" is nominally supported, `choices` should neither be, nor be
+ thought of as, a single array, i.e., the outermost sequence-like container
+ should be either a list or a tuple.
+
+ Examples
+ --------
+
+ >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
+ ... [20, 21, 22, 23], [30, 31, 32, 33]]
+ >>> np.choose([2, 3, 1, 0], choices
+ ... # the first element of the result will be the first element of the
+ ... # third (2+1) "array" in choices, namely, 20; the second element
+ ... # will be the second element of the fourth (3+1) choice array, i.e.,
+ ... # 31, etc.
+ ... )
+ array([20, 31, 12, 3])
+ >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
+ array([20, 31, 12, 3])
+ >>> # because there are 4 choice arrays
+ >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
+ array([20, 1, 12, 3])
+ >>> # i.e., 0
+
+ A couple examples illustrating how choose broadcasts:
+
+ >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
+ >>> choices = [-10, 10]
+ >>> np.choose(a, choices)
+ array([[ 10, -10, 10],
+ [-10, 10, -10],
+ [ 10, -10, 10]])
+
+ >>> # With thanks to Anne Archibald
+ >>> a = np.array([0, 1]).reshape((2,1,1))
+ >>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
+ >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
+ >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
+ array([[[ 1, 1, 1, 1, 1],
+ [ 2, 2, 2, 2, 2],
+ [ 3, 3, 3, 3, 3]],
+ [[-1, -2, -3, -4, -5],
+ [-1, -2, -3, -4, -5],
+ [-1, -2, -3, -4, -5]]])
+
+ """
+ return _wrapfunc(a, 'choose', choices, out=out, mode=mode)
+
+
+def _repeat_dispatcher(a, repeats, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_repeat_dispatcher)
+def repeat(a, repeats, axis=None):
+ """
+ Repeat elements of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ repeats : int or array of ints
+ The number of repetitions for each element. `repeats` is broadcasted
+ to fit the shape of the given axis.
+ axis : int, optional
+ The axis along which to repeat values. By default, use the
+ flattened input array, and return a flat output array.
+
+ Returns
+ -------
+ repeated_array : ndarray
+ Output array which has the same shape as `a`, except along
+ the given axis.
+
+ See Also
+ --------
+ tile : Tile an array.
+ unique : Find the unique elements of an array.
+
+ Examples
+ --------
+ >>> np.repeat(3, 4)
+ array([3, 3, 3, 3])
+ >>> x = np.array([[1,2],[3,4]])
+ >>> np.repeat(x, 2)
+ array([1, 1, 2, 2, 3, 3, 4, 4])
+ >>> np.repeat(x, 3, axis=1)
+ array([[1, 1, 1, 2, 2, 2],
+ [3, 3, 3, 4, 4, 4]])
+ >>> np.repeat(x, [1, 2], axis=0)
+ array([[1, 2],
+ [3, 4],
+ [3, 4]])
+
+ """
+ return _wrapfunc(a, 'repeat', repeats, axis=axis)
+
+
+def _put_dispatcher(a, ind, v, mode=None):
+ return (a, ind, v)
+
+
+@array_function_dispatch(_put_dispatcher)
+def put(a, ind, v, mode='raise'):
+ """
+ Replaces specified elements of an array with given values.
+
+ The indexing works on the flattened target array. `put` is roughly
+ equivalent to:
+
+ ::
+
+ a.flat[ind] = v
+
+ Parameters
+ ----------
+ a : ndarray
+ Target array.
+ ind : array_like
+ Target indices, interpreted as integers.
+ v : array_like
+ Values to place in `a` at target indices. If `v` is shorter than
+ `ind` it will be repeated as necessary.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices will behave.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ 'clip' mode means that all indices that are too large are replaced
+ by the index that addresses the last element along that axis. Note
+ that this disables indexing with negative numbers. In 'raise' mode,
+ if an exception occurs the target array may still be modified.
+
+ See Also
+ --------
+ putmask, place
+ put_along_axis : Put elements by matching the array and the index arrays
+
+ Examples
+ --------
+ >>> a = np.arange(5)
+ >>> np.put(a, [0, 2], [-44, -55])
+ >>> a
+ array([-44, 1, -55, 3, 4])
+
+ >>> a = np.arange(5)
+ >>> np.put(a, 22, -5, mode='clip')
+ >>> a
+ array([ 0, 1, 2, 3, -5])
+
+ """
+ try:
+ put = a.put
+ except AttributeError as e:
+ raise TypeError("argument 1 must be numpy.ndarray, "
+ "not {name}".format(name=type(a).__name__)) from e
+
+ return put(ind, v, mode=mode)
+
+
+def _swapaxes_dispatcher(a, axis1, axis2):
+ return (a,)
+
+
+@array_function_dispatch(_swapaxes_dispatcher)
+def swapaxes(a, axis1, axis2):
+ """
+ Interchange two axes of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis1 : int
+ First axis.
+ axis2 : int
+ Second axis.
+
+ Returns
+ -------
+ a_swapped : ndarray
+ For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is
+ returned; otherwise a new array is created. For earlier NumPy
+ versions a view of `a` is returned only if the order of the
+ axes is changed, otherwise the input array is returned.
+
+ Examples
+ --------
+ >>> x = np.array([[1,2,3]])
+ >>> np.swapaxes(x,0,1)
+ array([[1],
+ [2],
+ [3]])
+
+ >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
+ >>> x
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+
+ >>> np.swapaxes(x,0,2)
+ array([[[0, 4],
+ [2, 6]],
+ [[1, 5],
+ [3, 7]]])
+
+ """
+ return _wrapfunc(a, 'swapaxes', axis1, axis2)
+
+
+def _transpose_dispatcher(a, axes=None):
+ return (a,)
+
+
+@array_function_dispatch(_transpose_dispatcher)
+def transpose(a, axes=None):
+ """
+ Reverse or permute the axes of an array; returns the modified array.
+
+ For an array a with two axes, transpose(a) gives the matrix transpose.
+
+ Refer to `numpy.ndarray.transpose` for full documentation.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axes : tuple or list of ints, optional
+ If specified, it must be a tuple or list which contains a permutation of
+ [0,1,..,N-1] where N is the number of axes of a. The i'th axis of the
+ returned array will correspond to the axis numbered ``axes[i]`` of the
+ input. If not specified, defaults to ``range(a.ndim)[::-1]``, which
+ reverses the order of the axes.
+
+ Returns
+ -------
+ p : ndarray
+ `a` with its axes permuted. A view is returned whenever
+ possible.
+
+ See Also
+ --------
+ ndarray.transpose : Equivalent method
+ moveaxis
+ argsort
+
+ Notes
+ -----
+ Use `transpose(a, argsort(axes))` to invert the transposition of tensors
+ when using the `axes` keyword argument.
+
+ Transposing a 1-D array returns an unchanged view of the original array.
+
+ Examples
+ --------
+ >>> x = np.arange(4).reshape((2,2))
+ >>> x
+ array([[0, 1],
+ [2, 3]])
+
+ >>> np.transpose(x)
+ array([[0, 2],
+ [1, 3]])
+
+ >>> x = np.ones((1, 2, 3))
+ >>> np.transpose(x, (1, 0, 2)).shape
+ (2, 1, 3)
+
+ >>> x = np.ones((2, 3, 4, 5))
+ >>> np.transpose(x).shape
+ (5, 4, 3, 2)
+
+ """
+ return _wrapfunc(a, 'transpose', axes)
+
+
+def _partition_dispatcher(a, kth, axis=None, kind=None, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_partition_dispatcher)
+def partition(a, kth, axis=-1, kind='introselect', order=None):
+ """
+ Return a partitioned copy of an array.
+
+ Creates a copy of the array with its elements rearranged in such a
+ way that the value of the element in k-th position is in the
+ position it would be in a sorted array. All elements smaller than
+ the k-th element are moved before this element and all equal or
+ greater are moved behind it. The ordering of the elements in the two
+ partitions is undefined.
+
+ .. versionadded:: 1.8.0
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be sorted.
+ kth : int or sequence of ints
+ Element index to partition by. The k-th value of the element
+ will be in its final sorted position and all smaller elements
+ will be moved before it and all equal or greater elements behind
+ it. The order of all elements in the partitions is undefined. If
+ provided with a sequence of k-th it will partition all elements
+ indexed by k-th of them into their sorted position at once.
+ axis : int or None, optional
+ Axis along which to sort. If None, the array is flattened before
+ sorting. The default is -1, which sorts along the last axis.
+ kind : {'introselect'}, optional
+ Selection algorithm. Default is 'introselect'.
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument
+ specifies which fields to compare first, second, etc. A single
+ field can be specified as a string. Not all fields need be
+ specified, but unspecified fields will still be used, in the
+ order in which they come up in the dtype, to break ties.
+
+ Returns
+ -------
+ partitioned_array : ndarray
+ Array of the same type and shape as `a`.
+
+ See Also
+ --------
+ ndarray.partition : Method to sort an array in-place.
+ argpartition : Indirect partition.
+ sort : Full sorting
+
+ Notes
+ -----
+ The various selection algorithms are characterized by their average
+ speed, worst case performance, work space size, and whether they are
+ stable. A stable sort keeps items with the same key in the same
+ relative order. The available algorithms have the following
+ properties:
+
+ ================= ======= ============= ============ =======
+ kind speed worst case work space stable
+ ================= ======= ============= ============ =======
+ 'introselect' 1 O(n) 0 no
+ ================= ======= ============= ============ =======
+
+ All the partition algorithms make temporary copies of the data when
+ partitioning along any but the last axis. Consequently,
+ partitioning along the last axis is faster and uses less space than
+ partitioning along any other axis.
+
+ The sort order for complex numbers is lexicographic. If both the
+ real and imaginary parts are non-nan then the order is determined by
+ the real parts except when they are equal, in which case the order
+ is determined by the imaginary parts.
+
+ Examples
+ --------
+ >>> a = np.array([3, 4, 2, 1])
+ >>> np.partition(a, 3)
+ array([2, 1, 3, 4])
+
+ >>> np.partition(a, (1, 3))
+ array([1, 2, 3, 4])
+
+ """
+ if axis is None:
+ # flatten returns (1, N) for np.matrix, so always use the last axis
+ a = asanyarray(a).flatten()
+ axis = -1
+ else:
+ a = asanyarray(a).copy(order="K")
+ a.partition(kth, axis=axis, kind=kind, order=order)
+ return a
+
+
+def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_argpartition_dispatcher)
+def argpartition(a, kth, axis=-1, kind='introselect', order=None):
+ """
+ Perform an indirect partition along the given axis using the
+ algorithm specified by the `kind` keyword. It returns an array of
+ indices of the same shape as `a` that index data along the given
+ axis in partitioned order.
+
+ .. versionadded:: 1.8.0
+
+ Parameters
+ ----------
+ a : array_like
+ Array to sort.
+ kth : int or sequence of ints
+ Element index to partition by. The k-th element will be in its
+ final sorted position and all smaller elements will be moved
+ before it and all larger elements behind it. The order all
+ elements in the partitions is undefined. If provided with a
+ sequence of k-th it will partition all of them into their sorted
+ position at once.
+ axis : int or None, optional
+ Axis along which to sort. The default is -1 (the last axis). If
+ None, the flattened array is used.
+ kind : {'introselect'}, optional
+ Selection algorithm. Default is 'introselect'
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument
+ specifies which fields to compare first, second, etc. A single
+ field can be specified as a string, and not all fields need be
+ specified, but unspecified fields will still be used, in the
+ order in which they come up in the dtype, to break ties.
+
+ Returns
+ -------
+ index_array : ndarray, int
+ Array of indices that partition `a` along the specified axis.
+ If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`.
+ More generally, ``np.take_along_axis(a, index_array, axis=a)`` always
+ yields the partitioned `a`, irrespective of dimensionality.
+
+ See Also
+ --------
+ partition : Describes partition algorithms used.
+ ndarray.partition : Inplace partition.
+ argsort : Full indirect sort.
+ take_along_axis : Apply ``index_array`` from argpartition
+ to an array as if by calling partition.
+
+ Notes
+ -----
+ See `partition` for notes on the different selection algorithms.
+
+ Examples
+ --------
+ One dimensional array:
+
+ >>> x = np.array([3, 4, 2, 1])
+ >>> x[np.argpartition(x, 3)]
+ array([2, 1, 3, 4])
+ >>> x[np.argpartition(x, (1, 3))]
+ array([1, 2, 3, 4])
+
+ >>> x = [3, 4, 2, 1]
+ >>> np.array(x)[np.argpartition(x, 3)]
+ array([2, 1, 3, 4])
+
+ Multi-dimensional array:
+
+ >>> x = np.array([[3, 4, 2], [1, 3, 1]])
+ >>> index_array = np.argpartition(x, kth=1, axis=-1)
+ >>> np.take_along_axis(x, index_array, axis=-1) # same as np.partition(x, kth=1)
+ array([[2, 3, 4],
+ [1, 1, 3]])
+
+ """
+ return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order)
+
+
+def _sort_dispatcher(a, axis=None, kind=None, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_sort_dispatcher)
+def sort(a, axis=-1, kind=None, order=None):
+ """
+ Return a sorted copy of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be sorted.
+ axis : int or None, optional
+ Axis along which to sort. If None, the array is flattened before
+ sorting. The default is -1, which sorts along the last axis.
+ kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
+ Sorting algorithm. The default is 'quicksort'. Note that both 'stable'
+ and 'mergesort' use timsort or radix sort under the covers and, in general,
+ the actual implementation will vary with data type. The 'mergesort' option
+ is retained for backwards compatibility.
+
+ .. versionchanged:: 1.15.0.
+ The 'stable' option was added.
+
+ order : str or list of str, optional
+ When `a` is an array with fields defined, this argument specifies
+ which fields to compare first, second, etc. A single field can
+ be specified as a string, and not all fields need be specified,
+ but unspecified fields will still be used, in the order in which
+ they come up in the dtype, to break ties.
+
+ Returns
+ -------
+ sorted_array : ndarray
+ Array of the same type and shape as `a`.
+
+ See Also
+ --------
+ ndarray.sort : Method to sort an array in-place.
+ argsort : Indirect sort.
+ lexsort : Indirect stable sort on multiple keys.
+ searchsorted : Find elements in a sorted array.
+ partition : Partial sort.
+
+ Notes
+ -----
+ The various sorting algorithms are characterized by their average speed,
+ worst case performance, work space size, and whether they are stable. A
+ stable sort keeps items with the same key in the same relative
+ order. The four algorithms implemented in NumPy have the following
+ properties:
+
+ =========== ======= ============= ============ ========
+ kind speed worst case work space stable
+ =========== ======= ============= ============ ========
+ 'quicksort' 1 O(n^2) 0 no
+ 'heapsort' 3 O(n*log(n)) 0 no
+ 'mergesort' 2 O(n*log(n)) ~n/2 yes
+ 'timsort' 2 O(n*log(n)) ~n/2 yes
+ =========== ======= ============= ============ ========
+
+ .. note:: The datatype determines which of 'mergesort' or 'timsort'
+ is actually used, even if 'mergesort' is specified. User selection
+ at a finer scale is not currently available.
+
+ All the sort algorithms make temporary copies of the data when
+ sorting along any but the last axis. Consequently, sorting along
+ the last axis is faster and uses less space than sorting along
+ any other axis.
+
+ The sort order for complex numbers is lexicographic. If both the real
+ and imaginary parts are non-nan then the order is determined by the
+ real parts except when they are equal, in which case the order is
+ determined by the imaginary parts.
+
+ Previous to numpy 1.4.0 sorting real and complex arrays containing nan
+ values led to undefined behaviour. In numpy versions >= 1.4.0 nan
+ values are sorted to the end. The extended sort order is:
+
+ * Real: [R, nan]
+ * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]
+
+ where R is a non-nan real value. Complex values with the same nan
+ placements are sorted according to the non-nan part if it exists.
+ Non-nan values are sorted as before.
+
+ .. versionadded:: 1.12.0
+
+ quicksort has been changed to `introsort `_.
+ When sorting does not make enough progress it switches to
+ `heapsort `_.
+ This implementation makes quicksort O(n*log(n)) in the worst case.
+
+ 'stable' automatically chooses the best stable sorting algorithm
+ for the data type being sorted.
+ It, along with 'mergesort' is currently mapped to
+ `timsort `_
+ or `radix sort `_
+ depending on the data type.
+ API forward compatibility currently limits the
+ ability to select the implementation and it is hardwired for the different
+ data types.
+
+ .. versionadded:: 1.17.0
+
+ Timsort is added for better performance on already or nearly
+ sorted data. On random data timsort is almost identical to
+ mergesort. It is now used for stable sort while quicksort is still the
+ default sort if none is chosen. For timsort details, refer to
+ `CPython listsort.txt `_.
+ 'mergesort' and 'stable' are mapped to radix sort for integer data types. Radix sort is an
+ O(n) sort instead of O(n log n).
+
+ .. versionchanged:: 1.18.0
+
+ NaT now sorts to the end of arrays for consistency with NaN.
+
+ Examples
+ --------
+ >>> a = np.array([[1,4],[3,1]])
+ >>> np.sort(a) # sort along the last axis
+ array([[1, 4],
+ [1, 3]])
+ >>> np.sort(a, axis=None) # sort the flattened array
+ array([1, 1, 3, 4])
+ >>> np.sort(a, axis=0) # sort along the first axis
+ array([[1, 1],
+ [3, 4]])
+
+ Use the `order` keyword to specify a field to use when sorting a
+ structured array:
+
+ >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
+ >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
+ ... ('Galahad', 1.7, 38)]
+ >>> a = np.array(values, dtype=dtype) # create a structured array
+ >>> np.sort(a, order='height') # doctest: +SKIP
+ array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
+ ('Lancelot', 1.8999999999999999, 38)],
+ dtype=[('name', '|S10'), ('height', '>> np.sort(a, order=['age', 'height']) # doctest: +SKIP
+ array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
+ ('Arthur', 1.8, 41)],
+ dtype=[('name', '|S10'), ('height', '>> x = np.array([3, 1, 2])
+ >>> np.argsort(x)
+ array([1, 2, 0])
+
+ Two-dimensional array:
+
+ >>> x = np.array([[0, 3], [2, 2]])
+ >>> x
+ array([[0, 3],
+ [2, 2]])
+
+ >>> ind = np.argsort(x, axis=0) # sorts along first axis (down)
+ >>> ind
+ array([[0, 1],
+ [1, 0]])
+ >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0)
+ array([[0, 2],
+ [2, 3]])
+
+ >>> ind = np.argsort(x, axis=1) # sorts along last axis (across)
+ >>> ind
+ array([[0, 1],
+ [0, 1]])
+ >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1)
+ array([[0, 3],
+ [2, 2]])
+
+ Indices of the sorted elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
+ >>> ind
+ (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
+ >>> x[ind] # same as np.sort(x, axis=None)
+ array([0, 2, 2, 3])
+
+ Sorting with keys:
+
+ >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '>> x
+ array([(1, 0), (0, 1)],
+ dtype=[('x', '>> np.argsort(x, order=('x','y'))
+ array([1, 0])
+
+ >>> np.argsort(x, order=('y','x'))
+ array([0, 1])
+
+ """
+ return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order)
+
+
+def _argmax_dispatcher(a, axis=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_argmax_dispatcher)
+def argmax(a, axis=None, out=None):
+ """
+ Returns the indices of the maximum values along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ By default, the index is into the flattened array, otherwise
+ along the specified axis.
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype.
+
+ Returns
+ -------
+ index_array : ndarray of ints
+ Array of indices into the array. It has the same shape as `a.shape`
+ with the dimension along `axis` removed.
+
+ See Also
+ --------
+ ndarray.argmax, argmin
+ amax : The maximum value along a given axis.
+ unravel_index : Convert a flat index into an index tuple.
+ take_along_axis : Apply ``np.expand_dims(index_array, axis)``
+ from argmax to an array as if by calling max.
+
+ Notes
+ -----
+ In case of multiple occurrences of the maximum values, the indices
+ corresponding to the first occurrence are returned.
+
+ Examples
+ --------
+ >>> a = np.arange(6).reshape(2,3) + 10
+ >>> a
+ array([[10, 11, 12],
+ [13, 14, 15]])
+ >>> np.argmax(a)
+ 5
+ >>> np.argmax(a, axis=0)
+ array([1, 1, 1])
+ >>> np.argmax(a, axis=1)
+ array([2, 2])
+
+ Indexes of the maximal elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
+ >>> ind
+ (1, 2)
+ >>> a[ind]
+ 15
+
+ >>> b = np.arange(6)
+ >>> b[1] = 5
+ >>> b
+ array([0, 5, 2, 3, 4, 5])
+ >>> np.argmax(b) # Only the first occurrence is returned.
+ 1
+
+ >>> x = np.array([[4,2,3], [1,0,3]])
+ >>> index_array = np.argmax(x, axis=-1)
+ >>> # Same as np.max(x, axis=-1, keepdims=True)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
+ array([[4],
+ [3]])
+ >>> # Same as np.max(x, axis=-1)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1)
+ array([4, 3])
+
+ """
+ return _wrapfunc(a, 'argmax', axis=axis, out=out)
+
+
+def _argmin_dispatcher(a, axis=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_argmin_dispatcher)
+def argmin(a, axis=None, out=None):
+ """
+ Returns the indices of the minimum values along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ By default, the index is into the flattened array, otherwise
+ along the specified axis.
+ out : array, optional
+ If provided, the result will be inserted into this array. It should
+ be of the appropriate shape and dtype.
+
+ Returns
+ -------
+ index_array : ndarray of ints
+ Array of indices into the array. It has the same shape as `a.shape`
+ with the dimension along `axis` removed.
+
+ See Also
+ --------
+ ndarray.argmin, argmax
+ amin : The minimum value along a given axis.
+ unravel_index : Convert a flat index into an index tuple.
+ take_along_axis : Apply ``np.expand_dims(index_array, axis)``
+ from argmin to an array as if by calling min.
+
+ Notes
+ -----
+ In case of multiple occurrences of the minimum values, the indices
+ corresponding to the first occurrence are returned.
+
+ Examples
+ --------
+ >>> a = np.arange(6).reshape(2,3) + 10
+ >>> a
+ array([[10, 11, 12],
+ [13, 14, 15]])
+ >>> np.argmin(a)
+ 0
+ >>> np.argmin(a, axis=0)
+ array([0, 0, 0])
+ >>> np.argmin(a, axis=1)
+ array([0, 0])
+
+ Indices of the minimum elements of a N-dimensional array:
+
+ >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
+ >>> ind
+ (0, 0)
+ >>> a[ind]
+ 10
+
+ >>> b = np.arange(6) + 10
+ >>> b[4] = 10
+ >>> b
+ array([10, 11, 12, 13, 10, 15])
+ >>> np.argmin(b) # Only the first occurrence is returned.
+ 0
+
+ >>> x = np.array([[4,2,3], [1,0,3]])
+ >>> index_array = np.argmin(x, axis=-1)
+ >>> # Same as np.min(x, axis=-1, keepdims=True)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
+ array([[2],
+ [0]])
+ >>> # Same as np.max(x, axis=-1)
+ >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1)
+ array([2, 0])
+
+ """
+ return _wrapfunc(a, 'argmin', axis=axis, out=out)
+
+
+def _searchsorted_dispatcher(a, v, side=None, sorter=None):
+ return (a, v, sorter)
+
+
+@array_function_dispatch(_searchsorted_dispatcher)
+def searchsorted(a, v, side='left', sorter=None):
+ """
+ Find indices where elements should be inserted to maintain order.
+
+ Find the indices into a sorted array `a` such that, if the
+ corresponding elements in `v` were inserted before the indices, the
+ order of `a` would be preserved.
+
+ Assuming that `a` is sorted:
+
+ ====== ============================
+ `side` returned index `i` satisfies
+ ====== ============================
+ left ``a[i-1] < v <= a[i]``
+ right ``a[i-1] <= v < a[i]``
+ ====== ============================
+
+ Parameters
+ ----------
+ a : 1-D array_like
+ Input array. If `sorter` is None, then it must be sorted in
+ ascending order, otherwise `sorter` must be an array of indices
+ that sort it.
+ v : array_like
+ Values to insert into `a`.
+ side : {'left', 'right'}, optional
+ If 'left', the index of the first suitable location found is given.
+ If 'right', return the last such index. If there is no suitable
+ index, return either 0 or N (where N is the length of `a`).
+ sorter : 1-D array_like, optional
+ Optional array of integer indices that sort array a into ascending
+ order. They are typically the result of argsort.
+
+ .. versionadded:: 1.7.0
+
+ Returns
+ -------
+ indices : array of ints
+ Array of insertion points with the same shape as `v`.
+
+ See Also
+ --------
+ sort : Return a sorted copy of an array.
+ histogram : Produce histogram from 1-D data.
+
+ Notes
+ -----
+ Binary search is used to find the required insertion points.
+
+ As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing
+ `nan` values. The enhanced sort order is documented in `sort`.
+
+ This function uses the same algorithm as the builtin python `bisect.bisect_left`
+ (``side='left'``) and `bisect.bisect_right` (``side='right'``) functions,
+ which is also vectorized in the `v` argument.
+
+ Examples
+ --------
+ >>> np.searchsorted([1,2,3,4,5], 3)
+ 2
+ >>> np.searchsorted([1,2,3,4,5], 3, side='right')
+ 3
+ >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
+ array([0, 5, 1, 2])
+
+ """
+ return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter)
+
+
+def _resize_dispatcher(a, new_shape):
+ return (a,)
+
+
+@array_function_dispatch(_resize_dispatcher)
+def resize(a, new_shape):
+ """
+ Return a new array with the specified shape.
+
+ If the new array is larger than the original array, then the new
+ array is filled with repeated copies of `a`. Note that this behavior
+ is different from a.resize(new_shape) which fills with zeros instead
+ of repeated copies of `a`.
+
+ Parameters
+ ----------
+ a : array_like
+ Array to be resized.
+
+ new_shape : int or tuple of int
+ Shape of resized array.
+
+ Returns
+ -------
+ reshaped_array : ndarray
+ The new array is formed from the data in the old array, repeated
+ if necessary to fill out the required number of elements. The
+ data are repeated iterating over the array in C-order.
+
+ See Also
+ --------
+ np.reshape : Reshape an array without changing the total size.
+ np.pad : Enlarge and pad an array.
+ np.repeat : Repeat elements of an array.
+ ndarray.resize : resize an array in-place.
+
+ Notes
+ -----
+ When the total size of the array does not change `~numpy.reshape` should
+ be used. In most other cases either indexing (to reduce the size)
+ or padding (to increase the size) may be a more appropriate solution.
+
+ Warning: This functionality does **not** consider axes separately,
+ i.e. it does not apply interpolation/extrapolation.
+ It fills the return array with the required number of elements, iterating
+ over `a` in C-order, disregarding axes (and cycling back from the start if
+ the new shape is larger). This functionality is therefore not suitable to
+ resize images, or data where each axis represents a separate and distinct
+ entity.
+
+ Examples
+ --------
+ >>> a=np.array([[0,1],[2,3]])
+ >>> np.resize(a,(2,3))
+ array([[0, 1, 2],
+ [3, 0, 1]])
+ >>> np.resize(a,(1,4))
+ array([[0, 1, 2, 3]])
+ >>> np.resize(a,(2,4))
+ array([[0, 1, 2, 3],
+ [0, 1, 2, 3]])
+
+ """
+ if isinstance(new_shape, (int, nt.integer)):
+ new_shape = (new_shape,)
+
+ a = ravel(a)
+
+ new_size = 1
+ for dim_length in new_shape:
+ new_size *= dim_length
+ if dim_length < 0:
+ raise ValueError('all elements of `new_shape` must be non-negative')
+
+ if a.size == 0 or new_size == 0:
+ # First case must zero fill. The second would have repeats == 0.
+ return np.zeros_like(a, shape=new_shape)
+
+ repeats = -(-new_size // a.size) # ceil division
+ a = concatenate((a,) * repeats)[:new_size]
+
+ return reshape(a, new_shape)
+
+
+def _squeeze_dispatcher(a, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_squeeze_dispatcher)
+def squeeze(a, axis=None):
+ """
+ Remove axes of length one from `a`.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ .. versionadded:: 1.7.0
+
+ Selects a subset of the entries of length one in the
+ shape. If an axis is selected with shape entry greater than
+ one, an error is raised.
+
+ Returns
+ -------
+ squeezed : ndarray
+ The input array, but with all or a subset of the
+ dimensions of length 1 removed. This is always `a` itself
+ or a view into `a`. Note that if all axes are squeezed,
+ the result is a 0d array and not a scalar.
+
+ Raises
+ ------
+ ValueError
+ If `axis` is not None, and an axis being squeezed is not of length 1
+
+ See Also
+ --------
+ expand_dims : The inverse operation, adding entries of length one
+ reshape : Insert, remove, and combine dimensions, and resize existing ones
+
+ Examples
+ --------
+ >>> x = np.array([[[0], [1], [2]]])
+ >>> x.shape
+ (1, 3, 1)
+ >>> np.squeeze(x).shape
+ (3,)
+ >>> np.squeeze(x, axis=0).shape
+ (3, 1)
+ >>> np.squeeze(x, axis=1).shape
+ Traceback (most recent call last):
+ ...
+ ValueError: cannot select an axis to squeeze out which has size not equal to one
+ >>> np.squeeze(x, axis=2).shape
+ (1, 3)
+ >>> x = np.array([[1234]])
+ >>> x.shape
+ (1, 1)
+ >>> np.squeeze(x)
+ array(1234) # 0d array
+ >>> np.squeeze(x).shape
+ ()
+ >>> np.squeeze(x)[()]
+ 1234
+
+ """
+ try:
+ squeeze = a.squeeze
+ except AttributeError:
+ return _wrapit(a, 'squeeze', axis=axis)
+ if axis is None:
+ return squeeze()
+ else:
+ return squeeze(axis=axis)
+
+
+def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None):
+ return (a,)
+
+
+@array_function_dispatch(_diagonal_dispatcher)
+def diagonal(a, offset=0, axis1=0, axis2=1):
+ """
+ Return specified diagonals.
+
+ If `a` is 2-D, returns the diagonal of `a` with the given offset,
+ i.e., the collection of elements of the form ``a[i, i+offset]``. If
+ `a` has more than two dimensions, then the axes specified by `axis1`
+ and `axis2` are used to determine the 2-D sub-array whose diagonal is
+ returned. The shape of the resulting array can be determined by
+ removing `axis1` and `axis2` and appending an index to the right equal
+ to the size of the resulting diagonals.
+
+ In versions of NumPy prior to 1.7, this function always returned a new,
+ independent array containing a copy of the values in the diagonal.
+
+ In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
+ but depending on this fact is deprecated. Writing to the resulting
+ array continues to work as it used to, but a FutureWarning is issued.
+
+ Starting in NumPy 1.9 it returns a read-only view on the original array.
+ Attempting to write to the resulting array will produce an error.
+
+ In some future release, it will return a read/write view and writing to
+ the returned array will alter your original array. The returned array
+ will have the same type as the input array.
+
+ If you don't write to the array returned by this function, then you can
+ just ignore all of the above.
+
+ If you depend on the current behavior, then we suggest copying the
+ returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead
+ of just ``np.diagonal(a)``. This will work with both past and future
+ versions of NumPy.
+
+ Parameters
+ ----------
+ a : array_like
+ Array from which the diagonals are taken.
+ offset : int, optional
+ Offset of the diagonal from the main diagonal. Can be positive or
+ negative. Defaults to main diagonal (0).
+ axis1 : int, optional
+ Axis to be used as the first axis of the 2-D sub-arrays from which
+ the diagonals should be taken. Defaults to first axis (0).
+ axis2 : int, optional
+ Axis to be used as the second axis of the 2-D sub-arrays from
+ which the diagonals should be taken. Defaults to second axis (1).
+
+ Returns
+ -------
+ array_of_diagonals : ndarray
+ If `a` is 2-D, then a 1-D array containing the diagonal and of the
+ same type as `a` is returned unless `a` is a `matrix`, in which case
+ a 1-D array rather than a (2-D) `matrix` is returned in order to
+ maintain backward compatibility.
+
+ If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
+ are removed, and a new axis inserted at the end corresponding to the
+ diagonal.
+
+ Raises
+ ------
+ ValueError
+ If the dimension of `a` is less than 2.
+
+ See Also
+ --------
+ diag : MATLAB work-a-like for 1-D and 2-D arrays.
+ diagflat : Create diagonal arrays.
+ trace : Sum along diagonals.
+
+ Examples
+ --------
+ >>> a = np.arange(4).reshape(2,2)
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> a.diagonal()
+ array([0, 3])
+ >>> a.diagonal(1)
+ array([1])
+
+ A 3-D example:
+
+ >>> a = np.arange(8).reshape(2,2,2); a
+ array([[[0, 1],
+ [2, 3]],
+ [[4, 5],
+ [6, 7]]])
+ >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
+ ... 0, # across the outer(left)-most axis last and
+ ... 1) # the "middle" (row) axis first.
+ array([[0, 6],
+ [1, 7]])
+
+ The sub-arrays whose main diagonals we just obtained; note that each
+ corresponds to fixing the right-most (column) axis, and that the
+ diagonals are "packed" in rows.
+
+ >>> a[:,:,0] # main diagonal is [0 6]
+ array([[0, 2],
+ [4, 6]])
+ >>> a[:,:,1] # main diagonal is [1 7]
+ array([[1, 3],
+ [5, 7]])
+
+ The anti-diagonal can be obtained by reversing the order of elements
+ using either `numpy.flipud` or `numpy.fliplr`.
+
+ >>> a = np.arange(9).reshape(3, 3)
+ >>> a
+ array([[0, 1, 2],
+ [3, 4, 5],
+ [6, 7, 8]])
+ >>> np.fliplr(a).diagonal() # Horizontal flip
+ array([2, 4, 6])
+ >>> np.flipud(a).diagonal() # Vertical flip
+ array([6, 4, 2])
+
+ Note that the order in which the diagonal is retrieved varies depending
+ on the flip function.
+ """
+ if isinstance(a, np.matrix):
+ # Make diagonal of matrix 1-D to preserve backward compatibility.
+ return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)
+ else:
+ return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)
+
+
+def _trace_dispatcher(
+ a, offset=None, axis1=None, axis2=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_trace_dispatcher)
+def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
+ """
+ Return the sum along diagonals of the array.
+
+ If `a` is 2-D, the sum along its diagonal with the given offset
+ is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.
+
+ If `a` has more than two dimensions, then the axes specified by axis1 and
+ axis2 are used to determine the 2-D sub-arrays whose traces are returned.
+ The shape of the resulting array is the same as that of `a` with `axis1`
+ and `axis2` removed.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array, from which the diagonals are taken.
+ offset : int, optional
+ Offset of the diagonal from the main diagonal. Can be both positive
+ and negative. Defaults to 0.
+ axis1, axis2 : int, optional
+ Axes to be used as the first and second axis of the 2-D sub-arrays
+ from which the diagonals should be taken. Defaults are the first two
+ axes of `a`.
+ dtype : dtype, optional
+ Determines the data-type of the returned array and of the accumulator
+ where the elements are summed. If dtype has the value None and `a` is
+ of integer type of precision less than the default integer
+ precision, then the default integer precision is used. Otherwise,
+ the precision is the same as that of `a`.
+ out : ndarray, optional
+ Array into which the output is placed. Its type is preserved and
+ it must be of the right shape to hold the output.
+
+ Returns
+ -------
+ sum_along_diagonals : ndarray
+ If `a` is 2-D, the sum along the diagonal is returned. If `a` has
+ larger dimensions, then an array of sums along diagonals is returned.
+
+ See Also
+ --------
+ diag, diagonal, diagflat
+
+ Examples
+ --------
+ >>> np.trace(np.eye(3))
+ 3.0
+ >>> a = np.arange(8).reshape((2,2,2))
+ >>> np.trace(a)
+ array([6, 8])
+
+ >>> a = np.arange(24).reshape((2,2,2,3))
+ >>> np.trace(a).shape
+ (2, 3)
+
+ """
+ if isinstance(a, np.matrix):
+ # Get trace of matrix via an array to preserve backward compatibility.
+ return asarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out)
+ else:
+ return asanyarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out)
+
+
+def _ravel_dispatcher(a, order=None):
+ return (a,)
+
+
+@array_function_dispatch(_ravel_dispatcher)
+def ravel(a, order='C'):
+ """Return a contiguous flattened array.
+
+ A 1-D array, containing the elements of the input, is returned. A copy is
+ made only if needed.
+
+ As of NumPy 1.10, the returned array will have the same type as the input
+ array. (for example, a masked array will be returned for a masked array
+ input)
+
+ Parameters
+ ----------
+ a : array_like
+ Input array. The elements in `a` are read in the order specified by
+ `order`, and packed as a 1-D array.
+ order : {'C','F', 'A', 'K'}, optional
+
+ The elements of `a` are read using this index order. 'C' means
+ to index the elements in row-major, C-style order,
+ with the last axis index changing fastest, back to the first
+ axis index changing slowest. 'F' means to index the elements
+ in column-major, Fortran-style order, with the
+ first index changing fastest, and the last index changing
+ slowest. Note that the 'C' and 'F' options take no account of
+ the memory layout of the underlying array, and only refer to
+ the order of axis indexing. 'A' means to read the elements in
+ Fortran-like index order if `a` is Fortran *contiguous* in
+ memory, C-like order otherwise. 'K' means to read the
+ elements in the order they occur in memory, except for
+ reversing the data when strides are negative. By default, 'C'
+ index order is used.
+
+ Returns
+ -------
+ y : array_like
+ y is an array of the same subtype as `a`, with shape ``(a.size,)``.
+ Note that matrices are special cased for backward compatibility, if `a`
+ is a matrix, then y is a 1-D ndarray.
+
+ See Also
+ --------
+ ndarray.flat : 1-D iterator over an array.
+ ndarray.flatten : 1-D array copy of the elements of an array
+ in row-major order.
+ ndarray.reshape : Change the shape of an array without changing its data.
+
+ Notes
+ -----
+ In row-major, C-style order, in two dimensions, the row index
+ varies the slowest, and the column index the quickest. This can
+ be generalized to multiple dimensions, where row-major order
+ implies that the index along the first axis varies slowest, and
+ the index along the last quickest. The opposite holds for
+ column-major, Fortran-style index ordering.
+
+ When a view is desired in as many cases as possible, ``arr.reshape(-1)``
+ may be preferable.
+
+ Examples
+ --------
+ It is equivalent to ``reshape(-1, order=order)``.
+
+ >>> x = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.ravel(x)
+ array([1, 2, 3, 4, 5, 6])
+
+ >>> x.reshape(-1)
+ array([1, 2, 3, 4, 5, 6])
+
+ >>> np.ravel(x, order='F')
+ array([1, 4, 2, 5, 3, 6])
+
+ When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:
+
+ >>> np.ravel(x.T)
+ array([1, 4, 2, 5, 3, 6])
+ >>> np.ravel(x.T, order='A')
+ array([1, 2, 3, 4, 5, 6])
+
+ When ``order`` is 'K', it will preserve orderings that are neither 'C'
+ nor 'F', but won't reverse axes:
+
+ >>> a = np.arange(3)[::-1]; a
+ array([2, 1, 0])
+ >>> a.ravel(order='C')
+ array([2, 1, 0])
+ >>> a.ravel(order='K')
+ array([2, 1, 0])
+
+ >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
+ array([[[ 0, 2, 4],
+ [ 1, 3, 5]],
+ [[ 6, 8, 10],
+ [ 7, 9, 11]]])
+ >>> a.ravel(order='C')
+ array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
+ >>> a.ravel(order='K')
+ array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+
+ """
+ if isinstance(a, np.matrix):
+ return asarray(a).ravel(order=order)
+ else:
+ return asanyarray(a).ravel(order=order)
+
+
+def _nonzero_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_nonzero_dispatcher)
+def nonzero(a):
+ """
+ Return the indices of the elements that are non-zero.
+
+ Returns a tuple of arrays, one for each dimension of `a`,
+ containing the indices of the non-zero elements in that
+ dimension. The values in `a` are always tested and returned in
+ row-major, C-style order.
+
+ To group the indices by element, rather than dimension, use `argwhere`,
+ which returns a row for each non-zero element.
+
+ .. note::
+
+ When called on a zero-d array or scalar, ``nonzero(a)`` is treated
+ as ``nonzero(atleast_1d(a))``.
+
+ .. deprecated:: 1.17.0
+
+ Use `atleast_1d` explicitly if this behavior is deliberate.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+
+ Returns
+ -------
+ tuple_of_arrays : tuple
+ Indices of elements that are non-zero.
+
+ See Also
+ --------
+ flatnonzero :
+ Return indices that are non-zero in the flattened version of the input
+ array.
+ ndarray.nonzero :
+ Equivalent ndarray method.
+ count_nonzero :
+ Counts the number of non-zero elements in the input array.
+
+ Notes
+ -----
+ While the nonzero values can be obtained with ``a[nonzero(a)]``, it is
+ recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which
+ will correctly handle 0-d arrays.
+
+ Examples
+ --------
+ >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
+ >>> x
+ array([[3, 0, 0],
+ [0, 4, 0],
+ [5, 6, 0]])
+ >>> np.nonzero(x)
+ (array([0, 1, 2, 2]), array([0, 1, 0, 1]))
+
+ >>> x[np.nonzero(x)]
+ array([3, 4, 5, 6])
+ >>> np.transpose(np.nonzero(x))
+ array([[0, 0],
+ [1, 1],
+ [2, 0],
+ [2, 1]])
+
+ A common use for ``nonzero`` is to find the indices of an array, where
+ a condition is True. Given an array `a`, the condition `a` > 3 is a
+ boolean array and since False is interpreted as 0, np.nonzero(a > 3)
+ yields the indices of the `a` where the condition is true.
+
+ >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ >>> a > 3
+ array([[False, False, False],
+ [ True, True, True],
+ [ True, True, True]])
+ >>> np.nonzero(a > 3)
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ Using this result to index `a` is equivalent to using the mask directly:
+
+ >>> a[np.nonzero(a > 3)]
+ array([4, 5, 6, 7, 8, 9])
+ >>> a[a > 3] # prefer this spelling
+ array([4, 5, 6, 7, 8, 9])
+
+ ``nonzero`` can also be called as a method of the array.
+
+ >>> (a > 3).nonzero()
+ (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
+
+ """
+ return _wrapfunc(a, 'nonzero')
+
+
+def _shape_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_shape_dispatcher)
+def shape(a):
+ """
+ Return the shape of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+
+ Returns
+ -------
+ shape : tuple of ints
+ The elements of the shape tuple give the lengths of the
+ corresponding array dimensions.
+
+ See Also
+ --------
+ len
+ ndarray.shape : Equivalent array method.
+
+ Examples
+ --------
+ >>> np.shape(np.eye(3))
+ (3, 3)
+ >>> np.shape([[1, 2]])
+ (1, 2)
+ >>> np.shape([0])
+ (1,)
+ >>> np.shape(0)
+ ()
+
+ >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
+ >>> np.shape(a)
+ (2,)
+ >>> a.shape
+ (2,)
+
+ """
+ try:
+ result = a.shape
+ except AttributeError:
+ result = asarray(a).shape
+ return result
+
+
+def _compress_dispatcher(condition, a, axis=None, out=None):
+ return (condition, a, out)
+
+
+@array_function_dispatch(_compress_dispatcher)
+def compress(condition, a, axis=None, out=None):
+ """
+ Return selected slices of an array along given axis.
+
+ When working along a given axis, a slice along that axis is returned in
+ `output` for each index where `condition` evaluates to True. When
+ working on a 1-D array, `compress` is equivalent to `extract`.
+
+ Parameters
+ ----------
+ condition : 1-D array of bools
+ Array that selects which entries to return. If len(condition)
+ is less than the size of `a` along the given axis, then output is
+ truncated to the length of the condition array.
+ a : array_like
+ Array from which to extract a part.
+ axis : int, optional
+ Axis along which to take slices. If None (default), work on the
+ flattened array.
+ out : ndarray, optional
+ Output array. Its type is preserved and it must be of the right
+ shape to hold the output.
+
+ Returns
+ -------
+ compressed_array : ndarray
+ A copy of `a` without the slices along axis for which `condition`
+ is false.
+
+ See Also
+ --------
+ take, choose, diag, diagonal, select
+ ndarray.compress : Equivalent method in ndarray
+ extract : Equivalent method when working on 1-D arrays
+ :ref:`ufuncs-output-type`
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4], [5, 6]])
+ >>> a
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ >>> np.compress([0, 1], a, axis=0)
+ array([[3, 4]])
+ >>> np.compress([False, True, True], a, axis=0)
+ array([[3, 4],
+ [5, 6]])
+ >>> np.compress([False, True], a, axis=1)
+ array([[2],
+ [4],
+ [6]])
+
+ Working on the flattened array does not return slices along an axis but
+ selects elements.
+
+ >>> np.compress([False, True], a)
+ array([2])
+
+ """
+ return _wrapfunc(a, 'compress', condition, axis=axis, out=out)
+
+
+def _clip_dispatcher(a, a_min, a_max, out=None, **kwargs):
+ return (a, a_min, a_max)
+
+
+@array_function_dispatch(_clip_dispatcher)
+def clip(a, a_min, a_max, out=None, **kwargs):
+ """
+ Clip (limit) the values in an array.
+
+ Given an interval, values outside the interval are clipped to
+ the interval edges. For example, if an interval of ``[0, 1]``
+ is specified, values smaller than 0 become 0, and values larger
+ than 1 become 1.
+
+ Equivalent to but faster than ``np.minimum(a_max, np.maximum(a, a_min))``.
+
+ No check is performed to ensure ``a_min < a_max``.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing elements to clip.
+ a_min, a_max : array_like or None
+ Minimum and maximum value. If ``None``, clipping is not performed on
+ the corresponding edge. Only one of `a_min` and `a_max` may be
+ ``None``. Both are broadcast against `a`.
+ out : ndarray, optional
+ The results will be placed in this array. It may be the input
+ array for in-place clipping. `out` must be of the right shape
+ to hold the output. Its type is preserved.
+ **kwargs
+ For other keyword-only arguments, see the
+ :ref:`ufunc docs `.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ clipped_array : ndarray
+ An array with the elements of `a`, but where values
+ < `a_min` are replaced with `a_min`, and those > `a_max`
+ with `a_max`.
+
+ See Also
+ --------
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ When `a_min` is greater than `a_max`, `clip` returns an
+ array in which all values are equal to `a_max`,
+ as shown in the second example.
+
+ Examples
+ --------
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.clip(a, 1, 8)
+ array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
+ >>> np.clip(a, 8, 1)
+ array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
+ >>> np.clip(a, 3, 6, out=a)
+ array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
+ >>> a
+ array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
+ array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
+
+ """
+ return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs)
+
+
+def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
+ initial=None, where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_sum_dispatcher)
+def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
+ initial=np._NoValue, where=np._NoValue):
+ """
+ Sum of array elements over a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Elements to sum.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a sum is performed. The default,
+ axis=None, will sum all of the elements of the input array. If
+ axis is negative it counts from the last to the first axis.
+
+ .. versionadded:: 1.7.0
+
+ If axis is a tuple of ints, a sum is performed on all of the axes
+ specified in the tuple instead of a single axis or all the axes as
+ before.
+ dtype : dtype, optional
+ The type of the returned array and of the accumulator in which the
+ elements are summed. The dtype of `a` is used by default unless `a`
+ has an integer dtype of less precision than the default platform
+ integer. In that case, if `a` is signed then the platform integer
+ is used while if `a` is unsigned then an unsigned integer of the
+ same precision as the platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `sum` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ initial : scalar, optional
+ Starting value for the sum. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.15.0
+
+ where : array_like of bool, optional
+ Elements to include in the sum. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ sum_along_axis : ndarray
+ An array with the same shape as `a`, with the specified
+ axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar
+ is returned. If an output array is specified, a reference to
+ `out` is returned.
+
+ See Also
+ --------
+ ndarray.sum : Equivalent method.
+
+ add.reduce : Equivalent functionality of `add`.
+
+ cumsum : Cumulative sum of array elements.
+
+ trapz : Integration of array values using the composite trapezoidal rule.
+
+ mean, average
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ The sum of an empty array is the neutral element 0:
+
+ >>> np.sum([])
+ 0.0
+
+ For floating point numbers the numerical precision of sum (and
+ ``np.add.reduce``) is in general limited by directly adding each number
+ individually to the result causing rounding errors in every step.
+ However, often numpy will use a numerically better approach (partial
+ pairwise summation) leading to improved precision in many use-cases.
+ This improved precision is always provided when no ``axis`` is given.
+ When ``axis`` is given, it will depend on which axis is summed.
+ Technically, to provide the best speed possible, the improved precision
+ is only used when the summation is along the fast axis in memory.
+ Note that the exact precision may vary depending on other parameters.
+ In contrast to NumPy, Python's ``math.fsum`` function uses a slower but
+ more precise approach to summation.
+ Especially when summing a large number of lower precision floating point
+ numbers, such as ``float32``, numerical errors can become significant.
+ In such cases it can be advisable to use `dtype="float64"` to use a higher
+ precision for the output.
+
+ Examples
+ --------
+ >>> np.sum([0.5, 1.5])
+ 2.0
+ >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
+ 1
+ >>> np.sum([[0, 1], [0, 5]])
+ 6
+ >>> np.sum([[0, 1], [0, 5]], axis=0)
+ array([0, 6])
+ >>> np.sum([[0, 1], [0, 5]], axis=1)
+ array([1, 5])
+ >>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
+ array([1., 5.])
+
+ If the accumulator is too small, overflow occurs:
+
+ >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
+ -128
+
+ You can also start the sum with a value other than zero:
+
+ >>> np.sum([10], initial=5)
+ 15
+ """
+ if isinstance(a, _gentype):
+ # 2018-02-25, 1.15.0
+ warnings.warn(
+ "Calling np.sum(generator) is deprecated, and in the future will give a different result. "
+ "Use np.sum(np.fromiter(generator)) or the python sum builtin instead.",
+ DeprecationWarning, stacklevel=3)
+
+ res = _sum_(a)
+ if out is not None:
+ out[...] = res
+ return out
+ return res
+
+ return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims,
+ initial=initial, where=where)
+
+
+def _any_dispatcher(a, axis=None, out=None, keepdims=None, *,
+ where=np._NoValue):
+ return (a, where, out)
+
+
+@array_function_dispatch(_any_dispatcher)
+def any(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
+ """
+ Test whether any array element along a given axis evaluates to True.
+
+ Returns single boolean unless `axis` is not ``None``
+
+ Parameters
+ ----------
+ a : array_like
+ Input array or object that can be converted to an array.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a logical OR reduction is performed.
+ The default (``axis=None``) is to perform a logical OR over all
+ the dimensions of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternate output array in which to place the result. It must have
+ the same shape as the expected output and its type is preserved
+ (e.g., if it is of type float, then it will remain so, returning
+ 1.0 for True and 0.0 for False, regardless of the type of `a`).
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `any` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in checking for any `True` values.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ any : bool or ndarray
+ A new boolean or `ndarray` is returned unless `out` is specified,
+ in which case a reference to `out` is returned.
+
+ See Also
+ --------
+ ndarray.any : equivalent method
+
+ all : Test whether all elements along a given axis evaluate to True.
+
+ Notes
+ -----
+ Not a Number (NaN), positive infinity and negative infinity evaluate
+ to `True` because these are not equal to zero.
+
+ Examples
+ --------
+ >>> np.any([[True, False], [True, True]])
+ True
+
+ >>> np.any([[True, False], [False, False]], axis=0)
+ array([ True, False])
+
+ >>> np.any([-1, 0, 5])
+ True
+
+ >>> np.any(np.nan)
+ True
+
+ >>> np.any([[True, False], [False, False]], where=[[False], [True]])
+ False
+
+ >>> o=np.array(False)
+ >>> z=np.any([-1, 4, 5], out=o)
+ >>> z, o
+ (array(True), array(True))
+ >>> # Check now that z is a reference to o
+ >>> z is o
+ True
+ >>> id(z), id(o) # identity of z and o # doctest: +SKIP
+ (191614240, 191614240)
+
+ """
+ return _wrapreduction(a, np.logical_or, 'any', axis, None, out,
+ keepdims=keepdims, where=where)
+
+
+def _all_dispatcher(a, axis=None, out=None, keepdims=None, *,
+ where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_all_dispatcher)
+def all(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
+ """
+ Test whether all array elements along a given axis evaluate to True.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array or object that can be converted to an array.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a logical AND reduction is performed.
+ The default (``axis=None``) is to perform a logical AND over all
+ the dimensions of the input array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternate output array in which to place the result.
+ It must have the same shape as the expected output and its
+ type is preserved (e.g., if ``dtype(out)`` is float, the result
+ will consist of 0.0's and 1.0's). See :ref:`ufuncs-output-type` for more
+ details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `all` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in checking for all `True` values.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ all : ndarray, bool
+ A new boolean or array is returned unless `out` is specified,
+ in which case a reference to `out` is returned.
+
+ See Also
+ --------
+ ndarray.all : equivalent method
+
+ any : Test whether any element along a given axis evaluates to True.
+
+ Notes
+ -----
+ Not a Number (NaN), positive infinity and negative infinity
+ evaluate to `True` because these are not equal to zero.
+
+ Examples
+ --------
+ >>> np.all([[True,False],[True,True]])
+ False
+
+ >>> np.all([[True,False],[True,True]], axis=0)
+ array([ True, False])
+
+ >>> np.all([-1, 4, 5])
+ True
+
+ >>> np.all([1.0, np.nan])
+ True
+
+ >>> np.all([[True, True], [False, True]], where=[[True], [False]])
+ True
+
+ >>> o=np.array(False)
+ >>> z=np.all([-1, 4, 5], out=o)
+ >>> id(z), id(o), z
+ (28293632, 28293632, array(True)) # may vary
+
+ """
+ return _wrapreduction(a, np.logical_and, 'all', axis, None, out,
+ keepdims=keepdims, where=where)
+
+
+def _cumsum_dispatcher(a, axis=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_cumsum_dispatcher)
+def cumsum(a, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative sum of the elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative sum is computed. The default
+ (None) is to compute the cumsum over the flattened array.
+ dtype : dtype, optional
+ Type of the returned array and of the accumulator in which the
+ elements are summed. If `dtype` is not specified, it defaults
+ to the dtype of `a`, unless `a` has an integer dtype with a
+ precision less than that of the default platform integer. In
+ that case, the default platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type will be cast if necessary. See :ref:`ufuncs-output-type` for
+ more details.
+
+ Returns
+ -------
+ cumsum_along_axis : ndarray.
+ A new array holding the result is returned unless `out` is
+ specified, in which case a reference to `out` is returned. The
+ result has the same size as `a`, and the same shape as `a` if
+ `axis` is not None or `a` is a 1-d array.
+
+ See Also
+ --------
+ sum : Sum array elements.
+ trapz : Integration of array values using the composite trapezoidal rule.
+ diff : Calculate the n-th discrete difference along given axis.
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ ``cumsum(a)[-1]`` may not be equal to ``sum(a)`` for floating-point
+ values since ``sum`` may use a pairwise summation routine, reducing
+ the roundoff-error. See `sum` for more information.
+
+ Examples
+ --------
+ >>> a = np.array([[1,2,3], [4,5,6]])
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.cumsum(a)
+ array([ 1, 3, 6, 10, 15, 21])
+ >>> np.cumsum(a, dtype=float) # specifies type of output value(s)
+ array([ 1., 3., 6., 10., 15., 21.])
+
+ >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
+ array([[1, 2, 3],
+ [5, 7, 9]])
+ >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
+ array([[ 1, 3, 6],
+ [ 4, 9, 15]])
+
+ ``cumsum(b)[-1]`` may not be equal to ``sum(b)``
+
+ >>> b = np.array([1, 2e-9, 3e-9] * 1000000)
+ >>> b.cumsum()[-1]
+ 1000000.0050045159
+ >>> b.sum()
+ 1000000.0050000029
+
+ """
+ return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out)
+
+
+def _ptp_dispatcher(a, axis=None, out=None, keepdims=None):
+ return (a, out)
+
+
+@array_function_dispatch(_ptp_dispatcher)
+def ptp(a, axis=None, out=None, keepdims=np._NoValue):
+ """
+ Range of values (maximum - minimum) along an axis.
+
+ The name of the function comes from the acronym for 'peak to peak'.
+
+ .. warning::
+ `ptp` preserves the data type of the array. This means the
+ return value for an input of signed integers with n bits
+ (e.g. `np.int8`, `np.int16`, etc) is also a signed integer
+ with n bits. In that case, peak-to-peak values greater than
+ ``2**(n-1)-1`` will be returned as negative values. An example
+ with a work-around is shown below.
+
+ Parameters
+ ----------
+ a : array_like
+ Input values.
+ axis : None or int or tuple of ints, optional
+ Axis along which to find the peaks. By default, flatten the
+ array. `axis` may be negative, in
+ which case it counts from the last to the first axis.
+
+ .. versionadded:: 1.15.0
+
+ If this is a tuple of ints, a reduction is performed on multiple
+ axes, instead of a single axis or all the axes as before.
+ out : array_like
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output,
+ but the type of the output values will be cast if necessary.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `ptp` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ Returns
+ -------
+ ptp : ndarray
+ A new array holding the result, unless `out` was
+ specified, in which case a reference to `out` is returned.
+
+ Examples
+ --------
+ >>> x = np.array([[4, 9, 2, 10],
+ ... [6, 9, 7, 12]])
+
+ >>> np.ptp(x, axis=1)
+ array([8, 6])
+
+ >>> np.ptp(x, axis=0)
+ array([2, 0, 5, 2])
+
+ >>> np.ptp(x)
+ 10
+
+ This example shows that a negative value can be returned when
+ the input is an array of signed integers.
+
+ >>> y = np.array([[1, 127],
+ ... [0, 127],
+ ... [-1, 127],
+ ... [-2, 127]], dtype=np.int8)
+ >>> np.ptp(y, axis=1)
+ array([ 126, 127, -128, -127], dtype=int8)
+
+ A work-around is to use the `view()` method to view the result as
+ unsigned integers with the same bit width:
+
+ >>> np.ptp(y, axis=1).view(np.uint8)
+ array([126, 127, 128, 129], dtype=uint8)
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if type(a) is not mu.ndarray:
+ try:
+ ptp = a.ptp
+ except AttributeError:
+ pass
+ else:
+ return ptp(axis=axis, out=out, **kwargs)
+ return _methods._ptp(a, axis=axis, out=out, **kwargs)
+
+
+def _amax_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,
+ where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_amax_dispatcher)
+def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the maximum of an array or maximum along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which to operate. By default, flattened input is
+ used.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, the maximum is selected over multiple axes,
+ instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternative output array in which to place the result. Must
+ be of the same shape and buffer length as the expected output.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `amax` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ initial : scalar, optional
+ The minimum value of an output element. Must be present to allow
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.15.0
+
+ where : array_like of bool, optional
+ Elements to compare for the maximum. See `~numpy.ufunc.reduce`
+ for details.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ amax : ndarray or scalar
+ Maximum of `a`. If `axis` is None, the result is a scalar value.
+ If `axis` is given, the result is an array of dimension
+ ``a.ndim - 1``.
+
+ See Also
+ --------
+ amin :
+ The minimum value of an array along a given axis, propagating any NaNs.
+ nanmax :
+ The maximum value of an array along a given axis, ignoring any NaNs.
+ maximum :
+ Element-wise maximum of two arrays, propagating any NaNs.
+ fmax :
+ Element-wise maximum of two arrays, ignoring any NaNs.
+ argmax :
+ Return the indices of the maximum values.
+
+ nanmin, minimum, fmin
+
+ Notes
+ -----
+ NaN values are propagated, that is if at least one item is NaN, the
+ corresponding max value will be NaN as well. To ignore NaN values
+ (MATLAB behavior), please use nanmax.
+
+ Don't use `amax` for element-wise comparison of 2 arrays; when
+ ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than
+ ``amax(a, axis=0)``.
+
+ Examples
+ --------
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> np.amax(a) # Maximum of the flattened array
+ 3
+ >>> np.amax(a, axis=0) # Maxima along the first axis
+ array([2, 3])
+ >>> np.amax(a, axis=1) # Maxima along the second axis
+ array([1, 3])
+ >>> np.amax(a, where=[False, True], initial=-1, axis=0)
+ array([-1, 3])
+ >>> b = np.arange(5, dtype=float)
+ >>> b[2] = np.NaN
+ >>> np.amax(b)
+ nan
+ >>> np.amax(b, where=~np.isnan(b), initial=-1)
+ 4.0
+ >>> np.nanmax(b)
+ 4.0
+
+ You can use an initial value to compute the maximum of an empty slice, or
+ to initialize it to a different value:
+
+ >>> np.max([[-50], [10]], axis=-1, initial=0)
+ array([ 0, 10])
+
+ Notice that the initial value is used as one of the elements for which the
+ maximum is determined, unlike for the default argument Python's max
+ function, which is only used for empty iterables.
+
+ >>> np.max([5], initial=6)
+ 6
+ >>> max([5], default=6)
+ 5
+ """
+ return _wrapreduction(a, np.maximum, 'max', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _amin_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,
+ where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_amin_dispatcher)
+def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,
+ where=np._NoValue):
+ """
+ Return the minimum of an array or minimum along an axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which to operate. By default, flattened input is
+ used.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, the minimum is selected over multiple axes,
+ instead of a single axis or all the axes as before.
+ out : ndarray, optional
+ Alternative output array in which to place the result. Must
+ be of the same shape and buffer length as the expected output.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `amin` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ initial : scalar, optional
+ The maximum value of an output element. Must be present to allow
+ computation on empty slice. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.15.0
+
+ where : array_like of bool, optional
+ Elements to compare for the minimum. See `~numpy.ufunc.reduce`
+ for details.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ amin : ndarray or scalar
+ Minimum of `a`. If `axis` is None, the result is a scalar value.
+ If `axis` is given, the result is an array of dimension
+ ``a.ndim - 1``.
+
+ See Also
+ --------
+ amax :
+ The maximum value of an array along a given axis, propagating any NaNs.
+ nanmin :
+ The minimum value of an array along a given axis, ignoring any NaNs.
+ minimum :
+ Element-wise minimum of two arrays, propagating any NaNs.
+ fmin :
+ Element-wise minimum of two arrays, ignoring any NaNs.
+ argmin :
+ Return the indices of the minimum values.
+
+ nanmax, maximum, fmax
+
+ Notes
+ -----
+ NaN values are propagated, that is if at least one item is NaN, the
+ corresponding min value will be NaN as well. To ignore NaN values
+ (MATLAB behavior), please use nanmin.
+
+ Don't use `amin` for element-wise comparison of 2 arrays; when
+ ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than
+ ``amin(a, axis=0)``.
+
+ Examples
+ --------
+ >>> a = np.arange(4).reshape((2,2))
+ >>> a
+ array([[0, 1],
+ [2, 3]])
+ >>> np.amin(a) # Minimum of the flattened array
+ 0
+ >>> np.amin(a, axis=0) # Minima along the first axis
+ array([0, 1])
+ >>> np.amin(a, axis=1) # Minima along the second axis
+ array([0, 2])
+ >>> np.amin(a, where=[False, True], initial=10, axis=0)
+ array([10, 1])
+
+ >>> b = np.arange(5, dtype=float)
+ >>> b[2] = np.NaN
+ >>> np.amin(b)
+ nan
+ >>> np.amin(b, where=~np.isnan(b), initial=10)
+ 0.0
+ >>> np.nanmin(b)
+ 0.0
+
+ >>> np.min([[-50], [10]], axis=-1, initial=0)
+ array([-50, 0])
+
+ Notice that the initial value is used as one of the elements for which the
+ minimum is determined, unlike for the default argument Python's max
+ function, which is only used for empty iterables.
+
+ Notice that this isn't the same as Python's ``default`` argument.
+
+ >>> np.min([6], initial=5)
+ 5
+ >>> min([6], default=5)
+ 6
+ """
+ return _wrapreduction(a, np.minimum, 'min', axis, None, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _alen_dispathcer(a):
+ return (a,)
+
+
+@array_function_dispatch(_alen_dispathcer)
+def alen(a):
+ """
+ Return the length of the first dimension of the input array.
+
+ .. deprecated:: 1.18
+ `numpy.alen` is deprecated, use `len` instead.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+
+ Returns
+ -------
+ alen : int
+ Length of the first dimension of `a`.
+
+ See Also
+ --------
+ shape, size
+
+ Examples
+ --------
+ >>> a = np.zeros((7,4,5))
+ >>> a.shape[0]
+ 7
+ >>> np.alen(a)
+ 7
+
+ """
+ # NumPy 1.18.0, 2019-08-02
+ warnings.warn(
+ "`np.alen` is deprecated, use `len` instead",
+ DeprecationWarning, stacklevel=2)
+ try:
+ return len(a)
+ except TypeError:
+ return len(array(a, ndmin=1))
+
+
+def _prod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,
+ initial=None, where=None):
+ return (a, out)
+
+
+@array_function_dispatch(_prod_dispatcher)
+def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,
+ initial=np._NoValue, where=np._NoValue):
+ """
+ Return the product of array elements over a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which a product is performed. The default,
+ axis=None, will calculate the product of all the elements in the
+ input array. If axis is negative it counts from the last to the
+ first axis.
+
+ .. versionadded:: 1.7.0
+
+ If axis is a tuple of ints, a product is performed on all of the
+ axes specified in the tuple instead of a single axis or all the
+ axes as before.
+ dtype : dtype, optional
+ The type of the returned array, as well as of the accumulator in
+ which the elements are multiplied. The dtype of `a` is used by
+ default unless `a` has an integer dtype of less precision than the
+ default platform integer. In that case, if `a` is signed then the
+ platform integer is used while if `a` is unsigned then an unsigned
+ integer of the same precision as the platform integer is used.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left in the
+ result as dimensions with size one. With this option, the result
+ will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `prod` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+ initial : scalar, optional
+ The starting value for this product. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.15.0
+
+ where : array_like of bool, optional
+ Elements to include in the product. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ product_along_axis : ndarray, see `dtype` parameter above.
+ An array shaped as `a` but with the specified axis removed.
+ Returns a reference to `out` if specified.
+
+ See Also
+ --------
+ ndarray.prod : equivalent method
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow. That means that, on a 32-bit platform:
+
+ >>> x = np.array([536870910, 536870910, 536870910, 536870910])
+ >>> np.prod(x)
+ 16 # may vary
+
+ The product of an empty array is the neutral element 1:
+
+ >>> np.prod([])
+ 1.0
+
+ Examples
+ --------
+ By default, calculate the product of all elements:
+
+ >>> np.prod([1.,2.])
+ 2.0
+
+ Even when the input array is two-dimensional:
+
+ >>> np.prod([[1.,2.],[3.,4.]])
+ 24.0
+
+ But we can also specify the axis over which to multiply:
+
+ >>> np.prod([[1.,2.],[3.,4.]], axis=1)
+ array([ 2., 12.])
+
+ Or select specific elements to include:
+
+ >>> np.prod([1., np.nan, 3.], where=[True, False, True])
+ 3.0
+
+ If the type of `x` is unsigned, then the output type is
+ the unsigned platform integer:
+
+ >>> x = np.array([1, 2, 3], dtype=np.uint8)
+ >>> np.prod(x).dtype == np.uint
+ True
+
+ If `x` is of a signed integer type, then the output type
+ is the default platform integer:
+
+ >>> x = np.array([1, 2, 3], dtype=np.int8)
+ >>> np.prod(x).dtype == int
+ True
+
+ You can also start the product with a value other than one:
+
+ >>> np.prod([1, 2], initial=5)
+ 10
+ """
+ return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out,
+ keepdims=keepdims, initial=initial, where=where)
+
+
+def _cumprod_dispatcher(a, axis=None, dtype=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_cumprod_dispatcher)
+def cumprod(a, axis=None, dtype=None, out=None):
+ """
+ Return the cumulative product of elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ axis : int, optional
+ Axis along which the cumulative product is computed. By default
+ the input is flattened.
+ dtype : dtype, optional
+ Type of the returned array, as well as of the accumulator in which
+ the elements are multiplied. If *dtype* is not specified, it
+ defaults to the dtype of `a`, unless `a` has an integer dtype with
+ a precision less than that of the default platform integer. In
+ that case, the default platform integer is used instead.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must
+ have the same shape and buffer length as the expected output
+ but the type of the resulting values will be cast if necessary.
+
+ Returns
+ -------
+ cumprod : ndarray
+ A new array holding the result is returned unless `out` is
+ specified, in which case a reference to out is returned.
+
+ See Also
+ --------
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ Arithmetic is modular when using integer types, and no error is
+ raised on overflow.
+
+ Examples
+ --------
+ >>> a = np.array([1,2,3])
+ >>> np.cumprod(a) # intermediate results 1, 1*2
+ ... # total product 1*2*3 = 6
+ array([1, 2, 6])
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]])
+ >>> np.cumprod(a, dtype=float) # specify type of output
+ array([ 1., 2., 6., 24., 120., 720.])
+
+ The cumulative product for each column (i.e., over the rows) of `a`:
+
+ >>> np.cumprod(a, axis=0)
+ array([[ 1, 2, 3],
+ [ 4, 10, 18]])
+
+ The cumulative product for each row (i.e. over the columns) of `a`:
+
+ >>> np.cumprod(a,axis=1)
+ array([[ 1, 2, 6],
+ [ 4, 20, 120]])
+
+ """
+ return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out)
+
+
+def _ndim_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_ndim_dispatcher)
+def ndim(a):
+ """
+ Return the number of dimensions of an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array. If it is not already an ndarray, a conversion is
+ attempted.
+
+ Returns
+ -------
+ number_of_dimensions : int
+ The number of dimensions in `a`. Scalars are zero-dimensional.
+
+ See Also
+ --------
+ ndarray.ndim : equivalent method
+ shape : dimensions of array
+ ndarray.shape : dimensions of array
+
+ Examples
+ --------
+ >>> np.ndim([[1,2,3],[4,5,6]])
+ 2
+ >>> np.ndim(np.array([[1,2,3],[4,5,6]]))
+ 2
+ >>> np.ndim(1)
+ 0
+
+ """
+ try:
+ return a.ndim
+ except AttributeError:
+ return asarray(a).ndim
+
+
+def _size_dispatcher(a, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_size_dispatcher)
+def size(a, axis=None):
+ """
+ Return the number of elements along a given axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ axis : int, optional
+ Axis along which the elements are counted. By default, give
+ the total number of elements.
+
+ Returns
+ -------
+ element_count : int
+ Number of elements along the specified axis.
+
+ See Also
+ --------
+ shape : dimensions of array
+ ndarray.shape : dimensions of array
+ ndarray.size : number of elements in array
+
+ Examples
+ --------
+ >>> a = np.array([[1,2,3],[4,5,6]])
+ >>> np.size(a)
+ 6
+ >>> np.size(a,1)
+ 3
+ >>> np.size(a,0)
+ 2
+
+ """
+ if axis is None:
+ try:
+ return a.size
+ except AttributeError:
+ return asarray(a).size
+ else:
+ try:
+ return a.shape[axis]
+ except AttributeError:
+ return asarray(a).shape[axis]
+
+
+def _around_dispatcher(a, decimals=None, out=None):
+ return (a, out)
+
+
+@array_function_dispatch(_around_dispatcher)
+def around(a, decimals=0, out=None):
+ """
+ Evenly round to the given number of decimals.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+ decimals : int, optional
+ Number of decimal places to round to (default: 0). If
+ decimals is negative, it specifies the number of positions to
+ the left of the decimal point.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output, but the type of the output
+ values will be cast if necessary. See :ref:`ufuncs-output-type` for more
+ details.
+
+ Returns
+ -------
+ rounded_array : ndarray
+ An array of the same type as `a`, containing the rounded values.
+ Unless `out` was specified, a new array is created. A reference to
+ the result is returned.
+
+ The real and imaginary parts of complex numbers are rounded
+ separately. The result of rounding a float is a float.
+
+ See Also
+ --------
+ ndarray.round : equivalent method
+
+ ceil, fix, floor, rint, trunc
+
+
+ Notes
+ -----
+ For values exactly halfway between rounded decimal values, NumPy
+ rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
+ -0.5 and 0.5 round to 0.0, etc.
+
+ ``np.around`` uses a fast but sometimes inexact algorithm to round
+ floating-point datatypes. For positive `decimals` it is equivalent to
+ ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has
+ error due to the inexact representation of decimal fractions in the IEEE
+ floating point standard [1]_ and errors introduced when scaling by powers
+ of ten. For instance, note the extra "1" in the following:
+
+ >>> np.round(56294995342131.5, 3)
+ 56294995342131.51
+
+ If your goal is to print such values with a fixed number of decimals, it is
+ preferable to use numpy's float printing routines to limit the number of
+ printed decimals:
+
+ >>> np.format_float_positional(56294995342131.5, precision=3)
+ '56294995342131.5'
+
+ The float printing routines use an accurate but much more computationally
+ demanding algorithm to compute the number of digits after the decimal
+ point.
+
+ Alternatively, Python's builtin `round` function uses a more accurate
+ but slower algorithm for 64-bit floating point values:
+
+ >>> round(56294995342131.5, 3)
+ 56294995342131.5
+ >>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997
+ (16.06, 16.05)
+
+
+ References
+ ----------
+ .. [1] "Lecture Notes on the Status of IEEE 754", William Kahan,
+ https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
+ .. [2] "How Futile are Mindless Assessments of
+ Roundoff in Floating-Point Computation?", William Kahan,
+ https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
+
+ Examples
+ --------
+ >>> np.around([0.37, 1.64])
+ array([0., 2.])
+ >>> np.around([0.37, 1.64], decimals=1)
+ array([0.4, 1.6])
+ >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
+ array([0., 2., 2., 4., 4.])
+ >>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
+ array([ 1, 2, 3, 11])
+ >>> np.around([1,2,3,11], decimals=-1)
+ array([ 0, 0, 0, 10])
+
+ """
+ return _wrapfunc(a, 'round', decimals=decimals, out=out)
+
+
+def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, *,
+ where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_mean_dispatcher)
+def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *,
+ where=np._NoValue):
+ """
+ Compute the arithmetic mean along the specified axis.
+
+ Returns the average of the array elements. The average is taken over
+ the flattened array by default, otherwise over the specified axis.
+ `float64` intermediate and return values are used for integer inputs.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing numbers whose mean is desired. If `a` is not an
+ array, a conversion is attempted.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the means are computed. The default is to
+ compute the mean of the flattened array.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, a mean is performed over multiple axes,
+ instead of a single axis or all the axes as before.
+ dtype : data-type, optional
+ Type to use in computing the mean. For integer inputs, the default
+ is `float64`; for floating point inputs, it is the same as the
+ input dtype.
+ out : ndarray, optional
+ Alternate output array in which to place the result. The default
+ is ``None``; if provided, it must have the same shape as the
+ expected output, but the type will be cast if necessary.
+ See :ref:`ufuncs-output-type` for more details.
+
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `mean` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in the mean. See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ m : ndarray, see dtype parameter above
+ If `out=None`, returns a new array containing the mean values,
+ otherwise a reference to the output array is returned.
+
+ See Also
+ --------
+ average : Weighted average
+ std, var, nanmean, nanstd, nanvar
+
+ Notes
+ -----
+ The arithmetic mean is the sum of the elements along the axis divided
+ by the number of elements.
+
+ Note that for floating-point input, the mean is computed using the
+ same precision the input has. Depending on the input data, this can
+ cause the results to be inaccurate, especially for `float32` (see
+ example below). Specifying a higher-precision accumulator using the
+ `dtype` keyword can alleviate this issue.
+
+ By default, `float16` results are computed using `float32` intermediates
+ for extra precision.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.mean(a)
+ 2.5
+ >>> np.mean(a, axis=0)
+ array([2., 3.])
+ >>> np.mean(a, axis=1)
+ array([1.5, 3.5])
+
+ In single precision, `mean` can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.mean(a)
+ 0.54999924
+
+ Computing the mean in float64 is more accurate:
+
+ >>> np.mean(a, dtype=np.float64)
+ 0.55000000074505806 # may vary
+
+ Specifying a where argument:
+ >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
+ >>> np.mean(a)
+ 12.0
+ >>> np.mean(a, where=[[True], [False], [False]])
+ 9.0
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+ if type(a) is not mu.ndarray:
+ try:
+ mean = a.mean
+ except AttributeError:
+ pass
+ else:
+ return mean(axis=axis, dtype=dtype, out=out, **kwargs)
+
+ return _methods._mean(a, axis=axis, dtype=dtype,
+ out=out, **kwargs)
+
+
+def _std_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
+ keepdims=None, *, where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_std_dispatcher)
+def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,
+ where=np._NoValue):
+ """
+ Compute the standard deviation along the specified axis.
+
+ Returns the standard deviation, a measure of the spread of a distribution,
+ of the array elements. The standard deviation is computed for the
+ flattened array by default, otherwise over the specified axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Calculate the standard deviation of these values.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the standard deviation is computed. The
+ default is to compute the standard deviation of the flattened array.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, a standard deviation is performed over
+ multiple axes, instead of a single axis or all the axes as before.
+ dtype : dtype, optional
+ Type to use in computing the standard deviation. For arrays of
+ integer type the default is float64, for arrays of float types it is
+ the same as the array type.
+ out : ndarray, optional
+ Alternative output array in which to place the result. It must have
+ the same shape as the expected output but the type (of the calculated
+ values) will be cast if necessary.
+ ddof : int, optional
+ Means Delta Degrees of Freedom. The divisor used in calculations
+ is ``N - ddof``, where ``N`` represents the number of elements.
+ By default `ddof` is zero.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `std` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in the standard deviation.
+ See `~numpy.ufunc.reduce` for details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ standard_deviation : ndarray, see dtype parameter above.
+ If `out` is None, return a new array containing the standard deviation,
+ otherwise return a reference to the output array.
+
+ See Also
+ --------
+ var, mean, nanmean, nanstd, nanvar
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ The standard deviation is the square root of the average of the squared
+ deviations from the mean, i.e., ``std = sqrt(mean(x))``, where
+ ``x = abs(a - a.mean())**2``.
+
+ The average squared deviation is typically calculated as ``x.sum() / N``,
+ where ``N = len(x)``. If, however, `ddof` is specified, the divisor
+ ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1``
+ provides an unbiased estimator of the variance of the infinite population.
+ ``ddof=0`` provides a maximum likelihood estimate of the variance for
+ normally distributed variables. The standard deviation computed in this
+ function is the square root of the estimated variance, so even with
+ ``ddof=1``, it will not be an unbiased estimate of the standard deviation
+ per se.
+
+ Note that, for complex numbers, `std` takes the absolute
+ value before squaring, so that the result is always real and nonnegative.
+
+ For floating-point input, the *std* is computed using the same
+ precision the input has. Depending on the input data, this can cause
+ the results to be inaccurate, especially for float32 (see example below).
+ Specifying a higher-accuracy accumulator using the `dtype` keyword can
+ alleviate this issue.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.std(a)
+ 1.1180339887498949 # may vary
+ >>> np.std(a, axis=0)
+ array([1., 1.])
+ >>> np.std(a, axis=1)
+ array([0.5, 0.5])
+
+ In single precision, std() can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.std(a)
+ 0.45000005
+
+ Computing the standard deviation in float64 is more accurate:
+
+ >>> np.std(a, dtype=np.float64)
+ 0.44999999925494177 # may vary
+
+ Specifying a where argument:
+
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> np.std(a)
+ 2.614064523559687 # may vary
+ >>> np.std(a, where=[[True], [True], [False]])
+ 2.0
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+ if type(a) is not mu.ndarray:
+ try:
+ std = a.std
+ except AttributeError:
+ pass
+ else:
+ return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
+
+ return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)
+
+
+def _var_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,
+ keepdims=None, *, where=None):
+ return (a, where, out)
+
+
+@array_function_dispatch(_var_dispatcher)
+def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,
+ where=np._NoValue):
+ """
+ Compute the variance along the specified axis.
+
+ Returns the variance of the array elements, a measure of the spread of a
+ distribution. The variance is computed for the flattened array by
+ default, otherwise over the specified axis.
+
+ Parameters
+ ----------
+ a : array_like
+ Array containing numbers whose variance is desired. If `a` is not an
+ array, a conversion is attempted.
+ axis : None or int or tuple of ints, optional
+ Axis or axes along which the variance is computed. The default is to
+ compute the variance of the flattened array.
+
+ .. versionadded:: 1.7.0
+
+ If this is a tuple of ints, a variance is performed over multiple axes,
+ instead of a single axis or all the axes as before.
+ dtype : data-type, optional
+ Type to use in computing the variance. For arrays of integer type
+ the default is `float64`; for arrays of float types it is the same as
+ the array type.
+ out : ndarray, optional
+ Alternate output array in which to place the result. It must have
+ the same shape as the expected output, but the type is cast if
+ necessary.
+ ddof : int, optional
+ "Delta Degrees of Freedom": the divisor used in the calculation is
+ ``N - ddof``, where ``N`` represents the number of elements. By
+ default `ddof` is zero.
+ keepdims : bool, optional
+ If this is set to True, the axes which are reduced are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ If the default value is passed, then `keepdims` will not be
+ passed through to the `var` method of sub-classes of
+ `ndarray`, however any non-default value will be. If the
+ sub-class' method does not implement `keepdims` any
+ exceptions will be raised.
+
+ where : array_like of bool, optional
+ Elements to include in the variance. See `~numpy.ufunc.reduce` for
+ details.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ variance : ndarray, see dtype parameter above
+ If ``out=None``, returns a new array containing the variance;
+ otherwise, a reference to the output array is returned.
+
+ See Also
+ --------
+ std, mean, nanmean, nanstd, nanvar
+ :ref:`ufuncs-output-type`
+
+ Notes
+ -----
+ The variance is the average of the squared deviations from the mean,
+ i.e., ``var = mean(x)``, where ``x = abs(a - a.mean())**2``.
+
+ The mean is typically calculated as ``x.sum() / N``, where ``N = len(x)``.
+ If, however, `ddof` is specified, the divisor ``N - ddof`` is used
+ instead. In standard statistical practice, ``ddof=1`` provides an
+ unbiased estimator of the variance of a hypothetical infinite population.
+ ``ddof=0`` provides a maximum likelihood estimate of the variance for
+ normally distributed variables.
+
+ Note that for complex numbers, the absolute value is taken before
+ squaring, so that the result is always real and nonnegative.
+
+ For floating-point input, the variance is computed using the same
+ precision the input has. Depending on the input data, this can cause
+ the results to be inaccurate, especially for `float32` (see example
+ below). Specifying a higher-accuracy accumulator using the ``dtype``
+ keyword can alleviate this issue.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> np.var(a)
+ 1.25
+ >>> np.var(a, axis=0)
+ array([1., 1.])
+ >>> np.var(a, axis=1)
+ array([0.25, 0.25])
+
+ In single precision, var() can be inaccurate:
+
+ >>> a = np.zeros((2, 512*512), dtype=np.float32)
+ >>> a[0, :] = 1.0
+ >>> a[1, :] = 0.1
+ >>> np.var(a)
+ 0.20250003
+
+ Computing the variance in float64 is more accurate:
+
+ >>> np.var(a, dtype=np.float64)
+ 0.20249999932944759 # may vary
+ >>> ((1-0.55)**2 + (0.1-0.55)**2)/2
+ 0.2025
+
+ Specifying a where argument:
+
+ >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
+ >>> np.var(a)
+ 6.833333333333333 # may vary
+ >>> np.var(a, where=[[True], [True], [False]])
+ 4.0
+
+ """
+ kwargs = {}
+ if keepdims is not np._NoValue:
+ kwargs['keepdims'] = keepdims
+ if where is not np._NoValue:
+ kwargs['where'] = where
+
+ if type(a) is not mu.ndarray:
+ try:
+ var = a.var
+
+ except AttributeError:
+ pass
+ else:
+ return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)
+
+ return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
+ **kwargs)
+
+
+# Aliases of other functions. These have their own definitions only so that
+# they can have unique docstrings.
+
+@array_function_dispatch(_around_dispatcher)
+def round_(a, decimals=0, out=None):
+ """
+ Round an array to the given number of decimals.
+
+ See Also
+ --------
+ around : equivalent function; see for details.
+ """
+ return around(a, decimals=decimals, out=out)
+
+
+@array_function_dispatch(_prod_dispatcher, verify=False)
+def product(*args, **kwargs):
+ """
+ Return the product of array elements over a given axis.
+
+ See Also
+ --------
+ prod : equivalent function; see for details.
+ """
+ return prod(*args, **kwargs)
+
+
+@array_function_dispatch(_cumprod_dispatcher, verify=False)
+def cumproduct(*args, **kwargs):
+ """
+ Return the cumulative product over the given axis.
+
+ See Also
+ --------
+ cumprod : equivalent function; see for details.
+ """
+ return cumprod(*args, **kwargs)
+
+
+@array_function_dispatch(_any_dispatcher, verify=False)
+def sometrue(*args, **kwargs):
+ """
+ Check whether some values are true.
+
+ Refer to `any` for full documentation.
+
+ See Also
+ --------
+ any : equivalent function; see for details.
+ """
+ return any(*args, **kwargs)
+
+
+@array_function_dispatch(_all_dispatcher, verify=False)
+def alltrue(*args, **kwargs):
+ """
+ Check if all elements of input array are true.
+
+ See Also
+ --------
+ numpy.all : Equivalent function; see for details.
+ """
+ return all(*args, **kwargs)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..3342ec3ac47b36db262be29c9eb395791d658d05
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/fromnumeric.pyi
@@ -0,0 +1,361 @@
+import sys
+import datetime as dt
+from typing import Optional, Union, Sequence, Tuple, Any, overload, TypeVar
+
+from numpy import (
+ ndarray,
+ number,
+ integer,
+ intp,
+ bool_,
+ generic,
+ _OrderKACF,
+ _OrderACF,
+ _ModeKind,
+ _PartitionKind,
+ _SortKind,
+ _SortSide,
+)
+from numpy.typing import (
+ DTypeLike,
+ ArrayLike,
+ _ShapeLike,
+ _Shape,
+ _ArrayLikeBool_co,
+ _ArrayLikeInt_co,
+ _NumberLike_co,
+)
+
+if sys.version_info >= (3, 8):
+ from typing import Literal
+else:
+ from typing_extensions import Literal
+
+# Various annotations for scalars
+
+# While dt.datetime and dt.timedelta are not technically part of NumPy,
+# they are one of the rare few builtin scalars which serve as valid return types.
+# See https://github.com/numpy/numpy-stubs/pull/67#discussion_r412604113.
+_ScalarNumpy = Union[generic, dt.datetime, dt.timedelta]
+_ScalarBuiltin = Union[str, bytes, dt.date, dt.timedelta, bool, int, float, complex]
+_Scalar = Union[_ScalarBuiltin, _ScalarNumpy]
+
+# Integers and booleans can generally be used interchangeably
+_ScalarGeneric = TypeVar("_ScalarGeneric", bound=generic)
+
+_Number = TypeVar("_Number", bound=number)
+
+# The signature of take() follows a common theme with its overloads:
+# 1. A generic comes in; the same generic comes out
+# 2. A scalar comes in; a generic comes out
+# 3. An array-like object comes in; some keyword ensures that a generic comes out
+# 4. An array-like object comes in; an ndarray or generic comes out
+def take(
+ a: ArrayLike,
+ indices: _ArrayLikeInt_co,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+ mode: _ModeKind = ...,
+) -> Any: ...
+
+def reshape(
+ a: ArrayLike,
+ newshape: _ShapeLike,
+ order: _OrderACF = ...,
+) -> ndarray: ...
+
+def choose(
+ a: _ArrayLikeInt_co,
+ choices: ArrayLike,
+ out: Optional[ndarray] = ...,
+ mode: _ModeKind = ...,
+) -> Any: ...
+
+def repeat(
+ a: ArrayLike,
+ repeats: _ArrayLikeInt_co,
+ axis: Optional[int] = ...,
+) -> ndarray: ...
+
+def put(
+ a: ndarray,
+ ind: _ArrayLikeInt_co,
+ v: ArrayLike,
+ mode: _ModeKind = ...,
+) -> None: ...
+
+def swapaxes(
+ a: ArrayLike,
+ axis1: int,
+ axis2: int,
+) -> ndarray: ...
+
+def transpose(
+ a: ArrayLike,
+ axes: Union[None, Sequence[int], ndarray] = ...
+) -> ndarray: ...
+
+def partition(
+ a: ArrayLike,
+ kth: _ArrayLikeInt_co,
+ axis: Optional[int] = ...,
+ kind: _PartitionKind = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+) -> ndarray: ...
+
+def argpartition(
+ a: ArrayLike,
+ kth: _ArrayLikeInt_co,
+ axis: Optional[int] = ...,
+ kind: _PartitionKind = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+) -> Any: ...
+
+def sort(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ kind: Optional[_SortKind] = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+) -> ndarray: ...
+
+def argsort(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ kind: Optional[_SortKind] = ...,
+ order: Union[None, str, Sequence[str]] = ...,
+) -> ndarray: ...
+
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
+@overload
+def argmax(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: None = ...,
+ out: Optional[ndarray] = ...,
+) -> intp: ...
+@overload
+def argmin(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
+@overload
+def searchsorted(
+ a: ArrayLike,
+ v: _Scalar,
+ side: _SortSide = ...,
+ sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array
+) -> intp: ...
+@overload
+def searchsorted(
+ a: ArrayLike,
+ v: ArrayLike,
+ side: _SortSide = ...,
+ sorter: Optional[_ArrayLikeInt_co] = ..., # 1D int array
+) -> ndarray: ...
+
+def resize(
+ a: ArrayLike,
+ new_shape: _ShapeLike,
+) -> ndarray: ...
+
+@overload
+def squeeze(
+ a: _ScalarGeneric,
+ axis: Optional[_ShapeLike] = ...,
+) -> _ScalarGeneric: ...
+@overload
+def squeeze(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+def diagonal(
+ a: ArrayLike,
+ offset: int = ...,
+ axis1: int = ...,
+ axis2: int = ..., # >= 2D array
+) -> ndarray: ...
+
+def trace(
+ a: ArrayLike, # >= 2D array
+ offset: int = ...,
+ axis1: int = ...,
+ axis2: int = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
+def ravel(a: ArrayLike, order: _OrderKACF = ...) -> ndarray: ...
+
+def nonzero(a: ArrayLike) -> Tuple[ndarray, ...]: ...
+
+def shape(a: ArrayLike) -> _Shape: ...
+
+def compress(
+ condition: ArrayLike, # 1D bool array
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ out: Optional[ndarray] = ...,
+) -> ndarray: ...
+
+@overload
+def clip(
+ a: ArrayLike,
+ a_min: ArrayLike,
+ a_max: Optional[ArrayLike],
+ out: Optional[ndarray] = ...,
+ **kwargs: Any,
+) -> Any: ...
+@overload
+def clip(
+ a: ArrayLike,
+ a_min: None,
+ a_max: ArrayLike,
+ out: Optional[ndarray] = ...,
+ **kwargs: Any,
+) -> Any: ...
+
+def sum(
+ a: ArrayLike,
+ axis: _ShapeLike = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+
+@overload
+def all(
+ a: ArrayLike,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+) -> bool_: ...
+@overload
+def all(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+@overload
+def any(
+ a: ArrayLike,
+ axis: None = ...,
+ out: None = ...,
+ keepdims: Literal[False] = ...,
+) -> bool_: ...
+@overload
+def any(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+def cumsum(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+) -> ndarray: ...
+
+def ptp(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+def amax(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+
+def amin(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+
+# TODO: `np.prod()``: For object arrays `initial` does not necessarily
+# have to be a numerical scalar.
+# The only requirement is that it is compatible
+# with the `.__mul__()` method(s) of the passed array's elements.
+
+# Note that the same situation holds for all wrappers around
+# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
+def prod(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+ initial: _NumberLike_co = ...,
+ where: _ArrayLikeBool_co = ...,
+) -> Any: ...
+
+def cumprod(
+ a: ArrayLike,
+ axis: Optional[int] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+) -> ndarray: ...
+
+def ndim(a: ArrayLike) -> int: ...
+
+def size(a: ArrayLike, axis: Optional[int] = ...) -> int: ...
+
+def around(
+ a: ArrayLike,
+ decimals: int = ...,
+ out: Optional[ndarray] = ...,
+) -> Any: ...
+
+def mean(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+def std(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+) -> Any: ...
+
+def var(
+ a: ArrayLike,
+ axis: Optional[_ShapeLike] = ...,
+ dtype: DTypeLike = ...,
+ out: Optional[ndarray] = ...,
+ ddof: int = ...,
+ keepdims: bool = ...,
+) -> Any: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.py
new file mode 100644
index 0000000000000000000000000000000000000000..e940ac2305374eb3ed0e3b59140f07e75e4732ed
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.py
@@ -0,0 +1,529 @@
+import functools
+import warnings
+import operator
+import types
+
+from . import numeric as _nx
+from .numeric import result_type, NaN, asanyarray, ndim
+from numpy.core.multiarray import add_docstring
+from numpy.core import overrides
+
+__all__ = ['logspace', 'linspace', 'geomspace']
+
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
+ dtype=None, axis=None):
+ return (start, stop)
+
+
+@array_function_dispatch(_linspace_dispatcher)
+def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
+ axis=0):
+ """
+ Return evenly spaced numbers over a specified interval.
+
+ Returns `num` evenly spaced samples, calculated over the
+ interval [`start`, `stop`].
+
+ The endpoint of the interval can optionally be excluded.
+
+ .. versionchanged:: 1.16.0
+ Non-scalar `start` and `stop` are now supported.
+
+ .. versionchanged:: 1.20.0
+ Values are rounded towards ``-inf`` instead of ``0`` when an
+ integer ``dtype`` is specified. The old behavior can
+ still be obtained with ``np.linspace(start, stop, num).astype(int)``
+
+ Parameters
+ ----------
+ start : array_like
+ The starting value of the sequence.
+ stop : array_like
+ The end value of the sequence, unless `endpoint` is set to False.
+ In that case, the sequence consists of all but the last of ``num + 1``
+ evenly spaced samples, so that `stop` is excluded. Note that the step
+ size changes when `endpoint` is False.
+ num : int, optional
+ Number of samples to generate. Default is 50. Must be non-negative.
+ endpoint : bool, optional
+ If True, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ retstep : bool, optional
+ If True, return (`samples`, `step`), where `step` is the spacing
+ between samples.
+ dtype : dtype, optional
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred dtype will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+
+ .. versionadded:: 1.9.0
+
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start
+ or stop are array-like. By default (0), the samples will be along a
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
+
+ .. versionadded:: 1.16.0
+
+ Returns
+ -------
+ samples : ndarray
+ There are `num` equally spaced samples in the closed interval
+ ``[start, stop]`` or the half-open interval ``[start, stop)``
+ (depending on whether `endpoint` is True or False).
+ step : float, optional
+ Only returned if `retstep` is True
+
+ Size of spacing between samples.
+
+
+ See Also
+ --------
+ arange : Similar to `linspace`, but uses a step size (instead of the
+ number of samples).
+ geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
+ scale (a geometric progression).
+ logspace : Similar to `geomspace`, but with the end points specified as
+ logarithms.
+
+ Examples
+ --------
+ >>> np.linspace(2.0, 3.0, num=5)
+ array([2. , 2.25, 2.5 , 2.75, 3. ])
+ >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
+ array([2. , 2.2, 2.4, 2.6, 2.8])
+ >>> np.linspace(2.0, 3.0, num=5, retstep=True)
+ (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
+
+ Graphical illustration:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 8
+ >>> y = np.zeros(N)
+ >>> x1 = np.linspace(0, 10, N, endpoint=True)
+ >>> x2 = np.linspace(0, 10, N, endpoint=False)
+ >>> plt.plot(x1, y, 'o')
+ []
+ >>> plt.plot(x2, y + 0.5, 'o')
+ []
+ >>> plt.ylim([-0.5, 1])
+ (-0.5, 1)
+ >>> plt.show()
+
+ """
+ num = operator.index(num)
+ if num < 0:
+ raise ValueError("Number of samples, %s, must be non-negative." % num)
+ div = (num - 1) if endpoint else num
+
+ # Convert float/complex array scalars to float, gh-3504
+ # and make sure one can use variables that have an __array_interface__, gh-6634
+ start = asanyarray(start) * 1.0
+ stop = asanyarray(stop) * 1.0
+
+ dt = result_type(start, stop, float(num))
+ if dtype is None:
+ dtype = dt
+
+ delta = stop - start
+ y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
+ # In-place multiplication y *= delta/div is faster, but prevents the multiplicant
+ # from overriding what class is produced, and thus prevents, e.g. use of Quantities,
+ # see gh-7142. Hence, we multiply in place only for standard scalar types.
+ _mult_inplace = _nx.isscalar(delta)
+ if div > 0:
+ step = delta / div
+ if _nx.any(step == 0):
+ # Special handling for denormal numbers, gh-5437
+ y /= div
+ if _mult_inplace:
+ y *= delta
+ else:
+ y = y * delta
+ else:
+ if _mult_inplace:
+ y *= step
+ else:
+ y = y * step
+ else:
+ # sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
+ # have an undefined step
+ step = NaN
+ # Multiply with delta to allow possible override of output class.
+ y = y * delta
+
+ y += start
+
+ if endpoint and num > 1:
+ y[-1] = stop
+
+ if axis != 0:
+ y = _nx.moveaxis(y, 0, axis)
+
+ if _nx.issubdtype(dtype, _nx.integer):
+ _nx.floor(y, out=y)
+
+ if retstep:
+ return y.astype(dtype, copy=False), step
+ else:
+ return y.astype(dtype, copy=False)
+
+
+def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
+ dtype=None, axis=None):
+ return (start, stop)
+
+
+@array_function_dispatch(_logspace_dispatcher)
+def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
+ axis=0):
+ """
+ Return numbers spaced evenly on a log scale.
+
+ In linear space, the sequence starts at ``base ** start``
+ (`base` to the power of `start`) and ends with ``base ** stop``
+ (see `endpoint` below).
+
+ .. versionchanged:: 1.16.0
+ Non-scalar `start` and `stop` are now supported.
+
+ Parameters
+ ----------
+ start : array_like
+ ``base ** start`` is the starting value of the sequence.
+ stop : array_like
+ ``base ** stop`` is the final value of the sequence, unless `endpoint`
+ is False. In that case, ``num + 1`` values are spaced over the
+ interval in log-space, of which all but the last (a sequence of
+ length `num`) are returned.
+ num : integer, optional
+ Number of samples to generate. Default is 50.
+ endpoint : boolean, optional
+ If true, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ base : array_like, optional
+ The base of the log space. The step size between the elements in
+ ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
+ Default is 10.0.
+ dtype : dtype
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred type will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start
+ or stop are array-like. By default (0), the samples will be along a
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
+
+ .. versionadded:: 1.16.0
+
+
+ Returns
+ -------
+ samples : ndarray
+ `num` samples, equally spaced on a log scale.
+
+ See Also
+ --------
+ arange : Similar to linspace, with the step size specified instead of the
+ number of samples. Note that, when used with a float endpoint, the
+ endpoint may or may not be included.
+ linspace : Similar to logspace, but with the samples uniformly distributed
+ in linear space, instead of log space.
+ geomspace : Similar to logspace, but with endpoints specified directly.
+
+ Notes
+ -----
+ Logspace is equivalent to the code
+
+ >>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
+ ... # doctest: +SKIP
+ >>> power(base, y).astype(dtype)
+ ... # doctest: +SKIP
+
+ Examples
+ --------
+ >>> np.logspace(2.0, 3.0, num=4)
+ array([ 100. , 215.443469 , 464.15888336, 1000. ])
+ >>> np.logspace(2.0, 3.0, num=4, endpoint=False)
+ array([100. , 177.827941 , 316.22776602, 562.34132519])
+ >>> np.logspace(2.0, 3.0, num=4, base=2.0)
+ array([4. , 5.0396842 , 6.34960421, 8. ])
+
+ Graphical illustration:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 10
+ >>> x1 = np.logspace(0.1, 1, N, endpoint=True)
+ >>> x2 = np.logspace(0.1, 1, N, endpoint=False)
+ >>> y = np.zeros(N)
+ >>> plt.plot(x1, y, 'o')
+ []
+ >>> plt.plot(x2, y + 0.5, 'o')
+ []
+ >>> plt.ylim([-0.5, 1])
+ (-0.5, 1)
+ >>> plt.show()
+
+ """
+ y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
+ if dtype is None:
+ return _nx.power(base, y)
+ return _nx.power(base, y).astype(dtype, copy=False)
+
+
+def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
+ axis=None):
+ return (start, stop)
+
+
+@array_function_dispatch(_geomspace_dispatcher)
+def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
+ """
+ Return numbers spaced evenly on a log scale (a geometric progression).
+
+ This is similar to `logspace`, but with endpoints specified directly.
+ Each output sample is a constant multiple of the previous.
+
+ .. versionchanged:: 1.16.0
+ Non-scalar `start` and `stop` are now supported.
+
+ Parameters
+ ----------
+ start : array_like
+ The starting value of the sequence.
+ stop : array_like
+ The final value of the sequence, unless `endpoint` is False.
+ In that case, ``num + 1`` values are spaced over the
+ interval in log-space, of which all but the last (a sequence of
+ length `num`) are returned.
+ num : integer, optional
+ Number of samples to generate. Default is 50.
+ endpoint : boolean, optional
+ If true, `stop` is the last sample. Otherwise, it is not included.
+ Default is True.
+ dtype : dtype
+ The type of the output array. If `dtype` is not given, the data type
+ is inferred from `start` and `stop`. The inferred dtype will never be
+ an integer; `float` is chosen even if the arguments would produce an
+ array of integers.
+ axis : int, optional
+ The axis in the result to store the samples. Relevant only if start
+ or stop are array-like. By default (0), the samples will be along a
+ new axis inserted at the beginning. Use -1 to get an axis at the end.
+
+ .. versionadded:: 1.16.0
+
+ Returns
+ -------
+ samples : ndarray
+ `num` samples, equally spaced on a log scale.
+
+ See Also
+ --------
+ logspace : Similar to geomspace, but with endpoints specified using log
+ and base.
+ linspace : Similar to geomspace, but with arithmetic instead of geometric
+ progression.
+ arange : Similar to linspace, with the step size specified instead of the
+ number of samples.
+
+ Notes
+ -----
+ If the inputs or dtype are complex, the output will follow a logarithmic
+ spiral in the complex plane. (There are an infinite number of spirals
+ passing through two points; the output will follow the shortest such path.)
+
+ Examples
+ --------
+ >>> np.geomspace(1, 1000, num=4)
+ array([ 1., 10., 100., 1000.])
+ >>> np.geomspace(1, 1000, num=3, endpoint=False)
+ array([ 1., 10., 100.])
+ >>> np.geomspace(1, 1000, num=4, endpoint=False)
+ array([ 1. , 5.62341325, 31.6227766 , 177.827941 ])
+ >>> np.geomspace(1, 256, num=9)
+ array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.])
+
+ Note that the above may not produce exact integers:
+
+ >>> np.geomspace(1, 256, num=9, dtype=int)
+ array([ 1, 2, 4, 7, 16, 32, 63, 127, 256])
+ >>> np.around(np.geomspace(1, 256, num=9)).astype(int)
+ array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
+
+ Negative, decreasing, and complex inputs are allowed:
+
+ >>> np.geomspace(1000, 1, num=4)
+ array([1000., 100., 10., 1.])
+ >>> np.geomspace(-1000, -1, num=4)
+ array([-1000., -100., -10., -1.])
+ >>> np.geomspace(1j, 1000j, num=4) # Straight line
+ array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
+ >>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
+ array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
+ 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
+ 1.00000000e+00+0.00000000e+00j])
+
+ Graphical illustration of `endpoint` parameter:
+
+ >>> import matplotlib.pyplot as plt
+ >>> N = 10
+ >>> y = np.zeros(N)
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
+ []
+ >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
+ []
+ >>> plt.axis([0.5, 2000, 0, 3])
+ [0.5, 2000, 0, 3]
+ >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
+ >>> plt.show()
+
+ """
+ start = asanyarray(start)
+ stop = asanyarray(stop)
+ if _nx.any(start == 0) or _nx.any(stop == 0):
+ raise ValueError('Geometric sequence cannot include zero')
+
+ dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
+ if dtype is None:
+ dtype = dt
+ else:
+ # complex to dtype('complex128'), for instance
+ dtype = _nx.dtype(dtype)
+
+ # Promote both arguments to the same dtype in case, for instance, one is
+ # complex and another is negative and log would produce NaN otherwise.
+ # Copy since we may change things in-place further down.
+ start = start.astype(dt, copy=True)
+ stop = stop.astype(dt, copy=True)
+
+ out_sign = _nx.ones(_nx.broadcast(start, stop).shape, dt)
+ # Avoid negligible real or imaginary parts in output by rotating to
+ # positive real, calculating, then undoing rotation
+ if _nx.issubdtype(dt, _nx.complexfloating):
+ all_imag = (start.real == 0.) & (stop.real == 0.)
+ if _nx.any(all_imag):
+ start[all_imag] = start[all_imag].imag
+ stop[all_imag] = stop[all_imag].imag
+ out_sign[all_imag] = 1j
+
+ both_negative = (_nx.sign(start) == -1) & (_nx.sign(stop) == -1)
+ if _nx.any(both_negative):
+ _nx.negative(start, out=start, where=both_negative)
+ _nx.negative(stop, out=stop, where=both_negative)
+ _nx.negative(out_sign, out=out_sign, where=both_negative)
+
+ log_start = _nx.log10(start)
+ log_stop = _nx.log10(stop)
+ result = logspace(log_start, log_stop, num=num,
+ endpoint=endpoint, base=10.0, dtype=dtype)
+
+ # Make sure the endpoints match the start and stop arguments. This is
+ # necessary because np.exp(np.log(x)) is not necessarily equal to x.
+ if num > 0:
+ result[0] = start
+ if num > 1 and endpoint:
+ result[-1] = stop
+
+ result = out_sign * result
+
+ if axis != 0:
+ result = _nx.moveaxis(result, 0, axis)
+
+ return result.astype(dtype, copy=False)
+
+
+def _needs_add_docstring(obj):
+ """
+ Returns true if the only way to set the docstring of `obj` from python is
+ via add_docstring.
+
+ This function errs on the side of being overly conservative.
+ """
+ Py_TPFLAGS_HEAPTYPE = 1 << 9
+
+ if isinstance(obj, (types.FunctionType, types.MethodType, property)):
+ return False
+
+ if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
+ return False
+
+ return True
+
+
+def _add_docstring(obj, doc, warn_on_python):
+ if warn_on_python and not _needs_add_docstring(obj):
+ warnings.warn(
+ "add_newdoc was used on a pure-python object {}. "
+ "Prefer to attach it directly to the source."
+ .format(obj),
+ UserWarning,
+ stacklevel=3)
+ try:
+ add_docstring(obj, doc)
+ except Exception:
+ pass
+
+
+def add_newdoc(place, obj, doc, warn_on_python=True):
+ """
+ Add documentation to an existing object, typically one defined in C
+
+ The purpose is to allow easier editing of the docstrings without requiring
+ a re-compile. This exists primarily for internal use within numpy itself.
+
+ Parameters
+ ----------
+ place : str
+ The absolute name of the module to import from
+ obj : str
+ The name of the object to add documentation to, typically a class or
+ function name
+ doc : {str, Tuple[str, str], List[Tuple[str, str]]}
+ If a string, the documentation to apply to `obj`
+
+ If a tuple, then the first element is interpreted as an attribute of
+ `obj` and the second as the docstring to apply - ``(method, docstring)``
+
+ If a list, then each element of the list should be a tuple of length
+ two - ``[(method1, docstring1), (method2, docstring2), ...]``
+ warn_on_python : bool
+ If True, the default, emit `UserWarning` if this is used to attach
+ documentation to a pure-python object.
+
+ Notes
+ -----
+ This routine never raises an error if the docstring can't be written, but
+ will raise an error if the object being documented does not exist.
+
+ This routine cannot modify read-only docstrings, as appear
+ in new-style classes or built-in functions. Because this
+ routine never raises an error the caller must check manually
+ that the docstrings were changed.
+
+ Since this function grabs the ``char *`` from a c-level str object and puts
+ it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
+ C-API best-practices, by:
+
+ - modifying a `PyTypeObject` after calling `PyType_Ready`
+ - calling `Py_INCREF` on the str and losing the reference, so the str
+ will never be released
+
+ If possible it should be avoided.
+ """
+ new = getattr(__import__(place, globals(), {}, [obj]), obj)
+ if isinstance(doc, str):
+ _add_docstring(new, doc.strip(), warn_on_python)
+ elif isinstance(doc, tuple):
+ attr, docstring = doc
+ _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
+ elif isinstance(doc, list):
+ for attr, docstring in doc:
+ _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..b5d6ca6abe88cfd0d583ab1a204468439ba3e8e3
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/function_base.pyi
@@ -0,0 +1,55 @@
+import sys
+from typing import overload, Tuple, Union, Sequence, Any
+
+from numpy import ndarray
+from numpy.typing import ArrayLike, DTypeLike, _SupportsArray, _NumberLike_co
+
+if sys.version_info >= (3, 8):
+ from typing import SupportsIndex, Literal
+else:
+ from typing_extensions import SupportsIndex, Literal
+
+# TODO: wait for support for recursive types
+_ArrayLikeNested = Sequence[Sequence[Any]]
+_ArrayLikeNumber = Union[
+ _NumberLike_co, Sequence[_NumberLike_co], ndarray, _SupportsArray, _ArrayLikeNested
+]
+@overload
+def linspace(
+ start: _ArrayLikeNumber,
+ stop: _ArrayLikeNumber,
+ num: SupportsIndex = ...,
+ endpoint: bool = ...,
+ retstep: Literal[False] = ...,
+ dtype: DTypeLike = ...,
+ axis: SupportsIndex = ...,
+) -> ndarray: ...
+@overload
+def linspace(
+ start: _ArrayLikeNumber,
+ stop: _ArrayLikeNumber,
+ num: SupportsIndex = ...,
+ endpoint: bool = ...,
+ retstep: Literal[True] = ...,
+ dtype: DTypeLike = ...,
+ axis: SupportsIndex = ...,
+) -> Tuple[ndarray, Any]: ...
+
+def logspace(
+ start: _ArrayLikeNumber,
+ stop: _ArrayLikeNumber,
+ num: SupportsIndex = ...,
+ endpoint: bool = ...,
+ base: _ArrayLikeNumber = ...,
+ dtype: DTypeLike = ...,
+ axis: SupportsIndex = ...,
+) -> ndarray: ...
+
+def geomspace(
+ start: _ArrayLikeNumber,
+ stop: _ArrayLikeNumber,
+ num: SupportsIndex = ...,
+ endpoint: bool = ...,
+ dtype: DTypeLike = ...,
+ axis: SupportsIndex = ...,
+) -> ndarray: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/generate_numpy_api.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/generate_numpy_api.py
new file mode 100644
index 0000000000000000000000000000000000000000..7997135bb07ab47de534e105e52b6326027bb353
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/generate_numpy_api.py
@@ -0,0 +1,239 @@
+import os
+import genapi
+
+from genapi import \
+ TypeApi, GlobalVarApi, FunctionApi, BoolValuesApi
+
+import numpy_api
+
+# use annotated api when running under cpychecker
+h_template = r"""
+#if defined(_MULTIARRAYMODULE) || defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE)
+
+typedef struct {
+ PyObject_HEAD
+ npy_bool obval;
+} PyBoolScalarObject;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayMapIter_Type;
+extern NPY_NO_EXPORT PyTypeObject PyArrayNeighborhoodIter_Type;
+extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2];
+
+%s
+
+#else
+
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+#define PyArray_API PY_ARRAY_UNIQUE_SYMBOL
+#endif
+
+#if defined(NO_IMPORT) || defined(NO_IMPORT_ARRAY)
+extern void **PyArray_API;
+#else
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+void **PyArray_API;
+#else
+static void **PyArray_API=NULL;
+#endif
+#endif
+
+%s
+
+#if !defined(NO_IMPORT_ARRAY) && !defined(NO_IMPORT)
+static int
+_import_array(void)
+{
+ int st;
+ PyObject *numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
+ PyObject *c_api = NULL;
+
+ if (numpy == NULL) {
+ return -1;
+ }
+ c_api = PyObject_GetAttrString(numpy, "_ARRAY_API");
+ Py_DECREF(numpy);
+ if (c_api == NULL) {
+ PyErr_SetString(PyExc_AttributeError, "_ARRAY_API not found");
+ return -1;
+ }
+
+ if (!PyCapsule_CheckExact(c_api)) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is not PyCapsule object");
+ Py_DECREF(c_api);
+ return -1;
+ }
+ PyArray_API = (void **)PyCapsule_GetPointer(c_api, NULL);
+ Py_DECREF(c_api);
+ if (PyArray_API == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is NULL pointer");
+ return -1;
+ }
+
+ /* Perform runtime check of C API version */
+ if (NPY_VERSION != PyArray_GetNDArrayCVersion()) {
+ PyErr_Format(PyExc_RuntimeError, "module compiled against "\
+ "ABI version 0x%%x but this version of numpy is 0x%%x", \
+ (int) NPY_VERSION, (int) PyArray_GetNDArrayCVersion());
+ return -1;
+ }
+ if (NPY_FEATURE_VERSION > PyArray_GetNDArrayCFeatureVersion()) {
+ PyErr_Format(PyExc_RuntimeError, "module compiled against "\
+ "API version 0x%%x but this version of numpy is 0x%%x", \
+ (int) NPY_FEATURE_VERSION, (int) PyArray_GetNDArrayCFeatureVersion());
+ return -1;
+ }
+
+ /*
+ * Perform runtime check of endianness and check it matches the one set by
+ * the headers (npy_endian.h) as a safeguard
+ */
+ st = PyArray_GetEndianness();
+ if (st == NPY_CPU_UNKNOWN_ENDIAN) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as unknown endian");
+ return -1;
+ }
+#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
+ if (st != NPY_CPU_BIG) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as "\
+ "big endian, but detected different endianness at runtime");
+ return -1;
+ }
+#elif NPY_BYTE_ORDER == NPY_LITTLE_ENDIAN
+ if (st != NPY_CPU_LITTLE) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as "\
+ "little endian, but detected different endianness at runtime");
+ return -1;
+ }
+#endif
+
+ return 0;
+}
+
+#define import_array() {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); return NULL; } }
+
+#define import_array1(ret) {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); return ret; } }
+
+#define import_array2(msg, ret) {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, msg); return ret; } }
+
+#endif
+
+#endif
+"""
+
+
+c_template = r"""
+/* These pointers will be stored in the C-object for use in other
+ extension modules
+*/
+
+void *PyArray_API[] = {
+%s
+};
+"""
+
+c_api_header = """
+===========
+NumPy C-API
+===========
+"""
+
+def generate_api(output_dir, force=False):
+ basename = 'multiarray_api'
+
+ h_file = os.path.join(output_dir, '__%s.h' % basename)
+ c_file = os.path.join(output_dir, '__%s.c' % basename)
+ d_file = os.path.join(output_dir, '%s.txt' % basename)
+ targets = (h_file, c_file, d_file)
+
+ sources = numpy_api.multiarray_api
+
+ if (not force and not genapi.should_rebuild(targets, [numpy_api.__file__, __file__])):
+ return targets
+ else:
+ do_generate_api(targets, sources)
+
+ return targets
+
+def do_generate_api(targets, sources):
+ header_file = targets[0]
+ c_file = targets[1]
+ doc_file = targets[2]
+
+ global_vars = sources[0]
+ scalar_bool_values = sources[1]
+ types_api = sources[2]
+ multiarray_funcs = sources[3]
+
+ multiarray_api = sources[:]
+
+ module_list = []
+ extension_list = []
+ init_list = []
+
+ # Check multiarray api indexes
+ multiarray_api_index = genapi.merge_api_dicts(multiarray_api)
+ genapi.check_api_dict(multiarray_api_index)
+
+ numpyapi_list = genapi.get_api_functions('NUMPY_API',
+ multiarray_funcs)
+
+ # FIXME: ordered_funcs_api is unused
+ ordered_funcs_api = genapi.order_dict(multiarray_funcs)
+
+ # Create dict name -> *Api instance
+ api_name = 'PyArray_API'
+ multiarray_api_dict = {}
+ for f in numpyapi_list:
+ name = f.name
+ index = multiarray_funcs[name][0]
+ annotations = multiarray_funcs[name][1:]
+ multiarray_api_dict[f.name] = FunctionApi(f.name, index, annotations,
+ f.return_type,
+ f.args, api_name)
+
+ for name, val in global_vars.items():
+ index, type = val
+ multiarray_api_dict[name] = GlobalVarApi(name, index, type, api_name)
+
+ for name, val in scalar_bool_values.items():
+ index = val[0]
+ multiarray_api_dict[name] = BoolValuesApi(name, index, api_name)
+
+ for name, val in types_api.items():
+ index = val[0]
+ internal_type = None if len(val) == 1 else val[1]
+ multiarray_api_dict[name] = TypeApi(
+ name, index, 'PyTypeObject', api_name, internal_type)
+
+ if len(multiarray_api_dict) != len(multiarray_api_index):
+ keys_dict = set(multiarray_api_dict.keys())
+ keys_index = set(multiarray_api_index.keys())
+ raise AssertionError(
+ "Multiarray API size mismatch - "
+ "index has extra keys {}, dict has extra keys {}"
+ .format(keys_index - keys_dict, keys_dict - keys_index)
+ )
+
+ extension_list = []
+ for name, index in genapi.order_dict(multiarray_api_index):
+ api_item = multiarray_api_dict[name]
+ extension_list.append(api_item.define_from_array_api_string())
+ init_list.append(api_item.array_api_define())
+ module_list.append(api_item.internal_define())
+
+ # Write to header
+ s = h_template % ('\n'.join(module_list), '\n'.join(extension_list))
+ genapi.write_file(header_file, s)
+
+ # Write to c-code
+ s = c_template % ',\n'.join(init_list)
+ genapi.write_file(c_file, s)
+
+ # write to documentation
+ s = c_api_header
+ for func in numpyapi_list:
+ s += func.to_ReST()
+ s += '\n\n'
+ genapi.write_file(doc_file, s)
+
+ return targets
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/getlimits.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/getlimits.py
new file mode 100644
index 0000000000000000000000000000000000000000..fcb73e8ba3a4db50af279fa1d6ce3e9d103e6a26
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/getlimits.py
@@ -0,0 +1,564 @@
+"""Machine limits for Float32 and Float64 and (long double) if available...
+
+"""
+__all__ = ['finfo', 'iinfo']
+
+import warnings
+
+from .machar import MachAr
+from .overrides import set_module
+from . import numeric
+from . import numerictypes as ntypes
+from .numeric import array, inf
+from .umath import log10, exp2
+from . import umath
+
+
+def _fr0(a):
+ """fix rank-0 --> rank-1"""
+ if a.ndim == 0:
+ a = a.copy()
+ a.shape = (1,)
+ return a
+
+
+def _fr1(a):
+ """fix rank > 0 --> rank-0"""
+ if a.size == 1:
+ a = a.copy()
+ a.shape = ()
+ return a
+
+class MachArLike:
+ """ Object to simulate MachAr instance """
+
+ def __init__(self,
+ ftype,
+ *, eps, epsneg, huge, tiny, ibeta, **kwargs):
+ params = _MACHAR_PARAMS[ftype]
+ float_conv = lambda v: array([v], ftype)
+ float_to_float = lambda v : _fr1(float_conv(v))
+ float_to_str = lambda v: (params['fmt'] % array(_fr0(v)[0], ftype))
+
+ self.title = params['title']
+ # Parameter types same as for discovered MachAr object.
+ self.epsilon = self.eps = float_to_float(eps)
+ self.epsneg = float_to_float(epsneg)
+ self.xmax = self.huge = float_to_float(huge)
+ self.xmin = self.tiny = float_to_float(tiny)
+ self.ibeta = params['itype'](ibeta)
+ self.__dict__.update(kwargs)
+ self.precision = int(-log10(self.eps))
+ self.resolution = float_to_float(float_conv(10) ** (-self.precision))
+ self._str_eps = float_to_str(self.eps)
+ self._str_epsneg = float_to_str(self.epsneg)
+ self._str_xmin = float_to_str(self.xmin)
+ self._str_xmax = float_to_str(self.xmax)
+ self._str_resolution = float_to_str(self.resolution)
+
+_convert_to_float = {
+ ntypes.csingle: ntypes.single,
+ ntypes.complex_: ntypes.float_,
+ ntypes.clongfloat: ntypes.longfloat
+ }
+
+# Parameters for creating MachAr / MachAr-like objects
+_title_fmt = 'numpy {} precision floating point number'
+_MACHAR_PARAMS = {
+ ntypes.double: dict(
+ itype = ntypes.int64,
+ fmt = '%24.16e',
+ title = _title_fmt.format('double')),
+ ntypes.single: dict(
+ itype = ntypes.int32,
+ fmt = '%15.7e',
+ title = _title_fmt.format('single')),
+ ntypes.longdouble: dict(
+ itype = ntypes.longlong,
+ fmt = '%s',
+ title = _title_fmt.format('long double')),
+ ntypes.half: dict(
+ itype = ntypes.int16,
+ fmt = '%12.5e',
+ title = _title_fmt.format('half'))}
+
+# Key to identify the floating point type. Key is result of
+# ftype('-0.1').newbyteorder('<').tobytes()
+# See:
+# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure
+_KNOWN_TYPES = {}
+def _register_type(machar, bytepat):
+ _KNOWN_TYPES[bytepat] = machar
+_float_ma = {}
+
+def _register_known_types():
+ # Known parameters for float16
+ # See docstring of MachAr class for description of parameters.
+ f16 = ntypes.float16
+ float16_ma = MachArLike(f16,
+ machep=-10,
+ negep=-11,
+ minexp=-14,
+ maxexp=16,
+ it=10,
+ iexp=5,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(f16(-10)),
+ epsneg=exp2(f16(-11)),
+ huge=f16(65504),
+ tiny=f16(2 ** -14))
+ _register_type(float16_ma, b'f\xae')
+ _float_ma[16] = float16_ma
+
+ # Known parameters for float32
+ f32 = ntypes.float32
+ float32_ma = MachArLike(f32,
+ machep=-23,
+ negep=-24,
+ minexp=-126,
+ maxexp=128,
+ it=23,
+ iexp=8,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(f32(-23)),
+ epsneg=exp2(f32(-24)),
+ huge=f32((1 - 2 ** -24) * 2**128),
+ tiny=exp2(f32(-126)))
+ _register_type(float32_ma, b'\xcd\xcc\xcc\xbd')
+ _float_ma[32] = float32_ma
+
+ # Known parameters for float64
+ f64 = ntypes.float64
+ epsneg_f64 = 2.0 ** -53.0
+ tiny_f64 = 2.0 ** -1022.0
+ float64_ma = MachArLike(f64,
+ machep=-52,
+ negep=-53,
+ minexp=-1022,
+ maxexp=1024,
+ it=52,
+ iexp=11,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=2.0 ** -52.0,
+ epsneg=epsneg_f64,
+ huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4),
+ tiny=tiny_f64)
+ _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf')
+ _float_ma[64] = float64_ma
+
+ # Known parameters for IEEE 754 128-bit binary float
+ ld = ntypes.longdouble
+ epsneg_f128 = exp2(ld(-113))
+ tiny_f128 = exp2(ld(-16382))
+ # Ignore runtime error when this is not f128
+ with numeric.errstate(all='ignore'):
+ huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4)
+ float128_ma = MachArLike(ld,
+ machep=-112,
+ negep=-113,
+ minexp=-16382,
+ maxexp=16384,
+ it=112,
+ iexp=15,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-112)),
+ epsneg=epsneg_f128,
+ huge=huge_f128,
+ tiny=tiny_f128)
+ # IEEE 754 128-bit binary float
+ _register_type(float128_ma,
+ b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
+ _register_type(float128_ma,
+ b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf')
+ _float_ma[128] = float128_ma
+
+ # Known parameters for float80 (Intel 80-bit extended precision)
+ epsneg_f80 = exp2(ld(-64))
+ tiny_f80 = exp2(ld(-16382))
+ # Ignore runtime error when this is not f80
+ with numeric.errstate(all='ignore'):
+ huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4)
+ float80_ma = MachArLike(ld,
+ machep=-63,
+ negep=-64,
+ minexp=-16382,
+ maxexp=16384,
+ it=63,
+ iexp=15,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-63)),
+ epsneg=epsneg_f80,
+ huge=huge_f80,
+ tiny=tiny_f80)
+ # float80, first 10 bytes containing actual storage
+ _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf')
+ _float_ma[80] = float80_ma
+
+ # Guessed / known parameters for double double; see:
+ # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
+ # These numbers have the same exponent range as float64, but extended number of
+ # digits in the significand.
+ huge_dd = (umath.nextafter(ld(inf), ld(0))
+ if hasattr(umath, 'nextafter') # Missing on some platforms?
+ else float64_ma.huge)
+ float_dd_ma = MachArLike(ld,
+ machep=-105,
+ negep=-106,
+ minexp=-1022,
+ maxexp=1024,
+ it=105,
+ iexp=11,
+ ibeta=2,
+ irnd=5,
+ ngrd=0,
+ eps=exp2(ld(-105)),
+ epsneg= exp2(ld(-106)),
+ huge=huge_dd,
+ tiny=exp2(ld(-1022)))
+ # double double; low, high order (e.g. PPC 64)
+ _register_type(float_dd_ma,
+ b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf')
+ # double double; high, low order (e.g. PPC 64 le)
+ _register_type(float_dd_ma,
+ b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<')
+ _float_ma['dd'] = float_dd_ma
+
+
+def _get_machar(ftype):
+ """ Get MachAr instance or MachAr-like instance
+
+ Get parameters for floating point type, by first trying signatures of
+ various known floating point types, then, if none match, attempting to
+ identify parameters by analysis.
+
+ Parameters
+ ----------
+ ftype : class
+ Numpy floating point type class (e.g. ``np.float64``)
+
+ Returns
+ -------
+ ma_like : instance of :class:`MachAr` or :class:`MachArLike`
+ Object giving floating point parameters for `ftype`.
+
+ Warns
+ -----
+ UserWarning
+ If the binary signature of the float type is not in the dictionary of
+ known float types.
+ """
+ params = _MACHAR_PARAMS.get(ftype)
+ if params is None:
+ raise ValueError(repr(ftype))
+ # Detect known / suspected types
+ key = ftype('-0.1').newbyteorder('<').tobytes()
+ ma_like = None
+ if ftype == ntypes.longdouble:
+ # Could be 80 bit == 10 byte extended precision, where last bytes can
+ # be random garbage.
+ # Comparing first 10 bytes to pattern first to avoid branching on the
+ # random garbage.
+ ma_like = _KNOWN_TYPES.get(key[:10])
+ if ma_like is None:
+ ma_like = _KNOWN_TYPES.get(key)
+ if ma_like is not None:
+ return ma_like
+ # Fall back to parameter discovery
+ warnings.warn(
+ 'Signature {} for {} does not match any known type: '
+ 'falling back to type probe function'.format(key, ftype),
+ UserWarning, stacklevel=2)
+ return _discovered_machar(ftype)
+
+
+def _discovered_machar(ftype):
+ """ Create MachAr instance with found information on float types
+ """
+ params = _MACHAR_PARAMS[ftype]
+ return MachAr(lambda v: array([v], ftype),
+ lambda v:_fr0(v.astype(params['itype']))[0],
+ lambda v:array(_fr0(v)[0], ftype),
+ lambda v: params['fmt'] % array(_fr0(v)[0], ftype),
+ params['title'])
+
+
+@set_module('numpy')
+class finfo:
+ """
+ finfo(dtype)
+
+ Machine limits for floating point types.
+
+ Attributes
+ ----------
+ bits : int
+ The number of bits occupied by the type.
+ eps : float
+ The difference between 1.0 and the next smallest representable float
+ larger than 1.0. For example, for 64-bit binary floats in the IEEE-754
+ standard, ``eps = 2**-52``, approximately 2.22e-16.
+ epsneg : float
+ The difference between 1.0 and the next smallest representable float
+ less than 1.0. For example, for 64-bit binary floats in the IEEE-754
+ standard, ``epsneg = 2**-53``, approximately 1.11e-16.
+ iexp : int
+ The number of bits in the exponent portion of the floating point
+ representation.
+ machar : MachAr
+ The object which calculated these parameters and holds more
+ detailed information.
+ machep : int
+ The exponent that yields `eps`.
+ max : floating point number of the appropriate type
+ The largest representable number.
+ maxexp : int
+ The smallest positive power of the base (2) that causes overflow.
+ min : floating point number of the appropriate type
+ The smallest representable number, typically ``-max``.
+ minexp : int
+ The most negative power of the base (2) consistent with there
+ being no leading 0's in the mantissa.
+ negep : int
+ The exponent that yields `epsneg`.
+ nexp : int
+ The number of bits in the exponent including its sign and bias.
+ nmant : int
+ The number of bits in the mantissa.
+ precision : int
+ The approximate number of decimal digits to which this kind of
+ float is precise.
+ resolution : floating point number of the appropriate type
+ The approximate decimal resolution of this type, i.e.,
+ ``10**-precision``.
+ tiny : float
+ The smallest positive floating point number with full precision
+ (see Notes).
+
+ Parameters
+ ----------
+ dtype : float, dtype, or instance
+ Kind of floating point data-type about which to get information.
+
+ See Also
+ --------
+ MachAr : The implementation of the tests that produce this information.
+ iinfo : The equivalent for integer data types.
+ spacing : The distance between a value and the nearest adjacent number
+ nextafter : The next floating point value after x1 towards x2
+
+ Notes
+ -----
+ For developers of NumPy: do not instantiate this at the module level.
+ The initial calculation of these parameters is expensive and negatively
+ impacts import times. These objects are cached, so calling ``finfo()``
+ repeatedly inside your functions is not a problem.
+
+ Note that ``tiny`` is not actually the smallest positive representable
+ value in a NumPy floating point type. As in the IEEE-754 standard [1]_,
+ NumPy floating point types make use of subnormal numbers to fill the
+ gap between 0 and ``tiny``. However, subnormal numbers may have
+ significantly reduced precision [2]_.
+
+ References
+ ----------
+ .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
+ pp.1-70, 2008, http://www.doi.org/10.1109/IEEESTD.2008.4610935
+ .. [2] Wikipedia, "Denormal Numbers",
+ https://en.wikipedia.org/wiki/Denormal_number
+ """
+
+ _finfo_cache = {}
+
+ def __new__(cls, dtype):
+ try:
+ dtype = numeric.dtype(dtype)
+ except TypeError:
+ # In case a float instance was given
+ dtype = numeric.dtype(type(dtype))
+
+ obj = cls._finfo_cache.get(dtype, None)
+ if obj is not None:
+ return obj
+ dtypes = [dtype]
+ newdtype = numeric.obj2sctype(dtype)
+ if newdtype is not dtype:
+ dtypes.append(newdtype)
+ dtype = newdtype
+ if not issubclass(dtype, numeric.inexact):
+ raise ValueError("data type %r not inexact" % (dtype))
+ obj = cls._finfo_cache.get(dtype, None)
+ if obj is not None:
+ return obj
+ if not issubclass(dtype, numeric.floating):
+ newdtype = _convert_to_float[dtype]
+ if newdtype is not dtype:
+ dtypes.append(newdtype)
+ dtype = newdtype
+ obj = cls._finfo_cache.get(dtype, None)
+ if obj is not None:
+ return obj
+ obj = object.__new__(cls)._init(dtype)
+ for dt in dtypes:
+ cls._finfo_cache[dt] = obj
+ return obj
+
+ def _init(self, dtype):
+ self.dtype = numeric.dtype(dtype)
+ machar = _get_machar(dtype)
+
+ for word in ['precision', 'iexp',
+ 'maxexp', 'minexp', 'negep',
+ 'machep']:
+ setattr(self, word, getattr(machar, word))
+ for word in ['tiny', 'resolution', 'epsneg']:
+ setattr(self, word, getattr(machar, word).flat[0])
+ self.bits = self.dtype.itemsize * 8
+ self.max = machar.huge.flat[0]
+ self.min = -self.max
+ self.eps = machar.eps.flat[0]
+ self.nexp = machar.iexp
+ self.nmant = machar.it
+ self.machar = machar
+ self._str_tiny = machar._str_xmin.strip()
+ self._str_max = machar._str_xmax.strip()
+ self._str_epsneg = machar._str_epsneg.strip()
+ self._str_eps = machar._str_eps.strip()
+ self._str_resolution = machar._str_resolution.strip()
+ return self
+
+ def __str__(self):
+ fmt = (
+ 'Machine parameters for %(dtype)s\n'
+ '---------------------------------------------------------------\n'
+ 'precision = %(precision)3s resolution = %(_str_resolution)s\n'
+ 'machep = %(machep)6s eps = %(_str_eps)s\n'
+ 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n'
+ 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n'
+ 'maxexp = %(maxexp)6s max = %(_str_max)s\n'
+ 'nexp = %(nexp)6s min = -max\n'
+ '---------------------------------------------------------------\n'
+ )
+ return fmt % self.__dict__
+
+ def __repr__(self):
+ c = self.__class__.__name__
+ d = self.__dict__.copy()
+ d['klass'] = c
+ return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s,"
+ " max=%(_str_max)s, dtype=%(dtype)s)") % d)
+
+
+@set_module('numpy')
+class iinfo:
+ """
+ iinfo(type)
+
+ Machine limits for integer types.
+
+ Attributes
+ ----------
+ bits : int
+ The number of bits occupied by the type.
+ min : int
+ The smallest integer expressible by the type.
+ max : int
+ The largest integer expressible by the type.
+
+ Parameters
+ ----------
+ int_type : integer type, dtype, or instance
+ The kind of integer data type to get information about.
+
+ See Also
+ --------
+ finfo : The equivalent for floating point data types.
+
+ Examples
+ --------
+ With types:
+
+ >>> ii16 = np.iinfo(np.int16)
+ >>> ii16.min
+ -32768
+ >>> ii16.max
+ 32767
+ >>> ii32 = np.iinfo(np.int32)
+ >>> ii32.min
+ -2147483648
+ >>> ii32.max
+ 2147483647
+
+ With instances:
+
+ >>> ii32 = np.iinfo(np.int32(10))
+ >>> ii32.min
+ -2147483648
+ >>> ii32.max
+ 2147483647
+
+ """
+
+ _min_vals = {}
+ _max_vals = {}
+
+ def __init__(self, int_type):
+ try:
+ self.dtype = numeric.dtype(int_type)
+ except TypeError:
+ self.dtype = numeric.dtype(type(int_type))
+ self.kind = self.dtype.kind
+ self.bits = self.dtype.itemsize * 8
+ self.key = "%s%d" % (self.kind, self.bits)
+ if self.kind not in 'iu':
+ raise ValueError("Invalid integer data type %r." % (self.kind,))
+
+ @property
+ def min(self):
+ """Minimum value of given dtype."""
+ if self.kind == 'u':
+ return 0
+ else:
+ try:
+ val = iinfo._min_vals[self.key]
+ except KeyError:
+ val = int(-(1 << (self.bits-1)))
+ iinfo._min_vals[self.key] = val
+ return val
+
+ @property
+ def max(self):
+ """Maximum value of given dtype."""
+ try:
+ val = iinfo._max_vals[self.key]
+ except KeyError:
+ if self.kind == 'u':
+ val = int((1 << self.bits) - 1)
+ else:
+ val = int((1 << (self.bits-1)) - 1)
+ iinfo._max_vals[self.key] = val
+ return val
+
+ def __str__(self):
+ """String representation."""
+ fmt = (
+ 'Machine parameters for %(dtype)s\n'
+ '---------------------------------------------------------------\n'
+ 'min = %(min)s\n'
+ 'max = %(max)s\n'
+ '---------------------------------------------------------------\n'
+ )
+ return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max}
+
+ def __repr__(self):
+ return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__,
+ self.min, self.max, self.dtype)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__multiarray_api.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__multiarray_api.h
new file mode 100644
index 0000000000000000000000000000000000000000..a375c8caba59ae019eed10c546acff6359fb987c
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__multiarray_api.h
@@ -0,0 +1,1540 @@
+
+#if defined(_MULTIARRAYMODULE) || defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE)
+
+typedef struct {
+ PyObject_HEAD
+ npy_bool obval;
+} PyBoolScalarObject;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayMapIter_Type;
+extern NPY_NO_EXPORT PyTypeObject PyArrayNeighborhoodIter_Type;
+extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2];
+
+NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCVersion \
+ (void);
+extern NPY_NO_EXPORT PyTypeObject PyBigArray_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyArray_Type;
+
+extern NPY_NO_EXPORT PyArray_DTypeMeta PyArrayDescr_TypeFull;
+#define PyArrayDescr_Type (*(PyTypeObject *)(&PyArrayDescr_TypeFull))
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayFlags_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayIter_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyArrayMultiIter_Type;
+
+extern NPY_NO_EXPORT int NPY_NUMUSERTYPES;
+
+extern NPY_NO_EXPORT PyTypeObject PyBoolArrType_Type;
+
+extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2];
+
+extern NPY_NO_EXPORT PyTypeObject PyGenericArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyNumberArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PySignedIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUnsignedIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyInexactArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFloatingArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyComplexFloatingArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFlexibleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCharacterArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyByteArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyShortArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyIntArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUByteArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUShortArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUIntArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyULongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyULongLongArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyFloatArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyLongDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCFloatArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyCLongDoubleArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyObjectArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyStringArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUnicodeArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyVoidArrType_Type;
+
+NPY_NO_EXPORT int PyArray_SetNumericOps \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_GetNumericOps \
+ (void);
+NPY_NO_EXPORT int PyArray_INCREF \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_XDECREF \
+ (PyArrayObject *);
+NPY_NO_EXPORT void PyArray_SetStringFunction \
+ (PyObject *, int);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromType \
+ (int);
+NPY_NO_EXPORT PyObject * PyArray_TypeObjectFromType \
+ (int);
+NPY_NO_EXPORT char * PyArray_Zero \
+ (PyArrayObject *);
+NPY_NO_EXPORT char * PyArray_One \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) NPY_GCC_NONNULL(2) PyObject * PyArray_CastToType \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT int PyArray_CastTo \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CastAnyTo \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CanCastSafely \
+ (int, int);
+NPY_NO_EXPORT npy_bool PyArray_CanCastTo \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_ObjectType \
+ (PyObject *, int);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromObject \
+ (PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT PyArrayObject ** PyArray_ConvertToCommonType \
+ (PyObject *, int *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromScalar \
+ (PyObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromTypeObject \
+ (PyObject *);
+NPY_NO_EXPORT npy_intp PyArray_Size \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Scalar \
+ (void *, PyArray_Descr *, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromScalar \
+ (PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT void PyArray_ScalarAsCtype \
+ (PyObject *, void *);
+NPY_NO_EXPORT int PyArray_CastScalarToCtype \
+ (PyObject *, void *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_CastScalarDirect \
+ (PyObject *, PyArray_Descr *, void *, int);
+NPY_NO_EXPORT PyObject * PyArray_ScalarFromObject \
+ (PyObject *);
+NPY_NO_EXPORT PyArray_VectorUnaryFunc * PyArray_GetCastFunc \
+ (PyArray_Descr *, int);
+NPY_NO_EXPORT PyObject * PyArray_FromDims \
+ (int NPY_UNUSED(nd), int *NPY_UNUSED(d), int NPY_UNUSED(type));
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_FromDimsAndDataAndDescr \
+ (int NPY_UNUSED(nd), int *NPY_UNUSED(d), PyArray_Descr *, char *NPY_UNUSED(data));
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromAny \
+ (PyObject *, PyArray_Descr *, int, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureArray \
+ (PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureAnyArray \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromFile \
+ (FILE *, PyArray_Descr *, npy_intp, char *);
+NPY_NO_EXPORT PyObject * PyArray_FromString \
+ (char *, npy_intp, PyArray_Descr *, npy_intp, char *);
+NPY_NO_EXPORT PyObject * PyArray_FromBuffer \
+ (PyObject *, PyArray_Descr *, npy_intp, npy_intp);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromIter \
+ (PyObject *, PyArray_Descr *, npy_intp);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_Return \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) NPY_GCC_NONNULL(2) PyObject * PyArray_GetField \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) NPY_GCC_NONNULL(2) int PyArray_SetField \
+ (PyArrayObject *, PyArray_Descr *, int, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Byteswap \
+ (PyArrayObject *, npy_bool);
+NPY_NO_EXPORT PyObject * PyArray_Resize \
+ (PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order));
+NPY_NO_EXPORT int PyArray_MoveInto \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CopyInto \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CopyAnyInto \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_CopyObject \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT NPY_GCC_NONNULL(1) PyObject * PyArray_NewCopy \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_ToList \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_ToString \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT int PyArray_ToFile \
+ (PyArrayObject *, FILE *, char *, char *);
+NPY_NO_EXPORT int PyArray_Dump \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Dumps \
+ (PyObject *, int);
+NPY_NO_EXPORT int PyArray_ValidType \
+ (int);
+NPY_NO_EXPORT void PyArray_UpdateFlags \
+ (PyArrayObject *, int);
+NPY_NO_EXPORT NPY_GCC_NONNULL(1) PyObject * PyArray_New \
+ (PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) NPY_GCC_NONNULL(1) NPY_GCC_NONNULL(2) PyObject * PyArray_NewFromDescr \
+ (PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNew \
+ (PyArray_Descr *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewFromType \
+ (int);
+NPY_NO_EXPORT double PyArray_GetPriority \
+ (PyObject *, double);
+NPY_NO_EXPORT PyObject * PyArray_IterNew \
+ (PyObject *);
+NPY_NO_EXPORT PyObject* PyArray_MultiIterNew \
+ (int, ...);
+NPY_NO_EXPORT int PyArray_PyIntAsInt \
+ (PyObject *);
+NPY_NO_EXPORT npy_intp PyArray_PyIntAsIntp \
+ (PyObject *);
+NPY_NO_EXPORT int PyArray_Broadcast \
+ (PyArrayMultiIterObject *);
+NPY_NO_EXPORT void PyArray_FillObjectArray \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT int PyArray_FillWithScalar \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT npy_bool PyArray_CheckStrides \
+ (int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewByteorder \
+ (PyArray_Descr *, char);
+NPY_NO_EXPORT PyObject * PyArray_IterAllButAxis \
+ (PyObject *, int *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_CheckFromAny \
+ (PyObject *, PyArray_Descr *, int, int, int, PyObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromArray \
+ (PyArrayObject *, PyArray_Descr *, int);
+NPY_NO_EXPORT PyObject * PyArray_FromInterface \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromStructInterface \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_FromArrayAttr \
+ (PyObject *, PyArray_Descr *, PyObject *);
+NPY_NO_EXPORT NPY_SCALARKIND PyArray_ScalarKind \
+ (int, PyArrayObject **);
+NPY_NO_EXPORT int PyArray_CanCoerceScalar \
+ (int, int, NPY_SCALARKIND);
+NPY_NO_EXPORT PyObject * PyArray_NewFlagsObject \
+ (PyObject *);
+NPY_NO_EXPORT npy_bool PyArray_CanCastScalar \
+ (PyTypeObject *, PyTypeObject *);
+NPY_NO_EXPORT int PyArray_CompareUCS4 \
+ (npy_ucs4 const *, npy_ucs4 const *, size_t);
+NPY_NO_EXPORT int PyArray_RemoveSmallest \
+ (PyArrayMultiIterObject *);
+NPY_NO_EXPORT int PyArray_ElementStrides \
+ (PyObject *);
+NPY_NO_EXPORT void PyArray_Item_INCREF \
+ (char *, PyArray_Descr *);
+NPY_NO_EXPORT void PyArray_Item_XDECREF \
+ (char *, PyArray_Descr *);
+NPY_NO_EXPORT PyObject * PyArray_FieldNames \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Transpose \
+ (PyArrayObject *, PyArray_Dims *);
+NPY_NO_EXPORT PyObject * PyArray_TakeFrom \
+ (PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT PyObject * PyArray_PutTo \
+ (PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT PyObject * PyArray_PutMask \
+ (PyArrayObject *, PyObject*, PyObject*);
+NPY_NO_EXPORT PyObject * PyArray_Repeat \
+ (PyArrayObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Choose \
+ (PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE);
+NPY_NO_EXPORT int PyArray_Sort \
+ (PyArrayObject *, int, NPY_SORTKIND);
+NPY_NO_EXPORT PyObject * PyArray_ArgSort \
+ (PyArrayObject *, int, NPY_SORTKIND);
+NPY_NO_EXPORT PyObject * PyArray_SearchSorted \
+ (PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_ArgMax \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_ArgMin \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Reshape \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Newshape \
+ (PyArrayObject *, PyArray_Dims *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_Squeeze \
+ (PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_View \
+ (PyArrayObject *, PyArray_Descr *, PyTypeObject *);
+NPY_NO_EXPORT PyObject * PyArray_SwapAxes \
+ (PyArrayObject *, int, int);
+NPY_NO_EXPORT PyObject * PyArray_Max \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Min \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Ptp \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Mean \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Trace \
+ (PyArrayObject *, int, int, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Diagonal \
+ (PyArrayObject *, int, int, int);
+NPY_NO_EXPORT PyObject * PyArray_Clip \
+ (PyArrayObject *, PyObject *, PyObject *, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Conjugate \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Nonzero \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Std \
+ (PyArrayObject *, int, int, PyArrayObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Sum \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_CumSum \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Prod \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_CumProd \
+ (PyArrayObject *, int, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_All \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Any \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Compress \
+ (PyArrayObject *, PyObject *, int, PyArrayObject *);
+NPY_NO_EXPORT PyObject * PyArray_Flatten \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT PyObject * PyArray_Ravel \
+ (PyArrayObject *, NPY_ORDER);
+NPY_NO_EXPORT npy_intp PyArray_MultiplyList \
+ (npy_intp const *, int);
+NPY_NO_EXPORT int PyArray_MultiplyIntList \
+ (int const *, int);
+NPY_NO_EXPORT void * PyArray_GetPtr \
+ (PyArrayObject *, npy_intp const*);
+NPY_NO_EXPORT int PyArray_CompareLists \
+ (npy_intp const *, npy_intp const *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(5) int PyArray_AsCArray \
+ (PyObject **, void *, npy_intp *, int, PyArray_Descr*);
+NPY_NO_EXPORT int PyArray_As1D \
+ (PyObject **NPY_UNUSED(op), char **NPY_UNUSED(ptr), int *NPY_UNUSED(d1), int NPY_UNUSED(typecode));
+NPY_NO_EXPORT int PyArray_As2D \
+ (PyObject **NPY_UNUSED(op), char ***NPY_UNUSED(ptr), int *NPY_UNUSED(d1), int *NPY_UNUSED(d2), int NPY_UNUSED(typecode));
+NPY_NO_EXPORT int PyArray_Free \
+ (PyObject *, void *);
+NPY_NO_EXPORT int PyArray_Converter \
+ (PyObject *, PyObject **);
+NPY_NO_EXPORT int PyArray_IntpFromSequence \
+ (PyObject *, npy_intp *, int);
+NPY_NO_EXPORT PyObject * PyArray_Concatenate \
+ (PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_InnerProduct \
+ (PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_MatrixProduct \
+ (PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_CopyAndTranspose \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Correlate \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT int PyArray_TypestrConvert \
+ (int, int);
+NPY_NO_EXPORT int PyArray_DescrConverter \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_DescrConverter2 \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_IntpConverter \
+ (PyObject *, PyArray_Dims *);
+NPY_NO_EXPORT int PyArray_BufferConverter \
+ (PyObject *, PyArray_Chunk *);
+NPY_NO_EXPORT int PyArray_AxisConverter \
+ (PyObject *, int *);
+NPY_NO_EXPORT int PyArray_BoolConverter \
+ (PyObject *, npy_bool *);
+NPY_NO_EXPORT int PyArray_ByteorderConverter \
+ (PyObject *, char *);
+NPY_NO_EXPORT int PyArray_OrderConverter \
+ (PyObject *, NPY_ORDER *);
+NPY_NO_EXPORT unsigned char PyArray_EquivTypes \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Zeros \
+ (int, npy_intp const *, PyArray_Descr *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Empty \
+ (int, npy_intp const *, PyArray_Descr *, int);
+NPY_NO_EXPORT PyObject * PyArray_Where \
+ (PyObject *, PyObject *, PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_Arange \
+ (double, double, double, int);
+NPY_NO_EXPORT PyObject * PyArray_ArangeObj \
+ (PyObject *, PyObject *, PyObject *, PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_SortkindConverter \
+ (PyObject *, NPY_SORTKIND *);
+NPY_NO_EXPORT PyObject * PyArray_LexSort \
+ (PyObject *, int);
+NPY_NO_EXPORT PyObject * PyArray_Round \
+ (PyArrayObject *, int, PyArrayObject *);
+NPY_NO_EXPORT unsigned char PyArray_EquivTypenums \
+ (int, int);
+NPY_NO_EXPORT int PyArray_RegisterDataType \
+ (PyArray_Descr *);
+NPY_NO_EXPORT int PyArray_RegisterCastFunc \
+ (PyArray_Descr *, int, PyArray_VectorUnaryFunc *);
+NPY_NO_EXPORT int PyArray_RegisterCanCast \
+ (PyArray_Descr *, int, NPY_SCALARKIND);
+NPY_NO_EXPORT void PyArray_InitArrFuncs \
+ (PyArray_ArrFuncs *);
+NPY_NO_EXPORT PyObject * PyArray_IntTupleFromIntp \
+ (int, npy_intp const *);
+NPY_NO_EXPORT int PyArray_TypeNumFromName \
+ (char const *);
+NPY_NO_EXPORT int PyArray_ClipmodeConverter \
+ (PyObject *, NPY_CLIPMODE *);
+NPY_NO_EXPORT int PyArray_OutputConverter \
+ (PyObject *, PyArrayObject **);
+NPY_NO_EXPORT PyObject * PyArray_BroadcastToShape \
+ (PyObject *, npy_intp *, int);
+NPY_NO_EXPORT void _PyArray_SigintHandler \
+ (int);
+NPY_NO_EXPORT void* _PyArray_GetSigintBuf \
+ (void);
+NPY_NO_EXPORT int PyArray_DescrAlignConverter \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_DescrAlignConverter2 \
+ (PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyArray_SearchsideConverter \
+ (PyObject *, void *);
+NPY_NO_EXPORT PyObject * PyArray_CheckAxis \
+ (PyArrayObject *, int *, int);
+NPY_NO_EXPORT npy_intp PyArray_OverflowMultiplyList \
+ (npy_intp const *, int);
+NPY_NO_EXPORT int PyArray_CompareString \
+ (const char *, const char *, size_t);
+NPY_NO_EXPORT PyObject* PyArray_MultiIterFromObjects \
+ (PyObject **, int, int, ...);
+NPY_NO_EXPORT int PyArray_GetEndianness \
+ (void);
+NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCFeatureVersion \
+ (void);
+NPY_NO_EXPORT PyObject * PyArray_Correlate2 \
+ (PyObject *, PyObject *, int);
+NPY_NO_EXPORT PyObject* PyArray_NeighborhoodIterNew \
+ (PyArrayIterObject *, const npy_intp *, int, PyArrayObject*);
+extern NPY_NO_EXPORT PyTypeObject PyTimeIntegerArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyDatetimeArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyTimedeltaArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyHalfArrType_Type;
+
+extern NPY_NO_EXPORT PyTypeObject NpyIter_Type;
+
+NPY_NO_EXPORT void PyArray_SetDatetimeParseFunction \
+ (PyObject *NPY_UNUSED(op));
+NPY_NO_EXPORT void PyArray_DatetimeToDatetimeStruct \
+ (npy_datetime NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_datetimestruct *);
+NPY_NO_EXPORT void PyArray_TimedeltaToTimedeltaStruct \
+ (npy_timedelta NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_timedeltastruct *);
+NPY_NO_EXPORT npy_datetime PyArray_DatetimeStructToDatetime \
+ (NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_datetimestruct *NPY_UNUSED(d));
+NPY_NO_EXPORT npy_datetime PyArray_TimedeltaStructToTimedelta \
+ (NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_timedeltastruct *NPY_UNUSED(d));
+NPY_NO_EXPORT NpyIter * NpyIter_New \
+ (PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*);
+NPY_NO_EXPORT NpyIter * NpyIter_MultiNew \
+ (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **);
+NPY_NO_EXPORT NpyIter * NpyIter_AdvancedNew \
+ (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp);
+NPY_NO_EXPORT NpyIter * NpyIter_Copy \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_Deallocate \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasDelayedBufAlloc \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasExternalLoop \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_EnableExternalLoop \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetInnerStrideArray \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetInnerLoopSizePtr \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_Reset \
+ (NpyIter *, char **);
+NPY_NO_EXPORT int NpyIter_ResetBasePointers \
+ (NpyIter *, char **, char **);
+NPY_NO_EXPORT int NpyIter_ResetToIterIndexRange \
+ (NpyIter *, npy_intp, npy_intp, char **);
+NPY_NO_EXPORT int NpyIter_GetNDim \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GetNOp \
+ (NpyIter *);
+NPY_NO_EXPORT NpyIter_IterNextFunc * NpyIter_GetIterNext \
+ (NpyIter *, char **);
+NPY_NO_EXPORT npy_intp NpyIter_GetIterSize \
+ (NpyIter *);
+NPY_NO_EXPORT void NpyIter_GetIterIndexRange \
+ (NpyIter *, npy_intp *, npy_intp *);
+NPY_NO_EXPORT npy_intp NpyIter_GetIterIndex \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GotoIterIndex \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT npy_bool NpyIter_HasMultiIndex \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GetShape \
+ (NpyIter *, npy_intp *);
+NPY_NO_EXPORT NpyIter_GetMultiIndexFunc * NpyIter_GetGetMultiIndex \
+ (NpyIter *, char **);
+NPY_NO_EXPORT int NpyIter_GotoMultiIndex \
+ (NpyIter *, npy_intp const *);
+NPY_NO_EXPORT int NpyIter_RemoveMultiIndex \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_HasIndex \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IsBuffered \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IsGrowInner \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp NpyIter_GetBufferSize \
+ (NpyIter *);
+NPY_NO_EXPORT npy_intp * NpyIter_GetIndexPtr \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_GotoIndex \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT char ** NpyIter_GetDataPtrArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArray_Descr ** NpyIter_GetDescrArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArrayObject ** NpyIter_GetOperandArray \
+ (NpyIter *);
+NPY_NO_EXPORT PyArrayObject * NpyIter_GetIterView \
+ (NpyIter *, npy_intp);
+NPY_NO_EXPORT void NpyIter_GetReadFlags \
+ (NpyIter *, char *);
+NPY_NO_EXPORT void NpyIter_GetWriteFlags \
+ (NpyIter *, char *);
+NPY_NO_EXPORT void NpyIter_DebugPrint \
+ (NpyIter *);
+NPY_NO_EXPORT npy_bool NpyIter_IterationNeedsAPI \
+ (NpyIter *);
+NPY_NO_EXPORT void NpyIter_GetInnerFixedStrideArray \
+ (NpyIter *, npy_intp *);
+NPY_NO_EXPORT int NpyIter_RemoveAxis \
+ (NpyIter *, int);
+NPY_NO_EXPORT npy_intp * NpyIter_GetAxisStrideArray \
+ (NpyIter *, int);
+NPY_NO_EXPORT npy_bool NpyIter_RequiresBuffering \
+ (NpyIter *);
+NPY_NO_EXPORT char ** NpyIter_GetInitialDataPtrArray \
+ (NpyIter *);
+NPY_NO_EXPORT int NpyIter_CreateCompatibleStrides \
+ (NpyIter *, npy_intp, npy_intp *);
+NPY_NO_EXPORT int PyArray_CastingConverter \
+ (PyObject *, NPY_CASTING *);
+NPY_NO_EXPORT npy_intp PyArray_CountNonzero \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_PromoteTypes \
+ (PyArray_Descr *, PyArray_Descr *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_MinScalarType \
+ (PyArrayObject *);
+NPY_NO_EXPORT PyArray_Descr * PyArray_ResultType \
+ (npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[]);
+NPY_NO_EXPORT npy_bool PyArray_CanCastArrayTo \
+ (PyArrayObject *, PyArray_Descr *, NPY_CASTING);
+NPY_NO_EXPORT npy_bool PyArray_CanCastTypeTo \
+ (PyArray_Descr *, PyArray_Descr *, NPY_CASTING);
+NPY_NO_EXPORT PyArrayObject * PyArray_EinsteinSum \
+ (char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) NPY_GCC_NONNULL(1) PyObject * PyArray_NewLikeArray \
+ (PyArrayObject *, NPY_ORDER, PyArray_Descr *, int);
+NPY_NO_EXPORT int PyArray_GetArrayParamsFromObject \
+ (PyObject *NPY_UNUSED(op), PyArray_Descr *NPY_UNUSED(requested_dtype), npy_bool NPY_UNUSED(writeable), PyArray_Descr **NPY_UNUSED(out_dtype), int *NPY_UNUSED(out_ndim), npy_intp *NPY_UNUSED(out_dims), PyArrayObject **NPY_UNUSED(out_arr), PyObject *NPY_UNUSED(context));
+NPY_NO_EXPORT int PyArray_ConvertClipmodeSequence \
+ (PyObject *, NPY_CLIPMODE *, int);
+NPY_NO_EXPORT PyObject * PyArray_MatrixProduct2 \
+ (PyObject *, PyObject *, PyArrayObject*);
+NPY_NO_EXPORT npy_bool NpyIter_IsFirstVisit \
+ (NpyIter *, int);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetBaseObject \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT void PyArray_CreateSortedStridePerm \
+ (int, npy_intp const *, npy_stride_sort_item *);
+NPY_NO_EXPORT void PyArray_RemoveAxesInPlace \
+ (PyArrayObject *, const npy_bool *);
+NPY_NO_EXPORT void PyArray_DebugPrint \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_FailUnlessWriteable \
+ (PyArrayObject *, const char *);
+NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetUpdateIfCopyBase \
+ (PyArrayObject *, PyArrayObject *);
+NPY_NO_EXPORT void * PyDataMem_NEW \
+ (size_t);
+NPY_NO_EXPORT void PyDataMem_FREE \
+ (void *);
+NPY_NO_EXPORT void * PyDataMem_RENEW \
+ (void *, size_t);
+NPY_NO_EXPORT PyDataMem_EventHookFunc * PyDataMem_SetEventHook \
+ (PyDataMem_EventHookFunc *, void *, void **);
+extern NPY_NO_EXPORT NPY_CASTING NPY_DEFAULT_ASSIGN_CASTING;
+
+NPY_NO_EXPORT void PyArray_MapIterSwapAxes \
+ (PyArrayMapIterObject *, PyArrayObject **, int);
+NPY_NO_EXPORT PyObject * PyArray_MapIterArray \
+ (PyArrayObject *, PyObject *);
+NPY_NO_EXPORT void PyArray_MapIterNext \
+ (PyArrayMapIterObject *);
+NPY_NO_EXPORT int PyArray_Partition \
+ (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND);
+NPY_NO_EXPORT PyObject * PyArray_ArgPartition \
+ (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND);
+NPY_NO_EXPORT int PyArray_SelectkindConverter \
+ (PyObject *, NPY_SELECTKIND *);
+NPY_NO_EXPORT void * PyDataMem_NEW_ZEROED \
+ (size_t, size_t);
+NPY_NO_EXPORT NPY_GCC_NONNULL(1) int PyArray_CheckAnyScalarExact \
+ (PyObject *);
+NPY_NO_EXPORT PyObject * PyArray_MapIterArrayCopyIfOverlap \
+ (PyArrayObject *, PyObject *, int, PyArrayObject *);
+NPY_NO_EXPORT int PyArray_ResolveWritebackIfCopy \
+ (PyArrayObject *);
+NPY_NO_EXPORT int PyArray_SetWritebackIfCopyBase \
+ (PyArrayObject *, PyArrayObject *);
+
+#else
+
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+#define PyArray_API PY_ARRAY_UNIQUE_SYMBOL
+#endif
+
+#if defined(NO_IMPORT) || defined(NO_IMPORT_ARRAY)
+extern void **PyArray_API;
+#else
+#if defined(PY_ARRAY_UNIQUE_SYMBOL)
+void **PyArray_API;
+#else
+static void **PyArray_API=NULL;
+#endif
+#endif
+
+#define PyArray_GetNDArrayCVersion \
+ (*(unsigned int (*)(void)) \
+ PyArray_API[0])
+#define PyBigArray_Type (*(PyTypeObject *)PyArray_API[1])
+#define PyArray_Type (*(PyTypeObject *)PyArray_API[2])
+#define PyArrayDescr_Type (*(PyTypeObject *)PyArray_API[3])
+#define PyArrayFlags_Type (*(PyTypeObject *)PyArray_API[4])
+#define PyArrayIter_Type (*(PyTypeObject *)PyArray_API[5])
+#define PyArrayMultiIter_Type (*(PyTypeObject *)PyArray_API[6])
+#define NPY_NUMUSERTYPES (*(int *)PyArray_API[7])
+#define PyBoolArrType_Type (*(PyTypeObject *)PyArray_API[8])
+#define _PyArrayScalar_BoolValues ((PyBoolScalarObject *)PyArray_API[9])
+#define PyGenericArrType_Type (*(PyTypeObject *)PyArray_API[10])
+#define PyNumberArrType_Type (*(PyTypeObject *)PyArray_API[11])
+#define PyIntegerArrType_Type (*(PyTypeObject *)PyArray_API[12])
+#define PySignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[13])
+#define PyUnsignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[14])
+#define PyInexactArrType_Type (*(PyTypeObject *)PyArray_API[15])
+#define PyFloatingArrType_Type (*(PyTypeObject *)PyArray_API[16])
+#define PyComplexFloatingArrType_Type (*(PyTypeObject *)PyArray_API[17])
+#define PyFlexibleArrType_Type (*(PyTypeObject *)PyArray_API[18])
+#define PyCharacterArrType_Type (*(PyTypeObject *)PyArray_API[19])
+#define PyByteArrType_Type (*(PyTypeObject *)PyArray_API[20])
+#define PyShortArrType_Type (*(PyTypeObject *)PyArray_API[21])
+#define PyIntArrType_Type (*(PyTypeObject *)PyArray_API[22])
+#define PyLongArrType_Type (*(PyTypeObject *)PyArray_API[23])
+#define PyLongLongArrType_Type (*(PyTypeObject *)PyArray_API[24])
+#define PyUByteArrType_Type (*(PyTypeObject *)PyArray_API[25])
+#define PyUShortArrType_Type (*(PyTypeObject *)PyArray_API[26])
+#define PyUIntArrType_Type (*(PyTypeObject *)PyArray_API[27])
+#define PyULongArrType_Type (*(PyTypeObject *)PyArray_API[28])
+#define PyULongLongArrType_Type (*(PyTypeObject *)PyArray_API[29])
+#define PyFloatArrType_Type (*(PyTypeObject *)PyArray_API[30])
+#define PyDoubleArrType_Type (*(PyTypeObject *)PyArray_API[31])
+#define PyLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[32])
+#define PyCFloatArrType_Type (*(PyTypeObject *)PyArray_API[33])
+#define PyCDoubleArrType_Type (*(PyTypeObject *)PyArray_API[34])
+#define PyCLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[35])
+#define PyObjectArrType_Type (*(PyTypeObject *)PyArray_API[36])
+#define PyStringArrType_Type (*(PyTypeObject *)PyArray_API[37])
+#define PyUnicodeArrType_Type (*(PyTypeObject *)PyArray_API[38])
+#define PyVoidArrType_Type (*(PyTypeObject *)PyArray_API[39])
+#define PyArray_SetNumericOps \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[40])
+#define PyArray_GetNumericOps \
+ (*(PyObject * (*)(void)) \
+ PyArray_API[41])
+#define PyArray_INCREF \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[42])
+#define PyArray_XDECREF \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[43])
+#define PyArray_SetStringFunction \
+ (*(void (*)(PyObject *, int)) \
+ PyArray_API[44])
+#define PyArray_DescrFromType \
+ (*(PyArray_Descr * (*)(int)) \
+ PyArray_API[45])
+#define PyArray_TypeObjectFromType \
+ (*(PyObject * (*)(int)) \
+ PyArray_API[46])
+#define PyArray_Zero \
+ (*(char * (*)(PyArrayObject *)) \
+ PyArray_API[47])
+#define PyArray_One \
+ (*(char * (*)(PyArrayObject *)) \
+ PyArray_API[48])
+#define PyArray_CastToType \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[49])
+#define PyArray_CastTo \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[50])
+#define PyArray_CastAnyTo \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[51])
+#define PyArray_CanCastSafely \
+ (*(int (*)(int, int)) \
+ PyArray_API[52])
+#define PyArray_CanCastTo \
+ (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[53])
+#define PyArray_ObjectType \
+ (*(int (*)(PyObject *, int)) \
+ PyArray_API[54])
+#define PyArray_DescrFromObject \
+ (*(PyArray_Descr * (*)(PyObject *, PyArray_Descr *)) \
+ PyArray_API[55])
+#define PyArray_ConvertToCommonType \
+ (*(PyArrayObject ** (*)(PyObject *, int *)) \
+ PyArray_API[56])
+#define PyArray_DescrFromScalar \
+ (*(PyArray_Descr * (*)(PyObject *)) \
+ PyArray_API[57])
+#define PyArray_DescrFromTypeObject \
+ (*(PyArray_Descr * (*)(PyObject *)) \
+ PyArray_API[58])
+#define PyArray_Size \
+ (*(npy_intp (*)(PyObject *)) \
+ PyArray_API[59])
+#define PyArray_Scalar \
+ (*(PyObject * (*)(void *, PyArray_Descr *, PyObject *)) \
+ PyArray_API[60])
+#define PyArray_FromScalar \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *)) \
+ PyArray_API[61])
+#define PyArray_ScalarAsCtype \
+ (*(void (*)(PyObject *, void *)) \
+ PyArray_API[62])
+#define PyArray_CastScalarToCtype \
+ (*(int (*)(PyObject *, void *, PyArray_Descr *)) \
+ PyArray_API[63])
+#define PyArray_CastScalarDirect \
+ (*(int (*)(PyObject *, PyArray_Descr *, void *, int)) \
+ PyArray_API[64])
+#define PyArray_ScalarFromObject \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[65])
+#define PyArray_GetCastFunc \
+ (*(PyArray_VectorUnaryFunc * (*)(PyArray_Descr *, int)) \
+ PyArray_API[66])
+#define PyArray_FromDims \
+ (*(PyObject * (*)(int NPY_UNUSED(nd), int *NPY_UNUSED(d), int NPY_UNUSED(type))) \
+ PyArray_API[67])
+#define PyArray_FromDimsAndDataAndDescr \
+ (*(PyObject * (*)(int NPY_UNUSED(nd), int *NPY_UNUSED(d), PyArray_Descr *, char *NPY_UNUSED(data))) \
+ PyArray_API[68])
+#define PyArray_FromAny \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \
+ PyArray_API[69])
+#define PyArray_EnsureArray \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[70])
+#define PyArray_EnsureAnyArray \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[71])
+#define PyArray_FromFile \
+ (*(PyObject * (*)(FILE *, PyArray_Descr *, npy_intp, char *)) \
+ PyArray_API[72])
+#define PyArray_FromString \
+ (*(PyObject * (*)(char *, npy_intp, PyArray_Descr *, npy_intp, char *)) \
+ PyArray_API[73])
+#define PyArray_FromBuffer \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp, npy_intp)) \
+ PyArray_API[74])
+#define PyArray_FromIter \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp)) \
+ PyArray_API[75])
+#define PyArray_Return \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[76])
+#define PyArray_GetField \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[77])
+#define PyArray_SetField \
+ (*(int (*)(PyArrayObject *, PyArray_Descr *, int, PyObject *)) \
+ PyArray_API[78])
+#define PyArray_Byteswap \
+ (*(PyObject * (*)(PyArrayObject *, npy_bool)) \
+ PyArray_API[79])
+#define PyArray_Resize \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order))) \
+ PyArray_API[80])
+#define PyArray_MoveInto \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[81])
+#define PyArray_CopyInto \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[82])
+#define PyArray_CopyAnyInto \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[83])
+#define PyArray_CopyObject \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[84])
+#define PyArray_NewCopy \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[85])
+#define PyArray_ToList \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[86])
+#define PyArray_ToString \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[87])
+#define PyArray_ToFile \
+ (*(int (*)(PyArrayObject *, FILE *, char *, char *)) \
+ PyArray_API[88])
+#define PyArray_Dump \
+ (*(int (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[89])
+#define PyArray_Dumps \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[90])
+#define PyArray_ValidType \
+ (*(int (*)(int)) \
+ PyArray_API[91])
+#define PyArray_UpdateFlags \
+ (*(void (*)(PyArrayObject *, int)) \
+ PyArray_API[92])
+#define PyArray_New \
+ (*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) \
+ PyArray_API[93])
+#define PyArray_NewFromDescr \
+ (*(PyObject * (*)(PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *)) \
+ PyArray_API[94])
+#define PyArray_DescrNew \
+ (*(PyArray_Descr * (*)(PyArray_Descr *)) \
+ PyArray_API[95])
+#define PyArray_DescrNewFromType \
+ (*(PyArray_Descr * (*)(int)) \
+ PyArray_API[96])
+#define PyArray_GetPriority \
+ (*(double (*)(PyObject *, double)) \
+ PyArray_API[97])
+#define PyArray_IterNew \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[98])
+#define PyArray_MultiIterNew \
+ (*(PyObject* (*)(int, ...)) \
+ PyArray_API[99])
+#define PyArray_PyIntAsInt \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[100])
+#define PyArray_PyIntAsIntp \
+ (*(npy_intp (*)(PyObject *)) \
+ PyArray_API[101])
+#define PyArray_Broadcast \
+ (*(int (*)(PyArrayMultiIterObject *)) \
+ PyArray_API[102])
+#define PyArray_FillObjectArray \
+ (*(void (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[103])
+#define PyArray_FillWithScalar \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[104])
+#define PyArray_CheckStrides \
+ (*(npy_bool (*)(int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *)) \
+ PyArray_API[105])
+#define PyArray_DescrNewByteorder \
+ (*(PyArray_Descr * (*)(PyArray_Descr *, char)) \
+ PyArray_API[106])
+#define PyArray_IterAllButAxis \
+ (*(PyObject * (*)(PyObject *, int *)) \
+ PyArray_API[107])
+#define PyArray_CheckFromAny \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \
+ PyArray_API[108])
+#define PyArray_FromArray \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \
+ PyArray_API[109])
+#define PyArray_FromInterface \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[110])
+#define PyArray_FromStructInterface \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[111])
+#define PyArray_FromArrayAttr \
+ (*(PyObject * (*)(PyObject *, PyArray_Descr *, PyObject *)) \
+ PyArray_API[112])
+#define PyArray_ScalarKind \
+ (*(NPY_SCALARKIND (*)(int, PyArrayObject **)) \
+ PyArray_API[113])
+#define PyArray_CanCoerceScalar \
+ (*(int (*)(int, int, NPY_SCALARKIND)) \
+ PyArray_API[114])
+#define PyArray_NewFlagsObject \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[115])
+#define PyArray_CanCastScalar \
+ (*(npy_bool (*)(PyTypeObject *, PyTypeObject *)) \
+ PyArray_API[116])
+#define PyArray_CompareUCS4 \
+ (*(int (*)(npy_ucs4 const *, npy_ucs4 const *, size_t)) \
+ PyArray_API[117])
+#define PyArray_RemoveSmallest \
+ (*(int (*)(PyArrayMultiIterObject *)) \
+ PyArray_API[118])
+#define PyArray_ElementStrides \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[119])
+#define PyArray_Item_INCREF \
+ (*(void (*)(char *, PyArray_Descr *)) \
+ PyArray_API[120])
+#define PyArray_Item_XDECREF \
+ (*(void (*)(char *, PyArray_Descr *)) \
+ PyArray_API[121])
+#define PyArray_FieldNames \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[122])
+#define PyArray_Transpose \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *)) \
+ PyArray_API[123])
+#define PyArray_TakeFrom \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE)) \
+ PyArray_API[124])
+#define PyArray_PutTo \
+ (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE)) \
+ PyArray_API[125])
+#define PyArray_PutMask \
+ (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject*)) \
+ PyArray_API[126])
+#define PyArray_Repeat \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int)) \
+ PyArray_API[127])
+#define PyArray_Choose \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE)) \
+ PyArray_API[128])
+#define PyArray_Sort \
+ (*(int (*)(PyArrayObject *, int, NPY_SORTKIND)) \
+ PyArray_API[129])
+#define PyArray_ArgSort \
+ (*(PyObject * (*)(PyArrayObject *, int, NPY_SORTKIND)) \
+ PyArray_API[130])
+#define PyArray_SearchSorted \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *)) \
+ PyArray_API[131])
+#define PyArray_ArgMax \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[132])
+#define PyArray_ArgMin \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[133])
+#define PyArray_Reshape \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[134])
+#define PyArray_Newshape \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, NPY_ORDER)) \
+ PyArray_API[135])
+#define PyArray_Squeeze \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[136])
+#define PyArray_View \
+ (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, PyTypeObject *)) \
+ PyArray_API[137])
+#define PyArray_SwapAxes \
+ (*(PyObject * (*)(PyArrayObject *, int, int)) \
+ PyArray_API[138])
+#define PyArray_Max \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[139])
+#define PyArray_Min \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[140])
+#define PyArray_Ptp \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[141])
+#define PyArray_Mean \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[142])
+#define PyArray_Trace \
+ (*(PyObject * (*)(PyArrayObject *, int, int, int, int, PyArrayObject *)) \
+ PyArray_API[143])
+#define PyArray_Diagonal \
+ (*(PyObject * (*)(PyArrayObject *, int, int, int)) \
+ PyArray_API[144])
+#define PyArray_Clip \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, PyObject *, PyArrayObject *)) \
+ PyArray_API[145])
+#define PyArray_Conjugate \
+ (*(PyObject * (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[146])
+#define PyArray_Nonzero \
+ (*(PyObject * (*)(PyArrayObject *)) \
+ PyArray_API[147])
+#define PyArray_Std \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *, int)) \
+ PyArray_API[148])
+#define PyArray_Sum \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[149])
+#define PyArray_CumSum \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[150])
+#define PyArray_Prod \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[151])
+#define PyArray_CumProd \
+ (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \
+ PyArray_API[152])
+#define PyArray_All \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[153])
+#define PyArray_Any \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[154])
+#define PyArray_Compress \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *)) \
+ PyArray_API[155])
+#define PyArray_Flatten \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[156])
+#define PyArray_Ravel \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \
+ PyArray_API[157])
+#define PyArray_MultiplyList \
+ (*(npy_intp (*)(npy_intp const *, int)) \
+ PyArray_API[158])
+#define PyArray_MultiplyIntList \
+ (*(int (*)(int const *, int)) \
+ PyArray_API[159])
+#define PyArray_GetPtr \
+ (*(void * (*)(PyArrayObject *, npy_intp const*)) \
+ PyArray_API[160])
+#define PyArray_CompareLists \
+ (*(int (*)(npy_intp const *, npy_intp const *, int)) \
+ PyArray_API[161])
+#define PyArray_AsCArray \
+ (*(int (*)(PyObject **, void *, npy_intp *, int, PyArray_Descr*)) \
+ PyArray_API[162])
+#define PyArray_As1D \
+ (*(int (*)(PyObject **NPY_UNUSED(op), char **NPY_UNUSED(ptr), int *NPY_UNUSED(d1), int NPY_UNUSED(typecode))) \
+ PyArray_API[163])
+#define PyArray_As2D \
+ (*(int (*)(PyObject **NPY_UNUSED(op), char ***NPY_UNUSED(ptr), int *NPY_UNUSED(d1), int *NPY_UNUSED(d2), int NPY_UNUSED(typecode))) \
+ PyArray_API[164])
+#define PyArray_Free \
+ (*(int (*)(PyObject *, void *)) \
+ PyArray_API[165])
+#define PyArray_Converter \
+ (*(int (*)(PyObject *, PyObject **)) \
+ PyArray_API[166])
+#define PyArray_IntpFromSequence \
+ (*(int (*)(PyObject *, npy_intp *, int)) \
+ PyArray_API[167])
+#define PyArray_Concatenate \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[168])
+#define PyArray_InnerProduct \
+ (*(PyObject * (*)(PyObject *, PyObject *)) \
+ PyArray_API[169])
+#define PyArray_MatrixProduct \
+ (*(PyObject * (*)(PyObject *, PyObject *)) \
+ PyArray_API[170])
+#define PyArray_CopyAndTranspose \
+ (*(PyObject * (*)(PyObject *)) \
+ PyArray_API[171])
+#define PyArray_Correlate \
+ (*(PyObject * (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[172])
+#define PyArray_TypestrConvert \
+ (*(int (*)(int, int)) \
+ PyArray_API[173])
+#define PyArray_DescrConverter \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[174])
+#define PyArray_DescrConverter2 \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[175])
+#define PyArray_IntpConverter \
+ (*(int (*)(PyObject *, PyArray_Dims *)) \
+ PyArray_API[176])
+#define PyArray_BufferConverter \
+ (*(int (*)(PyObject *, PyArray_Chunk *)) \
+ PyArray_API[177])
+#define PyArray_AxisConverter \
+ (*(int (*)(PyObject *, int *)) \
+ PyArray_API[178])
+#define PyArray_BoolConverter \
+ (*(int (*)(PyObject *, npy_bool *)) \
+ PyArray_API[179])
+#define PyArray_ByteorderConverter \
+ (*(int (*)(PyObject *, char *)) \
+ PyArray_API[180])
+#define PyArray_OrderConverter \
+ (*(int (*)(PyObject *, NPY_ORDER *)) \
+ PyArray_API[181])
+#define PyArray_EquivTypes \
+ (*(unsigned char (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[182])
+#define PyArray_Zeros \
+ (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \
+ PyArray_API[183])
+#define PyArray_Empty \
+ (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \
+ PyArray_API[184])
+#define PyArray_Where \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyObject *)) \
+ PyArray_API[185])
+#define PyArray_Arange \
+ (*(PyObject * (*)(double, double, double, int)) \
+ PyArray_API[186])
+#define PyArray_ArangeObj \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyObject *, PyArray_Descr *)) \
+ PyArray_API[187])
+#define PyArray_SortkindConverter \
+ (*(int (*)(PyObject *, NPY_SORTKIND *)) \
+ PyArray_API[188])
+#define PyArray_LexSort \
+ (*(PyObject * (*)(PyObject *, int)) \
+ PyArray_API[189])
+#define PyArray_Round \
+ (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \
+ PyArray_API[190])
+#define PyArray_EquivTypenums \
+ (*(unsigned char (*)(int, int)) \
+ PyArray_API[191])
+#define PyArray_RegisterDataType \
+ (*(int (*)(PyArray_Descr *)) \
+ PyArray_API[192])
+#define PyArray_RegisterCastFunc \
+ (*(int (*)(PyArray_Descr *, int, PyArray_VectorUnaryFunc *)) \
+ PyArray_API[193])
+#define PyArray_RegisterCanCast \
+ (*(int (*)(PyArray_Descr *, int, NPY_SCALARKIND)) \
+ PyArray_API[194])
+#define PyArray_InitArrFuncs \
+ (*(void (*)(PyArray_ArrFuncs *)) \
+ PyArray_API[195])
+#define PyArray_IntTupleFromIntp \
+ (*(PyObject * (*)(int, npy_intp const *)) \
+ PyArray_API[196])
+#define PyArray_TypeNumFromName \
+ (*(int (*)(char const *)) \
+ PyArray_API[197])
+#define PyArray_ClipmodeConverter \
+ (*(int (*)(PyObject *, NPY_CLIPMODE *)) \
+ PyArray_API[198])
+#define PyArray_OutputConverter \
+ (*(int (*)(PyObject *, PyArrayObject **)) \
+ PyArray_API[199])
+#define PyArray_BroadcastToShape \
+ (*(PyObject * (*)(PyObject *, npy_intp *, int)) \
+ PyArray_API[200])
+#define _PyArray_SigintHandler \
+ (*(void (*)(int)) \
+ PyArray_API[201])
+#define _PyArray_GetSigintBuf \
+ (*(void* (*)(void)) \
+ PyArray_API[202])
+#define PyArray_DescrAlignConverter \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[203])
+#define PyArray_DescrAlignConverter2 \
+ (*(int (*)(PyObject *, PyArray_Descr **)) \
+ PyArray_API[204])
+#define PyArray_SearchsideConverter \
+ (*(int (*)(PyObject *, void *)) \
+ PyArray_API[205])
+#define PyArray_CheckAxis \
+ (*(PyObject * (*)(PyArrayObject *, int *, int)) \
+ PyArray_API[206])
+#define PyArray_OverflowMultiplyList \
+ (*(npy_intp (*)(npy_intp const *, int)) \
+ PyArray_API[207])
+#define PyArray_CompareString \
+ (*(int (*)(const char *, const char *, size_t)) \
+ PyArray_API[208])
+#define PyArray_MultiIterFromObjects \
+ (*(PyObject* (*)(PyObject **, int, int, ...)) \
+ PyArray_API[209])
+#define PyArray_GetEndianness \
+ (*(int (*)(void)) \
+ PyArray_API[210])
+#define PyArray_GetNDArrayCFeatureVersion \
+ (*(unsigned int (*)(void)) \
+ PyArray_API[211])
+#define PyArray_Correlate2 \
+ (*(PyObject * (*)(PyObject *, PyObject *, int)) \
+ PyArray_API[212])
+#define PyArray_NeighborhoodIterNew \
+ (*(PyObject* (*)(PyArrayIterObject *, const npy_intp *, int, PyArrayObject*)) \
+ PyArray_API[213])
+#define PyTimeIntegerArrType_Type (*(PyTypeObject *)PyArray_API[214])
+#define PyDatetimeArrType_Type (*(PyTypeObject *)PyArray_API[215])
+#define PyTimedeltaArrType_Type (*(PyTypeObject *)PyArray_API[216])
+#define PyHalfArrType_Type (*(PyTypeObject *)PyArray_API[217])
+#define NpyIter_Type (*(PyTypeObject *)PyArray_API[218])
+#define PyArray_SetDatetimeParseFunction \
+ (*(void (*)(PyObject *NPY_UNUSED(op))) \
+ PyArray_API[219])
+#define PyArray_DatetimeToDatetimeStruct \
+ (*(void (*)(npy_datetime NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_datetimestruct *)) \
+ PyArray_API[220])
+#define PyArray_TimedeltaToTimedeltaStruct \
+ (*(void (*)(npy_timedelta NPY_UNUSED(val), NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_timedeltastruct *)) \
+ PyArray_API[221])
+#define PyArray_DatetimeStructToDatetime \
+ (*(npy_datetime (*)(NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_datetimestruct *NPY_UNUSED(d))) \
+ PyArray_API[222])
+#define PyArray_TimedeltaStructToTimedelta \
+ (*(npy_datetime (*)(NPY_DATETIMEUNIT NPY_UNUSED(fr), npy_timedeltastruct *NPY_UNUSED(d))) \
+ PyArray_API[223])
+#define NpyIter_New \
+ (*(NpyIter * (*)(PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*)) \
+ PyArray_API[224])
+#define NpyIter_MultiNew \
+ (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **)) \
+ PyArray_API[225])
+#define NpyIter_AdvancedNew \
+ (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp)) \
+ PyArray_API[226])
+#define NpyIter_Copy \
+ (*(NpyIter * (*)(NpyIter *)) \
+ PyArray_API[227])
+#define NpyIter_Deallocate \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[228])
+#define NpyIter_HasDelayedBufAlloc \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[229])
+#define NpyIter_HasExternalLoop \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[230])
+#define NpyIter_EnableExternalLoop \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[231])
+#define NpyIter_GetInnerStrideArray \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[232])
+#define NpyIter_GetInnerLoopSizePtr \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[233])
+#define NpyIter_Reset \
+ (*(int (*)(NpyIter *, char **)) \
+ PyArray_API[234])
+#define NpyIter_ResetBasePointers \
+ (*(int (*)(NpyIter *, char **, char **)) \
+ PyArray_API[235])
+#define NpyIter_ResetToIterIndexRange \
+ (*(int (*)(NpyIter *, npy_intp, npy_intp, char **)) \
+ PyArray_API[236])
+#define NpyIter_GetNDim \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[237])
+#define NpyIter_GetNOp \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[238])
+#define NpyIter_GetIterNext \
+ (*(NpyIter_IterNextFunc * (*)(NpyIter *, char **)) \
+ PyArray_API[239])
+#define NpyIter_GetIterSize \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[240])
+#define NpyIter_GetIterIndexRange \
+ (*(void (*)(NpyIter *, npy_intp *, npy_intp *)) \
+ PyArray_API[241])
+#define NpyIter_GetIterIndex \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[242])
+#define NpyIter_GotoIterIndex \
+ (*(int (*)(NpyIter *, npy_intp)) \
+ PyArray_API[243])
+#define NpyIter_HasMultiIndex \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[244])
+#define NpyIter_GetShape \
+ (*(int (*)(NpyIter *, npy_intp *)) \
+ PyArray_API[245])
+#define NpyIter_GetGetMultiIndex \
+ (*(NpyIter_GetMultiIndexFunc * (*)(NpyIter *, char **)) \
+ PyArray_API[246])
+#define NpyIter_GotoMultiIndex \
+ (*(int (*)(NpyIter *, npy_intp const *)) \
+ PyArray_API[247])
+#define NpyIter_RemoveMultiIndex \
+ (*(int (*)(NpyIter *)) \
+ PyArray_API[248])
+#define NpyIter_HasIndex \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[249])
+#define NpyIter_IsBuffered \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[250])
+#define NpyIter_IsGrowInner \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[251])
+#define NpyIter_GetBufferSize \
+ (*(npy_intp (*)(NpyIter *)) \
+ PyArray_API[252])
+#define NpyIter_GetIndexPtr \
+ (*(npy_intp * (*)(NpyIter *)) \
+ PyArray_API[253])
+#define NpyIter_GotoIndex \
+ (*(int (*)(NpyIter *, npy_intp)) \
+ PyArray_API[254])
+#define NpyIter_GetDataPtrArray \
+ (*(char ** (*)(NpyIter *)) \
+ PyArray_API[255])
+#define NpyIter_GetDescrArray \
+ (*(PyArray_Descr ** (*)(NpyIter *)) \
+ PyArray_API[256])
+#define NpyIter_GetOperandArray \
+ (*(PyArrayObject ** (*)(NpyIter *)) \
+ PyArray_API[257])
+#define NpyIter_GetIterView \
+ (*(PyArrayObject * (*)(NpyIter *, npy_intp)) \
+ PyArray_API[258])
+#define NpyIter_GetReadFlags \
+ (*(void (*)(NpyIter *, char *)) \
+ PyArray_API[259])
+#define NpyIter_GetWriteFlags \
+ (*(void (*)(NpyIter *, char *)) \
+ PyArray_API[260])
+#define NpyIter_DebugPrint \
+ (*(void (*)(NpyIter *)) \
+ PyArray_API[261])
+#define NpyIter_IterationNeedsAPI \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[262])
+#define NpyIter_GetInnerFixedStrideArray \
+ (*(void (*)(NpyIter *, npy_intp *)) \
+ PyArray_API[263])
+#define NpyIter_RemoveAxis \
+ (*(int (*)(NpyIter *, int)) \
+ PyArray_API[264])
+#define NpyIter_GetAxisStrideArray \
+ (*(npy_intp * (*)(NpyIter *, int)) \
+ PyArray_API[265])
+#define NpyIter_RequiresBuffering \
+ (*(npy_bool (*)(NpyIter *)) \
+ PyArray_API[266])
+#define NpyIter_GetInitialDataPtrArray \
+ (*(char ** (*)(NpyIter *)) \
+ PyArray_API[267])
+#define NpyIter_CreateCompatibleStrides \
+ (*(int (*)(NpyIter *, npy_intp, npy_intp *)) \
+ PyArray_API[268])
+#define PyArray_CastingConverter \
+ (*(int (*)(PyObject *, NPY_CASTING *)) \
+ PyArray_API[269])
+#define PyArray_CountNonzero \
+ (*(npy_intp (*)(PyArrayObject *)) \
+ PyArray_API[270])
+#define PyArray_PromoteTypes \
+ (*(PyArray_Descr * (*)(PyArray_Descr *, PyArray_Descr *)) \
+ PyArray_API[271])
+#define PyArray_MinScalarType \
+ (*(PyArray_Descr * (*)(PyArrayObject *)) \
+ PyArray_API[272])
+#define PyArray_ResultType \
+ (*(PyArray_Descr * (*)(npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[])) \
+ PyArray_API[273])
+#define PyArray_CanCastArrayTo \
+ (*(npy_bool (*)(PyArrayObject *, PyArray_Descr *, NPY_CASTING)) \
+ PyArray_API[274])
+#define PyArray_CanCastTypeTo \
+ (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *, NPY_CASTING)) \
+ PyArray_API[275])
+#define PyArray_EinsteinSum \
+ (*(PyArrayObject * (*)(char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *)) \
+ PyArray_API[276])
+#define PyArray_NewLikeArray \
+ (*(PyObject * (*)(PyArrayObject *, NPY_ORDER, PyArray_Descr *, int)) \
+ PyArray_API[277])
+#define PyArray_GetArrayParamsFromObject \
+ (*(int (*)(PyObject *NPY_UNUSED(op), PyArray_Descr *NPY_UNUSED(requested_dtype), npy_bool NPY_UNUSED(writeable), PyArray_Descr **NPY_UNUSED(out_dtype), int *NPY_UNUSED(out_ndim), npy_intp *NPY_UNUSED(out_dims), PyArrayObject **NPY_UNUSED(out_arr), PyObject *NPY_UNUSED(context))) \
+ PyArray_API[278])
+#define PyArray_ConvertClipmodeSequence \
+ (*(int (*)(PyObject *, NPY_CLIPMODE *, int)) \
+ PyArray_API[279])
+#define PyArray_MatrixProduct2 \
+ (*(PyObject * (*)(PyObject *, PyObject *, PyArrayObject*)) \
+ PyArray_API[280])
+#define NpyIter_IsFirstVisit \
+ (*(npy_bool (*)(NpyIter *, int)) \
+ PyArray_API[281])
+#define PyArray_SetBaseObject \
+ (*(int (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[282])
+#define PyArray_CreateSortedStridePerm \
+ (*(void (*)(int, npy_intp const *, npy_stride_sort_item *)) \
+ PyArray_API[283])
+#define PyArray_RemoveAxesInPlace \
+ (*(void (*)(PyArrayObject *, const npy_bool *)) \
+ PyArray_API[284])
+#define PyArray_DebugPrint \
+ (*(void (*)(PyArrayObject *)) \
+ PyArray_API[285])
+#define PyArray_FailUnlessWriteable \
+ (*(int (*)(PyArrayObject *, const char *)) \
+ PyArray_API[286])
+#define PyArray_SetUpdateIfCopyBase \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[287])
+#define PyDataMem_NEW \
+ (*(void * (*)(size_t)) \
+ PyArray_API[288])
+#define PyDataMem_FREE \
+ (*(void (*)(void *)) \
+ PyArray_API[289])
+#define PyDataMem_RENEW \
+ (*(void * (*)(void *, size_t)) \
+ PyArray_API[290])
+#define PyDataMem_SetEventHook \
+ (*(PyDataMem_EventHookFunc * (*)(PyDataMem_EventHookFunc *, void *, void **)) \
+ PyArray_API[291])
+#define NPY_DEFAULT_ASSIGN_CASTING (*(NPY_CASTING *)PyArray_API[292])
+#define PyArray_MapIterSwapAxes \
+ (*(void (*)(PyArrayMapIterObject *, PyArrayObject **, int)) \
+ PyArray_API[293])
+#define PyArray_MapIterArray \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *)) \
+ PyArray_API[294])
+#define PyArray_MapIterNext \
+ (*(void (*)(PyArrayMapIterObject *)) \
+ PyArray_API[295])
+#define PyArray_Partition \
+ (*(int (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \
+ PyArray_API[296])
+#define PyArray_ArgPartition \
+ (*(PyObject * (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \
+ PyArray_API[297])
+#define PyArray_SelectkindConverter \
+ (*(int (*)(PyObject *, NPY_SELECTKIND *)) \
+ PyArray_API[298])
+#define PyDataMem_NEW_ZEROED \
+ (*(void * (*)(size_t, size_t)) \
+ PyArray_API[299])
+#define PyArray_CheckAnyScalarExact \
+ (*(int (*)(PyObject *)) \
+ PyArray_API[300])
+#define PyArray_MapIterArrayCopyIfOverlap \
+ (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *)) \
+ PyArray_API[301])
+#define PyArray_ResolveWritebackIfCopy \
+ (*(int (*)(PyArrayObject *)) \
+ PyArray_API[302])
+#define PyArray_SetWritebackIfCopyBase \
+ (*(int (*)(PyArrayObject *, PyArrayObject *)) \
+ PyArray_API[303])
+
+#if !defined(NO_IMPORT_ARRAY) && !defined(NO_IMPORT)
+static int
+_import_array(void)
+{
+ int st;
+ PyObject *numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
+ PyObject *c_api = NULL;
+
+ if (numpy == NULL) {
+ return -1;
+ }
+ c_api = PyObject_GetAttrString(numpy, "_ARRAY_API");
+ Py_DECREF(numpy);
+ if (c_api == NULL) {
+ PyErr_SetString(PyExc_AttributeError, "_ARRAY_API not found");
+ return -1;
+ }
+
+ if (!PyCapsule_CheckExact(c_api)) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is not PyCapsule object");
+ Py_DECREF(c_api);
+ return -1;
+ }
+ PyArray_API = (void **)PyCapsule_GetPointer(c_api, NULL);
+ Py_DECREF(c_api);
+ if (PyArray_API == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is NULL pointer");
+ return -1;
+ }
+
+ /* Perform runtime check of C API version */
+ if (NPY_VERSION != PyArray_GetNDArrayCVersion()) {
+ PyErr_Format(PyExc_RuntimeError, "module compiled against "\
+ "ABI version 0x%x but this version of numpy is 0x%x", \
+ (int) NPY_VERSION, (int) PyArray_GetNDArrayCVersion());
+ return -1;
+ }
+ if (NPY_FEATURE_VERSION > PyArray_GetNDArrayCFeatureVersion()) {
+ PyErr_Format(PyExc_RuntimeError, "module compiled against "\
+ "API version 0x%x but this version of numpy is 0x%x", \
+ (int) NPY_FEATURE_VERSION, (int) PyArray_GetNDArrayCFeatureVersion());
+ return -1;
+ }
+
+ /*
+ * Perform runtime check of endianness and check it matches the one set by
+ * the headers (npy_endian.h) as a safeguard
+ */
+ st = PyArray_GetEndianness();
+ if (st == NPY_CPU_UNKNOWN_ENDIAN) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as unknown endian");
+ return -1;
+ }
+#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
+ if (st != NPY_CPU_BIG) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as "\
+ "big endian, but detected different endianness at runtime");
+ return -1;
+ }
+#elif NPY_BYTE_ORDER == NPY_LITTLE_ENDIAN
+ if (st != NPY_CPU_LITTLE) {
+ PyErr_Format(PyExc_RuntimeError, "FATAL: module compiled as "\
+ "little endian, but detected different endianness at runtime");
+ return -1;
+ }
+#endif
+
+ return 0;
+}
+
+#define import_array() {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); return NULL; } }
+
+#define import_array1(ret) {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); return ret; } }
+
+#define import_array2(msg, ret) {if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, msg); return ret; } }
+
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__ufunc_api.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__ufunc_api.h
new file mode 100644
index 0000000000000000000000000000000000000000..5b5a9f4dfa8d2e16009fbb13cd863d68fc0b895b
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/__ufunc_api.h
@@ -0,0 +1,311 @@
+
+#ifdef _UMATHMODULE
+
+extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
+
+extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
+
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, int);
+NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \
+ (PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *);
+NPY_NO_EXPORT int PyUFunc_GenericFunction \
+ (PyUFuncObject *NPY_UNUSED(ufunc), PyObject *NPY_UNUSED(args), PyObject *NPY_UNUSED(kwds), PyArrayObject **NPY_UNUSED(op));
+NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_f_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_g_g \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_F_F \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_D_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_G_G \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_O_O \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ff_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_gg_g \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_DD_D \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_FF_F \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_GG_G \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_OO_O \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_O_O_method \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_OO_O_method \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_On_Om \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT int PyUFunc_GetPyValues \
+ (char *, int *, int *, PyObject **);
+NPY_NO_EXPORT int PyUFunc_checkfperr \
+ (int, PyObject *, int *);
+NPY_NO_EXPORT void PyUFunc_clearfperr \
+ (void);
+NPY_NO_EXPORT int PyUFunc_getfperr \
+ (void);
+NPY_NO_EXPORT int PyUFunc_handlefperr \
+ (int, PyObject *, int, int *);
+NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \
+ (PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *);
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, int, const char *);
+NPY_NO_EXPORT int PyUFunc_SetUsesArraysAsData \
+ (void **NPY_UNUSED(data), size_t NPY_UNUSED(i));
+NPY_NO_EXPORT void PyUFunc_e_e \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \
+ (char **, npy_intp const *, npy_intp const *, void *);
+NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \
+ (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **);
+NPY_NO_EXPORT int PyUFunc_ValidateCasting \
+ (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr **);
+NPY_NO_EXPORT int PyUFunc_RegisterLoopForDescr \
+ (PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *);
+NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
+ (PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *);
+
+#else
+
+#if defined(PY_UFUNC_UNIQUE_SYMBOL)
+#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL
+#endif
+
+#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC)
+extern void **PyUFunc_API;
+#else
+#if defined(PY_UFUNC_UNIQUE_SYMBOL)
+void **PyUFunc_API;
+#else
+static void **PyUFunc_API=NULL;
+#endif
+#endif
+
+#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0])
+#define PyUFunc_FromFuncAndData \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, int)) \
+ PyUFunc_API[1])
+#define PyUFunc_RegisterLoopForType \
+ (*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *)) \
+ PyUFunc_API[2])
+#define PyUFunc_GenericFunction \
+ (*(int (*)(PyUFuncObject *NPY_UNUSED(ufunc), PyObject *NPY_UNUSED(args), PyObject *NPY_UNUSED(kwds), PyArrayObject **NPY_UNUSED(op))) \
+ PyUFunc_API[3])
+#define PyUFunc_f_f_As_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[4])
+#define PyUFunc_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[5])
+#define PyUFunc_f_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[6])
+#define PyUFunc_g_g \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[7])
+#define PyUFunc_F_F_As_D_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[8])
+#define PyUFunc_F_F \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[9])
+#define PyUFunc_D_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[10])
+#define PyUFunc_G_G \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[11])
+#define PyUFunc_O_O \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[12])
+#define PyUFunc_ff_f_As_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[13])
+#define PyUFunc_ff_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[14])
+#define PyUFunc_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[15])
+#define PyUFunc_gg_g \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[16])
+#define PyUFunc_FF_F_As_DD_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[17])
+#define PyUFunc_DD_D \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[18])
+#define PyUFunc_FF_F \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[19])
+#define PyUFunc_GG_G \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[20])
+#define PyUFunc_OO_O \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[21])
+#define PyUFunc_O_O_method \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[22])
+#define PyUFunc_OO_O_method \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[23])
+#define PyUFunc_On_Om \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[24])
+#define PyUFunc_GetPyValues \
+ (*(int (*)(char *, int *, int *, PyObject **)) \
+ PyUFunc_API[25])
+#define PyUFunc_checkfperr \
+ (*(int (*)(int, PyObject *, int *)) \
+ PyUFunc_API[26])
+#define PyUFunc_clearfperr \
+ (*(void (*)(void)) \
+ PyUFunc_API[27])
+#define PyUFunc_getfperr \
+ (*(int (*)(void)) \
+ PyUFunc_API[28])
+#define PyUFunc_handlefperr \
+ (*(int (*)(int, PyObject *, int, int *)) \
+ PyUFunc_API[29])
+#define PyUFunc_ReplaceLoopBySignature \
+ (*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *)) \
+ PyUFunc_API[30])
+#define PyUFunc_FromFuncAndDataAndSignature \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, int, const char *)) \
+ PyUFunc_API[31])
+#define PyUFunc_SetUsesArraysAsData \
+ (*(int (*)(void **NPY_UNUSED(data), size_t NPY_UNUSED(i))) \
+ PyUFunc_API[32])
+#define PyUFunc_e_e \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[33])
+#define PyUFunc_e_e_As_f_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[34])
+#define PyUFunc_e_e_As_d_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[35])
+#define PyUFunc_ee_e \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[36])
+#define PyUFunc_ee_e_As_ff_f \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[37])
+#define PyUFunc_ee_e_As_dd_d \
+ (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \
+ PyUFunc_API[38])
+#define PyUFunc_DefaultTypeResolver \
+ (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \
+ PyUFunc_API[39])
+#define PyUFunc_ValidateCasting \
+ (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr **)) \
+ PyUFunc_API[40])
+#define PyUFunc_RegisterLoopForDescr \
+ (*(int (*)(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *)) \
+ PyUFunc_API[41])
+#define PyUFunc_FromFuncAndDataAndSignatureAndIdentity \
+ (*(PyObject * (*)(PyUFuncGenericFunction *, void **, char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *)) \
+ PyUFunc_API[42])
+
+static NPY_INLINE int
+_import_umath(void)
+{
+ PyObject *numpy = PyImport_ImportModule("numpy.core._multiarray_umath");
+ PyObject *c_api = NULL;
+
+ if (numpy == NULL) {
+ PyErr_SetString(PyExc_ImportError,
+ "numpy.core._multiarray_umath failed to import");
+ return -1;
+ }
+ c_api = PyObject_GetAttrString(numpy, "_UFUNC_API");
+ Py_DECREF(numpy);
+ if (c_api == NULL) {
+ PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found");
+ return -1;
+ }
+
+ if (!PyCapsule_CheckExact(c_api)) {
+ PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object");
+ Py_DECREF(c_api);
+ return -1;
+ }
+ PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL);
+ Py_DECREF(c_api);
+ if (PyUFunc_API == NULL) {
+ PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer");
+ return -1;
+ }
+ return 0;
+}
+
+#define import_umath() \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy.core.umath failed to import");\
+ return NULL;\
+ }\
+ } while(0)
+
+#define import_umath1(ret) \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy.core.umath failed to import");\
+ return ret;\
+ }\
+ } while(0)
+
+#define import_umath2(ret, msg) \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError, msg);\
+ return ret;\
+ }\
+ } while(0)
+
+#define import_ufunc() \
+ do {\
+ UFUNC_NOFPE\
+ if (_import_umath() < 0) {\
+ PyErr_Print();\
+ PyErr_SetString(PyExc_ImportError,\
+ "numpy.core.umath failed to import");\
+ }\
+ } while(0)
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_neighborhood_iterator_imp.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_neighborhood_iterator_imp.h
new file mode 100644
index 0000000000000000000000000000000000000000..e8860cbc73bbab08b8c5391b2401e2bad38bdcde
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_neighborhood_iterator_imp.h
@@ -0,0 +1,90 @@
+#ifndef _NPY_INCLUDE_NEIGHBORHOOD_IMP
+#error You should not include this header directly
+#endif
+/*
+ * Private API (here for inline)
+ */
+static NPY_INLINE int
+_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter);
+
+/*
+ * Update to next item of the iterator
+ *
+ * Note: this simply increment the coordinates vector, last dimension
+ * incremented first , i.e, for dimension 3
+ * ...
+ * -1, -1, -1
+ * -1, -1, 0
+ * -1, -1, 1
+ * ....
+ * -1, 0, -1
+ * -1, 0, 0
+ * ....
+ * 0, -1, -1
+ * 0, -1, 0
+ * ....
+ */
+#define _UPDATE_COORD_ITER(c) \
+ wb = iter->coordinates[c] < iter->bounds[c][1]; \
+ if (wb) { \
+ iter->coordinates[c] += 1; \
+ return 0; \
+ } \
+ else { \
+ iter->coordinates[c] = iter->bounds[c][0]; \
+ }
+
+static NPY_INLINE int
+_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp i, wb;
+
+ for (i = iter->nd - 1; i >= 0; --i) {
+ _UPDATE_COORD_ITER(i)
+ }
+
+ return 0;
+}
+
+/*
+ * Version optimized for 2d arrays, manual loop unrolling
+ */
+static NPY_INLINE int
+_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp wb;
+
+ _UPDATE_COORD_ITER(1)
+ _UPDATE_COORD_ITER(0)
+
+ return 0;
+}
+#undef _UPDATE_COORD_ITER
+
+/*
+ * Advance to the next neighbour
+ */
+static NPY_INLINE int
+PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
+{
+ _PyArrayNeighborhoodIter_IncrCoord (iter);
+ iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
+
+ return 0;
+}
+
+/*
+ * Reset functions
+ */
+static NPY_INLINE int
+PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
+{
+ npy_intp i;
+
+ for (i = 0; i < iter->nd; ++i) {
+ iter->coordinates[i] = iter->bounds[i][0];
+ }
+ iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
+
+ return 0;
+}
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_numpyconfig.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_numpyconfig.h
new file mode 100644
index 0000000000000000000000000000000000000000..91598509fce1e359e6ee62552ae283ae9a83cfa7
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/_numpyconfig.h
@@ -0,0 +1,32 @@
+#define NPY_HAVE_ENDIAN_H 1
+#define NPY_SIZEOF_SHORT SIZEOF_SHORT
+#define NPY_SIZEOF_INT SIZEOF_INT
+#define NPY_SIZEOF_LONG SIZEOF_LONG
+#define NPY_SIZEOF_FLOAT 4
+#define NPY_SIZEOF_COMPLEX_FLOAT 8
+#define NPY_SIZEOF_DOUBLE 8
+#define NPY_SIZEOF_COMPLEX_DOUBLE 16
+#define NPY_SIZEOF_LONGDOUBLE 8
+#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 16
+#define NPY_SIZEOF_PY_INTPTR_T 4
+#define NPY_SIZEOF_OFF_T 8
+#define NPY_SIZEOF_PY_LONG_LONG 8
+#define NPY_SIZEOF_LONGLONG 8
+#define NPY_NO_SMP 0
+#define NPY_HAVE_DECL_ISNAN
+#define NPY_HAVE_DECL_ISINF
+#define NPY_HAVE_DECL_ISFINITE
+#define NPY_HAVE_DECL_SIGNBIT
+#define NPY_USE_C99_COMPLEX 1
+#define NPY_HAVE_COMPLEX_DOUBLE 1
+#define NPY_HAVE_COMPLEX_FLOAT 1
+#define NPY_HAVE_COMPLEX_LONG_DOUBLE 1
+#define NPY_RELAXED_STRIDES_CHECKING 1
+#define NPY_USE_C99_FORMATS 1
+#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
+#define NPY_ABI_VERSION 0x01000009
+#define NPY_API_VERSION 0x0000000E
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS 1
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h
new file mode 100644
index 0000000000000000000000000000000000000000..4f46d6b1ac91da10689474b788e30de21901bb83
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h
@@ -0,0 +1,11 @@
+#ifndef Py_ARRAYOBJECT_H
+#define Py_ARRAYOBJECT_H
+
+#include "ndarrayobject.h"
+#include "npy_interrupt.h"
+
+#ifdef NPY_NO_PREFIX
+#include "noprefix.h"
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayscalars.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayscalars.h
new file mode 100644
index 0000000000000000000000000000000000000000..14a31988fe428ff77025ae380b0e11f43ac57e8f
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/arrayscalars.h
@@ -0,0 +1,182 @@
+#ifndef _NPY_ARRAYSCALARS_H_
+#define _NPY_ARRAYSCALARS_H_
+
+#ifndef _MULTIARRAYMODULE
+typedef struct {
+ PyObject_HEAD
+ npy_bool obval;
+} PyBoolScalarObject;
+#endif
+
+
+typedef struct {
+ PyObject_HEAD
+ signed char obval;
+} PyByteScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ short obval;
+} PyShortScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ int obval;
+} PyIntScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ long obval;
+} PyLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_longlong obval;
+} PyLongLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned char obval;
+} PyUByteScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned short obval;
+} PyUShortScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned int obval;
+} PyUIntScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ unsigned long obval;
+} PyULongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_ulonglong obval;
+} PyULongLongScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_half obval;
+} PyHalfScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ float obval;
+} PyFloatScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ double obval;
+} PyDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_longdouble obval;
+} PyLongDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_cfloat obval;
+} PyCFloatScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_cdouble obval;
+} PyCDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ npy_clongdouble obval;
+} PyCLongDoubleScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ PyObject * obval;
+} PyObjectScalarObject;
+
+typedef struct {
+ PyObject_HEAD
+ npy_datetime obval;
+ PyArray_DatetimeMetaData obmeta;
+} PyDatetimeScalarObject;
+
+typedef struct {
+ PyObject_HEAD
+ npy_timedelta obval;
+ PyArray_DatetimeMetaData obmeta;
+} PyTimedeltaScalarObject;
+
+
+typedef struct {
+ PyObject_HEAD
+ char obval;
+} PyScalarObject;
+
+#define PyStringScalarObject PyBytesObject
+typedef struct {
+ /* note that the PyObject_HEAD macro lives right here */
+ PyUnicodeObject base;
+ Py_UCS4 *obval;
+ char *buffer_fmt;
+} PyUnicodeScalarObject;
+
+
+typedef struct {
+ PyObject_VAR_HEAD
+ char *obval;
+ PyArray_Descr *descr;
+ int flags;
+ PyObject *base;
+ void *_buffer_info; /* private buffer info, tagged to allow warning */
+} PyVoidScalarObject;
+
+/* Macros
+ PyScalarObject
+ PyArrType_Type
+ are defined in ndarrayobject.h
+*/
+
+#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0])))
+#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1])))
+#define PyArrayScalar_FromLong(i) \
+ ((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)])))
+#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \
+ return Py_INCREF(PyArrayScalar_FromLong(i)), \
+ PyArrayScalar_FromLong(i)
+#define PyArrayScalar_RETURN_FALSE \
+ return Py_INCREF(PyArrayScalar_False), \
+ PyArrayScalar_False
+#define PyArrayScalar_RETURN_TRUE \
+ return Py_INCREF(PyArrayScalar_True), \
+ PyArrayScalar_True
+
+#define PyArrayScalar_New(cls) \
+ Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0)
+#define PyArrayScalar_VAL(obj, cls) \
+ ((Py##cls##ScalarObject *)obj)->obval
+#define PyArrayScalar_ASSIGN(obj, cls, val) \
+ PyArrayScalar_VAL(obj, cls) = val
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/halffloat.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/halffloat.h
new file mode 100644
index 0000000000000000000000000000000000000000..ab0d221fb4317d63de98608396a12b9e68396016
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/halffloat.h
@@ -0,0 +1,70 @@
+#ifndef __NPY_HALFFLOAT_H__
+#define __NPY_HALFFLOAT_H__
+
+#include
+#include
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Half-precision routines
+ */
+
+/* Conversions */
+float npy_half_to_float(npy_half h);
+double npy_half_to_double(npy_half h);
+npy_half npy_float_to_half(float f);
+npy_half npy_double_to_half(double d);
+/* Comparisons */
+int npy_half_eq(npy_half h1, npy_half h2);
+int npy_half_ne(npy_half h1, npy_half h2);
+int npy_half_le(npy_half h1, npy_half h2);
+int npy_half_lt(npy_half h1, npy_half h2);
+int npy_half_ge(npy_half h1, npy_half h2);
+int npy_half_gt(npy_half h1, npy_half h2);
+/* faster *_nonan variants for when you know h1 and h2 are not NaN */
+int npy_half_eq_nonan(npy_half h1, npy_half h2);
+int npy_half_lt_nonan(npy_half h1, npy_half h2);
+int npy_half_le_nonan(npy_half h1, npy_half h2);
+/* Miscellaneous functions */
+int npy_half_iszero(npy_half h);
+int npy_half_isnan(npy_half h);
+int npy_half_isinf(npy_half h);
+int npy_half_isfinite(npy_half h);
+int npy_half_signbit(npy_half h);
+npy_half npy_half_copysign(npy_half x, npy_half y);
+npy_half npy_half_spacing(npy_half h);
+npy_half npy_half_nextafter(npy_half x, npy_half y);
+npy_half npy_half_divmod(npy_half x, npy_half y, npy_half *modulus);
+
+/*
+ * Half-precision constants
+ */
+
+#define NPY_HALF_ZERO (0x0000u)
+#define NPY_HALF_PZERO (0x0000u)
+#define NPY_HALF_NZERO (0x8000u)
+#define NPY_HALF_ONE (0x3c00u)
+#define NPY_HALF_NEGONE (0xbc00u)
+#define NPY_HALF_PINF (0x7c00u)
+#define NPY_HALF_NINF (0xfc00u)
+#define NPY_HALF_NAN (0x7e00u)
+
+#define NPY_MAX_HALF (0x7bffu)
+
+/*
+ * Bit-level conversions
+ */
+
+npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f);
+npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d);
+npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h);
+npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/LICENSE.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/LICENSE.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d72a7c388d406191f2b3113efa5f89916a39d9b2
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/LICENSE.txt
@@ -0,0 +1,21 @@
+ zlib License
+ ------------
+
+ Copyright (C) 2010 - 2019 ridiculous_fish,
+ Copyright (C) 2016 - 2019 Kim Walisch,
+
+ This software is provided 'as-is', without any express or implied
+ warranty. In no event will the authors be held liable for any damages
+ arising from the use of this software.
+
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it
+ freely, subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not
+ claim that you wrote the original software. If you use this software
+ in a product, an acknowledgment in the product documentation would be
+ appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be
+ misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/libdivide.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/libdivide.h
new file mode 100644
index 0000000000000000000000000000000000000000..81057b7b43de92de4a185c113aa71eb2ff6a20be
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/libdivide/libdivide.h
@@ -0,0 +1,2079 @@
+// libdivide.h - Optimized integer division
+// https://libdivide.com
+//
+// Copyright (C) 2010 - 2019 ridiculous_fish,
+// Copyright (C) 2016 - 2019 Kim Walisch,
+//
+// libdivide is dual-licensed under the Boost or zlib licenses.
+// You may use libdivide under the terms of either of these.
+// See LICENSE.txt for more details.
+
+#ifndef LIBDIVIDE_H
+#define LIBDIVIDE_H
+
+#define LIBDIVIDE_VERSION "3.0"
+#define LIBDIVIDE_VERSION_MAJOR 3
+#define LIBDIVIDE_VERSION_MINOR 0
+
+#include
+
+#if defined(__cplusplus)
+ #include
+ #include
+ #include
+#else
+ #include
+ #include
+#endif
+
+#if defined(LIBDIVIDE_AVX512)
+ #include
+#elif defined(LIBDIVIDE_AVX2)
+ #include
+#elif defined(LIBDIVIDE_SSE2)
+ #include
+#endif
+
+#if defined(_MSC_VER)
+ #include
+ // disable warning C4146: unary minus operator applied
+ // to unsigned type, result still unsigned
+ #pragma warning(disable: 4146)
+ #define LIBDIVIDE_VC
+#endif
+
+#if !defined(__has_builtin)
+ #define __has_builtin(x) 0
+#endif
+
+#if defined(__SIZEOF_INT128__)
+ #define HAS_INT128_T
+ // clang-cl on Windows does not yet support 128-bit division
+ #if !(defined(__clang__) && defined(LIBDIVIDE_VC))
+ #define HAS_INT128_DIV
+ #endif
+#endif
+
+#if defined(__x86_64__) || defined(_M_X64)
+ #define LIBDIVIDE_X86_64
+#endif
+
+#if defined(__i386__)
+ #define LIBDIVIDE_i386
+#endif
+
+#if defined(__GNUC__) || defined(__clang__)
+ #define LIBDIVIDE_GCC_STYLE_ASM
+#endif
+
+#if defined(__cplusplus) || defined(LIBDIVIDE_VC)
+ #define LIBDIVIDE_FUNCTION __FUNCTION__
+#else
+ #define LIBDIVIDE_FUNCTION __func__
+#endif
+
+#define LIBDIVIDE_ERROR(msg) \
+ do { \
+ fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", \
+ __LINE__, LIBDIVIDE_FUNCTION, msg); \
+ abort(); \
+ } while (0)
+
+#if defined(LIBDIVIDE_ASSERTIONS_ON)
+ #define LIBDIVIDE_ASSERT(x) \
+ do { \
+ if (!(x)) { \
+ fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", \
+ __LINE__, LIBDIVIDE_FUNCTION, #x); \
+ abort(); \
+ } \
+ } while (0)
+#else
+ #define LIBDIVIDE_ASSERT(x)
+#endif
+
+#ifdef __cplusplus
+namespace libdivide {
+#endif
+
+// pack divider structs to prevent compilers from padding.
+// This reduces memory usage by up to 43% when using a large
+// array of libdivide dividers and improves performance
+// by up to 10% because of reduced memory bandwidth.
+#pragma pack(push, 1)
+
+struct libdivide_u32_t {
+ uint32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s32_t {
+ int32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u64_t {
+ uint64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s64_t {
+ int64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u32_branchfree_t {
+ uint32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s32_branchfree_t {
+ int32_t magic;
+ uint8_t more;
+};
+
+struct libdivide_u64_branchfree_t {
+ uint64_t magic;
+ uint8_t more;
+};
+
+struct libdivide_s64_branchfree_t {
+ int64_t magic;
+ uint8_t more;
+};
+
+#pragma pack(pop)
+
+// Explanation of the "more" field:
+//
+// * Bits 0-5 is the shift value (for shift path or mult path).
+// * Bit 6 is the add indicator for mult path.
+// * Bit 7 is set if the divisor is negative. We use bit 7 as the negative
+// divisor indicator so that we can efficiently use sign extension to
+// create a bitmask with all bits set to 1 (if the divisor is negative)
+// or 0 (if the divisor is positive).
+//
+// u32: [0-4] shift value
+// [5] ignored
+// [6] add indicator
+// magic number of 0 indicates shift path
+//
+// s32: [0-4] shift value
+// [5] ignored
+// [6] add indicator
+// [7] indicates negative divisor
+// magic number of 0 indicates shift path
+//
+// u64: [0-5] shift value
+// [6] add indicator
+// magic number of 0 indicates shift path
+//
+// s64: [0-5] shift value
+// [6] add indicator
+// [7] indicates negative divisor
+// magic number of 0 indicates shift path
+//
+// In s32 and s64 branchfree modes, the magic number is negated according to
+// whether the divisor is negated. In branchfree strategy, it is not negated.
+
+enum {
+ LIBDIVIDE_32_SHIFT_MASK = 0x1F,
+ LIBDIVIDE_64_SHIFT_MASK = 0x3F,
+ LIBDIVIDE_ADD_MARKER = 0x40,
+ LIBDIVIDE_NEGATIVE_DIVISOR = 0x80
+};
+
+static inline struct libdivide_s32_t libdivide_s32_gen(int32_t d);
+static inline struct libdivide_u32_t libdivide_u32_gen(uint32_t d);
+static inline struct libdivide_s64_t libdivide_s64_gen(int64_t d);
+static inline struct libdivide_u64_t libdivide_u64_gen(uint64_t d);
+
+static inline struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d);
+static inline struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d);
+static inline struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d);
+static inline struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d);
+
+static inline int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom);
+static inline uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom);
+static inline int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom);
+static inline uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom);
+
+static inline int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom);
+static inline uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom);
+static inline int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom);
+static inline uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom);
+
+static inline int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom);
+static inline uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom);
+static inline int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom);
+static inline uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom);
+
+static inline int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom);
+static inline uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom);
+static inline int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom);
+static inline uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+static inline uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) {
+ uint64_t xl = x, yl = y;
+ uint64_t rl = xl * yl;
+ return (uint32_t)(rl >> 32);
+}
+
+static inline int32_t libdivide_mullhi_s32(int32_t x, int32_t y) {
+ int64_t xl = x, yl = y;
+ int64_t rl = xl * yl;
+ // needs to be arithmetic shift
+ return (int32_t)(rl >> 32);
+}
+
+static inline uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
+#if defined(LIBDIVIDE_VC) && \
+ defined(LIBDIVIDE_X86_64)
+ return __umulh(x, y);
+#elif defined(HAS_INT128_T)
+ __uint128_t xl = x, yl = y;
+ __uint128_t rl = xl * yl;
+ return (uint64_t)(rl >> 64);
+#else
+ // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
+ uint32_t mask = 0xFFFFFFFF;
+ uint32_t x0 = (uint32_t)(x & mask);
+ uint32_t x1 = (uint32_t)(x >> 32);
+ uint32_t y0 = (uint32_t)(y & mask);
+ uint32_t y1 = (uint32_t)(y >> 32);
+ uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
+ uint64_t x0y1 = x0 * (uint64_t)y1;
+ uint64_t x1y0 = x1 * (uint64_t)y0;
+ uint64_t x1y1 = x1 * (uint64_t)y1;
+ uint64_t temp = x1y0 + x0y0_hi;
+ uint64_t temp_lo = temp & mask;
+ uint64_t temp_hi = temp >> 32;
+
+ return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32);
+#endif
+}
+
+static inline int64_t libdivide_mullhi_s64(int64_t x, int64_t y) {
+#if defined(LIBDIVIDE_VC) && \
+ defined(LIBDIVIDE_X86_64)
+ return __mulh(x, y);
+#elif defined(HAS_INT128_T)
+ __int128_t xl = x, yl = y;
+ __int128_t rl = xl * yl;
+ return (int64_t)(rl >> 64);
+#else
+ // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
+ uint32_t mask = 0xFFFFFFFF;
+ uint32_t x0 = (uint32_t)(x & mask);
+ uint32_t y0 = (uint32_t)(y & mask);
+ int32_t x1 = (int32_t)(x >> 32);
+ int32_t y1 = (int32_t)(y >> 32);
+ uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
+ int64_t t = x1 * (int64_t)y0 + x0y0_hi;
+ int64_t w1 = x0 * (int64_t)y1 + (t & mask);
+
+ return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32);
+#endif
+}
+
+static inline int32_t libdivide_count_leading_zeros32(uint32_t val) {
+#if defined(__GNUC__) || \
+ __has_builtin(__builtin_clz)
+ // Fast way to count leading zeros
+ return __builtin_clz(val);
+#elif defined(LIBDIVIDE_VC)
+ unsigned long result;
+ if (_BitScanReverse(&result, val)) {
+ return 31 - result;
+ }
+ return 0;
+#else
+ if (val == 0)
+ return 32;
+ int32_t result = 8;
+ uint32_t hi = 0xFFU << 24;
+ while ((val & hi) == 0) {
+ hi >>= 8;
+ result += 8;
+ }
+ while (val & hi) {
+ result -= 1;
+ hi <<= 1;
+ }
+ return result;
+#endif
+}
+
+static inline int32_t libdivide_count_leading_zeros64(uint64_t val) {
+#if defined(__GNUC__) || \
+ __has_builtin(__builtin_clzll)
+ // Fast way to count leading zeros
+ return __builtin_clzll(val);
+#elif defined(LIBDIVIDE_VC) && defined(_WIN64)
+ unsigned long result;
+ if (_BitScanReverse64(&result, val)) {
+ return 63 - result;
+ }
+ return 0;
+#else
+ uint32_t hi = val >> 32;
+ uint32_t lo = val & 0xFFFFFFFF;
+ if (hi != 0) return libdivide_count_leading_zeros32(hi);
+ return 32 + libdivide_count_leading_zeros32(lo);
+#endif
+}
+
+// libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit
+// uint {v}. The result must fit in 32 bits.
+// Returns the quotient directly and the remainder in *r
+static inline uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
+#if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && \
+ defined(LIBDIVIDE_GCC_STYLE_ASM)
+ uint32_t result;
+ __asm__("divl %[v]"
+ : "=a"(result), "=d"(*r)
+ : [v] "r"(v), "a"(u0), "d"(u1)
+ );
+ return result;
+#else
+ uint64_t n = ((uint64_t)u1 << 32) | u0;
+ uint32_t result = (uint32_t)(n / v);
+ *r = (uint32_t)(n - result * (uint64_t)v);
+ return result;
+#endif
+}
+
+// libdivide_128_div_64_to_64: divides a 128-bit uint {u1, u0} by a 64-bit
+// uint {v}. The result must fit in 64 bits.
+// Returns the quotient directly and the remainder in *r
+static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) {
+#if defined(LIBDIVIDE_X86_64) && \
+ defined(LIBDIVIDE_GCC_STYLE_ASM)
+ uint64_t result;
+ __asm__("divq %[v]"
+ : "=a"(result), "=d"(*r)
+ : [v] "r"(v), "a"(u0), "d"(u1)
+ );
+ return result;
+#elif defined(HAS_INT128_T) && \
+ defined(HAS_INT128_DIV)
+ __uint128_t n = ((__uint128_t)u1 << 64) | u0;
+ uint64_t result = (uint64_t)(n / v);
+ *r = (uint64_t)(n - result * (__uint128_t)v);
+ return result;
+#else
+ // Code taken from Hacker's Delight:
+ // http://www.hackersdelight.org/HDcode/divlu.c.
+ // License permits inclusion here per:
+ // http://www.hackersdelight.org/permissions.htm
+
+ const uint64_t b = (1ULL << 32); // Number base (32 bits)
+ uint64_t un1, un0; // Norm. dividend LSD's
+ uint64_t vn1, vn0; // Norm. divisor digits
+ uint64_t q1, q0; // Quotient digits
+ uint64_t un64, un21, un10; // Dividend digit pairs
+ uint64_t rhat; // A remainder
+ int32_t s; // Shift amount for norm
+
+ // If overflow, set rem. to an impossible value,
+ // and return the largest possible quotient
+ if (u1 >= v) {
+ *r = (uint64_t) -1;
+ return (uint64_t) -1;
+ }
+
+ // count leading zeros
+ s = libdivide_count_leading_zeros64(v);
+ if (s > 0) {
+ // Normalize divisor
+ v = v << s;
+ un64 = (u1 << s) | (u0 >> (64 - s));
+ un10 = u0 << s; // Shift dividend left
+ } else {
+ // Avoid undefined behavior of (u0 >> 64).
+ // The behavior is undefined if the right operand is
+ // negative, or greater than or equal to the length
+ // in bits of the promoted left operand.
+ un64 = u1;
+ un10 = u0;
+ }
+
+ // Break divisor up into two 32-bit digits
+ vn1 = v >> 32;
+ vn0 = v & 0xFFFFFFFF;
+
+ // Break right half of dividend into two digits
+ un1 = un10 >> 32;
+ un0 = un10 & 0xFFFFFFFF;
+
+ // Compute the first quotient digit, q1
+ q1 = un64 / vn1;
+ rhat = un64 - q1 * vn1;
+
+ while (q1 >= b || q1 * vn0 > b * rhat + un1) {
+ q1 = q1 - 1;
+ rhat = rhat + vn1;
+ if (rhat >= b)
+ break;
+ }
+
+ // Multiply and subtract
+ un21 = un64 * b + un1 - q1 * v;
+
+ // Compute the second quotient digit
+ q0 = un21 / vn1;
+ rhat = un21 - q0 * vn1;
+
+ while (q0 >= b || q0 * vn0 > b * rhat + un0) {
+ q0 = q0 - 1;
+ rhat = rhat + vn1;
+ if (rhat >= b)
+ break;
+ }
+
+ *r = (un21 * b + un0 - q0 * v) >> s;
+ return q1 * b + q0;
+#endif
+}
+
+// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0)
+static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift) {
+ if (signed_shift > 0) {
+ uint32_t shift = signed_shift;
+ *u1 <<= shift;
+ *u1 |= *u0 >> (64 - shift);
+ *u0 <<= shift;
+ }
+ else if (signed_shift < 0) {
+ uint32_t shift = -signed_shift;
+ *u0 >>= shift;
+ *u0 |= *u1 << (64 - shift);
+ *u1 >>= shift;
+ }
+}
+
+// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
+static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) {
+#if defined(HAS_INT128_T) && \
+ defined(HAS_INT128_DIV)
+ __uint128_t ufull = u_hi;
+ __uint128_t vfull = v_hi;
+ ufull = (ufull << 64) | u_lo;
+ vfull = (vfull << 64) | v_lo;
+ uint64_t res = (uint64_t)(ufull / vfull);
+ __uint128_t remainder = ufull - (vfull * res);
+ *r_lo = (uint64_t)remainder;
+ *r_hi = (uint64_t)(remainder >> 64);
+ return res;
+#else
+ // Adapted from "Unsigned Doubleword Division" in Hacker's Delight
+ // We want to compute u / v
+ typedef struct { uint64_t hi; uint64_t lo; } u128_t;
+ u128_t u = {u_hi, u_lo};
+ u128_t v = {v_hi, v_lo};
+
+ if (v.hi == 0) {
+ // divisor v is a 64 bit value, so we just need one 128/64 division
+ // Note that we are simpler than Hacker's Delight here, because we know
+ // the quotient fits in 64 bits whereas Hacker's Delight demands a full
+ // 128 bit quotient
+ *r_hi = 0;
+ return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo);
+ }
+ // Here v >= 2**64
+ // We know that v.hi != 0, so count leading zeros is OK
+ // We have 0 <= n <= 63
+ uint32_t n = libdivide_count_leading_zeros64(v.hi);
+
+ // Normalize the divisor so its MSB is 1
+ u128_t v1t = v;
+ libdivide_u128_shift(&v1t.hi, &v1t.lo, n);
+ uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64
+
+ // To ensure no overflow
+ u128_t u1 = u;
+ libdivide_u128_shift(&u1.hi, &u1.lo, -1);
+
+ // Get quotient from divide unsigned insn.
+ uint64_t rem_ignored;
+ uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored);
+
+ // Undo normalization and division of u by 2.
+ u128_t q0 = {0, q1};
+ libdivide_u128_shift(&q0.hi, &q0.lo, n);
+ libdivide_u128_shift(&q0.hi, &q0.lo, -63);
+
+ // Make q0 correct or too small by 1
+ // Equivalent to `if (q0 != 0) q0 = q0 - 1;`
+ if (q0.hi != 0 || q0.lo != 0) {
+ q0.hi -= (q0.lo == 0); // borrow
+ q0.lo -= 1;
+ }
+
+ // Now q0 is correct.
+ // Compute q0 * v as q0v
+ // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
+ // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
+ // (q0.lo * v.hi << 64) + q0.lo * v.lo)
+ // Each term is 128 bit
+ // High half of full product (upper 128 bits!) are dropped
+ u128_t q0v = {0, 0};
+ q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide_mullhi_u64(q0.lo, v.lo);
+ q0v.lo = q0.lo*v.lo;
+
+ // Compute u - q0v as u_q0v
+ // This is the remainder
+ u128_t u_q0v = u;
+ u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow
+ u_q0v.lo -= q0v.lo;
+
+ // Check if u_q0v >= v
+ // This checks if our remainder is larger than the divisor
+ if ((u_q0v.hi > v.hi) ||
+ (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
+ // Increment q0
+ q0.lo += 1;
+ q0.hi += (q0.lo == 0); // carry
+
+ // Subtract v from remainder
+ u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
+ u_q0v.lo -= v.lo;
+ }
+
+ *r_hi = u_q0v.hi;
+ *r_lo = u_q0v.lo;
+
+ LIBDIVIDE_ASSERT(q0.hi == 0);
+ return q0.lo;
+#endif
+}
+
+////////// UINT32
+
+static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_u32_t result;
+ uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d);
+
+ // Power of 2
+ if ((d & (d - 1)) == 0) {
+ // We need to subtract 1 from the shift value in case of an unsigned
+ // branchfree divider because there is a hardcoded right shift by 1
+ // in its division algorithm. Because of this we also need to add back
+ // 1 in its recovery algorithm.
+ result.magic = 0;
+ result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
+ } else {
+ uint8_t more;
+ uint32_t rem, proposed_m;
+ proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem);
+
+ LIBDIVIDE_ASSERT(rem > 0 && rem < d);
+ const uint32_t e = d - rem;
+
+ // This power works if e < 2**floor_log_2_d.
+ if (!branchfree && (e < (1U << floor_log_2_d))) {
+ // This power works
+ more = floor_log_2_d;
+ } else {
+ // We have to use the general 33-bit algorithm. We need to compute
+ // (2**power) / d. However, we already have (2**(power-1))/d and
+ // its remainder. By doubling both, and then correcting the
+ // remainder, we can compute the larger division.
+ // don't care about overflow here - in fact, we expect it
+ proposed_m += proposed_m;
+ const uint32_t twice_rem = rem + rem;
+ if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ result.magic = 1 + proposed_m;
+ result.more = more;
+ // result.more's shift should in general be ceil_log_2_d. But if we
+ // used the smaller power, we subtract one from the shift because we're
+ // using the smaller power. If we're using the larger power, we
+ // subtract one from the shift because it's taken care of by the add
+ // indicator. So floor_log_2_d happens to be correct in both cases.
+ }
+ return result;
+}
+
+struct libdivide_u32_t libdivide_u32_gen(uint32_t d) {
+ return libdivide_internal_u32_gen(d, 0);
+}
+
+struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
+ if (d == 1) {
+ LIBDIVIDE_ERROR("branchfree divider must be != 1");
+ }
+ struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1);
+ struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)};
+ return ret;
+}
+
+uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return numer >> more;
+ }
+ else {
+ uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ uint32_t t = ((numer - q) >> 1) + q;
+ return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
+ }
+ else {
+ // All upper bits are 0,
+ // don't need to mask them off.
+ return q >> more;
+ }
+ }
+}
+
+uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
+ uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
+ uint32_t t = ((numer - q) >> 1) + q;
+ return t >> denom->more;
+}
+
+uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1U << shift;
+ } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
+ // We compute q = n/d = n*m / 2^(32 + shift)
+ // Therefore we have d = 2^(32 + shift) / m
+ // We need to ceil it.
+ // We know d is not a power of 2, so m is not a power of 2,
+ // so we can just add 1 to the floor
+ uint32_t hi_dividend = 1U << shift;
+ uint32_t rem_ignored;
+ return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored);
+ } else {
+ // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
+ // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
+ // Also note that shift may be as high as 31, so shift + 1 will
+ // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
+ // then double the quotient and remainder.
+ uint64_t half_n = 1ULL << (32 + shift);
+ uint64_t d = (1ULL << 32) | denom->magic;
+ // Note that the quotient is guaranteed <= 32 bits, but the remainder
+ // may need 33!
+ uint32_t half_q = (uint32_t)(half_n / d);
+ uint64_t rem = half_n % d;
+ // We computed 2^(32+shift)/(m+2^32)
+ // Need to double it, and then add 1 to the quotient if doubling th
+ // remainder would increase the quotient.
+ // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
+ uint32_t full_q = half_q + half_q + ((rem<<1) >= d);
+
+ // We rounded down in gen (hence +1)
+ return full_q + 1;
+ }
+}
+
+uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1U << (shift + 1);
+ } else {
+ // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
+ // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
+ // Also note that shift may be as high as 31, so shift + 1 will
+ // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
+ // then double the quotient and remainder.
+ uint64_t half_n = 1ULL << (32 + shift);
+ uint64_t d = (1ULL << 32) | denom->magic;
+ // Note that the quotient is guaranteed <= 32 bits, but the remainder
+ // may need 33!
+ uint32_t half_q = (uint32_t)(half_n / d);
+ uint64_t rem = half_n % d;
+ // We computed 2^(32+shift)/(m+2^32)
+ // Need to double it, and then add 1 to the quotient if doubling th
+ // remainder would increase the quotient.
+ // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
+ uint32_t full_q = half_q + half_q + ((rem<<1) >= d);
+
+ // We rounded down in gen (hence +1)
+ return full_q + 1;
+ }
+}
+
+/////////// UINT64
+
+static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_u64_t result;
+ uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d);
+
+ // Power of 2
+ if ((d & (d - 1)) == 0) {
+ // We need to subtract 1 from the shift value in case of an unsigned
+ // branchfree divider because there is a hardcoded right shift by 1
+ // in its division algorithm. Because of this we also need to add back
+ // 1 in its recovery algorithm.
+ result.magic = 0;
+ result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
+ } else {
+ uint64_t proposed_m, rem;
+ uint8_t more;
+ // (1 << (64 + floor_log_2_d)) / d
+ proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem);
+
+ LIBDIVIDE_ASSERT(rem > 0 && rem < d);
+ const uint64_t e = d - rem;
+
+ // This power works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1ULL << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d;
+ } else {
+ // We have to use the general 65-bit algorithm. We need to compute
+ // (2**power) / d. However, we already have (2**(power-1))/d and
+ // its remainder. By doubling both, and then correcting the
+ // remainder, we can compute the larger division.
+ // don't care about overflow here - in fact, we expect it
+ proposed_m += proposed_m;
+ const uint64_t twice_rem = rem + rem;
+ if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ result.magic = 1 + proposed_m;
+ result.more = more;
+ // result.more's shift should in general be ceil_log_2_d. But if we
+ // used the smaller power, we subtract one from the shift because we're
+ // using the smaller power. If we're using the larger power, we
+ // subtract one from the shift because it's taken care of by the add
+ // indicator. So floor_log_2_d happens to be correct in both cases,
+ // which is why we do it outside of the if statement.
+ }
+ return result;
+}
+
+struct libdivide_u64_t libdivide_u64_gen(uint64_t d) {
+ return libdivide_internal_u64_gen(d, 0);
+}
+
+struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) {
+ if (d == 1) {
+ LIBDIVIDE_ERROR("branchfree divider must be != 1");
+ }
+ struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1);
+ struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)};
+ return ret;
+}
+
+uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return numer >> more;
+ }
+ else {
+ uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ uint64_t t = ((numer - q) >> 1) + q;
+ return t >> (more & LIBDIVIDE_64_SHIFT_MASK);
+ }
+ else {
+ // All upper bits are 0,
+ // don't need to mask them off.
+ return q >> more;
+ }
+ }
+}
+
+uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) {
+ uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
+ uint64_t t = ((numer - q) >> 1) + q;
+ return t >> denom->more;
+}
+
+uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1ULL << shift;
+ } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
+ // We compute q = n/d = n*m / 2^(64 + shift)
+ // Therefore we have d = 2^(64 + shift) / m
+ // We need to ceil it.
+ // We know d is not a power of 2, so m is not a power of 2,
+ // so we can just add 1 to the floor
+ uint64_t hi_dividend = 1ULL << shift;
+ uint64_t rem_ignored;
+ return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored);
+ } else {
+ // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
+ // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
+ // libdivide_u32_recover for more on what we do here.
+ // TODO: do something better than 128 bit math
+
+ // Full n is a (potentially) 129 bit value
+ // half_n is a 128 bit value
+ // Compute the hi half of half_n. Low half is 0.
+ uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0;
+ // d is a 65 bit value. The high bit is always set to 1.
+ const uint64_t d_hi = 1, d_lo = denom->magic;
+ // Note that the quotient is guaranteed <= 64 bits,
+ // but the remainder may need 65!
+ uint64_t r_hi, r_lo;
+ uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
+ // We computed 2^(64+shift)/(m+2^64)
+ // Double the remainder ('dr') and check if that is larger than d
+ // Note that d is a 65 bit value, so r1 is small and so r1 + r1
+ // cannot overflow
+ uint64_t dr_lo = r_lo + r_lo;
+ uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry
+ int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
+ uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
+ return full_q + 1;
+ }
+}
+
+uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) {
+ return 1ULL << (shift + 1);
+ } else {
+ // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
+ // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
+ // libdivide_u32_recover for more on what we do here.
+ // TODO: do something better than 128 bit math
+
+ // Full n is a (potentially) 129 bit value
+ // half_n is a 128 bit value
+ // Compute the hi half of half_n. Low half is 0.
+ uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0;
+ // d is a 65 bit value. The high bit is always set to 1.
+ const uint64_t d_hi = 1, d_lo = denom->magic;
+ // Note that the quotient is guaranteed <= 64 bits,
+ // but the remainder may need 65!
+ uint64_t r_hi, r_lo;
+ uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
+ // We computed 2^(64+shift)/(m+2^64)
+ // Double the remainder ('dr') and check if that is larger than d
+ // Note that d is a 65 bit value, so r1 is small and so r1 + r1
+ // cannot overflow
+ uint64_t dr_lo = r_lo + r_lo;
+ uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry
+ int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
+ uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
+ return full_q + 1;
+ }
+}
+
+/////////// SINT32
+
+static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_s32_t result;
+
+ // If d is a power of 2, or negative a power of 2, we have to use a shift.
+ // This is especially important because the magic algorithm fails for -1.
+ // To check if d is a power of 2 or its inverse, it suffices to check
+ // whether its absolute value has exactly one bit set. This works even for
+ // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
+ // and is a power of 2.
+ uint32_t ud = (uint32_t)d;
+ uint32_t absD = (d < 0) ? -ud : ud;
+ uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD);
+ // check if exactly one bit is set,
+ // don't care if absD is 0 since that's divide by zero
+ if ((absD & (absD - 1)) == 0) {
+ // Branchfree and normal paths are exactly the same
+ result.magic = 0;
+ result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0);
+ } else {
+ LIBDIVIDE_ASSERT(floor_log_2_d >= 1);
+
+ uint8_t more;
+ // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word
+ // is 0 and the high word is floor_log_2_d - 1
+ uint32_t rem, proposed_m;
+ proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem);
+ const uint32_t e = absD - rem;
+
+ // We are going to start with a power of floor_log_2_d - 1.
+ // This works if works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1U << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d - 1;
+ } else {
+ // We need to go one higher. This should not make proposed_m
+ // overflow, but it will make it negative when interpreted as an
+ // int32_t.
+ proposed_m += proposed_m;
+ const uint32_t twice_rem = rem + rem;
+ if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+
+ proposed_m += 1;
+ int32_t magic = (int32_t)proposed_m;
+
+ // Mark if we are negative. Note we only negate the magic number in the
+ // branchfull case.
+ if (d < 0) {
+ more |= LIBDIVIDE_NEGATIVE_DIVISOR;
+ if (!branchfree) {
+ magic = -magic;
+ }
+ }
+
+ result.more = more;
+ result.magic = magic;
+ }
+ return result;
+}
+
+struct libdivide_s32_t libdivide_s32_gen(int32_t d) {
+ return libdivide_internal_s32_gen(d, 0);
+}
+
+struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) {
+ struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1);
+ struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more};
+ return result;
+}
+
+int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+
+ if (!denom->magic) {
+ uint32_t sign = (int8_t)more >> 7;
+ uint32_t mask = (1U << shift) - 1;
+ uint32_t uq = numer + ((numer >> 31) & mask);
+ int32_t q = (int32_t)uq;
+ q >>= shift;
+ q = (q ^ sign) - sign;
+ return q;
+ } else {
+ uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift and then sign extend
+ int32_t sign = (int8_t)more >> 7;
+ // q += (more < 0 ? -numer : numer)
+ // cast required to avoid UB
+ uq += ((uint32_t)numer ^ sign) - sign;
+ }
+ int32_t q = (int32_t)uq;
+ q >>= shift;
+ q += (q < 0);
+ return q;
+ }
+}
+
+int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift and then sign extend
+ int32_t sign = (int8_t)more >> 7;
+ int32_t magic = denom->magic;
+ int32_t q = libdivide_mullhi_s32(magic, numer);
+ q += numer;
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is a power of
+ // 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ uint32_t q_sign = (uint32_t)(q >> 31);
+ q += q_sign & ((1U << shift) - is_power_of_2);
+
+ // Now arithmetic right shift
+ q >>= shift;
+ // Negate if needed
+ q = (q ^ sign) - sign;
+
+ return q;
+}
+
+int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ if (!denom->magic) {
+ uint32_t absD = 1U << shift;
+ if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
+ absD = -absD;
+ }
+ return (int32_t)absD;
+ } else {
+ // Unsigned math is much easier
+ // We negate the magic number only in the branchfull case, and we don't
+ // know which case we're in. However we have enough information to
+ // determine the correct sign of the magic number. The divisor was
+ // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set,
+ // the magic number's sign is opposite that of the divisor.
+ // We want to compute the positive magic number.
+ int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
+ int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
+ ? denom->magic > 0 : denom->magic < 0;
+
+ // Handle the power of 2 case (including branchfree)
+ if (denom->magic == 0) {
+ int32_t result = 1U << shift;
+ return negative_divisor ? -result : result;
+ }
+
+ uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic);
+ uint64_t n = 1ULL << (32 + shift); // this shift cannot exceed 30
+ uint32_t q = (uint32_t)(n / d);
+ int32_t result = (int32_t)q;
+ result += 1;
+ return negative_divisor ? -result : result;
+ }
+}
+
+int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) {
+ return libdivide_s32_recover((const struct libdivide_s32_t *)denom);
+}
+
+///////////// SINT64
+
+static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) {
+ if (d == 0) {
+ LIBDIVIDE_ERROR("divider must be != 0");
+ }
+
+ struct libdivide_s64_t result;
+
+ // If d is a power of 2, or negative a power of 2, we have to use a shift.
+ // This is especially important because the magic algorithm fails for -1.
+ // To check if d is a power of 2 or its inverse, it suffices to check
+ // whether its absolute value has exactly one bit set. This works even for
+ // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
+ // and is a power of 2.
+ uint64_t ud = (uint64_t)d;
+ uint64_t absD = (d < 0) ? -ud : ud;
+ uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD);
+ // check if exactly one bit is set,
+ // don't care if absD is 0 since that's divide by zero
+ if ((absD & (absD - 1)) == 0) {
+ // Branchfree and non-branchfree cases are the same
+ result.magic = 0;
+ result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0);
+ } else {
+ // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word
+ // is 0 and the high word is floor_log_2_d - 1
+ uint8_t more;
+ uint64_t rem, proposed_m;
+ proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem);
+ const uint64_t e = absD - rem;
+
+ // We are going to start with a power of floor_log_2_d - 1.
+ // This works if works if e < 2**floor_log_2_d.
+ if (!branchfree && e < (1ULL << floor_log_2_d)) {
+ // This power works
+ more = floor_log_2_d - 1;
+ } else {
+ // We need to go one higher. This should not make proposed_m
+ // overflow, but it will make it negative when interpreted as an
+ // int32_t.
+ proposed_m += proposed_m;
+ const uint64_t twice_rem = rem + rem;
+ if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
+ // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we
+ // also set ADD_MARKER this is an annoying optimization that
+ // enables algorithm #4 to avoid the mask. However we always set it
+ // in the branchfree case
+ more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
+ }
+ proposed_m += 1;
+ int64_t magic = (int64_t)proposed_m;
+
+ // Mark if we are negative
+ if (d < 0) {
+ more |= LIBDIVIDE_NEGATIVE_DIVISOR;
+ if (!branchfree) {
+ magic = -magic;
+ }
+ }
+
+ result.more = more;
+ result.magic = magic;
+ }
+ return result;
+}
+
+struct libdivide_s64_t libdivide_s64_gen(int64_t d) {
+ return libdivide_internal_s64_gen(d, 0);
+}
+
+struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) {
+ struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1);
+ struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more};
+ return ret;
+}
+
+int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+
+ if (!denom->magic) { // shift path
+ uint64_t mask = (1ULL << shift) - 1;
+ uint64_t uq = numer + ((numer >> 63) & mask);
+ int64_t q = (int64_t)uq;
+ q >>= shift;
+ // must be arithmetic shift and then sign-extend
+ int64_t sign = (int8_t)more >> 7;
+ q = (q ^ sign) - sign;
+ return q;
+ } else {
+ uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer);
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift and then sign extend
+ int64_t sign = (int8_t)more >> 7;
+ // q += (more < 0 ? -numer : numer)
+ // cast required to avoid UB
+ uq += ((uint64_t)numer ^ sign) - sign;
+ }
+ int64_t q = (int64_t)uq;
+ q >>= shift;
+ q += (q < 0);
+ return q;
+ }
+}
+
+int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift and then sign extend
+ int64_t sign = (int8_t)more >> 7;
+ int64_t magic = denom->magic;
+ int64_t q = libdivide_mullhi_s64(magic, numer);
+ q += numer;
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is a power of
+ // 2, or (2**shift) if it is not a power of 2.
+ uint64_t is_power_of_2 = (magic == 0);
+ uint64_t q_sign = (uint64_t)(q >> 63);
+ q += q_sign & ((1ULL << shift) - is_power_of_2);
+
+ // Arithmetic right shift
+ q >>= shift;
+ // Negate if needed
+ q = (q ^ sign) - sign;
+
+ return q;
+}
+
+int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ if (denom->magic == 0) { // shift path
+ uint64_t absD = 1ULL << shift;
+ if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
+ absD = -absD;
+ }
+ return (int64_t)absD;
+ } else {
+ // Unsigned math is much easier
+ int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
+ int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
+ ? denom->magic > 0 : denom->magic < 0;
+
+ uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic);
+ uint64_t n_hi = 1ULL << shift, n_lo = 0;
+ uint64_t rem_ignored;
+ uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored);
+ int64_t result = (int64_t)(q + 1);
+ if (negative_divisor) {
+ result = -result;
+ }
+ return result;
+ }
+}
+
+int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) {
+ return libdivide_s64_recover((const struct libdivide_s64_t *)denom);
+}
+
+#if defined(LIBDIVIDE_AVX512)
+
+static inline __m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom);
+static inline __m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom);
+static inline __m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom);
+static inline __m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom);
+
+static inline __m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+static inline __m512i libdivide_s64_signbits(__m512i v) {;
+ return _mm512_srai_epi64(v, 63);
+}
+
+static inline __m512i libdivide_s64_shift_right_vector(__m512i v, int amt) {
+ return _mm512_srai_epi64(v, amt);
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m512i libdivide_mullhi_u32_vector(__m512i a, __m512i b) {
+ __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32);
+ __m512i a1X3X = _mm512_srli_epi64(a, 32);
+ __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
+ __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask);
+ return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// b is one 32-bit value repeated.
+static inline __m512i libdivide_mullhi_s32_vector(__m512i a, __m512i b) {
+ __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32);
+ __m512i a1X3X = _mm512_srli_epi64(a, 32);
+ __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0);
+ __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask);
+ return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m512i libdivide_mullhi_u64_vector(__m512i x, __m512i y) {
+ __m512i lomask = _mm512_set1_epi64(0xffffffff);
+ __m512i xh = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM) 0xB1);
+ __m512i yh = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM) 0xB1);
+ __m512i w0 = _mm512_mul_epu32(x, y);
+ __m512i w1 = _mm512_mul_epu32(x, yh);
+ __m512i w2 = _mm512_mul_epu32(xh, y);
+ __m512i w3 = _mm512_mul_epu32(xh, yh);
+ __m512i w0h = _mm512_srli_epi64(w0, 32);
+ __m512i s1 = _mm512_add_epi64(w1, w0h);
+ __m512i s1l = _mm512_and_si512(s1, lomask);
+ __m512i s1h = _mm512_srli_epi64(s1, 32);
+ __m512i s2 = _mm512_add_epi64(w2, s1l);
+ __m512i s2h = _mm512_srli_epi64(s2, 32);
+ __m512i hi = _mm512_add_epi64(w3, s1h);
+ hi = _mm512_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m512i libdivide_mullhi_s64_vector(__m512i x, __m512i y) {
+ __m512i p = libdivide_mullhi_u64_vector(x, y);
+ __m512i t1 = _mm512_and_si512(libdivide_s64_signbits(x), y);
+ __m512i t2 = _mm512_and_si512(libdivide_s64_signbits(y), x);
+ p = _mm512_sub_epi64(p, t1);
+ p = _mm512_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm512_srli_epi32(numers, more);
+ }
+ else {
+ __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
+ return _mm512_srli_epi32(t, shift);
+ }
+ else {
+ return _mm512_srli_epi32(q, more);
+ }
+ }
+}
+
+__m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic));
+ __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q);
+ return _mm512_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm512_srli_epi64(numers, more);
+ }
+ else {
+ __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
+ return _mm512_srli_epi64(t, shift);
+ }
+ else {
+ return _mm512_srli_epi64(q, more);
+ }
+ }
+}
+
+__m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic));
+ __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q);
+ return _mm512_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m512i roundToZeroTweak = _mm512_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m512i q = _mm512_add_epi32(numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm512_srai_epi32(q, shift);
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign);
+ return q;
+ }
+ else {
+ __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(magic));
+ q = _mm512_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m512i q_sign = _mm512_srai_epi32(q, 31); // q_sign = q >> 31
+ __m512i mask = _mm512_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm512_srai_epi32(q, shift); // q >>= shift
+ q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m512i roundToZeroTweak = _mm512_set1_epi64(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m512i q = _mm512_add_epi64(numers, _mm512_and_si512(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign);
+ return q;
+ }
+ else {
+ __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m512i sign = _mm512_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic));
+ q = _mm512_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m512i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m512i mask = _mm512_set1_epi64((1ULL << shift) - is_power_of_2);
+ q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#elif defined(LIBDIVIDE_AVX2)
+
+static inline __m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom);
+static inline __m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom);
+static inline __m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom);
+static inline __m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom);
+
+static inline __m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+// Implementation of _mm256_srai_epi64(v, 63) (from AVX512).
+static inline __m256i libdivide_s64_signbits(__m256i v) {
+ __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
+ __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31);
+ return signBits;
+}
+
+// Implementation of _mm256_srai_epi64 (from AVX512).
+static inline __m256i libdivide_s64_shift_right_vector(__m256i v, int amt) {
+ const int b = 64 - amt;
+ __m256i m = _mm256_set1_epi64x(1ULL << (b - 1));
+ __m256i x = _mm256_srli_epi64(v, amt);
+ __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m);
+ return result;
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m256i libdivide_mullhi_u32_vector(__m256i a, __m256i b) {
+ __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32);
+ __m256i a1X3X = _mm256_srli_epi64(a, 32);
+ __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
+ __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask);
+ return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// b is one 32-bit value repeated.
+static inline __m256i libdivide_mullhi_s32_vector(__m256i a, __m256i b) {
+ __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32);
+ __m256i a1X3X = _mm256_srli_epi64(a, 32);
+ __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0);
+ __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask);
+ return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m256i libdivide_mullhi_u64_vector(__m256i x, __m256i y) {
+ __m256i lomask = _mm256_set1_epi64x(0xffffffff);
+ __m256i xh = _mm256_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h
+ __m256i yh = _mm256_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h
+ __m256i w0 = _mm256_mul_epu32(x, y); // x0l*y0l, x1l*y1l
+ __m256i w1 = _mm256_mul_epu32(x, yh); // x0l*y0h, x1l*y1h
+ __m256i w2 = _mm256_mul_epu32(xh, y); // x0h*y0l, x1h*y0l
+ __m256i w3 = _mm256_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h
+ __m256i w0h = _mm256_srli_epi64(w0, 32);
+ __m256i s1 = _mm256_add_epi64(w1, w0h);
+ __m256i s1l = _mm256_and_si256(s1, lomask);
+ __m256i s1h = _mm256_srli_epi64(s1, 32);
+ __m256i s2 = _mm256_add_epi64(w2, s1l);
+ __m256i s2h = _mm256_srli_epi64(s2, 32);
+ __m256i hi = _mm256_add_epi64(w3, s1h);
+ hi = _mm256_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m256i libdivide_mullhi_s64_vector(__m256i x, __m256i y) {
+ __m256i p = libdivide_mullhi_u64_vector(x, y);
+ __m256i t1 = _mm256_and_si256(libdivide_s64_signbits(x), y);
+ __m256i t2 = _mm256_and_si256(libdivide_s64_signbits(y), x);
+ p = _mm256_sub_epi64(p, t1);
+ p = _mm256_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm256_srli_epi32(numers, more);
+ }
+ else {
+ __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
+ return _mm256_srli_epi32(t, shift);
+ }
+ else {
+ return _mm256_srli_epi32(q, more);
+ }
+ }
+}
+
+__m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic));
+ __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q);
+ return _mm256_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm256_srli_epi64(numers, more);
+ }
+ else {
+ __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
+ return _mm256_srli_epi64(t, shift);
+ }
+ else {
+ return _mm256_srli_epi64(q, more);
+ }
+ }
+}
+
+__m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic));
+ __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q);
+ return _mm256_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m256i roundToZeroTweak = _mm256_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m256i q = _mm256_add_epi32(numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm256_srai_epi32(q, shift);
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign);
+ return q;
+ }
+ else {
+ __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(magic));
+ q = _mm256_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m256i q_sign = _mm256_srai_epi32(q, 31); // q_sign = q >> 31
+ __m256i mask = _mm256_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm256_srai_epi32(q, shift); // q >>= shift
+ q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m256i roundToZeroTweak = _mm256_set1_epi64x(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m256i q = _mm256_add_epi64(numers, _mm256_and_si256(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign);
+ return q;
+ }
+ else {
+ __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m256i sign = _mm256_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic));
+ q = _mm256_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m256i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m256i mask = _mm256_set1_epi64x((1ULL << shift) - is_power_of_2);
+ q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#elif defined(LIBDIVIDE_SSE2)
+
+static inline __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom);
+static inline __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom);
+static inline __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom);
+static inline __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom);
+
+static inline __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom);
+static inline __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom);
+static inline __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom);
+static inline __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom);
+
+//////// Internal Utility Functions
+
+// Implementation of _mm_srai_epi64(v, 63) (from AVX512).
+static inline __m128i libdivide_s64_signbits(__m128i v) {
+ __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
+ __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31);
+ return signBits;
+}
+
+// Implementation of _mm_srai_epi64 (from AVX512).
+static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) {
+ const int b = 64 - amt;
+ __m128i m = _mm_set1_epi64x(1ULL << (b - 1));
+ __m128i x = _mm_srli_epi64(v, amt);
+ __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m);
+ return result;
+}
+
+// Here, b is assumed to contain one 32-bit value repeated.
+static inline __m128i libdivide_mullhi_u32_vector(__m128i a, __m128i b) {
+ __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32);
+ __m128i a1X3X = _mm_srli_epi64(a, 32);
+ __m128i mask = _mm_set_epi32(-1, 0, -1, 0);
+ __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask);
+ return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3);
+}
+
+// SSE2 does not have a signed multiplication instruction, but we can convert
+// unsigned to signed pretty efficiently. Again, b is just a 32 bit value
+// repeated four times.
+static inline __m128i libdivide_mullhi_s32_vector(__m128i a, __m128i b) {
+ __m128i p = libdivide_mullhi_u32_vector(a, b);
+ // t1 = (a >> 31) & y, arithmetic shift
+ __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b);
+ __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a);
+ p = _mm_sub_epi32(p, t1);
+ p = _mm_sub_epi32(p, t2);
+ return p;
+}
+
+// Here, y is assumed to contain one 64-bit value repeated.
+// https://stackoverflow.com/a/28827013
+static inline __m128i libdivide_mullhi_u64_vector(__m128i x, __m128i y) {
+ __m128i lomask = _mm_set1_epi64x(0xffffffff);
+ __m128i xh = _mm_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h
+ __m128i yh = _mm_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h
+ __m128i w0 = _mm_mul_epu32(x, y); // x0l*y0l, x1l*y1l
+ __m128i w1 = _mm_mul_epu32(x, yh); // x0l*y0h, x1l*y1h
+ __m128i w2 = _mm_mul_epu32(xh, y); // x0h*y0l, x1h*y0l
+ __m128i w3 = _mm_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h
+ __m128i w0h = _mm_srli_epi64(w0, 32);
+ __m128i s1 = _mm_add_epi64(w1, w0h);
+ __m128i s1l = _mm_and_si128(s1, lomask);
+ __m128i s1h = _mm_srli_epi64(s1, 32);
+ __m128i s2 = _mm_add_epi64(w2, s1l);
+ __m128i s2h = _mm_srli_epi64(s2, 32);
+ __m128i hi = _mm_add_epi64(w3, s1h);
+ hi = _mm_add_epi64(hi, s2h);
+
+ return hi;
+}
+
+// y is one 64-bit value repeated.
+static inline __m128i libdivide_mullhi_s64_vector(__m128i x, __m128i y) {
+ __m128i p = libdivide_mullhi_u64_vector(x, y);
+ __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y);
+ __m128i t2 = _mm_and_si128(libdivide_s64_signbits(y), x);
+ p = _mm_sub_epi64(p, t1);
+ p = _mm_sub_epi64(p, t2);
+ return p;
+}
+
+////////// UINT32
+
+__m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm_srli_epi32(numers, more);
+ }
+ else {
+ __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
+ return _mm_srli_epi32(t, shift);
+ }
+ else {
+ return _mm_srli_epi32(q, more);
+ }
+ }
+}
+
+__m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom) {
+ __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic));
+ __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
+ return _mm_srli_epi32(t, denom->more);
+}
+
+////////// UINT64
+
+__m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ return _mm_srli_epi64(numers, more);
+ }
+ else {
+ __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // uint32_t t = ((numer - q) >> 1) + q;
+ // return t >> denom->shift;
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
+ return _mm_srli_epi64(t, shift);
+ }
+ else {
+ return _mm_srli_epi64(q, more);
+ }
+ }
+}
+
+__m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom) {
+ __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic));
+ __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
+ return _mm_srli_epi64(t, denom->more);
+}
+
+////////// SINT32
+
+__m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom) {
+ uint8_t more = denom->more;
+ if (!denom->magic) {
+ uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ uint32_t mask = (1U << shift) - 1;
+ __m128i roundToZeroTweak = _mm_set1_epi32(mask);
+ // q = numer + ((numer >> 31) & roundToZeroTweak);
+ __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak));
+ q = _mm_srai_epi32(q, shift);
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign);
+ return q;
+ }
+ else {
+ __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(denom->magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign));
+ }
+ // q >>= shift
+ q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK);
+ q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom) {
+ int32_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(magic));
+ q = _mm_add_epi32(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2
+ uint32_t is_power_of_2 = (magic == 0);
+ __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31
+ __m128i mask = _mm_set1_epi32((1U << shift) - is_power_of_2);
+ q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
+ q = _mm_srai_epi32(q, shift); // q >>= shift
+ q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+////////// SINT64
+
+__m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom) {
+ uint8_t more = denom->more;
+ int64_t magic = denom->magic;
+ if (magic == 0) { // shift path
+ uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ uint64_t mask = (1ULL << shift) - 1;
+ __m128i roundToZeroTweak = _mm_set1_epi64x(mask);
+ // q = numer + ((numer >> 63) & roundToZeroTweak);
+ __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak));
+ q = libdivide_s64_shift_right_vector(q, shift);
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q = (q ^ sign) - sign;
+ q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign);
+ return q;
+ }
+ else {
+ __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic));
+ if (more & LIBDIVIDE_ADD_MARKER) {
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+ // q += ((numer ^ sign) - sign);
+ q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign));
+ }
+ // q >>= denom->mult_path.shift
+ q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
+ q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0)
+ return q;
+ }
+}
+
+__m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom) {
+ int64_t magic = denom->magic;
+ uint8_t more = denom->more;
+ uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
+ // must be arithmetic shift
+ __m128i sign = _mm_set1_epi32((int8_t)more >> 7);
+
+ // libdivide_mullhi_s64(numers, magic);
+ __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic));
+ q = _mm_add_epi64(q, numers); // q += numers
+
+ // If q is non-negative, we have nothing to do.
+ // If q is negative, we want to add either (2**shift)-1 if d is
+ // a power of 2, or (2**shift) if it is not a power of 2.
+ uint32_t is_power_of_2 = (magic == 0);
+ __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
+ __m128i mask = _mm_set1_epi64x((1ULL << shift) - is_power_of_2);
+ q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
+ q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
+ q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
+ return q;
+}
+
+#endif
+
+/////////// C++ stuff
+
+#ifdef __cplusplus
+
+// The C++ divider class is templated on both an integer type
+// (like uint64_t) and an algorithm type.
+// * BRANCHFULL is the default algorithm type.
+// * BRANCHFREE is the branchfree algorithm type.
+enum {
+ BRANCHFULL,
+ BRANCHFREE
+};
+
+#if defined(LIBDIVIDE_AVX512)
+ #define LIBDIVIDE_VECTOR_TYPE __m512i
+#elif defined(LIBDIVIDE_AVX2)
+ #define LIBDIVIDE_VECTOR_TYPE __m256i
+#elif defined(LIBDIVIDE_SSE2)
+ #define LIBDIVIDE_VECTOR_TYPE __m128i
+#endif
+
+#if !defined(LIBDIVIDE_VECTOR_TYPE)
+ #define LIBDIVIDE_DIVIDE_VECTOR(ALGO)
+#else
+ #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) \
+ LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { \
+ return libdivide_##ALGO##_do_vector(n, &denom); \
+ }
+#endif
+
+// The DISPATCHER_GEN() macro generates C++ methods (for the given integer
+// and algorithm types) that redirect to libdivide's C API.
+#define DISPATCHER_GEN(T, ALGO) \
+ libdivide_##ALGO##_t denom; \
+ dispatcher() { } \
+ dispatcher(T d) \
+ : denom(libdivide_##ALGO##_gen(d)) \
+ { } \
+ T divide(T n) const { \
+ return libdivide_##ALGO##_do(n, &denom); \
+ } \
+ LIBDIVIDE_DIVIDE_VECTOR(ALGO) \
+ T recover() const { \
+ return libdivide_##ALGO##_recover(&denom); \
+ }
+
+// The dispatcher selects a specific division algorithm for a given
+// type and ALGO using partial template specialization.
+template struct dispatcher { };
+
+template<> struct dispatcher { DISPATCHER_GEN(int32_t, s32) };
+template<> struct dispatcher { DISPATCHER_GEN(int32_t, s32_branchfree) };
+template<> struct dispatcher { DISPATCHER_GEN(uint32_t, u32) };
+template<> struct dispatcher { DISPATCHER_GEN(uint32_t, u32_branchfree) };
+template<> struct dispatcher { DISPATCHER_GEN(int64_t, s64) };
+template<> struct dispatcher { DISPATCHER_GEN(int64_t, s64_branchfree) };
+template<> struct dispatcher { DISPATCHER_GEN(uint64_t, u64) };
+template<> struct dispatcher { DISPATCHER_GEN(uint64_t, u64_branchfree) };
+
+// This is the main divider class for use by the user (C++ API).
+// The actual division algorithm is selected using the dispatcher struct
+// based on the integer and algorithm template parameters.
+template
+class divider {
+public:
+ // We leave the default constructor empty so that creating
+ // an array of dividers and then initializing them
+ // later doesn't slow us down.
+ divider() { }
+
+ // Constructor that takes the divisor as a parameter
+ divider(T d) : div(d) { }
+
+ // Divides n by the divisor
+ T divide(T n) const {
+ return div.divide(n);
+ }
+
+ // Recovers the divisor, returns the value that was
+ // used to initialize this divider object.
+ T recover() const {
+ return div.recover();
+ }
+
+ bool operator==(const divider& other) const {
+ return div.denom.magic == other.denom.magic &&
+ div.denom.more == other.denom.more;
+ }
+
+ bool operator!=(const divider& other) const {
+ return !(*this == other);
+ }
+
+#if defined(LIBDIVIDE_VECTOR_TYPE)
+ // Treats the vector as packed integer values with the same type as
+ // the divider (e.g. s32, u32, s64, u64) and divides each of
+ // them by the divider, returning the packed quotients.
+ LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const {
+ return div.divide(n);
+ }
+#endif
+
+private:
+ // Storage for the actual divisor
+ dispatcher::value,
+ std::is_signed::value, sizeof(T), ALGO> div;
+};
+
+// Overload of operator / for scalar division
+template
+T operator/(T n, const divider& div) {
+ return div.divide(n);
+}
+
+// Overload of operator /= for scalar division
+template
+T& operator/=(T& n, const divider& div) {
+ n = div.divide(n);
+ return n;
+}
+
+#if defined(LIBDIVIDE_VECTOR_TYPE)
+ // Overload of operator / for vector division
+ template
+ LIBDIVIDE_VECTOR_TYPE operator/(LIBDIVIDE_VECTOR_TYPE n, const divider& div) {
+ return div.divide(n);
+ }
+ // Overload of operator /= for vector division
+ template
+ LIBDIVIDE_VECTOR_TYPE& operator/=(LIBDIVIDE_VECTOR_TYPE& n, const divider& div) {
+ n = div.divide(n);
+ return n;
+ }
+#endif
+
+// libdivdie::branchfree_divider
+template
+using branchfree_divider = divider;
+
+} // namespace libdivide
+
+#endif // __cplusplus
+
+#endif // LIBDIVIDE_H
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/multiarray_api.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/multiarray_api.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5e4374c2c5b988412d9c165e639df8b2bb887e7d
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/multiarray_api.txt
@@ -0,0 +1,2483 @@
+
+===========
+NumPy C-API
+===========
+::
+
+ unsigned int
+ PyArray_GetNDArrayCVersion(void )
+
+
+Included at the very first so not auto-grabbed and thus not labeled.
+
+::
+
+ int
+ PyArray_SetNumericOps(PyObject *dict)
+
+Set internal structure with number functions that all arrays will use
+
+::
+
+ PyObject *
+ PyArray_GetNumericOps(void )
+
+Get dictionary showing number functions that all arrays will use
+
+::
+
+ int
+ PyArray_INCREF(PyArrayObject *mp)
+
+For object arrays, increment all internal references.
+
+::
+
+ int
+ PyArray_XDECREF(PyArrayObject *mp)
+
+Decrement all internal references for object arrays.
+(or arrays with object fields)
+
+::
+
+ void
+ PyArray_SetStringFunction(PyObject *op, int repr)
+
+Set the array print function to be a Python function.
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrFromType(int type)
+
+Get the PyArray_Descr structure for a type.
+
+::
+
+ PyObject *
+ PyArray_TypeObjectFromType(int type)
+
+Get a typeobject from a type-number -- can return NULL.
+
+New reference
+
+::
+
+ char *
+ PyArray_Zero(PyArrayObject *arr)
+
+Get pointer to zero of correct type for array.
+
+::
+
+ char *
+ PyArray_One(PyArrayObject *arr)
+
+Get pointer to one of correct type for array
+
+::
+
+ PyObject *
+ PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
+ is_f_order)
+
+For backward compatibility
+
+Cast an array using typecode structure.
+steals reference to dtype --- cannot be NULL
+
+This function always makes a copy of arr, even if the dtype
+doesn't change.
+
+::
+
+ int
+ PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
+
+Cast to an already created array.
+
+::
+
+ int
+ PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
+
+Cast to an already created array. Arrays don't have to be "broadcastable"
+Only requirement is they have the same number of elements.
+
+::
+
+ int
+ PyArray_CanCastSafely(int fromtype, int totype)
+
+Check the type coercion rules.
+
+::
+
+ npy_bool
+ PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
+
+leaves reference count alone --- cannot be NULL
+
+PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
+parameter.
+
+::
+
+ int
+ PyArray_ObjectType(PyObject *op, int minimum_type)
+
+Return the typecode of the array a Python object would be converted to
+
+Returns the type number the result should have, or NPY_NOTYPE on error.
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
+
+new reference -- accepts NULL for mintype
+
+::
+
+ PyArrayObject **
+ PyArray_ConvertToCommonType(PyObject *op, int *retn)
+
+
+This function is only used in one place within NumPy and should
+generally be avoided. It is provided mainly for backward compatibility.
+
+The user of the function has to free the returned array.
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrFromScalar(PyObject *sc)
+
+Return descr object from array scalar.
+
+New reference
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrFromTypeObject(PyObject *type)
+
+
+::
+
+ npy_intp
+ PyArray_Size(PyObject *op)
+
+Compute the size of an array (in number of items)
+
+::
+
+ PyObject *
+ PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
+
+Get scalar-equivalent to a region of memory described by a descriptor.
+
+::
+
+ PyObject *
+ PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
+
+Get 0-dim array from scalar
+
+0-dim array from array-scalar object
+always contains a copy of the data
+unless outcode is NULL, it is of void type and the referrer does
+not own it either.
+
+steals reference to outcode
+
+::
+
+ void
+ PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
+
+Convert to c-type
+
+no error checking is performed -- ctypeptr must be same type as scalar
+in case of flexible type, the data is not copied
+into ctypeptr which is expected to be a pointer to pointer
+
+::
+
+ int
+ PyArray_CastScalarToCtype(PyObject *scalar, void
+ *ctypeptr, PyArray_Descr *outcode)
+
+Cast Scalar to c-type
+
+The output buffer must be large-enough to receive the value
+Even for flexible types which is different from ScalarAsCtype
+where only a reference for flexible types is returned
+
+This may not work right on narrow builds for NumPy unicode scalars.
+
+::
+
+ int
+ PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
+ *indescr, void *ctypeptr, int outtype)
+
+Cast Scalar to c-type
+
+::
+
+ PyObject *
+ PyArray_ScalarFromObject(PyObject *object)
+
+Get an Array Scalar From a Python Object
+
+Returns NULL if unsuccessful but error is only set if another error occurred.
+Currently only Numeric-like object supported.
+
+::
+
+ PyArray_VectorUnaryFunc *
+ PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
+
+Get a cast function to cast from the input descriptor to the
+output type_number (must be a registered data-type).
+Returns NULL if un-successful.
+
+::
+
+ PyObject *
+ PyArray_FromDims(int NPY_UNUSED(nd) , int *NPY_UNUSED(d) , int
+ NPY_UNUSED(type) )
+
+Deprecated, use PyArray_SimpleNew instead.
+
+::
+
+ PyObject *
+ PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd) , int
+ *NPY_UNUSED(d) , PyArray_Descr
+ *descr, char *NPY_UNUSED(data) )
+
+Deprecated, use PyArray_NewFromDescr instead.
+
+::
+
+ PyObject *
+ PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
+ min_depth, int max_depth, int flags, PyObject
+ *context)
+
+Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
+Steals a reference to newtype --- which can be NULL
+
+::
+
+ PyObject *
+ PyArray_EnsureArray(PyObject *op)
+
+This is a quick wrapper around
+PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
+that special cases Arrays and PyArray_Scalars up front
+It *steals a reference* to the object
+It also guarantees that the result is PyArray_Type
+Because it decrefs op if any conversion needs to take place
+so it can be used like PyArray_EnsureArray(some_function(...))
+
+::
+
+ PyObject *
+ PyArray_EnsureAnyArray(PyObject *op)
+
+
+::
+
+ PyObject *
+ PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
+ *sep)
+
+
+Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
+array corresponding to the data encoded in that file.
+
+The reference to `dtype` is stolen (it is possible that the passed in
+dtype is not held on to).
+
+The number of elements to read is given as ``num``; if it is < 0, then
+then as many as possible are read.
+
+If ``sep`` is NULL or empty, then binary data is assumed, else
+text data, with ``sep`` as the separator between elements. Whitespace in
+the separator matches any length of whitespace in the text, and a match
+for whitespace around the separator is added.
+
+For memory-mapped files, use the buffer interface. No more data than
+necessary is read by this routine.
+
+::
+
+ PyObject *
+ PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
+ *dtype, npy_intp num, char *sep)
+
+
+Given a pointer to a string ``data``, a string length ``slen``, and
+a ``PyArray_Descr``, return an array corresponding to the data
+encoded in that string.
+
+If the dtype is NULL, the default array type is used (double).
+If non-null, the reference is stolen.
+
+If ``slen`` is < 0, then the end of string is used for text data.
+It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
+would be the norm).
+
+The number of elements to read is given as ``num``; if it is < 0, then
+then as many as possible are read.
+
+If ``sep`` is NULL or empty, then binary data is assumed, else
+text data, with ``sep`` as the separator between elements. Whitespace in
+the separator matches any length of whitespace in the text, and a match
+for whitespace around the separator is added.
+
+::
+
+ PyObject *
+ PyArray_FromBuffer(PyObject *buf, PyArray_Descr *type, npy_intp
+ count, npy_intp offset)
+
+
+::
+
+ PyObject *
+ PyArray_FromIter(PyObject *obj, PyArray_Descr *dtype, npy_intp count)
+
+
+steals a reference to dtype (which cannot be NULL)
+
+::
+
+ PyObject *
+ PyArray_Return(PyArrayObject *mp)
+
+
+Return either an array or the appropriate Python object if the array
+is 0d and matches a Python type.
+steals reference to mp
+
+::
+
+ PyObject *
+ PyArray_GetField(PyArrayObject *self, PyArray_Descr *typed, int
+ offset)
+
+Get a subset of bytes from each element of the array
+steals reference to typed, must not be NULL
+
+::
+
+ int
+ PyArray_SetField(PyArrayObject *self, PyArray_Descr *dtype, int
+ offset, PyObject *val)
+
+Set a subset of bytes from each element of the array
+steals reference to dtype, must not be NULL
+
+::
+
+ PyObject *
+ PyArray_Byteswap(PyArrayObject *self, npy_bool inplace)
+
+
+::
+
+ PyObject *
+ PyArray_Resize(PyArrayObject *self, PyArray_Dims *newshape, int
+ refcheck, NPY_ORDER NPY_UNUSED(order) )
+
+Resize (reallocate data). Only works if nothing else is referencing this
+array and it is contiguous. If refcheck is 0, then the reference count is
+not checked and assumed to be 1. You still must own this data and have no
+weak-references and no base object.
+
+::
+
+ int
+ PyArray_MoveInto(PyArrayObject *dst, PyArrayObject *src)
+
+Move the memory of one array into another, allowing for overlapping data.
+
+Returns 0 on success, negative on failure.
+
+::
+
+ int
+ PyArray_CopyInto(PyArrayObject *dst, PyArrayObject *src)
+
+Copy an Array into another array.
+Broadcast to the destination shape if necessary.
+
+Returns 0 on success, -1 on failure.
+
+::
+
+ int
+ PyArray_CopyAnyInto(PyArrayObject *dst, PyArrayObject *src)
+
+Copy an Array into another array -- memory must not overlap
+Does not require src and dest to have "broadcastable" shapes
+(only the same number of elements).
+
+TODO: For NumPy 2.0, this could accept an order parameter which
+only allows NPY_CORDER and NPY_FORDER. Could also rename
+this to CopyAsFlat to make the name more intuitive.
+
+Returns 0 on success, -1 on error.
+
+::
+
+ int
+ PyArray_CopyObject(PyArrayObject *dest, PyObject *src_object)
+
+
+::
+
+ PyObject *
+ PyArray_NewCopy(PyArrayObject *obj, NPY_ORDER order)
+
+Copy an array.
+
+::
+
+ PyObject *
+ PyArray_ToList(PyArrayObject *self)
+
+To List
+
+::
+
+ PyObject *
+ PyArray_ToString(PyArrayObject *self, NPY_ORDER order)
+
+
+::
+
+ int
+ PyArray_ToFile(PyArrayObject *self, FILE *fp, char *sep, char *format)
+
+To File
+
+::
+
+ int
+ PyArray_Dump(PyObject *self, PyObject *file, int protocol)
+
+
+::
+
+ PyObject *
+ PyArray_Dumps(PyObject *self, int protocol)
+
+
+::
+
+ int
+ PyArray_ValidType(int type)
+
+Is the typenum valid?
+
+::
+
+ void
+ PyArray_UpdateFlags(PyArrayObject *ret, int flagmask)
+
+Update Several Flags at once.
+
+::
+
+ PyObject *
+ PyArray_New(PyTypeObject *subtype, int nd, npy_intp const *dims, int
+ type_num, npy_intp const *strides, void *data, int
+ itemsize, int flags, PyObject *obj)
+
+Generic new array creation routine.
+
+::
+
+ PyObject *
+ PyArray_NewFromDescr(PyTypeObject *subtype, PyArray_Descr *descr, int
+ nd, npy_intp const *dims, npy_intp const
+ *strides, void *data, int flags, PyObject *obj)
+
+Generic new array creation routine.
+
+steals a reference to descr. On failure or when dtype->subarray is
+true, dtype will be decrefed.
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrNew(PyArray_Descr *base)
+
+base cannot be NULL
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrNewFromType(int type_num)
+
+
+::
+
+ double
+ PyArray_GetPriority(PyObject *obj, double default_)
+
+Get Priority from object
+
+::
+
+ PyObject *
+ PyArray_IterNew(PyObject *obj)
+
+Get Iterator.
+
+::
+
+ PyObject*
+ PyArray_MultiIterNew(int n, ... )
+
+Get MultiIterator,
+
+::
+
+ int
+ PyArray_PyIntAsInt(PyObject *o)
+
+
+::
+
+ npy_intp
+ PyArray_PyIntAsIntp(PyObject *o)
+
+
+::
+
+ int
+ PyArray_Broadcast(PyArrayMultiIterObject *mit)
+
+
+::
+
+ void
+ PyArray_FillObjectArray(PyArrayObject *arr, PyObject *obj)
+
+Assumes contiguous
+
+::
+
+ int
+ PyArray_FillWithScalar(PyArrayObject *arr, PyObject *obj)
+
+
+::
+
+ npy_bool
+ PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp
+ offset, npy_intp const *dims, npy_intp const
+ *newstrides)
+
+
+::
+
+ PyArray_Descr *
+ PyArray_DescrNewByteorder(PyArray_Descr *self, char newendian)
+
+
+returns a copy of the PyArray_Descr structure with the byteorder
+altered:
+no arguments: The byteorder is swapped (in all subfields as well)
+single argument: The byteorder is forced to the given state
+(in all subfields as well)
+
+Valid states: ('big', '>') or ('little' or '<')
+('native', or '=')
+
+If a descr structure with | is encountered it's own
+byte-order is not changed but any fields are:
+
+
+Deep bytorder change of a data-type descriptor
+Leaves reference count of self unchanged --- does not DECREF self ***
+
+::
+
+ PyObject *
+ PyArray_IterAllButAxis(PyObject *obj, int *inaxis)
+
+Get Iterator that iterates over all but one axis (don't use this with
+PyArray_ITER_GOTO1D). The axis will be over-written if negative
+with the axis having the smallest stride.
+
+::
+
+ PyObject *
+ PyArray_CheckFromAny(PyObject *op, PyArray_Descr *descr, int
+ min_depth, int max_depth, int requires, PyObject
+ *context)
+
+steals a reference to descr -- accepts NULL
+
+::
+
+ PyObject *
+ PyArray_FromArray(PyArrayObject *arr, PyArray_Descr *newtype, int
+ flags)
+
+steals reference to newtype --- acc. NULL
+
+::
+
+ PyObject *
+ PyArray_FromInterface(PyObject *origin)
+
+
+::
+
+ PyObject *
+ PyArray_FromStructInterface(PyObject *input)
+
+
+::
+
+ PyObject *
+ PyArray_FromArrayAttr(PyObject *op, PyArray_Descr *typecode, PyObject
+ *context)
+
+
+::
+
+ NPY_SCALARKIND
+ PyArray_ScalarKind(int typenum, PyArrayObject **arr)
+
+ScalarKind
+
+Returns the scalar kind of a type number, with an
+optional tweak based on the scalar value itself.
+If no scalar is provided, it returns INTPOS_SCALAR
+for both signed and unsigned integers, otherwise
+it checks the sign of any signed integer to choose
+INTNEG_SCALAR when appropriate.
+
+::
+
+ int
+ PyArray_CanCoerceScalar(int thistype, int neededtype, NPY_SCALARKIND
+ scalar)
+
+
+Determines whether the data type 'thistype', with
+scalar kind 'scalar', can be coerced into 'neededtype'.
+
+::
+
+ PyObject *
+ PyArray_NewFlagsObject(PyObject *obj)
+
+
+Get New ArrayFlagsObject
+
+::
+
+ npy_bool
+ PyArray_CanCastScalar(PyTypeObject *from, PyTypeObject *to)
+
+See if array scalars can be cast.
+
+TODO: For NumPy 2.0, add a NPY_CASTING parameter.
+
+::
+
+ int
+ PyArray_CompareUCS4(npy_ucs4 const *s1, npy_ucs4 const *s2, size_t
+ len)
+
+
+::
+
+ int
+ PyArray_RemoveSmallest(PyArrayMultiIterObject *multi)
+
+Adjusts previously broadcasted iterators so that the axis with
+the smallest sum of iterator strides is not iterated over.
+Returns dimension which is smallest in the range [0,multi->nd).
+A -1 is returned if multi->nd == 0.
+
+don't use with PyArray_ITER_GOTO1D because factors are not adjusted
+
+::
+
+ int
+ PyArray_ElementStrides(PyObject *obj)
+
+
+::
+
+ void
+ PyArray_Item_INCREF(char *data, PyArray_Descr *descr)
+
+XINCREF all objects in a single array item. This is complicated for
+structured datatypes where the position of objects needs to be extracted.
+The function is execute recursively for each nested field or subarrays dtype
+such as as `np.dtype([("field1", "O"), ("field2", "f,O", (3,2))])`
+
+::
+
+ void
+ PyArray_Item_XDECREF(char *data, PyArray_Descr *descr)
+
+
+XDECREF all objects in a single array item. This is complicated for
+structured datatypes where the position of objects needs to be extracted.
+The function is execute recursively for each nested field or subarrays dtype
+such as as `np.dtype([("field1", "O"), ("field2", "f,O", (3,2))])`
+
+::
+
+ PyObject *
+ PyArray_FieldNames(PyObject *fields)
+
+Return the tuple of ordered field names from a dictionary.
+
+::
+
+ PyObject *
+ PyArray_Transpose(PyArrayObject *ap, PyArray_Dims *permute)
+
+Return Transpose.
+
+::
+
+ PyObject *
+ PyArray_TakeFrom(PyArrayObject *self0, PyObject *indices0, int
+ axis, PyArrayObject *out, NPY_CLIPMODE clipmode)
+
+Take
+
+::
+
+ PyObject *
+ PyArray_PutTo(PyArrayObject *self, PyObject*values0, PyObject
+ *indices0, NPY_CLIPMODE clipmode)
+
+Put values into an array
+
+::
+
+ PyObject *
+ PyArray_PutMask(PyArrayObject *self, PyObject*values0, PyObject*mask0)
+
+Put values into an array according to a mask.
+
+::
+
+ PyObject *
+ PyArray_Repeat(PyArrayObject *aop, PyObject *op, int axis)
+
+Repeat the array.
+
+::
+
+ PyObject *
+ PyArray_Choose(PyArrayObject *ip, PyObject *op, PyArrayObject
+ *out, NPY_CLIPMODE clipmode)
+
+
+::
+
+ int
+ PyArray_Sort(PyArrayObject *op, int axis, NPY_SORTKIND which)
+
+Sort an array in-place
+
+::
+
+ PyObject *
+ PyArray_ArgSort(PyArrayObject *op, int axis, NPY_SORTKIND which)
+
+ArgSort an array
+
+::
+
+ PyObject *
+ PyArray_SearchSorted(PyArrayObject *op1, PyObject *op2, NPY_SEARCHSIDE
+ side, PyObject *perm)
+
+
+Search the sorted array op1 for the location of the items in op2. The
+result is an array of indexes, one for each element in op2, such that if
+the item were to be inserted in op1 just before that index the array
+would still be in sorted order.
+
+Parameters
+----------
+op1 : PyArrayObject *
+Array to be searched, must be 1-D.
+op2 : PyObject *
+Array of items whose insertion indexes in op1 are wanted
+side : {NPY_SEARCHLEFT, NPY_SEARCHRIGHT}
+If NPY_SEARCHLEFT, return first valid insertion indexes
+If NPY_SEARCHRIGHT, return last valid insertion indexes
+perm : PyObject *
+Permutation array that sorts op1 (optional)
+
+Returns
+-------
+ret : PyObject *
+New reference to npy_intp array containing indexes where items in op2
+could be validly inserted into op1. NULL on error.
+
+Notes
+-----
+Binary search is used to find the indexes.
+
+::
+
+ PyObject *
+ PyArray_ArgMax(PyArrayObject *op, int axis, PyArrayObject *out)
+
+ArgMax
+
+::
+
+ PyObject *
+ PyArray_ArgMin(PyArrayObject *op, int axis, PyArrayObject *out)
+
+ArgMin
+
+::
+
+ PyObject *
+ PyArray_Reshape(PyArrayObject *self, PyObject *shape)
+
+Reshape
+
+::
+
+ PyObject *
+ PyArray_Newshape(PyArrayObject *self, PyArray_Dims *newdims, NPY_ORDER
+ order)
+
+New shape for an array
+
+::
+
+ PyObject *
+ PyArray_Squeeze(PyArrayObject *self)
+
+
+return a new view of the array object with all of its unit-length
+dimensions squeezed out if needed, otherwise
+return the same array.
+
+::
+
+ PyObject *
+ PyArray_View(PyArrayObject *self, PyArray_Descr *type, PyTypeObject
+ *pytype)
+
+View
+steals a reference to type -- accepts NULL
+
+::
+
+ PyObject *
+ PyArray_SwapAxes(PyArrayObject *ap, int a1, int a2)
+
+SwapAxes
+
+::
+
+ PyObject *
+ PyArray_Max(PyArrayObject *ap, int axis, PyArrayObject *out)
+
+Max
+
+::
+
+ PyObject *
+ PyArray_Min(PyArrayObject *ap, int axis, PyArrayObject *out)
+
+Min
+
+::
+
+ PyObject *
+ PyArray_Ptp(PyArrayObject *ap, int axis, PyArrayObject *out)
+
+Ptp
+
+::
+
+ PyObject *
+ PyArray_Mean(PyArrayObject *self, int axis, int rtype, PyArrayObject
+ *out)
+
+Mean
+
+::
+
+ PyObject *
+ PyArray_Trace(PyArrayObject *self, int offset, int axis1, int
+ axis2, int rtype, PyArrayObject *out)
+
+Trace
+
+::
+
+ PyObject *
+ PyArray_Diagonal(PyArrayObject *self, int offset, int axis1, int
+ axis2)
+
+Diagonal
+
+In NumPy versions prior to 1.7, this function always returned a copy of
+the diagonal array. In 1.7, the code has been updated to compute a view
+onto 'self', but it still copies this array before returning, as well as
+setting the internal WARN_ON_WRITE flag. In a future version, it will
+simply return a view onto self.
+
+::
+
+ PyObject *
+ PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject
+ *max, PyArrayObject *out)
+
+Clip
+
+::
+
+ PyObject *
+ PyArray_Conjugate(PyArrayObject *self, PyArrayObject *out)
+
+Conjugate
+
+::
+
+ PyObject *
+ PyArray_Nonzero(PyArrayObject *self)
+
+Nonzero
+
+TODO: In NumPy 2.0, should make the iteration order a parameter.
+
+::
+
+ PyObject *
+ PyArray_Std(PyArrayObject *self, int axis, int rtype, PyArrayObject
+ *out, int variance)
+
+Set variance to 1 to by-pass square-root calculation and return variance
+Std
+
+::
+
+ PyObject *
+ PyArray_Sum(PyArrayObject *self, int axis, int rtype, PyArrayObject
+ *out)
+
+Sum
+
+::
+
+ PyObject *
+ PyArray_CumSum(PyArrayObject *self, int axis, int rtype, PyArrayObject
+ *out)
+
+CumSum
+
+::
+
+ PyObject *
+ PyArray_Prod(PyArrayObject *self, int axis, int rtype, PyArrayObject
+ *out)
+
+Prod
+
+::
+
+ PyObject *
+ PyArray_CumProd(PyArrayObject *self, int axis, int
+ rtype, PyArrayObject *out)
+
+CumProd
+
+::
+
+ PyObject *
+ PyArray_All(PyArrayObject *self, int axis, PyArrayObject *out)
+
+All
+
+::
+
+ PyObject *
+ PyArray_Any(PyArrayObject *self, int axis, PyArrayObject *out)
+
+Any
+
+::
+
+ PyObject *
+ PyArray_Compress(PyArrayObject *self, PyObject *condition, int
+ axis, PyArrayObject *out)
+
+Compress
+
+::
+
+ PyObject *
+ PyArray_Flatten(PyArrayObject *a, NPY_ORDER order)
+
+Flatten
+
+::
+
+ PyObject *
+ PyArray_Ravel(PyArrayObject *arr, NPY_ORDER order)
+
+Ravel
+Returns a contiguous array
+
+::
+
+ npy_intp
+ PyArray_MultiplyList(npy_intp const *l1, int n)
+
+Multiply a List
+
+::
+
+ int
+ PyArray_MultiplyIntList(int const *l1, int n)
+
+Multiply a List of ints
+
+::
+
+ void *
+ PyArray_GetPtr(PyArrayObject *obj, npy_intp const*ind)
+
+Produce a pointer into array
+
+::
+
+ int
+ PyArray_CompareLists(npy_intp const *l1, npy_intp const *l2, int n)
+
+Compare Lists
+
+::
+
+ int
+ PyArray_AsCArray(PyObject **op, void *ptr, npy_intp *dims, int
+ nd, PyArray_Descr*typedescr)
+
+Simulate a C-array
+steals a reference to typedescr -- can be NULL
+
+::
+
+ int
+ PyArray_As1D(PyObject **NPY_UNUSED(op) , char **NPY_UNUSED(ptr) , int
+ *NPY_UNUSED(d1) , int NPY_UNUSED(typecode) )
+
+Convert to a 1D C-array
+
+::
+
+ int
+ PyArray_As2D(PyObject **NPY_UNUSED(op) , char ***NPY_UNUSED(ptr) , int
+ *NPY_UNUSED(d1) , int *NPY_UNUSED(d2) , int
+ NPY_UNUSED(typecode) )
+
+Convert to a 2D C-array
+
+::
+
+ int
+ PyArray_Free(PyObject *op, void *ptr)
+
+Free pointers created if As2D is called
+
+::
+
+ int
+ PyArray_Converter(PyObject *object, PyObject **address)
+
+
+Useful to pass as converter function for O& processing in PyArgs_ParseTuple.
+
+This conversion function can be used with the "O&" argument for
+PyArg_ParseTuple. It will immediately return an object of array type
+or will convert to a NPY_ARRAY_CARRAY any other object.
+
+If you use PyArray_Converter, you must DECREF the array when finished
+as you get a new reference to it.
+
+::
+
+ int
+ PyArray_IntpFromSequence(PyObject *seq, npy_intp *vals, int maxvals)
+
+PyArray_IntpFromSequence
+Returns the number of integers converted or -1 if an error occurred.
+vals must be large enough to hold maxvals
+
+::
+
+ PyObject *
+ PyArray_Concatenate(PyObject *op, int axis)
+
+Concatenate
+
+Concatenate an arbitrary Python sequence into an array.
+op is a python object supporting the sequence interface.
+Its elements will be concatenated together to form a single
+multidimensional array. If axis is NPY_MAXDIMS or bigger, then
+each sequence object will be flattened before concatenation
+
+::
+
+ PyObject *
+ PyArray_InnerProduct(PyObject *op1, PyObject *op2)
+
+Numeric.innerproduct(a,v)
+
+::
+
+ PyObject *
+ PyArray_MatrixProduct(PyObject *op1, PyObject *op2)
+
+Numeric.matrixproduct(a,v)
+just like inner product but does the swapaxes stuff on the fly
+
+::
+
+ PyObject *
+ PyArray_CopyAndTranspose(PyObject *op)
+
+Copy and Transpose
+
+Could deprecate this function, as there isn't a speed benefit over
+calling Transpose and then Copy.
+
+::
+
+ PyObject *
+ PyArray_Correlate(PyObject *op1, PyObject *op2, int mode)
+
+Numeric.correlate(a1,a2,mode)
+
+::
+
+ int
+ PyArray_TypestrConvert(int itemsize, int gentype)
+
+Typestr converter
+
+::
+
+ int
+ PyArray_DescrConverter(PyObject *obj, PyArray_Descr **at)
+
+Get typenum from an object -- None goes to NPY_DEFAULT_TYPE
+This function takes a Python object representing a type and converts it
+to a the correct PyArray_Descr * structure to describe the type.
+
+Many objects can be used to represent a data-type which in NumPy is
+quite a flexible concept.
+
+This is the central code that converts Python objects to
+Type-descriptor objects that are used throughout numpy.
+
+Returns a new reference in *at, but the returned should not be
+modified as it may be one of the canonical immutable objects or
+a reference to the input obj.
+
+::
+
+ int
+ PyArray_DescrConverter2(PyObject *obj, PyArray_Descr **at)
+
+Get typenum from an object -- None goes to NULL
+
+::
+
+ int
+ PyArray_IntpConverter(PyObject *obj, PyArray_Dims *seq)
+
+Get intp chunk from sequence
+
+This function takes a Python sequence object and allocates and
+fills in an intp array with the converted values.
+
+Remember to free the pointer seq.ptr when done using
+PyDimMem_FREE(seq.ptr)**
+
+::
+
+ int
+ PyArray_BufferConverter(PyObject *obj, PyArray_Chunk *buf)
+
+Get buffer chunk from object
+
+this function takes a Python object which exposes the (single-segment)
+buffer interface and returns a pointer to the data segment
+
+You should increment the reference count by one of buf->base
+if you will hang on to a reference
+
+You only get a borrowed reference to the object. Do not free the
+memory...
+
+::
+
+ int
+ PyArray_AxisConverter(PyObject *obj, int *axis)
+
+Get axis from an object (possibly None) -- a converter function,
+
+See also PyArray_ConvertMultiAxis, which also handles a tuple of axes.
+
+::
+
+ int
+ PyArray_BoolConverter(PyObject *object, npy_bool *val)
+
+Convert an object to true / false
+
+::
+
+ int
+ PyArray_ByteorderConverter(PyObject *obj, char *endian)
+
+Convert object to endian
+
+::
+
+ int
+ PyArray_OrderConverter(PyObject *object, NPY_ORDER *val)
+
+Convert an object to FORTRAN / C / ANY / KEEP
+
+::
+
+ unsigned char
+ PyArray_EquivTypes(PyArray_Descr *type1, PyArray_Descr *type2)
+
+
+This function returns true if the two typecodes are
+equivalent (same basic kind and same itemsize).
+
+::
+
+ PyObject *
+ PyArray_Zeros(int nd, npy_intp const *dims, PyArray_Descr *type, int
+ is_f_order)
+
+Zeros
+
+steals a reference to type. On failure or when dtype->subarray is
+true, dtype will be decrefed.
+accepts NULL type
+
+::
+
+ PyObject *
+ PyArray_Empty(int nd, npy_intp const *dims, PyArray_Descr *type, int
+ is_f_order)
+
+Empty
+
+accepts NULL type
+steals a reference to type
+
+::
+
+ PyObject *
+ PyArray_Where(PyObject *condition, PyObject *x, PyObject *y)
+
+Where
+
+::
+
+ PyObject *
+ PyArray_Arange(double start, double stop, double step, int type_num)
+
+Arange,
+
+::
+
+ PyObject *
+ PyArray_ArangeObj(PyObject *start, PyObject *stop, PyObject
+ *step, PyArray_Descr *dtype)
+
+
+ArangeObj,
+
+this doesn't change the references
+
+::
+
+ int
+ PyArray_SortkindConverter(PyObject *obj, NPY_SORTKIND *sortkind)
+
+Convert object to sort kind
+
+::
+
+ PyObject *
+ PyArray_LexSort(PyObject *sort_keys, int axis)
+
+LexSort an array providing indices that will sort a collection of arrays
+lexicographically. The first key is sorted on first, followed by the second key
+-- requires that arg"merge"sort is available for each sort_key
+
+Returns an index array that shows the indexes for the lexicographic sort along
+the given axis.
+
+::
+
+ PyObject *
+ PyArray_Round(PyArrayObject *a, int decimals, PyArrayObject *out)
+
+Round
+
+::
+
+ unsigned char
+ PyArray_EquivTypenums(int typenum1, int typenum2)
+
+
+::
+
+ int
+ PyArray_RegisterDataType(PyArray_Descr *descr)
+
+Register Data type
+Does not change the reference count of descr
+
+::
+
+ int
+ PyArray_RegisterCastFunc(PyArray_Descr *descr, int
+ totype, PyArray_VectorUnaryFunc *castfunc)
+
+Register Casting Function
+Replaces any function currently stored.
+
+::
+
+ int
+ PyArray_RegisterCanCast(PyArray_Descr *descr, int
+ totype, NPY_SCALARKIND scalar)
+
+Register a type number indicating that a descriptor can be cast
+to it safely
+
+::
+
+ void
+ PyArray_InitArrFuncs(PyArray_ArrFuncs *f)
+
+Initialize arrfuncs to NULL
+
+::
+
+ PyObject *
+ PyArray_IntTupleFromIntp(int len, npy_intp const *vals)
+
+PyArray_IntTupleFromIntp
+
+::
+
+ int
+ PyArray_TypeNumFromName(char const *str)
+
+
+::
+
+ int
+ PyArray_ClipmodeConverter(PyObject *object, NPY_CLIPMODE *val)
+
+Convert an object to NPY_RAISE / NPY_CLIP / NPY_WRAP
+
+::
+
+ int
+ PyArray_OutputConverter(PyObject *object, PyArrayObject **address)
+
+Useful to pass as converter function for O& processing in
+PyArgs_ParseTuple for output arrays
+
+::
+
+ PyObject *
+ PyArray_BroadcastToShape(PyObject *obj, npy_intp *dims, int nd)
+
+Get Iterator broadcast to a particular shape
+
+::
+
+ void
+ _PyArray_SigintHandler(int signum)
+
+
+::
+
+ void*
+ _PyArray_GetSigintBuf(void )
+
+
+::
+
+ int
+ PyArray_DescrAlignConverter(PyObject *obj, PyArray_Descr **at)
+
+
+Get type-descriptor from an object forcing alignment if possible
+None goes to DEFAULT type.
+
+any object with the .fields attribute and/or .itemsize attribute (if the
+.fields attribute does not give the total size -- i.e. a partial record
+naming). If itemsize is given it must be >= size computed from fields
+
+The .fields attribute must return a convertible dictionary if present.
+Result inherits from NPY_VOID.
+
+::
+
+ int
+ PyArray_DescrAlignConverter2(PyObject *obj, PyArray_Descr **at)
+
+
+Get type-descriptor from an object forcing alignment if possible
+None goes to NULL.
+
+::
+
+ int
+ PyArray_SearchsideConverter(PyObject *obj, void *addr)
+
+Convert object to searchsorted side
+
+::
+
+ PyObject *
+ PyArray_CheckAxis(PyArrayObject *arr, int *axis, int flags)
+
+PyArray_CheckAxis
+
+check that axis is valid
+convert 0-d arrays to 1-d arrays
+
+::
+
+ npy_intp
+ PyArray_OverflowMultiplyList(npy_intp const *l1, int n)
+
+Multiply a List of Non-negative numbers with over-flow detection.
+
+::
+
+ int
+ PyArray_CompareString(const char *s1, const char *s2, size_t len)
+
+
+::
+
+ PyObject*
+ PyArray_MultiIterFromObjects(PyObject **mps, int n, int nadd, ... )
+
+Get MultiIterator from array of Python objects and any additional
+
+PyObject **mps - array of PyObjects
+int n - number of PyObjects in the array
+int nadd - number of additional arrays to include in the iterator.
+
+Returns a multi-iterator object.
+
+::
+
+ int
+ PyArray_GetEndianness(void )
+
+
+::
+
+ unsigned int
+ PyArray_GetNDArrayCFeatureVersion(void )
+
+Returns the built-in (at compilation time) C API version
+
+::
+
+ PyObject *
+ PyArray_Correlate2(PyObject *op1, PyObject *op2, int mode)
+
+correlate(a1,a2,mode)
+
+This function computes the usual correlation (correlate(a1, a2) !=
+correlate(a2, a1), and conjugate the second argument for complex inputs
+
+::
+
+ PyObject*
+ PyArray_NeighborhoodIterNew(PyArrayIterObject *x, const npy_intp
+ *bounds, int mode, PyArrayObject*fill)
+
+A Neighborhood Iterator object.
+
+::
+
+ void
+ PyArray_SetDatetimeParseFunction(PyObject *NPY_UNUSED(op) )
+
+This function is scheduled to be removed
+
+TO BE REMOVED - NOT USED INTERNALLY.
+
+::
+
+ void
+ PyArray_DatetimeToDatetimeStruct(npy_datetime NPY_UNUSED(val)
+ , NPY_DATETIMEUNIT NPY_UNUSED(fr)
+ , npy_datetimestruct *result)
+
+Fill the datetime struct from the value and resolution unit.
+
+TO BE REMOVED - NOT USED INTERNALLY.
+
+::
+
+ void
+ PyArray_TimedeltaToTimedeltaStruct(npy_timedelta NPY_UNUSED(val)
+ , NPY_DATETIMEUNIT NPY_UNUSED(fr)
+ , npy_timedeltastruct *result)
+
+Fill the timedelta struct from the timedelta value and resolution unit.
+
+TO BE REMOVED - NOT USED INTERNALLY.
+
+::
+
+ npy_datetime
+ PyArray_DatetimeStructToDatetime(NPY_DATETIMEUNIT NPY_UNUSED(fr)
+ , npy_datetimestruct *NPY_UNUSED(d) )
+
+Create a datetime value from a filled datetime struct and resolution unit.
+
+TO BE REMOVED - NOT USED INTERNALLY.
+
+::
+
+ npy_datetime
+ PyArray_TimedeltaStructToTimedelta(NPY_DATETIMEUNIT NPY_UNUSED(fr)
+ , npy_timedeltastruct
+ *NPY_UNUSED(d) )
+
+Create a timdelta value from a filled timedelta struct and resolution unit.
+
+TO BE REMOVED - NOT USED INTERNALLY.
+
+::
+
+ NpyIter *
+ NpyIter_New(PyArrayObject *op, npy_uint32 flags, NPY_ORDER
+ order, NPY_CASTING casting, PyArray_Descr*dtype)
+
+Allocate a new iterator for one array object.
+
+::
+
+ NpyIter *
+ NpyIter_MultiNew(int nop, PyArrayObject **op_in, npy_uint32
+ flags, NPY_ORDER order, NPY_CASTING
+ casting, npy_uint32 *op_flags, PyArray_Descr
+ **op_request_dtypes)
+
+Allocate a new iterator for more than one array object, using
+standard NumPy broadcasting rules and the default buffer size.
+
+::
+
+ NpyIter *
+ NpyIter_AdvancedNew(int nop, PyArrayObject **op_in, npy_uint32
+ flags, NPY_ORDER order, NPY_CASTING
+ casting, npy_uint32 *op_flags, PyArray_Descr
+ **op_request_dtypes, int oa_ndim, int
+ **op_axes, npy_intp *itershape, npy_intp
+ buffersize)
+
+Allocate a new iterator for multiple array objects, and advanced
+options for controlling the broadcasting, shape, and buffer size.
+
+::
+
+ NpyIter *
+ NpyIter_Copy(NpyIter *iter)
+
+Makes a copy of the iterator
+
+::
+
+ int
+ NpyIter_Deallocate(NpyIter *iter)
+
+Deallocate an iterator.
+
+To correctly work when an error is in progress, we have to check
+`PyErr_Occurred()`. This is necessary when buffers are not finalized
+or WritebackIfCopy is used. We could avoid that check by exposing a new
+function which is passed in whether or not a Python error is already set.
+
+::
+
+ npy_bool
+ NpyIter_HasDelayedBufAlloc(NpyIter *iter)
+
+Whether the buffer allocation is being delayed
+
+::
+
+ npy_bool
+ NpyIter_HasExternalLoop(NpyIter *iter)
+
+Whether the iterator handles the inner loop
+
+::
+
+ int
+ NpyIter_EnableExternalLoop(NpyIter *iter)
+
+Removes the inner loop handling (so HasExternalLoop returns true)
+
+::
+
+ npy_intp *
+ NpyIter_GetInnerStrideArray(NpyIter *iter)
+
+Get the array of strides for the inner loop (when HasExternalLoop is true)
+
+This function may be safely called without holding the Python GIL.
+
+::
+
+ npy_intp *
+ NpyIter_GetInnerLoopSizePtr(NpyIter *iter)
+
+Get a pointer to the size of the inner loop (when HasExternalLoop is true)
+
+This function may be safely called without holding the Python GIL.
+
+::
+
+ int
+ NpyIter_Reset(NpyIter *iter, char **errmsg)
+
+Resets the iterator to its initial state
+
+The use of errmsg is discouraged, it cannot be guaranteed that the GIL
+will not be grabbed on casting errors even when this is passed.
+
+If errmsg is non-NULL, it should point to a variable which will
+receive the error message, and no Python exception will be set.
+This is so that the function can be called from code not holding
+the GIL. Note that cast errors may still lead to the GIL being
+grabbed temporarily.
+
+::
+
+ int
+ NpyIter_ResetBasePointers(NpyIter *iter, char **baseptrs, char
+ **errmsg)
+
+Resets the iterator to its initial state, with new base data pointers.
+This function requires great caution.
+
+If errmsg is non-NULL, it should point to a variable which will
+receive the error message, and no Python exception will be set.
+This is so that the function can be called from code not holding
+the GIL. Note that cast errors may still lead to the GIL being
+grabbed temporarily.
+
+::
+
+ int
+ NpyIter_ResetToIterIndexRange(NpyIter *iter, npy_intp istart, npy_intp
+ iend, char **errmsg)
+
+Resets the iterator to a new iterator index range
+
+If errmsg is non-NULL, it should point to a variable which will
+receive the error message, and no Python exception will be set.
+This is so that the function can be called from code not holding
+the GIL. Note that cast errors may still lead to the GIL being
+grabbed temporarily.
+
+::
+
+ int
+ NpyIter_GetNDim(NpyIter *iter)
+
+Gets the number of dimensions being iterated
+
+::
+
+ int
+ NpyIter_GetNOp(NpyIter *iter)
+
+Gets the number of operands being iterated
+
+::
+
+ NpyIter_IterNextFunc *
+ NpyIter_GetIterNext(NpyIter *iter, char **errmsg)
+
+Compute the specialized iteration function for an iterator
+
+If errmsg is non-NULL, it should point to a variable which will
+receive the error message, and no Python exception will be set.
+This is so that the function can be called from code not holding
+the GIL.
+
+::
+
+ npy_intp
+ NpyIter_GetIterSize(NpyIter *iter)
+
+Gets the number of elements being iterated
+
+::
+
+ void
+ NpyIter_GetIterIndexRange(NpyIter *iter, npy_intp *istart, npy_intp
+ *iend)
+
+Gets the range of iteration indices being iterated
+
+::
+
+ npy_intp
+ NpyIter_GetIterIndex(NpyIter *iter)
+
+Gets the current iteration index
+
+::
+
+ int
+ NpyIter_GotoIterIndex(NpyIter *iter, npy_intp iterindex)
+
+Sets the iterator position to the specified iterindex,
+which matches the iteration order of the iterator.
+
+Returns NPY_SUCCEED on success, NPY_FAIL on failure.
+
+::
+
+ npy_bool
+ NpyIter_HasMultiIndex(NpyIter *iter)
+
+Whether the iterator is tracking a multi-index
+
+::
+
+ int
+ NpyIter_GetShape(NpyIter *iter, npy_intp *outshape)
+
+Gets the broadcast shape if a multi-index is being tracked by the iterator,
+otherwise gets the shape of the iteration as Fortran-order
+(fastest-changing index first).
+
+The reason Fortran-order is returned when a multi-index
+is not enabled is that this is providing a direct view into how
+the iterator traverses the n-dimensional space. The iterator organizes
+its memory from fastest index to slowest index, and when
+a multi-index is enabled, it uses a permutation to recover the original
+order.
+
+Returns NPY_SUCCEED or NPY_FAIL.
+
+::
+
+ NpyIter_GetMultiIndexFunc *
+ NpyIter_GetGetMultiIndex(NpyIter *iter, char **errmsg)
+
+Compute a specialized get_multi_index function for the iterator
+
+If errmsg is non-NULL, it should point to a variable which will
+receive the error message, and no Python exception will be set.
+This is so that the function can be called from code not holding
+the GIL.
+
+::
+
+ int
+ NpyIter_GotoMultiIndex(NpyIter *iter, npy_intp const *multi_index)
+
+Sets the iterator to the specified multi-index, which must have the
+correct number of entries for 'ndim'. It is only valid
+when NPY_ITER_MULTI_INDEX was passed to the constructor. This operation
+fails if the multi-index is out of bounds.
+
+Returns NPY_SUCCEED on success, NPY_FAIL on failure.
+
+::
+
+ int
+ NpyIter_RemoveMultiIndex(NpyIter *iter)
+
+Removes multi-index support from an iterator.
+
+Returns NPY_SUCCEED or NPY_FAIL.
+
+::
+
+ npy_bool
+ NpyIter_HasIndex(NpyIter *iter)
+
+Whether the iterator is tracking an index
+
+::
+
+ npy_bool
+ NpyIter_IsBuffered(NpyIter *iter)
+
+Whether the iterator is buffered
+
+::
+
+ npy_bool
+ NpyIter_IsGrowInner(NpyIter *iter)
+
+Whether the inner loop can grow if buffering is unneeded
+
+::
+
+ npy_intp
+ NpyIter_GetBufferSize(NpyIter *iter)
+
+Gets the size of the buffer, or 0 if buffering is not enabled
+
+::
+
+ npy_intp *
+ NpyIter_GetIndexPtr(NpyIter *iter)
+
+Get a pointer to the index, if it is being tracked
+
+::
+
+ int
+ NpyIter_GotoIndex(NpyIter *iter, npy_intp flat_index)
+
+If the iterator is tracking an index, sets the iterator
+to the specified index.
+
+Returns NPY_SUCCEED on success, NPY_FAIL on failure.
+
+::
+
+ char **
+ NpyIter_GetDataPtrArray(NpyIter *iter)
+
+Get the array of data pointers (1 per object being iterated)
+
+This function may be safely called without holding the Python GIL.
+
+::
+
+ PyArray_Descr **
+ NpyIter_GetDescrArray(NpyIter *iter)
+
+Get the array of data type pointers (1 per object being iterated)
+
+::
+
+ PyArrayObject **
+ NpyIter_GetOperandArray(NpyIter *iter)
+
+Get the array of objects being iterated
+
+::
+
+ PyArrayObject *
+ NpyIter_GetIterView(NpyIter *iter, npy_intp i)
+
+Returns a view to the i-th object with the iterator's internal axes
+
+::
+
+ void
+ NpyIter_GetReadFlags(NpyIter *iter, char *outreadflags)
+
+Gets an array of read flags (1 per object being iterated)
+
+::
+
+ void
+ NpyIter_GetWriteFlags(NpyIter *iter, char *outwriteflags)
+
+Gets an array of write flags (1 per object being iterated)
+
+::
+
+ void
+ NpyIter_DebugPrint(NpyIter *iter)
+
+For debugging
+
+::
+
+ npy_bool
+ NpyIter_IterationNeedsAPI(NpyIter *iter)
+
+Whether the iteration loop, and in particular the iternext()
+function, needs API access. If this is true, the GIL must
+be retained while iterating.
+
+::
+
+ void
+ NpyIter_GetInnerFixedStrideArray(NpyIter *iter, npy_intp *out_strides)
+
+Get an array of strides which are fixed. Any strides which may
+change during iteration receive the value NPY_MAX_INTP. Once
+the iterator is ready to iterate, call this to get the strides
+which will always be fixed in the inner loop, then choose optimized
+inner loop functions which take advantage of those fixed strides.
+
+This function may be safely called without holding the Python GIL.
+
+::
+
+ int
+ NpyIter_RemoveAxis(NpyIter *iter, int axis)
+
+Removes an axis from iteration. This requires that NPY_ITER_MULTI_INDEX
+was set for iterator creation, and does not work if buffering is
+enabled. This function also resets the iterator to its initial state.
+
+Returns NPY_SUCCEED or NPY_FAIL.
+
+::
+
+ npy_intp *
+ NpyIter_GetAxisStrideArray(NpyIter *iter, int axis)
+
+Gets the array of strides for the specified axis.
+If the iterator is tracking a multi-index, gets the strides
+for the axis specified, otherwise gets the strides for
+the iteration axis as Fortran order (fastest-changing axis first).
+
+Returns NULL if an error occurs.
+
+::
+
+ npy_bool
+ NpyIter_RequiresBuffering(NpyIter *iter)
+
+Whether the iteration could be done with no buffering.
+
+::
+
+ char **
+ NpyIter_GetInitialDataPtrArray(NpyIter *iter)
+
+Get the array of data pointers (1 per object being iterated),
+directly into the arrays (never pointing to a buffer), for starting
+unbuffered iteration. This always returns the addresses for the
+iterator position as reset to iterator index 0.
+
+These pointers are different from the pointers accepted by
+NpyIter_ResetBasePointers, because the direction along some
+axes may have been reversed, requiring base offsets.
+
+This function may be safely called without holding the Python GIL.
+
+::
+
+ int
+ NpyIter_CreateCompatibleStrides(NpyIter *iter, npy_intp
+ itemsize, npy_intp *outstrides)
+
+Builds a set of strides which are the same as the strides of an
+output array created using the NPY_ITER_ALLOCATE flag, where NULL
+was passed for op_axes. This is for data packed contiguously,
+but not necessarily in C or Fortran order. This should be used
+together with NpyIter_GetShape and NpyIter_GetNDim.
+
+A use case for this function is to match the shape and layout of
+the iterator and tack on one or more dimensions. For example,
+in order to generate a vector per input value for a numerical gradient,
+you pass in ndim*itemsize for itemsize, then add another dimension to
+the end with size ndim and stride itemsize. To do the Hessian matrix,
+you do the same thing but add two dimensions, or take advantage of
+the symmetry and pack it into 1 dimension with a particular encoding.
+
+This function may only be called if the iterator is tracking a multi-index
+and if NPY_ITER_DONT_NEGATE_STRIDES was used to prevent an axis from
+being iterated in reverse order.
+
+If an array is created with this method, simply adding 'itemsize'
+for each iteration will traverse the new array matching the
+iterator.
+
+Returns NPY_SUCCEED or NPY_FAIL.
+
+::
+
+ int
+ PyArray_CastingConverter(PyObject *obj, NPY_CASTING *casting)
+
+Convert any Python object, *obj*, to an NPY_CASTING enum.
+
+::
+
+ npy_intp
+ PyArray_CountNonzero(PyArrayObject *self)
+
+Counts the number of non-zero elements in the array.
+
+Returns -1 on error.
+
+::
+
+ PyArray_Descr *
+ PyArray_PromoteTypes(PyArray_Descr *type1, PyArray_Descr *type2)
+
+Produces the smallest size and lowest kind type to which both
+input types can be cast.
+
+::
+
+ PyArray_Descr *
+ PyArray_MinScalarType(PyArrayObject *arr)
+
+If arr is a scalar (has 0 dimensions) with a built-in number data type,
+finds the smallest type size/kind which can still represent its data.
+Otherwise, returns the array's data type.
+
+
+::
+
+ PyArray_Descr *
+ PyArray_ResultType(npy_intp narrs, PyArrayObject *arrs[] , npy_intp
+ ndtypes, PyArray_Descr *descrs[] )
+
+
+Produces the result type of a bunch of inputs, using the same rules
+as `np.result_type`.
+
+NOTE: This function is expected to through a transitional period or
+change behaviour. DTypes should always be strictly enforced for
+0-D arrays, while "weak DTypes" will be used to represent Python
+integers, floats, and complex in all cases.
+(Within this function, these are currently flagged on the array
+object to work through `np.result_type`, this may change.)
+
+Until a time where this transition is complete, we probably cannot
+add new "weak DTypes" or allow users to create their own.
+
+::
+
+ npy_bool
+ PyArray_CanCastArrayTo(PyArrayObject *arr, PyArray_Descr
+ *to, NPY_CASTING casting)
+
+Returns 1 if the array object may be cast to the given data type using
+the casting rule, 0 otherwise. This differs from PyArray_CanCastTo in
+that it handles scalar arrays (0 dimensions) specially, by checking
+their value.
+
+::
+
+ npy_bool
+ PyArray_CanCastTypeTo(PyArray_Descr *from, PyArray_Descr
+ *to, NPY_CASTING casting)
+
+Returns true if data of type 'from' may be cast to data of type
+'to' according to the rule 'casting'.
+
+::
+
+ PyArrayObject *
+ PyArray_EinsteinSum(char *subscripts, npy_intp nop, PyArrayObject
+ **op_in, PyArray_Descr *dtype, NPY_ORDER
+ order, NPY_CASTING casting, PyArrayObject *out)
+
+This function provides summation of array elements according to
+the Einstein summation convention. For example:
+- trace(a) -> einsum("ii", a)
+- transpose(a) -> einsum("ji", a)
+- multiply(a,b) -> einsum(",", a, b)
+- inner(a,b) -> einsum("i,i", a, b)
+- outer(a,b) -> einsum("i,j", a, b)
+- matvec(a,b) -> einsum("ij,j", a, b)
+- matmat(a,b) -> einsum("ij,jk", a, b)
+
+subscripts: The string of subscripts for einstein summation.
+nop: The number of operands
+op_in: The array of operands
+dtype: Either NULL, or the data type to force the calculation as.
+order: The order for the calculation/the output axes.
+casting: What kind of casts should be permitted.
+out: Either NULL, or an array into which the output should be placed.
+
+By default, the labels get placed in alphabetical order
+at the end of the output. So, if c = einsum("i,j", a, b)
+then c[i,j] == a[i]*b[j], but if c = einsum("j,i", a, b)
+then c[i,j] = a[j]*b[i].
+
+Alternatively, you can control the output order or prevent
+an axis from being summed/force an axis to be summed by providing
+indices for the output. This allows us to turn 'trace' into
+'diag', for example.
+- diag(a) -> einsum("ii->i", a)
+- sum(a, axis=0) -> einsum("i...->", a)
+
+Subscripts at the beginning and end may be specified by
+putting an ellipsis "..." in the middle. For example,
+the function einsum("i...i", a) takes the diagonal of
+the first and last dimensions of the operand, and
+einsum("ij...,jk...->ik...") takes the matrix product using
+the first two indices of each operand instead of the last two.
+
+When there is only one operand, no axes being summed, and
+no output parameter, this function returns a view
+into the operand instead of making a copy.
+
+::
+
+ PyObject *
+ PyArray_NewLikeArray(PyArrayObject *prototype, NPY_ORDER
+ order, PyArray_Descr *dtype, int subok)
+
+Creates a new array with the same shape as the provided one,
+with possible memory layout order and data type changes.
+
+prototype - The array the new one should be like.
+order - NPY_CORDER - C-contiguous result.
+NPY_FORTRANORDER - Fortran-contiguous result.
+NPY_ANYORDER - Fortran if prototype is Fortran, C otherwise.
+NPY_KEEPORDER - Keeps the axis ordering of prototype.
+dtype - If not NULL, overrides the data type of the result.
+subok - If 1, use the prototype's array subtype, otherwise
+always create a base-class array.
+
+NOTE: If dtype is not NULL, steals the dtype reference. On failure or when
+dtype->subarray is true, dtype will be decrefed.
+
+::
+
+ int
+ PyArray_GetArrayParamsFromObject(PyObject *NPY_UNUSED(op)
+ , PyArray_Descr
+ *NPY_UNUSED(requested_dtype)
+ , npy_bool NPY_UNUSED(writeable)
+ , PyArray_Descr
+ **NPY_UNUSED(out_dtype) , int
+ *NPY_UNUSED(out_ndim) , npy_intp
+ *NPY_UNUSED(out_dims) , PyArrayObject
+ **NPY_UNUSED(out_arr) , PyObject
+ *NPY_UNUSED(context) )
+
+
+::
+
+ int
+ PyArray_ConvertClipmodeSequence(PyObject *object, NPY_CLIPMODE
+ *modes, int n)
+
+Convert an object to an array of n NPY_CLIPMODE values.
+This is intended to be used in functions where a different mode
+could be applied to each axis, like in ravel_multi_index.
+
+::
+
+ PyObject *
+ PyArray_MatrixProduct2(PyObject *op1, PyObject
+ *op2, PyArrayObject*out)
+
+Numeric.matrixproduct2(a,v,out)
+just like inner product but does the swapaxes stuff on the fly
+
+::
+
+ npy_bool
+ NpyIter_IsFirstVisit(NpyIter *iter, int iop)
+
+Checks to see whether this is the first time the elements
+of the specified reduction operand which the iterator points at are
+being seen for the first time. The function returns
+a reasonable answer for reduction operands and when buffering is
+disabled. The answer may be incorrect for buffered non-reduction
+operands.
+
+This function is intended to be used in EXTERNAL_LOOP mode only,
+and will produce some wrong answers when that mode is not enabled.
+
+If this function returns true, the caller should also
+check the inner loop stride of the operand, because if
+that stride is 0, then only the first element of the innermost
+external loop is being visited for the first time.
+
+WARNING: For performance reasons, 'iop' is not bounds-checked,
+it is not confirmed that 'iop' is actually a reduction
+operand, and it is not confirmed that EXTERNAL_LOOP
+mode is enabled. These checks are the responsibility of
+the caller, and should be done outside of any inner loops.
+
+::
+
+ int
+ PyArray_SetBaseObject(PyArrayObject *arr, PyObject *obj)
+
+Sets the 'base' attribute of the array. This steals a reference
+to 'obj'.
+
+Returns 0 on success, -1 on failure.
+
+::
+
+ void
+ PyArray_CreateSortedStridePerm(int ndim, npy_intp const
+ *strides, npy_stride_sort_item
+ *out_strideperm)
+
+
+This function populates the first ndim elements
+of strideperm with sorted descending by their absolute values.
+For example, the stride array (4, -2, 12) becomes
+[(2, 12), (0, 4), (1, -2)].
+
+::
+
+ void
+ PyArray_RemoveAxesInPlace(PyArrayObject *arr, const npy_bool *flags)
+
+
+Removes the axes flagged as True from the array,
+modifying it in place. If an axis flagged for removal
+has a shape entry bigger than one, this effectively selects
+index zero for that axis.
+
+WARNING: If an axis flagged for removal has a shape equal to zero,
+the array will point to invalid memory. The caller must
+validate this!
+If an axis flagged for removal has a shape larger than one,
+the aligned flag (and in the future the contiguous flags),
+may need explicit update.
+(check also NPY_RELAXED_STRIDES_CHECKING)
+
+For example, this can be used to remove the reduction axes
+from a reduction result once its computation is complete.
+
+::
+
+ void
+ PyArray_DebugPrint(PyArrayObject *obj)
+
+Prints the raw data of the ndarray in a form useful for debugging
+low-level C issues.
+
+::
+
+ int
+ PyArray_FailUnlessWriteable(PyArrayObject *obj, const char *name)
+
+
+This function does nothing if obj is writeable, and raises an exception
+(and returns -1) if obj is not writeable. It may also do other
+house-keeping, such as issuing warnings on arrays which are transitioning
+to become views. Always call this function at some point before writing to
+an array.
+
+'name' is a name for the array, used to give better error
+messages. Something like "assignment destination", "output array", or even
+just "array".
+
+::
+
+ int
+ PyArray_SetUpdateIfCopyBase(PyArrayObject *arr, PyArrayObject *base)
+
+
+Precondition: 'arr' is a copy of 'base' (though possibly with different
+strides, ordering, etc.). This function sets the UPDATEIFCOPY flag and the
+->base pointer on 'arr', so that when 'arr' is destructed, it will copy any
+changes back to 'base'. DEPRECATED, use PyArray_SetWritebackIfCopyBase
+
+Steals a reference to 'base'.
+
+Returns 0 on success, -1 on failure.
+
+::
+
+ void *
+ PyDataMem_NEW(size_t size)
+
+Allocates memory for array data.
+
+::
+
+ void
+ PyDataMem_FREE(void *ptr)
+
+Free memory for array data.
+
+::
+
+ void *
+ PyDataMem_RENEW(void *ptr, size_t size)
+
+Reallocate/resize memory for array data.
+
+::
+
+ PyDataMem_EventHookFunc *
+ PyDataMem_SetEventHook(PyDataMem_EventHookFunc *newhook, void
+ *user_data, void **old_data)
+
+Sets the allocation event hook for numpy array data.
+Takes a PyDataMem_EventHookFunc *, which has the signature:
+void hook(void *old, void *new, size_t size, void *user_data).
+Also takes a void *user_data, and void **old_data.
+
+Returns a pointer to the previous hook or NULL. If old_data is
+non-NULL, the previous user_data pointer will be copied to it.
+
+If not NULL, hook will be called at the end of each PyDataMem_NEW/FREE/RENEW:
+result = PyDataMem_NEW(size) -> (*hook)(NULL, result, size, user_data)
+PyDataMem_FREE(ptr) -> (*hook)(ptr, NULL, 0, user_data)
+result = PyDataMem_RENEW(ptr, size) -> (*hook)(ptr, result, size, user_data)
+
+When the hook is called, the GIL will be held by the calling
+thread. The hook should be written to be reentrant, if it performs
+operations that might cause new allocation events (such as the
+creation/destruction numpy objects, or creating/destroying Python
+objects which might cause a gc)
+
+::
+
+ void
+ PyArray_MapIterSwapAxes(PyArrayMapIterObject *mit, PyArrayObject
+ **ret, int getmap)
+
+
+Swap the axes to or from their inserted form. MapIter always puts the
+advanced (array) indices first in the iteration. But if they are
+consecutive, will insert/transpose them back before returning.
+This is stored as `mit->consec != 0` (the place where they are inserted)
+For assignments, the opposite happens: The values to be assigned are
+transposed (getmap=1 instead of getmap=0). `getmap=0` and `getmap=1`
+undo the other operation.
+
+::
+
+ PyObject *
+ PyArray_MapIterArray(PyArrayObject *a, PyObject *index)
+
+
+Use advanced indexing to iterate an array.
+
+::
+
+ void
+ PyArray_MapIterNext(PyArrayMapIterObject *mit)
+
+This function needs to update the state of the map iterator
+and point mit->dataptr to the memory-location of the next object
+
+Note that this function never handles an extra operand but provides
+compatibility for an old (exposed) API.
+
+::
+
+ int
+ PyArray_Partition(PyArrayObject *op, PyArrayObject *ktharray, int
+ axis, NPY_SELECTKIND which)
+
+Partition an array in-place
+
+::
+
+ PyObject *
+ PyArray_ArgPartition(PyArrayObject *op, PyArrayObject *ktharray, int
+ axis, NPY_SELECTKIND which)
+
+ArgPartition an array
+
+::
+
+ int
+ PyArray_SelectkindConverter(PyObject *obj, NPY_SELECTKIND *selectkind)
+
+Convert object to select kind
+
+::
+
+ void *
+ PyDataMem_NEW_ZEROED(size_t size, size_t elsize)
+
+Allocates zeroed memory for array data.
+
+::
+
+ int
+ PyArray_CheckAnyScalarExact(PyObject *obj)
+
+return true an object is exactly a numpy scalar
+
+::
+
+ PyObject *
+ PyArray_MapIterArrayCopyIfOverlap(PyArrayObject *a, PyObject
+ *index, int
+ copy_if_overlap, PyArrayObject
+ *extra_op)
+
+
+Same as PyArray_MapIterArray, but:
+
+If copy_if_overlap != 0, check if `a` has memory overlap with any of the
+arrays in `index` and with `extra_op`. If yes, make copies as appropriate
+to avoid problems if `a` is modified during the iteration.
+`iter->array` may contain a copied array (UPDATEIFCOPY/WRITEBACKIFCOPY set).
+
+::
+
+ int
+ PyArray_ResolveWritebackIfCopy(PyArrayObject *self)
+
+
+If WRITEBACKIFCOPY and self has data, reset the base WRITEABLE flag,
+copy the local data to base, release the local data, and set flags
+appropriately. Return 0 if not relevant, 1 if success, < 0 on failure
+
+::
+
+ int
+ PyArray_SetWritebackIfCopyBase(PyArrayObject *arr, PyArrayObject
+ *base)
+
+
+Precondition: 'arr' is a copy of 'base' (though possibly with different
+strides, ordering, etc.). This function sets the WRITEBACKIFCOPY flag and the
+->base pointer on 'arr', call PyArray_ResolveWritebackIfCopy to copy any
+changes back to 'base' before deallocating the array.
+
+Steals a reference to 'base'.
+
+Returns 0 on success, -1 on failure.
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarrayobject.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarrayobject.h
new file mode 100644
index 0000000000000000000000000000000000000000..5ef1f10aa33a9219b561d7c334b7ccecb958b42e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarrayobject.h
@@ -0,0 +1,268 @@
+/*
+ * DON'T INCLUDE THIS DIRECTLY.
+ */
+
+#ifndef NPY_NDARRAYOBJECT_H
+#define NPY_NDARRAYOBJECT_H
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include
+#include "ndarraytypes.h"
+
+/* Includes the "function" C-API -- these are all stored in a
+ list of pointers --- one for each file
+ The two lists are concatenated into one in multiarray.
+
+ They are available as import_array()
+*/
+
+#include "__multiarray_api.h"
+
+
+/* C-API that requires previous API to be defined */
+
+#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
+
+#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
+#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
+
+#define PyArray_HasArrayInterfaceType(op, type, context, out) \
+ ((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \
+ (((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \
+ (((out)=PyArray_FromArrayAttr(op, type, context)) != \
+ Py_NotImplemented))
+
+#define PyArray_HasArrayInterface(op, out) \
+ PyArray_HasArrayInterfaceType(op, NULL, NULL, out)
+
+#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \
+ (PyArray_NDIM((PyArrayObject *)op) == 0))
+
+#define PyArray_IsScalar(obj, cls) \
+ (PyObject_TypeCheck(obj, &Py##cls##ArrType_Type))
+
+#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \
+ PyArray_IsZeroDim(m))
+#define PyArray_IsPythonNumber(obj) \
+ (PyFloat_Check(obj) || PyComplex_Check(obj) || \
+ PyLong_Check(obj) || PyBool_Check(obj))
+#define PyArray_IsIntegerScalar(obj) (PyLong_Check(obj) \
+ || PyArray_IsScalar((obj), Integer))
+#define PyArray_IsPythonScalar(obj) \
+ (PyArray_IsPythonNumber(obj) || PyBytes_Check(obj) || \
+ PyUnicode_Check(obj))
+
+#define PyArray_IsAnyScalar(obj) \
+ (PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj))
+
+#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \
+ PyArray_CheckScalar(obj))
+
+
+#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \
+ Py_INCREF(m), (m) : \
+ (PyArrayObject *)(PyArray_Copy(m)))
+
+#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \
+ PyArray_CompareLists(PyArray_DIMS(a1), \
+ PyArray_DIMS(a2), \
+ PyArray_NDIM(a1)))
+
+#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m))
+#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m))
+#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL)
+
+#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \
+ NULL)
+
+#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \
+ PyArray_DescrFromType(type), 0, 0, 0, NULL)
+
+#define PyArray_FROM_OTF(m, type, flags) \
+ PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \
+ (((flags) & NPY_ARRAY_ENSURECOPY) ? \
+ ((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL)
+
+#define PyArray_FROMANY(m, type, min, max, flags) \
+ PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \
+ (((flags) & NPY_ARRAY_ENSURECOPY) ? \
+ (flags) | NPY_ARRAY_DEFAULT : (flags)), NULL)
+
+#define PyArray_ZEROS(m, dims, type, is_f_order) \
+ PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order)
+
+#define PyArray_EMPTY(m, dims, type, is_f_order) \
+ PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order)
+
+#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \
+ PyArray_NBYTES(obj))
+#ifndef PYPY_VERSION
+#define PyArray_REFCOUNT(obj) (((PyObject *)(obj))->ob_refcnt)
+#define NPY_REFCOUNT PyArray_REFCOUNT
+#endif
+#define NPY_MAX_ELSIZE (2 * NPY_SIZEOF_LONGDOUBLE)
+
+#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_DEFAULT, NULL)
+
+#define PyArray_EquivArrTypes(a1, a2) \
+ PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2))
+
+#define PyArray_EquivByteorders(b1, b2) \
+ (((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2)))
+
+#define PyArray_SimpleNew(nd, dims, typenum) \
+ PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL)
+
+#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \
+ PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \
+ data, 0, NPY_ARRAY_CARRAY, NULL)
+
+#define PyArray_SimpleNewFromDescr(nd, dims, descr) \
+ PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \
+ NULL, NULL, 0, NULL)
+
+#define PyArray_ToScalar(data, arr) \
+ PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr)
+
+
+/* These might be faster without the dereferencing of obj
+ going on inside -- of course an optimizing compiler should
+ inline the constants inside a for loop making it a moot point
+*/
+
+#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0]))
+
+#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1]))
+
+#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1] + \
+ (k)*PyArray_STRIDES(obj)[2]))
+
+#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \
+ (i)*PyArray_STRIDES(obj)[0] + \
+ (j)*PyArray_STRIDES(obj)[1] + \
+ (k)*PyArray_STRIDES(obj)[2] + \
+ (l)*PyArray_STRIDES(obj)[3]))
+
+/* Move to arrayobject.c once PyArray_XDECREF_ERR is removed */
+static NPY_INLINE void
+PyArray_DiscardWritebackIfCopy(PyArrayObject *arr)
+{
+ PyArrayObject_fields *fa = (PyArrayObject_fields *)arr;
+ if (fa && fa->base) {
+ if ((fa->flags & NPY_ARRAY_UPDATEIFCOPY) ||
+ (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY)) {
+ PyArray_ENABLEFLAGS((PyArrayObject*)fa->base, NPY_ARRAY_WRITEABLE);
+ Py_DECREF(fa->base);
+ fa->base = NULL;
+ PyArray_CLEARFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY);
+ PyArray_CLEARFLAGS(arr, NPY_ARRAY_UPDATEIFCOPY);
+ }
+ }
+}
+
+#define PyArray_DESCR_REPLACE(descr) do { \
+ PyArray_Descr *_new_; \
+ _new_ = PyArray_DescrNew(descr); \
+ Py_XDECREF(descr); \
+ descr = _new_; \
+ } while(0)
+
+/* Copy should always return contiguous array */
+#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER)
+
+#define PyArray_FromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_BEHAVED | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_DEFAULT | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \
+ PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
+ max_depth, NPY_ARRAY_ENSURECOPY | \
+ NPY_ARRAY_DEFAULT | \
+ NPY_ARRAY_ENSUREARRAY, NULL)
+
+#define PyArray_Cast(mp, type_num) \
+ PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0)
+
+#define PyArray_Take(ap, items, axis) \
+ PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE)
+
+#define PyArray_Put(ap, items, values) \
+ PyArray_PutTo(ap, items, values, NPY_RAISE)
+
+/* Compatibility with old Numeric stuff -- don't use in new code */
+
+#define PyArray_FromDimsAndData(nd, d, type, data) \
+ PyArray_FromDimsAndDataAndDescr(nd, d, PyArray_DescrFromType(type), \
+ data)
+
+
+/*
+ Check to see if this key in the dictionary is the "title"
+ entry of the tuple (i.e. a duplicate dictionary entry in the fields
+ dict).
+*/
+
+static NPY_INLINE int
+NPY_TITLE_KEY_check(PyObject *key, PyObject *value)
+{
+ PyObject *title;
+ if (PyTuple_Size(value) != 3) {
+ return 0;
+ }
+ title = PyTuple_GetItem(value, 2);
+ if (key == title) {
+ return 1;
+ }
+#ifdef PYPY_VERSION
+ /*
+ * On PyPy, dictionary keys do not always preserve object identity.
+ * Fall back to comparison by value.
+ */
+ if (PyUnicode_Check(title) && PyUnicode_Check(key)) {
+ return PyUnicode_Compare(title, key) == 0 ? 1 : 0;
+ }
+#endif
+ return 0;
+}
+
+/* Macro, for backward compat with "if NPY_TITLE_KEY(key, value) { ..." */
+#define NPY_TITLE_KEY(key, value) (NPY_TITLE_KEY_check((key), (value)))
+
+#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1)
+#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1)
+
+#if !defined(NPY_NO_DEPRECATED_API) || \
+ (NPY_NO_DEPRECATED_API < NPY_1_14_API_VERSION)
+static NPY_INLINE void
+PyArray_XDECREF_ERR(PyArrayObject *arr)
+{
+ /* 2017-Nov-10 1.14 */
+ DEPRECATE("PyArray_XDECREF_ERR is deprecated, call "
+ "PyArray_DiscardWritebackIfCopy then Py_XDECREF instead");
+ PyArray_DiscardWritebackIfCopy(arr);
+ Py_XDECREF(arr);
+}
+#endif
+
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* NPY_NDARRAYOBJECT_H */
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarraytypes.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarraytypes.h
new file mode 100644
index 0000000000000000000000000000000000000000..d1acfdf26235e990605bcf406b84220927b9b7fb
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ndarraytypes.h
@@ -0,0 +1,1985 @@
+#ifndef NDARRAYTYPES_H
+#define NDARRAYTYPES_H
+
+#include "npy_common.h"
+#include "npy_endian.h"
+#include "npy_cpu.h"
+#include "utils.h"
+
+#define NPY_NO_EXPORT NPY_VISIBILITY_HIDDEN
+
+/* Only use thread if configured in config and python supports it */
+#if defined WITH_THREAD && !NPY_NO_SMP
+ #define NPY_ALLOW_THREADS 1
+#else
+ #define NPY_ALLOW_THREADS 0
+#endif
+
+#ifndef __has_extension
+#define __has_extension(x) 0
+#endif
+
+#if !defined(_NPY_NO_DEPRECATIONS) && \
+ ((defined(__GNUC__)&& __GNUC__ >= 6) || \
+ __has_extension(attribute_deprecated_with_message))
+#define NPY_ATTR_DEPRECATE(text) __attribute__ ((deprecated (text)))
+#else
+#define NPY_ATTR_DEPRECATE(text)
+#endif
+
+/*
+ * There are several places in the code where an array of dimensions
+ * is allocated statically. This is the size of that static
+ * allocation.
+ *
+ * The array creation itself could have arbitrary dimensions but all
+ * the places where static allocation is used would need to be changed
+ * to dynamic (including inside of several structures)
+ */
+
+#define NPY_MAXDIMS 32
+#define NPY_MAXARGS 32
+
+/* Used for Converter Functions "O&" code in ParseTuple */
+#define NPY_FAIL 0
+#define NPY_SUCCEED 1
+
+/*
+ * Binary compatibility version number. This number is increased
+ * whenever the C-API is changed such that binary compatibility is
+ * broken, i.e. whenever a recompile of extension modules is needed.
+ */
+#define NPY_VERSION NPY_ABI_VERSION
+
+/*
+ * Minor API version. This number is increased whenever a change is
+ * made to the C-API -- whether it breaks binary compatibility or not.
+ * Some changes, such as adding a function pointer to the end of the
+ * function table, can be made without breaking binary compatibility.
+ * In this case, only the NPY_FEATURE_VERSION (*not* NPY_VERSION)
+ * would be increased. Whenever binary compatibility is broken, both
+ * NPY_VERSION and NPY_FEATURE_VERSION should be increased.
+ */
+#define NPY_FEATURE_VERSION NPY_API_VERSION
+
+enum NPY_TYPES { NPY_BOOL=0,
+ NPY_BYTE, NPY_UBYTE,
+ NPY_SHORT, NPY_USHORT,
+ NPY_INT, NPY_UINT,
+ NPY_LONG, NPY_ULONG,
+ NPY_LONGLONG, NPY_ULONGLONG,
+ NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
+ NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE,
+ NPY_OBJECT=17,
+ NPY_STRING, NPY_UNICODE,
+ NPY_VOID,
+ /*
+ * New 1.6 types appended, may be integrated
+ * into the above in 2.0.
+ */
+ NPY_DATETIME, NPY_TIMEDELTA, NPY_HALF,
+
+ NPY_NTYPES,
+ NPY_NOTYPE,
+ NPY_CHAR NPY_ATTR_DEPRECATE("Use NPY_STRING"),
+ NPY_USERDEF=256, /* leave room for characters */
+
+ /* The number of types not including the new 1.6 types */
+ NPY_NTYPES_ABI_COMPATIBLE=21
+};
+#ifdef _MSC_VER
+#pragma deprecated(NPY_CHAR)
+#endif
+
+/* basetype array priority */
+#define NPY_PRIORITY 0.0
+
+/* default subtype priority */
+#define NPY_SUBTYPE_PRIORITY 1.0
+
+/* default scalar priority */
+#define NPY_SCALAR_PRIORITY -1000000.0
+
+/* How many floating point types are there (excluding half) */
+#define NPY_NUM_FLOATTYPE 3
+
+/*
+ * These characters correspond to the array type and the struct
+ * module
+ */
+
+enum NPY_TYPECHAR {
+ NPY_BOOLLTR = '?',
+ NPY_BYTELTR = 'b',
+ NPY_UBYTELTR = 'B',
+ NPY_SHORTLTR = 'h',
+ NPY_USHORTLTR = 'H',
+ NPY_INTLTR = 'i',
+ NPY_UINTLTR = 'I',
+ NPY_LONGLTR = 'l',
+ NPY_ULONGLTR = 'L',
+ NPY_LONGLONGLTR = 'q',
+ NPY_ULONGLONGLTR = 'Q',
+ NPY_HALFLTR = 'e',
+ NPY_FLOATLTR = 'f',
+ NPY_DOUBLELTR = 'd',
+ NPY_LONGDOUBLELTR = 'g',
+ NPY_CFLOATLTR = 'F',
+ NPY_CDOUBLELTR = 'D',
+ NPY_CLONGDOUBLELTR = 'G',
+ NPY_OBJECTLTR = 'O',
+ NPY_STRINGLTR = 'S',
+ NPY_STRINGLTR2 = 'a',
+ NPY_UNICODELTR = 'U',
+ NPY_VOIDLTR = 'V',
+ NPY_DATETIMELTR = 'M',
+ NPY_TIMEDELTALTR = 'm',
+ NPY_CHARLTR = 'c',
+
+ /*
+ * No Descriptor, just a define -- this let's
+ * Python users specify an array of integers
+ * large enough to hold a pointer on the
+ * platform
+ */
+ NPY_INTPLTR = 'p',
+ NPY_UINTPLTR = 'P',
+
+ /*
+ * These are for dtype 'kinds', not dtype 'typecodes'
+ * as the above are for.
+ */
+ NPY_GENBOOLLTR ='b',
+ NPY_SIGNEDLTR = 'i',
+ NPY_UNSIGNEDLTR = 'u',
+ NPY_FLOATINGLTR = 'f',
+ NPY_COMPLEXLTR = 'c'
+};
+
+/*
+ * Changing this may break Numpy API compatibility
+ * due to changing offsets in PyArray_ArrFuncs, so be
+ * careful. Here we have reused the mergesort slot for
+ * any kind of stable sort, the actual implementation will
+ * depend on the data type.
+ */
+typedef enum {
+ NPY_QUICKSORT=0,
+ NPY_HEAPSORT=1,
+ NPY_MERGESORT=2,
+ NPY_STABLESORT=2,
+} NPY_SORTKIND;
+#define NPY_NSORTS (NPY_STABLESORT + 1)
+
+
+typedef enum {
+ NPY_INTROSELECT=0
+} NPY_SELECTKIND;
+#define NPY_NSELECTS (NPY_INTROSELECT + 1)
+
+
+typedef enum {
+ NPY_SEARCHLEFT=0,
+ NPY_SEARCHRIGHT=1
+} NPY_SEARCHSIDE;
+#define NPY_NSEARCHSIDES (NPY_SEARCHRIGHT + 1)
+
+
+typedef enum {
+ NPY_NOSCALAR=-1,
+ NPY_BOOL_SCALAR,
+ NPY_INTPOS_SCALAR,
+ NPY_INTNEG_SCALAR,
+ NPY_FLOAT_SCALAR,
+ NPY_COMPLEX_SCALAR,
+ NPY_OBJECT_SCALAR
+} NPY_SCALARKIND;
+#define NPY_NSCALARKINDS (NPY_OBJECT_SCALAR + 1)
+
+/* For specifying array memory layout or iteration order */
+typedef enum {
+ /* Fortran order if inputs are all Fortran, C otherwise */
+ NPY_ANYORDER=-1,
+ /* C order */
+ NPY_CORDER=0,
+ /* Fortran order */
+ NPY_FORTRANORDER=1,
+ /* An order as close to the inputs as possible */
+ NPY_KEEPORDER=2
+} NPY_ORDER;
+
+/* For specifying allowed casting in operations which support it */
+typedef enum {
+ _NPY_ERROR_OCCURRED_IN_CAST = -1,
+ /* Only allow identical types */
+ NPY_NO_CASTING=0,
+ /* Allow identical and byte swapped types */
+ NPY_EQUIV_CASTING=1,
+ /* Only allow safe casts */
+ NPY_SAFE_CASTING=2,
+ /* Allow safe casts or casts within the same kind */
+ NPY_SAME_KIND_CASTING=3,
+ /* Allow any casts */
+ NPY_UNSAFE_CASTING=4,
+ /*
+ * Flag to allow signalling that a cast is a view, this flag is not
+ * valid when requesting a cast of specific safety.
+ * _NPY_CAST_IS_VIEW|NPY_EQUIV_CASTING means the same as NPY_NO_CASTING.
+ */
+ // TODO-DTYPES: Needs to be documented.
+ _NPY_CAST_IS_VIEW = 1 << 16,
+} NPY_CASTING;
+
+typedef enum {
+ NPY_CLIP=0,
+ NPY_WRAP=1,
+ NPY_RAISE=2
+} NPY_CLIPMODE;
+
+typedef enum {
+ NPY_VALID=0,
+ NPY_SAME=1,
+ NPY_FULL=2
+} NPY_CORRELATEMODE;
+
+/* The special not-a-time (NaT) value */
+#define NPY_DATETIME_NAT NPY_MIN_INT64
+
+/*
+ * Upper bound on the length of a DATETIME ISO 8601 string
+ * YEAR: 21 (64-bit year)
+ * MONTH: 3
+ * DAY: 3
+ * HOURS: 3
+ * MINUTES: 3
+ * SECONDS: 3
+ * ATTOSECONDS: 1 + 3*6
+ * TIMEZONE: 5
+ * NULL TERMINATOR: 1
+ */
+#define NPY_DATETIME_MAX_ISO8601_STRLEN (21 + 3*5 + 1 + 3*6 + 6 + 1)
+
+/* The FR in the unit names stands for frequency */
+typedef enum {
+ /* Force signed enum type, must be -1 for code compatibility */
+ NPY_FR_ERROR = -1, /* error or undetermined */
+
+ /* Start of valid units */
+ NPY_FR_Y = 0, /* Years */
+ NPY_FR_M = 1, /* Months */
+ NPY_FR_W = 2, /* Weeks */
+ /* Gap where 1.6 NPY_FR_B (value 3) was */
+ NPY_FR_D = 4, /* Days */
+ NPY_FR_h = 5, /* hours */
+ NPY_FR_m = 6, /* minutes */
+ NPY_FR_s = 7, /* seconds */
+ NPY_FR_ms = 8, /* milliseconds */
+ NPY_FR_us = 9, /* microseconds */
+ NPY_FR_ns = 10, /* nanoseconds */
+ NPY_FR_ps = 11, /* picoseconds */
+ NPY_FR_fs = 12, /* femtoseconds */
+ NPY_FR_as = 13, /* attoseconds */
+ NPY_FR_GENERIC = 14 /* unbound units, can convert to anything */
+} NPY_DATETIMEUNIT;
+
+/*
+ * NOTE: With the NPY_FR_B gap for 1.6 ABI compatibility, NPY_DATETIME_NUMUNITS
+ * is technically one more than the actual number of units.
+ */
+#define NPY_DATETIME_NUMUNITS (NPY_FR_GENERIC + 1)
+#define NPY_DATETIME_DEFAULTUNIT NPY_FR_GENERIC
+
+/*
+ * Business day conventions for mapping invalid business
+ * days to valid business days.
+ */
+typedef enum {
+ /* Go forward in time to the following business day. */
+ NPY_BUSDAY_FORWARD,
+ NPY_BUSDAY_FOLLOWING = NPY_BUSDAY_FORWARD,
+ /* Go backward in time to the preceding business day. */
+ NPY_BUSDAY_BACKWARD,
+ NPY_BUSDAY_PRECEDING = NPY_BUSDAY_BACKWARD,
+ /*
+ * Go forward in time to the following business day, unless it
+ * crosses a month boundary, in which case go backward
+ */
+ NPY_BUSDAY_MODIFIEDFOLLOWING,
+ /*
+ * Go backward in time to the preceding business day, unless it
+ * crosses a month boundary, in which case go forward.
+ */
+ NPY_BUSDAY_MODIFIEDPRECEDING,
+ /* Produce a NaT for non-business days. */
+ NPY_BUSDAY_NAT,
+ /* Raise an exception for non-business days. */
+ NPY_BUSDAY_RAISE
+} NPY_BUSDAY_ROLL;
+
+/************************************************************
+ * NumPy Auxiliary Data for inner loops, sort functions, etc.
+ ************************************************************/
+
+/*
+ * When creating an auxiliary data struct, this should always appear
+ * as the first member, like this:
+ *
+ * typedef struct {
+ * NpyAuxData base;
+ * double constant;
+ * } constant_multiplier_aux_data;
+ */
+typedef struct NpyAuxData_tag NpyAuxData;
+
+/* Function pointers for freeing or cloning auxiliary data */
+typedef void (NpyAuxData_FreeFunc) (NpyAuxData *);
+typedef NpyAuxData *(NpyAuxData_CloneFunc) (NpyAuxData *);
+
+struct NpyAuxData_tag {
+ NpyAuxData_FreeFunc *free;
+ NpyAuxData_CloneFunc *clone;
+ /* To allow for a bit of expansion without breaking the ABI */
+ void *reserved[2];
+};
+
+/* Macros to use for freeing and cloning auxiliary data */
+#define NPY_AUXDATA_FREE(auxdata) \
+ do { \
+ if ((auxdata) != NULL) { \
+ (auxdata)->free(auxdata); \
+ } \
+ } while(0)
+#define NPY_AUXDATA_CLONE(auxdata) \
+ ((auxdata)->clone(auxdata))
+
+#define NPY_ERR(str) fprintf(stderr, #str); fflush(stderr);
+#define NPY_ERR2(str) fprintf(stderr, str); fflush(stderr);
+
+ /*
+ * Macros to define how array, and dimension/strides data is
+ * allocated.
+ */
+
+ /* Data buffer - PyDataMem_NEW/FREE/RENEW are in multiarraymodule.c */
+
+#define NPY_USE_PYMEM 1
+
+
+#if NPY_USE_PYMEM == 1
+/* use the Raw versions which are safe to call with the GIL released */
+#define PyArray_malloc PyMem_RawMalloc
+#define PyArray_free PyMem_RawFree
+#define PyArray_realloc PyMem_RawRealloc
+#else
+#define PyArray_malloc malloc
+#define PyArray_free free
+#define PyArray_realloc realloc
+#endif
+
+/* Dimensions and strides */
+#define PyDimMem_NEW(size) \
+ ((npy_intp *)PyArray_malloc(size*sizeof(npy_intp)))
+
+#define PyDimMem_FREE(ptr) PyArray_free(ptr)
+
+#define PyDimMem_RENEW(ptr,size) \
+ ((npy_intp *)PyArray_realloc(ptr,size*sizeof(npy_intp)))
+
+/* forward declaration */
+struct _PyArray_Descr;
+
+/* These must deal with unaligned and swapped data if necessary */
+typedef PyObject * (PyArray_GetItemFunc) (void *, void *);
+typedef int (PyArray_SetItemFunc)(PyObject *, void *, void *);
+
+typedef void (PyArray_CopySwapNFunc)(void *, npy_intp, void *, npy_intp,
+ npy_intp, int, void *);
+
+typedef void (PyArray_CopySwapFunc)(void *, void *, int, void *);
+typedef npy_bool (PyArray_NonzeroFunc)(void *, void *);
+
+
+/*
+ * These assume aligned and notswapped data -- a buffer will be used
+ * before or contiguous data will be obtained
+ */
+
+typedef int (PyArray_CompareFunc)(const void *, const void *, void *);
+typedef int (PyArray_ArgFunc)(void*, npy_intp, npy_intp*, void *);
+
+typedef void (PyArray_DotFunc)(void *, npy_intp, void *, npy_intp, void *,
+ npy_intp, void *);
+
+typedef void (PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *,
+ void *);
+
+/*
+ * XXX the ignore argument should be removed next time the API version
+ * is bumped. It used to be the separator.
+ */
+typedef int (PyArray_ScanFunc)(FILE *fp, void *dptr,
+ char *ignore, struct _PyArray_Descr *);
+typedef int (PyArray_FromStrFunc)(char *s, void *dptr, char **endptr,
+ struct _PyArray_Descr *);
+
+typedef int (PyArray_FillFunc)(void *, npy_intp, void *);
+
+typedef int (PyArray_SortFunc)(void *, npy_intp, void *);
+typedef int (PyArray_ArgSortFunc)(void *, npy_intp *, npy_intp, void *);
+typedef int (PyArray_PartitionFunc)(void *, npy_intp, npy_intp,
+ npy_intp *, npy_intp *,
+ void *);
+typedef int (PyArray_ArgPartitionFunc)(void *, npy_intp *, npy_intp, npy_intp,
+ npy_intp *, npy_intp *,
+ void *);
+
+typedef int (PyArray_FillWithScalarFunc)(void *, npy_intp, void *, void *);
+
+typedef int (PyArray_ScalarKindFunc)(void *);
+
+typedef void (PyArray_FastClipFunc)(void *in, npy_intp n_in, void *min,
+ void *max, void *out);
+typedef void (PyArray_FastPutmaskFunc)(void *in, void *mask, npy_intp n_in,
+ void *values, npy_intp nv);
+typedef int (PyArray_FastTakeFunc)(void *dest, void *src, npy_intp *indarray,
+ npy_intp nindarray, npy_intp n_outer,
+ npy_intp m_middle, npy_intp nelem,
+ NPY_CLIPMODE clipmode);
+
+typedef struct {
+ npy_intp *ptr;
+ int len;
+} PyArray_Dims;
+
+typedef struct {
+ /*
+ * Functions to cast to most other standard types
+ * Can have some NULL entries. The types
+ * DATETIME, TIMEDELTA, and HALF go into the castdict
+ * even though they are built-in.
+ */
+ PyArray_VectorUnaryFunc *cast[NPY_NTYPES_ABI_COMPATIBLE];
+
+ /* The next four functions *cannot* be NULL */
+
+ /*
+ * Functions to get and set items with standard Python types
+ * -- not array scalars
+ */
+ PyArray_GetItemFunc *getitem;
+ PyArray_SetItemFunc *setitem;
+
+ /*
+ * Copy and/or swap data. Memory areas may not overlap
+ * Use memmove first if they might
+ */
+ PyArray_CopySwapNFunc *copyswapn;
+ PyArray_CopySwapFunc *copyswap;
+
+ /*
+ * Function to compare items
+ * Can be NULL
+ */
+ PyArray_CompareFunc *compare;
+
+ /*
+ * Function to select largest
+ * Can be NULL
+ */
+ PyArray_ArgFunc *argmax;
+
+ /*
+ * Function to compute dot product
+ * Can be NULL
+ */
+ PyArray_DotFunc *dotfunc;
+
+ /*
+ * Function to scan an ASCII file and
+ * place a single value plus possible separator
+ * Can be NULL
+ */
+ PyArray_ScanFunc *scanfunc;
+
+ /*
+ * Function to read a single value from a string
+ * and adjust the pointer; Can be NULL
+ */
+ PyArray_FromStrFunc *fromstr;
+
+ /*
+ * Function to determine if data is zero or not
+ * If NULL a default version is
+ * used at Registration time.
+ */
+ PyArray_NonzeroFunc *nonzero;
+
+ /*
+ * Used for arange. Should return 0 on success
+ * and -1 on failure.
+ * Can be NULL.
+ */
+ PyArray_FillFunc *fill;
+
+ /*
+ * Function to fill arrays with scalar values
+ * Can be NULL
+ */
+ PyArray_FillWithScalarFunc *fillwithscalar;
+
+ /*
+ * Sorting functions
+ * Can be NULL
+ */
+ PyArray_SortFunc *sort[NPY_NSORTS];
+ PyArray_ArgSortFunc *argsort[NPY_NSORTS];
+
+ /*
+ * Dictionary of additional casting functions
+ * PyArray_VectorUnaryFuncs
+ * which can be populated to support casting
+ * to other registered types. Can be NULL
+ */
+ PyObject *castdict;
+
+ /*
+ * Functions useful for generalizing
+ * the casting rules.
+ * Can be NULL;
+ */
+ PyArray_ScalarKindFunc *scalarkind;
+ int **cancastscalarkindto;
+ int *cancastto;
+
+ PyArray_FastClipFunc *fastclip;
+ PyArray_FastPutmaskFunc *fastputmask;
+ PyArray_FastTakeFunc *fasttake;
+
+ /*
+ * Function to select smallest
+ * Can be NULL
+ */
+ PyArray_ArgFunc *argmin;
+
+} PyArray_ArrFuncs;
+
+/* The item must be reference counted when it is inserted or extracted. */
+#define NPY_ITEM_REFCOUNT 0x01
+/* Same as needing REFCOUNT */
+#define NPY_ITEM_HASOBJECT 0x01
+/* Convert to list for pickling */
+#define NPY_LIST_PICKLE 0x02
+/* The item is a POINTER */
+#define NPY_ITEM_IS_POINTER 0x04
+/* memory needs to be initialized for this data-type */
+#define NPY_NEEDS_INIT 0x08
+/* operations need Python C-API so don't give-up thread. */
+#define NPY_NEEDS_PYAPI 0x10
+/* Use f.getitem when extracting elements of this data-type */
+#define NPY_USE_GETITEM 0x20
+/* Use f.setitem when setting creating 0-d array from this data-type.*/
+#define NPY_USE_SETITEM 0x40
+/* A sticky flag specifically for structured arrays */
+#define NPY_ALIGNED_STRUCT 0x80
+
+/*
+ *These are inherited for global data-type if any data-types in the
+ * field have them
+ */
+#define NPY_FROM_FIELDS (NPY_NEEDS_INIT | NPY_LIST_PICKLE | \
+ NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI)
+
+#define NPY_OBJECT_DTYPE_FLAGS (NPY_LIST_PICKLE | NPY_USE_GETITEM | \
+ NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT | \
+ NPY_NEEDS_INIT | NPY_NEEDS_PYAPI)
+
+#define PyDataType_FLAGCHK(dtype, flag) \
+ (((dtype)->flags & (flag)) == (flag))
+
+#define PyDataType_REFCHK(dtype) \
+ PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT)
+
+typedef struct _PyArray_Descr {
+ PyObject_HEAD
+ /*
+ * the type object representing an
+ * instance of this type -- should not
+ * be two type_numbers with the same type
+ * object.
+ */
+ PyTypeObject *typeobj;
+ /* kind for this type */
+ char kind;
+ /* unique-character representing this type */
+ char type;
+ /*
+ * '>' (big), '<' (little), '|'
+ * (not-applicable), or '=' (native).
+ */
+ char byteorder;
+ /* flags describing data type */
+ char flags;
+ /* number representing this type */
+ int type_num;
+ /* element size (itemsize) for this type */
+ int elsize;
+ /* alignment needed for this type */
+ int alignment;
+ /*
+ * Non-NULL if this type is
+ * is an array (C-contiguous)
+ * of some other type
+ */
+ struct _arr_descr *subarray;
+ /*
+ * The fields dictionary for this type
+ * For statically defined descr this
+ * is always Py_None
+ */
+ PyObject *fields;
+ /*
+ * An ordered tuple of field names or NULL
+ * if no fields are defined
+ */
+ PyObject *names;
+ /*
+ * a table of functions specific for each
+ * basic data descriptor
+ */
+ PyArray_ArrFuncs *f;
+ /* Metadata about this dtype */
+ PyObject *metadata;
+ /*
+ * Metadata specific to the C implementation
+ * of the particular dtype. This was added
+ * for NumPy 1.7.0.
+ */
+ NpyAuxData *c_metadata;
+ /* Cached hash value (-1 if not yet computed).
+ * This was added for NumPy 2.0.0.
+ */
+ npy_hash_t hash;
+} PyArray_Descr;
+
+typedef struct _arr_descr {
+ PyArray_Descr *base;
+ PyObject *shape; /* a tuple */
+} PyArray_ArrayDescr;
+
+/*
+ * The main array object structure.
+ *
+ * It has been recommended to use the inline functions defined below
+ * (PyArray_DATA and friends) to access fields here for a number of
+ * releases. Direct access to the members themselves is deprecated.
+ * To ensure that your code does not use deprecated access,
+ * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ * (or NPY_1_8_API_VERSION or higher as required).
+ */
+/* This struct will be moved to a private header in a future release */
+typedef struct tagPyArrayObject_fields {
+ PyObject_HEAD
+ /* Pointer to the raw data buffer */
+ char *data;
+ /* The number of dimensions, also called 'ndim' */
+ int nd;
+ /* The size in each dimension, also called 'shape' */
+ npy_intp *dimensions;
+ /*
+ * Number of bytes to jump to get to the
+ * next element in each dimension
+ */
+ npy_intp *strides;
+ /*
+ * This object is decref'd upon
+ * deletion of array. Except in the
+ * case of WRITEBACKIFCOPY which has
+ * special handling.
+ *
+ * For views it points to the original
+ * array, collapsed so no chains of
+ * views occur.
+ *
+ * For creation from buffer object it
+ * points to an object that should be
+ * decref'd on deletion
+ *
+ * For WRITEBACKIFCOPY flag this is an
+ * array to-be-updated upon calling
+ * PyArray_ResolveWritebackIfCopy
+ */
+ PyObject *base;
+ /* Pointer to type structure */
+ PyArray_Descr *descr;
+ /* Flags describing array -- see below */
+ int flags;
+ /* For weak references */
+ PyObject *weakreflist;
+ void *_buffer_info; /* private buffer info, tagged to allow warning */
+} PyArrayObject_fields;
+
+/*
+ * To hide the implementation details, we only expose
+ * the Python struct HEAD.
+ */
+#if !defined(NPY_NO_DEPRECATED_API) || \
+ (NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION)
+/*
+ * Can't put this in npy_deprecated_api.h like the others.
+ * PyArrayObject field access is deprecated as of NumPy 1.7.
+ */
+typedef PyArrayObject_fields PyArrayObject;
+#else
+typedef struct tagPyArrayObject {
+ PyObject_HEAD
+} PyArrayObject;
+#endif
+
+/*
+ * Removed 2020-Nov-25, NumPy 1.20
+ * #define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))
+ *
+ * The above macro was removed as it gave a false sense of a stable ABI
+ * with respect to the structures size. If you require a runtime constant,
+ * you can use `PyArray_Type.tp_basicsize` instead. Otherwise, please
+ * see the PyArrayObject documentation or ask the NumPy developers for
+ * information on how to correctly replace the macro in a way that is
+ * compatible with multiple NumPy versions.
+ */
+
+
+/* Array Flags Object */
+typedef struct PyArrayFlagsObject {
+ PyObject_HEAD
+ PyObject *arr;
+ int flags;
+} PyArrayFlagsObject;
+
+/* Mirrors buffer object to ptr */
+
+typedef struct {
+ PyObject_HEAD
+ PyObject *base;
+ void *ptr;
+ npy_intp len;
+ int flags;
+} PyArray_Chunk;
+
+typedef struct {
+ NPY_DATETIMEUNIT base;
+ int num;
+} PyArray_DatetimeMetaData;
+
+typedef struct {
+ NpyAuxData base;
+ PyArray_DatetimeMetaData meta;
+} PyArray_DatetimeDTypeMetaData;
+
+/*
+ * This structure contains an exploded view of a date-time value.
+ * NaT is represented by year == NPY_DATETIME_NAT.
+ */
+typedef struct {
+ npy_int64 year;
+ npy_int32 month, day, hour, min, sec, us, ps, as;
+} npy_datetimestruct;
+
+/* This is not used internally. */
+typedef struct {
+ npy_int64 day;
+ npy_int32 sec, us, ps, as;
+} npy_timedeltastruct;
+
+typedef int (PyArray_FinalizeFunc)(PyArrayObject *, PyObject *);
+
+/*
+ * Means c-style contiguous (last index varies the fastest). The data
+ * elements right after each other.
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_C_CONTIGUOUS 0x0001
+
+/*
+ * Set if array is a contiguous Fortran array: the first index varies
+ * the fastest in memory (strides array is reverse of C-contiguous
+ * array)
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_F_CONTIGUOUS 0x0002
+
+/*
+ * Note: all 0-d arrays are C_CONTIGUOUS and F_CONTIGUOUS. If a
+ * 1-d array is C_CONTIGUOUS it is also F_CONTIGUOUS. Arrays with
+ * more then one dimension can be C_CONTIGUOUS and F_CONTIGUOUS
+ * at the same time if they have either zero or one element.
+ * If NPY_RELAXED_STRIDES_CHECKING is set, a higher dimensional
+ * array is always C_CONTIGUOUS and F_CONTIGUOUS if it has zero elements
+ * and the array is contiguous if ndarray.squeeze() is contiguous.
+ * I.e. dimensions for which `ndarray.shape[dimension] == 1` are
+ * ignored.
+ */
+
+/*
+ * If set, the array owns the data: it will be free'd when the array
+ * is deleted.
+ *
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_OWNDATA 0x0004
+
+/*
+ * An array never has the next four set; they're only used as parameter
+ * flags to the various FromAny functions
+ *
+ * This flag may be requested in constructor functions.
+ */
+
+/* Cause a cast to occur regardless of whether or not it is safe. */
+#define NPY_ARRAY_FORCECAST 0x0010
+
+/*
+ * Always copy the array. Returned arrays are always CONTIGUOUS,
+ * ALIGNED, and WRITEABLE.
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ENSURECOPY 0x0020
+
+/*
+ * Make sure the returned array is a base-class ndarray
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ENSUREARRAY 0x0040
+
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ /*
+ * Dual use of the ENSUREARRAY flag, to indicate that this was converted
+ * from a python float, int, or complex.
+ * An array using this flag must be a temporary array that can never
+ * leave the C internals of NumPy. Even if it does, ENSUREARRAY is
+ * absolutely safe to abuse, since it already is a base class array :).
+ */
+ #define _NPY_ARRAY_WAS_PYSCALAR 0x0040
+#endif /* NPY_INTERNAL_BUILD */
+
+/*
+ * Make sure that the strides are in units of the element size Needed
+ * for some operations with record-arrays.
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_ELEMENTSTRIDES 0x0080
+
+/*
+ * Array data is aligned on the appropriate memory address for the type
+ * stored according to how the compiler would align things (e.g., an
+ * array of integers (4 bytes each) starts on a memory address that's
+ * a multiple of 4)
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_ALIGNED 0x0100
+
+/*
+ * Array data has the native endianness
+ *
+ * This flag may be requested in constructor functions.
+ */
+#define NPY_ARRAY_NOTSWAPPED 0x0200
+
+/*
+ * Array data is writeable
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_WRITEABLE 0x0400
+
+/*
+ * If this flag is set, then base contains a pointer to an array of
+ * the same size that should be updated with the current contents of
+ * this array when PyArray_ResolveWritebackIfCopy is called.
+ *
+ * This flag may be requested in constructor functions.
+ * This flag may be tested for in PyArray_FLAGS(arr).
+ */
+#define NPY_ARRAY_UPDATEIFCOPY 0x1000 /* Deprecated in 1.14 */
+#define NPY_ARRAY_WRITEBACKIFCOPY 0x2000
+
+/*
+ * NOTE: there are also internal flags defined in multiarray/arrayobject.h,
+ * which start at bit 31 and work down.
+ */
+
+#define NPY_ARRAY_BEHAVED (NPY_ARRAY_ALIGNED | \
+ NPY_ARRAY_WRITEABLE)
+#define NPY_ARRAY_BEHAVED_NS (NPY_ARRAY_ALIGNED | \
+ NPY_ARRAY_WRITEABLE | \
+ NPY_ARRAY_NOTSWAPPED)
+#define NPY_ARRAY_CARRAY (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_BEHAVED)
+#define NPY_ARRAY_CARRAY_RO (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+#define NPY_ARRAY_FARRAY (NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_BEHAVED)
+#define NPY_ARRAY_FARRAY_RO (NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+#define NPY_ARRAY_DEFAULT (NPY_ARRAY_CARRAY)
+#define NPY_ARRAY_IN_ARRAY (NPY_ARRAY_CARRAY_RO)
+#define NPY_ARRAY_OUT_ARRAY (NPY_ARRAY_CARRAY)
+#define NPY_ARRAY_INOUT_ARRAY (NPY_ARRAY_CARRAY | \
+ NPY_ARRAY_UPDATEIFCOPY)
+#define NPY_ARRAY_INOUT_ARRAY2 (NPY_ARRAY_CARRAY | \
+ NPY_ARRAY_WRITEBACKIFCOPY)
+#define NPY_ARRAY_IN_FARRAY (NPY_ARRAY_FARRAY_RO)
+#define NPY_ARRAY_OUT_FARRAY (NPY_ARRAY_FARRAY)
+#define NPY_ARRAY_INOUT_FARRAY (NPY_ARRAY_FARRAY | \
+ NPY_ARRAY_UPDATEIFCOPY)
+#define NPY_ARRAY_INOUT_FARRAY2 (NPY_ARRAY_FARRAY | \
+ NPY_ARRAY_WRITEBACKIFCOPY)
+
+#define NPY_ARRAY_UPDATE_ALL (NPY_ARRAY_C_CONTIGUOUS | \
+ NPY_ARRAY_F_CONTIGUOUS | \
+ NPY_ARRAY_ALIGNED)
+
+/* This flag is for the array interface, not PyArrayObject */
+#define NPY_ARR_HAS_DESCR 0x0800
+
+
+
+
+/*
+ * Size of internal buffers used for alignment Make BUFSIZE a multiple
+ * of sizeof(npy_cdouble) -- usually 16 so that ufunc buffers are aligned
+ */
+#define NPY_MIN_BUFSIZE ((int)sizeof(npy_cdouble))
+#define NPY_MAX_BUFSIZE (((int)sizeof(npy_cdouble))*1000000)
+#define NPY_BUFSIZE 8192
+/* buffer stress test size: */
+/*#define NPY_BUFSIZE 17*/
+
+#define PyArray_MAX(a,b) (((a)>(b))?(a):(b))
+#define PyArray_MIN(a,b) (((a)<(b))?(a):(b))
+#define PyArray_CLT(p,q) ((((p).real==(q).real) ? ((p).imag < (q).imag) : \
+ ((p).real < (q).real)))
+#define PyArray_CGT(p,q) ((((p).real==(q).real) ? ((p).imag > (q).imag) : \
+ ((p).real > (q).real)))
+#define PyArray_CLE(p,q) ((((p).real==(q).real) ? ((p).imag <= (q).imag) : \
+ ((p).real <= (q).real)))
+#define PyArray_CGE(p,q) ((((p).real==(q).real) ? ((p).imag >= (q).imag) : \
+ ((p).real >= (q).real)))
+#define PyArray_CEQ(p,q) (((p).real==(q).real) && ((p).imag == (q).imag))
+#define PyArray_CNE(p,q) (((p).real!=(q).real) || ((p).imag != (q).imag))
+
+/*
+ * C API: consists of Macros and functions. The MACROS are defined
+ * here.
+ */
+
+
+#define PyArray_ISCONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
+#define PyArray_ISWRITEABLE(m) PyArray_CHKFLAGS((m), NPY_ARRAY_WRITEABLE)
+#define PyArray_ISALIGNED(m) PyArray_CHKFLAGS((m), NPY_ARRAY_ALIGNED)
+
+#define PyArray_IS_C_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS)
+#define PyArray_IS_F_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_F_CONTIGUOUS)
+
+/* the variable is used in some places, so always define it */
+#define NPY_BEGIN_THREADS_DEF PyThreadState *_save=NULL;
+#if NPY_ALLOW_THREADS
+#define NPY_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS
+#define NPY_END_ALLOW_THREADS Py_END_ALLOW_THREADS
+#define NPY_BEGIN_THREADS do {_save = PyEval_SaveThread();} while (0);
+#define NPY_END_THREADS do { if (_save) \
+ { PyEval_RestoreThread(_save); _save = NULL;} } while (0);
+#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size) do { if ((loop_size) > 500) \
+ { _save = PyEval_SaveThread();} } while (0);
+
+#define NPY_BEGIN_THREADS_DESCR(dtype) \
+ do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
+ NPY_BEGIN_THREADS;} while (0);
+
+#define NPY_END_THREADS_DESCR(dtype) \
+ do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \
+ NPY_END_THREADS; } while (0);
+
+#define NPY_ALLOW_C_API_DEF PyGILState_STATE __save__;
+#define NPY_ALLOW_C_API do {__save__ = PyGILState_Ensure();} while (0);
+#define NPY_DISABLE_C_API do {PyGILState_Release(__save__);} while (0);
+#else
+#define NPY_BEGIN_ALLOW_THREADS
+#define NPY_END_ALLOW_THREADS
+#define NPY_BEGIN_THREADS
+#define NPY_END_THREADS
+#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size)
+#define NPY_BEGIN_THREADS_DESCR(dtype)
+#define NPY_END_THREADS_DESCR(dtype)
+#define NPY_ALLOW_C_API_DEF
+#define NPY_ALLOW_C_API
+#define NPY_DISABLE_C_API
+#endif
+
+/**********************************
+ * The nditer object, added in 1.6
+ **********************************/
+
+/* The actual structure of the iterator is an internal detail */
+typedef struct NpyIter_InternalOnly NpyIter;
+
+/* Iterator function pointers that may be specialized */
+typedef int (NpyIter_IterNextFunc)(NpyIter *iter);
+typedef void (NpyIter_GetMultiIndexFunc)(NpyIter *iter,
+ npy_intp *outcoords);
+
+/*** Global flags that may be passed to the iterator constructors ***/
+
+/* Track an index representing C order */
+#define NPY_ITER_C_INDEX 0x00000001
+/* Track an index representing Fortran order */
+#define NPY_ITER_F_INDEX 0x00000002
+/* Track a multi-index */
+#define NPY_ITER_MULTI_INDEX 0x00000004
+/* User code external to the iterator does the 1-dimensional innermost loop */
+#define NPY_ITER_EXTERNAL_LOOP 0x00000008
+/* Convert all the operands to a common data type */
+#define NPY_ITER_COMMON_DTYPE 0x00000010
+/* Operands may hold references, requiring API access during iteration */
+#define NPY_ITER_REFS_OK 0x00000020
+/* Zero-sized operands should be permitted, iteration checks IterSize for 0 */
+#define NPY_ITER_ZEROSIZE_OK 0x00000040
+/* Permits reductions (size-0 stride with dimension size > 1) */
+#define NPY_ITER_REDUCE_OK 0x00000080
+/* Enables sub-range iteration */
+#define NPY_ITER_RANGED 0x00000100
+/* Enables buffering */
+#define NPY_ITER_BUFFERED 0x00000200
+/* When buffering is enabled, grows the inner loop if possible */
+#define NPY_ITER_GROWINNER 0x00000400
+/* Delay allocation of buffers until first Reset* call */
+#define NPY_ITER_DELAY_BUFALLOC 0x00000800
+/* When NPY_KEEPORDER is specified, disable reversing negative-stride axes */
+#define NPY_ITER_DONT_NEGATE_STRIDES 0x00001000
+/*
+ * If output operands overlap with other operands (based on heuristics that
+ * has false positives but no false negatives), make temporary copies to
+ * eliminate overlap.
+ */
+#define NPY_ITER_COPY_IF_OVERLAP 0x00002000
+
+/*** Per-operand flags that may be passed to the iterator constructors ***/
+
+/* The operand will be read from and written to */
+#define NPY_ITER_READWRITE 0x00010000
+/* The operand will only be read from */
+#define NPY_ITER_READONLY 0x00020000
+/* The operand will only be written to */
+#define NPY_ITER_WRITEONLY 0x00040000
+/* The operand's data must be in native byte order */
+#define NPY_ITER_NBO 0x00080000
+/* The operand's data must be aligned */
+#define NPY_ITER_ALIGNED 0x00100000
+/* The operand's data must be contiguous (within the inner loop) */
+#define NPY_ITER_CONTIG 0x00200000
+/* The operand may be copied to satisfy requirements */
+#define NPY_ITER_COPY 0x00400000
+/* The operand may be copied with WRITEBACKIFCOPY to satisfy requirements */
+#define NPY_ITER_UPDATEIFCOPY 0x00800000
+/* Allocate the operand if it is NULL */
+#define NPY_ITER_ALLOCATE 0x01000000
+/* If an operand is allocated, don't use any subtype */
+#define NPY_ITER_NO_SUBTYPE 0x02000000
+/* This is a virtual array slot, operand is NULL but temporary data is there */
+#define NPY_ITER_VIRTUAL 0x04000000
+/* Require that the dimension match the iterator dimensions exactly */
+#define NPY_ITER_NO_BROADCAST 0x08000000
+/* A mask is being used on this array, affects buffer -> array copy */
+#define NPY_ITER_WRITEMASKED 0x10000000
+/* This array is the mask for all WRITEMASKED operands */
+#define NPY_ITER_ARRAYMASK 0x20000000
+/* Assume iterator order data access for COPY_IF_OVERLAP */
+#define NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE 0x40000000
+
+#define NPY_ITER_GLOBAL_FLAGS 0x0000ffff
+#define NPY_ITER_PER_OP_FLAGS 0xffff0000
+
+
+/*****************************
+ * Basic iterator object
+ *****************************/
+
+/* FWD declaration */
+typedef struct PyArrayIterObject_tag PyArrayIterObject;
+
+/*
+ * type of the function which translates a set of coordinates to a
+ * pointer to the data
+ */
+typedef char* (*npy_iter_get_dataptr_t)(
+ PyArrayIterObject* iter, const npy_intp*);
+
+struct PyArrayIterObject_tag {
+ PyObject_HEAD
+ int nd_m1; /* number of dimensions - 1 */
+ npy_intp index, size;
+ npy_intp coordinates[NPY_MAXDIMS];/* N-dimensional loop */
+ npy_intp dims_m1[NPY_MAXDIMS]; /* ao->dimensions - 1 */
+ npy_intp strides[NPY_MAXDIMS]; /* ao->strides or fake */
+ npy_intp backstrides[NPY_MAXDIMS];/* how far to jump back */
+ npy_intp factors[NPY_MAXDIMS]; /* shape factors */
+ PyArrayObject *ao;
+ char *dataptr; /* pointer to current item*/
+ npy_bool contiguous;
+
+ npy_intp bounds[NPY_MAXDIMS][2];
+ npy_intp limits[NPY_MAXDIMS][2];
+ npy_intp limits_sizes[NPY_MAXDIMS];
+ npy_iter_get_dataptr_t translate;
+} ;
+
+
+/* Iterator API */
+#define PyArrayIter_Check(op) PyObject_TypeCheck((op), &PyArrayIter_Type)
+
+#define _PyAIT(it) ((PyArrayIterObject *)(it))
+#define PyArray_ITER_RESET(it) do { \
+ _PyAIT(it)->index = 0; \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ memset(_PyAIT(it)->coordinates, 0, \
+ (_PyAIT(it)->nd_m1+1)*sizeof(npy_intp)); \
+} while (0)
+
+#define _PyArray_ITER_NEXT1(it) do { \
+ (it)->dataptr += _PyAIT(it)->strides[0]; \
+ (it)->coordinates[0]++; \
+} while (0)
+
+#define _PyArray_ITER_NEXT2(it) do { \
+ if ((it)->coordinates[1] < (it)->dims_m1[1]) { \
+ (it)->coordinates[1]++; \
+ (it)->dataptr += (it)->strides[1]; \
+ } \
+ else { \
+ (it)->coordinates[1] = 0; \
+ (it)->coordinates[0]++; \
+ (it)->dataptr += (it)->strides[0] - \
+ (it)->backstrides[1]; \
+ } \
+} while (0)
+
+#define PyArray_ITER_NEXT(it) do { \
+ _PyAIT(it)->index++; \
+ if (_PyAIT(it)->nd_m1 == 0) { \
+ _PyArray_ITER_NEXT1(_PyAIT(it)); \
+ } \
+ else if (_PyAIT(it)->contiguous) \
+ _PyAIT(it)->dataptr += PyArray_DESCR(_PyAIT(it)->ao)->elsize; \
+ else if (_PyAIT(it)->nd_m1 == 1) { \
+ _PyArray_ITER_NEXT2(_PyAIT(it)); \
+ } \
+ else { \
+ int __npy_i; \
+ for (__npy_i=_PyAIT(it)->nd_m1; __npy_i >= 0; __npy_i--) { \
+ if (_PyAIT(it)->coordinates[__npy_i] < \
+ _PyAIT(it)->dims_m1[__npy_i]) { \
+ _PyAIT(it)->coordinates[__npy_i]++; \
+ _PyAIT(it)->dataptr += \
+ _PyAIT(it)->strides[__npy_i]; \
+ break; \
+ } \
+ else { \
+ _PyAIT(it)->coordinates[__npy_i] = 0; \
+ _PyAIT(it)->dataptr -= \
+ _PyAIT(it)->backstrides[__npy_i]; \
+ } \
+ } \
+ } \
+} while (0)
+
+#define PyArray_ITER_GOTO(it, destination) do { \
+ int __npy_i; \
+ _PyAIT(it)->index = 0; \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ for (__npy_i = _PyAIT(it)->nd_m1; __npy_i>=0; __npy_i--) { \
+ if (destination[__npy_i] < 0) { \
+ destination[__npy_i] += \
+ _PyAIT(it)->dims_m1[__npy_i]+1; \
+ } \
+ _PyAIT(it)->dataptr += destination[__npy_i] * \
+ _PyAIT(it)->strides[__npy_i]; \
+ _PyAIT(it)->coordinates[__npy_i] = \
+ destination[__npy_i]; \
+ _PyAIT(it)->index += destination[__npy_i] * \
+ ( __npy_i==_PyAIT(it)->nd_m1 ? 1 : \
+ _PyAIT(it)->dims_m1[__npy_i+1]+1) ; \
+ } \
+} while (0)
+
+#define PyArray_ITER_GOTO1D(it, ind) do { \
+ int __npy_i; \
+ npy_intp __npy_ind = (npy_intp)(ind); \
+ if (__npy_ind < 0) __npy_ind += _PyAIT(it)->size; \
+ _PyAIT(it)->index = __npy_ind; \
+ if (_PyAIT(it)->nd_m1 == 0) { \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
+ __npy_ind * _PyAIT(it)->strides[0]; \
+ } \
+ else if (_PyAIT(it)->contiguous) \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \
+ __npy_ind * PyArray_DESCR(_PyAIT(it)->ao)->elsize; \
+ else { \
+ _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \
+ for (__npy_i = 0; __npy_i<=_PyAIT(it)->nd_m1; \
+ __npy_i++) { \
+ _PyAIT(it)->dataptr += \
+ (__npy_ind / _PyAIT(it)->factors[__npy_i]) \
+ * _PyAIT(it)->strides[__npy_i]; \
+ __npy_ind %= _PyAIT(it)->factors[__npy_i]; \
+ } \
+ } \
+} while (0)
+
+#define PyArray_ITER_DATA(it) ((void *)(_PyAIT(it)->dataptr))
+
+#define PyArray_ITER_NOTDONE(it) (_PyAIT(it)->index < _PyAIT(it)->size)
+
+
+/*
+ * Any object passed to PyArray_Broadcast must be binary compatible
+ * with this structure.
+ */
+
+typedef struct {
+ PyObject_HEAD
+ int numiter; /* number of iters */
+ npy_intp size; /* broadcasted size */
+ npy_intp index; /* current index */
+ int nd; /* number of dims */
+ npy_intp dimensions[NPY_MAXDIMS]; /* dimensions */
+ PyArrayIterObject *iters[NPY_MAXARGS]; /* iterators */
+} PyArrayMultiIterObject;
+
+#define _PyMIT(m) ((PyArrayMultiIterObject *)(m))
+#define PyArray_MultiIter_RESET(multi) do { \
+ int __npy_mi; \
+ _PyMIT(multi)->index = 0; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_RESET(_PyMIT(multi)->iters[__npy_mi]); \
+ } \
+} while (0)
+
+#define PyArray_MultiIter_NEXT(multi) do { \
+ int __npy_mi; \
+ _PyMIT(multi)->index++; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_NEXT(_PyMIT(multi)->iters[__npy_mi]); \
+ } \
+} while (0)
+
+#define PyArray_MultiIter_GOTO(multi, dest) do { \
+ int __npy_mi; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_GOTO(_PyMIT(multi)->iters[__npy_mi], dest); \
+ } \
+ _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
+} while (0)
+
+#define PyArray_MultiIter_GOTO1D(multi, ind) do { \
+ int __npy_mi; \
+ for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \
+ PyArray_ITER_GOTO1D(_PyMIT(multi)->iters[__npy_mi], ind); \
+ } \
+ _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \
+} while (0)
+
+#define PyArray_MultiIter_DATA(multi, i) \
+ ((void *)(_PyMIT(multi)->iters[i]->dataptr))
+
+#define PyArray_MultiIter_NEXTi(multi, i) \
+ PyArray_ITER_NEXT(_PyMIT(multi)->iters[i])
+
+#define PyArray_MultiIter_NOTDONE(multi) \
+ (_PyMIT(multi)->index < _PyMIT(multi)->size)
+
+
+/*
+ * Store the information needed for fancy-indexing over an array. The
+ * fields are slightly unordered to keep consec, dataptr and subspace
+ * where they were originally.
+ */
+typedef struct {
+ PyObject_HEAD
+ /*
+ * Multi-iterator portion --- needs to be present in this
+ * order to work with PyArray_Broadcast
+ */
+
+ int numiter; /* number of index-array
+ iterators */
+ npy_intp size; /* size of broadcasted
+ result */
+ npy_intp index; /* current index */
+ int nd; /* number of dims */
+ npy_intp dimensions[NPY_MAXDIMS]; /* dimensions */
+ NpyIter *outer; /* index objects
+ iterator */
+ void *unused[NPY_MAXDIMS - 2];
+ PyArrayObject *array;
+ /* Flat iterator for the indexed array. For compatibility solely. */
+ PyArrayIterObject *ait;
+
+ /*
+ * Subspace array. For binary compatibility (was an iterator,
+ * but only the check for NULL should be used).
+ */
+ PyArrayObject *subspace;
+
+ /*
+ * if subspace iteration, then this is the array of axes in
+ * the underlying array represented by the index objects
+ */
+ int iteraxes[NPY_MAXDIMS];
+ npy_intp fancy_strides[NPY_MAXDIMS];
+
+ /* pointer when all fancy indices are 0 */
+ char *baseoffset;
+
+ /*
+ * after binding consec denotes at which axis the fancy axes
+ * are inserted.
+ */
+ int consec;
+ char *dataptr;
+
+ int nd_fancy;
+ npy_intp fancy_dims[NPY_MAXDIMS];
+
+ /* Whether the iterator (any of the iterators) requires API */
+ int needs_api;
+
+ /*
+ * Extra op information.
+ */
+ PyArrayObject *extra_op;
+ PyArray_Descr *extra_op_dtype; /* desired dtype */
+ npy_uint32 *extra_op_flags; /* Iterator flags */
+
+ NpyIter *extra_op_iter;
+ NpyIter_IterNextFunc *extra_op_next;
+ char **extra_op_ptrs;
+
+ /*
+ * Information about the iteration state.
+ */
+ NpyIter_IterNextFunc *outer_next;
+ char **outer_ptrs;
+ npy_intp *outer_strides;
+
+ /*
+ * Information about the subspace iterator.
+ */
+ NpyIter *subspace_iter;
+ NpyIter_IterNextFunc *subspace_next;
+ char **subspace_ptrs;
+ npy_intp *subspace_strides;
+
+ /* Count for the external loop (which ever it is) for API iteration */
+ npy_intp iter_count;
+
+} PyArrayMapIterObject;
+
+enum {
+ NPY_NEIGHBORHOOD_ITER_ZERO_PADDING,
+ NPY_NEIGHBORHOOD_ITER_ONE_PADDING,
+ NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING,
+ NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING,
+ NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING
+};
+
+typedef struct {
+ PyObject_HEAD
+
+ /*
+ * PyArrayIterObject part: keep this in this exact order
+ */
+ int nd_m1; /* number of dimensions - 1 */
+ npy_intp index, size;
+ npy_intp coordinates[NPY_MAXDIMS];/* N-dimensional loop */
+ npy_intp dims_m1[NPY_MAXDIMS]; /* ao->dimensions - 1 */
+ npy_intp strides[NPY_MAXDIMS]; /* ao->strides or fake */
+ npy_intp backstrides[NPY_MAXDIMS];/* how far to jump back */
+ npy_intp factors[NPY_MAXDIMS]; /* shape factors */
+ PyArrayObject *ao;
+ char *dataptr; /* pointer to current item*/
+ npy_bool contiguous;
+
+ npy_intp bounds[NPY_MAXDIMS][2];
+ npy_intp limits[NPY_MAXDIMS][2];
+ npy_intp limits_sizes[NPY_MAXDIMS];
+ npy_iter_get_dataptr_t translate;
+
+ /*
+ * New members
+ */
+ npy_intp nd;
+
+ /* Dimensions is the dimension of the array */
+ npy_intp dimensions[NPY_MAXDIMS];
+
+ /*
+ * Neighborhood points coordinates are computed relatively to the
+ * point pointed by _internal_iter
+ */
+ PyArrayIterObject* _internal_iter;
+ /*
+ * To keep a reference to the representation of the constant value
+ * for constant padding
+ */
+ char* constant;
+
+ int mode;
+} PyArrayNeighborhoodIterObject;
+
+/*
+ * Neighborhood iterator API
+ */
+
+/* General: those work for any mode */
+static NPY_INLINE int
+PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter);
+static NPY_INLINE int
+PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter);
+#if 0
+static NPY_INLINE int
+PyArrayNeighborhoodIter_Next2D(PyArrayNeighborhoodIterObject* iter);
+#endif
+
+/*
+ * Include inline implementations - functions defined there are not
+ * considered public API
+ */
+#define _NPY_INCLUDE_NEIGHBORHOOD_IMP
+#include "_neighborhood_iterator_imp.h"
+#undef _NPY_INCLUDE_NEIGHBORHOOD_IMP
+
+/* The default array type */
+#define NPY_DEFAULT_TYPE NPY_DOUBLE
+
+/*
+ * All sorts of useful ways to look into a PyArrayObject. It is recommended
+ * to use PyArrayObject * objects instead of always casting from PyObject *,
+ * for improved type checking.
+ *
+ * In many cases here the macro versions of the accessors are deprecated,
+ * but can't be immediately changed to inline functions because the
+ * preexisting macros accept PyObject * and do automatic casts. Inline
+ * functions accepting PyArrayObject * provides for some compile-time
+ * checking of correctness when working with these objects in C.
+ */
+
+#define PyArray_ISONESEGMENT(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS) || \
+ PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS))
+
+#define PyArray_ISFORTRAN(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) && \
+ (!PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS)))
+
+#define PyArray_FORTRAN_IF(m) ((PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) ? \
+ NPY_ARRAY_F_CONTIGUOUS : 0))
+
+#if (defined(NPY_NO_DEPRECATED_API) && (NPY_1_7_API_VERSION <= NPY_NO_DEPRECATED_API))
+/*
+ * Changing access macros into functions, to allow for future hiding
+ * of the internal memory layout. This later hiding will allow the 2.x series
+ * to change the internal representation of arrays without affecting
+ * ABI compatibility.
+ */
+
+static NPY_INLINE int
+PyArray_NDIM(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->nd;
+}
+
+static NPY_INLINE void *
+PyArray_DATA(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->data;
+}
+
+static NPY_INLINE char *
+PyArray_BYTES(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->data;
+}
+
+static NPY_INLINE npy_intp *
+PyArray_DIMS(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions;
+}
+
+static NPY_INLINE npy_intp *
+PyArray_STRIDES(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->strides;
+}
+
+static NPY_INLINE npy_intp
+PyArray_DIM(const PyArrayObject *arr, int idim)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions[idim];
+}
+
+static NPY_INLINE npy_intp
+PyArray_STRIDE(const PyArrayObject *arr, int istride)
+{
+ return ((PyArrayObject_fields *)arr)->strides[istride];
+}
+
+static NPY_INLINE NPY_RETURNS_BORROWED_REF PyObject *
+PyArray_BASE(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->base;
+}
+
+static NPY_INLINE NPY_RETURNS_BORROWED_REF PyArray_Descr *
+PyArray_DESCR(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr;
+}
+
+static NPY_INLINE int
+PyArray_FLAGS(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->flags;
+}
+
+static NPY_INLINE npy_intp
+PyArray_ITEMSIZE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr->elsize;
+}
+
+static NPY_INLINE int
+PyArray_TYPE(const PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr->type_num;
+}
+
+static NPY_INLINE int
+PyArray_CHKFLAGS(const PyArrayObject *arr, int flags)
+{
+ return (PyArray_FLAGS(arr) & flags) == flags;
+}
+
+static NPY_INLINE PyObject *
+PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr)
+{
+ return ((PyArrayObject_fields *)arr)->descr->f->getitem(
+ (void *)itemptr, (PyArrayObject *)arr);
+}
+
+/*
+ * SETITEM should only be used if it is known that the value is a scalar
+ * and of a type understood by the arrays dtype.
+ * Use `PyArray_Pack` if the value may be of a different dtype.
+ */
+static NPY_INLINE int
+PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v)
+{
+ return ((PyArrayObject_fields *)arr)->descr->f->setitem(v, itemptr, arr);
+}
+
+#else
+
+/* These macros are deprecated as of NumPy 1.7. */
+#define PyArray_NDIM(obj) (((PyArrayObject_fields *)(obj))->nd)
+#define PyArray_BYTES(obj) (((PyArrayObject_fields *)(obj))->data)
+#define PyArray_DATA(obj) ((void *)((PyArrayObject_fields *)(obj))->data)
+#define PyArray_DIMS(obj) (((PyArrayObject_fields *)(obj))->dimensions)
+#define PyArray_STRIDES(obj) (((PyArrayObject_fields *)(obj))->strides)
+#define PyArray_DIM(obj,n) (PyArray_DIMS(obj)[n])
+#define PyArray_STRIDE(obj,n) (PyArray_STRIDES(obj)[n])
+#define PyArray_BASE(obj) (((PyArrayObject_fields *)(obj))->base)
+#define PyArray_DESCR(obj) (((PyArrayObject_fields *)(obj))->descr)
+#define PyArray_FLAGS(obj) (((PyArrayObject_fields *)(obj))->flags)
+#define PyArray_CHKFLAGS(m, FLAGS) \
+ ((((PyArrayObject_fields *)(m))->flags & (FLAGS)) == (FLAGS))
+#define PyArray_ITEMSIZE(obj) \
+ (((PyArrayObject_fields *)(obj))->descr->elsize)
+#define PyArray_TYPE(obj) \
+ (((PyArrayObject_fields *)(obj))->descr->type_num)
+#define PyArray_GETITEM(obj,itemptr) \
+ PyArray_DESCR(obj)->f->getitem((char *)(itemptr), \
+ (PyArrayObject *)(obj))
+
+#define PyArray_SETITEM(obj,itemptr,v) \
+ PyArray_DESCR(obj)->f->setitem((PyObject *)(v), \
+ (char *)(itemptr), \
+ (PyArrayObject *)(obj))
+#endif
+
+static NPY_INLINE PyArray_Descr *
+PyArray_DTYPE(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->descr;
+}
+
+static NPY_INLINE npy_intp *
+PyArray_SHAPE(PyArrayObject *arr)
+{
+ return ((PyArrayObject_fields *)arr)->dimensions;
+}
+
+/*
+ * Enables the specified array flags. Does no checking,
+ * assumes you know what you're doing.
+ */
+static NPY_INLINE void
+PyArray_ENABLEFLAGS(PyArrayObject *arr, int flags)
+{
+ ((PyArrayObject_fields *)arr)->flags |= flags;
+}
+
+/*
+ * Clears the specified array flags. Does no checking,
+ * assumes you know what you're doing.
+ */
+static NPY_INLINE void
+PyArray_CLEARFLAGS(PyArrayObject *arr, int flags)
+{
+ ((PyArrayObject_fields *)arr)->flags &= ~flags;
+}
+
+#define PyTypeNum_ISBOOL(type) ((type) == NPY_BOOL)
+
+#define PyTypeNum_ISUNSIGNED(type) (((type) == NPY_UBYTE) || \
+ ((type) == NPY_USHORT) || \
+ ((type) == NPY_UINT) || \
+ ((type) == NPY_ULONG) || \
+ ((type) == NPY_ULONGLONG))
+
+#define PyTypeNum_ISSIGNED(type) (((type) == NPY_BYTE) || \
+ ((type) == NPY_SHORT) || \
+ ((type) == NPY_INT) || \
+ ((type) == NPY_LONG) || \
+ ((type) == NPY_LONGLONG))
+
+#define PyTypeNum_ISINTEGER(type) (((type) >= NPY_BYTE) && \
+ ((type) <= NPY_ULONGLONG))
+
+#define PyTypeNum_ISFLOAT(type) ((((type) >= NPY_FLOAT) && \
+ ((type) <= NPY_LONGDOUBLE)) || \
+ ((type) == NPY_HALF))
+
+#define PyTypeNum_ISNUMBER(type) (((type) <= NPY_CLONGDOUBLE) || \
+ ((type) == NPY_HALF))
+
+#define PyTypeNum_ISSTRING(type) (((type) == NPY_STRING) || \
+ ((type) == NPY_UNICODE))
+
+#define PyTypeNum_ISCOMPLEX(type) (((type) >= NPY_CFLOAT) && \
+ ((type) <= NPY_CLONGDOUBLE))
+
+#define PyTypeNum_ISPYTHON(type) (((type) == NPY_LONG) || \
+ ((type) == NPY_DOUBLE) || \
+ ((type) == NPY_CDOUBLE) || \
+ ((type) == NPY_BOOL) || \
+ ((type) == NPY_OBJECT ))
+
+#define PyTypeNum_ISFLEXIBLE(type) (((type) >=NPY_STRING) && \
+ ((type) <=NPY_VOID))
+
+#define PyTypeNum_ISDATETIME(type) (((type) >=NPY_DATETIME) && \
+ ((type) <=NPY_TIMEDELTA))
+
+#define PyTypeNum_ISUSERDEF(type) (((type) >= NPY_USERDEF) && \
+ ((type) < NPY_USERDEF+ \
+ NPY_NUMUSERTYPES))
+
+#define PyTypeNum_ISEXTENDED(type) (PyTypeNum_ISFLEXIBLE(type) || \
+ PyTypeNum_ISUSERDEF(type))
+
+#define PyTypeNum_ISOBJECT(type) ((type) == NPY_OBJECT)
+
+
+#define PyDataType_ISBOOL(obj) PyTypeNum_ISBOOL(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISSIGNED(obj) PyTypeNum_ISSIGNED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISINTEGER(obj) PyTypeNum_ISINTEGER(((PyArray_Descr*)(obj))->type_num )
+#define PyDataType_ISFLOAT(obj) PyTypeNum_ISFLOAT(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISNUMBER(obj) PyTypeNum_ISNUMBER(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISSTRING(obj) PyTypeNum_ISSTRING(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISPYTHON(obj) PyTypeNum_ISPYTHON(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISDATETIME(obj) PyTypeNum_ISDATETIME(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_ISOBJECT(obj) PyTypeNum_ISOBJECT(((PyArray_Descr*)(obj))->type_num)
+#define PyDataType_HASFIELDS(obj) (((PyArray_Descr *)(obj))->names != NULL)
+#define PyDataType_HASSUBARRAY(dtype) ((dtype)->subarray != NULL)
+#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \
+ !PyDataType_HASFIELDS(dtype))
+#define PyDataType_MAKEUNSIZED(dtype) ((dtype)->elsize = 0)
+
+#define PyArray_ISBOOL(obj) PyTypeNum_ISBOOL(PyArray_TYPE(obj))
+#define PyArray_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(PyArray_TYPE(obj))
+#define PyArray_ISSIGNED(obj) PyTypeNum_ISSIGNED(PyArray_TYPE(obj))
+#define PyArray_ISINTEGER(obj) PyTypeNum_ISINTEGER(PyArray_TYPE(obj))
+#define PyArray_ISFLOAT(obj) PyTypeNum_ISFLOAT(PyArray_TYPE(obj))
+#define PyArray_ISNUMBER(obj) PyTypeNum_ISNUMBER(PyArray_TYPE(obj))
+#define PyArray_ISSTRING(obj) PyTypeNum_ISSTRING(PyArray_TYPE(obj))
+#define PyArray_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(PyArray_TYPE(obj))
+#define PyArray_ISPYTHON(obj) PyTypeNum_ISPYTHON(PyArray_TYPE(obj))
+#define PyArray_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
+#define PyArray_ISDATETIME(obj) PyTypeNum_ISDATETIME(PyArray_TYPE(obj))
+#define PyArray_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(PyArray_TYPE(obj))
+#define PyArray_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(PyArray_TYPE(obj))
+#define PyArray_ISOBJECT(obj) PyTypeNum_ISOBJECT(PyArray_TYPE(obj))
+#define PyArray_HASFIELDS(obj) PyDataType_HASFIELDS(PyArray_DESCR(obj))
+
+ /*
+ * FIXME: This should check for a flag on the data-type that
+ * states whether or not it is variable length. Because the
+ * ISFLEXIBLE check is hard-coded to the built-in data-types.
+ */
+#define PyArray_ISVARIABLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj))
+
+#define PyArray_SAFEALIGNEDCOPY(obj) (PyArray_ISALIGNED(obj) && !PyArray_ISVARIABLE(obj))
+
+
+#define NPY_LITTLE '<'
+#define NPY_BIG '>'
+#define NPY_NATIVE '='
+#define NPY_SWAP 's'
+#define NPY_IGNORE '|'
+
+#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN
+#define NPY_NATBYTE NPY_BIG
+#define NPY_OPPBYTE NPY_LITTLE
+#else
+#define NPY_NATBYTE NPY_LITTLE
+#define NPY_OPPBYTE NPY_BIG
+#endif
+
+#define PyArray_ISNBO(arg) ((arg) != NPY_OPPBYTE)
+#define PyArray_IsNativeByteOrder PyArray_ISNBO
+#define PyArray_ISNOTSWAPPED(m) PyArray_ISNBO(PyArray_DESCR(m)->byteorder)
+#define PyArray_ISBYTESWAPPED(m) (!PyArray_ISNOTSWAPPED(m))
+
+#define PyArray_FLAGSWAP(m, flags) (PyArray_CHKFLAGS(m, flags) && \
+ PyArray_ISNOTSWAPPED(m))
+
+#define PyArray_ISCARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY)
+#define PyArray_ISCARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY_RO)
+#define PyArray_ISFARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY)
+#define PyArray_ISFARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY_RO)
+#define PyArray_ISBEHAVED(m) PyArray_FLAGSWAP(m, NPY_ARRAY_BEHAVED)
+#define PyArray_ISBEHAVED_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_ALIGNED)
+
+
+#define PyDataType_ISNOTSWAPPED(d) PyArray_ISNBO(((PyArray_Descr *)(d))->byteorder)
+#define PyDataType_ISBYTESWAPPED(d) (!PyDataType_ISNOTSWAPPED(d))
+
+/************************************************************
+ * A struct used by PyArray_CreateSortedStridePerm, new in 1.7.
+ ************************************************************/
+
+typedef struct {
+ npy_intp perm, stride;
+} npy_stride_sort_item;
+
+/************************************************************
+ * This is the form of the struct that's stored in the
+ * PyCapsule returned by an array's __array_struct__ attribute. See
+ * https://docs.scipy.org/doc/numpy/reference/arrays.interface.html for the full
+ * documentation.
+ ************************************************************/
+typedef struct {
+ int two; /*
+ * contains the integer 2 as a sanity
+ * check
+ */
+
+ int nd; /* number of dimensions */
+
+ char typekind; /*
+ * kind in array --- character code of
+ * typestr
+ */
+
+ int itemsize; /* size of each element */
+
+ int flags; /*
+ * how should be data interpreted. Valid
+ * flags are CONTIGUOUS (1), F_CONTIGUOUS (2),
+ * ALIGNED (0x100), NOTSWAPPED (0x200), and
+ * WRITEABLE (0x400). ARR_HAS_DESCR (0x800)
+ * states that arrdescr field is present in
+ * structure
+ */
+
+ npy_intp *shape; /*
+ * A length-nd array of shape
+ * information
+ */
+
+ npy_intp *strides; /* A length-nd array of stride information */
+
+ void *data; /* A pointer to the first element of the array */
+
+ PyObject *descr; /*
+ * A list of fields or NULL (ignored if flags
+ * does not have ARR_HAS_DESCR flag set)
+ */
+} PyArrayInterface;
+
+/*
+ * This is a function for hooking into the PyDataMem_NEW/FREE/RENEW functions.
+ * See the documentation for PyDataMem_SetEventHook.
+ */
+typedef void (PyDataMem_EventHookFunc)(void *inp, void *outp, size_t size,
+ void *user_data);
+
+
+/*
+ * PyArray_DTypeMeta related definitions.
+ *
+ * As of now, this API is preliminary and will be extended as necessary.
+ */
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ /*
+ * The Structures defined in this block are considered private API and
+ * may change without warning!
+ */
+ /* TODO: Make this definition public in the API, as soon as its settled */
+ NPY_NO_EXPORT extern PyTypeObject PyArrayDTypeMeta_Type;
+
+ typedef struct PyArray_DTypeMeta_tag PyArray_DTypeMeta;
+
+ typedef PyArray_Descr *(discover_descr_from_pyobject_function)(
+ PyArray_DTypeMeta *cls, PyObject *obj);
+
+ /*
+ * Before making this public, we should decide whether it should pass
+ * the type, or allow looking at the object. A possible use-case:
+ * `np.array(np.array([0]), dtype=np.ndarray)`
+ * Could consider arrays that are not `dtype=ndarray` "scalars".
+ */
+ typedef int (is_known_scalar_type_function)(
+ PyArray_DTypeMeta *cls, PyTypeObject *obj);
+
+ typedef PyArray_Descr *(default_descr_function)(PyArray_DTypeMeta *cls);
+ typedef PyArray_DTypeMeta *(common_dtype_function)(
+ PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtyep2);
+ typedef PyArray_DTypeMeta *(common_dtype_with_value_function)(
+ PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtyep2, PyObject *value);
+ typedef PyArray_Descr *(common_instance_function)(
+ PyArray_Descr *dtype1, PyArray_Descr *dtyep2);
+
+ /*
+ * While NumPy DTypes would not need to be heap types the plan is to
+ * make DTypes available in Python at which point they will be heap types.
+ * Since we also wish to add fields to the DType class, this looks like
+ * a typical instance definition, but with PyHeapTypeObject instead of
+ * only the PyObject_HEAD.
+ * This must only be exposed very extremely careful consideration, since
+ * it is a fairly complex construct which may be better to allow
+ * refactoring of.
+ */
+ struct PyArray_DTypeMeta_tag {
+ PyHeapTypeObject super;
+
+ /*
+ * Most DTypes will have a singleton default instance, for the
+ * parametric legacy DTypes (bytes, string, void, datetime) this
+ * may be a pointer to the *prototype* instance?
+ */
+ PyArray_Descr *singleton;
+ /*
+ * Is this DType created using the old API? This exists mainly to
+ * allow for assertions in paths specific to wrapping legacy types.
+ */
+ npy_bool legacy;
+ /* The values stored by a parametric datatype depend on its instance */
+ npy_bool parametric;
+ /* whether the DType can be instantiated (i.e. np.dtype cannot) */
+ npy_bool abstract;
+
+ /*
+ * The following fields replicate the most important dtype information.
+ * In the legacy implementation most of these are stored in the
+ * PyArray_Descr struct.
+ */
+ /* The type object of the scalar instances (may be NULL?) */
+ PyTypeObject *scalar_type;
+ /* kind for this type */
+ char kind;
+ /* unique-character representing this type */
+ char type;
+ /* flags describing data type */
+ char flags;
+ /* number representing this type */
+ int type_num;
+ /*
+ * Point to the original ArrFuncs.
+ * NOTE: We could make a copy to detect changes to `f`.
+ */
+ PyArray_ArrFuncs *f;
+
+ /* DType methods, these could be moved into its own struct */
+ discover_descr_from_pyobject_function *discover_descr_from_pyobject;
+ is_known_scalar_type_function *is_known_scalar_type;
+ default_descr_function *default_descr;
+ common_dtype_function *common_dtype;
+ common_dtype_with_value_function *common_dtype_with_value;
+ common_instance_function *common_instance;
+ /*
+ * The casting implementation (ArrayMethod) to convert between two
+ * instances of this DType, stored explicitly for fast access:
+ */
+ PyObject *within_dtype_castingimpl;
+ /*
+ * Dictionary of ArrayMethods representing most possible casts
+ * (structured and object are exceptions).
+ * This should potentially become a weak mapping in the future.
+ */
+ PyObject *castingimpls;
+ };
+
+#endif /* NPY_INTERNAL_BUILD */
+
+
+/*
+ * Use the keyword NPY_DEPRECATED_INCLUDES to ensure that the header files
+ * npy_*_*_deprecated_api.h are only included from here and nowhere else.
+ */
+#ifdef NPY_DEPRECATED_INCLUDES
+#error "Do not use the reserved keyword NPY_DEPRECATED_INCLUDES."
+#endif
+#define NPY_DEPRECATED_INCLUDES
+#if !defined(NPY_NO_DEPRECATED_API) || \
+ (NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION)
+#include "npy_1_7_deprecated_api.h"
+#endif
+/*
+ * There is no file npy_1_8_deprecated_api.h since there are no additional
+ * deprecated API features in NumPy 1.8.
+ *
+ * Note to maintainers: insert code like the following in future NumPy
+ * versions.
+ *
+ * #if !defined(NPY_NO_DEPRECATED_API) || \
+ * (NPY_NO_DEPRECATED_API < NPY_1_9_API_VERSION)
+ * #include "npy_1_9_deprecated_api.h"
+ * #endif
+ */
+#undef NPY_DEPRECATED_INCLUDES
+
+#endif /* NPY_ARRAYTYPES_H */
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/noprefix.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/noprefix.h
new file mode 100644
index 0000000000000000000000000000000000000000..041f301928ecaf134f5371375f28d7adf1529c87
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/noprefix.h
@@ -0,0 +1,212 @@
+#ifndef NPY_NOPREFIX_H
+#define NPY_NOPREFIX_H
+
+/*
+ * You can directly include noprefix.h as a backward
+ * compatibility measure
+ */
+#ifndef NPY_NO_PREFIX
+#include "ndarrayobject.h"
+#include "npy_interrupt.h"
+#endif
+
+#define SIGSETJMP NPY_SIGSETJMP
+#define SIGLONGJMP NPY_SIGLONGJMP
+#define SIGJMP_BUF NPY_SIGJMP_BUF
+
+#define MAX_DIMS NPY_MAXDIMS
+
+#define longlong npy_longlong
+#define ulonglong npy_ulonglong
+#define Bool npy_bool
+#define longdouble npy_longdouble
+#define byte npy_byte
+
+#ifndef _BSD_SOURCE
+#define ushort npy_ushort
+#define uint npy_uint
+#define ulong npy_ulong
+#endif
+
+#define ubyte npy_ubyte
+#define ushort npy_ushort
+#define uint npy_uint
+#define ulong npy_ulong
+#define cfloat npy_cfloat
+#define cdouble npy_cdouble
+#define clongdouble npy_clongdouble
+#define Int8 npy_int8
+#define UInt8 npy_uint8
+#define Int16 npy_int16
+#define UInt16 npy_uint16
+#define Int32 npy_int32
+#define UInt32 npy_uint32
+#define Int64 npy_int64
+#define UInt64 npy_uint64
+#define Int128 npy_int128
+#define UInt128 npy_uint128
+#define Int256 npy_int256
+#define UInt256 npy_uint256
+#define Float16 npy_float16
+#define Complex32 npy_complex32
+#define Float32 npy_float32
+#define Complex64 npy_complex64
+#define Float64 npy_float64
+#define Complex128 npy_complex128
+#define Float80 npy_float80
+#define Complex160 npy_complex160
+#define Float96 npy_float96
+#define Complex192 npy_complex192
+#define Float128 npy_float128
+#define Complex256 npy_complex256
+#define intp npy_intp
+#define uintp npy_uintp
+#define datetime npy_datetime
+#define timedelta npy_timedelta
+
+#define SIZEOF_LONGLONG NPY_SIZEOF_LONGLONG
+#define SIZEOF_INTP NPY_SIZEOF_INTP
+#define SIZEOF_UINTP NPY_SIZEOF_UINTP
+#define SIZEOF_HALF NPY_SIZEOF_HALF
+#define SIZEOF_LONGDOUBLE NPY_SIZEOF_LONGDOUBLE
+#define SIZEOF_DATETIME NPY_SIZEOF_DATETIME
+#define SIZEOF_TIMEDELTA NPY_SIZEOF_TIMEDELTA
+
+#define LONGLONG_FMT NPY_LONGLONG_FMT
+#define ULONGLONG_FMT NPY_ULONGLONG_FMT
+#define LONGLONG_SUFFIX NPY_LONGLONG_SUFFIX
+#define ULONGLONG_SUFFIX NPY_ULONGLONG_SUFFIX
+
+#define MAX_INT8 127
+#define MIN_INT8 -128
+#define MAX_UINT8 255
+#define MAX_INT16 32767
+#define MIN_INT16 -32768
+#define MAX_UINT16 65535
+#define MAX_INT32 2147483647
+#define MIN_INT32 (-MAX_INT32 - 1)
+#define MAX_UINT32 4294967295U
+#define MAX_INT64 LONGLONG_SUFFIX(9223372036854775807)
+#define MIN_INT64 (-MAX_INT64 - LONGLONG_SUFFIX(1))
+#define MAX_UINT64 ULONGLONG_SUFFIX(18446744073709551615)
+#define MAX_INT128 LONGLONG_SUFFIX(85070591730234615865843651857942052864)
+#define MIN_INT128 (-MAX_INT128 - LONGLONG_SUFFIX(1))
+#define MAX_UINT128 ULONGLONG_SUFFIX(170141183460469231731687303715884105728)
+#define MAX_INT256 LONGLONG_SUFFIX(57896044618658097711785492504343953926634992332820282019728792003956564819967)
+#define MIN_INT256 (-MAX_INT256 - LONGLONG_SUFFIX(1))
+#define MAX_UINT256 ULONGLONG_SUFFIX(115792089237316195423570985008687907853269984665640564039457584007913129639935)
+
+#define MAX_BYTE NPY_MAX_BYTE
+#define MIN_BYTE NPY_MIN_BYTE
+#define MAX_UBYTE NPY_MAX_UBYTE
+#define MAX_SHORT NPY_MAX_SHORT
+#define MIN_SHORT NPY_MIN_SHORT
+#define MAX_USHORT NPY_MAX_USHORT
+#define MAX_INT NPY_MAX_INT
+#define MIN_INT NPY_MIN_INT
+#define MAX_UINT NPY_MAX_UINT
+#define MAX_LONG NPY_MAX_LONG
+#define MIN_LONG NPY_MIN_LONG
+#define MAX_ULONG NPY_MAX_ULONG
+#define MAX_LONGLONG NPY_MAX_LONGLONG
+#define MIN_LONGLONG NPY_MIN_LONGLONG
+#define MAX_ULONGLONG NPY_MAX_ULONGLONG
+#define MIN_DATETIME NPY_MIN_DATETIME
+#define MAX_DATETIME NPY_MAX_DATETIME
+#define MIN_TIMEDELTA NPY_MIN_TIMEDELTA
+#define MAX_TIMEDELTA NPY_MAX_TIMEDELTA
+
+#define BITSOF_BOOL NPY_BITSOF_BOOL
+#define BITSOF_CHAR NPY_BITSOF_CHAR
+#define BITSOF_SHORT NPY_BITSOF_SHORT
+#define BITSOF_INT NPY_BITSOF_INT
+#define BITSOF_LONG NPY_BITSOF_LONG
+#define BITSOF_LONGLONG NPY_BITSOF_LONGLONG
+#define BITSOF_HALF NPY_BITSOF_HALF
+#define BITSOF_FLOAT NPY_BITSOF_FLOAT
+#define BITSOF_DOUBLE NPY_BITSOF_DOUBLE
+#define BITSOF_LONGDOUBLE NPY_BITSOF_LONGDOUBLE
+#define BITSOF_DATETIME NPY_BITSOF_DATETIME
+#define BITSOF_TIMEDELTA NPY_BITSOF_TIMEDELTA
+
+#define _pya_malloc PyArray_malloc
+#define _pya_free PyArray_free
+#define _pya_realloc PyArray_realloc
+
+#define BEGIN_THREADS_DEF NPY_BEGIN_THREADS_DEF
+#define BEGIN_THREADS NPY_BEGIN_THREADS
+#define END_THREADS NPY_END_THREADS
+#define ALLOW_C_API_DEF NPY_ALLOW_C_API_DEF
+#define ALLOW_C_API NPY_ALLOW_C_API
+#define DISABLE_C_API NPY_DISABLE_C_API
+
+#define PY_FAIL NPY_FAIL
+#define PY_SUCCEED NPY_SUCCEED
+
+#ifndef TRUE
+#define TRUE NPY_TRUE
+#endif
+
+#ifndef FALSE
+#define FALSE NPY_FALSE
+#endif
+
+#define LONGDOUBLE_FMT NPY_LONGDOUBLE_FMT
+
+#define CONTIGUOUS NPY_CONTIGUOUS
+#define C_CONTIGUOUS NPY_C_CONTIGUOUS
+#define FORTRAN NPY_FORTRAN
+#define F_CONTIGUOUS NPY_F_CONTIGUOUS
+#define OWNDATA NPY_OWNDATA
+#define FORCECAST NPY_FORCECAST
+#define ENSURECOPY NPY_ENSURECOPY
+#define ENSUREARRAY NPY_ENSUREARRAY
+#define ELEMENTSTRIDES NPY_ELEMENTSTRIDES
+#define ALIGNED NPY_ALIGNED
+#define NOTSWAPPED NPY_NOTSWAPPED
+#define WRITEABLE NPY_WRITEABLE
+#define UPDATEIFCOPY NPY_UPDATEIFCOPY
+#define WRITEBACKIFCOPY NPY_ARRAY_WRITEBACKIFCOPY
+#define ARR_HAS_DESCR NPY_ARR_HAS_DESCR
+#define BEHAVED NPY_BEHAVED
+#define BEHAVED_NS NPY_BEHAVED_NS
+#define CARRAY NPY_CARRAY
+#define CARRAY_RO NPY_CARRAY_RO
+#define FARRAY NPY_FARRAY
+#define FARRAY_RO NPY_FARRAY_RO
+#define DEFAULT NPY_DEFAULT
+#define IN_ARRAY NPY_IN_ARRAY
+#define OUT_ARRAY NPY_OUT_ARRAY
+#define INOUT_ARRAY NPY_INOUT_ARRAY
+#define IN_FARRAY NPY_IN_FARRAY
+#define OUT_FARRAY NPY_OUT_FARRAY
+#define INOUT_FARRAY NPY_INOUT_FARRAY
+#define UPDATE_ALL NPY_UPDATE_ALL
+
+#define OWN_DATA NPY_OWNDATA
+#define BEHAVED_FLAGS NPY_BEHAVED
+#define BEHAVED_FLAGS_NS NPY_BEHAVED_NS
+#define CARRAY_FLAGS_RO NPY_CARRAY_RO
+#define CARRAY_FLAGS NPY_CARRAY
+#define FARRAY_FLAGS NPY_FARRAY
+#define FARRAY_FLAGS_RO NPY_FARRAY_RO
+#define DEFAULT_FLAGS NPY_DEFAULT
+#define UPDATE_ALL_FLAGS NPY_UPDATE_ALL_FLAGS
+
+#ifndef MIN
+#define MIN PyArray_MIN
+#endif
+#ifndef MAX
+#define MAX PyArray_MAX
+#endif
+#define MAX_INTP NPY_MAX_INTP
+#define MIN_INTP NPY_MIN_INTP
+#define MAX_UINTP NPY_MAX_UINTP
+#define INTP_FMT NPY_INTP_FMT
+
+#ifndef PYPY_VERSION
+#define REFCOUNT PyArray_REFCOUNT
+#define MAX_ELSIZE NPY_MAX_ELSIZE
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h
new file mode 100644
index 0000000000000000000000000000000000000000..a4f90e0199ea554686a5226df6e65bb211bb9a34
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h
@@ -0,0 +1,125 @@
+#ifndef _NPY_1_7_DEPRECATED_API_H
+#define _NPY_1_7_DEPRECATED_API_H
+
+#ifndef NPY_DEPRECATED_INCLUDES
+#error "Should never include npy_*_*_deprecated_api directly."
+#endif
+
+/* Emit a warning if the user did not specifically request the old API */
+#ifndef NPY_NO_DEPRECATED_API
+#if defined(_WIN32)
+#define _WARN___STR2__(x) #x
+#define _WARN___STR1__(x) _WARN___STR2__(x)
+#define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
+#pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it with " \
+ "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION")
+#else
+#warning "Using deprecated NumPy API, disable it with " \
+ "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
+#endif
+#endif
+
+/*
+ * This header exists to collect all dangerous/deprecated NumPy API
+ * as of NumPy 1.7.
+ *
+ * This is an attempt to remove bad API, the proliferation of macros,
+ * and namespace pollution currently produced by the NumPy headers.
+ */
+
+/* These array flags are deprecated as of NumPy 1.7 */
+#define NPY_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
+#define NPY_FORTRAN NPY_ARRAY_F_CONTIGUOUS
+
+/*
+ * The consistent NPY_ARRAY_* names which don't pollute the NPY_*
+ * namespace were added in NumPy 1.7.
+ *
+ * These versions of the carray flags are deprecated, but
+ * probably should only be removed after two releases instead of one.
+ */
+#define NPY_C_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
+#define NPY_F_CONTIGUOUS NPY_ARRAY_F_CONTIGUOUS
+#define NPY_OWNDATA NPY_ARRAY_OWNDATA
+#define NPY_FORCECAST NPY_ARRAY_FORCECAST
+#define NPY_ENSURECOPY NPY_ARRAY_ENSURECOPY
+#define NPY_ENSUREARRAY NPY_ARRAY_ENSUREARRAY
+#define NPY_ELEMENTSTRIDES NPY_ARRAY_ELEMENTSTRIDES
+#define NPY_ALIGNED NPY_ARRAY_ALIGNED
+#define NPY_NOTSWAPPED NPY_ARRAY_NOTSWAPPED
+#define NPY_WRITEABLE NPY_ARRAY_WRITEABLE
+#define NPY_UPDATEIFCOPY NPY_ARRAY_UPDATEIFCOPY
+#define NPY_BEHAVED NPY_ARRAY_BEHAVED
+#define NPY_BEHAVED_NS NPY_ARRAY_BEHAVED_NS
+#define NPY_CARRAY NPY_ARRAY_CARRAY
+#define NPY_CARRAY_RO NPY_ARRAY_CARRAY_RO
+#define NPY_FARRAY NPY_ARRAY_FARRAY
+#define NPY_FARRAY_RO NPY_ARRAY_FARRAY_RO
+#define NPY_DEFAULT NPY_ARRAY_DEFAULT
+#define NPY_IN_ARRAY NPY_ARRAY_IN_ARRAY
+#define NPY_OUT_ARRAY NPY_ARRAY_OUT_ARRAY
+#define NPY_INOUT_ARRAY NPY_ARRAY_INOUT_ARRAY
+#define NPY_IN_FARRAY NPY_ARRAY_IN_FARRAY
+#define NPY_OUT_FARRAY NPY_ARRAY_OUT_FARRAY
+#define NPY_INOUT_FARRAY NPY_ARRAY_INOUT_FARRAY
+#define NPY_UPDATE_ALL NPY_ARRAY_UPDATE_ALL
+
+/* This way of accessing the default type is deprecated as of NumPy 1.7 */
+#define PyArray_DEFAULT NPY_DEFAULT_TYPE
+
+/* These DATETIME bits aren't used internally */
+#define PyDataType_GetDatetimeMetaData(descr) \
+ ((descr->metadata == NULL) ? NULL : \
+ ((PyArray_DatetimeMetaData *)(PyCapsule_GetPointer( \
+ PyDict_GetItemString( \
+ descr->metadata, NPY_METADATA_DTSTR), NULL))))
+
+/*
+ * Deprecated as of NumPy 1.7, this kind of shortcut doesn't
+ * belong in the public API.
+ */
+#define NPY_AO PyArrayObject
+
+/*
+ * Deprecated as of NumPy 1.7, an all-lowercase macro doesn't
+ * belong in the public API.
+ */
+#define fortran fortran_
+
+/*
+ * Deprecated as of NumPy 1.7, as it is a namespace-polluting
+ * macro.
+ */
+#define FORTRAN_IF PyArray_FORTRAN_IF
+
+/* Deprecated as of NumPy 1.7, datetime64 uses c_metadata instead */
+#define NPY_METADATA_DTSTR "__timeunit__"
+
+/*
+ * Deprecated as of NumPy 1.7.
+ * The reasoning:
+ * - These are for datetime, but there's no datetime "namespace".
+ * - They just turn NPY_STR_ into "", which is just
+ * making something simple be indirected.
+ */
+#define NPY_STR_Y "Y"
+#define NPY_STR_M "M"
+#define NPY_STR_W "W"
+#define NPY_STR_D "D"
+#define NPY_STR_h "h"
+#define NPY_STR_m "m"
+#define NPY_STR_s "s"
+#define NPY_STR_ms "ms"
+#define NPY_STR_us "us"
+#define NPY_STR_ns "ns"
+#define NPY_STR_ps "ps"
+#define NPY_STR_fs "fs"
+#define NPY_STR_as "as"
+
+/*
+ * The macros in old_defines.h are Deprecated as of NumPy 1.7 and will be
+ * removed in the next major release.
+ */
+#include "old_defines.h"
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_3kcompat.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_3kcompat.h
new file mode 100644
index 0000000000000000000000000000000000000000..551ec6be8c2d0a17989fff586c6e4e62011d4018
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_3kcompat.h
@@ -0,0 +1,595 @@
+/*
+ * This is a convenience header file providing compatibility utilities
+ * for supporting Python 2 and Python 3 in the same code base.
+ *
+ * If you want to use this for your own projects, it's recommended to make a
+ * copy of it. Although the stuff below is unlikely to change, we don't provide
+ * strong backwards compatibility guarantees at the moment.
+ */
+
+#ifndef _NPY_3KCOMPAT_H_
+#define _NPY_3KCOMPAT_H_
+
+#include
+#include
+
+#ifndef NPY_PY3K
+#define NPY_PY3K 1
+#endif
+
+#include "numpy/npy_common.h"
+#include "numpy/ndarrayobject.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * PyInt -> PyLong
+ */
+
+
+/*
+ * This is a renamed copy of the Python non-limited API function _PyLong_AsInt. It is
+ * included here because it is missing from the PyPy API. It completes the PyLong_As*
+ * group of functions and can be useful in replacing PyInt_Check.
+ */
+static NPY_INLINE int
+Npy__PyLong_AsInt(PyObject *obj)
+{
+ int overflow;
+ long result = PyLong_AsLongAndOverflow(obj, &overflow);
+
+ /* INT_MAX and INT_MIN are defined in Python.h */
+ if (overflow || result > INT_MAX || result < INT_MIN) {
+ /* XXX: could be cute and give a different
+ message for overflow == -1 */
+ PyErr_SetString(PyExc_OverflowError,
+ "Python int too large to convert to C int");
+ return -1;
+ }
+ return (int)result;
+}
+
+
+#if defined(NPY_PY3K)
+/* Return True only if the long fits in a C long */
+static NPY_INLINE int PyInt_Check(PyObject *op) {
+ int overflow = 0;
+ if (!PyLong_Check(op)) {
+ return 0;
+ }
+ PyLong_AsLongAndOverflow(op, &overflow);
+ return (overflow == 0);
+}
+
+
+#define PyInt_FromLong PyLong_FromLong
+#define PyInt_AsLong PyLong_AsLong
+#define PyInt_AS_LONG PyLong_AsLong
+#define PyInt_AsSsize_t PyLong_AsSsize_t
+#define PyNumber_Int PyNumber_Long
+
+/* NOTE:
+ *
+ * Since the PyLong type is very different from the fixed-range PyInt,
+ * we don't define PyInt_Type -> PyLong_Type.
+ */
+#endif /* NPY_PY3K */
+
+/* Py3 changes PySlice_GetIndicesEx' first argument's type to PyObject* */
+#ifdef NPY_PY3K
+# define NpySlice_GetIndicesEx PySlice_GetIndicesEx
+#else
+# define NpySlice_GetIndicesEx(op, nop, start, end, step, slicelength) \
+ PySlice_GetIndicesEx((PySliceObject *)op, nop, start, end, step, slicelength)
+#endif
+
+#if PY_VERSION_HEX < 0x030900a4
+ /* Introduced in https://github.com/python/cpython/commit/d2ec81a8c99796b51fb8c49b77a7fe369863226f */
+ #define Py_SET_TYPE(obj, type) ((Py_TYPE(obj) = (type)), (void)0)
+ /* Introduced in https://github.com/python/cpython/commit/b10dc3e7a11fcdb97e285882eba6da92594f90f9 */
+ #define Py_SET_SIZE(obj, size) ((Py_SIZE(obj) = (size)), (void)0)
+ /* Introduced in https://github.com/python/cpython/commit/c86a11221df7e37da389f9c6ce6e47ea22dc44ff */
+ #define Py_SET_REFCNT(obj, refcnt) ((Py_REFCNT(obj) = (refcnt)), (void)0)
+#endif
+
+
+#define Npy_EnterRecursiveCall(x) Py_EnterRecursiveCall(x)
+
+/* Py_SETREF was added in 3.5.2, and only if Py_LIMITED_API is absent */
+#if PY_VERSION_HEX < 0x03050200
+ #define Py_SETREF(op, op2) \
+ do { \
+ PyObject *_py_tmp = (PyObject *)(op); \
+ (op) = (op2); \
+ Py_DECREF(_py_tmp); \
+ } while (0)
+#endif
+
+/* introduced in https://github.com/python/cpython/commit/a24107b04c1277e3c1105f98aff5bfa3a98b33a0 */
+#if PY_VERSION_HEX < 0x030800A3
+ static NPY_INLINE PyObject *
+ _PyDict_GetItemStringWithError(PyObject *v, const char *key)
+ {
+ PyObject *kv, *rv;
+ kv = PyUnicode_FromString(key);
+ if (kv == NULL) {
+ return NULL;
+ }
+ rv = PyDict_GetItemWithError(v, kv);
+ Py_DECREF(kv);
+ return rv;
+ }
+#endif
+
+/*
+ * PyString -> PyBytes
+ */
+
+#if defined(NPY_PY3K)
+
+#define PyString_Type PyBytes_Type
+#define PyString_Check PyBytes_Check
+#define PyStringObject PyBytesObject
+#define PyString_FromString PyBytes_FromString
+#define PyString_FromStringAndSize PyBytes_FromStringAndSize
+#define PyString_AS_STRING PyBytes_AS_STRING
+#define PyString_AsStringAndSize PyBytes_AsStringAndSize
+#define PyString_FromFormat PyBytes_FromFormat
+#define PyString_Concat PyBytes_Concat
+#define PyString_ConcatAndDel PyBytes_ConcatAndDel
+#define PyString_AsString PyBytes_AsString
+#define PyString_GET_SIZE PyBytes_GET_SIZE
+#define PyString_Size PyBytes_Size
+
+#define PyUString_Type PyUnicode_Type
+#define PyUString_Check PyUnicode_Check
+#define PyUStringObject PyUnicodeObject
+#define PyUString_FromString PyUnicode_FromString
+#define PyUString_FromStringAndSize PyUnicode_FromStringAndSize
+#define PyUString_FromFormat PyUnicode_FromFormat
+#define PyUString_Concat PyUnicode_Concat2
+#define PyUString_ConcatAndDel PyUnicode_ConcatAndDel
+#define PyUString_GET_SIZE PyUnicode_GET_SIZE
+#define PyUString_Size PyUnicode_Size
+#define PyUString_InternFromString PyUnicode_InternFromString
+#define PyUString_Format PyUnicode_Format
+
+#define PyBaseString_Check(obj) (PyUnicode_Check(obj))
+
+#else
+
+#define PyBytes_Type PyString_Type
+#define PyBytes_Check PyString_Check
+#define PyBytesObject PyStringObject
+#define PyBytes_FromString PyString_FromString
+#define PyBytes_FromStringAndSize PyString_FromStringAndSize
+#define PyBytes_AS_STRING PyString_AS_STRING
+#define PyBytes_AsStringAndSize PyString_AsStringAndSize
+#define PyBytes_FromFormat PyString_FromFormat
+#define PyBytes_Concat PyString_Concat
+#define PyBytes_ConcatAndDel PyString_ConcatAndDel
+#define PyBytes_AsString PyString_AsString
+#define PyBytes_GET_SIZE PyString_GET_SIZE
+#define PyBytes_Size PyString_Size
+
+#define PyUString_Type PyString_Type
+#define PyUString_Check PyString_Check
+#define PyUStringObject PyStringObject
+#define PyUString_FromString PyString_FromString
+#define PyUString_FromStringAndSize PyString_FromStringAndSize
+#define PyUString_FromFormat PyString_FromFormat
+#define PyUString_Concat PyString_Concat
+#define PyUString_ConcatAndDel PyString_ConcatAndDel
+#define PyUString_GET_SIZE PyString_GET_SIZE
+#define PyUString_Size PyString_Size
+#define PyUString_InternFromString PyString_InternFromString
+#define PyUString_Format PyString_Format
+
+#define PyBaseString_Check(obj) (PyBytes_Check(obj) || PyUnicode_Check(obj))
+
+#endif /* NPY_PY3K */
+
+
+static NPY_INLINE void
+PyUnicode_ConcatAndDel(PyObject **left, PyObject *right)
+{
+ Py_SETREF(*left, PyUnicode_Concat(*left, right));
+ Py_DECREF(right);
+}
+
+static NPY_INLINE void
+PyUnicode_Concat2(PyObject **left, PyObject *right)
+{
+ Py_SETREF(*left, PyUnicode_Concat(*left, right));
+}
+
+/*
+ * PyFile_* compatibility
+ */
+
+/*
+ * Get a FILE* handle to the file represented by the Python object
+ */
+static NPY_INLINE FILE*
+npy_PyFile_Dup2(PyObject *file, char *mode, npy_off_t *orig_pos)
+{
+ int fd, fd2, unbuf;
+ Py_ssize_t fd2_tmp;
+ PyObject *ret, *os, *io, *io_raw;
+ npy_off_t pos;
+ FILE *handle;
+
+ /* For Python 2 PyFileObject, use PyFile_AsFile */
+#if !defined(NPY_PY3K)
+ if (PyFile_Check(file)) {
+ return PyFile_AsFile(file);
+ }
+#endif
+
+ /* Flush first to ensure things end up in the file in the correct order */
+ ret = PyObject_CallMethod(file, "flush", "");
+ if (ret == NULL) {
+ return NULL;
+ }
+ Py_DECREF(ret);
+ fd = PyObject_AsFileDescriptor(file);
+ if (fd == -1) {
+ return NULL;
+ }
+
+ /*
+ * The handle needs to be dup'd because we have to call fclose
+ * at the end
+ */
+ os = PyImport_ImportModule("os");
+ if (os == NULL) {
+ return NULL;
+ }
+ ret = PyObject_CallMethod(os, "dup", "i", fd);
+ Py_DECREF(os);
+ if (ret == NULL) {
+ return NULL;
+ }
+ fd2_tmp = PyNumber_AsSsize_t(ret, PyExc_IOError);
+ Py_DECREF(ret);
+ if (fd2_tmp == -1 && PyErr_Occurred()) {
+ return NULL;
+ }
+ if (fd2_tmp < INT_MIN || fd2_tmp > INT_MAX) {
+ PyErr_SetString(PyExc_IOError,
+ "Getting an 'int' from os.dup() failed");
+ return NULL;
+ }
+ fd2 = (int)fd2_tmp;
+
+ /* Convert to FILE* handle */
+#ifdef _WIN32
+ handle = _fdopen(fd2, mode);
+#else
+ handle = fdopen(fd2, mode);
+#endif
+ if (handle == NULL) {
+ PyErr_SetString(PyExc_IOError,
+ "Getting a FILE* from a Python file object failed");
+ return NULL;
+ }
+
+ /* Record the original raw file handle position */
+ *orig_pos = npy_ftell(handle);
+ if (*orig_pos == -1) {
+ /* The io module is needed to determine if buffering is used */
+ io = PyImport_ImportModule("io");
+ if (io == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ /* File object instances of RawIOBase are unbuffered */
+ io_raw = PyObject_GetAttrString(io, "RawIOBase");
+ Py_DECREF(io);
+ if (io_raw == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ unbuf = PyObject_IsInstance(file, io_raw);
+ Py_DECREF(io_raw);
+ if (unbuf == 1) {
+ /* Succeed if the IO is unbuffered */
+ return handle;
+ }
+ else {
+ PyErr_SetString(PyExc_IOError, "obtaining file position failed");
+ fclose(handle);
+ return NULL;
+ }
+ }
+
+ /* Seek raw handle to the Python-side position */
+ ret = PyObject_CallMethod(file, "tell", "");
+ if (ret == NULL) {
+ fclose(handle);
+ return NULL;
+ }
+ pos = PyLong_AsLongLong(ret);
+ Py_DECREF(ret);
+ if (PyErr_Occurred()) {
+ fclose(handle);
+ return NULL;
+ }
+ if (npy_fseek(handle, pos, SEEK_SET) == -1) {
+ PyErr_SetString(PyExc_IOError, "seeking file failed");
+ fclose(handle);
+ return NULL;
+ }
+ return handle;
+}
+
+/*
+ * Close the dup-ed file handle, and seek the Python one to the current position
+ */
+static NPY_INLINE int
+npy_PyFile_DupClose2(PyObject *file, FILE* handle, npy_off_t orig_pos)
+{
+ int fd, unbuf;
+ PyObject *ret, *io, *io_raw;
+ npy_off_t position;
+
+ /* For Python 2 PyFileObject, do nothing */
+#if !defined(NPY_PY3K)
+ if (PyFile_Check(file)) {
+ return 0;
+ }
+#endif
+
+ position = npy_ftell(handle);
+
+ /* Close the FILE* handle */
+ fclose(handle);
+
+ /*
+ * Restore original file handle position, in order to not confuse
+ * Python-side data structures
+ */
+ fd = PyObject_AsFileDescriptor(file);
+ if (fd == -1) {
+ return -1;
+ }
+
+ if (npy_lseek(fd, orig_pos, SEEK_SET) == -1) {
+
+ /* The io module is needed to determine if buffering is used */
+ io = PyImport_ImportModule("io");
+ if (io == NULL) {
+ return -1;
+ }
+ /* File object instances of RawIOBase are unbuffered */
+ io_raw = PyObject_GetAttrString(io, "RawIOBase");
+ Py_DECREF(io);
+ if (io_raw == NULL) {
+ return -1;
+ }
+ unbuf = PyObject_IsInstance(file, io_raw);
+ Py_DECREF(io_raw);
+ if (unbuf == 1) {
+ /* Succeed if the IO is unbuffered */
+ return 0;
+ }
+ else {
+ PyErr_SetString(PyExc_IOError, "seeking file failed");
+ return -1;
+ }
+ }
+
+ if (position == -1) {
+ PyErr_SetString(PyExc_IOError, "obtaining file position failed");
+ return -1;
+ }
+
+ /* Seek Python-side handle to the FILE* handle position */
+ ret = PyObject_CallMethod(file, "seek", NPY_OFF_T_PYFMT "i", position, 0);
+ if (ret == NULL) {
+ return -1;
+ }
+ Py_DECREF(ret);
+ return 0;
+}
+
+static NPY_INLINE int
+npy_PyFile_Check(PyObject *file)
+{
+ int fd;
+ /* For Python 2, check if it is a PyFileObject */
+#if !defined(NPY_PY3K)
+ if (PyFile_Check(file)) {
+ return 1;
+ }
+#endif
+ fd = PyObject_AsFileDescriptor(file);
+ if (fd == -1) {
+ PyErr_Clear();
+ return 0;
+ }
+ return 1;
+}
+
+static NPY_INLINE PyObject*
+npy_PyFile_OpenFile(PyObject *filename, const char *mode)
+{
+ PyObject *open;
+ open = PyDict_GetItemString(PyEval_GetBuiltins(), "open");
+ if (open == NULL) {
+ return NULL;
+ }
+ return PyObject_CallFunction(open, "Os", filename, mode);
+}
+
+static NPY_INLINE int
+npy_PyFile_CloseFile(PyObject *file)
+{
+ PyObject *ret;
+
+ ret = PyObject_CallMethod(file, "close", NULL);
+ if (ret == NULL) {
+ return -1;
+ }
+ Py_DECREF(ret);
+ return 0;
+}
+
+
+/* This is a copy of _PyErr_ChainExceptions
+ */
+static NPY_INLINE void
+npy_PyErr_ChainExceptions(PyObject *exc, PyObject *val, PyObject *tb)
+{
+ if (exc == NULL)
+ return;
+
+ if (PyErr_Occurred()) {
+ /* only py3 supports this anyway */
+ #ifdef NPY_PY3K
+ PyObject *exc2, *val2, *tb2;
+ PyErr_Fetch(&exc2, &val2, &tb2);
+ PyErr_NormalizeException(&exc, &val, &tb);
+ if (tb != NULL) {
+ PyException_SetTraceback(val, tb);
+ Py_DECREF(tb);
+ }
+ Py_DECREF(exc);
+ PyErr_NormalizeException(&exc2, &val2, &tb2);
+ PyException_SetContext(val2, val);
+ PyErr_Restore(exc2, val2, tb2);
+ #endif
+ }
+ else {
+ PyErr_Restore(exc, val, tb);
+ }
+}
+
+
+/* This is a copy of _PyErr_ChainExceptions, with:
+ * - a minimal implementation for python 2
+ * - __cause__ used instead of __context__
+ */
+static NPY_INLINE void
+npy_PyErr_ChainExceptionsCause(PyObject *exc, PyObject *val, PyObject *tb)
+{
+ if (exc == NULL)
+ return;
+
+ if (PyErr_Occurred()) {
+ /* only py3 supports this anyway */
+ #ifdef NPY_PY3K
+ PyObject *exc2, *val2, *tb2;
+ PyErr_Fetch(&exc2, &val2, &tb2);
+ PyErr_NormalizeException(&exc, &val, &tb);
+ if (tb != NULL) {
+ PyException_SetTraceback(val, tb);
+ Py_DECREF(tb);
+ }
+ Py_DECREF(exc);
+ PyErr_NormalizeException(&exc2, &val2, &tb2);
+ PyException_SetCause(val2, val);
+ PyErr_Restore(exc2, val2, tb2);
+ #endif
+ }
+ else {
+ PyErr_Restore(exc, val, tb);
+ }
+}
+
+/*
+ * PyObject_Cmp
+ */
+#if defined(NPY_PY3K)
+static NPY_INLINE int
+PyObject_Cmp(PyObject *i1, PyObject *i2, int *cmp)
+{
+ int v;
+ v = PyObject_RichCompareBool(i1, i2, Py_LT);
+ if (v == 1) {
+ *cmp = -1;
+ return 1;
+ }
+ else if (v == -1) {
+ return -1;
+ }
+
+ v = PyObject_RichCompareBool(i1, i2, Py_GT);
+ if (v == 1) {
+ *cmp = 1;
+ return 1;
+ }
+ else if (v == -1) {
+ return -1;
+ }
+
+ v = PyObject_RichCompareBool(i1, i2, Py_EQ);
+ if (v == 1) {
+ *cmp = 0;
+ return 1;
+ }
+ else {
+ *cmp = 0;
+ return -1;
+ }
+}
+#endif
+
+/*
+ * PyCObject functions adapted to PyCapsules.
+ *
+ * The main job here is to get rid of the improved error handling
+ * of PyCapsules. It's a shame...
+ */
+static NPY_INLINE PyObject *
+NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
+{
+ PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
+ if (ret == NULL) {
+ PyErr_Clear();
+ }
+ return ret;
+}
+
+static NPY_INLINE PyObject *
+NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *))
+{
+ PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor);
+ if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) {
+ PyErr_Clear();
+ Py_DECREF(ret);
+ ret = NULL;
+ }
+ return ret;
+}
+
+static NPY_INLINE void *
+NpyCapsule_AsVoidPtr(PyObject *obj)
+{
+ void *ret = PyCapsule_GetPointer(obj, NULL);
+ if (ret == NULL) {
+ PyErr_Clear();
+ }
+ return ret;
+}
+
+static NPY_INLINE void *
+NpyCapsule_GetDesc(PyObject *obj)
+{
+ return PyCapsule_GetContext(obj);
+}
+
+static NPY_INLINE int
+NpyCapsule_Check(PyObject *ptr)
+{
+ return PyCapsule_CheckExact(ptr);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+
+#endif /* _NPY_3KCOMPAT_H_ */
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_common.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_common.h
new file mode 100644
index 0000000000000000000000000000000000000000..23b70edd72b07f479d582ba476623f2d001e2d01
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_common.h
@@ -0,0 +1,1127 @@
+#ifndef _NPY_COMMON_H_
+#define _NPY_COMMON_H_
+
+/* need Python.h for npy_intp, npy_uintp */
+#include
+
+/* numpconfig.h is auto-generated */
+#include "numpyconfig.h"
+#ifdef HAVE_NPY_CONFIG_H
+#include
+#endif
+
+/*
+ * using static inline modifiers when defining npy_math functions
+ * allows the compiler to make optimizations when possible
+ */
+#ifndef NPY_INLINE_MATH
+#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD
+ #define NPY_INLINE_MATH 1
+#else
+ #define NPY_INLINE_MATH 0
+#endif
+#endif
+
+/*
+ * gcc does not unroll even with -O3
+ * use with care, unrolling on modern cpus rarely speeds things up
+ */
+#ifdef HAVE_ATTRIBUTE_OPTIMIZE_UNROLL_LOOPS
+#define NPY_GCC_UNROLL_LOOPS \
+ __attribute__((optimize("unroll-loops")))
+#else
+#define NPY_GCC_UNROLL_LOOPS
+#endif
+
+/* highest gcc optimization level, enabled autovectorizer */
+#ifdef HAVE_ATTRIBUTE_OPTIMIZE_OPT_3
+#define NPY_GCC_OPT_3 __attribute__((optimize("O3")))
+#else
+#define NPY_GCC_OPT_3
+#endif
+
+/* compile target attributes */
+#if defined HAVE_ATTRIBUTE_TARGET_AVX && defined HAVE_LINK_AVX
+#define NPY_GCC_TARGET_AVX __attribute__((target("avx")))
+#else
+#define NPY_GCC_TARGET_AVX
+#endif
+
+#if defined HAVE_ATTRIBUTE_TARGET_AVX2_WITH_INTRINSICS
+#define HAVE_ATTRIBUTE_TARGET_FMA
+#define NPY_GCC_TARGET_FMA __attribute__((target("avx2,fma")))
+#endif
+
+#if defined HAVE_ATTRIBUTE_TARGET_AVX2 && defined HAVE_LINK_AVX2
+#define NPY_GCC_TARGET_AVX2 __attribute__((target("avx2")))
+#else
+#define NPY_GCC_TARGET_AVX2
+#endif
+
+#if defined HAVE_ATTRIBUTE_TARGET_AVX512F && defined HAVE_LINK_AVX512F
+#define NPY_GCC_TARGET_AVX512F __attribute__((target("avx512f")))
+#elif defined HAVE_ATTRIBUTE_TARGET_AVX512F_WITH_INTRINSICS
+#define NPY_GCC_TARGET_AVX512F __attribute__((target("avx512f")))
+#else
+#define NPY_GCC_TARGET_AVX512F
+#endif
+
+#if defined HAVE_ATTRIBUTE_TARGET_AVX512_SKX && defined HAVE_LINK_AVX512_SKX
+#define NPY_GCC_TARGET_AVX512_SKX __attribute__((target("avx512f,avx512dq,avx512vl,avx512bw,avx512cd")))
+#elif defined HAVE_ATTRIBUTE_TARGET_AVX512_SKX_WITH_INTRINSICS
+#define NPY_GCC_TARGET_AVX512_SKX __attribute__((target("avx512f,avx512dq,avx512vl,avx512bw,avx512cd")))
+#else
+#define NPY_GCC_TARGET_AVX512_SKX
+#endif
+/*
+ * mark an argument (starting from 1) that must not be NULL and is not checked
+ * DO NOT USE IF FUNCTION CHECKS FOR NULL!! the compiler will remove the check
+ */
+#ifdef HAVE_ATTRIBUTE_NONNULL
+#define NPY_GCC_NONNULL(n) __attribute__((nonnull(n)))
+#else
+#define NPY_GCC_NONNULL(n)
+#endif
+
+#if defined HAVE_XMMINTRIN_H && defined HAVE__MM_LOAD_PS
+#define NPY_HAVE_SSE_INTRINSICS
+#endif
+
+#if defined HAVE_EMMINTRIN_H && defined HAVE__MM_LOAD_PD
+#define NPY_HAVE_SSE2_INTRINSICS
+#endif
+
+#if defined HAVE_IMMINTRIN_H && defined HAVE_LINK_AVX2
+#define NPY_HAVE_AVX2_INTRINSICS
+#endif
+
+#if defined HAVE_IMMINTRIN_H && defined HAVE_LINK_AVX512F
+#define NPY_HAVE_AVX512F_INTRINSICS
+#endif
+/*
+ * give a hint to the compiler which branch is more likely or unlikely
+ * to occur, e.g. rare error cases:
+ *
+ * if (NPY_UNLIKELY(failure == 0))
+ * return NULL;
+ *
+ * the double !! is to cast the expression (e.g. NULL) to a boolean required by
+ * the intrinsic
+ */
+#ifdef HAVE___BUILTIN_EXPECT
+#define NPY_LIKELY(x) __builtin_expect(!!(x), 1)
+#define NPY_UNLIKELY(x) __builtin_expect(!!(x), 0)
+#else
+#define NPY_LIKELY(x) (x)
+#define NPY_UNLIKELY(x) (x)
+#endif
+
+#ifdef HAVE___BUILTIN_PREFETCH
+/* unlike _mm_prefetch also works on non-x86 */
+#define NPY_PREFETCH(x, rw, loc) __builtin_prefetch((x), (rw), (loc))
+#else
+#ifdef HAVE__MM_PREFETCH
+/* _MM_HINT_ET[01] (rw = 1) unsupported, only available in gcc >= 4.9 */
+#define NPY_PREFETCH(x, rw, loc) _mm_prefetch((x), loc == 0 ? _MM_HINT_NTA : \
+ (loc == 1 ? _MM_HINT_T2 : \
+ (loc == 2 ? _MM_HINT_T1 : \
+ (loc == 3 ? _MM_HINT_T0 : -1))))
+#else
+#define NPY_PREFETCH(x, rw,loc)
+#endif
+#endif
+
+#if defined(_MSC_VER)
+ #define NPY_INLINE __inline
+#elif defined(__GNUC__)
+ #if defined(__STRICT_ANSI__)
+ #define NPY_INLINE __inline__
+ #else
+ #define NPY_INLINE inline
+ #endif
+#else
+ #define NPY_INLINE
+#endif
+
+#ifdef _MSC_VER
+ #define NPY_FINLINE static __forceinline
+#elif defined(__GNUC__)
+ #define NPY_FINLINE static NPY_INLINE __attribute__((always_inline))
+#else
+ #define NPY_FINLINE static
+#endif
+
+#ifdef HAVE___THREAD
+ #define NPY_TLS __thread
+#else
+ #ifdef HAVE___DECLSPEC_THREAD_
+ #define NPY_TLS __declspec(thread)
+ #else
+ #define NPY_TLS
+ #endif
+#endif
+
+#ifdef WITH_CPYCHECKER_RETURNS_BORROWED_REF_ATTRIBUTE
+ #define NPY_RETURNS_BORROWED_REF \
+ __attribute__((cpychecker_returns_borrowed_ref))
+#else
+ #define NPY_RETURNS_BORROWED_REF
+#endif
+
+#ifdef WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE
+ #define NPY_STEALS_REF_TO_ARG(n) \
+ __attribute__((cpychecker_steals_reference_to_arg(n)))
+#else
+ #define NPY_STEALS_REF_TO_ARG(n)
+#endif
+
+/* 64 bit file position support, also on win-amd64. Ticket #1660 */
+#if defined(_MSC_VER) && defined(_WIN64) && (_MSC_VER > 1400) || \
+ defined(__MINGW32__) || defined(__MINGW64__)
+ #include
+
+/* mingw based on 3.4.5 has lseek but not ftell/fseek */
+#if defined(__MINGW32__) || defined(__MINGW64__)
+extern int __cdecl _fseeki64(FILE *, long long, int);
+extern long long __cdecl _ftelli64(FILE *);
+#endif
+
+ #define npy_fseek _fseeki64
+ #define npy_ftell _ftelli64
+ #define npy_lseek _lseeki64
+ #define npy_off_t npy_int64
+
+ #if NPY_SIZEOF_INT == 8
+ #define NPY_OFF_T_PYFMT "i"
+ #elif NPY_SIZEOF_LONG == 8
+ #define NPY_OFF_T_PYFMT "l"
+ #elif NPY_SIZEOF_LONGLONG == 8
+ #define NPY_OFF_T_PYFMT "L"
+ #else
+ #error Unsupported size for type off_t
+ #endif
+#else
+#ifdef HAVE_FSEEKO
+ #define npy_fseek fseeko
+#else
+ #define npy_fseek fseek
+#endif
+#ifdef HAVE_FTELLO
+ #define npy_ftell ftello
+#else
+ #define npy_ftell ftell
+#endif
+ #include
+ #define npy_lseek lseek
+ #define npy_off_t off_t
+
+ #if NPY_SIZEOF_OFF_T == NPY_SIZEOF_SHORT
+ #define NPY_OFF_T_PYFMT "h"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_INT
+ #define NPY_OFF_T_PYFMT "i"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONG
+ #define NPY_OFF_T_PYFMT "l"
+ #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONGLONG
+ #define NPY_OFF_T_PYFMT "L"
+ #else
+ #error Unsupported size for type off_t
+ #endif
+#endif
+
+/* enums for detected endianness */
+enum {
+ NPY_CPU_UNKNOWN_ENDIAN,
+ NPY_CPU_LITTLE,
+ NPY_CPU_BIG
+};
+
+/*
+ * This is to typedef npy_intp to the appropriate pointer size for this
+ * platform. Py_intptr_t, Py_uintptr_t are defined in pyport.h.
+ */
+typedef Py_intptr_t npy_intp;
+typedef Py_uintptr_t npy_uintp;
+
+/*
+ * Define sizes that were not defined in numpyconfig.h.
+ */
+#define NPY_SIZEOF_CHAR 1
+#define NPY_SIZEOF_BYTE 1
+#define NPY_SIZEOF_DATETIME 8
+#define NPY_SIZEOF_TIMEDELTA 8
+#define NPY_SIZEOF_INTP NPY_SIZEOF_PY_INTPTR_T
+#define NPY_SIZEOF_UINTP NPY_SIZEOF_PY_INTPTR_T
+#define NPY_SIZEOF_HALF 2
+#define NPY_SIZEOF_CFLOAT NPY_SIZEOF_COMPLEX_FLOAT
+#define NPY_SIZEOF_CDOUBLE NPY_SIZEOF_COMPLEX_DOUBLE
+#define NPY_SIZEOF_CLONGDOUBLE NPY_SIZEOF_COMPLEX_LONGDOUBLE
+
+#ifdef constchar
+#undef constchar
+#endif
+
+#define NPY_SSIZE_T_PYFMT "n"
+#define constchar char
+
+/* NPY_INTP_FMT Note:
+ * Unlike the other NPY_*_FMT macros, which are used with PyOS_snprintf,
+ * NPY_INTP_FMT is used with PyErr_Format and PyUnicode_FromFormat. Those
+ * functions use different formatting codes that are portably specified
+ * according to the Python documentation. See issue gh-2388.
+ */
+#if NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_INT
+ #define NPY_INTP NPY_INT
+ #define NPY_UINTP NPY_UINT
+ #define PyIntpArrType_Type PyIntArrType_Type
+ #define PyUIntpArrType_Type PyUIntArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_INT
+ #define NPY_MIN_INTP NPY_MIN_INT
+ #define NPY_MAX_UINTP NPY_MAX_UINT
+ #define NPY_INTP_FMT "d"
+#elif NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_LONG
+ #define NPY_INTP NPY_LONG
+ #define NPY_UINTP NPY_ULONG
+ #define PyIntpArrType_Type PyLongArrType_Type
+ #define PyUIntpArrType_Type PyULongArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_LONG
+ #define NPY_MIN_INTP NPY_MIN_LONG
+ #define NPY_MAX_UINTP NPY_MAX_ULONG
+ #define NPY_INTP_FMT "ld"
+#elif defined(PY_LONG_LONG) && (NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_LONGLONG)
+ #define NPY_INTP NPY_LONGLONG
+ #define NPY_UINTP NPY_ULONGLONG
+ #define PyIntpArrType_Type PyLongLongArrType_Type
+ #define PyUIntpArrType_Type PyULongLongArrType_Type
+ #define NPY_MAX_INTP NPY_MAX_LONGLONG
+ #define NPY_MIN_INTP NPY_MIN_LONGLONG
+ #define NPY_MAX_UINTP NPY_MAX_ULONGLONG
+ #define NPY_INTP_FMT "lld"
+#endif
+
+/*
+ * We can only use C99 formats for npy_int_p if it is the same as
+ * intp_t, hence the condition on HAVE_UNITPTR_T
+ */
+#if (NPY_USE_C99_FORMATS) == 1 \
+ && (defined HAVE_UINTPTR_T) \
+ && (defined HAVE_INTTYPES_H)
+ #include
+ #undef NPY_INTP_FMT
+ #define NPY_INTP_FMT PRIdPTR
+#endif
+
+
+/*
+ * Some platforms don't define bool, long long, or long double.
+ * Handle that here.
+ */
+#define NPY_BYTE_FMT "hhd"
+#define NPY_UBYTE_FMT "hhu"
+#define NPY_SHORT_FMT "hd"
+#define NPY_USHORT_FMT "hu"
+#define NPY_INT_FMT "d"
+#define NPY_UINT_FMT "u"
+#define NPY_LONG_FMT "ld"
+#define NPY_ULONG_FMT "lu"
+#define NPY_HALF_FMT "g"
+#define NPY_FLOAT_FMT "g"
+#define NPY_DOUBLE_FMT "g"
+
+
+#ifdef PY_LONG_LONG
+typedef PY_LONG_LONG npy_longlong;
+typedef unsigned PY_LONG_LONG npy_ulonglong;
+# ifdef _MSC_VER
+# define NPY_LONGLONG_FMT "I64d"
+# define NPY_ULONGLONG_FMT "I64u"
+# else
+# define NPY_LONGLONG_FMT "lld"
+# define NPY_ULONGLONG_FMT "llu"
+# endif
+# ifdef _MSC_VER
+# define NPY_LONGLONG_SUFFIX(x) (x##i64)
+# define NPY_ULONGLONG_SUFFIX(x) (x##Ui64)
+# else
+# define NPY_LONGLONG_SUFFIX(x) (x##LL)
+# define NPY_ULONGLONG_SUFFIX(x) (x##ULL)
+# endif
+#else
+typedef long npy_longlong;
+typedef unsigned long npy_ulonglong;
+# define NPY_LONGLONG_SUFFIX(x) (x##L)
+# define NPY_ULONGLONG_SUFFIX(x) (x##UL)
+#endif
+
+
+typedef unsigned char npy_bool;
+#define NPY_FALSE 0
+#define NPY_TRUE 1
+/*
+ * `NPY_SIZEOF_LONGDOUBLE` isn't usually equal to sizeof(long double).
+ * In some certain cases, it may forced to be equal to sizeof(double)
+ * even against the compiler implementation and the same goes for
+ * `complex long double`.
+ *
+ * Therefore, avoid `long double`, use `npy_longdouble` instead,
+ * and when it comes to standard math functions make sure of using
+ * the double version when `NPY_SIZEOF_LONGDOUBLE` == `NPY_SIZEOF_DOUBLE`.
+ * For example:
+ * npy_longdouble *ptr, x;
+ * #if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE
+ * npy_longdouble r = modf(x, ptr);
+ * #else
+ * npy_longdouble r = modfl(x, ptr);
+ * #endif
+ *
+ * See https://github.com/numpy/numpy/issues/20348
+ */
+#if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE
+ #define NPY_LONGDOUBLE_FMT "g"
+ typedef double npy_longdouble;
+#else
+ #define NPY_LONGDOUBLE_FMT "Lg"
+ typedef long double npy_longdouble;
+#endif
+
+#ifndef Py_USING_UNICODE
+#error Must use Python with unicode enabled.
+#endif
+
+
+typedef signed char npy_byte;
+typedef unsigned char npy_ubyte;
+typedef unsigned short npy_ushort;
+typedef unsigned int npy_uint;
+typedef unsigned long npy_ulong;
+
+/* These are for completeness */
+typedef char npy_char;
+typedef short npy_short;
+typedef int npy_int;
+typedef long npy_long;
+typedef float npy_float;
+typedef double npy_double;
+
+typedef Py_hash_t npy_hash_t;
+#define NPY_SIZEOF_HASH_T NPY_SIZEOF_INTP
+
+/*
+ * Disabling C99 complex usage: a lot of C code in numpy/scipy rely on being
+ * able to do .real/.imag. Will have to convert code first.
+ */
+#if 0
+#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_DOUBLE)
+typedef complex npy_cdouble;
+#else
+typedef struct { double real, imag; } npy_cdouble;
+#endif
+
+#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_FLOAT)
+typedef complex float npy_cfloat;
+#else
+typedef struct { float real, imag; } npy_cfloat;
+#endif
+
+#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_LONG_DOUBLE)
+typedef complex long double npy_clongdouble;
+#else
+typedef struct {npy_longdouble real, imag;} npy_clongdouble;
+#endif
+#endif
+#if NPY_SIZEOF_COMPLEX_DOUBLE != 2 * NPY_SIZEOF_DOUBLE
+#error npy_cdouble definition is not compatible with C99 complex definition ! \
+ Please contact NumPy maintainers and give detailed information about your \
+ compiler and platform
+#endif
+typedef struct { double real, imag; } npy_cdouble;
+
+#if NPY_SIZEOF_COMPLEX_FLOAT != 2 * NPY_SIZEOF_FLOAT
+#error npy_cfloat definition is not compatible with C99 complex definition ! \
+ Please contact NumPy maintainers and give detailed information about your \
+ compiler and platform
+#endif
+typedef struct { float real, imag; } npy_cfloat;
+
+#if NPY_SIZEOF_COMPLEX_LONGDOUBLE != 2 * NPY_SIZEOF_LONGDOUBLE
+#error npy_clongdouble definition is not compatible with C99 complex definition ! \
+ Please contact NumPy maintainers and give detailed information about your \
+ compiler and platform
+#endif
+typedef struct { npy_longdouble real, imag; } npy_clongdouble;
+
+/*
+ * numarray-style bit-width typedefs
+ */
+#define NPY_MAX_INT8 127
+#define NPY_MIN_INT8 -128
+#define NPY_MAX_UINT8 255
+#define NPY_MAX_INT16 32767
+#define NPY_MIN_INT16 -32768
+#define NPY_MAX_UINT16 65535
+#define NPY_MAX_INT32 2147483647
+#define NPY_MIN_INT32 (-NPY_MAX_INT32 - 1)
+#define NPY_MAX_UINT32 4294967295U
+#define NPY_MAX_INT64 NPY_LONGLONG_SUFFIX(9223372036854775807)
+#define NPY_MIN_INT64 (-NPY_MAX_INT64 - NPY_LONGLONG_SUFFIX(1))
+#define NPY_MAX_UINT64 NPY_ULONGLONG_SUFFIX(18446744073709551615)
+#define NPY_MAX_INT128 NPY_LONGLONG_SUFFIX(85070591730234615865843651857942052864)
+#define NPY_MIN_INT128 (-NPY_MAX_INT128 - NPY_LONGLONG_SUFFIX(1))
+#define NPY_MAX_UINT128 NPY_ULONGLONG_SUFFIX(170141183460469231731687303715884105728)
+#define NPY_MAX_INT256 NPY_LONGLONG_SUFFIX(57896044618658097711785492504343953926634992332820282019728792003956564819967)
+#define NPY_MIN_INT256 (-NPY_MAX_INT256 - NPY_LONGLONG_SUFFIX(1))
+#define NPY_MAX_UINT256 NPY_ULONGLONG_SUFFIX(115792089237316195423570985008687907853269984665640564039457584007913129639935)
+#define NPY_MIN_DATETIME NPY_MIN_INT64
+#define NPY_MAX_DATETIME NPY_MAX_INT64
+#define NPY_MIN_TIMEDELTA NPY_MIN_INT64
+#define NPY_MAX_TIMEDELTA NPY_MAX_INT64
+
+ /* Need to find the number of bits for each type and
+ make definitions accordingly.
+
+ C states that sizeof(char) == 1 by definition
+
+ So, just using the sizeof keyword won't help.
+
+ It also looks like Python itself uses sizeof(char) quite a
+ bit, which by definition should be 1 all the time.
+
+ Idea: Make Use of CHAR_BIT which should tell us how many
+ BITS per CHARACTER
+ */
+
+ /* Include platform definitions -- These are in the C89/90 standard */
+#include
+#define NPY_MAX_BYTE SCHAR_MAX
+#define NPY_MIN_BYTE SCHAR_MIN
+#define NPY_MAX_UBYTE UCHAR_MAX
+#define NPY_MAX_SHORT SHRT_MAX
+#define NPY_MIN_SHORT SHRT_MIN
+#define NPY_MAX_USHORT USHRT_MAX
+#define NPY_MAX_INT INT_MAX
+#ifndef INT_MIN
+#define INT_MIN (-INT_MAX - 1)
+#endif
+#define NPY_MIN_INT INT_MIN
+#define NPY_MAX_UINT UINT_MAX
+#define NPY_MAX_LONG LONG_MAX
+#define NPY_MIN_LONG LONG_MIN
+#define NPY_MAX_ULONG ULONG_MAX
+
+#define NPY_BITSOF_BOOL (sizeof(npy_bool) * CHAR_BIT)
+#define NPY_BITSOF_CHAR CHAR_BIT
+#define NPY_BITSOF_BYTE (NPY_SIZEOF_BYTE * CHAR_BIT)
+#define NPY_BITSOF_SHORT (NPY_SIZEOF_SHORT * CHAR_BIT)
+#define NPY_BITSOF_INT (NPY_SIZEOF_INT * CHAR_BIT)
+#define NPY_BITSOF_LONG (NPY_SIZEOF_LONG * CHAR_BIT)
+#define NPY_BITSOF_LONGLONG (NPY_SIZEOF_LONGLONG * CHAR_BIT)
+#define NPY_BITSOF_INTP (NPY_SIZEOF_INTP * CHAR_BIT)
+#define NPY_BITSOF_HALF (NPY_SIZEOF_HALF * CHAR_BIT)
+#define NPY_BITSOF_FLOAT (NPY_SIZEOF_FLOAT * CHAR_BIT)
+#define NPY_BITSOF_DOUBLE (NPY_SIZEOF_DOUBLE * CHAR_BIT)
+#define NPY_BITSOF_LONGDOUBLE (NPY_SIZEOF_LONGDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_CFLOAT (NPY_SIZEOF_CFLOAT * CHAR_BIT)
+#define NPY_BITSOF_CDOUBLE (NPY_SIZEOF_CDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_CLONGDOUBLE (NPY_SIZEOF_CLONGDOUBLE * CHAR_BIT)
+#define NPY_BITSOF_DATETIME (NPY_SIZEOF_DATETIME * CHAR_BIT)
+#define NPY_BITSOF_TIMEDELTA (NPY_SIZEOF_TIMEDELTA * CHAR_BIT)
+
+#if NPY_BITSOF_LONG == 8
+#define NPY_INT8 NPY_LONG
+#define NPY_UINT8 NPY_ULONG
+ typedef long npy_int8;
+ typedef unsigned long npy_uint8;
+#define PyInt8ScalarObject PyLongScalarObject
+#define PyInt8ArrType_Type PyLongArrType_Type
+#define PyUInt8ScalarObject PyULongScalarObject
+#define PyUInt8ArrType_Type PyULongArrType_Type
+#define NPY_INT8_FMT NPY_LONG_FMT
+#define NPY_UINT8_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 16
+#define NPY_INT16 NPY_LONG
+#define NPY_UINT16 NPY_ULONG
+ typedef long npy_int16;
+ typedef unsigned long npy_uint16;
+#define PyInt16ScalarObject PyLongScalarObject
+#define PyInt16ArrType_Type PyLongArrType_Type
+#define PyUInt16ScalarObject PyULongScalarObject
+#define PyUInt16ArrType_Type PyULongArrType_Type
+#define NPY_INT16_FMT NPY_LONG_FMT
+#define NPY_UINT16_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 32
+#define NPY_INT32 NPY_LONG
+#define NPY_UINT32 NPY_ULONG
+ typedef long npy_int32;
+ typedef unsigned long npy_uint32;
+ typedef unsigned long npy_ucs4;
+#define PyInt32ScalarObject PyLongScalarObject
+#define PyInt32ArrType_Type PyLongArrType_Type
+#define PyUInt32ScalarObject PyULongScalarObject
+#define PyUInt32ArrType_Type PyULongArrType_Type
+#define NPY_INT32_FMT NPY_LONG_FMT
+#define NPY_UINT32_FMT NPY_ULONG_FMT
+#elif NPY_BITSOF_LONG == 64
+#define NPY_INT64 NPY_LONG
+#define NPY_UINT64 NPY_ULONG
+ typedef long npy_int64;
+ typedef unsigned long npy_uint64;
+#define PyInt64ScalarObject PyLongScalarObject
+#define PyInt64ArrType_Type PyLongArrType_Type
+#define PyUInt64ScalarObject PyULongScalarObject
+#define PyUInt64ArrType_Type PyULongArrType_Type
+#define NPY_INT64_FMT NPY_LONG_FMT
+#define NPY_UINT64_FMT NPY_ULONG_FMT
+#define MyPyLong_FromInt64 PyLong_FromLong
+#define MyPyLong_AsInt64 PyLong_AsLong
+#elif NPY_BITSOF_LONG == 128
+#define NPY_INT128 NPY_LONG
+#define NPY_UINT128 NPY_ULONG
+ typedef long npy_int128;
+ typedef unsigned long npy_uint128;
+#define PyInt128ScalarObject PyLongScalarObject
+#define PyInt128ArrType_Type PyLongArrType_Type
+#define PyUInt128ScalarObject PyULongScalarObject
+#define PyUInt128ArrType_Type PyULongArrType_Type
+#define NPY_INT128_FMT NPY_LONG_FMT
+#define NPY_UINT128_FMT NPY_ULONG_FMT
+#endif
+
+#if NPY_BITSOF_LONGLONG == 8
+# ifndef NPY_INT8
+# define NPY_INT8 NPY_LONGLONG
+# define NPY_UINT8 NPY_ULONGLONG
+ typedef npy_longlong npy_int8;
+ typedef npy_ulonglong npy_uint8;
+# define PyInt8ScalarObject PyLongLongScalarObject
+# define PyInt8ArrType_Type PyLongLongArrType_Type
+# define PyUInt8ScalarObject PyULongLongScalarObject
+# define PyUInt8ArrType_Type PyULongLongArrType_Type
+#define NPY_INT8_FMT NPY_LONGLONG_FMT
+#define NPY_UINT8_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT8
+# define NPY_MIN_LONGLONG NPY_MIN_INT8
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT8
+#elif NPY_BITSOF_LONGLONG == 16
+# ifndef NPY_INT16
+# define NPY_INT16 NPY_LONGLONG
+# define NPY_UINT16 NPY_ULONGLONG
+ typedef npy_longlong npy_int16;
+ typedef npy_ulonglong npy_uint16;
+# define PyInt16ScalarObject PyLongLongScalarObject
+# define PyInt16ArrType_Type PyLongLongArrType_Type
+# define PyUInt16ScalarObject PyULongLongScalarObject
+# define PyUInt16ArrType_Type PyULongLongArrType_Type
+#define NPY_INT16_FMT NPY_LONGLONG_FMT
+#define NPY_UINT16_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT16
+# define NPY_MIN_LONGLONG NPY_MIN_INT16
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT16
+#elif NPY_BITSOF_LONGLONG == 32
+# ifndef NPY_INT32
+# define NPY_INT32 NPY_LONGLONG
+# define NPY_UINT32 NPY_ULONGLONG
+ typedef npy_longlong npy_int32;
+ typedef npy_ulonglong npy_uint32;
+ typedef npy_ulonglong npy_ucs4;
+# define PyInt32ScalarObject PyLongLongScalarObject
+# define PyInt32ArrType_Type PyLongLongArrType_Type
+# define PyUInt32ScalarObject PyULongLongScalarObject
+# define PyUInt32ArrType_Type PyULongLongArrType_Type
+#define NPY_INT32_FMT NPY_LONGLONG_FMT
+#define NPY_UINT32_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT32
+# define NPY_MIN_LONGLONG NPY_MIN_INT32
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT32
+#elif NPY_BITSOF_LONGLONG == 64
+# ifndef NPY_INT64
+# define NPY_INT64 NPY_LONGLONG
+# define NPY_UINT64 NPY_ULONGLONG
+ typedef npy_longlong npy_int64;
+ typedef npy_ulonglong npy_uint64;
+# define PyInt64ScalarObject PyLongLongScalarObject
+# define PyInt64ArrType_Type PyLongLongArrType_Type
+# define PyUInt64ScalarObject PyULongLongScalarObject
+# define PyUInt64ArrType_Type PyULongLongArrType_Type
+#define NPY_INT64_FMT NPY_LONGLONG_FMT
+#define NPY_UINT64_FMT NPY_ULONGLONG_FMT
+# define MyPyLong_FromInt64 PyLong_FromLongLong
+# define MyPyLong_AsInt64 PyLong_AsLongLong
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT64
+# define NPY_MIN_LONGLONG NPY_MIN_INT64
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT64
+#elif NPY_BITSOF_LONGLONG == 128
+# ifndef NPY_INT128
+# define NPY_INT128 NPY_LONGLONG
+# define NPY_UINT128 NPY_ULONGLONG
+ typedef npy_longlong npy_int128;
+ typedef npy_ulonglong npy_uint128;
+# define PyInt128ScalarObject PyLongLongScalarObject
+# define PyInt128ArrType_Type PyLongLongArrType_Type
+# define PyUInt128ScalarObject PyULongLongScalarObject
+# define PyUInt128ArrType_Type PyULongLongArrType_Type
+#define NPY_INT128_FMT NPY_LONGLONG_FMT
+#define NPY_UINT128_FMT NPY_ULONGLONG_FMT
+# endif
+# define NPY_MAX_LONGLONG NPY_MAX_INT128
+# define NPY_MIN_LONGLONG NPY_MIN_INT128
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT128
+#elif NPY_BITSOF_LONGLONG == 256
+# define NPY_INT256 NPY_LONGLONG
+# define NPY_UINT256 NPY_ULONGLONG
+ typedef npy_longlong npy_int256;
+ typedef npy_ulonglong npy_uint256;
+# define PyInt256ScalarObject PyLongLongScalarObject
+# define PyInt256ArrType_Type PyLongLongArrType_Type
+# define PyUInt256ScalarObject PyULongLongScalarObject
+# define PyUInt256ArrType_Type PyULongLongArrType_Type
+#define NPY_INT256_FMT NPY_LONGLONG_FMT
+#define NPY_UINT256_FMT NPY_ULONGLONG_FMT
+# define NPY_MAX_LONGLONG NPY_MAX_INT256
+# define NPY_MIN_LONGLONG NPY_MIN_INT256
+# define NPY_MAX_ULONGLONG NPY_MAX_UINT256
+#endif
+
+#if NPY_BITSOF_INT == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_INT
+#define NPY_UINT8 NPY_UINT
+ typedef int npy_int8;
+ typedef unsigned int npy_uint8;
+# define PyInt8ScalarObject PyIntScalarObject
+# define PyInt8ArrType_Type PyIntArrType_Type
+# define PyUInt8ScalarObject PyUIntScalarObject
+# define PyUInt8ArrType_Type PyUIntArrType_Type
+#define NPY_INT8_FMT NPY_INT_FMT
+#define NPY_UINT8_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_INT
+#define NPY_UINT16 NPY_UINT
+ typedef int npy_int16;
+ typedef unsigned int npy_uint16;
+# define PyInt16ScalarObject PyIntScalarObject
+# define PyInt16ArrType_Type PyIntArrType_Type
+# define PyUInt16ScalarObject PyIntUScalarObject
+# define PyUInt16ArrType_Type PyIntUArrType_Type
+#define NPY_INT16_FMT NPY_INT_FMT
+#define NPY_UINT16_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_INT
+#define NPY_UINT32 NPY_UINT
+ typedef int npy_int32;
+ typedef unsigned int npy_uint32;
+ typedef unsigned int npy_ucs4;
+# define PyInt32ScalarObject PyIntScalarObject
+# define PyInt32ArrType_Type PyIntArrType_Type
+# define PyUInt32ScalarObject PyUIntScalarObject
+# define PyUInt32ArrType_Type PyUIntArrType_Type
+#define NPY_INT32_FMT NPY_INT_FMT
+#define NPY_UINT32_FMT NPY_UINT_FMT
+#endif
+#elif NPY_BITSOF_INT == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_INT
+#define NPY_UINT64 NPY_UINT
+ typedef int npy_int64;
+ typedef unsigned int npy_uint64;
+# define PyInt64ScalarObject PyIntScalarObject
+# define PyInt64ArrType_Type PyIntArrType_Type
+# define PyUInt64ScalarObject PyUIntScalarObject
+# define PyUInt64ArrType_Type PyUIntArrType_Type
+#define NPY_INT64_FMT NPY_INT_FMT
+#define NPY_UINT64_FMT NPY_UINT_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#elif NPY_BITSOF_INT == 128
+#ifndef NPY_INT128
+#define NPY_INT128 NPY_INT
+#define NPY_UINT128 NPY_UINT
+ typedef int npy_int128;
+ typedef unsigned int npy_uint128;
+# define PyInt128ScalarObject PyIntScalarObject
+# define PyInt128ArrType_Type PyIntArrType_Type
+# define PyUInt128ScalarObject PyUIntScalarObject
+# define PyUInt128ArrType_Type PyUIntArrType_Type
+#define NPY_INT128_FMT NPY_INT_FMT
+#define NPY_UINT128_FMT NPY_UINT_FMT
+#endif
+#endif
+
+#if NPY_BITSOF_SHORT == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_SHORT
+#define NPY_UINT8 NPY_USHORT
+ typedef short npy_int8;
+ typedef unsigned short npy_uint8;
+# define PyInt8ScalarObject PyShortScalarObject
+# define PyInt8ArrType_Type PyShortArrType_Type
+# define PyUInt8ScalarObject PyUShortScalarObject
+# define PyUInt8ArrType_Type PyUShortArrType_Type
+#define NPY_INT8_FMT NPY_SHORT_FMT
+#define NPY_UINT8_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_SHORT
+#define NPY_UINT16 NPY_USHORT
+ typedef short npy_int16;
+ typedef unsigned short npy_uint16;
+# define PyInt16ScalarObject PyShortScalarObject
+# define PyInt16ArrType_Type PyShortArrType_Type
+# define PyUInt16ScalarObject PyUShortScalarObject
+# define PyUInt16ArrType_Type PyUShortArrType_Type
+#define NPY_INT16_FMT NPY_SHORT_FMT
+#define NPY_UINT16_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_SHORT
+#define NPY_UINT32 NPY_USHORT
+ typedef short npy_int32;
+ typedef unsigned short npy_uint32;
+ typedef unsigned short npy_ucs4;
+# define PyInt32ScalarObject PyShortScalarObject
+# define PyInt32ArrType_Type PyShortArrType_Type
+# define PyUInt32ScalarObject PyUShortScalarObject
+# define PyUInt32ArrType_Type PyUShortArrType_Type
+#define NPY_INT32_FMT NPY_SHORT_FMT
+#define NPY_UINT32_FMT NPY_USHORT_FMT
+#endif
+#elif NPY_BITSOF_SHORT == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_SHORT
+#define NPY_UINT64 NPY_USHORT
+ typedef short npy_int64;
+ typedef unsigned short npy_uint64;
+# define PyInt64ScalarObject PyShortScalarObject
+# define PyInt64ArrType_Type PyShortArrType_Type
+# define PyUInt64ScalarObject PyUShortScalarObject
+# define PyUInt64ArrType_Type PyUShortArrType_Type
+#define NPY_INT64_FMT NPY_SHORT_FMT
+#define NPY_UINT64_FMT NPY_USHORT_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#elif NPY_BITSOF_SHORT == 128
+#ifndef NPY_INT128
+#define NPY_INT128 NPY_SHORT
+#define NPY_UINT128 NPY_USHORT
+ typedef short npy_int128;
+ typedef unsigned short npy_uint128;
+# define PyInt128ScalarObject PyShortScalarObject
+# define PyInt128ArrType_Type PyShortArrType_Type
+# define PyUInt128ScalarObject PyUShortScalarObject
+# define PyUInt128ArrType_Type PyUShortArrType_Type
+#define NPY_INT128_FMT NPY_SHORT_FMT
+#define NPY_UINT128_FMT NPY_USHORT_FMT
+#endif
+#endif
+
+
+#if NPY_BITSOF_CHAR == 8
+#ifndef NPY_INT8
+#define NPY_INT8 NPY_BYTE
+#define NPY_UINT8 NPY_UBYTE
+ typedef signed char npy_int8;
+ typedef unsigned char npy_uint8;
+# define PyInt8ScalarObject PyByteScalarObject
+# define PyInt8ArrType_Type PyByteArrType_Type
+# define PyUInt8ScalarObject PyUByteScalarObject
+# define PyUInt8ArrType_Type PyUByteArrType_Type
+#define NPY_INT8_FMT NPY_BYTE_FMT
+#define NPY_UINT8_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 16
+#ifndef NPY_INT16
+#define NPY_INT16 NPY_BYTE
+#define NPY_UINT16 NPY_UBYTE
+ typedef signed char npy_int16;
+ typedef unsigned char npy_uint16;
+# define PyInt16ScalarObject PyByteScalarObject
+# define PyInt16ArrType_Type PyByteArrType_Type
+# define PyUInt16ScalarObject PyUByteScalarObject
+# define PyUInt16ArrType_Type PyUByteArrType_Type
+#define NPY_INT16_FMT NPY_BYTE_FMT
+#define NPY_UINT16_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 32
+#ifndef NPY_INT32
+#define NPY_INT32 NPY_BYTE
+#define NPY_UINT32 NPY_UBYTE
+ typedef signed char npy_int32;
+ typedef unsigned char npy_uint32;
+ typedef unsigned char npy_ucs4;
+# define PyInt32ScalarObject PyByteScalarObject
+# define PyInt32ArrType_Type PyByteArrType_Type
+# define PyUInt32ScalarObject PyUByteScalarObject
+# define PyUInt32ArrType_Type PyUByteArrType_Type
+#define NPY_INT32_FMT NPY_BYTE_FMT
+#define NPY_UINT32_FMT NPY_UBYTE_FMT
+#endif
+#elif NPY_BITSOF_CHAR == 64
+#ifndef NPY_INT64
+#define NPY_INT64 NPY_BYTE
+#define NPY_UINT64 NPY_UBYTE
+ typedef signed char npy_int64;
+ typedef unsigned char npy_uint64;
+# define PyInt64ScalarObject PyByteScalarObject
+# define PyInt64ArrType_Type PyByteArrType_Type
+# define PyUInt64ScalarObject PyUByteScalarObject
+# define PyUInt64ArrType_Type PyUByteArrType_Type
+#define NPY_INT64_FMT NPY_BYTE_FMT
+#define NPY_UINT64_FMT NPY_UBYTE_FMT
+# define MyPyLong_FromInt64 PyLong_FromLong
+# define MyPyLong_AsInt64 PyLong_AsLong
+#endif
+#elif NPY_BITSOF_CHAR == 128
+#ifndef NPY_INT128
+#define NPY_INT128 NPY_BYTE
+#define NPY_UINT128 NPY_UBYTE
+ typedef signed char npy_int128;
+ typedef unsigned char npy_uint128;
+# define PyInt128ScalarObject PyByteScalarObject
+# define PyInt128ArrType_Type PyByteArrType_Type
+# define PyUInt128ScalarObject PyUByteScalarObject
+# define PyUInt128ArrType_Type PyUByteArrType_Type
+#define NPY_INT128_FMT NPY_BYTE_FMT
+#define NPY_UINT128_FMT NPY_UBYTE_FMT
+#endif
+#endif
+
+
+
+#if NPY_BITSOF_DOUBLE == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_DOUBLE
+#define NPY_COMPLEX64 NPY_CDOUBLE
+ typedef double npy_float32;
+ typedef npy_cdouble npy_complex64;
+# define PyFloat32ScalarObject PyDoubleScalarObject
+# define PyComplex64ScalarObject PyCDoubleScalarObject
+# define PyFloat32ArrType_Type PyDoubleArrType_Type
+# define PyComplex64ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT32_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX64_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_DOUBLE
+#define NPY_COMPLEX128 NPY_CDOUBLE
+ typedef double npy_float64;
+ typedef npy_cdouble npy_complex128;
+# define PyFloat64ScalarObject PyDoubleScalarObject
+# define PyComplex128ScalarObject PyCDoubleScalarObject
+# define PyFloat64ArrType_Type PyDoubleArrType_Type
+# define PyComplex128ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT64_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX128_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_DOUBLE
+#define NPY_COMPLEX160 NPY_CDOUBLE
+ typedef double npy_float80;
+ typedef npy_cdouble npy_complex160;
+# define PyFloat80ScalarObject PyDoubleScalarObject
+# define PyComplex160ScalarObject PyCDoubleScalarObject
+# define PyFloat80ArrType_Type PyDoubleArrType_Type
+# define PyComplex160ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT80_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX160_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_DOUBLE
+#define NPY_COMPLEX192 NPY_CDOUBLE
+ typedef double npy_float96;
+ typedef npy_cdouble npy_complex192;
+# define PyFloat96ScalarObject PyDoubleScalarObject
+# define PyComplex192ScalarObject PyCDoubleScalarObject
+# define PyFloat96ArrType_Type PyDoubleArrType_Type
+# define PyComplex192ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT96_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX192_FMT NPY_CDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_DOUBLE == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_DOUBLE
+#define NPY_COMPLEX256 NPY_CDOUBLE
+ typedef double npy_float128;
+ typedef npy_cdouble npy_complex256;
+# define PyFloat128ScalarObject PyDoubleScalarObject
+# define PyComplex256ScalarObject PyCDoubleScalarObject
+# define PyFloat128ArrType_Type PyDoubleArrType_Type
+# define PyComplex256ArrType_Type PyCDoubleArrType_Type
+#define NPY_FLOAT128_FMT NPY_DOUBLE_FMT
+#define NPY_COMPLEX256_FMT NPY_CDOUBLE_FMT
+#endif
+#endif
+
+
+
+#if NPY_BITSOF_FLOAT == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_FLOAT
+#define NPY_COMPLEX64 NPY_CFLOAT
+ typedef float npy_float32;
+ typedef npy_cfloat npy_complex64;
+# define PyFloat32ScalarObject PyFloatScalarObject
+# define PyComplex64ScalarObject PyCFloatScalarObject
+# define PyFloat32ArrType_Type PyFloatArrType_Type
+# define PyComplex64ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT32_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX64_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_FLOAT
+#define NPY_COMPLEX128 NPY_CFLOAT
+ typedef float npy_float64;
+ typedef npy_cfloat npy_complex128;
+# define PyFloat64ScalarObject PyFloatScalarObject
+# define PyComplex128ScalarObject PyCFloatScalarObject
+# define PyFloat64ArrType_Type PyFloatArrType_Type
+# define PyComplex128ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT64_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX128_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_FLOAT
+#define NPY_COMPLEX160 NPY_CFLOAT
+ typedef float npy_float80;
+ typedef npy_cfloat npy_complex160;
+# define PyFloat80ScalarObject PyFloatScalarObject
+# define PyComplex160ScalarObject PyCFloatScalarObject
+# define PyFloat80ArrType_Type PyFloatArrType_Type
+# define PyComplex160ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT80_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX160_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_FLOAT
+#define NPY_COMPLEX192 NPY_CFLOAT
+ typedef float npy_float96;
+ typedef npy_cfloat npy_complex192;
+# define PyFloat96ScalarObject PyFloatScalarObject
+# define PyComplex192ScalarObject PyCFloatScalarObject
+# define PyFloat96ArrType_Type PyFloatArrType_Type
+# define PyComplex192ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT96_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX192_FMT NPY_CFLOAT_FMT
+#endif
+#elif NPY_BITSOF_FLOAT == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_FLOAT
+#define NPY_COMPLEX256 NPY_CFLOAT
+ typedef float npy_float128;
+ typedef npy_cfloat npy_complex256;
+# define PyFloat128ScalarObject PyFloatScalarObject
+# define PyComplex256ScalarObject PyCFloatScalarObject
+# define PyFloat128ArrType_Type PyFloatArrType_Type
+# define PyComplex256ArrType_Type PyCFloatArrType_Type
+#define NPY_FLOAT128_FMT NPY_FLOAT_FMT
+#define NPY_COMPLEX256_FMT NPY_CFLOAT_FMT
+#endif
+#endif
+
+/* half/float16 isn't a floating-point type in C */
+#define NPY_FLOAT16 NPY_HALF
+typedef npy_uint16 npy_half;
+typedef npy_half npy_float16;
+
+#if NPY_BITSOF_LONGDOUBLE == 32
+#ifndef NPY_FLOAT32
+#define NPY_FLOAT32 NPY_LONGDOUBLE
+#define NPY_COMPLEX64 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float32;
+ typedef npy_clongdouble npy_complex64;
+# define PyFloat32ScalarObject PyLongDoubleScalarObject
+# define PyComplex64ScalarObject PyCLongDoubleScalarObject
+# define PyFloat32ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex64ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT32_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX64_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 64
+#ifndef NPY_FLOAT64
+#define NPY_FLOAT64 NPY_LONGDOUBLE
+#define NPY_COMPLEX128 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float64;
+ typedef npy_clongdouble npy_complex128;
+# define PyFloat64ScalarObject PyLongDoubleScalarObject
+# define PyComplex128ScalarObject PyCLongDoubleScalarObject
+# define PyFloat64ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex128ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT64_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX128_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 80
+#ifndef NPY_FLOAT80
+#define NPY_FLOAT80 NPY_LONGDOUBLE
+#define NPY_COMPLEX160 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float80;
+ typedef npy_clongdouble npy_complex160;
+# define PyFloat80ScalarObject PyLongDoubleScalarObject
+# define PyComplex160ScalarObject PyCLongDoubleScalarObject
+# define PyFloat80ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex160ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT80_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX160_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 96
+#ifndef NPY_FLOAT96
+#define NPY_FLOAT96 NPY_LONGDOUBLE
+#define NPY_COMPLEX192 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float96;
+ typedef npy_clongdouble npy_complex192;
+# define PyFloat96ScalarObject PyLongDoubleScalarObject
+# define PyComplex192ScalarObject PyCLongDoubleScalarObject
+# define PyFloat96ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex192ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT96_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX192_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 128
+#ifndef NPY_FLOAT128
+#define NPY_FLOAT128 NPY_LONGDOUBLE
+#define NPY_COMPLEX256 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float128;
+ typedef npy_clongdouble npy_complex256;
+# define PyFloat128ScalarObject PyLongDoubleScalarObject
+# define PyComplex256ScalarObject PyCLongDoubleScalarObject
+# define PyFloat128ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex256ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT128_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX256_FMT NPY_CLONGDOUBLE_FMT
+#endif
+#elif NPY_BITSOF_LONGDOUBLE == 256
+#define NPY_FLOAT256 NPY_LONGDOUBLE
+#define NPY_COMPLEX512 NPY_CLONGDOUBLE
+ typedef npy_longdouble npy_float256;
+ typedef npy_clongdouble npy_complex512;
+# define PyFloat256ScalarObject PyLongDoubleScalarObject
+# define PyComplex512ScalarObject PyCLongDoubleScalarObject
+# define PyFloat256ArrType_Type PyLongDoubleArrType_Type
+# define PyComplex512ArrType_Type PyCLongDoubleArrType_Type
+#define NPY_FLOAT256_FMT NPY_LONGDOUBLE_FMT
+#define NPY_COMPLEX512_FMT NPY_CLONGDOUBLE_FMT
+#endif
+
+/* datetime typedefs */
+typedef npy_int64 npy_timedelta;
+typedef npy_int64 npy_datetime;
+#define NPY_DATETIME_FMT NPY_INT64_FMT
+#define NPY_TIMEDELTA_FMT NPY_INT64_FMT
+
+/* End of typedefs for numarray style bit-width names */
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_cpu.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_cpu.h
new file mode 100644
index 0000000000000000000000000000000000000000..bc1fad72f7681ddc5a6d65ee724bed25f05c6053
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_cpu.h
@@ -0,0 +1,126 @@
+/*
+ * This set (target) cpu specific macros:
+ * - Possible values:
+ * NPY_CPU_X86
+ * NPY_CPU_AMD64
+ * NPY_CPU_PPC
+ * NPY_CPU_PPC64
+ * NPY_CPU_PPC64LE
+ * NPY_CPU_SPARC
+ * NPY_CPU_S390
+ * NPY_CPU_IA64
+ * NPY_CPU_HPPA
+ * NPY_CPU_ALPHA
+ * NPY_CPU_ARMEL
+ * NPY_CPU_ARMEB
+ * NPY_CPU_SH_LE
+ * NPY_CPU_SH_BE
+ * NPY_CPU_ARCEL
+ * NPY_CPU_ARCEB
+ * NPY_CPU_RISCV64
+ * NPY_CPU_WASM
+ */
+#ifndef _NPY_CPUARCH_H_
+#define _NPY_CPUARCH_H_
+
+#include "numpyconfig.h"
+
+#if defined( __i386__ ) || defined(i386) || defined(_M_IX86)
+ /*
+ * __i386__ is defined by gcc and Intel compiler on Linux,
+ * _M_IX86 by VS compiler,
+ * i386 by Sun compilers on opensolaris at least
+ */
+ #define NPY_CPU_X86
+#elif defined(__x86_64__) || defined(__amd64__) || defined(__x86_64) || defined(_M_AMD64)
+ /*
+ * both __x86_64__ and __amd64__ are defined by gcc
+ * __x86_64 defined by sun compiler on opensolaris at least
+ * _M_AMD64 defined by MS compiler
+ */
+ #define NPY_CPU_AMD64
+#elif defined(__powerpc64__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_PPC64LE
+#elif defined(__powerpc64__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_PPC64
+#elif defined(__ppc__) || defined(__powerpc__) || defined(_ARCH_PPC)
+ /*
+ * __ppc__ is defined by gcc, I remember having seen __powerpc__ once,
+ * but can't find it ATM
+ * _ARCH_PPC is used by at least gcc on AIX
+ * As __powerpc__ and _ARCH_PPC are also defined by PPC64 check
+ * for those specifically first before defaulting to ppc
+ */
+ #define NPY_CPU_PPC
+#elif defined(__sparc__) || defined(__sparc)
+ /* __sparc__ is defined by gcc and Forte (e.g. Sun) compilers */
+ #define NPY_CPU_SPARC
+#elif defined(__s390__)
+ #define NPY_CPU_S390
+#elif defined(__ia64)
+ #define NPY_CPU_IA64
+#elif defined(__hppa)
+ #define NPY_CPU_HPPA
+#elif defined(__alpha__)
+ #define NPY_CPU_ALPHA
+#elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM64)
+ /* _M_ARM64 is defined in MSVC for ARM64 compilation on Windows */
+ #if defined(__ARMEB__) || defined(__AARCH64EB__)
+ #if defined(__ARM_32BIT_STATE)
+ #define NPY_CPU_ARMEB_AARCH32
+ #elif defined(__ARM_64BIT_STATE)
+ #define NPY_CPU_ARMEB_AARCH64
+ #else
+ #define NPY_CPU_ARMEB
+ #endif
+ #elif defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
+ #if defined(__ARM_32BIT_STATE)
+ #define NPY_CPU_ARMEL_AARCH32
+ #elif defined(__ARM_64BIT_STATE) || defined(_M_ARM64)
+ #define NPY_CPU_ARMEL_AARCH64
+ #else
+ #define NPY_CPU_ARMEL
+ #endif
+ #else
+ # error Unknown ARM CPU, please report this to numpy maintainers with \
+ information about your platform (OS, CPU and compiler)
+ #endif
+#elif defined(__sh__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_SH_LE
+#elif defined(__sh__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_SH_BE
+#elif defined(__MIPSEL__)
+ #define NPY_CPU_MIPSEL
+#elif defined(__MIPSEB__)
+ #define NPY_CPU_MIPSEB
+#elif defined(__or1k__)
+ #define NPY_CPU_OR1K
+#elif defined(__mc68000__)
+ #define NPY_CPU_M68K
+#elif defined(__arc__) && defined(__LITTLE_ENDIAN__)
+ #define NPY_CPU_ARCEL
+#elif defined(__arc__) && defined(__BIG_ENDIAN__)
+ #define NPY_CPU_ARCEB
+#elif defined(__riscv) && defined(__riscv_xlen) && __riscv_xlen == 64
+ #define NPY_CPU_RISCV64
+#elif defined(__EMSCRIPTEN__)
+ /* __EMSCRIPTEN__ is defined by emscripten: an LLVM-to-Web compiler */
+ #define NPY_CPU_WASM
+#else
+ #error Unknown CPU, please report this to numpy maintainers with \
+ information about your platform (OS, CPU and compiler)
+#endif
+
+/*
+ * Except for the following architectures, memory access is limited to the natural
+ * alignment of data types otherwise it may lead to bus error or performance regression.
+ * For more details about unaligned access, see https://www.kernel.org/doc/Documentation/unaligned-memory-access.txt.
+*/
+#if defined(NPY_CPU_X86) || defined(NPY_CPU_AMD64) || defined(__aarch64__) || defined(__powerpc64__)
+ #define NPY_ALIGNMENT_REQUIRED 0
+#endif
+#ifndef NPY_ALIGNMENT_REQUIRED
+ #define NPY_ALIGNMENT_REQUIRED 1
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_endian.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_endian.h
new file mode 100644
index 0000000000000000000000000000000000000000..aa367a002f0c5e014223c5053f29ad7cd9df8cb1
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_endian.h
@@ -0,0 +1,73 @@
+#ifndef _NPY_ENDIAN_H_
+#define _NPY_ENDIAN_H_
+
+/*
+ * NPY_BYTE_ORDER is set to the same value as BYTE_ORDER set by glibc in
+ * endian.h
+ */
+
+#if defined(NPY_HAVE_ENDIAN_H) || defined(NPY_HAVE_SYS_ENDIAN_H)
+ /* Use endian.h if available */
+
+ #if defined(NPY_HAVE_ENDIAN_H)
+ #include
+ #elif defined(NPY_HAVE_SYS_ENDIAN_H)
+ #include
+ #endif
+
+ #if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && defined(LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN BIG_ENDIAN
+ #elif defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && defined(_LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER _BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN _LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN _BIG_ENDIAN
+ #elif defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && defined(__LITTLE_ENDIAN)
+ #define NPY_BYTE_ORDER __BYTE_ORDER
+ #define NPY_LITTLE_ENDIAN __LITTLE_ENDIAN
+ #define NPY_BIG_ENDIAN __BIG_ENDIAN
+ #endif
+#endif
+
+#ifndef NPY_BYTE_ORDER
+ /* Set endianness info using target CPU */
+ #include "npy_cpu.h"
+
+ #define NPY_LITTLE_ENDIAN 1234
+ #define NPY_BIG_ENDIAN 4321
+
+ #if defined(NPY_CPU_X86) \
+ || defined(NPY_CPU_AMD64) \
+ || defined(NPY_CPU_IA64) \
+ || defined(NPY_CPU_ALPHA) \
+ || defined(NPY_CPU_ARMEL) \
+ || defined(NPY_CPU_ARMEL_AARCH32) \
+ || defined(NPY_CPU_ARMEL_AARCH64) \
+ || defined(NPY_CPU_SH_LE) \
+ || defined(NPY_CPU_MIPSEL) \
+ || defined(NPY_CPU_PPC64LE) \
+ || defined(NPY_CPU_ARCEL) \
+ || defined(NPY_CPU_RISCV64) \
+ || defined(NPY_CPU_WASM)
+ #define NPY_BYTE_ORDER NPY_LITTLE_ENDIAN
+ #elif defined(NPY_CPU_PPC) \
+ || defined(NPY_CPU_SPARC) \
+ || defined(NPY_CPU_S390) \
+ || defined(NPY_CPU_HPPA) \
+ || defined(NPY_CPU_PPC64) \
+ || defined(NPY_CPU_ARMEB) \
+ || defined(NPY_CPU_ARMEB_AARCH32) \
+ || defined(NPY_CPU_ARMEB_AARCH64) \
+ || defined(NPY_CPU_SH_BE) \
+ || defined(NPY_CPU_MIPSEB) \
+ || defined(NPY_CPU_OR1K) \
+ || defined(NPY_CPU_M68K) \
+ || defined(NPY_CPU_ARCEB)
+ #define NPY_BYTE_ORDER NPY_BIG_ENDIAN
+ #else
+ #error Unknown CPU: can not set endianness
+ #endif
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_interrupt.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_interrupt.h
new file mode 100644
index 0000000000000000000000000000000000000000..bcb539326e88028096032270e77843700d9c314e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_interrupt.h
@@ -0,0 +1,56 @@
+/*
+ * This API is only provided because it is part of publicly exported
+ * headers. Its use is considered DEPRECATED, and it will be removed
+ * eventually.
+ * (This includes the _PyArray_SigintHandler and _PyArray_GetSigintBuf
+ * functions which are however, public API, and not headers.)
+ *
+ * Instead of using these non-threadsafe macros consider periodically
+ * querying `PyErr_CheckSignals()` or `PyOS_InterruptOccurred()` will work.
+ * Both of these require holding the GIL, although cpython could add a
+ * version of `PyOS_InterruptOccurred()` which does not. Such a version
+ * actually exists as private API in Python 3.10, and backported to 3.9 and 3.8,
+ * see also https://bugs.python.org/issue41037 and
+ * https://github.com/python/cpython/pull/20599).
+ */
+
+#ifndef NPY_INTERRUPT_H
+#define NPY_INTERRUPT_H
+
+#ifndef NPY_NO_SIGNAL
+
+#include
+#include
+
+#ifndef sigsetjmp
+
+#define NPY_SIGSETJMP(arg1, arg2) setjmp(arg1)
+#define NPY_SIGLONGJMP(arg1, arg2) longjmp(arg1, arg2)
+#define NPY_SIGJMP_BUF jmp_buf
+
+#else
+
+#define NPY_SIGSETJMP(arg1, arg2) sigsetjmp(arg1, arg2)
+#define NPY_SIGLONGJMP(arg1, arg2) siglongjmp(arg1, arg2)
+#define NPY_SIGJMP_BUF sigjmp_buf
+
+#endif
+
+# define NPY_SIGINT_ON { \
+ PyOS_sighandler_t _npy_sig_save; \
+ _npy_sig_save = PyOS_setsig(SIGINT, _PyArray_SigintHandler); \
+ if (NPY_SIGSETJMP(*((NPY_SIGJMP_BUF *)_PyArray_GetSigintBuf()), \
+ 1) == 0) { \
+
+# define NPY_SIGINT_OFF } \
+ PyOS_setsig(SIGINT, _npy_sig_save); \
+ }
+
+#else /* NPY_NO_SIGNAL */
+
+#define NPY_SIGINT_ON
+#define NPY_SIGINT_OFF
+
+#endif /* HAVE_SIGSETJMP */
+
+#endif /* NPY_INTERRUPT_H */
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_math.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_math.h
new file mode 100644
index 0000000000000000000000000000000000000000..f32e298f081fbb3f4295ac6dd903abd492ed35dc
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_math.h
@@ -0,0 +1,588 @@
+#ifndef __NPY_MATH_C99_H_
+#define __NPY_MATH_C99_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include
+
+#include
+#ifdef __SUNPRO_CC
+#include
+#endif
+
+/* By adding static inline specifiers to npy_math function definitions when
+ appropriate, compiler is given the opportunity to optimize */
+#if NPY_INLINE_MATH
+#define NPY_INPLACE NPY_INLINE static
+#else
+#define NPY_INPLACE
+#endif
+
+
+/*
+ * NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99
+ * for INFINITY)
+ *
+ * XXX: I should test whether INFINITY and NAN are available on the platform
+ */
+NPY_INLINE static float __npy_inff(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL};
+ return __bint.__f;
+}
+
+NPY_INLINE static float __npy_nanf(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL};
+ return __bint.__f;
+}
+
+NPY_INLINE static float __npy_pzerof(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL};
+ return __bint.__f;
+}
+
+NPY_INLINE static float __npy_nzerof(void)
+{
+ const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL};
+ return __bint.__f;
+}
+
+#define NPY_INFINITYF __npy_inff()
+#define NPY_NANF __npy_nanf()
+#define NPY_PZEROF __npy_pzerof()
+#define NPY_NZEROF __npy_nzerof()
+
+#define NPY_INFINITY ((npy_double)NPY_INFINITYF)
+#define NPY_NAN ((npy_double)NPY_NANF)
+#define NPY_PZERO ((npy_double)NPY_PZEROF)
+#define NPY_NZERO ((npy_double)NPY_NZEROF)
+
+#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF)
+#define NPY_NANL ((npy_longdouble)NPY_NANF)
+#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF)
+#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF)
+
+/*
+ * Useful constants
+ */
+#define NPY_E 2.718281828459045235360287471352662498 /* e */
+#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */
+#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */
+#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */
+#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */
+#define NPY_PI 3.141592653589793238462643383279502884 /* pi */
+#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */
+#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
+#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
+#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
+#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */
+#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */
+#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
+
+#define NPY_Ef 2.718281828459045235360287471352662498F /* e */
+#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */
+#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */
+#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */
+#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */
+#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */
+#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */
+#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */
+#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */
+#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */
+#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constant */
+#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */
+#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */
+
+#define NPY_El 2.718281828459045235360287471352662498L /* e */
+#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
+#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
+#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */
+#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */
+#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */
+#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
+#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
+#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
+#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
+#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constant */
+#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
+#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
+
+/*
+ * Integer functions.
+ */
+NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b);
+
+NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b);
+NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b);
+NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b);
+NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b);
+NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b);
+NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b);
+
+NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b);
+NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b);
+NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b);
+NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b);
+NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b);
+NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b);
+NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b);
+
+/*
+ * C99 double math funcs
+ */
+NPY_INPLACE double npy_sin(double x);
+NPY_INPLACE double npy_cos(double x);
+NPY_INPLACE double npy_tan(double x);
+NPY_INPLACE double npy_sinh(double x);
+NPY_INPLACE double npy_cosh(double x);
+NPY_INPLACE double npy_tanh(double x);
+
+NPY_INPLACE double npy_asin(double x);
+NPY_INPLACE double npy_acos(double x);
+NPY_INPLACE double npy_atan(double x);
+
+NPY_INPLACE double npy_log(double x);
+NPY_INPLACE double npy_log10(double x);
+NPY_INPLACE double npy_exp(double x);
+NPY_INPLACE double npy_sqrt(double x);
+NPY_INPLACE double npy_cbrt(double x);
+
+NPY_INPLACE double npy_fabs(double x);
+NPY_INPLACE double npy_ceil(double x);
+NPY_INPLACE double npy_fmod(double x, double y);
+NPY_INPLACE double npy_floor(double x);
+
+NPY_INPLACE double npy_expm1(double x);
+NPY_INPLACE double npy_log1p(double x);
+NPY_INPLACE double npy_hypot(double x, double y);
+NPY_INPLACE double npy_acosh(double x);
+NPY_INPLACE double npy_asinh(double xx);
+NPY_INPLACE double npy_atanh(double x);
+NPY_INPLACE double npy_rint(double x);
+NPY_INPLACE double npy_trunc(double x);
+NPY_INPLACE double npy_exp2(double x);
+NPY_INPLACE double npy_log2(double x);
+
+NPY_INPLACE double npy_atan2(double x, double y);
+NPY_INPLACE double npy_pow(double x, double y);
+NPY_INPLACE double npy_modf(double x, double* y);
+NPY_INPLACE double npy_frexp(double x, int* y);
+NPY_INPLACE double npy_ldexp(double n, int y);
+
+NPY_INPLACE double npy_copysign(double x, double y);
+double npy_nextafter(double x, double y);
+double npy_spacing(double x);
+
+/*
+ * IEEE 754 fpu handling. Those are guaranteed to be macros
+ */
+
+/* use builtins to avoid function calls in tight loops
+ * only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISNAN
+ #define npy_isnan(x) __builtin_isnan(x)
+#else
+ #ifndef NPY_HAVE_DECL_ISNAN
+ #define npy_isnan(x) ((x) != (x))
+ #else
+ #if defined(_MSC_VER) && (_MSC_VER < 1900)
+ #define npy_isnan(x) _isnan((x))
+ #else
+ #define npy_isnan(x) isnan(x)
+ #endif
+ #endif
+#endif
+
+
+/* only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISFINITE
+ #define npy_isfinite(x) __builtin_isfinite(x)
+#else
+ #ifndef NPY_HAVE_DECL_ISFINITE
+ #ifdef _MSC_VER
+ #define npy_isfinite(x) _finite((x))
+ #else
+ #define npy_isfinite(x) !npy_isnan((x) + (-x))
+ #endif
+ #else
+ #define npy_isfinite(x) isfinite((x))
+ #endif
+#endif
+
+/* only available if npy_config.h is available (= numpys own build) */
+#ifdef HAVE___BUILTIN_ISINF
+ #define npy_isinf(x) __builtin_isinf(x)
+#else
+ #ifndef NPY_HAVE_DECL_ISINF
+ #define npy_isinf(x) (!npy_isfinite(x) && !npy_isnan(x))
+ #else
+ #if defined(_MSC_VER) && (_MSC_VER < 1900)
+ #define npy_isinf(x) (!_finite((x)) && !_isnan((x)))
+ #else
+ #define npy_isinf(x) isinf((x))
+ #endif
+ #endif
+#endif
+
+#ifndef NPY_HAVE_DECL_SIGNBIT
+ int _npy_signbit_f(float x);
+ int _npy_signbit_d(double x);
+ int _npy_signbit_ld(long double x);
+ #define npy_signbit(x) \
+ (sizeof (x) == sizeof (long double) ? _npy_signbit_ld (x) \
+ : sizeof (x) == sizeof (double) ? _npy_signbit_d (x) \
+ : _npy_signbit_f (x))
+#else
+ #define npy_signbit(x) signbit((x))
+#endif
+
+/*
+ * float C99 math functions
+ */
+NPY_INPLACE float npy_sinf(float x);
+NPY_INPLACE float npy_cosf(float x);
+NPY_INPLACE float npy_tanf(float x);
+NPY_INPLACE float npy_sinhf(float x);
+NPY_INPLACE float npy_coshf(float x);
+NPY_INPLACE float npy_tanhf(float x);
+NPY_INPLACE float npy_fabsf(float x);
+NPY_INPLACE float npy_floorf(float x);
+NPY_INPLACE float npy_ceilf(float x);
+NPY_INPLACE float npy_rintf(float x);
+NPY_INPLACE float npy_truncf(float x);
+NPY_INPLACE float npy_sqrtf(float x);
+NPY_INPLACE float npy_cbrtf(float x);
+NPY_INPLACE float npy_log10f(float x);
+NPY_INPLACE float npy_logf(float x);
+NPY_INPLACE float npy_expf(float x);
+NPY_INPLACE float npy_expm1f(float x);
+NPY_INPLACE float npy_asinf(float x);
+NPY_INPLACE float npy_acosf(float x);
+NPY_INPLACE float npy_atanf(float x);
+NPY_INPLACE float npy_asinhf(float x);
+NPY_INPLACE float npy_acoshf(float x);
+NPY_INPLACE float npy_atanhf(float x);
+NPY_INPLACE float npy_log1pf(float x);
+NPY_INPLACE float npy_exp2f(float x);
+NPY_INPLACE float npy_log2f(float x);
+
+NPY_INPLACE float npy_atan2f(float x, float y);
+NPY_INPLACE float npy_hypotf(float x, float y);
+NPY_INPLACE float npy_powf(float x, float y);
+NPY_INPLACE float npy_fmodf(float x, float y);
+
+NPY_INPLACE float npy_modff(float x, float* y);
+NPY_INPLACE float npy_frexpf(float x, int* y);
+NPY_INPLACE float npy_ldexpf(float x, int y);
+
+NPY_INPLACE float npy_copysignf(float x, float y);
+float npy_nextafterf(float x, float y);
+float npy_spacingf(float x);
+
+/*
+ * long double C99 math functions
+ */
+NPY_INPLACE npy_longdouble npy_sinl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_cosl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_tanl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_sinhl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_coshl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_tanhl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_fabsl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_floorl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_ceill(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_rintl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_truncl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_cbrtl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_log10l(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_logl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_expm1l(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_asinl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_acosl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_atanl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_asinhl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_acoshl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_atanhl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_log1pl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_exp2l(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_log2l(npy_longdouble x);
+
+NPY_INPLACE npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_fmodl(npy_longdouble x, npy_longdouble y);
+
+NPY_INPLACE npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y);
+NPY_INPLACE npy_longdouble npy_frexpl(npy_longdouble x, int* y);
+NPY_INPLACE npy_longdouble npy_ldexpl(npy_longdouble x, int y);
+
+NPY_INPLACE npy_longdouble npy_copysignl(npy_longdouble x, npy_longdouble y);
+npy_longdouble npy_nextafterl(npy_longdouble x, npy_longdouble y);
+npy_longdouble npy_spacingl(npy_longdouble x);
+
+/*
+ * Non standard functions
+ */
+NPY_INPLACE double npy_deg2rad(double x);
+NPY_INPLACE double npy_rad2deg(double x);
+NPY_INPLACE double npy_logaddexp(double x, double y);
+NPY_INPLACE double npy_logaddexp2(double x, double y);
+NPY_INPLACE double npy_divmod(double x, double y, double *modulus);
+NPY_INPLACE double npy_heaviside(double x, double h0);
+
+NPY_INPLACE float npy_deg2radf(float x);
+NPY_INPLACE float npy_rad2degf(float x);
+NPY_INPLACE float npy_logaddexpf(float x, float y);
+NPY_INPLACE float npy_logaddexp2f(float x, float y);
+NPY_INPLACE float npy_divmodf(float x, float y, float *modulus);
+NPY_INPLACE float npy_heavisidef(float x, float h0);
+
+NPY_INPLACE npy_longdouble npy_deg2radl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_rad2degl(npy_longdouble x);
+NPY_INPLACE npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y);
+NPY_INPLACE npy_longdouble npy_divmodl(npy_longdouble x, npy_longdouble y,
+ npy_longdouble *modulus);
+NPY_INPLACE npy_longdouble npy_heavisidel(npy_longdouble x, npy_longdouble h0);
+
+#define npy_degrees npy_rad2deg
+#define npy_degreesf npy_rad2degf
+#define npy_degreesl npy_rad2degl
+
+#define npy_radians npy_deg2rad
+#define npy_radiansf npy_deg2radf
+#define npy_radiansl npy_deg2radl
+
+/*
+ * Complex declarations
+ */
+
+/*
+ * C99 specifies that complex numbers have the same representation as
+ * an array of two elements, where the first element is the real part
+ * and the second element is the imaginary part.
+ */
+#define __NPY_CPACK_IMP(x, y, type, ctype) \
+ union { \
+ ctype z; \
+ type a[2]; \
+ } z1;; \
+ \
+ z1.a[0] = (x); \
+ z1.a[1] = (y); \
+ \
+ return z1.z;
+
+static NPY_INLINE npy_cdouble npy_cpack(double x, double y)
+{
+ __NPY_CPACK_IMP(x, y, double, npy_cdouble);
+}
+
+static NPY_INLINE npy_cfloat npy_cpackf(float x, float y)
+{
+ __NPY_CPACK_IMP(x, y, float, npy_cfloat);
+}
+
+static NPY_INLINE npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y)
+{
+ __NPY_CPACK_IMP(x, y, npy_longdouble, npy_clongdouble);
+}
+#undef __NPY_CPACK_IMP
+
+/*
+ * Same remark as above, but in the other direction: extract first/second
+ * member of complex number, assuming a C99-compatible representation
+ *
+ * Those are defineds as static inline, and such as a reasonable compiler would
+ * most likely compile this to one or two instructions (on CISC at least)
+ */
+#define __NPY_CEXTRACT_IMP(z, index, type, ctype) \
+ union { \
+ ctype z; \
+ type a[2]; \
+ } __z_repr; \
+ __z_repr.z = z; \
+ \
+ return __z_repr.a[index];
+
+static NPY_INLINE double npy_creal(npy_cdouble z)
+{
+ __NPY_CEXTRACT_IMP(z, 0, double, npy_cdouble);
+}
+
+static NPY_INLINE double npy_cimag(npy_cdouble z)
+{
+ __NPY_CEXTRACT_IMP(z, 1, double, npy_cdouble);
+}
+
+static NPY_INLINE float npy_crealf(npy_cfloat z)
+{
+ __NPY_CEXTRACT_IMP(z, 0, float, npy_cfloat);
+}
+
+static NPY_INLINE float npy_cimagf(npy_cfloat z)
+{
+ __NPY_CEXTRACT_IMP(z, 1, float, npy_cfloat);
+}
+
+static NPY_INLINE npy_longdouble npy_creall(npy_clongdouble z)
+{
+ __NPY_CEXTRACT_IMP(z, 0, npy_longdouble, npy_clongdouble);
+}
+
+static NPY_INLINE npy_longdouble npy_cimagl(npy_clongdouble z)
+{
+ __NPY_CEXTRACT_IMP(z, 1, npy_longdouble, npy_clongdouble);
+}
+#undef __NPY_CEXTRACT_IMP
+
+/*
+ * Double precision complex functions
+ */
+double npy_cabs(npy_cdouble z);
+double npy_carg(npy_cdouble z);
+
+npy_cdouble npy_cexp(npy_cdouble z);
+npy_cdouble npy_clog(npy_cdouble z);
+npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
+
+npy_cdouble npy_csqrt(npy_cdouble z);
+
+npy_cdouble npy_ccos(npy_cdouble z);
+npy_cdouble npy_csin(npy_cdouble z);
+npy_cdouble npy_ctan(npy_cdouble z);
+
+npy_cdouble npy_ccosh(npy_cdouble z);
+npy_cdouble npy_csinh(npy_cdouble z);
+npy_cdouble npy_ctanh(npy_cdouble z);
+
+npy_cdouble npy_cacos(npy_cdouble z);
+npy_cdouble npy_casin(npy_cdouble z);
+npy_cdouble npy_catan(npy_cdouble z);
+
+npy_cdouble npy_cacosh(npy_cdouble z);
+npy_cdouble npy_casinh(npy_cdouble z);
+npy_cdouble npy_catanh(npy_cdouble z);
+
+/*
+ * Single precision complex functions
+ */
+float npy_cabsf(npy_cfloat z);
+float npy_cargf(npy_cfloat z);
+
+npy_cfloat npy_cexpf(npy_cfloat z);
+npy_cfloat npy_clogf(npy_cfloat z);
+npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
+
+npy_cfloat npy_csqrtf(npy_cfloat z);
+
+npy_cfloat npy_ccosf(npy_cfloat z);
+npy_cfloat npy_csinf(npy_cfloat z);
+npy_cfloat npy_ctanf(npy_cfloat z);
+
+npy_cfloat npy_ccoshf(npy_cfloat z);
+npy_cfloat npy_csinhf(npy_cfloat z);
+npy_cfloat npy_ctanhf(npy_cfloat z);
+
+npy_cfloat npy_cacosf(npy_cfloat z);
+npy_cfloat npy_casinf(npy_cfloat z);
+npy_cfloat npy_catanf(npy_cfloat z);
+
+npy_cfloat npy_cacoshf(npy_cfloat z);
+npy_cfloat npy_casinhf(npy_cfloat z);
+npy_cfloat npy_catanhf(npy_cfloat z);
+
+
+/*
+ * Extended precision complex functions
+ */
+npy_longdouble npy_cabsl(npy_clongdouble z);
+npy_longdouble npy_cargl(npy_clongdouble z);
+
+npy_clongdouble npy_cexpl(npy_clongdouble z);
+npy_clongdouble npy_clogl(npy_clongdouble z);
+npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
+
+npy_clongdouble npy_csqrtl(npy_clongdouble z);
+
+npy_clongdouble npy_ccosl(npy_clongdouble z);
+npy_clongdouble npy_csinl(npy_clongdouble z);
+npy_clongdouble npy_ctanl(npy_clongdouble z);
+
+npy_clongdouble npy_ccoshl(npy_clongdouble z);
+npy_clongdouble npy_csinhl(npy_clongdouble z);
+npy_clongdouble npy_ctanhl(npy_clongdouble z);
+
+npy_clongdouble npy_cacosl(npy_clongdouble z);
+npy_clongdouble npy_casinl(npy_clongdouble z);
+npy_clongdouble npy_catanl(npy_clongdouble z);
+
+npy_clongdouble npy_cacoshl(npy_clongdouble z);
+npy_clongdouble npy_casinhl(npy_clongdouble z);
+npy_clongdouble npy_catanhl(npy_clongdouble z);
+
+
+/*
+ * Functions that set the floating point error
+ * status word.
+ */
+
+/*
+ * platform-dependent code translates floating point
+ * status to an integer sum of these values
+ */
+#define NPY_FPE_DIVIDEBYZERO 1
+#define NPY_FPE_OVERFLOW 2
+#define NPY_FPE_UNDERFLOW 4
+#define NPY_FPE_INVALID 8
+
+int npy_clear_floatstatus_barrier(char*);
+int npy_get_floatstatus_barrier(char*);
+/*
+ * use caution with these - clang and gcc8.1 are known to reorder calls
+ * to this form of the function which can defeat the check. The _barrier
+ * form of the call is preferable, where the argument is
+ * (char*)&local_variable
+ */
+int npy_clear_floatstatus(void);
+int npy_get_floatstatus(void);
+
+void npy_set_floatstatus_divbyzero(void);
+void npy_set_floatstatus_overflow(void);
+void npy_set_floatstatus_underflow(void);
+void npy_set_floatstatus_invalid(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#if NPY_INLINE_MATH
+#include "npy_math_internal.h"
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_no_deprecated_api.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_no_deprecated_api.h
new file mode 100644
index 0000000000000000000000000000000000000000..6183dc2784a78cced397e5bec4d3505122b9de53
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_no_deprecated_api.h
@@ -0,0 +1,19 @@
+/*
+ * This include file is provided for inclusion in Cython *.pyd files where
+ * one would like to define the NPY_NO_DEPRECATED_API macro. It can be
+ * included by
+ *
+ * cdef extern from "npy_no_deprecated_api.h": pass
+ *
+ */
+#ifndef NPY_NO_DEPRECATED_API
+
+/* put this check here since there may be multiple includes in C extensions. */
+#if defined(NDARRAYTYPES_H) || defined(_NPY_DEPRECATED_API_H) || \
+ defined(OLD_DEFINES_H)
+#error "npy_no_deprecated_api.h" must be first among numpy includes.
+#else
+#define NPY_NO_DEPRECATED_API NPY_API_VERSION
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_os.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_os.h
new file mode 100644
index 0000000000000000000000000000000000000000..9228c3916eab57b3275c7786ab0572619044596c
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/npy_os.h
@@ -0,0 +1,30 @@
+#ifndef _NPY_OS_H_
+#define _NPY_OS_H_
+
+#if defined(linux) || defined(__linux) || defined(__linux__)
+ #define NPY_OS_LINUX
+#elif defined(__FreeBSD__) || defined(__NetBSD__) || \
+ defined(__OpenBSD__) || defined(__DragonFly__)
+ #define NPY_OS_BSD
+ #ifdef __FreeBSD__
+ #define NPY_OS_FREEBSD
+ #elif defined(__NetBSD__)
+ #define NPY_OS_NETBSD
+ #elif defined(__OpenBSD__)
+ #define NPY_OS_OPENBSD
+ #elif defined(__DragonFly__)
+ #define NPY_OS_DRAGONFLY
+ #endif
+#elif defined(sun) || defined(__sun)
+ #define NPY_OS_SOLARIS
+#elif defined(__CYGWIN__)
+ #define NPY_OS_CYGWIN
+#elif defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
+ #define NPY_OS_WIN32
+#elif defined(__APPLE__)
+ #define NPY_OS_DARWIN
+#else
+ #define NPY_OS_UNKNOWN
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/numpyconfig.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/numpyconfig.h
new file mode 100644
index 0000000000000000000000000000000000000000..3909aa9c8776aae78c591ab5dc7f3da39332bcb7
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/numpyconfig.h
@@ -0,0 +1,60 @@
+#ifndef _NPY_NUMPYCONFIG_H_
+#define _NPY_NUMPYCONFIG_H_
+
+#include "_numpyconfig.h"
+
+/*
+ * On Mac OS X, because there is only one configuration stage for all the archs
+ * in universal builds, any macro which depends on the arch needs to be
+ * hardcoded
+ */
+#ifdef __APPLE__
+ #undef NPY_SIZEOF_LONG
+ #undef NPY_SIZEOF_PY_INTPTR_T
+
+ #ifdef __LP64__
+ #define NPY_SIZEOF_LONG 8
+ #define NPY_SIZEOF_PY_INTPTR_T 8
+ #else
+ #define NPY_SIZEOF_LONG 4
+ #define NPY_SIZEOF_PY_INTPTR_T 4
+ #endif
+
+ #undef NPY_SIZEOF_LONGDOUBLE
+ #undef NPY_SIZEOF_COMPLEX_LONGDOUBLE
+
+ #ifdef __x86_64
+ #define NPY_SIZEOF_LONGDOUBLE 16
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
+ #elif defined(__arm64__)
+ #define NPY_SIZEOF_LONGDOUBLE 8
+ #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 16
+ #else
+ #error "unknown architecture"
+ #endif
+#endif
+
+/**
+ * To help with the NPY_NO_DEPRECATED_API macro, we include API version
+ * numbers for specific versions of NumPy. To exclude all API that was
+ * deprecated as of 1.7, add the following before #including any NumPy
+ * headers:
+ * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+ */
+#define NPY_1_7_API_VERSION 0x00000007
+#define NPY_1_8_API_VERSION 0x00000008
+#define NPY_1_9_API_VERSION 0x00000008
+#define NPY_1_10_API_VERSION 0x00000008
+#define NPY_1_11_API_VERSION 0x00000008
+#define NPY_1_12_API_VERSION 0x00000008
+#define NPY_1_13_API_VERSION 0x00000008
+#define NPY_1_14_API_VERSION 0x00000008
+#define NPY_1_15_API_VERSION 0x00000008
+#define NPY_1_16_API_VERSION 0x00000008
+#define NPY_1_17_API_VERSION 0x00000008
+#define NPY_1_18_API_VERSION 0x00000008
+#define NPY_1_19_API_VERSION 0x00000008
+#define NPY_1_20_API_VERSION 0x0000000e
+#define NPY_1_21_API_VERSION 0x0000000e
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/old_defines.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/old_defines.h
new file mode 100644
index 0000000000000000000000000000000000000000..abf81595ae1602b9a6ade9cd97388f815bbf6518
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/old_defines.h
@@ -0,0 +1,187 @@
+/* This header is deprecated as of NumPy 1.7 */
+#ifndef OLD_DEFINES_H
+#define OLD_DEFINES_H
+
+#if defined(NPY_NO_DEPRECATED_API) && NPY_NO_DEPRECATED_API >= NPY_1_7_API_VERSION
+#error The header "old_defines.h" is deprecated as of NumPy 1.7.
+#endif
+
+#define NDARRAY_VERSION NPY_VERSION
+
+#define PyArray_MIN_BUFSIZE NPY_MIN_BUFSIZE
+#define PyArray_MAX_BUFSIZE NPY_MAX_BUFSIZE
+#define PyArray_BUFSIZE NPY_BUFSIZE
+
+#define PyArray_PRIORITY NPY_PRIORITY
+#define PyArray_SUBTYPE_PRIORITY NPY_PRIORITY
+#define PyArray_NUM_FLOATTYPE NPY_NUM_FLOATTYPE
+
+#define NPY_MAX PyArray_MAX
+#define NPY_MIN PyArray_MIN
+
+#define PyArray_TYPES NPY_TYPES
+#define PyArray_BOOL NPY_BOOL
+#define PyArray_BYTE NPY_BYTE
+#define PyArray_UBYTE NPY_UBYTE
+#define PyArray_SHORT NPY_SHORT
+#define PyArray_USHORT NPY_USHORT
+#define PyArray_INT NPY_INT
+#define PyArray_UINT NPY_UINT
+#define PyArray_LONG NPY_LONG
+#define PyArray_ULONG NPY_ULONG
+#define PyArray_LONGLONG NPY_LONGLONG
+#define PyArray_ULONGLONG NPY_ULONGLONG
+#define PyArray_HALF NPY_HALF
+#define PyArray_FLOAT NPY_FLOAT
+#define PyArray_DOUBLE NPY_DOUBLE
+#define PyArray_LONGDOUBLE NPY_LONGDOUBLE
+#define PyArray_CFLOAT NPY_CFLOAT
+#define PyArray_CDOUBLE NPY_CDOUBLE
+#define PyArray_CLONGDOUBLE NPY_CLONGDOUBLE
+#define PyArray_OBJECT NPY_OBJECT
+#define PyArray_STRING NPY_STRING
+#define PyArray_UNICODE NPY_UNICODE
+#define PyArray_VOID NPY_VOID
+#define PyArray_DATETIME NPY_DATETIME
+#define PyArray_TIMEDELTA NPY_TIMEDELTA
+#define PyArray_NTYPES NPY_NTYPES
+#define PyArray_NOTYPE NPY_NOTYPE
+#define PyArray_CHAR NPY_CHAR
+#define PyArray_USERDEF NPY_USERDEF
+#define PyArray_NUMUSERTYPES NPY_NUMUSERTYPES
+
+#define PyArray_INTP NPY_INTP
+#define PyArray_UINTP NPY_UINTP
+
+#define PyArray_INT8 NPY_INT8
+#define PyArray_UINT8 NPY_UINT8
+#define PyArray_INT16 NPY_INT16
+#define PyArray_UINT16 NPY_UINT16
+#define PyArray_INT32 NPY_INT32
+#define PyArray_UINT32 NPY_UINT32
+
+#ifdef NPY_INT64
+#define PyArray_INT64 NPY_INT64
+#define PyArray_UINT64 NPY_UINT64
+#endif
+
+#ifdef NPY_INT128
+#define PyArray_INT128 NPY_INT128
+#define PyArray_UINT128 NPY_UINT128
+#endif
+
+#ifdef NPY_FLOAT16
+#define PyArray_FLOAT16 NPY_FLOAT16
+#define PyArray_COMPLEX32 NPY_COMPLEX32
+#endif
+
+#ifdef NPY_FLOAT80
+#define PyArray_FLOAT80 NPY_FLOAT80
+#define PyArray_COMPLEX160 NPY_COMPLEX160
+#endif
+
+#ifdef NPY_FLOAT96
+#define PyArray_FLOAT96 NPY_FLOAT96
+#define PyArray_COMPLEX192 NPY_COMPLEX192
+#endif
+
+#ifdef NPY_FLOAT128
+#define PyArray_FLOAT128 NPY_FLOAT128
+#define PyArray_COMPLEX256 NPY_COMPLEX256
+#endif
+
+#define PyArray_FLOAT32 NPY_FLOAT32
+#define PyArray_COMPLEX64 NPY_COMPLEX64
+#define PyArray_FLOAT64 NPY_FLOAT64
+#define PyArray_COMPLEX128 NPY_COMPLEX128
+
+
+#define PyArray_TYPECHAR NPY_TYPECHAR
+#define PyArray_BOOLLTR NPY_BOOLLTR
+#define PyArray_BYTELTR NPY_BYTELTR
+#define PyArray_UBYTELTR NPY_UBYTELTR
+#define PyArray_SHORTLTR NPY_SHORTLTR
+#define PyArray_USHORTLTR NPY_USHORTLTR
+#define PyArray_INTLTR NPY_INTLTR
+#define PyArray_UINTLTR NPY_UINTLTR
+#define PyArray_LONGLTR NPY_LONGLTR
+#define PyArray_ULONGLTR NPY_ULONGLTR
+#define PyArray_LONGLONGLTR NPY_LONGLONGLTR
+#define PyArray_ULONGLONGLTR NPY_ULONGLONGLTR
+#define PyArray_HALFLTR NPY_HALFLTR
+#define PyArray_FLOATLTR NPY_FLOATLTR
+#define PyArray_DOUBLELTR NPY_DOUBLELTR
+#define PyArray_LONGDOUBLELTR NPY_LONGDOUBLELTR
+#define PyArray_CFLOATLTR NPY_CFLOATLTR
+#define PyArray_CDOUBLELTR NPY_CDOUBLELTR
+#define PyArray_CLONGDOUBLELTR NPY_CLONGDOUBLELTR
+#define PyArray_OBJECTLTR NPY_OBJECTLTR
+#define PyArray_STRINGLTR NPY_STRINGLTR
+#define PyArray_STRINGLTR2 NPY_STRINGLTR2
+#define PyArray_UNICODELTR NPY_UNICODELTR
+#define PyArray_VOIDLTR NPY_VOIDLTR
+#define PyArray_DATETIMELTR NPY_DATETIMELTR
+#define PyArray_TIMEDELTALTR NPY_TIMEDELTALTR
+#define PyArray_CHARLTR NPY_CHARLTR
+#define PyArray_INTPLTR NPY_INTPLTR
+#define PyArray_UINTPLTR NPY_UINTPLTR
+#define PyArray_GENBOOLLTR NPY_GENBOOLLTR
+#define PyArray_SIGNEDLTR NPY_SIGNEDLTR
+#define PyArray_UNSIGNEDLTR NPY_UNSIGNEDLTR
+#define PyArray_FLOATINGLTR NPY_FLOATINGLTR
+#define PyArray_COMPLEXLTR NPY_COMPLEXLTR
+
+#define PyArray_QUICKSORT NPY_QUICKSORT
+#define PyArray_HEAPSORT NPY_HEAPSORT
+#define PyArray_MERGESORT NPY_MERGESORT
+#define PyArray_SORTKIND NPY_SORTKIND
+#define PyArray_NSORTS NPY_NSORTS
+
+#define PyArray_NOSCALAR NPY_NOSCALAR
+#define PyArray_BOOL_SCALAR NPY_BOOL_SCALAR
+#define PyArray_INTPOS_SCALAR NPY_INTPOS_SCALAR
+#define PyArray_INTNEG_SCALAR NPY_INTNEG_SCALAR
+#define PyArray_FLOAT_SCALAR NPY_FLOAT_SCALAR
+#define PyArray_COMPLEX_SCALAR NPY_COMPLEX_SCALAR
+#define PyArray_OBJECT_SCALAR NPY_OBJECT_SCALAR
+#define PyArray_SCALARKIND NPY_SCALARKIND
+#define PyArray_NSCALARKINDS NPY_NSCALARKINDS
+
+#define PyArray_ANYORDER NPY_ANYORDER
+#define PyArray_CORDER NPY_CORDER
+#define PyArray_FORTRANORDER NPY_FORTRANORDER
+#define PyArray_ORDER NPY_ORDER
+
+#define PyDescr_ISBOOL PyDataType_ISBOOL
+#define PyDescr_ISUNSIGNED PyDataType_ISUNSIGNED
+#define PyDescr_ISSIGNED PyDataType_ISSIGNED
+#define PyDescr_ISINTEGER PyDataType_ISINTEGER
+#define PyDescr_ISFLOAT PyDataType_ISFLOAT
+#define PyDescr_ISNUMBER PyDataType_ISNUMBER
+#define PyDescr_ISSTRING PyDataType_ISSTRING
+#define PyDescr_ISCOMPLEX PyDataType_ISCOMPLEX
+#define PyDescr_ISPYTHON PyDataType_ISPYTHON
+#define PyDescr_ISFLEXIBLE PyDataType_ISFLEXIBLE
+#define PyDescr_ISUSERDEF PyDataType_ISUSERDEF
+#define PyDescr_ISEXTENDED PyDataType_ISEXTENDED
+#define PyDescr_ISOBJECT PyDataType_ISOBJECT
+#define PyDescr_HASFIELDS PyDataType_HASFIELDS
+
+#define PyArray_LITTLE NPY_LITTLE
+#define PyArray_BIG NPY_BIG
+#define PyArray_NATIVE NPY_NATIVE
+#define PyArray_SWAP NPY_SWAP
+#define PyArray_IGNORE NPY_IGNORE
+
+#define PyArray_NATBYTE NPY_NATBYTE
+#define PyArray_OPPBYTE NPY_OPPBYTE
+
+#define PyArray_MAX_ELSIZE NPY_MAX_ELSIZE
+
+#define PyArray_USE_PYMEM NPY_USE_PYMEM
+
+#define PyArray_RemoveLargest PyArray_RemoveSmallest
+
+#define PyArray_UCS4 npy_ucs4
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/oldnumeric.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/oldnumeric.h
new file mode 100644
index 0000000000000000000000000000000000000000..38530faf045a9cfc54750be6b12ec725c77cf231
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/oldnumeric.h
@@ -0,0 +1,25 @@
+#include "arrayobject.h"
+
+#ifndef PYPY_VERSION
+#ifndef REFCOUNT
+# define REFCOUNT NPY_REFCOUNT
+# define MAX_ELSIZE 16
+#endif
+#endif
+
+#define PyArray_UNSIGNED_TYPES
+#define PyArray_SBYTE NPY_BYTE
+#define PyArray_CopyArray PyArray_CopyInto
+#define _PyArray_multiply_list PyArray_MultiplyIntList
+#define PyArray_ISSPACESAVER(m) NPY_FALSE
+#define PyScalarArray_Check PyArray_CheckScalar
+
+#define CONTIGUOUS NPY_CONTIGUOUS
+#define OWN_DIMENSIONS 0
+#define OWN_STRIDES 0
+#define OWN_DATA NPY_OWNDATA
+#define SAVESPACE 0
+#define SAVESPACEBIT 0
+
+#undef import_array
+#define import_array() { if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); } }
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/bitgen.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/bitgen.h
new file mode 100644
index 0000000000000000000000000000000000000000..83c2858ddf1dd5de3bdb988c752ec2bf8427281c
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/bitgen.h
@@ -0,0 +1,20 @@
+#ifndef _RANDOM_BITGEN_H
+#define _RANDOM_BITGEN_H
+
+#pragma once
+#include
+#include
+#include
+
+/* Must match the declaration in numpy/random/.pxd */
+
+typedef struct bitgen {
+ void *state;
+ uint64_t (*next_uint64)(void *st);
+ uint32_t (*next_uint32)(void *st);
+ double (*next_double)(void *st);
+ uint64_t (*next_raw)(void *st);
+} bitgen_t;
+
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/distributions.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/distributions.h
new file mode 100644
index 0000000000000000000000000000000000000000..c58024605ff514393155727458076eb6f8990f27
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/random/distributions.h
@@ -0,0 +1,209 @@
+#ifndef _RANDOMDGEN__DISTRIBUTIONS_H_
+#define _RANDOMDGEN__DISTRIBUTIONS_H_
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "Python.h"
+#include "numpy/npy_common.h"
+#include
+#include
+#include
+
+#include "numpy/npy_math.h"
+#include "numpy/random/bitgen.h"
+
+/*
+ * RAND_INT_TYPE is used to share integer generators with RandomState which
+ * used long in place of int64_t. If changing a distribution that uses
+ * RAND_INT_TYPE, then the original unmodified copy must be retained for
+ * use in RandomState by copying to the legacy distributions source file.
+ */
+#ifdef NP_RANDOM_LEGACY
+#define RAND_INT_TYPE long
+#define RAND_INT_MAX LONG_MAX
+#else
+#define RAND_INT_TYPE int64_t
+#define RAND_INT_MAX INT64_MAX
+#endif
+
+#ifdef _MSC_VER
+#define DECLDIR __declspec(dllexport)
+#else
+#define DECLDIR extern
+#endif
+
+#ifndef MIN
+#define MIN(x, y) (((x) < (y)) ? x : y)
+#define MAX(x, y) (((x) > (y)) ? x : y)
+#endif
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846264338328
+#endif
+
+typedef struct s_binomial_t {
+ int has_binomial; /* !=0: following parameters initialized for binomial */
+ double psave;
+ RAND_INT_TYPE nsave;
+ double r;
+ double q;
+ double fm;
+ RAND_INT_TYPE m;
+ double p1;
+ double xm;
+ double xl;
+ double xr;
+ double c;
+ double laml;
+ double lamr;
+ double p2;
+ double p3;
+ double p4;
+} binomial_t;
+
+DECLDIR float random_standard_uniform_f(bitgen_t *bitgen_state);
+DECLDIR double random_standard_uniform(bitgen_t *bitgen_state);
+DECLDIR void random_standard_uniform_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_uniform_fill_f(bitgen_t *, npy_intp, float *);
+
+DECLDIR int64_t random_positive_int64(bitgen_t *bitgen_state);
+DECLDIR int32_t random_positive_int32(bitgen_t *bitgen_state);
+DECLDIR int64_t random_positive_int(bitgen_t *bitgen_state);
+DECLDIR uint64_t random_uint(bitgen_t *bitgen_state);
+
+DECLDIR double random_standard_exponential(bitgen_t *bitgen_state);
+DECLDIR float random_standard_exponential_f(bitgen_t *bitgen_state);
+DECLDIR void random_standard_exponential_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_exponential_fill_f(bitgen_t *, npy_intp, float *);
+DECLDIR void random_standard_exponential_inv_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_exponential_inv_fill_f(bitgen_t *, npy_intp, float *);
+
+DECLDIR double random_standard_normal(bitgen_t *bitgen_state);
+DECLDIR float random_standard_normal_f(bitgen_t *bitgen_state);
+DECLDIR void random_standard_normal_fill(bitgen_t *, npy_intp, double *);
+DECLDIR void random_standard_normal_fill_f(bitgen_t *, npy_intp, float *);
+DECLDIR double random_standard_gamma(bitgen_t *bitgen_state, double shape);
+DECLDIR float random_standard_gamma_f(bitgen_t *bitgen_state, float shape);
+
+DECLDIR double random_normal(bitgen_t *bitgen_state, double loc, double scale);
+
+DECLDIR double random_gamma(bitgen_t *bitgen_state, double shape, double scale);
+DECLDIR float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale);
+
+DECLDIR double random_exponential(bitgen_t *bitgen_state, double scale);
+DECLDIR double random_uniform(bitgen_t *bitgen_state, double lower, double range);
+DECLDIR double random_beta(bitgen_t *bitgen_state, double a, double b);
+DECLDIR double random_chisquare(bitgen_t *bitgen_state, double df);
+DECLDIR double random_f(bitgen_t *bitgen_state, double dfnum, double dfden);
+DECLDIR double random_standard_cauchy(bitgen_t *bitgen_state);
+DECLDIR double random_pareto(bitgen_t *bitgen_state, double a);
+DECLDIR double random_weibull(bitgen_t *bitgen_state, double a);
+DECLDIR double random_power(bitgen_t *bitgen_state, double a);
+DECLDIR double random_laplace(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_gumbel(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_logistic(bitgen_t *bitgen_state, double loc, double scale);
+DECLDIR double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma);
+DECLDIR double random_rayleigh(bitgen_t *bitgen_state, double mode);
+DECLDIR double random_standard_t(bitgen_t *bitgen_state, double df);
+DECLDIR double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
+ double nonc);
+DECLDIR double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
+ double dfden, double nonc);
+DECLDIR double random_wald(bitgen_t *bitgen_state, double mean, double scale);
+DECLDIR double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa);
+DECLDIR double random_triangular(bitgen_t *bitgen_state, double left, double mode,
+ double right);
+
+DECLDIR RAND_INT_TYPE random_poisson(bitgen_t *bitgen_state, double lam);
+DECLDIR RAND_INT_TYPE random_negative_binomial(bitgen_t *bitgen_state, double n,
+ double p);
+
+DECLDIR int64_t random_binomial(bitgen_t *bitgen_state, double p,
+ int64_t n, binomial_t *binomial);
+
+DECLDIR int64_t random_logseries(bitgen_t *bitgen_state, double p);
+DECLDIR int64_t random_geometric(bitgen_t *bitgen_state, double p);
+DECLDIR RAND_INT_TYPE random_geometric_search(bitgen_t *bitgen_state, double p);
+DECLDIR RAND_INT_TYPE random_zipf(bitgen_t *bitgen_state, double a);
+DECLDIR int64_t random_hypergeometric(bitgen_t *bitgen_state,
+ int64_t good, int64_t bad, int64_t sample);
+DECLDIR uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max);
+
+/* Generate random uint64 numbers in closed interval [off, off + rng]. */
+DECLDIR uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off,
+ uint64_t rng, uint64_t mask,
+ bool use_masked);
+
+/* Generate random uint32 numbers in closed interval [off, off + rng]. */
+DECLDIR uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state,
+ uint32_t off, uint32_t rng,
+ uint32_t mask, bool use_masked,
+ int *bcnt, uint32_t *buf);
+DECLDIR uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state,
+ uint16_t off, uint16_t rng,
+ uint16_t mask, bool use_masked,
+ int *bcnt, uint32_t *buf);
+DECLDIR uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, uint8_t off,
+ uint8_t rng, uint8_t mask,
+ bool use_masked, int *bcnt,
+ uint32_t *buf);
+DECLDIR npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, npy_bool off,
+ npy_bool rng, npy_bool mask,
+ bool use_masked, int *bcnt,
+ uint32_t *buf);
+
+DECLDIR void random_bounded_uint64_fill(bitgen_t *bitgen_state, uint64_t off,
+ uint64_t rng, npy_intp cnt,
+ bool use_masked, uint64_t *out);
+DECLDIR void random_bounded_uint32_fill(bitgen_t *bitgen_state, uint32_t off,
+ uint32_t rng, npy_intp cnt,
+ bool use_masked, uint32_t *out);
+DECLDIR void random_bounded_uint16_fill(bitgen_t *bitgen_state, uint16_t off,
+ uint16_t rng, npy_intp cnt,
+ bool use_masked, uint16_t *out);
+DECLDIR void random_bounded_uint8_fill(bitgen_t *bitgen_state, uint8_t off,
+ uint8_t rng, npy_intp cnt,
+ bool use_masked, uint8_t *out);
+DECLDIR void random_bounded_bool_fill(bitgen_t *bitgen_state, npy_bool off,
+ npy_bool rng, npy_intp cnt,
+ bool use_masked, npy_bool *out);
+
+DECLDIR void random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n, RAND_INT_TYPE *mnix,
+ double *pix, npy_intp d, binomial_t *binomial);
+
+/* multivariate hypergeometric, "count" method */
+DECLDIR int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates);
+
+/* multivariate hypergeometric, "marginals" method */
+DECLDIR void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state,
+ int64_t total,
+ size_t num_colors, int64_t *colors,
+ int64_t nsample,
+ size_t num_variates, int64_t *variates);
+
+/* Common to legacy-distributions.c and distributions.c but not exported */
+
+RAND_INT_TYPE random_binomial_btpe(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state,
+ RAND_INT_TYPE n,
+ double p,
+ binomial_t *binomial);
+double random_loggam(double x);
+static NPY_INLINE double next_double(bitgen_t *bitgen_state) {
+ return bitgen_state->next_double(bitgen_state->state);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufunc_api.txt b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufunc_api.txt
new file mode 100644
index 0000000000000000000000000000000000000000..20a8a75f5639af601c55721f840122f24eb3d663
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufunc_api.txt
@@ -0,0 +1,335 @@
+
+=================
+NumPy Ufunc C-API
+=================
+::
+
+ PyObject *
+ PyUFunc_FromFuncAndData(PyUFuncGenericFunction *func, void
+ **data, char *types, int ntypes, int nin, int
+ nout, int identity, const char *name, const
+ char *doc, int unused)
+
+
+::
+
+ int
+ PyUFunc_RegisterLoopForType(PyUFuncObject *ufunc, int
+ usertype, PyUFuncGenericFunction
+ function, const int *arg_types, void
+ *data)
+
+
+::
+
+ int
+ PyUFunc_GenericFunction(PyUFuncObject *NPY_UNUSED(ufunc) , PyObject
+ *NPY_UNUSED(args) , PyObject *NPY_UNUSED(kwds)
+ , PyArrayObject **NPY_UNUSED(op) )
+
+
+::
+
+ void
+ PyUFunc_f_f_As_d_d(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_d_d(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_f_f(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_g_g(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_F_F_As_D_D(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_F_F(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_D_D(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_G_G(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_O_O(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_ff_f_As_dd_d(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_ff_f(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_dd_d(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_gg_g(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_FF_F_As_DD_D(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_DD_D(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_FF_F(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_GG_G(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_OO_O(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_O_O_method(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_OO_O_method(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_On_Om(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ int
+ PyUFunc_GetPyValues(char *name, int *bufsize, int *errmask, PyObject
+ **errobj)
+
+
+On return, if errobj is populated with a non-NULL value, the caller
+owns a new reference to errobj.
+
+::
+
+ int
+ PyUFunc_checkfperr(int errmask, PyObject *errobj, int *first)
+
+
+::
+
+ void
+ PyUFunc_clearfperr()
+
+
+::
+
+ int
+ PyUFunc_getfperr(void )
+
+
+::
+
+ int
+ PyUFunc_handlefperr(int errmask, PyObject *errobj, int retstatus, int
+ *first)
+
+
+::
+
+ int
+ PyUFunc_ReplaceLoopBySignature(PyUFuncObject
+ *func, PyUFuncGenericFunction
+ newfunc, const int
+ *signature, PyUFuncGenericFunction
+ *oldfunc)
+
+
+::
+
+ PyObject *
+ PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction *func, void
+ **data, char *types, int
+ ntypes, int nin, int nout, int
+ identity, const char *name, const
+ char *doc, int unused, const char
+ *signature)
+
+
+::
+
+ int
+ PyUFunc_SetUsesArraysAsData(void **NPY_UNUSED(data) , size_t
+ NPY_UNUSED(i) )
+
+
+::
+
+ void
+ PyUFunc_e_e(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_e_e_As_f_f(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_e_e_As_d_d(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_ee_e(char **args, npy_intp const *dimensions, npy_intp const
+ *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_ee_e_As_ff_f(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ void
+ PyUFunc_ee_e_As_dd_d(char **args, npy_intp const *dimensions, npy_intp
+ const *steps, void *func)
+
+
+::
+
+ int
+ PyUFunc_DefaultTypeResolver(PyUFuncObject *ufunc, NPY_CASTING
+ casting, PyArrayObject
+ **operands, PyObject
+ *type_tup, PyArray_Descr **out_dtypes)
+
+
+This function applies the default type resolution rules
+for the provided ufunc.
+
+Returns 0 on success, -1 on error.
+
+::
+
+ int
+ PyUFunc_ValidateCasting(PyUFuncObject *ufunc, NPY_CASTING
+ casting, PyArrayObject
+ **operands, PyArray_Descr **dtypes)
+
+
+Validates that the input operands can be cast to
+the input types, and the output types can be cast to
+the output operands where provided.
+
+Returns 0 on success, -1 (with exception raised) on validation failure.
+
+::
+
+ int
+ PyUFunc_RegisterLoopForDescr(PyUFuncObject *ufunc, PyArray_Descr
+ *user_dtype, PyUFuncGenericFunction
+ function, PyArray_Descr
+ **arg_dtypes, void *data)
+
+
+::
+
+ PyObject *
+ PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction
+ *func, void
+ **data, char
+ *types, int ntypes, int
+ nin, int nout, int
+ identity, const char
+ *name, const char
+ *doc, const int
+ unused, const char
+ *signature, PyObject
+ *identity_value)
+
+
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufuncobject.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufuncobject.h
new file mode 100644
index 0000000000000000000000000000000000000000..333a326ee60e7c61ed10a2839c2c48a62bf3607e
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/ufuncobject.h
@@ -0,0 +1,373 @@
+#ifndef Py_UFUNCOBJECT_H
+#define Py_UFUNCOBJECT_H
+
+#include
+#include
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * The legacy generic inner loop for a standard element-wise or
+ * generalized ufunc.
+ */
+typedef void (*PyUFuncGenericFunction)
+ (char **args,
+ npy_intp const *dimensions,
+ npy_intp const *strides,
+ void *innerloopdata);
+
+/*
+ * The most generic one-dimensional inner loop for
+ * a masked standard element-wise ufunc. "Masked" here means that it skips
+ * doing calculations on any items for which the maskptr array has a true
+ * value.
+ */
+typedef void (PyUFunc_MaskedStridedInnerLoopFunc)(
+ char **dataptrs, npy_intp *strides,
+ char *maskptr, npy_intp mask_stride,
+ npy_intp count,
+ NpyAuxData *innerloopdata);
+
+/* Forward declaration for the type resolver and loop selector typedefs */
+struct _tagPyUFuncObject;
+
+/*
+ * Given the operands for calling a ufunc, should determine the
+ * calculation input and output data types and return an inner loop function.
+ * This function should validate that the casting rule is being followed,
+ * and fail if it is not.
+ *
+ * For backwards compatibility, the regular type resolution function does not
+ * support auxiliary data with object semantics. The type resolution call
+ * which returns a masked generic function returns a standard NpyAuxData
+ * object, for which the NPY_AUXDATA_FREE and NPY_AUXDATA_CLONE macros
+ * work.
+ *
+ * ufunc: The ufunc object.
+ * casting: The 'casting' parameter provided to the ufunc.
+ * operands: An array of length (ufunc->nin + ufunc->nout),
+ * with the output parameters possibly NULL.
+ * type_tup: Either NULL, or the type_tup passed to the ufunc.
+ * out_dtypes: An array which should be populated with new
+ * references to (ufunc->nin + ufunc->nout) new
+ * dtypes, one for each input and output. These
+ * dtypes should all be in native-endian format.
+ *
+ * Should return 0 on success, -1 on failure (with exception set),
+ * or -2 if Py_NotImplemented should be returned.
+ */
+typedef int (PyUFunc_TypeResolutionFunc)(
+ struct _tagPyUFuncObject *ufunc,
+ NPY_CASTING casting,
+ PyArrayObject **operands,
+ PyObject *type_tup,
+ PyArray_Descr **out_dtypes);
+
+/*
+ * Given an array of DTypes as returned by the PyUFunc_TypeResolutionFunc,
+ * and an array of fixed strides (the array will contain NPY_MAX_INTP for
+ * strides which are not necessarily fixed), returns an inner loop
+ * with associated auxiliary data.
+ *
+ * For backwards compatibility, there is a variant of the inner loop
+ * selection which returns an inner loop irrespective of the strides,
+ * and with a void* static auxiliary data instead of an NpyAuxData *
+ * dynamically allocatable auxiliary data.
+ *
+ * ufunc: The ufunc object.
+ * dtypes: An array which has been populated with dtypes,
+ * in most cases by the type resolution function
+ * for the same ufunc.
+ * fixed_strides: For each input/output, either the stride that
+ * will be used every time the function is called
+ * or NPY_MAX_INTP if the stride might change or
+ * is not known ahead of time. The loop selection
+ * function may use this stride to pick inner loops
+ * which are optimized for contiguous or 0-stride
+ * cases.
+ * out_innerloop: Should be populated with the correct ufunc inner
+ * loop for the given type.
+ * out_innerloopdata: Should be populated with the void* data to
+ * be passed into the out_innerloop function.
+ * out_needs_api: If the inner loop needs to use the Python API,
+ * should set the to 1, otherwise should leave
+ * this untouched.
+ */
+typedef int (PyUFunc_LegacyInnerLoopSelectionFunc)(
+ struct _tagPyUFuncObject *ufunc,
+ PyArray_Descr **dtypes,
+ PyUFuncGenericFunction *out_innerloop,
+ void **out_innerloopdata,
+ int *out_needs_api);
+typedef int (PyUFunc_MaskedInnerLoopSelectionFunc)(
+ struct _tagPyUFuncObject *ufunc,
+ PyArray_Descr **dtypes,
+ PyArray_Descr *mask_dtype,
+ npy_intp *fixed_strides,
+ npy_intp fixed_mask_stride,
+ PyUFunc_MaskedStridedInnerLoopFunc **out_innerloop,
+ NpyAuxData **out_innerloopdata,
+ int *out_needs_api);
+
+typedef struct _tagPyUFuncObject {
+ PyObject_HEAD
+ /*
+ * nin: Number of inputs
+ * nout: Number of outputs
+ * nargs: Always nin + nout (Why is it stored?)
+ */
+ int nin, nout, nargs;
+
+ /*
+ * Identity for reduction, any of PyUFunc_One, PyUFunc_Zero
+ * PyUFunc_MinusOne, PyUFunc_None, PyUFunc_ReorderableNone,
+ * PyUFunc_IdentityValue.
+ */
+ int identity;
+
+ /* Array of one-dimensional core loops */
+ PyUFuncGenericFunction *functions;
+ /* Array of funcdata that gets passed into the functions */
+ void **data;
+ /* The number of elements in 'functions' and 'data' */
+ int ntypes;
+
+ /* Used to be unused field 'check_return' */
+ int reserved1;
+
+ /* The name of the ufunc */
+ const char *name;
+
+ /* Array of type numbers, of size ('nargs' * 'ntypes') */
+ char *types;
+
+ /* Documentation string */
+ const char *doc;
+
+ void *ptr;
+ PyObject *obj;
+ PyObject *userloops;
+
+ /* generalized ufunc parameters */
+
+ /* 0 for scalar ufunc; 1 for generalized ufunc */
+ int core_enabled;
+ /* number of distinct dimension names in signature */
+ int core_num_dim_ix;
+
+ /*
+ * dimension indices of input/output argument k are stored in
+ * core_dim_ixs[core_offsets[k]..core_offsets[k]+core_num_dims[k]-1]
+ */
+
+ /* numbers of core dimensions of each argument */
+ int *core_num_dims;
+ /*
+ * dimension indices in a flatted form; indices
+ * are in the range of [0,core_num_dim_ix)
+ */
+ int *core_dim_ixs;
+ /*
+ * positions of 1st core dimensions of each
+ * argument in core_dim_ixs, equivalent to cumsum(core_num_dims)
+ */
+ int *core_offsets;
+ /* signature string for printing purpose */
+ char *core_signature;
+
+ /*
+ * A function which resolves the types and fills an array
+ * with the dtypes for the inputs and outputs.
+ */
+ PyUFunc_TypeResolutionFunc *type_resolver;
+ /*
+ * A function which returns an inner loop written for
+ * NumPy 1.6 and earlier ufuncs. This is for backwards
+ * compatibility, and may be NULL if inner_loop_selector
+ * is specified.
+ */
+ PyUFunc_LegacyInnerLoopSelectionFunc *legacy_inner_loop_selector;
+ /*
+ * This was blocked off to be the "new" inner loop selector in 1.7,
+ * but this was never implemented. (This is also why the above
+ * selector is called the "legacy" selector.)
+ */
+ #if PY_VERSION_HEX >= 0x03080000
+ vectorcallfunc vectorcall;
+ #else
+ void *reserved2;
+ #endif
+ /*
+ * A function which returns a masked inner loop for the ufunc.
+ */
+ PyUFunc_MaskedInnerLoopSelectionFunc *masked_inner_loop_selector;
+
+ /*
+ * List of flags for each operand when ufunc is called by nditer object.
+ * These flags will be used in addition to the default flags for each
+ * operand set by nditer object.
+ */
+ npy_uint32 *op_flags;
+
+ /*
+ * List of global flags used when ufunc is called by nditer object.
+ * These flags will be used in addition to the default global flags
+ * set by nditer object.
+ */
+ npy_uint32 iter_flags;
+
+ /* New in NPY_API_VERSION 0x0000000D and above */
+
+ /*
+ * for each core_num_dim_ix distinct dimension names,
+ * the possible "frozen" size (-1 if not frozen).
+ */
+ npy_intp *core_dim_sizes;
+
+ /*
+ * for each distinct core dimension, a set of UFUNC_CORE_DIM* flags
+ */
+ npy_uint32 *core_dim_flags;
+
+ /* Identity for reduction, when identity == PyUFunc_IdentityValue */
+ PyObject *identity_value;
+
+} PyUFuncObject;
+
+#include "arrayobject.h"
+/* Generalized ufunc; 0x0001 reserved for possible use as CORE_ENABLED */
+/* the core dimension's size will be determined by the operands. */
+#define UFUNC_CORE_DIM_SIZE_INFERRED 0x0002
+/* the core dimension may be absent */
+#define UFUNC_CORE_DIM_CAN_IGNORE 0x0004
+/* flags inferred during execution */
+#define UFUNC_CORE_DIM_MISSING 0x00040000
+
+#define UFUNC_ERR_IGNORE 0
+#define UFUNC_ERR_WARN 1
+#define UFUNC_ERR_RAISE 2
+#define UFUNC_ERR_CALL 3
+#define UFUNC_ERR_PRINT 4
+#define UFUNC_ERR_LOG 5
+
+ /* Python side integer mask */
+
+#define UFUNC_MASK_DIVIDEBYZERO 0x07
+#define UFUNC_MASK_OVERFLOW 0x3f
+#define UFUNC_MASK_UNDERFLOW 0x1ff
+#define UFUNC_MASK_INVALID 0xfff
+
+#define UFUNC_SHIFT_DIVIDEBYZERO 0
+#define UFUNC_SHIFT_OVERFLOW 3
+#define UFUNC_SHIFT_UNDERFLOW 6
+#define UFUNC_SHIFT_INVALID 9
+
+
+#define UFUNC_OBJ_ISOBJECT 1
+#define UFUNC_OBJ_NEEDS_API 2
+
+ /* Default user error mode */
+#define UFUNC_ERR_DEFAULT \
+ (UFUNC_ERR_WARN << UFUNC_SHIFT_DIVIDEBYZERO) + \
+ (UFUNC_ERR_WARN << UFUNC_SHIFT_OVERFLOW) + \
+ (UFUNC_ERR_WARN << UFUNC_SHIFT_INVALID)
+
+#if NPY_ALLOW_THREADS
+#define NPY_LOOP_BEGIN_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) _save = PyEval_SaveThread();} while (0);
+#define NPY_LOOP_END_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) PyEval_RestoreThread(_save);} while (0);
+#else
+#define NPY_LOOP_BEGIN_THREADS
+#define NPY_LOOP_END_THREADS
+#endif
+
+/*
+ * UFunc has unit of 0, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_Zero 0
+/*
+ * UFunc has unit of 1, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_One 1
+/*
+ * UFunc has unit of -1, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once. Intended for
+ * bitwise_and reduction.
+ */
+#define PyUFunc_MinusOne 2
+/*
+ * UFunc has no unit, and the order of operations cannot be reordered.
+ * This case does not allow reduction with multiple axes at once.
+ */
+#define PyUFunc_None -1
+/*
+ * UFunc has no unit, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_ReorderableNone -2
+/*
+ * UFunc unit is an identity_value, and the order of operations can be reordered
+ * This case allows reduction with multiple axes at once.
+ */
+#define PyUFunc_IdentityValue -3
+
+
+#define UFUNC_REDUCE 0
+#define UFUNC_ACCUMULATE 1
+#define UFUNC_REDUCEAT 2
+#define UFUNC_OUTER 3
+
+
+typedef struct {
+ int nin;
+ int nout;
+ PyObject *callable;
+} PyUFunc_PyFuncData;
+
+/* A linked-list of function information for
+ user-defined 1-d loops.
+ */
+typedef struct _loop1d_info {
+ PyUFuncGenericFunction func;
+ void *data;
+ int *arg_types;
+ struct _loop1d_info *next;
+ int nargs;
+ PyArray_Descr **arg_dtypes;
+} PyUFunc_Loop1d;
+
+
+#include "__ufunc_api.h"
+
+#define UFUNC_PYVALS_NAME "UFUNC_PYVALS"
+
+/*
+ * THESE MACROS ARE DEPRECATED.
+ * Use npy_set_floatstatus_* in the npymath library.
+ */
+#define UFUNC_FPE_DIVIDEBYZERO NPY_FPE_DIVIDEBYZERO
+#define UFUNC_FPE_OVERFLOW NPY_FPE_OVERFLOW
+#define UFUNC_FPE_UNDERFLOW NPY_FPE_UNDERFLOW
+#define UFUNC_FPE_INVALID NPY_FPE_INVALID
+
+#define generate_divbyzero_error() npy_set_floatstatus_divbyzero()
+#define generate_overflow_error() npy_set_floatstatus_overflow()
+
+ /* Make sure it gets defined if it isn't already */
+#ifndef UFUNC_NOFPE
+/* Clear the floating point exception default of Borland C++ */
+#if defined(__BORLANDC__)
+#define UFUNC_NOFPE _control87(MCW_EM, MCW_EM);
+#else
+#define UFUNC_NOFPE
+#endif
+#endif
+
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* !Py_UFUNCOBJECT_H */
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/utils.h b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/utils.h
new file mode 100644
index 0000000000000000000000000000000000000000..e251a5201c715aef4176213a8dfbee9b1c958201
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/include/numpy/utils.h
@@ -0,0 +1,37 @@
+#ifndef __NUMPY_UTILS_HEADER__
+#define __NUMPY_UTILS_HEADER__
+
+#ifndef __COMP_NPY_UNUSED
+ #if defined(__GNUC__)
+ #define __COMP_NPY_UNUSED __attribute__ ((__unused__))
+ #elif defined(__ICC)
+ #define __COMP_NPY_UNUSED __attribute__ ((__unused__))
+ #elif defined(__clang__)
+ #define __COMP_NPY_UNUSED __attribute__ ((unused))
+ #else
+ #define __COMP_NPY_UNUSED
+ #endif
+#endif
+
+#if defined(__GNUC__) || defined(__ICC) || defined(__clang__)
+ #define NPY_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
+#elif defined(_MSC_VER)
+ #define NPY_DECL_ALIGNED(x) __declspec(align(x))
+#else
+ #define NPY_DECL_ALIGNED(x)
+#endif
+
+/* Use this to tag a variable as not used. It will remove unused variable
+ * warning on support platforms (see __COM_NPY_UNUSED) and mangle the variable
+ * to avoid accidental use */
+#define NPY_UNUSED(x) (__NPY_UNUSED_TAGGED ## x) __COMP_NPY_UNUSED
+#define NPY_EXPAND(x) x
+
+#define NPY_STRINGIFY(x) #x
+#define NPY_TOSTRING(x) NPY_STRINGIFY(x)
+
+#define NPY_CAT__(a, b) a ## b
+#define NPY_CAT_(a, b) NPY_CAT__(a, b)
+#define NPY_CAT(a, b) NPY_CAT_(a, b)
+
+#endif
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/libnpymath.a b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/libnpymath.a
new file mode 100644
index 0000000000000000000000000000000000000000..746dacf58565c2e799aea274361731476564aeb5
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/libnpymath.a
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd88960b3f88d8150b726584fa1167c7ca62dcda6c8af3b630d800fbba0de222
+size 262616
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/mlib.ini b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/mlib.ini
new file mode 100644
index 0000000000000000000000000000000000000000..5840f5e1bc167f50ebc9fc98d60b60ee21ecbeec
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/mlib.ini
@@ -0,0 +1,12 @@
+[meta]
+Name = mlib
+Description = Math library used with this version of numpy
+Version = 1.0
+
+[default]
+Libs=-lm
+Cflags=
+
+[msvc]
+Libs=m.lib
+Cflags=
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/npymath.ini b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/npymath.ini
new file mode 100644
index 0000000000000000000000000000000000000000..3e465ad2aceafd52f512d279e0de93e271e330b0
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/lib/npy-pkg-config/npymath.ini
@@ -0,0 +1,20 @@
+[meta]
+Name=npymath
+Description=Portable, core math library implementing C99 standard
+Version=0.1
+
+[variables]
+pkgname=numpy.core
+prefix=${pkgdir}
+libdir=${prefix}/lib
+includedir=${prefix}/include
+
+[default]
+Libs=-L${libdir} -lnpymath
+Cflags=-I${includedir}
+Requires=mlib
+
+[msvc]
+Libs=/LIBPATH:${libdir} npymath.lib
+Cflags=/INCLUDE:${includedir}
+Requires=mlib
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/machar.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/machar.py
new file mode 100644
index 0000000000000000000000000000000000000000..55285fe5928f40eca6bd421d6f3d53d08eb20c87
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/machar.py
@@ -0,0 +1,342 @@
+"""
+Machine arithmetics - determine the parameters of the
+floating-point arithmetic system
+
+Author: Pearu Peterson, September 2003
+
+"""
+__all__ = ['MachAr']
+
+from numpy.core.fromnumeric import any
+from numpy.core._ufunc_config import errstate
+from numpy.core.overrides import set_module
+
+# Need to speed this up...especially for longfloat
+
+@set_module('numpy')
+class MachAr:
+ """
+ Diagnosing machine parameters.
+
+ Attributes
+ ----------
+ ibeta : int
+ Radix in which numbers are represented.
+ it : int
+ Number of base-`ibeta` digits in the floating point mantissa M.
+ machep : int
+ Exponent of the smallest (most negative) power of `ibeta` that,
+ added to 1.0, gives something different from 1.0
+ eps : float
+ Floating-point number ``beta**machep`` (floating point precision)
+ negep : int
+ Exponent of the smallest power of `ibeta` that, subtracted
+ from 1.0, gives something different from 1.0.
+ epsneg : float
+ Floating-point number ``beta**negep``.
+ iexp : int
+ Number of bits in the exponent (including its sign and bias).
+ minexp : int
+ Smallest (most negative) power of `ibeta` consistent with there
+ being no leading zeros in the mantissa.
+ xmin : float
+ Floating-point number ``beta**minexp`` (the smallest [in
+ magnitude] positive floating point number with full precision).
+ maxexp : int
+ Smallest (positive) power of `ibeta` that causes overflow.
+ xmax : float
+ ``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
+ usable floating value).
+ irnd : int
+ In ``range(6)``, information on what kind of rounding is done
+ in addition, and on how underflow is handled.
+ ngrd : int
+ Number of 'guard digits' used when truncating the product
+ of two mantissas to fit the representation.
+ epsilon : float
+ Same as `eps`.
+ tiny : float
+ Same as `xmin`.
+ huge : float
+ Same as `xmax`.
+ precision : float
+ ``- int(-log10(eps))``
+ resolution : float
+ ``- 10**(-precision)``
+
+ Parameters
+ ----------
+ float_conv : function, optional
+ Function that converts an integer or integer array to a float
+ or float array. Default is `float`.
+ int_conv : function, optional
+ Function that converts a float or float array to an integer or
+ integer array. Default is `int`.
+ float_to_float : function, optional
+ Function that converts a float array to float. Default is `float`.
+ Note that this does not seem to do anything useful in the current
+ implementation.
+ float_to_str : function, optional
+ Function that converts a single float to a string. Default is
+ ``lambda v:'%24.16e' %v``.
+ title : str, optional
+ Title that is printed in the string representation of `MachAr`.
+
+ See Also
+ --------
+ finfo : Machine limits for floating point types.
+ iinfo : Machine limits for integer types.
+
+ References
+ ----------
+ .. [1] Press, Teukolsky, Vetterling and Flannery,
+ "Numerical Recipes in C++," 2nd ed,
+ Cambridge University Press, 2002, p. 31.
+
+ """
+
+ def __init__(self, float_conv=float,int_conv=int,
+ float_to_float=float,
+ float_to_str=lambda v:'%24.16e' % v,
+ title='Python floating point number'):
+ """
+
+ float_conv - convert integer to float (array)
+ int_conv - convert float (array) to integer
+ float_to_float - convert float array to float
+ float_to_str - convert array float to str
+ title - description of used floating point numbers
+
+ """
+ # We ignore all errors here because we are purposely triggering
+ # underflow to detect the properties of the runninng arch.
+ with errstate(under='ignore'):
+ self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
+
+ def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
+ max_iterN = 10000
+ msg = "Did not converge after %d tries with %s"
+ one = float_conv(1)
+ two = one + one
+ zero = one - one
+
+ # Do we really need to do this? Aren't they 2 and 2.0?
+ # Determine ibeta and beta
+ a = one
+ for _ in range(max_iterN):
+ a = a + a
+ temp = a + one
+ temp1 = temp - a
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ b = one
+ for _ in range(max_iterN):
+ b = b + b
+ temp = a + b
+ itemp = int_conv(temp-a)
+ if any(itemp != 0):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ ibeta = itemp
+ beta = float_conv(ibeta)
+
+ # Determine it and irnd
+ it = -1
+ b = one
+ for _ in range(max_iterN):
+ it = it + 1
+ b = b * beta
+ temp = b + one
+ temp1 = temp - b
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+
+ betah = beta / two
+ a = one
+ for _ in range(max_iterN):
+ a = a + a
+ temp = a + one
+ temp1 = temp - a
+ if any(temp1 - one != zero):
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ temp = a + betah
+ irnd = 0
+ if any(temp-a != zero):
+ irnd = 1
+ tempa = a + beta
+ temp = tempa + betah
+ if irnd == 0 and any(temp-tempa != zero):
+ irnd = 2
+
+ # Determine negep and epsneg
+ negep = it + 3
+ betain = one / beta
+ a = one
+ for i in range(negep):
+ a = a * betain
+ b = a
+ for _ in range(max_iterN):
+ temp = one - a
+ if any(temp-one != zero):
+ break
+ a = a * beta
+ negep = negep - 1
+ # Prevent infinite loop on PPC with gcc 4.0:
+ if negep < 0:
+ raise RuntimeError("could not determine machine tolerance "
+ "for 'negep', locals() -> %s" % (locals()))
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ negep = -negep
+ epsneg = a
+
+ # Determine machep and eps
+ machep = - it - 3
+ a = b
+
+ for _ in range(max_iterN):
+ temp = one + a
+ if any(temp-one != zero):
+ break
+ a = a * beta
+ machep = machep + 1
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ eps = a
+
+ # Determine ngrd
+ ngrd = 0
+ temp = one + eps
+ if irnd == 0 and any(temp*one - one != zero):
+ ngrd = 1
+
+ # Determine iexp
+ i = 0
+ k = 1
+ z = betain
+ t = one + eps
+ nxres = 0
+ for _ in range(max_iterN):
+ y = z
+ z = y*y
+ a = z*one # Check here for underflow
+ temp = z*t
+ if any(a+a == zero) or any(abs(z) >= y):
+ break
+ temp1 = temp * betain
+ if any(temp1*beta == z):
+ break
+ i = i + 1
+ k = k + k
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ if ibeta != 10:
+ iexp = i + 1
+ mx = k + k
+ else:
+ iexp = 2
+ iz = ibeta
+ while k >= iz:
+ iz = iz * ibeta
+ iexp = iexp + 1
+ mx = iz + iz - 1
+
+ # Determine minexp and xmin
+ for _ in range(max_iterN):
+ xmin = y
+ y = y * betain
+ a = y * one
+ temp = y * t
+ if any((a + a) != zero) and any(abs(y) < xmin):
+ k = k + 1
+ temp1 = temp * betain
+ if any(temp1*beta == y) and any(temp != y):
+ nxres = 3
+ xmin = y
+ break
+ else:
+ break
+ else:
+ raise RuntimeError(msg % (_, one.dtype))
+ minexp = -k
+
+ # Determine maxexp, xmax
+ if mx <= k + k - 3 and ibeta != 10:
+ mx = mx + mx
+ iexp = iexp + 1
+ maxexp = mx + minexp
+ irnd = irnd + nxres
+ if irnd >= 2:
+ maxexp = maxexp - 2
+ i = maxexp + minexp
+ if ibeta == 2 and not i:
+ maxexp = maxexp - 1
+ if i > 20:
+ maxexp = maxexp - 1
+ if any(a != y):
+ maxexp = maxexp - 2
+ xmax = one - epsneg
+ if any(xmax*one != xmax):
+ xmax = one - beta*epsneg
+ xmax = xmax / (xmin*beta*beta*beta)
+ i = maxexp + minexp + 3
+ for j in range(i):
+ if ibeta == 2:
+ xmax = xmax + xmax
+ else:
+ xmax = xmax * beta
+
+ self.ibeta = ibeta
+ self.it = it
+ self.negep = negep
+ self.epsneg = float_to_float(epsneg)
+ self._str_epsneg = float_to_str(epsneg)
+ self.machep = machep
+ self.eps = float_to_float(eps)
+ self._str_eps = float_to_str(eps)
+ self.ngrd = ngrd
+ self.iexp = iexp
+ self.minexp = minexp
+ self.xmin = float_to_float(xmin)
+ self._str_xmin = float_to_str(xmin)
+ self.maxexp = maxexp
+ self.xmax = float_to_float(xmax)
+ self._str_xmax = float_to_str(xmax)
+ self.irnd = irnd
+
+ self.title = title
+ # Commonly used parameters
+ self.epsilon = self.eps
+ self.tiny = self.xmin
+ self.huge = self.xmax
+
+ import math
+ self.precision = int(-math.log10(float_to_float(self.eps)))
+ ten = two + two + two + two + two
+ resolution = ten ** (-self.precision)
+ self.resolution = float_to_float(resolution)
+ self._str_resolution = float_to_str(resolution)
+
+ def __str__(self):
+ fmt = (
+ 'Machine parameters for %(title)s\n'
+ '---------------------------------------------------------------------\n'
+ 'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
+ 'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
+ 'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
+ 'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
+ 'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
+ '---------------------------------------------------------------------\n'
+ )
+ return fmt % self.__dict__
+
+
+if __name__ == '__main__':
+ print(MachAr())
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/memmap.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/memmap.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0d9cb3af7bf79c7843cdc67681708737cf98006
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/memmap.py
@@ -0,0 +1,337 @@
+from contextlib import nullcontext
+
+import numpy as np
+from .numeric import uint8, ndarray, dtype
+from numpy.compat import os_fspath, is_pathlib_path
+from numpy.core.overrides import set_module
+
+__all__ = ['memmap']
+
+dtypedescr = dtype
+valid_filemodes = ["r", "c", "r+", "w+"]
+writeable_filemodes = ["r+", "w+"]
+
+mode_equivalents = {
+ "readonly":"r",
+ "copyonwrite":"c",
+ "readwrite":"r+",
+ "write":"w+"
+ }
+
+
+@set_module('numpy')
+class memmap(ndarray):
+ """Create a memory-map to an array stored in a *binary* file on disk.
+
+ Memory-mapped files are used for accessing small segments of large files
+ on disk, without reading the entire file into memory. NumPy's
+ memmap's are array-like objects. This differs from Python's ``mmap``
+ module, which uses file-like objects.
+
+ This subclass of ndarray has some unpleasant interactions with
+ some operations, because it doesn't quite fit properly as a subclass.
+ An alternative to using this subclass is to create the ``mmap``
+ object yourself, then create an ndarray with ndarray.__new__ directly,
+ passing the object created in its 'buffer=' parameter.
+
+ This class may at some point be turned into a factory function
+ which returns a view into an mmap buffer.
+
+ Flush the memmap instance to write the changes to the file. Currently there
+ is no API to close the underlying ``mmap``. It is tricky to ensure the
+ resource is actually closed, since it may be shared between different
+ memmap instances.
+
+
+ Parameters
+ ----------
+ filename : str, file-like object, or pathlib.Path instance
+ The file name or file object to be used as the array data buffer.
+ dtype : data-type, optional
+ The data-type used to interpret the file contents.
+ Default is `uint8`.
+ mode : {'r+', 'r', 'w+', 'c'}, optional
+ The file is opened in this mode:
+
+ +------+-------------------------------------------------------------+
+ | 'r' | Open existing file for reading only. |
+ +------+-------------------------------------------------------------+
+ | 'r+' | Open existing file for reading and writing. |
+ +------+-------------------------------------------------------------+
+ | 'w+' | Create or overwrite existing file for reading and writing. |
+ +------+-------------------------------------------------------------+
+ | 'c' | Copy-on-write: assignments affect data in memory, but |
+ | | changes are not saved to disk. The file on disk is |
+ | | read-only. |
+ +------+-------------------------------------------------------------+
+
+ Default is 'r+'.
+ offset : int, optional
+ In the file, array data starts at this offset. Since `offset` is
+ measured in bytes, it should normally be a multiple of the byte-size
+ of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of
+ file are valid; The file will be extended to accommodate the
+ additional data. By default, ``memmap`` will start at the beginning of
+ the file, even if ``filename`` is a file pointer ``fp`` and
+ ``fp.tell() != 0``.
+ shape : tuple, optional
+ The desired shape of the array. If ``mode == 'r'`` and the number
+ of remaining bytes after `offset` is not a multiple of the byte-size
+ of `dtype`, you must specify `shape`. By default, the returned array
+ will be 1-D with the number of elements determined by file size
+ and data-type.
+ order : {'C', 'F'}, optional
+ Specify the order of the ndarray memory layout:
+ :term:`row-major`, C-style or :term:`column-major`,
+ Fortran-style. This only has an effect if the shape is
+ greater than 1-D. The default order is 'C'.
+
+ Attributes
+ ----------
+ filename : str or pathlib.Path instance
+ Path to the mapped file.
+ offset : int
+ Offset position in the file.
+ mode : str
+ File mode.
+
+ Methods
+ -------
+ flush
+ Flush any changes in memory to file on disk.
+ When you delete a memmap object, flush is called first to write
+ changes to disk.
+
+
+ See also
+ --------
+ lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file.
+
+ Notes
+ -----
+ The memmap object can be used anywhere an ndarray is accepted.
+ Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns
+ ``True``.
+
+ Memory-mapped files cannot be larger than 2GB on 32-bit systems.
+
+ When a memmap causes a file to be created or extended beyond its
+ current size in the filesystem, the contents of the new part are
+ unspecified. On systems with POSIX filesystem semantics, the extended
+ part will be filled with zero bytes.
+
+ Examples
+ --------
+ >>> data = np.arange(12, dtype='float32')
+ >>> data.resize((3,4))
+
+ This example uses a temporary file so that doctest doesn't write
+ files to your directory. You would use a 'normal' filename.
+
+ >>> from tempfile import mkdtemp
+ >>> import os.path as path
+ >>> filename = path.join(mkdtemp(), 'newfile.dat')
+
+ Create a memmap with dtype and shape that matches our data:
+
+ >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
+ >>> fp
+ memmap([[0., 0., 0., 0.],
+ [0., 0., 0., 0.],
+ [0., 0., 0., 0.]], dtype=float32)
+
+ Write data to memmap array:
+
+ >>> fp[:] = data[:]
+ >>> fp
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ >>> fp.filename == path.abspath(filename)
+ True
+
+ Flushes memory changes to disk in order to read them back
+
+ >>> fp.flush()
+
+ Load the memmap and verify data was stored:
+
+ >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
+ >>> newfp
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ Read-only memmap:
+
+ >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
+ >>> fpr.flags.writeable
+ False
+
+ Copy-on-write memmap:
+
+ >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
+ >>> fpc.flags.writeable
+ True
+
+ It's possible to assign to copy-on-write array, but values are only
+ written into the memory copy of the array, and not written to disk:
+
+ >>> fpc
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+ >>> fpc[0,:] = 0
+ >>> fpc
+ memmap([[ 0., 0., 0., 0.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ File on disk is unchanged:
+
+ >>> fpr
+ memmap([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]], dtype=float32)
+
+ Offset into a memmap:
+
+ >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
+ >>> fpo
+ memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
+
+ """
+
+ __array_priority__ = -100.0
+
+ def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0,
+ shape=None, order='C'):
+ # Import here to minimize 'import numpy' overhead
+ import mmap
+ import os.path
+ try:
+ mode = mode_equivalents[mode]
+ except KeyError as e:
+ if mode not in valid_filemodes:
+ raise ValueError(
+ "mode must be one of {!r} (got {!r})"
+ .format(valid_filemodes + list(mode_equivalents.keys()), mode)
+ ) from None
+
+ if mode == 'w+' and shape is None:
+ raise ValueError("shape must be given")
+
+ if hasattr(filename, 'read'):
+ f_ctx = nullcontext(filename)
+ else:
+ f_ctx = open(os_fspath(filename), ('r' if mode == 'c' else mode)+'b')
+
+ with f_ctx as fid:
+ fid.seek(0, 2)
+ flen = fid.tell()
+ descr = dtypedescr(dtype)
+ _dbytes = descr.itemsize
+
+ if shape is None:
+ bytes = flen - offset
+ if bytes % _dbytes:
+ raise ValueError("Size of available data is not a "
+ "multiple of the data-type size.")
+ size = bytes // _dbytes
+ shape = (size,)
+ else:
+ if not isinstance(shape, tuple):
+ shape = (shape,)
+ size = np.intp(1) # avoid default choice of np.int_, which might overflow
+ for k in shape:
+ size *= k
+
+ bytes = int(offset + size*_dbytes)
+
+ if mode in ('w+', 'r+') and flen < bytes:
+ fid.seek(bytes - 1, 0)
+ fid.write(b'\0')
+ fid.flush()
+
+ if mode == 'c':
+ acc = mmap.ACCESS_COPY
+ elif mode == 'r':
+ acc = mmap.ACCESS_READ
+ else:
+ acc = mmap.ACCESS_WRITE
+
+ start = offset - offset % mmap.ALLOCATIONGRANULARITY
+ bytes -= start
+ array_offset = offset - start
+ mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start)
+
+ self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm,
+ offset=array_offset, order=order)
+ self._mmap = mm
+ self.offset = offset
+ self.mode = mode
+
+ if is_pathlib_path(filename):
+ # special case - if we were constructed with a pathlib.path,
+ # then filename is a path object, not a string
+ self.filename = filename.resolve()
+ elif hasattr(fid, "name") and isinstance(fid.name, str):
+ # py3 returns int for TemporaryFile().name
+ self.filename = os.path.abspath(fid.name)
+ # same as memmap copies (e.g. memmap + 1)
+ else:
+ self.filename = None
+
+ return self
+
+ def __array_finalize__(self, obj):
+ if hasattr(obj, '_mmap') and np.may_share_memory(self, obj):
+ self._mmap = obj._mmap
+ self.filename = obj.filename
+ self.offset = obj.offset
+ self.mode = obj.mode
+ else:
+ self._mmap = None
+ self.filename = None
+ self.offset = None
+ self.mode = None
+
+ def flush(self):
+ """
+ Write any changes in the array to the file on disk.
+
+ For further information, see `memmap`.
+
+ Parameters
+ ----------
+ None
+
+ See Also
+ --------
+ memmap
+
+ """
+ if self.base is not None and hasattr(self.base, 'flush'):
+ self.base.flush()
+
+ def __array_wrap__(self, arr, context=None):
+ arr = super().__array_wrap__(arr, context)
+
+ # Return a memmap if a memmap was given as the output of the
+ # ufunc. Leave the arr class unchanged if self is not a memmap
+ # to keep original memmap subclasses behavior
+ if self is arr or type(self) is not memmap:
+ return arr
+ # Return scalar instead of 0d memmap, e.g. for np.sum with
+ # axis=None
+ if arr.shape == ():
+ return arr[()]
+ # Return ndarray otherwise
+ return arr.view(np.ndarray)
+
+ def __getitem__(self, index):
+ res = super().__getitem__(index)
+ if type(res) is memmap and res._mmap is None:
+ return res.view(type=ndarray)
+ return res
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/multiarray.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/multiarray.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7a3a8d675346541abcec2658a1a77f48bd6c36d
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/multiarray.py
@@ -0,0 +1,1690 @@
+"""
+Create the numpy.core.multiarray namespace for backward compatibility. In v1.16
+the multiarray and umath c-extension modules were merged into a single
+_multiarray_umath extension module. So we replicate the old namespace
+by importing from the extension module.
+
+"""
+
+import functools
+import warnings
+
+from . import overrides
+from . import _multiarray_umath
+from ._multiarray_umath import * # noqa: F403
+# These imports are needed for backward compatibility,
+# do not change them. issue gh-15518
+# _get_ndarray_c_version is semi-public, on purpose not added to __all__
+from ._multiarray_umath import (
+ _fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string,
+ _ARRAY_API, _monotonicity, _get_ndarray_c_version, _set_madvise_hugepage,
+ )
+
+__all__ = [
+ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS',
+ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
+ 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
+ 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', '_fastCopyAndTranspose',
+ '_flagdict', '_insert', '_reconstruct', '_vec_string', '_monotonicity',
+ 'add_docstring', 'arange', 'array', 'asarray', 'asanyarray',
+ 'ascontiguousarray', 'asfortranarray', 'bincount', 'broadcast',
+ 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
+ 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2',
+ 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data',
+ 'digitize', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype',
+ 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat',
+ 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'inner',
+ 'interp', 'interp_complex', 'is_busday', 'lexsort',
+ 'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer',
+ 'nested_iters', 'normalize_axis_index', 'packbits',
+ 'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar',
+ 'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops',
+ 'set_string_function', 'set_typeDict', 'shares_memory',
+ 'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot',
+ 'where', 'zeros']
+
+# For backward compatibility, make sure pickle imports these functions from here
+_reconstruct.__module__ = 'numpy.core.multiarray'
+scalar.__module__ = 'numpy.core.multiarray'
+
+
+arange.__module__ = 'numpy'
+array.__module__ = 'numpy'
+asarray.__module__ = 'numpy'
+asanyarray.__module__ = 'numpy'
+ascontiguousarray.__module__ = 'numpy'
+asfortranarray.__module__ = 'numpy'
+datetime_data.__module__ = 'numpy'
+empty.__module__ = 'numpy'
+frombuffer.__module__ = 'numpy'
+fromfile.__module__ = 'numpy'
+fromiter.__module__ = 'numpy'
+frompyfunc.__module__ = 'numpy'
+fromstring.__module__ = 'numpy'
+geterrobj.__module__ = 'numpy'
+may_share_memory.__module__ = 'numpy'
+nested_iters.__module__ = 'numpy'
+promote_types.__module__ = 'numpy'
+set_numeric_ops.__module__ = 'numpy'
+seterrobj.__module__ = 'numpy'
+zeros.__module__ = 'numpy'
+
+
+# We can't verify dispatcher signatures because NumPy's C functions don't
+# support introspection.
+array_function_from_c_func_and_dispatcher = functools.partial(
+ overrides.array_function_from_dispatcher,
+ module='numpy', docs_from_dispatcher=True, verify=False)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like)
+def empty_like(prototype, dtype=None, order=None, subok=None, shape=None):
+ """
+ empty_like(prototype, dtype=None, order='K', subok=True, shape=None)
+
+ Return a new array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ prototype : array_like
+ The shape and data-type of `prototype` define these same attributes
+ of the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+
+ .. versionadded:: 1.6.0
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `prototype` is Fortran
+ contiguous, 'C' otherwise. 'K' means match the layout of `prototype`
+ as closely as possible.
+
+ .. versionadded:: 1.6.0
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `prototype`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of uninitialized (arbitrary) data with the same
+ shape and type as `prototype`.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+
+ Notes
+ -----
+ This function does *not* initialize the returned array; to do that use
+ `zeros_like` or `ones_like` instead. It may be marginally faster than
+ the functions that do set the array values.
+
+ Examples
+ --------
+ >>> a = ([1,2,3], [4,5,6]) # a is array-like
+ >>> np.empty_like(a)
+ array([[-1073741821, -1073741821, 3], # uninitialized
+ [ 0, 0, -1073741821]])
+ >>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
+ >>> np.empty_like(a)
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized
+ [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
+
+ """
+ return (prototype,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate)
+def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None):
+ """
+ concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
+
+ Join a sequence of arrays along an existing axis.
+
+ Parameters
+ ----------
+ a1, a2, ... : sequence of array_like
+ The arrays must have the same shape, except in the dimension
+ corresponding to `axis` (the first, by default).
+ axis : int, optional
+ The axis along which the arrays will be joined. If axis is None,
+ arrays are flattened before use. Default is 0.
+ out : ndarray, optional
+ If provided, the destination to place the result. The shape must be
+ correct, matching that of what concatenate would have returned if no
+ out argument were specified.
+ dtype : str or dtype
+ If provided, the destination array will have this dtype. Cannot be
+ provided together with `out`.
+
+ .. versionadded:: 1.20.0
+
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ res : ndarray
+ The concatenated array.
+
+ See Also
+ --------
+ ma.concatenate : Concatenate function that preserves input masks.
+ array_split : Split an array into multiple sub-arrays of equal or
+ near-equal size.
+ split : Split array into a list of multiple sub-arrays of equal size.
+ hsplit : Split array into multiple sub-arrays horizontally (column wise).
+ vsplit : Split array into multiple sub-arrays vertically (row wise).
+ dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
+ stack : Stack a sequence of arrays along a new axis.
+ block : Assemble arrays from blocks.
+ hstack : Stack arrays in sequence horizontally (column wise).
+ vstack : Stack arrays in sequence vertically (row wise).
+ dstack : Stack arrays in sequence depth wise (along third dimension).
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
+
+ Notes
+ -----
+ When one or more of the arrays to be concatenated is a MaskedArray,
+ this function will return a MaskedArray object instead of an ndarray,
+ but the input masks are *not* preserved. In cases where a MaskedArray
+ is expected as input, use the ma.concatenate function from the masked
+ array module instead.
+
+ Examples
+ --------
+ >>> a = np.array([[1, 2], [3, 4]])
+ >>> b = np.array([[5, 6]])
+ >>> np.concatenate((a, b), axis=0)
+ array([[1, 2],
+ [3, 4],
+ [5, 6]])
+ >>> np.concatenate((a, b.T), axis=1)
+ array([[1, 2, 5],
+ [3, 4, 6]])
+ >>> np.concatenate((a, b), axis=None)
+ array([1, 2, 3, 4, 5, 6])
+
+ This function will not preserve masking of MaskedArray inputs.
+
+ >>> a = np.ma.arange(3)
+ >>> a[1] = np.ma.masked
+ >>> b = np.arange(2, 5)
+ >>> a
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
+ >>> b
+ array([2, 3, 4])
+ >>> np.concatenate([a, b])
+ masked_array(data=[0, 1, 2, 2, 3, 4],
+ mask=False,
+ fill_value=999999)
+ >>> np.ma.concatenate([a, b])
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
+
+ """
+ if out is not None:
+ # optimize for the typical case where only arrays is provided
+ arrays = list(arrays)
+ arrays.append(out)
+ return arrays
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner)
+def inner(a, b):
+ """
+ inner(a, b)
+
+ Inner product of two arrays.
+
+ Ordinary inner product of vectors for 1-D arrays (without complex
+ conjugation), in higher dimensions a sum product over the last axes.
+
+ Parameters
+ ----------
+ a, b : array_like
+ If `a` and `b` are nonscalar, their last dimensions must match.
+
+ Returns
+ -------
+ out : ndarray
+ If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ ``out.shape = (*a.shape[:-1], *b.shape[:-1])``
+
+ Raises
+ ------
+ ValueError
+ If both `a` and `b` are nonscalar and their last dimensions have
+ different sizes.
+
+ See Also
+ --------
+ tensordot : Sum products over arbitrary axes.
+ dot : Generalised matrix product, using second last dimension of `b`.
+ einsum : Einstein summation convention.
+
+ Notes
+ -----
+ For vectors (1-D arrays) it computes the ordinary inner-product::
+
+ np.inner(a, b) = sum(a[:]*b[:])
+
+ More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`::
+
+ np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))
+
+ or explicitly::
+
+ np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
+ = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])
+
+ In addition `a` or `b` may be scalars, in which case::
+
+ np.inner(a,b) = a*b
+
+ Examples
+ --------
+ Ordinary inner product for vectors:
+
+ >>> a = np.array([1,2,3])
+ >>> b = np.array([0,1,0])
+ >>> np.inner(a, b)
+ 2
+
+ Some multidimensional examples:
+
+ >>> a = np.arange(24).reshape((2,3,4))
+ >>> b = np.arange(4)
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (2, 3)
+ >>> c
+ array([[ 14, 38, 62],
+ [ 86, 110, 134]])
+
+ >>> a = np.arange(2).reshape((1,1,2))
+ >>> b = np.arange(6).reshape((3,2))
+ >>> c = np.inner(a, b)
+ >>> c.shape
+ (1, 1, 3)
+ >>> c
+ array([[[1, 3, 5]]])
+
+ An example where `b` is a scalar:
+
+ >>> np.inner(np.eye(2), 7)
+ array([[7., 0.],
+ [0., 7.]])
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
+def where(condition, x=None, y=None):
+ """
+ where(condition, [x, y])
+
+ Return elements chosen from `x` or `y` depending on `condition`.
+
+ .. note::
+ When only `condition` is provided, this function is a shorthand for
+ ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be
+ preferred, as it behaves correctly for subclasses. The rest of this
+ documentation covers only the case where all three arguments are
+ provided.
+
+ Parameters
+ ----------
+ condition : array_like, bool
+ Where True, yield `x`, otherwise yield `y`.
+ x, y : array_like
+ Values from which to choose. `x`, `y` and `condition` need to be
+ broadcastable to some shape.
+
+ Returns
+ -------
+ out : ndarray
+ An array with elements from `x` where `condition` is True, and elements
+ from `y` elsewhere.
+
+ See Also
+ --------
+ choose
+ nonzero : The function that is called when x and y are omitted
+
+ Notes
+ -----
+ If all the arrays are 1-D, `where` is equivalent to::
+
+ [xv if c else yv
+ for c, xv, yv in zip(condition, x, y)]
+
+ Examples
+ --------
+ >>> a = np.arange(10)
+ >>> a
+ array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+ >>> np.where(a < 5, a, 10*a)
+ array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90])
+
+ This can be used on multidimensional arrays too:
+
+ >>> np.where([[True, False], [True, True]],
+ ... [[1, 2], [3, 4]],
+ ... [[9, 8], [7, 6]])
+ array([[1, 8],
+ [3, 4]])
+
+ The shapes of x, y, and the condition are broadcast together:
+
+ >>> x, y = np.ogrid[:3, :4]
+ >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
+ array([[10, 0, 0, 0],
+ [10, 11, 1, 1],
+ [10, 11, 12, 2]])
+
+ >>> a = np.array([[0, 1, 2],
+ ... [0, 2, 4],
+ ... [0, 3, 6]])
+ >>> np.where(a < 4, a, -1) # -1 is broadcast
+ array([[ 0, 1, 2],
+ [ 0, 2, -1],
+ [ 0, 3, -1]])
+ """
+ return (condition, x, y)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort)
+def lexsort(keys, axis=None):
+ """
+ lexsort(keys, axis=-1)
+
+ Perform an indirect stable sort using a sequence of keys.
+
+ Given multiple sorting keys, which can be interpreted as columns in a
+ spreadsheet, lexsort returns an array of integer indices that describes
+ the sort order by multiple columns. The last key in the sequence is used
+ for the primary sort order, the second-to-last key for the secondary sort
+ order, and so on. The keys argument must be a sequence of objects that
+ can be converted to arrays of the same shape. If a 2D array is provided
+ for the keys argument, its rows are interpreted as the sorting keys and
+ sorting is according to the last row, second last row etc.
+
+ Parameters
+ ----------
+ keys : (k, N) array or tuple containing k (N,)-shaped sequences
+ The `k` different "columns" to be sorted. The last column (or row if
+ `keys` is a 2D array) is the primary sort key.
+ axis : int, optional
+ Axis to be indirectly sorted. By default, sort over the last axis.
+
+ Returns
+ -------
+ indices : (N,) ndarray of ints
+ Array of indices that sort the keys along the specified axis.
+
+ See Also
+ --------
+ argsort : Indirect sort.
+ ndarray.sort : In-place sort.
+ sort : Return a sorted copy of an array.
+
+ Examples
+ --------
+ Sort names: first by surname, then by name.
+
+ >>> surnames = ('Hertz', 'Galilei', 'Hertz')
+ >>> first_names = ('Heinrich', 'Galileo', 'Gustav')
+ >>> ind = np.lexsort((first_names, surnames))
+ >>> ind
+ array([1, 2, 0])
+
+ >>> [surnames[i] + ", " + first_names[i] for i in ind]
+ ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']
+
+ Sort two columns of numbers:
+
+ >>> a = [1,5,1,4,3,4,4] # First column
+ >>> b = [9,4,0,4,0,2,1] # Second column
+ >>> ind = np.lexsort((b,a)) # Sort by a, then by b
+ >>> ind
+ array([2, 0, 4, 6, 5, 3, 1])
+
+ >>> [(a[i],b[i]) for i in ind]
+ [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
+
+ Note that sorting is first according to the elements of ``a``.
+ Secondary sorting is according to the elements of ``b``.
+
+ A normal ``argsort`` would have yielded:
+
+ >>> [(a[i],b[i]) for i in np.argsort(a)]
+ [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]
+
+ Structured arrays are sorted lexically by ``argsort``:
+
+ >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
+ ... dtype=np.dtype([('x', int), ('y', int)]))
+
+ >>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
+ array([2, 0, 4, 6, 5, 3, 1])
+
+ """
+ if isinstance(keys, tuple):
+ return keys
+ else:
+ return (keys,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast)
+def can_cast(from_, to, casting=None):
+ """
+ can_cast(from_, to, casting='safe')
+
+ Returns True if cast between data types can occur according to the
+ casting rule. If from is a scalar or array scalar, also returns
+ True if the scalar value can be cast without overflow or truncation
+ to an integer.
+
+ Parameters
+ ----------
+ from_ : dtype, dtype specifier, scalar, or array
+ Data type, scalar, or array to cast from.
+ to : dtype or dtype specifier
+ Data type to cast to.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Returns
+ -------
+ out : bool
+ True if cast can occur according to the casting rule.
+
+ Notes
+ -----
+ .. versionchanged:: 1.17.0
+ Casting between a simple data type and a structured one is possible only
+ for "unsafe" casting. Casting to multiple fields is allowed, but
+ casting from multiple fields is not.
+
+ .. versionchanged:: 1.9.0
+ Casting from numeric to string types in 'safe' casting mode requires
+ that the string dtype length is long enough to store the maximum
+ integer/float value converted.
+
+ See also
+ --------
+ dtype, result_type
+
+ Examples
+ --------
+ Basic examples
+
+ >>> np.can_cast(np.int32, np.int64)
+ True
+ >>> np.can_cast(np.float64, complex)
+ True
+ >>> np.can_cast(complex, float)
+ False
+
+ >>> np.can_cast('i8', 'f8')
+ True
+ >>> np.can_cast('i8', 'f4')
+ False
+ >>> np.can_cast('i4', 'S4')
+ False
+
+ Casting scalars
+
+ >>> np.can_cast(100, 'i1')
+ True
+ >>> np.can_cast(150, 'i1')
+ False
+ >>> np.can_cast(150, 'u1')
+ True
+
+ >>> np.can_cast(3.5e100, np.float32)
+ False
+ >>> np.can_cast(1000.0, np.float32)
+ True
+
+ Array scalar checks the value, array does not
+
+ >>> np.can_cast(np.array(1000.0), np.float32)
+ True
+ >>> np.can_cast(np.array([1000.0]), np.float32)
+ False
+
+ Using the casting rules
+
+ >>> np.can_cast('i8', 'i8', 'no')
+ True
+ >>> np.can_cast('i8', 'no')
+ False
+
+ >>> np.can_cast('i8', 'equiv')
+ True
+ >>> np.can_cast('i8', 'equiv')
+ False
+
+ >>> np.can_cast('i8', 'safe')
+ True
+ >>> np.can_cast('i4', 'safe')
+ False
+
+ >>> np.can_cast('i4', 'same_kind')
+ True
+ >>> np.can_cast('u4', 'same_kind')
+ False
+
+ >>> np.can_cast('u4', 'unsafe')
+ True
+
+ """
+ return (from_,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type)
+def min_scalar_type(a):
+ """
+ min_scalar_type(a)
+
+ For scalar ``a``, returns the data type with the smallest size
+ and smallest scalar kind which can hold its value. For non-scalar
+ array ``a``, returns the vector's dtype unmodified.
+
+ Floating point values are not demoted to integers,
+ and complex values are not demoted to floats.
+
+ Parameters
+ ----------
+ a : scalar or array_like
+ The value whose minimal data type is to be found.
+
+ Returns
+ -------
+ out : dtype
+ The minimal data type.
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ See Also
+ --------
+ result_type, promote_types, dtype, can_cast
+
+ Examples
+ --------
+ >>> np.min_scalar_type(10)
+ dtype('uint8')
+
+ >>> np.min_scalar_type(-260)
+ dtype('int16')
+
+ >>> np.min_scalar_type(3.1)
+ dtype('float16')
+
+ >>> np.min_scalar_type(1e50)
+ dtype('float64')
+
+ >>> np.min_scalar_type(np.arange(4,dtype='f8'))
+ dtype('float64')
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type)
+def result_type(*arrays_and_dtypes):
+ """
+ result_type(*arrays_and_dtypes)
+
+ Returns the type that results from applying the NumPy
+ type promotion rules to the arguments.
+
+ Type promotion in NumPy works similarly to the rules in languages
+ like C++, with some slight differences. When both scalars and
+ arrays are used, the array's type takes precedence and the actual value
+ of the scalar is taken into account.
+
+ For example, calculating 3*a, where a is an array of 32-bit floats,
+ intuitively should result in a 32-bit float output. If the 3 is a
+ 32-bit integer, the NumPy rules indicate it can't convert losslessly
+ into a 32-bit float, so a 64-bit float should be the result type.
+ By examining the value of the constant, '3', we see that it fits in
+ an 8-bit integer, which can be cast losslessly into the 32-bit float.
+
+ Parameters
+ ----------
+ arrays_and_dtypes : list of arrays and dtypes
+ The operands of some operation whose result type is needed.
+
+ Returns
+ -------
+ out : dtype
+ The result type.
+
+ See also
+ --------
+ dtype, promote_types, min_scalar_type, can_cast
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ The specific algorithm used is as follows.
+
+ Categories are determined by first checking which of boolean,
+ integer (int/uint), or floating point (float/complex) the maximum
+ kind of all the arrays and the scalars are.
+
+ If there are only scalars or the maximum category of the scalars
+ is higher than the maximum category of the arrays,
+ the data types are combined with :func:`promote_types`
+ to produce the return value.
+
+ Otherwise, `min_scalar_type` is called on each array, and
+ the resulting data types are all combined with :func:`promote_types`
+ to produce the return value.
+
+ The set of int values is not a subset of the uint values for types
+ with the same number of bits, something not reflected in
+ :func:`min_scalar_type`, but handled as a special case in `result_type`.
+
+ Examples
+ --------
+ >>> np.result_type(3, np.arange(7, dtype='i1'))
+ dtype('int8')
+
+ >>> np.result_type('i4', 'c8')
+ dtype('complex128')
+
+ >>> np.result_type(3.0, -2)
+ dtype('float64')
+
+ """
+ return arrays_and_dtypes
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot)
+def dot(a, b, out=None):
+ """
+ dot(a, b, out=None)
+
+ Dot product of two arrays. Specifically,
+
+ - If both `a` and `b` are 1-D arrays, it is inner product of vectors
+ (without complex conjugation).
+
+ - If both `a` and `b` are 2-D arrays, it is matrix multiplication,
+ but using :func:`matmul` or ``a @ b`` is preferred.
+
+ - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply`
+ and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred.
+
+ - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over
+ the last axis of `a` and `b`.
+
+ - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a
+ sum product over the last axis of `a` and the second-to-last axis of `b`::
+
+ dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
+
+ Parameters
+ ----------
+ a : array_like
+ First argument.
+ b : array_like
+ Second argument.
+ out : ndarray, optional
+ Output argument. This must have the exact kind that would be returned
+ if it was not used. In particular, it must have the right type, must be
+ C-contiguous, and its dtype must be the dtype that would be returned
+ for `dot(a,b)`. This is a performance feature. Therefore, if these
+ conditions are not met, an exception is raised, instead of attempting
+ to be flexible.
+
+ Returns
+ -------
+ output : ndarray
+ Returns the dot product of `a` and `b`. If `a` and `b` are both
+ scalars or both 1-D arrays then a scalar is returned; otherwise
+ an array is returned.
+ If `out` is given, then it is returned.
+
+ Raises
+ ------
+ ValueError
+ If the last dimension of `a` is not the same size as
+ the second-to-last dimension of `b`.
+
+ See Also
+ --------
+ vdot : Complex-conjugating dot product.
+ tensordot : Sum products over arbitrary axes.
+ einsum : Einstein summation convention.
+ matmul : '@' operator as method with out parameter.
+ linalg.multi_dot : Chained dot product.
+
+ Examples
+ --------
+ >>> np.dot(3, 4)
+ 12
+
+ Neither argument is complex-conjugated:
+
+ >>> np.dot([2j, 3j], [2j, 3j])
+ (-13+0j)
+
+ For 2-D arrays it is the matrix product:
+
+ >>> a = [[1, 0], [0, 1]]
+ >>> b = [[4, 1], [2, 2]]
+ >>> np.dot(a, b)
+ array([[4, 1],
+ [2, 2]])
+
+ >>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
+ >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
+ >>> np.dot(a, b)[2,3,2,1,2,2]
+ 499128
+ >>> sum(a[2,3,2,:] * b[1,2,:,2])
+ 499128
+
+ """
+ return (a, b, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot)
+def vdot(a, b):
+ """
+ vdot(a, b)
+
+ Return the dot product of two vectors.
+
+ The vdot(`a`, `b`) function handles complex numbers differently than
+ dot(`a`, `b`). If the first argument is complex the complex conjugate
+ of the first argument is used for the calculation of the dot product.
+
+ Note that `vdot` handles multidimensional arrays differently than `dot`:
+ it does *not* perform a matrix product, but flattens input arguments
+ to 1-D vectors first. Consequently, it should only be used for vectors.
+
+ Parameters
+ ----------
+ a : array_like
+ If `a` is complex the complex conjugate is taken before calculation
+ of the dot product.
+ b : array_like
+ Second argument to the dot product.
+
+ Returns
+ -------
+ output : ndarray
+ Dot product of `a` and `b`. Can be an int, float, or
+ complex depending on the types of `a` and `b`.
+
+ See Also
+ --------
+ dot : Return the dot product without using the complex conjugate of the
+ first argument.
+
+ Examples
+ --------
+ >>> a = np.array([1+2j,3+4j])
+ >>> b = np.array([5+6j,7+8j])
+ >>> np.vdot(a, b)
+ (70-8j)
+ >>> np.vdot(b, a)
+ (70+8j)
+
+ Note that higher-dimensional arrays are flattened!
+
+ >>> a = np.array([[1, 4], [5, 6]])
+ >>> b = np.array([[4, 1], [2, 2]])
+ >>> np.vdot(a, b)
+ 30
+ >>> np.vdot(b, a)
+ 30
+ >>> 1*4 + 4*1 + 5*2 + 6*2
+ 30
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount)
+def bincount(x, weights=None, minlength=None):
+ """
+ bincount(x, weights=None, minlength=0)
+
+ Count number of occurrences of each value in array of non-negative ints.
+
+ The number of bins (of size 1) is one larger than the largest value in
+ `x`. If `minlength` is specified, there will be at least this number
+ of bins in the output array (though it will be longer if necessary,
+ depending on the contents of `x`).
+ Each bin gives the number of occurrences of its index value in `x`.
+ If `weights` is specified the input array is weighted by it, i.e. if a
+ value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
+ of ``out[n] += 1``.
+
+ Parameters
+ ----------
+ x : array_like, 1 dimension, nonnegative ints
+ Input array.
+ weights : array_like, optional
+ Weights, array of the same shape as `x`.
+ minlength : int, optional
+ A minimum number of bins for the output array.
+
+ .. versionadded:: 1.6.0
+
+ Returns
+ -------
+ out : ndarray of ints
+ The result of binning the input array.
+ The length of `out` is equal to ``np.amax(x)+1``.
+
+ Raises
+ ------
+ ValueError
+ If the input is not 1-dimensional, or contains elements with negative
+ values, or if `minlength` is negative.
+ TypeError
+ If the type of the input is float or complex.
+
+ See Also
+ --------
+ histogram, digitize, unique
+
+ Examples
+ --------
+ >>> np.bincount(np.arange(5))
+ array([1, 1, 1, 1, 1])
+ >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
+ array([1, 3, 1, 1, 0, 0, 0, 1])
+
+ >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
+ >>> np.bincount(x).size == np.amax(x)+1
+ True
+
+ The input array needs to be of integer dtype, otherwise a
+ TypeError is raised:
+
+ >>> np.bincount(np.arange(5, dtype=float))
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
+ according to the rule 'safe'
+
+ A possible use of ``bincount`` is to perform sums over
+ variable-size chunks of an array, using the ``weights`` keyword.
+
+ >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
+ >>> x = np.array([0, 1, 1, 2, 2, 2])
+ >>> np.bincount(x, weights=w)
+ array([ 0.3, 0.7, 1.1])
+
+ """
+ return (x, weights)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index)
+def ravel_multi_index(multi_index, dims, mode=None, order=None):
+ """
+ ravel_multi_index(multi_index, dims, mode='raise', order='C')
+
+ Converts a tuple of index arrays into an array of flat
+ indices, applying boundary modes to the multi-index.
+
+ Parameters
+ ----------
+ multi_index : tuple of array_like
+ A tuple of integer arrays, one array for each dimension.
+ dims : tuple of ints
+ The shape of array into which the indices from ``multi_index`` apply.
+ mode : {'raise', 'wrap', 'clip'}, optional
+ Specifies how out-of-bounds indices are handled. Can specify
+ either one mode or a tuple of modes, one mode per index.
+
+ * 'raise' -- raise an error (default)
+ * 'wrap' -- wrap around
+ * 'clip' -- clip to the range
+
+ In 'clip' mode, a negative index which would normally
+ wrap will clip to 0 instead.
+ order : {'C', 'F'}, optional
+ Determines whether the multi-index should be viewed as
+ indexing in row-major (C-style) or column-major
+ (Fortran-style) order.
+
+ Returns
+ -------
+ raveled_indices : ndarray
+ An array of indices into the flattened version of an array
+ of dimensions ``dims``.
+
+ See Also
+ --------
+ unravel_index
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ Examples
+ --------
+ >>> arr = np.array([[3,6,6],[4,5,1]])
+ >>> np.ravel_multi_index(arr, (7,6))
+ array([22, 41, 37])
+ >>> np.ravel_multi_index(arr, (7,6), order='F')
+ array([31, 41, 13])
+ >>> np.ravel_multi_index(arr, (4,6), mode='clip')
+ array([22, 23, 19])
+ >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
+ array([12, 13, 13])
+
+ >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
+ 1621
+ """
+ return multi_index
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index)
+def unravel_index(indices, shape=None, order=None):
+ """
+ unravel_index(indices, shape, order='C')
+
+ Converts a flat index or array of flat indices into a tuple
+ of coordinate arrays.
+
+ Parameters
+ ----------
+ indices : array_like
+ An integer array whose elements are indices into the flattened
+ version of an array of dimensions ``shape``. Before version 1.6.0,
+ this function accepted just one index value.
+ shape : tuple of ints
+ The shape of the array to use for unraveling ``indices``.
+
+ .. versionchanged:: 1.16.0
+ Renamed from ``dims`` to ``shape``.
+
+ order : {'C', 'F'}, optional
+ Determines whether the indices should be viewed as indexing in
+ row-major (C-style) or column-major (Fortran-style) order.
+
+ .. versionadded:: 1.6.0
+
+ Returns
+ -------
+ unraveled_coords : tuple of ndarray
+ Each array in the tuple has the same shape as the ``indices``
+ array.
+
+ See Also
+ --------
+ ravel_multi_index
+
+ Examples
+ --------
+ >>> np.unravel_index([22, 41, 37], (7,6))
+ (array([3, 6, 6]), array([4, 5, 1]))
+ >>> np.unravel_index([31, 41, 13], (7,6), order='F')
+ (array([3, 6, 6]), array([4, 5, 1]))
+
+ >>> np.unravel_index(1621, (6,7,8,9))
+ (3, 1, 4, 1)
+
+ """
+ return (indices,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto)
+def copyto(dst, src, casting=None, where=None):
+ """
+ copyto(dst, src, casting='same_kind', where=True)
+
+ Copies values from one array to another, broadcasting as necessary.
+
+ Raises a TypeError if the `casting` rule is violated, and if
+ `where` is provided, it selects which elements to copy.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dst : ndarray
+ The array into which values are copied.
+ src : array_like
+ The array from which values are copied.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur when copying.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+ where : array_like of bool, optional
+ A boolean array which is broadcasted to match the dimensions
+ of `dst`, and selects elements to copy from `src` to `dst`
+ wherever it contains the value True.
+ """
+ return (dst, src, where)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
+def putmask(a, mask, values):
+ """
+ putmask(a, mask, values)
+
+ Changes elements of an array based on conditional and input values.
+
+ Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
+
+ If `values` is not the same size as `a` and `mask` then it will repeat.
+ This gives behavior different from ``a[mask] = values``.
+
+ Parameters
+ ----------
+ a : ndarray
+ Target array.
+ mask : array_like
+ Boolean mask array. It has to be the same shape as `a`.
+ values : array_like
+ Values to put into `a` where `mask` is True. If `values` is smaller
+ than `a` it will be repeated.
+
+ See Also
+ --------
+ place, put, take, copyto
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2, 3)
+ >>> np.putmask(x, x>2, x**2)
+ >>> x
+ array([[ 0, 1, 2],
+ [ 9, 16, 25]])
+
+ If `values` is smaller than `a` it is repeated:
+
+ >>> x = np.arange(5)
+ >>> np.putmask(x, x>1, [-33, -44])
+ >>> x
+ array([ 0, 1, -33, -44, -33])
+
+ """
+ return (a, mask, values)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits)
+def packbits(a, axis=None, bitorder='big'):
+ """
+ packbits(a, axis=None, bitorder='big')
+
+ Packs the elements of a binary-valued array into bits in a uint8 array.
+
+ The result is padded to full bytes by inserting zero bits at the end.
+
+ Parameters
+ ----------
+ a : array_like
+ An array of integers or booleans whose elements should be packed to
+ bits.
+ axis : int, optional
+ The dimension over which bit-packing is done.
+ ``None`` implies packing the flattened array.
+ bitorder : {'big', 'little'}, optional
+ The order of the input bits. 'big' will mimic bin(val),
+ ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will
+ reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ packed : ndarray
+ Array of type uint8 whose elements represent bits corresponding to the
+ logical (0 or nonzero) value of the input elements. The shape of
+ `packed` has the same number of dimensions as the input (unless `axis`
+ is None, in which case the output is 1-D).
+
+ See Also
+ --------
+ unpackbits: Unpacks elements of a uint8 array into a binary-valued output
+ array.
+
+ Examples
+ --------
+ >>> a = np.array([[[1,0,1],
+ ... [0,1,0]],
+ ... [[1,1,0],
+ ... [0,0,1]]])
+ >>> b = np.packbits(a, axis=-1)
+ >>> b
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
+
+ Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
+ and 32 = 0010 0000.
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits)
+def unpackbits(a, axis=None, count=None, bitorder='big'):
+ """
+ unpackbits(a, axis=None, count=None, bitorder='big')
+
+ Unpacks elements of a uint8 array into a binary-valued output array.
+
+ Each element of `a` represents a bit-field that should be unpacked
+ into a binary-valued output array. The shape of the output array is
+ either 1-D (if `axis` is ``None``) or the same shape as the input
+ array with unpacking done along the axis specified.
+
+ Parameters
+ ----------
+ a : ndarray, uint8 type
+ Input array.
+ axis : int, optional
+ The dimension over which bit-unpacking is done.
+ ``None`` implies unpacking the flattened array.
+ count : int or None, optional
+ The number of elements to unpack along `axis`, provided as a way
+ of undoing the effect of packing a size that is not a multiple
+ of eight. A non-negative number means to only unpack `count`
+ bits. A negative number means to trim off that many bits from
+ the end. ``None`` means to unpack the entire array (the
+ default). Counts larger than the available number of bits will
+ add zero padding to the output. Negative counts must not
+ exceed the available number of bits.
+
+ .. versionadded:: 1.17.0
+
+ bitorder : {'big', 'little'}, optional
+ The order of the returned bits. 'big' will mimic bin(val),
+ ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse
+ the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``.
+ Defaults to 'big'.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ unpacked : ndarray, uint8 type
+ The elements are binary-valued (0 or 1).
+
+ See Also
+ --------
+ packbits : Packs the elements of a binary-valued array into bits in
+ a uint8 array.
+
+ Examples
+ --------
+ >>> a = np.array([[2], [7], [23]], dtype=np.uint8)
+ >>> a
+ array([[ 2],
+ [ 7],
+ [23]], dtype=uint8)
+ >>> b = np.unpackbits(a, axis=1)
+ >>> b
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
+ >>> c = np.unpackbits(a, axis=1, count=-3)
+ >>> c
+ array([[0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 1, 0]], dtype=uint8)
+
+ >>> p = np.packbits(b, axis=0)
+ >>> np.unpackbits(p, axis=0)
+ array([[0, 0, 0, 0, 0, 0, 1, 0],
+ [0, 0, 0, 0, 0, 1, 1, 1],
+ [0, 0, 0, 1, 0, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
+ >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
+ True
+
+ """
+ return (a,)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory)
+def shares_memory(a, b, max_work=None):
+ """
+ shares_memory(a, b, max_work=None)
+
+ Determine if two arrays share memory.
+
+ .. warning::
+
+ This function can be exponentially slow for some inputs, unless
+ `max_work` is set to a finite number or ``MAY_SHARE_BOUNDS``.
+ If in doubt, use `numpy.may_share_memory` instead.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem (maximum number
+ of candidate solutions to consider). The following special
+ values are recognized:
+
+ max_work=MAY_SHARE_EXACT (default)
+ The problem is solved exactly. In this case, the function returns
+ True only if there is an element shared between the arrays. Finding
+ the exact solution may take extremely long in some cases.
+ max_work=MAY_SHARE_BOUNDS
+ Only the memory bounds of a and b are checked.
+
+ Raises
+ ------
+ numpy.TooHardError
+ Exceeded max_work.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ may_share_memory
+
+ Examples
+ --------
+ >>> x = np.array([1, 2, 3, 4])
+ >>> np.shares_memory(x, np.array([5, 6, 7]))
+ False
+ >>> np.shares_memory(x[::2], x)
+ True
+ >>> np.shares_memory(x[::2], x[1::2])
+ False
+
+ Checking whether two arrays share memory is NP-complete, and
+ runtime may increase exponentially in the number of
+ dimensions. Hence, `max_work` should generally be set to a finite
+ number, as it is possible to construct examples that take
+ extremely long to run:
+
+ >>> from numpy.lib.stride_tricks import as_strided
+ >>> x = np.zeros([192163377], dtype=np.int8)
+ >>> x1 = as_strided(x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
+ >>> x2 = as_strided(x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
+ >>> np.shares_memory(x1, x2, max_work=1000)
+ Traceback (most recent call last):
+ ...
+ numpy.TooHardError: Exceeded max_work
+
+ Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
+ around 1 minute for this case. It is possible to find problems
+ that take still significantly longer.
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory)
+def may_share_memory(a, b, max_work=None):
+ """
+ may_share_memory(a, b, max_work=None)
+
+ Determine if two arrays might share memory
+
+ A return of True does not necessarily mean that the two arrays
+ share any element. It just means that they *might*.
+
+ Only the memory bounds of a and b are checked by default.
+
+ Parameters
+ ----------
+ a, b : ndarray
+ Input arrays
+ max_work : int, optional
+ Effort to spend on solving the overlap problem. See
+ `shares_memory` for details. Default for ``may_share_memory``
+ is to do a bounds check.
+
+ Returns
+ -------
+ out : bool
+
+ See Also
+ --------
+ shares_memory
+
+ Examples
+ --------
+ >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
+ False
+ >>> x = np.zeros([3, 4])
+ >>> np.may_share_memory(x[:,0], x[:,1])
+ True
+
+ """
+ return (a, b)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday)
+def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
+ """
+ is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
+
+ Calculates which of the given dates are valid days, and which are not.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of bool, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of bool
+ An array with the same shape as ``dates``, containing True for
+ each valid day, and False for each invalid day.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ busday_offset : Applies an offset counted in valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> # The weekdays are Friday, Saturday, and Monday
+ ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
+ ... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
+ array([False, False, True])
+ """
+ return (dates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset)
+def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)
+
+ First adjusts the date to fall on a valid day according to
+ the ``roll`` rule, then applies offsets to the given dates
+ counted in valid days.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ dates : array_like of datetime64[D]
+ The array of dates to process.
+ offsets : array_like of int
+ The array of offsets, which is broadcast with ``dates``.
+ roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
+ How to treat dates that do not fall on a valid day. The default
+ is 'raise'.
+
+ * 'raise' means to raise an exception for an invalid day.
+ * 'nat' means to return a NaT (not-a-time) for an invalid day.
+ * 'forward' and 'following' mean to take the first valid day
+ later in time.
+ * 'backward' and 'preceding' mean to take the first valid day
+ earlier in time.
+ * 'modifiedfollowing' means to take the first valid day
+ later in time unless it is across a Month boundary, in which
+ case to take the first valid day earlier in time.
+ * 'modifiedpreceding' means to take the first valid day
+ earlier in time unless it is across a Month boundary, in which
+ case to take the first valid day later in time.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of datetime64[D], optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of datetime64[D]
+ An array with a shape from broadcasting ``dates`` and ``offsets``
+ together, containing the dates with offsets applied.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_count : Counts how many valid days are in a half-open date range.
+
+ Examples
+ --------
+ >>> # First business day in October 2011 (not accounting for holidays)
+ ... np.busday_offset('2011-10', 0, roll='forward')
+ numpy.datetime64('2011-10-03')
+ >>> # Last business day in February 2012 (not accounting for holidays)
+ ... np.busday_offset('2012-03', -1, roll='forward')
+ numpy.datetime64('2012-02-29')
+ >>> # Third Wednesday in January 2011
+ ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
+ numpy.datetime64('2011-01-19')
+ >>> # 2012 Mother's Day in Canada and the U.S.
+ ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
+ numpy.datetime64('2012-05-13')
+
+ >>> # First business day on or after a date
+ ... np.busday_offset('2011-03-20', 0, roll='forward')
+ numpy.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 0, roll='forward')
+ numpy.datetime64('2011-03-22')
+ >>> # First business day after a date
+ ... np.busday_offset('2011-03-20', 1, roll='backward')
+ numpy.datetime64('2011-03-21')
+ >>> np.busday_offset('2011-03-22', 1, roll='backward')
+ numpy.datetime64('2011-03-23')
+ """
+ return (dates, offsets, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count)
+def busday_count(begindates, enddates, weekmask=None, holidays=None,
+ busdaycal=None, out=None):
+ """
+ busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
+
+ Counts the number of valid days between `begindates` and
+ `enddates`, not including the day of `enddates`.
+
+ If ``enddates`` specifies a date value that is earlier than the
+ corresponding ``begindates`` date value, the count will be negative.
+
+ .. versionadded:: 1.7.0
+
+ Parameters
+ ----------
+ begindates : array_like of datetime64[D]
+ The array of the first dates for counting.
+ enddates : array_like of datetime64[D]
+ The array of the end dates for counting, which are excluded
+ from the count themselves.
+ weekmask : str or array_like of bool, optional
+ A seven-element array indicating which of Monday through Sunday are
+ valid days. May be specified as a length-seven list or array, like
+ [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
+ like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
+ weekdays, optionally separated by white space. Valid abbreviations
+ are: Mon Tue Wed Thu Fri Sat Sun
+ holidays : array_like of datetime64[D], optional
+ An array of dates to consider as invalid dates. They may be
+ specified in any order, and NaT (not-a-time) dates are ignored.
+ This list is saved in a normalized form that is suited for
+ fast calculations of valid days.
+ busdaycal : busdaycalendar, optional
+ A `busdaycalendar` object which specifies the valid days. If this
+ parameter is provided, neither weekmask nor holidays may be
+ provided.
+ out : array of int, optional
+ If provided, this array is filled with the result.
+
+ Returns
+ -------
+ out : array of int
+ An array with a shape from broadcasting ``begindates`` and ``enddates``
+ together, containing the number of valid days between
+ the begin and end dates.
+
+ See Also
+ --------
+ busdaycalendar : An object that specifies a custom set of valid days.
+ is_busday : Returns a boolean array indicating valid days.
+ busday_offset : Applies an offset counted in valid days.
+
+ Examples
+ --------
+ >>> # Number of weekdays in January 2011
+ ... np.busday_count('2011-01', '2011-02')
+ 21
+ >>> # Number of weekdays in 2011
+ >>> np.busday_count('2011', '2012')
+ 260
+ >>> # Number of Saturdays in 2011
+ ... np.busday_count('2011', '2012', weekmask='Sat')
+ 53
+ """
+ return (begindates, enddates, weekmask, holidays, out)
+
+
+@array_function_from_c_func_and_dispatcher(
+ _multiarray_umath.datetime_as_string)
+def datetime_as_string(arr, unit=None, timezone=None, casting=None):
+ """
+ datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
+
+ Convert an array of datetimes into an array of strings.
+
+ Parameters
+ ----------
+ arr : array_like of datetime64
+ The array of UTC timestamps to format.
+ unit : str
+ One of None, 'auto', or a :ref:`datetime unit `.
+ timezone : {'naive', 'UTC', 'local'} or tzinfo
+ Timezone information to use when displaying the datetime. If 'UTC', end
+ with a Z to indicate UTC time. If 'local', convert to the local timezone
+ first, and suffix with a +-#### timezone offset. If a tzinfo object,
+ then do as with 'local', but use the specified timezone.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}
+ Casting to allow when changing between datetime units.
+
+ Returns
+ -------
+ str_arr : ndarray
+ An array of strings the same shape as `arr`.
+
+ Examples
+ --------
+ >>> import pytz
+ >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
+ >>> d
+ array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
+ '2002-10-27T07:30'], dtype='datetime64[m]')
+
+ Setting the timezone to UTC shows the same information, but with a Z suffix
+
+ >>> np.datetime_as_string(d, timezone='UTC')
+ array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',
+ '2002-10-27T07:30Z'], dtype='>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
+ array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',
+ '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='>> np.datetime_as_string(d, unit='h')
+ array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],
+ dtype='>> np.datetime_as_string(d, unit='s')
+ array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',
+ '2002-10-27T07:30:00'], dtype='>> np.datetime_as_string(d, unit='h', casting='safe')
+ Traceback (most recent call last):
+ ...
+ TypeError: Cannot create a datetime string as units 'h' from a NumPy
+ datetime with units 'm' according to the rule 'safe'
+ """
+ return (arr,)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.py
new file mode 100644
index 0000000000000000000000000000000000000000..8bb37e2910163b30a176d31242d6845d8215efc0
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.py
@@ -0,0 +1,2537 @@
+import functools
+import itertools
+import operator
+import sys
+import warnings
+import numbers
+
+import numpy as np
+from . import multiarray
+from .multiarray import (
+ _fastCopyAndTranspose as fastCopyAndTranspose, ALLOW_THREADS,
+ BUFSIZE, CLIP, MAXDIMS, MAY_SHARE_BOUNDS, MAY_SHARE_EXACT, RAISE,
+ WRAP, arange, array, asarray, asanyarray, ascontiguousarray,
+ asfortranarray, broadcast, can_cast, compare_chararrays,
+ concatenate, copyto, dot, dtype, empty,
+ empty_like, flatiter, frombuffer, fromfile, fromiter, fromstring,
+ inner, lexsort, matmul, may_share_memory,
+ min_scalar_type, ndarray, nditer, nested_iters, promote_types,
+ putmask, result_type, set_numeric_ops, shares_memory, vdot, where,
+ zeros, normalize_axis_index)
+
+from . import overrides
+from . import umath
+from . import shape_base
+from .overrides import set_array_function_like_doc, set_module
+from .umath import (multiply, invert, sin, PINF, NAN)
+from . import numerictypes
+from .numerictypes import longlong, intc, int_, float_, complex_, bool_
+from ._exceptions import TooHardError, AxisError
+from ._ufunc_config import errstate
+
+bitwise_not = invert
+ufunc = type(sin)
+newaxis = None
+
+array_function_dispatch = functools.partial(
+ overrides.array_function_dispatch, module='numpy')
+
+
+__all__ = [
+ 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc',
+ 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray',
+ 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype',
+ 'fromstring', 'fromfile', 'frombuffer', 'where',
+ 'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort',
+ 'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type',
+ 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like',
+ 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll',
+ 'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian',
+ 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction',
+ 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones',
+ 'identity', 'allclose', 'compare_chararrays', 'putmask',
+ 'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN',
+ 'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS',
+ 'BUFSIZE', 'ALLOW_THREADS', 'ComplexWarning', 'full', 'full_like',
+ 'matmul', 'shares_memory', 'may_share_memory', 'MAY_SHARE_BOUNDS',
+ 'MAY_SHARE_EXACT', 'TooHardError', 'AxisError']
+
+
+@set_module('numpy')
+class ComplexWarning(RuntimeWarning):
+ """
+ The warning raised when casting a complex dtype to a real dtype.
+
+ As implemented, casting a complex number to a real discards its imaginary
+ part, but this behavior may not be what the user actually wants.
+
+ """
+ pass
+
+
+def _zeros_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
+ return (a,)
+
+
+@array_function_dispatch(_zeros_like_dispatcher)
+def zeros_like(a, dtype=None, order='K', subok=True, shape=None):
+ """
+ Return an array of zeros with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+
+ .. versionadded:: 1.6.0
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+
+ .. versionadded:: 1.6.0
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of zeros with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ zeros : Return a new array setting values to zero.
+
+ Examples
+ --------
+ >>> x = np.arange(6)
+ >>> x = x.reshape((2, 3))
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.zeros_like(x)
+ array([[0, 0, 0],
+ [0, 0, 0]])
+
+ >>> y = np.arange(3, dtype=float)
+ >>> y
+ array([0., 1., 2.])
+ >>> np.zeros_like(y)
+ array([0., 0., 0.])
+
+ """
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
+ # needed instead of a 0 to get same result as zeros for for string dtypes
+ z = zeros(1, dtype=res.dtype)
+ multiarray.copyto(res, z, casting='unsafe')
+ return res
+
+
+def _ones_dispatcher(shape, dtype=None, order=None, *, like=None):
+ return(like,)
+
+
+@set_array_function_like_doc
+@set_module('numpy')
+def ones(shape, dtype=None, order='C', *, like=None):
+ """
+ Return a new array of given shape and type, filled with ones.
+
+ Parameters
+ ----------
+ shape : int or sequence of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ dtype : data-type, optional
+ The desired data-type for the array, e.g., `numpy.int8`. Default is
+ `numpy.float64`.
+ order : {'C', 'F'}, optional, default: C
+ Whether to store multi-dimensional data in row-major
+ (C-style) or column-major (Fortran-style) order in
+ memory.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of ones with the given shape, dtype, and order.
+
+ See Also
+ --------
+ ones_like : Return an array of ones with shape and type of input.
+ empty : Return a new uninitialized array.
+ zeros : Return a new array setting values to zero.
+ full : Return a new array of given shape filled with value.
+
+
+ Examples
+ --------
+ >>> np.ones(5)
+ array([1., 1., 1., 1., 1.])
+
+ >>> np.ones((5,), dtype=int)
+ array([1, 1, 1, 1, 1])
+
+ >>> np.ones((2, 1))
+ array([[1.],
+ [1.]])
+
+ >>> s = (2,2)
+ >>> np.ones(s)
+ array([[1., 1.],
+ [1., 1.]])
+
+ """
+ if like is not None:
+ return _ones_with_like(shape, dtype=dtype, order=order, like=like)
+
+ a = empty(shape, dtype, order)
+ multiarray.copyto(a, 1, casting='unsafe')
+ return a
+
+
+_ones_with_like = array_function_dispatch(
+ _ones_dispatcher
+)(ones)
+
+
+def _ones_like_dispatcher(a, dtype=None, order=None, subok=None, shape=None):
+ return (a,)
+
+
+@array_function_dispatch(_ones_like_dispatcher)
+def ones_like(a, dtype=None, order='K', subok=True, shape=None):
+ """
+ Return an array of ones with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+
+ .. versionadded:: 1.6.0
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+
+ .. versionadded:: 1.6.0
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of ones with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full_like : Return a new array with shape of input filled with value.
+ ones : Return a new array setting values to one.
+
+ Examples
+ --------
+ >>> x = np.arange(6)
+ >>> x = x.reshape((2, 3))
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.ones_like(x)
+ array([[1, 1, 1],
+ [1, 1, 1]])
+
+ >>> y = np.arange(3, dtype=float)
+ >>> y
+ array([0., 1., 2.])
+ >>> np.ones_like(y)
+ array([1., 1., 1.])
+
+ """
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
+ multiarray.copyto(res, 1, casting='unsafe')
+ return res
+
+
+def _full_dispatcher(shape, fill_value, dtype=None, order=None, *, like=None):
+ return(like,)
+
+
+@set_array_function_like_doc
+@set_module('numpy')
+def full(shape, fill_value, dtype=None, order='C', *, like=None):
+ """
+ Return a new array of given shape and type, filled with `fill_value`.
+
+ Parameters
+ ----------
+ shape : int or sequence of ints
+ Shape of the new array, e.g., ``(2, 3)`` or ``2``.
+ fill_value : scalar or array_like
+ Fill value.
+ dtype : data-type, optional
+ The desired data-type for the array The default, None, means
+ ``np.array(fill_value).dtype``.
+ order : {'C', 'F'}, optional
+ Whether to store multidimensional data in C- or Fortran-contiguous
+ (row- or column-wise) order in memory.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of `fill_value` with the given shape, dtype, and order.
+
+ See Also
+ --------
+ full_like : Return a new array with shape of input filled with value.
+ empty : Return a new uninitialized array.
+ ones : Return a new array setting values to one.
+ zeros : Return a new array setting values to zero.
+
+ Examples
+ --------
+ >>> np.full((2, 2), np.inf)
+ array([[inf, inf],
+ [inf, inf]])
+ >>> np.full((2, 2), 10)
+ array([[10, 10],
+ [10, 10]])
+
+ >>> np.full((2, 2), [1, 2])
+ array([[1, 2],
+ [1, 2]])
+
+ """
+ if like is not None:
+ return _full_with_like(shape, fill_value, dtype=dtype, order=order, like=like)
+
+ if dtype is None:
+ fill_value = asarray(fill_value)
+ dtype = fill_value.dtype
+ a = empty(shape, dtype, order)
+ multiarray.copyto(a, fill_value, casting='unsafe')
+ return a
+
+
+_full_with_like = array_function_dispatch(
+ _full_dispatcher
+)(full)
+
+
+def _full_like_dispatcher(a, fill_value, dtype=None, order=None, subok=None, shape=None):
+ return (a,)
+
+
+@array_function_dispatch(_full_like_dispatcher)
+def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None):
+ """
+ Return a full array with the same shape and type as a given array.
+
+ Parameters
+ ----------
+ a : array_like
+ The shape and data-type of `a` define these same attributes of
+ the returned array.
+ fill_value : scalar
+ Fill value.
+ dtype : data-type, optional
+ Overrides the data type of the result.
+ order : {'C', 'F', 'A', or 'K'}, optional
+ Overrides the memory layout of the result. 'C' means C-order,
+ 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
+ 'C' otherwise. 'K' means match the layout of `a` as closely
+ as possible.
+ subok : bool, optional.
+ If True, then the newly created array will use the sub-class
+ type of `a`, otherwise it will be a base-class array. Defaults
+ to True.
+ shape : int or sequence of ints, optional.
+ Overrides the shape of the result. If order='K' and the number of
+ dimensions is unchanged, will try to keep order, otherwise,
+ order='C' is implied.
+
+ .. versionadded:: 1.17.0
+
+ Returns
+ -------
+ out : ndarray
+ Array of `fill_value` with the same shape and type as `a`.
+
+ See Also
+ --------
+ empty_like : Return an empty array with shape and type of input.
+ ones_like : Return an array of ones with shape and type of input.
+ zeros_like : Return an array of zeros with shape and type of input.
+ full : Return a new array of given shape filled with value.
+
+ Examples
+ --------
+ >>> x = np.arange(6, dtype=int)
+ >>> np.full_like(x, 1)
+ array([1, 1, 1, 1, 1, 1])
+ >>> np.full_like(x, 0.1)
+ array([0, 0, 0, 0, 0, 0])
+ >>> np.full_like(x, 0.1, dtype=np.double)
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+ >>> np.full_like(x, np.nan, dtype=np.double)
+ array([nan, nan, nan, nan, nan, nan])
+
+ >>> y = np.arange(6, dtype=np.double)
+ >>> np.full_like(y, 0.1)
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+
+ """
+ res = empty_like(a, dtype=dtype, order=order, subok=subok, shape=shape)
+ multiarray.copyto(res, fill_value, casting='unsafe')
+ return res
+
+
+def _count_nonzero_dispatcher(a, axis=None, *, keepdims=None):
+ return (a,)
+
+
+@array_function_dispatch(_count_nonzero_dispatcher)
+def count_nonzero(a, axis=None, *, keepdims=False):
+ """
+ Counts the number of non-zero values in the array ``a``.
+
+ The word "non-zero" is in reference to the Python 2.x
+ built-in method ``__nonzero__()`` (renamed ``__bool__()``
+ in Python 3.x) of Python objects that tests an object's
+ "truthfulness". For example, any number is considered
+ truthful if it is nonzero, whereas any string is considered
+ truthful if it is not the empty string. Thus, this function
+ (recursively) counts how many elements in ``a`` (and in
+ sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()``
+ method evaluated to ``True``.
+
+ Parameters
+ ----------
+ a : array_like
+ The array for which to count non-zeros.
+ axis : int or tuple, optional
+ Axis or tuple of axes along which to count non-zeros.
+ Default is None, meaning that non-zeros will be counted
+ along a flattened version of ``a``.
+
+ .. versionadded:: 1.12.0
+
+ keepdims : bool, optional
+ If this is set to True, the axes that are counted are left
+ in the result as dimensions with size one. With this option,
+ the result will broadcast correctly against the input array.
+
+ .. versionadded:: 1.19.0
+
+ Returns
+ -------
+ count : int or array of int
+ Number of non-zero values in the array along a given axis.
+ Otherwise, the total number of non-zero values in the array
+ is returned.
+
+ See Also
+ --------
+ nonzero : Return the coordinates of all the non-zero values.
+
+ Examples
+ --------
+ >>> np.count_nonzero(np.eye(4))
+ 4
+ >>> a = np.array([[0, 1, 7, 0],
+ ... [3, 0, 2, 19]])
+ >>> np.count_nonzero(a)
+ 5
+ >>> np.count_nonzero(a, axis=0)
+ array([1, 1, 2, 1])
+ >>> np.count_nonzero(a, axis=1)
+ array([2, 3])
+ >>> np.count_nonzero(a, axis=1, keepdims=True)
+ array([[2],
+ [3]])
+ """
+ if axis is None and not keepdims:
+ return multiarray.count_nonzero(a)
+
+ a = asanyarray(a)
+
+ # TODO: this works around .astype(bool) not working properly (gh-9847)
+ if np.issubdtype(a.dtype, np.character):
+ a_bool = a != a.dtype.type()
+ else:
+ a_bool = a.astype(np.bool_, copy=False)
+
+ return a_bool.sum(axis=axis, dtype=np.intp, keepdims=keepdims)
+
+
+@set_module('numpy')
+def isfortran(a):
+ """
+ Check if the array is Fortran contiguous but *not* C contiguous.
+
+ This function is obsolete and, because of changes due to relaxed stride
+ checking, its return value for the same array may differ for versions
+ of NumPy >= 1.10.0 and previous versions. If you only want to check if an
+ array is Fortran contiguous use ``a.flags.f_contiguous`` instead.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+
+ Returns
+ -------
+ isfortran : bool
+ Returns True if the array is Fortran contiguous but *not* C contiguous.
+
+
+ Examples
+ --------
+
+ np.array allows to specify whether the array is written in C-contiguous
+ order (last index varies the fastest), or FORTRAN-contiguous order in
+ memory (first index varies the fastest).
+
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(a)
+ False
+
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
+ >>> b
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(b)
+ True
+
+
+ The transpose of a C-ordered array is a FORTRAN-ordered array.
+
+ >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
+ >>> a
+ array([[1, 2, 3],
+ [4, 5, 6]])
+ >>> np.isfortran(a)
+ False
+ >>> b = a.T
+ >>> b
+ array([[1, 4],
+ [2, 5],
+ [3, 6]])
+ >>> np.isfortran(b)
+ True
+
+ C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.
+
+ >>> np.isfortran(np.array([1, 2], order='F'))
+ False
+
+ """
+ return a.flags.fnc
+
+
+def _argwhere_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_argwhere_dispatcher)
+def argwhere(a):
+ """
+ Find the indices of array elements that are non-zero, grouped by element.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+
+ Returns
+ -------
+ index_array : (N, a.ndim) ndarray
+ Indices of elements that are non-zero. Indices are grouped by element.
+ This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
+ non-zero items.
+
+ See Also
+ --------
+ where, nonzero
+
+ Notes
+ -----
+ ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
+ but produces a result of the correct shape for a 0D array.
+
+ The output of ``argwhere`` is not suitable for indexing arrays.
+ For this purpose use ``nonzero(a)`` instead.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> x
+ array([[0, 1, 2],
+ [3, 4, 5]])
+ >>> np.argwhere(x>1)
+ array([[0, 2],
+ [1, 0],
+ [1, 1],
+ [1, 2]])
+
+ """
+ # nonzero does not behave well on 0d, so promote to 1d
+ if np.ndim(a) == 0:
+ a = shape_base.atleast_1d(a)
+ # then remove the added dimension
+ return argwhere(a)[:,:0]
+ return transpose(nonzero(a))
+
+
+def _flatnonzero_dispatcher(a):
+ return (a,)
+
+
+@array_function_dispatch(_flatnonzero_dispatcher)
+def flatnonzero(a):
+ """
+ Return indices that are non-zero in the flattened version of a.
+
+ This is equivalent to np.nonzero(np.ravel(a))[0].
+
+ Parameters
+ ----------
+ a : array_like
+ Input data.
+
+ Returns
+ -------
+ res : ndarray
+ Output array, containing the indices of the elements of `a.ravel()`
+ that are non-zero.
+
+ See Also
+ --------
+ nonzero : Return the indices of the non-zero elements of the input array.
+ ravel : Return a 1-D array containing the elements of the input array.
+
+ Examples
+ --------
+ >>> x = np.arange(-2, 3)
+ >>> x
+ array([-2, -1, 0, 1, 2])
+ >>> np.flatnonzero(x)
+ array([0, 1, 3, 4])
+
+ Use the indices of the non-zero elements as an index array to extract
+ these elements:
+
+ >>> x.ravel()[np.flatnonzero(x)]
+ array([-2, -1, 1, 2])
+
+ """
+ return np.nonzero(np.ravel(a))[0]
+
+
+def _correlate_dispatcher(a, v, mode=None):
+ return (a, v)
+
+
+@array_function_dispatch(_correlate_dispatcher)
+def correlate(a, v, mode='valid'):
+ """
+ Cross-correlation of two 1-dimensional sequences.
+
+ This function computes the correlation as generally defined in signal
+ processing texts::
+
+ c_{av}[k] = sum_n a[n+k] * conj(v[n])
+
+ with a and v sequences being zero-padded where necessary and conj being
+ the conjugate.
+
+ Parameters
+ ----------
+ a, v : array_like
+ Input sequences.
+ mode : {'valid', 'same', 'full'}, optional
+ Refer to the `convolve` docstring. Note that the default
+ is 'valid', unlike `convolve`, which uses 'full'.
+ old_behavior : bool
+ `old_behavior` was removed in NumPy 1.10. If you need the old
+ behavior, use `multiarray.correlate`.
+
+ Returns
+ -------
+ out : ndarray
+ Discrete cross-correlation of `a` and `v`.
+
+ See Also
+ --------
+ convolve : Discrete, linear convolution of two one-dimensional sequences.
+ multiarray.correlate : Old, no conjugate, version of correlate.
+ scipy.signal.correlate : uses FFT which has superior performance on large arrays.
+
+ Notes
+ -----
+ The definition of correlation above is not unique and sometimes correlation
+ may be defined differently. Another common definition is::
+
+ c'_{av}[k] = sum_n a[n] conj(v[n+k])
+
+ which is related to ``c_{av}[k]`` by ``c'_{av}[k] = c_{av}[-k]``.
+
+ `numpy.correlate` may perform slowly in large arrays (i.e. n = 1e5) because it does
+ not use the FFT to compute the convolution; in that case, `scipy.signal.correlate` might
+ be preferable.
+
+
+ Examples
+ --------
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5])
+ array([3.5])
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
+ array([2. , 3.5, 3. ])
+ >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
+ array([0.5, 2. , 3.5, 3. , 0. ])
+
+ Using complex sequences:
+
+ >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
+ array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ])
+
+ Note that you get the time reversed, complex conjugated result
+ when the two input sequences change places, i.e.,
+ ``c_{va}[k] = c^{*}_{av}[-k]``:
+
+ >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
+ array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])
+
+ """
+ return multiarray.correlate2(a, v, mode)
+
+
+def _convolve_dispatcher(a, v, mode=None):
+ return (a, v)
+
+
+@array_function_dispatch(_convolve_dispatcher)
+def convolve(a, v, mode='full'):
+ """
+ Returns the discrete, linear convolution of two one-dimensional sequences.
+
+ The convolution operator is often seen in signal processing, where it
+ models the effect of a linear time-invariant system on a signal [1]_. In
+ probability theory, the sum of two independent random variables is
+ distributed according to the convolution of their individual
+ distributions.
+
+ If `v` is longer than `a`, the arrays are swapped before computation.
+
+ Parameters
+ ----------
+ a : (N,) array_like
+ First one-dimensional input array.
+ v : (M,) array_like
+ Second one-dimensional input array.
+ mode : {'full', 'valid', 'same'}, optional
+ 'full':
+ By default, mode is 'full'. This returns the convolution
+ at each point of overlap, with an output shape of (N+M-1,). At
+ the end-points of the convolution, the signals do not overlap
+ completely, and boundary effects may be seen.
+
+ 'same':
+ Mode 'same' returns output of length ``max(M, N)``. Boundary
+ effects are still visible.
+
+ 'valid':
+ Mode 'valid' returns output of length
+ ``max(M, N) - min(M, N) + 1``. The convolution product is only given
+ for points where the signals overlap completely. Values outside
+ the signal boundary have no effect.
+
+ Returns
+ -------
+ out : ndarray
+ Discrete, linear convolution of `a` and `v`.
+
+ See Also
+ --------
+ scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
+ Transform.
+ scipy.linalg.toeplitz : Used to construct the convolution operator.
+ polymul : Polynomial multiplication. Same output as convolve, but also
+ accepts poly1d objects as input.
+
+ Notes
+ -----
+ The discrete convolution operation is defined as
+
+ .. math:: (a * v)[n] = \\sum_{m = -\\infty}^{\\infty} a[m] v[n - m]
+
+ It can be shown that a convolution :math:`x(t) * y(t)` in time/space
+ is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
+ domain, after appropriate padding (padding is necessary to prevent
+ circular convolution). Since multiplication is more efficient (faster)
+ than convolution, the function `scipy.signal.fftconvolve` exploits the
+ FFT to calculate the convolution of large data-sets.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Convolution",
+ https://en.wikipedia.org/wiki/Convolution
+
+ Examples
+ --------
+ Note how the convolution operator flips the second array
+ before "sliding" the two across one another:
+
+ >>> np.convolve([1, 2, 3], [0, 1, 0.5])
+ array([0. , 1. , 2.5, 4. , 1.5])
+
+ Only return the middle values of the convolution.
+ Contains boundary effects, where zeros are taken
+ into account:
+
+ >>> np.convolve([1,2,3],[0,1,0.5], 'same')
+ array([1. , 2.5, 4. ])
+
+ The two arrays are of the same length, so there
+ is only one position where they completely overlap:
+
+ >>> np.convolve([1,2,3],[0,1,0.5], 'valid')
+ array([2.5])
+
+ """
+ a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1)
+ if (len(v) > len(a)):
+ a, v = v, a
+ if len(a) == 0:
+ raise ValueError('a cannot be empty')
+ if len(v) == 0:
+ raise ValueError('v cannot be empty')
+ return multiarray.correlate(a, v[::-1], mode)
+
+
+def _outer_dispatcher(a, b, out=None):
+ return (a, b, out)
+
+
+@array_function_dispatch(_outer_dispatcher)
+def outer(a, b, out=None):
+ """
+ Compute the outer product of two vectors.
+
+ Given two vectors, ``a = [a0, a1, ..., aM]`` and
+ ``b = [b0, b1, ..., bN]``,
+ the outer product [1]_ is::
+
+ [[a0*b0 a0*b1 ... a0*bN ]
+ [a1*b0 .
+ [ ... .
+ [aM*b0 aM*bN ]]
+
+ Parameters
+ ----------
+ a : (M,) array_like
+ First input vector. Input is flattened if
+ not already 1-dimensional.
+ b : (N,) array_like
+ Second input vector. Input is flattened if
+ not already 1-dimensional.
+ out : (M, N) ndarray, optional
+ A location where the result is stored
+
+ .. versionadded:: 1.9.0
+
+ Returns
+ -------
+ out : (M, N) ndarray
+ ``out[i, j] = a[i] * b[j]``
+
+ See also
+ --------
+ inner
+ einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent.
+ ufunc.outer : A generalization to dimensions other than 1D and other
+ operations. ``np.multiply.outer(a.ravel(), b.ravel())``
+ is the equivalent.
+ tensordot : ``np.tensordot(a.ravel(), b.ravel(), axes=((), ()))``
+ is the equivalent.
+
+ References
+ ----------
+ .. [1] : G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd
+ ed., Baltimore, MD, Johns Hopkins University Press, 1996,
+ pg. 8.
+
+ Examples
+ --------
+ Make a (*very* coarse) grid for computing a Mandelbrot set:
+
+ >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
+ >>> rl
+ array([[-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.],
+ [-2., -1., 0., 1., 2.]])
+ >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
+ >>> im
+ array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
+ [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
+ [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
+ [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
+ [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
+ >>> grid = rl + im
+ >>> grid
+ array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
+ [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
+ [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
+ [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
+ [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
+
+ An example using a "vector" of letters:
+
+ >>> x = np.array(['a', 'b', 'c'], dtype=object)
+ >>> np.outer(x, [1, 2, 3])
+ array([['a', 'aa', 'aaa'],
+ ['b', 'bb', 'bbb'],
+ ['c', 'cc', 'ccc']], dtype=object)
+
+ """
+ a = asarray(a)
+ b = asarray(b)
+ return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out)
+
+
+def _tensordot_dispatcher(a, b, axes=None):
+ return (a, b)
+
+
+@array_function_dispatch(_tensordot_dispatcher)
+def tensordot(a, b, axes=2):
+ """
+ Compute tensor dot product along specified axes.
+
+ Given two tensors, `a` and `b`, and an array_like object containing
+ two array_like objects, ``(a_axes, b_axes)``, sum the products of
+ `a`'s and `b`'s elements (components) over the axes specified by
+ ``a_axes`` and ``b_axes``. The third argument can be a single non-negative
+ integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions
+ of `a` and the first ``N`` dimensions of `b` are summed over.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Tensors to "dot".
+
+ axes : int or (2,) array_like
+ * integer_like
+ If an int N, sum over the last N axes of `a` and the first N axes
+ of `b` in order. The sizes of the corresponding axes must match.
+ * (2,) array_like
+ Or, a list of axes to be summed over, first sequence applying to `a`,
+ second to `b`. Both elements array_like must be of the same length.
+
+ Returns
+ -------
+ output : ndarray
+ The tensor dot product of the input.
+
+ See Also
+ --------
+ dot, einsum
+
+ Notes
+ -----
+ Three common use cases are:
+ * ``axes = 0`` : tensor product :math:`a\\otimes b`
+ * ``axes = 1`` : tensor dot product :math:`a\\cdot b`
+ * ``axes = 2`` : (default) tensor double contraction :math:`a:b`
+
+ When `axes` is integer_like, the sequence for evaluation will be: first
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
+ Nth axis in `b` last.
+
+ When there is more than one axis to sum over - and they are not the last
+ (first) axes of `a` (`b`) - the argument `axes` should consist of
+ two sequences of the same length, with the first axis to sum over given
+ first in both sequences, the second axis second, and so forth.
+
+ The shape of the result consists of the non-contracted axes of the
+ first tensor, followed by the non-contracted axes of the second.
+
+ Examples
+ --------
+ A "traditional" example:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
+ >>> c.shape
+ (5, 2)
+ >>> c
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> # A slower but equivalent way of computing the same...
+ >>> d = np.zeros((5,2))
+ >>> for i in range(5):
+ ... for j in range(2):
+ ... for k in range(3):
+ ... for n in range(4):
+ ... d[i,j] += a[k,n,i] * b[n,k,j]
+ >>> c == d
+ array([[ True, True],
+ [ True, True],
+ [ True, True],
+ [ True, True],
+ [ True, True]])
+
+ An extended example taking advantage of the overloading of + and \\*:
+
+ >>> a = np.array(range(1, 9))
+ >>> a.shape = (2, 2, 2)
+ >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
+ >>> A.shape = (2, 2)
+ >>> a; A
+ array([[[1, 2],
+ [3, 4]],
+ [[5, 6],
+ [7, 8]]])
+ array([['a', 'b'],
+ ['c', 'd']], dtype=object)
+
+ >>> np.tensordot(a, A) # third argument default is 2 for double-contraction
+ array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)
+
+ >>> np.tensordot(a, A, 1)
+ array([[['acc', 'bdd'],
+ ['aaacccc', 'bbbdddd']],
+ [['aaaaacccccc', 'bbbbbdddddd'],
+ ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
+ array([[[[['a', 'b'],
+ ['c', 'd']],
+ ...
+
+ >>> np.tensordot(a, A, (0, 1))
+ array([[['abbbbb', 'cddddd'],
+ ['aabbbbbb', 'ccdddddd']],
+ [['aaabbbbbbb', 'cccddddddd'],
+ ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, (2, 1))
+ array([[['abb', 'cdd'],
+ ['aaabbbb', 'cccdddd']],
+ [['aaaaabbbbbb', 'cccccdddddd'],
+ ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)
+
+ >>> np.tensordot(a, A, ((0, 1), (0, 1)))
+ array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)
+
+ >>> np.tensordot(a, A, ((2, 1), (1, 0)))
+ array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)
+
+ """
+ try:
+ iter(axes)
+ except Exception:
+ axes_a = list(range(-axes, 0))
+ axes_b = list(range(0, axes))
+ else:
+ axes_a, axes_b = axes
+ try:
+ na = len(axes_a)
+ axes_a = list(axes_a)
+ except TypeError:
+ axes_a = [axes_a]
+ na = 1
+ try:
+ nb = len(axes_b)
+ axes_b = list(axes_b)
+ except TypeError:
+ axes_b = [axes_b]
+ nb = 1
+
+ a, b = asarray(a), asarray(b)
+ as_ = a.shape
+ nda = a.ndim
+ bs = b.shape
+ ndb = b.ndim
+ equal = True
+ if na != nb:
+ equal = False
+ else:
+ for k in range(na):
+ if as_[axes_a[k]] != bs[axes_b[k]]:
+ equal = False
+ break
+ if axes_a[k] < 0:
+ axes_a[k] += nda
+ if axes_b[k] < 0:
+ axes_b[k] += ndb
+ if not equal:
+ raise ValueError("shape-mismatch for sum")
+
+ # Move the axes to sum over to the end of "a"
+ # and to the front of "b"
+ notin = [k for k in range(nda) if k not in axes_a]
+ newaxes_a = notin + axes_a
+ N2 = 1
+ for axis in axes_a:
+ N2 *= as_[axis]
+ newshape_a = (int(multiply.reduce([as_[ax] for ax in notin])), N2)
+ olda = [as_[axis] for axis in notin]
+
+ notin = [k for k in range(ndb) if k not in axes_b]
+ newaxes_b = axes_b + notin
+ N2 = 1
+ for axis in axes_b:
+ N2 *= bs[axis]
+ newshape_b = (N2, int(multiply.reduce([bs[ax] for ax in notin])))
+ oldb = [bs[axis] for axis in notin]
+
+ at = a.transpose(newaxes_a).reshape(newshape_a)
+ bt = b.transpose(newaxes_b).reshape(newshape_b)
+ res = dot(at, bt)
+ return res.reshape(olda + oldb)
+
+
+def _roll_dispatcher(a, shift, axis=None):
+ return (a,)
+
+
+@array_function_dispatch(_roll_dispatcher)
+def roll(a, shift, axis=None):
+ """
+ Roll array elements along a given axis.
+
+ Elements that roll beyond the last position are re-introduced at
+ the first.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ shift : int or tuple of ints
+ The number of places by which elements are shifted. If a tuple,
+ then `axis` must be a tuple of the same size, and each of the
+ given axes is shifted by the corresponding number. If an int
+ while `axis` is a tuple of ints, then the same value is used for
+ all given axes.
+ axis : int or tuple of ints, optional
+ Axis or axes along which elements are shifted. By default, the
+ array is flattened before shifting, after which the original
+ shape is restored.
+
+ Returns
+ -------
+ res : ndarray
+ Output array, with the same shape as `a`.
+
+ See Also
+ --------
+ rollaxis : Roll the specified axis backwards, until it lies in a
+ given position.
+
+ Notes
+ -----
+ .. versionadded:: 1.12.0
+
+ Supports rolling over multiple dimensions simultaneously.
+
+ Examples
+ --------
+ >>> x = np.arange(10)
+ >>> np.roll(x, 2)
+ array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
+ >>> np.roll(x, -2)
+ array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])
+
+ >>> x2 = np.reshape(x, (2,5))
+ >>> x2
+ array([[0, 1, 2, 3, 4],
+ [5, 6, 7, 8, 9]])
+ >>> np.roll(x2, 1)
+ array([[9, 0, 1, 2, 3],
+ [4, 5, 6, 7, 8]])
+ >>> np.roll(x2, -1)
+ array([[1, 2, 3, 4, 5],
+ [6, 7, 8, 9, 0]])
+ >>> np.roll(x2, 1, axis=0)
+ array([[5, 6, 7, 8, 9],
+ [0, 1, 2, 3, 4]])
+ >>> np.roll(x2, -1, axis=0)
+ array([[5, 6, 7, 8, 9],
+ [0, 1, 2, 3, 4]])
+ >>> np.roll(x2, 1, axis=1)
+ array([[4, 0, 1, 2, 3],
+ [9, 5, 6, 7, 8]])
+ >>> np.roll(x2, -1, axis=1)
+ array([[1, 2, 3, 4, 0],
+ [6, 7, 8, 9, 5]])
+
+ """
+ a = asanyarray(a)
+ if axis is None:
+ return roll(a.ravel(), shift, 0).reshape(a.shape)
+
+ else:
+ axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
+ broadcasted = broadcast(shift, axis)
+ if broadcasted.ndim > 1:
+ raise ValueError(
+ "'shift' and 'axis' should be scalars or 1D sequences")
+ shifts = {ax: 0 for ax in range(a.ndim)}
+ for sh, ax in broadcasted:
+ shifts[ax] += sh
+
+ rolls = [((slice(None), slice(None)),)] * a.ndim
+ for ax, offset in shifts.items():
+ offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters.
+ if offset:
+ # (original, result), (original, result)
+ rolls[ax] = ((slice(None, -offset), slice(offset, None)),
+ (slice(-offset, None), slice(None, offset)))
+
+ result = empty_like(a)
+ for indices in itertools.product(*rolls):
+ arr_index, res_index = zip(*indices)
+ result[res_index] = a[arr_index]
+
+ return result
+
+
+def _rollaxis_dispatcher(a, axis, start=None):
+ return (a,)
+
+
+@array_function_dispatch(_rollaxis_dispatcher)
+def rollaxis(a, axis, start=0):
+ """
+ Roll the specified axis backwards, until it lies in a given position.
+
+ This function continues to be supported for backward compatibility, but you
+ should prefer `moveaxis`. The `moveaxis` function was added in NumPy
+ 1.11.
+
+ Parameters
+ ----------
+ a : ndarray
+ Input array.
+ axis : int
+ The axis to be rolled. The positions of the other axes do not
+ change relative to one another.
+ start : int, optional
+ When ``start <= axis``, the axis is rolled back until it lies in
+ this position. When ``start > axis``, the axis is rolled until it
+ lies before this position. The default, 0, results in a "complete"
+ roll. The following table describes how negative values of ``start``
+ are interpreted:
+
+ .. table::
+ :align: left
+
+ +-------------------+----------------------+
+ | ``start`` | Normalized ``start`` |
+ +===================+======================+
+ | ``-(arr.ndim+1)`` | raise ``AxisError`` |
+ +-------------------+----------------------+
+ | ``-arr.ndim`` | 0 |
+ +-------------------+----------------------+
+ | |vdots| | |vdots| |
+ +-------------------+----------------------+
+ | ``-1`` | ``arr.ndim-1`` |
+ +-------------------+----------------------+
+ | ``0`` | ``0`` |
+ +-------------------+----------------------+
+ | |vdots| | |vdots| |
+ +-------------------+----------------------+
+ | ``arr.ndim`` | ``arr.ndim`` |
+ +-------------------+----------------------+
+ | ``arr.ndim + 1`` | raise ``AxisError`` |
+ +-------------------+----------------------+
+
+ .. |vdots| unicode:: U+22EE .. Vertical Ellipsis
+
+ Returns
+ -------
+ res : ndarray
+ For NumPy >= 1.10.0 a view of `a` is always returned. For earlier
+ NumPy versions a view of `a` is returned only if the order of the
+ axes is changed, otherwise the input array is returned.
+
+ See Also
+ --------
+ moveaxis : Move array axes to new positions.
+ roll : Roll the elements of an array by a number of positions along a
+ given axis.
+
+ Examples
+ --------
+ >>> a = np.ones((3,4,5,6))
+ >>> np.rollaxis(a, 3, 1).shape
+ (3, 6, 4, 5)
+ >>> np.rollaxis(a, 2).shape
+ (5, 3, 4, 6)
+ >>> np.rollaxis(a, 1, 4).shape
+ (3, 5, 6, 4)
+
+ """
+ n = a.ndim
+ axis = normalize_axis_index(axis, n)
+ if start < 0:
+ start += n
+ msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
+ if not (0 <= start < n + 1):
+ raise AxisError(msg % ('start', -n, 'start', n + 1, start))
+ if axis < start:
+ # it's been removed
+ start -= 1
+ if axis == start:
+ return a[...]
+ axes = list(range(0, n))
+ axes.remove(axis)
+ axes.insert(start, axis)
+ return a.transpose(axes)
+
+
+def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
+ """
+ Normalizes an axis argument into a tuple of non-negative integer axes.
+
+ This handles shorthands such as ``1`` and converts them to ``(1,)``,
+ as well as performing the handling of negative indices covered by
+ `normalize_axis_index`.
+
+ By default, this forbids axes from being specified multiple times.
+
+ Used internally by multi-axis-checking logic.
+
+ .. versionadded:: 1.13.0
+
+ Parameters
+ ----------
+ axis : int, iterable of int
+ The un-normalized index or indices of the axis.
+ ndim : int
+ The number of dimensions of the array that `axis` should be normalized
+ against.
+ argname : str, optional
+ A prefix to put before the error message, typically the name of the
+ argument.
+ allow_duplicate : bool, optional
+ If False, the default, disallow an axis from being specified twice.
+
+ Returns
+ -------
+ normalized_axes : tuple of int
+ The normalized axis index, such that `0 <= normalized_axis < ndim`
+
+ Raises
+ ------
+ AxisError
+ If any axis provided is out of range
+ ValueError
+ If an axis is repeated
+
+ See also
+ --------
+ normalize_axis_index : normalizing a single scalar axis
+ """
+ # Optimization to speed-up the most common cases.
+ if type(axis) not in (tuple, list):
+ try:
+ axis = [operator.index(axis)]
+ except TypeError:
+ pass
+ # Going via an iterator directly is slower than via list comprehension.
+ axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis])
+ if not allow_duplicate and len(set(axis)) != len(axis):
+ if argname:
+ raise ValueError('repeated axis in `{}` argument'.format(argname))
+ else:
+ raise ValueError('repeated axis')
+ return axis
+
+
+def _moveaxis_dispatcher(a, source, destination):
+ return (a,)
+
+
+@array_function_dispatch(_moveaxis_dispatcher)
+def moveaxis(a, source, destination):
+ """
+ Move axes of an array to new positions.
+
+ Other axes remain in their original order.
+
+ .. versionadded:: 1.11.0
+
+ Parameters
+ ----------
+ a : np.ndarray
+ The array whose axes should be reordered.
+ source : int or sequence of int
+ Original positions of the axes to move. These must be unique.
+ destination : int or sequence of int
+ Destination positions for each of the original axes. These must also be
+ unique.
+
+ Returns
+ -------
+ result : np.ndarray
+ Array with moved axes. This array is a view of the input array.
+
+ See Also
+ --------
+ transpose : Permute the dimensions of an array.
+ swapaxes : Interchange two axes of an array.
+
+ Examples
+ --------
+ >>> x = np.zeros((3, 4, 5))
+ >>> np.moveaxis(x, 0, -1).shape
+ (4, 5, 3)
+ >>> np.moveaxis(x, -1, 0).shape
+ (5, 3, 4)
+
+ These all achieve the same result:
+
+ >>> np.transpose(x).shape
+ (5, 4, 3)
+ >>> np.swapaxes(x, 0, -1).shape
+ (5, 4, 3)
+ >>> np.moveaxis(x, [0, 1], [-1, -2]).shape
+ (5, 4, 3)
+ >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
+ (5, 4, 3)
+
+ """
+ try:
+ # allow duck-array types if they define transpose
+ transpose = a.transpose
+ except AttributeError:
+ a = asarray(a)
+ transpose = a.transpose
+
+ source = normalize_axis_tuple(source, a.ndim, 'source')
+ destination = normalize_axis_tuple(destination, a.ndim, 'destination')
+ if len(source) != len(destination):
+ raise ValueError('`source` and `destination` arguments must have '
+ 'the same number of elements')
+
+ order = [n for n in range(a.ndim) if n not in source]
+
+ for dest, src in sorted(zip(destination, source)):
+ order.insert(dest, src)
+
+ result = transpose(order)
+ return result
+
+
+# fix hack in scipy which imports this function
+def _move_axis_to_0(a, axis):
+ return moveaxis(a, axis, 0)
+
+
+def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None):
+ return (a, b)
+
+
+@array_function_dispatch(_cross_dispatcher)
+def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
+ """
+ Return the cross product of two (arrays of) vectors.
+
+ The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular
+ to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors
+ are defined by the last axis of `a` and `b` by default, and these axes
+ can have dimensions 2 or 3. Where the dimension of either `a` or `b` is
+ 2, the third component of the input vector is assumed to be zero and the
+ cross product calculated accordingly. In cases where both input vectors
+ have dimension 2, the z-component of the cross product is returned.
+
+ Parameters
+ ----------
+ a : array_like
+ Components of the first vector(s).
+ b : array_like
+ Components of the second vector(s).
+ axisa : int, optional
+ Axis of `a` that defines the vector(s). By default, the last axis.
+ axisb : int, optional
+ Axis of `b` that defines the vector(s). By default, the last axis.
+ axisc : int, optional
+ Axis of `c` containing the cross product vector(s). Ignored if
+ both input vectors have dimension 2, as the return is scalar.
+ By default, the last axis.
+ axis : int, optional
+ If defined, the axis of `a`, `b` and `c` that defines the vector(s)
+ and cross product(s). Overrides `axisa`, `axisb` and `axisc`.
+
+ Returns
+ -------
+ c : ndarray
+ Vector cross product(s).
+
+ Raises
+ ------
+ ValueError
+ When the dimension of the vector(s) in `a` and/or `b` does not
+ equal 2 or 3.
+
+ See Also
+ --------
+ inner : Inner product
+ outer : Outer product.
+ ix_ : Construct index arrays.
+
+ Notes
+ -----
+ .. versionadded:: 1.9.0
+
+ Supports full broadcasting of the inputs.
+
+ Examples
+ --------
+ Vector cross-product.
+
+ >>> x = [1, 2, 3]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([-3, 6, -3])
+
+ One vector with dimension 2.
+
+ >>> x = [1, 2]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([12, -6, -3])
+
+ Equivalently:
+
+ >>> x = [1, 2, 0]
+ >>> y = [4, 5, 6]
+ >>> np.cross(x, y)
+ array([12, -6, -3])
+
+ Both vectors with dimension 2.
+
+ >>> x = [1,2]
+ >>> y = [4,5]
+ >>> np.cross(x, y)
+ array(-3)
+
+ Multiple vector cross-products. Note that the direction of the cross
+ product vector is defined by the `right-hand rule`.
+
+ >>> x = np.array([[1,2,3], [4,5,6]])
+ >>> y = np.array([[4,5,6], [1,2,3]])
+ >>> np.cross(x, y)
+ array([[-3, 6, -3],
+ [ 3, -6, 3]])
+
+ The orientation of `c` can be changed using the `axisc` keyword.
+
+ >>> np.cross(x, y, axisc=0)
+ array([[-3, 3],
+ [ 6, -6],
+ [-3, 3]])
+
+ Change the vector definition of `x` and `y` using `axisa` and `axisb`.
+
+ >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
+ >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
+ >>> np.cross(x, y)
+ array([[ -6, 12, -6],
+ [ 0, 0, 0],
+ [ 6, -12, 6]])
+ >>> np.cross(x, y, axisa=0, axisb=0)
+ array([[-24, 48, -24],
+ [-30, 60, -30],
+ [-36, 72, -36]])
+
+ """
+ if axis is not None:
+ axisa, axisb, axisc = (axis,) * 3
+ a = asarray(a)
+ b = asarray(b)
+ # Check axisa and axisb are within bounds
+ axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa')
+ axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb')
+
+ # Move working axis to the end of the shape
+ a = moveaxis(a, axisa, -1)
+ b = moveaxis(b, axisb, -1)
+ msg = ("incompatible dimensions for cross product\n"
+ "(dimension must be 2 or 3)")
+ if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
+ raise ValueError(msg)
+
+ # Create the output array
+ shape = broadcast(a[..., 0], b[..., 0]).shape
+ if a.shape[-1] == 3 or b.shape[-1] == 3:
+ shape += (3,)
+ # Check axisc is within bounds
+ axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc')
+ dtype = promote_types(a.dtype, b.dtype)
+ cp = empty(shape, dtype)
+
+ # create local aliases for readability
+ a0 = a[..., 0]
+ a1 = a[..., 1]
+ if a.shape[-1] == 3:
+ a2 = a[..., 2]
+ b0 = b[..., 0]
+ b1 = b[..., 1]
+ if b.shape[-1] == 3:
+ b2 = b[..., 2]
+ if cp.ndim != 0 and cp.shape[-1] == 3:
+ cp0 = cp[..., 0]
+ cp1 = cp[..., 1]
+ cp2 = cp[..., 2]
+
+ if a.shape[-1] == 2:
+ if b.shape[-1] == 2:
+ # a0 * b1 - a1 * b0
+ multiply(a0, b1, out=cp)
+ cp -= a1 * b0
+ return cp
+ else:
+ assert b.shape[-1] == 3
+ # cp0 = a1 * b2 - 0 (a2 = 0)
+ # cp1 = 0 - a0 * b2 (a2 = 0)
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a1, b2, out=cp0)
+ multiply(a0, b2, out=cp1)
+ negative(cp1, out=cp1)
+ multiply(a0, b1, out=cp2)
+ cp2 -= a1 * b0
+ else:
+ assert a.shape[-1] == 3
+ if b.shape[-1] == 3:
+ # cp0 = a1 * b2 - a2 * b1
+ # cp1 = a2 * b0 - a0 * b2
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a1, b2, out=cp0)
+ tmp = array(a2 * b1)
+ cp0 -= tmp
+ multiply(a2, b0, out=cp1)
+ multiply(a0, b2, out=tmp)
+ cp1 -= tmp
+ multiply(a0, b1, out=cp2)
+ multiply(a1, b0, out=tmp)
+ cp2 -= tmp
+ else:
+ assert b.shape[-1] == 2
+ # cp0 = 0 - a2 * b1 (b2 = 0)
+ # cp1 = a2 * b0 - 0 (b2 = 0)
+ # cp2 = a0 * b1 - a1 * b0
+ multiply(a2, b1, out=cp0)
+ negative(cp0, out=cp0)
+ multiply(a2, b0, out=cp1)
+ multiply(a0, b1, out=cp2)
+ cp2 -= a1 * b0
+
+ return moveaxis(cp, -1, axisc)
+
+
+little_endian = (sys.byteorder == 'little')
+
+
+@set_module('numpy')
+def indices(dimensions, dtype=int, sparse=False):
+ """
+ Return an array representing the indices of a grid.
+
+ Compute an array where the subarrays contain index values 0, 1, ...
+ varying only along the corresponding axis.
+
+ Parameters
+ ----------
+ dimensions : sequence of ints
+ The shape of the grid.
+ dtype : dtype, optional
+ Data type of the result.
+ sparse : boolean, optional
+ Return a sparse representation of the grid instead of a dense
+ representation. Default is False.
+
+ .. versionadded:: 1.17
+
+ Returns
+ -------
+ grid : one ndarray or tuple of ndarrays
+ If sparse is False:
+ Returns one array of grid indices,
+ ``grid.shape = (len(dimensions),) + tuple(dimensions)``.
+ If sparse is True:
+ Returns a tuple of arrays, with
+ ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with
+ dimensions[i] in the ith place
+
+ See Also
+ --------
+ mgrid, ogrid, meshgrid
+
+ Notes
+ -----
+ The output shape in the dense case is obtained by prepending the number
+ of dimensions in front of the tuple of dimensions, i.e. if `dimensions`
+ is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is
+ ``(N, r0, ..., rN-1)``.
+
+ The subarrays ``grid[k]`` contains the N-D array of indices along the
+ ``k-th`` axis. Explicitly::
+
+ grid[k, i0, i1, ..., iN-1] = ik
+
+ Examples
+ --------
+ >>> grid = np.indices((2, 3))
+ >>> grid.shape
+ (2, 2, 3)
+ >>> grid[0] # row indices
+ array([[0, 0, 0],
+ [1, 1, 1]])
+ >>> grid[1] # column indices
+ array([[0, 1, 2],
+ [0, 1, 2]])
+
+ The indices can be used as an index into an array.
+
+ >>> x = np.arange(20).reshape(5, 4)
+ >>> row, col = np.indices((2, 3))
+ >>> x[row, col]
+ array([[0, 1, 2],
+ [4, 5, 6]])
+
+ Note that it would be more straightforward in the above example to
+ extract the required elements directly with ``x[:2, :3]``.
+
+ If sparse is set to true, the grid will be returned in a sparse
+ representation.
+
+ >>> i, j = np.indices((2, 3), sparse=True)
+ >>> i.shape
+ (2, 1)
+ >>> j.shape
+ (1, 3)
+ >>> i # row indices
+ array([[0],
+ [1]])
+ >>> j # column indices
+ array([[0, 1, 2]])
+
+ """
+ dimensions = tuple(dimensions)
+ N = len(dimensions)
+ shape = (1,)*N
+ if sparse:
+ res = tuple()
+ else:
+ res = empty((N,)+dimensions, dtype=dtype)
+ for i, dim in enumerate(dimensions):
+ idx = arange(dim, dtype=dtype).reshape(
+ shape[:i] + (dim,) + shape[i+1:]
+ )
+ if sparse:
+ res = res + (idx,)
+ else:
+ res[i] = idx
+ return res
+
+
+def _fromfunction_dispatcher(function, shape, *, dtype=None, like=None, **kwargs):
+ return (like,)
+
+
+@set_array_function_like_doc
+@set_module('numpy')
+def fromfunction(function, shape, *, dtype=float, like=None, **kwargs):
+ """
+ Construct an array by executing a function over each coordinate.
+
+ The resulting array therefore has a value ``fn(x, y, z)`` at
+ coordinate ``(x, y, z)``.
+
+ Parameters
+ ----------
+ function : callable
+ The function is called with N parameters, where N is the rank of
+ `shape`. Each parameter represents the coordinates of the array
+ varying along a specific axis. For example, if `shape`
+ were ``(2, 2)``, then the parameters would be
+ ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])``
+ shape : (N,) tuple of ints
+ Shape of the output array, which also determines the shape of
+ the coordinate arrays passed to `function`.
+ dtype : data-type, optional
+ Data-type of the coordinate arrays passed to `function`.
+ By default, `dtype` is float.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ fromfunction : any
+ The result of the call to `function` is passed back directly.
+ Therefore the shape of `fromfunction` is completely determined by
+ `function`. If `function` returns a scalar value, the shape of
+ `fromfunction` would not match the `shape` parameter.
+
+ See Also
+ --------
+ indices, meshgrid
+
+ Notes
+ -----
+ Keywords other than `dtype` are passed to `function`.
+
+ Examples
+ --------
+ >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
+ array([[ True, False, False],
+ [False, True, False],
+ [False, False, True]])
+
+ >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
+ array([[0, 1, 2],
+ [1, 2, 3],
+ [2, 3, 4]])
+
+ """
+ if like is not None:
+ return _fromfunction_with_like(function, shape, dtype=dtype, like=like, **kwargs)
+
+ args = indices(shape, dtype=dtype)
+ return function(*args, **kwargs)
+
+
+_fromfunction_with_like = array_function_dispatch(
+ _fromfunction_dispatcher
+)(fromfunction)
+
+
+def _frombuffer(buf, dtype, shape, order):
+ return frombuffer(buf, dtype=dtype).reshape(shape, order=order)
+
+
+@set_module('numpy')
+def isscalar(element):
+ """
+ Returns True if the type of `element` is a scalar type.
+
+ Parameters
+ ----------
+ element : any
+ Input argument, can be of any type and shape.
+
+ Returns
+ -------
+ val : bool
+ True if `element` is a scalar type, False if it is not.
+
+ See Also
+ --------
+ ndim : Get the number of dimensions of an array
+
+ Notes
+ -----
+ If you need a stricter way to identify a *numerical* scalar, use
+ ``isinstance(x, numbers.Number)``, as that returns ``False`` for most
+ non-numerical elements such as strings.
+
+ In most cases ``np.ndim(x) == 0`` should be used instead of this function,
+ as that will also return true for 0d arrays. This is how numpy overloads
+ functions in the style of the ``dx`` arguments to `gradient` and the ``bins``
+ argument to `histogram`. Some key differences:
+
+ +--------------------------------------+---------------+-------------------+
+ | x |``isscalar(x)``|``np.ndim(x) == 0``|
+ +======================================+===============+===================+
+ | PEP 3141 numeric objects (including | ``True`` | ``True`` |
+ | builtins) | | |
+ +--------------------------------------+---------------+-------------------+
+ | builtin string and buffer objects | ``True`` | ``True`` |
+ +--------------------------------------+---------------+-------------------+
+ | other builtin objects, like | ``False`` | ``True`` |
+ | `pathlib.Path`, `Exception`, | | |
+ | the result of `re.compile` | | |
+ +--------------------------------------+---------------+-------------------+
+ | third-party objects like | ``False`` | ``True`` |
+ | `matplotlib.figure.Figure` | | |
+ +--------------------------------------+---------------+-------------------+
+ | zero-dimensional numpy arrays | ``False`` | ``True`` |
+ +--------------------------------------+---------------+-------------------+
+ | other numpy arrays | ``False`` | ``False`` |
+ +--------------------------------------+---------------+-------------------+
+ | `list`, `tuple`, and other sequence | ``False`` | ``False`` |
+ | objects | | |
+ +--------------------------------------+---------------+-------------------+
+
+ Examples
+ --------
+ >>> np.isscalar(3.1)
+ True
+ >>> np.isscalar(np.array(3.1))
+ False
+ >>> np.isscalar([3.1])
+ False
+ >>> np.isscalar(False)
+ True
+ >>> np.isscalar('numpy')
+ True
+
+ NumPy supports PEP 3141 numbers:
+
+ >>> from fractions import Fraction
+ >>> np.isscalar(Fraction(5, 17))
+ True
+ >>> from numbers import Number
+ >>> np.isscalar(Number())
+ True
+
+ """
+ return (isinstance(element, generic)
+ or type(element) in ScalarType
+ or isinstance(element, numbers.Number))
+
+
+@set_module('numpy')
+def binary_repr(num, width=None):
+ """
+ Return the binary representation of the input number as a string.
+
+ For negative numbers, if width is not given, a minus sign is added to the
+ front. If width is given, the two's complement of the number is
+ returned, with respect to that width.
+
+ In a two's-complement system negative numbers are represented by the two's
+ complement of the absolute value. This is the most common method of
+ representing signed integers on computers [1]_. A N-bit two's-complement
+ system can represent every integer in the range
+ :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
+
+ Parameters
+ ----------
+ num : int
+ Only an integer decimal number can be used.
+ width : int, optional
+ The length of the returned string if `num` is positive, or the length
+ of the two's complement if `num` is negative, provided that `width` is
+ at least a sufficient number of bits for `num` to be represented in the
+ designated form.
+
+ If the `width` value is insufficient, it will be ignored, and `num` will
+ be returned in binary (`num` > 0) or two's complement (`num` < 0) form
+ with its width equal to the minimum number of bits needed to represent
+ the number in the designated form. This behavior is deprecated and will
+ later raise an error.
+
+ .. deprecated:: 1.12.0
+
+ Returns
+ -------
+ bin : str
+ Binary representation of `num` or two's complement of `num`.
+
+ See Also
+ --------
+ base_repr: Return a string representation of a number in the given base
+ system.
+ bin: Python's built-in binary representation generator of an integer.
+
+ Notes
+ -----
+ `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
+ faster.
+
+ References
+ ----------
+ .. [1] Wikipedia, "Two's complement",
+ https://en.wikipedia.org/wiki/Two's_complement
+
+ Examples
+ --------
+ >>> np.binary_repr(3)
+ '11'
+ >>> np.binary_repr(-3)
+ '-11'
+ >>> np.binary_repr(3, width=4)
+ '0011'
+
+ The two's complement is returned when the input number is negative and
+ width is specified:
+
+ >>> np.binary_repr(-3, width=3)
+ '101'
+ >>> np.binary_repr(-3, width=5)
+ '11101'
+
+ """
+ def warn_if_insufficient(width, binwidth):
+ if width is not None and width < binwidth:
+ warnings.warn(
+ "Insufficient bit width provided. This behavior "
+ "will raise an error in the future.", DeprecationWarning,
+ stacklevel=3)
+
+ # Ensure that num is a Python integer to avoid overflow or unwanted
+ # casts to floating point.
+ num = operator.index(num)
+
+ if num == 0:
+ return '0' * (width or 1)
+
+ elif num > 0:
+ binary = bin(num)[2:]
+ binwidth = len(binary)
+ outwidth = (binwidth if width is None
+ else max(binwidth, width))
+ warn_if_insufficient(width, binwidth)
+ return binary.zfill(outwidth)
+
+ else:
+ if width is None:
+ return '-' + bin(-num)[2:]
+
+ else:
+ poswidth = len(bin(-num)[2:])
+
+ # See gh-8679: remove extra digit
+ # for numbers at boundaries.
+ if 2**(poswidth - 1) == -num:
+ poswidth -= 1
+
+ twocomp = 2**(poswidth + 1) + num
+ binary = bin(twocomp)[2:]
+ binwidth = len(binary)
+
+ outwidth = max(binwidth, width)
+ warn_if_insufficient(width, binwidth)
+ return '1' * (outwidth - binwidth) + binary
+
+
+@set_module('numpy')
+def base_repr(number, base=2, padding=0):
+ """
+ Return a string representation of a number in the given base system.
+
+ Parameters
+ ----------
+ number : int
+ The value to convert. Positive and negative values are handled.
+ base : int, optional
+ Convert `number` to the `base` number system. The valid range is 2-36,
+ the default value is 2.
+ padding : int, optional
+ Number of zeros padded on the left. Default is 0 (no padding).
+
+ Returns
+ -------
+ out : str
+ String representation of `number` in `base` system.
+
+ See Also
+ --------
+ binary_repr : Faster version of `base_repr` for base 2.
+
+ Examples
+ --------
+ >>> np.base_repr(5)
+ '101'
+ >>> np.base_repr(6, 5)
+ '11'
+ >>> np.base_repr(7, base=5, padding=3)
+ '00012'
+
+ >>> np.base_repr(10, base=16)
+ 'A'
+ >>> np.base_repr(32, base=16)
+ '20'
+
+ """
+ digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
+ if base > len(digits):
+ raise ValueError("Bases greater than 36 not handled in base_repr.")
+ elif base < 2:
+ raise ValueError("Bases less than 2 not handled in base_repr.")
+
+ num = abs(number)
+ res = []
+ while num:
+ res.append(digits[num % base])
+ num //= base
+ if padding:
+ res.append('0' * padding)
+ if number < 0:
+ res.append('-')
+ return ''.join(reversed(res or '0'))
+
+
+# These are all essentially abbreviations
+# These might wind up in a special abbreviations module
+
+
+def _maketup(descr, val):
+ dt = dtype(descr)
+ # Place val in all scalar tuples:
+ fields = dt.fields
+ if fields is None:
+ return val
+ else:
+ res = [_maketup(fields[name][0], val) for name in dt.names]
+ return tuple(res)
+
+
+def _identity_dispatcher(n, dtype=None, *, like=None):
+ return (like,)
+
+
+@set_array_function_like_doc
+@set_module('numpy')
+def identity(n, dtype=None, *, like=None):
+ """
+ Return the identity array.
+
+ The identity array is a square array with ones on
+ the main diagonal.
+
+ Parameters
+ ----------
+ n : int
+ Number of rows (and columns) in `n` x `n` output.
+ dtype : data-type, optional
+ Data-type of the output. Defaults to ``float``.
+ ${ARRAY_FUNCTION_LIKE}
+
+ .. versionadded:: 1.20.0
+
+ Returns
+ -------
+ out : ndarray
+ `n` x `n` array with its main diagonal set to one,
+ and all other elements 0.
+
+ Examples
+ --------
+ >>> np.identity(3)
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ """
+ if like is not None:
+ return _identity_with_like(n, dtype=dtype, like=like)
+
+ from numpy import eye
+ return eye(n, dtype=dtype, like=like)
+
+
+_identity_with_like = array_function_dispatch(
+ _identity_dispatcher
+)(identity)
+
+
+def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
+ return (a, b)
+
+
+@array_function_dispatch(_allclose_dispatcher)
+def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
+ """
+ Returns True if two arrays are element-wise equal within a tolerance.
+
+ The tolerance values are positive, typically very small numbers. The
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
+ `atol` are added together to compare against the absolute difference
+ between `a` and `b`.
+
+ NaNs are treated as equal if they are in the same place and if
+ ``equal_nan=True``. Infs are treated as equal if they are in the same
+ place and of the same sign in both arrays.
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ rtol : float
+ The relative tolerance parameter (see Notes).
+ atol : float
+ The absolute tolerance parameter (see Notes).
+ equal_nan : bool
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
+ considered equal to NaN's in `b` in the output array.
+
+ .. versionadded:: 1.10.0
+
+ Returns
+ -------
+ allclose : bool
+ Returns True if the two arrays are equal within the given
+ tolerance; False otherwise.
+
+ See Also
+ --------
+ isclose, all, any, equal
+
+ Notes
+ -----
+ If the following equation is element-wise True, then allclose returns
+ True.
+
+ absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
+
+ The above equation is not symmetric in `a` and `b`, so that
+ ``allclose(a, b)`` might be different from ``allclose(b, a)`` in
+ some rare cases.
+
+ The comparison of `a` and `b` uses standard broadcasting, which
+ means that `a` and `b` need not have the same shape in order for
+ ``allclose(a, b)`` to evaluate to True. The same is true for
+ `equal` but not `array_equal`.
+
+ `allclose` is not defined for non-numeric data types.
+
+ Examples
+ --------
+ >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
+ False
+ >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
+ True
+ >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
+ False
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan])
+ False
+ >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
+ True
+
+ """
+ res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))
+ return bool(res)
+
+
+def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None):
+ return (a, b)
+
+
+@array_function_dispatch(_isclose_dispatcher)
+def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
+ """
+ Returns a boolean array where two arrays are element-wise equal within a
+ tolerance.
+
+ The tolerance values are positive, typically very small numbers. The
+ relative difference (`rtol` * abs(`b`)) and the absolute difference
+ `atol` are added together to compare against the absolute difference
+ between `a` and `b`.
+
+ .. warning:: The default `atol` is not appropriate for comparing numbers
+ that are much smaller than one (see Notes).
+
+ Parameters
+ ----------
+ a, b : array_like
+ Input arrays to compare.
+ rtol : float
+ The relative tolerance parameter (see Notes).
+ atol : float
+ The absolute tolerance parameter (see Notes).
+ equal_nan : bool
+ Whether to compare NaN's as equal. If True, NaN's in `a` will be
+ considered equal to NaN's in `b` in the output array.
+
+ Returns
+ -------
+ y : array_like
+ Returns a boolean array of where `a` and `b` are equal within the
+ given tolerance. If both `a` and `b` are scalars, returns a single
+ boolean value.
+
+ See Also
+ --------
+ allclose
+ math.isclose
+
+ Notes
+ -----
+ .. versionadded:: 1.7.0
+
+ For finite values, isclose uses the following equation to test whether
+ two floating point values are equivalent.
+
+ absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
+
+ Unlike the built-in `math.isclose`, the above equation is not symmetric
+ in `a` and `b` -- it assumes `b` is the reference value -- so that
+ `isclose(a, b)` might be different from `isclose(b, a)`. Furthermore,
+ the default value of atol is not zero, and is used to determine what
+ small values should be considered close to zero. The default value is
+ appropriate for expected values of order unity: if the expected values
+ are significantly smaller than one, it can result in false positives.
+ `atol` should be carefully selected for the use case at hand. A zero value
+ for `atol` will result in `False` if either `a` or `b` is zero.
+
+ `isclose` is not defined for non-numeric data types.
+
+ Examples
+ --------
+ >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
+ array([ True, False])
+ >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
+ array([ True, True])
+ >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
+ array([False, True])
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan])
+ array([ True, False])
+ >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
+ array([ True, True])
+ >>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
+ array([ True, False])
+ >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
+ array([False, False])
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
+ array([ True, True])
+ >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
+ array([False, True])
+ """
+ def within_tol(x, y, atol, rtol):
+ with errstate(invalid='ignore'):
+ return less_equal(abs(x-y), atol + rtol * abs(y))
+
+ x = asanyarray(a)
+ y = asanyarray(b)
+
+ # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT).
+ # This will cause casting of x later. Also, make sure to allow subclasses
+ # (e.g., for numpy.ma).
+ # NOTE: We explicitly allow timedelta, which used to work. This could
+ # possibly be deprecated. See also gh-18286.
+ # timedelta works if `atol` is an integer or also a timedelta.
+ # Although, the default tolerances are unlikely to be useful
+ if y.dtype.kind != "m":
+ dt = multiarray.result_type(y, 1.)
+ y = asanyarray(y, dtype=dt)
+
+ xfin = isfinite(x)
+ yfin = isfinite(y)
+ if all(xfin) and all(yfin):
+ return within_tol(x, y, atol, rtol)
+ else:
+ finite = xfin & yfin
+ cond = zeros_like(finite, subok=True)
+ # Because we're using boolean indexing, x & y must be the same shape.
+ # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
+ # lib.stride_tricks, though, so we can't import it here.
+ x = x * ones_like(cond)
+ y = y * ones_like(cond)
+ # Avoid subtraction with infinite/nan values...
+ cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
+ # Check for equality of infinite values...
+ cond[~finite] = (x[~finite] == y[~finite])
+ if equal_nan:
+ # Make NaN == NaN
+ both_nan = isnan(x) & isnan(y)
+
+ # Needed to treat masked arrays correctly. = True would not work.
+ cond[both_nan] = both_nan[both_nan]
+
+ return cond[()] # Flatten 0d arrays to scalars
+
+
+def _array_equal_dispatcher(a1, a2, equal_nan=None):
+ return (a1, a2)
+
+
+@array_function_dispatch(_array_equal_dispatcher)
+def array_equal(a1, a2, equal_nan=False):
+ """
+ True if two arrays have the same shape and elements, False otherwise.
+
+ Parameters
+ ----------
+ a1, a2 : array_like
+ Input arrays.
+ equal_nan : bool
+ Whether to compare NaN's as equal. If the dtype of a1 and a2 is
+ complex, values will be considered equal if either the real or the
+ imaginary component of a given value is ``nan``.
+
+ .. versionadded:: 1.19.0
+
+ Returns
+ -------
+ b : bool
+ Returns True if the arrays are equal.
+
+ See Also
+ --------
+ allclose: Returns True if two arrays are element-wise equal within a
+ tolerance.
+ array_equiv: Returns True if input arrays are shape consistent and all
+ elements equal.
+
+ Examples
+ --------
+ >>> np.array_equal([1, 2], [1, 2])
+ True
+ >>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
+ True
+ >>> np.array_equal([1, 2], [1, 2, 3])
+ False
+ >>> np.array_equal([1, 2], [1, 4])
+ False
+ >>> a = np.array([1, np.nan])
+ >>> np.array_equal(a, a)
+ False
+ >>> np.array_equal(a, a, equal_nan=True)
+ True
+
+ When ``equal_nan`` is True, complex values with nan components are
+ considered equal if either the real *or* the imaginary components are nan.
+
+ >>> a = np.array([1 + 1j])
+ >>> b = a.copy()
+ >>> a.real = np.nan
+ >>> b.imag = np.nan
+ >>> np.array_equal(a, b, equal_nan=True)
+ True
+ """
+ try:
+ a1, a2 = asarray(a1), asarray(a2)
+ except Exception:
+ return False
+ if a1.shape != a2.shape:
+ return False
+ if not equal_nan:
+ return bool(asarray(a1 == a2).all())
+ # Handling NaN values if equal_nan is True
+ a1nan, a2nan = isnan(a1), isnan(a2)
+ # NaN's occur at different locations
+ if not (a1nan == a2nan).all():
+ return False
+ # Shapes of a1, a2 and masks are guaranteed to be consistent by this point
+ return bool(asarray(a1[~a1nan] == a2[~a1nan]).all())
+
+
+def _array_equiv_dispatcher(a1, a2):
+ return (a1, a2)
+
+
+@array_function_dispatch(_array_equiv_dispatcher)
+def array_equiv(a1, a2):
+ """
+ Returns True if input arrays are shape consistent and all elements equal.
+
+ Shape consistent means they are either the same shape, or one input array
+ can be broadcasted to create the same shape as the other one.
+
+ Parameters
+ ----------
+ a1, a2 : array_like
+ Input arrays.
+
+ Returns
+ -------
+ out : bool
+ True if equivalent, False otherwise.
+
+ Examples
+ --------
+ >>> np.array_equiv([1, 2], [1, 2])
+ True
+ >>> np.array_equiv([1, 2], [1, 3])
+ False
+
+ Showing the shape equivalence:
+
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
+ True
+ >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
+ False
+
+ >>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
+ False
+
+ """
+ try:
+ a1, a2 = asarray(a1), asarray(a2)
+ except Exception:
+ return False
+ try:
+ multiarray.broadcast(a1, a2)
+ except Exception:
+ return False
+
+ return bool(asarray(a1 == a2).all())
+
+
+Inf = inf = infty = Infinity = PINF
+nan = NaN = NAN
+False_ = bool_(False)
+True_ = bool_(True)
+
+
+def extend_all(module):
+ existing = set(__all__)
+ mall = getattr(module, '__all__')
+ for a in mall:
+ if a not in existing:
+ __all__.append(a)
+
+
+from .umath import *
+from .numerictypes import *
+from . import fromnumeric
+from .fromnumeric import *
+from . import arrayprint
+from .arrayprint import *
+from . import _asarray
+from ._asarray import *
+from . import _ufunc_config
+from ._ufunc_config import *
+extend_all(fromnumeric)
+extend_all(umath)
+extend_all(numerictypes)
+extend_all(arrayprint)
+extend_all(_asarray)
+extend_all(_ufunc_config)
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.pyi b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.pyi
new file mode 100644
index 0000000000000000000000000000000000000000..f579514349daf1fe5d92adf79b8d534e967cbcec
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numeric.pyi
@@ -0,0 +1,243 @@
+import sys
+from typing import (
+ Any,
+ Optional,
+ Union,
+ Sequence,
+ Tuple,
+ Callable,
+ List,
+ overload,
+ TypeVar,
+ Iterable,
+)
+
+from numpy import ndarray, generic, dtype, bool_, signedinteger, _OrderKACF, _OrderCF
+from numpy.typing import ArrayLike, DTypeLike, _ShapeLike
+
+if sys.version_info >= (3, 8):
+ from typing import Literal
+else:
+ from typing_extensions import Literal
+
+_T = TypeVar("_T")
+_ArrayType = TypeVar("_ArrayType", bound=ndarray)
+
+_CorrelateMode = Literal["valid", "same", "full"]
+
+@overload
+def zeros_like(
+ a: _ArrayType,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: Literal[True] = ...,
+ shape: None = ...,
+) -> _ArrayType: ...
+@overload
+def zeros_like(
+ a: ArrayLike,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+def ones(
+ shape: _ShapeLike,
+ dtype: DTypeLike = ...,
+ order: _OrderCF = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+
+@overload
+def ones_like(
+ a: _ArrayType,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: Literal[True] = ...,
+ shape: None = ...,
+) -> _ArrayType: ...
+@overload
+def ones_like(
+ a: ArrayLike,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+@overload
+def empty_like(
+ a: _ArrayType,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: Literal[True] = ...,
+ shape: None = ...,
+) -> _ArrayType: ...
+@overload
+def empty_like(
+ a: ArrayLike,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+def full(
+ shape: _ShapeLike,
+ fill_value: Any,
+ dtype: DTypeLike = ...,
+ order: _OrderCF = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+
+@overload
+def full_like(
+ a: _ArrayType,
+ fill_value: Any,
+ dtype: None = ...,
+ order: _OrderKACF = ...,
+ subok: Literal[True] = ...,
+ shape: None = ...,
+) -> _ArrayType: ...
+@overload
+def full_like(
+ a: ArrayLike,
+ fill_value: Any,
+ dtype: DTypeLike = ...,
+ order: _OrderKACF = ...,
+ subok: bool = ...,
+ shape: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+@overload
+def count_nonzero(
+ a: ArrayLike,
+ axis: None = ...,
+ *,
+ keepdims: Literal[False] = ...,
+) -> int: ...
+@overload
+def count_nonzero(
+ a: ArrayLike,
+ axis: _ShapeLike = ...,
+ *,
+ keepdims: bool = ...,
+) -> Any: ... # TODO: np.intp or ndarray[np.intp]
+
+def isfortran(a: Union[ndarray, generic]) -> bool: ...
+
+def argwhere(a: ArrayLike) -> ndarray: ...
+
+def flatnonzero(a: ArrayLike) -> ndarray: ...
+
+def correlate(
+ a: ArrayLike,
+ v: ArrayLike,
+ mode: _CorrelateMode = ...,
+) -> ndarray: ...
+
+def convolve(
+ a: ArrayLike,
+ v: ArrayLike,
+ mode: _CorrelateMode = ...,
+) -> ndarray: ...
+
+@overload
+def outer(
+ a: ArrayLike,
+ b: ArrayLike,
+ out: None = ...,
+) -> ndarray: ...
+@overload
+def outer(
+ a: ArrayLike,
+ b: ArrayLike,
+ out: _ArrayType = ...,
+) -> _ArrayType: ...
+
+def tensordot(
+ a: ArrayLike,
+ b: ArrayLike,
+ axes: Union[int, Tuple[_ShapeLike, _ShapeLike]] = ...,
+) -> ndarray: ...
+
+def roll(
+ a: ArrayLike,
+ shift: _ShapeLike,
+ axis: Optional[_ShapeLike] = ...,
+) -> ndarray: ...
+
+def rollaxis(a: ndarray, axis: int, start: int = ...) -> ndarray: ...
+
+def moveaxis(
+ a: ndarray,
+ source: _ShapeLike,
+ destination: _ShapeLike,
+) -> ndarray: ...
+
+def cross(
+ a: ArrayLike,
+ b: ArrayLike,
+ axisa: int = ...,
+ axisb: int = ...,
+ axisc: int = ...,
+ axis: Optional[int] = ...,
+) -> ndarray: ...
+
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: DTypeLike = ...,
+ sparse: Literal[False] = ...,
+) -> ndarray: ...
+@overload
+def indices(
+ dimensions: Sequence[int],
+ dtype: DTypeLike = ...,
+ sparse: Literal[True] = ...,
+) -> Tuple[ndarray, ...]: ...
+
+def fromfunction(
+ function: Callable[..., _T],
+ shape: Sequence[int],
+ *,
+ dtype: DTypeLike = ...,
+ like: ArrayLike = ...,
+ **kwargs: Any,
+) -> _T: ...
+
+def isscalar(element: Any) -> bool: ...
+
+def binary_repr(num: int, width: Optional[int] = ...) -> str: ...
+
+def base_repr(number: int, base: int = ..., padding: int = ...) -> str: ...
+
+def identity(
+ n: int,
+ dtype: DTypeLike = ...,
+ *,
+ like: ArrayLike = ...,
+) -> ndarray: ...
+
+def allclose(
+ a: ArrayLike,
+ b: ArrayLike,
+ rtol: float = ...,
+ atol: float = ...,
+ equal_nan: bool = ...,
+) -> bool: ...
+
+def isclose(
+ a: ArrayLike,
+ b: ArrayLike,
+ rtol: float = ...,
+ atol: float = ...,
+ equal_nan: bool = ...,
+) -> Any: ...
+
+def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ...
+
+def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ...
diff --git a/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numerictypes.py b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numerictypes.py
new file mode 100644
index 0000000000000000000000000000000000000000..12f424fd4167ddee54955814f7e7d5628ca5cb8a
--- /dev/null
+++ b/celestial-mini/venv/lib/python3.7/site-packages/numpy/core/numerictypes.py
@@ -0,0 +1,672 @@
+"""
+numerictypes: Define the numeric type objects
+
+This module is designed so "from numerictypes import \\*" is safe.
+Exported symbols include:
+
+ Dictionary with all registered number types (including aliases):
+ sctypeDict
+
+ Type objects (not all will be available, depends on platform):
+ see variable sctypes for which ones you have
+
+ Bit-width names
+
+ int8 int16 int32 int64 int128
+ uint8 uint16 uint32 uint64 uint128
+ float16 float32 float64 float96 float128 float256
+ complex32 complex64 complex128 complex192 complex256 complex512
+ datetime64 timedelta64
+
+ c-based names
+
+ bool_
+
+ object_
+
+ void, str_, unicode_
+
+ byte, ubyte,
+ short, ushort
+ intc, uintc,
+ intp, uintp,
+ int_, uint,
+ longlong, ulonglong,
+
+ single, csingle,
+ float_, complex_,
+ longfloat, clongfloat,
+
+ As part of the type-hierarchy: xx -- is bit-width
+
+ generic
+ +-> bool_ (kind=b)
+ +-> number
+ | +-> integer
+ | | +-> signedinteger (intxx) (kind=i)
+ | | | byte
+ | | | short
+ | | | intc
+ | | | intp int0
+ | | | int_
+ | | | longlong
+ | | \\-> unsignedinteger (uintxx) (kind=u)
+ | | ubyte
+ | | ushort
+ | | uintc
+ | | uintp uint0
+ | | uint_
+ | | ulonglong
+ | +-> inexact
+ | +-> floating (floatxx) (kind=f)
+ | | half
+ | | single
+ | | float_ (double)
+ | | longfloat
+ | \\-> complexfloating (complexxx) (kind=c)
+ | csingle (singlecomplex)
+ | complex_ (cfloat, cdouble)
+ | clongfloat (longcomplex)
+ +-> flexible
+ | +-> character
+ | | str_ (string_, bytes_) (kind=S) [Python 2]
+ | | unicode_ (kind=U) [Python 2]
+ | |
+ | | bytes_ (string_) (kind=S) [Python 3]
+ | | str_ (unicode_) (kind=U) [Python 3]
+ | |
+ | \\-> void (kind=V)
+ \\-> object_ (not used much) (kind=O)
+
+"""
+import numbers
+import warnings
+
+from numpy.core.multiarray import (
+ typeinfo, ndarray, array, empty, dtype, datetime_data,
+ datetime_as_string, busday_offset, busday_count, is_busday,
+ busdaycalendar
+ )
+from numpy.core.overrides import set_module
+
+# we add more at the bottom
+__all__ = ['sctypeDict', 'sctypes',
+ 'ScalarType', 'obj2sctype', 'cast', 'nbytes', 'sctype2char',
+ 'maximum_sctype', 'issctype', 'typecodes', 'find_common_type',
+ 'issubdtype', 'datetime_data', 'datetime_as_string',
+ 'busday_offset', 'busday_count', 'is_busday', 'busdaycalendar',
+ ]
+
+# we don't need all these imports, but we need to keep them for compatibility
+# for users using np.core.numerictypes.UPPER_TABLE
+from ._string_helpers import (
+ english_lower, english_upper, english_capitalize, LOWER_TABLE, UPPER_TABLE
+)
+
+from ._type_aliases import (
+ sctypeDict,
+ allTypes,
+ bitname,
+ sctypes,
+ _concrete_types,
+ _concrete_typeinfo,
+ _bits_of,
+)
+from ._dtype import _kind_name
+
+# we don't export these for import *, but we do want them accessible
+# as numerictypes.bool, etc.
+from builtins import bool, int, float, complex, object, str, bytes
+from numpy.compat import long, unicode
+
+
+# We use this later
+generic = allTypes['generic']
+
+genericTypeRank = ['bool', 'int8', 'uint8', 'int16', 'uint16',
+ 'int32', 'uint32', 'int64', 'uint64', 'int128',
+ 'uint128', 'float16',
+ 'float32', 'float64', 'float80', 'float96', 'float128',
+ 'float256',
+ 'complex32', 'complex64', 'complex128', 'complex160',
+ 'complex192', 'complex256', 'complex512', 'object']
+
+@set_module('numpy')
+def maximum_sctype(t):
+ """
+ Return the scalar type of highest precision of the same kind as the input.
+
+ Parameters
+ ----------
+ t : dtype or dtype specifier
+ The input data type. This can be a `dtype` object or an object that
+ is convertible to a `dtype`.
+
+ Returns
+ -------
+ out : dtype
+ The highest precision data type of the same kind (`dtype.kind`) as `t`.
+
+ See Also
+ --------
+ obj2sctype, mintypecode, sctype2char
+ dtype
+
+ Examples
+ --------
+ >>> np.maximum_sctype(int)
+