--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 datasets: - language-and-voice-lab/ruquad1 language: - is --- # sbert-ruquad sbert-ruquald is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model is based on the [distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2), fine-tuned on [RUQuAD](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310) - a question-answer dataset for Icelandic. The data used for this model contains approximately question-span and question-paragraph pairs, with 14920 pairs used for training under the [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('language-and-voice-lab/sbert-ruquad') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('language-and-voice-lab/sbert-ruquad') model = AutoModel.from_pretrained('language-and-voice-lab/sbert-ruquad') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results The model was evaluated with a hold-out set from the original data using the [BinaryClassificationEvaluator](https://www.sbert.net/docs/package_reference/evaluation.html?highlight=binaryclassificationevaluator#sentence_transformers.evaluation.BinaryClassificationEvaluator) approach. | cossim_accuracy | cossim_f1 | cossim_precision | cossim_recall | cossim_ap | manhattan_accuracy | manhattan_f1 | manhattan_precision | manhattan_recall | manhattan_ap | euclidean_accuracy | euclidean_f1 | euclidean_precision | euclidean_recall | euclidean_ap | dot_accuracy | dot_f1 | dot_precision | dot_recall | dot_ap | |-----------------|-------------|------------------|---------------|-------------|--------------------|--------------|---------------------|------------------|--------------|--------------------|--------------|---------------------|------------------|--------------|--------------|-------------|---------------|-------------|-------------| | 0.913616792 | 0.910709318 | 0.942429476 | 0.881054898 | 0.968807199 | 0.869483315 | 0.856401384 | 0.922360248 | 0.799246502 | 0.932638132 | 0.869214209 | 0.857062937 | 0.892253931 | 0.824542519 | 0.932737722 | 0.914962325 | 0.911732456 | 0.929050279 | 0.895048439 | 0.968732732 | For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name="language-and-voice-lab/sbert-ruquad") ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 933 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Stefán Ólafsson (stefanola@ru.is) trained the model. Njáll Skarphéðinsson et al. created the [RUQuAD dataset](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310).