--- library_name: transformers --- # Model Card for X-LoRA-Gemma-7b X-LoRA-Gemma combines protein, chemical, bio-inspired and mechanics of materials capabilities. We use a set of four LoRA adapters, defined as follows: 1. Bioinspired materials 2. Mechanics and materials 3. Protein mechanics tasks (featuring generative sequence-to-property and inverse capabilities) 4. Quantum-mechanics based molecular properties QM9 (featuring generative SMILES-to-property and inverse capabilities The model has a variety of capabilities, including designing proteins, designing molecules, and property calculations. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/https://huggingface.co/lamm-mit/x-lora-gemma-7b/resolve/main/X-LoRA-Gemma_Inference.ipynb) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/oAr_94tRSilnp1d19ZUIb.png) ```python import torch from xlora.xlora_utils import load_model XLoRa_model_name = 'lamm-mit/x-lora-gemma-7b' model,tokenizer=load_model(model_name = XLoRa_model_name, device='cuda:0', use_flash_attention_2=True, dtype=torch.bfloat16, ) eos_token_id= tokenizer('', add_special_tokens=False, ) ['input_ids'][0] ``` ```python def generate_XLoRA_Gemma (system_prompt='You a helpful assistant. You are familiar with materials science. ', prompt='What is spider silk in the context of bioinspired materials?', repetition_penalty=1.,num_beams=1,num_return_sequences=1, top_p=0.9, top_k=256, temperature=.5,max_new_tokens=512, verbatim=False, eos_token=None, add_special_tokens=True, prepend_response='', ): if eos_token==None: eos_token= tokenizer.eos_token_id if system_prompt==None: messages=[ {"role": "user", "content": prompt}, ] else: messages=[ {"role": "user", "content": system_prompt+prompt}, ] txt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, ) txt=txt+prepend_response inputs = tokenizer(txt, add_special_tokens =add_special_tokens, return_tensors ='pt').to(device) with torch.no_grad(): outputs = model.generate(input_ids = inputs["input_ids"], attention_mask = inputs["attention_mask"] , # This is usually done automatically by the tokenizer max_new_tokens=max_new_tokens, temperature=temperature, #value used to modulate the next token probabilities. num_beams=num_beams, top_k = top_k, top_p = top_p, num_return_sequences = num_return_sequences, eos_token_id=eos_token, pad_token_id = eos_token, do_sample =True,#skip_prompt=True, repetition_penalty=repetition_penalty, ) return tokenizer.batch_decode(outputs[:,inputs["input_ids"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True) ``` Then, use as follows: ```python from IPython.display import display, Markdown q='''What is graphene?''' res=generate_XLoRA_Gemma( system_prompt='You design materials.', prompt=q, max_new_tokens=1024, temperature=0.3, eos_token=eos_token_id) display (Markdown(res)) ``` ### Example: Molecular design ```python def design_from_target( model, tokenizer, target, temperature=0.1, num_beams=1, top_k=50, top_p=0.95, repetition_penalty=1.0, messages=[] ): # Format the target line for molecular property generation line = f'GenerateMolecularProperties<{return_str(target)}>' # Add the line to the message history messages.append({"role": "user", "content": line}) # Apply chat template with optional tokenization line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate response with specified parameters result = generate_response( model, tokenizer, text_input=line, num_return_sequences=1, temperature=temperature, top_k=top_k, top_p=top_p, max_new_tokens=256 )[0] return result ``` Use case: ```python import numpy as np target = np.random.rand(12) SMILES=design_from_target (model, tokenizer, target, messages=[]]) print (SMILES) ``` Calculate molecular properties: ```python def properties_from_SMILES( model, tokenizer, target, temperature=0.1, top_k=128, top_p=0.9, num_beams=1, repetition_penalty=1.0 ): # Format the target line for molecular property calculation line = f'CalculateMolecularProperties<{target}>' # Initialize messages and add the formatted line messages = [{"role": "user", "content": line}] # Apply chat template with optional tokenization line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Generate response with specified parameters result = generate_response( model, tokenizer, text_input=line, num_return_sequences=1, temperature=temperature, top_k=top_k, top_p=top_p, max_new_tokens=256 )[0] # Extract relevant part of the result and convert to float list result = extract_start_and_end(result, start_token='[', end_token=']') return [float(i) for i in result.split(',')] ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/tI5Y1q4RC73cy63Zdo_wT.png)