--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ tags: - text-to-image - text-to-image - diffusers-training - diffusers - stable-diffusion-2 - stable-diffusion-2-diffusers instance_prompt: widget: [] --- # Stable Diffusion 2.x Fine-tuned with Leaf Images ## Model description These are fine-tuned weights for the ```stabilityai/stable-diffusion-2``` model. This is a full fine-tune of the model using DreamBooth. ## Trigger keywords The following image were used during fine-tuning using the keyword \: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/468VnOa9vOCoHRcY4fMYK.png) You should use \ to trigger the image generation. ## How to use Defining some helper functions: ```python from diffusers import DiffusionPipeline import torch import os from datetime import datetime from PIL import Image def generate_filename(base_name, extension=".png"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") return f"{base_name}_{timestamp}{extension}" def save_image(image, directory, base_name="image_grid"): filename = generate_filename(base_name) file_path = os.path.join(directory, filename) image.save(file_path) print(f"Image saved as {file_path}") def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid", save_individual_files=False): if not os.path.exists(save_dir): os.makedirs(save_dir) assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if save_individual_files: save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_') if save and save_dir: save_image(grid, save_dir, base_name) return grid ``` ### Text-to-image Model loading: ```python import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler repo_id='lamm-mit/SD2x-leaf-inspired' pipe = StableDiffusionPipeline.from_pretrained(repo_id, scheduler = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler"), torch_dtype=torch.float16, ).to("cuda") ``` Image generation: ```python prompt = "a vase that resembles a , high quality" num_samples = 4 num_rows = 4 all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images all_images.extend(images) grid = image_grid(all_images, num_rows, num_samples) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/SI5aYv2dygJn0Y12LIqqe.png) ### Image-to-Image The model can be used also for image-to-image tasks. For instance, we can first generate a draft image and then further modify it. Create draft image: ``` prompt = "a vase that resembles a , high quality" num_samples = 4 num_rows = 1 all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images all_images.extend(images) grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/MkOXQIpdhl_zWM3QySYMY.png) Now we use one of the images (second from left) and modify it using the image-to-image pipeline. You can get the image as follows (if you run the generate code yourself, the generated images will be in the subdirectory ```generated_images```): ``` wget https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/image_grid_1-of-4__20240722_144702.png ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/l4WCC3PoZ6OpiSN-E66i3.png) Now, generate: ``` fname='image_grid_1-of-4__20240722_144702.png' init_image = Image.open(fname).convert("RGB") init_image = init_image.resize((768, 768)) prompt = "A vase made out of a spongy material, high quality photograph, full frame." num_samples = 4 num_rows = 1 all_images = [] for _ in range(num_rows): images = img2imgpipe(prompt, image=init_image, num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=75, guidance_scale=25).images all_images.extend(images) grid = image_grid(images, num_rows, num_samples, save_individual_files=True) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/0ROO1Ob2Z-GYPepYyyAGg.png) We can further edit the image by introducing another feature. We start from this image ``` wget https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/image_grid_2-of-4__20240722_150458.png ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/c-1b4J-as6b2p9ZQSSLjK.png) ``` fname='image_grid_2-of-4__20240722_150458.png' init_image = Image.open(fname).convert("RGB") init_image = init_image.resize((768, 768)) prompt = "A nicely connected white spider web." num_samples = 4 num_rows = 1 all_images = [] for _ in range(num_rows): images = img2imgpipe(prompt, image=init_image, num_images_per_prompt=num_samples, strength=0.8, num_inference_steps=10, guidance_scale=20).images all_images.extend(images) grid = image_grid(images, num_rows, num_samples, save_individual_files=True) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/izv21tOqJntVAwes0TEzu.png) A detailed view of one of them: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ik7RkGzrx0N8gkNfkei3j.png) ## Fine-tuning script Download this script: [SD2x DreamBooth-Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/SD2x_DreamBooth_Fine-Tune.ipynb) You need to create a local folder ```leaf_concept_dir``` and add the leaf images (provided in this repository, see subfolder), like so: ```python save_path='leaf_concept_dir' urls = [ "https://www.dropbox.com/scl/fi/4s09djm4nqxmq6vhvv9si/13_.jpg?rlkey=3m2f90pjofljmlqg5uc722i6y&dl=1", "https://www.dropbox.com/scl/fi/w4jsrf0qmrcro37nxutbx/25_.jpg?rlkey=e52gnoqaar33kwrd01h1mwcnk&dl=1", "https://www.dropbox.com/scl/fi/x0xgavduor4cbxz0sdcd2/33_.jpg?rlkey=5htaicapahhn66wnsr23v1nxz&dl=1", "https://www.dropbox.com/scl/fi/2grt40acypah9h9ok607q/72_.jpg?rlkey=bl6vfv0rcas2ygsz6o3behlst&dl=1", "https://www.dropbox.com/scl/fi/ecaf9agzdj2cawspmyt5i/117_.jpg?rlkey=oqxyk9i1wtu1wtkqadd6ylyjj&dl=1", "https://www.dropbox.com/scl/fi/gw3p73r99fleozr6ckfa3/126_.jpg?rlkey=6n7kqaklczshht1ntyqunh2lt&dl=1", ## You can add additional images here ] images = list(filter(None,[download_image(url) for url in urls])) if not os.path.exists(save_path): os.mkdir(save_path) [image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)] image_grid(images, 1, len(images)) ``` The training script is included in the Jupyter notebook. ## More examples ```python prompt = "a conch shell on black background that resembles a , high quality" num_samples = 4 num_rows = 4 all_images = [] for _ in range(num_rows): images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images all_images.extend(images) grid = image_grid(all_images, num_rows, num_samples) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/eE1xBqyVA4sP4gx6tAEGc.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ga808aW5H27f0hPq_RNme.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/r0dUyA-Gh_biy5d-4lTl0.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/iEjozBWOQQwxNVuKWZ7TT.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ESvd6cCkyJZ52Cu3iYfoP.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/2FExqoj8TSjJoIiw4wCm6.png)