--- tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: AraElectra-finetuned-fnd results: [] --- # AraElectra-finetuned-fnd This model is a fine-tuned version of [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5072 - Macro F1: 0.7679 - Accuracy: 0.7745 - Precision: 0.7680 - Recall: 0.7678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.5316 | 1.0 | 1597 | 0.4992 | 0.7428 | 0.7564 | 0.7535 | 0.7386 | | 0.4349 | 2.0 | 3194 | 0.4832 | 0.7523 | 0.7677 | 0.7692 | 0.7470 | | 0.3423 | 3.0 | 4791 | 0.5072 | 0.7679 | 0.7745 | 0.7680 | 0.7678 | | 0.2826 | 4.0 | 6388 | 0.5890 | 0.7672 | 0.7752 | 0.7693 | 0.7656 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1