--- tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: ArBERT-finetuned-fnd results: [] --- # ArBERT-finetuned-fnd This model is a fine-tuned version of [UBC-NLP/ARBERT](https://huggingface.co/UBC-NLP/ARBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4747 - Macro F1: 0.7661 - Accuracy: 0.7773 - Precision: 0.7748 - Recall: 0.7619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.5038 | 1.0 | 1597 | 0.4701 | 0.7596 | 0.7662 | 0.7595 | 0.7597 | | 0.379 | 2.0 | 3194 | 0.4747 | 0.7661 | 0.7773 | 0.7748 | 0.7619 | | 0.2462 | 3.0 | 4791 | 0.6113 | 0.7530 | 0.7629 | 0.7573 | 0.7504 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1