--- library_name: transformers language: - hy license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: 'Whisper Small Hy ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: hy-AM split: None args: 'config: hy, split: test' metrics: - name: Wer type: wer value: 40.02161383285303 --- # Whisper Small Hy This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1879 - Wer: 40.0216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3648 | 0.0962 | 1000 | 0.3407 | 62.9623 | | 0.3011 | 0.1924 | 2000 | 0.2642 | 52.0023 | | 0.2238 | 0.2886 | 3000 | 0.2272 | 46.9831 | | 0.2294 | 0.3848 | 4000 | 0.2010 | 42.8945 | | 0.1745 | 0.4810 | 5000 | 0.1879 | 40.0216 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1