--- language: - ko # Example: fr license: apache-2.0 # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses library_name: transformers # Optional. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts tags: - text2text-generation # Example: audio datasets: - aihub # Example: common_voice. Use dataset id from https://hf.co/datasets metrics: - bleu # Example: wer. Use metric id from https://hf.co/metrics - rouge # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: ko-barTNumText results: - task: type: text2text-generation # Required. Example: automatic-speech-recognition name: text2text-generation # Optional. Example: Speech Recognition metrics: - type: bleu # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9161441917016176 # Required. Example: 20.90 name: eval_bleu # Optional. Example: Test WER verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rouge1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9502159661745533 # Required. Example: 20.90 name: eval_rouge1 # Optional. Example: Test WER verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rouge2 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9313935147887745 # Required. Example: 20.90 name: eval_rouge2 # Optional. Example: Test WER verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rougeL # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.950015374196916 # Required. Example: 20.90 name: eval_rougeL # Optional. Example: Test WER verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - type: rougeLsum # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0.9500390902948073 # Required. Example: 20.90 name: eval_rougeLsum # Optional. Example: Test WER verified: true # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). --- # ko-barTNumText(TNT Model๐Ÿงจ): Try Number To Korean Reading(์ˆซ์ž๋ฅผ ํ•œ๊ธ€๋กœ ๋ฐ”๊พธ๋Š” ๋ชจ๋ธ) ## Table of Contents - [ko-barTNumText(TNT Model๐Ÿงจ): Try Number To Korean Reading(์ˆซ์ž๋ฅผ ํ•œ๊ธ€๋กœ ๋ฐ”๊พธ๋Š” ๋ชจ๋ธ)](#ko-bartnumtexttnt-model-try-number-to-korean-reading์ˆซ์ž๋ฅผ-ํ•œ๊ธ€๋กœ-๋ฐ”๊พธ๋Š”-๋ชจ๋ธ) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [Uses](#uses) - [Evaluation](#evaluation) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** ๋ญ”๊ฐ€ ์ฐพ์•„๋ด๋„ ๋ชจ๋ธ์ด๋‚˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋”ฑํžˆ ์—†์–ด์„œ ๋งŒ๋“ค์–ด๋ณธ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
BartForConditionalGeneration Fine-Tuning Model For Number To Korean
BartForConditionalGeneration์œผ๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ, ์ˆซ์ž๋ฅผ ํ•œ๊ธ€๋กœ ๋ณ€ํ™˜ํ•˜๋Š” Task ์ž…๋‹ˆ๋‹ค.
- Dataset use [Korea aihub](https://aihub.or.kr/aihubdata/data/list.do?currMenu=115&topMenu=100&srchDataRealmCode=REALM002&srchDataTy=DATA004)
I can't open my fine-tuning datasets for my private issue
๋ฐ์ดํ„ฐ์…‹์€ Korea aihub์—์„œ ๋ฐ›์•„์„œ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ํŒŒ์ธํŠœ๋‹์— ์‚ฌ์šฉ๋œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์ •์ƒ ๊ณต๊ฐœํ•ด๋“œ๋ฆด ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.
- Korea aihub data is ONLY permit to Korean!!!!!!!
aihub์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์œผ์‹ค ๋ถ„์€ ํ•œ๊ตญ์ธ์ผ ๊ฒƒ์ด๋ฏ€๋กœ, ํ•œ๊ธ€๋กœ๋งŒ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค.
์ •ํ™•ํžˆ๋Š” ์Œ์„ฑ์ „์‚ฌ๋ฅผ ์ฒ ์ž์ „์‚ฌ๋กœ ๋ฒˆ์—ญํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. (ETRI ์ „์‚ฌ๊ธฐ์ค€)
- In case, ten million, some people use 10 million or some people use 10000000, so this model is crucial for training datasets ์ฒœ๋งŒ์„ 1000๋งŒ ํ˜น์€ 10000000์œผ๋กœ ์“ธ ์ˆ˜๋„ ์žˆ๊ธฐ์—, Training Datasets์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ๋Š” ์ƒ์ดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
- **Developed by:** Yoo SungHyun(https://github.com/YooSungHyun) - **Language(s):** Korean - **License:** apache-2.0 - **Parent Model:** See the [kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) for more information about the pre-trained base model. ## Uses This Model is inferenced token BACKWARD. so, you have to `flip` before `tokenizer.decode()`
ํ•ด๋‹น ๋ชจ๋ธ์€ inference์‹œ ์—ญ์ˆœ์œผ๋กœ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค. (๋ฐฅ์„ 6์‹œ์— ๋จน์—ˆ์–ด -> ์–ด ๋จน์—ˆ ์‹œ์— ์—ฌ์„ฏ ์„ ๋ฐฅ)
๋•Œ๋ฌธ์— `tokenizer.decode`๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์ „์—, `flip`์œผ๋กœ ์—ญ์ˆœ์œผ๋กœ ์น˜ํ™˜ํ•ด์ฃผ์„ธ์š”. Want see more detail follow this URL [KoGPT_num_converter](https://github.com/ddobokki/KoGPT_num_converter)
and see `bart_inference.py` and `bart_train.py` ```python class BartText2TextGenerationPipeline(Text2TextGenerationPipeline): def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False): records = [] reversed_model_outputs = torch.flip(model_outputs["output_ids"][0], dims=[-1]) for output_ids in reversed_model_outputs: if return_type == ReturnType.TENSORS: record = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: record = { f"{self.return_name}_text": self.tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=clean_up_tokenization_spaces, ) } records.append(record) return records ``` ## Evaluation Just using `evaluate-metric/bleu` and `evaluate-metric/rouge` in huggingface `evaluate` library
[Training wanDB URL](https://wandb.ai/bart_tadev/BartForConditionalGeneration?workspace=user-bart_tadev) ## How to Get Started With the Model ```python from transformers.pipelines import Text2TextGenerationPipeline from transformers import AutoTokenizer, AutoModelForSeq2SeqLM texts = ["๊ทธ๋Ÿฌ๊ฒŒ ๋ˆ„๊ฐ€ 6์‹œ๊นŒ์ง€ ์ˆ ์„ ๋งˆ์‹œ๋ž˜?"] tokenizer = AutoTokenizer.from_pretrained( inference_args.model_name_or_path, ) model = AutoModelForSeq2SeqLM.from_pretrained( inference_args.model_name_or_path, ) # BartText2TextGenerationPipeline is implemented above (see 'Use') seq2seqlm_pipeline = BartText2TextGenerationPipeline(model=model, tokenizer=tokenizer) kwargs = { "min_length": args.min_length, "max_length": args.max_length, "num_beams": args.beam_width, "do_sample": args.do_sample, "num_beam_groups": args.num_beam_groups, } pred = seq2seqlm_pipeline(texts, **kwargs) print(pred) # ๊ทธ๋Ÿฌ๊ฒŒ ๋ˆ„๊ฐ€ ์—ฌ์„ฏ ์‹œ๊นŒ์ง€ ์ˆ ์„ ๋งˆ์‹œ๋ž˜? ```