--- language: - en license: cc-by-nc-sa-4.0 library_name: transformers datasets: - garage-bAInd/Open-Platypus pipeline_tag: text-generation model-index: - name: PlatYi-34B-LoRA results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.37 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 78.46 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/PlatYi-34B-LoRA name: Open LLM Leaderboard --- # **PlatYi-34B-LoRA** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** PlatYi-34B-LoRA is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) **Training Dataset** [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). **Notice** While training, I used LoRA. The `lora_r` values is 16. # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | PlatYi-34B-Q | 69.86 | 66.89 | 85.14 | 77.66 | 53.03 | 82.48 | 53.98 | | **PlatYi-34B-LoRA** | 68.1 | 67.15 | 85.37 | 78.46 | 53.32 | 83.66 | 40.64 | | [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/PlatYi-34B-LoRA" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kyujinpy__PlatYi-34B-LoRA) | Metric |Value| |---------------------------------|----:| |Avg. |68.10| |AI2 Reasoning Challenge (25-Shot)|67.15| |HellaSwag (10-Shot) |85.37| |MMLU (5-Shot) |78.46| |TruthfulQA (0-shot) |53.32| |Winogrande (5-shot) |83.66| |GSM8k (5-shot) |40.64|