{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f92ce23a680>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683277052645830547, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALuQjT+ZfCq+bfb3PipOuz/LSPa/cXlmvzFha79qw8a/ZnQTPVk56T/Ku+q+Dzc2P8aiQL/dVgjAbGFHPyyqHEDcefs+6jzWvzmfY78zsnm/H39pv/gZMDxqBuc/nt9Tvp9ZrL8DUY8+ofD+PiDbar9tDFBAIX8fP7fzOz8X3LW/TWZePwS/GD3wFKw+i35nP+bha75xIL26aFM1wFmC1rxYQSu+bd5EOgGZJkBKqNU8b4ehvvZaxrqFpDdAUHrnPE2Ptj8olxM83WFBwLUK37yfWay/D6RkwD+IAMAg22q/GhbGPj8fm7+Ki2u/ut1pP03Rkr+l6D/AU3pHv9BPKz+PD5U+8n9GwI28Mr9zoi6/z7Ctv6Upyr+WJOC8p8w6P5i0vT/1XBm/hHgDwPS3Mr8NqU2+Rs/KwIkUsD/DMg1An1msvwNRjz4/iADAINtqv/7nPb8vIZe/FmpYv4zCtL8uLKQ/Ub0pP7EJZr6cS50+vLJsP+F2x7+FT0q/2A9FP2J+Zj8XQQLAHYDJPv1fEb+507Q/5ugIvqQ3fr5OECO/A65xvYbyOsB5ajg+fhYOv+kfPj8DUY8+P4gAwBmGiz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAnHCK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATruDPQAAAABW9f+/AAAAALEfaT0AAAAAbnvdPwAAAAD7pJ89AAAAACQ/4j8AAAAAWUDGPQAAAAC4G/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHXFNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPkA5zwAAAAAJ/TovwAAAACErgM+AAAAAK6T5D8AAAAA2li3PQAAAAA5u/o/AAAAACI2mL0AAAAAam/svwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJr93bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICPzhA+AAAAABqC5L8AAAAAHTXuvQAAAADk5eA/AAAAAPeEJb0AAAAAfwH4PwAAAABMy0I8AAAAAMz7778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCF341AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsFwBvgAAAAAtzeS/AAAAAAMXR70AAAAA3onyPwAAAAAZ1+C9AAAAAA7t8z8AAAAA7hCYvQAAAAAjw+q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsvuV0Lc9KMAWyUTegDjAF0lEdAsJVUXtShrXV9lChoBkdAnTLUYj0L+mgHTegDaAhHQLCY6/JNj9Z1fZQoaAZHQJ2AgoAn2IxoB03oA2gIR0CwmiD1wo9cdX2UKGgGR0CdC0N7jT8YaAdN6ANoCEdAsJsrxLCemXV9lChoBkdAm1TgCnxaxGgHTegDaAhHQLCbwUTL4et1fZQoaAZHQJ1FB8Z1mrdoB03oA2gIR0CwoLi+g13udX2UKGgGR0Ca5RMpw0fpaAdN6ANoCEdAsKHm8J2MbXV9lChoBkdAnUx5f+jubGgHTegDaAhHQLCi0IGyHEd1fZQoaAZHQJzJaQNkOI9oB03oA2gIR0CwozkVBUrDdX2UKGgGR0CdUjFVDKHPaAdN6ANoCEdAsKbmp2ll9XV9lChoBkdAnNSzHn2ZiWgHTegDaAhHQLCoE8UmD151fZQoaAZHQJ32Tt1IRRNoB03oA2gIR0CwqQGYrrgPdX2UKGgGR0CcnojqfOD8aAdN6ANoCEdAsKltg2IfsHV9lChoBkdAnqaoO6NEPWgHTegDaAhHQLCuwJKraM91fZQoaAZHQJ6tOHARChNoB03oA2gIR0CwsArHdXT3dX2UKGgGR0CeH0WOIZZTaAdN6ANoCEdAsLD2b+cYqHV9lChoBkdAnWsNqgyuZGgHTegDaAhHQLCxXhA4XGh1fZQoaAZHQJtIO0E5hjRoB03oA2gIR0CwtPapDNQkdX2UKGgGR0Ccf171Iy0saAdN6ANoCEdAsLYkqaw2VHV9lChoBkdAmv1BW912aGgHTegDaAhHQLC3E127nPp1fZQoaAZHQJz7yJgsshBoB03oA2gIR0Cwt3upsGgSdX2UKGgGR0CafjkE9t/GaAdN6ANoCEdAsLwK86FM7HV9lChoBkdAmx5FTNt65WgHTegDaAhHQLC95rJr+Hd1fZQoaAZHQJqW1DMNc4ZoB03oA2gIR0CwvuXZ00WNdX2UKGgGR0CarBgkTpPiaAdN6ANoCEdAsL9KTjebeHV9lChoBkdAmE+oq5LAYmgHTegDaAhHQLDC16YVqN91fZQoaAZHQJlyq1qnFYNoB03oA2gIR0CwxAwgTyrgdX2UKGgGR0CZCkP4EfT1aAdN6ANoCEdAsMT74gzP8nV9lChoBkdAlQtaFh5PdmgHTegDaAhHQLDFZ8CgbqB1fZQoaAZHQJolThbW3BpoB03oA2gIR0CwyXOfZmI1dX2UKGgGR0CaN/5JK8L8aAdN6ANoCEdAsMs0pkPMCHV9lChoBkdAmgsam4y44WgHTegDaAhHQLDMocslLOB1fZQoaAZHQJfdbyiEg4hoB03oA2gIR0CwzTzuBtk4dX2UKGgGR0CXjXb/wRXfaAdN6ANoCEdAsNDVArxy4nV9lChoBkdAma2jin5zo2gHTegDaAhHQLDR+KtxMnJ1fZQoaAZHQJktfz/ZM+NoB03oA2gIR0Cw0uI6Kcd6dX2UKGgGR0CYfK+mWMS9aAdN6ANoCEdAsNNQY/FBIHV9lChoBkdAmk2GDxsl9mgHTegDaAhHQLDW4W6shgV1fZQoaAZHQJhq/XqZ+hJoB03oA2gIR0Cw2Hn1e0HAdX2UKGgGR0CZuhrdnCfpaAdN6ANoCEdAsNnb/BFd9nV9lChoBkdAm8L+PaL4vmgHTegDaAhHQLDafQO4G2V1fZQoaAZHQJrCSiUPhAJoB03oA2gIR0Cw3rU3n6l+dX2UKGgGR0CaZib4rSVoaAdN6ANoCEdAsN/oYXO4X3V9lChoBkdAmYpnWSU1RGgHTegDaAhHQLDg2wsGxD91fZQoaAZHQJmfFtbcGkhoB03oA2gIR0Cw4UJAQg9vdX2UKGgGR0CZoC/4ZdfLaAdN6ANoCEdAsOTpWxQizXV9lChoBkdAm8TP/vOQhmgHTegDaAhHQLDmESZSeiB1fZQoaAZHQJrHcOby6MBoB03oA2gIR0Cw51FLOAy3dX2UKGgGR0CYNbksSTQmaAdN6ANoCEdAsOfjrVvuPXV9lChoBkdAmO9YtDlYEGgHTegDaAhHQLDsqOnEVFh1fZQoaAZHQJw7ePGQ0XRoB03oA2gIR0Cw7eP8/D+BdX2UKGgGR0Ca8z0ALiMpaAdN6ANoCEdAsO7f2dupCXV9lChoBkdAnEvlQZXMhWgHTegDaAhHQLDvT/H5rQB1fZQoaAZHQJ7nKTHKfWdoB03oA2gIR0Cw8vD63y7PdX2UKGgGR0CeQmpuuRs/aAdN6ANoCEdAsPQkr/bTMXV9lChoBkdAnnJjLGJemmgHTegDaAhHQLD1FEwFkhB1fZQoaAZHQJ55fG+9Jz1oB03oA2gIR0Cw9ZkHdGiIdX2UKGgGR0Ceff2b5M11aAdN6ANoCEdAsPrIphF3IXV9lChoBkdAmjDKJdjXnWgHTegDaAhHQLD7/Dh99c91fZQoaAZHQKAAkt2cJ+loB03oA2gIR0Cw/OtNvfj0dX2UKGgGR0Cd7lRkmQbNaAdN6ANoCEdAsP1XhXKbKHV9lChoBkdAnXJSoS+QEWgHTegDaAhHQLEBCRISUTt1fZQoaAZHQJ3IbRhMJyBoB03oA2gIR0CxAkAV9F4LdX2UKGgGR0CeQiYRujynaAdN6ANoCEdAsQM7E87p3XV9lChoBkdAnGMLu6VdHGgHTegDaAhHQLEDp5hScb11fZQoaAZHQJtea53C9AZoB03oA2gIR0CxCMBqwhW6dX2UKGgGR0CZfN9QoCuEaAdN6ANoCEdAsQoyx8lXzXV9lChoBkdAll9xAv+OwWgHTegDaAhHQLELHz3AVO91fZQoaAZHQJoSpmDlHSZoB03oA2gIR0CxC4p53TuwdX2UKGgGR0CZTUOQyRCAaAdN6ANoCEdAsQ8lCjUNKHV9lChoBkdAndhC0fHPvGgHTegDaAhHQLEQVgL7XQN1fZQoaAZHQJca8WWQfZFoB03oA2gIR0CxEUiwW3z+dX2UKGgGR0Cb/+Riw0O3aAdN6ANoCEdAsRGyAjIJaHV9lChoBkdAmrzNvjwQUmgHTegDaAhHQLEWK7mdRSB1fZQoaAZHQJtvbp+tr9FoB03oA2gIR0CxGAPjXFtLdX2UKGgGR0CdepvUSZjQaAdN6ANoCEdAsRkXPX05EXV9lChoBkdAnSOzjFQ2uWgHTegDaAhHQLEZfc4YJmd1fZQoaAZHQI3BNyksSTRoB03oA2gIR0CxHS7rLQokdX2UKGgGR0CZRu66J66baAdN6ANoCEdAsR5jkLhJiHV9lChoBkdAmcw6BZpztGgHTegDaAhHQLEfWgsbvPV1fZQoaAZHQJiD8fhddE9oB03oA2gIR0CxH8bVvuPWdX2UKGgGR0CbAyFUQ04zaAdN6ANoCEdAsSP977bcoHV9lChoBkdAmIMJYLb5/WgHTegDaAhHQLElyyPdVNp1fZQoaAZHQJzTzu8brC5oB03oA2gIR0CxJ04DYAbRdX2UKGgGR0Cb1o3hGYrsaAdN6ANoCEdAsSfSTPjXF3V9lChoBkdAmtqnAuZkTmgHTegDaAhHQLEreXarWAh1fZQoaAZHQJmeH24/eLxoB03oA2gIR0CxLKnQyAQQdX2UKGgGR0CZem/OMVDbaAdN6ANoCEdAsS2b+6y0KXV9lChoBkdAmm+d4/u9e2gHTegDaAhHQLEuBkkrwvx1fZQoaAZHQJr/4nBtUGVoB03oA2gIR0CxMcbzGxUvdX2UKGgGR0CYPkwqiGnGaAdN6ANoCEdAsTOFpqREGHV9lChoBkdAmjI+9OARTWgHTegDaAhHQLE1AfA9FF51fZQoaAZHQJpbxuqFRHhoB03oA2gIR0CxNae/+Kj0dX2UKGgGR0CYyRHwPRReaAdN6ANoCEdAsTm0HB1s+HV9lChoBkdAm4QMLjPv8mgHTegDaAhHQLE69HgxagV1fZQoaAZHQJk1PXoTwlVoB03oA2gIR0CxO+IcBEKFdX2UKGgGR0CZOSJng5zYaAdN6ANoCEdAsTxQ5WBBiXV9lChoBkdAlduoxL0z02gHTegDaAhHQLE//lTm4iJ1fZQoaAZHQJnK900WM0hoB03oA2gIR0CxQYSk9ECvdX2UKGgGR0CY9IPLgXMyaAdN6ANoCEdAsULlRGc4HXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 66072, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}