{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8df5b9a810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652481041.047591, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAYHBz7XejG7Zl1Bug21GTeSyza8JS9lOQAAgD8AAIA/ZkhsPFK47rl+1lk76i+COGfNLbv3iMi5AACAPwAAgD+N0ea9XJ8/ujL3Azrqo0w1lnvqOhyJOzQAAIA/AACAP5qIQr3QomY/EfxKvW/EqL624nK8e6d4uwAAAAAAAAAAJmCQveE8orrRsJe6+vWOtYBSpLr6oa45AACAPwAAgD9grgm+9lWKPh8KLLuWPlq+hZ12vUJoFj0AAAAAAAAAAG2TCL65W4M+NYCZvA9HPr5x8988ct5JvQAAAAAAAAAAfngLP2jDHT++d3w7ITFxvnlv0j1D88a9AAAAAAAAAABARQ0+uCO2u2YsJzw/XV+6N8ICvad7QLsAAIA/AACAP2CTDb5c82+6AuFTO0zAwzcN+pQ7PSAjugAAgD8AAIA/Blt/PpYU4D6eigE+F1dvvnXxaT1Rv7k9AAAAAAAAAAAA8LM8jzpgul//Rzzth/67TDcNu4a64rwAAIA/AACAP8BU3j0jWzI/T2QbvZ+Eir5ukiU9+5ihOQAAAAAAAAAAmmA9PdGJ2z07mYg9NKwUvtiBjDwFCNG8AAAAAAAAAABm2Nc9rinJuoMbcLtwNAS7JxzfOqG5ATwAAIA/AACAP01hAb7lPZk/qNesvTMJvb6/3Va9O3pyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVdl3RXDJY0CUhpRSlIwBbJRN6AOMAXSUR0CSMBbwz+FUdX2UKGgGaAloD0MI2Xkbm50NYECUhpRSlGgVTegDaBZHQJI7q5Etuk11fZQoaAZoCWgPQwgRGOsbmB5fQJSGlFKUaBVN6ANoFkdAkj5UOd5IH3V9lChoBmgJaA9DCL7BFyZTNVdAlIaUUpRoFU3oA2gWR0CSR6IGhVU/dX2UKGgGaAloD0MIF9Uiopj/XkCUhpRSlGgVTegDaBZHQJJI5mapgkV1fZQoaAZoCWgPQwhGzVfJx1NeQJSGlFKUaBVN6ANoFkdAklSrKq4pdHV9lChoBmgJaA9DCNUI/Uy95lpAlIaUUpRoFU3oA2gWR0CSWKUwztTldX2UKGgGaAloD0MI38Mlx52rYUCUhpRSlGgVTegDaBZHQJJZxQsPJ7t1fZQoaAZoCWgPQwhMUMO3sMZAQJSGlFKUaBVNbwFoFkdAkls9PpIMB3V9lChoBmgJaA9DCEXwv5VskmFAlIaUUpRoFU3oA2gWR0CSW8b5uZTidX2UKGgGaAloD0MIJ/VlaadjX0CUhpRSlGgVTegDaBZHQJJeHWmP5pJ1fZQoaAZoCWgPQwgm32xzY7xcQJSGlFKUaBVN6ANoFkdAkl9rsByS3nV9lChoBmgJaA9DCJvlstE541tAlIaUUpRoFU3oA2gWR0CScnMA3kxRdX2UKGgGaAloD0MIrWu0HOjNXkCUhpRSlGgVTegDaBZHQJJ1pfjS5RV1fZQoaAZoCWgPQwinIhXGlk9iQJSGlFKUaBVN6ANoFkdAknaRlUZNwnV9lChoBmgJaA9DCG1Zvi7DR2FAlIaUUpRoFU3oA2gWR0CSeV0P6KtQdX2UKGgGaAloD0MIH4E//Px0YUCUhpRSlGgVTegDaBZHQJJ5zppvgm91fZQoaAZoCWgPQwjmWN5Vj6xhQJSGlFKUaBVN6ANoFkdAknqvGdZq23V9lChoBmgJaA9DCBmuDoC4QFlAlIaUUpRoFU3oA2gWR0CShVqubI91dX2UKGgGaAloD0MI6rEtA06uYUCUhpRSlGgVTegDaBZHQJKQf+XJHRV1fZQoaAZoCWgPQwg6kPXUaqhiQJSGlFKUaBVN6ANoFkdAkpGyWZ7Xx3V9lChoBmgJaA9DCK/PnPWpDmFAlIaUUpRoFU3oA2gWR0CSnHrzoUzsdX2UKGgGaAloD0MIYCLeOv+UXkCUhpRSlGgVTegDaBZHQJKgGXOW0JF1fZQoaAZoCWgPQwhznxwFiNtYQJSGlFKUaBVN6ANoFkdAkqEwE+xGD3V9lChoBmgJaA9DCDfiyW5mNVtAlIaUUpRoFU3oA2gWR0CSopBfKISEdX2UKGgGaAloD0MIhV/q502nV0CUhpRSlGgVTegDaBZHQJKjFiH6/It1fZQoaAZoCWgPQwhXBtUGJxRgQJSGlFKUaBVN6ANoFkdAkqVKsp5NXnV9lChoBmgJaA9DCJ3Ul6WdA2JAlIaUUpRoFU3oA2gWR0CSpn6pHZsbdX2UKGgGaAloD0MIKNTTR2BNYECUhpRSlGgVTegDaBZHQJK48Iv8IiV1fZQoaAZoCWgPQwh5AfbRqQVhQJSGlFKUaBVN6ANoFkdAkrvzzZpSJnV9lChoBmgJaA9DCM2ueysSjl9AlIaUUpRoFU3oA2gWR0CSvNjTKDChdX2UKGgGaAloD0MITDeJQWC3W0CUhpRSlGgVTegDaBZHQJMZ1lFtsN51fZQoaAZoCWgPQwgtW+uLhN5jQJSGlFKUaBVN6ANoFkdAkxo6U3XI2nV9lChoBmgJaA9DCHv3x3vVzVpAlIaUUpRoFU3oA2gWR0CTGwacI7eVdX2UKGgGaAloD0MIYTWWsLaOYkCUhpRSlGgVTegDaBZHQJMlFvkzXSV1fZQoaAZoCWgPQwgzjSYXYxdhQJSGlFKUaBVN6ANoFkdAkzBb2HtWuHV9lChoBmgJaA9DCM/5KY4De2FAlIaUUpRoFU3oA2gWR0CTMYvphWo4dX2UKGgGaAloD0MIdzHNdK9VXECUhpRSlGgVTegDaBZHQJM9Ig7o0Q91fZQoaAZoCWgPQwhPyTmxh71ZQJSGlFKUaBVN6ANoFkdAk0EpMcp9Z3V9lChoBmgJaA9DCMhESrN5nFtAlIaUUpRoFU3oA2gWR0CTQjocaOxTdX2UKGgGaAloD0MI+aHSiJngXkCUhpRSlGgVTegDaBZHQJNDvQa72+R1fZQoaAZoCWgPQwgUeZJ0zcFcQJSGlFKUaBVN6ANoFkdAk0RM1wYLs3V9lChoBmgJaA9DCHP3OT5a21VAlIaUUpRoFU3oA2gWR0CTRqPOY6XCdX2UKGgGaAloD0MIrDlAMEfSWkCUhpRSlGgVTegDaBZHQJNH7tXxOL11fZQoaAZoCWgPQwixbOaQ1FpGQJSGlFKUaBVNFwFoFkdAk1moq0+kg3V9lChoBmgJaA9DCJMZbys9BGBAlIaUUpRoFU3oA2gWR0CTWmGrS3LFdX2UKGgGaAloD0MILbEyGvn7WECUhpRSlGgVTegDaBZHQJNdOp0fYBh1fZQoaAZoCWgPQwjVeOkmMQ1gQJSGlFKUaBVN6ANoFkdAk14BxxT853V9lChoBmgJaA9DCIy9F1+0aVpAlIaUUpRoFU3oA2gWR0CTYK43WFvidX2UKGgGaAloD0MIJIEGm7qtYECUhpRSlGgVTegDaBZHQJNhDRMN+b51fZQoaAZoCWgPQwjGUbmJWmtfQJSGlFKUaBVN6ANoFkdAk2G+pjtojHV9lChoBmgJaA9DCPCK4H+rbWFAlIaUUpRoFU3oA2gWR0CTatFCb+cZdX2UKGgGaAloD0MINWH7yZhAYUCUhpRSlGgVTegDaBZHQJN0IOXmeUZ1fZQoaAZoCWgPQwjuBzwwAFxhQJSGlFKUaBVN6ANoFkdAk3UfFm4Aj3V9lChoBmgJaA9DCNNsHofBMltAlIaUUpRoFU3oA2gWR0CTfrjMmnfmdX2UKGgGaAloD0MIcalKW9ydYUCUhpRSlGgVTegDaBZHQJOCHrleWv91fZQoaAZoCWgPQwi/1TpxOdpjQJSGlFKUaBVN6ANoFkdAk4Meb3Gn43V9lChoBmgJaA9DCHuCxHZ34GNAlIaUUpRoFU3oA2gWR0CThHCj1wo9dX2UKGgGaAloD0MIaCRCI9g+Y0CUhpRSlGgVTegDaBZHQJOE6ASWZ7Z1fZQoaAZoCWgPQwhQbtv3qFdbQJSGlFKUaBVN6ANoFkdAk4hHfhuO0nV9lChoBmgJaA9DCGkaFM2DGWFAlIaUUpRoFU3oA2gWR0CTmuJNj9XLdX2UKGgGaAloD0MILcxCO6cJY0CUhpRSlGgVTegDaBZHQJOblC8e0Xx1fZQoaAZoCWgPQwjnxB7ax2hkQJSGlFKUaBVN6ANoFkdAk56chouf3HV9lChoBmgJaA9DCKipZWt9KF1AlIaUUpRoFU3oA2gWR0CTn33GGVRldX2UKGgGaAloD0MIY7SOqiZkYUCUhpRSlGgVTegDaBZHQJOiH1K5Cnh1fZQoaAZoCWgPQwgDJQUWwGhgQJSGlFKUaBVN6ANoFkdAk6KEb1h9cHV9lChoBmgJaA9DCJFI2/gTQWFAlIaUUpRoFU3oA2gWR0CToz8CPp6hdX2UKGgGaAloD0MIfXbAdcVfZUCUhpRSlGgVTegDaBZHQJQGpAD7qIJ1fZQoaAZoCWgPQwiUoL/QI11dQJSGlFKUaBVN6ANoFkdAlBDo/NZ/1HV9lChoBmgJaA9DCG5PkNju5V1AlIaUUpRoFU3oA2gWR0CUEgHWjGkvdX2UKGgGaAloD0MICisVVFTfX0CUhpRSlGgVTegDaBZHQJQcRH7P6bh1fZQoaAZoCWgPQwhKJTyh1+dhQJSGlFKUaBVN6ANoFkdAlB/IXbdrPHV9lChoBmgJaA9DCDV/TGvTxV5AlIaUUpRoFU3oA2gWR0CUIMcghbGFdX2UKGgGaAloD0MI7Sk5J3YfZUCUhpRSlGgVTegDaBZHQJQiGAWi1zB1fZQoaAZoCWgPQwjo3VhQmL5gQJSGlFKUaBVN6ANoFkdAlCKMK5TZQHV9lChoBmgJaA9DCM0iFFvBumNAlIaUUpRoFU3oA2gWR0CUJbrKNhmYdX2UKGgGaAloD0MIC9XNxV8wYkCUhpRSlGgVTegDaBZHQJQ2J+UhV2l1fZQoaAZoCWgPQwiOy7ipAdRjQJSGlFKUaBVN6ANoFkdAlDbGKEWZZ3V9lChoBmgJaA9DCOsbmNwoh1tAlIaUUpRoFU3oA2gWR0CUOWRlpXZHdX2UKGgGaAloD0MITg00n3PVXkCUhpRSlGgVTegDaBZHQJQ6JI6Kcd51fZQoaAZoCWgPQwivYBvx5P1iQJSGlFKUaBVN6ANoFkdAlDyZ7HAAQ3V9lChoBmgJaA9DCHyA7suZzV1AlIaUUpRoFU3oA2gWR0CUPPXCCSRsdX2UKGgGaAloD0MIzc6idyrvYUCUhpRSlGgVTegDaBZHQJQ9n5HmRvF1fZQoaAZoCWgPQwiK48Cr5YdiQJSGlFKUaBVN6ANoFkdAlEZl6/qPfnV9lChoBmgJaA9DCK37x0L0w2JAlIaUUpRoFU3oA2gWR0CUT9E74i5edX2UKGgGaAloD0MIC9EhcCTCY0CUhpRSlGgVTegDaBZHQJRQzy4FzMl1fZQoaAZoCWgPQwjeWFAYlL9hQJSGlFKUaBVN6ANoFkdAlFujtkWhy3V9lChoBmgJaA9DCGGkF7V77WBAlIaUUpRoFU3oA2gWR0CUX2dvsJIEdX2UKGgGaAloD0MIvqWcL/Z7ZECUhpRSlGgVTegDaBZHQJRgdA/s3Q51fZQoaAZoCWgPQwgk0jb+RO1iQJSGlFKUaBVN6ANoFkdAlGHOtW+49XV9lChoBmgJaA9DCA7aq4+HSl1AlIaUUpRoFU3oA2gWR0CUYkiF0xM4dX2UKGgGaAloD0MIYXE486vLZECUhpRSlGgVTegDaBZHQJRloAzYVZd1fZQoaAZoCWgPQwiyS1RvDawWwJSGlFKUaBVNGQFoFkdAlHQ28/UvwnV9lChoBmgJaA9DCGfttgvNx1JAlIaUUpRoFU3oA2gWR0CUdpoakyk9dX2UKGgGaAloD0MIskgT7wDcZECUhpRSlGgVTegDaBZHQJR3LPgNwzd1fZQoaAZoCWgPQwgDsAER4tVaQJSGlFKUaBVN6ANoFkdAlHmbNfPX1HV9lChoBmgJaA9DCOv9RjvupmJAlIaUUpRoFU3oA2gWR0CUelPGhmGudX2UKGgGaAloD0MI97AXClgGYkCUhpRSlGgVTegDaBZHQJR8jpmmLtN1fZQoaAZoCWgPQwjn4m97gkVeQJSGlFKUaBVN6ANoFkdAlHzffKp1inV9lChoBmgJaA9DCCDwwABC6GNAlIaUUpRoFU3oA2gWR0CUfX0vGp++dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}