import numpy as np import torch from PIL import Image from transformers.image_processing_utils import BaseImageProcessor from transformers.utils import logging logger = logging.get_logger(__name__) class VQModelImageProcessor(BaseImageProcessor): # type: ignore def __init__( self, size: int = 256, convert_rgb: bool = False, resample: Image.Resampling = Image.Resampling.LANCZOS, **kwargs: dict, ) -> None: self.size = size self.convert_rgb = convert_rgb self.resample = resample def __call__(self, image: Image.Image) -> dict: return self.preprocess(image) def preprocess(self, image: Image.Image) -> dict: width, height = image.size size = (self.size, self.size) image = image.resize(size, resample=self.resample) image = image.convert("RGBA") if self.convert_rgb: # Paste RGBA image on white background image_new = Image.new("RGB", image.size, (255, 255, 255)) image_new.paste(image, mask=image.split()[3]) image = image_new return { "image": self.to_tensor(image), "width": width, "height": height, } def to_tensor(self, image: Image.Image) -> torch.Tensor: x = np.array(image) / 127.5 - 1.0 x = x.transpose(2, 0, 1).astype(np.float32) return torch.as_tensor(x) def postprocess( self, x: torch.Tensor, width: int | None = None, height: int | None = None, ) -> Image.Image: x_np = x.numpy().transpose(1, 2, 0) x_np = (x_np + 1.0) * 127.5 x_np = np.clip(x_np, 0, 255).astype(np.uint8) image = Image.fromarray(x_np) # Resize image width = width or self.size height = height or self.size image = image.resize((width, height), resample=self.resample) return image