### Model **[`albert-xlarge-v2`](https://huggingface.co/albert-xlarge-v2)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=albert-xlarge-v2 python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 3 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 814 \ --gradient_accumulation_steps 4 \ --fp16 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 84.41842836688285 | | f1 | 87.4628460501696 | | total | 11873.0 | | HasAns_exact | 80.68488529014844 | | HasAns_f1 | 86.78245127423482 | | HasAns_total | 5928.0 | | NoAns_exact | 88.1412952060555 | | NoAns_f1 | 88.1412952060555 | | NoAns_total | 5945.0 | | best_exact | 84.41842836688285 | | best_exact_thresh | 0.0 | | best_f1 | 87.46284605016956 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/albert.html#albertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```