--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4616 | 0.0 | 1 | 1.4223 | | 1.4337 | 0.0 | 2 | 1.4204 | | 1.6083 | 0.0 | 3 | 1.4186 | | 1.0152 | 0.0 | 4 | 1.4168 | | 1.5549 | 0.0 | 5 | 1.4150 | | 1.4039 | 0.0 | 6 | 1.4132 | | 1.0972 | 0.01 | 7 | 1.4115 | | 1.4686 | 0.01 | 8 | 1.4098 | | 1.3683 | 0.01 | 9 | 1.4081 | | 1.2799 | 0.01 | 10 | 1.4065 | | 1.2553 | 0.01 | 11 | 1.4048 | | 1.3466 | 0.01 | 12 | 1.4032 | | 1.1299 | 0.01 | 13 | 1.4016 | | 1.8492 | 0.01 | 14 | 1.4000 | | 1.3812 | 0.01 | 15 | 1.3985 | | 1.1716 | 0.01 | 16 | 1.3970 | | 1.1015 | 0.01 | 17 | 1.3955 | | 1.5655 | 0.01 | 18 | 1.3942 | | 1.4379 | 0.02 | 19 | 1.3930 | | 1.2552 | 0.02 | 20 | 1.3918 | | 1.1698 | 0.02 | 21 | 1.3907 | | 1.3563 | 0.02 | 22 | 1.3897 | | 1.6058 | 0.02 | 23 | 1.3889 | | 1.4902 | 0.02 | 24 | 1.3881 | | 1.6846 | 0.02 | 25 | 1.3874 | | 1.2315 | 0.02 | 26 | 1.3868 | | 1.0901 | 0.02 | 27 | 1.3863 | | 1.2795 | 0.02 | 28 | 1.3860 | | 1.1802 | 0.02 | 29 | 1.3857 | | 1.2028 | 0.02 | 30 | 1.3856 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2