#!/usr/bin/env python3 import torch import re import argparse from datasets import load_dataset, load_metric, Audio, Dataset from transformers import pipeline, AutoFeatureExtractor, Wav2Vec2ProcessorWithLM, Wav2Vec2Processor from transformers import Wav2Vec2ForCTC, AutoModelForCTC, AutoProcessor from typing import Dict def log_results(result: Dataset, args: Dict[str, str]): log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = ( f"WER: {wer_result}\n" f"CER: {cer_result}" ) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def remove_special_characters(batch): chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\&\/\d\_\\\]' batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower() batch["sentence"] = re.sub('\u200c', '', batch["sentence"]) batch["sentence"] = re.sub('[a-z]', '', batch["sentence"]) return batch def main(args): # load dataset dataset = load_dataset(args.dataset, args.config) train_testvalid = dataset[args.split].train_test_split(test_size=0.25) dataset_train = train_testvalid["train"] dataset_test = train_testvalid["test"] # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate print(sampling_rate) dataset = dataset_test.map(remove_special_characters) # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id) model = Wav2Vec2ForCTC.from_pretrained(args.model_id) # processor = AutoProcessor.from_pretrained(args.model_id) # model = AutoModelForCTC.from_pretrained(args.model_id) model.to("cuda") # load eval pipeline # asr = pipeline("automatic-speech-recognition", model=args.model_id) # # map function to decode audio # def map_to_pred(batch): # prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s) # batch["prediction"] = prediction["text"] # batch["target"] = batch["sentence"] # return batch def evaluate(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt",sampling_rate=sampling_rate, padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits # pred_ids = torch.argmax(logits, dim=-1) # batch["prediction"] = processor.batch_decode(pred_ids) batch["prediction"] = processor.batch_decode(logits.cpu().numpy()).text batch["target"] =batch["sentence"] return batch result = dataset.map(evaluate, remove_columns=dataset.column_names) log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets" ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument( "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`" ) parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds." ) parser.add_argument( "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis." ) args = parser.parse_args() main(args)