--- language: ja tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper kotoba-whisper-v2.0 model for CTranslate2 This repository contains the conversion of [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/systran/faster-whisper). ## Example Install library and download sample audio. ```shell pip install faster-whisper wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/sample_ja_speech.wav ``` Inference with the kotoba-whisper-v2.0-faster. ```python from faster_whisper import WhisperModel model = WhisperModel("kotoba-tech/kotoba-whisper-v2.0-faster") segments, info = model.transcribe("sample_ja_speech.wav", language="ja", chunk_length=15, condition_on_previous_text=False) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ### Benchmark Please refer to the [kotoba-tech/kotoba-whisper-v1.0-faster](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-faster) for the detail of speed up [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-faster#benchmark). ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model kotoba-tech/kotoba-whisper-v2.0 --output_dir kotoba-whisper-v2.0-faster \ --copy_files tokenizer.json preprocessor_config.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information For more information about the kotoba-whisper-v2.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).