--- library_name: transformers license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - generated_from_trainer model-index: - name: pythia_160m_sft results: [] datasets: - tatsu-lab/alpaca_farm --- # pythia_160m_sft This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3332 | 0.0889 | 100 | 2.2776 | | 2.3071 | 0.1778 | 200 | 2.2564 | | 2.2941 | 0.2667 | 300 | 2.2301 | | 2.2548 | 0.3556 | 400 | 2.2094 | | 2.2246 | 0.4444 | 500 | 2.1973 | | 2.2189 | 0.5333 | 600 | 2.1705 | | 2.181 | 0.6222 | 700 | 2.1498 | | 2.1515 | 0.7111 | 800 | 2.1399 | | 2.1333 | 0.8 | 900 | 2.1212 | | 2.1139 | 0.8889 | 1000 | 2.1050 | | 2.0778 | 0.9778 | 1100 | 2.0970 | | 1.8312 | 1.0667 | 1200 | 2.1071 | | 1.7405 | 1.1556 | 1300 | 2.1022 | | 1.7284 | 1.2444 | 1400 | 2.1049 | | 1.7554 | 1.3333 | 1500 | 2.1023 | | 1.732 | 1.4222 | 1600 | 2.0934 | | 1.7474 | 1.5111 | 1700 | 2.0917 | | 1.7495 | 1.6 | 1800 | 2.0820 | | 1.7449 | 1.6889 | 1900 | 2.0770 | | 1.7474 | 1.7778 | 2000 | 2.0708 | | 1.7447 | 1.8667 | 2100 | 2.0643 | | 1.7138 | 1.9556 | 2200 | 2.0550 | | 1.5662 | 2.0444 | 2300 | 2.1122 | | 1.4506 | 2.1333 | 2400 | 2.1203 | | 1.4282 | 2.2222 | 2500 | 2.1225 | | 1.4302 | 2.3111 | 2600 | 2.1173 | | 1.4471 | 2.4 | 2700 | 2.1156 | | 1.4217 | 2.4889 | 2800 | 2.1168 | | 1.428 | 2.5778 | 2900 | 2.1126 | | 1.4206 | 2.6667 | 3000 | 2.1059 | | 1.4315 | 2.7556 | 3100 | 2.1068 | | 1.4345 | 2.8444 | 3200 | 2.1037 | | 1.4034 | 2.9333 | 3300 | 2.1033 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3