--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Sussurrar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 26.260504201680675 --- # Sussurrar This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4367 - Wer: 26.2605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4076 | 0.1 | 200 | 0.5182 | 32.4930 | | 0.3462 | 0.2 | 400 | 0.4912 | 29.0266 | | 0.3283 | 0.3 | 600 | 0.4671 | 27.0308 | | 0.3579 | 0.4 | 800 | 0.4662 | 26.6457 | | 0.2766 | 0.5 | 1000 | 0.4639 | 26.7157 | | 0.2147 | 1.03 | 1200 | 0.4470 | 26.7857 | | 0.1877 | 1.13 | 1400 | 0.4382 | 26.4006 | | 0.192 | 1.23 | 1600 | 0.4430 | 26.3655 | | 0.1894 | 1.33 | 1800 | 0.4349 | 26.4006 | | 0.1725 | 1.43 | 2000 | 0.4367 | 26.2605 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2