""" A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers https://arxiv.org/abs/2105.03011 QASPER is a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. Homepage: https://allenai.org/data/qasper """ from collections import Counter import re import string from lm_eval.base import rf, Task from lm_eval.metrics import f1_score, mean _CITATION = """ @article{DBLP:journals/corr/abs-2105-03011, author = {Pradeep Dasigi and Kyle Lo and Iz Beltagy and Arman Cohan and Noah A. Smith and Matt Gardner}, title = {A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers}, journal = {CoRR}, volume = {abs/2105.03011}, year = {2021}, url = {https://arxiv.org/abs/2105.03011}, eprinttype = {arXiv}, eprint = {2105.03011}, timestamp = {Fri, 14 May 2021 12:13:30 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ def normalize_answer(s): """ Taken from the official evaluation script for v1.1 of the SQuAD dataset. Lower text and remove punctuation, articles and extra whitespace. """ def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def categorise_answer(answer_blob): if answer_blob["unanswerable"]: answer = "unanswerable" answer_type = "unanswerable" return answer, answer_type elif answer_blob["yes_no"]: answer = "yes" answer_type = "bool" return answer, answer_type elif answer_blob["free_form_answer"]: answer = answer_blob["free_form_answer"] answer_type = "free form answer" return answer, answer_type elif answer_blob["extractive_spans"]: answer = answer_blob["extractive_spans"] answer_type = "extractive_spans" return answer, answer_type elif answer_blob["yes_no"] is False: answer = "no" answer_type = "bool" return answer, answer_type def token_f1_score(prediction, ground_truth): """ Taken from the official evaluation script for v1.1 of the SQuAD dataset. """ prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 class QASPER(Task): VERSION = 0 DATASET_PATH = "qasper" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def doc_to_text(self, doc): return ( "TITLE: " + doc["title"] + "\n" + "ABSTRACT: " + doc["abstract"] + "\n\n" + "Q: " + doc["question"] + "\n\n" + "A:" ) def doc_to_target(self, doc): answer = doc["answer"] if isinstance(answer, list): answer = ", ".join(answer) return " " + answer def training_docs(self): for doc in self.dataset["train"]: yield from self._process_doc(doc) def validation_docs(self): for doc in self.dataset["validation"]: yield from self._process_doc(doc) def _process_doc(self, doc): """Given a `doc`, flatten it out so that each JSON blob contains exactly one question and one answer. Logic taken from the reference implementation available at https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py """ obs_list = [] for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]): for answer_blob in answer_list["answer"]: answer, answer_type = categorise_answer(answer_blob) obs_list.append( { "title": doc["title"], "abstract": doc["abstract"], "question": question, "answer": answer, "answer_type": answer_type, } ) return obs_list def process_results(self, doc, results): # TODO: Calculate a score for extractive spans once a request type for generating # extractive spans is available if not results: return {} elif len(results) == 1: [res] = results elif len(results) == 2: [ll_yes, ll_no] = results # TODO: Handle unanswerability first # unanswerable_gold = doc["answer_type"] == "unanswerable" # unanswerable_pred = exp(logprob_unanswerable) # res_dict["f1_unanswerable"] = (unanswerable_gold, unanswerable_pred) res_dict = {} # Handle yes/no questions if doc["answer_type"] == "bool": gold = 1 if doc["answer"] == "yes" else 0 pred = ll_yes > ll_no res_dict["f1_yesno"] = (gold, pred) # Handle completions if doc["answer_type"] == "free form answer": res_dict["f1_abstractive"] = token_f1_score(res, doc["answer"]) # TODO: Handle extraction # if doc["answer_type"] == "extractive_spans": # res_dict["f1_extractive"] = 0 return res_dict def aggregation(self): return { "f1_yesno": f1_score, "f1_abstractive": mean, } def construct_requests(self, doc, ctx): """Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # unanswerable = rf.loglikelihood(ctx, " " + "unanswerable") if doc["answer_type"] in ("free form answer"): return [rf.greedy_until(ctx, ["\n"])] elif doc["answer_type"] in ("bool"): ll_yes, _ = rf.loglikelihood(ctx, " yes") ll_no, _ = rf.loglikelihood(ctx, " no") return [ll_yes, ll_no] else: return [] def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ return { "f1_yesno": True, "f1_abstractive": True, }