---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: LightGBM_without_hospital_number_01.pkl
widget:
structuredData:
abdomen:
- distend_small
- distend_small
- distend_large
abdominal_distention:
- none
- none
- moderate
abdomo_appearance:
- serosanguious
- cloudy
- serosanguious
abdomo_protein:
- 4.1
- 4.3
- 2.0
age:
- adult
- adult
- adult
capillary_refill_time:
- less_3_sec
- less_3_sec
- more_3_sec
cp_data:
- 'yes'
- 'yes'
- 'no'
lesion_1:
- 7209
- 2112
- 5400
lesion_2:
- 0
- 0
- 0
lesion_3:
- 0
- 0
- 0
mucous_membrane:
- bright_pink
- bright_pink
- dark_cyanotic
nasogastric_reflux:
- none
- none
- more_1_liter
nasogastric_reflux_ph:
- 7.0
- 3.5
- 2.0
nasogastric_tube:
- slight
- none
- significant
packed_cell_volume:
- 37.0
- 44.0
- 65.0
pain:
- depressed
- mild_pain
- extreme_pain
peripheral_pulse:
- normal
- normal
- reduced
peristalsis:
- hypermotile
- hypomotile
- absent
pulse:
- 84.0
- 66.0
- 72.0
rectal_exam_feces:
- absent
- decreased
- absent
rectal_temp:
- 39.0
- 38.5
- 37.3
respiratory_rate:
- 24.0
- 21.0
- 30.0
surgery:
- 'yes'
- 'yes'
- 'yes'
surgical_lesion:
- 'yes'
- 'yes'
- 'yes'
temp_of_extremities:
- cool
- normal
- cool
total_protein:
- 6.5
- 7.6
- 13.0
---
# Model description
This is a `LightGBM` model trained on horse health outcome data from Kaggle.
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('preprocessor', ColumnTransformer(remainder='passthrough',
transformers=[('num',
Pipeline(steps=[('imputer',
SimpleImputer(strategy='median')),
('scaler', StandardScaler())]),
['rectal_temp', 'pulse', 'respiratory_rate',
'nasogastric_reflux_ph', 'packed_cell_volume',
'total_protein', 'abdomo_protein', 'lesion_1',
'lesion_2', 'lesion_3']),
('cat',
Pipeline(steps=[('imputer',
SimpleI...='missing',
strategy='constant')),
('onehot',
OneHotEncoder(handle_unknown='ignore'))]),
['surgery', 'age', 'temp_of_extremities',
'peripheral_pulse', 'mucous_membrane',
'capillary_refill_time', 'pain',
'peristalsis', 'abdominal_distention',
'nasogastric_tube', 'nasogastric_reflux',
'rectal_exam_feces', 'abdomen',
'abdomo_appearance', 'surgical_lesion',
'cp_data'])])), ('classifier', LGBMClassifier(max_depth=3))] |
| verbose | False |
| preprocessor | ColumnTransformer(remainder='passthrough',
transformers=[('num',
Pipeline(steps=[('imputer',
SimpleImputer(strategy='median')),
('scaler', StandardScaler())]),
['rectal_temp', 'pulse', 'respiratory_rate',
'nasogastric_reflux_ph', 'packed_cell_volume',
'total_protein', 'abdomo_protein', 'lesion_1',
'lesion_2', 'lesion_3']),
('cat',
Pipeline(steps=[('imputer',
SimpleI...='missing',
strategy='constant')),
('onehot',
OneHotEncoder(handle_unknown='ignore'))]),
['surgery', 'age', 'temp_of_extremities',
'peripheral_pulse', 'mucous_membrane',
'capillary_refill_time', 'pain',
'peristalsis', 'abdominal_distention',
'nasogastric_tube', 'nasogastric_reflux',
'rectal_exam_feces', 'abdomen',
'abdomo_appearance', 'surgical_lesion',
'cp_data'])]) |
| classifier | LGBMClassifier(max_depth=3) |
| preprocessor__n_jobs | |
| preprocessor__remainder | passthrough |
| preprocessor__sparse_threshold | 0.3 |
| preprocessor__transformer_weights | |
| preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())]), ['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']), ('cat', Pipeline(steps=[('imputer',
SimpleImputer(fill_value='missing', strategy='constant')),
('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data'])] |
| preprocessor__verbose | False |
| preprocessor__verbose_feature_names_out | True |
| preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())]) |
| preprocessor__cat | Pipeline(steps=[('imputer',
SimpleImputer(fill_value='missing', strategy='constant')),
('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
| preprocessor__num__memory | |
| preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())] |
| preprocessor__num__verbose | False |
| preprocessor__num__imputer | SimpleImputer(strategy='median') |
| preprocessor__num__scaler | StandardScaler() |
| preprocessor__num__imputer__add_indicator | False |
| preprocessor__num__imputer__copy | True |
| preprocessor__num__imputer__fill_value | |
| preprocessor__num__imputer__keep_empty_features | False |
| preprocessor__num__imputer__missing_values | nan |
| preprocessor__num__imputer__strategy | median |
| preprocessor__num__scaler__copy | True |
| preprocessor__num__scaler__with_mean | True |
| preprocessor__num__scaler__with_std | True |
| preprocessor__cat__memory | |
| preprocessor__cat__steps | [('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))] |
| preprocessor__cat__verbose | False |
| preprocessor__cat__imputer | SimpleImputer(fill_value='missing', strategy='constant') |
| preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
| preprocessor__cat__imputer__add_indicator | False |
| preprocessor__cat__imputer__copy | True |
| preprocessor__cat__imputer__fill_value | missing |
| preprocessor__cat__imputer__keep_empty_features | False |
| preprocessor__cat__imputer__missing_values | nan |
| preprocessor__cat__imputer__strategy | constant |
| preprocessor__cat__onehot__categories | auto |
| preprocessor__cat__onehot__drop | |
| preprocessor__cat__onehot__dtype |
Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler())]),['rectal_temp', 'pulse','respiratory_rate','nasogastric_reflux_ph','packed_cell_volume','total_protein','abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pi...OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age','temp_of_extremities','peripheral_pulse','mucous_membrane','capillary_refill_time','pain', 'peristalsis','abdominal_distention','nasogastric_tube','nasogastric_reflux','rectal_exam_feces','abdomen','abdomo_appearance','surgical_lesion','cp_data'])])),('classifier', LGBMClassifier(max_depth=3))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler())]),['rectal_temp', 'pulse','respiratory_rate','nasogastric_reflux_ph','packed_cell_volume','total_protein','abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pi...OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age','temp_of_extremities','peripheral_pulse','mucous_membrane','capillary_refill_time','pain', 'peristalsis','abdominal_distention','nasogastric_tube','nasogastric_reflux','rectal_exam_feces','abdomen','abdomo_appearance','surgical_lesion','cp_data'])])),('classifier', LGBMClassifier(max_depth=3))])
ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler', StandardScaler())]),['rectal_temp', 'pulse', 'respiratory_rate','nasogastric_reflux_ph', 'packed_cell_volume','total_protein', 'abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pipeline(steps=[('imputer',SimpleI...='missing',strategy='constant')),('onehot',OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age', 'temp_of_extremities','peripheral_pulse', 'mucous_membrane','capillary_refill_time', 'pain','peristalsis', 'abdominal_distention','nasogastric_tube', 'nasogastric_reflux','rectal_exam_feces', 'abdomen','abdomo_appearance', 'surgical_lesion','cp_data'])])
['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']
SimpleImputer(strategy='median')
StandardScaler()
['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data']
SimpleImputer(fill_value='missing', strategy='constant')
OneHotEncoder(handle_unknown='ignore')
[]
passthrough
LGBMClassifier(max_depth=3)