ts_cate / README.md
tangminhanh's picture
Duplicate from tangminhanh/ts_cate
04cd813 verified
metadata
license: mit
base_model: tangminhanh/ts_tg
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ts_cate
    results: []

ts_cate

This model is a fine-tuned version of tangminhanh/ts_tg on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0263
  • Accuracy: 0.8555
  • F1: 0.8736
  • Precision: 0.8824
  • Recall: 0.8649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 404 0.0458 0.6802 0.7650 0.8750 0.6796
0.1001 2.0 808 0.0318 0.7717 0.8259 0.8817 0.7767
0.0321 3.0 1212 0.0278 0.8251 0.8564 0.8862 0.8286
0.0215 4.0 1616 0.0256 0.8322 0.8627 0.8909 0.8363
0.0161 5.0 2020 0.0256 0.8455 0.8679 0.8812 0.8551
0.0161 6.0 2424 0.0259 0.8499 0.8711 0.8831 0.8594
0.0124 7.0 2828 0.0255 0.8536 0.8713 0.8836 0.8594
0.0105 8.0 3232 0.0262 0.8533 0.8723 0.8836 0.8612
0.0087 9.0 3636 0.0261 0.8567 0.8746 0.8838 0.8656
0.0078 10.0 4040 0.0263 0.8555 0.8736 0.8824 0.8649

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1