--- language: - en tags: - pytorch - token-classification - nominalizations datasets: - kleinay/qanom --- # Nominalization Detector This model identifies "predicative nominalizations", that is, nominalizations that carry an eventive (or "verbal") meaning in context. It is a `bert-base-cased` pretrained model, fine-tuned for token classification on top of the "nominalization detection" task as defined and annotated by the QANom project [(Klein et. al., COLING 2020)](https://www.aclweb.org/anthology/2020.coling-main.274/). ## Task Description The model is trained as a binary classifier, classifying candidate nominalizations. The candidates are extracted using a POS tagger (filtering common nouns) and additionally lexical resources (e.g. WordNet and CatVar), filtering nouns that have (at least one) derivationally-related verb. In the QANom annotation project, these candidates are given to annotators to decide whether they carry a "verbal" meaning in the context of the sentence. The current model reproduces this binary classification. ## Demo Check out our cool [demo](https://huggingface.co/spaces/kleinay/nominalization-detection-demo)! ## Usage The candidate extraction algorithm is implemented inside the `qanom` package - see the README in the [QANom github repo](https://github.com/kleinay/QANom) for full documentation. The `qanom` package is also available via `pip install qanom`. For ease of use, we encapsulated the full nominalization detection pipeline (i.e. candidate extraction + predicate classification) in the `qanom.nominalization_detector.NominalizationDetector` class, which internally utilize this `nominalization-candidate-classifier`: ```python from qanom.nominalization_detector import NominalizationDetector detector = NominalizationDetector() raw_sentences = ["The construction of the officer 's building finished right after the beginning of the destruction of the previous construction ."] print(detector(raw_sentences, return_all_candidates=True)) print(detector(raw_sentences, threshold=0.75, return_probability=False)) ``` Outputs: ```json [[{'predicate_idx': 1, 'predicate': 'construction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.7626778483390808, 'verb_form': 'construct'}, {'predicate_idx': 4, 'predicate': 'officer', 'predicate_detector_prediction': False, 'predicate_detector_probability': 0.19832570850849152, 'verb_form': 'officer'}, {'predicate_idx': 6, 'predicate': 'building', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.5794129371643066, 'verb_form': 'build'}, {'predicate_idx': 11, 'predicate': 'beginning', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.8937646150588989, 'verb_form': 'begin'}, {'predicate_idx': 14, 'predicate': 'destruction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.8501205444335938, 'verb_form': 'destruct'}, {'predicate_idx': 18, 'predicate': 'construction', 'predicate_detector_prediction': True, 'predicate_detector_probability': 0.7022264003753662, 'verb_form': 'construct'}]] ``` ```json [[{'predicate_idx': 1, 'predicate': 'construction', 'verb_form': 'construct'}, {'predicate_idx': 11, 'predicate': 'beginning', 'verb_form': 'begin'}, {'predicate_idx': 14, 'predicate': 'destruction', 'verb_form': 'destruct'}]] ``` ## Cite ```latex @inproceedings{klein2020qanom, title={QANom: Question-Answer driven SRL for Nominalizations}, author={Klein, Ayal and Mamou, Jonathan and Pyatkin, Valentina and Stepanov, Daniela and He, Hangfeng and Roth, Dan and Zettlemoyer, Luke and Dagan, Ido}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={3069--3083}, year={2020} } ```