from train import train from argparse import ArgumentParser def save_log(file, str): """Write brief logs for every training of the pipeline""" pipeline_log = open(file, "a") pipeline_log.write(str) pipeline_log.close() if __name__ == "__main__": """Pipeline which directly call the train function of the train.py file, with the necessary arguments to reproduce the paper results """ parser = ArgumentParser() parser.add_argument("--model_name") parser.add_argument("--size") parser.add_argument("--cropped") parser.add_argument("--device") parser.add_argument("--labels") args = parser.parse_args() # Pipeline launched for 5 sessions training for i in range(5): for label in ["pressure", "wind"]: for model in ["resnet18", "resnet50"]: args.model_name, args.size, args.cropped, args.device, args.labels = model, "512", False, 0, label train_log = train(args) save_log("pipeline_logs.txt", "training session " + str(i*3) + " : " + str(args) + " " + train_log + "\n") args.model_name, args.size, args.cropped, args.device, args.labels = model, "224", "False", 0, label train_log = train(args) save_log("pipeline_logs.txt", "training session " + str(i*3 +1) + " : " + str(args) + " " + train_log + "\n") args.model_name, args.size, args.cropped, args.device, args.labels = model, "224", "True", 0, label train_log = train(args) save_log("pipeline_logs.txt", "training session " + str(i*3 +2) + " : " + str(args) + " " + train_log + "\n")