--- library_name: transformers language: - ne license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali metrics: - wer model-index: - name: Wave2Vec2-Bert2.0 - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kiranpantha/OpenSLR54-Balanced-Nepali type: kiranpantha/OpenSLR54-Balanced-Nepali args: 'config: ne, split: train,test' metrics: - name: Wer type: wer value: 0.4713430282292558 --- # Wave2Vec2-Bert2.0 - Kiran Pantha This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the kiranpantha/OpenSLR54-Balanced-Nepali dataset. It achieves the following results on the evaluation set: - Loss: 0.6944 - Wer: 0.4713 - Cer: 0.1205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.0949 | 0.24 | 300 | 0.7135 | 0.4638 | 0.1182 | | 0.1365 | 0.48 | 600 | 0.7121 | 0.5203 | 0.1346 | | 0.1923 | 0.72 | 900 | 0.6871 | 0.5069 | 0.1266 | | 0.1618 | 0.96 | 1200 | 0.6799 | 0.4831 | 0.1232 | | 0.1142 | 1.2 | 1500 | 0.7192 | 0.4789 | 0.1251 | | 0.1124 | 1.44 | 1800 | 0.6891 | 0.4772 | 0.1215 | | 0.1032 | 1.6800 | 2100 | 0.7138 | 0.4821 | 0.1226 | | 0.1146 | 1.92 | 2400 | 0.6944 | 0.4713 | 0.1205 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1