--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-custom-map-Slippery-edition results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.89 +/- 0.31 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kinkpunk/q-FrozenLake-v1-custom-map-Slippery-edition", filename="q-learning.pkl") # Don't forget to change additional attributes # when you create environment using 4x4 map env = gym.make('FrozenLake-v1', desc=["SFFF", "FHHF", "FFHF", "HFFG"], is_slippery=True) ``` ## Training parameters ```python # Training parameters n_training_episodes = 105000 # Total training episodes learning_rate = 0.8 # Learning rate # Evaluation parameters n_eval_episodes = 100 # Total number of test episodes # Environment parameters env_id = "FrozenLake-v1" # Name of the environment max_steps = 99 # Max steps per episode gamma = 0.98 # Discounting rate eval_seed = [] # The evaluation seed of the environment # Exploration parameters max_epsilon = 0.99 # Exploration probability at start min_epsilon = 0.02 # Minimum exploration probability decay_rate = 0.009 # Exponential decay rate for exploration prob ```