{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661941246.1089885, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAbz4iP2LUuT8Dqng+KTzNP00J8z8RwBRA/sv8vGPvmr9CDOs+NNM0wBVqYL8APW+9zDJlP/QQuL7W9mI/pnrGvkyAuT8qSVS7BmmWPhgs87//V9O+kCVxwK/T1T+4uWY9PhKZv6Eu6z5Jrcq/cQVwP90h8j/NScC/Wq+6v0NglD+DrZs/Uvl6P88nij+ugNS/GgT1PmvACz5vdlG/6Z77PhMLUD+JAJI+vTyNvlPSeL8vEKI/lwzCvh7peb6+mC0/zNw2vwfH3T40VuU/w6zSvz4Smb+hLus+Ea0hP3EFcD9ZZd4+fRVQPuJzKD8rp4g/EgiZPpilPL+GfKK+LqSzPQCdLD9Knwq9OnVpv/NeWcDvMD++m9kTP01YN77DCl0/4HxDP5DXXz8lpuU+ho+BPuQIKb+Q5F05cNxpPzZz6T4+Epm/oS7rPkmtyr9xBXA/Ty1/PwcGZT32Ox8/61eMP7uaMr/48pK/72eQP5z2G79oCSw/4RRVvC/28z9u7CDAUmMOvz/Stz//yMK/MZjWPibdOz4TG4o/eRzzPssXTjsQxNc+T2QcQL8UPD9wqRpA+xFWP6Eu6z4RrSE/cIWIv5R0lGIu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAE20L7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBnBVM9AAAAAEsu3r8AAAAAOXYKPgAAAAAP8vM/AAAAAM7qqL0AAAAA17P8PwAAAAAv0+c9AAAAAKYz/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIjt22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfu8gvQAAAABA3+W/AAAAABgtwL0AAAAAXR7sPwAAAAATdgq+AAAAAIOr5j8AAAAASk+zPQAAAAAA6tu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAx+ULNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgK5M870AAAAA0NTfvwAAAADoQoK9AAAAAPUx4D8AAAAAm6SEPQAAAAAqo9k/AAAAAJUBCT0AAAAA2b/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHxokLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAOk6s9AAAAAPRI6L8AAAAAm/hQPQAAAACwEuo/AAAAAOJWBL0AAAAAl7j6PwAAAACVkIm8AAAAACUP9r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFHSG7BfruMAWyUTegDjAF0lEdAqLyMpiI+GHV9lChoBkdAmLxgBcRlH2gHTegDaAhHQKi9N8n/kvN1fZQoaAZHQHsiYX9BKL9oB02VAWgIR0CovaNkOI69dX2UKGgGR0CKQrzEJjUeaAdN6ANoCEdAqMNNdX1an3V9lChoBkdAh/D0cn3L3mgHTegDaAhHQKjJMOJcgQp1fZQoaAZHQIwlL8+A3DNoB03oA2gIR0CoyeE61b7kdX2UKGgGR0CT1BY2bXpXaAdN6ANoCEdAqMpQoiLVF3V9lChoBkdAjSpYVh1DB2gHTegDaAhHQKjP7IfbKzR1fZQoaAZHQJay1Xko4MpoB03oA2gIR0Co1bdKNAC5dX2UKGgGR0CTIG2W6bvxaAdN6ANoCEdAqNZh3iaRZHV9lChoBkdAk8ROAZsKs2gHTegDaAhHQKjW1ECvHLl1fZQoaAZHQJIWHYao/A1oB03oA2gIR0Co3EufdyksdX2UKGgGR0CR/gUh3aBaaAdN6ANoCEdAqOHeNT987nV9lChoBkdAlYzM76pHZ2gHTegDaAhHQKjiiAWi1zB1fZQoaAZHQI3SXnnuAqdoB03oA2gIR0Co4vV8b70ndX2UKGgGR0CMUMFzMibEaAdN6ANoCEdAqOh3h60IC3V9lChoBkdAh97HR9gF5mgHTegDaAhHQKjuH/hl18t1fZQoaAZHQJM9w+0PYnRoB03oA2gIR0Co7s3fQ8fWdX2UKGgGR0CU2MDgIhQnaAdN6ANoCEdAqO89h3JPqXV9lChoBkdAkchO1WsBAGgHTegDaAhHQKj02v114gR1fZQoaAZHQI3iHyI55qxoB009A2gIR0Co+ZsUIsy0dX2UKGgGR0CFTBmRNh3JaAdN6ANoCEdAqPqguyu6mXV9lChoBkdAhrkvD50r9WgHTegDaAhHQKj7VEn9ehR1fZQoaAZHQJTwhoIv8IloB03oA2gIR0CpAUYkNWludX2UKGgGR0CNBHn27FsIaAdN6ANoCEdAqQYQcaOxS3V9lChoBkdAkGXzi83+/GgHTegDaAhHQKkHd7LMcIZ1fZQoaAZHQJZzNzkp7TloB03oA2gIR0CpCHcrZrYXdX2UKGgGR0CEiPZfUnXvaAdNjANoCEdAqQ3uWQfZEnV9lChoBkdAa7I7btZ3cGgHTVQBaAhHQKkSMWv8qF11fZQoaAZHQJAvSJBPbfxoB03oA2gIR0CpE9KFh5PedX2UKGgGR0CEe71vl2eQaAdN6ANoCEdAqRTclNUOu3V9lChoBkdAjfTDye7L+2gHTegDaAhHQKkVjdHlOoJ1fZQoaAZHQJETSF36hxpoB03oA2gIR0CpHsUXP7emdX2UKGgGR0CLZjOIInjRaAdN6ANoCEdAqSB1stTUAnV9lChoBkdAiYPgF5fMOmgHTegDaAhHQKkheCL/CIl1fZQoaAZHQJBzKsQumJpoB03oA2gIR0CpIivrnkksdX2UKGgGR0CYg+2ETQE7aAdN6ANoCEdAqSssth/iHnV9lChoBkdAkgeH1zySWGgHTegDaAhHQKkszOoHcDd1fZQoaAZHQJgUh+G47RxoB03oA2gIR0CpLcu14Pf9dX2UKGgGR0CNQ9BTGYKIaAdN6ANoCEdAqS5/dTHbRHV9lChoBkdAgBsq77Kq42gHTegDaAhHQKk3mqkM1CR1fZQoaAZHQIwfSg5BC2NoB03oA2gIR0CpOT6x5cC6dX2UKGgGR0CZMQL1VYITaAdN6ANoCEdAqTpA1rIo3XV9lChoBkdAlksuVLSNO2gHTegDaAhHQKk69KNhmXh1fZQoaAZHQJpIVi4J/odoB03oA2gIR0CpRACQLeANdX2UKGgGR0CX90mgJ1JUaAdN6ANoCEdAqUWmXTmW+3V9lChoBkdAmtqThYNiIGgHTegDaAhHQKlGs4BFNL11fZQoaAZHQJlVu44Ia99oB03oA2gIR0CpR2UIsyzpdX2UKGgGR0Ccnq8n/kvLaAdN6ANoCEdAqVBwh4dIXnV9lChoBkdAjfJ9jXnQpmgHTegDaAhHQKlSDy9VWCF1fZQoaAZHQJtQaBQN0/5oB03oA2gIR0CpUxX3Hq/udX2UKGgGR0CaeYIJqqOtaAdN6ANoCEdAqVO+mFaje3V9lChoBkdAnAu7fHggo2gHTegDaAhHQKlcuwkgOjJ1fZQoaAZHQJn5A3eenQ9oB03oA2gIR0CpXlwFTvRadX2UKGgGR0CYVAMQ2/BWaAdN6ANoCEdAqV9ehRIjGHV9lChoBkdAlQjLaZhKDmgHTegDaAhHQKlgDLDhtLt1fZQoaAZHQJXmnYWcjJNoB03oA2gIR0CpaREgwGnodX2UKGgGR0CY5GakAPupaAdN6ANoCEdAqWquyPdVN3V9lChoBkdAm1TczEaVEGgHTegDaAhHQKlrr/NJOFh1fZQoaAZHQJQPsfigkC5oB03oA2gIR0CpbFh/7SApdX2UKGgGR0CUyydgv115aAdN6ANoCEdAqXVjwMH8j3V9lChoBkdAg2i/y5I6KmgHTegDaAhHQKl2/2Jzkp91fZQoaAZHQII/J6po9LZoB03oA2gIR0CpeAADzRQadX2UKGgGR0CTRosZHd43aAdN6ANoCEdAqXiqQ3gk1XV9lChoBkdAk5a9aEBbOmgHTegDaAhHQKmBsoLofSx1fZQoaAZHQJzQolkYoApoB03oA2gIR0Cpg2AtnPE9dX2UKGgGR0CZn2xoIv8JaAdN6ANoCEdAqYRi6z3RHHV9lChoBkdAgeTDcdo372gHTegDaAhHQKmFFGACnxd1fZQoaAZHQJE5e1SflIVoB03oA2gIR0Cpjg34Kx9odX2UKGgGR0CQ+WIYWLxaaAdN6ANoCEdAqY+oIWxhUnV9lChoBkdAi8+lwLmZE2gHTegDaAhHQKmQpEAHVwx1fZQoaAZHQJoYRJlJ6IFoB03oA2gIR0CpkUegUUO/dX2UKGgGR0CbkOdDIBBBaAdN6ANoCEdAqZopkkKNQ3V9lChoBkdAnHbkpVjqfWgHTegDaAhHQKmbvBMSK3x1fZQoaAZHQJtvVgiNbTtoB03oA2gIR0CpnLlA/s3RdX2UKGgGR0CUjGSnLq2SaAdN6ANoCEdAqZ1oW3z+WHV9lChoBkdAnrpMDfWMCWgHTegDaAhHQKmmaJ2MbWF1fZQoaAZHQI1GLTH80k5oB03oA2gIR0CpqAyZBsyjdX2UKGgGR0CaqOhNM496aAdN6ANoCEdAqakeTHKfWnV9lChoBkdAnG6tpZfUnWgHTegDaAhHQKmpyHvc8DB1fZQoaAZHQJneSseXAuZoB03oA2gIR0CpstNVinYQdX2UKGgGR0CbbjWdmQKbaAdN6ANoCEdAqbR4nBtUGXV9lChoBkdAj+xoy9EkSmgHTegDaAhHQKm1gHerMkh1fZQoaAZHQJn1ylfqoqFoB03oA2gIR0Cpti2LHdXUdX2UKGgGR0CNSxxRVIZqaAdN6ANoCEdAqb9aDkELY3V9lChoBkdAk3lJyEL6UWgHTegDaAhHQKnA+y2QXAN1fZQoaAZHQJzqWJemelNoB03oA2gIR0CpwfxEF4cFdX2UKGgGR0CaZ1LwnYxtaAdN6ANoCEdAqcKoeNkvsnV9lChoBkdAmwVIIBzV+mgHTegDaAhHQKnLv0HyEtd1fZQoaAZHQJae6AI6bONoB03oA2gIR0CpzVnNorWidX2UKGgGR0CUSUr6LwWnaAdN6ANoCEdAqc5Skyk9EHV9lChoBkdAmHzitV7x/mgHTegDaAhHQKnO+gmJFb51fZQoaAZHQJkjF4SpR41oB03oA2gIR0Cp2ACjUNKAdX2UKGgGR0CbfixFy7wsaAdN6ANoCEdAqdmaDbrTpnV9lChoBkdAl1etAgPmP2gHTegDaAhHQKnanlmvnr91fZQoaAZHQJARZPJq7AdoB03oA2gIR0Cp20x8twrEdX2UKGgGR0CVwE4jKPn0aAdN6ANoCEdAqeQ+IRAbAHV9lChoBkdAmesDNliBoWgHTegDaAhHQKnl2Wznied1fZQoaAZHQJhI+hXbM5hoB03oA2gIR0Cp5tprcj7idX2UKGgGR0CXZefLcKw7aAdN6ANoCEdAqeeFIEr5I3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}