# coding=utf-8 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for HAT.""" import torch from transformers import RobertaTokenizer, BertTokenizer from .configuration_hat import HATConfig from transformers.utils import logging try: from nltk import sent_tokenize except: raise Exception('NLTK is not installed! Install it with `pip install nltk`...') logger = logging.get_logger(__name__) class HATTokenizer: def __init__(self, tokenizer=None): self._tokenizer = tokenizer self.config = HATConfig.from_pretrained(self._tokenizer.name_or_path) self._tokenizer.model_max_length = self.model_max_length self.type2id = {'input_ids': (self._tokenizer.cls_token_id, self._tokenizer.pad_token_id), 'token_type_ids': (0, 0), 'attention_mask': (1, 0), 'special_tokens_mask': (1, -100)} @property def model_max_length(self): return self.config.model_max_length @property def mask_token(self): return self._tokenizer.mask_token @property def mask_token_id(self): return self._tokenizer.mask_token_id @property def pad_token_id(self): return self._tokenizer.pad_token_id @property def cls_token_id(self): return self._tokenizer.cls_token_id @property def sep_token_id(self): return self._tokenizer.sep_token_id @property def vocab(self): return self._tokenizer.vocab def __len__(self): """ Size of the full vocabulary with the added tokens. """ return len(self._tokenizer) def pad(self, *args, **kwargs): return self._tokenizer.pad(*args, **kwargs) def convert_tokens_to_ids(self, *args, **kwargs): return self._tokenizer.convert_tokens_to_ids(*args, **kwargs) def batch_decode(self, *args, **kwargs): return self._tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self._tokenizer.decode(*args, **kwargs) def tokenize(self, text, **kwargs): return self._tokenizer.tokenize(text, **kwargs) def encode(self, text, **kwargs): input_ids = self._tokenizer.encode_plus(text, add_special_tokens=False, **kwargs) input_ids = self.chunks(input_ids[: self.model_max_length - self.config.max_sentences], chunk_size=self.config.max_sentence_length, special_id=self.type2id['input_ids']) return input_ids def get_special_tokens_mask(self, *args, **kwargs): return self._tokenizer.get_special_tokens_mask(*args, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): try: tokenizer = RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) except: tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(tokenizer=tokenizer) def save_pretrained(self, *args, **kwargs): return self._tokenizer.save_pretrained( *args, **kwargs) def __call__(self, text, **kwargs): greedy_chunking = kwargs.pop('greedy_chunking', None) text_pair = kwargs.pop('text_pair', None) if isinstance(text[0], list): batch = self.auto_chunking(text, **kwargs) elif greedy_chunking: # fixed uniform chunking batch = self.uniform_chunking(text, **kwargs) else: # dynamic sentence splitting and grouping batch = self.sentence_splitting(text, **kwargs) if text_pair: batch_b = self._tokenizer(text_pair, add_special_tokens=False, padding=False, truncation=False) for idx, sample in enumerate(batch['input_ids']): n_sentences = sum(sample[::self.config.max_sentence_size]) for input_key in batch: batch[input_key][idx][self.config.max_sentence_size * n_sentences: self.config.max_sentence_size * (n_sentences + 1)] = \ self.pad_sentence(batch_b[input_key][idx], special_id=(self.sep_token_id, self.pad_token_id) if input_key == 'input_ids' else self.type2id[input_key]) return batch def uniform_chunking(self, texts, **kwargs): original_batch = self._tokenizer(texts, add_special_tokens=False, **kwargs) batch = {input_type: [] for input_type in original_batch} for input_type in original_batch: fixed_batch = [] for example in original_batch[input_type]: fixed_batch.append(self.chunks(example[: self.model_max_length - self.config.max_sentences], chunk_size=self.config.max_sentence_length, special_id=self.type2id[input_type])) batch[input_type] = fixed_batch if isinstance(fixed_batch[0], list) else torch.stack(fixed_batch) if kwargs['padding']: batch = self.pad(batch, padding=kwargs['padding'], max_length=kwargs['max_length'], pad_to_multiple_of=kwargs['max_length']) return batch def auto_chunking(self, texts, **kwargs): batch = {} for text_idx, text in enumerate(texts): example_batch = self._tokenizer(text, add_special_tokens=False, **kwargs) for input_key in example_batch: key_inputs_list = [] for idx, example in enumerate(example_batch[input_key][:self.config.max_sentences]): key_inputs_list.append(self.pad_sentence(example, special_id=self.type2id[input_key])) if isinstance(key_inputs_list[0], list): key_inputs_list = [token for sentence in key_inputs_list for token in sentence] else: key_inputs_list = torch.stack([token for sentence in key_inputs_list for token in sentence]) if input_key in batch: batch[input_key].append(key_inputs_list) else: batch[input_key] = [key_inputs_list] if kwargs['padding']: batch = self.pad(batch, padding=kwargs['padding'], max_length=kwargs['max_length'], pad_to_multiple_of=kwargs['max_length']) return batch def chunks(self, flat_inputs, chunk_size=128, special_id=0): if isinstance(flat_inputs, list): return self.list_chunks(flat_inputs, chunk_size, special_id) else: return self.tensor_chunks(flat_inputs, chunk_size, special_id) def list_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)): """Yield successive n-sized chunks from lst.""" structured_inputs = [[special_id[0] if sum(flat_inputs[i:i + chunk_size-1]) else special_id[1]] + flat_inputs[i:i + chunk_size-1] for i in range(0, len(flat_inputs), chunk_size-1)] return [token_input for sentence_inputs in structured_inputs for token_input in sentence_inputs] def tensor_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)): """Yield successive n-sized chunks from lst.""" structured_inputs = torch.stack([torch.cat((torch.tensor([special_id[0] if flat_inputs[i:i + chunk_size-1].sum() else special_id[1]], dtype=torch.int), flat_inputs[i:i + chunk_size-1])) for i in range(0, len(flat_inputs), chunk_size-1)]) return structured_inputs.reshape(-1) def sentence_splitting(self, texts, **kwargs): fixed_batch = [] doc_out = {} for text in texts: # sentence splitting sentences = sent_tokenize(text) # tokenization of sentences sentences = self._tokenizer(sentences, add_special_tokens=False, padding=False, truncation=False) # sentence grouping - merging short sentences to minimize padding doc_out = self.sentence_grouping(sentences) fixed_batch.append(doc_out) # batchify examples batch = {input_type: [] for input_type in doc_out} for input_type in batch: batch[input_type] = [example[input_type] for example in fixed_batch] if not isinstance(batch[input_type][0], list): batch[input_type] = torch.stack(batch[input_type]) if kwargs['padding']: batch = self.pad(batch, padding=kwargs['padding'], max_length=kwargs['max_length'], pad_to_multiple_of=kwargs['max_length']) return batch def sentence_grouping(self, sentences): doc_out = {input_type: [] for input_type in sentences} for input_type in sentences: tmp_doc = [] tmp_sentence = [] for example in sentences[input_type]: if len(tmp_doc) >= self.config.max_sentences: break if len(tmp_sentence) + len(example) <= self.config.max_sentence_length - 1: tmp_sentence.extend(example) else: tmp_doc.append(self.pad_sentence(tmp_sentence if len(tmp_sentence) else example, chunk_size=self.config.max_sentence_length, special_id=self.type2id[input_type])) tmp_sentence = example if len(tmp_sentence) else example[self.config.max_sentence_length:] if len(tmp_sentence) and len(tmp_doc) < self.config.max_sentences: tmp_doc.append(self.pad_sentence(tmp_sentence, chunk_size=self.config.max_sentence_length, special_id=self.type2id[input_type])) doc_out[input_type] = [token for sentence in tmp_doc for token in sentence] return doc_out def pad_sentence(self, flat_input, chunk_size=128, special_id=(0, 0)): if isinstance(flat_input, list): return [special_id[0]] + flat_input[:chunk_size-1] + [self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1) else: return torch.cat((torch.tensor([special_id[0] if flat_input[:chunk_size-1].sum() else special_id[1]], dtype=torch.int), flat_input[:chunk_size-1], torch.tensor([self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1), dtype=torch.int) )) @classmethod def register_for_auto_class(cls, auto_class="AutoModel"): """ Register this class with a given auto class. This should only be used for custom models as the ones in the library are already mapped with an auto class. This API is experimental and may have some slight breaking changes in the next releases. Args: auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`): The auto class to register this new model with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class