"""Implementation of the paper: LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention https://arxiv.org/abs/2303.16199 """ # mypy: ignore-errors import math from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F import lit_llama.model as llama from lit_llama.model import build_rope_cache, apply_rope, RMSNorm, MLP @dataclass class LLaMAConfig(llama.LLaMAConfig): adapter_prompt_length: int = 10 adapter_start_layer: int = 2 class CausalSelfAttention(nn.Module): """A modification of `lit_llama.model.CausalSelfAttention` that adds the attention over the adaption prompt.""" def __init__(self, config: LLaMAConfig, block_idx: int) -> None: super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) if block_idx >= config.adapter_start_layer: # adapter embedding layer self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd) # gate for adaption self.gating_factor = torch.nn.Parameter(torch.zeros(1)) self.n_head = config.n_head self.n_embd = config.n_embd self.block_size = config.block_size self.block_idx = block_idx self.adapter_prompt_length = config.adapter_prompt_length self.adapter_start_layer = config.adapter_start_layer self.rope_cache = None def forward(self, x: torch.Tensor) -> torch.Tensor: B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) head_size = C // self.n_head k = k.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) if self.rope_cache is None: # cache for future forward calls self.rope_cache = build_rope_cache( seq_len=self.block_size, n_elem=self.n_embd // self.n_head, dtype=x.dtype, device=x.device, ) q = apply_rope(q, self.rope_cache) k = apply_rope(k, self.rope_cache) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) # att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) # att = F.softmax(att, dim=-1) # y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) # efficient attention using Flash Attention CUDA kernels y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) if self.block_idx >= self.adapter_start_layer: prefix = self.adapter_wte.weight.reshape(1, self.adapter_prompt_length, self.n_embd) aT = prefix.size(1) _, ak, av = self.c_attn(prefix).split(self.n_embd, dim=2) ak = ak.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2) av = av.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2) amask = torch.ones(q.shape[-2], ak.shape[-2], dtype=torch.bool, device=x.device) ay = F.scaled_dot_product_attention(q, ak, av, attn_mask=amask, dropout_p=0.0, is_causal=False) y = y + self.gating_factor * ay y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.c_proj(y) return y class Block(nn.Module): """The implementation is identical to `lit_llama.model.Block` with the exception that we replace the attention layer where adaption is implemented.""" def __init__(self, config: LLaMAConfig, block_idx: int) -> None: super().__init__() self.rms_1 = RMSNorm(config.n_embd) self.attn = CausalSelfAttention(config, block_idx) self.rms_2 = RMSNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.attn(self.rms_1(x)) x = x + self.mlp(self.rms_2(x)) return x class LLaMA(llama.LLaMA): """The implementation is identical to `lit_llama.model.LLaMA` with the exception that the `Block` saves the layer index and passes it down to the attention layer.""" def __init__(self, config: LLaMAConfig) -> None: nn.Module.__init__(self) assert config.vocab_size is not None assert config.block_size is not None self.config = config self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.vocab_size, config.n_embd), h=nn.ModuleList([Block(config, i) for i in range(config.n_layer)]), ln_f=RMSNorm(config.n_embd), ) ) @classmethod def from_name(cls, name: str): return cls(LLaMAConfig.from_name(name)) def mark_only_adapter_as_trainable(model: LLaMA) -> None: """Sets `requires_grad=False` for all non-adapter weights.""" for name, param in model.named_parameters(): param.requires_grad = "adapter_wte" in name or "gating_factor" in name def adapter_state_from_state_dict(state_dict: dict) -> dict: """Returns the model state dict with only the adapter weights for saving.""" return {name: param for name, param in state_dict.items() if "adapter_wte" in name or "gating_factor" in name}