# This mimics GPTQ's evaluation metrics: https://github.com/IST-DASLab/gptq/ # Thanks to E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323 import math import sys import time from pathlib import Path from typing import Optional import lightning as L import torch import tqdm from lit_llama import LLaMA, Tokenizer from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup from lit_llama.lora import lora from scripts.prepare_alpaca import generate_prompt from datasets import load_dataset lora_r = 8 lora_alpha = 16 lora_dropout = 0.05 def load_eval_data(dataset_name: str) -> str: # this mimics gptq datautils if dataset_name == "wikitext": # traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train') testdata = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") testdata = "\n\n".join(testdata["text"]) elif dataset_name == "ptb": testdata = load_dataset("ptb_text_only", "penn_treebank", split="test") testdata = "\n\n".join(testdata["sentence"]) elif dataset_name == "c4": testdata = load_dataset( "allenai/c4", "allenai--c4", data_files={"validation": "en/c4-validation.00000-of-00008.json.gz"}, split="validation", ) testdata = " ".join(testdata[:1100]["text"]) else: raise ValueError("invalid dataset name (wikitext, ptb, c4 are allowed)") return testdata def main( datasets: str = "wikitext,ptb,c4", *, # compilation fails as it does not support torch.complex64 for RoPE # compile: bool = False, accelerator: str = "auto", lora_path: Optional[Path] = None, checkpoint_path: Optional[Path] = None, tokenizer_path: Optional[Path] = None, dtype: str = "float32", quantize: Optional[str] = None, ) -> None: """Generates text samples based on a pre-trained LLaMA model and tokenizer finetuned with LoRA. Args: datasets: The datasets to use as a comma separated string # compile: Whether to compile the model. accelerator: The hardware to run on. Possible choices are: ``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``. lora_path: Path to the checkpoint with trained LoRA weights, which are the output of `finetune_lora.py`. checkpoint_path: The checkpoint path to load. tokenizer_path: The tokenizer path to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. """ if not lora_path: lora_path = Path("out/lora/alpaca/lit-llama-lora-finetuned.pth") if not checkpoint_path: checkpoint_path = Path(f"./checkpoints/lit-llama/7B/lit-llama.pth") if not tokenizer_path: tokenizer_path = Path("./checkpoints/lit-llama/tokenizer.model") assert lora_path.is_file() assert checkpoint_path.is_file() assert tokenizer_path.is_file() if quantize is not None: raise NotImplementedError("Quantization in LoRA is not supported yet") fabric = L.Fabric(accelerator=accelerator, devices=1) dt = getattr(torch, dtype, None) if not isinstance(dt, torch.dtype): raise ValueError(f"{dtype} is not a valid dtype.") dtype = dt print("Loading model ...", file=sys.stderr) t0 = time.time() pretrained_checkpoint = lazy_load(checkpoint_path) adapter_checkpoint = lazy_load(lora_path) name = llama_model_lookup(pretrained_checkpoint) with EmptyInitOnDevice( device=fabric.device, dtype=dtype, quantization_mode=quantize ), lora(r=lora_r, alpha=lora_alpha, dropout=lora_dropout, enabled=True): model = LLaMA.from_name(name) # 1. Load the pretrained weights model.load_state_dict(pretrained_checkpoint, strict=False) # 2. Load the fine-tuned adapter weights model.load_state_dict(adapter_checkpoint, strict=False) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() # if compile: # model = torch.compile(model) total_toks = 0 model = fabric.setup_module(model) tokenizer = Tokenizer(tokenizer_path) for dsname in datasets.split(","): test_string = load_eval_data(dsname) sample = {"instruction": test_string, "input": input} test_string = generate_prompt(sample) encoded_text = tokenizer.encode( test_string, bos=True, eos=False, device=fabric.device ) encoded_text = encoded_text[ None, : 256 * model.config.block_size ] # add batch dimension, trim like gptq implementation t0 = time.perf_counter() nlls = 0 toks = 0 with torch.inference_mode(): block_size = 2048 # this is for compat with gptq, and indeed we get much worse beyond this (https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/llama/model.py#L30) for i in tqdm.tqdm(range(0, encoded_text.shape[1], block_size)): inp = encoded_text[:, i : i + block_size] logits = model(inp)[0] nll = torch.nn.functional.cross_entropy( logits[:-1], inp[0, 1:].to(dtype=torch.long), reduction="sum" ) toks += inp.size(1) - 1 nlls += nll.item() print(encoded_text.shape, logits.shape) encoded_text = encoded_text[:, : logits.shape[0]] ppl = math.exp(nlls / toks) print(f"Perplexity on {dsname}: {ppl:.2f}") total_toks += toks t = time.perf_counter() - t0 print( f"\n\nTime for inference: {t:.02f} sec total, {total_toks / t:.02f} tokens/sec", file=sys.stderr, ) print( f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr, ) if __name__ == "__main__": from jsonargparse import CLI torch.set_float32_matmul_precision("high") CLI(main)