--- language: vi datasets: - vivos - common_voice - FOSD - VLSP metrics: - wer pipeline_tag: automatic-speech-recognition tags: - audio - speech - Transformer - wav2vec2 - automatic-speech-recognition - vietnamese license: cc-by-nc-4.0 widget: - example_title: common_voice_vi_30519758.mp3 src: https://huggingface.co/khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/common_voice_vi_30519758.mp3 - example_title: VIVOSDEV15_020.wav src: https://huggingface.co/khanhld/wav2vec2-base-vietnamese-160h/raw/main/examples/VIVOSDEV15_020.wav model-index: - name: Wav2vec2 Base Vietnamese 160h results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common-voice-vietnamese type: common_voice args: vi metrics: - name: Test WER type: wer value: 10.78 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: VIVOS type: vivos args: vi metrics: - name: Test WER type: wer value: 15.05 --- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/wav2vec2-base-vietnamese-160h/speech-recognition-on-common-voice-vi)](https://paperswithcode.com/sota/speech-recognition-on-common-voice-vi?p=wav2vec2-base-vietnamese-160h) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/wav2vec2-base-vietnamese-160h/speech-recognition-on-vivos)](https://paperswithcode.com/sota/speech-recognition-on-vivos?p=wav2vec2-base-vietnamese-160h) # Vietnamese Speech Recognition using Wav2vec 2.0 ### Table of contents 1. [Model Description](#description) 2. [Implementation](#implementation) 3. [Benchmark Result](#benchmark) 4. [Example Usage](#example) 5. [Evaluation](#evaluation) 6. [Citation](#citation) 7. [Contact](#contact) ### Model Description Fine-tuned the Wav2vec2-based model on about 160 hours of Vietnamese speech dataset from different resources, including [VIOS](https://huggingface.co/datasets/vivos), [COMMON VOICE](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0), [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4) and [VLSP 100h](https://drive.google.com/file/d/1vUSxdORDxk-ePUt-bUVDahpoXiqKchMx/view). We have not yet incorporated the Language Model into our ASR system but still gained a promising result. ### Implementation We also provide code for Pre-training and Fine-tuning the Wav2vec2 model. If you wish to train on your dataset, check it out here: - [Pre-train code](https://github.com/khanld/ASR-Wav2vec-Pretrain) (not available for now but will release soon) - [Fine-tune code](https://github.com/khanld/ASR-Wa2vec-Finetune) ### Benchmark WER Result | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) | |---|---|---| |without LM| 15.05 | 10.78 | |with LM| in progress | in progress | ### Example Usage [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1blz1KclnIfbOp8o2fW3WJgObOQ9SMGBo?usp=sharing) ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import librosa import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model.to(device) def transcribe(wav): input_values = processor(wav, sampling_rate=16000, return_tensors="pt").input_values logits = model(input_values.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) pred_transcript = processor.batch_decode(pred_ids)[0] return pred_transcript wav, _ = librosa.load('path/to/your/audio/file', sr = 16000) print(f"transcript: {transcribe(wav)}") ``` ### Evaluation [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XQCq4YGLnl23tcKmYeSwaksro4IgC_Yi?usp=sharing) ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch import re from datasets import load_dataset, load_metric, Audio wer = load_metric("wer") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load processor and model processor = Wav2Vec2Processor.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model = Wav2Vec2ForCTC.from_pretrained("khanhld/wav2vec2-base-vietnamese-160h") model.to(device) model.eval() # Load dataset test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token="your_huggingface_auth_token") test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16000)) chars_to_ignore = r'[,?.!\-;:"“%\'�]' # ignore special characters # preprocess data def preprocess(batch): audio = batch["audio"] batch["input_values"] = audio["array"] batch["transcript"] = re.sub(chars_to_ignore, '', batch["sentence"]).lower() return batch # run inference def inference(batch): input_values = processor(batch["input_values"], sampling_rate=16000, return_tensors="pt").input_values logits = model(input_values.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_transcript"] = processor.batch_decode(pred_ids) return batch test_dataset = test_dataset.map(preprocess) result = test_dataset.map(inference, batched=True, batch_size=1) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_transcript"], references=result["transcript"]))) ``` **Test Result**: 10.78% ### Citation [![DOI](https://zenodo.org/badge/485623832.svg)](https://github.com/khanld/ASR-Wa2vec-Finetune) ```text @misc{Khanhld_Vietnamese_Wav2vec_Asr_2022, author = {Duy Khanh Le}, doi = {10.5281/zenodo.6540979}, month = {May}, title = {Finetune Wav2vec 2.0 For Vietnamese Speech Recognition}, url = {https://github.com/khanld/ASR-Wa2vec-Finetune}, year = {2022} } ``` ### Contact - khanhld218@uef.edu.vn - [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/) - [![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/khanhld257/)