--- license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - recall - f1 model-index: - name: non_green_as_train_contextroberta-large_final results: [] --- # non_green_as_train_contextroberta-large_final This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1008 - Accuracy: 0.9769 - Recall: 0.6932 - F1: 0.6943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:| | 0.0664 | 1.0 | 7739 | 0.0862 | 0.9658 | 0.8042 | 0.6396 | | 0.0577 | 2.0 | 15478 | 0.1060 | 0.9768 | 0.6741 | 0.6869 | | 0.0337 | 3.0 | 23217 | 0.1008 | 0.9769 | 0.6932 | 0.6943 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2