File size: 1,875 Bytes
c3f9eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: FacebookAI/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- f1
model-index:
- name: non_green_as_train_context_roberta-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# non_green_as_train_context_roberta-large

This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1773
- Accuracy: 0.9776
- Recall: 0.6993
- F1: 0.7021

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|
| 0.0584        | 1.0   | 7739  | 0.0916          | 0.9725   | 0.6942 | 0.6562 |
| 0.0451        | 2.0   | 15478 | 0.0905          | 0.9773   | 0.6700 | 0.6902 |
| 0.0296        | 3.0   | 23217 | 0.1112          | 0.9775   | 0.6912 | 0.6986 |
| 0.0141        | 4.0   | 30956 | 0.1487          | 0.9759   | 0.7366 | 0.6979 |
| 0.0102        | 5.0   | 38695 | 0.1773          | 0.9776   | 0.6993 | 0.7021 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2