# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) # 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import torchaudio import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') def read_lists(list_file): lists = [] with open(list_file, 'r', encoding='utf8') as fin: for line in fin: lists.append(line.strip()) return lists def read_json_lists(list_file): lists = read_lists(list_file) results = {} for fn in lists: with open(fn, 'r', encoding='utf8') as fin: results.update(json.load(fin)) return results def load_wav(wav, target_sr): speech, sample_rate = torchaudio.load(wav, backend='soundfile') speech = speech.mean(dim=0, keepdim=True) if sample_rate != target_sr: assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr) speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech) return speech def convert_onnx_to_trt(trt_model, onnx_model, fp16): import tensorrt as trt _min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)] _opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)] _max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)] input_names = ["x", "mask", "mu", "t", "spks", "cond"] logging.info("Converting onnx to trt...") network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) logger = trt.Logger(trt.Logger.INFO) builder = trt.Builder(logger) network = builder.create_network(network_flags) parser = trt.OnnxParser(network, logger) config = builder.create_builder_config() config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB if fp16: config.set_flag(trt.BuilderFlag.FP16) profile = builder.create_optimization_profile() # load onnx model with open(onnx_model, "rb") as f: if not parser.parse(f.read()): for error in range(parser.num_errors): print(parser.get_error(error)) raise ValueError('failed to parse {}'.format(onnx_model)) # set input shapes for i in range(len(input_names)): profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i]) tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT # set input and output data type for i in range(network.num_inputs): input_tensor = network.get_input(i) input_tensor.dtype = tensor_dtype for i in range(network.num_outputs): output_tensor = network.get_output(i) output_tensor.dtype = tensor_dtype config.add_optimization_profile(profile) engine_bytes = builder.build_serialized_network(network, config) # save trt engine with open(trt_model, "wb") as f: f.write(engine_bytes)