--- base_model: meta-llama/meta-llama-3.1-8b-instruct tags: - llama adapter - trl - llama3.1 8b license: apache-2.0 language: - en --- ## Model Overview A LoRA (Low-Rank Adaptation) fine-tuned adapter for the Llama-3.1-8B language model. ## Model Details - Base Model: meta-llama/Llama-3.1-8B-instruct - Adaptation Method: LoRA ## Training Configuration ### Training Hyperparameters - Learning Rate: 25e-6 - Batch Size: 2 - Number of Epochs: 2 - Training Steps: ~3,000 - Precision: "BF16" ### LoRA Configuration - Rank (r): 16 - Alpha: 16 - Target Modules: - `q_proj` (Query projection) - `k_proj` (Key projection) - `v_proj` (Value projection) - `o_proj` (Output projection) - `up_proj` (Upsampling projection) - `down_proj` (Downsampling projection) - `gate_proj` (Gate projection) ## Usage This adapter must be used in conjunction with the base Llama-3.1-8B model. ### Loading the Model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer # Load base model base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-instruct") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-instruct") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "path_to_adapter") ``` ## Limitations and Biases - This adapter might inherits some limitations and biases present in the base Llama-3.1-8B-instruct model - The training dataset size (~1k steps) is relatively small, which may limit the adapter's effectiveness