File size: 32,669 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <cuda_fp16.h>
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
#endif
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>
#include "cuda_check.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
// A wrapper for the kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// Adapted from https://github.com/vllm-project/vllm/blob/4d29e91be84d27ca313d657eee92c067439a4c23/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh#L55
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
template <typename... Args>
CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ <= 890)
Kernel::operator()(std::forward<Args>(args)...);
#endif
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct MaxOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
};
template <>
struct MaxOp<float> {
// This is slightly faster
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTLASS_HOST_DEVICE
int div_floor(cutlass::FastDivmod const& divmod, int dividend) {
// Take care of the negative case: https://stackoverflow.com/questions/39304681/division-with-negative-dividend-but-rounded-towards-negative-infinity
// Maybe the compiler will turn the -1 - * into bit negation operation, I haven't checked.
return dividend >= 0 ? divmod.divide(dividend) : -1 - divmod.divide(-1 - dividend);
}
CUTLASS_HOST_DEVICE
int round_down(cutlass::FastDivmod const& divmod, int dividend) {
return div_floor(divmod, dividend) * divmod.divisor;
}
CUTLASS_HOST_DEVICE
int round_up(cutlass::FastDivmod const& divmod, int dividend) {
return div_floor(divmod, dividend - 1) * divmod.divisor + divmod.divisor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
// For SM90, convert acc_layout from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
template<bool Transposed=false, typename Layout0>
CUTLASS_DEVICE auto convert_layout_acc_rowcol(Layout0 acc_layout) {
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
static_assert(decltype(rank(acc_layout))::value == 3);
auto l = acc_layout;
if constexpr (!Transposed) {
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
} else {
return make_layout(make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
}
} else { // SM80
static_assert(decltype(size<0>(acc_layout))::value == 4);
static_assert(decltype(rank(acc_layout))::value == 3);
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
if constexpr (!Transposed) {
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
} else {
return make_layout(make_layout(get<0, 0>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
// For SM90, FP16/BF16, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((2, 2, 2), MMA_M, (N / 16, MMA_N))
// For SM90, FP8, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((4, 2, 2), MMA_M, (N / 32, MMA_N))
template<typename MMA_Traits, typename Layout0>
CUTLASS_DEVICE auto convert_layout_acc_Aregs(Layout0 acc_layout) {
using X = Underscore;
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
static_assert(decltype(rank(acc_layout))::value == 3);
static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
if constexpr (sizeof(typename MMA_Traits::ValTypeA) == 2) {
auto l = logical_divide(get<0, 2>(acc_layout), Tile<_2>{}); // ((2, N / 16))
return make_layout(make_layout(get<0, 0>(acc_layout), get<0, 1>(acc_layout), get<0, 0>(l)), get<1>(acc_layout), coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
} else {
static_assert(sizeof(typename MMA_Traits::ValTypeA) == 1);
static_assert(decltype(stride<0, 0>(acc_layout))::value == 1);
static_assert(decltype(stride<0, 1>(acc_layout))::value == 2);
auto l = logical_divide(get<0, 2>(acc_layout), Tile<Layout<Shape<_2, _2>>>{}); // (((2, 2), N / 32))
// This combines the first two modes (<0, 0> and <0, 1>) into one mode.
// Will require register shuffling later to be correct.
return make_layout(make_layout(Layout<_4>{}, get<0, 0, 0>(l), get<0, 0, 1>(l)),
get<1>(acc_layout),
coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout)))); // ((4, 2, 2), MMA_M, N / 32 * MMA_N)
// This combination is right but doesn't work with register shuffling.
// return make_layout(make_layout(coalesce(make_layout(get<0, 0>(acc_layout), get<0, 0, 0>(l))), get<0, 1>(acc_layout), get<0, 0, 1>(l)),
// get<1>(acc_layout),
// coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
}
} else { // SM80
static_assert(decltype(size<0>(acc_layout))::value == 4);
static_assert(decltype(rank(acc_layout))::value == 3);
constexpr int mma_shape_K = get<2>(typename MMA_Traits::Shape_MNK{});
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
if constexpr (mma_shape_K == 8) {
return acc_layout;
} else {
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename To_type, typename Engine, typename Layout>
CUTLASS_DEVICE auto convert_type_unsafe(Tensor<Engine, Layout> const &tensor) {
using From_type = typename Engine::value_type;
static constexpr int numel = decltype(size(tensor))::value;
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
// HACK: this requires tensor to be "contiguous"
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
// Unsafe because we're returning a tensor with memory allocated on the stack. If the compiler does not
// inline this function, then the memory might not be valid.
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine, typename Layout, typename EngineOut>
CUTLASS_DEVICE void convert_type_out(Tensor<Engine, Layout> const &tensor, Tensor<EngineOut, Layout> &out) {
// Somehow if we allocate out inside this function and return it, e2e is slower and the output can be wrong.
using From_type = typename Engine::value_type;
using To_type = typename EngineOut::value_type;
static constexpr int FragmentSize = std::max(sizeof(From_type) / sizeof(To_type), sizeof(To_type) / sizeof(From_type));
static_assert(CUTE_STATIC_V(size(tensor)) % FragmentSize == 0, "Fragment size does not vectorize properly");
Tensor frag = recast<cutlass::Array<From_type, FragmentSize> const>(tensor);
Tensor out_frg = recast<cutlass::Array<To_type, FragmentSize>>(out);
static_assert(size(frag) == size(out_frg));
cutlass::NumericArrayConverter<To_type, From_type, FragmentSize> convert_op;
#pragma unroll
for (int i = 0; i < size(frag); ++i) { out_frg[i] = convert_op(frag[i]); }
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Blocks until all but N previous cp.async.commit_group operations have committed.
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
// (which is equivalent to commit_group then wait_group 0).
// Instead we just call cp.async.wait_group 0, which is slightly faster.
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
template <int N>
CUTE_HOST_DEVICE
void cp_async_wait() {
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool A, class Mma, class Tensor0>
CUTLASS_DEVICE
auto mma_partition_fragment_AB(Mma const& mma, Tensor0 const& tensor0) {
if constexpr (A) {
return mma.partition_fragment_A(tensor0);
} else {
return mma.partition_fragment_B(tensor0);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool zero_init=false, int wg_wait=0, bool SwapAB=false, int M_slice=-1,
typename Tensor0, typename Tensor1, typename Tensor2, typename TiledMma>
CUTLASS_DEVICE void gemm(TiledMma& tiled_mma, Tensor0 const& tCrA, Tensor1 const& tCrB, Tensor2& tCrC) {
if constexpr (M_slice >= 0) {
static constexpr int MMA_M = decltype(size<1>(tCrC))::value;
static_assert(M_slice < MMA_M);
// After logical_divide, C has shape ((2,2,V), (MMA_M, 1), MMA_N)
Tensor tCrC_slice = cute::logical_divide(tCrC, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
if constexpr (!SwapAB) {
Tensor tCrA_slice = cute::logical_divide(tCrA, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
gemm<zero_init, wg_wait, SwapAB, /*M_slice=*/-1>(tiled_mma, tCrA_slice, tCrB, tCrC_slice);
} else {
Tensor tCrB_slice = cute::logical_divide(tCrB, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
gemm<zero_init, wg_wait, SwapAB, /*M_slice=*/-1>(tiled_mma, tCrA, tCrB_slice, tCrC_slice);
}
} else {
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
// Need to cast away const on tCrA since warpgroup_fence_operand doesn't take const
if constexpr (Is_RS) {
if constexpr (!SwapAB) {
warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA));
} else {
warpgroup_fence_operand(const_cast<Tensor1 &>(tCrB));
}
}
warpgroup_fence_operand(tCrC);
warpgroup_arrive();
if constexpr (zero_init) {
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
}
static constexpr int kNumKIters = CUTE_STATIC_V(size<2>(tCrA));
static constexpr int kMaxKIters = 16;
// Unroll the K mode manually to set scale D to 1
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < std::min(kNumKIters, kMaxKIters); ++k_block) {
if constexpr (!SwapAB) {
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
} else {
cute::gemm(tiled_mma, tCrB(_,_,k_block), tCrA(_,_,k_block), tCrC);
}
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
// In the case of large kNumKIters, the compiler chooses to store the smem addresses
// in registers, causing spills. This loop forces the compiler to recompute the addresses.
if constexpr (kNumKIters > kMaxKIters) {
// This will always be zero, just a way to force the compiler to recompute the smem
// addresses. This results in USEL instructions. There's probably a better way to do this.
int const k_offset = cutlass::canonical_warp_group_idx() < 128 ? 0 : 1;
CUTLASS_PRAGMA_UNROLL
for (int k_block = kMaxKIters; k_block < kNumKIters; ++k_block) {
if constexpr (!SwapAB) {
cute::gemm(tiled_mma, tCrA(_,_,k_block + k_offset), tCrB(_,_,k_block + k_offset), tCrC);
} else {
cute::gemm(tiled_mma, tCrB(_,_,k_block + k_offset), tCrA(_,_,k_block + k_offset), tCrC);
}
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
}
warpgroup_commit_batch();
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
warpgroup_fence_operand(tCrC);
if constexpr (Is_RS) {
if constexpr (!SwapAB) {
warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA));
} else {
warpgroup_fence_operand(const_cast<Tensor1 &>(tCrB));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool A_in_regs=false, bool B_in_regs=false, bool SwapAB=false,
typename Tensor0, typename Tensor1,
typename Tensor2, typename Tensor3, typename Tensor4,
typename TiledMma, typename TiledCopyA, typename TiledCopyB,
typename ThrCopyA, typename ThrCopyB, typename Hook>
CUTLASS_DEVICE void gemm_sm80(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
Tensor4 const& tCsB, TiledMma tiled_mma,
TiledCopyA smem_tiled_copy_A, TiledCopyB smem_tiled_copy_B,
ThrCopyA smem_thr_copy_A, ThrCopyB smem_thr_copy_B, Hook fn) {
if constexpr (SwapAB) {
gemm_sm80<B_in_regs, A_in_regs>(acc, tCrB, tCrA, tCsB, tCsA, tiled_mma, smem_tiled_copy_B, smem_tiled_copy_A, smem_thr_copy_B, smem_thr_copy_A, fn);
} else {
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view)); // M
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
#pragma unroll
for (int i = 0; i < size<2>(tCrA); ++i) {
if (i < size<2>(tCrA) - 1) {
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
}
if constexpr (!std::is_same_v<Hook, std::nullptr_t>) {
if (i == 0) { fn(); }
}
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
typename TiledMma, typename TiledCopy, typename ThrCopy>
CUTLASS_DEVICE void gemm_rs_sm80(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
TiledMma tiled_mma, TiledCopy smem_tiled_copy_B,
ThrCopy smem_thr_copy_B) {
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
#pragma unroll
for (int i = 0; i < size<2>(tCrA); ++i) {
if (i < size<2>(tCrA) - 1) {
cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
}
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool zero_init=false, typename Atom, typename TA, typename TB, typename TC>
CUTLASS_DEVICE void gemm_sm100(Atom& atom, TA const& tA, TB const& tB, TC&& tC) {
static constexpr int rA = decltype(rank(tA))::value;
static constexpr int rB = decltype(rank(tB))::value;
static constexpr int rC = decltype(rank(tC))::value;
static_assert(rA == 3 && rB == 3 && rC == 3);
if constexpr (zero_init) { atom.accumulate_ = decltype(atom.accumulate_)::Zero; }
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < size<2>(tA); k_block++) {
cute::gemm(atom, tA(_,_,k_block), tB(_,_,k_block), tC);
atom.accumulate_ = decltype(atom.accumulate_)::One;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <class a_type, class b_type, class c_type,
int M, int N, UMMA::Major a_major, UMMA::Major b_major,
UMMA::ScaleIn a_neg, UMMA::ScaleIn b_neg, class... TAs, class... TMs>
CUTE_HOST_DEVICE constexpr
auto
to_tiled_mma_sm100_ts(
TiledMMA<MMA_Atom<
MMA_Traits<SM100_MMA_F8F6F4_SS, a_type, b_type, c_type,
cute::C<M>, cute::C<N>,
cute::integral_constant<UMMA::Major, a_major>,
cute::integral_constant<UMMA::Major, b_major>,
cute::integral_constant<UMMA::ScaleIn, a_neg>,
cute::integral_constant<UMMA::ScaleIn, b_neg>>,
TAs...>, TMs...>) {
return TiledMMA<MMA_Atom<
MMA_Traits<SM100_MMA_F8F6F4_TS<a_type, b_type, c_type,
M, N,
a_major, b_major,
a_neg, b_neg, UMMA::Saturate::False>>,
TAs...>, TMs...>{};
}
template <class a_type, class b_type, class c_type,
int M, int N, UMMA::Major a_major, UMMA::Major b_major,
UMMA::ScaleIn a_neg, UMMA::ScaleIn b_neg, class... TAs, class... TMs>
CUTE_HOST_DEVICE constexpr
auto
to_tiled_mma_sm100_ts(
TiledMMA<MMA_Atom<
SM100_MMA_F16BF16_SS<a_type, b_type, c_type,
M, N,
a_major,
b_major,
a_neg,
b_neg>,
TAs...>, TMs...>) {
return TiledMMA<MMA_Atom<
SM100_MMA_F16BF16_TS<a_type, b_type, c_type,
M, N,
a_major, b_major,
a_neg, b_neg, UMMA::Saturate::False>,
TAs...>, TMs...>{};
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
class CopyAtom, class TV, class Tiler, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
CUTLASS_DEVICE void copy(TiledCopy<CopyAtom, TV, Tiler> const &tiled_copy, Tensor<Engine0, Layout0> const &S,
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
// Decay TiledCopy to CopyAtom
auto copy_atom = static_cast<CopyAtom const&>(tiled_copy);
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
// There's no case where !Clear_OOB_K && Clear_OOB_MN
static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
auto has_with_bool = cute::is_valid([](auto t)->void_t<decltype(declval<typename decltype(t)::Traits>().with(true))>{}, copy_atom);
#pragma unroll
for (int m = 0; m < size<1>(S); ++m) {
bool predicate_mn = Is_even_MN || get<0>(identity_MN(_0{}, m, _0{})) < max_MN;
if constexpr (Is_even_MN || !Clear_OOB_MN) {
if (Is_even_MN || predicate_mn) {
#pragma unroll
for (int k = 0; k < size<2>(S); ++k) {
if constexpr (Is_even_K || !Clear_OOB_K) {
if (Is_even_K || predicate_K(k)) { cute::copy(copy_atom, S(_, m, k), D(_, m, k)); }
} else { // Clear_OOB_K == true && Is_even_K == false
// If copy traits can be transformed with a predicate value, do it, otherwise branch here
if constexpr (has_with_bool) {
cute::copy(copy_atom.with(predicate_K(k)), S(_, m, k), D(_, m, k));
} else {
if (predicate_K(k)) {
cute::copy(copy_atom, S(_, m, k), D(_, m, k));
} else {
cute::clear(D(_, m, k));
}
}
}
}
}
} else { // Clear_OOB_MN == true && Is_even_MN == false, also implies Clear_OOB_K == true
if constexpr (!has_with_bool) {
if (predicate_mn) {
#pragma unroll
for (int k = 0; k < size<2>(S); ++k) {
if (Is_even_K || predicate_K(k)) {
cute::copy(copy_atom, S(_, m, k), D(_, m, k));
} else if (Clear_OOB_K) {
cute::clear(D(_, m, k));
}
}
} else {
cute::clear(D(_, m, _));
}
} else { // combine the mn predicate with the k predicate
#pragma unroll
for (int k = 0; k < size<2>(S); ++k) {
cute::copy(copy_atom.with(predicate_mn && (Is_even_K || predicate_K(k))), S(_, m, k), D(_, m, k));
}
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Byte permute and shuffle to match register layout of
// (FP8 downcasted) accumulator of GEMM-I to FP8 operand A of GEMM-II.
template <typename Fragment>
CUTLASS_DEVICE void permute_Aregs_fp8(Fragment &frag) {
// frag has shape ((4, 2, 2), MMA_M, MMA_N), each element is 8 bits
static_assert(decltype(size<0, 0>(frag))::value == 4);
static_assert(decltype(size<0, 1>(frag))::value == 2);
static_assert(decltype(stride<0, 0>(frag))::value == 1);
static_assert(decltype(stride<0, 1>(frag))::value == 4);
static_assert(sizeof(typename Fragment::value_type) == 1);
int quad_idx = threadIdx.x % 4;
bool lane_03 = quad_idx == 0 || quad_idx == 3;
int selector_upper = lane_03 ? 0x5410 : 0x1054;
int selector_lower = lane_03 ? 0x7632 : 0x3276;
static constexpr int upper_map[4] = {0, 3, 1, 2};
// static constexpr int lower_map[4] = {1, 2, 0, 3};
Tensor frag_64b = recast<uint2>(frag); // ((1, 1, 2), MMA_M, MMA_N)
#pragma unroll
for (int i = 0; i < size(frag_64b); ++i) {
uint32_t upper = frag_64b[i].x;
uint32_t lower = frag_64b[i].y;
uint32_t upper0 = lane_03 ? upper : lower;
uint32_t lower0 = lane_03 ? lower : upper;
upper0 = __shfl_sync(uint32_t(-1), upper0, upper_map[quad_idx], 4);
// lower0 = __shfl_sync(uint32_t(-1), lower0, lower_map[quad_idx], 4);
lower0 = __shfl_sync(uint32_t(-1), lower0, upper_map[quad_idx] ^ 1, 4);
frag_64b[i].x = __byte_perm(upper0, lower0, selector_upper);
frag_64b[i].y = __byte_perm(upper0, lower0, selector_lower);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Fragment>
CUTLASS_DEVICE void permute_Cregs_fp8(Fragment &frag) {
// frag has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 32 bits
static_assert(decltype(size<0, 0>(frag))::value == 2);
static_assert(decltype(size<0, 1>(frag))::value == 2);
static_assert(decltype(size<0, 2>(frag))::value % 2 == 0);
static_assert(decltype(stride<0, 0>(frag))::value == 1);
static_assert(sizeof(typename Fragment::value_type) == 4);
Tensor frag_64b = group_modes<1, 3>(recast<uint2>(frag)); // ((1, 2, N / 8), (MMA_M, MMA_N))
#pragma unroll
for (int mi = 0; mi < size<1>(frag_64b); ++mi) {
#pragma unroll
for (int i = 0; i < size<0, 2>(frag_64b) / 2; ++i) {
cutlass::swap(frag_64b(make_coord(_0{}, _1{}, 2 * i), mi), frag_64b(make_coord(_0{}, _0{}, 2 * i + 1), mi));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Fragment>
CUTLASS_DEVICE void permute_output_fp8(Fragment &out) {
// out has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 32 bits
static_assert(decltype(size<0, 0>(out))::value == 2);
static_assert(decltype(size<0, 1>(out))::value == 2);
static_assert(decltype(size<0, 2>(out))::value % 2 == 0);
static_assert(decltype(stride<0, 0>(out))::value == 1);
static_assert(sizeof(typename Fragment::value_type) == 4);
Tensor frag = group_modes<1, 3>(out); // ((2, 2, N / 8), (MMA_M, MMA_N))
#pragma unroll
for (int mi = 0; mi < size<1>(frag); ++mi) {
#pragma unroll
for (int j = 0; j < size<0, 1>(frag); ++j) {
#pragma unroll
for (int i = 0; i < size<0, 2>(frag) / 2; ++i) {
cutlass::swap(frag(make_coord(_1{}, j, 2 * i), mi), frag(make_coord(_0{}, j, 2 * i + 1), mi));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Fragment>
CUTLASS_DEVICE void permute_output_fp8_Vcolmajor(Fragment &frag) {
// frag has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 16 bits
static_assert(decltype(size<0, 0>(frag))::value == 2);
static_assert(decltype(size<0, 1>(frag))::value == 2);
static_assert(decltype(stride<0, 0>(frag))::value == 1);
static_assert(sizeof(typename Fragment::value_type) == 2 || sizeof(typename Fragment::value_type) == 4);
int quad_idx = threadIdx.x % 4;
bool lane_03 = quad_idx == 0 || quad_idx == 3;
static constexpr int upper_map[4] = {0, 2, 3, 1};
// static constexpr int lower_map[4] = {2, 0, 1, 3};
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(frag); }
using type2 = std::conditional_t<sizeof(typename Fragment::value_type) == 2, uint32_t, uint64_t>;
Tensor frag_2 = group_modes<1, 3>(recast<type2>(frag)); // ((1, 2, N / 8), (MMA_M, MMA_N))
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(frag); printf("\n"); print(frag_2); }
#pragma unroll
for (int mi = 0; mi < size<1>(frag_2); ++mi) {
#pragma unroll
for (int j = 0; j < size<0, 1>(frag_2); ++j) {
#pragma unroll
for (int i = 0; i < size<0, 2>(frag_2) / 2; ++i) {
type2 upper = frag_2(make_coord(_0{}, j, 2 * i), mi);
type2 lower = frag_2(make_coord(_0{}, j, 2 * i + 1), mi);
type2 upper0 = lane_03 ? upper : lower;
type2 lower0 = lane_03 ? lower : upper;
upper0 = __shfl_sync(uint32_t(-1), upper0, upper_map[quad_idx], 4);
// lower0 = __shfl_sync(uint32_t(-1), lower0, lower_map[quad_idx], 4);
lower0 = __shfl_sync(uint32_t(-1), lower0, upper_map[quad_idx] ^ 2, 4);
frag_2(make_coord(_0{}, j, 2 * i), mi) = lane_03 ? upper0 : lower0;
frag_2(make_coord(_0{}, j, 2 * i + 1), mi) = lane_03 ? lower0 : upper0;
}
}
}
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(frag); }
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename Engine, typename Layout>
CUTLASS_DEVICE void apply_softcap(Tensor<Engine, Layout> &tensor, float const softcap){
#pragma unroll
for (int i = 0; i < size(tensor); ++i) {
tensor(i) = cutlass::fast_tanh(tensor(i) * softcap);
}
}
template <typename Engine, typename Layout>
CUTLASS_DEVICE auto calculate_dtanh(Tensor<Engine, Layout> &tensor){
Tensor out = make_fragment_like<float>(tensor);
#pragma unroll
for (int i = 0; i < size(tensor); ++i) {
out(i) = 1.f - (tensor(i) * tensor(i));
}
return out;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
CUTE_DEVICE T warp_prefix_sum(T val) {
int lane = threadIdx.x % cutlass::NumThreadsPerWarp;
CUTLASS_PRAGMA_UNROLL
for (int i = 1; i < cutlass::NumThreadsPerWarp; i <<= 1) {
T partial_sum = __shfl_up_sync(0xffffffff, val, i);
if (lane >= i) { val += partial_sum; }
}
return val;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
CUTE_DEVICE T warp_uniform(T a) {
return __shfl_sync(0xffffffff, a, 0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
CUTLASS_DEVICE
int canonical_warp_group_idx_nosync() {
return threadIdx.x / cutlass::NumThreadsPerWarpGroup;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
|