kernel
File size: 32,669 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
/******************************************************************************
 * Copyright (c) 2024, Tri Dao.
 ******************************************************************************/

#pragma once

#include <assert.h>
#include <stdint.h>
#include <stdlib.h>

#include <cuda_fp16.h>

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
#endif

#include <cute/tensor.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>

#include "cuda_check.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

// A wrapper for the kernel that is used to guard against compilation on
// architectures that will never use the kernel. The purpose of this is to
// reduce the size of the compiled binary.
// Adapted from https://github.com/vllm-project/vllm/blob/4d29e91be84d27ca313d657eee92c067439a4c23/csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cuh#L55
template <typename Kernel>
struct enable_sm90_or_later : Kernel {
    template <typename... Args>
    CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)
        Kernel::operator()(std::forward<Args>(args)...);
#endif
    }
};

template <typename Kernel>
struct enable_sm80_to_sm89 : Kernel {
    template <typename... Args>
    CUTLASS_DEVICE void operator()(Args&&... args) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800) && (__CUDA_ARCH__ <= 890)
        Kernel::operator()(std::forward<Args>(args)...);
#endif
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
struct MaxOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
};

template <>
struct MaxOp<float> {
// This is slightly faster
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
struct SumOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<int THREADS>
struct Allreduce {
    static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
    template<typename T, typename Operator>
    static __device__ __forceinline__ T run(T x, Operator &op) {
        constexpr int OFFSET = THREADS / 2;
        x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
        return Allreduce<OFFSET>::run(x, op);
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
    x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
    return x;
}
};

////////////////////////////////////////////////////////////////////////////////////////////////////

CUTLASS_HOST_DEVICE
int div_floor(cutlass::FastDivmod const& divmod, int dividend) {
    // Take care of the negative case: https://stackoverflow.com/questions/39304681/division-with-negative-dividend-but-rounded-towards-negative-infinity
    // Maybe the compiler will turn the -1 - * into bit negation operation, I haven't checked.
    return dividend >= 0 ? divmod.divide(dividend) : -1 - divmod.divide(-1 - dividend);
}

CUTLASS_HOST_DEVICE
int round_down(cutlass::FastDivmod const& divmod, int dividend) {
    return div_floor(divmod, dividend) * divmod.divisor;
}

CUTLASS_HOST_DEVICE
int round_up(cutlass::FastDivmod const& divmod, int dividend) {
    return div_floor(divmod, dividend - 1) * divmod.divisor + divmod.divisor;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
// For SM90, convert acc_layout from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
template<bool Transposed=false, typename Layout0>
CUTLASS_DEVICE auto convert_layout_acc_rowcol(Layout0 acc_layout) {
    if constexpr (decltype(rank<0>(acc_layout))::value == 3) {  // SM90
        static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
        static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
        static_assert(decltype(rank(acc_layout))::value == 3);
        auto l = acc_layout;
        if constexpr (!Transposed) {
            return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
        } else {
             return make_layout(make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
        }

    } else {  // SM80
        static_assert(decltype(size<0>(acc_layout))::value == 4);
        static_assert(decltype(rank(acc_layout))::value == 3);
        auto l = logical_divide(acc_layout, Shape<_2>{});  // ((2, 2), MMA_M, MMA_N)
        if constexpr (!Transposed) {
            return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
        } else {
            return make_layout(make_layout(get<0, 0>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
        }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
// For SM90, FP16/BF16, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((2, 2, 2), MMA_M, (N / 16, MMA_N))
// For SM90, FP8, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((4, 2, 2), MMA_M, (N / 32, MMA_N))
template<typename MMA_Traits, typename Layout0>
CUTLASS_DEVICE auto convert_layout_acc_Aregs(Layout0 acc_layout) {
    using X = Underscore;
    if constexpr (decltype(rank<0>(acc_layout))::value == 3) {  // SM90
        static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
        static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
        static_assert(decltype(rank(acc_layout))::value == 3);
        static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
        if constexpr (sizeof(typename MMA_Traits::ValTypeA) == 2) {
            auto l = logical_divide(get<0, 2>(acc_layout), Tile<_2>{});  // ((2, N / 16))
            return make_layout(make_layout(get<0, 0>(acc_layout), get<0, 1>(acc_layout), get<0, 0>(l)), get<1>(acc_layout), coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
        } else {
            static_assert(sizeof(typename MMA_Traits::ValTypeA) == 1);
            static_assert(decltype(stride<0, 0>(acc_layout))::value == 1);
            static_assert(decltype(stride<0, 1>(acc_layout))::value == 2);
            auto l = logical_divide(get<0, 2>(acc_layout), Tile<Layout<Shape<_2, _2>>>{});  // (((2, 2), N / 32))
            // This combines the first two modes (<0, 0> and <0, 1>) into one mode.
            // Will require register shuffling later to be correct.
            return make_layout(make_layout(Layout<_4>{}, get<0, 0, 0>(l), get<0, 0, 1>(l)),
                               get<1>(acc_layout),
                               coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));  // ((4, 2, 2), MMA_M, N / 32 * MMA_N)
            // This combination is right but doesn't work with register shuffling.
            // return make_layout(make_layout(coalesce(make_layout(get<0, 0>(acc_layout), get<0, 0, 0>(l))), get<0, 1>(acc_layout), get<0, 0, 1>(l)),
            //                    get<1>(acc_layout),
            //                    coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
        }
    } else {  // SM80
        static_assert(decltype(size<0>(acc_layout))::value == 4);
        static_assert(decltype(rank(acc_layout))::value == 3);
        constexpr int mma_shape_K = get<2>(typename MMA_Traits::Shape_MNK{});
        static_assert(mma_shape_K == 8 || mma_shape_K == 16);
        if constexpr (mma_shape_K == 8) {
            return acc_layout;
        } else {
            auto l = logical_divide(acc_layout, Shape<X, X, _2>{});  // (4, MMA_M, (2, MMA_N / 2)))
            return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
        }
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename To_type, typename Engine, typename Layout>
CUTLASS_DEVICE auto convert_type_unsafe(Tensor<Engine, Layout> const &tensor) {
    using From_type = typename Engine::value_type;
    static constexpr int numel = decltype(size(tensor))::value;
    cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
    // HACK: this requires tensor to be "contiguous"
    auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
    return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
    // Unsafe because we're returning a tensor with memory allocated on the stack. If the compiler does not
    // inline this function, then the memory might not be valid.
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Engine, typename Layout, typename EngineOut>
CUTLASS_DEVICE void convert_type_out(Tensor<Engine, Layout> const &tensor, Tensor<EngineOut, Layout> &out) {
    // Somehow if we allocate out inside this function and return it, e2e is slower and the output can be wrong.
    using From_type = typename Engine::value_type;
    using To_type = typename EngineOut::value_type;
    static constexpr int FragmentSize = std::max(sizeof(From_type) / sizeof(To_type), sizeof(To_type) / sizeof(From_type));
    static_assert(CUTE_STATIC_V(size(tensor)) % FragmentSize == 0, "Fragment size does not vectorize properly");
    Tensor frag = recast<cutlass::Array<From_type, FragmentSize> const>(tensor);
    Tensor out_frg = recast<cutlass::Array<To_type, FragmentSize>>(out);
    static_assert(size(frag) == size(out_frg));
    cutlass::NumericArrayConverter<To_type, From_type, FragmentSize> convert_op;
    #pragma unroll
    for (int i = 0; i < size(frag); ++i) { out_frg[i] = convert_op(frag[i]); }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Blocks until all but N previous cp.async.commit_group operations have committed.
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
// (which is equivalent to commit_group then wait_group 0).
// Instead we just call cp.async.wait_group 0, which is slightly faster.
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
template <int N>
CUTE_HOST_DEVICE
void cp_async_wait() {
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
    asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
#endif
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <bool A, class Mma, class Tensor0>
CUTLASS_DEVICE
auto mma_partition_fragment_AB(Mma const& mma, Tensor0 const& tensor0) {
    if constexpr (A) {
        return mma.partition_fragment_A(tensor0);
    } else {
        return mma.partition_fragment_B(tensor0);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <bool zero_init=false, int wg_wait=0, bool SwapAB=false, int M_slice=-1,
        typename Tensor0, typename Tensor1, typename Tensor2, typename TiledMma>
CUTLASS_DEVICE void gemm(TiledMma& tiled_mma, Tensor0 const& tCrA, Tensor1 const& tCrB, Tensor2& tCrC) {
    if constexpr (M_slice >= 0) {
        static constexpr int MMA_M = decltype(size<1>(tCrC))::value;
        static_assert(M_slice < MMA_M);
        // After logical_divide, C has shape ((2,2,V), (MMA_M, 1), MMA_N)
        Tensor tCrC_slice = cute::logical_divide(tCrC, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
        if constexpr (!SwapAB) {
            Tensor tCrA_slice = cute::logical_divide(tCrA, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
            gemm<zero_init, wg_wait, SwapAB, /*M_slice=*/-1>(tiled_mma, tCrA_slice, tCrB, tCrC_slice);
        } else {
            Tensor tCrB_slice = cute::logical_divide(tCrB, Shape<cute::Underscore, Int<MMA_M>>{})(_, make_coord(Int<M_slice>{}, _), _);
            gemm<zero_init, wg_wait, SwapAB, /*M_slice=*/-1>(tiled_mma, tCrA, tCrB_slice, tCrC_slice);
        }
    } else {
        constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
        // Need to cast away const on tCrA since warpgroup_fence_operand doesn't take const
        if constexpr (Is_RS) {
            if constexpr (!SwapAB) {
                warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA));
            } else {
                warpgroup_fence_operand(const_cast<Tensor1 &>(tCrB));
            }
        }
        warpgroup_fence_operand(tCrC);
        warpgroup_arrive();
        if constexpr (zero_init) {
            tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
        }
        static constexpr int kNumKIters = CUTE_STATIC_V(size<2>(tCrA));
        static constexpr int kMaxKIters = 16;
        // Unroll the K mode manually to set scale D to 1
        CUTLASS_PRAGMA_UNROLL
        for (int k_block = 0; k_block < std::min(kNumKIters, kMaxKIters); ++k_block) {
            if constexpr (!SwapAB) {
                cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
            } else {
                cute::gemm(tiled_mma, tCrB(_,_,k_block), tCrA(_,_,k_block), tCrC);
            }
            tiled_mma.accumulate_ = GMMA::ScaleOut::One;
        }
        // In the case of large kNumKIters, the compiler chooses to store the smem addresses
        // in registers, causing spills. This loop forces the compiler to recompute the addresses.
        if constexpr (kNumKIters > kMaxKIters) {
            // This will always be zero, just a way to force the compiler to recompute the smem
            // addresses. This results in USEL instructions. There's probably a better way to do this.
            int const k_offset = cutlass::canonical_warp_group_idx() < 128 ? 0 : 1;
            CUTLASS_PRAGMA_UNROLL
            for (int k_block = kMaxKIters; k_block < kNumKIters; ++k_block) {
                if constexpr (!SwapAB) {
                    cute::gemm(tiled_mma, tCrA(_,_,k_block + k_offset), tCrB(_,_,k_block + k_offset), tCrC);
                } else {
                    cute::gemm(tiled_mma, tCrB(_,_,k_block + k_offset), tCrA(_,_,k_block + k_offset), tCrC);
                }
                tiled_mma.accumulate_ = GMMA::ScaleOut::One;
            }
        }
        warpgroup_commit_batch();
        if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
        warpgroup_fence_operand(tCrC);
        if constexpr (Is_RS) {
            if constexpr (!SwapAB) {
                warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA));
            } else {
                warpgroup_fence_operand(const_cast<Tensor1 &>(tCrB));
            }
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool A_in_regs=false, bool B_in_regs=false, bool SwapAB=false,
         typename Tensor0, typename Tensor1,
         typename Tensor2, typename Tensor3, typename Tensor4,
         typename TiledMma, typename TiledCopyA, typename TiledCopyB,
         typename ThrCopyA, typename ThrCopyB, typename Hook>
CUTLASS_DEVICE void gemm_sm80(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
                              Tensor4 const& tCsB, TiledMma tiled_mma,
                              TiledCopyA smem_tiled_copy_A, TiledCopyB smem_tiled_copy_B,
                              ThrCopyA smem_thr_copy_A, ThrCopyB smem_thr_copy_B, Hook fn) {
    if constexpr (SwapAB) {
        gemm_sm80<B_in_regs, A_in_regs>(acc, tCrB, tCrA, tCsB, tCsA, tiled_mma, smem_tiled_copy_B, smem_tiled_copy_A, smem_thr_copy_B, smem_thr_copy_A, fn);
    } else {
        CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));                     // MMA_M
        CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));                     // MMA_N
        CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB));                     // MMA_K
        Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
        CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view));            // M
        Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
        CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view));            // N
        if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
        if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
        #pragma unroll
        for (int i = 0; i < size<2>(tCrA); ++i) {
            if (i < size<2>(tCrA) - 1) {
                if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
                if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
            }
            if constexpr (!std::is_same_v<Hook, std::nullptr_t>) {
                if (i == 0) { fn(); }
            }
            cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
         typename TiledMma, typename TiledCopy, typename ThrCopy>
CUTLASS_DEVICE void gemm_rs_sm80(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
                                 TiledMma tiled_mma, TiledCopy smem_tiled_copy_B,
                                 ThrCopy smem_thr_copy_B) {
    CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));                     // MMA_M
    CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));                     // MMA_N
    CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB));                     // MMA_K
    Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
    CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view));            // N
    cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
    #pragma unroll
    for (int i = 0; i < size<2>(tCrA); ++i) {
        if (i < size<2>(tCrA) - 1) {
            cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
        }
        cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <bool zero_init=false, typename Atom, typename TA, typename TB, typename TC>
CUTLASS_DEVICE void gemm_sm100(Atom& atom, TA const& tA, TB const& tB, TC&& tC) {
    static constexpr int rA = decltype(rank(tA))::value;
    static constexpr int rB = decltype(rank(tB))::value;
    static constexpr int rC = decltype(rank(tC))::value;
    static_assert(rA == 3 && rB == 3 && rC == 3);

    if constexpr (zero_init) { atom.accumulate_ = decltype(atom.accumulate_)::Zero; }
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tA); k_block++) {
        cute::gemm(atom, tA(_,_,k_block), tB(_,_,k_block), tC);
        atom.accumulate_ = decltype(atom.accumulate_)::One;
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <class a_type, class b_type, class c_type,
          int M, int N, UMMA::Major a_major, UMMA::Major b_major,
          UMMA::ScaleIn a_neg, UMMA::ScaleIn b_neg, class... TAs, class... TMs>
CUTE_HOST_DEVICE constexpr
auto
to_tiled_mma_sm100_ts(
    TiledMMA<MMA_Atom<
      MMA_Traits<SM100_MMA_F8F6F4_SS, a_type, b_type, c_type,
                    cute::C<M>, cute::C<N>,
                    cute::integral_constant<UMMA::Major, a_major>,
                    cute::integral_constant<UMMA::Major, b_major>,
                    cute::integral_constant<UMMA::ScaleIn, a_neg>,
                    cute::integral_constant<UMMA::ScaleIn, b_neg>>,
      TAs...>, TMs...>) {

  return TiledMMA<MMA_Atom<
    MMA_Traits<SM100_MMA_F8F6F4_TS<a_type, b_type, c_type,
                                M, N,
                                a_major, b_major,
                                a_neg, b_neg, UMMA::Saturate::False>>,
    TAs...>, TMs...>{};
}

template <class a_type, class b_type, class c_type,
          int M, int N, UMMA::Major a_major, UMMA::Major b_major,
          UMMA::ScaleIn a_neg, UMMA::ScaleIn b_neg, class... TAs, class... TMs>
CUTE_HOST_DEVICE constexpr
auto
to_tiled_mma_sm100_ts(
    TiledMMA<MMA_Atom<
      SM100_MMA_F16BF16_SS<a_type, b_type, c_type,
                    M, N,
                    a_major,
                    b_major,
                    a_neg,
                    b_neg>,
      TAs...>, TMs...>) {
  return TiledMMA<MMA_Atom<
    SM100_MMA_F16BF16_TS<a_type, b_type, c_type,
                                M, N,
                                a_major, b_major,
                                a_neg, b_neg, UMMA::Saturate::False>,
    TAs...>, TMs...>{};
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
          class CopyAtom, class TV, class Tiler, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
          typename Engine2, typename Layout2, typename Engine3, typename Layout3>
CUTLASS_DEVICE void copy(TiledCopy<CopyAtom, TV, Tiler> const &tiled_copy, Tensor<Engine0, Layout0> const &S,
                         Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
                         Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
    // Decay TiledCopy to CopyAtom
    auto copy_atom = static_cast<CopyAtom const&>(tiled_copy);
    CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
    CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
    CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D));                     // MMA
    CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D));                     // MMA_M
    CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D));                     // MMA_K
    // There's no case where !Clear_OOB_K && Clear_OOB_MN
    static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
    auto has_with_bool = cute::is_valid([](auto t)->void_t<decltype(declval<typename decltype(t)::Traits>().with(true))>{}, copy_atom);
    #pragma unroll
    for (int m = 0; m < size<1>(S); ++m) {
        bool predicate_mn = Is_even_MN || get<0>(identity_MN(_0{}, m, _0{})) < max_MN;
        if constexpr (Is_even_MN || !Clear_OOB_MN) {
            if (Is_even_MN || predicate_mn) {
                #pragma unroll
                for (int k = 0; k < size<2>(S); ++k) {
                    if constexpr (Is_even_K || !Clear_OOB_K) {
                        if (Is_even_K || predicate_K(k)) { cute::copy(copy_atom, S(_, m, k), D(_, m, k)); }
                    } else {  // Clear_OOB_K == true && Is_even_K == false
                        // If copy traits can be transformed with a predicate value, do it, otherwise branch here
                        if constexpr (has_with_bool) {
                            cute::copy(copy_atom.with(predicate_K(k)), S(_, m, k), D(_, m, k));
                        } else {
                            if (predicate_K(k)) {
                                cute::copy(copy_atom, S(_, m, k), D(_, m, k));
                            } else {
                                cute::clear(D(_, m, k));
                            }
                        }
                    }
                }
            }
        } else {  // Clear_OOB_MN == true && Is_even_MN == false, also implies Clear_OOB_K == true
            if constexpr (!has_with_bool) {
                if (predicate_mn) {
                    #pragma unroll
                    for (int k = 0; k < size<2>(S); ++k) {
                        if (Is_even_K || predicate_K(k)) {
                            cute::copy(copy_atom, S(_, m, k), D(_, m, k));
                        } else if (Clear_OOB_K) {
                            cute::clear(D(_, m, k));
                        }
                    }
                } else {
                    cute::clear(D(_, m, _));
                }
            } else {  // combine the mn predicate with the k predicate
                #pragma unroll
                for (int k = 0; k < size<2>(S); ++k) {
                    cute::copy(copy_atom.with(predicate_mn && (Is_even_K || predicate_K(k))), S(_, m, k), D(_, m, k));
                }
            }
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Byte permute and shuffle to match register layout of
// (FP8 downcasted) accumulator of GEMM-I to FP8 operand A of GEMM-II.
template <typename Fragment>
CUTLASS_DEVICE void permute_Aregs_fp8(Fragment &frag) {
    // frag has shape ((4, 2, 2), MMA_M, MMA_N), each element is 8 bits
    static_assert(decltype(size<0, 0>(frag))::value == 4);
    static_assert(decltype(size<0, 1>(frag))::value == 2);
    static_assert(decltype(stride<0, 0>(frag))::value == 1);
    static_assert(decltype(stride<0, 1>(frag))::value == 4);
    static_assert(sizeof(typename Fragment::value_type) == 1);

    int quad_idx = threadIdx.x % 4;
    bool lane_03 = quad_idx == 0 || quad_idx == 3;
    int selector_upper = lane_03 ? 0x5410 : 0x1054;
    int selector_lower = lane_03 ? 0x7632 : 0x3276;

    static constexpr int upper_map[4] = {0, 3, 1, 2};
    // static constexpr int lower_map[4] = {1, 2, 0, 3};

    Tensor frag_64b = recast<uint2>(frag);  // ((1, 1, 2), MMA_M, MMA_N)
    #pragma unroll
    for (int i = 0; i < size(frag_64b); ++i) {
        uint32_t upper = frag_64b[i].x;
        uint32_t lower = frag_64b[i].y;
        uint32_t upper0 = lane_03 ? upper : lower;
        uint32_t lower0 = lane_03 ? lower : upper;
        upper0 = __shfl_sync(uint32_t(-1), upper0, upper_map[quad_idx], 4);
        // lower0 = __shfl_sync(uint32_t(-1), lower0, lower_map[quad_idx], 4);
        lower0 = __shfl_sync(uint32_t(-1), lower0, upper_map[quad_idx] ^ 1, 4);
        frag_64b[i].x = __byte_perm(upper0, lower0, selector_upper);
        frag_64b[i].y = __byte_perm(upper0, lower0, selector_lower);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Fragment>
CUTLASS_DEVICE void permute_Cregs_fp8(Fragment &frag) {
    // frag has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 32 bits
    static_assert(decltype(size<0, 0>(frag))::value == 2);
    static_assert(decltype(size<0, 1>(frag))::value == 2);
    static_assert(decltype(size<0, 2>(frag))::value % 2 == 0);
    static_assert(decltype(stride<0, 0>(frag))::value == 1);
    static_assert(sizeof(typename Fragment::value_type) == 4);
    Tensor frag_64b = group_modes<1, 3>(recast<uint2>(frag));  // ((1, 2, N / 8), (MMA_M, MMA_N))
    #pragma unroll
    for (int mi = 0; mi < size<1>(frag_64b); ++mi) {
        #pragma unroll
        for (int i = 0; i < size<0, 2>(frag_64b) / 2; ++i) {
            cutlass::swap(frag_64b(make_coord(_0{}, _1{}, 2 * i), mi), frag_64b(make_coord(_0{}, _0{}, 2 * i + 1), mi));
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Fragment>
CUTLASS_DEVICE void permute_output_fp8(Fragment &out) {
    // out has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 32 bits
    static_assert(decltype(size<0, 0>(out))::value == 2);
    static_assert(decltype(size<0, 1>(out))::value == 2);
    static_assert(decltype(size<0, 2>(out))::value % 2 == 0);
    static_assert(decltype(stride<0, 0>(out))::value == 1);
    static_assert(sizeof(typename Fragment::value_type) == 4);
    Tensor frag = group_modes<1, 3>(out);  // ((2, 2, N / 8), (MMA_M, MMA_N))
    #pragma unroll
    for (int mi = 0; mi < size<1>(frag); ++mi) {
        #pragma unroll
        for (int j = 0; j < size<0, 1>(frag); ++j) {
            #pragma unroll
            for (int i = 0; i < size<0, 2>(frag) / 2; ++i) {
                cutlass::swap(frag(make_coord(_1{}, j, 2 * i), mi), frag(make_coord(_0{}, j, 2 * i + 1), mi));
            }
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Fragment>
CUTLASS_DEVICE void permute_output_fp8_Vcolmajor(Fragment &frag) {
    // frag has shape ((2, 2, N / 8), MMA_M, MMA_N), each element is 16 bits
    static_assert(decltype(size<0, 0>(frag))::value == 2);
    static_assert(decltype(size<0, 1>(frag))::value == 2);
    static_assert(decltype(stride<0, 0>(frag))::value == 1);
    static_assert(sizeof(typename Fragment::value_type) == 2 || sizeof(typename Fragment::value_type) == 4);

    int quad_idx = threadIdx.x % 4;
    bool lane_03 = quad_idx == 0 || quad_idx == 3;

    static constexpr int upper_map[4] = {0, 2, 3, 1};
    // static constexpr int lower_map[4] = {2, 0, 1, 3};

    // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(frag); }
    using type2 = std::conditional_t<sizeof(typename Fragment::value_type) == 2, uint32_t, uint64_t>;
    Tensor frag_2 = group_modes<1, 3>(recast<type2>(frag));  // ((1, 2, N / 8), (MMA_M, MMA_N))
    // if (blockIdx.x == 0 && threadIdx.x == 128) { print(frag); printf("\n"); print(frag_2); }
    #pragma unroll
    for (int mi = 0; mi < size<1>(frag_2); ++mi) {
        #pragma unroll
        for (int j = 0; j < size<0, 1>(frag_2); ++j) {
            #pragma unroll
            for (int i = 0; i < size<0, 2>(frag_2) / 2; ++i) {
                type2 upper = frag_2(make_coord(_0{}, j, 2 * i), mi);
                type2 lower = frag_2(make_coord(_0{}, j, 2 * i + 1), mi);
                type2 upper0 = lane_03 ? upper : lower;
                type2 lower0 = lane_03 ? lower : upper;
                upper0 = __shfl_sync(uint32_t(-1), upper0, upper_map[quad_idx], 4);
                // lower0 = __shfl_sync(uint32_t(-1), lower0, lower_map[quad_idx], 4);
                lower0 = __shfl_sync(uint32_t(-1), lower0, upper_map[quad_idx] ^ 2, 4);
                frag_2(make_coord(_0{}, j, 2 * i), mi) = lane_03 ? upper0 : lower0;
                frag_2(make_coord(_0{}, j, 2 * i + 1), mi) = lane_03 ? lower0 : upper0;
            }
        }
    }
    // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(frag); }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Engine, typename Layout>
CUTLASS_DEVICE void apply_softcap(Tensor<Engine, Layout> &tensor, float const softcap){
    #pragma unroll
    for (int i = 0; i < size(tensor); ++i) {
        tensor(i) = cutlass::fast_tanh(tensor(i) * softcap);
    }
}

template <typename Engine, typename Layout>
CUTLASS_DEVICE auto calculate_dtanh(Tensor<Engine, Layout> &tensor){
    Tensor out = make_fragment_like<float>(tensor);
    #pragma unroll
    for (int i = 0; i < size(tensor); ++i) {
        out(i) = 1.f - (tensor(i) * tensor(i));
    }
    return out;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<class T>
CUTE_DEVICE T warp_prefix_sum(T val) {
    int lane = threadIdx.x % cutlass::NumThreadsPerWarp;
    CUTLASS_PRAGMA_UNROLL
    for (int i = 1; i < cutlass::NumThreadsPerWarp; i <<= 1) {
        T partial_sum = __shfl_up_sync(0xffffffff, val, i);
        if (lane >= i) { val += partial_sum; }
    }
    return val;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<class T>
CUTE_DEVICE T warp_uniform(T a) {
    return __shfl_sync(0xffffffff, a, 0);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

CUTLASS_DEVICE
int canonical_warp_group_idx_nosync() {
    return threadIdx.x / cutlass::NumThreadsPerWarpGroup;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

} // namespace flash