kernel
File size: 12,408 Bytes
eb8ddce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>

#include "seqlen.h"
#include "utils.h"

namespace flash {

using namespace cute;

template <class TileShape_MK_, class Element, class ElementAccum, class ArchTag_, bool Clear_dQaccum, bool Varlen>
class FlashAttnBwdPreprocess {

public:

    // Type Aliases
    using TileShape_MK = TileShape_MK_;
    using ArchTag = ArchTag_;

    static_assert(std::is_same_v<Element, cutlass::half_t> && ArchTag::kMinComputeCapability >= 75 ||
                  std::is_same_v<Element, cutlass::bfloat16_t> && ArchTag::kMinComputeCapability >= 80 ||
                  std::is_same_v<Element, cutlass::float_e4m3_t> && ArchTag::kMinComputeCapability >= 89);

    static constexpr uint32_t MaxThreadsPerBlock = 256;
    static constexpr uint32_t MinBlocksPerMultiprocessor = 2;
    static constexpr int SharedStorageSize = 0;

    static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
    static_assert(get<1>(TileShape_MK{}) % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
    static constexpr int kBlockM = get<0>(TileShape_MK{});
    static constexpr int kHeadDim = get<1>(TileShape_MK{});
    // We want kBlockKGmem to be a power of 2 so that when we do the summing,
    // it's just between threads in the same warp
    static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
    static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
    static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow");
    using GmemLayoutAtom = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
                                  Stride<Int<kGmemThreadsPerRow>, _1>>;
    using GmemTiledCopy = decltype(
        make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
                        GmemLayoutAtom{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 8 or 16 vals per load

    static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
    static_assert((kBlockM * kHeadDim / kGmemElemsPerLoadAccum) % MaxThreadsPerBlock == 0, "MaxThreadsPerBlock must divide kBlockM * kHeadDim / kGmemElemsPerLoadAccum");
    using GmemLayoutAtomAccum = Layout<Shape<Int<MaxThreadsPerBlock>>>;
    using GmemTiledCopyAccum = decltype(
        make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
                        GmemLayoutAtomAccum{},
                        Layout<Shape<Int<kGmemElemsPerLoadAccum>>>{}));  // Val layout, 4 vals per store

    using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t>;  // (seqlen_q, d, head, batch)
    using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t>;
    using ShapedPsum = cute::Shape<int32_t, int32_t, int32_t>;  // (seqlen_q, head, batch)
    using StridedPsum = cute::Stride<_1, int64_t, int64_t>;
    using ShapedQaccum = cute::Shape<int32_t, int32_t, int32_t>;  // (seqlen_q * d, head, batch)
    using StridedQaccum = cute::Stride<_1, int64_t, int64_t>;

    // Device side arguments
    struct Arguments {
        Element const* ptr_O;
        ShapeO const shape_O;
        StrideO const stride_O;
        Element const* ptr_dO;
        StrideO const stride_dO;
        float* ptr_dPsum;
        ShapedPsum const shape_dPsum;
        StridedPsum const stride_dPsum;
        float const* ptr_LSE;
        StridedPsum const stride_LSE;
        float *ptr_LSE_log2;
        StridedPsum const stride_LSE_log2;
        ElementAccum* ptr_dQaccum;
        ShapedQaccum const shape_dQaccum;
        StridedQaccum const stride_dQaccum;
        int num_batch;  // We need this to know the size of dq_semaphore in case of varlen
        int* dq_semaphore;
        int const* cu_seqlens = nullptr;
        int const* seqused = nullptr;
    };

    // Kernel entry point API
    struct Params {
        Element const* ptr_O;
        ShapeO const shape_O;
        StrideO const stride_O;
        Element const* ptr_dO;
        StrideO const stride_dO;
        float* ptr_dPsum;
        ShapedPsum const shape_dPsum;
        StridedPsum const stride_dPsum;
        float const* ptr_LSE;
        StridedPsum const stride_LSE;
        float* ptr_LSE_log2;
        StridedPsum const stride_LSE_log2;
        ElementAccum* ptr_dQaccum;
        ShapedQaccum const shape_dQaccum;
        StridedQaccum const stride_dQaccum;
        int num_batch;
        int* dq_semaphore;
        int const* cu_seqlens = nullptr;
        int const* seqused = nullptr;
    };

    // Convert to underlying arguments. In this case, a simple copy for the aliased type.
    static
    Params
    to_underlying_arguments(Arguments const& args) {
        return {
            args.ptr_O,
            args.shape_O,
            args.stride_O,
            args.ptr_dO,
            args.stride_dO,
            args.ptr_dPsum,
            args.shape_dPsum,
            args.stride_dPsum,
            args.ptr_LSE,
            args.stride_LSE,
            args.ptr_LSE_log2,
            args.stride_LSE_log2,
            args.ptr_dQaccum,
            args.shape_dQaccum,
            args.stride_dQaccum,
            args.num_batch,
            args.dq_semaphore,
            args.cu_seqlens,
            args.seqused
        };
    }

    CUTLASS_DEVICE
    void
    operator()(Params const& params, [[maybe_unused]] char* smem_buf) {

        static constexpr int kBlockM = get<0>(TileShape_MK{});

        int const thread_idx = threadIdx.x;
        int const m_block = blockIdx.x;
        int const bidh = blockIdx.y;
        int const bidb = blockIdx.z;

        flash::SeqlenInfo<Varlen, kBlockM> seqlen_info(bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused);
        bool const is_varlen = Varlen && params.cu_seqlens;
        int const seqlen_o = seqlen_info.seqlen;
        if (is_varlen && m_block * kBlockM >= seqlen_o) { return; }

        Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O), params.shape_O, params.stride_O)(_, _, bidh, !is_varlen ? bidb : 0);
        Tensor gO = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mO), TileShape_MK{}, make_coord(m_block, _0{}));  // (M, K)
        Tensor mdO = make_tensor(make_gmem_ptr(params.ptr_dO), params.shape_O, params.stride_dO)(_, _, bidh, !is_varlen ? bidb : 0);
        Tensor gdO = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdO), TileShape_MK{}, make_coord(m_block, _0{}));  // (M, K)

        auto shape_LSE = select<0, 2, 3>(params.shape_O);
        Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE), shape_LSE, params.stride_LSE)(_, bidh, !is_varlen ? bidb : 0);
        Tensor gLSE = local_tile(cute::domain_offset(make_coord(seqlen_info.offset), mLSE), Shape<Int<kBlockM>>{}, make_coord(m_block));
        static_assert(kBlockM <= MaxThreadsPerBlock);
        float lse = thread_idx < seqlen_o - m_block * kBlockM && thread_idx < kBlockM ? gLSE(thread_idx) : INFINITY;

        GmemTiledCopy gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);

        Tensor tOgO = gmem_thr_copy_O.partition_S(gO);
        Tensor tOgdO = gmem_thr_copy_O.partition_S(gdO);
        // Construct identity layout for gO
        Tensor cO = cute::make_identity_tensor(TileShape_MK{});  // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
        #pragma unroll
        for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }

        // (8, kBlockM / 32, kHeadDim / 64) or (8, kBlockM / 16, kHeadDim / 128)
        Tensor tOrO = make_fragment_like(tOgO);
        Tensor tOrdO = make_fragment_like(tOgdO);
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clearn_OOB_K=*/true>(
            gmem_tiled_copy_O, tOgO, tOrO, tOcO, tOpO, seqlen_o - m_block * kBlockM
        );
        flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clearn_OOB_K=*/true>(
            gmem_tiled_copy_O, tOgdO, tOrdO, tOcO, tOpO, seqlen_o - m_block * kBlockM
        );
        // if (threadIdx.x == 222) { printf("bidx = %d, bidy = %d, bidz = %d, seqlen_o = %d, m_block = %d, seqlen_o - m_block * kBlockM = %d, tOgO addr = %p\n", blockIdx.x, blockIdx.y, blockIdx.z, seqlen_o, m_block, seqlen_o - m_block * kBlockM, &tOgO(0));}

        // Reshape from e.g. (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, (8, kHeadDim / 64))
        Layout l = make_layout(get<1>(tOrO.layout()), make_layout(get<0>(tOrO.layout()), get<2>(tOrO.layout())));
        Tensor tOrO_l = make_tensor(tOrO.data(), l);
        Tensor o_fp32 = make_tensor_like<float>(tOrO_l);
        flash::convert_type_out(tOrO_l, o_fp32);
        Tensor tOrdO_l = make_tensor(tOrdO.data(), l);
        Tensor do_fp32 = make_tensor_like<float>(tOrdO_l);
        flash::convert_type_out(tOrdO_l, do_fp32);
        // Sum across the last dimension
        Tensor dP_sum = make_tensor<float>(make_shape(size<0>(o_fp32)));
        #pragma unroll
        for (int mi = 0; mi < size<0>(o_fp32); ++mi) {
            float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
            #pragma unroll
            for (int ni = 1; ni < size<1>(o_fp32); ni++) {
                dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
            }
            flash::SumOp<float> sum_op;
            dP_sum(mi) = flash::Allreduce<kGmemThreadsPerRow>::run(dP_sum_cur, sum_op);
        }

        Tensor mdPsum = make_tensor(make_gmem_ptr(params.ptr_dPsum), params.shape_dPsum, params.stride_dPsum)(_, bidh, !is_varlen ? bidb : 0);
        Tensor gdPsum = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded), mdPsum), Shape<Int<kBlockM>>{}, make_coord(m_block));
        if (get<1>(tOcO(_0{}, _0{}, _0{})) == 0) {
            #pragma unroll
            for (int mi = 0; mi < size(dP_sum); ++mi) {
                int const row = get<0>(tOcO(_0{}, mi, _0{}));
                gdPsum(row) = row < seqlen_o - m_block * kBlockM ? dP_sum(mi) : 0;
            }
        }

        int const seqlen_rounded = cute::round_up(seqlen_o, kBlockM);
        Tensor mLSElog2 = make_tensor(make_gmem_ptr(params.ptr_LSE_log2), params.shape_dPsum, params.stride_LSE_log2)(_, bidh, !is_varlen ? bidb : 0);
        Tensor gLSElog2 = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded), mLSElog2), Shape<Int<kBlockM>>{}, make_coord(m_block));
        if (thread_idx < seqlen_rounded - m_block * kBlockM && thread_idx < kBlockM) {
            gLSElog2(thread_idx) = lse == -INFINITY ? 0.f : lse * float(M_LOG2E);
        }

        if constexpr (Clear_dQaccum) {
            Tensor mdQaccum = make_tensor(make_gmem_ptr(params.ptr_dQaccum), params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
            Tensor gdQaccum = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(m_block));
            GmemTiledCopyAccum gmem_tiled_copy_dQaccum;
            auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(thread_idx);
            Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
            Tensor zero = make_fragment_like(tdQgdQaccum);
            clear(zero);
            cute::copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, zero, tdQgdQaccum);
        }

        if (params.dq_semaphore != nullptr && thread_idx == 0) {
            int const num_batch = params.num_batch;
            int const num_head = get<2>(params.shape_O);
            params.dq_semaphore[bidh + bidb * num_head + m_block * num_head * num_batch] = 0;
        }

    }

};

} // namespace flash