import json from typing import Any, Dict, List import tensorflow as tf from tensorflow import keras from huggingface_hub import from_pretrained_keras, hf_hub_download import base64 import io import numpy as np from PIL import Image class PreTrainedPipeline(): def __init__(self, model_id: str): self.model = keras.models.load_model("./tf_model.h5") def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]: with Image.open(inputs) as img: img = np.array(img) im = tf.image.resize(img, (128, 128)) im = tf.cast(im, tf.float32) / 255.0 pred_mask = model.predict(im[tf.newaxis, ...]) pred_mask_arg = tf.argmax(pred_mask, axis=-1) labels = [] binary_masks = {} mask_codes = {} for cls in range(pred_mask.shape[-1]): binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) for row in range(pred_mask_arg[0][1].get_shape().as_list()[0]): for col in range(pred_mask_arg[0][2].get_shape().as_list()[0]): if pred_mask_arg[0][row][col] == cls: binary_masks[f"mask_{cls}"][row][col] = 1 else: binary_masks[f"mask_{cls}"][row][col] = 0 mask = binary_masks[f"mask_{cls}"] mask *= 255 img = Image.fromarray(mask.astype(np.int8), mode="L") with io.BytesIO() as out: img.save(out, format="PNG") png_string = out.getvalue() mask = base64.b64encode(png_string).decode("utf-8") mask_codes[f"mask_{cls}"] = mask labels.append({ "label": f"LABEL_{cls}", "mask": mask_codes[f"mask_{cls}"], "score": 1.0, }) return labels